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Introduction

Cette thèse a été effectuée grâce au soutien de la Chaire Risques Financiers de la Fondation du Risque de l'Institut Louis Bachelier. Cette fondation a pour objet de contribuer durablement au développement du potentiel français de recherche, d'enseignement et de formation dans tous les domaines du risque : risques financiers, risques industriels, risques environnementaux, risques patrimoniaux, risques de santé, etc. Depuis sa création en 2007, la Fondation du Risque s'attache à initier des actions de recherche et de développement, notamment par la promotion de projets d'enseignement et de recherche et la diffusion des connaissances à travers des programmes de formation de haut niveau. Elle a également vocation à favoriser la pédagogie du risque par la diffusion de connaissances auprès du grand public comme d'un public averti.

Dans ce manuscrit nous donnons le détail des résultats de recherche qui ont été obtenus dans le cadre d'un contrat d'Ingénieur de Recherche et Développement d'une durée de trois ans. Pour ce qui concerne la partie Développement du contrat, une interface web permettant de calculer des estimateurs Multilevel a été mise en oeuvre, afin de mettre les résultats à disposition d'un utilisateur générique et en prévision du développement de relations industrielles. L'application web est écrite en Python, en utilisant le module Flask, avec l'ajout de HTML et JavaScript. Le calcul des paramètres et des estimateurs euxmêmes est fait à travers l'appel du code principal en C++, qui est wrappé en module Python avec SWIG. Cette interface web a abouti à la création d'un site de simulations, Simulations@LPMA à l'adresse http ://simulations.lpma-paris.fr/, vouée à accueillir les résultats numériques du laboratoire. Cette page se divise en deux branches principales, les applications numériques à vocation didactique et les applications numériques liées aux résultats de recherche des différentes équipes, ou membres du laboratoire.

Le travail d'ingénierie informatique nécessaire à la conception et à la réalisation de ce site ne sera pas détaillé plus avant dans ce manuscrit. Les programmes développés pour l'application "Méthodes Multilevel" de ce site ont néanmoins été massivement mis à contribution dans les diverses sections numériques de cette thèse.

Supposons que Y 0 ∈ L 2 (P) est une variable aléatoire réelle non simulable à coût raisonnable, dont nous voulons calculer l'espérance I 0 = E [Y 0 ], une précision ε > 0 étant donnée, en minimisant le coût de simulation. Y 0 n'étant pas simulable, nous supposons avoir à disposition une famille de variables aléatoires réelles (Y h ) h∈H ∈ L 2 (P) qui sont elles simulables avec un coût petit devant celui de Y 0 et qui approchent Y 0 dans un sens faible et fort comme suit : nous supposons avoir un développement polynomial du biais en une puissance α du paramètre de biais h

E [Y h ] -E [Y 0 ] = R k=1 c k h αk + o(h α R) (1) 
et nous supposons que l'erreur quadratique est contrôlée par une puissance β de h Y h -Y 0

Nous supposons de plus que le coût de simulation de la variable Y h est inversement linéaire en h, c'est-à-dire Cost(Y h ) = κ h , où κ est une constante qui dépend de nos moyens techniques.

Deux exemples typiques d'application sont les schémas de discrétisation de processus de diffusion et le nested Monte Carlo. Dans le premier cas nous désirons calculer I 0 = E [Y 0 ], avec Y 0 = f (X T ) et (X t ) t∈[0,T ] processus de diffusion. Nous prenons pour approcher Y 0 la variable Y h = f ( Xh T ), où Xh T est un schéma de discrétisation de pas h = T n . Sous des hypothèses de régularité de la diffusion de (X t ) t∈[0,T ] et de la fonction de payoff f , nous pouvons vérifier que Y h approche Y 0 au sens fort et faible indiqué par les formules (1) et (2). Dans le deuxième cas nous voulons calculer

I 0 = E [f (E [X|Y ])], Y 0 = f (E [X|Y ]), où X = F (Z, Y ) avec Z indépendante de Y . On choisit alors pour approcher Y 0 la variable Y h = Y 1 K = f 1 K K k=1 F (Z k , Y
) . Sous les bonnes hypothèses sur f et F nous pouvons également vérifier (1) et (2).

Supposons un instant que Y 0 soit simulable, alors nous pourrions prendre (Y k 0 ) k≥1 suite de copies indépendantes de Y 0 et choisir comme estimateur de I 0 = E [Y 0 ] un estimateur de Monte Carlo standard

I N 0 = 1 N N k=1 Y k 0 .
Cet estimateur est sans biais : E I N 0 -I 0 = 0, sa variance est donnée par Var(I N 0 ) = 1 N Var(Y 0 ) et son coût vaut κ 0 N , où κ 0 est le coût de simulation unitaire de Y 0 . Sous la contrainte I N 0 -I 0 2 = ε, le choix optimal de la taille N de l'estimateur est donné par

N (ε) = Var(Y 0 ) ε 2 ,
avec un coût optimal qui s'écrit

Cost(I N 0 (ε)) = κ 0 Var(Y 0 ) ε 2 .
Par la suite, il nous sera utile de garder à l'esprit qu'il n'est pas possible d'obtenir mieux que Cost(I N π (ε)) = Cε -2 , avec C constante, où nous notons par π l'ensemble des paramètres qui décrivent l'estimateur. En prenant π = h, l'estimateur Monte Carlo standard (appelé dans la suite Monte Carlo Crude) I N h (ε) se construit à partir de (Y k h ) k≥1 suite de copies indépendantes de Y h et s'écrit

I N h = 1 N N k=1 Y k h .
Le biais (en utilisant l'hypothèse d'erreur faible (1)), la variance et le coût de cet estimateur s'écrivent

µ(h) = E [Y h ] -I 0 c 1 h α , Var(I N h ) = 1 N Var(Y h ), Cost(I N h ) = κ h N.
Pour atteindre la précision désirée I N h -I 0 2 2 = µ(ε) 2 + Var(I N h (ε)) = ε 2 nous allons être amenés à choisir N (ε) ∼ ε -2 et h(ε) ∼ ε 1 α , ce qui nous conduit à un coût optimal Cost(I N h ) ∼ ε -2-1 α .

Tous nos efforts seront donc voués à construire à partir de la famille (Y h ) h∈H des estimateurs I N π qui réalisent un coût C 1 ε -2 < Cost(I N π ) < C 2 ε -2-1 α , C 1 et C 2 constantes, le plus proche possible du coût sans biais en ε -2 .

Nous ne donnons pas ici la définition des estimateurs Multilevel, mais nous anticipons qu'un estimateur Multilevel s'écrit comme la somme de deux termes, un premier terme grossier I 1 ε qui est un estimateur Monte Carlo Crude qui donne une première approximation de I 0 et un deuxième terme qui contient une somme de couches de corrections de plus en plus fines I 2 ε , qui ajustent l'estimation de I 0 de sorte que l'on obtienne l'erreur ε que l'on s'était fixée.

Dans le premier chapitre de cette thèse, nous donnons les définitions principales des estimateurs Multilevel, avec et sans poids, que nous allons dans la suite noter ML2R et MLMC. Nous allons énoncer les résultats précédents sur les choix de paramètres optimaux qui permettent d'obtenir le coût optimal, qui dépendra de l'ordre d'erreur forte β comme suit

• β > 1 : Pour les deux estimateurs MLMC et ML2R Cost I N π (ε) K(α, β)ε -2 . • β ≤ 1 : Le coût diffère pour MLMC et ML2R Cost I N π (ε) K(α, β)ε -2 v(ε), avec v M LM C (ε) v M L2R (ε) β = 1 log(1/ε) 2 log(1/ε) β < 1 ε -1-β α o(ε -η ) ∀η > 0
On obtient donc, pour β ≤ 1, de meilleures performances avec ML2R, l'estimateur Multilevel avec poids. Nous remarquons ici que le calcul des poids dans ML2R est donné par une formule fermée facile à calculer, ce qui suggère d'utiliser ML2R par défaut.

Dans le deuxième chapitre de cette thèse, nous allons analyser le comportement asymptotique des estimateur Multilevel avec et sans poids, en terme de convergence p.s. et de convergence en loi. Nous allons énoncer une Loi Forte des Grands Nombres et un Théorème Central Limite.

On remarque que la convergence L 2 vaut par construction, puisque I N π (ε) -I 0 2 ≤ ε. En conséquence, pour toute suite (ε k ) k≥1 telle que k≥1 ε 2 k < +∞, il vient

k≥1 E I N π (ε k ) -I 0 2 < +∞, donc I N π (ε k ) p.s.
--→ I 0 . Nous pouvons affaiblir l'hypothèse sur la suite (ε k ) k≥1 quand Y h a des moments finis d'ordre plus grand que 2. Plus précisément, sous l'hypothèse d'erreur forte en norme L p ∃ β > 0, V nous pouvons établir la Loi Forte des Grands Nombres

I N π (ε k ) p.s.
-→ I 0 pour k → +∞, si k≥1 ε p k < +∞. Pour le Théorème Central Limite nous allons écrire

I N π (ε) -I 0 ε = µ(h(ε), R(ε)) ε + 1 ε N (ε) N (ε) I 1 ε + I 2 ε ε ,
où I 1 ε représente la première couche grossière centrée et I 2 ε la somme des couches fines centrées. Le point central de la preuve consiste à montrer 1) N (ε)

I 1 ε L -→ N (0, σ 2 1 ),
2)

I 2 ε ε L -→ N (0, σ 2 2 ).
Nous allons voir que toute la difficulté réside dans la deuxième limite, qui nécessite la vérification d'une condition de Lindeberg. Dans ce but, il sera nécessaire de faire une hypothèse supplémentaire de L 2 -uniforme intégrabilité sur les couches de correction.

Nous allons montrer pour conclure ce chapitre sous quelles conditions les deux exemples de référence, les diffusions et le nested, vérifient les hypothèses des deux Théorèmes énoncés.

Ce chapitre a donné lieu à une publication dans la revue Monte Carlo Methods and Applications.

Dans le troisième chapitre nous allons étudier les estimateurs Multilevel dans le cadre des schémas de discrétisation antithétiques. C'est un cadre où nous nous retrouvons avec β > 1, cadre dans lequel les estimateurs se comportent comme des estimateurs sans biais. Nous nous sommes largement inspirés des résultats de Al Gerbi, Jourdain et Clément dans [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF], dans le soucis d'adapter les estimateur Multilevel avec poids au cadre antithétique.

Le calcul des paramètres optimaux diffère de celui fourni dans [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] et repris dans [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] en raison du fait que l'hypothèse d'erreur forte (2) est remplacée par une hypothèse sur la variance des couches de corrections et que dans le calcul du coût nous devons prendre en considération l'antithéticité des schémas.
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This thesis has been realized with the support of the Chaire Risques Financiers of the Fondation du Risque of the Institut Louis Bachelier. The aim of this foundation is to bring a sustainable contribution to the development of the french potential in terms of research, teaching and training in all the domain of risk : financial risks, industrial risks, environmental risks, health risks, etc. Since its creation in 2007, the Fondation du Risque gets involved in research and development projects, including the promotion of teaching and research projects and the diffusion of the knowledge through high level training programs. It also promotes the risk teaching through the diffusion of the knowledge for all public, wherther informed or not.

In this manuscript we describe research results that we have obtained during a temporary position of Research and Development Engineer (three years). The development part of this mission focused on the creation of a web interface allowing to compute online Multilevel estimators. This permits in particular an easy and quick illustration of high level research results to a wide, potentially uninformed, public.

The web application is developed in Python, using Flask module, with the addition of HTML and Javascript code. The computation of the parameters and of the estimators themselves is done through the call of a principal C++ code, which is wrapped in a Python module by SWIG. This interface led to the creation of a simulation site, Simulations@LPMA at the address http ://simulations.lpma-paris.fr/, conceived to receive various numerical results of the laboratory (and not specifically Multilevel estimators). This page is divided into two main parts, the first one gives several numerical applications in view of teaching purpose and serves as a support for different lectures given at the university. The second part can be seen as a numerical showcase : it exhibits numerical simulations related to research projects and results developed by the different team of the laboratory.

Although the programs developed for the application "Multilevel Methods" of this site have been massively used in the different numerical sections of this thesis, we will not detail in this manuscript the computing engineer work needed for the design and the realization of this web site.

We assume that Y 0 ∈ L 2 (P) is a random real variable non simulatable at a reasonable cost, of which we want to compute an approximation of the expectation I 0 = E [Y 0 ], given an accuracy ε > 0, and minimizing the computational cost. Since Y 0 is not simulatable, we assume to have a family of random real variables (Y h ) h∈H ∈ L 2 (P) which are simulatable with a small cost compared to the cost of Y 0 and that approach Y 0 in a weak and a strong sense as follows : we assume to have a polynomial expansion of the bias in

h α E [Y h ] -E [Y 0 ] = R k=1
Moreover, we assume that the simulation cost of the variable Y h is linear inverse in h, i.e. Cost(Y h ) = κ h , where κ is a constant depending on our technical equipment. Two typical examples of application are the discretization schemes of diffusion processes and the nested Monte Carlo. In the first framework we want to compute I 0 = E [Y 0 ], with Y 0 = f (X T ) and (X t ) t∈[0,T ] diffusion process. We approach Y 0 with the random variable

Y h = f ( Xh T )
, where Xh T is a discretization scheme with step h = T n . Under some regularity assumptions on the diffusion of (X t ) t∈[0,T ] and on the payoff function f , we can check that Y h approaches Y 0 in the weak and strong sense described by the formulas (3) and (4). In the second framework we want to compute

I 0 = E [f (E [X|Y ])], Y 0 = f (E [X|Y ]), where X = F (Z, Y ) with Z independent of Y . We choose then to approach Y 0 the random variable Y h = Y 1 K = f 1 K K k=1 F (Z k , Y ) .
Under some good assumption on f and F we can check that we satisfy (3) and (4).

We assume for a moment that Y 0 is simulatable, then we can take a sequence (Y k 0 ) k≥1 of independent copies of Y 0 and choose as an estimator of I 0 = E [Y 0 ] a standard Monte Carlo estimator

I N 0 = 1 N N k=1 Y k 0 .
This estimator is unbiased : E I N 0 -I 0 = 0, its variance is given by Var(I N 0 ) = 1 N Var(Y 0 ) and its cost reads κ 0 N , where κ 0 is the unitary simulation cost of Y 0 . Under the constraint I N 0 -I 0 2 = ε, the optimal choice for the size N of the estimator is given by

N (ε) = Var(Y 0 ) ε 2 ,
with an optimal cost

Cost(I N 0 (ε)) = κ 0 Var(Y 0 ) ε 2 .
In what follows, we will keep in mind that it is not possible to get better than the cost Cost(I N π (ε)) = Cε -2 , with C constant, where we denote by π the set of parameters that describe the estimator. If we take π = h, the standard Monte Carlo estimator (called in what follows Crude Monte Carlo) I N h (ε) is built with a sequence (Y k h ) k≥1 of independent copies of Y h and reads

I N h = 1 N N k=1 Y k h .
The bias (using the weak error assumption (3)), the variance and the cost of this estimator read

µ(h) = E [Y h ] -I 0 c 1 h α , Var(I N h ) = 1 N Var(Y h ), Cost(I N h ) = κ h N.
In order to attain the desired accuracy

I N h -I 0 2 2 = µ(ε) 2 + Var(I N h (ε)) = ε 2 we will need to choose N (ε) ∼ ε -2 and h(ε) ∼ ε 1 α , which brings to an optimal cost Cost(I N h ) ∼ ε -2-1 α .
All of our efforts will be devoted to the construction, starting from the family (Y h ) h∈H , of estimators

I N π which realize a cost C 1 ε -2 < Cost(I N π ) < C 2 ε -2-1 α , C
1 and C 2 constants, as close as possible to ε -2 . We will not give here the definition of the Multilevel estimators, but we anticipate that a Multilevel estimator reads as the sum of two terms, a first coarse term I 1 ε which is a Crude Monte Carlo giving a first approximation of I 0 and a second term which contains the sum of the correcting levels, finer and finer, I 2 ε , which adjust the estimation of I 0 in order to obtain the error ε that we fixed.

In the first chapter of this thesis, we give the principal definitions of Multilevel estimators, with and without weights, which we note in what follows by ML2R and MLMC. We will recall the previous results, in terms of optimal parameters which lead to the optimal cost, which will depend on the order of the strong error β as follows

• β > 1 : For both estimators MLMC and ML2R Cost I N π (ε) K(α, β)ε -2 .
• β ≤ 1 : The cost differs for MLMC and ML2R

Cost I N π (ε) K(α, β)ε -2 v(ε), with v M LM C (ε) v M L2R (ε) β = 1 log(1/ε) 2 log(1/ε) β < 1 ε -1-β α o(ε -η ) ∀η > 0
Hence we get, for β ≤ 1, better performances with ML2R, the Multilevel estimator with weights. We notice that the computations for the weights in ML2R are given by a closed formula easy to compute, which suggests to use ML2R by default.

In the second chapter of this thesis, we will analyze the asymptotic behaviour of the Multilevel estimators with and without weights, in terms of a.s. convergence and convergence in law. We will state a strong law of large numbers and a central limit theorem.

We notice that the L 2 convergence holds by construction , since

I N π (ε) -I 0 2 ≤ ε. As a consequence, for all sequence (ε k ) k≥1 such that k≥1 ε 2 k < +∞, we get k≥1 E I N π (ε k ) -I 0 2 < +∞, hence I N π (ε k ) p.s.
--→ I 0 . We can weaken the assumption on the sequence (ε k ) k≥1 when Y h has finite moments of order greater than 2. More precisely, under the strong error assumption in L p norm

∃ β > 0, V (p) 1 0, Y h -Y 0 p p = E Y h -Y 0 p V (p) 1 h β 2 p ,
we can set a strong law of large numbers

I N π (ε k ) p.s.
-→ I 0 as k → +∞, if k≥1 ε p k < +∞.
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For the central limit theorem we will write

I N π (ε) -I 0 ε = µ(h(ε), R(ε)) ε + 1 ε N (ε) N (ε) I 1 ε + I 2 ε ε ,
where I 1 ε represents the first coarse centered and I 2 ε the sum of fine centered levels. The central point of the proof consists in showing that

1) N (ε) I 1 ε L -→ N (0, σ 2 1 ), 2) I 2 ε ε L -→ N (0, σ 2 2 ).
We will see that the core of the difficulty resides in the second limit, which needs the verification of a Lindeberg condition. For this purpose, it will be necessary to make an additional assumption of L 2 -uniform integrability on the correcting levels.

We will conclude by showing under which condition the two reference examples, the diffusions and the nested, satisfy the assumption of these two theorems.

The material of this chapter led to a publication in the journal Monte Carlo Methods and Applications.

In the third chapter we will analyze the Multilevel estimators in the framework of the antithetic discretization schemes. This is a framework where we get β > 1, hence the estimator behave as unbiased estimators. We have been largely inspired by the results of Al Gerbi, Jourdain et Clément in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF], in order to adapt the Multilevel estimators with weights to the antithetic framework.

The computation of the optimal parameters differs from the one in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] and recovered in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] because the strong error assumption (4) is replaced by an assumption on the variance of the correcting levels and that in the computation of the cost we have to take into account the antitheticity of the schemes.

We will test the two Multilevel estimators with and without weights on a Clark Cameron model with a payoff for which we have a closed formula, in order to check if we respect the constraint on the L 2 error that we fixed.

In the fourth chapter we analyze the nested Monte Carlo, giving the detail of two situations, depending on the regularity of the payoff function f . In both cases we focus on the proof of the assumptions of weak and strong error.

In the fifth and last chapter of this thesis we will consider again the setting β > 1, which allows us to build an unbiased estimator, by randomizing the level of the Multilevel estimators. Then we will compare numerically this estimator to the Multilevel estimators with and without weights.

Chapitre 1

Estimateurs Multilevel

In this chapter we introduce the Multilevel estimators with and without weights and we give a generic form for these estimators, in order to group under a same notation different frameworks, such as standard Multilevel Monte Carlo, introduced by Giles in [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], Multilevel Monte Carlo Richardson-Romberg, introduced by Lemaire and Pagès in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], Multilevel Monte Carlo for diffusions with antithetic discretization schemes, analyzed by Al Gerbi, Jourdain, Clément in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] and Randomized Multilevel Monte Carlo, studied by Glynn and Rhee in [START_REF] Rhee | Unbiased estimation with square root convergence for SDE models[END_REF]. We retrace the computations that led to the choice of the optimal parameters, giving a generic version of the Theorem of minimization of the cost. This Theorem returns an upper bound of the cost of the type Kv(ε) with K constant and v(ε) → +∞ as ε → 0, providing a tool of comparison between Multilevel estimators with and without weights, in terms of divergence rate of v(ε) and giving a sharper multiplicative constant K than in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] (see Theorem 1.3.5 and relative comments).

Dans ce Chapitre nous introduisons les estimateurs Multilevel avec et sans poids et nous donnons une écriture générique pour ces estimateurs, de manière à regrouper sous une même notation différents cadres, tels que Multilevel Monte Carlo standard, introduit par Giles dans [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], Multilevel Monte Carlo Richardson-Romberg, introduit par Lemaire et Pagès dans [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], Multilevel Monte Carlo dans le cadre des diffusions avec schémas antithétiques, étudiés par Al Gerbi, Jourdain, Clément dans [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] et Randomized Multilevel Monte Carlo, étudié par Glynn et Rhee dans [START_REF] Rhee | Unbiased estimation with square root convergence for SDE models[END_REF]. Nous allons retracer les calculs qui mènent au choix des paramètres optimaux, en donnant un version générique du Théorème de minimisation du coût. Ce Théorème fourni un majorant du coût des estimateurs multilevel du type Kv(ε) avec K constante et v(ε) → +∞ lorsque ε → 0, en donnant un outil de comparaison entre les estimateurs Multilevel avec et sans poids, en termes de vitesse de divergence de v(ε) et de constante K, qui est améliorée par rapport à celle obtenue dans [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] (voir Théorème 1.3.5 et commentaires).

Cadre général

Soit (Ω, A, P) un espace de probabilité et (Y h ) h∈H une famille de variables aléatoires réelles Y h ∈ L 2 (P) simulables, avec H = h n , n ≥ 1 et h ∈ R + un paramètre fixé, approchant une variable aléatoire réelle non simulable Y 0 ∈ L 2 (P). On veut calculer

I 0 = E [Y 0 ] ,
une précision ε > 0 étant donnée et en minimisant le coût de simulation.

Un exemple typique de ce type de situation sont les schémas de discrétisation des processus de diffusion, où l'on veut calculer E [Y 0 ] avec Y 0 = f (X T ), où (X t ) t∈[0,T ] est un processus de diffusion non simulable que l'on approche par un schéma de discrétisation Y h = f ( Xh T ), de pas h = T /n. Un autre exemple, traité par Lemaire et Pagès dans [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], est celui de Monte Carlo nested, où l'on cherche à calculer

I 0 = E [f (E [X|Y ])], avec Y 0 = f (E [X|Y ]). On sup- pose que X = F (Z, Y ) avec Z indépendante de Y et on utilise la famille Y h = Y 1 K = f 1 K K k=1 F (Z k , Y ) pour approcher Y 0 .
Rappelons que si Y 0 était simulable, nous pourrions construire un estimateur sans biais à partir d'une suite (Y k 0 ) k≥1 de copies indépendantes de Y 0 en écrivant un estimateur de Monte Carlo (appelé dans la suite Crude Monte Carlo)

I N 0 = 1 N N k=1 Y k 0 .
Cet estimateur est clairement sans biais E I N 0 = I 0 , sa variance vaut Var(I N 0 ) = Var(Y 0 )/N et son coût est κ 0 N , où κ 0 est une constante qui correspond au temps computationnel de simulation de Y 0 (qui dépend de nos moyens techniques). Sous la contrainte I N 0 -I 0 2 = ε, nous obtenons une identification de la taille de l'estimateur N = Var(Y 0 )/ε 2 , qui nous ramène à un coût de l'estimateur Cost(I N 0 ) = κ 0 Var(Y 0 )/ε 2 . Par la suite, nous portons l'attention sur le fait qu'il nous sera impossible d'obtenir un coût inférieur à celui du cadre sans biais.

Nous allons supposer que les variables aléatoires (Y h ) h∈H approchent Y 0 dans un sens fort et dans un sens faible comme suit : Hypothèse d'erreur faible (Développement du biais) :

∃ α > 0, R 1, (c r ) 1≤r≤ R, E [Y h ] -E [Y 0 ] = R k=1 c k h αk + o h α R . (W E α )
Hypothèse d'erreur forte (Erreur quadratique) :

∃ β > 0, V 1 0, Y h -Y 0 2 2 = E Y h -Y 0 2 V 1 h β . (SE β )
De plus, nous supposons que la simulation de Y h a un coût inversement proportionnel au paramètre de biais, i.e. Cost(Y h ) = κ Y h -1 , où κ Y est une constante qui dépend des moyens techniques à disposition. L'estimateur Crude Monte Carlo, pour un h fixé, s'écrit 

I N h = 1 N N k=1 Y k h , ( 
N h ) = 1 N Var(Y h ) et le coût est donné par Cost(I N h ) = κ Y h -1 N .
Une réduction du paramètre de biais h ou une augmentation de la taille N impliquent l'un et l'autre une augmentation du coût de l'estimateur.

L'idée des estimateurs Multilevel, introduits par Giles dans [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], naît des deux remarques suivantes : 1) simuler Y h est moins coûteux que simuler

Y h M et 2) E Y h M = E [Y h ] + E Y h M -Y h .
On construit un estimateur Two-level Monte Carlo comme suit étant petite, sa variance soit petite et qu'en conséquence la taille N 2 de cette couche de correction soit petite. La taille N 1 de la première couche au contraire sera plus grande, mais ceci est compensé par le fait que Y

I N π = 1 N 1 N 1 k=1 Y (1),k h + 1 N 2 N 2 k=1 Y (2),k h M -Y (2),k h où les suites Y (1),k h k≥1 et Y (2),k h , Y (2),k h M k≥1 sont indépendantes et Y (2),k h et Y (2),k
(1) h est une approximation grossière de Y 0 et donc moins coûteuse. Afin de généraliser cette définition à un niveau quelconque, prenons en considération une profondeur R 2 (qui sera le niveau le plus fin et donc le plus coûteux de simulation) et une suite géométrique décroissante de paramètres de biais h j = h/n j avec n j = M j-1 , j = 1, . . . , R. Une fois la taille N de l'estimateur fixée, nous considérons une stratification q = (q 1 , . . . , q R ), telle que pour chaque niveau j = 1, . . . , R, nous allons simuler N j = N q j scénarios (voir (1.2) et (1.4) ci-dessous). Un estimateur Multilevel est formé par une première couche de simulation grossière de taille N 1 , qui correspond à un Monte Carlo classique donnant une première estimation de I 0 , suivie d'une somme de couches de correction de plus en plus fines, chacune de taille N j , j = 2, . . . , N R , qui corrigent l'erreur faite par la première couche.

Définitions des estimateurs

Considérons R copies indépendantes de la famille Y (j) = (Y (j) h ) h∈H , j = 1, . . . , R, rattachées à des copies indépendantes Y (j) 0 de Y 0 . De plus, soient (Y (j),k ) k≥1 des suites indépendantes de copies indépendantes de Y (j) . Pour un choix de paramètres π = (h, q, R) fixé, un estimateur Multilevel Monte Carlo de taille N , introduit par Giles dans [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], s'écrit

I N π = I N h,R,q = 1 N 1 N 1 k=1 Y (1),k h + R j=2 1 N j N j k=1 Y (j),k h j -Y (j),k h j-1 . (1.2)
En vertu de l'hypothèse d'erreur faible et de la somme télescopique des couches de corrections, le biais de cet estimateur est réduit d'un facteur M -α(R-1) par rapport au biais de l'estimateur Monte Carlo Crude. Plus précisément

µ(h, R, M ) c 1 h M R-1 α .
(1.3) La variance de l'estimateur MLMC vaut

Var(I N h,R,q ) = 1 N 1 Var(Y h ) + R j=2 1 N j Var Y (j) h j -Y (j) h j-1 et son coût, si l'on suppose Cost(Y (j) h j , Y (j) 
h j-1 ) = Cost(Y h j ) + Cost(Y h j-1 ), est donné par Cost(I N h,R,q ) = κ Y N h R j=1 q j (n j-1 + n j ), où l'on rappele n j = M j-1 .
Un estimateur Multilevel avec poids, ou Multilevel Richardson-Romberg (ML2R), se construit en adaptant l'approche Multilevel à l'estimateur multistep Richardson-Romberg, introduit par Pagès dans [START_REF] Pagès | Multi-step Richardson-Romberg extrapolation : remarks on variance control and complexity[END_REF]. L'idée de base est d'utiliser des poids pour tuer les termes successifs du biais dans le développement de l'erreur faible. Grâce à l'hypothèse (W E α ), on écrit, pour tout

w i ∈ R, i = 1, 2, 3, E w 1 Y h + w 2 Y h M + w 3 Y h M 2 = (w 1 + w 2 + w 3 )E [Y 0 ] + w 1 c 1 h α + c 2 h 2α + c 3 h 3α + w 2 c 1 h M α + c 2 h M 2α + c 3 h M 3α + w 3 c 1 h M 2 α + c 2 h M 2 2α + c 3 h M 2 3α + o h 3α .
Dans le but d'obtenir un estimateur de I 0 = E [Y 0 ] sans termes de biais d'ordre 1 et 2, nous sommes ramenés à résoudre le système de Vandermonde

     w 1 + w 2 + w 3 = 1 w 1 + w 2 M -α + w 3 M -2α = 0 w 1 + w 2 M -2α + w 3 M -4α = 0, ce qui nous donne E w 1 Y h + w 2 Y h M + w 3 Y h M 2 = E [Y 0 ] + w 4 c 3 h 3α + o(h 3α ), avec w 4 = w 1 + w 2 M -3α + w 3 M -6α . Un estimateur Three-step Richardson-Romberg s'écrit alors comme 1 N N k=1 w 1 Y h + w 2 Y h M + w 3 Y h M 2 (k)
.

Nous passons de l'estimateur Three-step à l'estimateur Three-Level Richardson-Romberg en appliquant une transformation d'Abel,

W 1 = w 1 + w 2 + w 3 = 1, W 2 = w 2 + w 3 et W 3 = w 3 , telle que W 1 E [Y h ] + W 2 E Y h M -Y h + W 3 E Y h M 2 -Y h M = E w 1 Y h + w 2 Y h M + w 3 Y h M 2 , ce qui donne W 1 N 1 N 1 k=1 Y (1),k h + W 2 N 2 N 2 k=1 Y (2),k h M -Y (2),k h + W 3 N 3 N 3 k=1 Y (3),k h M 2 -Y (3),k h M .
En généralisant cette définition à un niveau quelconque, un estimateur Multilevel Richardson-Romberg (ML2R), introduit par Lemaire et Pagès dans [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], s'écrit

I N π = I N h,R,q = 1 N 1 N 1 k=1 Y (1),k h + R j=2 W R j N j N j k=1 Y (j),k h j -Y (j),k h j-1 , (1.4) avec les poids W R j j=1,...,R définis comme W R j = R k=j w R k où les w R k , k = 1, . . . , R sont les solutions du système de Vandermonde V w R = e 1 avec V = V (M, R, α) =      1 1 • • • 1 1 M -α • • • M -α(R-1) . . . . . . • • • . . . 1 M -α(R-1) • • • M -α(R-1) 2      . (1.5)
Le biais de l'estimateur ML2R est encore une fois réduit par rapport au biais de l'estimateur MLMC et s'écrit

µ(h, R, M ) (-1) R-1 c R h R M R(R-1) 2 α . (1.6) 
Ce gain sur le biais se paye dans le calcul de la variance, dans laquelle apparaissent les poids Var(

I N h,R,q ) = 1 N 1 Var(Y h ) + R j=2 (W R j ) 2 N j Var Y (j) h j -Y (j)
h j-1 . Le coût reste le même que pour MLMC, les poids n'ayant pas d'influence dans le calcul du coût.

Quelques remarques sur les poids

Nous remarquons que les poids sont donnés par une formule fermée et que l'ajout de complexité dans le calcul de l'estimateur est donc négligeable. Nous donnons la formule ci dessous et traitons le cas c 1 = 0.

Formule fermée

Quand c 1 = 0, la formule fermée pour les poids, solution du système (1.5), est donnée par

w R k = n α(R-1) k j =k (n α k -n α j ) = (-1) R-k M -α 2 (R-k)(R-k+1) k-1 j=1 (1 -M -jα ) R-k j=1 (1 -M -jα )
.

(1.7)

1.1.2.2 Cas c 1 = 0
Nous remarquons que lorsque le premier coefficient dans le développement du biais est nul, i.e. c 1 = 0, pour construire un estimateur qui tue les premiers R -1 termes dans le développement du biais, de sorte à garder seulement les termes en c R comme dans la formule (1.6), nous aurons désormais besoin que de R -1 poids, que nous allons noter w j , j = 1, . . . , R -1, au lieu que R comme dans le cas c 1 = 0.

Nous notons n j = M j-1 et nous remarquons que si (w 1 , . . . , w R-1 ) est solution du système

     1 1 • • • 1 1 n -α 2 • • • n -α R-1 . . . . . . • • • . . . 1 n -α(R-2) 2 • • • n -α(R-2) R-1           w 1 w 2 . . . w R-1      =      1 0 . . . 0      , alors      1 n -α 2 • • • n -α R-1 1 n -2α 2 • • • n -2α R-1 . . . . . . • • • . . . 1 n -α(R-1) 2 • • • n -α(R-1) R-1           w 1 n α 2 w 2 . . . n α R-1 w R-1      =      1 0 . . . 0     
, ce qui mène à l'écriture des poids suivante, dans le cas c 1 = 0,

w R r = n α r w R-1 r R-1 j=1 n α j w R-1 j r = 1, . . . , R -1. (1.8)
En remplaçant la valeur des poids w dans les formules (1.8), le biais de l'estimateur ML2R construit avec les nouveaux R -1 poids w vaut

E I N π -I 0 = 1 R-1 j=1 n α j w R-1 j (-1) R-2 c R h R M R(R-1) 2 α .
(1.9)

En valeur absolue, ce biais diffère du biais sans premier coefficient nul (1.6) uniquement par le facteur

1 R-1 j=1 n α j w R-1 j
. Analysons la valeur de la quantité R-1 j=1 n α j w R-1 j . Prenons la fraction rationnelle décomposée en éléments simples

1 R j=1 (x -n -α j ) = R i=1 1 j =i (n -α i -n -α j ) 1 (x -n -α i )
.

On dérive des deux côtés

R i=1 (-1) (x -n -α i ) 2 1 j =i (x -n -α j ) = R i=1 1 j =i (n -α i -n -α j ) (-1) (x -n -α i ) 2 , ce qui donne, pour x = 0, R i=1 (-1) R+1 n α i n! α = R i=1 (-1) R-1 n α(R-1) i n α i n! α j =i (n α j -n α i )
, avec n! = R j=1 n j . En simplifiant et en rappelant la valeur des poids (1.7), nous obtenons 

M αR -1 M α -1 = R i=1 n α i = R i=1 n α i w R i , ( 

Nouvelle notation

Nous introduisons une nouvelle notation qui permet de prendre en compte des formes de couches de 

c h ) = κ c h -1 et Cost(Y f h ) = κ f h -1 .
De plus, on suppose que le coût du couple s'écrit comme une fonction bivariée positivement homogène des coûts marginaux, c'est-à-dire il existe g : R * × R * → R * telle que, pour tout λ > 0, g(λx, λy) = λg(x, y) et Cost(Y c,(j)

h j-1 , Y f,(j) h j ) = g(Cost(Y c,(j) h j-1 ), Cost(Y f,(j) h j
)). Nous verrons dans la suite que dans le cas des diffusions on a g(x, y) = x + y et dans le cas nested on a g(x, y) = max(x, y). On note

Y (c,f ) 1 := Y (c,f ) h n 1 et on définit Z(h) := Y f h M -Y c h , Z j := Z h n j-1 , j = 2 . . . , R et Z 1 := Y c 1 .
Supposons que les variables Z j soient indépendantes et que, pour tout j = 2, . . . , R, elles satisfassent l'hypothèse d'erreur forte

∃ β > 0, V 1 0, Z j 2 2 = E Y f h n j -Y c h n j-1 2 V 1 h β M -(j-1)β .

Un estimateur MLMC s'écrit comme

I N π = R j=1 1 N j N j k=1 Z k j (1.11) et un estimateur ML2R comme I N π = R j=1 W R j N j N j k=1 Z k j .
(1.12)

Par la suite nous nous autorisons N j = q j N . En vertu de l'hypothèse (1.10) faite sur le biais, ces deux estimateurs vérifient les propriétés de réduction du biais (1.3) et (1.6) respectivement pour MLMC et ML2R. La variance de ces estimateurs est inversement linéaire en N et s'écrit

Var(I N π ) = 1 N ν(π) avec ν(π) =              R j=1 1 q j Var(Z j ) pour MLMC, R j=1 (W R j ) 2 q j
Var(Z j ) pour ML2R.

(1.13)

Nouvelle notation

On note K j = Cost(Z j ) pour j ≥ 1 et on écrit

K 1 = κ c n 1 h et K j = g κ f n j h , κ c n j-1 h . (1.14)
Les coût des estimateurs est linéaire en N et, par homogénéité de la fonction g, s'écrit

Cost(I N π ) = N 1 κ c h -1 + R j=2 N j g κ f h -1 n j , κ c h -1 n j-1 = N κ(π) (1.15) avec κ(π) = h -1   q 1 κ c + R j=2 q j M j-1 g κ f , κ c M -1   .
Une variante de l'estimateur (1.11) permettant de réduire ultérieurement le biais se construit en ajoutant un comportement différent sur la dernière couche (voir [START_REF] Debrabant | On the acceleration of the multi-level Monte Carlo method[END_REF] et [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF]). Nous considérons deux familles supplémentaires de variables aléatoires ( Ȳ c h

) h∈H et ( Ȳ f h ) h∈H telles que Ȳ c h satisfait la même hypothèse d'erreur faible (W E α ) que Y c h et Y f h , et Ȳ f h satisfait une autre hypothèse (W E α ) avec ᾱ > α. On définit ZR := Ȳ f h n R -Ȳ c h n R-1 et on suppose que ZR satisfait l'hypothèse d'erreur forte ∃ β > 0, V1 0, ZR 2 2 = E Ȳ f h n R -Ȳ c h n R-1 2 V1 h β M -(j-1) β .

Un estimateur MLMC s'écrit comme

I N π = 1 N 1 N 1 k=1 Z k 1 + R-1 j=2 1 N j N j k=1 Z k j + 1 N R N R k=1 Zk R .
(1.16)

Grâce à la somme télescopique sous le signe d'espérance des termes en Y c h , Y f h et Ȳ c h , le biais de l'estimateur ne dépend que de la dernière couche et s'écrit

µ(h, R, M ) c1 h M R-1 ᾱ .
La variance et le coût de cet estimateur s'écrivent

Var(I N π ) = 1 N   R-1 j=1 1 q j Var(Z j ) + 1 q R Var ZR   (1.17) et Cost(I N π ) = N h   q 1 κ c + R-1 j=2 q j M j-1 g κ f , κ c M -1 + q R M R-1 g κf , κc M -1   . (1.18)
L'idée à la base de cette construction est que le gain en termes d'ordre dans développement du biais, ᾱ > α, se paye par une augmentation du coût, κf > κ f . En utilisant l'approximation plus coûteuse Ȳ f h sur toutes les couches, l'impact sur le coût total de l'estimateur serait conséquent. Puisque cette construction utilise Ȳ f h seulement sur la dernière couche, elle permet de profiter du meilleur développement de l'erreur faible de Ȳ f h sans que la pénalisation sur le coût total de l'estimateur soit trop importante.

L'extension de cette variante à ML2R est sans intérêt, puisque le gain sur le biais obtenu grâce à la dernière couche ne dépasse pas le gain en biais obtenu par ML2R. De plus, la construction des poids W R j est étroitement liée au fait que le développement du biais est le même sur toutes le couches, donc pour ML2R nous ne définissons pas de variante en ce sens.

Paramètres optimaux

Nous rappelons avant tout que l'algorithme de Giles pour le calcul d'un estimateur MLMC qui respecte l'erreur L 2 requise est un algorithme itératif, où l'on part d'un niveau L = 2 et on construit d'abord un estimateur MLMC avec tailles des couches données par l'équation

N = 2ε -2 V /K L =0 V K , = 0, 1, 2,
où V est la variance estimée, K est le coût de Z et la racine est M = 2. Ceci assure que la variance estimée de l'estimateur est inférieure à 1 2 ε 2 . On applique ensuite un contrôle sur l'erreur faible visant à assurer que le carré du biais soit inférieur à 1 2 ε 2 (et donc une erreur 

L 2 inférieure à ε) |E [Y L -Y L-1 ]| 2 α -1 < ε √ 2 . ( 1 
N π ) = Var(I N π ) Cost(I N π ). L'effort de l'estimateur φ(I N π ) s'écrit φ(I N π ) =   R j=1 1 N j Var(Z j )     R j=1 N j K j   =   R j=1 1 q j Var(Z j )     R j=1 q j K j   (1.20)
donc l'effort ne dépend pas de N et nous écrivons φ(I N π ) = φ(π) = κ(π)ν(π). Le choix des paramètres optimaux (R * , h * , q * , N * ) se fait en trois étapes. 1) À R fixé. Choix d'une stratification optimale q * = (q * 1 , . . . , q * R ) qui minimise l'effort. 2) À R fixé. Choix du paramètre de biais optimal h qui minimise le coût, sous la contrainte I N π -I 0 2 ≤ ε. La taille optimale N * découle du choix du biais.

3) Choix de la profondeur optimale R * (ε) qui sature la contrainte h * (ε, R * (ε)) = h.

Le Lemme suivant est d'une utilité cruciale et résout facilement l'étape 1.

Lemme 1.3.2. Pour tout j ∈ {1, . . . , R}, soient a j > 0, b j > 0 tels que

R j=1 q j = 1. Alors   R j=1 a j q j     R j=1 b j q j   ≥   R j=1 a j b j   2 et l'égalité est satisfaite si et seulement si q j = µ a j b -1 j , j = 1, . . . , R, avec µ = R k=1 a k b -1 k -1
.

Le choix de la stratification optimale q * = (q * 1 , . . . , q * R ) est une conséquence du Lemme 1.3.2.

Théorème 1.3.3. Soit π 0 = (h, R). Alors le minimum de l'effort s'écrit MLMC :

φ(π 0 , q * ) =   R j=1 Var(Z j )K j   2 , avec q * j (π 0 ) = µ * Var(Z j ) K j et µ * est la constante de normalisation telle que R j=1 q * j = 1. ML2R : φ(π 0 , q * ) =   R j=1 | W R j | Var(Z j )K j   2 , avec q * j (π 0 ) = µ * | W R j | Var(Z j ) K j et µ * telle que R j=1 q * j = 1.
Démonstration. Il suffit de remplacer a j = Var(Z j ) (pour MLMC) ou

a j = (W R j ) 2 Var(Z j ) (pour ML2R) et b j = K j dans le Lemme 1.3.2.
Nous procédons ensuite au choix du paramètre de biais à R fixé, qui résulte de la minimisation du coût en h. Théorème 1.3.4. Soit R fixé. Le coût minimal d'un estimateur MLMC avec la stratification q * est donné par le choix

h = (1 + 2α) -1 2α ε |c 1 | 1 α M R-1 (1.21) et s'écrit, lorsque ε → 0, inf h∈H |µ(h,q * )|<ε Cost(Y N π 0 ,q * ) ∼ (1 + 2α) 1+ 1 2α 2α |c 1 | 1 α Var(Y 0 ) M R-1 ε 2+ 1 α .
Le coût minimal d'un estimateur ML2R avec la stratification q * est donné par le choix

h = (1 + 2αR) -1 2αR ε |c R | 1 αR M R-1 2 (1.22) et s'écrit, lorsque ε → 0, inf h∈H |µ(h,q * )|<ε Cost(Y N π 0 ,q * ) ∼ (1 + 2αR) 1+ 1 2αR 2αR |c R | 1 αR Var(Y 0 ) M R-1 2 ε 2+ 1 αR .
Démonstration. On remarque que le coût s'écrit comme Cost(I N π ) = φ(π)/ Var(I N π ). La variance à son tour s'écrit Var(

I N π ) = E (I N π -I 0 ) 2 -µ(h, R, M ) 2 . Sous la contrainte E (I N π -I 0 ) 2 = ε 2 , nous cherchons donc arg min h∈H φ(π 0 , q * ) ε 2 -µ(h, R, M ) 2 .
Nous observons grâce à (1.15) et (1.18) que le coût est inversement proportionnel à h.

Les hypothèses (W E α ) et (SE β ) impliquent que, lorsque h → 0, Var(Y h ) → Var(Y 0 ) et Var(Z j ) → 0. Donc lim h→0 hφ(h, R, q * ) est constante et on cherche arg max h∈H h(ε 2 -µ(h, R, M ) 2 ).
Comme dans [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], nous rappelons que, pour tous réels a, R > 0, la fonction g a,R définie par g a,R (ξ

) = ξ(1 -a 2 ξ 2R ), ξ > 0, satisfait ξ(a, R ) := arg max ξ>0 g a,R (ξ) = (2R + 1) 1 2 a -1 R (1.23) et max (0,+∞) g a,R = 2R (2R + 1) 1+ 1 2R a -1 R .
(1.24)

Nous remarquons aussi pour la suite que max (0,+∞) Le choix de la taille de l'estimateur N découle de la linéarité du coût en fonction de N (1.15) et du développement de la variance. En appliquant la contrainte sur l'erreur L 2 , on obtient

g a,R 1 ξ(a, R ) = 2R 2R + 1 . (1.25) En utilisant les développements du biais (1.3) et (1.6) et en remplaçant (R , a) = Rα, |c R | εM α 2 R(R-1) pour ML2R et (R , a) = α, |c 1 | εM α(R-
N = φ(π) κ(π) Var(I N π ) = ν(π) ε 2 -µ(h, R, M ) 2 ,
avec ν(π) donné par (1.13). En remplaçant le paramètre de biais optimal h on obtient, grâce à (1.25), pour MLMC

N = 1 + 1 2α R j=1 1 q j Var(Z j ) ε 2 et pour ML2R N = 1 + 1 2αR R j=1 (W R j ) 2 q j Var(Z j ) ε 2 .
Avec la stratification optimale q * on obtient, pour MLMC,

N * = 1 + 1 2α R j=1 1 q * j Var(Z j ) ε 2 = 1 + 1 2α R j=1
Var(Z j )K j µ * ε 2 et pour ML2R

N * = 1 + 1 2αR R j=1 (W R j ) 2 q * j Var(Z j ) ε 2 = 1 + 1 2αR R j=1 | W R j | Var(Z j )K j µ * ε 2 .
Rappelons que la constante de normalisation µ * n'est pas la même pour MLMC et pour

ML2R, plus précisément, pour MLMC µ * = R j=1 Var(Z j ) K j -1 et pour ML2R µ * = R j=1 | W R j | Var(Z j ) K j -1
. De plus, on remarque que pour MLMC

N j = q j N = 1 + 1 2α 1 ε 2 Var(Z j ) K j R j=1
Var(Z j )K j (1.26) et pour ML2R

N j = q j N = 1 + 1 2αR 1 ε 2 | W R j | Var(Z j ) K j R j=1 | W R j | Var(Z j )K j .
Il reste à donner la formule pour R. Pour l'estimateur ML2R, nous

supposons |c R | 1 R → c ∞ lorsque R → +∞ et nous écrivons h(ε, R) = 1 + 4α 1 + 2αR 1 2αR c ∞ |c R | 1 R 1 α e P (R) R h, avec P (R) = R(R-1) 2 log(M ) -R log(K) -1 α log( √ 1 + 4α/ε), K = c 1 α ∞ . Nous remarquons que pour R grand 1+4α 1+2αR 1 2αR c∞ |c R | 1 R 1 α
∼ 1. Nous notons R + la solution positive de P (R) = 0, qui sature le biais, et prenons

R * = R + .
En conséquence de ce choix de R * , nous choisissons comme paramètre de biais optimal la projection de h(ε, R * (ε)) sur l'ensemble

H = h n : n ∈ N , qui s'écrit h * (ε) = h h h(ε,R * (ε)) -1
. Le même raisonnement s'applique à l'estimateur MLMC. Le coût avec ce choix de paramètres optimaux est supérieurement borné par une fonction de ε qui dépend de α et β. Plus précisément

Cost I N π (ε) K(α, β, M )v(ε) (1.27) v M LM C (ε) v M L2R (ε) β = 1 ε -2 log(1/ε) 2 ε -2 log(1/ε) β < 1 ε -2-1-β α ε -2 e 1-β √ α √ 2 log(1/ε) log(M ) Table 1.1 -v(ε) for β ∈ (0, 1]. avec K(α, β, M ) constante et v(ε) = ε -2 dans le cas β > 1 et pour β ∈ (0, 1], v(ε) donné par le Tableau 1.1.
Voir [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] et le Chapitre 2 pour une description plus complète de l'asymptotique du coût.

Grâce aux hypothèses (W

E α ) et (SE β ), pour tout j ≥ 1, il existe une constante V 1 telle que l'inégalité suivante est vérifiée pour tout j = 1, . . . , R Var(Z j ) ≤ V 1 h β j , avec V 1 = V 1 (1 + M -β 2 ) 2 si β < 2α, V 1 (1 + M -β 2 ) 2 -c 2 1 (1 -M -α ) 2 si β = 2α.
Plus généralement, nous pouvons remplacer l'hypothèse d'erreur forte (SE β ) directement par une hypothèse sur la variance de la couche

Var(Z j ) ≤ V1 h β j , j = 2, . . . , R.
(1.28) Dans la pratique, l'estimation des variances Var(Z j ), j = 1, . . . , R demande un temps de calcul non négligeable. Pour éviter de devoir effectuer un pré-traitement qui serait trop coûteux pour le calcul de la stratification et de la taille de l'estimateur, il est donc préférable de chercher une expression des paramètres optimaux en fonction des V * j = V * h β j (avec V * = V 1 , V1 selon l'hypothèse qu'on choisit), plutôt qu'en fonction des variances. Si nous avions maximisé les variances par V * j , nous aurions obtenu un majorant de l'effort φ

φ(π 0 , q * ) ≤ φ(π 0 , q * ) =   R j=1 V * j K j   2 .
Nous rappelons la notation

f (ε) g(ε) lorsque ε → 0 ⇐⇒ lim sup ε→0 f (ε) g(ε) = 1.
On note (pour plus de détails voir l'Appendix A)

a := 1 1≤k≤ -1 (1 -M -kα ) avec la convention 0 k=1 (1 -M -kα ) = 1, et b := (-1) M -α 2 ( +1) 1≤k≤ (1 -M -kα )
.

Nous pouvons reproduire le même raisonnement pour la minimisation de l'effort et du coût avec φ et finalement obtenir le Théorème suivant.

Théorème 1.3.5. Supposons

Var(Z j ) ≤ V * j = V * h β j . (a) Estimateur ML2R : Supposons (W E α ) et lim R→+∞ |c R | 1 R = c ∞ ∈ (0, +∞). Un esti- mateur ML2R vérifie Cost(I N π (ε)) K M L2R (α, β, M, V * , h)v(β, ε) avec v(ε, β) =        ε -2 si β > 1, ε -2 (log(1/ε)) si β = 1, ε -2 e 1-β α √ 2 log(1/ε) log(M ) si β < 1. La constante K M L2R (α, β, M, V * , h) est donnée par            1 h Var(Y h ) + V * g(1, M -1 ) M 1-β 2 1-M 1-β 2 2 si β > 1, V * g(1, M -1 ) 2 α log(M ) si β = 1, V * g(1, M -1 ) a ∞ j≥1 j-1 =0 b M β-1 2 j 2 si β < 1. (b) Estimateur MLMC : Supposons (W E α ) et c 1 = 0. Un estimateur MLMC vérifie Cost(I N π (ε)) K M LM C (α, β, M, V * , h)v(β, ε) avec v(ε, β) =        ε -2 si β > 1, ε -2 (log(1/ε)) 2 si β = 1, ε -2-1-β α si β < 1. La constante K M LM C (α, β, M, V * , h) est donnée par            1 + 1 2α 1 h Var(Y h ) + V * g(1, M -1 ) M 1-β 2 1-M 1-β 2 2 si β > 1, 1 + 1 2α V * g(1, M -1 ) 1 α 2 log(M ) 2 si β = 1, 1 + 1 2α V * g(1, M -1 ) M β-1 (1-M β-1 2 ) 2 si β < 1.
La preuve du Théorème suit pas à pas la preuve du Théorème 3.12 dans [LP17], où au lieu que utiliser une majoration des poids W R j , nous améliorons la constante K(α, β, M, V * , h) en tirant profit lorsque R → +∞ d'une sorte de moyennisation des W R j M γ(j-1) , qui est un résultat obtenu dans le Lemme 2.4.1 du chapitre 2. Nous remarquons que,

• Lorsque β ≤ 1, le coût de l'estimateur Multilevel avec poids (ML2R) croît a une vitesse inférieure (et donc meilleure) lorsque ε → 0 que le coût de l'estimateur Multilevel Monte Carlo (MLMC).

• Lorsque β > 1, la vitesse des deux estimateurs est la même (et est la même que celle d'un estimateur sans biais), mais la constante K M L2R (α, β, M, V * , h) est plus petite d'un facteur 1 + 1 2α .

Il est intéressant de remarquer aussi que, lorsque β = 1, les constantes devant les vitesses sont faciles à comparer et donnent une condition sur M :

1 + 1 2α V * g(1, M -1 ) 1 α 2 log(M ) 2 ≤ V * g(1, M -1 ) 2 α log(M ) si et seulement si M ≥ e 2α+1 4α 2 .
Quand α = 1, par exemple, on obtiens que lorsque M ≥ e 3 4 ∼ 2.117,

K M LM C (α, β, M, V * , h) ≤ K M L2R (α, β, M, V * , h).
Les Paramètres optimaux sont donnés explicitement dans le Tableaux (1.2) et (1.3).

R(ε)

     1 2 + log c 1 α ∞ h log(M ) + 1 2 + log c 1 α ∞ h log(M ) 2 + 2 log √ 1 + 4α/ε α log(M )      h(ε) h/ h(1 + 2αR) 1 2αR c 1 α ∞ ε -1 αR M -R-1 2 q(ε) q j = µ * | W R j | V * j K j j = 1, . . . , R; 1 j R q j = 1 N (ε) 1 + 1 2αR 1 µ * ε 2 R j=1 | W R j | V * j K j Table 1.2 -Paramètres optimaux pour estimateur ML2R. R(ε)     1 + log c 1 1 α h log(M ) + log( √ 1 + 2α/ε) α log(M )     h(ε) h/ h(1 + 2α) 1 2α |c 1 | 1 α ε -1 α M -(R-1) q(ε) q j = µ * V * j K j j = 1, . . . , R; 1 j R q j = 1 N (ε) 1 + 1 2α 1 µ * ε 2 R j=1 V * j K j Table 1.3 -Paramètres optimaux pour estimateur MLMC.
Chapitre 2

Théorèmes limite

We will analyze the asymptotic behaviour of the estimators Îε of I 0 = E(Y 0 ) of Multilevel type, when the required accuracy goes to 0. This is in the optimized framework (where the level of the estimator depends on ε) which ensures the asymptotic minimization of the complexity.

These estimators satisfy a strong law of large numbers, in the sense that for all sequence (ε k ) k≥1 such that k≥1 ε 2 k < +∞,

I N π (ε k ) a.s.
--→ I 0 , as k → +∞.

We will weaken the assumptions on (ε k ) k≥1 when Y h has finite moments of order greater than 2.

Then we are going to show a central limit theorem, using the following decomposition

I N π (ε) -I 0 ε = m(ε) + σ 2 ζ ε 2 + 1 ε N (ε) σ 1 ζ ε 1 , as ε → 0, where ζ ε 1 and ζ ε 2 are two independent variables such that (ζ ε 1 , ζ ε 2 ) L --→ N (0, I 2 ) as ε → 0 and m(ε) = µ(ε) ε with µ(ε) = E I N π -I 0 bias of the estimator. The term σ 2 ζ ε
2 comes from the sum of the fine correcting levels, whereas the term

1 ε √ N (ε) σ 1 ζ ε
1 comes from the first coarse level. We will distinguish between two cases, depending on the value of the limit

1 ε √ N (ε)
, which depends on β. When

β > 1, 1 ε √ N (ε)
converge to a non null constant, hence both the terms contribute to the asymptotic variance of the estimator. Whereas when β ≤ 1,

1 ε √ N (ε) → 0
and only the variance of the correcting levels contributes to the asymptotic variance of the estimator. The normalized ML2R estimator is asymptotically without bias, i.e. m(ε) → 0, whereas the asymptotic bias of the normalized MLMC is lower and upper bounded

M -α √ 1+2α < lim ε→0 m(ε) ≤ 1 √ 1 + 2α .
We will display two frameworks where these theorems apply, the discretization schemes for diffusion processes, in the spirit of the results obtained by Ben Alaya and Kebaier in [START_REF] Ben Alaya | Central limit theorem for the multilevel Monte Carlo Euler method[END_REF], and the nested Monte Carlo, which is a new result to our knowledge. This chapter led to an article accepted for publication in the journal Monte Carlo Methods and Applications, entitled "Limit theorems for weighted and regular Multilevel estimators" and written with Vincent Lemaire and Gilles Pagès.

Il s'agit d'étudier le comportement asymptotique pour les estimateurs Îε de I 0 = E(Y 0 ) de type Multilevel, lorsque la précision requise tend vers 0, ce dans le cadre optimisé (où, notamment, la profondeur de l'estimateur dépend elle-même de ε) qui assure la minimisation asymptotique de la complexité.

Ces estimateurs obéissent à une loi forte des grands nombres, au sens où pour toute suite (ε k ) k≥1 telle que k≥1 ε 2 k < +∞,

I N π (ε k ) p.s.
--→ I 0 , lorsque k → +∞.

Nous allons pouvoir affaiblir l'hypothèse sur la suite (ε k ) k≥1 lorsque Y h a des moments finis d'ordre supérieur à 2. Nous allons ensuite montrer un Théorème Central Limite, en utilisant la décomposition suivante

I N π (ε) -I 0 ε = m(ε) + σ 2 ζ ε 2 + 1 ε N (ε) σ 1 ζ ε 1 , lorsque ε → 0, où ζ ε 1 et ζ ε 2 sont deux variables indépendantes telles que (ζ ε 1 , ζ ε 2 ) L --→ N (0, I 2 ) lorsque ε → 0 et m(ε) = µ(ε) ε avec µ(ε) = E I N π -I 0 biais de l'estimateur. Le terme σ 2 ζ ε
2 vient de la somme des couches fines correctives, tandis que le terme

1 ε √ N (ε) σ 1 ζ ε
1 vient de la première couche grossière. Nous allons distinguer deux cas, selon la valeur de la limite de

1 ε √ N (ε) , qui dépend de β. Lorsque β > 1, 1 ε √ N (ε)
converge vers une constante non nulle, donc les deux couches contribuent à la variance asymptotique de l'estimateur. Tandis que lorsque β ≤ 1,

1 ε √ N (ε)
→ 0 et seulement la variance des couches correctives contribue à la variance asymptotique de l'estimateur. L'estimateur ML2R est asympotiquement sans biais, c'està-dire m(ε) → 0, tandis que le biais asymptotique de l'estimateur MLMC est encadré

M -α √ 1+2α < lim ε→0 m(ε) ≤ 1 √ 1 + 2α .
Nous allons exhiber deux contextes où ces Théorèmes s'appliquent, les schémas de discrétisation de processus de diffusion, dans l'esprit des résultats obtenus par Ben Alaya et Kebaier dans [START_REF] Ben Alaya | Central limit theorem for the multilevel Monte Carlo Euler method[END_REF], et le nested Monte Carlo, résultat nouveau à notre connaissance.

Ce Chapitre a fait l'objet d'un article accepté pour publication dans la revue Monte Carlo Methods and Applications, intitulé "Limit theorems for weighted and regular Multilevel estimators" et co-écrit avec Vincent Lemaire et Gilles Pagès.

Abstract

We aim at analyzing in terms of a.s. convergence and weak rate the performances of the Multilevel Monte Carlo estimator (MLMC) introduced in [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF] and of its weighted version, the Multilevel Richardson Romberg estimator (ML2R), introduced in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]. These two estimators permit to compute a very accurate approximation of I 0 = E [Y 0 ] by a Monte Carlo type estimator when the (non-degenerate) random variable Y 0 ∈ L 2 (P) cannot be simulated (exactly) at a reasonable computational cost whereas a family of simulatable approximations (Y h ) h∈H is available. We will carry out these investigations in an abstract framework before applying our results, mainly a Strong Law of Large Numbers and a Central Limit Theorem, to some typical fields of applications : discretization schemes of diffusions and nested Monte Carlo.

Introduction

In recent years, there has been an increasing interest in Multilevel Monte Carlo approach which delivers remarkable improvements in computational complexity in comparison with standard Monte Carlo in biased framework. We refer the reader to [START_REF] Giles | Multilevel Monte Carlo methods[END_REF] for a broad outline of the ideas behind the Multilevel Monte Carlo method and various recent generalizations and extensions. In this paper we establish a Strong Law of Large Numbers and Central Limit Theorem for two kinds of multilevel estimators, Multilevel Monte Carlo estimator (MLMC) introduced by Giles in [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF] and the Multilevel Richardson-Romberg (weighted) estimator introduced in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]. We consider a rather general and in some way abstract framework which will allow us to state these results whatever the strong rate parameter is (usually denoted by β). To be more precise we will deal with the versions of these estimators designed to achieve a root mean squared error (RMSE) ε and establish these results as ε → 0. Doing so we will retrieve some recent results established in [START_REF] Ben Alaya | Central limit theorem for the multilevel Monte Carlo Euler method[END_REF] in the framework of Euler discretization schemes of Brownian diffusions. We will also deduce a SLLN and a CLT for Multilevel nested Monte Carlo, which are new results to our knowledge. More generally our result applies to any implementation of Multilevel Monte Carlo methods.

Let (Ω, A, P) be a probability space and let (Y h ) h∈H be a family of real-valued random variables in L 2 (P) associated to Y 0 where

H = h n , n ≥ 1 such that lim h→0 Y h -Y 0 2 = 0.
In the sequel, a fixed h ∈ H will be called bias parameter (though it appears in a different framework as a discretization parameter). In what follows we will be interested in the computational cost of the estimators denoted by the Cost(•) function. We assume that the simulation of Y h has an inverse linear complexity i.e.

Cost(Y h ) = h -1 . A natural estimator of I 0 = E [Y 0 ]
is the standard Monte Carlo estimator, which reads for a fixed h

I N h = 1 N N k=1 Y k h with Cost(I N h ) = h -1 N, (2.1)
where (Y k h ) k≥1 are i.i.d. copies of Y h and N is the size of the estimator, which controls the statistical error. In order to give the definition of a Multilevel estimator, we consider a depth R 2 (the finest level of simulation) and a geometric decreasing sequence of bias parameters h j = h/n j with n j = M j-1 , j = 1, . . . , R. If N is the estimator size, we consider an allocation policy q = (q 1 , . . . , q R ), such that, at each level j = 1, . . . , R, we will simulate N j = N q j scenarios (see (2.2) and (2.3) below). Thus, we consider R independent copies of the family Y (j) = (Y (j) h ) h∈H , j = 1, . . . , R, attached to independent random copies Y (j) 0 of Y 0 . Moreover, let (Y (j),k ) k≥1 be independent sequences of independent copies of Y (j) . We denote by I N π an estimator of size N of I 0 , attached to a simulation parameter π ∈ Π ⊂ R d . A standard Multilevel Monte Carlo (MLMC) estimator, as introduced by Giles in [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], reads

I N π = I N h,R,q = 1 N 1 N 1 k=1 Y (1),k h + R j=2 1 N j N j k=1 Y (j),k h j -Y (j),k h j-1 (2.2) with π = (h, R, q). A Multilevel Richardson Romberg (ML2R) estimator, as introduced in [LP17]
, is a weighted version of (2.2) which reads

I N π = I N h,R,q = 1 N 1 N 1 k=1 Y (1),k h + R j=2 W R j N j N j k=1 Y (j),k h j -Y (j),k h j-1
(2.3) with π = (h, R, q). The weights W R j j=1,...,R are explicitly defined as functions of the weak error rate α (see equation (W E α, R) below) and of the refiners n j , j = 0, . . . , R in order to kill the successive bias terms in the weak error expansion (see Section 2.4.3 for more details on the weights). When no ambiguity, we will keep denoting by I N π estimators for both classes. We notice that a Crude Monte Carlo estimator of size N formally appears as an ML2R estimator with R = 1 and an MLMC estimator appears as an ML2R estimator in which the weights set W R j = 1, j = 1, . . . , R. Based on the inverse linear complexity of Y h , it is clear that the simulation cost of both MLMC and ML2R estimators is given by

Cost(I N h,R,q ) = N h R j=1 q j (n j-1 + n j )
with the convention n 0 = 0. The difference between the cost of MLMC and of ML2R estimator comes from the different choice of the parameters M , R, h, q and N . The calibration of the parameters is the result, a root M 2 being fixed, of the minimization of the simulation cost, for a given target Mean Square Error or L 2 -error ε, namely, (π(ε), N (ε)) = arg min

I N π -I 0 2 ≤ε Cost(I N π ). (2.4)
This calibration has been done in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] for both estimators MLMC and ML2R under the following assumptions on the sequence (Y h ) h∈H . The first one, called bias error expansion (or weak error assumption), states

∃ α > 0, R 1, (c r ) 1≤r≤ R, E [Y h ] -E [Y 0 ] = R k=1 c k h αk + h α Rη R (h), (W E α, R)
with lim h→0 η R (h) = 0. The second one, called strong approximation error assumption, states

∃ β > 0, V 1 0, Y h -Y 0 2 2 = E Y h -Y 0 2 V 1 h β . (SE β )
Note that the strong error assumption can be sometimes replaced by the sharper

∃ β > 0, V 1 0, Y h -Y h 2 2 = E Y h -Y h 2 V 1 |h -h | β , h, h ∈ H .
From now on, we set

I N π (ε) := I N (ε) π(ε)
, where π(ε) and N (ε) are close to solutions of (2.4) (see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] for the construction of these parameters and Tables 2.1 and 2.2 for the explicit values). As mentioned by Duffie and Glynn in [START_REF] Duffie | Efficient Monte Carlo simulation of security prices[END_REF], the global cost of the standard Monte Carlo with these optimal parameters satisfies

Cost I N π (ε) K(α)ε -(2+ 1 α )
where the finite real constant K(α) depends on the structural parameters α, Var(Y 0 ), h and we recall that f (ε) g(ε) if and only if lim sup

ε→0 g(ε)/f (ε) ≤ 1. Giles for MLMC in [Gil08]
and Lemaire and Pagès for ML2R in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] showed that, using these optimal parameters the global cost is upper bounded by a function of ε, depending on the weak error expansion rate α and on the strong error rate β. More precisely, for both estimators we have

Cost I N π (ε) K(α, β, M )v(ε) (2.5)
where the finite real constant K(α, β, M ) is explicit and differs between MLMC and ML2R (see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] for more details). Denoting v M LM C and v M L2R the dominated function in (2.5) for the MLMC and ML2R estimator respectively, we obtain two distinct cases. In the case β > 1 both estimators behaves very well as an unbiased Monte Carlo estimator i.e.

v M LM C (ε) = v M L2R (ε) = ε -2 . In the case β 1, the ML2R is asymptotically quite better than MLMC since lim ε→0 v M L2R
v M LM C = 0. More precisely, we have the following scheme

v M LM C (ε) v M L2R (ε) β = 1 ε -2 log(1/ε) 2 ε -2 log(1/ε) β < 1 ε -2-1-β α ε -2 e 1-β √ α √ 2 log(1/ε) log(M )
The aim of this paper is to prove a Strong Law of Large Numbers (SLLN) and a Central Limit Theorem (CLT) for both estimators MLMC and ML2R calibrated using these optimal parameters. First notice that as these parameters have been computed under the constraint

I N π (ε) -I 0 2 ≤ ε, the convergence in L 2 holds by construction. As a consequence, it is straightforward that, for every sequence (ε k ) k≥1 such that k≥1 ε 2 k < +∞, k≥1 E I N π (ε k ) -I 0 2 < +∞, (2.6) so that I N π (ε k ) a.s.
--→ I 0 , as k → +∞.

We will weaken the assumption on the sequence (ε k ) k≥1 when Y h has higher finite moments, so we will investigate some L p criterions for p ≥ 2. Moreover, provided a sharper strong error assumption and adding some more hypothesis of uniform integrability, we will show that

I N π (ε) -I 0 ε -m(ε) L --→ N 0, σ 2 , as ε → 0, with m(ε) = µ(ε)
ε where µ(ε) = E I N π -I 0 is the bias of the estimator, and m 2 + σ 2 ≤ 1, owing to the explicit expression of the constraint

I N π (ε) -I 0 2 2 = µ(ε) 2 + Var(I N π (ε)) ≤ ε 2 .
(2.7)

In particular we will prove that lim ε→0 m(ε) = 0 for the ML2R estimator. More precisely we will use in the proof the expansion

I N π (ε) -I 0 ε = m(ε) + σ 2 ζ ε 2 + 1 ε N (ε) σ 1 ζ ε 1 , as ε → 0, where ζ ε 1 and ζ ε 2 are two independent variables such that (ζ ε 1 , ζ ε 2 ) L --→ N (0, I 2 ) as ε → 0. We will see that ζ ε
1 comes from the coarse level of the estimator, while ζ ε 2 derives from the sum of the refined levels. When β > 1, ε N (ε) converges to a constant, hence the variance σ 2 results from the sum of the variance of the first coarse level σ 2 1 and the variance of the sum of the refined fine levels σ 2 2 . When β ∈ (0, 1], since ε N (ε) diverges, the contribution to σ 2 of the coarse level disappears and only the variance of the refined levels contributes to σ 2 . More details on m and σ will follow in Section 2.3.

The paper is organized as follows. In Section 2.2 we briefly recall the technical background for Multilevel Monte Carlo estimators. In Section 2.3 we state our main results : a Strong Law of Large Numbers and a Central Limit Theorem in a quite general framework. Section 2.4 is devoted to the analysis of the asymptotic behaviour of the optimal parameters, to the study of the weights of the ML2R estimator and to the bias of the estimators and its robustness. These are auxiliary results that we need for the proof of the main theorems, which we detail in Section 2.5. In Section 2.6 we apply these results first to the discretization schemes of Brownian diffusions, where we retrieve recent results by Ben Alaya and Kebaier in [START_REF] Ben Alaya | Central limit theorem for the multilevel Monte Carlo Euler method[END_REF], and secondly to Nested Monte Carlo.

Notations :

• Let N * = {1, 2, . . .} denote the set of positive integers and

N = N * ∪ {0}. • For every x ∈ R + = [0, +∞), x denotes the unique n ∈ N * satisfying n -1 < x n. • If (a n ) n∈N and (b n ) n∈N are two sequences of real numbers, a n ∼ b n if a n = ε n b n with lim n ε n = 1, a n = O(b n ) if (ε n ) n∈N is bounded and a n = o(b n ) if lim n ε n = 0.
We denote by • Var (X) and σ(X) the variance and the standard deviation of a random variable X respectively.

Brief background on MLMC and ML2R estimators

We follow [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] and recall briefly the construction of the optimal parameters derived from the optimization problem (2.4). The first step is a stratification procedure allowing us to establish the optimal allocation policy (q 1 , . . . , q R ) when the other parameters R, h, M are fixed. We focus now on the effort of the estimator defined as the product of the cost times the variance i.e. Effort(

I N π ) = Cost(I N π ) Var(I N π ). Introducing the notations ∀j 2, Z j = h M j-1 -β 2 Y (j) h M j-1 -Y (j) h M j-2 and Z 1 = Y (1) h ,
a Multilevel estimator MLMC (2.2) or ML2R (2.3) writes

I N π = 1 N 1 N 1 k=1 Z k 1 + R j=2 1 N j N j k=1 W R j h M j-1 β 2 Z k j
where W R j = 1 for the MLMC and W R j = W R j for the ML2R. By definition and using the approximation N j N q j the effort satisfies

Effort(I N π )   R j=1 q j Cost(Z j )     Var(Y h ) q 1 + R j=2 (W R j ) 2 h M j-1 β Var(Z j ) q j   . (2.8) Given R, h, M , a minimization of q ∈ (0, 1) R → Effort(I N π ) on q ∈ (0, 1) R , R j=1 q j = 1
gives the solution

   q * 1 = µ * Var(Y h ) Cost(Y h ) q * j = µ * h M j-1 β 2 W R j Var(Z j ) Cost(Z j ) with µ * such that R j=1 q j = 1,
(2.9) using the Schwarz's inequality (see Theorem 3.6 in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] for a detailed proof). The strong error assumption (SE β ) allows us to upper bound Var(Y h ) and Var(Z j ) by Var(Y 0 ) 1 +

θh β/2 2 with θ = V 1 Var(Y 0 ) and V 1 1 + M β 2
2 respectively. On the other hand, we assume that Cost(Z j ) = (1+M -1 ) h M j-1 . Plugging theses estimates in (2.9) we obtain the optimal allocation policy used in this paper and given in Tables 2.1 and 2.2. Notice that this particular choice for the q j is not unique, if we change (SE β ) with a different strong error assumption, for example with the sharp version, then we have to replace the upper bound for Var(Z j ) with V 1 (M -1) β and a new expression for the q j follows. In the same spirit, the Cost(Z j ) can be different and hence have an impact on the q j , see [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] or the nested Monte Carlo methods as examples of alternative costs.

The second step is to select h(ε) ∈ H and R(ε) 2 to minimize the cost of the optimally allocated estimator given a prescribed RMSE ε > 0. To do this we use the weak error assumption (W E α, R) and we obtain

h(ε) = h/ h(1 + 2α) 1 2α |c 1 | 1 α ε -1 α M -(R-1)
with c 1 the first coefficient in the weak error expansion, for the MLMC estimator. For the ML2R estimator we made the additional assumption c∞ = lim R→∞ c R 1 R ∈ (0, +∞) and then we obtain

h(ε) = h/ h(1 + 2αR) 1 2αR c 1 α ∞ ε -1 αR M -R-1 2 .
The depth parameter R 2 follows and the choice of N is directly related to the constraint (2.7). We report in Tables 2.1 and 2.2 the ML2R and MLMC values for R(ε), h(ε), q(ε) = (q 1 (ε), . . . , q R (ε)), N (ε) computed in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] and used throughout this paper. Note that these parameters are used in the web application of the LPMA at the address http://simulations.lpma-paris.fr/multilevel. The following constants are used in this paper and in the Tables 2.1 and 2.2

θ = V 1 Var(Y 0 ) and c ∞ = lim R→∞ c R 1 R ∈ (0, +∞)
and

C M,β = 1 + M β 2 √ 1 + M -1 and CM,β = 1 + M β 2 1 + M -1 .

Notice that 1+M

β 2 comes from the (SE β ) and √ 1 + M -1 from the cost, hence the constants C M,β and CM,β depend on them, but on anything else.

R(ε)      1 2 + log c 1 α ∞ h log(M ) + 1 2 + log c 1 α ∞ h log(M ) 2 + 2 log √ 1 + 4α/ε α log(M )      h(ε) h/ h(1 + 2αR) 1 2αR c 1 α ∞ ε -1 αR M -R-1 2 q(ε) q 1 = µ * (1 + θh β 2 ) q j = µ * θh β 2 C M,β W j (R, M ) M -1+β 2 (j-1) , j = 2, . . . , R; 1 j R q j = 1 N (ε) 1 + 1 2αR Var(Y 0 )   1 + θh β 2 + θh β 2 CM,β R j=2 W j (R, M ) M 1-β 2 (j-1)   ε 2 µ * Table 2.1 -Optimal parameters for the ML2R estimator. R(ε)     1 + log c 1 1 α h log(M ) + log( √ 1 + 2α/ε) α log(M )     h(ε) h/ h(1 + 2α) 1 2α |c 1 | 1 α ε -1 α M -(R-1) q(ε) q 1 = µ * (1 + θh β 2 ) q j = µ * θh β 2 C M,β M -1+β 2 (j-1) , j = 2, . . . , R; 1 j R q j = 1 N (ε) 1 + 1 2α Var(Y 0 )   1 + θh β 2 + θh β 2 CM,β R j=2 M 1-β 2 (j-1)   ε 2 µ * Table 2.2 -Optimal parameters for the MLMC estimator.
In what follows, we will shorter these notations by setting

R(ε) = C (1) R + C (2) R + 2 α log(M ) log 1 ε (2.10) with C (1) R = 1 2 + log c 1 α h log(M )
and C

(2)

R = 1 2 + log c 1 α h log(M ) 2 + 2 log √ 1 + 4α α log(M )
for ML2R and

R(ε) = C (1) R + 1 α log(M ) log 1 ε (2.11) with C (1) R = 1 + log c 1 1 α h log(M ) + log √ 1 + 2α α log(M )
for MLMC.

Main results

The asymptotic behaviour, as ε goes to 0, of the parameters given in Tables 2.1 and 2.2 will be exposed in Section 2.4. We proceed here to the analysis of the asymptotic behaviour of the estimator

I N π (ε) := I N (ε) π(ε) as ε → 0.

Strong Law of Large Numbers

We will first prove a Strong Law of Large Numbers, namely Theorem 2.3.1 (Strong Law of Large Numbers). Let p ≥ 2. Assume (W E α, R) for all R ≥ 1 and Y 0 ∈ L p . Assume furthermore the following L p -strong error rate assumption

∃ β > 0, V (p) 1 0, Y h -Y 0 p p = E Y h -Y 0 p V (p) 1 h β 2 p , h ∈ H .
(2.12)

Then, for every sequence of positive real numbers (ε k ) k≥1 such that k≥1 ε p k < +∞, both MLMC and ML2R estimators satisfy

I N π (ε k ) a.s.
-→ I 0 , as k → +∞.

(2.13)

Central Limit Theorems

A necessary condition for a Central Limit Theorem to hold will be that the ratio between the variance of the estimator and ε converges as ε → 0. It seems intuitive that (SE β ) should be reinforced by a sharper estimate as h → 0. We define

Z(h) := h M -β 2 Y h M -Y h and Z j := Z h n j-1 .
(2.14)

A necessary condition to obtain a CLT is to assume that Z(h) h∈H is L 2 -uniformly integrable. We state two results, the first one in the case β > 1 and the second one in the case β 1.

Case β > 1

In this case, note that following (SE β ) we have sup

j 1 Var(Z j ) V 1 1 + M β 2 2 .
Theorem 2.3.2 (Central Limit Theorem, β > 1). Assume (SE β ) for β > 1 and that Z(h) h∈H is L 2 -uniformly integrable. We set

σ 2 1 = 1 Σ Var(Y h ) Var(Y 0 )(1 + θh β 2 )
and

σ 2 2 = 1 Σ h β 2 j≥2 M 1-β 2 (j-1) Var(Z j ) Var(Y 0 )V 1 C M,β
(2.15)

with Σ = Σ(M, β, θ, h) = 1 + θh β 2 1 + CM,β M 1-β 2 1 -M 1-β 2
.

Then the following statements hold.

(a) ML2R estimator : Assume (W E α, R) for all R ≥ 1. Then

I N π (ε) -I 0 ε L --→ N 0, σ 2 1 + σ 2 2 , as ε → 0. (2.16) (b) MLMC estimator : Assume (W E α, R) for R = 1. Then there exists, for every ε > 0, m(ε) such that M -α √ 1+2α m(ε) 1 √ 1+2α and I N π (ε) -I 0 ε -m(ε) L --→ N 0, 2α 2α + 1 σ 2 1 + σ 2 2
, as ε → 0.

(2.17)

Note that the variance of the first term Y h associated to the coarse level contributes to the asymptotic variance of the estimator throughout σ 2 1 , while the variances of the correcting levels, Var(Z j ), j ≥ 2, contribute throughout σ 2 2 . The normalized bias of the ML2R estimator goes to 0 as ε → 0, whereas the MLMC estimator has an a priori nonvanishing normalized bias term. This gain for ML2R is balanced by the variance, which is reduced of a factor 2α 1+2α for MLMC. The constraint (2.7) yields σ 2 1 + σ 2 2 ≤ 1, which is easy to verify if we recall that

Var(Y h ) ≤ Var(Y 0 ) 1 + θh β 2 2 , Var(Z j ) ≤ V 1 1 + M β 2 2 and m(ε) 2 ≤ 1 1 + 2α . 2.3.2.2 Case β ∈ (0, 1]
In this case, we make the additional sharper assumption that lim h→0 Z(h)

2 2 = v ∞ (M, β).
This assumption allows us to identify lim j→+∞ Var(Z j ). More precisely, note that owing to the consistence of the strong and weak error 2α β and owing to (W E α, R) we have

E [Z j ] = h n j -β 2 E Y h n j -Y h n j-1 = c 1 (1 -M α ) h n j α-β 2 + o h n j α-β 2 , so that Var(Z j ) = Z h n j-1 2 2 -c 2 1 (1 -M α ) 2 h n j 2α-β + o h n j 2α-β . We conclude that lim j→+∞ Var(Z j ) = v ∞ (M, β) if 2α > β, v ∞ (M, β) -c 2 1 (1 -M β 2 ) 2 if 2α = β.
(2.18)

Theorem 2.3.3 (Central Limit Theorem, 0 < β 1). Assume (SE β ) for β ∈ (0, 1]. Assume that Z(h) h∈H is L 2 -uniformly integrable and assume furthermore lim h→0 Z(h) 2 2 = v ∞ (M, β). We set σ 2 =    v ∞ (M, β) 1 + M β 2 -2 V -1 1 if 2α > β, v ∞ (M, β) -c 2 1 (1 -M β 2 ) 2 1 + M β 2 -2 V -1 1 if 2α = β.
(2.19)

Then the following statements hold.

(a) ML2R estimator : Assume (W E α, R) for all R ≥ 1. Then

I N π (ε) -I 0 ε L --→ N 0, σ 2 , as ε → 0. (2.20) (b) MLMC estimator : Assume (W E α, R) for R = 1 and that 2α > β when β < 1. Then there exists for every ε > 0, m(ε) such that M -α √ 1+2α m(ε) 1 √ 1+2α and I N π (ε) -I 0 ε -m(ε) L --→ N 0, 2α 2α + 1 σ 2 , as ε → 0. (2.21)
We will see in the proof that the asymptotic variance corresponds to the variance associated to the correcting levels.

Practitioner's corner

In the proof of Theorems 2.3.2 and 2.3.3 we will obtain the more precise expansion

I N π (ε) -I 0 ε = m(ε) + Σ 2 ζ ε 2 + 1 ε N (ε) Σ 1 ζ ε 1 , as ε → 0, where ζ ε 1 and ζ ε 2 are two independent variables such that (ζ ε 1 , ζ ε 2 )
L --→ N (0, I 2 ) as ε → 0, and the real values Σ 1 and Σ 2 depend on whether we are in the MLMC or in the ML2R case and on the value of β. Fundamentally Σ 1 comes from the variance of the first coarse level and Σ 2 from the sum of variances of the correcting levels.

When β > 1, we will prove in Lemma 2.4.3 that ε N (ε) converges to a constant as ε → 0, hence both the coarse and the refined levels contribute to the asymptotic of the estimator.

When β ≤ 1, we will see that ε N (ε)

-1

→ 0 as ε → 0 so that, asymptotically, the variance of the coarse level fades and only the refined levels contribute to the asymptotic variance. Still, it is commonly known in the Multilevel framework that the coarse level is the one with the biggest size (speaking in terms of N j ), hence this term is not really negligible. We can go through this contradiction by observing the inverse convergence rate to 0, namely ε N (ε). It is equivalent, up to a constant, to R(ε) when β = 1 and M

1-β 4 R(ε) when β < 1. -For ML2R, owing to the expression of R(ε) given in (2.10), ε N (ε) ∼ C log(1/ε) 1 4
where C is a positive constant when β = 1 and ε N (ε) = o (ε -η ) for all η > 0 when β < 1.

Hence the convergence rate to 0 of ε N (ε) -1 is very slow. By contrast, Σ 1 Σ 2 , since Σ 1 is related to the variance of the coarse level which roughly approximates the value of interest whereas Σ 2 is related to the variance of the refined levels supposed to be smaller a priori. Hence the product ε N (ε) -1 Σ 1 turns out not to be negligible with respect to Σ 2 for the values of the RMSE ε usually prescribed in applications.

-For MLMC, we get ε N (ε) ∼ C log(1/ε), C positive constant, for β = 1 and

ε N (ε) ∼ C ε -1-β 4α for β < 1.
Hence, when β < 1, the slow convergence phenomenon is still observed though less significant.

Impact of the weights W R j , j = 1, . . . , R on the asymptotic behaviour of the ML2R estimator : When β ≥ 1, one observes that neither the rate of convergence nor the asymptotic variance of the estimator depends in any way upon the weights W R j , j = 1, . . . , R. If β < 1 it depends in a somewhat hidden way through the multiplicative constant of

ε -2 M 1-β 2 R(ε)
in the asymptotic of N (ε) (see Lemma 2.4.3 for more details). However, at finite range, it may have an impact on the variance of the estimator, having however in mind that, by construction, the depth of the ML2R estimator is lower than that of the MLMC which tempers this effect.

Auxiliary results

This Section contains some useful results for the proof of the Strong Law of Large Numbers and of the Central Limit Theorem. More in detail, we investigate the asymptotic behaviour as ε → 0 of the optimal parameters given in Tables 2.1 and 2.2 and of the bias of the estimators and we analyze the weights of the ML2R estimator.

Asymptotic of the bias parameter and of the depth

An important property of MLMC and ML2R estimators is that h(ε) → h and R(ε) → ∞ as ε → 0. The saturation of the bias parameter h is not intuitively obvious, indeed it is well known that h(ε) → 0 as ε → 0 for Crude Monte Carlo estimator. Still, this is a good property, because h = h is the choice which minimizes the cost of simulation of the variable Y h , which we recall is inverse linear with respect to h. First of all, we retrace the computations that led to the choice of the optimal h * (ε) and R * (ε), starting from ML2R estimator. We define

h(ε, R) = (1 + 2αR) -1 2αR |c R | -1 αR ε 1 αR M R-1 2
and we recall that this is the optimized bias found in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] at R fixed. Since the value of c R is unknown, it is necessary to make the assumption

|c R | 1 R → c as R → +∞ and |c R | -1 αR is replaced by c -1 α .
The value of c is also unknown and in the simulations we have to take an estimate of c, that we write ĉ. We follow the lines of [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] and define the polynomial

P (R) = R(R -1) 2 log(M ) -R log(K) - 1 α log √ 1 + 4α ε (2.22)
where K = ĉ 1 α h. We set R + (ε) the positive zero of P (R). The optimal value for the depth of the ML2R estimator is R * (ε) = R + (ε) . We notice that P (R * (ε)) ≥ 0, R * (ε) → +∞ as ε → 0, and R * is increasing in ĉ. We can rewrite

h(ε, R) = 1 + 4α 1 + 2αR 1 2αR ĉ |c R | 1 R 1 α e P (R) R h. We notice that h(ε, R + ) = 1 + 4α 1 + 2αR + 1 2αR +   ĉ |c R + | 1 R +   1 α h.
The optimal choice for the bias is the projection of h(ε, R * (ε)) on the set H = h n : n ∈ N , which reads

h * (ε) = h h h(ε, R * (ε)) -1 . When we replace |c R | 1 R with ĉ, we finally obtain h * (ε) = h h(1 + 2αR * ) 1 2αR * ĉ 1 α ε -1 αR * M -R * -1 2 = h h h(ε, R * ) |c R * | 1 R * ĉ-1 1 α -1
.

Let us analyze the denominator

h h(ε, R * ) |c R * | 1 R * ĉ-1 1 α = 1 + 4α 1 + 2αR * -1 2αR * e -P (R * ) R * .
Since P (R * ) ≥ 0 and since for R large enough the function 1+4α

1+2αR

-1 2αR
1, hence, up to reducing ε,

1 + 4α 1 + 2αR * -1 2αR * e -P (R * ) R * ≤ 1, for all ε ∈ (0, ε), (2.23) which yields h h(ε, R * ) |c R * | 1 R * ĉ-1 1 α = 1 and h * (ε) = h .
For MLMC we may follow the same reasoning starting from h(ε, R)

= (1 + 2α) -1 2α |c 1 | -1 α ε 1 α M R-1 . We just showed the following Proposition 2.4.1. There exists ε > 0 such that h * (ε) = h for all ε ∈ (0, ε].
In what follows, we will always assume that ε ∈ (0, ε] and h * (ε) = h. This threshold ε can be reduced in what follows line to line.

As ε → 0, we have R = R * (ε) → +∞ at the rate 2 α log(M ) log 1 ε in the ML2R case and 1 α log(M ) log 1 ε in the MLMC case.

Asymptotic of the bias and robustness

As part of a Central Limit Theorem, we will be faced to the quantity

µ(h, R(ε), M ) ε , where µ(h, R(ε), M ) = E I N π (ε) -I 0
is the bias of the estimator. This leads us to analyze carefully its asymptotic behavior as ε → 0. Under the (W E α, R) assumption, the bias of a Crude Monte Carlo estimator reads

µ(h) = c 1 h α (1 + η 1 (h)), lim h→0 η 1 (h) = 0.
The bias of Multilevel estimators is dramatically reduced compared to the Crude Monte Carlo, more precisely the following Proposition is proved in [LP17] :

Proposition 2.4.2. The following statements hold. (a) MLMC : Assume

(W E α, R) with R = 1. µ(h, R, M ) = c 1 h M R-1 α 1 + η 1 h M R-1
(2.24)

with lim h→0 η 1 (h) = 0. (b) ML2R : Assume (W E α, R) for all R ≥ 1. µ(h, R, M ) = (-1) R-1 c R h R M R(R-1) 2 α (1 + η R,n (h)) (2.25) where η R,n (h) = (-1) R-1 M α R(R-1) 2 R r=1 w r n αR r η R ( h n R ) with lim h→0 η R (h) = 0.
We notice that the ML2R estimator requires and takes full advantage of a higher order of the expansion of the bias error (W E α, R), whereas the MLMC estimator only needs a first order expansion. As the computations were made under the constraint I N π -I 0 2 ≤ ε, we have clearly that |µ(h,R(ε),M )| ε ≤ 1. We focus our attention on the constants c ∞ and c 1 , which a priori we do not know and that we replace in the simulations by ĉ∞ = ĉ1 = 1. If we plug the values of h(ε) = h and R(ε) in the formulas for the bias, owing to (2.22) and (2.23) we get, for ML2R,

|µ(h, R(ε), M )| = |c R(ε) | h R(ε) M R(ε) R(ε)-1 2 α = |c R(ε) |h αR(ε) 1 e αP (R(ε)) K αR(ε) ε √ 1 + 4α = |c R(ε) | ĉR(ε) ∞ 1 e αP (R(ε)) ε √ 1 + 4α ≤ |c R(ε) | ĉR(ε) ∞ 1 1 + 2αR(ε) ε
and, for MLMC,

c 1 ĉ1 M -α √ 1 + 2α ε < |µ(h, R(ε), M )| ≤ c 1 ĉ1 1 √ 1 + 2α ε. (2.26) We set m(ε) := |µ(h,R(ε),M )| ε
. Hence, when taking the true values ĉ∞ = c ∞ and ĉ1 = c 1 , we get

     lim ε→0 m(ε) = 0 for M L2R, M -α √ 1+2α < lim ε→0 m(ε) ≤ 1 √ 1 + 2α for M LM C.
(2.27)

For ML2R estimators, if c R has a polynomial growth depending on R, we have lim

R→+∞ |c R | 1 R = 1
and ĉ∞ = 1 corresponds to the exact value of c ∞ . If the growth of c R is less than polynomial, the convergence to 0 in (2.27) still holds. The only uncertain case is when the growth of c R is faster than polynomial. Then, if ĉ∞

≥ |c R | 1 R , |µ(ε)|/ε goes to 0 faster than 1 √ 1+2αR(ε)
, but if we had taken ĉ∞ < 1, we would have obtained

lim R→+∞ |c R | ĉR ∞ = +∞,
hence ĉ∞ < 1 is definitely not a good choice. In conclusion, whenever the growth of c R is at most polynomial, ĉ∞ = 1 remains a good choice. When the growth is faster than polynomial it is better to overestimate ĉ∞ than to underestimate it. The remarkable fact is that, when we choose ĉ∞ , we are not forced to have a very precise idea of the expression of c R , but only of its growth rate. The choice of ĉ1 for MLMC estimator is less robust, since it is obvious that if we overestimate c 1 the inequality |µ(ε)|/ε ≤ 1/ √ 1 + 2α still holds, but if we underestimate it we eventually may not have |µ(ε)| ε ≤ 1 as expected. Hence the bias for the MLMC estimator is very connected to an accurate enough estimation of c 1 .

In Figures 2.1a and 2.1b we show the values of |c 1 | estimated with the formula

c 1 = h 2 -h -1 E Y h 2 -E [Y h ]
compared to the value plugged in the simulations ĉ1 = 1, for a Call option in a Black-Scholes model with X 0 = 100, K = 80, T = 1, σ = 0.4 and making the interest rate vary as follows r = 0.01, 0.1, 0.2, . . . , 0.9, 1. We simulated E [Y h ], with h = T /20, using an Euler and a Milstein discretization scheme and making a Crude Monte Carlo simulation of size N = 10 8 . In Figures 2.2a and 2.2b we show the absolute value of the empirical bias for different values of r. In the simulations, we fixed ĉ1 = 1 and ĉ∞ = 1. We can observe that when |c 1 | is underestimated, the bias for MLMC and Crude Monte Carlo estimators do not satisfy the constraint |µ(ε)| ≤ ε, whereas the ML2R estimator appears to be less sensible to the estimation of c.

Properties of the weights of the ML2R estimator

One significant difficulty in the proof of the Central Limit Theorem that we stated in Theorems 2.3.2 and 2.3.3, is to deal with the weights W R j appearing in the ML2R estimator. Moreover, the analysis of the behaviour of the weights is necessary when studying the asymptotic of the parameters q = (q 1 , . . . , q R ) and N . These weights are devised to kill the coefficients c 1 , . . . , c R in the bias expansion under the (W E α, R). They are defined as

W R j = R r=j w r , j = 1, . . . , R, (2.28) 
where the weights w = (w r ) r=1,...,R are the solution to the Vandermonde system V w = e 1 , the matrix V being defined by

V = V (1, n -α 2 , . . . , n -α R ) =      1 1 • • • 1 1 n -α 2 • • • n -α R . . . . . . • • • . . . 1 n -α(R-1) 2 • • • n -α(R-1) R     
.

(2.29)

Notice that W R 1 = 1 by construction. In order to give a more tractable expression of the weights W R j , one notices that the weights w admit a closed form given by Cramer's rule, namely w = a b R-, = 1, . . . , R,

where a = 1 1≤k≤ -1 (1 -M -kα ) , = 1, . . . , R, with the convention 0 k=1 (1 -M -kα ) = 1, and b = (-1) M -α 2 ( +1) 1≤k≤ (1 -M -kα ) , = 0, . . . , R.
As a consequence

W R j = R =j a b R-= R-j =0 a R-b , j ∈ 1, . . . , R.
We will make an extensive use of the following properties, which are proved in Appendix A.

Lemma 2.4.1. Let α > 0 and the associated weights (W R j ) j=1,...,R given in (2.28).

(a) lim →+∞ a = a ∞ < +∞ and

+∞ =0 |b | = B ∞ < +∞.
(b) The weights W R j are uniformly bounded,

∀R ∈ N * , ∀j ∈ {1, . . . , R} , W R j ≤ a ∞ B ∞ .
(2.30)

(c) For every γ > 0, lim R→+∞ R j=2 W R j M -γ(j-1) = 1 M γ -1 .
(d) Let {v j } j≥1 be a bounded sequence of positive real numbers. Let γ ∈ R and assume that lim j→+∞ v j = 1 when γ ≥ 0. Then the following limits hold :

R j=2 W R j M γ(j-1) v j R→+∞ ∼        j≥2 M γ(j-1) v j < +∞ for γ < 0, R for γ = 0, M γR a ∞ j≥1 j-1 =0 b M -γj for γ > 0.

Asymptotic of the allocation policy and of the size

Let us analyze the allocation policy q = (q 1 , . . . , q R ) for the ML2R case. Since

q 1 (ε) = µ * (ε) 1 + θh β 2
(2.31) and q j (ε) = θh

β 2 C M,β µ * (ε) W R(ε) j M -β+1 2 (j-1) , j = 2, . . . , R(ε), (2.32) the condition R(ε) j=1 q j = 1 yields µ * (ε) =   1 + θh β 2   1 + C M,β R(ε) j=2 W R(ε) j M -β+1 2 (j-1)     -1
.

Owing to Lemma 2.4.1 (c) with γ = β+1 2 , the limit of this term as ε → 0 is

µ * = 1 + θh β 2 1 + C M,β M 1+β 2 -1 -1
.

Moreover, for all ε ∈ (0, ε], the following inequalities hold :

1 μ * := 1 + θh β 2 ≤ 1 µ * (ε) ≤ 1 + θh β 2 1 + C M,β a ∞ B ∞ 1 1 -M -β+1 2 =: 1 µ * . (2.33) Remark 2.4.2. If we set W R(ε) j
= 1 for all j = 1, . . . , R(ε), and a ∞ B ∞ = 1, we obtain the same results for the MLMC allocation policy.

The asymptotic of the estimator size N = N (ε) is given in the following Lemma.

Lemma 2.4.3. We have N = N (ε) → +∞, as ε → 0, with a convergence rate depending on β as follows :

Case β > 1 : We have N (ε) ∼ C β ε -2 with C β = Var(Y 0 ) µ * 1 + θh β 2 1 + CM,β M 1-β 2 1 -M 1-β 2    1 for ML2R, 1 + 1 2α for MLMC.
(2.34)

Case β ≤ 1 : We recall the expression of R(ε) given in (2.10) for ML2R and (2.11) for MLMC. Then

N (ε) ∼ C β ε -2 R(ε) if β = 1, M 1-β 2 R(ε) if β < 1
where the constant C β reads

C β = Var(Y 0 ) µ * θh 1 2 CM,β    1 for ML2R, 1 + 1 2α for MLMC if β = 1 (2.35)
and

C β = Var(Y 0 ) µ * θh β 2 CM,β            a ∞ j≥1 j-1 =0 b M β-1 2 j
for ML2R,

1 + 1 2α 1 M 1-β 2 -1 for MLMC if β < 1.
(2.36)

We notice that for β ≥ 1 the asymptotic behaviour of N (ε) for ML2R does not depend on the weights W R j and the difference between the coefficient C β for ML2R and for MLMC estimator lies only in the factor 1 + 1 2α , whereas when β < 1 the asymptotic of the weights has an impact on the behaviour of N (ε) for ML2R. Still, in this case we observe that if a ∞ = 1 and j-1

=0 b = 1 for all j ≥ 1, then a ∞ j≥1 j-1 =0 b M β-1 2 j = 1 M 1-β 2 -1
and the factor 1 + 1 2α appears again to be the only difference in the coefficient C β of N (ε) for the two estimators.

Démonstration.

ML2R : The estimator size N reads

N = N (ε) = 1 + 1 2αR(ε) Var(Y 0 ) µ * 1 ε 2   1 + θh β 2 + θh β 2 CM,β R(ε) j=2 W R(ε) j M 1-β 2 (j-1)   .
We notice that R(ε) → +∞ as ε → 0 and use Lemma 2.4.1 (d) with γ = 1-β 2 , with v j = 1 for each j ≥ 1, to complete the proof on the ML2R framework. MLMC : The result follows directly from the convergence of the series

R(ε) j=2 M 1-β 2 (j-1) , since N reads N = N (ε) = 1 + 1 2α Var(Y 0 ) µ * 1 ε 2   1 + θh β 2   1 + CM,β R(ε) j=2 M 1-β 2 (j-1)     ,
as desired.

Proofs

We will use the notations

I 1 ε := 1 N 1 (ε) N 1 (ε) k=1 Y (1),k h -E Y (1),k h and I 2 ε := R(ε) j=2 W R(ε) j N j (ε) N j (ε) k=1 Y k j
where we set

Y j := Y (j) h n j -Y (j) h n j-1 -E Y (j) h n j -Y (j) h n j-1 , j = 1, . . . , R(ε).
(2.37)

These notations hold for both ML2R and MLMC estimators, where we set W R(ε) j

= 1, j = 1, . . . , R(ε), for MLMC estimators. We notice that

I N π (ε) -I 0 = I 1 ε + I 2 ε + µ(h, R(ε), M ) (2.38)
where the bias µ(h, R(ε), M ) → 0 as ε → 0 (see Section 2.4.2 for a detailed description of the bias).

Proof of Strong Law of Large Numbers

The proof of the Strong Law of Large Numbers is a consequence of the following Proposition.

Proposition 2.5.1. Let p ≥ 2. There exists a positive real constant K(M, β, p) such that

E I 2 ε p ≤ K(M, β, p)ε p .
(2.39)

Proof.

ML2R : We first give the proof of (2.39) for the ML2R estimator. As a first step we show that, for all p ≥ 2,

E Y j p ≤ C M,β,p M -βp 2 (j-1) , j = 1, . . . , R(ε), (2.40) with C M,β,p = 2 p V (p) 1 1 + M β 2 p h βp 2 . By Minkowski's Inequality E Y j p 1 p ≤ Y h n j -Y h n j-1 p + E Y h n j -Y h n j-1 ≤ Y h n j -Y h n j-1 p + Y h n j -Y h n j-1 1 ≤ 2 Y h n j -Y h n j-1 p .
Applying again Minkowski's Inequality, the L p -strong approximation assumption (2.12) yields (2.40).

As the random variables Y k j k≥1 are i.i.d. and the ( Y j ) j=1,...,R(ε) are centered and independent, Burkholder's Inequality (see [START_REF] Hall | Martingale limit theory and its application[END_REF], Theorem 2.10, p. 23) and (2.40) imply that there exists a positive universal real constant C p such that

E I 2 ε p = E   R(ε) j=2 N j (ε) k=1 W R(ε) j N j (ε) Y k j p   ≤ C p E    R(ε) j=2 N j (ε) k=1 W R(ε) j N j (ε) Y k j 2 p 2    ≤ C p    R(ε) j=2 N j (ε) k=1 W R(ε) j N j (ε) Y k j 2 p 2    p 2 = C p   R(ε) j=2 | W R(ε) j | 2 N j (ε) E Y j p 2 p   p 2 ≤ C p C M,β,2   R(ε) j=2 | W R(ε) j | 2 N j (ε) M -β(j-1)   p 2 . As N j (ε) = N (ε)q j (ε) ≥ N (ε)q j (ε), we derive that 1 N j (ε) ≤ 1 N (ε)q j (ε) , j = 1, . . . , R(ε).
It follows from the expression of q j given in (2.32) and from inequality (2.33) that

| W R(ε) j | q j (ε) ≤ 1 θh β 2 C M,β µ * M β+1 2 (j-1) , j = 2, . . . , R(ε).
Then, using that sup j∈{1,...,R},R≥1

| W R j | ≤ a ∞ B ∞ , we get E I 2 ε p ≤ C p C M,β,2 a ∞ B ∞ p 2 θh β 2 C M,β µ * -p 2   1 N (ε) R(ε) j=2 M 1-β 2 (j-1)   p 2
.

Owing to Lemma 2.4.3, up to reducing ε, we have

∀ε ∈ (0, ε], 1 N (ε) ≤ 2 C β ε 2        1 if β > 1, R(ε) -1 if β = 1, M -1-β 2 R(ε) if β < 1.
(2.41)

Moreover, R(ε) j=2 M 1-β 2 (j-1) ≤          1 1-M 1-β 2 if β > 1, R(ε) if β = 1, M 1-β 2 R(ε) M 1-β 2 -1 if β < 1. Then   1 N (ε) R(ε) j=2 M 1-β 2 (j-1)   p 2 ≤ K 1 ε p with K 1 = K 1 (M, β, p) = 2 C β p 2          1 -M 1-β 2 -p 2 if β > 1, 1 if β = 1, M 1-β 2 -1 -p 2 if β < 1.
Hence (2.39) holds with

K(M, β, p) = C p C M,β,2 a ∞ B ∞ p 2 θh β 2 C M,β µ * -p 2 K 1 .
MLMC : The proof for the MLMC estimator follows the same steps, by replacing W R(ε) j = 1, for j = 1, . . . , R(ε), and a ∞ B ∞ = 1.

The Strong Law of Large Numbers follows as a consequence of Proposition 2.5.1.

Proof of Theorem 2.3.1. Owing to the decomposition (2.38), equation (2.13) amounts to proving

I 1 ε k a.s.
--→ 0 as k → +∞ and I 2 ε k a.s.

--→ 0 as k → +∞.

(2.42)

As lim ε→0 N 1 (ε) = +∞ and the (Y

(1),k h ) k≥1 are i.i.d. and do not depend on ε, the convergence of I 1 ε k is a direct application of the classical Strong Law of Large Numbers, for both ML2R and MLMC estimators.

To establish the a.s. convergence of I 2 ε k , owing to Proposition 2.5.1 it is straightforward that for all sequence of positive values (ε k ) k≥1 such that ε k → 0 as k → +∞ and

k≥1 ε p k < +∞ k≥1 E I 2 ε k p < +∞.
Hence, by Beppo-Levi's Theorem, k≥1 I 2

ε k p < +∞ a.s., which in turn implies I 2 ε k a.s.
--→ 0 as k → +∞.

Proof of the Central Limit Theorem

This subsection is devoted to the proof of Theorems 2.3.2 and 2.3.3. In order to satisfy a Lindeberg condition, we will need the assumption Z(h

) h∈H is L 2 -uniformly integrable. Owing to (W E α, R), R = 1, E [Z(h)] = c 1 (1 -M α ) h α-β 2 + o(h α-β 2 ).
Since 2α ≥ β, this deterministic sequence E [Z(h)] h∈H is bounded. Hence, the L 2 -uniform integrability of (Z(h)) h∈H yields the L 2 -uniform integrability of the centered sequence

Z(h) h∈H = (Z(h) -E [Z(h)]) h∈H .
One criterion to verify the L 2 -uniform integrability is the following.

Lemma 2.5.1. The following statements hold.

(a) If there exists a p > 2 such that sup h∈H Z(h) p < +∞ the family Z(h) h∈H is L 2 -uniformly integrable. (b) If there exists a random variable D (M ) ∈ L 2 such that, as h → 0,

Z(h) L -→ D (M )
then the following conditions are equivalent (see [START_REF] Billingsley | Convergence of probability measures[END_REF], Theorem 3.6) :

(i) The family Z(h) h∈H is L 2 -uniformly integrable. (ii) lim h→0 Z(h) 2 = D (M )
2 . Now we are in a position to prove the Central Limit Theorem, in both cases β > 1 and β ∈ (0, 1].

Proof of Theorems 2.3.2 and 2.3.3. Owing to the decomposition (2.38) (with W R(ε) j = 1, j = 1, . . . , R(ε) for MLMC estimator)

I N π (ε) -I 0 ε = I 1 ε ε + I 2 ε ε + µ(h, R(ε), M ) ε
where I 1 ε and I 2 ε are independent. The bias term has already been treated in (2.27).

ML2R : Formulas (2.16) and (2.20) amount to proving, as ε → 0,

N (ε) I 1 ε L -→ N 0, Var(Y h ) q 1 (2.43) and I 2 ε ε L -→ N 0, σ 2 2 (2.44)
with σ 2 = σ for β ∈ (0, 1]. Indeed, for (2.43) let us write

I 1 ε ε = 1 ε N (ε) N (ε) I 1 ε . Using Lemma 2.4.3, N (ε) reads N (ε) ε→0 ∼ C β ε -2      1 if β > 1, R(ε) if β = 1, M 1-β 2 R(ε) if β < 1. (M L2R)
In particular, since R(ε) → +∞ as ε → 0, when β ≤ 1, 1

N (ε) = o(ε) and the term I 1 ε ε → 0 in probability. Since Y (1),k h
does not depend on ε, N 1 (ε) → +∞ and N 1 (ε)/N (ε) → q 1 as ε → 0, the asymptotic behaviour of the first term is driven by a regular Central Limit Theorem at rate N (ε), i.e.

N (ε)

I 1 ε = N (ε)   1 N 1 (ε) N 1 (ε) k=1 Y (1),k h -E Y (1),k h   ε→0 ---→ N 0, Var (Y h ) q 1
which proves (2.43). We will use Lindeberg's Theorem for triangular arrays of martingale increments (see Corollary 3.1 p.58 in [START_REF] Hall | Martingale limit theory and its application[END_REF]) to establish (2.44). The random variables Y k j being centered and independent, the variance reads

Var   R(ε) j=2 N j (ε) k=1 1 ε W R(ε) j N j (ε) Y k j   = 1 ε 2 R(ε) j=2 W R(ε) j N j (ε) 2 N j (ε) Var Y j = 1 ε 2 R(ε) j=2 W R(ε) j 2 N j (ε) Var Y j .
Noticing that 0 ≤ 1 x -1 x ≤ 1 x 2 , x > 0, and that N j (ε) = q j (ε)N (ε) , we derive

1 ε 2 R(ε) j=2 W R(ε) j 2 N j (ε) Var Y j - 1 ε 2 R(ε) j=2 W R(ε) j 2 q j (ε)N (ε) Var Y j ≤ 1 ε 2 R(ε) j=2 W R(ε) j 2 (q j (ε)N (ε)) 2 Var Y j .
The conclusion will follow from

lim ε→0 1 ε 2 R(ε) j=2 W R(ε) j 2 N (ε)q j (ε) Var Y j = σ 2 2 (2.45) and lim ε→0 1 ε 2 R(ε) j=2 W R(ε) j 2 (q j (ε)N (ε)) 2 Var Y j = 0. (2.46)
Owing to the definition of Z j given in (2.14), we get Var(

Y j ) = h n j β
Var(Z j ) and, using the expression of q j (ε) given in (2.32), we obtain

1 ε 2 R(ε) j=2 W R(ε) j 2 N (ε)q j (ε) Var Y j = 1 ε 2 N (ε) h β 2 θC M,β µ * (ε) R(ε) j=2 W R(ε) j M 1-β 2 (j-1) Var(Z j ).
• Case β > 1 : Owing to the expression of N (ε) given in Lemma 2.4.3 when β > 1,

lim ε→0 1 ε 2 N (ε) h β 2 θC M,β µ * (ε) = 1 Σ h β 2 Var(Y 0 )V 1 C M,β
and owing to the limit in Lemma 2.4.1 (d) with γ = 1-β 2 < 0,

R(ε) j=2 W R(ε) j M 1-β 2 (j-1) Var(Z j ) = +∞ j=2 M 1-β 2 (j-1) Var(Z j ) < +∞.
Hence the convergence of the variance (2.45) holds for Theorem 2.3.2.

• Case β ≤ 1 : Owing to the expression of N (ε) given in Lemma 2.4.3 when β ≤ 1, we get, as ε → 0,

1 ε 2 N (ε) h β 2 θC M,β µ * (ε) ∼ 1 V 1 1 + M β 2 2    (R(ε)) -1 if β = 1, M 1-β 2 R(ε) a ∞ j≥1 j-1 =0 b M β-1 2 j -1 if β < 1.
We notice that lim

j→+∞ Var(Z j ) = ṽ∞ (M, β) if 2α > β and lim j→+∞ Var(Z j ) = ṽ∞ (M, β) - c 2 1 1 -M β 2
2 if 2α = β. Hence, owing to the limit in Lemma 2.4.1 (d) with γ = 1-β 2 ≥ 0, we obtain (2.45) with σ 2 = σ given in (2.19) in Theorem 2.3.3.

For (2.46), it follows from the expression of q j (ε) in (2.32) that

| W R(ε) j | q j (ε) = M β+1 2 (j-1) θh β 2 C M,β µ * (ε)
.

Owing to the definition of Z j in (2.14) and to inequality (2.33), we get

1 ε 2 R(ε) j=2 W R(ε) j 2 (q j (ε)N (ε)) 2 Var Y j ≤ h β θh β 2 C M,β µ * 2 1 (εN (ε)) 2 R(ε) j=2 M (j-1) Var(Z j ) ≤ h β θh β 2 C M,β µ * 2 1 (εN (ε)) 2 sup j≥1 Var(Z j ) M R(ε)-1 M -1 .
We conclude by showing that

M R(ε) (εN (ε)) 2 → 0, as ε → 0.
(2.47)

Owing to the expression of R(ε) given in (2.10), we notice that

R(ε) = O log(1/ε) = o log(1/ε) as ε → 0.
Moreover, using Lemma 2.4.3, up to another reduction of ε, we have

1 (εN (ε)) 2 ≤ 2 C β 2 ε 2 for all β > 0. This in turn yields M R(ε) (εN (ε)) 2 ≤ 2 C β 2 ε 2 M R(ε) = C -2 β e log(M )R(ε)-2 log(1/ε) → 0, as ε → 0.
Then (2.46) is proved and so is the first condition of Lindeberg's Theorem.

For the second condition of Lindeberg's Theorem we need to prove that, for every η > 0,

R(ε) j=2 N j (ε) k=1 E    1 ε W R(ε) j N j (ε) Y k j 2 1 1 ε W R(ε) j N j (ε) Y k j >η    ε→0 ---→ 0. (2.48) Since the Y k j k=1,...,N j (ε)
are identically distributed, we can write

R(ε) j=2 N j (ε) k=1 E    1 ε W R(ε) j N j (ε) Y k j 2 1 1 ε W R(ε) j N j (ε) Y k j >η    ≤ R(ε) j=2 1 ε 2 W R(ε) j 2 N j (ε) E     Y j 2 1    | Y j |>η ε N j (ε) W R(ε) j        .
We set Z j = Z j -E [Z j ]. Replacing q j by its values given in (2.32), using Inequality (2.30) from Lemma 2.4.1 (b) and the elementary inequality

1 N j (ε) ≤ 1 q j (ε)N (ε) , yields R(ε) j=2 N j (ε) k=1 E    1 ε W R(ε) j N j (ε) Y k j 2 1 1 ε W R(ε) j N j (ε) Y k j >η    ≤ 1 θh β 2 C M,β µ * (ε) 1 ε 2 N (ε) R(ε) j=2 W R(ε) j M β+1 2 (j-1) E     Y j 2 1    | Y j |>η θh β 2 C M,β µ * (ε) M β+1 2 (j-1) εN (ε)        ≤ h β 2 θC M,β µ * a ∞ B ∞ 1 ε 2 N (ε) R(ε) j=2 M 1-β 2 (j-1) E Z j 2 1 | Z j |>ηθC M,β µ * εN (ε)M -j-1 2 ≤ h β 2 θC M,β µ * a ∞ B ∞ sup 2≤j≤R(ε) E (Z j ) 2 1 | Z j |>ΘεN(ε)M -R(ε) 2 1 ε 2 N (ε) R(ε) j=2 M 1-β 2 (j-1)
where we set Θ = ηθC M,β µ * √ M . Now, it follows from Lemma 2.4.3 that

1 ε 2 N (ε) R(ε) j=2 M 1-β 2 (j-1) = 1 ε 2 N (ε) M 1-β 2 R(ε) -M 1-β 2 M 1-β 2 -1 1 β =1 + (R(ε) + 1)1 β=1 → K,
as ε → 0, where K is a real positive constant. Owing to (2.47) lim

ε→0 εN (ε)M -R(ε) 2 = +∞.
Hence, since we assumed that the family (Z j ) j≥1 is L 2 -uniformly integrable, we obtain that

lim ε→0 sup 2≤j≤R(ε) E (Z j ) 2 1 |Z j |>ΘεN (ε)M -R(ε)-1 2 = 0 (2.49)
and the second condition of Lindeberg's Theorem is proved.

MLMC : The proofs are quite the same as for ML2R, up to the constant 1 + 1 2α , coming from the constant C β in the asymptotic of N (ε). Using Lemma 2.4.3 and the expression of R(ε) given in (2.11), we obtain

N (ε) ε→0 ∼ C β ε -2      1 if β > 1, 1 α log(M ) log 1 ε if β = 1, ε -1-β 2α if β < 1. (M LM C)
We replace W R j = 1, j = 1, . . . , R and a ∞ B ∞ = 1. The only significant difference comes when β < 1, while proving (2.47). In this case, owing to Lemma 2.4.3 as we did in (2.41) and using the expression of R(ε) given in (2.11), up to reducing ε, we can write

M R(ε) (εN (ε)) 2 ≤ 2 C β 2 ε 2 M -(1-β)R(ε) M R(ε) ≤ 2 C β 2 M β(C (1) R +1) ε 2-β α
which goes to 0, owing to the strict inequality assumption 2α > β.

Applications

Diffusions

In this section we retrieve a recent result by Kebaier and Ben Alaya (see [START_REF] Ben Alaya | Central limit theorem for the multilevel Monte Carlo Euler method[END_REF]) obtained for MLMC estimators and we extend it to the ML2R estimators and to the use of path-dependent functionals. Let (X t ) t∈[0,T ] a Brownian diffusion process solution to the stochastic differential equation

X t = X 0 + t 0 b(s, X s )ds + t 0 σ(s, X s )dW s , t ∈ [0, T ] where b : [0, T ] × R d → R d , σ : [0, T ] × R d → M (d, q, R) are continuous functions, Lipschitz continuous in x, uniformly in t ∈ [0, T ], (W t ) t∈[0,T ]
is a q-dimensional Brownian motion independent of X 0 , both defined on a probability space (Ω, A, P).

We know that X = (X t ) t∈[0,T ] is the unique (F W t ) t∈[0,T ] -adapted solution to this equation, where F W is the augmented filtration of W . The process (X t ) t∈[0,T ] cannot be simulated at a reasonable computational cost (at least in full generality), which leads to introduce some simulatable time discretization schemes, the simplest being undoubtedly the Euler scheme with step h = T n , n ≥ 1, defined by

Xn t = X 0 + t 0 b(s, Xn s )ds + t 0 σ(s, Xn s )dW s (2.50) with s = ns/T T n , s ∈ [0, T ]. In particular, if we set t n k = k T n , Xn t n k+1 = Xn t n k + b(t n k , Xn t n k )h + σ(t n k , Xn t n k ) √ hU n k+1 , k ∈ {0, . . . , n -1}
where

U n k+1 = W t n k+1 -W t n k √ h is i.i.d.
with distribution N (0, I q ). Furthermore, we also derive from (2.50) that

Xn t = Xn t + b(t, Xn t )(t -t) + σ(t, Xn t )(W t -W t ), t ∈ [0, T ].
It is classical background that, under the above assumptions on b, σ, X 0 and W , the Euler scheme satisfies the following a priori L p -error bounds :

∀p 2, ∃c b,σ,p,T > 0, sup t∈[0,T ] |X t -Xn t | p ≤ c b,σ,p,T T n 1 + X 0 p . (2.51)
For the weak error expansion the existing results are less general. Let us recall as an illustration the celebrated Talay-Tubaro's and Bally-Talay's weak error expansions for marginal functionals of Brownian diffusions, i.e. functionals of the form F (X) = f (X T ).

Theorem 2.6.1. The following statements hold. (a) Regular setting (Talay-Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF]) : If b and σ are infinitely differentiable with bounded partial derivatives and if f : R d → R is an infinitely differentiable function, with all its partial derivatives having a polynomial growth, then for a fixed maturity T > 0 and for every integer

R ∈ N * E f ( Xn T ) -E [f (X T )] = R k=1 c k 1 n k + O 1 n R+1 (2.52)
where the coefficients c k depend on b, σ, f, T but not on n.

(b) (Hypo-)Elliptic setting (Bally-Talay [START_REF] Bally | The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function[END_REF]) : If b and σ are infinitely differentiable with bounded partial derivatives and if σ is uniformly elliptic in the sense that

∀x ∈ R d , ∀t ∈ [0, T ], σσ * (x) ≥ ε 0 I q , ε 0 > 0
or more generally if (b, σ) satisfies the strong Hörmander hypo-ellipticity assumption, then (2.52) holds true for every bounded Borel function f : R d → R.

For more general path-dependent functionals, no such result exists in general. For various classes of specified functionals depending on the running maximum or mean, some exit stopping time, first order weak expansions in h α , α ∈ (0, 1], have sometimes been established (see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] for a brief review in connection with multilevel methods). However, as emphasized by the numerical experiments carried out in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], such weak error expansion can be highly suspected to hold at any order under reasonable smoothness assumptions.

In this section we consider

F : C b ([0, T ], R d ) → R a Lipschitz continuous functional and we set Y 0 = F (X) and Y h = F ( Xn ) with h = T n
and n 1 (i.e. h = T ).

We assume the weak error expansion (W E α, R). We prove now that both estimators ML2R (2.3) and MLMC (2.2) satisfy a Strong Law of Large Numbers and a Central Limit Theorem when ε tends to 0.

Theorem 2.6.2. Let X 0 ∈ L 2 and assume that F :

C b ([0, T ], R d ) → R is a Lipschitz continuous functional. Then the assumption (SE β ) is satisfied with β = 1. If X 0 ∈ L p for p 2, then the L p -strong error assumption Y h -Y 0 p V (p) 1
√ h is satisfied so that both ML2R and MLMC estimators satisfy Theorem 2.3.1.

If X 0 ∈ L p for p > 2 and if F is differentiable with DF continuous, then the sequence Z(h) h∈H is L 2 -uniformly integrable and

∃v ∞ > 0, lim h→0 Z(h) 2 2 = (M -1)v ∞ .
(2.53)

As a consequence, both ML2R and MLMC estimators satisfy Theorem 2.3.3 (case β = 1).

Proof. First, note that if F is a Lipschitz continuous functional, with Lipschitz coefficient [F ] Lip , we have for all p 2

Y h -Y 0 p p [F ] p Lip E sup t∈[0,T ] X t -Xn t p [F ] p Lip c p b,σ,p,T (1 + X 0 p ) p h p 2 ,
then (Y h ) h∈H satisfies (SE β ) with β = 1 and the L p -strong error assumption as soon as X 0 ∈ L p . Assume now that X 0 ∈ L p for p > 2. By a straightforward application of Minkowski's inequality we deduce from the L p -strong error assumption that

Y h M -Y h p C √ h and
then that sup h∈H Z(h) p < +∞. Applying the criterion (a) of Lemma 2.5.1 we prove that Z(h) h∈H is L 2 -uniformly integrable.

At this stage it remains to prove (2.53). The key is Theorem 3 in [START_REF] Ben Alaya | Central limit theorem for the multilevel Monte Carlo Euler method[END_REF], where it is proved that

√ nM Xn -XnM stably ---→ U (M ) , as n → +∞,
where

U (M ) = (U (M ) t ) t∈[0,T ] is the d-dimensional process satisfying U (M ) t = M -1 2 q i,j=1 V t t 0 (V s ) -1 ∇ϕ .j (X s )ϕ .i (X s )dB i,j s , t ∈ [0, T ].
(2.54)

We recall the notations of Jacod and Protter [START_REF] Jacod | Asymptotic error distributions for the Euler method for stochastic differential equations[END_REF] dX t = ϕ(X t )dW t = q j=0 ϕ .j (X t )dW j t with ϕ .j representing the jth column of the matrix ϕ = [ϕ ij ] i=1,...,d, j=1,...,q

, for j = 1, . . . , q, ϕ 0 = b and W t := (t, W 1 t , . . . , W q t ) (column vector), where W 0 t = t and the q remaining components make up a standard Brownian motion. Moreover, ∇ϕ .j is a d × d matrix where (∇ϕ .j ) ik = ∂ x k ϕ ij (partial derivative of ϕ ij with respect to the kth coordinate) and (V t ) t∈[0,T ] is the R d×d valued process solution of the linear equation

V t = I d + q j=0 t 0 ∇ϕ .j (X s )V s dW j s , t ∈ [0, T ].
Here (B ij ) 1≤i,j≤q is a standard q 2 -dimensional Brownian motion independent of W . This process is defined on an extension ( Ω, F, ( F t ) t≥0 , P) of the original space (Ω, F, (F t ) t≥0 , P) on which lives W . We write, using that h = T n ,

Z(h) = √ nM F ( XnM ) -F ( Xn ) = - 1 0 DF u Xn + (1 -u) XnM du • U (M ) n where U (M ) n := √ nM Xn -XnM . The function (x 1 , x 2 , x 3 ) → 1 0 DF (ux 1 + (1 - u)
x 2 )dux 3 is continuous, and it suffices to prove that Xn , XnM , U (M ) n L -→ (X, X, U (M ) ), as n goes to infinity, to conclude that

Z(h) L -→ -DF (X)U (M ) , as h → 0.
(2.55)

Let two bounded Lipschitz continuous functionals be φ :

C b ([0, T ], R 2d ) → R and ψ : C b ([0, T ], R d ) → R
and let denote X n = ( Xn , XnM ) and X = (X, X). We write

E φ( X n )ψ(U (M ) n ) -φ( X)ψ(U (M ) ) = E (φ( X n ) -φ( X))ψ(U (M ) n ) + φ( X)(ψ(U (M ) n ) -ψ(U (M ) )) Since (U (M ) n
) n 1 converges stably with limit U (M ) , we have that

lim n→+∞ E φ( X)(ψ(U (M ) n ) -ψ(U (M ) )) = 0.
On the other hand, owing to (2.51), we prove that

lim n→+∞ E (φ( X n ) -φ( X))ψ(U (M ) n ) = 0.
By (2.55) and Lemma 2.5.1 (b) we have

lim h→0 Z(h) 2 2 = DF (X)U (M ) 2 2 = (M -1)v ∞ with v ∞ = DF (X) U (M )
M -1 2 2 which does not depend on M owing to the definition of U M given in (2.54).

Nested Monte Carlo

The aim of a nested Monte Carlo method is to compute by Monte Carlo simulation

E [f (E [X | Y ])]
where (X, Y ) is a couple of R × R q Y -valued random variables defined on a probability space (Ω, A, P) with X ∈ L 2 (P) and f : R → R is a Lipschitz continuous function with Lipschitz coefficient [f ] Lip . We assume that there exists a Borel function F : R q ξ × R q Y → R and a random variable ξ : (Ω, A) → R q ξ independent of Y such that

X = F (ξ, Y ) and we set h = 1 K 0 for some integer K 0 1, h = 1/K, K ∈ K 0 N * = K 0 , 2K 0 , . . . and 
Y 0 := f (E [X | Y ]), Y h = Y 1 K := f 1 K K k=1 F (ξ k , Y ) (2.56)
where (ξ k ) k≥1 is a sequence of i.i.d. variables, ξ k ∼ ξ, independent of Y . A nested ML2R estimator then writes (n j = M j-1 )

I N π = 1 N 1 N 1 i=1 f 1 K K k=1 F ξ (1),i k , Y (1),i + R j=2 W R j N j N j i=1   f   1 n j K n j K k=1 F ξ (j),i k , Y (j),i   -f   1 n j-1 K n j-1 K k=1 F ξ (j),i k , Y (j),i     (2.57)
where Y (j),i i≥1 is a sequence of independent copies of Y (j) ∼ Y , j = 1, . . . , R, Y (j) independent of Y ( ) for j = , and ξ (j),i k k,i≥1,j=1,...,R is a sequence of i.i.d. variables ξ (j),i k ∼ ξ. We saw in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] that, when f is 2R times differentiable with f (k) bounded, the nested Monte Carlo estimator satisfies (SE β ) with β = 1 and (W E α, R) with α = 1 and R = R -1. Here we want to show that the nested Monte Carlo satisfies also the assumptions of the Strong Law of Large Numbers 2.3.1 and of the Central Limit Theorem 2.3.3. Then, we define for convenience

φ 0 (y) := E [F (ξ, y)] , φ h (y) := 1 K K k=1 F (ξ k , y), K ∈ K 0 N * , (2.58) so that Y 0 = f (φ 0 (Y )) and Y h = f (φ h (Y ))
, and for a fixed y, we set σ F (y) := Var(F (ξ, y)).

Proposition 2.6.1. Still assuming that f is Lispchitz continuous. If X ∈ L p (P) for p 2, then there exists

V (p) 1 such that, for all h = 1 K and h = 1 K , K, K ∈ K 0 N * , Y h -Y h p p ≤ V (p) 1 h -h p 2 .
(2.59)

As a consequence, the assumption (SE β ) and the L p -strong error assumption (2.12) are satisfied with β = 1. Then both ML2R and MLMC estimators satisfy a Strong Law of Large Numbers, see Theorem 2.3.1.

Proof. Set X k = F (ξ k , Y ) -E [F (ξ k , Y ) | Y ] and S k = k =1 X . As f is Lipschitz, we have Y h -Y h p p = f 1 K K k=1 F (ξ k , Y ) -f 1 K K k=1 F (ξ k , Y ) p p ≤ [f ] p Lip 1 K K k=1 X k - 1 K K k=1 X k p p = [f ] p Lip E S K K - S K K p .
Assume without loss of generality that K ≤ K . Since p ≥ 2, it follows that

E S K K - S K K p = E 1 K - 1 K S K + 1 K (S K -S K ) p ≤ 2 p-1 1 K - 1 K p E [|S K | p ] + 1 K p E [|S K -S K | p ] .
Owing to Burkholder's inequality, there exists a universal constant C p such that

E [|S K | p ] ≤ C p E   K k=1 X 2 k p 2   ≤ C p K k=1 X 2 k p 2 p 2 = C p K p 2 E X 1 p . Hence, as S K -S K ∼ S K -K in distribution, E S K K - S K K p ≤ 2 p-1 C p E | X 1 | p 1 K - 1 K p K p 2 + 1 K p |K -K| p 2
.

Keeping in mind that K ≥ K, we derive

1 K - 1 K p K p 2 + 1 K p |K -K| p 2 = 1 K - 1 K p 2 K K -1 p 2 + K K p 2 1 K - 1 K p 2 ≤ 2 1 K - 1 K p 2
.

We conclude by setting

V (p) 1 = [f ] p Lip 2 p C p E | X 1 | p .
For the Central Limit Theorem to hold, the key point is the following Lemma.

Lemma 2.6.3. Assume that f : R → R is a Lipschitz continuous function and differentiable with f continuous. Let ζ be an N (0, 1)-distributed random variable independent of Y . Then, as h → 0,

Z(h) = M h Y h M -Y h L -→ √ M -1f (φ 0 (Y ))σ F (Y )ζ.
(2.60)

Proof. First note that Z(h) = z (M ) h (Y ) where z (M ) h is defined by ∀y ∈ R q Y , z (M ) h (y) = M h f (φ h M (y)) -f (φ h (y)) .
Let y ∈ R q Y . We have

z (M ) h (y) = - 1 0 f vφ h (y) + (1 -v)φ h M (y) dv u (M ) h (y) (2.61) with u (M ) h (y) = M h φ h (y) -φ h M (y) .
We derive from the Strong Law of Large Numbers that

lim h→0 φ h (y) = φ 0 (y) = lim h→0 φ h M (y) a.s.
and by continuity of the function (

x 1 , x 2 ) → 1 0 f (vx 1 +(1-v)x 2 )dv (since f is continuous) we get lim h→0 1 0 f vφ h (y) + (1 -v)φ h M (y) dv = f (φ 0 (y)) a.s.
(2.62)

We have now to study the convergence of the random sequence u

(M )
h (y) as h goes to zero. We set ξ k = ξ k+K , k = 1, . . . , K(M -1). Note that ( ξ k ) k=1,...,K(M -1) are i.i.d. with distribution ξ 1 and are independent of (ξ k ) k=1...,M . Then we can write

u (M ) h (y) = √ M K 1 K K k=1 F (ξ k , y) - 1 M K M K k=1 F (ξ k , y) = √ M K M -1 M K K k=1 (F (ξ k , y) -φ 0 (y)) - 1 M K M K k=K+1 (F (ξ k , y) -φ 0 (y)) = M -1 √ M 1 √ K K k=1 F (ξ k , y) -φ 0 (y) - M -1 M   1 K(M -1)   K(M -1) k=1 F ( ξ k , y) -φ 0 (y)     .
Owing to the Central Limit Theorem and the independence of both terms in the right hand side of the above inequality, we derive that

u (M ) h (y) L -→ M -1 √ M σ F (y)ζ 1 - M -1 M σ F (y)ζ 2 , as h → 0,
where ζ 1 and ζ 2 are two independent random variables both following a standard Gaussian distribution. Hence, noting that M -1

√ M 2 + M -1 M 2 = M -1, we obtain u (M ) h (y) L -→ √ M -1σ F (y)ζ with ζ ∼ N (0, 1).
(2.63) By Slutsky's Theorem, we derive from (2.61), (2.62) and (2.63) that for every

y ∈ R q Y , z (M ) h (y) L -→ √ M -1f (φ 0 (y)) σ F (y)ζ, as h → 0. (2.64) Recall that Z(h) = z (M )
h (Y ). We prove (2.60) combining Fubini's theorem with Lebesgue dominated convergence theorem and (2.64). More precisely, for all G ∈ C b we have

lim h→0 E G(Z(h)) = lim h→0 E G z (M ) h (Y ) = E lim h→0 G z (M ) h (Y ) = E G √ M -1f (φ 0 (y)) σ F (y)ζ ,
as desired.

setting β > 1 in the condition (SE β ). A root M being given, the idea is to replace in the successive refined levels the difference

Y h M -Y h (where h = 1 K , K ∈ K 0 N * ) in the ML2R et MLMC estimators by Y h, h M := f 1 M K M K k=1 F ξ k , Y - 1 M M m=1 f 1 K K k=1 F ξ (m-1)K+k , Y . It is clear that E Y h, h M = E Y h M -Y h .
Computations similar to those carried out in Proposition 2.6.1 yield that, if X = F (ξ, Y ) ∈ L p(1+ρ) (P) for some p 2, then

Y h, h M p p V (ρ,p) M h - h M p 2 (1+ρ) = V (ρ,p) M 1 - 1 M p 2 (1+ρ) |h| p 2 (1+ρ) .
(2.66) SLLN : The first consequence is that the SLLN also holds for these modified estimators along the sequences of RMSE (ε k ) k 1 satisfying k 1 ε p k < +∞ owing to Theorem 2.3.1. CLT : When (2.66) is satisfied with p = 2, one derives that β = p 2 (1 + ρ) = 1 + ρ > 1 whatever ρ is. Hence, the only requested condition in this setting to obtain a CLT (see Theorem

2.3.2) is the L 2 -uniform integrability of h -β 2 Y h, h M h∈H , since no sharp rate is needed when β > 1. Moreover, if (2.66) holds for a p ∈ (2, +∞), i.e. if X = F (ξ, Y ) ∈ L p(1+ρ) (P) with p > 2, then h -β 2 Y h, h M p V (ρ,p) M 1 p 1 - 1 M 1 2 (1+ρ)
which in turn ensures the L 2 -uniform integrability. As a final remark, note that if the function

f is convex, Y h, h M 0 so that E Y h M E [Y h
] which in turn implies by an easy induction that E [Y 0 ] E [Y h ] for every h ∈ H. A noticeable consequence is that the MLMC estimator has a positive bias.

These results can be extended to locally ρ-Hölder continuous functions with polynomial growth at infinity. For more details and a complete proof we refer to Chapter 4.

Conclusion

We proved a Strong Law of Large Numbers and a Central Limit Theorem for Multilevel estimators with and without weights and we exhibited two applications : the discretization schemes for Brownian diffusions, where we retrieve and slightly extend a result by Ben Alaya and Kebaier in [START_REF] Ben Alaya | Central limit theorem for the multilevel Monte Carlo Euler method[END_REF], and simulation for nested Monte Carlo, as mentioned in the Multilevel framework by Lemaire and Pagès in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]. The Strong Law of Large Numbers is essentially a consequence of the strong error assumption (SE β ) (or of its reinforced version (2.12)), and the independence od the estimator levels. The understanding of the behaviour of the weights (W R r ) r=1,...,R in the Multilevel Richardson Romberg estimator is also crucial at this stage, as it is for the proof of the Central Limit Theorem which follows. Under some additional assumptions of L 2 -uniform integrability, both the weighted and the standard Multilevel estimators satisfy a Central limit Theorem at rate ε as the quadratic error ε goes to 0. We distinguish between two cases, depending on the value of the strong error rate β. When β > 1, both the first coarse level and the successive fine correcting levels contribute to the asymptotic variance of the estimator, whereas when β ∈ (0, 1] the asymptotic variance contains only the contribution of the correcting levels. With the choice of optimal parameters made in Tables 2.1 and 2.2, the Standard Multilevel Monte Carlo estimator has a bias (which is bounded), whereas the weighted Multilevel Monte Carlo estimator is asymptotically without bias, hence we can build exact confidence intervals for the weighted Multilevel Monte Carlo estimator.

Chapitre 3

Antithetic Multilevel for discretization schemes

We give here the methodology for Multilevel Richardson Romberg estimators in the diffusion case, for three types of antithetic schemes, Giles-Szpruch, Ninomiya-Victoir and Giles-Szpruch-Ninomiya-Victoir. This is the counterpart of the work of Al Gerbi, Jourdain and Clément in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF], which treats the MLMC case. The calibration of the parameters is adjusted for ML2R, starting from the same hypothesis of [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] and taking into account the antithetic version of the schemes in the computation of the cost.

General framework

We set Y 0 = f (X T ), where f : R d → R is a payoff function and X T is the solution, at time T ∈ R * + , to a multi-dimensional stochastic differential equation of the form

dX t = b(X t )dt + q j=1 σ j (X t )dW j t , t ∈ [0, T ], X 0 = x. (3.1)
Here, x is the initial condition, W = (W 1 , . . . , W q ) is a q-dimensional standard Brownian motion, b : R d → R d is the drift coefficient and σ j : R d → R d , j ∈ {1, . . . , q} are the diffusion coefficients. We want to compute I 0 = E [Y 0 ] and we assume that we can approximate the variable Y 0 by choosing a discretization scheme and by discretizing the stochastic differential equation with a time step h = T /n, n ∈ N * . The most famous discretization schemes is undoubtedly the Euler scheme

X EU t n k+1 = X EU t n k + b(X EU t n k )(t n k+1 -t n k ) + q j=1 σ j (X EU t n k )∆W j t n k+1 , X EU t 0 = x, (3.2) where t n k+1 -t n k = h and ∆ j t n k+1 = W t n k+1 -W j t n k
with k = 0, . . . , n -1 and j = 1, . . . , q. For a smooth payoff f , it is a well-known result that Y h = f (X EU T ) approximates Y 0 in a weak and in a strong way, satisfying assumption (W E α ) with α = 1 and (SE β ) with β = 1.

We will work with three schemes, the antithetic Giles-Szpruch, the antithetic Ninomiya-Victoir and the combination of these two schemes, the Giles-Szpruch-Ninomiya-Victoir scheme, which we will describe in what follows.

Since an antithetic scheme is constructed by swapping two successive Brownian motions, throughout this chapter we set once for all M = 2.

Antithetic schemes

We give in this Section a general description of antithetic schemes and we recall the results that brings to an assumption (1.28) with β ∈ (1, 2] for these schemes. Moreover we describe how to apply the antithetic schemes to Multilevel estimators.

The antithetic scheme for Brownian diffusions : definition and results

We consider a standard Brownian diffusion SDE with drift b and diffusion coefficient σ driven by a q-dimensional standard Brownian motion W defined on a probability space (Ω, A, P) with q 2 and where the components of W = (W 1 , . . . , W q ) are uncorrelated. In such a framework, we saw that Milstein scheme cannot be simulated efficiently due to the presence of Lévy areas induced by the rectangular terms coming out in the second order term of the scheme. This seems to make impossible to reach the unbiased setting "β > 1" since the Euler scheme corresponds as we saw above to the critical case β = 1 (scheme of order 1

2 ). First we introduce a truncated Milstein scheme with step h = T n where the Lévy areas are replaced by their half-sum

     Xn t n k+1 = Xn t n k + h b t n k , Xn t n k + √ h σ t n k , Xn t n k + 1 i j q σij ( Xn t n k ) ∆W i t n k+1 ∆W j t n k+1 -1 {i=j} h , Xn 0 = X 0 , with k = 0 : n -1, ∆W t n k+1 = W t n k+1 -W t n k , t n k =
kT n , k = 0, . . . , n and σij (x) = 1 2 ∂σ .i σ .j + ∂σ .j σ .i , 1 i < j q, and σii (x) = 1 2 ∂σ .i σ .i (x), where the tensor ∂σ .i σ .j is defined by

∀ x = (x 1 , . . . , x d ) ∈ R d , ∂σ .i σ .j (x) := d =1 ∂σ .i ∂x (x)σ j (x) ∈ R d . (3.3)
This scheme can clearly be simulated, but the analysis of its strong convergence rate, e.g. in L 2 when X 0 ∈ L 2 , shows a behavior quite similar to the Euler scheme, i.e. max k=0,...,n

| Xn t n k -X t n k | 2 C b,σ,T T n 1 + X 0 2 , if b and σ are C 1 Lip .
In terms of weak error it also behaves like the Euler scheme : under similar smoothness assumptions on b, σ and f , or ellipticity on σ, it satisfies a first order expansion in (W E) 1 1 (see [START_REF] Giles | Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation[END_REF]). Under additional assumptions, it is expected that a higher order weak error expansion (W E) 1 R holds true.

h = T n : E f (X T ) -E f ( Xn T ) = c 1 h + O(h 2 ) i.e.
Rather than trying to search for a higher order simulatable scheme, the idea introduced in [GS14] is to combine several such truncated Milstein schemes at different scales in order to make the fine level i behave as if the scheme satisfies (SE) β for a β > 1. To achieve that, the fine scheme of the level is duplicated into two fine schemes with the same step but based on swapped Brownian increments. Let us be more specific : the above scheme with step h = T n can be described as an homogeneous Markov chain associated to the mapping

M = M b,σ : R d × R q → R d as follows Xn t n k+1 = M Xn t n k , h, ∆W t n k+1 , k = 0, . . . , n -1, Xn 0 = X 0 .
We consider a first scheme X2n,[1] t 2n k k=0,...,2n with step h 2 = T 2n which reads on two times steps X2n,[1]

t 2n 2k+1 = M X2n,[1] t 2n 2k , h 2 , ∆W t 2n 2k+1 , X2n,[1] t 2n 2(k+1) = M X2n,[1] t 2n 2k+1 , h 2 , ∆W t 2n 2(k+1)
, k = 0, . . . , n-1.

We consider a second scheme with step , k = 0, . . . , n-1.

The following Theorem established in [START_REF] Giles | Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation[END_REF] in the autonomous case (b(t, x) = b(x), σ(t, x) = σ(x)) makes precise the fact that it produces a meta-scheme satisfying (SE) β with β = 2 (and a root M = 2) in a Multilevel scheme.

Theorem 3.2.1. (a) Assume b ∈ C 2 (R d , R d ), σ ∈ C 2 (R d , M(d, q, R))
and that the existing partial derivatives of b, σ, σ (up to order 2) are all bounded. Let f ∈ C 2 (R d , R) with bounded existing partial derivatives (up to order 2) as well. Then, there exists a real constant C b,σ,T > 0

f Xn T - 1 2 f ( X2n,[1] T ) + f ( X2n,[2] T ) 2 C b,σ,T T n 1 + X 0 2 , (3.4)
i.e. (SE) β is satisfied with β = 2. (b) Under the above assumptions on b and σ, assume that f is Lipschitz continuous on R d , that its first two order partial derivatives exist outside a Lebesgue negligible set N 0 of R d and are uniformly bounded. Assume that the diffusion (X t ) t∈[0,T ] satisfies that

lim ε→0 ε -1 P min z∈N 0 |X T -z| ε < +∞. then f Xn T - 1 2 f ( X2n,[1] T ) + f ( X2n,[2] T ) 2 C b,σ,T,η T n 3 4 -η 1 + X 0 2 , (3.5)
for every η ∈ (0, 3 4 ) i.e. (SE) β is satisfied for every β ∈ (0, 3 2 ).

For proofs we refer to Theorems 4.10 and 5.2 in [START_REF] Giles | Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation[END_REF].

Application to Multilevel estimators with root M = 2

The principle is rather simple at this stage. Let us deal with the simplest case of a vanilla payoff (or 1-marginal) Y 0 = f (X T ) and assume that f is such that (SE) β is satisfied for some β ∈ (1, 2].

On the coarse (first) level i = 1, we simply set Y

(1) h = f Xn,(1) T where the truncated Milstein scheme is driven by a q-dimensional Brownian motion W (1) . Keep in mind that this scheme is of order 1 2 so that all the levels are not ruled by the same β. At each fine level i 2, we replace the regular difference Y (i)

h n i -Y (i) h n i-1 (with n i = 2 i-1 and h ∈ H), by 1 2 Y [1],(i) h n i + Y [2],(i) h n i -Y (i) h n i-1
, where Y (i)

h n i-1 = f XnM i-2 ,(i) T , Y [r],(i) h n i = f XnM i-1 ,[r],(i) T , r = 1, 2.
At each level the three rough antithetic Milstein schemes are driven by the same q-dimensional Brownian motions W (i) , i = 1, . . . , R. Owing to Theorem 3.2.1, it is clear that, under appropriate assumptions,

1 2 Y [1],(i) h n i + Y [2],(i) h n i -Y (i) h n i-1 2 2 V 2 h n i β .
As a second step, the optimization of the simulation parameter can be carried following the lines of the case α = 1 and β = 3 2 or β = 2. However the first level is ruled at a strong rate β = 1 which slightly modifies the definition of the sample allocations q i in Tables 1.3 and 1.2. Moreover, the complexity of fine level K i is now of the form κ(2n i +n i-1 )/h instead of κ(n i + n i-1 )/h, which also has to be taken into account in Tables 1.3 and 1.2. We will work with three antithetic schemes, inspired by the work of Al Gerbi, Jourdian, Clément in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF]. We give the detail of these three schemes in the following Sections.

Antithetic Giles-Szpruch scheme

The Giles-Szpruch scheme is a modified version of the Milstein scheme introduced in [START_REF] Giles | Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation[END_REF]. It is defined as follows

                   X GS t k+1 = X GS t k + b(X GS t k )(t k+1 -t k ) + q j=1 σ j (X GS t k )∆W j t k+1 + 1 2 q j,m=1 ∂σ j σ m (X GS t k ) ∆W j t k+1 ∆W m t k+1 -1 {j=m} h , X GS t 0 = x. (3.6)
For a smooth payoff, this scheme provides a weak convergence at a rate h α with α = 1 and a strong convergence rate h β with β = 1. It is possible to obtain a strong convergence with β = 2, combining this scheme with its antithetic version X GS T , which is based on swapping the Brownian increments of X GS T . More precisely, if the regular Giles-Szpruch scheme on two successive half time steps reads

                                     X GS t k+ 1 2 = X GS t k + b(X GS t k )(t k+ 1 2 -t k ) + q j=1 σ j (X GS t k )∆W j t k+ 1 2 + 1 2 q j,m=1 ∂σ j σ m (X GS t k ) ∆W j t k+ 1 2 ∆W m t k+ 1 2 -1 {j=m} (t k+ 1 2 -t k ) , X GS t k+1 = X GS t k+ 1 2 + b(X GS t k+ 1 2 )(t k+1 -t k+ 1 2 ) + q j=1 σ j (X GS t k+ 1 2 )∆W j t k+1 + 1 2 q j,m=1 ∂σ j σ m (X GS t k+ 1 2 ) ∆W j t k+1 ∆W m t k+1 -1 {j=m} (t k+1 -t k+ 1 2 ) , (3.7) 
with ∆W j

t k+ 1 2 = W j t k+ 1 2 -W j t k and ∆W j t k+1 = W j t k+1 -W j t k+ 1 2
, then the antithetic scheme is obtained with the same formulas, swapping the Brownian increments as follows

                                     X GS t k+ 1 2 = X GS t k + b( X GS t k )(t k+ 1 2 -t k ) + q j=1 σ j ( X GS t k )∆W j t k+1 + 1 2 q j,m=1 ∂σ j σ m ( X GS t k ) ∆W j t k+1 ∆W m t k+1 -1 {j=m} (t k+ 1 2 -t k ) , X GS t k+1 = X GS t k+ 1 2 + b( X GS t k+ 1 2 )(t k+1 -t k+ 1 2 ) + q j=1 σ j ( X GS t k+ 1 2 )∆W j t k+ 1 2 + 1 2 q j,m=1 ∂σ j σ m ( X GS t k+ 1 2 ) ∆W j t k+ 1 2 ∆W m t k+ 1 2 -1 {j=m} (t k+1 -t k+ 1 2 ) . (3.8) 
Let h = T n , n ∈ N * . At the fine level j ≥ 2 coexist a coarse discretization scheme X GS,2 j-2 T with time step h j-1 = T n2 j-2 and two fine schemes associated to the time step h j = T n2 j-1 , X GS,2 j T and its swapped counterpart X GS,2 j T . Using the notations introduced in 1.2, we define

Y f h j := 1 2 f X GS,2 j-1 T + f X GS,2 j-1 T and Y c h j-1 := f X GS,2 j-2 T . (3.9) 
We notice that E Y f h j = E Y c h j . A weighted Richardson-Romberg Monte Carlo estimator for the antithetic Giles-Szpruch scheme writes

I N π = R j=1 W R j N j N j k=1 Z GS,(k) j
where the first level is given by

Z GS 1 = Y c h 1 = f X GS,1 T , (3.10) 
and the following correction levels read

Z GS j = Y f h j -Y c h j-1 = 1 2 f X GS,2 j-1 T + f X GS,2 j-1 T -f X GS,2 j-2 T , j = 2, . . . , R (3.11) 
with (Z GS j ) j=1,...,R independent. The cost of a single diffusion step with the Giles-Szpruch scheme is κ GS := Cost f X GS,1 T h. We notice that κ c = κ GS and κ f = 2κ c , and that the cost function is additive, hence, following (1.14) with g(x, y) = x + y, we get

K 1 = Cost(Z GS 1 ) = κ GS n 1 h -1 (3.12)
and

K j = Cost(Z GS j ) = 2κ c n j h + κ c n j-1 h = κ GS h -1 M j-1 5 2 , j = 2, . . . , R. (3.13)
When the payoff is smooth, Giles and Szpruch established that the strong convergence assumption (1.28) holds with β = 2. The weak convergence rate remains the same as for the non antithetic Giles Szpruch scheme, with α = 1.

We notice that in [AGJC16] h = T = 1 and the cost of a Multilevel Monte Carlo estimator reads

Cost(I N π ) = κ R j=1 N j λ j 2 j-1 .
Here κ GS = κ and, with the notations introduced in Chapter 1, the formula to compute λ j is given by

λ 1 = 1, λ j = κ f + κ c /2 κ GS = 5 2 , j = 2, . . . , R.

Antithetic Ninomiya-Victoir scheme

Assuming C 1 regularity for the diffusion coefficients, one can write (3.1) in Stratonovich form

dX t = σ 0 (X t )dt + q j=1 σ j (X t ) • dW j t , X 0 = x, (3.14) 
where

σ 0 = b - 1 2 q j=1
∂σ j σ i and ∂σ j is the Jacobian matrix of σ j defined as

∂σ j = ∂σ j ik i,k∈[1,d] = ∂ x k σ ij i,k∈[1,d] .
The Ninomiya-Victoir scheme then is based on a sequence η = (η 1 , . . . , η N ) of independent and identically distributed Rademacher random variables, independent of W , as follows : if η k+1 = 1 :

X N V,η t k+1 = exp h 2 σ 0 exp ∆W q t k+1 σ q . . . exp ∆W 1 t k+1 σ 1 exp h 2 σ 0 X N V,η t k , (3.15) 
if η k+1 = -1 :

X N V,η t k+1 = exp h 2 σ 0 exp ∆W 1 t k+1 σ 1 . . . exp ∆W q t k+1 σ q exp h 2 σ 0 X N V,η t k (3.16) and X N V,η t 0 = x.
For a smooth payoff, the scheme

1 2 f X N V,η T + f X N V,-η T satisfies (W E α ) with α = 2
(see [START_REF] Ninomiya | Weak approximation of stochastic differential equations and application to derivative pricing[END_REF]) and (1.28) with β = 1 (see [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF]). Let us take the antithetic version of Ninomiya-Victoir scheme and define

Y f h j := 1 4 f X N V,2 j-1 ,η T + f X N V,2 j-1 ,-η T + f X N V,2 j-1 ,η T + f X N V,2 j-1 ,-η T , Y c h j-1 := 1 2 f X N V,2 j-2 ,η T + f X N V,2 j-2 ,-η T where X N V,2 j ,η
T is obtained by swapping the Brownian motions of X N V,2 j ,η T . A weighted Multilevel Monte Carlo estimator writes

I N π = R j=1 W R j N j N j k=1 Z N V,(k) j
, where the first level reads

Z N V 1 = Y c h 1 = 1 2 f X N V,1,η T + f X N V,1,-η T and Z N V j =Y f h j -Y c h j-1 = 1 4 f X N V,2 j-1 ,η T + f X N V,2 j-1 ,-η T + f X N V,2 j-1 ,η T + f X N V,2 j-1 ,-η T - 1 2 f X N V,2 j-2 ,η T + f X N V,2 j-2 ,-η T , j = 2, . . . , R
(3.17) and the (Z N V j ) j=1,...,R are independent. If h -1 κ N V is the cost of a diffusion f X N V,1,η T , hence we get κ c = 2κ N V and κ f = 4κ N V . This yields

K 1 = 2κ N V h -1 n 1 , (3.18) 
K j = 4κ N V h -1 n j + 2κ N V h -1 n j-1 = 5κ N V h -1 M j-1 , j = 2, . . . , R, (3.19) 
which corresponds to λ 1 = 2 and

λ j = κ f + κ c /2 κ N V = 5 in [AGJC16].
It is proved in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] that this scheme satisfies (1.28) with a strong rate β = 2. The weak convergence rate remains the same as for the non antithetic Ninomiya Victoir scheme, with α = 2.

Antithetic Giles-Szpruch-Ninomiya-Victoir scheme

The antithetic Giles-Szpruch-Ninomiya-Victoir scheme introduced in [AGJC16] is a combination of these two schemes, which takes the form (1.16) with Y f h j and Y c h j-1 defined in (3.9) for j = 1, . . . , R -1, and

Ȳ f h R := 1 4 f X N V,2 R-1 ,η T + f X N V,2 R-1 ,-η T + f X N V,2 R-1 ,η T + f X N V,2 R-1 ,-η T , Ȳ c h R-1 := f X GS,2 R-2 T .
Hence the Multilevel Monte Carlo estimator associated to this choice writes

I N π = 1 N 1 N 1 k=1 Z GS,(k) 1 + R-1 j=2 1 N j N j k=1 Z GS,(k) j + 1 N R N R k=1 ZGSNV,(k) R , (3.20) 
with

Z GS 1 = Y c h 1 , Z GS j = Y f h j -Y c h j-1 , j = 2, . . . , R -1, ZGSNV R = Ȳ f h R -Ȳ c h R-1 .
The costs K j , j = 1 . . . , R -1 are given by (3.12) and (3.13) and, for the last level,

K R = 4κ N V h -1 n R + κ GS h -1 n R-1 = h -1 M R-1 4κ N V + κ GS 2 .
If we make the assumption κ N V = κ GS we obtain

K R = 9 2 h -1 M R-1 κ GS , (3.21) 
which corresponds to λ 1 = 1, λ j = 5 for j = 2, . . . , R -1, and λ R =

κ f + κ c /2 κ N V = 9/2 in [AGJC16].
This estimator satisfies (1.28) with a strong rate β = 2 (see [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] for a complete proof). The weak convergence rate is the same as for the antithetic Ninomiya-Victoir scheme, with α = 2. Hence, both the weak and the strong rate are the same as the Ninomiya-Victoir scheme, but with the advantage that since the first R -1 levels are build up with a Giles-Szpruch scheme, the estimator (3.20) is less expensive in terms of cost.

Optimal parameters

In [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] the optimal parameters are chosen following Giles's method and starting from an assumption on the variance

Var(Z j ) = c 2 2 βj + o 1 2 βj . (3.22)
The optimal parameters that we can find in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] read

L * =     log 2 √ 2|c 1 | T n α ε -1 α     + 1 (3.23)
and

N =     2 ε 2 Var(Z ) Cost(Z )   L j=1 Var(Z j ) Cost(Z j )       . (3.24)
The first level Var(Z 1 ) = Var(Y 1 ) is estimated as a structural parameter. The intermediate variances are upper bounded following the assumption (3.22), where the constant c 2 is estimated as a structural parameter. For the Ninomiya-Victoir Giles-Szpruch scheme, once the level L * has been computed, we also estimate Var(Z L * ) as a structural parameter. Finally we get, for Giles-Szpruch and for Ninomiya-Victoir antithetic schemes

N 1 =     2 ε 2 Var(Y 1 ) K 1   Var(Y 1 )K 1 + L * j=2 V 1 2 -βj K j       , N =     2 ε 2 V 1 2 -β K 1   Var(Y 1 )K 1 + L * j=2 V 1 2 -βj K j       , = 2, . . . , L * ,
with K j given by (3.12) and (3.13) for Giles-Szpruch scheme, and (3.18) and (3.19) for Ninomiya-Victoir scheme. For Giles-Szpruch Ninomiya-Victoir scheme

N 1 =     2 ε 2 Var(Y 1 ) K 1   Var(Y 1 )K 1 + L * -1 j=2 V 1 2 -βj K j + Var(Z L * )K L *       , N =     2 ε 2 V 1 2 -β K 1   Var(Y 1 )K 1 + L * -1 j=2 V 1 2 -βj K j + Var(Z L * )K L *       , N L * =     2 ε 2 Var(Z L * ) K L *   Var(Y 1 )K 1 + L * -1 j=2 V 1 2 -βj K j + Var(Z L * )K L *      
. with = 2, . . . , L * -1. In [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] the strong convergence assumption was not based on the variance, but on the L 2 -error, as we read in (SE β ), hence the optimal parameters given in Tables (2.1) and (2.2) are not adapted to our framework, but must be substituted with those in the Tables (1.

2) and (1.3), by replacing

V * 1 = Var(Y 1 ), V * j = V 1 2 -βj and V * R = Var(Z R ).
Here V 1 corresponds to the c 2 in the [AGJC16] framework. Moreover, in the Tables (2.1) and (2.2), we do not take into account the antitheticity of the schemes, since those Tables were computed in the simplest case Z = f (X ) -f (X -1 ). This problem is solved by replacing the good K j of formulas (3.12), (3.13), (3.18), (3.19), (3.21) in the new Tables.

Hence we obtain, taking c ∞ = 1 and recalling that c 1 is estimated as a structural parameter, the new Tables (3.1) and (3.2), specifically designed for the combination of antithetic schemes and weighted Multilevel.

Remark 3.6.1. We notice that in the MLMC case, if we set N LP j the level sizes computed with Table (3.2) and N AGJC j those computed in [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF], owing to (1.26), we get

N LP j = 1 2 1 + 1 2α N AGJC j . Hence, if α ≥ 1/2, since N LP j ≤ N AGJC j
, we expect the estimators computed with the parameters of Tables (3.1) and (3.2) to be more performing than those computed with the formulas (3.23) and (3.24).

Practitioner's corner

The first level variance Var(Z 1 ) = Var(Y 1 ) and the last level variance Var(Z R ) (only for Ninomiya-Victoir Giles-Szpruch scheme) are estimated as structural parameters, making a Monte Carlo simulation of size N = 10 6 on Y 1 and on Z R , and taking the empirical variance. We recall that the empirical variance of a Monte Carlo estimator is given by

R(ε)     1 2 + log 2 h + 1 2 + log 2 h 2 + 2 log 2 √ 1 + 4α/ε α     h(ε) h/ h(1 + 2αR) 1 2αR ε -1 αR 2 -R-1 2 q(ε) q j = µ * | W R j | V * j K j j = 1, . . . , R; 1 j R q j = 1 N (ε) 1 + 1 2αR 1 µ * ε 2 R j=1 | W R j | V * j K j Table 3.1 -Optimal parameters for ML2R estimator. R(ε) 1 + log 2 c 1 1 α h + log 2 ( √ 1 + 2α/ε) α h(ε) h/ h(1 + 2α) 1 2α |c 1 | 1 α ε -1 α 2 -(R-1) q(ε) q j = µ * V * j K j j = 1, . . . , R; 1 j R q j = 1 N (ε) 1 + 1 2α 1 µ * ε 2 R j=1 V * j K j Table 3.2 -Optimal parameters for MLMC estimator. Var( 1 N N n=1 X n ) = N n=1 (X n ) 2 -1 N ( N n=1 X n ) 2 /(N -1)
. The intermediate variances are upper bounded following the assumption (3.22), where the constant

c 2 = V 1 is estimated as a structural parameter V 1 , making a Monte Carlo of size N on Y h M -Y h , taking the empirical variance Var(Y h M -Y h ) and setting V 1 = Var Y h M -Y h h -β 1 M -1 -β
.

Likewise, the parameter c 1 is estimated by c 1 , computed using the same Monte Carlo simulation on Y h M -Y h and taking

c 1 = 1 N N n=1 Y h M -Y h (n) h -α 1 M α -1 -1
.

For more details on the importance of a good approximation of c 1 , we refer to Section 2.4.2.

In the simulations, when we have a closed formula for the payoff, i.e. we can compute the true value I 0 , we can verify that we respect the theoretical L 2 -error that we fixed. The theoretical squared L 2 -error writes

E (I N π -I 0 ) 2 = E (I N π ) 2 + I 0 (I 0 -2E I N π
). We will approximate E (I N π ) 2 and E I N π making a standard Monte Carlo estimator of size L = 100 on I N π and we will display the empirical L 2 -error computed with the formula

1 L L =1 I N,( ) π 2 + I 0 I 0 -2 1 L L =1 I N,( ) π . (3.25)
Moreover, we will display the empirical bias given by

1 L L =1 I N,( ) π -I 0 (3.26)
and the empirical variance

1 L -1   L =1 I N,( ) π 2 - 1 L L =1 I N,( ) π 2   .
(3.27)

Numerical results

We consider the Clark-Cameron SDE with drift and initial conditions U 0 = S 0 = 0, defined as follows

dU t = S t dW 1 t , dS t = µdt + dW 2 t , (3.28) 
where µ ∈ R. The Giles-Szpruch scheme for this model is given by

     U GS t k+1 = U GS t k + S GS t k W 1 t k+1 -W 1 t k + 1 2 W 1 t k+1 -W 1 t k W 2 t k+1 -W 2 t k , S GS t k+1 = S GS t k + µ(t k+1 -t k ) + W 2 t k+1 -W 2 t k , (3.29) 
for k = 1, . . . , n-1. Moreover, in the particular case of this model, we have a closed formula also for the Ninomiya-Victoir scheme, which is given by

           U N V,η t k+1 = U N V,η t k + S N V,η t k W 1 t k+1 -W 1 t k + 1 2 µ(t k+1 -t k ) W 1 t k+1 -W 1 t k + 1 η k+1 =1 W 1 t k+1 -W 1 t k W 2 t k+1 -W 2 t k , S N V,η t k+1 = S N V,η t k + µ(t k+1 -t k ) + W 2 t k+1 -W 2 t k , (3.30) 
for k = 1, . . . , n -1. For a smooth payoff function, we recall that previous results in [START_REF] Giles | Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation[END_REF] and [START_REF] Al Gerbi | Ninomiya-Victoir scheme : strong convergence, antithetic version and application to multilevel estimators[END_REF] lead to α = 1 and β = 2 for the antithetic Giles-Szpruch scheme, and α = β = 2 for both the antithetic Ninomiya-Victoir scheme and the coupling between Giles-Szpruch and Ninomiya-Victoir scheme.

Let us take the smooth payoff f (u, s) = 10 cos(u). Owing to some straightforward computations (see Appendix B), the closed formula for this payoff reads

E [cos(λU t )] = 1 √ cosh λt e -µ 2 t 2 (1-tanh λt λt ) .
With initial conditions U 0 = S 0 = 0, final time T = 1, µ = 1 and λ = 1, the closed formula returns the true value I 0 = E [10 cos(λU t )] = 7.14556 (we multiplied by the factor 10 in Giles-Szpruch Ninomiya-Victoir GSNV Euler

α 1 2 2 1 β 2 2 2 1 c 1 1.65e+00 5.76e-01 5.74e-01 2.77e+00 V 1 1.40e+01 1.17e+01 1.40e+01 2.03e+01
Var(Y 1 ) 5.35e+00 1.54e+01 5.42e+00 8.82e+00

Table 3.3 -Structural parameters for f (u, s) = 10 cos(u).

order to get a good order of magnitude). The estimated structural parameters are given in Table 3.3. In Tables from C.1 to C.7 we give all the outputs of the execution of 100 calls to each estimator, where the L 2 error, the bias and the variance were computed with formulas (3.25), (3.26) and (3.27).

Optimal parameters for MLMC estimators

Note that, as expected owing to Remark 3.6.1, the level size N j computed with the Table (3 From now on, we will take the optimal parameters for MLMC computed with Table (3.2).

Choice of weak order for ML2R estimator with Ninomiya Victoir scheme

The order of the first term in the bias expansion for the Ninomiya Victoir scheme is 2, hence we set α = 2 in the MLMC framework, meaning that

E [Y h ] = I 0 + c 1 h 2 + o(h 2 ).
We recall that an ML2R estimator takes advantage also of the successive terms in the bias expansion, hence we need to know if the term after the first is of order 3 or 4. If it is 4, we can confirm α = 2 in the assumption

(W E α ), hence E [Y h ] = I 0 + R k=1 c k h 2k + o(h 2R ). But if it is 3, this would mean that assumption (W E α ) holds with α = 1 and c 1 = 0, hence E [Y h ] = I 0 + R k=2 c k h k + o(h R ).
Many efforts have been done to improve the order of the first term in the weak error expansion with the Ninomiya Victoir scheme, see for example [START_REF] Oshima | A new extrapolation method for weak approximation schemes with applications[END_REF] to find a method to construct weak approximations schemes of order 2m, m ∈ N, but to our knowledge there are no results concerning the order of the successive terms. In this particular case, we suspect the weak order α to be 1 with first coefficient c 1 = 0. When c 1 = 0, as we showed in Section 1.1.2, we need only R -1 weights w R r , r = 1, . . . , R -1, to kill the terms up to R in the bias polynomial expansion, which we compute with the formula In what follows, we will take this configuration for the ML2R estimator with Ninomiya Victoir scheme.

w R r = n α r w R-1 r R-1 j=1 n α j w R-1 j r = 1, . . . , R -1,

ML2R vs MLMC

In Figure 3.2 we can observe the performances of the ML2R estimators, where the accuracy is still fulfilled and the antithetic Giles Szpruch scheme seems to reach better results than antithetic Ninomiya-Victoir scheme and Euler scheme. The gain in using the ML2R estimator instead of MLMC is dramatic with respect to the Euler scheme, as we see in Figure 3.3a, where we show the CPU time ratios with respect to the CPU time of the ML2R estimator with the antithetic Giles Szpruch scheme. There is a significant interest in using the antithetic Giles Szpruch scheme. What should be noticed here is that when using the Euler scheme, the parameter M can vary in order to reach the optimal cost, whereas in the antithetic schemes we forced M = 2 (we notice here that the antithetic approach can be used more generally for an arbitrary M , althought it is not yet written up), as we can We observe a gain of about 50% when taking the ML2R estimator with antithetic Giles Szpruch scheme with respect to the MLMC schemes with antithetic Giles Szpruch scheme or with antithetic Ninomiya Victoir scheme, whereas there is no significant improvement when taking the ML2R estimator with antithetic Giles Szpruch scheme instead of the MLMC estimator with antithetic Giles Szpruch Ninomiya Victoir scheme, as we see in Figures 3.3b and 3.4.

We notice though that we are in the particular case where we have an explicit expression of the Ninomiya-Victoir scheme, so that we could make the assumption κ GS = κ N V in (3.21). If we would take a model different from Clark-Cameron, at each time step we would have to solve a set of ODEs, which would significantly increase the value of κ N V and consequently the cost of the estimator. Moreover, when taking an MLMC estimator, we need to estimate the first coefficient c 1 in the bias expansion, whereas for an ML2R estimator such a pre-processing is not necessary. If we would not take this estimated value, as we saw in Section 2.4.1, we would take c 1 = 1 and the MLMC estimator would fail owing to an underestimation of the coefficient c 1 , as it can observed in Figure 3.5. Chapitre 4

Nested Monte Carlo

The purpose of the so-called nested Monte Carlo method is to compute by simulation quantities of the form

E f E [X | Y ] ,
where (X, Y ) is an R × R d -valued couple of random variables defined on a probability space (Ω, A, P) satisfying X ∈ L 2 (P) and f : R → R is a specified function such that

f (E [X | Y ]) ∈ L 2 (P).
We assume that there exists a Borel function F : R q × R d → R and random vector ξ : (Ω, A) → R q independent of Y such that

X = F (ξ, Y ).
Let us introduce the Borel function φ 0 : R d → R defined by φ 0 (y) = E [F (ξ, y)] so that one may set E [F (ξ, Y )|Y ] = φ 0 (Y ). Then one has the following representation

E [X | Y ] = φ 0 (Y ) = R q F (x, Y ) P ξ (dx).
To comply with the multilevel framework, we set K 0 ∈ N * and H

= 1/K, K ∈ K 0 N * , X0 := E [X | Y ] , Xh := 1 K K k=1 F (ξ k , Y ) with h = 1 K ∈ H
and (ξ k ) k 1 is an i.i.d. sequence of random vectors with the same distribution as ξ, defined on (Ω, A, P) and independent of Y (up to an enlargement of the probability space if necessary) and

Y 0 := f ( X0 ), Y h := f ( Xh ).
We distinguish between two main frameworks, depending on whether or not f is smooth, a classical example of non-smoothness being f = 1 (u,s) (see [START_REF] Devineau | Construction d'un algorithme d'accélération de la méthode des "simulations dans les simulations" pour le calcul du capital économique Solvabilité II[END_REF]). In both cases, our aim is to prove that the nested Monte Carlo estimator satisfies a weak and a strong convergence assumption.

Before getting into the smooth and non smooth case, we give some useful results that will be valid in both frameworks.

Useful results

Following Comtet [START_REF] Comtet | Advanced combinatorics. enlarged. The art of finite and infinite expansions[END_REF], we introduce the partial Bell polynomials B n,k for n 1 and k = 1, . . . , n defined by

B n,k (x 1 , . . . , x n-k+1 ) = n! 1 ! • • • n-k+1 ! x 1 1! 1 • • • x n-k+1 (n -k + 1)! n-k+1 (4.1)
where the summation takes place over all integers 1 , . . . , n 0, such that

1 + 2 2 + • • • + (n -k + 1) n-k+1 = n and 1 + • • • + n-k+1 = k. Note that d 0 B n,k = k. The complete Bell polynomials B n are defined by B n (x 1 , . . . , x n ) = n k=1 B n,k (x 1 , . . . , x n-k+1 ).
The first statement is a formal Taylor expansion with integral remainder of E g( Xh ) around E g( X0 ) , with g : R → R test function.

Lemma 4.1.1 (Taylor expansion). Let R 0 and let g : R → C be a 2R + 1 times differentiable function.

Assume X ∈ L 2R+1 and let κ j (y) be the j-th cumulant (a.k.a. semi-invariants) of F (ξ, y) -E [F (ξ, y)] for y ∈ R d and j ∈ 1, . . . , R . Let (B n,k ) 1 k n be the partial Bell polynomials defined by (4.1). We then define for r 1, r + 1 n 2r and y Let R 1. The Taylor formula at order 2R applied with g gives

∈ R d , b r,n-r (y) = B r,n-r κ 2 (y) 2 , . . . , κ 2r-n+2 (y) 2r -n + 2 . Then ∀h ∈ H, E g( Xh ) = E g( X0 ) + 2R-1 r=1 c(r, (2r + 1) ∧ 2R)h r + R 2R+1 , (4.2 
E g 1 K K k=1 F (ξ (k) , y) = g(φ 0 (y)) + 2R n=1 g (n) (φ 0 (y)) n! E [(E h (y)) n ] + R 2R+1 (y), (4.5) where R 2R+1 (y) = 1 (2R)! E E h (y) 0 g (2R+1) (t + φ 0 (y))(E h (y) -t) 2R dt .
The Bell polynomials allow us to explicitly calculate the moments E [(E h (y)) n ], n = 1, . . . , R of E h (y) as follows. Let κ j ( Xy ), j = 1, . . . , R, denote the cumulants (a.k.a. semiinvariants) of Xy . Additivity and homogeneity of cumulants give ∀j = 1, . . . , 2R -1, κ j (E h (y)) = h j-1 κ j ( Xy ).

Moments of E h (y) can be expressed in terms of cumulants using complete Bell polynomials (see [START_REF] Comtet | Advanced combinatorics. enlarged. The art of finite and infinite expansions[END_REF] p.160 Equation(2)) as :

E [(E h (y)) n ] = B n (κ 1 (E h (y)), . . . , κ n (E h (y))).
First note that κ 1 ( Xy ) = 0 so that κ 1 (E h (y)) = 0. Moreover it follows from the definition (4.1) that B n,k is k-homogeneous, consequently

E [(E h (y)) n ] = h n n k=1 h -k B n,
k 0, κ 2 ( Xy ), . . . , κ n-k+1 ( Xy ) .

We derive from (4.1) that B n,n (0) = 0, hence the last term in the above sum is nul and consequently the sum in (4.5) starts from n = 2. Note now that

B n,k 0, κ 2 ( Xy ), . . . , κ n-k+1 ( Xy ) = n! (n-k)! b n-k,k (y) if 1 k n/2 , 0 if k > n/2 , with b n-k,k (y) = B n-k,k κ 2 ( Xy ) 2 , . . . , κ n-2k+2 ( Xy ) n -2k + 2 which implies that E [(E h (y)) n ] = h n n/2 k=1 h -k n! (n -k)! b n-k,k (y). (4.6) 
Plugging (4.6) in (4.5) gives, since the sum starts at n = 2 as mentioned above,

E g 1 K K k=1 F (ξ (k) , y) = g(φ 0 (y)) + 2R n=2 g (n) (φ 0 (y)) n/2 k=1 h n-k (n -k)! b n-k,k (y) + R 2R+1 (y).
Letting r = n-k in the above expression, noting that n/2 + n/2 = n and that n/2 r iff n ≤ 2r + 1, on derives by interchanging the sums that

E g 1 K K k=1 F (ξ (k) , y) = g(φ 0 (y))+ 2R-1 r=1 h r r!   (2r+1)∧2R n=r+1 g (n) (φ 0 (y))b r,n-r (y)   +R 2R+1 (y).
We conclude by integrating with respect to Y .

Taking advantage of this expansion we will derive two results. First a bias error expansion for smooth enough payoff functions, in which no regularity is required on the law of ( X0 , Xh ) (see Subsection 4.2.1). Conversely a second result will be established relying on the regularity of the distribution of ( X0 , Xh ) when the payoff function is not smooth (see Subsection 4.3.1).

As concerns the strong convergence rate of the estimator, elementary computations show that, if X ∈ L 2 (P) (so that F (ξ, y) ∈ L 2 (P) P Y (dy)-a.s.), then Xh -X0

2 2 = 1 K P Y (dy)var F (ξ, y) = hE (F (ξ, Y ) -φ 0 (Y )) 2 ≤ h var F (ξ, Y ) , (4.7) since φ 0 (Y ) = E [F (ξ, Y )|Y ].
When X ∈ L p (P), we also get a bound in L p (P), as described in the following Lemma.

Lemma 4.1.2. Assume X ∈ L p (P), p 2. Then, for every h, h ∈ H,

Xh -Xh p 2B M Z p X -E [X | Y ] p |h -h | 1 2 .
(4.8)

Proof. Set F (z, y) = F (z, y) -φ 0 (y). Assume first that h, h = 0, h h, and set K = 1 h , K = 1 h . First note that by Fubini's theorem Xh -Xh

p p = R d P Y (dy)E   1 K K k=1 F (ξ k , y) - 1 K K k=1 F (ξ k , y) p   .
Then, for every y ∈ R d , it follows from Minkowski's Inequality

1 K K k=1 F (ξ k , y) - 1 K K k=1 F (ξ k , y) p |h -h | K k=1 F (ξ k , y) p + h K k=K+1 F (ξ k , y) p .
Applying Marcinkiewicz-Zygmund Inequality to both terms on the right hand side of the above inequality yields

1 K K k=1 F (ξ k , y) - 1 K K k=1 F (ξ k , y) p |h -h |B M Z p K k=1 F (ξ k , y) 2 1 2 p 2 + h B M Z p K k=K+1 F (ξ k , y) 2 1 2 p 2 |h -h |B M Z p K 1 2 F (ξ, y) p + h B M Z p (K -K) 1 2 F (ξ, y) p ,
where we used again (twice) Minkowski's Inequality in the last line. Finally, for every

y ∈ R d , 1 K K k=1 F (ξ k , y) - 1 K K k=1 F (ξ k , y) p B M Z p F (ξ, y) p (h -h ) 1 √ h + h 1 h - 1 h 1 2 = B M Z p F (ξ, y) p (h -h ) 1 2 1 - h h 1 2 + h h 1 2 2 B M Z p F (ξ, y) p (h -h ) 1 2 .
Plugging this bound in the above equality yields, owing to Minkowski's Inequality and Jensen's Inequality for conditional expectations, the announced result

Xh -Xh p p (2 B M Z p ) p R d P Y (dy) F (ξ, y) p p (h -h ) p 2 = (2 B M Z p ) p X -E [X | Y ] p p (h -h ) p 2 ≤ (4 B M Z p ) p X p p (h -h ) p 2 .

Smooth payoff function

We first present the smooth case, where we give a bias error expansion and a strong convergence rate when the payoff function f is smooth.

Weak error

The bias error expansion of the nested Monte Carlo estimator when f is smooth is a consequence of Lemma 4.1.1, as we will see in the proof of the following Proposition. Proposition 4.2.1 (Bias error (I) : smooth functions). Let R 1 and let f : R → R be a 2R + 1 times differentiable payoff function with bounded derivatives f (k) , k = R + 1, . . . , 2R + 1. Assume X ∈ L 2R+1 . Then there exists c 1 , . . . , c R such that

∀h ∈ H, E f ( Xh ) = E f ( X0 ) + R r=1 c r h r + O(h R+1/2 ).
(4.9)

Proof. Applying Lemma 4.1.1 with the function g = f we get

∀h ∈ H, E f ( Xh ) = E f ( X0 ) + R-1 r=1 c(r, 2r+1)h r +c(R, 2R)h R + 2R-1 r=R+1 c(r, 2R)h r +R 2R+1 ,
(4.10) with c(r, k) defined in (4.3). Establishing the proposition amounts to proving that the remainder term R 2R+1 is well controlled. Using that f (2R+1) is bounded we have

R 2R+1 f (2R+1) ∞ (2R + 1)! E Xh -X0 2R+1 .
Using successively the Marcinkiewicz-Zygmund Inequality and the Minkowski Inequality for the L R+ 1 2 (P)-norm, we get, having in mind that h

= 1 K , E   1 K K k=1 F (ξ k , y) -φ 0 (y) 2R+1   (B M Z 2R+1 ) 2R+1 h 2R+1 E   K k=1 (F (ξ k , y) -φ 0 (y)) 2 R+1/2   (B M Z 2R+1 ) 2R+1 h R+1/2 E F (ξ, y) -φ 0 (y) 2R+1 where B M Z p = 18p 3 2 (p-1) 1 2 
, p > 1 (see [START_REF] Shiryaev | Probability. Second. T. 95[END_REF] p.499). Integrating with respect to P Y finally yields

E Xh -X0 2R+1 (B M Z 2R+1 ) 2R+1 h R+1/2 E F (ξ, Y ) -φ 0 (Y ) 2R+1 2 R+ 1 2 (B M Z 2R+1 ) 2R+1 h R+1/2 E |X| 2R+1 + |E [Y |X] | 2R+1 2 R+ 3 2 (B M Z 2R+1 ) 2R+1 h R+1/2 E |X| 2R+1 (4.11) so that R 2R+1 = O(h R+1/2 ).

Strong convergence rate

If we assume that f is Lipschitz continuous, Inequality (4.7) straightforwardly shows that the standard nested Monte Carlo satisfies a strong convergence at a rate h β with β = 1. When asking for more smoothness, more precisely that f is ρ-Hölder, we will see that we can build an antithetic version of the nested Monte Carlo which attains a strong convergence at a rate h β with β > 1. As we saw this corresponds to the optimal unbiased setting in terms of minimization of the computational cost.

f Lipschitz continuous

It is a known result that if f is Lipschitz continuous, then the nested Monte Carlo satisfies a strong convergence assumption with β = 1. More precisely the following Proposition holds.

Proposition 4.2.2. Assume f is Lipschitz continuous. For every h, h ∈ H ∪ {0},

Y h -Y h 2 2 ≤ [f ] 2 Lip ( X 2 2 -E [X|Y ] 2 2 )|h -h|
so that (Y h ) h∈H satisfies a strong convergence assumption with β = 1. This is a straightforward consequence of Inequality (4.7).

f locally Hölder : antithetic approach

When the function f is C 1+ρ (R, R), ρ ∈ (0, 1] (f is ρ-Hölder), a variant of the former Multilevel nested estimator has been proposed in [START_REF] Bujok | Multilevel simulation of functionals of Bernoulli random variables with application to basket credit derivatives[END_REF], [START_REF] Haji | Pedestrian Flow in the Mean Field Limit[END_REF] and [START_REF] Chen | Estimating expectations of functionals of conditional expected via multilevel nested simulation[END_REF] (see also [START_REF] Giles | Multilevel Monte Carlo methods[END_REF]) to improve the rate of strong convergence in order to attain the asymptotically unbiased setting, with β > 1. We recall that, except for the antithetic discretization schemes for Brownian diffusions, the root has no reason to be constrained to be M = 2. In this Section we will consider general refiners of the form n j = M j-1 , j = 1, . . . , R, M ≥ 2. A root M being given, the idea is to replace in the successive refined levels the difference

Y h M -Y h (where h = 1 K , K ∈ K 0 N * )

in the ML2R et MLMC estimators by an antithetic type as follows

Y h, h M := f 1 M K M K k=1 F ξ k , Y - 1 M M m=1 f 1 K K k=1 F ξ (m-1)K+k , Y . It is clear that E Y h, h M = E Y h M -Y h .
Proposition 4.2.3. Assume X ∈ L p(1+ρ) and f ρ-Hölder, i.e.

f (x) -f (y) ≤ f ρ |x -y| ρ , 0 < ρ ≤ 1. (4.12)
Then Y h, h M satisfies a strong convergence assumption with β = 1 + ρ > 1.

Proof. We notice that, owing to Burkholder's Inequality, for all p ≥ 2, for every sequence (X k ) k≥0 of random variables centered and i.i.d. and K ∈ N, K ≥ 2, there exists a positive real constant C p such that

E K k=1 X k p ≤ C p E   K k=1 X 2 k p 2   ≤ C p K k=1 X 2 k p 2 p 2 = C p K p 2 E [|X 1 | p ] . (4.13) We set XK,m = 1 K K k=1 F (ξ K(m-1)+k , Y ) and XMK = 1 M M m=1 XK,m = 1 M K M K k=1 F (ξ k , Y ).
We notice that, for each fixed y ∈ R d , the random variables (X k ) k≥1 = (M -1)F (ξ k , y) -M m=2 F (ξ K(m-1)+k , y) k≥1 are centered and i.i.d. . Moreover (1 + ρ)p ≥ 2 hence, owing to Inequality (4.13), there exists a constant C p,ρ such that

E   M m=2 ( XK,1 -XK,m ) (1+ρ)p   ≤ C p,ρ 1 
K (1+ρ)p 2 P Y (dy)E   (M -1)F (ξ 1 , y) - M m=2 F (ξ K(m-1)+1 , y) (1+ρ)p   .
Applying twice Minkowski's Inequality yields

E   M m=2 ( XK,1 -XK,m ) (1+ρ)p   ≤ C p,ρ 1 
K (1+ρ)p 2 (M -1) (1+ρ)p P Y (dy)E |F (ξ 1 , y) -F (ξ K+1 , y)| (1+ρ)p ≤ C p,ρ 1 
K (1+ρ)p 2 (M -1) (1+ρ)p 2 (1+ρ)p E |F (ξ 1 , Y )| (1+ρ)p .
Plugging this in (4.16) we get If we replace the ρ-Hölder assumption on f by a locally ρ-Hölder assumption, i.e.

1 M M m=1 f ( XK,m ) -f (x) p p ≤ V (p,ρ) 1 1 K p(1+ρ) 2 , with V (p,ρ) 1 = [f ] p ρ C p,ρ 2 p(1+ρ) 1 - 1 M ( 
f (x) -f (y) ≤ C|x -y| ρ (1 + |x| q + |y| q ) , then, since |x m | q ≤ max(| XK,m | q , | XMK | q ) ≤ | XK,m | q + | XMK | q , Inequality (4.15) must be replaced by 1 M M m=1 f ( XK,m ) -f ( XMK ) p = 1 M M m=1 f (x m ) -f ( XMK ) ( XK,m -XMK ) p ≤ [f ] ρ 1 M M m=1 | XK,m -XMK | 1+ρ (1 + | XK,m | q + 2| XMK | q ) p . (4.17)
Owing to Hölder's Inequality with r, s > 1 such that 1 r + 1 s = 1 and Minkowski's Inequality, we get

| XK,m -XMK | 1+ρ (1 + | XK,m | q + 2| XMK | q ) p ≤ | XK,m -XMK | 1+ρ pr 1 + | XK,m | q ps + 2 | XMK | q ps .
Then, performing successively integrations by parts yields

E g ( ) ( X0 )b r, -r (Y ) = (-1) R g(x) (b r, -r • φ -1 0 )f X0 ( ) (x)dx.
As for the remainder term,

R g 2R+1 = 1 (2R)! E Xh -X0 0 g (2R+1) (t + X0 )( Xh -X0 -t) 2R dt = 1 (2R)! R dx f Xh -X0 (x) x 0 R g (2R+1) (t + x)f X0 | Xh -X0 =x (x)dx (x -t) 2R dt = 1 (2R)! R dx f Xh -X0 (x) x 0 g (2R+1) * f X0 | Xh -X0 =x (t)(x -t) 2R dt,
where f : u → f (-u) and * denotes standard convolution of functions on R. Now, owing to the regularity assumption made on f X0 | Xh -X0 =x , we know that g

(2R+1) * f X0 | Xh -X0 =x = g * ( f X0 | Xh -X0 =x ) (2R+1) = - f (2R+1) X0 | Xh -X0 =x * g. It follows from Fubini's Theorem that R g 2R+1 = 1 (2R)! R dxf Xh -X0 (x) x 0 dt R dxg(x)f (2R+1) X0 | Xh -X0 =x (x -t)(x -t) 2R = - 1 (2R)! R dxf Xh -X0 (x) R dx g(x) x 0 f (2R+1) X0 | Xh -X0 =x (x -t)(x -t) 2R dt = R g(x)r(h, x)dx, where r(h, x) = - 1 (2R)! E Xh -X0 0 f (2R+1) X0 | Xh -X0 (x -t)( Xh -X0 -t) 2R dt . (4.21)
Plugging these identities in (4.2), we get that, for every test-function g,

E g( Xh ) = R d g(x) f X0 (x) + f X0 (x) R r=1 h r r! P r (x) + r(h, x) dx, where r(h, x) = f X0 (x) 2R-1 r=R+1 h r r! P r (x) + r(h, x), Hence f Xh (x) = f X0 (x) + f X0 (x) R r=1 h r r! P r (x) + r(h, x). (4.22)
The continuity of the function on the right hand side of the above equality will establish the announced expansion, provided we show that r(h, x) = O h R+ 1 2 uniformly with respect to x ∈ R. It follows from the boundedness assumption made on f ). We first notice that, owing to the assumptions made in (a) and to the upper bound (4.11), we have, for all a

(2R+1) X0 | Xh -X0 =x (x) that r(h, x) 1 (2R)! sup x,x∈R f (2R+1) X0 | Xh -X0 =x (x) E Xh -X0 2R+1 2R + 1 C X,R (2R + 1)! h R+ 1 2 , ( 4 
< b ∈ R, b a E R 1 {t∈I h } f (2R+1) X0 | Xh -X0 (x -t)( Xh -X0 -t) 2R dt dx < +∞, with I h := -( Xh -X0 ) -, ( Xh -X0 ) + . Hence, owing to Fubini's Theorem, using the definition (4.21) of r(h, x), b a r(h, x)dx = - 1 (2R)! E Xh -X0 0 f (2R) X0 | Xh -X0 (b -t) -f (2R) X0 | Xh -X0 (a -t) ( Xh -X0 -t) 2R dt .
The assumption sup h∈H,x,x∈R |f

(2R) X0 | Xh -X0 =x (x)| < +∞ and again the upper bound (4.11), yield E R 1 {t∈I h } f (2R) X0 | Xh -X0 (a -t)( Xh -X0 -t) 2R dt < +∞.
Hence, owing to Lebesgue's Dominated Convergence Theorem and to the assumption

lim x→-∞ f (2R) X0 | Xh -X0 =x (x) = 0, we get b -∞ r(h, x)dx = - 1 (2R)! E Xh -X0 0 f (2R) X0 | Xh -X0 (b -t)( Xh -X0 -t) 2R dt (4.24)
and then, likewise (4.23), using the boundedness of f

(2R) X0 | Xh -X0 =x (x), b -∞ r(h, x)dx = O(h R+ 1 2 ). (4.25)
Owing to Equation (4.22), if we take h 1 , . . . , h 2R-1 ∈ H pairwise distinct, we get, for all i = 1, . . . , 2R -1,

2R-1 r=1 h r-1 i P r (x) r! f X0 (x) = Ξ i (x), (4.26) with Ξ i (x) = f Xh i (x) -f X0 (x) -r(h i , x) h i , i = 1, . . . , 2R -1. (4.27)
Hence we get a Vandermonde system, V u(x) = Ξ(x) with

V = V (h 1 , . . . , h 2R-1 ) =      1 h 1 h 2 1 . . . h 2R-2 1 1 h 2 h 2 2 . . . h 2R-2 2 . . . . . . . . . . . . . . . 1 h 2R-1 h 2 2R-1 . . . h 2R-2 2R-1      , u(x) = (u 1 (x), . . . , u 2R-1 (x)) with u r (x) = P r (x) r! f X0 (x) and Ξ(x) = (Ξ 1 (x), . . . , Ξ 2R-1 (x)).
We set, for all j = 1, . . . , 2R -1,

V j (x) = V j (h 1 , . . . , h 2R-1 , Ξ(x)) =       1 . . . h j-2 1 Ξ 1 (x) h j 1 . . . h 2R-2 1 1 . . . h j-2 2 Ξ 2 (x) h j 2 . . . h 2R-2 2 . . . . . . . . . . . . . . . . . . . . . 1 . . . h j-2 2R-1 Ξ 2R-1 (x) h j 2R-1 . . . h 2R-2 2R-1      
.

By expanding along the j th column, the determinant of

V j writes det( V j (x)) = 2R-1 i=1 (-1) i+j d ij Ξ i (x),
where

d ij := d ij (h 1 , . . . , h i-1 , h i+1 , . . . , h 2R ) ∈ R with d ij (h 1 , . . . , h i-1 , h i+1 , . . . , h 2R-1 ) = det            1 . . . h j-2 1 h j 1 . . . h 2R-2 1 . . . . . . . . . . . . . . . . . . 1 . . . h j-2 i-1 h j i-1 . . . h 2R-2 i-1 1 . . . h j-2 i+1 h j i+1 . . . h 2R-2 i+1 . . . . . . . . . . . . . . . . . . 1 . . . h j-2 2R-1 h j 2R-1 . . . h 2R-2 2R-1            .
Hence, owing to Cramer's rule, the solution of the Vandermonde system writes

u j (x) = det V j (x) det(V ) = 1 det(V ) 2R-1 i=1 (-1) i+j d ij Ξ i (x).
Finally, since we saw that for all i = 1, . . . , 2R -1, the integral of Ξ i (x) is semi-convergent, we deduce the semi-convergence of the integral

b -∞ P r (x)f X0 (x)dx = r! det(V ) 2R-1 i=1 (-1) i+r d ir b -∞ Ξ i (x)dx,
where, owing to the expression (4.27) and to (4.25), b -∞ Ξ i (x)dx is finite, which concludes the proof.

Strong convergence rate

We conclude by showing the strong convergence of the nested Monte Carlo estimator. The following Lemma is more or less standard (see for instance [START_REF] Avikainen | On irregular functionals of SDEs and the Euler scheme[END_REF]).

Lemma 4.3.1. Let X and X be two real valued random variables lying in L p , p 1, with densities f X and f X respectively. Then, for every x ∈ R,

1 { X x} -1 { X x} 2 2 p p p+1 + p 1 p+1 f X sup + f X sup p p+1 X -X p p+1
p . (4.28)

Unbiased randomized estimator

Let τ : (Ω, A, P) → N * be a discrete random variable independent of (Z j ) j≥1 . We set

I τ := τ j=1 Z j π j ,
where π j = P(τ ≥ j) > 0 for all j ≥ 1. I τ is an unbiased estimator of I 0 = E [Y 0 ], as we show in Proposition 5.1.1. In practice the estimator of interest is designed

I N τ := 1 N N k=1 I τ k , (5.2) 
with

I τ k = τ k j=1 Z (k) j π j ,
where (τ k ) k≥1 are i.i.d. with a geometric distribution of parameter p * ∈ (0, 1) and are independent of the i.i.d. sequences (Z

. The details about the choice of the optimal parameter p * are given in the next Section. Though our formalism is borrowed from [START_REF] Rhee | Unbiased estimation with square root convergence for SDE models[END_REF], our methods of proof slightly differ from the one developed in this reference. 

I τ = j≥1 Z j π j 1 {τ ≥j} .
Moreover, owing to the independence of τ and (Z j ) j≥1 , we get j≥1

Z j 1 {τ ≥j} 1 π j = j≥1 Z j 1 P(τ ≥ j) π j = j≥1 Z j 1 < +∞.
Lebesgue's dominated convergence theorem for series yields

E [I τ ] = j≥1 E Z j 1 {τ ≥j} π j = j≥1 E [Z j ] = E [Y 0 ] .
The variance of this unbiased estimator is described in the following Proposition.

Proposition 5.1.2. Assume j≥1 Z j 2 √ π j < +∞.

(5.4)

Then there exists a random variable S ∞ such that E |S ∞ | 2 < +∞ and

(i) lim m→∞ S ∞ -S m 2 √ π m = 0. (ii) Var(I τ ) = Var(S ∞ ) + j≥1 S ∞ -S j 2 2
π j π j+1 P(τ = j).

Proof. (i) Assumption (5.4) implies that j≥1 Z j 1 ≤ j≥1 Z j 2 < +∞, hence S ∞ exists a.s. and E |S ∞ | 2 < +∞. Owing to Minkowski's Inequality, to assumption (5.4) and using that π j is non increasing, we get

S ∞ -S m 2 √ π m ≤ j≥m+1 Z j 2 √ π m ≤ j≥m+1 Z j 2 √ π j → 0, as m → +∞.
(ii) We set

I m := m j=1 Z j 1 {τ ≥j} π j .
The assumption (5.4) yields j≥1 Z j 1 {τ ≥j} 2

π j = j≥1 Z j 2 1 {τ ≥j} 2 π j = j≥1 Z j 2 √ π j < +∞, hence I m → I τ in L 2 as m → +∞, and 
E I 2 m → E I 2 τ as m → +∞.
(5.5)

Then we derive

E I 2 m = m j=1 E Z 2 j π 2 j π j + 2 1≤j< ≤m E [Z j Z ] π j π P(τ ≥ j ∨ ) = m j=1 E Z 2 j + 2Z j m =j+1 Z π j = m j=1 E Z j + m =j+1 Z 2 -E m =j+1 Z 2 π j = m j=1 S m -S j-1 2 2 -S m -S j 2 2 π j ,
where we used in the second line that P(τ ≥ j ∨ ) = P(τ ≥ ) = π , since j < . Now,

S m -S j-1 2 2 -S m -S j 2 2 = 2 Z j , S m - S j + S j-1 2 = 2 Z j , S ∞ - S j + S j-1 2 + 2 Z j , S m -S ∞ = S ∞ -S j-1 2 2 -S ∞ -S j 2 2 + 2 Z j , S m -S ∞ .
Consequently,

E I 2 m = m j=1 S ∞ -S j-1 2 2 -S ∞ -S j 2 2 π j + 2 m j=1 Z j , S m -S ∞ π j .
One has, by Schwarz's Inequality and the fact that

√ π j ≥ √ π m for j ≤ m, m j=1 Z j , S m -S ∞ π j ≤ m j=1 Z j 2 √ π j S m -S ∞ 2 √ π m .
Owing to assumption (5.4) and to (i)

lim m→+∞ m j=1 Z j , S m -S ∞ π j = 0, hence E I 2 τ = j≥1 S ∞ -S j-1 2 2 -S ∞ -S j 2 2 π j .
As a last step, an Abel transform shows that

j≥1 S ∞ -S j-1 2 2 -S ∞ -S j 2 2 π j = S ∞ 2 2 π 1 - S ∞ -S m 2 2 π m + m-1 j=1 S ∞ -S j 2 2 1 π j+1 - 1 π j = S ∞ 2 2 π 1 - S ∞ -S m 2 2 π m + m-1 j=1 S ∞ -S j 2 2 π j π j+1 P(τ = j). Now π 1 = 1 and (i) yield E [I τ ] 2 = E S 2 ∞ + j≥1 S ∞ -S j 2 2
π j π j+1 P(τ = j).

Combining this with E [I

τ ] = E [Y 0 ] = E [S ∞ ],
we finally get the expression for the variance

Var(I τ ) = Var(S ∞ ) + j≥1 S ∞ -S j 2 2 π j π j+1 P(τ = j),
which completes the proof.

The analysis of the variance is then reduced to the analysis of the quantity S ∞ -S j 2 2 . We use S C j to refer to the second correlated case and S I j to refer to the first independent case. S C ∞ and S I ∞ will denote their corresponding limits (in L 2 and a.s.). We start by the second setting.

2. In this fully correlated setting, we have

Z 1 = Y h and Z j = Y h n j -Y h n j-1 , j ≥ 2, so that S C j = Y h n j and S C ∞ = lim m→+∞ S C m = Y 0 in L 2 and a.s.. Consequently V C j := S C ∞ -S C j 2 2 = Y 0 -Y h n j 2 2 ≤ V 1 h n j β .
(5.6)

1. In the independent setting, like for Multilevel estimators MLMC and ML2R, we have that

Z 1 = Y (1) h and Z j = Y (j) h n j -Y (j) h n j-1 , j ≥ 2, are independent, so that S I ∞ is no longer equal to Y 0 (though E S I ∞ = E [Y 0 ]
). The bias-variance decomposition then yields, owing to the independence of the (Z ) ≥1 ,

V I j := S I ∞ -S I j 2 2 = Var   i≥j+1 Z i   +   i≥j+1 E [Z i ]   2 = i≥j+1 Var(Z i ) + E [Y 0 ] -E Y h n j 2 (5.7) = i≥j+1 Y h n i -Y h n i-1 2 2 + E Y 0 -Y h n j 2 - i≥j+1 E Y h n i -Y h n i-1 2 .
Combining (5.6) and (5.7) yields

V C j -V I j = Var Y 0 -Y h n j - i≥j+1 Var Y h n i -Y h n i-1 .
It is difficult to compare a priori these two quantities V C j and V I j in full generality. However, if we have the guess that in Setting 2 the random variables Z j are positively correlated, we see that

V C j ≥ V I j . Indeed V C j -V I j = Var Y 0 -Y h n j - i≥j+1 Var Y h n i -Y h n i-1 = 2 i>k≥j+1 cov Y h n i -Y h n i-1 , Y h n k -Y h n k-1
.

For the variance to be bounded, we need the sum j≥1 S∞-S j 2 2 π j π j+1 P(τ = j) to converge. For this purpose we will use the strong error hypothesis (SE β ) and choose the law of τ in a wise way.

Geometric distribution for the level

We assume that τ follows a geometric distribution with parameter p, i.e. P(τ = j) = (1 -p) j-1 p and π j = (1 -p) j-1 . Hence

P(τ = j) π j π j+1 = p(1 -p) -j .
We start by the second setting and observe that, owing to the strong error assumption,

Var(I τ ) ≤ Var(Y 0 ) + V 1 h β p 1 -p j≥1 (1 -p)M β -(j-1) . 
(5.8)

In order to get the convergence of the series, we need M β (1 -p) > 1 and get

Var(I τ ) ≤ Var(Y 0 ) + V 1 h β p 1 -p (1 -p)M β (1 -p)M β -1 .
We recall that the cost of the levels is given by the formulas

Cost(Z 1 ) = κ h ≤ κ h g(1, M -1 ) and Cost(Z j ) = κ h M j-1 h g(1, M -1 ), j ≥ 2,
hence the cost of the random variable I τ reads

Cost(I τ ) ≤ κ h g(1, M -1 ) τ j=1 M j-1 = κ h g(1, M -1 ) M τ -1 M -1 .
(5.9)

Under the sign of expectation formula (5.9) yields

E [Cost(I τ )] ≤ κ h g(1, M -1 ) M -1   M p j≥1 M (1 -p) j-1 -1   .
(5.10)

If we make the additional assumption M (1 -p) < 1, the series in (5.10) converges and we get

E [Cost(I τ )] ≤ κ h g(1, M -1 ) M -1 M p 1 1 -M (1 -p) -1 = κ h g(1, M -1 ) 1 1 -M (1 -p)
.

Finally, we get the following bounds for p :

1 M β < 1 -p < 1 M .
(5.11)

An important remark is that, for these bounds to hold, we will need β > 1, hence the scope of the randomized Multilevel estimator is limited by this constraint and this estimator cannot be used when β ∈ (0, 1]. The optimal value for the parameter p will be given by the minimization of the effort, as we did for the optimal parameters in the deterministic Multilevel framework.

Owing to the formulas (5.8) and (5.10), we write

Var(I τ ) ≤ Var(Y 0 ) + V 1 h β p 1 -p j≥1 M -β(j-1) π j and E [Cost(I τ )] ≤ κ h g(1, M -1 ) M -1   M p j≥1 M j-1 π j -1   .
We search for p minimizing the effort

φ(I τ ) = Var(I τ )E [Cost(I τ )] .
This amounts to solving the sub-optimal problem min

1-1 M <p<1-1 M β   φ * (I τ ) :=   V 1 h β p 1 -p j≥1 M -β(j-1) π j     κ h g(1, M -1 ) M -1 M p j≥1 M j-1 π j     .
We ignore the coefficient p 2 1-p and search for the p which minimizes

  j≥1 M -β(j-1) π j     j≥1 M j-1 π j   ,
which, owing to equality case in Cauchy-Schwarz's Inequality, gives

π j = (1 -p) j-1 = λM -β+1 2 (j-1) ,
for some constant λ > 0. Since π 1 = P(τ ≥ 1) = 1, hence λ = 1 and we finally get the optimal value for the parameter of the geometric distribution of τ p * = 1 -M -β+1 2 .

(5.12)

Now that we built an unbiased estimator with minimal effort, we can make a Monte Carlo estimator of size N as described in (5.2)

I N τ = 1 N N k=1 I τ k ,
where (I τ k ) k≥1 are independent copies of I τ . If we fix the constraint on the squared error

I N τ -I 0 2 = ε,
we get an optimal size N * = Var(I τ )ε -2 .

(5.13)

The cost of the Randomized Multilevel estimator (RML) is then computed with the formula

E Cost(I N * τ ) = N * E [Cost(I τ )] = Var(I τ )ε -2 1 + M -1 1 -M (1 -p) .
The variance in the first setting being more complex, we will take the same values for p * and N * as optimal parameters for the Randomized Multilevel estimator in the independent case.

Numerical results

We compared the performances of the Randomized Multilevel estimator in its independent and dependent version, on a Call in a Black Scholes model in one dimension, with X 0 = 100, K = 80, T = 1, σ = 0.4, using a Milstein scheme, in order to guarantee β > 1.

The optimal parameters are given by formulas (5.12) and (5.13), and the variance Var(I τ ) needed to set the optimal size of the estimator in the formula (5.13) is estimated as structural parameter, making a standard Monte Carlo estimator of size 10 6 on I τ and setting Var 1

N N n=1 I τn = N n=1 (I τn ) 2 - 1 N ( N n=1 I τn ) 2 /(N -1).
As we did in Chapter 3, in order to check that we respect the theoretical L 2 -error, we make a standard Monte Carlo estimator of size L = 100 on I N τ and we display the empirical L 2 -error which we compute with the formula (3.25). The true value is I 0 = 29.4987.

We started testing the Randomized Multilevel dependent estimator described in the second setting. In Figure 5.1 we show the results with M = 2. The Randomized Multilevel estimator behaves as an unbiased estimator, but the multiplicative constant in front of the cost seems to be bigger than for MLMC and ML2R.

In order to test the sensitivity to the root M , we made M vary and obtained Figure 5.2. M = 2 seems not to be the optimal choice for M . An optimal choice for this case seems to be close to M = 6.

Hence we fixed M = 6 and obtained the results in Figure 5.3, where we can observe the improvement of choosing M = 6 with respect to M = 2.

To test the robustness of the optimal parameter p, we made it vary between the bounds 1 M β < p < 1 M given in (5.11) and got Figure 5.4. This Figure confirms that the optimal computed p * = 1 -M -β+1 2 = 0.931959 is a good choice, the better performances being reached by p = 0.92, 0.93, 0.94.

As a second step, we tested the Randomized Multilevel independent estimator described in the first setting and, as we suspected, we obtained that it performs better than the Randomized Multilevel dependent estimator. In Figure 5.5 we show the two Randomized Multilevel estimators, with M = 6. At the same time, the Randomized Multilevel estimator in the independent setting does not perform better than ML2R and MLMC, as we can see in Figures 5.6 (log 2 scale on the x-axis and log 10 scale on the y-axis) and 5.7 (log 2 scale on the x-axis). In Appendix C.2 we show the Tables of the numerical results for the Multilevel estimators and for the Randomized Multilevel (RML) estimators, dependent and independent case, for M = 6 and p * = 1 -M -β+1 2 = 0.931959. The estimated variances Var(I τ ) are given by In conclusion, the randomization of the level in the Randomized Multilevel estimator leads to an unbiased estimator with Cost(ε) ∼ C RM ε -2 , which is the best rate that we can expect, as we saw throughout this work. The multiplicative constant C RM , though, is bigger than the one for MLMC and ML2R estimators, since they return better performances. This constant depends on the variance of I τ , suggesting that the introduction of randomness via the random variable τ leads to an unbiased framework, but at the same time increases the cost by increasing the variance. Annexe A

Asymptotic of the weights

We focus our attention on the behaviour of W R j when R → +∞. We recall .

W R j = R =j a b R-= R-j =0 a R
For convenience, we set W R j = 0, for j ≥ R + 1, R ∈ N * . We first notice that a is an increasing and converging sequence and we set In particular, ∀j ∈ N * , W R j → 1 as R → +∞. However, this convergence is not uniform since W R R-j+1 → a ∞ j-1 =0 b for every j ∈ N * as R → +∞.

Proof. We write Moreover, by definition W R 1 = 1 for all R, which implies that B ∞ = 1 a∞ and completes the proof. Finally, as a j → a ∞ ,

W R j -a ∞ B ∞ = R-j =0 a R-b -a ∞ R-j =0 b -a ∞ ≥R-j+1 b ≤ R-j =0 (a ∞ -a R-) |b | + a ∞ ≥R-j+1
W R R-j+1 = j-1 =0 a R-b l R→+∞ -----→ a ∞ j-1 =0 b .
Proof of Lemma 2.4.1 (c) and (d).

(c) Let us consider the non-negative measure on N * defined by m β (j) = M γ(j-1) , γ < 0. We notice that it is a finite measure since (d) • If γ < 0, we consider the non-negative finite measure on N * defined by m β (j) = M γ(j-1) v j since (v j ) j 1 is a bounded sequence of positive real numbers. As in the previous case (c) we have

lim R→+∞ R j=2 W R j M γ(j-1) v j = +∞ j=2
M γ(j-1) v j .

• If γ = 0, let us consider a sequence ϕ(R) ∈ {1, . . . , R -1} such that ϕ(R) R → 1, R -ϕ(R) → +∞ as R → +∞ (for example ϕ(R) = R -√ R). Then we can write

1 R R j=2 W R j v j - 1 R R j=2 v j ≤   1 R ϕ(R) j=2 W R j -1 + 1 R R j=ϕ(R)+1 (| W R j | + 1)   sup j≥2 v j ≤ sup 2≤j≤ϕ(R) W R j -1 ϕ(R) R + a ∞ B ∞ + 1 1 - ϕ(R) R sup j≥2 v j .
Owing to Lemma A.0.1 sup 2≤j≤ϕ(R) | W R j -1| → 0 as R → +∞. Using furthermore that ϕ(R) R → 1 as R → +∞ and that lim j→+∞ v j = 1, one concludes by noting that, owing to Césàro's Lemma, lim

R→+∞ 1 R R j=2 v j = 1.
• If γ > 0, first, we notice that

R j=2 W R j M γ(j-1) ≥ W R R M γR = |a R | M γR → +∞. (A.2)
Let η > 0. Since lim j→+∞ v j = 1, there exists N η ∈ N * such that, for each j > N η , |v j -1| < η 2 . Owing to Lemma A.0.1 there exists R η such that, for each R ≥ R η , sup 2≤j≤Nη W R j < 1 + η. Then,

R j=2 W R j M γ(j-1) v j R j=2 W R j M γ(j-1) -1 ≤ R j=2 W R j M γ(j-1) |v j -1| R j=2 W R j M γ(j-1) ≤ Nη j=2 W R j M γ(j-1) |v j -1| R j=2 W R j M γ(j-1) + η 2 R j=Nη+1 W R j M γ(j-1) R j=2 W R j M γ(j-1) ≤ max 2≤j≤Nη M γ(j-1) |v j -1| N η sup 2≤j≤Nη W R j R j=2 W R j M γ(j-1) + η 2 ≤ f (N η )(1 + η) R j=2 W R j M γ(j-1) + η 2
where f (N ) = max 2≤j≤N M γ(j-1) |v j -1| N does not depend on R. Thanks to (A.2), there exists R η > 0 such that, for each R ≥ max(R η , R η ), R j=2 W R j M γ(j-1) > 2f (Nη)(1+η) η

, which proves that

lim R→+∞ R j=2 W R j M γ(j-1) v j R j=2 W R j M γ(j-1)
= 1.

This leads to analyze

1 M γR R j=2 W R j M γ(j-1) = R j=2 W R j M -γ(R-j+1) = R-1 j=1 W R R-j+1 M -γj .
Using that W R j ≤ a ∞ B ∞ for j ∈ {1, . . . , R} and Lemma A.0.1 one derives from Lebesgue's dominated convergence theorem that

R-1 j=1 W R R-j+1 M -γj R→+∞ -----→ a ∞ j≥1 j-1 =0 b M -γj < +∞ since j-1 =0 b ≤ j-1 =0 |b | ≤ B ∞ .
Annexe B

Closed formulas in Clark-Cameron model

We consider a Clark-Cameron model This yields

dU t = S t
E U 2 T = µ 2 T 3 3 + T 2 2 .
Adding a constant volatility to the first term, dU t = σS t dW 1,t yields

E U 2 T = σ 2 µ 2 T 3 3 + σ 2 T 2 2 .
Finally we obtained

E U 2 T + S 2 T = T + µ 2 + σ 2 2 T 2 + σ 2 µ 2 T 3 3 .

B.2 Cosinus payoff
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  (a) Euler scheme (α = 1, β = 1) (b) Milstein scheme (α = 1, β = 2).
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 21 Figure 2.1 -Estimated |c 1 | =
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 a Euler scheme (α = 1, β = 1) (b) Milstein scheme (α = 1, β = 2).
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 22 Figure 2.2 -Empirical bias |µ(ε)| for a Call option in a Black-Scholes model for a prescribed RMSE ε = 2 -5 and for different values of r, taking ĉ∞ = ĉ1 = 1.

  .2) are smaller than those computed following [AGJC16], hence the CPU-time are smaller, as we can see in Figure (3.1), where Y (•) * M LM C represents the choice of parameters computed with the Equations (3.23) and (3.24) and where at the same time we can verify that the required accuracy is well fulfilled.

  (a) Antithetic Giles Szpruch scheme. (b) Antithetic Ninomiya Victoir scheme. (c) Antithetic Giles Szpruch Ninomiya Victoir scheme. (d) Euler scheme.
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 3 Figure 3.1 -CPU time vs empirical error for MLMC estimator calibrated with Table 3.2 or with formulas (3.23) and (3.24). Clark-Cameron model with U 0 = S 0 = 0, T = 1 and µ = 1. Payoff function f (u, s) = 10 cos(u).
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 3 Figure 3.2 -ML2R performances with Euler scheme and antithetic schemes.

  (a) Euler scheme (MLMC and ML2R) with respect to antithetic Giles Szpruch scheme (ML2R). (b) Antithetic schemes (MLMC and ML2R) with respect to antithetic Giles Szpruch scheme (ML2R).

Figure 3

 3 Figure 3.3 -CPU time ratios with respect to the ML2R estimator with antithetic Giles Szpruch scheme CPU-time. Clark-Cameron model with U 0 = S 0 = 0, T = 1 and µ = 1. Payoff function f (u, s) = 10 cos(u).
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 3 Figure 3.4 -ML2R GS vs MLMC GSNV.

Figure 3

 3 Figure 3.5 -Giles-Szpruch with and without c 1 estimation.

E

  g ( ) ( X0 )b r, -r (Y ) , 1 r < k 2r + 1) (t + X0 )( Xh -X0 -t) 2R dt . (4.4)Proof. The case R = 0 is trivial, since it is direct application of the fundamental theorem of calculus. Let h = 1/K and let y ∈ R d . Let Xy = F (ξ, y) -E [F (ξ, y)] and let E h (y) be the statistical error of the inner Monte Carlo estimator, defined by E h (yy ) k 1 is an i.i.d. sequence of copies of Xy . For clarity, let us denote φ 0 (y) = E [F (ξ, y)].

  1+ρ)p E |F (ξ 1 , Y )| (1+ρ)p . Hence, under the assumption X ∈ L p(1+ρ) , Y h, h M satisfies the L p version of the strong convergence assumption with β = 1 + ρ > 1.

  .23) owing to the upper-bound established in (4.11) for E | Xh -X0 | 2R+1 . (b) The claim amounts to integrating Equation (4.22), provided we show that the integrals of P r (x)f X0 (x), for r = 1, . . . , 2R -1, are at least semi-convergent and that, for all b ∈ R, b -∞ r(h, x)dx = O(h R+ 1 2

  Then there exists a random variableS ∞ such that E [|S ∞ |] < +∞, S m → S ∞ a.s. and in L 1 as m → +∞ and E [I τ ] = E [Y 0 ] = E [S ∞ ] .Proof. It is clear by absolute convergence from (5.3) that S m → S ∞ a.s. and in L 1 as m → +∞ and E [S ∞ ] = E [Y 0 ]. We may write
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 5 Figure 5.1 -In the Randomized Multilevel (RML) estimator M = 2 and p * = 1 -M -β+12

Figure 5 . 2 -

 52 Figure 5.2 -In the Randomized Multilevel (RML) estimator M varies and p * = 1-M -β+1 2

Figure 5

 5 Figure 5.3 -In the Randomized Multilevel (RML) estimator M = 6 and M = 2 (log x-axis, log 10 y-axis).

Figure 5

 5 Figure 5.4 -In the Randomized Multilevel (RML) estimator M = 6 and p varies (log x-axis, log 10 y-axis).

Figure 5

 5 Figure 5.5 -Randomized Multilevel (RML) estimator : dependent vs independent version, with M = 6 and p * = 1 -M -β+1 2 (log 2 x-axis, log 10 y-axis).

Figure 5

 5 Figure 5.6 -Randomized Multilevel (RML) estimator in the independent version, with M = 6 and p * = 1 -M -β+1 2 , vs MLMC and ML2R (log 2 x-axis, log 10 y-axis).

Figure 5

 5 Figure 5.7 -Randomized Multilevel (RML) estimator in the independent version, with M = 6 and p * = 1 -M -β+1 2 , vs MLMC and ML2R (log 2 x-axis).

-b with a = 1 1≤k≤

 1 -1 (1 -M -kα )and with the convention 0 k=1 (1 -M -kα ) = 1, andb = (-1) M -α 2 ( +1) 1≤k≤ (1 -M -kα )

  lim →+∞ a = a ∞ .The sequence b converges to zero and furthermore the series with general term b is absolutely converging, since ≥1 M -α 2 ( +1) < +∞. This leads us to setB ∞ = +∞ =0 |b | < +∞ and B ∞ = +∞ =0 b < +∞.Claim (a) of Lemma 2.4.1 is then proved. As a consequence,∀R ∈ N * , ∀j ∈ {1, . . . , R} , W R j ≤ a ∞ B ∞ ,(A.1) which proves claim (b) in Lemma 2.4.1. For the proof of claims (c) and (d), we will need the following Lemma A.0.1. Let ϕ : N * → N * such that ϕ(R) ∈ {1, . . . , R -1} for every R ≥ 1, ϕ(R) → +∞ and R -ϕ(R) → +∞ as R → +∞. Then lim

  ..,ϕ(R)} ≥R-j+1 |b | ≤ lim R→+∞ ≥R-ϕ(R)+1 |b | = 0, as R -ϕ(R) → +∞ and ≥0 |b | < +∞.On the other hand, for every j ∈ {1, . . . , ϕ(R)},R-j =0 (a ∞ -a R-) |b | = R =j (a ∞ -a ) |b R-| = ϕ(R) =j (a ∞ -a ) |b R-| + R =ϕ(R)+1 (a ∞ -a ) |b R-| ≤ a ∞ R-j =R-ϕ(R) |b | + a ∞ -a ϕ(j∈{1,...,R} R-j =0 (a ∞ -a R-) |b | → 0 as R → +∞, since ϕ(R) and Rϕ(R) → +∞. Finally, lim R→+∞ sup 1≤j≤ϕ(R) W R j -a ∞ B ∞ = 0.

  j≥1 dm β (j) = 1 1 -M γ .Since, as we saw in Lemma A.0.1, W R j → 1 as R → +∞ for every j ∈ N * and | W R j | ≤ a ∞ B ∞ , we derive from Lebesgue's dominated convergence theorem that lim

  We aim at computingE U 2 T + S 2 T . First of all E S 2 T = E (µT + W 2,T ) 2 = µ 2 T 2 +T . The value of E U 2T follows from the independence of the two Brownian motions, indeed s dW 1,s = E [φ(W 2,s )] with φ((w s ) 0≤s≤T ) = E

  dW 1,tdS t = µdt + dW 2,t (B.1)where W 1,t and W 2,t are two independent Brownian motions, with initial conditions U 0 = S 0 = 0, which is equivalent to

		
	 	U t =
	 	

t 0 (µs + W 2,s )dW 1,s S t = µt + W 2,t

  aim at computing E [cos(λU t )]. Conditionnaly to the process (W 2,s ) 0≤s≤t , U t has a centered gaussian distribution with stochastic variance W 2,s ) 2 ds.Let us compute E e -iλUt . Owing to the independence of W 1 and W 2 , we writeE e -iλUt = E e -iλ t 0 (µs+W 2,s )dW 1,s = E E e -iλ t 0 (µs+W 2,s )dW 1,s |(W 2,s ) 0≤s≤t = E E e -iλ t 0 (µs+ws)dW 1,s (ws) 0≤s≤t =(W 2,s ) 0≤s≤tWe apply Girsanov's Theorem and we make a change of probability P * such that under P * B s = µs + W 2,s is a Brownian motion, i.e. d P d P -1 2 µ 2 t E * e µBt E * e -λ 2 √ xy and where I ν is the Bessel function which, for ν = -1/2, reads I -1We set a = √ λ coth λt and b = µ/a and we getE * e µBt+ B 2Since the right term of the above equality has no imaginary part, we obtainedWe notice that these computations are shortened when there is no drift termdU t = S t dW 1,t dS t = dW 2,tIndeed, owing to the Cameron-Martin formula (see[START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] p.445),E e -λ 1 0 (W 2,s ) 2 ds = coshAdding a constant volatility to the Levy's area, dU t = σS t dW 1,t is equivalent to take λ = λσ in formula (B.4).TableC.1 -ML2R estimator with Euler scheme. Payoff function f (u, s) = 10 cos(u).

	k	ε = 2 -k L 2 error Time(s)	Bias	Variance R M h -1 N	Annexe C Cost
		t (µs + = E E e -λ 2 0 2 t 0 (µs+ws) 2 ds (ws) 0≤s≤t =(W 2,s ) 0≤s≤t = E e -λ 2 2 t 0 (µs+W 2,s ) 2 ds . 2 t 0 (Bs) 2 ds |B 2 t . We recall formula p.427 in [PY82] E x e -b 2 2 t 0 B 2 s ds |B 2 t = y = bt sinh bt e y 2t (1-bt coth bt) with z = 2 π cosh z √ z . Here x = 0, hence E * e -λ 2 2 t 0 (Bs) 2 ds |B 2 t = y = λt sinh λt e y 2t (1-λt coth λt) . I -1 2 sinh bt zb I -1 2 z t Plugging this in the formula (B.3) yields E e -iλUt = λt sinh λt e -1 2 µ 2 t E * e µBt+ B 2 t 2t (1-λt coth λt) . Since B t ∼ N (0, t), E +∞ -∞ 1 √ 2πt e µx+ x 2 2t (1-λt coth λt) e -x 2 2t dx = 1 √ t +∞ -∞ 1 √ 2π exp -1 2 Hence E e -iλUt = λt sinh λt 1 √ t 1 √ λ coth λt e -1 2 µ 2 t+ b 2 2 = 1 √ cosh λt e -µ 2 t 2 (1-tanh λt (B.3) 2 (z) = λt ) . E [cos(λU t )] = 1 √ cosh λt e -µ 2 t 2 (1-tanh λt λt ) . (B.4) √ 2λ -1 C.1 Antithetic schemes k ε = 2 -k L 2 error Time(s) Bias Variance R M h -1 N Cost 2 2.50e-01 2.63e-01 1.84e-01 -7.70e-02 6.40e-02 2 3 2 1.06e+03 4.65e+03 3 1.25e-01 1.13e-01 8.23e-01 -3.62e-02 1.17e-02 2 5 2 4.14e+03 2.19e+04 4 6.25e-02 5.63e-02 4.03e+00 -4.74e-03 3.18e-03 2 9 2 1.76e+04 1.19e+05 5 3.12e-02 2.58e-02 2.20e+01 -2.75e-04 6.73e-04 3 3 2 9.77e+04 6.60e+05 6 1.56e-02 1.22e-02 8.68e+01 -1.96e-04 1.51e-04 3 3 2 3.91e+05 2.64e+06 7 7.81e-03 7.77e-03 3.92e+02 -1.48e-03 5.88e-05 3 4 2 1.57e+06 1.21e+07 8 3.91e-03 3.26e-03 1.76e+03 -7.54e-04 1.02e-05 3 5 2 6.42e+06 5.50e+07 9 1.95e-03 1.70e-03 7.94e+03 -4.28e-04 2.72e-06 3 6 2 2.64e+07 2.48e+08 10 9.77e-04 8.62e-04 3.56e+04 3.75e-05 7.50e-07 3 7 2 1.09e+08 1.10e+09 k ε = 2 -k L 2 error Time(s) Bias Variance R M h -1 N Cost 2 2.50e-01 2.12e-01 1.29e-01 3.40e-05 4.52e-02 4 2 1 9.27e+02 3.65e+03 3 1.25e-01 1.13e-01 5.17e-01 -1.40e-02 1.28e-02 4 2 1 3.71e+03 1.46e+04 4 6.25e-02 5.75e-02 2.06e+00 2.65e-03 3.33e-03 4 2 1 1.48e+04 5.82e+04 5 3.12e-02 2.74e-02 8.24e+00 -2.40e-03 7.54e-04 5 2 1 6.09e+04 2.52e+05 6 1.56e-02 1.35e-02 3.32e+01 1.44e-03 1.82e-04 5 2 1 2.44e+05 1.01e+06 7 7.81e-03 7.12e-03 1.29e+02 -3.68e-04 5.10e-05 5 2 1 9.74e+05 4.04e+06 8 3.91e-03 3.41e-03 5.15e+02 -1.65e-04 1.17e-05 5 2 1 3.90e+06 1.61e+07 9 1.95e-03 1.73e-03 2.14e+03 -1.47e-04 3.02e-06 6 2 1 1.59e+07 6.79e+07 10 9.77e-04 8.68e-04 8.33e+03 -8.89e-05 7.52e-07 6 2 1 6.34e+07 2.72e+08 x t 2t (1-λt coth λt) = 1 √ t e b 2 2 +∞ -∞ 1 √ 2π exp -2 dx = 1 √ t e b 2 2 1 a . Tables (ax -b) 2 2.50e-01 2.58e-01 1.48e-01

* = e µBt-1 2 µ 2 t , which yields

E e -iλUt = E * e µBt-1 2 µ 2 t e -λ 2 2 t 0 (Bs) 2 ds = E * e µBt-1 2 µ 2 t E * e -λ 2 2 t 0 (Bs) 2 ds |B t = e * e µBt+ B 2 t 2t (1-λt coth λt) = 2 λ coth λt -2µx . 2

and the scaling property of the Brownian motion yields

E e -iλUt = E e -λ 2 2 t 0 (W 2,s ) 2 ds = E e -λ 2 t 2 2 1 0 (W 2,s ) 2 ds = (cosh λt) -1 2 .

Table

C

.2 -ML2R estimator with Giles-Szpruch scheme. Payoff function f (u, s) = 10 cos(u).

  Table C.3 -ML2R estimator with Ninomiya-Victoir scheme. Payoff function f (u, s) = 10 cos(u). Table C.4 -MLMC estimator with Euler scheme. Payoff function f (u, s) = 10 cos(u).

	k	ε = 2 -k L 2 error Time(s)	Bias	Variance R M h -1 N	Cost
	2	2.50e-01 2.02e-01 3.99e-01	5.71e-02 3.81e-02 3 4	2	1.66e+03 1.13e+04
	3	1.25e-01 9.77e-02 1.92e+00 2.15e-02 9.18e-03 3 5	2	7.10e+03 5.51e+04
	4	6.25e-02 5.72e-02 9.64e+00 2.53e-02 2.66e-03 3 7	2	3.14e+04 2.97e+05
	5	3.12e-02 2.50e-02 4.62e+01 1.31e-02 4.55e-04 3 9	2	1.36e+05 1.48e+06
	6	1.56e-02 1.24e-02 2.56e+02 3.67e-03 1.43e-04 4 6	2	6.86e+05 8.34e+06
	7	7.81e-03 5.96e-03 1.17e+03 2.40e-03 3.01e-05 4 7	2	2.88e+06 3.85e+07
	8	3.91e-03 3.38e-03 5.66e+03 1.38e-03 9.63e-06 5 5	2	1.34e+07 1.88e+08
	9	1.95e-03 1.78e-03 2.65e+04 1.01e-03 2.18e-06 5 6	2	5.69e+07 8.96e+08
	10 9.77e-04 8.72e-04 1.38e+05 4.20e-04 5.90e-07 6 5	2	2.63e+08 4.51e+09
	k	ε = 2 -k L 2 error Time(s)	Bias	Variance R M h -1 N	Cost
		2.50e-01 2.33e-01 1.41e-01			

Table C

 C TableC.6 -MLMC estimator with Giles-Szpruch Ninomiya-Victoir scheme. Payoff function f (u, s) = 10 cos(u).

	k	ε = 2 -k L 2 error Time(s)	Bias	Variance R M h -1 N	Cost
	2	2.50e-01 2.25e-01 1.11e-01	1.07e-02 5.11e-02 3 2	1	8.97e+02 3.27e+03
	3	1.25e-01 1.21e-01 4.43e-01	4.85e-02 1.25e-02 3 2	1	3.59e+03 1.31e+04
	4	6.25e-02 6.65e-02 2.03e+00 1.73e-02 4.16e-03 4 2	1	1.61e+04 6.26e+04
	5	3.12e-02 3.04e-02 8.22e+00 1.21e-02 7.89e-04 4 2	1	6.43e+04 2.51e+05
	6	1.56e-02 1.33e-02 3.47e+01 3.54e-03 1.66e-04 5 2	1	2.73e+05 1.12e+06
	7	7.81e-03 8.14e-03 1.38e+02 3.74e-03 5.28e-05 5 2	1	1.09e+06 4.47e+06
	8	3.91e-03 3.21e-03 5.35e+02 -1.26e-04 1.04e-05 6 2	1	4.54e+06 1.92e+07
	9	1.95e-03 1.91e-03 2.16e+03 4.60e-04 3.48e-06 6 2	1	1.82e+07 7.69e+07
	10 9.77e-04 9.35e-04 9.02e+03 2.00e-04 8.43e-07 7 2	1	7.45e+07 3.23e+08
	k	ε = 2 -k L 2 error Time(s)	Bias	Variance R M h -1 N	Cost
	2	2.50e-01 2.19e-01 1.20e-01	2.64e-02 4.79e-02 3 2	1	1.23e+03 3.47e+03
	3	1.25e-01 1.07e-01 4.78e-01	2.34e-02 1.10e-02 3 2	1	4.90e+03 1.38e+04
	4	6.25e-02 5.76e-02 2.96e+00 6.83e-03 3.31e-03 4 2	1	2.40e+04 8.03e+04
	5	3.12e-02 2.87e-02 9.79e+00 1.20e-02 6.84e-04 4 2	1	9.59e+04 3.21e+05
	6	1.56e-02 1.49e-02 4.56e+01 4.10e-03 2.08e-04 5 2	1	4.32e+05 1.61e+06
	7	7.81e-03 6.71e-03 1.81e+02 1.95e-03 4.16e-05 5 2	1	1.73e+06 6.45e+06
	8	3.91e-03 3.78e-03 8.11e+02 9.25e-04 1.36e-05 6 2	1	7.45e+06 2.99e+07
	9	1.95e-03 1.83e-03 3.24e+03 6.35e-04 2.99e-06 6 2	1	2.98e+07 1.20e+08
	10 9.77e-04 8.32e-04 1.40e+04 1.36e-04 6.81e-07 7 2	1	1.25e+08 5.27e+08

.5 -MLMC estimator with Giles-Szpruch scheme. Payoff function f (u, s) = 10 cos(u).

Table C

 C 

.7 -MLMC estimator with Ninomiya-Victoir scheme. Payoff function f (u, s) = 10 cos(u).

Nous allons tester les deux estimateurs Multilevel avec et sans poids sur un modèle de Clark Cameron avec un payoff pour lequel nous avons une formule fermée, ce qui nous permet de vérifier si nous respectons la contrainte sur l'erreur L 2 que nous nous sommes imposés.Dans le quatrième chapitre nous analysons le nested Monte Carlo, en donnant le détail de deux situations, selon la régularité de la fonction de payoff f . Dans les deux cas nous focalisons notre attention sur la preuve des hypothèses d'erreur faible et forte.Dans le cinquième et dernier chapitre de cette thèse nous nous plaçons à nouveau dans le cadre β > 1, ce qui nous permet de construire un estimateur sans biais, en randomisant le niveau R d'un estimateur Multilevel. Nous comparons ensuite numériquement cet estimateur aux estimateurs Multilevel avec et sans poids.

≤ V 1 h β .

Remerciements

We are now in a position to prove that the nested Monte Carlo satisfies the assumptions of the Central Limit Theorem 2.3.3. Theorem 2.6.4. Assume that f : R → R is a Lipschitz continuous function and differentiable with f continuous. Then Z(h) h∈H is L 2 -uniformly integrable and

As a consequence, the ML2R and MLMC estimators (2.3) and (2.2) satisfy a Central Limit Theorem in the sense of Theorem 2.3.3 (case β = 1).

Proof. We prove first the L 2 -uniform integrability of Z(h) h∈H . As f is Lipschitz we have,

Consequently it suffices to show that u

h∈H is L 2 -uniformly integrable, to establish the L 2 -uniform integrability of Z(h) h∈H .

We saw in the proof of Proposition 2.6.3 that u

ζ as h goes to 0, where ζ is a standard normal random variable independent of Y . Owing to Lemma 2.5.1 (b), the uniform integrability will follow from lim h→0 u

In fact this convergence holds as an equality. Indeed

We notice that S M K -S K is independent of S K . Hence, since the ξ k are independent,

We prove now (2.65) using again the Lemma 2.5.1 (b) with the convergence in law of Z(h) h∈H established in Lemma 2.6.3. We notice that, if the assumption (2.59) in Proposition 2.6.1 holds with p > 2, the condition of L 2 -uniform integrability is much easier to show since it is a direct consequence of Lemma 2.5.1 (a).

Smooth nested Monte Carlo

When the function f is smooth, namely C 1+ρ (R, R), ρ ∈ (0, 1] (f is ρ-Hölder), a variant of the former multilevel nested estimator has been used in [START_REF] Bujok | Multilevel simulation of functionals of Bernoulli random variables with application to basket credit derivatives[END_REF] (see also [START_REF] Giles | Multilevel Monte Carlo methods[END_REF]) to improve the strong rate of convergence in order to attain the asymptotically unbiased The nested multilevel Monte Carlo estimator then reads

with ( X(i) K,m ) i≥1 independent copies of XK,m . Owing to Taylor formula, for all m = 1, . . . , M , there exists x m ∈ min( XK,m , XMK ), max( XK,m , XMK ) such that

Hence, using that XK,1 is independent of XK,m m=2,...,M ,

, with p ≥ 2. Owing to the decomposition (4.14), to Minkowski's Inequality and to the ρ-Hölder assumption (4.12), we get

We first notice by an exchangeability argument that the variables ( XK,m -XMK ) m=1...,M are identically distributed with XK,m -XMK ∼ XK,1 -XMK . Moreover we write

Hence, we get

(4.16)

Owing to the independence of Y and (ξ k ) k≥1 , we write

We recall that the variables ( XK,m ) m=1,...,M are identically distributed, hence Inequality (4.17) yields

The analysis of the term | XK,1 -XMK | 1+ρ pr does not change, except for the condition X ∈ L (1+ρ)pr . Under the assumption X ∈ L qps , the term 1

Having in mind that r = s/(s -1), the optimal choice for s which minimizes both (1 + ρ)pr and qps is given by s = (1 + ρ + q)/q (hence r = (1 + ρ + q)/(1 + ρ)). This leads to the additional condition to X ∈ L p(1+ρ+q) . In conclusion, we obtain that

Hence, under the assumption X ∈ L p(1+ρ+q) , Y h, h M satisfies the L p version of the strong convergence assumption with β = 1 + ρ > 1.

Smooth density

There are many situations where we need to consider non smooth payoff functions of the type f = 1 {g(E[X|Y ])∈I} , with g : R → R and I ⊂ R interval. Among them we can cite the computation of loss thresholds, i.e. when we search, a threshold q ∈ R being fixed, for the corresponding α q ∈ [0, 1] such that

or the inverse problem, which consists in computing the quantile q α such that for a fixed α ∈ [0, 1],

1

Another situation of interest is the approximation of density functions (see the seminal paper of Bally and Talay [START_REF] Bally | The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function[END_REF] and [START_REF] Bally | The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density[END_REF], treating the law of the Euler scheme for distributions).

The payoff function f being non smooth, the regularity assumptions on f that we needed to prove the weak and the strong convergence of the estimator in the smooth case, will be replaced by some assumptions on the regularity of the density functions, as we detail in the next two Subsections.

Weak error

We recall the notation

The following result on the weak error derives from Lemma 4.1.1 and gives a bias error expansion relying on the density of the joint distribution of ( X0 , Xh ). More precisely, assume that ( X0 , Xh -X0 ) is a random vector with smooth density with respect to the Lebesgue measure on R 2 . Let f X0 be the density of X0 and let f X0 | Xh -X0 =x be (a regular version of) the conditional density of X0 given Xh -X0 = x, so that for all test functions g : R → R, E g( X0 )| Xh -X0 = g(x)f X0 | Xh -X0 (x)dx. Moreover let F Xh (x) and F X0 (x) be the distribution functions of Xh and X0 . 

is continuous. Assume that φ 0 : R → R is continuous and strictly monotonic, that its derivative φ 0 is never 0, hence φ 0 is one-to-one, and assume that X ∈ L 2R+1 .

Let

/f X0 and

uniformly with respect to x ∈ R.

uniformly with respect to x ∈ R.

Proof. The case R = 0 is trivial, using the expansion (4.2) and the convention 0 r=1 = 0. Let g : R → R be an infinitely differentiable function with compact support. We apply the expansion (4.2) to the smooth function g where coefficients c(r, 2r + 1), r = 1, . . . , R -1 and c(r, 2R), r = R, . . . , 2R -1 are given by (4.3) and the remainder term R g 2R+1 is given by (4.4).

We first note that, for every ∈ {1, . . . , 2R},

Proof. Let L > 0. Note that

A straightforward optimization in L yields the announced result.

The strong convergence is a consequence of the Proposition 4.3.1 combined with the previous Lemma and Lemma 4.1.2. Proposition 4.3.2. Assume X ∈ L p , p 2. Under the assumptions of Proposition 4.3.1 (a) with R = 0 and if the density f X0 is bounded, then there exists

. This means that the strong approximation error assumption holds with β = p 2(p+1) ∈ (0, 1 2 ).

Proof. It follows from Proposition 4.3.1 (a) that

2 ) uniformly with respect to x ∈ R.

Consequently, there exists an h 0 = 1 K 0 ∈ H \{0} such that, for every h ∈ (0, h 0 ],

Plugging the above bound and (4.8) in Inequality (4.28) of Lemma 4.3.1 applied with X = Xh and X = Xh completes the proof.

Chapitre 5

Randomized Multilevel Estimator

In this Chapter we compare the unbiased randomized Multilevel estimator proposed by Glynn and Rhee in [START_REF] Rhee | Unbiased estimation with square root convergence for SDE models[END_REF] with the Multilevel estimators with and without weights. We will build an unbiased Multilevel estimator using the usual family of biased random variables (Y h ) h∈H and choosing a random level τ instead of the deterministic R in the Multilevel framework.

Like in Section 1.2, Z j will denote the contribution for the level j to the estimator under consideration. We will first establish a general result involving these Z j . As for applications, we will consider two frameworks :

1. First we will set

with n j = M j-1 and Z 1 = Y h . In this setting the Z j are independent like we did in Section 1.2.

A second case of interest will consist in setting

, where, by contrast, all the Y h n j , j ≥ 1, are sampled from the same family (Y h ) h∈H (typically in a diffusion setting all Y h are designed from the same Brownian motion), which yields

.

In order to be able to write general results, we introduce the random variables

We recall that in both cases the cost of simulation of Z j reads

and that we make the strong error assumption

Variance N Cost 1 5.00e-01 4.70e-01 2.62e-01 4.10e-02 2.22e-01 6.47e+03 1.28e+04 2 2.50e-01 2.23e-01 1.02e+00 -2.92e-02 4.94e-02 2.59e+04 5.10e+04 3 1.25e-01 1.41e-01 4.06e+00 3.25e-03 2.02e-02 1.03e+05 2.04e+05 4 6.25e-02 6.10e-02 1.62e+01 7.50e-03 3.70e-03 4.14e+05 8.16e+05 5 3.12e-02 3.09e-02 6.53e+01 5.02e-04 9.61e-04 1.66e+06 3.26e+06 6 1.56e-02 1.53e-02 2.60e+02 -1.54e-03 2.35e-04 6.62e+06 1.31e+07 7 7.81e-03 7.75e-03 1.04e+03 6.21e-05 6.06e-05 2.65e+07 5.22e+07 8 3.91e-03 3.59e-03 4.18e+03 7.25e-05 1.30e-05 1.06e+08 2.09e+08 

Bias Variance N Cost 1 5.00e-01 3.96e-01 1.50e-01 -1.10e-02 1.58e-01 5.75e+03 1.13e+04 2 2.50e-01 2.54e-01 6.40e-01 5.04e-03 6.50e-02 2.30e+04 4.53e+04 3 1.25e-01 1.15e-01 2.36e+00 -3.35e-03 1.33e-02 9.19e+04 1.81e+05 4 6.25e-02 6.26e-02 9.42e+00 1.02e-02 3.85e-03 3.68e+05 7.25e+05 5 3.12e-02 2.96e-02 3.81e+01 -2.66e-03 8.80e-04 1.47e+06 2.90e+06 6 1.56e-02 1.66e-02 1.52e+02 -1.85e-04 2.80e-04 5.88e+06 1.16e+07 7 7.81e-03 7.84e-03 6.07e+02 -4.24e-04 6.19e-05 2.35e+07 4.64e+07 8 3.91e-03 3.80e-03 2.41e+03 9.72e-04 1.36e-05 9.41e+07 1.86e+08 Table C.9 -Randomized estimator with Milstein scheme. Independent case. Call Black-Scholes.

Bias Variance R M h -1 N Cost 5.00e-01 4.22e-01 6.73e-02 -1.24e-01 1.63e-01 2 5 1 9.14e+03 1.10e+04 2.50e-01 2.09e-01 2.75e-01 1.07e-02 4.37e-02 2 9 1 3.66e+04 4.53e+04 1.25e-01 1.07e-01 1.08e+00 1.45e-02 1.13e-02 3 5 1 1.43e+05 1.82e+05 6.25e-02 5.34e-02 4.29e+00 -2.50e-03 2.84e-03 3 5 1 5.72e+05 7.27e+05 3.12e-02 2.66e-02 1.71e+01 -2.54e-04 7.10e-04 3 5 1 2.29e+06 2.91e+06 1.56e-02 1.36e-02 6.84e+01 1.64e-03 1.82e-04 3 6 1 9.11e+06 1.16e+07 7.81e-03 6.90e-03 2.67e+02 1.06e-04 4.77e-05 4 6 1 3.58e+07 4.65e+07 3.91e-03 3.49e-03 1.05e+03 5.05e-04 1.19e-05 4 6 1 1.43e+08 1.86e+08 -1.33e-01 3.54e-02 2 7 1 4.22e+04 5.02e+04 3 1.25e-01 1.01e-01 1.33e+00 -4.08e-02 8.54e-03 3 4 1 1.81e+05 2.23e+05 4 6.25e-02 5.33e-02 5.39e+00 -2.41e-02 2.26e-03 3 6 1 7.21e+05 9.08e+05 5 3.12e-02 2.73e-02 2.19e+01 -1.27e-02 5.85e-04 3 8 1 2.90e+06 3.72e+06 6 1.56e-02 1.44e-02 8.93e+01 -8.26e-03 1.39e-04 4 5 1 1.19e+07 1.53e+07 7 7.81e-03 6.32e-03 3.58e+02 -1.89e-03 3.64e-05 4 7 1 4.74e+07 6.17e+07 8 3.91e-03 3.27e-03 1.40e+03 -1.22e-03 9.23e-06 4 8 1 1.90e+08 2.49e+08

Table C.11 -MLMC estimator with Milstein scheme. Call Black-Scholes.

k ε = 2 -k L 2 error Time(s) Bias Variance R M h -1 N Cost 1 5.00e-01 4.48e-01 1.51e-01 -1.61e-01 1.75e-01 1 1 4 7.55e+03 3.02e+04 2 2.50e-01 2.30e-01 9.77e-01 -8.86e-02 4.48e-02 1 1 7 2.97e+04 2.08e+05 3 1.25e-01 1.27e-01 7.44e+00 -6.79e-02 1.14e-02 1 1 14 1.18e+05 1.65e+06 4 6.25e-02 5.87e-02 5.77e+01 -2.37e-02 2.89e-03 1 1 28 4.69e+05 1.31e+07 5 3.12e-02 3.08e-02 4.54e+02 -1.50e-02 7.26e-04 1 1 56 1.87e+06 1.05e+08 6 1.56e-02 1.54e-02 3.56e+03 -7.49e-03 1.82e-04 1 1 111 7.47e+06 8.29e+08 7 7.81e-03 7.36e-03 2.77e+04 -2.93e-03 4.55e-05 1 1 222 2.98e+07 6.63e+09 8 3.91e-03 3.78e-03 2.20e+05 -1.71e-03 1.14e-05 1 1 444 1.19e+08 5.30e+10

Table C.12 -CRUDEMC estimator with Milstein scheme. Call Black-Scholes.