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Chapter 1

Résumé

Contents
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1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction

Dans les domaines de la fiabilité et de la sûreté structurelle, l’exemple du réseau

routier hollandais met en avant la complexité d’une part, et la nécessité d’autre part, de

pouvoir modéliser les dynamiques d’un tel réseau. En effet, cet enchevêtrement de voies

ne possède pas moins de 3200 kilomètres de routes référencées dont 2200 kilomètres

d’entres elles font partie du réseau autoroutier. Au sein de ce réseau de transport, on

compte approximativement 3000 ouvrages d’art. Dans ce contexte, l’objectif majeur

pour les gestionnaires est de maintenir le réseau à un niveau satisfaisant des critères de

sécurité et de confort. Toutefois, les facteurs rendant la tâche ardue de gérer un si vaste

réseau sont multiples. Concernant la fiabilité des ponts routiers, ceux-ci incluent pêle-

mêle, des innovations dans leur design et leur construction, l’évolution du trafic routier

1



2 CHAPTER 1. RÉSUMÉ

conduisant à des dynamiques changeantes au niveau du poids auxquelles les ponts sont

soumis, les changements climatiques, etc. Une observation générale sur laquelle cette

thèse s’appuie est que ces facteurs exhibent de l’aléa.

L’émergence d’approches purement probabilistes se réfèrent souvent aux travaux

de Abdel-Hameed [1975] où un processus gamma à pour la première fois été employé

pour modéliser l’usure d’un composant. Depuis, une myriade de modèles s’appuyant

partiellement ou totalement sur des méthodes probabilistes ont été développés.

Les travaux présentés dans cette thèse ont pour objectif de modéliser des prob-

lèmes de dégradation d’infrastructures en grandes dimensions dans un cadre proba-

biliste. Les réseaux Bayésiens (RB) répondent à ces critères. Ils proposent une com-

préhension intuitive des relations entre les nœuds du graphes au travers de dépendances

(in)conditionnelles. La littérature existante dénote une attractivité grandissante quant à

l’utilisation des RB en fiabilité [Weber et al., 2012]. Par ailleurs, les RB se basent sur

la version graphique de la propriété de Markov s’exprimant par les relations de dépen-

dances conditionnelles. À l’instar des RB, les processus de Markov ont acquis une

légitimité dans leur utilisation en fiabilité et sûreté structurelle pour les ouvrages d’art

[Kallen, 2007].

Plus formellement, un RB est un graphe orienté acyclique fournissant une représen-

tation compacte d’une distribution de probabilité d’un ensemble de variables aléatoires

(X1, ..., Xn) sous la forme de distributions conditionnelles. En utilisant des notions

X1 X2 X3

X4

Parents

Enfant

Figure 1.1 – A Bayesian Network on 4 variables
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basiques de probabilité, à savoir la formule des probabilités totales, la densité jointe de

quatre variables aléatoires peut s’écrire

f(x1, x2, x3, x4) = f(x1)
4∏
i=2

f(xi|x1...xi−1) (1.1)

Les prédécesseurs directs d’un nœud Xi sont appelés parents et l’ensemble de tous

les parents de Xi s’écrit Pa(Xi). À chaque variable aléatoire est associée une prob-

abilité conditionnelle de cette variable sachant ses parents, fXi|XPa(Xi)
, i = 1, ..., 4.

L’équation (1.1) appliquée au RB représenté en Fig. 1.1 peut ainsi être simplifiée grâce

aux propriétés de dépendance conditionnelles supposées par les RB :

f(x1, x2, ..., xn) =
4∏
i=1

f(xi|xPa(i)) (1.2)

Il existe plusieurs classes de RB. Selon la classe considérée, la paramétrisation d’un RB

diffère. Nous nous sommes concentrés dans ces travaux en particulier sur deux d’entre

elles. La première est la classe de RB dynamique discrète [Dagum et al., 1992, Murphy,

2002] où les relations de dépendance s’expriment par des probabilités conditionnelles

classiques. La dimension dynamique intervient en termes de transitions temporelles en-

tre chaque nœud. Cependant, pour cette classe la quantification du RB croît de manière

exponentielle ayant pour paramètres le degré 1 de chaque nœud ainsi que leur nombre

d’états. Il est toutefois utile de mentionner que cette complexité peut être atténuée en

générant de manière systématique les probabilités conditionnelles concernant les rela-

tions temporelles nœud-à-nœud.

La seconde classe de RB est la classe des RB non-paramétrique (RBNP) [Kurow-

icka and Cooke, 2005]. À titre comparatif, les RBNP peuvent comprendre aussi bien

des variables discrètes, continues et même un mélange continu-discret. Cependant, la

1. Le degré d’un nœud étant le nombre d’arrêtes incidentes qu’il possède
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plus grande différence réside dans l’expression de la dépendance probabiliste. Celle-ci

se traduit par des corrélations conditionnelles de rang et copules conditionnelles bi-

variées associées à chaque arrête. Les copules ne nécessitant souvent que très peu de

paramètres, e.g., un seul paramètre pour la copule Gaussienne, les RBNP se révèlent

être peu couteux. Toutefois, les RBNP se limitent à une utilisation statique. En effet,

aucune caractéristique temporel n’a été étudiée mis à part de manière marginale dans les

travaux de Morales-Napoles and Steenbergen [2014]. Une partie des travaux de cette

thèse s’attache donc à construire un cadre dynamique dans lequel les RBNP s’inscrivent.

En pratique, la paramétrisation est effectuée à l’aide de données. Les jugements

d’experts peuvent toutefois également être employés si les données sont insuffisantes

ou de qualité ne permettant pas de les exploiter. Dans cette thèse, nous explorons un

scénario nécessitant de paramétrer un RB discret dynamique et pour lequel les données

disponibles sont insuffisantes. Nous employons la méthode de Cooke afin de combler

ce déficit [Cooke, 1991]. Comme nous l’avons précédemment évoqué, la quantification

d’un RB dynamique est très couteuse et il serait par conséquent impossible d’avoir

recours aux jugements d’experts afin de résoudre ce problème. Le choix d’utiliser un

RBNP est d’autant plus renforcé qu’il est de plus en plus courant d’obtenir des données

de corrélations conditionnelles de rang auprès d’experts [Werner et al., 2017].

En complément de leur qualité à traduire et organiser des problèmes hautement di-

mensionnels, les RB possèdent également un autre avantage communément appelé in-

férence ou update Bayésien. Concrètement, l’inférence consiste à calculer la distribu-

tion de certains nœuds pour lesquels aucune information n’est connue sachant la valeur

d’autres nœuds du RB. L’inférence peut être effectuée aussi bien de "haut en bas" (diag-

nostique) que de "bas en haut" (prédiction). Cette propagation d’information s’effectue

encore une fois de manière différente selon que l’on traite les RB dynamiques ou les

RBNP. D’un côté, l’inférence pour les RB dynamiques exige la résolution d’intégrales

multidimensionnelles dont la valeur croit exponentiellement [Pearl, 1988]. D’un autre
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côté, les RBNP permettent d’accomplir l’update Bayésien de manière analytique tant

que la copule Gaussienne est supposée. Si la loi jointe est donnée par une autre copule,

le RBNP est discrétisé et le problème d’inférence retombe dans le cadre discret.

1.2 Résumé des travaux

Le Chapitre 3 2 développe un modèle de prédictions de fissurations d’acier dues au

phénomène de fatigue pour des ouvrages d’arts autoroutiers. L’objectif est d’exploiter

des données provenant d’un système installé à un point sensible du pont. Ceci permet

de formuler des prédictions pour les autres points du pont ne bénéficiant pas de don-

nées. Le modèle requiert deux composantes sous-jacentes afin d’évaluer la durée de vie

restante du pont. Premièrement, le mécanisme de fracturation élastique linéaire ainsi

que le type de fissuration pouvant apparaitre sont présentés en Section 3.2. Deuxième-

ment, la Section 3.3 décrit le cadre de dépendance probabiliste où un réseau Bayésien

non-paramétrique est proposé. Le RBNP a pour but d’exploiter les corrélations entre les

variables régissant le modèle à travers les différents points sensibles du pont ayant des

caractéristiques identiques. Le but est de tirer parti de ces corrélations afin de propager

les informations venant du système de monitoring vers les sections n’étant pas moni-

torées.

Le cadre proposé par le RBNP nous permet par la suite d’effectuer des analyses de

sensibilité sur l’ensemble des variables du modèle en Section 3.4. Les incertitudes au-

tour des prédictions de fissurations sont réduites en conditionnant par échantillonnage

Monte Carlo et en ne conservant que les simulations correspondant aux données de mon-

itoring. En conséquence, nous avons pu mettre en évidence des différences d’inférence

significatives concernant les variables régissant le modèle.

Le Chapitre 4 3 présente l’analyse des données d’experts obtenues par la méthode de

2. Ce Chapitre est extrait de l’article de Attema et al. [2016].
3. Ce chapitre est basé sur l’article de Kosgodagan et al. [2016]
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Cooke afin de partiellement paramétrer le modèle introduit au Chapitre 5. Le Chapitre

débute en présentant dans ses grandes lignes le modèle de dégradation, qui est encore

un problème de fissuration d’acier, en Section 4.2. La Section 4.3 énonce la méthodolo-

gie de Cooke et définit les deux métriques permettant de classer les experts, i.e., les

mesures de calibration et d’information. Ces métriques sont calculées à partir de vari-

ables de calibration qui sont elle-mêmes construites à partir de données existantes rel-

atives à des mesures de fissuration présentés en Section 4.3.1. Les résultats de la per-

formance des experts sont présentées en Section 4.3.2 avançant, d’un côté, les scores

médiocres de calibration obtenus pour chaque expert. Ceci étant probablement dû au

faible nombre d’experts (3). D’autre part, la valeur combinée du score de calibration est

très satisfaisante. Ce même score est substantiellement amélioré après que des tests de

robustesse sont effectués et décrit en Section 4.3.3. Les observations majeures de juge-

ment d’experts sont en premier lieu une grande incertitude exprimée dans l’évaluation

de probabilités. Deuxièmement, la pertinence des variables de calibration est abordée,

notamment par rapport aux variables nécessitant de paramétrer le modèle. Ces remar-

ques sont énumérées et discutées en Section 4.3.4.

Le Chapitre 5 4 introduit le modèle intitulé réseau Bayésien dynamique co-varié

(RBDC). L’objectif est de modéliser la dégradation d’un réseau d’ouvrages d’art dans

scénario où les données de détérioration sont limitées. Le modèle de dégradation est

présenté en Section 5.2 où un processus de Markov à temps discret est proposé pour

décrire la détérioration de chaque élément constituant le réseau. La Section 5.2.1 dé-

taille l’insertion de co-variables dans les probabilités de transitions qui rendent ces tran-

sitions dynamiques. Dans le but de connecter les éléments du réseau, le RBDC est

présenté en Section 5.2.2 où les ensembles des graphes et des probabilités condition-

nelles sont donnés explicitement. Le modèle ainsi construit décrit un réseau Bayésien

dynamique à deux dimensions, où la seconde dimension est exprimée par la relation en-

4. Ce chapitre est basé sur l’article Kosgodagan et al. [2017]
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tre co-variables. Une méthodologie est proposée en Section 5.2.3 afin d’étudier la sen-

sibilité du RBDC lorsque l’on effectue l’inférence. Cette méthodologie est motivée par

la possible explosion combinatoire du réseau, qui plus est par l’ajout de cette seconde

dimension. Deux configurations d’inférence sont proposées qui visent à être représen-

tatives de l’ensemble des combinaisons existantes

La paramétrisation du modèle est ensuite discutée en Section 5.3. Nous rappelons

que les résultats de jugement d’experts décrit au Chapitre 4 sont implémentés afin de

quantifier à la fois des probabilités de transitions du processus de Markov, ainsi que

probabilités conditionnelles requises par le RBDC. La Section 5.3.1 rappelle brièvement

la méthode de Cooke et ses objectifs. En Section 5.3.2, les développements permettant

la quantification des probabilités de transitions sont exhibés au travers de temps moyen

de premier passage. La Section 5.4 présente le cas d’un problème de détérioration pour

un réseau d’ouvrages d’art où le mécanisme latent de dégradation considéré consiste en

l’apparition de fissurations se propageant dans le tablier due à la fatigue. Le RBDC est

choisi comme méthodologie dans ce contexte où la structure de dépendance et le choix

des co-variables sont décrit en Section 5.4.1. Les co-variables choisies représentent

la densité du trafic et la sollicitation en poids induit par le trafic sur l’ouvrage d’art,

étant les principales causes endogènes du mécanisme de fatigue. Les données de terrain

permettant de quantifier ces deux co-variables sont discutées en Section 5.4.2. Les

résultats de sortie du jugement d’experts sont combinés avec ces mesures de trafic et

de poids afin d’obtenir in fine les matrices de transitions Markoviennes et de temps

moyen de premier passage, ainsi que les courbes de probabilités de survie des ponts.

Ces résultats sont décrit en Section 5.4.3.

La Section 5.5 illustre différentes expérimentations utilisant les métriques de sen-

sibilité afin d’étudier la manière dont le RBDC réagit. Nous avons d’abord observé

que l’insertion cumulative d’information domine au détriment d’une configuration où

l’insertion est individuellement réalisée au cours du temps. Par ailleurs, la sensibilité
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de l’information décroît en temps, quelque soit la manière dont l’information a été in-

troduite (cumulative ou bien individuelle). Par conséquent, il serait privilégié d’adopter

une surveillance du réseau accrue à des périodes précoces.

Le Chapitre 6 traite de la démonstration théorique qu’un processus de Markov d’ordre

k peut être représenté comme un RB non-paramétrique dynamique. Une définition

formelle du RBNP est tout d’abord formulée en Section 6.2. Les conditions néces-

saires et suffisantes afin de caractériser la partie probabiliste d’un RBNP sont données.

Il s’agit des distributions marginales associées à chaque nœud, l’ensemble des copules

conditionnelles bivariées et l’ensemble des corrélations conditionnelles de rang asso-

ciées à chaque arrête du graphe.

Les copules conditionnelles sont présentées en Section 6.3 s’inscrivant spécifique-

ment dans le cadre du processus Markovien d’ordre k. Le concept de la copule tem-

porelle est présenté, i.e., la copule extraite de n’importe quel processus stochastique à

deux pas de temps différents. Des explications concernant la relation entre copules et

probabilités conditionnelles sont également indiquées. Nous fournissons de manière ex-

plicite la relation entre la mesure d’auto-corrélation pour un processus stochastique et

la formulation de corrélations conditionnelles de rang.

Le corps de la Section 6.4 développe la preuve de la représentation d’un proces-

sus Markovien d’ordre k comme RBNP dynamique. Le théorème que nous énonçons

s’appuie sur les travaux de Joe [1996] concernant les constructions de copules bivariées

(pair-copula constructions), mais aussi sur les travaux récents Bauer and Czado [2016]

sur la formulation de la loi jointe d’un RBNP en termes de copules conditionnelles

bivariées. Une procédure résumant étape par étape les éléments clés du théorème est

fournie en fin de Section.

La Section 6.5 exhibe la factorisation de distributions marginales multidimension-

nelles pour des ensembles de nœuds. L’idée étant d’étudier l’expression analytique des

distributions conditionnelles apparaissant dans l’expression des copules conditionnelles
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bivariées. Deux cas sont traités. Le premier aborde celui où aucune paire de nœuds de

l’ensemble de conditionnement n’a une longueur supérieure à l’ordre k du processus de

Markov. La longueur ici représente la différence ordinale entre chaque nœud. Le sec-

ond cas traite la configuration complémentaire. Cette séparation en deux cas provient de

la capacité à séparer les ensembles de nœuds en utilisant la propriété de k-dépendance

conditionnelle de Markov. Deux lemmes sont présentés subséquemment et résument

ces découvertes. L’algorithme implémentant les deux lemmes est également décrit. Sa

complexité est abordée et nous conjecturons qu’il performe mieux que celui de Bauer

and Czado [2016]. Enfin, nous illustrons notre approche globale au travers d’un exem-

ple centré autour du mouvement Brownien.

1.3 Conclusion

Cette thèse s’est attelée à étudier des problèmes de dégradation, notamment celui du

mécanisme de fissuration due à la fatigue, en grandes dimensions à travers les réseaux

Bayésiens. L’approche globale prônée dans ce manuscrit possède deux composantes

complémentaires en ce sens qu’elle fait appel à des outils à la fois probabilistes et statis-

tiques. La raison ayant motivé ce choix est double. Tout d’abord, les systèmes se sont

complexifiés au cours des dernières décennies et la part d’incertain relative à la fiabilité

et la sûreté s’est accrue en conséquence. De plus, l’identification et la quantification de

leur causes, possédant souvent de l’incertain aussi, apparaissent de plus en plus difficile.

Deuxièmement, l’accessibilité grandissante de grands ensembles de données tendraient

à se diriger vers des méthodes statistiques. Nous avons mis en lumière que les RB se

révèlent être une approche versatile au sein de laquelle les angles probabilistes et statis-

tiques s’entrelacent. Leur efficacité dans le domaine de la modélisation de dégradation

pour des ouvrages d’arts a été testée et validée dans les Chapitres 3, 4 et 5. Bien

qu’aucune application orientée à la fiabilité n’ait été présentée dans le Chapitre 6, nous
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pouvons affirmer que l’approche développée est dans la lignée des chapitres précédant

concernant des considérations de détérioration et leur efficience. Un argument immédiat

serait que quelque soit la classe de RB considérée, la propriété de Markov symbolisée

par la dépendance conditionnelle a été, et continue d’être une approche attractive dans

des problématiques de détériorations structurelles.

De manière globale, le mécanisme de fatigue de l’acier provoquant un risque de

fissuration nous a conduit à explorer deux classes de RB ayant des représentations dif-

férentes de dépendance. Ce mécanisme peut être décrit comme problème à grandes

dimensions et les RB se sont avérés être une méthode adaptée pour y répondre. D’un

côté, lorsque la modélisation Markovienne est adéquate dans le cadre de dégradation

structurelle, les RB dynamiques sont apparus efficaces. En dépit de la possible explo-

sion combinatoire en termes de quantification, la dépendance traduite par les probabil-

ités conditionnelles peut être évaluée de manière systématique, à moins de supposer, par

exemple, des contraintes d’inhomogénéité.

La capacité des deux classes de RB à gérer ou non des distributions continues, dis-

crètes ou bien mixtes est également un aspect primordial. Théoriquement, il est presque

toujours possible de discrétiser des variables continues. Cependant, cela se révèle en

général couteux en informations perdues et en temps de calcul durant l’étape de la mod-

élisation. Les RBNP ont prouvé leur efficacité en premier lieu pour répondre à cet

objectif. La dépendance probabiliste s’exprime à travers des copules conditionnelles

bivariées ainsi que des corrélations conditionnelles de rang. Brièvement abordée au

Chapitre 3, ces deux caractéristiques de dépendance permettent de capturer une grande

variété de schémas de dépendances, e.g., des effets de queues, des localisations spé-

cifiques des masses dans les distributions, etc. Cette dernière caractéristique est par-

ticulièrement intéressante lorsque la fiabilité structurelle exhibe des dépendances très

changeante au travers d’un vaste réseau. A ce tire, nous avons montré au Chapitre 6

que les dépendances au sein d’un RBNP peuvent également être gérées de manière
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dynamique. Cependant, les composantes de dépendance ainsi que les distributions

marginales sont calculées à partir du processus de Markov qui les suppose implicite-

ment.
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2.1 Context & motivation

The late prolific mathematician Paul Erdős had been (and still is) famous for the

number that bears his name, the so-called Erdős number. This number provides the

"collaborative distance" between the Hungarian mathematician and anyone else, as

measured by authorship of mathematical papers. Erdős explored and significantly con-

tributed to mathematics as he is credited with more than 1500 publications in various

mathematical branches. Amongst others was the graph theory that gave birth to the

Erdős number.

The study of graphs, or networks, can be traced back to the work of Euler in 1736

13
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and the well-known Königsberg Bridge Problem. We do not develop on the problem

but the interested reader may refer to Newman et al. [2011] for a detailed explanation

of the problem. Graphs have experienced a growing popularity since then and lead

to the foundation of a sound theory [Harary, 1994, Gross et al., 2013]. Domains in

which graphs have been successfully applied are numerous from physics and computer

science to biology and the social sciences. Researchers quickly realized that networks

allow a great variety of ways to represent complex problems, and that there is much to

be learned by studying them.

In the civil engineering field, the Dutch national road network consists of around

3200 kilometres of roads, of which 2200 kilometres are highways. Within this network,

there are approximately 3200 bridges. In this setting, the key objective of decision

makers to keep the network in a satisfactory level can prove challenging. There can

be various factors which make civil infrastructure management a hard task. For bridge

reliability, these include the changes in construction design, the dynamics of loading

induced by traffic density, the impact of the weather, and more specifically meteorolog-

ical catastrophes, etc. However, all these factors exhibit uncertainty that is important to

account for.

Traditionally, deterministic physics-based models are put forward in literature to

describe degradation mechanisms. They attempt to describe the deterioration process

from a physical point of view, e.g. differential equations that govern the evolution of

a phenomenon. For example, the Paris law can be used for modelling the growth of

cracks in steel plates. The description of very complex relationships, however, make

these models intractable as these relationships are often not easy to identify or quantify.

Probabilistic dependence is able to achieve this, moreover, the ability to incorporate

randomness is enticing.

The emergence of pure probabilistic approaches in the reliability field often cites the

seminal work of Abdel-Hameed [1975] where a gamma process was first used to model
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the wear of a device. Since then, a myriad of probabilistic models have been developed.

The research presented in this thesis aims at modelling high dimensional deteri-

oration problems within a probabilistic framework. Bayesian networks (BN) comply

very well with the requirements cited above. They offer an intuitive understanding of

(un)conditional dependencies and a comprehensive visual representation. Models that

rely on BN in the area of reliability and risk-analysis are numerous [Weber et al., 2012].

Moreover, BN feature a Markov-based framework expressed through the conditional

independence statements. Markov processes have proven to be particularly suitable in

deterioration modelling for civil infrastructures [Kallen, 2007]. Nevertheless, little at-

tention has been given to multiple correlated Markov processes in reliability different

than through simple correlation as has been done traditionally. Moreover, such a naive

approach should have complex and inefficient parametrization characteristics.

Bayesian networks offer the possibility to tackle the high dimensionality component

in a consistent, continuous and, possibly, generic manner. Their attractiveness partly

comes from the causal reasoning one can perform. We can count at least four classes of

Bayesian networks in the literature

1. discrete (static) BN [Pearl, 1988] where dependence is handled through classic

discrete conditional probability

2. discrete dynamic BN [Dagum et al., 1992, Murphy, 2002] which are similar to

their static counterpart but add a time-varying layer

3. continuous Gaussian BN [Shachter and Kenley, 1989] where the joint distribu-

tion is assumed to be Gaussian as well as any sub-vector of marginal distribution

4. non-parametric or pair-copula BN (NPBN) [Kurowicka and Cooke, 2005]. This

class of BN is the most recent and was developed to relax the restrictive Gaussian

assumption of Gaussian BN and where dependence is handled through copulae

and rank correlation

The importance of flexibility in terms of dependence for the last class of BN has be-
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come very enticing over the past decade [Hanea et al., 2015]. However, no theoretical

development incorporating a structured dynamic aspect has been investigated thus far.

In this thesis, we first investigate a way to extend the dynamic BN to account for another

dimension that could be represented by space.

Parametrization for Bayesian networks differs from class to class. For the discrete,

static or discrete, dynamic class, the quantification can quickly become tremendously

demanding. For each source vertex, i.e., parentless vertices, we associate marginal dis-

tributions, and for any child vertex a conditional probability is associated. The condi-

tional distribution is as large as the number of parents the child node has. This number

is usually referred to as the degree of the vertex which can be interpreted through a di-

mensional aspect where one parent means one dimension. For discrete, dynamic BN,

this burden can be mitigated by generating in a systematic fashion the conditional prob-

abilities for the time connection between vertices.

Compared to their discrete counterpart, NPBN can handle both discrete (in an ordi-

nal scale) and continuous variables. However,what sets them apart is the formulation of

probabilistic dependence which further significantly reduces the quantification task. In

fact, dependence is expressed through (conditional) bivariate copulae and (conditional)

rank correlations. Copulae often feature a few parameters to estimate, e.g., the Clay-

ton copula has one parameter, Gaussian has one parameter, etc. Rank correlations are

assigned to each of the edges. Altogether, even for very complex and large NPBN, the

quantification together with the dependence and distribution freedom make NPBN very

attractive for high-dimension modelling.

In practice, parametrization is often performed with data but can also be done through

expert judgment if data is insufficient or of poor quality. This thesis explores a scenario

where data is missing. Cooke’s method for eliciting expert opinion is used and should

be encouraged whenever limited data is available [Cooke, 1991]. As previously men-

tioned, quantifying a discrete BN can be a tremendous task and so it would be for experts
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also. The Bayesian network model limits the use of expert judgment for too complex

structures due to the increased elicitation burden. By complex we understand both the

degree 1 of each of the nodes as well as the number of states per node. By consequence,

models can either be simplified to make quantification possible or another type of BN

could be chosen, for instance, NPBN.

Nonetheless, throughout the last decade the flow of collected data has kept grow-

ing, which has given rise to "Big data", analytics and machine learning. Aside from

the quantification task, measurements may then be used to perform inference. One

can calculate the distributions of unobserved vertices, given the values of the observed

ones. If the reasoning is done "bottom-up" (in terms of the reasoning logics and the

directionality of arcs), the BN is used for diagnosis, whereas if it is done "top-down",

the BN serves for prediction. Inference is performed differently in both classes of BN

that are considered in this thesis. For the discrete, dynamic BN, inference can become

very challenging in terms of computational demand, especially when the structure is

very large which is often the case when using dynamic BN. In fact, it is known to be

exponentially increasing [Pearl, 1988].On the other hand, non-parametric BN offer the

possibility to perform analytical updating whenever the joint distribution is given by

a Gaussian copula. If the joint distribution is given by another copula than the Gaus-

sian, then because of computational advantages a discretization is recommended and

inference is performed accordingly.

Returning to the bridge degradation modelling case, a network of such elements is

comprised of underlying factors such as traffic that interact between each other. Thus, it

is natural to account for dependencies. Moreover, these factors can be deterministic or

random, hence a probabilistic methodology may be a logical choice. Another desirable

characteristic is the capacity to efficiently insert available evidence. By "efficiently" we

mean the computational demand. This would dynamically update degradation estimates

1. the degree of a node is the number of edges incident to it
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from one part of the network to the others in addition to future decision plans.

This thesis contributes to the existing literature through the following. Chapter 3

demonstrates the efficiency of NPBN for a highly dimensional crack growth predic-

tion problem. This problem includes no less than twenty random variables governing

the physical mechanism for which the NPBN is used to link them. For each of these

variables, the NPBN adds a spatial component translated by more than 300 additional

variables reaching an order of thousands of random variables. Even in this very complex

context, the NPBN shows an acceptable behaviour in terms of computational efficiency.

This computational characteristic also extends to inference which propagates data com-

ing from a monitoring system so that it eventually helps reduce the uncertainty of crack

growth prediction.

Chapter 4 highlights the benefit of using Cooke’s method for eliciting expert opin-

ions in order to partly parametrize the model. Chapter 5 highlights similar advantage

as those in Chapter 3, but considers a dynamic BN. We introduce a model that extends

this class of BN by adding a dimension that could be useful to incorporate a spatial

component. This dimension serves to represent a network-scale bridge degradation. For

a potentially very large network of bridges, the proposal proves could be efficient at

dynamically describing the stochastic evolution of each asset as well as measuring the

impact of information at both the local and network levels.

Lastly, Chapter 6 focuses on a theoretical proof linking Markov processes to NPBN.

More precisely, we show that any Markov process possesses a dynamic NPBN repre-

sentation. This specification provides a new angle from which one could build up a

Markov-based model where dependence considerations are of primary interest. The

NPBN metrics translate these considerations through copulae and rank correlation. In-

ference is also addressed as we provide the necessary and sufficient conditions to per-

form analytical conditioning that reduce to the solubility of integral form.

Since Bayesian networks lean on both graph and probability theory, it is useful to
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introduce them in this Chapter. We also benefit from the introduction of graph theoret-

ical terminology and preliminaries on probabilities to consistently use them throughout

this thesis.

2.2 Bayesian networks

In this Section, the basic principles of Bayesian Networks are explained. Leaning on

both graph and probability theory, we start by providing the essential elements related

to graphs. Comprehensive introduction to Bayesian networks can be found in Lauritzen

[1996], Cowell et al. [1999] and Hanea et al. [2015]. The research carried out in this

thesis presents both practical and theoretical developments for essentially two different

classes of Bayesian networks, known as discrete, dynamic BN and non-parametric BN.

However, it should be noted that the following principles hold regardless of the class we

consider.

2.2.1 Preliminaries on graphs

Let V 6= ∅ be a finite set and let E := {(v, w) ∈ V × V : v 6= w} Then G = (V,E)

denotes a graph with vertex set V and edge set E. G is said to contain an undirected

edge if there exists v, w ∈ V such that (v, w) ∈ E and (w, v) ∈ E. Conversely, we

say that V contains a directed edge if there exists v, w ∈ V such that (v, w) ∈ E and

(w, v) 6∈ E. A graph containing only undirected edges is called an undirected graph

and, likewise, a graph containing at least one directed edge is called a directed graph.

The degree of a vertex is the number of edges incident with it. A path of length n from

a to b is a sequence a = a1, ..., an = b of distinct vertices such that (ai−1, ai) ∈ E,

for every i = 1, ..., n. A path from a1 to an is called directed if at least one of the

connecting edges is directed. We term a path from a to b a cycle if a = b. In particular,

a directed path from a to b is termed a directed cycle if a = b. A graph without directed
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cycles is known as a chain graph (CG). A CG containing at least one directed edge is

called a directed acyclic graph (DAG). We define the adjacency set of a vertex v ∈ V

as ad(v) := {w ∈ V : (v, w) ∈ E or (w, v) ∈ E}. If w 6∈ ad(v), we say that v and w

are non-adjacent.

Let G = (V,E) be a DAG. Since all edges of G are directed, we can speak of paths

instead of directed paths. For v ∈ V , we let

pa(v) := {w ∈ V : G contains (w, v)} (parents of v)

an(v) := {w ∈ V : G contains a path from w to v} (ancestors of v)

de(v) := {w ∈ V : G contains a path from v to w} (descendants of v)

fa(v) := pa(v) ∪ {v} (family of v)

nd(v) := V \ ({v} ∪ de(v)) (non-descendants of v)

A set I ⊆ V is called ancestral if pa(v) ⊆ I for any v ∈ I . The smallest ancestral set

containing I is denoted by An(I). As is readily verified, An(I) = I ∪{∪v∈I an(v)}. A

bijection B : {1, ..., |V |} → V, i 7→ vi satisfying i < j whenever G contains (vi, vj) for

some i, j ∈ {1, ..., |V |} is called a well-ordering of G. Note that in a well-ordered DAG

the set {v1, .., vk} is ancestral for all k ∈ {1, ..., |V |}.

2.2.2 Directional separation and conditional independence

Directional separation (D-separation) is a criterion of directed graphs for deciding

whether a set of variables is independent of another set, given a third set. The idea is to

associate "dependence" with "connectedness" (i.e., the existence of a connecting path)

and "independence" with "unconnected-ness" or separation. Pearl [1988] was the first

to investigate the D-separation criterion to relate this graphical feature to probabilistic

conditional independence. From the graphical representation only, one can determine

conditional independencies.

Let X = {X1, ..., Xn1}, Y = {Y1, ..., Yn2} and Z = {Z1, ..., Zn3} be pair-wise
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X Z Y

(a) Serial linking

X Z Y

(b) Diverging linking

X Z Y

(c) Converging linking

Figure 2.1 – D-separation configurations

disjoint sets of vertices, i.e. X,Y ,Z ⊆ V , with n1, n2, n3 integers. A path from X to

Y is a path from a vertex Xi ∈ X to a vertex Yj ∈ Y , i ∈ {1, ..., n1}, j ∈ {1, ..., n2}.

We say that Z separates X from Y in G, and write X ⊥ Y |Z, if every path from X to

Y contains a vertex in Z. In particular, we write X ⊥ Y |∅ or simply X ⊥ Y if there

exists no path between X and Y . There can be three graphical configurations where

the D-separation criterion can be examined. Fig 2.1 illustrates these three cases where:

1. The structure in Fig. 2.1(a) shows that if Z is not given it is clear that Y is

depending on X (through Z). However if Z is given, it is clear that X is not

influencing Y any more. Only Z is influencing X , but Z is not depending on

X anymore. X and Y are D-separated by Z.

2. The conditional independence characteristics of graph in Fig. 2.1(b) are similar

to those of Fig. 2.1(a)

3. The suggested structure in Fig. 2.1(c) is slightly counter-intuitive. If Z isn’t

given, X and Y are D-separated and because of that independent. If Z is given,

then this will influence pa(Z) depending on the quantification of their dependen-

cies. The remark is that if any of Z its children are given, this will (eventually)

reflect on Z and because of that possibly make X and Y conditionally depen-

dent. So altogether X and Y are D-separated if and only if no information is

given about Z and all its descendants.

We are now able to establish the connection between the the graphical property of D-

separation and conditional independence.

Let again G = (V,E) be a DAG on d = |V | vertices. Let X be an Rd-valued

random variable. For any I ⊆ V , we write XI := (Xv)v∈I . If I = {v} for some
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v ∈ V , we write Xv. Furthermore, we write XI ⊥ XJ |XK whenever XI and XJ

are conditionally independent given XK for pairwise disjoint sets I, J,K ⊆ V . Then,

conditional independence can be expressed through the D-separation property as

Xv ⊥Xnd(v)\pa(v)|Xpa(v) for all v ∈ V (2.1)

Since ad(v) ∩ (nd(v) \ pa(v) = ∅ for every v ∈ V , it can be easily seen that the

conditional independence restrictions obtained from eq. (2.1) correspond to missing

edges in G. A probability measure satisfying eq. (2.1) is simply called G-Markovian.

A Bayesian network or (directed) graphical model based on a DAG G is a family

of G-Markovian probability measures. It provides a compact representation of high

dimensional uncertainty distribution over a set of variables X = {X1, ..., Xd} and en-

codes the probability density or mass function on X by specifying a set of conditional

independence statements in a form of an acyclic directed graph and a set of probability

functions. The joint density fX thus has the following factorization

fX(x) =
∏
v∈V

fXv |Xpa(v)
(xv|xpa(v)) for all x = (x1, ..., xd) ∈ Rd (2.2)

2.3 Outline of the thesis

As a general overview, the first three Chapters discuss degradation models previ-

ously put forth while the last Chapter provides the theoretical validation that any k-th

order Markov process possesses a dynamic NPBN representation.

In Chapter 3, a model is developed to assess prediction of fatigue cracking for a high-

way steel bridge. The objective is to exploit the output of a monitoring system placed at

a certain sensitive spot on the structure to make predictions for non-monitored locations.

The model requires two underlying components to assess the remaining lifetime of the

bridge. First, in Section 3.2, the type of cracks considered as being a serious threat to
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traffic safety are introduced, i.e. transverse cross section cracks and two types of lon-

gitudinal cross-section cracks. Also, the physics-based cracking mechanism known as

linear elastic fracturing is discussed.

Second, Section 3.3 depicts the dependence framework where a non-parametric

Bayesian network is constructed. The NPBN is meant to exploit correlations between

the governing random variables of the model across different locations over the bridge.

The goal is to make use of this characteristic to propagate information coming from

monitored sections into non-monitored parts.

The NPBN framework subsequently allows carrying out sensitivity tests as well as

root cause analyses in Section 3.4. Sample-based conditioning is performed through

Monte Carlo simulations. By keeping only those simulations corresponding to the mon-

itoring results, it helps reduce the uncertainty of the crack predictions and evidences

significant differences between conditional and unconditional distributions of the model

governing variables. This Chapter is based on the published paper Attema et al. [2016].

Chapter 4 outlines the structured expert judgment analysis carried out to assess in-

puts for the model presented in Chapter 5. The Chapter starts with a summarized de-

scription of the probabilistic model in Section 4.2 where the need of Cooke’s classical

method to fill in the missing data is incentivized.

Section 4.3 details Cooke’s methodology and defines the two metrics for ranking

the experts, i.e., calibration and information. These metrics are computed using seed

variables that are formulated using real-world data on fatigue cracking presented in Sec-

tion 4.3.1. Results of the experts’ performances are shown in Section 4.3.2 highlighting,

on the one hand, the poor calibration score per expert that may be due to the small num-

ber of experts (3). On the other hand, the satisfactory value of the same score for the

combined opinion can be notably mentioned. The experts’ performance is even im-

proved after robustness analysis is executed in Section 4.3.3. The main observations are

first on great uncertainty results for the assessment of probability estimates. Second, the
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relevancy of the seed variables is raised with respect to the variables of interest. These

remarks are finally discussed in Section 4.3.4. This Chapter is based on the published

article Kosgodagan et al. [2016].

Chapter 5 introduces the so-called covariate, dynamic Bayesian network (covariate-

DBN) model. The objective is to model the degradation for a network of "similarly

classified" assets under very limited data where attention is drawn to the modelling of

a large-scale network. The deterioration framework is explained in Section 5.2 where

a discrete-time Markov stochastic process is used to model the degradation for each of

the elements constituting the network. Section 5.2.1 details that compared to the classic

Markov transition probabilities, we also incorporate so-called covariates so that they

dynamically influence these transitions. In order to connect the elements the covariate

dynamic Bayesian network is specified in Section 5.2.2 where the sufficient and neces-

sary probabilistic and graph parts are explicitly exhibited. The constructed model thus

formulates a two-dimension, dynamic BN where the second dimension is expressed

through the covariate connection. Subsequently, a methodology to investigate infer-

ence sensitivity is proposed in Section 5.2.3. Since the network can grow in size very

quickly across the two dimensions, inference combinations quickly become intractable

as well. This motivates the development of a sensitivity metric where two representative

inference configurations are examined.

Next, the parametrization of the model is discussed in Section 5.3. Recall that the ex-

pert judgment outcome of Chapter 4 is used both to calibrate the transition probabilities

of the Markov chains as well as some required conditional probabilities stemming from

the Bayesian network framework. Section 5.3.1 briefly recalls the objective of Cooke’s

method. In Section 5.3.2, emphasis is made on the mathematical development for cal-

ibrating both the transition probabilities through expected first passage time and those

conditional probabilities. Discussion on the complexity of the model’s parametrization

is addressed too. The choice of assuming classes of assets significantly decreases the
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number of inputs to estimate as this number would grow across this second dimension.

Section 5.4 presents the case of deterioration for a network of bridges where the un-

derlying physical deteriorating process considered is fatigue crack growth in the bridge

deck plate. The covariate-DBN methodology previously developed is used from which

the dependence structure together with choice of the set of covariates is exhibited in

Section 5.4.1. The covariates are chosen to be traffic density and loading, as they are

known to be the main driving factors for motorway fatigue degradation. Data for these

covariates is available and introduced in Section 5.4.2. The output of the expert judg-

ment is used and combined with field data so that the Markov transition matrices, the

expected first passage time matrices and degradation curves are obtained. These are

shown in Section 5.4.3.

In Section 5.5, various experiments are presented showing the sensitivity of the pro-

posed model for the network-scale extension using the methodology presented in Sec-

tion 5.2.3. It was observed first that cumulative inserted pieces of information dominate

over individual piece of information. Second, the sensitivity of the inserted information

decreases in time so that pieces of evidence inserted at early epochs should be preferred

over later ones. This Chapter is based on Kosgodagan et al. [2017].

Chapter 6 treats the theoretical proof that any k-th order Markov process can be

represented as a dynamic non-parametric Bayesian network. A formal definition of

NPBN is first provided in Section 6.2. The necessary and sufficient condition to specify

the probabilistic part of any NPBN are given : the marginal distributions associated to

each vertex, and the set of all conditional pair-copula and conditional rank correlation

associated to each of the edges.

The metrics mentioned in Section 6.2 are presented in Section 6.3 in the k-th order

Markov process context. The concept of the so-called time-copula is introduced, i.e.,

the copula of any two different time-steps one can extract from a stochastic process. De-

tails on relationship between copulae and conditional probabilities are provided. Next,
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we make explicit the relation between autocorrelation for any stochastic process to the

formulation of conditional rank correlation.

The body of Section 6.4 stands for the central part of the Chapter where the proof of

the k-th order Markov process as a dynamic NPBN is exhibited. The theorem that we

develop first relies on the findings of Joe [1996] on pair-copula constructions, and sec-

ond on the recent derivations of Bauer and Czado [2016] to express the joint density for

an NPBN. A summarized procedure is provided at the end of the Section for guidance.

Section 6.5 provides the derivation for the marginal distribution of sets of vertices.

The motivation is to investigate the analytical expressions of conditional distributions

which are required in the pair-copula formulation. Two cases are addressed. One that

deals with sets of vertices where there are no pair of vertices whose length is less than the

order k of the Markov process. By the length we mean the difference of the respective

value of each vertex. The second case copes with sets of vertices possessing at least one

pair of vertices whose length is great than or equal to the order k. This case separation

is due to the conditional independence that split vertices whose length is great than k.

Two corresponding lemmas are formulated and algorithm is presented as well. The

computational complexity of the algorithm is discussed and how it performs better to

that of Bauer and Czado [2016]. We finally illustrate our findings through an example

focused on Brownian motion.

Lastly, Chapter 7 gathers up the conclusions of each Chapter and presents some

perspectives.

The pieces of work carried out in this thesis were half supported by the TNO program

"Enabling Technologies-Models" under the project GrAphical MEthods for Systems

Risk and Reliability (GAMES2R). This program mainly aims at establishing a generic

set of probabilistic models and methods, for application mainly in modelling systems

risk and reliability. The other half comes from a fellowship of the French Ministry of
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3.1 Introduction

Fatigue cracking is one of the main degradation mechanisms of steel bridges. It is the

result of fluctuating stresses caused by the crossing of heavy vehicles. Especially welded

1. This Chapter is based on Attema et al. [2016]
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details in the deck structure are vulnerable to fatigue cracking [Maljaars et al., 2012]

because these details are directly loaded by passing wheels and because of the stress

concentrations, initial notches and high residual stresses that are specific to welded deck

structures. Some critical welded details occur multiple times in a bridge deck, so that

cracks can basically occur everywhere in the deck. On the other hand distribution of

loads to adjacent parts of the structure is often possible if a detail is weakened as a

result of a fatigue crack. The latter implies that critical crack lengths —- i.e. crack

lengths at which failure can be assumed —- are typically long (in the order of 400 mm

or longer) and that crack growth rates of large cracks are typically low as compared to

fatigue tests on single details. For these reasons monitoring systems aimed at identifying

fatigue cracks can be used to guarantee the safety of the bridge.

Although the costs of monitoring vary from bridge to bridge, it can be said that

monitoring systems are in general expensive, especially if a large surface such as a

bridge deck needs to be covered. Installation costs form a large portion of the total costs.

According to Issa et al. [2005] the installation time of a complete measurement system

for bridges can potentially consume over 75% of the total testing time. Installation

labour costs can approach well over 25% of the total system cost. But also maintenance

costs and costs of data processing can be significant. For this reason, this research

considers a system that monitors a small part of the bridge deck and uses the output

of the system in order to provide an assessment of the general condition of the non-

monitored part of the bridge deck.

The output provided by the monitoring system is used to probabilistically predict

the remaining life of the structure. Apart from the output of the monitoring system (ob-

servations), this prediction requires two underlying models required for the assessment

of the remaining lifetime of the bridge. The two models used in the assessment are:

1. a physical fracture mechanics model to evaluate the crack growth rate,

2. a non-parametric Bayesian network to update the crack growth and end-of-life
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prediction of the non-monitored part of the bridge deck based on the observa-

tions of the monitored part

Previous research has been devoted to incorporating monitoring data in the fatigue

life prediction. For example, Deng et al. [2014], Liu et al. [2010] have considered mon-

itoring of stress ranges and number of cycles. In other cases, the results of fatigue crack

inspections has been used in order to assess the remaining life, e.g. Boutet et al. [2013],

Toft et al. [2014]. Research in which the observations regarding crack size monitor-

ing are considered and used for prediction of the remaining resistance or life span is

less common in the literature. One of the main differences between inspections and

monitoring from the point of view of the models required, is that monitoring systems

usually only cover a part of the structure. Hence models that use the information ob-

tained from the monitored part of a structure in the assessment of the non-monitored

part are required. This is achieved here through the use of a non-parametric Bayesian

network.

The choice of the class of non-parametric Bayesian network comes essentially from

their ability to handle continuous distribution in more natural and efficient way than their

discrete counterpart. As we may see, the majority of the variables governing the model

have continuous distributions. Second, inference in discrete BN is known to be very

computationally demanding, especially when continuous distributions may sometimes

have to be discretized into hundreds of states. In the NPBN framework, inference can be

analytically and thus almost instantaneously achieved if the normal copula is assumed.

Otherwise, this can rapidly be done with approximation algorithms [Hanea et al., 2015]

however, without losing the modelling advantage.

The chapter is organized as follows. Section 3.2 introduces the considered types of

crack as well as the set of (random) variables governing the model. Section 3.3 presents

the dependence model through the NPBN used to quantify the complete dependence

structure of the random variables governing the model. Section 3.4 shows how to apply
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the monitoring results in order to make predictions about the non-monitored details.

Last, conclusions are summarized and discussed in section 3.5.

3.2 Description of the detail

(a) 3d view of the detail

(b) Transverse cross-section (c) Longitudinal cross-section
with surface crack

(d) Longitudinal cross-section
with through-surface crack

Figure 3.1 – Crack of concern

The main focus is a type of crack that is observed in orthotropic steel bridge decks.

The crack starts from the root of the weld between a trapezoidal stringer and the deck

plate -– usually at the junction with a crossbeam — and subsequently grows along the

weld line (Figure 3.1). This type of detail occurs multiple times in a bridge deck. Per

crossbeam the number of heavily loaded details — i.e. details directly below the wheel

tracks — is approximately equal to 6. Depending on the span of the bridge, the total
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number of heavily loaded details varies between 10 and 100.

Figure 3.1 displays the type of crack considered here. The crack shapes considered

are a semi-elliptical surface crack and a through-thickness crack, indicated in Figures

3.1(c) and 3.1(d), respectively. If not repaired, a surface crack will grow and form a

through-thickness crack after a certain number of cycles. The dimensions of the surface

crack are indicated with depth a and semi-length c. Those of the through-thickness

crack are the semi-length on the bottom side c, the semi-width on the top side d and the

effective height a, see Figure 3.1.

The type of crack in Figure 3.1 is considered as being a serious threat to the traffic

safety, because a wheel load rolling on one side of the crack may cause a level difference

between the two parts of the deck plate separated by the crack, implying that the vehicle

is uncontrollable. In addition, it is difficult to detect the type of crack because it is

covered by the surface finish on the top side and by the stringer on the bottom side.

Moreover, the type of crack is observed in many existing bridges in various countries.

Variables 1–4 in Table 3.1 provide the relevant geometric dimensions of the detail,

here a0 and c0 are the initial defect dimension at the weld root prior to fatigue loading.

Because a0 and c0 are correlated, a distribution is provided for the ratio between a0 and

c0. For each variable, the distribution function is provided together with the average, µ,

and the coefficient of variation, V . Moreover, a dependence structure between the vari-

ous locations of this type of detail in one bridge is imposed. This dependence structure

exists since these different details are exposed to similar conditions and it is quantified

by the rank correlation, r, between variables in different sections of the bridge. In par-

ticular, these are the correlations between variables in the monitored and non-monitored

sections of the bridge. All the variables in Table 3.1 are based on those presented in Mal-

jaars and Vrouwenvelder [2014] where a fracture mechanics model of a different detail

in the same type of orthotropic deck structure is provided. However, some modifications

accounting for the specific detail and models are considered here.
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Because we concentrate mainly on the Bayesian network modelling, we skip the part

explaining the physics-based model, i.e. the linear elastic fracture mechanics (LEFM).

However the reader is referred to Attema et al. [2016] for the complete clarification.

3.3 Dependence model

The crack growth model using LEFM outputs the crack growth development for

one detail of the bridge. As explained earlier, a bridge may contain hundreds of these

heavily loaded details. Correlation between variables in different sections of the bridge

has to be taken into account which can stem from various reasons, e.g. same welding

procedure, similar loading condition, etc. The goal is to make use of this characteristic

in order to propagate information coming from monitored sections into non-monitored

parts. The rank correlations, r, of the random variables between different locations of

the detail of Section 3.2 are given in Table 3.1. These correlations were quantified by

field data, using previous literature and expert opinion (as provided in Maljaars and

Vrouwenvelder [2014]). The aim is at quantifying the complete dependence structure

of the random variables. In order to achieve this, a non-parametric Bayesian network

(NPBN) is used. From this Bayesian network, the variables in Table 3.1, used in the

crack growth model underlying every detail in a bridge, are sampled.

The set of random variables determining the crack growth development in the mon-

itored location is displayed in Table 3.1. It is assumed that these variables are indepen-

dent of each other. Moreover, one set of these variables for the crack growth develop-

ment is present in every other detail on the bridge in the non-monitored section. These

variables are correlated with each other. The dependence structure of each variable in

different parts of the bridge is described with an NPBN. The monitored section is the

most vulnerable section of the bridge due to the fact that the dynamic amplification

factor for this location differs from the one in the other locations.
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Table 3.1 – Model variables

i Xi Variable Units Distribution µ V r
1 T Deck plate thickness mm uniform 12 0.03 0
2 tw Weld throat mm uniform 5 0.03 0.3
3 a0 Initial crack depth mm lognormal 0.15 0.66 0
4 a0/c0 Initial aspect ratio - lognormal 0.62 0.40 0
5 R stress intensity ratio - normal 0.5 0.2 0.6
6 K1C fracture thoughness N/mm3/2 lognormal 6325 0.25 0
7 ∆K0 crack growth threshold

at R=0
N/mm3/2 lognormal 243 0.4 0.95

8 A crack growth parameter N,mm lognormal 2 · 10−13 0.6 0.85
9 m crack growth exponent - deterministic 3 - -
10 p curvature parameter - lognormal 0.7 0.25 0.7
11 SCF stress concentration

factor at the crossbeam
web

- lognormal 2.1 0.1 0.8

12 lsc extension length of
stress concentration

mm lognormal 80 0.2 0.8

13 cf semi crack length of a
critical crack

mm lognormal 250 0.25 0

14 sfy annual trend factor on
axle loads

- normal 0.002 0.1 1

15 nfy annual trend factor on
number of vehicles

- normal 0.011 0.2 1

16 ntmax max. annual number of
heavy vehicles on slow
lane

- normal 2.5 · 106 0.15 1

17 naxle average number of
axles per heavy vehicle

- lognormal 4 0.15 1

18 δex dynamic amplification
factor near expansion
joint

- normal 1.2 0.2 0

19 δpl dynamic amplification
factor away from ex-
pansion joint

- normal 1 0.05 0.7

20 Cunc uncertainty factor - lognormal 1 0.17 0.85

Figure 3.2 displays both the typical dependence structure (Figure 3.2(a)) of these

variables and one sampled non-monitored location (Figure 3.2(b)). As an example,
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(a) Unconditional dependence structure of X11

1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.5

1

1.5

2

2.5

3

X
11

 [−]

P
D

F

(b) Samples of one location that agree
with monitoring

Figure 3.2 – Typical dependence structure for one monitored location together with
k others non monitored locations (a) and one sample of one location complying with
monitoring (b)

variable 11 from Table 3.1 is shown, i.e. the stress concentration factor at the crossbeam

web. The histograms represent the unconditional distributions both for the monitored

(parent) and for the non-monitored (children) locations elsewhere in the bridge. The

mean and standard deviation are displayed below the corresponding histogram. The

arcs connecting the nodes are also displayed in Figure 3.2(a) and the numbers .8 rep-

resent the rank correlation between the monitored and non-monitored locations. The

probability density function (PDF) illustrated in Figure 3.2(b) represents one of the k

sampled non-monitored locations and is obtained by Monte-Carlo simulations where

only those samples that agree with monitoring data are selected.

Both the dependence structure and sampled non-monitored locations for all other

variables listed in Table 3.1 are built in the same way as Figure 3.2. In this way, a

k-dimensional distribution for each variable has been obtained, and consequently, a

multidimensional distribution represented by sets of BNs similar to the one is shown in

Figure 3.2(a). It is important to mention that other dependence configurations have been

explored and discarded. The alternative configurations include, for example, a complete

graph (all variables connected to each other, so that correlations are also considered
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between all non-monitored locations for each variable), however, no significant differ-

ence in the output of the model was observed with respect to the simpler configuration

displayed in Figure 3.2(a).

3.4 Sample-based conditioning for the monitored sec-

tion

Let us consider a (fictitious) bridge with construction year 1991 and with a total

number of 492 heavily loaded details of type described in Section 3.2 (Figure 3.1).

The LEFM model describes the crack growth development of a crack in one such a

detail. Monte-Carlo simulations are used to sample the variables of Table 3.1 for both

the monitored and non-monitored details. The difference between these locations is

the location of the detail; the monitored detail is located close to the expansion joint,

experiencing a higher dynamic load (variable 18) than the non-monitored details away

from the expansion joint (variable 19).

Apart from the higher dynamic load in the monitored detail of the bridge, the same

model is used to predict the crack growth development in the non-monitored details. The

Monte-Carlo sampling also takes into account the dependence structure imposed by the

Bayesian network. In other words, each sample is drawn from a multivariate distribution

giving values for all the variables of Table 3.1 and for all the modelled details of the

bridge, taking into account the correlations between the different locations.

To reduce the uncertainty of the model, a crack monitoring system is installed near

the detail close to the expansion joint with the objective of updating believes regarding

crack growth of this detail. Let us assume that a crack is first detected in 2013, i.e.

22 years after construction of the bridge. The depth, a, of this first detected crack is

estimated between 3 and 6 mm. This monitoring result is now used to interfere in the

BNs. As stated, inference in NPBN may be exact under the normal copula assumption.
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In the case of the present application, however, the crack size resulting from the mon-

itoring system is output instead of input for the model, and hence, exact inference is

not possible. Instead, sample-based conditioning is performed by selecting only those

Monte-Carlo simulations that agree with the monitoring results. Out of a total of 105

Monte-Carlo simulations, 2716 Monte-Carlo samples had a crack depth, a, between 3

and 6 mm in 2013. A selection of these conditioned samples is indicated in black in

Figure 3.3 for the monitored section. Figure 3.3 reveals that the extra information com-

ing from the monitoring system significantly decreases the variability of the outcomes

and thereby increases the accuracy of the crack growth predictions.

Figure 3.3 – Crack growth development for monitored detail conditioned on the moni-
toring results

The variables of Table 3.1 can be conditioned on the monitoring results by selecting

the values for the variables of the Monte-Carlo simulations complying with the moni-

toring results. This enables us to obtain a first root cause analysis and find out which

variables have a significant influence in the current use-case. An example of the sample-

based conditioning for variable 11 is presented in Figure 3.2(b). Other variables in the

monitored and non-monitored sections of the bridge are conditioned similarly.

For these specific variables, sample-based conditioning shows different amplitude in

terms of sensitivity. While it was explored that for the majority of them the posterior dis-
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tribution remains practically unchanged (e.g. variable 11 of Figure 3.2), a few, namely

variables 5 (stress intensity ratio) and 7 (crack growth threshold at R = 0) prove to be rel-

atively sensible with respect to conditioning. For variable 7, the conditional and uncon-

ditional distributions are displayed in Figure 3.4. Here, it is observed that the probability

distribution for the difference between the unconditional distribution and the distribu-

tion obtained after conditioning on the monitoring results. Quantitatively for variable

7, this is translated by the following: for the unconditional case, its average equals

243N/mm3/2 and its standard deviation equals 97.2N/mm3/2, whereas for the condi-

tional case, the average equals 189.34N/mm3/2 and standard deviation 61.55N/mm3/2.

Figure 3.4 – Prior and posterior distribution of variable 7 (crack growth threshold at
R = 0).
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3.5 Conclusion

A crack growth model for cracks in welded details of the orthotropic deck structure

of steel bridges has been developed. The type of crack considered can be a serious

threat to bridge reliability and timely maintenance is crucial. Crack growth predic-

tions can therefore be very useful in determining maintenance intervals for which traffic

safety can be guaranteed without performing unnecessary maintenance. Monte-Carlo

simulation has been used to predict the 5, 50 and 95% quantiles of the crack growth

developments of cracks in a specific bridge.

In order to reduce some of the associated uncertainties, a monitoring system for

detecting fatigue crack activity has been installed. Sample-based conditioning on the

Monte- Carlo simulation was then used in order to obtain a new conditioned failure

year distribution. This conditioned failure year distribution shows less variation (with

a span of approximately 20 years) and enables us to give a more accurate crack growth

prediction.

Monitoring a complete bridge is expensive and might be unnecessary because crack

growth developments in different sections of the bridge are correlated. A Bayesian

network was used to describe the dependence structure between the different details of

the bridge and the monitored section which is, because of the presence of the expansion

joint, the heaviest loaded section of the bridge. Through the same approach, a new

conditioned failure year distribution is obtained not only for the monitored detail, but

also for other details of the bridge. The updated, more accurate prediction of the failure

year of the details considered causes a reduction of unnecessary maintenance and helps

preventing unplanned closure of the bridge due to ad hoc repairs.

In summary, the following conclusions can be derived:

— Installing a monitoring system significantly decreases the uncertainty of the

crack growth prediction.

— The BN makes it possible to apply the monitoring results in order to make more



41

accurate predictions about the non-monitored details.

— The BN also enables a root cause analysis, and indeed, it was discovered that the

crack growth threshold and the stress intensity ratio are the variables with most

influence in the crack growth model.

— The combination of the crack growth model and monitoring system provides

therefore valuable information about the degradation of the bridge.

Future research would profit from monitoring other sections of the bridge while tak-

ing advantage of the dependence model proposed for the non-monitored section of the

bridge. The Bayesian network can be used to incorporate knowledge on every detail of

the bridge, each time updating the crack growth predictions. The current model consti-

tutes a first step towards this goal.

The next steps constitute further calibration of distributions and correlations between

parameters using field measurements and information from fatigue tests. In addition,

further validation of the outcomes of the model by comparing it to reported cracks in

actual bridges is suggested.
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This chapter presents the seminal work of the model presented in chapter 5 which

addresses large-scale degradation issue. In particular, the model assumes hypothetical

types of assets ought to be representative for a whole stock and, by consequence, for
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which data does not exist. As mentioned in chapter 3, expert judgment is sometimes

required when data is not available, missing or of poor or dubious quality. An expert

judgment workshop was thus organized to partially calibrate the model using Cooke’s

method from which various analyses were accordingly executed.

4.1 Introduction

Ensuring a satisfactory level of safety and driving comfort are generally the pri-

mary objectives for motorway bridge managers. Throughout a bridge service life, nu-

merous maintenance type of interventions need to be performed to keep the structure

above such levels. If a newly constructed bridge is considered to be in a perfect con-

dition and the degradation phenomenon assumes a monotonic decreasing-shape func-

tion, a bridge’s condition can then be described as a function in time bouncing up and

down between these two phases. A schematic illustration of these cycles is proposed

in Fig. 4.1 where two different maintenance plans are implemented. One strategy typ-

ically proposes a corrective-and-rehabilitation option for maintaining the bridge (solid

line) while the other one’s purpose is to extend its service lifetime by coupling pre-

ventive and corrective maintenance decisions postponing a full renovation to the latest

(dashed line). Substantial financial investments are initiated in order to perform these re-

pairs and costs are typically non-linear especially when considering a full rehabilitation

compared to preventive or corrective actions. These are generally considered the three

principal maintenance categories available to decision makers. In Fig. 4.1 the areas sep-

arated by the dotted line labelled Preventive maintenance level divides preventive (area

above) and corrective (below) maintenance options. When the bridge degradation func-

tion hits the solid line Minimum acceptable level it necessarily entails a repair. Hence

a well-timed maintenance strategy aims to save money without jeopardizing safety and

functionality.
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Figure 4.1 – Schematic representation of bridge degradation and maintenance cycles

Figure 4.2 – Three-dimensional view of the bridge considered cracks’ location (left);
longitudinal cross-section with ’trough to deck plate’ (TRDPL) crack location (right);.

Degradation modelling is of utter importance in such a context as future maintenance

plans are determined based upon the shape (slope and monotonicity) of the degradation

curve. Both deterministic and stochastic models have been widely surveyed to assess

deterioration mechanism in the bridge reliability field Morcous and Hatami [2011]. In

practice, a significant number of countries have integrated a so-called bridge manage-

ment system (BMS) that opts for a discrete-time stochastic Markov process (or chain)

as standard support tool to describe the degradation behaviour in time Mirzaei et al.

[2014]. The goal of this system is also to bring forward knowledge at a network scale.
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Indeed optimizing locally at the single bridge scale may not comply with the network-

scale optimization requirements, for instance if personnel and equipment available are

limited. However information per bridge does not necessarily facilitate the choice for

decision makers because dealing with sometimes hundreds of elements makes it diffi-

cult to prioritize. Hence a full probabilistic degradation model is sought encompassing

both the Markov framework and the network level case.

The deterioration phase is governed here by a combination of a Markov chain em-

bedded in a Bayesian network that provides in a compact way probabilistic information

to a bridge inventory. We draw much attention in the way both of these tools are quanti-

fied. In fact, the objective is to construct a network of bridges whose structure resembles

that of the Dutch bridge network. In particular, motorway orthotropic steel deck bridges

are of central attention. To properly quantify our model we use the classical, or Cooke’s,

method for structured expert judgement Cooke [1991]. It is frequently used when field

data is missing, difficult to obtain or of poor quality. In this case, variables that are

needed to be assessed refer to degradation inputs for moveable and fixed types of steel

bridges through transition durations between consecutive deterioration states.

The remainder of the chapter is presented as follows. Section 4.2 introduces the

main concepts of the the degradation model. Section 4.3 starts with the introduction

of the classical method and brings forward the choice of the calibration variables con-

structed from existing data on fatigue cracks. Results are then presented together with

a subsequent discussion. The chapter ends with section 4.4 by drawing conclusions and

presenting some perspectives.

4.2 Degradation modelling for orthotropic steel bridges

As we want to represent a network of steel bridges whose purpose is to resemble as

accurately as possible that of the Dutch motorway steel bridges network, two classes of
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steel bridge are considered: fixed and moveable. They do not refer to specific existing

bridges but describe more conventionally each type of fixed and moveable steel bridges

through various characteristics (key geometry aspects, type and thickness of overlay,

deck plate thickness, and so on). Fatigue cracking is generally considered as the main

phenomenon driving degradation for orthotropic steel bridges. It results from fluctu-

ating stresses caused by the crossing of heavy vehicles. Typically, loading and traffic

characteristics are key quantities when studying fatigue mechanism in this context. The

nature of these two variables is reasonably assumed to be random Morales-Napoles and

Steenbergen [2014]. Specifically we are looking at cracks located in the deck plate and

in ’trough to deck plate’ parts as suggested in Fig. 4.2. Their number together with their

size are crucial parameters to monitor. The condition of a bridge is then broken down

into several states featuring characteristics on various degrees of severity on crack size,

location and number. These states subsequently stand for the state space S of a Markov

chain {Mt, t ≥ 0}. The latter describes probabilistically the evolution of a bridge’s con-

dition in time. It is assumed that a bridge can either stay in the same state or move to its

next worst state at the next time step given its current condition state, thus pi,i, pi,i+1 > 0

where pi,j = P (Mt+1 = j|Mt = i) with i, j ∈ S. One of the goals is to quantify the

pi,j’s through expert elicitation as detailed in section 4.3. To then address the network-

scale maintenance problem the Markov chain {Mt} acts as time sequenced nodes in a

dynamic Bayesian network (DBN).

A Bayesian network (BN) is a directed acyclic graph (DAG) whose nodes represent

random variables and whose arcs designate probabilistic dependencies between nodes.

Most of the applications use discrete BNs where marginal distributions are specified for

the nodes with no parents, and conditional probability tables for child nodes. A BN

encodes in a compact way the probability density or mass function on a set of vari-

ables by specifying a set of conditional independence statements in the directed acyclic

graphs associated with a set of conditional probability functions. More specifically, a
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BN consists of a qualitative part, the DAG structure, and a quantitative part, the set of

conditional probability distributions. A full characterization of a BN lies entirely in

these two parts. The graphical property called directional separation (abbreviated as

d-separation) asserts conditional independence statements. This attribute covers three

different possible layouts for which variables can be d-separated. The attractiveness of

BNs comes thus partly from the ability to model high dimensional probability distribu-

tions in a relatively intuitive visual way. In addition, knowledge, on a state of a vari-

able for instance, can be inserted and propagated throughout the graph. This way, the

marginal distributions of other nodes for which evidence is not available are updated

accordingly using algorithms developed for this purpose Jordan [1999]. This mecha-

nism is called probabilistic inference. Readers are referred to Pearl [1988] for a full

mathematical treatment on BNs and foundations therein.

It is often sought in reliability modelling the need to describe dynamically, in the

sense of time-indexed, the evolution of degradation as opposed to the static or stationary

case. A special type of BN called dynamic BN (DBN) deals with domains containing

recurring networks that evolve over time. This is particularly desirable when stochas-

tic processes are involved Straub [2009]. The complete DBN model is presented in

Fig. 4.3. Nodes T (k)
t and L(k)

t denote respectively traffic and loading variables where

superscript (k) refers to the bridge number. At each time slice, the structure suggests

that load depends on traffic and the degradation process {Mt} depends on the load in

turn. We assume that this sequential connexion is a reasonable way to first describe that

explanatory variables T (k)
t and L(k)

t impact degradation in this manner. Second traffic

quantities link consecutively every traffic node proper to each bridge so that the network

is set up.

Various methods have been tested to quantify Markov chain’s transition probabilities

using field data, however since we are constructing general classes of bridges we do not

possess such material at hand. Additionally, BN’s conditional probabilities have to be
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Figure 4.3 – The DBN structure for the network of bridges

assessed as well. In practice, again, collected data generally provides the sufficient

quantification material to feed the BN with. In the absence of it, expert judgment is

applied to fill it out. The light blue arrows in Fig 4.3 correspond to the links for which

missing conditional probabilities are quantified by expert opinions. For the remainder

of the conditional distributions, field measurements are used to quantify T (k)
t and L(k)

t

where each can have three condition states, High, Medium and Low, and Heavy, Normal

and Light, respectively.

Since the distance between degradation condition state in state space S is not neces-

sarily constant and, in addition, assumption is made on the distance pattern (whether it

is linear or not), we narrow down the number of states to four, S = {1, 2, 3, 4}. Indeed,

the number of probabilities of transition to elicit for the Markov chain as well as the

conditional probabilities for the DBN is a direct consequence of the size of S; the larger

it gets the more tedious it is for experts. On this basis, experts answered a total of 24

questions of interest detailed in Table 4.1. We mention that items for Question 2 (V13

to V24) were not directly elicited in this way. Rather, out of a sample of size N , experts

are asked to give a proportion of it.
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Table 4.1 – Variable of interest elicited as part of the expert opinion workshop aiming to
quantify probabilistic inputs for the degradation of motorway orthotropic steel bridges.

Question 1 Expected duration (in years) to transition between the following condition states

• under a normal load for • under a heavy load for
a moveable bridge a moveable bridge

V1 1→ 2 V7 1→ 2
V2 2→ 3 V8 2→ 3
V3 3→ 4 V9 3→ 4
a fixed bridge a fixed bridge

V4 1→ 2 V10 1→ 2
V5 2→ 3 V11 2→ 3
V6 3→ 4 V12 3→ 4

Question 2 Prob. of transitioning to next worse state conditional on load and state at previous time step for
• a moveable bridge • a fixed bridge

V13 P (Mt = 2|Mt−1 = 1, Lt = Normal) V19 P (Mt = 2|Mt−1 = 1, Lt = Normal)
V14 P (Mt = 3|Mt−1 = 2, Lt = Normal) V20 P (Mt = 3|Mt−1 = 2, Lt = Normal)
V15 P (Mt = 4|Mt−1 = 3, Lt = Normal) V21 P (Mt = 4|Mt−1 = 3, Lt = Normal)
V16 P (Mt = 2|Mt−1 = 1, Lt = Heavy) V22 P (Mt = 2|Mt−1 = 1, Lt = Heavy)
V17 P (Mt = 3|Mt−1 = 2, Lt = Heavy) V23 P (Mt = 3|Mt−1 = 2, Lt = Heavy)
V18 P (Mt = 4|Mt−1 = 3, Lt = Heavy) V24 P (Mt = 4|Mt−1 = 3, Lt = Heavy)

4.3 Structured Expert Judgment

Eliciting data from expert’s opinion using Cooke’s method is a growing popular way

tested and applied in numerous fields Cooke and Goossens [2008]. The goal of applying

structured expert judgment fosters rational consensus as opposed to political consensus.

Opinions are combined via different possible weighted averaging schemes, where the

weights are based on performance measures. The classical model is extensively formal-

ized in Cooke [1991]. The main procedure and objectives are ²duced below.

A group of experts are asked to assess their uncertainty of continuous quantities for

which the realizations are known post hoc. These variables are chosen to resemble the

quantities of interest, and/or to draw on the sort of expertise which is required for the

assessment of the variables of interest. They are called calibration or seed variables.

Experts then provide their uncertainty estimates through pre-chosen quantiles (usually
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the 5th, 50th and 95th). Note that variables of interest are assessed in a similar way.

Concisely, calibration measures the degree to which experts are statistically accurate

with respect to estimates provided for the seed questions. In turn, information measures

the degree to which experts’ uncertainty estimates are concentrated relative to a back-

ground measure (uniform or log-uniform generally). "Good expertise" corresponds to

good calibration (typically greater than 0.05) and high information.

More precisely, assume from expert e = 1, ..., E, each provide their uncertainty

estimates through the 5th, 50th and 95th quantiles on items (or calibration variables)

i = 1, ..., N . For each item, experts divide their belief range into four inter-quantile

intervals, for which the corresponding probabilities of occurrence are: p1 = 0.05 for

a realization value less or equal than the 5th, p2 = 0.45 for a realization value in the

inter-quantile range (5th, 50th], p2 = 0.45 for a realization value in the inter-quantile

range (50th, 95th] and p4 = 0.05 for a realization value strictly greater than the 95th

percentile. Empirically we thus get for each expert e = 1, ..., E the probability of the

relative frequency that realizations fall in the inter-quantile bins (0.05,0.45,0.45,0.05)

denoted by the vector s(e) = (s1(e), ..., s4(e)). The calibration score is given by

C(e) = 1− χ2
n(2NI(s(e),p)) (4.1)

where I(s(e),p) =
∑4

i=1 si(e) ln
(
si(e)
pi

)
and χ2

n is the Chi-square distribution with n

degrees of freedom. On the other hand the information score is computed per expert as

I(e) =
N∑
i=1

fe,i ln

(
fe,i
gi

)
(4.2)

where fe,i and gi are the expert e’s density and the background measure on item i re-

spectively.

Subsequently, scores are combined to form weights. These weights are constructed

to be a strictly proper scoring rule in an appropriate asymptotic sense, that is, experts
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Table 4.2 – Seed variables elicited as part of the expert opinion workshop aiming to
quantify probabilistic inputs for the degradation of motorway orthotropic steel bridges.

Item ID Measurement Location Year 1st Crack length Year 2nd Crack length
technique of crack measurement 1st (mm) measurement 2nd (mm)

S1 Crack-PEC DPS 2008 200 2009 360
S2 Crack-PEC DPS 2008 250 2009 350
S3 Crack-PEC DPS 2006 100 2009 1040
S4 Crack-PEC DPS 2006 200 2009 500
S5 Crack-PEC DPS 2006 300 2009 350
S6 UT DPS 2009 30 2010 50
S7 UT DPS 2009 80 2010 90
S8 UT DPS 2009 100 2010 100
S9 UT DPS 2009 550 2010 590
S10 VO TRDPL 2008 100 2009 250
S11 VO TRDPL 2008 100 2010 250
S12 Crack-PEC DPS 2010 400 2011 500

receive their maximal expected long-run weight by stating their true belief. Impor-

tant to mention that statistical accuracy dominates informativeness, in other words poor

calibration cannot be compensated by high information. Calibration and information

constitute the essential metrics to weight the experts in view to combine their opinions.

The weighted combined uncertainty distribution is called the decision maker (DM) in

the sense of linear pooling. The DM is thus a weighted linear pool of experts’ individual

weight. Consider the following weighting score for expert e

wα(e) = 1α(C(e))× C(e)× I(e) (4.3)

where 1α(x) = 0 if x < α and 1α(x) = 1 otherwise. This weighting score is re-

ferred to as global weighted score (GL) and complies with the above mentioned scoring

rule criterion. Let DMα(i) be the result of linear pooling for seed item i with weights
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proportional to (4.3):

DMα(i) =
∑

e=1,...,E

wα(e)fe,i

/ ∑
e=1,...,E

wα(e) (4.4)

Moreover, α can be chosen so as to maximize the DM combined score, we then speak

of optimized DM. It must be mentioned that other weighting scores are available to the

analyst. For the equal weight (EQ) score every expert receives the same weight, it is

the usual arithmetic weighted average. Then for the item weight score (IT), calibration

and information are computed per item as opposed to the global weight score where it

is used an average information scores. Note that the optimized DM only applies to GL

and IT DMs. Recall that the goal of the proposed DM is to reach rational consensus.

4.3.1 Data on fatigue cracking

To come up with the seed questions, we exploited data coming from crack mea-

surements performed at the Tacitus bridge. The latter is a steel box girder cable stayed

bridge located in the Dutch province of Gelderland. These measurements were per-

formed using three different techniques, namely Crack Pulsed Eddy Current, further de-

noted as Crack-PEC, Ultrasonic Testing (UT) and visual observation (VO). A detailed

explanation of each technique can be found in Jong [2007]. Next, the measurements

were carried out at various spots on the bridge, essentially located at the deck plate

(DPS) when preforming Crack-PEC and UT techniques and at the trough to deck plate

(TRDPL) spot for the VO measurements (see Fig. 4.2 for details). These inspections

were done between 30 to 35 years after the bridge was in service. The questions then

used combinations of the above variables so that experts were asked to assess crack

lengths. The seed variables are listed in Table 4.2 where each row reads as follows:

"A crack was detected by the measurement technique to be crack length 1st (mm) in

Year 1st measurement, what would be its length (mm) in Year 2nd measurement using
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the same measurement technique ?"

The realization of each question refers to the last column Crack length 2nd. The exper-

tise calls on experts’ reasoning, experience and ability to quantify own uncertainty on

how a crack develops between two crack length records. This way, a total number of

12 seed variables were obtained and elicited from the expert panel. The 5th, 50th and

95th percentiles of estimates of each expert for these 12 seed questions are presented in

Fig. 4.4 including the DMs assessments as well as the realization (vertical red line). To-

gether with the variables of interest, we end up having 36 items that need to be assessed.

4.3.2 Results

For the elicitation, the pool of experts consists of E = {1, 2, 3} whose field of

expertise is in the steel bridge management and reliability community, including various

type of inspections and decision-making more generally.

Table 4.3 – Results of the performance assessment for 3 experts and three different
decision makers (DMs) were compared: the equal weight DM, the global weight DM,
and item weight DM.

Expert ID Calibration Relative Normalized weight Normalized weight
information without DM with DM

Total Realization Global Equal Global Equal Item

Exp. 1 2.7E-4 2.42 0.52 0.17 1/3 7.9E-4 8.5E-4 6.3E-4
Exp. 2 9.8E-5 1.79 1.21 0.15 1/3 6.8E-4 7.3E-4 5.4E-4
Exp. 3 6E-4 0.84 0.91 0.68 1/3 3.1E-3 3.4E-3 2.5E-3

Equal weight 0.446 0.445 0.36 0.995
Global weight 0.446 0.23 0.39 0.995
Item weight 0.446 1.093 0.49 0.996

After answering the 12 seed questions and the 24 variables of interest, the estimates

are processed in the EXCALIBUR software Cooke and Solomatine [1992]. Calibration

and relative information scores together with experts’ weight according to the different
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Figure 4.4 – Distributions for the 12 seed variables as represented by their 5th, 50th and
95th percentiles for 3 experts and combined distributions derived from the item weight
optimized DM (Itop), the equal weight DM (EQ) and the global weight optimized DM
(GLop). The vertical red line in each plot shows the true value for the seed variable.
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DMs (GL, EQ and IT) are presented in Table 4.3. Among the three experts’ calibration

score, none of them exceeds the cut-off level (0.05) as the greatest calibration value is

obtained by expert 3 (6E-4). Theoretically, a panel in which one or more experts’ cali-

bration score is greater than this threshold means that all the other experts are attributed

a zero weight. Regarding the three different DMs, they all have the same score (0.446)

which desirably proves to be significantly larger than individual calibrations. As for

relative information, both sub-columns (’Total’ and ’Realization’) refer to information

scores computed with respect to all the items and only the seed variables respectively.

Interesting to notice that expert 1 was quite informative regarding the overall question-

naire (2.42) but much less when looking at only the seed variables (0.52). The same

observation applies to expert 2 (1.79 and 1.21 respectively) with a lesser difference than

for expert 1. Expert 3 shows consistently a very similar degree of information between

all the variables (0.84) and the seed variables (0.91). For the DMs, information natu-

rally decreases between ’Total’ and ’Realization’ while IT DM gets the highest score

in both (1.093 and 0.49). Experts commented unanimously that were more comfortable

in eliciting seed question compared to the variables of interest. Though it is interesting

to observe that informativeness is greater when looking at the overall score than when

focusing only the seed variables. In terms of weight attribution, the columns ’Normal-

ized Weights’ (with and without DM) are used in determining the DM. For ’Normalized

Weights without DM’ only GL and EQ DMs are computed since the weights used for

the IT DM vary from item to item. Expectedly, expert 3 gets the biggest weight (0.68)

for the GL DM while expert 1 (0.17) and 2 (0.15) contributions are low. When ac-

counting for the DM, for all three schemes the DM gets almost the whole weight (0.99)

whereas all three experts contribute marginally (< 0.003).
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4.3.3 Robustness tests

Part of the post hoc analysis of the results includes robustness tests to estimate how

stable the combined DMs outcomes are to (sets of) experts or calibration items. For

instance item-wise, one calibration question is removed at a time and the DMs scores

are re-computed. The similar procedure can be done expert-wise. Typically in our case,

all three experts missed to capture within their [5th, 95th] quantile range the realization

for S3 and S4 (see Table 4.2) as they all underestimated it. This is illustrated in Fig. 4.4

where the chosen abscissa scale is logarithmic due the fact that the realization is located

too far away on the right from each of the experts’ distribution. In other words, the latter

fell in their upper inter quantile range, i.e. above the 95th percentile. As a comparison,

the results of the performance assessments before and after performing the robustness

tests are displayed in Table 4.4. By removing only S3, the DMs’ calibration score

improves substantially by a factor almost as large as 2 having again all three the same

value (0.852). Similar to the general case, IT DM outperforms the other decision makers

having the highest information score (1.021) by a factor greater than 2 compared to EQ

DM (0.41) and by 5 to GL DM(0.19). We mention that robustness test on experts was

performed too but did not lead to any improvement. This is likely due to the small size

of the panel (3 experts).

The combined distributions for the variables of interest taking into account the out-

come on the robustness test are given in Fig. 4.5. The uncertainty intervals are narrower

for the item weight DM, than for the other DMs. In spite of this, rather large uncer-

tainties are expressed especially for variable V1, V4, V6, V7 and V10 for question 1

and for V14, V15, V18, V20, V21, V24. Specifically for V1, it reads that there is 0.9

probability that under a normal solicited load a moveable bridge would take between

3.09 and 49.45 years to transition between states 1 and 2, with a median equal to 21.62

years. We also observe that items regarding transition from state 1 to 2 (V1, V4, V7

and V10) show a great uncertainty interval compared to the other transitions asked to
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Table 4.4 – Results of the performance assessment for 3 experts and three different
decision makers (DMs) before (left table) and after (right table) robustness tests

Expert ID Calibration Relative Information Calibration Relative Information

Total Realization Total Realization

Exp. 1 2.7E-4 2.42 0.52 1.0E-3 2.42 0.35
Exp. 2 9.8E-5 1.79 1.21 8.3E-4 1.77 1.09
Exp. 3 6E-4 0.84 0.91 2.4E-3 0.80 0.80

Equal weight 0.446 0.445 0.36 0.825 0.410 0.244
Global weight 0.446 0.23 0.39 0.825 0.191 0.300
Item weight 0.446 1.093 0.49 0.825 1.021 0.431

experts no matter the type of bridge nor its loading configuration. Similarly, V15 and

V21 possess a larger uncertainty interval and have in common to address the exact same

question that only differs in the type of bridge considered.
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Figure 4.5 – The decision maker’s distribution estimate of question 1 (left) and question
2 (right) from table 4.1, expressed by the 5th and 95th percentiles through the segments
lower and upper tips respectively, and the 50th by the related symbol for the item weight
(#), the global weight (4) and the equal weight (�).
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4.3.4 Discussion

Remarks coming from experts were partly related to the usage of the method as well

as the degradation modelling approach in this context. Narrowing down fatigue cracking

only to the deck plate and the trough-to-deck-plate locations was indeed addressed by

the pool of experts.

A successful implementation of Cooke’s method lies on a large extent on finding

suitable seed variables. As mentioned, those should in principle resemble as much as

possible variables of interest. Indeed experts’ performance on the seed variables should

be judged indicative for their performance on the variables of interest. In our case, the

link refers to cracking condition and development for the seed variables. In terms of

the variables of interest, this type of knowledge was integrated to bridge condition as

quantitative thresholds separating the different states (Question 1) and further extended

to conditional probabilistic assessments (Question 2). Undoubtedly, the latter turned out

to be challenging as many experts argued. However, the way conditional probabilities

were assessed through proportions out of a sample mitigated the risk of getting zeros or

ones in the estimates.

It is worth mentioning that the expert pool number here limits to three which claims

to be rather small compared to surveys using Cooke’s method Cooke and Goossens

[2008] where the number of experts usually ranges from 4 to 45. A larger panel of ex-

perts should likely enrich current results by bringing together additional experts’ knowl-

edge to the current combined DMs. Concretely, it could also entail having one or more

experts whose calibration score is greater than the cut-off level (0.05).

The combined distributions for the variables of interest obtained under the item

weight DM can readily be used to provide the input parameters for the degradation

model, since this DM obtained the highest performance before and after performing

robustness tests.
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4.4 Conclusions & perspectives

The research presented here proposed a structured expert judgment method to quan-

tify a degradation model composed of a combination of a Bayesian network and a

Markov chain. The use of the classical method to combine opinion was elaborated

to fulfill two objectives. First to explore the usefulness of applying the well-established

classical method of expert judgment elicitation to the field of steel bridge reliability and

maintenance. In fact, the ambition of this study is to provide insights in this particu-

lar domain via uncertainty assessments. In that sense, this can possibly highlight the

limited knowledge as well as attempting to give another viewpoint that current practice

has. Furthermore, although substantial material is available in various fields includ-

ing in the domain of infrastructure reliability using the classical method, no records

were found for this particular class of structures. Second, in either a little- or no-data

scenario, the probabilistic framework provided by Cooke’s method complies with first

objective. Though in this regard, addressing the quantification problem demonstrates

a rather great uncertainty interval proving how challenging this task still is, especially

when using discrete BNs whose requirements through probabilistic assessments can be

very demanding.

The exploitation of the expert judgment outcome is carried out in Chapter 5 where

the complete degradation model is introduced. As a perspective, a more extended model

could address the possibility of jumping by more than one state when deteriorating,

hence allowing for transitions probabilities p1,3, p1,4,, etc., or even considering main-

tenance actions entailing for instance pi,j with i > j, to be non-null. An undesirable

consequence though would be a larger number of items to add to the current elicitation.
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This Chapter introduces a two-dimension dynamic Bayesian network further de-

noted as covariate-DBN. Prediction and stochastic modelling of degradation is still the

main concern and in line with the previous chapters. However, switching from single-

to multiple-asset perspective is the main difference in this chapter. A glimpse of the

main body of the model was given in chapter 4. The introduction of the "second" di-

mension through covariates aims to facilitate the fleet- or network-scale problem when

considering a stock of assets. Recall that calibration of the model is performed via the

combination of field measurements and the expert elicitation presented in chapter 4.

5.1 Introduction

Little attention has been drawn to fleet- or network-scale degradation problems.

More specifically, in the ground transportation infrastructure field, a few recent papers

treat bridge networks [Frangopol and Bocchini, 2012]. As one would expect, when

considering systems on a much larger scale, the number of variables and uncertainties

increases significantly as compared to looking only locally at individual assets. The

former approach does not further facilitate cost-efficient strategies in terms of future

maintenance plans at a larger scale. This has become even more desirable with the

growing use of continuous monitoring that asset managers may use to either update the

current knowledge of a system or formulate predictions on various key indicators. In the

reliability field many different type of assets are continuously and efficiently monitored

(e.g., roads, buildings, bridges, etc.), however it is often cost-prohibitive and not vital to
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place a monitoring installation at each individual asset. By consequence, collected data

varies in size and informativeness from asset to asset so that much effort is often given

to identifying the most relevant and sensitive elements.

Particularly for deterioration modelling, uncertainty surrounding the degradation

process is highly present from environmental conditions, material properties, etc. Markov-

based models are now widely accepted as suitable stochastic processes especially in the

bridge degradation modelling domain [Mirzaei et al., 2014]. It is common practice to ex-

ploit inspection data on various parts of an asset to model both the component-level and

the overall condition through Markov processes. The main task in Markov-based mod-

els reduces almost exclusively to the assessment of the transition probabilities. Several

general methodologies have been developed to using condition ratings data as well as

those specific to bridges [Jiang et al., 1988, Madanat et al., 1997, Micevski et al., 2002,

Reale and O’Connor, 2012, Mašović and Hajdin, 2013]. In the case where condition

ratings are not available, synthetic condition states can be sampled from assumed prior

distributions or degradation models. In particular, in Riveros and Arredondo [2014],

condition state values are randomly generated to represent a range of condition states

at each ten-year interval using Weibull distribution and a Latin hypercube simulation.

However the degradation pattern comes from knowledge of the specific area of concern

or is somewhat assumed a priori like in Kobayashi et al. [2010] where a hazard expo-

nential model is used to derive the Markov transition probabilities. While almost the

entire literature encourages the use of either the two methodologies mentioned, there is

a scarcity of models investigating the case where very limited field data are to be used.

The objective here is to model the degradation for a network of "similarly classi-

fied" assets under very limited data. It is denoted "similarly classified" assets as those

state evolutions are highly correlated. A new methodology is proposed to parametrize

the transition probabilities of a Markov chain of a particular asset. In absence of the

aforementioned data, or where data is very limited, it is proposed a method to quantify
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the mean duration of the first passage time between degradation conditions to derive

the transition probabilities through a simple linear equation. The expected durations

of transitions are elicited by means of the classical Cooke’s method [Cooke, 1991] for

combining expert opinions. This provides a procedure that fully quantifies in a prob-

abilistic way durations of transition. Furthermore, Cooke’s method also allows us to

provide a distribution-free method in order to obtain the transition probabilities. To

our knowledge, this is the first application of Cooke’s method to parametrize a Markov

chain.

Information on underlying mechanisms (covariates) interacting with one another

may be available for some of the most relevant elements. Their role is twofold: (1)

they serve as factors impacting degradation upon which the Markov process depends

and (2) to generate a coherent probabilistic framework to address dependency among

assets in the network-scale problem. Multi-dimensional (e.g., spatial) dependencies

that may exist in the network elements are conveyed through these covariates. The

new methodology proposed here extends the classic framework of dynamic Bayesian

networks (DBNs) by providing an approach to model the state of a large-scale set of

assets in a consistent manner without necessary data for the standard parametrization

approaches. The extended DBN, which is termed a covariate-DBN, also allows the

propagation of new information from assets for which data is available into others for

which data may be limited. The conditional probabilities of the DBN are also derived

using the structured expert judgment (SEJ) approach described above for the Markov

chain.

BNs have been extensively used in reliability and civil engineering where high-

dimensional probabilistic evaluation is necessary. For discrete BNs, the quantitative

burden related to both the quantification of conditional probability assessments and the

inference mechanism are known to be the main limitations. Castillo et al. [2015, 2016]

introduce a high-dimensional probabilistic model using BNs for safety and risk anal-
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ysis in the railway domain where 7,820 variables (on separate BNs) have been used.

Špačková and Straub [2012] proposed a DBN model for probabilistic assessment of

tunnel construction performance including a modified version of the Frontier algorithm

to perform inference. One of the advantages shown in each of the three above-cited

articles is that BNs can be a powerful tool to quantify the risk of extraordinary events. It

is provided a global methodology through the so-called covariate-DBN model for asset

management. Computationally-wise, it is shown that the inference combinations can

significantly be reduced by advantageously exploiting results regarding the sensitivity

of unexpected events. It should be noted that the Ferrándiz et al. [2005] have developed

an aggregated method and algorithm for classes of directed acyclic graphs thus encom-

passing BNs, but not solely. Their purpose is to model spatio-temporal data and can be

applied to every chain graph where an aggregation process is present. However, their

model is not able to capture timely updated information by the integration of covariates,

and thus also not measuring the impact of this data as we do. Our proposed model is not

restricted to spatio-temporal data, even though we consider this example for the bridge

network.

The use of embedded covariates in a DBN suggests an analogy with Markov switch-

ing models [Frühwirth-Schnatter, 2006] as they were introduced to model this type

of stochastic process by adding conditionality through either observed or unobserved

variables. These types of models were extensively developed in econometrics and fi-

nance whose main purpose is to capture switching regimes of time series data. The

method’s purpose here is, however, not to model changes in time series switching

regimes but rather covariates are introduced with the twofold above-mentioned role.

Secondly, modelling degradation through observable covariates also relates to the work

of Singpurwalla [1995] and Bagdonavicius and Nikulin [2001] in survival analysis. De-

terioration dynamics is driven by continuous stochastic processes and covariates in both

approaches, however, they do not address multi-dimensional distributions as is done
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through a DBN.

In a very recent paper by Trifonova et al. [2015], they develop a DBN approach

including nodes representing spatial dependency across different location for revealing

trophic dynamics in fisheries ecology. However, the proposed framework is specific

to the application considered through spatial nodes and thus does not offer a general

methodology to address classes of problems discussed above. Moreover, it is empha-

sized that the spatial characteristic may not be a systematic factor to generate the net-

work. One could also think of other links found between multiple elements, such as

common material properties, relationships between physics-based phenomena, etc.

5.2 Deterioration framework

A finite discrete-time Markov stochastic process {D(k)
t , t ≥ 0} is used to model the

degradation for element k. Whenever possible, it will be omitted superscript (k) for

every stochastic process. The goal is simply to describe the probability that each of the

elements can be in a particular state at time t conditionally on the previous state and

some selected covariates. covariates are used to represent observable random variables

that influence the degradation process {Dt}. To address the network-scale issue, an

extension of the classic Dynamic Bayesian network (DBN) framework is presented.

For the reader’s convenience, notations can be found in Table 5.1

5.2.1 Markov Chain

Discrete-time Markov processes have been extensively used in the context of risk,

reliability and maintenance management for civil infrastructures [Baik et al., 2006,

Edirisinghe et al., 2015]. The Markov property mainly characterizes this class of stochas-

tic processes. Recall that this property stipulates that it is only needed to know where

the process Dt stands at present time t (first order), as opposed to rely on its complete
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Table 5.1 – Notations

Ca state space for covariate θ(k)
a,t S time horizon

D
(k)
t Markov chain describing deteriora-

tion for element k at time t
ωΘ matrix containing information for

each covariate across time and el-
ement

fX probability density function of ran-
dom variable X

ω
θ
(k)
j,t

entry of matrix ωΘ

fX|Y conditional probability density
function of X given Y

σi,Θ sensitivity metric for deterioration
state i under information Θ

k asset or element index µ
(k)
ω time at which a single piece of in-

formation is inserted
K number of elements/assets η

(k)
ω time up to which consecutive

pieces of information are inserted
starting at t = 0

n number of covariates per element k
and time t

θ
(k)
a,t covariate a for element k and time

t

pi,j Markov transition probability from
state i to j

Θ
(k)
t set of covariates for element k and

time t
pa(·) set of parent variables Ω worst deterioration state of {D(k)

t }
P Markov transition probability ma-

trix

history, to predict in a probabilistic sense how the process behaves in the future. It is

denoted by {1, ...,Ω} the set in which Dt takes values. Conventionally, it is written the

one time step transition probability pi,j from state i to j, i, j ∈ {1, ...,Ω}, the probability

P (Dt+1 = j|Dt = i). In the present case it is assumed a sequential degradation, mean-

ing that only the pi,i, pi,i+1 > 0 with pi,i + pi,i+1 = 1. As it is assumed that bridges are

in the best condition when newly constructed, P (D0 = 1) = 1. The stochastic process

{Dt, t ≥ 0} that models degradation is usually defined by the (Chapman-Kolmogorov)

equation

P (Dt = j|D0 = 1) = Pt(1, j) (5.1)



68 CHAPTER 5. A 2D DYNAMIC BN FOR BRIDGE DETERIORATION

where Pt is the transition probability matrix (TPM) to the power t and Pt(1, j) refers

to row 1 and column j of Pt, with 1 ≤ j ≤ Ω and for every t ≥ 0,
∑

j P (Dt =

j|D0 = 1) = 1. A set of n ≥ 1 so-called covariates is further introduced which

designate random variables denoted by Θt = (θ1,t, ..., θn,t) for each time step t, with

(θ1,t, ..., θn,t) ∈ C1 × · · · × Cn, so that the process {Dt} is dynamically influenced by

such quantities. The transition probabilities are thus given by

pi,j =
∑

c1,...,cn

P (Dt = j|Dt−1 = i, θ1,t = c1, ..., θn,t = cn)

× P (θ1,t = c1, ..., θn,t = cn)

(5.2)

Covariates may either directly or indirectly impact {Dt}. An indirect covariate would

impact another covariate rather than directly Dt. This is precisely the reason why

Bayesian networks are used as a suitable framework to handle the dependence struc-

ture and make transparent its visualization and quantification. The latter is introduced

in the section 5.2.2 where the complete definition of the new DBN framework is pre-

sented. In the bridge engineering field, information can stem from inspection data, crack

measurement testing or even monitoring systems collecting inputs regarding traffic as

shown in section 5.4.

In a static discrete BN, nodes stand for discrete random variables which are the most

common version that have been developed in risk and reliability modelling [Weber et al.,

2012]. The BN displayed in Fig. 5.1 shows how the set Θ of four time-independent co-

variates, namely Θ = (θ1, θ2, θ3, θ4), and state node D can be linked when not account-

ing for any time nor network dimensions. In this example, nodes θ2 and θ4 are directly

connected to D. Nonetheless, a more suitable version in the present case refers to dy-

namic BNs accounting for time dynamics through the process {Dt} which is presented

in the next section.
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Θ
D

θ1
θ2

θ3
θ4

Figure 5.1 – Static covariate-BN structure

5.2.2 Covariate-DBN

While BNs are useful for modelling a dependence structure among random vari-

ables, they do not capture the evolution over time. For modelling dependencies between

stochastic processes by direct or indirect covariates as described above in eq. (5.2), a

convenient tool is Dynamic Bayesian networks (DBNs). Especially in degradation mod-

elling, DBNs are a well suited [Straub, 2009]. Time is represented as a discrete time

slices or steps which are connected by directed arcs from nodes in slice t to nodes in

slice t+1. Note that the network structure is identical in each slice (i.e., does not change

over time). A DBN that contains time-dependent conditional distributions is denoted a

non-homogeneous DBN. Furthermore, the dependence between the deterioration nodes

is in compliance with the Markovian property. Only time slice t is dependent on time

slice t+1; thus, only current information is required to assess the probabilistic evolution

(i.e, it is memoryless). Like the static version, the characterization of a DBN is defined

by the graph structure at time t, between t and t + 1., and the assessment of the condi-

tional distributions for t = 0 and between slices t and t + 1. Similar to the static BNs,

inference may also be performed and there have been specific algorithms developed for

DBN frameworks [Murphy, 2002].

It is proposed here an extension of the classic DBN formulation to a fleet- or network-

level through the covariates introduced above. Network covariates make use of relation-

ships between one or several elements composing the network. These could stand, for

instance, for operating and environmental conditions, structure characteristics, mate-

rial properties, etc. While data may be unavailable for the key metric of interest (i.e.,
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Dt), information on various covariates may be obtained. These covariates can then be

used as a means to insert information that will be propagated throughout the network

due to their dependence structure with state of interest Dt. This extends the traditional

DBN which contains only time dependence to additional dependence dimensions. In

our model this second dimension is conveyed by the covariates.

Let Θ
(k)
t = (θ

(k)
1,t , ..., θ

(k)
n,t ) be the set of n covariates at time t for element k of the

network. Note the addition of superscript k for the interdependent network case. A

visual representation example of the extended DBN model is reported in Fig. 5.2. It

contains n = 4 covariates per time slice t for a network composed of two elements

k = {1, 2}. The set of covariates for each element k = {1, 2}, Θ
(1)
t and Θ

(2)
t is rep-

resented by the big dashed circles. It is assumed that in our proposed extended DBN

the dependence structure does not change over time, but may change between elements

k. Covariates may evolve independently or depend on other covariates and may or may

not directly impact {Dt}. This is shown with θ(k)
4,t being independent of (θ

(k)
1,t , θ

(k)
2,t , θ

(k)
3,t )

with k = 1, 2. Precisely, for element 1 the covariates θ(1)
2,t and θ(1)

4,t are directly impacting

{D1
t } whereas for element 2, θ(2)

1,t and θ(2)
4,t are playing this role. Again, once this struc-

ture is set for each element it is kept over the whole time horizon. Although not shown

in Fig 5.2, for a given element, covariates could also have a time-varying distribution.

The latter has already been introduced in Straub [2009], but without incorporating a sec-

ond dimension as is done. The connexions across the different elements are thus made

through the set of covariates Θ
(k)
t . It is also shown in Fig. 5.2 that θ(k)

1,t and θ(k)
4,t are the

covariates performing the linking task. It is assumed that each element has the same set

of covariates Θ
(k)
t , although the dependence structure between covariates of different el-

ements may vary according to the data. The DBN structure can be generalized similarly

to what characterizes a classic DBN. For time epoch 0 ≤ t ≤ S and network element

1 ≤ k ≤ K, there must be specified:

— the covariate dependence structure for each element k denoted by G(k)
Θ = (N (k)

Θ , E (k)
Θ )
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with N (k,t)
Θ =

{
Θ

(k)
t

}
, E (k)

Θ =
{(
pa
(
θ

(k)
i,t

)
; θ

(k)
i,t

)
, 1 ≤ i ≤ n

}
and its set of

conditional distribution functions P(k)
Θ =

{
f
θ
(k)
i,t |pa

(
θ
(k)
i,t

), 1 ≤ i ≤ n

}
— the covariate-to-element dependence structure denoted by G(k)

D↓Θ
= (N (k)

D↓Θ
, E (k)

D↓Θ
)

with N (k)

D↓Θ
=
{
D

(k)
t

}
, E (k)

D↓Θ
=

{(
pa
(
D

(k)
t

)↓Θ(k)
t

;D
(k)
t

)}
and set of con-

ditional distribution functions P(k)

D↓Θ
=

{
f
D

(k)
t |pa

(
D

(k)
t

)↓Θ(k)
t

}
where pa (X)↓Y

designate the set of parents for node X restricted to node set Y.

— the element-to-element dependence structure denoted by G(→)
Θ = (N (→)

Θ , E (→)
Θ )

withN (→)
Θ =

{
Θ

(k)
t : 1 ≤ k ≤ K

}
, E (→)

Θ =
{(
pa
(
θ

(k)
i,t

)
; θ

(k)
i,t

)
: pa(θ

(k)
i,t ) 6⊂ Θ

(k)
t , 1 ≤ i ≤ n

}
and conditional probability setP(→,t)

Θ =

{
f

Θ
(k)
t |pa

(
θ
(k)
i,t

) : pa
(
θ

(k)
i,t

)
6⊂ Θ

(k)
t , 1 ≤ i ≤ n

}
The complete covariate-DBN can now be defined for time horizon S and bridges net-

work size K as BK,S = {GK,S,PK,S} where GK,S,PK,S are summarized, respectively,

through each of the graph and probabilistic sets introduced above.

Θ
(1)
t

D
(1)
t

θ
(1)
1,t

θ
(1)
2,t

θ
(1)
3,t

θ
(1)
4,t

. . .. . .

D
(2)
t

Θ
(2)
t

θ
(2)
1,t

θ
(2)
2,t

θ
(2)
3,t

θ
(2)
4,t

. . .. . .

Figure 5.2 – A two-element Covariate-DBN with 4 covariates at time t



72 CHAPTER 5. A 2D DYNAMIC BN FOR BRIDGE DETERIORATION

5.2.3 Network Sensitivity Analysis

It is proposed a methodology for evaluating the sensitivity of covariate information

inserted into the network at different points in both time t and dimension k. This aids

identifying the key elements of the network, the types of information with the greatest

impact, and when and where to observe the network in order to obtain said information.

Recall that the set of covariates Θ
(k)
t = (θ

(k)
1,t , ..., θ

(k)
n,t ) takes values in C1×· · ·×Cn. Let

ωΘ =
(
ω
θ
(k)
j,t

)
1≤j≤n
0≤t≤S
1≤k≤K

be the n-by-S-by-K matrix of one possible combination where

each ω
θ
(k)
j,t
∈ Cj ∪NOI , represents the possible information that can be inserted adding

the "no information (NOI)" state. The unconditional case is simply the matrix ωΘ

with all entries being NOI . The total number of possible combinations of injecting

evidence for the covariate-DBN model is given by all the permutations among the set

{C1, ..., Cn}KS given by

eΘ = ((|C1|+ 1)× · · · × (|Cn|+ 1))KS − 1 (5.3)

with T being the time horizon, K the total number of elements and |Cj| the cardinality

of each setCj, j = 1, ..., n. One way to measure the value of the propagated information

is to check how much it affects the posterior probability distribution. For bridge 0 ≤

k ≤ K and degradation state i ∈ {1, ...,Ω}, the following sensitivity measure can

therefore be computed

σi,Θ =

∣∣∣P (D
(k)
t = i)− P (D

(k)
t = i|ωΘ)

∣∣∣
P (D

(k)
t = i)

(5.4)

From eq. (5.4) above, σi,Θ ∈ R+,∀(i,ωΘ) ∈ {1, ...,Ω} × n × S × K. Examples of

the values obtained are depicted in section 5.5. This metric may provide insight on

when and for what duration new information should be obtained as well as the quantity

and location deployed across the network. Let τ = inf
{
t ≥ 0 : ∀j, k, ω

θ
(k)
j,t
6= NOI

}
,
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therefore

σi,Θ

= 0 if t < τ

> 0 otherwise
(5.5)

This means that the earliest piece of evidence being inserted only impacts the posterior

probabilities of P (D
(k)
t = i|ωΘ) for t > τ .

To study how sensitive the network reacts, it is prohibitive to cover the list of all

possibilities as eΘ grows exponentially along K and S. Two different types of config-

urations are put forward to gain insight from a large covariate space: 1) the effect of

information being inserted individually at different points in time and 2) the cumulative

effect of inserting information at multiple points in time. The study is further restricted

to the case where only the same type of information is entered over time.

For a fixed covariate j ∈ {1, ..., n}, covariate value c ∈ Cj , and element k ∈

1, ..., K, let µ(k)
ω ∈ {0, ..., S} be the time a single piece of information

(
ω
θ
(k)
j,t

)
0≤t≤S

is

inserted into the network. Furthermore, let η(k)
ω ∈ {0, ..., S} be the time up to which

consecutive pieces of information are inserted beginning at t = 0. Then the matrix

ωΘ =
(
ω
θ
(k)
j,t

)
0≤t≤S
1≤k≤K

can be a function of η(k)
ω and the binomial coefficient

(
S

η
(k)
ω

)
which

gives all possible orderings for a specific number of pieces of evidence. Thus we obtain

dσi,Θ

dη
(k)
ω

= 0 if t ≥ τ

> 0 otherwise
(5.6)

This shows that for a specific element k and a certain covariate θj,t, regardless of the

way pieces of information are incorporated, i.e. the various permutations among the

set Cj , σi,Θ increases or is constant along η(k)
ω . This result holds for cumulative infor-

mation incorporated across different elements. This results is particularly desirable in

the reliability domain as it highlights the usefulness to obtain field data in a temporal

cumulative manner from a specific element or several of them. Not only does it primar-



74 CHAPTER 5. A 2D DYNAMIC BN FOR BRIDGE DETERIORATION

ily impact its own posterior distribution but it additionally affects the probability of the

other elements. The sensitivity value (5.4) facilitates the quantitative identification of

elements in the network with minor consequence on others and thus reduce the need of

observation.

5.3 Parametrization through Structured Expert Judg-

ment

The goal here is to parameterize the transition probabilities of the Markov chain Dt.

The classical SEJ model developed by Cooke [1991] is used which is a performance-

based weighted averaging model to aggregate individual experts’ distributions into a

single combined one. It is both a widely accepted [Cooke and Goossens, 2008] and

appropriate method when quantitative data is missing, of dubious quality, or is insuffi-

cient for obtaining desired outcomes. The following briefly recalls what was presented

in chapter 4 and further incorporates the corresponding results.

5.3.1 Cooke’s model for eliciting expert opinions

The protocol of Cooke [1991] was followed which provides a clear statement of the

questions to be answered, documents critical underlying assumptions, and establishes a

logical structure for the elicitation interview. Experts are asked to specify their quantiles

(e.g., 5th, 50th and 95th) of an uncertainty distribution regarding variables of interest

and seed variables tailored to the problem considered. Seed variables are known quan-

tities used to compute two measures of performance of the experts: the calibration and

information scores. Loosely, calibration measures the statistical likelihood that a set of

experimental results correspond, in a statistical sense, with the expert’s assessments. In-

formation measures the degree to which a distribution is concentrated. The weights are
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derived from experts’ calibration and information scores, as measured on seed variables.

Seed variables serve a threefold purpose:

1. to quantify experts’ performance as subjective probability assessors

2. to enable performance-optimized combinations of expert distributions

3. to evaluate and hopefully validate the combination of expert judgment.

5.3.2 Calibration of pi,j

Several developments must be made in order to apply the Cooke’s method to parametrize

a Markov chain. Instead of explicitly eliciting pi,j expected transition time between con-

secutive states i to i+ 1 are asked. Cooke [Cooke, 1991] shows that directly estimating

probabilities should be avoided as performing such a task is known to be challenging

and generates greater uncertainty. Whenever possible, one can overcome this challenge

by asking quantities which experts are more familiar with to derive the ones of interest.

If not, relative frequencies are used as is done in this paper for Q2.

In order to quantify pi,j introduced in eq.(5.2), the expected time it takes for a bridge

to transit between states i and j is given by

E[Ti,j] = 1 +
∑
k 6=j

E[Tk,j]pi,k (5.7)

where Ti,j = inf{M : DM = j,DM−1 6= j, ..., Dm+1 6= j|Dm = i} is a strictly positive

integer random variable and represents the first passage time from state i to state j, with

0 ≤ m < M . When j = i one has E[Ti,i] = 1/πi, where πi is the limit distribution

of the Markov chain for state i, limt→+∞ P (Dt = i) = πi. Typically, as state {Ω} is

the only absorbing state, π = (π1, ..., πΩ) = (0, ..., 0, 1) so E[Ti,j] = ∞,∀i ≥ j. In

other words, we have a strictly degrading process that will eventually arrive in the failed

state if no action is taken. In the very general case where P is complete, i.e., when
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interventions improving the state of an element are allowed, the transition probability

matrix is given by

P =


p1,1 . . . p1,Ω

... . . . ...

pΩ,1 . . . pΩ,Ω


Moreover, matrix E of the expected first passage time transitions is given by

E =


E[T1,1] . . . E[T1,Ω]

... . . . ...

E[TΩ,1] . . . E[TΩ,Ω]


From eq. (5.7), the following linear system of equations has to be solved

P∗(E− diag(E)) = E− 1 (5.8)

where ∗ is the usual matrix product operator, diag(E) is the matrix having the values

E[Ti,i] and zeros in each of the other entries and 1 is the matrix having ones in every

entry. Solving matrix equation (5.8), where the entries of matrix P are the unknowns,

allows to indirectly quantify this matrix of interest given matrix E so that experts are

spared from directly estimating transition probability values.

For matrix E, the entry (i, j) (with i 6= j) is non infinite if there exists M > 0 such

that for any m, 0 ≤ m < M,P (XM = j|Xm = i) > 0 ⇔ PM−m(i, j) > 0. The

latter simply translates quantitatively the fact there must exist a path starting from state

i to reach state j in order to have a finite (expectation of) first passage time. Recall

that pi,i + pi,i+1 = 1 so only the pi,i or pi,i+1 need be specified. The case of concern

which features sequential degradation behaviour entails that from eq. (5.8), for each

i ∈ {1, ...,Ω}, we have

pi,i = 1− 1

E[Ti,i+1]
(5.9)
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so that Ω − 1 expected transitions have to be elicited. Solving matrix equation (5.8),

where the entries of matrix P are the unknowns, allows to indirectly quantify this matrix

of interest given matrix E so that experts are spared from directly estimating transition

probability values. From eq. (5.9), E[Ti,i+1] ≥ 1 otherwise it yields pi,i < 0. If an

expert gives an estimate where E[Ti,i+1] < 1, one can simply rescale the time step to

a smaller time unit. The time step should not exceed the minimum time for an asset to

transition two states in order to maintain the sequential degradation property. A lower

bound for the time step would be the minimum time necessary for the asset to transition

from any given state.

Parametrizing the model amounts to calibrating the quantities P (Dt = j|Dt−1 =

i, θ1,t = c1, ..., θn,t = cn) (eq. (5.2)) and E[Ti,i+1] (eq. (5.9)), as the joint distribu-

tion P (θ1,t = c1, ..., θn,t = cn) is assumed to be empirically obtained. The two main

questions are then generated as follows

Q1 "Could you provide the 5th, 50th, 95th quantiles of your uncertainty distribution

about the expected years that it takes for each of the K elements considered to

transit between each of the states in {1, ...,Ω} ?"

Q2 "Consider a sample of 100 000 data points each representing the following

event. At time t−1 a certain element k was in a certain condition state (1, ...,Ω)

and the covariates directly incident to the process D(k)
t were observed to be in

each their possible states (i.e., cardinality of the state space of incident covari-

ates). Recall that it is assumed elements can only deteriorate to their next worse

state or remain in the same state at the next time step. Out of these 100 000 sam-

ples, what is the number of these assets transitioning to their next worse state at

the next time step ?"

Note that Q1 and Q2 must be elicited for each element k, thus the number of ques-

tions to be asked is 2K. More generally, for any number of questions q for each element

k, the total number of questions becomes qK. However, the total network size may be



78 CHAPTER 5. A 2D DYNAMIC BN FOR BRIDGE DETERIORATION

dramatically increased while limiting k, by considering different classes in which mul-

tiple elements belong to the same class. Thus, a very large network can be constructed

without needing to elicit responses for each element if they are of the same class, hence

the introduction of similarly classified assets. This will be detailed in the following sec-

tions of our bridge application in which hundreds of bridges may be present but only a

few classes. In such a context, only questions on the classes need be elicited and not

each individual bridge in the network. This further highlights the limited data frame-

work application of this model.

The covariate-DBN methodology is summarized through the diagram displayed in

Fig. 5.3. The arrows from the SEJ (Q2) node pointing to eq (5.2) is more precisely

referring to member P (Dt = j|Dt−1 = i, θ1,t = c1, ..., θn,t = cn) making the one-to-

one correspondence link between the covariates Θ
(1)
t , ...,Θ

(K)
t and the Markov processes

{D(1)
t }, ..., {D

(K)
t }. The latter are specified by the expectation of the random variable

Ti,i+1 (eq. (5.9)) which is parametrize from SEJ by Q1. The dashed double-oriented

arrow among the covariate sets refers to the possible dependence relationships between

them. Note that the Fig. 5.3 only represents one slice in time, therefore the t subscript

has been omitted. To represent the total time horizon, Fig. 5.3 would be repeated for all

t ∈ {0, ..., S}.

5.4 Bridge Network Application

This section treats degradation modeling for a network of motorway steel bridges.

Two different classes of motorway bridges are specifically considered with a steel (so-

called orthotropic) bridge deck, namely moveable and fixed. On the network of motor-

ways in the Netherlands there are approximately 100 steel bridges, divided into movable

and fixed types [Jong, 2007]. These types should be quite representative of the category

encompassing motorway steel bridges located in the Dutch bridge network. A key char-
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covariate elements

eq (5.2) eq (5.2)

Figure 5.3 – Diagram of the covariate-DBN methodology

acteristic of a bridge is its deck plate thickness. The thickness of the bridges may vary

throughout the network. It is assumed that the deck plate thickness for moveable and

fixed bridge is chosen to be 12mm and 10mm, respectively. Furthermore, the thickness

and type of deck plate overlay are assumed a 6 mm thick epoxy overlay and a 100 mm

asphalt is applied for moveable and fixed bridges, respectively.

The underlying physical deteriorating process considered here is fatigue crack growth

in the bridge deck which occurs due to repetitive loading by vehicles’ axles. Fatigue is a

degeneration process developing in time such that it can be detected before they grow so

large that they obstruct the safe use or even integrity of the structure. It is assumed that

the crack growth rate decreases for increasing deck plate thickness and surface finish.

By consequence, the covariates chosen are traffic and loading as they are the main en-

dogenous contributors in this mechanism. The covariate traffic is given by the number

of axles per kilometre per lane averaged over the total number of lanes. In turn, loading

is described as the kilo-Newtons (kN) per axle per kilometre per lane averaged over the
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total number of lanes. Data coming from a monitoring system located in the Nether-

lands is available, presented subsequently and used to evaluate some of the conditional

probability distribution sets.

5.4.1 Dependence structure

Traffic and loading covariates are denoted by {T (k)
t } and {L(k)

t }, respectively. Thus,

Θ
(k)
t = (T

(k)
t , L

(k)
t ), for any bridge k. The typical dynamic dependence structure for

the deterioration of any bridge k is sequential, that is, T (k)
t → L

(k)
t → D

(k)
t for any

time slice t. The edges connecting successively the degradation nodes D(k)
0 , ..., D

(k)
S

are translating the temporal aspect of the model. The traffic covariate is used serve as

the dependence link connecting bridges. Traffic dynamics have been monitored and

quantified in the Netherlands, for instance [Vervuurt, 2014]. The set of bridge-to-bridge

edges E (→,t)
Θ is specified through traffic dynamics. A possible layout is shown though

in Fig. 5.4 which captures a distribution of K bridges across a highway section. In this

case, for a any time step t ≥ 0, nodes {T (k)
t } and {T (k+1)

t } are bonded in a consecutive

manner. A pair of bridges are (un)conditionally independent given sets of covariates.

This defines the dependence graph structure GK,S; only the conditional distribution set

PK,S has to be specified.

T
(1)
0 L

(1)
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D
(1)
0

T
(1)
1 L

(1)
1
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(1)
1

. . .
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(2)
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...
...

...

Figure 5.4 – Example layout of covariate-DBN structure BK,S
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5.4.2 Traffic and load data

Data on traffic and loading is obtained from a Weigh-In-Motion (WIM) system. In

Morales-Napoles and Steenbergen [2014] the same data coming from a WIM installa-

tion is input to model multidimensional distribution of axle loads together with other

related quantities. A thorough investigation of dependencies between these quantities

through a copula representation is presented. Here WIM data is used to derive a prob-

ability distribution on traffic density defined as the number of axles per time over a

100m bridge. In addition, the conditional probability distribution of loading given traf-

fic density is derived assuming the covariate-DBN dependence structure presented in

the previous subsection. This monitoring installation was set on a two-lane (fast and

slow) motorway a few kilometres from a steel bridge in the Netherlands. As only the

mechanism of fatigue for orthotropic steel bridges is investigated, loading coming from

fluctuating stresses caused by vehicles is in general the most important factor and is

seen as a random variable whose distribution is yearly stationary. The nature of traf-

fic intensity influencing the loading behaviour is also stochastic [Morales-Napoles and

Steenbergen, 2014]. Both distributions of loading and traffic are computed given sam-

ple distributions bootstrapped from WIM data. The data is first exploited so that kernel

density estimators are computed for fast and slow lanes in a congested traffic configura-

tion. Axles’ positions and weights are further obtained by queuing all the vehicles the

system recorded over a month. More precisely, a so-called ’train’ of vehicles is created.

By bootstrapping over a number of fixed vehicles among the total amount of recorded

vehicles, a random distribution of vehicles is derived. The generated train provides each

fast and slow lane vehicles’ separation, axle position and weight, and the number of ve-

hicles per lane. The loading moments are then computed using a finite element method

whose discretization step is that of the triangular Bartlett window over the span of the

bridge. In this case, the highest loading moment for a vehicle crossing the bridge occurs

when it is located halfway through it.
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(a) Scatter plot of the number of axles against load-
ing conditionally on {#axles > 0}
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(b) Probability distribution of the total load condi-
tionally on {#axles > 0}

Figure 5.5 – Load distribution conditionally on {#axles > 0}

The scatter plot displaying the number of axles against loading and the marginal

probability distribution function (PDF) of loading are illustrated in Fig. 5.5(a) and

5.5(b), respectively. Both distributions are plotted conditionally on the number of axles

being strictly positive. Equivalently, this means there is always loading on the bridge.

Many of the recordings refer to a no-loading scenario, namely P (L
(k)
t = 0) = P (#axles =

0) = 0.432, for any k. In this configuration, the load variable is discretized by setting

the following thresholds which are often used in probabilistic bridge design. A Heavy

loaded situation is seen as all the recorded loads lying above the 97th quantile bin of the

load PDF conditioned on their being at least one axle. Numerically, this value represents

751.189 kN which can also be written as P (L
(k)
t ≤ 751.189 kN |#Axles > 0) = 0.97.

In Fig. 5.5(b) the Heavy load is represented by the shaded area below the PDF curve.

Similarly, for Normal and Light loading states, values lying in between the 90th and

the 97th quantile bins and below the 90th quantile bin are chosen respectively. These

are shown in Fig 5.5(a) through the dark and light grey scatter points for the Normal

and Light loading cases. This way the probability distribution f
L

(k)
t |pa

(
L

(k)
t

) is fully

determined. For every time slice t, the quantification of the conditional probability
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distribution of traffic nodes
{
f
T

(k)
t |pa

(
T

(k)
t

)}
1≤k≤K

was in turn obtained from the Na-

tional Data Warehouse for Traffic Information (NDW) measurements performed in 2013

from several Dutch highways [Vervuurt, 2014] and broken down into a 3-state space

{High,Medium,Low}. It is further denoted by L = {Heavy,Normal, Light} and

T = {High,Medium,Low} the sets that processes L(k)
t and T (k)

t take, respectively,

value in.

5.4.3 Elicitation results

The complete SEJ experiment is presented in Chapter 4. The elicitation was carried

out with three experts on steel bridge reliability and management. Particularly, the seed

questions refer to historical data on crack length collected between 2006 and 2011 at a

highway steel bridge in the Netherlands. A typical seed question asked to the experts is

the following:

"An 80 mm crack was detected located in the deck plate 33 years after construction,

what would be its length the following year?"

By varying the time gap between two crack measurements, the age of the bridge

at the time of the first measurement, the crack measurement technique as well as the

crack location, a total number of 12 seed questions were asked. The remainder of the

questionnaire comprises the questions of interest Q1 and Q2 which were introduced

in section 5.3.2. They must be asked for each element k (moveable of fixed bridge),

loading configuration L = {Heavy,Normal, Light} and type of transition considered

(1 → 2, 2 → 3 and 3 → 4), making a total of 24 items of interest. Q1 allows fully

calibrating the transition probability matrix as shown in eq. (5.9) while the second ques-

tion provides the missing conditional probabilities of node Dt given Dt−1 and Lt as the

covariate-DBN structure introduced in section 5.4.2 suggests. From notation introduced
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in section 5.2, we have
{
f
D

(k)
t |pa

(
D

(k)
t

)}
1≤k≤K

. From the law of total probability, we

get

f
D

(k)
t

(x) =



∑
l∈L

P
(
D

(k)
t = x|L(k)

t = l
)
P (L

(k)
t = l) t = 0∑

l∈L

∑
y∈{x,x−1}

P
(
D

(k)
t = x|D(k)

t−1 = y, L
(k)
t = l

)
× P (L

(k)
t = l)P (D

(k)
t−1 = y)

t > 0

(5.10)

In particular, from eq. (5.10) the terms P
(
D

(k)
t = x|L(k)

t = l
)

(for t = 0) and

P
(
D

(k)
t = x|D(k)

t−1 = x− 1, L
(k)
t = l

)
are the ones elicited from Q2. As a consequence,

the burden for experts (i.e, the number of queries) increases in the number of states Ω

for the Markov processes D(k)
t , the number of edges that are incident to the Markov

chain
(
E (k)

D↓Θ

)
, and the number of states of the incident covariates.

Using the results in Table 5.2 by taking the median values (50th percentile) together

with eq. (5.9), the corresponding transition probability matrices for each class of bridge

can be derived. Moreover, from eq. (5.7) and eq. (5.9), the complete matrix of expected

duration of transition can be retrieved as well

PM =


0.954 0.046 0 0

0 0.905 0.095 0

0 0 0.834 0.166

0 0 0 1

 ,PF =


0.976 0.024 0 0

0 0.797 0.203 0

0 0 0.824 0.176

0 0 0 1



EM =


∞ 21.62 32.14 38.16

∞ ∞ 10.52 16.54

∞ ∞ ∞ 6.02

∞ ∞ ∞ 1

 ,EF =


∞ 41.14 46.08 51.77

∞ ∞ 4.94 10.63

∞ ∞ ∞ 5.69

∞ ∞ ∞ 1
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where subscripts M and F denote the moveable and fixed classes, respectively. Back-

Table 5.2 – Assessments obtained from the performance based combination scheme
(IT) for expected transitions (Yrs) between sequential degradation conditions defined in
Table 5.3 after removing one seed question

Bridge type Transition 5th 50th 95th

1→ 2 3.09 21.62 49.45
Moveable 2→ 3 5.04 10.52 24.59

3→ 4 3.30 6.02 28.18

1→ 2 4.73 41.14 54.60
Fixed 2→ 3 3.81 4.94 20.25

3→ 4 1.15 5.69 34.56

ward reasoning also applies, that is, conditioning on one or more states of the covariates,

the conditional transition probability matrix can be computed as well as the conditional

expectation matrix using eq. (5.7). Upon this basis, the annual probability distribution

of process Dt to reach the worst state, P (Dt = 4|D0 = 1) (eq. (5.10)), using the IT DM

combined distribution are displayed in Fig. 5.6 for both moveable and fixed bridge cate-

gories. For each distribution the median (50th quantile) is presented. The differences in

sensitiveness through inserted information highlighted by the posterior distributions are

quite sharp. Unlike the case featuring a Normal load, observe that distributions condi-

tioned on a heavy load do not differ much between the two classes of bridge considered.

5.5 Numerical experiment

Various experiments are presented to show the sensitivity of the posterior degrada-

tion distribution to inserting various types of information at different points in time.

As an illustrative example, a subset network of bridges is constructed using the new

covariate-DBN model introduced in section 5.2.2. This network is illustrated in Fig 5.9.
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Figure 5.6 – Performance based combination of the median estimate for annual prob-
ability distribution to reach worst state (see Table 5.3) for both Moveable and Fixed
bridges classes.

The quantification methods used for the conditional probability sets are those introduced

in sections 5.4.2 and 5.4.3. The network is comprised of four bridges, three moveable

and one fixed, whose layout is similar to that of Fig. 5.4 having the same set of covari-

ates Θ
(k)
t = {T (k)

t , L
(k)
t } standing for traffic density and loading. The example relates

to bridges located at the intersection highways A2 and A15 in the Netherlands. A15

has one of the most dense yearly traffic while A2 is more average [Vervuurt, 2014].

Such a configuration is supposed to be representative for many real-world cases. For

the example, bridges 1 (fixed) and 2 belong to A15 and bridges 3 and 4 to A2.

The PPTC algoritm (probability propagation in trees of clusters) for inference first

developed by Lauritzen and Spiegelhalter [1988] is used in our study. More specifi-

cally, the PPTC extended by Huang and Darwiche [1996] as a more efficient approach

for dynamic BNs is implemented through the Bayesian network framework Smile ap-

plication programming interface (API). It is shown how much the network beliefs are

modified when information is obtained from various covariates and elements at different

points in time. As previously discussed, this can lead to prohibitive number of combi-

nations. Scenarios leading to changing traffic conditions are numerous as well as their

loading characteristics. Examples affecting traffic conditions include maintenance for
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one or more bridges in the surrounding network area, traffic accidents or environmental

disasters.

Consider a single 4-state condition space for both bridge categories (fixed and move-

able) whose conditions are defined in Table 5.3.

A first example of inference is illustrated in Fig. 5.7 where the (conditional) CDF of

the condition states for Bridges 1 and 3 are plotted at each time step for a time horizon

S = 50 years. Left figures (Fig. 5.7(a)) stand for the unconditional (NOI) case while

right figures (Fig. 5.7(b)) show updated distributions conditionally on consecutively in-

serting evidence of "high traffic" between year 5 and year 10 for Bridge 1. Observations

that can be drawn are:

— While Bridge 1 is the only one of fixed type, its degradation curve shows very

little difference compared to Bridge 3. Moreover, they also belong to motorways

having different traffic characteristics

— In the right-hand column, the probability area for state 4 has increased for both

bridges with respect to the no information case. This demonstrates that the dis-

tribution of Bridge 3 is slightly sensitive to information obtained from Bridge

1.

In general, inserting information that deviates more significantly from the expected

Table 5.3 – Bridge condition states

State Definition
1 - Excellent Almost no damage/cracks are present. A new bridge is assumed to

start from this state.
2 - Fair At least one crack in the deck plate that can be detected ultrasonically

[30mm, 100mm]
3 - Mediocre Multiple cracks are present [30mm, 500mm]; at least one crack re-

quires repair
4 - Poor Multiple significant fatigue cracks with at least one >500mm in the

deck plate that needs urgent repair; this condition does not mean a
collapse but a threat to safety and/or functionality.
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Figure 5.7 – Impact of High Traffic Information on the Network

should have a greater impact on the sensitivity. The propogation of information is

mainly governed by the conditional probability distributions across traffic nodes ob-

tained from Vervuurt [2014]. For instance, the conditional distribution T (3)
t |T

(2)
t is given

in Table 5.4. The same tests were carried out using Low and Medium states individu-

ally in the same context and updated distributions showed minor modification. Similar

observations were also drawn with respect to Bridges 2 and 4.

Fig. 5.7 showed the cumulative effects of inserting hight traffic information into

Table 5.4 – Conditional probability distribution of traffic process T (3)
t given T (2)

t

T
(3)
t |T

(2)
t Low Medium High

Low 0.934 0.0448 0.0385
Medium 0.0492 0.879 0.0651
High 0.0168 0.0762 0.8964
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Figure 5.8 – Sensitivity curves for σ4,Θ plotted against m(1)
ω where the colour gradient

from dark to light grey for each curve indicates fixed time epochs for each plot spaced
by 5 years for bridge 1 (left) and bridge 3 (right).

Figure 5.9 – Map of a fictitious bridge network in the Netherlands at the intersection of
highways A15 and A2

the network. The effect of inserting high traffic information individually as shown in

Fig 5.8 are examined. The horizontal axis denotes (µ(k)
ω ) the vertical axis the sensitivity

measure σi,Θ computed as defined in eq. (5.4) for state i = 4. Each plot represents a

fixed time slice t ∈ {5, 10, ..., S = 50}, the boldest curve represents t = 5 and lightest

curve refers to t = 50. Thus [MV], the "t = 5" curve represents the sensitivity at

t = 5 of inserting hight traffic information individually over the time horizon. Notice

that once information has been inserted posteriorly to the fixed time epoch (µ(k)
ω >

t), the sensitivity drops to zero as previously detailed in eq (5.5). The sensitiveness

dramatically decreases both as information is inserted later in time and evaluated later

in time. Thus, the figure shows that it is most relevant to insert information as early
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Figure 5.10 – Sensitivity curves for σ4,Θ (left) where the colour gradient from dark to
light grey for each curve indicates fixed time epochs for each plot spaced by 5 years.
The type of information inserted is state High for node T (1)

t

as possible and the return on information dramatically decreases over time. The same

comments can be made for Bridge 3 and more generally shows a lesser amplitude for

the σ4,Θ curves. For example, µ(k)
ω peaks at ∼ 18% for Bridge 1, while the maximum

does not reach 14% for Bridge 3. This reduced sensitivity is to be expected as it has a

downstream impact from where the information was directly obtained Bridge 1. Similar

tests were performed for the remainder of the network, namely Bridges 2 and 4, which

showed similar behavior.

Likewise, analyses on η(k)
ω were performed as defined in section 5.2.3 for cumula-

tive information. Sensitivity curves for η(k)
ω are displayed Fig. 5.10. The various grey

gradient curves read in similar fashion to those of the plots displayed in Fig 5.8. Com-

pared to the single insertion case (Fig. 5.7), the sensitivity increases dramatically for

every fixed time epoch. This is evidenced by comparing the ’t = 5’ curves; the sensi-

tivity for Fig. 5.10 peaks above 120% whereas Fig. 5.7 (Bridge 1) does not pass 20%.

Most importantly, the figure demonstrates that more information is always better and

information loses its value over time. The latter can be explained by the distribution of
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each state being bounded asymptotically by some upper and lower conditional distri-

butions as shown in Fig. 5.6. In the case of most or least expected information being

inserted consecutively from t = 0 throughout the network, the degradation distribu-

tion will correspond to respective bounding distribution. In this numerical experiment,

the upper bound corresponds to the least expected information (i.e., high traffic/heavy

loading) being inserted. Although, not demonstrated from the experiment, we believe

that regardless of the manner information is inserted (i.e., consecutive or not), more

information will always have a greater impact on sensitivity.

5.6 Conclusion

An extension to the classic dynamic Bayesian network framework which is termed

the covariate-DBN is proposed. a second dimension for K elements is added as well as

method for indirectly linking them through a set of covariates. It is further proposed a

Markov chain as the underlying stochastic process for the covariate-DBN. In the case

where limited data is available, a formal mathematical framework is developed mak-

ing use of Cooke’s method for structured expert judgement to parametrize a Markov

chain and the covariate relationships between elements in the covariate-DBN. Some

metrics are also presented for evaluating the sensitivity of information inserted into the

covariate-DBN.

The proposal is then applied to a real-world bridge network application based on

steel bridges in the Netherlands. It is shown how traffic and load information may serve

as covariates to link bridge elements in the covariate-DBN. An actual expert judgment

elicitation was carried out to parametrize the model using the prescribed methods. Nu-

merical experiments show that information is most valuable as early as possible, and the

value of information decreases over time.

While the model is applied to a specific bridge network scenario, different sets of
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covariates could be envisioned in the same framework. Furthermore, we believe the

model could be expanded to other bridge types and civil infrastructure. Applications

are not only limited to degradation modelling but could include other fields and contexts

such as financial asset modelling and epidemiology.

In sections 5.2.3 and 5.5, it is shown how one could reduce the computational in-

tractability referring to running through all the possible combinations of inference. In

particular, from figures 5.8 and 5.10 it is observed that :

— cumulative inserted pieces of information dominate over individual piece of in-

formation; in other words, any inference combination having a lower number of

inserted pieces of information than its cumulative counterpart will show a less

sensitive change in the posterior distribution. Practically speaking, continuous

monitoring should prevail as opposed to condition-based (by also taking into

account cost constraints)

— the sensitiveness of the inserted information decreases in time so that pieces of

evidence inserted at early epochs should be preferred over later ones. This means

that if significant and unexpected event are observed (represented by the type of

inserted information), the sensitivity metric is also able to capture those.

Thus, by advantageously combining the two above observations, one could selectively

opts for the most sensitive combinations of inference. This further results in substan-

tially decreasing the inference choices.

As for any Markov-based model, our approach can be validated through classic

statistics test, e.g. Fisher’s contingency table for verifying Markovian order if data is

available. However, one of the main purposes here is in particular to represent a large-

scale network with the simplifying assumption that assets are grouped into similarly

classified types. By consequence, one can mainly quantify those categories in a general

and subjective fashion, hence the need of experts. The classical BN validation methods

Cowell et al. [1999] may also be applied to our model.
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For discrete BNs the main limitation of the proposed methodology refers to dimen-

sionality. Our model further increases this complexity through the added k dimen-

sion. Other classes of BNs dealing with continuous distributions could facilitate the

parametrization procedure. For example, a dynamic non-parametric class recently de-

veloped [Hanea et al., 2015] could be a useful tool to overcome this. An extension

to influence diagrams would provide a decision making framework for the underlying

covariate-DBN to facilitate managers applying model forecasts.
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6.1 Introduction

Stochastic processes have been extensively used to model numerous types of appli-

cations from stock prices in finance to systems degradation in engineering, or epidemi-
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ological patterns in biology, to only name a few. Their popularity mainly comes from

their ability to capture certain observed patterns to then give predictions. In many areas,

problems can be impacted by a great number of variables thus requiring models of high-

dimension random systems. By consequence, this can become a very complex task in

constructing models where dependence is involved and must be further evaluated.

In multivariate statistics or multivariate analysis, recent attractive approaches refer

to copula-based graphical models. A copula captures the dependence between multiple

random variables. Their attractiveness is largely due to the flexibility that copula models

provide, whereby the marginal distributions can be modelled arbitrarily, and any depen-

dence captured by the copula. Copula have been extensively developed over the years;

see Joe [2014] for a recent overview. For data-driven time series modelling, there can

be a wide variety of copulae from which to choose and only a few are readily appli-

cable to high-dimensional problems. Copula built from elliptical distributions, such as

the Gaussian or the t-copula are most popular in this case. However, these can prove

restrictive [Kurowicka and Cooke, 2006], and in the recent graphical models literature,

alternative approaches have been proposed that construct series of bivariate copulae as

opposed to a one or more large multivariate copula(e).

The merging of stochastic process and statistical copula approaches, to the best of

our knowledge, have not been examined in the literature. The main reason lies in the

purpose of each. The former assumes a priori an evolution governed through the collec-

tion of time-based probabilistic distributions. On the other hand, the latter uses observa-

tions of data to describe the dependence of a certain events involving various variables.

Nevertheless, both exhibit dependence characteristics, and both have proven efficient in

domains where the ability to model high-dimensional problems is required. Our objec-

tive is thus to advantageously combine the two frameworks in order to provide a Markov

process representation as a dynamic copula-based graph. Among these advantages the

parametrization of the model would be drastically diminished as only the stochastic
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process parameters would be needed. Moreover, conditioning may be analytically per-

formed upon the nature of the conditional densities. Conditioning for Markov processes

can sometimes be difficult, especially in cases where the conditioning set cannot be bro-

ken down in order to make use of conditional independencies. Furthermore, the need to

recalibrate the whole process can be tedious whenever continuous information is avail-

able. The pair-copula construction approach is able to directly generate the conditional

pair-copula and marginal densities appear straightforward integral form. The condi-

tional expectation of any time epoch can be thus be obtained using this formulation in

a more clean way without requiring a complete recalculation of the parameters at each

update. The ability to dynamically recognize non-stationary characteristics through the

pair-copula representation is also a benefit that our combined approach provides.

Most of the research on copulae has been devoted to spatial dependence due to great

interest in practice for new spatial dependence models [Kurowicka and Joe, 2011], but

the analysis of temporal dependence is also possible by the copula approach. In order

to account for the time component inherent in the definition of stochastic processes, so-

called time-copula have been developed. The first paper dealing exclusively with copu-

lae and stochastic processes was presented by Darsow et al. [1992] who established the

connection between copulae and Markov processes by providing a copula representa-

tion for the Chapman-Kolmorgorov equation. Këllezi et al. [2003] derive some results

on the time-copula of time-changed Brownian motions and discuss the time-copula of

a Lévy process, showing how the dependency evolution of a Lévy process can be mod-

elled with a copula.

Bedford and Cooke [2002] organize the different decompositions of multivariate

distributions in a systematic way. They label the resulting pairwise copulae vines, while

Aas et al. [2009] label the component bivariate copulae pair-copula. Henceforth in

this chapter, we will refer to them as pair-copula. When considering a d-variate vine

copula model, this requires the specification of
(
d
2

)
= d(d − 1)/2 pair-copula, and
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the marginal densities evaluated at each time point. Nevertheless, this number could

be reduced upon the nature of the data in which conditional independences may be

found. In this case, the corresponding pair-copula are set to be independence copulae,

i.e. C(u1, u2) = u1u2. Instead of leaving the detection of conditional independences to

chance, one may, however, consider modelling these independences a priori to obtain

more efficient models. Unfortunately, the construction of vine copula models satisfying

pre-specified conditional independence restrictions is a hard problem in general. A

class of models suited for this task are so-called non-parametric Bayesian networks

(NPBN) as they are directed graphs to capture dependence as opposed to the undirected

vine framework. NPBN are comprised of pair-copula and rank correlations and will be

formally defined in the next section.

Among these relative recent developments in the copula-based graph field, mod-

els accounting for time dynamic systems generated in a systematic way are lacking.

For example, a data-driven dynamic NPBN was developed by Morales-Nápoles and

Steenbergen [2015] to model traffic behaviour through vehicle loads. The dependence

metrics which are essentially given by conditional time-copula and conditional rank cor-

relations turn out to be time-varying through data parametrization. Overall, research in

multivariate dependence modelling using copulae is focused mostly on the case of time-

homogeneous [Brechmann and Czado, 2014] dependence structures. However, promis-

ing approaches for allowing time variation in dependence have been put forth [Manner

and Reznikova, 2012]. The dependence among variables can be rendered time-varying

by allowing either the dependence parameter or the copula function to vary over time.

However, those dynamic dependence metrics have never been combined thus far within

probabilistic graph frameworks. By doing so, this would dynamically highlight the abil-

ity to capture characteristics such as tail or non stationary dependencies. For the latter,

the classic stochastic process modelling approach does not facilitate its identification as,

for instance, Levy processes possess independent and stationary increments.
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Time-copula were specifically studied for Markov processes since there is a close

relationship between the time-copula and the conditional distribution of two different

times. Darsow et al. [1992] define a product of copulae that corresponds in a natural

way to the operation on transition probabilities contained in the Chapman-Kolmogorov

equations. For non-Markovian processes, the expression of conditional distributions for

two time steps may be more complicated to evaluate as the past up to a certain time

step influences the future. This could even become harder if non-stationarity or non-

homogeneity features come into play. Theoretically, a time-copula could be derived

from any stochastic process. This existence and uniqueness of copula was answered

by Sklar [Sklar, 1959]. Moreover, compared to the statistics-based approach, the time

copula makes the model less flexible but on the other hand reduces the parametrization

burden. The rank correlation component of an NBPN may be directly derived from the

chosen stochastic process and no additional parameters need to be determined.

Our goal is to combine the NPBN framework with k-th order Markov processes in

order to model univariate time series. In fact, we prove that any k-th order Markov

process may be represented as a dynamic NBPN. In doing so, the resulting framework

desirably allows the generation of dynamic pair-copula-based models in a structured

manner. We also explicitly provide the exact necessary and sufficient dependence met-

rics borrowed from the NPBN framework to represent any k-th order Markov process.

When it comes to Bayesian network (BN) modelling, one of the main challenges

refers to inference. For discrete BN, it is widely known that inference grows exponen-

tially across the number of states and degree of vertices. In the original NPBN frame-

work, conditioning can be analytically undertaken provided that the copula is chosen to

be Gaussian [Hanea et al., 2006]. If any other copula is assumed, the inference problem

reverts to the discrete case due to the numerical evaluation of the integrals. Following

the pioneering work of Kurowicka and Cooke [2005], who introduced NBPN and in-

ference methods for them, the authors of Bauer and Czado [2016] recently derived the
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expressions of joint and conditional distributions in terms of pair-copula decomposi-

tion similar to that of the vine-copula approach. The pair-copula decomposition allows

better understanding of the role of blocks of pair-copula into joint and conditional distri-

butions as well as the impact of the copula itself regarding conditioning. With respect to

the framework of the k-th order Markov representation, we extend the findings of Bauer

and Czado [2016] on conditional and marginal distributions to fit our approach. It is

found that analytical conditioning can be performed if the k-th order Markov process

is a Gaussian process as well. Therefore, we extend the Gaussian copula requirement

to encompass other types of copulae, i.e. time-copula, that comply with the Gaussian

process requisite. Additionally, the computational complexity of the Bauer and Czado

[2016] algorithm is reduced for deriving the marginal densities of a k-th order Markov

process necessary for analytical conditioning

The remainder of this chapter is organized as follows. The next section presents the

original framework of non-parametric Bayesian networks. Section 6.3 details the de-

pendence metrics borrowed from the NPBN specific to the Markov process framework.

Section 6.4 shows the k-th order Markov process representation as dynamic NPBN. It

is further explicitly provided the requirements to perform conditioning using the NPBN

characteristics in section 6.5. An example using Brownian motion is finally presented

in order to illustrate our findings.

6.2 Non-parametric Bayesian networks

Non-parametric Bayesian networks (NPBN) are probabilistic graphical objects that

capture an n-dimensional distribution (n referring to the number of vertices) where to

each edge is associated a conditional pair-copula and a conditional rank correlation.

In practice, such BN have been developed in various fields (see Hanea et al. [2015])

because dependence is handled in a very flexible way, i.e., copula and rank correlations
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allow a great deal of ways to capture a specific dependence structure.

Nodes are associated with arbitrary, continuous, invertible distributions, influences

are associated with conditional rank correlations and are realized by conditional cop-

ulae. A copula C is a distribution on the unit square with uniform margins. Random

variables X and Y are joined by copula C if their joint distribution can be written

FXY (x, y) = C(FX(x), FY (y)) (6.1)

Sklar’s theorem stipulates that this copula exists for any X and Y and is unique if FX

and FY are continuous. Let us consider a BN on n variables. Then the factorization of

the joint density in the standard way (following the sampling order 1, ..., n) is

f1,...,n(x1, ..., xn) = f1(x1)
n∏
i=2

fi|pa(i)(xi|xpa(i)) (6.2)

where f1,...,n denotes the joint density of the n variables, fi denotes their marginal densi-

ties, and fi|j denotes conditional densities. Each variable Xi is represented by the node

i. The parent nodes of i form the set pa(i). Conversely, for node i the set of the children

nodes is denoted as ch(i). Recall that the set of parents including the node itself is called

the family: fa(i) = pa(i)∪ {i} and for a subset A of nodes we let fa(A) = ∪a∈Afa(a).

Assume pa(i) = {i1, ..., i|pa(i)|}. We associate the arcs i|pa(i)|−k → i with the condi-

tional rank correlations:r(i, i|pa(i)|) s = 0

r(i, i|pa(i)|−s|i|pa(i)|, ..., i|pa(i)|−s+1) 1 ≤ s ≤ |pa(i)| − 1

(6.3)

The assignment is vacuous if {i1, ..., i|pa(i)|} = ∅. Assigning conditional rank correla-

tions for i = 1, ..., n, as the above results in associating every arc of the NPBN with a

conditional rank correlation between parent and child.
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Our objective is to give the necessary and sufficient conditions to represent for any k-

th order Markov process as a dynamic NPBN. To do so, we make use of the conditional

rank correlation assignment given in eq.(6.3) as well as the following theorem in order

to complete the characterization.

Theorem 6.2.1 (Bauer [2013]). Let D = (V,E) be a directed acyclic graph on d = |V |

vertices. Let P be a probability measure on Rd translating the conditional indepen-

dent statements corresponding to the directional separation criterion (also called the

D-Markov probability measure). Then P is uniquely determined by the margins of

each node i ∈ V and its conditional pair-copula ci,i|pa(i)|−s|i|pa(i)|,...,i|pa(i)|−s+1
, 1 ≤ s ≤

|pa(i)| − 1.

6.3 Dependence framework for a k-th order Markov pro-

cess

Little focus has been given for these classic NPBN to fit within a full probabilistic

framework, even less for dynamic modelling, e.g. with stochastic processes. In order

to do so, one may extract from any Markov process the dependence metrics NPBN use,

i.e. conditional copulae, conditional rank correlations and their specific dependence

structure. The idea is then to make use of the conditional rank correlation assignment

eq.(6.3) and Theorem 6.2.1 to represent any Markov process by

1. vertices standing for the margins at each time step

2. constructing the exact dependence structure corresponding to the Markov pro-

cess

3. assigning to each edge the related conditional time-copula and conditional rank

correlation
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While the first item should remain unchanged regardless of the Markov process consid-

ered, the second and third items should be closely examined according to the choice of

the Markov process. Without loss of generality, we first propose that copulae are chosen

to be exactly the time-copula any stochastic process exhibits. Let X = {Xt, t ≥ 0} be

an R-valued stochastic process and let the time interval [0, τ ] with lattice 0 = t0 < t1 <

t2 < · · · < tn−1 < tn = τ . One may consider the joint distributions Fti,tj(x, y),

Fti,tj(x, y) = P[Xti < x,Xtj < y] (6.4)

of the process at times ti and tj, i 6= j. The copula Cti,tj(u, v) defined as

Fti,tj(x, y) = Cti,tj(FXti
(x), FXtj

(y)) (6.5)

is called the time-copula for the process X , where Ft(x) is the marginal distribution

function ofXt at time t. Notice that eq. (6.5) is similar to eq. (6.1) but applied to process

X . Compared to the data-oriented approach, the time-copula is parameter-free since the

complete dependence is determined by time epochs ti and tj . The main downside here

lies in the loss of flexibility in terms of dependence modelling which trades off with

the reduction of the estimation of copula parameter(s). In practice, the derivation of

such a copula is carried out using the relationship between the copulae and conditional
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probabilities as follows :

P(Xti ≤ x|Xtj = y) = lim
h↘0

P(Xti ≤ x|y ≤ Xtj ≤ y + h)

= lim
h↘0

FXtiXtj
(x, y + h)− FXtiXtj

(x, y)

FXtj
(y + h)− FXtj

(y)

= lim
h↘0

C(FXti
(x), FXtj

(y + h))− C(FXti
(x), FXtj

(y))

FXtj
(y + h)− FXtj

(y)

= lim
h↘0

C(FXti
(x), FXtj

(y) + ∆(h))− C(FXti
(x), FXtj

(y))

∆(h)

=
∂

∂v
C(u, v)

∣∣(
FXti

(x),FXtj
(y)

)
(6.6)

with ∆(h) := FXtj
(y + h) − FXtj

(y) wherever the derivative exists. Conversely, one

can check that

P(Xtj ≤ y|Xti = x) =
∂

∂u
C(u, v)

∣∣(
FXti

(x),FXtj
(y)

) (6.7)

The partial derivatives of the copula distributions in Eq. (6.6) and eq. (6.7) are also

known as h-functions in the copula literature [Aas et al., 2009].

Likewise, additional to the time-copula associated to each of the edges, we use the

rank correlation specification given in (6.3). As we force the distribution to follow

a particular stochastic process, the complete rank correlation structure can as well be

computed first using Pearson’s autocorrelation function

ρ(i, j) =
Cov(i, j)

σiσj
(6.8)

where Cov(i, j) = E(XtiXtj) − µiµj , with µi = E(Xti), and σ2
i = Var(Xti). The

relationship between conditional rank correlation and Pearson’s correlation is then given
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by

r(i, j) = ρ(Fi(i), Fj(j)) (6.9)

Note that the rank correlation can be expressed in terms of the copula as well as

r(i, j) = 12

∫
[0,1]2

Ci,j(u, v) du dv − 3 (6.10)

We mention that eq. (6.10) can be used only for one-parameter copulae. To simplify

notation, we use the bijection Xti → i to refer to vertex Xti . For the time interval [0, τ ],

the complete autocorrelation/autocovariance matrix is thus provided with indices i and

j denoting the rows and columns, respectively. For the reader’s convenience we refer

to Kurowicka and Cooke [2006] for the definition of the dependence metrics introduced

thus far. To investigate points two and three of the requirements cited earlier, we present

the case addressing Markov processes next.

6.4 Representing Markov processes as a dynamic NPBN

We are now able to formulate the representation of any k-th order Markov process

as a dynamic NPBN. Note that due to the so-called directional Markov property, we

believe that this class of stochastic process are the only class applicable to the NPBN

framework. Let G = (V,E) be an directed acyclic graph (DAG) over vertices V where

elements are connected by directed edges E ⊆ V × V . Then let us introduce a total

order <v on pa(v) for every v ∈ V . For every v ∈ V and w ∈ pa(v), set

pa(v;w) = {u ∈ pa(v) : u <v w}
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Then the joint distribution function f can hence be written as [Bauer and Czado, 2016]

f(x) =
∏
v∈V

fv(xv)
∏

w∈pa(v)

cv,w|pa(v;w)(Fv|pa(v;w)(xv|xpa(v;w)), Fw|pa(v;w)(xw|xpa(v;w)))

(6.11)

where x = (xv)v∈V ∈ R|V |. We are now able to formulate any k-th order Markov

process as a non-parametric BN.

Theorem 6.4.1. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space with T = [0, τ ] ⊂

R+ for any τ ∈ (0,∞). Take time lattice 0 = t0 < t1 < t2 < · · · < tn−1 < tn = τ with

n ∈ N∗. Let X = (Xt)t∈T be an adapted k-th order Markov process, k ∈ N∗. Then, X

has the NPBN specification as the couple B = (G,P) where

— G = (V,E) and V = {Xti : i ∈ N∗},E =
{⋃n−k

i=0 Ei

}
∪
{⋃n

j=n−k+1Ej

}
, where

Ei = {(i, l), ∀l ∈ {1, ..., n} : l − i ≤ k} andEj = {(j,m) : m ∈ {n− k + 2, ..., n}}.

— P = (PX , CE,RE), where PX is the set of all marginal distributions of X , CE
andRE denote the set of conditional time-copula and conditional rank correla-

tions, respectively, associated to each of the edges.

Proof. The main idea is to show that the joint density fXt0 ,...,Xtn
, for any n ∈ N∗, of

any k-th order Markov process and corresponding one using eq. (6.11) are equal in both

cases. For the sake of simplicity, we will use the abbreviation Fi to denote distribution

FXti
. The same applies to conditional distributions (Fi|j to denote FXti |Xtj

) and density

functions (fi to denote fXti
). For any (x0, ..., xn) ∈ Rn+1, the joint cdf F0,...,n(x0, ..., xn)

of a k-th order Markov process X = (Xt)t∈T is given by

F0,...,n(x0, ..., xn) = F0(x0)F1|0(x1|x0) · · ·Fn|n−1,...,n−k(xn|xn−1, ..., xn−k) (6.12)

Eq. (6.12) is obtained using the simple chain rule and the k-th order Markov property.

The marginal conditional densities fXti
(xi) =

∂

∂xi
FXti

(xi) are assumed to exist so the
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density is straightforwardly given as

f0,...,n(x0, ..., xn) = f0(x0)f1|0(x1|x0) · · · fn|n−1,...,n−k(xn|xn−1, ..., xn−k) (6.13)

Next, we use the pair copula construction of joint distributions originally proposed by

Joe [1996]. For the reader’s convenience we omit the function arguments. The condi-

tional density fn|n−1,...,n−k can be written as

fn|n−1,...,n−k =
fn−k,n|n−1,...,n−k+1

fn−k|n−1,...,n−k+1

=
cn−k,n|n−1,...,n−k+1(Fn−k|n−1,...,n−k+1, Fn|n−1,...,n−k+1)

fn−k|n−1,...,n−k+1

fn−k|n−1,...,n−k+1fn|n−1,...,n−k+1

= cn−k,n|n−1,...,n−k+1(Fn−k|n−1,...,n−k+1, Fn|n−1,...,n−k+1)fn|n−1,...,n−k+1

where ci,j|w denotes the conditional pair-copula density of variables Xti and Xtj given

Xtw By iterating k times on the conditioning set {n− 1, ..., n− k} we obtain

fn|n−1,...,n−k = fncn−1,n(Fn−1, Fn)

k−2∏
i=0

cn−k+i,n|n−1,...,n−k+i+1(Fn−k+i|n−1,...,n−k+i+1, Fn|n−1,...,n−k+i+1)

(6.14)

Again iterating over every density in (6.13) the same way to that of (6.14) we finally get

f0,...,n =
n∏
i=0

fi

k∏
i=1

i∏
j=1

cj−1,i|i−1,...,j(Fj−1|i−1,...,j, Fi|i−1,...,j)

n∏
i=k+1

ci−1,i(Fi−1, Fi)
k−2∏
j=0

ci−k+j,i|i−1,...,i−k+j+1(Fi−k+j|i−1,...,i−k+j+1, Fi|i−1,...,i−k+j+1)

(6.15)
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Xt0 Xt1 · · · Xtk−1 Xtk Xtk+1 · · ·r0,1 r1,2 rk−2,k−1 rk−1,k rk,k+1 rk+1,k+2

r0,k−1|1,...,k−2

r0,k|1,...,k−1

r1,k−1|2,...,k−2

r1,k|2,...,k−1

r1,k+1|2,...,k

Figure 6.1 – NPBN representation of k-th order Markov process

For the NPBN density, according to its specification, we simply use the decomposition

given in (6.11) to formulate the joint density f0,...,n. Suffice to consider the parent or-

derings i− 1 <i i− 2 <i · · · <i i− k and j − 1 <j j − 2 <j · · · <j 0 for each vertex

i ∈ {k, ..., n} and j ∈ {0, ..., k}, respectively. By doing so, we obtain the same density

to that of eq. (6.15).

An NPBN representation of the k-th order Markov process is given in Fig. 6.1. The

total ordering is chosen as is in the conclusion of the proof of Theorem 6.4.1. The

NPBN representation thus provides that any k-th order Markov process can be jointly

characterised by its dependence structure, i.e. the graph set G, and its probabilistic part

given by the marginal distributions, conditional time-copula and rank correlations. In

order to provide more guidance on how to use Theorem 6.4.1, we summarize below the

step-by-step procedure that provides the NPBN representation of any k-th order Markov

process.

— for the graph part G

1. The elements composing the set of vertices V are obtained by taking the

corresponding random variable Xti given the time lattice 0 = t0 < t1 <

· · · < tn.

2. The set of edges E is directly derived from the exact dependence structure
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any k-th order Markov process exhibits; in other words, it is known that

{
Xt0 , . . . , Xtn−k−1

}
⊥ Xtn|

{
Xtn−k

, . . . , Xtn−1

}
⇔
{
Xt0 , . . . , Xtn−k−1

}
⊥ Xtn|pa (Xtn)

— for the probabilistic part P

3. The marginal distributions for each Xti are obtained for each element of the

sets PX or V which have a one-to-one correspondence

4. The set of time copula CE is obtained using, for each conditional copula

associated to an edge in E, eq. 6.5 details provided by Theorem 3.1 from

Darsow et al. [1992]

5. The rank correlation setRE is obtained using eq. (6.9) or eq. (6.10) for every

conditional rank correlation associated to an edge in E

6.5 Conditioning

Conditioning is known to be one of the major advantages BN possess. Recall

that compared to discrete BN framework, where conditioning can rapidly become in-

tractable, for the NPBN methodology it has been proven that whenever the Gaussian

copula is assumed conditioning can be done analytically [Hanea et al., 2006]. If the

Gaussian copula is not assumed, the NPBN can be sampled and a discrete version is ob-

tained so that traditional updating methods are summoned. As part of eq. (6.15), one of

the challenges is to estimate conditional distributions Fv|J , for v ∈ V and J ⊆ V \ {v}.

Notice that using conditional independence provided by the k-th order Markov property,

if, for any v ∈ V , pa(v) ⊆ J , then

fv|J =
f{v}∪J
fJ

=
f{v}∪pa(v)∪(J\pa(v))

fJ
=
fv|pa(v)fJ

fJ
= fv|pa(v)
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where pa(v) = {v − 1, ..., v − k}. More generally, we seek to determine the following

Fv|J(y|xJ) =

∫ y
−∞ f{v}∪J(x{v}∪J)dxv

fJ(xJ)
(6.16)

It is worth noting that a more general conditioning case was investigated, that is, for any

I, J ⊆ V , with I ⊆ V \ J such that we sought to determine the conditional distribution

FI|J . However, the conditional independence may not desirably be used upon the nature

of the sets I and J and thus does not further facilitate the factorization. We borrow from

Bauer and Czado [2016] the main thread, that is, to provide pair-copula decomposition

for marginal distributions. Let us first recall their development.

Theorem 6.5.1 (Theorem 4.3 Bauer and Czado [2016]). Let I ⊆ V , I−v = I \ {v}

and vmax the maximal vertex in I by the well ordering of the BN. Moreover, define

Svmax := {u ∈ pa(vmax)|{u} ⊥ I−vmax} and

Wvmax :=


∅ if I−vmax = ∅

{w1} ∪ pa(vmax;w1) if I−vmax ⊆ pa(vmax) and I−vmax 6= ∅

{w2} ∪ pa(vmax;w2) otherwise

where w1 and w2 denote the maximal vertex in I−vmax and pa(vmax) \ Svmax , respec-

tively, according to the parent ordering <vmax . Further let J denote the set of vertices

corresponding to the iterative procedure whose purpose is to obtain the pair-copula

decomposition for pdf fWvmax∪I−vmax
(and including Wvmax \ I). Then

fI(xI) =

∫
R|J|

∏
v∈I+

fv(xv)
∏
w∈Wv

cv,w|pa(v;w)(Fv|pa(v;w)(xv|xpa(v;w)), Fw|pa(v;w)(xw|xpa(v;w)))dxJ

(6.17)

We are thus interested in formulating fI for the NPBN representation given in The-

orem 6.4.1. In order to do so, we exploit the k-th order Markov property and the corre-
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sponding conditional independence property. For the reader’s convenience, we will use

as short-hand notation i to interchangeably refer to either vertex or random variableXti .

Now define M = {(i, j) ∈ I2 : |i − j| > k}. Depending on whether M is empty, we

have the the following lemmas.

Lemma 6.5.1. Let I+ be the well-ordered set I augmented with every missing vertex

between the minimal and maximal vertices in I and let J = I+ \ I . If M = ∅ then

fI(xI) =

∫
R|J|

∏
v∈I+

fv(xv)
∏
w∈Tv

cv,w|pa(v;w)(Fv|pa(v;w)(xv|xpa(v;w)), Fw|pa(v;w)(xw|xpa(v;w)))dxJ

(6.18)

where Tv := {w ∈ I+ : w < v}.

Proof. In the present case, the set M indicates whether there are vertices in I separated

by more than k other vertices. If this set is empty, when applying Theorem 4.3 in Bauer

and Czado [2016] the marginalization set J appears immediately.

For the more general case where M 6= ∅, we have the following lemma.

Lemma 6.5.2. Let the notation be in as in Lemma 6.5.1. Let K = vmax − (vmin + k)

and partition I+ as
K⋃
m≥0

I+
m where I+

m = {m + vmin, ...,m + vmin + k} with vmin and

vmax the minimal and maximal vertices in I , respectively. Likewise, let J =
K⋃
m≥0

Jm with

Jm = I+
m \ Im and Im = I+

m ∩ I . Then

fI(xI) =

∫
R|J|

∏
v∈I+\I+

0

fv(xv)
K∏
m=1

cvmmax,pa(vmmax)|pa(vmmax;pa(vmmax))(Fvmmax|pa(vmmax;pa(vmmax))(xvmmax
|xpa(vmmax;pa(vmmax))),

Fpa(vmmax)|pa(vmmax;pa(vmmax))(xpa(vmmax)|xpa(vmmax;pa(vmmax))))

× fI+
0

(xI+
0

)dxJ

(6.19)
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with

cv,pa(v)|pa(v;pa(v))(Fv|pa(v;pa(v))(xv|xpa(v;pa(v))), Fpa(v)|pa(v;pa(v))(xpa(v)|xpa(v;pa(v)))) =∏
w∈pa(v)

cv,w|pa(v;w)(Fv|pa(v;w)(xv|xpa(v;w)), Fw|pa(v;w)(xw|xpa(v;w)))

and {vmmax} is the maximal vertex of I+
m, i.e. {vmmax} = {m+ vmin + k}.

Proof. The main body of the proof uses again Theorem 4.3 from Bauer and Czado

[2016]. For the case |I| = 1 the proof is trivial. Thus, assume I−vmax 6= ∅. Observe

from the definition of Wv, the condition I−vmax ⊆ pa(vmax) is the main driving factor

to either obtain {w1}∪ pa(vmax;w1) or {w2}∪ pa(vmax;w2). Since we assume M 6= ∅,

then necessarily K > 0. The partition of I into sets Im each of length k facilitates the

use of the k-th order Markov property. The procedure proceeds backwards taking vertex

{vmmax} and testing condition I−vmax ⊆ pa(vmmax), where I+ gets shrunk of {vmmax} at

each iteration. First, by noticing that I+
m = pa(m + vmin + k) ∪ {m + vmin + k} =

fa(vmmax), where fa(v) is the family of v, and since M 6= ∅, I−vmax * pa(vmmax). Thus,

Wvmax is essentially determined by the third condition up to the last iteration when I+

reduces to I+
0 . When reaching I+

0 , Wvmax is determined by the second condition as

M = ∅ the term fI+
0

remains as last and is decomposed using Lemma 6.5.1 as the set

{I+
0 } is of length equal to k. Fig. 6.2 provides an illustration of the dynamics between

the sets that come into play which determine the factorization of I .

For each Im, with 1 ≤ m ≤ K, we thus compute

fIm(xIm) =

∫
R|Jm|

fvmmax
(xvmmax

)
∏

w∈pa(vmmax)

cvmmax,w|pa(vmmax;w)(Fvmmax|pa(vmmax;w)(xvmmax
|xpa(vmmax;w)), Fw|pa(vmmax;w)(xw|xpa(vmmax;w)))dxJm

Whenever Im = ∅, then we assume by convention that fIm = 1. By iterating over m, it
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I

I+
m

pa(vmmax)V

vmin vmaxvmmax

Jm

Figure 6.2 – Sets illustration at iteration m

finally yields

fI(xI) = fI+
0

(xI+
0

)
K∏
m=0

fIm(xIm)

In terms of efficiency, the algorithm summarizing Theorem 6.5.1 developed in Bauer

and Czado [2016] could be said to have a weak lower bound of |I| iterations to complete.

We believe that this lower bound can be improved to |I+| if the algorithm is fed with any

|I| from k-th order Markov NPBN framework. We also conjecture that Algorithm 18

summarizing Lemma 6.5.2 should have lower bound K ≤ |I+|, thus performing at

worse equally. We leave the proofs of these claims as future work. This reduction is

mostly due to the deletion of the unnecessary conditions meant to determine the set Wv.

In fact, it was pointed out in the proof of Lemma 6.5.2 that in the k-th order Markov

process framework, the set Wv is known mainly because the dependence structure is

known as well. This is a dramatic computation reduction compared to Bauer and Czado

[2016] who must construct the set in each iteration.

As an immediate consequence of Lemma 6.5.2, one can check that for Gaussian

k-th order Markov processes conditioning can be performed analytically on Gaussian

densities.
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Algorithme 1 : Factorization of the marginal density fI for any set I ⊆ V

input : Well ordered NPBN; set of parent ordering for each node; non-empty
set I ⊆ V ; order k of the Markov process

output : Factorisation fI

1 f ← 1;
2 K ← vmax − (vmin + k) ;
3 I+ ← {vmin, . . . , vmax} ; // I populated with all missing nodes

between vmin and vmax
4 J ← ∅ ; // indices of integration variables
5 for m ∈ {1, . . . , K} do
6 I+

m ← {m+ vmin, . . . ,m+ vmin + k};
7 vmmax ← m+ vmin + k;
8 f ← f · fvmmax

;
9 Im ← I ∩ I+

m;
10 Jm ← I+

m \ Im;
11 J ← J ∪ Jm;
12 if Im 6= ∅ then
13 for w ∈ pa(vmmax) do
14 f ← f ·

cw,vmmax|pa(w;vmmax)(Fw|pa(w;vmmax)(xw|xpa(w;vmmax)), Fvmmax|pa(w;vmmax)(xvmmax
|xpa(w;vmmax)))

15 end
16 end
17 end
/* Terminate by using Lemma 6.5.1 applied to the set

I+
0 */

18 f ←
∫
R|J| fdxJ ;

Corollary 6.5.1. Let X = (Xt)t∈T be an adapted k-th order Gaussian Markov process

and consider its dynamic NPBN representation. Then for any v ∈ V and any J ⊆ V−v,

the conditional density fv|J =
f{v}∪J
fJ

reduces to the division of Gaussian integrals.

Proof. Using Lemma 6.5.2 on both the numerator and the denominator, the marginal
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density of any set Im can be written as

fIm =

∫
R|Jm|

fvmmax

∏
w∈pa(vmmax)

cvmmax,w|pa(vmmax;w)(Fvmmax|pa(vmmax;w), Fw|pa(vmmax;w))dxJm

=

∫
R|Jm|

fvmmax
cvmmax−1,vmmax

(Fvmmax−1, Fvmmax
)
k−2∏
i=0

cm+vmin+i,vmmax|vmmax−1,...,m+vmin+i+1(Fm+vmin+i|vmmax−1,...,m+vmin+i+1, Fvmmax|vmmax−1,...,m+vmin+i+1)dxJm

eq. (6.14)
=

∫
R|Jm|

fm+vmin+k

fm+vmin+k|m+vmin,...,m+vmin+k−1

fm+vmin+k|m+vmin+1,...,m+vmin+k−1

fm+vmin+k|m+vmin+1,...,m+vmin+k−1

fm+vmin+k|m+vmin+2,...,m+vmin+k−1

× · · · ×
fm+vmin+k|m+vmin+k−2,m+vmin+k−1

fm+vmin+k|m+vmin+k−1

fm+vmin+k|m+vmin+k−1

fm+vmin+k

dxJm

=

∫
R|Jm|

fm+vmin+k|m+vmin,...,m+vmin+k−1dxJm

By definition, the density fm+vmin+k|m+vmin,...,m+vmin+k−1 is a Gaussian density and

when iterating over index m, fI is a multivariate Gaussian density as a product of Gaus-

sian density. The integral can always be analytically solved with the solution varying

on the nature of the set Jm. This finally proves the claim.

We proceed by illustrating our findings through the example of the Brownian mo-

tion.

Example 6.5.1 (Brownian motion). In this example we illustrate the framework devel-

oped above through the example of the Brownian motion denoted as B = {Bt, t ≥ 0}.

The Brownian motion is a first-order Markov process usually characterised by the fol-

lowing:

— P(B0 = 0) = 1 a.s.

— B has independent Gaussian increments, with Bs+t −Bs ∼ N (0, t)

— B has continuous path

Moreover, it is known to follow a multivariate Gaussian distribution with mean 0 and

autocorrelation ρ(Bti , Btj) =

√
ti
tj
, for tj > ti. Applying Theorem 6.4.1 and the corre-
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sponding procedure, we are able to give the following NPBN representation B = (G,P)

where

— G = (V,E) with (step 1. of the procedure at the conclusion of section 6.4)

V = {Bti : i ∈ N∗} and (step 2.) E = {(i, i+ 1) : i ∈ {0, ..., n− 1}} (see

Fig. 6.4 for dependence structure)

— P = (PB, CE,RE), where PX = {∀i, Bti ∼ N (0, ti)} is the set of all marginal

distributions of B (step 3.), CE (step 4.) denotes the set of time-copula density

given by [Darsow et al., 1992]

cBti,tj(u, v) =

√
tj

tj − ti
ϕ
(
(
√
tj Φ−1(v)−

√
ti Φ−1(u))/

√
tj − ti

)
ϕ(Φ−1(v))

for tj > ti

(6.20)

where Φ denotes the distribution function of a standard normal random variable

and ϕ is the density function of a standard normal random variable. RE (step

5.) denotes the set of rank correlations associated to each of the edges. We

therefore observe that the copula is non stationary for pair-wise time steps as

both ti and tj are parameters influencing the distribution of cBti,tj . This fact is

not obvious from the stochastic process formulation. Note that the copula (6.20)

could be more specifically written as

cBti,ti+1
(u, v) =

√
ti+1

t1

ϕ
(
(
√
ti+1 Φ−1(v)−

√
ti Φ−1(u))/

√
t1
)

ϕ(Φ−1(v))
(6.21)

since the NPBN representation reduces to only consider sequential time steps in

the case of first order Markov processes. Plots of the Brownian copula densities

and their corresponding contours may be found in Fig. 6.3. The non-stationarity

can easily be observed through both the densities and their corresponding con-

tours. The distributions resemble in many ways that of the Gaussian copula with

different correlation values. For the rank correlation setRE and since the Brow-
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Figure 6.3 – Brownian copula density (left) and corresponding contour (right) for two
different time steps.

nian motion is a Gaussian first order Markov process, ranks of autocorrelation

can be given as [Kurowicka and Cooke, 2006]

r(Bti , Btj) =
6

π
arcsin

(
1

2
ρ(Bti , Btj)

)

Fig. 6.4 provides a graphical visualization of Brownian motion as dynamic NPBN.
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Bt0 Bt1 · · · Btn · · ·r0,1 r1,2 rn−1,n rn,n+1

Figure 6.4 – NPBN representation of the Brownian motion

6.6 Conclusion

We proved in this chapter that a k-th order Markov process has a dynamic NPBN

representation. Guidance is given on how to obtain the various dependence metrics that

are sufficient and necessary. We additionally derive the conditions required to perform

conditioning which can be analytically done for the Gaussian case.

One of the advantages consists in having a clear vision on the dependence dynamics

expressed through the time copula and rank correlation. Compared to classic stochastic

process based modelling, this may shed the light on non-stationarity concerning de-

pendence. It thus enhances the description/characterization of dependencies. More

precisely, for Levy processes whose increments are independent and stationary, the as-

sociated time-copula may thus be non-stationary as is shown taking the example of the

Brownian motion.

The applicability of the Markov process representation may find interest in various

fields ranging from finance, where Markov processes such as the geometric Brownian

motion is key for stock pricing, to deterioration modelling, speech recognition, etc.

Basically, these are the areas into which Markovian features have been successfully

tested and validated. In this regard, one may investigate whether the corresponding

time-copula possesses an analytical inverse. In fact, validating the Markovian property

may be done through classic statistical tests, e.g. Fisher’s. However, validation may not

be sufficient for the whole model, especially concerning dependence aspects. Copula-

based models require the copula inversion as means for dependence validation through

sampling.



Chapter 7

Conclusions

This thesis has primarily investigated high-dimension deterioration problems using

Bayesian networks. The approach advocated in this manuscript is of both statistical and

probabilistic nature. The reason for choosing such a combination is twofold. First, as

systems get more and more sophisticated, uncertainty surrounding their reliability and

safety grows with it. Furthermore, the task of identifying and quantifying their causes,

which often happens to be uncertain as well, also increases in difficulty. Models ex-

clusively leaning on physics-based approaches fail to fully encompass the dynamics of

high-dimensional issues. Secondly, the availability of large data sets coming from mon-

itoring and sensors would steer one towards statistical approaches. We shed light on the

fact that Bayesian networks can be a versatile framework in which both statistical and

probabilistic modelling are smartly intertwined. Their efficiency in the field of bridge

deterioration modelling has been adequately addressed through Chapters 3, 4 and 5.

Although no reliability-oriented application was presented in Chapter 6, we can assert

that the developed approaches are in line with the previous ones for degradation-related

discussions on their effectiveness. A straightforward argument would be that regardless

of the class considered, the Markov property symbolized through conditional indepen-

dence has been, and continues being an attractive method in degradation modelling. For

119
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completeness, we reiterate the most important contributions each Chapter provides.

In Chapter 3, a crack growth model for cracks in welded details of the orthotropic

deck structure of steel bridges has been developed. Monitoring a complete bridge is

known to be expensive and might be unnecessary because crack growth developments

in different sections of the bridge are correlated. The Bayesian network model shows

a sharp advantage over other modelling choices in order to cope with this optimization

issue. Through the BN approach, a new conditioned failure year distribution is obtained

not only for the monitored detail, but also for other details of the bridge. The updated,

more accurate prediction of the failure year of the details considered causes a reduction

of unnecessary maintenance and helps preventing unplanned closures of the bridge due

to ad hoc repairs. Also, the BN makes possible the application of monitoring results

in order to make more accurate predictions about the non-monitored details. Finally

it enables a root cause analysis to underline the governing variables having the most

influence in the crack growth model.

Chapter 4 proposed a structured expert judgment method to quantify the degradation

model presented in Chapter 5. The aim of this study is to provide parametrization and

insight on degradation models via uncertainty assessments. In this sense, it was possible

to highlight the limited knowledge as well as attempting to give another viewpoint that

current practice has. Furthermore, although substantial material is available in various

fields, including in the domain of infrastructure reliability, no records were found for

this particular class of structures. Addressing the quantification problem demonstrates

a rather great uncertainty interval proving how challenging this task is, especially when

using discrete BN whose probabilistic quantification can be very demanding.

An extension to the classic, dynamic Bayesian network framework termed the covariate-

DBN is proposed in Chapter 5. A second dimension is added element-wise as well as

a method for indirectly linking them through a set of covariates. In the case where lim-

ited data is available, a formal mathematical framework is developed for making use of
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Cooke’s method for structured expert judgement to parametrize a Markov chain and the

covariate relationships between elements in the covariate-DBN. Sensitivity metrics that

allow measuring the change in amplitude between conditional and conditional distribu-

tions are also presented.

A real-world bridge network application was presented which emphasizes how traf-

fic and load information may serve as the relevant covariates to link bridge elements in

the covariate-DBN. While the model is applied to a specific bridge network scenario,

different sets of covariates could yet be envisioned in the same framework.

We were able to show that using the sensitivity metrics gave insightful information

such as posterior distributions that showed a difference as large as two order of mag-

nitude at some points in time compared to the unconditional case. In particular, it was

observed that continuous monitoring should prevail as opposed to condition-based (by

also taking into account cost constraints). Moreover, the sensitiveness of the inserted

information decreases in time so that pieces of evidence inserted at early epochs should

be preferred over later ones. In summary, numerical experiments show that information

is most valuable as early as possible, and the value of information decreases over time.

Thus, by advantageously combining the two above observations, one could selectively

opt for the most sensitive combinations of inference. This further results in substantially

decreasing the inference combinations.

In Chapter 6, it was proved that a k-th order Markov process has a dynamic NPBN

representation. Guidance is given on how to obtain the various dependence features

that are borrowed from the NPBN framework. We additionally derive the required con-

ditions to perform conditioning which can be analytically done for the Gaussian case.

One of the advantages consists in having a clear vision on the dependence dynamics

expressed through the time copula and rank correlation. Compared to classic stochastic

process based modelling, this may shed light on non-stationarity concerning depen-

dence. It thus enhances the description/characterization of dependencies. More pre-
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cisely, for Levy processes whose increments are independent and stationary, the associ-

ated time-copula may be non-stationary as is shown taking the example of the Brownian

motion.

Overall, the specific profile of degradation from which can be undertaken leads us to

explore two classes of BN having different probabilistic representations of dependence.

On the one hand, when ’classic’ Markov modelling can be chosen for deterioration

of civil infrastructure, dynamic BN appear to be well-suited. Despite the possible in-

tractability of quantification, the dependence translated by conditional probability tables

can be generically assessed, unless assuming homogeneity constraints. It was success-

fully shown and tested in Chapter 5 that taking a 4-state space deterioration having a

parent node featuring a 3-state space was not an obstacle for quantification purposes

using expert judgment.

The ability for the two classes of BN to handle continuous, discrete or mixture is

also a crucial aspect. Theoretically, discretizing continuous variables can almost al-

ways be performed. However, this is often at the cost of losing information that may

be substantial at the modelling stage and also computationally intensive. NPBN have

proven efficient primarily to achieve this objective. Probabilistic dependence is ex-

pressed through (conditional) copulae and (conditional) rank correlation. As briefly

discussed in Chapter 3, these two dependence characteristics allow capturing a great

variety of dependence patterns. This latter ability can be particularly desirable for struc-

tures’ reliability where dependence may not be always of the same "random" nature

across a stock of assets. Chapter 6 showed that dependence could also be handled dy-

namically when using NPBN. However, the probabilistic dependence metrics as well as

the marginal distributions are derived from the chosen Markov process which implicitly

assumes how the dependence and the marginal distributions are interacting. In the con-

text of reliability, random changes that may temporally impact both the uncertainty and

the corresponding dependence dynamics could also be captured.
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7.1 Perspectives

In Chapter 3, the next steps constitute further calibration of distributions and cor-

relations between parameters using field measurements and information from fatigue

tests. In addition, further validation of the outcomes of the model by comparing it to

reported cracks in actual bridges is suggested.

For the 2-dimension, dynamic BN model presented in Chapter 5, the main limi-

tation of the proposed methodology is the curse of dimensionality. Our model further

increases this complexity through the added spatial aspect. The theoretical requirements

to elicit expert opinion would become prohibitive as the number of states grows. As an

extension, the possibility of jumping by more than one state when deteriorating could be

taken into account, hence allowing for transitions probabilities p1,3, p1,4,, etc., or even

considering spontaneous actions improving the state of the bridge. This would entail for

instance the pi,j with i > j, to be non-null. From the parametrization perspective and,

in particular, regarding expert judgment, this would increase the number of items to add

to the current elicitation making it even more tedious for experts.

If one wants to keep discrete dynamic BN as the driving framework for large-scale

modelling, one of the few solutions to overcome the combinatorial quantification issue

would be to sample synthetic data from empirical distributions constructed from avail-

able data sets. A more viable option would be to investigate other classes of BN like the

one proposed in Chapter 6 to deal with continuous distributions where parametrization

requires significantly less inputs. Moreover, even in the absence of data, eliciting con-

ditional rank correlation from experts is gaining interest Morales et al. [2008], Werner

et al. [2017].

Chapter 6 essentially treats theoretical aspects of the NPBN, namely that it can

characterize any Markov process through its associated dependence characteristics and

structure. Mainly because of time constraints, the applicability of the model was only

briefly addressed. However, we believe that fields where Markov-based models prove
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effective could be of substantial interest. Reliability could be one of these domains

using, for example, the geometric Brownian motion to model deterioration. Validat-

ing the Markovian property may be done through classic statistical tests, e.g. Fisher’s.

However, validating the whole model should not reduce to the validation of the Markov

property as dependence aspects. In this regard, one may investigate whether the cor-

responding time-copula possesses an analytical inverse. In fact, Copula-based models

require the conditional copula inversion as means for dependence validation through

sampling.

An important observation that is common to the models presented in Chapter 3,

Chapter 4 and Chapter 5 is the flexibility in terms of the application. While studying

degradation for steel bridges was the main thread, one could potentially apply these

models to other bridge types and even other civil infrastructures. However, applications

are not only limited to degradation modelling but could include other fields than that of

reliability into which Markovian features have been successfully tested and validated.

The applicability of Markov process-based models finds interest in various other fields

ranging from speech recognition, finance, where the geometric Brownian motion is key

for stock pricing, to only name a few.

An extension to influence diagrams [Howard and Matheson, 1984] would provide

a decision making framework for all three models. For the approaches presented in

Chapter 3 and Chapter 5, this extension would not be hard as the discrete, dynamic BN

framework is readily applicable for this extension, especially in a Markovian context

[Lauritzen and Nilsson, 2001]. For the NPBN approaches depicted in Chapter 3 and

Chapter 6, literature lacks an extension that accounts for a decision-making framework.

More generally, for continuous BN, only the Gaussian case was extended to address de-

cision analysis through influence diagrams [Shachter and Kenley, 1989]. More research

in this direction would thus be advised.

The underlining Markovian assumption due to the D-separation property of BN used



125

throughout this whole thesis may be restrictive in some cases. Relaxing this assumption

to account for a broader spectrum of probabilistic graphs may thus be a direction to take.

As a matter of fact, more advanced BN-based models are emerging which, for instance,

allow for more freedom on the sojourn time distribution [Foulliaron et al., 2015].
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Appendix A

Structured Expert Judgment

We provide next the typical elicitation questionnaire each of the experts under-

went and from which data was obtained and further processed to calibrate eq. (5.9)

and eq. (5.10).
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Elicitation of uncertainty over steel 
bridges condition in time in the 
Netherlands 

1. Introduction 
This questionnaire is concerned with the elicitation of uncertainty distributions over duration of 

transition between bridges’ condition states. More precisely, we are interested of different classes 

of bridges whose characteristics can be found in the next sections. The type of data that this 

questionnaire refers to is presented in section Data of interest. The bridges resemble real bridges in 

the Netherlands in the sense that we could retrieve straightforwardly most of this data. 

Your personal details will not be used in the open literature to associate individual answers to 

individual experts. They are necessary however to warranty the accountability and reproducibility of 

this workshop as a scientific exercise. We therefore will be attaching your name and profession to 

this questionnaire. 

 

 

 

 

 

 

 

 

 

 

 

Name: 

 

Profession: 



 

 

2. Definition of the states 
This section describes the different condition states that will be considered as well as the various 

loading configurations. We first provide the definitions of the various degradation states bridges can 

be subject to. Note that condition scales used represent the general or overall condition of a bridge. 

Moreover the scale is not necessarily equidistant, which means that the difference between 

consecutive states might not be the same. We thus define the following condition states. 

Bridge condition states 
Green (denoted further G) 
This state corresponds to a perfect condition where no damage/problems are present; it is always 

considered that a newly constructed bridge is in this state. 

Yellow(denoted further as Y) 
This state corresponds to a bridge having at least one crack in the deck plate that can be detected by 

the UT measurements technique, namely that it can be greater or equal than 30mm up to 100mm. 

Orange(denoted further as O) 
This state corresponds to deterioration such that multiple cracks are present whose minimum length 

is greater or than 30mm and largest crack can be up to 500mm. In terms of maintenance, at least 

one crack needs repair. 

Red(denoted further as R) 
This state corresponds to multiple important fatigue cracks among which at least one crack is larger 

than 500mm in the deck plate and need imminent repair. Note that this condition does not mean a 

failed state but it requires urgent intervention and is synonym of threat to safety/functionality. 

Loading condition states 
We will refer to loading classes being either Heavy, Normal or Low. For Heavy the loading is to be 

associated with loading conditions that can be observed in the Randstad area, e.g. in highways A15 

or A16. A Normal loading is to be associated with loading conditions that resemble to those 

observed in the South area of the Netherlands, such as in highways A2 or A59. Finally, a Light loading 

refers to conditions observed in the North area of the Netherlands, e.g. highways A32 or A7. 

3. Crack measurement techniques 
As assumed previously, techniques are performed to detect cracks only in the deck plate. 

The first method is called the ‘Ultrasonic Testing’ (UT) which works with a scanner. This inspection 

technique works from the underside of the deck plate and it inspects the deck plate between the 

two crossbeams. The inspection can only start at approximately 30 mm from the crossbeam web. 

The probes are able to inspect through the paint on the steel parts. 

The second method considered is the ‘Crack Pulsed Eddy Current’ (Crack-PEC) which allows 

detecting cracks in the steel deck plate from the top side of the bridge without having to remove 

asphalt surfacing on fixed bridges. The technique uses pulsed magnetic fields to generate eddy 

currents in the steel. A measurement car with 8 PEC probes installed on it performs the inspection. 

Four probes are available for both wheel tracks. For an inspection of a bridge deck a measurement 

grid is defined on the deck. The measurement grid is likely to focus on the locations of the 



 

 

crossbeams and gives the locations where the inspection will be carried out. At each measurement 

point on the grid the inspected area per trough web is approximately the diameter of the probe, 100 

mm. 

Third method focuses on Visual Observation (VO) which is carried out by specialists. The purpose is 

to visually inspect the top layer in order to detect a crack at the surface. Additionally, a method 

denoted by craquelé can be considered. 

4. Data of interest 
The data of interest that this questionnaire addresses is over expected duration of transition 

between hypothetical bridges’ condition states. When degrading, at each time step bridges transit 

successively from one state to its next (worsened) state or remain in the same condition. We are 

interested in eliciting the uncertainty distribution over the expected duration that each bridge takes 

to perform these transitions in time. We could also name these quantities “expected first passage 

time” between these states. We would further like to assess transition dependencies in terms of 

loading. 

We consider two different classes of bridges, namely Moveable and Fixed. The deck plate thickness 

for moveable and fixed bridge is 12mm and 10mm respectively. The thickness and type of deck plate 

overlay are assumed as follows: 

- For moveable bridges a 6 mm thick epoxy overlay is assumed. 
- For fixed bridges a 100 mm asphalt (i.e. ZOAB) is applied. 

 
  



 

 

5. Questions 
You are asked to elicit the 5th, 50th and 95th quantiles of your uncertainty distribution over the 

quantities this elicitation is concerned with. The 5th quantile means that you think with probability 

95% the quantity will be greater than your estimate and conversely with probability 5% it will be 

smaller than the value you are providing. Same reasoning applies for the 50th and 95th quantiles. 

If you are to fill out the following answer 

5th quantile:               50th quantile:                     95th quantile:   

the interpretation is: 
- with 95% probability the realization (or best estimate) will be greater than   

- with 50% probability it will be greater than   

- with 5% probability it will be greater than   

with      . 

Only questions 1 – 5 are related to crack measurements for a steel bridge performed between 30 up 

to 35 years after the bridge was constructed. It is a 1km long steel box girder bridge containing 5 

traffic lanes. Figure 1 below shows the type of cracks considered as well as the geometry of the steel 

bridge. 

 

 

Figure 1: 3d view of the bridge considered cracks’ location (left); longitudinal cross-section with ‘trough to deck plate’ 
crack location (right); 

  



 

 

Questions 1 to 5 are considering a Normal loading condition through the time span between 2 

measurements. Unless explicitly mentioned, we are considering cracks only in the deck plate 

(referred to as DPS in Figure 1). Questions 6 - 8 are questions of interest regarding expected 

transitions and proportion of transitions accounting with loading dependencies. 

1. A crack was detected by the Crack-PEC technique to be a certain length 32 years after 

construction, what would be its length (in mm) the following year using the same measurement 

technique? 

 

 Crack length using 
‘Crack-PEC’ 32 years 
after construction 

(mm) 

5th
 50th 95th 

Crack length 
using ‘Crack-PEC’ 

the following 
year (mm) ? 

200 mm mm mm 

250 mm mm mm 

 

Comments/reasoning behind answer: 

  



 

 

2. A crack was detected by the Crack-PEC technique to be a certain length 30 years after 

construction, what would be its length (in mm) 3 years after using the same measurement 

technique? 

 

 Crack length using 
‘Crack-PEC’ (mm) at 

age 30 years  
5th

 50th 95th 

Crack length 
using ‘Crack-PEC’ 

3 years later 
(mm) ? 

100  mm mm mm 

200 mm mm mm 

300 mm mm mm 

 

Comments/reasoning behind answer:  



 

 

3. A crack was detected by the ‘Ultrasonic Testing’ technique to be a certain length 33 years after 

construction, what would be its length the following year using the same measurement 

technique? 

 

 Crack length using 
‘UT’ 33 years after 
construction (mm) 

5th
 50th 95th 

Crack length using 
‘UT’ the following 

year (mm) ? 

30 mm mm mm 

80 mm mm mm 

100 mm mm mm 

550 mm mm mm 

 

Comments/reasoning behind answer: 

  



 

 

4. In this question we are focusing on cracks in the ‘TRDPL’ location of the bridge (see Figure 1). A 

crack was detected by the VO technique to be a certain length 32 years after construction. What 

would be its detected length the following year and two years later using the same 

measurement technique? 

 

 Crack length using 
‘VO’ 32 years after 
construction (mm) 

5th 50th 95th 

Crack detected length 
using ‘VO’ the 

following year (mm) ? 
100 mm mm mm 

Crack detected length 
using ‘VO’ two years 

later (mm) ? 
100 mm mm mm 

 

Comments/reasoning behind answer: 

  



 

 

5. A crack was measured by the Crack-PEC technique to be a certain length 34 years after 

construction. What would be its length using the technique the following year? 

 

 Crack length using 
‘Crack-PEC’ 34 years 

after construction (mm) 
5th

 50th 95th 

Crack length using 
‘Crack-PEC’ the 

following year (mm) ? 
400 mm mm mm 

 

Comments/reasoning behind answer: 

  



 

 

Questions 6, 7 and 8 address expected duration and conditionality in terms of loading on transitions 

between bridges’ condition states. Notice that we now refer to the two classes of bridges described 

in section Data of Interest, namely Moveable and Fixed. 

6. Could you provide with the 5th, 50th and 95th quantiles of your uncertainty distribution about the 

expected years that it takes for the bridges considered to transit between the conditions defined 

in section 2 ? In this question, it is considered that the load configuration is Normal. 

 

 
Transitions/Quantiles 5th

 50th 95th 

Moveable 

Green to Yellow years years years 

Yellow to Orange years years years 

Orange to Red years years years 

Fixed 

Green to Yellow years years years 

Yellow to Orange years years years 

Orange to Red years years years 

 

Comments/reasoning behind answer:  



 

 

7. Same as previous, now considering a Heavy load configuration. 

 

 
Transitions/Quantiles 5th

 50th 95th 

Moveable 

Green to Yellow years years years 

Yellow to Orange years years years 

Orange to Red years years years 

Fixed 

Green to Yellow years years years 

Yellow to Orange years years years 

Orange to Red years years years 

 

Comments/reasoning behind answer: 

  



 

 

8. Consider a sample of 100 000 data points each representing the following event: 
“At time t-1 a bridge of interest (left column) was in a certain condition state and annual load 
solicitation observed to be either       or       ” as defined in section 2. Recall that we 
assume bridges can only deteriorate to their next worse state or remain in the same state at the 
next time step. Out of these 100 000 samples, what is the number of bridges transiting to their 
next worse state ? 
. This translated into more compact writing reads: 

 
#                                                                  
                                      
 
We take here a time step of 5 years. 

 
 

 

 
Probabilities/Quantiles 5th 50th 95th 

Moveable 

        |                      
   

                              
   

                              
   

                               
   

                               
   

                               
   

Fixed 

        |                      
   

                              
   

                              
   

                               
   

                               
   

                               
   

 
Comments/reasoning behind answer: 
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Olga Špačková and Daniel Straub. Dynamic Bayesian network for probabilistic model-

ing of tunnel excavation processes. Computer-Aided Civil and Infrastructure En-

gineering, 28(1):1–21, apr 2012. doi: 10.1111/j.1467-8667.2012.00759.x. URL

http://dx.doi.org/10.1111/j.1467-8667.2012.00759.x. 65

Daniel Straub. Stochastic modeling of deterioration processes through dynamic

bayesian networks. Journal of Engineering Mechanics, 135:1089–1099, October

2009. 48, 69, 70

Henrik Stensgaard Toft, John Dalsgaard Sørensen, T. Yalamas, and Julien Baussaron.

Reliability assessment of welded steel details in bridges using inspection, pages

3803–3810. C R C Press LLC, 2014. ISBN 978-1-13800-086-5 (Book+CD). 31

Neda Trifonova, Andrew Kenny, David Maxwell, Daniel Duplisea, Jose Fernandes, and

Allan Tucker. Spatio-temporal Bayesian network models with latent variables for

revealing trophic dynamics and functional networks in fisheries ecology. Ecological

http://dx.doi.org/10.1155/2014/360532
http://dx.doi.org/10.1214/ss/1177010132
http://dx.doi.org/10.1214/ss/1177010132
http://dx.doi.org/10.1111/j.1467-8667.2012.00759.x


159

Informatics, 30:142–158, nov 2015. doi: 10.1016/j.ecoinf.2015.10.003. URL http:

//dx.doi.org/10.1016/j.ecoinf.2015.10.003. 66

A. H. J. M. Vervuurt. Percentage file op rijkswegen analyse ndw-meetgegevens april

2013 (IQ-2014-33b). Technical report, TNO, November 2014. 80, 83, 86, 88

P. Weber, G. Medina-Oliva, C. Simon, and B. Iung. Overview on Bayesian networks

applications for dependability, risk analysis and maintenance areas. Engineering

Applications of Artificial Intelligence, 25(4):671–682, jun 2012. doi: 10.1016/j.

engappai.2010.06.002. URL http://dx.doi.org/10.1016/j.engappai.

2010.06.002. 2, 15, 68

Christoph Werner, Tim Bedford, Roger M. Cooke, Anca M. Hanea, and Oswaldo

Morales-Nápoles. Expert judgement for dependence in probabilistic modelling: A

systematic literature review and future research directions. European Journal of Op-

erational Research, 258(3):801–819, 2017. 4, 123

http://dx.doi.org/10.1016/j.ecoinf.2015.10.003
http://dx.doi.org/10.1016/j.ecoinf.2015.10.003
http://dx.doi.org/10.1016/j.engappai.2010.06.002
http://dx.doi.org/10.1016/j.engappai.2010.06.002






Thèse de Doctorat

Alex KOSGODAGAN - DALLA TORRE

Modélisation de dépendance en grandes dimensions par les réseaux Bayésiens
pour la détérioration d’infrastructures et autres applications
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for the degradation of civil infrastructures and other applications

Résumé
Cette thèse explore l’utilisation des réseaux Bayésiens (RB) afin de

répondre à des problématiques de dégradation en grandes

dimensions concernant des infrastructures du génie civil. Alors que

les approches traditionnelles basées l’évolution physique

déterministe de détérioration sont déficientes pour des problèmes à

grande échelle, les gestionnaires d’ouvrages ont développé une

connaissance de modèles nécessitant la gestion de l’incertain.

L’utilisation de la dépendance probabiliste se révèle être une

approche adéquate dans ce contexte tandis que la possibilité de

modéliser l’incertain est une composante attrayante.

Le concept de dépendance au sein des RB s’exprime

principalement de deux façons. D’une part, les probabilités

conditionnelles classiques s’appuyant le théorème de Bayes et

d’autre part, une classe de RB faisant l’usage de copules et

corrélation de rang comme mesures de dépendance. Nous

présentons à la fois des contributions théoriques et pratiques dans

le cadre de ces deux classes de RB; les RB dynamiques discrets et

les RB non paramétriques, respectivement. Des problématiques

concernant la paramétrisation de chacune des classes sont

également abordées. Dans un contexte théorique, nous montrons

que les RBNP permet de caractériser n’importe quel processus de

Markov.

Abstract
This thesis explores high-dimensional deterioration-related

problems using Bayesian networks (BN). Asset managers become

more and more familiar on how to reason with uncertainty as

traditional physics-based models fail to fully encompass the

dynamics of large-scale degradation issues. Probabilistic

dependence is able to achieve this while the ability to incorporate

randomness is enticing.

In fact, dependence in BN is mainly expressed in two ways. On the

one hand, classic conditional probabilities that lean on the

well-known Bayes rule and, on the other hand, a more recent class

of BN featuring copulae and rank correlation as dependence

metrics. Both theoretical and practical contributions are presented

for the two classes of BN referred to as discrete dynamic and

non-parametric BN, respectively. Issues related to the

parametrization for each class of BN are addressed.

For the discrete dynamic class, we extend the current framework by

incorporating an additional dimension. We observed that this

dimension allows to have more control on the deterioration

mechanism through the main endogenous governing variables

impacting it. For the non-parametric class, we demonstrate its

remarkable capacity to handle a high-dimension crack growth issue

for a steel bridge. We further show that this type of BN can

characterize any Markov process.
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Réseaux Bayésiens, Modèle de dégradation

probabiliste, Modélisation de copules, Jugement

structuré d’expert
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