
HAL Id: tel-01597061
https://theses.hal.science/tel-01597061v1

Submitted on 28 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual saliency extraction from compressed streams
Marwa Ammar

To cite this version:
Marwa Ammar. Visual saliency extraction from compressed streams. Image Processing [eess.IV].
Institut National des Télécommunications, 2017. English. �NNT : 2017TELE0012�. �tel-01597061�

https://theses.hal.science/tel-01597061v1
https://hal.archives-ouvertes.fr


                                                                                            

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS  

et L’UNIVERSITE PIERRE ET MARIE CURIE 

Thèse n° 2017TELE0012 

 

 

Spécialité : Informatique et Télécommunications 

 

Ecole doctorale : Informatique, Télécommunications et Electronique de Paris 

 

Présentée par 

Marwa AMMAR

 

Pour obtenir le grade de 

DOCTEUR DE TELECOM SUDPARIS 

 

Visual saliency extraction from compressed streams
 

 

 

Soutenue le 15 juin 2017 

devant le jury composé de : 

Pr. Patrick GALLINARI, Université Pierre et Marie Curie   Président  

Pr. Jenny BENOIS-PINEAU, Université de Bordeaux    Rapporteur 

MdC. HDR Claude DELPHA, Université ParisSud    Rapporteur 

Pr. Faouzi GHORBEL, ENSI Tunis      Examinateur 

Dr. Matei MANCAS, Université de Mons     Examinateur 

Pr. Patrick LE CALLET, Université de Nantes    Invité 

MdC HDR. Mihai MITREA, IMT-TSP      Directeur de thèse 

 

  





 

3 

 

 

 

 

 

 

To my sons, my husband and my parents 

  



M. AMMAR Visual saliency extraction from compressed streams 

4 

This thesis becomes a reality with the support and help of many people to whom I would like to express 

my sincere thanks and acknowledgment. 

My deep gratitude goes to my thesis director, HDR Mihai Mitrea for his warm welcome when I first 

stepped to the ARTEMIS department at the IMT – Telecom SudParis. I would like to express my 

appreciation for his trust and for seeing in me a future PhD. I would also like to thank him for granting me 

with the chance of starting the research work on the novel and exciting topic of visual saliency in the 

compressed stream as well for his valuable guidance, timely suggestions and support throughout not only 

my thesis but my engineering and masters internships as well. 

My deep gratitude also goes to the distinguished members of my defense committee, and particularly to 

the two reviewers, Prof. Jenny Benois-Pineau and Prof. Claude Delpha, for their precious feedback and 

enriching comments that contributed to the final version of this manuscript. 

I am thankful to Ecole Nationale des Sciences de l'Informatique, for the sound education I received there 

during my engineering and masters programs.  

My colleagues Marwen Hasnaoui and Ismail Boujelbane deserve a special mention: I thank them for 

helping me with their watermarking and software skills and passion as well as for their availability during 

this thesis. 

I would like to thank Mrs. Evelyne Taroni for her proactive attitude and valuable administrative help 

during my engineering, master and PhD internships at the ARTEMIS department. 

In addition, I like to thank the entire ARTEMIS team, former and present members that I have met and 

particularly Rania Bensaied who helped me with the subjective evaluation experiments. 

I am mostly fortunate to have the opportunity to acknowledge gratitude to the people who mean the 

most to me. My parents Mohamed and Leila, who raised me, taught me, and supported me all 

throughout my life: their selfless love, care, pain and sacrifices shaped my life.  

I like to deeply thank my brother Yassine, my sister Siwar and my nephew Hassan for their motivational 

discussions and emotional support.  

I am extremely thankful to my family in law for loving and encouraging me during my thesis.

For my friends Mehdi, Azza and Ola and for all those who have touched my life in any way since I started 

this thesis, I am grateful for all they have done.

Last but not the least, I owe thanks to a very special person, my husband Anis, for his continuous and 

unfailing love, support and understanding during the pursuit of my PhD degree. He was always around at 

times I thought that it would be impossible to continue, he helped me to keep things in perspective and 

that made the completion of thesis possible. I appreciate my little son Anas, for abiding my ignorance and

for the patience he showed during my thesis writing. Words would never say how grateful I am to both of

them. I consider myself the luckiest in the world to have such a lovely and caring family, standing beside

me with their love and unconditional support.  



 

5 

Table of Contents 

 

RESUME 15 

ABSTRACT 25 

I. INTRODUCTION 35 

I.1. Saliency context 37 

I.1.1. Biological basis for visual perception 37 

I.1.2. Image processing oriented vision modeling 38 

I.2. Watermarking context 43 

I.3. Video coding & redundancy 45 

I.4. Conclusion 46 

II. STATE OF THE ART 49 

II.1. Bottom-up visual saliency models 51 

II.1.1. Image saliency map 51 

II.1.2. Video saliency map 58 

II.1.3. Conclusion 64 

II.2. Visual saliency as a watermarking optimization tool 68 

II.3. Direct compressed video stream processing 72 

III. SALIENCY EXTRACTION FROM MPEG-4 AVC STREAM 77 

III.1. MPEG-4 AVC saliency map computation 79 

III.1.1. MPEG-4 AVC elementary saliency maps 79 

III.1.2. Elementary saliency maps post-processing 83 

III.1.3. Elementary saliency map pooling 84 

III.2. Experimental results 85 

III.2.1. Ground truth validation 86 

III.2.2. Applicative validation 97 

III.3. Discussion on the results 100 



M. AMMAR Visual saliency extraction from compressed streams 

6 

III.4. Conclusion 108 

IV. SALIENCY EXTRACTION FROM HEVC STREAM 109 

IV.1. HEVC saliency map computation 111 

IV.1.1. HEVC elementary saliency maps 112 

IV.1.2. Elementary saliency map post-processing 115 

IV.1.3. Saliency maps pooling 115 

IV.2. Experimental results 115 

IV.2.1. Ground truth validation 116 

IV.2.2. Applicative validation 124 

IV.3. Discussion on the results 126 

IV.4. Conclusion 132 

V. CONCLUSION AND FUTURE WORK 133 

V.1. Conclusion 134 

V.1.1. Saliency vs. Compression 134 

V.1.2. Saliency vs. Watermarking 136 

V.2. Future works 137 

VI. APPENDIXES 139 

A Fusing formula investigation 140 

A.1. MPEG-4 AVC fusing formula validation 142 

A.2. HEVC fusing formula validation 147 

A.3. Conclusion 151 

B. MPEG-4 AVC basics 152 

B.1. Structure 152 

B.2. Encoding 153 

C. HEVC basics 158 

C.1. Structure 158 

C.2. Encoding 159 

C.3  How HEVC is different? 161 

D. Tables of the experimental results 162

D.1 MPEG-4 AVC saliency map validation 162 

D.2 HEVC saliency map validation 165 

D.3 Conclusion 168 



M. AMMAR visual saliency extraction from compressed streams 

7 

E.  Graphics of the experimental results 171 

REFERENCES 173 

LIST OF PUBLICATIONS 181 

LIST OF ACRONYMS 183 





 

9 

List of figures  

Figure 0-1: Evolution du contenu multimédia. ................................................................................................................................. 17 

Figure 0-2: Le temps moyen (en heure) passé en regardant un contenu télé/vidéo dans le monde durant la 

deuxième trimestre de 2016 [WEB01]. ............................................................................................................................................... 18 

Figure 0-3: Le trafic internet du consommateur 2015-2019 [WEB02]. ................................................................................ 18 

Figure 1: Multimedia content evolution. ............................................................................................................................................. 27 

Figure 2: Average daily time (in hours) spent on viewing TV/video content worldwide during the second 

quarter 2016 [WEB01]. ............................................................................................................................................................................... 28 

Figure 3: Consumer Internet traffic 2015-2019 [WEB02]. ......................................................................................................... 28 

Figure I-1: Human eye anatomy. ............................................................................................................................................................. 37 

Figure I-2: Visual saliency features. ....................................................................................................................................................... 42 

Figure I-3: General scheme of watermarking approach. .............................................................................................................. 44 

Figure I-4: MPEG-4 AVC/HEVC compression chain. ...................................................................................................................... 45 

Figure II-1: Domains of bottom-up saliency detection models; in blue: studies related to still images; in green: 

studies related to videos. P, T, Q, E stand for Prediction, Transformation, Quantification and Encoding, 

respectively. ..................................................................................................................................................................................................... 51 

Figure II-2: Synopsis of Itti’s model [ITT98]: the saliency map is obtained by a multi-scale extraction model 

consisting on three feature extraction, normalization and fusion of the elementary maps. ....................................... 52 

Figure II-3: Saliency extraction based on the Shannon’s self-information [BRU05]: the visual saliency is 

determined by a sparse representation of the image statistics, learned from the prior knowledge of the brain.

 ................................................................................................................................................................................................................................ 53 

Figure II-4: Computation steps of Harel’s model [HAR06]: the saliency is determined by extracting features,  

normalising, then fusing the elementary maps. ............................................................................................................................... 54 

Figure II-5: Flowchart of the biologically inspired model advanced in [LEM06].............................................................. 54 

Figure II-6: Saliency map computation flowchart: extracting visual saliency by exploiting the singularities in 

the spectral residual. .................................................................................................................................................................................... 55 

Figure II-7: A context aware saliency model: the saliency is enhanced by using multiple scale filtering and 

visual coherency rules [GOF10]. ............................................................................................................................................................. 55 

Figure II-8: Principle of the saliency approach [MUR11]: the saliency is obtained according to a biologically 

inspired representation based on predicting color appearance. ............................................................................................. 56 

Figure II-9: Soft image abstraction and decomposition into perceptually homogenous regions [CHE13]: the 

saliency map is extracted by considering both appearance similarity and spatial overlap......................................... 57

Figure II-10: Saliency map computation steps [FAN12]: the saliency map is obtained, in the transformed 

domain of the JPEG compression, through a so-called coherent normalized-based fusion. ........................................ 57 

Figure II-11: Workflow of the saliency model [ZHA06]: the saliency map is obtained through a dynamic fusion 

of the static and the temporal attention model. ............................................................................................................................... 58 



M. AMMAR Visual saliency extraction from compressed streams 

 10 

Figure II-12: Flowchart of the proposed model [LEM07]: the saliency map is the result of a weighted average 

operation of achromatic and two chromatic saliency maps. ...................................................................................................... 59 

Figure II-13: Incremental coding length model’s different steps [HOU08]: the saliency extraction model is 

based on the incremental coding length of each feature. ............................................................................................................ 60

Figure II-14: Illustration of image/video saliency detection model [SEO09]: the saliency map is obtained by 

applying the self resemblance indicating the likelihood of saliency in a given location. ............................................... 61 

Figure II-15: Saliency computation graph [MAR09]: the attention model was computed on two parallel ways: 

the static way and the dynamic way. .................................................................................................................................................... 62 

Figure II-16: Multiresolution spatiotemporal saliency detection model based on the phase spectrum of 

quaternion Fourier transform (PQFT) [GUO10]. ............................................................................................................................. 62 

Figure II-17: Flowchart of the saliency computation model [FAN14]: the visual saliency is extracted from the 

transformed domain of the MPEG-4 ASP. ........................................................................................................................................... 64 

Figure II-18: Principle of a watermark embedding scheme based on saliency map. ...................................................... 68 

Figure II-19: Video quality evolution. ................................................................................................................................................... 72 

Figure III-1: Saliency map computation in a GOP. ........................................................................................................................... 79 

Figure III-2: Orientation saliency: the central block into a 5x5 block neighborhood is not salient when its 

“orientation” is identical with its neighbors (see the left side of the figure); conversely, if the block orientation 

differs from its neighbors, the block is salient (see the right side of the figure). .............................................................. 82 

Figure III-3: Motion saliency: the motion amplitude over all the P frames in the GOP is summed-up. .................. 83 

Figure III-4: Features map normalization........................................................................................................................................... 84 

Figure III-5: MPEG-4 AVC saliency map (on the left) vs. density fixation map (on the right). .................................... 87 

Figure III-6: KLD between saliency map and density fixation map......................................................................................... 88 

Figure III-7: AUC between saliency map and density fixation map. ....................................................................................... 91 

Figure III-8: Saliency map behavior at human fixation locations (in red + signs) vs. saliency map behavior at 

random locations (in blue x signs). ........................................................................................................................................................ 92 

Figure III-9: KLD between saliency map at fixation locations and saliency map at random locations 

(N=100	trials for each frame in the video sequence). ................................................................................................................... 93 

Figure III-10: AUC between saliency map at fixation locations and saliency map at random locations (N=100 

trials for each frame in the video sequence). .................................................................................................................................... 93 

Figure III-11: KLD between saliency map at fixation locations and saliency map at random locations (N=100 

trials for each frame in the video sequence). .................................................................................................................................... 95 

Figure III-12: AUC between saliency map at fixation locations and saliency map at random locations (N=100 

trials for each frame in the video sequence). .................................................................................................................................... 97 

Figure III-13: Illustrations of saliency maps computed with different models. ............................................................. 107 

Figure IV-1: Difference between HEVC and MPEG-4 AVC block composition. ................................................................ 112 

Figure IV-2: KLD between saliency map and density fixation map. ..................................................................................... 117 

Figure IV-3: AUC between saliency map and density fixation map. ..................................................................................... 119 



 

11 

Figure IV-4: KLD between saliency map at fixation locations and saliency map at random locations 

(N=100	trials for each frame in the video sequence). ................................................................................................................ 121 

Figure IV-5: AUC between saliency map at fixation locations and saliency map at random locations 

(N=100 trials for each frame in the video sequence). ................................................................................................................ 122

Figure IV-6: KLD between saliency map at fixation locations and saliency map at random locations 

(N=100	trials for each frame in the video sequence). ................................................................................................................ 122 

Figure IV-7: AUC between saliency maps at fixation locations and saliency map at random locations (N=100 

trials for each frame in the video sequence). ................................................................................................................................. 124 

Figure IV-8: Illustrations of saliency maps computed with different models. ................................................................ 131 

 



M. AMMAR Visual saliency extraction from compressed streams 

 12 

List of tables 

Tableau 0-1: Extraction de la saillance visuelle à partir du domaine vidéo compressé: contraintes, défis, 

limitations et contributions....................................................................................................................................................................... 24 

Table 1: Visual saliency extraction from video compressed domain: constraints, challenges, current limitations 

and contributions. ......................................................................................................................................................................................... 34 

Table II-1: State of the art synopsis of saliency detection models. .......................................................................................... 66 

Table II-2: State-of-the-art of the watermark embedding scheme based on saliency map. ......................................... 71 

Table II-3: State of the art of the compressed stream application. .......................................................................................... 75 

Table III-1: Assessment of the model performance in predicting visual saliency. ........................................................... 87 

Table III-2: KLD gains between Skewness-max, Combined-avg and Addition-avg and the state of the art 

methods [CHE13] [SEO09] [GOF12]. .................................................................................................................................................... 89 

Table III-3: KLD sensitivity gains between Skewness-max, Combined-avg and Addition-avg and the state of the 

art methods [CHE13] [SEO09] [GOF12]. ............................................................................................................................................. 90 

Table III-4: AUC values between saliency map and density fixation map with different binarization thresholds.

 ................................................................................................................................................................................................................................ 91 

Table III-5: AUC sensitivity gains between Skewness-max and Combined-avg and the state-of-the-art methods 

[CHE13][SEO09][GOF12]. .......................................................................................................................................................................... 94 

Table III-6: AUC values between saliency map at fixation locations and saliency map at random locations with 

different binarization thresholds (N=100 trials)............................................................................................................................. 94 

Table III-7: KLD gains between Multiplication-avg and Static-avg and the three state of the art methods 

[CHE13][SEO09][GOF12]. .......................................................................................................................................................................... 96 

Table III-8: KLD sensitivity gains between Multiplication-avg and Static-avg and the three state of the art 

methods [CHE13][SEO09][GOF12]. ....................................................................................................................................................... 96 

Table III-9: Objective quality evaluation of the transparency when alternatively considering random selection 

and “Skewness-max” saliency map based selection. ...................................................................................................................... 99 

Table III-10: MOS gain between the QIM method with random selection and saliency map “Skewness-max” 

based selection. ............................................................................................................................................................................................ 100 

Table III-11: Ground truth validation results ................................................................................................................................. 100 

Table III-12: Computational complexity comparison between our method and the three state of the art models

considered in our study. .......................................................................................................................................................................... 104 

Table III-13: Computational time per processed frame of our method and the three state of the art models 

considered in our study. .......................................................................................................................................................................... 104 

Table IV-1: KLD gains between all the combination of HEVC saliency maps and the state of the art methods 

[CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map. .................................................................................................... 118 

Table IV-2: KLD sensitivity gains between all considered HEVC saliency map combinations and the state of the 

art methods [CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map. ......................................................................... 118 



 

13 

Table IV-3: AUC gains between all the combinations of HEVC saliency maps and the state of the art methods 

[CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map. .................................................................................................... 119 

Table IV-4: AUC sensitivity gains between Combined-avg, Addition-avg and Static-avg and the state of the art 

methods [CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map. ................................................................................ 120

Table IV-5: KLD gains between Multiplication-avg and Static-avg and the state of the art methods [CHE13] 

[SEO09] [GOF12] and MPEG-4 AVC saliency map. ....................................................................................................................... 123 

Table IV-6: KLD sensitivity gains between Multiplication-avg and Static-avg and the state of the art methods 

[CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map. .................................................................................................... 123 

Table IV-7: Objective quality evaluation of the transparency when alternatively considering random selection 

and “Combined-avg” saliency map based selection. ................................................................................................................... 125 

Table IV-8: MOS gain between the watermarking method with random selection and saliency map “Combined-

avg” based selection. ................................................................................................................................................................................. 126 

Table IV-9: Ground truth validation results.................................................................................................................................... 127 

Table V-1: Comparison of the results of KLD and AUC between saliency maps and fixation maps. ..................... 135 

Table V-2: Comparison of the results of KLD and AUC between saliency maps at fixation locations and saliency 

maps at random locations (N=100	trials for each frame in the video sequence). ......................................................... 136 

 

 

 

 

  



M. AMMAR Visual saliency extraction from compressed streams 

 14 

 



Résumé 

15 

 

 

 

 

 
Résumé  



M. AMMAR Visual saliency extraction from compressed streams 

 16 

  



Le contexte  

Dans dix ans, allez-vous lire ce r

yeux en premier lieu? 

En 2020, 82% du trafic sur interne

Au début des années 1980, les o

À la fin des années 1980 et au

comment les ordinateurs pouv

multimédia comme un moyen

fournissant des informations no

vidéo et des graphiques 3D. 

Au fil des années, les technolog

vie, faisant partie aujourd’hui

encyclopédies aux livres de cuisi

devient notre référence et, qu’

professionnelles et personnelles

Figure 0-1: Evolution du contenu multim

De nos jours, grâce aux dispositi

(très) haut débit, une quantité

distribuée instantanément. Au m

vidéo (soit environ 90 ans de 

moyenne, dans le monde, que p

Par exemple, en France, 4,1 heur

rapport de thèse ou le regarder en tant que vidé

net sera conquis par les vidéos… 

ordinateurs ont émergé dans les entreprises, les é

u cours des années 1990, les scientifiques ont

vaient être exploités comme jamais auparava

n d'utiliser les ordinateurs d'une manière p

on seulement en utilisant du texte, mais aussi d

gies et les applications multimédias ont progres

i de notre routine professionnelle et person

ine et de la simulation scientifique aux jeux FIFA

’on l'accepte ou non, notre premier repère da

s. 

média. 

ifs abordables (capture, traitement et stockage) 

é massive de contenu vidéo générée par l'uti

moment de la rédaction du présent document, 2

vidéos HD) sont produites chaque jour. Figur

passe un utilisateur à regarder une vidéo sur int

res par jour sont consacrées à regarder du conte

Résumé 

17 

éo? Que vont capter vos 

écoles et les maisons.

t commencé à imaginer 

ant. Ils ont considéré le 

personnelle, unique, en 

des images, du son, de la 

ssivement conquis notre 

nnelle, Figure 0-1. Des 

A, le contenu multimédia 

ans les activités sociales 

et à l'ubiquité de l'accès 

ilisateur est produite et 

2,5 exabytes de données 

re 0-2 montre la durée 

ternet ou devant la télé. 

enu vidéo ! 



M. AMMAR Visual saliency extract

 18 

Figure 0-2: Le temps moyen (en heure) 

de 2016 [WEB01]. 

L'enregistrement de toutes les

sociaux montre des statistiques t

jour, les utilisateurs de Snapcha

passent 46 000 ans à regarder

YouTube est incroyablement po

génération millénaire ont décla

[WEB03]. Aux États-Unis, plus qu

et la variété de leurs âges, sexes

Figure 0-3: Le trafic internet du consom

La Figure 0-3 montre que l’inter

de consommer tout autre conten

renforcée dans un proche aven

[WEB04].  

tion from compressed streams 

 

passé en regardant un contenu télé/vidéo dans le monde 

s visualisations et toutes les inscriptions des 

très intéressantes sur la tendance de l'utilisation

at regardent 6 milliards de vidéos alors que les 

des vidéos. Le contenu ‘How-to’ lié à la cuisin

opulaire, avec 419 millions de vues, tandis qu

aré avoir regardé aussi des vidéos pendant la

ue 155 millions de personnes jouent à des jeux vi

et statuts socioéconomiques.

mmateur 2015-2019 [WEB02]. 

rnaute a une préférence remarquable pour rega

nu multimédia. La suprématie du contenu vidéo

nir: en 2020, 82% du trafic sur internet sera 

 

e durant la deuxième trimestre 

utilisateurs des réseaux 

n vidéo, [WEB02]. Chaque 

s utilisateurs de YouTube 

ne et à la nourriture sur

ue 68% des mères de la

a préparation des repas

idéo malgré la différence 

 

arder la vidéo plutôt que 

sur le trafic internet sera 

 conquis par les vidéos 



Résumé 

19 

Le monde contient trop d’information visuelle pour arriver à la percevoir spontanément … 

En raison de sa taille et de sa complexité, la production, la distribution et l’utilisation des vidéos a 

augmenté le besoin et la nécessité des études et des recherches scientifiques qui traitent la relation 

entre les contenus numériques et le mécanisme visuel humain.  

Il y a une énorme différence entre l'image affichée sur un dispositif et l'image que notre cerveau perçoit. 

Il existe, par exemple, une différence entre la luminance d'un pixel sur un écran d'ordinateur et son 

impact visuel. La vision dépend non seulement de la perception des objets, mais aussi d'autres facteurs 

visuels, cognitifs et sémantiques. 

Le système visuel humain (SVH) a la capacité remarquable d’être attiré automatiquement par des 

régions saillantes. Les bases théoriques de la modélisation de la saillance visuelle ont été établies, il y a 

35 ans, par Treisman [TRE80] qui a proposé la théorie d’intégration du système visuel humain : dans tout 

contenu visuel, certaines régions sont saillantes grâce à la différence entre leurs caractéristiques 

(intensité, couleur, texture, et mouvement) et les caractéristiques de leurs voisinages. 

Peu de temps après, Koch [KOC85] a mis en œuvre un mécanisme de sélectivité, stimulant l’attention 

humaine : dans n'importe quel contenu visuel, les régions qui stimulent les nerfs de la vision sont 

d'abord choisies et traitées, puis le reste de la scène est interprété.  

Dans le traitement de l'image et de la vidéo, le mécanisme complexe de l’attention visuelle est 

généralement présenté par une carte dite carte de saillance. Une carte de saillance est généralement 

définie comme une carte topographique 2D représentant les régions d’une image/vidéo sur laquelle le 

système visuel humain se focalisera spontanément. 

 

Les objectifs  

Cette thèse vise à offrir un cadre méthodologique et expérimental complet pour traiter la possibilité 

d’extraire les régions saillantes directement à partir des flux vidéo compressés (MPEG-4 AVC et HEVC), 

avec des opérations de décodage minimales. 

Notez que l’extraction de la saillance visuelle à partir du domaine compressé est à priori une 

contradiction conceptuelle. D’une part, comme suggéré par Treisman [TRE80], la saillance est donnée 

pas des singularités visuelles dans le contenu vidéo. D’autre part, afin d’éliminer la redondance visuelle, 

les flux compressés ne sont plus censés présenter des singularités. Par conséquence, la thèse étudie si la 

saillance peut être extraite directement à partir du flux compressé ou, au contraire, des opérations 

complexes de décodage et de pré/post-traitement sont nécessaires pour ce faire.   

La thèse vise également à étudier le gain pratique de l’extraction de la saillance visuelle du domaine 

compressé. A cet égard, on a traité le cas particulier du tatouage numérique robuste des contenus vidéo. 

On s’attend que la saillance visuelle acte comme un outil d’optimisation, ce qui permet d’améliorer la 

transparence (pour une quantité de données insérées et une robustesse contre les attaques prescrites) 

tout en diminuant la complexité globale de calcul. Cependant, la preuve du concept est encore attendue.    
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L’état de l’art: limitations et contraintes:  

La thèse porte sur les limitations et les contraintes liées au cadre méthodologique de l’extraction de la 

saillance visuelle à partir du domaine compressé, à sa validation par rapport à la vérité terrain ainsi que

sa validation applicative.   

 

Tout d’abord, il faut noter que plusieurs études, concernant les images fixes et la vidéo, ont déjà 

considéré des cartes de saillance afin d’améliorer les performances d’une grande variété d’applications 

telles que le traitement des scènes rapides, la prédiction des vidéos surveillances et la 

détection/reconnaissance d’objets… Ces études couvrent une large étendue d'outils méthodologiques, 

de la décomposition pyramidale dyadique gaussienne aux modèles inspirés par la biologie. Cependant, 

malgré leur vaste spectre méthodologique, les modèles existants extraient les régions saillantes à partir 

du domaine des pixels. D’après notre connaissance, au début de cette thèse, aucun modèle d’extraction 

dans le domaine compressé n’a été signalé dans la littérature.

Deuxièmement, d’un point de vue évaluation quantitative, les études de la littérature considèrent 

différentes bases de données, de différentes tailles (par exemple, de 8 images fixes à 50 séquences vidéo 

jusqu'à 25 min) et / ou pertinence (cartes de densité de fixation, les emplacements du saccade, …). La 

confrontation de la carte de saillance obtenue à la vérité terrain est étudiée en considérant des types 

particuliers de mesures, comme les métriques basées sur la distribution (par exemple, la divergence de 

Kullback Leibler, le coefficient de corrélation linéaire, la similitude, …) et les métriques basées sur la

localisation (surface sous la courbe, selon différentes implémentations). Par conséquence, assurer une 

évaluation objective et une comparaison entre les modèles les plus modernes reste un défi.

Enfin, les particularités du SVH sont déjà déployées avec succès en tant qu’outil d’optimisation de 

tatouage, comme par exemple l’adaptation perceptive au contenu (preceptual shaping), le masquage 

perceptuel, les mesures de qualité inspirées par la biologie. Malgré que la saillance visuelle ait déjà 

prouvé son efficacité dans le domaine compressé, aucune application de tatouage utilisant la carte de

saillance comme outil d’optimisation n’a été présentée avant le début de cette thèse.

 

Les contributions 

La thèse présente les contributions suivantes.  

Cadre méthodologique de l’extraction de la saillance visuelle à partir du flux compressé 

La détection automatique de la saillance visuelle est un domaine de recherche particulier. Son arrière-

plan fondamental (neurobiologique) est représenté par les travaux de Treisman avançant la théorie de 

l’intégration pour le système visuel humain et par ceux de Koch et al. mettant en évidence un 

mécanisme de sélectivité temporelle de l’attention humaine. D’un point de vue méthodologique, toutes 

les études publiées dans la littérature suivent une approche expérimentale inhérente: certaines 

hypothèses sur la façon dont les caractéristiques neurobiologiques peuvent être (automatiquement) 
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calculées à partir du contenu visuel sont d’abord formulées puis validées par des expériences. On peut 

donner ainsi comme exemple l’étude d’Itti [ITT98] qui a été cité, selon scholar google, environ 7000 fois.

 

Dans ce cadre, la contribution de la thèse n’est pas de proposer une nouvelle approche, mais à 

contrario, de démontrer méthodologiquement la possibilité de lier les éléments de syntaxe des flux 

MPEG-4 AVC et HEVC à la représentation mathématique originale d'Itti. Il est ainsi mis en évidence que 

les normes de compression les plus efficaces aujourd’hui (MPEG-4 AVC et HEVC) conservent toujours 

dans leurs éléments de syntaxe les singularités visuelles auxquelles le SVH est adapté. 

 

Afin de calculer la carte de saillance directement à partir des flux compressés MPEG-4 AVC / HEVC, les 

principes de conservation de l’énergie et de la maximisation du gradient sont conjointement adaptés aux 

particularités du SVH et de la syntaxe du flux MPEG. Dans ce cas, les caractéristiques statiques et de 

mouvement sont d’abord extraites des trames I et respectivement P. Trois caractéristiques statiques 

sont considérées. L’intensité est calculée à partir des coefficients luma résiduels, la couleur est calculée à 

partir des coefficients chroma résiduels tandis que l’orientation est donnée par la variation (gradient) des 

modes de prédiction intra-directionnelle. Le mouvement est considéré comme l’énergie des vecteurs de 

mouvement. Deuxièmement, nous calculons les cartes de saillance individuelles pour les quatre 

caractéristiques mentionnées ci-dessus (intensité, couleur, orientation et mouvement). Les cartes de 

saillance sont obtenues à partir des cartes de caractéristiques après trois étapes incrémentales : la 

détection des outliers, le filtrage moyenneur avec le noyau de la taille de la fovéa et la normalisation 

dans l’intervalle [0, 1]. 

Enfin, nous obtenons une carte de saillance statique en fusionnant les cartes d'intensité, de couleur et 

d'orientation. La carte de saillance globale est obtenue en regroupant la carte statique et celle de 

mouvement selon 48 combinaisons différentes de techniques de fusion. 

 

Confrontation de la carte de saillance extraite directement à partir du flux compressé à la vérité terrain 

Comme nous l’avons déjà expliqué, chaque modèle d’extraction de la saillance visuelle doit être validé 

par une évaluation quantitative.  

De ce point de vue, la principale contribution de la thèse consiste à définir un test-bed générique 

permettant une validation objective et une analyse comparative. 

Le test-bed défini dans cette thèse est caractérisé par trois propriétés principales: (1) il permet d'évaluer 

les différences entre la vérité terrain et la carte de saillance par différents critères, (2) il comprend 

différentes typologies de mesures et (3) il assure une pertinence statistique aux évaluations 

quantitatives.  

En conséquent, ce test-bed est structuré à trois niveaux, selon les critères d’évaluations et selon les 

mesures et les corpus utilisés, respectivement.
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Tout d'abord, plusieurs critères d'évaluation peuvent être pris en considération. La Précision (définie 

comme la ressemblance entre la carte de saillance et la carte de fixation) et la Discriminance (définie 

comme la différence entre le comportement de la carte de saillance dans les zones de fixations et les 

régions aléatoires) des modèles de saillance sont considérés.

Deuxièmement, pour chaque type d’évaluation, plusieurs mesures peuvent être considérées. Notre 

évaluation est basée sur deux mesures de deux types différents: la KLD (divergence de Kullback Leibler), 

basée sur la distribution statistique des valeurs [KUL51][KUL68] et l’AUC (surface sous la courbe) qui est 

une mesure basée sur la localisation des valeurs. 

Deux corpus sont considérés: (1) le corpus dit de référence organisé par [WEB05] à IRCCyN et (2) le 

corpus dit d’étude comparative organisé par [WEB06] au CRCNS. Ces deux corpus sont sélectionnés selon 

leurs compositions (diversité du contenu et disponibilité de la vérité terrain en format compressé), leurs 

représentativités pour la communauté de la saillance visuelle ainsi que leurs tailles. Une attention 

particulière est accordée à la pertinence statistique des résultats présentés dans la thèse. À cet égard, 

nous considérons: 

� Pour les deux critères d’évaluation, la Précision et la Discriminance, chaque valeur de KLD et 

d’AUC est présenté avec sa moyenne, ses valeurs minimales et maximales, et l’intervalle de 

confiance à 95% correspondant. 

� Pour l'évaluation de la Discriminance, chaque expérience (c'est-à-dire pour chaque trame dans 

chaque séquence vidéo) est répétée 100 fois (c'est-à-dire pour 100 ensembles de localisation 

aléatoire). La valeur finale est moyennée sur toutes ces configurations et toutes les trames dans 

la séquence vidéo; 

� Pour l'étude de la Précision et de la Discriminance, on a analysé la sensibilité des mesures KLD et 

AUC par rapport au caractère aléatoire du contenu vidéo constituant le corpus utilisé. 

Ce test-bed a été considéré pour comparer notre méthode d’extraction de la carte de saillance MPEG-4 

AVC contre trois méthodes de l’état de l’art. La carte de saillance HEVC a été comparée à son tour contre 

les mêmes trois méthodes de l’état de l’art ainsi que contre la carte de saillance MPEG-4 AVC. Les trois 

méthodes de l’état de l’art ont été choisies selon les critères suivants: la représentativité dans l’état de 

l’art, la possibilité d’une comparaison équitable et la complémentarité méthodologique. 

Pour illustration, les résultats de la confrontation de notre carte de saillance MPEG-4 AVC par rapport à 

la vérité terrain montrent des gains relatifs en KLD entre 60% et 164% et en AUC entre 17% et 21% 

contre les trois modèles de l’état de l’art. Pour la carte de saillance HEVC, les gains en KLD se situent 

entre 0,01 et 0,4 tandis que les gains en AUC se situent entre 0,01 et 0,22 contre les mêmes modèles de 

l’état de l’art. 

 

Validation applicative dans une méthode de tatouage robuste 

Nous étudions les avantages de l'extraction de la carte de saillance directement à partir du flux 

compressé lors du déploiement d'une application de tatouage robuste. En fait, en utilisant le modèle 

d’extraction de la saillance visuelle à partir des flux MPEG-4 AVC / HEVC comme guide pour 



Résumé 

23 

sélectionner les régions dans lesquelles la marque est insérée, des gains de transparence (pour une 

quantité de données insérées et une robustesse prédéfinies) sont obtenus. La validation applicative 

révèle des gains de transparence allant jusqu'à 10 dB en PSNR pour les cartes de saillance MPEG-4 AVC 

et jusqu'à 3dB en PSNR pour les cartes de saillance HEVC (pour une quantité de données insérées et une 

robustesse bien définies). 

En plus de sa pertinence applicative, ces résultats peuvent également être considérés comme une 

première étape vers une validation à posteriori de l'hypothèse de Koch : la saillance à court terme et le 

masquage perceptuel à long terme peuvent être considérés d’une manière complémentaire afin 

d’accroitre la qualité visuelle. 

Comme conclusion générale, la thèse démontre que bien les normes MPEG-4 AVC et HEVC ne 

dépendent pas explicitement de tout principe de saillance visuelle, ses éléments syntaxiques 

préservent cette propriété. 

 

La structure de la thèse 

Afin d'offrir une vision méthodologique et expérimentale complète de la possibilité d'extraire les régions 

saillantes directement à partir des flux compressés vidéo (MPEG-4 AVC et HEVC), cette thèse est 

structurée comme suit. 

Le chapitre I couvre les aspects introductifs et se compose de trois parties principales, liées à la saillance 

visuelle, au tatouage et au codage vidéo, respectivement. 

Le chapitre II est consacré à l'analyse de l’état de l’art. Il est divisé en trois parties principales. Le chapitre 

II.1 traite les méthodes d’extraction de la saillance visuelle bottom-up et est structurée en deux niveaux : 

image contre vidéo et pixel contre domaine compressé. Le chapitre II.2 donne un bref aperçu sur la 

relation méthodologique entre les applications de tatouage et la saillance visuelle. Le chapitre II.3 

concerne les applications traitant directement le domaine vidéo compressé. 

Le chapitre III présente le cadre méthodologique et expérimental de l’extraction de la saillance visuelle à 

partir du flux compressé MPEG-4 AVC. Le chapitre VI est structuré de la même manière que le chapitre III 

et présente le cadre méthodologique et expérimental pour l’extraction de la saillance visuelle à partir du 

flux compressé HEVC. 

Le dernier chapitre est consacré aux conclusions et aux perspectives. 

La thèse contient cinq annexes. L’annexe A est consacrée à l'étude de la technique de fusion pour les

modèles d'extraction MPEG-4 AVC et HEVC. L’annexe B donne un aperçu sur la norme MPEG-4 AVC. 

L’annexe C identifie les principaux éléments de nouveauté pour la norme HEVC. L’annexe D détaille les 

valeurs numériques des résultats données dans les chapitres III, IV et V. L’annexe E présente sous forme 

de graphiques les résultats présentés dans les tableaux du chapitre III. 
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Tableau 0-1: Extraction de la saillance visuelle à partir du domaine vidéo compressé: contraintes, défis, limitations et 

contributions  

Contraintes Défis Limitations Contributions 

Extraction de la 

saillance visuelle  

• L’extraction de la
saillance visuelle à 
partir des flux 
compressés: MPEG-4 
AVC et HEVC 

 

• Les caractéristiques de
la saillance visuelle 
sont extraites à partir 
des pixels 

• Spécifier un formalisme reliant le système visuel
humain aux caractéristiques élémentaires des 
éléments de syntaxe des flux MPEG-4 AVC et HEVC 

• Définir des stratégies de normalisation pour les 
cartes obtenues 

• Etudier la fusion des cartes statiques et dynamiques 
pour obtenir une carte de saillance du flux 
compressé  

Evaluation des 

performances 

 

• Confrontation à la 
vérité terrain:  
Précision et 

Discriminance 

• Données limitées 

• Procédures 
d'évaluation variables 

• Spécifier un test-bed cohérent et unitaire permettant 
la confrontation des cartes de saillance à la vérité 
terrain: 
� Les critères d’évaluation : 

• Précision : La ressemblance entre la carte 
de saillance et la carte de fixation 

• Discriminance : La différence entre le 
comportement de la carte de saillance 
dans les régions de fixation et les endroits 
aléatoires 

� Typologie des mesures : 

• Une métrique basée sur la distribution: le 
KLD implémenté en fonction de la théorie 
de l'information de Kullback Leibler 
[KUL51], [KUL68] 

• Une métrique basée sur l'emplacement: 
AUC  

� Des corpus différents : 

• Le corpus de référence organisé par 
IRCCyN [WEB05]

• Le corpus de l’analyse comparative 
organisé by Itti [WEB06] 

� Pertinence statistique : 

• Précision et Discriminance : valeurs 
expérimentales présentées aves leurs 
moyennes, min, max et intervalle de 
confiance à 95%. 

• Discriminance: Processus de calcul de la 
moyenne supplémentaire sur les testes 
aléatoires répétées; 

• Précision et Discriminance: Évaluation de 
la sensibilité des mesures par rapport au 
caractère aléatoire du contenu visuel. 

Intégration dans 

l’application de 

tatouage 

 

• Garder les 
caractéristiques de 
l’application tout en 
diminuant le coût de 
calcul.  

• Pas de validation 
d’une carte de 
saillance dans une 
application dans le 
domaine compressé 

• Démontrer la possibilité d’intégration de la carte de 
saillance du flux compressé dans une application de 
tatouage pour guider l’insertion de la marque. 

• Améliorer de la transparence de la méthode de
tatouage, à une robustesse et une quantité de 
données préservées, tout en réduisant le coût de 
calcul. 
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screen and its perceived impact. Vision depends not only on the ability to perceive objects (i.e., 

evaluated by the ratio between their size and the distance between the eye and the screen), but also on 

other visual, cognitive and semantic factors.  

The human visual system (HVS) has the remarkable ability to automatically attend to salient regions. It 

can be considered that the theoretical ground for visual saliency modeling was established some 35 

years ago by Treisman [TRE80] who advanced the integration theory for the human visual system: in any 

visual content, some regions are salient (appealing) because of the discrepancy between their features 

(intensity, color, texture, motion) and the features of their surrounding areas. Soon afterwards, Koch 

[KOC85] brought to light a time selectivity mechanism in the human attention: in any visual content, the 

regions that stimulate the vision nerves are firstly picked and processed, and then the rest of the scene is 

interpreted. In image/video processing, the complex visual saliency mechanism is generally abstracted to 

a so-called saliency map. In its broadest acceptation, a saliency map is a 2D topographic map 

representing the regions of an image/video on which the human visual system will spontaneously focus. 

 

Objectives  

The present thesis aims at offering a comprehensive methodological and experimental view about the 

possibility of extracting the salient regions directly from video compressed streams (namely MPEG-4 AVC 

and HEVC), with minimal decoding operations.  

Note that saliency extraction from compressed domain is a priori a conceptual contradiction. On the one 

hand, as suggested by Treisman [TRE80], saliency is given by visual singularities in the video content. On 

the other hand, in order to eliminate the visual redundancy, the compressed streams are no longer 

expected to feature singularities. Consequently, the thesis studies weather the visual saliency can be 

directly bridged to stream syntax elements or, on the contrarily, complex decoding and post-processing 

operations are required to do so. 

The thesis also aims at studying the practical benefit of the compressed domain saliency extraction. In 

this respect, the particular case of robust video watermarking is targeted: the saliency is expected to act 

as an optimization tool, allowing the transparency to be increased (for prescribed quantity of inserted 

information and robustness against attacks) while decreasing the overall computational complexity. 

However, the underlying proof of concepts is still missing and there is no a priori hint about the extent of

such a behavior.  

 

State-of-the-art limitations and constraints  

The thesis deals with three-folded limitations and constraints related to the methodological framework 

for the compressed-domain saliency map extraction, to its ground-truth validation and to its applicative 

integration. 

First, note that several incremental studies, from still images to uncompressed video, already considered 

saliency maps in order to improve the performance of a large variety of applications such as processing 
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of rapid scenes, selective video encoding, prediction of video surveillance, rate control, and object 

recognition to mention but a few. Those studies cover a large area of methodological tools, from dyadic 

Gaussian pyramid decomposition to biologically inspired models. However, despite their wide 

methodological range, the existing methods still extract the salient areas from the video pixel domain. To 

the best of our knowledge, at the beginning of this thesis, no saliency extraction model working on video 

encoded domain was reported in the literature.  

Secondly, from the quantitative assessment point of view, the studies reported in the literature consider 

different databases, of different sizes (e.g. from 8 still images to 50 video clips summing-up to 25 min) 

and/or relevance (density fixation maps, saccade locations, …). The matching of the obtained saliency 

map to the ground truth is investigated by considering particular types of measures, like the distribution-

based metrics (e.g. Kullback-Leibler Divergence, Linear Correlation Coefficient, Similarity, … ) and 

location-based metrics (Area Under Curve, according to different implementations). Consequently, 

ensuring objective evaluation and comparison among and between state-of-the-art methods still 

remains a challenge. 

Finally, the HVS peculiarities are already successfully deployed as an optimization tool in watermarking: 

perceptual shaping, perceptual masking, bio-inspired quality metrics stand just for some examples in this 

respect. Under this framework, while visual saliency already proved its effectiveness in the 

uncompressed domain, no study related to the possibility of using compressed domain saliency in 

watermarking was reported before this thesis started. 

 

Contributions 

The thesis presents the following incremental contributions.  

Methodological framework for stream-based saliency extraction 

The automatic visual saliency detection is a particular research field. Its fundamental (neuro-biological) 

background is represented by the early works of Treisman, advancing the integration theory for the 

human visual system and by Koch et al. who brought to light a time selectivity mechanism in the human 

attention. From the methodological point of view, all the studies published in the literature follow an 

inherent experimental approach: some hypotheses about how these neuro-biological characteristics can 

be (automatically) computed from the visual content are first formulated and then demonstrated 

through experiments. Maybe the most relevant example is the seminal work of Itti [ITT98], which was 

cited, according to scholar Google, about 7000 times 

Under this framework, the thesis contribution is not to propose yet another arbitrary hypothesis, but a 

contrario, to methodologically demonstrate the possibility of linking MPEG-4 AVC and HEVC stream 

syntax elements to the Itti’s original mathematical representation. It is thus brought to light that the 

most efficient to-date compression standards (MPEG-4 AVC and HEVC) still preserves in their syntax 

elements the visual singularities the HVS system is matched to. 

In order to compute the saliency map directly in the MPEG-4 AVC/HEVC encoded domains, energy 

preserving and gradient maximization principles are jointly matched to the HVS and MPEG stream syntax 
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peculiarities. In this respect, static and the motion feature are first extracted from the I and P frames, 

respectively. Three static features are considered: the intensity computed from the residual luma 

coefficients, the color computed from the residual chroma coefficients and the orientation given by the 

variation (gradient) of the intra directional prediction modes. The motion feature is considered to be the 

energy of the motion vectors. Second, we compute individual saliency maps for the four above-

mentioned features (intensity, color, orientation and motion). The saliency maps are obtained from 

feature maps following four incremental steps: outliers’ detection, average filtering with fovea size 

kernel, and normalization within the [0, 1] dynamic range. Finally, we obtain a static saliency map by 

fusing the intensity, color and orientation maps. The global saliency map is obtained by pooling the static 

and the motion maps according to 48 different combinations of fusion techniques.  

Ground-truth validation for stream-based saliency extraction 

As explained above, any saliency extraction methodological framework must be demonstrated through 

quantitative evaluation. From this point of view, the main thesis contribution consists in defining a 

generic test-bed allowing an objective quantitative evaluation/benchmarking. 

Any saliency test-bed should be able to ensure objective evaluation of the results, i.e. to be able to 

accommodate any saliency map methodology, be it from the state of the art or newly advanced.  

The test-bed defined in the present thesis is characterized by three main properties: (1) it allows the 

assessment of the differences between the ground-truth and the saliency-map based results by different 

criteria, (2) it includes different measure typologies and (3) it grants statistical relevance for the 

quantitative evaluations.  

Consequently, the test-bed is structured at three nested levels, according to the evaluation criteria and 

to the actual measures and corpora, respectively. 

First, several evaluation criteria can be considered. Both Precision (defined as the closeness between the 

saliency map and the fixation map) and Discriminance (defined as the difference between the behavior 

of the saliency map in fixation locations and in random locations) of the saliency models are considered.  

Secondly, for any type of evaluation, several measures can be considered. Our assessment is based on 

two measures of two different types (the KLD, a distribution based metric based on Kullback’s 

Information theory [KUL51], [KUL68] and the AUC, a location based metric according to the Borji’s 

implementation [WEB07]).  

Two different corpora are considered and further referred to as: (1) the reference corpus organized in by 

[WEB05] at IRCCyN and (2) the cross-checking corpus organized in by [WEB06] at CRCNS. These two 

corpora are selected thanks to their composition (content diversity and ground-truth availability in 

compressed format), they representativeness for the saliency community as well as their size. A 

particular attention is paid to the statistical relevance of the results reported in the thesis. In this respect, 

we consider:

� for both the Precision and the Discriminance assessment, all the KLD and AUC values reported in 

the present thesis are presented by their average, min, max and 95% confidence limits;  

� for the Discriminance assessment, each experiment (i.e. for each frame in each video sequence) 
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is repeated 100 times (i.e. for 100 different random location sets) then averaged over all these 

configurations and all frames in the video sequence; 

� for both the Precision and the Discriminance investigation, the sensitivity of the KLD and AUC 

measures with respect to the randomness of the video content representing the processed 

corpus is analyzed.   

This test-bed was considered in order to benchmark the MPEG-4 AVC saliency map against three state-

of-the-art methods; the HEVC saliency map was benchmarked against the same three state-of-the-art 

methods and MPEG-4 AVC saliency map. The three state-of-the-art methods were selected according to 

the following criteria: representatively in the state of the art, the possibility of fair comparison, and the 

methodological complementarity. 

Just for illustration, the ground truth results of the MPEG-4 AVC saliency maps exhibit relative gains in 

KLD between 60% and 164% and in AUC between 17% and 21% against three models of the state-of-the-

art. For the HEVC saliency maps gains in KLD were between 0.01 and 0.40 and in AUC between 0.01 and 

0.22 against the same three models of the state-of-the-art. 

 

Applicative validation for robust watermarking 

We investigate the benefits of extracting saliency map directly from the compressed stream when 

designing robust watermarking applications. Actually, by using the MPEG-4 AVC/HEVC saliency model as 

a guide in selecting the regions in which the watermark is inserted, gains in transparency (for 

prescribed data payload and robustness properties) are obtained.  

The applicative validation brings to light transparency gains up to 10dB in PSNR (for prescribed data 

payload and robustness properties) for the MPEG-4 AVC saliency maps and up to 3dB in PSNR (for 

prescribed data payload and robustness properties) for the HEVC saliency maps. 

Besides its applicative relevance, these results can be also considered as a first step towards an a 

posteriori validation of the Koch hypothesis: short-time saliency and long-term perceptual masking can 

be complementary considered in order to increase the visual quality. 

 

As an overall conclusion, the thesis demonstrates that although the MPEG-4 AVC and the HEVC 

standards do not explicitly rely on any visual saliency principle, its stream syntax elements preserve 

this property. 

 

Thesis structure 

In order to offer a comprehensive methodological and experimental view about the possibility of 

extracting the salient regions directly from video compressed streams (namely MPEG-4 AVC and HEVC), 

this thesis is structured as follow. 
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Chapter I covers the Introduction aspects and is composed of three main parts, related to visual saliency, 

watermarking and its properties and video coding and redundancies, respectively. 

Chapter II is devoted to the state-of-the-art analysis. It is divided into three main parts. Chapter II.1 deals 

with bottom-up visual saliency extraction and is structured according to a nested, dichotomy: image vs. 

video and pixel vs. compressed domain. Chapter II.2 gives as an overview about the methodological 

relationship between watermarking applications and visual saliency. Chapter II.3 relates to the 

application processing directly the compressed video domain. 

Chapter III introduces the methodological and experimental visual saliency extraction directly from the 

MPEG-4 AVC compressed stream syntax elements. Chapter IV is paired-structured with Chapter III and 

presents our methodological and experimental results on visual saliency extraction from the HEVC 

compressed stream syntax elements.  

The last Chapter is devoted to concluding remarks and perspectives 

The thesis contains five appendixes. Appendix A is devoted to the fusion technique investigation for both 

MPEG-4 AVC and HEVC visual saliency extraction models. Appendix B gives an overview about the MPEG-

4 AVC standard. Appendix C shows the novelty of the HEVC and the principle differences with respect to 

its predecessor. Appendix D details the numerical experimental values reported in Chapters III, IV and V. 

Appendix E represents as plots (graphics) the main applicative results of the objective quality evaluation 

in Chapter III.  
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Table 1: Visual saliency extraction from video compressed domain: constraints, challenges, current limitations and 

contributions.  

Constraint Challenge Current limitations Contributions 

Saliency extraction  • Visual saliency
extraction from the 
compressed stream 
syntax elements 
(MPEG-4 AVC and 
HEVC) 

• Visual saliency
features are extracted 
from the 
uncompressed stream 

• Specifying a formalism connecting the human visual
system to elementary features of the MPEG-4 AVC 
and HEVC streams syntax elements 

• Defining normalization strategies for the obtained 
maps 

• Studying the pooling of the static and the dynamic 
saliency maps into a final compressed stream 
saliency map 

Performance 

evaluations 

 

• Confrontation to the 
ground truth:  
Precision and 

Discriminance 

• Limited data sets 

• Variable and un-
coherent evaluation 
procedures 

 

• Specifying a coherent, unitary test-bed allowing the 
confrontation of the compressed stream saliency 
maps to the ground truth: 
� Evaluation criteria: 

• Precision: the closeness between the 
saliency map and the fixation map 

• Discriminance: the difference between 
the behavior of the saliency map in 
fixation locations and in random locations 

� Typology of measures: 
• A distribution based metric: the KLD 

implemented based on Kullback’s 
Information theory [KUL51], [KUL68] 

• A location based metric: the AUC 
implementation made available by Borji 
[WEB09] 

� Different corpora: 

• The reference corpus organized by 
IRCCyN [WEB05] 

• The cross-checking corpus organized by 
Itti [WEB06] 

� Statistical relevance 

• Precision and Discriminance: 
experimental values reported alongside 
with their average, min, max and 95% 
confidence limits; 

• Discriminance: additional averaging 
process over repeated random test 
configurations; 

• Precision and Discriminance: assessment 
of the sensitivity of the measures with 
the randomness of the visual content. 

Applicative 

integration 

(watermarking) 

• Preserving the 
application
characteristics at a 
low computational 
cost 

• No saliency validation 
for compressed 
domain applications 

• Proof of concepts for the integration of the 
compressed stream saliency map into a 
watermarking application to guide the watermark 
insertion 

• Improving the transparency of the watermarking
method, at preserved robustness and data payload 
properties, while reducing the computational cost 
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The present thesis is placed at the confluence of visual saliency, watermarking and video compression. 

Consequently, the present chapter introduces the basic concepts related to these three realms and identifies two a 

priori mutual contradictions among and between their concepts.  

The first contradiction corresponds to the saliency extraction from the compressed stream. On the one hand, 

saliency is given by visual singularities in the video content. On the other hand, in order to eliminate the visual 

redundancy, the compressed streams are no longer expected to feature singularities.  

The second contradiction corresponds to saliency guided watermark insertion in the compressed stream. On the one 

hand, watermarking algorithms consist on inserting the watermark in the imperceptible features of the video. On 

the other hand, lossy compression schemes try to remove as much as possible the imperceptible data of video.  

The thesis will subsequently be structured around these two contradictions. 
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The information perceived by the retina is subsequently converted as nerve signals and conducted to the 

brain by the optic nerves. Then, the visual cortex analyses the received stimulus and develops visual 

perception.  

It is commonly accepted that human vision is neurobiologically based on four different physical realms 

[TRE80]. First, the rods in retina are sensitive to intensity of the light radiations. Secondly, the cones in 

retina are sensitive to color contrast (the differences in the wave length corresponding to the spatially 

adjacent areas). Thirdly, the cortical selective neurons are sensitive to luminance contrast along different 

orientations (i.e. the difference in the luminance corresponding to the angular directions in a given area). 

Finally, the magnocellular and koniocellular pathways are sensitive to temporal differences and mainly 

involved in motion analysis. 

However, vision depends not only on the ability to perceive objects assessed by the ratio between their 

size and the distance between the eye and the screen, but also on other visual, cognitive or semantic 

factors.  

I.1.2. Image processing oriented vision 

modeling 

Modeling the visual perception has gradually become a major issue. Take the example of a high quality 

video that needs to be distributed and transferred through the Internet. To provide both a smaller 

version for bandwidth and keep appealing visual quality, the HVS peculiarities should be exploited. In this 

respect, perceptual masking and saliency maps are two different approaches commonly in use in 

image/video processing.  

Perceptual masking 

Perceptual masking is a neurobiological phenomenon occurring when the perception of one stimulus (a 

spatial frequency, temporal pattern, color composition … etc.) is affected by the presence of another 

stimulus, called a mask [BEL10].  

In image processing, perceptual masking describes the interaction between multiple stimuli; in this 

respect, the perceptual characteristics of human eye are modeled by three filters denoted by T, L and C 

and representing the susceptibility artifacts, the luminance perception, and contrast perception, 

respectively. 

The perceptual mask was obtained by first sub-sampling the Noorkami [NOO05] matrix and further 

adapted to take into consideration the amendments introduced in the compressed stream integer DCT 

transformation. A value in the matrix represents the visibility threshold, i.e. the maximal value of a 

distortion added on a pixel (classical) DCT coefficient which is still transparent (imperceptible) for a 

human observer. 

Initially, in order to estimate the behavior of these filters, Peterson [PET93] proposed quantization 

masking matrix of luminance and color components, depending on the viewing conditions. Subsequently, 
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an improvement of this model was made by Watson [WAT97] which redefines quantization thresholds 

taking into consideration the local luminance and the contrast by setting a specific threshold to each 

one. 

 

Sensitivity to artifacts (T) 

The T filter is the sensitivity of the human vision to the artifacts. This filter is defined as the perception of 

distortions from a well determined threshold. 

In each domain and according to each study [WAT97][PET93][AHU92][BEL10], a table has been defined 

as a filter of the sensitivity to artifacts. This table is defined as a function of some parameters such as 

image resolution and the distance between the observer and the image. Each value in this table 

represents the smallest value of the DCT coefficient in a perceptible block (without any noise). Thus, the 

smaller the value is, the more sensible is our eye to a given frequency. 

Luminance perception (L) 

The L filter is the luminance perception. It consists of the object perception compared to the luminance 

average of the entire image [WAT97]. 

The luminance masking means that, if the average intensity of a block is brighter, a DCT coefficient can 

be changed by a larger quantity before being noticed. The most brilliant region in a given image can 

absorb more variation without being noticeable. 

Contrast perception (C) 

The C filter is the contract perception. It is the perception of an object relative to another object. 

The contrast masking, which means the reduction of the visibility of change in a frequency due to the 

energy present therein, results in a masking thresholds. The final thresholds estimate the amounts by 

which the individual terms of the DCT block can be changed before resulting in a JND (Just Noticeable 

Distortion) [WAT97]. 

Perceptual masking and compressed stream 

Thanks to both its methodological and applicative interest, the topic of adapting the perceptual masking 

to the compressed stream particularities has been of continuous interest during the last two decades.  

The study in [WAT97] reports on a masking matrix derived for compression domains based on the 

classical 8x8 DCT (e.g. JPEG or MPEG-2). This model served as basis for a large variety of compression and 

watermarking-oriented optimization studies [VER96], [CAB11]. 

Belhaj et al. [BEL10] comes across with a new perceptual mask matched to the MPEG-4 AVC stream; in 

this respect, the basic [WAT97] model is adapted so as to take into account the three main AVC 

peculiarities related to the DCT computation: (1) it is no longer applied to 8x8 blocks but to 4x4 blocks; 

(2) it is computed in integers, and (3) it is no longer applied to pixels but to inter/intra prediction errors. 
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This model was integrated under a watermarking framework. It points to significant improvement in 

both transparency (e.g. a gain of 3 dB) and data payload (e.g. a gain of 50%) with respect to the state of 

the art masking models. 

Visual saliency  

In its broadest acceptation, a saliency map is a 2D topographic map representing the regions in an 

image/video on which the human visual system will spontaneously focus.  

Actually, the concept of saliency map was introduced by Koch and Ullman [KOC85], as a topographic map 

representing conspicuousness (salient) locations in the scene. According to Le Callet and Niebur [LEC13], 

a saliency map is a topographic map of the visual field whose scalar value is the saliency at the respective 

location. 

The saliency property principally and typically arises from contrasts between items (objects, structures, 

patterns, pixels, etc.) and their neighborhood; additionally, it can also be voluntarily directed to objects 

of current importance to the observer. The study in [LEC13] defines two different dichotomies of saliency 

computational models: overt vs. covert and bottom-up vs. top-down.  

 

Overt vs. covert visual attention 

The human visual system is generally attracted by the most relevant areas in a visual scene. This 

generates a series of fixations called “overt attention”. Using an eye tracker, we can follow the 

movement of the human eye and draw a “scan path”. By analyzing the details of a given “scan path”, we 

can have information about the state of the human mind [LEC13]. 

However, the human eye can also focus in regions other than the center of gaze. As mentioned in 

[LEC13], it has been discovered that humans are able to fix their attention on peripheral locations, e.g. a 

car driver fixates the road while simultaneously and covertly monitoring road signs and lights appearing 

in the retinal periphery. Since this redirection of attention is not immediately noticeable, it is referred to 

as covert attention. 

Bottom-up vs. Top-down 

The top-down mechanisms relate to a recognition process influenced by some prior knowledge about 

the content. Actually, the same visual scene is always differently perceived by different observers. The 

perception depends on the observer motivation, psychology, and expectations (what they are actually 

looking for). The personal emotions and history of each observer make the development of a detailed 

“top-down” model very difficult. The work in [BUS15] explores the “center bias” hypothesis, its limits and 

underlying proposals. A geometrical cue is considered in case when the central-bias hypothesis does not 

hold. The proposed visual saliency models are trained based on eye fixations of observers and 

incorporated into spatio-temporal saliency models. The experimental results are promising: they 

highlight the necessity of a non-centered geometric saliency cue.  
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Conversely, the bottom-up mechanism relates to a perception process for automatically detecting 

saliency, with no prior semantic knowledge about it. The basis of many saliency attention models dates 

back to Treisman and Glades [TRE80] [TRE88], where the basic visual features and their combination so 

as to drive the human attention were identified. Koch and Ullman [KOC85] proposed a feed-forward 

model to fuse these features and introduced the concept of a saliency map (a topographic map that 

represents conspicuousness locations in the scene).  

The first complete implementation and verification of the Koch and Ullman’s model was proposed by Itti 

et al. [ITT98]. Since then, a huge variety of approaches with different assumptions for attention modeling 

has been proposed and has been evaluated against different datasets: according to scholar Google, the 

Itti’s study was cited about 7000 times!  

Bottom-up saliency maps are generally based on four different visual characteristics. First, in the spatial 

domain, three features are to be considered: intensity, color and orientation. Secondly, in the temporal 

domain, the saliency extracted at the frame level is complemented by the motion information. 

Intensity 

The human visual system is often attracted by regions with intensity lighter than others. For example, in 

Figure I-2-a, our vision is first directed to the center which is the lightest region.  

Color 

The human eye has an extreme low sensitivity to light with wavelengths less than 390 nm and greater 

than 720 nm [BLA03]. In [ITT98], it is brought to light that the elementary colors are represented in 

cortex according to a so-called color double-opponent system. In the center of their receptive fields, 

neurons are excited by one color (e.g., red) and inhibited by another (e.g., green), Figure I-2-b, while the 

opposite is true in the surrounding areas. Such spatial and chromatic opponency exists for the red/green 

and yellow/blue color pairs (and, similarly, for their complementary green/red and blue/yellow color 

pairs).

Orientation 

Retinal input is processed in parallel by multiscale low-level feature maps, which detect local spatial 

discontinuities using simulated center-surround neurons. In fact, there are four neuronal features 

sensitive to four orientations (0°,45°,90° and 180°) [ITT04]. In Figure I-2-c, we can remark that our vision 

is attracted by the regions of discontinuity between vertical and horizontal directions. 

Motion 

When watching videos, human eyes tend to concentrate on moving objects and to ignore the static ones. 

Actually, HVS is sensitive to regions having the highest motion energy [ZHI09]. In Figure I-2-d, which is 

extracted from a video sequence, our visual system fixe the fly and try to follow it and somehow 

overlook the background. 

The motion perception is a sophisticated mechanism, implicitly including the time variance. It is also 

influenced by interactions between the bottom-up and top-down attentions. Just for illustration, 
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However, the early Koch work brings to light the saliency is an intrinsic time related behavior; 

consequently, when considering a longer analysis period, we can expect some synergies between 

saliency and masking to be established.   

To the best of our knowledge, the first studies combining visual saliency and perceptual masking are the 

study in [AMM14] (see Chapters III in the present thesis) and the study in [CAO15]. The main 

contribution of [CAO15] consists in choosing the least salient and sensitive regions for HVS to embed the 

secret data. Experimental results demonstrate that such an approach outperforms in terms of quantity 

of inserted information and/or image quality four existing steganographic approaches. 

From the methodological point of view, the present thesis relates to the overt, bottom-up visual 

saliency extraction from the compressed stream. However, in the watermarking applicative 

perspectives, saliency / perceptual masking synergies will be also investigated.   

I.2. Watermarking context  

Digital watermarking can be defined as the process of imperceptibly embedding a pattern of information 

into a cover digital content (image, audio, video, etc.) [COX02] [MIT07], see Figure I-3. The insertion of 

the mark is always controlled by some secret information referred to as a key. While the key should be 

kept secret (i.e. known only by the owner), the embedded information and even the embedding method 

can be public. Once watermarked, the watermarked data can be transmitted and/or stored in a hostile 

environment, i.e. in an environment where changes attempting to remove the watermark are likely to 

occur. The subsequent mark detection can be used in a wide area of applications such as intellectual 

property right preservation, content integrity verification, piracy tracking or broadcast monitoring. 

From the functional point of view, any watermarking procedure is evaluated according at least three 

essential properties, namely transparency, robustness and data payload: 

• The data payload is the quantity of information that is inserted into the host document. It 

should be high enough so as to allow the owner to be identified (e.g. 64 bits would correspond 

to an ISBN number). Additional data could bring information about the document buyer, vendor, 

date and time of purchase, etc. 

• The transparency refers to the imperceptibility of the watermark in the document. This may 

signify either that the user is not distributed by the artifacts induced by the watermark in the 

host document or that the user cannot identify any difference between the marked and the 

unmarked document. From the conceptual point of view, the transparency property relates to 

the possibility of exploiting the visual redundancy existing in the host data so as to hide 

messages. 

• The robustness refers to the ability to detect the watermark after applying some signal 

operations on the marked document, such as spatial filtering and loss compression scanning, etc. 

The copyright protection requires very high robustness, as attacks are very likely to appear. As a 

limit case, the mark would withstand any attack that does not render the document unusable. 

The robustness is generally assessed by the probability of error at the detection. 
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I.4. Conclusion 

The aim of the present Introductive section is to bring to light the basic concepts underlying the present

thesis, namely visual saliency, watermarking and compressed streams.

First, a saliency map is a topographically arranged map that highlights regions of interest (singularities) in 

a corresponding visual scene. It represents the conspicuity at every location in the visual field by a scalar 

quantity, based on the spatio-temporal distribution of saliency. For still images, the static saliency map is

composed of three feature maps: intensity map, color map and orientation map. These three maps

correspond to different physical realms. The intensity map corresponds to the sensibility of the retina to

the intensity of the light. The color map is related to the sensibility to the colors composing in each

image (r, g, and b). The orientation map is given by the four orientations (0, 45°, 90°, 135°) for which 

neuronal sensitive features exist in the human visual system. For the video, the static saliency map

should be combined with a motion saliency map, in order to take into consideration, the sensibility of 

the human eye to the moving regions.  

Secondly, digital watermarking can be defined as the process of imperceptibly and persistently

embedding a pattern of information into a cover digital content (image, audio, video, etc.). A good

watermarking system must reach the trade-off between a large data payload, a good transparency and a 

strong robustness. In other words, we are interested in trading the visual redundancy existing in the host 

data for persistently hiding the watermark.  

Finally, the goal of any video compression standard is to eliminate the video redundancy. Both the visual

redundancy (i.e. to process the original video content so as to remove visual insignificant information) 

and data redundancy (in the sense of the Shannon’s first theorem) are concerned by the encoding

schemes. 

These three main characteristics above bring to light that the present thesis should face two a priori

conceptual contradictions among and between visual saliency, watermarking and compressed streams.

The first contradiction corresponds to the saliency extraction from the compressed stream. On the one 

hand, saliency is given by visual singularities in the video content. On the other hand, in order to

eliminate the visual redundancy, the compressed streams are no longer expected to feature singularities. 

The second contradiction corresponds to watermark insertion in the compressed stream. On the one

hand, watermarking algorithms consists on inserting the watermark in the imperceptible (non-salient)

features of the video. On the other hand, lossy compression schemes try to remove as much as possible

the imperceptible data of video.

Consequently, the thesis first studies weather the visual saliency can be directly bridged to stream syntax

elements or, on the contrarily, complex decoding and post-processing operations are required to do so. 

The thesis also aims at studying the practical benefit of the compressed domain saliency extraction, for 

the particular case of video watermarking. The saliency is expected to act as an optimization tool, 

allowing the transparency to be increased (for prescribed quantity of inserted information and 

robustness against attacks) while decreasing the overall computational complexity. However, the 
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underlying proof of concepts is still missing and there is no a priori hint about the extent of such a 

behavior. 
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This chapter is structured into three parts, related to the visual saliency extraction, to the visual saliency as a 

watermarking optimization tool and to the direct compressed video stream processing, respectively. 

This three-folded state of the art analysis brings to light that: 

• Automatic visual saliency detection is as a particular research field. Its fundamental (neuro-biological) 

background is represented by the early works of Treisman et al., advancing the integration theory for the 

human visual system and by Koch et al. who brought to light a time selectivity mechanism in the human 

attention. From the methodological point of view, all the studies published in the literature follow an inherent

experimental approach: some hypotheses about how these neuro-biological characteristics can be 

(automatically) computed from the visual content are first formulated and then demonstrated through 

experiments. In this respect, maybe the most relevant example is the seminal work of Itti [ITT98]. While the 

large majority of studies generally converge in the type of the main methodological steps (extracting individual 

intensity, color, orientation and motion maps and subsequently fusion them at spatial and spatio-temporal 

levels), lot of divergences still remains in their definition, assessment (ground-truth vs. applicative, objective vs. 

subjective evaluation, composition of corpora, type of measures, etc.). Moreover, no study related to the 

saliency extraction in the compressed domain, i.e. in-between the Quantization and Entropic coding steps has 

been identified. 

• While the relationship between saliency and watermarking shows different promising results and exploring the 

ROI (regions of interest) can be benefic for each of the main watermarking properties, no study on the trade-off 

between watermark embedding and the visual saliency extraction in compressed domain has been identified. 

• Today, image/video processing directly in the compressed stream becomes more a necessity rather than an 

option: just for example, fingerprinting, image retargeting and detecting moving object can benefit from such 

an approach. However, the integration of visual saliency extraction directly from compressed domain in such 

applications is not yet studied.  

Consequently, in this thesis, we take the challenge of extracting the saliency map in the compressed domain in order 

to guide the watermark insertion in a compressed stream watermarking application (both MPEG-4 AVC and HEVC), 

with minimal decoding operations. 
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II.1.2. Video saliency map 

As a general direction in the state-of-the-art studies, the spatial (static 2D) saliency extracted at the 

frame level is complemented with temporal (motion) information.  

Rather than being directly focused on visual saliency in video, Itti et al. [ITT05] deal with a broader 

concept, namely the surprise. First, the study provides a formal mathematical model for the surprise 

elicited by a visual stimulus or event. In this respect, a Bayesian framework is considered. The 

background information of an observer is represented by its prior probability distribution over a given 

model. Starting from this prior distribution of beliefs, the fundamental effect of a new data observation

D on the observer is to change the prior distribution in the posterior distribution via Bayes theory. The 

new data observation D carries no surprise if the posterior distribution is identical to the prior one. 

Conversely, D is surprising if the posterior distribution differs from the prior distribution. The same data 

may carry different amount of surprise for different observers, or even for the same observer taken at 

different times. Secondly, the surprise is connected to the visual saliency through experiments 

considering both TV and video games content. It is thus brought to light that more than 72% of human 

saliency is connected to the surprise.   

Zhai et al. [ZHA06] design an attention detection model, Figure II-11, highlighting regions that jointly 

correspond to interesting objects and actions. The static map is computed based on the color contrast 

(extracted at the color histogram level) while the motion map is computed based on the motion contrast 

between successive frames. These two elementary maps are pooled through a dynamic averaging 

technique (the temporal attention is dominant over the spatial attention when large motion contrast 

exists and vice versa). The experimental results are obtained on 9 video sequences and correspond to 

subjective evaluations: a panel of 5 observers watches these 9 videos together with their saliency maps. 

They assessed the concordance between the saliency map and their own intuition about saliency, by 

granting three quality marks: Good, Poor and Failed. The results show that the Good label is the most 

voted (with an average of 0.77) while the Failed label is granted with a frequency of 0.08. 

 

Figure II-11: Workflow of the saliency model [ZHA06]: the saliency map is obtained through a dynamic fusion of the static and 

the temporal attention model. 
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Figure II-15: Saliency computation grap
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In [GOF12], Goferman et al. propose an extension of the work in [GOF10] and calculated the saliency 

from a video content based on the context aware approach. This model follows four principles of human 

visual attention (Figure II-7), which are: (1) Local low-level considerations, including factors such as 

contrast and color. (2) Global considerations, which suppress frequently occurring features while 

maintaining features that deviate from the norm. (3) Visual organization rules, which state that visual 

forms may possess one or several centers of gravity about which the form is organized (the salient pixels 

should be grouped together and not spread all over the image). (4) High-level factors, such as priors on 

the salient object location and object detection (implemented as post processing operations). This model 

was qualitatively and quantitatively evaluated. The qualitative evaluation is done on 12 images with 

different scenes and it proves that the context aware method can always detect the salient objects 

according to the context of the image. The quantitative evaluation consists on comparing the ROC curves 

on two different benchmarks presented in [HOU07], [JUD09]. The experimental results show that this 

method outperforms state of the art methods [ACH09], [GUO08], [HAR06], [HOU07], [ITT98], [JUD09], 

and [RAH10]. 

Fang et al. [FAN14] propose a saliency detection model in MPEG-4 ASP [WEB11]. This model uses DCT 

coefficients of unpredicted frames (I frames) to get static features and predicted (P and B frames) to get 

motion information, see Figure II-17. YCrCb color space is used in MPEG-4 ASP video bit stream. The AC 

coefficients represent texture information for image blocks. The motion vectors are then extracted to 

get the motion feature. The combination of the static and the motion features is then applied based on a 

dynamic fusion. The experimental results are obtained on 50 video sequences and correspond to 

calculate the KLD and the AUC between the saliency map and the fixation map at saccade locations; it is 

shown that this model is validated by a KLD=1.828 and AUC=0.93. 
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Figure II-17: Flowchart of the saliency

domain of the MPEG-4 ASP.  

II.1.3. C

Based on 18 directly investigate

present state-of-the-art analysis

variety of approaches for bridgin

generally converge in the type o

orientation and motion maps an

divergences still remains in th

subjective evaluation, composit

saliency studies consider in addit

et al. [BOU12] propose a fusion o

 

The state of the art analysis ide

Its fundamental (neuro-biologic

advancing the integration theory

time selectivity mechanism in t

studies published in the literatu

how these neuro-biological char

tion from compressed streams 

 

y computation model [FAN14]: the visual saliency is extr

Conclusion 

ed studies (and on 25 additional studies to whic

s can be synoptically presented in Table II.1. I

ng human visual system and automatic saliency c

of the main methodological steps (extracting in

nd subsequently fusion them at spatial and spati

heir definition, assessment (ground-truth vs. a

tion of corpora, type of measures, etc.). Not

tion to the spatial and temporal saliency a third 

of spatial, temporal and geometric cues.  

entifies automatic visual saliency detection as a 

cal) background is represented by the early w

y for the human visual system and by Koch et a

the human attention. From the methodologica

ure follow an inherent experimental approach: 

racteristics can be (automatically) computed fro

tracted from the transformed 

ch these 18 refer to), the 

It brings to light a large 

computation. While they 

ndividual intensity, color, 

o-temporal levels), lot of 

applicative, objective vs. 

te that some top-down 

cue; for instance, Boujut 

particular research field. 

works of Treisman et al., 

al. who brought to light a 

al point of view, all the 

some hypotheses about 

om the visual content are 



State of the art 

65 

first formulated and then demonstrated through experiments. In this respect, maybe the most relevant 

example is the seminal work of Itti [ITT98].  

Moreover, we could not find any study related to the saliency extraction in the compressed domain, i.e. 

in-between the Q and E steps represented in Figure II-1. 

Consequently, in order to address the conceptual contradiction between saliency and compressed 

streams, the present thesis should offer a comprehensive methodological and experimental view about 

the possibility of extracting the saliency regions directly from the compressed domain (both MPEG-4 AVC 

and HEVC), with minimal decoding operations. 
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Table II-1: State of the art synopsis of saliency detection models. 

Model Saliency detection / pooling Validation Results 

Uncompressed image methods 

[ITT98] Center-surround Gaussian differences /Average 
pooling 

Ground truth: 
- 258 images 
- SFC  

SFC(salient 
locations)>SFC(average) 

[BRU05] Quantifying the self-information of each local image 
patch / Gaussian filter  

Ground truth: 
- 3600 natural images 
- ROC curve

ROC[TSO06] 
>ROC[ITT98] 
AROC=0.7288 

[HAR06] Graph-based model / Markovian-based weighted 
summation

Ground truth: 
- 108 images 
- AUC  

0.96< 
AUC 
<0.98 

[LEM06] Center-surround interactions / weighted addition Ground truth: 
- 10 images 
- CC and KLD  

CC=0.71 
KLD=0.46 

[HOU07] The spectral residual of a log-spectrum of an 
image/Gaussian filter 

- 62 natural images 
- 4 naïve subjects 
- comparison with [ITT98] 
calculating the HitRate and the 
FalseAlarmRate and the 
computational coast in seconds

-HR[HOU07] >= 
HR[ITT98] 
-FAR[HOU07] <= 
FAR[ITT98] 
-lower computational 
coast (4.041s<61.621s)

[GOF10] Context aware detection / post-processing based on 
the fourth principle 

Ground truth [HOU07] 
- 62 images 
- ROC curves
Applicative validation: 
- Image retargeting and 
summarization 

ROC curves [GOF10] > 
ROC curves [HOU07] 

ROC curves [GOF10] > 
ROC curves [WAL06] 
 

[MUR11] Low-level video representation that predicts color 
appearance phenomena/inverse wavelet transform 

Ground truth [BRU05] 
- 120 color images 
- 20 different subjects 
- KLD and AUC 
Ground truth [JUD09] 
- 1003 images 
- 15 subjects
- KLD and AUC 

 
KLD=0.426 
AUC=0.701 
 
 
KLD=0.278 
AUC=0.664

[CHE13] Color contrast and color spatial distribution / Pooling 
based on compactness

Ground truth: 
- 1000 images
- MAE 

MAE decreased by 
25.2%

Compressed image methods (JPEG) 

[FAN12] Extracting intensity, color, and orientation from DCT 
coefficients / 
Weighted summation 

Ground truth: 
- 1000 images 
- AUC 

AUC= 0.93 
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Table II-1 (continuing): State of the art synopsis of saliency detection models.

Uncompressed videos methods 

[ITT05] Detecting the low level  surprising event in the video Ground truth: 
- [WEB06] 
- KL scores 

 
KL= 0.241 

[ZHA06] Contrast based features extraction / dynamic 
averaging technique

- 9 video sequences 
- 5 assessors votes on the
correctness of the detection 

Good=0.77 
Poor=0.15
Failed= 0.08 

[LEM07] The center surrounds filters and the relative motion 
/ weighted average

Ground truth: 
- 7 video sequences
- CC, KLD, and ROC curves 

CC=0.41 
KLD=19.21

[HOU08] Incremental Coding Length (ICL) based saliency 
model / weighted summation 

Ground truth: 
- 1 video sequence and 120 still 
images 
- KLD and AUC 

KLD= 0.54 
AUC= 0.79 

[SEO09] Regression kernel / self-resemblance Ground truth: 
- corpus [BRU05] 
- KLD and AUC  

KLD=0.34 
AUC=0.67 

[MAR09] Two parallel ways (static biologically inspired and 
dynamic highlights moving objects) / parallel saliency 
maps 

Applicative validation: 
- three videos 
- harmonic average between 
precision and recall F1. 

F1 (MAR09) > 
F1(random summary ) > 
F1 (one frame selection 
at the middle of each 
shot) 

[GUO10] Phase based saliency model detection / QFT formula Ground truth: 
- 1 video (988 frames) and 100 
still images 
- AUC 

AUC= 0.83 

[GOF12] Context aware detection / fusion based on centers 
of gravity 

Ground truth: 
- corpus [HOU07][JUD09] 
- ROC curve 

ROC curve (context 
aware) > ROC curve 
(State of the art 
methods) 

Compressed video methods (MPEG-4 ASP) 

[FAN14] Extracting intensity, color, and orientation from DCT 
coefficients, motion from motion vector / 
Dynamic pooling 

Ground truth: 
- corpus [WEB06] 
- KLD and AUC 

KLD=1.82 
AUC=0.93 
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The study in [NIU11] considers a two-folded HVS approach for increasing the transparency of the SS 

(spread spectrum) techniques in the DCT domain. The mark is inserted into non-salient regions detected 

according to the [HOU07] saliency model. However, prior to the insertion, the AWGN (additive white 

Gaussian Noise) represented the mark is modulated according to JND (Just Noticeable Distortion) 

profiles. This allows shaping lower injected-watermark energy into more sensitive regions and higher 

energy into the less perceptually significant regions in the image. The experimental results are illustrated 

through one images showing perceptual improvement with respect to the original JND-based spread-

spectrum method. 

Tian et al. [TIA11] propose an integrated visual saliency-based watermarking approach, which can be 

used for both synchronous image authentication and copyright protection. First, the regions of interest 

(ROI) are extracted according to a proto-object model and the copyright information is embedded 

therein as the robust watermark. Secondly, the edge map of the most salient ROI is embedded into the 

LL sub-band of the wavelet-decomposed watermarked image as the fragile watermark. The experiments 

show the efficiency of the method in terms of transparency (evaluated through the PSNR). The 

robustness experiments concerns a restricted class of attacks (white noise addition, median filtering and 

the JPEG compression) and show that the advanced method outperforms [MOH08]. The fragility and the 

efficiency to detect and locate tampering attacks are also investigated. 

In order to verify the integrity of face (biometric) images, Li et al. [LI12] define a multi-level 

authentication watermarking scheme based on He et al. [HE06]. Biometric data related to the face 

images are considered as watermarks to be inserted into the same image. The face images are 

segmented into regions of interest (ROI) and regions of background (ROB) based on salient region 

detection. The watermark is adaptively embedded into the biometric images based on detection results. 

The saliency map is computed according to the method presented in [MAL90]. The analysis of the 

perceptual quality is validated by a PSNR = 33.13 dB. In order to evaluate the performance of the 

proposed multi-level authentication watermarking scheme, an analysis on the tamper detection 

probability inspired by Yu [YU07] is conducted. When face images suffer from malicious tamper, the 

extracted watermarks can be used to recover the damaged biometric data and reconstruct face images. 

Even if the tamper ratio is up to 0.4, the re- covered face image can be used for verification.  

Agarwal et al. [AGA13] introduce an algorithm that embeds information into visually interesting areas 

within the host image. The watermarking algorithm consists on inserting in non-salient regions of the 

blue component (as the change in blue component is the least perceptible to human visual system). The 

saliency map is generated based on the Graph-Based Visual Saliency (GBVS). The advanced method 

performs a 3-Level Selective DWT on the blue component of RGB cover image. The paper shows the 

result of the watermarking schema on four RGB images. The experimental results are structured at three 

levels. First, it is shown that the watermark remains imperceptible even after increasing the data 

payload:  for a data payload of 1024 bytes, the PSNR=41.3. Secondly, the robustness against three types 

of attacks (namely Gaussian blurring, JPEG compression, and median filtering) is evaluated by computing 

the correlation between the inserted and the recovered watermarks. It is thus stated that the advanced 

method outperforms the studies in [TIA11] and [MOH08]. Finally, it is shown that for prescribed BER (Bit 

Error Rate) and PSNR values, the advanced model increases the value of payload.  
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Chen et al. [CHE15] advance a method embedding the watermark into the DC (Direct Component) 

component of the DCT, according to a JND adaptive strategy. The saliency map is obtained by applying a 

JND fusion on the static and the dynamic saliency map. The motion saliency map is computed by 

applying the motion JND and the static saliency map is obtained according to [ITT98]. Experimental 

results demonstrate the effectiveness of this method: by keeping the same data payload and the same 

robustness, the transparency is ameliorated by 3 dB. 

Wan et al. [WAN15] propose a visual saliency based logarithmic STDM (Spread Transform Dither 

Modulation) watermarking scheme. The watermark is embedded into a sub-set of non-salient DCT 

coefficients. The visual saliency is determined based on the energy of the DCT features of luminance and 

texture. By investigating the BER results under different attacks, the method robustness against AWGN 

addition, JPEG compression and S&P (Salt and Pepper) noise is proved. The results show the method has 

statistically significant better outcomes in terms of the VS-based IQA metric. The robustness is improved 

by at most 5%.  

Bhowmik et al. [BHO16] also adapt the strength of the watermark according to the salient / non-salient 

feature of the DWT coefficients bearing that watermark. A low complexity wavelet domain visual 

attention model is proposed. It uses all detail coefficients across all wavelet scales for center-surround 

differencing and normalization. Subsequently, it fusses 3 orientation features in a non-separable manner 

to obtain the final saliency map. The performance evaluation shows up to 25% and 40% improvement 

against JPEG2000 compression and common filtering attacks, respectively.  

Gawish et al. [GAW16] report on a saliency guided watermarking approach. A weighted sum between 

the non-saliency and heterogeneity-brightness maps generates a map locating the best (in the 

perceptual sense) places to hide the watermark. The DCT middle frequency coefficients of the top 

candidates of the watermarking map are then used for bearing the data. Experiments shows that this 

method outperforms the Harris-Laplace based method [ZHA12] in terms of transparency (an increase of 

0.5 dB in PSNR) and robustness (a decrease of 0.1 in (NHS) Normalized Hamming Similarity) over 

different attacks. 

 

As a conclusion, this concise state-of-the-art study (see Table II-2) on the relationship between saliency 

and watermarking shows different promising results. For instance, guiding the insertion of the 

watermark by the saliency map offers significant improvements. Moreover, the investigated models 

bring to light that exploring the ROI can be benefic for each of the three main watermarking properties: 

robustness ([TIA11], [LI12], [AGA13], [WAN15], [BHO16], and [GAW16]) transparency ([SUR09], [NIU11], 

[TIA11], [LI12], [CHE15], [WAN15], and [GAW16]) and data payload [AGA13].  

By analyzing the 9 state-of-the-art studies we can notice that the trade-off between watermark 

embedding and the visual saliency extraction is not yet reached in the compressed domain, i.e. in-

between the Q and E steps represented in Figure II-1. Thus, to guide a compressed stream watermarking 

application we should extract saliency directly in the compressed stream syntax elements in order to 

avoid decoding/re-encoding operations.  
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Table II-2: State-of-the-art of the watermark embedding scheme based on saliency map. 

Reference Watermarking schema Visual saliency model Benefits

[SUR09] LSB (lowest significant bit) [ITT98] Gains in TPE by factors 
between 1.5 and 4 (according 
to the data payload)  

[NIU11] SS in the DCT domain [HOU07] Subjective amelioration 

[TIA11] Inserting robust watermark 
into DCT of ROI and the fragile 
watermark into LL sub-band  

Proto-object model Transparency: PSNR >= 42 

Fragileness and efficiency: 
Preserving authentication 
while detecting tampering 

Robustness: outperforms the 
[MOH08] when resisting the 
white noise, median filter and 
the JPEG compression
attacks.  

[LI12] Embedding watermark in 
biometric images  

[MAL90] PSNR = 33.13 dB.  

A super performance at 
detection probabilities and 
false detection probabilities.  

Even if the tamper ratio is up 
to 0.4, the recovered face 
image can be used for 
verification. 

[AGA13] Inserting the watermark on 
non salient regions of the blue 
component 

Graph Based Visual 
Saliency (GBVS) 

Outperforms [TIA11] and 
[MOH08] in term of 
robustness against no attack, 
Gaussian blur, JPEG 
compression, and median 
filter and proved that their 
method  

For a prescribed BER and 
PSNR the model increases the 
value of payload.  

[CHE15] Watermark insertion in the DC 
coefficient 

[ITT98] and motion JND Increasing the PSNR by 3 dB 

[WAN15] Inserting the watermark in the 
host vector of the DCT 
coefficients 

Extracting features from 
DCT coefficients 

Statistically significant better 
outcomes in terms of the VS-
based IQA metric.  

The robustness is improved 
by at most 5%. 

[BHO16] Inserting the watermark in the 
wavelet domain 

Low complexity wavelet 
domain model  

up to 25% and 40% 
improvement against 
JPEG2000 compression and 
common filtering attacks 

[GAW16] Inserting watermark in natural 
images 

Feature redundancy  decreasing robustness by 0.1 
in NHS and increase 
transparency by 0.5 dB in 
PSNR 
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blocks. The experiments are run on one sequence (whose length is not précised) encoded at 1125 kbps. 

The method proved both robustness (against JPEG compression with QF=50) and fragility against 

temporal (with 2 frame accuracy) and spatial (with a non-assessed accuracy) content changing.  

Manerba et al. [MAN08] present a method for foreground object extraction following a “rough indexing” 

paradigm. This method combines motion masks with the morphological color segmentation operated at 

DC coefficients of MPEG1,2 compressed stream. In this respect, each group of picture (GOP) is first 

analyzed and, based on color and motion information (extracted from the I and P frames, respectively), 

foreground objects are extracted. Secondly, a post-processing step is performed so as to refine the result 

and to correct the errors due to the low-resolution approach. Results proved that the percentage of the 

object detection varies from a video sequence to another from 0 to 100%. The object extraction 

computation time also depends on the video sequence (0.08s to 0.43s).   

Poppe et al. [POP09] introduce a method to detect moving objects in H.264/AVC compressed video 

surveillance sequences. However, motion vectors are created from a coding perspective and additional 

complexity is needed to clean the noisy field. Hence, an alternative approach is presented, based on the 

size (in bits) of the blocks and transform coefficients used within the video stream. The system is 

restricted to the syntax level and achieves high execution speeds, up to 20 times faster than the state-of-

the-art (at that time) studies. Finally, the influence of different encoder settings is investigated to show 

the robustness of their system. 

Belhaj et al. [BEL10] introduce a binary spread transform based QIM for MPEG-4 AVC stream 

watermarking. By combining QIM principles, spread transform, a perceptual shaping mechanism, and an 

information-theory driven selection criterion, they achieved a good transparency and robustness against 

transcoding and geometric attacks. By advancing the m-QIM theoretical framework, [HAS10] extends the 

QIM watermark principle beyond the binary case. In this respect, the research was structured at two 

levels: (1) extending the insertion rule from the binary to m-ary case and (2) computing the optimal 

detection rule, in sense of average probability error minimization under the condition of Gaussian noise 

constraints. Thus, the size of the inserted mark is increased by a factor log2m (for prescribed 

transparency and robustness constraints). 

Zhou et al. [ZHO10] advance an application of digital fingerprinting2 directly in the MPEG-2 compressed 

video stream. Fingerprints are embedded into each I-frame of the video, by means of data repetition 

technique so as to ensure accurate extraction of fingerprint. First, the fingerprint is generated according 

to two-tier structure based on error correcting code and spread spectrum. Second, the fingerprint is 

embedded during decoding. The algorithm selects the I-frame in the video for embedding to enhance 

the robustness of the fingerprint. Finally, the extraction step of the fingerprint is described as easy and 

effective since the data repeating technology is adopted in the embedding algorithm. The embedding 

method satisfies the requirements of invisibility and real-time quite well. In term of invisibility 

(PSNR>=35 dB) while in term of real-time (0.1s gain in the Average Running Time compared to other 

method). 

In order to extract the saliency maps, Fang et al. [FAN12] no longer consider pixel representation of the 

                                                           
2
 In this study, the term ‘fingerprinting’ also encompasses a multiple-bit watermarking technique. 
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image but a transformed domain related to the JPEG compression. He proposes an image retargeting 

algorithm to resize images, based on the extracted saliency information from the compressed domain. 

Thanks to the directly derived saliency information, the proposed image retargeting algorithm effectively 

preserves the objects of attention and removes the less appealing regions. The statistical results for 500 

retargeted images show that the mean opinion score of images retargeted according to [FAN12], namely 

3.708, is higher than those according to three state-of-the-art algorithms [RUB08], [WOL07] and 

[REN09], which were reported to be 3.278, 3.348, and 3.424, respectively. 

Amon et al. [AMO12] present a method for compressed domain stitching of HEVC streams, with 

applications to video conferencing. The methodological approach considers three incremental levels, 

namely pixel, syntax elements, and entropy coding. The results show gains in terms of quality of resulted 

video content (between 0.5 dB and 0.8 dB with respect to the method in the pixel domain), in 

compression efficiency (evaluated as a PSNR-bitrate function) and computational complexity (in the 

sense that the operation involved in the advance method are less complex than a complete 

encoding/decoding chain). 

Ogawa and Ohtake [OGA15] propose a watermarking method for HEVC/H.265 video streams that 

embeds information while encoding the video. After quantizing, the quantized data is divided into two 

parts: common and distinct. The quantized values in the common part are encoded using the arithmetic 

coding CABAC (Entropy Coding). The quantized value in the distinct part is changed according to the 

information bit. After the change of the quantized values, the values are encoded using CABAC. Thus, a 

modified HEVC elementary stream is generated. Authors state that it is possible to embed information 

into a compressed stream using this method without degrading the content and with an appropriate 

robustness that meets the requirements of the users. There is no discussion on the quality of the 

watermarking. 

 

To conclude with, the huge amount of the visual content stored and transmitted in a compressed stream 

bring to the light that image/video processing directly in the compressed stream becomes more a 

necessity rather than an option. The analysis of the 9 state-of-the-art compressed stream application 

studies brings to light that proceeding directly in the compressed stream offers the possibility of a gain in 

complexity and computational cost while preserving or even improving the application properties. 

Consequently, in this thesis, we take the challenge of extracting the saliency map in the compressed 

domain in order to guide the watermark insertion in a compressed stream watermarking application 

(both MPEG-4 AVC and HEVC), with minimal decoding operations. 
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Table II-3: State of the art of the compressed stream application. 

Reference Application Compressed domain 

[KRA05] Super-resolution (SR) mosaic MPEG  

[THI06] Watermarking MPEG1/2 

[MAN08] Foreground object extraction MPEG1/2 

[POP09] Detecting moving object MPEG-4 AVC 

[ZHO10] Fingerprinting MPEG-2 

[BEL10] Watermarking MPEG-4 AVC 

[FAN12] Image retargeting JPEG 

[AMO12] Compressed domain stitching of streams coded HEVC 

[OGA15] Watermarking HEVC 
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By bridging uncompressed-domain saliency detection and MPEG-4 AVC compression principles, the present thesis 

advances a methodological framework for extracting the saliency maps directly from the stream syntax elements. In 

this respect, inside each GOP, the intensity, color, orientation and motion elementary saliency maps are related to 

the energy of the luma coefficients, to the energy of chroma coefficients, to the gradient of the prediction modes 

and to the amplitude of the motion vectors, respectively. The experiments consider both ground-truth and 

applicative evaluations. The ground-truth benchmarking investigates the relation between the predicted MPEG-4 

AVC saliency map and the actual human saliency, captured by eye-tracking devices. The applicative validation is 

carried out by integrating the MPEG-4 AVC saliency map into a robust watermarking application.
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I frames are encoded according to Intra prediction modes which exploit the spatial redundancy to 

enhance the compression efficiency. For each 4×4 pixel block X, the prediction mode minimizing the 

rate-distortion cost is selected and is deployed so as to compute the corresponding prediction block P 

from the neighboring blocks. Consider an R residual block (the difference between the current block X 

and the predicted block P): 

 

� = � − � (III-1) 

 

At the pixel level, the R blocks are represented by one luminance and two chrominance values. These 

values are subsequently DCT transformed and then quantified, thus obtaining the so-called luma (Y) and 

chroma (Cr, Cb) MPEG-4 AVC channels. 

For each 4×4 DCT transformed and quantified R block, we define the intensity saliency map Mi according 

to (III-2): 

��(�) =����,�,���
���

�
��� 	 (III-2) 

where k is the block index in the frame, u and v are the coefficient coordinates in the k block and Y is the 

luma residual coefficient. 

According to (III-2), a luminance energy value is attached to each block: the larger this M i value, the more 

salient the k block. 

Color map 

In order to define the color saliency map, we shall keep the same conceptual approach as for the 

intensity (i.e. associating saliency to the regions with high energy color components) and we shall take 

into account the human visual system peculiarities related to the color perception. 

In [ITT98], it is brought to light that the elementary colors are represented in cortex according to a so-

called color double-opponent system. In the center of their receptive fields, neurons are excited by one 

color (e.g., red) and inhibited by another (e.g., green), while the converse is true in the surrounding 

areas. Such spatial and chromatic opponency exists for the red/green and yellow/blue color pairs (and, 

of course, for their complementary green/red and blue/yellow color pairs).  

Consequently, the MPEG-4 AVC color saliency map will be based on the energy featured by the 

composition of red/green and yellow/blue opponent pairs, as follows. 

We first convert the color information extracted from the (Y,Cr,Cb) MPEG-4 AVC DCT and quantified 

color space into the transformed and quantified (r,g,b) space: 
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 � = �+ �.���(�� − ���) � = � − �.�����(�� − ���) + �.�����(�� − ���)  � = �+ �.���(�� − ���)	
 

Secondly, through analogy with [ITT98], the two opponent color pairs RG (Red/Green) and BY 

(Blue/Yellow) are computed for each (u,v) coefficient in the macroblock: 

���,� = (����,�+������,�)/�	  ���,� = (�����,�+�������,�)/� 

 

where 	  

��� = � − (� + �)/�	  ����� = � − (�+ �)/�	  ���� = � − (� + �)/�  

������ =
� + �� − |� − �|� − � 

 

Finally, we compute the color saliency map Mc as the sum of the energy in the double color-opponent 

red/green and blue/yellow spaces: 

 

��(�) =�����,�,�� + ���,�,���
���

�
��� (III-3) 

 

 

where k is the block index in the frame, while u and v are the coefficient coordinates in the k block.  

According to (III-3), a color energy value is assigned to each block: the larger this Mc value, the more 

salient the k block. 
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Figure III-4: Features map normalization. 

III.1.3. Elementary saliency map pooling 

The MPEG-4 AVC saliency map is the fusion of the static and the dynamic map. The static saliency map is 

in its turn a combination of intensity, color and orientation features maps. Despite the particular way in 

which all these elementary maps are computed, the fusion technique allowing their combination plays a 

critical role in the final result and makes the object of a research challenge of the studies in [AMM15], 

[MUD13], [MAR09].  

In our study, the pooling takes place at two levels: static (i.e. pooling intensity, color and orientation 

maps in order to obtain the static map) and dynamic (i.e. pooling static and motion maps in order to 

obtain the final saliency map). In order to decide on the pooling formulas for our saliency maps, we 

considered two criteria. On the one hand, according to the state-of-the-art studies [ITT98], [HAR06], the 

most often considered static fusion formula is the average. Considering the dynamic fusion, weighted 

averages between static and motion maps are also very popular. Consequently, we included in our study 

the following pooling formulas: 

 �� = 1

3
(�� +�� +��) �� = ��� + ��� + �(�� ×��) 
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where	�� is the final MPEG-4 AVC saliency map. By changing α, β, γ values we obtain several static-

dynamic fusing formulas, defined over the same average static fusion. In our study, we considered: 

• α=β=γ=1, which is the combination of the addition and the multiplication static-dynamic fusion 

technique; the corresponding MPEG-4 AVC saliency map will be further referred to as Combined-avg 

(where avg represents the average static pooling technique); 

• α=β=0, γ=1, which corresponds to the multiplication static-dynamic fusion technique; this map will be 

further referred to as Multiplication-avg; 

• α=β=1, γ=0, which corresponds to an additive static dynamic fusion; this map will be further referred to 

as Addition-avg; 

• α=1, β=γ=0, which corresponds to static saliency map; the corresponding map will be further referred 

to as Static-avg; 

• α=0, β=1, γ=0, which corresponds to motion saliency map; the corresponding map will be further 

referred to as Motion. 

On the other hand, according to the fusing formula investigation [AMM15] detailed in Appendix A, 

where 48 different pooling combinations (6 static pooling formula and, for each of them, 8 dynamic 

pooling) were investigated, the most accurate combination (in the sense of KLD and AUC computed on a 

ground truth database of 80 sec) is Skewness (defined as the third moment on the distribution of the 

map [MAR09]) static-dynamic fusion over the maximum static fusion. Consequently, we shall also include 

this pooling formula in our study and we shall further refer it as Skewness-max. 

III.2. Experimental results 

We will evaluate the performances of 6 alternative ways of combining the elementary maps described 

above: we will retain the elected spatio-temporal saliency map in the first level, resulted from the study 

of the fusing formula (see Appendix A.1) where 48 fusion formulas are performed: six different fusion 

techniques for static features and eight fusion formulas over the static and motion saliency maps. The 

performances of these 48 MPEG-4 AVC saliency maps are discussed by comparing them to the ground 

truth represented by the density fixation maps captured by the Eye Tracker on eight video sequences at 

the IRCCyN premises [WEB05]. The comparison to the density fixation maps is completed by using two 

objective measures: the KLD (Kullback Leibler Divergence, assessing the differences between the 

distributions of the two investigated entities) and the AUC (Area Under Curve, assessing the differences 

between the two entities at given locations). In addition, we will add some fusion technique generally 

used in the state of the art model then we will precede two different validations: the ground truth 

validation and the applicative validation.  

In our study, we extract the saliency map only from I and P frames. We did not consider B frames in our 

experimental study because such frames may not be present in some compressed streams (e.g. the 

streams encoded with the Baseline profile). Nevertheless, our method can be applied to any MPEG-4 

AVC video configuration, be it with or without B frames. Moreover, if the video compressed stream 

contains B frames, only I frames and P frames will be considered to extract static and dynamic saliency, 
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respectively. It is not necessary to compute the saliency from B frames. As the saliency prediction mostly 

relates to the fixation locations (including pursuit) and keeping in mind that usual human fixation 

duration is between 100 ms and 200 ms, we do not need to process each and every frame in a video 

sequence (e.g: for a frame rate of 25 fps, each frame comes every 40 ms). 

III.2.1. Ground truth validation 

Test-bed 

Our experiments are structured at two nested levels, according to the evaluation criteria and to the 

actual measures and corpora, respectively Table III-1. 

First, several evaluation criteria can be considered. We shall consider both the Precision (defined as the 

closeness between the saliency map and the fixation map) and the Discriminance (defined as the 

difference between the behavior of the saliency map in fixation locations and in random locations) of the 

saliency models.  

Secondly, for each evaluation criteria, several measures can be considered. Our assessment is based on 

two measures of two different types (the KLD and AUC). We implemented the KLD based on [KUL51] 

[KUL68] while we used the AUC implementation available on Internet [WEB07].  

Note that in order to ensure the statistical relevance for the KLD and AUC values, we compute the 

average values (both over the GOP in an individual video sequence and over all the processed video 

sequences), the related standard deviations, 95% confidence limits and minimal/maximal values. This 

way, the ratio between the average value and the standard deviation (the so-called signal to noise value 

[FRY65], [WAL89]) can be estimated (point estimation) in order to assess the sensitivity of the KLD and 

AUC with respect to the randomness of the processed visual content: the bigger the signal to noise ratio, 

the less sensitive the corresponding measure with respect to the visual content variability. 

Two different corpora are considered and further referred to as: (1) the reference corpus organized in 

[WEB05] and (2) the cross-checking corpus organized in [WEB06]. 

The reference corpus is a public database organized by IRCCyN [WEB05]. It contains 8 video sequences of 

10 seconds each one. For each video, the eye-tracker data are extracted for 30 observers. The distance 

between observers and the display is 3m. The resolution of the display is 1920×1080 with 50 Hz frame 

rate. Based on those results, a density fixation map is calculated for each video. In our experiments, 

these videos are encoded in MPEG-4 AVC Baseline Profile (no B frames, CAVLC entropy encoder) at 512 

kb/s. The GOP size is set to 5 and the frame size is set to 576×720. The MPEG-4 AVC reference software 

(version JM86) is completed with software tools allowing the parsing MPEG-4 AVC syntax elements and 

their subsequent usage, under syntax preserving constraints. 

The cross-checking corpus includes 50 various types of video clips, summing-up to over 25 minutes. The 

human saliency is represented by the saccade data captured by an eye-tracker (240-Hz infrared-video-

based) from eight observers. In our experiments, we applied the same encoding operations as in the case 

of the reference corpus. 
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While the choice of corpora in the test-bed is always a crucial issue in image/video processing, it 

becomes of an upmost importance in visual saliency studies. By its very principles, any bottom-up model 

is a model solely depending on the visual content. In order to grant generality for our results, we 

considered two types of criteria when choosing our corpora:  

• we used two public corpora, already considered in a large variety of publications;  

• we strengthened our results by an in-depth statistical analysis: 

• we defined and computed a sensitivity measure in order to compare the dependency of the 

saliency model with the randomness of the content in the processed corpus, 

• we computed the minimal, maximal and the 95% confidence limits for the two investigated 

measures (KLD and AUC). 

 

Table III-1: Assessment of the model performance in predicting visual saliency. 

Ground truth validation: concordance between the computed saliency map and human visual saliency 

Precision: similarity with ground truth (cf. 

Chapter III.2.1.2) 

Discriminance: difference with respect to random 

locations (cf. Chapter III.2.1.3) 

Measures: KLD, AUC 

Corpus: reference 

Measures: KLD, AUC 

Corpus: reference, cross-checking 

 

During our experiments, we benchmark our MPEG-4 AVC saliency map against three state of the art

methods, namely: Ming Cheng et al. [CHE13], Hae Seo et al. [SEO09] and Stas Goferman [GOF12], whose

MATLAB codes are available for downloading.  

Precision 

In this experiment, we compare the computed saliency maps to the density fixation maps captured from 

the human observers (cf. illustration in Figure III-5); the reference corpus [WEB05] will be processed. 

 

Figure III-5: MPEG-4 AVC saliency map (on the left) vs. density fixation map (on the right). 
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where Mi stands for an MPEG-4 AVC saliency maps (e.g. Skewness-max, Combined-avg and Addition-avg) 

while Mj stands for a state of the art saliency map. A positive ƍ���� value means that the Mi map 

outperforms (in the KLD sense) the Mj map. 

The quantitative results are presented in Table III-2, where the columns correspond to the same MPEG-4 

AVC saliency map while the rows to the same state of the art method. It can be noticed that the best 

results are provided by the Skewness-max which outperforms the three considered state of the art 

methods [CHE13][SEO09][GOF12] by relative gains of 0.6, 0.58 and 0.53, respectively. 

 

Table III-2: KLD gains between Skewness-max, Combined-avg and Addition-avg and the state of the art methods [CHE13] 

[SEO09] [GOF12].

 Skewness-max Combined-avg Addition-avg 

[CHE13] 0.60 0.28 0.37 

[SEO09] 0.58 0.52 0.50 

[GOF12] 0.53 0.39 0.31 

 

Figure III-6 also brings to light that the confidence limits corresponding to MPEG-4 AVC predicted 

saliency maps are narrower than the ones corresponding to the three investigated state of the art 

methods. Consequently, the KLD computation seems less sensitive to the randomness of the processed 

visual content in the MPEG-4 AVC domain. In order to objectively assess this behavior, we followed the 

principles in [FRY65], [WAL89] (also see the discussion in Chapter III.2.2.1), and we defined the 

coefficient ζ��� based on the signal-to-noise ratio for the random variable modeling the KLD 

computation: 

 

����,���� = ���������� ∙ ����,������,��  (III-7) 

 

where Mi stands for an MPEG-4 AVC saliency maps, Mj stands for a state of the art saliency map, and σ 

represent the standard deviation in the KLD computation. The larger the ζ��� coefficient, the less 

sensitive is the KLD on the randomness of the processed visual content. 

The values corresponding to the Skewness-max, Combined-avg and Addition-avg predicted maps and to 

the three state of the art methods are presented in Table III-3 and show relative gains between 1.43 

(corresponding to the Combined-avg / [CHE13] comparison) and 6.12 (corresponding to the Skewness-

max / [GOF12] comparison). 
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Table III-3: KLD sensitivity gains between Skewness-max, Combined-avg and Addition-avg and the state of the art methods 

[CHE13] [SEO09] [GOF12]. 

 Skewness-max Combined-avg Addition-avg 

[CHE13] 2.79 1.43 1.46 

[SEO09]  5.81 2.91 2.97 

[GOF12] 6.12 3.02 3.12 

Figure III-7 is structured in the same way as Figure III-6: the abscissa corresponds to the nine investigated 

saliency maps while the ordinate to the AUC average/confidence limits/extreme values. In Figure III-7, 

the AUC study is carried out by considering a binarization threshold of max/2 (where max is the 

maximum value of the density fixation map).

The experimental results reported in Figure III-7 show that the Skewness-max outperforms all the other 9 

investigated saliency maps; here again, the results are statically relevant (in the sense of the confidence 

limits). 

The gain over the state of the art methods can be assessed by defining the coefficient η: 

 

����� = ����� − ���������� (III-8) 

 

where Mi stands for Skewness-max saliency map while Mj stands for any of the three state of the art 

saliency maps. A positive η���� value means that the Mi map outperforms (in the AUC sense) the Mj 

map. When comparing the Skewness-max to the three state of the art methods [CHE13], [SEO09], and 

[GOF12] on the basis of the η coefficient, the following values are obtained 0.21, 0.18, and 0.17, 

respectively. 

The sensitivity of the AUC with the randomness of the processed visual content was evaluated at the 

same way as in the KLD case, by defining the ζ��� coefficient:  

 ����,���� = ���������� ∙ ����,������,��  (III-9) 

 

where Mi stands for an MPEG-4 AVC saliency maps, Mj stands for a state of the art saliency map; σ 

represent the standard deviation in the AUC computation. The larger the ζ��� coefficient, the less 

sensitive the AUC on the randomness of the processed visual content is. When computing the ζ��� 

coefficient between Skewness-max and the three state of the art methods, relative gains by factors of 

33.70, 29.83 and 3.22 are thus obtained. 
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10, the best saliency maps are Skewness-max, Combined-avg and the state of the art method [GOF12]: 

they feature the largest average AUC value and their confidence limits do not overlap with other 

investigated saliency maps.  

The sensitivity of the AUC measure with the randomness of the visual content was investigated by 

computing the ζ��� coefficient, Eq. (III-9), among and between the two outperformers in the MPEG-4 

AVC domain (Skewness-max and Combined-avg) and the three investigated state of the art methods. The 

results filled-in Table III-5 show relative gains between 1.06 (corresponding to the Skewness-max / 

[GOF12] comparison) and 2.02 (corresponding to the Combined-avg / [CHE13] comparison). 

 

Table III-5: AUC sensitivity gains between Skewness-max and Combined-avg and the state-of-the-art methods 

[CHE13][SEO09][GOF12].

 Skewness-max Combined-avg 

[CHE13] 1.59 2.02 

[SEO09]  1.38 1.76 

[GOF12] 1.06 1.34 

 

 

Table III-6: AUC values between saliency map at fixation locations and saliency map at random locations with different 

binarization thresholds (N=100 trials). 

90% 80% 70% 60% 50% max/2 

Skewness-max 0.87 0.85 0.83 0.81 0.79 0.93 

Combined-avg 0.91 0.90 0.89 0.86 0.87 0.92 

Multiplication-avg 0.65 0.64 0.63 0.59 0.58 0.66 

Addition-avg 0.91 0.90 0.88 0.86 0.86 0.87 

Static-avg 0.88 0.87 0.86 0.84 0.84 0.89 

Motion 0.81 0.79 0.76 0.74 0.73 0.75 

[CHE13] 0.78 0.77 0.76 0.74 0.76 0.73 

[SEO09] 0.89 0.86 0.81 0.78 0.78 0.78 

[GOF12] 0.92 0.91 0.89 0.87 0.86 0.93 

Table III-6 investigates the impact of the choice of the binarization threshold in the AUC average values; 

in this respect, we kept the same 6 threshold values as in Table III-4, namely the percentile of 90%, 80%, 

70%, 60%, 50% and max/2. Although the general tendency is the same as in Table III-4, the values

reported in Table III-6 show a larger dependency of the AUC values on the binarization thresholds:

• Skewness-max, Combined-avg, Multiplication-avg, Static-avg, and [GOF12] have the largest AUC 

values for max/2. 

• Addition-avg, Motion, [CHE13] and [SEO09] give the best results for the threshold of 90%. 
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According to KLD values in Figure III-11, the best results (in a statistical relevant sense) are featured by 

Multiplication-avg and Static-avg. The gains over the three state of the art methods, computed 

according to the ƍ coefficient, Eq. (III-6), are presented in Table III-7. The KLD sensitivity with respect to 

the randomness of the visual content was analyzed by computing the ζKLD, Eq. (III-7), among and 

between Multiplication-avg and Static-avg and the three state of the art methods. The experimental 

results reported in Table III-8 demonstrate relative gains between 1.18 (corresponding to the Static-avg / 

[CHE13] comparison) and 2.06 (corresponding to the Multiplication-avg / [GOF12] comparison). 

 

Table III-7: KLD gains between Multiplication-avg and Static-avg and the three state of the art methods 

[CHE13][SEO09][GOF12].

Multiplication-avg Static-avg

[CHE13] 1.54 0.71 

[SEO09]  0.91 0.25 

[GOF12] 1.64 0.76 

 

Table III-8: KLD sensitivity gains between Multiplication-avg and Static-avg and the three state of the art methods 

[CHE13][SEO09][GOF12].

 Multiplication-avg Static-avg 

[CHE13] 1.66 1.18 

[SEO09]  1.75 1.24 

[GOF12] 2.06 1.47 

 

According to the AUC values reported in Figure III-12, the best (statistically significant) results are 

provided by Skewness-max; it outperforms the three state of the art methods by ƞ, Eq.(III-8) , gains of 

0.04, 0.17, 0.17. When computing the ζ��� coefficient, Eq. (III-9), between Skewness-max and the three 

state of the art methods, relative gains by factors of 1.34, 1.63 and 1.38 are thus obtained. 
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Objective transparency evaluation 

The objective evaluation of the transparency considers three quality metrics of three different types: 

difference-based (PSNR), correlation based (NCC) and human psycho-visual based (DVQ).  

These measures are computed at the frame level, and then averaged over all the frames of the video 

sequence and over all sequences in the corpus. The results are presented in Table III-9; the precision of 

the reported values (unit for PSNR and DVQ and 0.01 for NCC) is chosen so as to ensure the statistical 

significance of the results (95% confidence limits).  

The analysis of the PSNR results shows that blocks selected according to our MPEG-4 AVC saliency map 

are more suitable for carrying the mark than random selected blocks: absolute gains of 10dB, 7dB and 

3dB are obtained for the three investigated data payload (30, 60 and 90 bits/I frame). 

The NCC values do not clearly discriminate between the random and the Skewness-max based selected 

blocks. 

In order to assess the increase in the transparency according to the DVQ values, we define the relative 

coefficient Ɛ: 

 

Ɛ = ��������� − ������������������������������  (III-10) 

 

Relative gains of 0.8, 0.68 and 0.71 are thus obtained for the three investigated data payload values. 
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Table III-9: Objective quality evaluation of the transparency when alternatively considering random selection and “Skewness-

max” saliency map based selection. 

 Data 

payload 

(bit per I 

frame) 

Random selection Skewness-max based selection 

  min 95% 

down 

mean 95% up max min 95% 

down 

mean 95% up max 

PSNR 30 34.76 50.44 51 51.56 64.07 40.32 60.53 61 61.47 68.97

60 33.98 45.89 47 48.11 64.67 37.63 53.72 54 54.28 69.74 

90 36.08 44.08 45 45.92 62.98 36.96 47.67 48 48.33 66.93 

NCC 30 0.98 0.99 1 1 1 0.98 0.99 1 1 1 

60 0.97 0.98 0.99 1 1 0.98 0.99 1 1 1 

90 0.96 0.98 0.99 1 1 0.98 0.99 0.99 1 1 

DVQ 30 1280 1478 1490 1502 1753 203 292 297 302 416

60 1520 1800 1809 1818 2064 480 559 567 575 830 

90 2030 2506 2515 2524 2780 653 699 713 727 816 

 

Subjective transparency evaluation 

The visual quality is assessed in laboratory conditions, according to a SSCQE (Single Stimulus Continuous

Quality Evaluation) methodology proposed by the ITU R BT 2021. The test was conducted on a total of 30 

naïve viewers. The age distribution ranges from 19 to 30 years old with an average of 23. All observers

are screened for visual acuity by using Snellen chart and color vision by using Ishihara test. No outlier is

identified, according to the kurtosis coefficient [TUR12]. The experiments considered a 5 level discrete 

grading scale.

At the beginning of the first session, 2 training presentations are introduced to stabilize the observers’

opinion. The data issued from these presentations are not taken into account in the results of the test.

The MOS (Mean Opinion Score) values are presented in Table III-10; they correspond to the original 

video (data payload of 0 bit per I frame) as well as to the three investigated data payload values as in 

objective quality evaluation.

The values in Table III-10 show that, for a data payload of 30 bits per I frame, there is practically a very 

small difference between the scores assigned by the observers to the original content and to the content 

watermarked based on the Skewness-max saliency map; with respect to the random selection, this 

correspond to a MOS gain of 0.23. 
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Table III-10: MOS gain between the QIM method with random selection and saliency map “Skewness-max” based selection. 

 Data payload (bit per I frame) Random selection Skewness-max based selection 

MOS 

0 3.38 

30 3.11 3.34 

60 3.12 3.14

90 2.95 2.97 

When considering a data payload of 60 and 90 bit per I frames, the Skewness-max benefit becomes 

marginal (a MOS gain of 0.01). These results bring to light a kind of saturation behavior: for large data 

payloads, lots of blocks are watermarked inside the I frame, hence the difference between the random 

and saliency selection becomes less effective.  

III.3. Discussion on the results 

Chapter III.2.1 is devoted to ground truth validation, investigating the relation between the MPEG-4 AVC 

saliency map and the actual human saliency, captured by eye-tracking devices. It is based on two corpora 

(representing density fixation maps and saccade locations), two objective criteria called Precision and 

Discriminance (related to the closeness between the predicted and the real saliency maps and to the 

difference between the behavior of the predicted saliency map in fixation and random locations, 

respectively), two objective measures (the Kullback Leibler Divergence and the area under the ROC 

curve, respectively) and three state of the art studies (namely [CHE13], [SEO09], [GOF12]).  

For both the KLD and AUC, we compute the average values (both over the GOP in an individual video 

sequence and over all the processed video sequences), and the related standard deviations, 95% 

confidence limits and minimal/maximal values. The ratio between the average value and the standard 

deviation (the so-called signal to noise value [FRY65], [WAL89]) was computed so as to assess the 

sensitivity of the KLD and AUC with respect to the randomness in the processed visual content. In order 

to compare the predicted MPEG-4 AVC saliency map to the state of the art methods, we define two 

types of coefficients, see equations (III-6) - (III-9), which are point-estimated. 

The overall results are synoptically presented in Table III-11, which regroups, for each and every 

investigated case, the best methods (in the sense of the investigated measures and the statistical 

relevance). 

 

Table III-11: Ground truth validation results 

Ground truth validation: best results 

Precision Discriminance

Reference corpus Reference corpus Cross-checking corpus 

KLD AUC KLD AUC KLD AUC 

Skewness-

max, Combined-

avg, Addition-

avg 

Skewness-max Multiplication-

avg, 

[CHE13], 
[SEO09]

Skewness-max, 

Combined-avg, 

[GOF12] 

Multiplication

-avg, 

Static-avg 

Skewness-max 
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For instance, the ground truth results related to Precision and Discriminance, exhibit absolute relative 

gains, defined according to Eq. (III-6) and Eq. (III-9), over state of the art methods: 

• in KLD: between 60% (corresponding to Precision, the reference corpus and the Skewness-max / 

[CHE13] comparison) and 164% (corresponding to Discriminance, the cross-checking corpus and the 

Multiplication-avg / [GOF12] comparison),  

• in AUC: between 17% (corresponding to Precision, the reference corpus and the Skewness-max / 

[GOF12] comparison) and 21% (corresponding to Precision, the reference corpus and the Skewness-

max / [CHE13] comparison). 

We also investigated the sensitivity of the measure (KLD and AUC) with respect to the randomness in the 

visual content. When compared to the state of the art methods, the experimental results show gains in 

sensitivity by factors: 

• in KLD, between 1.18 (corresponding to Discriminance, the cross-checking corpus and the Static-avg / 

[CHE13] comparison) and 6.12 (corresponding to Precision, the reference corpus and the Skewness-

max / [GOF12] comparison), 

• in AUC, between 1.06 (corresponding to Discriminance, the reference corpus and the Skewness-max / 

[GOF12] comparison) and 33.7 (corresponding to Precision, the reference corpus and the Skewness-

max / [CHE13] comparison). 

All these above-reported values objectively and quantitatively demonstrate the usefulness of extracting 

saliency maps from the compressed domain. A closer qualitative inspection of the compressed domain 

saliency maps reveals an additional interesting behavior of such models. When considering bottom-up 

saliency models, two paths can be found in literature: (1) algorithms inspecting particular areas by 

maximizing local saliency on the basis of a biologically inspired ground and (2) algorithms more focused 

on global features, detecting saliency through transform domains. Global features should be 

predominant in identifying salient areas under the condition that the image contains obviously isolated 

foreground objects (the “pop-outs”), whereas local features are more important in an opposite situation. 

Nevertheless, during the whole process of human perception, the human brain is able at the same time 

to combine together and to make complete global and local features. Consequently, a good bottom-up 

model should also be able to handle this dual behavior (local vs. global); in this respect, a qualitative 

analysis of our experimental results show (as illustrated in Figure III-13): 

• [CHE13] succeeds in identifying all the global “pop out” objects, but lacks in precision for finer areas 

(e.g., Figure III-13, image (c) in the second example, the people inside the bus are considered as 

salient as the whole bus or as other objects in the scene); 

• [SEO09] is more selective at the object level but presents an integration effect over various objects 

(e.g., Figure III-13, image (d) in the first example, all the players are identified as a unique, salient 

region); 
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• Compared to [CHE13] and [SEO09], [GOF12] seems both more precise and discriminative at the global 

object level; nevertheless, it is still not able to identify at the same time areas with different saliency 

sources (e.g. Figure III-13, image (e) in the third example, the players in black who are salient because 

of their motion, cannot be detected); 

• The strength of our method seems to be achieved by its joint capacity to identify very localized salient 

areas (individual sub-parts from more global “pop out” objects) and to detect areas featured by 

different types of saliency; for instance, in Figure III-13, image (b) of the fourth example, only some 

details of the ducks are represented as salient while in Figure III-13, line 3, we succeeded in also 

detecting moving players in black.  

Chapter III.2.2 relates to the applicative validation and considers the integration of the compressed-

domain saliency map into a robust watermarking application: in order to increase the transparency, for a 

prescribed data payload and robustness, the mark is inserted into non-salient blocks, according to the 

predicted MPEG-4 AVC saliency map. This time, no state of the art saliency extraction method can be 

considered as reference for the applicative validation: as the mark is to be inserted directly in the MPEG-

4 AVC stream, we can only rely on the saliency map advanced with this study. Hence, our study 

investigates the gains obtained when considering saliency-guided insertion with respect to blind (no 

saliency based) insertion. 

The experiments show that the saliency prediction in the MPEG-4 AVC domain results in: 

• objective study: an increase in PSNR and DVQ (up to 10dB and up 70%, respectively); the NCC 

measure did not exhibit a clear benefit of using saliency-guided insertion; 

• subjective study: the MOS corresponding to the saliency-guided watermark insertion can approach by 

0.04 the MOS corresponding to the original (un-watermarked content); a saturation mechanisms for 

large data payloads has also been spotted out. 

However, the final advantage of any image processing method is also given by its computational 

complexity. Table III-12 compares the three state of the art methods investigated in Chapter III.2.1 to our 

MPEG-4 AVC saliency extraction method: the main operations included in both static and dynamic 

saliency maps are listed. An additional benefit from the MPEG-4 AVC saliency is thus brought to light: it 

can be achieved with a linear complexity (assuming the entropic decoding available).  

In order to also provide a quantitative illustration of the practical impact of these differences in the 

computational complexity among the four investigated saliency methods, we also measured the 

computational time per processed frame. In this respect, we averaged the frame execution time over all 

video frames in two video sequences. We considered a PC configuration with an Intel Xeon 3.7GHz 

processor and with 8 GB of RAM. These values, expressed in milliseconds, are reported in Table III-13. 

The unit precision chosen in Table III-13 ensures that these values are statistical relevant (i.e. their 95% 

confidence limits variations are lower than 1). Note that in MPEG-4 AVC saliency detection case, the 

execution time values corresponding to the six investigated pooling formulas are identical (i.e. their

differences are lower than the precision in their 95% confidence limits); consequently, in Table III-13 we 

reported only one value, which holds for any of the six pooling formulas we studied. We emphasize that
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Table III-13 has only an illustration purpose: the codes for the four investigated methods are of two types 

(C/C++ and Matlab) and none of them is optimized for execution speed. 
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Table III-12: Computational complexity comparison between our method and the three state of the art models considered in 

our study. 

 Spatial map Dynamic map 

[CHE13] • Complete decoding of the images 

• Decomposing images into large scales perceptually 
homogenous elements using GMM 

 

[SEO09] • Complete decoding of the videos  

• Compute the local steering kernel and vectorize it into 
different features  

• Motion vector extraction 

[GOF12] • Complete decoding of the videos  

• Decomposing images into patches 

• Multiscale saliency enhancement  

• K-nearest neighbor (KNN)  

• Motion vector extraction 

MPEG-4 AVC • Addition and gradient of 4×4 blocks • Motion vector difference  

 

Table III-13: Computational time per processed frame of our method and the three state of the art models considered in our 

study. 

 Computational time 

(in milliseconds) 

Type of code 

[CHE13] 24 C/C++

[SEO09] 1 170 Matlab 

[GOF12] 35 002 Matlab 

MPEG-4 AVC 9 C/C++
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(d) [SEO09] (e) [GOF12] 

 

 
(a)  Original image 

 

  
(b) Our MPEG-4 AVC saliency map (c) [CHE13] 

 

  
(d) [SEO09] (e) [GOF12] 

 

Figure III-13: Illustrations of saliency maps computed with different models. 
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III.4. Conclusion 

This Chapter presents a comprehensive framework for establishing the proof of concept for saliency

extraction from the MPEG-4 AVC syntax elements (before entropic coding).

From the methodological point of view, we adapt and extend the state of the art principles so as to 

match them to the MPEG-4 AVC stream syntax elements, thus making possible individual intensity, color, 

orientation, and motion maps to be defined. Several pooling formulas have been investigated.

The experimental validation takes place at two levels: ground-truth confrontation and applicative 

integration. The ground truth validation is based on two criteria, the so-called Precision (which can be 

useful when we aim to predict the human fixation locations) and Discriminance (which prove its 

efficiency when aiming to be as different as possible from the random locations). For each criterion, we

considered two objective metrics, namely the KLD (a distance related to the statistical differences) and 

AUC (a measure related to the probability of error in detection). The ground truth itself is represented by

two state of the art corpora, containing both fixation and saccade information. The applicative validation

considers the MEPG-4 AVC saliency map as a tool guiding the mark insertion.

As an overall conclusion, the study brings to light that although the MPEG-4 AVC standard does not 

explicitly rely on any visual saliency principle, its stream syntax elements preserve this property. Among

possible explanations for this remarkable property, one could argue a share feature between video

coding and saliency. Saliency is often considered as a function of singularity (of contrast, color,

orientation, motion …). On coding side, singularities are usually uncorrelated signals with their vicinities

making them hard to encode and leading to more residues. Considering that there is this relationship 

between saliency and coding cost, a good encoder could possibly act as a winner take all approach

revealing, emphasizing salient information. Mimicking such behavior in the spatial domain is not that 

trivial and often under considered in many approaches provided in literature.  

This conclusion is supported by all our experiments, which brought to light four main benefits for the

MPEG-4 AVC based saliency extraction: (1) it outperforms (or, at least, is as good as) state of the art

uncompressed domain methods, (2) it allows significant gains to be obtained in watermarking 

transparency (for prescribed data payload and robustness), (3) it is less sensitive to the randomness in 

the processed visual content, and (4) it has a linear computational complexity. 
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This Chapter goes one step further and investigates whether the information related to the human visual saliency is 

still preserved at the level of the HEVC compressed stream. In this respect, the saliency model presented in Chapter 

III is reconsidered and extended so as to match the HEVC peculiarities. The same experimental test-bed as in 

Chapter III is considered in order to both compare the HEVC saliency to the ground-truth and to assess its applicative 

impact in watermarking. It is thus brought to light that the HEVC saliency model outperforms (with singular 

exceptions) the state-of-the-art uncompressed domain while generally being outperformed by the MPEG-4 AVC 

saliency model. We can thus state that, as its MPEG-4 AVC ancestor, although not designed based upon visual 

saliency principles, the HEVC compression standard preserves this human visual property at the level of its syntax 

elements. 
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IV.1. HEVC saliency map computation 

The emerging HEVC (High Efficiency Video Coding) standard brings improvements over MPEG-4 AVC, so

as to increase the compression capabilities, especially for high resolution formats [SUL12]. In this

respect, HEVC offers more flexible prediction and transform block sizes, larger choice in prediction 

modes, more sophisticated signaling of motion vectors and more advanced interpolation filtering for

motion compensation.  

HEVC video sequences are structured, the same way as MPEG4-AVC, into Groups of Pictures (GOP). A

GOP is composed of an I (intra) frame and a number of successive P and B frames (unidirectional

predicted and bidirectional predicted frames, respectively).

A frame in HEVC is partitioned into coding tree units (CTUs), each of them covering a rectangular area up

to 64x64 pixels depending on the encoder configuration. Each CTU is divided into coding units (CUs) that 

are signaled as intra or inter predicted blocks. A CU is then divided into intra or inter prediction blocks.

For residual coding, a CU can be recursively partitioned into transform blocks (TB).

The HEVC saliency map definition is structured at three levels. 

First, the HEVC stream syntax elements are investigated according to their a priori potentiality to be 

connected to the visual saliency. Note that, in this respect, the extension from MPEG-4 AVC to HEVC is 

not straightforward. On the one hand, HEVC allows different block sizes to be defined (see Figure IV-1); 

consequently the energy conservation theorem invoked in the MPEG-4 AVC intensity and color map 

definitions should be reconsidered and adapted to this new applicative configuration. On the other hand, 

both intra and inter prediction modes are changed, thus imposing a detailed investigation on the

orientation and motion maps. The inter prediction modes are now structured into two classes (advanced 

motion vector prediction and merge modes) thus making a priori the motion saliency detection

dependent on the encoding configuration.

In our work, we start from the MPEG-4 AVC saliency maps computation basic principles. Three 

elementary static maps are extracted (intensity, color, orientation). In order to obtain a compressed 

stream video saliency map, we complete the obtained elementary static saliency maps with a motion

saliency map. For each GOP, we extract the saliency map only from I and P frames. The static saliency 

map is computed from the I frame. The intensity and color maps are extracted from the residual HEVC

luma and chroma coefficients, respectively, while the orientation map is computed based on the intra

prediction modes. The motion map is generated based on the motion vectors from the P frames.

For the reasons explained in Chapter III, it is not necessary to compute the saliency from B frames. 

Moreover, B frames are not considered in our experimental study. Nevertheless, our method can be

applied to any HEVC video configuration, be it with or without B frames. 

The computing of each map as well as their post-processing and pooling are detailed in the following 

sub-sections. 
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We calculate the luminance energy of a 4×4 region inside TB as following: 

 

 ��(�) = ����/�	 (IV-2) 

 

where k is the 4x4 region index in the frame and N is the total number of 4x4 regions in TB. The intensity 

map will be obtained by displaying ��; the highest values represent the salient blocks. 

Color map 

Thorough analogy to the way in which the intensity saliency was defined, color saliency will be based on 

color energy.  

In the MPEG-4 AVC case, the chroma residual coefficients are first extracted. The color information 

(Cr,Cb) is then used to calculate the two opponent color pairs RG (Red/Green) and BY (Blue/Yellow). 

Finally, we compute the color saliency map as the sum of the energy in the double color-opponent RG 

and BY space. For the same reason as for intensity map, this technique is not appropriate with HEVC 

stream.  

The chroma TB size of HEVC is half the luma TB size in each dimension, except when the luma TB size is 

4x4, (in which case a single 4x4 chroma TB is used for the region covered by four 4x4 luma TBs). 

To compute color saliency map from HEVC video stream, only chroma DC coefficients, which represent 

the average color of the chroma transform block TB, are extracted. First, we calculate, for each 4×4 

region inside TB, a color average for each of the chroma color components Cr and Cb.  

 

 ���(�) = �(����� )�� 	 (IV-3) 

 

where k is the 4x4 region index in the frame, c is the color component, DCTB is the DC coefficient in TB 

and N is the total of the 4x4 regions in TB.  

Then, based on the average color, we calculate the average opponent-color pairs RGk and BYk for the 

associated 4x4 region k. Finally, the color map is computed according to: 

 

 ��(�) = ���� + ����	 (IV-4) 

 

The color conspicuity map will be obtained by displaying Mc, the highest values represent the salient 

blocks.  
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Orientation map  

With respect to MPEG-4 AVC, changes in the intra prediction process are introduced in HEVC, concerning 

both the prediction block sizes and the prediction modes. HEVC supports variable intra prediction block 

sizes from 64x64 down to 4x4. As MPEG-4 AVC, DC and planar mode are defined, while intra angular 

prediction directions are augmented from 8 to 33.  

According to intra HEVC paradigm, the prediction modes reflect the orientation of the corresponding 

block with respect to its neighboring blocks. The orientation map will be computed by analyzing the 

discontinuities among the intra prediction modes of intra frame blocks: blocks which feature the same 

direction as their neighborhood are considered as non-salient while blocks with different orientation 

modes are considered as salient. 

The building of the orientation map starts by analyzing the intra prediction block sizes. Large intra 

prediction blocks are considered as non-salient regions. In the remaining cases, values of the prediction 

modes are extracted; then, the obtained orientation for each 4×4 block will be compared to those 

obtained for a set of neighboring blocks.  

The Mo orientation map is computed according to: 

 ��(�) = �����(��� = ��;∀� ∈ ��)	��		��	���� ≤ 8 × 8

0						���� �	 (IV-5) 

 

where k is the block index in the frame, V is the set of neighboring block and l is the block index 

belonging to V. 

Motion map

In addition to the advanced motion vector prediction presented in prior standards, HEVC defines a new 

inter prediction mode: the merge mode, which derives the motion information from spatially and 

temporally neighboring blocks. Compared to MPEG-4 AVC, HEVC includes asymmetric motion 

partitioning and share the accuracy of motion compensation, which is in units of one quarter of the 

distance between luma samples.  

For each GOP, we define the motion saliency map from HEVC stream as the global motion difference 

amplitude, computed by summing the motion amplitude over all the P frames in the GOP, at the same 

corresponding block position: 

 

 ��(�) = � ������� +�������∈��� 	 (IV-6) 
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where (����� ,�����) denote horizontal and vertical components of motion vectors difference in the 

P frame block k, and �� represents the global motion amplitude among the P frames in a GOP; the 

larger this ��value, the more salient the block k. 

IV.1.2. Elementary saliency map post-

processing 

The saliency maps obtained for each feature are now to be normalized to the same dynamic range. This 

is achieved by following the three same saliency map steps approach we considered for MPEG-4 AVC, 

Chapter III.1.2 (Figure III-4). 

First, outlier detection is performed: the 5% largest and the 5% lowest values are eliminated. Then the 

remaining values are mapped to the [0 1] interval through an affine transform. Finally, an average 

filtering, with the window size equal to the fovea area is applied. 

In the case of the orientation map where its values belong to [0 1], the first two post-processing 

operations are skipped.  

IV.1.3. Saliency maps pooling 

The HEVC saliency map is a fusion of the static and the dynamic saliency maps. The static saliency map is 

in its turn a combination of intensity, color and orientation features maps. As we have seen in Chapter III, 

the fusing formula has a critical role in the final result, thus the same fusing techniques are applied to 

obtain the HEVC saliency map. 

We start our study on the HEVC saliency map fusion techniques by investigating 48 different pooling 

formula combinations (6 static pooling formula and, for each of them, 8 dynamic pooling) [AMM16], 

detailed in Appendix A.2. The most accurate combination (in the sense of KLD and AUC computed on a 

ground truth database of 80 sec) is Motion-priority static-dynamic fusion over the static maximum fusion 

referred to us Motion priority-max. For the assessment, we retain the Motion priority-max and we 

include as well the same fusion techniques investigated in Chapter III (Combined-avg, Multiplication-avg, 

Addition-avg, Static-avg, Motion).

IV.2. Experimental results 

Our experiments are structured on two directions (ground truth and applicative validations). We

considered the same test-bed as the MPEG-4 AVC case, on which we evaluate the performances of six

alternative ways of combining the elementary maps described above: Motion priority-max, Combined-

avg, Multiplication-avg, Addition-avg, Static-avg, and Motion.
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IV.2.1. Ground truth validation 

Test-bed 

Through analogy with our work in Chapter III, the experiments will be structured at two nested levels, 

according to the evaluation criteria and to the actual measures and corpora: 

• both Precision (the closeness between the saliency map and the fixation map) and Discriminance 

(the difference between the behavior of the saliency map in fixation locations and in random 

locations) are considered; 

• two measures (KLD and AUC) are considered to assess the obtained saliency maps (same 

implementation as used in Chapter III); 

• the average values (computed first over the GOPs in an individual video sequence and then over all 

the processed video sequences), the related standard deviations, 95% confidence limits and 

minimal/maximal values are computed; 

• the sensitivity of the KLD and AUC with respect to the randomness in the processed visual content is 

evaluated; 

• two different corpora are considered and further referred to as: (1) the reference corpus available in 

[WEB05] and (2) the cross-checking corpus available in [WEB06]. 

The reference corpus is a public database organized by IRCCyN [WEB05]. In these experiments, videos 

are encoded with HEVC Main Profile (no B frames, CABAC entropy encoder) and with a quantification 

parameter Qp = 32. The GOP size is set to 5 and the frame size is set to 576×720. The HEVC reference 

software is completed with software tools allowing the parsing of the syntax elements and their 

subsequent usage, under syntax preserving constraints. The same encoding configuration is considered 

for the cross-checking corpus [WEB06]. 

During our experiments, we benchmark our HEVC saliency maps against the same three state of the art 

methods, namely: Ming Cheng et al. [CHE13], Hae Seo et al. [SEO09] and Stas Goferman [GOF12], whose 

MATLAB codes are available for downloading. In addition, we confront the HEVC saliency maps to the 

MPEG-4 AVC saliency map in each experience.  

Precision

In this experiment, we compare the computed HEVC saliency maps to the density fixation maps captured 

from the human observers (as explained in the previous chapter). The reference corpus [WEB05] will be 

processed.  

The KLD and AUC values are reported in Figure IV-2 and Figure IV-3 respectively. The lower the KLD 

value, the better the Precision. Conversely, the larger the AUC value, the better the Precision. 
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Motion priority-max against [GOF12]) but the MPEG-4 AVC saliency map outperforms all of them. The 

best HEVC saliency map results are provided by Combined-avg and Addition-avg which outperform the 

three considered state of the art methods, [CHE13], [SEO09], and [GOF12], by relative gains of 0.39, 0.36, 

and 0.27 and 0.40, 0.38 and 0.29, respectively. 

 

Table IV-1: KLD gains between all the combination of HEVC saliency maps and the state of the art methods [CHE13] [SEO09] 

[GOF12] and MPEG-4 AVC saliency map. 

 Motion priority-

max 
Combined-avg Multiplication avg Addition avg Static avg Motion 

[CHE13] 0.14 0.39 0.16 0.40 0.35 0.19 

[SEO09] 0.11 0.36 0.12 0.38 0.32 0.15 

[GOF12] -0.01 0.27 0.01 0.29 0.23 0.04 

MPEG-4 AVC -1.17 -0.56 -1.13 -0.51 -0.65 -1.06 

 

Figure IV-2 brings to light that the confidence limits corresponding to HEVC predicted saliency maps are 

narrower than confidence limits corresponding to the three investigated state of the art methods. 

Consequently, the KLD computation seems less sensitive to the randomness of the processed visual 

content in the HEVC domain. In order to objectively assess this behavior, we calculate the ζ���, Eq. (III-

7), between the HEVC saliency maps and the state of the art saliency map. The larger the ζ��� coefficient 

is, the less sensitive is the KLD to the randomness of the processed visual content. The values 

corresponding to the different combinations of the HEVC saliency maps and the three outperformed 

state of the art are presented in Table IV-2 and show relative gains between 5.3 (corresponding to 

Motion / [CHE13] comparison) and 21.39 (corresponding to the Multiplication-avg / MPEG-4 AVC 

comparison).  

 

Table IV-2: KLD sensitivity gains between all considered HEVC saliency map combinations and the state of the art methods 

[CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map. 

 

Motion priority-

max 
Combined-avg Multiplication-avg Addition-avg Static-avg Motion 

[CHE13] 6.53 7.20 8.44 8.15 5.47 5.30 

[SEO09] 6.82 7.52 8.81 8.51 5.71 5.53 

[GOF12] 7.73 8.52 9.98 9.64 6.47 6.27 

MPEG-4 AVC 16.56 18.25 21.39 20.66 13.44 13.44 

 

Figure IV-3 is structured the same way as Figure IV-2: the abscissa corresponds to the ten investigated 

saliency maps while the ordinate to the AUC average/confidence limits/extreme values. In Figure IV-3, 

the AUC study is carried out by considering a binarization threshold of max/2 (where max is the 

maximum value of the density fixation map). 

The experimental results reported in Figure IV-3 show that all the HEVC saliency maps outperforms the 

three investigated state of the art methods while only the Combined-avg, the Addition-avg and the 
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factors between 8.39 (corresponding to Combined-avg / MPEG-4 AVC comparison) and 15.12 

(corresponding to Addition-avg / [CHE13] comparison). 

 

Table IV-4: AUC sensitivity gains between Combined-avg, Addition-avg and Static-avg and the state of the art methods 

[CHE13] [SEO09] [GOF12] and MPEG-4 AVC saliency map. 

Combined-avg Addition-avg Static-avg 

[CHE13] 12.77 15.12 15.01 

[SEO09] 9.96 11.80 11.71 

[GOF12] 12.30 14.56 14.45 

MPEG-4 AVC 8.39 9.93 9.86 

 

Discriminance 

The effectiveness of the HEVC saliency map will be evaluated in this section by investigating its ability to

discriminate between human fixation locations and random locations in a video content; in this respect:

• the KLD and AUC are computed; the same interpretation as in Chapter III.2.1 is considered, namely 

the larger the KLD and AUC measures are, the better is the Discriminance; 

• 100 random trials are considered for each frame in each video sequence; 

• both the reference and the cross-checking corpora are processed; 

• the KLD and AUC average measures are presented alongside with the confidence limits and the 

related min/max values (over both all the frames and, for each frame, over all trials). 

Reference results 

The experimental results obtained on the reference corpus are presented in Figure IV-4 and Figure IV-5. 

Figure IV-4 shows the KLD values between the saliency map in fixation-selected locations and random 

selected locations. The abscissa axis corresponds to the same ten investigated saliency maps (cf. Figure 

IV-2). The ordinate axis presents the average values, the lower and upper 95% confidence limits as well 

as their minimal and maximal values. The MPEG-4 AVC gives the best result against the three state of the 

art models and all the combination of the HEVC saliency map. These differences are not statistically 

relevant (the confidence limits for MPEG-4 AVC and the state of the art methods [SEO09] and [CHE13] 

overlap). The best result in HEVC saliency maps is given by the Addition-avg saliency map which 

outperforms the [GOF12] by a gain of 0.95. 
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Table IV-5: KLD gains between Multiplication-avg and Static-avg and the state of the art methods [CHE13] [SEO09] [GOF12] 

and MPEG-4 AVC saliency map. 

 
Multiplication-avg Static-avg 

[CHE13] 0.20 0.23 

[SEO09] -0.07 -0.05 

[GOF12] 0.24 0.28 

MPEG-4 AVC -0.74 -0.72 

 

The KLD sensitivity with respect to the randomness of the visual content was analyzed by computing the 

ζKLD in Eq. (III-7) among and between Multiplication-avg and Static-avg and the same investigated 

methods. The experimental results reported in Table IV-6 demonstrate relative gains between 0.003 

(corresponding to the Static-avg / MPEG-4 AVC comparison) and 0.75 (corresponding to the 

Multiplication-avg / [CHE13] comparison). 

 

Table IV-6: KLD sensitivity gains between Multiplication-avg and Static-avg and the state of the art methods [CHE13] [SEO09] 

[GOF12] and MPEG-4 AVC saliency map. 

Multiplication-avg Static-avg 

[CHE13] 0.75 0.01 

[SEO09] 0.002 0.003 

[GOF12] 0.23 0.02 

MPEG-4 AVC 0.01 0.003 

  

According to the AUC values reported in Figure IV-7, the best (statistically significant) results are also 

provided by the MPEG-4 AVC saliency map; it outperforms all the compared models (HEVC saliency maps 

and the state of the art methods). Among the HEVC saliency maps, the best result was provided by the 

Motion priority-max which outperforms the three state of the art methods by ƞ, Eq. (III-8), gains of 0.02, 

0.1 and 0.1, respectively. Relative gains ζ���, Eq. (III-9), of 0.47, 0.42 and 0.38 are thus obtained. 
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Figure IV-7: AUC between saliency ma
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The watermarking corpus discussed in Chapter III is here encoded with HEVC main Profile (no B frames, 

CABAC entropy encoder) and with Qp=32. The GOP size is set to 5 and the frame size is set to 720×576. 

Objective transparency evaluation 

The objective evaluation of the transparency considers three quality metrics: the peak signal to noise 

ratio (PSNR) and the image fidelity (IF) as difference-based measure and the correlation quality (CQ) as a 

correlation based measure. These measures are computed at the frame level, averaged over all the 

frames of the video sequence and then over all sequences in the corpus. The results are presented in 

Table IV-7; the precision of the reported values (unit for PSNR and CQ and 0.01 for IF) is chosen so as to 

ensure the statistical significance of the results (95% confidence limits).  

The analysis of the PSNR results shows that non-salient blocks selected using our HEVC saliency map are 

more suitable for carrying the mark than random selected blocks: absolute gains of 1.43dB and 1.69dB 

are obtained, respectively, for the two investigated data payload (30 and 50 bits/I frame). 

However, the obtained CQ and IF values do not show a relevant improvement of the saliency based 

selection method over the random selection method. 

Table IV-7: Objective quality evaluation of the transparency when alternatively considering random selection and “Combined-

avg” saliency map based selection. 

 Data 

payload 

(bit per I 

frame) 

Random selection Saliency based selection 

  min 95% 

down

mean 95% up max min 95% 

down

mean 95% up max 

PSNR 30 23.56 39.13 40.08 41.03 61.67 25.33 41.038 41.51 41.982 65.97 

50 26.78 37.09 37.83 38.57 59.73 27.45 38.81 39.52 40.23 66.34 

CQ 30 187.92 198.87 201.53 204.18 216.56 189.38 199.68 201.41 203.13 217.51 

50 188.39 199.59 201.27 202.94 216.78 190.62 199.44 201.31 203.17 217.67 

IF 30 0.963 0.997 0.9976 0.997 0.999 0.971 0.997 0.997 0.997 0.999 

50 0.956 0.995 0.996 0.996 0.999 0.965 0.996 0.997 0.997 0.999

Subjective transparency evaluation 

The visual quality is assessed in laboratory conditions, according to the SSCQE (Single Stimulus 

Continuous Quality Evaluation) methodology proposed by the ITU R BT 2021. The test is conducted on a 

total of 25 naïve viewers. The age distribution ranges from 20 to 28 years old with an average of 25. All 

observers are screened for visual acuity by using Snellen chart and for color vision by using Ishihara test. 

No outlier is identified, according to the kurtosis coefficient [TUR12]. The experiments consider a 5 level 

discrete grading scale. 
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At the beginning of the first session, two training presentations are introduced to stabilize the observers’ 

opinion. The data organized from these presentations are not taken into account in the final results of 

the test. 

The MOS (Mean Opinion Score) values are presented in Table IV-8; they correspond to the original video 

(data payload of 0 bit per I frame) as well as to the three investigated data payload values as in objective 

quality evaluation. 

The values in Table IV-8 show that the watermarking insertion based on saliency outperforms the 

random method. We obtained, for both 30 and 50 bits per I frame, a MOS value increased by 0.13 and 

0.03. 

Table IV-8: MOS gain between the watermarking method with random selection and saliency map “Combined-avg” based 

selection. 

Data payload (bit per I frame) Random selection Saliency based selection

MOS 

0 3.79 

30 3.63 3.79 

50 2.66 2.69 

IV.3. Discussion on the results 

Chapter IV is structured in the same way as in Chapter III in order to investigate whether the relation 

between the new compressed stream HEVC saliency map and the actual human saliency, captured by 

eye-tracking devices, will be the same as its predecessor MPEG-4 AVC.  In this fact, the evaluation is 

based on: 

• two corpora (representing density fixation maps and saccade locations), 

• two objective criteria called Precision and Discriminance (related to the closeness between the 

predicted and the real saliency maps and to the difference between the behavior of the predicted 

saliency map in fixation and random locations, respectively), 

• two objective measures (the Kullback Leibler Divergence and the area under the ROC curve)

• 3 state of the art studies (namely [CHE13], [SEO09], [GOF12]) and the MPEG-4 AVC saliency extraction 

model.  

• For both the KLD and AUC, we compute the average values (both over the GOP in an individual video 

sequence and over all the processed video sequences), and the related standard deviations, 95% 

confidence limits and minimal/maximal values. 

• Assessment of the sensitivity, using the same defined coefficient defined in Chapter III (Eq. (III-6)-Eq. 

(III-9)), of the KLD and AUC with respect to the randomness of the processed visual content.  

The overall results are synoptically presented in Table IV-9, which regroups, for each and every 

investigated case, the best methods (in the sense of the investigated measures and the statistical 

relevance). 
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Table IV-9: Ground truth validation results 

Ground truth validation: best results 

Precision Discriminance

Reference corpus Reference corpus Cross-checking corpus 

KLD AUC KLD AUC KLD AUC 

Combined-

avg, Addition-

avg, MPEG-4 
AVC 

Combined-avg,

Addition-avg, 

Static-avg 

MPEG-4 AVC Motion priority-

max, 

[GOF12], MPEG-
4 AVC 

Multiplication

-avg and the 

Static-avg, MPEG-
4 AVC 

Motion

priority-max  and 
MPEG-4 AVC 

 

For instance, the ground truth results related to Precision and Discriminance, exhibit absolute relative 

gains, defined according to Eq. (III-7) and Eq. (III-9), over the state of the art and the MPEG-4 AVC 

saliency extraction methods: 

• in KLD: between 28% (corresponding to Discriminance, the cross-checking corpus and Static-avg/ 

[GOF12] comparison) and 40% (corresponding to Precision, the reference corpus and the Addition-avg 

/ [CHE13] comparison),  

• in AUC: between 2% (corresponding to Discriminance, the cross-checking corpus and the Motion

priority-max / [GOF12] comparison) and 22% (corresponding to Precision, the reference corpus and

the Combined-avg / [CHE13] comparison).

We also investigated the sensitivity of the KLD and AUC measures with respect to the randomness in the 

visual content. When compared to the state of the art methods, the experimental results show gains in 

related to sensitivity by: 

• in KLD: between 0.01 (corresponding to Discriminance, the reference corpus and the Static-avg / 

[CHE13] comparison) and 9.98 (corresponding to Precision, the reference corpus and Multiplication-

avg / [GOF12] comparison), 

• in AUC: between 0.38 (corresponding to Discriminance, the reference corpus and the Motion priority-

max / [GOF12] comparison) and 15.12 (corresponding to Precision, the reference corpus and Addition-

avg / [CHE13] comparison) 

All these above-reported values demonstrate, objectively and quantitatively, the usefulness of extracting 

saliency maps from the compressed domain.  

As explained in Chapter III.3, the human brain is able at the same time to combine together and to make 

complete global and local features. Consequently, a good bottom-up model should also be able to 

handle this dual behavior (local vs. global). A qualitative analysis based on saliency models behavior was 

explained in Chapter IV.3 and presented by examples in Figure IV-8 (composed from four original image 

and for each of them the saliency maps computed according the HEVC, MPEG-4 AVC and the three state 

of the art methods [CHE13], [SEO09], and [GOF12]), cf. discussion in Chapter III.3.  

Figure IV-8 shows that same as MPEG-4 AVC method, the HEVC method ensures identifying much 

localized salient areas (individual sub-parts from more global “pop out” objects) and detecting areas 
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featured by different types of saliency (e.g., Figure IV-8, image (b) in the fourth example, only some 

details of the moving persons are represented as salient while in Figure IV-8, image (b) in the third 

example we succeeded in detecting the face of the child in addition to the lights. Figure IV-8 can be 

compared to Figure III-13: we deliberately changed the original image so as to enrich the overall 

illustrations in the thesis. 

Chapter IV.2.2 is related to the applicative validation and considers the integration of the HEVC saliency 

map into a robust watermarking application: in order to increase the transparency, for a prescribed data 

payload, the mark is inserted into non-salient blocks, according to the predicted HEVC saliency map. 

Hence, our study investigates the gains obtained when considering saliency-guided insertion with 

respect to blind (random) insertion. 

The experiments show that the saliency prediction in the HEVC domain results in: 

• objective study: an increase in PSNR by 1.55dB; 

• subjective study: the MOS corresponding to the saliency-guided watermark insertion (30 bits per I 

frame) is equal to  the MOS corresponding to the original video (un-watermarked content);  

However, an important criterion and the final advantage of any image processing method is also given by 

its computational complexity. Compared to the models presented in Table III-12 (the three investigated 

state of the art and our MPEG-4 AVC saliency extraction methods), the HEVC saliency extraction 

algorithm uses the same main operations performed for generating static and dynamic MPEG-4 AVC 

saliency maps, with the difference of processing on TB with different sizes.  

Moreover, we also measured the computational time of the C/C++ code of the HEVC saliency extraction 

model. We reported only one value, which holds for any of the six pooling formulas we studied, namely 

11 milliseconds. 
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(a) Original image (b) Our HEVC saliency map 
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Figure IV-8: Illustrations of saliency maps computed with different models. 
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IV.4. Conclusion 

From the methodological point of view, we adapt and extend the MPEG-4 AVC saliency model principles

so as to match them to the HEVC stream syntax elements, thus making possible individual intensity,

color, orientation, and motion maps to be defined. Moreover, several pooling formulas have been 

investigated.

The experimental validation takes place under the same framework defined for MPEG-4 AVC: ground-

truth confrontation and applicative integration. The ground truth validation is based on two criteria, the

Precision and Discriminance. For each criterion, we considered two objective metrics, namely the KLD

and AUC. The ground truth itself is represented by two state of the art corpora, the first one is featured

by fixation information and the second one by saccade information. The applicative validation is an 

integration of the HEVC saliency map in a compressed stream watermarking framework that considers

the saliency map as a tool guiding the mark insertion. 

The main benefits of computing the saliency directly at the stream level are the same as in the MPEG-4

AVC case, namely, performance (confrontation to the ground truth) with respect to the state of the art

methods, gains in watermarking transparency, sensitivity to the randomness in the processed visual

content, and linear computational complexity. 
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V.1. Conclusion  

The present thesis aims at offering a comprehensive methodological and experimental view about the

possibility of extracting the salient regions directly from video compressed streams (namely MPEG-4 AVC

and HEVC), with minimal decoding operations. The peculiarities of each of these two domains were 

studied in Chapters III and IV, respectively: the related methodology was presented alongside with in-

depth experiments (both ground truth and applicative validations) and the detailed conclusions were 

drawn in Chapter III.4 and IV.4, respectively. 

However, as studied in the Introduction and beyond the technical anchors, the present thesis is about

studying two a priori conceptual contradictions (see Chapter II). The first contradiction corresponds to

the saliency extraction from the compressed stream. On the one hand, saliency is given by visual 

singularities in the video content. On the other hand, in order to eliminate the visual redundancy, the

compressed streams are no longer expected to feature singularities. The second contradiction 

corresponds to saliency guided watermark insertion in the compressed stream. On the one hand, 

watermarking algorithms consist on inserting the watermark in the imperceptible features of the video. 

On the other hand, lossy compression schemes try to remove as much as possible the imperceptible data 

of video.  

Consequently, the remaining of this Chapter will present the thesis point of view on these two 

contradictions.  

V.1.1. Saliency vs. Compression 

As an overall conclusion, the study brings to light that although the MPEG-4 AVC and HEVC standards 

does not explicitly rely on any visual saliency principle, their stream syntax elements preserve this 

property.  

Among possible explanations for this remarkable property, one could argue a share feature between 

video coding and saliency. Saliency is often considered as a function of singularity (of contrast, color, 

orientation, motion …). On coding side, singularities are usually uncorrelated signals with their vicinities 

making them hard to encode and leading to more residues. Considering that this relationship between 

saliency and coding cost holds, a good encoder could possibly act as a winner take all approach revealing, 

emphasizing salient information. Mimicking such behavior in the compressed domain is not that trivial 

and often under-considered in many approaches provided in literature.  

In order to investigate whether such a behavior is proper to MPEG-4 AVC and HEVC, we also consider the 

case of MPEG-4 ASP format [WEB11]. Actually, as explained in Chapter II, the study of Fang [FAN14], 

published during the development of the present thesis, deals with saliency extraction in the 

transformed domain.  

We then evaluated the Fang’s model under the same test-bed as the MPEG-4 AVC and HEVC. Table V-1 

illustrates the KLD and AUC values, for the three state of the art methods acting in the uncompressed 
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optimization tool: it also allows the increase of the energy of a perturbation (i.e. the mark) which 

corrupts an original signal, under the constraint of a prescribed difference (e.g. PSNR or NCC) between 

the original and the modified signals. 

Secondly, note that from the watermarking point of view, the MPEG-4 AVC method is more effective 

than the HEVC method. However, we cannot state yet the reason of this difference. While one possible 

explanation would be related to the very nature of the two types of encoding standards, note that our 

MPEG-4 AVC watermarking experiments also included a perceptual masking step which was not 

considered for HEVC (to the best of our knowledge, no masking model in HEVC compressed stream yet 

exists). So, an alternative explanation would be that the coupling of the perceptual masking (a long-

term psycho-visual mechanism) and saliency (a short term psycho-visual mechanism) lead to 

applicative watermarking synergies. However, a true methodological and experimental study is 

required in order to support this affirmation.  

V.2. Future works 

Short-term perspectives – ameliorate the compressed domain saliency maps 

The present thesis brought to light that a straightforward relation between the Itti’s models and the 

MPEG-4 AVC and HEVC stream syntax elements exists. The corresponding experimental results 

demonstrated that saliency extraction in compressed domain is not only fast (linear complexity) but also 

closer to the ground-truth then the pixel-based models. However, several possible ways of ameliorating 

the MPEG-4 AVC and HEVC models still exist. 

First, note that our intensity, color and motion maps are defined as energies of the stream syntax 

element values. Although these definitions are related to the Itti’s model, future work will be devoted to 

investigate whether different averaging formulas can be considered instead of energy.  

Secondly, we shall investigate the possibility of considering more elaborated fusion techniques among 

the elementary maps. In this respect, the ones based on Quaternion Fourier Transform (QFT) formula 

[GUO10] and the principle of self-adaptive saliency map fusion in [YAN14] will be starting points.  

 

Mid-term perspectives – integrate compressed domain saliency maps in challenging applicative field 

While the compressed domain saliency extraction already demonstrated their effectiveness in the 

watermarking applications, work will be devoted to deploy them for other applicative fields like video 

retargeting [LUO11], object segmentation [KIM14] and discovery [YAN15], video surveillance [KIM14] or 

decision support systems for virtual collaborative medical environments [GAN15].  

 

Long-term perspectives – define an information theory based model for saliency detection 

Although the large majority of the saliency extraction studies are based on the Itti’s models, the study in 

[KHA15] shows a correlation between the size (in bits) of the encoded macroblock representation and its 
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saliency. Our study goes one step further and identifies, inside the macroblock, which syntax elements 

are actually connected to saliency. 

These observations can be considered as the first two steps towards defining an information-theory 

based model for saliency. The principle of such a model would be to validate whether the classical 

information theory entities (and mainly the ones related to source coding) are able to accommodate the 

saliency computation and deployment or new entities matched to this human visual related field should 

be defined. 

Such a model would also implicitly provide answers to the open points raised in Chapters V.1.1 and 

V.1.2, namely about the visual saliency as a signal processing optimization tool and the extent to which 

synergies can be established between perceptual masking and saliency, two complementary human 

visual peculiarities.  
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A Fusing formula investigation  

A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static

to dynamic features) are investigated in our study, both for MPEG-4 AVC (as reported in Chapter III) and

HEVC (as reported in Chapter IV), [AMM15], [AMM16]. 

 Static saliency map fusion formulas 

We consider 6 formulas for fusing the elementary static maps: 4 weighted additions, 1 multiplication and 

1 maximal, as follows. 

The static saliency map can be computed as a linear combination of the intensity, the color, and the 

orientation normalized maps: 

 �� = ���(��) + ���(��) + ���(��) (A-1) 

 

Where β1, β2, and β3 are the parameters determining respectively the weight for the intensity map Mi, 

color map Mc, orientation map Mo, and the normalization formula N (mentioned in Chapter III). 

• Color advantage fusion: we consider the equation (A-1) and we define the weight of the color 

saliency map as the highest weight β1=0.2, β2 =0.6, and β3=0.2 

• Orientation advantage fusion: we consider the equation (A-1) however we accord the highest 

weight to the orientation saliency map β1=0.2, β2 =0.2, and β3=0.6. 

• Intensity advantage fusion: we consider the equation (A-1) and we affect the following weights 

to the features saliency maps β1=0.6, β2 =0.2, and β3=0.2 

• Mean fusion: this fusion technique consists on considering that all the static features have the 

same effect on the human vision attention, thus we use equal weights for all of the elementary 

features saliency maps β1= β2= β3= 1/3. 

• Max fusion: This is a winner takes all strategy where the maximum value between the three 

features maps is retained for each block:  �� = ���(�� ,�� ,��) (A-2) 

• Multiplication fusion: a block by block multiplication is applied. We aim at reinforcing the 

regions that are salient on all elementary features map and eliminating the regions that have a 

zero value even in only one feature map: �� = �� ×�� ×�� (A-3) 
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Spatio-temporal saliency map fusion formulas 

Each and every time a saliency map is computed; elementary feature maps are first individually 

processed then fused in order to get the final map. This fusion process takes place at two levels: static 

(inside each frame of the video) and then dynamic, when the static components are combined with the 

temporal information.  

However, the choice of the fusion formulas themselves is an open research topic, as testified by the large 

variety of choices made in the literature [ITT98], [MUD13], [MAR09], [MAR08], [LU10], and [PEN10]. 

Moreover, the study in [MUD13] is devoted to this topic: it discusses various ways of fusing the static 

and dynamic saliency maps for uncompressed video sequences, as briefly presented below. In the sequel 

the following notations are made: MF is the fused saliency map, MD is the dynamic saliency map and MS 

is the static saliency map. 

• Mean fusion [ITT98][MUD13]: this fusion technique takes the average of both static and 

dynamic saliency map: 

 �� = (�� +��)/2 (A-4) 

• Maximum fusion [MUD13][MAR09]: this is a winner takes all strategy, where the maximum 

value between the two saliency maps is taken for each location:  

 �� = ���(��,��) (A-5) 

• Multiplication fusion [MUD13][MAR09]: this requires an element-wise multiplication: 

 �� = �� ×�� (A-6) 

• Maximum skewness fusion [MUD13][MAR09]: the static pathway is modulated by its maximum 

and the dynamic saliency map is modulated by its skewness value (defined as the third moment 

on the distribution of the map [MAR08]). The salient areas both in static and dynamic maps are 

reinforced by the product of the static map’s maximum and the motion map’s skewness value, 

as shown in the following formula:  

 �� = ��� × ��� + �(�� +��) (A-7) 

where � = ���	(��), � = ��������(��) and � = ��.  

• Binary threshold fusion [MUD13][LU10]: first, a binary mask MB is generated by thresholding the 

static saliency map (the mean value of MS is used as threshold). Second this MB is used to 

exclude spatiotemporal inconsistent areas and to enhance the robustness of the final saliency 

map when the global motion parameters are not estimated properly: 
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�� = ���	(��,��⋂��) (A-8) 

• Motion priority fusion [MUD13][PEN10]: this fusion technique relates to the cases in which the 

viewer attention is attracted by the motion of an object even when the static background is (as 

saliency map value) higher:

 �� = (1− �)�� + ���  (AVI-9) 

with α=λ���� and λ=max (��)-mean (��). 

• Dynamic weight fusion [MUD13][XIA10]: this fusion is a dynamic fusion scheme dependent on 

the content of the video. The weights are determined by the ratio between the means of the 

static and dynamic maps for each frame: 

 �� = ��� + (1− �)�� (A-10) 

 

where α = mean (��)/ (mean (��) + mean (��)). 

• Scale invariant fusion [MUD13][KIM11]: in this fusion technique, the input images are analyzed 

at three different scales, (32×32, 128×128 and the original image size). The three maps obtained 

at these scales are subsequently linearly combined into the final spatio-temporal saliency map: 

 

�� =�������
���  (A-11) 

 

where ��� = (1 − �)�� + ��� ���ℎ � = 0.5 is the map at scale k and the coefficients of the

linear combination are w� = 0.1,w� = 0.3	and	w� = 0.6. 

A.1. MPEG-4 AVC fusing formula validation 

We consider the database organized at the IRCCyN Laboratory [WEB05] and we kept the same 

experimental conditions as presented in Chapter III.  

The experimental results are shown in Figures A-2-A-9: for each investigated case, we report the average 

value of the metrics (average over the video frames) as well as the underlying 95% confidence limits. 

Each of these 8 figures corresponds to one of the particular way in which the static and dynamic maps 

are fused (cf. equation (A-4)-(A-11)): mean fusion in figure A-2, maximum fusion in figure A-3, 

multiplication fusion in figure A-4, maximum Skewness fusion in figure A-5, binary threshold fusion in 

figure A-6, motion priority fusion in figure A-7, dynamic weight in figure A-8, and scale invariant fusion in 

figure A-9. 
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At their turn, each of these 8 figures is divided into two plots: the left one stands for the KLD while the 

right one corresponds to the AUC. On the one hand, that KLD is the distance between the distributions of 

the saliency maps and the density fixation maps corresponding to I frames in each GOP of the video; 

consequently, the lower the KLD value, the more accurate the saliency map. On the other hand, the AUC 

is computed between the saliency map and the density fixation map (binarized with a threshold of 

max/2), at the fixation locations. Consequently, the larger the AUC value, the better the saliency 

prediction. For each of these two metrics, and for each of the 8 static-dynamic fusing formulas, the 6 

ways of fusing elementary static maps are represented from left to right: col-adv (color advantage 

fusion), ori_adv (orientation advantage fusion), the int_adv (intensity advantage fusion), the stat (mean 

fusion), the stat-max (maximum fusion), and the stat_mult (multiplication fusion). Two state-of-the-art 

techniques, namely SV1 [SEO09],[WEB11], and SV2 [GOF12],[WEB12], are also included in the 

experiments and reported on each and every plot here below. 

 

 

Figure A-2: Mean fusion of the static and dynamic map. 

 

Figure A-3: Maximum fusion of the static and dynamic map. 
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Figure A-4: Multiplication fusion of the static and dynamic map. 

 

Figure A-5: Maximum Skweness fusion of the static and dynamic map. 

 

Figure A-6: Binary threshold fusion of the static and dynamic map. 



Appendixes 

145 

 

Figure A-7: Motion priority of the static and dynamic map. 

 

Figure A-8: Dynamic weight fusion of the static and dynamic map. 

 

Figure A-9: Scale invariant fusion of the static and dynamic map. 

 

By visually inspecting the values depicted in Figures A-2-A-9, a very large variability of the results with 

the fusing formula can be noticed. In order to allow a quantitative interpretation of the results, we 
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define two coefficients (ƍ and ƞ, for KLD and AUC, respectively) expressing the relative differences 

between a particular investigated fusion method in the compressed domain and the state-of-the-art 

results: ƍ��� = ����� −������������  (A-12) 

where KLD�� represents the KLD value of the map Mi, i=1, 2,…48 (the compressed domain saliency 

maps) and KLD��� is the KLD value of the maps ���, j = 1,2 (the state of the art maps, presented in SV1 

and SV2). ƞ��� = ����� − ������������ 	 (A-13) 

where AUC�� represent the AUC value of the map Mi, i=1, 2,…48 (the compressed domain saliency 

maps) and AUC��� is the AUC value of the maps ���, j = 1,2 (the state of the art map, presented in SV1 

and SV2). 

According to these definitions, a gain with respect to the state of the art is reflected by negative ƍ and by 

positive ƞ. By computing these two coefficients for each and every investigated case, we noticed that the 

two types of fusion (both static, the static-dynamic) have a significant impact in the results, as for 

example: 

For a same static-dynamic technique (e.g. the mean fusion, Figure A-2), the ƍ coefficient varies between 

-0.62 and 0.03 while the ƞ coefficient varies between -0.02 and 0.23, according to the static fusion 

formula; 

Conversely, for a same static fusion formula (e.g. maximum), the ƍ coefficient varies between -0.63 and 

0.48 while the ƞ coefficient varies between -0.15 and 0.24, according to the static-dynamic fusing 

formula  

As a general conclusion, the most accurate results (in the sense of the two objective measures, the two 

defined coefficients, and of the processed corpus) are provided by the Skewness static-dynamic fusion 

over the maximum static fusion: ƍ� = −0.62; ƍ� = −0.22;ƞ� = 0.05; 	ƞ� = 0.24. 

Note that as this combination results in negative ƍ and by positive ƞ values, we can also conclude that 

computing the saliency in the MPEG-4 AVC compressed domain according to the map advanced with this 

study and with the Skewness-maximum fusing techniques gives more accurate results than computing it 

in the uncompressed domain by the state-of-the-art approaches. Actually, several types of fusion 

technique combinations result in gains over the two investigated state-of the-art methods, for the two ƍ 

and ƞ coefficients, namely: binary mask-maximum, dynamic-maximum, Skewness-orientation advantage, 

Skewness-intensity advantage, Skewness-maximum, Skewness-multiplication, Skewness-mean, invariant-

maximum, invariant-multiplication, invariant-mean, maximum-maximum, multiplication-maximum, and 

mean-maximum. 
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A.2. HEVC fusing formula validation 

All the experimental conditions are kept as described in Chapter IV. 

Our experiment consists of comparing the obtained saliency maps according to different fusing formulas 

by calculating the distance between the saliency map and the density fixation map using two measures:

the KLD and the AUC. To binarize the density fixation map, we used the threshold as the half of

maximum value of the entire map.

Figures A-10-A-17 represent the result of the comparison of the obtained saliency maps with four 

methods of the state of the art, namely: Ming Cheng et al. [CHE13], Hae Seo et al. [SEO09], Stas

Goferman [GOF12] and our previous work in MPEG-4 AVC video stream in Chapter III (referred to as 

AVC). In the case of the AVC method, the best result in each spatio-temporal fusion technique computed

is used.

As a general tendency, Figures A-10-A-17 bring to light that saliency extraction from the HEVC stream 

outperforms (in both KLD and AUC sense) the three investigated uncompressed domain state-of-the-art 

methods. However, no sharp conclusion can be drawn when comparing the HEVC domain to AVC

domain: the performances depend on both the static and spatio-temporal saliency pooling technique.

In order to quantify these behaviors we compute two coefficients ƍ��� and ƞ���, defined in Appendix 

A.1. According to these coefficients, a gain with respect to the state of the art is reflected by positive ƍ 

and ƞ values. 

The ƍ and ƞ coefficients are reported in Tables 1 and 2, respectively.  

 

Table A-1: KLD gains between HEVC spatio-temporal saliency maps and [CHE13] [SEO09] [GOF12] AVC. 

 [CHE13] [SEO09] [GOF12] AVC 

Mean (stat_max) 0.41 0.39 0.31 -0.03 

Max (stat_max) 0.39 0.37 0.28 -0.07 

Multiplication (stat_mean) 0.12 0.08 -0.03 -0.58 

Maximum skewness (stat_mean) 0.39 0.36 0.28 -0.07 

Binary threshold (stat_max) 0.34 0.31 0.22 -0.19 

Motion priority (stat_max) 0.16 0.13 0.01 0.27 

Dynamic weight (stat_max) 0.41 0.39 0.31 -0.05 

Scale invariant (stat_max) 0.41 0.39 0.31 -0.02 

 

Table A-1 shows that when comparing the HEVC saliency map extracted in the HEVC domain to the three 

uncompressed-domain methods based on the KLD, with singular exceptions, the ƍ coefficient is larger 

than 0.1 (its maximal value reaching 0.41). The worst performances are provided by the (Multiplication, 

static_mean) pooling combination, when the Gof method outperforms by 3% the HEVC saliency 



M. AMMAR Visual saliency extract

 148 

detection. When compared to th

the overall performances: 

• the (Mean, stat-max), (D

result in quite equal goo

• the (Max, stat_max), (M

threshold, stat_max) co

extraction; 

• the (Motion priority, sta

extraction.  

A similar analysis can be perform

figures show that HEVC salienc

ranging from 6% to 23%. M

performances: the absolute valu

Table A-2: AUC gains between HEVC sp

Mean (stat_max) 

Max (stat_max) 

Multiplication (stat_mean) 

Maximum skewness (stat_mean)

Binary threshold (stat_max) 

Motion priority (stat_max) 

Dynamic weight (stat_max) 

Scale invariant (stat_max) 

Figure A-10: Mean fusion. 

tion from compressed streams 

he AVC saliency extraction, the pooling techniqu

Dynamic weight, stat_max) and (Scale invariant, 

od performances, the ƍ being lower than 5%; 

Multiplication, stat_mean), (Maximum skewness,

ombinations result in better performances for

at_max) combination ensures better performanc

med based on the ƞ coefficient reported in Tab

cy maps outperform the three state-of-the-art 

Moreover, HEVC and AVC saliency extraction

ue of the ƞ coefficient is always lower than 3%. 

patio-temporal saliency maps and [CHE13] [SEO09] [GOF12

[CHE13] [SEO09] [GO

0.23 0.19 0

0.22 0.19 0

0.10 0.08 0

0.22 0.19 0

0.21 0.18 0

0.18 0.15 0

0.23 0.19 0

0.23 0.19 0

ue has a bigger impact in 

 stat_max) combinations 

, stat_mean) and (Binary 

r the AVC saliency map 

ces for the HEVC saliency 

ble A-2. This time, all the 

methods. The gains are 

n feature equally good 

2] AVC. 

OF12] AVC 

0.18 0.00 

0.18 0.00 

0.06 -0.03 

0.18 0.00

0.17 0.03 

0.13 -0.02 

0.18 0.01 

0.18 0.00 
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Figure A-14: Binary threshold fusion. 

Figure A-15: Motion priority fusion. 

Figure A-16: Dynamic weight fusion. 

tion from compressed streams 

 

 

 



Figure A-17: Scale invariant fusion. 
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B. MPEG-4 AVC basics  

MPEG-4 AVC (Advanced Video Coding Standard) is a video coding standard, developed by the Joint Video

Team (JVT), the result of collaboration between the ITU-T Coding Video Expert Group (VEG) and the

ISO/IEC Moving Picture expert Group (MPEG). This standard provides substantial better video quality at 

the same data rates compared to previous standard (MPEG-2, MPEG-4 Part 2, H.263) with only a

moderate increase of complexity [RIC03]. Used in a wide range of applications, from mobile phones to 

High Definition TV, it helped to revolutionize the quality of the video image operating over several types 

of networks and systems. 

While MPEG-4 AVC standard shares common features within other existing standards, it has a number of

advantages that distinguish it from previous standards [RIC03]. 

The following are some of the key advantages of MPEG-4 AVC standard: 

• Up to 50% in bit rate saving: compared to MPEG-2 or MPEG-4 Part 2, MPEG-4 AVC allows a 

reduction in bit rate by up to 50% for a similar degree of encoder optimization at most bit rates. 

• High quality video: MPEG-4 AVC offers consistently better video quality at the same bit rate 

copmpared to previous standards. 

• Error resilience: MPEG-4 AVC provides necessary tools to deal with packet loss in packet 

networks and bit errors in wireless networks. 

• Network friendliness: MPEG-4 AVC bit stream can be easily transported over different networks 

through the Network Adaptation Layer. 

The MPEG-4 AVC standard does not defines a new encoder. However, it defines new encoding syntax 

elements and refines the principal encoding functions. 

The purpose of this Appendix is to outline the concept of the MPEG-4 AVC encoding standard and its 

advantages with respect to previous standards. 

B.1. Structure 

The MPEG-4 AVC architecture is designed based on two main layers: The Video Coding Layer (VLC) which 

is constructed to efficiently represent the video contents and the Network Abstraction Layer (NAL) which 

encapsulates the content represented by the VCL and provides header information in an appropriate 

way for conveyance by a variety of transport layer or storage media [RIC03]. 

The VCL is structured into five layers: GOP (Group Of Picture), picture, slice, macroblock and block. 

Headers of each layer provide information on the encoding/decoding order for the lower layers. 

A GOP consists of a number of images that can be 3 types, grouped according to a predetermined 

decoding order:  

• The I frames correspond to independently coded images ; note that only one field I can be at the 

beginning of a GOP, as it serves as a starting point for coding P and B frames; 
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Figure B-4: Intra prediction modes for �× � luminance blocks [RIC03]. 

The predicted block is obtained by using the already encoded samples (from A to M) from neighboring

blocks.

Transformation  

Following the prediction, the transformation is applied with the aim of representing the data as 

uncorrelated (separate components with a minimum interdependence) and compacted (the energy is 

concentrated in a small number of frequencies) [HAL02].  

Compared to previous standards which use the 8 × 8 Discrete Cosine Transform (DCT) as the basic 

transformation, MPEG-4 AVC uses three transformations depending on the type of the data to be 

encoded: 

• An integer DCT transformation which is applied to all 4 × 4 blocks of luminance and 

chrominance components in the residual data. 

• A Hadamard transformation applied to 4 × 4 blocks constructed of luma dc coefficients in intra 

macroblocks predicted according to the 16 × 16 mode. 

• A Hadamard transformation applied to 2 × 2 blocks constructed of chroma dc coefficients in any 

macroblock. 

One of the main improvements of this standard is the using of smaller 4 × 4 block transformation. 

Instead of a classical 4 × 4 discrete cosine transform, a separable integer transform with similar 

properties as a 4 × 4 DCT is used. The new advanced transform approaching the 4 × 4 DCT has several 

advantages: 

• The core part of the transformation can be implemented using additions and shifts, resulting to 

less level of computation complexity.  

• The precise integer specification eliminates any mismatch issues between the encoder and

decoder in the inverse transform (this has been a problem with earlier standards). 

Figure B-5 illustrates the way in which the data is structured and transmitted within a macroblock. If the

macroblock is coded in 16 × 16 intra mode, then the block containing the DC coefficient of each 4 × 4

luma block is transmitted first. Secondly, the luma residual blocks ranging from 0 to 15 are transmitted in

the order shown in Figure B-5 where the DC coefficients are set to zero. Blocks 16 and 17 containing a 
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C. HEVC basics  

The High Efficiency Video Coding (HEVC) standard is the most recent video coding standard [SUL12]

developed by the Joint Collaborative Team on Video Coding (JCT-VC), a group of video coding experts

from ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG).  

HEVC is used in a wide range of HD videos and supports resolutions up to 8K UHDTV (8192x4320). HEVC 

retains the similar set of basic coding and encoding process and the high level syntax architecture used in

MPEG4-AVC. However, it improved each of them by introducing new more sophisticated techniques.

Compared to the previous standard, HEVC offers larger and more flexible prediction and transform block 

sizes, greater flexibility in prediction modes (35 Intra prediction modes), more sophisticated signaling of 

modes and motion vectors and larger interpolation filter for motion compensation.

HEVC ensures a video quality identical to H.264 AVC at only half the bit rate; actually, compression gains 

of 30 to 60% with an average of 40% are reported, but this ratio highly varies with the content type, 

resolution and compression settings. The highest gain is obtained with UHD videos. 

Same as the other ITU-T and ISO/IEC video coding standards, only the bit stream syntax is standardized. 

C.1. Structure 

The extension from MPEG-4 AVC to HEVC is not straightforward. On the one hand, HEVC allows different 

block sizes to be defined. On the other hand, both intra and inter prediction modes are changed.  

HEVC video sequences are structured the same way as MPEG4-AVC, into Groups of Pictures (GOP). A 

GOP is composed of an I (intra) frame and a number of successive P and B frames (unidirectional 

predicted and bidirectional predicted, respectively). The I frame describes a full image coded 

independently by using intra prediction, containing only references to itself. The unidirectional predicted 

frames P use one or more previously encoded frames (of I and P types) as reference for picture 

encoding/decoding. The bidirectional predicted frames B consider in their computation both forward 

and backward reference frames, be they of I, P or B types.

A frame in HEVC is partitioned into coding tree units (CTUs), which each covers a rectangular area up to 

64x64 pixels depending on the encoder configuration. Each CTU is divided into coding units (CUs) that 

are signaled as intra or inter predicted blocks. A CU is then divided into intra or inter prediction blocks 

according to its prediction mode. For residual coding, a CU can be recursively partitioned into transform 

blocks. 

HEVC supports two modes of partitioning an intrapicture-predicted block: PART_2Nx2N and PART_NxN. 

The first mode indicates that the prediction block PB size is the same as the coding block CB size, while 

the second mode signals the splitting of the CB into four equal-sized PBs. In addition to these two mods, 

interpicture prediction, HEVC supports 6 types of splitting CB into two PBs.  
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C.3  How HEVC is different? 

The main objective of HEVC is to provide essential tools to transmit the smallest amount of information 

required for a given level of visual quality. While HEVC inherits many concepts from MPEG-4 AVC, Table 

C-1 offers a synoptic view on the main differences between these two standards. 

Table C-1: HEVC vs. MPEG-4 AVC 

 H264/MPEG-4 AVC H265/HEVC 

Names MPEG-4 Part 10, AVC  MPEG-H, HEVC, Part2 

Approved date 2003 2013 

Progression  Successor to MPEG-2 Successor to H.264/AVC 

Improvements -40-50% bit rate reduction compared with MPEG-2 Part 
- Available to deliver HD sources for Broadcast and Online 

 -40-50% bit rate reduction compared with H.264 at the 
same visual quality 
- It is likely to implement Ultra HD, 2K, 4K for Broadcast 
and Online  

Maximal support Up to 4k Up to 8k 

Partition sizes Macroblock 16x16  (Large) Coding Unit 8x8 to 64x64 

Partitioning Sub-block down to 4x4 Prediction Unit Quadtree down to 4x4 square, 
symmetric and asymmetric  
(only square for intra) 

Intra prediction modes  13 modes with 1/4 pixel accuracy 

- 9 for textured regions (4x4) 
- 4 for smoothed regions (16x16) 

35 modes with 1/32 pixel accuracy 
- 33 angular modes 
- 1 Planar mode  
- 1 DC mode 

Motion prediction Spatial Median (3 block) Advanced Motion Neighbor (3 blocks) Vector Prediction 
(AMVP) 
(Spatial + temporal) 

Motion copy mode Direct mode  Merge mode 

Motion precision  ½ Pixel 6-tap 

¼ Pixel bi-linear 

¼ Pixel for 8 tap 
1/8 Pixel 4-tap chroma 

Entropy coding  CABAC, CAVLC CABAC 

Filters Deblocking filter  Deblocking filter 
Sample Adaptive Offset 

 

  



M. AMMAR Visual saliency extraction from compressed streams 

 162 

D.  Tables of the experimental results 

In this appendix, we detail the main plots included in Chapter III, IV and V through detailed tables.

D.1 MPEG-4 AVC saliency map validation 

Precision  

Reference corpus 

 

Table D-1: KLD between saliency map and density fixation map: corresponding to Figure III-6. 

  Min 95% CL low KLD 95% CL up Max 

Skewness-max 0.20 0.22 0.28 0.34 0.35 

Combined-avg 0.23 0.29 0.32 0.35 0.38 

Multiplication-avg 0.36 0.55 0.64 0.73 0.75 

Addition-avg 0.22 0.29 0.31 0.35 0.37 

Static-avg 0.27 0.32 0.37 0.42 0.47 

Motion 0.35 0.41 0.48 0.55 0.64 

CHE13 0.44 0.61 0.71 0.81 0.96 

SEO09 0.32 0.48 0.68 0.88 1.13 

GOF12 0.25 0.41 0.60 0.79 1.09 

 

 

Table D-2: AUC between saliency map and density fixation map: corresponding to Figure III-7. 

  Min 95% CL low AUC 95% CL up Max 

Skewness-max 0.92 0.93 0.95 0.97 0.97 

Combined-avg 0.8 0.81 0.83 0.84 0.86 

Multiplication-avg 0.53 0.57 0.61 0.65 0.71 

Addition-avg 0.8 0.81 0.85 0.89 0.9 

Static-avg 0.75 0.73 0.81 0.89 0.91 

Motion 0.75 0.78 0.82 0.86 0.9 

CHE13 0.64 0.72 0.78 0.84 0.92 

SEO09 0.65 0.72 0.8 0.88 0.91 

GOF12 0.76 0.79 0.81 0.83 0.86 
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Discriminance 

 Reference corpus 

 

Table D-3: KLD between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame 

in the video sequence: corresponding to Figure III-9. 

  Min 95% CL low KLD 95% CL up Max

Skewness-max 0.30 0.56 0.51 0.46 1.10

Combined-avg 0.28 0.52 0.59 0.65 0.98 

Multiplication-avg 0.31 1.24 1.63 2.03 3.27 

Addition-avg 0.18 0.40 0.50 0.60 0.92 

Static-avg 0.18 0.41 0.55 0.70 1.03 

Motion 0.32 0.74 1.06 1.37 2.62 

CHE13 0.28 1.23 1.55 1.87 3.36 

SEO09 0.35 0.92 1.23 1.53 3.53 

GOF12 0.20 0.38 0.43 0.49 0.87 

 

 

 

Table D-4: AUC between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame 

in the video sequence: corresponding to Figure III-10. 

  Min 95% CL low AUC 95% CL up Max 

Skewness-max 0.86 0.89 0.93 0.93 0.93

Combined-avg 0.86 0.88 0.92 0.92 0.91 

Multiplication-avg 0.52 0.57 0.66 0.71 0.78 

Addition-avg 0.8 0.82 0.87 0.88 0.92 

Static-avg 0.81 0.83 0.89 0.92 0.92 

Motion 0.76 0.78 0.81 0.84 0.9 

CHE13 0.54 0.62 0.73 0.84 0.93 

SEO09 0.59 0.68 0.78 0.88 0.93 

GOF12 0.88 0.90 0.93 0.92 0.93 
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 Cross-checking corpus: 

 

Table D-5: KLD between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame 

in the video sequence): corresponding to Figure III-11. 

  Min 95% CL low KLD 95% CL up Max 

Skewness-max 0.29 0.58 0.61 0.64 2.14 

Combined-avg 0.38 0.64 0.66 0.68 1.70 

Multiplication-avg 0.18 1.39 1.40 1.42 1.80 

Addition-avg 0.30 0.67 0.69 0.71 1.90 

Static-avg 0.33 0.89 0.91 0.93 1.82 

Motion 0.27 0.72 0.74 0.76 1.60 

CHE13 0.23 0.52 0.55 0.58 1.90 

SEO09 0.15 0.71 0.73 0.75 2.03 

GOF12 0.36 0.50 0.53 0.56 2.80 

 

 

 

Table D-6: AUC between saliency map at fixation locations and saliency map at random locations (N=100 trials for each frame 

in the video sequence): corresponding to Figure III-12. 

  Min 95% CL low AUC 95% CL up Max 

Skewness-max 0.63 0.74 0.75 0.77 0.99 

Combined-avg 0.51 0.57 0.58 0.59 0.98 

Multiplication-avg 0.44 0.56 0.57 0.58 0.94 

Addition-avg 0.49 0.67 0.68 0.69 0.99 

Static-avg 0.58 0.62 0.63 0.64 0.95 

Motion 0.48 0.67 0.68 0.69 0.84 

CHE13 0.60 0.71 0.72 0.73 0.97 

SEO09 0.56 0.62 0.64 0.66 0.96 

GOF12 0.52 0.63 0.64 0.66 0.98 
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D.2 HEVC saliency map validation 

Precision  

 Reference corpus 

 

Table D-7: KLD between saliency map and density fixation map: corresponding to Figure IV-2. 

  Min 95% CL low KLD 95% CL up Max 

Motion priority-max 0.29 0.53 0.61 0.68 1.13 

Combined-avg 0.25 0.40 0.44 0.47 0.67 

Multiplication-avg 0.30 0.53 0.60 0.66 1.04 

Addition-avg 0.26 0.39 0.42 0.46 0.62 

Static-avg 0.30 0.43 0.46 0.49 0.69 

Motion 0.28 0.51 0.58 0.64 1.03 

CHE13 0.44 0.61 0.71 0.81 0.96 

SEO09 0.32 0.48 0.68 0.88 1.13 

GOF12 0.25 0.41 0.60 0.79 1.09 

MPEG-4 AVC 0.20 0.22 0.28 0.34 0.35 

 

 

 

Table D-8: AUC between saliency map and density fixation map: corresponding to Figure IV-3. 

  Min 95% CL low AUC 95% CL up Max 

Motion priority-max 0.80 0.90 0.91 0.93 0.97 

Combined-avg 0.91 0.95 0.96 0.96 0.97 

Multiplication-avg 0.64 0.84 0.86 0.89 0.96 

Addition-avg 0.92 0.96 0.96 0.96 0.97 

Static-avg 0.89 0.95 0.95 0.96 0.97 

Motion 0.72 0.88 0.90 0.92 0.97 

CHE13 0.64 0.72 0.78 0.84 0.92 

SEO09 0.65 0.72 0.80 0.88 0.91 

GOF12 0.76 0.79 0.81 0.83 0.86 

MPEG-4 AVC 0.92 0.93 0.95 0.97 0.97 
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Discriminance 

 Reference corpus: 

 

Table D-9: KLD between saliency map at fixation locations and saliency map at random locations (N=100	trials for each frame 

in the video sequence): corresponding to Figure IV-4.

  Min 95% CL low KLD 95% CL up Max 

Motion priority-max 0.26 0.36 0.38 0.40 0.44 

Combined-avg 0.39 0.42 0.45 0.48 0.49

Multiplication-avg 0.60 0.69 0.73 0.76 0.76 

Addition-avg 0.68 0.82 0.84 0.86 0.99 

Static-avg 0.52 0.68 0.72 0.77 1.16 

Motion 0.47 0.55 0.58 0.61 0.64 

CHE13 0.28 1.23 1.55 1.87 3.36 

SEO09 0.35 0.92 1.23 1.53 3.53 

GOF12 0.20 0.38 0.43 0.49 0.87 

MPEG-4 AVC 0.31 1.24 1.63 2.03 3.27 

 

 

 

Table D-10: AUC between saliency map at fixation locations and saliency map at random locations (N=100	trials for each 

frame in the video sequence): corresponding to Figure IV-5. 

  Min 95% CL low AUC 95% CL up Max

Motion priority-max 0.83 0.88 0.91 0.92 0.93

Combined-avg 0.83 0.85 0.89 0.91 0.91 

Multiplication-avg 0.69 0.71 0.76 0.78 0.92 

Addition-avg 0.78 0.86 0.88 0.89 0.91 

Static-avg 0.71 0.78 0.82 0.86 0.89 

Motion 0.73 0.78 0.84 0.90 0.90 

CHE13 0.54 0.62 0.73 0.84 0.93 

SEO09 0.59 0.68 0.78 0.88 0.93 

GOF12 0.88 0.90 0.92 0.93 0.93 

MPEG-4 AVC 0.86 0.89 0.92 0.93 0.93 
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 Cross-checking corpus: 

 

Table D-11: KLD between saliency maps at fixation locations and saliency map at random locations (N=100 trials for each 

frame in the video sequence): corresponding to Figure IV-6. 

  Min 95% CL low KLD 95% CL up Max 

Motion priority-max 0.46 0.56 0.62 0.68 1.61 

Combined-avg 0.45 0.59 0.58 0.65 1.59 

Multiplication-avg 0.33 0.58 0.66 0.74 1.65 

Addition-avg 0.41 0.62 0.58 0.62 0.87 

Static-avg 0.37 0.58 0.68 0.77 1.84 

Motion 0.40 0.60 0.66 0.72 1.20 

CHE13 0.23 0.52 0.55 0.58 1.90 

SEO09 0.15 0.71 0.73 0.75 2.03 

GOF12 0.36 0.50 0.53 0.56 2.80 

MPEG-4 AVC 0.18 1.39 1.40 1.42 1.80 

 

 

 

Table D-12: AUC between saliency maps at fixation locations and saliency map at random locations (N=100 trials for each 

frame in the video sequence): corresponding to Figure IV-7. 

  Min 95% CL low AUC 95% CL up Max 

Motion priority-max 0.46 0.71 0.74 0.77 0.96 

Combined-avg 0.50 0.58 0.61 0.64 0.91 

Multiplication-avg 0.30 0.55 0.58 0.62 0.92 

Addition-avg 0.16 0.61 0.65 0.69 0.89 

Static-avg 0.47 0.63 0.66 0.69 0.85 

Motion 0.44 0.55 0.58 0.62 0.84 

CHE13 0.60 0.71 0.72 0.73 0.97 

SEO09 0.56 0.62 0.64 0.66 0.96 

GOF12 0.52 0.63 0.64 0.66 0.98 

MPEG-4 AVC 0.63 0.74 0.75 0.77 0.99 

 

 

 



M. AMMAR Visual saliency extraction from compressed streams 

 168 

D.3 Conclusion 

Precision 

Reference corpus 

 

Table D-13: Comparison of the results of KLD between saliency maps and fixation maps: corresponding to Figure in first 

column in Table V-1. 

  Min 95% CL low KLD 95% CL up Max 

CHE13 0.44 0.61 0.71 0.81 0.96 

SEO09 0.32 0.48 0.68 0.88 1.13 

GOF12 0.25 0.41 0.60 0.79 1.09 

MPEG-4 AVC 0.20 0.22 0.28 0.34 0.35 

HEVC 0.25 0.40 0.44 0.47 0.67 

FAN14 0.20 0.37 0.41 0.44 0.94 

 

 

 

Table D-14: Comparison of the results of AUC between saliency maps and fixation: corresponding to Figure in second column 

in Table V-1. 

  Min 95% CL low AUC 95% CL up Max 

CHE13 0.64 0.72 0.78 0.84 0.92 

SEO09 0.65 0.72 0.80 0.88 0.91 

GOF12 0.76 0.79 0.81 0.83 0.86 

MPEG-4 AVC 0.92 0.93 0.95 0.97 0.97 

HEVC 0.92 0.95 0.96 0.97 0.97 

FAN14 0.60 0.89 0.91 0.92 0.98 
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Discriminance 

Reference corpus 

 

Table D-15: Comparison of the results of KLD between saliency maps at fixation locations and saliency maps at random 

locations (N=100	trials for each frame in the video sequence): corresponding to Figure in first column and first line in Table V-

2. 

  Min 95% CL low KLD 95% CL up Max 

CHE13 0.28 1.23 1.55 1.87 3.36 

SEO09 0.35 0.92 1.23 1.53 3.53 

GOF12 0.20 0.38 0.43 0.49 0.87 

MPEG-4 AVC 0.31 1.24 1.63 2.03 3.27 

HEVC 0.68 0.82 0.84 0.86 0.99 

FAN14 0.04 0.11 0.14 0.17 0.37 

 

 

 

Table D-16: Comparison of the results of AUC between saliency maps at fixation locations and saliency maps at random 

locations (N=100	trials for each frame in the video sequence): corresponding to Figure in second column and first line in Table 

V-2. 

  Min 95% CL low AUC 95% CL up Max 

CHE13 0.54 0.62 0.73 0.84 0.93 

SEO09 0.59 0.68 0.78 0.88 0.93 

GOF12 0.88 0.90 0.92 0.93 0.93 

MPEG-4 AVC 0.86 0.91 0.93 0.94 0.94 

HEVC 0.83 0.88 0.91 0.92 0.93 

FAN14 0.63 0.83 0.85 0.87 0.97 
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Cross-checking corpus 

 

Table D-17: Comparison of the results of KLD between saliency maps at fixation locations and saliency maps at random 

locations (N=100	trials for each frame in the video sequence): corresponding to Figure in first column and second line in Table 

V-2. 

  Min 95% CL low KLD 95% CL up Max 

CHE13 0.23 0.52 0.55 0.58 1.90 

SEO09 0.15 0.71 0.73 0.75 2.03 

GOF12 0.36 0.50 0.53 0.56 2.80 

MPEG-4 AVC 0.18 1.39 1.40 1.42 1.80 

HEVC 0.33 0.58 0.66 0.74 1.65 

FAN14 0.16 0.91 0.98 1.05 1.70 

 

 

 

Table D-18: Comparison of the results of AUC between saliency maps at fixation locations and saliency maps at random 

locations (N=100	trials for each frame in the video sequence): corresponding to Figure in second column and second line in 

Table V-2 

  Min 95% CL low AUC 95% CL up Max 

CHE13 0.60 0.71 0.72 0.73 0.97 

SEO09 0.56 0.62 0.64 0.66 0.96 

GOF12 0.52 0.63 0.64 0.66 0.98 

MPEG-4 AVC 0.63 0.74 0.75 0.77 0.99 

HEVC 0.46 0.71 0.74 0.77 0.96 

FAN14 0.61 0.72 0.74 0.76 0.95 
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Figure E-3: DVQ results of the objective

based selection corresponding to DVQ r
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