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Cadre méthodologique de l'extraction de la saillance visuelle à partir du flux compressé

La détection automatique de la saillance visuelle est un domaine de recherche particulier. 

•

Pas de validation d'une carte de saillance dans une application dans le domaine compressé

•

Démontrer la possibilité d'intégration de la carte de saillance du flux compressé dans une application de tatouage pour guider l'insertion de la marque.

• Améliorer de la transparence de la méthode de tatouage, à une robustesse et une quantité de données préservées, tout en réduisant le coût de calcul.
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and the image our brain of a pixel on a computer screen and its perceived impact. Vision depends not only on the ability to perceive objects (i.e., evaluated by the ratio between their size and the distance between the eye and the screen), but also on other visual, cognitive and semantic factors.

The human visual system (HVS) has the remarkable ability to automatically attend to salient regions. It can be considered that the theoretical ground for visual saliency modeling was established some 35 years ago by Treisman [START_REF] Treisman | A feature-integration theory of attention[END_REF] who advanced the integration theory for the human visual system: in any visual content, some regions are salient (appealing) because of the discrepancy between their features (intensity, color, texture, motion) and the features of their surrounding areas. Soon afterwards, Koch [START_REF] Koch | Shifts in selective visual attention: towards the underlying neural circuitry[END_REF] brought to light a time selectivity mechanism in the human attention: in any visual content, the regions that stimulate the vision nerves are firstly picked and processed, and then the rest of the scene is interpreted. In image/video processing, the complex visual saliency mechanism is generally abstracted to a so-called saliency map. In its broadest acceptation, a saliency map is a 2D topographic map representing the regions of an image/video on which the human visual system will spontaneously focus.

Objectives

The present thesis aims at offering a comprehensive methodological and experimental view about the possibility of extracting the salient regions directly from video compressed streams (namely MPEG-4 AVC and HEVC), with minimal decoding operations.

Note that saliency extraction from compressed domain is a priori a conceptual contradiction. On the one hand, as suggested by Treisman [START_REF] Treisman | A feature-integration theory of attention[END_REF], saliency is given by visual singularities in the video content. On the other hand, in order to eliminate the visual redundancy, the compressed streams are no longer expected to feature singularities. Consequently, the thesis studies weather the visual saliency can be directly bridged to stream syntax elements or, on the contrarily, complex decoding and post-processing operations are required to do so.

The thesis also aims at studying the practical benefit of the compressed domain saliency extraction. In this respect, the particular case of robust video watermarking is targeted: the saliency is expected to act as an optimization tool, allowing the transparency to be increased (for prescribed quantity of inserted information and robustness against attacks) while decreasing the overall computational complexity. However, the underlying proof of concepts is still missing and there is no a priori hint about the extent of such a behavior.

State-of-the-art limitations and constraints

The thesis deals with three-folded limitations and constraints related to the methodological framework for the compressed-domain saliency map extraction, to its ground-truth validation and to its applicative integration.

First, note that several incremental studies, from still images to uncompressed video, already considered saliency maps in order to improve the performance of a large variety of applications such as processing of rapid scenes, selective video encoding, prediction of video surveillance, rate control, and object recognition to mention but a few. Those studies cover a large area of methodological tools, from dyadic Gaussian pyramid decomposition to biologically inspired models. However, despite their wide methodological range, the existing methods still extract the salient areas from the video pixel domain. Finally, the HVS peculiarities are already successfully deployed as an optimization tool in watermarking: perceptual shaping, perceptual masking, bio-inspired quality metrics stand just for some examples in this respect. Under this framework, while visual saliency already proved its effectiveness in the uncompressed domain, no study related to the possibility of using compressed domain saliency in watermarking was reported before this thesis started.

Contributions

The thesis presents the following incremental contributions.

Methodological framework for stream-based saliency extraction

The automatic visual saliency detection is a particular research field. Its fundamental (neuro-biological) background is represented by the early works of Treisman, advancing the integration theory for the human visual system and by Koch et al. who brought to light a time selectivity mechanism in the human attention. From the methodological point of view, all the studies published in the literature follow an inherent experimental approach: some hypotheses about how these neuro-biological characteristics can be (automatically) computed from the visual content are first formulated and then demonstrated through experiments. Maybe the most relevant example is the seminal work of Itti [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF], which was cited, according to scholar Google, about 7000 times Under this framework, the thesis contribution is not to propose yet another arbitrary hypothesis, but a contrario, to methodologically demonstrate the possibility of linking MPEG-4 AVC and HEVC stream syntax elements to the Itti's original mathematical representation. It is thus brought to light that the most efficient to-date compression standards (MPEG-4 AVC and HEVC) still preserves in their syntax elements the visual singularities the HVS system is matched to.

In order to compute the saliency map directly in the MPEG-4 AVC/HEVC encoded domains, energy preserving and gradient maximization principles are jointly matched to the HVS and MPEG stream syntax peculiarities. In this respect, static and the motion feature are first extracted from the I and P frames, respectively. Three static features are considered: the intensity computed from the residual luma coefficients, the color computed from the residual chroma coefficients and the orientation given by the variation (gradient) of the intra directional prediction modes. The motion feature is considered to be the energy of the motion vectors. Second, we compute individual saliency maps for the four abovementioned features (intensity, color, orientation and motion). The saliency maps are obtained from feature maps following four incremental steps: outliers' detection, average filtering with fovea size kernel, and normalization within the [0, 1] dynamic range. Finally, we obtain a static saliency map by fusing the intensity, color and orientation maps. The global saliency map is obtained by pooling the static and the motion maps according to 48 different combinations of fusion techniques.

Ground-truth validation for stream-based saliency extraction

As explained above, any saliency extraction methodological framework must be demonstrated through quantitative evaluation. From this point of view, the main thesis contribution consists in defining a generic test-bed allowing an objective quantitative evaluation/benchmarking.

Any saliency test-bed should be able to ensure objective evaluation of the results, i.e. to be able to accommodate any saliency map methodology, be it from the state of the art or newly advanced.

The test-bed defined in the present thesis is characterized by three main properties: (1) it allows the assessment of the differences between the ground-truth and the saliency-map based results by different criteria, (2) it includes different measure typologies and (3) it grants statistical relevance for the quantitative evaluations.

Consequently, the test-bed is structured at three nested levels, according to the evaluation criteria and to the actual measures and corpora, respectively.

First, several evaluation criteria can be considered. Both Precision (defined as the closeness between the saliency map and the fixation map) and Discriminance (defined as the difference between the behavior of the saliency map in fixation locations and in random locations) of the saliency models are considered.

Secondly, for any type of evaluation, several measures can be considered. Our assessment is based on two measures of two different types (the KLD, a distribution based metric based on Kullback's Information theory [START_REF] Kullback | On information and sufficiency[END_REF], [START_REF] Kullback | Information Theory and Statistics[END_REF] and the AUC, a location based metric according to the Borji's implementation [WEB07]).

Two different corpora are considered and further referred to as: (1) the reference corpus organized in by [WEB05] at IRCCyN and (2) the cross-checking corpus organized in by [WEB06] at CRCNS. These two corpora are selected thanks to their composition (content diversity and ground-truth availability in compressed format), they representativeness for the saliency community as well as their size. A particular attention is paid to the statistical relevance of the results reported in the thesis. In this respect, we consider:

� for both the Precision and the Discriminance assessment, all the KLD and AUC values reported in the present thesis are presented by their average, min, max and 95% confidence limits;

� for the Discriminance assessment, each experiment (i.e. for each frame in each video sequence) is repeated 100 times (i.e. for 100 different random location sets) then averaged over all these configurations and all frames in the video sequence;

� for both the Precision and the Discriminance investigation, the sensitivity of the KLD and AUC measures with respect to the randomness of the video content representing the processed corpus is analyzed.

This test-bed was considered in order to benchmark the MPEG-4 AVC saliency map against three stateof-the-art methods; the HEVC saliency map was benchmarked against the same three state-of-the-art methods and MPEG-4 AVC saliency map. The three state-of-the-art methods were selected according to the following criteria: representatively in the state of the art, the possibility of fair comparison, and the methodological complementarity.

Just for illustration, the ground truth results of the MPEG-4 AVC saliency maps exhibit relative gains in KLD between 60% and 164% and in AUC between 17% and 21% against three models of the state-of-theart. For the HEVC saliency maps gains in KLD were between 0.01 and 0.40 and in AUC between 0.01 and 0.22 against the same three models of the state-of-the-art.

Applicative validation for robust watermarking

We investigate the benefits of extracting saliency map directly from the compressed stream when designing robust watermarking applications. Actually, by using the MPEG-4 AVC/HEVC saliency model as a guide in selecting the regions in which the watermark is inserted, gains in transparency (for prescribed data payload and robustness properties) are obtained.

The applicative validation brings to light transparency gains up to 10dB in PSNR (for prescribed data payload and robustness properties) for the MPEG-4 AVC saliency maps and up to 3dB in PSNR (for prescribed data payload and robustness properties) for the HEVC saliency maps.

Besides its applicative relevance, these results can be also considered as a first step towards an a posteriori validation of the Koch hypothesis: short-time saliency and long-term perceptual masking can be complementary considered in order to increase the visual quality.

As an overall conclusion, the thesis demonstrates that although the MPEG-4 AVC and the HEVC standards do not explicitly rely on any visual saliency principle, its stream syntax elements preserve this property.

Thesis structure

In order to offer a comprehensive methodological and experimental view about the possibility of extracting the salient regions directly from video compressed streams (namely MPEG-4 AVC and HEVC), this thesis is structured as follow.

Chapter I covers the Introduction aspects and is composed of three main parts, related to visual saliency, watermarking and its properties and video coding and redundancies, respectively.

Chapter II is devoted to the state-of-the-art analysis. 

•

No saliency validation for compressed domain applications

•

Proof of concepts for the integration of the compressed stream saliency map into a watermarking application to guide the watermark insertion

•

Improving the transparency of the watermarking method, at preserved robustness and data payload properties, while reducing the computational cost

The present thesis is placed at the confluence of visual saliency, watermarking and video compression. Consequently, the present chapter introduces the basic concepts related to these three realms and identifies two a priori mutual contradictions among and between their concepts.

The first contradiction corresponds to the saliency extraction from the compressed stream. On the one hand, saliency is given by visual singularities in the video content. On the other hand, in order to eliminate the visual redundancy, the compressed streams are no longer expected to feature singularities.

The second contradiction corresponds to saliency guided watermark insertion in the compressed stream. On the one hand, watermarking algorithms consist on inserting the watermark in the imperceptible features of the video. On the other hand, lossy compression schemes try to remove as much as possible the imperceptible data of video.

The thesis will subsequently be structured around these two contradictions.

By its very objective (visual sali watermarking applications), th watermarking and video comp concepts related to these three them.
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• the sclera, which mainta

• the choroid, which provi lens;

• the retina, which allows The information perceived by the retina is subsequently converted as nerve signals and conducted to the brain by the optic nerves. Then, the visual cortex analyses the received stimulus and develops visual perception.

It is commonly accepted that human vision is neurobiologically based on four different physical realms [START_REF] Treisman | A feature-integration theory of attention[END_REF]. First, the rods in retina are sensitive to intensity of the light radiations. Secondly, the cones in retina are sensitive to color contrast (the differences in the wave length corresponding to the spatially adjacent areas). Thirdly, the cortical selective neurons are sensitive to luminance contrast along different orientations (i.e. the difference in the luminance corresponding to the angular directions in a given area).

Finally, the magnocellular and koniocellular pathways are sensitive to temporal differences and mainly involved in motion analysis.

However, vision depends not only on the ability to perceive objects assessed by the ratio between their size and the distance between the eye and the screen, but also on other visual, cognitive or semantic factors.

I.1.2. Image processing oriented vision modeling

Modeling the visual perception has gradually become a major issue. Take the example of a high quality video that needs to be distributed and transferred through the Internet. To provide both a smaller version for bandwidth and keep appealing visual quality, the HVS peculiarities should be exploited. In this respect, perceptual masking and saliency maps are two different approaches commonly in use in image/video processing.

Perceptual masking

Perceptual masking is a neurobiological phenomenon occurring when the perception of one stimulus (a spatial frequency, temporal pattern, color composition … etc.) is affected by the presence of another stimulus, called a mask [START_REF] Belhaj | MPEG-4 AVC robust video watermarking based on QIM and perceptual masking[END_REF].

In image processing, perceptual masking describes the interaction between multiple stimuli; in this respect, the perceptual characteristics of human eye are modeled by three filters denoted by T, L and C and representing the susceptibility artifacts, the luminance perception, and contrast perception, respectively.

The perceptual mask was obtained by first sub-sampling the Noorkami [START_REF] Noorkami | Compressed-domain video watermarking for H.264[END_REF] matrix and further adapted to take into consideration the amendments introduced in the compressed stream integer DCT transformation. A value in the matrix represents the visibility threshold, i.e. the maximal value of a distortion added on a pixel (classical) DCT coefficient which is still transparent (imperceptible) for a human observer.

Initially, in order to estimate the behavior of these filters, Peterson [START_REF] Peterson | Improved detection model for DCT coefficient quantization[END_REF] proposed quantization masking matrix of luminance and color components, depending on the viewing conditions. Subsequently, an improvement of this model was made by Watson [WAT97] which redefines quantization thresholds taking into consideration the local luminance and the contrast by setting a specific threshold to each one.

Sensitivity to artifacts (T)

The T filter is the sensitivity of the human vision to the artifacts. This filter is defined as the perception of distortions from a well determined threshold.

In each domain and according to each study [START_REF] Watson | Model of visual contrast gain control and pattern masking[END_REF][PET93][AHU92][BEL10], a table has been defined as a filter of the sensitivity to artifacts. This table is defined as a function of some parameters such as image resolution and the distance between the observer and the image. Each value in this table represents the smallest value of the DCT coefficient in a perceptible block (without any noise). Thus, the smaller the value is, the more sensible is our eye to a given frequency.

Luminance perception (L)

The L filter is the luminance perception. It consists of the object perception compared to the luminance average of the entire image [START_REF] Watson | Model of visual contrast gain control and pattern masking[END_REF].

The luminance masking means that, if the average intensity of a block is brighter, a DCT coefficient can be changed by a larger quantity before being noticed. The most brilliant region in a given image can absorb more variation without being noticeable.

Contrast perception (C)

The C filter is the contract perception. It is the perception of an object relative to another object.

The contrast masking, which means the reduction of the visibility of change in a frequency due to the energy present therein, results in a masking thresholds. The final thresholds estimate the amounts by which the individual terms of the DCT block can be changed before resulting in a JND (Just Noticeable Distortion) [START_REF] Watson | Model of visual contrast gain control and pattern masking[END_REF].

Perceptual masking and compressed stream

Thanks to both its methodological and applicative interest, the topic of adapting the perceptual masking to the compressed stream particularities has been of continuous interest during the last two decades.

The study in [START_REF] Watson | Model of visual contrast gain control and pattern masking[END_REF] reports on a masking matrix derived for compression domains based on the classical 8x8 DCT (e.g. JPEG or MPEG-2). This model served as basis for a large variety of compression and watermarking-oriented optimization studies [START_REF] Verscheure | Perceptual bit allocation for MPEG-2 CBR video coding[END_REF], [START_REF] Cabrita | Perceptually driven coefficients pruning and quantization for the H. 264/A VC standard[END_REF].

Belhaj et al. [START_REF] Belhaj | MPEG-4 AVC robust video watermarking based on QIM and perceptual masking[END_REF] comes across with a new perceptual mask matched to the MPEG-4 AVC stream; in this respect, the basic [START_REF] Watson | Model of visual contrast gain control and pattern masking[END_REF] model is adapted so as to take into account the three main AVC peculiarities related to the DCT computation: (1) it is no longer applied to 8x8 blocks but to 4x4 blocks;

(2) it is computed in integers, and (3) it is no longer applied to pixels but to inter/intra prediction errors.

This model was integrated under a watermarking framework. It points to significant improvement in both transparency (e.g. a gain of 3 dB) and data payload (e.g. a gain of 50%) with respect to the state of the art masking models.

Visual saliency

In its broadest acceptation, a saliency map is a 2D topographic map representing the regions in an image/video on which the human visual system will spontaneously focus.

Actually, the concept of saliency map was introduced by Koch and Ullman [START_REF] Koch | Shifts in selective visual attention: towards the underlying neural circuitry[END_REF], as a topographic map representing conspicuousness (salient) locations in the scene. According to Le Callet and Niebur [START_REF] Callet | Visual Attention and Applications in Multimedia Technologies[END_REF], a saliency map is a topographic map of the visual field whose scalar value is the saliency at the respective location.

The saliency property principally and typically arises from contrasts between items (objects, structures, patterns, pixels, etc.) and their neighborhood; additionally, it can also be voluntarily directed to objects of current importance to the observer. The study in [START_REF] Callet | Visual Attention and Applications in Multimedia Technologies[END_REF] defines two different dichotomies of saliency computational models: overt vs. covert and bottom-up vs. top-down.

Overt vs. covert visual attention

The human visual system is generally attracted by the most relevant areas in a visual scene. This generates a series of fixations called "overt attention". Using an eye tracker, we can follow the movement of the human eye and draw a "scan path". By analyzing the details of a given "scan path", we can have information about the state of the human mind [START_REF] Callet | Visual Attention and Applications in Multimedia Technologies[END_REF].

However, the human eye can also focus in regions other than the center of gaze. As mentioned in [START_REF] Callet | Visual Attention and Applications in Multimedia Technologies[END_REF], it has been discovered that humans are able to fix their attention on peripheral locations, e.g. a car driver fixates the road while simultaneously and covertly monitoring road signs and lights appearing in the retinal periphery. Since this redirection of attention is not immediately noticeable, it is referred to as covert attention.

Bottom-up vs. Top-down

The top-down mechanisms relate to a recognition process influenced by some prior knowledge about the content. Actually, the same visual scene is always differently perceived by different observers. The perception depends on the observer motivation, psychology, and expectations (what they are actually looking for). The personal emotions and history of each observer make the development of a detailed "top-down" model very difficult. The work in [START_REF] Buso | Geometrical cues in visual saliency models for active object recognition in egocentric videos[END_REF] explores the "center bias" hypothesis, its limits and underlying proposals. A geometrical cue is considered in case when the central-bias hypothesis does not hold. The proposed visual saliency models are trained based on eye fixations of observers and incorporated into spatio-temporal saliency models. The experimental results are promising: they highlight the necessity of a non-centered geometric saliency cue.

Conversely, the bottom-up mechanism relates to a perception process for automatically detecting saliency, with no prior semantic knowledge about it. The basis of many saliency attention models dates back to Treisman and Glades [TRE80] [START_REF] Treisman | Feature analysis in early vision: evidence from search asymmetries[END_REF], where the basic visual features and their combination so as to drive the human attention were identified. Koch and Ullman [START_REF] Koch | Shifts in selective visual attention: towards the underlying neural circuitry[END_REF] proposed a feed-forward model to fuse these features and introduced the concept of a saliency map (a topographic map that represents conspicuousness locations in the scene).

The first complete implementation and verification of the Koch and Ullman's model was proposed by Itti et al. [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF]. Since then, a huge variety of approaches with different assumptions for attention modeling has been proposed and has been evaluated against different datasets: according to scholar Google, the Itti's study was cited about 7000 times! Bottom-up saliency maps are generally based on four different visual characteristics. First, in the spatial domain, three features are to be considered: intensity, color and orientation. Secondly, in the temporal domain, the saliency extracted at the frame level is complemented by the motion information.

Intensity

The human visual system is often attracted by regions with intensity lighter than others. For example, in Figure I-2-a, our vision is first directed to the center which is the lightest region.

Color

The human eye has an extreme low sensitivity to light with wavelengths less than 390 nm and greater than 720 nm [START_REF] Blask | Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: Impact of constant light-induced nocturnal melatonin suppression[END_REF]. In [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF], it is brought to light that the elementary colors are represented in cortex according to a so-called color double-opponent system. In the center of their receptive fields, neurons are excited by one color (e.g., red) and inhibited by another (e.g., green), Figure I-2-b, while the opposite is true in the surrounding areas. Such spatial and chromatic opponency exists for the red/green and yellow/blue color pairs (and, similarly, for their complementary green/red and blue/yellow color pairs).

Orientation

Retinal input is processed in parallel by multiscale low-level feature maps, which detect local spatial discontinuities using simulated center-surround neurons. In fact, there are four neuronal features sensitive to four orientations (0°,45°,90° and 180°) [START_REF] Itti | Automatic Foveation for Video Compression Using a Neurobiological Model of Visual Attention[END_REF]. In Figure I-2-c, we can remark that our vision is attracted by the regions of discontinuity between vertical and horizontal directions.

Motion

When watching videos, human eyes tend to concentrate on moving objects and to ignore the static ones. Actually, HVS is sensitive to regions having the highest motion energy [START_REF] Zhi | A Motion Attention Model Based Rate Control Algorithm for H.264/AVC[END_REF]. In 
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To the best of our knowledge, the first studies combining visual saliency and perceptual masking are the study in [START_REF] Ammar | MPEG-4 AVC saliency map computation[END_REF] (see Chapters III in the present thesis) and the study in [START_REF] Cao | Combining Visual Saliency and Pattern Masking for Image Steganography[END_REF]. The main contribution of [START_REF] Cao | Combining Visual Saliency and Pattern Masking for Image Steganography[END_REF] consists in choosing the least salient and sensitive regions for HVS to embed the secret data. Experimental results demonstrate that such an approach outperforms in terms of quantity of inserted information and/or image quality four existing steganographic approaches.

From the methodological point of view, the present thesis relates to the overt, bottom-up visual saliency extraction from the compressed stream. However, in the watermarking applicative perspectives, saliency / perceptual masking synergies will be also investigated.

I.2. Watermarking context

Digital watermarking can be defined as the process of imperceptibly embedding a pattern of information into a cover digital content (image, audio, video, etc.) [START_REF] Cox | Digital Watermarking[END_REF] [MIT07], see Figure I-3. The insertion of the mark is always controlled by some secret information referred to as a key. While the key should be kept secret (i.e. known only by the owner), the embedded information and even the embedding method can be public. Once watermarked, the watermarked data can be transmitted and/or stored in a hostile environment, i.e. in an environment where changes attempting to remove the watermark are likely to occur. The subsequent mark detection can be used in a wide area of applications such as intellectual property right preservation, content integrity verification, piracy tracking or broadcast monitoring.

From the functional point of view, any watermarking procedure is evaluated according at least three essential properties, namely transparency, robustness and data payload:

• The data payload is the quantity of information that is inserted into the host document. It should be high enough so as to allow the owner to be identified (e.g. 64 bits would correspond to an ISBN number). Additional data could bring information about the document buyer, vendor, date and time of purchase, etc.

• The transparency refers to the imperceptibility of the watermark in the document. This may signify either that the user is not distributed by the artifacts induced by the watermark in the host document or that the user cannot identify any difference between the marked and the unmarked document. From the conceptual point of view, the transparency property relates to the possibility of exploiting the visual redundancy existing in the host data so as to hide messages.

• The robustness refers to the ability to detect the watermark after applying some signal operations on the marked document, such as spatial filtering and loss compression scanning, etc. The copyright protection requires very high robustness, as attacks are very likely to appear. As a limit case, the mark would withstand any attack that does not render the document unusable.

The robustness is generally assessed by the probability of error at the detection.
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However, any codec is meant to content so as to remove visua Shannon's first theorem). Conse uniformly distributed (or, at leas 

ding & redundancy

image and video coding has never stopped evo and MPEG-2 (considered for video DVD), to MP 5), each generation of compression standard inc for a constant video quality [START_REF] Richardson | H264 and MPEG-4 AVC Video compression: Video coding for next generation Multimidia[END_REF], [START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF].

on for an encoder is given by a four-step chain, Q and arithmetic (entropic) coding E.

to eliminate the spatial (intra-prediction) and tem n is meant to represent data as uncorrelated (sep ence) and compacted (energy concentration tization is then applied and some of the infor is the entropy coding (lossless). Of course, diffe ach and every video encoder implements the o remove both the visual redundancy (i.e. to pr al insignificant information) and data redundan equently, the compressed stream syntax eleme st, their first/second order statistics) and to avoid 

I.4. Conclusion

The aim of the present Introductive section is to bring to light the basic concepts underlying the present thesis, namely visual saliency, watermarking and compressed streams.

First, a saliency map is a topographically arranged map that highlights regions of interest (singularities) in a corresponding visual scene. It represents the conspicuity at every location in the visual field by a scalar quantity, based on the spatio-temporal distribution of saliency. For still images, the static saliency map is composed of three feature maps: intensity map, color map and orientation map. These three maps correspond to different physical realms. The intensity map corresponds to the sensibility of the retina to the intensity of the light. The color map is related to the sensibility to the colors composing in each image (r, g, and b). The orientation map is given by the four orientations (0, 45°, 90°, 135°) for which neuronal sensitive features exist in the human visual system. For the video, the static saliency map should be combined with a motion saliency map, in order to take into consideration, the sensibility of the human eye to the moving regions.

Secondly, digital watermarking can be defined as the process of imperceptibly and persistently embedding a pattern of information into a cover digital content (image, audio, video, etc.). A good watermarking system must reach the trade-off between a large data payload, a good transparency and a strong robustness. In other words, we are interested in trading the visual redundancy existing in the host data for persistently hiding the watermark.

Finally, the goal of any video compression standard is to eliminate the video redundancy. Both the visual redundancy (i.e. to process the original video content so as to remove visual insignificant information) and data redundancy (in the sense of the Shannon's first theorem) are concerned by the encoding schemes.

These three main characteristics above bring to light that the present thesis should face two a priori conceptual contradictions among and between visual saliency, watermarking and compressed streams.

The first contradiction corresponds to the saliency extraction from the compressed stream. On the one hand, saliency is given by visual singularities in the video content. On the other hand, in order to eliminate the visual redundancy, the compressed streams are no longer expected to feature singularities. The second contradiction corresponds to watermark insertion in the compressed stream. On the one hand, watermarking algorithms consists on inserting the watermark in the imperceptible (non-salient) features of the video. On the other hand, lossy compression schemes try to remove as much as possible the imperceptible data of video. Consequently, the thesis first studies weather the visual saliency can be directly bridged to stream syntax elements or, on the contrarily, complex decoding and post-processing operations are required to do so.

The thesis also aims at studying the practical benefit of the compressed domain saliency extraction, for the particular case of video watermarking. The saliency is expected to act as an optimization tool, allowing the transparency to be increased (for prescribed quantity of inserted information and robustness against attacks) while decreasing the overall computational complexity. However, the underlying proof of concepts is still missing and there is no a priori hint about the extent of such a behavior.

II. State of the art

This chapter is structured into three parts, related to the visual saliency extraction, to the visual saliency as a watermarking optimization tool and to the direct compressed video stream processing, respectively. This three-folded state of the art analysis brings to light that:

• Automatic visual saliency detection is as a particular research field. Its fundamental (neuro-biological) background is represented by the early works of Treisman et al., advancing the integration theory for the human visual system and by Koch et al. who brought to light a time selectivity mechanism in the human attention. From the methodological point of view, all the studies published in the literature follow an inherent experimental approach: some hypotheses about how these neuro-biological characteristics can be (automatically) computed from the visual content are first formulated and then demonstrated through experiments. In this respect, maybe the most relevant example is the seminal work of Itti [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF]. While the large majority of studies generally converge in the type of the main methodological steps (extracting individual intensity, color, orientation and motion maps and subsequently fusion them at spatial and spatio-temporal levels), lot of divergences still remains in their definition, assessment (ground-truth vs. applicative, objective vs. subjective evaluation, composition of corpora, type of measures, etc.). Moreover, no study related to the saliency extraction in the compressed domain, i.e. in-between the Quantization and Entropic coding steps has been identified.

• While the relationship between saliency and watermarking shows different promising results and exploring the ROI (regions of interest) can be benefic for each of the main watermarking properties, no study on the trade-off between watermark embedding and the visual saliency extraction in compressed domain has been identified.

• Today, image/video processing directly in the compressed stream becomes more a necessity rather than an option: just for example, fingerprinting, image retargeting and detecting moving object can benefit from such an approach. However, the integration of visual saliency extraction directly from compressed domain in such applications is not yet studied.

This Chapter is structured acco saliency extraction, the usage compressed stream processing a

II.1. Bottom-u

As defined in the Introduction se in an image/video on which the h Under this framework, the pre Introduction chapter) saliency re heterogeneous scientific publica impossible, we limit ourselves t

[BRU05], [HAR06], [LEM06], [HO [SEO09], [MAR09], [GUO10], [GO
The presentation is structured a compressed-based saliency mod es spatial (static 2D) and vel as the image saliency e frames).

In order to extract still image s dyadic Gaussian pyramid decom are extracted at the multiple im between a center (finer scale corresponding to the above th interactions combination. Finall saliency map. The general archit represented its different com frequency content (SFC) is comp whole image. It is shown that th belongs to the (1.6; 2.5) interval The Harel's model [START_REF] Harel | Graph-based visual saliency[END_REF] a new type of saliency, context aware saliency, nt the scene. This model is based on four princ s such as contrast and color, (2) Global conside while maintaining features that deviate from that visual forms may possess one or several nd (4) High-level factors, such as human faces tablishing synergies among and between all the saliency is defined according to the principles (1)e filtering and visual coherency rules. Finally, prin This approach is evaluated on used the databas us proved that two other state of the art mode so validated under the image retargeting applica model: the saliency is enhanced by using multiple scale f ow-level, biologically inspired representation pre rst, the basic color-opponent and luminance ch le decomposition. Secondly, the inhibition me stimated through a Gaussian Mixture strategy. F ferent scales is achieved by a non-linear formula MUL85]. The experiments are performed on two n computing the KLD and AUC; the obtained [START_REF] Meur | Predicting visual fixations on video based on low-level visual features[END_REF] in order to obtain a sim as the predicted relative motion saliency map is obtained as a we results are obtained on 7 video curve between the saliency map of the considered metric, the benchmarking models. Just for il ed model [START_REF] Meur | Predicting visual fixations on video based on low-level visual features[END_REF]: the saliency map is the result of a we y maps.

ng strategy discovered in primary visual corte II-13, an image patch as a linear combination to as features. The activity ratio of a feature ( ches over time and space. Each feature is then ev L) which is defined as the ensemble's entropy Consequently, in order to address the conceptual contradiction between saliency and compressed streams, the present thesis should offer a comprehensive methodological and experimental view about the possibility of extracting the saliency regions directly from the compressed domain (both MPEG-4 AVC and HEVC), with minimal decoding operations. The study in [START_REF] Niu | A visual saliency modulated just noticeable distortion profile for image watermarking[END_REF] considers a two-folded HVS approach for increasing the transparency of the SS (spread spectrum) techniques in the DCT domain. The mark is inserted into non-salient regions detected according to the [HOU07] saliency model. However, prior to the insertion, the AWGN (additive white Gaussian Noise) represented the mark is modulated according to JND (Just Noticeable Distortion) profiles. This allows shaping lower injected-watermark energy into more sensitive regions and higher energy into the less perceptually significant regions in the image. The experimental results are illustrated through one images showing perceptual improvement with respect to the original JND-based spreadspectrum method.

Tian et al. [START_REF] Tian | An integrated visual saliency-based watermarking approach for synchronous image authentication and copyright protection[END_REF] propose an integrated visual saliency-based watermarking approach, which can be used for both synchronous image authentication and copyright protection. First, the regions of interest (ROI) are extracted according to a proto-object model and the copyright information is embedded therein as the robust watermark. Secondly, the edge map of the most salient ROI is embedded into the LL sub-band of the wavelet-decomposed watermarked image as the fragile watermark. The experiments show the efficiency of the method in terms of transparency (evaluated through the PSNR). The robustness experiments concerns a restricted class of attacks (white noise addition, median filtering and the JPEG compression) and show that the advanced method outperforms [START_REF] Mohanty | Invisible watermarking based on creation and robust insertion-extraction of image adaptive watermarks[END_REF]. The fragility and the efficiency to detect and locate tampering attacks are also investigated.

In order to verify the integrity of face (biometric) images, Li et al. [START_REF] Li | Tamper detection and self-recovery of biometric images using salient region-based authentication watermarking scheme[END_REF] define a multi-level authentication watermarking scheme based on He et al. [START_REF] He | A wavelet-based fragile watermarking scheme for secure image authentication[END_REF]. Biometric data related to the face images are considered as watermarks to be inserted into the same image. The face images are segmented into regions of interest (ROI) and regions of background (ROB) based on salient region detection. The watermark is adaptively embedded into the biometric images based on detection results. The saliency map is computed according to the method presented in [START_REF] Malik | Preattentive texture discrimination with early vision mechanisms[END_REF]. The analysis of the perceptual quality is validated by a PSNR = 33.13 dB. In order to evaluate the performance of the proposed multi-level authentication watermarking scheme, an analysis on the tamper detection probability inspired by Yu [START_REF] Yu | A digital authentication watermarking scheme for JPEG images with superior localization and security[END_REF] is conducted. When face images suffer from malicious tamper, the extracted watermarks can be used to recover the damaged biometric data and reconstruct face images. Even if the tamper ratio is up to 0.4, the re-covered face image can be used for verification.

Agarwal et al. [START_REF] Agarwal | Enhanced data hiding method using DWT based on Saliency model[END_REF] introduce an algorithm that embeds information into visually interesting areas within the host image. The watermarking algorithm consists on inserting in non-salient regions of the blue component (as the change in blue component is the least perceptible to human visual system). The saliency map is generated based on the Graph-Based Visual Saliency (GBVS). The advanced method performs a 3-Level Selective DWT on the blue component of RGB cover image. The paper shows the result of the watermarking schema on four RGB images. The experimental results are structured at three levels. First, it is shown that the watermark remains imperceptible even after increasing the data payload: for a data payload of 1024 bytes, the PSNR=41.3. Secondly, the robustness against three types of attacks (namely Gaussian blurring, JPEG compression, and median filtering) is evaluated by computing the correlation between the inserted and the recovered watermarks. It is thus stated that the advanced method outperforms the studies in [START_REF] Tian | An integrated visual saliency-based watermarking approach for synchronous image authentication and copyright protection[END_REF] and [START_REF] Mohanty | Invisible watermarking based on creation and robust insertion-extraction of image adaptive watermarks[END_REF]. Finally, it is shown that for prescribed BER (Bit Error Rate) and PSNR values, the advanced model increases the value of payload.

Chen et al. [START_REF] Chen | A JND-based saliency map fusion method for digital video watermarking[END_REF] advance a method embedding the watermark into the DC (Direct Component) component of the DCT, according to a JND adaptive strategy. The saliency map is obtained by applying a JND fusion on the static and the dynamic saliency map. The motion saliency map is computed by applying the motion JND and the static saliency map is obtained according to [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF]. Experimental results demonstrate the effectiveness of this method: by keeping the same data payload and the same robustness, the transparency is ameliorated by 3 dB.

Wan et al. [START_REF] Liu | Logarithmic STDM watermarking using visual saliency-based JND model[END_REF] propose a visual saliency based logarithmic STDM (Spread Transform Dither Modulation) watermarking scheme. The watermark is embedded into a sub-set of non-salient DCT coefficients. The visual saliency is determined based on the energy of the DCT features of luminance and texture. By investigating the BER results under different attacks, the method robustness against AWGN addition, JPEG compression and S&P (Salt and Pepper) noise is proved. The results show the method has statistically significant better outcomes in terms of the VS-based IQA metric. The robustness is improved by at most 5%.

Bhowmik et al. [START_REF] Bhowmik | Visual attention-based image watermarking[END_REF] also adapt the strength of the watermark according to the salient / non-salient feature of the DWT coefficients bearing that watermark. A low complexity wavelet domain visual attention model is proposed. It uses all detail coefficients across all wavelet scales for center-surround differencing and normalization. Subsequently, it fusses 3 orientation features in a non-separable manner to obtain the final saliency map. The performance evaluation shows up to 25% and 40% improvement against JPEG2000 compression and common filtering attacks, respectively. Gawish et al. [START_REF] Gawish | Robust Non-saliency Guided Watermarking[END_REF] report on a saliency guided watermarking approach. A weighted sum between the non-saliency and heterogeneity-brightness maps generates a map locating the best (in the perceptual sense) places to hide the watermark. The DCT middle frequency coefficients of the top candidates of the watermarking map are then used for bearing the data. Experiments shows that this method outperforms the Harris-Laplace based method [START_REF] Yubo | A robust watermarking algorithm based on salient image features[END_REF] in terms of transparency (an increase of 0.5 dB in PSNR) and robustness (a decrease of 0.1 in (NHS) Normalized Hamming Similarity) over different attacks.

As a conclusion, this concise state-of-the-art study (see Table II-2) on the relationship between saliency and watermarking shows different promising results. For instance, guiding the insertion of the watermark by the saliency map offers significant improvements. Moreover, the investigated models bring to light that exploring the ROI can be benefic for each of the three main watermarking properties: robustness [START_REF] Liu | Logarithmic STDM watermarking using visual saliency-based JND model[END_REF], and [START_REF] Gawish | Robust Non-saliency Guided Watermarking[END_REF]) and data payload [START_REF] Agarwal | Enhanced data hiding method using DWT based on Saliency model[END_REF].

([TIA11], [LI12], [AGA13], [WAN15], [BHO16], and [GAW16]) transparency ([SUR09], [NIU11], [TIA11], [LI12], [CHE15],
By analyzing the 9 state-of-the-art studies we can notice that the trade-off between watermark embedding and the visual saliency extraction is not yet reached in the compressed domain, i.e. inbetween the Q and E steps represented in Figure II-1. Thus, to guide a compressed stream watermarking application we should extract saliency directly in the compressed stream syntax elements in order to avoid decoding/re-encoding operations. 

[LI12]

Embedding watermark in biometric images [START_REF] Malik | Preattentive texture discrimination with early vision mechanisms[END_REF] PSNR = 33.13 dB.

A super performance at detection probabilities and false detection probabilities.

Even if the tamper ratio is up to 0.4, the recovered face image can be used for verification.

[AGA13]

Inserting the watermark on non salient regions of the blue component Graph Based Visual Saliency (GBVS)

Outperforms [START_REF] Tian | An integrated visual saliency-based watermarking approach for synchronous image authentication and copyright protection[END_REF] and [START_REF] Mohanty | Invisible watermarking based on creation and robust insertion-extraction of image adaptive watermarks[END_REF] in term of robustness against no attack, Gaussian blur, JPEG compression, and median filter and proved that their method For a prescribed BER and PSNR the model increases the value of payload.

[CHE15]

Watermark insertion in the DC coefficient [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF] and motion JND Increasing the PSNR by 3 dB [START_REF] Liu | Logarithmic STDM watermarking using visual saliency-based JND model[END_REF] Inserting the watermark in the host vector of the DCT coefficients

Extracting features from DCT coefficients

Statistically significant better outcomes in terms of the VSbased IQA metric.

The robustness is improved by at most 5%.

[BHO16]

Inserting the watermark in the wavelet domain

Low complexity wavelet domain model up to 25% and 40% improvement against JPEG2000 compression and common filtering attacks [START_REF] Gawish | Robust Non-saliency Guided Watermarking[END_REF] Inserting watermark in natural images Nowadays, the video quality im content, thus stressing the urge f While compression reduces th subsequent processing of the algorithms would require the a p compression of the processed d between 1 and 20. Just for exam video watermarking method, m encoding/decoding operations w In order to circumvent such an is content directly in the compress by considering 9 studies, nam [START_REF] Amon | Compressed domain stitching of hevc streams for video conferencing applications[END_REF], and [START_REF] Ogawa | Watermarking for HEVC/H. 265 stream[END_REF], which w

The study in [START_REF] Kramer | Super-resolution mosaicing from mpeg compressed video[END_REF] addresses compressed video stream; such resolution, without decomposing from I frames and motion info minimizing the decoding overhe quality of initial DC-resolution m visually better than other metho main parameter of the reconstru Thiemert et al. [START_REF] Thiemert | Using entropy for image and video authentication watermarks[END_REF] advance sequences. The mark computati levels. The mark is embedded by tion from compressed streams mpressed video stream pr mproves in parallel with the increase of the qua for better, more sophisticated compression stan he storage and network costs, it intrinsically visual content: applying traditional, pixel-orie priori decompression of data and, in some cases, data. The overhead of such an approach wou mple, the study in [START_REF] Hasnaoui | Multi-symbol QIM video watermarking Signal[END_REF] reports that for an M more than 94% of the total processing time is while the watermarking itself covers only 6% from ssue, several research studies took the challenge sed stream format; we shall illustrate the princi mely [START_REF] Kramer | Super-resolution mosaicing from mpeg compressed video[END_REF], [START_REF] Thiemert | Using entropy for image and video authentication watermarks[END_REF], [START_REF] Manerba | Multiple moving object detection for fast video content description in compressed domain[END_REF], [START_REF] Poppe | Moving object detection in the H. 264/AVC compressed domain for video surveillance applications[END_REF], [ZHO will be presented in chronological order. the problem of constructing a super-resolution h a mosaic can be used as a tool for increas g the content. The method consists in the use o ormation only from P frames. The main contr ead (i.e. to decode as less data as possible) wh mosaics. Experimental results show that the SR m ods and the first results are promising. A discuss uction method is also presented. e a semi-fragile watermarking system devoted on is based on the properties of the entropy co y enforcing prescribed relationship between the rocessing ntity of generated video ndards.

y increases the cost of ented image processing , even the a posteriori reld range somewhere in-MPEG-4 AVC semi-fragile s required by the video m the total time! e of processing the visual iples of such approaches O10], [START_REF] Belhaj | MPEG-4 AVC robust video watermarking based on QIM and perceptual masking[END_REF], [START_REF] Fang | Saliency detection in the compressed domain for adaptive image retargeting[END_REF], n (SR) mosaic from MPEG sing the image quality / of color information only ribution of this paper is hile improving the visual mosaics thus obtained are sion on the impact of the to the MPEG-1/2 video omputed at the 8x8 block DCT coefficients of some blocks. The experiments are run on one sequence (whose length is not précised) encoded at 1125 kbps. The method proved both robustness (against JPEG compression with QF=50) and fragility against temporal (with 2 frame accuracy) and spatial (with a non-assessed accuracy) content changing.

Manerba et al. [START_REF] Manerba | Multiple moving object detection for fast video content description in compressed domain[END_REF] present a method for foreground object extraction following a "rough indexing" paradigm. This method combines motion masks with the morphological color segmentation operated at DC coefficients of MPEG1,2 compressed stream. In this respect, each group of picture (GOP) is first analyzed and, based on color and motion information (extracted from the I and P frames, respectively), foreground objects are extracted. Secondly, a post-processing step is performed so as to refine the result and to correct the errors due to the low-resolution approach. Results proved that the percentage of the object detection varies from a video sequence to another from 0 to 100%. The object extraction computation time also depends on the video sequence (0.08s to 0.43s).

Poppe et al. [START_REF] Poppe | Moving object detection in the H. 264/AVC compressed domain for video surveillance applications[END_REF] introduce a method to detect moving objects in H.264/AVC compressed video surveillance sequences. However, motion vectors are created from a coding perspective and additional complexity is needed to clean the noisy field. Hence, an alternative approach is presented, based on the size (in bits) of the blocks and transform coefficients used within the video stream. The system is restricted to the syntax level and achieves high execution speeds, up to 20 times faster than the state-ofthe-art (at that time) studies. Finally, the influence of different encoder settings is investigated to show the robustness of their system. Belhaj et al. [START_REF] Belhaj | MPEG-4 AVC robust video watermarking based on QIM and perceptual masking[END_REF] introduce a binary spread transform based QIM for MPEG-4 AVC stream watermarking. By combining QIM principles, spread transform, a perceptual shaping mechanism, and an information-theory driven selection criterion, they achieved a good transparency and robustness against transcoding and geometric attacks. By advancing the m-QIM theoretical framework, [START_REF] Hasnaoui | Visual Quality assessment for motion vector watermarking in the MPEG-4 AVC domain[END_REF] extends the QIM watermark principle beyond the binary case. In this respect, the research was structured at two levels: (1) extending the insertion rule from the binary to m-ary case and (2) computing the optimal detection rule, in sense of average probability error minimization under the condition of Gaussian noise constraints. Thus, the size of the inserted mark is increased by a factor log 2 m (for prescribed transparency and robustness constraints).

Zhou et al. [START_REF] Zhou | A Digital Fingerprint Scheme Based on MPEG-2[END_REF] advance an application of digital fingerprinting2 directly in the MPEG-2 compressed video stream. Fingerprints are embedded into each I-frame of the video, by means of data repetition technique so as to ensure accurate extraction of fingerprint. First, the fingerprint is generated according to two-tier structure based on error correcting code and spread spectrum. Second, the fingerprint is embedded during decoding. The algorithm selects the I-frame in the video for embedding to enhance the robustness of the fingerprint. Finally, the extraction step of the fingerprint is described as easy and effective since the data repeating technology is adopted in the embedding algorithm. The embedding method satisfies the requirements of invisibility and real-time quite well. In term of invisibility (PSNR>=35 dB) while in term of real-time (0.1s gain in the Average Running Time compared to other method).

In order to extract the saliency maps, Fang et al. [START_REF] Fang | Saliency detection in the compressed domain for adaptive image retargeting[END_REF] no longer consider pixel representation of the image but a transformed domain related to the JPEG compression. He proposes an image retargeting algorithm to resize images, based on the extracted saliency information from the compressed domain. Thanks to the directly derived saliency information, the proposed image retargeting algorithm effectively preserves the objects of attention and removes the less appealing regions. The statistical results for 500 retargeted images show that the mean opinion score of images retargeted according to [START_REF] Fang | Saliency detection in the compressed domain for adaptive image retargeting[END_REF], namely 3.708, is higher than those according to three state-of-the-art algorithms [START_REF] Rubinstein | Improved seam carving for video retargeting[END_REF], [START_REF] Wolf | Non-homogeneous content-driven video-retargeting[END_REF] and [START_REF] Ren | Image retargeting based on global energy optimization[END_REF], which were reported to be 3.278, 3.348, and 3.424, respectively. Amon et al. [START_REF] Amon | Compressed domain stitching of hevc streams for video conferencing applications[END_REF] present a method for compressed domain stitching of HEVC streams, with applications to video conferencing. The methodological approach considers three incremental levels, namely pixel, syntax elements, and entropy coding. The results show gains in terms of quality of resulted video content (between 0.5 dB and 0.8 dB with respect to the method in the pixel domain), in compression efficiency (evaluated as a PSNR-bitrate function) and computational complexity (in the sense that the operation involved in the advance method are less complex than a complete encoding/decoding chain).

Ogawa and Ohtake [START_REF] Ogawa | Watermarking for HEVC/H. 265 stream[END_REF] propose a watermarking method for HEVC/H.265 video streams that embeds information while encoding the video. After quantizing, the quantized data is divided into two parts: common and distinct. The quantized values in the common part are encoded using the arithmetic coding CABAC (Entropy Coding). The quantized value in the distinct part is changed according to the information bit. After the change of the quantized values, the values are encoded using CABAC. Thus, a modified HEVC elementary stream is generated. Authors state that it is possible to embed information into a compressed stream using this method without degrading the content and with an appropriate robustness that meets the requirements of the users. There is no discussion on the quality of the watermarking.

To conclude with, the huge amount of the visual content stored and transmitted in a compressed stream bring to the light that image/video processing directly in the compressed stream becomes more a necessity rather than an option. The analysis of the 9 state-of-the-art compressed stream application studies brings to light that proceeding directly in the compressed stream offers the possibility of a gain in complexity and computational cost while preserving or even improving the application properties.

Consequently, in this thesis, we take the challenge of extracting the saliency map in the compressed domain in order to guide the watermark insertion in a compressed stream watermarking application (both MPEG-4 AVC and HEVC), with minimal decoding operations. 

III. Saliency extraction from MPEG-4 AVC stream

By bridging uncompressed-domain saliency detection and MPEG-4 AVC compression principles, the present thesis advances a methodological framework for extracting the saliency maps directly from the stream syntax elements. In this respect, inside each GOP, the intensity, color, orientation and motion elementary saliency maps are related to the energy of the luma coefficients, to the energy of chroma coefficients, to the gradient of the prediction modes and to the amplitude of the motion vectors, respectively. The experiments consider both ground-truth and applicative evaluations. The ground-truth benchmarking investigates the relation between the predicted MPEG-4 AVC saliency map and the actual human saliency, captured by eye-tracking devices. The applicative validation is carried out by integrating the MPEG-4 AVC saliency map into a robust watermarking application.

III.1.

MPEG

In this chapter, we extract the v We first follow the Itti's [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF] combining three elementary sta static saliency map with a motion

For each GOP (see Figure III-1), t color maps are extracted from while the orientation map is c generated based on the motion v

The computing of each map as sub-sections. I frames are encoded according to Intra prediction modes which exploit the spatial redundancy to enhance the compression efficiency. For each 4×4 pixel block X, the prediction mode minimizing the rate-distortion cost is selected and is deployed so as to compute the corresponding prediction block P from the neighboring blocks. Consider an R residual block (the difference between the current block X and the predicted block P):

� = � -� (III-1)
At the pixel level, the R blocks are represented by one luminance and two chrominance values. These values are subsequently DCT transformed and then quantified, thus obtaining the so-called luma (Y) and chroma (Cr, Cb) MPEG-4 AVC channels.

For each 4×4 DCT transformed and quantified R block, we define the intensity saliency map M i according to (III-2):
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where k is the block index in the frame, u and v are the coefficient coordinates in the k block and Y is the luma residual coefficient.

According to (III-2), a luminance energy value is attached to each block: the larger this M i value, the more salient the k block.

Color map

In order to define the color saliency map, we shall keep the same conceptual approach as for the intensity (i.e. associating saliency to the regions with high energy color components) and we shall take into account the human visual system peculiarities related to the color perception.

In [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF], it is brought to light that the elementary colors are represented in cortex according to a socalled color double-opponent system. In the center of their receptive fields, neurons are excited by one color (e.g., red) and inhibited by another (e.g., green), while the converse is true in the surrounding areas. Such spatial and chromatic opponency exists for the red/green and yellow/blue color pairs (and, of course, for their complementary green/red and blue/yellow color pairs).

Consequently, the MPEG-4 AVC color saliency map will be based on the energy featured by the composition of red/green and yellow/blue opponent pairs, as follows.

We first convert the color information extracted from the (Y,Cr,Cb) MPEG-4 AVC DCT and quantified color space into the transformed and quantified (r,g,b) space:
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Secondly, through analogy with [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF], the two opponent color pairs RG (Red/Green) and BY (Blue/Yellow) are computed for each (u,v) coefficient in the macroblock:
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Finally, we compute the color saliency map M c as the sum of the energy in the double color-opponent red/green and blue/yellow spaces:

� � (�) = � � �� �,�,� � + �� �,�,� � � ��� � ��� (III-3)
where k is the block index in the frame, while u and v are the coefficient coordinates in the k block.

According to (III-3), a color energy value is assigned to each block: the larger this M c value, the more salient the k block.
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III.1.3. Elementary saliency map pooling

The MPEG-4 AVC saliency map is the fusion of the static and the dynamic map. The static saliency map is in its turn a combination of intensity, color and orientation features maps. Despite the particular way in which all these elementary maps are computed, the fusion technique allowing their combination plays a critical role in the final result and makes the object of a research challenge of the studies in [START_REF] Ammar | Visual saliency in MPEG-4 AVC video stream[END_REF], [START_REF] Muddamsetty | A Performance Evaluation of Fusion Techniques for Spatio-Temporal Saliency Detection in Dynamic Scenes[END_REF], [START_REF] Marat | Modelling spatio-temporal saliency to predict gaze direction for short videos[END_REF].

In our study, the pooling takes place at two levels: static (i.e. pooling intensity, color and orientation maps in order to obtain the static map) and dynamic (i.e. pooling static and motion maps in order to obtain the final saliency map). In order to decide on the pooling formulas for our saliency maps, we considered two criteria. On the one hand, according to the state-of-the-art studies [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF], [START_REF] Harel | Graph-based visual saliency[END_REF], the most often considered static fusion formula is the average. Considering the dynamic fusion, weighted averages between static and motion maps are also very popular. Consequently, we included in our study the following pooling formulas:
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where � � is the final MPEG-4 AVC saliency map. By changing α, β, γ values we obtain several staticdynamic fusing formulas, defined over the same average static fusion. In our study, we considered:

• α=β=γ=1, which is the combination of the addition and the multiplication static-dynamic fusion technique; the corresponding MPEG-4 AVC saliency map will be further referred to as Combined-avg (where avg represents the average static pooling technique);

• α=β=0, γ=1, which corresponds to the multiplication static-dynamic fusion technique; this map will be further referred to as Multiplication-avg;

• α=β=1, γ=0, which corresponds to an additive static dynamic fusion; this map will be further referred to as Addition-avg;

• α=1, β=γ=0, which corresponds to static saliency map; the corresponding map will be further referred to as Static-avg;

• α=0, β=1, γ=0, which corresponds to motion saliency map; the corresponding map will be further referred to as Motion.

On the other hand, according to the fusing formula investigation [START_REF] Ammar | Visual saliency in MPEG-4 AVC video stream[END_REF] detailed in Appendix A, where 48 different pooling combinations (6 static pooling formula and, for each of them, 8 dynamic pooling) were investigated, the most accurate combination (in the sense of KLD and AUC computed on a ground truth database of 80 sec) is Skewness (defined as the third moment on the distribution of the map [START_REF] Marat | Modelling spatio-temporal saliency to predict gaze direction for short videos[END_REF]) static-dynamic fusion over the maximum static fusion. Consequently, we shall also include this pooling formula in our study and we shall further refer it as Skewness-max.

III.2. Experimental results

We will evaluate the performances of 6 alternative ways of combining the elementary maps described above: we will retain the elected spatio-temporal saliency map in the first level, resulted from the study of the fusing formula (see Appendix A.1) where 48 fusion formulas are performed: six different fusion techniques for static features and eight fusion formulas over the static and motion saliency maps. The performances of these 48 MPEG-4 AVC saliency maps are discussed by comparing them to the ground truth represented by the density fixation maps captured by the Eye Tracker on eight video sequences at the IRCCyN premises [WEB05]. The comparison to the density fixation maps is completed by using two objective measures: the KLD (Kullback Leibler Divergence, assessing the differences between the distributions of the two investigated entities) and the AUC (Area Under Curve, assessing the differences between the two entities at given locations). In addition, we will add some fusion technique generally used in the state of the art model then we will precede two different validations: the ground truth validation and the applicative validation.

In our study, we extract the saliency map only from I and P frames. We did not consider B frames in our experimental study because such frames may not be present in some compressed streams (e.g. the streams encoded with the Baseline profile). Nevertheless, our method can be applied to any MPEG-4 AVC video configuration, be it with or without B frames. Moreover, if the video compressed stream contains B frames, only I frames and P frames will be considered to extract static and dynamic saliency, respectively. It is not necessary to compute the saliency from B frames. As the saliency prediction mostly relates to the fixation locations (including pursuit) and keeping in mind that usual human fixation duration is between 100 ms and 200 ms, we do not need to process each and every frame in a video sequence (e.g: for a frame rate of 25 fps, each frame comes every 40 ms).

III.2.1. Ground truth validation

Test-bed

Our experiments are structured at two nested levels, according to the evaluation criteria and to the actual measures and corpora, respectively Table III-1.

First, several evaluation criteria can be considered. We shall consider both the Precision (defined as the closeness between the saliency map and the fixation map) and the Discriminance (defined as the difference between the behavior of the saliency map in fixation locations and in random locations) of the saliency models.

Secondly, for each evaluation criteria, several measures can be considered. Our assessment is based on two measures of two different types (the KLD and AUC). We implemented the KLD based on [START_REF] Kullback | On information and sufficiency[END_REF] [KUL68] while we used the AUC implementation available on Internet [WEB07].

Note that in order to ensure the statistical relevance for the KLD and AUC values, we compute the average values (both over the GOP in an individual video sequence and over all the processed video sequences), the related standard deviations, 95% confidence limits and minimal/maximal values. This way, the ratio between the average value and the standard deviation (the so-called signal to noise value [START_REF] Fry | Probability and Its Engineering Use[END_REF], [START_REF] Walpole | Probability and Statistics for Engineers and Scientists[END_REF]) can be estimated (point estimation) in order to assess the sensitivity of the KLD and AUC with respect to the randomness of the processed visual content: the bigger the signal to noise ratio, the less sensitive the corresponding measure with respect to the visual content variability.

Two different corpora are considered and further referred to as: (1) the reference corpus organized in [WEB05] and (2) the cross-checking corpus organized in [WEB06].

The reference corpus is a public database organized by IRCCyN [WEB05]. It contains 8 video sequences of 10 seconds each one. For each video, the eye-tracker data are extracted for 30 observers. The distance between observers and the display is 3m. The resolution of the display is 1920×1080 with 50 Hz frame rate. Based on those results, a density fixation map is calculated for each video. In our experiments, these videos are encoded in MPEG-4 AVC Baseline Profile (no B frames, CAVLC entropy encoder) at 512 kb/s. The GOP size is set to 5 and the frame size is set to 576×720. The MPEG-4 AVC reference software (version JM86) is completed with software tools allowing the parsing MPEG-4 AVC syntax elements and their subsequent usage, under syntax preserving constraints.

The cross-checking corpus includes 50 various types of video clips, summing-up to over 25 minutes. The human saliency is represented by the saccade data captured by an eye-tracker (240-Hz infrared-videobased) from eight observers. In our experiments, we applied the same encoding operations as in the case of the reference corpus.

While the choice of corpora in the test-bed is always a crucial issue in image/video processing, it becomes of an upmost importance in visual saliency studies. By its very principles, any bottom-up model is a model solely depending on the visual content. In order to grant generality for our results, we considered two types of criteria when choosing our corpora:

• we used two public corpora, already considered in a large variety of publications;

• we strengthened our results by an in-depth statistical analysis:

• we defined and computed a sensitivity measure in order to compare the dependency of the saliency model with the randomness of the content in the processed corpus,

• we computed the minimal, maximal and the 95% confidence limits for the two investigated measures (KLD and AUC). 

Precision

In this experiment, we compare the computed saliency maps to the density fixation maps captured from the human observers (cf. illustration in Figure III-5); the reference corpus [WEB05] will be processed. III-4, value, the better the Precision; conversely, the la esponds to nine saliency maps: the six MPEG-4 wness-max, Combined-avg, Multiplication-avg, A estigated state of the art methods. The coordin both over the GOP in an individual video seq otted in black squares. These average values are p dence limits (plotted in red and green lines) as w frames in the corpus), plotted in purple and blue p and density fixation map.
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where M i stands for an MPEG-4 AVC saliency maps (e.g. Skewness-max, Combined-avg and Addition-avg) while M j stands for a state of the art saliency map. A positive ƍ ���� value means that the M i map outperforms (in the KLD sense) the M j map.

The quantitative results are presented in Table III-2, where the columns correspond to the same MPEG-4 AVC saliency map while the rows to the same state of the art method. It can be noticed that the best results are provided by the Skewness-max which outperforms the three considered state of the art methods [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF][SEO09][GOF12] by relative gains of 0.6, 0.58 and 0.53, respectively. Figure III-6 also brings to light that the confidence limits corresponding to MPEG-4 AVC predicted saliency maps are narrower than the ones corresponding to the three investigated state of the art methods. Consequently, the KLD computation seems less sensitive to the randomness of the processed visual content in the MPEG-4 AVC domain. In order to objectively assess this behavior, we followed the principles in [START_REF] Fry | Probability and Its Engineering Use[END_REF], [START_REF] Walpole | Probability and Statistics for Engineers and Scientists[END_REF] (also see the discussion in Chapter III.2.2.1), and we defined the coefficient ζ ��� based on the signal-to-noise ratio for the random variable modeling the KLD computation:
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where M i stands for an MPEG-4 AVC saliency maps, M j stands for a state of the art saliency map, and σ represent the standard deviation in the KLD computation. The larger the ζ ��� coefficient, the less sensitive is the KLD on the randomness of the processed visual content.

The values corresponding to the Skewness-max, Combined-avg and Addition-avg predicted maps and to the three state of the art methods are presented in Table III-3 and show relative gains between 1.43 (corresponding to the Combined-avg / [CHE13] comparison) and 6.12 (corresponding to the Skewnessmax / [GOF12] comparison). The experimental results reported in Figure III-7 show that the Skewness-max outperforms all the other 9 investigated saliency maps; here again, the results are statically relevant (in the sense of the confidence limits).

The gain over the state of the art methods can be assessed by defining the coefficient η:
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where M i stands for Skewness-max saliency map while M j stands for any of the three state of the art saliency maps. A positive η ���� value means that the M i map outperforms (in the AUC sense) the M j map. When comparing the Skewness-max to the three state of the art methods [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF], [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF], and [START_REF] Goferman | Context-aware saliency detection[END_REF] on the basis of the η coefficient, the following values are obtained 0.21, 0.18, and 0.17, respectively.

The sensitivity of the AUC with the randomness of the processed visual content was evaluated at the same way as in the KLD case, by defining the ζ ��� coefficient:

� ���,���� = ��� �� ��� �� • � ���,�� � ���,�� (III-9)
where M i stands for an MPEG-4 AVC saliency maps, M j stands for a state of the art saliency map; σ represent the standard deviation in the AUC computation. The larger the ζ ��� coefficient, the less sensitive the AUC on the randomness of the processed visual content is. When computing the ζ ��� coefficient between Skewness-max and the three state of the art methods, relative gains by factors of 33.70, 29.83 and 3.22 are thus obtained.
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Objective transparency evaluation

The objective evaluation of the transparency considers three quality metrics of three different types: difference-based (PSNR), correlation based (NCC) and human psycho-visual based (DVQ).

These measures are computed at the frame level, and then averaged over all the frames of the video sequence and over all sequences in the corpus. The results are presented in Table III-9; the precision of the reported values (unit for PSNR and DVQ and 0.01 for NCC) is chosen so as to ensure the statistical significance of the results (95% confidence limits).

The analysis of the PSNR results shows that blocks selected according to our MPEG-4 AVC saliency map are more suitable for carrying the mark than random selected blocks: absolute gains of 10dB, 7dB and 3dB are obtained for the three investigated data payload (30, 60 and 90 bits/I frame).

The NCC values do not clearly discriminate between the random and the Skewness-max based selected blocks.

In order to assess the increase in the transparency according to the DVQ values, we define the relative coefficient Ɛ:

Ɛ = ��� ������ -��� ������������ ��� ������������ (III-10)
Relative gains of 0.8, 0.68 and 0.71 are thus obtained for the three investigated data payload values. 

Subjective transparency evaluation

The visual quality is assessed in laboratory conditions, according to a SSCQE (Single Stimulus Continuous Quality Evaluation) methodology proposed by the ITU R BT 2021. The test was conducted on a total of 30 naïve viewers. The age distribution ranges from 19 to 30 years old with an average of 23. All observers are screened for visual acuity by using Snellen chart and color vision by using Ishihara test. No outlier is identified, according to the kurtosis coefficient [START_REF] Bt | Subjective methods for the assessment of stereoscopic 3dtv systems[END_REF]. The experiments considered a 5 level discrete grading scale.

At the beginning of the first session, 2 training presentations are introduced to stabilize the observers' opinion. The data issued from these presentations are not taken into account in the results of the test.

The MOS (Mean Opinion Score) values are presented in Table III-10; they correspond to the original video (data payload of 0 bit per I frame) as well as to the three investigated data payload values as in objective quality evaluation.

The values in Table III-10 show that, for a data payload of 30 bits per I frame, there is practically a very small difference between the scores assigned by the observers to the original content and to the content watermarked based on the Skewness-max saliency map; with respect to the random selection, this correspond to a MOS gain of 0.23. When considering a data payload of 60 and 90 bit per I frames, the Skewness-max benefit becomes marginal (a MOS gain of 0.01). These results bring to light a kind of saturation behavior: for large data payloads, lots of blocks are watermarked inside the I frame, hence the difference between the random and saliency selection becomes less effective.

III.3. Discussion on the results

Chapter III.2.1 is devoted to ground truth validation, investigating the relation between the MPEG-4 AVC saliency map and the actual human saliency, captured by eye-tracking devices. It is based on two corpora (representing density fixation maps and saccade locations), two objective criteria called Precision and Discriminance (related to the closeness between the predicted and the real saliency maps and to the difference between the behavior of the predicted saliency map in fixation and random locations, respectively), two objective measures (the Kullback Leibler Divergence and the area under the ROC curve, respectively) and three state of the art studies (namely [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF], [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF], [START_REF] Goferman | Context-aware saliency detection[END_REF]).

For both the KLD and AUC, we compute the average values (both over the GOP in an individual video sequence and over all the processed video sequences), and the related standard deviations, 95% confidence limits and minimal/maximal values. The ratio between the average value and the standard deviation (the so-called signal to noise value [START_REF] Fry | Probability and Its Engineering Use[END_REF], [START_REF] Walpole | Probability and Statistics for Engineers and Scientists[END_REF]) was computed so as to assess the sensitivity of the KLD and AUC with respect to the randomness in the processed visual content. In order to compare the predicted MPEG-4 AVC saliency map to the state of the art methods, we define two types of coefficients, see equations (III-6) -(III-9), which are point-estimated.

The overall results are synoptically presented in Table III-11, which regroups, for each and every investigated case, the best methods (in the sense of the investigated measures and the statistical relevance). For instance, the ground truth results related to Precision and Discriminance, exhibit absolute relative gains, defined according to Eq. (III-6) and Eq. (III-9), over state of the art methods:

• in KLD: between 60% (corresponding to Precision, the reference corpus and the Skewness-max / [CHE13] comparison) and 164% (corresponding to Discriminance, the cross-checking corpus and the

Multiplication-avg / [GOF12] comparison),
• in AUC: between 17% (corresponding to Precision, the reference corpus and the Skewness-max / [GOF12] comparison) and 21% (corresponding to Precision, the reference corpus and the Skewness-

max / [CHE13] comparison).
We also investigated the sensitivity of the measure (KLD and AUC) with respect to the randomness in the visual content. When compared to the state of the art methods, the experimental results show gains in sensitivity by factors:

• in KLD, between 1.18 (corresponding to Discriminance, the cross-checking corpus and the Static-avg / [CHE13] comparison) and 6.12 (corresponding to Precision, the reference corpus and the Skewness-

max / [GOF12] comparison),
• in AUC, between 1.06 (corresponding to Discriminance, the reference corpus and the Skewness-max / [GOF12] comparison) and 33.7 (corresponding to Precision, the reference corpus and the Skewness-

max / [CHE13] comparison).
All these above-reported values objectively and quantitatively demonstrate the usefulness of extracting saliency maps from the compressed domain. A closer qualitative inspection of the compressed domain saliency maps reveals an additional interesting behavior of such models. When considering bottom-up saliency models, two paths can be found in literature: (1) algorithms inspecting particular areas by maximizing local saliency on the basis of a biologically inspired ground and (2) algorithms more focused on global features, detecting saliency through transform domains. Global features should be predominant in identifying salient areas under the condition that the image contains obviously isolated foreground objects (the "pop-outs"), whereas local features are more important in an opposite situation.

Nevertheless, during the whole process of human perception, the human brain is able at the same time to combine together and to make complete global and local features. Consequently, a good bottom-up model should also be able to handle this dual behavior (local vs. global); in this respect, a qualitative analysis of our experimental results show (as illustrated in Figure III-13):

• [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF] succeeds in identifying all the global "pop out" objects, but lacks in precision for finer areas (e.g., Figure III-13, image (c) in the second example, the people inside the bus are considered as salient as the whole bus or as other objects in the scene);

• [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF] is more selective at the object level but presents an integration effect over various objects (e.g., Figure III-13, image (d) in the first example, all the players are identified as a unique, salient region);

• Compared to [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF] and [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF], [START_REF] Goferman | Context-aware saliency detection[END_REF] seems both more precise and discriminative at the global object level; nevertheless, it is still not able to identify at the same time areas with different saliency sources (e.g. Figure III-13, image (e) in the third example, the players in black who are salient because of their motion, cannot be detected);

• The strength of our method seems to be achieved by its joint capacity to identify very localized salient areas (individual sub-parts from more global "pop out" objects) and to detect areas featured by different types of saliency; for instance, in Chapter III.2.2 relates to the applicative validation and considers the integration of the compresseddomain saliency map into a robust watermarking application: in order to increase the transparency, for a prescribed data payload and robustness, the mark is inserted into non-salient blocks, according to the predicted MPEG-4 AVC saliency map. This time, no state of the art saliency extraction method can be considered as reference for the applicative validation: as the mark is to be inserted directly in the MPEG-4 AVC stream, we can only rely on the saliency map advanced with this study. Hence, our study investigates the gains obtained when considering saliency-guided insertion with respect to blind (no saliency based) insertion.

The experiments show that the saliency prediction in the MPEG-4 AVC domain results in:

• objective study: an increase in PSNR and DVQ (up to 10dB and up 70%, respectively); the NCC measure did not exhibit a clear benefit of using saliency-guided insertion;

• subjective study: the MOS corresponding to the saliency-guided watermark insertion can approach by 0.04 the MOS corresponding to the original (un-watermarked content); a saturation mechanisms for large data payloads has also been spotted out.

However, the final advantage of any image processing method is also given by its computational complexity. Table III-12 compares the three state of the art methods investigated in Chapter III.2.1 to our MPEG-4 AVC saliency extraction method: the main operations included in both static and dynamic saliency maps are listed. An additional benefit from the MPEG-4 AVC saliency is thus brought to light: it can be achieved with a linear complexity (assuming the entropic decoding available).

In order to also provide a quantitative illustration of the practical impact of these differences in the computational complexity among the four investigated saliency methods, we also measured the computational time per processed frame. In this respect, we averaged the frame execution time over all video frames in two video sequences. We considered a PC configuration with an Intel Xeon 3.7GHz processor and with 8 GB of RAM. These values, expressed in milliseconds, are reported in Table III-13. The unit precision chosen in Table III-13 ensures that these values are statistical relevant (i.e. their 95% confidence limits variations are lower than 1). Note that in MPEG-4 AVC saliency detection case, the execution time values corresponding to the six investigated pooling formulas are identical (i.e. their differences are lower than the precision in their 95% confidence limits); consequently, in Table III-13 we reported only one value, which holds for any of the six pooling formulas we studied. We emphasize that Table III-13 has only an illustration purpose: the codes for the four investigated methods are of two types (C/C++ and Matlab) and none of them is optimized for execution speed.

Table III-12: Computational complexity comparison between our method and the three state of the art models considered in our study.

Spatial map Dynamic map

[CHE13]

• Complete decoding of the images • Decomposing images into large scales perceptually homogenous elements using GMM [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF] • Complete decoding of the videos • Compute the local steering kernel and vectorize it into different features

• Motion vector extraction

[GOF12]
• Complete decoding of the videos

• Decomposing images into patches • Multiscale saliency enhancement • K-nearest neighbor (KNN)
• Motion vector extraction

MPEG-4 AVC • Addition and gradient of 4×4 blocks • Motion vector difference

Table III-13: Computational time per processed frame of our method and the three state of the art models considered in our study.

Computational time (in milliseconds)

Type of code

[CHE13] 24 C/C++ [SEO09] 1 170 Matlab [GOF12] 35 002 Matlab MPEG-4 AVC 9 C/C++ (b) Our MPEG-4 AVC salien (d) [SEO09]
Saliency extra 

III.4. Conclusion

This Chapter presents a comprehensive framework for establishing the proof of concept for saliency extraction from the MPEG-4 AVC syntax elements (before entropic coding).

From the methodological point of view, we adapt and extend the state of the art principles so as to match them to the MPEG-4 AVC stream syntax elements, thus making possible individual intensity, color, orientation, and motion maps to be defined. Several pooling formulas have been investigated.

The experimental validation takes place at two levels: ground-truth confrontation and applicative integration. The ground truth validation is based on two criteria, the so-called Precision (which can be useful when we aim to predict the human fixation locations) and Discriminance (which prove its efficiency when aiming to be as different as possible from the random locations). For each criterion, we considered two objective metrics, namely the KLD (a distance related to the statistical differences) and AUC (a measure related to the probability of error in detection). The ground truth itself is represented by two state of the art corpora, containing both fixation and saccade information. The applicative validation considers the MEPG-4 AVC saliency map as a tool guiding the mark insertion.

As an overall conclusion, the study brings to light that although the MPEG-4 AVC standard does not explicitly rely on any visual saliency principle, its stream syntax elements preserve this property. Among possible explanations for this remarkable property, one could argue a share feature between video coding and saliency. Saliency is often considered as a function of singularity (of contrast, color, orientation, motion …). On coding side, singularities are usually uncorrelated signals with their vicinities making them hard to encode and leading to more residues. Considering that there is this relationship between saliency and coding cost, a good encoder could possibly act as a winner take all approach revealing, emphasizing salient information. Mimicking such behavior in the spatial domain is not that trivial and often under considered in many approaches provided in literature.

This conclusion is supported by all our experiments, which brought to light four main benefits for the MPEG-4 AVC based saliency extraction: (1) it outperforms (or, at least, is as good as) state of the art uncompressed domain methods, (2) it allows significant gains to be obtained in watermarking transparency (for prescribed data payload and robustness), (3) it is less sensitive to the randomness in the processed visual content, and (4) it has a linear computational complexity.

IV. Saliency extraction from HEVC stream

This Chapter goes one step further and investigates whether the information related to the human visual saliency is still preserved at the level of the HEVC compressed stream. In this respect, the saliency model presented in Chapter III is reconsidered and extended so as to match the HEVC peculiarities. The same experimental test-bed as in Chapter III is considered in order to both compare the HEVC saliency to the ground-truth and to assess its applicative impact in watermarking. It is thus brought to light that the HEVC saliency model outperforms (with singular exceptions) the state-of-the-art uncompressed domain while generally being outperformed by the MPEG-4 AVC saliency model. We can thus state that, as its MPEG-4 AVC ancestor, although not designed based upon visual saliency principles, the HEVC compression standard preserves this human visual property at the level of its syntax elements.

IV.1. HEVC saliency map computation

The emerging HEVC (High Efficiency Video Coding) standard brings improvements over MPEG-4 AVC, so as to increase the compression capabilities, especially for high resolution formats [START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF]. In this respect, HEVC offers more flexible prediction and transform block sizes, larger choice in prediction modes, more sophisticated signaling of motion vectors and more advanced interpolation filtering for motion compensation.

HEVC video sequences are structured, the same way as MPEG4-AVC, into Groups of Pictures (GOP). A GOP is composed of an I (intra) frame and a number of successive P and B frames (unidirectional predicted and bidirectional predicted frames, respectively).

A frame in HEVC is partitioned into coding tree units (CTUs), each of them covering a rectangular area up to 64x64 pixels depending on the encoder configuration. Each CTU is divided into coding units (CUs) that are signaled as intra or inter predicted blocks. A CU is then divided into intra or inter prediction blocks.

For residual coding, a CU can be recursively partitioned into transform blocks (TB).

The HEVC saliency map definition is structured at three levels.

First, the HEVC stream syntax elements are investigated according to their a priori potentiality to be connected to the visual saliency. Note that, in this respect, the extension from MPEG-4 AVC to HEVC is not straightforward. On the one hand, HEVC allows different block sizes to be defined (see Figure IV-1); consequently the energy conservation theorem invoked in the MPEG-4 AVC intensity and color map definitions should be reconsidered and adapted to this new applicative configuration. On the other hand, both intra and inter prediction modes are changed, thus imposing a detailed investigation on the orientation and motion maps. The inter prediction modes are now structured into two classes (advanced motion vector prediction and merge modes) thus making a priori the motion saliency detection dependent on the encoding configuration.

In our work, we start from the MPEG-4 AVC saliency maps computation basic principles. Three elementary static maps are extracted (intensity, color, orientation). In order to obtain a compressed stream video saliency map, we complete the obtained elementary static saliency maps with a motion saliency map. For each GOP, we extract the saliency map only from I and P frames. The static saliency map is computed from the I frame. The intensity and color maps are extracted from the residual HEVC luma and chroma coefficients, respectively, while the orientation map is computed based on the intra prediction modes. The motion map is generated based on the motion vectors from the P frames.

For the reasons explained in Chapter III, it is not necessary to compute the saliency from B frames. Moreover, B frames are not considered in our experimental study. Nevertheless, our method can be applied to any HEVC video configuration, be it with or without B frames.

The computing of each map as well as their post-processing and pooling are detailed in the following sub-sections. We extract the transformed and stream. By applying the energy domain, the luminance energy o where s x s is the size of TB, u an tion from compressed streams and MPEG-4 AVC block composition.

HEVC elementary saliency ensity map

y map, we also consider that the luma residual c featured by the human visual system (see Chapt p in MPEG-4 AVC video stream is defined by ansform block. Such a technique would not be ap zes as in HEVC, where several transform block s sic transform coding process of the prediction t is based on integer DCT basis functions, except crete Sine Transform)-based transform is perform ency map from HEVC video stream, two steps of the transform block (TB) and then we calcula .

d quantified luma coefficients for each TB direct y conservation property between DCT or DST t of a TB is computed according to:

� ��� = � � � �,� � � ��� � ���
nd v are coefficient coordinates and Y is the luma maps coefficients are related to ter III.1).

y computing the energy ppropriate in the context sizes are supported: 4x4, residual in HEVC is very t for 4x4 luma transform med.

s are required. We first ate the luminance energy tly from the compressed transformed and spatial (IV-1) residual coefficient.

We calculate the luminance energy of a 4×4 region inside TB as following:

� � (�) = � ��� /� (IV-2)
where k is the 4x4 region index in the frame and N is the total number of 4x4 regions in TB. The intensity map will be obtained by displaying � � ; the highest values represent the salient blocks.

Color map

Thorough analogy to the way in which the intensity saliency was defined, color saliency will be based on color energy.

In the MPEG-4 AVC case, the chroma residual coefficients are first extracted. The color information (Cr,Cb) is then used to calculate the two opponent color pairs RG (Red/Green) and BY (Blue/Yellow). Finally, we compute the color saliency map as the sum of the energy in the double color-opponent RG and BY space. For the same reason as for intensity map, this technique is not appropriate with HEVC stream.

The chroma TB size of HEVC is half the luma TB size in each dimension, except when the luma TB size is 4x4, (in which case a single 4x4 chroma TB is used for the region covered by four 4x4 luma TBs).

To compute color saliency map from HEVC video stream, only chroma DC coefficients, which represent the average color of the chroma transform block TB, are extracted. First, we calculate, for each 4×4 region inside TB, a color average for each of the chroma color components Cr and Cb.

�� � (�) = � (�� �� � ) � � (IV-3)
where k is the 4x4 region index in the frame, c is the color component, DC TB is the DC coefficient in TB and N is the total of the 4x4 regions in TB.

Then, based on the average color, we calculate the average opponent-color pairs RG k and BY k for the associated 4x4 region k. Finally, the color map is computed according to:

� � (�) = �� � � + �� � � (IV-4)
The color conspicuity map will be obtained by displaying M c , the highest values represent the salient blocks.

Orientation map

With respect to MPEG-4 AVC, changes in the intra prediction process are introduced in HEVC, concerning both the prediction block sizes and the prediction modes. HEVC supports variable intra prediction block sizes from 64x64 down to 4x4. As MPEG-4 AVC, DC and planar mode are defined, while intra angular prediction directions are augmented from 8 to 33.

According to intra HEVC paradigm, the prediction modes reflect the orientation of the corresponding block with respect to its neighboring blocks. The orientation map will be computed by analyzing the discontinuities among the intra prediction modes of intra frame blocks: blocks which feature the same direction as their neighborhood are considered as non-salient while blocks with different orientation modes are considered as salient.

The building of the orientation map starts by analyzing the intra prediction block sizes. Large intra prediction blocks are considered as non-salient regions. In the remaining cases, values of the prediction modes are extracted; then, the obtained orientation for each 4×4 block will be compared to those obtained for a set of neighboring blocks.

The M o orientation map is computed according to:

� � (�) = � ����(�� � = � � ; ∀� ∈ ��) �� �� ���� ≤ 8 × 8 0 ���� � (IV-5)
where k is the block index in the frame, V is the set of neighboring block and l is the block index belonging to V.

Motion map

In addition to the advanced motion vector prediction presented in prior standards, HEVC defines a new inter prediction mode: the merge mode, which derives the motion information from spatially and temporally neighboring blocks. Compared to MPEG-4 AVC, HEVC includes asymmetric motion partitioning and share the accuracy of motion compensation, which is in units of one quarter of the distance between luma samples.

For each GOP, we define the motion saliency map from HEVC stream as the global motion difference amplitude, computed by summing the motion amplitude over all the P frames in the GOP, at the same corresponding block position:

� � (�) = � ����� � � + ���� � � �∈��� (IV-6)
where (���� � , ���� � ) denote horizontal and vertical components of motion vectors difference in the P frame block k, and � � represents the global motion amplitude among the P frames in a GOP; the larger this � � value, the more salient the block k.

IV.1.2. Elementary saliency map postprocessing

The saliency maps obtained for each feature are now to be normalized to the same dynamic range. This is achieved by following the three same saliency map steps approach we considered for MPEG-4 AVC, Chapter III.1.2 (Figure III-4).

First, outlier detection is performed: the 5% largest and the 5% lowest values are eliminated. Then the remaining values are mapped to the [0 1] interval through an affine transform. Finally, an average filtering, with the window size equal to the fovea area is applied.

In the case of the orientation map where its values belong to [0 1], the first two post-processing operations are skipped.

IV.1.3. Saliency maps pooling

The HEVC saliency map is a fusion of the static and the dynamic saliency maps. The static saliency map is in its turn a combination of intensity, color and orientation features maps. As we have seen in Chapter III, the fusing formula has a critical role in the final result, thus the same fusing techniques are applied to obtain the HEVC saliency map.

We start our study on the HEVC saliency map fusion techniques by investigating 48 different pooling formula combinations (6 static pooling formula and, for each of them, 8 dynamic pooling) [START_REF] Ammar | HEVC saliency map computation[END_REF], detailed in Appendix A.2. The most accurate combination (in the sense of KLD and AUC computed on a ground truth database of 80 sec) is Motion-priority static-dynamic fusion over the static maximum fusion referred to us Motion priority-max. For the assessment, we retain the Motion priority-max and we include as well the same fusion techniques investigated in Chapter III (Combined-avg, Multiplication-avg, Addition-avg, Static-avg, Motion).

IV.2. Experimental results

Our experiments are structured on two directions (ground truth and applicative validations). We considered the same test-bed as the MPEG-4 AVC case, on which we evaluate the performances of six alternative ways of combining the elementary maps described above: Motion priority-max, Combinedavg, Multiplication-avg, Addition-avg, Static-avg, and Motion.

IV.2.1. Ground truth validation

Test-bed

Through analogy with our work in Chapter III, the experiments will be structured at two nested levels, according to the evaluation criteria and to the actual measures and corpora:

• both Precision (the closeness between the saliency map and the fixation map) and Discriminance (the difference between the behavior of the saliency map in fixation locations and in random locations) are considered;

• two measures (KLD and AUC) are considered to assess the obtained saliency maps (same implementation as used in Chapter III);

• the average values (computed first over the GOPs in an individual video sequence and then over all the processed video sequences), the related standard deviations, 95% confidence limits and minimal/maximal values are computed;

• the sensitivity of the KLD and AUC with respect to the randomness in the processed visual content is evaluated;

• two different corpora are considered and further referred to as: (1) the reference corpus available in [WEB05] and (2) the cross-checking corpus available in [WEB06].

The reference corpus is a public database organized by IRCCyN [WEB05]. In these experiments, videos are encoded with HEVC Main Profile (no B frames, CABAC entropy encoder) and with a quantification parameter Q p = 32. The GOP size is set to 5 and the frame size is set to 576×720. The HEVC reference software is completed with software tools allowing the parsing of the syntax elements and their subsequent usage, under syntax preserving constraints. The same encoding configuration is considered for the cross-checking corpus [WEB06].

During our experiments, we benchmark our HEVC saliency maps against the same three state of the art methods, namely: Ming Cheng et al. [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF], Hae Seo et al. [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF] and Stas Goferman [START_REF] Goferman | Context-aware saliency detection[END_REF], whose MATLAB codes are available for downloading. In addition, we confront the HEVC saliency maps to the MPEG-4 AVC saliency map in each experience.

Precision

In this experiment, we compare the computed HEVC saliency maps to the density fixation maps captured from the human observers (as explained in the previous chapter). The reference corpus [WEB05] will be processed.

The KLD and AUC values are reported in Figure IV-2 and Figure IV-3 respectively. The lower the KLD value, the better the Precision. Conversely, the larger the AUC value, the better the Precision.

In Figure IV-2, the abscissa corre (namely the Motion priority-m Motion), the three investigated s ordinate corresponds to the ave sequence and over all the proce are presented alongside with th lines) as well as with their mini purple and blue stars.

The average values reported in saliency maps and two of HEVC f map and the Addition-avg sa [CHE13][SEO09] is statistically re saliency maps do not overlap wi of the art methods [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF] and aliency extraction chapter, the gain over the o e art and the MPEG-4 AVC methods) can be ass en HEVC saliency maps and the state of the a implies that the HEVC map outperforms (in the sented in Table IV Figure IV-2 brings to light that the confidence limits corresponding to HEVC predicted saliency maps are narrower than confidence limits corresponding to the three investigated state of the art methods. Consequently, the KLD computation seems less sensitive to the randomness of the processed visual content in the HEVC domain. In order to objectively assess this behavior, we calculate the ζ ��� , Eq. (III-7), between the HEVC saliency maps and the state of the art saliency map. The larger the ζ ��� coefficient is, the less sensitive is the KLD to the randomness of the processed visual content. The values corresponding to the different combinations of the HEVC saliency maps and the three outperformed state of the art are presented in Table IV-2 and show relative gains between 5.3 (corresponding to

Motion / [CHE13] comparison) and 21.39 (corresponding to the Multiplication-avg / MPEG-4 AVC comparison). The experimental results reported in Figure IV-3 show that all the HEVC saliency maps outperforms the three investigated state of the art methods while only the Combined-avg, the Addition-avg and the S t a t i c -a v g o u t p e r f o rm s t h e M P a g a i n s t t h e t h r e e s t a t e o f t h e a r t t s a r e s t a t i c a l l y r e l e v a n t .

A U C o f t h e H E V C s a l i e n c y a i n s t t h e s t a t e o f t h e a r t e n t H E V C s a l i e n c y m a p s : 

Discriminance

The effectiveness of the HEVC saliency map will be evaluated in this section by investigating its ability to discriminate between human fixation locations and random locations in a video content; in this respect:

• the KLD and AUC are computed; the same interpretation as in Chapter III.2.1 is considered, namely the larger the KLD and AUC measures are, the better is the Discriminance;

• 100 random trials are considered for each frame in each video sequence;

• both the reference and the cross-checking corpora are processed;

• the KLD and AUC average measures are presented alongside with the confidence limits and the related min/max values (over both all the frames and, for each frame, over all trials).

Reference results

The experimental results obtained on the reference corpus are presented in Figure shows the KLD values between the saliency map in fixation-selected locations and random selected locations. The abscissa axis corresponds to the same ten investigated saliency maps (cf. Figure IV-2). The ordinate axis presents the average values, the lower and upper 95% confidence limits as well as their minimal and maximal values. The MPEG-4 AVC gives the best result against the three state of the art models and all the combination of the HEVC saliency map. These differences are not statistically relevant (the confidence limits for MPEG-4 AVC and the state of the art methods [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF] and [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF] overlap). The best result in HEVC saliency maps is given by the Addition-avg saliency map which outperforms the [START_REF] Goferman | Context-aware saliency detection[END_REF] by a gain of 0.95. We also investigated the sensiti considering the � ��� coefficien [START_REF] Goferman | Context-aware saliency detection[END_REF]; relative gain of 6.84 is t 

Cross-checking results

The experimental results obtaine According to the AUC values reported in Figure IV-7, the best (statistically significant) results are also provided by the MPEG-4 AVC saliency map; it outperforms all the compared models (HEVC saliency maps and the state of the art methods). Among the HEVC saliency maps, the best result was provided by the Motion priority-max which outperforms the three state of the art methods by ƞ, Eq. (III-8), gains of 0.02, 0.1 and 0.1, respectively. Relative gains ζ ��� , Eq. (III-9), of 0.47, 0.42 and 0.38 are thus obtained. 

IV.2.2. A

Our MPEG-4 AVC saliency met stream saliency extraction by pr the HEVC saliency map is valida investigation of the benefit of e deploying a watermarking appl criteria for selecting regions in w data payload) are expected.

In order to investigate the transp we evaluate the transparency fo and (2) the watermarked block saliency map in the Precision se that, as in Chapter III, none benchmarking: they require dec down the watermarking procedu

The experimental study conside mark is additively inserted in considered here a 16x16 TB as watermarked videos while inser selection method against the ra HEVC compressed stream format tion from compressed streams aps at fixation locations and saliency map at random loc

Applicative validation

thod already proved its efficiency (Chapter III) roviding significant gains in a watermarking app ated by a confrontation to the ground truth. Ho extracting the saliency directly from the HEVC co lication. As its predecessor, the HEVC saliency which the mark is to be inserted; gains in trans parency, we fix two data payload (namely 30 and for those two cases: (1) the watermarked block ks are selected among the blocks detected as ense (see Chapter IV.2.1), namely the Combined of the state of the art saliency maps can b coding the HEVC stream in order to extract th ure.

ers a simple compressed stream watermarking the last coefficient of a selected 16x16 tran s inserting in a smaller TB size (4x4 or 8x8) w rting in a 32x32 TB cannot give a good evaluatio andom selection method since those blocks are t, the 32x32 transform blocks represent homoge cations (N=100 trials for each in term of compressed plication. In Chapter IV.1, owever, we still need an ompressed stream when y model will be used as sparency (for prescribed d 50 bits per I frame) and ks are randomly selected non-salient by the best d-avg saliency map. Note be used for applicative he saliency, thus slowing g application, where the nsform blocks (TB). We will alter significantly the on of the saliency based re usually non salient (in enous regions).

The watermarking corpus discussed in Chapter III is here encoded with HEVC main Profile (no B frames, CABAC entropy encoder) and with Q p =32. The GOP size is set to 5 and the frame size is set to 720×576.

Objective transparency evaluation

The objective evaluation of the transparency considers three quality metrics: the peak signal to noise ratio (PSNR) and the image fidelity (IF) as difference-based measure and the correlation quality (CQ) as a correlation based measure. These measures are computed at the frame level, averaged over all the frames of the video sequence and then over all sequences in the corpus. The results are presented in Table IV-7; the precision of the reported values (unit for PSNR and CQ and 0.01 for IF) is chosen so as to ensure the statistical significance of the results (95% confidence limits).

The analysis of the PSNR results shows that non-salient blocks selected using our HEVC saliency map are more suitable for carrying the mark than random selected blocks: absolute gains of 1.43dB and 1.69dB are obtained, respectively, for the two investigated data payload (30 and 50 bits/I frame).

However, the obtained CQ and IF values do not show a relevant improvement of the saliency based selection method over the random selection method. 

Subjective transparency evaluation

The visual quality is assessed in laboratory conditions, according to the SSCQE (Single Stimulus Continuous Quality Evaluation) methodology proposed by the ITU R BT 2021. The test is conducted on a total of 25 naïve viewers. The age distribution ranges from 20 to 28 years old with an average of 25. All observers are screened for visual acuity by using Snellen chart and for color vision by using Ishihara test.

No outlier is identified, according to the kurtosis coefficient [START_REF] Bt | Subjective methods for the assessment of stereoscopic 3dtv systems[END_REF]. The experiments consider a 5 level discrete grading scale.

At the beginning of the first session, two training presentations are introduced to stabilize the observers' opinion. The data organized from these presentations are not taken into account in the final results of the test.

The MOS (Mean Opinion Score) values are presented in Table IV-8; they correspond to the original video (data payload of 0 bit per I frame) as well as to the three investigated data payload values as in objective quality evaluation.

The values in Table IV-8 show that the watermarking insertion based on saliency outperforms the random method. We obtained, for both 30 and 50 bits per I frame, a MOS value increased by 0.13 and 0.03. 

IV.3. Discussion on the results

Chapter IV is structured in the same way as in Chapter III in order to investigate whether the relation between the new compressed stream HEVC saliency map and the actual human saliency, captured by eye-tracking devices, will be the same as its predecessor MPEG-4 AVC. In this fact, the evaluation is based on:

• two corpora (representing density fixation maps and saccade locations),

• two objective criteria called Precision and Discriminance (related to the closeness between the predicted and the real saliency maps and to the difference between the behavior of the predicted saliency map in fixation and random locations, respectively),

• two objective measures (the Kullback Leibler Divergence and the area under the ROC curve)

• 3 state of the art studies (namely [START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF], [START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF], [START_REF] Goferman | Context-aware saliency detection[END_REF]) and the MPEG-4 AVC saliency extraction model.

• For both the KLD and AUC, we compute the average values (both over the GOP in an individual video sequence and over all the processed video sequences), and the related standard deviations, 95% confidence limits and minimal/maximal values.

• Assessment of the sensitivity, using the same defined coefficient defined in Chapter III (Eq. (III-6)-Eq. (III-9)), of the KLD and AUC with respect to the randomness of the processed visual content.

The overall results are synoptically presented in Table IV-9, which regroups, for each and every investigated case, the best methods (in the sense of the investigated measures and the statistical relevance). • in AUC: between 2% (corresponding to Discriminance, the cross-checking corpus and the Motion priority-max / [GOF12] comparison) and 22% (corresponding to Precision, the reference corpus and the Combined-avg / [CHE13] comparison).

We also investigated the sensitivity of the KLD and AUC measures with respect to the randomness in the visual content. When compared to the state of the art methods, the experimental results show gains in related to sensitivity by:

• in KLD: between 0.01 (corresponding to Discriminance, the reference corpus and the Static-avg / [CHE13] comparison) and 9.98 (corresponding to Precision, the reference corpus and Multiplicationavg / [GOF12] comparison),

• in AUC: between 0.38 (corresponding to Discriminance, the reference corpus and the Motion prioritymax / [GOF12] comparison) and 15.12 (corresponding to Precision, the reference corpus and Additionavg / [CHE13] comparison)

All these above-reported values demonstrate, objectively and quantitatively, the usefulness of extracting saliency maps from the compressed domain.

As explained in Chapter III.3, the human brain is able at the same time to combine together and to make complete global and local features. Consequently, a good bottom-up model should also be able to handle this dual behavior (local vs. global). A qualitative analysis based on saliency models behavior was explained in Chapter IV. Chapter IV.2.2 is related to the applicative validation and considers the integration of the HEVC saliency map into a robust watermarking application: in order to increase the transparency, for a prescribed data payload, the mark is inserted into non-salient blocks, according to the predicted HEVC saliency map. Hence, our study investigates the gains obtained when considering saliency-guided insertion with respect to blind (random) insertion.

The experiments show that the saliency prediction in the HEVC domain results in:

• objective study: an increase in PSNR by 1.55dB;

• subjective study: the MOS corresponding to the saliency-guided watermark insertion (30 bits per I frame) is equal to the MOS corresponding to the original video (un-watermarked content);

However, an important criterion and the final advantage of any image processing method is also given by its computational complexity. Compared to the models presented in Table III-12 (the three investigated state of the art and our MPEG-4 AVC saliency extraction methods), the HEVC saliency extraction algorithm uses the same main operations performed for generating static and dynamic MPEG-4 AVC saliency maps, with the difference of processing on TB with different sizes.

Moreover, we also measured the computational time of the C/C++ code of the HEVC saliency extraction model. We reported only one value, which holds for any of the six pooling formulas we studied, namely 11 milliseconds. 

IV.4. Conclusion

From the methodological point of view, we adapt and extend the MPEG-4 AVC saliency model principles so as to match them to the HEVC stream syntax elements, thus making possible individual intensity, color, orientation, and motion maps to be defined. Moreover, several pooling formulas have been investigated.

The experimental validation takes place under the same framework defined for MPEG-4 AVC: groundtruth confrontation and applicative integration. The ground truth validation is based on two criteria, the Precision and Discriminance. For each criterion, we considered two objective metrics, namely the KLD and AUC. The ground truth itself is represented by two state of the art corpora, the first one is featured by fixation information and the second one by saccade information. The applicative validation is an integration of the HEVC saliency map in a compressed stream watermarking framework that considers the saliency map as a tool guiding the mark insertion.

The main benefits of computing the saliency directly at the stream level are the same as in the MPEG-4 AVC case, namely, performance (confrontation to the ground truth) with respect to the state of the art methods, gains in watermarking transparency, sensitivity to the randomness in the processed visual content, and linear computational complexity.

V.1. Conclusion

The present thesis aims at offering a comprehensive methodological and experimental view about the possibility of extracting the salient regions directly from video compressed streams (namely MPEG-4 AVC and HEVC), with minimal decoding operations. The peculiarities of each of these two domains were studied in Chapters III and IV, respectively: the related methodology was presented alongside with indepth experiments (both ground truth and applicative validations) and the detailed conclusions were drawn in Chapter III.4 and IV.4, respectively.

However, as studied in the Introduction and beyond the technical anchors, the present thesis is about studying two a priori conceptual contradictions (see Chapter II). The first contradiction corresponds to the saliency extraction from the compressed stream. On the one hand, saliency is given by visual singularities in the video content. On the other hand, in order to eliminate the visual redundancy, the compressed streams are no longer expected to feature singularities. The second contradiction corresponds to saliency guided watermark insertion in the compressed stream. On the one hand, watermarking algorithms consist on inserting the watermark in the imperceptible features of the video. On the other hand, lossy compression schemes try to remove as much as possible the imperceptible data of video.

Consequently, the remaining of this Chapter will present the thesis point of view on these two contradictions.

V.1.1. Saliency vs. Compression

As an overall conclusion, the study brings to light that although the MPEG-4 AVC and HEVC standards does not explicitly rely on any visual saliency principle, their stream syntax elements preserve this property.

Among possible explanations for this remarkable property, one could argue a share feature between video coding and saliency. Saliency is often considered as a function of singularity (of contrast, color, orientation, motion …). On coding side, singularities are usually uncorrelated signals with their vicinities making them hard to encode and leading to more residues. Considering that this relationship between saliency and coding cost holds, a good encoder could possibly act as a winner take all approach revealing, emphasizing salient information. Mimicking such behavior in the compressed domain is not that trivial and often under-considered in many approaches provided in literature.

In order to investigate whether such a behavior is proper to MPEG-4 AVC and HEVC, we also consider the case of MPEG-4 ASP format [START_REF]ISO/IEC JTC1, Information technology Coding of audio-visual objects Part2: Visual, ISO/IEC 14492-2[END_REF]. Actually, as explained in Chapter II, the study of Fang [START_REF] Fang | A Video Saliency Detection Model in Compressed Domain[END_REF], published during the development of the present thesis, deals with saliency extraction in the transformed domain.

We then evaluated the Fang's model under the same test-bed as the MPEG-4 AVC and HEVC. 
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the transparency results shows that both o eliorated. Consequently, we can state that the d optimization tool in watermarking but als cations and saliency maps at g ents is expected to have mpressed stream saliency marking is considered and wing the transparency to ss) while decreasing the ditional behaviors which objective and subjective he saliency is not only a lso a signal processing optimization tool: it also allows the increase of the energy of a perturbation (i.e. the mark) which corrupts an original signal, under the constraint of a prescribed difference (e.g. PSNR or NCC) between the original and the modified signals.

Secondly, note that from the watermarking point of view, the MPEG-4 AVC method is more effective than the HEVC method. However, we cannot state yet the reason of this difference. While one possible explanation would be related to the very nature of the two types of encoding standards, note that our MPEG-4 AVC watermarking experiments also included a perceptual masking step which was not considered for HEVC (to the best of our knowledge, no masking model in HEVC compressed stream yet exists). So, an alternative explanation would be that the coupling of the perceptual masking (a longterm psycho-visual mechanism) and saliency (a short term psycho-visual mechanism) lead to applicative watermarking synergies. However, a true methodological and experimental study is required in order to support this affirmation.

V.2. Future works

Short-term perspectives -ameliorate the compressed domain saliency maps

The present thesis brought to light that a straightforward relation between the Itti's models and the MPEG-4 AVC and HEVC stream syntax elements exists. The corresponding experimental results demonstrated that saliency extraction in compressed domain is not only fast (linear complexity) but also closer to the ground-truth then the pixel-based models. However, several possible ways of ameliorating the MPEG-4 AVC and HEVC models still exist.

First, note that our intensity, color and motion maps are defined as energies of the stream syntax element values. Although these definitions are related to the Itti's model, future work will be devoted to investigate whether different averaging formulas can be considered instead of energy.

Secondly, we shall investigate the possibility of considering more elaborated fusion techniques among the elementary maps. In this respect, the ones based on Quaternion Fourier Transform (QFT) formula [START_REF] Guo | A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[END_REF] and the principle of self-adaptive saliency map fusion in [YAN14] will be starting points.

Mid-term perspectives -integrate compressed domain saliency maps in challenging applicative field

While the compressed domain saliency extraction already demonstrated their effectiveness in the watermarking applications, work will be devoted to deploy them for other applicative fields like video retargeting [START_REF] Luo | Saliency density maximization for efficient visual objects discovery[END_REF], object segmentation [START_REF] Kim | Spatiotemporal saliency detection using textural contrast and its applications[END_REF] and discovery [START_REF] Yang | Discovering Primary Objects in Videos by Saliency Fusion and Iterative Appearance Estimation[END_REF], video surveillance [START_REF] Kim | Spatiotemporal saliency detection using textural contrast and its applications[END_REF] or decision support systems for virtual collaborative medical environments [START_REF] Ganji | Cross-standard user description in mobile, medical oriented virtual collaborative environments[END_REF].

Long-term perspectives -define an information theory based model for saliency detection

Although the large majority of the saliency extraction studies are based on the Itti's models, the study in [START_REF] Khatoonabadi | How many bits does it take for a stimulus to be salient[END_REF] shows a correlation between the size (in bits) of the encoded macroblock representation and its saliency. Our study goes one step further and identifies, inside the macroblock, which syntax elements are actually connected to saliency.

These observations can be considered as the first two steps towards defining an information-theory based model for saliency. The principle of such a model would be to validate whether the classical information theory entities (and mainly the ones related to source coding) are able to accommodate the saliency computation and deployment or new entities matched to this human visual related field should be defined.

Such a model would also implicitly provide answers to the open points raised in Chapters V.1.1 and V.1.2, namely about the visual saliency as a signal processing optimization tool and the extent to which synergies can be established between perceptual masking and saliency, two complementary human visual peculiarities.

VI. Appendixes

At their turn, each of these 8 figures is divided into two plots: the left one stands for the KLD while the right one corresponds to the AUC. On the one hand, that KLD is the distance between the distributions of the saliency maps and the density fixation maps corresponding to I frames in each GOP of the video; consequently, the lower the KLD value, the more accurate the saliency map. On the other hand, the AUC is computed between the saliency map and the density fixation map (binarized with a threshold of max/2), at the fixation locations. Consequently, the larger the AUC value, the better the saliency prediction. For each of these two metrics, and for each of the 8 static-dynamic fusing formulas, the 6 ways of fusing elementary static maps are represented from left to right: col-adv (color advantage fusion), ori_adv (orientation advantage fusion), the int_adv (intensity advantage fusion), the stat (mean fusion), the stat-max (maximum fusion), and the stat_mult (multiplication fusion). Two state-of-the-art techniques, namely SV1 [SEO09], [START_REF]ISO/IEC JTC1, Information technology Coding of audio-visual objects Part2: Visual, ISO/IEC 14492-2[END_REF], and SV2 [GOF12],[WEB12], are also included in the experiments and reported on each and every plot here below. By visually inspecting the values depicted in Figures A-2-A-9, a very large variability of the results with the fusing formula can be noticed. In order to allow a quantitative interpretation of the results, we define two coefficients (ƍ and ƞ, for KLD and AUC, respectively) expressing the relative differences between a particular investigated fusion method in the compressed domain and the state-of-the-art results:

ƍ ��� = ��� �� -��� ��� ��� ��� (A-12)
where KLD �� represents the KLD value of the map M i , i=1, 2,…48 (the compressed domain saliency maps) and KLD ��� is the KLD value of the maps ���, j = 1,2 (the state of the art maps, presented in SV1 and SV2).

ƞ ��� = ��� �� -��� ��� ��� ��� (A-13)
where AUC �� represent the AUC value of the map M i , i=1, 2,…48 (the compressed domain saliency maps) and AUC ��� is the AUC value of the maps ���, j = 1,2 (the state of the art map, presented in SV1 and SV2).

According to these definitions, a gain with respect to the state of the art is reflected by negative ƍ and by positive ƞ. By computing these two coefficients for each and every investigated case, we noticed that the two types of fusion (both static, the static-dynamic) have a significant impact in the results, as for example:

For a same static-dynamic technique (e.g. the mean fusion, Figure A-2), the ƍ coefficient varies between -0.62 and 0.03 while the ƞ coefficient varies between -0.02 and 0.23, according to the static fusion formula;

Conversely, for a same static fusion formula (e.g. maximum), the ƍ coefficient varies between -0.63 and 0.48 while the ƞ coefficient varies between -0.15 and 0.24, according to the static-dynamic fusing formula

As a general conclusion, the most accurate results (in the sense of the two objective measures, the two defined coefficients, and of the processed corpus) are provided by the Skewness static-dynamic fusion over the maximum static fusion: ƍ � = -0.62; ƍ � = -0.22; ƞ � = 0.05; ƞ � = 0.24.

Note that as this combination results in negative ƍ and by positive ƞ values, we can also conclude that computing the saliency in the MPEG-4 AVC compressed domain according to the map advanced with this study and with the Skewness-maximum fusing techniques gives more accurate results than computing it in the uncompressed domain by the state-of-the-art approaches. Actually, several types of fusion technique combinations result in gains over the two investigated state-of the-art methods, for the two ƍ and ƞ coefficients, namely: binary mask-maximum, dynamic-maximum, Skewness-orientation advantage, Skewness-intensity advantage, Skewness-maximum, Skewness-multiplication, Skewness-mean, invariantmaximum, invariant-multiplication, invariant-mean, maximum-maximum, multiplication-maximum, and mean-maximum.

A.2. HEVC fusing formula validation

All the experimental conditions are kept as described in Chapter IV.

Our experiment consists of comparing the obtained saliency maps according to different fusing formulas by calculating the distance between the saliency map and the density fixation map using two measures: the KLD and the AUC. To binarize the density fixation map, we used the threshold as the half of maximum value of the entire map. In the case of the AVC method, the best result in each spatio-temporal fusion technique computed is used.

As a general tendency, Figures A-10-A-17 bring to light that saliency extraction from the HEVC stream outperforms (in both KLD and AUC sense) the three investigated uncompressed domain state-of-the-art methods. However, no sharp conclusion can be drawn when comparing the HEVC domain to AVC domain: the performances depend on both the static and spatio-temporal saliency pooling technique.

In order to quantify these behaviors we compute two coefficients ƍ ��� and ƞ ��� , defined in Appendix A.1. According to these coefficients, a gain with respect to the state of the art is reflected by positive ƍ and ƞ values.

The ƍ and ƞ coefficients are reported in Tables 1 and2, respectively. Table A-1 shows that when comparing the HEVC saliency map extracted in the HEVC domain to the three uncompressed-domain methods based on the KLD, with singular exceptions, the ƍ coefficient is larger than 0.1 (its maximal value reaching 0.41). The worst performances are provided by the (Multiplication, static_mean) pooling combination, when the Gof method outperforms by 3% the HEVC saliency detection. When compared to th the overall performances:

• the (Mean, stat-max), (D result in quite equal goo

• the (Max, stat_max), (M threshold, stat_max) co extraction;

• the (Motion priority, sta extraction.

A similar analysis can be perform figures show that HEVC salienc ranging from 6% to 23%. M performances: the absolute valu tion from compressed streams 

B. MPEG-4 AVC basics

MPEG-4 AVC (Advanced Video Coding Standard) is a video coding standard, developed by the Joint Video Team (JVT), the result of collaboration between the ITU-T Coding Video Expert Group (VEG) and the ISO/IEC Moving Picture expert Group (MPEG). This standard provides substantial better video quality at the same data rates compared to previous standard (MPEG-2, MPEG-4 Part 2, H.263) with only a moderate increase of complexity [START_REF] Richardson | H264 and MPEG-4 AVC Video compression: Video coding for next generation Multimidia[END_REF]. Used in a wide range of applications, from mobile phones to High Definition TV, it helped to revolutionize the quality of the video image operating over several types of networks and systems.

While MPEG-4 AVC standard shares common features within other existing standards, it has a number of advantages that distinguish it from previous standards [START_REF] Richardson | H264 and MPEG-4 AVC Video compression: Video coding for next generation Multimidia[END_REF].

The following are some of the key advantages of MPEG-4 AVC standard:

• Up to 50% in bit rate saving: compared to MPEG-2 or MPEG-4 Part 2, MPEG-4 AVC allows a reduction in bit rate by up to 50% for a similar degree of encoder optimization at most bit rates.

• High quality video: MPEG-4 AVC offers consistently better video quality at the same bit rate copmpared to previous standards.

• Error resilience: MPEG-4 AVC provides necessary tools to deal with packet loss in packet networks and bit errors in wireless networks.

• Network friendliness: MPEG-4 AVC bit stream can be easily transported over different networks through the Network Adaptation Layer.

The MPEG-4 AVC standard does not defines a new encoder. However, it defines new encoding syntax elements and refines the principal encoding functions.

The purpose of this Appendix is to outline the concept of the MPEG-4 AVC encoding standard and its advantages with respect to previous standards.

B.1. Structure

The MPEG-4 AVC architecture is designed based on two main layers: The Video Coding Layer (VLC) which is constructed to efficiently represent the video contents and the Network Abstraction Layer (NAL) which encapsulates the content represented by the VCL and provides header information in an appropriate way for conveyance by a variety of transport layer or storage media [START_REF] Richardson | H264 and MPEG-4 AVC Video compression: Video coding for next generation Multimidia[END_REF].

The VCL is structured into five layers: GOP (Group Of Picture), picture, slice, macroblock and block.

Headers of each layer provide information on the encoding/decoding order for the lower layers.

A GOP consists of a number of images that can be 3 types, grouped according to a predetermined decoding order:

• The I frames correspond to independently coded images ; note that only one field I can be at the beginning of a GOP, as it serves as a starting point for coding P and B frames;

• The P frames are associa B frame;

• The B frames refer to an

Block partitioning

Each video image is partitione luminance samples � and of 8 × These blocks are encoded/decod The predicted block is obtained by using the already encoded samples (from A to M) from neighboring blocks.

Transformation

Following the prediction, the transformation is applied with the aim of representing the data as uncorrelated (separate components with a minimum interdependence) and compacted (the energy is concentrated in a small number of frequencies) [HAL02].

Compared to previous standards which use the 8 × 8 Discrete Cosine Transform (DCT) as the basic transformation, MPEG-4 AVC uses three transformations depending on the type of the data to be encoded:

• An integer DCT transformation which is applied to all 4 × 4 blocks of luminance and chrominance components in the residual data.

• A Hadamard transformation applied to 4 × 4 blocks constructed of luma dc coefficients in intra macroblocks predicted according to the 16 × 16 mode.

• A Hadamard transformation applied to 2 × 2 blocks constructed of chroma dc coefficients in any macroblock.

One of the main improvements of this standard is the using of smaller 4 × 4 block transformation. Instead of a classical 4 × 4 discrete cosine transform, a separable integer transform with similar properties as a 4 × 4 DCT is used. The new advanced transform approaching the 4 × 4 DCT has several advantages:

• The core part of the transformation can be implemented using additions and shifts, resulting to less level of computation complexity.

• The precise integer specification eliminates any mismatch issues between the encoder and decoder in the inverse transform (this has been a problem with earlier standards). 

Quantization

The quantization phase is wher AVC, the transformed coefficie quantization operation is perform where � �� is a coefficient of the t and � �� is the quantized coefficie

The MPEG-4 AVC supports a t parameter � � as illustrated in Ta To circumvent the disadvantages quantization performing, this tim tion from compressed streams ents are transformed and sent. Finally, chroma nt set to 0) are sent.

and Hadamard transformations.

re the information is lost in the compression ch ents are quantized using a scalar quantizati med as follows:

� �� = �����( � �� � ���� � )
transformed 4 × 4 block described above, Q ���� ent. total of 52 quantization steps which are ind able B-1. Where �and ��� � �are associati encoding process.

Entropy coding

Entropy coding is the final phase

• the quantized transform transmitted to be encod 

C. HEVC basics

The High Efficiency Video Coding (HEVC) standard is the most recent video coding standard [START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF] developed by the Joint Collaborative Team on Video Coding (JCT-VC), a group of video coding experts from ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG).

HEVC is used in a wide range of HD videos and supports resolutions up to 8K UHDTV (8192x4320). HEVC retains the similar set of basic coding and encoding process and the high level syntax architecture used in MPEG4-AVC. However, it improved each of them by introducing new more sophisticated techniques.

Compared to the previous standard, HEVC offers larger and more flexible prediction and transform block sizes, greater flexibility in prediction modes (35 Intra prediction modes), more sophisticated signaling of modes and motion vectors and larger interpolation filter for motion compensation.

HEVC ensures a video quality identical to H.264 AVC at only half the bit rate; actually, compression gains of 30 to 60% with an average of 40% are reported, but this ratio highly varies with the content type, resolution and compression settings. The highest gain is obtained with UHD videos. Same as the other ITU-T and ISO/IEC video coding standards, only the bit stream syntax is standardized.

C.1. Structure

The extension from MPEG-4 AVC to HEVC is not straightforward. On the one hand, HEVC allows different block sizes to be defined. On the other hand, both intra and inter prediction modes are changed.

HEVC video sequences are structured the same way as MPEG4-AVC, into Groups of Pictures (GOP). A GOP is composed of an I (intra) frame and a number of successive P and B frames (unidirectional predicted and bidirectional predicted, respectively). The I frame describes a full image coded independently by using intra prediction, containing only references to itself. The unidirectional predicted frames P use one or more previously encoded frames (of I and P types) as reference for picture encoding/decoding. The bidirectional predicted frames B consider in their computation both forward and backward reference frames, be they of I, P or B types.

A frame in HEVC is partitioned into coding tree units (CTUs), which each covers a rectangular area up to 64x64 pixels depending on the encoder configuration. Each CTU is divided into coding units (CUs) that are signaled as intra or inter predicted blocks. A CU is then divided into intra or inter prediction blocks according to its prediction mode. For residual coding, a CU can be recursively partitioned into transform blocks.

HEVC supports two modes of partitioning an intrapicture-predicted block: PART_2Nx2N and PART_NxN. The first mode indicates that the prediction block PB size is the same as the coding block CB size, while the second mode signals the splitting of the CB into four equal-sized PBs. In addition to these two mods, interpicture prediction, HEVC supports 6 types of splitting CB into two PBs.

C.2. E Prediction

In HEVC, Intra-prediction operat from spatially neighboring TBs modes for luma intra-predicti prediction which defines 33 di signaled as horizontal, vertical, large set of intra-prediction mod processing operations referred Reference Sample Substitution a

The inter-prediction in HEVC can from previous coding standards vector prediction based on mo significantly simplified the block decoded blocks. When it comes interpolation filter kernels with range. The weighted prediction s each motion compensated predi 

D. Tables of the experimental results

In this appendix, we detail the main plots included in Chapter III, IV and V through detailed tables.

D.1 MPEG-4 AVC saliency map validation
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  et al.[START_REF] Zhai | Visual Attention Detection in Video Sequences Using Spatiotemporal Cues Categories and Subject Descriptors[END_REF] design an attention detection model, Figure II-11, highlighting regions that jointly correspond to interesting objects and actions. The static map is computed based on the color contrast (extracted at the color histogram level) while the motion map is computed based on the motion contrast between successive frames. These two elementary maps are pooled through a dynamic averaging technique (the temporal attention is dominant over the spatial attention when large motion contrast exists and vice versa). The experimental results are obtained on 9 video sequences and correspond to subjective evaluations: a panel of 5 observers watches these 9 videos together with their saliency maps. They assessed the concordance between the saliency map and their own intuition about saliency, by granting three quality marks: Good, Poor and Failed. The results show that the Good label is the most voted (with an average of 0.77) while the Failed label is granted with a frequency of 0.08.

Figure

  Figure II-11: Workflow of the saliency model [ZHA06]: the saliency map is obtained through a dynamic fusion of the static and the temporal attention model.

Figure

  Figure II-12: Flowchart of the propose achromatic and two chromatic saliency

  al. who brought to light a al point of view, all the some hypotheses about om the visual content are first formulated and then demonstrated through experiments. In this respect, maybe the most relevant example is the seminal work of Itti [ITT98]. Moreover, we could not find any study related to the saliency extraction in the compressed domain, i.e. in-between the Q and E steps represented in Figure II-1.

  Figure II-19: Video quality evolution.
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 1 Figure III-1: Saliency map computation

Figure III- 2 :

 2 Figure III-2: Orientation saliency: the identical with its neighbors (see the lef block is salient (see the right side of the

  central block into a 5x5 block neighborhood is not salie eft side of the figure); conversely, if the block orientation d e figure).

  Figure III-3: Motion saliency: the motio
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 4 Figure III-4: Features map normalization.

Figure

  Figure III-5: MPEG-4 AVC saliency map (on the left) vs. density fixation map (on the right).

The

  KLD and AUC values are rep experiment, the lower the KLD v better the Precision. In Figure III-6, the abscissa corre Chapter III.1.3 (namely the Skew and Motion) and the three inve average KLD values (averaged processed video sequences), plo their upper and lower 95% confi and maximal values (over all the

Figure III- 6 :

 6 Figure III-6: KLD between saliency map

Figure III- 7

 7 Figure III-7 is structured in the same way as Figure III-6: the abscissa corresponds to the nine investigated saliency maps while the ordinate to the AUC average/confidence limits/extreme values. In Figure III-7, the AUC study is carried out by considering a binarization threshold of max/2 (where max is the maximum value of the density fixation map).

Figure III- 9

 9 Figure III-9 shows the KLD value selected locations. The abscissa 6). The ordinate presents the av minimal and maximal values. T [SEO09] give the best results. Al providing the best result), the Multiplication-avg and the state

Figure

  Figure III-9: KLD between saliency ma frame in the video sequence).
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  Figure III-10: AUC between saliency m frame in the video sequence).

Figure

  Figure III-10 presents the AUC v and random selected locations. saliency maps and N=100 rand implicitly assumed the generality

Figure

  Figure III-11: KLD between saliency ma frame in the video sequence).

Figure

  Figure III-12: AUC between saliency m frame in the video sequence).

  Figure III-13, image (b) of the fourth example, only some details of the ducks are represented as salient while in Figure III-13, line 3, we succeeded in also detecting moving players in black.

  Figure III-13: Illustrations of saliency maps computed with different models.
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 1 Figure IV-1: Difference between HEVC a

Figure IV- 2 :

 2 Figure IV-2: KLD between saliency map

p

  and density fixation map.

Figure IV- 3

 3 Figure IV-3 is structured the same way as Figure IV-2: the abscissa corresponds to the ten investigated saliency maps while the ordinate to the AUC average/confidence limits/extreme values. In Figure IV-3, the AUC study is carried out by considering a binarization threshold of max/2 (where max is the maximum value of the density fixation map).
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  Figure IV-4 and Figure IV-5.
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Figure IV- 5

 5 Figure IV-5 presents the AUC val random selected locations. The s in Chapter III): ten saliency map max/2. According to the obtaine the state of the art method in [G AUC values.The sensitivity of the AUC me computing the � ��� coefficient domain and the investigated sali method). The results show relati
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  According to Figure IV-6, the Multiplication-avg and the Static of the ƍ coefficient, Eq. (III-6) ar [GOF12].
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 6 Figure IV-6: KLD between saliency ma frame in the video sequence).

Figure IV- 7 :

 7 Figure IV-7: AUC between saliency ma frame in the video sequence).

  3 and presented by examples in Figure IV-8 (composed from four original image and for each of them the saliency maps computed according the HEVC, MPEG-4 AVC and the three state of the art methods [CHE13], [SEO09], and [GOF12]), cf. discussion in Chapter III.3.

Figure IV- 8

 8 Figure shows that same as MPEG-4 AVC method, the HEVC method ensures identifying much localized salient areas (individual sub-parts from more global "pop out" objects) and detecting areas

Figure

  Figure IV-8: Illustrations of saliency maps computed with different models.
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 2 Figure A-2: Mean fusion of the static and dynamic map.
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 3 Figure A-3: Maximum fusion of the static and dynamic map.
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 4 Figure A-4: Multiplication fusion of the static and dynamic map.
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 5 Figure A-5: Maximum Skweness fusion of the static and dynamic map.
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 6 Figure A-6: Binary threshold fusion of the static and dynamic map.
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 7 Figure A-7: Motion priority of the static and dynamic map.
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 8 Figure A-8: Dynamic weight fusion of the static and dynamic map.
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 9 Figure A-9: Scale invariant fusion of the static and dynamic map.

Figures A- 10

 10 Figures A-10-A-17 represent the result of the comparison of the obtained saliency maps with four methods of the state of the art, namely: Ming Cheng et al. [CHE13], Hae Seo et al. [SEO09], Stas Goferman [GOF12] and our previous work in MPEG-4 AVC video stream in Chapter III (referred to as AVC). In the case of the AVC method, the best result in each spatio-temporal fusion technique computed is used.
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 11 Figure A-11: Maximum fusion.
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 12 Figure A-12: Multiplication fusion.
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 13 Figure A-13: Maximum Skewness fusion n.
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 15 Figure A-15: Motion priority fusion.
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 16 Figure A-16: Dynamic weight fusion.
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 17 Figure A-17: Scale invariant fusion.
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 1 Figure B-1: Y, Cb and Cr encoding/deco
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 2 Figure B-2: Different modes of partition
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 3 Figure B-3: Intra prediction.
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 4 Figure B-4: Intra prediction modes for � × � luminance blocks [RIC03].

Figure B- 5

 5 Figure B-5 illustrates the way in which the data is structured and transmitted within a macroblock. If the macroblock is coded in 16 × 16 intra mode, then the block containing the DC coefficient of each 4 × 4 luma block is transmitted first. Secondly, the luma residual blocks ranging from 0 to 15 are transmitted in the order shown in Figure B-5 where the DC coefficients are set to zero. Blocks 16 and 17 containing a
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 1 Figure E-1: PSNR results of the objective based selection corresponding to PSNR
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  En raison de sa taille et de sa complexité, la production, la distribution et l'utilisation des vidéos a augmenté le besoin et la nécessité des études et des recherches scientifiques qui traitent la relation entre les contenus numériques et le mécanisme visuel humain.Il y a une énorme différence entre l'image affichée sur un dispositif et l'image que notre cerveau perçoit. Il existe, par exemple, une différence entre la luminance d'un pixel sur un écran d'ordinateur et son impact visuel. La vision dépend non seulement de la perception des objets, mais aussi d'autres facteurs visuels, cognitifs et sémantiques.Le système visuel humain (SVH) a la capacité remarquable d'être attiré automatiquement par des régions saillantes. Les bases théoriques de la modélisation de la saillance visuelle ont été établies, il y a 35 ans, par Treisman[START_REF] Treisman | A feature-integration theory of attention[END_REF] qui a proposé la théorie d'intégration du système visuel humain : dans tout contenu visuel, certaines régions sont saillantes grâce à la différence entre leurs caractéristiques (intensité, couleur, texture, et mouvement) et les caractéristiques de leurs voisinages.

e durant la deuxième trimestre utilisateurs des réseaux n vidéo, [WEB02]. Chaque s utilisateurs de YouTube ne et à la nourriture sur ue 68% des mères de la a préparation des repas idéo malgré la différence arder la vidéo plutôt que sur le trafic internet sera conquis par les vidéos Le monde contient trop d'information visuelle pour arriver à la percevoir spontanément … Peu de temps après, Koch [KOC85] a mis en oeuvre un mécanisme de sélectivité, stimulant l'attention humaine : dans n'importe quel contenu visuel, les régions qui stimulent les nerfs de la vision sont d'abord choisies et traitées, puis le reste de la scène est interprété.

Dans le traitement de l'image et de la vidéo, le mécanisme complexe de l'attention visuelle est généralement présenté par une carte dite carte de saillance. Une carte de saillance est généralement définie comme une carte topographique 2D représentant les régions d'une image/vidéo sur laquelle le système visuel humain se focalisera spontanément.

  La thèse vise également à étudier le gain pratique de l'extraction de la saillance visuelle du domaine compressé. A cet égard, on a traité le cas particulier du tatouage numérique robuste des contenus vidéo. On s'attend que la saillance visuelle acte comme un outil d'optimisation, ce qui permet d'améliorer la transparence (pour une quantité de données insérées et une robustesse contre les attaques prescrites) tout en diminuant la complexité globale de calcul. Cependant, la preuve du concept est encore attendue.La thèse porte sur les limitations et les contraintes liées au cadre méthodologique de l'extraction de la saillance visuelle à partir du domaine compressé, à sa validation par rapport à la vérité terrain ainsi que sa validation applicative. Tout d'abord, il faut noter que plusieurs études, concernant les images fixes et la vidéo, ont déjà considéré des cartes de saillance afin d'améliorer les performances d'une grande variété d'applications telles que le traitement des scènes rapides, la prédiction des vidéos surveillances et la détection/reconnaissance d'objets… Ces études couvrent une large étendue d'outils méthodologiques, de la décomposition pyramidale dyadique gaussienne aux modèles inspirés par la biologie. Cependant, malgré leur vaste spectre méthodologique, les modèles existants extraient les régions saillantes à partir du domaine des pixels.

Cette thèse vise à offrir un cadre méthodologique et expérimental complet pour traiter la possibilité d'extraire les régions saillantes directement à partir des flux vidéo compressés (MPEG-4 AVC et HEVC), avec des opérations de décodage minimales.

Notez que l'extraction de la saillance visuelle à partir du domaine compressé est à priori une contradiction conceptuelle. D'une part, comme suggéré par Treisman

[START_REF] Treisman | A feature-integration theory of attention[END_REF]

, la saillance est donnée pas des singularités visuelles dans le contenu vidéo. D'autre part, afin d'éliminer la redondance visuelle, les flux compressés ne sont plus censés présenter des singularités. Par conséquence, la thèse étudie si la saillance peut être extraite directement à partir du flux compressé ou, au contraire, des opérations complexes de décodage et de pré/post-traitement sont nécessaires pour ce faire.

L'état de l'art: limitations et contraintes: D'après notre connaissance, au début de cette thèse, aucun modèle d'extraction dans le domaine compressé n'a été signalé dans la littérature.

Deuxièmement, d'un point de vue évaluation quantitative, les études de la littérature considèrent différentes bases de données, de différentes tailles (par exemple, de 8 images fixes à 50 séquences vidéo jusqu'à 25 min) et / ou pertinence (cartes de densité de fixation, les emplacements du saccade, …). La confrontation de la carte de saillance obtenue à la vérité terrain est étudiée en considérant des types particuliers de mesures, comme les métriques basées sur la distribution (par exemple, la divergence de Kullback Leibler, le coefficient de corrélation linéaire, la similitude, …) et les métriques basées sur la localisation (surface sous la courbe, selon différentes implémentations). Par conséquence, assurer une évaluation objective et une comparaison entre les modèles les plus modernes reste un défi.

Enfin, les particularités du SVH sont déjà déployées avec succès en tant qu'outil d'optimisation de tatouage, comme par exemple l'adaptation perceptive au contenu (preceptual shaping), le masquage perceptuel, les mesures de qualité inspirées par la biologie. Malgré que la saillance visuelle ait déjà prouvé son efficacité dans le domaine compressé, aucune application de tatouage utilisant la carte de saillance comme outil d'optimisation n'a été présentée avant le début de cette thèse.

  Son arrièreplan fondamental (neurobiologique) est représenté par les travaux de Treisman avançant la théorie de l'intégration pour le système visuel humain et par ceux de Koch et al. mettant en évidence un mécanisme de sélectivité temporelle de l'attention humaine. D'un point de vue méthodologique, toutes les études publiées dans la littérature suivent une approche expérimentale inhérente: certaines hypothèses sur la façon dont les caractéristiques neurobiologiques peuvent être (automatiquement) calculées à partir du contenu visuel sont d'abord formulées puis validées par des expériences. On peut donner ainsi comme exemple l'étude d'Itti[START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF] qui a été cité, selon scholar google, environ 7000 fois.Dans ce cadre, la contribution de la thèse n'est pas de proposer une nouvelle approche, mais à contrario, de démontrer méthodologiquement la possibilité de lier les éléments de syntaxe des flux MPEG-4 AVC et HEVC à la représentation mathématique originale d'Itti. Il est ainsi mis en évidence que les normes de compression les plus efficaces aujourd'hui (MPEG-4 AVC et HEVC) conservent toujours dans leurs éléments de syntaxe les singularités visuelles auxquelles le SVH est adapté.Afin de calculer la carte de saillance directement à partir des flux compressés MPEG-4 AVC / HEVC, les principes de conservation de l'énergie et de la maximisation du gradient sont conjointement adaptés aux Tout d'abord, plusieurs critères d'évaluation peuvent être pris en considération. La Précision (définie comme la ressemblance entre la carte de saillance et la carte de fixation) et la Discriminance (définie comme la différence entre le comportement de la carte de saillance dans les zones de fixations et les régions aléatoires) des modèles de saillance sont considérés.Deuxièmement, pour chaque type d'évaluation, plusieurs mesures peuvent être considérées. Notre évaluation est basée sur deux mesures de deux types différents: la KLD (divergence de Kullback Leibler), basée sur la distribution statistique des valeurs[START_REF] Kullback | On information and sufficiency[END_REF][KUL68] et l'AUC (surface sous la courbe) qui est une mesure basée sur la localisation des valeurs.Deux corpus sont considérés: (1) le corpus dit de référence organisé par [WEB05] à IRCCyN et (2) le corpus dit d'étude comparative organisé par [WEB06] au CRCNS. Ces deux corpus sont sélectionnés selon leurs compositions (diversité du contenu et disponibilité de la vérité terrain en format compressé), leurs représentativités pour la communauté de la saillance visuelle ainsi que leurs tailles. Une attention particulière est accordée à la pertinence statistique des résultats présentés dans la thèse. À cet égard, nous considérons: dans lesquelles la marque est insérée, des gains de transparence (pour une quantité de données insérées et une robustesse prédéfinies) sont obtenus. La validation applicative révèle des gains de transparence allant jusqu'à 10 dB en PSNR pour les cartes de saillance MPEG-4 AVC et jusqu'à 3dB en PSNR pour les cartes de saillance HEVC (pour une quantité de données insérées et une robustesse bien définies).En plus de sa pertinence applicative, ces résultats peuvent également être considérés comme une première étape vers une validation à posteriori de l'hypothèse de Koch : la saillance à court terme et le masquage perceptuel à long terme peuvent être considérés d'une manière complémentaire afin d'accroitre la qualité visuelle.Comme conclusion générale, la thèse démontre que bien les normes MPEG-4 AVC et HEVC ne dépendent pas explicitement de tout principe de saillance visuelle, ses éléments syntaxiques préservent cette propriété.

	2) il comprend
	différentes typologies de mesures et (3) il assure une pertinence statistique aux évaluations
	quantitatives.
	En conséquent, ce test-bed est structuré à trois niveaux, selon les critères d'évaluations et selon les
	mesures et les corpus utilisés, respectivement.

particularités du SVH et de la syntaxe du flux MPEG. Dans ce cas, les caractéristiques statiques et de mouvement sont d'abord extraites des trames I et respectivement P. Trois caractéristiques statiques sont considérées. L'intensité est calculée à partir des coefficients luma résiduels, la couleur est calculée à partir des coefficients chroma résiduels tandis que l'orientation est donnée par la variation (gradient) des modes de prédiction intra-directionnelle. Le mouvement est considéré comme l'énergie des vecteurs de mouvement. Deuxièmement, nous calculons les cartes de saillance individuelles pour les quatre caractéristiques mentionnées ci-dessus (intensité, couleur, orientation et mouvement). Les cartes de saillance sont obtenues à partir des cartes de caractéristiques après trois étapes incrémentales : la détection des outliers, le filtrage moyenneur avec le noyau de la taille de la fovéa et la normalisation dans l'intervalle [0, 1].

Enfin, nous obtenons une carte de saillance statique en fusionnant les cartes d'intensité, de couleur et d'orientation. La carte de saillance globale est obtenue en regroupant la carte statique et celle de mouvement selon 48 combinaisons différentes de techniques de fusion.

Confrontation de la carte de saillance extraite directement à partir du flux compressé à la vérité terrain Comme nous l'avons déjà expliqué, chaque modèle d'extraction de la saillance visuelle doit être validé par une évaluation quantitative.

De ce point de vue, la principale contribution de la thèse consiste à définir un test-bed générique permettant une validation objective et une analyse comparative.

Le test-bed défini dans cette thèse est caractérisé par trois propriétés principales: (1) il permet d'évaluer les différences entre la vérité terrain et la carte de saillance par différents critères, (

�

Pour les deux critères d'évaluation, la Précision et la Discriminance, chaque valeur de KLD et d'AUC est présenté avec sa moyenne, ses valeurs minimales et maximales, et l'intervalle de confiance à 95% correspondant. � Pour l'évaluation de la Discriminance, chaque expérience (c'est-à-dire pour chaque trame dans chaque séquence vidéo) est répétée 100 fois (c'est-à-dire pour 100 ensembles de localisation aléatoire). La valeur finale est moyennée sur toutes ces configurations et toutes les trames dans la séquence vidéo; � Pour l'étude de la Précision et de la Discriminance, on a analysé la sensibilité des mesures KLD et AUC par rapport au caractère aléatoire du contenu vidéo constituant le corpus utilisé. Ce test-bed a été considéré pour comparer notre méthode d'extraction de la carte de saillance MPEG-4 AVC contre trois méthodes de l'état de l'art. La carte de saillance HEVC a été comparée à son tour contre les mêmes trois méthodes de l'état de l'art ainsi que contre la carte de saillance MPEG-4 AVC. Les trois méthodes de l'état de l'art ont été choisies selon les critères suivants: la représentativité dans l'état de l'art, la possibilité d'une comparaison équitable et la complémentarité méthodologique. Pour illustration, les résultats de la confrontation de notre carte de saillance MPEG-4 AVC par rapport à la vérité terrain montrent des gains relatifs en KLD entre 60% et 164% et en AUC entre 17% et 21% contre les trois modèles de l'état de l'art. Pour la carte de saillance HEVC, les gains en KLD se situent entre 0,01 et 0,4 tandis que les gains en AUC se situent entre 0,01 et 0,22 contre les mêmes modèles de l'état de l'art. Validation applicative dans une méthode de tatouage robuste Nous étudions les avantages de l'extraction de la carte de saillance directement à partir du flux compressé lors du déploiement d'une application de tatouage robuste. En fait, en utilisant le modèle d'extraction de la saillance visuelle à partir des flux MPEG-4 AVC / HEVC comme guide pour sélectionner les régions La structure de la thèse Afin d'offrir une vision méthodologique et expérimentale complète de la possibilité d'extraire les régions saillantes directement à partir des flux compressés vidéo (MPEG-4 AVC et HEVC), cette thèse est structurée comme suit. Le chapitre I couvre les aspects introductifs et se compose de trois parties principales, liées à la saillance visuelle, au tatouage et au codage vidéo, respectivement. Le chapitre II est consacré à l'analyse de l'état de l'art. Il est divisé en trois parties principales. Le chapitre II.1 traite les méthodes d'extraction de la saillance visuelle bottom-up et est structurée en deux niveaux : image contre vidéo et pixel contre domaine compressé. Le chapitre II.2 donne un bref aperçu sur la relation méthodologique entre les applications de tatouage et la saillance visuelle. Le chapitre II.3 concerne les applications traitant directement le domaine vidéo compressé. Le chapitre III présente le cadre méthodologique et expérimental de l'extraction de la saillance visuelle à partir du flux compressé MPEG-4 AVC. Le chapitre VI est structuré de la même manière que le chapitre III et présente le cadre méthodologique et expérimental pour l'extraction de la saillance visuelle à partir du flux compressé HEVC. Le dernier chapitre est consacré aux conclusions et aux perspectives. La thèse contient cinq annexes. L'annexe A est consacrée à l'étude de la technique de fusion pour les modèles d'extraction MPEG-4 AVC et HEVC. L'annexe B donne un aperçu sur la norme MPEG-4 AVC. L'annexe C identifie les principaux éléments de nouveauté pour la norme HEVC. L'annexe D détaille les valeurs numériques des résultats données dans les chapitres III, IV et V. L'annexe E présente sous forme de graphiques les résultats présentés dans les tableaux du chapitre III.

  Tableau 0-1: Extraction de la saillance visuelle à partir du domaine vidéo compressé: contraintes, défis, limitations et contributions

	Contraintes		Défis			Limitations	Contributions
	Extraction de la	•	L'extraction de la	•	Les caractéristiques de	•	Spécifier un formalisme reliant le système visuel
	saillance visuelle		saillance visuelle à		la saillance visuelle	humain aux caractéristiques élémentaires des
				partir	des	flux		sont extraites à partir	éléments de syntaxe des flux MPEG-4 AVC et HEVC
				compressés: MPEG-4		des pixels	•	Définir des stratégies de normalisation pour les
				AVC et HEVC				cartes obtenues
									•	Etudier la fusion des cartes statiques et dynamiques
									pour obtenir une carte de saillance du flux
									compressé
	Evaluation	des	•	Confrontation à la	•	Données limitées	•	Spécifier un test-bed cohérent et unitaire permettant
	performances			vérité terrain:		•	Procédures	la confrontation des cartes de saillance à la vérité
				Précision et			d'évaluation variables	terrain:
				Discriminance				�	Les critères d'évaluation :
									•	Précision : La ressemblance entre la carte
									de saillance et la carte de fixation
									•	Discriminance : La différence entre le
									comportement de la carte de saillance
									dans les régions de fixation et les endroits
									aléatoires
									�	Typologie des mesures :
									•	Une métrique basée sur la distribution: le
									KLD implémenté en fonction de la théorie
									de l'information de Kullback Leibler
									[KUL51], [KUL68]
									•	Une métrique basée sur l'emplacement:
									AUC
									�	Des corpus différents :
									•	Le corpus de référence organisé par
									IRCCyN [WEB05]
									•	Le corpus de l'analyse comparative
									organisé by Itti [WEB06]
									�	Pertinence statistique :
									•	Précision et Discriminance : valeurs
									expérimentales présentées aves leurs
									moyennes, min, max et intervalle de
									confiance à 95%.
									•	Discriminance: Processus de calcul de la
									moyenne supplémentaire sur les testes
									aléatoires répétées;
									•	Précision et Discriminance: Évaluation de
									la sensibilité des mesures par rapport au
									caractère aléatoire du contenu visuel.
	Intégration	dans	•	Garder		les		
	l'application	de		caractéristiques	de		
	tatouage			l'application tout en		
				diminuant le coût de		
				calcul.				

Table 1 :

 1 Visual saliency extraction from video compressed domain: constraints, challenges, current limitations and contributions.

	Constraint		Challenge			Current limitations	Contributions
	Saliency extraction •	Visual		saliency	•	Visual	saliency	•	Specifying a formalism connecting the human visual
			extraction from the		features are extracted	system to elementary features of the MPEG-4 AVC
			compressed stream		from		the	and HEVC streams syntax elements
			syntax	elements		uncompressed stream	•	Defining normalization strategies for the obtained
			(MPEG-4 AVC and				maps
			HEVC)						•	Studying the pooling of the static and the dynamic
									saliency maps into a final compressed stream
									saliency map
	Performance	•	Confrontation to the	•	Limited data sets	•	Specifying a coherent, unitary test-bed allowing the
	evaluations		ground truth:		•	Variable	and	un-	confrontation of the compressed stream saliency
			Precision and			coherent evaluation	maps to the ground truth:
			Discriminance			procedures		�	Evaluation criteria:
									•	Precision: the closeness between the
									saliency map and the fixation map
									•	Discriminance: the difference between
									the behavior of the saliency map in
									fixation locations and in random locations
									�	Typology of measures:
									•	A distribution based metric: the KLD
									implemented based on Kullback's
									Information theory [KUL51], [KUL68]
									•	A location based metric: the AUC
									implementation made available by Borji
									[WEB09]
									�	Different corpora:
									•	The reference corpus organized by
									IRCCyN [WEB05]
									•	The cross-checking corpus organized by
									Itti [WEB06]
									�	Statistical relevance
									•	Precision	and	Discriminance:
									experimental values reported alongside
									with their average, min, max and 95%
									confidence limits;
									•	Discriminance:	additional	averaging
									process over repeated random test
									configurations;
									•	Precision and Discriminance: assessment
									of the sensitivity of the measures with
									the randomness of the visual content.
	Applicative	•	Preserving	the			
	integration		application				
	(watermarking)		characteristics at a			
			low	computational			
			cost					

  Rather than being directly focused on visual saliency in video, Itti et al.[START_REF] Itti | Bayesian surprise attracts human attention[END_REF] deal with a broader concept, namely the surprise. First, the study provides a formal mathematical model for the surprise elicited by a visual stimulus or event. In this respect, a Bayesian framework is considered. The background information of an observer is represented by its prior probability distribution over a given model. Starting from this prior distribution of beliefs, the fundamental effect of a new data observation D on the observer is to change the prior distribution in the posterior distribution via Bayes theory. The new data observation D carries no surprise if the posterior distribution is identical to the prior one. Conversely, D is surprising if the posterior distribution differs from the prior distribution. The same data may carry different amount of surprise for different observers, or even for the same observer taken at different times. Secondly, the surprise is connected to the visual saliency through experiments considering both TV and video games content. It is thus brought to light that more than 72% of human saliency is connected to the surprise.

	II.1.2. Video saliency map
	As a general direction in the state-of-the-art studies, the spatial (static 2D) saliency extracted at the
	frame level is complemented with temporal (motion) information.
	nsformed domain of the JPEG

  Goferman et al. propose an extension of the work in[START_REF] Goferman | Context-aware saliency detection[END_REF] and calculated the saliency from a video content based on the context aware approach. This model follows four principles of human visual attention (Figure II-7), which are: (1) Local low-level considerations, including factors such as contrast and color. (2) Global considerations, which suppress frequently occurring features while maintaining features that deviate from the norm. (3) Visual organization rules, which state that visual forms may possess one or several centers of gravity about which the form is organized (the salient pixels should be grouped together and not spread all over the image). (4) High-level factors, such as priors on the salient object location and object detection (implemented as post processing operations). This model was qualitatively and quantitatively evaluated. The qualitative evaluation is done on 12 images with different scenes and it proves that the context aware method can always detect the salient objects according to the context of the image. The quantitative evaluation consists on comparing the ROC curves on two different benchmarks presented in[START_REF] Hou | Saliency detection: A spectral residual approach[END_REF],[START_REF] Judd | Learning to Predict Where Humans Look[END_REF]. The experimental results show that this

	tion from compressed streams	
	y computation model [FAN14]: the visual saliency is extr tracted from the transformed
	Guo et al. [GUO10] propose a Phase spectrum of Quaternion F Conclusion	ion model based on the ered as a composition of
	three components (intensity -t	difference between color
	pairs (red/green, blue/yellow), a Based on 18 directly investigate ed studies (and on 25 additional studies to whic rames) and a quaternion ch these 18 refer to), the
	representation is associated to it present state-of-the-art analysis s can be synoptically presented in Table II.1. I ined by processing these It brings to light a large
	components and by fusing the variety of approaches for bridgin ng human visual system and automatic saliency c illustrates the different computation. While they
	computation steps of this mode generally converge in the type o of the main methodological steps (extracting in 00 natural images and 1 ndividual intensity, color,
	video (988 frames): the average orientation and motion maps an nd subsequently fusion them at spatial and spati iency map) value is 0.83, o-temporal levels), lot of
	which outperforms 4 state of the divergences still remains in th heir definition, assessment (ground-truth vs. a R06]. applicative, objective vs.
	subjective evaluation, composit tion of corpora, type of measures, etc.). Not te that some top-down
	saliency studies consider in addit tion to the spatial and temporal saliency a third	cue; for instance, Boujut
	et al. [BOU12] propose a fusion o of spatial, temporal and geometric cues.	
	The state of the art analysis ide entifies automatic visual saliency detection as a	particular research field.
	Its fundamental (neuro-biologic cal) background is represented by the early w works of Treisman et al.,
	advancing the integration theory y for the human visual system and by Koch et a
	time selectivity mechanism in t the human attention. From the methodologica
	studies published in the literatu ure follow an inherent experimental approach:
	how these neuro-biological char racteristics can be (automatically) computed fro

Figure II-16: Multiresolution spatiotem transform (PQFT) [GUO10]. tion from compressed streams aph [MAR09]: the attention model was computed on two multiresolution spatiotemporal saliency detecti Fourier Transform (PQFT). Each frame is conside the average of r, g and b channels, color -the d and motion -difference between successive fr t. The final spatiotemporal saliency map is obtai em according to a QFT formula. Figure II-16 el. The experimental results are obtained on 10 e AUC (between the human fixation and the sali e art models [ITT98], [ITT00], [HOU07], and [HAR mporal saliency detection model based on the phase spe parallel ways: the static way ectrum of quaternion Fourier In [GOF12], method outperforms state of the art methods [ACH09], [GUO08], [HAR06], [HOU07], [ITT98], [JUD09], and [RAH10]. Fang et al. [FAN14] propose a saliency detection model in MPEG-4 ASP [WEB11]. This model uses DCT coefficients of unpredicted frames (I frames) to get static features and predicted (P and B frames) to get motion information, see Figure II-17. YCrCb color space is used in MPEG-4 ASP video bit stream. The AC coefficients represent texture information for image blocks. The motion vectors are then extracted to get the motion feature. The combination of the static and the motion features is then applied based on a dynamic fusion. The experimental results are obtained on 50 video sequences and correspond to calculate the KLD and the AUC between the saliency map and the fixation map at saccade locations; it is shown that this model is validated by a KLD=1.828 and AUC=0.93.

Figure II-17: Flowchart of the saliency domain of the MPEG-4 ASP. II.1.3. C

Table II -

 II 1: State of the art synopsis of saliency detection models.Table II-1 (continuing): State of the art synopsis of saliency detection models.

		tion from compressed streams	
	Model [ITT98] [ITT05] [BRU05] [ZHA06] By its very nature, under the wa Saliency detection / pooling Uncompressed image methods Center-surround Gaussian differences /Average pooling Ground truth: Validation -258 images -SFC II.2. Visual sal liency as a watermarking o optimization Results Uncompressed videos methods Detecting the low level surprising event in the video Ground truth: -[WEB06] tool KL= 0.241 SFC(salient locations)>SFC(average) Quantifying the self-information of each local image patch / Gaussian filter Ground truth: -3600 natural images -ROC curve -KL scores Contrast based features extraction / dynamic averaging technique -9 video sequences -5 assessors votes on the watermarking framework, the visual saliency is re elated to the concept of Good=0.77 transparency: a priori, saliency y maps are expected to act as an optimizatio on tool for selecting the Poor=0.15 ROC[TSO06] correctness of the detection Failed= 0.08 locations for mark insertion, Figu ure II-18. For prescribed levels of robustness and d data payload, inserting >ROC[ITT98] AROC=0.7288 [HAR06] Graph-based model / Markovian-based weighted summation Ground truth: -108 images -AUC 0.96< [LEM07] The center surrounds filters and the relative motion / weighted average Ground truth: -7 video sequences CC=0.41 the mark into salient regions is expected to result into a lower transparency a and, conversely, inserting KLD=19.21 the mark into non-salient regio ons is expected to increase the transparency. Of course, this general -CC, KLD, and ROC curves AUC [HOU08] Incremental Coding Length (ICL) based saliency Ground truth: KLD= 0.54 expectation can be extended d for other watermarking properties. For in nstance, for prescribed <0.98 [LEM06] Center-surround interactions / weighted addition Ground truth: -10 images CC=0.71 KLD=0.46 model / weighted summation -1 video sequence and 120 still AUC= 0.79 transparency and data-payload constraints, inserting the watermark in salient t regions is expected to images -KLD and AUC ameliorate robustness. Similarly y, for prescribed transparency and robustness c constraints, inserting the
	-CC and KLD -62 natural images Ground truth: -corpus [BRU05] expected to increase the data payload. The spectral residual of a log-spectrum of an Regression kernel / self-resemblance watermark in salient regions is ex [HOU07] [SEO09]	-HR[HOU07] KLD=0.34 AUC=0.67	>=
	image/Gaussian filter However, there is no a priori hin nt about the extent to which saliency can be be -4 naïve subjects -comparison with [ITT98] calculating the HitRate and the FalseAlarmRate and the computational coast in seconds -KLD and AUC enefic for watermarking. HR[ITT98] -FAR[HOU07] <= FAR[ITT98] -lower computational precision and recall F1. at the middle of each coast (4.041s<61.621s) [MAR09] Two parallel ways (static biologically inspired and dynamic highlights moving objects) / parallel saliency maps Applicative validation: -three videos -harmonic average between F1 (MAR09) > F1 (one frame selection [AGA13], [CHE15], [WAN15], [BH HO16], and [GAW16]. F1(random summary ) > For solving this issue, several re esearch studies are already reported [SUR09], [NIU11], [TIA11], [LI12],
	[GOF10]	Context aware detection / post-processing based on	Ground truth [HOU07]	ROC curves [GOF10] > shot)
	[GUO10] [MUR11] [GOF12] [FAN14]	the fourth principle Phase based saliency model detection / QFT formula Ground truth: -62 images -ROC curves Applicative validation: -Image retargeting and -1 video (988 frames) and 100 still images -AUC summarization Low-level video representation that predicts color appearance phenomena/inverse wavelet transform Context aware detection / fusion based on centers Ground truth: Ground truth [BRU05] -120 color images -20 different subjects of gravity -corpus [HOU07][JUD09] -ROC curve -KLD and AUC Compressed video methods (MPEG-4 ASP) Ground truth [JUD09] -1003 images -15 subjects -KLD and AUC Extracting intensity, color, and orientation from DCT Ground truth: Dynamic pooling -KLD and AUC coefficients, motion from motion vector / -corpus [WEB06]	ROC curves [HOU07] AUC= 0.83 ROC curves [GOF10] > ROC curves [WAL06] ROC curve (context aware) > ROC curve KLD=0.426 (State of the art AUC=0.701 methods) KLD=1.82 KLD=0.278 AUC=0.664 AUC=0.93
	[CHE13]	Color contrast and color spatial distribution / Pooling	Ground truth:	MAE decreased by
		based on compactness	-1000 images	25.2%
			-MAE	
		Compressed image methods (JPEG)	
	[FAN12]	Extracting intensity, color, and orientation from DCT	Ground truth:	AUC= 0.93
		coefficients /	-1000 images	
		Weighted summation	-AUC	
	Figure II-18: Principle of a watermark e embedding scheme based on saliency map.	
	Sur et al. [SUR09] propose a ne ew spatial domain adaptive image watermarking g scheme. First, the Itti's
	saliency model [ITT98] is used so o as to determine the salient locations. Then, the e least salient pixels from
	those regions are replaced by w watermarked pixels; the watermarking method it tself is based on the LSB
	technique. The experimental res sults mainly investigate the transparency propert ty, expressed through an
	HVS-related objective measure, , namely the Watson's Total Perceptual Error r (TPE): gains by factors
	between 1.5 and 4 (according to o the data payload) are obtained.	

Table II -

 II 2: State-of-the-art of the watermark embedding scheme based on saliency map.

	Reference	Watermarking schema	Visual saliency model		Benefits
	[SUR09]	LSB (lowest significant bit)	[ITT98]	Gains in TPE by factors
				between 1.5 and 4 (according
				to the data payload)
	[NIU11]	SS in the DCT domain	[HOU07]	Subjective amelioration
	[TIA11]	Inserting robust watermark	Proto-object model	Transparency: PSNR >= 42
		into DCT of ROI and the fragile watermark into LL sub-band		Fragileness and efficiency: Preserving authentication
				while detecting tampering
				Robustness: outperforms the
				[MOH08] when resisting the
				white noise, median filter and
				the	JPEG	compression
				attacks.

Table II -

 II 3: State of the art of the compressed stream application.

	Reference	Application	Compressed domain
	[KRA05]	Super-resolution (SR) mosaic	MPEG
	[THI06]	Watermarking	MPEG1/2
	[MAN08]	Foreground object extraction	MPEG1/2
	[POP09]	Detecting moving object	MPEG-4 AVC
	[ZHO10]	Fingerprinting	MPEG-2
	[BEL10]	Watermarking	MPEG-4 AVC
	[FAN12]	Image retargeting	JPEG
	[AMO12]	Compressed domain stitching of streams coded HEVC
	[OGA15]	Watermarking	HEVC

Table III -

 III 1: Assessment of the model performance in predicting visual saliency.During our experiments, we benchmark our MPEG-4 AVC saliency map against three state of the art methods, namely: Ming Cheng et al.[START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF], Hae Seo et al.[START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF] and Stas Goferman[START_REF] Goferman | Context-aware saliency detection[END_REF], whose MATLAB codes are available for downloading.

	Ground truth validation: concordance between the computed saliency map and human visual saliency
	Precision: similarity with ground truth (cf.	Discriminance: difference with respect to random
	Chapter III.2.1.2)	locations (cf. Chapter III.2.1.3)
	Measures: KLD, AUC	Measures: KLD, AUC
	Corpus: reference	Corpus: reference, cross-checking

  Table III-3: KLD sensitivity gains between Skewness-max, Combined-avg and Addition-avg and the state of the art methods [CHE13] [SEO09] [GOF12].

		Skewness-max	Combined-avg	Addition-avg
	[CHE13]	2.79	1.43	1.46
	[SEO09]	5.81	2.91	2.97
	[GOF12]	6.12	3.02	3.12

Table III -

 III 5: AUC sensitivity gains between Skewness-max and Combined-avg and the state-of-the-art methods[CHE13][SEO09][GOF12].Table: AUC values between saliency map at fixation locations and saliency map at random locations with different binarization thresholds (N=100 trials).

			Skewness-max			Combined-avg	
	[CHE13]		1.59			2.02	
	[SEO09]		1.38			1.76	
	[GOF12]		1.06			1.34	
		90%	80%	70%	60%	50%	max/2
	Skewness-max	0.87	0.85	0.83	0.81	0.79	0.93
	Combined-avg	0.91	0.90	0.89	0.86	0.87	0.92
	Multiplication-avg	0.65	0.64	0.63	0.59	0.58	0.66
	Addition-avg	0.91	0.90	0.88	0.86	0.86	0.87
	Static-avg	0.88	0.87	0.86	0.84	0.84	0.89
	Motion	0.81	0.79	0.76	0.74	0.73	0.75
	[CHE13]	0.78	0.77	0.76	0.74	0.76	0.73
	[SEO09]	0.89	0.86	0.81	0.78	0.78	0.78
	[GOF12]	0.92	0.91	0.89	0.87	0.86	0.93

Table III -

 III 6 investigates the impact of the choice of the binarization threshold in the AUC average values; in this respect, we kept the same 6 threshold values as in TableIII-4, namely the percentile of 90%, 80%, 70%, 60%, 50% and max/2. Although the general tendency is the same as in TableIII-4, the values reported in TableIII-6 show a larger dependency of the AUC values on the binarization thresholds:

	• Skewness-max, Combined-avg, Multiplication-avg, Static-avg, and [GOF12] have the largest AUC
	values for max/2.

Table III -

 III 7: KLD gains between Multiplication-avg and Static-avg and the three state of the art methods [CHE13][SEO09][GOF12].

		Multiplication-avg	Static-avg
	[CHE13]	1.54	0.71
	[SEO09]	0.91	0.25
	[GOF12]	1.64	0.76
		Multiplication-avg	Static-avg
	[CHE13]	1.66	1.18
	[SEO09]	1.75	1.24
	[GOF12]	2.06	1.47

Table III-8: KLD sensitivity gains between Multiplication-avg and Static-avg and the three state of the art methods [CHE13][SEO09][GOF12].

According to the AUC values reported in Figure III-12, the best (statistically significant) results are provided by Skewness-max; it outperforms the three state of the art methods by ƞ, Eq.(III-8) , gains of 0.04, 0.17, 0.17. When computing the ζ ��� coefficient, Eq. (III-9), between Skewness-max and the three state of the art methods, relative gains by factors of 1.34, 1.63 and 1.38 are thus obtained.

  Table III-9: Objective quality evaluation of the transparency when alternatively considering random selection and "Skewnessmax" saliency map based selection.

		Data		Random selection			Skewness-max based selection	
		payload										
		(bit per I										
		frame)										
			min	95%	mean	95% up	max	min	95%	mean	95% up	max
				down					down			
	PSNR	30	34.76	50.44	51	51.56	64.07	40.32	60.53	61	61.47	68.97
		60	33.98	45.89	47	48.11	64.67	37.63	53.72	54	54.28	69.74
		90	36.08	44.08	45	45.92	62.98	36.96	47.67	48	48.33	66.93
	NCC	30	0.98	0.99	1	1	1	0.98	0.99	1	1	1
		60	0.97	0.98	0.99	1	1	0.98	0.99	1	1	1
		90	0.96	0.98	0.99	1	1	0.98	0.99	0.99	1	1
	DVQ	30	1280	1478	1490	1502	1753	203	292	297	302	416
		60	1520	1800	1809	1818	2064	480	559	567	575	830
		90	2030	2506	2515	2524	2780	653	699	713	727	816

Table III -

 III 10: MOS gain between the QIM method with random selection and saliency map "Skewness-max" based selection.

		Data payload (bit per I frame)	Random selection	Skewness-max based selection
		0	3.38	
	MOS	30 60	3.11 3.12	3.34 3.14
		90	2.95	2.97

  -1, where the columns corres o the same state of the art methods and MPEG cy maps give better results than the state of t Motion priority-max against[START_REF] Goferman | Context-aware saliency detection[END_REF]) but the MPEG-4 AVC saliency map outperforms all of them. The best HEVC saliency map results are provided by Combined-avg and Addition-avg which outperform the three considered state of the art methods,[START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF],[START_REF] Seo | Nonparametric bottom-Up saliency detection by self-resemblance[END_REF], and[START_REF] Goferman | Context-aware saliency detection[END_REF], by relative gains of 0.39, 0.36, and 0.27 and 0.40, 0.38 and 0.29, respectively.
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  Table IV-1: KLD gains between all the combination of HEVC saliency maps and the state of the art methods [CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map.

		Motion priority-max	Combined-avg Multiplication avg	Addition avg	Static avg	Motion
	[CHE13]	0.14	0.39	0.16	0.40	0.35	0.19
	[SEO09]	0.11	0.36	0.12	0.38	0.32	0.15
	[GOF12]	-0.01	0.27	0.01	0.29	0.23	0.04
	MPEG-4 AVC	-1.17	-0.56	-1.13	-0.51	-0.65	-1.06

Table IV -

 IV 2: KLD sensitivity gains between all considered HEVC saliency map combinations and the state of the art methods[START_REF] Cheng | Efficient salient region detection with soft image abstraction[END_REF] [SEO09] [GOF12] and MPEG-4 AVC saliency map.

		Motion priority-max	Combined-avg Multiplication-avg	Addition-avg	Static-avg	Motion
	[CHE13]	6.53	7.20	8.44	8.15	5.47	5.30
	[SEO09]	6.82	7.52	8.81	8.51	5.71	5.53
	[GOF12]	7.73	8.52	9.98	9.64	6.47	6.27
	MPEG-4 AVC	16.56	18.25	21.39	20.66	13.44	13.44

  Table IV-5: KLD gains between Multiplication-avg and Static-avg and the state of the art methods [CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map.The KLD sensitivity with respect to the randomness of the visual content was analyzed by computing the ζ KLD in Eq. (III-7) among and between Multiplication-avg and Static-avg and the same investigated methods. The experimental results reported in TableIV-6 demonstrate relative gains between 0.003 (corresponding to the Static-avg / MPEG-4 AVC comparison) and 0.75 (corresponding to the

		Multiplication-avg	Static-avg
	[CHE13]	0.20	0.23
	[SEO09]	-0.07	-0.05
	[GOF12]	0.24	0.28
	MPEG-4 AVC	-0.74	-0.72
	Multiplication-avg / [CHE13] comparison).		

Table IV -

 IV 6: KLD sensitivity gains between Multiplication-avg and Static-avg and the state of the art methods [CHE13] [SEO09][GOF12] and MPEG-4 AVC saliency map.

		Multiplication-avg	Static-avg
	[CHE13]	0.75	0.01
	[SEO09]	0.002	0.003
	[GOF12]	0.23	0.02
	MPEG-4 AVC	0.01	0.003

  Table IV-7: Objective quality evaluation of the transparency when alternatively considering random selection and "Combinedavg" saliency map based selection.

		Data		Random selection			Saliency based selection	
		payload										
		(bit per I										
		frame)										
			min	95%	mean	95% up	max	min	95%	mean	95% up	max
				down					down			
	PSNR	30	23.56	39.13	40.08	41.03	61.67	25.33	41.038	41.51	41.982	65.97
		50	26.78	37.09	37.83	38.57	59.73	27.45	38.81	39.52	40.23	66.34
	CQ	30	187.92	198.87	201.53	204.18	216.56 189.38 199.68	201.41	203.13	217.51
		50	188.39	199.59	201.27	202.94	216.78 190.62 199.44	201.31	203.17	217.67
	IF	30	0.963	0.997	0.9976	0.997	0.999	0.971	0.997	0.997	0.997	0.999
		50	0.956	0.995	0.996	0.996	0.999	0.965	0.996	0.997	0.997	0.999

  For instance, the ground truth results related to Precision and Discriminance, exhibit absolute relative gains, defined according to Eq. (III-7) and Eq. (III-9), over the state of the art and the MPEG-4 AVC saliency extraction methods:• in KLD: between 28% (corresponding to Discriminance, the cross-checking corpus and Static-avg/[GOF12] comparison) and 40% (corresponding to Precision, the reference corpus and the Addition-avg / [CHE13] comparison),

	Table IV-9: Ground truth validation results				
			Ground truth validation: best results		
		Precision		Discriminance	
	Reference corpus	Reference corpus	Cross-checking corpus
	KLD	AUC	KLD	AUC	KLD	AUC
	Combined-	Combined-avg,	MPEG-4 AVC	Motion priority-	Multiplication	Motion
	avg, Addition-	Addition-avg,		max,	-avg and the	priority-max and
	avg, MPEG-4	Static-avg		[GOF12], MPEG-	Static-avg, MPEG-	MPEG-4 AVC
	AVC			4 AVC	4 AVC	

  Table V-1 illustrates the KLD and AUC values, for the three state of the art methods acting in the uncompressed
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Table V -

 V 1: Comparison of the results of Con[START_REF] Goferman | Context-aware saliency detection[END_REF]) and the three methods acting in the co r HEVC saliency model and the methods of Fang ance (reference corpus and cross-checking corpu of Precision and both KLD and AUC, the com he uncompressed stream models.ance, the results also go in the same directions b for the reference corpus, the KLD values s ile the AUC values show that both MPEG-4 AVC e best results. However, for the cross-checking and [FAN14] methods as the best solutions whi ssed-domain methods (HEVC, MPEG-4 AVC, and [ r results and proves that, contrarily to our expe dels have greater performance than the uncomp r a posteriori demonstrates the very need and ed in the thesis: the simple intuition is not able t MPEG-4 AVC would outperform saliency extra sophisticated HEVC compression format! f KLD and AUC between saliency maps and fixation maps.
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Table A -

 A 

		[CHE13]	[SEO09]	[GOF12]	AVC
	Mean (stat_max)	0.41	0.39	0.31	-0.03
	Max (stat_max)	0.39	0.37	0.28	-0.07
	Multiplication (stat_mean)	0.12	0.08	-0.03	-0.58
	Maximum skewness (stat_mean)	0.39	0.36	0.28	-0.07
	Binary threshold (stat_max)	0.34	0.31	0.22	-0.19
	Motion priority (stat_max)	0.16	0.13	0.01	0.27
	Dynamic weight (stat_max)	0.41	0.39	0.31	-0.05
	Scale invariant (stat_max)	0.41	0.39	0.31	-0.02

1: KLD gains between HEVC spatio-temporal saliency maps and [CHE13] [SEO09] [GOF12] AVC.

Table B -

 B 1: Quantization steps.

	� �	0	1	2
	� ���� 0.625 0.6875 0.8125 … 18 … � � � ���� 5

  �����Y �� ���Y �� ���� � � + �2 � ≫ �� ion of the quantization parameter, � is the bit l e of the MPEG-4 AVC and takes place in three stag med coefficients are scanned in a zig-zag m ded ent is RL (Run-Length) encoded so as to increase t cted according to two advanced methods of the combination of Universal Variable Length Cod h Coding (CAVLC) which can be used for all encod by Context-Based Adaptive Binary Arithmetic Cod AVLC only for main profile.

		Appendixes
		length parameter for the
		ges:
		manner (Figure B-6) and
	• Each quantized coefficie	the compression rate
	• The bitstream is construc	entropy coding. The first
	category represents a c	ding (UVLC) and Context
	Adaptive Variable Length	ding profiles. The second
	method is represented b	ding (CABAC) that can be
	used alternately with CA	
	Figure B-6: Zig-zag scanning.	
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Table D -

 D Table D-1: KLD between saliency map and density fixation map: corresponding to Figure III-6.Table D-2: AUC between saliency map and density fixation map: corresponding toFigure III-7. 3: KLD between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence: corresponding to Figure III-9. Table D-4: AUC between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence: corresponding to Figure III-10. Table D-5: KLD between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure III-11. Table D-6: AUC between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure III-12.

	Discriminance Cross-checking corpus: D.2 HEVC saliency map validation	
	Reference corpus					
	Precision					
	Reference corpus					
		Min	95% CL low	KLD	95% CL up	Max
	Skewness-max	Min 0.29	95% CL low 0.58	KLD 0.61	95% CL up 0.64	Max 2.14
	Skewness-max Combined-avg	0.30 0.38	0.56 0.64	0.51 0.66	0.46 0.68	1.10 1.70
	Combined-avg Multiplication-avg	0.28 0.18	0.52 1.39	0.59 1.40	0.65 1.42	0.98 1.80
	Multiplication-avg Addition-avg	0.31 0.30	1.24 0.67	1.63 0.69	2.03 0.71	3.27 1.90
	Addition-avg Static-avg	0.18 0.33	0.40 0.89	0.50 0.91	0.60 0.93	0.92 1.82
	Static-avg Motion	Min 0.18 0.27	95% CL low 0.41 0.72	KLD 0.55 0.74	95% CL up 0.70 0.76	Max 1.03 1.60
	Skewness-max Motion CHE13	0.20 0.32 0.23	0.22 0.74 0.52	0.28 1.06 0.55	0.34 1.37 0.58	0.35 2.62 1.90
	Combined-avg CHE13 SEO09	0.23 0.28 0.15	0.29 1.23 0.71	0.32 1.55 0.73	0.35 1.87 0.75	0.38 3.36 2.03
	Multiplication-avg SEO09 GOF12	0.36 0.35 0.36	0.55 0.92 0.50	0.64 1.23 0.53	0.73 1.53 0.56	0.75 3.53 2.80
	Addition-avg GOF12	0.22 0.20	0.29 0.38	0.31 0.43	0.35 0.49	0.37 0.87
	Static-avg	0.27	0.32	0.37	0.42	0.47
	Motion	0.35	0.41	0.48	0.55	0.64
	CHE13	0.44	0.61	0.71	0.81	0.96
	SEO09	0.32	0.48	0.68	0.88	1.13
	GOF12	0.25 Min	0.41 95% CL low	0.60 AUC	0.79 95% CL up	1.09 Max
	Skewness-max	Min 0.63	95% CL low 0.74	AUC 0.75	95% CL up 0.77	Max 0.99
	Skewness-max Combined-avg	0.86 0.51	0.89 0.57	0.93 0.58	0.93 0.59	0.93 0.98
	Combined-avg Multiplication-avg	0.86 0.44	0.88 0.56	0.92 0.57	0.92 0.58	0.91 0.94
	Multiplication-avg Addition-avg	Min 0.52 0.49	95% CL low 0.57 0.67	AUC 0.66 0.68	95% CL up 0.71 0.69	Max 0.78 0.99
	Skewness-max Addition-avg Static-avg	0.92 0.8 0.58	0.93 0.82 0.62	0.95 0.87 0.63	0.97 0.88 0.64	0.97 0.92 0.95
	Combined-avg Static-avg Motion	0.8 0.81 0.48	0.81 0.83 0.67	0.83 0.89 0.68	0.84 0.92 0.69	0.86 0.92 0.84
	Multiplication-avg Motion CHE13	0.53 0.76 0.60	0.57 0.78 0.71	0.61 0.81 0.72	0.65 0.84 0.73	0.71 0.9 0.97
	Addition-avg CHE13 SEO09	0.8 0.54 0.56	0.81 0.62 0.62	0.85 0.73 0.64	0.89 0.84 0.66	0.9 0.93 0.96
	Static-avg SEO09 GOF12	0.75 0.59 0.52	0.73 0.68 0.63	0.81 0.78 0.64	0.89 0.88 0.66	0.91 0.93 0.98
	Motion GOF12	0.75 0.88	0.78 0.90	0.82 0.93	0.86 0.92	0.9 0.93
	CHE13	0.64	0.72	0.78	0.84	0.92
	SEO09	0.65	0.72	0.8	0.88	0.91
	GOF12	0.76	0.79	0.81	0.83	0.86

Table D -

 D 7: KLD between saliency map and density fixation map: corresponding to Figure IV-2. Table D-8: AUC between saliency map and density fixation map: corresponding to Figure IV-3. Table D-9: KLD between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure IV-4.

	Discriminance					
	Reference corpus:					
		Min	95% CL low	KLD	95% CL up	Max
	Motion priority-max	Min 0.26	95% CL low 0.36	KLD 0.38	95% CL up 0.40	Max 0.44
	Motion priority-max Combined-avg	0.29 0.39	0.53 0.42	0.61 0.45	0.68 0.48	1.13 0.49
	Combined-avg Multiplication-avg	0.25 0.60	0.40 0.69	0.44 0.73	0.47 0.76	0.67 0.76
	Multiplication-avg Addition-avg	0.30 0.68	0.53 0.82	0.60 0.84	0.66 0.86	1.04 0.99
	Addition-avg Static-avg	0.26 0.52	0.39 0.68	0.42 0.72	0.46 0.77	0.62 1.16
	Static-avg Motion	0.30 0.47	0.43 0.55	0.46 0.58	0.49 0.61	0.69 0.64
	Motion CHE13	0.28 0.28	0.51 1.23	0.58 1.55	0.64 1.87	1.03 3.36
	CHE13 SEO09	0.44 0.35	0.61 0.92	0.71 1.23	0.81 1.53	0.96 3.53
	SEO09 GOF12	0.32 0.20	0.48 0.38	0.68 0.43	0.88 0.49	1.13 0.87
	GOF12 MPEG-4 AVC	0.25 0.31	0.41 1.24	0.60 1.63	0.79 2.03	1.09 3.27
	MPEG-4 AVC	0.20	0.22	0.28	0.34	0.35
		Min	95% CL low	AUC	95% CL up	Max
	Motion priority-max	0.80	0.90	0.91	0.93	0.97
	Combined-avg	0.91	0.95	0.96	0.96	0.97
	Multiplication-avg	0.64	0.84	0.86	0.89	0.96
	Addition-avg	0.92	0.96	0.96	0.96	0.97
	Static-avg	0.89	0.95	0.95	0.96	0.97
	Motion	0.72	0.88	0.90	0.92	0.97
	CHE13	0.64	0.72	0.78	0.84	0.92
	SEO09	0.65	0.72	0.80	0.88	0.91
	GOF12	0.76	0.79	0.81	0.83	0.86
	MPEG-4 AVC	0.92	0.93	0.95	0.97	0.97

Table D -

 D 10: AUC between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure IV-5. Table D-11: KLD between saliency maps at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure IV-6.

	Cross-checking corpus:				
		Min	95% CL low	KLD	95% CL up	Max
	Motion priority-max	0.46	0.56	0.62	0.68	1.61
	Combined-avg	0.45	0.59	0.58	0.65	1.59
	Multiplication-avg	0.33	0.58	0.66	0.74	1.65
	Addition-avg	0.41	0.62	0.58	0.62	0.87
	Static-avg	0.37	0.58	0.68	0.77	1.84
	Motion	0.40	0.60	0.66	0.72	1.20
	CHE13	0.23	0.52	0.55	0.58	1.90
	SEO09	0.15	0.71	0.73	0.75	2.03
	GOF12	0.36	0.50	0.53	0.56	2.80
	MPEG-4 AVC	0.18	1.39	1.40	1.42	1.80
		Min	95% CL low	AUC	95% CL up	Max
	Motion priority-max	0.83	0.88	0.91	0.92	0.93
	Combined-avg	0.83	0.85	0.89	0.91	0.91
	Multiplication-avg	0.69	0.71	0.76	0.78	0.92
	Addition-avg	0.78	0.86	0.88	0.89	0.91
	Static-avg	0.71	0.78	0.82	0.86	0.89
	Motion	0.73	0.78	0.84	0.90	0.90
	CHE13	0.54	0.62	0.73	0.84	0.93
	SEO09	0.59	0.68	0.78	0.88	0.93
	GOF12	0.88	0.90	0.92	0.93	0.93
	MPEG-4 AVC	0.86	0.89	0.92	0.93	0.93

Table D -

 D 12: AUC between saliency maps at fixation locations and saliency map at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure IV-7.

	D.3 Conclusion			
	Precision					
	Reference corpus					
		Min	95% CL low	AUC	95% CL up	Max
	Motion priority-max	0.46	0.71	0.74	0.77	0.96
	Combined-avg	0.50	0.58	0.61	0.64	0.91
	Multiplication-avg	0.30	0.55	0.58	0.62	0.92
	Addition-avg	0.16	0.61	0.65	0.69	0.89
	Static-avg	0.47	0.63	0.66	0.69	0.85
	Motion	0.44	0.55	0.58	0.62	0.84
	CHE13	0.60	0.71	0.72	0.73	0.97
	SEO09	0.56	0.62	0.64	0.66	0.96
	GOF12	0.52	0.63	0.64	0.66	0.98
	MPEG-4 AVC	0.63	0.74	0.75	0.77	0.99

Table D -

 D 13: Comparison of the results of KLD between saliency maps and fixation maps: corresponding to Figure in first column in Table V-1.

		Min	95% CL low	KLD	95% CL up	Max
	CHE13	0.44	0.61	0.71	0.81	0.96
	SEO09	0.32	0.48	0.68	0.88	1.13
	GOF12	0.25	0.41	0.60	0.79	1.09
	MPEG-4 AVC	0.20	0.22	0.28	0.34	0.35
	HEVC	0.25	0.40	0.44	0.47	0.67
	FAN14	0.20	0.37	0.41	0.44	0.94

Table D -

 D 14: Comparison of the results of AUC between saliency maps and fixation: corresponding to Figure in second column in Table V-1.

	Discriminance					
	Reference corpus					
		Min	95% CL low	AUC	95% CL up	Max
	CHE13	0.64	0.72	0.78	0.84	0.92
	SEO09	0.65	0.72	0.80	0.88	0.91
	GOF12	0.76	0.79	0.81	0.83	0.86
	MPEG-4 AVC	0.92	0.93	0.95	0.97	0.97
	HEVC	0.92	0.95	0.96	0.97	0.97
	FAN14	0.60	0.89	0.91	0.92	0.98

Table D -

 D 15: Comparison of the results of KLD between saliency maps at fixation locations and saliency maps at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure in first column and first line in Table V-2. Table D-16: Comparison of the results of AUC between saliency maps at fixation locations and saliency maps at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure in second column and first line in Table V-2. Table D-17: Comparison of the results of KLD between saliency maps at fixation locations and saliency maps at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure in first column and second line in Table V-2. Table D-18: Comparison of the results of AUC between saliency maps at fixation locations and saliency maps at random locations (N=100 trials for each frame in the video sequence): corresponding to Figure in second column and second line in Table V-2

	Cross-checking corpus				
	E.					
		Min	95% CL low	KLD	95% CL up	Max
	CHE13	Min 0.23	95% CL low 0.52	KLD 0.55	95% CL up 0.58	Max 1.90
	CHE13 SEO09	0.28 0.15	1.23 0.71	1.55 0.73	1.87 0.75	3.36 2.03
	SEO09 GOF12	0.35 0.36	0.92 0.50	1.23 0.53	1.53 0.56	3.53 2.80
	GOF12 MPEG-4 AVC	0.20 0.18	0.38 1.39	0.43 1.40	0.49 1.42	0.87 1.80
	MPEG-4 AVC HEVC	0.31 0.33	1.24 0.58	1.63 0.66	2.03 0.74	3.27 1.65
	HEVC FAN14	0.68 0.16	0.82 0.91	0.84 0.98	0.86 1.05	0.99 1.70
	FAN14	0.04	0.11	0.14	0.17	0.37
		Min Min	95% CL low 95% CL low	AUC AUC	95% CL up 95% CL up	Max Max
	CHE13 CHE13	0.54 0.60	0.62 0.71	0.73 0.72	0.84 0.73	0.93 0.97
	SEO09 SEO09	0.59 0.56	0.68 0.62	0.78 0.64	0.88 0.66	0.93 0.96
	GOF12 GOF12	0.88 0.52	0.90 0.63	0.92 0.64	0.93 0.66	0.93 0.98
	MPEG-4 AVC MPEG-4 AVC	0.86 0.63	0.91 0.74	0.93 0.75	0.94 0.77	0.94 0.99
	HEVC HEVC	0.83 0.46	0.88 0.71	0.91 0.74	0.92 0.77	0.93 0.96
	FAN14 FAN14	0.63 0.61	0.83 0.72	0.85 0.74	0.87 0.76	0.97 0.95
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Consequently, in this thesis, we take the challenge of extracting the saliency map in the compressed domain in order to guide the watermark insertion in a compressed stream watermarking application (both MPEG-4 AVC and HEVC), with minimal decoding operations.

In this study, the term 'fingerprinting' also encompasses a multiple-bit watermarking technique.

V. Conclusion and future work A Fusing formula investigation

A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static to dynamic features) are investigated in our study, both for MPEG-4 AVC (as reported in Chapter III) and HEVC (as reported in Chapter IV), [START_REF] Ammar | Visual saliency in MPEG-4 AVC video stream[END_REF], [START_REF] Ammar | HEVC saliency map computation[END_REF].

Static saliency map fusion formulas

We consider 6 formulas for fusing the elementary static maps: 4 weighted additions, 1 multiplication and 1 maximal, as follows.

The static saliency map can be computed as a linear combination of the intensity, the color, and the orientation normalized maps:

Where β 1 , β 2 , and β 3 are the parameters determining respectively the weight for the intensity map M i , color map M c , orientation map M o , and the normalization formula N (mentioned in Chapter III).

• Color advantage fusion: we consider the equation (A-1) and we define the weight of the color saliency map as the highest weight β 1 =0.2, β 2 =0.6, and β 3 =0.2

• Orientation advantage fusion: we consider the equation (A-1) however we accord the highest weight to the orientation saliency map β 1 =0.2, β 2 =0.2, and β 3 =0.6.

• Intensity advantage fusion: we consider the equation (A-1) and we affect the following weights to the features saliency maps β 1 =0.6, β 2 =0.2, and β 3 =0.2

• Mean fusion: this fusion technique consists on considering that all the static features have the same effect on the human vision attention, thus we use equal weights for all of the elementary features saliency maps β 1 = β 2 = β 3 = 1/3.

• Max fusion: This is a winner takes all strategy where the maximum value between the three features maps is retained for each block:

• Multiplication fusion: a block by block multiplication is applied. We aim at reinforcing the regions that are salient on all elementary features map and eliminating the regions that have a zero value even in only one feature map:

Spatio-temporal saliency map fusion formulas

Each and every time a saliency map is computed; elementary feature maps are first individually processed then fused in order to get the final map. This fusion process takes place at two levels: static (inside each frame of the video) and then dynamic, when the static components are combined with the temporal information.

However, the choice of the fusion formulas themselves is an open research topic, as testified by the large variety of choices made in the literature

, and [START_REF] Peng | Keyframe-based video summary using visual attention clues[END_REF].

Moreover, the study in [START_REF] Muddamsetty | A Performance Evaluation of Fusion Techniques for Spatio-Temporal Saliency Detection in Dynamic Scenes[END_REF] is devoted to this topic: it discusses various ways of fusing the static and dynamic saliency maps for uncompressed video sequences, as briefly presented below. In the sequel the following notations are made: M F is the fused saliency map, M D is the dynamic saliency map and M S is the static saliency map.

• Mean fusion [ITT98][MUD13]

: this fusion technique takes the average of both static and dynamic saliency map:

: this is a winner takes all strategy, where the maximum value between the two saliency maps is taken for each location:

• Multiplication fusion [START_REF] Muddamsetty | A Performance Evaluation of Fusion Techniques for Spatio-Temporal Saliency Detection in Dynamic Scenes[END_REF][MAR09]: this requires an element-wise multiplication:

• Maximum skewness fusion [START_REF] Muddamsetty | A Performance Evaluation of Fusion Techniques for Spatio-Temporal Saliency Detection in Dynamic Scenes[END_REF][MAR09]: the static pathway is modulated by its maximum and the dynamic saliency map is modulated by its skewness value (defined as the third moment on the distribution of the map [MAR08]). The salient areas both in static and dynamic maps are reinforced by the product of the static map's maximum and the motion map's skewness value, as shown in the following formula:

where � = ��� (� � ), � = ��������(� � ) and � = ��.

• Binary threshold fusion [START_REF] Muddamsetty | A Performance Evaluation of Fusion Techniques for Spatio-Temporal Saliency Detection in Dynamic Scenes[END_REF][LU10]: first, a binary mask M B is generated by thresholding the static saliency map (the mean value of M S is used as threshold). Second this M B is used to exclude spatiotemporal inconsistent areas and to enhance the robustness of the final saliency map when the global motion parameters are not estimated properly:

• Motion priority fusion [START_REF] Muddamsetty | A Performance Evaluation of Fusion Techniques for Spatio-Temporal Saliency Detection in Dynamic Scenes[END_REF][PEN10]: this fusion technique relates to the cases in which the viewer attention is attracted by the motion of an object even when the static background is (as saliency map value) higher:

with α=λ� ��� and λ=max (� � )-mean (� � ).

• Dynamic weight fusion [START_REF] Muddamsetty | A Performance Evaluation of Fusion Techniques for Spatio-Temporal Saliency Detection in Dynamic Scenes[END_REF][XIA10]: this fusion is a dynamic fusion scheme dependent on the content of the video. The weights are determined by the ratio between the means of the static and dynamic maps for each frame:

where α = mean (� � )/ (mean (� � ) + mean (� � )).

• Scale invariant fusion [MUD13][KIM11]

: in this fusion technique, the input images are analyzed at three different scales, (32×32, 128×128 and the original image size). The three maps obtained at these scales are subsequently linearly combined into the final spatio-temporal saliency map:

where � � � = (1 -�)� � + �� � ���ℎ � = 0.5 is the map at scale k and the coefficients of the linear combination are w � = 0.1, w � = 0.3 and w � = 0.6.

A.1. MPEG-4 AVC fusing formula validation

We consider the database organized at the IRCCyN Laboratory [WEB05] and we kept the same experimental conditions as presented in Chapter III. A-2-A-9: for each investigated case, we report the average value of the metrics (average over the video frames) as well as the underlying 95% confidence limits.

The experimental results are shown in Figures

Each of these 8 figures corresponds to one of the particular way in which the static and dynamic maps are fused (cf. equation 

C.3 How HEVC is different?

The main objective of HEVC is to provide essential tools to transmit the smallest amount of information required for a given level of visual quality. While HEVC inherits many concepts from MPEG-4 AVC, Table C-1 offers a synoptic view on the main differences between these two standards.