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Je remercie chaleureusement mon directeur, Philip Boalch. Je lui suis reconnaissant pour son soutien, sa bienveillance et ses conseils pendant toutes mes années de thèse (et même bien avant, j'ai rencontré Philip pour la première fois quand j'étais étudiant de Master 1). Son approche des mathématiques a fondé la mienne; pendant nos longues discussions il m'a fait comprendre qu'une idée paraissant compliquée peut en fait être très simple et, en retour, des idées simples peuvent mener à des résultats très profonds. Sans son aide et sa patience, cette thèse n'aurait jamais abouti.

Hom(Γ, G)/G, la variété de G-caractères de Γ ( [START_REF] Lubotzky | Varieties of representations of nitely generated groups[END_REF][START_REF] Sikora | Character varieties[END_REF]). Lorsque Γ = π 1 (Σ, b) est le groupe fondamental d'une surface, alors sa structure est très riche et a déjà été étudiée en profondeur. Par exemple, si G est un groupe unitaire et Σ est compacte, la variété de caractères est un modèle de l'espace de modules des brés semi-stables sur Σ, d'après le théorème de Narasimhan et Seshadri [START_REF] Narasimhan | Stable and unitary vector bundles on a compact Riemann surface[END_REF]. En particulier, la variété de caractères admet une structure symplectique naturelle ( [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF][START_REF] Goldman | The symplectic nature of fundamental groups of surfaces[END_REF]).

Par contre, si G = GL n (C) et Σ est une courbe algébrique lisse quelconque, d'après la correspondance de Riemann-Hilbert [START_REF]équations diérentielles à points singuliers réguliers[END_REF] la variété de caractères paramètre les connexions singulières régulières sur des brés vectoriels algébriques sur Σ. Dans ce cas, les variétés de caractères possèdent une structure de Poisson naturelle. Les feuilles symplectiques sont obtenues en xant les classes de conjugaison de la monodromie locale autour de chaque trou.

Ainsi, si on dénote les points marqués a 1 , . . . , a m et si on choisit une classe de conjugaison C i ⊂ GL n (C) pour tout i, alors on obtient une variété algébrique symplectique M B (Σ, C) ⊂ Hom(π 1 (Σ), GL n (C))/GL n (C),

où C = (C 1 , . . . , C m ) ⊂ GL n (C) m .
Cette perspective suggère une généralisation vaste du concept de variété de caractères, en considérant des connexions plus générales, avec des singularités plus compliquées. La version de Deligne de la correspondance de Riemann-Hilbert a été étendue au cas irrégulier dans de nombreux travaux, notamment ceux de Sibuya [START_REF] Sibuya | Global theory of a second order linear ordinary dierential equation with a polynomial coecient[END_REF], Deligne [37], Balser-Jurkat-Lutz [START_REF] Balser | Birkho invariants and Stokes' multipliers for meromorphic linear dierential equations[END_REF], Malgrange [START_REF] Malgrange | La classication des connexions irrégulières à une variable, Mathematics and physics[END_REF], Babbitt-Varadarajan [START_REF] Babbitt | Local moduli for meromorphic dierential equations[END_REF],

Martinet-Ramis [START_REF] Martinet | Elementary acceleration and multisummability. I[END_REF] et Loday-Richaud [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and dierential Galois groups[END_REF].

Les connexions irrégulières sont classiées par leurs données de Elles partagent plusieurs propriétés avec le cas régulier : elles admettent des structures symplectiques holomorphes ( [START_REF] Boalch | Symplectic geometry and isomonodromic deformations[END_REF][START_REF]Symplectic manifolds and isomonodromic deformations[END_REF]), elles admettent des métriques hyperkahleriennes ( [START_REF] Biquard | Wild non-abelian Hodge theory on curves[END_REF]) (en relation avec les systèmes de Hitchin méromorphes), elles sont centrales dans la théorie d'isomonodromie ( [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary dierential equations with rational coecients. I. General theory and τ -function[END_REF]), elles admettent des actions des groupes discrets ( [START_REF]isomonodromy, and quantum Weyl groups[END_REF][START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]) et certains exemples sont liés avec le groupe quantique de Drin-feldJimbo ( [START_REF]Poisson Lie groups and Frobenius manifolds[END_REF][START_REF]isomonodromy, and quantum Weyl groups[END_REF]).

Par exemple, parmi les exemples qui apparaissent dans le cas simple de rang deux sur la sphère de Riemann P 1 avec un point marqué on trouve les variétés de caractères sauvages suivantes

M B (Σ, C) = B / / q T = {(S 1 , . . . , S 2k ) ∈ (U + × U -) k S 2k • • • S 1 = q}/ T,
où U + , U -⊂ GL 2 (C) sont des unipotents opposés, T = H est le tore diagonal agissant par la conjugaison diagonale et q ∈ T représente une classe de conjugaison C = {q} ⊂ T . Pour un choix de q générique, ces variétés sont lisses et symplectiques de dimension 2k -4.

Le but de cette thèse est d'étudier plusieurs questions concernant les variétés de caractères:

1) Puisque la théorie des variétés de caractères a été étendue au-delà des groupes linéaires, on voudrait fournir des exemples de variétés de caractères pour des groupes plus exotiques. Dans le Chapitre 3 on étudie un exemple d'une variété de caractères pour le groupe G 2 . Il se trouve qu'elle est isomorphe aux surfaces de Fricke symétriques et donne une belle description des orbites de groupe de tresses comme les droites dans le plan de Fano. Ceci est un travail en commun avec P. Boalch [START_REF] Boalch | Symmetric cubic surfaces and G 2 character varieties[END_REF] et d'après notre connaissance du sujet, c'est le premier exemple d'isomorphisme des variétés de caractères pour un groupe exotique.

2) On s'intéresse à la classication des variétés de caractères de dimension complexe deux. Ce sont des variétés hyperkahleriennes de dimension réelle quatre (instantons gravitationnels) et elles jouent un rôle important dans la physique. Dans le Chapitre 4 on construit un isomorphisme entre certaines familles innies de tels espaces. Ceci est en accord avec la conjecture de [START_REF]Hyperkähler manifolds and nonabelian hodge theory of (irregular) curves, 2012, text of a talk at Institut Henri Poincaré[END_REF], disant qu'il y a qu'un nombre ni de classes de déformation de telles variétés hyperkahlériennes.

3) On étudie les versions multiplicatives des variétés de carquois de Nakajima.

Les variétés de carquois multiplicatives classiques de Crawley-Boevey-Shaw et Yamakawa [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF][START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF] peuvent être construites à partir d'une brique élémentaire Pour chaque courbe Σ, il existe une variété algébrique ane complexe M B (Σ, n) = Hom(π 1 (Σ), GL n (C))/GL n (C)

B 2 (V 1 , V 2 ) = {(a, b) ∈ Hom(V 2 , V 1 ) ⊕ Hom(V 1 , V 2 ) det(1 + ab) = 0},
de classes d'isomorphisme des représentations du groupe fondamental de Σ, que l'on appelle la variété de caractères, ou en utilisant la terminologie de Simpson [START_REF]Moduli of representations of the fundamental group of a smooth projective variety. I[END_REF],

l'espace de modules de Betti.

La correspondance de Riemann-Hilbert fournit un isomorphisme analytique complexe entre M B (Σ, n) et l'espace de modules des connexions holomorphes (stables) sur les brés vectoriels de rang n sur Σ, l'espace de de Rham M DR (Σ, n), en envoyant une connexion ∇ sur sa donnée de monodromie. Cette application peut être interprétée comme une généralisation de l'application exponentielle. Elle est très transcendante et ne préserve pas les structures algébriques sur M DR et M B .

Par contre, il y a le troisième espace de modules: l'espace de Dolbeault desbrés de Higgs M Dol (Σ, n) qui est diéomorphe à l'espace M DR par l'isomorphisme de Hodge non-abélien. Grâce aux travaux de Corlette, Donaldson, Hitchin et Simpson [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF][START_REF] Donaldson | Twisted harmonic maps and the self-duality equations[END_REF][START_REF] Corlette | Flat G-bundles with canonical metrics[END_REF][START_REF] Simpson | Higgs bundles and local systems[END_REF], les trois espaces M B , M DR , M Dol peuvent être vus comme les réalisations d'une même variété hyperkahlerienne, vue dans deux structures complexes diérentes. L'avantage principal de l'espace de Betti est son caractère explicite il fournit des descriptions directes des espaces de modules, souvent peu évidentes quand on considère la variété comme l'espace de de Rham ou de Dolbeault.

Le cas classique de GL n (C) pour les courbes compactes possède plusieurs généralisations. D'un côté, on peut supposer que la courbe Σ a des points marqués distincts {a 1 , . . . , a k }. Ainsi, la variété de caractères régulière M B de la courbe percée Σ • = Σ \ {a 1 , . . . , a k } admet une structure de Poisson et ses feuilles symplectiques sont obtenues en xant les classes de conjugaison de la monodromie locale autour de chaque trou. Cette approche fournit des variétés symplectiques holomorphes. Cette structure symplectique a été construite pour la première fois de manière analytique par Atiyah et Bott [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] et plus tard par voie algébrique dans de nombreux travaux (par exemple [START_REF] Goldman | The symplectic nature of fundamental groups of surfaces[END_REF][START_REF] Karshon | An algebraic proof for the symplectic structure of moduli space[END_REF][START_REF] Fock | Flat connections and polyubles[END_REF][START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF][START_REF] Alekseev | Lie group valued moment maps[END_REF]). D'un autre côté, le groupe de structure G peut être un groupe de Lie complexe réductif connexe quelconque, et non plus seulement un groupe linéaire. Par conséquent, on peut considérer Hom(π 1 (Σ), G)/G l'espace de représentations du groupe fondamental de Σ dans le groupe de Lie G, ce qui donne des variétés plus générales. Au niveau des espaces de de Rham, les connexions sur des brés vectoriels sont remplacés par les connexions sur des G-brés principaux.

Dans ce cas là, l'extension de Deligne de la correspondance de Riemann-Hilbert [START_REF]équations diérentielles à points singuliers réguliers[END_REF] (pour les groupes linéaires) établit une bijection entre les ensembles des G-orbites dans Hom(π 1 (Σ • ), G) et des classes d'isomorphisme des connexions sur les G-brés algébriques sur Σ • avec des singularités régulières. Une extension similaire est valable pour les groupes plus généraux. La régularité des singularités en a i signie qu'il existe un prolongement du bré vectoriel en les points marqués tel que la connexion sur le bré prolongé a au plus des pôles simples en chaque a i .

Alors il est naturel de se demander: est-ce qu'il y a des exemples intéressants de variétés de caractères de groupes algébriques plus généraux? Dans le Chapitre 3, on étudie une variété de caractères régulière de la sphère avec quatre trous pour le groupe exotique G 2 (C). Pour SL 2 (C), la variété résultante est la célèbre famille des surfaces cubiques de Fricke [START_REF] Fricke | Vorlesungen über die Theorie der automorphen Funktionen[END_REF] xyz + x 2 + y 2 + z 2 + b 1 x + b 2 y + b 3 z + c = 0. Le groupe G 2 (C) est de dimension 14 et possède une classe de conjugaison très particulière C ⊂ G 2 (C) de dimension six, qui est un analogue complexe de la sphère de cette dimension. Si on prend trois copies de la classe C et on suppose la quatrième classe C ∞ ⊂ G 2 (C) générique (alors de dimension 12), la variété de caractères sera de dimension 3 × 6 + 12 -2 × 14 = 2.

On peut alors s'attendre à ce que cette variété soit liée aux surfaces de Fricke. C'est bien le cas et c'est le premier résultat principal de cette thèse: Théorème I. Il existe une famille à deux paramètres de variétés de caractères pour le groupe exceptionnel G 2 (C), isomorphes aux surfaces cubiques de Fricke symétriques et par conséquent aux variétés de caractères de groupe SL 2 (C).

De plus, on réexamine quelques orbites nies de groupe de tresses dans ces surfaces, trouvées dans [START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF][START_REF]Some explicit solutions to the Riemann-Hilbert problem, Dierential equations and quantum groups[END_REF]. En particulier, on considère la surface cubique de Klein (l'unique surface cubique avec l'orbite de groupe de tresse de taille 7, alors un lien avec un groupe de dimension 14 n'est pas étonnant) et on démontre:

Théorème II. Dans la surface cubique de Klein K, réalisée comme une variété de caractères de groupe G 2 , l'orbite du groupe de tresses de taille 7 correspond à un triplé de générateurs d'un groupe ni simple G 2 (F 2 ) ⊂ G 2 (C) d'ordre 6048. Un tel triplé de générateurs est déterminé uniquement par les trois droites passant par un point dans le plan de Fano P 2 (F 2 ).

Les objets d'étude principaux de cette thèse sont des variétés de caractères sauvages, construites au début de manière analytique, avec leur structure symplectique, par Boalch dans [START_REF] Boalch | Symplectic geometry and isomonodromic deformations[END_REF][START_REF]Symplectic manifolds and isomonodromic deformations[END_REF], généralisant l'approche de Atiyah et Bott, puis il a proposé une construction algébrique dans [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF]. Ces variétés apparaissent lorsqu'on assouplit les conditions sur la régularité des singularités et considère les connexions avec des pôles d'ordre supérieur. Comme dans le cas régulier, les variétés de caractères sauvages encodent les données de monodromie (Stokes) des connexions méromorphes irrégulières.

En revanche, puisque les données sont plus riches, ce n'est pas susant de considérer uniquement les représentations du groupe fondamental de Σ • .

En gros, une courbe irrégulière Σ est constitué d'une courbe Σ, d'un ensemble de points marqués a 1 , . . . , a k , et en tout point marqué, d'un type irrégulier Q i , qui décrit la singularité irrégulière. Ces données déterminent une nouvelle surface Σ l'éclatement réel de tous points marqués a i , encore avec quelques trous supplémentaires et un sous-groupe H = H 1 × . . . × H k ⊂ G k . L'espace de représentations rané est l'espace Hom S (Π, G), de représentations de Stokes du groupoïde fondamental Π de Σ avec des points bases sur les cercles du bord. Le groupe H agit sur cet espace et le quotient Hom S (Π, G)/H est la variété de caractères sauvage (l'espace de Betti sauvage). C'est encore une variété complexe ane qui admet une structure de Poisson. Cela signie que le point de vue sauvage fournit en abondance des exemples de variétés de Poisson/symplectiques holomorphes. Si les types irréguliers sont tous nuls, on récupère la variété de caractères usuelle avec sa structure de Poisson.

Les variétés de caractères sauvages paramètrent les classes d'isomorphisme des connexions irrégulières et un analogue irrégulièr de la correspondance de Riemann Hilbert a été établi il y a longtemps (au moins dans le cas de G = GL n (C)) dans de nombreux travaux, y compris ceux de Sibuya [START_REF] Sibuya | Global theory of a second order linear ordinary dierential equation with a polynomial coecient[END_REF], Deligne [37], BalserJurkat Lutz [START_REF] Balser | Birkho invariants and Stokes' multipliers for meromorphic linear dierential equations[END_REF], Malgrange [START_REF] Malgrange | La classication des connexions irrégulières à une variable, Mathematics and physics[END_REF], BabbittVaradarajan [START_REF] Babbitt | Local moduli for meromorphic dierential equations[END_REF], MartinetRamis [START_REF] Martinet | Elementary acceleration and multisummability. I[END_REF] et Loday-Richaud [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and dierential Galois groups[END_REF]. Ensuite, cette correspondance a été étendue par Boalch aux groupes plus généraux dans [START_REF]isomonodromy, and quantum Weyl groups[END_REF]. Néanmoins, la compréhension de sa version irrégulière est beaucoup plus faible que dans le cas régulier.

Une des propriétés remarquables des variétés de caractères sauvages est le fait qu'elles viennent en familles. Si on fait varier la courbe irrégulière initiale Σ la courbe Σ avec ses points marqués et les données irrégulières tous deux dans la manière lisse (dans le sens de [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]), alors les variétés de caractères sauvages restent isomorphes et s'assemblent dans un bré sur la base B. Ce système local de variétés, introduit dans le cas régulier par Simpson dans [START_REF]Moduli of representations of the fundamental group of a smooth projective variety[END_REF], admet une connexion plate non linéaire, un analogue non abélien de la connexion de GaussManin. Le groupe fondamental de la base agit sur les bres de ce bré par les automorphismes de Poisson et fournit un analogue sauvage de l'action du mapping class group sur les variétés de caractères régulières. Cela généralise les travaux sur les déformations isomonodromiques de JimboMiwaUeno [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary dierential equations with rational coecients. I. General theory and τ -function[END_REF] qui ont observé que dans le cas irrégulier l'espace de paramètres de déformation est plus grand, car c'est possible aussi de varier les types irréguliers. Notre motivation principale provient du fait que les équations de Painlevé sont d'ordre deux, donc les espaces de phase/variétés de caractères sont de dimension complexe deux et c'est bien connu que ce sont des surfaces cubiques. D'après les résultats de Biquard et Boalch [START_REF] Biquard | Wild non-abelian Hodge theory on curves[END_REF], qui ont généralisé les résultats de Hitchin au cas irrégulier, les variétés de caractères sauvages sont encore hyperkahleriennes et en dimension deux ce sont des exemples d'instantons gravitationnels.

Dans [START_REF]Hyperkähler manifolds and nonabelian hodge theory of (irregular) curves, 2012, text of a talk at Institut Henri Poincaré[END_REF] on trouve une liste conjecturale des 11 classes de déformation des variétés hyperkahleriennes de dimension réelle quatre émergeant dans la théorie de Hodge non abélienne, classiées par les symboles de Dynkin. Ce sont des analogues non compacts des surfaces K3 que l'on appellera surfaces H3, en l'honneur de Higgs, Hitchin et Hodge suivant [START_REF]Wild character varieties, Hitchin systems and Dynkin diagrams[END_REF]. D'un point de vue mathématique, ce problème de classication s'inscrit dans la classication des courbes quaternioniques qui sont des analogues quaternioniques de surfaces de Riemann, comme discuté par Atiyah [START_REF] Atiyah | Hyper-Kähler manifolds, Complex geometry and analysis[END_REF].

Surfaces H3

Régulier Sauvage (les symboles exotiques E 6 , E 7 , E 8 correspondent aux équations aux diérences de Painlevé). Les parenthèses signient que la singularité irrégulière est tordue.

Boalch a observé que pour tout espace/symbole sur la liste il y a une liste innie des espaces d'écho qui paramètrent les classes d'isomorphisme de connexions sur des bres sur P 1 de rangs arbitrairement grands (avec les types irréguliers bien choisis).

De plus, tous les espaces d'écho sont de dimension deux et alors on peut s'attendre à ce qu'elles soient isomorphes. Le but du Chapitre 3 est d'établir les cas A 0 , A 1 , A 2 de cette conjecture.

Ceci est fait en utilisant la nouvelle théorie des variétés de carquois multiplicatives, introduites par Boalch dans [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF]. Ce sont des analogues multiplicatifs des variétés de carquois de Nakajima [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF][START_REF]Quiver varieties and Kac-Moody algebras[END_REF]. Les variétés de carquois multiplicatives, en relation avec l'algèbre preprojective multiplicative, ont été introduites par Crawley-Boevey et Shaw [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF] et Yamakawa [START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF] et dans le cas de carquois étoilés elles sont isomorphes à celles de Boalch. Par contre dans d'autres cas il est eectivement possible d'obtenir des variétés qui ne sont pas isomorphes (cf. section 6. de [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF]). On verra dans Chapitre 5 un exemple plus général soulignant les diérences entre elles.

Certaines variétés de carquois de Nakajima ressemblent à l'espace de modules Une variété de carquois multiplicative est déterminée par un graphe Γ avec k sommets, vecteur de dimension d ∈ Z k >0 et un vecteur des paramètres q ∈ (C * ) k . Un type irrégulier non tordu Q détermine un graphe de ssion Γ(Q) et pour un bon choix de vecteur de dimension et de paramètres, la variété de carquois multiplicative Q(Γ(Q), q, d) est une variété de caractères.

Dans le cas des espaces d'écho A 1 , A 2 , A 3 , les graphes qui apparaissent sont leur extensions anes A 1 , A 2 , A 3 et pour les vecteurs de dimension avec toutes ses leurs coordonnées égales à un et des paramètres génériques, les variétés de carquois sont des surfaces cubiques du Tableau 1. Nous allons dénoter abusivement l'espace d'écho de type A 0 par Q( A 0 , q, d), même si ce n'est pas une variété de carquois et le choix du paramètre q est limité aux racines primitives de l'unité. Par contre, au niveau algébrique ce cas est le plus facile et donne des bonnes intuitions pour d'autres cas.

Le théorème principal du Chapitre 4 peut être énoncé comme suit: Théorème III. Pour i = 0, 1, 2, soit A i le graph de Dynkin correspondant et soit n le vecteur de dimension avec toutes ses coordonnées égales à n. Alors pour un choix générique de vecteur des paramètres q i il y a des isomorphismes

Q( A i , q i , n) Q( A i , q n i , 1).
Pour les carquois étoilés D 4 , E 6 , E 7 , E 8 un résultat similaire a été établi par Etingof

OblomkovRains dans [START_REF] Etingof | Generalized double ane Hecke algebras of rank 1 and quantized del Pezzo surfaces[END_REF]. Le Théorème III peut être compris comme une extension de ces résultats aux cas sauvages. De plus, on a démontré ces isomorphismes directement et on a fourni des relations explicites entre les paramètres des surfaces cubiques.

Le cas de la variété de carquois multiplicative de type A Quelques premiers polynômes continuants sont alors donnés par:

B(V 1 , V 2 ) [91, 92], déni pour un espace vectoriel gradué V = V 1 ⊕ V 2 : B(V 1 , V 2 ) = {(a, b) ∈ Hom(V 2 , V 1 ) ⊕ Hom(V 1 , V 2 ) det(1 + ab) = 0} qui est un GL(V 1 ) × GL(V 2 )-espace quasi-Hamiltonien avec l'application moment µ : B(V 1 , V 2 ) → GL(V 1 ) × GL(V 2 ) donnée par µ(a, b) = ((1 + ab) -1 , 1 + ba) ∈ GL(V 1 ) × GL(V 2 ) et la 2-forme quasi-Hamiltonienne ω = 1 2 Tr V 1 (1 + ab) -1 da ∧ db -Tr V 2 (1 + ba) -1 db ∧ da . En tant qu'ensemble, l'espace B(V 1 , V 2 ) est constitué de la paire des applications (a, b) entre V 1 , V
(∅) = 1 (x 1 ) = x 1 (x 1 , x 2 ) = x 1 x 2 + 1 (x 1 , x 2 , x 3 ) = x 1 x 2 x 3 + x 1 + x 3 (x 1 , x 2 , x 3 , x 4 ) = x 1 x 2 x 3 x 4 + x 1 x 2 + x 1 x 4 + x 3 x 4 + 1 (x 1 , x 2 , x 3 , x 4 , x 5 ) = x 1 x 2 x 3 x 4 x 5 + x 1 x 2 x 5 + x 1 x 2 x 5 + x 1 x 4 x 5 + + x 3 x 4 x 5 + x 1 + x 3 + x 5
Lorsque nous généralissons naturellement l'espace B(V 1 , V 2 ) et nous considèrons plus que deux mais toujours un nombre pair d'applications entre V 1 , V 2 , nous obtenons l'espace de ssion réduit B k (V ). Son application moment quasi-Hamiltonienne est encore donnée par un polynôme continuant, en à 2k variables (non commutatives). Si on suppose de plus que V = W ⊕W , alors on peut dénir des analogues des espaces B k (V ) avec un nombre impair d'applications dans End(W ). Il est naturel d'introduire la dénition suivante: Plusieures relations entre polynômes continuants, triangulations et équations différentielles sont connues 1 , mais ce n'est pas clair si la simplicité de la situation était 1 ConwayCoxeter [START_REF] Conway | Triangulated polygons and frieze patterns[END_REF][START_REF]Triangulated polygons and frieze patterns[END_REF] relient les triangulations et continuants (en utilisant les déterminants de Schäi et motifs des frises), comparer aussi l'analyse dans la section 2.3.4.6. du livre de Knuth [START_REF] Knuth | The art of computer programming[END_REF]. Du point de vue des équations diérentielles, les congurations des droites de Stokes s'élève à une triangulation d'un polygone (cf. les travaux de Voros [START_REF] Voros | The return of the quartic oscillator: the complex WKB method[END_REF], p.271). C'est une idée bien connue (voir par exemple [START_REF] Wasow | Asymptotic expansions for ordinary dierential equations[END_REF], Section 29) d'approximer (quoi?) par l'équation d'Airy sur tout triangle et cette approche est en relation avec les algèbres amassées de Fomin et Zelevinsky [START_REF] Fomin | Cluster algebras I: Foundations[END_REF] (voir aussi [START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF][START_REF] Gaiotto | Wall-crossing, Hitchin systems, and the WKB approximation[END_REF]). observée. Notamment, l'approche quasi-Hamiltonienne donne un moyen pour coller les triangles d'Airy B 1 que l'on peut pousser ensemble et former les parties ouvertes de B k . On s'attend à ce que cette approche puisse être étendue à n'importe quelle surface partagée en polygones. 

B k = {(b 1 , . . . , b k ) ∈ End(W ) k det(b 1 , . . . , b k ) = 0},
ω k = 1 2 -Tr(b 1 , . . . , b k ) -1 D 2 (b 1 , . . . , b k ) + Tr(b k , . . . , b 1 ) -1 D 2 (b k , . . . , b 1 ) , où on pose D 2 (b 1 , . . . , b k ) = i<j (b 1 , . . . , b i-1 )db i (b i+1 , . . . , b j-1 )db j (b j+1 , . . . , b k ).

English version 1.2.1 Summary

Suppose Γ is a nitely generated group and G is a Lie group. Then we can consider Hom(Γ, G)/G, the G-character variety of Γ ( [START_REF] Lubotzky | Varieties of representations of nitely generated groups[END_REF][START_REF] Sikora | Character varieties[END_REF]). In the case when Γ = π 1 (Σ, b) is a fundamental group of a Riemann surface, then the character varieties have rich structure and have been much studied. For example, when G is a unitary group and Σ is compact, then the character variety is a model of the moduli space of semistable vector bundles on Σ, after the theorem of Narasimhan and Seshadri [START_REF] Narasimhan | Stable and unitary vector bundles on a compact Riemann surface[END_REF]. In particular, the character variety has a natural symplectic structure ( [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF][START_REF] Goldman | The symplectic nature of fundamental groups of surfaces[END_REF]).

On the other hand if G = GL n (C) and Σ is any smooth complex algebraic curve, then by Deligne's RiemannHilbert correspondence [START_REF]équations diérentielles à points singuliers réguliers[END_REF] the character variety parametrises regular singular connections on algebraic vector bundles on Σ. In Thus if we label the marked points a 1 , . . . , a m and choose a conjugacy class C i ⊂ GL n (C) for each i, then we obtain an algebraic symplectic variety

M B (Σ, C) ⊂ Hom(π 1 (Σ), GL n (C))/GL n (C), where C = (C 1 , . . . , C m ) ⊂ GL n (C) m .
This perspective suggests a vast generalisation of the notion of character variety by considering more general connections with more complicated singularities and Deligne's RiemannHilbert correspondence has been extended to the irregular case. This is work of many people, including Sibuya [START_REF] Sibuya | Global theory of a second order linear ordinary dierential equation with a polynomial coecient[END_REF], Deligne [37], BalserJurkat Lutz [START_REF] Balser | Birkho invariants and Stokes' multipliers for meromorphic linear dierential equations[END_REF], Malgrange [START_REF] Malgrange | La classication des connexions irrégulières à une variable, Mathematics and physics[END_REF], BabbittVaradarajan [START_REF] Babbitt | Local moduli for meromorphic dierential equations[END_REF], MartinetRamis [START_REF] Martinet | Elementary acceleration and multisummability. I[END_REF] and Loday-Richaud [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and dierential Galois groups[END_REF].

The irregular connections are classied by their Stokes data, generalising the fundamental group representations, which form the wild character varieties

M B (Σ, C) ⊂ Hom S (Π, G)/H.
Here Hom S (Π, G) is the space of Stokes representations, H is a subgroup of G m and C is a conjugacy class in H. This will be dened later in Chapter 2.

They have similar properties to the tame case above: holomorphic symplectic structures ( [START_REF] Boalch | Symplectic geometry and isomonodromic deformations[END_REF][START_REF]Symplectic manifolds and isomonodromic deformations[END_REF]), hyperkähler metrics ( [START_REF] Biquard | Wild non-abelian Hodge theory on curves[END_REF]) (relating them to meromorphic Hitchin systems), they are central to the theory of isomonodromy ( [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary dierential equations with rational coecients. I. General theory and τ -function[END_REF]), admit discrete group actions generalising the mapping class group actions ( [START_REF]isomonodromy, and quantum Weyl groups[END_REF][START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]) and simple examples are known to underlie the DrinfeldJimbo quantum groups ( [START_REF]Poisson Lie groups and Frobenius manifolds[END_REF][START_REF]isomonodromy, and quantum Weyl groups[END_REF]).

For example, among the examples occurring in the simple case of rank two on the Riemann sphere P 1 with one marked point, are the following wild character varieties

M B (Σ, C) = B / / q T = {(S 1 , . . . , S 2k ) ∈ (U + × U -) k S 2k • • • S 1 = q}/ T,
where U + , U -⊂ GL 2 (C) are opposite unipotents, T = H is the diagonal torus acting by diagonal conjugation and q ∈ T represents a conjugacy class C = {q} ⊂ T . For generic q these are smooth symplectic varieties of dimension 2k -4.

The aim of this thesis is to study several questions about character varieties:

1) Since the theory of character varieties has been extended beyond general lineal groups, we would like to provide examples of tame character varieties for more exotic groups. In Chapter 3 we study an example a G 2 character variety. It turns out that it is isomorphic to symmetric Fricke surfaces and gives a particularly nice description of braid group orbits on such surface in terms of lines on the Fano plane. This is a joint work with P. Boalch [START_REF] Boalch | Symmetric cubic surfaces and G 2 character varieties[END_REF] and to our knowledge it is the rst example of an isomorphism of character varieties for an exotic group.

2) We are interested in classifying wild character varieties of complex dimension two. They are hyperkähler manifolds of real dimension four (gravitational instantons) and so have physical interest. In Chapter 4 we will construct isomorphisms between certain innite families of such spaces, supporting the conjecture of [START_REF]Hyperkähler manifolds and nonabelian hodge theory of (irregular) curves, 2012, text of a talk at Institut Henri Poincaré[END_REF] that there are only a nite number of deformation classes of such hyperkähler manifolds.

3) We will study multiplicative versions of the Nakajima quiver varieties. The classical multiplicative quiver varieties of Crawley-BoeveyShaw and Yamakawa [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF][START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF] can be constructed out of a single piece

B 2 (V 1 , V 2 ) = {(a, b) ∈ Hom(V 2 , V 1 ) ⊕ Hom(V 1 , V 2 ) det(1 + ab) = 0},
which we understand as an edge. It consists of pairs of maps between two nodes (along an edge joining them), with vector spaces V 1 , V 2 attached. In the context of wild character varieties a natural generalisation occurs, involving some more general pieces. In Chapter 5 we will nd a formula generalising Yamakawa's expression for the multiplicative symplectic structure to a k-fold edge. The results of Chapter 5 are joint work in progress with P. Boalch and D. Yamakawa. 4) Also, we will study direct relations between the wild character varieties and the classical multiplicative quiver varieties. It turns out, as we will prove in Chapter 5, that in the case of such k-fold edge and G = GL n (C), the classical multiplicative quiver varieties embed as open subsets of the generalised ones. Moreover, we show that such embeddings are counted by Catalan numbers and can be understood in terms of factorisations of Euler's continuants [START_REF] Euler | Specimen algorithmi singularis[END_REF] or triangulations of a polygon.

Further motivations and statement of results

The goal of this thesis is to study certain classes of examples of complex wild character varieties, which are generalisations of the classical, tame character varieties. These spaces play fundamental role in both mathematics and physics and have various interesting both analytic and algebraic properties. Almost all results of this thesis concern the wild character varieties of general linear groups GL n (C), however some statements hold true in full generality, for arbitrary complex reductive Lie groups.

Given a curve Σ, there is a complex ane algebraic variety

M B (Σ, n) = Hom(π 1 (Σ), GL n (C))/GL n (C)
of isomorphism classes of representations of the fundamental group of Σ, the character variety, or using Simpson's terminology [START_REF]Moduli of representations of the fundamental group of a smooth projective variety. I[END_REF], the Betti moduli space.

The celebrated RiemannHilbert correspondence establishes a complex analytic isomorphism between M B (Σ, n) and the moduli space of (stable) holomorphic connections on rank n vector bundles on Σ, the de Rham space M DR (Σ, n), by sending a connection ∇ to its monodromy data. This map can be interpreted as a generalisation of the exponential map. It is highly transcendental and does not preserve the algebraic structures of M DR and M B .

On the other hand, there is the third moduli space: the Dolbeault moduli space of Higgs bundles M Dol (Σ, n) which is in turn dieomorphic to the space M DR via the non-abelian Hodge isomorphism. By the works of Corlette, Donaldson, Hitchin and Simpson [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF][START_REF] Donaldson | Twisted harmonic maps and the self-duality equations[END_REF][START_REF] Corlette | Flat G-bundles with canonical metrics[END_REF][START_REF] Simpson | Higgs bundles and local systems[END_REF], the three spaces M B , M DR , M Dol can be seen as incarnations of the same hyperkähler manifold, viewed in two dierent complex structures and dierent points of view showcase dierent proprieties of the underlying manifold.

The main advantage of the Betti approach is its explicitness it provides direct descriptions of the moduli spaces, often non-obvious from dierent points of view.

The classical GL n (C) story for compact curves has various generalizations. One can suppose that the curve Σ has distinct marked points {a 1 , . . . , a k }. Then the tame character variety M B of the punctured curve Σ • = Σ \ {a 1 , . . . , a k } has an algebraic Poisson structure and the symplectic leaves are obtained by xing the conjugacy classes around the punctures. This approach provides a variety of holomorphic symplectic manifolds. These structures appeared rst from the analytic perspective of Atiyah and Bott [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] and have further been understood in dierent, more algebraic ways in works of many people ( [START_REF] Goldman | The symplectic nature of fundamental groups of surfaces[END_REF][START_REF] Karshon | An algebraic proof for the symplectic structure of moduli space[END_REF][START_REF] Fock | Flat connections and polyubles[END_REF][START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF][START_REF] Alekseev | Lie group valued moment maps[END_REF] just to name a few).

Further, one can suppose that the structure group G is an arbitrary complex connected reductive Lie group, not necessarily GL n (C) and consider the space Hom(π 1 (Σ), G)/G of representations of the fundamental group of Σ into the Lie group G, providing more general character varieties. On the de Rham side, the connections on vector bundles are replaced by connections on principal G-bundles. The Deligne's extension of the RiemannHilbert correspondence [START_REF]équations diérentielles à points singuliers réguliers[END_REF] to this case (for the general linear groups) establishes a bijection between the sets of G-orbits in Hom(π 1 (Σ • ), G) and isomorphism classes of connections on algebraic G-bundles on Σ • with regular singularities and similar extension holds for more general groups. The regularity of the singularities at a i means that the vector bundle extends through all marked points and the connection on the extended bundle has at most simple poles at each a i .

Thus it is natural to ask: are there interesting examples of character varieties for more general algebraic groups? In Chapter 3 we study the tame character variety of the four-punctured sphere for the exotic group G 2 (C). For SL 2 (C), the resulting character variety is the famous Fricke family of cubic surfaces [START_REF] Fricke | Vorlesungen über die Theorie der automorphen Funktionen[END_REF] xyz On the other hand, the group G 2 (C) is of dimension 14 and has a special conjugacy class C ⊂ G 2 (C) of dimension six, which is a complex analogue of a 6-sphere. If we take three copies of the class C and choose the fourth class to be a generic conjugacy class C ∞ ⊂ G 2 (C), which is of dimension 12, the resulting character variety will be of dimension 3 × 6 + 12 -2 × 14 = 2, so one would expect that this symplectic variety will be related to the Fricke surfaces. This is indeed true and the rst main result might be stated as follows:

+ x 2 + y 2 + z 2 + b 1 x + b 2 y + b 3 z + c = 0.
Theorem I. There is a two parameter family of character varieties for the exceptional group G 2 (C) which are isomorphic to smooth symmetric Fricke cubic surfaces, and thus to character varieties for the group SL 2 (C).

Moreover, we have revisited some of the nite braid group orbits in cubic surfaces, found in [START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF][START_REF]Some explicit solutions to the Riemann-Hilbert problem, Dierential equations and quantum groups[END_REF]. In particular, we considered the Klein cubic surface (which is the unique cubic surface containing a braid group orbit of size 7, thus a link with group of dimension 14 is expected) and showed that:

Theorem II. If the Klein cubic surface K is realised as a G 2 character variety then the braid orbit of size 7 in K corresponds to some triples of generators of the nite simple group G 2 (F 2 ) ⊂ G 2 (C) of order 6048. One such triple of generators is uniquely determined by the three lines passing through a single point in the Fano plane P 2 (F 2 ).

The main objects of interest of this manuscript are the wild character varieties, rst constructed analytically, together with their symplectic structure, by Boalch in [START_REF] Boalch | Symplectic geometry and isomonodromic deformations[END_REF][START_REF]Symplectic manifolds and isomonodromic deformations[END_REF], generalising the approach of Atiyah and Bott, and later an algebraic approach was given in [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF]. Such varieties arise when one relaxes the condition on the regularity of singularities and allows more general connections with higher order poles. Just like in the regular singular case, the wild character varieties encode the monodromy (Stokes) data of such irregular meromorphic connections but since the data is much more rich, it is not sucient to consider only the representations of the fundamental group of Σ • . Roughly speaking, an irregular curve Σ consists of a curve Σ, a set of marked points a 1 , . . . , a k and at each marked point an irregular type Q i , which describes the irregular singularity. This data determines a new surface Σ, which is the real-oriented blow up of Σ at the marked points with some additional punctures, and a subgroup The wild character varieties parametrise the isomorphism classes of irregular connections and the irregular analogue of the RiemannHilbert correspondence has been established a long time ago (at least for G = GL n (C)) by works of many people, including Sibuya [START_REF] Sibuya | Global theory of a second order linear ordinary dierential equation with a polynomial coecient[END_REF], Deligne [37], BalserJurkatLutz [START_REF] Balser | Birkho invariants and Stokes' multipliers for meromorphic linear dierential equations[END_REF], Malgrange [START_REF] Malgrange | La classication des connexions irrégulières à une variable, Mathematics and physics[END_REF], Babbitt Varadarajan [START_REF] Babbitt | Local moduli for meromorphic dierential equations[END_REF], MartinetRamis [START_REF] Martinet | Elementary acceleration and multisummability. I[END_REF] and Loday-Richaud [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and dierential Galois groups[END_REF]. Then it was extended to general groups in [START_REF]isomonodromy, and quantum Weyl groups[END_REF]. It is however much less understood than the regular version of this map. Moreover, there are various, although in the end equivalent, approaches to irregular connections, such as Stokes structures and Stokes local systems.

H = H 1 × . . . × H k ⊂ G k ,
One of the remarkable properties of the wild character varieties is the fact that they come in families. If one varies the initial irregular curve Σ both the curve Σ with marked points, and the irregular data in a smooth way (in the sense of [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]), then the resulting wild character varieties stay isomorphic and t together into a bre bundle over the base B. This local system of varieties, as introduced in the tame case by Simpson in [START_REF]Moduli of representations of the fundamental group of a smooth projective variety[END_REF], admits a nonlinear at connection, the nonabelian analogue of the GaussManin connection, and the fundamental group of the base acts on the bers of this bundle by Poisson automorphisms, providing the wild analogue of the classical mapping class group actions on the tame character varieties. This generalises some works on isomonodromic deformations of JimboMiwaUeno [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary dierential equations with rational coecients. I. General theory and τ -function[END_REF] who back then observed that in the irregular case the space of deformation parameters is bigger than in the tame case, since one can vary not only the Riemann surface, but also the irregular types.

In some cases it is possible to write the GaussManin connection in explicit co-ordinates and obtain a genuine nonlinear dierential equation. For example, for appropriate choice of poles, all six Painlevé transcendents arise this way for Σ = P 1 and G = SL 2 (C) but only Painlevé VI admits a realisation by the means of regular singularities. Thus, being phase spaces of nonlinear ODEs, these examples of wild character varieties are of great interest and have been extensively studied. Our main motivation was the fact that the Painlevé equations are nonlinear of second order, hence the resulting phase spaces/wild character varieties are of complex dimension two and it is known that they are in fact cubic surfaces. By the work of Biquard and Boalch [START_REF] Biquard | Wild non-abelian Hodge theory on curves[END_REF], who generalised the results of Hitchin to the irregular case, the wild character varieties are again hyperkähler manifolds and in dimension two they are examples of gravitational instantons.

In [START_REF]Hyperkähler manifolds and nonabelian hodge theory of (irregular) curves, 2012, text of a talk at Institut Henri Poincaré[END_REF] there is a conjectural list of 11 deformation classes of real four-dimensional hyperkähler manifolds arising in non-abelian Hodge theory, and these are classied by Dynkin symbols. These are noncompact analogues of K3 surfaces and we will call them H3 surfaces, after Higgs, Hitchin and Hodge as suggested in [START_REF]Wild character varieties, Hitchin systems and Dynkin diagrams[END_REF]. From mathematical perspective, this classication problem ts into classication of quaternionic curves which are quaternionic analogues of Riemann surfaces, as discussed by Atiyah [START_REF] Atiyah | Hyper-Kähler manifolds, Complex geometry and analysis[END_REF].

H3 surfaces

Tame Wild E 6 , E Boalch observed that for each space/symbol on the list there is an innite family of echo spaces, parametrising isomorphism classes of certain connections on arbitrarily high rank bundles on P 1 , for a suitable choice of irregular types. Moreover, all the echo spaces are of dimension two, and hence there should be isomorphisms between them. The aim of Chapter 3 is to establish the A 0 , A 1 and A 2 cases of this conjecture. This is done with the use of theory of new multiplicative quiver varieties, introduced by Boalch in [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF]. These are multiplicative analogues of Nakajima's quiver varieties [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF][START_REF]Quiver varieties and Kac-Moody algebras[END_REF]. The multiplicative quiver varieties, in relation to the multiplicative preprojective algebra, have been rst introduced by Crawley-Boevey and Shaw [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF] and Yamakawa [START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF] and in the case of star-shaped quivers, they are isomorphic to the quiver varieties of [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF]. However in other cases such isomorphisms do not need to hold (cf. Section 6. of [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF]) and we will see in Chapter 5 a more general example highlighting the dierence between them.

Certain Nakajima quiver varieties resemble the moduli spaces M DR , in the sense that they are isomorphic to an open subset M * ⊂ M DR corresponding to isomorphism classes of connections on trivial vector bundles. On the other hand, the appropriate examples of new multiplicative quiver varieties not only resemble the wild Betti spaces, but they are in fact isomorphic. The language of multiplicative quiver varieties provides a convenient description of the A 1 , A 2 , A 3 , D 4 , E 6 , E 7 and E 8 echo spaces as multiplicative quiver varieties of the corresponding ane Dynkin graph. In particular, it gives access to the wild echo spaces of type A 1 , A 2 , A 3 .

A multiplicative quiver variety is determined by a graph Γ with k vertices, dimension vector d ∈ Z k >0 and a parameter vector ∈ (C * ) k . In turn, an untwisted irregular type Q determines a ssion graph Γ(Q), and for the right choice of dimension vector and parameters, the resulting multiplicative quiver variety Q(Γ(Q), d, q) is the wild character variety.

In the cases of A 1 , A 2 , A 3 echo spaces, the graphs appearing are their ane extensions A 1 , A 2 , A 3 and for the dimension vectors with coordinates equal to one and generic parameters their multiplicative quiver varieties are the cubic surfaces from the Table 1. We will abusively denote the A 0 echo space Q( A 0 , q, d), even though it is not a quiver variety and the choice of parameter q is limited to primitive roots of unity. This case however is the easiest and gives a good sense of algebraic phenomena appearing in the remaining cases, such as similarities with Zhedanov's Askey-Wilson algebra AW (3) [START_REF] Zhedanov | Hidden symmetry of Askey-Wilson polynomials[END_REF]. The main theorem of Chapter 4 can be now stated as follows:

Theorem III. For i = 0, 1, 2, let A i denote the ane Dynkin graph and let n denote the associated dimension vector with all coordinates equal to n. Then for a choice of generic parameters q i , there are isomorphisms

Q( A i , q i , n) Q( A i , q n i , 1).
For the star-shaped quivers D 4 , E 6 , E 7 , E 8 a result of similar avor has been established by EtingofOblomkovRains in [START_REF] Etingof | Generalized double ane Hecke algebras of rank 1 and quantized del Pezzo surfaces[END_REF]. Theorem III. can be understood as an extension of these results to some of the wild cases. Moreover, we prove these isomorphisms explicitly and give direct relations between the parameters of the cubics. The case of the ane A 3 multiplicative quiver variety, related to Painleveé V equation, is

missing, but we have gathered evidence suggesting that the methods used in the rst three cases should extend there as well.

Another motivation for studying wild character varieties comes from the works of AlexeevMalkinMeinrenken on quasi-Hamiltonian geometry [START_REF] Alekseev | Lie group valued moment maps[END_REF], extended to the complex groups. Their approach yields a construction of algebraic Poisson/symplectic structures on tame character varieties by the means of nite-dimensional multiplicative symplectic quotients, where the moment maps take values in the Lie group G, rather than in the dual of the Lie algebra g. 

V = V 1 ⊕ V 2 B(V 1 , V 2 ) = {(a, b) ∈ Hom(V 2 , V 1 ) ⊕ Hom(V 1 , V 2 ) det(1 + ab) = 0} which is a quasi-Hamiltonian GL(V 1 )×GL(V 2 )-space with moment map µ : B(V 1 , V 2 ) → GL(V 1 ) × GL(V 2 ) given by µ(a, b) = ((1 + ab) -1 , 1 + ba) ∈ GL(V 1 ) × GL(V 2 )
and the quasi-Hamiltonian two-form

ω = 1 2 Tr V 1 (1 + ab) -1 da ∧ db -Tr V 2 (1 + ba) -1 db ∧ da .
As a set, the space

B(V 1 , V 2 ) consists of pairs of maps (a, b) between V 1 , V 2 such that 1 + ab is invertible.
It is isomorphic to the reduced ssion space B(V ) and the polynomial expression 1 + ab is the second Euler continuant [START_REF] Euler | Specimen algorithmi singularis[END_REF]. More generally, we can dene the n-th continuant polynomial (x 1 , . . . , x n ) by the recursive relation

(x 1 , . . . , x n ) = (x 1 , . . . , x n-1 )x n + (x 1 , . . . , x n-2 ).
The rst few continuants are given by the following formulas:

(∅) = 1 (x 1 ) = x 1 (x 1 , x 2 ) = x 1 x 2 + 1 (x 1 , x 2 , x 3 ) = x 1 x 2 x 3 + x 1 + x 3 (x 1 , x 2 , x 3 , x 4 ) = x 1 x 2 x 3 x 4 + x 1 x 2 + x 1 x 4 + x 3 x 4 + 1 (x 1 , x 2 , x 3 , x 4 , x 5 ) = x 1 x 2 x 3 x 4 x 5 + x 1 x 2 x 5 + x 1 x 2 x 5 + x 1 x 4 x 5 + + x 3 x 4 x 5 + x 1 + x 3 + x 5
When we naturally generalise the space B(V 1 , V 2 ) and consider more than two, but still even number of maps between V 1 , V 2 , we obtain the reduced ssion space B k (V ).

Its quasi-Hamiltonian moment map again involves a continuant polynomial, in 2k (non-commuting) variables. If we further suppose that V = W ⊕ W , then we can dene the analogues of the spaces B k (V ) with odd number of maps in End(W ). This leads to the following denition

B k = {(b 1 , . . . , b k ) ∈ End(W ) k det(b 1 , . . . , b k ) = 0},
which is a (possibly twisted) quasi-Hamiltonian GL(W ) × GL(W )-space and the moment map is the continuant. The simplest piece B 1 is then just a copy of GL(W )

with zero two-form.

In Chapter 5 we study the factorisations of continuants, ie. decompositions of continuants into product of shorter continuants and in particular the full decompositions into continuants of length one, which correspond to pieces isomorphic to Finally, we give an explicit formula for the quasi-Hamiltonian form on the space B k , which also involves the continuants and generalises the formula of Van den Bergh.

B 1 GL(W ).
Theorem V. The quasi-Hamiltonian two-form on the space B k is given by

ω k = 1 2 -Tr(b 1 , . . . , b k ) -1 D 2 (b 1 , . . . , b k ) + Tr(b k , . . . , b 1 ) -1 D 2 (b k , . . . , b 1 ) ,
where we dene 2 ConwayCoxeter [START_REF] Conway | Triangulated polygons and frieze patterns[END_REF][START_REF]Triangulated polygons and frieze patterns[END_REF] relate triangulations and continuants (via Schäi determinants and frieze patterns), see also the review in section 2.3.4.6. of Knuth's book [START_REF] Knuth | The art of computer programming[END_REF]. From the dierential equations viewpoint the congurations of Stokes lines amount to a triangulation of a polygon (e.g. by Voros' work, [START_REF] Voros | The return of the quartic oscillator: the complex WKB method[END_REF], p.271). It is a well-known idea (see e.g. [START_REF] Wasow | Asymptotic expansions for ordinary dierential equations[END_REF], Section 29) to approximate by the Airy equation on each such triangle and in turn this is related to the cluster algebras of Fomin and Zelevinsky [START_REF] Fomin | Cluster algebras I: Foundations[END_REF] (see also e.g. [START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF][START_REF] Gaiotto | Wall-crossing, Hitchin systems, and the WKB approximation[END_REF]).

Chapter 2

Background material

We will present some basic denitions and notations following [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]. Even though presented for arbitrary complex reductive groups, all the examples and applications in this manuscript will concern the general linear case, thus it is sucient to think of (block) diagonal/triangular/unipotent matrix groups as of Levi, parabolic and unipotent groups.

Irregular curves and wild character varieties 2.1.1 Irregular types

In this section we dene the untwisted and unramied irregular types and describe the Stokes data determined by such objects.

Fix a connected complex reductive group G and a maximal torus T ⊂ G, and let t ⊂ g denote the corresponding Lie algebras. Let ∆ be a complex disk and let a ∈ ∆ be a marked point. Let O denote the formal completion at a of the ring of holomorphic functions on ∆ and let K denote its eld of fractions. Denition 2.1.1. An (unramied) irregular type at a is an element

Q ∈ t( K)/t( O).
This denition is coordinate-free. One may think of an irregular type as a t-valued meromorphic function germ, well dened modulo holomorphic terms. If we choose a local coordinate z on ∆ vanishing at a, then O = C[[z]], K = C((z)) and the irregular type Q may be written in the form

Q = A r z kr + • • • + A 1 z k 1 for integers 0 < k 1 < • • • < k r and elements A i ∈ t ⊂ g for i = 1, . . . , r.
As noted in Remark 8.6 of [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF], one can consider more general twisted irregular types by replacing the Cartan subalgebra t((z)) ⊂ g((z)) by a nonconjugate one, which exists since C((z)) is not algebraically closed. On the other hand, in the whole manuscript we will encounter only one example of a space related to a twisted irregular type, and thus we skip the technical details and we will address that case separately when necessary.

Let R ⊂ t * be the set of roots of g relative to t and recall the root decomposition

g = t ⊕ α∈R g α , where g α = {X ∈ g | [Y, X] = α(Y )X for all Y ∈ t}. is the root space of α ∈ R.
Hence for each root α ∈ R we can dene

q α = α • Q,
which is a meromorphic function modulo holomorphic terms. We dene the degree deg(q α ) of q α to be its pole order at a. Using the local coordinate z at a, we may identify it with an element of z -1 C[z -1 ] and deg(q α ) is the degree of the polynomial q α (1/z). It is a non-negative integer, equal to zero if q α does not have a pole at a.

A non-zero irregular type Q at a determines two special families of directions around a. It will be convenient to think about them using the real oriented blow up at a. Denition 2.1.2. The real oriented blow up of the origin in R 2 is the set R 2 = [0, ∞) × S 1 with projection map π : R 2 → R 2 given by (r,

x 1 , x 2 ) → (rx 1 , rx 2 ), where x 1 , x 2 are coordinates on R 2 such that x 2 1 + x 2 2 = 1.
The map π is a dieomorphism of R 2 \({0}×S 1 ) onto R 2 \{0} and we have π -1 (0) S 1 . The real oriented blow up replaces the origin of R 2 by the circle S 1 of real oriented directions. Since the construction is local, we can blow up a point on any real twomanifold M . The blowup M of a two-manifold M at x is an oriented real two-manifold with boundary circle ∂. The points of ∂ correspond to real oriented directions at x and an interval I ⊂ ∂ determines germs of sectors at x with opening I.

Let ∆ → ∆ denote real oriented blow up of ∆ at a. Given a root α ∈ R, consider the function exp(q α (z)) and its behavior as z approaches zero along the rays in dierent directions d ∈ S 1 . Denition 2.1.3. A direction d ∈ S 1 will be said to be a singular direction supported by α (or an anti-Stokes direction) if exp(q α (z)) has maximal decay as z → 0 along the direction d.

Thus if c α /z k is the most singular term of q α , these are the directions along which c α /z k is real and negative.

In a similar fashion, we may dene the Stokes directions. Denition 2.1.4. A direction d ∈ S 1 will be said to be a Stokes direction supported by α if the most singular term c α /z k of q α is imaginary and negative along d.

While crossing the Stokes direction, exp(q α ) changes its asymptotics (and we can not compare the asymptotics of solutions along this ray). 

Stokes data from irregular types

In this section we will describe how an irregular type determines Stokes data, which is an irregular analogue of the usual monodromy data for holomorphic connections.

Recall that a non-zero irregular type Q at a ∈ ∆ determines a family A ⊂ S 1 of singular (anti-Stokes) directions. For a singular direction d ∈ A we denote by R(d) ⊂ R the subset of roots supporting d and further, for an integer k, we denote by R(d, k) ⊂ R(d) the subset of roots α ∈ R(d) such that deg(q α ) = k. Finally, we consider the root groups [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF], the collection of groups

U α = exp(g α ) ⊂ G corresponding to α ∈ R. By Lemma 7.3. of
{U α α ∈ R(d)} directly spans a unipotent subgroup of G. It means that the product map φ : α∈R(d) U α → G
is an algebraic isomorphism onto its image and this image is a well-dened unipotent subgroup of G. Moreover, the image does not depend on the order of U α in the product. It is worth noting that this isomorphism usually is not a homomorphism of groups, but an isomorphism of algebraic varieties. For example, if we consider a triple of unipotent subgroups og GL(3)

U 12 =   1 a 0 0 1 0 0 0 1   , U 13 =   1 0 b 0 1 0 0 0 1   , U 23 =   1 0 0 0 1 c 0 0 1   ,
the direct product U 12 U 13 U 23 is isomorphic to the full upper-triangular unipotent subgroup of GL( 3), but it is not a homomorphism of groups. Denition 2.1.6. The Stokes group Sto d associated with a singular direction d ∈ A is the unipotent subgroup of G uniquely determined by the image of the product map φ:

Sto d = φ( α∈R(d) U α ) ⊂ G.
One can further break Sto(d) into pieces, using the subset R(d, k). The spaces of Stokes data and their variations will be crucial objects of this manuscript. Let us introduce two more ingredients, related to Stokes data on a disk and P 1 . This will be some of the building blocks for more general spaces of Stokes data

A(Q) = G × Sto(Q) × H. (2.1)
(where H is the centraliser of Q in G). We will see in the next section how the space A(Q) appears in the context of wild character varieties and later, in section 2.2 how the space A(Q) ts into the setup of quasi-Hamiltonian geometry.

Let d 1 , . . . , d m ⊂ A be the singular directions determined by an irregular type Q turning in the positive sense as the index grows. We will denote by S i the associated unipotent group Sto(d i ). There is an action of the group G × H on the space A(Q)

given by

(g, k)(C, S, h) = (kCg -1 , kSk -1 , khk -1 ) (2.2)
for an element (g, k) ∈ G × H and S = (S 1 , . . . S m ).

Moreover, the space A(Q) is a quasi-Hamiltonian G × H space (we will introduce the language of quasi-Hamiltonian spaces later in this chapter). In brief, that there is a G × H-valued (and equivariant for the action (2.2)) moment map µ : A(Q) → G × H and a two-form ω on A(Q) satisfying certain conditions generalising the classical Hamiltonian axioms. This allows us to introduce the space

B(Q) = A(Q) / / 1 G, (2.3) reduction of A(Q) at the value 1 of this moment map. S 2 S 3 S 4 S 1 h C Figure 2.1: A way to picture the space A(Q)
Finally, we can gather some of the Stokes groups together and form, by the direct spanning property, some bigger unipotent subgroups of G. Recall from Denition 2.1.3 that a singular direction d ⊂ A is supported by a root α ∈ R if and only if q α = α • Q = α(A k )/z k is real and negative, for z in the direction d. Therefore A is invariant under rotation by π/k and l := s/2k = #A/2k is an integer. We dene a half-period to be an ordered l-tuple of consecutive singular directions in A. 

A(Q) = G × H × Sto d → G A k H = G × H × (U + × U -) k .
We will call the groups U + , U -the full Stokes groups. For example, for G = GL 3 (C)

and irregular type

Q = A z 2
with A regular semisimple, there are 12 singular directions and the rst three Stokes groups Sto d ⊂ GL 3 (C) can be identied with U 12 , U 13 , U 23 which directly span U + . Similarly, the next three Stokes groups directly span U -and so on.

Irregular curves

Denition 2.1.9. An irregular curve (or wild Riemann surface) is a smooth compact Riemann surface, possibly with non-empty boundary, together with a nite number of points a 1 , a 2 , . . . in the interior of Σ and an irregular type Q i at each marked point.

We will denote an irregular curve (Σ, a i , Q i ) by Σ. Thus an irregular curve Σ is a choice of a smooth compact Riemann surface Σ, nite number of marked points a 1 , a 2 , . . . ∈ Σ and irregular types Q i at each a i .

Remark. We will say that an irregular curve is algebraic if its boundary is empty (it may, and will, have marked points). If m denotes the number of marked points plus the number of boundary components, we will always assume that m > 0.

Given an irregular curve Σ, let Σ → Σ denote the real two-manifold with boundary obtained by taking the real oriented blow up of Σ at each marked point a i , i.e. replacing each marked point a i with the circle of oriented real tangent directions at a i .

Denote the boundary of Σ by ∂ and label the boundary circles of Σ as ∂ 1 , . . . , ∂ m . The irregular type Q i determines its centraliser, which is a subgroup

H i = C G (Q i ) ⊂ G, singular directions A i ⊂ ∂ i , Stokes groups Sto d ⊂ G for each d ∈ A i , Stokes directions S i ⊂ ∂ i and a disjoint union I ⊂ ∂ of nite number of contractible subsets of ∂. We set Q i = 0 if ∂ i was already a boundary component of Σ.
Let H i be a small tubular neighbourhood of ∂ i and puncture Σ once in its interior near each singular direction d ∈ A i , i = 1, . . . , m such that the punctures lie on the external boundary of H i . Draw small cilia on the surface Σ between each puncture and the corresponding singular direction d ∈ A i ⊂ Σ such that they do not cross. We introduce the cilia to help keep track of the punctures, they are not an essential part of the construction. Let Σ ⊂ Σ denote the corresponding punctured surface. Choose a marked point b i ∈ ∂ i in each boundary component of Σ, and dene Π to be the fundamental groupoid of Σ based at {b 1 , . . . , b m }:

Π = Π 1 ( Σ, {b 1 , . . . , b m }),
consisting of homotopy classes of paths in Σ with endpoints in the set {b 1 , . . . , b m }.

Therefore we may consider the space Hom(Π, G) of morphisms from the groupoid Π to the group G. Explicitly, an element ρ ∈ Hom(Π, G) consists of a choice of an element ρ(γ) ∈ G for each path in Π such that for any composable paths γ 1 , γ 2 we have 

ρ(γ 1 • γ 2 ) = ρ(γ 1 )ρ(γ 2 ).
∂ i , then ρ(γ i ) ∈ H i .
There is an action of the group

H := H 1 × • • • × H m ⊂ G m on the space of Stokes representations as follows. The m-tuple (k 1 , . . . , k m ) ∈ H sends ρ to the representation ρ such that ρ (γ) = k j ρ(γ)k -1 i from any path γ ∈ Π from b i to b j .
Example 2.1.10. Let Σ is a disk with one marked point a and an irregular type Q at a. Then Σ has two boundary components: the external boundary of the disk ∂ and a circle ∂ a coming from the real oriented blow up at a. Thus the set of basepoints has two elements {b, b a }, one at each boundary component, and upon choosing appropriate generating paths the space Hom S (Π, G) can be identied with the space A(Q) of (2.1).

If Σ is the Riemann sphere P 1 , then one has just the basepoint at the boundary circle and Hom S (Π, G) can be identied with B(Q).

Similarly as in the case of A(Q), the space Hom S (Π, G) has a quasi-Hamiltonian structure. We will state the result for completeness, but the reader might skip it and just assume that after a suitable choice of paths, there exists an explicit algebraic presentation of the space Hom S (Π, G) given by equation (2.5).

Theorem 2.1.11 ([21], Theorem 3., [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF], Theorems 7.6.,8.2.). The space Hom S (Π, G)

of Stokes representations of Π in G is a smooth complex ane variety and is a quasi- Hamiltonian H-space, where H = H 1 × • • • × H m ⊂ G m .
More generally, upon choosing appropriate generating paths of the fundamental groupoid, we can identify Hom S (Π, G) with a reduction by G, at the identity of the moment map µ G , of the fusion product

D g G A(Q 1 ) G • • • G A(Q m ), (2.4) 
where D is the internally fused double and g is the genus of Σ. As a set, this fusion product is just the product of spaces.

More explicitly, if we write an element of A(

Q i ) = G × H i × Sto(Q i ) as (C i , h i , S) and D g as {(a i , b i ) | a i , b i ∈ G, i = 1, .
. . , g}, then we may identify µ -1 G (1)/G with the subvariety of (2.4) cut out by the equations µ

G = 1, C 1 = 1. The equation µ G = 1 takes form [a 1 , b 1 ] • • • [a g , b g ]µ 1 • • • µ m = 1, (2.5)
where

µ i = C -1 i h i • • • S i 2 S i 1 C i and [a, b] = aba -1 b -1 .
We end this section with the denition of the wild character variety.

Denition 2.1.12. The wild character variety (the wild Betti space) M B (Σ) is the quasi-Hamiltonian reduction Hom S (Π, G)/H.

Just like in the tame case, the symplectic leaves of M B (Σ), obtained by xing the conjugacy classes of (formal) monodromies in H i at each a i , which is equivalent to xing a conjugacy class C ⊂ H = H 1 × . . . × H m . We will denote the resulting symplectic variety by M B (Σ, C). It is the quasi-Hamiltonian reduction

M B (Σ, C) = Hom S (Π, G) / / C H (2.6)
of the space of Stokes representations at the value C ⊂ H of the moment map. If it does not lead to confusion, we will also call the resulting symplectic manifold the wild character variety.

Covers and irregular classes

In this section we will briey introduce an alternative point of view on the irregular types, allowing us to consider more general objects, irregular classes. This discussion has appeared in [START_REF] Boalch | Twisted wild character varieties[END_REF] (cf. Section 3. there) in much greater generality, here we just assemble together basic ideas. This approach is closer to original Deligne's approach using Stokes structures [37]. Denition 2.1.13. Let G be a group. A G-torsor is a set P with a free transitive right action of G.

A basic example of a torsor is the set of frames of an n-dimensional complex vector space V , which we can write as P = Iso(C n , V ). A point of P is an isomorphism Φ : C n → V and the group G = GL n (C) acts on P on the right Φ → Φ • g, changing the basis of C n .

A morphism of two G-torsors is a G-equivariant map φ : P 1 → P 2 , ie. a map satisfying φ(pg) = φ(p)g for all p ∈ P 1 , g ∈ G. Any such map is an isomorphism of G-torsors. Let F denote the trivial G-torsor, which is a copy of G acting on itself by right multiplication. A framing of a G-torsor P is an isomorphism θ ∈ Iso(F, P) and the choice of θ is equivalent to choosing a point p ∈ P.

Suppose now that Σ is a connected space (a circle, a Riemann surface etc.). Denition 2.1.14. A local system L over Σ is a covering map π : L → Σ. A G-local system L is a local system such that each bre is a G-torsor.

In other words, a G-local system is a sheaf which is a torsor under the constant sheaf G over Σ, which means that L(U ) is a G-torsor for small open U ⊂ Σ. If we replace the constant sheaf G by a local system G of groups, then we can dene a notion of a G-local system L in a similar fashion: it is a sheaf which is a torsor under G, so L(U ) is a G(U )-torsor for suciently small open U ⊂ Σ.

Let ∂ denote a circle and let π : I → ∂ be a covering map (a local system of sets), so the ber I p = π -1 (p) is a discrete set for any p ∈ ∂ and when p moves around the circle, the sets are locally constant. After one turn we obtain a monodromy automorphism σ : I p → I p . The monodromy σ determines I up to isomorphism.

Suppose that Σ is a curve and 0 ∈ Σ is a smooth point. Let π : Σ → Σ denote the real oriented blow up of Σ at 0. Let ∂ = π -1 (0) denote the boundary circle of real directions emanating from 0 in Σ. Open intervals U ⊂ ∂ parametrise germs of open sectors Sect(U ) at zero with opening U . Let z be a local coordinate vanishing at 0 and dene I to be the local system of ∂ whose local sections are complex polynomials in some root z -1/r of z -1 with zero constant term. Said dierently, local sections of I are of the form

q = k i=1 a i z -i/r (2.7)
for a i ∈ C, k, r ∈ N. We can think of those as of exponents of exponential factors appearing in formal solutions of linear dierential equations. The local system I is the local system of exponents.

Each local section of I has a well dened ramication index, which is the minimal integer r = ram(q)

1 such that q ∈ C[z -1/r ]. Therefore each local section q of I becomes single valued on the r-fold cyclic covering circle of ∂, where r = ram(q). The degree of q is the smallest integer k = deg(q) possible in (2.7).

Each connected component I ∈ π 0 (I) is a circle nitely covering ∂ and we will denote such covering by π : I → ∂ and its ramication index by r = ram(I). Hence we can understand the local system I as a disjoint union of many circles covering ∂. If we choose an interval U ⊂ ∂, then π -1 (U ) has r distinct components and each component determines a function on Sect(U ). These functions are the r branches of of the single valued function upstairs (they form a single Galois orbit). If b ∈ U is a basepoint and we choose a point i ∈ π -1 (b), then we get a well dened function q i on Sect(U ) and the analytic continuation of q i yields the other functions q j . A choice of a connected component I ⊂ I is equivalent to choosing a Galois orbit of such functions. The Stokes example of Airy equation y = 9xy [START_REF] Stokes | On the discontinuity of arbitrary constants which appear in divergent developments[END_REF] involves the Galois orbit {2z -3/2 , -2z -3/2 } and determines a component I ⊂ I. In general, for a positive rational number c ∈ Q, we will denote the element I ⊂ I determined by the Galois orbit of z -c by z -c . We can further extend it to all functions q of the form (2.7) and write I = q . The projection of the components I, which we will call Stokes diagrams, represent the asymptotic behavior of the exponential factors exp(q i ), which we can compare away from the intersection points. We have already encountered them in Section 2.1.1 in the untwisted case. If the powers of z are integer, then the coverings have ramication index one and are just disjoint unions of trivial covers.

Figure 2.3: The two-fold covering determined by q = z -2 , -z -2 is a union of two circles Each circle I = q ⊂ I (except 0 ) has some special points on it. A point p is called a point of maximal decay, if the corresponding function q is such that exp(q) has maximal decay as z → 0 in that direction. For example, if q = λz -i/n , these are the i points where q is real and negative. They are marked on the red circle on the pictures and in the untwisted case are the same as anti-Stokes directions (and the intersection points are the Stokes directions). More generally, an untwisted irregular type Q for GL n (C) determines such cover by comparing the asymptotics of exp(q i ) (where q i are the elements on the diagonal of Q).

For G = GL n (C), we can generalise the notion of an irregular type to an irregular class as in Proposition 8 of [START_REF] Boalch | Twisted wild character varieties[END_REF]. In particular, all untwisted irregular classes arise this way. We will say that an irregular class is twisted if any of its components has nontrivial monodromy. Such covers I → ∂ can get pretty complicated and quickly get out of hand. However they give access to more general singularities and can be further generalised beyond GL n (C) or for non-constant sheaves of groups. In this manuscript we will encounter only one kind of twisted irregular classes, which now we are going to describe.

Example 2.1.16 ([31], Example 6.2.). Let k be an odd integer and set c = k/2.

Consider the irregular class I = z -c with multiplicity n I = n, which gives the following spaces.

Let W be a complex vector space of dimension n and let V = W ⊕ W . Thus the elements of G := GL(V ) can be written as 2 × 2 block matrices and we consider the following subgroups of G:

U + = 1 * 0 1 , U -= 1 0 * 1 , H = * 0 0 * and a set H(∂) H(∂) = 0 * * 0 ⊂ G, which is a twist of H. Let U (i) ± = U -× U + × U -× . . .
with i unipotent groups on the right. Then we dene the twisted ssion space

A c (V ) = G × U (k) ± × H(∂), which is a twisted quasi-Hamiltonian G × H space with moment map µ = (µ G , µ H ) : A c (V ) → G × H(∂), µ G (C, S, h) = C -1 hS k • • • S 1 C, µ H = h -1 , where C ∈ G, h ∈ H(∂), S = (S 1 , . . . , S k ) ∈ U (k) ± .
We can further consider its reduction by G at the value one of the moment map and obtain the reduced twisted ssion space

B c (V ) = {(h, S, ) ∈ H(∂) × U (k) ± hS k • • • S 1 = 1}, (2.8) 
which is a twisted quasi-Hamiltonian H-space with moment map h -1 . We will introduce the language of quasi-Hamiltonian spaces in the next section, here we simply give a direct matrix description of the spaces of Stokes data for some particular choice of a twisted irregular class.

We will relate the space B c (V ) to odd Euler continuants later in Chapter 5. The case of c = -5/2 will also appear in Chapter 4, related to the Painlevé I phase space.

Quasi-Hamiltonian geometry

In this section we will introduce the basic tools of quasi-Hamiltonian geometry of AlekseevMalkinMeinrenken [START_REF] Alekseev | Lie group valued moment maps[END_REF] in the holomorphic setup. This theory can be understood as a multiplicative analogue of the classical Hamiltonian geometry. The moment maps take values in the Lie group G instead of the Lie algebra g. The axioms and interactions with group actions are more complicated but in turn the quasi-Hamiltonian approach gives a direct algebraic description of various symplectic manifolds. Another advantage of this framework is that it gives constructions via nite-dimensional means, unlike the rst constructions. Finally, it happens to t nicely into the geometry of spaces of Stokes data. We will follow [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF] in the exposition, following its notations in conventions.

Denitions and notations

Let G be a connected complex reductive Lie group (for all the applications in this manuscript it will be enough to consider G = GL n (C)) and let g denote its Lie algebra. Let ( , ) : g ⊗ g → C be a symmetric non degenerate G-invariant bilinear form on g. We will make this choice once and keep it throughout. Let θ, θ ∈ Ω 1 (G, g) denote the Maurer-Cartan forms on G, respectively, which in any representation can be written as θ = g -1 dg, θ = (dg)g -1 .

If A, B, C ∈ Ω 1 (M, g) are g-valued holomorphic one-forms on a complex manifold M , we dene (A, B) ∈ Ω 2 (M ) and [A, B] ∈ Ω 2 (M, g) by pairing/braceting the Lie algebra parts and wedging the dierential form parts. We dene furthermore A 2 := 1 2 [A, A] which works correctly in any representation, using matrix multiplication. Then one has dθ = -θ 2 and dθ = θ 2 . Dene (ABC) := 1 2 (A, [B, C]), which is invariant under permutations of A, B, C. With these denitions, the canonical bi-invariant three-form on G is given by 1 6 (θ 3 ).

We denote the adjoint action og G on g by Ad g (X) := gXg -1 for X ∈ g, g ∈ G. If G acts on a manifold M , the fundamental vector eld v X of X ∈ g is minus the tangent to the ow (v

X ) m = -d dt (e -tX • m)| t=0 , so the map X → v X is a Lie algebra homomorphism.
Denition 2.2.1. A complex manifold M is a complex quasi-Hamiltonian G-space if there is an action of G on M , a G-equivariant moment map µ : M → G (G acts on itself by conjugation), and a G-invariant holomorphic two-form ω ∈ Ω 2 (M ) such that the following axioms are satised:

1) dω = 1 6 µ * (θ 3 ). 2) For all X ∈ g, ω(v X , •) = µ * (θ + θ, X) ∈ Ω 1 (M ). 3) At each point m ∈ M : Ker ω m ∩ Ker dµ = {0} ⊂ T m M . Remark 2.2.2.
Observe that if G is abelian, then the quasi-Hamiltonian axioms imply that ω is a complex symplectic two-form. The quasi-Hamiltonian reduction procedure will yield an abundance of examples of complex symplectic manifolds.

Operations on quasi-Hamiltonian spaces

There are multiple operations one can perform on quasi-Hamiltonian spaces. In this section we will describe the fusion, gluing and the quasi-Hamiltonian reduction.

The fusion product puts a structure of a ring on the category of quasi-Hamiltonian G-spaces.

Theorem 2.2.3 (The fusion product, [START_REF] Alekseev | Lie group valued moment maps[END_REF]). Let M be a quasi-Hamiltonian G×G×Hspace, with moment map µ = (µ 1 , µ 2 , µ 3 ) and the two-form ω. Let G × H act on M by the diagonal embedding (g, h) → (g, g, h). Then M with two-form

ω = ω - 1 2 (µ * 1 θ, µ * 2 θ) and moment map µ = (µ 1 • µ 2 , µ 3 ) → G × H is a quasi-Hamiltonian G × H-space.
Observe that the fusion does not change the underlying manifold, it changes the group, the moment map and the two-form on M . The fusion product is not commutative, however chenging the order yields isomorphic quasi-Hamiltonian spaces.

If M 1 , M 2 are quasi-Hamiltonian G × H 1 and G × H 2 -spaces, respectively, then their fusion product (or just fusion)

M 1 M 2 is dened to be the quasi-Hamiltonian G × H 1 × H 2 -space obtained from the quasi- Hamiltonian G × G × H 1 × H 2 space M 1 × M 2 by fusing two factors of G.
We dene another important operation, the quasi-Hamiltonian reduction, which one can understand as a multiplicative version of the symplectic quotient.

Theorem 2.2.4 (The quasi-Hamiltonian reduction, [START_REF] Alekseev | Lie group valued moment maps[END_REF]). Let M be a quasi-Hamiltonian We note here that the geometric invariant quotient parametrizes the set of closed G-orbits in M and in general is dierent from the set-theoretic quotient. Throughout this article, unless stated otherwise, the quotient M/G will stand for the geometric invariant theory quotient, and M G will denote the quasi-Hamiltonian quotient from Theorem 2.2.4, which is the geometric invariant theory quotient by the action of G of the submanifold µ -1 (1) ⊂ M . We can use the quasi-Hamiltonian reduction in order to dene another operation on quasi-Hamiltonian spaces, the gluing. Given a quasi-Hamiltonian G × G × H-space, we can rst fuse the two G factors and obtain a quasi-Hamiltonian G × H-space. Then, if the quotient is well-dened, we can further reduce this space by G (at the identity of the G-valued moment map) which yields a quasi-Hamiltonian H space. Denition 2.2.7. Let M 1 , M 2 be quasi-Hamiltonian G × H 1 and G × H 2 -spaces, respectively. We dene the gluing

G × H-space with moment map µ = (µ G , µ H ) : M → G ×
M := M 1 G M 2 := (M 1 G M 2 ) G.
If the space obtained by gluing is a manifold, then gluing of M 1 and M 2 yields a quasi-Hamiltonian H 1 × H 2 -space. Usually the groups G and H i will be clear from the context and we will abbreviate the gluing of M 1 , M 2 by M 1 M 2 . Unlike the fusion product, the gluing is actually commutative.

We remark here that in all applications the action of G will be free with a global slice, thus there will be no obstruction to performing the reductions/gluings.

Examples: the spaces A, B, C, D

In this section we will present dierent examples of quasi-Hamiltonian space. Even though the basic examples of such spaces are called A, B, C, D, this is not the order of their complexity for example the space A involves the most data, whereas the space C is very simple. Thus we will treat them in a non-alphabetical order.

The rst example, the conjugacy class C ⊂ G is an analogue of coadjoint orbit O ⊂ g * and is one of the building blocks of the moduli spaces we will consider.

Example 2.2.8 (Conjugacy class C, [START_REF] Alekseev | Lie group valued moment maps[END_REF]). Let C ⊂ G be a conjugacy class with G acting on C by conjugation and the moment map dened by inclusion. Then C is a quasi-Hamiltonian G-space with two-form

ω g (v X , v Y ) = 1 2 ((X, Ad g Y ) -(Y, Ad g X))
for all X, Y ∈ g, g ∈ C.

More generally, other examples appear as moduli spaces of holomorphic connections (equivalently: Stokes local systems) framed at one point at each boundary component. For example, an annulus with framing at each of its two boundary components is a quasi-Hamiltonian G × G space, which can be described explicitly.

Example 2.2.9 (The double (annulus) D, [START_REF] Alekseev | Lie group valued moment maps[END_REF]). The space

D = G × G is a quasi- Hamiltonian G × G-space with (k, g) ∈ G × G acting (k, g) • (C, h) = (kCg -1 , khk -1 ), with moment map µ(C, h) = (C -1 hC, h -1 ) ∈ G × G
and the quasi-Hamiltonian two-form given by

ω = 1 2 ((γ, Ad h γ) + (γ, η + η)) where γ = C * (θ), η = h * (θ), η = h * (θ).
We view C as a map from D to G and pull-back the right-invariant Maurer-Cartan form θ, obtaining a g-valued one-form on D. Another example can be associated with a one-holed torus.

Example 2.2.10 (Internally fused double D, [START_REF] Alekseev | Lie group valued moment maps[END_REF]). The space D = G × G is a quasi-Hamiltonian G-space with G acting by diagonal conjugation g(a, b) = (aga -1 , gbg -1 ) and the moment map given by the commutator µ(a, b) = aba -1 b -1 and the quasi-Hamiltonian two-form given by

ω D = 1 2 -(a * θ, b * θ) -(a * θ, b * θ) -((ab) * θ, (a -1 b -1 ) * θ) .
All these examples are special cases of a more general theorem. Let Σ be a compact connected Riemann surface with n 1 boundary components. Choose a basepoint b i at the ith boundary component for each i. We introduce the groupoid

Π = Π 1 (Σ, (b 1 , . . . , b n )),
the fundamental groupoid of Σ with basepoints {b i }, which is, by denition, the groupoid of homotopy classes of paths in Σ having endpoints in the set of basepoints (b 1 , . . . , b n ).

Theorem 2.2.11 ([1, 27]). The space Hom(Π, G) of homomorphisms from Π to the group G is a smooth quasi-Hamiltonian G n -space.

Proof. Upon choosing the suitable generating paths of Π, one can identify Hom(Π, G) with G 2(g+m-1) and then with the reduction of the fusion product D g D m by the diagonal action of g.

One can (and should) understand the fusion of two quasi-Hamiltonian G × H 1 and G × H 2 -spaces as gluing their G-boundaries onto two holes of a three-holed sphere (with G-framings at the boundary). Fusing with D corresponds topologically to adding a genus one handle. The theorem above can be interpreted as follows: tame character varieties can be obtained from the quasi-Hamiltonian fusions/gluings of tori and annuli. We also see that the full reduction by all copies of G yields the tame character variety which is a Poisson manifold. Now we pass to a more complicated example which will be essentially the object of study of this thesis (and variations of thereof ). Choose a parabolic subgroup P + ⊂ G and a Levi subgroup H ⊂ P + and let P -be the opposite parabolic with the same Levi subgroup H ⊂ P -, so that P -P + is dense in G. We denote by U ± the corresponding unipotent radicals.

Example 2.2.12 (The ssion space A, [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]). Let r 1 be an integer. We dene the ssion space

G A r H := G × (U + × U -) r × H. There is an action of G × H on G A r H given by (g, k)(C, S, h) = (kCg -1 , kSk -1 , khk -1 ),
where (g, k) ∈ G × H and S = (S 1 , . . . , S 2r ). The conjugation of S means conjugating every term S i . The space G A r H is then a quasi-Hamiltonian G×H-space with moment map

µ(C, S, h) = (C -1 hS 2r • • • S 1 C, h -1 ) ∈ G × H. The quasi-Hamiltonian form on G A r H is dened as follows. Dene C i : G A r H → G by C i = S i • • • S 2 S 1 C, with C 0 = C, and dene b = hS 2r • • • S 2 S 1 .
The G-component of the moment map is then C -1 bC. We further dene the following g-valued one-forms on G A r H :

γ i = C * i (θ), γ i = C * i (θ), η = h * (θ H ), β = b * (θ),
where θ, θ, θ H θ H are the MaurerCartan forms on G and H, respectively. The quasi-Hamiltonian two-form is then dened as

2ω = (γ, Ad b γ) + (γ, β) + (γ m , η) - 2r i=1 (γ i , γ i-1 ), (2.9) 
where γ = γ 0 and the brackets denote the bilinear form on g.

If G = GL n (C), then the ssion spaces have a convenient description. Let V be a complex vector space of dimension n with an ordered grading

V = k i=1 V i .
Such grading determines a ag F + :

F 1 ⊂ F 2 ⊂ . . . ⊂ F k = V, where F i = V 1 ⊕ . . . ⊕ V i and a ag F -: F k ⊂ F k-1 ⊂ . . . ⊂ F 1 = V where F i = V i ⊕ . . . ⊕ V k .
We will consider the groups G = GL(V ), H = GL(V i ) ⊂ G and the opposite parabolic subgroups P ± stabilising the ags F ± together with their unipotent radicals U ± ⊂ P ± . In an adapted basis, the group G is the group of n × n matrices, H is the block diagonal group with sizes of block determined by the dimensions of the graded pieces V i . Similarly, the parabolics P ± are the upper/ lower block triangular matrices, and U ± are upper/ lower block unipotent (ie. unipotent with identity blocks on the diagonal).

Therefore for an ordered graded vector space V and a xed r, which determine G, H, P ± , U ± we dene A r (V ) as before:

A r (V ) := G × (U + × U -) r × H.
An important property of A(V ) is that, up to isomorphism, it depends only on the grading, not on the ordering of the spaces V i . Proposition 2.2.13 ([28], Proposition 4.4.). Let V be an ordered graded space

V = k i=1 V i
and V the same graded vector space but with dierent ordering of pieces. Then the spaces A r (V ) and A r (V ) are isomorphic as quasi-Hamiltonian G × H-spaces.

Example 2.2.14 (The reduced ssion space B, [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]). The space G A r H is a quasi- Hamiltonian G × H-space, thus if r > 1 we can consider its quasi-Hamiltonian reduction by G (at the value one of the moment map). We denote this reduction by B r and call it the reduced ssion space B r

B r = G A r H G,
which is a quasi-Hamiltonian H-space. More explicitly, we have For the general linear group GL n (C) and a vector space V of dimension n with ordered grading

B r = {(h, S 1 , . . . , S 2r ) ∈ H × (U + × U -) r hS 2r • • • S 1 = 1} (2.
V = k i=1 V i ,
we dene the space B r (V ) as a reduction of A r (V ) at the value one of the G-component of the moment map.

An important example arises when one considers the grading with two pieces V = V 1 ⊕ V 2 . Namely, the space B(V ) can be now described as

B r (V ) = {(h, S 1 , . . . , S 2r ) ∈ H × (U + × U -) r hS 2r • • • S 1 = 1} with H = * 0 0 * , U + = 1 V 1 * 0 1 V 2 , U -= 1 V 1 0 * 1 V 2 ,
where the asterisks denote the blocks belonging to Hom(

V 2 , V 1 ) for U + , Hom(V 1 , V 2 )
for U -and End(V 1 ), End(V 2 ) for H. The moment map is h -1 , which we can compute explicitly. Denote by s i the block o-diagonal entries of the Stokes multipliers S i .

Then we have

S 2r-1 • • • S 2 = S -1 2r h -1 S -1 1 , so the product S 2r-1 • • • S 1 is in the big Gauss cell G • = U -HU + .
The multipliers S 2 , . . . , S 2r-1 uniquely determine h, S 1 , S 2r .

In particular, for r = 2, we get

S 3 S 2 = 1 + s 3 s 2 s 3 s 2 1
and the diagonal entries of h -1 are 1 + s 3 s 2 and 1 -

s 2 (1 + s 3 s 2 ) -1 s 3 = (1 + s 2 s 3 ) -1 . Hence if we set b 1 = s 3 , b 2 = s 2 , we can identify B(V ) with B(V ) = {(b 1 , b 2 ) ∈ Hom(V 2 , V 1 ) ⊕ Hom(V 1 , V 2 ) det(1 + b 1 b 2 ) = 0}
(2.12)

with moment map

µ(b 1 , b 2 ) = (1 + b 1 b 2 , (1 + b 2 b 1 ) -1
).

On the other hand, a fundamental example of a quasi-Hamiltonian space is the Van

den Bergh space B(V 1 , V 2 ) [91, 92]. B(V 1 , V 2 ) = {(a, b) ∈ Hom(V 2 , V 1 ) ⊕ Hom(V 1 , V 2 ) det(1 + ab) = 0} (2.13) 
and we have the following.

Theorem 2.2.15 ([91, 92, 97]). The space

B(V 1 , V 2 ) is a quasi-Hamiltonian GL(V 1 )× GL(V 2 )-space with moment map µ(a, b) = (1 + ab) -1 , (1 + ba) ∈ GL(V 1 ) × GL(V 2 )
and the quasi-Hamiltonian two-form

ω = 1 2 Tr V 1 (1 + ab) -1 da ∧ db -Tr V 2 (1 + ba) -1 db ∧ da .
(2.14)

The component 1 + ab of the moment map is one of the Euler's continuant polynomials [START_REF] Euler | Specimen algorithmi singularis[END_REF] which we will study in detail in Chapter 5.

One can consider the two-form on B(V ), given by restriction of the form (2.9) dening the quasi-Hamiltonian structure on A 2 (V ). It comes without surprise that the space B(V 1 , V 2 ) is not only isomorphic to B(V ), but the quasi-Hamiltonian structures match up as well.

Theorem 2.2.16 ([27], Lemma 4.1.). The quasi-Hamiltonian two-form on the space

B(V ) is given by ω = 1 2 -Tr(b 1 , b 2 ) -1 db 1 ∧ db 2 ) + Tr(b 2 , b 1 ) -1 db 2 ∧ db 1 ) (2.15)
and thus the map B(V

) → B(V 1 , V 2 ) given by (b 1 , b 2 ) → (-a(1 + ba) -1 , b) is an isomorphism of quasi-Hamiltonian GL(V 1 ) × GL(V 2 )-spaces.
One of the results of Chapter 5 generalises the formula (2.15) to B k (V ) for k > 2. The space B(V ) ts naturally into the language of quivers. Given two vector spaces V 1 , V 2 and two arrows between them, one in each direction, the map b 1 goes from V 2 to V 1 and the map b 2 goes from V 1 to V 2 . We will sometimes call the space B(V ) an edge. Such quasi-Hamiltonian edges are building blocks of the classical multiplicative quiver varieties of Crawley-BoeveyShaw [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF] and Yamakawa [START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF].

Twisted quasi-Hamiltonian spaces

In this section we will introduce a generalization of quasi-Hamiltonian spaces, the twisted quasi-Hamiltonian spaces. This generalization is necessary since the building blocks for the moduli spaces appearing later in this chapter are twisted. In general, the twisted quasi-Hamiltonian spaces appear when one considers more general Stokes local systems, when the structure group G varies along the curve. The reference for this section is [START_REF] Boalch | Twisted wild character varieties[END_REF].

Let G be a connected complex reductive Lie group with Lie algebra g, together with an automorphism φ ∈ Aut(G), which we will call the twist. If φ ∈ Aut(G), let Γ denote the subgroup generated by φ and write G = G(φ) = G Γ ⊂ G Aut(G). Fix a symmetric non-degenerate bilinear form ( , ) on g, invariant under the adjoint action and under the action of φ. Let

G(φ) = {(g, φ) g ∈ G} ⊂ G(φ)
be the component of G lying over φ. Then the natural left and right actions of G are free and transitive and G(φ) is a G-bitorsor. Explicitly, (g 1 , g 2 ) ∈ G × G sends (g, φ) to (g 1 gφ(g 2 ), φ) and in particular the conjugation action of G becomes now φ-conjugation. We will say that G(φ) is a twist of G. Denition 2.2.17. [ [START_REF] Boalch | Twisted wild character varieties[END_REF], Denition 20] A twisted quasi-Hamiltonian G-space is a complex manifold M with an action of G, an invariant holomorphic two-form ω and a G-equivariant moment map µ : M → G(φ) to a twist of G (with the twisted conjugation action), Such twisted quasi-Hamiltonian space is almost a quasi-Hamiltonian space for G, but we only consider the action of the identity component of G. The whole machinery of twisted quasi-Hamiltonian spaces has been designed to t into the standard framework of quasi-Hamiltonian geometry. In particular, if M i , i = 1, 2 are twisted quasi-Hamiltonian G-spaces with moment maps µ i → G(φ i ), then the fusion

M := M 1 M 2 is a twisted quasi-Hamiltonian G-space with moment map µ 1 • µ 2 : M → G(φ 1 φ 2 ). Similarly, if φ 1 is the inverse of φ 2 , then the gluing M 1 M 2 is well dened.
The only twisted quasi-Hamiltonian spaces we are going to encounter are the spaces [START_REF]isomonodromy, and quantum Weyl groups[END_REF], where all the groups and the twist are explicit.

B c (V ) from Example 2.1.

Stokes local systems

Recall that we have dened an irregular curve Σ = (Σ, a i , Q i ) as a complex curve Σ (possibly with boundary) with some marked points a 1 , . The gray area indicates the halo H, where the structure group changes from G to H, the circles on the boundary of the red circle represent the singular directions. The picture is local at each marked point: the structure group changes in each halo H i around a i and outside the group is G.

The notion of framing naturally extends to the case of Stokes local systems. Framings are an auxiliary tool and there is a freedom of choice of framings. However, certain framings will be preferred since they t into the quasi-Hamiltonian perspective.

Denition 2.3.2. Let L be a Stokes local system on Σ and p ∈ Σ. If p does not belong to any halo H i , we dene the G-framing of L at p to be a choice of isomorphism between a trivial G-torsor and the ber of L at p. If p is in a halo H i , then we dene H G Figure 2.5: Stokes local system on a disk a H i -framing of L at p to be a choice of an isomorphism between the trivial H i -torsor and the ber of L at p. We will denote a framing of L at p by ϕ p .

Thus if G = GL n (C) (and the Stokes local system is a locally constant sheaf of vector spaces), then a framing at p outside the halo is a choice of an isomorphism between C n and the ber of L at p. A framing at p inside the halo is a choice of a H i -graded isomorphism between C n and the ber at p.

The idea behind the framings is to give an explicit approach to abstract objects like moduli spaces of Stokes local systems. Note that given a framed Stokes local system (L, Φ), where Φ simplistically denotes the collective framings at chosen points, we can simply forget the framings and recover the Stokes local system L.

Observe that framing a Stokes local system yields additional group actions. A Gframing adds a G-action on the set of framed Stokes local systems and an H i -framing adds an H i -action. Thus by framing we enrich the data but also add some extra group actions.

In general, the preferred framing of a Stokes local system will consist of framing The space corresponding to the picture is Hom S (Π, G) A(Q), with Π = Π 1 ( ∆, {b 1 , b 2 }) (where ∆ stands for the real oriented blow up of ∆ with extra punctures corresponding to the singular directions, determined by Q). This ts into the quasi-Hamiltonian picture: the G-fusion of two surfaces with G-boundaries corresponds to gluing them onto a three-holed sphere (with three G-boundaries) and the gluing corresponds to simply gluing the G-boundaries together.

Given an irregular curve Σ, cutting small disks around the marked points and then preforming the pants decomposition of Σ yields a decomposition of the space Hom S (Π, G) into simple pieces.

Chapter 3

Symmetric cubic surfaces and G 2 character varieties

This chapter contains the article Symmetric cubic surfaces and G 2 character varieties [START_REF] Boalch | Symmetric cubic surfaces and G 2 character varieties[END_REF], which is a joint work with P. Boalch.

Abstract

We will consider a two dimensional symmetric subfamily of the four dimensional family of Fricke cubic surfaces. The main result is that such symmetric cubic surfaces arise as character varieties for the exceptional group of type G 2 . Further, this symmetric family will be related to the xed points of the triality automorphism of Spin(8), and an example involving the nite simple group of order 6048 inside G 2 will be considered.

Introduction

The Fricke family of cubic surfaces is the family 

x y z + x 2 + y 2 + z 2 + b 1 x + b 2 y + b 3 z + c = 0
M B (Σ, SL 2 (C)) ∼ = SL 2 (C) 3 /SL 2 (C)
with the quotient of three copies of SL 2 (C) by diagonal conjugation. (All our quotients are ane geometric invariant theory quotients, taking the variety associated to the ring of invariant functions.) In this case the ring of invariant functions is generated by the seven functions

x = Tr(M 2 M 3 ), y = Tr(M 1 M 3 ), z = Tr(M 1 M 2 ), m 1 = Tr(M 1 ), m 2 = Tr(M 2 ), m 3 = Tr(M 3 ), m 4 = Tr(M 1 M 2 M 3 ) (3.2)
where M i ∈ SL 2 (C). These generators satisfy just one relation, given by equation (3.1), with: Note that the character varieties for complex reductive groups (and the naturally dieomorphic Higgs bundle moduli spaces) are crucial to the geometric version of the Langlands program [START_REF] Beilinson | Quantization of Hitchin's bration and Langlands' program[END_REF], and, in the case of compact curves Σ, the geometric Langlands story for G 2 shows signicant qualitative dierences to the case of SL n , involving a nontrivial involution of the Hitchin base (see e.g. [START_REF]Langlands duality and G 2 spectral curves[END_REF]). Thus it is surprising that there are G 2 character varieties which are in fact isomorphic to SL 2 character varieties 2 . As far as we know this is the rst example of an isomorphism between nontrivial (symplectic) Betti moduli spaces involving an exceptional group. Some further motivation is described at the end of section 3.3.

b 1 = -(m 1 m 4 + m 2 m 3 ), b 2 = -(m 2 m 4 + m 1 m 3 ), b 3 = -(m 3 m 4 + m 1 m 2 ), c = m i -4 + m 2 i . ( 3 
Philosophically we would like to separate (or distance) the choice of the group from the abstract moduli space, as in the theory of Lie groups, where it is useful to consider the abstract group independently of a given representation, or embedding in another group. In this language our result says that an abstract (nonabelian Hodge) moduli space has a G 2 representation as well as an SL 2 representation/realisation.

In the later sections of the paper we will also consider the following topics. In 3.6

the natural braid group actions on the spaces (coming from the mapping class group of the curve Σ) will be made explicit and we will show that the isomorphisms of Theorem 3.2.1 are braid group equivariant. In 3.7 we will recall that the C 4 parameter space of Fricke cubics is naturally related to the Cartan subalgebra of Spin Finally in section 3.8 we will revisit some of the nite braid group orbits on cubic surfaces found in [START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF][START_REF]Some explicit solutions to the Riemann-Hilbert problem, Dierential equations and quantum groups[END_REF]. In particular we will consider the Klein cubic surface (the unique cubic surface containing a braid group orbit of size 7) and show that: Theorem 3.2.2. If the Klein cubic surface K is realised as a G 2 character variety (via Theorem 3.2.1) then the braid orbit of size 7 in K corresponds to some triples of generators of the nite simple group G 2 (F 2 ) ⊂ G 2 (C) of order 6048. One such triple of generators is uniquely determined by the three lines passing through a single point in the Fano plane P 2 (F 2 ).

Tame character varieties

Let Σ be a smooth complex algebraic curve and let G be a connected complex reductive group. Then we may consider the space Hom(π 1 (Σ, p), G) of representations of the fundamental group of Σ into the group G (where p ∈ Σ is a base point). This is an ane variety with an action of G given by conjugating representations. The character variety

M B (Σ, G) = Hom(π 1 (Σ), G)/G
is dened to be the resulting ane geometric invariant theory quotient (the variety associated to the ring of G invariant functions on Hom(π 1 (Σ, p), G)). It is independent of the choice of basepoint so we supress p from the notation. Set-theoretically the points of M B (Σ, G) correspond bijectively to the closed G-orbits in Hom(π 1 (Σ, p), G).

It is known that M B (Σ, G) has a natural algebraic Poisson structure [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF][START_REF] Audin | Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry[END_REF] 

M B (Σ, G, C) ⊂ M B (Σ, G)
consisting of the representations taking a simple loop around a i into the class C i for each i. Then the symplectic leaves of M B (Σ, G) are the connected components of the subvarieties M B (Σ, G, C). We will also refer to these symplectic varieties M B (Σ, G, C) (and their connected components) as character varieties. Note that in general M B (Σ, G, C) is not an ane variety (i.e. it is not a closed subvariety of M B (Σ, G)), although it will be if all the conjugacy classes C i ⊂ G are semisimple (since this implies that each C i is itself an ane variety), and this will be the case in the examples we will focus on here.

Ansatz

Consider the following class of examples of character varieties. Let G be as above and choose n distinct complex numbers a 1 , . . . , a n . Let Σ = C \ {a 1 , . . . , a n } = P 1 (C) \ {a 1 , . . . , a n , ∞} be the n-punctured ane line (i.e. an n + 1-punctured Riemann sphere), and suppose conjugacy classes C 1 , . . . , C n , C ∞ ⊂ G are chosen so that: For example:

1) If G = SL 2 (C) then these conditions just say that all the conjugacy classes are semisimple of dimension two, 2) If G = GL n (C) then the minimal dimensional semisimple conjugacy classes are those with an eigenvalue of multiplicity n-1; after multiplying by an invertible scalar to make the corresponding eigenvalue 1, any such class contains complex reections (i.e. linear automorphisms of the form one plus rank one), and the monodromy group will be generated by n complex reections (note that the term complex reection group is often used to refer to such a group which is also nite), Suppose we now (and for the rest of the article) specialise to the case n = 3, so that Σ is a four punctured sphere. This is the simplest genus zero case such that Σ has an interesting mapping class group. Then it turns out that the above ansatz yields two-dimensional character varieties in all of the above cases. Lemma 3.3.1. Suppose n = 3 so that Σ is a four punctured sphere. Then in each case 1), 2), 3) listed above the corresponding character variety M B (Σ, G, C) is of complex dimension two, provided C ∞ is suciently generic.

Proof. We will just sketch the idea: assuming C ∞ is generic the action of G on

{(g 1 , g 2 , g 3 , g ∞ ) g i ∈ C i , g 1 g 2 g 3 g ∞ = 1} will have stabiliser of dimension dim(Z) where Z ⊂ G is the centre of G. The expected dimension of M B (Σ, G, C) is then dim(C i ) -2 dim(G/Z).
For 1) each orbit is dimension two so it comes down to the sum

4 × 2 -2 × 3 = 2.
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The resulting surfaces are the Fricke surfaces.

For 2) if G = GL 3 (C) the rst three orbits are of dimension four and the generic orbit is of dimension six, so the dimension of the character variety is

3 × 4 + 6 -2 × (9 -1) = 2.
This case was rst analysed in [START_REF]Painlevé equations and complex reections[END_REF][START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF] and the resulting character varieties were explicitly related to the full four parameter family of Fricke surfaces (using the Fourier Laplace transform). In brief, the analogue of the Fricke relation that arises is given in [START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF] (16) and this relation is related to the Fricke relation in [START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF] Theorem 1, using an explicit algebraic map that is derived from the FourierLaplace transform.

For 3), the group G = G 2 (C) has dimension 14 (with trivial centre), the rst three orbits are of dimension six and the generic orbit is of dimension twelve, so the dimension of the character variety is

3 × 6 + 12 -2 × 14 = 2
so is again a complex surface. Note that since G 2 has rank two, there is a twoparameter family of choices for the orbit C ∞ and so we expect to obtain a two parameter family of surfaces in this way.

This yields our main question: what are the complex surfaces arising in the G 2 case? Some further motivation for this question is as follows:

1) In [START_REF]Hyperkähler manifolds and nonabelian hodge theory of (irregular) curves, 2012, text of a talk at Institut Henri Poincaré[END_REF] 3.2 there is a conjectural classication of the hyperkähler manifolds of real dimension four that arise in nonabelian Hodge theory. If this conjecture is true we should be able to locate the G 2 character varieties of Lemma 3.3.1 on the list of [START_REF]Hyperkähler manifolds and nonabelian hodge theory of (irregular) curves, 2012, text of a talk at Institut Henri Poincaré[END_REF]. We do this here. (These complete hyperkähler manifolds are noncompact analogues of K3 surfaces.)

2) The article [START_REF]Riemann-Hilbert for tame complex parahoric connections[END_REF] introduced the notion of parahoric bundles (by dening the notion of weight for parahoric torsors), the notion of logarithmic connection on a parahoric bundle (aka logahoric connections), and established a precise RiemannHilbert correspondence for them. At rst glance these seem to be quite exotic objects, and the G 2 example considered here is one of the simplest contexts where this Riemann Hilbert correspondence is necessary. Our main result shows that the corresponding character varieties are in fact not at all exotic. The moduli spaces of such connections will be considered elsewhere.

Octonions and G 2

The compact exceptional simple Lie group G 2 arises as the group of automorphisms of the octonions. In this section we will describe the corresponding complex simple group G 2 (C), as the group of automorphisms of the complex octonions (or complex Cayley algebra) and describe its unique semisimple conjugacy class C ⊂ G 2 (C) of dimension six.

This conjugacy class is somewhat remarkable since there is not a six dimensional semisimple adjoint orbit O ⊂ g 2 = Lie(G 2 (C)). and with multiplication table determined by the Fano plane P 2 (F 2 ) (and the fact that 1 is central), see Figure 3.2. Namely each triple i, j, k of vertices of an oriented line in the Fano plane (for example e 1 , e 2 , e 4 ) forms a quaternionic triple: form quaternionic triples, so it is easy to remember the labelling on the Fano plane.

i 2 = j 2 = k 2 = ijk = -1.
(Beware that some authors use a less symmetric multiplication table such that e 1 , e 2 , e 3 is a quaternionic triple; we follow [START_REF] Baez | The octonions[END_REF][START_REF] Conway | On quaternions and octonions: their geometry, arithmetic, and symmetry[END_REF].)

Let V ∼ = C 7 denote the complex span of the e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 and let

Tr : O → C denote the linear map with kernel V taking 1 ∈ O to 1 ∈ C. Dene an involution q → q of O to be the C-linear map xing 1 and acting as -1 on V . Then there is a nondegenerate symmetric C-bilinear form on O q 1 , q 2 = Tr(q 1 • q 2 ) ∈ C.

Let n(q) = q, q ∈ C denote the corresponding quadratic form and we will say that n(q) is the norm of q.

Note that if v 1 , v 2 ∈ V then v 1 , v 2 = -Tr(v 1 • v 2 ).
The group G 2 (C) is the group of algebra automorphisms of O. As such it acts trivially on 1 and faithfully on V , preserving the quadratic form, so there is an embedding

G 2 (C) ⊂ SO(V, n) ∼ = SO 7 (C).
Henceforth we will write G = G 2 (C) and think of it in this seven dimensional representation.

The six dimensional semisimple conjugacy class

Let T ⊂ G be a maximal torus, so that T ∼ = (C * ) 2 . Any semisimple conjugacy class in G contains an element of T , and so to determine the dimension of the possible semisimple conjugacy classes it is sucient to study the centralisers in G of the elements of T .

Of course any element t ∈ T is the exponential of some element X ∈ t = Lie(T ), but it is not always true that the centralisers of X and t are the same and so care is needed (this is essentially the phenomenon of resonance in the theory of linear dierential equations). This has been analysed in detail by Kac and it is possible to determine the centraliser of t in terms of X (see Serre [START_REF] Serre | Coordinées de Kac[END_REF]). The result is that there is a unique semisimple conjugacy class of dimension six containing certain (special) order three elements of G. The centraliser of such elements is a copy of SL 3 (C) ⊂ G, and so we see immediately that dim C = dim G/SL 3 (C) = 14 -8 = 6.

In fact once we know (by the theorem of Borelde Siebenthal or otherwise) that there is such an embedding of groups it is clear that the desired element of G generates the centre of SL 3 (C), and so is of order 3.

We will skip the details of the above discussion since in terms of octonions we can be more explicit, as follows. First we will recall Zorn's proposition. Suppose a ∈ O is a nonzero octonion and let T a : O → O denote the linear map T a (q) = a.q.a -1 given by conjugation by a. (This is well-dened since O is associative on subalgebras generated by pairs of elements.) However non-associativity implies such maps are not always automorphisms of O. Zorn characterised which maps T a are automorphisms: Proposition 3.4.1 (Zorn, see [START_REF] Conway | On quaternions and octonions: their geometry, arithmetic, and symmetry[END_REF] p.98). T a ∈ G if and only if a 3 ∈ C.1

Thus suppose we take an imaginary octonion v ∈ V of norm n(v) = 3. This means that v is a square root of -3, i.e. v 2 = -3. Then we can consider the element 

a(v) = 1 + v 2 ∈ O.
T a(v) ∈ G = G 2 (C)
and it is clear that it is of order three in G. The eigenvalues of T a(v) ∈ Aut(V )

are one (with multiplicity one) and the two nontrivial cube roots of one (each with multiplicity three).

Let O ⊂ V denote the set of elements of norm 3. The group G acts transitively on O, so O is a single orbit of G (in the representation V ). Proof. The G-equivariance is straightforward (where G acts on itself by conjugation). Thus O is mapped onto a single conjugacy class. To see the map is injective note that the eigenspace of T a(v) ∈ Aut(V ) with eigenvalue 1 is one-dimensional and spanned by v, so it is sucient to check that T a(v) = T a(-v) , but this is clear since they are inverse to each other (and of order three). Note that O is the quadric hypersurface n(v) = 3 in V , so has dimension 6 Note in particular that if i, j, k is a quaternionic triple in O then i + j + k ∈ O and so we get an element 1 2 (1 + i + j + k) of C for any line in the Fano plane. We will return to this in 3.8.

Some invariant theory for G 2

Our basic aim is to consider ane varieties obtained from the ring of G = G 2 (C) invariant functions on ane varieties of the form

{(g 1 , g 2 , g 3 , g ∞ ) g 1 , g 2 , g 3 ∈ C, g ∞ ∈ C ∞ , g 1 g 2 g 3 g ∞ = 1 ∈ G} (3.5)
where C ⊂ G is the six dimensional semisimple conjugacy class and C ∞ is one of the twelve dimensional semisimple classes, and G acts by diagonal conjugation. Now a generic element t of the maximal torus T ⊂ G will be a member of such a conjugacy class C ∞ , and two such elements t 1 , t 2 ∈ T are in the same class if and only if they are in an orbit of the action of the Weyl group W = N G (T )/T on T .

The Weyl group W of G is a dihedral group of order 12 and its action on T ∼ = (C * ) 2 is well understood. In brief there is a basis of V such that T is represented by diagonal matrices of the form

t = diag(1, a 1 , a 2 , (a 1 a 2 ) -1 , a -1 1 , a -1 2 , a 1 a 2 ) ∈ GL(V )
for elements a 1 , a 2 ∈ C * . The action of W on T is generated by the two reections

r 1 (a 1 , a 2 ) = (a -1 1 , a 1 a 2 ), r 2 (a 1 , a 2 ) = (a 2 , a 1 )
xing the hypertori a 1 = 1 and a 1 = a 2 respectively. Lemma 3.5.1 ([?] p.60). The ring of W -invariant functions on T is generated by the two functions

α = a 1 + 1/a 1 + a 2 + 1/a 2 + a 1 a 2 + 1/(a 1 a 2 ) β = a 1 /a 2 + a 2 /a 1 + a 2 1 a 2 + a 1 a 2 2 + 1/(a 2 1 a 2 ) + 1/(a 1 a 2 2 ).
Note that if t ∈ T is represented as a diagonal matrix as above then

α = Tr V (t) -1, 2β = α 2 -2α -Tr V (t 2 ) -5
so that specifying the values of α, β is equivalent to specifying the values of Tr V (t) and Tr V (t 2 ). Of course the functions Tr V (t), Tr V (t 2 ) are just the restrictions of the functions Tr V (g), Tr V (g 2 ) dened on G ⊂ GL(V ), and so (in this way) we can just as well view α and β as invariant functions on G. (The resulting formulae are simpler if we work with β rather than Tr V (g 2 ).)

Thus we may rephrase our main question dierently: suppose we consider the ane variety

M := C 3 /G
associated to the ring of G-invariant functions on C 3 (where G acts by diagonal conjugation). Then the ane varieties

{(g 1 , g 2 , g 3 , g ∞ ) g 1 , g 2 , g 3 ∈ C, g ∞ ∈ C ∞ , g 1 g 2 g 3 g ∞ = 1 ∈ G}/G
(associated to the invariant functions on (3.5)) arise as bres of the map π : M → C 2 ; [(g 1 , g 2 , g 3 )] → (α(g 1 g 2 g 3 ), β(g 1 g 2 g 3 )), since xing (suciently generic) values of the map π will x the conjugacy class of the product g 1 g 2 g 3 , as required. Thus as a rst step we need to understand the ane variety M = C 3 /G and secondly we need to understand the map π from M to C 2 . Proposition 3.5.2. The ane variety M = C 3 /G is isomorphic to an ane space of dimension four (more precisely the ring of G invariant functions on C 3 is a polynomial algebra in four variables).

Proof. Via Proposition 3.4.2 the ane variety C 3 is G-equivariantly isomorphic to O 3 where O ⊂ V is the ane quadric of imaginary octonions of norm 3.

In other words O 3 is the subset of (v 1 , v 2 , v 3 ) ∈ V 3 such that n(v i ) = 3 for i = 1, 2, 3. Thus we can rst consider the quotient V 3 /G. Now G. Schwarz has classied all the representations of simple algebraic groups such that the ring of invariants is a polynomial algebra [START_REF] Schwarz | Representations of simple Lie groups with regular rings of invariants[END_REF]. Row 1 of Table 5a of [START_REF] Schwarz | Representations of simple Lie groups with regular rings of invariants[END_REF] (see also [START_REF]Invariant theory of G 2[END_REF]) says that the ring C[V 3 ] G is a polynomial algebra with 7 generators, and the generators can be taken to be the invariant functions:

n(v 1 ), n(v 2 ), n(v 3 ) p 1 = v 2 , v 3 , p 2 = v 1 , v 3 , p 3 = v 1 , v 2 , (3.6) p 4 = v 1 , v 2 .v 3 .
We are interested in the algebra obtained by xing the values of the rst three invariants to be 3, which is thus a polynomial algebra generated by the remaining four functions p 1 , p 2 , p 3 , p 4 .

In other words the map p = (p 1 , p 2 , p 3 , p 4 ) : M → C 4 , with components the four functions p i , identies M with C 4 . Thus the question now is to understand the map π : M → C 2 in terms of the functions p i . The key formulae are the following, which may be veried symbolically. 

α = α(g 1 g 2 g 3 ), β = β(g 1 g 2 g 3 )
of the product g 1 g 2 g 3 ∈ G are related to the invariants

p 1 = v 2 , v 3 , p 2 = v 1 , v 3 , p 3 = v 1 , v 2 , p 4 = v 1 , v 2 .v 3
of the octonions v 1 , v 2 , v 3 by the following formulae: 

8 α = p 4 s 1 -s 1 2 + 3 p 4 + 3 s 1 + 3 s 2 + s 3 -
α = c + 2 + 3 b, β = -b 3 + 3 b 2 + 3 bc + 3 b -2. (3.12)
This is a nite surjective map, with generic bres consisting of three points. In fact by examining the discriminants we can be more precise.

Discriminants

First we can consider the discriminant D pr ⊂ C 2 α,β of the cubic polynomial (3.8), characterising when the bres of pr have less than 3 elements. This discriminant locus (with α, β replacing k α , k β resp.) is:

4α 3 -12αβ -β 2 -36α -24β -36 = 0. (3.13)
Secondly we can consider the discriminant D W ⊂ C 2 α,β of the quotient map (α, β) : T → T /W ∼ = C 2 . This discriminant is the image of the 6 reection hypertori in T and is the subvariety of C 2 for which the bres of this quotient map have less than 12 = #W points. Explicitly it is cut out by the square of the Weyl denominator function, which ([46] p.413) is the following W -invariant function on T :

(a 1 -a 2 )(a 2 -a 3 )(a 3 -a 1 ) 2 × (a 1 a 2 + a 2 a 3 + a 3 a 1 -a 1 -a 2 -a 3 ) 2
where a 3 = 1/(a 1 a 2 ). Since D pr ⊂ D W this implies that: if C ∞ has dimension twelve then the corresponding values k α , k β of the invariants α, β are not on the discriminant (3.13), and so the bre pr -1 (k α , k β ) has exactly three points.

In turn we can relate this to the locus of singular symmetric Fricke cubics surfaces. Note in particular this implies we can canonically associate two other smooth cubic surfaces to any smooth symmetric Fricke cubic surface with parameters b, c not on the conic (3.16), namely the other two components of π -1 (pr(b, c)) ⊂ M.

Note also that in [START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF] the map relating the GL 3 (C) character varieties to the Fricke cubics (as in part 2 of Lemma 3.3.1 above) was derived from earlier work on the FourierLaplace transform, whereas here we have identied the character varieties directly; we do not (yet) understand if there is a G 2 analogue/extension of Fourier Laplace.

In the next section we will consider the natural braid group actions and show that the isomorphism ϕ is braid group equivariant. Remark 3.5.9. This very symmetric locus is closely related to the one-parameter family b = 0 (which does admit smooth members, so is related to G 2 via Corollary 3.5.6). This family is the family of SL 2 (C)-character varieties for the once-punctured torus ( [START_REF]Topological components of spaces of representations[END_REF] p.584, or [START_REF] Vogt | Sur les invariants fondamentaux des équations diérentielles linéaires du second ordre[END_REF][START_REF] Magnus | Rings of Fricke characters and automorphism groups of free groups[END_REF]). The basic statement relating this case to the very symmetric case is that there is a (degree four) ramied covering map between the two families, as follows (cf. 

= XY Z + X 2 + Y 2 + Z 2 + d then, if the variables are related by x = 2 -X 2 , y = 2 -Y 2 , z = 2 -Z 2 , the relation f (x, y, z) = g(X, Y, Z)g(-X, Y, Z)
holds, so the surface g = 0 maps to the surface f = 0, and the generic bre contains 4 points. Note that if b = 0 then c = d = -4 so this is an endomorphism of the Cayley cubic surface.

Proof. 1) is straightforward (taking care due to the non-associativity of O), and can be veried symbolically.

2) is now a nice exercise in expanding G-invariant functions on O3 in terms of the basic invariants p i . To illustrate this we will show v 3 , (v 2 v 1 )v 2 = 3p 2 -2p 1 p 3 . If q ∈ O we will write q = Tr(q) + Im(q) with Im(q) ∈ V and Tr(q) ∈ C.1, and note

that v 1 , v 2 v 3 is a skew-symmetric 3-form if v 1 , v 2 , v 3 ∈ V . Then we have v 3 , (v 2 v 1 )v 2 = v 3 , Tr(v 2 v 1 )v 2 + v 3 , Im(v 2 v 1 )v 2 = -p 1 p 3 -v 3 , v 2 Im(v 2 v 1 ) = -p 1 p 3 -v 3 , v 2 (v 2 v 1 ) + v 3 , v 2 Tr(v 2 v 1 ) = -p 1 p 3 + 3p 2 -p 1 p 3 .
The stated formulae can all be derived in this way.

Observe that the sum p 1 + p 2 + p 3 + p 4 is preserved by this braid group action. This corresponds to the fact that b is preserved by the action on Fricke surfaces, and in fact there is a complete correspondence: Corollary 3.6.3. The isomorphism ϕ in Figure 3.3 identifying M = C 3 /G with the universal family of symmetric Fricke cubic surfaces, is braid group equivariant.

Proof. Given the explicit formulae (in (3.19) and Proposition 3.6.2) for the braid group actions, this follows directly from the formulae (3.7),(3.9) dening ϕ.

Triality

The fact that the full family of Fricke cubics is a semiuniversal deformation of a D 4 singularity is not just a coincidence, and has deep moduli theoretic meaning 3 . In brief the whole family of these Fricke moduli spaces (in fact the whole hyperkähler nonabelian Hodge structure) is naturally attached to the D 4 root system (or more precisely to the ane D 4 root system, but that is determined by the nite root system). Note that the D 4 Dynkin diagram is the most symmetric (nite) Dynkin diagram since it has an automorphism of order three, the triality automorphism, indicated in Figure 3.1.

There are various ways to see the appearance of D 4 from the moduli space of rank 2 representations of the fundamental group of the four-punctured sphere Σ:

1) Translating to our notation, Okamoto [START_REF]Studies on the Painlevé equations. I. Sixth Painlevé equation P VI[END_REF] found that if we label the eigenvalues of M i ∈ SL 2 (C) as exp(±π 2) The moduli spaces of rank two logarithmic connections on Σ mentioned in 1) above have simple open pieces M * (where the underlying vector bundle on P 1 is holomorphically trivial) and these open pieces are isomorphic to the D 4 asymptotically locally Euclidean hyperkähler four-manifolds constructed by Kronheimer [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF]. In fact Kronheimer constructs these spaces as a nite dimensional hyperkähler quotient starting with a vector space of linear maps in both directions along the edges of the ane D 4 Dynkin graph (an early example of a quiver variety).

√ -1θ i ) where θ = (θ 1 , θ 2 , θ 3 , θ 4 ) ∈ C
3) The space of representations of the fundamental group of Σ is closely related to the perverse sheaves on P 1 with singularities at the marked points, and such perverse sheaves have a well-known quiver description, again in terms of linear maps in both directions along the edges of an ane D 4 Dynkin graph. This leads to the statement that the Fricke cubic surfaces are ane D 4 multiplicative quiver varieties, in the sense of [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF][START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF].

Note that each of these points of view has an extension to many other moduli spaces, often of higher dimensions (cf. [START_REF]Irregular connections and KacMoody root systems[END_REF][START_REF]Simply-laced isomonodromy systems[END_REF]).

In any case, whichever is the reader's preferred viewpoint, it is natural to consider the action of the triality automorphism on the space C 4 of parameters θ (and the induced action on the Fricke coecients b 1 , b 2 , b 3 , c). It is well-known that the root system of G 2 arises by `folding' the D 4 root system via the triality automorphism in this way, as indicated in Figure 3 Proof. Note that the triality automorphism is only well dened upto conjugation by an inner automorphism, so we have some freedom. The key point is that, in Okamoto's setup, one should not use the standard (Bourbaki) convention for the D 4 root system, rather, as explained in [START_REF]The fty-two icosahedral solutions to Painlevé VI[END_REF] Remark 5, it naturally appears as the set of short F 4 roots, i.e. as the set of 24 norm one vectors:

θ ∈ D - 4 = ±ε 1 , ±ε 2 , ±ε 3 , ±ε 4 , 1 2 (±ε 1 ± ε 2 ± ε 3 ± ε 4 ) ⊂ C 4 , (3.20) 
where ε i are the standard (orthonormal) basis vectors of C 4 (i.e. as the group of unit

α 1 = ε 1 , α 2 = ε 2 , α 3 = ε 3 , α 4 = 1 2 (ε 4 -ε 1 -ε 2 -ε 3 )
form a basis of simple roots, and the longest root is 

ε 4 = α 1 + α 2 + α 3 + 2α
t → C 4 ; θ = θ i ε i → (b 1 , b 2 , b 3 , c)
is the quotient by the D - 4 ane Weyl group (the semidirect product of the nite Weyl group W and the coroot lattice Γ R ). Indeed with these conventions (cf. also [START_REF]Théories asymptotiques et équations de Painlevé[END_REF]) Γ R = 2D - 4 ⊂ t and the quotient t/Γ R is a maximal torus T Spin(8) of the simply connected group Spin 8 (C) of type D 4 . In turn it is well known that the W -invariant functions on T Spin(8) form a polynomial algebra generated by the fundamental weights ( [START_REF] Fulton | Representation theory[END_REF] p.376), and these weights D 1 , D 2 , D + , D -are described in [START_REF] Fulton | Representation theory[END_REF] 

The Klein Cubic Surface

The article [START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF] found that there was a Fricke cubic surface containing a braid group orbit of size seven. This arose by considering Klein's simple group of order 168 = 2 3 • 3 • 7, the group of automorphisms of Klein's quartic curve (the modular curve X( 7)):

X 3 Y + Y 3 Z + Z 3 X = 0,
and then taking the corresponding complex reection group in GL 3 (C), of order 336. 

x y z + x 2 + y 2 + z 2 = x + y + z (3.21) 
i.e. it is the (smooth) symmetric Fricke cubic with b = -1, c = 0. The braid orbit of size seven consists of the points:

(x, y, z) = (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1).

Thus, even though we started with a group involving lots of seventh roots of unity, the resulting cubic surface and braid orbit only involve the integers 0 and 1.

This braid orbit turns out to have a very nice realisation from the G 2 point of view (which is perhaps not surprising given the strong link to the number 7):

Suppose we take three lines passing through a single point in the Fano plane (see Figure 3.2). For example the three lines: 

g 1 = T a(v 1 ) , g 2 = T a(v 2 ) , g 3 = T a(v 3 ) ∈ C ⊂ G 2 .
Note that the fact that we have chosen three lines passing through a single point implies that the three elements (1 + v i )/2 are all octavian integers (i.e. they lie in the same maximal order, the 7-integers, cf. [START_REF] Conway | On quaternions and octonions: their geometry, arithmetic, and symmetry[END_REF] 9.2). The octavian integers form a copy of the E 8 root lattice (rescaled so roots have norm 1) and our three elements (1 + v i )/2 are amongst the 240 units and so correspond to E 8 roots. This implies that with respect to a Z-basis of the octavian integers the elements g 1 , g 2) the braid group orbit of the conjugacy class of (g 1 , g 2 , g 3 ) in C 3 /G = M is of size seven and lives in a G 2 (C) character variety isomorphic to the Klein cubic surface.

Proof. For 1), by construction we obtain a subgroup of the full automorphism group ( ∼ = G 2 (2)) of the ring of octavian integers. Computing the order shows it is the index two subgroup ∼ = G 2 [START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF] . (This was actually our starting point, using Griess's tables [START_REF] Griess | Basic conjugacy theorems for G 2[END_REF] to see that G 2 (2) contains elements of the six dimensional class C ⊂ G 2 (C).) Remark 3.8.2. If we consider, from the G 2 point of view, the symmetric Fricke cubic containing the size 18 braid orbit of [START_REF]Some explicit solutions to the Riemann-Hilbert problem, Dierential equations and quantum groups[END_REF] p.104 (also related to the 237 triangle group), then we nd p 1 = p 2 = -1, p 3 = 1 -4 cos(π/7), p 4 = 1 + p 3 . Any corresponding triple of elements g 1 , g 2 , g 3 ∈ C ⊂ G 2 generate an innite group: this value of p 3 implies g 2 1 g 2 has an eigenvalue x with minimal polynomial x 6 -2 x 5 + 2 x 4 -3 x 3 + 2 x 2 -2 x + 1, and this polynomial has a real root > 1, so x is not a root of unity. Thus the speculation/conjecture (of [START_REF]Some explicit solutions to the Riemann-Hilbert problem, Dierential equations and quantum groups[END_REF] p.104) that there is a realisation of this Fricke surface relating this braid orbit to a nite group, remains open.

2) By construction v i , v j = 1 if i = j so that p 1 = p 2 = p 3 = 1 and also we com- pute p 4 = v 1 , v 2 • v 3 = -2.

Chapter 4 Echo spaces

In this chapter we will dene and study three innite families of algebraic symplectic varieties. Recall that for a xed structure group G and irregular curve Σ = (Σ, a i , Q i )

we have dened the wild character variety The symplectic varieties we are going to look at come in families M B (Σ n , C n ), for suitable choices of the irregular curves Σ n , the conjugacy classes C n and the structure group G, which will be a general linear group. The rank of G will not be bounded and grows together with n.

M B (Σ) = Hom S (Π, G)/H,
The spaces M B (Σ n , C n ) are examples of so-called echo spaces and in all three cases considered the curve is P 1 with zero as marked point, and we vary the irregular type Q and the conjugacy class C (choosing G accordingly). Hence the echo spaces parametrise isomorphism classes of irregular connections on vector bundles on P 1 with xed irregular type Q at zero, dened by Σ, and local monodromy in conjugacy class C. They will be related to phase spaces of equations Painlevé I, II and IV, respectively.

In each case we will show that the resulting moduli spaces M B (Σ n , C n ) are of complex dimension two and thus by results of [START_REF] Biquard | Wild non-abelian Hodge theory on curves[END_REF] are in fact hyperkähler and t into the classication problem of hyperkähler manifolds of real dimension four, as mentioned in the introduction. The main result of this chapter establishes the following isomorphisms.

Theorem 1. Let n be a positive integer. For i = I, II, IV , denote by M B (Σ n i , C n i ) the n-th Painlevé echo space. Then there are isomorphisms

M B (Σ n i , C n i ) M B (Σ i , C i ).
In other words, for each of three Painlevé families of echo spaces, all its members are isomorphic to the rst one, which is an ane cubic surface. The aforementioned equations for phase spaces of Painlevé I and Painlevé II have been rst written down by KapaevKitaev [START_REF] Kapaev | Connection formulae for the rst Painlevé transcendent in the complex domain[END_REF] and FlaschkaNewell [START_REF] Flaschka | Monodromy-and spectrum-preserving deformations. I[END_REF]. More recently, a uniform list of such spaces (for bundles of rank two) has been presented by Van der Put and Saito [START_REF] Van Der Put | Moduli spaces for linear dierential equations and the Painlevé equations[END_REF]. We will also relate the parameters of these ane cubic surfaces and see how they transform as n grows.

The echo spaces considered in this manuscript have a convenient description as multiplicative quiver varieties of [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF] (there are echo spaces which do not admit, for now, such description), with a small adjustment for the Painlevé I echo space. Thus it is possible to replace the study of the quotient

Hom S (Π, G) / / C
H by a more convenient geometric invariant theory quotient of the spaces of representations of certain quivers. We will analyse the rings of invariant functions and compute the quotients, providing explicit isomorphisms, which are of similar form in all three cases.

For the sake of completeness, we remark that there is a fourth family of wild character varieties tting into the quiver perspective. The base space M B (Σ, C)

is the Painlevé V cubic, and we have gathered evidence that the similar algebraic methods should work as well.

Denition of echo spaces

Let Σ = P 1 with one marked point at zero and consider an irregular type

Q = A r z r + . . . + A 1 z .
These choices determine the wild character variety M B (Σ), which is a Poisson variety. For suitable choices of the group G, irregular type Q and the conjugacy class C (and thus specifying a symplectic leaf in M B (Σ)), the resulting symplectic wild character varieties are of complex dimension two and are related to be phase spaces of Painlevé equations. We will consider the following three examples. 

Q I = z -5/2
with multiplicity one so that n I • ram(Q I ) = 2. and the Cartan subalgebra C((τ )) ⊂ g((z)). The element τ satises τ 2 = ( z 0 0 z ), so we can understand it as a square root of z in g((z)). Consider the pull back of τ to the double cover π given by t 2 → z:

π * (τ ) = 0 t 2 1 0 , which is in turn conjugate in g((t)) to ( t 0 0 -t ), thus the lift of Q I = z -5/2 to the cover becomes Q I = t -5 0 0 -t -5 ⊂ t((t))
with t 2 = z (the diagonal entries form a Galois orbit). The twisted irregular class straightens out when lifted to the cover.

2. The irregular curve Σ II = (P 1 , 0, Q II ) for G = GL 2 (C) and irregular type It parametrises connections on rank two vector bundles on P 1 with one irregular pole of order four and local monodromy around the marked point in a generic conjugacy class in GL 2 (C).

Q II = A 3 z 3 + A 2 z 2 + A 1 z with A 3 regular semisimple. The conjugacy class is C II is a generic conjugacy class in GL 2 (C)
3. The irregular curve Σ IV = (P 1 , 0, Q IV ) for G = GL 3 (C) and irregular type The standard (minimal) representation of this wild character variety is for G = GL 2 (C) and two poles: an irregular pole of order 3 and a simple pole but it will be convenient for us to work in rank three where there is only one pole. Now we will dene three families of irregular curves

Q IV = A 2 z 2 + A 1 z with A 2
Σ n I , Σ n II , Σ n IV and conjugacy classes C n I , C n II , C n IV as follows.
1. The irregular curves Σ n I = (P 1 , 0, Q n I ) for G = GL 2n (C) and irregular class

Q n I = z -5/2 = t -5 0 0 -t -5 with multiplicity n, so that n I • ram(Q n I ) = 2n. The conjugacy class C n I is the twisted conjugacy class 0 a εa -1 0 ⊂ H(∂) = 0 * * 0
where ε is an n-th primitive root of unity and a ⊂ GL n (C) is an n × n matrix.

2. The irregular curves Σ n II = (P 1 , 0, Q n II ) for G = GL 2n (C) and irregular type

Q n II = A 3 z 3 + A 2 z 2 + A 1 z
with A 3 semisimple with two distinct eigenvalues, both of multiplicity n, and A 2 , A 1 ∈ t are any elements whose centralisers in G contain that of A 3 , so that the centraliser

C G (Q n II ) ⊂ G is the block diagonal group H = GL n (C) × GL n (C). The central conjugacy class C n
II is a conjugacy class of a semisimple element with two distinct eigenvalues q 1 , q 2 diag(q 1 Id n , q 2 Id n ), both of multiplicity n, such that: i) q 1 q 2 = ε, where ε is an n-th primitive root of unity, ii) q 1 , q 2 are not n-th roots of unity.

3. The irregular curves Σ n IV = (P 1 , 0, Q n IV ) for G = GL 3n (C) and irregular type

Q n IV = A 2 z 2 + A 1 z
with A 2 semisimple with three distinct eigenvalues, each of multiplicity n, and A 1 ∈ t is any element whose centraliser in G contains that of A 2 , so that the centraliser

C G (Q n IV ) ⊂ G is the block diagonal group H = GL n (C) × GL n (C) × GL n (C). The central conjugacy class C n
IV is a conjugacy class of a semisimple element with three distinct eigenvalues q 1 , q 2 , q 3 diag(q 1 Id n , q 2 Id n , q 3 Id n ), each of multiplicity n, such that: i) q 1 q 2 q 3 = ε, where ε is an n-th primitive root of unity, ii) q 1 , q 2 , q 3 are not n-th roots of unity.

The three families (Σ n I ,

C n I ), (Σ n II , C n II ), (Σ n IV , C n IV ) determine three families of wild character varieties M B (Σ n I , C n I ), M B (Σ n II , C n II ), M B (Σ n IV , C n IV
) which we will show to be nonempty and of dimension two.

Denition 4.1.2. For i = I, II, IV , we call the wild character variety M B (Σ n i , C n i ) the n-th echo space of Σ i .

We will also refer to them as Painlevé I, Painlevé II and Painlevé IV echo spaces, or A 0 , A 1 and A 2 echo spaces, respectively.

If n = 1, the rst echo space of the family is the wild character variety M B (Σ i , C i ).

The goal of this chapter is to establish the following theorem. Theorem 1. Let n be a positive integer. For i = I, II, IV , there are isomorphisms of echo spaces

M B (Σ n i , C n i ) M B (Σ i , C i ).

Graphs, quivers and representations

In this section we will introduce the basic notions of graphs, quivers and their representations. We follow [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF] in the exposition and notations, although we will use only a part of the general machinery of multiplicative quiver varieties developed in that article.

Let Γ be a graph with nodes I and edges Γ. We will suppose that both of these sets are nite and, if not stated otherwise, that each edge connects two distinct nodes.

We denote by Γ the set of oriented edges of Γ, thus the set of pairs (e, o) where e ∈ E and o is one of the two possible orientations of e. Each oriented edge a ∈ Γ has a well dened head h(e) ∈ I and tail t(e) ∈ I.

In other words, the oriented graph (a quiver) Γ is the double of Γ, which can be obtained by arbitrarily orienting the edges of Γ and then extending the set of its (now oriented) edges by adding the edges going in opposite directions. The cardinality of Γ is the double of the cardinality of Γ. Denition 4.2.1. Let Q be a quiver (an oriented graph) with nodes I and oriented edges E. A representation of Q consists of:

• A nite dimensional I-graded vector space V = i∈I V i • For each oriented edge e ∈ E a linear map v e : V t(e) → V h(e) .
Thus a representation of a quiver Q is a choice of a vector space V i for each vertex i ∈ I and a linear map v e : V t(e) → V h(e) for each arrow e ∈ E. A subrepresentation of a representation V of Q consists of an I-graded subspace V ⊂ V which is preserved by the linear maps, that is v e (V t(e) ) ⊂ V h(e) . A representation is irreducible if it does not have proper nontrivial subrepresentations. Denition 4.2.2. A representation of a graph Γ is a representation of its double Γ.

Given a quiver Q with nodes I and an I-graded vector space V , we can consider the space of all representations of Q

Rep(Q, V ) = e∈E Hom(V t(e) , V h(e) ).
The group H = GL(V i ) acts naturally on Rep(Q, V ).

Hence it makes sense to dene the space of representations of an arbitrary unoriented graph Γ as the space of representations of its double Γ Rep(Γ, V ) := e∈Γ Hom(V t(e) , V h(e) ).

The ssion graph Γ(Q)

Let V be a nite dimensional complex vector space and let t = End(V ) be a Cartan subalgebra of the Lie algebra gl(V ), such as the diagonal matrices. Let Q be an irregular type, which we can identify with a polynomial in variable 1/z

Q = A r z r + . . . + A 1 z ∈ t[1/z].
An irregular type determines a direct sum decomposition V = ⊕ i∈I V i into the eigenspaces of Q (ie. common eigenspaces of all coecients A i ), so we have

Q = q i (1/z)Id i
where Id i is the idempotent of V i and q i ∈ C[1/z] are distinct polynomials. In other words, we can identify the irregular type with a diagonal matrix with polynomials in variable 1/z on the diagonal. Therefore we can dene a graph Γ(Q) with set of nodes I and deg(q i -q j ) -1

edges between each pair of distinct nodes i, j ∈ I.

Denition 4.2.3. The graph Γ(Q) is the ssion graph of Q.

It is easy to see that if Q is of degree two, then the ssion graph has no multiple edges.

For Σ = (P 1 , 0, Q) the space Rep(Γ(Q), V ) of representations of the graph Γ(Q) will be closely related to the wild character variety M B (Σ).

Having dened the ssion graph, we can now attach graphs to irregular types

Q n I , Q n II , Q n IV .
The irregular type Q n I is twisted thus the denition above does not t into this case, so we need to treat this case separately. We will use the following denition/theorem. IV is the ane Dynkin graph A 2 , which is a complete graph with three nodes (a triangle). Its set of nodes I has three elements, thus the grading V = i∈I V i of V = C 3n determined by Q n IV has three pieces, each of dimension n.

Observe that the irregular types

Q n I , Q n II , Q n
IV are chosen in such way that the ssion graph does not change as n grows. Moreover, the choice of multiplicites of eigenvalues and condition on centralisers assures that grading changes homogeneously with n. The grading by elements of I is unordered.

The choice of ane A 0 in Denition 4.2.4 comes from Okamoto's ( [START_REF] Okamoto | Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P II and P IV[END_REF][START_REF]Studies on the Painlevé equations. I. Sixth Painlevé equation P VI[END_REF][START_REF]Studies on the Painlevé equations. II. Fifth Painlevé equation P V , Japan[END_REF][START_REF]The Painlevé equations and the Dynkin diagrams[END_REF]) and Sakai's ( [START_REF] Sakai | Rational surfaces associated with ane root systems and geometry of the Painlevé equations[END_REF]) work on Painlevé equations, so that it is coherent with the untwisted cases. For the Painlevé I equation, the symmetry group is the ane Weyl group of type A 0 .

More generally, any untwisted irregular type Q of degree two determines a complete k-partite graph Γ(Q). A graph Γ with nodes I is a complete k-partite graph if there exists a partition of I = j∈J I j of its nodes into k nonempty parts labeled by a set J of cardinality k, such that any two nodes are connected by an edge if and only if they are in dierent parts. The irregular type Q determines a grading of V by its eigenspaces and the ssion graph has nodes I labeled by these spaces. We group them into parts I j of a k-partite graph by assembling together the eigenspaces of Q forming eigenspaces of A 2 .

The simplest non-trivial example of a complete k-partite graph consists of one edge connecting two nodes, which we can denote by Γ(1, 1). It is a complete 2-partite graph and is related to space B(V

) for V = V 1 ⊕ V 2 , introduced in Section 2.2.3.
Another example is a complete 3-partite graph, the triangle Γ(1, 1, 1). All complete k-partite graphs without multiple edges can be obtained as ssion graphs of irregular types.

Even more generally, one can consider supernova graphs, consisting of a core, which is a complete k-partite graph, together with some extra legs glued onto each node of the core. These graphs and their relations with wild character varieties have been studied in great detail in [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF] but the most general approach is beyond the scope of this manuscript.

Graph representations and quasi-Hamiltonian geometry

In this section we will introduce the space Rep * (Γ, V ) which is an open subset of the space of representations of Γ on V . The space Rep * has a quasi-Hamiltonian structure and in the case of complete k-partite graph with one node in each part, it will be isomorphic to the reduced ssion space B(W ), where W is V with suitably adapted grading.

Let Γ be a complete k-partite graph with nodes I and V a xed I-graded vector space. In the previous section we have dened the space Rep(Γ, V ) of representations of Γ, as the space of representations of its double Γ, which is a quiver. Fix an ordering of the graph Γ, which consists of a total ordering the nodes in each part I j and a total ordering of parts I 1 , . . . , I k .

An ordering of Γ determines ordered graded vector spaces

W j = i∈I j V j
and an ordered grading W = W j . The vector spaces W and V are the same space with dierent gradings (the grading of V renes the grading of W ). If each of k parts of Γ has exactly one node, which will be the case later, then the spaces W and V are isomorphic as ordered graded vector spaces.

Therefore there are sequences of groups determined by the ordered gradings:

H := GL(V i ) ⊂ K := GL(W j ) ⊂ G := GL(V )
and we can consider the ssion spaces A(W j ) and the reduction

B(W ) = A 2 (W ) G
which is a quasi-Hamiltonian K-space.

The following important theorem establishes a connection between representations of graphs and the ssion spaces.

Theorem 4.2.7 ([28], Proposition 5.3.). Let Γ be an ordered complete k-partite graph with nodes I and V an I-graded vector space. Then there is a canonical nonempty open subset

Rep * (Γ, V ) ⊂ Rep(Γ, V )
of the space of representations of the graph Γ on V , which is a smooth ane variety and a quasi-Hamiltonian H-space, canonically isomorphic to

B(W ) K j A(W j ).
Proof. The proof comes from [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF] with some minor changes. We include it since it explains how to describe the subset Rep * (Γ, V ) in terms of Stokes multipliers and this will be useful later.

A representation (v ij ) of Γ on V and the ordering of I determine the following unipotent elements in GL(V ):

v + = Id + i<j v ij , v -= Id + i>j v ij ,
where we set v ij ∈ Hom(V i , V j ) to be zero if i, j are in the same part of I. We dene Rep * (Γ, V ) to be the subset of Rep(Γ, V ) such that v -v + is in the opposite big cell U + HU -⊂ GL(V ) determined by the ordered grading of V , so we can write v + v -= w -hw + for some h ∈ H and unipotent elements

w + = 1 + i<j w ij , w -= 1 + i>j w ij
for some w ij ∈ Hom(V i , V j ), which are allowed to be nonzero even for i, j in the same part. This is indeed an open subset of Rep(Γ, V ), since it is dened by nonvanishing of the function f = ∆ i , where ∆ i : Rep(Γ, V ) → C is the top left minor of v + , v - corresponding to the sum ⊕ j i V j . This subset is nonempty (it contains the zero representation) and isomorphic to the ane variety

{z • f = 1} ⊂ C × Rep(Γ, V ).
generalise the classical multiplicative quiver varieties of Crawley-Boevey and Shaw [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF] and Yamakawa [START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF]. By results of [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF], for a large class of graphs these varieties are isomorphic to the (symplectic leaves of ) wild Betti spaces and therefore have hyperkähler metrics.

Let Γ be a complete k-partite graph with nodes I and a x an ordering of I. By Proposition 4.2.10 the resulting spaces will be independent of the latter choice. A dimension vector is an element d ∈ Z I with nonnegative integer coordinates (d i ) i∈I . Similarly, a parameter vector (or simply a parameter) is an element q ∈ (C * ) I with complex coordinates (q i ) i∈I .

Let V i = C d i and consequently V = V i be the corresponding I-graded vector space determined by d. Recall that in Theorem 4.2.7 we have dened the space Rep * (Γ, V ) which is a quasi-Hamiltonian H-space for H = GL(V i ). We will identify the parameter q with the point (q i Id V i ) i∈I ∈ H. Denition 4.2.12. The multiplicative quiver variety of Γ, d, q is the quasi-Hamiltonian reduction of Rep * (Γ, V ) at the value q of the moment map:

Q = Q(Γ, q, d) = Rep * (Γ, V ) / / q H = µ -1 (q).
The quotient by H on the right is the ane goemetric invariant theory quotient, taking the ane variety associated with the ring of H-invariant functions on µ -1 (q) ⊂ Rep * (Γ, V ). Observe that if q d = 1, then the quiver variety Q is empty. The set of stable points Q st ⊂ Q by denition consists of the points whose orbits in µ -1 (q) are closed and of dimension dim(H) -1 (since the scalars in H act trivially).

A graph Γ without loops and with n nodes determines a bilinear form on the root lattice Z I = i∈I Zε i . Let A be the adjacency matrix of Γ (the i, j entry of A is the number of edges between the nodes i and j) and dene a n × n matrix

C = 2 Id -A.
Then there is a bilinear form on Z I dened by

(ε i , ε j ) = C ij .
Theorem 4.2.13 ([28], Theorem 6.3.). Q st (Γ, q, d) is a smooth algebraic symplectic manifold which is either empty of of dimension 2 -( , ), where ( , ) is the bilinear form on the root lattice of Γ. The points of Q st correspond to the H-orbits in µ -1 (q) of irreducible representations of Γ. Denition 4.2.14. For a xed dimension vector d, we will say that the parameters q are generic if they obey the condition q α = 1 for any α in the nite set R ⊕ (d) := {α ∈ Z I (α, α) 2 and 0 α i d i for all i} \ {0, d}.

Here the meaning of generic is a bit dierent from the usual, since it may happen that the set R ⊕ (d) is not dense in {q q d = 1}. For example then the dimension vector is a multiplicity of another dimension vector, which will be the case. Proposition 4.2.15 ([28], Proposition 6.5.). If parameters q are generic, then all the points of the multiplicative quiver variety are stable, Q st (Γ, q, d) = Q(Γ, q, d), and so it is smooth.

As we have seen, for a vector space V and G = GL(V ), the irregular type Q determines a ssion graph Γ(Q). It also determines a grading of V by its eigenspaces (which are nodes of Γ(Q)), which in turn is the gives a dimension vector d. The fundamental correspondence between the multiplicative quiver varieties and wild character varieties can be now stated as follows (taking into account the remark after Theorem 4.2.7). Theorem 4.2.16 (cf. [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF], Proposition 9.2.). Let G = GL(V ) and Σ = (P 1 , 0, Q).

Denote by H = C G (Q) ⊂ G the centraliser of Q in G, Γ(Q) the associated ssion graph and by d the associated dimension vector, all determined by Q. Let q be a generic parameter, which we can also identify with a conjugacy class C ⊂ H. Then there is an isomorphism

M B (Σ, C) Q(Γ(Q), q, d).
We can now explain why we chose the non-standard representation of the Painlevé IV echo spaces. The GL 3n (C) representation involves only one pole, so we can conveniently use the theorem above to realise this wild character variety as a multiplicative quiver variety (and Γ(Q n IV ) is a triangle).

Linear algebra

In this section we will prove a sequence of simple algebraic lemmas which will be useful later in the chapter.

Denition 4.3.1. Let A, B be two complex n × n matrices, k ∈ C * and let ε be a primitive root of unity of degree n. We say that matrices A, B quasi-commute with parameter k if they satisfy the identity

AB -εBA = (1 -ε)k • Id.
Taking the trace, we get Tr((A + Id) n ) = n(-1) n+1 det(A + Id). On the other hand, developing (A + Id n ) n and using the fact that Tr(A k ) = (-1) k n, we get Tr((A + Id) n ) = Tr(A n ) + (-1) n+1 n, so we obtain n(-1) n+1 det(A + Id) = Tr(A n ) + (-1) n+1 n and dividing both sides by n(-1) n+1 completes the proof of the rst part.

For the second part, consider the expression det((A + Id) -Id). It is equal to det(A), but it is also equal to the characteristic polynomial, multiplied by (-1) n , of N +Id) evaluated at 1. Again, the coecients of the characteristic polynomial vanish, to we obtain

(-1) n (1 + (-1) n det(A + Id)) = det(A), det(A + Id) = det(A) + (-1) n+1 .
The proof is complete. Proposition 4.3.6. Let A, B be n × n matrices satisfying Tr(A i ) = Tr(B i ) = 0 for 0 < i < n, and quasi-commuting with parameter k . Then we have det(A + B + k + 1) = det(A) + det(B) + k n + 1.

We will split the proof of this statement into few steps. Suppose that A, B satisfy the hypotheses of Proposition 4.3.6. Lemma 4.3.7. Let 0 < a, b < n be two distinct integers. Then the trace of any word W build from a copies of A and b copies of B (in any order) is zero.

Proof. We proceed by induction by the length of the word. By assumption, the powers a, b is not divisible by n. Suppose that A is the rst letter of W . We can swap in the right direction right with all elements in the word swapping with other A does not change anything, and every time we encounter B, the trace gets multiplied by ε (we also add a constant k(1 -ε), but by inductive hypothesis the trace of the extra word of length a + b -2 is zero, since it has a -1 copies of A and b -1 copies of B). Thus after swapping with all the letters in W , we will return to the initial word, but multiplied by ε b . This yields Tr(W ) = 0 since n b and thus ε b = 1.

Corollary 4.3.8. Let i be an odd integer 0 < i < n. Then Tr((A + B) i ) = 0. Lemma 4.3.9. For 0 < i < n, we have Tr((AB) i ) = nk i . Proof. By hypothesis, we have AB -εBA = (1 -ε)k. This implies Tr(AB) = nk. We can also write AB = (1 -ε)k + εBA, take the i-th power of both sides, and proceed by induction, using the fact that Tr((AB) i ) = Tr((BA) i ).

Lemma 4.3.10. Let 0 < a < n be an integer. Suppose that A and B appear exactly a times in the word W , then Tr(W ) = nk a .

Proof. In other words, we need to show that if a word W consists of a copies of A and a copies of B, then its trace does not depend on the order of A and B. Let us start with the word (AB) a . We know that its trace is equal to nk a . We will prove by induction that if the trace of a word W consisting of a copies of A and B is k a , then the trace of the word W obtained by a swap of A and B in W is also nk a .

Suppose that we have replaced AB in W by εBA + (1 -ε)k (the proof is the same when we swap BA), obtaining a new word εW and a shorter word (1 -ε)kW with a -1 copies of A and B. By inductive hypothesis, Tr(W ) = nk a-1 and thus

εTr(W ) = Tr(W ) -n(1 -ε)k • k a-1 = nεk a .
Hence Tr(W ) = nk a and since we can obtain and such word by swapping letters in (AB) a (its trace is nk a ), the lemma is proved. Corollary 4.3.11. Let i be an even integer 0 < i < n. Then Tr((

A + B) i ) = nk i 2 i i 2 .
Proof of Proposition 4.3.6. Consider the expression det(A+B +k+1). We can express this quantity as a polynomial in traces of powers not greater than n of A + B + k + 1.

On the other hand, it follows from the previous lemmas that the only traces which are not already determined are Tr(A n ), Tr(B n ). From Cayley-Hamilton Theorem, it follows that

det(A + B + k + 1) = (-1) n+1 Tr(A n ) n + Tr(B n ) n + c,
where c is a constant, independent of choice of A, B. Thus one can suppose that A, B are diagonal (hence with n distinct eigenvalues of the form q, εq, . . . , ε n-1 q for some constant q) and determine the constant c. A direct check shows that it is indeed k n + 1. On the other hand, by Proposition 4.3.4 we have

(-1) n+1 Tr(A n ) n = det(A), (-1) n Tr(B n ) n = det(B).

The Painlevé I echo spaces

In this section we will study the Painlevé I echo space, dened in Section 4.1 as the wild Betti space M B (Σ n I , C n I ). We are going to prove the following theorem.

Theorem. Let n be a positive integer. There are isomorphisms of echo spaces

M B (Σ n I , C n I ) M B (Σ I , C I ).
It is known that the rst member of this family, the phase space of Painlevé I equation, is a cubic surface cut out by equation (cf. [START_REF] Kapaev | Connection formulae for the rst Painlevé transcendent in the complex domain[END_REF], p. 244)

xyz + x + z = 1

and the theorem states that all members of the Painlevé I echo family are isomorphic to this cubic.

Recall the Example 2.1.16. Let W be a complex vector space of dimension n. Suppose V = W ⊕ W . Let G = GL(V ), H = GL(W ) × GL(W ) and U + , U -upper/lower triangular with o-diagonal block of size n. We can identify:

G = * * * * , H = * 0 0 * , U + = 1 * 0 1 , U -= 1 0 * 1 ,
where an asterisk denotes an n × n block and one stands for an identity matrix of size n.

For G = GL(V ) and the irregular class z -5/2 there are ve Stokes groups which can be identied with U -and U + in alternating order. Let ∂ denote the associated twist exchanging the columns 1, . . . n with n + 1, . . . , 2n, so we have 

H(∂) = 0 * * 0 .

The space Rep

* ( A 0 , V )
The twisted case of Painlevé I does not t into the picture of multiplicative quiver varieties, but we can nonetheless conveniently dene a similar space. This has rst appeared in the talk [START_REF]Non-perturbative symplectic manifolds and non-commutative algebras[END_REF].

Let V be a complex vector space of dimension n, X, Y, Z ∈ End(V ) and suppose that GL(V ) acts on the triple (X, Y, Z) diagonally by simultaneous conjugation. We dene the graph Γ(Q n I ) to be the ane A 0 graph, which consists of one node with a loop. We will use the following theorem as the denition of the space Rep * ( A 0 , V ).

Theorem 4.4.2 ([29], Section 3). The space

Rep * ( A 0 , V ) := {X, Y, Z ∈ End(V ) XY Z + X + Z = 1}
is a quasi-Hamiltonian GL(V )-space of dimension 2n 2 with moment map µ(X, Y, Z) = ZY X + X + Z.

In particular, the image of the moment map takes values in GL(V ). If XY Z + X + Z = 1, then the determinant of ZY X + X + Z is one as well and thus µ(X, Y, Z)

is an invertible matrix. Moreover, if X, Z are invertible, then µ(X, Y, Z) = ZY X + X + Z = ZXZ -1 X -1
and the moment map is the multiplicative commutator of Z and X. On the other hand, there is a clear analogy here with the additive picture, where the Nakajima quiver variety of the ane A 0 graph is well-dened, as A, B ∈ End(V ) with moment map AB -BA, which is the additive commutator. Remark 4.4.3. Unlike in the untwisted case of Theorem 4.2.7, the space Rep * ( A 0 , V ) is not isomorphic to B(Q n I ) (the groups acting do not match up). As we have seen, the irregular type Q n I determines the group H isomorphic to GL(V ) × GL(V ) and B(Q n I ) is a twisted quasi-Hamiltonian H-space. Then Rep * ( A 0 , V ) is the intermediate space between B(Q n I ) and the quotient

B(Q n I ) / / C n I H = M B (Σ n I , C n I ),
obtained by quotienting B(Q n I ) by one copy of GL(V ). More precisely, the conjugation action of H on H(∂) is

h 1 0 0 h 2 0 a b 0 h -1 1 0 0 h -1 2 = 0 h 1 ah -1 2 h 2 bh -1 1 0
and we can use one action to set a = 1. In other words, one can simply use the description from Corollary 4.4.5 as a denition of the Painlevé I echo space and forget the twisted irregular types.

We will abusively denote

Q( A 0 , ε, n) := Rep * ( A 0 , V ) / / ε GL(V ).
Remark 4.4.6. If ε is a primitive root of unity, then all points in µ -1 (ε) ⊂ Rep * ( A 0 , V ) are stable. In this case the matrices X, Y, Z ∈ µ -1 (ε) cannot share a common subspace U ⊂ V , since the restriction to U would yield a representation of A 0 on a space of dimension k < n with the same ε and ε k = 1 (since ε is primitive). This means that a point in µ -1 (ε) seen as a representation of a quiver with three loops is irreducible and thus stable by theorem of King [START_REF] King | Moduli of representations of nite-dimensional algebras[END_REF]. So it is also stable in the subvariety Rep * ( A 0 , V ).

Functions on µ -1 (ε)

We are going to compute the GIT quotient 

Rep * ( A 0 , V ) / / ε GL(V ) = µ -1 (ε)/GL(V ),
XY Z + X + Z = 1 ZY X + Z + X = ε. (4.1)
In order to compute the quotient

Rep * ( A 0 , V ) / / ε GL(V )
we need to understand the ring of GL(V )-invariant functions on µ -1 (ε). By the classical theorem of Procesi [START_REF] Procesi | The invariant theory of n×n matrices[END_REF], the ring on invariants on this variety (which is an ane subvariety of End(V ) 3 ) is nitely generated and the generating functions are traces of words in X, Y, Z of bounded length, and the bound depends on n. However, the result is not constructive and we do not know a priori which traces to consider nor what the relations are.

Recall that we have dened (Denition 4.3.1) the notion of quasi-commutation of matrices. For A, B two n × n matrices and ε a primitive root of unity of degree n, A and B quasi-commute with parameter q if they satisfy AB -εBA = (1 -ε)q.

From now on we suppose that the matrices X, Y, Z ∈ µ -1 (ε) are as in Corollary 4.4.7.

Proposition 4.4.8. The pairs of matrices (Y, X), (Z, Y ), (X, Z) quasi-commute with parameters -1, -1 and 0, respectively: Let V be a complex vector space of dimension 2n. Suppose V = W ⊕ W with graded piece W of dimension n. Let G = GL(V ), H = GL(W ) × GL(W ) and U + , U - upper/lower triangular with o-diagonal block of size n. As before, we can identify:

   Y X -εXY = -(1 -ε) ZY -εY Z = -(1 -ε) XZ -εZX = 0.
ZY X + Z + X -ε = Z(εXY -1 + ε) + Z + X -ε = εZXY + εZ + X -ε,
G = * * * * , H = * 0 0 * , U + = 1 * 0 1 , U -= 1 0 * 1 ,
where an asterisk denotes an n × n block and one stands for an identity matrix of size n.

For G = GL(V ), the irregular type

Q n II = A 3 z 3 + A 2 z 2 + A 1 z
grades the space V into its eigenspaces. We have chosen the multiplicities of eigenvalues of A 3 in such way that there are only two eigenspaces, both of dimension n.

The condition on centralisers of A 2 , A 1 containing that of A 3 means that the two eigenspaces of A 3 do not split and the grading determined by Proof. Since the leading term A 3 has two eigenvalues of multiplicity n and the degree of Q n II is three, there are six singular directions. The condition on centralisers implies that there is only one level thus the Stokes group at each direction does not break up and we obtain the full groups U + and U -. Proposition 4.5.2. The space

Q n II is V = W ⊕ W . Moreover, the centraliser of Q n II in G is H.
B(Q n II ) = {(h, S 1 , . . . , S 6 ) ∈ H × (U + × U -) hS 6 • • • S 1 = 1} is a quasi-Hamiltonian H-space with moment map µ(h, S) = f 1 0 0 f 2 ,
where

f 1 = 1 + s 5 s 2 + s 5 s 4 + s 4 s 3 + s 5 s 4 s 3 s 2 f 2 = 1 + s 4 s 3 -(s 4 s 3 s 2 + s 4 + s 2 )f -1 1 (s 3 + s 5 + s 5 s 4 s 3 ) (4.3)
and s i denotes the o-diagonal entry of S i .

Proof. We know that B(Q n II ) is a quasi-Hamiltonian H-space with moment map h -1 . The matrices S 2 , S 3 , S 4 , S 5 uniquely determine h, S 1 , S 6 , since the condition hS 6 • • • S 1 = 1 implies that S 5 • • • S 2 is in the big cell U -HU + . The formula for the moment map is thus the block version of the usual LDU decomposition

a b c d = 1 0 ca -1 1 a 0 0 d -ca -1 b 1 a -1 b 0 1
applied to the entries of the matrix M = S 5 S 4 S 3 S 2 .

The space Rep

* ( A 1 , V )
Suppose that V = W ⊕ W is a graded vector space of dimension 2n and G = GL(V ), H = GL(W ) × GL(W ). By Corollary 4.2.5, the ssion graph Γ(Q n II ) is the ane A 1 graph with set of nodes I = {v 1 , v 2 } and a double edge between them. Moreover, the irregular type Q n II determines an I-grading V = W ⊕ W and thus the dimension vector n = (n, n) (the vector spaces at v 1 , v 2 are both W ).

A representation of the graph A 1 on V is a choice of four maps x 12 , x 21 , y 12 , y 21 , where x ij , y ij go from the vector space at the node v i to the vector space at the node v j , both isomorphic to W . By Theorem 4.2.7 the space Rep * ( A 1 , V ) is a quasi-Hamiltonian H-space isomorphic to B(Q n II ). The isomorphism between Rep * ( A 1 , V ) and B(Q n II ) is given by sending the four maps x ij , y ij to the four entries of S 2 , S 3 , S 4 , S 5 :

(x 12 , x 21 , y 12 , y 21 ) → (s 5 , s 4 , s 3 , s 2 ).

We are going go study the multiplicative quiver variety

Q( A 1 , q, n) = Rep * ( A 1 , V ) / / q H
with generic parameter q. Recall from Denition 4.2.14 that a parameter is generic if it obeys the condition q α = 1

for any α in the nite set R ⊕ (d) := {α ∈ Z I (α, α) 2 and 0 α i d i for all i} \ {0, d}.

Proposition 4.5.3. A parameter q = (q 1 , q 2 ) is generic if q 1 q 2 = ε is a primitive root of unity of degree n and both q 1 , q 2 are not roots of unity of degree n (not necessarily primitive).

Proof. The bilinear form on the lattice of A 1 has the matrix

C = 2Id -A = 2 -2 -2 2 hence C(n 1 , n 2 ) = 2(n 1 -n 2 )
2 and it is less or equal than two if |n 1 -n 2 | 1. This means that R ⊕ (d) consists of elements α ∈ Z 2 such that both coordinates are equal or they dier by one. Therefore it implies that (q 1 q 2 ) k is not equal to one for 0 < k < n and that q 1 , q 2 are not roots of unity of degree n.

Functions on µ -1 (q)

For V = W ⊕ W of dimension 2n, we will study the reduction of Rep * ( A 1 , V ) by H = GL(W ) × GL(W ) at a generic value of the parameter q. Let v 1 , v Corollary 4.5.4. For a parameter q = (q 1 , q 2 ) we have the following description of the space µ -1 (q): 

µ -1 (q) = 1 +
In order to compute the GIT quotient

Rep * ( A 1 , V ) / / q H we need to understand the ring of GL(W ) × GL(W )-invariant functions on µ -1 (q).

By the result of Le Bruyn and Procesi [START_REF] Le Bruyn | Semisimple representations of quivers[END_REF], the ring on invariants on this variety (which is an ane subvariety of Rep( A 1 , V )) is nitely generated and the generating functions are traces of oriented cycles in the double of A 

       ZXY -εX -Y -q 1 Z + q 1 + ε = 0 XY Z -X -εY -q 1 Z + q 1 + ε = 0 ZXY Z -ZX -Y Z -q 1 Z 2 + q 1 Z + εZ -ε + 1 = 0 XY + εx 12 y 21 = q 1 , (4.5) 
where ε = q 1 q 2 is a primitive root of unity of degree n.

Proof. The second equation of the moment map (4.4) reads:

1 + x 21 y 12 -(x 21 y 12 y 21 + x 21 + y 21 )q -1 1 (x 12 x 21 y 12 + x 12 + y 12 ) = q 2 so we can multiply it y 12 on the left, y 21 on the right and by Lemma 4.5.5 obtain, after substituting q 1 q 2 = ε ZXY -εX -Y -q 1 Z + q 1 + ε = 0.

Similarly, multiplication by x 12 on the left and x 21 on the right yields XY Z -X -εY -q 1 Z + q 1 + ε = 0.

The third identity is obtained after multiplying the second equation of the moment map equation by y 12 on the left and x 21 on the right, and the last one after multiplying the equation by x 12 on the left and y 21 on the right.

Corollary 4.5.7. The pairs of matrices (X, Y ), (Y, Z), (Z, X) quasi-commute with parameters q 1 , 1 and 1, respectively:

   XY -εY X = q 1 (1 -ε) Y Z -εZY = (1 -ε) ZX -εXZ = (1 -ε). (4.6) 
Proof. The rst equation of the moment map (4.4) can be written as Y X + x 12 y 21 = q 1 , which together with the fourth equation of (4.5)

XY + εx 12 y 21 = q 1 implies the quasi-commutation for X, Y with parameter q 1 . Multiplying the rst equation of (4.5) by Z on the right and substracting the third equation yields the quasi-commutation (Z, X) and multiplying the second equation by Z on the left and substracting the third gives the desired relation for the pair (Y, Z).

The matrices X, Y, Z have similar properties as matrices X, Y, Z from the case of Painlevé I echo spaces. The proofs are almost the same as in that case as well.

Proposition 4.5.8. Each of matrices X, Y, Z is either nilpotent or diagonalisable with n distinct eigenvalues of the form t, εt, . . . , ε n-1 t.

Proof. Suppose that X is not nilpotent. Then by Proposition 4.3.2 either X is of desired form or X and Y share an eigenvector v for an eigenvalue λ 1 of X and q 1 /λ 1 for Y . Similarly, if X is not of desired form, then X and Z share an eigenvector w for an eigenvalue λ 2 of X and 1/λ 2 for Z.

From the rst equation of (4.5) it follows that

(ZXY -εX -Y -q 1 Z + q 1 + ε)v = 0
which implies -ελ -q 1 /λ = -q 1 -ε and thus λ 1 = 1 or λ 1 = q 1 /ε. The second equation of (4.5) is XY Z -X -εY -q 1 Z + q 1 + ε = 0 which after substitution XY = εY X + q 1 (1 -ε) yields εY XZ -X -εY -q 1 εZ + q 1 + ε = 0.

Evaluation on w gives -λ 2 -q 1 ε/λ 2 = -q 1 -ε and thus λ 2 = q 1 or ε. In any case, if λ 2 = q 1 or λ 2 = ε, w is not an eigenvector of Y (since sharing an eigenvector between X and Y implies that the eigenvalue λ of X for which it is shared is equal to 1 or q 1 /ε). By Proposition 4.3.2 it implies that ελ 2 is also an eigenvalue of X. By genericity of parameters, ε k λ 2 = λ 1 for 0 k < n -1 and any of the four possible choices of λ 1 , λ 

The Painlevé IV echo spaces

In this section we will study the Painlevé IV echo space, dened in Section 4.1 as the wild Betti space M B (Σ n IV , C n IV ). We are going to prove the following theorem.

Theorem. Let n be a positive integer. There are isomorphisms of echo spaces

M B (Σ n IV , C n IV ) M B (Σ IV , C IV ).
It is known that the rst member of this family, the phase space of Painlevé IV equation, is the cubic surface cut out by equation

xyz + x 2 + c 1 x + c 2 y + c 3 z + c 4 = 0
for suitable constants c 1 , c 2 , c 3 , c 4 ∈ C and the theorem states that all members of the Painlevé IV echo family are isomorphic to this cubic (so the constants match up as well).

Let V be a complex vector space of dimension 3n.

Suppose V = W ⊕ W ⊕ W with graded piece W of dimension n. Let G = GL(V ), H = GL(W ) × GL(W ) × GL(W )
and U + , U -upper/lower triangular with o-diagonal blocks of size n. As before, we can identify:

G =   * * * * * * * * *   , H =   * 0 0 0 * 0 0 0 *   , U + =   1 * * 0 1 * 0 0 1   , U -=   1 0 0 * 1 0 * * 1   ,
where an asterisk denotes an n × n block and one stands for an identity matrix of size n. For two distinct positive integers i, j not greater than three, we dene the six groups U ij to be the unipotent subgroup of G with o-diagonal entries in the block (i, j) of size n × n.

For G = GL(V ), the irregular type

Q n IV = A 2 z 2 + A 1 z
grades the space V by its eigenspaces. We have chosen the multiplicities of eigenvalues of A 2 in such way that there are only three eigenspaces, all of dimension n.

The condition on centraliser of A 1 containing the that of A 2 means that the three eigenspaces of A 2 do not split and the grading determined by Proof. This is the block version of the commutative GL 3 (C) picture. The leading term A 2 has three eigenvalues of multiplicity n and the degree k of Q n IV is two. If q 1 , q 2 , q 3 are the eigenvalues of A 2 , then the roots α ij = q i -q j have at most six possible values, all in the set {±(q 1 -q 2 ), ±(q 2 -q 3 ), ±(q 3 -q 1 )} and if all three dierences are dierent, then each singular direction is supported by exactly n 2 roots (it is possible to have two dierences of eigenvalues equal; then there are less singular directions, but in turn two of them are supported by 2n 

Q n IV is V = W ⊕W ⊕W . Moreover, the centraliser of Q n IV in G is H.
B(Q n IV ) = {(h, S 1 , . . . , S 4 ) ∈ H × (U + × U -) 2 hS 4 • • • S 1 = 1}.
We will use the following notations

S 3 =   1 x 12 x 13 0 1 x 23 0 0 1   , S 2 =   1 0 0 x 21 1 0 x 31 x 32 1   . Proposition 4.6.2. The space B(Q n IV ) = {(h, S 1 , . . . , S 4 ) ∈ H × (U + × U -) 2 hS 4 • • • S 1 = 1} is a quasi-Hamiltonian H-space with moment map µ(h, S) =   f 1 0 0 0 f 2 0 0 0 f 3   ,
where

f 1 = 1 + x 12 x 21 + x 13 x 31 f 2 = 1 + x 23 x 32 -X 21 f -1 1 X 12 f 3 = 1 -x 31 f -1 1 x 13 -(x 32 -x 31 f -1 1 X 12 )f -1 2 (x 23 -X 21 f -1 1 x 13 ), (4.7) 
where X 21 = x 21 + x 23 x 31 , X 12 = x 12 + x 13 x 32 .

Proof. We know that B(Q n IV ) is a quasi-Hamiltonian H-space with moment map h -1 . The matrices S 3 , S 2 uniquely determine h, S 1 , S 4 , since the condition hS 4 • • • S 1 = 1 implies that the product S 3 S 2 is in the big cell U -HU + . The formula for the moment map is thus the block version of the usual LDU decomposition for a 3 × 3 matrix applied for the entries of Suppose that V = W ⊕ W ⊕ W is a graded vector space of dimension 3n and G = GL(V ), H = GL(W )×GL(W )×GL(W ). By Corollary 4.2.6, the ssion graph Γ(Q n IV ) is the ane A 2 graph which is the full 3-partite graph with three nodes. In other words, it is a triangle with set of nodes I = {v 1 , v 2 , v 3 }. Moreover, the irregular type Q n IV determines an I-grading V = W ⊕ W ⊕ W and thus the dimension vector n = (n, n, n) (the vector spaces at v 1 , v 2 , v 3 are all W ).

M = S 3 S 2 =   1 +
A representation of the graph A 2 on V is a choice of six maps

x 12 , x 21 , x 13 , x 31 , x 23 , x 32 , where x ij go from the vector space at the node v i to the vector space at the node v j , both isomorphic to W . By Theorem 4.2.7 the space Rep * ( A 2 , V ) is a quasi-Hamiltonian H-space isomorphic to B(Q n IV ). The isomorphism between Rep * ( A 1 , V ) and B(Q n IV ) is given by sending the six maps x ij six entries of S 2 , S 3 (which we have labeled in the same way).

We are going go study the multiplicative quiver variety

Q( A 2 , q, n) = Rep * ( A 2 , V ) / / q H
with generic parameter q.

Proposition 4.6.3. A parameter q = (q 1 , q 2 , q 3 ) is generic if q 1 q 2 q 3 = ε is a primitive root of unity of degree n and both q 1 , q 2 , q 3 are not roots of unity of degree n (not necessarily primitive).

Proof. The bilinear form on the lattice of A 2 has the matrix

C = 2Id -A =   2 -1 -1 -1 2 -1 -1 -1 2   hence C(n 1 , n 2 , n 3 ) = (n 1 -n 2 ) 2 + (n 2 -n 3 ) 2 + (n 3 -n 1 )
2 and it is less or equal than two if |n i -n j | 1, which implies that at least two coordinates n i are equal. This means that R ⊕ (d) consists of elements α ∈ Z 3 such that two coordinates n i are equal and the third diers by one. Therefore it implies that (q 1 q 2 q 3 ) k is not equal to one for 0 < k < n and that q 1 , q 2 , q 3 are not roots of unity of degree n.

Lemma 4.6.5. The elements A, X, Y satisfy the following identities:

q 1 x 23 (x 32 -q -1 1 x 31 X 12 ) = X + q 1 q 2 q 1 (x 23 -q -1 1 X 21 x 13 )x 32 = Y + q 1 q 2 q 1 x 21 x 13 (x 32 -q -1 1 x 31 X 12 ) = AX + q 1 q 1 (x 23 -q -1 1 X 21 x 13 )x 31 x 12 = Y A + q 1
Proof. For the rst identity, observe that the term x 23 x 31 X 12 is equal to (X 21 -x 21 )X 12 and we can substitute X 21 X 12 using the second equation of the moment map (4.8) and x 21 X 12 = X + q 1 . Hence we can expand the formula and obtain the identity. The same proof works for the second one, since x 13 x 32 = X 12 -x 12 and X 21 x 12 = Y + q 1 .

For the third, replace x 13 x 31 by q 1 -1 -x 12 x 21 in the term x 21 x 13 x 31 X 12 , using the rst equation of (4.8). Then again using the fact that x 21 X 12 = X + q 1 we can simplify and expand the formula, obtaining the identity. We get the last identity in a similar manner, by replacing x 13 x 31 in X 21 x 13 x 31 x 12 and using the fact that X 21 x 12 = Y + q 1 . Proposition 4.6.6. The cycles A, B, X, Y obey the following relations.

       -XY -q 1 q 2 A -εq 1 B + k 1 = 0 -XY A -q 1 X -εq 1 Y -q 1 q 2 A 2 + k 1 A -k 2 = 0 -AXY -εq 1 X -q 1 Y -q 1 q 2 A 2 + k 1 A -k 2 = 0 -(AX + q 1 )(Y A + q 1 ) -q 1 q 2 A 3 + k 1 A 2 -k 2 A + εq 2 1 = 0 (4.10)
with k 1 = q 2 1 q 2 + q 1 q 2 + εq 1 , k 2 = q 2 1 q 2 + εq 2 1 + εq 1 and ε = q 1 q 2 q 3 is a primitive root of unity of degree n.

Proof. First, multiply the last equation of the moment map (4.8) by q 2 1 q 2 and replace q 1 q 2 q 3 by ε. Then multiply it by x 23 on the left and x 32 on the right. Using Lemma 4.6.5 the big product involving X 12 and X 21 simplies to (X + q 1 q 2 )(Y + q 1 q 2 ).

The term q 1 q 2 x 23 x 31 x 13 x 32 is equal to q 1 q 2 (X 21 -x 21 )(X 12 -x 12 ) and thus can be expressed in X, Y, A, B. Expanding the formula yields the rst identity.

The second identity is obtained by multiplying the last equation of the moment map by x 23 on the left and x 31 x 12 on the right. Again, by Lemma 4.6.5 the big product involving X 12 and X 21 will simplify. We expand the remaining terms by replacing x 23 x 31 x 13 x 32 by (X 21 -x 21 )(X 12 -x 12 ) and x 13 x 31 by q 1 -1 -x 12 x 21 . Gathering all the terms together and expressing them in terms of A, B, X, Y yields the identity.

The third identity is obtained in a similar fashion, by multiplying the last equation of the moment map by x 21 x 13 on the left and x 32 on the right. The last one is proved in the same manner after multiplying the equation by x 21 x 13 on the left and x 31 x 12 on the right. q 1 -1 -x 12 x 21 and obtain a sum of a cycle of length n -2 and a cycle that passes through v 2 more than once. By the inductive hypothesis, the claim is proved.

The remaining part of the proof is exactly the same as the proof of Proposition 4.4.16 with two minor dierences. The relation used to shorten the word involving all three letters A, B, Y is dierent and we can choose it to be for example

-BY A + εY 2 + q -1 1 k 2 Y -q 1 q 2 A -q 1 B + k 1 = 0.
The second dierence is that A, B do not quasi-commute, but every time we swap them using the relation

AB -εBA = (ε -ε -1 )Y -(ε -1 -1)q -1 1 k 2
the extra term involving Y is of length one, hence we can still apply the inductive hypothesis.

Proposition 4.6.20. The functions a, b, y satisfy the relation

aby + y 2 -(q n 1 q n 2 + q n 1 + 1)y -q n 1 q n 2 a -q n 1 b + q 2n 1 q n 2 + q n 1 q n 2 + q n 1 = 0.
Proof. Observe that the relation

-BY A + εY 2 + q -1 1 k 2 Y -q 1 q 2 A -q 1 B + k 1 = 0.
factorises as follows

(BY + q 1 q 2 )(1 -A) = (B -εY -ε -q 1 q 2 )(Y + q 1 ) (BY + q 1 q 2 )(1 -A) = -ε Y - B ε + 1 + q 1 q 2 ε (Y + q 1 ).
We can thus take the determinant of both sides and obtain an expression in a, b, y. This is the same as in the proof of Propositions 4.5.12, 4.4.17 and we use Proposition 

B ε + 1 + q 1 q 2 ε ) Proposition 4.6.21. The space µ -1 (q) ⊂ Rep * ( A 2 , V ) is nonempty.
Proof. Denote by H(∂) the following subset of GL(V ), which we identify with 3n×3n matrices:

H(∂) =   0 0 * 0 * 0 * 0 0   ,
where asterisks denote n × n blocks and consider a matrix

U =   1 u 1 u 2 0 1 u 3 0 0 1   ∈ U + . A direct computation shows that if u 1 , 1 -u 3 u -1 2 u 1 are invertible, then there exist L 1 , L 2 ∈ U -such that L 1 U L 2 = h =   0 0 h 1 0 h 2 0 h 3 0 0   ∈ H(∂) with h 1 = u 2 , h 2 = 1 -u 3 u -1 2 u 1 , h 3 = -u -1 2 (1 -u 1 u 3 u - 1 
2 ) -1 . In other words, with these conditions we have M ∈ U -H(∂)U -. If we futher suppose that u 3 is invertible and set

X 1 = u 2 , X 2 = u 3 u -1 2 , X 3 = u 1 -u 2 u -1 3 , then h becomes h =   0 0 X 1 0 X 2 X 3 0 -X -1 1 X -1 2 X -1 3 0 0   .
Similarly, for a matrix

L =   1 0 0 l 1 1 0 l 2 l 3 1   ∈ U - and l 2 , 1 -l 1 l -1 2 l 3 , l 1 invertible, we have L ∈ U + H(∂)U + and the element h ∈ H(∂) such that L = U 1 hU 2 can be written as h =   0 0 -Y -1 1 Y -1 2 Y -1 3 0 Y 2 Y 3 0 Y 1 0 0   with Y 1 = l 2 , Y 2 = l 1 l -1 2 , Y 3 = l 3 -l 2 l -1 1 . Suppose that matrices A ∈ U + , B ∈ U -satisfy A ∈ U -H(∂)U -, B ∈ U + H(∂)U + , so we can write h 1 A 1 AA 2 = 1, h 2 B 1 BB 2 = 1 for some h 1 , h 2 ∈ H(∂), A 1 , A 2 ∈ U -, B 1 , B 2 ∈ U + Then this gives a point (h, S 1 , S 2 , S 3 , S 4 ) ∈ H × (U + × U -) 2 satisfying hS 4 S 3 S 2 S 1 = 1, thus a point in B(Q IV ). More explicitly, we set h = h 2 h 1 , S 4 = A 1 , S 3 = AB 1 , S 2 = B, S 1 = B 2 h 2 A 2 h -1 2 .
We do not suppose that the variables x 1 , x 2 . . . commute nor that they are invertible. In particular, we will consider continuants in non-commutative variables such as matrices. The rst few continuants are given by the following formulas:

(∅) = 1 (x 1 ) = x 1 (x 1 , x 2 ) = x 1 x 2 + 1 (x 1 , x 2 , x 3 ) = x 1 x 2 x 3 + x 1 + x 3 (x 1 , x 2 , x 3 , x 4 ) = x 1 x 2 x 3 x 4 + x 1 x 2 + x 1 x 4 + x 3 x 4 + 1 (x 1 , x 2 , x 3 , x 4 , x 5 ) = x 1 x 2 x 3 x 4 x 5 + x 1 x 2 x 5 + x 1 x 2 x 5 + x 1 x 4 x 5 + + x 3 x 4 x 5 + x 1 + x 3 + x 5 and in general the monomials of (x 1 , . . . , x n ) are obtained by erasing disjoint pairs of consecutive elements on the list.

There are multiple (equivalent) denitions of continuant polynomials, another one is as follows, and will appear naturally in the context of Stokes data. Consider matrices B k given by B k = x k 1 1 0 .

Then one can easily show that the entries of the product B 1 B 2 • • • B n are given by

x 1 1 1 0

x 2 1 1 0

• • •

x n 1 1 0 = (x 1 , . . . , x n ) (x 1 , . . . , x n-1 ) (x 2 , . . . , x n ) (x 2 , . . . , x n-1 ) .

(5.

2)

The other denitions involve for example the continued fractions or determinants of tridiagonal matrices.

The spaces B + k and B - k

Let V = V 1 ⊕ V 2 be an ordered graded vector space of dimension 2n with two graded pieces V 1 , V 2 such that dim(V 1 ) = dim(V 2 ) = n. We can identify both pieces with a vector space W of dimension n. Recall that we have dened for any ordered graded vector space V the spaces A r (V ), B r (V ) and there are groups G = GL(V ), H = GL(V 1 ) × GL(V 2 ), the opposite parabolics P ± stabilising the (isomorphic) ags F ± Recall what we have denoted P = ( 0 1 1 0 ), so P 1 0

F + = V 1 ⊂ V, F -= V 2 ⊂ V
s 2i-1 1 = s 2i-1 1 1 0
and ( 1 s 2i 0 1 ) P = ( s 2i 1 1 0 ). Write h ∈ H(∂) as P • h 1 0 0 h 2 . Then we have 

P • h 1 0 0 h 2 1 0 s k 1 • • • 1 s 2 0 1 1 0 s 1 1 = 1,

Counting the factorisations

By Proposition 5.2.2 we know how to factorise a continuant into two pieces, given that it has an invertible subcontinuant. We can inductively continue this process until we obtain a full factorisation (x 1 , . . . , x n ) = x 1 • • • x n (x n , . . . , x 1 ) = x n • • • x 1 into a product of x i 's. At each step we split a chosen continuant into two pieces of smaller length, supposing that some subcountinuant is invertible and the nal factorisation will depend on the choice of certain subset of invertible subcountinuants. However, splitting in dierent order might yield the same full factorisations in the end, thus it is natural to ask how many dierent full factorisations of a continuant (x 1 , . . . , x n ) there are. The goal of this section is to establish the following fact (cf. also Remark 5.2.15 at the end of the section, discussing a connection with free duplicial algebras of Loday [START_REF]Generalized bialgebras and triples of operads[END_REF]).

Theorem. Let n be a positive integer. There are C n dierent full factorisations of (x 1 , . . . , x n ), where C n denotes the n-th Catalan number.

Let us describe the naive count. At each step we split a continuant into a product of two subcontinuants, making a choice whether the left subcontinuant is invertible or the right one. We can axiomatize this procedure in the language of trees: we start at the root which is labelled n and it has two descendants: left subtree with n 1 leaves and the right subtree with n 2 leaves and n 1 + n 2 = n. Furthermore, we label the root by L or R, depending on whether the left subcontinuant (of length n 1 ) is supposed to be invertible, or the right one (of length n 2 ). We can then continue inductively and see that a factorisation of a continuant of length n determines a rooted binary tree with n leaves and a labelling L, R of each internal node, giving in total 2 n-1 C n-1 factorisations. This is obviously incorrect since when counting the full factorisations this way we count the same full factorisations multiple times. In other words, dierent sequences of intermediate splittings might lead to the same full factorisation (x 1 , . . . , x n ) = x 1 • • • x n . In order to perform the proper count, we need some supplementary denitions and combinatorial lemmas. Proposition 5.2.5. Let x 1 • • • x n be a full factorisation of (x 1 , . . . , x n ). Then the terms x i are all of the form (with some of the inverted continuants possibly empty and thus on length zero):

(x m , . . . , x n ) -1 (x m . . . , x k )(x l , . . . , x k ) -1 , (5.8) for some integers k, l, m, n such that l(x m , . . . , x k ) = l(x m , . . . , x n ) + l(x l , . . . , x k ) + 1.

Lemma 5.2.7. Let x 1 • • • x n be a full factorisation of (x 1 , . . . , x n ) and suppose that i = n. If the uninverted continuant in the expression for x i ends with x n , then x i has a right companion. Similarly if i = 1 and the uninverted continuant in its expression starts with x 1 , then x i has a left companion. Lemma 5.2.8. Let x 1 • • • x n be a full factorisation of (x 1 , . . . , x n ). Then x 1 has no left companion and the uninverted continuant in its expression starts with x 1 . Similarly, x n has no right companion and the uninverted continuant in its expression ends with x n . Denition 5.2.9. A factorisation list, or in short an f-list, is a list of integers of length 2n -1 satisfying the following conditions:

1) There are 2n -1 integers, between n and -n, alternating in sign.

2) The integer n appears exactly once and -n does not appear.

3) It admits a partition into n subintervals such that the sum of elements in each interval is 1. Examples of full factorisations (corresponding to these lists) are (x 1 , x 2 , x 3 ) = x 1 [x -1 1 (x 1 , x 2 , x 3 )x -1 3 ]x 3 .

(x 1 , x 2 , x 3 , x 4 ) = [(x 1 , x 2 )x -1 2 ][x 2 ][(x 1 , x 2 ) -1 (x 1 , x 2 , x 3 )][(x 1 , x 2 , x 3 ) -1 (x 1 , x 2 , x 3 , x 4 )] Proposition 5.2.10. A full factorisation x 1 • • • x n of (x 1 , . . . , x n ) determines an f-list.

Proof. Given a full factorisation, each term x i is of the form (5.8) and we can list the lengths of all continuants appearing in x i 's for i = 1, . . . , n, giving the negative sign to the companions. We will show that such an assignment yields an f-list.

We will proceed by induction. Factorise the continuant (x 1 , . . . , x n ) = (x 1 , . . . , x k )(x k+1 , . . . , x n ),

(the proof woks the same if we factorise on the right). By inductive hypothesis, the further factorisations of the two subcontinuants (x 1 , . . . , x k ), (x k+1 , . . . , x n ) yield two f-lists, of length 2k -1 and 2(n -k) -1, respectively, which we will merge into an f-list of length 2n -1. This is done as follows. The left continuant (x 1 , . . . , x k ) splits further into x 1 • • • x k but it involves the variable x k which we need to eliminate and obtain expressions involving the original variable x k .

However, x i is of the form (5.8) and if i = k and if the uninverted continuant involves x k (that is, ends with x k since k is the greatest index), then by Lemma 5.2.7 it has a right companion and using identity (5.10) one can eliminate x k , obtaining (x 1 , . . . , x a ) and the right one a factorisation of (x n-b+1 , . . . , x b ). Therefore sequence of splittings of (x 1 , . . . , x n ) leading to L might be for example (x 1 , . . . , x n ) = (x 1 , . . . , x a )( x a+1 , . . . , x n )

and then (x 1 , . . . , x a )( x a+1 , . . . , x n ) = (x 1 , . . . , x a )x a+1 (x n-b+1 , . . . , x n ),

where x a+1 is obtained by splitting ( x a+1 , . . . , x n ) at x a+1 to the left. Since a + b = n-1, the indices a+1 and n-b+1 are in fact consecutive. Then we use the inductive hypothesis and fully factorise (x 1 , . . . , x a ) and (x n-b+1 , . . . , x n ) as prescribed by L 1 , L 2 , obtaining the list L.

We are now ready to count the number of factorisations using the f-lists.

Theorem 5.2.14. There are C n distinct full factorisations of the continuant (x 1 , . . . , x n ),

where C n denotes the n-th Catalan number.

Proof. Denote by L k the set of f-lists of length 2k -1. As we have shown, there is a bijection between the set of full factorisations of (x 1 , . . . , x n ) and L n . (but not the other way). The operations s R , s L form a free duplicial algebra" D of Loday [START_REF]Generalized bialgebras and triples of operads[END_REF] and the splittings correspond to products over and under of binary trees of [START_REF]Generalized bialgebras and triples of operads[END_REF]. In particular, it is known that for a free duplicial algebra D with one generator, the dimensions of homogeneous components are counted by the Catalan numbers and thus our count can be explained by Loday's. The f-lists (without the negative terms, which are uniquely determined) seem to appear in [63], again in the context of counting binary trees.

On the other hand, the explicit count of factorisations of the continuant gives a direct link between factorisations and triangulations of polygons. The Catalan number C k counts the triangulations of the (k + 2)-gon. Thus it is possible to read a factorisation of the continuant o a triangulation the diagonals of a triangulation tell us which continuants will be invertible. More precisely, let P k+2 be a (k + 2)-gon and label its vertices by 0, . . . , k + 1 in counter clockwise order. Each diagonal [i, j] joining two vertices i, j with i < j divides the set of vertices of P k+2 into two segments (j + 1, . . . , i -1) and (i + 1, . . . , j -1) (modulo k + 2) and the segment (i + 1, . . . , j -1) does not contain 0 nor k +1. The invertible continuant corresponding to this diagonal is thus (x i+1 , . . . , x j-1 ). given by diagonals [START_REF] Alekseev | Lie group valued moment maps[END_REF][START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF], [START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF][START_REF] Atiyah | Hyper-Kähler manifolds, Complex geometry and analysis[END_REF], [START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF][START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF]. The diagonal [START_REF] Alekseev | Lie group valued moment maps[END_REF][START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] divides the set of vertices into two segments (0) and [START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF][START_REF] Arinkin | Isomorphisms between moduli spaces of SL(2)-bundles with connections on P 1 \ {x 1[END_REF][START_REF] Atiyah | Hyper-Kähler manifolds, Complex geometry and analysis[END_REF], thus the invertible continuant is (x 2 , x 3 , x 4 ). Similarly, we obtain the invertible continuants (x 3 ) for [START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF][START_REF] Atiyah | Hyper-Kähler manifolds, Complex geometry and analysis[END_REF] and (x 3 , x 4 ) for [START_REF] Andersen | The Poisson structure on the moduli space of at connections and chord diagrams[END_REF][START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF]. The factorisation is then (x 1 , x 2 , x 3 , x 4 ) = [(x 1 , x 2 , x 3 , x 4 )(x 2 , x 3 , x 4 ) -1 ][(x 2 , x 3 , x 4 )(x 3 , x 4 ) -1 ][(x 3 )][(x 3 ) -1 (x 3 , x 4 )].

The factorisation map

In this section we will interpret the factorisations of continuants in terms of moment maps for the spaces B ± k . This will lead to the notion of factorisation map and we will see that the maps induced by factorisations of continuants are in fact quasi-Hamiltonian embeddings. if m is odd. Moreover, the images of f R are dense open subsets of B ± m+n .

Analogously, we can consider the map f L . Suppose that B m , B n are compatible, ie. A 2 and B n+2 are in the same unipotent. This implies that A 1 , B n+1 are in the same unipotent as well, so we can consider f L ((h 1 , A), (h 2 , B)) = (h 2 h 1 , A m+2 , A m+1 , . . . , , A 2 , A 1 B n+1 , B n , . . . , B 1 ), (5.15) where A m+2 = h -1 1 B n+2 h 1 A m+2 . Similarly as for the map f R , we can denote The spaces B ± k classify isomorphism classes of connections on P 1 with one irregular pole at zero and a particular xed irregular type Q. It is an intrinsic object, isomorphic to Hom(Π, {b}) and a choice of paths generating the fundamental groupoid identies it with an explicit product of groups. As we have noticed, we can think of the space B ± k as a (k + 2)-gon oating in a disk, with marked point b on the boundary. Now, the factorisation map can be understood as gluing two such polygons along an edge. However, in order to glue A 1 and B 1 , we need to move the path around A 1 away from the edges we are gluing. This is done as on the picture below and explains how the term B 1 arises, since the monodromy around the right polygon is h 2 . we will simplify the terms in (5.16) as follows, using the fact that (ab) * (θ) = Ad -1 b a * (θ) + b * (θ). Set κ = µ * 2 (θ) so that, for i 2 γ n+i = (A i . . . A 1 µ 2 ) * (θ) = Ad -1 µ 2 α i + κ, γ n+1 = (B -1 n+2 A 1 µ 2 ) * (θ) = Ad -1 A 1 µ 2 (B -1 n+2 ) * (θ) + Ad -1 µ 2 α 1 + κ.

A 1 A 2 B 1 B n+2 b h 2 A 1 h -1 2 A 2 B 1 B n+2 b B 1 h 2 A 1 h -1
Thus consequently we get for i 2 (γ n+i , γ n+i+1 ) = (Ad -1 µ 2 α i + κ, Ad -1 µ 2 α i+1 + κ) = (α i , α i+1 ) + (α i , κ) + (κ, α i+1 ) and for i = 1 (γ n+1 , γ n+2 ) = (Ad -1 A 1 µ 2 (B -1 n+2 ) * (θ), (A 2 A 1 µ 2 ) * (θ)) + (α 1 , α 2 ) + (α 1 , κ) + (κ, α 2 ).

Observe that for 2 i m the term (Ad -1 h -1 2 α i , κ) appears both in (γ i-1 , γ i ) and

(γ i , γ i+1 ), with opposite signs, so most of the terms in the sum of (γ i , γ i+1 ) will cancel out. Moreover, (Ad (γ i , γ i+1 ) + (κ, α n+1 )

(5.17)

+ (Ad -1 A 1 µ 2 (B -1 n+2 ) * (θ), (A 2 A 1 µ 2 ) * (θ))

In order to eliminate the remaining expressions (γ i , γ i+1 ), set s = h 2 A 1 h -1 2 and σ = s * (θ). Now for 1 i n we can write A 1 µ 2 (B -1 n+2 ) * (θ), (A 2 A 1 µ 2 ) * (θ)).

  Soit Γ un groupe de type ni et G un groupe de Lie. On peut considérer

  que l'on comprend comme une arête. Elle se compose d'une paire d'applications entre deux sommets (le long de l'arête qui les connecte) avec des espaces V 1 , V 2 attachés. Dans le contexte des variétés de caractères sauvages une généralisation naturelle apparaît, avec des briques élémentaires plus générales. Dans le Chapitre 5, dans le cas de k arêtes entre deux sommets, on trouvera une formule pour la structure symplectique multiplicative généralisant ainsi celle de Yamakawa. Les résultats du Chapitre 5 font partie d'un travail en cours avec P. Boalch et D. Yamakawa. 4) Finalement, on étudie les relations entre les variétés de caractères sauvages et les variétés de carquois multiplicatives classiques. Il se trouve que dans le cas de k arêtes entre deux sommets et G = GL n (C), les variétés de carquois multiplicatives classiques se plongent sur des ouverts denses de variétés de carquois généralisées. De plus, on démontre que de tels plongements sont indéxés par les nombres de Catalan et peuvent être interprétés comme les factorisations des polynômes continuants d'Euler et les triangulations de polygones. 1.1.2 Motivations et présentation des résultats Le but de cette thèse est d'étudier plusieurs classes d'exemples de variétés de caractères qui généralisent les variétés de caractères régulières. Ces espaces jouent un rôle fondamental dans les mathématiques et la physique. Presque tous les résultats de cette thèse concernent les variétés de caractères sauvages des groupes linéaires GL n (C) mais certains énoncés restent vrais pour un groupe de Lie complexe réductif quelconque.

C

  'est un des exemples les plus simples de variétés de caractères, avec des actions de groupe de tresses intéressantes en relation étroite avec l'équation diérentielle de Painlevé VI. On dit qu'une surface de Fricke est symétrique si b 1 = b 2 = b 3 .

  Dans certains cas c'est possible d'écrire la connexion de GaussManin explicitement en coordonnées et d'obtenir une équation diérentielle non linéaire. Par exemple, pour des choix adéquats des pôles, les six équations de Painlevé apparaissent d'une telle manière, avec Σ = P 1 et G = SL 2 (C), mais seule l'équation de Painlevé VI admet une réalisation sans singularité irrégulière. Par conséquent, comme les espaces de phase des équations diérentielles non linéaires, ces variétés de caractères sont d'un grand intérêt et ont été étudiées en détails.

E 6 , 2 Tableau 1 .

 621 E 7 , E 8 , D 4 (A 0 ), A 1 , A 2 , A 3 , (D 0 ), (D 1 ), D Classication conjecturale des surfaces H3 La correspondance avec les espaces de phase des équations de Painlevé est présentée en dessous: Symbole D 4 A 3 A 2 A 1 A 0 D 2 D 1

  L'espace Hom(Π, G) de représentations du groupoïde fondamental Π dans G est alors une variété ane lisse et possède une structure d'un G k -espace quasi-Hamiltonien. Plus précisément, il y a une action de G k sur Hom(Π, G) et une application moment µ à valeurs dans G k µ : Hom(Π, G) → G k vériant des conditions similaires à celles d'action Hamiltonienne usuelle. La théorie générale des espaces quasi-Hamiltoniens garantit que le quotient Hom(Π, G)/G k hérite une structure de Poisson et est isomorphe à la variété de caractères régulière Hom(π 1 (Σ), G)/G. Si on xe un k-uplet des classes de conjugaison C = (C 1 , . . . , C k ) ⊂ G k , alors le quotient quasi-Hamiltonien µ -1 (C)/G k est une variété symplectique holomorphe, isomorphe aux feuilles symplectiques de la variété de caractères régulière. Cette approche admet une généralisation au cas irrégulier et la structure quasi-Hamiltonienne sur l'espace de données de Stokes a été construite dans [21]. Une des conséquences cruciales de cette construction est l'existence des structures de Poisson sur les espaces de Betti sauvages. Les opérations de la fusion et recollement quasi-Hamiltoniens permettent de construire l'espace Hom S (Π, G) à partir des morceaux plus simples: les espaces de ssion A(Q) qui décrivent les singularités irrégulières (sur un disque avec un pôle irrégulier), les classes de conjugaison C qui décrivent les singularités régulières et les doubles fusionnés par l'intérieur qui correspondent aux anses topologiques. Alors il est important de comprendre que ce sont ces morceaux et l'espace de ssion A(Q) qui portent le plus d'informations. Plus précisément, on étudie les espaces de ssion réduits B(Q) (cf. section 2.2.3 et l'équation (2.10) pour les dénitions détaillées), qui paramètrent les classes d'isomorphisme des connexions sur la sphère de Riemann avec un pôle irrégulier. Un des exemples les plus simples de tel espace est l'espace de Van den Bergh

  qui est un GL(W ) × GL(W )-espace quasi-Hamiltonien (peut-être tordu) et son application moment est le continuant. Le morceau le plus simple B 1 est juste une copie de GL(W ) avec la 2-forme nulle. Dans le Chapitre 5 on étudie les factorisations des continuants, ie. les décompositions des continuants en produits des continuants plus courts. En particulier, les décompositions totales en produits des contiuants de longueur un, qui correspondent aux morceaux isomorphes à B 1 GL(W ). Le résultat principal du Chapitre 5 est: Théorème IV. Soit k un entier positif et soit C k le k-ième nombre de Catalan. Alors il y a C k factorisations totales diérentes de (x 1 , . . . , x k ), paramétrées par les triangulations de (k + 2)-gone, et toute factorisation fournit un plongement B k 1 GL(W ) k → B k sur un ouvert dense de B k . De plus, tous ces plongements relient les structures quasi-Hamiltoniennes.

Finalement, nous donnons

  une formule explicite pour la forme quasi-Hamiltonienne sur l'espace B k qui est encore fondée sur les polynômes continuants et généralise la formule de Van den Bergh. Théorème V. La 2-forme quasi-Hamiltonienne sur B k est donnée par

  this case the character varieties have a natural holomorphic Poisson structure. The symplectic leaves are obtained by xing the conjugacy classes of local monodromy around each of the punctures.

  This is one of the simplest nontrivial examples of character varieties, with interesting braid group actions and close relations to the Painlevé VI dierential equation. We will say that a Fricke surface is symmetric if b 1 = b 2 = b 3 .

D 2 (

 2 b 1 , . . . , b k ) = i<j (b 1 , . . . , b i-1 )db i (b i+1 , . . . , b j-1 )db j (b j+1 , . . . , b k ).

  The Stokes directions interlace the anti-Stokes directions: the family of Stokes directions is a rotation of the family of anti-Stokes directions by certain angle θ. Let us denote the boundary of the blow up ∆ by ∂ and two nite families of anti-Stokes and Stokes directions by A ⊂ ∂ and S ⊂ ∂. The Stokes directions divide ∂ into a disjoint union I ⊂ ∂ of components which are contractible subsets of the boundary. (Same holds for the anti-Stokes directions, the collection of contractible subsets of ∂ obtained this way will be a rotation of I).

Denition 2 . 1 . 5 .

 215 Two elements of I are called consecutive if they belong to the same boundary circle ∂ i and are separated by exactly one Stokes direction.

  For an integer k, we can dene the level k subgroup Sto d (k), dened as the image of the product α∈R(d,k) U α ⊂ G and the product map again gives an isomorphism i Sto d (k i ) Sto d . Denition 2.1.7. The space of Stokes data Sto(Q) associated to an irregular type Q is the product Sto(Q) := d∈A Sto d . The product on the right is the Caertesian product of groups Sto d , not the product map of groups.

Proposition 2 .

 2 1.8 ([27],Lemma 7.13). If d ⊂ A is a half-period, then the subgroups {Sto d d ∈ d} directly span the unipotent radical of a parabolic subgroup of G with Levi subgroup H and rotating by π/k yields the unipotent radical of the opposite parabolic with the Levi subgroup H.Thus taking a half-period d = (d 1 , . . . , d l ) yields a parabolic P + ⊂ G with Levi subgroup H. Denote its unipotent radical by U + and by U -the unipotent radical of the opposite parabolic, associated to (d l+1 , . . . , d 2l ). Thus in one level case we have a direct spanning equivalence

  Now consider the subspace Hom S (Π, G) ⊂ Hom(Π, G) of Stokes representations ρ obeying the following conditions for any i = 1 . . . , m: (SR1) If d ∈ A i and γ d is any loop based at b i that goes around ∂ i (in any direction) to the direction d, and then loops once around the puncture on the cilium emanating from the direction d, without crossing any other cilia, before retracing its path back to b i , then ρ( γ d ) ∈ Sto d . (SR2) If γ i is a simple closed loop based at b i going once in a positive sense around

Figure 2 . 2 :

 22 Figure 2.2: The two-fold covering determined by z -3/2

  Denition 2.1.15. Let G = GL n (C). An irregular class amounts to a map π 0 (I) →

Figure 2 . 4 :

 24 Figure 2.4: The covering determined by z -7/3

  10) with moment map h ∈ H and the quasi-Hamiltonian two-form 2ω = -2r i=1 (γ i , γ i-1 ), (2.11) obtained from the two-form on G A r H by restricting it to the subset C = b = 1. If r = 2, we will denote B 2 by B.

2 Figure 2 . 6 :

 226 Figure 2.6: A minimally framed Stokes local system on a disk

( 3 . 1 )

 31 of ane cubic surfaces parameterised by constants (b 1 , b 2 , b 3 , c) ∈ C 4 . Note that the moduli space of (projective) cubic surfaces is four dimensional and a generic member will have an ane piece of this form, so this family includes an open subset of all cubic surfaces. We will say a Fricke surface is symmetric if b 1 = b 2 = b 3 . The full family (3.1) is known to be a semiuniversal deformation of a D 4 singularity (which occurs at the symmetric surface b i = -8, c = 28). Many other examples of cubic surfaces are isomorphic to symmetric Fricke cubics: the Markov cubic surface (b i = c = 0), Cayley's nodal cubic surface (b i = 0, c = -4), Clebsch's diagonal cubic surface (b i = 0, c = -20) and the Klein cubic surface (b i = -1, c = 0), see 3.8 below. The Fricke surfaces are interesting since they are some of the simplest nontrivial examples of complex character varieties (and as such they are amongst the simplest examples of complete hyperkähler four-manifolds for which we do not know how to construct the metric by nite dimensional means, cf. [25] 3.2). Namely if Σ = P 1 \ {a 1 , a 2 , a 3 , a 4 } is a four punctured sphere, then the moduli space M B (Σ, SL 2 (C)) = Hom(π 1 (Σ), SL 2 (C))/SL 2 (C) of SL 2 (C) representations of the fundamental group of Σ is a (complex) six-dimensional algebraic Poisson variety and its symplectic leaves are Fricke cubic surfaces. Indeed, choosing generators of the fundamental group leads to the identication of the character variety

. 3 )

 3 This relation amongst the generators is known as the Fricke relation 1 . The symplectic leaves are obtained by xing the conjugacy classes of the monodromy around the four punctures and in general this amounts to xing the values of the four invariants m 1 , m 2 , m 3 , m 4 , and thus the symplectic leaves are Fricke cubics. Note that from this point of view the D 4 singularity occurs at the trivial representation of π 1 (Σ). The aim of this article is to consider some simple examples of character varieties for the exceptional simple group G 2 (C) of dimension 14. Our main result (Corollary 3.5.6) may be summarised as: Theorem 3.2.1. There is a two parameter family of character varieties for the exceptional group G 2 (C) which are isomorphic to smooth symmetric Fricke cubic surfaces, and thus to character varieties for the group SL 2 (C).

  8 (C) (i.e. the simply connected group of type D 4 ) and show that the subspace C 2 ⊂ C 4 of symmetric Fricke cubics corresponds to the inclusion of Cartan subalgebras t G 2 ⊂ t Spin(8) coming from the inclusion G 2 (C) ⊂ Spin 8 (C) identifying G 2 (C) as the xed point subgroup of the triality automorphism of Spin 8 (C).

1 Figure 3 . 1 :

 131 Figure 3.1: Triality automorphism of D 4 and the resulting G 2 Dynkin diagram

  . The symplectic leaves of M B (Σ, G) are obtained as follows. Suppose Σ = Σ\{a 1 , . . . a m } is obtained by removing m points from a smooth compact curve Σ. Choose a conjugacy class C i ⊂ G for i = 1 . . . , m and let C denote this m-tuple of conjugacy classes. Consider the subvariety

a) C 1

 1 , . . . , C n ⊂ G are semisimple conjugacy classes of minimal possible (positive) dimension, and b) C ∞ ⊂ G is a regular semisimple conjugacy class.

3 )

 3 If G = G 2 (C) then this means all the classes C 1 , . . . , C n are equal to the unique semisimple orbit C ⊂ G of dimension 6, and that C ∞ is one of the twelve dimensional semisimple conjugacy classes.

6 Figure 3 . 2 : 2 ) 3 . 4 . 1

 6322341 Figure 3.2: Points and lines in the Fano plane P 2 (F 2 )
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 4 By construction a(v) 3 = -1, (cf. the fact that (1+ √ -3)/2 = exp(π √ -1/3)).Hence we have constructed an element

Proposition 3 . 4 . 2 .

 342 The map O → G = G 2 (C) taking an element v ∈ O to T a(v) ∈ G is a G-equivariant isomorphism of O onto the six dimensional semisimple conjugacy class C in G.

Theorem 3 . 5 . 3 .

 353 Suppose v 1 , v 2 , v 3 ∈ O ⊂ V ⊂ O are octonions in V with norm 3, and g i = T a(v i ) ∈ C ⊂ G (i = 1,2, 3) are the corresponding elements in the six dimensional semisimple conjugacy class in G = G 2 (C). Then the invariant functions

  Now we will explain how the symmetric Fricke cubics arise. Fix constants k α , k β ∈ C and consider the subvariety of M ∼ = C 4 cut out by the equations α = k α , β = k β where α, β are viewed as functions on M via the above formulae. First suppose we change coordinates on M by replacing p 4 by the function b dened so that p 1 + p 2 + p 3 + p 4 = 4b + 5.

(3. 7 )( 3 . 8 ) 1 = 1 -

 73811 Then, in the presence of the relation α = k α , the equation β = k β simplies to the equation:b 3 + 6 b 2 -3 (k α -1) b + k β + 2 = 0.This is a cubic equation for b and so specifying k α , k β determines b up to three choices. Now we can reconsider the remaining equation α = k α , which is easily seen to be a symmetric Fricke cubic: expanding the symmetric functions and making the substitutions p 2x, p 2 = 1 -2y, p 3 = 1 -2z (3.9) converts the equation α = k α into the Fricke cubic x y z + x 2 + y 2 + z 2 + b (x + y + z) + c = 0 (3.10) where c = k α -2 -3 b.

(3. 11 )C 4 Figure 3 . 3 :

 11433 Figure 3.3: Main diagram

  The two factors here correspond to the long and the short roots of G 2 . If we now rewrite these two factors in terms of the basic invariants α, β we nd that D W = D 1 ∪ D 2 has two irreducible components corresponding to the two factors, and that the rst component is equal to (3.13), the discriminant locus D pr of the map pr. The other irreducible component D 2 of D W is given by α 2 -4 β -12 = 0.

3. 5 . 2

 52 Singular points Given b, c ∈ C the corresponding symmetric Fricke surface (3.10) is singular if and only if the derivatives of the dening equation all vanish, i.e. if there is a simultaneous solution (x, y, z) of (3.10) and the three equations xy + 2z + b = 0, yz + 2x + b = 0, xz + 2y + b = 0. Eliminating two variables and considering the resultant of the remaining two equations we nd: Lemma 3.5.4. The symmetric Fricke surface (3.10) determined by b, c ∈ C is singular if and only if b 2 -8 b -4 c -16 4 b 3 -3 b 2 -6 bc + c 2 + 4 c = 0. (3.15) Now we can consider the image of this singular locus D sing ⊂ C 2 b,c under the map pr : C 2 b,c → C 2 α,β . Proposition 3.5.5. The singular locus D sing ⊂ C 2 b,c maps onto the discriminant locus D W ⊂ C 2 b,c . Specically the rst (left-hand) irreducible component of D sing maps onto the rst component D 1 = D pr of D W given in (3.13), and the second component of D sing maps onto the second component D 2 of D W , given in (3.14). Note however that the inverse image pr -1 (D 1 ) has another irreducible component b 2 + b -c -1 = 0 (3.16) (with multiplicity two), besides the rst component of the singular locus (3.15). Consequently we see that: Corollary 3.5.6. Let C ⊂ G 2 (C) be the six dimensional semisimple conjugacy class. Then for any regular semisimple conjugacy class C ∞ ⊂ G 2 (C) the character variety M B (Σ, G 2 (C), C) with C = (C, C, C, C ∞ ), has three connected components, each of which is isomorphic to a smooth symmetric Fricke cubic surface. Proof. Such a character variety is the bre of the map π over a point (k α , k β ) ∈ C 2 \ D W . Since π factors through pr (going around the square, i.e. via the dashed diagonal map), and D pr ⊂ D W , such bres consist of three bres of π over the smooth locus C 2 b,c \ D sing . These bres are smooth symmetric Fricke cubic surfaces.

Remark 3 . 5 . 7 . 2 and thus b 2 -

 35722 Suppose instead we replace C ∞ by the closure of the regular unipotent conjugacy class in the denition of M B (Σ, G 2 (C), C). The resulting variety is the bre of π over the point α = β = 6, and we readily see it has two components: the Fricke cubic (b, c) = (-8, 28) with the D 4 singularity, and (with multiplicity two) the Fricke cubic with (b, c) = (1, 1). This surface is also singular; in fact these parameters lie at the cusp of the cuspidal cubic on the right in the singular locus (3.15). Remark 3.5.8. The rst irreducible component of the singular locus (3.15) could be called the very symmetric locus of Fricke cubics, since in the original Fricke Vogt SL 2 (C) picture it corresponds to the case where all the local monodromies are conjugate: m 1 = m 2 = m 3 = m 4 so that, by the formulae (3.3): b = -2m 2 , c = m 4 -4 + 4m 8b = 4c + 16. Although all these surfaces are singular this case has many applications, for example to anti-self-dual four-manifolds ([52] Theorem 3).

[ 18 ]

 18 Remark 14). Suppose b ∈ C and c = b 2 /4 -2b -4 so that the polynomialf = xyz + x 2 + y 2 + z 2 + b(x + y + z) + cdenes a very symmetric Fricke cubic. If we dene d = -4 -b/2 and consider the polynomial g

. 1 .

 1 It turns out that the xed locus is the space of symmetric Fricke cubics, so there is another (a priori dierent) link between symmetric Fricke cubics and G 2 : Proposition 3.7.1. The action of the triality automorphism on θ ∈ C 4 permutes θ 1 , θ 2 , θ 3 cyclically and xes θ 4 . The xed locus θ 1 = θ 2 = θ 3 maps onto the parameter space b 1 = b 2 = b 3 of the symmetric Fricke cubic surfaces.

4

 4 and the mutual inner products of these simple roots are as indicated in the D 4 Dynkin diagram in Figure 3.1. Thus the triality automorphism shown in Figure 3.1 acts as τ (θ 1 , θ 2 , θ 3 , θ 4 ) = (θ 3 , θ 1 , θ 2 , θ 4 ) and the xed point locus is indeed θ 1 = θ 2 = θ 3 . Using the formulae (3.2) it is clear that this maps to the locus of symmetric Fricke cubics. Remark 3.7.2. In fact the Fricke functions b 1 , b 2 , b 3 , c of θ have a direct Lie-theoretic interpretation, as follows (this a minor modication of [75] p.888-9, adjusting the weight, and thus coroot, lattice): Let t ∼ = C 4 be the D - 4 Cartan subalgebra. Then the Fricke map (3.2),(3.3):

  (23.30): a straightforward computation then shows thatD 1 = -b 1 , D 2 = c, D + = -b 3 , D -= -b 2so it is clear that permuting the b i corresponds to triality, permuting the standard representation and the two half-spin representations of Spin 8 (C). Note that Manin [69] 1.6 considered Landin transforms in this context. They are dened on a distinguished two-dimensional subspace of the full space C 4 of parameters: this looks to be dierent (and inequivalent) to the symmetric subspace we are considering (it looks to be the xed locus arising from the involution of the ane D 4 Dynkin diagram swapping two pairs of feet, rather than the triality automorphism).

(e 1 2 , e 6 , e 7 ) (e 4 , e 5 , e 7 ) through e 7 .v 1 = e 1 + e 3 + e 7 , v 2 = e 2 + e 6 + e 7 , v 3 = e 4 + e 5 + e 7 and, via Proposition 3 . 4 . 2 ,

 1267457711372267347342 , e 3 , e 7 ), (e Then we obtain three imaginary octonions of norm 3: we can consider the corresponding elements of the six dimensional semisimple conjugacy class C ⊂ G 2 , obtained by conjugating by a(v i ) = (1 + v i )/2 respectively:

  Thus from (3.7) and (3.9) b = -1 and x = y = z = 0 so that in turn (by (3.10)) c = 0. Since these parameters are o of all the discriminants we get an isomorphism from the corresponding component of the G 2 character variety to the Klein cubic surface. By Corollary 3.6.3 the braid group orbits match up. Thus the Klein cubic surface (3.21) is related to both the simple group of order 168 = 2 3 • 3 • 7 and the simple group of order 6048 = 2 5 • 3 3 • 7.

  the quasi-Hamiltonian reduction of the space of Stokes representations of the fundamental groupoid by the action of H. It is an algebraic Poisson variety and its symplectic leaves M B (Σ, C) are obtained by xing the conjugacy classes in H i of formal monodromies at each puncture, thus a conjugacy class C ⊂ H = H 1 × . . . × H m .

1 .

 1 The irregular curve Σ I = (P 1 , 0, Q I ) for G = GL 2 (C) and irregular class (cf. Section 2.1.4 and Example 2.1.16)

  The irregular class Q I is twisted and the twisted conjugacy class C I ⊂ H(∂) is the class of the matrix 0 a -a -1 0 . The wild character variety M B (Σ I , C I ) is isomorphic to the phase space of Painlevé I equation and is isomorphic to the ane cubic surface xyz + x + z -1 = 0.It parametrises connections on rank two vector bundles on P 1 with one twisted irregular pole of order four and local monodromy around the marked point in the twisted conjugacy class C I .

  and the wild character variety M B (Σ II , C II ) is isomorphic to the phase space of Painlevé II equation and is isomorphic to the FlaschkaNewell cubic surface xyz + x + y + z = b -b -1 .

  regular semisimple. The conjugacy class C IV is the generic conjugacy class in GL 3 (C) and the wild character variety M B (Σ IV , C IV ) is isomorphic to the phase space of Painlevé IV equation and isomorphic to the cubic surface xyz + x 2 + c 1 x + c 2 y + c 3 z + c 4 = 0 for suitable constants c 1 , c 2 , c 3 , c 4 . It parametrises connections on rank three vector bundles on P 1 with one irregular pole of order three, and local monodromy around the marked point in a generic conjugacy class in GL 3 (C).

Denition 4 . 2 . 4 .

 424 The ssion graph Γ(Q I ) of the irregular class Q n I is the ane Dynkin graph A 0 , which has one node and a loop.

Corollary 4 . 2 . 5 .

 425 The ssion graph Γ(Q n II ) of the irregular type Q n II is the ane Dynkin graph A 1 , which has two nodes with a double edge between them. Its set of nodes I has two elements, thus the grading V = i∈I V i of V = C 2n determined by Q n II has two pieces, each of dimension n. Corollary 4.2.6. The ssion graph Γ(Q n IV ) of the irregular type Q n

Proposition 4 . 4 . 1 ( 5 ±hS 5 S 4 S 3 S 2 S

 44155432 [START_REF] Boalch | Twisted wild character varieties[END_REF], Example 6.2.). The spaceB(Q n I ) = B -5/2 (V ) = {(h, S 1 , S 2 , S 3 , S 4 , S 5 ) ∈ H(∂) × U 1 = 1} is a twisted quasi-Hamiltonian H-space with moment map µ(h, S) = 0 s 4 s 3 s 2 + s 2 + s 4 -(s 2 s 3 s 4 + s 2 + s 4 ) -1 0 ∈ H(∂),where S = (S 1 , . . . , S 5 ) and s i denotes the n × n block o-diagonal entry of S i .The matrices S 2 , S 3 , S 4 and the condition hS 5 • • • S 1 = 1 uniquely determine h, S 5 , S 1 . In fact, any consecutive triple S i , S i+1 , S i+2 does determine the remaining two Stokes multipliers and formal monodromy h. The expression s 4 s 3 s 2 + s 2 + s 4 is the third Euler's continuant. They will be studied in detail in Chapter 5.The Painlevé I echo space is obtained by performing the quasi-Hamiltonian reduction B(Q n I )

Proposition 4 .

 4 4.1 implies the following.Proposition 4.4.4. The space Rep * ( A 0 , V ) is isomorphic to the quotient of B(Q n I ) by one copy of GL(V ).

Corollary 4 . 4 . 5 .

 445 Let ε be a primitive root of unity of degree n. The quasi-Hamiltonian reductionRep * ( A 0 , V ) / / ε GL(V )is isomorphic to the n-th Painlevé I echo space.

  at the value ε of the moment map µ. By Theorem 4.4.2 and Proposition 4.4.4 we have the following explicit description of the space µ -1 (ε) in terms of n × n matrices X, Y, Z: Corollary 4.4.7. The space µ -1 (ε) is the ane subvariety of Rep( A 0 , V ) cut out by equations:

( 4 . 2 )

 42 Proof. Start by multiplying the rst equation of (4.1) by Y X on the right and the second by XY on the left. The system then readsXY ZY X + XY X + ZY X = Y X XY ZY X + XY Z + XY X = εXY.Now, if we substract the st equation from the second one, we get εXY -Y X = XY Z -ZY X = 1 -ε.Multiplying the rst equation of (4.1) by ZY on the left and the second one by Y Z on the right and performing the same operations leads to similar identity εY Z -ZY = 1 -ε.

Finally, we

  can use the relation εXY -Y X = 1 -ε. in order to transform the second equation of (4.1)

  thus we can write εZXY + εZ + X = ε.If we multiply this equation by Z on the right and the rst equation of (4.1) by Z on the left, we obtainZXY Z + ZX + Z 2 = Z εZXY Z + XZ + εZ 2 = εZ.which leads to εZX -XZ = 0.

Lemma 4 . 5 . 1 .

 451 The irregular type Q n II determines six Stokes groups, which are U + , U - in alternating order.

Corollary 4 . 5 . 9 .

 459 The matrices X n , Y n , Z n are scalar. Corollary 4.5.10. For 0 < k < n, the matrices X, Y, Z satisfy Tr(X k ) = Tr(Y k ) = Tr(Z k ) = 0.

Lemma 4 . 6 . 1 .

 461 The irregular type Q n IV determines four full Stokes groups, which may be identied U + , U -in alternating order.

4. 3 .

 3 [START_REF] Audin | Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry[END_REF] to deal with the term det(Y -

  The group H acts on H(∂) by left and right multiplication. Both of these actions are simply transitive, making H(∂) into a H-bitorsor. For an odd k, set c = k/2 and dene U (k)± = U -× U + × U -× . . . , U (k) ∓ = U + × U -× U + × . . . ,where there are k unipotent groups on the right.Proposition 5.1.4 ([31], Example 6.2.). The spaceA c (V ) := G × U (k) ± × H(∂) is a twisted quasi-Hamiltonian G × H-space with moment map µ = (µ G , µ H ) : A c (V ) → G × H(∂) given by µ G (C, S, h) = C -1 hS k • • • S 1 C, µ H (C, S, h) = h -1 ,where C ∈ G, S = (S 1 , . . . , S k ) ∈ U (k) ± , h ∈ H(∂).

Corollary 5 . 1 . 5 .

 515 The spaceB c (V ) = {(h, S 1 , . . . , S k ) ∈ H(∂) × U k ± hS k • • • S 1 = 1}is a twisted quasi-Hamiltonian H-space with moment map µ(h, S) = h -1 ∈ H(∂).

Proposition 5 . 1 . 6 .

 516 The H(∂)-moment map for the space B c (V ) is given byµ(h, S 1 , . . . , S k ) = 0 (s k-1 , . . . , s 2 ) -(s 2 , . . . , s k-1 ) -1 0 ∈ H(∂)Proof. Since this time the number of Stokes multipliers is odd, S 1 and S k are both in U -.

= S - 1 k h -1 1 0 0 h - 1 2(

 111 k-1 , . . . , s 2 ) (s k-1 , . . . , s 3 ) (s k-2 , . . . , s 2 ) (s k-2 , . . . , s 3 ) = P S 1 P ) -1

4 )

 4 If we repeatedly cancel the elements a, -a appearing next to each other, then the only remaining term will be n. The examples of f-lists (of length 5 and 7) are [1, -1, 3, -1, 1] or [2, -1, 1, -2, 3, -3, 4].

1 C

 1 Suppose that a, b = 0 and consider two f-lists l a , l b of length 2a -1, 2b -1. Then we can produce an f-list l a+b+1 of length 2a + 2b + 1 as follows. Take an interval [-a, a + b + 1, -b] and glue l a on the left an l b on the right of this interval. If a = 0, then we can glue the interval [b + 1, -b] onto the left end of L b and similarly, if b = 0, we can glue [-a, a + 1] onto the right end of l a . It is clear that dierent lists l a , l b yield dierent lists l a+b+1 . Hence we obtain an injective map L a × L b → L a+b+1 . (5.11) On the other hand, by Proposition 5.2.11 given an f-list l n of length 2n -1 we can remove the unique interval containing n and obtain one or two new f-lists, depending on its placement and then merge them back (or glue on an interval [-a, a + 1] or [b + 1, b] if l n did not split into two lists). Hence every element of L n is in the image of the map (5.11). The proof is nished since the cardinalities of L k and Catalan numbers obey the recursive relation C n = a+b=n-a C b . Remark 5.2.15. For a positive integer k < n Proposition 5.2.2 denes two operations: the right and left splittings s k R and s k L of the continuant (x 1 , . . . , x n ). For a pair of positive integers l < k < n one has s k R * s l L = s l L * s k R

Figure 5 . 1 :

 51 Figure 5.1: A triangulation of a hexagon

h 2 h 1 :

 1 = h, ( A m+2 , A m+1 , . . . , , A 2 , A 1 B n+1 , B n , . . . , B 1 ) := (C m+n+2 , . . . , C 2 , C 1 ) = C, and one hashC m+n+2 • • • C 2 C 1 = 1.Therefore the image of f L is again in B ± m+n , depending on the initial choice of signs for B ± m , B ± n . More precisely, we have the following. Proposition 5.3.2. The map f L gives the following injections m+n if m is odd. Moreover, the images of f L are dense open subsets of B ± m+n .Denition 5.3.3. We call the maps f R , f L the right and left factorisation maps.For a compatible pair B m , B n , we will denote the target space of both factorisation maps by B m+n , which is B + m+n or B - m+n , depending on the choice of the compatible spaces B m , B n .5.3.1 The geometry of the factorisation mapsFor a compatible pair B m , B n , we have dened by formulas (5.14),(5.15) two maps f R , f L f R , f L : B m B n → B m+nwhose images are dense open subsets of B ± m+n . The formulas for these injections are not accidental and before proving in the next section that f R , f L are in fact quasi-Hamiltonian maps, we will explain their geometric origin.

  b

Figure 5 . 2 :Figure 5 . 3 : 1 b 2 Figure 5 . 4 :Figure 5 . 5 : 2 B + 4

 525312545524 Figure 5.2: The spaces B ± 4 , isomorphic to B 3 (V ).The black dots are identied with Stokes groups U ± and the choice of generating paths gives explicit identication with description from (5.12).
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 56 Figure 5.6: Moving the path

2 A 2 Figure 5 . 7 :

 2257 Figure 5.7: The factorisation map in two steps

- 1 h - 1 2α 1

 111 , κ) = 0 since A 1 is unipotent and κ takes values in h = Lie(H). Therefore we have m+n i=1 (γ i , γ i+1 ) = m i=1 (α i , α i+1 ) + n i=1

C

  i . . . C 1 = B i . . . B 1 s and it follows that γ i = Ad -1 s β i + σ. The same simplication as before, combined with the fact that (β1 , σ) = 0 gives n i=1 (γ i , γ i+1 ) = n i=1 (β i , β i+1 ) + (σ, β n+1 )and the formula for 2η m+n takes the form m+n i=1(γ i , γ i+1 ) = m i=1 (α i , α i+1 ) + n i=1 (β i , β i+1 ) + (κ, α m+1 ) + (σ, β n+1 ) + (Ad -1

  Hom S (Π, G) est l'espace de représentations de Stokes, H un sous-groupe de G m et C est une classe de conjugaison de H. La dénition plus détaillée sera présentée dans le Chapitre 2.

	Stokes.	Elles
	généralisent les représentations du groupe fondamental et forment les variétés de
	caractères sauvages	
	M	

B (Σ, C) ⊂ Hom S (Π, G)/H. Ici,

  Supposons que Σ a k composantes du bord ∂ 1 , . . . , ∂ k et choisissons un point base b i sur chaque composante ∂ i . Notons par Π le groupoïde fondamental de Σ avec des points bases {b 1 , . . . , b k }.

3 , lié à l'équation de Painlevé V, est manquant. Nous avons recolté des preuves suggérant que les méthodes utilisées dans les trois premiers cas marchent aussi dans ce cas.

Une autre motivation pour étudier les variétés de caractères sauvages vient des travaux de AlexeevMeinrenkenMalkin sur la géométrie quasi-Hamiltonienne

[START_REF] Alekseev | Lie group valued moment maps[END_REF]

, étendus aux groupes complexes. Leur approche mène vers une construction des structures de Poisson/symplectiques sur les variétés de caractères régulières, en utilisant des quotients symplectiques multiplicatifs en dimension nie. Les applications moment prennent leurs valeurs dans le groupe G, plutôt que dans le dual de l'algèbre de Lie g.

  and the rened space of representations is the space Hom S (Π, G), of so-called Stokes representations of the fundamental groupoid Π of Σ with basepoints on the boundary circles. The group H acts on this space and one can consider

	the quotient
	Hom S (Π, G)/H
	which is the wild character variety (the wild Betti space). It is again a complex ane
	variety with an algebraic Poisson structure and if the irregular types are zero, one re-
	covers the usual tame character variety with the usual Poisson structure. This means
	that leaving the tame world provides an abundance of examples of Poisson/symplectic
	holomorphic manifolds.

  7 , E 8 , D 4 (A 0 ), A 1 , A 2 , A 3 , (D 0 ), (D 1 ), D 2

	Table 1. Conjectural classication of H3 surfaces	
	In turn, the correspondence with phase spaces of Painlevé equations is described
	in the table								
	Symbol	D 4	A 3 A 2 A 1 A 0 D 2 D 1	D 0
	Painlevé equation	VI	V	IV	II	I	III	III'	III
	Pole orders	1111 211 31 4 (4) 22 2(2) (2)(2)
	(the exotic symbols E 6 , E 7 , E 8 correspond to Painlevé dierence equations). The
	brackets mean that the irregular singularities are twisted.		

  Suppose that Σ has k boundary components ∂ 1 , . . . , ∂ k and choose a basepoint b i at each ∂ i . Denote by Π the fundamental groupoid of Σ with basepoints {b 1 , . . . , b k }. The space If one xes a k-tuple of conjugacy classes C = (C 1 , . . . , C k ) ⊂ G k ,

	Hom(Π, G)
	of representations of the fundamental groupoid Π into G is then a smooth ane
	variety and it has an additional structure of a quasi-Hamiltonian G k -space. This
	means that there is an action of G k on Hom(Π, G) and a G k -valued moment map
	µ : Hom(Π, G) → G k
	satisfying conditions similar to the usual Hamiltonian actions. In particular, if G is
	abelian (for example trivial), then the quasi-Hamiltonian spaces are complex sym-
	plectic manifolds. By the general quasi-Hamiltonian yoga, the quotient
	Hom(Π, G)/G k
	inherits a Poisson structure and is isomorphic to the usual tame character variety
	Hom(π 1 (Σ), G)/G. then the quasi-Hamiltonian quotient
	µ -1 (C)/G k
	is a holomorphic symplectic manifold (provided it is a manifold), isomorphic to the
	symplectic leaves of the tame character variety. This story has a generalisation to the
	irregular case and in [21] the quasi-Hamiltonian structure on the space of Stokes data
	has been constructed. This has several important consequences, one of them being
	the existence of Poisson structures on the wild Betti spaces.
	The operations of quasi-Hamiltonian fusion and gluing allow to build the space
	Hom S (Π, G) out of simpler pieces: the ssion spaces A(Q), describing the irregular
	singularities, conjugacy classes C describing the tame points and internally fused
	doubles D, which are the equivalents of topological handles. Thus it is important
	to understand these pieces and the one carrying the most information is the ssion
	space A(Q), which parametrises isomorphism classes of connections on a disk with
	one irregular pole.
	More precisely, we study the reduced ssion spaces B(Q) (see Section 2.2.3 and
	equation (2.10) for precise denitions), which parametrise isomorphism classes of
	connections with one irregular pole on the Riemann sphere. One of the simplest
	examples of such space is the Van den Bergh space B(V 1 , V 2 ) [91, 92], dened for a
	graded vector space

  The main result of Chapter 5 is: Theorem IV. Let k be a positive integer and let C k denote the k-th Catalan number.There are C k dierent factorisations of a continuant (x 1 , . . . , x k ), parametrised by triangulations of a (k + 2)-gon, and each factorisation yields an embedding

	B k 1	GL(W ) k → B k
	onto a dense open subset of B k . Moreover, all such embeddings relate the quasi-
	Hamiltonian structures.	
	Various relations between continuants, triangulations and dierential equations
	are known 2 but it is not clear if the simplicity of the situation has been noticed
	before. Namely the quasi-Hamiltonian framework gives a way to glue Airy triangles
	B 1 together, which can then be pushed together to form open parts of spaces B k . We
	expect this technique approach to extend to any surface partitioned into polygons.

  H and two-form ω. Suppose that the quotient of µ -1 G (1) by the action of G is a manifold. Then the restriction of the two-form ω to µ -1 G (1) descends to the space M G := µ -1 G (1)/G and makes it into a quasi-Hamiltonian H-space. 2.2.5. Observe that if the group H in Theorem 2.2.4 is abelian (for example trivial), then the quasi-Hamiltonian reduction yields an honest complex symplectic manifold.Theorem 2.2.6 ([27], Proposition 2.8.). Suppose M is a smooth ane variety with the structure of quasi-Hamiltonian G-space. Then the geometric invariant theory quotient M/G is a Poisson variety.

	Remark

  . . , a m and irregular types Q 1 , . . . , Q m at the marked points. This, in turn, determines a real surface with boundary Σ, obtained by performing real oriented blow ups at the marked points, and a surface Σ which is Σ with some extra punctures, determined by the irregular types. Moreover, we have introduced the halos H i around each a i , and cilia in each halo to keep track of the additional punctures.

Denition 2.3.1. A Stokes G-local system for Σ is a local system L on Σ together with a at reduction of structure group to H i inside of H i for each i = 1, . . . , m (i.e. an H i -local system L i dened inside H i such that L = L i × H i G there) such that, for any basepoint inside H i , the local monodromy around the puncture corresponding to

d ∈ A i lies in Sto d (Q i ).

Thus Stokes local systems are topological objects which generalise the usual local systems by adding some extra conditions (structure group reduction and monodromy around extra punctures in Σ) on their behavior at the marked points a i . It is known that for xed irregular types Q i at the marked points a i , the Stokes local systems on the resulting surface Σ classify isomorphism classes of meromorphic connections with this irregular data (it is an equivalence of categories). Thus classication of irregular connections is equivalent to the classication of Stokes local systems. It is convenient to think about Stokes local systems in terms of pictures, which locally look like on the gure below.

  Thus for example e 1 e 2 = e 4 . (Note, of course, that any two points lie on a unique line

	and so this determines the multiplication.) This multiplication table is symmetric
	under both of the two permutations
	e n → e n+1

and e n → e 2n of the indices (where all the indices are read modulo 7, and we prefer to write e 7 rather than e 0 ). This immediately implies that the triples of basis vectors with indices

124, 235, 346, 457, 561, 672, 713 

  4 , then this copy of C 4 should be viewed as the Cartan subalgebra of type D 4 : he showed there is a natural action of the ane D 4 Weyl group on this C 4 , and it lifts to automorphisms of the corresponding moduli spaces of rank two logarithmic connections on Σ bred over C 4 (at least o of the ane root hyperplanescf.[START_REF] Arinkin | Isomorphisms between moduli spaces of SL(2)-bundles with connections on P 1 \ {x 1[END_REF]). Further Okamoto showed one can add in the automorphisms of the ane D 4 Dynkin diagram, to obtain an action of Sym 4 W a (D 4 ) (which is isomorphic to the ane F 4 Weyl group).

  The braid group orbit of the conjugacy class of the standard triple of generating reections of this complex reection group has size 7 and lives in a character variety of dimension two (as in part 2 of Lemma 3.3.1 above). Then using the Fourier Laplace transform it was shown how to relate this GL 3 (C) character variety to the usual SL 2 (C) FrickeVogt story, i.e. to show that it is a Fricke cubic surface. The resulting surface hasm 1 = m 2 = m 3 = 2 cos(2π/7), m 4 = 2 cos(4π/7) ([[START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF] p.177) and the corresponding SL 2 (C) monodromy group is a lift to SL 2 (C) of the (innite) 2, 3, 7 triangle group ∆ 237 ⊂ PSL 2 (C) (cf.[START_REF]Some explicit solutions to the Riemann-Hilbert problem, Dierential equations and quantum groups[END_REF] Appendix B)4 . Thus from the formulae (3.2), and the fact that 4 cos(2π/7) cos(4π/7) + 4 cos(2π/7) 2 = 1, we see that the Klein cubic surface is:

  2 , g 3 are represented by matrices with Z entries. In fact they generate a nite simple group, and braid to give the Klein orbit of size seven: Theorem 3.8.1. 1) The elements g 1 , g 2 , g 3 ∈ G 2 (C) obtained from three lines passing through a single point in the Fano plane, generate a nite subgroup of G 2 (C) isomorphic to the nite simple group G 2 (2) ∼ = U 3 (3) of order 6048,

  2 denote the two nodes of the ane A 1 graph. By Proposition 4.5.2 the space Rep * ( A 1 , V ) is a quasi-Hamiltonian H-space and for a representation ρ = (x 12 , x 21 , y 12 , y 21 ) ∈ Rep * ( A 1 , V ) the moment map (4.3), rewritten in the coordinates, x ij , y ij , is given by (µ 1 , µ 2 ) where µ 1 = 1 + x 12 x 21 + x 12 y 21 + y 12 y 21 + x 12 x 21 y 12 y 21 µ 2 = 1 + x 21 y 12 -(x 21 y 12 y 21 + x 21 + y 21 )µ -1 1 (x 12 x 21 y 12 + x 12 + y 12 ).

  x 12 x 21 + x 12 y 21 + y 12 y 21 + x 12 x 21 y 12 y 21 = q 1 1 + x 21 y 12 -(x 21 y 12 y 21 + x 21 + y 21 )q -1 1 (x 12 x 21 y 12 + x 12 + y 12 ) = q 2 .

  1 of bounded length, and the bound depends on n. Again, the result is not constructive and we do not know a priori which traces to consider nor what the relations are. Consider the following three cycles in the double of A 1 X = 1 + y 12 y 21 , Y = 1 + x 12 x 21 , Z = 1 + y 12 x 21 . Lemma 4.5.5. The elements X, Y, Z satisfy the following identities: (x 12 x 21 y 12 + x 12 + y 12 )y 21 = q 1 -Y The rst identity follows from the fact that we have 1 + x 12 x 21 + x 12 y 21 + y 12 y 21 + x 12 x 21 y 12 y 21 = q 1 , and thus x 12 y 21 + y 12 y 21 + x 12 x 21 y 12 y 21 = q 1 -(1 + x 12 x 21 ) = q 1 -Y and similarly for the third one. The second and fourth identities are just the consequences of denitions of X, Y, Z. Proposition 4.5.6. The elements X, Y, Z obey the following relations:

(x 12 x 21 y 12 + x 12 + y 12 )x 21 = Y Z -1 x 12 (x 21 y 12 y 21 + x 21 + y 21 ) = q 1 -X y 12 (x 21 y 12 y 21 + x 21 + y 21 ) = ZX -1 96 Proof.

  2 , so we can iterate Proposition 4.3.2 n -1 times and produce n distinct eigenvalues of X of desired form. Similar proof works for Y and Z.

  2 roots). Then the six Stokes groups Sto d can be identied with six groups U ij . Since the degree of Q is two, the half-periods d i ⊂ A is of length #A/2k = 3 (of length two if the dierences between eigenvalues are not pairwise distinct). Dividing the twelve (eight) singular directions into four consecutive half-periods d 1 , d 2 , d 3 , d 4 of length three (resp. two) gives four full Stokes groups, directly spanned by the groups Sto d for d ∈ d i .We can choose the half-periods d 1 , d 2 , d 3 , d 4 so that they contain the three groups U ij for i < j and thus directly span the group U + or the groups U ij for i > j, so they directly span the opposite group U -.

	Thus the we can describe B(Q n IV ) as

  x 12 x 21 + x 13 x 31 x 12 + x 13 x 32 x 13 x 21 + x 23 x 31 1 + x 23 x 32 x 23

			
			
	x 31	x 32	1
	and can be checked by a direct computation.		
	4.6.1 The space Rep		

* ( A 2 , V )

apparently ([START_REF] Magnus | Rings of Fricke characters and automorphism groups of free groups[END_REF]) it was discovered byVogt ([94] eq. (11)) in 1889, and repeatedly rediscovered by many others, includingFricke ([45] p.366).

We expect there to be analogous isomorphisms also in the Dolbeault/Higgs and De Rham alge- braic structures corresponding to the Betti version considered here.

here we mean cubic surfaces as moduli spaces of local systemssee[START_REF] Naruki | Cross ratio variety as a moduli space of cubic surfaces[END_REF] for more on the direct relation between D

and the moduli of cubic surfaces themselves.

in fact there are three inequivalent choices of seventh root of unity that one can make: for two choices the projective monodromy group is a subgroup of PSU 2 isomorphic to ∆ 237 and for the other choice one obtains the usual ∆ 237 ⊂ PSL 2 (R).
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Bibliography

Braid group actions

Since the symmetric Fricke cubics are character varieties they admit braid group actions, coming from the mapping class group of the four-punctured sphere Σ. In explicit terms (cf. [START_REF]The fty-two icosahedral solutions to Painlevé VI[END_REF] 4) this can be expressed in terms of changing the choice of loops generating the fundamental group of Σ, whence it becomes the classical Hurwitz braid group action: Lemma 3.6.1. Let G be a group. Then there is an action of the three string Artin braid group B 3 on G 3 , generated by the two operations β 1 , β 2 where: β 1 (g 1 , g 2 , g 3 ) = (g 2 , g -1 2 g 1 g 2 , g 3 )

(3.17)

β 2 (g 1 , g 2 , g 3 ) = (g 1 , g 3 , g -1 3 g 2 g 3 ).

(3.18)

Taking G to be a complex reductive group, this describes the B 3 action on the character variety M B (Σ, G), and given four conjugacy classes C ⊂ G 4 this action restricts to the symplectic leaves

provided the rst three conjugacy classes are equal.

In the case G = SL 2 (C) it is easy to compute the resulting action on the G-invariant functions on Hom(π 1 (Σ), G) and in turn on the family of Fricke surfaces [START_REF] Iwasaki | A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation[END_REF][START_REF]From Klein to Painlevé via Fourier, Laplace and Jimbo[END_REF]. In the symmetric case, for xed constants b, c ∈ C the formula is as follows:

β 1 (x, y, z) = (x, -b -z -xy, y), β 2 (x, y, z) = (z, y, -b -x -yz).

(3. [START_REF]The fty-two icosahedral solutions to Painlevé VI[END_REF] The main aim of this section is to compute directly the action in the case G = G 2 (C) we have been studying. Let C ⊂ G 2 (C) denote the six dimensional semisimple conjugacy class, and let O ⊂ V denote the orbit of elements of norm 3. Proposition 3.6.2. 1) The braid group action (3.17), (3.18) on triples (g 1 , g 2 , g 3 ) ∈ C 3 of elements of C corresponds to the action 3 , via the isomorphism C 3 ∼ = O 3 of Proposition 3.4.2, where w i = (1 + v i )/2 ∈ O (so that g i = T w i ).

2) The resulting B 3 action on M = C 3 /G ∼ = C 4 is given by the formulae: β 1 (p 1 , p 2 , p 3 , p 4 ) = ((p 4 + p 1 p 3 -p 2 )/2, p 1 , p 3 , (p 4 + 3p 2 -p 1 p 3 )/2), β 2 (p 1 , p 2 , p 3 , p 4 ) = (p 1 , (p 4 + p 1 p 2 -p 3 )/2, p 2 , (p 4 + 3p 3 -p 1 p 2 )/2) in terms of the invariant functions p 1 , p 2 , p 3 , p 4 dened in (3.6).

On the other hand a point in the space B(W ) K i A(W j ) is given by solving κS 4 S 3 S 2 S 1 = 1 ∈ GL(W ), κ j = h j s 2j s 1j ∈ GL(W j ), where S i , s kj are the Stokes multipliers of B(W ) and A(W j ), κ ∈ K has components κ j and h j ∈ i∈I j . Setting v + = S 3 , v -= S 2 translates these equations to the form v + v -= w -hw + . Moreover, the element h ∈ H has components h -1 j thus h : Rep * (Γ, V ) → H is the moment map for the H-action.

Example 4.2.8. Suppose that each part of a k-partite graph Γ has exactly one node.

Then H = K and the space B(W ) K A(W j ) is just B(W ), and thus B(W ) is an open subset of the space of representations of the complete graph with k nodes on W . Remark 4.2.9. Theorem 4.2.7 says that for an irregular type Q = A 2 z 2 + A 1 z , the space

Rep * (Γ(Q), V ) is in fact isomorphic to B(Q). This theorem remains true for any irregular type Q with similar proof (cf. Remark 5.4. of [START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF]). This will be useful later, when treating the ane A 1 case, which has a double edge.

In order to dene the subset Rep * (Γ, V ), we used the ordering of I. This choice, however, always yields an isomorphic quasi-Hamiltonian space.

Proposition 4.2.10. The space Rep * (Γ, V ) is independent of the choice of ordering of I.

Proof. This is a consequence of isomonodromy isomorphisms of Section 5 of [START_REF]Geometry and braiding of Stokes data; ssion and wild character varieties[END_REF]. In this case, it follows from the fact that for V, V being the same graded vector space with dierent ordering of pieces, the quasi-Hamiltonian spaces A r (V ) and A r (V ) are isomorphic, as discussed in Section 2.2.3.

The variety Rep * (Γ, V ) is an ane variety with an action of a reductive group H = i∈I GL(V i ), thus its stable points are dened as the points whose H-orbits are closed and of dimension dim(H) -dim(Ker), where Ker is the kernel of the action (subgroup of H whose action is trivial). Here this kernel is one-dimensional, thus the required dimension of orbits is dim(H) -1.

Proposition 4.2.11 ([28], Lemma 5.8.). A representation ρ ∈ Rep * (Γ, V ) is stable if and only it is irreducible.

Multiplicative quiver varieties

In this section we will introduce the main object of this chapter, the multiplicative quiver varieties. These are algebraic symplectic varieties attached to graphs and We will omit the term Id later in the text supposing that the scalars appearing in matrix equations are scalar matrices of the appropriate size. The right hand side is just a scalar matrix, but we keep (1-ε) for convenience. In this setup one immediately has Tr(AB) = nk, without the necessity of dividing the traces by 1 -ε. Proposition 4.3.2. Suppose that A, B quasi-commute with parameter k and let λ be a non zero eigenvalue of A. Then if v is not also an eigenvector of B, then ελ is an eigenvalue of A. Similarly, if w is an eigenvector of B for an eigenvalue λ and not an eigenvector of A, then λ/ε is an eigenvalue of B.

Proof. Suppose that λ is a non zero eigenvalue of A and v the eigenvector of A for this eigenvalue.

(AB -εBA)v = (A -ελ)Bv = (1 -ε)kv.

Thus the matrix A -ελ sends both v (since it is an eigenvector of A) and Bv to the one dimensional subspace Cv. Since v is not an eigenvector of B, v, Bv are linearly independent hence A -ελ has non trivial kernel and ελ is an eigenvalue of A. The proof of the second part of the statement is the same. Proof. The CayleyHamilton Theorem for M gives the following equation:

where f 1 , f 2 , . . . , f n-1 are certain functions which can be expressed as polynomials in Tr(A), Tr(A 2 ), . . . , Tr(A n-1 ) (these are just expressions for symmetric polynomials in terms of power sums). Since we have Tr(A k ) = 0 for 0 < k < n, the functions f 1 , . . . , f n-1 vanish evaluated on A. Thus we can write A n + (-1) n det(A)Id = 0 and see that A n is in fact a scalar matrix. Taking the trace of both sides nishes the proof.

Proposition 4.3.5. Suppose that A is an n × n matrix such that for 0 < k < n we have Tr(

Proof. The assertion Tr(A k ) = (-1) k n implies that the matrix A + Id satises the conditions of the previous proposition. Thus we can write

Proposition 4.4.9. Suppose that v is a vector such that Xv = λv and Zv = 0. Then λ = 1.

Proof. Follows immediately from the fact that

Proposition 4.4.10. Suppose that X is not diagonalisable and not nilpotent. Then ε is an eigenvalue of X.

Proof. Since Y, X quasi-commute, and X is not diagonalisable, then there exists a common eigenvector for X and Y and XY w = -w.

Recall that we have a relation

Proposition 4.4.11. The matrix X is either nilpotent or diagonalisable with n distinct eigenvalues of the form t, εt, . . . , ε n-1 t.

Proof. Suppose that X is not nilpotent. Then from Corollary 4.3.3 if X, Z do not have a common eigenvector (ie. v such that Xv = λv, Zv = 0), then X is of desired form. Thus there is v such that Xv = λv, Zv = 0 which means, by Proposition 4.4.9 that λ = 1.

Similarly, if X, Y do not share an eigenvector, then X is of desired form, so by Proposition 4.4.10 there is a common eigenvector w for X, Y and ε is an eigenvalue of X. Now, again from Proposition 4.4.9 it follows that w is not in the kernel of Z (if it were, it would be an eigenvector for eigenvalue one but ε = 1). This means, by Proposition 4.3.2, that ε 2 is an eigenvalue of X and by induction the eigenvalues of X are 1, ε, . . . , ε n-1 .

The proof works verbatim for Z, so we can write. Corollary 4.4.12. The matrix Z is either nilpotent or diagonalisable with n distinct eigenvalues of the form t, εt, . . . , ε n-1 t.

For completeness, we write the proof for Y as well. Proposition 4.4.13. The matrix Y is either nilpotent or diagonalisable with n distinct eigenvalues of the form t, εt, . . . , ε n-1 t.

Proof. Suppose that Y is not nilpotent. Then by Proposition 4.3.2 Y is either of the desired form, or shares an eigenvector v (for eigenvalue λ 1 ) with X such that XY v = -v. Similarly, there is a common eigenvector w (for eigenvalue λ 2 ) for Y and Z such that ZY w = -w. We have the relation

which by quasi-commutation relations implies XZY + X + εZ = ε and hence if w is the common eigenvector for Y, Z, it implies εZw = εw and λ 2 = -1 is an eigenvalue of Y . On the other hand, we also have εZXY + X + εZ = 1, so if v is the common eigenvector for Y, X, then Xv = εv and λ 1 = -1/ε is an eigenvalue of Y . The proof is now nished by induction. Since λ 2 = -1 is an eigenvalue of Y , then the eigenvector w of Y for this eigenvalue cannot be an eigenvector of X (this would imply the eigenvalue equal to -1/ε) and the eigenvalues of Y are of the form ε k • (-1). We note that the relation XY Z + X + Z = 1 is essential one would be tempted to try to deduce the two corollaries above solely from the quasi-commuting relations (4.2) but it is not enough since X, Y, Z might a priori have nontrivial Jordan forms.

Let us introduce the following three functions

Proposition 4.4.16. The functions x, y, z generate the ring of invariant functions on µ -1 (ε).

Proof. We will prove the statement by induction on the length of the word in X, Y, Z.

We have Tr(X) = Tr(Y ) = Tr(Z) = 0 and suppose that the traces of all words of length shorter than k are known. Let W be a word in X, Y, Z of length k. If W involves all three elements X, Y, Z, then we can use the quasi-commuting relations and swap the letters as many times as necessary, so that we obtain a new word W with X, Y, Z appearing next to each other in this order plus possibly some shorter words. Each swap multiplies the word by ε ±1 and possibly adds a word of length k -2 (since the quasi-commuting relations between X, Y and Y, Z involve constants), whose trace is known by the inductive hypothesis. Using the relation

we can shorten W by replacing XY Z by 1 -X -Z and thus we know its trace.

Suppose we have a word W in two letters, say X, Y (it does not matter which two letters we choose). We can swap all X's to the left (possibly adding words of length k -2 whose traces are known) and thus the trace of W will be determined if we know the trace of X a Y b with a and b being the number of X's and Y 's in W . If at least one of the numbers a and b is at least n, then the proof follows from the fact that X n and Y n are scalar matrices of the form Id • (Tr(X n )/n) and Id • (Tr(Y n )/n).

Suppose then that 0 < a, b < n. We can take the most-left Y in the word and, using qiuasi-commutation of Y, X, swap it a times with all X, obtaining X a Y b = ε -a Y X a Y b-1 + P with P being a shorter word of known trace. Now, since ε a = 1, the trace of X a Y b is determined by the cyclic invariance of the trace.

Traces of all powers of X, Y, Z are determined by Corollary 4.4.15.

Proposition 4.4.17. The functions x, y, z satisfy the relation

Proof. We can write the relation XY Z + X + Z = 1 as X(Y Z + 1) = 1 -Z and take the determinant of both sides, obtaining det(X) det(Y Z + 1) = det(1 -Z).

By Lemma 4.3.9, we haveTr((Y Z) k ) = n(-1) k , so from Propositions 4.3.4,4.3.5 we get

And nally, after substituting x, y, z:

Proposition 4.4.18. The space µ -1 (ε) ⊂ Rep * ( A 0 , V ) is nonempty.

Proof. Suppose that X and Z are invertible. We have seen that in this case the moment map becomes ZXZ -1 X -1 = ε. The set of matrices X, Z satisfying this equation is nonempty. Take for example Z diagonal, which implies that X has n nonzero terms, only on the rst subdiagonal and in the top right corner. This provides a point in µ -1 (ε). 

is isomorphic to the cubic surface

In other words, there is an isomorphism

Proof. All the work has already been done. The functions x, y, z generate the ring of invariants and satisfy the desired relation. Since µ -1 (ε) is nonempty, the quotient is of dimension two. There are no other relations between x, y, z since the ane cubic surface cut out by xyz + x + z = 1 is smooth and irreducible and its subvarieties are of positive codimension.

The Painlevé II echo spaces

In this section we will study the Painlevé II echo space, dened in Section 4.1 as the wild Betti space M B (Σ n II , C n II ). We are going to prove the following theorem.

Theorem. Let n be a positive integer. There are isomorphisms of echo spaces

It is known that the rst member of this family, the phase space of Painlevé II equation, is the FlaschkaNewell ane cubic surface cut out by equation (cf. Section 3C of [START_REF] Flaschka | Monodromy-and spectrum-preserving deformations. I[END_REF])

and the theorem states that all members of the Painlevé II echo family are isomorphic to this cubic (with dierent values of b).

Let us introduce the following three functions

Proposition 4.5.11. The functions x, y, z generate the ring of H-invariant functions on µ -1 (q).

Proof. Let W be a cycle in the double of A 

Proposition 4.5.12. The functions x, y, z satisfy the relation xyz -x -y -q n 1 z + q n 1 + 1 = 0.

Proof. The equation ZXY -εX -Y -Y -q 1 Z + q 1 + ε = 0 can be written as

and taking the determinant of both sides gives, by Propositions 4.3.4,4.3.5 and Lemma 4.3.9

1 -

After substituting x, y, z, the relation becomes

Proposition 4.5.13. The space µ -1 (q) ⊂ Rep * ( A 1 , V ) is nonempty.

Proof. This will follow from one of the results of Chapter 3. Namely, there is an open subset of µ -1 (q) which is isomorphic to

which is nonempty.

Theorem 4.5.14. Let n = (n, n) be a dimension vector and q = (q 1 , q 2 ) a generic parameter. The ane geometric quotient

Moreover, there is an isomorphism

Proof. All the work has already been done. The functions x, y, z generate the ring of invariants and satisfy the desired relation. Since µ -1 (q) is nonempty, the quotient is of dimension two. There are no other relations between x, y, z since the ane cubic surface cut out by xyz -x -y -q n 1 z + q n 1 + 1 is smooth and irreducible and its subvarieties are of positive codimension.

Proposition 4.5.15. The cubic surface xyz -x -y -q n

Proof. The substitution

Transforms the equation into

Corollary 4.5.16. The wild character variety M B (Σ n II , C n II ) is of complex dimension two and is isomorphic to the FlashkaNewell cubic surface 

the moment map is given by equation (4.7)

Corollary 4.6.4. For a parameter q = (q 1 , q 2 , q 3 ) we have the following description of the space µ -1 (q):

where X 21 = x 21 + x 23 x 31 , X 12 = x 12 + x 13 x 32 .

In order to compute the GIT quotient

we need to understand the ring of H-invariant functions on µ -1 (q), which is again, by the result of Le Bruyn and Procesi [START_REF] Le Bruyn | Semisimple representations of quivers[END_REF], generated by traces of oriented cycles in the double of A 2 of bounded length, and the bound depends on n.

For any generic parameter q = (q 1 , q 2 , q 3 ) and a representation

dene the following four cycles in the ane quiver A 2 :

(We denote the cycles by X, Y instead of C, D to highlight the fact that they are of dierent nature and involve a term making a full turn around the triangle.)

Fix q = (q 1 , q 2 , q 3 ) a generic parameter and ρ ∈ µ -1 (q). For simplicity, denote A(ρ), B(ρ), X(ρ), Y (ρ) by A, B, X, Y .

Corollary 4.6.7. The pairs of matrices (Y, A) and (A, X) quasi-commute with pa-

Proof. Multiplying the second equation of (4.10) by A on the left and substracting the fourth yields

and multiplying the third equation of (4.10) by A on the right and substracting the fourth yields

Given the two Stokes multipliers S 2 , S 3 , the remaining elements h, S 1 , S 4 are uniquely determined. Hence if S 3 S 2 is in the big cell U -HU + and can be written as

then we also have

Observe that the block diagonal element h of the LDU decomposition for the pair S 2 , S 3 becomes h -1 for the pairs S -1 3 , S -1 4 and S -1

2 , respectively. In other words, for each h ∈ H there are two maps

given by p q 1 (ρ) = ρ and p q 2 (ρ) = ρ . These maps satisfy

Proposition 4.6.9. Let q = (q 1 , q 2 , q 3 ) ∈ H be a generic parameter and denote

). The following relations are satised:

Proof. By direct computation, which is completely algebraic. Determine the entries of matrices S -1 3 , S -1 4 in terms of the elements x ij of ρ and thus the representation ρ . Then compute the expressions for A(ρ ), B(ρ ), X(ρ ), Y (ρ ), which will be (noncommutative) polynomials in symbols x ij and use the rst two moment map equations (4.7) to eliminate the elements x 13 x 31 and x 23 x 31 x 13 x 32 appearing there. After all simplications, the resulting formulas are as above.

Proposition 4.6.10. Let q = (q 1 , q 2 , q 3 ) ∈ H be a generic parameter and denote

). The following relations are satised:

Hence given a representation ρ ∈ µ -1 (q), we can send it to ρ ∈ µ -1 (q), using p q 1 and then to τ ∈ µ -1 (q), using p q -1 2 . As a direct consequence of Propositions 4.6.9,4.6.10, we get the following corollary.

Corollary 4.6.11. Let τ = p q -1 2 •p q 1 (ρ) ∈ µ -1 (q). The following relations are satised:

Remark 4.6.12. These maps are simple examples of isomonodromy isomorphisms from Section 3. of [START_REF]isomonodromy, and quantum Weyl groups[END_REF].

Corollary 4.6.13. The pairs of matrices (X, B) and (B, Y ) quasi-commute with parameter -q 1 q 2 : XB

Proof. This follows from Corollary 4.6.11, since the elements q -1 2 B, X, Y for a representation ρ become A, Y, X for the representation τ = p q -1 2 • p q 1 (ρ) and since τ ∈ µ -1 (q), they obey the quasi-commuting relations. Corollary 4.6.14. The matrices A, B, X, Y satisfy the following relations

And thus

Proof. Relations (4.13) are the images of the relation

under the maps p q 1 and p q 2 . The third relation follows immediately.

We have established multiple relations between A, B, X, Y and we will gather the necessary ones together.

Proposition 4.6.15. Let q = (q 1 , q 2 , q 3 ) be a generic parameter and let ρ ∈ µ -1 (q).

Denote A(ρ), B(ρ), Y (ρ) by A, B, Y . Then the following relations are satised:

with

Proof. The rst three relations have already beed established. The last one is the image of

under the map p q 1 , combined with the rst relation used to change the order from BAY to BY A.

Proposition 4.6.16. Each of matrices A, B, Y is either nilpotent or diagonalisable with n distinct eigenvalues t, εt, . . . , ε n-1 t

Proof. Suppose that n > 2. By Propositions 4.6.9,4.6.10 it is enough to prove it for one matrix, since it can be further mapped to the remaining ones via the transformations p 1 and p 2 . The proof is similar to the previous cases. Suppose that Y is not nilpotent. Then by Proposition 4.3.2 Y is either of the desired form, or it shares an eigenvector v with A for an eigenvalue λ 1 of Y and -q 1 /λ 1 of A. We have Y Av = -q 1 v, thus the evaluation

0 which has three roots: 1, q 1 , q 1 q 2 /ε, giving three possible values of λ 1 . Similarly, Y is either of the desired form, or it shares an eigenvector w with B for an eigenvalue λ 2 of Y and -q 1 q 2 /λ 2 of B.

Using the rst and third relation of (4.14) to swap A with Y and then with B, we can transform the fourth equation of (4.14) into

108 which has three roots: ε, εq 1 , q 1 q 2 , giving three possible values for λ 2 . The proof is now the same as in the previous cases. By genericity of parameters, ε k λ 2 = λ 1 for 0 k < n -1 for any of the nine choices of λ 1 , λ 2 , so we can iterate proposition 4.3.2 n -1 times and produce n distinct eigenvalues of Y of desired form.

If n = 2, then q 1 q 2 = ε = -1 and there are two possibilities for eigenvalues λ 1 , λ 2 instead of three. The proof remains the same.

Corollary 4.6.17. The matrices A n , B n , X n , Y n are scalar.

Corollary 4.6.18. For 0 < k < n, the matrices A, B, X, Y satisfy

Let us introduce the following three functions:

Proposition 4.6.19. The functions a, b, y generate the ring of H-invariant functions on µ -1 (q).

Proof. Let W be a cycle in the double of A 2 . If it does not pass through the vertex v 2 , then it only passes through vertices v 1 and v 3 and by cyclic invariance of trace we can suppose that it starts and ends in v 1 and bounces between v 1 and v 3 . Now we can use the rst equation of the moment map and replace each copy of x 13 x 31 by q 1 -1 -x 12 x 21 , so its trace is equal to the trace of a cycle that bounces between v 1 and v 2 . Again by cyclic invariance of the trace, we can now suppose that it starts and ends at v 2 , so the trace of W is equal to the trace of a cycle W starting and ending at v 2 .

Consider a cycle C satisfying this property. We will show by induction on its length that it can be written as a word in A, B, Y . First few cases need to be addressed by hand. We have dealt with x 13 x 31 and x 21 x 12 = A -1, x 23 x 32 = B -1, so cycles of length two are done. There are only two cycles of length three: x 21 x 13 x 32 and x 23 x 31 x 12 , which can be written as words in X, Y, A. It follows from equation (4.13) that we can eliminate X and work in Y, A, B. The non-obious cycles of length four are x 23 x 31 x 13 x 32 , which is dealt with using the second equation of the moment map (4.7), and x 21 x 13 x 31 x 13 , where we can replace x 13 x 31 by q 1 -1 -x 12 x 21 and it becomes a word in A (a polynomial of second degree).

Suppose that C is of length n, starting and ending at v 2 . If it passes through this vertex more than once, then it splits into a product of two cycles of smaller length so we can use the inductive hypothesis and write them both as words in A, BY . If it does not, it means that it leaves v 2 , bounces between v 1 and v 3 least twice (we have dealt with the case if it goes between v 1 and v 3 only once), and then comes back . However, this implies that in its expression there is x 13 x 31 which we can replace by Therefore to provide a point in µ -1 (q) it is enough to nd two unipotents A ∈ U + , B ∈ U -such that A = U -h 1 U -, B = U + h 2 U + and h 2 h 1 = q. This is equivalent to showing that the following set of matrices is nonempty

which upon eliminating Y 1 using the rst equation and Y 3 using the second becomes

which is nonempty, since for example after setting 

Theorem 4.6.23. Let n = (n, n, n) be a dimension vector and q = (q 1 , q 2 , q 3 ) a generic parameter. The ane geometric quotient

Moreover, there is an isomorphism

Proof. All the work has already been done. The functions a, b, y generate the ring of invariants and satisfy the desired relation. Since µ -1 (q) is nonempty, the quotient is of dimension two. There are no other relations between a, b, y since the ane cubic surface cut out by this equation is smooth and irreducible and its subvarieties are of positive codimension.

Chapter 5

Continuants, ssion spaces and quasi-Hamiltonian geometry

Let G be a complex connected reductive Lie group and choose a parabolic subgroup P + ⊂ G and a Levi subgroup H ⊂ P + and let P -be the opposite parabolic with the same Levi subgroup H ⊂ P -, and denote by U ± the corresponding unipotent radicals.

Recall that in Section 2.2.3 we introduced the ssion space

which is a quasi-Hamiltonian G × H-space, and its reduction B r at the value one of the G-component of the moment map, which is a quasi-Hamiltonian H-space. In particular, when V is an ordered graded vector space, we have dened the general linear ssion space A r (V ) and subsequently B r (V ). In this chapter we will study the case V = V 1 ⊕ V 2 with the graded pieces of the same dimension n, which we will sometimes denote as V = W ⊕ W .

As we have seen, for V = V 1 ⊕ V 2 (not necessarily of the same dimension), the space B(V ) was a quasi-Hamiltonian GL(V 1 ) × GL(V 2 )-space which can be described as in (2.12) :

The polynomial 1 + b 1 b 2 is the second Euler's continuant polynomial. We will generalise this approach for higher numbers of Stokes matrices. Denition 5.0.24. Set (∅) = 1 and (x 1 ) = x 1 . We dene the n-th continuant polynomial (x 1 , . . . , x n ) by the recursive relation (x 1 , . . . , x n ) = (x 1 , . . . , x n-1 )x n + (x 1 , . . . , x n-2 ).

(5.1) together with their unipotent radicals U ± . Moreover, we can identify the groups H, U + , U -with explicit block matrix subgroups of GL 2n (C):

with all blocks of size n. The space B r (V ) has then a description 

so the top left entry on the diagonal of h -1 is just the top left block of the product S 2r-1 • • • S 2 , which is the desired continuant. To nd the second entry, consider the inverses of both sides in the equation (5.3) above, which gives

The inverse of S i is in the same unipotent subgroup of G, with o-diagonal entry -s i and the entry we are looking for is the inverse of the right bottom entry of h. On the other hand, taking the inverse exchanges the big cell U -HU + with the opposite one U + HU -, so the bottom right entry of h is again a continuant, this time in the inverted order (-s 2 , . . . , -s 2r-1 ). The number of terms is 2r -2, so the minus ones cancel out.

Therefore, by setting b i = s 2r-i , we can introduce the following descritpion of the space B r (V ) using continuants. Let k be an even positive integer. Dene the space

)

). The space B + k is isomorphic to the space B (k+2)/2 and has a natural H-action coming from the H-action on (S 1 , . . . , S k+2 ). and the two-form inherited from the space B (k+2)/2 .

Exchanging the roles of the two graded pieces (ie. exchanging the order in the grading of V ) exchanges the unipotents and gives the opposite of the space B + k

It is again a quasi-Hamiltonian H-space. The formula for the moment map is analogous to the (5.5) but now we consider the opposite big Gauss cell U + HU -.

Remark 5.1.3. For the case of even k it is not necessary to suppose that the two graded pieces of V are of the same dimension. Everything works precisely the same for any ordered grading V = V 1 ⊕ V 2 , the even length continuants belong either to End(V 1 ) or End(V 2 ).

We will now dene the spaces B + k , B - k for odd k. This corresponds to having an odd number of Stokes multipliers S i and a twisted irregular class z k/2 . This comes with a price the spaces B + k , B - k will no longer be quasi-Hamiltonian H-spaces but rather twisted quasi-Hamiltonian H-spaces with moment map taking values in a H-bitorsor H(∂) for a twist ∂. In the case of is in the big cell U -HU + . We determine h 1 , h 2 as Proposition 5.1.1, obtaining

The number of elements in the continuant is now odd, thus the minus ones in the bottom right entry do not cancel out and hence an extra minus sign. The moment

Therefore, by setting b i = s k-i , we can introduce the following description of the space B c (V ) using continuants. Let k be an odd positive integer. Dene the space

)

. It explains why we supposed that the graded pieces are equidimensional: otherwise the determinant would not be dened. The space B + k is isomorphic to the space B c and has a natural H-action coming from the H-action on (S 2 , . . . , S k-1 ). and the two-form inherited from the space B c , for c = (k + 2)/2.

If we exchange the role of the graded components in the decomposition V = V 1 ⊕V 2 , we obtain an isomorphic space B - k , dened as 

Continuants and factorisations

Recall that we have dened the continuant polynomials by recursive relation (5.1):

(x 1 , . . . , x n ) = (x 1 , . . . , x n-1 )x n + (x 1 , . . . , x n-2 )

with (∅) = 1, (x 1 ) = x 1 .

Denition 5.2.1. Let m < n be two positive integers. We dene the length of a continuant (x m , . . . , x n ) to be the number of variables x i between the brackets (equal to n -m + 1). It will be denoted by l(x m , . . . , x n ). If the continuant has only one term (x i ), we dene the length to be one, and the length of an empty continuant is zero.

We are going to discuss the factorisations of continuants. For simplicity, throughout the whole section we will suppose that all entries x i of the continuants belong to some xed End(V ) for a nite-dimensional vector space V . Therefore we can think of them as of square matrices which do not necessarily commute.

Let us look at an easy example. Consider the continuants

If the continuant (x 1 ) = x 1 is invertible, we can set x 2 = x 2 + x -1

1 and factorise the continuants, both at the same time

The following theorem generalizes this observation to continuants of arbitrary length. Proposition 5.2.2. Suppose that the continuants (x 1 , . . . , x m ) and (y 1 , . . . , y n ) are invertible and set

Then there are the following factorisations of continuants:

(x 1 , . . . , x m , y 1 , . . . , y n ) = (x 1 , . . . , x m )(y 1 , . . . , y n ) = (x 1 , . . . , x m )( y 1 , . . . , y n ), (y n , . . . , y 1 , x m , . . . , x 1 ) = (y n , . . . , y 1 )(x m , . . . , x 1 ) = (y n , . . . , y 1 )( x m , . . . , x 1 ).

Before proving Proposition 5.2.2, we will establish a lemma. Lemma 5.2.3. For any pair of positive integers j < k there is an identity (x 1 , . . . , x k ) = (x 1 , . . . , x j )(x j+1 , . . . , x k ) + (x 1 , . . . , x j-1 )(x j+2 , . . . , x k ), where we set (x j+2 , . . . ,

Proof. We will proceed by induction on k. If k = 3, the identity holds. Suppose that it holds for all m < k and write (x 1 , . . . ,

And we have

by the inductive hypothesis for k -2. We have also used the hypothesis for k -1

when passing from rst to the second line.

Proof of Proposition 5.2.2. This is a direct application of Lemma 5.2.3. We have

The proof works verbatim for the remaining three identities.

Equivalently, we can rewrite Proposition 5.2.2 as follows.

Proposition 5.2.4. Suppose that the continuants (x 1 , . . . , x m ) and (y 1 , . . . , y n ) are invertible and set

Then there are the following factorisations of continuants:

(x 1 , . . . , x m , y 1 , . . . , y n ) = (x 1 , . . . , x m , y 1 , . . . , y n ) = (x 1 , . . . , x m )(y 1 , . . . , y n ), (y n , . . . , y 1 , x m , . . . , x 1 ) = (y n , . . . , y 1 , x m , . . . , x 1 ) = (y n , . . . , y 1 )(x m , . . . , x 1 ).

Proof. We will prove the statement by induction. For i = 2 the statement is clear. Consider the continuant (x 1 , . . . , x n ) and the rst step of the factorisation, say at x k , which yields by Proposition 5.2.2

(the proof works verbatim if we split the continuant into (x 1 , . . . , x k )( x k+1 , . . . , x n )).

Now, by the inductive hypothesis, both continuants (x 1 , . . . , x k ) and (x k+1 , . . . , x n )

have the terms of desired form (5.8) after fully factorising them. The right one, (x k+1 , . . . , x n ) yields no problems since we have not changed its entries. However the left one does factorise as desired but in the terms of x k , not x k , and we need to prove that it still is of the form (5.8) after switching back to x k .

Suppose that we have an expression (x m , . . . , x p ) -1 (x m , . . . , x k )(x l , . . . , x k ) -1

(5.9)

appearing in the full factorisation of (x 1 , . . . , x k ), such that the lengths match up. The index k is the greatest so the continuant does not surpass x k . Observe that there is the following identity:

(x i , . . . , x k ) = (x i , . . . , x n )(x k+1 , . . . , x n ) -1

(5.10) and thus we can write (x m , . . . , x p ) -1 (x m , . . . , x k )(x l , . . . , x k ) -1

and the sum of lengths matches up. If the term (x l , . . . , x k ) on the right in (5.9) is absent, then (x m , . . . , x k ) transforms into (x m , . . . , x n )(x k+1 , . . . , x n ) -1 and the lengths still match up.

Denition 5.2.6. We will call the terms (x m , . . . , x p ) -1 and (x l , . . . , x k ) -1 in an expression of the form (5.8) the left and right companion of (x m , . . . , x k ).

Thus we have shown that each term x i in the full factorisation (x 1 , . . . , x n ) consists of a continuant and its companions and sum of lengths of companions is one less that the length of the term itself. A term x i has no companions if and only if it is of length one itself, equal to x i .

We leave the following two lemmas as exercises. The inductive proofs are similar to the one of Proposition 5.2.5, one performs the rst splitting of the continuant into two pieces and applies the inductive hypotheses for both pieces, eliminating the new coordinate x k with identity (5.10). obtained this way is an f-list of length 2n -1.

The property 2) of an f-list means that for each factorisation x 1 • • • x n there is a unique element x i such that its uninverted continuant is (x 1 , . . . , x n ). Proposition 5.2.11. Let L be an f-list of length 2n -1. Then removing the unique interval containing n yields two new f-lists if i = 1, n and a single new f-list otherwise.

Proof. This follows from the properties of f-lists. If the interval containing n is of length 2, it means that it is of the form [n, n -1] or [n -1, n] which implies it is one the far left or far right of the list and the claim is obvious. It the interval containing n is of the form [-a, n, -b], then a + b = n -1. Removing this interval separates L into two lists L 1 , L 2 . The sum of all numbers on the left list L 1 is a and thus there are a intervals on the left side, giving the length 2a -1. The same holds for L 2 , which is of length 2b -1 and it is clear that both L 1 and L 2 satisfy the conditions od Denition 5.2.9.

Corollary 5.2.12. A full factorisation uniquely determines an f-list.

Proof. If two full factorisations give the same list L, then they have the same interval containing n, corresponding to unique x i having (x 1 , . . . , x n ) uninverted. We can then remove it and obtain by Proposition 5.2.11 one or two new sub f-lists. The claim follows then by induction.

Thus for any factorisation of the continuant we obtain a unique f-list. The inverse is true as well and we shall prove the following. Proposition 5.2.13. An f-list of length 2n -1 determines a factorisation of a continuant of length n.

Proof. We will proceed by induction on the length of the f-list. Given an f-list L of length 2n -1, by Proposition 5.2.11 we can remove the interval [-a, n, -b] containing n and obtain two shorter f-lists L 1 , L 2 . The left f-list determines a factorisation of Suppose that V = W ⊕W with dim(V ) = 2n, dim(W ) = n. As before, we have the group G = GL(V ) and the following identications with block subgroups of GL 2n (C)

and a H-bitorsor H(∂):

Recall that we also have the (twisted) quasi-Hamiltonian H-spaces B + k , B - k , which as a set are dened as

If k is even, these are honest quasi-Hamiltonian Hspaces, if k is odd, then these are twisted quasi-Hamiltonian H-spaces with moment map taking values in the twist H(∂).

By choosing appropriate loops, for even k we can identify

and for odd k

where S = (S 1 , . . . , S k+2 ) and

, as in the usual denition of the reduced ssion space B k (V ).

We will simplistically write

depending on whether we consider B + k or B - k . It is a (twisted) quasi-Hamiltonian space with moment map µ = h -1 .

Choose two positive integers m, n and consider the four spaces B ± m , B ± n , which might be twisted or untwisted quasi-Hamiltonian H-spaces, depending on the parity of m, n

1}. Now choose one space from each pair B ± m and B ± n so that A 2 and B n+2 are in the same unipotent subgroup of G, and denote them by B m , B n . We will call such pair of spaces B m , B n compatible. This yields four possible choices of compatible pairs:

So for example B + 2 and B + 2 or B + 1 and B - 1 are compatible but B + 1 and B + 1 are not.

Observe that for a xed choice of positive integers m, n, the of sign for B m uniquely determines the sign for B n .

For every compatible pair B m , B n we consider its fusion product

which is again a (twisted) quasi-Hamiltonian H-space with moment map µ 1 • µ 2 . As a set, it is just a product B m × B n .

Now for each compatible pair dene the following map

where

Observe that the element B 1 is still unipotent. If A 1 and B 1 are in opposite unipotent subgroups of G, then one must have n odd and thus h 2 ∈ H(∂). Then the conjugation by h 2 sends A 1 to the opposite unipotent subgroup of G containing B 1 .

If we denote

depending on the initial choice of signs for B ± m , B ± n . More precisely, we have the following.

Proposition 5.3.1. The map f R gives the following injections Proof. We will establish the theorem for the map f R . The proof for f L is similar and we leave it is as an exercise.

Set

where h 1 , h 2 belong to H or H(∂) and A, B, C are collections of unipotent elements, in the order determined by the choice of parity and sign of B m , B n .

The two-forms ω m , ω n on B m , B n are then given by the formula (2.11) (also in the twisted odd case, cf. Theorem 24. of [START_REF] Boalch | Twisted wild character varieties[END_REF]):

(γ i , γ i+1 ).

(5.16)

We will compute

We will show that the last two terms here sum to zero. Since B n+1 . . .

2 , we see that

and (σ, κ) = 0 since s is unipotent and κ is h-valued. Hence it remains to prove

(5.18)

However, we have

and so the left side of (5.18) 

On the other hand, the (twisted) quasi-Hamiltonian form ω on the fusion B m B n is given by

so the proof will be complete if we prove that

i.e. that (α m+1 , κ) = (µ * 1 (θ), κ)). This holds since the h component of α m+1 equals that of α m+2 = µ * 1 (θ).

Factorisations and quasi-Hamiltonian embeddings

Recall that for a compatible pair B m , B n we have dene two maps, the right and the left factorisation maps

where A = (A n+2 , . . . , A 1 ), B = (B m+2 , . . . , B 1 ) and

We have shown in Theorem 5. 

.

Therefore we have 

and the natural actions of GL(

and the quasi-Hamiltonian two-form given by equation (2.14):

On the other had, for the grading V = V 1 ⊕ V 2 there is the reduced ssion space B(V ), which is identied with

and it is a quasi-Hamiltonian H-space with moment map h -1 . As we have seen, the quasi-Hamiltonian form on B(V ) is obtained by restricting the form on the ssion space A 2 (V ), given by equation (2.9), to the subset C = b = 1 and it is given explicitly by

Moreover, Theorem 2.2.16 stated that the two-forms on spaces B(V 1 , V 2 ) and B(V ) match up and they are isomorphic as quasi-Hamiltonian spaces, so the spaces B k (V ) can be understood as quasi-Hamiltonian generalisations of the Van den Bergh space.

We will generalise the formula (5.19) for the two form on the space B(V ) which is isomorphic to B + 2 to spaces B + k , for any positive integer k, using the continuants.

Suppose that V = W ⊕ W so that the coordinates b i on B + k are in End(W ) and let us in introduce the following notation Proof. We will proceed by induction, using the factorisation map. For simplicity, let us introduce the following notation, for i j:

Since k > 2, by Proposition 5.5.1 we can nd m, n with even m such that m + n = k and a (twisted) quasi-Hamiltonian embedding given by the right factorisation map

Its image is equal to the subset of B + k , where C m+1,m+n is invertible, which is open and dense in B + k . Let ω m , ω n , ω k denote the form ω i from equation (5.21) for the chosen index i. Note that ω m+n = ω k . We want to show that ω m+n is a quasi-Hamiltonian form on B + k .

We set

and in the same way we obtain

Now, using the face that (g -1 ) * (θ) = g * (θ), we have

On the other hand, the quasi-Hamiltonian form ω on the fusion This is an easy check that needs to be done case by case since the moment maps take values in H and H(∂), depending on the parity of m, n.

If both m, n are even, then the moment maps are

we see that

If n is odd, the moment maps are

m+n,m+1 0 and again the equality holds since g * (θ) = -g * (θ). Titre : Géométrie des variétés de caractères complexes Mots Clefs : variété de caractères, données de Stokes, connexion irregulière Résumé : Le but de cette thèse est d'étudier diérents exemples des variétés de caractères régulières et sauvages des courbes complexes.

La première partie est consacrée à l'étude d'un exemple de variété de caractères de la sphère avec quatre trous et groupe exotique G 2 comme son groupe de structure. On démontre que pour un choix particulier de classes de conjugaison du groupe G 2 , la variété obtenue est de dimension complexe deux et isomorphe à la surface cubique de FrickeKlein. Cette surface apparaît déjà dans le cas classique comme la variété de caractères de cette surface avec le groupe de structure SL 2 (C). De plus, on interprète les orbites de groupe de tresses de taille 7 dans cette surface comme les droites passant par les triplés de points dans le plan de Fano P 2 (F 2 ).

Dans la deuxième partie, on établit plusieurs cas de la conjecture d'écho, correspondant aux équations diérentielles de Painlevé I, II et IV. On montre que sur la sphère de Riemann avec un point singulier, pour des choix particuliers de la singularité il y a trois familles innies de variétés de caractères sauvages de dimension complexe deux. Dans ces familles, le rang du groupe de structure n'est pas borné et augmente jusqu'à l'inni. Le résultat principal de cette partie démontre que tous les membres de ces trois familles de variétés sont isomorphes aux espaces de phase des équations de Painlevé associées. En calculant les quotients de la théorie géométrique des invariants, on fournit des isomorphismes explicites entre les anneaux de fonctions des variétés anes qui apparaissent et relie les paramètres des surfaces cubiques.

Dans la dernière partie, avec des outils de la géométrie quasi-Hamiltonienne, on étudie une famille des espaces généralisant les hiérarchies de Painlevé I et II pour les groupes linéaires de rang supérieur. En particulier, pour toute variété B k dans la hiérarchie il y a une application moment, prenant ses valeurs dans un groupe, qui s'avère être un polynôme continuant d'Euler. Ces polynômes admettent des factorisations en continuants plus courts et on montre que les factorisations d'un polynôme continuant de longueur k en termes de longueur un sont énumérées par le nombre de Catalan C k . De plus, chaque factorisation fournit un plongement du produit de fusion de k copies de GL n (C) sur un ouvert dense de B k et on démontre que ces plongements relient les structures quasi-Hamiltoniennes. Finalement, on utilise ce résultat pour dériver une formule explicite pour la 2-forme quasi-Hamiltonienne sur B k , généralisant la formule connue dans le cas de B 2 .

Title : Geometry of complex character varieties Keys words : character variety, Stokes data, irregular connection Abstract : The aim of this thesis is to study various examples of tame and wild character varieties of complex curves.

In the rst part, we study an example of a tame character variety of the four-holed sphere with simple poles and exotic group G 2 as the structure group. We show that for a particular choice of conjugacy classes in G 2 , the resulting ane symplectic variety of complex dimension two is isomorphic to the Fricke-Klein cubic surface, known from the classical case of the character variety for the group SL 2 (C). Furthermore, we interpret the braid group orbits of size 7 in this ane surface as lines passing through triples of points in the Fano plane P 2 (F 2 ).

In the second part, we establish multiple cases of the so-called echo conjecture, corresponding to the cases of Painleve I, II and IV dierential equations. We show that for the Riemann sphere with one singular point and suitably chosen behavior at the singularity, there are three innite families of wild character varieties of complex dimension two. In these families, the rank of the structure group is not bounded and goes to innity. The main result of this part shows that in each family all the members are ane cubic surfaces, isomorphic to the phase spaces of the aforementioned Painleve equations. By computing the geometric invariat theory quotients, we provide explicit isomorphisms between the rings of functions of the arising ane varieties and relate the coecients of the ane surfaces.

The last part is dedicated to the study of a family of spaces generalizing the Painleve I and II hierarchies for higher rank linear groups, which is done by the means of quasi-Hamiltonian geometry. In particular, for each variety B k in the hierarchy there is a group-valued moment map and they turn out to be the Euler's continuant polynomials. These in turn admit factorisations into products of shorter continuants and we show that for a continuant of length k, the distinct factorisations into continuants of length one are counted by the Catalan number C k . Moreover, each such factorisation provides an embedding of the fusion product of k copies of GL n (C) onto a dense open subset of B k and the quasi-Hamiltonian structures do match up. Finally, using this result we derive the formula for the quasi-Hamiltonian two form on the space B k , which generalises the formula known for the case of B 2 .