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ABSTRACT 

Numerous studies over the past several decades focused on the Urban Heat Island. Initial 

efforts on understanding the factors affecting UHI contributed to propose solutions and 

mitigation strategies. Mitigation strategies comprise to increase both the urban albedo 

(reflectivity to solar radiation), and evapotranspiration. Albedo increases are obtained 

through high albedo roofing and paving technologies. An increase in evapotranspiration 

is achieved through a combination of decreasing the fraction of impervious surfaces and 

planting vegetation in urban areas. The notion of outdoor thermal comfort depends on the 

perception and satisfaction of the pedestrians, especially in hot and arid climates. 

Consequently, this work focuses on the appropriate methods for reducing the Urban Heat 

Island and  to enhance the pedestrian outdoor thermal comfort.  There is limited research 

conducted on the outdoor thermal comfort in hot and arid climate. The studies on the 

mitigation the Urban Heat Island and the outdoor thermal comfort are almost non-existent 

for places like Baghdad city. Baghdad has a complex urban fabric with modern design  

buildings, traditional and heritage houses. The climate in summer is hot, and summer 

months are considered the longest season with nearly 7 months of the year. This study 

focuses on investigating possible mitigation strategies to determine how pedestrian 

comfort is affected by the constructions design choices, comparing a traditional district to 

a modern one. We are also interested on how vegetation and shading patterns contribute 

to reducing the effect of UHI and improving the outdoor thermal comfort. Four different 

scenarios are designed to assess the role of vegetation elements such as trees, grass, and 

different shading patterns. The evaluation was performed on the hottest day in summer. 

The mean radiant temperature, specific humidity, air temperature, and wind speed 

distributions have been analyzed using the software ENVI-met. A design is proposed to 

increase the thermal comfort on the hottest day and a typical day in summer. The study 

shows how the urban factors such as the aspect ratio, vegetation cover, shadings, and 

geometry of the canyon are crucial elements that urban planners and municipalities may 

take into account, especially for new urban developments in a hot, arid climate.     



RÉSUMÉ 

De nombreuses études au cours des dernières décennies ont porté sur l'effet  l’îlot de 

chaleur urbain (ICU). Les efforts initiaux visant à comprendre les facteurs qui influent sur 

l’ICU ont contribué à la mise en place de solutions et de stratégies d'atténuation adaptées. 

Les stratégies d'atténuation comprennent généralement l'augmentation de l'albédo urbain 

(réflectivité au rayonnement solaire) et l'évapotranspiration. Les augmentations d'albedo 

sont obtenues grâce à des technologies de toiture et de pavage ayant un albédo élevé. Une 

augmentation de l'évapotranspiration est obtenue par une combinaison de la diminution 

de la fraction de surfaces imperméables et la plantation de végétation dans les zones 

urbaines. Le confort thermique extérieur est défini à partir d’indices prenant en compte 

différents paramètres physiques et traduit la perception et la satisfaction des piétons. Ce 

confort est très difficile à obtenir en climat chaud et aride. Par conséquent, le travail 

présenté dans ce document met l'accent sur les méthodes appropriées pour réduire l’ICU 

et ainsi améliorer le confort thermique en plein air des piétons. Jusqu’à présent, peu de 

recherches ont été menées sur le confort thermique extérieur dans un climat chaud et 

aride. Les études sur l'atténuation de l'ICU et le confort thermique extérieur sont 

pratiquement inexistantes pour la ville de Bagdad. Bagdad a un tissu urbain complexe 

avec des constructions modernes, des maisons traditionnelles et des éléments 

caractéristiques du patrimoine local. Le climat en été est chaud, et les mois d'été sont 

considérés comme la plus longue saison avec près de 7 mois de l'année. Dans un premier 

temps, cette étude se concentre sur l'étude des stratégies d'atténuation  à envisager afin 

d’évaluer comment le confort des piétons est affecté par les choix de conception des 

constructions,  en comparant un quartier traditionnel à un quartier moderne. L’étude 

envisage ensuite la façon dont la végétation et les ombrages contribuent à réduire l'effet 

de l'ICU et à améliorer le confort thermique extérieur. Quatre scénarios différents sont 

élaborés pour évaluer le rôle d’éléments végétaux tels que les arbres, l'herbe et les 

différents modèles d'ombrage. L'évaluation a été effectuée le jour le plus chaud de l'été, la 

température radiante moyenne, l'humidité spécifique, la température de l'air et les 

distributions de la vitesse du vent ont été analysées à l'aide du logiciel ENVI-met. Le 

confort thermique est ensuite évalué à l'aide des indices thermiques de la température 

équivalente physiologique PET et du PMV étendu aux ambiances extérieures. En outre,  



une proposition de solution est abordée afin d’étudier son impact sur  le confort 

thermique pour la journée la plus chaude (situation extrême) et une journée typique d’été. 

Les résultats ont révélé une amélioration du confort thermique dans la journée typique 

d’été. L'étude montre comment les facteurs urbains tels que le rapport d'aspect, la 

couverture végétale, les ombres et la géométrie du quartier sont des éléments cruciaux 

que les urbanistes et les municipalités doivent prendre en compte, en particulier pour les 

nouveaux aménagements urbains dans un climat chaud et aride. Une proposition 

d’aménagement global pour atténuer les ICU dans le cas d’un nouveau quartier sous 

climat aride, est détaillée en fin de mémoire. 
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2 

 

1.1 General background   

 

The Urban Heat Island (UHI) is a broadly investigated phenomenon in urban climate 

research, which characterizes the warming of cities comparing to their surrounding 

neighborhoods. Strategies to mitigate the Urban Heat Island represent an important 

objective in design and urban planning, especially in cities in hot climates. Lack of UHI 

studies, especially long-term in developing countries makes it difficult to hypothesize the 

mechanisms of UHI. Consequently, there is a growing interest in studies focusing the 

simultaneous analyses of UHI and trends throughout the world (Varquez, 2017). A 

significant increase in ambient temperatures is being found in urban and suburban places 

after the sun sets down, due to the heat release from buildings, streets, and other 

constructions, which was absorbed during daytime. UHI is indirectly connected to 

climate change due to its contribution to the greenhouse impact, and consequently, to 

global warming (Mobaraki, 2012). Many countries and regions have performed 

mandatory adaptation strategies reduce the effects of the Urban Heat Island and the 

change in urban climate. Change in urban climate depends on the interactions between 

the urban structure (dimensions of buildings, aspect ratio), ground cover (built-up, 

pavement, vegetation, soil, water), urban fabric (construction and natural materials) and 

the urban metabolism (heat, water, and pollutants due to human activity) (Simon, 2016). 

Consequently, the effects of mitigation measures cannot be easily assessed (Oke, 2006). 

Climate change in the Arab regions creates severe impacts on natural and human 

systems; these regions are characterized by hot and an arid climate (desert climate). Only 

modest efforts were adopted in scientific research to propose mitigation strategies of  

Urban Heat Island effects and improve the outdoor thermal comfort of pedestrians 

(Medany, 2008).  Arab world countries have endeavored to mitigate the effects of climate 

change, but there are numerous of challenges that they must overcome to keep up (Al-

Mebayedh, 2013). This work tries to find keys on how to improve pedestrian comfort 

while reducing the UHI in the context of the city of Baghdad (Iraq). 
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1.2 Significance of the Study 

Firstly, Iraq faces a unique set of environmental challenges as one of the most arid zone 

vulnerable to climate change.  In recent years the change in climate patterns induced 

higher frequency and intensity of extreme weather events, rising environmental 

degradation throughout the country, more frequent and severe dust storms, droughts, and 

extremely high temperatures. Secondly, the diversity of the urban fabric in Baghdad and 

the different styles of construction where high-rise buildings are located in the vicinity of 

the old traditional constructions and urgent need to confront climate fluctuations over 

time. Up to the mid-1950 the urban housing stock in Baghdad consisted mainly of 

traditional courtyard houses. Since then the trend began to change and now modern 

buildings built on the outskirts of the city, form the majority. The term 'traditional' and 

'modern' do not refer merely to the age of the building fabric, but denote buildings of 

fundamentally different design concept and characteristics (Al-Azzawi, 1984). The 

traditional courtyard house is characterized by its internal courtyard around which all 

rooms and spaces are grouped and look inwards for their daylight and natural ventilation. 

Such houses seem to have fulfilled the needs and aspirations of their inhabitants for yet to 

day decades modern neighborhoods resembles the one of West-Europe or North America. 

Such choices have impact not only on the pedestrian comfort but also on the energy 

consumption and the Urban Heat Island features. 

 

1.3 The objective of the Study 

In this work, we are looking for a better understanding on how pedestrian comfort is 

affected by the constructions design choices, comparing an old district to a new one and 

on how vegetation and shading patterns contribute to reducing the effect of UHI and 

improving the pedestrians outdoor thermal comfort. The usual approach consists of 

increasing the city permeability to facilitate heat exchanges and therefore the cooling of a 

city. How does it work in an arid climate? What lessons could we acquire from choices 

consisting in importing Western cities practices to such environment? We aspire to 

examine the impact of architectural choices on the main outdoor comfort indicators. We 

compare an old district built according to ancestral customs to a typical Western-type 
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neighborhood made of several high-rise buildings. Not only is the urban fabric different 

but also are the material choices. Next, we investigate mitigation strategies to provide 

more outdoor thermal comfort to pedestrians. This work is to our knowledge the first 

investigation on mitigation strategies of the Urban Heat Island and the prediction on the 

outdoor thermal comfort in a hot and arid climate (Baghdad). The results of this work 

will be discussed in the form of design recommendations intended to help improving UHI 

mitigation strategies and enhancing pedestrian comfort. Finally, we focus on possible 

procedures that could be taken to treat the problems of outdoor thermal comfort in hot, 

arid climate. 

 

1.4 Methodology  

Urban microclimate models vary substantially in many aspects: physical basis, temporal 

and spatial resolution, and input- output quantities. ENVI-met is a tool for representing 

the major processes in the atmosphere including wind flow, radiation fluxes, temperature, 

and humidity. ENVI-met simulates integrally all the microclimate factors influencing 

thermal comfort like air temperature, relative humidity, wind speed, solar radiation and 

mean radiant temperature (Ali-Toudert, 2005). This software was chosen because it can 

represent three-dimensional buildings and calculate the effect of the vegetation and its 

relation to the outdoor thermal comfort. We adopted PET (Physiological Equivalent 

Temperature) and PMV (Predicted Mean Vote) indices to evaluate the outdoor thermal 

comfort at pedestrian level. 

 

1.5 Structure of the Study  

The thesis is organized into six chapters: chapter two gives a brief overview of definitions 

and the most significant findings related to the phenomena of Urban Heat Island and 

mitigation strategies, and explains the outdoor thermal comfort indices. Furthermore, it 

focuses on investigation researches on UHI and outdoor thermal comfort in hot and arid 

climates. Chapter three describes the background for the numerical modeling of the urban 

microclimate. It also focuses on significance and characteristics of ENVI-met. The results 

of the numerical simulations for the study case in Baghdad are presented, analyzed, and 
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discussed comprehensively in chapter four. Chapter five presents a proposal district 

design in an arid climate based on the architectural and implementation criteria to 

improve the climate and the pedestrians thermal comfort conditions. Chapter six involves 

the meaningful conclusions that are extracted from the simulation models for the two 

districts in Haifa Street (modern Western design) and the traditional houses in Al-

Rasheed Street. Furthermore, it encompasses recommendations and suggestions of 

perspectives for further research in the future.       
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2.1 Introduction 

 2.1.1 Urban Heat Island definitions 

Energy transfer within the earth-atmosphere system can occur in three modes (conduction, 

convection, and radiation). In the relationship between the atmosphere and the earth surface, the 

troposphere is the most influenced layer by the earth surface. The urbanization process produces 

a radical change in the nature of the earth surface and the atmospheric properties in an urban 

area. It relates to the transformation of the radiative, thermal, moisture and aerodynamic 

characteristics and thereby rarefies the natural heat and hydrologic balances. The features of the 

urban boundary layer are dominated by the nature of the surface of an urban area. The urban 

canopy layer, at the roof level, is produced by the operation in the streets (canyon) between the 

buildings. Figure (2-1) represents the classification of urban area layers. The air in the urban 

canopy layer is ordinarily warmer than the air in the vicinity. This could be lead to the 

appearance of the Urban Heat Island.  

                         

                  Figure (2-1): Classification of the urban atmosphere layer (Oke, 1976). 

The urban Heat Island (UHI) may be defined as a phenomenon where surface and atmospheric 

modifications due to urbanization generally lead to modifying the urban climate that becomes 

warmer than the surrounding areas (Voogt, 2003, Coseo et al., 2014). Urban Heat Island 

describes a characteristic of the urban area in which the nocturnal temperatures are warmer than 

the surroundings landscape. Warmer urban air temperatures are a result of some interrelated 

causes associated with the urban modification to the natural surface, such the heat and the 

pollution released from the anthropogenic activities in the urban environment (Morris and 

Simmonds, 2000).  
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The Urban Heat Island is associated with the development of the cities and the urban expansion 

(Taleb et al., 2013). It has a direct effect on the energy efficiency, the environment, and 

ultimately human comfort and health. The urban environment is characterized by some features 

like the high density of population and buildings, high energy consumption and the shortage of 

the green areas (Busato et al., 2014). According to an investigation by Hathway et al., (2012) the 

absorption of the heat from surfaces of the buildings and the ground, the loss of moisture in the 

air due to the reducing of vegetation and a wide area of traffic and pavement, could contribute to 

the occurrence of Urban Heat Island. 

Figure (2-2) explains the UHI phenomena in which the air temperature of an urban area is higher 

than the surrounding rural area. The first investigation of this phenomenon was conducted in 

1833 by Luke Howard. He concluded from his findings that London was 1.48 ℃ warmer than 

the countryside. He based his study on the average of the monthly mean temperature during the 

period (1807-1816). 

                          

Figure (2-2): Generalized cross- section of a typical Urban Heat Island (Oke, 1987). 

Oke (1976) mentioned that there are two types of Urban Heat Island layers, the first layer is the 

urban boundary layer, and the second one is the canopy. The research study presented by Erell et 

al., (2011) indicates that the urban boundary layer could be defined as the entire volume of air 

above the city that is impacted by the features of the surface and with the activities, as can be 

seen in Fig. (2-3). The urban boundary layer extends upward to about ten times the height of the 

buildings in the urban area. 
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Figure (2-3): Urban boundary layer relative to the urban boundary layer (Erell et al., 2011). 

 

Figure (2-4) shows the mixed layer which is defined as the layer of the atmosphere influenced by 

the presence of the urban surface. The Surface layer is to be up to a height of about four to five 

times for the average of the buildings. When the air passes over the ground, the surface layer 

forms. The properties of this layer are not affected by the urban elements such as the buildings 

and the streets. 

 

                           

 

Figure (2-4):  Description of the mixed layer, roughness sub-layer, and transition zones above  

                        and below the surface layer (Erell et al., 2011).   

                                  

2.1.2 Researches on the Urban Heat Island (UHI)  

The researches on the UHI focused on the urban effects, describing initially how the UHI has an 

effect on air pollution (Oke, 1982). However, the focus of UHI research has since moved to 

understanding the UHI process. 
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Many attempts were made to create a model of the urban area concerning with the effect of UHI 

(Arthur et al., 2003). Oke (1982) summarized the knowledge about the intensity, spatial and 

vertical structure, dynamics, and determinants of the UHI. He also reviewed the temperature 

patterns near the surface. 

Attempts were made to simulate the dependence of the UHI on the urban geometry and the 

differences in thermal admittance (Arnfield, 2003, Johnson et al., 1991). Oke et al. (1991) 

indicated that the higher urban temperatures are due to the positive thermal balance of the urban 

areas caused by a significant release of anthropogenic heat. The excess storage of the solar 

radiation is affected by several factors, including the city structures, the lack of green spaces and 

cold sinks, the non-circulation of air in the urban canyons, and the reduce ability of the emitted 

infrared radiation to escape into the atmosphere. According to Radhi et al. (2013) the 

development of UHI influences the microclimate, thermal conditions and the quality of human 

life as can be seen in the increased the energy demand for cooling buildings, elevated greenhouse 

gas emissions and compromised human comfort. Remotely-sensed data from satellites represents 

a further potential for UHI researches (Carlson et al., 1981, Nichol, 1996). Carlson and Arthur 

(2000) used multiple linear regression models to reveal the impact of the urban development on 

the surface temperatures from multispectral satellite data. They explained how the surfaces of the 

urban area could affect the parameters derived from Landsat data, such as the fractional 

vegetation cover and the surface temperature. In this research, the fractional vegetation is 

considered as the most important variable, and a Normalized Difference Vegetation Index is used 

to estimate the fractional vegetation.  

The intensity of the UHI effect is increased by the addition of pollution and anthropogenic heat 

to the air (Taha, 1997). As highlighted by Landsberg (1981) the high population density in the 

city centers has a tendency for consumption of a higher energy amount than the surroundings. 

The need for the air-conditioning during the summer months and the reduction of the need for 

heating in winter are the results of the Urban Heat Island. For these reasons, the UHI effect on 

the human life is necessary for the future investigation. 

 

 2.1.3 Factors affecting the intensity of UHI  

The Urban Heat Island Intensity depends on the number of people living in the area, the 

morphology and the size of the urban area. The changes in the maximum city temperature and 

the suburban contextual temperature are presented as Urban Heat Island Intensity (UHII) (Oke, 
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1982). According to Shahmohamadi et al. (2010) the Urban Heat Island could be caused by 

different factors that can be divided into two types: 

1. Meteorological factors, such as clouds cover, wind speed and humidity. 

2. City parameters, such as the city and the population size, the anthropogenic heat and the   

     urban canyon. 

The Urban Heat Island occurs as a result of several reasons which could be categorized as 

controllable and uncontrollable factors as shown in Fig. (2-5). The controlled and 

uncontrolled factors could be classified as the temporary effect variables, such as air speed 

and cloud cover, and the permanent effect variables such as green area, building material, 

the sky view factor and cyclic effect variables such as solar radiations and anthropogenic 

heat sources. 

                        

 

                        Figure (2-5): Generation of Urban Heat Island (Rizwan et al., 2008). 

 

Based on an investigation study by Ratti et al. (2003) the significant variable includes: 

1. Surface to volume ratio. 

2. Shadow densities. 

3. Daylight accessibility. 

4. Sky- view factors. 
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Figuerola et al. (1998) carried out a research to investigate how the Urban Heat Islands in 

Buenos Aires city is affected by the factors such as cloud cover, wind speed and direction, the 

day of the week, and different seasons. It was observed in winter that the average value of the 

maximum urban heat island is 1°C lower on the windy and cloudy days than with weak winds 

and little sky coverage. The winds were blowing from the rural area towards the city when the 

maximum differences of temperatures occurred. The UHI creates heat stress such as tropospheric 

ozone formation and resulting health problems. Higher temperatures lead to increased electricity 

demand for the air conditioning, which, in turn, raises power plant pollution and greenhouse gas 

emissions. Also, UHI may increase water temperatures, resulting in water ecosystems 

impairment (Chun et al., 2014).  

 

2.1.4 Impact of urbanization on UHI 

The Urban Heat Island is one of the largest problems correlated with the urbanization and 

industrialization of human civilization. Many studies have analyzed urban activities that 

contribute to the development of UHI. According to an investigation research by Giannopoulou 

et al. (2011) on the statistical analysis of UHI features in Athens, the occurrence of high air 

temperatures depends on increased urbanization and industrialization coupled with the increased 

anthropogenic heat flows and the lack of vegetation. As highlighted by Guneralp and Seto (2008) 

the rapid urbanization means that the already significant environmental challenges present in 

urban areas will rise even further. The consequences of increased urbanization are reduced 

biodiversity, growing amounts of traffic, higher demand for energy-intensive indoor cooling 

systems. The UHI directly affects the well-being of inhabitants and health as they are exposed to 

higher rates of air pollution and more intense heat waves. 

The UHI effect on the energy consumption for heating and cooling of buildings was investigated 

by Kolokotroni (2012). It is clear that increased temperatures in the urban centers have a 

significant influence on the energy demand for the heating and the cooling of the buildings. 

Therefore it was concluded that the site location should be taken into consideration by designers 

when estimating the energy consumption both in commercial and domestic buildings. 

Poumanyvong et al. (2010) mentioned that most previous studies have implicitly assumed that 

the impact of urbanization on energy use and emissions is homogenous for all countries. Such an 

assumption can be questionable as there are many notable differences (e.g., energy structure and 

levels of urban public service provision) among countries of different levels of wealth. It is also 

in conflict with the arguments of ecological modernization and urban environmental transition 
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theories that urbanization pressure on the environmental may vary across the different levels of 

development. According to an investigation study conducted by Charabi et al. (2011) the 

preliminary investigations show the complex nature of assessing the impact of the urbanization 

in an arid tropical coastal environment. The results illustrate the meso and micro-level variability 

of the temperature due to several competing factors in this region-topography, mesoscale 

circulation, urban form, and landscape variability. Based on what was concluded by Borbora 

(2014) the replacement of natural vegetation areas with dry impervious surfaces, the use of 

building materials with high heat capacity and low surface reflectivity and the increase in 

anthropogenic heat emission into the urban atmosphere are likely to modify the thermal regime 

for Guwahati City in India. 

                

2.1.5 Factors affecting the intensity of the Urban Heat Island 

In spite of the efforts to realize the impacts of multiple urbanization factors on the Urban Heat 

Island, there is a lack for the knowledge of the effective role of urbanization on Urban Heat 

Island Intensity in different locations (Cui et al., 2016). 

 

   2.1.5.1 City size 

For mid-latitude cities, Oke (1973) stated that there is a relationship between UHI (max) and 

logarithm of population (log (p)) of urban areas under the restriction of calm and clear 

(cloudless) weather conditions, for the West European cities and North America from years 

(1954-1972), the relationship as shown below: 

 

																														∆�����	
�� = 2.96 log � − 6.41																										                            (2.1) 

                                    with  �� = 0.96	 

                                                                                     

 

Europe from years (1929-1973) 

 

∆�����	
�� = 2.01 log � − 4.06 (2.2) 

                                                     with �� = 0.74	 

where  ∆���������	: maximum urban heat island intensity (℃) 
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2.1.5.2 Urban geometry  

Researches on The UHI usually focus on the urban canyons, which can be illustrated by a narrow 

street lined by high buildings. During daytime, there are real effects for urban canyons. When 

sunlight reaches the surfaces of buildings and grounds in the canyon, the sun energy is reflected 

and absorbed by the building walls, which further lowers the overall city albedo. The reflectance 

from surface albedo plus urban geometry can increase temperatures. At night, urban canyons 

impede cooling the buildings and the structures can obstruct the heat transfer that is released 

from the surfaces of buildings and grounds. 

Most researchers focused on the relationship between building height and density of buildings 

distribution. A measure for the geometry of the urban canyon is the height to width (H/W) ratio. 

This ratio describes how densely buildings are spaced on their heights. According to Gago et al. 

(2013) the geometry of urban canyons has an impact on the total energy consumption of up to 

30% in commercial buildings and 19% in residential buildings. In deep canyons, wind speed 

variations can be substantial, resulting in significant temperature differences (approximately 5℃ 

higher) over the canyon than at street level. Also, the optimization of urban design/ planning 

concerning the energy consumption of buildings allows savings of up to 30%. As highlighted by 

Olàh (2012) the open space design and even the (building) architecture could have such new 

priorities which can eventuate the minimizing and prevent the development of the Urban Heat 

Island both locally and on the scale of the whole city. 

Oke (1981) tried to find a relationship between the maximum intensity of the UHI and the 

height/width ratio of the street canyons (H/W). He observed these associations in 31 cities 

located in North America, Europe, and Australia. As shown in Fig (2-6), the relationships 

between the maximum intensity of the UHI (�����	
��) and H/W can be summarized as follows. 

           

∆��������	� = 7.45 + 3.97	#$	�% &⁄ � (2.3) 

where  ∆���������	: maximum urban heat island intensity (℃). 

Height and Width were based on the ground-level and aerial photos, as well as on data sets from 

the buildings and streets dimensions. A more appropriate measure of radiation of a given site is 

the sky view factor which is the fraction of the overlying hemisphere occupied by the sky. It is a 

dimensionless (SVF) measure between 0 and 1, representing the openness of the sky to radiated 

transport. For all outdoor environments in urban areas, SVF at any point is less than one because 

of the obstacles in the urban sky (Yuan et al., 2011). 
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Figure (2-6): The relationship between maximum heat island intensity observed in a settlement 

(∆����	�����	 ) and the canyon sky view factor in its central area 	�Oke, 1981). 

 

2.1.5.3 Properties of urban materials 

Radiation and thermal properties of the materials influence the Urban Heat Island development:   

they determine how the sun energy is reflected, emitted, and absorbed. Furthermore, most 

materials used in the construction buildings and paving roads and walkways are impermeable to 

moisture. Consequently, more energy is available for long-wave emission, sensible heat flux and 

conduction to the surface. 

According to an investigation by Hove (2011) the thermal emissivity ε is a measure of a surface 

ability to lose heat or emit long-wave (infrared) radiation. It is the ratio of energy radiated by the 

particular material to the energy radiated by a blackbody at the same temperature. An actual 

black body would have ε=1, while any real object would have ε<1. 

Most building materials show an emissivity of 0.85 and higher. Building brick, metals, and some 

concrete mixes have relatively low values. Extensive use of these materials can reduce the 

overall urban emissivity which tends to increase the net radiation levels in urban areas. 

Several studies investigated the ability to increase the albedo to mitigate the Urban Heat Island 

and decrease the cooling energy use. The albedo of a city depends on surfaces, the material used 

for roofs, and the solar position (site latitude, date and hour) (Bouyer et al., 2009). 

Albedo is measured on a scale of 0 to 1. A surface with a relatively high albedo, 0.75 or greater, 

is light in color and reflects most of the sun rays. A surface a low albedo, 0.25 or less, is usually 

dark in color and will absorb most of the incoming solar energy (Gray and Finster, 1999). 
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According to an investigation study carried out in Los Angeles by Sailor (1995), the increase in 

the albedo in Los Angeles decreased the peak summertime temperatures by as much as 1.5 K.  

According to Taha et al. (1999) the large scale increases in surface albedo for ten cities in the 

U.S. reduced the air temperature by 0.5 to 1.5K in summer in the daytime and decreased the peak 

electricity demand by up to 10%. 

There are other properties which can be considered more efficient on the properties of the urban 

material such as the thermal behavior of urban surfaces. The density material largely determines 

this behavior, specific heat capacity, thermal conductivity, and thermal admittance coefficients of 

the materials used. Urban building materials, such as steel and stone, have higher heat capacities 

than rural materials, such as dry soil and sand. As a result, cities are typically more efficient at 

storing the sun energy as heat within their infrastructure. Downtown areas can absorb and store 

twice the amount of heat compared to their rural surroundings during daytime (Hove, 2011). 

Simulations carried out by Montavez et al. (2008) show that the most desirable combination of 

geometry and thermal properties can produce a UHI intensity of 10 K. According to a simulation 

model developed by Oke et al. (1991) the thermal properties have a significant influence. 

Differences in thermal admittance between rural and urban areas alone can produce heat (or 

cold) island. In contrast to differences in geometry, differences in thermal admittance are less 

clear and visible. Thermal admittance is the rate of flow of heat between the internal surfaces of 

the structure and the environmental temperature in the space. As highlighted by Elsayed (2012) 

the effect of the thermal admittance on the surface of the material is one of the most significant 

thermal properties in causing the Urban Heat Island. Temperature variation depends inversely on 

the thermal admittance. While urban materials have low thermal admittance, moist soils and 

vegetation have higher thermal admittance. In accordance to what has been mentioned by Oke et 

al. (1991) the cities whose environs are characterized by high admittances (wetlands, irrigated 

soils, paddy fields or rock) could only support a small Heat Island. 

 

2.1.6 Descriptions of the geometry of the urban canyon  

Erell et al., (2011) proposed three principle descriptors for the geometry of the urban canyon: 

1. The height –width ratio, also known as the aspect ratio. It is defined as the ratio between 

the average height of adjacent vertical elements (such as building facades) and the 

average width of the space. As shown in Fig. (2-7). 
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2. The canyon axis orientation (() represents the direction of the elongated space. (in 

degree) as the angle between a line running north-south and the main axis running the 

length of the street or other linear space, measured in the clockwise direction.  

3. The sky view factor (SVF) of an urban canyon is closely related to its aspect ratio 

(H /W), also describes the cross - sectional proportions of the canyon. Figure (2-8) shows 

the sky view factor as a function of canyon aspect ratio (H/W). Figure (2-9) depicts the 

emission of long-wave radiation (L↑). 

                          

Figure (2-7): The view of a symmetrical urban canyon (Erell et al., 2011). 

 

                           

Figure (2-8): The sky view factor as a function of canyon aspect ratio (H/W) 

(Erell et al., 2011). 
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                         Figure (2-9): Emission of long-wave radiation () ↑) (Oke, 1987). 

 

 2.1.6.1 The Impact of sky view factor on UHI 

Oke (1981) developed a formula to correlate the maximum Urban Heat Island and the sky view 

factor (SVF) in the middle of an urban canyon floor: 

∆����	����� = 15.27 − 13.88 , -./ (2.4) 

 

When the Urban Heat Island occurs after sunset, this formula reveals that the Urban Heat Island 

is strongly related to the reduced long-wave heat loss by the restricted view of the sky. Oke 

(1987) stated that SVF is a measure of the percentage of radiation penetrating the urban canopy 

layer (UCL). Yamashita et al. (1986) concluded that the sky view factor has to be taken into 

consideration to explain the Heat Island intensities. They mentioned that the sky view factor is 

well correlated with Heat Island intensity, and moreover is easy to obtain from the photograph of 

the whole sky. Figure (2-10) shows the relationship between the Heat Island intensity and the 

maximum sky view factor of each city. In this figure, the white circles are daytime and the black 

circles are the night time observations. Temperature data was observed in February 1983. The (d, 

n, and t) represent the regression lines adjusted for the day- time, night- time and total values. 

                           

Figure (2-10) : The relationship between the minimum sky view factor and heat intensity on the 

cities along the Tama River Basin, Japan, in (February) 1983 (Yamashita et al., 1986). 
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Figure (2-11) shows the case observed on the cities along the Tama River Basin, Japan in May 

1983. It is characteristic that daytime values of Heat Island Intensity are more related to 

minimum sky view factor than night time ones. Nevertheless, the sky view factor may be 

correlated with the Heat Island Intensity (Yamashita et al., 1986). 

                         

Figure (2-11): The relationship between the minimum sky view factor and heat intensity on the 

cities along the Tama River Basin, Japan, in (May) 1983 (Yamashita et al., 1986). 

Based on what was mentioned by the Chen and Ng (2009) the first investigation on the sky view 

factor was proposed by Lindquist (1970) who showed that the differences of intra-urban surface 

air temperatures were strongly dependent on SVF. Also, they explained that the sky view factor 

values of the urban areas in Hong Kong were smaller than 0.5. These values indicated the 

reasonable agreement with temperature variations along the urban canyon. According to a study 

conducted by Oke (1981) a hardware simulation model showed that the sky view factor can 

produce nocturnal Urban Heat Island Intensity up to 7℃. He reported that the sky view factors 

for downtown sites ranged from 0.25 to 0.84. As highlighted by Brown et al. (2001), for the case 

where buildings cover 50% of the area of the sky, the sky view factor would be greater than 5% 

because sky view factor is weight by the spread of the radiation over the surface of the area. 

Referring to the definitions given by Yang et al. (2010), the tree view factor is defined as the 

fraction of the overlying hemisphere as shown in a sky view image that is occupied by the 

vegetation canopy. They also explained that the total site factor is developed to quantify the site 

solar access in an integrative manner. It is a function of the vegetation in the surrounding canopy 

geometry (buildings and tree), sun track, solar radiation intensity, and time. Paramita and Fukuda 

(2014) mentioned that the Urban Island could be the main reason for increasing the surface 

roughness, which in turn devotes the effect to mean radiant temperature with sky view factor. 

This effect occurs in heat intensity of the urban built environment, especially in a hot-humid 
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climate region. According to Yang et al. (2015), there is a relationship between the effective 

emissivity and the sky view factor. They clarified that the high density of the buildings in the 

urban area means that there is a small sky view factor and enhanced trapping of radiance. They 

confirmed that the method proposed could be used for a further study on improving the accuracy 

of urban surface temperature retrieval and emissivity modulation. 

 

 2.1.6.2 Determination of view-factors in urban canyons 

The influence of view factors on the radiation exchange is not a new concept; we could find that 

the first investigations began in 1964 by Anderson and in 1967 by Reifsnyder. They described 

the effect of the view factors upon radiation exchange in a forest environment. According to 

Reifsnyder (1967) the view factor is defined as the geometric factor describing the ratio of 

radiation received by the radiometer emanating from a particular source to the total received 

from all sources. Furthermore, Giguère (2009) defined the sky view factor as a measure of the 

openness of the urban area texture to the sky, and linked it to climatological phenomena such as 

urban heat island, day lighting and heat absorption. A clear explanation  on view factor was 

presented by Oke (1987) who indicated that view factor is a concept as a geometric ratio that 

explains the portion of the radiation output from one surface that intercepted by the another 

surface. 

 

  2.1.7 Mitigation strategies of UHI 

UHI represents to the tendency for a city to remain warmer than its surroundings. Mitigation of 

UHI technique aims to balance the warmth of the cities by increasing thermal losses and 

reducing the corresponding gains. Several field studies investigated the measure of energy 

savings that result from the increasing of roof solar reflectance. Solar-reflective roofs remain 

cooler in the sun than the solar-absorptive roofs (Akbari et al., 2005). According to Oke et al. 

(1991) light color of many tropical building could be decreased the absorption of heat due to a 

higher albedo. As highlighted by Norton et al. (2015), increasing the vegetation cover in cities is 

one of the key approaches to lower both air and radiative temperatures and improve thermal 

comfort through shading and transpiration.  

A recent mitigation strategy in the UK has demonstrated that even a small urban river can result 

in cooling effect during temperatures higher than 20℃. The cooling effects can be greatly 

enhanced by careful consideration of urban design. The researchers confirmed that the amount of 

cooling was significantly affected by the form of the urban areas. Streets and roads which were 
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opened to the river, combined with the river banks with more vegetation, led to more efficient 

cooling, which was sustained over a greater distance (Hathway and Sharples, 2012). 

Nuruzzaman (2015) proposed a diagram as shown in Fig. (2-12) to illustrate precisely the UHI 

mitigation strategies and how these strategies could be work to minimize the effect of Urban 

Heat Island.  

        

Figure (2-12):  Urban Heat Island effect mitigation strategies and processes (Nuruzzaman, 2015). 

The Urban Heat Island mitigation strategies for using the cool roofs are represented a low-cost 

strategy to reduce the cooling energy demand of the buildings and structures. According to 

Pisello et al. (2013), the coupled passive-active effect proposed a case study industrial office 

building located in Rome, Italy. This technology is the effective cool roof to decrease the suction 

air temperature of the heat pumps external units, when these units are located on the roof, and 

then to reduce also the temperature lift between the source and the output air of the heat pump in 

cooling mode. One of the first evaluations of the climates impact of the reflective surface was 

published by Sailor (1995), who simulated three- dimensional meteorological models to 

investigate the potential impact of urban surface appropriate modifications on local climate. The 

results of a base case simulation for the Los Angeles basin are compared to results from cases in 

which the urban albedo or the vegetative covers are increased. The results from these simulations 

indicate a potential to reduce urban energy demand and atmospheric pollution by 5%-10% 

through application of the surface modification strategies. According to Taha (1997) the use of 

high-albedo materials decreased the solar radiation absorbed by building and urban structures by 

keeping the surfaces cooler, the intensity of long wave radiation was reduced. A recent study 
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presented by Simon (2016) illustrated that vegetation is considered as a vital role in urban 

environments. Trees and other vegetation help to mitigate the effects of the urban heat island 

(UHI) by increasing the latent heat flux through evapotranspiration, which leads to reducing the 

air temperatures. According to an investigation by Santamouris (2012) only a few studies 

interested to evaluate the heat island mitigation potential of green roofs on a city scale are 

available. Most of the studies are using simulation techniques based mainly on mesoscale 

models. Studies are available for New York and Chicago in the US as well as for Hong Kong 

and Tokyo. Relevant information is also by an experimental study in Singapore. A simulation 

study aiming to evaluate the mitigation potential of green roofs in Chicago, US, is described by 

Smith and Rober (2011). Chicago had more than 50000 0� installed vegetative roofs in 2008. 

Yuan et al. (2011) presented a planning strategy based on the sky view factor and the urban 

morphology to mitigate the intensity of UHI. The study explained that the average air 

temperature is well related to sky view factor. 10% increase in sky view factor could decrease air 

temperature by about 0.4℃. This study also indicated that, for the areas with extremely high land 

use density, the sensitivity of sky view factor to change in site coverage and building height is 

very low. Urban planners must consider decreasing the land use density. As highlighted by 

Akbari et al. (2012) using cool roofs and cool pavements in the urban areas, could increase on 

average the mean albedo of the urban area by about 0.1. They estimated that the increase of the 

albedo of the urban roofs and paved surfaces worldwide would induce a negative radiative 

forcing equivalent to offsetting at least 40-160 Gt of emitted CO�. 

 

2.2 Thermal Performance of the Urban Area 

A steady state heat transfer cycle begins by reflection and absorbance at canyon surfaces and 

including vegetation. The amount of absorbed heat is eventually radiated as long wave radiation 

from walls, ground and also from vegetation (Oke, 1987). After sunset, all canyons start to 

release absorbed heat by convection and radiation. In the dry air, the heat exchange depends on 

the human body temperature Tsk and air temperature Ta. Air is responsible for the convective 

transfer due to the difference in the temperature between the body and the surrounding air, and 

the convective exchange is directly propertied to the square root of air speed (Givoni, 1998). 

According to an investigation study by Ali-Toudert and Mayer (2006) the environmental thermal 

assessment and distinctions between different urban forms regarding pedestrian comfort and 

radiant exchanges are a complex interaction in the built environments. The pedestrian energy 

balance is the sum of the exchanges between the human body and the surrounding of the urban 

environment. The internal generation of heat by metabolism, as well as evaporative heat loss due 
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to sweating, are usually considered constant for all street configurations (Pearlmutter et al., 

2006). Figure (2-13) shows the schematic depiction of the pedestrian energy exchange model.  

 

                             

Figure (2-13):  Schematic depiction of the pedestrian energy exchange model adapted from 

(Pearlmutter et al., 2006). 

 

As explained by Fahmy (2010) the absorbed heat could be re-radiated as long wave radiation 

after certain time. The amount of the absorption and reflection depends on the physical 

properties of the ground surfaces and building facades and roofs. Furthermore, vegetation has a 

supporting role for ameliorating the radiation effect on the environment by receiving it as a direct 

radiation. Murakami (2006) explained the interaction of thermal performance in different scales. 

Figure (2-14) depicts the interaction of the thermal performance including the human scales and 

the urban scale. 
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Figure (2-14): Interaction of thermal performance for different scales in an urban area 

(Murakami, 2006). 

 

Many investigate involves urban climate studies, nevertheless there is a lack of connection 

between these studies and design solutions of the urban fabric and the link with the 

neighborhood climate scale (Landsberg, 1973, Arnfield, 2003, Ali-Toudert, 2005, Oke, 2006). In 

another study, Fahmy (2010) demonstrated that the deficiency in connection between the urban 

studies and the climate prevents from understanding the transient characteristics of outdoor 

thermal climates regarding pedestrian thermal sensation. There is also a difficulty to find a 

method for assessment of all urban details and the radiant exchanges. 

 

2.3 Effect of Solar Access on Buildings and Pedestrians  

The amount of the solar radiation that reaches the canopy layer is affected by several factors: the 

location, sky cover, and the urban structure.  In arid climates, three main parameters affect the 

canopy layer climate: cooling techniques; ventilation evaporation and solar sheltering. In humid 

regions, evaporation required for cooling depends on the maximum evaporation capacity of air, 

which is a function of air humidity (Fahmy, 2010). The exposure of solar radiation access is one 

of the basic control factors which effects microclimate condition in urban design. Open spaces 

such as parks are usually more exposed to the solar radiation than the streets and semi-enclosed 

spaces. Controlling on solar access could be clarified briefly in two different parts as, solar 

access for buildings and solar access for pedestrians. Solar access is a fundamental requirement 

for the effect of solar heating of the buildings.  Erell et al. (2011) defined the concept of solar 

light as a guarantee of exposure to direct sunlight for a predetermined period, typically several 
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hours each day.  Controlling solar access for buildings includes the limits on the height or the 

volume of the buildings that are located from the visible position of the sun. The criteria for solar 

access rights of buildings are interpreted accurately by Erell et al. (2011). They explained that 

the criteria are based on defining an obstruction angle, which is based on the sun altitude at a 

given time on a specific date. The rules of solar access design could be presented as the 

following three questions: 

1. What are the critical time and the date? Full exposure for several hours a daytime. 

Selecting a different time at noon means that the sunlight might be obstructed at all other 

times on the day. 

2. Where should the obstruction angle be measured from? The effect of the obstruction such 

as the fences and single story buildings will be magnified when the ground level is taken 

to the base of the solar façade. Also, the results are unnecessarily stringent limits on the 

actual collector surfaces.  

3. Which façade orientations warrant guaranteed solar exposure? Equator-facing surfaces of 

buildings gain the most insolation. The loss of potential solar gains is not substantial for 

the orientation about of 25 to 30 degrees away from due to South (or North). 

The amount of solar radiation could directly affect the solar access. Hence, have an impact on the 

pedestrians outdoor thermal comfort. Therefore, the effect of solar access in urban design canyon 

is essential to improving urban microclimate (Shishegar, 2013).  Pedestrians protected from the 

direct effect of sunlight by buildings elements such as colonnades, overhangs, awnings or 

trellises, and also by trees and other vegetation. Strategies of providing shade by restricting the 

width of the street are somewhat crude tools; shade may also be provided using trees along the 

pavements or using pedestrians arcades integrated at the street level of the adjacent buildings 

(Erell et al., 2011). 

 

2.4 Background on the Outdoor Thermal Comfort 

Human thermal comfort can be defined as the condition of the mind in which satisfaction as a 

thermal comfort. Taeghani et al. (2013) stated that thermal comfort had been discussed since 

1930. Also, they indicated that there are two approaches to thermal comfort: the steady state 

model and the adaptive model. The adaptive model is based on the theory of the human body 

adapting to the outdoor and indoor climate. Fabbri (2015) defined comfort as the result of the 

interaction of many parameters of physical, physiological, psychological, social and culture 

rights. Thermal comfort depends on the architecture, clothing, the habits of eating and the 
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climate. Discomfort is caused by a vertical air temperature difference between the feet and the 

head, by an asymmetric radiant field, by local convection cooling or by contact with a hot or cold 

floor (ASHRAE Standard, 55-2012).  

Indoor thermal climate concerns the hygrometric and indoor air quality aspects which influence 

the well-being inside buildings. The prediction of indoor climate plays a significant role in the 

evaluation of the buildings energy quality (Corgnati et al., 2011). As highlighted by Kalz and 

Pfafferott (2014) indoor air quality has a substantial impact on the overall satisfaction of the 

thermal environment. The indoor thermal environment has a considerable effect on the outdoor 

thermal comfort. 

The history of thermal comfort came from the military scope, from the necessity to ensure that 

the military could continue the work on the ship and airplanes even in the environment with high 

temperatures (Fabbri, 2015). Recently, researchers began to take an interest in the effect of the 

outdoor thermal comfort, whereas most of them regarded thermal comfort as mainly concerning 

the interior space. The study of thermal comfort is to be conducted by considering various 

physical, physiological and psychological aspects, accounting for the interrelationships between 

the thermal conditions of the environment, physiological responses and psychological 

phenomena.  Many factors effect on the thermal comfort, these factors could classify into three 

categories (Auliciem and Szokolay, 2007): 

1. Climatic factors such as the effect of air temperature, relative humidity, the radiation, and 

the velocity. 

2. Personal factors which belong to the metabolism and the clothing. 

3. Contributing factors like the influence of the acclimation with the environment, age. 

The mean radiant temperature (Tmrt) indicates the level of radiant temperature received by the 

human body, Fig. (2-15). The radiation includes all the radiative fluxes (direct, diffuse, reflected 

solar radiation and long-wave emissions from the surfaces (Jamei and Rajagopalan, 2015). The 

mean radiant temperature is considered as the most important factor affecting the human thermal 

comfort in an outdoor urban area (Landsberg, 1981). The value of Tmrt is the sum of all short-

wave and long-wave radiation fluxes absorbed by the human body that affects its energy balance 

and human thermal comfort (Wang and Akbari, 2014). Peng et al. (2011) confirmed that the 

mean radiant temperature is a more accurate indicator than air temperature to evaluate thermal 

comfort. Thorsson et al. (2014) came to the same conclusion, stating that the mean radiant 
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temperature is the most important meteorological parameter governing the human energy 

balance and thermal comfort. 

 

 

Figure (2-15): The radiation flux densities are important for the determination of the mean 

radiant temperature (Matzarakis et al., 2010). 

The increase in incoming radiation leads to a high capacity of heat storage which contributes to 

intensifying the Urban Heat Island. The Physiological Equivalent Temperature (PET) is 

considered to be a good parameter for understanding the effect of radiation and wind velocity on 

the thermal comfort and the heat storage in an urban area (Kutscher et al., 2012). Note that the 

mean radiant temperature is considered to have the strongest influence on the physiologically 

significant thermal indexes like the Physiological Equivalent Temperature (PET) or the Predicted 

Mean Vote (PMV) which are derived from the models of human energy balance. According to 

Ali-Toudert and Mayer (2006) many studies showed that the outdoor thermal comfort is strongly 

dependent on the short wave and long wave radiation fluxes surrounding human activity. They 

confirmed that shading plays an important role in the strategy for heat mitigation in summer, 

together with the orientation of the street. Figure (2-16) depicts the parameters of the outdoor 

thermal comfort. 
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Figure (2-16): The parameters of outdoor thermal comfort (Perrineau, 2013). 

 

Recent investigations indicated that the PET is the index that could be used to assess the thermal 

comfort conditions of outdoor environments rather than the indoor based thermal indices. 

Makaremi et al. (2012) concluded from their results that the human thermal comfort in outdoor 

spaces of the hot and humid climate of Malaysia could be integrated into the design guidelines to 

enhance the outdoor human comfort in tropical areas. The PET index is utilized to assess the 

thermal comfort conditions. Table (2-1) explains the ranges of the physiological equivalent 

temperature (PET) for different grades of thermal perception by human beings and physiological 

stress on human beings. Internal heat production is 80 W, heat transfer resistance of the clothing 

is 0.9 clothing. 

Table (2-1): Classification of PET values in terms of the thermal perception and heat stress 

(Matzarakis and Amelung, 2008). 

 

 

The Predicted Mean Vote (PMV) is the index evaluating the outdoor thermal comfort based on 

the heat balance and the perceived temperature. Table (2-2) shows the PMV index predicted as 
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the mean response of a large group of people according to the ASHARE 55-2004 thermal 

sensation scale. PMV assesses the mean thermal perception of a group of persons in the 

environment (Perrineau, 2013).  Salata et al. (2015) indicated that the magnitude of the multiple 

reflections inside the buildings could decrease the index PMV of about 0.5 units, because of the 

presences of the lawn, trees and shrubs in the urban area.   

Table (2-2): PMV index (ASHRAE Standard, 55-2004). 

 

 

More recently, Younsi and Kharrat (2016) mentioned that in addition to the Predicted Mean Vote 

(PMV) and the Physiological equivalent temperature (PET), they added the Universal Thermal 

Climate Index (UTCI). According to an investigation study by Monam and Ruckert (2013) four 

environmental factors affect thermal comfort: air temperature, mean radiant temperature, 

humidity, and wind speed. Also, they clarified that the most important personal variables that 

influence thermal comfort are clothing and the level of activity. According to Fanger (1973) a 

person could not be in thermal comfort if one part of his body is warm and another one is cold. 

He expressed it as an asymmetric radiant field or a local convective cooling of the body or by the 

contact between the warm and the cool floor. Rocheidat (2014) focused on person factors like 

clothing, activity level, and psychological factor. The heat balance of a person with the 

environment is explained clearly by Perrineau (2013). She showed that a person releases energy 

in a function of his activity. Energy is dissipated by the respiration and perspiration through the 

skin by convection process to the air and on the clothes after conduction through them, by long-

wave radiation with the surrounding surfaces and by evaporation of the sweat. So, the air 

temperature of the ambient environment, the humidity and the temperature of the surrounding 

surfaces affect the outdoor thermal comfort. Ali-Toudert and Mayer (2007) stated that although 

the details of the outdoor thermal comfort factors are different, all these factors depend on the 

human energy balance and the applicable outdoors. 



 Chapter Two                                                                                                                                                                        Literature Review 
 

30 

 

The Universal Thermal Climate Index (UTCI) represents the specific climates weather and 

locations comfort. The UTCI is very sensitive to the changes in the ambient (temperature, solar 

radiation, wind speed and humidity) better than the other indices. The UTCI scale can express 

even the slight differences in the humidity of the climatic (Blazejczyk and Epstein, 2012). Figure 

(2-17) depicts the UTCI equivalent temperature of actual thermal conditions which represent the 

air temperature of the reference condition causing the dynamic physiological response (Brode et 

al., 2009). 

 

Figure (2-17): Response index (Brode et al., 2009). 

              

2.4.1 Effect of the outdoor thermal comfort indices in the mitigation strategies of UHI 

Makaremi et al. (2012) demonstrated from their conclusions that the use of trees and vegetation 

leads to the reduction in the PET index values by protection from the direct solar radiation. 

Shading is the significant characteristic of the vegetation that leads to moderate in the air 

temperature, while the value of mean radiant temperature is strongly reduced. They also 

concluded that a high shading level in outdoor environments increases thermal comfort and 

distends the continuity of the agreeable thermal conditions during the day. According to Jamei 

and Rajagopalan (2015) there is an improvement in the thermal conditions at the pedestrian level 

with the lower level of PMV and the mean radiant temperature. They noted that evident 

reduction is reported in the average of daytime in mean radiant temperature, air temperature, and 

PMV values after they had to implement a new plan strategy in Melbourne. Salata et al. (2015) 

compared the present configuration of the Cloister which is part of the Faculty of Engineering of 

Sapienza University of Rome with other configurations characterized by adding some vegetation 

and using materials with a high albedo, by taking into account the PMV (Predicted Mean Vote) 

model. The mitigation strategy with best results was used with adding some vegetation, whereas 
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using materials with a high albedo improved the microclimate if applied on surfaces 

characterized by a high sky view factor.  According to a study focuses on human thermal 

comfort based on the physiologically equivalent temperature (PET) presented by Areu-Harbich 

et al. (2015) the shading of trees can influence significantly human thermal comfort. An analysis 

study presented by Panariti et al. (2014) focused on the impact of urban texture on the outdoor 

thermal comfort in the city of Durres in Albania. The study utilized different materials, green 

areas, and water reduces. The results showed that the urban texture in the case study influenced 

the outdoor thermal comfort. Referring to what came by Martinelli et al. (2015) there is a 

relationship between the hourly shading patterns and thermal comfort which could be 

represented by the hourly trend of the index PET for the shaded and unshaded locations as 

shown in Fig. (2-18). The difference in the direct solar radiation between shaded and unshaded 

areas could be indicated by a particular change in the PET values.   

 

 

Figure (2-18): Hourly values of PET for shaded and unshaded locations from 8:00 to 20:00 

(Martinelli et al., 2015). 

 

According to an investigation by Ketterer and Matzarakis (2015) a comparison method had been 

adopted to assess the traditional ways of Urban Heat Island studies. Air temperature and PET 

were applied to indicate the impact of the thermal atmosphere in the city. As highlighted by Ali-

Toudert and Mayer (2007) the effect of asymmetry galleries overhanging façade and vegetation 

on the thermal comfort that the PET gives a good indicator on the corrective measures for 

improving the climate quality of an urban street. The comfort is the most difficult to be ensured 

when the orientation of road is East-West. Planting and vegetation in East-West streets are 
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sensible since the duration and area of the discomfort will be critical. The results showed that the 

canyons, with a smaller sky view factor, with the orientation East-West canyons are the most 

stressful and deviating for improving the thermal comfort. 

   

              2.4.2 Counterbalance on effect of the Urban Heat Island and the thermal comfort 

The strategies for mitigation the Urban Heat Island and improving human thermal comfort are 

not always matching. The Urban Heat Island occurs at night; outdoor human thermal comfort 

deals with daytime. Outdoor comfort strategies recommended implementing horizontal shade 

structures over pedestrian spaces.  The same structure reduces the sky view factor and thereby 

trapped some of the heat that can be discharged to the sky at night (Rosheidat, 2014). 

The strategy of mitigating the Urban Heat Island contributes to reducing the energy demand 

during summer and also provides health and environmental benefits such as reduced CO� 

emission, air pollution; is will lead to increased thermal comfort. Based on what came by Radhi 

et al. (2015) many investigations had been used to verify the impact of the Urban Heat Island on 

the thermal performance of an urban area, like field measurements, numerical modelling, and 

empirical models. Based on what was concluded by Rosheidat (2014), it is necessary to provide 

shading and to decrease the temperature of the surfaces that emit long wave radiations. The 

surface temperature of urban facades is the primary factor that could contribute to reducing 

thermal comfort. 

  

2.5 Investigation on the Urban Heat Island and the Outdoor Thermal Comfort in Hot and 

Arid Climate 

The outdoor thermal comfort is influenced by the perception and satisfaction of the pedestrians, 

especially in hot and arid climates. Accordingly, the researchers look for the appropriate methods 

to reduce the Urban Heat Island and thus to enhance the outdoor thermal comfort level of 

pedestrians. However, there is limited research conducted on the outdoor thermal comfort in hot 

and arid climate. 

In a study on the role of greenery strategies Rajabi and Hijleh (2014) revealed that green roofs 

proved to perform poorly in reducing the surface temperatures in urban areas; this is because the 

cooling effects of green roofs reduce by distance and therefore this effect is negligible on the 

overall temperature reduction in urban areas. Also, regarding the composition of greenery, trees 

have the best contribution to the reduction of surface temperatures in the urban areas of Dubai. 
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Regarding the investigation study conducted in Iran (Tehran city) presented by Shahmohamadia 

et al. (2011) on the strategies to reduce the impact of the Urban Heat Island on human health, the 

results showed that the amount of vegetation placed on a building and its position (roofs, walls or 

both) is a more dominant factor than the orientation of the urban canyon.  The canyon geometry 

with green roofs and walls that had a low thermal impact could play a more important role than 

the street orientation. Also, the study revealed that the heat sensation zones “hot” and “warm” 

are not achieved when urban roofs and walls are covered with vegetation, leading to more 

pleasant and comfort environments for the city residents. An investigation study was conducted 

of the warm core of the Urban Heat Island in the highland zone of Muscat, Oman. The valley is 

surrounded by mountains formed of dark colored rocks that can absorb the short wave radiation 

and contribute to the existence of the warmth in the core of the urban area. The study emphasized 

the importance of the nature of the rural baseline when assessing the urban effect on an urban 

area climate (Charabi and Bakhit, 2011). A study was conducted in Bahrain City to analyze the 

impact of the urbanization on the thermal behaviour of newly built environments. The results 

revealed that the recent process of the urbanization leads to an increase in the urban temperature 

by 2-5 ℃. The increase in temperature is enhanced by the urban activity such as on-going 

construction processes, shrinkage of green areas and sea reclamation (Radhi et al., 2013). Several 

studies indicate how the green effects have a crucial role in the process of sustainable cooling of 

the urban planning and in saving energy and improving human thermal comfort. A study was 

carried out in Cairo. There were acceptable comfort levels and cooling possible for some 

orientations for the urban area due to the clustered form with cool green islands and wind flow 

through the main canyons (Fahmy and Sharples, 2009). 

The cooling effect of the green parks is remarkable not only locally in vegetated areas, but it can 

also be extended to the surrounding built environment (Shashua-Bar and Hoffman, 2000). An 

analysis study of the Urban Heat Island for Kuwait city was carried out by Nasrallah (1990). The 

temperatures values indicates that the urban warming influence in Kuwait city is lower than the 

values of temperatures measured for the dry land in cities of North America. The reason is that 

the city is located along moderate wind flows, lower buildings heights throughout the residential 

buildings and the city center, and the use of locally derived buildings materials with similar 

thermal properties then the surrounding desert terrain. 

An investigation study was conducted in Phoenix (Arizona). Phoenix has a hot arid climate 

characterized by extreme summer temperatures.  The results show that merely recommending 

massive tree planting in the urban areas may not abate the UHI effect as much as addressing the 
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combination of shading using trees and architectural shading structures. The properties of the 

materials for buildings and the surfaces, the density of construction of the urban area have a 

primary role in the increased temperature of cities. Additionally, irrigation enhances the cooling 

effect by adding latent heat exchange. However, the scarcity of water resources in an already dry 

climate dictates a careful balance between using water extensively for reducing urban surface 

temperatures. The appropriate solution is the shading surfaces to reduce the temperature and 

mean radiant temperature that are affecting the pedestrians thermal comfort at any given moment 

in time. The shading surfaces are able to discharge the stored energy at night so that could be 

contributing to providing thermal comfort to the pedestrians in the next day (Rosheidat, 2014). 
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3.1 Background for the Numerical Modeling of the Urban Microclimate 

Simulation modeling plays a fundamental role for understanding and solving problems in 

complex environmental designs. The dynamic variability of weather conditions, complex 

geometry of urban design and different configurations of cities all over the world imposes 

limitations on the empirical study of urban microclimate. Thus, numerical modeling is 

expanding increasingly to involve the changing of urban microclimates. Urban climate 

models had been classified according to their scale, which can ranges from kilometers to 

a few centimeters. Usually, models developed for the urban climate are designed to 

imitate the effects of environments like the Urban Heat Island. Methods are required to 

link small-scale and meso-scale the urban climate design. Masson (2000) explained in 

details the concepts of the canyon geometry to calculate the urban surface energy budgets 

in meso-scale models. He indicated that a simplification of the real city geometry was 

necessary, and the canyon geometry is used to represent a city as part of the surface of an 

atmospheric model. An additional hypothesis of isotropy for the street directions has been 

added, to be representative of a city district, which allows the use of the scheme at 

horizontal scales larger than the road width, for local to regional impact studies. Urban 

microclimate models differ significantly according to their physical basis as well as their 

temporal and the spatial resolution. At the micro-scale, three-dimensional wind 

circulation versions are one of the most well started Johnsson and Hunter (1995) 

simulated a model to investigate the three-dimensional characteristics of the 

concentration field established for the flow perpendicular to the canyons with emissions 

released near the floor of the canyon by the motor vehicles. This investigation confined to 

the dispersion of passive pollutants. They concluded that the model could be used 

effectively in conjunction with existing experimental and field techniques. According to 

Herbert et al., (1998) a numerical modeling of the wind and thermal climates energy was 

simulated, the model tested the characteristic for the city canyons in Columbus Ohio and 

Los Angeles. The researchers concluded that the model had been used to investigate with 

reducing temperatures in built-up areas where the summertime that Urban Heat Island 

can pose a problem.  
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Regarding Bouyer et al. (2009) they proposed the solutions to reduce the energy 

consumption of the buildings by modifying the local climate. They used CFD tool 

(Fluent) and a thermo-radiative model (SOLENE). They concluded that the parameters 

concerned with the urban design that plays a role in microclimate and energy 

consumption are numerous: urban forms, surface materials, vegetation, and water 

presence, also the effect of geometry is taken into account by the sky view factor. Figure 

(3-1) shows the 3D simulation model and the surface mesh. 

                

           Figure (3-1): Simulation 3D model and surface meshing ( Bouyer et al., 2009). 

A study was conducted by  Allegrini et al. in 2013  to investigate the urban microclimate 

and its potential influence on the energy demand of the buildings in an urban context. 

CFD (computational fluid dynamics) and BES (building energy simulations) had been 

used to simulate the model. Results revealed that the parameters that influence the local 

microclimate leading to local heat islands and complex wind flow structures. According 

to Dorer et al. (2013) the impact of the UMC (urban microclimate) on the space heating 

and the cooling energy demand was investigated for the typical office buildings in the 

street canyon configurations. Figure (3-2) depicts the multi- scale approach for the urban 

microclimate modeling. The researchers used BES for their simulation works. The results 

of the simulation work showed that the urban microclimate can have a significant 
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influence on the heat exchange and the energy demand of the buildings, depending on the 

geometries and the construction of the buildings.  

 

Figure (3-2): Multi-scale approach for urban microclimate modeling (Dorer et al., 2013). 

 

An investigation study was conducted by Idczak et al., in  2010  for the  validation of the 

thermo-radiative model (SOLENE) and its application for analyzing the street canyon 

energy balance. The results showed that the sensible heat was transferred mainly from the 

canyon surfaces to the ambient air,  also from the air to the ground in the morning.  The 

effective albedo of the canyon had a daily value of 0.20–0.25, dropped to 0.10 in the 

afternoon when the ground strongly transformed the direct and reflected solar radiation 

into sensible heat. Selection of the data has been used to confirm the ability of the 

thermo-radiative model (SOLENE) for simulating the thermo-radiative behavior of a 

street. According to Lemonsu and Masson (2002) a numerical simulation strategy TEB 

(Town Energy Balance) urban scheme and the numerical atmospheric model, Meso-NH 

were used to investigate the effect of Urban Heat Island in Paris city. Meso-NH is 

coupled to quantify atmospheric effects of Paris city on the boundary layer, through a 

comparison with simple simulation. The results showed that UHI above Paris reaches 8 

◦C at night; the UBL presents high instability and turbulence during the daytime. A 

numerical model was developed by Johnson et al.  in 1991 to investigate the cooling of 

the rural and the urban canyon surfaces on calm, cloudless nights. The model requires the 
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solution of a system of partial differential equation. This simpler approach of this model 

is called SHIM which refers to Surface Heat Island Model. It incorporates heat 

conduction through the vertical and horizontal layers and radiative exchange between the 

sky and surfaces. The researchers concluded that the simple model of SHIM can be used 

as a tool for the diagnosis of Urban Heat Island causation under (ideal) conditions. 

Details of the results are considered the crucial element in selection a model. Swaid and 

Hoffman (1990) developed the cluster thermal time constant CTTC analytical model for 

predicting the air temperature variations in urban canopy layer UCL. 

 

3.2   Significance and Characteristics of ENVI-met 

ENVI-met simulates the dynamics of the urban microclimate based on the atmospheric 

physics, and the heat transfer principles (Bruse and Fleer, 1998). 3D wind flow is 

calculated using the incompressible, non-hydrostatic Navier-Stokes equations with the 

Bousinessq approximation. Katul et al. (2003) clarified that the minimum turbulence 

closure model plays an important role to efficiently simulate the mean flow and measures 

of the second order flow statistics. A logical choice is 1.5 closure models, defined as �- ε 

models considered as the most popular computational models in engineering applications. 

Potential temperature and specific humidity distributions are calculated using advection-

diffusion equations and are modified by sources and sinks of heat and moisture within the 

model. Comprehensive accounts of the equations regulating the model are given by Bruse 

and Fleer (1998). The simulation process in ENVI-met is usually of 24-48 hours. The 

ideal time to start a simulation is at night or sunrise so that the simulation can comply 

with the atmospheric processes. ENVI-met requires an input area which defines the 3D 

geometry of the target area: the buildings, vegetation, soils, and receptors. The main input 

information of ENVI-met simulation includes weather conditions, the geometry and 

materials properties of the urban area, and characteristics of vegetation. Huttner et al.  

(2008) indicated that with ENVI- met it is not possible to simulate the micro-climate of 

the whole city because the maximum number of grid cells is quite limited. According to 

Vanessa, (2014) ENVI-met does not have an anthropogenic heat component, which can 

be a significant source of energy input in areas with high urban metabolism (city centers). 
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ENVI-met includes a grid-cell structure, with a maximum grid size of (250 x 250 x 30) 

cells. Horizontal resolution can range from 0.5 m to 10 m, which makes the model 

suitable for micro-scale to local scale analyses. There are two different type of vertical 

grid in ENVI-met (http://www.envi-met.com/): 

1. An equidistant grid, as depicts in Fig. (3-3), the first cell closest to the surface is split 

into five equally spaced sub-sections with a height equivalent to 0.2∆z, where z is 

specified grid cell height. Above this, ∆z is constant for the rest of model height 

2. A telescoping grid for the vertical resolution. The grid size expands with height, 

according to a user-specified extension (or telescoping) factor. 

 

Figure (3-3): Schematic of equidistant vertical grid in ENVI-met 

(http://www.envi-met.com/). 

 

3.3 General Model Properties 

ENVI-met model consists of a one-dimensional boundary model that includes vertical 

profiles of different meteorological parameters up to a height of 2500 m above the ground 

level and a three-dimensional core model that includes all atmosphere, soil, buildings and 
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vegetation processes (Simon, 2016). ENVI-met model consists of several sub-models as 

shown in Fig. (3-4) that interact with each other (Huttner, 2012):  

3.3.1 1D boundary model. 

3.3.2 D atmospheric model. 

3.3.3 3D/1D soil model. 

3.3.4 Vegetation model. 

 

Figure (3-4):  Schematic of basic model layout (Huttner, 2012). 

 

3.3.1 1D boundary model 

1D boundary model generates one-dimensional profiles for meteorological parameters 

such as air temperature, specific humidity, wind vectors (horizontal), kinetic energy and 

turbulent exchange. To ensure stable laminar conditions the boundary model extends to 

an altitude of 2500 meters (average height of the planetary boundary layer) (Simon, 

2016). 

 

           3.3.2 3D atmospheric model 

The three-dimensional core model consists of three orthogonal orientated axes, which 

generate a three-dimensional cube. The model area comprises some cells which represent 

different objects such as buildings, vegetation or atmosphere. The number of cells 
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depends on the dimensions of model area and its spatial resolution. A cell is defined by 

its physical properties. A building cell is defined by its material types, and the material 

type is defined by the specific heat capacity and other parameters. In combination with 

databases of all the different objects, this structure allows a detailed reconstruction of an 

urban environment (Simon, 2016). 

   

3.3.3 Soil model 

Huttner (2012) explained that the soil model calculates the temperature and humidity of 

the soil down to a depth of 1.75 m. Each horizontal grid cell has a soil profile with 14 

layers that differ in depth. The depth of single layers increases from top to bottom, the top 

layers have a thickness of 1 cm, and the lowest layer has a thickness of 50 cm. Neglecting 

horizontal transfer, the soil is treated as a vertical column in which the distribution of 

temperature � and soil volumetric moisture content � are given by (Bruse and Fleer, 

1998): 

                   
��
�� = ��

�	�
�
	                                                                                        (3-1) 

                   
��
�� = ��

�	�
�
	 +

���
�
 − ��(�)                                                                (3-2) 

For the natural soils, the thermal diffusivity (��	��	�� ���⁄ ) is a function of the soil 

moisture. The hydraulic parameters that are used in Eq. (3-2) as clarified below: 

 � : is the volumetric water content of the soil (�����). 

 �: is the hydraulic conductivity. 

��: is the hydraulic diffusivity. 

The water absorbed by the plant roots (��) is provided by the vegetation model and 

treated as an internal sink of moisture (Bruse and Fleer, 1998). According to Bruse and 

Fleer (1998), the boundary conditions for the surface temperature will provide the upper 

boundary value. 
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3.3.4 Vegetation model 

Huttner (2012) indicated that the vegetation in ENVI-met interacts with the atmospheric 

model and the soil model. The interactions between the vegetation and soil can be 

explained by the direct heat flux	!",$ (  ���% ) and the evaporation flux	!",&'() (  ���%   ) 

and the transpiration flux	!",�*(+� (���% ). The interactions between the plant leaves and 

the surrounding air are given as explained in details by (Bruse and Fleer, 1998). 

                                              !",$ = 1.1	.(�%(�" − �()                                          (3-3) 

                                !",&'() = .(�%∆01234 + .(�%(1 − 12) ∆5                              (3-4) 

                                      !",�*(+� = 12(.( + .�)�%(1 − 34) ∆5                              (3-5) 

 

Huttner (2012) explained precisely the terms of the Eqs. (3-3), (3-4), and (3-5) as: 

�( (   ) is the air temperature,  �"  (  ) is the foliage temperature, 5 is the specific 

humidity of the air ( 6 6�%) and ∆5 is the humidity difference. 12 defines whether the 

evaporation is possible (12 = 1) or not (12 = 0). .( is the aerodynamic resistance (���%) 

that is a function of the leaf diameter and the wind speed. 

 

3.4 Model Physics  

The significant prognostic variables computed by ENVI-met are (Bruse and Fleer, 1998): 

� Wind speed and direction. 

� Air and soil temperature. 

� Air and soil humidity. 

� Radiative fluxes. 

� Gas and particle dispersion. 

The computation of these variables needs to use several sub- models that combined with 

each other. Figure (3-5) illustrates the ENVI-met sub models. 
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Figure (3-5): Diagram of the sub-models of ENVI-met (Huttner, 2012). 

 

3.5 Physical Properties of the Atmospheric Model  

The atmospheric model predicts the wind flow (speed and direction), turbulence, 

temperature, humidity, and short-wave and long-wave radiations fluxes. 

 

           3.5.1 Wind flow equations   

Huttner (2012) indicated that the simplification of the Boussinesq-approximation is 

utilized to eliminate the density 8 from the Navier-Stokes equations which can be 

composed as: 

           
�9
�� + :%

�9
�;< = −

�)=
�; +  > ?

�	9
�;<	
@ + 3AB − BCD − �9                                  (3-6)   
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:% , :� and :� (���% ) are the wind speed in x, y and z direction. Air is currently treated 

as an incompressible fluid. Therefore, the continuity equation is: 

                                                  
�9
�; +

�'
�E +

�4
�
 = 0                                                (3-9)    

According to Bruse and Fleer (1998) p' is the local pressure perturbation (J().  

The friction force is defined as  
�	9
�;<	

 , and multiplied with  > which means as the local 

exchange coefficient in Eqs (3-6), (3-7) and (3-8). Referring to the equations that are used 

in ENVI-met, local source or sink terms for impulse (����) are (�9,	�',	K�L�4) 
represent the loss of the wind speed due to the drag forces from the vegetation elements. 

M ( ) Symbolizes the potential temperature at z height. The reference temperature M*&" 

should represent the average mesosacle conditions and is provided by a one-dimensional 

model running parallel to the main model. The nomenclatures :N  and ON represent to 

:, B, P	and to O, Q, �	with i=1, 2, 3 respectively (Ali-Toudert, 2005). 

 

           3.5.2 Temperature and humidity     

The distribution of the potential temperature M		(  ) and specific humidity 5 ( 6 6�%) 
inside the atmosphere is given by the combined advection-diffusion equation with 

internal source/sinks (Bruse and Fleer, 1998): 

                                    
�F
�� + :N

�F
�;< =  $ ?

�	F
�;<	
@ + R$                                            (3-10) 

                                   
�0
�� + :N

�0
�;< =  0 ?

�	0
�;<	
@ + R0                                             (3-11) 

R$ and	R0 are used to link the heat and the vapor exchange at the plant surface with the 

atmospheric model. Huttner (2012) illustrated that R$ is the term that defines the heat 

exchange between the air and the vegetation and  $ is the turbulent exchange coefficient 

for heat. Also, he clarified that R0 defines the exchange of humidity between air and 

vegetation, and  0 is the turbulent exchange coefficient for the humidity. Huttner (2012) 
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indicated that ENVI-met does not simulate the phase change between liquid and vapor, 

and vice versa. 

 

             3.5.3 Turbulence and exchange processes 

Under windy conditions, the magnitude of the local turbulence production regularly 

surpasses its dissipation, so the mean flow transports the turbulent eddies. Based on the 

work of Mellor and Yamada (1975) two further variables are added namely the turbulent 

kinetic energy � and its dissipation ε. Two additional equations for the local turbulence �  

(��	���) and its dissipation rate  S  (��	���) are added to the model (Bruse and Fleer, 

1998).  

                     
�T
�� + :N

�T
�;< =  T ?

�	T
�;<	
@ + J* − �$ + RT − S                                   (3-12) 

                     
�U
�� + :N

�U
�;< =  U ?

�	U
�;<	
@ + �% UT J* − ��

U
T �ℎ − ��

U	
T + RU                (3-13) 

The terms J*	and �$ describe respectively the production and the dissipation of turbulent 

energy due to wind and thermal stratification.RT and RU are the local source terms for the 

turbulence production at vegetation. 

 

             3.5.4 Radiative heat fluxes  

The atmospheric radiation defines the absorption and the emission of the different 

atmospheric layers. These coefficients depend on the optical thickness of the 

atmospheric. Five reduction coefficients are defined to describe the modification of the 

model (Bruse and Fleer, 1998). 

                   	W�4,XN*(�) = exp(\. ]^_∗(�))                                                         (3-14) 

                    W�4,XN*(�) = exp	(\. ]^_A�, �)D)                                                     (3-15)  

                   W ↓4 A�, �)D = exp	(\. ]^_A�, �)D)                                                  (3-16) 

                    W ↑4 (0, �) = exp	(\. ]^_(0, �))                                                     (3-17) 
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                    W�'"(�) = 1/360∑ �g�h�ijklj (m)                                                     (3-18) 

]^_∗   is defined as the angle of incidence of the incoming sun rays. If the building is 

found to lie between the point of interest and the sun, W�4,XN* is set to zero immediately. 

(Bruse and Fleer, 1998).  

LAI is the Leaf Area Index defined as the one-dimensional vertical leaf area index of the 

plant from the level z to the top of the plant at �) or the ground	� = 0: 

                    ]^_(�, � + ∆�) = n ]^�(� ,
 ,o∆


, )L� ,                                               (3-19) 

The coefficient (σ_svf) in the Eq. (3-18) describes the local obstruction by buildings (sky 

view factor) and ranges from 1 (free sky) to 0 (no sky visible). λ is the maximum 

shielding angle found by the ray-tracing model in direction π (Bruse and Fleer, 1998). 

The shortwave radiation can be summed up as: 

R�4(�) = W�4,XN*(�)R�4,XN*j + W�4,XN"(�)W�'"(�)R�4,XN"j + p1 − W�'"(�)qR�4,XN*j . Kr      
(3-20) 

R�4,XN*j  is the short-wave direct radiationThe term Kr denotes as the average albedo of the 

walls within the model area. 

The long wave radiation fluxes can be expressed as: 

 Rs4↓ (�) = Rs4↓ A�, �)DRs,4↓,j + A1 − Ws4(j,
)↓ Dt"Wu�r"v + (1 − W�'"(�))Rs4↔            (3-21) 

 Rs4↑ (�) = Ws4↑ (0, �)t�Wu�jv + (1 − Ws4↑ (0, �))t"W3�r"�v                                      (3-22) 

�r"�v  and �r"v are the average foliage temperature of the underlying, and overlaying of 

vegetation. 

t�, t" are the emissivity of the surface and foliage. 

�j is the surface temperature. 

Rs4 is the horizontal long wave radiation flux from surrounding walls. 
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Wx is the Stefan-Boltzmann constant , Wx= 5.67.10�yz��� �v. 

 

3.5.5 Ground surfaces 

Huttner (2012) indicated that the temperature at the ground surface can be calculated 

from the energy balance: 

  R�4,+&� + {s4,+&�(�j) − |(�j) − }(�j) − ]~A�j,5jD = 0                               (3-23) 

R�4,+&� is the net short-wave radiation at the surface, {s4,+&� is the net long-wave 

radiation at the surface. 

| is the soil heat flux, } is the sensible, and ]~ is the latent turbulent heat flux. 

With {�4,XN*(� = 0) and R�4,XN"(� = 0) which are the direct and diffuse radiation of the 

shortwave, the short-wave net flux can be summed as: 

   R�4,+&� = (�g��∗. R�4,XN*(� = 0))(1 − K�)                                                    (3-24)       

�∗ is the angle between the surface normal and the incoming radiation.	K� is the surface 

albedo. 

The turbulent flux } and ]~ are a function of the turbulent coefficients  $ ,  0for 

temperature and the humidity of the ground surface and the lowest atmospheric grid cell 

(Huttner, 2012): 

                            }(�j) = 8�) $j ���F���j.�∆
���                                                           (3-25)                                     

                          ]~A�j,5jD = 8](�j) 0j 0��0���j.�∆
���                                                 (3-26)                        

The soil heat flux | calculated as: 

                           |(�j) = h�(� = 1) ��������j.�∆
����                                                     (3-27) 

Bruse and Fleer (1998) illustrated that the long-wave net radiation taken into 

consideration the impact of vegetation and the long-wave fluxes from the buildings and 
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the reflection of radiation from the buildings and the surface. The concept of the long-

wave varies from the formulation for the leaf energy balance. Huttner (2012) indicated 

that the long-wave energy balance of the ground surface is split into two parts: 

    Rs4,+&�(�j) = W�'"Rs4,+&��TE (�j) + (1 − W�'")Rs4,+&��2*&&+&X(�j)                            (3-28)          

 The sky view factor ( W�'" ) is calculated for the surface level � = 0 (Bruse and Fleer, 

1998). Rs4,+&��TE
 is the long-wave radiation for the part of the sky with the unhindered view, 

Rs4,+&��2*&&+&X is the long-wave radiation for the screened part (vegetation and buildings are 

block the view) (Huttner, 2012). 

 

3.6 Initial Conditions 

The main model is designed in 3D with two horizontal dimensions (x, y) and one vertical 

dimension (z). The typical elements of the buildings and vegetation are represented inside 

this main model. Figure (3-6) depicts the schematic of the ENVI-met model layout. 

 

Figure (3-6): The Schematic of the ENVI-met model layout (http://www.envi-met.com/). 

 

The 1D model takes the calculation from the top of the 3D model which is depending on 

the model layout, normally between 50 and 200 m and the total height of the model at 
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2500 m. The 1D model provides the vertical profiles of all the model variables 

(http://www.envi-met.com/). 

 

            3.6.1 Initial meteorological conditions 

The initial temperature M��(*� provided as an input parameter at a height 2500 m is set to 

the whole vertical profile assuming start conditions of neutrality. A vertical gradient 

forms if the initial surface temperature differs from the initial air temperature. The air 

humidity profile is linear and is determined by means of input values at 2500 m and the 

relative humidity at 2 m. Turbulence quantities � and ε are constant at 2500 m and are a 

function of the local friction velocity :∗ (a reference wind velocity applied to motion near 

the ground where the shearing stress is often assumed to be independent of height and 

proportional to the square of the mean velocity). The surface temperature and humidity 

are given by the 3D model as mean values of the nesting area relevant values. 

 

             3.6.2 Initial conditions for soil 

The surface temperature is calculated to the 1 D model by the soil in the sub-model and is 

calculated by three input values of soil temperatures and soil humidity. The deep soil 

temperature (-2.00 m) is kept constant during simulation (http://www.envi-met.com/).   

 

3.7 Nesting Area and the Boundary Conditions  

The nesting area is a band of the grid cells surrounding the core of the 3D model as 

explained in Fig. (3-7). ENVI-met creates an area of the nesting grids around the core 

model to move the model boundary away from the interested area to minimize undesired 

boundary effects (http://www.envi-met.com/).    
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Figure (3-7): Flow around two buildings with 3 nesting grids 

(http://www.envi-met.com/). 

 

ENVI-met model includes three different types of lateral boundary conditions (Bruse, 

2015b): 

• Open lateral boundary conditions: The values of the next grid point close to the 

border are copied to the border each time step. 

• Forced lateral boundary conditions: The values of the one-dimensional model are 

copied to the border.  

• Cyclic lateral boundary conditions: The values of the downstream model border 

are copied to the upstream model border. 

The open and the cyclic lateral boundary condition types allow starting the simulations 

with only a few initial parameters. However, with these lateral conditions it is not 

possible to recreate specific scenarios, which means it is very difficult to compare the 

simulation output with a real situation. The forcing method, in contrast, allows 

reconstructing real scenarios or imaginary scenarios by defining a diurnal cycle of 

boundary conditions for the various meteorological parameters such as radiation, air 

temperature or humidity that obtained from measured data or data from the other models 

(Simon, 2016). 

Figure (3-8) illustrates the description of the equations for the boundary conditions. The 

vertical wind inflow profile up to a height of 2500 m is calculated with the 1 D model by 
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using a logarithmic law, based on the input values of the horizontal wind (:, B) at 10 m 

height above ground and the roughness length �_0. 

 

Figure (3-8): General scheme of the ENVI-met model including the boundaries (Ali-

Toudert, 2005). 

 

The boundary conditions at the ground surface � = 0 and on the walls   and ε are 

calculated as a function of local friction velocity :∗ calculated from the flow components 

tangential to the surface. The inflow profile and the top boundary are obtained from the 

one-dimensional model, and a zero-gradient condition is used at outflow boundaries 

(Bruse and Fleer 1998). 

 

3.8 Reliability of the Simulation Results with ENVI-met    

Many researchers attempt to exhibit the precision and the importance of the results of 

their simulation works with using ENVI-met. Lahme and Bruse (2002) indicated that the 

results were obtained from the ENVI-met represented the real environment based on a 

limited set of numerical methods available to describe the magnitude of physical 

processes in reality. According to Ghaffarianhoseini et al. (2015) they affirmed that the 

dependability of using ENVI-met for simulating the thermal performance of outdoor 
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spaces was proved in many studies. These studies indicated that the data measured or 

observed at local meteorological stations appeared an agreement with the simulated air 

temperature. Yu and Hien (2006) came to the same conclusion, stating that the ENVI-met 

simulation endorsed the data generated from the field measurement.  Monam and Ruckert 

(2013) indicated that according to many researchers (Ali-Toudert, 2005), and 

(Ozkeresteci et al., 2003) ENVI-met results are considered as more precise and reliable 

compared to other software. According to an investigation study carried out by 

Ozkeresteci et al. (2003) the descriptive inquiry based on the experimental use of ENVI-

met model for linear parks cities in Arizona. The conclusion of this study recommended 

that ENVI-met can be successfully used insofar as it can become an integrated part of the 

information system of the city. Also, they concluded that through the adaptive use of such 

innovative tool like ENVI-met, there is a possibility of progress for urban information 

systems to serve for sustainable environments. 

 

3.9 UHI Researches with ENVI-met  

Many Researchers are using ENVI-met software for developing the models to verify the 

effect of the Urban Heat Island. Huttner et al. (2008) investigated the effects of global 

warming on the heat stress by using ENVI-met in central European cities. They 

recommended that the green spaces consider an important factor to improve the human 

thermal comfort. 

Hedquist et al. (2009) used ENVI-met as well as CFD modeling of CBD to interpret the 

local flow modifications due to the UHI diurnal cycle. They indicated that ENVI-met 

model inputs were further improvements and made more accurate by the use of free tools, 

as well as by identifying the trees, vegetation, and building materials in the particular 

area. Results from this study explained that the dynamics of the UHI within the built 

environment also suggested the solutions to mitigate heat and increase outdoor thermal 

comfort in hot, arid cities. According to Yang et al. (2012) they proposed a method for 

the quantitative analysis of building energy performance for an urban context by linking 

the microclimate model ENVI-met to the building energy simulation (BES) program 

Energy Plus. Figure (3-9) depicts Energy plus model and ENVI-met model. Results 
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revealed that the method is capable of quantifying the effects of various microclimatic 

factors on building energy performance under any given urban contexts. The method 

could be useful for urban planning and building design.   

 

 

Figure (3-9): Energy plus model and ENVI-met model (Yang et al., 2012). 

 

The aspect ratio was studied by using ENVI-met for two different street orientations in 

Fortaleza. The results showed that optimal aspect ratio could be higher than 1.5 due to 

increased shading from buildings (Dardel, 2015). In a recent study presented by Maleki 

and Mahdavi (2016) they used ENVI-met to simulate microclimate conditions in a part of 

the city of Vienna. This study focused on investigating the effects of the variation of 

physical and geometrical properties of the urban area (cool roofs, green lands, and 

perviousness of paving materials) on the urban micro-climate and outdoor thermal 

comfort. The results suggested the modifications within the urban canopy were more 

effective in influencing the microclimate conditions than those implemented to the roof 

levels. Increasing the amount of vegetation and permeable pavements can cool the air 

temperature down by up to 3 K. 
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4.1 Introduction 

In this chapter we look for a better understanding on how vegetation and shading patterns 

help reducing the effect of UHI and improving the pedestrians outdoor thermal comfort. 

The usual approach consists of increasing the city permeability to facilitate heat 

exchanges and therefore the cooling of city. How does it work in an arid climate? What 

lessons do we learn from choices consisting in importing Western cities practices to such 

environment? We intend to observe the impact of architectural choices on the main 

outdoor comfort indicators. We compare an old district built according to ancestral 

customs to a typical western-type neighborhood made of several high-rise buildings. Not 

only is the urban fabric different but also are the material choices. Next, we envisage 

mitigation strategies to provide more outdoor thermal comfort to pedestrians. The results 

of this work will be discussed in the form of recommendations design for the urban area 

in the hot and arid climates which are intended to help in further defining improved UHI 

mitigation strategies and enhancing the pedestrian comfort. 

 

4.2 Criteria for Selecting the Study Area 

We look for a district classified as historical and heritage and another one considered as 

built as a modern design. The criteria deal with the design, plan, materials, structural and 

constructional systems, and the ornamentation details which are particularly pertinent to 

heritage buildings. Some buildings stand out as excellent examples of art and 

architecture, while others exhibit a particular style or a structural innovation. As far as 

Baghdad is concerned, the traditional houses are scarce, and these traditional houses are 

threatened with extinction. Figure (4-1) depicts Al-Rasheed Street which is considered as 

the most vital and oldest street in Baghdad with heritage houses and traditional buildings. 

Heritage houses serve to a positive historical legacy, and as such, they are considerably 

helpful to historians and architectural conservationists. The high rise buildings in 

Baghdad are concentrated on Haifa Street as shown in Fig. (4-2).  
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Figure (4-1): Al-Rasheed Street (http://www.google.com). 

 

Figure (4-2): Haifa Street (http://www.google.com). 
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4.3 The Selected Study Area 

 Baghdad the capital of Iraq, is located in the central part of the country on both sides of 

the Tigris River, it lies at latitude 43 East and longitude 34 North as shown in Fig. (4-3). 

The climate of the Baghdad is defined as a semiarid, subtropical and continental, with 

dry, hot in summer, and cool winters. The recorded maximum temperature was 50 ℃ in 

the summer of 2010, which considers the hottest days in summer in the hottest year in 

Iraq (Hassoon, 2015). The area of Baghdad covers 4555Km�, which represented 1.047% 

from the total area of Iraq. The population density of Baghdad city reaches to 5233 (prs) 

⁄km�. 

 

 

Figure (4-3): Iraq map and the location of Baghdad city (http://www.worldatlas.com/). 

 

Hence, two representative areas in Baghdad will be assessed and used as case studies, 

Fig. (4-4). These two areas are different in their location, buildings materials, height of 

buildings, and style design. The two districts occupy the same area. 
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Figure (4-4): Location of the two districts (www.eartflash.com). 

 

             4.3.1 Haifa street district 

The first selected area is Haifa Street which contains nine buildings constructed in 1984 

(Alousi, 1985). The height of the buildings is 60m, distances between the buildings are 

30 m, and 35 m in some places.  Haifa Street is one of the famous and vitality streets   in 

the Karkh district. The chosen area is 48750 m� as shown in Figs. (4-5) and (4-6). 
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Figure (4-5): Haifa Street District (http://www.google.com). 

 

 

Figure (4-6): 3D satellite image for Haifa Street District (http://www.flashearth.com). 

 

The material used in construction in Haifa Street is precast concrete. According to an 

investigation study by Qasim (2015) Haifa Street represents a new urban style for 

Baghdad. 
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            4.3.2 Al-Rasheed street district 

Al-Rasheed Street was established in 1918. The colonnaded pavements and the 

decorative buildings from 1930 make it the most attractive and exciting street in 

Baghdad. All the traditional houses in Al-Rasheed Street are planned around an open 

central courtyard. The courtyard represents the essential element contributing improving 

the environment of the severely hot climate conditions in summer (Bianca et al., 1984). 

Bricks were used in construction houses for the walls and roofs. The alleyways are   

small and narrow (3 m in width) linking the houses each to others. Asphalt pavement was 

used for these alleyways. Old builders used local materials (bricks, gypsum) they realized 

that these materials contributed as the main factor to confront the hot, dry weather in 

summer and coldness in winter. Houses in Al-Rasheed district have an area 150m�. The 

width of the courtyard is 5m, and the length is 7m, the width of the house is 15 m, and the 

length is 10 m, the typical height is 8m. The courtyard represents the focal element, and it 

has been used over the past several centuries. An over-riding consideration in the design 

of such houses was privacy. The courtyards provided not only privacy, but it also evolved 

as a response to the severe hot and dry climatic conditions. In addition to using it as a 

general working space, and acted as an effective temperature regulator, cooling the house 

during daytime, Fig. (4-7). Taleghani et al. (2012) indicated that the courtyard building 

typically contains an open space that is surrounded by rooms or walls, this spatial 

structure provides an isolated space and often acts as a source of light, fresh air 

movement, and heat. There is a typical section of a traditional alleyway in the whole 

system of the traditional houses which is long and highly in the overall proportion which 

helps to provide almost continuous shade for pedestrians throughout the year. Figure (4-

8) depicts the alleyway in the old heritage design houses. We can observe in the same 

figure Mashrabiya (oriel window) is the continuation of the built area on the first floor 

along opposite sides of the alleyway, which provides natural lighting and ventilation 

(Agha, 2015). We also show the corresponding district in Fig. (4-9).  
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Figure (4-7) The courtyards in the heritage houses in Al-Rasheed Street (Al-Ani, 2011). 

 

 

Figure (4-8): Sketch of an alleyway in old design houses districts (Al-Ani, 2011). 

 

 

Figure (4-9): Al-Rasheed Street district area. (http://www.flashearth.com). 
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Heritage buildings that predate the development of construction typically had some 

inherent capability to moderate the external influences on interior conditions. In these 

older structures, the building itself had a ventilation system for the human thermal 

comfort. The hydrothermal performance of these buildings relied on construction 

materials, thermal mass, moisture buffering, landscape, interior spaces, and the 

courtyards (Henry, 2007). Figure (4-10) depicts a section of the heritage house in 

Baghdad showing the shape and location of courtyards. 

 

 

Figure (4 -10): The essential form of the Baghdadi house (Bianca et al., 1984). 

 

 4.4 Input Data for the Model 

The weather data used to initiate the simulation models were provided by the Iraqi 

Meteorological Organization and Seismology. The microclimate characteristics represent 

the air temperature and relative humidity of the hottest summer day in Baghdad city (12th 

of July 2010, Hassoon, 2015)). The basic meteorology settings for the initial conditions 

were 5 m/s for the wind velocity and 315 deg. for the wind direction. The simple forcing 

for the air temperature and the relative humidity are used along one day period, with a 

minimum air temperature of 35 ℃  at 6 am and a maximum value of 50 ℃	 at 4 pm. The 

relative humidity was minimum (24%) at 4 pm, and it was maximum at 7 am (36%). The 

total simulation time was 24 hours. The modelled area has the following dimensions: 

325�150	m�. The model area for Haifa Street has been rendered with grid size 130 cells 
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along the x axis, 60 cells along the y axis and 20 cells along the z axis. The size of a grid 

cell was: dx= 2.5m, dy =2.5m and dz=5m. The model was rotated of 57° according to the 

location of the buildings to the main North direction, Fig (4-11). For Al-Rasheed Street, 

the model area was made of a grid size of 130, 150, and 20 cells respectively along the x, 

y, and z axis. The size of the cell was: dx= 2.5m, dy =1.0 m and dz=5m. The model was 

rotated of 45° according to the location of the buildings to the main North direction, Fig. 

(4-12). 

 

 

Figure (4-11): Perspective view of the Haifa Street. 
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Figure (4-12): Perspective view of the Al-Rasheed Street. 

 

4.5 Analysis of the Simulation Results for the Base Models of the two Districts  

      4.5.1 Interdependence between ENVI-met results and the data measured  

Six receptors were placed in the Haifa Street district as shown in Fig. (4-13), while 8 

receptors were located in the Al-Rasheed neighbourhood because Al-Rasheed Street 

contains more architectural details, Fig. (4-14). Receptors are selected points inside the 

model area, where atmospheric and soil data can be monitored. Receptors are used to 

obtain the air temperature, wind speed, mean radiant temperature, relative humidity, 

specific humidity, and sky view factor.  
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Figure (4-13):  Location of the six receptors for Haifa Street. 

 

 

Figure (4-14): Location of the eight receptors for Al-Rasheed Street. 

 

Figures (4-15) and (4-16) show a comparison between the results of air temperature at 1.5 

m above the ground and measures acquired from the Iraqi Meteorological Organization 

and Seismology. The simulation outputs are quite consistent with the experimental 

measurements. Note that the temperatures are very similar. According to Wang and 

Akbari (2014) the simulation of ENVI-met has been done for the cloud-free sky 

conditions without regard to the actual cloud cover which could lead to lower 

temperature comparing with the clouded sky.   
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Figure (4-15): Simulation results of air temperature and experimental results for Haifa 

Street. 

 

 

Figure (4-16): Simulation results of air temperature and experimental results for Al-

Rasheed Street. 
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It can be noted that at 6 a.m the measured temperature is equal to 35℃, and almost all the 

receptors give the same value. It seems that there is a difference between the temperature 

measured and the modelled temperatures between midday until 10 p.m. The reason can 

be attributed largely to the shadows in some area because of the effect of tall buildings in 

Haifa Street, as well as to the existence of the shadings because of the presence of the 

narrow alleyways in Al- Rasheed district. The highest temperature measured was 50℃ , it 

be observed that all the receptors were close to approaching this value around 4pm. 

 

               4.5.1.1 Air temperature results  

The distribution of air temperatures for the two districts was plotted at daytime at noon 

when the sun is high above the head. The hour to represent the distribution of air 

temperature at night was picked according to Oke (1981,1987) who indicated that the 

effect of the Urban Heat Island is the strongest around 3-5 h after sunset. The sunset in 

Baghdad in July 2010 started from 7:14 p.m. Hence, we selected 10 p.m assuming that 

the Urban Heat Island phenomenon could occur.  

(http://www.timeanddate.com/sun/iraq/baghdad).  

The results are presented in Figs (4-17) and (4-18) for the two districts at noon, 1.5 m 

above the ground. Figures (4-19) and (4-20) depict the air temperature distribution at 

night, 1.5 m above the ground. The results of air temperatures at noon indicate that the 

maximum temperatures were 45.33 ℃ for Haifa Street and 45.86 ℃ for Al-Rasheed 

Street. The minimum temperatures were 43.03 ℃ for Haifa Street and for Al-Rasheed 

Street 43.31℃.  
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Figure (4-17): Air temperature distribution for Haifa Street at noon, at 1.5 m above the 

ground. 

 

 

Figure (4-18): Air temperature distribution for Al-Rasheed Street at noon, at 1.5 m above 

the ground. 

 

The distribution of air temperatures at night for the two districts is shown in Figs (4-19) 

and (4-20). Figure (4-19) reveals that we have obtained a slight decrease in temperature 

in Haifa Street compared with the air temperature at daytime. The decrease for Haifa 
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Street is 1.69℃. Ground surfaces and the buildings surfaces of Haifa Street are composed 

of a high percentage of non-reflective and water-resistant construction materials. As a 

consequence, they tend to absorb a significant proportion of the radiation, and release 

heat at night. Vegetation intercepts radiation and produces shading that contributes to 

reducing the urban heat release at night. The decrease of vegetated areas in Haifa Street 

inhibits atmospheric cooling due to the horizontal air circulation generated by the 

temperature gradient between vegetation and buildings.  

Al-Rasheed Street at night experiences a decrease in temperature of 2.55 ℃. We observe 

that the courtyards in the traditional houses play a vital role in the cooling system.  At 

night the courtyards lose heat by outgoing radiation to the sky, and movement of air 

during night time (Al-Azzawi, 2010). Also, the Mashrabiya provide shading and obstruct 

the passage of long-wave radiation between the houses, walls, the ground and the sky, 

reducing the heat absorption at day time. 

 

 

Figure (4-19): Air temperature distribution for Haifa Street at night, at 1.5 m above the 

ground. 
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Figure (4-20): Air temperature distribution for Al-Rasheed Street at night, at 1.5 m above 

the ground. 

 

Figure (4-21) represents the percentage of the district area at 1.5 m above the ground 

below 43 ℃,	between	43 ℃	and	45 ℃,	and above	45 ℃.  We observe that Al-Rasheed 

Street is cooler than Haifa Street: the percentage of the temperature less than 43 ℃ for 

Al-Rasheed Street is more than 40%, while for Haifa Street it ranges to 12%. We indicate 

from the results in Fig. (4-21) that Haifa Street is hotter than Al-Rasheed Street at noon 

because the percentage value of air temperature between 43 ℃  and 45 ℃ is more than 

80%, while for Al-Rasheed Street it is 33%.    
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Figure (4-21) Percentage values of air temperature for the two districts at noon, at 1.5 m 

above the ground. 

 

Figure (4-22) is equivalent to Fig. (4-21) at night.  The air temperature in Haifa Street is 

consistently higher than the air temperature in Al-Rasheed Street. Higher temperatures in 

Haifa Street occur because of the dense concentrations of materials like asphalt and 

concrete in buildings. These materials absorb heat during the day and release it slowly at 

night. It is the contrary for Al-Rasheed Street which construction materials absorb heat 

slowly and reflect the radiation at day time. According to many researchers, UHI usually 

reaches its highest intensity after sunset, when the urban surfaces have sufficiently 

warmed-up. Consequently, the urban area with high rise buildings exhibits temperatures 

several degrees higher than the surroundings area at night showing the effect of UHI. 
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Figure (4-22) Percentage values of air temperature for the two districts at night, at 1.5 m 

above the ground. 

 

                4.5.1.2 Wind speed results 

Figure (4-23) presents the results of wind speed obtained from the receptors in Haifa 

Street. The maximum values of wind speed are recorded by the receptors 3 and 2. 

According Fig. (4-13) the receptors are located in an open area without any buildings or 

obstacles that could lead to limiting the air movement, so the velocity is close to the 

initial value (5 m/s). The lowest value of wind speed was recorded for the receptors 4 and 

5, because these receptors have been imposed inside vegetation. Figure (4-24) shows the 

wind speed values in Al-Rasheed Street area where 8 receptors were placed. We observe 

that values of wind speed do not exceed 2m/s, due to the existence of narrow alleys.  
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Figure (4-23): Wind speed values for Haifa Street, at 1.5 m above the ground. 

 

 

Figure (4-24): Wind speed distribution for Al-Rasheed Street, 1.5m above the ground. 
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A comprehensive comparison has been conducted on a horizontal plane on the wind 

speed values for the two districts Figs. (4-25) and (4-26) represent the proportion of wind 

speed, 1.5 above the ground at day time and night respectively for the two districts. 

Figure (4-25) reveals that at noon the wind speed less than 0.4 m/s represents 60% of Al-

Rasheed Street districts while for Haifa Street it is less than 20%. Higher wind speed can 

be observed at noon (more than 4 m/s) in Haifa Street. Similar behaviour is observed at 

night, Fig. (4.26). 

 

 

Figure (4-25) Percentage values of wind speed for the two districts at noon, at 1.5 m 

above the ground. 
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Figure (4-26) Percentage values of wind speed for the two districts at night, at 1.5 m 

above the ground. 

 

          4.5.2 The Results of the outdoor thermal comfort indices 

The outdoor thermal comfort indices values that have been calculated in the simulation 

work are represented at level 1.5 m above the ground. The mean radiant temperature 

values calculated in ENVI-met take into account the radiation absorbed by a standing 

human body. We measured the outdoor thermal comfort indices Tmrt, PET, PMV at 

noon. 

 

               4.5.2.1 Mean radiant temperature results  

Figures (4-27) and (4-28) show the mean radiant temperature distribution Tmrt at noon in 
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vegetation, is the most effective measure to reduce the maximum values of Tmrt. 
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contribute to increase the values of Tmrt. Concerning Al-Rasheed Street we find that the 

presence of the oriel window within the narrow alleys creates adequate shadow, which 

leads to reduce the values of Tmrt. In addition, the courtyards inside the house provide 

sufficient shading thanks to the trees. 

 

 

Figure (4-27): Mean radiant temperature distribution for Haifa Street at noon, at 1.5 m 

above the ground. 

 

 

Figure (4-28): Mean radiant temperature distribution for Al-Rasheed Street at noon, at 1.5 

m above the ground. 
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According to Mostafa and Aliriza (2012) there is a relatively strong relationship between 

the sky view factor and the mean radiant temperature during day time. Shading is one of 

the restricted factors of thermal stress as it reduces the convective heat transfer from the 

sunlit building and the ground surfaces (Spronken-Smith and Oke, 1999). Shading also 

reduces direct shortwave radiation reaching the construction and ground surfaces as well 

as humans. Figures (4-29) and (4-30) represent the distribution of the sky view factor at 

noon for the two districts. Table (4-1) compares the sky view factor obtained from ENVI-

met and the theoretical formula proposed by Oke (1981). The obtained results are in good 

agreement. 

 

 

Figure (4-29): Distribution of the sky view factor value for Haifa Street at noon, at 1.5 m 

above the ground. 
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Figure (4-30): Distribution of the sky view factor value for Al-Rasheed Street at noon, at 

1.5 m above the ground. 

 

Table (4-1): Comparison of sky view factor values between Oke formula and ENVI-met. 

District H (m) D(m) 
Oke Formula 

	��� = ���������(� �)⁄ � 

SVF the simulated 

value by ENVI-met 

Haifa 60 35 0.504 0.50-0.58 

Al-Rasheed 8 3 0.351 0.29-0.39 

 

The narrow alleyways and the presence of oriel window contribute to reducing the value 

of the sky view factor, which leads to decrease the values of Tmrt. In Haifa Street, we 

find that the sky view factor is about 0.5: the distance between buildings enhances the 

exposure to sunlight, especially at noon.  The highest values of Tmrt were recorded in 

Haifa Street. That can be explained by the high level of direct and reflected shortwave 

radiation as well as long wave radiation emitted from the surrounding sunlit surfaces. 
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              4.5.2.2 The Physiological Equivalent Temperature (PET) results 

The Physiologically Equivalent Temperature (PET) examines how the changes in the 

thermal environment can influence the human well-being (Matzarakis and Amelung, 

2008). According to ANSI/ASHRAE Standard there are different environmental 

conditions for human occupancy. In this work we adopted the thermal conditions given 

below:  

Age of the person: 35 years, weight: 75 kg, and height: 1.75 m. Walking at a speed of 1.2 

m/s. Clothing insulation (clo) 0.7, Persons Metabolism, internal heat production: 110 W. 

Figures (4-31) and (4-32) present the PET for the two districts at noon. In most parts of 

the two districts, the PET is more than 41℃	, meaning that extreme hot conditions affect 

people’s health and well-being. We conclude that both situations are characterises of 

extremely thermal stresses. Table (4-2) shows the ranges of PET for different grades of 

thermal perception by human beings and physiological stress on human beings.  

Table (4-2): Ranges of the thermal index physiological equivalent temperature (PET) for 

different grades of thermal perception by human beings and physiological stress on 

human beings (Matzarakis and Mayer, 1999). 
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Figure (4-31): Physiological Equivalent Temperature distribution for Haifa Street at 

noon, at 1.5 m above the ground. 

 

 

Figure (4- 32): Physiological Equivalent Temperature distribution for Al-Rasheed Street 

at noon, at 1.5 m above the ground. 

 



Chapter Four                                                                     Simulation Results for two Districts in Baghdad and the Effect    
                                                                             of the Shadings Pattern and Greenery Strategies on the Outdoor Thermal Comfort               

                                                                                                                              
 
 

82 

 

           4.5.2.3 Predicted Mean Vote (PMV) results  

The level of comfort is characterized using the ASHRAE thermal sensation scale, given 

in Table (4-3). The average thermal sensation response is called the predicted mean vote 

(PMV).  

Table (4-3): ASHRAE Thermal Sensation Scale (ASHRAE Standard, 55-2004). 

 

 

PMV is a mathematical function of the local climate, in most applications it can also 

reach above or below [-4], [+4] values, although these are off the scale of the original 

scale experimental data (http://www.model.envi-met.com/).   

Figures (4-33) and (4-34) represent the distribution of Predicted Mean Vote (PMV) at 

noon for the two districts. The results of Haifa Street, as shown in Fig. (4-33) indicate 

that the Predicted Mean Vote ranges from 6.50 to 6.78, the maximum value is 7.35.  

From Table (4-3) the thermal sensation response of Haifa Street can be classified as hot. 

In Al-Rasheed Street the Predicted Mean Vote is about 5.12-5.39 meaning that some 

places especially inside the courtyards and the alleyways it is possible to obtain cooler 

areas than in Haifa Street. Implementing the PMV equation to outdoor conditions in 

summer heat stress situations can surely produce PMV values high above +4 (+8 and 

more). While this result is numerically correct (http://www.model.envi-met.com/). 
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Figure (4- 33): Predicted Mean Vote (PMV) distribution for Haifa Street at noon, at 1.5 

m above the ground. 

 

 

Figure (4-34): Predicted Mean Vote (PMV) distribution for Al-Rasheed Street at noon, at 

1.5 m above the ground. 
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On an average more than 40% of Al-Rasheed district is characterized by a PMV lower 

than 4, while Haifa Street has only about 10% of its surface, 90% of its territory with a 

PMV between 4 and 7.   

 

 4.5.3 Conclusions  

1. According to Santamousris et al. (1999), Nakamura and Oke (1988) there is no 

apparent correlation between urban geometry and the air temperature. It is different in the 

present work. Increasing aspect ratio represents the most efficient strategies for 

decreasing air temperature. Aspect ratio for al-Rasheed Street 2.7 is greater than Haifa 

Street (1.7-2), the maximum percentage that have been recorded for the air temperature 

less than 43 ℃ was observed 40% for Al-Rasheed Street at noon.  

2. The comparison of the temperatures between the two districts exhibited the presence of 

the Urban Heat Island at night Fig. (4-22). Through the significant increase in the 

percentage values of temperature reaches 88% in the Haifa Street for the air temperature 

more than 43℃ while for Al-Rasheed Street is 44% at night. 

3. We found that there is a difference in the wind distribution patterns for the two 

districts, due to the different district design, and their aspect ratio. Open spaces in Haifa 

Street contribute to warm air circulation around buildings.  

4. According to Walikewitz et al. (2015) during high temperatures or even heat waves the 

mean radiant temperature is recommended as a mean to calculate thermal indices in heat 

stress studies. We concluded that the highest values of Tmrt were recorded in Haifa 

Street, due to the high level of the direct and reflected shortwave radiation and long wave 

radiation emitted from surrounding sunlit surfaces. Tmrt is lower in Al-Rasheed Street, as 

more shadow is created by urban configuration. We concluded that the mean radiant 

temperature in a hot arid climate can be affected significantly by the urban configuration, 

sky view factor, shadow patterns, and width of the internal passages between buildings. 

These parameters play an important role for the evaluation of bioclimatic conditions and 

outdoor thermal comfort.    
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5. Regarding PET and PMV results, the results revealed that Al-Rasheed Street has 

thermal conditions better than Haifa Street.  

6. The results of this work support the veracity that traditional houses in Baghdad 

represent the appropriate configuration that serves the extreme climate in Baghdad, 

especially during the hot, arid summer.  The old builders tried since ancient times to 

adopt the constructions to provide thermal comfort.  

In accord with Al-Azzawi (1984) we present the significant points that describe the 

elements and design features of the traditional houses to mitigate the severe microclimate 

and internal thermal conditions:  

• The courtyard is the focal and separate open space of the house, presents well-

proportioned dimensions of length and width to height, these proportions help to 

provide shade for some of its floor areas even around noon in summer when the 

sun is nearest to the zenith.   

• By being exposed to the clear sky, the floor of the courtyard loses heat to the 

zenith day and night by long-wave, outgoing radiation. This radiative heat loss 

helps to reduce the surface temperature of the floor of the courtyard and 

consequently that of the layer of air in contact with it. The radiative heat loss also 

helps to reduce the surface temperature of the surrounding habitable rooms and 

spaces, here the floor of the courtyard, and to some extent, the walls surrounding 

it, act as intermediary elements in the loss of heat from the surrounding rooms and 

spaces to the courtyard, then to the clear sky. 

• Mashrabiya helps to protect walls from the effect of solar radiation in summer.  

• The use of thick brick walls on the ground floor as external walls overlooking the 

alleyway, and as walls overlooking the courtyard to achieve sufficient time-lag. 

These walls help to retard and reduce heat gain from the hot exterior to the cooler 

interior and therefore keep the interior relatively cool during the day in summer. 

• The use of traditional porous paving brick as a floor finish in the courtyard: in 

summer the courtyard floor is washed daily before mid-day and then sprinkled 



Chapter Four                                                                     Simulation Results for two Districts in Baghdad and the Effect    
                                                                             of the Shadings Pattern and Greenery Strategies on the Outdoor Thermal Comfort               

                                                                                                                              
 
 

86 

 

with water at intervals during the afternoon. The paving brick absorbs and retains 

some of this water, which helps to reduce the surface temperature of the courtyard 

floor by evaporative cooling. 

• The trees contribute to providing shade in the courtyard which leads to a lower 

surface temperature of its floor and consequently a lower temperature of the air. 

• Using a basic design for the traditional houses rather than articulated and highly-

formed configurations. Therefore the three-dimensional area exposed to direct 

solar radiation is reduced. 

 

4.6 Effect of the Shadings Pattern and Greenery Strategies on the Outdoor Thermal 

Comfort 

In this part, we focus on analysing the human thermal comfort at the pedestrian level in 

four scenarios characterized by different greenery strategies, such as grass, various types 

of trees. Two different shadow patterns were created by assuming pergolas around 

buildings. Other proposals for shading are created with trees on both sides surrounding 

the pergolas. For evaluating the impact of the shadings pattern and vegetation on the 

outdoor thermal pedestrian comfort, four different scenarios are represented, only the 

Haifa Street district is concerned. In addition to the base case plan, other three scenarios 

were chosen:  

• Base Model (BM): is the initial case study of Haifa Street. There are very few 

trees (Citrus) without vegetation. Figure (4-35) shows the 2D configuration 

simulated by ENVI-met.  

• Vegetation model (GT): Grass and trees were assumed around the buildings, to 

evaluate the effect of vegetation in the selected area. Sophora Japonica is chosen 

with a space of grass around the urban area. Sophora Japonica is rounded- headed 

tree with spreading branches, (4.5-9 m high) Fig. (4-36). Sophora Japonica has 

long branches and densely twigs (Townsend and Guest, 1974). Figure (4-37) 

shows 2D view of the model. 
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• Shadow model (Pergolas around buildings PAB): this model assumes that 

pergolas are imposed around the buildings with 4 m height. Trees are distributed 

around theses pergolas (Sophora Japonica), Fig. (4-38).  

• The fourth model (SJP) was proposed to solve the problems of the large spacing 

between the buildings. The objective of this model was to provide continued 

shadings for the pedestrians by a grid of pergolas Fig. (4-39). Sophora Japonica 

trees on the both sides surround the pergolas. Figs. (4-40) and (4-41) depict the 

model before and after trees were distributed around the pergolas. 

 

 

Figure (4-35): Base model (BM) of Haifa Street District. 

 

 

Figure (40-36) : Sophora japonica tree (https://www.pinterest.com/). 
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Figure (4-37): Grass and Trees model (GT) of Haifa Street. 

 

 

Figure (4-38): Pergolas around the buildings (PAB) of Haifa Street District. 

 

 

Figure (4-39): The shaded passageway for the pedestrians. 
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Figure (4-40): SJP model before Sophora Japonica trees were distributed around the 

pergolas. 

 

 

Figure (4-41): SJP model after Sophora Japonica trees were distributed around the 

pergolas. 

 

       4.6.1 Analysis of the results on the outdoor thermal comfort 

We analyze the estimated thermal comfort conditions along a proposed pedestrian path 

linking all the buildings at noon. PET and PMV are measured for pedestrians for the 
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selected urban area. A scenario of a walkway connecting the buildings is simulated to 

illustrate the objective. The path (A-B) observed in Fig. (4-42) is about 120m long. 

 

 

Figure (4-42): The path (A-B) way of the pedestrian in the urban area. 

 

 

Figure (4-43): Air temperature distribution at noon, at 1.5 m above the ground, along the 

path (A-B). 
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The SJP model contributes to minimizing the air temperature along the pedestrians range 

from 1.83 to 2.42 ℃ as shown in Fig. (4-43). The pergolas reduce the temperature 

because of the sky view factor decrease, and the effect of sun radiation. Also, trees 

surrounding the pergolas obstructed the passage of long-wave radiation between the 

buildings, the ground surfaces and the sky. Higher sky view factor in the base model 

(BM) leads to higher air temperature in the urban area because the sky view factor 

increase potentially leads to the increase of the open space and the amount of long wave 

radiation absorbed by the ground surfaces and buildings façades and roofs. A slight 

decrease in air temperature is observed for the grass and trees model (GT). This means 

that the trees cover along the walkways of the pedestrians did not contribute to reducing 

the temperature at noon, because of the high absorption of long-wave radiation from the 

ground surfaces. The big space between buildings plays a significant role in absorption 

and heat storage on the ground. The results for the (PAB) model show that this solution 

does not contribute to providing enough cover for reducing the sunlight and heat 

absorption by the surfaces: the decrease in temperature is too insignificant. The grass and 

trees model (GT) and pergolas around the buildings (PAB) could consist in a good 

solution to mitigate the high temperatures. Yet they are not ideal. The first one is the high 

rise buildings. Second, the asymmetric distribution of buildings leads to big open space 

between the buildings, the shading from the tall buildings to each other is lost. The long 

distances between the buildings create a big space of ground surface that absorbs heat and 

keeps it along daytime. The results obtained for the mean radiant temperature indicate 

that Tmrt minimum can be observed in the SJP model, Fig. (4-44) due to the shadings 

from the pergolas along the path (A-B) and the effect of the shadow from the trees. Tmrt 

reaches 35℃ on the path (A-B), for SJP due to the presence of shading, and less long 

wave radiations from the buildings and grounds surfaces. The surface temperature of 

urban facades is the primary factor contributing to reducing thermal comfort. The results 

of grass and trees model are almost equivalent to the Base model due to lack of shading. 

Shadows, in the PAB model was not enough to improve the results of Tmrt compared to 

the Base model results. 
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Figure (4-44): The mean radiant temperature at noon, at 1.5 m above the ground along 

the path (A-B). 

 

Figure (4-45) shows the effect of the vegetation on the specific humidity. Overall, all the 

tested scenarios lead to similar results as the base model except one SJP allows an 

increase of 2%.  
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Figure (4-45): Specific Humidity at noon, at 1.5 m above the ground along the path (A-

B). 

 

According Figs. (4-46) and (4-47) the shading of trees could impact the human thermal 

comfort. The Sophora Japonica around pergolas for the pedestrians model (SJP) is the 

best configuration for improving thermal comfort. We obtained a decrease in PET values 

of 10℃ from the base model and of 3 in PMV values. Changes in thermal comfort for 

the other models are barely apparent: the most important factors are the presence of 

sufficient vegetation and smaller values of the sky view factor. 
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Figure (4-46): PET at noon, at 1.5 m above the ground, along the path (A-B). 

 

 

Figure (4-47): PMV at noon, at 1.5 m above the ground, along the path (A-B). 
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4.6.2 Conclusion 

The present study is conducted to assess the perception of thermal comfort for the two 

indices PMV and PMT. Simulation works are performed on the hottest day in summer 

(Hassoon, 2010).  The results revealed a decrease in temperature of approximately 2.4 ℃ 

and 10 ℃ in PET index for the SJP model and a decrease in PMV to 3. We highlight the 

drawbacks of Western design in an arid climate area without taking into consideration the 

pedestrians thermal comfort. High rise buildings, asymmetrical canyons, large spacing 

between buildings, lack of vegetation and loss of shading feature play a significant role. 

The suggestion of the greenery strategies patterns models could take in consideration of 

the design developments of the urban area. Although plants need some water to grow and 

live in such an arid climate, this drawback could be solve as the district is near the Tiger 

River.  The properties of trees canopy can affect directly the thermal comfort results as 

the leaves absorb, reflect and transmit solar radiation, and evapotranspiration contributes 

to thermal comfort.  The final outcomes of the study could lead to urban planning 

recommendations for municipalities and urban planners. 
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5.1 Introduction  

Designing cities in a hot, arid climate and maintaining an appropriate level of outdoor 

thermal comfort is one of the most significant challenges for the designers: how to 

achieve an appropriate climate for pedestrians during the day under the blazing sun, 

especially in countries with an excessive rise in summer temperatures and for several 

months, as in Iraq? 

  

5.2 Influence of Aspect Ratio 

According to an investigation carried out in the hot and arid city of Riyadh (Saudi 

Arabia) to evaluate the thermal performance of traditional and modern residential urban 

canyons, Fig. (5-1), the exposure of urban surfaces to the solar radiation is a function of 

the aspect ratio (H/W) and orientation of the canyon. They play a dominant role in 

determining the quantity of received solar radiation by the horizontal and vertical 

surfaces of canyon and thus affect the ambient temperature inside the canyon. It was 

observed that the shallow modern canyons with H/W =0.42 experience higher ambient 

temperatures during daytime when compared to the deep traditional aspect ratio H/W=2.2 

(Bakarman and Chang, 2015). 

 

 

Figure (5-1): Aerial and street view (a) traditional area (b) modern residential area 

(Bakarman and Chang, 2015). 
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An investigation study was carried out in Morocco by Alaoui et al. (2016).  The aspect 

ratio (H/W>2) leads to increase the energy cooling demand due to the high thermal 

recession and the effect of low ventilation.  An investigation study was conducted to 

evaluate the effect of different designs in Cairo, Egypt. Two different urban designs were 

selected: the renovated and non-renovated part of the alley, Fig. (5-2). The results showed 

that the non-renovated part of the alley improved pedestrian comfort due to higher aspect 

ratio and street geometry allowing to stop direct solar radiation in the alley (Mahgoub et 

al., 2013). 

 

Figure (5-2): Different aspect ratio for two urban area geometries (Mahgoub et al., 2013). 

 

5.3 The Role of Vegetation 

It is worth mentioning that the technique of using vegetation in a hot, dry weather was 

adopted by the Babylonian civilization in Iraq in the 16th-century, as referred by Soomro 

(2012). Figure (5-3) depicts the hand-colored engraving by Dutch artist Maarten van 

Heemskerck which represents the Hanging Gardens of Babylon, one of the Seven 

Wonders of the World. Technically, the gardens did not hang but grew on the roofs and 

terraces of the royal palace in Babylon. 
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Figure (5-3): Hanging gardens of Babylon (Soomro, 2012). 

 

Sailor (2006) highlighted that trees shade are a common mitigation strategy by providing 

a direct shade to buildings and pedestrians at the same time improving the thermal 

environment through evapotranspiration processes. 

 

5.4 Influence of Street and Buildings Orientation  

Street orientation affects the shading geometry and solar irradiance at the canyon 

surfaces. Consequently, the comfort of pedestrians is also affected. The N-S street 

orientation is always closer to the comfort level regardless of the canyons aspect ratios. 

(Swaid et al., 1993).  Ali-Toudert and Mayer (2004) concluded that the rotation of the 

street to (NE-SW) or (NW-SE) in hot, dry climate leads to better comfort conditions 

because the shading effects on the walls are more efficient than for an E-W orientation, 

that means a lack of exposure to direct sunlight due to the availability of shade.  The ideal 

street orientation in Hot-Zone must be rotated towards the axis (Northeast- Southwest) 

and (Northwest - Southeast) to get the best insulation in the winter and less heat and 

sufficient shading in the summer (Polservice, 1982). 
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Figure (5-4): Orientation of streets in the hot dry climate (Polservice, 1982). 

 

Al-jumaili (2014) proposed ideal streets and buildings orientations in the hot climate in 

the case of Baghdad Fig. (5-5).  

 

Figure (5-5): Ideal streets and buildings orientations in a hot climate (Al-jumaili, 2014). 

 

The housing Technical Standards and Codes of Practice Report of Iraq, developed by 

“Polservice” in 1982, recommend that “orientation of buildings in hot- dry zone prefers 
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within 350 South-East is advisable. However, 250 South-East gives the best balance, and 

the buildings should be elongated on an East-West axis. 

 

5.5 Sky view factor 

A study based on a comparison of the environmental conditions of urban street canyons 

in traditional and modern neighborhoods of the city of Aleppo, Syria Fig. (5-6), showed 

that the lowest PET values were noticed in canyons with low SVF (high aspect ratio): the 

effect of shading on the mean radiant temperature diminishes significantly with the solar 

radiation decrease. Consequently, wide canyons in the new part of the city are less 

comfortable with maximum Tmrt and PET, compared to narrow walkways in old Aleppo 

(Zakhour, 2015). 

 

 

Figure (5-6): Three-dimensional view of new and old Aleppo districts (Zakhour, 2015). 

 

 5.6 Influence of Colonnades 

Colonnades (arcades) on the ground floor of buildings contribute to improving the 

comfort conditions, Fig. (5-7). The location of colonnade on the South side of an E-W 

oriented street means that the colonnades face North, which increases the shaded area in 

the street and reduces the penetration of solar irradiance to the grounds. (Swaid and 

Hoffman, 1993).   
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Figure (5-7): Cross-section of an urban street canyon with a colonnade on the South side 

(exposed to the North) (Swaid and Hoffman, 1993). 

 

Colonnades exist in Baghdad in different locations as one of the essential strategies for 

improving thermal comfort of pedestrians. The most important ones are Al-Rasheed 

Street Fig. (5-8a), and the walkways for pedestrians in Al-Salehya Fig. (5-8b). 

 

 

Figure (5-8): (a) Al-Rasheed Street, (b) the walkways for pedestrians in Al-Salehya in 

Baghdad. 
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5.7 Influence of Courtyards  

Courtyard are the focal and private open space of the traditional houses with well-

proportioned ratios of length and width to height; these proportions contribute to 

providing shade for some of the floor areas even around mid-day in summer (Al-Azzawi, 

1984). Typical courtyards are planted with various trees and flowers to improve comfort 

conditions by modifying the microclimate around the buildings and by enhancing 

ventilation. According to Ghaffarianhoseini et al. (2015) different archetypes have been 

adopted for courtyards design through the centuries. Courtyards were principally adopted 

in traditional buildings in parts of Asia, the Middle East, South America, and the 

Mediterranean countries. Romans and Arabs often included colonnades, especially in 

convents. Courtyards are one of the traditional Iranian architecture elements, with 

significant benefits on thermal performance of indoor spaces in hot and dry climate. An 

existing traditional courtyard in Kashan city, Iran was used as a case study to analyze the 

indoor thermal comfort condition, Fig. (5-9). Simulation results revealed that the 

influence of the internal courtyards on the thermal condition has a high reliance on the 

envelope openings for air flow (Cho S. and Mohammedzadeh, 2013). 

 

 

Figure (5-9): Geometry model of case study of courtyards (Cho S. and 

Mohammedzadeh, 2013). 
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Another investigation study in Iran carried out by Zamani et al. (2012) showed that 

courtyards improve natural lighting, heating, cooling and ventilating. Ratti et al. (2003) 

came to the conclusion that the courtyard configuration allows to improve comfort 

compared to pavilion, Fig. (5-10). 

 

 

Figure (5-10): The traditional courtyard (left) and two pavilion structures (right), (Ratti et 

al., 2003). 

 

Figure (5-11) shows (Type 1) comprises courtyards, atriums, and patios.  (Type 2) 

includes attached semi-open spaces which are somewhat covered by a balcony, or a 

porch, a corridor, a covered street or an arcade. In the third type, the building is entirely 

enclosed by an open space like pergolas, bus stations, or awnings. 

 

 

Figure (5-11): Type (1) open space inside the building, type (2) open space attached to 

the building, and type (3) the open space encloses the building (Taleghani et al., 2012). 
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Traditional courtyard houses in Baghdad and other parts of Iraq represent indigenous 

types of houses. They seem to have fulfilled the needs of their inhabitants from the points 

of view of functional requirements, and internal thermal performance. The traditional 

courtyard house mainly consists of a centrally-located courtyard, with all rooms and 

spaces around it. Courtyards receive sunlight, daylight, natural ventilation and have 

visual as well as physical communication (Al-Azzawi, 1984). 

 

 

Figure (5-12): View of a courtyard in a traditional house in Baghdad (Al-Ani, 2011). 

 

5.8 Means of shading 

The traditional “mashrabiyya” is common in hot-arid regions, it consists mainly of 

wooden, shading covers over large openings windows which allows ventilation, as well 

as the passage of daylight. It also maintains family privacy (Skat, 1993). Figure (5-13) 

depicts a view of mashrabiyya in Cairo, Egypt. Mashrabiyya helps to provide a protection 

for pedestrians from the solar radiation, Fig. (5-14) shows a view of mashrabiyya in 

traditional house in Baghdad.   
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Figure (5-13): View of mashrabiyya in Cairo, Egypt (https://www.flickr.com/photos/). 

 

 

Figure (5-14): View of mashrabiyya in traditional house in Baghdad (www.google.com). 

 

5.9 The role of the albedo 

Roofs and pavements comprise about 60 % of urban surfaces. These surfaces are dark 

and typically absorb over 80 % of the sunlight and convert that solar energy into heat, 

which results in more polluted cities, higher energy costs, and impacts global. Replacing 
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pavements with more reflective materials could modify this warming effect improve 

pedestrian comfort and lessen the urban heat island effects (Masterbuilder, 2014). 

  

 

Figure (5-15): The Albedo Effect - Comparison of a black and a white flat roof on a 

summer afternoon with an air temperature of 37  ℃ (Masterbuilder, 2014). 

 

In the summertime, paving materials can reach peak temperatures of 50 to 65 ℃, 

contributing to heat the air above them. Using lighter paving materials may create more 

reflective surfaces (Global Cool Cities Alliance, 2012). 

Li (2012) concluded that enhancing the evaporation from pavement helps to reduce the 

temperature, the mean radiant temperature, and PET. Consequently it improves the 

thermal comfort in a hot climate. 

 

5.10   Design criteria for the Proposal Model   

Here, we adopt the same area, initial meteorological conditions, and date of simulation 

that were selected previously in this research. We intend to find if an improvement could 

be obtained by modifying the design of the studied district. The requirements for the       

adopted design come from the conclusions of the previous review. We also account for 

the specifications and recommendations from the Ministry of Housing and Construction 

in Iraq.  The criteria used to create the model design are as follows: 
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1. Height of the residential buildings does not exceed 8 floors, floor height is 3 m. 

So, we choose the height of the building 25 m. 

2. The spacing between buildings depends on the aspect ratio (H/W ≥ 1), we choose 

H/W=1, so the spacing between the buildings 25 m. 

3. According the housing Technical Standards and Codes of Practice Report of Iraq, 

developed by “Polservice” in 1982, and our conclusions the orientation is (NW-

SE). 

4. Due to the role of albedo on thermal comfort, we select concrete pavement light 

for the walkways, and concrete pavement gray for the main street. 

5. Providing shading is an essential role in improving thermal comfort, so we use 

pergolas to protect pedestrians from the direct effect of solar radiation. 

6. In order to enhance the role of vegetation on outdoor thermal comfort, we focus 

on using vegetation, grass and trees. Figure (5-16) shows the proposed model 

(PM) with buildings, pergolas, and vegetation. 

 

 

Figure (5-16): Proposed model (PM) with buildings, pergolas, and vegetation. 

 

5.11 Results Analysis  

The initial and boundary conditions are indicated to the ones in chapter 4. The results are 

compared to the results in the current configuration of Haifa Street. Figures (5-17) and 

(5-18) reveals a significant decrease in temperature in the PM model.  For the (PM) the 
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dominant air temperatures range from 41.5 ℃  to 44.5 ℃ .  We obtain a decrease 1.5 ℃ in 

the air temperature in a proportion of 52% in the PM. 

 

 

Figure (5-17): Percentage value of air temperature for Haifa Street at noon, at 1.5 m 

above the ground. 

 

 

Figure (5-18): Percentage value of air temperature for proposal model at noon, at 1.5 m 

above the ground. 

 

The results of wind speed in Figs (5-19) and (5-20) reveal that we get a decrease 2 m/s in 

wind speed for the proposal model due to the presence of pergolas and the presence of 

vegetation, which leads to obstructing the air movement. 
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Figure (5-19): Percentage value of wind speed for Haifa Street at noon, at 1.5 m above 

the ground. 

 

 

Figure (5-20): Percentage value of wind speed for the proposal model at noon, at 1.5 m 

above the ground. 
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The sky view factor decreased also: Haifa Street has more open space than the PM. The 

existence of pergolas and vegetation minimize the spacing in the urban area, Figs (5-21) 

and (5-22). 

 

 

Figure (5-21): Distribution of the sky view factor for Haifa Street at noon, at 1.5 m above 

the ground. 

 

 

Figure (5-22): Distribution of the sky view factor for the proposal model at noon, at 1.5 m 

above the ground. 
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According the results of the mean radiant temperature in Figs (5-23) and (5-24), we 

observe a decrease in a proportion of 88% in the PM for the mean radiant temperature 

range from 70 ℃  to 75  ℃, due to the effect of shadows from the vegetation and the 

pergolas. 

 

Figure (5-23): Percentage value of the mean radiant temperature for Haifa Street at noon, 

at 1.5 m above the ground. 

 

 

Figure (5-24): Percentage value of the mean radiant temperature for the proposal model 

at noon, at 1.5 m above the ground. 
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For PMV results, we observe that an improvement in the thermal comfort could be 

obtained by modifying the design of the studied district, Fig. (5-25). Haifa Street is 

considered as hot region, Fig. (5-26). 

  

 

Figure (5-25): Percentage value of PMV for the (PM) at noon, at 1.5 m above the ground. 

 

 

Figure (5-26): Percentage value of PMV for Haifa Street at noon, at 1.5 m above the 

ground. 
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On an average, more than 95% of Haifa Street district is characterized by a PMV more 

than 6, while (PM) has only about 54% of its surface, 46 % of its territory with a PMV 

between 4 and 6.  That means the new design model has better thermal conditions than 

Haifa Street. 

 

5.12 Evaluating the Results at a Typical Day in Summer 

We select 22 June in the same year 2010 to assess thermal comfort in a typical day in 

summer. The basic meteorology settings for the initial conditions were 2.4 m/s for the 

wind velocity and 315 deg. for the wind direction. The simple forcing for the air 

temperature and the relative humidity are used along one day period, with a minimum air 

temperature of 30 ℃ at 6 am and a maximum value of 40 ℃ at 7 pm. The relative 

humidity was minimum (25 %) at 2 pm, and it was maximum at 8 am (47%). The total 

simulation time was 24 hours. We compare the results of air temperature, wind speed, the 

mean radiant temperature, and PMV between Haifa Street and the proposal model in a 

typical day in summer. Figures (5-27) and (5-28) depict the percentage value of air 

temperature for Haifa Street and the (PM) at noon respectively. 

 

 

Figure (5-27): Percentage value of air temperature for Haifa Street at noon, at 1.5 m 

above the ground. 
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Figure (5-28): Percentage value of air temperature for the (PM) at noon, at 1.5 m above 

the ground. 

 

Thanks to the new design the temperature went below 35℃.  

The results of the mean radiant temperature, Figs (5-29) and (5-30) reveal a decrease of 

10.5 ℃ in the (PM) model in a proportion of 90%. 

 

 

Figure (5-29): Percentage value of the mean radiant temperature for Haifa Street at noon, 

at 1.5 m above the ground. 
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Figure (5-30): Percentage value of the mean radiant temperature for the (PM) at noon, at 

1.5 m above the ground. 

 

For PMV results, Figs (5-31) and (5-32) on an average, more than 99% of Haifa Street 

district is described by a PMV more than 4, while PM  has only about 32% of its surface, 

68 % of its area with a PMV between 2.5 and 4. That means the new design model has 

better thermal conditions than Haifa Street at the typical day in summer. 

 

 

Figure (5-31): Percentage value of PMV for Haifa Street at noon, at 1.5 m above the 

ground. 
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Figure (5-32): Percentage value of PMV the (PM) at noon, at 1.5 m above the ground. 

 

5.13 Conclusions 

1. Regarding Tmrt and PMV results in hottest day conditions, the results revealed that the 

proposal model has better thermal conditions than Haifa Street. 

2.  The highest values of Tmrt were recorded in Haifa Street, due to the high level of the   

shortwave and long wave radiation emitted from surrounding surfaces. Tmrt is lower in 

the proposal model, as more shadow is created by pergolas and vegetation.  

3. Vegetation and parasols in the new design play an important role in providing the 

appropriate shade, which helps to reduce the air temperature, also, to lessen the air 

movement. We conclude that the maximum effect of vegetation and pergolas is observed 

in typical day conditions. The effect of shading obtained from vegetation and pergolas 

play a vital role to moderate the results of the air temperature, Tmrt, and PMV. 

4. Regarding the results of the typical day conditions, we notice a significant decrease in 

the air temperature, Tmrt, and PMV for the PM. The new design model achieved an 

improvement on the thermal comfort.   
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5.  Large spacing between buildings does not look like appropriate in the design of cities 

in an arid climate: the aspect ratio (H/W≥1) contributes to increase heat absorbed by 

buildings and ground surfaces.  

6. The design criteria for the PM could be adopted in hot, arid climates that could 

enhance the outdoor thermal comfort. 
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6.1 Conclusions  

The main conclusions obtained from this work can be summarized as follows:  

1.  The ancient homebuilders tried to adopt construction methods to suit the climate 

conditions and achieve appropriate thermal comfort for the users. The results of this 

work confirm that traditional houses in Baghdad represent a better solution 

compared to a Western design in the context of an extreme climate during hot and 

arid summers.  

2. The results of this study proved that Western-type high-rise buildings do not 

provide the outdoor comfort level expected in the environment of Baghdad, 

especially in hot and dry weather in summer. 

3. In Haifa Street district: the lack of vegetation and shadows, the large distance 

between  buildings lead to an increase in the amount of heat absorbed by the 

surfaces of buildings and ground during daytime and therefore an increase the 

amount of heat released at night.  All such can lead to the occurrence of the Urban 

Heat Island. 

4. The mean radiant temperature in a hot, arid climate appears to be influenced 

essentially by the urban configuration, the sky view factor, the shadow patterns, and 

the width of the internal passages between buildings. These parameters play a 

significant role in the evaluation of bioclimatic conditions and outdoor thermal 

comfort. 

5. Construction materials play an important role in a hot, arid climate: the use of thick 

brick walls on the ground floor, and as walls overlooking the courtyard help to 

delay and reduce the heat gains from the hot exterior to the cooler interior and 

accordingly keep the interior relatively cool during the day in summer. 

6.  Shadings pattern reduce the effect of solar radiation on building facades and 

ground surfaces. Accordingly, enhancing them to improve the thermal comfort is a 

good idea. The characteristics of shadings should be taken into account by 

professionals of the urban built environment to improve the thermal comfort 

outdoors, and lessen the effect of the Urban Heat Island, especially in extreme 

climate. 
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7. PET and PMV results, showed that Al-Rasheed Street has thermal conditions better 

than Haifa Street. 

8.  Noticeable is that highest value of the mean radiant temperature was recorded in 

Haifa Street due to the high amount of the short wave and long wave emitted from 

the surroundings surfaces. 

9. The maximum effect of vegetation and pergolas is observed in typical day 

conditions in summer. Shadings obtained from vegetation and pergolas play a 

significant role to enhance thermal comfort. 

10. Narrow passages contribute to provide shadings at daytime and minimize the 

amount of heat absorbed by the ground which leads to enhancing thermal comfort. 

11.  Western - design may not meet the requirements of the urban design in hot, arid 

climate without taking into consideration the pedestrians thermal comfort. 

12. In the hottest day in summer, the new model proposed in the last chapter of the 

thesis seems to provide better thermal conditions than Haifa Street, due to the effect 

of shadows and vegetation. 

13. In the typical day in summer, the results of Tmrt and PMV showed that the new 

model proposed in the last chapter of the thesis has thermal conditions better than 

Haifa Street. 

 

6.2 Perspectives 

The evidence and conclusions from this work suggest the following recommendations 

preferably be taken into account in urban design in the hot, dry climate.  

1. In a hot, arid climate, shading patterns and greenery strategies should be adopted for 

improving thermal comfort. The solar radiation intercepted by twigs and leaves of 

trees provides a natural protection of outdoor spaces, mitigation of temperatures and 

reduce energy consumption on cooling indoor spaces. 

2.  Assessing the effect of mitigation strategies of shadings and vegetation on the thermal 

comfort and climate change should be evaluated by the thermal indices Tmrt, PET and 

PMV in hot, arid climate. The use of others indices such as UTCI should be 

considered. 
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3. In a hot, arid climate it is advisable to design corridors, arcs, parasols, and 

colonnades to protect pedestrians and provide the sufficient thermal comfort. 

4. The design criteria for the new model proposed in the last chapter of the thesis 

could be adopted in hot, arid climates that could enhance the outdoor thermal 

comfort. 
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