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Abstract

This thesis work is concerned with the enhancement of three-dimensional preoper-
ative planning (P3D) tools for total hip reconstruction. When cementless implants
are used, primary stability is vital for a good osseointegration. For this, a correct
selection of the size and position of the implant is necessary. The surgeon may use
P3D based on the computed tomography scanner of the patient’s hip to optimally se-
lect the implant’s size and anticipate the final implant’s position. Available planning
methods lack a mechanical criterion reflecting the actual quality of the bone-implant
contact. In this work we propose a method to improve P3D using a vibrational finite
element analysis to calculate patient-specific mechanical parameters representative
of primary stability.

We found that the modal response of the stem is very sensitive to changes of the
area and apparent stiffness of the bone-implant interface. A clear transition between
loose and tight contact allowed the definition of thresholds that could potentially
discriminate between a stable and an unstable stem. We also studied the effect of
the broaching procedure and its relevance for P3D. The effect of broaching on bone
microstructure at the bone-implant interface was analyzed using cadaveric samples
and micro-computed tomography. A mapping of the stiffness of bone in contact
with the implant was obtained with indentation on the same cadaveric samples.

Keywords

Modal analysis; hip prosthesis; vibration; primary stability; bone mineral density;
indentation; broaching; trabecular bone.
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Résumé

Ce travail de thèse avait comme objectif l’amélioration des outils de planning
préopératoire tridimensionnels (P3D) pour l’arthroplastie totale de la hanche. Lors
de l’utilisation d’implants sans ciment, une bonne stabilité primaire est requise pour
obtenir une ostéointégration satisfaisante. Pour cela, une sélection appropriée de la
taille et de la position de la prothèse est indispensable. En utilisant des images scan-
ner obtenues par tomographie à rayon X de la hanche des patients, le chirurgien peut
se servir du P3D pour faire la sélection de l’implant et anticiper sa position finale.
Aujourd’hui, les méthodes de planning disponibles ne fournissent pas de critère mé-
canique qui pourrait refléter la qualité du contact os-implant.

Nous proposons une méthode pour l’amélioration du P3D basé sur une analyse
vibratoire par éléments finis pour le calcul de paramètres mécaniques personnalisés
et liés á la stabilité primaire. Nos résultats suggèrent que la réponse modale de
la tige est très sensible aux changements de l’aire de contact et de la raideur ap-
parente de l’interface os-implant. Une transition marquée du comportement modal
associée à un ancrage plus ou moins bon nous a permis de définir des seuils qui pour-
raient potentiellement discriminer des implants stables et instables dans le cadre du
planning.

Nous avons aussi étudié l’effet de la procédure de râpage et son possible impact
sur le P3D. L’effet de la râpe sur la microstructure de l’os à l’interface os-implant
a été analysé sur des pièces anatomiques à l’aide d’images de micro-tomographie à
rayon X. Une distribution spatiale de la raideur de l’os en contact avec l’implant a
aussi été obtenue par indentation des mêmes pièces anatomiques.

Mots-clés

Analyse modale; prothèse de hanche; vibration; stabilité primaire; mouvement prox-
imal; indentation; râpage; os trabéculaire.
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Chapter 1

Introduction

1.1 Context and motivation

1.1.1 Total Hip Replacement (THR)

Total Hip Replacement is one of the most commonly performed and successful ortho-
pedic surgeries nowadays, which consists of replacing the hip joint with a prosthesis.
With over one million interventions worldwide per-year, and a high survival rate of
over 95% at 15-20 years or more (Holzwarth and Cotogno, 2012; Karachalios, 2014),
it has been appointed as the "orthopedic operation of the century" (Learmonth
et al., 2007). However, the long-term success of this intervention is highly depen-
dent on the quality of the contact between the bone and the implant achieved by
the surgeon during the operation, which allows a proper subsequent osseointegration
(Karachalios, 2014). The wrong selection of an implant’s size and position by the
surgeon can lead to bad contact conditions, jeopardizing the outcome of the surgery.

The hip joint (Figure 1.1) is one of the largest and more stable joints in the
human body (Nordin and Frankel, 2001). It presents the characteristics of a classi-
cal ball-and-socket joint and is surrounded by powerful and well-balanced muscles,
providing a remarkable intrinsic stability, but also a great range of mobility (Byrne
et al., 2010), allowing the performance of daily activities such as walking, sitting,
and squatting (Nordin and Frankel, 2001). It features the four characteristics of a
synovial joint: it has a joint cavity; joint surfaces are covered with articular carti-
lage; it has a synovial membrane producing synovial fluid, and; it is surrounded by
a ligamentous capsule (Byrne et al., 2010).

The hip joint is composed by the femoral head and the acetabulum of the pelvis
Figure 1.1. The femoral head is the convex component of the ball-and-socket
configuration of the hip joint, it forms two thirds of a sphere, and is covered by
articular cartilage (Nordin and Frankel, 2001). The femoral head is attached to the
femur shaft by the femoral neck, with an inclination angle that facilitates freedom
for joint motion (Byrne et al., 2010; Nordin and Frankel, 2001). The acetabulum
is the concave component of the ball-and-socket configuration of the hip joint, its
surface is also covered with articular cartilage. The acetabulum becomes congruous
with the femoral head when the hip joint is loaded (Nordin and Frankel, 2001).

Total hip replacement needs to be performed when the hip-femoral joint is per-
manently damaged and has to be replaced with a hip prosthesis. In this proce-
dure, the head of the femur is removed to access the femoral canal and insert a
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Figure 1.1: Anatomy of the hip joint. Source: www.corentec.com - hip anatomy

implant-stem which is then connected to an acetabular cup that goes inserted in the
acetabulum of the hip bone (Figure 1.2).

In the current practice of THR, an increasing number of procedures are per-
formed with cementless stems (Figure 1.3), especially when treating young patients
with high activity level (Søballe, 1993; Holzwarth and Cotogno, 2012). This type of
implant has shown to provide multiple advantages as opposed to cemented ones; first,
cementless implants allow to avoid the introduction of cement in the organism of the
patient that could generate the so-called cement disease, or polymethyl methacry-
late debris, causing rejection reactions, premature loosening and other complications
(Learmonth et al., 2007), they also help to match more properly the properties of
the surrounding bone, thanks to the implementation of bioactive coatings and rough
surface textures that cementless stems usually have incorporated to help enhance
bone in-growth and fixation (Søballe, 1993; Søballe et al., 1992; Holzwarth and Co-
togno, 2012; Karachalios, 2014). Among the most commonly used metal materials
in orthopedic prostheses we can find: stainless-steel, cobalt-chrome, titanium and
titanium alloy. Cementless hip prostheses made of a Ti alloy (Ti-6Al-4V) are char-
acterized for having a high corrosive resistance, and has proven to be particularly
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Figure 1.2: Total Hip Replacement Scheme. Source: www.drugwatch.com - hip
replacements

biocompatible in comparison with other materials. One of the advantages of this
material is that its mechanical properties adapt well to those of cortical bone, which
helps reduce non-anatomical bone remodeling caused by stress shielding (Søballe,
1993).

The use of a cementless implant involves a press-fit condition between the stem
and the femur that is crucial for a proper fixation, and the survivorship and good
function of the joint replacement (Karachalios, 2014; Ramamurti et al., 1997). Ob-
taining a proper press-fit at surgery indicates that there is a good anchorage of
the implant in the bone cavity (Karachalios, 2014; Ramamurti et al., 1997); this
is a necessary conditions to obtain primary stability, which is defined as the me-
chanical fixation of an implant achieved at the time of the surgery (Karachalios,
2014). Primary stability, is paramount for achieving bone in-growth, also known as
the osseointegration process guaranteeing good functional outcomes (Albrektsson
and Albrektsson, 1987; Viceconti et al., 2006) especially in the early post-operative
period.

There are multiple debates regarding the threshold of bone-implant relative mo-
tion that allows proper bone in-growth, it has been reported by multiple authors
that there seems to be a relation between the magnitude of bone-implant motion
and the type of interface tissue developed after surgery (Søballe et al., 1992; Bragdon
et al., 1996). The formation of fibrous tissue is undesired since it is mechanically



4 Chapter 1. Introduction

Figure 1.3: Cementless hip stem without the femoral head -SPS Evolution Symbios.
Source: www.symbios.ch

unstable (Søballe et al., 1992). To obtain a proper bony in-growth, the movement
of the implant within the bone, also called "micromotion" ((Karachalios, 2014)),
should not exceed 150 µm (Søballe, 1993; Bragdon et al., 1996).

1.1.2 THR broaching and bone properties

At the macrostructural level, bone is differentiated into two different types, cortical
or compact bone, and cancellous or trabecular bone (Figure 1.4).

Cortical bone composes the external layer of all bones, with a dense structure of
low porosity (porosity usually lower than 15%), presenting a compact appearance
at the macroscopic level (Mitton et al., 2011).One complication that affects this

Trabecular bone is found in the inner parts of bone, and presents a highly porous
sponge-like appearance, with a 3D structure made of connected plates and rods,
known as trabeculae (Mitton et al., 2011).

For the implantation of a hip implant, it is necessary to open the femoral canal
by removing the trabecular bone and leaving an open access for the implant to
penetrate. This step of the surgery is known as the broaching procedure, for this
the surgeon uses a set of broaching tools of different sizes that are introduced pro-
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Figure 1.4: Structure of trabecular bone (up) and cortical bone (bottom). Source:
M. Granke. Multi-scale investigation of bone quality using ultrasound. PhD Thesis

gressively in a size-increasing manner until obtaining the desired size of the cavity
for implanting the stem (Figure 1.5). It appears obvious to infer that this broach-
ing process would have a non-negligible effect on the mechanical properties of the
trabecular bone, which would most likely affect the bounding conditions in the inter-
face zone between the bone and the implant. Mechanical tests of indentation have
been widely used for characterizing the mechanical properties of bone at different
structural levels (Oliver and Pharr, 2004).

On the other hand, it has been demonstrated that the bone mineral density of
the bone can be associated to its elasticity through different empirical equations
(Keller, 1994; Wirtz et al., 2000; Helgason et al., 2008; Auperrin, 2009). Specifically
in our context of interest, the Hounsfield densities can be extracted from computed
tomography (CT) scan images of the bone to make a mapping of the mechanical
properties of the bone after broaching by making use of those relations.

The Hounsfield density is a quantitative parameter that can be extracted from
the CT-Scan images of the bone of the patient; it is expressed in Hounsfield units
(HU), and it corresponds to a linear transformation of a measure of the attenua-
tion coefficient of the X-rays and a normalization with respect to the attenuation
coefficient of water. It is expressed by:
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dHU = 1000× µX − µwater

µwater
,

Where dHU , µX and µwater are the Hounsfield density, the attenuation coefficient
of the X-rays in the material in question (bone), and the attenuation coefficient in
water. For standard pressure and temperature conditions, the Hounsfield density in
water is zero and the Hounsfield density in air is -1000 HU (Aamodt et al., 1999),
while for the cortical bone is between 400 and 1000 HU (Shapurian et al., 2006).

Figure 1.5: Broaching tools (Symbios R©) of different sizes used for THR.

1.1.3 Preoperative Planning

THR is performed with the aim of recovering the biomechanical functionality of the
hip joint when it’s damaged, for this a very precise work has to be done during
the surgery to recreate the original anatomical configuration of the patient. In
cementeless THR, the choice of the size and position of the implant for each specific
patient is vital for obtaining the correct press-fit and primary stability (Reggiani
et al., 2008; Holzwarth and Cotogno, 2012; Karachalios, 2014) previously described.

The implantation of the stem in the bone and the evaluation of the level of
anchorage is commonly assessed by the orthopedic surgeons in a rather empirical
fashion. According to communications with an experienced orthopedic surgeon and
limited literature reference (BEGUEC et al., 2015) a common practice is to use
the sound of hammer blows as an indication of the quality of the press-fit between
the implant and the bone. This implies that the stem size, position, and attainable
stability is usually assessed empirically by the surgeon in the operating room with an
inherent risk of error. For instance an underestimation of stem size may lead to pain,
lower limb shortening or dislocation, whereas an overestimation may generate bone
fractures and limb lengthening (Knight and Atwater, 1992; Sariali et al., 2012a).
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Radiographs (X-rays) are used as a preoperative two-dimensional template for
planning the surgeries, and anticipating prosthesis size and possible complications.
This technique however, has proven to be highly dependent on the level of experience
of the surgeon, and leads to prediction errors of size and position of the implant in
approximately 50% of the cases when using cementless implants (Knight and Atwa-
ter, 1992; Carter et al., 1995; González Della Valle et al., 2008; Sariali et al., 2012a)
and originating problems such as lower limb discrepancy (Sariali et al., 2012a).

In order to assist the surgeons in making the correct selection of the prosthesis
and plan the surgeries preoperatively, new tools are becoming available that allow
to make a planning of the procedure more accurately, such as HipPlan and HipOP
(Viceconti et al., 2003a; Sariali et al., 2009b, 2012a, 2016), this may in particular be
of big help for the less experienced surgeons. Specifically, three-dimensionnal (3D)
preoperative planning software, which are mainly based in anatomical compatibility
techniques, make use of CT-Scan images of the hip joint of the patient and a 3D
numerical model of the implant, allowing the surgeon to make a navigation with
the digital model of the prosthesis. The surgeon virtually places the stem and
the acetabular cup in the cavity of the femur and the acetabulum respectively,
until finding the correct size and position for the implant, which is specified by
a representation of the density of the bone projected on the surface of the stem’s
model (HipPlan R©, Symbios, Yverdon-les-bains, Switzerland), (Figure 1.6). With
these tools, the surgeon anticipates the final position of the stem in the bone cavity
after the insertion by successive hammer blows (Sariali et al., 2009b). More precisely,
the surgeon needs to decide whether the regions of contact between the stem and
the bone, for a given model and size of stem, can ensure a satisfactory anchorage by
press-fit. However, the surgeon only has visual and geometrical arguments to make
a decision and needs some training to take benefit of the 3D planning. This among
others, is seen as one of the reasons the preoperative planning is seldom used in
clinical practice while it may significantly help reduce failures, as explained below.

A study performed using the 3D preoperative planning software Hip-Op on the
accuracy of CT-based surgical planning for THR as compared to traditional 2D
templating planning (Viceconti et al., 2003a), shows that the accuracy of the se-
lection of the size of the stem and the socket increased from 83% for the stem and
69% for the socket to 86% and 93% respectively. Demonstrating an improvement
on the accuracy of the planning, specially when deformed anatomies are involved,
and showing a high precision and accuracy specially for less experienced surgeons.

Sariali et al. have performed several studies on the accuracy of 3D preopera-
tive planning using the HipPlan software. In a study to evaluate the accuracy of
reconstruction of the hip using 3D preoperative planning and cementless implants
(Sariali et al., 2009b), 223 patients with osteoarthritic hips were analyzed using the
3D planning tool. The post-operative restoration of the anatomy was assessed by
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Figure 1.6: 3D preoperative planning - HipPlan.

CT and compared with the pre-operative plan, with accurate results in 86% of the
cases for the acetabular component, 94% for the stem, and 93% for the neck-shaft
angle. They conclude that the method appears to provide high accuracy, as the
difficulties that can be found at the moments of the surgery can be anticipated and
solved pre-operatively.

In another study (Sariali et al., 2009a) to determine 3D morphological data
of the hip focusing on femoral offset (defined as the distance between the center
of the femoral head and the femoral axis (Sariali et al., 2009a)) and using the
software HipPlan, the mean femoral offset was found to be 2.2 mm greater than
the 2D femoral offset values reported in the literature, the authors conclude that
3D planning software could allow an optimization of the planning process and the
design of hip prostheses.

Given the potential that 3D planning tools seem to have for the improvement
of THR, the interest for the advancement of techniques for these planning tools
appears to be increasing in the last few years.

One study attempted to use anatomical compatibility and data set registration
techniques for automated positioning of the hip implant based on predefined po-
sitions from 3D preoperative plans done by surgeons, the method produced good
results for implant positioning when compared to manual positioning done by an
experienced surgeon (Viceconti et al., 2003b).
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Another study proposed an atlas-based approach for automated 3D preoperative
planning for THR (Otomaru et al., 2012). Statistical atlases were constructed from
a number of 3D preoperative plans performed by experienced surgeons; based on
distances map representing the preference of bone-implant contact patterns of the
surgeon, 40 cases were evaluated utilizing the automated technique, and errors were
measured as differences between the automated and a surgeon’s plan. By using the
automated method positional and orientation errors were reduced as compared to
other planning techniques, particularly 2D template methods.

1.1.4 Vibration Methods - Implant Stability

In this study we propose the use of vibration methods for the analysis of stability
of cementless hip prosthesis during preoperative planning. In other words, we have
combined 3D planning with a vibrational analysis to enhance the planning. Various
studies have been carried out by multiple authors during the last few decades on
the implementation of vibration methods perioperatively (during surgery) for the
analysis of stability of hip prostheses and other types of implants, revealing promis-
ing applications of this technique for stability assessment pre and perioperatively.
We have identified two main research groups that have been consistent through
out the years in the advancement of this technology and have inspired some of our
study ideas, they are the team of Pastrav et al. from Leuven Engineering University
College, Leuven, Belgium, and the team of Viceconti et al. from the University of
Bologna and Rizzoli Orthopedic Institute, Bologna, Italy. The following presents a
summary of some of the works of these and other authors:

1.1.4.1 Experimental studies:

Various experimental studies have been proposed with the goal of shedding light on
the applicability of vibration methods for the analysis of stability of hip prostheses.

Pastrav et al. (2009b) and Varini et al. (2010) proposed systems and protocols
for perioperative assessment of stability of hip prostheses.

Pastrav et al. (2009b) developed a system to measure in-vivo the frequency re-
sponse functions of the stem-femur system corresponding to successive insertion
stages on the implant with the goal of detecting the insertion end-point of non-
cemented and partially cemented hip stems. They observed that the higher mode
numbers (frequency range 0-10 kHz) are more sensitive to the stability change com-
pared to the lower mode numbers, in agreement with numerical studies Pastrav et al.
(2009a), and also that during the insertion of the implant in the femur, the changes
of boundary conditions and implant stability between different stages are reflected
by the resonance frequency evolution (Figure 1.7).
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Varini et al. (2010) presented a study focusing on an in-vitro validation of a de-
vice to measure implant stability perioperatively based on vibration analysis. Fresh
cadaver specimens and composite samples were used for the study. The device was
composed by an excitatory piezoelectric system that delivered a controlled excita-
tion to the prosthesis [1200-2000 Hz], and an accelerometer mounted on the host
bone measured the transmitted vibration to identify resonance frequencies, which
were measured immediately after press-fitting. Simultaneously a torque was applied
to the implant and bone-implant micromotions were measured with the use of a
displacement transducer. With this vibration technique they were able to discrim-
inate between different levels of stability, concluding that the highest peak in the
excitation range due to torque application is the best indicator of implant stability,
and that when that shift is less than 5 Hz during the application of the torque, the
residual micromotion after removal of the load was always less than 150 µm, which
has been identified in other studies as the threshold for a correct implant anchorage
(Søballe, 1993; Bragdon et al., 1996).

In terms of loosening detection techniques, Puers et al. (2000) developed an im-
plantable telemetry system for the detection of hip prostheses loosening by applying
vibration analysis techniques. With an accelerometer placed in the head of the hip
prosthesis, they monitored the response of the femur-prosthesis system to mechan-
ical sine wave vibrations applied by an electromagnetic shaker at the distal end of
the femoral bone. The author claims satisfying preliminary results with cadaver
experiments, although no specific data is reported.

Figure 1.7: Frequency response function graphs corresponding to successive insertion
stages of a non-cemented stem. Each successive stage follows a hammer blow.
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1.1.4.2 Numerical studies:

Qi et al. (2003) implemented a numerical modal analysis using finite element meth-
ods and computer simulations to determine how much information a vibrational
technique can reveal regarding the loosening of the femoral component of a total
hip reconstruction. They computed and observed the first ten natural frequencies
and mode shapes (Figure 1.8, right) of the implant-femoral model under free vi-
bration, with hypothetical absence of contact portions at specific locations (Figure
1.8, left), and presented the interface failure size as a quantitative measurement of
the femoral prosthetic loosening. They observed variations of the effect of interface
failure (absence of contact) on the stiffness of the femoral component with different
location and sizes of the failure zone, finding that higher modes are more sensitive
to interface failure, and that the method was able to properly detect loosening when
the size of interface failure was more than one-third of the length of the stem.

Figure 1.8: Example of hypothetical interface failures, 1/3 distal interface failure
(left). First 6 vibration modes of the control model (right). Reproduced from Qi et al.
(2003)

Pastrav et al. (2009a) performed a finite elements modal analysis on the hip stem-
femur system under various contact situations (Figure 1.9, top) simulating different
stages of the insertion of the implant in the bone’s cavity, and observed variations
in modal shapes and natural frequencies. In agreement with Qi et al. (2003), their
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results show that a shift to higher frequencies correspond to an increment of the
implant-bone contact surface, with a more pronounced effect on higher modes. They
also observed that the dynamic behavior is most influenced by proximal contact
changes (Figure 1.9, bottom).

Figure 1.9: Top: Change of contact distribution: progressive increase of general
contact (left); different contact areas in different zones; (a) proximal and central zones;
(b) distal zone (right). Bottom: Resonance frequency shift plotted for proximal, central
and distal contact increase (38-98%), free-free suspension of the implant-femur system.
Reproduced from: Pastrav et al. (2009a)

In a similar study, Perez and Seral-Garcia (2013) determined the variations in
the numerical modal analysis of a cementless hip prosthesis simulating different
stages of the osseointegration process. Natural frequencies and modal shapes were
observed under vibration for different bone and implant material properties and
also different contact conditions at the bone-implant interface. It was found that
as the osseointegration process evolved, increasing the contact surface and stiffness
in the bone-implant interface, the values of the natural frequencies also increased
in agreement with observations of Qi et al. (2003) and Pastrav et al. (2009a), and
concluding also that higher modes and their corresponding resonance frequencies
are more sensitive to contact conditions in the interface.
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As evidenced in the aforementioned studies, vibration analysis has been consid-
ered and proven to have good potential as a mean to assess primary stability of hip
stems. It has been demonstrated that the vibrational behavior of the stem is mod-
ified when the stem is progressively inserted into the femoral cavity by successive
surgeon-controlled hammer blows. More precisely, resonant frequencies of the first
vibration modes converge to plateau values as the stem’s end-point of insertion is
reached.

For 3D planning purposes, Reggiani et al. (2007) showed that a finite element
(FE) model built from the CT-scan of a cadaveric femur could predict the level of
primary stability achieved for a cementless stem. Their analysis is based on the
simulation of the quasi-static torsion of the stem and the computation of torsional
micromotion. The model, which incorporates a finite element mesh of the bone
and frictional contact conditions, is quite realistic but as a counterpart has several
parameters and requires relatively large computational resources. Our hypothesis is
that primary stability can be assessed during planning by resorting to a somewhat
simpler model based on the modal analysis of the stem.

1.2 Enhancement of 3D planning

Even though currently available 3D preoperative planning tools represent an impor-
tant step forward for the advancement of THR techniques, they are still in early
stages of development. One critical limitation that has been identified in these tools
is the lack of relevant mechanical criteria that is used to guide the surgeon during
the planning. As it can be observed in Figure 1.6, the software only provides vi-
sual information obtained from the levels of density of the bone in contact with the
numerical object of the implant, but it does not specify the mechanical implications
of the cartography observed, that is, what do those colors actually say about the
global quality of the press-fit of the bone-implant interface?

The definition of this mechanical criteria is at the core of this thesis project, and
represents an important part of the contribution of this work for the enhancement
of 3D preoperative planning techniques.

In this thesis work, the technique that we propose is based on the implemen-
tation of a finite element method for performing a modal analysis of the stem for
the assessment of primary stability of cementless hip implants, with the purpose of
determining numerical indicators that can be used to discriminate between stable
and unstable cases during preoperative planning. In short, we introduce resonance
three-dimensional planning (RP3D) as a mean to assess primary stability preoper-
atively.

An exploratory preliminary study was performed using clinical data to identify
from real cases common markers of stability discrimination. Then, in a study of
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controlled cases those same markers served to identify the typical boundary con-
ditions necessary to achieve stability. One advantage of our technique lays on its
simplicity, since only the implant is included in the geometry of the finite element
model (i.e no need to mesh the bone).

In the other hand we studied the effect of the broaching procedure on the bone, to
this date this effect has not been defined and characterized, and any efforts towards
the implementation of 3D preoperative planning techniques seem to be incomplete
without a full understanding and consideration of the real contact conditions in the
bone-implant interface, determined by the properties of the bone at the moment of
the implantation, i.e. bone surface after broaching.

The existing 3D preoperative planning software make use of CT-Scan images of
the patient before surgery, which evidently have not been through the broaching
process yet. As a result, the planning obtained is based on a mere approximation
of the actual contact conditions, since the real bone properties in the interface after
broaching are not taken into account, this approximation may be far from reality
depending on how important the effect of the broaching process on the bone surface
is. On that account, it appears necessary to quantify the effect of the broaching
process on the mechanical properties of the contact surface of the bone, to determine
whether or not an approximation without taking into account the broaching effect
is accurate enough for obtaining a realistic planning.

The potential of vibration methods for stability discrimination in THR has been
established numerically and experimentally. Now, there is an interest for investigat-
ing the usefulness of this technique in the specific context of preoperative planning,
and to establish the considerations related to the real boundary conditions in the
bone-implant interface due to the effect of the broaching process.

1.3 Objectives of the thesis

• Introduce resonance three-dimensional planning (RP3D) as a mean to assess
primary stability preoperatively; and evaluate the sensitivity and applicability
of the method.

• Determine how, and to which extent, preoperative CT-Scan information can
be used for RP3D. Define what is the relation between preoperative bone
mineral density and the actual bone-implant contact.

1.4 Outline of the thesis

Chapter 2 introduces the finite element model, and numerical simulation consid-
erations, taken into account for the vibrational analysis of the stem for stability
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discrimination.

Chapter 3 presents an exploratory preliminary study based on clinical cases,
as our first attempt to use the numerical vibration technique for identifying
discriminatory factors between stable and unstable cases from the modal response
of the stem.

In Chapter 4 we present a fully developed vibrational finite element study
based on controlled cases of bone-implant contact conditions for the definition of
stability thresholds.

Chapter 5 is concerned with the characterization of the effects on bone
properties of the broaching procedure by implementing image analysis techniques
to measure bone mineral density variations on the µCT-Scan images of cadaver
samples before and after broaching.

Chapter 6 presents a study of the mechanical properties of the bone by imple-
menting an indentation mechanical testing on cadaver bone samples at the surface
of the broached cavity.





Chapter 2

Numerical Model

2.1 Introduction - Finite Element Analysis (FEA)

This chapter is dedicated to present the numerical model and FEA methods imple-
mented in the context of our study.

A finite element (FE) modal analysis was conducted on the software of numerical
simulations and analysis Code Aster (Code_Aster, EDF R&D, license GNU GPL,
http://www.code-aster.org) implementing the Sorensen method for modal compu-
tation. The outputs of the computation are the modal frequencies and modal shapes
calculated in the frequency range [0− 21 kHz].

A .comm file is created, which contains the algorithm with the specifications of
the FEA to be performed, including: FEA method, areas of affectation (nodes and
elements to be affected), mechanical properties of the object, boundary conditions,
stiffness matrix (corresponding in our case to the contact stiffness on the bone-
implant interface) among other parameters depending on the desired outputs.

Salome-Meca (Salome-Meca, EDF Open Cascade, license GNU GPL,
http://www.salome-platform.org/) was used to visualize the modal shapes.
Code_Aster results were post-processed with custom Matlab (MATLAB Release
2015a, The MathWorks, Inc., Natick, Massachusetts, United States.) programs.

More detailed information regarding the FEA performed in each specific study
will be presented in chapters 4, and 3.

2.2 Geometrical model

A finite element mesh was created for a cementless stem (SPS R©, Symbios, Yverdons-
les-bains, Switzerland), see Figure 1.3. Meshes of two different sizes were created
for each side, left and right, for a total of four meshes. Size C: height 11.5 cm, length
3.4 cm, and width 2.5 cm. Size D: height 12.2 cm, length 3.6 cm, and width 2.6 cm.
The stem is a cementless anatomic model with a metaphyseal proximal fixation
which is made of titanium alloy Ti6Al4V-Iso 5832-3, assumed isotropic and linear
elastic, with Young Modulus 114 GPa, Poison ratio 0.34 and density 4500 Kg/m3.
A CAO file (.ply format) of the stem, Figure 2.2, was provided by the manufacturer
and used to create the FE mesh.

The CAO objects of the stem (provided by Symbios) contained small geomet-
rical details (such as engraving) and could not be used as such to create a mesh.
Therefore, the CAO file was first processed to remove small details which have a
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negligible effect on the vibrational behavior in order to obtain a regular well con-
ditioned mesh. Furthermore, in order to control the mesh density a parameterized
geometry was created.

In order to do this, first, 15 cross-section contours were extracted from the CAO
file (Figure 2.1). The contours selection process comprehends several steps since
the nodes on the surface of the stem in the CAO file are not evenly distributed,
which makes the extraction of the contours a little more laborious. To do this, three
points per contour are selected directly on the surface of the object. With these three
points the equation of the plane in which that contour is contained is obtained, then
a tolerance value is manually assigned to each contour plane equation to include
points that are located in adjacent planes of the CAO object and be projected on
the plane of interest to fill the holes of areas where there are no points due to the
uneven distribution of the original mesh (Figure 2.1). An interpolation is done to
put all the points on the same contour line, to finally obtain a complete contour
representative of the geometry of that part of the stem (Figure 2.2).
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Figure 2.1: Visualization of the 15 contours in raw state, extracted from the CAO
object. Left: ensemble of all 15 contours. Right: Plane view of contours 1 and 15.

Once the desired contour shapes are obtained, a new discretization is performed
to obtain points evenly distributed over the contour by verifying consistency with
the Pythagorean theorem, with the hypotenuse equal to the desired mesh element
size (e). Then, the points are connected by lines to create a geometry file (.geo
format), with the implementation of an algorithm adapted from a master’s thesis
(Vallet, 2013), see Figure 2.3. This was then imported into the meshing tool GMSH
(Geuzaine and Remacle, 2009) to create the mesh of the stem. For the obtained
element size (e) the mesh consisted of ≈ 24000 degrees of freedom, and ≈ 22500

tetrahedral second order elements (Figure 2.4).
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Figure 2.2: Visualization of the 15 contours after interpolation and reorganization,
represented over the original CAO object.
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Figure 2.3: Successive steps for the construction of the mesh of the implant from the
CAO object: (i) Extraction of contour points from the CAO object (ii) Interpolation
of the contour (iii) Testing of points verifying Pythagoras’s theorem, with hypotenuse
equal to the desired element size (iv) Cloud of equidistant points forming the origin
contour that is saved into a file format to be interpreted and processed on gmsh
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Contours of
the .geo file

Mesh of the stem 
produced on GMSH

Figure 2.4: Left: Illustration of the contours saved into a .geo file format to be
interpreted and processed on gmsh. Right: Mesh of the stem obtained on gmsh from
the .geo file.

2.3 Mesh

In order to determine the appropriate mesh size, a convergence study was performed
on a cantilever beam for which an analytical solution of the eigen-modes is available.

For this convergence study we took into account the cantilever beam theory
and Newton’s equation. Three different boundary condition (BC) configurations
were considered for the cantilever beam, embedded-free, double-embedded, and free
conditions.

The cantilever beam presented the following geometrical characteristics: 5×0.2×
0.1 cm (L × h × b). And mechanical properties: E=210 GPa (Young’s Modulus),
G=79.3 GPa (shear modulus); ρ=7800 Kg/m3 (volumetric mass). The second order
mesh had 9286 degrees of freedom, and 5024 tetrahedral elements (Figure 2.5, a).

The eigen-modes of bending, torsion, and longitudinal motion were evaluated for
each BC configuration on Code Aster. We selected a number of elements per wave-
length of 16, which satisfies the Courant-Friedrichs-Lewy (CFL) condition, with an
average error of 0, 093% between the FE solution and the analytical result for the
first seven eigenmodes, with the embedded-free configuration (Figure 2.5, b); this
corresponds in our study to a characteristic element size of e = 2 mm.

2.4 Boundary Conditions (BC)

In our modal FEA studies, the boundary conditions are given by the stiffness in the
bone-implant interface zone, which is simulated by springs attached to nodes on the
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(a) Visualization of the mesh of the
beam cantilever on GMSH, with the fi-
nal FEM characteristics selected from
the convergence study
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Figure 2.5: Beam cantilever convergence study

surface of the stem (Figure 2.6). Some nodes are affected by this stiffness, and the
rest of the nodes are free.

The reaction force on node i of the stem writes:

Fi = ki ∗ ui (2.1)

where ki is the stiffness of an individual spring and ui is the displacement vector
of the node i.

The variable stiffness K (the equivalent stiffness of the whole contact surface)
is applied perpendicularly to the contact surface of the mesh of the stem, and dis-
tributed homogeneously over the surface in question by adjusting ki. A study was
done with a simple beam cantilever to verify that the stiffness is in fact distributed
homogeneously on the surface and not applied individually to each node.

Different approaches of this same method are used for the FE studies in Chapters
4, and 3, for representing the interface stiffness that corresponds to each study.

2.5 Registration of HU densities on the mesh

The current 3D preoperative method is a black-box, the relationship between what
happens in the bone-implant interface and the visual information of the HU is
unknown. We have started to work on the creation of a color map with our own
mechanical criteria directly from the preoperative planning.

From the 3D planning we obtain a cloud of points with an associated HU density,
in order to convert these HU densities into boundary conditions for the FEA, these
density values need to be associated to its corresponding node on the mesh.
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k

ki

Figure 2.6: Springs stiffness effect attached to the nodes of the stem.

Different techniques were proposed for this association of values to each node,
among them: the values contained in a normal of a certain length on each node,
the values within a certain radius, and the nearest value, see figure 2.7 for an exam-
ple; we observe how the distribution changes according to the registration method
implemented. One difficulty for the application of these methods is that the mesh
obtained from the CAO object of the stem and the cloud of points obtained from
the 3D planning are expressed in different coordinate systems, and a transforma-
tion matrix is needed to make the right registration, this matrix defined in the 3D
planning software is not easily accessible. For the moment this registration is done
manually.

Figure 2.7: Registration of HU values from the 3D planning on the FE mesh. Left:
Illustration of normals defined on each node for association of HU values. Middle: ex-
ample of an HU density distribution with the "nearest value" method. Right: example
of an HU density distribution with the "nvalues within a radius" method



Chapter 3

Modal analysis of clinical cases

3.1 Introduction

In this chapter we present an exploratory study dedicated to assess the applica-
bility and advantages of implementing numerical modeling methods to analyze the
vibrational behavior of a cementless hip implant for the determination of primary
stability in preoperative 3D planning. Based on a few clinical cases, and making
use of the numerical model presented in 1; we present the application of a modal
analysis of the stem, specifically modal frequencies and modal shapes, subjected
to boundary conditions defined by the contact with the surrounding bone in the
femoral cavity, obtained from CT-Scan information of a 3D planning.

As presented in chapter 1, multiple studies ((Qi et al., 2003; Pastrav et al.,
2009a,a; Varini et al., 2010; Perez and Seral-Garcia, 2013), among others) have been
presented proposing different vibration techniques for the analysis of stability in
THR, both preoperatively and perioperatively. These experimental and numerical
works propose various methods for the discrimination of stability defined as a func-
tion of the frequency response of the bone-implant system, and the mode shapes. It
has been demonstrated that a shift towards higher frequencies is related to a better
stability. Furthermore, these studies have shown how this enhancement of stability
is due to an increase in the contact surface and the quality of the anchorage of the
implant in the femoral cavity.

Our approach has two main advantages which shape the originality of this work.
Firstly, we associate the HU densities from CT-Scan images of the bone with stiffness
values, this allows to implement a simple model which involves attaching springs
to the contact area of the stem with their corresponding stiffness. This way we
simulate the effect of contact with the bone without having to include the bone in
the geometrical model. And second, we establish a relation between indicators of
instability from the numerical analysis and clinical indicators of unstable patients
(i.e. patients in pain post-surgery).

Our hypothesis is that the modal analysis, namely modal frequencies and modal
shapes, of the implant under boundary conditions obtained from the preoperative
planning can serve to discriminate stable and unstable cases.
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3.2 Materials and Methods

Figure 3.1 displays the main steps that were followed for the completion of this
exploratory numerical study. First, CT-Scans of each patient were acquired before
the surgery, the CT-Scanner was calibrated to maintain consistency with the scans
after surgery. The preoperative CT-Scan images were used for the 3D preoperative
planning performed by the orthopedic surgeon. These plannings were used as a
reference for performing the THR surgery by the same surgeon. Post-surgery 3D
plannings of six patients were used for the numerical study. These post-surgery
plannings were used to superpose and verify the position planned with the preop-
erative planning CT-Scan images of the patient, and make sure that the planned
position was achieved. Also, these plannings are done after the surgery to run the
numerical study with the bone-implant conditions obtained after the surgery is per-
formed. The finite element modal analysis was done on Code ASTER following the
method described in chapter 2.

3D Pre-operative
Planning

THR Surgery 

Vibration
FE Analysis

3D Post-operative
 Planning

Discrimlnation of stable and unstable
 and comparisons with clinical diagnosis

Differentiation of stable and unstable 
cases from clinical observations

Peformed by the orthopedic surgeon

Preoperative 
CT-Scans 

Calibrated for consistency with
posteoperative scans

Peformed by the orthopedic surgeon
following the preoperative planning

Post-operative 
CT-Scans 

Calibrated for consistency with
preoperative scans

Figure 3.1: General scheme with the different steps of the procedure

Presentation of study cases

The six cases (Hôpital Pitié Salpètrire, Orthopedic Service Department) were se-
lected by the surgeon and classified as stable or unstable, by taking into account
common clinical parameters, such as the presence of pain, limping, difficulties to
switch from sitting position to standing position, or the inability to walk. The first
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group (stable) exhibits a good osseointegration of the implant in the bone three
months after the operation, while the second group (unstable) is formed by patients
for whom the implant did not attain the stability condition as observed several
months after the surgery.

The first group (patients A, B and C) correspond to a good osseointegration and
a satisfactory implant-femoral stability, while the second group (patient E and F)
present unstable implants with an insufficient level of anchorage of the implant in
the femur. Finally, patient D was classified as having a good implant stability but
presenting post-surgery pains. The six plannings are presented in table 3.1.

Patient A - stable Patient B - stable Patient C - stable

P3D

Patient D - stable with pain Patient E - unstable Patient F - unstable

P3D

Table 3.1: Images taken from the postoperative three-dimensional plannings (P3D)
of patients A - F. The plannings of patients A, B, C and D correspond to stables
prostheses, with presence of pain for patient D, the plannings of patients E and F
correspond to unstable prostheses.

It should be noticed that patients A, B, C, D and F were operated with the same
prosthesis model SPS R© modular (Symbios), size C; left side for patients A and D,
and right side for B, C and F. Patient E was operated with a size D implant, right
side.

Extraction of boundary conditions from the 3D planning

In this chapter we deal with the issue of converting Hounsfield density values of
the bone in contact with the stem obtained from CT-Scan images of the patients
in the planning, into a physical parameter that simulates the effect of the contact
conditions in the bone-implant interface. For this, we apply the following reasoning,
with the introduction of the implant into the femoral canal, a displacement of the
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bone is imposed by a force exerted by the implant. The relation between this force
and displacement is given by the apparent stiffness of the bone-implant interface.
Hence, the physical parameter we search to convert the Hounsfield values into, is
nothing but the contact stiffness in the interface.

From the work of Auperrin (2009) we obtain an equation to relate the Hounsfield
density measured by X-rays and the volumetric mass of the bone. This relation is
given for a volumetric mass equivalent to those we deal with in our study.

ρ = 0.0009dHU + 0.8336 (3.1)

with ρ the volumetric mass, and dHU the Hounsfield density.

In multiple studies it has been established that the Young’s modulus can be
related to an apparent volumetric mass of the bone (Keller, 1994; Wirtz et al., 2000;
Helgason et al., 2008). For this study the following relation was implemented:

E = 10.5× (0.55ρ)2.29 (3.2)

Where E (GPa) and ρ (g.cm−3) are the Young’s modulus and the apparent volu-
metric mass of the bone, respectively. This expression was obtained from the studies
of Keller (1994) regarding relations between elastic properties and the volumetric
mass of the femur.

With equation 3.2 we can calculate a local Young’s modulus for different zones
of the prosthesis associated to different HU values. It follows that, for a determined
thickness of the femoral bone e, a stiffness K can be obtained for different zones of
contact, by implementing the following equation:

K = EHU ×
S

e
(3.3)

withK (N.m−1) the equivalent stiffness (see relation with equation 2.1 in chapter
2), E the Young’s modulus (Pa), S (m2) the corresponding area of the contact zone
in question, and e the considered thickness in the bone-implant interface.

Equation 3.3 is derived from the following reasoning:


F = k × x

σ = E × ε
⇒


σ =

F

S

ε =
x

e

⇒


E × ε = k × x

S

E × x

e
= k × x

S

⇒ k = E × S

e

with F an applied force, on an element of length e, and surface S, causing a
displacement x, originating an strain ε, and a stress σ.
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Definition of contact surfaces

The 3D preoperative planning tool that we used (HipPlan, Symbios) allows to ex-
tract the values of the Hounsfield density of the bone in contact with the implant
from the preoperative QCT scan of each patient.

On the 3D planning every point on the surface of the implant is associated to a
value of Hounsfield density.

A linear scale of Hounsfield densities is established, first a lower threshold of 400
was defined for the HU densities, which corresponds to the minimum HU density
of cortical bone which was set in the range of 400 to 1000 (Shapurian et al., 2006).
The points of the surface of the implant associated to HU densities below 400 would
be considered as free of contact.

The Hounsfield densities are converted into volumetric masses with the equation
3.1. Then a scale of volumetric mass is established by defining three different ranges
as shown in Figure 3.2 (left), which correspond to the assumed level of contact
between the prosthesis and the bone, low contact in blue, medium contact in green,
and high contact in red.

These three ranges of volumetric mass, for different contact areas are defined as
follows:

D = max(ρ)−min(ρ) ,
ρblue ∈ [min(ρ) ; min(ρ) +D/3] ,

ρgreen ∈ [min(ρ) +D/3 ; max(ρ)−D/3] ,
ρred ∈ [max(ρ)−D/3 ; max(ρ)] ,

These three ranges of volumetric mass allow to define three groups of points
on the surface of the implant corresponding to three levels of contact (Figure 3.2,
left). The volumetric mass of one zone corresponds to the average of the volumetric
masses of the points of the associated range. The local values of stiffness for each
zone are then calculated by using the equations 3.2 and 3.3.

The proposed contact model consists of attaching one spring representing a local
stiffness (Figure 3.2, middle) to each one of the nodes of the mesh located on the
three contact zones (Figure 3.2, right).

To calculate the area of each of the three contact zones, we calculate the indi-
vidual areas of each surface element of each contact zone. These are computed as
the area of a triangle formed by one node and the two closest neighbor nodes, then
we make the summation of each individual triangle in each contact zone to obtain
the total area of each surface.

Finally, with each total area for each zone S, the Young’s modulus E calculated
for the corresponding zone, and assuming the unit value for the thickness of the
bone e, the equivalent stiffness keq of each contact zone is obtained.
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Figure 3.2: Left: Contact zones defined of the prosthesis with a 3D planning. Middle
and Right: Bone-implant contact modeling principle.

3.3 Results

In table 3.2 we present the modal shapes and modal frequencies for the first five
eigen-modes for one stable patient and one unstable patient, both with implant size
C, in a frequency range [0 : 20] kHz. Two of the stable patients (A and B) presented
a total of 5 and 7 modes respectively, and the unstable patients (E and F) a total of
7 modes and 9 modes, respectively. The frequencies for the stable patients go from
around 2-18 kHz, while for the unstable patient the frequencies range from around
2-16 kHz. The range of frequencies and the number of modes seem to present very
variable patterns for stable and unstable cases. This is observed for all the 6 patients
that we studied.

The information contained in the modal shapes is richer (see images in Table
3.2). For the unstable patient the modal shapes show a proximal bending, particu-
larly in modes three and four, indicated by the variation of color on the top of the
implant (not blue). For the stable patient the obtained modal shapes do not display
this proximal bending. Similar patterns were observed in the other studied cases,
with some exceptions in some of the patients were the modal shapes did not follow
that pattern (see appendix A).

3.4 Discussion

The appearance of a stem bending mode concentrated on the proximal part seems
to be the signature of an undesired fit, and as a result of bad primary stem stability.
These results are coherent with the clinical experience, that indicates that excessive
proximal motion of the stem is associated with a bad fit of the implant. Based on
this preliminary results, and having found certain patterns of stability discrimination
(presence of proximal bending) we have considered of importance to measure and
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Number of Eigen modes
Modes 1 2 3 4 5

A 5 8110 10525 11189 16213 17918 Hz

F 9 2357 2940 7418 9271 16137 Hz

Table 3.2: Modal shapes of the first five modes of two patients of the study, as well
as the number of modes and modal frequencies in the frequency range [0 : 20] kHz.
Proximal bending modes indicated by variation of color at the top of the implant (not
blue).

characterize the effect of the magnitude of the contact stiffness and the size of the
area on which it is distributed, to establish stability thresholds that can be used as
a reference in preoperative planning. Furthermore, we consider crucial to be able to
measure this proximal motion in the modal shapes with a numeric value, for this we
have proposed to calculate the elastic potential energy ratio of the proximal part of
the stem. These ideas are explored and presented in Chapter 4.

Our method applying local stiffness values through the use of springs to emulate
the effect of the contact between bone and implant is a simple technique for running
numerical simulations. However, one limitation is that in our analysis we consider
a thickness e equal to the unit for obtaining the equivalent stiffness keq of each
contact zone. The effect of the actual thickness is unknown, in fact even the physical
definition of this thickness represents a challenge. With the goal of finding possible
answers to these questions, in Chapter 6 we investigate a little further and discuss
different considerations related to this thickness and its complexity.

Another limitation of this first exploratory study is that only six patients were
analyzed. The method needs to be implemented on a larger group of patients to
assess consistency of the observation.





Chapter 4

Modal analysis of controlled cases

The material presented in this chapter was submitted for publication in the journal
"Medical Engineering Physics". Title of the article: "Modal analysis for the
assessment of cementless hip stem primary stability in preoperative THA planning".

Ideally, a THR 3D planning software should provide a clear indication of
the expected primary stability for a given stem in a given femur. In order to
achieve this, a patient-specific mechanical analysis of stem stability must be done.
Several factors play an important role in the press-fit condition of a cementless
implant in THR, which ultimately define the primary stability. Among these
factors, the contact zone size (CZS) and the apparent stiffness of the bone-implant
interface are critical. This stiffness is found to be highly variable in patients, which
must be taken into account in the planning. This can be achieved by using the
densitometric information in the CT-scan which provides an indirect measure of
stiffness (Helgason et al., 2008).

This chapter elucidates the relationships between the modal response of a hip
stem (modal frequencies and modal shapes) and the boundary conditions on the
stem in terms of area of contact zone (CZS) and the apparent stiffness at the bone-
implant interface. This work is based on the hypothesis that variations in CZS and
apparent stiffness are reflected in the modal behavior of the stem and that the latter
converges to specific patterns characteristic of a stable stem as CZS and interface
stiffness increase. If this hypothesis is true, a patient-specific modal analysis in the
framework of the 3D planning could potentially discriminate between stable and
unstable stem positions.

4.1 Materials and Methods

This chapter is dedicated to describe a study based on a finite element (FE) modal
analysis of a cementless stem (SPS R© size C, length 120 mm, Symbios, Yverdons-les-
bains, Switzerland) and its implementation to assess the effect of CZS and contact
stiffness. Implementing the FE modeling methods using the software Code Aster,
as described in chapter 2.

In order to evaluate the effect of the size of the contact area between bone and
the stem, four different CZS of surface elements were defined on the surface of the
stem mesh (Figure 4.1, Left): Small (400 elements ≈ 5cm2), Medium (800 elements
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≈ 10, 5cm2), and Large (1200 elements ≈ 15, 6cm2), a fourth intermediate CZS was
included later for verification (SM, 600 element ≈ 7, 5cm2). The CZS’s positions and
shapes were defined by an experienced orthopaedic surgeon, by taking into account
the typical contact patterns that are observed in common clinical cases when a 3D
preoperative planning is performed (Sariali et al., 2012b).

K

SpringsNodes

Figure 4.1: Left: Large, Medium, and Small contact zones represented on the stem.
Right: springs stiffness effect attached to the nodes of the stem.

The stiffness of the bone in contact with the stem is simulated by springs at-
tached to each node of the contact zone surface (Figure 4.1, Right), as described in
chapter 2, equation 2.1. The apparent stiffness K of each contact zone was chosen
to range between 101− 1010 N/m which accounts for the whole spectrum of reason-
able stiffness values. The apparent stiffness K is distributed evenly on the contact
surface by adjusting k. Free conditions (no contact, i.e. k = 0) vibration modes
were also computed for reference.

The FE modal analysis was conducted with Code Aster (Code_Aster, EDF
R&D, license GNU GPL, http://www.code-aster.org) implementing the Sorensen
method for modal computation. The outputs of the computation are the modal
frequencies and shapes calculated in the frequency range [0− 21 kHz].

4.2 Data Analysis

The number of modes in the range [0− 21 kHz] and the frequencies and shapes of
the first five modes were investigated with respect to contact apparent stiffness and
contact area.

Similarities between modal shapes were quantified with the modal assurance cri-
terion (MAC), a quantity which is used extensively in structural vibration analysis.
The MAC is a scalar constant between 0 and 1 that relates the degree of similarity
(collinearity) between two modal vectors (shapes) (Allemang, 2003). For each mode
of number n (n varies typically between 1 and 5 in the present study), the MAC was
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calculated to compare the modal shapes for the different cases of CZS and contact
stiffness. The purpose was to follow the modal shape changes associated to a given
mode number as CZS and contact stiffness vary. The extreme values of MAC may
be interpreted as follows, MAC = 0 corresponds to non-collinearity, and MAC = 1

corresponds to perfect collinearity (identical modal shapes).
Clinical experience suggests that the presence of excessive proximal motion of

the stem in the bone may be an indicator of instability for the metaphyseally fixed
stems such as the SPS R© (Sariali et al., 2012b). Within the framework of the modal
analysis, the relative motion of the proximal part of the stem for the different modal
shapes is investigated as a proxy for the stem proximal motion in a clinical setting.
In other words, we hypothesize that the stem would likely be stable for a given CZS
and contact stiffness, if the modal shapes display a relatively small motion in the
proximal part.

This motion in the proximal part is quantified by the ratio rEPE of the elas-
tic potential energy (EPE) in the proximal part of the stem (≈ 1400 elements in
the utmost proximal part) to the EPE in the entire stem’s volume. We investigate
three thresholds values of rEPE as possible markers of a sufficiently good anchor-
age. We then analyze the relationships between CZS and contact stiffness for these
thresholds.

4.3 Results

The number of modes in the frequency range [0-21 kHz] is reported in Figure 4.2
for all the different CZS and contact stiffness. For all the CZS cases 11 modes were
obtained for low stiffness values, ranging from 101 − 106 N/m. After this point,
the number of modes decreases to reach a minimum of 5 modes for the highest
stiffness values for all CZS, This minimum however is reached at different values
of stiffness with each CZS, with 107, 108, and 109 N/m for CZS of decreasing size.
This evolution of the number of modes with increasing stiffness shows two plateau
values, corresponding to the high and low stiffness values, and a sharp transition
for stiffness around 107 − 108 N/m, suggesting a transition between two essential
behaviors. Similar transitions are reported below for other modal quantities. In the
latter, we refer to State A (limiting behavior for low stiffness) and State B (limiting
behavior for high stiffness). We will later discuss the possible relationships between
States A vs. B and unstable vs. stable stem anchorage.

Modal frequencies increased consistently with stiffness values and CZS (Figure
4.3). Similar to the evolution of the number of modes (Figure 4.2), there is a
zone of low frequencies (State A) for low stiffness and a zone of high frequencies
(State B) for the high stiffness and a transition zone with a sharp increase in the
frequency values occurring in a relatively narrow stiffness range around 14 − 106
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Figure 4.2: Evolution of the number of vibration modes in the frequency range
0-21 kHz vs. contact stiffness for each of the contact zone sizes (CZS).

for all the modes and CZS. Between stiffness 104 − 108 N/m the relative frequency
of mode 5 varies in a larger interval (60.81− 20.33 · 103 Hz), compared to other
modes (11.90− 3.25 · 103 Hz for mode 1 for instance), hence the frequency of mode
5 appears to be much more sensitive to variations in contact conditions.
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Figure 4.3: Modal frequencies of the first five modes (frequency range 0-21 kHz) of
the stem plotted against stiffness (N/m) and contact zone size (S, SM, M, L). Val-
ues are normalized with respect to the highest frequency for each mode. The max-
imum frequencies obtained for each mode are, mode 1: 3.25 kHz, mode 2: 3.91 kHz,
mode 3: 12.36 kHz, mode 4: 14.21 kHz, mode 5: 20.33 kHz.

Figure 4.4 gives for each of the CZS the result of the MAC analysis comparing
the modal shapes of contact stiffness value 10i versus 10i+1 (i = 4 − 9); results for
contact sizes S, M, and L are shown, SM presented the same result as the M contact
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size. Similarity of the modal shapes is quantified with the MAC number. A white
diagonal in a sub-figure signifies that the modal shapes of the first five modes do
not change (i.e. high collinearity) for a multiplication of the stiffness by a factor
10. For low values of stiffness, the modal shapes are close to rigid body modes. For
all modes these shapes are very similar for stiffness smaller than 105. It must be
noticed that the shapes of modes 1 and 2 remain grossly invariant across all the
range of stiffness, as evidenced by the first two diagonal terms of each sub-figure
which remain close to one (white squares). For modes 3 to 5, the figure reveals
a transition zone between 105 − 107 N/m, indicating an important change in the
modal behavior. Overall, the MAC analysis indicates that, for a given CZS, before
(State A), and more interestingly, after the transition zone (State B) 105 − 107,
each mode has a unique shape whatever the contact stiffness. Hence, even though
after the transition zone the frequency continues to increase (Figure 4.3), the modal
shapes remain invariable. It can be noticed on the MAC figure that the behavior
of State B is reached for higher values of stiffness for the Small CZS compared to
larger CZS. See Appendix B for a summary of the modal shapes of the implant.
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Figure 4.4: Each box contains the MAC correlation of modes 1-5 for for different
cases of CZS (row 1: Small, row 2: Medium, row 3: Large) and stiffness in ascending
order pairs between 104 and 1010 N/m.

For all the modes and all CZS, rEPE values are close to zero (State A) below a
threshold stiffness value around 104 N/m, grow more or less rapidly to a peak value
for stiffness ranging between 106 − 108 N/m and rapidly decrease (Figure 4.5, top
row) to reach plateau values characteristic of State B. For all modes, the smaller
the CZS, the larger the stiffness for the peak rEPE value, which is consistent with
the idea that, for a smaller contact zone, a stiffer contact is necessary to prevent
proximal motion. Frequency values (same data as in Figure 4.3) as a function of
stiffness are also shown for comparison (Figure 4.5, bottom row). The peak rEPE
value is consistently found to correspond to the transition zone in the frequency
behavior, also corresponding to the transition zone for the number of modes (Figure
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4.2). Towards the largest contact stiffness, the frequency values reach a plateau
and rEPE values become small (State B). The physical explanation for small rEPE
values at low stiffness on the one hand and high stiffness on the other hand are
different. At low stiffness, the observation of modal shapes reveals that the motion
of the implant resembles rigid body motion, with small deformations overall for all
the modes, this leads to low rEPE values as rEPE is a marker of the deformation of
the proximal part of the stem relative to the entire deformation of the stem. At high
stiffness, the modal shapes resemble partially constrained body motion showing a
relatively large deformation in the distal part, while the proximal part, being just
above the contact zone, is blocked, resulting in low rEPE.
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Figure 4.5: rEPE (top) and natural frequencies (bottom) vs. stiffness, of the first
five modes (sub-figures left to right) for all CZS (S, SM, M, L).

Mode 5 shows the largest range of variation of rEPE. Also, for this mode, the
evolution of rEPE (and particularly the stiffness value corresponding to peak rEPE)
for CZS L and M on the one hand, and of SM and S on the other hand are clearly
different. This suggests that mode 5 is a good candidate marker of the transition in
vibrational behavior from State A to State B with increased contact stiffness and
CZS.

In the transition zone 105 − 107 N/m (Figure 4.5, top row), it can be observed
that between 105 and 106 N/m the rEPE increases with stiffness and CZS. Subse-
quently, at 107 N/m and after, rEPE decreases as the CZS and stiffness increases,
revealing the thresholds where the contact stiffness starts reducing the proximal
motions.

The sensitivity of mode 5 to contact stiffness variations can be verified by com-
paring Figures 4.5 and 4.6. The patterns of the total sum of the modes happen
to match that of mode 5, suggesting that mode 5 is the most representative of the
stem’s model.
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Figure 4.6: rEPE Vs. Stiffness for each CZS (S, SM, M, L) with reference values of
rEPE thresholds (dashed lines) in decreasing tendency (1.5 · 10−3, 1 · 10−3) and rEPE
convergence value (3.2 · 10−4).

Three candidate stability thresholds were defined for the summed rEPE (sum
of rEPE for all modes): 1.5 · 10−3, 1 · 10−3, and 3.2 · 10−4 (Figure 4.6). The first
two thresholds (1.5 · 10−3, 1 · 10−3) correspond to the zone where the rEPE has
a decreasing behavior, that is, the rEPE transition zone. And the third threshold
(3.2 · 10−4) has been identified as a common rEPE convergence value for minimal
proximal motion considering all the CZS and stiffness values. For each of these
thresholds, corresponding stiffness values were obtained by linear interpolation based
on the data presented in Figure 4.6 and are reported in Figure 4.7 as a function
of the number of elements of the CZS. A linear equation model that fits the CZS-
stiffness relations obtained is represented in Figure 4.7.

Figure 4.7 illustrates the CZS-Stiffness trade-off associated to a given rEPE
value for the different choices of the rEPE threshold value. Under the assumption
that a given threshold is associated to a stable stem, the data in Figure 4.7 gives
the couple of minimum values (CZS, contact stiffness) for which the stem would
be stable. Alternatively, the data serves to predict the range of apparent stiffness
necessary to achieve stability for each contact zone size. As expected, the larger the
CZS, the smaller the required contact stiffness. For CZS equal or larger than SM,
the stiffness required for stability grossly lays within a decade between 107 and 108.
Considering that the stiffness rapidly increases with decreasing CZS, for a smaller
CZS the stiffness may be 10 to a 100 times more depending on the threshold chosen.
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4.4 Discussion

The objective of this work was to assess the sensitivity of RP3D to modifications
of boundary conditions corresponding to various qualities of bonding of the stem to
the bone. The resistance of the bone to the motion of the stem surface was modeled
by a reaction force created by springs. The latter act on defined contact zones
whose location and dimension were decided according to the surgeon’s experience
(Figure 4.1, Left). The modal response of the stem was analyzed for a range of
spring stiffness and four sizes of contact zones (CZS). The chosen range of stiffness
and CZS is supposed to include clinically relevant situations of a loose fit of the
stem (relatively small CZS and/or small stiffness) and strong fit (relatively large
CZS and/or large stiffness).

The modal response was investigated in terms of the number of modes in the
range [0− 21 kHz] (Figure 4.2), the modal frequencies, and the modal shapes (Fig-
ure 4.5). Changes of modal shapes were quantified with a MAC analysis (Figure
4.4) and the proportion of the proximal motion was quantified with the rEPE, the
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relative elastic potential energy in a proximal region of interest. All these charac-
teristics of the modal response had a consistent behavior when stiffness and CZS
were changed, clearly exhibiting two limiting behaviors, respectively for small and
high stiffness values, irrespective of CZS. We referred to these limiting behaviors as
State A, representative of an unstable stem, and state B, representative of a stable
stem. Between states A and B there is a transition zone (stiffness range 104 − 107)
where the number of modes below 21 kHz drops from 11 to 5, frequencies of all
modes increase sharply before reaching a plateau value towards State B, the modal
shapes change, and the rEPE goes through a maximum. The modal responses for
the different CZS cases follow the same trend but have slightly different behaviors as
stiffness increases: as expected, the convergence towards the plateau state B (num-
ber of modes, frequency values, modal shape) occurs for respectively higher values
of stiffness as CZS decreases.

It appears important to summarize all the modal information to give the clini-
cian an indication of the stability that could be achieved for a certain combination
of contact stiffness and CZS. First, we note that modes 1 and 2 are less sensitive to
changes of boundary conditions than other modes, and that mode 5 is the most sen-
sitive (Figure 4.4). Furthermore, given the absolute values of rEPE for the different
modes, the sum of rEPE for all modes is dominated by the contribution of mode 5.
Hence, we proposed the summed rEPE as a privileged marker of stability because
of its relatively high sensitivity to changes of boundary conditions and because it
is related to the proximal motion of the stem, which is of clinical relevance. The
summed rEPE was used to define areas in the plane CZS-stiffness that correspond
to a more or less stable stem (Figure 4.7). The plane CZS-stiffness can serve to
identify the regions in which proximal motion of the implant is avoided, or in other
words, to predict the range of apparent stiffness necessary to achieve stability for a
given contact zone size.

We investigated rEPE thresholds that correspond to rEPE convergence approx-
imations for all the CZS, and for which stem anchorage is likely to be acceptable.
We used three threshold values to exhibit the sensitivity of the chosen threshold on
rEPE values. We found that for CZS between 7.5− 15.6 cm2, and stiffness between
107 − 108 ensures convergence to State B. For CZS smaller than 7.5 cm2, a higher
stiffness would be required.

In the past decade, a few authors have documented the vibrational behavior of
hip stems anchored to bone for various contact situations between the stem surface
and the bone. (Qi et al., 2003; Pastrav et al., 2009a; Perez and Seral-Garcia, 2013)
conducted finite element modal analysis to compute modal frequencies of the stem
and femur bone assembly. They all found that increasing the area of the contact
is associated with an increase of modal frequencies. This is expected and is also
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what we have observed in this work which considers the modal response of the stem
isolated from the femur.

Our findings that mode 5 is more sensitive to changes of contact conditions is
in line with the results of previous works suggesting that higher order modes are
more sensitive because they are associated to more complex motions (Pastrav et al.,
2009a; Perez and Seral-Garcia, 2013). Also, (Pastrav et al., 2009a) already pointed
that the vibrational behavior is most influenced by contact changes in the proximal
zone, which is the part of the stem on which we consider a contact with bone in the
present work, consistent with clinical observation.

The aforementioned studies have investigated the influence of different contact
interface conditions in the vibrational response of the bone-implant system, find-
ing significant effects on the stability of the system. These studies attempt to
simulate the vibrational behavior that can be measured perioperatively (Pastrav
et al., 2009b). The present study, to our knowledge, is the first attempt to explain
the modal behavior of the stem alone (the bone is not considered in the vibrat-
ing system) subjected to typical contact boundary conditions. The results of our
simulations can not be compared to an experimental quantity because in reality,
the bone attached to the stem vibrates together with the stem, hence producing
a very different vibrational response. The present study uses the vibration of the
stem alone as a potential marker of stability in the framework of 3D preoperative
planning. The implementation of our model is significantly less complicated than
models cited above in which the bone is considered. In the latter, the geometry and
mechanical properties of the bone must be carefully modeled. In previous studies
aimed at modeling an experimental quantity, namely a set of resonance frequencies,
only the effect of contact conditions on frequencies has been formerly investigated
(Qi et al., 2003; Pastrav et al., 2009a; Perez and Seral-Garcia, 2013). In the present
work we have also investigated the number of modes and the modal shapes in detail,
exhibiting rEPE as an promising quantity to reflect various levels of stability.

This study has a number of limitations. The study provides a thorough analysis
of the modal behavior of a particular type of cementless stem with a metaphyseal
proximal fixation (SPS R©). The specific values of frequencies, and modal shapes
may to a certain extent be different for another stem geometry. The positions of
the contact zones were defined by the surgeon according to his experience in the
operating room and also as a user of 3D planning software. We have favored the
definition of these idealized zones over more realistic zones (that could be obtained
through e.g. the planning software) in order to facilitate the analysis of the results.
The trends of the modal behavior for more realistic contact zones is expected to
be similar to the trends described in this study. The distribution of stiffness on
the contact zones was assumed uniform. An inhomogeneous, possibly more realistic
distribution, is not expected to modify the results to a large extent because the
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modal behavior is an overall mechanical response weakly sensitive to the details of
the spatial patterns of boundary conditions. The criterion for assessing stability
from the numerical modal response uses rEPE (Figure 4.7), whose value is set to
be sensitive to proximal motion. This follows our hypothesis, derived from clinical
experience, that implant primary stability is obtained for a small proximal mobility
of the stem. Other quantities in the modal response (such as specific modes, fre-
quencies, or modal shapes) may also be strongly related to stability. However, it was
not the purpose of the study to perform an extensive analysis of these relationships.

The conclusion of the present technical study, is that RP3D is very sensitive to
changes of boundary conditions and could help discriminate stable versus unstable
stem-bone assembly prior to surgery. This, however, remains to be proven in a clin-
ical context. This could be performed as follows. Experienced surgeons can realize
a series of both ’good’ and ’bad’ simulated trials of P3D using existing databases of
patients CT-scans. The results of RP3D should be consistent with the classification
of the surgeon as good or bad planning. Experienced surgeons can also perform
several P3D for one patient corresponding to different sizes of stem, when only one
would give a good primary stability. Again the results of RP3D should be consistent
with the actual stem size chosen by the experienced surgeon. Finally, plannings of
patients who have had THR can be processed with RP3D, the outcome of surgery
for these patients is known and could be confronted to RP3D results.

In order to perform RP3D based on a patient’s CT scan, the contact zones and
stiffness values must be defined. Contact zones can be delimited using a threshold on
HU values; these HU values should be converted to stiffness as bone is expected to
offer a resistance to the motion of the stem according to its density. In the numerical
model, the physical significance of the specific values of stiffness of the contact zones
is not straightforward. Although relationships exist between Hounsfield units (or
apparent density) and bone elasticity (Helgason et al., 2008), these cannot be used
as such for our purposes. Indeed, as the model uses a spring stiffness (force per unit
distance), we need to introduce a reference dimension (to be multiplied by the elastic
modulus) which does not have a straightforward physical meaning. We propose that
the stiffness values prescribed in the numerical model be proportional to HU values
in the CT scan and that the conversion law between HU and stiffness be calibrated
based on clinical cases.

We anticipate that RP3D could contribute to improve the reliability of THR
procedures by providing a mechanical criterion to assess stability preoperatively.
Typically, the surgeon will have an indication on the possibility to obtain sufficient
primary stability for a patient considering the different possible stem sizes (allocating
more or less large contact zones) and the density of the bone. RP3D would be
particularly helpful in cases for which a choice must be made between a standard
or custom cementless stem, or a cemented stem. RP3D could foster the use of 3D
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planning in THR by providing a simple indicator of stability and by reducing the
time necessary to complete the planning. Note that the computation time required
to do a modal simulation could be of the order of a few seconds and is not expected
to be a limitation. RP3D, in line with its use as a preoperative planning tool in
general, could also be useful for training of surgeons.



Chapter 5

Characterization of broaching effect on
bone-implant interface from µCT-Scan images

5.1 Introduction and Context

As previously described in Chapter 1, when cementless implants are used, primary
stability is an essential requirement for achieving a proper osseintegration and a
long-standing fixation (Albrektsson and Albrektsson, 1987; Viceconti et al., 2006).
This primary stability will depend on the press-fit of the bone-implant pair which
is influenced by the properties of the bone at the interface (Karachalios, 2014; Ra-
mamurti et al., 1997). THR involves a broaching procedure in which the orthopedic
surgeon utilizes a set of broaching tools (Figure 1.5) to open the femoral canal
by removing and compacting the trabecular bone. Different sizes of broaches are
used, the surgeon gradually increases the size of the broach inserted until obtain-
ing the desired cavity size for the selected implant. To the best of our knowledge,
variations of the bone properties in the bone-implant interface region due to this
broaching procedure have not been studied and defined to this date. The compres-
sion and subsequent reorganization of the trabecular bone in the interface caused
by the broaching could have a decisive effect on the press-fit of the bone-implant
pair, and, as a result, on the primary stability and inherent long-term integration
of the system.

In Chapter 1 it was discussed how 3D preoperative planning software can help
the orthopedic surgeons to make the selection of size and location of the implant
prior to the surgery and reduce the risk of errors (Sariali et al., 2009b); the surgeon
navigates with the implant in the cavity of the femur until finding satisfactory
conditions indicated by a cartography given by the Hounsfield density of the bone
in contact with the implant. As these software are used for planning the surgery,
evidently the CT-Scans it utilizes are obtained prior to the operation, and do not
take into account the effect of the broaching.

In this chapter we measure variations of the bone structure in the bone-implant
interface due to the effect of the broaching in micro-Computed-Tomography Scan
(µCT-Scan) images of cadaveric samples. Regions of interest (ROI) are defined
by an orthopedic surgeon based on clinical observations that indicate what areas
are more important for the anchorage of the implant. These ROIs are used to
measure and characterize changes inside the cavity of the bone left by the passing
of the broach, with variations of bone mineral density (BMD) as the parameter
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of reference. Different image processing techniques are implemented on µCT-Scan
images before and after broaching to obtain those variations.

The consideration of structural variations of the bone in the bone-implant in-
terface due to the broaching procedure may have an important influence in implant
selection in 3D preoperative planning. Moreover, the characterization and under-
standing of BMD variations with broaching can help to predict the outcome of a
procedure if we take into account that certain minimal BMD conditions need to be
met to obtain a satisfactory implant anchorage. These predictions can help the sur-
geon in the decision of the type of implant to be used and the implantation method
(cemented or cementless implant) based on the initial BMD of the patient (before
broaching).

5.2 Materials and Methods

5.2.1 Overview of the protocol

Figure 5.1 displays an overview of the protocol followed for this part of our study,
which are explained in details in the different sections of this chapter. In a nut-
shell, this protocol goes like this: first, the samples for the study were selected (27
samples) using a 3D preoperative planning tool. Then, the selected samples (4 sam-
ples) are prepared to be scanned. µCT-Scan images are acquired with a calibrated
scanner. The broaching procedure is performed by the surgeon on the selected ca-
daveric samples. µCT-Scan images are acquired after the broaching procedure is
performed, this are used to observe variations by comparing with the scans before
broaching. The images area treated using image processing techniques of registra-
tion and segmentation. Finally, the variations of BMD observed between both sets
of scans (before and after broaching) are analyzed to characterize and describe the
broaching effect on the bone cavity.
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Figure 5.1: Scheme of the protocol followed for the image analysis study of µCT-Scan
images of the bone after the broaching procedure.
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5.2.2 Samples handling and preparation

• Obtainment of the adult bone samples. For this study 27 human femur
bones were collected, 15 female and 12 male adults aged between 71 and 99
years-old, obtained from : the UFR of Medicine of the Université Paris Diderot
(Site B2OA UMR CNRS 7052). Before collecting them, the bones were stored
frozen at -21 ◦C in vacuumed plastic bags. The collected bones were previously
cut and only the proximal part of the femur was available.

• Bone Preservation There are two main methods for preserving bone, freez-
ing and chemical fixation. Multiple studies in human cortical bone have shown
that a freezing temperature of −20◦C allows to maintain most of the mechan-
ical properties of the bone (including ultimate stress, modulus of elasticity,
energy absorbed to failure, and hardness) (Martin and Sharkey, 2001).

• Thawing and handling temperature The samples must be thawed before
the broaching procedure. The samples were thawed at 37 ◦C and broached at
room temperature (23 ◦C) (Turner and Burr, 2001).

• Manipulation during scan acquisition The samples must be well wrapped
and vacuumed to avoid leaking of fluids inside the chamber of the scanner, and
as tight as possible to make the sample compact, this is of great importance
considering the space limitations of the chamber. After the scan is done each
sample is re-wrapped in a plastic bag, vacuumed and frozen.

5.2.3 3D Planning and selection of samples.

As the geometrical characteristics of the bone samples are highly variable, it was
necessary to make a selection of samples that allowed to make comparisons be-
tween results and simplify the analysis of our observations. For this, the surgeon
performed 3D plannings of all the 27 bone samples using the 3D planning compu-
tational tool HipPlan (Symbios SA, Yverdon Les Bains, Suisse). For this, Ct-Scans
of the samples were obtained, using a CT-Scanner (Optima CT660, GE Healthcare,
Buckinghamshire, United Kingdom). Eight (8) samples (Table 5.3) that presented
similar characteristics and similarities with typical clinical cases (size and geometry
of the femoral cavity) were selected from the initial group, based on observations of
the surgeon during the planning.

The selection took into account the implantation of a stem (SPS R©, Symbios).
The stems sizes varied from size B to G, from smaller to larger, respectively. Ac-
cording to the surgeon in charge of doing the selection, in common practice the E
stem size is the most frequently implanted, this and the correspondence with femurs
that are closer to those of patients with normal conditions are the preferred criteria
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Lateral Flares

Figure 5.2: The red lines indicate the lateral flares (angle ≈ 42◦) that were taken
into account for sample selection. Reproduced from (Sariali et al., 2012b)

of selection, with bone that presents a higher density and morphotypes with more
standard lateral flares (Figure 5.2).

At least four different stem sizes (D, E, F, G) with two samples each were
obtained, seven corresponded to left side (L) and 1 to right side (R). One extra
bone (size D) was incorporated as a test sample for testing each step of the protocol
before using the study samples.

5.2.4 Preparation of samples.

Removal of femoral heads

Having certain dimension constrains, since the maximum diameter of the µCT-Scan
machine available was 72.5 mm, the femoral heads had to be removed before the
procedure to adapt the size of the sample to the scanning chamber of the available
machine. For this an electric oscillatory surgical saw was used.

The samples were fixed still frozen in a circular three-jaw self-centering chuck
(Figure 5.4), the chuck is well fasten carefully to not damage the bone.
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Sample Id Stem Size Side

1 362 D L

2 376 D R

3 261 G L

4 269 E L

5 283 F L

6 331 E L

7 282 G L

8 268 F L

TEST 229 D L

Figure 5.3: Bone samples selected by the orthopedic surgeon.

Figure 5.4: Circular three-jaw self-centering chuck mounted on a wood plank, used
for holding the bone stable.
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(a) Drawing of the ref-
erence cutting line

(b) Verification of refer-
ence angle before cut

(c) Cutting with oscilla-
tory saw

(d) Verification of refer-
ence angle after cut

(e) Custom-made bone
size measuring device

Figure 5.5: Cut of the femoral head

The cut line is drawn on the femoral neck by the surgeon with a marker (Figure
5.5 a), this line is obtained from linking anatomical reference points already estab-
lished and known in THR practice. With the use of a goniometer it is verified that
the angle described by the reference points measures ≈ 30− 35 degrees as shown in
(Figure 5.5 b). The femoral head is then removed with the use of the surgical oscil-
latory saw, following carefully the reference line (Figure 5.5 c). After the femoral
head is removed, the reference angle is verified again with the goniometer (Figure
5.5 d). A custom-made measuring device with the maximum size allowed by the
micro-CT-Scan machine is used to measure the bone and to guarantee that it will
fit in the scanning chamber (Figure 5.5 e).
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Fiducial Markers

As µCT-Scans are done before and after the broaching of the femur to compare
both states, it is necessary to achieve a good correspondence of the scan slices,
meaning that an appropriate image registration technique needs to be implemented.
Fiducial markers were defined on the external surface of the bone in order to improve
the coplanarity of the scan slices before and after broaching, and to facilitate the
image registration. Two linear marks were made on the surface of the bone, for this a
rotary tool was used (DREMEL R© 4000, Dremel Europe, Breda, Netherlands) trying
to place the marks outside the region of interest of 6 cm indicated by the surgeon
(Figure 5.7), and making sure of keeping the mark as superficial as possible to
avoid excessive damaging of the bone. At the moment of making the µCT-Scans,
two linear marks were also defined on the bed of the scanner following the same
inter-mark distance defined for each bone sample, these marks were used to position
the bone on the bed of the scanner and use the same reference for the scans before
and after the broaching (Figure 5.6).

5.2.5 µ-CT Scan image acquisition.

The images for each sample were acquired before and after the broaching procedure
with a µCT-Scanner (Skyscan 1176, Bruker MicroCT, Kontich, Belgium). This
scanner with a view field of 68 mm of diameter and a 200 mm length, allows the
possibility to be used for scanning small animals used for experiments such as mice
and rats, by setting the option of scanning in multiple parts with a length of 20 mm
each. According to the experience and suggestions of the surgeon, the region of
interest to observe the broaching effect is located in a zone of approximately 5 cm
in length, with the lesser trochanter as the center reference (M ), and M+3cm and
M-2cm measured longitudinally from that reference (Figure 5.7). Hence, it took
five consecutive scans, for a total length of 9.5 cm of the femur. For each femur a
sequence of 2514 slices was obtained.

The total acquisition time for each sample was approximately 2 hours and
45 minutes. The parameters of acquisition are the following: Voxel resolu-
tion 35,425 µm, isotropic, X-rays source 80 kV â 291-300 µA, exposition time
65 minutes, Rotation of 360◦ and a 0,500◦ step, filter of copper and aluminum.
The same acquisition parameters were used before and after broaching, so the bone
mineral densities can be compared. For the calibration of the attenuation coefficient
of grey levels for the bone mineral density, two phantoms of concentration 0.25 and
0.75 g/cm3 of CaHA (calcium hydroxyapatite) were scanned and analyzed using
CTAn for obtaining a linear relation between the grey levels (HU) and the BMD,
obtaining an HU calibration scale value of 65535.
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Coincident fiduciary marks 
on bone and scaner bed

Figure 5.6: Coincident reference lines, on bone (black lines), on scanner bed (red
tape), for sample positioning in the scanner.
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Lesser
trochanter

M

M+3cm

M-2cm

5 cm

Figure 5.7: Illustration of the zone of interest of 5 cm for observing the bone-implant
contact zones and the effect of the broaching, as indicated by the orthopaedic surgeon.
Reproduced from: https://images.radiopaedia.org/images

The obtained images are a 360◦ sequence of radiographic images of the femur.
These images were saved in format TIFF 16 bits (216 grey levels). To be able to
exploit these images, they had to be reconstructed first, for this we made use of
the 3D reconstruction software NRecon (NRecon Software, V 1.6.10.4, Skyscan NV,
Kontich, Belgium).

The parameters used for the 3D reconstruction are the following: view field
1968 x 1968 pixels, attenuation coefficient 0.000916 â 0.025956, correction of ring
artifact 20%, correction of beam hardening artifact 45%. Each obtained slice is a
2D image saved in BMP - 8 bits - format (256 grey levels).

5.2.6 Broaching Procedure

For this part of the procedure the following materials were necessary: broaching
set, fitting hammer, curettes, surgical oscillating saw, saw blades, circular chuck
mounting system, water-bath machine, vacuum machine and bags, plastic foam,
goniometer, markers, caliper, absorbent paper, scalpel, scissors. Before the oper-
ation the samples are thawed at a temperature of 37,5 ◦C in water-bath without
removing from their plastic bag, with the purpose of bringing the samples to a
temperature as close as possible to the natural body temperature at the moment
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Figure 5.8: µCT-Scan of the femur in progress.

of a THR surgery. For the mounting of the bone for the broaching operation, the
self-centering three-jaw chuck is used to keep the bone in the desired position.

The bone needs to be well held with the chuck on the length of the region of 5 cm
described in Figure 5.7. The surgeon broaches the bones using a THR broaching
tools set (SPS R© model, Symbios), with sizes from B to G Figure 1.5, only left side
broaches were available for this operation. The broaching tools are introduced in the
femoral cavity in a gradually size increasing fashion with the help of a hammer, to
remove the trabecular bone, until obtaining the desired cavity size, which is defined
on the 3D planning. Figure 5.9 illustrates the different main steps of the broaching
procedure. The broaching of each bone took between 15 and 45 minutes, depending
on the density of each bone.

5.2.7 Image Processing Procedure

Definition of measurement zones.

To evaluate BMD variations in the bone cavity due to the effect of the broaching,
different measurement zones were established along the length of our region of in-
terest (Figure 5.7) to be able to assess proximal and distal variations separately.
Therefore, five different longitudinal zones of 1 cm each (L1, L2, L3, L4, L5) were
defined as observed in Figure 5.10. This allowed us to evaluate BMD variations
not only due to the effect of the broaching in different areas of the bone, but also
to compare between different zones among different bone samples.
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Figure 5.9: Main steps of the broaching procedure. From left to right: opening of
the femoral cavity, introduction of the broaching tools with hammer blows, removal of
trabecular bone with a curette.

The anatomic center of the lesser trochanter was taken as a reference point for
the definition of longitudinal zones. Given the major relevance of the proximal
part of the femur, three zones of 1 cm were assigned to the upper part, and two to
the lower part, with reference numbers from 1 to 5, from distal to proximal zone
locations.

3D image registration.

In order to be able to compare both states, before and after broaching, it is necessary
to achieve a correspondence for each slice acquisition, that is, we must be able to
find coincident bone information in the same slice before and after broaching (in the
areas that were not touched by the broach).

With this purpose we implemented an image registration technique to each pair
of set of images (two sets per sample, before and after broaching) we made use of
the image registration software 3D DataViewer (DataViewer Software, V 1.5.2.4,
Skyscan NV, Kontich, Belgium). The images of the bone before broaching are set
as reference images, and they stay fixed during the registration procedure. While
the images after broaching are repositioned according to the reference images. This
semi-automatic repositioning method is based on the comparison of the intensity of
the grey level of the images, and it is done in two steps. Only rigid transformations
are applied, to the target images (images after broaching), specifically translation
and rotation operations in the three axes (x, y, z).

The first step of the repositioning method utilized comprehends a manual ma-
nipulation of the images that allows to simplify and reduce the processing time of
the second part of the procedure (automatic repositioning in 3D).

For the 3D automatic repositioning, the truly 3D registration method of the soft-
ware DataViewer was used. It generates iterative repositioning steps simultaneously
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L1

L2

L3

L4

L5

Figure 5.10: Five measurement zones of 1 cm each (L1, L2, L3, L4, L5), shown on
an X-ray image of one of the femur samples on the 3D analysis software CTAn, the
red line indicates the anatomic center of the lesser trochanter. The zones go from 1
through 5, from distal to proximal, respectively.
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in the three different planes and compares at each iteration the grey levels of the
images, the grey level matching threshold and number of iterations can be controlled
by the user. The images of the broached bone after registration are saved, as well as
the reference images before broaching. A typical result of the registration procedure
can be observed in Figure 5.11.

Segmentation of trabecular and cortical bone.

The segmentation methods utilized in this study were applied with the use of the 3D
analysis software CTAn (CTAnalyser Software V 1.16, Skyscan NV, Kontich, Bel-
gium). This tool offers the possibility of executing different tasks, such as analysis
functions (binarization, 2D and 3D morphometry), as well as image processing op-
erations (morphological operations, denoising, etc.). The segmentation operations
were applied to the whole sequence of images of each sample. A circular structural
element was used for all the morphological operations.

Our interest was to make the measurements of variation of BMD in the trabecular
bone of the femur affected by the broaching. Hence, a segmentation of the trabecular
bone from the cortical bone had to be done. The objective was to obtain a mask of
the trabecular bone of the sample. For this, successive morphological and bitwise
operations were applied on the sets of images before broaching.

The trabecular masks were extracted from the reference images (before broach-
ing), since they were intact and had not suffered any structural modification of the
bone tissue, making it easier to do the extraction, as can be observed in Figure 5.11.
Then this mask could be adapted to the target images (after broaching) thanks to
the 3D registration operation. CTAn proposes a segmentation procedure for the
trabecular and cortical bone (Bruker, 2015), which served as a basis for the method
that we developed and implemented.

As in the original algorithm the region of interest is not defined, the mask con-
tains the whole image, we started by adding to the algorithm a section to apply
a global threshold to the image with the purpose of separating the bone from the
rest of the image. Figure 5.12 shows a superposition of a trabecular mask over its
corresponding slice.

Bone/implant interface mask.

It can be observed in the images after broaching that there is an accumulation of
trabecular bone on the walls of the broached cavity of the femur (Figure 5.11,
right). In order to calculate the BMD close to the contact surface between the bone
and the implant, it was necessary to extract a mask that corresponds to the regions
affected by the broaching. This mask is applied to both sets of images (before and
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Figure 5.11: µCT-Scan images of the sample 362, before broaching (left), and
broached after the registration procedure (right). Top: axial views. Bottom: lateral
views
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Figure 5.12: Trabecular bone mask over its corresponding µCT-Scan image cut

after broaching) to measure the variation of BMD between both states. Figure 5.13
shows a superposition of these masks over their corresponding slices.

A succession of morphological and bitwise operations is executed on the images
acquired after broaching for obtaining, first a mask of the whole broached region, and
subsequently the mask of the compacted/crushed trabecular ring. Once the mask
of the whole broached region was obtained, one more operation was implemented
for obtaining the mask of the ring of compacted bone. A morphological operation
of dilation of a size of 85 pixels was applied, which corresponds to an expansion of
3 mm (85 x 35,42 µm). This size was defined by observing certain image slices from
each sample on the software of 3D analysis CTAn, the rings of compacted/crushed
bone had an average size (thickness) of 3 mm. From this point, the ring of 3 mm of
broached bone will be denoted as ring.

Definition of angular sectors.

As previously stated, the analysis of the bone mineral density is done in the L1 - L5
zones along the region of interest of the broach. In order to obtain more precise
results that reflect the distribution of variation in the contact zone between bone
and implant, each one of the five zones is divided into 12 angular zones of 30 degrees
each (Figure 5.14). Dividing each zone (L1 - L5) into different angular sectors
allowed to characterize the local variation of the BMD for each sample. Separate
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Figure 5.13: Example of a mask of the whole broached region on one slice (left).
Example of a mask of the compacted/crushed bone ring on one slice (right).

masks were extracted for each of the angular sectors in the shape of an isosceles
triangle with the main vertex in the center of the broached cavity (see Figure 5.14),
due to the irregular geometry of the femoral cavity and the broaching tools (there
is no axis of symmetry), it is not possible to define a common anatomic reference
point in each slice of a sample, since this point will not have the same position in
each image.

Furthermore, as the geometry of the broached area varies in each slice, in order
to take into account these anatomical variations, the barycenter of the broached
cavity was determined for each zone L1 - L5, which defines the center point of the
triangles of the twelve angular masks (add figure barycenters). Another point to
take into account for the extraction of the angular masks is that the analysis of
the variation of the BMD is relative to the orientation of the prosthesis, or more
specifically, of the broaching tool for that matter. In summary, each one of the five
longitudinal zones has 12 angular masks of 30◦, with an orientation axis defined
in the largest zone (L5), this axis is obtained by calculating the major axis of the
middle slice of the zone that passes by its barycenter. The orientation of this axis is
then projected on the middle slice of each one of the other zones (L1-L4) to obtain
the orientation axis of each zone, see figure ?? (bottom, right) for an illustration of
these axes.

Masks operations

At this point, three different types of mask have been obtained. The first one is
a mask that corresponds to the trabecular tissue, the second one is a mask that
corresponds to the contact surface between the bone and the implant with a thick-
ness of 3 mm, and the last one is a set of masks that corresponds to each of the 12
angular sectors. It should be noticed that the thickness of 3 mm is applied equally
to all the masks and samples, and in most cases this region contains only compacted
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Figure 5.14: Scheme of the angular mask. The blue region corresponds to the tra-
becular bone before broaching. The orange region corresponds to the trabacular bone
after passing the broach.

trabecular bone. However, in different regions of some samples it can be found that
these 3 mm contain also parts of cortical bone, this can happen because in some
cases the passing of the broach goes closer to the cortical wall, see Figure 5.15, left).
As the purpose of the study is to assess the BMD variations in trabecular bone only
(the region compacted with the broach), it was important to develop a technique to
exclude the cortical bone in the required cases.

Figure 5.15: Masks of the middle image slice of the sample 362. Left: A = mask
of the trabecular ring. Middle: B = A + whole trabecular mask. Right: C = B +
angular mask 0-30◦
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5.3 Results

Samples 282, and 268 were excluded due to time constraints. Sample 376 was ex-
cluded because the day of the procedure only left-side broaching tools were available.
Sample 261 was finally excluded due to technical issues with the bone segmentation
algorithm with this sample. Leaving us with 4 samples in the end (362, 269, 283,
and 331).

All samples experienced an overall increase of BMD in the ring with the broach-
ing (Figure 5.16). Sample 362, presented the highest initial BMD (before broach-
ing), and presented the highest BMD increase as well. This sample had been previ-
ously identified by the surgeon as a necrotic bone.

Sample ID

B
M

D
g/

cm
3

0

0.1

0.2

0.3

0.4

0.5
Before broaching
After broaching

269 283 331 362

Figure 5.16: Total BMD per sample in the ring before and after broaching

In Figure 5.17 it can be observed that there is a higher BMD after broaching in
each longitudinal zone (1-5). Zone 5 registers a smaller variation for most samples,
except for sample 283, for which the variation of zones L1 and L5 are approximately
the same. The BMD variation is negative in one case only, zone 5 of sample 331
and close to zero for zone 5 of bone 269. There seems to be a trend of variation
with zones with higher to lower variations from distal to proximal zones; this trend
is not observed for sample 283.

In Figure 5.18 we can observe the BMD distribution before broaching and the
relative variation for sample 362, and for each one of the 12 angular sectors, for
L1 - L5. It can be noticed that BMD concentrations due to broaching appear to
reach higher levels in the farthest lateral locations of the broach (between angles
0◦ - 30◦ and 330◦ - 360◦, and at the opposite side between angles 180◦ - 210◦; this
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Figure 5.17: BMD variation for each sample and longitudinal zone (L1-L5)

observation applies for all the samples. In Appendix C we show the results for the
rest of the samples in figures C.1, C.2, C.3.

Figure 5.19 shows the angular relative variations of all the samples for each
zone L1 - L5 separately. It can be observed that all the zones present higher positive
variations (in green) than negative variations (in red). It can be noticed too that the
negative variations increase from distal to proximal zones, that is highest negative
variation for L5 and lowest negative variation for L1; similar patterns were observed
for all the samples. The blue line indicates the predominant BMD concentration
axis, for all the zones the highest concentration was obtained at the lateral side
between 300◦ and 360◦. See Appendix D to observe the angular distribution of
BMD (g/cm3) before and after broaching, and the relative variation of BMD, of
each sample separately.

5.4 Discussion

As far as we know, the results presented in this chapter are the first to describe the
modification of bone microstructure due to broaching.

The presented results show that the broaching procedure causes an overall aug-
mentation of the BMD levels in a 3 mm ring of trabecular bone around the cavity,
particularly on the lateral areas (corresponding to 0◦ and 180◦ in Figure 5.18), with
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higher concentration in the distal zones (L1, L2) which could be interpreted as a re-
sult of trabecular bone accumulation caused by the broach moving downwards. The
lateral and medial concentration (at 0◦ and 180◦, respectively ) of BMD observed
in all the samples is coincident with the location of the contact zone sizes defined
in Chapter 4, which illustrates why these areas are often considered in the 3D plan-
nings as critical for proper implant anchorage. During the broaching procedure the
surgeon had identified the sample 362 as a "necrotic bone", which means that its
tissue is harder, which was clearly observed during cutting of the sample and the
passing of the broaching tool, requiring a bigger effort for opening the cavity. This
sample presented as well the largest overall BMD variations (figure 5.16); which
suggests that larger BMD variations are associated to larger initial BMD levels.

As a limitation, we need to point out that in this study we used the same region
of interest for all the samples (a longitudinal region of 5 cm of length) although
the samples and broaches used were of different sizes, it should be noticed that this
could have an effect in the assessment of variations.

Our findings reveal how the broaching procedure may have an effect on 3D
surgical planning, which is done with preoperative CT-images without considering
the broaching effect. In other words, the overall positive variation of BMD originated
by the broaching procedure renders the contact area possibly more stiff and adequate
for a good anchorage, this actual bone quality in the contact surface is as a result
underestimated by the planning, which uses scanned images that are obtained before
the broaching is done. However, modifications of surface mechanical properties
(stiffness) can hardly be deduced from the BMD values because part of the bone is
crushed, and this is not detected in the scanned images.
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BMD (g/cm³) Distribution before broaching - Sample 362
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BMD (g/cm³) Distribution of relative variation - Sample 362
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Figure 5.18: BMD Distribution before broaching (top) and relative variation after-
before broaching (bottom) - normalized for sample 362
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Figure 5.19: Angular BMD relative variation for each zone L1 - L5, for all the
samples, positive variations are shown in green and negative variations in red. The
image at the lower right side illustrates the middle slices that correspond to each zone
L1 - L5, for the sample 362 as a reference, with the axis (in green) that indicates the
0◦ angle of measurement for each zone.





Chapter 6

Mechanical characterization of the bone-implant
interface after broaching

6.1 Introduction

In chapter 5 we introduced the idea and context for the study and characterization
of the broached femoral cavity through the analysis of the BMD distribution ob-
tained from µCT-Scan images, for potential applications and considerations in 3D
preoperative planning of THR. Now, in this chapter, following the same purpose of
characterization of the broached bone for THR; we present a study concerned with
the measurement and analysis of the mechanical properties of the trabecular bone
compacted in the femoral canal by the effect of the broaching procedure for THR.

We are interested in the characterization and analysis of the mechanical prop-
erties of the compacted trabecular bone, 1) in a localized manner to be able to
construct a mapping of the mechanical properties that the compact bone exhibits
after being broached, 2) at a millimeter scale, since what we search is the mechanical
properties that affect the stiffness of the bone-implant interface.

With this purpose we developed a protocol for local measurement of mechanical
properties of the bone through a mechanical test of indentation to characterize the
bone-implant interface zone after the broaching procedure. In a nutshell, it consist of
the local measurement of force-displacement relations by means of indentation, and
subsequent relation with the Young’s modulus through different equations proposed
in the literature.

It is important to mention that usually the studies involving mechanical tests of
the trabecular bone are done on controlled samples, that is, extracted from some spe-
cific bone site for the experiment, with well controlled geometrical properties and
measurement orientations, and following different existing protocols for the mea-
surement of mechanical properties of the bone. Our case is particular in this sense
though, since we are interested in the local measurement of mechanical properties
of the compacted bone as it is left in the cavity by the passing of the broaching
tool. Our samples cannot be cut and extracted from the bone specimens, since this
would most likely affect the original configuration of the compacted bone.

The present study was developed the following main goals:

1. To determine the real mechanical properties of the bone in contact with the
prosthesis after a THR surgery, which to this date are unknown.
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2. To find relations between the BMD distribution findings of chapter 5 and the
mechanical properties of the broached bone.

3. One implicit objective was to build an indentation device using an universal
testing machine.

Just as the study of BMD variations presented in chapter 5, the assessment of
mechanical properties in the bone-implant interface zone after broaching and subse-
quent correlation to BMD values obtained from CT-Scan images, could also provide
great advantages for the advancement of 3D preoperative planning techniques, and
THR implantation protocols in general, since this would reveal the boundary con-
ditions of the broached/compacted bone that affect the anchorage of the implant
inside the bone; to this date this information is completely unknown and could have
an important impact in the accuracy of these procedures.

6.2 Bone Preparation and preservation

The same samples described in Chapter 5 were used for the indentation study. Same
temperature handling, and thawing considerations as in 5 apply for this chapter too.

As part of the protocol, the bones were cut longitudinally in two halves and
defatted to get them prepared for the indentation test.

Longitudinal section of the bone
A longitudinal lateral section of the bone is made to leave exposed the surface where
the mechanical tests will be executed, as shown in Figure 6.1.

The samples were previously thawed, and then securely fastened with a bench
vise to the desired position to make the cut, the surgeon used a surgical oscillatory
saw to make a lateral cut of the bone and expose the internal surface, the length
of the samples was also reduced by removing the distal part to better adapt the
samples to a mounting system for the indentation test (Figure 6.2).

Defatting
Bone specimens were defatted according to the standard procedure used in our
laboratory and validated by other ex-vivo studies (Tang et al., 1996; Granke et al.,
2011). This protocol prevents the risk of infections and guarantees the sample
conservation at room temperature. Briefly, the procedure consists of the following
steps: (1) rinsing in saline at ambient temperature; (2) defatting for 18 hours
using a chemical bath of diethylether and methanol (1:1) at room temperature;
(3) removing the excess of chemical fluids rinsing in a distilled water bath and
draining-off in absorbent paper.
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Figure 6.1: Scheme of the longitudinal cut of the bone and anatomical references
identified by the surgeon. The red dotted line indicates the line of the longitudinal cut,
that separates two anatomical reference spots (curved lines in green) which indicate
the areas of interest to be indented.

A B C

D E F

Figure 6.2: Different steps for the longitudinal and length cut of the samples. Fixation
of the bone with the vise (A,B). Cut to reduce length of the bone (C). Longitudinal
cut of the bone (D). Internal surfaces of the bone cavity after the cut exposing the
broached region (E, F).
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Bone Hydration
When bone is dried, the Young modulus increases but the toughness decreases. Its
ductility can be recovered by re-wetting in buffered physiological saline. It takes
about 3 hours to recover their wet weight completely (Turner and Burr, 2001). In
this study, several stages during testing involved lost of hydration.

As samples of large size are used in this work, they were left to hydrate during
18 hours approximately before any test was done.

6.3 Overview of indentation testing

The indentation test was performed with the use of a universal testing machine.
Adaptations of this machine were required for proper sample holding. Spherical
indenters were used to penetrate perpendicularly in the broached bone and acquire
load-displacements relations.

6.3.1 Sample mounting and testing devices

6.3.1.1 Bone holding device

As the bone possesses a very irregular shape, it could not be easily mounted on
the base of the mechanical tests machine, thus, it was necessary to create a holding
device to keep the bone in the desired position for the test, making sure that the
configuration is stable enough to avoid noise during the indentation, but not too
tight to prevent excessive compression effects over the sample.

An u-shaped half steel - half aluminum profile cut to the length of the indentation
area of the bone was used to create a holding base. It was important to have half
of the holding device made of steel to guarantee proper attachment to the mobile
magnetic system used for mounting the sample on the test machine, and which
allowed to set different orientations for the test. The u-shaped base was partially
filled with epoxy resin, the bone sample (each cut side separately) is introduced and
positioned in the epoxy (Figure 6.3), the external surface of the bone is sprayed
with teflon before positioning to avoid excessive adherent effects.

Once the bone was introduced in the desired position, four hexagonal bolts are
introduced close to the bone to fix it in that position, the heads of the bolts are
inserted in the epoxy and positioned closely to both lateral sides of the bone, then
the rest of the u-profile is filled resin reaching a level high enough to maintain both
bone and screws secured to their position, finally the assembly is left to dry. Plain
washers and nuts screwed to the bolts were used to fasten the bone.
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Figure 6.3: U-shaped half steel half aluminum bone holding system, with a bone
sample held in place with epoxy and four hex-bolts.

Figure 6.4: Set of screwed indenters ranging from M4 to M24 (indenter diameter
2,5 mm â 18 mm.

6.3.1.2 Indenters and their adaptation device

According to the literature, bone indentation tests are usually done with the use of
a blunt-end indenter ranging from 2,5 to 6 mm in diameter, at a displacement rate
of 2 mm/min and to a depth of 0,2 to 0,5 mm. A load-displacement curve is created
as the indenter penetrates the sample (Turner and Burr, 2001).

For our test it was decided to use a set of spherical indenters, a set ranging from
M4 to M24 - indenter diameter 2,5 mm - 18 mm (Figure 6.4) was available for our
use.

As the MTS mechanical tests machine that we used does not provide the option
of adapting indenters, a connecting device was designed and manufactured for this
end; the proposed design is presented in (Figure 6.5). One screwed plug was
manufactured in steel for each one of the indenters, these plugs go inserted into a
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Screwed indenter

Steel screwed plug

Load cell - indenter
plug-in with magnets

Load cell of the
MTS machine

Figure 6.5: Different parts of the indenter connecting device.

connecting piece common for all the indenters which goes screwed to the load cell
of the machine, small magnetic rods are inserted in the connecting piece and serve
to attach the iron screwed plugs to the system.

6.3.1.3 Orthogonality verification system

A 2-degree-of-freedom magnetic mounting system allows to set the bone to the
desired positions aligning the indenter orthogonally to the marked indentation points
on the bone. A circular magnetic chuck (Figure 6.6, top left) and an reclinable
magnetic base (Figure 6.6, top right) are used to fix the samples to the desired
position. Both devices together provide rotation around one axis and horizontal
translation, making possible to access orthogonally, and with relative ease, most of
the desired spots on the internal surface of the bone (Figure 6.6).

In order to verify the orthogonality between the indenter and the bone’s surface,
a laser pointer is centered and adapted to the indenter plug-in device. A reflecting
marker, a 4,5mm diameter mirror obtained from an endoscopic camera (Figure 6.7,
top left and top middle) is located over the desired test spot on the surface of the
bone so it reflects back the laser beam (Figure 6.7, top right), and by making it
coincide with the beam source the orthogonality is verified (Figure 6.7, bottom).
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Figure 6.6: Circular magnetic chuck (left - Source:
http://www.rdgtools.co.uk/acatalog/). Reclinable magnetic base (middle). As-
sembly of the components for sample mounting on the machine (right).

An orthogonality test was performed to determine the amount of error generated
by a deviation from the perpendicular axis.

6.3.2 Definition of indentation spots

A grid of 15 points (3 columns, 5 rows) was selected for all the samples (Figure 6.8).
The internal surface of the bone was carefully marked with a permanent marker,
creating a grid of spots of the places where the indentation tests had to be done
(Figure 6.8, middle). The indentation spacing should be 1,5x - 2x the length of the
diameter of the indentation mark (An and Draughn, 1999), in our case an indenter
with a diameter of 4 mm was used, and a spacing of ≈ 1 cm was selected.

It is worth mentioning that a visual inspection was done by making use of the
µCT-Scan images, to make sure that the definition of indentation spots were as
close as possible to the segmentation of the region of interest done in chapter 5,
which would simplify later on the association of mechanical properties values from
the indentation and the BMD values from the imaging work.

6.3.3 Mechanical test of indentation

Theoretical considerations for indentation.

Different relations and theoretical considerations found in the literature were consid-
ered for obtaining the Young’s modulus of the bone from force-displacement relations
measured by means of an indentation test. The preliminary tests with materials with
known mechanical properties (Young’s modulus) served to determine what equation
provided the best results for our protocol.

For the application of these relations the following hypothesis are taken into
account: homogeneous, isotropic, semi-infinite linear elastic-plastic half-space, no
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Figure 6.7: From left to right (top): mirror of an endoscopic camera - VOLTCRAFT
- 4,5 mm diameter (top left and middle - Source: http://www.fonetip.cz/). Laser beam
pointed at the mirror placed on the bone’s surface on a test spot. Laser beam reflected
back to the beam’s source with the mirror to verify orthogonality (bottom).



6.3. Overview of indentation testing 75

Figure 6.8: Different steps for the definition of indentation spots. A fine rope with
evenly separated marks is used to make the grid (left). A permanent marker is used to
mark the spots for the indentation, 3 columns, and 5 rows (middle). Reference names
are associated to each spot with numbers from 1 - 5 for the rows, and the letter L, O
and R for the columns (right).

time-dependent deformation mechanisms such as creep or viscoelasticity, and fric-
tionless contact.

Turner and Burr (2001) state that when the indenter penetrates the bone and
a force-displacement curve is created, the Young’s modulus can be calculated by
making use of the relation proposed by Timoshenko (1970) for a load distributed
over a part of the boundary of a semi-infinite solid:

E = S ×
(
1− ν2

d

)
, (6.1)

with S the slope of the load-displacement curve; ν the Poisson’s ratio of the
bone; and d the diameter of the indenter.

This theory does not comprehend specific considerations for: spherical indenter,
unloading stage at the top of the slope.

Sumner et al. (1994) performed an indentation test on canine trabecular bone
of the proximal tibia (indenter diameter 2.49 mm, indentation velocity 2 mm/min,
and maximum indentation depth 0.2 mm). They obtained load-displacement curves
that related to the Young’s modulus by implementing equation 6.1. They made com-
parisons with mechanical properties of the human trabecular bone (compared with
regional averages for healthy young human ∼ 400 MPa) and established correla-
tions with the measurement sites. Concluding that the use of the equation pro-
posed by Timoshenko (1970) (equation 6.1) provided results highly correlated with
non-destructive results on bone specimens, and that indentation load-displacement
measurement is useful for obtaining the Young’s modulus of the trabecular bone.
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The method proposed by Oliver and Pharr (2004) also allows to obtain the
Young’s modulus from indentation mechanical test data. It applies for a variety of
mechanical indenters, including spherical ones. This method is set for the unload-
ing stage after indentation, since it is assumed that only the elastic displacements
are recovered during unloading, facilitating the analysis since it excludes plasticity
effects. The proposed equation is based on what they called the effective Young’s
modulus (Eeff ), which takes into account the fact that elastic displacements may
occur in both, the specimen, and the indenter. With the Young’s modulus of the
specimen given by equation 6.2.

E =
1− ν2

1

Eeff
− 1− ν2i

Ei

(6.2)

With E and ν, and Ei and νi, the Young’s modulus and Poisson’s ratio of the
specimen and the indenter, respectively.

The effective Young’s modulus is obtained from the following equation (Eq. 6.3),
which relates the stiffness during unloading S and the Eeff ;

S = 2
√
R ∗ Eeff × (h− hf )1/2 (6.3)

In this equation (equation 6.3) with applications to spherical indentation (spheri-
cal indenter), considerations of Hertzian elastic contact are taken into account mean-
ing that R relates the radius of the indenter R1 and the radius of the indented surface
R2, as follows:

R = (1/R1 + 1/R2)
−1 (6.4)

For plane-sphere contact according to Hertz theory (Aublin, 1992), R2 = ∞,
then R is simply the radius of the indenter.

In equation 6.3 the displacement h is taken as the maximum displacement of
indentation for unloading case considerations, and hf is obtained from geometrical
relations of displacement illustrated in figure 6.9 presented in Oliver and Pharr
(2004).

Figure 6.9 shows an schematic representation of the geometrical parameters that
are taken into account for the unloading analysis of indentation, and used in equation
6.3

These equations take into account application for spherical indenter, unload
stage, top of the slope. This upper part of the slope (circled in red) of the curve
also known as the contact stiffness, see Figure 6.10.
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Figure 6.9: Schematic illustration of the unloading process showing parameters char-
acterizing the contact geometry. Source: Oliver and Pharr (2004).
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Figure 6.10: Schematic illustration of indentation load vs. displacement data showing
the upper portion of the slope of the unloading curve. Reproduced from: Oliver and
Pharr (2004).
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The results were also analyzed in terms of the contact stiffness, which involves
a simple calculation of the slope of the upper portion of the unloading stage of the
load-displacement curve (Figure 6.10), and defined as:

S =
dP

dh
(6.5)

With S the contact stiffness, dP the load variation in that portion of the slope,
and dh the displacement related to that portion of the slope.

6.3.4 Preliminary mechanical tests

A series of preliminary mechanical tests were performed in order to gain a bet-
ter understanding of the functionality, advantages and limitations of the universal
test machine, and to test the protocol to be implemented in the following stage
of the study with the actual bone samples. The preliminary tests were done on
different types of material: first on sawbone (biomechanical test material which
is primarily used in testing of orthopedic implants, instruments and instrumenta-
tion as an alternative testing medium to human cadaver bone - sawbone catalog,
www.sawbones.com), polycarbonate, aluminum, then on bovine bone, and finally a
test on a broached bone sample that was not part of the cohort.

For these preliminary tests, different parameters involved in the indentation
tests were identified, such as: diameter of the indenter, displacement rate (velocity
of indentation), maximum depth of the indentation (Oliver and Pharr, 2004).

Overall, the tested parameters sere the following:

• Diameter of the indenter Di : 3, 4, 5, 6 (mm).

• Displacement rate (v): 2, 3, 5, 10 (mm/min)

• Maximum indentation depth (Mid): 0.3, 0.4, 0.5, 0.6 (mm).

The ranges of values of the tested parameters were taken from suggested val-
ues found in the literature and other indentation works on bone (Oliver and Pharr,
2004; Turner and Burr, 2001; Sumner et al., 1994). They were also defined by ob-
servation based on repeatability and convergence to known Young’s modulus values,
particularly that of the polycarbonate.

Different combinations of parameters were tested to evaluate consistency and re-
peatability. The first trials were done on flat samples of sawbone and polycarbonate
to verify repeatability and the optimal combination of testing parameters to obtain
a Young’s modulus close to a known value for this materials. Subsequently, we
performed tests on bovine bone to learn how the protocol adapts to bony material.
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Then, finally we did the test on the sample of broached femoral bone, making the
necessary adjustments of parameters and verifying repeatability.

Additionally, a study based on the Hertz theory was carried out to verify results
of the experiments and analytical solutions.

All combinations of Mid and v were tested with each Di, and force-displacement
data was acquired at a rate of 1000 data points per second. Five repetitions were
done for each combination of parameters to evaluate repeatability. The five repe-
titions were executed on the same indentation spot, with the aim of assessing two
different indicators, repeatability and effects of resilience time (viscoelastic effects).
A grid was created on the sample to define the indentation spots. These were
selected leaving a minimum of twice the diameter of the indentation between spots.

We registered both loading and unloading stages and controlled the time between
repetitions, and the time of penetration. More specifically, the indenter descends
and stays in loaded position a time t = 5 sec, then unloads going back to the initial
position and pauses for 5 seconds again, same process for a number of N = 5 rep-
etitions. The purpose of doing this is to account for viscoelastic effects and control
the resilience time, giving the time for the sample to "recover" before continuing
with the next repetition.

The criteria for identification of the correct combination of parameters was based
on the convergence of load vs. displacement values obtained with five repetitions on
the same spot, using bone as the testing material.

6.4 Results

6.4.1 Results preliminary tests

Tests with sawbone
The following parameters were taking into account: Di= 3 mm, v= 1 mm/min,
Mid= 0.2, 0.3, 0.4 (mm). Lack of consistency was found in some cases in the pre-
liminary tests with sawbone, with very variable values of Young’s modulus, probably
due to its orthotropic characteristics.

Tests with polycarbonate
The second round of tests was done on polycarbonate, this material is expected
to exhibit more isotropic characteristics as compared to sawbone. With a Young’s
modulus between 2.0 - 2.44 GPa (Materials Data Book, 2003 Edition, Cambridge
University).

For indenter diameter 3 mm, velocity 2 mm/min, indentation depth was varied
between 0.6 - 0.9 mm, obtaining convergence to a value of E = 2.15 GPa, at inden-
tation depth 0.9 mm, and obtaining a maximum force around 700 N. Figures 6.11
shows an example of the curves load-displacement obtained for the polycarbonate,
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Figure 6.11: Load vs. displacement curves, unload stage, five repetitions, material:
polycarbonate

and 6.12 the segment of the top of the slope selected for calculations of Young’s
modulus and contact stiffness. The extent of the segment of slope was selected vi-
sually based on considerations of how straight the segment is, required for the use
of the equations proposed by Oliver and Pharr (2004).

One thing that was noticed in the tests with sawbone and polycarbonate samples
was that for larger sample surfaces, the uneven areas between the holding surface
used and the sample provoked noise in the test, we cut the samples into smaller
pieces and the noise was reduced. This gave us an example of the necessary level of
flatness when designing the mounting system for the real bone samples. The high
repeatability of the results obtained with the polycarbonate, allowed to verify the
robustness and accuracy of the indentation protocol.

Tests with bone sample
The data obtained from the preliminary tests with the bone sample was processed
using the different indentation theories found in the literature and previously pre-
sented in this chapter, a summary of some of the obtained results is presented.

From equation 6.1 (Timoshenko, 1970; Turner and Burr, 2001):
Diameter: 3 mm, Velocity: 1 mm/min, Penetration: 0.4 mm. The average Young’s
modulus obtained was: 0.24 GPa
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Figure 6.12: Upper portion of the load vs. displacement curves, unload stage, five
repetitions, material: polycarbonate.

From equation 6.2 (Oliver and Pharr, 2004):
Diameter: 3 mm, Velocity: 1 mm/min, Penetration: 0.4 mm.

Obtaining an average Young’s modulus of: 0.49 GPa

It is not an easy task to compare the obtained values of Young’s modulus of
the trabecular bone with values reported in the literature. First, there are still
major debates about the ranges that can be taken into account for the trabecular
bone (Rho et al., 1998), a reference study on trabecular bone at the proximal tibia
reported values around 0.65 GPa (Hvid1985). Second, our indentation study was
performed on a surface where the trabecular bone has been compacted by the passing
of the broaching tool, making it even more challenging to compare our values with
other reported values from studies done on intact bone. For these reasons it was
decided to select our testing parameters based on repeatability and convergence of
our results from the tests.

Finally, the best convergence and repeatability with the bone sample was ob-
tained for a diameter of the indenter (Di) of 4 mm, displacement rate (v) of
2 mm/min, maximum indentation depth (Mid) of 0.3 mm. Also, it was decided
to make use of the equations proposed in the works of (Oliver and Pharr, 2004)
(equation 6.2), since they are designed to take into account a majority of factors
that could have an impact in our study, such as viscoelastic and plastic effects, and
possible deformations of the indenter.
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The study of the orthogonality effect, which measured the amount of error ob-
tained if the indenter does not penetrate perpendicularly into the bone surface,
showed that a deviation 5◦ from the perpendicular axis would generate an error of
the maximum load of around 6%, while a deviation of 10◦ would generate a max-
imum load error of around 100%. However, the Young’s modulus was not affected
by this load changes generated by angular deviations of 5◦ and 10◦, for both cases
the Young’s modulus was around 2 GPa, which corresponds with the result ob-
tained with zero angular deviation, and also the close to the values reported in the
literature for the polycarbonate. However, as this results were obtained for a flat
surface of polycarbonate, for the experiments with the bone we decided to limit the
deviation to a maximum of 5◦. In other words, the laser beam had to be projected
inside an area of 3.5 mm of radius maximum located at a distance of 15 cm from
the sample to ensure that the error does not exceed 5◦ (see Figure 6.7). For more
details see Appendix E.

6.4.2 Results of broached bone - study samples

These results are presented in two parts, first we use the contact stiffness, obtained
with equation 6.5, to describe the range of stiffness values obtained with our tests.
Then we use the Young’s modulus, obtained with equation 6.2, to describe the
spacial distribution of the obtained results. Notice that both contact stiffness and
Young’s modulus are directly proportional, and we could use one or the other to
explain our results.

6.4.2.1 Range of stiffness values

Figure 6.13 shows the distribution of stiffness values for each one of the samples.
All the samples show a concentration of values around a stiffness of 104 N/m, with
some values in the range of 105 N/m, except for the sample 362; for which the ma-
jority of the indentation spots presented values around 105 N/m. Figure 6.14 shows
the stiffness values distribution for all the samples together, with a minimum and
maximum stiffness values of 3.51 · 103 N/m for the sample 283, and 1.02 · 106 N/m
for sample 362, respectively.

6.4.2.2 Young’s Modulus - Spacial distribution

Results are presented for each one of the samples (Figures 6.15, 6.16, 6.17, and 6.18).
A Young modulus mapping was obtained by making use of the equations presented
previously and proposed by Oliver and Pharr (2004). The mapping is presented in
two images for each sample, as side 1 and side 2, corresponding to the two halves
obtained after the longitudinal cut.
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Figure 6.13: Histogram of the stiffness (N/m) distribution of each one of the samples
separately
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Figure 6.14: Collective histogram of the stiffness (N/m) distribution of all the samples
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Figure 6.15: Young’s modulus (E) distribution obtained from the indentation results
- sample 269, both sides.
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Figure 6.16: Young’s modulus (E) distribution obtained from the indentation results
- sample 283, both sides.
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Figure 6.17: Young’s modulus (E) distribution obtained from the indentation results
- sample 331, both sides.
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Figure 6.18: Young’s modulus (E) distribution obtained from the indentation results
- sample 362, both sides.

The highest E values were obtained for the sample 362 (4.52 ·108 Pa). For this
sample in particular it can be observed that the highest values are mostly concen-
trated in the "O" column. The rest of the samples present a rather heterogeneous
distribution of E.

6.5 Discussion

6.5.1 Analysis of contact stiffness results

Let’s consider the results obtained for the contact stiffness and presented in figure
6.13, as previously mentioned the majority of stiffness values were obtained in the
range between 104 N/m and 105 N/m for the ensemble of the bone samples. Now
if we consider that these values were obtained with a local measurement of the
load-displacement curve, with the use of an indenter, we could assume that each
separate measured value of contact stiffness corresponds to the area of the spot of
measurement.

This area corresponds to a segment of surface of a sphere (the indentation sphere)
and can be calculated as:

A = 2π ∗ r ∗ h (6.6)

Where A is the area of the indented surface, r is the radius of the indenter
(4 mm), and h is the penetration of the indenter which in this case corresponds
to the maximum depth of penetration which was set to 0.3 mm. This calculation
corresponds to an area A = 3.78 · 10−6m2
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If we take into account the results obtained in chapter 4, we can observe in figure
4.5 that the transition from unstable to stable conditions occurs approximately
between 106 N/m and 107 N/m depending on the size of the contact surface, and
that after 108 N/m stability is achieved for the majority the cases. And these
values were obtained for CZS (contact zone size) of these approximate magnitudes:
S ≈ 5 cm2, SM ≈ 7, 5 cm2, M ≈ 10, 5 cm2, L ≈ 15, 5 cm2.

Now, if we take the range of local contact stiffness (S = 104 N/m - 105 N/m)
obtained with the indentation test for an contact area A = 3.78 · 10−6m2. We can
estimate the range of contact stiffness Kinden values that correspond to the contact
surfaces S, SM, M, and L from chapter 4.

3.78 · 10−6 m2 ⇒ 104 - 105 N/m
S, SM, M, L ⇒ Kinden

For S, Kinden = 1.32·107 − 1.32 · 108N/m

For SM, Kinden = 1.98·107 − 1.98 · 108N/m

For M, Kinden = 2.78·107 − 2.78 · 108N/m

For L, Kinden = 4.11·107 − 4.11 · 108N/m

From this we can observe the following: Numerically, we have found a transition
zone for contact stiffness between 107 and 108 N/m, where the implant becomes
stable for average size of contact zones as defined by an orthopedic surgeon (chapter
4. The contact stiffness values measured experimentally, translated into an area of
the same size as those defined by the surgeon, give values between 1.32 · 107 N/m
and 4.11 · 108 N/m. This demonstrates that the range of stiffness values, and the
threshold values of stiffness for stability obtained with the implementation of our
numerical model, are in the correct order of magnitude; which serves as a partial
validation of our model.

6.5.2 Analysis of Young’s modulus spatial distribution

The spatial distribution of Young’s modulus on the broached surface of the bone
showed a high heterogeneity for most samples, with most of the indentation spots
displaying Young’s modulus values in the range 106 - 108 N/m, but without a clear
patter of compaction.

However, the distribution of sample 362 shows higher levels of Young’s modulus
concentrated in the central part (section O) in both sides of the sample. Sample
362 also presented the highest magnitudes of Young’s modulus as compared to the
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other samples, most likely due to the necrotic nature of this sample; this trend was
also observed in chapter 5 where we obtained the highest levels of BMD for sample
362.

We compared the spatial distribution of Young’s modulus obtained in this chap-
ter with the spatial distribution of BMD obtained in chapter 5 for each sample with
the purpose of finding possible correlations.

The patterns obtained for the distribution of BMD and Young’s modulus are not
coincident, and no correlation is observed. However, sample 362 ( figure ??, bottom)
presented a somewhat similar pattern for BMD and Young’s modulus, with values
slightly more correlated as compared to the rest of the samples.

Some possible explanations for this pattern mismatch are:
There is no correlation between the sectors where the BMD was measured in

chapter 5, and the indentation spots described in this chapter. An attempt of
associating these areas was only done in a visual manner. It is necessary to make
a more precise image analysis to be able to correlate properly the regions from the
scanned images and the indented zones.

Also, in the indentation test the maximum indentation depth is known but the
resulting load-displacement relation is affected by the properties of the material
surrounding the indentation spot; in other words, an indentation spot surrounded
by mostly trabecular bone will display lower stiffness than an indentation spot that
is closer to cortical bone, even if they both are indented at a maximum depth of 0.3
mm. This fact is not taken into account in the evaluation of BMD from the scanned
images, since only the trabecular bone is taken into account in the ring of 3 mm,
and the effects of the surrounding material are ignored.



Chapter 7

Conclusion and Perspectives

With this thesis work we have proposed a method that we called Three-dimensional
Resonance Planning (RP3D), which implements numerical modal analysis for the
assessment of stability of cementless implants in THR preoperative planning.

The main question that motivated the development of this project was whether
or not it was possible to improve the accuracy of THR preoperative planning tools
through the introduction of mechanical criteria obtained from a coupling of CT data
and a vibration analysis.

In this thesis divided into two main branches, numerical and experimental, first
we explored the applicability of numerical modal analysis for two things: the defi-
nition of mechanical criteria related to stability from a study of clinical cases, and
the implementation of the mechanical criteria for defining stability thresholds with
a study of controlled cases. And second, the assessment of the effect of the broach-
ing procedure on the mechanical properties of the bone-implant interface through
experimental studies. Thanks to these studies, we were able to:

1. Propose thresholds of contact conditions in terms of area of contact surface
and contact stiffness to discriminate stable and unstable implants numerically.

2. Characterize the anchorage properties in the bone-implant interface after the
broaching procedure. More specifically, we were able to describe the effect of
broaching on the microstructure of the trabecular bone. We observed com-
paction zones consistent with implant design and we quantified in terms of
BMD the local modification of the trabecular bone due to broaching.

3. Characterize the apparent stiffness of the bone surface originated by the
broaching. This stiffness was in the order of 104 - 105 N/m, for an inden-
ter apparent area of about 3.78 · 10−6m2. Moreover, we were able to find an
agreement between the contact stiffness in the bone-implant interface mea-
sured experimentally and the contact stiffness threshold for stability obtained
numerically, which serves to partially validate the principles of our proposed
method (RP3D).

From the biomechanics point of view, this finding suggests that a numerical anal-
ysis of stability based on vibration methods has potential to discriminate between
stable and unstable implants.

Certain limitations come from the fact that for the numerical study only a small
cohort of patients was considered for determining the discrimination parameters.
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Moreover, the controlled study considered only four different sizes of contact zone
and only one type of prosthesis, though for the different contact sizes considered no
major changes were observed and most of the variations in stability were defined by
the values of apparent contact stiffness.

Likewise, in the experimental study to assess the effect of the broaching, only
four samples were considered. In addition, issues related to a possible inconsistency
between the definition of the region of interest in the imaging analysis and the
indented area in the mechanical test prevented us to establish a relation between
the parameters measured in each study.

For the determination of interface stiffness for a given subject from CT data, a
conversion law between Hounsfield units and stiffness is necessary. Such a law could
not be obtained.

With further development it is expected to find correlations between the bone
properties contained in µCT-Scan images (described in chapter 5) and the mechan-
ical properties of the bone measured experimentally in chapter 6. This would allow
to run the numerical analysis during the preoperative planning with the actual me-
chanical properties of the bone of the patient obtained merely from a CT-Scan.

From the orthopedic point of view, our results could have an important impact
in the conception of preoperative planning moving forward, highlighting the ad-
vantages of re-engineering the existing preoperative planning tools, specifically, the
introduction of a finite element analysis component, that provides the surgeon with
mechanical criteria obtained from the vibrational analysis to enhance the accuracy
of the planning.
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Appendix: Modal shapes, clinical study

Nb Eigen modes

Modes 1 2 3 4 5

A 5 8110 10525 11189 16213 17918 Hz

B 7 2309 2830 8326 10312 10813 Hz

C 2 9591 17693 X X X Hz

X X X

D 1 19828 X X X X Hz

X X X X

E 7 2371 2910 8504 10538 16429 Hz

F 9 2357 2940 7418 9271 16137 Hz

Figure A.1: Modal shapes of the first five modes of the six patients of the clini-
cal study, as well as number of modes and modal frequencies in the frequency range
[0 : 20] kHz.

Figure A.1 shows a summary of the results of the modal analysis of clinical
cases presented in Chapter 3 for all the six subjects. A, B, C were identified by the
surgeon as stable cases, D as stable with presence of pain, and E, and F as unstable.
Number of modes and frequency values does not discriminate between stable and
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unstable cases. Proximal motion was observed in higher modes of all the unstable
cases, in the stable cases was not always present.
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Appendix: Modal analysis, controlled study

Modal Shapes and Frequencies [0-20kHz]

CZS Stiffness (k) # modes 1 2 3 4 5

Small 1x105 5/11 1.1357 1.8516 5.0712 5.7779 5.9419

Small 1x1010 5/5 2.9849 3.8571 10.9030 13.4635 19.2059

Medium 1x105 5/11 1.6085 2.2129 5.9438 6.5614 6.8127

Medium 1x1010 5/5 3.2876 4.0564 12.3721 14.6927 19.926

Large 1x105 5/11 2.2922 2.8670 7.2288 7.6107 8.2253

Large 1x1010 3/3 9.83261 13.9428 17.0514

Figure B.1: Modal shapes and modal frequencies of the first five modes of for Small,
Medium and Large CZS and two values of apparent stiffness (N/m) in the frequency
range [0 : 20] kHz.

Figure B.1 shows a summary of the results of the modal analysis of controlled
cases presented in Chapter 4 for three different sizes on contact zone (CZS) and two
values of apparent stiffness for each CZS. It can be observed how for all the CZS for
a lower stiffness value there is presence of proximal bending in the modal shapes,
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and for the higher values of stiffness the proximal bending disappears. It can also
be noticed that the proximal bending is lower for higher CZS.



Appendix C

Appendix: Broaching BMD spatial distribution,
µCT-Scan images

Figures C.1, C.2, and C.3 show the BMD (g/cm3) variation of samples 269, 283,
and 331, produced by the broaching effect, and measured from µCT-Scan images.
Similarly to the results presented in Chapter 5 for the sample 362, it can be noticed
how the variations of BMD mostly occur in the farthest lateral zones between 300◦−
0◦, and around 180◦. It can also be observed that the variations are higher at the
distal longitudinal zones (L1-L2), except for sample 283, where the distribution is
more or less equally distributed along the five zones.
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BMD (g/cm³) Distribution before broaching - Sample 269
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BMD (g/cm³) Distribution of relative variation - Sample 269

Angular Sectors
30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

Lo
ng

itu
di

na
l Z

on
es

1

2

3

4

5

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure C.1: BMD Distribution before broaching (top) and relative variation after-
before broaching (bottom) - normalized for sample 269
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BMD (g/cm³) Distribution before broaching - Sample 283
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BMD (g/cm³) Distribution of relative variation - Sample 283
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Figure C.2: BMD Distribution before broaching (top) and relative variation after-
before broaching (bottom) - normalized for sample 283
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BMD (g/cm³) Distribution before broaching - Sample 331
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BMD (g/cm³) Distribution of relative variation - Sample 331
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Figure C.3: BMD Distribution before broaching (top) and relative variation after-
before broaching (bottom)- normalized for sample 331
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Appendix: Broaching BMD angular variation,
µCT-Scan images

In this appendix we show angular relative variations (% BMD) and angular values
of BMD (g/cm3) before and after broaching obtained from µCT-Scan images for
sample 269 (Figures D.1 and D.2), sample 283 (Figures D.3 and D.4), sample 331
(Figures D.5 and D.6), and sample 362 (Figures D.7 and D.8). As presented and
discussed in Chapter 5, it can be observed that the highest variations of BMD are
obtained in the distal zones (L1-L2), in almost all the cases the positive variations
were more significant than the negative variations due to the broaching, except for
zone L5 of samples 331, and 269. Also, most of the concentration of BMD after
broaching is obtained between 300◦ - 0◦ and around 180◦.
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Figure D.1: % BMD angular relative variation for zones L1 - L5, sample 269.
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Figure D.2: BMD (g/cm3) angular distribution before and after broaching for zones
L1 - L5, sample 269.
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Figure D.3: % BMD angular relative variation for zones L1 - L5, sample 283.
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Figure D.4: BMD (g/cm3) angular distribution before and after broaching for zones
L1 - L5, sample 283.
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Figure D.5: % BMD angular relative variation for zones L1 - L5, sample 331.
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Figure D.6: BMD (g/cm3) angular distribution before and after broaching for zones
L1 - L5, sample 331.
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Figure D.7: % BMD angular relative variation for zones L1 - L5, sample 362.
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Figure D.8: BMD (g/cm3) angular distribution before and after broaching for zones
L1 - L5, sample 362.





Appendix E

Appendix: Results of indentation orthogonality
test

Figure E.1 shows how for different angular deviations from the orthogonal axis of
indentation, the maximum load is highly affected (Top). However, the stiffness,
calculated as the slope of the upper part of the unload curve, is almost the same for
the different angular deviations (bottom) that we tested. One explanation for this
could be that the variation of the angle only has an effect on the load-displacement
relation until reaching a point of fully charged penetration . In our test the maximum
penetration that allowed us to reach that point was 0.3 mm.
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Figure E.1: Top: Load Vs Displacement curve, unload stage, of the indentation test
with polycarbonate used for measuring effects of orthogonality; curves for deviation
angles of 0◦ (perpendicular), 5◦, and 10◦ are displayed. Bottom: Upper part of the
slope of the curves in the Top figure, also for deviation angles of 0◦ (perpendicular),
5◦, and 10◦ are displayed
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