
HAL Id: tel-01597059
https://theses.hal.science/tel-01597059

Submitted on 28 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the imbalances in a graph
Antoine Glorieux

To cite this version:
Antoine Glorieux. Optimizing the imbalances in a graph. Discrete Mathematics [cs.DM]. Institut
National des Télécommunications, 2017. English. �NNT : 2017TELE0011�. �tel-01597059�

https://theses.hal.science/tel-01597059
https://hal.archives-ouvertes.fr

i

THÈSE DE DOCTORAT DE
TÉLÉCOM SUDPARIS

Spécialité
Mathématiques

École doctorale Informatique,
Télécommunications et Électronique

(Paris)

Présentée par

Antoine Glorieux

Pour obtenir le grade de

DOCTEUR DE TÉLÉCOM SUDPARIS

Optimiser les déséquilibres dans un graphe

soutenue le 19 juin 2017
devant le jury composé de :

Rapporteur : Antoine Deza Professeur, McMaster University, Chaire de
recherche du Canada en optimisation combi-
natoire

Rapporteur : Mourad Bäıou Directeur de recherche, CNRS, Université
Blaise Pascal Clermont 2

Examinateur : Frédéric Meunier Professeur, École nationale des Ponts et
Chaussées

Examinatrice : Marie-Christine Costa Professeur, ENSTA ParisTech
Examinateur : Evripidis Bampis Professeur, Université Pierre et Marie Curie
Examinateur : Abdel Lisser Professeur, Université Paris Sud

Encadrant de thèse : José Neto Mâıtre de conférences, Télécom SudParis
Directeur de thèse : Walid Ben-Ameur Professeur, CNRS, Télécom SudParis

Numéro National de Thèse (NNT) : 2017TELE0011

i

TÉLÉCOM SUDPARIS DOCTORAL
THESIS

Specialty
Mathematics

École doctorale Informatique,
Télécommunications et Électronique

(Paris)

Presented by

Antoine Glorieux

submitted for the degree of

DOCTOR OF PHILOSOPHY AT
TÉLÉCOM SUDPARIS

Optimizing the imbalances in a graph

Defense on June 29th, 2017
Defense comittee:

Reviewer: Antoine Deza Professor, McMaster University, Canada re-
search chair in combinatorial optimisation

Reviewer: Mourad Bäıou Research Director, CNRS, Université Blaise
Pascal Clermont 2

Examiner : Frédéric Meunier Professor, École nationale des Ponts et
Chaussées

Examiner : Marie-Christine Costa Professor, ENSTA ParisTech
Examiner : Evripidis Bampis Professor, Université Pierre et Marie Curie
Examiner : Abdel Lisser Professor, Université Paris Sud

Advisor: José Neto Assistant professor, Télécom SudParis
Advisor: Walid Ben-Ameur Professor, CNRS, Télécom SudParis

National Number of Thesis (NNT) : 2017TELE0011

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

Antoine Glorieux

Acknowledgements

I wish to express my most sincere gratitude and appreciation to my thesis advisors,

Walid Ben-Ameur and José Neto for their constant and most valuable guidance, their

precious encouragement, and their remarkable patience during my PhD study. Not

only did they give me this great opportunity of doctoral study, but they created

a friendly and motivating working environment with the perfect balance between

autonomy and teamwork while allowing me to make room for my personal and

parenting life. I will be forever honored and grateful for working with them and will

always look back on these three years and half with a sense of accomplishment.

My gratitude extends to Prof. Antoine Deza and Dr. Mourad Bäıou for their

time in reviewing my manuscript and insightful comments. I also would like to

thank Prof. Frédéric Meunier, Prof. Marie-Christine Costa, Prof. Evripidis Bampis

and Prof. Abdel Lisser for accepting the invitation to participate in the defense.

It is a good opportunity to thank Tijani Chahed, Jeremie Jakubowicz, Valérie

Mateus and Zahia Zendagui for their unlimited support, along with my PhD fellows,

Pierre Bauguion, Mohamed Ahmed Mohamed Sidi, Jiao Yang, Guanglei Wang and

Vincent Angilella, all craftsmen and craftswomen of the friendly working environ-

ment that is Télécom SudParis.

Finally, I would like to express nothing but love to my parents, brothers, sisters,

niece and nephew for their relentless support, their unconditional love and for simply

being who they are for they enabled me to become who I am now. And saving the

best for last, my dearest Anne-Lise, love of my life, and my most beloved Tahar,

greatest of publications, I owe you two all the happiness each day holds for me. You

are my future and I love you.

1

2

La mathématique est l’art de donner le même nom à des choses différentes.

-Mathematics is the art of giving the same name to different things-

Henri Poincarré

3

4

Résumé

1 Introduction et notations

Soit G = (V,E) un graphe simple non pondéré ayant pour ensemble de sommets

V = {v1, · · · , vn} et pour ensemble d’arêtes E, on note δG (resp. ΔG) le degré

minimum (resp. maximum) des sommets de G. Pour un sous-ensemble de sommets

S ⊆ V , la coupe définie par S est le sous-ensemble d’arêtes δ(S) = {uv ∈ E : |{u, v}∩
S| = 1} (e.g. Figure 1). Pour tout graphe ou sous-graphe G on note V (G) et E(G)

respectivement l’ensemble des sommets et des arêtes de G.

Figure 1: Exemple d’une coupe (arêtes plus épaisses en rouge) definie par un sous-
ensemble de sommets S ⊆ V encerclé en pointillés

S

Une orientation Λ de G est l’affectation d’une direction à chacune de ses arêtes

(non orientées) uv dans E, i.e. une fonction de E de la forme Λ(uv) ∈ { # »uv, # »vu},
∀uv ∈ E. On appelle

#»

O(G) l’ensemble des orientations de G. Pour tout sommet v

de G on note dG(v) ou d(v) le degré de v dans G et d+Λ(v) ou d+(v) (resp. d−Λ(v)

ou d−(v)) le degré sortant (resp. entrant) de v dans G par rapport à Λ. Pour

une orientation Λ de G et un sommet v ∈ V on appelle |d+Λ(v) − d−Λ(v)| (resp.

d+Λ(v) − d−Λ(v)) le déséquilibre (resp. déséquilibre signé) de v dans G par rapport à

Λ.

L’orientation de graphes est un domaine très étudié en théorie des graphes et en

optimisation combinatoire, un grande variété de contraintes sur les orientations ainsi

que de fonctions objectif ont déjà été considérées comme par exemple les problèmes

5

d’orientations avec des contraintes sur les degrés [43, 5, 6, 7]. D’autres problèmes

ont été traités mettant en jeu d’autres critères tels que l’acyclicité, le diamètre [28]

ou encore la connexité [83].

Nous étudions la famille de problèmes consistant à maximiser l’image du n-uplet

(d+Λ(v1)− d−Λ(v1), · · · , d+Λ(vn)− d−Λ(vn)) par une fonction f ∈ RRn
sur l’ensemble des

orientations Λ d’un graphe G. En d’autres termes, le problème consiste à trouver

une orientation optimisant les déséquilibres signés des sommets par rapport à la

fonction objectif f ∈ RRn
:

max
Λ∈ #»

O(G)
f(d+Λ(v1) − d−Λ(v1), · · · , d+Λ(vn) − d−Λ(vn)).

Considérons le graphe G = (V,E) comme arbitrairement orienté et prenons

B ∈ {−1, 0, 1}|V |×|E| sa matrice d’incidence, i.e., la colonne correspondant à l’arc
»uv (ou, de façon équivalente, à l’arête uv orientée du sommet u au sommet v), a

pour seules composantes non-nulles celles des lignes correspondant aux sommets

u et v: Bu,uv = 1 et Bv,uv = −1, respectivement (cf Figure 2). Afin de décrire

une orientation du graphe G, on prend une variable d’orientation x ∈ {−1, 1}|E|
interprêtée de la façon suivante. Pour chaque arête uv ∈ E originellement orientée du

sommet u au sommet v: uv est orientée de u à v (i.e., l’orientation choisie est la même

que l’originale) si xuv = 1 et est orientée de v à u sinon (i.e., l’orientation choisie est

“inversée” par rapport à l’originale). Si nous observons à présent le produit deB avec

le vecteur d’orientation x ∈ {−1, 1}|E|, nous obtenons Bvx = d+x (v)−d−x (v), ∀v ∈ V

où d+x (v) (resp. d−x (v)) est le degré sortant (resp. entrant) de v ∈ V dans G par

rapport à l’orientation décrite par x et Bv est la ligne de la matrice B qui correspond

au sommet v. En conséquence, le problème précédemment décrit pour une fonction

objectif f ∈ RRn
peut être exprimé :

max
x∈{−1,1}E

f(Bx).

Figure 2: Construction de la matrice d’incidence d’un graphe orienté

vu
−→ B =

u

v

uv⎛
⎜⎜⎜⎜⎜⎜⎝

...
· · · 1 · · ·

...
· · · −1 · · ·

...

⎞
⎟⎟⎟⎟⎟⎟⎠

6

Cette famille de problèmes est liée à une grande variété de domaines en optimi-

sation de graphes et en suggère de nouveaux. Par exemple, prendre pour fonction

objectif f = || · || (i.e. la norme euclidienne) mène à un majorant original du nombre

isopérimétrique de G que nous mentionnons dans la section suivante.

2 Le nombre isopérimétrique

Définition 1. Le nombre isopérimétrique (ou constante de Cheeger modifiée) [27]

d’un graphe non-orienté G = (V,E) est défini par

h′G = inf
∅�=S⊂V

|δ(S)|
min(|S|, |V \ S|)

Il peut être interprêté comme une mesure numérique de la “connectivité générale”

d’un graphe. Une basse valeur indique la présence d’un goulot d’étranglement,

i.e. l’existence de deux gros sous-ensembles de sommets connectés entre eux par

peu d’arêtes. Au contraire, une haute valeur implique que tout sous-ensemble de

sommets est connecté par de nombreuses arêtes au reste des sommets. Dans le cas

où le graphe représente un réseau de communications, le nombre isopérimétrique

peut être considéré comme une mesure de la “vulnérabilité” du réseau [72]. Il a de

nombreuses applications aussi bien en mathématiques qu’en informatique (e.g., en

analyse d’image [78]).

Le calcul du nombre isopérimétrique d’un graphe est un problème globalement

NP-difficile [81]. Petr Golovach [49] a montré que le problème consistant à décider

si h′G ≤ p
q
pour un graphe G tel que ΔG ≤ 3 et deux entiers p et q. En revanche,

Bojan Mohar [81] présente un algorithme en temps linéaire pour le cas particulier

où le graphe est un arbre et James Park & Cynthia Phillips un algorithme en temps

pseudo-polynomial pour le cas des graphes planaires [85].

Mohar [81] donne différents majorants et minorants du nombre isopérimétrique.

D’une part un majorant général formulé en termes des nombres de sommets et

d’arêtes, et d’autre part des majorants et minorants en termes de la seconde plus

petite valeur propre du Laplacien du graphe.

Le nombre isopérimétrique peut être exprimé de la manière suivante :

(Cheeger) h′G = min
S⊂V : |S|≤ |V |

2

1

|S| max
Λ∈ #»

O(G)

∑
v∈S

|d+Λ(v) − d−Λ(v)|.

Cette expression mène au résultat suivant.

7

Proposition 2. Pour tout graphe G, on a

h′G ≤ 1√�n/2	 max
x∈[−1,1]E

||Bx|| ≤
√

λmax(BtB)|E|
�n/2	 ,

où on note pour toute matrice M ∈ Rn×n, sa valeur propre maximale λmax(M).

On retrouve ici l’expression générale de notre problème générique pour f =
1√
�n/2	 || · ||. Le plus grand majorant présenté dans la Proposition 18 est obtenu

à partir du majorant intermédiaire par une ample majoration par la valeur pro-

pre maximale de B. Une étude du problème générique présenté dans la section

précédente pourrait mener à un majorant de la constante de Cheeger de meilleure

qualité.

Un autre exemple de fonction objectif f du problème générique est le cas f(x1, · · · , xn) =

min{|x1|, · · · , |xn|} qui va nous mener à un nouveau problème d’optimisation de

graphes.

3 Maximiser le déséquilibre d’une orientation

On appelle le déséquilibre d’une orientation Λ ∈ #»

O(G) d’un graphe G = (V,E) le

minimum des déséquilibres des sommets de G: minv∈V |d+Λ(v) − d−Λ(v)|. La figure

3 montre un graphe orienté où le déséquilibres des sommets est indiqué en rouge

et celui de l’orientation est encadré en vert. On considère maintenant le problème

consistant à trouver une orientation avec un déséquilibre maximum:

(MaxIm) MaxIm(G) = max
Λ∈ #»

O(G)
min
v∈V

|d+Λ(v) − d−Λ(v)|

et on appelle MaxIm(G) la valeur de MaxIm pour G. Le degré minimum δG de G

est un majorant trivial pour MaxIm(G). Étant donné que la valeur de MaxIm pour

un graphe est le minimum des valeurs de MaxIm pour ses composantes connexes,

nous considérerons dorénavant uniquement des graphes connexes.

Le problème d’orientation au déséquilibre maximum est un problème nouveau

qui surgit naturellement de l’étude de problème d’orientations de graphes similaires.

Par exemple, le problème qui consiste à décider si une suite d’entiers positifs peut

être réalisé par un graphe orienté comme la suite de ses déséquilibres [82]. Un autre

exemple, en 1962, Lester Ford & Delbert Fulkerson ont caractérisé les graphes mixtes

(i.e. partiellement orientés) dont l’orientation partielle peut être complétée en une

orientation eulérienne, c’est-à-dire une orientation dont le déséquilibre de chaque

sommet est nul [42]. De nombreux autres problèmes d’orientation ont été proposés,

8

Figure 3: Exemple de graphe orienté: l’entier rouge à côté de chaque sommet indique
son déséquilibre par rapport à l’orientation et ceux encadrés en vert sont égaux au
déséquilibre de l’orientation

1 0

3 0

2

certains sont recensés dans [10]. Une partie des résultat qui suivent sont détaillés

dans [14].

3.1 Complexité, Inapproximabilité et Approximabilité

Nous commençons par introduire une variante du problème de satisfaisabilité que

nous réduisons à MaxIm : le problème “not-all-equal at most 3-SAT(3V)”. Il s’agit

d’une restriction de “not-all-equal at most 3-SAT” qui est lui-même une restriction

de 3-SAT, problème NP-complet connu [91] où chaque clause contient au plus trois

littéraux et dans chaque clause, tous les littéraux ne peuvent pas être vrais simul-

tanément. La restriction additionnelle de “not-all-equal at most 3-SAT(3V)” est que

chaque variable ne peut apparâıtre plus de trois fois dans une formule, le problème

reste NP-complet. A travers la construction d’un graphe pour chaque instance du

problème “not-all-equal at most 3-SAT(3V)” dont la valeur par rapport (MaxIm)

permettra de renseigner la satisfaisabilité de ϕ, nous allons réduire ce problème au

problème (MaxIm), ce qui nous permet de conclure le résultat suivant.

Théorème 1. MaxIm est NP-complet et inapproximable à plus de 1
2

+ ε pour tout

ε ∈ R∗+, à moins que P = NP.

Nous considérons maintenant le cas des graphes bipartis: si G = (V1

⊔
V2, E)

est un graphe biparti, l’orientation consistant à affecter à chaque arête dans E une

direction de leur extrémité en V1 à leur extrémité en V2 a un déséquilibre égal à δG,

i.e. optimal. Ce cas simple permet d’obtenir le minorant suivant :

Théorème 2. Pour tout graphe G,

MaxIm(G) ≥
⌈
δG
2

⌉
− 1.

9

La preuve de ce théorème passe par la consruction d’une orientation dont le

déséquilibre est minoré par

⌈
δG
2

⌉
−1

δG
·MaxIm(G), ce qui met en évidence un algorithme

polynomial (1
2
− 1

δG
)-approché en général et (1

2
)-approché lorsque δG ≡ 0 (mod 4)

ou δG ≡ 1 (mod 4).

3.2 Caractériser les graphes tels que MaxIm(G) = 0

Nous définissons la classe de graphes Codd de la façon suivante : un graphe simple G

appartient à Codd s’il existe C1, · · · , Cn cycles impairs (n ≥ 1) tels que :

• ∪ni=1Ci = G,

• |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ J2, nK.

Alors nous montrons le résultat suivant.

Théorème 3. Pour tout graphe simple G, MaxIm(G) = 0 si et seulement si G ∈
Codd.

Nous donnons ensuite la caractérisation plus élégante suivante.

Corollary 3. Pour tout graphe simple G,

MaxIm(G) = 0⇔ G est Eulérien sans cycle pair

3.3 Algorithme exact pour les cactus

La famille de graphes présentée dans la sous-section 3.1 est un cas particulier de

cactus. Un cactus est un graphe simple connecté tel que chacune de ses arêtes est

contenue dans au plus un cycle du graphe. De façon équivalente, un cactus est

un graphe connecté tel que chaque bloc (ou sous-graphe biconnexe maximal), est

une arête simple ou un cycle. En mettant en valeur la structure arborescente des

blocs et points d’articulations d’un graphe connexe, nous présentons un algorithme

polynomial résolvant le problème (MaxIm) pour les cactus dont les valeurs possibles

sont 0,1 ou 2 car leur degré minimum est au plus 2.

Théorème 4. Pour tout cactus G, MaxIm(G) peut être calculé en temps polyno-

mial.

10

3.4 Formulations en programmation mixte

En prenant une variable d’orientation x ∈ {−1, 1}E, le problème (MaxIm) peut

être exprimé de la façon non-linéaire suivante :
maxh

s.t.

h ≤ |Bvx|, ∀v ∈ V
x ∈ {−1, 1}|E|.

Si nous prenons maintenant une version 0− 1 de cette formulation, mettons la fonc-

tion objectif au carré et linéarisons par l’ajout de variables produits, nous obtenons

la formulation linéaire en programmation mixte suivante pour (MaxIm) avec O(m2)

variables, dont O(m) sont des variables entières et O(m2) contraintes.

(MIP1)

maxh

s.t.

h ≤ d(v) + 2
∑

uv,wv∈E
uv 6=wv

Bv,uvBv,wv(4zuv,wv − 2xuv − 2xwv + 1), ∀v ∈ V

zuv,wp ≤ xuv

zuv,wp ≤ xwp

zuv,wp ≥ xuv + xwp − 1

, ∀uv, wp ∈ E, uv 6= wp

x ∈ {0, 1}|E|, zuv,wp ≥ 0, uv, wp ∈ E, uv 6= wp, h ∈ R.

Sa relaxation linéaire donne le degré minimum du graphe entré, i.e. le majorant

naturel de MaxIm(G). Nous présentons une seconde formulation en programmation

mixte avec un nombre réduit de variables et de contraintes. Outre une variable

d’orientation, cette seconde formulation met en jeu des variables indicatrices yvk
avec v ∈ V un sommet de G et k ∈ J−d(v), d(v)K interprétées comme suit: yvk = 1

si et seulement si Bvx = d+
x (v)− d−x (v) = k.

(MIP2)

maxh

s.t.

h ≤
∑

k∈J−d(v),d(v)K
k≡d(v)[2]

|k|yvk, ∀v ∈ V∑
k∈J−d(v),d(v)K
k≡d(v)[2]

yvk = 1, ∀v ∈ V∑
k∈J−d(v),d(v)K
k≡d(v)[2]

kyvk = Bix, ∀v ∈ V

x ∈ [−1; 1]|E|, yvk ∈ {0, 1}, ∀(v, k) ∈ V × J−d(v), d(v)K, s.t. k ≡ d(v)[2], h ∈ R.

11

Théorème 5. Pour tout graphe G,

MIP2(G) = MaxIm(G),

où MIP2(G) est la racine carrée de la valeur optimale de MIP2 pour G.

Cette formulation a O(m + n) variables, dont O(m) sont des variable entières

et O(n) contraintes et sa relaxation linéaire donne également le degré minimum du

graphe entré.

3.5 Renforcer (MIP2)

Nous avons mentionné précédemment la mauvaise qualité des relaxation linéaires de

(MIP1) et (MIP2) qui donnent toutes deux le degré minimum du graphe entré. Il

est possible d’améliorer la qualité de cette relaxation en ajoutant une méthode de

plans coupant à la formulation en programmation mixte par la génération de familles

d’inégalités valides pour toutes les solutions de notre problème. Nous nous sommes

concentrés sur (MIP2) étant la formulation la plus “prometteuse” selon des résultats

préliminaires. Une étude polyédrale détaillée dans la Section 5 permet d’obtenir

la famille d’inégalités suivantes valides pour l’ensemble des solutions faisables de

(MIP2) .

h ≤ u−
n∑
v=1

∑
k∈J0,u−1K

k≡d(v) (mod 2)

λvk(y
v
k + yv−k), ∀λ ∈ Λu (1)

où les sommets du graphe étudié G sont numérotés de 1 à |V | = n, et

Λu =

{
λ = (λvk)(v,k)∈J1,nK×J0,u−1K ∈ Nnu

∣∣∣∣∣ λvk+1 ≤ λvk, ∀(v, k) ∈ J1, nK× J0, u− 2K∑n
v=1 λ

v
k = u− k, ∀k ∈ J0, u− 1K

}
.

On observe que les coefficients λvk sont des entiers positifs décroissants en k. Pour

chaque k, il existe un unique v tel que λvk+1 = λvk − 1 tandis que λwk+1 = λwk pour

tout w 6= v.

Une autre famille d’inégalités valides provenant de l’étude du comportement des

variables d’orientation des arêtes incidentes à un sommet en en faisant varier le

déséquilibre du sommet peut être extraite:∑
{vu1,··· ,vup}⊆δ({v})

Bv,vuixvui +
∑

k∈J0,p−1K

2(p− k)yv2k−d(v) ≤ p. (2)

pour tout sommet v ∈ V et p ∈ J1, d(v)K.
Nous présentons une troisième famille d’inégalités valides basée le comportement

12

des variables correspondant aux sommets d’un cycle.∑
v∈V (C)

(2yvd(v) + yvd(v)−2) ≤ |V (C)|, (3)

∑
v∈V (C)

(2yv−d(v) + yv−d(v)+2) ≤ |V (C)|. (4)

où C est un cycle du graphe.

Une dernière famille similaire basée sur les cliques du graphe entrée suit:

∑
v∈V (K)

min(p−1,d(v))∑
k=0

(p− k)yvd(v)−2k ≤
p(p+ 1)

2
, ∀p ∈ J1, |K|K, (5)

∑
v∈V (K)

min(p−1,d(v))∑
k=0

(p− k)yv2k−d(v) ≤
p(p+ 1)

2
, ∀p ∈ J1, |K|K. (6)

où K est une clique du graphe entré.

Les quatre familles d’inégalités valides pour l’enveloppe convexe des solutions

de (MIP2) ont une taille exponentielle en terme de la taille du graphe entré. La

complexité de leur séparation est donc essentiel par rapport à notre objectif qui est de

les incorporer à la résolution de (MIP2) par le biais d’une méthode de plans coupants.

Nous montrons que les problèmes de séparation des familles d’inégalités (2.6), (2.7),

(2.8) and (2.9) peuvent être résolus en temps polynomial. Nous complétons ce

résultat en fournissant une méthode heuristique pour générer des inégalités de la

famille (2.10) et (2.11) à partir d’une solution courante de (MIP2) , ce qui permet

l’élaboration d’une méthode de plans coupants efficace performante pour renforcer

la formulation (MIP2) .

3.6 Résultats numériques

Nous présentons les résultats de la résolution de nos deux formulations pour un

ensemble de graphes dont la nature et la taille est très variées. Pour chaque instance,

outre les temps de calcul pour les deux formulations, nous relevons pour (MIP2) le

nombre d’inégalités générées pour chacune des familles d’inégalités valides exhibées

dans la sous-section précédente. Nous pouvons y constater la meilleure performance

de (MIP2) par rapport à (MIP1) de façon générale ainsi que l’amélioration de la

qualité de la relaxation linéaire de (MIP2) par la méthode de plans coupants qu’on

lui a intégré.

Un autre exemple de fonction objectif f du problème générique menant à un

problème d’optimisation connu est le cas f = 1
2
|| · ||1 qui va permettre d’obtenir une

13

approche originale du célèbre problème de la coupe de cardinalité maximale.

4 Coupe de cardinalité maximale

On appelle le poids d’une coupe la somme des poids des arêtes de la coupe. Le

problème de la coupe maximum consiste à trouver dans un graphe une coupe de poids

maximum. Ce problème est un problème fondamental d’optimisation combinatoire

émergeant dans de nombreuses disciplines scientifiques: intégration à très grande

échelle [11], calcul de matrices creuses [8], programmation parallèlle [24], physique

statistique [11], programmation quadratique [55], affectation de fréquences, etc. Le

problème de la coupe maximum est globalement NP-complet [67], et inapproximable

à plus de 16
17

+ ε pour tout ε > 0 à moins que P = NP [59]. En revanche, peut être

résolu en temps polynomial dans certains cas [18].

Plusieurs approches de résolution de ce problème ont été développées à travers

les années. Depuis le milieu des années 1990 et l’article novateur de Michel Goemans

et David Williamson [47], il y a eu un intérêt croissant pour les algorithmes basées

sur la programmation semi-définie positive. Leur travail présente un algorithme

0.87856-approché pour le problème de la coupe maximum. Leur méthode repose sur

la formulation semi-définie positive du problème suivante pour un graphe G = (V,E)

avec V = {1, · · · , n}.

(SDPGW)

Z?
SDPGW

max 1
2

∑
ij∈E (1− yij)

s.t.

yii = 1, ∀i ∈ J1, nK,
Y � 0,

Y ∈ Sn,

où Y représente la matrice dont la composante de la i-ème ligne et la jème colonne

est yij, Y � 0 est la contrainte exigeant la semi-définie positivité de Y , et, pour

tout entier n, on note Sn l’ensemble des matrices symmétriques d’ordre n. Cette

approche semi-définie positive du problème a également mené à des solveurs efficaces

tels que BiqMac [87] et BiqCrunch [70].

Nous considérons le problème consistant à trouver une coupe de cardinalité max-

imum , i.e. le problème de la coupe maximum où tous les poids sont égaux :

(MaxCut) MaxCut(G) = max
S⊆V
|δ(S)|.

et nous notons MaxCut(G) la valeur de MaxCut pour G.

Pour un graphe G = (V,E), nous considérons le problème de trouver une orien-

14

tation maximisant
∑

v∈V |d+(v) − d−(v)|. Ce problème est principalement motivé

par le résultat suivant.

Théorème 6. Pour tout graphe G, le cardinal d’une coupe de cardinalité maximum

est égal à la moitié du maximum de la somme des déséquilibres de tous les sommets

sur toutes les orientations de G :

(MaxCut) MaxCut(G) = max
Λ∈ #»

O(G)

1

2

∑
v∈V

|d+Λ(v) − d−Λ(v)|.

Nous voyons ici apparâıtre notre problème générique pour f = 1
2
||·||1. Différentes

approches d’amélioration du majorant fournie par la formulation (SDP0) [47] ont

été proposée dans la littérature: mise à profit de propriétés connues du polytopes

des coupes et ajout d’inégalités linéaires [40, 61], utilisation de techniques de coupes

disjonctives [3, 74].

4.1 Un nouveau majorant issu de la programmation semi-

définie positive

Nous commençons par introduire une nouvelle formulation exact de (MaxCut) sous

la forme d’un programme linéaire mixte en nombre entiers. Cette formulation met

en jeu des variables indicatrices notées yvk, avec v ∈ V et k ∈ �−d(v), d(v)� et sont

interprétées de la façon suivante : yvk = 1 si et seulement si Bvx = k.

(MIP4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z�
MIP4 = max 1

2

∑
v∈V

∑
k∈I−v ∪I+v |k|yvk

s.t.∑
k∈Iv y

v
k = 1, ∀v ∈ V,∑

k∈Iv ky
v
k =

∑
uv∈E(

∑
k∈I+v yvk −∑

k∈I+u yuk), ∀v ∈ V,

yvk ∈ {0, 1}, ∀v ∈ V, ∀k ∈ Iv.

où I−v =
�

−d(v),−
⌈
d(v)
2

⌉�
, I+v =

�⌈
d(v)
2

⌉
, d(v)

�
et Iv = I−v ∪ I+v , pour tout

v ∈ V .

La formulation (MIP4) met en jeu O(|E|) variables et O(|V |) contraintes. En

partant de (MIP4), nous introduisons maintenant des variables binaires Y uv
kl , avec

(u, v) ∈ V 2, (k, l) ∈ (I−u ∪ I+u)× (I−v ∪ I+v), représentant le produit de variables y
u
ky

v
l .

Ceci permet de renforcer (MIP4) avec des techniques reformulation et linéarisation

consistant à prendre des contraintes de a formulation de base par certaines variables

et en linéarisant grâce aux variables produits. Nous nous intéressons à la relaxation

semi-définie positive de ce renforcement.

15

(SDP5)

Z?
SDP5 = max 1

2

∑
v∈V

∑
k∈I−v ∪I+v |k|Y

vv
kk

s.t.∑
k∈Iv Y

vv
kk = 1, ∀v ∈ V,∑

k∈Iv kY
vv
kk =

∑
uv∈E

(∑
k∈I+v Y

vv
kk −

∑
k∈I+u Y

uu
kk

)
, ∀v ∈ V,

Y vv
kk =

∑
l∈Iu Y

vu
kl , ∀u, v ∈ V, ∀k ∈ Iv,

(d(v)− k)Y vv
kk =

∑
uv∈E

∑
l∈I+u Y

vu
kl , ∀v ∈ V, ∀k ∈ I+

v ,

−kY vv
kk =

∑
uv∈E

∑
l∈I+u Y

vu
kl , ∀v ∈ V, ∀k ∈ I−v ,∑

l∈Iv lY
vu
kl =

∑
uw∈E

(∑
l∈I+w Y

vw
kl −

∑
l∈I+u Y

vu
kl

)
, ∀v 6= u ∈ V, ∀k ∈ Iv,

Y −Diag(Y)Diag(Y)t � 0

Y vu
kl ≥ 0, ∀u, v ∈ V, ∀(k, l) ∈ Iv × Iu,

où Diag(Y) est le vecteur correspondant à la diagonale de la matrice Y . Pour

tout graphe G, Z?
SDPGW

et Z?
SDP5 sont tous les deux des majorants de MaxCut(G).

Proposition 4. Pour tout graphe G, Z?
SDP5 ≤ Z?

SDPGW
.

Le nouveau majorant Z?
SDP5 est exact (i.e., égal à w?) pour certaines familles

de graphes. Nous savons que Z?
SDPGW

est exacte en ce qui concerne les graphes

complets d’ordre pair mais pas pour ceux d’ordre impair. Parallèlement, Z?
SDP5 est

exacte pour tous les graphes complets. Bien que nous n’ayons encore pu le démontré,

les résultats numériques que Z?
SDP5 est exacte aussi pour les graphes roues.

4.2 Formulations en programmation mixte additionnelles

Nous présentons maintenant trois nouvelles formulations en programmation mixte

pour le problème de la coupe de cardinalité maximum basées sur notre approche du

problème comme un problème d’orientation de graphe. Ces formulations présentent

des performances numériques intéressantes. La première découle de (MIP4) en util-

isant le fait que
∑

k∈I−v y
i
k = 1 −

∑
k∈I+v y

i
k pour tout v ∈ V , ce qui nous autorise à

supprimer toutes les variables yik avec k ≤ 0. On obtient ainsi la formulation exacte

suivante.

(MIP5)

max
∑

v∈V
∑

k∈I+v ky
v
k

s.t.∑
k∈I+v y

v
k ≤ 1, ∀v ∈ V,∑

uv∈E(
∑

k∈I+v y
v
k −

∑
k∈I+u y

u
k) ≤

∑
k∈I+v ky

v
k −

⌈
d(v)

2

⌉
(1−

∑
k∈I+v y

v
k), ∀v ∈ V,∑

uv∈E(
∑

k∈I+v y
v
k −

∑
k∈I+u y

u
k) ≥

∑
k∈I+v ky

v
k − d(v)(1−

∑
k∈I+v y

v
k), ∀v ∈ V,

yvk ∈ {0, 1}, ∀v ∈ V, ∀k ∈ I+
v .

16

Elle met en jeu à peu près deux fois moins de variables que (MIP4) et présente des

performances globalement meilleures, des détails sur ces résultats se trouvent dans

la Section 3.5. Afin de réduire encore le nombre de variables dans une formulation

exacte, nous pouvons envisager d’aggréger les variables yvk avec k ∈ I+
v pour un

sommet v dans une seule variable xv égale à
∑

k∈I+v y
v
k. Ce faisant, il nous faut une

autre variable zv égale à
∑

k∈I+v ky
v
k afin de conserver l’information du déséquilibre

de v qui est nécessaire pour le calcul de la valeur de l’orientation dans la fonction

objectif. On obtient donc la formulation suivante.

(MIP7)

max
∑

v∈V z
v

s.t.⌈
d(v)

2

⌉
+
⌊
d(v)

2

⌋
xv − zv ≤

∑
uv∈E x

u ≤ d(v)− zv, ∀v ∈ V,⌈
d(v)

2

⌉
xv ≤ zv ≤ d(v)xv, ∀v ∈ V,

x ∈ {0, 1}V , z ∈ RV .

(MIP7) contient 2|V | variables, dont la moitié sont des variables entières et fait

preuve d’une meilleure performance que (MIP6) sur de nombreuses instances (voir

Section 3.5). Il y a au contraire des instances pour lesquelles (MIP7) se montre bien

moins performante que (MIP6), suggérant que ce processus d’agrégation des vari-

ables est un peu brutal. Nous proposons par conséquent une troisième formulation

pensée comme un compromis entre (MIP6), i.e. aucune aggrégation des variables

(MIP7), i.e. aggrégation totale des variables pour chaque sommet. Pour ce faire,

nous partitionnons l’interval I+
v pour chaque sommet v ∈ V : soit α > 1, nous

paramétrons notre partition par α au moyen des suites d’entiers suivantes pour

chaque sommet v ∈ V
av1 =

⌈
d(v)

2

⌉
,

avi = 1 + bvi−1, pour i > 1,

bvi = min(bα ∗ avi c , d(v)),

et prenons kv, le plus petit entir tel que bvkv = d(v). Alors, comme dans les formu-

lations (MIP4), (MIP5), (SDP5) et (MIP6), nous faisons appel à des variables indi-

catrices yvk pour chaque sommet v ∈ V et chaque k ∈ J1, kvK dont l’interprétation

est la suivante: yvk = 1 si et seulement si zv ∈ Javk, bvkK. On obtient par conséquent la

17

formulation suivante pour tout α > 1.

(MIP8[α])

max
∑

v∈V z
v

s.t.⌈
d(v)

2

⌉
+
⌊
d(v)

2

⌋
xv − zv ≤

∑
uv∈E x

u ≤ d(v)− zv, ∀v ∈ V,∑kv
k=1 y

v
k = xv, ∀v ∈ V,∑kv

k=1 a
v
ky

v
k ≤ zv ≤

∑kv
k=1 b

v
ky

v
k, ∀v ∈ V,

x ∈ [0, 1]V , yv ∈ {0, 1}kv , ∀v ∈ V, z ∈ RV .

Ces trois formulation exactes que nous donnons pour le problème de la coupe

de cardinalité maximum sont basées sur la même approche. La Figure 4 schématise

les différences théoriques entre ces formulations ainsi qu’avec (MIP4). Pour chacune

de ces formulations, en dessous d’un entier représenté sur le segment du haut, il y

a soit une zone hachurée indiquant que cet entier n’est pas considéré comme une

valeur possible de déséquilibre du sommet v dans cette formulation, soit une variable

indicatrice qui sera présente dans la formulation pour renseigner si le déséquilibre

de v prend cette valeur ou non, soit une accolade qui signifie que cette valeur fait

partie d’un intervalle correspondant tout entier à une variable indicatrice pour cette

formulation.

Figure 4: Distribution des variables indicatrices pour un sommet v sur le segment
J−d(v), d(v)K pour les formulations (MIP4), (MIP5), (MIP7) and (MIP8[α])

−d(v) −
⌈
d(v)
2

⌉
-1 0 1

⌈
d(v)
2

⌉⌈
d(v)
2

⌉
+ 1bvk avk+1 bvk+1 avk+2 bvkv−1 avkv d(v)

α
⌈
d(v)
2

⌉
α2

⌈
d(v)
2

⌉
αkv−1

⌈
d(v)
2

⌉
αkv

⌈
d(v)
2

⌉

yv−d(v) ···
yv
−
⌈
d(v)
2

⌉ yv⌈ d(v)
2

⌉ yv⌈ d(v)
2

⌉
+1 ···y

v
bv
k
yvav

k+1
··· yvbv

k+1
yvav

k+2
· · · yvbv

kv−1
yvav

kv
· · · yvd(v) (MIP4)

yv⌈ d(v)
2

⌉ yv⌈ d(v)
2

⌉
+1 ···y

v
bv
k
yvav

k+1
··· yvbv

k+1
yvav

k+2
· · · yvbv

kv−1
yvav

kv
· · · yvd(v) (MIP5)

······ ······

yv1 yvk yvk+1 yvk+2 yvkv−1 yvkv (MIP8[α])

xv (MIP7)

Dans le but de mesurer les performances absolues de nos nouvelles formulations,

nous mentionnons maintenant une dernière formulation exacte pour le problème de

la coupe de cardinalité maximum basée sur les inégalités triangulaires. Elle met en

18

jeu une variable xi,j pour chaque paire non-ordonnée de sommets {i, j} ⊂ V (i 6= j).

Elle a donc O(n2) variables et O(n3) contraintes.

(MIP9)

max
∑

ij∈E xi,j

s.t.

xi,j + xj,k + xi,k ≤ 2, ∀{i, j, k} ⊂ V, |{i, j, k}| = 3,

xi,j + xj,k − xi,k ≥ 0, ∀(i, j, k) ∈ V 3, |{i, j, k}| = 3,

xi,j ∈ {0, 1}, ∀{i, j} ⊂ V, i 6= j.

4.3 Résultats numériques

Des calculs ont été lancés afin d’évaluer la qualité de notre nouveau majorant issu

de la programmation semi-définie positive. Pour chaque instance, nous relevons

les valeurs optimales des formulations (SDPGW) et (SDP5) que nous comparons

à la valeur du problème MaxCut(G). Nous présentons également des résultats

concernant les performances des différentes formulations exactes en programmation

mixte en nombres entiers pécédemment présentées. Nous relevons les temps de calcul

de chacune des formulations exactes que nous avons introduites ainsi que celle basée

sur les inégalités triangulaires en tant que témoins de même que le temps de calcul

du solveur BiqCrunch (BC) pour chaque instance. On observe bien que Z?
SDP5 =

MaxCut(G) pour les graphes complets, ce qui semble être valable également pour

les roues (en se basant uniquement sur les résultats numériques). Les résultats

numériques montrent un écart significatif entre notre majorant et celui issu de la

relaxation de Goemans & Williamson. Regardons maintenant les temps de calcul

des formulations exactes sur des instances plus grandes.

En ce qui concerne les formulations exactes, on observe en premier lieu que

en dehors du cas des graphes aléatoires, nos nouvelles formulations ont des per-

formances globalement meilleures que la formulation des classique des inégalités

triangulaires. Plus spécifiquement, on voit que (MIP6) est globalement plus perfor-

mante que (MIP4) et sur certaines instances, (MIP6) est drastiquement meilleure

que (MIP7), alors que sur d’autres, on observe le phénomène inverse. Le plus re-

marquable est sans doute que (MIP8) étant un compromis entre (MIP6) et (MIP7),

il existe pour presque chaque instance une valeur de α pour laquelle (MIP8[α]) a le

plus petit temps de calcul.

Nous étudions à présent une famille de polyèdres faisant naturellement surface

dans la recherche d’inégalités valides pour l’ensemble des solutions de la formulation

exacte (MIP2) pour le problème de l’orientation de déséquilibre maximum. Cette

famille de polyèdres apparâıt également dans le contexte d’autres problèmes sujets

à des méthodes de résolution en programmation linéaire.

19

5 Étude polyèdrale

z1 z2 z3 · · · zn

k

...

h −→ ←− h
3
2
1

Figure 5: Sur cette grille représentant une matrice k-par-n, chaque colonne est une
variable zi et la hauteur de la cellule noire qu’elle contient correspond à sa valeur
affectée. h correspond donc à la hauteur de la ligne non-vide la plus basse (dans ce
cas, h = 4).

Nous considérons les problèmes d’optimisation combinatoire mettant en jeu n ∈
N∗ variables zi, chacune d’entre elles pouvant prendre pour valeur un entier dans

J1, kK ainsi que h ≡ minni=1 z
i. Un polytope naturellement lié à ces problèmes est le

suivant.

P = Conv

y1
k y2

k · · · ynk
...

...
. . .

...

y1
2 y2

2 · · · yn2
y1

1 y2
1 · · · yn1

 , h
 ∈Mk,n × N∗

∣∣∣∣∣∣∣
k∑
l=1

yil = 1, ∀i ∈ J1, nK,

h = min
i∈J1,nK

∑k
l=1 ly

i
l ,

 ,

où Mk,n est l’ensemble des matrices k-par-n à coefficients dans {0, 1} et les variables

yij sont interprétées de la façon suivante : yij = 1 si et seulement si zi = j. La

matrice (yij)i,j peut être vue comme une matrice binaire d’affectation où chaque

colonne contient exactement un coefficient égal à 1 et h correspond à l’indice de sa

plus basse ligne non-identiquement nulle (cf Fig. 4.1).

Une variante de P peut être obtenue en considérant l’indice de la plus haute

ligne non-identiquement nulle d’une matrice binaire d’affectation. On obtient ainsi

20

le polytope suivant :

P ′ = Conv

x1
k x2

k · · · xnk
...

...
. . .

...

x1
2 x2

2 · · · xn2
x1

1 x2
1 · · · xn1

 , g
 ∈Mk,n × N∗

∣∣∣∣∣∣∣
k∑
l=1

xil = 1, ∀i ∈ J1, nK,

g = max
i∈J1,nK

∑k
l=1 lx

i
l,

 .

Les polytopes P et P ′ apparaissent naturellement dans le contexte de divers

problèmes d’optimisation combinatoire tels que les problèmes d’affectation de fréquences

[1], les problèmes d’ordonnancement des tâches [94], le problème de la clique maxi-

mum [80] ou encore le problème de l’orientation la plus déséquilibrée dans un graphe

: (MaxIm). Ces problèmes peuvent donc grandement bénéficier d’une description

complète de ces polytopes.

Théorème 7.

P =

∑k

l=1 y
i
l = 1, ∀i ∈ J1, nK,∑k

l=2

∑n
i=1 λ

i
ly
i
l ≥ h− 1, ∀λ ∈ Λ,∑hmax−1

l=1

∑n
i=1(l − hmax)yil + hmax ≤ h, ∀hmax ∈ J1, kK,

yil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, h ∈ R,

avec

Λ =

{
λ = (λil)(i,l)∈J1,nK×J1,kK ∈ Nnk

∣∣∣∣∣ λil+1 ≥ λil, ∀(i, l) ∈ J1, nK× J1, k − 1K∑n
i=1 λ

i
l = l − 1, ∀l ∈ J1, kK

}
.

P est défini par n inégalités, kn contraintes de positivité, k contraintes du type∑hmax−1
l=1

∑n
i=1(l − hmax)yil + hmax ≤ h et nk−1 du type

∑k
l=2

∑n
i=1 λ

i
ly
i
l ≥ h − 1.

Le nombre total de contraintes est donc exponentiel. En revanche, ke problème de

séparation inhérent = P consistant à décider si un vecteur (y, h) ∈ Rnk+1 est dans

P , et si non, à retourner une contrainte de P violée par (y, h) peut être résolu en

temps polynomial. Ceci est crucial dans le contexte d’algorithmes de plans coupants

où seules les inégalités violées par la solution courante sont ajoutées au modèle, et

non toutes les inégalités.

Les formulations en programmation linéaire visant à maximiser (resp. minimiser)

l’indice de la plus basse (resp. haute) ligne non-identiquement nulle d’une matrice

d’affectation sont également liés au polytope Q (resp. Q′) décrit ci-après. Observons

qu’il est simplement éxigé de h (resp. g) qu’il soit inférieur (resp. supérieur) ou égal

à mini∈J1,nK
∑k

l=1 ly
i
l (resp. maxi∈J1,nK

∑k
l=1 lx

i
l).

21

Q = Conv

y1
k y2

k · · · ynk
...

...
. . .

...

y1
2 y2

2 · · · yn2
y1

1 y2
1 · · · yn1

 , h
 ∈Mk,n × N∗

∣∣∣∣∣
∑k

l=1 y
i
l = 1, ∀i ∈ J1, nK,

h ≤ mini∈J1,nK
∑k

l=1 ly
i
l ,

Q′ = Conv

x1
k x2

k · · · xnk
...

...
. . .

...

x1
2 x2

2 · · · xn2
x1

1 x2
1 · · · xn1

 , g
 ∈Mk,n × N∗

∣∣∣∣∣
∑k

l=1 x
i
l = 1, ∀i ∈ J1, nK,

g ≥ maxi∈J1,nK
∑k

l=1 lx
i
l,

Théorème 8.

Q =

∑k

l=1 y
i
l = 1, ∀i ∈ J1, nK,∑k

l=2

∑n
i=1 λ

i
ly
i
l ≥ h− 1, ∀λ ∈ Λ,

yil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, h ≥ 1.

De façon similaire, nous pouvons déduire que le problème de séparation inhérent

à Q peut être résolu en temps polynomial également et il en va de même pour P ′ et

Q′ dont nous donnons aussi les descriptions complètes.

Théorème 9.

P ′ =

∑k

l=1 x
i
l = 1, ∀i ∈ J1, nK,∑k−1

l=1

∑n
i=1 λ

i
lx
i
l ≤ g − k, ∀λ ∈ Λ̃,∑k

l=gmin+1

∑n
i=1(l − gmin)xil + gmin ≥ g, ∀gmin ∈ J1, kK,

xil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, g ∈ R,

Q′ =

∑k

l=1 x
i
l = 1, ∀i ∈ J1, nK,∑k−1

l=1

∑n
i=1 λ

i
lx
i
l ≤ g − k, ∀λ ∈ Λ̃,

xil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, g ≤ k

avec

Λ̃ =

{
λ = (λil)(i,l)∈J1,nK×J1,kK ∈ Nnk

∣∣∣∣∣ λil+1 ≤ λil, ∀(i, l) ∈ J1, nK× J1, k − 1K∑n
i=1 λ

i
l = k − l, ∀l ∈ J1, kK

}
.

22

6 Recherche future

Le choix de notre problème générique maxΛ∈ #»
O(G) f(d

+
Λ(v1) − d−Λ(v1), · · · , d+Λ(vn) −

d−Λ(vn)) se trouve être très pertinent car l’étude de différentes fonctions objectif f

possibles mène à une large variété de problèmes d’optimisation de graphes tels que

le problème de la coupe maximum ou le calcul du nombre isopérimétrique. Nous

avons obtenu des formulations performantes et des bornes de qualité grâce à notre

approche de ces problèmes basée sur les orientations. Nous avons également amélioré

les relaxations et donc la performance de certaines de ces formulations grâce à

l’étude d’une famille de polyèdres émergeant dans le contexte de différents problèmes

d’optimisation, étude conclue par un description complète de ces polytopes ainsi

qu’une preuve de leur séparation polynomiale. Il serait intéressant d’étudier le com-

portement de ces problèmes avec un système de poids sur les arêtes.

23

24

Abstract

The imbalance of a vertex in a directed graph is the absolute value of the difference

between its outdegree and indegree. In this thesis we study the problem of orienting

the edges of a graph in such a way that the image of the vector which components

are the imbalances of the vertices of the graph under an objective function f is

maximized. We analyze the problem for several cases of objective functions.

We study among those cases the problem of maximizing the minimum imbalance

of all the vertices over all the possible orientations of the input graph. We call this

minimum the imbalance of the orientation. The higher it gets, the more imbalanced

the orientation is. This case is denoted by MaxIm. We first characterize graphs for

which the optimal objective value of MaxIm is zero. Next we show that MaxIm is

generally NP-complete and cannot be approximated within a ratio of 1
2

+ ε for any

constant ε > 0 in polynomial time unless P = NP even if the minimum degree of

the graph δ equals 2. Then we describe a polynomial-time approximation algorithm

whose ratio is almost equal to 1
2
. An exact polynomial-time algorithm is also derived

for cacti. Finally, two mixed integer linear programming formulations are presented.

Several valid inequalities are exhibited with the related separation algorithms. The

performance of the strengthened formulations is assessed through several numerical

experiments.

Next, we show that the case for f = 1
2
|| · ||1 is the famous unweighted maxi-

mum cut problem, denoted MaxCut. We introduce some new mixed integer linear

programming formulations along with a new semidefinite relaxation shown to be

tighter than Michel Goemans & David Williamson’s semidefinite relaxation. The-

oretical and computational results regarding bounds quality and performance are

also reported.

Finally, in order to find families of valid inequalities to strengthen the linear re-

laxation of some mixed integer programming formulations of the studied problems,

we study a specific class of polytopes which hyperplane description will consist in

such targeted inequalities. Consider a {0, 1} assignment matrix where each column

contains exactly one coefficient equal to 1 and let h be the index of the lowest

row that is not identically equal to the zero row. The polytope consisting in the

25

convex hull of all feasible assignments appended with the extra parameter h nat-

urally appears in some formulations of MaxIm. We give a full description of this

polytope and some of its variants which naturally appear in the context of several

combinatorial optimization problems including, inter alia, frequency assignment, job

scheduling, maximum clique. We also show that the underlying separation problems

are solvable in polynomial time and thus linear optimization over those polytopes

can be done in polynomial time.

26

Contents

Acknowledgements 1

Résumé 5

1 Introduction et notations . 5

2 Le nombre isopérimétrique . 7

3 Maximiser le déséquilibre d’une orientation 8

3.1 Complexité, Inapproximabilité et Approximabilité 9

3.2 Caractériser les graphes tels que MaxIm(G) = 0 10

3.3 Algorithme exact pour les cactus 10

3.4 Formulations en programmation mixte 11

3.5 Renforcer (MIP2) . 12

3.6 Résultats numériques . 13

4 Coupe de cardinalité maximale . 14

4.1 Un nouveau majorant issu de la programmation semi-définie

positive . 15

4.2 Formulations en programmation mixte additionnelles 16

4.3 Résultats numériques . 19

5 Étude polyèdrale . 20

6 Recherche future . 23

Abstract 25

Contents 27

1 Introduction 31

1.1 Basic definitions and notation . 31

1.1.1 Graphs, subgraphs and cuts 31

1.1.2 Paths, trees and connectivity 32

1.1.3 Orienting the edges . 33

1.1.4 Special graphs . 34

1.2 Bases of theory of computations . 35

27

1.2.1 Complexity . 35

1.2.2 Decision problems . 35

1.2.3 Optimization problems . 36

1.3 Bases of mathematical programming 37

1.3.1 Convex polytopes . 37

1.3.2 Linear optimization . 39

1.3.3 Mixed integer linear optimization 40

1.3.4 Semidefinite optimization . 40

1.4 Graph orientation . 41

1.4.1 Degree-constrained orientation 41

1.4.2 Minimizing the maximum outdegree 44

1.4.3 Balanced vertex ordering . 44

1.4.4 Graph realizing sequences of integers 45

1.4.5 Minimizing the diameter and radius of a strong orientation . . 47

1.5 A generic problem . 48

1.6 The isoperimetric number . 49

1.6.1 Definition, interpretation and complexity 49

1.6.2 Alternative formulations and existing bounds 49

1.6.3 New upper bounds . 50

1.7 The maximum cut . 52

1.7.1 Spin glasses . 52

1.7.2 VLSI design . 53

1.7.3 Frequency assignment . 54

1.7.4 Special cases . 54

1.7.5 (In)approximibilty and the cut polytope 55

1.7.6 Goemans & Williamson’s semidefinite breakthrough 56

1.8 Outline . 58

2 Maximizing the imbalance of an orientation 59

2.1 Complexity and (in)approximability 60

2.1.1 NP-completeness . 60

2.1.2 Inapproximability . 68

2.1.3 Lower bound and approximation algorithm 68

2.1.4 Block-cut-vertex tree . 72

2.2 Characterizing the graphs for which

MaxIm(G) = 0 . 74

2.2.1 Choosing the balanced vertex 75

2.2.2 Orienting the blocks . 75

2.2.3 A first characterization . 76

28

2.2.4 A more elegant characterization 80

2.3 Exact algorithm for cacti . 83

2.3.1 A lower bound for cacti . 83

2.3.2 Characterizing the cacti for which MaxIm(G) = 2 85

2.3.3 Exact polynomial-time algorithm for cacti 93

2.4 Mixed integer linear programming formulations 93

2.4.1 A first MIP . 94

2.4.2 A more elaborated MIP . 96

2.5 Strengthening (MIP2) . 98

2.5.1 A family of valid inequalities obtained from a polyhedral study 99

2.5.2 Valid inequalities extracted from the orientation of the edges

incident to one vertex . 100

2.5.3 Valid inequalities extracted from cycle orientation 101

2.5.4 Valid inequalities extracted from clique orientation 103

2.6 Computational results . 104

2.6.1 Implementation scheme . 105

2.6.2 Guinea-pig graphs . 106

2.6.3 Results . 108

3 The maximum cardinality cut 111

3.1 Maximum cardinality cut and orientation 111

3.1.1 Orienting the edges partitions the vertices 112

3.1.2 Vice versa . 113

3.2 Mixed integer linear programming formulations 114

3.2.1 A first näıve formulation . 114

3.2.2 The orientation variables become redundant 115

3.2.3 A stronger MIP . 117

3.3 A semidefinite programming bound 119

3.3.1 Handling SDP constraints . 119

3.3.2 Relaxing MIP5 into SDP . 122

3.3.3 Domination of the new upper bound 123

3.3.4 Exactness for complete graphs 125

3.4 Further mixed integer linear programming formulations 129

3.4.1 A cleaned-up all-indicator-variables formulation 130

3.4.2 Aggregation of the variables 131

3.4.3 Partial aggregation . 133

3.4.4 Weighing the exact formulations 135

3.5 Computational experiments . 136

3.5.1 Configuration and instances 136

29

3.5.2 Results of the SDP formulations 139

3.5.3 Results of the MIP formulations 142

4 Study of the polytopes related to the index of the lowest nonzero

row of an assignment matrix 145

4.0.1 Definition of the polytopes . 146

4.1 Motivations . 147

4.1.1 MaxIm . 147

4.1.2 Minimum-span frequency assignment 148

4.1.3 Minimum makespan scheduling 149

4.2 A full description of P . 150

4.2.1 Definition of the hyperplanes 150

4.2.2 Proof of the hyperplane representation 151

4.3 Separation problem . 157

4.4 Variants . 158

4.4.1 Modified Polytopes . 158

4.4.2 Opposite polytopes . 159

4.5 An alternative description by Balas’s lift-and-project technique 159

4.5.1 P as the convex hull of the union of easily describable polyhedra160

4.5.2 Deriving an alternative description for P and its variants . . . 161

5 Conclusion and future research 163

Appendices 173

A Proof of Lemma 21 173

B Publications, Conferences and Award 176

30

Chapter 1

Introduction

1.1 Basic definitions and notation

1.1.1 Graphs, subgraphs and cuts

A graph is an ordered pair G = (V,E) comprising a set V 6= ∅ of vertices (or nodes)

together with a set E of edges, which are 2-elements subsets of V . For an edge

e = {u, v} ∈ E (i.e. u, v ∈ V and u 6= v), we say that

• e is incident to u and v,

• u and v are the endpoints of e,

• u and v are adjacent,

• u and v are connected,

• u and v are neighbours,

and e will simply be denoted as uv or vu. Typically, a graph is represented in

diagrammatic form as dots symbolizing the vertices, connected by lines (which length

of shape is irrelevant) symbolizing the edges. This definition of a graph is often given

under the name of simple and/or unweighted graph to avoid ambiguity. Simple as

opposed to multigraph which allows the presence of multiple edges connecting two

vertices as well as loop edges, connecting a vertex to itself. Unweighted to stipulate

the absences of weights on edges and/or vertices. We shall deal with no multigraph

and seldom use weights, that is never without specifying it precisely beforehand.

We therefore stick with our denomination of an unweighted simple graph simply as

a graph.

A subgraph of G is another graph formed from a subset of the vertices and edges

of G with the constraint that its vertex subset must contain all the endpoints of the

31

edges of the edge subset. An induced subgraph is one that includes all the edges

whose endpoints belong to the vertex subset. For any graph or subgraph H we will

use the notations V (H) and E(H) to refer to the set of vertices of H and the set

of edges of H respectively. By extension, for a subset of vertices S ⊆ V , G(S) will

denote the subraph of G induced by S and E(S) will denote its set of edges, in other

words, all the edges having both endpoints in S.

For a vertex v ∈ V , we call the neighbourhood of v in G the set of neighbours of v

in G and denote it NG(v) or N(v). Then we call the degree of v in G the cardinality

of the neighbourhood of v in G (i.e. the number of edges of G adjacent to v). The

degree of v in G is denoted by dG(v) or d(v) and the minimum (resp. maximum)

degree of the vertices of G is denoted by δG (resp. ∆G). Given an edge subset T , the

incidence vector of T denoted xT is the element of {0, 1}|E| where xTe = 1 if and only

if e ∈ T . Given a node subset S ⊆ V , the cut defined by S, denoted δ(S), is the set

of edges having exactly one endpoint in S, i.e. δ(S) = {uv ∈ E : |{u, v} ∩ S| = 1}.
An example is depicted in Figure 1.1.

Figure 1.1: Example of a cut (thicker edges in red) defined by a dashed-circled
subset of vertices S ⊆ V

S

1.1.2 Paths, trees and connectivity

Let (u, v) ∈ V 2 be a pair of vertices of V , a path between (or connecting) u and

v (or uv-path) is a finite sequence of vertices p = (u1, · · · , uk) such that u1 = u,

uk = v and uiui+1 ∈ E, ∀i ∈ J1, k−1K; its length is then k−1. A path is therefore a

subset of vertices, it can also be seen as a subgraph of G with V (p) = {u1, · · · , uk}
and E(p) = {u1u2, · · · , uk−1uk}. If no two vertices in (u1, · · · , uk) are equal (except

for u1 and uk possibly), then p is called an elementary path and if u = v, then p

is called a cycle. We talk of even (resp. odd) cycle for a cycle of even (resp. odd)

length. A cycle of length 3 is called a triangle and an edge connecting two non-

consecutive vertices of a cycle is called a chord of the cycle, it is therefore an edge

of the subgraph induced by the cycle, but not an edge of the cycle as a subgraph. A

32

graph that contains no cycle is called a forest. The distance between two vertices u

and v in G denoted d(u, v) is the length of a shortest path (i.e. a path with minimal

length) connecting u and v in G (by convention, d(u, u) = 0 for any vertex u and

d(u, v) = +∞ if there is no uv-chain). The diameter of G is the largest distance

between any two distinct vertices of G, i.e. max(u,v)∈V 2 d(u, v). The radius of G

is the minimum distance between a vertex in G and the vertex most distant from

it in G, i.e. minu∈V maxv∈V d(u, v). If there is a path connecting any two distinct

vertices in G, then G is connected. A graph is therefore connected if and only if its

diameter is finite. A connected forest is called a tree. A connected component of

G is a maximal connected subgraph of G and we will denote by π(G) the number

of connected components of G. A graph is therefore connected if and only if it has

one connected component and a connected component of a forest is a tree. A vertex

v ∈ V of G is a cut-vertex if π(G(V \{v})) > π(G). Correspondingly, an edge of G

is a bridge if its removal strictly increases the number of connected components in

G. If G has no cut-vertex, then it is biconnected (or 2-connected). A biconnected

component (or block) of G is a maximal biconnected subgraph of G.

1.1.3 Orienting the edges

An edge e = {u, v} ∈ E can be assigned an orientation (or direction), that is its

endpoints are ordered, one of them is called the origin and the other the destination

and e is then said to be oriented (or directed) from the origin to the destination. An

oriented edge is called an arc and is therefore an oriented pair of distinct vertices.

An arc a = (u, v) ∈ V 2 (i.e. u �= v) is denoted by # »uv or # »vu and we say that a is

an outgoing (resp. incoming) arc (or edge) of u (resp. v). By extension, we call an

orientation of G an assignment of a direction to each (undirected) edge uv in E, i.e.

any function on E such that Λ(uv) ∈ { # »uv, # »vu}, ∀{uv} ∈ E. Let
#»

O(G) denote the

set of all the orientations of G.

If G is given an orientation Λ ∈ #»

O(G) and a path p = (u = u1, · · · , uk = v) is

such that Λ(uiui+1) =
»uiui+1, ∀i ∈ �1, k − 1�, then p is called a directed path from

u to v, and if p is a cycle, then it is called a circuit. An orientation that contains

no circuit is called acyclic. If for any two distinct vertices u and v of G there exists

a directed path from u to v and a directed path from v to u w.r.t. Λ, then Λ is

called a strong (or strongly connected) orientation and G oriented by Λ is said to be

strongly connected. For two vertices u and v of G, the directed distance from u to v

in G w.r.t. Λ denoted dΛ(u, v) is the length of the shortest directed path from u to

v. In contrast with the (undirected) distance, dΛ(u, v) does not necessarily coincide

with dΛ(v, u), it is even possible that only one of them is finite. The diameter of Λ

is the largest distance from a vertex in G to another distinct vertex in G w.r.t. Λ,

33

i.e. max(u,v)∈V 2 dΛ(u, v). The radius of Λ is the minimum distance from a vertex in

G to the vertex most distant from it in G w.r.t Λ, i.e. minu∈V maxv∈V dΛ(u, v). An

orientation is strong if and only if its diameter is finite.

For an orientation Λ ∈ #»

O(G), we call the number of outgoing (resp. incoming)

arcs of a vertex v ∈ V w.r.t. Λ the outdegree (resp. indegree) of v in G w.r.t. Λ,

denoted by d+Λ(v) or d
+(v) (resp. d−Λ(v) or d

−(v)). Let v ∈ V , We call |d+Λ(v)−d−Λ(v)|
the imbalance of v w.r.t. Λ and d+Λ(v) − d−Λ(v) the signed imbalance of v w.r.t. Λ.

Figure 1.2 shows an oriented graph where the imbalances of the vertices are shown

in red and the imbalance of the orientation is squared in green.

Figure 1.2: Example of an oriented graph: the red integer next to each vertex is its
imbalance w.r.t. the orientation and those which are inside a green square equal the
imbalance of the orientation

1 0

3 0

2

1.1.4 Special graphs

G is said to be bipartite if V can be partitioned into two subsets V1 and V2 such

that each edge in E has exactly one endpoint in V1. In other words, it is a graph

for which there is a subset of vertices S ⊆ V such that δ(S) = E (namely V1 or

V2). A bipartite graph can be denoted G = (V1, V2, E). A complete graph is a graph

for which every pair of distinct vertices is connected. The complete graph with n

vertices is denoted Kn and has
(
n
2

)
edges. A graph is said to be planar if it can be

embedded in he plane, i.e. it can be drawn on the plane in such a way that its edges

intersect only at their endpoints (that is to say no edges cross each other). In a

graph, an edge contraction is an operation consisting in the removal of an edge from

the graph followed by the merger of the two vertices it used to connect. A graph H

is called a minor of the graph G if it can be formed from G by a sequence of edge

deletion, vertex deletion and edge contraction; G is then said to be contractible to

H.

34

1.2 Bases of theory of computations

1.2.1 Complexity

The complexity (or time complexity as opposed to space complexity) of an algorithm

quantifies the number of elementary operations performed by the algorithm as a

function of size n of the input. Since this quantity may vary with different inputs

of the same size, the worst case is considered, that is the maximum number of

elementary operations performed on any input of size n. The complexity of an

algorithm is commonly expressed as an element of the set O(g(n)) defined for some

function g ∈ R+N as follows. For a function f ∈ R+N, f ∈ O(g) (or f(n) ∈ O(g(n)))

if

∃(N,m)N× R+ s.t. ∀n ∈ Jn,+∞K, f(n) ≤ mg(n).

The use of those sets of functions to qualify the complexity of an algorithm excludes

coefficients and lower order terms, describing it “asymptotically”. As a common

abuse of notations, if the complexity of an algorithm is f(n) ∈ O(g(n)), we say that

the complexity of the algorithm is O(g(n)). If the complexity of an algorithm is a

polynomial of the input size n, then it is called a polynomial (or polynomial-time)

algorithm.

1.2.2 Decision problems

A decision problem is a problem that has only two possible outputs - “yes” or “no”

- on any input. The complexity class P is the set of all the decision problems that

can be solved using a polynomial-time algorithm. For example, in 2002, Agrawal et

al. gave a polynomial-time algorithm to test if a positive integer is a prime number,

thus showing that this problem belongs to P[2]. The complexity class NP is the set

of all the decision problems for which the answer is “yes” can be verified using a

polynomial-time algorithm. For example, let us consider the subset sum problem;

given a set of integers, is there a non-empty subset whose sum is zero? There is no

known polynomial time algorithm that can answer this question for any input. And

yet if given such a subset, it is very easy to check whether its sum is zero, that is if

a solution is given to the problem, answering “yes”, there exists a polynomial-time

algorithm that can verify if the proposed answer is in fact a solution answering “yes”

to the decision problem. Although it is clear that P ⊂ NP the opposite isn’t quite

clear, in fact the question of the coincidence of P and NP is one of the principal

open problems in computer science today. We say that a problem A is reducible to

a problem B if a polynomial algorithm solving B (whether it exists or not) could

be used as an elementary operation in a polynomial algorithm solving A. If A is

35

reducible to B, the solving A cannot be “harder” than solving B (“harder” here

means having a higher “asymptotic” complexity). A problem A belonging to NPis

said to be NP-complete if any problem of NP is reducible to A. A problem A (not

necessarily belonging to NP) is said to be NP-hard if any problem of NP is reducible

to A. Therefore, A NP-hard problem is NP-complete if and only if it belongs to

NP. The relationship between those classes of complexity is illustrated in Figure

1.3, taking into account the coincidence or difference of P and NP.

Figure 1.3: Euler diagram for P, NP, NP-complete and NP-hard sets of problems
according to either assumption of the P versus NP problem. Retrieved from the
Wikipedia entry “P versus NP” (https://en.wikipedia.org/wiki/P_versus_NP_
problem)

C
om

p
le

x
it

y

P 6= NP P= NP

NP-Hard

NP-complete

P

NP

NP-Hard

P= NP=NP-complete

1.2.3 Optimization problems

An optimization problem is the problem of maximizing (or minimizing) an objective

value under certain constraints: the input defines the constraint (for a given input,

the constraints are set and we speak of an instance of the problem) and the out-

put is the maximum (or minimum) objective value or optimal objective value. An

optimization problem A has an inherent parameterized decision problem A(k) that

consists in answering for a given input if the output w.r.t. A is larger than k. If

there is a k for which A(k) is NP-complete (resp. NP-hard), then as an abuse of

36

https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/P_versus_NP_problem

language, we say that A is NP-complete (resp. NP-hard). For a maximization (resp.

minimization) problem, an approximation algorithm of ratio ρ < 1 (resp. ρ > 1),

or ρ-approximation algorithm, is an algorithm which value ALG(x) for an input x

verifies

ρOPT (x) ≤ALG(x) ≤ OPT (x),

resp. OPT (x) ≤ALG(x) ≤ ρOPT (x),

for any input x, where OPT (x) is the optimal objective value of the problem for the

input x.

1.3 Bases of mathematical programming

1.3.1 Convex polytopes

We denote Mk×n(R) the set of matrices with k rows, n columns and which compo-

nents are elements of R. A convex polytope P of dimensions n ∈ N is a convex set of

points in Rn with a finite number of extreme points (its vertices). It may be defined

in several ways, two of which will catch our attention:

• as the convex hull of a finite set of points: P = Conv{x1, ..., xk} for some

{x1, ..., xk} ⊂ Rn,

• as the intersection of a finite number of half-spaces: P = {x ∈ Rn|Ax ≤ b} for

some matrix A ∈Mk×n(R) and column vector b ∈ Rk.

The latter is called an hyperplane representation of P . Both definitions allow the

empty set as a convex polytope, realized either as the convex hull of an empty set of

points or the intersection of an empty set of half-spaces. The second definition also

allows unbounded convex polytopes which are included in our definition of convex

polytopes, even though they can’t be realized as the convex hull of a finite set of

points. A face of P is the intersection of P with a closed half-space whose boundary

is disjoint from the interior of P . From this definition it follows that the set of faces

of a polytope includes the polytope itself and the empty set. If n is the dimension

of P , then a facet of P is a face of P which dimension is n − 1. An hyperplane is

said to be facet-defining for P if its intersection with P is a facet of P . Consider the

2-dimensional polytope Pex presented in Figure 1.4, the hyperplane {y = 5
9
x + 39

9
}

defines two faces: the whole polytope Pex (the intersection of Pex with {y ≥ 5
9
x+ 39

9
})

and the empty-face (the intersection of Pex with {y ≤ 5
9
x+ 39

9
}) with dimension −1

37

(by convention). The hyperplane {y = −3x + 14} defines two faces: the whole

polytope Pex (the intersection of Pex with {y ≥ −3x+ 14}) and the point (3, 5) (the

intersection of Pex with {y ≤ −3x + 14}) which is a face with dimension 0. The

hyperplane {y = 3x− 4} defines two faces: the whole polytope Pex (the intersection

of Pex with {y ≤ 3x−4}) and the segment [(3, 5), (4, 8)] (the intersection of Pex with

{y ≥ 3x− 4}) which is a face with dimension 1, i.e. a facet of Pex. The hyperplane

{y = 3x− 4} is therefore facet-defining for Pex, and by extensions, we say the same

for y ≤ 3x − 4 which is a valid inequality for Pex (that is verified by all points in

Pex) that defines a half-space which boundary intersects Pex in a facet of Pex.

The separation problem inherent to P defined by an hyperplane representation

consists in deciding if a point x ∈ Rn belongs to P and if not, returning a constraint

of P violated by x. By extension, one can talk of the separation problem inherent

to a set of inequalities as well.

Figure 1.4: Example of half-spaces defining faces of a 2-dimensional polytope P

x

y

Pex

y = 5
9
x+ 39

9

y = 3x− 4y = −3x+ 14

38

1.3.2 Linear optimization

A linear program (or LP) is an optimization problem consisting in maximizing (or

minimizing) a linear objective function f of Rn over a convex polytope: maxx∈P f(x)

or, given an hyperplane representation of P ,
max f(x)

s.t.

Ax ≤ b.

In 1979, Leonid Khachiyan presented the first polynomial time algorithm to solve

linear programs: the ellipsoid method [68], but a larger theoretical and practical

breakthrough was brought by Narendra Karmarkar in 1984 showing that interior

point methods can solve linear optimization in polynomial time [66]. The fact that

the ellipsoid method works in polynomial time means that the complexity of the al-

gorithm is a polynomial of the size of the input convex polytope. More precisely, the

ellipsoid method uses a separation algorithm on P as a subroutine. So its polynomial

complexity is therefore dependent on the polynomial complexity of this subroutine.

In other words, if the linear program is the formulation of an optimization problem

from which input we derive a convex polytope, then the size of the polytope may not

be a polynomial of the size of the problem’s input, thus compromising the polyno-

mial complexity of Khachiyan’s algorithm for this problem. Martin Grötschel et al.

therefore showed that, through the ellipsoid method, the optimization problem over

a convex polytope has polynomial complexity if and only if the separation problem

inherent to this convex polytope has polynomial complexity [51].

Before these theoretical considerations about linear optimization, over the course

of 1946 and 1947, George Dantzig designed the Simplex Algorithm to solve linear

programs [30]. The algorithm is based on the fact that if the objective function

has a maximum value on a convex polytope with at least one vertex (otherwise it

is a half-space and every point on its border is an optimal solution), then it has

this value on (at least) one of its vertices. If a vertex is not a maximum point

w.r.t. the objective function, then there is an edge containing the point so that the

objective function is strictly increasing on the edge moving away from the point. If

the edge leads to another vertex, it has a greater objective value than the precedent.

The simplex algorithm uses this insight by walking along edges of the polytope to

vertices with greater and greater objective value until the maximum value is reached.

Even though we have no guarantee concerning the complexity of this algorithm, it is

remarkably efficient in practice and was a great improvement over earlier methods

and is still today the cornerstone of most linear optimization solvers used in many

fields, our work included.

39

1.3.3 Mixed integer linear optimization

A mixed integer linear program (or MIP) is a linear program with the added con-

straint that some (or all) variables must be integer valued, they are then called

integer variables. The minimum vertex cover problem consisting in finding a mini-

mum subset of vertices in a graph such all the edges are incident with at least one

vertex in the subset is a NP-complete problem [67] that can be reduced to mixed

integer linear optimization, showing that it is a generally NP-hard problem. The

most common method used to solve mixed integer linear programs and thus most

NP-hard combinatorial optimization problems is the branch & bound algorithm first

proposed by Alisa Land & Alison Doig in 1960 [71]. It consists in alternating two

sorts of steps: splitting the set of solutions (i.e. integer valued points in the convex

polytope) into smaller spaces (this step is called branching), and computing bounds

on the objective value of the solutions in the solution subsets in order to eliminate

those not containing optimal solutions (this step is called bounding). To improve

the performance of a method solving mixed integer programs, one can put to use

a known set of inequalities verified by any solution of the problem. It consists in

solving the linear program inherent to the mixed integer linear program at hand

and then solving the separation problem inherent to the afore-mentioned set of in-

equalities with the fractional optimal solution. If the separation returns a violated

inequality, then it can be added to the linear program in order to obtain a fractional

optimal solution which value is “closer” to that of the optimal solution. This method

called cutting-plane introduced by Ralph Gomory in the 1950s highlights the appeal

for the separation problem inherent to a set of inequalities to be solvable in polyno-

mial time. Cutting planes have been studied and considered by many people, some

papers aim at strengthening the use of various cuts such as Chvtal-Gomory cuts and

Gomory fractional cuts (e.g. [76]). If this method is a step added in the process of

a branch a bound algorithm, it is then called a branch & cut algorithm.

1.3.4 Semidefinite optimization

A matrix M ∈Mn×n(R) is positive semidefinite if xᵀMx ≥ 0 for all x ∈ Rn, and we

denote M � 0. For any matrix A ∈ Mn×n(R), the matrix AᵀA is positive semidefi-

nite and conversely, any positive semidefinite matrix M can be written as M = AᵀA

with A ∈Mn×n(R) that can be obtained in polynomial time. A semidefinite program

40

(or SDP) is a problem that can be formulated as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max f(X)

s.t.

AiX ≤ bi, ∀i ∈ �1,m�
X � 0.

In other words, semidefinite programs are a generalization of linear programs where

instead of using real variables, we use a real-valued positive semidefinite matrix for

variable and we are allowed to take the dot product of matrices in the constraints.

Tractability-wise, most interior point methods used to solve linear programs have

been generalized to solve semidefinite programs. As in linear optimization, these

methods have polynomial complexity and perform well in practice with the difference

that they output the value of the SDP up to an additive error ε > 0 and their

complexity is therefore a polynomial of the input size and log(1
ε
). More about

semidefinite programs can be found in [93].

1.4 Graph orientation

Graph orientation is a well studied area in graph theory and combinatorial opti-

mization. A large variety of constrained orientations as well as objective functions

have been considered so far.

1.4.1 Degree-constrained orientation

Among all the considered constraints arise the popular degree-constrained orienta-

tion problems: in 1976, András Frank & András Gyárfás [43] gave a simple charac-

terization of the existence of an orientation such that the outdgree of each vertex is

between a lower and an upper bound.

Theorem 5 (Frank & Gyárfás, 1976). Let G = (V,E) be a graph and take L : V →
Z+ and U : V → Z+ ∪ {∞} two functions mapping each vertex in V to respectively

a lower bound and an upper bound such that L(v) ≤ U(v), ∀v ∈ V . Then we have

 There exists an orientation Λ ∈ #»

O(G) such that d+Λ(v) ≥ L(v), ∀v ∈ V if and

only if

|E(S)| + |δ(S)| ≥
∑
v∈S

L(v), ∀S ⊆ V. (1.1)

 There exists an orientation Λ ∈ #»

O(G) such that d+Λ(v) ≤ U(v), ∀v ∈ V if and

41

only if

|E(S)| ≤
∑
v∈S

U(v), ∀S ⊆ V. (1.2)

 There exists an orientation Λ ∈ #»

O(G) such that L(v) ≤ d+(v) ≤ U(v), ∀v ∈ V

if and only if G satisfies (1.1) and (1.2).

The proof can either be approached using results on flows or with straightfor-

wards graph arguments. The latter leads to a proof from which a polynomial-time

algorithm can be derived which finds a desired orientation or a proof of its non-

existence. This result has many consequences, one of which is the renowned mar-

riage theorem which characterizes the existence of a perfect matching (a subset of

non incident edges which endpoints cover all V , e.g. Figure 1.5) in a bipartite graph.

Note that a bipartite graph G = (V1, V2, E) possesses a perfect matching if and only

if there exists an orientation Λ ∈ #»

O(G) such that

⎧⎨
⎩d+Λ(v) = 1, ∀v ∈ V1,

d+Λ(v) = d(v) − 1, ∀v ∈ V2.

Then the marriage theorem is a natural result of Theorem 5.

Figure 1.5: Example of a perfect matching: thicker edges in red

Corollary 6 (Hall’s marriage theorem, 1935). Let G = (V1, V2, E) be a bipartite

graph. There exists a perfect matching of G if and only if

|S| ≤ |N(S)|, ∀S ⊆ V.

Where N(S) is the union of all the neighbourhoods of the vertices in S.

Closely related to Theorem 5, Marek Chrobak & David Eppstein give in [26]

linear time algorithms to build a 3-bounded outdegree orientation (i.e. an orientation

such that the outdegree of every vertices is lower than or equal to 3) and a 5-bounded

outdegree acyclic orientation.

A similar result can be given concerning strong orientations, it is associated with

Herbert Robbin’s Theorem [88].

42

Theorem 7 (Robbins’ Theorem, 1939). A connected graph G has a strong orienta-

tion if and only if it has no bridge.

Fan Chung provided a linear time algorithm for checking whether a graph has

such an orientation and finding one if it does [27]. The generalization of Robbins’

Theorem given by Frank & Gyárfás follows.

Theorem 8 (Frank & Gyárfás, 1976). Let G = (V,E) be a graph with no bridge

and take L : V → Z+ and U : V → Z+ ∪ {∞} two functions mapping each vertex in

V to respectively a lower bound and an upper bound such that L(v) ≤ U(v), ∀v ∈ V .

Then we have

 There exists a strong orientation Λ ∈ #»

O(G) such that d+Λ(v) ≥ L(v), ∀v ∈ V

if and only if

|E(S)| + |δ(S)| ≥
∑
v∈S

L(v) + π(G(V \S)), ∀S ⊆ V, S �= ∅. (1.3)

 There exists a strong orientation Λ ∈ #»

O(G) such that d+Λ(v) ≤ U(v), ∀v ∈ V

if and only if

|E(S)| + π(G(V \S)) ≤
∑
v∈S

U(v), ∀S ⊆ V, S �= ∅. (1.4)

 There exists a strong orientation Λ ∈ #»

O(G) such that L(v) ≤ d+(v) ≤
U(v), ∀v ∈ V if and only if G satisfies (1.3) and (1.4).

Theorems 5 and 8 remain valid replacing all occurrences of outdegree by indegree.

Another generalization of Robbin’s Theorem was given by Crispin Nash-Williams

and deals with high arc-strength and edge-connectivity in a graph [83]. A connected

graph is k-edge-connected if the removal of any k − 1 of its edges does not impair

its connectivity and a strong orientation of a graph is k-arc-strong if its restriction

on the graph after the removal of any k − 1 edges of the graph is strong. Therefore,

a connected graph is 2-edge-connected if and only if it has no bridge.

Theorem 9 (Nash-Williams’ orientation Theorem, 1960). A graph admits a k-arc-

strong orientation if and only if it is 2k-edge-connected.

Details about the previous results and many others on orientations and directed

graphs in general can be found in [10].

43

1.4.2 Minimizing the maximum outdegree

In 2004, Venkat Venkateswaran presented the problem consisting in finding an ori-

entation of a graph such that the maximum outdegree is minimized [95]:

(MinMaxOut) min
Λ∈ #»

O(G)
max
v∈V

d+Λ(v).

A problem of this type arises in the design of restorable telecommunication networks.

He gives a polynomial time algorithm with complexity O(|E|2). A few years later,

Yuichi Asahiro et al. present their work on the MinMaxOut [4, 5, 6] which they

motivate as a discretization of the art gallery problem and give an algorithm with

better time complexity than Venkateswaran’s. They also study the weighted version

of the problem where the edges of the input graph are associated with a weight

(i.e. a positive real number) and the problem then consists in finding an orientation

minimizing the maximum weighted outdegree of a vertex, i.e. the sum of the weights

of its outgoing edges. They give a polynomial time algorithm for trees and show

that the MinMaxOut is generally NP-complete by a reduction from the partition

problem (the problem of partitioning a set of numbers into two equal-sum subsets).

They give several approximation algorithms for special cases of weight sets and show

that the general problem is inapproximable within less than 3/2 unless P = NP by a

reduction from 3-SAT (a NP-complete problem detailed in Chapter 2, Section 2.1).

Various newer results about MinMaxOut and some variations can be found in [7].

1.4.3 Balanced vertex ordering

Therese Biedl et al. studied the problem of finding an acyclic orientation of un-

weighted graphs minimizing the sum of the imbalances of all the vertices:

(MinIm) min
Λ∈ #»

O(G)
Λ acyclic

∑
v∈V

|d+Λ(v) − d−Λ(v)|.

The problem is trivial without the acyclicity constraint on the orientation, the opti-

mal objective value then is the number of odd-degree vertices in the input graph. An

acyclic orientation can be simply built by giving an order to the vertices and then

orient all the edges of the graph from “left to right”, that is to say from its lowest

endpoint w.r.t. said order to its greatest. Biedl et al. accordingly called the problem

“Balanced vertex ordering” (cf Figure 1.6. They give polynomial time algorithms

to solve MinIm for trees and graphs with maximum degree at most three and they

show that it is NP-complete generally by a reduction from not-all-equal 3-SAT (a

NP-complete problem detailed in Chapter 2, Section 2.1) and remains NP-complete

44

for bipartite graphs with maximum degree six. They also give a 13
8

-approximation

algorithm for the general problem and show that the weighted version of the problem

is NP-complete even if the input graph is a tree. Two years later, Jan Kára et al.

closed the gap proving the NP-completeness of MinIm for graphs with maximum

degree four. Furthermore, they show that the problem remains NP-complete for

planar graphs with maximum degree four and for 5-regular graphs [65].

Figure 1.6: Example of a vertex ordering, i.e. acyclic orientation of the edges

(a) The input graph

3

5

2 4

1

(b) Assigning an order on the
vertices

1 2 3 4 5

(c) Orientation of the edges derived from
the order on the vertices

1.4.4 Graph realizing sequences of integers

Graph orientation problems also appear in variations of the graph realization prob-

lem which is a decision problem consisting in deciding for a finite sequence (d1, · · · , dn) ∈
Nn if there exists a graph such that (d1, · · · , dn) is the degree sequence of this graph.

If this is the case, then the sequence is said to be graphic. The problem can be solved

in polynomial time. This follows from Erdős-Gallai Theorem [37] stating a simple

characterization of the graphic sequences.

45

Theorem 10 (Erdős-Gallai Theorem, 1960). A sequence (d1, · · · , dn) ∈ Nn such

that d1 ≥ · · · ≥ dn is a graphic sequence if and only if
∑n

i=1 di is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di, k), ∀k ∈ J1, nK.

An example of a graphic sequence realized by a graph can be found in Figure

1.7.

Figure 1.7: Example of a graphic sequence

(3, 3, 2, 2, 2) −→

Additionally, a solution can be quickly computed using the Havel-Hakimi algorithm[60,

54] which constructs a special solution with the use of a recursive algorithm. In

parallel, Hyman Landau worked on a similar problem concerning tournaments, i.e.

oriented complete graphs. The problem consists in deciding for a finite sequence

(d1, · · · , dn) ∈ Nn if there exists an orientation of the complete graph Kn such that

(d1, · · · , dn) is the outdegree sequence (or score sequence) of this orientation. He

gives the following simple characterization for score sequences.

Theorem 11 (Landau’s Theorem, 1953). A sequence d1, · · · , dn) ∈ Nn such that

(d1 ≤ · · · ≤ dn) is a score sequence if and only if
∑n

i=1 di =
(
n
2

)
and

k∑
i=1

di ≥
(
k

2

)
, ∀k ∈ J1, n− 1K.

An example of a score sequence realized by a tournament can be found in Figure

1.8, notice that the orientation of its edges is strong. Later, Frank Harary & Leo

Moser characterized score sequences of strongly connected tournaments [56].

Theorem 12 (Harary & Moser, 1966). A sequence (d1, · · · , dn) ∈ Nn such that

d1 ≤ · · · ≤ dn and ≥ 3 is the score sequence of a strongly connected tournament if

and only if
∑n

i=1 di =
(
n
2

)
and

k∑
i=1

di >

(
k

2

)
, ∀k ∈ J1, n− 1K.

46

Figure 1.8: Example of a score sequence

(1, 1, 2, 2) −→

Analogous realizability results for the “signed imbalance sequences” of directed

graphs are given by Dhruv Mubayi et al. [82]. They give a simple characterization

for a sequence (d1, · · · , dn) ∈ Zn to be the signed imbalance sequence of an oriented

graph.

Theorem 13 (Mubayi et al., 1998). A sequence (d1, · · · , dn) ∈ Nn such that d1 ≥
· · · ≥ dn is the signed imbalance sequence of an oriented graph if and only if∑n

i=1 di = 0 and
k∑
i=1

di ≤ k(n− k), ∀k ∈ J1, n− 1K.

An example of a signed imbalance sequence realized by an oriented graph can

be found in Figure 1.9.

Figure 1.9: Example of a signed imbalance sequence

(−3, 0, 0, 1, 2) −→

1.4.5 Minimizing the diameter and radius of a strong ori-

entation

Another example of graph orientation problem is the search of strong orientations

with minimum diameter or radius in a graph introduced in 1978 by Václav Chv́atal

& Carsten Thomassen [28]. They showed that it is NP-hard to decide whether a

graph admits an orientation of diameter 2 and that it is NP-hard to decide whether

a graph admits an orientation of radius 2. It was then proven to be NP-hard even

if the graph is restricted to a subset of chordal graphs by Fedor Fomin et al. (2004)

who gave also approximability and inapproximability results [41].

47

1.5 A generic problem

We have just given here a sample of the various studies on graph orientation prob-

lems, concentrating our concern on degree optimization and imbalance. Our work is

focused on problems which consist in maximizing the image of the n-tuple (d+Λ(v1)−
d−Λ(v1), · · · , d+Λ(vn) − d−Λ(vn)) under a function f : Rn → R over all the orientations

Λ of the graph G. In other words, the problems consist in finding an orientation

that optimizes the imbalance of the vertices w.r.t. the objective function f :

Generic Problem.

max
Λ∈ #»

O(G)
f(d+Λ(v1) − d−Λ(v1), · · · , d+Λ(vn) − d−Λ(vn)).

Now consider an arbitrary orientation ofG and let B ∈ M|V |×|E|({−1, 0, 1}) stand
for the incidence matrix of G as a directed graph. i.e., the column corresponding to

the arc # »uv, has only nonzero entries in the rows corresponding to the nodes u and

v: Bu,uv = 1 and Bv,uv = −1, respectively (cf Figure 1.10). In order to describe an

orientation of the graph G, we take an orientation variable x ∈ {−1, 1}|E| interpreted
as follows. For each edge uv ∈ E which is originally directed from node u to node

v: if xuv = 1 then uv is directed from u to v (i.e., the orientation is the same as the

original one) and is directed from v to u otherwise (i.e., the orientation of the edge is

“reversed” with respect to the original orientation). Then if we look at the product of

B with an orientation vector x ∈ {−1, 1}|E| we obtain Bvx = d+x (v)−d−x (v), ∀v ∈ V

where d+x (v) (resp. d
−
x (v)) is the outdegree (resp. indegree) of v ∈ V in G w.r.t. the

orientation described by x and Bv denotes the row of the matrix B which corresponds

to node v. Consequently, a problem of the type described in the previous paragraph

with objective function f : R → Rn can be expressed as follows:

max
x∈{−1,1}|E|

f(Bx).

Figure 1.10: Construction of the incidence matrix from an oriented graph

vu
−→ B =

u

v

uv⎛
⎜⎜⎜⎜⎜⎜⎝

...
· · · 1 · · ·

...
· · · −1 · · ·

...

⎞
⎟⎟⎟⎟⎟⎟⎠

48

This family of problems is related to various graph optimization topics and sug-

gests new ones. For example, taking f = || · || (i.e. the Euclidean norm) leads to an

original upper bound on the isoperimetric number of G that we consider just after.

1.6 The isoperimetric number

1.6.1 Definition, interpretation and complexity

Definition 14. The isoperimetric number or Cheeger constant [27] of G is defined

by

hG = inf
∅6=S⊂V

|δ(S)|
min(|S|, |V \ S|)

The Cheeger constant may be interpreted as a numerical measure of the “well

connectedness” of a graph on the whole. A low value indicates the presence of a

bottleneck, i.e. the presence of two large sets of vertices with few edges between

them. On the contrary, a high value of the Cheeger constant means that any subset

of vertices is connected to the rest of the graph with many edges. If the graph

represents a communications network it may be considered as a measure of “graph

vulnerability” [72]. It finds many applications in mathematics and computer science

(e.g., image analysis [78]).

Computing the isoperimetric number of graphs with multiple edges is NP-hard

in general [81] and Petr Golovach [49] showed the following problem is NP-complete:

“Given a graph G with ∆G ≤ 3 and two integers p and q, decide if h′G ≤
p
q
”. Bojan

Mohar presents a linear-time algorithm for the particular case of trees [81] and James

Park & Cynthia Phillips a pseudo-polynomial time algorithm for planar graphs [85].

1.6.2 Alternative formulations and existing bounds

We consider that V = J1, nK and build the diagonal matrix D ∈Mn×n(N) as follows:

Di,i = d(i) and Di,j = 0, ∀(i, j) ∈ J1, nK2 such that i 6= j. Take A ∈ {0, 1}n×n such

that Ai,j = 1 if ij ∈ E the adjacency matrix of G, then the Laplacian of G is the

matrix L = D−A. If we look at the product zᵀLz where z ∈ {0, 1}n is the incidence

vector of some subset of vertices S ⊆ V , we have

zᵀLz = zᵀDz−zᵀAz =
∑
v∈V

z2
vdv−

∑
v ∈ V

∑
u∈V
uv∈E

−xu

 =
∑
v∈S

dv−2|E(S)| = |δ(S)|.

49

Then, since zᵀz = |S|, the isoperimetric number may then be expressed as follows:

hG = min
z∈{0,1}n

0 �=zᵀz≤�n
2 	

zᵀLz

zᵀz
.

Using this formulation and a spectral study of the Laplacian of the graph, Jeff

Cheeger gave the following bounds on the isoperimetric number [25]:

Proposition 15 (Cheeger, 1970).

λ1

2
≤ hG ≤

√
2ΔGλ1

with ΔG = maxi∈V di,

where the eigenvalues of L are denoted by 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1. Ex-

cluding some particular cases, Mohar [81] showed the following better upper bound,

improving on the one of Proposition 15.

Proposition 16 (Mohar, 1989). If G is not equal to any of K1, K2, or K3 then

hG ≤
√

λ1(2ΔG − λ1)

.

Another general bound given by Mohar [81] is as follows.

Theorem 17 (Mohar, 1989).

hG ≤ 2|E| �|V |/2�
|V |(|V | − 1)

.

1.6.3 New upper bounds

Now if we consider the incidence matrix B of G as defined in the previous section (i.e.

w.r.t. a chosen arbitrary orientation), the isoperimetric number may be expressed

as follows:

hG = min
S⊂V : |S|≤n

2

1

|S| max
Λ∈ #»

O(G)

∑
v∈S

|d+Λ(v) − d−Λ(v)|,

= min
S⊂V : |S|≤n

2

1

|S| max
x∈{−1,1}|E|

∑
v∈S

|Bvx|,

50

It is therefore the optimal objective value of the following mixed integer program-

ming formulation with nonlinear constraints.

hG = minh

s.t.

1 ≤
∑

v∈V zv ≤
n
2
,

h ≥
∑
v∈V zv |Bvx|∑

v∈V zv
, ∀x ∈ {−1, 1}|E|,

z ∈ {0, 1}n, h ∈ R.

Using Cauchy’s inequality, we have

∑
v∈V

zv|Bvx| ≤
√∑

v∈V

z2
v

√∑
v∈V

(Bvx)2 =

√∑
v∈V

zv||Bx||.

Thus, looking at the nonlinear constraint of the previous formulation, it yields

h ≥
∑

v∈V zv|Bvx|∑
v∈V zv

, ∀x ∈ {−1, 1}|E| ⇐ h2
∑
v∈V

zv ≥ ||Bx||2, ∀x ∈ {−1, 1}|E|.

We may then consider the following restriction of the previous formulation, thus

leading to an upper bound on hG:

minh

s.t.

1 ≤
∑

v∈V zv ≤
n
2
,

h2
∑

v∈V zv ≥ ||Bx||2,∀x ∈ {−1, 1}|E|,
z ∈ {0, 1}n, z ∈ R.

This leads to the following new upper bound:

Proposition 18.

hG ≤
1√⌊
n
2

⌋ max
x∈[−1,1]|E|

||Bx|| ≤

√
λn−1|E|⌊

n
2

⌋ ,

Proof. The lowest upper bound hG ≤ 1√
bn2 c

maxx∈[−1,1]|E| ||Bx|| is a direct conse-

quence of the restriction it follows. Now concerning the greatest upper bound, we

have

||Bx|| =
√

(Bx)ᵀBx =
√
xᵀBᵀBx ≤

√
λmax(BᵀB)||x||2 ≤

√
λmax(BᵀB)|E|,

where given a matrix M ∈ Rn×n, λmax(M) stands for its maximum eigenvalue. Since

a matrix and its transpose have the same spectra and we know that BBᵀ = L, then

51

λmax(BᵀB) = λn−1 and we obtain the aimed upper bound.

We find here the expression of the general problem we defined in Chapter 1 with

f = 1√
bn2 c
|| · ||. The greatest upper bound of Proposition 18 is loosely obtained from

the part preceding it through the maximum eigenvalue of the Laplacian. Study on

the generic problem presented in the previous section may lead to a tighter upper

bound for the Cheeger constant. Another example of objective function f leading

to a known optimization problem is the case f = 1
2
|| · ||1 which will give an original

approach of the famous maximum cardinality cut problem.

1.7 The maximum cut

Let (we)e∈E denote nonnegative weights on the edges of G. The weight of the cut

defined by S, denoted by w(δ(S)) is the sum of the weights of the edges belonging to

the cut, i.e., w(δ(S)) =
∑

e∈δ(S) we. The maximum cut problem consists in finding

a cut of maximum weight, denoted by w?, in the graph G:

max
S⊂V

w(δ(S)).

It is one of Richard Karp’s 21 NP-complete problems [67], he showed its NP-

completeness by a reduction from the partition problem.

1.7.1 Spin glasses

The maximum cut problem is a fundamental combinatorial optimization problem

that emerges in several scientific disciplines. One example stems from Physics and

more precisely, the study of spin glasses. A spin glass is an alloy of non-magnetic

metal containing local magnetic impurities. As opposed to a ferromagnetic solid (e.g.

a standard magnet that can be found on many refrigerators) where the magnetic

spins (the orientation of the north and south magnetic poles in three-dimensional

space) are all aligned in the same direction, a spin glass is a disordered magnet where

the magnetic spin of the component atoms are not aligned in a regular pattern. The

magnetic disorder in a spin glass is analog to the positional disorder of a conventional,

chemical glass, e.g., a window glass, hence the term ”glass”. The atomic bonds

structure in window glass (or any amorphous solid) is highly irregular whereas, in

contrast, it follows a uniform pattern in the case of a crystal.

An accurate simplified model of the orientation of the spin of an impurity consists

in assigning a value 1 or -1 to the impurity, meaning magnetic north pole “up” or

“down”. Such a representation is called the Ising model and the 1/-1 value is called

52

the Ising spin of the impurity. Between each pair of magnetic atoms there is an

interaction that depends on the nonmagnetic material and above all on the distance

between the atoms. The most realistic model consider only interaction between

“close” impurities and consider null interactions between distant impurities. Then

we can consider the interactions graph G with the impurities of the graph as its node

set where two interacting impurities will be connected by an edge with a weight equal

to this interaction. A spin configuration of the glass then consists in an assignment

of an Ising spin to each vertex of G. For a spin configuration, if we call S the set

of impurities which Ising spin is equal to 1, then the energy of the whole system is

inversely proportional to the weight of the cut defined by S. Consequently, Finding

the lowest-energy spin configuration of the glass reached at very low temperatures

is equivalent to finding a maximum cut in what is called the “interactions graph”.

The study of spin glasses has many applications from optimization in Economy to

neuron modeling and learning in Biology.

1.7.2 VLSI design

Another application of the maximum cut problem comes up in Very-Large-Scale

Integration (VLSI) design and printed circuit boars design. The design of a chip

consists in several steps, one of which will catch our attention: layer assignment.

After placing all the cells and nets, they are routed together with wires that can

be horizontal or vertical. Each segment of wire must be assigned a layer in such a

way that crossing wires are assigned different layers. Physically, a change of layers is

achieved by placing a via: a drilled hole in a printed circuit board causing additional

costly work and contributing to failure of the board due to cracking. In the context

of VLSI design, a via is a special contact treated in the production process that needs

additional space which is an obstacle in compaction and decreases the yield in the

fabrication process. The number of vias in the designing of the chip must therefore

be preferably minimized. It is usually impossible to place all the components on a

single layer without crossing wire segments. If we consider the case where only two

layers are available (corresponding to several real applications such as chip cards),

then we can build a conflict (weighted) graph G such that finding an assignment

of layers minimizing the number of vias is equivalent to solving the maximum cut

problem in G. This equivalence also allows to take into account several practical

constraints on the original problem such as the length of wire segments.

Details about the the two applications of the maximum cut problem described

above can be found in [11].

53

1.7.3 Frequency assignment

A less known application of the maximum cut problem concerns a special case of

the frequency assignment problem which arises in many telecommunication contexts

such as wireless networks or cellular phone communication systems. The goal is to

assign frequencies to a set of transmitters subject to possible interferences. The

constraints as well as the objective may vary along with the context, the most

common objective being the minimization of the number of assigned frequencies with

the constraint that no two interfering transmitters are assigned the same frequency.

Such a plain case is equivalent to the graph colouring problem (consisting in assigning

a colour to each vertex of the graph such the endpoints of each edge have different

colours and using as few colours as possible) on the interference graph (i.e. the

graph where the transmitters are the vertices and two transmitters are connected if

and only if their signal may interfere with one another).

We consider the frequency assignment problem where the weight of each edge

represents the interference level between two nodes and only two frequencies are

available. The whole interference of an assignment is the sum of the weights of the

edges which endpoints use the same assigned frequency. It is equal to the the sum of

the weights of all the edges minus the sum of the weights of the edges which endpoints

have different frequencies, i.e. the weight of the cut defined by the set of vertices

using one specific frequency (it can be either of the two). Then properly assigning

a frequency to each node whilst minimizing the whole interference is equivalent to

finding a maximum cut problem in this weighted interference graph.

The maximum cut problem has many other famous applications such as sparse

matrix computation [8], parallel programming [24], quadratic programming [55], etc.

1.7.4 Special cases

On the other hand, the maximum cut problem becomes simple for many special

cases. Orlova & Dorfman [84] and Frank Hadlock [53] independently showed that the

problem can be solved in polynomial time if the graph. They based their approach

on the duality of planar graphs and gave an equivalence between the maximum

cut problem and the maximum weighted matching problem for which there exists

a polynomial bounded algorithm. Francisco Barahona extended this result showing

the polynomial time complexity of the problem for the graphs not contractible to K5

[12]. Martin Grötschel & William Pulleyblanck took this result further by defining a

family of graphs called weakly bipartite, containing the planar graphs, the bipartite

graphs and the graphs not contractible to K5, and showing that the maximum cut

problem remains easy for this larger class of graphs [50] which was then characterized

by Bertrand Guenin [52]. Other polynomial cases are reviewed, e.g., in [18].

54

1.7.5 (In)approximibilty and the cut polytope

Concerning the approximability of the maximum cut problem, Johan H̊astad showed

it is not approximable within a ratio 16
17

+ ε for any ε > 0 unless P = NP [59]. One

line of research to approach the optimal objective value of this problem has consisted

in the development of (meta)heuristics. In 1976, Sartaj Sahni & Teofilo Gonzalez

proposed a (greedy) 1
2
-approximation algorithm [90]. Several randomized heuris-

tics derived from a greedy randomized adaptive search procedure are proposed,

implemented and tested in [39] and a randomized heuristic consisting in finding an

approximate solution of a formulation of the maximum cut problem as an uncon-

strained non-convex optimization problem is given in [21]. Another important line of

research relies on linear programming formulations of the problem. This has namely

led to deep investigations on the polyhedral structure of the cut polytope, namely

the convex hull of the incidence vectors of all the cuts of the graph:

Pc(G) = Conv{xδ(S) : S ⊆ V } ⊂ {0, 1}|E|.

The cut polytope has been extensively used in the context of Branch and Cut algo-

rithms with cutting-plane methods. Francisco Barahona & Ali Ridha Mahjoub [13]

introduced the following valid family of inequalities for the cut polytope.∑
e∈F

xe −
∑

e∈E(C)\F

xe ≤ |F | − 1, ∀C cycle of G, ∀F ⊆ C s.t. |F | ≡ 1 (mod 2), (1.5)

0 ≤ xe ≤ 1, ∀e ∈ E. (1.6)

It is easy to see that any integer-valued vector satisfying the above constraints de-

scribes a cut of G. Consequently, they induce an integer programming formulation

for the maximum cut problem. If the input graph is complete, then the follow-

ing constraints induce an integer programming formulation for the maximum cut

problem as well.
xuv + xvw + xuw ≤ 2,

−xuv + xvw + xuw ≤ 0,

xuv − xvw + xuw ≤ 0,

xuv + xvw − xuw ≤ 0,

∀{u, v, w} ⊆ V, (1.7)

The constraints (1.5) are called the cycle inequalities, the constraints (1.6) are called

the trivial inequalities and the constraints (1.7) are called the triangle inequalities.

Barahona et al. give characterizations of the constraints (1.5) and (1.6) that define

a facet of Pc(G) [13].

55

Theorem 19 (Barahona et al., 1986).

• An inequality (1.5) defines a facet of Pc(G) if and only if the cycle C corre-

sponding to the inequality is chordless.

• An inequality (1.6) defines a facet of Pc(G) if and only if the edge e corre-

sponding to the inequality does not belong to a triangle.

It is easy to see that the separation problem inherent to (1.6) has polynomial

complexity, Barahona et al. showed that it is true for (1.5) too [13]

Theorem 20 (Barahona et al., 1986). The separation problem inherent to (1.5) can

be solved in polynomial time.

Other valid and separable families of inequalities and results on the cut polytope

can be found in [13, 18, 33].

1.7.6 Goemans & Williamson’s semidefinite breakthrough

More recently, essentially since the mid-1990’s and the breakthrough paper by Goe-

mans & Williamson [47], there has been a growing interest in semidefinite optimiza-

tion based algorithms. The following formulations concern complete graphs without

loss of generality for one can set wuv = 0 for (u, v) ∈ V 2 such that uv /∈ E. More-

over, we consider that V = J1, nK. The maximum cut problem can be formulated as

the following quadratic program:
max

∑n
i=1

∑n
j=1wijxi(1− xj)

s.t.

x ∈ {0, 1}n

Changing variables with z = 1− 2x leads to the following -1/1 formulation:
max 1

4

∑n
i=1

∑n
j=1wij(1− zizj)

s.t.

z ∈ {−1, 1}n
(1.8)

Introducing a variable Yij representing the product of variables zizj for all (i, j) ∈ V 2,

we obtain the following:

max 1
4

∑n
i=1

∑n
j=1wij(1− Yij)

s.t.

Yii = 1, ∀i ∈ V,
Y = zzᵀ,

Y ∈Mn×n(R), z ∈ Rn

56

In this formulation, the matrix is necessarily positive semidefinite, we can then

obtain from the exact formulation for the maximum cut problem above a relaxed

SDP formulation which is the Goemans & Williamson based their algorithm on:

(SDPGW)

max 1
2

∑n
i=1

∑n
j=i+1 wij(1− Yij)

s.t.

Yii = 1, ∀i ∈ V,
Y � 0,

Y ∈Mn×n(R),

where Sn denotes the set of symmetric matrices with order n. The interest in such a

relaxed SDP formulation resides in the quality of the approximate solution obtained.

Related to the maximum cut problem, Goemans & Williamson’s work presents a

0.87856-approximation algorithm [47]. It consists in first solving the formulation

(SDPGW) which can be done in polynomial time with a set precision ε > 0, we

obtain as solution the positive semidefinite matrix Y . let H ∈ Rm×n (for some

m ≤ n) denote a matrix such that Y = HᵀH (H can be obtained in O(n3) time

using an incomplete Cholesky decomposition) and let r denote a vector which is

randomly generated according to a uniform distribution on the unit sphere in Rm.

The cut returned by the algorithm is then δ(S) with S := {v ∈ V : rᵀhv ≥ 0},
where hv stands for the column of H corresponding to node v ∈ V . For a uniformly

generated vector r from the unit sphere, Goemans and Williamson have shown that

the expectation of the cardinality of the cut E(|δ(S)|) can be bounded as follows.

αw? ≤ E(|δ(S)|) ≤ w?,

Where α = minθ∈[0,π]
2θ

π(1−cos θ)
' 0.87856.

Several variations of the algorithm have been proposed in order to improve its

quality, one of which consists in directly improving the quality of the bound Z?
SDPGW

given by the formulation (SDPGW). To do so, different approaches have been pro-

posed in the literature: namely by making use of polyhedral knowledge on the cut

polytope and adding linear inequalities [40, 61], or by means of lift-and-project tech-

niques [3, 74]. Another way to improve the upper bound given by the semidefinite

relaxation is described in [19, 20] where some spectral techniques are used leading

to polynomial-time algorithms for some low rank weight matrices. This semidefi-

nite approach of the problem also led to efficient solvers such as BiqMac [87] and

BiqCrunch [70].

The reader can find in [18, 33] and the references therein further results about

the maximum cut problem including applications, polynomial cases, approximation

algorithms, relationships with other combinatorial problems, polyhedral studies etc.

57

1.8 Outline

In Chapter 2, we study the problem of finding a graph orientation that maximizes

the minimum imbalance over all the vertices. We examine the complexity and some

properties of special graph instances and give several mixed integer programming

formulations for this problem. In Chapter 3, we give a new approach of the maxi-

mum cardinality cut problem through the study of our problem with f = 1
2
|| · ||1. We

introduce new mixed integer programming and semidefinite programming formula-

tions along with their analysis of complexity and performance. In Chapter 4, we

give the full description of polytopes related to the index of the lowest nonzero row

of an assignment matrix, polytopes that derive from a formulation of the problem

studied in Chapter 2. And we conclude in Chapter 5.

58

Chapter 2

Maximizing the imbalance of an

orientation

We consider the problem of finding an orientation with maximized imbalance:

(MaxIm) MaxIm(G) = max
Λ∈ #»

O(G)
min
v∈V

|d+Λ(v) − d−Λ(v)|

and we callMaxIm(G) the value ofMaxIm for G. We find here our generic problem

introduced in Section 1.5 for the function

f :
Rn → R

x �→ mini∈�1,n� |xi|
.

The minimum degree δG of a graph G is a trivial upper bound for MaxIm(G).

Since the value of MaxIm for a graph is the minimum of the values of MaxIm on

its connected components, all the graphs we consider in this chapter are assumed to

be connected.

The rest of the chapter is organized as follows. In Section 2.2, we give several

characterizations of the the graphs verifying MaxIm(G) = 0. In Section 2.1, we

show that MaxIm is generally NP-complete even for graphs with minimum degree

2 and inapproximable within a ratio 1
2
+ ε for any constant ε > 0 and then give

an approximation algorithm whose ratio is almost equal to 1
2
. In Section 2.3, we

present a polynomial-time exact algorithm for cactus. Section 2.4 is devoted to

mixed integer linear programming formulations of MaxIm where some families of

valid inequalities are presented. These formulations have been implemented and the

computational results are reported in Section 2.6.

59

2.1 Complexity and (in)approximability

The MaxIm problem being new, one of the first questions to be raised is what

kind of difficulty are we dealing with when trying to maximize the imbalance of an

orientation. And more precisely, can we highlight a relationship between MaxIm

and classic combinatorial problems in order to excerpt some of the knowledge we

have about them?

2.1.1 NP-completeness

It is clear that the decision problem inherent to MaxIm is in NP: given a solution

for an instance of MaxIm, i.e. an orientation, it is easy (namely linear) to check

whether its imbalance is larger than a given integer. Hence the problem is in NP.

Now the best way to prove that a problem in NP is NP-complete is to reduce a known

NP-complete problem to it. In order to show the NP-completeness of MinMaxOut,

Asahiro et al. [4] take an instance of the partition problem: S a finite set of integers

such that
∑

s∈S s is even and build a graph GS such that the following assertions

are equivalent.

• There exists a subset S ′ ⊂ S such that
∑

s∈S′ s = k.

• There exists an orientation Λ ∈ #»

O(G) such that maxv∈V (GS) d
+
Λ(v) ≤ k.

Solving the latter is therefore equivalent to solving the former for k = 1
2

∑
s∈S s

which is an instance of a NP − complete problem. Concerning our problem, will

show that MaxIm is NP-complete by highlighting that answering if MaxIm(G)

equals 2 for a graph G such that δG = 2 is equivalent to solving an instance of a

particular NP-complete problem. For that purpose, we introduce a variant of the

satisfiability problem: the not-all-equal at most 3-SAT(3V).

Not-all-equal at most 3-SAT(3V) is a restriction of not-all-equal at most 3-SAT

which is itself a restriction of 3-SAT known to be NP-complete [91]. 3-SAT is a

satisfiability problem considering only formulas respecting the following constraint.

 Each clause contains at most three literals.

The added restriction of not-all-equal at most 3-SAT is:

 In each clause, not all the literals can be true. In other words, for the formula

to be satisfiable, there must exist an assignment of the variables such that in

each clause, at least one of the literals is true and at least one of the literal is

false.

And the added restrictions of not-all-equal at most 3-SAT(3V) are:

60

. Each variable (not literal) appears at most three times in a formula.

. Each variable occurs in both its possible versions: as a positive literal and as

a negative literal.

The resulting problem is still NP-complete.

Lemma 21. The not-all-equal at most 3-SAT(3V) problem is NP-complete.

Proof. See A.

Now we associate to a not-all-equal at most 3-SAT(3V) instance ϕ with n vari-

ables {x1, · · · , xn} and m clauses {c1, · · · , cm} a graph Gϕ for which the value w.r.t.

MaxIm will give the answer to whether ϕ is satisfiable or not. The graph Gϕ con-

sists of gadgets that mimic the variables and the clauses of ϕ and additional edges

that connect them together:

• the gadget corresponding to a variable xi consists of two vertices labeled xi

and ¬xi and one edge connecting them (see 2.1(a));

• the gadget corresponding to a two-literals clause cj = (l1 ∨ l2), where l1 and l2

are its literals, consists in two vertices labeled ajl1 and bjl2 corresponding to l1

and l2 respectively (the index ”lk” of the vertices labels stands for the literal

it represents, i.e. xi if lk is the variable xi and ¬xi if lk is the negation of the

variable xi) and one edge connecting them (see 2.1(b));

• the gadget corresponding to a three-literals clause gadget consists in six ver-

tices and six edges. For a clause cj = (l1 ∨ l2 ∨ l3), where l1, l2 and l3 are its

literals (the order is arbitrary), three vertices labeled ajl1 , b
j
l2 and b′jl3 correspond

to l1, l2 and l3 respectively. Three additional vertices are labeled uj, vj and

wj and the edges of the gadget are ajl1uj, a
j
l1vj, ujwj, vjwj, wjb

j
l2 and wjb

′j
l3

(see 2.1(c));

• ∀i ∈ J1, nK, the vertex labeled xi (resp. ¬xi) is connected to all the vertices

labeled ajxi , b
j
xi

or b′jxi (resp. aj¬xi , b
j
¬xi or b′j¬xi), ∀j ∈ J1,mK.

As an example, for a formula

61

Figure 2.1: Gadgets of Gϕ

xi xi

(a) Variable gad-
get

l1 l2

(b) Two-literals
clause gadget

l1 l2
l3

vj

uj

wj

(c) Three-literals clause gad-
get

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4), (2.1)

the corresponding graph Gϕ is represented in Fig. 2.2.

Figure 2.2: Gϕ for ϕ = (x1∨¬x2∨x3)∧(¬x1∨¬x3∨x4)∧(x1∨¬x2∨x4)∧(x2∨¬x4)

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

a1x1
b1¬x2

b′1x3
a2¬x1

b2¬x3

b′2x4
a3x1

b3¬x2

b′3x4 a4x2
b4¬x4

v1 v2 v3

u1 u2 u3

w1 w2 w3 clause
gadgets

variable
gadgets

Theorem 22. A not-all-equal at most 3-SAT(3V) formula ϕ is satisfiable if and

only if

MaxIm(Gϕ) = 2.

Proof. • ⇒ Suppose ϕ is satisfiable and let v : {x1, · · · , xn} → {TRUE,FALSE}
be a satisfying assignment of x1, · · · , xn. We know that δGϕ = 2 which yields

MaxIm(Gϕ) ≤ 2. So let us build an orientation Λ ∈ #»

O(Gϕ) for which the

imbalance is larger than or equal to 2. First, we assign an orientation to the

62

edges of the variable gadgets:

Λ(xi¬xi) =

⎧⎨
⎩

»xi¬xi if v(xi) = TRUE;

»¬xixi otherwise.

For example, for the formula

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4)

satisfied by the assignment

v(x1, x2, x3, x4) = (FALSE,TRUE,TRUE,TRUE),

the edges of the variable gadgets of graph Gϕ are oriented as in figure 2.3(a).

Since each variable xi occurs at least once as a positive literal and at least

once as a negative literal, 2 ≤ dGϕ(xi) ≤ 3 and 2 ≤ dGϕ(¬xi) ≤ 3, ∀i ∈ �1, n�.
Then to ensure our objective on the imbalance of Λ, the orientation of the

edges connecting variable gadgets and clause gadgets must be such that ∀i ∈
�1, n�, |d+Λ(xi) − d−Λ(xi)| = dGϕ(xi) and |d+Λ(¬xi) − d−Λ(¬xi)| = dGϕ(¬xi). In

other words, for i ∈ �1, n�, if v(xi) = TRUE (resp. v(xi) = FALSE), then

the edges adjacent to the vertex xi are oriented from xi (resp. to xi) and the

edges adjacent to the vertex ¬xi are oriented to ¬xi (resp. from ¬xi), e.g. Fig.

2.3(b).

So far, all the edges in the variable gadgets and the edges connecting the

variable gadgets and the clause gadgets have been oriented and the vertices

in the variables gadgets have imbalance larger than or equal to 2. In order to

complete our orientation Λ we have to orient the edges in the clause gadgets.

Let cj = (l1 ∨ l2) be a two-literals clause. Since v satisfies ϕ, we know that

exactly one of the two literals is true w.r.t. v. Which, according to the way we

oriented edges so far, means that exactly one of ajl1 and bjl2 has one incoming

arc from a variable gadget and the other has one outgoing arc to a variable

gadget. If ajl1 is the one with the incoming arc from a variable gadget (meaning

that v(l1) = TRUE), then we assign Λ(ajl1b
j
l2) =

»

bjl2a
j
l1 , otherwise the opposite.

We obtain

|d+Λ(ajl1) − d−Λ(a
j
l1)| = |d+Λ(bjl2) − d−Λ(b

j
l2)| = 2.

63

Let cj = (l1 ∨ l2 ∨ l3) (the order is identical to the one chosen to build the

clause gadget, i.e. dGϕ(a
j
l1) = 3 and dGϕ(b

j
l2) = dGϕ(b

′j
l3) = 2) be at three-

literals clause. If the edge connecting ajl1 to a variable gadget is oriented to

ajl1 (meaning that v(l1) = TRUE), then we assign Λ(ajl1uj) =
»

uja
j
l1 , Λ(a

j
l1vj) =

»

vja
j
l1 , Λ(ujwj) =

»ujwj and Λ(vjwj) =
»vjwj. Since v(l1) = TRUE, either both

v(l2) and v(l3) are FALSE or exactly one of v(l2) and v(l3) is TRUE and one is

FALSE. If both are FALSE then bjl2 and b′jl3 have an outgoing arc to a variable

gadget. In that case, we orient wjb
j
l2 and wjb

′j
l3 to wj and we obtain

 |d+Λ(ajl1) − d−Λ(a
j
l1)| = 3,

 |d+Λ(bjl2) − d−Λ(b
j
l2)| = 2;

 |d+Λ(b′jl3) − d−Λ(b
′j
l3)| = 2;

 |d+Λ(uj) − d−Λ(uj)| = 2;

 |d+Λ(vj) − d−Λ(vj)| = 2;

 |d+Λ(wj) − d−Λ(wj)| = 4.

If exactly one of v(l2) and v(l3) is TRUE and one is FALSE, then exactly one

of bjl2 and b′jl3 has an incoming arc from a variable gadget and the other an

outgoing arc to a variable gadget. If bjl2 is the one with the incoming arc from

a variable gadget (meanings that v(l2) = TRUE and v(l3) = FALSE), then

we assign Λ(wjb
j
l2) =

»

wjb
j
l2 and Λ(wjb

′j
l3) =

»

b′jl3wj, otherwise the opposite. We

obtain

 |d+Λ(ajl1) − d−Λ(a
j
l1)| = 3;

 |d+Λ(bjl2) − d−Λ(b
j
l2)| = 2;

 |d+Λ(b′jl3) − d−Λ(b
′j
l3)| = 2;

 |d+Λ(uj) − d−Λ(uj)| = 2;

 |d+Λ(vj) − d−Λ(vj)| = 2;

 |d+Λ(wj) − d−Λ(wj)| = 2.

If, on the other hand, the edge connecting ajl1 to a variable gadget is oriented

from ajl1 (meanings that v(l1) = FALSE), then we assign Λ(ajl1uj) =
»

ajl1uj,

Λ(ajl1vj) =
»

ajl1vj, Λ(ujwj) = # »wjuj and Λ(vjwj) = # »wjvj. By symmetry, we

conclude in the same way that

64

 |d+Λ(ajl1) − d−Λ(a
j
l1)| = 3;

 |d+Λ(bjl2) − d−Λ(b
j
l2)| = 2;

 |d+Λ(b′jl3) − d−Λ(b
′j
l3)| = 2;

 |d+Λ(uj) − d−Λ(uj)| = 2;

 |d+Λ(vj) − d−Λ(vj)| = 2;

 |d+Λ(wj) − d−Λ(wj)| = 2.

Consequently, the imbalance of the resulting orientation Λ is larger than or

equal to 2, e.g. Fig. 2.3(c).

• ⇐ Now we assume that MaxIm(Gϕ) = 2, let Λ ∈ #»

O(Gϕ) with optimal im-

balance. Since all the vertices in the variable gadgets have degree at most 3,

each vertex xi (or ¬xi) is necessarily adjacent to only incoming arcs or only

outgoing arcs w.r.t. Λ. We will show that the assignment v : {x1, · · · , xn} →
{TRUE,FALSE} of x1, · · · , xn defined by

v(xi) =

⎧⎨
⎩TRUE if d+Λ(xi) > d−Λ(xi);

FALSE otherwise;

satisfies ϕ. Suppose ϕ does not satisfy a clause cj, j ∈ �1,m�. If cj is a two-

literals clause (l1 ∨ l2) then either v(l1) = v(l2) = TRUE or v(l1) = v(l2) =

FALSE, i.e. either both ajl1 and bjl2 have an incoming arc from a variable

gadget or both have an outgoing arc to a variable gadget and in both cases,

whichever is the orientation assigned to ajl1b
j
l2 by Λ, either ajl1 or bjl2 has a

zero imbalance which contradicts our assumption. So cj is a three-literals

clause (l1 ∨ l2 ∨ l3) (the order is identical to the one chosen to build the

clause gadget, i.e. dGϕ(a
j
l1) = 3 and dGϕ(b

j
l2) = dGϕ(b

′j
l3) = 2). Then either

v(l1) = v(l2) = v(l3) = TRUE or v(l1) = v(l2) = v(l3) = FALSE, i.e. either all

ajl1 , b
j
l2 and b′jl3 have an incoming arc from a variable gadget or they all have

an outgoing arc to a variable gadget. In the first case, it implies

 Λ(ajl1uj) =
»

uja
j
l1 ,

 Λ(ajl1vj) =
»

vja
j
l1 ,

 Λ(ujwj) =
»ujwj,

65

 Λ(vjwj) =
»vjwj,

 Λ(wjb
j
l2) =

»

wjb
j
l2 ,

 Λ(wjb
′j
l3) =

»

wjb
′j
l3 ,

and we obtain |d+Λ(wj) − d−Λ(wj)| = 0 which contradicts the optimality of Λ.

Similarly, in the second case it implies that the orientations assigned to the

edges of the clause gadgets are the opposite from the previous ones and we

obtain the same contradiction. So we can conclude that v does satisfy ϕ.

We can now safely conclude about the complexity of MaxIm.

Corollary 23. The decision problem consisting in asserting for a graph G and an

integer k ∈ N if MaxIm(G) ≥ k is NP-complete .

Proof. For a graph G and an integer k ∈ N, if given a solution for MaxIm, that is

to say an orientation of G, one can check if its value is larger than k in polynomial

time: one only has to compute the imbalance of each vertex w.r.t. said orientation

and then sum them, obtaining the value of the solution to compare with k. Hence

the decision problem inherent to MaxIm is in NP. The NP-completeness of the

problem comes naturally from Theorem 22.

66

Figure 2.3: Gϕ corresponding to ϕ = (x1∨¬x2∨x3)∧ (¬x1∨¬x3∨x4)∧ (x1∨¬x2∨
x4) ∧ (x2 ∨ ¬x4) satisfied by v(x1, x2, x3, x4) = (FALSE,TRUE,TRUE,TRUE).

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

(x1 ∨ ¬x2 ∨ x3) (¬x1 ∨ ¬x3 ∨ x4) (x1 ∨ ¬x2 ∨ x4)

(x2 ∨ ¬x4)

(a) orientation of the edges in the variable gadgets

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

(x1 ∨ ¬x2 ∨ x3) (¬x1 ∨ ¬x3 ∨ x4) (x1 ∨ ¬x2 ∨ x4)

(x2 ∨ ¬x4)

(b) orientation of the edges between the variable gadgets and the clause
gadgets

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

(x1 ∨ ¬x2 ∨ x3) (¬x1 ∨ ¬x3 ∨ x4) (x1 ∨ ¬x2 ∨ x4)

(x2 ∨ ¬x4)

(c) orientation of the edges in the clause gadgets

67

2.1.2 Inapproximability

The reduction of such a famous NP-complete problem as 3-SAT to MaxIm allows to

further derive results about its difficulty by simply transposing results about 3-SAT.

Corollary 24. MaxIm is inapproximable within 1
2
+ε where ε ∈ R∗+, unless P = NP.

Proof. Let ε ∈ R∗+ and suppose that there exists a polynomial approximation algo-

rithm giving val ≥ (1
2
+ε)MaxIm(G) for an input graph G. Let ϕ be a not-all-equal

at most 3-SAT(3V) formula and Gϕ its associated graph. We have δGϕ = 2, hence

MaxIm(Gϕ) ∈ {0, 1, 2}. Since (1
2

+ ε)MaxIm(Gϕ) ≤ val ≤ MaxIm(Gϕ), if the

polynomial approximation algorithm returns a value lower than or equal to 1 then

(
1

2
+ ε)MaxIm(Gϕ) ≤ 1⇒MaxIm(Gϕ) < 2⇒MaxIm(Gϕ) ≤ 1.

On the other hand, if it returns a value larger than 1, then MaxIm(Gϕ) is larger

than 1 hence equal to 2. In other words the polynomial approximation algorithm

output answers, through Theorem 22, whether ϕ is satisfiable or not which implies

P = NP.

2.1.3 Lower bound and approximation algorithm

Let us now define a nifty little family of graphs. A path in G is Eulerian if it visits

each edge of G exactly once. An Eulerian cycle is a Eulerian path which starts and

ends on the same vertex. A connected graph is said to be Eulerian if it admits a

Eulerian cycle. They were first discussed by Leonhard Euler while solving the famous

“seven bridges of Königsberg problem” in 1736 and thus laying the foundations of

graph theory and prefiguring the idea of topology [38]. Euler proved that a necessary

condition for the existence of Eulerian cycles is that all vertices in the graph have

an even degree and stated its sufficiency without proof. It was proved sufficient in

1873 by Carl Hierholzer [62].

Notice that Eulerian graphs are interesting fellows vis-à-vis imbalance: they

admit an orientation such that the imbalance of each of their vertices equals zero.

It is obtained by orienting a Eulerian cycle of the graph as a circuit. This trick

may come in handy if we manage to partially orient a graph guaranteeing a certain

lower bound on the imbalance of all the vertices. If the subgraph corresponding

to the unoriented edges is Eulerian, we can then mantain the lower bound on the

imbalance of all the vertices whilst completing the orientation.

If the input graph is dense, more precisely, if δG is high, then we can think of a

way to orient the edges in such a way that for each vertex, a guaranteed proportion

of the edges incident to it are ingoing (or outgoing). To do that, one must bear in

68

mind that in the end the set of vertices will be partitioned into the vertices with a

positive signed imbalance and those with a negative signed imbalance so when we

choose the orientation of the edges, we must try to minimize the edges connecting

two vertices inside the same partition for it will necessarily lower the imbalance of

one of its endpoint. If we consider the case of bipartite graphs: if G = (V 1 ∪· V2, E)

is a bipartite graph, the orientation that consists in assigning to each edge in E the

orientation from its endpoint in V1 to its endpoint in V2 has an imbalance equal to

δG, i.e. optimal. A good idea would then be to search for a bipartite subgraph of

the input graph with a set of edges containing a guaranteed proportion of the edges

incident to each vertex.

All of these considerations will permit us to obtain the following lower bound:

Theorem 25. For every graph G,

MaxIm(G) ≥
⌈
δG
2

⌉
− 1.

Proof. Let S ⊆ V be a a subset of vertices of G defining a locally maximum cut,

that is a cut verifying |δ({v})∩ δ(S)| ≥
⌈
d(v)
2

⌉
, ∀v ∈ V obtained via a simple greedy

algorithm. Such a cut exists: for example a maximum cardinality cut verifies this

property, otherwise we could find a higher cardinality cut by switching a vertex

v ∈ V s.t. |δ({v}) ∩ δ(S)| <
⌈
d(v)
2

⌉
from S to V \S (or the contrary). Moreover, if

we iterated this process starting from a random cut, we would converge in polynomial

time to such a cut. Now we define Λ ∈ #»

O(G) as follows, process illustrated in Figure

2.4. We begin by removing all edges in δ(S) and orient the edges of the subgraph

H, union of the induced subgraphs G(S) and G(V \S). If it is not Eulerian, we

add a new vertex v0 and an edge between v0 and each vertex with an odd degree

in H, the resulting graph is therefore Eulerian (see Figure 2.4(b)). We therefore

consider a Eulerian cycle -or one on each connected component to be more accurate-

(see Figure 2.4(c)) and orient it as a circuit (see Figure 2.4(d)). Removing v0 if

necessary and putting back the edges of δ(S) oriented from their endpoint in S to

their endpoint to V \S (see Figure 2.4(e)). The imbalance of each vertex in H is now

in {0, 1} which implies that ∀v ∈ V we have |d+Λ(v) − d−Λ(v)| ≥
⌈
d(v)
2

⌉
− 1, hence,

MaxIm(G) ≥ ⌈
δG
2

⌉− 1.

Observation. It is easy to see that for a graph G, the orientation Λ obtained in

polynomial time following the previous proof has an imbalance val(Λ) bounded in

the following conditioned manner.

69

• val(Λ) ≥ δG
2
≥ 1

2
MaxIm(G) if δG ≡ 0 (mod 4);

• val(Λ) ≥ δG−1
2
≥ (1

2
− 1

2δG
)MaxIm(G) if δG is odd;

• val(Λ) ≥ δG
2
− 1 ≥ (1

2
− 1

δG
MaxIm(G) if δG ≡ 2 (mod 4).

This leads to a polynomial time approximation algorithm for MaxIm whose ratio

is 1
2
− 1

δG
in general and more precisely 1

2
if δG ≡ 0 (mod 4) and 1

2
− 1

2δ
if δG is odd.

Now to gather more insight concerning our orienting graphs minimizing the im-

balance, we can look for a way to divide our problem in sub-problems.

70

Figure 2.4: Orientation derived from a bipartite subgraph

S

(a) The input graph with its locally
maximum cut defined by S

v0

(b) Removing the edges of the cut
and adding a temporary vertex v0
connected to the odd-degree vertices
of the remaining subgraph (unless it
is already Eulerian)

(c) Finding a Eulerian cycle (or one
in each connected component)

(d) Orienting the Eulerian cycle(s)
as a circuit

(e) Removing v0 and completing the
orientation by by orienting the edges
of δ(s) from S to V \S

71

2.1.4 Block-cut-vertex tree

A good way to divide our problem is to orient its blocks and then somehow assemble

these orientations in such a way that the imbalance of the resulting orientation is

at least the minimum of the imbalances of the orientations of the blocks. In similar

manner, consider the problem called graph colouring consisting in assigning a colour

to each vertex of a graph in such a way that no two connected vertices bear the

same colour. In 1941, Leonard Brooks stated that the vertices of a graph G can be

coloured with only ΔG colours except for two cases: complete graphs and odd cycle

graphs which require at least ΔG + 1 [23]. In 1975, László Lovász gave a simplified

proof consisting in first colouring the blocks of the input graph separately and then

combining them in order to obtain a colouring of the whole graph [77]. Whether it is

for an orientation or a colouring, it is not obvious why it should be easy to assemble

sub-colourings or sub-orientations into a whole without loss of crucial properties.

Let us mention a structure introduced by Frank Harary -one of the “fathers” of

graph theory- in his seminal book Graph Theory in 1969 [58]. This structure comes

from the fact that a connected graph with many cut-vertices bears a resemblance

to a tree. The idea is then to associate to every connected graph a tree displaying

this resemblance, focusing on the structure followed by the blocks of the graph.

Definition 26. Let G = (V,E) be a graph, VB the set of its blocks and VC the set

of its cut-vertices. The block-cut-vertex tree of G is the graph T = (VB ∪· VC , E
′)

where

E ′ = {Zu|Z ∈ VB, u ∈ VC and u ∈ V (Z)}.

Observe that the block-cut-vertex tree of a connected graph is a tree [34]. In

Figure 2.5 we have an example of a graph, its cut-vertices and its blocks (Figure

2.5(a) and its block-cut-vertex tree 2.5(b).

This tree-like structure of the blocks of a connected graph is the reason why we

can assemble the orientations of the blocks into an orientation where the imbalance

of each vertex is at least its the sum of its imbalances in each block it belongs to if

it’s a cut vertex and a least its imbalance inside the block it belongs to otherwise.

Proposition 27. Let G be a graph and B1, · · · , Bn its blocks. Let (Λ1, · · · ,Λn) ∈
#»

O(B1)×· · ·× #»

O(Bn) be optimal orientations of respectively B1, · · · , Bn for MaxIm.

Then we have

MaxIm(G) ≥ min(min
c∈VC

∑
i|c∈V (Bi)

|d+Λi
(c) − d−Λi

(c)|, min
v∈V \VC

i∈�1,n�
s.t. v∈V (Bi)

|d+Λi
(v) − d−Λi

(v)|), (2.2)

≥ min
i∈�1,n�

MaxIm(Bi). (2.3)

72

Figure 2.5: Example of a block-cut-vertex tree

(a) A connected graph with its
blocks circled and its cut-vertices in
white

(b) Its block-cut-vertex tree with
blocks as black vertices and cut-
vertices as white vertices

Proof. The idea is to optimally orient the blocks of G separately, and then reassem-

bling them one at a time. When ”gluing” two pieces that share a cut-vertex c back

together, two cases appear. Either the signed imbalances of c in each block have

the same size in which case we assemble it as is and the imbalance of c becomes

the sum of its imbalances in each block ; or they have opposite signs in which case

we can reverse the orientation inside all of one of the two blocks (along with all the

blocks eventually already connected to it). The imbalance of the vertices are left

unchanged, only the signed imbalances have changed and we are now back to the

first case. The imbalance or the resulting orientation is the left hand side of (2.2).

This process is illustrated in Figure 2.6 where we start by optimally orienting each

block individually (Figure 2.6(a)) and then assembling these orientation, adjusting

them as explained above (Figure 2.6(b)). In this example, we have that (2.2) is an

equality and (2.3) is a strict inequality, showing the possible gap between these two

lower bounds for MaxIm(G).

We just used the fact that reversing an orientation leaves imbalances unchanged,

the same way that Lovász used the fact that permuting the colours of a colouring

leads to a equally proper colouring with the same number of colours.

73

Figure 2.6: Orienting the graph from Figure 2.5 from optimal orientations of its
blocks

(a) Each block optimally oriented (in-
dividually)

(b) Reassembling the blocks adjusting
the orientations

2.2 Characterizing the graphs for which

MaxIm(G) = 0

In order to have a better grasp of the mechanics of maximum imbalance orientations,

we choose to consider the graphs verifying MaxIm(G) = 0. This class of graphs

can be designated as follows: the graphs in which there is at least one vertex with

imbalance equal to zero w.r.t. whichever orientation of the edges. The first candi-

dates that come to mind are the odd cycles. Their counterparts the even cycles can

elegantly be oriented alternating the direction of the edges to obtain a 2-imbalanced

orientation, which cannot be done for the odd cycles. Then one can start thinking

of appending subgraphs to cycles and one realizes pretty fast that the problem is

not that clear.

First, Theorem 25 implies that δG ≤ 2. then, in light of Proposition 27, we

know that at least one of the block of such a graph must admit only zero imbalance

orientations. Let’s start by unveiling several additional necessary conditions and

properties of such graphs.

74

2.2.1 Choosing the balanced vertex

First we can show that concerning such a graph, we can find an orientation with

positive imbalance on all but one vertex.

Proposition 28. Let G be a graph such that MaxIm(G) = 0 and u ∈ V . Then there

exists an orientation Λ ∈ #»

O(G) such that u is the only vertex of G with imbalance

equal to zero w.r.t. Λ.

Proof. Let Λ ∈ #»

O(G) be an orientation minimizing |{v ∈ V/|d+Λ(v) − d−Λ(v)| = 0}|.
We suppose that |{v ∈ V/|d+Λ(v) − d−Λ(v)| = 0}| ≥ 2. We choose two distinct

vertices v and w in {v ∈ V/|d+Λ(v) − d−Λ(v)| = 0} and an undirected path p = (v =

u0, · · · , un = w) between v and w. If we switch the orientation of the edge u0u1, then

the imbalance of u0 becomes positive and necessarily the imbalance of u1 becomes

zero otherwise the resulting orientation would contradict the minimality of Λ. Using

the same reasoning, if we switch the orientation of all the edges u0u1, · · · , un−2un−1,

we obtain an orientation where both un−1 and un have an imbalance equal to zero

while the imbalance is positive on all the vertices u0, · · · , un−2 and unchanged on all

other vertices. So now if we switch the orientation of the edge un−1un as well, then

the resulting orientation contradicts the minimality of Λ. Hence, |{v ∈ V/|d+Λ(v) −
d−Λ(v)| = 0}| = 1.

Now let v be this unique vertex of G such that |d+Λ(v) − d−Λ(v)| = 0. Let u �= v

be an arbitrary vertex and let p = (v = u0, · · · , un = u) be a path between v and

u. If we switch the orientation of the edge u0u1, then the imbalance of u0 becomes

positive and necessarily the imbalance of u1 becomes zero otherwise the resulting

orientation would contradict MaxIm(G) = 0. Using the same reasoning, if we

switch the orientation of all the edges u0u1, · · · , un−1un, we obtain an orientation Λ′

where u has an imbalance equal to zero while the imbalance is positive for all the

other vertices.

This yields the following necessary condition: ifG is a graph such thatMaxIm(G)

= 0, then G is Eulerian. For suppose MaxIm(G) = 0 and let u ∈ V , we know there

exists Λ ∈ #»

O(G) such that {v ∈ V/|d+Λ(v)−d−Λ(v)| = 0} = {u}. Then d+Λ(u) = d−Λ(u),

hence d(u) = d+Λ(u) + d−Λ(u) = 2d+Λ(u) is even. Since we can get this conclusion for

any vertex in the graph G, we then know that it is Eulerian.

2.2.2 Orienting the blocks

Propositions 27 and 28 lead us to a strong characteristic for graphs such that

MaxIm(G) = 0: all of their blocks must follow the same constraint.

75

Proposition 29. Let G be a graph such that MaxIm(G) = 0 and B1, · · · , Bn its

blocks. Then we have

MaxIm(Bi) = 0, ∀i ∈ J1, nK.

Proof. Suppose that G has a block Bi0 such that MaxIm(Bi0) > 0, Let us build an

orientation of G with a strictly positive imbalance. Consider the block-cut-vertex

tree T of G rooted in B0, we orient the blocks of G running through T . We start by

taking an optimal orientation of Bi0 , thus with a strictly positive imbalance. Then

we run down the tree T as follows. Let B ∈ VB\{Bi0} a block of G, c ∈ VC the

cut-vertex of G that is the parent node of B in T and B′ ∈ VB the block of G that

is the parent node of c in T (c is then a cut-vertex of G belonging to both B and

B′. We have two cases concerning the maximum imbalance of B:

• if MaxIm(B) > 0, then we orient its edge in an optimal way such that the

signed imbalance of c in B shares the sign of the signed imbalance of C in B′;

• if MaxIm(B) = 0, then we orient it in such a way that its only zero imbalance

vertex is c.

The resulting orientation has a strictly positive orientation for the imbalance of

each non-cut-vertex in each block is strictly positive and the imbalance of each cut-

vertex being the sum ot its imbalances in each block is strictly positive because its

imbalance in the block that is its parent node in T is strictly positive. Therefore

MaxIm(G) > 0.

With this proposition, we now know that a good candidate for our sought family

could be an assembling of biconnected graphs from the same family following a tree

structure. Thus when we think about biconnected graphs with a minimum degree

lower than or equal to 2, we first think of cycles or single edges. Among those, only

the odd cycles are part of our sought family. With the various properties being

respected by our graphs we are able now to give, we can present a first constructive

characterization.

2.2.3 A first characterization

The following lemma about Eulerian graphs will be useful for the proof of our

characterization. It asserts that in a Eulerian graph, there is a cycle that one can

qualify as ”peripheral”, that is, the removal of its edges will not increase the number

of connected components (not counting isolated vertices):

Lemma 30. If G is an Eulerian graph, then there exists an elementary cycle

(hereafter just called cycle) C of G such that G−E(C) has at most one connected

component that is not an isolated vertex.

76

Proof. Since G is Eulerian and connected, it can be decomposed into edge-disjoint

cycles that we can order C1, · · · , Cn according to the following condition: ∪i
k=1Ci is

connected, ∀i ∈ �1, n�. It boils down to assembling them to form G in such a way

that we have a connected subgraph of G at each step. Then Cn is the cycle we are

looking for.

We call Codd the family of connected graphs for which every block is an odd cycle.

In order to manipulate them easily, we give the following characterization for the

graphs in Codd.

Lemma 31. A graph G is in Codd if and only if there exists a finite sequence of odd

cycles C1, · · · , Cn (n ≥ 1) such that:

• ∪n
i=1Ci = G,

• |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ �2, n�. (2.4)

Proof. To obtain this sequence from a graph in Codd, consider T the block-cut-vertex

tree of G rooted in one vertex corresponding to a block of G (which will be C1) and

n the number of blocks in G. We do a depth-first-search (or a breadth-first-search)

in T , labeling only the vertices of T representing blocks of G (i.e. the vertices in

VB) from 1 to n. Then Ci is the block of G (that is an odd cycle, by definition of

Codd) labeled i.

As one might have expected, the previously defined and characterized family of

graphs Codd is the one we were looking for.

Theorem 32. For any graph G, MaxIm(G) = 0 if and only if G ∈ Codd.

Proof. • ⇐ We work by induction on the number n of cycles contained in the

graph. Nothing is required for these cycles except that they must be elemen-

tary. If n = 1, then our graph is an odd cycle which implies MaxIm(G) = 0.

Let n ≥ 2, we assume that all graphs of Codd with k ≤ n − 1 cycles verify

MaxIm(G) = 0. Let G ∈ Codd with n cycles C1, · · · , Cn as in (2.4). Sup-

pose there exists Λ ∈ #»

O(G) with strictly positive imbalance. Let us call

G′ = ∪n−1
i=1 Ci the graph obtained from G after removing Cn and let us take a

look at Λ|G′ : the orientation of the edges of G′ obtained from Λ restricted to

E(G′). As G′ is a graph of n−1 cycles in Codd, our inductive hypothesis implies

that we have a vertex u ∈ V (G′) such that |d+Λ|G′ (u) − d−Λ|G′ (u)| = 0. Neces-

sarily, u = V (G′) ∩ V (Cn). Thus |d+Λ(u) − d−Λ(u)| = |d+Λ|Cn
(u) − d−Λ|Cn

(u)| > 0

implying that MaxIm(Cn) > 0, a contradiction because Cn is an odd cycle.

77

• ⇒ Since MaxIm(G) = 0, we know that G is Eulerian. We work again by

induction on the number of elementary cycles n. If n = 1, then our graph

is Eulerian with a unique cycle, hence it is a cycle. Now as MaxIm(G) = 0,

necessarily it is an odd cycle and is therefore in Codd. Let n ≥ 2, we assume

that all graphs with k ≤ n − 1 cycles verifying MaxIm(G) = 0 are in Codd.

Let G be a graph with n cycles such that MaxIm(G) = 0. Thanks to Lemma

30, there exists a cycle C of G such that G−E(C) has at most one connected

component G′ that is not an isolated vertex.

Suppose that MaxIm(G′) > 0, let Λ ∈ #»

O(G′) with strictly positive imbalance.

Let u0 ∈ V (G′)∩V (C), we name the vertices of C as follows: u0, u1, · · · , uk =

u0. Without loss of generality, we can assume that d+Λ(u0) − d−Λ(u0) > 0; if it

was not the case, replace Λ by its reverse. We complete Λ in an orientation

of G by orienting the edges of C: we orient u0u1 from u0 to u1 and go on as

follows:

∀i ∈ �1, k − 1�,
⎧⎨
⎩if ui ∈ V (G′), we orient uiui+1 as ui−1ui,

otherwise, we orient uiui+1 as uiui−1.

Where orienting an edge ab as another edge cd means orienting it from a to b

if cd was oriented from c to d and from b to a otherwise. Let us have a look

at the resulting orientation Λ′ (cf Fig. 2.7): when completing Λ in Λ′, the

imbalance of the vertices in V (G′)\{u0} was left unchanged, the imbalance of

the vertices in V (C)\V (G′) equals 2 and the imbalance of u0 was either left

unchanged or augmented by two. Hence Λ′ has strictly positive imbalance

which contradicts MaxIm(G) = 0, therefore, MaxIm(G′) = 0.

Suppose |V (G′) ∩ V (C)| ≥ 2 and let u and v be 2 distinct vertices in V (G′) ∩
V (C) such that u �= v. Thanks to Proposition 28, we know that there exists

an orientation Λ ∈ #»

O(G′) such that {w ∈ V/|d+Λ(w) − d−Λ(w)| = 0} = {v} and

without loss of generality, d+Λ(u) − d−Λ(u) > 0. We name the vertices of C as

follows: u = u0u1 · · · uk = u0, v = ul and we complete Λ in an orientation of

G by orienting the edges of C: we orient u0u1 from u0 and u1 and go on as

follows:

∀i ∈ �1, k − 1� \ {l},
⎧⎨
⎩if ui ∈ V (G′), we orient uiui+1 as ui−1ui,

otherwise, we orient uiui+1 as uiui−1.

And we orient ulul+1 as ulul−1. In the resulting orientation Λ′, the imbalance of

the vertices in V (G′)\{u, v} was left unchanged, the imbalance of the vertices

in V (C)\V (G′) equals 2, the imbalance of v was augmented by two and the

78

imbalance of u was either left unchanged or augmented by two. Hence Λ′

contradicts MaxIm(G) = 0, therefore, |V (G′) ∩ V (C)| = 1.

Suppose C is even. We call u ∈ V (G′) such that V (G′) ∩ V (C) = {u}, and
Λ ∈ #»

O(G′) such that {v ∈ V/|d+Λ(v)−d−Λ(v)| = 0} = {u}. We name the vertices

of C as follows: u = u0u1 · · · uk = u0 and we complete Λ in an orientation of

G by orienting the edges of C: we orient u0u1 from u0 to u1 and uiui+1 as

uiui−1, ∀i ∈ �1, k − 1�. In the resulting orientation Λ′, the imbalance of the

vertices in V (G′)\{u} was left unchanged, the imbalance of the vertices in

V (C)\V (G′) equals 2 and, C being even, the imbalance of u was augmented

by two. Hence Λ′ contradicts MaxIm(G) = 0, therefore, C is odd.

As G′ is a graph with at most n − 1 cycles verifying MaxIm(G) = 0, by the

induction hypothesis, there exist C1, · · · , Cn−1 odd cycles such that:

◦ ∪n−1
i=1 Ci = G′,

◦ |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ �2, n − 1�.

Adding the odd cycle Cn = C, we obtain that G ∈ Codd.

Figure 2.7: The vertices of C in G′ are left unchanged imbalance-wise, the other
vertices of C are set to 2 and in the end |d+Λ′(u0)− d−Λ′(u0)| ≥ |d+Λ(u0)− d−Λ(u0)| > 0.

G′
u0

u1uk−1

C

79

Figure 2.8: The vertices of C in G′ are left unchanged imbalance-wise except for v
which is set to 2, like the other vertices of C and in the end |d+

Λ′(u0) − d−Λ′(u0)| ≥
|d+

Λ(u0)− d−Λ(u0)| > 0.

G′
u v

u1uk−1

C

2.2.4 A more elegant characterization

Now in order to widen our perception of those graphs, we want to give a simpler

characterization for the graphs in Codd. Recall Proposition 27, it is clear that if a

block of a graph is an even cycle, then we can build an orientation of its edges with

a strictly positive imbalance. Therefore the presence of an even cycle as a block is

prohibitive w.r.t. Codd. We can go further in this direction, leaving the concept of

blocks behind.

Theorem 33. For every graph G,

G ∈ Codd ⇔ G is Eulerian with no even cycle

Proof. • ⇒ By construction, every graph in Codd is Eulerian with no even cycle.

• ⇐ We will once again work by induction on the number of cycles n.

If n = 1, then our graph is Eulerian with a unique odd cycle, hence it is an

odd cycle and is therefore in Codd.
Let n ≥ 2, we assume that all Eulerian graphs with no even cycle and k ≤ n−1

odd cycles are in Codd. Let G be a graph with no even cycle and n odd cycles.

Thanks to Lemma 30, there exists an odd cycle C of G such that G − E(C)

has only one connected component G′ that is not an isolated vertex. As G′ is

Eulerian and even-cycle-free with n − 1 odd cycles, by induction hypothesis,

G′ ∈ Codd, hence there exist C1, · · · , Cn−1 odd cycles such that:

◦ ∪n−1
i=1 Ci = G′,

80

◦ |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ J2, n− 1K.

Suppose there exist u and v (u 6= v) belonging to V (∪n−1
k=1Ck) ∩ V (C). Since

G′ is connected, let p be an elementary path in G′ between u and v. We

can assume that u and v are the only vertices of C contained in p, otherwise

we could replace v by the first vertex of C encountered when traveling on

p from u. The cycle C defines two other vertex-disjoint paths between u

and v: one even that we will call peven and one odd that we will call podd.

The path p being vertex disjoint with either peven or podd, by concatenating

it with the one corresponding to its parity, we obtain an even cycle of G,

contradicting our hypothesis on G (cf. Fig. 2.9(a) and 2.9(b)). This yields

that |V (C) ∩ V (G′)| = 1. From that we can conclude

◦ ∪ni=1Ci = G,

◦ |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ J2, nK.

Hence G ∈ Codd.

This last characterization is also equivalent to Eulerian graphs with no elemen-

tary even cycle.

81

Figure 2.9: In both cases, concatenating p with peven or podd yields an even cycle in
G (closed shapes represent cycles, only vertices belonging to more than one cycle
are represented as a lack dot; dashed segments are used to higlight certain chains of
vertices

Ci0

C

p

podd
peven

(a) C intersects at least twice another cycle Ci0

Ci0

Ci1

C

p
podd

peven

(b) C intersects at least two cycles Ci0 and Ci1

82

2.3 Exact algorithm for cacti

The class of graphs defined in the previous section is a special case of cacti. A cactus

(formerly known as Husimi trees) is a connected graph for which every edge belongs

to at most one elementary cycle. Equivalently, a cactus is a connected graph for

which every block is a single edge or a cycle. Notice that any cycle in a cactus is

chordless.

The graph presented in Figure 2.10 in which we isolate its blocks (b) and give

its block-cut-vertex tree T (c) is a cactus. For now we don’t know much about the

value of MaxIm for cacti except that it can be 0 for the family Codd introduced in

the previous section is a family of cacti (those which blocks are all odd cycles).

2.3.1 A lower bound for cacti

The next lemma is related to the minimum degree of a cactus.

Lemma 34. Let G be a cactus graph,

δG ≤ 2.

Proof. Let G be a cactus graph and T its block-cut-vertex tree. Let u ∈ V (T) be a

leaf of T . By the definition of a cut-vertex, u corresponds necessarily to a block of

G. If u corresponds to a bridge of G, then one of its endpoint (the one that is not

a cut-vertex) is a leaf of G which implies δG=1. If u corresponds to a cycle of G,

being a leaf of T , it contains only one cut-vertex of G and therefore the degree of

its other vertices equals 2.

The previous lemma automatically provides an upper bound for MaxIm(G).

Proposition 35. Let G be a cactus,

MaxIm(G) ≤ 2.

And this bound allows to conlude that for a cactus G, we have MaxIm(G) ∈
{0, 1, 2}. We have already characterized which of the cacti verify MaxIm(G) = 0.

The next question is can we find similar characterizations corresponding to the other

possible values of MaxIm for a cactus.

83

Figure 2.10: Building the block-cut-vertex tree

SG

(a) G a cactus and SG.

(b) Its blocks: even cycles (), odd cycles () and bridges ().

(c) And the block-cut-vertex tree T : cut vertices (), even cycles (), odd cycles
() and bridges ()

84

2.3.2 Characterizing the cacti for which MaxIm(G) = 2

Let us now characterize the cacti such that MaxIm(G) = 2. The following definition

of the subset SG for each cactus G will be the essence of our characterization.

Let G = (V,E) be a cactus and T = (VB ∪· VC , E ′) its block-cut-vertex tree. A

subset A ∈ VB will hereafter refer to a subset of vertices of T as well as the subgraph

consisting in the union of the blocks of G corresponding to these vertices. We denote

S0 ⊆ VB the set containing all the even cycles og G. We define for a cactus G the

set SG ⊆ VB as the smallest subset of blocks of G containing S0 and satisfying the

following conditions:

• If Y ∈ VB corresponds to an odd cycle of G that shares a cut-vertex with a

cycle or with two bridges contained in SG, then Y ∈ SG,

• if Y ∈ VB corresponds to a bridge of G that shares a cut-vertex with a block

contained in SG, then Y ∈ SG.

In Figures 2.10(a) and 2.11 are examples of two cacti along with their subsets SG.

Figure 2.11: A graph G such that δG = 2 and SG = VB.

SG = VB

Theorem 36. Let G be a cactus,

MaxIm(G) = 2⇐⇒ SG = VB and δG = 2.

The idea of this result and its proof is that if we have a cactus G, we consider

the subgraph S0 which is bipartite and therefore can be oriented with imbalance at

least 2. Then we can extend the orientation of S0 into an orientation of SG, keeping

an imbalance of at least two for each vertex incident to at least two oriented edges.

85

Now if δG = 2 and SG = VB, we obtain an orientation of G with imbalance at least

2. Moreover, for a cactus G, the subset SG can be computed in polynomial time by

a basic search on the block-cut-vertex tree of G.

In order to prove Theorem 36, we first show two lemmas that will be useful in

the proof of our theorem.

Figure 2.12: A graph G and a bridge cc′.

cc′
Gc′c Gc

Lemma 37. Let G = (V,E) be a graph, cc′ ∈ E a bridge of G. Let us call Gc the

connected component of G\cc′ containing c and Gc′c the graph obtained by adding c

and cc′ to the connected component of G\cc′ containing c′ (see Fig. 2.12). Then

MaxIm(G) ≤ max
Λ∈ #»

O(Gc)
min(min

v∈V (Gc)\{c}
|d+Λ(v) − d−Λ(v)|, |d+Λ(c) − d−Λ(c)| + 1).

Proof. Let Λ ∈ #»

O(G) be an optimal orientation of G w.r.t. MaxIm. If d+Λ|Gc′c
(c) −

d−Λ|Gc′c
(c) and d+Λ|Gc

(c) − d−Λ|Gc
(c) do not have the same sign, then we switch the

assignment of Λ of the edges of Gc′c. Doing so, the imbalance of all the vertices of

G is unchanged except for that of c which got risen by 2 hence Λ is still optimal and

|d+Λ(c) − d−Λ(c)| ≤ |d+Λ|Gc
(c) − d−Λ|Gc

(c)| + 1. Moreover,

MaxIm(G) = min
v∈V

|d+Λ(v) − d−Λ(v)| ≤ min
v∈V (Gc)\{c}

|d+Λ|Gc
(v) − d−Λ|Gc

(v)|

which yields

MaxIm(G) ≤ min(min
v∈V (Gc)\{c}

|d+Λ|Gc
(v) − d−Λ|Gc

(v)|, |d+Λ|Gc
(c) − d−Λ|Gc

(c)| + 1)

≤ max
Λ∈ #»

O(Gc)
min(min

v∈V (Gc)\{c}
|d+Λ(v) − d−Λ(v)|, |d+Λ(c) − d−Λ(c)| + 1).

Lemma 38. Let G be a cactus such that δG = 2. Then there exists a cycle of G

with at most one gate (vertex adjacent to any vertex not belonging to the cycle).

86

Proof. Let T be the block-cut-vertex tree of G. If T has no leaf, then it is a vertex

graph, henceG is a cycle which necessarily has no gate. If T has a leaf l, it necessarily

corresponds to a block of G. If l was a bridge, the degree of its endpoint in G which

is not a cut-vertex would be 1, hence l is a cycle of G. And being a leaf in T , it has

at most one gate in G.

Proof of Theorem 36. • ⇐ We assume that SG = VB and δG ≥ 2. From Proposi-

tion 35, we know that MaxIm(G) ≤ 2. We will build an orientation Λ ∈ #»

O(G)

such that minv∈V |d+Λ(v) − d−Λ(v)| = 2. We start by orienting the edges of the

subgraph S0 consisting in the union of all the even cycles of G. The sub-

graph S0 having no odd cycles, it is bipartite and we can therefore choose an

orientation of the edges of S0 such that

|d+Λ|S0
(v) − d−Λ|S0

(v)| = dS0(v) ≥ 2, ∀v ∈ V (S0).

We now recursively extend Λ to the rest of the blocks in SG ensuring an

imbalance of at least 2 for each vertex adjacent to at least two oriented edges.

Let Z ∈ VB be an unoriented block of G that is either:

◦ an odd cycle of G sharing a cut-vertex with an oriented cycle or two

oriented bridges,

◦ a bridge sharing a cut-vertex with an oriented block.

If there was no such block and the graph G was not totally oriented, the set

of oriented blocks of G denoted by
#»

S would contradict the minimality of SG.

If Z is an odd cycle, we choose a cut-vertex c of Z adjacent to oriented edges

and name the vertices of B c = v1v2 · · · vk = c. We assign:

◦ Λ(vivi+1) =

⎧⎨
⎩

»vivi+1 if i is odd;

»vi+1vi otherwise
, ∀i ∈ �1, k − 1�.

Let us now consider the imbalance of the vertices of Z. Since c is adjacent to

either a cycle or two bridges in
#»

S , it is adjacent to at least two edges in
#»

S

and therefore |d+Λ| #»
S
(c) − d−Λ| #»

S
(c)| ≥ 2 according to our inductive hypothesis.

Since |d+Λ|Z (c) − d−Λ|Z (c)| = 0, |d+Λ(c) − d−Λ(c)| = |d+Λ| #»
S
(c) − d−Λ| #»

S
(c)| ≥ 2. If

there is another cut-vertex c′ of Z that is adjacent to a block in
#»

S such that

d+Λ| #»
S
(c′) − d−Λ| #»

S
(c′) and d+Λ|Z (c

′) − d−Λ|Z (c
′) do not have the same sign, then we

switch the assignment of Λ of the edges of the whole connected component of
#»

S containing c′ for its opposite. Necessarily, c′ is the only vertex this connected

component shares with Z otherwise Z would be contained in a bigger block

87

of G. Then doing so, the imbalance of all vertices is left unchanged except for

that of c′ which is now equal to

|d+Λ| #»
S
(c′) − d−Λ| #»

S
(c′)| + |d+Λ|Z (c

′) − d−Λ|Z (c
′)| = |d+Λ| #»

S
(c′) − d−Λ| #»

S
(c′)| + 2.

This process is repeated for all the cut-vertices c′ of Z different from c adjacent

to a block in
#»

S to be such that |d+Λ(c′) − d−Λ(c
′)| ≥ 2. If u ∈ V (Z) is not a

cut-vertex, then |d+Λ(u) − d−Λ(u)| = |d+Λ|Z]
(u) − d−Λ|Z]

(u)| = 2 and Λ becomes an

orientation of
#»

S ∪ {Z} with imbalance at least two for all the vertices of G

adjacent to at least two oriented edges.

If Z is a bridge, we take c one of its endpoints adjacent to an oriented edge,

we call u the other one and assign

Λ(cu) =

⎧⎨
⎩

#»cu if d+Λ| #»
S
(c) > d−Λ| #»

S
(c);

#»uc otherwise.

Concerning the imbalance of c, by inductive hypothesis, |d+Λ #»
S
(c)−d−Λ #»

S
(c)| ≥ 1,

then

|d+Λ(c) − d−Λ(c)| = |d+Λ| #»
S
(c) − d−Λ| #»

S
(c)| + |d+Λ|Z (c) − d−Λ|Z (c)| ≥ 2.

If u is adjacent to a block in
#»

S as well and d+Λ| #»
S
(u) − d−Λ| #»

S
(u) and d+Λ|Z (u) −

d−Λ|Z (u) do not have the same sign then we switch the assignment of Λ of the

edges of the whole connected component of
#»

S containing u for its opposite.

This connected component necessarily does not contain c otherwise z would be

contained in a bigger block of G. Then doing so, the imbalance of all vertices

is left unchanged except for that of u which is now equal to

|d+Λ| #»
S
(u) − d−Λ| #»

S
(u)| + |d+Λ|Z (u) − d−Λ|Z (u)| = |d+Λ| #»

S
(u) − d−Λ| #»

S
(u)| + 1 ≥ 2.

Λ thus becomes an orientation of
#»

S ∪ {Z} with imbalance at least two for all

the vertices of G incident with at least two oriented edges.

We now add Z to
#»

S and proceed like this for all blocks Z in SG\ #»

S until
#»

S = SG. Now since VB = SG and δG = 2, we conclude that Λ is an orientation

of all the edges of G with an imbalance equal to 2.

In Fig. 2.13 can be found the orienting process of the cactus presented in

88

Fig. 2.11. First, the even cycles are oriented (Fig. 2.13(a)), then the blocks

adjacent to the even cycles (Fig. 2.13(b)) and then iteratively the unoriented

blocks adjacent to oriented blocks (Fig. 2.13(c), (d), (e) and (f)). In Fig.

2.13(c) and (e), the vertices with imbalance zero are circled, and in the next

step, the orientation is reversed on one of the subtree where the circled vertex

is the root in order to ensure an orientation imbalance of at least 2.

• ⇒ If δG < 2 then MaxIm(G) < 2. So we assume that δG = 2 and SG � VB.

We denote VB\SG by SG and we take c ∈ V (SG) ∩ V (SG). Belonging to both

V (SG) and V (SG), c must belong to at least two different blocks of G and

is therefore a cut-vertex of G. Let Z be a block in SG adjacent to c, Z is

necessarily a bridge of G otherwise all the blocks adjacent to Z would be in

SG thus contradicting c ∈ V (SG), and for the same reason, Z is the only

bridge in SG adjacent to c. Calling c′ the endpoint of Z that is not c and

Gc the subgraph of G obtained by taking the connected component of G\cc′
containing c, we are in the conditions of lemma 37 and thus we obtain

MaxIm(G) ≤ max
Λ∈ #»

O(Gc)
min(min

v∈V (Gc)\{c}
|d+Λ(v) − d−Λ(v)|, |d+Λ(c) − d−Λ(c)| + 1).

Proceeding like this for all c ∈ V (SG) ∩ V (SG) yields that MaxIm(G) is at

most

max
Λ∈ #»

O(SG)
min(min

v∈V (SG)\V (SG)
|d+Λ(v) − d−Λ(v)|, min

v∈V (SG)∩V (SG)
|d+Λ(v) − d−Λ(v)| + 1).

Now if we choose a connected component S̃ of SG we get that MaxIm(G) is

at most

max
Λ∈ #»

O(S̃)
min(min

v∈V (S̃)\V (SG)
|d+Λ(v) − d−Λ(v)|, min

v∈V (S̃)∩V (SG)
|d+Λ(v) − d−Λ(v)| + 1).

Now we show that the previous quantity is lower than or equal to 1. Suppose

it equals 2 and let Λ ∈ #»

O(S̃) satisfying

min(min
v∈V (S̃)\V (SG)

|d+Λ(v) − d−Λ(v)|, min
v∈V (S̃)∩V (SG)

|d+Λ(v) − d−Λ(v)| + 1) ≥ 2. (2.5)

Thus we have dS̃(v) ≥ 2, ∀v ∈ V (S̃)\V (SG) and we know that for any v ∈
V (S̃)∩V (SG), all the blocks in S̃ adjacent to v are odd cycles, hence dS̃(v) ≥ 2.

So δS̃ ≥ 2 and according to lemma 38, there is a cycle C of S̃ with at most one

89

gate. If C has no gate then it means that S̃ consists only of C and since we

know that all the cycles of S̃ are odd, it directly contradicts the existence of Λ.

Hence C has exactly one gate g. So for all v ∈ V (C)\{g}, |d+Λ(v) − d−Λ(v)| =
|d+Λ|C (v) − d−Λ|C (v)| and if we name the vertices of C g = v1v2 · · · vk = g the

assignment of Λ must be

Λ(vivi+1) =

⎧⎨
⎩

»vivi+1 if i is odd;

»vi+1vi otherwise
, ∀i ∈ �1, k − 1�;

or its reverse so that Λ satisfies our assumption. Thus we have

max
Λ∈ #»

O(S̃)
min(min

v∈V (S̃)\V (SG)
|d+Λ(v) − d−Λ(v)|, min

v∈V (S̃)∩V (SG)
|d+Λ(v) − d−Λ(v)| + 1)

= max
Λ∈ #»

O(S̃\C)
min(min

v∈V (S̃\C)\V (SG)
|d+Λ(v) − d−Λ(v)|, min

v∈V (S̃\C)∩V (SG)
|d+Λ(v) − d−Λ(v)| + 1).

If there exists a vertex of degree one in S̃\C then it is adjacent to at bridge in

S̃ and is therefore in V (SG\C)\V (SG), thus contradicting (2.5). So we assume

that δS̃\C = 2 and we can reiterate the same process with another odd cycle

with exactly one gate until we are left with an odd cycle Cend with no gates

and conclude that

max
Λ∈ #»

O(Cend)
min(min

v∈V (Cend)\V (SG)
|d+Λ(v)−d−Λ(v)|, min

v∈V (Cend)∩V (SG)
|d+Λ(v)−d−Λ(v)|+1) ≥ 2;

Since this is impossible for an odd cycle, we deduce that (2.5) does not hold.

Hence, MaxIm(G) ≤ 1.

90

Figure 2.13: Orienting the edges of G verifying δG = 2 and SG = VB in such a way
that MaxIm(G) = 2.

(a)

(b)

(c)

91

(d)

(e)

(f)

92

2.3.3 Exact polynomial-time algorithm for cacti

The polynomial-time characterization of the cacti such that MaxIm(G) = 0 in

Section 2.2 put together with the polynomial-time characterization of the cacti such

that MaxIm(G) = 2 entail a polynomial-time algorithm solving MaxIm for cacti.

An optimal orientation can easily be derived since either MaxIm(G) = 0, in which

case any orientation is optimal, or MaxIm(G) > 0 in which case the characterization

allowing to decide between the values 1 and 2 entails an optimal orientation the value

of which permits to answer the problem.

Asahiro et al. gave polynomial-time algorithm for cacti w.r.t. MaxMinOut

in [6]. More about cacti can be found in [34, 58]. The problem MaxIm however

remains generally NP-complete as shown in Section 2.1. In the same Section, we

have shown that it cannot be approximated in polynomial tim within more than
1
2
. The optimal value may nonetheless be computed using non-polynomial mixed

integer linear optimization.

2.4 Mixed integer linear programming formula-

tions

Even if the complexity of mixed integer programming is exponential, it remains

important when designing a MIP to limit the number of integer variables and to

ensure the quality of its linear relaxation in order for the objective values of fractional

solutions to be as close as can be from the optimal objective value.

In this section, we gradually introduce two formulations for the MaxIm problem.

In order to describe an orientation of the graph G, we take the incidence matrix of

the graph B and orientation variables x ∈ {−1, 1}|E| as introduced in Section 1.5

of the Introduction. And we obtain from the given generic formumation from the

same Section the following for MaxIm.

max
x∈{−1,1}|E|

min
v∈V
|Bvx|.

This expression of MaxIm is non-linear. We need to modify its non-linear elements

in order to obtain a computable mixed integer linear program.

93

2.4.1 A first MIP

First we address the minimum in the objective function and introduce a variable h

that will assume the role of this minimum.
maxh

s.t.

h ≤ |Bvx|, ∀v ∈ V
x ∈ {−1, 1}|E|.

Now in order to remove the absolute values of the constraint, we square it : h2 ≤
(Bvx)2, ∀v ∈ V . The variables x have only two possible values (-1 and 1), they

are thus called binary variables. Regarding the computability of a formulation, it

makes more sense for a binary variable to be 0/1-valued. Therefore we change the

variables in the following way: x→ 2x− 1. Developing our constraint, we obtain:

(Bv(2x− 1))2

=

(∑
uv∈E

Bv,uv(2xuv − 1)

)2

=
∑
uv∈E

B2
v,uv(2xuv − 1)2 + 2

∑
uv,wv∈E
uv 6=wv

Bv,uvBv,wv(2xuv − 1)(2xwv − 1)

=
∑
uv∈E

(4x2
uv − 4xuv + 1) + 2

∑
uv,wv∈E
uv 6=wv

Bv,uvBv,wv(4xuvxwv − 2xuv − 2xwv + 1)

=d(v) + 2
∑

uv,wv∈E
uv 6=wv

Bv,uvBv,wv(4xuvxwv − 2xuv − 2xwv + 1).

Since it still is not linear, we have to consider variables representing the product

of two variables and for that we substitute the x variables by their 0-1 version. So

developing, we obtain Regarding h, maximizing h is equivalent to maximizing its

square root. Hence, substituting h2 by h, we then get the following formulation.

maxh

s.t.

h ≤ d(v) + 2
∑

uv,wv∈E
uv 6=wv

Bv,uvBv,wv(4xuvxwv − 2xuv − 2xwv + 1), ∀v ∈ V

x ∈ {0, 1}|E|.

In order to linearize it, we introduce product variables zuv,wp ∈ {0, 1}, uv, wp ∈
E, uv 6= wp representing the variables product xuvxwp. For a pair of edges (uv, wp) ∈

94

E2, uv 6= wp, we add the constraints zuv,wp ≤ xuv, zuv,wp ≤ xwp and zuv,wp ≥
xuv + xwp − 1 so as to force zuv,wp = xuvxwp for any integer solution. With these

additional constraints, we can relax the integer constraint on the z variables, its

values will still be integers for any solution where the values of x are integers. We

obtain the following mixed integer linear programming formulation.

(MIP1)

maxh

s.t.

h ≤ d(v) + 2
∑

uv,wv∈E
uv 6=wv

Bv,uvBv,wv(4zuv,wv − 2xuv − 2xwv + 1), ∀v ∈ V

zuv,wp ≤ xuv

zuv,wp ≤ xwp

zuv,wp ≥ xuv + xwp − 1

, ∀uv, wp ∈ E, uv 6= wp

x ∈ {0, 1}|E|, zuv,wp ≥ 0, ∀uv, wp ∈ E, uv 6= wp, h ∈ R.

The following result asserts that solving the mixed integer linear program (MIP1)

is equivalent to solving MaxIm for any graph G.

Theorem 39. For any graph G,

MIP1(G) = MaxIm(G),

Where MIP1(G) is the square root of the optimal objective value of (MIP1) for G.

Proof. x ∈ {0, 1}|E| covers all the possible orientations of G and for every vertex

v ∈ V , the first constraint is equivalent to h ≤ (d+
x (v)− d−x (v))2.

Thus we have a first mixed integer linear programming formulation for our prob-

lems with O(m2) variables, O(m) of which are integer variables and O(m2) con-

straints.

Let us take a look at the linear program obtained by relaxing the integer con-

straint of (MIP1) (i.e. the linear relaxation of MIP1) on an input graph G = (V,E),

and let us consider the triplet (xlp, zlp, hlp) where

. xlpuv = 1
2
, ∀uv ∈ E;

. zlpuv,wp = 0 for all pairs of edges uv, wp ∈ E that share no endpoint;

. zlpuv,wv = 1+Bv,uvBv,wv
4

for all pairs of edges uv, wv ∈ E (i.e. all pairs of edges in

E that share an endpoint);

. hlp = δ2
G.

95

Lemma 40. (xlp, zlp, hlp) is a feasible solution of the linear relaxation of (MIP1)

with objective value δ2
G.

Proof. Observe that ∀uv, wp ∈ E,

0 = xlpuv + xlpwp − 1 ≤ zlpuv,wp ≤ xlpuv = xlpwv =
1

2
.

Moreover, ∀v ∈ V ,

d(v) + 2
∑

uv,wv∈E
uv 6=wv

Bv,uvBv,wv(4z
lp
uv,wv − 2xlpuv − 2xlpwv + 1)

=d(v) + 2
∑

uv,wv∈E
uv 6=wv

Bv,uvBv,wv(1 +Bv,uvBv,wv − 1− 1 + 1)

=d(v) + 2
∑

uv,wv∈E
uv 6=wv

(Bv,uvBv,wv)
2

=d(v) + 2
∑

uv,wv∈E
uv 6=wv

1

=d(v) + (d(v)− 1)d(v)

=d(v)2 ≥ δ2
G.

The previous lemma proves that the optimal value of the linear relaxation of

(MIP1) is at least the minimum degree of the input graph squared, which corre-

sponds to the trivial upper bound of MaxIm(G). This implies that the value of

an optimal solution for the linear relaxation of MIP1 can be quite distant from its

optimal objective value, which can significantly impair the general performance of

the formulation.

2.4.2 A more elaborated MIP

We present a second formulation with reduced number of variables and constraints.

This second formulation involves the same orientation variables x ∈ {−1, 1}|E| and a

second type of variables that are binary: indicator variables yvk with v ∈ V a vertex

of G and k ∈ J−d(v), d(v)K. They have the following interpretation: yvk = 1 if and

only if Bvx = d+
x (v)− d−x (v) = k, so that the following equation trivially holds∑

k∈J−d(v),d(v)K
kyvk = Bvx, ∀v ∈ V.

96

Given the interpretation for the variables y, among those of the form yvk, for some

fixed node v ∈ V , exactly one of them has value 1. Thus, the following constraints

are satisfied ∑
k∈J−d(v),d(v)K

yvk = 1, ∀v ∈ V.

Notice that for a vertex v ∈ V , the difference between its oudegree and indegree

w.r.t. any orientation and its degree have the same parity. Thus instead of running

k through J−d(v), d(v)K, we can limit to k ∈ J−d(v), d(v)K, s.t. k ≡ d(v) (mod 2),

i.e. the only possible values of d+
x (v)− d−x (v) when x runs through {−1, 1}|E|. Then

we can show the MaxIm problem may be formulated as the mixed integer program

(MIP2)

maxh

s.t.

h ≤
∑

k∈J−d(v),d(v)K
k≡d(v) (mod 2)

min(|k|, δG)yvk, ∀v ∈ V∑
k∈J−d(v),d(v)K
k≡d(v) (mod 2)

yvk = 1, ∀v ∈ V∑
k∈J−d(v),d(v)K
k≡d(v) (mod 2)

kyvk = Bvx, ∀v ∈ V

x ∈ [−1; 1]|E|, yvk ∈ {0, 1},∀(v, k) ∈ V × J−d(v), d(v)K, s.t. k ≡ d(v) (mod 2), h ∈ R.

The following result asserts that solving the mixed integer linear program (MIP2)

is equivalent to solving MaxIm for any graph G.

Theorem 41. For any graph G,

MIP2(G) = MaxIm(G),

Where MIP2(G) is the optimal objective value of (MIP2) for G.

Proof. First, we consider the stronger formulation where the orientation variables

x are constrained to take value in {−1, 1}. Since yvk = 1 if and only if Bvx =

d+
x (v) − d−x (v) = k and x ∈ {−1, 1}|E| covers all the possible orientations of G, for

every vertex v ∈ V , the first and third constraints lead to h ≤ |d+
x (v)− d−x (v)| and

the optimal objective value of the resulting formulation would equal MaxIm(G).

Now we know that the incidence matrix B is totally unimodular. Hence, there

exists an integer optimal solution (x?, y?, h?) of (MIP2). If x? ∈ {−1, 1}|E| then

(x?, y?, h?) is solution of the stronger version of (MIP2) mentioned above and there-

fore optimal, i.e. its objective value is MaxIm(G). Otherwise x? describes a partial

orientation of G, i.e. for an edge uv ∈ E, if x?uv = 1 then the original orientation of

the edge is preserved, if x?uv = −1 then it is reversed and if x?uv = 0 then the edge is

left unoriented. We know that for each vertex v ∈ V , Bvx
? ≡ d(v) (mod 2). So the

97

number of edges adjacent to v on which x? is non-zero must have the same parity

as the degree of v. Subsequently, the number of edges adjacent to v on which x? is

zero must be even. In other words, let E ′ = {uv ∈ E|x?uv = 0} and G′ = (V,E ′),

dG′(v) ≡ 0 (mod 2) for each vertex v ∈ V . Since G′ is Eulerian, we can take a cycle

of G′, orient it in a way that does not change the imbalance of any vertex, remove it

and proceed like this until there are no more edges in G′. The resulting (complete)

orientation can be described by an orientation vector x′ ∈ {−1, 1}|E| and the triplet

(x′, y?, h?) is a solution of the all-integer version of (MIP2) having the same objective

value as (x?, y?, h?), hence it is optimal and therefore equal to MaxIm(G).

We now have a second mixed integer linear programming formulation of MaxIm

with O(m+ n) variables, O(m) of which are integer variable and O(n) constraints.

These asymptotic sizes are significantly smaller than those of the (MIP1), which can

be significant for the performance of the formulation. It means that for an instance

of the same size, the solver will have a much smaller volume of memory to process

and much less variables on which to branch and/or bound. Let us now interest

ourselves with the linear relaxation of (MIP2).

Let us consider the triplet (xlp, ylp, hlp) where

. xlpuv = 0, ∀uv ∈ E;

. yv,lpk = 0, ∀(v, k) ∈ V × J−d(v) + 1, d(v)− 1K, s.t. k ≡ d(v) (mod 2);

. yv,lp−d(v) = yv,lpd(v) = 1
2
, ∀v ∈ V .

Observe that (xlp, ylp, hlp) is a feasible solution of the linear relaxation of (MIP2)

with objective value δG. In other words, the linear relaxation (MIP2) is generally

weak (possibly as weak as (MIP1)). Let us then try to find some valid inequalities

in order to strengthen this linear relaxation.

2.5 Strengthening (MIP2)

There are several possible way to improve the general performance of our mixed

integer linear program. One simple way is to try and reduce its size by eliminating

redundant variables.

Remember from Section 2.2 that it is easy to check whether MaxIm(G) = 0.

One can then set variables yv0 to 0 when MaxIm(G) > 0. We also know from the

discussion at the end of Section 2.1 that MaxIm(G) can not be less than
⌈
δG
2

⌉
− 1.

More precisely, if δG ≡ 0 (mod 4) then MaxIm(G) ≥ δG
2

while MaxIm(G) ≥ δG−1
2

when δG is odd and MaxIm(G) ≥ δG
2
− 1 when δG ≡ 2 (mod 4).

98

More generally, if l is a known lower bound for MaxIm(G), then all variables

yvk for |k| < l can be fixed to 0, i.e. deleted from the formulation. To find such a

lower bound, we use a standard greedy algorithm to find a locally maximum cut

and orient edges as described in the proof of Theorem 25.

Another way to improve the performance of (MIP2) is to add constraints to its

linear relaxation in order for it to be stronger, in other words, for the gap between

the optimal objective value of (MIP2) and that of its relaxation to be smaller. These

constraints may be extracted from valid families of inequalities for the set of solutions

of (MIP2) by the mean of a cutting plane method, particularly in the case of families

which inherent separation problem can be solved in polynomial time.

2.5.1 A family of valid inequalities obtained from a polyhe-

dral study

Let u be an upper bound for MaxIm(G). We already know that MaxIm(G) ≤ δG,

so we can assume that u ≤ δG. Consider the following inequality

h ≤ u−
n∑
v=1

∑
k∈J0,u−1K

k≡d(v) (mod 2)

λvk(y
v
k + yv−k), ∀λ ∈ Λu (2.6)

where the vertices of G are numbered from 1 to |V | = n, and

Λu =

{
λ = (λvk)(v,k)∈J1,nK×J0,u−1K ∈ Nnu

∣∣∣∣∣ λvk+1 ≤ λvk, ∀(v, k) ∈ J1, nK× J0, u− 2K∑n
v=1 λ

v
k = u− k, ∀k ∈ J0, u− 1K

}
.

Observe that coefficients λvk are non-negative integer numbers and are non increasing

in k. For each k, there exists only one v such that λvk+1 = λvk − 1 while λwk+1 = λwk
for any w 6= v.

The family of inequalities (2.6) derive from the study of the polyhedron consisting

in the convex hull of an assignment matrix appended with the smallest assigned

value. The study of this family of polyhedra detailed in Chapter 4 originates in

the research of valid inequalities intended to strengthen formulation (MIP2). Let

us prove that these inequalities are valid inequalities for the convex hull of feasible

solutions of (MIP2) denoted by P2.

Proposition 42. Inequalities (2.6) are valid for P2.

Proof. Consider a feasible solution (x, y, h) of P2. If yvk = 0 and yv−k = 0 for any

v ∈ J1, nK and any k ∈ J0, u − 1K, then
∑n

v=1

∑
k∈J0,u−1K

k≡d(v) (mod 2)

λvk(y
v
k + yv−k) = 0 and

inequality (2.6) becomes h ≤ u. The last is valid since u is an upper bound for

99

MaxIm(G).

Let us now assume that h ≤ u − 1, then there exist v ∈ J1, nK and k ≤ u − 1

such that either yvk or yv−k is equal to 1 while ywk′ = 0 for any w ∈ J1, nK and k′ such

that |k′| < k.

Using the fact that ywk is non increasing, we deduce that∑
k′∈J0,u−1K

k′≡d(w) (mod 2)

λwk′(y
w
k′ + yw−k′) ≤ λwk

∑
k′∈Jk,u−1K

k′≡d(w) (mod 2)

(ywk′ + yw−k′) ≤ λwk .

Summing up these inequalities for all w and using the fact that
∑n

v=1 λ
v
k = u − k

leads to h ≤ k which is valid by the definition of k.

Observe that the first family of inequalities included in (MIP2) can be seen as a

special case of inequalities (2.6).

Let us now study the separation problem of inequalities (2.6).

Proposition 43. Inequalities (2.6) can be separated in polynomial time.

Proof. Given a fractional solution (x, y, h), one can check whether an inequality of

type (2.6) is violated by looking for coefficients λ ∈ Λu maximizing
∑n

v=1

∑
k∈J0,u−1K

k≡d(v) (mod 2)

λvk(y
v
k+

yv−k). Remember that for each k, there exists only one v such that λvk+1 = λvk−1 while

λwk+1 = λwk for any w 6= v. Let vk be such v. Then
∑n

v=1

∑
k∈J0,u−1K

k≡d(v) (mod 2)

λvk(y
v
k + yv−k)

can be written as
∑

k∈J0,u−1K
∑

k′∈J0,kK(y
vk
k′ + yvk−k′). This immediately leads to the

following algorithm. First, all λvk are initially set to 0. Then, we select vu−1 maxi-

mizing
∑

k∈J0,u−1K
k≡d(v) (mod 2)

(yvk + yv−k) and we increment by 1 all λ
vu−1

k : λ
vu−1

k = λ
vu−1

k + 1

for any k ≤ u− 1. More generally, for each w ∈ J0, u− 1K, we select vw maximizing∑
k∈J0,wK

k≡d(v) (mod 2)

(yvk + yv−k) and we increment by 1 all λvwk for k ≤ w. The algorithm

has clearly a polynomial-time complexity.

2.5.2 Valid inequalities extracted from the orientation of

the edges incident to one vertex

A second family of valid inequalities is defined for each vertex v, each integer number

p ∈ J1, d(v)K and each subset of p edges incident to v.∑
{vu1,··· ,vup}⊆δ({v})

Bv,vuixvui +
∑

k∈J0,p−1K

2(p− k)yv2k−d(v) ≤ p. (2.7)

100

These inequalities come from the study of the behavior of the indicator variables

corresponding to a vertex and the orientation variables of the edges incident to it

when varying the value of its imbalance.

Proposition 44. Inequalities (2.7) are valid for P2.

Proof. If all variables yv2k−d(v) are equal to 0 for k ∈ J0, p− 1K, then inequality (2.7)

is implied by the fact that x ∈ [−1; 1]|E|.

Assume that yv2k0−d(v) = 1 for some k0 ∈ J0, p− 1K. This requires that among all

edges of δ({v}) there are exactly k0 (resp. d(v)−k0) edges vu such that Bv,vuxvu = 1

(resp. Bv,vuxvu = −1). Consequently
∑
{vu1,··· ,vup}⊆δ({v})Bv,vuixvui is upper bounded

by k0− (p−k0) = 2k0−p. Moreover, we have
∑

k∈J0,p−1K 2(p−k)yv2k−d(v) = 2(p−k0).

Inequality (2.7) immediately follows.

The separation problem of inequalities (2.7) is also easy to solve.

Proposition 45. Inequalities (2.7) can be separated in polynomial time.

Proof. Given a fractional solution (x, y, h), for each vertex v and any p ∈ J1, d(v)K,
we order the edges of δ({v}) in descending order according to Bv,vuxvu and we select

the first p edges. Then a violated inequality can be detected by comparison of∑
{vu1,··· ,vup}⊆δ({v})Bv,vuixvui +

∑
k∈J0,p−1K 2(p− k)yv2k−d(v) with p.

2.5.3 Valid inequalities extracted from cycle orientation

In a cycle, the number of vertices which imbalance equals their degree cannot exceed

half the size of the cycle. Similarly, the number of vertices which imbalance is

larger than their degree minus 2 cannot exceed the size of the cycle. Using these

considerations, we can design valid inequalities for the set of solutions of (MIP2). Let

us now consider any cycle C of the input graph and the two following inequalities.

∑
v∈V (C)

(2yvd(v) + yvd(v)−2) ≤ |V (C)|, (2.8)

∑
v∈V (C)

(2yv−d(v) + yv−d(v)+2) ≤ |V (C)|. (2.9)

Proposition 46. Inequalities (2.8) and (2.9) are valid for P2.

Proof. Let us focus on the validity of inequalities (2.8) (inequalities (2.9) being

provable in the same way). After orientation of the edges of the cycle C, let C+

be the set of vertices of C for which their two incident edges are oriented outward

from these vertices to their neighbours. We also define C− in the same way by

101

Figure 2.14: A vertex of a cycle C is respectively in C+, C− or C∗ if it has two, zero
or one outgoing incident edge(s) in C.

C

+

− −

+

−∗

∗ +

considering vertices having two edges of the cycle oriented from their neighbours

to them. The remaining set of vertices of the cycle is denoted by C∗ (they have

an incoming incident edge and an outgoing incident edge). These definitions are

illustrated on Fig. 2.14. It is now easy to see that we always have |C+| = |C−|.
Suppose that yvd(v) = 1, then v ∈ C+. Observe also that yvd(v)−2 = 1 requires v to be

in C+ ∪ C∗. Consequently,

∑
v∈V (C)

(yvd(v) + yvd(v)−2) ≤ |C+|+ |C∗|

and

∑
v∈V (C)

yvd(v) ≤ |C+|.

Summing up both inequalities leads to

∑
v∈V (C)

(2yvd(v) + yvd(v)−2) ≤ 2|C+|+ |C∗| = |C+|+ |C−|+ |C∗| = |V (C)|.

Proposition 47. Inequalities (2.8) and (2.9) can be separated in polynomial time.

Proof. Let us again focus on inequalities (2.8) since (2.9) can be separated in a

similar way. Given a fractional solution (x, y, h), we need an algorithm to either

compute a cycle C such that |V (C)| −
∑

v∈V (C)(2y
v
d(v) + yvd(v)−2) < 0 or to certify

that such a cycle does not exist. For each edge uv, let us consider a weight

cuv = 1− (yvd(v) +
1

2
yvd(v)−2)− (yud(u) +

1

2
yud(u)−2).

102

Then we clearly have

|V (C)| −
∑

v∈V (C)

(2yvd(v) + yvd(v)−2) =
∑

{uv}∈E(C)

cuv.

We are then looking for an undirected cycle having a negative total weight. This

can be done, for example, by computing a minimum weight ∅-join, i.e. a set of

edge disjoint cycles. This can be done using the algorithm of [36]. Notice that this

algorithm can provide many negative weight cycles with some 0 weight cycles. If the

total weight of the ∅-join is strictly negative, a negative weight cycle can be easily

extracted. A different algorithm can also be found in [17].

2.5.4 Valid inequalities extracted from clique orientation

Given any clique K and any number p ∈ J1, |K|K, we consider the two following

inequalities.

∑
v∈V (K)

min(p−1,d(v))∑
k=0

(p− k)yvd(v)−2k ≤
p(p+ 1)

2
, ∀p ∈ J1, |K|K, (2.10)

∑
v∈V (K)

min(p−1,d(v))∑
k=0

(p− k)yv2k−d(v) ≤
p(p+ 1)

2
, ∀p ∈ J1, |K|K. (2.11)

These inequalities come from the study of the behavior of the indicator variables

corresponding to the vertices of a clique when varying the orientation of the edges

of its edges. This study is based on considerations similar to the ones used to derive

inequalities (2.8) and (2.9) concerning the maximum possible number of vertices

which imbalance equal their degree in a clique and so on. Inequalities (2.10) can be

seen as a generalization of the obvious inequalities
∑

v∈V (K) y
v
d(v) ≤ 1 obtained when

p = 1.

Proposition 48. Inequalities (2.10) and (2.11) are valid for P2.

Proof. We can focus on inequalities (2.10). To maximize the left hand side of (2.10),

we can assume that all edges in δ(V (K)) are oriented from V (K) to V \V (K) (this

is due to the fact that the coefficient p − k increases when k decreases). Then,

yvd(v)−2k = 1 is equivalent to say that exactly k edges, inside K and incident to v, are

oriented from v.

Observe that inequality (2.10) is equivalent to

p
∑

v∈V (K)

min(p−1,d(v))∑
k=0

yvd(v)−2k ≤
∑

v∈V (K)

min(p−1,d(v))∑
k=0

kyvd(v)−2k +
p(p+ 1)

2
. (2.12)

103

Let q be the number of vertices of K whose outdegree (in the graph induced by K)

is at most p − 1 after orientation. The left hand side of (2.12) is given by pq. The

sum of the q lowest outdegrees is exactly given by

∑
v∈V (K)

min(p−1,d(v))∑
k=0

kyvd(v)−2k.

Using Landau’s theorem for tournaments [73], we have

∑
v∈V (K)

min(p−1,d(v))∑
k=0

kyvd(v)−2k ≥
q(q − 1)

2
.

Adding p(p+1)
2

to both sides, we get

∑
v∈V (K)

min(p−1,d(v))∑
k=0

kyvd(v)−2k +
p(p+ 1)

2
≥ p2 + q2 + p− q

2
.

Moreover, from (q − p)2 ≥ q − p, we get that p2+q2+p−q
2

≥ pq proving (2.12).

To separate inequalities (2.10), the following heuristic is used. Given a fractional

solution (x, y, h), for each vertex v and any p ∈ J1, d(v)+1K, we use a greedy approach

to find a locally maximum-weight clique where the weight of any vertex u ∈ V is∑min(p−1,d(u))
k=0 (p − k)yud(u)−2k. We start with V (K) := {v} and then recursively find

u = arg max{
∑min(p−1,d(w))

k=0 (p − k)ywd(w)−2k|w ∈ ∩v′∈KNG(v′)}, where NG(v) denotes

the set of the neighbours of v in G, and add it to V (K) until ∩v′∈V (K)NG(v′) = ∅.
Then if |V (K)| ≥ p we can derive the inequality (2.10) corresponding to K.

2.6 Computational results

In order to assess the performance of formulations (MIP1) and (MIP2), we present

some computational results related to a wide variety of graphs. All algorithms were

written in C++ calling IBM’s ILOG CPLEX optimizer c© and experiments have been

performed using a processor 1.9GHzx4, 15.6GB RAM with four cores.

CPLEX solves integer programming problems, very large linear optimization

problems using either primal or dual variants of the simplex methods or the barrier

method.

104

2.6.1 Implementation scheme

While the implementation of (MIP1) is pretty straightforward: the model is created

with all inequalities described in Section 2.4.1 and then the mixed integer linear

programming solver of CPLEX is run with default parameters, the implementation

of (MIP2) needs to be detailed.

First of all, an initial solution is determined by computing a locally maximum

cut using the standard greedy algorithm described in the proof of Theorem 25. A

starting integer solution is then known for both formulations (MIP1) and (MIP2).

One can observe that the solutions for the linear relaxations of (MIP1) and

(MIP2) respectively given in Lemma 40 and at the end of Section 2.4 abuse the

symmetry of the formulations, thus having a high objective value (equal to the

minimum degree). In order to break this symmetry, a constraint on the sign of the

imbalance of one arbitrarily chosen maximum degree vertex is added according to

its sign in the initial integer solution mentioned above. Practically, this means that

for example for (MIP2), let v0 ∈ V such that d(v0) = ∆G and (x0, y0) the starting

integer solution. Then if ∑
k∈J0,d(v0)K

k≡d(v0) (mod 2)

y0
v0
k = 1,

then we add the constraints

yv0k = 0, ∀k ∈ J−d(v0), 0Kk ≡ d(v0) (mod 2)

to the formulation, thus forcing the signed imbalance of v0 to be positive on every

solution. On the other hand, if ∑
k∈J0,d(v0)K

k≡d(v0) (mod 2)

y0
v0
k = 0,

then we add the constraints

yv0k = 0, ∀k ∈ J0, d(v0)Kk ≡ d(v0) (mod 2)

to the formulation, thus forcing the signed imbalance of v0 to be negative on every

solution.

For both formulations and each instance, we set a limited total processing time

of 15 minutes (900 seconds). If this limit is reached, then the process is interrupted

and returns both the objective value of the current best integer solution LMIP1 or

LMIP2 and the current best upper bound UMIP1 or UMIP2. Those two values are equal

if the instance is solved to optimality, i.e. under 900s.

105

For formulation (MIP1), the time spent in the solver is denoted by (MIP1), if it

reached 900s and was therefore interrupted, then it will show “>900”.

For formulation (MIP2), a cutting-plane algorithm is implemented based on the

inequalities of Section 2.5. Inequalities are generated in the following order:

• We look for a violated inequality of the type (2.6) according to the proof of

Proposition 43.

• We generate cliques using the heuristic described in the end of section 2.5 and

check for a violated inequality of the types (2.10) and (2.11).

• We search for a cycle with minimum weight with a simple flow formula-

tion solved as mixed integer program where each edge vw ∈ E has weight
1
2
(2yvd(v) + yvd(v)−2 + ywd(w) + ywd(w)−2). If we find a negative weighted cycle, then

corresponding inequality of the type (2.8) is violated. We do the same with the

weight 1
2
(2yv−d(v) + yv2−d(v) + yw−d(w) + yw2−d(w)) for an edge vw to find a violated

inequality of the type (2.9). For the sake of simplicity, inequalities (2.8) and

(2.9) are not separated using the algorithms of [36] and [14] but using a simple

integer linear program computing a minimum-weight cycle.

After various experimentations, we chose not to put the inequalities of type (2.7)

in the cutting-plane phase because when included, while the number of generated

inequalities increases excessively with the size of the graph, the optimal objective

value of the linear program is left unimproved.

After the addition of violated inequalities, the linear relaxation is solved to get

a fractional (x, y, h) solution and the process is repeated until no more violated

inequalities can be found. The optimal objective value of the last LP is denoted by

vLP 2. Notice that the cutting-plane phase is intentionally limited to less than 10

minutes (600 seconds). Thus, if either no more valid inequalities can be generated

or the time spent in the cutting-plane phase reaches 10 minutes, we switch to the

Branch&Bound solving phase. The time spent in the cutting-plane phase us denoted

by tLP 2.

Notice that some automatic internal cuts are generated by the solver to accelerate

the branch&bound. As already mentioned, the total running time is limited to 15

minutes (900 seconds). The time spent in the branch&bound phase is denoted by

tMIP2. If the 900s have passed before the solver found an optimal solution, then the

table will show “>900”.

2.6.2 Guinea-pig graphs

For each of the instances we report LMIP1, UMIP1, tMIP1, vLP 2, tLP 2, LMIP2, UMIP2, and

tMIP2, where tLP 2, tMIP1 and tMIP2 are expressed in seconds. We also report nb(2.6),

106

nb(2.10,2.11) and nb(2.8,2.9), respectively the number of inequalities of the type (2.6),

(2.10) & (2.11) and (2.8) & (2.9) generated for each instance G = (V,E) along with

|V |,|E| and δG.

The graph instances used for the computations are denoted as follows:

• Kn: the complete graph with n vertices,

• Gn
k : the n-dimensional grid of length k, i.e. the cartesian product of n paths

graphs of length k: •ni=1Lk, where Lk is a path graph on k vertices (e.g. Figure

2.15(c)),

• G2
n1,n2

: the 2-dimensional grid, i.e. the cartesian product of two path graphs

of length n1 − 1 and n2 − 1: Ln1 • Ln2 (e.g. Figure 2.15(a)),

• tGn
k : the n-dimensional toroidal grid of length k, i.e. the cartesian product

of n cycless of length k: •ni=1Ck, where Ck is a cycle of length k (e.g. Figure

2.15(d)),

• tG2
n1,n2

: the 2-dimensional toroidal grid, i.e. the cartesian product of cycles of

length n1 and n2: Cn1 • Cn2 (e.g. Figure 2.15(b)),

• Pn,m: a randomly generated planar graph with n vertices and m edges,

• Rn,m: a randomly generated graph with n vertices and m edges.

The Cartesian product used above to define grid graphs is defined as follows. If

G and H are two graphs, their cartesian product is the graph G • H with set of

vertices V (G)× V (H) and set of edges {(u, u′)(vv′)|u = v and u′v′ ∈ E(H) or u′ =

v′ and uv ∈ E(G)}. More about the Cartesian product can be found in [34] and

about the toroidal grids in [31].

107

Figure 2.15: Example of grid graphs

(a) G2
4,4 (b) tG2

4,4

(c) G3
3 (d) tG3

3

2.6.3 Results

Table 2.1 shows that formulation (MIP2) has a significantly better performance

than (MIP1). On many instances we can observe that the cutting-plane algorithm

of (MIP2) drastically improved the upper bound δG, sometimes so far as to the

optimal objective value as can be seen for example on the complete graphs, the

planar graphs or most of the n-dimensional toroidal grids. While the number and

nature of the generated inequalities varies a lot, it seems to never grow excessively.

We can see that as soon as the size of the instance becomes substantial, formulation

(MIP1) needs too much time and/or memory to be processed, while (MIP2) allows

us to handle much larger graphs.

108

Table 2.1: Numerical results

graph

L
M
IP1

U
M
IP1

t
M
IP1

v
LP

2

t
LP

2

L
M
IP2

U
M
IP2

t
M
IP2

nb
(2.6)

nb
(2.10,2.11)

nb
(2.8,2.9)

|V |
|E| δ

G

K10 5 5 25.2 5 0 5 5 0 4 2 0 10 45 9
K50

full memory

25 1.6 25 25 4.9 24 12 0 50 1225 49
K150 75 143.4 75 75 431.8 74 52 0 150 11175 149
K200 99 427.5 99 99 859.4 100 75 0 200 19900 199
K225 150 603.8 112 147 >900 74 46 0 225 25200 224
G4

4 4 4 361 4 0 4 4 0.1 0 0 0 256 768 4
G5

3 2 5 >900 5 17.5 5 5 54.7 0 0 22 243 810 5
G4

5 full memory 4 0.1 4 4 0.5 0 0 0 625 2000 4
G2

5,10 2 2 68.3 2 0.3 2 2 0.9 0 0 3 50 85 2
G2

5,15 2 2 330.9 2 0.8 2 2 2.4 0 0 6 75 130 2
G2

10,10 1 2 >900 2 0.8 2 2 2.6 0 0 5 100 180 2
G2

10,100 full memory
2 226.8 2 2 682.2 0 0 21 1000 1890 2

G2
20,50 2 136 2 2 410 0 0 13 1000 1930 2

tG3
4 6 6 10.5 6 0.1 6 6 0.2 0 0 0 64 192 6

tG3
5 2 6 >900 4 83.8 4 4 288.3 2 0 190 125 375 6

tG4
4

full memory
8 0.7 8 8 3 0 0 0 256 1024 8

tG5
4 10 17 10 10 484 0 0 0 1024 5120 10

tG5
5 9 600 4 7 >900 1 0 0 3125 15625 10

tG2
5,10 2 2 44.6 2 0 2 2 0.1 2 0 0 50 100 4

tG2
5,15 2 2 608.5 2 0 2 2 0.1 2 0 0 75 150 4

tG2
10,10 4 4 130.5 4 0.1 4 4 0.3 0 0 0 100 200 4

tG2
25,50

full memory
2 14.2 2 2 42.9 2 0 0 1250 2500 4

tG2
25,100 2 50.1 2 2 150.9 2 0 0 2500 5000 4

tG2
50,75 2 215 2 2 645.5 2 0 0 3750 7500 4

P24,51 2 2 0.4 2 0.4 2 2 1.2 0 7 6 24 51 2
P20,54 3 3 2.9 3 0.2 3 3 0.7 0 24 4 20 54 3
P25,69 3 3 14.7 3 0.3 3 3 1 0 14 3 25 69 3
R10,33 3 3 6.9 4 0.2 3 3 0.8 1 11 3 10 33 5
R10,36 3 3 277.5 4 0 3 3 0.3 0 11 0 10 36 4
R10,40 4 4 449.6 5 0 4 4 0.3 2 35 0 10 40 7
R15,52 4 4 25.6 4 0.1 4 4 0.4 1 7 1 15 52 5
R40,156 3 3 374.3 3 0.1 3 3 0.6 0 0 0 40 156 3
R15,78 5 7 >900 7 0.1 5 5 35.5 1 60 0 15 78 8
R20,95 5 6 >900 6 0.6 5 5 12.3 1 40 9 20 95 7
R40,234 4 7 >900 7 0.4 7 7 71.5 0 6 2 40 234 7
R30,217 6 10 >900 10 0.4 8 9 >900 0 31 4 30 217 10
R40,390 7 14 >900 14 1.2 9 13 >900 0 73 6 40 390 14
R75,693 5 9 >900 9 0.5 9 9 6.9 0 5 1 75 693 9
R50,918 full memory

29 0.5 17 28 >900 0 588 0 50 918 29
R75,1387 26 0.6 16 26 >900 0 152 0 75 1387 26

109

110

Chapter 3

The maximum cardinality cut

We consider the problem of finding a maximum cardinality cut, i.e. a maximum cut

problem for the case where all the edge-weights are equal to 1: we = 1,∀e ∈ E:

(MaxCut) MaxCut(G) = max
S⊆V
|δ(S)|.

and we call MaxCut(G) the value of MaxCut for G.

The chapter is organized as follows. We present the unweighted maximum cut

problem seen as a graph orientation optimization problem in Section, 3.1. Next, in

light of this new point of view, we introduce some new mixed integer linear pro-

gramming formulations in Section 3.2. A semidefinite programming relaxation is

then proposed. We show that the bound provided by this new SDP relaxation is

stronger than the bound given by the relaxation (SDPGW) introduced by Goemans

& Williamson in Section 3.3. We also prove that the new bound is tight for com-

plete graphs. We then introduce further Mixed Integer Programming formulations

in Section 3.4. Several numerical experiments have been conducted showing the

relevance of the SDP formulation and the performances of the new Mixed Integer

Programming formulations in Section 3.5.

3.1 Maximum cardinality cut and orientation

In order to build a cut, one has to select a part of the vertices of the graph, in other

words to divide the set of vertices into two parts. For example, the exact formulation

for the maximum cut problem on which Goemans & Williamson’s SDP relaxation

(SDPGW) is based can be seen as “labeling” the vertices with either 1 or -1, the

derived cut being the edges whose extremities have different labels.

111

3.1.1 Orienting the edges partitions the vertices

When picking an orientation for a graph, one also separates the set of vertices into

two parts: the vertices which signed imbalance is positive and those which signed

imbalance is negative. Furthermore, the cardinality of the cut derived from this

partition of the vertices equals the sum of the imbalances of the vertices which signed

imbalance is positive, which also equals the sum of the imbalances of the vertices

which signe imbalance is negative. Thus searching for a maximum cardinality cut

is equivalent to searching for an orientation maximizing the sum of the imbalances

of all the vertices in G:

Theorem 49. For any graph G, the maximum cardinality of a cut equals half of the

maximum sum of the imbalances of all the vertices over all the orientations of G:

(MaxCut) MaxCut(G) = max
Λ∈ #»

O(G)

1

2

∑
v∈V

|d+Λ(v) − d−Λ(v)|.

And here appears our generic problem for f = 1
2
|| · ||1.

Proof. Considering our generic formulation in Section 1.5, we have

max
Λ∈ #»

O(G)

∑
v∈V

|d+Λ(v) − d−Λ(v)| = max
x∈{−1,1}|E|

∑
v∈v

|Bvx|.

Adding a sign variable z ∈ {−1, 1}|V |, we have

max
Λ∈ #»

O(G)

∑
v∈V

|d+Λ(v) − d−Λ(v)| = max
x∈{−1,1}|E|

z∈{−1,1}|V |

zᵀBx = max
x∈{−1,1}|E|

z∈{−1,1}|V |

xᵀBᵀz.

By construction of B, the product of the row of Bᵀ corresponding to an arc # »uv

with z is Bᵀ
uvz = zu − zv. Thus,

max
Λ∈ #»

O(G)

∑
v∈V

|d+Λ(v) − d−Λ(v)| = max
x∈{−1,1}|E|

z∈{−1,1}|V |

∑
uv∈E

xuv(zu − zv)

= max
z∈{−1,1}|V |

∑
uv∈E

|zu − zv|.

Now, for S ⊆ V , if we consider the vector z ∈ {−1, 1}n such that for each v ∈ V ,

zv = 1 if and only if v ∈ S, then for an edge uv ∈ E, the quantity |zu − zv| equals
2 if and only if uv ∈ δ(S) and equals 0 otherwise. Consequently, the maximum

cardinality cut can be expressed as

1

2
max

z∈{−1,1}|V |

∑
uv∈E

|zu − zv|.

112

3.1.2 Vice versa

We have shown that given an orientation with maximized sum of the imbalances, it is

easy to derive a maximum cardinality cut: S = {v ∈ V |d+Λ(v) ≥ d−Λ(v)}. Moreover,

the cardinality of S equals half of the sum of the imbalances w.r.t. said orientation,

see Fig. 3.1.

Conversely, one can easily derive from a maximum cardinality cut an orientation

with maximized sum of the imbalances.

Proposition 50. For any graph G, if S ⊆ V is a maximum cardinality cut, then

any Λ ∈ #»

O(G) such that

Λ(uv) = # »uv, ∀uv ∈ E s.t. (u, v) ∈ S × V \S (3.1)

verifies
1

2

∑
v∈V

|d+Λ(v) − d−Λ(v)| = MaxCut(G).

In other words, any such Λ is optimal w.r.t. MaxCut.

Proof. Let H be the subgraphs of G with edge set δ(S). Since S is a maximum

cardinality cut, then we have |δ({v}) ∩ δ(S)| ≥
⌈
d(v)
2

⌉
for all vertex v ∈ V as

explained in the proof of Theorem 25. Therefore, since Λ verifies (3.1), then we

know that d+Λ(v) − d−Λ(v) > 0 for any vertex v ∈ S and d+Λ(v) − d−Λ(v) < 0 for any

vertex v ∈ V \S. We now develop the value of Λ w.r.t. MaxCut:

1

2

∑
v∈V

|d+Λ(v) − d−Λ(v)|

=
1

2

⎛
⎝∑

v∈S

(
d+Λ(v) − d−Λ(v)

)
+

∑
v∈V \S

(
d−Λ(v) − d+Λ(v)

)⎞⎠
=
1

2
(|δ(S)| + |δ(S)|)

=|δ(S)|.

The special link we have between cut and orientation in this problem will turn

out to be very fruitful. An optimal orientation carries the information of an opti-

mal cut, but not only, for an optimal cut may be obtained via many orientations.

This correlation will lead to exact formulations with higher quality relaxations and

consequently to tighter relaxed approximation formulations.

In light of this new approach of the maximum cardinality cut problem, we derive

new mixed integer linear prgramming formulations for MaxCut.

113

Figure 3.1: Example of the relationship between an optimal cut δ(S) and an optimal
orientation Λ.

d+
Λ ≥ d−Λ d+

Λ < d−Λ

S

3.2 Mixed integer linear programming formula-

tions

In the preceding chapter, we have seen several proper ways to give exact formulations

for one of our orientation optimization problem, their core coming from the generic

formulation given in Section 1.5. The additional work came from the fact that the

objective function of MaxIm is not linear and we therefore had to make use of

various linearization techniques to obtain a mixed integer linear formulation. In

this case, the objective function f = 1
2
|| · ||1 is not linear either, we therefore will

have to find the adequate linearizations again.

3.2.1 A first näıve formulation

The generic formulation from Section 1.5 here gives

max
x∈{−1,1}|E|

∑
v∈V

|Bvx|,

involving orientations variables x. We therefore have once again the absolute values

to deal with. Let us then summon binary indicators variables as we did in the

design of (MIP2) in Section 2.4: yvk, with v ∈ V and k ∈ J−d(v), d(v)K. Once again,

they have the following interpretation: yvk = 1 if and only if Bvx = k, so that the

following equations trivially hold

d(v)∑
k=−d(v)

kyvk = Bvx, ∀v ∈ V. (3.2)

Also, given the interpretation for the variables y, among those of the form yvk,

for some fixed node v ∈ V , exactly one of them has value 1. Thus, the following

114

constraints are satisfied

d(v)∑
k=−d(v)

yvk = 1, ∀v ∈ V. (3.3)

Then we can show that the maximum cardinality cut problem may be formulated

as the mixed integer program

(MIP3)

Z?

MIP3 = 1
2

max
∑

v∈V
∑d(v)

k=−d(v)|k|yvk
s.t. (3.2), (3.3),

x ∈ [−1; 1]|E|,

yvk ∈ {0, 1}, ∀v ∈ V, ∀k ∈ J−d(v), d(v)K.

The following result asserts that solving the mixed integer linear program (MIP3)

returns the maximum cardinality of a cut in the input graph.

Proposition 51. The optimal objective value of (MIP3) equals the maximum cardi-

nality of a cut in the graph G: Z?
MIP3 = w?.

Proof. If we show that for any graph, there is an optimal solution (x, y) ∈ [−1, 1]m×
{0, 1}4|E| of (MIP3) such that x ∈ {−1, 1}|E|, then we can conclude with Theorem

49. If (x, y) ∈ [−1, 1]|E| × {0, 1}4|E| is a solution of (MIP3), then since y is integer-

valued and B is totally unimodular, then x is an integer-valued as well. Hence x

describes a partial orientation of the edges of the input graph G, i.e. there may

be some unoriented edges of G w.r.t. x: {e ∈ E|xe = 0}. We take S = {v ∈
V |d+

x (v) ≥ d−x (v)}. If an edge e ∈ E left unoriented w.r.t. x belonged to δ(S), then

orienting it from S to V \S would increase by 2 the value of (x, y) thus contradicting

its optimality. Then e /∈ δ(S) and x can therefore be arbitratily completed into an

orientation of G (i.e. an element of {−1, 1}|E|) whilst remaining optimal, according

to Proposition 50.

3.2.2 The orientation variables become redundant

Now we will see that with an observation of the behavior of the indicator variables

of the endpoints of an edge in relation to its orientation, we can remove orientation

variables from our formulation altogether.

Given an optimal solution (x, y) ∈ [−1, 1]|E| × {0, 1}4|E| of (MIP3), for any edge

uv ∈ E which has the original orientation from u to v (i.e. bv,uv = −1), the following

equation holds: xuv =
∑d(u)

k=1 y
u
k −

∑d(v)
k=1 y

v
k. Reversly, if the original orientation of

uv is from v to u (i.e. Bv,uv = 1), then xuv =
∑d(v)

k=1 y
v
k −

∑d(u)
k=1 y

u
k , which yields,

whichever the original orientation of uv,

115

Bv,uvxuv =

d(v)∑
k=1

yvk −
d(u)∑
k=1

yuk .

From the latter we deduce (developing the expression Bvx):

d(v)∑
k=−d(v)

kyvk = Bvx =
∑
uv∈E

d(v)∑
k=1

yvk −
d(u)∑
k=1

yuk

 . (3.4)

Observe also that for a maximum cardinality cut δ(S), S ⊆ V , each vertex

v is incident to at least
⌈
d(v)

2

⌉
edges in δ(S), as explained in the proof of Theo-

rem 25. Therefore, since Λ verifies (3.1). This implies that the variables yvk with

k ∈
{

1−
⌈
d(v)

2

⌉
, . . . ,

⌈
d(v)

2

⌉
− 1
}

may be removed from formulation (MIP3), while

Proposition 51 remains valid.

We therefore denote for all v ∈ V the sets

. I−v =
r
−d(v),−

⌈
d(v)

2

⌉z
,

. I+
v =

r⌈
d(v)

2

⌉
, d(v)

z
,

. Iv = I−v ∪ I+
v .

It follows that, in place of (MIP3), we may consider a formulation involving

exclusively variables of the form yvk by replacing equations (3.2) with (3.4). For each

vertex v, we only consider yvk variables for k ∈ Iv.

(MIP4)

Z?
MIP4 = 1

2
max

∑
v∈V

∑
k∈Iv |k|y

v
k

s.t.∑
k∈Iv y

v
k = 1, ∀v ∈ V,∑

k∈Iv ky
v
k =

∑
uv∈E(

∑
k∈I+v y

v
k −

∑
k∈I+u y

u
k), ∀v ∈ V,

yvk ∈ {0, 1}, ∀v ∈ V, ∀k ∈ Iv.

(3.5a)

(3.5b)

We show that solving the mixed integer linear program (MIP3) returns the max-

imum cardinality of a cut in the input graph.

Proposition 52. The optimal objective value of (MIP4) equals the maximum cardi-

nality of a cut in the graph G: Z?
MIP4 = w?.

Proof. If (x, y) ∈ [−1, 1]|E| × {0, 1}4|E| is a solution of (MIP3) then the ykv with

v ∈ V and ∈ Iv form a solution of (MIP4) with the same value. Conversely, we

116

take (yvk)v∈V, k∈Iv a solution of (MIP4). We build the following partial orientation.

For each edge uv ∈ E, if
∑

k∈Iu ky
u
k and

∑
k∈Iv ky

v
k have different sign, then uv

is oriented from its ”non-negative” endpoint to its ”negative” endpoint. We take

x̃ ∈ {−1, 0, 1}|E| that describes this partial orientation and ỹ ∈ {0, 1}4|E| where for

each vertex v ∈ V , ỹvk = yvk if k ∈ Iv and ỹvk = 0 if k ∈ J1 −
⌈
d(v)

2

⌉
,
⌈
d(v)

2

⌉
− 1K.

Then (x̃, ỹ) is a solution of (MIP3) sharing its value with y w.r.t. (MIP4). (MIP3)

and (MIP4) are therefore equivalent.

Formulation (MIP4) involves O(|E|) (yet, roughly half as mush as (MIP3)) vari-

ables and O(|V |) constraints. If we take following fractional solution of (MIP4) :

yv−d(v) = yvd(v) = 1
2
, ∀v ∈ V and yvk = 0, ∀v ∈ V , ∀k ∈ Iv\{−d(v), d(v)}, we see that

its value is m, i.e. a trivial upper bound for the maximum cardinality cut. Hence,

the linear relaxation of (MIP4) has yet to be improved.

3.2.3 A stronger MIP

We will consider a strengthening of the linear relaxation of (MIP4) through reformulation-

linearization techniques. The latter is obtained by multiplying constraints of (MIP4)

and then linearizing. If we take (3.5a) for u ∈ V and multiply it by yvk for v ∈ V
and k ∈ Iv, we get

yvk =
∑
l∈Iu

yul y
v
k. (3.6)

Take (3.5b) for v ∈ V an multiply it by yvk for k ∈ I+
v , we obtain

∑
l∈Iv

lyvl y
v
k =

∑
uv∈E

∑
l∈I+v

yvl y
v
k −

∑
l∈I+u

yul y
v
k

 ,

∑
l∈Iv

lyvl y
v
k =d(v)

∑
l∈I+v

yvl y
v
k −

∑
uv∈E

∑
l∈I+u

yul y
v
k,∑

l∈Iv

(d(v)− l) yvl yvk =
∑
uv∈E

∑
l∈I+u

yul y
v
k.

Notice that since only one indicator per variable per vertex can be not equal to zero,

we have that for any vertex v ∈ V , yvky
v
l = 0 for any (k, l) ∈ Ivr such that k 6= l.

Which yields

(d(v)− k) yvky
v
k =

∑
uv∈E

∑
l∈I+u

yul y
v
k. (3.7)

117

Using the very same reasoning on (3.5b) for v ∈ V an multiply it by yvk for k ∈ I−v ,

we get

− kyvkyvk =
∑
uv∈E

∑
l∈I+u

yul y
v
k. (3.8)

Now if we take (3.5b) for u ∈ V and this time multiply it by yvk for v ∈ V \{u} and

k ∈ Iv, then we have

∑
l∈Iu

lyul y
v
k =

∑
uw∈E

∑
l∈I+u

yul y
v
k −

∑
l∈I+w

ywl y
v
k

 . (3.9)

The equalities (3.6), (3.7), (3.8) and (3.9) are not linear in terms of the indicator

variables because they all bear product of two of these variables. One way to make

use of them in a linear formulation is to switch to product variables: let Y vu
kl , with

(v, u) ∈ V 2 and (k, l) ∈ Iv × Iu, denote a binary variable representing the product

yvky
u
l . Then Y denotes a symmetric matrix with rows and columns indexed by all

pairs (v, k) with u ∈ V and k ∈ Iv. The entry in the row indexed by (v, k) and

column indexed by (u, l) corresponds to the variable Y vu
kl which is binary since it

represents the product of two binary variables. According to their interpretation, we

have for Y vv
kk = yvk for any v ∈ V and k ∈ Iv and Y vu

kl = Y uv
lk for any (v, u) ∈ V 2 and

(k, l) ∈ Iv × Iu. Then we can deduce from (MIP4) the following exact formulation

for MaxCut.

(MIP5)

Z?
MIP5 =

1

2
max

∑
v∈V

∑
k∈Iv
|k|Y vv

kk

s.t.∑
k∈Iv

Y vv
kk = 1, ∀v ∈ V,∑

k∈Iv
kY vv

kk =
∑
uv∈E

(
∑
k∈I+v

Y vv
kk −

∑
k∈I+u

Y uu
kk), ∀v ∈ V,

Y vv
kk =

∑
l∈Iu

Y vu
kl , ∀u, v ∈ V, ∀k ∈ Iv,

(d(v)− k)Y vv
kk =

∑
uv∈E

∑
l∈I+u

Y vu
kl , ∀v ∈ V, ∀k ∈ I+

v ,

− kY vv
kk =

∑
uv∈E

∑
l∈I+u

Y vu
kl , ∀v ∈ V, ∀k ∈ I−v ,∑

l∈Iu
lY vu
kl =

∑
uw∈E

(
∑
l∈I+u

Y vu
kl −

∑
l∈I+w

Y vw
kl), ∀v 6= u ∈ V, ∀k ∈ Iv,

Y vu
kl = Y uv

lk , ∀u, v ∈ V, ∀(k, l) ∈ Iv × Iu,
Y vu
kl ∈ {0, 1}, ∀u, v ∈ V, ∀(k, l) ∈ Iv × Iu.

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

(3.10f)

(3.10g)

(3.10h)

118

The constraints (3.10a) and (3.10b) directly come from (3.5a) and (3.5b); (3.10c),

(3.10d), (3.10e) and (3.10f) respectively stem from (3.6), (3.7), (3.8) and (3.9).

Proposition 53. The optimal objective value of (MIP5) equals the maximum cardi-

nality of a cut in the graph G: Z?
MIP5 = w?.

Proof. Given the interpretation of the matrix variable Y in (MIP5), the diagonal of

a solution of (MIP5) is a solution for (MIP4) with the same value and, conversely,

for a solution of (MIP4) y, yyᵀ is a solution for (MIP5) with the same value. Hence

(MIP4) and (MIP5) are equivalent.

Observe that if we take u = v in constraints (3.10c), we get Y vv
kl = 0 if k 6= l.

Exactly as we should since for any vertex, only one indicator variable is not equal

to zero. We thus know now which variables are irrelevant and can be removed from

the formulation in order to reduce its size. (MIP5) was derived from (MIP4) using

lifting. Other formulations could be obtained using some other well-known lifting

techniques such as the one of Lassere, the Sherali-Adams technique or the lifting of

Lovász-Schrijver [89, 74, 96]. We do not elaborate more on this topic.

This lifting technique does not guarantee any improvement in the performance of

our formulations. However, it is highly probable that it improves the quality of the

relaxations inherent to our formulations and/or the bounds the bounds that might

be derived from such relaxations, whether it is a linear program or a semidefinite

one.

3.3 A semidefinite programming bound

We now build a semidefinite programming formulation from (MIP5). Let us first

mention several ways to summon SDP constraints depending on the nature of the

problem to be relaxed.

3.3.1 Handling SDP constraints

Consider an optimization problem on a variable x ∈ {−1, 1}n with an objective

function and constraints all linear on the products of two components of x. In other

words, an optimization problem that can be formulated in the following manner:

119

max tr(Cᵀxxᵀ)

s.t.

tr(Aᵀ
1xx

ᵀ) ≤ b1

...

tr(Aᵀ
mxx

ᵀ) ≤ bm

x ∈ {−1; 1}n,

where C,A1, · · · , Am belong to Sn and tr(M) denotes the trace of the matrix M ,

i.e. the sum of the components on its diagonal. Now let X = xxᵀ, then the integrity

constraint x ∈ {−1; 1}n is equivalent to Xi,i = 1, ∀i ∈ J1, nK and the problem can

thus be relaxed into the following semidefinite program:

max tr(CᵀX)

s.t.

tr(Aᵀ
1X) ≤ b1

...

tr(Aᵀ
mX) ≤ bm

Xi,i = 1, ∀i ∈ J1, nK
X � 0

X ∈Mn×n(R),

thus providing an upper bound on the considered optimization problem.

For example, if for a weighted graph with set of vertices J1, nK we call W the

matrix such that the component on row i and column j is wij, the weight of the

edge connecting i to j (equal to zero if they are not neighbours), then the non-

linear formulation for the maximum cut problem (1.8) given in Section 1.7 of the

Introduction can be rewritten with Y = zzᵀ as

max 1
4

∑n
i=1

∑n
j=1wij − tr(W ᵀY)

s.t.

Yi,i = 1, ∀i ∈ J1, nK
Y = zzᵀ

Y ∈Mn×n(R), z ∈ Rn,

The semidefinite relaxation of Y = zzᵀ directly leads to the SDP formulation

(SDPGW) introduced in the introduction on which Goemans & Williamson based

their ground-breaking approximation algorithm.

Having explained how to obtain the SDP relaxation of a -1/1 optimization prob-

lem, let us see how do we do it with a 0/1 optimization problem that can be formu-

lated as follows:

120

max tr(Cᵀxxᵀ)

s.t.

tr(Aᵀ
1xx

ᵀ) ≤ b1

...

tr(Aᵀ
mxx

ᵀ) ≤ bm

x ∈ {0; 1}n,

where C,A1, · · · , Am belong to Sn. Let X = xxᵀ, then the integrity constraint

x ∈ {0; 1}n is equivalent to Xi,i = xi, ∀i ∈ J1, nK and the problem can thus be

relaxed, leading to the following semidefinite program:

max tr(CᵀX)

s.t.

tr(Aᵀ
1X) ≤ b1

...

tr(Aᵀ
mX) ≤ bm

X −Diag(X)Diag(X)ᵀ � 0

X ∈Mn×n(R).

To follow up our example on relaxing formulations of the maximum cut problem,

let us turn formulation (1.8) into a 0/1 formulation.

max 1
2

∑n
i=1

∑n
j=1 wij(Xi,i +Xj,j − 2Xi,j)

s.t.

Xi,i = xi, ∀i ∈ J1, nK
X = xxᵀ

X ∈Mn×n(R), x ∈ Rn,

The semidefinite relaxation of X = xxᵀ leads to the following SDP formulation.

(SDPbGW)

Z?

SDPbGW
= max 1

2

∑n
i=1

∑n
j=1wij(Xi,i +Xj,j − 2Xi,j)

s.t.

X −Diag(X)Diag(X)ᵀ � 0,

X ∈Mn×n(R),

Its optimal objective value coincides with Z?
SDPGW

, it simply is the result of a

change of variable applied to (SDPGW).

The following result derived from Schur’s Lemma (cf. [74]) is quite handy in the

case of implementing such a relaxation derived from a 0/1 optimization problem

Proposition 54 (Lovász & Schrijver, 1991). For any matrix X ∈ Mn×n(R), the

following assertions are equivalent:

121

• X −Diag(X)Diag(X)ᵀ � 0,

•

(
1 Diag(X)ᵀ

Diag(X) X

)
� 0.

The reader may find details concerning semidefinite optimization and more pre-

cisely SDP relaxations in [44, 48, 74, 75]. In light of these considerations, we may

now build a SDP relaxation of (MIP5).

3.3.2 Relaxing MIP5 into SDP

Relaxing the integrity constraint (3.10h) from (MIP5) and replacing it with a semidef-

inite positivity constraint on Y −Diag(Y)Diag(Y)ᵀ lead us to the following formu-

lation.

(SDP5)

Z?
MIP4 =

1

2
max

∑
v∈V

∑
k∈Iv
|k|Y vv

kk

s.t.∑
k∈Iv

Y vv
kk = 1, ∀v ∈ V,∑

k∈Iv
kY vv

kk =
∑
uv∈E

(
∑
k∈I+v

Y vv
kk −

∑
k∈I+u

Y uu
kk), ∀v ∈ V,

Y vv
kk =

∑
l∈Iu

Y vu
kl , ∀u, v ∈ V, ∀k ∈ Iv,

(d(v)− k)Y vv
kk =

∑
uv∈E

∑
l∈I+u

Y vu
kl , ∀v ∈ V, ∀k ∈ I+

v ,

− kY vv
kk =

∑
uv∈E

∑
l∈I+u

Y vu
kl , ∀v ∈ V, ∀k ∈ I−v ,∑

l∈Iu
lY vu
kl =

∑
uw∈E

(
∑
l∈I+u

Y vu
kl −

∑
l∈I+w

Y vw
kl), ∀v 6= u ∈ V, ∀k ∈ Iv,

Y −Diag(Y)Diag(Y)ᵀ � 0,

Y vu
kl ≥ 0,∀u, v ∈ V, ∀k ∈ I−v ∪ I+

v , l ∈ I−u ∪ I+
u .

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.11e)

(3.11f)

(3.11g)

(3.11h)

The semidefinite positivity constraint rendered constraint (3.10g) obsolete.

Relaxing constraints in a maximization formulation leads to formulations that

provide upper bounds on the optimal objective value originally sought. The loss

of exactness that a relaxation leads to is generally compensated by the gain in

complexity and more practically in efficiency. Our SDP relaxation bearing many

resemblances with Goemans & Williamson’s is more cumbersome in terms of size.

The question that follows is whether the quality of the bound provided by (SDP5)

compensates its augmented size.

122

3.3.3 Domination of the new upper bound

We are going to prove that this semidefinite relaxation provides a generally better

upper bound for the maximum cardinality cut problem than that from Goemans &

Williamson’s relaxation. In this context, generally better means at least as good as

(i.e. lower than) Goemans & Williamson’s upper bound for any graph.

Proposition 55. The following inequality holds

Z?
SDP5 ≤ Z?

SDPbGW
(= Z?

SDPGW
).

Proof. Let Y denote a feasible solution for the formulation (SDP5) and let (X, x) ∈
Rn×n × Rn be defined as follows:

. Xuv :=
∑

k∈I−v

∑
l∈I−u Y

vu
kl , ∀u, v ∈ V with u 6= v,

. Xvv = xv :=
∑

k∈I−v Y
vv
kk ,∀v ∈ V.

We now show X − xxᵀ � 0. Let z ∈ Rn and define z of convenient dimension as

follows: zvk = zv if k < 0 and 0 otherwise. Then, we have

zᵀY z =
∑

v∈V
∑

k∈I−v

∑
u∈V

∑
l∈I−u z

v
kz

u
l Y

vu
kl

=
∑

v∈V
∑

u∈V zvzu(
∑

k∈I−v

∑
l∈I−u Y

vu
kl)

=
∑

v∈V
∑

u∈V zvzuXuv = zᵀXz.

Also,

zᵀDiag(Y) =
∑

v∈V
∑

k∈I−v z
v
kY

vv
kk

=
∑

v∈V (zv
∑

k∈I−v Y
vv
kk)

=
∑

v∈V zvxv = zᵀx.

It follows that

zᵀ(X − xxᵀ)z = zᵀ(Y −Diag(Y)Diag(Y)ᵀ)z ≥ 0,

where the last inequality follows from the feasibility of Y w.r.t. (SDP5), and thus

X − xxᵀ � 0. So, we have shown (X, x) is a feasible solution for (SDPbGW).

Since Y is symmetric, the same holds for X. We now show the objective value

123

of (X, x) w.r.t. (SDPbGW), denoted ZX equals that of Y w.r.t. (SDP5).

ZX = 1
2
(
∑

v∈V
∑

u:uv∈E (xu + xv − 2Xuv))

=
∑

v∈V d(v)xv −
∑

v∈V
∑

u:uv∈E Xuv

=
∑

v∈V d(v)
∑

k∈I−v Y
vv
kk −

∑
v∈V

∑
u:uv∈E

∑
k∈I−v

∑
l∈I−u Y

vu
kl

=
∑

v∈V d(v)
∑

k∈I−v Y
vv
kk −

∑
v∈V

∑
k∈I−v (

∑
u:uv∈E

∑
l∈I−u Y

vu
kl)

=
∑

v∈V d(v)
∑

k∈I−v Y
vv
kk −

∑
v∈V

∑
k∈I−v (

∑
u:uv∈E(Y vv

kk −
∑

l∈I+u Y
vu
kl))

=
∑

v∈V d(v)
∑

k∈I−v Y
vv
kk −

∑
v∈V

∑
k∈I−v (d(v)Y vv

kk −
∑

u:uv∈E
∑

l∈I+u Y
vu
kl)

=
∑

v∈V d(v)
∑

k∈I−v Y
vv
kk −

∑
v∈V

∑
k∈I−v (d(v)Y vv

kk + kY vv
kk)

=
∑

v∈V d(v)
∑

k∈I−v Y
vv
kk −

∑
v∈V (k + d(v))

∑
k∈I−v Y

vv
kk

= −
∑

v∈V
∑

k∈I−v kY
vv
kk

= 1
2

∑
v∈V

∑
k∈Iv |k|Y

vv
kk .

We now have the theoretic result of domination of the bound given by (SDP5)

over that of (SDPGW). Which doesn’t mean it really is strictly lower, significantly

or even at all. We will see in Section 3.5 that it is indeed practically strictly lower,

and significantly for many instances.

The resemblance we mentioned above between (SDPGW) and (SDP5) will allow

us to derive from (SDP5) the same randomized method to extract an approximation

algorithm that Goemans& Williamson used to build their with the same approxi-

mation ratio. The idea again is to extract a solution for (SDPGW) from a solution

of (SDP5) by aggregating the variables adequately.

Corollary 56. There exists a polynomial time α-approximation algorithm for the

maximum cardinality cut problem based on formulation (SDP5), where α ' 0.87856.

Proof. Take Y a solution of (SDP5) and let Z ∈ Rn×n denote the matrix with entries

Zuv = 4(Xuv − xuxv) + (2xu − 1)(2xv − 1), where

. Xuv :=
∑

k∈I−v

∑
l∈I−u Y

vu
kl , ∀u, v ∈ V with u 6= v,

. Xvv = xv :=
∑

k∈I−v Y
vv
kk , ∀v ∈ V.

Proposition 55 gives us that Z is a feasible solution for the formulation (SDPGW)

with the same objective value as Y . Then, following Goemans & Williamson’s

randomized approximation algorithm (cf.[47]) summarized in Section 1.7, we get a

cut δ(S) which expectation of the cardinality is be bounded as follows.

αw? ≤ E(|δ(S)|) ≤ w?,

124

Where α = minθ∈[0,π]
2θ

π(1−cos θ)
' 0.87856.

We therefore note that the choice of sacrificing the lightness of (SDPGW) is

relevant for it may pay off in improvement of the quality of the bound, we see

that such expectation is theoretically viable. Other aspects might benefit from this

choice.

3.3.4 Exactness for complete graphs

The new bound given by relaxation (SDP5) is exact (i.e., equal to the maximum

cardinality of a cut) for some graph classes. For example, We already know that

the bound provided by relaxation (SDPGW) is exact for even complete graphs (Kn

with n even) [32]. This does not hold for odd complete graphs. We prove that the

bound given by (SDP5) is exact for all complete graphs.

Proposition 57. For a complete graph, the optimal objective value of (SDP5) is

exact: Z?
SDP5 = w?.

Proof. Since Z?
SDPGW

is exact for even complete graphs, Z?
SDP5 is also exact by Propo-

sition 55.

Let us now consider odd complete graphs. We take n = |V | and we have for all

v ∈ V ,

. d(v) = n− 1,

. I+
v = Jn−1

2
, n− 1K :=I+,

. I−v = J1− n, 1−n
2

K :=I−,

. Iv = I−v ∪ I+
v = I− ∪ I+ :=I.

We will build an optimal solution inheriting strong symmetries from the problem

as well as from the input graph. One can observe that formulation (SDP5) respects

the following symmetry: if Y is an optimal solution of (SDP5), then then Y ′ defined

by Y ′vukl = Y vu
(−k)(−l) for all (u, v, k, l) ∈ V 2× I2 is also an optimal solution of (SDP5).

This symmetry can be linked to our original orientation problem where if we have

an optimal orientation for (MaxCut), then the reversed orientation is optimal

as well. We therefore take Z ′, an optimal solution of (SDP5) and Z ′′ defined by

Z ′′vukl = Z ′vu(−k)(−l) for all (u, v, k, l) ∈ V 2 × I2, which is also an optimal solution of

(SDP5). By linearity, we have that Z = 1
2
(Z ′ + Z ′′) is yet another optimal solution

verifying Zvu
kl = Zvu

(−k)(−l) for all (u, v, k, l) ∈ V 2 × I2.

125

Let σ be any permutation of the set of vertices. By symmetry of the complete

graph, the solution defined by Y
σ(v)σ(u)
kl = Y vu

kl for all (u, v, k, l) ∈ V 2 × I2 is still

an optimal solution of (SDP5). By considering the set of all permutations Sn, and

combining all solutions we still get an optimal solution Y by linearity where for all

(u, v, k, l) ∈ V 2 × I2,

Y vu
kl =

1

|Sn|
∑
σ∈Sn

Z
σ(v)σ(u)
kl .

We can notice that Y inherited Y vu
kl = Y vu

(−k)(−l), ∀(u, v, k, l) ∈ V 2 × I2, and since

we considered all permutations, for (k, l) ∈ I2, Y vu
kl does not depend on u and v. In

other words, there are numbers f(k, l) and g(k) such that

. Y vu
kl = f(k, l), ∀(u, v, k, l) ∈ V 2 × I2 such that u 6= v,

. Y vv
kk = g(k), ∀(v, k) ∈ V × I.

Furthermore, we know that

. f(k, l) = f(−k,−l), ∀(k, l) ∈ I2,

. g(k) = g(−k), ∀k ∈ I.

Constraints (3.11a) lead to ∑
k∈I

g(k) = 1 = 2
∑
k∈I+

g(k). (3.12)

From (3.11c), we deduce that∑
l∈I

f(k, l) = g(k), ∀k ∈ I. (3.13)

Using equalities (3.11d), we can write that for k ∈ I+

((n− 1)− k)g(k) = (n− 1)
∑
k∈I+

f(k, l),

= (n− 1)

(
g(k)−

∑
k∈I−

f(k, l)

)
.

which leads to

kg(k) = (n− 1)
∑
l∈I−

f(k, l), ∀k ∈ I+., ∀k ∈ I+. (3.14)

126

Considering (3.11f) for k ∈ I+, we obtain∑
l∈I

lf(k, l) = (n− 1)
∑
l∈I+

f(k, l)− (n− 2)
∑
l∈I+

f(k, l)− g(k),

=
∑
l∈I+

f(k, l)− g(k),

= −
∑
l∈I−

f(k, l).

which is equivalent to∑
l∈I−
−(l + 1)f(k, l) =

∑
l∈I+

lf(k, l), ∀k ∈ I+. (3.15)

Combining (3.13) and (3.14), we deduce that

(n− 1− k)
∑
l∈I−

f(k, l) = k
∑
l∈I+

f(k, l), ∀k ∈ I+. (3.16)

Observe that (3.16) implies that when k = n− 1 then f(n− 1, l) = 0 for l ∈ I+. By

(3.15), we get that f(n− 1, l) = 0 for l ∈ I−. We can then assume in the rest of the

proof that k < n− 1.

Observe that the left side of (3.15) satisfies

∑
l∈I−
−(l + 1)f(k, l) ≥ n− 3

2

∑
l∈I−

f(k, l) =
n− 3

2

k

n− 1− k
∑
l∈I+

f(k, l),

where the last equality is induced by (3.16). Let kmax be the largest k such that

f(k, l) 6= 0 for some l. We already know that kmax ≤ n− 2. The right side of (3.15)

necessarily satisfies ∑
l∈I+

lf(k, l) ≤ kmax
∑
l∈I+

f(k, l).

Combining the two previous inequalities together with (3.15), we obtain

(kmax − n− 3

2

k

n− 1− k
)
∑
l∈I+

f(k, l) ≥ 0, ∀k ∈ J
n− 1

2
, kmaxK. (3.17)

By considering the case k = kmax in (3.17), the sum
∑

l∈I+ f(kmax, l) is strictly

positive, leading to kmax − n−3
2

kmax

n−1−kmax ≥ 0. In other words, we necessarily have

kmax ≤ n+1
2

. This implies that g(k) = 0 and f(k, l) = 0 if either k > n+1
2

or

k < −n+1
2

(we use here the fact that g(k) = g(−k) and (3.13)).

127

Writing (3.15) and (3.16) for k = n−1
2

and k = n+1
2

, we get the next 4 equations.

(n− 3)

[
f

(
n+ 1

2
,
−1− n

2

)
+ f

(
n+ 1

2
,
1− n

2

)]
= (n+ 1)

[
f

(
n+ 1

2
,
n+ 1

2

)
+ f

(
n+ 1

2
,
n− 1

2

)]
(3.18)

(n− 1) f

(
n+ 1

2
,
−1− n

2

)
+ (n− 3) f

(
n+ 1

2
,
1− n

2

)
= (n+ 1) f

(
n+ 1

2
,
n+ 1

2

)
+ (n− 1) f

(
n+ 1

2
,
n− 1

2

)

(3.19)

f

(
n− 1

2
,
−1− n

2

)
+ f

(
n− 1

2
,
1− n

2

)
= f

(
n− 1

2
,
n+ 1

2

)
+ f

(
n− 1

2
,
n− 1

2

)
(3.20)

(n− 1) f

(
n− 1

2
,
−1− n

2

)
+ (n− 3) f

(
n− 1

2
,
1− n

2

)
= (n+ 1) f

(
n− 1

2
,
n+ 1

2

)
+ (n− 1) f

(
n− 1

2
,
n− 1

2

)
(3.21)

Substracting (3.18) from (3.19) leads to

f(
n+ 1

2
,
n− 1

2
) = −f(

n+ 1

2
,
−1− n

2
).

By non-negativity of the f values, we deduce that

f(
n+ 1

2
,
n− 1

2
) = f(

n+ 1

2
,
−1− n

2
) = 0 and f(

n+ 1

2
,
1− n

2
) =

n+ 1

n− 3
f(
n+ 1

2
,
n+ 1

2
).

Substracting (n− 1)×(3.20) from (3.21) leads in a similar way to

f(
n− 1

2
,
1− n

2
) = f(

n− 1

2
,
n+ 1

2
) = 0 and f(

n− 1

2
,
−1− n

2
) = f(

n− 1

2
,
n− 1

2
).

Using (3.14) and the previous observations we get that:

g(
n+ 1

2
) = 2

n− 1

n+ 1
f(
n+ 1

2
,
1− n

2
) and g(

n− 1

2
) = 2f(

n− 1

2
,
−n− 1

2
).

Using the fact that

f(
n+ 1

2
,
1− n

2
) = f(

n− 1

2
,
−n− 1

2
) and g(

n+ 1

2
) + g(

n− 1

2
) =

1

2
,

128

one can deduce that

f(
n− 1

2
,
−n− 1

2
) =

n+ 1

8n
.

Consequently, g(n+1
2

) = n−1
4n

and g(n−1
2

) = n+1
4n

.

Remember that

Z?
SDP5 =

1

2

∑
v∈V

∑
k∈Iv |k|Y

vv
kk

=
∑

v∈V

∑
k∈I+v kY

vv
kk

= n

(
n+ 1

2
g(
n+ 1

2
) +

n− 1

2
g(
n− 1

2
)

)
=
n2 − 1

4
,

and we are done.

The proof of Proposition 57 did not use the semidefinite positivity of solution

Y , which implies that the linear relaxation of (MIP5) is exact. Some other graph

families may share this property with the complete graphs. We will see in Section

3.5 that the wheel graphs numerically seem to be one of these families, it has not

been shown so far. Bounds and approximated solutions for optimization problems

are extremely relevant, especially in the case of NP-complete problems. However it is

important to work on efficient exact formulations as well because the optimal objec-

tive value of the problem is sometimes needed. Furthermore, asymptotic complexity

has its limits as we saw for example when analyzing the complexity of the simplex

algorithm which remains state of the art notwithstanding its exponential worst-case

complexity. Therefore the NP-completeness of MaxCut must not prevent us from

trying to design efficient new exact formulations that may reveal competitive for

example in the context of medium-sized instances.

3.4 Further mixed integer linear programming for-

mulations

Goemans & Williamson’s semidefinite approach of the problem led to efficient SDP based

Branch & Bound solvers such as BiqMac [87] and BiqCrunch [70]. They use a branch-

and-bound method featuring an improved semidefinite bounding procedure, mixed

with a polyhedral approach.

In this section, we present three new exact formulations for the unweighted

maximum cardinality cut problem with interesting computational performances.

129

3.4.1 A cleaned-up all-indicator-variables formulation

The first one stems from (MIP4) using the fact that for all v ∈ V ,
∑

k∈I−v y
v
k =

1−
∑

k∈I+v y
v
k. Then we have−d(v)(1−

∑
k∈I+v y

v
k) ≤

∑
k∈I−v ≤ −

⌈
d(v)

2

⌉
(1−

∑
k∈I+v y

v
k)

and we can delete all the variables yvk where k is negative. We obtain the following

exact formulation.

(MIP6)

Z?
MIP6 = max

∑
v∈V

∑
k∈I+v

kyvk

s.t.∑
k∈I+v

yvk ≤ 1, ∀v ∈ V,

∑
uv∈E

(
∑
k∈I+v

yvk −
∑
k∈I+u

yuk) ≤
∑
k∈I+v

kyvk −
⌈
d(v)

2

⌉
(1−

∑
k∈I+v

yvk), ∀v ∈ V,∑
uv∈E

(
∑
k∈I+v

yvk −
∑
k∈I+u

yuk) ≥
∑
k∈I+v

kyvk − d(v)(1−
∑
k∈I+v

yvk), ∀v ∈ V,

yvk ∈ {0, 1}, ∀v ∈ V, ∀k ∈ I+
v .

(3.22a)

(3.22b)

(3.22c)

Proposition 58. The optimal objective value of (MIP6) equals the maximum cardi-

nality of a cut in the graph G: Z?
MIP6 = w?.

Proof. A solution of (MIP4) naturally yields a solution of (MIP6) with the same

optimal objective value, it suffices to omit the variables yvk such that k > 0. Therefore

Z?
MIP4 ≤ Z?

MIP6.

Now take y be a solution of (MIP6), let us complete it into a solution for (MIP4).

Take v ∈ v,

• if
∑

k∈I+v = 1, then we set yvk := 0, ∀k ∈ I−v .

• If
∑

k∈I+v = 0 then we want y to satisfy

∑
k∈I−v

kyvk =
∑
uv∈E

∑
k∈I+v

yvk −
∑
k∈I+u

yuk

−∑
k∈I+v

kyvk.

Since y is a solution of (MIP6), we know that the right-hand side of the previous

equation belongs to J−d(v),−
⌈
d(v)

2

⌉
K = I−v and we call it kv. We then set

yvk := 0, ∀k ∈ I−v \{kv} and yvkv := 1.

The resulting y satisfies (3.5a) and (3.5b) for v. Now that we have our feasible

solution of (MIP4) y, we compute its objective value w.r.t. (MIP4):

130

1

2

∑
v∈V

∑
k∈Iv

|k|yvk =
1

2

 ∑
v∈V∑

k∈I+v
yvk=1

∑
k∈Iv

|k|yvk +
∑
v∈V∑

k∈I+v
yvk=0

∑
k ∈ Iv|k|yvk

=
1

2

 ∑
v∈V∑

k∈I+v
yvk=1

∑
k∈I+v

kyvk −
∑
v∈V∑

k∈I+v
yvk=0

∑
k∈I−v

kyvk

=

1

2

∑
v∈V

∑
k∈I+v

kyvk −
∑
k∈I−v

kyvk

=

1

2

∑
v∈V

∑
k∈I+v

kyvk −

∑
uv∈E

∑
k∈I+v

yvk −
∑
k∈I+u

yuk

−∑
k∈I+v

kyvk

=

1

2

∑
v∈V

2
∑
k∈I+v

kyvk −
∑
uv∈E

∑
k∈I+v

yvk −
∑
k∈I+u

yuk

=
∑
v∈V

∑
k∈I+v

kyvk −
1

2

∑
v∈V

∑
uv∈E

∑
k∈I+v

yvk −
∑
k∈I+u

yuk

=
∑
v∈V

∑
k∈I+v

kyvk.

Since its coincides with its objective value w.r.t. (MIP6), we conclude that Z?
MIP6 ≤

Z?
MIP4

(MIP6) involves about half as many variables as (MIP4) and has generally better

performance, detailed results can be found in Section 3.5. Expanding the idea of

improving the performance, we can try to further reduce the number of variables

for an exact formulation.

3.4.2 Aggregation of the variables

we can aggregate the variables yvk with k ∈ I+
v for a vertex v to form a variable xv

equal to
∑

k∈I+v y
v
k. For doing so, we need another variable zv equal to

∑
k∈I+v ky

v
k

in order to keep the information about the signed imbalance of v important for the

131

objective function. We thus obtain the following exact formulation.

(MIP7)

Z?
MIP7 = max

∑
v∈V z

v

s.t.⌈
d(v)

2

⌉
+
⌊
d(v)

2

⌋
xv − zv ≤

∑
uv∈E x

u ≤ d(v)− zv, ∀v ∈ V,⌈
d(v)

2

⌉
xv ≤ zv ≤ d(v)xv, ∀v ∈ V,

x ∈ {0, 1}|V |, z ∈ R|V |.

(3.23a)

(3.23b)

Proposition 59. The optimal objective value of (MIP7) equals the maximum cardi-

nality of a cut in the graph G: Z?
MIP7 = w?.

Proof. We take y a solution of (MIP6) and for each v ∈ V , we set xv :=
∑

k∈I+v y
v
k

and zv :=
∑

k∈I+v ky
v
k. Observe that (3.22a) yields that x ∈ {0, 1}|V | and for v ∈ V ,

if xv = 0, then
⌈
d(v)

2

⌉
xv = zv = d(v)xv = 0 and if otherwise xv = 1, then zv =∑

k∈I+v ky
v
k ∈ I+

v = J
⌈
d(v)

2

⌉
, d(v)K. Thus, (x, z) satisfies (3.23b). Moreover for v ∈ V ,

(3.22b) and (3.22c) yields

∑
k∈I+v

kyvk − d(v)(1−
∑
k∈I+v

yvk) ≤
∑
uv∈E

(
∑
k∈I+v

yvk −
∑
k∈I+u

yuk)≤
∑
k∈I+v

kyvk −
⌈
d(v)

2

⌉
(1−

∑
k∈I+v

yvk)

zv − d(v)(1− xv) ≤ d(v)xv −
∑
uv∈E

xu ≤ zv −
⌈
d(v)

2

⌉
(1− xv)

⌈
d(v)

2

⌉
−
⌈
d(v)

2

⌉
xv − zv ≤

∑
uv∈E

xu − d(v)xv ≤ d(v)− d(v)xv − zv

⌈
d(v)

2

⌉
+
⌊
d(v)

2

⌋
xv − zv ≤

∑
uv∈E

xu ≤ d(v)− zv.

We obtain here (3.23a), consequently, (x, z) is a solution of (MIP7) with an

objective value equal to that of y. Hence Z?
MIP6 ≤ Z?

MIP7.

Now take (x, z) ∈ {0, 1}|V | × R|V | be a solution of (MIP7), let us extract from it

a solution y for MIP6 with the same objective value. Take v ∈ V ,

• if xv = 1, then we have zv ∈ J
⌈
d(v)

2

⌉
, d(v)K = I+

v and we set yvzv := 1 and

yvk := 0, ∀k ∈ I+
v \{zv}.

• If xv = 0, then we have zv = 0 and we set yvk := 0, ∀k ∈ I+
v .

Then y is a solution of MIP6 with the same objective value than that of (x, z). Thus

Z?
MIP7 ≤ Z?

MIP6.

132

(MIP7) involves 2n variables, half of which are integer variables and its perfor-

mance is better than that of (MIP6) for many instances (see Section 3.5). This

formulation can also be obtained using the linearization technique of Fred Glover

[46] applied to the standard quadratic program modeling the maximum cut problem.

This concept of aggregating all the variables concerning a vertex into a single one

may seem a bit drastic: a compromise may be drawn.

3.4.3 Partial aggregation

One can also propose a third formulation somewhat in between (MIP6), i.e. no

aggregation of variables, and (MIP7), i.e. total aggregation of the variables for each

vertex. To do so, we partition the interval I+
v for each vertex v ∈ V . Let α > 1, we

parametrize such a partition with α defining the following sequences for each v ∈ V
av1 =

⌈
d(v)

2

⌉
,

avi = 1 + bvi−1, for i > 1,

bvi = min(bα ∗ avi c , d(v)),

and compute kv, the smallest integer such that bvkv = d(v). Then similarly to the

formulations (MIP3), (MIP4) and (MIP6), we take a variable yvk for each vertex

v ∈ V and each k ∈ J1, kvK whose interpretation is the following: yvk = 1 if and only

if zv ∈ Javk, bvkK. We therefore obtain the following exact formulation for all α > 1.

MIP8[α]

Z?
MIP8 = max

∑
v∈V z

v

s.t.⌈
d(v)

2

⌉
+
⌊
d(v)

2

⌋
xv − zv ≤

∑
uv∈E x

u ≤ d(v)− zv, ∀v ∈ V,∑kv
k=1 y

v
k = xv, ∀v ∈ V,∑kv

k=1 a
v
ky

v
k ≤ zv ≤

∑kv
k=1 b

v
ky

v
k, ∀v ∈ V,

x ∈ [0, 1]V , yv ∈ {0, 1}kv , ∀v ∈ V, z ∈ RV .

(3.24a)

(3.24b)

(3.24c)

Proposition 60. The optimal objective value of (MIP8[α]) equals the maximum

cardinality of a cut in the graph G: Z?
MIP8[α] = w?.

Proof. Let α > 1, we take y a solution of (MIP6) and for each v ∈ V , we set

. xv :=
∑

l∈I+v y
v
l ,

. zv :=
∑

l∈I+v ly
v
l ,

133

. y′vk :=
∑bvk

l=avk
yvl , ∀k ∈ J1, kvK.

Thus, (x, y′, z) naturally satisfies (3.24b) and satisfies (3.24a) for x and z were built

exactly like a solution for (MIP7) from one of (MIP6) as detailed at the beginning of

the proof of Proposition 59. Moreover we know by construction of the (avk)v,k and

(bvk)v,k that for any v ∈ V , k ∈ J1, kvK and l ∈ Javk, bvkK, we have avky
v
l ≤ lyvl ≤ bvky

v
l .

Summing on all k ∈ J1, kvK and all l ∈ Javk, bvkK, we obtain (3.24c). Consequently,

(x, y′, z) is a solution of (MIP8[α]) with an objective value equal to that of y. Hence

Z?
MIP6 ≤ Z?

MIP8[α].

Now take (x, y, z) be a solution of (MIP8[α]), let us extract from it a solution

y′ for MIP6 with the same objective value. Take v ∈ V , since (ak)k and (bvk)k

both are finite increasing sequences, (3.24c) yields
⌈
d(v)

2

⌉
xv = av1

∑kv
k=1 y

v
k ≤ zv ≤

bvkv
∑kv

k=1 y
v
k = d(v)xv. Hence,

• if xv = 1, then we have zv ∈ J
⌈
d(v)

2

⌉
, d(v)K = I+

v and we set y′vzv := 1 and

y′vl := 0, ∀l ∈ I+
v \{zv}.

• If xv = 0, then we have zv = 0 and we set y′vk := 0, ∀l ∈ I+
v .

Then y′ is a solution of MIP6 with the same objective value than that of (x, y, z).

Thus Z?
MIP8[α] ≤ Z?

MIP7.

Observation. Let us take a look at the number of indicator variables per variables

w.r.t. to the partition of the sets I+
v parametrized by α and used in formulation

(MIP[α]). We defined for a vertex v ∈ V , kv as the smallest integer such that such

that bvkv = d(v), which implies that

αkv−1d(v)

2
≤ d(v)

αkv−1 ≤ 2

(kv − 1) ln(α) ≤ ln(2)

kv ≤
ln(2)

ln(α)
+ 1 = logα(2) + 1.

Hence (MIP8[α]) has O(n/ ln(α)) variables and O(n) constraints. The closer α gets

from 1, the higher the number of indicator variables in (MIP[α]) gets. For α = 1,

formulation (MIP8) is equivalent to formulation (MIP6), and for any graph G, there

is a threshold for α (namely ∆G/
⌈

∆G

2

⌉
) such that for any value of α beyond that

threshold, formulation (MIP8) is equivalent to formulation (MIP7).

134

3.4.4 Weighing the exact formulations

We successively gave three mixed integer formulation all based on the same approach

of MaxCut, before comparing their numerical performances, which shall be done in

the next Section, let us analyze and compare them theoretically. The reader can find

in figure 3.2 a schematized summary of the distribution of the indicator variables

used to convey the information about the value of the signed imbalance of one vertex

v in formulations (MIP4), (MIP6), (MIP7) and (MIP8[α]). In this figure, for each of

the afore mentioned formulation, under an integer represented in the segment at the

top is either a hashed region, an indicator variable or a brace, respectively meaning

that the possible value for the signed imbalance of the vertex v is not taken into

account, indicated by said variable or part of a subset of possible values indicated

by a variable. The indicator variable under a brace will represent the sum of the

variables over the brace. As soon as we start aggregating variables, although we

reduce significantly the number of indicator variables in the formulation, it becomes

necessary to add variables to store the value of the signed imbalance in order to be

able to get the objective value of the solution, e.g. (MIP8[α]) and (MIP7).

Figure 3.2: Distribution of the indicator variables for one vertex on the segment
J−d(v), d(v)K in formulations (MIP4), (MIP6), (MIP7) and (MIP8[α])

−d(v) −
⌈
d(v)
2

⌉
-1 0 1

⌈
d(v)
2

⌉⌈
d(v)
2

⌉
+ 1bvk avk+1 bvk+1 avk+2 bvkv−1 avkv d(v)

α
⌈
d(v)
2

⌉
α2

⌈
d(v)
2

⌉
αkv−1

⌈
d(v)
2

⌉
αkv

⌈
d(v)
2

⌉

yv−d(v) ···
yv
−
⌈
d(v)
2

⌉ ··· yv−1 yv0 yv1 ···
yv⌈ d(v)

2

⌉ yv⌈ d(v)
2

⌉
+1 ···y

v
bv
k
yvav

k+1
··· yvbv

k+1
yvav

k+2
· · · yvbv

kv−1
yvav

kv
· · · yvd(v) (MIP3)

yv−d(v) ···
yv
−
⌈
d(v)
2

⌉ yv⌈ d(v)
2

⌉ yv⌈ d(v)
2

⌉
+1 ···y

v
bv
k
yvav

k+1
··· yvbv

k+1
yvav

k+2
· · · yvbv

kv−1
yvav

kv
· · · yvd(v) (MIP4)

yv⌈ d(v)
2

⌉ yv⌈ d(v)
2

⌉
+1 ···y

v
bv
k
yvav

k+1
··· yvbv

k+1
yvav

k+2
· · · yvbv

kv−1
yvav

kv
· · · yvd(v) (MIP6)

······ ······

yv1 yvk yvk+1 yvk+2 yvkv−1 yvkv (MIP8[α])

xv (MIP7)

For the purpose of comparing performances, we now give a basic exact formu-

lation for the unweighted maximum cut problem based on the triangle inequalities.

135

It involves one variable xi,j for each unordered pair of vertices {i, j} ⊂ V (i 6= j).

Hence O(n2) variables and O(n3) constraints.

(MIP9)

max
∑

ij∈E xi,j

s.t.

xi,j + xj,k + xi,k ≤ 2, ∀{i, j, k} ⊂ V, |{i, j, k}| = 3,

xi,j + xj,k − xi,k ≥ 0, ∀(i, j, k) ∈ V 3, |{i, j, k}| = 3,

xi,j ∈ {0, 1}, ∀{i, j} ⊂ V, i 6= j.

3.5 Computational experiments

Some numerical experiments have been conducted to evaluate the quality of the

new SDP bound as long as the time performances of the new exact formulations

presented in the previous Section.

3.5.1 Configuration and instances

The algorithms used for these computations were written in C/C++ calling COIN-

OR’s CSDP library to solve the semidefinite programs and IBM’s ILOG CPLEX

optimizer c© for the linear and mixed integer programs; all have been performed

with a processor 1.9GHzx4, 15.6GB RAM. In order to further the relevance of our

comparison, we also give for each instance the running time (BC) of the semidefinite

based solver BiqCrunch [70] compiled in Python and run on the same machine as

the mixed integer programs.

Some of the graphs used for the computations are defined in Section 2.6 (complete

graphs, grid graphs and randomly generated graphs). The others are denoted as

follows:

• Wn: the wheel graph with n vertices, i.e. n−1 spokes. A wheel graph is a cycle

to wich has been added one vertex connected to all the others: it is the “cen-

ter” of the wheel and the edges incident to it are the “spokes” (e.g. Figure 3.3).

• Pe, Co, Oc, Do and Ic: the Petersen graph, the Coxeter graph, the octahe-

dron, the dodecahedron and the icosahedron respectively (cf Figures 3.4, 3.5

and 3.6). Information about the platonic graphs can be found in [86],

• Cn: the cycle graph with n vertices,

136

Figure 3.3: W9

Figure 3.4: Petersen graph

Figure 3.5: Coxeter graph

137

Figure 3.6: Platonic graphs

(a) Octahedron graph

(b) Dodecahedron graph (c) Icosahedron graph

138

3.5.2 Results of the SDP formulations

Let us start with the results related to the new SDP bound. For each problem

instance, we report w? (the maximum cardinality of a cut), Z?
SDPGW

(the optimal

objective value of (SDPGW)) and Z?
SDP5 (the optimal objective value of (SDP5)). The

first set of instances (Table 3.1) considered consists of two basic graph classes : odd

complete graphs and wheel graphs. One can see that Z?
SDP5 = w? for complete graphs

as shown in Proposition 57. The bound seems to be exact for wheels (according to

numerical experiments). We report in Table 3.2 results obtained on some well-known

graphs: the Petersen graph, the Coxeter graph, the octahedron, the dodecahedron

and the icosahedron, along with some toroidal grid graphs. The results reported in

Table 3.3 were computed from randomly generated graphs.

The computational results from Tables 1-3 not only confirm the inequality proved

in Proposition 55, but clearly point out that the quality of the new bound pre-

sented in the previous Sections is often significatively better than that of Goemans

& Williamsons relaxation.

139

Table 3.1: Computational results of (SDP5) for complete graphs and wheel graphs

Instance w? Z?
SDP5 Z?

SDPGW

K5 6 6 6.25
K7 12 12 12.25
K11 30 30 30.25
W5 6 6 6.25
W8 10 10 10.614
W10 13 13 13.809
W12 16 16 16.979
W15 21 21 21.875
W17 24 24 25
W20 28 28 29.566
W22 31 31 32.703
W25 36 36 37.5

Table 3.2: Computational results of (SDP5) for special graph classes

Instance w? Z?
SDP5 Z?

SDPGW

Pe 12 12 12.5
Co 36 36.167 37.9
Oc 8 9 9
Do 24 25 26.18
Ic 20 21 21.708
C3 2 2 2.25
C5 4 4 4.523
C7 6 6.125 6.653
C9 8 8.25 8.729
C11 10 10.383 10.777
C13 12 12.463 12.811
C15 14 14.523 14.836
C17 16 16.58 16.855
C19 18 18.621 18.87
C21 20 20.653 20.883
C23 22 22.685 22.893
C25 24 24.709 24.901
tG2

3,3 12 13.5 13.5
tG2

3,4 20 20 21
tG2

3,5 22 23.639 24.818
tG2

4,5 36 36 38.09
tG2

5,5 40 44.168 45.225
tG3

3 54 60 60.75

140

Table 3.3: Computational results of (SDP5) for randomly generated graphs

Instance w? Z?
SDP5 Z?

SDPGW

R5,8 6 6 6.25
R10,9 8 8 8.25
R10,14 12 12 12.585
R10,18 14 14 14.399
R10,23 17 17 17.603
R10,27 19 19 19.962
R10,34 22 22 22.676
R10,36 23 23 23.346
R15,21 17 17 18.006
R15,32 24 24.236 25.357
R15,42 30 30.381
R15,53 36 36.567 37.39
R20,19 16 16 16.679
R20,38 29 29.202 30.682
R20,57 43 43 44.757
R30,44 37 37.31 39.005
P5,7 5 5 5.432
P5,9 6 6 6.25
P10,10 8 8 8.409
P10,12 10 10 10.715
P10,18 13 13 13.932
P10,24 16 16 16.992
P20,11 9 9 9.25
P20,16 15 15 15.25
P20,27 21 21 22.495
P20,41 30 30 31.289
P20,54 36 36.207 38.131
P25,35 28 28.091 29.705
P25,52 39 39 40.614
P25,69 46 46.446 48.468
P30,8 7 7 7.25
P30,17 15 15 15.25
P30,42 33 33.037 34.412

141

3.5.3 Results of the MIP formulations

Let us now look at the running times of the Formulations (MIP9), (MIP4), (MIP6),

(MIP7), (MIP8[1.5]), (MIP8[1.3]) and (MIP8[1.1]) and of the solver (BC) on several

bigger instances found in Table 3.4 and Table 3.5. For the entries marked “>900”,

the running time exceeded 900s and the process was therefore interrupted and for

the entries marked “-”, the memory of the machine was full and the process was

therefore interrupted.

First, one can see that the new formulations introduced in Section 3.4 perform

much better than the classical triangular formulation (MIP9) for all the studied

graph families except the general random graphs, and on all of these instances,

there is one of our formulation that performs better than BiqCrunch does. More

specifically, we can see that (MIP6) has generally better performance than (MIP4)

and that for some instances, (MIP6) is drastically better than (MIP7), and for others,

it is the other way around. Interestingly, we observe that being (MIP8) somewhat

in between (MIP6) and (MIP7), there exists for almost each graph instance a value

of α for which (MIP8[α]) has the shortest computing time. Practically, (MIP8[1.1])

seems to be the most robust of them.

In the next chapter, we take an interest in a precise family of polyhedra which

arose in the research of valid inequalities for the set of solutions of formulation

(MIP2) for the (MaxIm) problem. Computing the full description of the set of

a part of the components of the feasible solutions for small instances lead to the

isolation of the generic full description of a family of polyhedra.

142

Table 3.4: Running time for the MIP formulations (in seconds) for randomly gener-
ated graphs

graph w ?

M
IP9

M
IP4

M
IP6

M
IP7

M
IP8[1.5]

M
IP8[1.3]

M
IP8[1.1] B

C
|V |

|E|
R20,90 99 3 1 1 3 1 1 1 0 20 171
R25,50 97 7 63 9 1 2 5 5 1 25 150
R25,90 152 71 12 3 11 20 16 4 0 25 270
R30,50 141 30 341 71 13 21 26 39 1 30 217
R30,90 219 >900 44 21 144 111 99 23 0 30 391
R40,25 136 29 >900 748 33 49 47 114 1 40 195
P50,50 373 2 1 0 0 0 0 0 3 46 72
P50,90 598 3 17 10 2 2 1 1 4 50 129
P75,40 75 89 0 0 1 0 1 0 5 66 87
P75,50 90 77 2 1 1 1 1 0 6 70 109
P75,70 120 22 7 5 1 1 1 2 2 75 153
P75,100 146 >900 >900 >900 172 >900 62 38 47 75 219
P100,40 100 73 0 1 0 0 1 0 8 87 117
P100,90 190 168 >900 >900 47 102 35 34 40 100 264
P200,50 246 >900 >900 272 75 47 31 26 304 188 297
P300,50 376 - >900 >900 340 203 64 53 >900 282 447

143

Table 3.5: Running time for the MIP formulations (in seconds) for special graphs

graph w ?

M
IP9

M
IP4

M
IP6

M
IP7

M
IP8[1.5]

M
IP8[1.3]

M
IP8[1.1] B

C
|V |

|E|
K50 625 >900 2 1 0 0 0 0 0 50 1225
K100 2500 >900 17 7 4 1 1 1 64 100 4950
K150 5625 >900 179 42 29 4 3 3 166 150 11175
K175 7656 >900 322 77 >900 >900 >900 3 5 175 15225
K200 10000 >900 704 145 4 7 4 6 368 200 19900
K225 12656 >900 >900 223 >900 >900 >900 8 11 225 25200
K300 22500 - >900 875 >900 >900 106 208 177 300 44850
tG4

4 1024 >900 0 1 0 0 0 1 19 256 1024
tG2

10,10 200 121 0 0 0 0 0 0 2 100 200
tG2

8,15 232 >900 2 1 1 0 1 0 6 120 240
tG2

11,12 252 >900 40 8 2 2 1 2 5 132 264
tG2

15,20 580 >900 >900 >900 86 75 32 32 150 300 600
tG2

20,20 800 >900 0 0 0 0 1 0 109 400 800
tG2

100,100 20000 - 7 29 43 45 17 17 >900 10000 20000

W75 111 26 2 3 1 1 0 1 4 75 148
W100 148 58 2 7 5 3 0 1 11 100 198
W175 261 >900 9 333 22 14 1 1 44 175 348
W250 373 >900 61 >900 26 26 2 2 301 250 498
W400 598 >900 62 >900 >900 >900 4 3 >900 400 798
W550 823 - >900 >900 >900 >900 5 5 >900 550 1098
W775 1161 - >900 >900 >900 >900 11 10 - 775 1548
W925 1386 - >900 >900 >900 626 15 15 - 925 1848
W1250 1873 - >900 >900 >900 >900 34 39 - 1250 2548
C100 100 105 0 0 0 0 0 0 5 100 100
C175 174 889 0 0 0 0 0 0 31 175 175
C250 250 >900 0 0 0 0 0 0 71 250 250
C550 550 - 1 0 0 0 0 0 >900 550 550
C1250 1250 - 0 0 0 0 1 0 - 1250 1250
C1750 1750 - 1 0 1 1 1 0 - 1750 1750
C3000 3000 - 1 1 2 1 1 2 - 3000 3000
C5725 5725 - 13 12 37 13 11 13 - 5725 5725
C9000 9000 - 2 7 10 8 7 7 - 9000 9000

144

Chapter 4

Study of the polytopes related to

the index of the lowest nonzero

row of an assignment matrix

z1 z2 z3 · · · zn

k

...

h −→ ←− h
3
2
1

Figure 4.1: On this grid representing a k-by-n matrix, each column is a zi variable
and the height of its black cell is the value assigned to it. h thus corresponds to the
first non-empty row of the grid starting from the bottom (in this case, h = 4).

When designing linear-based formulations for optimization prolems in the pre-

ceding chapters, we have seen the crucial role that valid inequalities for the set of

solutions can play. A usually fruitful source of inequalities is an hyperplane repre-

sentation of the convex hull of the solutions of a formulation.

145

4.0.1 Definition of the polytopes

Researching for new valid inequalities for the convex hull of the solutions of formu-

lation (MIP2) presented in Chapter 2 lead to the study of the following family of

polyhedra: for (k, n) ∈ N\{0}2,

P = Conv

y1
k y2

k · · · ynk
...

...
. . .

...

y1
2 y2

2 · · · yn2
y1

1 y2
1 · · · yn1

 , h
 ∈Mk×n({0, 1})× N\{0}

∣∣∣∣∣∣∣
k∑
l=1

yil = 1, ∀i ∈ J1, nK,

h = min
i∈J1,nK

∑k
l=1 ly

i
l ,

 .

The polytope P is best interpreted in the context of a combinatorial optimiza-

tion problem involving n ∈ N\{0} variables zi each of which can be assigned an

integer number in J1, kK. Then the interpretation given to the variables yil is the

following: yil = 1 if and only if zi = l and then h ≡ minni=1 z
i. The polytope P is

consequently naturally related to these problems. The matrix (yij) can be seen as a

{0, 1} assignment matrix where each column contains exactly one coefficient equal

to 1 while h denotes the index of the lowest row that is not identically equal to the

zero row (cf Figure 4.1).

Another variant of P is obtained by considering the index of the highest row

that is not identically equal to the zero row (cf Figure 4.2). In this case we get the

polytope

P ′ = Conv

x1
k x2

k · · · xnk
...

...
. . .

...

x1
2 x2

2 · · · xn2
x1

1 x2
1 · · · xn1

 , g
 ∈Mk×n({0, 1})× N\{0}

∣∣∣∣∣∣∣
k∑
l=1

xil = 1, ∀i ∈ J1, nK,

g = max
i∈J1,nK

∑k
l=1 lx

i
l,

 .

Polytopes P and P ′ naturally appear in the context of several other combinatorial

optimization.

The rest of this chapter is organized as follows. First we present some examples

of problems where polytope P or its variants arises in Section 4.1. Then we give a

complete linear description of P in Section 4.2. Then we show that the separation

problem with respect to P can be solved in polynomial time in Section 4.3. Finally

we give similar results for some polyhedra which ar variants of P in Section 4.4.

146

x1 x2 x3 · · · xn

k
g −→

...

←− g

3
2
1

Figure 4.2: On this grid representing a k-by-n matrix, each column is a xi variable
and the height of its black cell is the value assigned to it. The value of g thus
corresponds to the first non-empty row of the grid starting from the bottom (in this
case, g = k − 1).

4.1 Motivations

4.1.1 MaxIm

As previously mentioned, polytope P arises in the study of (MaxIm) if we take a

closer look at formulation (MIP2). If we extend the set of possible values for the

signed imbalance of a vertex to J−∆G,∆GK and rename the indicator variables, then

(MIP2) can be rewritten as follows:

max h

s.t. h ≤
∑k

l=−k|l|tvl , ∀v ∈ V,∑k
l=−kt

v
l = 1, ∀v ∈ V,∑k

l=−klt
v
l = Bvx, ∀v ∈ V,

x ∈ [−1; 1]|E|, t ∈Mn×2k+1({0, 1}), h ∈ R.

147

Where k := ∆G. Introducing variables yvl = tv−l + tvl , ∀(v, l) ∈ V × J1, kK, it becomes
max h

s.t.
∑k

l=−klt
v
l = Bvx, ∀v ∈ V,

yvl = tv−l + tvl , ∀(v, l) ∈ V × J1, kK,

x ∈ [−1; 1]|E|, (y, h) ∈ P, t ∈Mn×2k+1({0, 1}).

Considering this last formulation, the polytope P clearly appears and is therefore

closely related to the problem (MaxIm) through formulation (MIP2). The polyhe-

dral analysis of P detailed in this Chapter lead to the unveiling of the family of

inequalities (2.6) which participates int the strengthening of (MIP2)’s linear relax-

ation within the framework of a cutting-plane algorithm (see, e.g. [29] and [97]).

4.1.2 Minimum-span frequency assignment

Let us consider the minimum-span frequency-assignment problem which is a variant

of the NP-hard frequency-assignment problem [79]. The input is a graph G = (V,E)

that is generally called the interference graph in which the nodes that are antennas

are connected if their signals can interfere with one another. The frequency assign-

ment problem consists in assigning a frequency f from a set of available frequencies

F to each vertex v ∈ V in such a way that each pair of antennas uv ∈ E that may in-

terfere with one another are assigned different frequencies. Frequencies can be seen

as ordered integer numbers. To reduce interferences, one might impose stronger

constraints: a minimum separation between the frequencies assigned to u and v is

required. If frequency i is assigned to u and j is assigned to v, then |i−j| ≥ suv where

suv is a given number. This constraint differentiate it from a classic graph colouring

problem. The minimum-span frequency-assignment problem (or MS-FAP) consists

in assigning frequencies to nodes taking into account the separation requirements

and minimizing the difference between the largest assigned number (frequency) and

the smallest assigned number (see, e.g., [69]).

If we consider that V = {v1, · · · , vn}, F = J1, kK where k is an upper bound of

the minimum-span, then we obtain the following formulation for MS-FAP
min g

s.t. xil + xjl′ ≤ 1, ∀(i, j, l, l′) ∈ J1, nK2 × J1, kK2 such that vivj ∈ E, |l − l′| < svivj

(x, g) ∈ P ′, x ∈Mk×n({0, 1}).

where the interpretation of the x variable is the following: xil = 1 if and only if the

148

frequency l is assigned to the antenna vi.

We find again our polytope, we start to grasp the wide variety of optimization

problems related to it.

4.1.3 Minimum makespan scheduling

Another example is the minimum makespan scheduling, which is a central problem

in the scheduling area (see [94]). Given a set J of jobs, a set M of machines that

can all process at most one job at a time, and the time ti,j ∈ N taken to process job

j ∈ J on machine i ∈ M , the goal of the minimum makespan scheduling problem

is to assign a machine p ∈ M for each job j ∈ J so as to minimize the makespan,

i.e. the maximum processing time of any machine. Several approximation schemes

have been developed to deal with this NP-hard problem [45], e.g. [63] and [64].

Since the processing times are integers, the timeline is discretized in identical units

of time, namely days. We consider here the variant where all the machines in M are

identical (or IM-MMS) and preemptions (i.e. interruption of a task being processed)

are not allowed. In other words, for any job j ∈ J , ti,j = tj, ∀i ∈ M . In this case,

assigning a machine to each job is equivalent to assigning a day d′ to be the last

day of processing this job, which also determines the first day d of processing and

will therefore be processed by a machine free during the period [d, d′]. Now to

make a formulation for IM-MMS with the set of jobs J = J1, nK and m ∈ N\{0}
identical machines, we take k =

∑n
i=1 t

i and the variable x ∈ Mk×n({0, 1}) whose

interpretation is the following: xil = 1 if and only if the processing of the job i ends

on the day l. Then we have the following formulation for IM-MMS

min g

s.t.
∑k

l=1lx
i
l ≥ ti, ∀i ∈ J1, nK,∑n

i=1

∑min(l+ti−1,k)
l′=l xil′ ≤ m, ∀l ∈ J1, kK,

(x, g) ∈ P ′, x ∈Mk×n({0, 1}).

For a job i ∈ J1, nK,
∑k

l=1 lx
i
l ≥ ti ensures that its processing ends after enough time

has passed for i to be processed, and for a day l ∈ J1, kK,
∑n

i=1

∑min(l+ti−1,k)
l′=l xil′ ≤ m

ensures that no more than m jobs are being processed. Some additional constraints

can be added to this formulation such as a necessary precedence or release time. If

we want a job i ∈ J1, nK to be processed before another job j ∈ J1, nK\{i} starts pro-

cessing, we add the constraint
∑k

l=1 lx
i
l ≤

∑k
l=1 lx

j
l − tj. If we want a job i ∈ J1, nK

to be processed before (resp. on, after) a day d ∈ J1, kK, we add the constraint∑d−1
l=1 x

i
l = 1 (resp. xid = 1,

∑k
l=d+1 x

i
l = 1). The objective function can also be any

linear function depending on the variable x and gs.

149

Polytope P also appears in the context of the maximum clique problem. A

discretized formulation is proposed in [80] where a variable wiq indicates whether the

vertex i belongs to a clique of size q. These variables are of course linked to standard

vertex variables (xi = 1 if i belongs to the maximum clique). The problem is then

equivalent to maximizing q such that wiq = 1 for some i. This is again related to

polytope P .

More generally, various combinatorial optimization problems where discretiza-

tion techniques are used can benefit from a description of either P or some of its

variants.

4.2 A full description of P

4.2.1 Definition of the hyperplanes

Let us define a set of inequalities that will prove to be an hyperplane representation

of P .

(P̃)

∑k
l=1 y

i
l = 1, ∀i ∈ J1, nK,∑k

l=2

∑n
i=1 λ

i
ly
i
l ≥ h− 1, ∀λ ∈ Λ,∑hmax−1

l=1

∑n
i=1(l − hmax)yil + hmax ≤ h, ∀hmax ∈ J1, kK,

yil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, h ∈ R,

(4.1a)

(4.1b)

(4.1c)

where

Λ =

{
λ = (λil)(i,l)∈J1,nK×J1,kK ∈ Nnk

∣∣∣∣∣ λil+1 ≥ λil, ∀(i, l) ∈ J1, nK× J1, k − 1K∑n
i=1 λ

i
l = l − 1, ∀l ∈ J1, kK

}
.

We clearly recognize the equalities (4.1a), they are essential to the concept of

indicator variables. The inequalities (4.1c) form a family of constraints which car-

dinality is k, hence linear in k and n, which is not the case of the family formed by

(4.1b).

Any element λ of Λ can be constructed as follows: we start with λi1 = 0, ∀i ∈
J1, nK, choose an index i2 ∈ J1, nK and set λi22 = 1 and λi2 = 0, ∀i ∈ J1, nK\{i2}.
And we proceed like this for l = 2, · · · , k, we choose an index il ∈ J1, nK and set

λill = λill−1 + 1 and λil = λil−1, ∀i ∈ J1, nK\{il}. Schematically, it can be seen as

creating n piles of coins. Starting with an empty table, at each step (a step being

l ← l + 1), we add one coin on one pile and we read each λil as the height of the

corresponding pile.

150

4.2.2 Proof of the hyperplane representation

In order to show that P̃ is indeed a proper hyperplane representation of P , we are

first going to prove that P̃ contains P . Then to show the opposite inclusion, we will

prove that any facet-defining inequality of P is equivalent to one of the inequality

listed in the definition of P̃ . For the proof to be comfortably readable, those steps

are presented as separate and thus independent lemmas. We start with the first

inclusion.

Lemma 61.

P ⊆ P̃

Proof. Since P is the convex hull of integer points, it suffices to show that each

of those points satisfies all the inequalities in P̃ . Let (y, h) ∈ P be one of those

points, that is to say (y, h) ∈ Mk×n({0, 1}) × N\{0},
∑k

l=1 y
i
l = 1, ∀i ∈ J1, nK and

h = mini∈J1,nK
∑k

l=1 ly
i
l . We firstly show that

∑k
l=2

∑n
i=1 λ

i
ly
i
l ≥ h − 1, ∀λ ∈ Λ.

For all i ∈ J1, nK, there exists li ∈ Jh, kK such that yili = 1. Now since for a given

i ∈ J1, nK, λil increases with l, we have

k∑
l=2

n∑
i=1

λily
i
l =

n∑
i=1

λili ≥
n∑
i=1

λih = h− 1.

Now we take hmax ∈ J1, kK, and we show that hmax−
∑hmax−1

l=1 (hmax− l)
∑n

i=1 y
i
l ≤ h.

We have

hmax −
hmax−1∑
l=1

(hmax − l)
n∑
i=1

yil = hmax +
k∑
l=1

min(l − hmax, 0)
n∑
i=1

yil

= hmax +
k∑
l=1

min(l − 1, hmax − 1)
n∑
i=1

yil − n(hmax − 1)

=
n∑
i=1

k∑
l=2

min(l − 1, hmax − 1)yil + 1− (n− 1)(hmax − 1)

151

There exists i∗ ∈ J1, nK such that yi
∗

h = 1, then

n∑
i=1

k∑
l=2

min(l − 1, hmax − 1)yil =
n∑
i=1
i6=i∗

k∑
l=2

min(l − 1, hmax − 1)yil +
k∑
l=2

min(l − 1, hmax − 1)yi
∗

l

≤
n∑
i=1
i6=i∗

k∑
l=2

(hmax − 1)yil +
k∑
l=2

(l − 1)yi
∗

l

≤
n∑
i=1
i6=i∗

(hmax − 1) + h− 1

= (n− 1)(hmax − 1) + h− 1.

Now to prove that P coincides with P̃ , we show that all facet-defining inequalities

for P are among those defining P̃ . To that purpose, we shall often use the fact

that a facet of P cannot be contained by another distinct facet of P otherwise it

would be contained by the intersection of two distinct hyperplanes of Rdim(P), being

therefore of dimension at most dim(P)−2. Consequently, for any two distinct valid

inequalities for P , if one is facet-defining, then there exists a point of P saturating

it and not the other. For example, in Figure 1.4, we know that y ≥ −3x + 14

does not define a facet of Pex because all the points of Pex saturating it (that is

(3, 5)) saturates y ≤ 3x − 4 which is a valid inequality for Pex. Two inequalities

are said to be equivalent if one can be obtained from the other by multiplying it by

a non-zero scalar and adding a combination of equations of the type
∑k

l=1 y
i
l = 1.

The idea is that any half-space of Rkn+1 can be defined by an inequality written

without loss of generality as
∑k

l=1

∑n
i=1 β

i
ly
i
l + γ ≥ αh, where βil ∈ R, ∀(i, l) ∈

J1, nK × J1, kK, (γ, α) ∈ R × {−1, 0, 1}. We can go further and say that any two

inequalities so written and defining the same half-space share their α coefficient. We

can then partition the set of all half-spaces into three cases: α = −1, α = 0 and

α = 1. Those three cases shall then be dealt with by the three following lemmas.

Lemma 62. Let
k∑
l=1

n∑
i=1

βily
i
l + γ ≥ 0, (4.2)

be a facet-defining inequality of P , with βil ∈ R, ∀(i, l) ∈ J1, nK × J1, kK, γ ∈ R.

Then there exists (i, l) ∈ J1, nK× J1, kK such that (4.2) is equivalent to yil ≥ 0.

For an extreme point (y, h) of P and (̃i, l̃, l̃′) ∈ J1, nK× J1, kK2, such that yĩ
l̃

= 1

and l̃ 6= l̃′, we denote by (y
l̃
ĩ−→l̃′
, h

l̃
ĩ−→l̃′

) the extreme point (y′, h′) of P such that y′il =

152

yil , ∀(i, l) ∈ J1, nK×J1, kK\{(̃i, l̃), (̃i, l̃′)}, y ′̃i
l̃

= 0, y ′̃i
l̃′

= 1 and h′ = mini∈J1,nK
∑k

l=1 ly
′i
l .

For l̃ ∈ J1, kK, we denote by (y→l̃, l̃) the point of P such that yi
l̃

= 1, ∀i ∈ J1, nK and

yil = 0, ∀(i, l) ∈ J1, nK× (J1, kK\{l̃}).

Proof. First, since for each i ∈ J1, nK, we have
∑k

l=1 y
i
l = 1, we can replace yi1 by

1 −
∑k

l=2 y
i
l and get new coefficients β̃i1 = 0 and β̃il = βil − βi1, ∀l ∈ J2, kK and a

new γ̃ = γ +
∑n

i=1 β
i
1. Hence, without loss of generality, we can assume that βi1 = 0

for all i ∈ J1, nK. Suppose that the facet defined by (4.2) is not equivalent to a

facet defined by an inequality of the type yil ≥ 0. If we take (̃i, l̃) ∈ J1, nK× J1, k −
1K, we know that there exists an extreme point (y, h) of P saturating (4.2) and

such that yĩ
l̃

= 1, otherwise all the extreme points saturating (4.2) would saturate

yĩ
l̃
≥ 0 thus contradicting the fact that (4.2) is facet-defining and not equivalent

to yil ≥ 0 for some (i, l) ∈ J1, nK × J1, kK. Since (y′, h′) = (y
l̃
ĩ−→l̃+1

, h
l̃
ĩ−→l̃+1

) ∈ P ,

we have
∑k

l=1

∑n
i=1 β

i
ly
i
l + γ = 0 and

∑k
l=1

∑n
i=1 β

i
ly
′i
l + γ ≥ 0 which yields β ĩ

l̃+1
≥

β ĩ
l̃
. Similarly, taking an extreme point (y, h) of P saturating (4.2) and such that

yĩ
l̃+1

= 1 and (y′, h′) = (y
l̃+1

ĩ−→l̃
, h

l̃+1
ĩ−→l̃

) ∈ P , we have
∑k

l=1

∑n
i=1 β

i
ly
i
l + γ = 0 and∑k

l=1

∑n
i=1 β

i
ly
′i
l + γ ≥ 0, yielding β ĩ

l̃
≥ β ĩ

l̃+1
. Hence, for all (i, l) ∈ J1, nK× J1, k− 1K,

we have βil = βil+1, in other words, βil = 0, ∀(i, l) ∈ J1, nK × J1, kK, and (4.2) is not

facet-defining.

Lemma 63. Let
k∑
l=1

n∑
i=1

βily
i
l + γ ≥ h, (4.3)

be a facet-defining inequality of P , with βil ∈ R, ∀(i, l) ∈ J1, nK × J1, kK, γ ∈ R.

Then there exists λ ∈ Λ such that (4.3) is equivalent to
∑k

l=2

∑n
i=1 λ

i
ly
i
l ≥ h− 1.

Proof. Again, without loss of generality, we assume that βi1 = 0 for all i ∈ J1, nK.
For an (̃i, l̃) ∈ J1, nK × J1, k − 1K, there exists an extreme point (y, h) of P satu-

rating (4.3) and such that yĩ
l̃

= 1. Since (y′, h′) = (y
l̃
ĩ−→l̃+1

, h
l̃
ĩ−→l̃+1

) ∈ P , we have∑k
l=1

∑n
i=1 β

i
ly
i
l + γ = h and

∑k
l=1

∑n
i=1 β

i
ly
′i
l + γ ≥ h′ ≥ h which yields β ĩ

l̃+1
≥ β ĩ

l̃
.

Hence for all i ∈ J1, nK, (βil)l is increasing with l and therefore non-negative since

βi1 = 0, ∀i ∈ J1, nK.
If we consider the point (y, h) = (y→1, 1), we obtain that γ ≥ 1. If we now consider

an extreme point (y, h) of P saturating (4.3) and such that yĩ1 = 1 for an ĩ ∈ J1, nK,
we get

∑k
l=1

∑n
i=1 β

i
ly
′i
l + γ = h = 1. Since both the βil and the yil are non-negative,

then so is
∑k

l=1

∑n
i=1 β

i
ly
′i
l . Hence γ ≤ 1, yielding γ = 1.

Considering (y→l, l) ∈ P for l ∈ J1, kK, we obtain
∑n

i=1 β
i
l ≥ l − 1. Let us

show by induction on l that
∑n

i=1 β
i
l = l − 1, ∀l ∈ J1, kK. Our induction is al-

ready initialized by
∑n

i=1 β
i
1 = 0. We suppose that for a l̃ ∈ J1, k − 1K, we have

153

∑n
i=1 β

i
l̃

= l̃ − 1 and show that
∑n

i=1 β
i
l̃+1

= l̃. Suppose that all the extreme points

(y, h) of P saturating (4.3) and such that yi
l̃+1

= 1 for some i ∈ J1, nK verify h ≤ l̃.

Then for each ĩ ∈ J1, nK, take one of those extreme saturating points such that

yĩ
l̃+1

= 1 and let (y′, h′) = (y
l̃+1

ĩ−→l̃
, h

l̃+1
ĩ−→l̃

) ∈ P . Since β ĩ
l̃+1
≥ β ĩ

l̃
, we have

h′ − 1 ≤
∑k

l=1

∑n
i=1 β

i
ly
′i
l ≤

∑k
l=1

∑n
i=1 β

i
ly
i
l = h − 1, and since h ≤ l̃, we have

h = h′ and therefore,
∑k

l=1

∑n
i=1 β

i
ly
′i
l =

∑k
l=1

∑n
i=1 β

i
ly
i
l = h− 1, yielding β ĩ

l̃+1
= β ĩ

l̃
.

Thus
∑n

i=1 β
i
l̃+1

=
∑n

i=1 β
i
l̃

= l̃ − 1 which contradicts
∑n

i=1 β
i
l̃+1
≥ l̃. So there exists

ĩ ∈ J1, nK and (y, h) an extreme point of P saturating (4.3) such that yĩ
l̃+1

= 1 and

h = l̃+ 1. We have l̃ ≤
∑n

i=1 β
i
l̃+1
≤
∑k

l=1

∑n
i=1 β

i
ly
i
l = l̃, hence

∑n
i=1 β

i
l̃+1

= l̃, which

concludes our induction.

Now let us show by induction on l that for all (i, l) ∈ J1, nK × J1, kK, βil is an

integer. This induction is trivially initialized for βi1 = 0, ∀i ∈ J1, nK. We suppose

that for a l̃ ∈ J1, k − 1K we have that the βi
l̃

for i ∈ J1, nK are integers and we show

that the same holds for the βi
l̃+1

for i ∈ J1, nK. We note αi = βi
l̃+1
− βi

l̃
, ∀i ∈ J1, nK

and for each i ∈ J1, nK we build a new set of inequality coefficients : β
(i),j
l = βjl −

αj + δi,j, ∀(j, l) ∈ J1, nK × J1, kK, where δi,j equals 1 if i = j and 0 otherwise. Let

(y, h) be an extreme point of P and for all j ∈ J1, nK, let lj ∈ Jh, kK be such that

yjlj = 1. Then, since
∑n

i=1 α
i = 1, we have for i ∈ J1, nK

k∑
l=1

n∑
j=1

β
(i),j
l yjl =

k∑
l=1

n∑
j=1

(βjl−α
j+δi,j)y

j
l =

n∑
j=1

(βjlj−α
j+δi,j) =

n∑
j=1

βjlj ≥
n∑
i=1

βih = h−1,

which means that for all i ∈ J1, nK,
∑k

l=1

∑n
j=1 β

(i),j
l yjl + 1 ≥ h is valid for P .

Now since for (j, l) ∈ J1, nK× J1, kK,(
n∑
i=1

αiβ(i)

)j

l

=
n∑
i=1

αi
(
βjl − α

j + δi,j
)

=

(
n∑
i=1

αi

)
βjl−

(
n∑
i=1

αi

)
αj+

n∑
i=1

αiδi,j = βjl

and αi ≥ 0, ∀i ∈ J1, nK, (4.3) is a convex combination of these inequalities. More-

over, if any of the βil+1, i ∈ J1, nK was not an integer, then the convex combination

would be non-trivial, which would contradict the fact that (4.3) is facet-defining.

Concluding our induction, we obtain that for all (i, l) ∈ J1, nK × J1, kK, βil is an

integer. And thus that β ∈ Λ, i.e. (4.3) belongs to the set of inequalities defining

P̃ .

Lemma 64. Let
k∑
l=1

n∑
i=1

βily
i
l + γ ≤ h, (4.4)

154

be a facet-defining inequality of P , with βil ∈ R, ∀(i, l) ∈ J1, nK×J1, kK, γ ∈ R. Then

it is equivalent to hmax −
∑hmax−1

l=1 (hmax − l)
∑n

i=1 y
i
l ≤ h for some hmax ∈ J1, kK.

Proof. Since for each i ∈ J1, nK, we have
∑k

l=1 y
i
l = 1, we can replace βil by

β̃il = βil − vi, for some vi ≥ 0 such that β̃il ≤ 0, ∀(i, l) ∈ J1, nK × J1, kK, and γ

by γ̃ = γ +
∑n

i=1 vi and thus get new coefficients β̃ which are non-positive without

changing (4.4). So without loss of generality, we can assume that β is non-positive

and furthermore that γ is minimal for a non-positive β.

For (̃i, l̃) ∈ J1, nK× J2, kK, we take an extreme point (y, h) of P saturating (4.4)

such that yĩ
l̃

= 1 and (y′, h′) = (y
l̃
ĩ−→l̃−1

, h
l̃
ĩ−→l̃−1

). We have
∑k

l=1

∑n
i=1 β

i
ly
i
l + γ = h

and
∑k

l=1

∑n
i=1 β

i
ly
′i
l + γ ≤ h′ ≤ h, which yields β ĩ

l̃−1
≤ β ĩ

l̃
. In other words, βil is

increasing with l, for all i ∈ J1, nK. This implies that for all i ∈ J1, nK, there exists

li ∈ J1, kK such that βil = 0, ∀l ∈ Jli, kK and βil < 0 for l < li because suppose there

exists i ∈ J1, nK for which βik < 0, then we can replace βil by βil − βik for all l ∈ J1, kK
and add βik to γ and thus get new non-positive coefficients β̃ with a γ̃ < γ, which

contradicts the minimality of γ.

Let (̃i, l̃) ∈ J1, nK× J1, kK such that β ĩ
l̃
< 0 (i.e., l̃ < l̃i), we know there exists an

extreme point (y, h) of P saturating (4.4) such that yĩ
l̃

= 1. Suppose that h < l̃, we

take (y′, h′) an extreme point of P such that y′il = yil , ∀(i, l) ∈ J1, nK\{̃i} × J1, kK,
y ′̃il̃i = 1 and obtain h =

∑k
l=1

∑n
i=1 β

i
ly
i
l + γ ≤

∑k
l=1

∑n
i=1 β

i
ly
′i
l + γ ≤ h′ = h, that

yields β ĩ
l̃

= 0, which is a contradiction. Hence h = l̃, so if we take the extreme

point (y′, h′) of P such that y ′̃i
l̃

= 1, y′ik = 1, ∀i ∈ J1, nK\{̃i} and yil = 0, ∀(i, l) ∈
J1, nK× J1, kK\({(̃i, l̃)} ∪ {(i, k), i ∈ J1, nK\{̃i}}), we have

l̃ =
k∑
l=1

n∑
i=1

βily
i
l + γ ≤

k∑
l=1

n∑
i=1

βily
′i
l + γ = β ĩ

l̃
+ γ ≤ h′ = l̃.

This gives us that for all i ∈ J1, nK, βil = l − γ, ∀l ∈ J1, li − 1K. Consider

the extreme point (y, h) of P such that for all i ∈ J1, nK, yili = 1, we have γ ≤
mini∈J1,nK li. We call hmax the maximum value of h among the extreme points (y, h)

of P saturating (4.4).

If we take an extreme point (y, h) of P realizing hmax, i.e. saturating (4.4) and

such that h = hmax, we have
∑k

l=1

∑n
i=1 β

i
ly
i
l +γ = hmax which, since

∑k
l=1

∑n
i=1 β

i
ly
i
l

is non-positive, yields hmax ≤ γ. Now for ĩ ∈ J1, nK, there exists an extreme point

(y, h) of P saturating (4.4) such that yĩl̃i−1 = 1. Suppose that h < l̃i − 1, we take

(y′, h′) an extreme point of P such that y′il = yil , ∀(i, l) ∈ J1, nK\{̃i}× J1, kK, yĩl̃i = 1

155

and obtain

h =
k∑
l=1

n∑
i=1

βily
i
l + γ ≤

k∑
l=1

n∑
i=1

βily
′i
l + γ ≤ h′ = h,

that yields β ĩl̃i−1 = 0, which is a contradiction. So h = l̃i − 1, hence hmax ≥ l̃i − 1.

We obtain maxi∈J1,nK li − 1 ≤ hmax ≤ γ ≤ mini∈J1,nK li ≤ maxi∈J1,nK li. There are

two possibilities, either mini∈J1,nK li = maxi∈J1,nK li, or maxi∈J1,nK li − 1 = mini∈J1,nK li.

Suppose maxi∈J1,nK li − 1 = hmax = γ = mini∈J1,nK li, then there exists ĩ ∈ J1, nK such

that l̃i = 1 + hmax, which implies that β ĩhmax
6= 0 and β ĩhmax

= hmax − γ = 0 which is

a contradiction. So mini∈J1,nK li = maxi∈J1,nK li =: L and

L− 1 ≤ hmax ≤ γ ≤ L.

Let us assume that hmax = L−1. Then we know that γ < L, otherwise if γ = L, the

extreme point of P (y→L, L) would saturate (4.4) and thus contradict the maximality

of hmax. We consider the following inequality

L−1∑
l=1

n∑
i=1

(l − L)yil + L ≤ h. (4.5)

Let us show that it is a valid inequality for P , that is to say, that every extreme

point (y, h) of P verifies it. If h ≥ L, then
∑L−1

l=1

∑n
i=1(l−L)yil = 0 and we are done.

If h ≤ L− 1, then there exists ĩ ∈ J1, nK such that yĩh = 1. Combining this with the

validity of (4.4) implies

L−1∑
l=1

n∑
i=1

(l−L)yil+L =
L−1∑
l=1

n∑
i=1

(l−γ)yil+γ+
L−1∑
l=1

n∑
i=1

(γ−L)yil+L−γ ≤ h+γ−L+L−γ = h.

Moreover, if (y, h) is an extreme point of P saturating (4.4), then there exists ĩ ∈
J1, nK such that yĩh = 1 and h ≤ hmax = L−1 which yields

∑L−1
l=1

∑n
i=1(l−γ)yil +γ =

h =
∑L−1

l=1

∑n
i=1
i6=ĩ

(l − γ)yil + h − γ + γ. So we have
∑L−1

l=1

∑n
i=1
i6=ĩ

(l − γ)yil = 0 which

implies that yil = 0, ∀(i, l) ∈ (J1, nK\{̃i})× J1, L− 1K. Thus

L−1∑
l=1

n∑
i=1

(l−L)yil+L =
L−1∑
l=1

n∑
i=1

(l−γ)yil+γ+
L−1∑
l=1

n∑
i=1

(γ−L)yil+L−γ = h+γ−L+L−γ = h.

Consequently, all points saturating (4.4) saturate (4.5), furthermore, (y→L, L) sat-

urates (4.5) and not (4.4). This means that the face of the polyhedron defined by

(4.4) is strictly contained in the face defined by (4.5) contradicting the fact that

(4.4) is facet-defining, hence hmax = γ = L and (4.4) becomes
∑hmax−1

l=1

∑n
i=1(l −

156

hmax)yil + hmax ≤ h with hmax ∈ J1, nK.

The folllowing then naturally flows.

Theorem 65.

P = P̃

Proof. With Lemma 61, we know that P ⊆ P̃ . Take any facet-defining inequality

of P
∑k

l=1

∑n
i=1 β

i
ly
i
l + γ ≥ αh, where βil ∈ R, ∀(i, l) ∈ J1, nK × J1, kK, (γ, α) ∈

R× {−1, 0, 1}. If α = 0 (resp. α = 1, α = −1), then Lemma 62 (resp. Lemma 63,

Lemma 64) gives us that this inequality is equivalent to one of those defining P̃ .

4.3 Separation problem

In Section 1.3, we explained the importance for a polytope to have an inherent

separation problem solvable in polynomial time in the scope of optimizing any (lin-

ear) objective function over said polytope. The performance of any cutting plane

method, let alone Branch & Cut algorithm depend on the ability to solve the sepa-

ration problem inherent to the solution polytope.

P is defined by n equalities, kn non-negativity constraints, k constraints of type∑hmax−1
l=1

∑n
i=1(l−hmax)yil+hmax ≤ h and nk−1 of inequalities of type

∑k
l=2

∑n
i=1 λ

i
ly
i
l ≥

h− 1. The total number of inequalities is then exponential. However, the following

holds.

Theorem 66. The separation problem which consists in deciding if a vector (y, h) ∈
Rnk+1 is in P , and if not in returning a constraint of P violated by (y, h) can be

solved in polynomial time.

Proof. Let (y, h) ∈ Rnk+1, first, one can verify in linear time if (y, h) ∈ [0, 1]nk ×
[1, k] is such that

∑k
l=1 y

i
l = 1, ∀i ∈ J1, nK and verifies the k inequalities of type∑hmax−1

l=1

∑n
i=1(l − hmax)yil + hmax ≤ h. If not, we return a violated constraint.

Otherwise, we build λ̃ ∈ Λ as follows: λ̃i1 = 0, ∀i ∈ J1, nK, and for l = 2, · · · , k, let

ĩl = arg mini∈J1,nK y
i
l + yil+1 + · · · + yik and set λ̃ĩll = λ̃ĩll−1 + 1 and λ̃il = λ̃il−1, ∀i ∈

J1, nK\{̃il}. We will show that if (y, h) satisfies the inequality of P corresponding

to λ̃, then it satisfies all the inequalities corresponding to an element of Λ. Suppose∑k
l=2

∑n
i=1 λ̃

i
ly
i
l ≥ h − 1 and let λ ∈ Λ and (i2, · · · , ik) ∈ J1, nKk−1 the indices

corresponding to the building of λ, i.e. for l = 2, · · · , k, λill = λill−1 + 1 and λil =

λil−1, ∀i ∈ J1, nK\{il}. By construction of i2, · · · , ik and ĩ2, · · · , ĩk, we have

k∑
l=2

n∑
i=1

λily
i
l =

k∑
l=2

(yill +yill+1+· · ·+yilk) ≥
k∑
l=2

(yĩll +yĩll+1+· · ·+y ĩlk) =
k∑
l=2

n∑
i=1

λ̃ily
i
l ≥ h−1,

157

hence the inequality of P corresponding to λ is satisfied. So we can conclude that

if (y, h) satisfies the inequality of P corresponding to λ̃, then it satisfies all the

inequalities of P corresponding to an element of Λ. And since the construction of λ̃

is done in polynomial time, the separation problem is indeed polynomial.

4.4 Variants

4.4.1 Modified Polytopes

Linear programming formulations aiming to maximize (resp. minimize) the index

of the lowest (resp. highest) nonzero row of an assignment matrix are related to

polytope Q (resp. Q′) described below. Observe that h (resp. g) is only required to

be less (resp. more) than or equal to mini∈J1,nK
∑k

l=1 ly
i
l (resp. maxi∈J1,nK

∑k
l=1 lx

i
l).

Q = Conv

y1
k y2

k · · · ynk
...

...
. . .

...

y1
2 y2

2 · · · yn2
y1

1 y2
1 · · · yn1

 , h
 ∈Mk×n({0, 1})× N\{0}

∣∣∣∣∣
∑k

l=1 y
i
l = 1, ∀i ∈ J1, nK,

h ≤ mini∈J1,nK
∑k

l=1 ly
i
l ,

Q′ = Conv

x1
k x2

k · · · xnk
...

...
. . .

...

x1
2 x2

2 · · · xn2
x1

1 x2
1 · · · xn1

 , g
 ∈Mk×n({0, 1})× N\{0}

∣∣∣∣∣
∑k

l=1 x
i
l = 1, ∀i ∈ J1, nK,

g ≥ maxi∈J1,nK
∑k

l=1 lx
i
l,

A full description of Q is given below.

Theorem 67.

Q =

∑k

l=1 y
i
l = 1, ∀i ∈ J1, nK,∑k

l=2

∑n
i=1 λ

i
ly
i
l ≥ h− 1, ∀λ ∈ Λ,

yil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, h ≥ 1.

Proof. It is a simple fact that h ≥ 1 is the only possible facet of type (4.4) while the

positivity constraints are the only possible facets of type (4.2). Let us consider an

inequality of type (4.3) defining a facet of Q. Any extreme point of Q saturating such

a facet necessarily satisfies h = mini∈J1,nK
∑k

l=1 ly
i
l implying that it is also a point of

P . Using this observation and the fact that Q and P have the same dimension, we

deduce that any facet of Q of type (4.3) is also a facet of P . Using the description

of P , we get the result.

158

Similarly to Theorem 66 we can deduce that the separation problem with respect

to Q is solvable in polynomial time as well.

4.4.2 Opposite polytopes

We can also derive a full description of P ′ and Q′ from the previous results.

Theorem 68.

P ′ =

∑k

l=1 x
i
l = 1, ∀i ∈ J1, nK,∑k−1

l=1

∑n
i=1 λ

i
lx
i
l ≤ g − k, ∀λ ∈ Λ̃,∑k

l=gmin+1

∑n
i=1(l − gmin)xil + gmin ≥ g, ∀gmin ∈ J1, kK,

xil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, g ∈ R,

Q′ =

∑k

l=1 x
i
l = 1, ∀i ∈ J1, nK,∑k−1

l=1

∑n
i=1 λ

i
lx
i
l ≤ g − k, ∀λ ∈ Λ̃,

xil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK, g ≤ k

where

Λ̃ =

{
λ = (λil)(i,l)∈J1,nK×J1,kK ∈ Nnk

∣∣∣∣∣ λil+1 ≤ λil, ∀(i, l) ∈ J1, nK× J1, k − 1K∑n
i=1 λ

i
l = k − l, ∀l ∈ J1, kK

}
.

Proof. Take an extreme point (y, h) of P , and let (x, g) ∈ Mk×n({0, 1}) × N\{0}
such that xil = yik−l+1, ∀(i, l) ∈ J1, nK × J1, kK and g = k − h + 1, then g =

maxi∈J1,nK
∑k

l=1 lx
i
l, hence (x, g) ∈ P ′. Conversely, any extreme point (x, g) of P ′

can be obtained from an extreme point of P in this manner. So P ′ is obtained

from P doing the change of variables xil = yik−l+1, ∀(i, l) ∈ J1, nK × J1, kK and

g = k − h + 1. Therefore its hyperplane representation is obtained from that of P

in Theorem 65. Similarly, Q′ is obtained from Q doing the same change of variables

and its hyperplane representation is thus obtained from Theorem 67.

The previous results imply that the separation problems related to P ′ and Q′

can be solved in polynomial time.

4.5 An alternative description by Balas’s lift-and-

project technique

In 1998, Egon Balas [9] presented a way to derive the description of the convex hull

of the union of polyhedra from their description. This technique can be used to

derive a description of P described as such a convex hull.

159

4.5.1 P as the convex hull of the union of easily describable

polyhedra

Take for any h′ ∈ J1, kK the set X ′h consisting in the {0, 1} assignment matrices

which lowest row not identically equal to the zero row is the one corresponding to

h′, appended with h′ in order to fit the elements of P :

Xh′ =

y1
k y2

k · · · ynk
...

...
. . .

...

y1
2 y2

2 · · · yn2
y1

1 y2
1 · · · yn1

 , h′
 ∈Mk×n({0, 1})× N\{0}

∣∣∣∣∣∣∣
k∑
l=1

yil = 1, ∀i ∈ J1, nK,

min
i∈J1,nK

∑k
l=1 ly

i
l = h′,

 .

We consider the polytope Ph′ = Conv(Xh′), it is then clear that

P = Conv

(
k⋃

h′=1

Ph′

)
.

In order to make use of Balas’s result, we need an hyperplane description of P ′h.

One can be found quite easily by construction of Ph′ .

Proposition 69. Given h′ ∈ J1, kK,

Ph′ =

∑k

l=1 y
i
l = 1, ∀i ∈ J1, nK,

yil = 0, ∀(i, l) ∈ J1, nK× J1, h′ − 1K,∑n
i=1 y

i
h′ ≥ 1,

yil ≥ 0, ∀(i, l) ∈ J1, nK× J1, kK

(4.6)

Proof. Let us call P̃h′ the bounded set of points of Rkn+1 satisfying all the equalities

and inequalities of the right-hand side of 4.6. It is clear that any element of Ph′

verifies all the afore-mentioned constraints, yielding that Ph′ ⊆ P̃h′ . It remains to

show that these constraints suffice to define Ph′ , in other words, that P̃h′ ⊆ Ph′ .

One way to do so is to show that any extreme point of P̃h′ belongs to Xh′ . Let

y ∈Mk×n(R) such that (y, h′) is an extreme point of P̃h′ . All the components of y are

then positive, and since
∑k

l=1 y
i
l = 1 for all i ∈ J1, nK, then we have y ∈Mk×n([0, 1]).

If we have that y ∈ Mk×n({0, 1}), then we can directly conclude that (y, h′) ∈ X ′h.
Let us show that y cannot be fractional while (y, h′) os an extreme point of P̃h′′ .

Suppose that it is, that is to say that there exists (i, l) ∈ J1, nK × J1, kK such that

0 < yil < 1. Let us build y′ and y′′ two distinct points of P̃h′\{y} such that (y, h′)

is a non-trivial convex combination of (y′, h′) and (y′′, h′). Since
∑k

l=1 y
i
l = 1, there

exists l′ ∈ J1, kK\{l} such that 0 < yil′ < 1. We know that both l and l′ are larger

160

than or equal to h′, we distinguish two cases on the coincidence of h′ with l or l′.

l 6= h′ 6= l′: we take ε > 0 small enough such that {yil−ε, yil+ε, yil′−ε, yil′+ε} ⊂ [0, 1]

and y′ (resp. y′′) coinciding with y on all components but yil and yil′ for which

we set y′il = yil − ε and y′il′ = yil′ + ε (resp. y′′il = yil + ε and y′′il′ = yil′ − ε).

h′ ∈ {l, l′}: without loss of generality, we assume that l 6= h′ = l′. Since
∑n

i=1 y
i
h′ ≥

1, there exists i′ ∈ J1, nK\{i} such that yi
′

h′ > 0. If yi
′

h′ = 1, then we take ε > 0,

y′ and y′′ exactly as defined in the case above. On the other hand, if 0 < yi
′

h′ <

1, then there exists l′′ ∈ Jh′+1, kK such that yi
′

l′′ > 0. Then we take ε > 0 small

enough such that {yil−ε, yil+ε, yih′−ε, yih′+ε, yi
′

h′−ε, yi
′

h′+ε, y
i′

l′′−ε, yi
′

l′′+ε} ⊂ [0, 1]

and y′ (resp. y′′) coinciding with y on all components but yil , y
i
h′ , y

i′

h′ and yi
′

l′′

for which we set y′il = yil − ε, y′ih′ = yih′ + ε, y′i
′

h′ = yi
′

h′ − ε and y′i
′

l′′ = yi
′

l′′ + ε

(resp. y′′il = yil + ε, y′′ih′ = yih′ − ε, y′′i
′

h′ = yi
′

h′ + ε and y′′i
′

l′′ = yi
′

l′′ − ε).

In both cases, (y, h′) = 1
2
(y′, h′) + 1

2
(y′′, h′) with (y′, h′) and (y′′, h′) in P̃h′ , thus

contradicting the fact that (y, h) is an extreme point of P̃h′ . Consequently, (y, h)

belongs necessarily to Mk×n({0, 1}) and hence to Xh′ .

4.5.2 Deriving an alternative description for P and its vari-

ants

Using Balas’s technique on P as the convex hull of the union of the Ph′ , we obtain

the following description for P :

Theorem 70.

P =

(y, h) =
∑k

h′=1(y(h′), λ(h′)h′),∑k
l=1 y

(h′),i
l = λ(h′), ∀(i, h′) ∈ J1, nK× J1, kK,

y
(h′),i
l = 0, ∀(i, l, h′) ∈ J1, nK× J1, kK2, s.t. l < h′,∑n
i=1 y

(h′),i
h′ ≥ λ(h′), ∀h′ ∈ J1, kK,∑k

h′=1 λ
(h′) = 1,

y
(h′),i
l ≥ 0, ∀(i, l, h′) ∈ J1, nK× J1, kK2,

λ ∈ {0, 1}k

The main difference between our first description of P and this one is the fact it

involves a polynomial number of constraints, making its inherent separation problem

naturally tractable. On the other hand, it involves significantly more variables.

Using the same method, we can derive alternative descriptions for the variants of P .

161

Theorem 71.

Q =

(y, h) =
∑k

h′=1(y(h′), λ(h′)h′),∑k
l=1 y

(h′),i
l = λ(h′), ∀(i, h′) ∈ J1, nK× J1, kK,

y
(h′),i
l = 0, ∀(i, l, h′) ∈ J1, nK× J1, kK2, s.t. l < h′,∑k
h′=1 λ

(h′) = 1,

y
(h′),i
l ≥ 0, ∀(i, l, h′) ∈ J1, nK× J1, kK2,

λ ∈ {0, 1}k

P ′ =

(x, g) =
∑k

g′=1(x(g′), λ(g′)g′),∑k
l=1 x

(g′),i
l = λ(g′), ∀(i, g′) ∈ J1, nK× J1, kK,

x
(g′),i
l = 0, ∀(i, l, g′) ∈ J1, nK× J1, kK2, s.t. l > g′,∑n
i=1 x

(g′),i
g′ ≥ λ(g′), ∀g′ ∈ J1, kK,∑k

g′=1 λ
(g′) = 1,

x
(g′),i
l ≥ 0, ∀(i, l, g′) ∈ J1, nK× J1, kK2,

λ ∈ {0, 1}k

Q′ =

(x, g) =
∑k

g′=1(x(g′), λ(g′)g′),∑k
l=1 x

(g′),i
l = λ(g′), ∀(i, g′) ∈ J1, nK× J1, kK,

x
(g′),i
l = 0, ∀(i, l, g′) ∈ J1, nK× J1, kK2, s.t. l > g′,∑k
g′=1 λ

(g′) = 1,

x
(g′),i
l ≥ 0, ∀(i, l, g′) ∈ J1, nK× J1, kK2,

λ ∈ {0, 1}k

162

Chapter 5

Conclusion and future research

The choice of our generic problem maxΛ∈ #»
O(G) f(d

+
λ (v1)−d−λ (v1), · · · , d+λ (vn)−d−λ (vn))

for some objective function f turns out to be quite relevant since when we study

various possible objective functions f , we reach a fairly wide range of graph op-

timization problems such as the maximum cut problem or the isoperimetric num-

ber. We managed to obtain good-performance formulations and bounds from the

orientation-based formulations of these problems and described a family of poly-

hedra emerging in very diverse combinatorial optimization problems including the

most imbalanced orientation of a graph, the minimum span frequency assignment

and some scheduling problems.

Concerning the problem (MaxIm) (Chapter 2), while computing the most im-

balanced orientation of a graph is generally difficult, the problem turns out to be

easy for cacti. It may be the same for other graph classes. Characterizing such

graph classes would be interesting. We can think of families defined by a structural

condition and give a polynomial time algorithm for these graphs precisely as we

have done for cacti in Section 2.3. And we can also think of families defined by

the value of MaxIm(G) as we characterized the graphs for which MaxIm(G) = 0

in Section 2.2. For example, it would be interesting to characterize the graphs for

which MaxIm(G) = δG. It is clear that the bipartite graphs belong to this family

and that if a regular graph (i.e. a graph where all the vertices have equal degrees)

belongs to this family, then it is bipartite. Moreover, with the characterization given

for the graphs such that MaxIm(G) = 0, we know that for any graph G, if δ(G) = 1,

then any orientation of G has an imbalance equal to 1 (implying MaxIm(G) = 1).

Two mixed integer linear programming formulations ofMaxIm have been presented.

Several families of valid inequalities have been presented to strengthen one of the

two formulations. Exhibition of other families of valid inequalities might be helpful

to solve larger size problems. It would also be interesting to derive similar results

of all the edge-weighted version of (MaxIm).

163

Starting from our generic graph orientation problem, we have seen in Chapter

3 that the maximum cut problem can be modeled in several new ways. By lifting,

one can get some bounds that are stronger than the standard semidefinite bound of

[47]. The bounds are even exact for some graph classes. Several new mixed integer

programming formulations have been obtained using discretization and aggregation

techniques. The performance of these formulations compares to and is often better

than the performance of the BiqCrunch solver on many graph families, it can even

be improved if we strengthen the formulations either by adding valid inequalities or

using other lifting techniques. Also the new formulations we introduced here for the

unweighted maximum cut problem may lead to similar formulations for the weighted

case.

We exhibited in Chapter 4 a family of polyhedra emerging in very diverse combi-

natorial optimization problems including the most imbalanced orientation of a graph,

the minimum span frequency assignment and some scheduling problems. Then a full

description of these polyhedra has been derived. We also proved that the separation

problems related to these polyhedra can be solved in polynomial time and thus op-

timization over them can be done in polynomial time. We think that, like MaxIm,

many combinatorial optimization problems where discretization techniques are used

can benefit from the description of the polyhedra we introduced. Future work may

be directed towards investigations on extensions of the polyhedra we considered in

order to get better approximations while still keeping the feature of computational

tractability. One can, for example, study {0, 1} assignment matrices appended with

both h and g (the index of the lowest (resp. highest) nonzero row of the matrix).

The related polytope is included in the intersection of P or Q. Some preliminary

investigations show that more inequalities are necessary to describe the polytope.

164

Bibliography

[1] Karen Aardal, Stan Van Hoesel, Arie Koster, Carlo Mannino & Antonio Sas-

sano: ‘Models and solution techniques for frequency assignment problems’,

Annals of Operations Research, Volume 153-1, pp. 79–129 (2007)

[2] Manindra Agrawal, Neeraj Kayal & Nitin Saxena: ‘PRIMES is in P’, Annals

of Mathematics, Volume 160-2, pp. 781–793 (2002)

[3] Miguel Anjos & Henry Wolkowicz: ‘Strengthened semidefinite relaxations via a

second lifting for the max-cut problem’, Discrete Applied Mathematics, Volume

119, pp. 79–106 (2002)

[4] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono & Kouhei Zenmyo: ‘Graph Ori-

entation Algorithms to Minimize the Maximum Outdegree’, Proceedings of

Computin: the Australian Theory Symposium (CATS2006), Hobart Aus-

tralia,(2006)

[5] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono & Kouhei Zenmyo: ‘Approximation

algorithms for the graph orientation minimizing the maximum weighted outde-

gree’, Proceedings of the 3rd Int. Conf. on Algorithmic Aspects in Information

and Management (AAIM2007), LNCS 4508, pp. 167–177 (2007)

[6] Yuichi Asahiro, Eiji Miyano & Hirotaka Ono: ‘Graph classes and the com-

plexity of the graph orientation minimizing the maximum weighted outde-

gree’, Proceedings of the fourteenth Computing: the Australasian Theory Sym-

posium(CATS2008), Wollongong, NSW, Australia, (2008)

[7] Yuichi Asahiro, Jesper Jansson, Eiji Miyano & Hirotaka Ono: ‘Deegree con-

strained graph orientation: maximum satisfaction and minimum violation’,

WAOA 2013, LNCS 8447, pp. 24–36 (2014)

[8] Cleve Ashcraft & Joseph Liu: ‘Using domain decomposition to find graph

bisectors’, Technical report CS-95-08, York University, North York, Canada,

(1995)

165

[9] Egon Balas: ‘Disjunctive Programming: Properties of the Convex Hull of Fea-

sible Points’, Invited paper, with a foreword by G. Cornuéjols and W. Pulley-

blank, Discrete Applied Mathematics, Volume 89, pp. 4-44 (1998)

[10] Jøseph Bang-Jensen & Gregory Gutin: Orientations of graphs and digraphs

in ‘Digraphs: Theory, Algorithms and applications’, Springer, 2nd edition, pp.

417–472 (2009)

[11] Francisco Barahona, Martin Grötschel, Michael Jünger & Gerhard Reinelt:

‘An application of combinatorial optimization to statistical physics and circuit

layout design’, Operations Research, Volume 36, pp. 493–513 (1998)

[12] Francisco Barahona: ‘The max-cut problem on graphs not contractible to K5’,

Operations Resarch Letters, Volume 2, pp.107–111 (1983)

[13] Francisco Barahona & Ali Ridha Mahjoub: ‘On the cut polytope’, Mathemat-

ical Programming, Volume 36, pp.157–173 (1986)

[14] Walid Ben-Ameur, Antoine Glorieux & José Neto: ‘On the most imbalanced

orientation of a graph’, Proceedings of COCOON2015, LNCS, pp. 16–29 (2015)

[15] Walid Ben-Ameur, Antoine Glorieux & José Neto: ‘A full description of poly-

topes related to the index of the lowest nonzero row of an assignment matrix’,

Proceedings of ISCO2016, LNCS, (2016)

[16] Walid Ben-Ameur, Antoine Glorieux & José Neto: ‘From graph orientation to

the unweighted maximum cut problem’, Proceedings of COCOON2016, LNCS,

pp. 370–384 (2016)

[17] Walid Ben-Ameur & Makhlouf Hadji: ‘Designing Steiner Networks with Uni-

cyclic Connected Components: An Easy Problem’, SIAM Journal on Discrete

Mathematics, Society for Industrial and Applied Mathematics, Volume 24-4,

pp. 1541–1557 (2010)

[18] Walid Ben-Ameur, Ali Ridha Mahjoub & José Neto: ‘The Maximum Cut Prob-

lem, in Paradigms of Combinatorial Optimization’, V. Paschos (Ed), Wiley-

ISTE, pp. 131–172 (2010)

[19] Walid Ben-Ameur & José Neto: ‘Spectral bounds for the maximum cut prob-

lem’, Networks , Volume 52-1, pp.8–13 (2008)

[20] Walid Ben-Ameur & José Neto: ‘Spectral bounds for unconstrained (-1, 1)-

quadratic optimization problems’, European Journal of Operational Research,

Volume 207-1, pp.15–24 (2010)

166

[21] Walid Ben-Ameur & José Neto: ‘On a gradient-based randomized heuristic for

the maximum cut problem’, International journal of Mathematics in Opera-

tional Research, Volume 4-3, pp. 276–293 (2012)

[22] Therese Biedl , Timothy Chan, Yashar Ganjali, Mohammad Hajiaghayi &

David Wood: ‘Balanced vertex-orderings of graphs’, Discrete Applied Mathe-

matics, Volume 48-1, pp. 27–48 (2005)

[23] Leonard Brooks: ‘On Colouring the nodes of a network’, Mathematical Pro-

ceedings Cambridge Philosophical Society, Volume 37, pp. 194–197 (1941)

[24] Maria Calzarossa & Giuseppe Serazzi: ‘Workload characterization: a survey’,

Proceedings of the IEEE, Volume 81, pp.1136–1150 (1993)

[25] Jeff Cheeger: ‘A lower bound for the smallest eigenvalue of the Laplacian’,

Proceedings of the Princeton conference in honor of Professor S. Bochner, pp.

195–199 (1969)

[26] Marek Chrobak & David Eppstein: ‘Planar orientations with low out-degree

and compaction of adjacency matrices’, Theoretical Computer Sciences, Vol-

ume 86, pp. 243–266 (1991)

[27] Fan Chung: ‘Spectral Graph Theory’, volume 92 of CBMS Regional Conference

Series in Mathematics. Published for the Conference Board of the Mathematical

Sciences, Washington, DC, (1997)

[28] Václav Chv́atal & Carsten Thomassen: ‘Distances in orientation of graphs’,

Journal of Combinatorial Theory, series B, Volume 24, pp. 61–75 (1978)

[29] William Cook, William Cunningham, William Pulleyblank & Alexander Schri-

jver: ‘Combinatorial Optimization’, ISBN: 978-0-471-55894-1, (1997)

[30] George Dantzig: ‘Maximization of a linear function of variables subject to

linear inequalities’, Activity analysis of Production and Allocation, pp. 339-347

(1951)

[31] Maurits Degraaf & Alexander Schrijver: ‘Grid Minors of Graphs on the Torus’,

Journal of Combinatorial Theory, series B, Volume 61, pp. 57–62 (1994)

[32] Charles Delorme & Svatopluk Poljak: ‘Combinatorial Properties and the Com-

plexity of a Max-cut Approximation’, European Journal of Combinatorics, Vol-

ume 14, Issue 4, pp. 313–333 (1993)

167

[33] Michel Deza & Monique Laurent: ‘Geometry of cuts and metrics’, Springer,

Berlin, (1997)

[34] Reinhard Diestel: ‘Graph Theory, 4th edition’, Springer (2010)

[35] Oliver Dolezal, Thomas Hofmeister & Hanno Lefmann: ’A comparison of ap-

proximation algorithms for the MaxCut problem’, Report CI-/99, Universität

Dortmund, (1999)

[36] Jack Edmonds & Ellis Johnson: ‘Matching, Euler tours and the Chinese post-

man problem’, Mathematical Programming, Volume 5, pp. 88–24 (1973)

[37] Paul Erdős & Tibor Gallai: ‘Gráfok elő́ırt fokszámṕontokkal’, Matematikai

Lapok, Volume 5, pp.88–124 (1960)

[38] Leonhard Euler: ‘Solutio problematis ad geometriam situs pertinentis’, Com-

mentarii academiae scientiarum Petropolitanae, Volume 8, pp. 128–140 (1741)

[39] Paola Festa, Panos Pardalos, Mauricio Resende & Celso Ribeiro: ‘Randomized

heuristics for the MAX-CUT problem’, Optimization Methods and Software,

Volume 7, pp.1033–1058 (2002)

[40] Ilse Fischer, Gerald Gruber, Franz Rendl & Renata Sotirov: ‘Computational

experience with a bundle approach for semidefinite cutting plane relaxations

of Max-Cut and Equipartition’, Mathematical Programming, Volume 105,

pp.451–469 (2006)

[41] Fedor Fomin, Mart́ın Matamala & Ivan Rapaport: ‘Complexity of approximat-

ing the oriented diameter of chordal graphs’, Journal of Graph Theory, Volume

45-4, pp. 255–269 (2004)

[42] Lester Ford & Delbert Fulkerson: ‘Flows in networks’, Princeton University

Press, Princeton, NJ, (1962)

[43] András Frank & András Gyárfás: ‘How to orient the edges of a graph?’, Col-

loquia Mathematica Societatis János Bolyai, Volume 18, pp. 353–364 (1976)

[44] Robert Freund: ‘Introduction to Semidefinite Programming (SDP)’,

Manuscript, available from http://ocw.mit.edu (2004)

[45] Michael Garey & David Johnson: ‘Computers and Intractability; A Guide to

the Theory of NP-Completeness’, W.H.Freeman & Co., (1990)

[46] Fred Glover: ‘Improved linear integer programming formulations of nonlinear

integer problems’, Management Science, Volume 22, pp. 455–460 (1975)

168

[47] Michel Goemans & David Williamson: ‘Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming’,

Journal of the ACM, Volume 42, pp. 1115–1145 (1995)

[48] Michel Goemans: ‘Semidefinite programming in combinatorial optimization’,

Mathematical Programming, Volume 79, Issue 1, pp.143 –161 (1997)

[49] Petr Golovach: ‘Computing the isoperimetric number of a graph’, Cybernetics

and Systems Analysis, Volume 30, (1994)

[50] Martin Grötschel & William Pulleyblank: ‘Weakly bipartite graphs and the

max-cut problem’, Operations Research Letters, Volume 1, pp.23–27 (1981)

[51] Martin Grötschel, László Lovász & Alexander Schrijver: ‘The ellipsoid method

and its consequences in combinatorial optimization’, Combinatorica, Volume

1, pp.70–89 (1981)

[52] Bertrand Guenin: ‘A Characterization of Weakly Bipartite Graphs’, Journal

of Combinatorial Theory, Series B, Volume 83, pp.112-168 (2001)

[53] Frank Hadlock: ‘Finding a maximum cut of a planar graph in polynomial

time’, SIAM Journal on Computing, Volume 4, pp. 221–225 (1975)

[54] Seifollah Hakimi: ‘On realizability of a set of integers as degrees of the ver-

tices of a linear graph. I’, Journal of the Society for Industrial and Applied

Mathematics, Volume 10, pp. 496–506 (1962)

[55] Peter Hammer: ‘Some network flow problems solved with pseudo-boolean pro-

gramming’, Operations Research, Volume 32, pp. 388–399 (1965)

[56] Frank Harary & Leo Moser: ‘The theory of round robin tournaments’, Amer-

ican Mathematical Monthly, Volume 73, pp. 231–246 (1971)

[57] Frank Harary, Jakob Krarup, & Allen Schwenk: ‘Graphs suppressible to an

edge’, Canadian Mathematical Bulletin, Volume 15, pp. 201–204 (1971)

[58] Frank Harary: ‘Graph Theory’, Addison-Wesley, (1969)

[59] Johan H̊astad: ‘Some optimal inapproximability results’, Journal of the ACM,

Volume 48, pp. 798–859 (2001)

[60] Václav Havel: ‘A remark on the existence of finite graphs’, Časopis pro

pěstováńı matematiky, Volume 80, pp. 477–480 (1955)

169

[61] Christoph Helmberg: ‘A cutting plane algorithm for large scale semidefinite

relaxations, Technical report ZR-01-26’, Konrad-Zuse-Zentrum Berlin, (2001)

[62] Carl Hierholzer: ‘Ueber die Mglichkeit, einen Linienzug ohne Wiederholung

und ohne Unterbrechung zu umfahren’, Mathematische Annalen, Volume 6,

pp. 30–32. (1873)

[63] Dorit Hochbaum & David Shmoys: ‘A polynomial approximation scheme for

scheduling on uniform processors: Using the dual approximation approach’,

SIAM Journal on Computing, Volume 17-3, pp. 539–551 (1988)

[64] Ellis Horowitz & Sartaj Sahni: ‘Exact and approximate algorithms for schedul-

ing nonidentical processors’, Journal of ACM, Volume 23-2, pp. 317–327(1976)

[65] Jan Kára, Jan Kratochv́ıl & David Wood: ‘On the complexity of the balanced

vertex ordering problem’, Proceedings of COCOON2005, LNCS 3595, pp. 849–

858 (2005)

[66] Narendra Karmarkar: ‘A new polynomial time algorithm for linear program-

ming’, Combinatorica, Volume4, pp. 373–395 (1984)

[67] Richard Karp: ‘Reducibility among combinatorial problems’, Complexity of

computer computation, R.E. Miller and J.W. Thatcher (eds.), Plenum Press,

New York, pp. 85–103 (1972)

[68] Leonid Khachiyan: ‘A Polynomial Algorithm in Linear Programming’, Zhurnal

Vychisditel’noi Matematiki i Matematicheskoi Fiziki, Volume 20, pp. 51–68

(1979)

[69] Arie Koster: ‘Frequency Assignment - Models and Algorihtms’, PhD thesis,

Univ. Maastricht, the Netherlands, (1999)

[70] Nathan Krislock, Jérôme Malick & Frédéric Roupin: ‘Improved semidefinite

bounding procedure for solving Max-Cut problems to optimality’, Mathemat-

ical Programming, Volume143-1,2, pp.61–86 (2014)

[71] Alisa Land & Alison Doig: ‘An automatic method of solving discrete program-

ming problems’, Econometrica, Volume 28, pp. 497–520 (1960)

[72] Dominic Lanphier & Jason Rosenhouse: ‘Lower Bounds on the Cheeger Con-

stants of Highly Connected Regular Graphs’, Congressus Numerantium 173,

pp. 65–74 (2005)

170

[73] Hyman Landau: ‘On dominance relations and the structure of animal soci-

eties III. The condition for a score structure’, The Bulletin of Mathematical

Biophysics, Volume 15, pp. 143–148 (1953)

[74] Monique Laurent & Franz Rendl: ‘Semidefinite Programming and Integer Pro-

gramming’, Handbooks in Operations Research and Management Science, Vol-

ume 12, pp. 393–514 (2005)

[75] Monique Laurent: ‘Tighter linear and semidefinite relaxations for max-cut

based on the Lovász-Schrijver lift-and-project procedure’, SIAM Journal on

Optimization, Volume 2, pp. 345–375 (2001)

[76] Adam Letchford & Andrea Lodi: ‘Strengthening Chvátal-Gomory cuts and

Gomory fractional cuts’, Operations Research Letters, Volume 30-2, pp. 74-82

(2002)

[77] László Lovász: ‘Three short proofs in graph theory’, Journal of Combinatorial

Theory, Series B, Volume 19, pp. 269–271 (1975)

[78] Bin Luo, Richard Wilson & Edwin Hancock: ‘Spectral Clustering of Graphs’,

Graph Based Representations in Pattern Recognition, pp.190–201 (2003)

[79] Zoltan Mann & Aniko Szajkó: ’Complexity of different ILP models of the

frequency assignment problem’, Linear Programming - New frontiers in Theory

and Applications, pp. 305–326 (2012)

[80] Pedro Martins: ‘Extended and discretized formulations for the maximum clique

problem’, Computers & Operations Research, Volume 37-7, pp. 1348–1358

(2011)

[81] Bojan Mohar: ‘Isoperimetric Numbers of Graphs’, Journal of Combinatorial

Theory, Series B, Volume 47, pp. 274–291 (1989)

[82] Dhruv Mubayi, Todd Will & Douglas West: ‘Realizing Degree Imbalances in

Directed Graphs’, Discrete Mathematics, Volume 239-173, pp. 147–153 (2001)

[83] Crispin Nash-Williams: ‘On orientations, connectivity and odd vertex pairings

in finite graphs’, Canadian Journal of Mathematics, Volume 12, pp. 555-567

(1960)

[84] G.I. Orlova & Y.G. Dorfman: ‘Finding the maximal cut in a graph’, Engineer-

ing Cybernetics, pp. 502–506 (1972)

171

[85] James Park & Cynthia Phillips: ‘Finding minimum-quotient cuts in planar

graphs’, Proceedings of the twenty-fifth annual ACM symposium on Theory of

computing (STOC ’93), pp. 766–775 (1993)

[86] Ronlad Read & Robin Wilson: ‘An atlas of graphs’, Clarendon press, (1998)

[87] Franz Rendl, Giovanni Rinaldi & Angelika Wiegele: ’Solving Max-Cut to opti-

mality by intersecting semidefinite and polyhedral relaxations’, IASI research

report 08-11, (2008)

[88] Herbert Robbins: ‘A theorem on graphs with an application to a problem

of traffic control’, American Mathematical Monthly, Volume 46, pp. 281–283

(1939)

[89] Thomas Rothvoß: ‘The Lasserre hierarchy in Approximation algorithms’, Lec-

ture notes for the MAPSP Tutorial, preliminary version (2013)

[90] Sartaj Sahni & Teofilo Gonzalez: ‘P-complete approximation algorithms’,

Journal of the Association for Computing Machinery, Volume 23-3, pp.555–

565 (1976)

[91] Thomas Schaefer: ‘The complexity of satisfiability problems’, Proceedings of

the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

[92] Alexander Schrijver: ‘Combinatorial optimization: polyhedra and efficiency’,

Springer, (2003)

[93] Lieven Vandenberghe & Stephen Boyd: ‘Semidefinite Programming’ SIAM,

pp. 49–95 (1996)

[94] Vijay Vazirani: ‘Minimum Makespan Scheduling’, Approximations Algorithms,

Springer, Chapter 10, pp. 79–83 (2003)

[95] Venkat Venkateswaran: ‘Minimizing maximum indegree’, Discrete Applied

Mathematics, Volume 143, pp. 374–378 (2004)

[96] Angelika Wiegele: ‘Nonlinear Optimization Techniques Applied to Combinato-

rial Optimization Problems’, PhD thesis, Alpen-Adria-Universität Klagenfurt,

(2006)

[97] Laurence Wolsey: ‘Integer Programming’, ISBN: 978-0-471-28366-9, (1998)

[98] Mihalis Yannakakis: ‘Node-and-edge deletion NP-complete problems’, Proceed-

ings of the 10th annual ACM Symposium on the Theory of Computing, pp.

253–264 (1978)

172

Appendix A

Proof of Lemma 21

Not-all-equal at most 3-SAT is a NP-complete satisfiability problem [91] for which

the formulas must respect the following constraints:

. Each clause contains at most three literals.

. In each clause, not all the literals can be true. In other words, for the formula

to be satisfiable, there must exist an assignment of the variables such that in

each clause, at least one of the literal is true and at least one of the literal is

false.

Let ϕ be a not-all-equal at most 3-SAT formula with n variables {x1, · · · , xn} and

m clauses {c1, · · · , cm}. For all i ∈ J1, nK, let k+
i ∈ N (resp. k−i ∈ N) be the number

of occurrences of xi as a positive (resp. negative) literal in ϕ and ki = k+
i + k−i . We

assume that ϕ is not an instance of not-all-equal at most 3-SAT(3V) which means

that there is at least one variable xi for which ki ≥ 4, k+
i = 0 or k−i = 0 and

we will build from ϕ a not-all-equal at most 3-SAT(3V) ϕ′ such that ϕ and ϕ′ are

equisatisfiable as follows.

• For all i ∈ J1, nK, if ki ≥ 4, k+
i = 0 or k−i = 0 then we introduce ki new variables

{x1
i , · · · , x

ki
i } and for l ∈ J1, kiK we replace the l-th occurence of xi in ϕ with xli.

• For all i ∈ J1, nK, if ki ≥ 4, k+
i = 0 or k−i = 0 then we add ki new clauses

{c1
xi
, · · · , ckixi} where for l ∈ J1, ki− 1K, clxi = (xli ∨¬xl+1

i) and clxi = (xli ∨¬x1
i).

Suppose there exists an assignment v : {x1, · · · , xn} → {TRUE,FALSE} of x1, · · · , xn
satisfying ϕ. Then

v′ :
xi 7→ v(xi) ∀i ∈ J1, nK s.t. ki ≤ 3, k+

i > 0 and k−i > 0;

xli 7→ v(xi) ∀i ∈ J1, nK s.t. ki ≥ 4, k+
i = 0 or k−i = 0 and ∀l ∈ J1, kiK;

173

is an assignment of the variables xi and xli satisfying ϕ′ for

• ∀j ∈ J1,mK, the values of the literals of cj w.r.t. v and v′ are piecewise equal

so v′(cj) = v(cj) = TRUE and v′ is not-all-equal for cj as well as v is;

• ∀i ∈ J1, nK s.t. ki ≥ 4, k+
i = 0 or k−i = 0, ∀l ∈ J1, ki − 1K, v′(xli) = v′(xl+1

i) =

v(xi) and v′(xkii) = v′(x1
i) = v(xi) so we directly have ∀l ∈ J1, ki−1K, v′(clxi) =

TRUE and v′(ckixi) = TRUE and v′ is not-all-equal for each of these clauses

since they all consist of two literals having opposite values w.r.t. v′.

As an example, for a formula

ϕ = (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨¬x3 ∨ x4)∧ (x1 ∨¬x2)∧ (¬x1 ∨¬x3 ∨¬x4)∧ (x1 ∨ x3),

where x1 occurs five times, x2 occurs only as negative literal and x3 occurs four

times so we add eleven new variables x1
1, x2

1, x3
1, x4

1, x5
1, x1

2, x2
2, x1

3, x2
3, x3

3 and x4
3 and

eleven new clauses:

ϕ′ =(x1
1 ∨ ¬x1

2 ∨ x1
3) ∧ (¬x2

1 ∨ ¬x2
3 ∨ x4) ∧ (x3

1 ∨ ¬x2
2) ∧ (¬x4

1 ∨ ¬x3
3 ∨ ¬x4) ∧ (x5

1 ∨ x4
3)

∧ (x1
1 ∨ ¬x2

1) ∧ (x2
1 ∨ ¬x3

1) ∧ (x3
1 ∨ ¬x4

1) ∧ (x4
1 ∨ ¬x5

1) ∧ (x5
1 ∨ ¬x1

1)

∧ (x1
2 ∨ ¬x2

2) ∧ (x2
2 ∨ ¬x1

2)

∧ (x1
3 ∨ ¬x2

3) ∧ (x2
3 ∨ ¬x3

3) ∧ (x3
3 ∨ ¬x4

3) ∧ (x4
3 ∨ ¬x1

3).

Now suppose there exists an assignment v′ of the xi and xli satisfying ϕ′ and let i ∈
J1, nK such that ki ≥ 4, k+

i = 0 or k−i = 0. If we take a look at the clauses c1
xi
, · · · , ckixi ,

we notice that if v′(x1
i) = FALSE then for c1

xi
to be satisfied, v′(¬x2

i) = TRUE, i.e.

v′(x2
i) = FALSE, then for c2

xi
to be satisfied, v′(¬x3

i) = TRUE, etc. Repeating this

argument, we obtain that if v′(x1
i) = FALSE then v′(x1

i) = v′(x2
i) = · · · = v′(xkii) =

FALSE. Similarly, if v′(xkii) = TRUE then for ckixi to be satisfied, v′(¬xki−1
i) =

FALSE, i.e. v′(xki−1
i) = TRUE, then for cki−1

xi
to be satisfied, v′(¬xki−2

i) = FALSE,

etc. Hence if v′(xkii) = TRUE then v′(xkii) = v′(xki−1
i) = · · · = v′(x1

i) = TRUE.

This yields that

∀i ∈ J1, nK s.t. ki ≥ 4, k+
i = 0 or k−i = 0, v′(x1

i) = v′(x2
i) = · · · = v′(xkii).

Hence for all i ∈ J1, nK such that ki ≥ 4, k+
i = 0 or k−i = 0, we can replace x1

i , · · · , x
ki
i

by a unique variable xi and doing so the clauses c1
xi
, · · · , ckixi become trivial and can

174

be removed and only ϕ remains. So the following assignment of x1, · · · , xn:

v :
xi 7→ v′(xi) ∀i ∈ J1, nK s.t. ki ≤ 3, k+

i > 0 and k−i > 0;

xi 7→ v′(x1
i) ∀i ∈ J1, nK s.t. ki ≥ 4, k+

i = 0 or k−i = 0;

satisfies ϕ. We have just shown that ϕ and ϕ′ are equisatisfiable.

175

176

Appendix B

Publications, Conferences and

Award

February 2015 “Nouvelles formulations et bornes pour le problème de

la coupe maximum” (extended abstract)

W. Ben-Ameur, A. Glorieux & J. Neto

16ème Congrès de la Société Française de Recherche

Opérationnelle et Aide à la Décision (ROADEF 2015), Mar-

seille (France)

August 2015 “On the most imbalanced orientation of a graph”

W. Ben-Ameur, A. Glorieux & J. Neto

Computings & Combinatorics, Proceedings of the 21st Interna-

tional Computing and Combinatorics Conference (COCOON

2015), Beijing (China), LNCS 9198, pp. 16–29

February 2016 “Graphes et équilibres d’orientations”

(extended abstract)

W. Ben-Ameur, A. Glorieux & J. Neto

17ème Congrès de la Société Française de Recherche

Opérationnelle et Aide à la Décision (ROADEF 2016),

Compiègne (France)

February 2016 “Une description complète de polytopes liés à lindice

minimum dune ligne non identiquement nulle dune ma-

trice daffectation” (extended abstract)

W. Ben-Ameur, A. Glorieux & J. Neto

17ème Congrès de la Société Française de Recherche

Opérationnelle et Aide à la Décision (ROADEF 2016),

Compiègne (France)
177

May 2016 SAMOVAR Laboratory (CNRS) PhD student award

2nd prize

Journée Jeunes Chercheurs SAMOVAR, Évry (France)

May 2016 “A full description of polytopes related to the index of

the lowest nonzero row of an assignment matrix”

W. Ben-Ameur, A. Glorieux & J. Neto

Combinatorial Optimization, Proceedings of the 4th Inter-

national Symposium on Combinatorial Optimization (ISCO

2016), Vietri sul Mare (Italy), LNCS 9849, pp. 13-25

August 2016 “From graph orientation to the unweighted maximum

cut problem”,

W. Ben-Ameur, A. Glorieux & J. Neto,

Computings & Combinatorics, Proceedings of the 22nd Inter-

national Computing and Combinatorics Conference (COCOON

2016), ho Chi Minh City (Vietnam), LNCS 9797, pp. 370–384

February 2017 “Graph orientation and some related problems”

(extended abstract),

W. Ben-Ameur, A. Glorieux & J. Neto

8th International Network Optimization Conference (INOC

2017), Lisbon (Portugal)

February 2017 “On the most imbalanced orientation of a graph”

W. Ben-Ameur, A. Glorieux & J. Neto

Journal of Combinatorial Optimization (JOCO), Special Issue:

Selected Papers from COCOON 2015, Springer, pp. 1–33

178

	Acknowledgements
	Résumé
	Introduction et notations
	Le nombre isopérimétrique
	Maximiser le déséquilibre d'une orientation
	Complexité, Inapproximabilité et Approximabilité
	Caractériser les graphes tels que `39`42`"613A``45`47`"603AMaxIm(G)=0
	Algorithme exact pour les cactus
	Formulations en programmation mixte
	Renforcer (MIP2)
	Résultats numériques

	Coupe de cardinalité maximale
	Un nouveau majorant issu de la programmation semi-définie positive
	Formulations en programmation mixte additionnelles
	Résultats numériques

	Étude polyèdrale
	Recherche future

	Abstract
	Contents
	Introduction
	Basic definitions and notation
	Graphs, subgraphs and cuts
	Paths, trees and connectivity
	Orienting the edges
	Special graphs

	Bases of theory of computations
	Complexity
	Decision problems
	Optimization problems

	Bases of mathematical programming
	Convex polytopes
	Linear optimization
	Mixed integer linear optimization
	Semidefinite optimization

	Graph orientation
	Degree-constrained orientation
	Minimizing the maximum outdegree
	Balanced vertex ordering
	Graph realizing sequences of integers
	Minimizing the diameter and radius of a strong orientation

	A generic problem
	The isoperimetric number
	Definition, interpretation and complexity
	Alternative formulations and existing bounds
	New upper bounds

	The maximum cut
	Spin glasses
	VLSI design
	Frequency assignment
	Special cases
	(In)approximibilty and the cut polytope
	Goemans & Williamson's semidefinite breakthrough

	Outline

	Maximizing the imbalance of an orientation
	Complexity and (in)approximability
	NP-completeness
	Inapproximability
	Lower bound and approximation algorithm
	Block-cut-vertex tree

	Characterizing the graphs for which`39`42`"613A``45`47`"603AMaxIm(G)=0
	Choosing the balanced vertex
	Orienting the blocks
	A first characterization
	A more elegant characterization

	Exact algorithm for cacti
	A lower bound for cacti
	Characterizing the cacti for which `39`42`"613A``45`47`"603AMaxIm(G)=2
	Exact polynomial-time algorithm for cacti

	Mixed integer linear programming formulations
	A first MIP
	A more elaborated MIP

	Strengthening (MIP2)
	A family of valid inequalities obtained from a polyhedral study
	Valid inequalities extracted from the orientation of the edges incident to one vertex
	Valid inequalities extracted from cycle orientation
	Valid inequalities extracted from clique orientation

	Computational results
	Implementation scheme
	Guinea-pig graphs
	Results

	The maximum cardinality cut
	Maximum cardinality cut and orientation
	Orienting the edges partitions the vertices
	Vice versa

	Mixed integer linear programming formulations
	A first naïve formulation
	The orientation variables become redundant
	A stronger MIP

	A semidefinite programming bound
	Handling SDP constraints
	Relaxing MIP5 into SDP
	Domination of the new upper bound
	Exactness for complete graphs

	Further mixed integer linear programming formulations
	A cleaned-up all-indicator-variables formulation
	Aggregation of the variables
	Partial aggregation
	Weighing the exact formulations

	Computational experiments
	Configuration and instances
	Results of the SDP formulations
	Results of the MIP formulations

	Study of the polytopes related to the index of the lowest nonzero row of an assignment matrix
	Definition of the polytopes
	Motivations
	`39`42`"613A``45`47`"603AMaxIm
	Minimum-span frequency assignment
	Minimum makespan scheduling

	A full description of P
	Definition of the hyperplanes
	Proof of the hyperplane representation

	Separation problem
	Variants
	Modified Polytopes
	Opposite polytopes

	An alternative description by Balas's lift-and-project technique
	P as the convex hull of the union of easily describable polyhedra
	Deriving an alternative description for P and its variants

	Conclusion and future research
	Appendices
	Proof of Lemma 21
	Publications, Conferences and Award

