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This PhD thesis is an electronic structure simulation work to study the stabilization mechanism of yttria stabilized zirconia (YSZ) and the phenomena of the degradation of YSZ due to the presence of an aqueous media. YSZ is used especially in dental and orthopedics applications but its service depends on the environment. For these biomedical applications a crystallographic tetragonal YSZ (t-YSZ) structure is used, but depending on the concentration of yttria (Y 2 O 3 ) and the environment, this tetragonal structure is thermodynamically in competition with a monoclinic and cubic phases. This competition is crucial in this work, because it has both effects : increase the resistance or promote the degradation of this material. The study is conducted for Y 2 O 3 concentrations less than 20% mol. First, atomic structures of the three phases at low temperature were determined using density functional theory (DFT) with the local density approximations (LDA). The results include new structures that were not discussed in the literature and which are consistent with the phase diagram of YSZ at low temperature. A more detailed analysis suggests that the stabilization mechanism in YSZ is due to an effective ionocovalent screening : particularly in t-YSZ phase, its signature is expressed in Zr-ions with a coordination number of 7. This represents an important point for linking stability and structure in these systems. A second part of this work is devoted to the effect of water on YSZ bulk systems which leads to low temperature degradation (LTD) of YSZ based bioceramics materials. In conclusion, this PhD thesis represents an original contribution to the understanding of the mechanism and properties of YSZ and its applications at the atomic scale.

Résumé

Ce travail de thèse est une étude par des méthodes de simulation de structure électronique du phénomène de dégradation en milieu aqueux de la zircone yttriée. La zircone yttriée est notamment utilisée pour la fabrication de prothèses dont la durée de vie dépend du matériau et de son environnement. Pour ces applications, la zircone yttriée est de structure tetragonale, mais en fonction du dopage en yttrium et de l'environnement, cette phase est en compétition avec des structures monoclinique et cubique. Cette compétition est cruciale dans ce travail car elle peut à la fois, augmenter la résistance, ou favoriser la détérioration de ce matériau. L'étude réalisée se concentre sur des taux de dopage inférieurs à 20% mol. en oxyde d'yttrium Y 2 O 3 . Dans un premier temps, les structures atomiques d'équilibre à basse température ont été déterminées dans les trois phases en utilisant une méthode de calcul basée sur la Théorie de la Fonctionnelle de la Densité, dans l'approximation de la densité locale. Les résultats incluent de nouvelles structures qui n'ont jusqu'alors pas été discutées dans la littérature et qui sont cohérentes avec le diagramme de phase de la zircone yttriée à basse température. Une analyse plus détaillée suggère que le mécanisme de stabilisation de la zircone yttriée tetragonale est un effet d'écrantage iono-covalent particulièrement efficace dans cette phase et dont la signature dans la structure s'exprime par la présence d'ions zirconium de coordinence 7. Ceci représente un point important permettant de lier stabilité et structure dans ces systèmes. Une deuxième partie de ce travail est consacrée à l'effet de l'eau dans la zircone yttriée en volume. Pour conclure, ce manuscript représente une contribution originale à la compréhension de mécanismes à l'échelle atomique qui sont à l'origine des propriétés de la zircone yttriée et de ses applications.
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I would like to thank also Prof Eduardo Saiz, who hosted me at Imperial College of London during my six month stay for my secondment, in which not only that he he gave me his time but also played a big role in facilitating the time and place to discuss my work with his colleagues at Imperial. Although I spent most of my time at the laboratory of "Institut Lumière Matière" at Université Lyon 1, Mateis has always been my home. I came for meetings, just to say hello and have coffee and chat for a little bit with my friends, for non scientific work other works , and I thank all the people in the lab, especially the ones in the 5 th floor. Erika, Lilian, Corinne and Antonia were always there for me when I need their help, thank you. I would also like to thank Solène, Helen and Sylvain in which I discussed my work and shared some fun moments. Other people from Mateis who are still there and those who already left, all my friends, whom my presence made you all speak English, thank you for your support and smile. The list is huge but to mention some are Marta, Carlos, Laura, Chole, Anouk, Malgo, André, Philippe etc. . As a family of the BioBone project, I met such amazing people in which I believe I made a life long friendship. Marta (my "little sis"), Carlos, Francesca, Valentina, Quentin, Ana-Maria, Claudio, Gil, Preethi, Marcel, Elena, Yan, Katia, Martin, Alan etc. in which I spent amazing time in all the places and countries we have been together. Thank you all for making Zirconia is an oxide of the metal zirconium and chemically is inert. It can slowly be solved in sulfuric acid (H 2 SO 4 ) and hydrogensulfide (HF ). It is the most studied ceramics material over the last couple of decades for its diverse areas of applications. Its high toughness superior to other ceramics materials makes it a good candidate for structural applications. In its pure form zirconia (ZrO 2 ) is a polymorph and displays three distinct phases at ambient pressure. The monoclinic zirconia (m-ZrO 2 ) is the most stable phase at low temperature and stays stable over a very large temperature range up to 1170 o C. At intermediate temperature between 1170 -2370 o C, the tetragonal zirconia (t-ZrO 2 ) becomes the most stable phase and followed by a cubic zirconia (c-ZrO 2 ) phase up to its melting temperature of 2600 o C. These three phases have different crystal structures which will be detailed later. The most thermodynamically stable phase at room temperature, which is the monoclinic phase (some times called baddeleyite) does not have a great deal of structural application. But generally using different other oxides as dopants, it is possible to retain the tetragonal or the cubic phase at a relatively low temperature, even at room temperature in which they can be used in low temperature application areas such as biomaterials. Depending on the type and amount of dopants used, the tetragonal or cubic phases can be obtained in multiphase forms known as partially stabilized zirconia (PSZ) or fully stabilized zirconia (FSZ).

In mid 1970s, Garvie et al. [START_REF] Garvie | Ceramic Steel?[END_REF] discovered a phenomena called phase transformation toughening (PTT) in PSZ. PTT is related to a stress induced phase transformation from a metastable 1 tetragonal(t) to the most stable monoclinic(m) phase in zirconia. This t-m transformation is believed to be martenstic; fast and diffusionless [START_REF] Subbarao | Martensitic transformation in zirconia[END_REF] and is accompanied by volume increase. PTT in PSZ leads to high strength and toughness that were not seen in ceramics materials before. As a result of this t-m phase transformation, zirconia based ceramics materials have become reference materials for structural applications. Thus it is vital to deepen our knowledge and understanding of the different phases of zirconia so that it would help to maximize and explore other industrial applications of this fascinating material. On the other hand, a similar type of t-m phase transformation occurs in zirconia based materials due to the presence of humid environment. This water driven transformation is called low temperature degradation (LTD) or aging of zirconia and eventually results in a failure of the material. And this is the main topic this PhD dissertation. This chapter is organized as the following. I will first give detail description of the crystallography of pure zirconia. Then I will mention the application areas of zirconia based materials with respect to their specific properties. Finally, I will briefly introduce the aim of this PhD thesis, which is mainly about the low temperature degradation (LTD) or aging of zirconia.

Crystallography of Zirconia

As I have mentioned above, the importance of studying the crystallography of zirconia is for some of its applications are related to the phase changes among themselves. To this extent it is important to study the crystal structure of pure zirconia, specially for people like me who are engaged in modeling and simulations. It helps us to mimic and include all the physical and chemical behaviors of a system in our model to represent at best the real world system.

The different arrangement and coordination number of ions in the pure crystal of zirconia characterize a distinct phase. Depending to their stability with respect to temperature (from high to low), I will briefly discuss the structures of the cubic, tetragonal and monoclinic phases of zirconia respectively.

Cubic

The cubic phase of zirconia with O 5 h (F m 3m space group) is found at high temperature. The Zr ions are coordinated to equally distant eight oxygen ions. It has a face centered cubic (FCC) structure like Fluorite, where the Zr ions occupy the summits of a cube and the centers of each faces. The oxygen atoms are four fold coordinated to the Zr ions and occupy the tetrahedral (0.25, 0.25, 0.25) sites making an oxygen sub-cube. Thus the non-primitive unit cell has 4 Zr and 8 O atoms as shown in figure 1a. This makes easy to study the structure of the cubic phase, at least numerically, since it is characterized by one lattice parameter, a. Alternatively this phase can be represented in a tetragonal form where in this case there will be two lattice parameters, a and c and are related with c = √ 2a . This representation of the cubic phase is sometimes necessary specially during supercell calculations where it enables us to occupy slightly more atoms in the box.

Tetragonal

The tetragonal phase of zirconia can be found from the cubic one by elongating one of the sides (c-axis). Additionally, alternative oxygen ions are displaced along the c-axis from their high symmetry positions by an amount dz = ∆c/c. Thus the tetragonal phase is represented by the lattice parameters a, c and an internal parameter dz. Like the cubic one the Zr ions are coordinated to eight oxygen atoms and the oxygen atoms are coordinated to four Zr ions. This representation of zirconia phase with D 15 4h (P 4 2 /nmc space group) has body centered tetragonal structure, where there are 2 Zr and 4 O ions in the unit cell. The Zr ions are positioned at (0, 0, 0) and (0.5, 0.5, 0.5) and the four oxygen ions are at (0, 0.5, z);(0.5, 0, -z);(0, 0.5, 0.5 + z);(0.5, 0, 0.5-z). z is the third coordinate of the O ions and is related with dz by, dz = 0.25-z. Alternatively this phase can be represented using the a and c of the second view of the cubic phase where in this case c = 1.45a, which is different from the high symmetry cubic case where c = √ 2a as mentioned above.

Monoclinic

The natural form of zirconia which also is called baddlyite is found at low temperature. It has a C 5 2h (P 2 1 /c space group) with the Zr ions coordinated to seven oxygen ions. These oxygen ions make two sets , O I and O II which are three and four fold coordinated with the Zr ions with an average Zr -O bond length of 2.01 Å and 2.21 Å respectively [START_REF] Hannink | Transformation toughening in zirconiacontaining ceramics[END_REF]. In addition to the Zr ions being seven fold coordinated, this phase is characterized by four lattice parameters, namely a, b ,c and β . The first three are the lattice constants along the three lattice vectors and the fourth one is the angle between the a and c lattice vectors. The unit cell is composed of 4 Zr ions and 8 O ions and the fractional coordinates of the ions are given using the Wyckoff notations as ±(x, y, z) and ±(-x, y + 0.5, 0.5 -z). The unit cells of the three phases are given in figure 1. 

Applications of zirconia

The monoclinic phase of zirconia is the stable phase at low temperature in its pure form. And it has no industrial applications. But at the same time, the two high temperature stable phases can be found at low temperature up on doping them with different other oxides. Some of the dopant oxides include: magnesia (M gO), calcia (CaO), ceria (CeO 2 ), yttria (Y 2 O 3 ), etc. The type of dopant used of course determines the final application purpose of the material. Doping can simply be considered as creating defects. The defects created can be substitutional, vacancies or interstitial depending on the dopant used. For example in the case of yttria stabilized zirconia (YSZ) where yttria is used as a dopant, a combination of substitutional Y-ions and oxygen vacancies (O-vacancies) are created in the zirconia matrix. The presence of these O-vacancies is considered as a stabilizing mechanism of the high temperature (t-or c-) zirconia phases depending on the concentration of Y 2 O 3 used as discussed by Fabris et al [START_REF] Fabris | A Stabilization Mechanism of Zirconia Based on Oxygen Vacancies Only[END_REF]. And this is accomplished by lowering some Zr-ions' coordination number to 7 (which is the case in the most stable m-ZrO 2 phase at low temperature) by siting the Zr-ions as next neighbors to the vacant O-site (O-vacancies). The presence of these oxygen vacancies also give the property of high ionic conductivity to YSZ. Thus YSZ has found itself a great deal of application in solid oxide full cell (SOFC) [START_REF] Kawada | Materials and Characterization of Solid Oxide Fuel Cell[END_REF]. YSZ is used as an electrolyte in SOFC, where it can be used as oxygen ion transporter from the cathode to the anode. Zirconia based ceramics materials also show low thermal conductivity and as a result are used as thermal barrier coatings in gas turbine engines [START_REF] Padture | Thermal barrier coatings for gas-turbine engine applications[END_REF].

The unexpected finding of the Garvie group, of PTT as mentioned before has opened a door for a new application area for zirconia based ceramics materials. As seen in figure 2 [START_REF] Lughi | Low temperature degradation -aging-of zirconia: A critical review of the relevant aspects in dentistry[END_REF], a crack can advance in a zirconia based ceramic material. But at the same time due to mechanical stresses the grains a the tip of the crack can undergo a t-m phase transformation. The t-m phase transformation is associated with a ∼ 5% volume increase, which means a lattice expansion which in turn prohibits the crack from advancing by hindering the propagation. A family of toughened material, Y-TZP (yttria stabilized tetragonal zirconia polycrystal) exhibits strength of around 1000M P a and a toughness of 5 -10M P a √ m. Such properties are the reasons for using zirconia based ceramics materials in biomedical applications. Femoral head for hip prostheses made of Y-TZP have been manufactured since 1980s [START_REF] Chevalier | Low-Temperature degradation of zirconia and implications for biomedical implants[END_REF].

Another application of zirconia is in dentistry. Generally ceramics materials are inert mate-Figure 2: Schematic representation of t-m transformation around a tip of a crack taken from Reference [START_REF] Lughi | Low temperature degradation -aging-of zirconia: A critical review of the relevant aspects in dentistry[END_REF].

rials. This makes them ideal to replace in some cases metallic materials. In case of zirconia, for its biological, mechanical and optical properties (translucency, white color), it has became one of the most promising material for dental restorations (crowns and abutments) [START_REF] Angela | Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations[END_REF].

Low temperature degradation (LTD)

As mentioned above, zirconia based ceramics materials have a wide range of applications due to their good mechanical and structural properties. Kobayashi et al [START_REF] Kobayashi | Phase change and mechanical properties of ZrO 2 -Y 2 O 3 solid electrolyte after aging[END_REF] discovered that Y-TZP at around 250 • C suffers from a slow degradation due to a t-m transformation. This t-m transformation is accompanied by microcracking and loss of strength of the material in a humid atmosphere, and this discovery cooled down the excitement created by the finding of PPT in zirconia based ceramics. This t-m transformation due to the presence of water or a humid environment in zirconia based ceramics materials is referred to as low temperature degradation (LTD) or aging. Over the last couple of decades an extensive loads of works, specially experimental ones have been dedicated to study LTD so that people can get profit from the extraordinary structural properties that this material possess. Identifying the real mechanism in which how the presence of water or water radicals are at the origin of the transformation and also are responsible for facilitating the process is an open major question, still under debate. Although there are a number of papers and articles that have been published on this subject, till to date it is still under investigation. There are many hypothesis and discussions in the literature for explaining the real mechanism behind LTD in zirconia. The firmest hypothesis in YSZ is based on the filling of oxygen vacancies which were present in the matrix to maintain a stable t-YSZ phase. Thus filling these O-vacancies with water radicals, either O 2-or OH -, destabilize the t-YSZ phase.

The mechanism proposed [START_REF] Chevalier | The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends[END_REF] is as the following:

1. Adsorption of H 2 O on ZrO 2 surfaces.

2. Chemical reaction of H 2 O with ZrO 2 surfaces, followed by formation of hydroxyl (OH -) groups by breaking Zr -O bonds.

3. The OH -groups penetrate into the bulk (inner) part by grain boundary diffusion.

4. The oxygen vacancies (V .. ) are filled by the OH -and thereby proton interstitial defect.

Filling oxygen vacancies reduce their concentration triggering a t-m transformation by destabilizing the t-phase

Based on the above steps the t-m transformation is triggered by filling of oxygen vacancies by an OH -group, not the O 2-. The reason as given by Yoshimura et al. [START_REF] Yoshimura | Role of water on the degradation process of Y-TZP[END_REF] is the OH -diffuses faster than O 2-. On the contrary there are other studies that claim the oxygen vacancies are filled with the O 2-anions, not the OH -groups. Of course there are other hypothesis by Lange et al. [START_REF] Lange | Degradation during aging of transformation toughened ZrO 2 -Y 2 O 3 materials at 250 o C[END_REF] which are not based on filling of oxygen vacancies, but rather on a chemical reaction of water with Y 2 O 3 to form clusters of Y (OH) 3 which results in the decrease of the content of stabilizer which in turn leads for a t-m transformation.

As I have mentioned earlier, the main purpose of this PhD dissertation is investigating the mechanism of LTD in YSZ. The difference with previous studies is that, it is a theoretical study based on existing experimental facts. First-principles calculations which mainly employ the density function theory (DFT) will be used to study to study the stability of the different phase and also mainly to discriminate the mechanism of LTD in YSZ at atomic scale level.

Chapter 2 Theory

Introduction

The main goal in this thesis is to perform atomistic calculations to get an insight on the mechanisms that will eventually determine the low temperature degradation of yttriated zirconia ceramics. Describing the whole process of degradation should include thermal aspects as well as the role of surfaces and grain boundaries present in the structure. However, bulk properties of YSZ ceramics are at least equally important and up to now they have not been investigated in detail by atomistic simulation tools from the perspective of the degradation process. Therefore this thesis work will focus on bulk properties of YSZ systems studied from atomistic simulation tools. At least two theoretical frameworks can be considered to carry on such simulations, namely the classical molecular dynamics approaches with empirical potentials and/or electronic structure calculations. Most empirical potentials for YSZ systems are of the Born-Mayer-Buckingham form and are mainly applied to study oxygen ion diffusion in the context of solid oxide fuel cells. The Born-Mayer-Buckingham interaction potential has the form :

V (r ij ) = q i q j r i j + ke -αr ij - C ij r 6 ij (1.1)
The first term is a Coulomb interaction between ionic species, the second represents the short ranged Pauli repulsion and the last term is a Van der Waals like interaction due to the polarizabilty of the electronic clouds around the ions. Such kind of potentials ignore the covalent part of the interaction between cations and oxygen anions while the balance between ionicity and covalency is expected to be crucial in the determination of the low energy structures of transition metal oxides [START_REF] Finnis | Crystal Structures of Zirconia from First Principles and Self-consistent Tight-binding[END_REF]. Even if these potentials could reproduce some features of the oxygen anion diffusivity as a function of the yttria (Y 2 O 3 ) molar ratio they generally fail in giving the energy ordering of the pure zirconia (ZrO 2 ) polymorphs at low temperature [START_REF] Lau | Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids[END_REF]. Since our first interest will be to find the low energy structures of different ZrO 2 polymorhs doped with Y 2 O 3 , but also to identify the nature of defects introduced upon doping we can hardly rely on empirical potential methods with crude assumptions on the interaction potential. This requirement of a correct treatment of the delicate iono-covalent balance in transition metal oxides naturally leads to an electronic structure description of the system. Again one can envisage several electronic structure techniques to perform the calculations. The most precise techniques originate from quantum chemistry methods involving a post Hartree-Fock treatment, however those methods are computer time consuming and often limited to a small number of atoms. Lighter schemes rely on semi-empirical tight-binding methods allowing the treatment of thousands of atoms [START_REF] Finnis | Crystal Structures of Zirconia from First Principles and Self-consistent Tight-binding[END_REF][START_REF] Allan | Tight-binding calculations of the optical properties of HgT e nanocrystals[END_REF][START_REF] Russo | Acido-basic properties of specific surface sites of magnesium oxide[END_REF] however several parameters defining the atomic interactions have to be determined and the difficulty of this task increases with the number of atomic species.

To start our study on YSZ systems we have chosen to carry on Density Functional calculations which should provide a good balance between accuracy, system sizes and computer time. Within these techniques the calculation parameters are essentially extracted from separated atomic calculations and do not imply strong assumptions on the nature of the interatomic bonding which rather represents a result of the calculations that can be analyzed in output of the runs. For the same reason pure ZrO 2 systems or systems containing defects (yttria or water) can be studied at the same level of accuracy allowing comparison between them.

Throughout this thesis I have mainly used the software VASP (Vienna Ab-initio Software Package), that implements the PAW technique (Projected Augmented Waves).

In the following of this chapter I will briefly describe the main theoretical aspects of the electronic structure problem together with its formulation in the context of the Density Functional Theory (DFT). Then I will shortly present the main features of the Projected Augmented Wave technique and some details of its technical implementation in the VASP code.

At the end of this chapter I give a short introduction about the Bader charge analysis and the NEB technique that I have employed in my research work on zirconia doped with yttria with and without water. The use of DFT in this work lies over a better precise results that can be compared with experimental outcomes and computational cost.

Electronic Structure Problem and Born-Oppenheimer approximation

The main task in the electronic structure problem is to find the stationary solutions of the non-relativistic many-body Shrödinger equation :

ĤΨ = EΨ (2.1)
Where the Hamiltonian operator Ĥ is :

Ĥ = - i ∇ 2 i 2 - A ∇ 2 A 2M A - A,i Z A r Ai + A>B Z A Z B R AB + i>j 1 r ij (2.2)
We have used here the atomic units, i.e charge of the electron e and mass of the electron m e are all equal to unity. The indices in uppercase (A and B) refer to nuclei (ions) and the lower cases (i and j) refer to the electrons.

The first term in the Hamiltonian is the kinetic energy of the electrons, the second is the kinetic energy of the ions. They can respectively be re-written as T e = i P 2 i /2m e and T N = A P 2 A /2M A where the operators P xi = -i ∂ ∂ xi and P XA = -i ∂ ∂ XA are the momentum operators projected along the x/X direction for the electron i and ion A respectively.

The third term is the Coulomb interaction between electrons and ions that we will write as

V eN = A,i Z A r Ai , r Ai = | r A -r i |
is the vector distance between the spatial coordinates of electron i and the nucleus A.

The fourth term is the Coulomb interaction between nuclei :

V N N = A>B Z A Z B e 2 4π 0 R AB where R AB = | R A -R B | is the distance between the nuclei A and B.
The fifth and last term is the electron-electron Coulomb interaction :

V ee = i>j 1 r ij where r ij = | r i -r j |
is again the distance between the spatial coordinates of electrons i and j.

Because of the coupling (third term) between electronic and ionic coordinates the wavefunctions which are the eigen-functions of the Hamiltonian can not in principle be written as a simple product of wave functions Φ({ R A }) that depends only on ionic coordinates and Ψ({ r i , s i }) that depends only on electronic coordinates ( r i and s i stand for the spatial and spin coordinates of the electron i). However, this simplification can be retrieved within the Born-Oppenheimer approximation [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF]. The Born-Oppenheimer approximation is an important approximation in quantum systems composed of electrons and nuclei. It comes from the fact that, although an electron and a nucleus exert equal amount of force and momentum due to the attractive interaction, the mass of a nucleus is about 1840 times larger than that of an electron. This means that except for light atoms like hydrogen, an electron adapts very fast to the positions of the ions when we compare to that of the motion of the nucleus. Therefore, the Born-Oppenheimer approximation assumes that the electrons in a molecule or in an atom move in a field of "fixed" nuclei. Following this approximation, we will look for wave-functions that can be written under the form :

Φ({ R A })Ψ({ r i , s i }, [{ R A }]
). In this expression the notation "[{ R A }]" indicates that the nuclei coordinates are considered as (fixed) parameters in the resolution of the electronic problem. At this stage the electronic problem can be separated from the nuclei problem, but we can discuss further the Born-Oppenheimer approximation by noting that the large mass of the nuclei will result in highly localized nuclear wave functions. Such localized wave function contrast with the extended wave functions of electrons and consequently the nuclei can be treated as point-like classical particles within a good approximation. All the calculations I did were done in this framework, the kinetic energy of the ions is then written as

T N = A M A v 2 2
and the V N N term in the Hamiltonian is computed as a classical Coulomb energy between point-charges.

Putting apart the classical motion of the ions (nuclei) and their mutual interaction, the effective electronic Schrödinger equation that has to be solved is :

Ĥel Ψ({ r i , s i }, [{ R A }]) = ( Te + Vee + VeN )Ψ({ r i , s i }, [{ R A }]) = E el ([{ R A }])Ψ({ r i , s i }, [{ R A }]) (2.3) 
The energy E el ([{ R A }]) can be associated to an effective potential energy to describe the interaction between the atoms. It can for instance be used to parametrize classical potential like the Born-Mayer-Buckingham potential presented in the previous section. To conclude on the Born-Oppenheimer approximation it should be mentioned that it is expected to fail whenever electronic excitations are strongly coupled with ionic motion. Also the classical approximation for the nuclei neglects the quantum nature of the ionic motion at low temperature and especially the point zero energy that can play a role in the relative stability of some systems. Since none of these limitations appeared to be especially important in our zirconia based systems we will not discuss them anymore in the following.

Before going to Density Functional Theory it is important to define some energy terms such as the exchange energy. Exchange energy is more easily understood starting from the Hartree-Fock formalism which is the goal of the next section.

The Hartree-Fock approximation and the Slater Determinant

The Hartree-Fock method aims at finding the ground state of the Hamiltonian 2.3 using a Slater determinant form to represent the multi-electronic wavefunction Ψ.

This approach relies on the variational principle which states that any trial wave-function Ψ trial will be associated to an expectation value of the Hamiltonian which is higher or equal to the ground state energy of the system E 0 .

< Ψ trial |H|Ψ trial > = E trial (3.1) < Ψ 0 |H|Ψ 0 > = E 0 (3.
2)

E trial ≥ E 0 (3.3)
From a practical point of view the variational principle is extremely important because if we can evaluate the energy E trial , we can in principle minimize it respect to the free parameters of the wavefunction (i.e. its coefficients over a defined basis set) in order to approach at best the ground-state wave-function. Another important aspect of the variational principle is that the eigen-functions are stationary "points" of the energy functional, i.e. if :

Ĥ|Ψ >= E|Ψ > (3.4) then : ∂E ∂Ψ = 0 (3.5)
This last expression being a functional derivative.

In the Hartree-Fock method this variational principle is applied to wavefunctions that have the form of a Slater determinant, if we condensate the spatial coordinates r i and the spin coordinate s i of an electron i into a single notation x i :

φ 1 (x 1 ) φ 2 (x 1 ) .... φ N (x 1 ) φ 1 (x 2 ) φ 2 (x 2 ) .... φ N (x 2 ) . . .... . . . .... . φ 1 (x N ) φ 2 (x N ) .... φ N (x N ) (3.6)
In this equation the φ i (x) represent a set of orthonormal mono-electronic trial wave-functions : < φ i |φ j >= δ ij called spin-orbitals. This particular choice for the many-body electronic wave-function is motivated because the fermionic wave-function respects the Pauli principle and has to be anti-symmetric : Ψ(..., x i , x j , ...) = -Ψ(..., x j , x i , ...)

(3.7)

The connection with the Pauli exclusion principle can be seen taking two electrons with the same coordinates which will lead to Ψ(..., x, x, ...) = 0. The introduction of the Slater determinant therefore implies a kind of "correlation" between the electrons which is associated to the Pauli principle.

If we build a Slater determinant by supposing that the spin-orbitals from a = 1 to a = N are occupied states, N being the number of electrons in the system, the expectation value of the Hamiltonian gives the Hartree-Fock energy E HF :

E HF = < Ψ|H el |Ψ > (3.8) = N a=1 -< φ a | ∇ 2 2 |φ a > (3.9) - N a=1 < φ a | A Z A | R A -r| |φ a > (3.10) + 1 2 N a=1 |φ a | 2 ( r) b=1,N |φ b | 2 ( r ) | r -r | d 3 rd 3 r (3.11) - 1 2 N a=1 N b=1 φ * a ( r, s)φ b ( r, s)φ * b ( r , s )φ ( a r , s ) | r -r | d 3 rd 3 r dsds (3.12)
The first two terms are the kinetic energy and the interaction of the electrons with the nuclei, these contributions are calculated as in a system of independent particles.

The third term is a classical Coulomb repulsion due to the repulsion of the electronic charge density with itself, here we have used the notation :

|φ a | 2 ( r) =< φ a | r >< r|φ a >= φ * a ( r, s)φ a ( r, s)ds.
The last term defines the exchange energy which is always negative, the contribution of the spin-orbitals pair (φ a ,φ b ) to the exchange energy is different from zero only if these orbitals are of identical spin. One can also note that in this formulation, the Coulombic interaction of each electron with itself (a = b) has been introduced in the classical Coulombic term but it cancels exactly with the self exchange (a = b) that has been accordingly added to the exchange energy.

Starting from this expression of the Hartree-Fock energy one can apply the variational principle (equation 3.5) respect to the spin-orbitals : ∂E HF ∂φa = 0, maintaining the orthonormality of the spin-orbitals.

In this way one obtains the Hartree-Fock equations :

F |φ a >= a |φ a > (3.13) 
This last equation precises how the |φ a > can be obtained : they are the eigen-functions of the Fock operator F . One important point is that F also depends on the spin-orbitals :

F = - ∇ 2 2 + A Z A | R A -r| + Ĵ -K (3.14)
Where Ĵ is the Coulomb operator which acts on |φ a > as :

< r| Ĵ|φ a >= N b=1 |φ b | 2 ( r ) | r -r | d 3 r φ a ( r, s) (3.15)
And where K is the Exchange operator which acts on |φ a > as :

< r| K|φ a >= N b=1 φ * b ( r , s )φ a ( r , s ) | r -r | d 3 r ds φ b ( r, s) (3.16)
If a calculation starts with a trial wave-function Ψ t , one can build the Fock operator acting on the spin-orbitals and solve the Hartree-Fock equations 3.13. On output of this process one gets a new wave-function Ψ o which will be identical to Ψ t only if Ψ t is the ground state Hartree-Fock determinant. This procedure is therefore iterated in a self-consistent way by mixing the trial and output wave-functions until the trial and output are close enough to each other.

The Hartree-Fock method is then an iterative self-consistent method to approximate the ground state of a multi-electronic system by a single Slater determinant. The contributions to the energy consist in a sum of mono-electronic terms to describe the kinetic energy of the electrons and their interactions with an external potential ( it is here the Coulomb interaction with the nuclei), a classical Coulomb term which is the repulsion of each spin-orbitals by the total electronic density due to all the electrons. Finally, we have introduced the exchange energy which is related to the quantum antisymmetric nature of the electrons. Again it can be stressed that this exchange energy couples electrons of the same spin and is associated to a potential operator K which has a non-local character 3.16. Indeed, < r| K|φ a >, the exchange potential acting on |φ a > at a point r, depends not only on φ a ( r, s) at the space point r, but on an integral of φ a ( r, s) over the whole 3-dimensional space.

If we now compare the exact ground state energy E 0 to the Hartree-Fock approximation E HF obtained with a single Slater determinant, the variational principle tells us that :

E 0 ≤ E HF .
Using an electronic structure vocabulary the difference E C = E 0 -E HF is by definition the correlation energy and is always negative.

In the next section I introduce the Density Functional Theory which shares many features of the Hartree-Fock theory I have just presented. A detailed presentation of the Hartree-Fock method can for instance be found in [START_REF] Szabo | Modern Quantum Chemistry[END_REF].

Density Functional Theory

Over the years, the density function theory (DFT) has become the most used ab-initio method for solving the many-body system problems in condensed matter physics. It is a method used to investigate the electronic structure (ground state) of a system composed of many atoms, molecules, etc based on the density of electrons. Some of the reasons for DFT to be so popular are that it gives results which in most times are comparable with experimental ones, and also it needs less amount of computational cost when it is compared to other quantum chemistry methods which are based on the many-body wave functions. Before explaning the basic princi-ples of DFT in depth, I will first go through some basic ideas which would lead us to use DFT.

The key quantity in DFT is the electron density ρ. Starting from a many-body wavefunction |Ψ > normalized to unity it is mathematically defined as;

ρ( r) = N ... Ψ * ( r, s 1 , x 2 , ..., r N )Ψ( r, s 1 , x 2 , ..., x N )ds 1 dx 2 ...dx N (4.1)
From this definition, ρ( r)d 3 r is the average number of electrons in the volume element d r around the point r. This quantity is a function of three variables (x, y, z). This makes it relatively easy to handle compared to the the multi-electron wave function which depends on 3N variables. We have already met functionals in the quick review of the Hartree-Fock in the previous section, but since the term "functional" appears in the name of the theory, let me say few simple remarks about it. As we know a function takes a number and returns another number. If as an example we take f (x) = x 3 + 1 as function and if we want to evaluate this function at x = 3, we get f (3) = 3 3 + 1 = 28 which indeed returns an other number.

A functional on the other hand takes a function as an argument and returns a number. If we designate the functional as F [f (x)] and if we ask ourselves what is the functional of F upon integrating the function f (x) given above from 0 to 1, we get

F [f (x)] = 1 0 f (x)dx. And F [x 3 + 1] = 1 0 (x 3 + 1)dx = 5/4.
Thus by using this definition the electron density functional takes the electron density and returns a number. For example;

N [ρ(r)] = ρ( r)d 3 r (4.2)
gives the number of electron in our system. The density functional mainly focus on functionals that return the energy of a system.

One of the attracting ideas about DFT is that it recasts the electronic problem in terms of the density which depends on 3 variables only. However we shall see in the following that this drastic simplification of the problem is not really effective in practical applications. The whole DFT is based on two theorems by Hohenberg-Kohn, [37] [38].

The HK theorems:

The expectation value of any physical observable of an interacting many-electron system, in the ground state is a unique functional of the electron density.

E = E[ρ( r)].
The total energy functional has a minimum ground state energy E 0 at the equilibrium ground state density, ρ 0 , i.e

E 0 = E min [ρ( r)] = E[ρ 0 ( r)].
The challenging and unfortunate thing is that we don't know the energy functional. We only know that the functional has a minimum value when the charge density ρ( r) is exact.

Since the energy is a functional of the density let's split it again in several terms :

E[ρ] = E T [ρ] + E ext [ρ] + E ee [ρ] (4.3) E T [ρ] is the electronic kinetic energy functioonal, E ext [ρ]
is the interaction energy of the electrons with an external potential which in our case is again the Coulomb interaction with the nuclei and E ee [ρ] contains the energy of interaction between the electrons including exchange and correlation terms. Among these 3 terms only the second can be easily written as a functional of the density :

E ext [ρ] = E eN [ρ] = - A ρ( r)Z A | r -R A | d 3 r (4.4)
As in the Hartree-Fock method one can also express the classical Coulomb repulsion as a simple functional of the density. If we note this term E J [ρ] in reference to the Coulomb operator in the Hartree-Fock method we have :

E J [ρ] = 1 2 ρ( r 1 )ρ( r 2 ) | r 1 -r 2 | d 3 r 1 d 3 r 2 (4.5)
We can introduce in the total energy a functional

G ee [ρ] = E ee [ρ] -E J [ρ]
that gathers all the remaining terms in the electron-electron interaction. G ee [ρ] essentially contains the exchange and correlation contributions including the corrections for the self-interaction that is present in

E J [ρ] : E[ρ] = E T [ρ] + E ext [ρ] + E J [ρ] + G ee [ρ] (4.6)
Early attempts to evaluate E T [ρ] and G ee [ρ] were based on references to the homogeneous electron gas where the kinetic energy and the exchange energy can be expressed as functionals

Khon Sham Density Functional Theory

The main idea of the Kohn Sham scheme is to write the correct density as the one obtained from a set of orthonormal independent particles wave-functions ψ i ( x), for a system of N electrons :

ρ( r) = N i=1 |ψ i | 2 ( r) (4.7) with < ψ i |ψ j >= δ ij (4.8) 
Using this, an approximation to the correct functional E T [ρ] is given by a sum over the occupied Kohn-Sham orbitals :

E KS T [ρ] = N i=1 -< ψ i | ∇ 2 2 |ψ i > (4.9)
As in the Hartree-Fock case, the fast variations of the density around the nuclei can be better apprehended, but the use of these Kohn-Sham orbitals implies to abandon the formal simplicity of DFT that should in principle rely only on ρ. The difference between the correct kinetic energy E T [ρ] and E KS T [ρ] is then added to the difficult term G ee [ρ] which will be written E XC [ρ]. This is the usual definition of the exchange and correlation functional in DFT. To summarize these manipulations we can now write the total energy functional within the Kohn Sham scheme :

E[ρ] = E KS T [ρ] + E ext [ρ] + E J [ρ] + E XC [ρ] (4.10)
Here we have kept a notation that corresponds to an energy that is a functional of the density but practically the energy can also be seen as a functional of the Kohn-Sham states.

If the Kohn-Sham orbitals are used to evaluate the kinetic energy we clearly need a way to calculate them. This is done using the second theorem of Hohenberg and Kohn that provides a variational principle for E[ρ]. Since the small variation of ρ and ψ are related through 4.7 we can write the variational principle as : ∂E[ρ] ∂<ψ i | = 0 and by imposing the orthonormality constraint given in equation 4.8. Following this leads to the derivation of the Kohn-Sham equations :

- ∇ 2 2 |ψ i > +V ext |ψ i > + ρ( r ) | r -r | d 3 r 3 |ψ i > + ∂E XC [ρ] ∂ρ |ψ i >= i |ψ i > (4.11)
These equations play a similar role as the Hartree-Fock equations in the Hartree-Fock method. Since the Kohn Sham potential depends on the |ψ i >, they can be solved self-consistently in an iterative way. Although the Kohn-Sham states are artificially built to achieve a good accuracy of the electronic kinetic energy they are routinely used to plot the band structure of materials, the electronic density of states, HOMO (highest occupied molecula orbital) and LUMO (lowest unoccupied molecular orbital) can also be analyzed to get information about chemical reactivity. Before going to the applications of DFT we should first discuss the E XC [ρ] term in the energy functional.

Exchange and Correlation Functionals

Local Density Approximation

One successful attempt to approximate E XC [ρ] at a relative cheap computational cost is the Local Density Approximation (LDA). As the Thomas-Fermi and Slater approximations, LDA is based on results obtained on the homogeneous electron gas, indeed the exchange term in this functional is the same as the Slater's exchange term :

E X [ρ] = -C X ρ( r) 4 
3 ). The correlation part is extracted from Quantum Monte-Carlo calculations performed by Ceperley and Alder [START_REF] Ceperley | Ground State of the Electron Gas by a Stochastic Method[END_REF]. I will not explain here the Quantum Monte Carlo method but in the case of the homogeneous electron gas this method gives access to the total energies with a minimum of assumptions. By substracting all the other terms of the energy one can evaluate the correlation energy. This has been done for some densities, and interpolation schemes have been developed to obtain correlation energies at densities found in the atoms, molecules and solids [START_REF] Vosko | Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[END_REF][START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF][START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF].

Practically the LDA exchange and correlation is written as :

E LDA XC [ρ] = ρ( r)exc LDA (ρ( r))d 3 r (4.12)
We can see that the LDA functional is purely local, it does not contain the long range and non-local exchange term found in the Hartree-Fock method. Despite this limitation LDA performs usually very well for large classes of systems and materials. One reason for this is that LDA respects some average properties of the correct exchange interaction such as the exchange hole sum rule. The largest errors obtained with LDA probably concern the atomization energies that can be overestimated by as much as 50% but these large errors mainly occur when atomic energies are involved while the energy differences between extended systems are quite accurate. The structures are however usually well given by LDA with a typical underestimation of 1-3% on the bondlength, vibrational frequencies usually are adequately reproduced accuratly. A general comment about the LDA functionals is that they generally lead to an overestimation of the bonding between atoms. This overestimation is can be quite sensitive in the case of weak bonds (hydrogen bonds or interaction between carbon planes in graphite for instance), while LDA shows good performance for covalent or iono-covalent systems.

Extensions of the LDA also exist for spin-polarized systems, then the functional also depends on the spin densities ρ ↑ =

N ↑ i=1 |φ i↑ | 2 ( r) and ρ ↓ ( r) = N ↓ i=1
|φ i↓ | 2 ( r). These functionals are labelled as Local Spin Density Approximations and can be formally written as :

E LSDA XC [ρ ↑ , ρ ↓ ] = ρ( r)exc LSDA (ρ ↑ ( r), ρ ↑ ( r))d 3 r (4.13)
Since the systems in this thesis are all closed shells systems that do not crucially involve the description of weak bonds I have mainly used a LDA functional based on the the Ceperley-Alder calculations [START_REF] Ceperley | Ground State of the Electron Gas by a Stochastic Method[END_REF] and parametrized by Perdew and Zunger [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF].

Generalized Gradient Approximation

As I have just mentioned, some of the main problems of LDA functionals are atomization energies and the description of weak bonds. In order to improve these aspects exchange and correlation functionals including the gradient of the density have been constructed, their general form can be written as :

E GGA XC [ρ ↑ , ρ ↓ ] = f (ρ ↑ ( r), ∇ρ ↑ ( r), ρ ↓ ( r), ∇ρ ↓ ( r))d 3 r (4.14)
Many functional of this type exist, also for non spin polarized systems. Among the popular versions we can cite the Perdew Becke Ernzerhof [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF], the Perdew Wang [START_REF] Perdew | Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[END_REF] and the Lee Yang Parr functional [START_REF] Lee | Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[END_REF] that has been developped from quantum chemistry results on the helium atom. Some versions also mix the exchange part of a given functional with the correlation part of another as for instance the BLYP functional which uses the Becke exchange and LYP correlation [27].

Although these functionals remain (almost) local functionals they indeed contribute to reduce the problems of LDA, giving a better description of weak bonds and better atomization energies. From the structural point of view, as long as weak bonds are not concerned they have the same level of accuracy as the LDA functional with the difference that they usually tend to overestimate the bond lengths.

Since they are generally thought to be of better quality we have tested some of our LDA results using the GGA-PBE functional [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF] as used for example in ZrO 2 systems [START_REF] Sangalli | Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of yttrium-doped ZrO 2 : A first-principles approach[END_REF][START_REF] Jomard | First-principles calculations to describe zirconia pseudopolymorphs[END_REF].

Other Classes of Exchange and Correlation Functional

In the last decades many other kind of functionals were developed, all these searches aiming to a better accuracy of DFT and its extension to systems that were difficult to treat using local functionals like LDA or GGA. We can first cite the hybrid functionals that contain a part of the long range exact Hartree-Fock exchange. In the most simple versions the exact exchange is included with a weight that is retrieved to the exchange part of the local functionals (as for instance in [START_REF] Becke | Density functional thermochemistry. III. The role of exact exchange[END_REF][START_REF] Lee | Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density[END_REF], [START_REF] Burke | The adiabatic connection method: A nonempirical hybrid[END_REF]). However the inclusion of the exact exchange comes with a large increase of the computational cost, therefore some more 'faster' hybrid versions include screened, or approximated short ranged Hartree-Fock exchange HSE06 [START_REF] Heyd | Hybrid functionals based on a screened Coulomb potential[END_REF], HSEsol [START_REF] Schimka | Improved hybrid functional for solids: The HSEsol functional[END_REF]. Other developpments include Meta-GGA functionals where a dependence on the kinetic energy of the electrons is included. Although they are local functionals like LDA or GGA they tend to perform better than both of their ancestors, some comparison of Meta-GGA with other functionals is given in [START_REF] Hao | Performance of meta-GGA functionals on general main group thermochemistry, kinetics, and noncovalent interactions[END_REF]. It is remarkable that all the functionals mentionned above completely neglect the London dispersion forces due to long range correlation between electrons. These forces are Van der Waals forces which are very important in nature. However, in many systems these forces can be neglected respect to strong ionic or covalent forces, as we will see it is the case in our Yttriated Zirconia systems but when one looks at the structure of water the situation is different. Some efforts have been done to improve the exchange and correlation functionals to include the treatment of the London dispersion forces, (for more details see the recent review [START_REF] Berland | van der Waals forces in density functional theory: a review of the vdW-DF method[END_REF]).

Practical Implementation

Plane-Wave Basis Set

Many kind of computer softwares realizing practical implementations of DFT do exist, the specific techniques employed in these codes first depend on the kind of basis set that is chosen to expand the Kohn-Sham wavefunctions. Implementations coming from a quantum-chemistry perspective usually rely on localized basis set, one famous example being the Gaussian code which uses Gaussian basis set. On the other side, physicists historically built schemes based on plane-wave basis set. We chose to carry our calculations with plane-waves approach because it has some practical advantages when describing dense periodic systems and systems with vacancies, especially because the delocalized nature of the plane waves allow an homogeneous precision over all the regions in the simulation box.

A plane wave description first involves a well defined simulation box with lattice vectors : a, b, c to which we associate a cell volume V c = c. a ∧ b and a set of dual basis vectors a * = 2π b∧ c Vc , b * = 2π c∧ a Vc , c * = 2π a∧ b Vc . The whole space is then assumed to be constructed by taking the periodic images of this simulation box. This periodicity implies the Hamiltonian of the system to be periodic too, which means that the Kohn-Sham wave-functions that we are looking for are Bloch wave-functions [START_REF] Kittel | Introduction to Solid State Physics[END_REF][START_REF] Ashcroft | Solid State Physics[END_REF] of the form :

ψ n, k KS ( r) = u n, k ( r)e i k. r (5.1)
where k is a vector in the first Brillouin zone, ψ n, k KS ( r) is one of the Kohn-Sham wave-functions identified by k and a quantum number n and u n, k ( r) is a wave-function that has exactly the periodicity of the lattice defined by our simulation cell. n can be a composite quantum number that contains the band quantum number and the spin.

For now we leave the discussion on the phase factor e i k. r for the next subsection and we focus on u n, k ( r). Since this function is periodic it can be expanded in Fourier series :

u n, k ( r) = G c n, k ( G)e i G. r (5.2)
Here G = n a a * + n b b * + n c c * represents a vector of the reciprocal lattice and the equation 5.2 is the plane-wave expansion for the periodic wave-functions which formally extends over an infinity of reciprocal vectors G.

In any practical implementation we cannot handle an infinite basis set, but for any regular function the Fourier coefficient for large enough n a , n b or n c will tend toward zero. For large |n| these components will carry a more and more negligeable weight in the wave-functions and in the physical properties. A threshold amplitude G max can therefore be chosen and the basis set is practically limited to the n a , n b , n c which fulfill the condition |G| < |G w max |. This defines a cutoff energy for the wave-functions :

E w cut = h2 |G w max | 2 2m e (5.3) 
The |G w max | cutoff on the wave-function expansion implies the need of as twice larger cutoff for the density : |G d max | = 2|G w max |. This is because the Fourier Series of a product in real space is a convolution product in the reciprocal space, this gives an energy cutoff for the density that is formally 4 times larger than the energy cutoff for the wave-functions :

E d cut = h2 |G d max | 2 2m e = 4E w cut (5.4)
The energy cutoff introduced here can be systematically increased to increase the precision of a calculation, but the computational cost will also be increased. A practical set of energy cutoffs then results from a balance between computational cost and precision.

Special k-points

We have just mentioned the Bloch's theorem for periodic systems. This theorem states that the reciprocal vectors in the Brillouin zone represent a relevant set of quantum numbers that should be taken into account to describe the physical properties of the system. For instance, the electronic density, the central quantity in DFT, should be written as an integral over the Brillouin zone :

ρ( r) = BZ n( k, r)d 3 r (5.5)
Here the quantity n( k, r) is the density calculated from all the Kohn-Sham states associated to the vector k :

n( k, r) = n f (n, k)|ψ n, k KS ( r)| 2 . f (n, k
) is an occupation factor, between 0 and 1, of the Kohn-Sham orbital with the corresponding quantum numbers n and k.

Looking roughly at the equation 5.5 seems to indicate that we need all the Kohn-Sham states over the whole brillouin zone to calculate the electronic density and other properties. However, the function n( k, r) is a usualy regular enough function of k for which the integral 5.5 can in practice be accurately approximated by a weighted sum over few special k-points :

ρ( r) = BZ n( k, r)d 3 r special k w( k)n( k, r) (5.6)
The set of special k-points can be chosen from different techniques, the most popular ones being the Chadi-Cohen [START_REF] Chadi | Special Points in the Brillouin Zone[END_REF] and Monkhorst and Pack [START_REF] Monkhorst | Special points for Brillouin-zone integration[END_REF] techniques. In our calculations with the VASP code we used the Monkhorst and Pack version which consists in defining a regular grid in the Brillouin zone which is reduced after symmetry considerations.

Practically the number of special k-points can be determined as the cutoff energy, after a trade-off between the computational cost and convergence of the physical properties. The convergence of the physical properties respect to the number of k-points strongly depends on the kind of system. For instance in a metallic system electrons tend to be delocalized over several elementary cells and n( k, r) varies rapidly as a function of k close to the fermi level, as a consequence these systems require a large number of special k-points than the insulating systems. The other extreme are molecules in periodic boxes, if the empty space between periodic images is large enough the physical properties do not depend on k and wave-functions with the periodicity of the cell are enough to describe the system. In this case real wave-functions a the Γ point ( k=0) are used.

As it is highlighted in this example, the k points are associated to the interactions of similar atoms in different calculation cells. If the calculation cell itself is a supercell that contains several elementary unit cells, then the number of k-points needed to converge the physical properties of the large cell will be (much) smaller than the number of special k-points needed to describe the properties of the small cell.

Pseudopotentials

In my thesis I used the PAW method that is closely related to the ultra-soft pseudopotential technique [START_REF] Vanderbilt | Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[END_REF] . Before describing the PAW method, I first summarize some of the main features of the standard norm-conserving pseudopotentials that can be seen as the ancestors of the PAW method.

A difficulty that arises when using plane waves is the description of the low energy atomic states. These states, are strongly localized around the nuclei, almost chemically inert, and therfore almost unaffected by the atomic environment. Because they are localized in a small region around the nuclei, these states would require a huge number of plane-waves to be correctly described. Within the pseudopotential approach, these states are considered frozen and are removed from the self consistent procedure. Also, the wavefunctions are replaced by pseudo-wavefunctions that are smooth in the core region around the nuclei so they can be efficiently represented on a plane-wave basis set. A pseudopotential is practically an effective potential that acts on the valence electrons and combines the effect of the nucleus and core electrons.

Norm-Conserving pseudopotentials

The generation of pseudopotentials always invole preliminary all-electron calculations on atoms. Then the pseudopotentials and other important parameters as the pseudo-wavefunctions can be extracted on the basis of these results.

The description of the norm-conserving pseudopotential and details about their generation can be found in the following papers [START_REF] Pickett | Pseudopotential methods in condensed matter applications[END_REF][START_REF] Hamann | Norm-Conserving Pseudopotentials[END_REF][START_REF] Trouiller | Efficient pseudopotentials for plane-wave calculations[END_REF]. Here we will only summarize the most important features :

• A pseudopotential and a pseudo-wavefunction are constructed for the relevant valence bound states, their energies l are by construction equal to the corresponding all-electron energies. Usually one pseudo-wavefunction and one pseudopotential are built for each angular momentum l. After a given cutoff radius r c both the pseudopotentials and the pseudo-wavefunctions collapse to their all-electron counterparts.

• The pseudo-wavefunctions represent the ground states of the pseudopotentials and have no nodes between r = 0 and r c . This feature is appropriate to generate slowly varying functions that are efficientley expanded on a plane-wave basis set.

• A crucial characteristic of a pseudopotential is its transferability, i.e. its capability to represent accurately the effect of the nucleus and core electrons in an environment different from the atom. A criterion that assures a good transferability, at least around the energies of bound states, is to impose the norm-conserving condition :

rc 0 | φl ( r)| 2 d 3 r = rc 0 |φ l ( r)| 2 d 3 r (6.1)
Where φl ( r) is the pseudo-wavefunction of angular momentum l and φ l ( r) the corresponding all-electron wavefunction.

As we have presented them until now the pseudopotentials represent the interaction of the ionic cores of the atoms with the valence electrons of the system. They depend on the specific angular momentum and should be written in the applications using the appropriate projections over angular momenta centered on the atomic sites.

For computational efficiency the norm-conserving pseudopotentials are usually written as follows :

V ps = V lref + lmax l =lref,m |β l , l, m > V N L l < l, m, β l | (6.2)
V lref is the "local" part of the pseudopotential, it is equal to the pseudopotential associated with the angular momentum l = lref . The second term is the "non-local" part of the pseudopotential that uses projectors. It contains the spherical harmonics |l, m > to project over the correct angular momenta, and also some radial projectors |β l > that are rather localized around each nucleus and are constructed from the pseudopotentials and atomic pseudowavefunctions.We note that the non-local part will perform projection until l = lmax. The components of the pseudo-wavefunction that are orthogonal to these projectors will therefore interact with the ions through the local potential V lref .

This expression for the pseudopotential is discussed by Kleinman and Bylander [START_REF] Kleinman | Efficacious Form for Model Pseudopotentials[END_REF], and some detailed analysis is given by Gonze et al. [START_REF] Gonze | Analysis of separable potentials[END_REF]. In the context norm-conserving pseudopotentials the non-local part of the pseudopotential has been included a posteriori for practical purposes and usually participates to the deterioration of the transferability of the pseudopotential.

PAW method

The PAW acronym stands for "Projected Augmented Waves". This technique was first presented by Blöchl [START_REF] Blöchl | Projector augmented-wave method[END_REF] but several other implementations exist [START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmentedwave method[END_REF][START_REF] Holzwarth | Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids[END_REF]. Almost all the calculations done in my thesis were performed with the VASP implementation of PAW using the calculation parameters available to the wide VASP community. The PAW method relies on the ideas presented in the norm-conserving pseudopotentials but also shows some important improvements. First, the PAW method has a better computational efficiency in reducing drastically the plane-wave cutoff to represent the wave-functions. Also the accuracy of the PAW method is usually much higher since it allows a better description of the wave-function inside the cutoff radius. As a result, the quality of PAW calculations is often comparable to all-electron techniques but at a much lower computational cost.

The essence of the PAW method is to define a mapping between valence pseudo-wavefunctions and all-electron wave-functions using local projectors |β i > that are localized in real space around the nuclei :

|ψ n, k >= | ψn, k > + i (|φ i > -| φi >) < β i | ψn, k > (6.3)
In this equation |φ i > and | φi > are respectively atomic all-electron valence wavefunctions and atomic valence pseudo-wavefunctions, or partial waves. As in a standard pseudopotential scheme, these functions become equal beyond a radius r c . We note that the projection operator gives no contribution beyond this radius, thus r c delimitates the atomic centers, also called augmentation regions.

| ψn, k > are pseudowavefunctions that extend over the whole calculation cell and are represented on a plane-wave basis set while the |φ i > and | φi > are associated to local contributions around the nuclei that are represented on local fine real space grids in each atomic center.

The PAW method therefore uses a hybrid basis set. We will see that the energy terms are organized in order to prevent explicit crossed terms between the two basis that are connected through the use of the projectors |β i >. Usually, the possible overlap between the local grids centered on different atoms is neglected.

The projectors |β i > are also mainly localized in the augmentation region and verify the following property :

< β i | φj >= δ ij (6.4)
In our short presentation of the PAW method we will suppose that the set of projectors is complete which means that the pseudo-wavefunction exactly corresponds to a sum of partial waves inside the augmentation region, if r ≤ r c :

ψn, k ( r) = i φi ( r) < β i | ψn, k > (6.5)
Following this, we note that the all-electron structure of the wave-function, including the nodes, is reconstructed in the PAW scheme thanks to the difference |φ i > -| φi >. To increase the transferability and to build a set of projectors as complete as possible, at least for the angular momentum of interest, several projectors and atomic wavefunctions are prepared for each angular momentum in the preliminary atomic calculations. Usually, the set of projectors and atomic wave-functions include the valence bound states at the energy l plus one unbound state with the same angular momentum but at a different energy, possibly close to the energies that are expected in the applications. Since the PAW wavefunctions will rebuild precisely the all-electron solution for these energies, the transferability of the PAW data-set will be excellent around these energies while the norm-conservation condition as it is written in eq. 6.1 is no more needed. This reference to the all-electron wavefunctions together with the use several projectors per angular momentum will lead to the high accuracy of the PAW method.

Computational efficiency and Compensation charges

The norm-conservation condition (eq. 6.1) leads to fast variation of the pseudo-wavefunctions and then to a slow convergence on a plane wave basis set. In the PAW method this condition is no more needed to achieve a good transferability and it is then released. However,in doing so, there will be a charge deficit in the region around the atomic centers and the electrostatic energy between the regions inside the atomic centers and the regions outside will be wrong on the plane wave basis set. To recover the correct electrostatic behaviour compensation charges n are introduced.

The definition of the compensation charges depends on the PAW implementation. In the following we will only conentrate on the version presented by Kresse [START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmentedwave method[END_REF] that is implemented in the VASP code. The first requirement for the compensation charges n( r) should be to reproduce the multipoles of the difference between : n 1 ( r) the local all-electron density on the centers due to the occupied states |φ i > , and ñ1 ( r) the local pseudo density due to the corresponding occupied pseudo states | φi >.

With : ñ1 ( r) = i,j ρ ij φi * ( r) φj ( r) and n 1 ( r) = i,j ρ ij φ * i ( r)φ j ( r)
, where ρ ij depends on the projection of the plane wave representation of the wavefunction on the atomic centers :

ρ ij = n, k w k < ψn, k |β i >< β j | ψn, k > (6.6)
Also the compensation charges should be strictly localized within the local grids, typically they are set to 0 after a radius r comp such as r comp rc

1.2 .
Within these conditions, compensation charges as smooth as possible are built and participate to energy terms on both the plane wave basis and the radial grids. Since they are quite localized in space, they may display a plane wave convergence that in slower than the pseudowavefunctions themselves. But we should notice that the number of pseudo-wavefunctions is equal to the number of valence states while there is only one function n( r) which is the sum of the compensation charges over all the centers. Taking this into account, the cost to include the compensation charges is negligeable, while the release of the norm-conserving condition for the pseudo-wavefunction allows to reduce the wave-function's energy cutoff by a factor between 2 and 3 which represents a significant improvement on the computational efficiency.

To conclude on the compensation charges, we should mention that their introduction leads to a more complex expression of the Kohn-Sham equations which is related to the orthonormalization of the ψn, k ( r). As a consequence an overlap matrix Ŝ should be defined and introduced in the ortho-normalization scheme and in the Kohn-Sham equations, see [START_REF] Blöchl | Projector augmented-wave method[END_REF][START_REF] Vanderbilt | Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[END_REF] for more details. The generalized eigenvalue problem corresponding to the Kohn-Sham equation will be of the form :

Ĥ| ψn, k >= Ŝ | ψn, k > (6.7) With Ŝ = 1 + i,j |β i > (< φ i |φ j > -< φi | φj >) < β j | 2.6.2.

PAW energy functional

Apart from the local wavefunctions and the compensation charges, the PAW total energy functional used in the VASP code contains several other parameters that are also extracted from preliminary atomic calculations :

1. n c : the all-electron core density. It is the atomic core density from the all-electron atomic calculation. It is used only on the local grid to find the contributions to the exchange and correlation energy.

2. ñc : the pseudo core density. It is equal equal to n c after a radius r pc r comp . Below this radius it is designed to be smooth enough to be represented both on plane waves and on the local grids. ñc is used to calculate the exchange and correlation energy on both grids.

v H [n Zc

] : the all-electron Hartree potential (electrostatic potential) which acts on the all-electron valence density n 1 and is due to the nucleus and the core charge

n c . v H [n Zc ]
operates only on the local grids within the radius r c .

ṽH [n Zc

] : the pseudopotential that becomes strictly equal to v H [n Zc ] at r c and beyond. ṽH [n Zc ] is designed to be smooth and operates both on plane waves and on the local grids. This potential describes accurately the electrostatic interaction between the ionic cores and the valence electrons outside the centers.

Using these definitions one can write the PAW energy functional as a sum of three terms :

E P AW [{ψ n, k }] = Ẽ -Ẽ1 + E 1 (6.8)
The first term is calculated on the plane waves basis set and involves the pseudo density ñ :

ñ( r) = nocc, k w k ψ * n, k ( r) ψn, k ( r) Ẽ = n, k w k < ψn, k |- 1 2 ∆| ψn, k > +E H [ñ+n]+ ṽH [n Zc ]( r)(ñ( r)+n( r))d 3 r+E xc [ñ+n+ ñc ]+U ( R A , Z c ) (6.9)
The first term is a kinetic energy on plane waves. The second term is the electrostatic energy due to an effective density built as the pseudodensity plus the compensation charges. The third term is the interaction of this effective density with the pseudopotential associated to the ionic cores. The fourth term is the exchange and correlation energy due to the effective density plus the pseudo core density. This term is calculated on a real dual grid associated to the plane waves. The last term is the electrostatic interaction between the ionic point charges Z c placed at the positions of the nuclei, it is calculated using the Ewald technique.

The energy component in Ẽ are correct outside the local atomic spheres of radius r c but it contains spurious terms inside the atomic spheres and it does not take into account the node structure of the wavefunction close to the nuclei. The local spurious energy terms are cancelled by the local pseudo energy Ẽ1 calculated on the local radial grids around the nuclei :

Ẽ1 = ij ρ ij < φi |- 1 2 ∆| φj > +E H [ñ 1 + n]+ rc ṽH [n Zc ]( r)(ñ 1 ( r) + n( r))d 3 r +E xc [ñ 1 + n + ñc ] (6.
10) The different terms corresponds to those already found in the expression 6.9 and the horizontal bar notation specifies that they are calculated on the local radial grids.

To restore the correct energy components coming from an all-electron description within the atomic spheres, the energy E 1 is calculated on the local radial grids :

E 1 = ij ρ ij < φ i | - 1 2 ∆|φ j > +E H [n 1 ] + rc v H [n Zc ]( r)(n 1 ( r))d 3 r + E xc [n 1 + n c ] (6.11) 
After this presentation we note that the expression of the energy functional in the PAW method is fairly complex. Some errors will arise from the non complete projection of the pseudowavefunctions written in plane waves over the atomic spheres, but the organization of the different energy terms has been designed to minimize these errors. This rather high complexity is the price to pay to obtain a computationally efficient scheme that very often reaches an accuracy that is comparable to an all-electron method.

Minimization technique

Following the DFT ground state theory the Kohn-Sham wave-functions should be varied in order to minimize the energy functional E P AW [{ψ n, k }] and to find the ground state properties of the system. Within the Born-Oppenheimer approximation this is done at fixed cell parameters and fixed ionic positions.

From a practical point of view this electronic minimization can be performed through a direct approach. For instance, the energy functional can be optimized by varying the plane wave coefficients of the Kohn-Sham wave functions by using conjugate gradient or other minimization methods, imposing at each minimization step the orthonormality constraints of the wave-functions.

Alternatively, one can solve iteratively the Kohn-Sham equations until the self-consistency is reached. This means that, respect to numerical accuracy, the Kohn-Sham wavefunctions generate an effective Kohn-Sham potential for which they are the corresponding eigenstates. In this work I followed this alternative using the PAW method as it is implemented in the VASP code. Schematically, the main steps of the self-consistent loop are the following :

1. The Hamiltonian Ĥ0,in = ∂E ∂ ρ | ρ0,in is constructed using an initial density ρ0,in and initial wave-functions. According to the status of a calculation, these quantities can either be obtained from a previous iteration or from initial guess in a case of a calculation starting from scratch.

2. The Kohn-Sham equations are then solved using this Hamiltonian, and new Kohn-Sham wave-functions are determined together with an output density ρout .

The eigenvalue problem at this step is solved with either a block-Davidson technique [START_REF] Davidson | Methods in Computational Molecular Physics[END_REF][START_REF] Liu | Report on the Workshop 'Numerical Algorithms in Chemistry: Algebraic Methods' of the National Resource for Computation in Chemistry[END_REF] or the RMM-DIIS technique [START_REF] Pulay | Convergence acceleration of iterative sequences. the case of scf iteration[END_REF].

3. A new input density ρ1,in is computed by mixing the densities ρ0,in and ρout . Total energy can be evaluated and the loop starts again from the step 1. The steps from 1 to 3 are repeated until the energy variations become smaller than a threshold of the order of 10 -5 -10 -7 eV.

Forces and stresses

Once the self-consistent electronic problem at constant ionic positions and cell parameters has been solved and the total energy E P AW calculated from equation 6.8 ; the forces on the ions and the stress tensor can be obtained with the help of the "Hellmann-Feynman Theorem" [START_REF] Feynman | Forces in Molecules[END_REF] and "Stress Theorem" [START_REF] Nielsen | Quantum-mechanical theory of stress and force[END_REF] respectively. Some details, like the presence of the overlap matrix Ŝ can appear in the practical expressions of the forces [START_REF] Kresse | From ultrasoft pseudopotentials to the projector augmentedwave method[END_REF][START_REF] Goedecker | Operator approach in the linearized augmented-plane-wave method: Efficient electronic-structure calculations including forces[END_REF], but the detailed expressions are consistent with a force on the ion I calculated as :

F I = - d dR I E P AW (6.12)
and the stress tensor calculated as :

σ αβ = 1 V ∂E P AW ∂ε αβ (6.13)

Occupation numbers

In quantum mechanical calculations of materials, the occupation number indicates to which extent a quantum state is occupied. Until now, we have supposed that all the Kohn-Sham states of low energy are occupied with one electron, while the other higher energy states are empty. This description therefore corresponds to a Fermi-Dirac distribution at zero electronic temperature. In the case of metallic systems, this description may lead to poor convergence properties in the electronic self-consistent loop, or no convergence at all. In these cases fractional occupation numbers have to be introduced ( see for instance [START_REF] Marzari | Thermal Contraction and Disordering of the Al(110) Surface[END_REF][START_REF] Methfessel | High-precision sampling for Brillouin-zone integration in metals[END_REF]). More simply, our bulk zirconia systems are insulators with a non zero electronic gap and without spin polarization in their ground states. We therefore used a scheme that leads to constant occupation factors equal to 2 for the occupied states in the valence band (one spin-up electron and one spin-down in each spatial orbital) and 0 occupation factor for the empty states in the conduction band. Following the recommandation of the VASP community this has been practically achieved by using a Gaussian smearing with a small standard deviation of 0.05 eV that mimics a Fermi-Dirac step function at electronic temperatures close to zero.

Electron density and Bader charge analysis

One has to do result analysis pretty much after any experiment is conducted. Along energy, force on ions, structural properties, etc; the electron density ρ(r) is one of the most important result in DFT calculations. Analysis of ρ(r) aims at assigning charges on individual atoms. This charge assigning on atoms reveals some informations about the nature of bonding in molecules and solids. In our case it enhanced our understanding of the stabilization mechanism of different zirconia phases due to doping with yttria. Among the available charge analysis techniques, we chose the Bader method of "Atoms-In-Molecules" [START_REF] Bader | A quantum theory of molecular structure and its applications[END_REF]. Within this method assigning charges to atoms is done by a partitioning of space into individual atomic volumes.

Starting from some point r 0 , one follows the density gradient line ∇ρ(r) to end up at a site where the electronic density is maximum, usually close to the position of a nucleus I. The small volume around the starting point r 0 then belongs to the Bader volume of atom I. By using a fine grid one can discretize the total cell volume and determine the atomic volumes as well as the their surfaces that have the following property give by 7.1 [START_REF] Bader | A quantum theory of molecular structure and its applications[END_REF]:

∇ρ( r).n( r) = 0 ∀ r ∈ S(Ω, r) (7.1)
where n( r) is the unit vector normal to the surface S(Ω, r) and Ω is a spatial domain corresponding to an atom. By integrating the enclosed charge density, one can get the electron population N associated to an atom as given in 7.2. By subtracting N from the nuclear charge Z, one can find the Bader charge q of that atom. The analysis of these charges can serve as a measure of ionocovalency of bonds in molecules or solids [START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF]. Technical details about the specific implementation of the Bader charge analysis used in this thesis can be found in [START_REF] Tang | A grid-based Bader analysis algorithm without lattice bias[END_REF] and references therein.

N (Ω) = Ω ρ( r)d 3 rq = Z -N (Ω) (7.2)

The nudged elastic band method (NEB)

Identification of the lowest energy path between two stable states is a common research question to address problems of interest like rate of chemical reactions in theoretical chemistry or diffusion process in solids in condensed matter physics. Such a path is called the minimum energy path (MEP), and it is a path between two stable or low energy states along the potential energy surface. There are a number of methods developed over the years to find the MEP. And among these, the nudged elastic band (NEB) [START_REF] Mills | Quantum and thermal effects in H 2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems[END_REF]135] method is the most common in plane wave DFT based calculations. The method uses a number of N equally distant intermediate images of the system between the two stable states. These images are connected to each other by springs. The distance between images is evaluated from the displacement squared of the atomic positions from one image to the other, and the images are moved in the configuration space until the forces are minimal. The force on the atoms in the image i is calculated within the NEB method as a sum of a component parallel to the tangent τ i of the path formed by the successive images, plus a force perpendicular to this tangent. Along the tangential direction the atomic forces are replaced by the force due to the springs (F s i ) while the perpendicular component is given by the usual gradient of the potential energy E in this direction (F ∇ ⊥ i

). If we define by the symbol F i the 3N array that contains all the atomic forces in the image i and R i the corresponding array of positions we have :

F i = F s i τ i + F ∇ ⊥ i F s i = k(|R i+1 -R i | -|R i -R i-1 |) F ∇ ⊥ i = -∇E(R ⊥ i ) ∇E(R ⊥ i ) = ∇E(R i ) -(∇E(R i ) • τ i )τ i (8.1)
These expressions correspond to the improved tangent technique [135], the proper expression for the tangent vector τ i is found in the same reference. Several optimization algorithms like steepest descent, conjugate gradients or fire [START_REF] Bitzek | Structural Relaxation Made Simple[END_REF] can be used to obtain the MEP that gives access to the transition states or saddle points between two known stable states.

During NEB calculations all the images simultaneously run, and at the end of each ionic cycle, each image communicates to compute the forces. In most cases, the NEB method works well, except it some times fails to exactly determine a saddle point in the MEP. Thus a small modification to the existing NEB method is added to exactly find out a saddle point along the reaction path. This method is known as the climbing-image NEB method (CI-NEB) [START_REF] Henkelman | A climbing image nudged elastic band method for finding saddle points and minimum energy paths[END_REF]. Once the MEP is located, the image (l) with the highest energy is forced to "climb" in the potential energy surface (PES). This is done by inverting the force it experiences parallel to the MEP as given in Eq. 3. At the end of the run, this image coincides with the saddle point (sp) that is therefore directly determined by CI-NEB without any post-analysis required on the MEP path.

F l = -∇E(R l ) + 2(∇E(R l ) • τ l )τ l (8.2)
The force on the climbing image is free of the spring force, it points up in the potential along the MEP direction τ l and down along all the other degrees of freedom.

In my case I used a generalized version of the method presented here named solid-state-NEB (SS-NEB) [START_REF] Caspersen | Finding transition states for crystalline solid-solid phase transformations[END_REF][START_REF] Sheppard | A generalized solid-state nudged elastic band method[END_REF] to include the cell degrees of freedom. In the SS-NEB version that I used [START_REF] Sheppard | A generalized solid-state nudged elastic band method[END_REF], the method is in principle identical to a standard CI-NEB. A strain matrix is defined and its components are added to the list of atomic position variables . The force acting on the strain degrees of freedom are given by the stress matrix that plays the same role as the force for the atomic positions. Strains and positions are treated on the same footing by using an appropriate rescaling. This technique is implemented as a module in "Transition State Tools for VASP". It allowed me to study energetic aspects of the phase transitions in zirconia, especially the transformation from the tetragonal to the monoclinic phase. 

Simulation softwares

In all my thesis, the electronic and structural properties of pure and yttria doped zirconia were calculated with the VASP code "The Vienna Ab initio simulation package" [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF][START_REF] Kresse | VASP the GUIDE[END_REF], a plane wave electronic structure software that implements the PAW method. The Bader charge analysis was conducted with the Bader Charge Analysis software and the NEB calculations were done with the VTST tools that contain transition state tools designed for VASP. The last two softwares were developed by the Henkelman's group at the University of Texas in Austin and can be found online at : 'http://theory.cm.utexas.edu/henkelman/code/bader/' and 'http://theory.cm.utexas.edu/vtsttools/'. The technical details about these methods are found with the appropriate references in sections 2.5 and 2.6 dedicated to these methods. Some of the parameters of the LDA-PAW parameters for VASP that I used in my thesis are listed in Tab. 2.9.1. The entry 'TITLE' is a link to identify all the other relevant parameters in the VASP database. The 'N V e ' entry is the number of electrons per atom that are explicitly treated in the calculations. The RCORE entry is the radius after which the partial atomic wave-functions exactly match their all-electron counterparts. These radii may seem rather large, but the matching between all-electron and pseudo quantities remains excellent until a smaller radius RDEPT that determines the sphere where the augmentation charges are localized. Thus, a high quality calculation can be obtained if the augmentation spheres do not overlap. This condition is strictly met in all our systems except for some O-H configurations where distances smaller than RDEPT(O)+RDEPT(H)=1.42 Å are found. However, even at distances shorter than We therefore conclude that our calculation set up gives reliable results even when the interatomic distances are slightly smaller than the sum of the augmentation sphere radii. We stress that larger bond-length and therefore smaller errors will be expected in the condensed phase systems.
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The energies ENMAX and EAUG in Tab. 2.9.1 refer to default values for the cutoff energy in the wave-function expansion and some indicative cutoff to define the finer grid for the density.

In the next section we will test the quality of the calculations respect to these cutoff energy parameters.

Convergence respect to the energy cutoff and k-points

Among the many parameters that determine the accuracy of DFT calculations on a plane wave basis we give in this section some convergence tests concerning the energy cutoff of the wave functions ('ENCUT' parameter in VASP) and the special k-point grid for the simulation of periodic systems that are defined following the Monkhorst & Pack scheme [START_REF] Monkhorst | Special points for Brillouin-zone integration[END_REF].

As expected, we will see in the following that the differences in total energy that carry a physical meaning converge better than the total energies themselves.

In my thesis I have not defined a specific cutoff for the density, the density grid being automatically twice as large as the wave-function grid in all directions within our default settings.

The tests in this section concern pure ZrO 2 systems calculated in the LDA approximation. Fig. 3a displays the energy per atom in cubic zirconia at 0K modeled with a 96 atoms cell (Zr 32 O 64 ) and a 4 × 4 × 4 k-point-grid. The non-monotonic behaviour is mainly due to the default convergence correction included VASP, however from a cutoff energy of 350 eV and above the total energy decreases regularly. At a cutoff of 500 eV the total energy is evaluated with an accuracy of about 1 meV per atom. More importantly, we give in Fig. 3b the energy differences calculated between the zirconia polymorphs as a function of the energy cutoff. These energy differences show a better behaviour and a fast convergence as a function of the energy cutoff. At 350 eV the energy difference per atom is already converged within a meV and at ENCUT=500 eV the precision on the energy differences becomes better than ± 10 -4 eV/atom. From these tests, I decided to fix an energy cutoff "NCUT = 500 eV" for all the final structures presented in this thesis. However some intermediate structure calculations have been done at a 350 eV energy cutoff, in these low cutoff calculations the resolution on the energy differences is therefore estimated around 0.1eV for our calculation cells containing roughly 100 atoms.

The convergence as a function of the choice of the k-point grid are given in Figs. 4a,4b for the total energy and energy differences respectively. Because we are using a supercell of 96 atoms to describe zirconia systems which are also insulators a Monkhorst & Pack grid of 2 × 2 × 2 k-point is already sufficient to get a precision on the total energy of the order of about 4× 10 -4 eV per atom. The energy differences in this case converge slightly better with a 2 × 2 × 2 grid with an accuracy of 2× 10 -4 eV per atom between the cubic and tetragonal system. From these results I have used at least 2 × 2 × 2 k-points grids in all the following calculations. Equilibrium configurations of the three phases of yttria stabilized zirconia (YSZ) from ab-initio calculations

Introduction

The adequate mechanical properties of zirconia (ZrO 2 ) led for its diverse application specially as a biomaterial. These interesting mechanical properties of zirconia mainly address the tetragonal and cubic phases which are found at high temperature. Interestingly with the addition of "stabilizing" oxides it is possible to retain these high temperature phases (tetragonal and cubic) being stable for low temperature (as low as room temperature) applications such as in biomedical applications. These "stabilizing" oxides (CaO, M gO, Y 2 O 3 , CeO 2 ) make solid solutions with zirconia. The latter two oxides give yttria stabilized zirconia (YSZ) and ceria stabilized zirconia (CSZ) respectively and are used mostly these days especially for biomedical applications. The main characteristic difference of doping with a trivalent oxide ( e.g. Y 2 O 3 ) creates oxygen vacancies (O-vacancies) in the zirconia matrix, whereas the other divalent or tetravalent do not. For high temperature applications, about a 1000 • C less than the stability region of the pure t-ZrO 2 or c-ZrO 2 phases, YSZ ceramic material stable in cubic phase is used in solid oxide fuel cells (SOFCs). It is used as electrolyte due to its high oxygen ion conductivity associated to the presence of oxygen vacancies which are created as a result of the doping. Earlier studies in this area show that there is a concentration threshold of yttrria (Y 2 O 3 ) content about 9 mol.% where a maximum of ionic conductivity is gained thereby a best performance of SOFCs can be achieved. It is also known that the type and concentration of dopants used determine, the stability of a particular phase over another which will be addressed in this chapter. For example a tetragonal phase (t-phase) of zirconia can be found stable with doping of either ∼ 3% mol. of Y 2 O 3 or with ∼ 12% mol. CeO 2 . Then one can ask why one dopant is used in small concentration while the other in relatively larger concentration to maintain a specific stable phase. In another scenario, one would expect to maximize the efficiency of SOFCs by increasing concentrations of O-vacancies for a higher ionic conductivity. And this can be achieved by increasing the concentration of dopant Y 2 O 3 , yet there is a limit of Y 2 O 3 -concentration used as mentioned above. Thus using a particular type of dopant over another one together with the concentration limit brings many questions to the table, of one main being how is the real stabilizing mechanism of dopants achieved ? Doping generally means creating defects, and the addition of these dopants generally would create disturbance in the perfect pure crystals. Thus the effect of dopants would force specific type of atomic (ionic) arrangements in the system. Therefore it is vital to make an extensive study on the atomic configurations (arrangements) in the three phases of zirconia (m-phase, t-phase and c-phase) with respect to dopant concentration (in this case Y 2 O 3 ) to determine the equilibrium atomic configurations of YSZ based on ab-initio calculations which is the main aim of this chapter and compare with existing studies.

The articles found in the literature concerning YSZ focus on studying the structural, mechanical, elastic properties of zirconia. A number of papers also focus on the stability of pure zirconia polymorphs using first-principles calculations, [START_REF] Jomard | First-principles calculations to describe zirconia pseudopolymorphs[END_REF] [START_REF] Schubert | Surface Stabilization of Y-TZP[END_REF] have been dedicated towards a better understanding of aging and its consequences so that it would help a better manufacturing mechanism of aging resistant zirconia ceramics materials.

So the studies mentioned before and several others studies focus either on one specific phase to study a particular property of this phase or maximum on two phases to compare and contrast the effect of doping on different phases and see associated property changes due to doping and other parameters. Besides, the numerous calculation methods and softwares (codes) used to date to employ theoretical studies, controversies on relative atomic positions, structural parameters, elastic properties and other properties of pure and doped zirconia phases exist.

Extensive studies on the stabilization mechanisms of the three phase of YSZ is the main idea of this chapter for which we have never seen a single previous study which considers the three phase together. Since the monoclinic phase is the least studied one, a particular care was dedicated to explore this phase in its doped form.

As just mentioned earlier, the three phases are treated on an equal footing by our firstprinciples DFT calculations. In the first part of this chapter we will present calculations on pure zirconia samples which represent the reference systems before the introduction of defects. These results will also give us some insight regarding the influence of the exchange and correlation functional in our description of the ZrO 2 systems. In a second part we will explain our methodology to generate low energy yttria defects in the zirconia matrix and the third part will focus on results in defected systems including : structural properties, energetics and elastic properties.

Computational details

All the calculations are done by the plane wave based DFT-PAW code VASP [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF]- [START_REF] Kresse | VASP the GUIDE[END_REF]. Unless specified a kinetic energy cut-off of 500eV and a Monkhorst-Pack k-point grid of 4 × 4 × 4 for the small cells with 12 atoms and 2 × 2 × 2 for large cells (supercells) with more than 90. Energy difference of 10 -6 eV and a force of 1meV / Å are used as stopping criteria for electronic structure and ionic motions respectively. Calculations are done with the local density approximations (LDA) [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF] and the generalized gradient approximations developed by Perdew, Burke and Ernzerhof (GGA-PBE) [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF]. In the following the structural and energetic results for the pure and defected systems will be presented respectively.

Structural properties and phase stability of pure

ZrO 2 phases

Zirconia exists under three pure crystalline polymorphs, the stability of these phases at ambient pressure depends on temperature. The melting temperature of ZrO 2 is close to 2980 K, below this, a high temperature cubic phase with the space group symmetry F m 3m is stable until a solid-solid transition occurs at T T -C 2640 K towards a tetragonal phase with the space group symmetry of P 4 2 /nmc. At lower temperatures, below T M -T 1440 K, the experimentally stable phase is monoclinic with space group P 2 1 /c (this phase is also called Baddaleyite). The optimized atomic arrangements for these three phases are represented in (2 × 2 × 2) supercells containing 96 atoms in Fig 1. In agreement with experimental results extrapolated at low temperatures, our simulations as many other DFT calculations (for instance [START_REF] Jomard | First-principles calculations to describe zirconia pseudopolymorphs[END_REF][START_REF] Ding | Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia[END_REF][START_REF] Zhao | Phonons and lattice dielectric properties of zirconia[END_REF][START_REF] Jiang | Electronic band structure of zirconia and hafnia polymorphs from the GW perspective[END_REF][START_REF] Fadda | First-principles study of the structural and elastic properties of zirconia[END_REF]) give the correct energy and volume ordering for the three structures at 0K. Energy versus volume curves in figure 2a show that the monoclinic phase is the most stable with the largest volume, while the cubic phase is the highest energy polymorph with the smallest volume. Although these results seem to be rather straightforward applications of DFT, the atomic environment in the monoclinic phase markedly differs from the two other phases with 7-fold Zr-ions and the presence of two kinds of O-ions either 3-fold or 4-fold coordinated. The satisfactory representation of the energy ordering therefore implies an accurate description of the balance between ionic and covalent interactions in these systems. Such a consistent energy ordering of the phases can be achieved by a self-consistent tight-binding model [START_REF] Finnis | Crystal Structures of Zirconia from First Principles and Self-consistent Tight-binding[END_REF] but we could not easily reproduce this result using the SIESTA DFT code, even in using the prescriptions for the SIESTA basis sets found in [START_REF] Caravaca | Ab-initio study of the elastic properties of single and polycrystal T iO 2 , ZrO 2 and Hf O 2 in the cotunnite structure[END_REF][START_REF] Caravaca | Ab-initio localized basis set study of structural parameters and elastic properties of HfO2 polymorphs[END_REF]. The structural data, the relative energies of the phases and their bulk moduli are shown in table 3.3.1. Our results include Ceperley-Alder LDA [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF] and GGA-PBE [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF] functionals and they are compared to experimental data and full potential PAW technique using LDA by H. Ding et al [START_REF] Ding | Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia[END_REF]. Since the cubic and tetragonal phases are not thermodynamically stable at low temperature some attention is needed when comparing to the calculated values at 0K. Interestingly, small grains of pure tetragonal phase can be synthesized through a chemical route giving access to the structural data reported in the table [START_REF] Igawa | Crystal Structure of Metastable Tetragonal Zirconia by Neutron Powder Diffraction Study[END_REF]. The structural data within parenthesis are extrapolated to low temperature from the data in Ref. [START_REF] Aldebert | Structure and Ionic Mobility of Zirconia at High Temperature[END_REF] using the temperature variation of the lattice therein. The energetic data within parenthesis are extrapolated from [START_REF] Ackermann | Thermodynamic properties of ZrO 2 (g)[END_REF]. The bulk moduli are calculated from the E.O.S. [START_REF] Teter | First-principles study of several hypothetical silica framework structures[END_REF] given in Fig. 2a, these values agree well with finite difference estimations of -V 0 ∂P ∂V | V 0 given between parenthesis.

Although calculations can be done at 0K in the cubic phase, the cubic structure at low temperature is unstable respect to a distortion of the lattice and/or atomic positions [START_REF] Jomard | First-principles calculations to describe zirconia pseudopolymorphs[END_REF]. This is also consistent with the imaginary frequencies calculated in the cubic zirconia phonon spectrum [START_REF] Parlinski | First-Principles Determination of the Soft Mode in Cubic ZrO 2[END_REF]. The distortion leads to the tetragonal phase and consists in the displacement of the O-ions in the c direction by an amount dz given in relative units. Some energy profiles as a function of the structural parameter dz are given in Fig. 2b. As a result of this distortion the coordination of the ions is unchanged but in the tetragonal phase all the Zr-O bonds are no more equivalent, half are elongated (2.359 Å [START_REF] Igawa | Crystal Structure of Metastable Tetragonal Zirconia by Neutron Powder Diffraction Study[END_REF]) while the other half are shortened (2.082 Å [START_REF] Igawa | Crystal Structure of Metastable Tetragonal Zirconia by Neutron Powder Diffraction Study[END_REF]) compared to the cubic Zr-O distance of 2.204 Å [START_REF] Aldebert | Structure and Ionic Mobility of Zirconia at High Temperature[END_REF]. From table 3.3.1, the GGA-PBE functional performs on average slightly better than LDA regarding structural parameters. GGA-PBE overestimates by 0.87% the Zr-O bond length while an underestimation of nearly -1% is found for LDA calculations. Similarly, GGA/LDA lattice constants are on average overestimated/underestimated by the same amounts. Beyond these average, the GGA description of the tetragonal phase shows rather large discrepancies with experiments with an overestimation of the Zr-O long bond of about 2.76% associated to a large dz value. From the available data we also see that GGA overestimates the energy difference between the monoclinic(m) and tetragonal(t) phases. Since these energetics and structural data both enter in the description of the t-m phase transformation we decided to use LDA as our reference for the exchange-correlation functional. The same conclusion was drawn by Christensen et al [START_REF] Christensen | First-principles study of the surfaces of zirconia[END_REF] in their work on ZrO 2 surfaces. Nonetheless, all our important results will also be tested with respect to GGA-PBE. [START_REF] Aldebert | Structure and Ionic Mobility of Zirconia at High Temperature[END_REF]; b and c: calorimetry experiments respectively [START_REF] Molodetsky | The Energetics of Cubic Zirconia from Solution Calorimetry of Yttria-and Calcia-Stabilized Zirconia[END_REF] and [START_REF] Ackermann | Thermodynamic properties of ZrO 2 (g)[END_REF]; d: neutron diffraction on small pure tetragonal ZrO 2 grains [START_REF] Igawa | Crystal Structure of Metastable Tetragonal Zirconia by Neutron Powder Diffraction Study[END_REF]; e: neutron diffraction [START_REF] Howard | Structures of ZrO 2 polymorphs at room temperature by high-resolution neutron powder diffraction[END_REF]; f: Brillouin scattering/ultrasound [START_REF] Nevitt | The elastic properties of monoclinic ZrO 2[END_REF].

Lattice constants

This 

Generation of YSZ structures

In this work we studied bulk systems. To model the configurations of zirconia with yttria defects we used the supercell approach. The supercell is simply a unit cell replicated a given number of times in the 3 lattice directions. Generally this technique will lead to longer calculations but it allows to simulate a periodic arrangement of defects with low concentration if the supercell is large enough, also with supercell the number of special k-points in the Brillouin zone can be reduced since the interaction between the cells becomes less critical for larger cells. As already presented in the previous section 3.3, we replicated the 12 atoms cells in the three directions of space to obtain a reference pure zirconia supercells.

To introduce yttria defects some Y 2 O 3 formula units substitute ZrO 2 units in the supercell, in doing so one oxygen vacancy is created for each substitution. Equation 4.1 schematically summarizes this process that can be seen as the association of n ZrO 2 formula units with m Y 2 O 3 formula units arranged on the original lattice of n + m ZrO 2 units leading to m oxygen vacancies. From this we define a percentage of defects equal to the percentage of yttria units in the final structure. Starting from a pure ZrO 2 supercell of 96 atoms in our calculations we mainly focused on the 4 defect concentrations given in table 3.4.1). The 3.23 mol.% of yttria content corresponds closely to the "meta-stable" system with a tetragonal symmetry used in the prosthesis applications and experimentally the transition between tetragonal YSZ and cubic YSZ occurs between 7 and 8 mol.% Y 2 O 3 concentration while the cubic YSZ is stable at higher yttria concentrations ( [START_REF] Chaopradith | Adsorption of Water on Yttria-Stabilized Zirconia[END_REF], [START_REF] Laguna-Bercero | Recent advances in high temperature electrolysis using solid oxide fuel cells: A review[END_REF]) in which it is used in high temperature applications such as in fuel cells and thermal barrier coatings (TBCs).

nZrO 2 + mY 2 O 3 → Zr n Y 2m O 2n+3m + Vom (4.1) %Y 2 O 3 = m n + m × 100% (4.2)
From the pure ZrO 2 phases simulated with 96 atoms supercells, defect configurations of low energy including Y 2 O 3 units have to be determined. These configurations will indeed correspond to the equilibrium structures at low temperatures that should be compared with experiments.

From a simple counting analysis, supposing all the ions are inequivalent in the cell, one can easily obtain an upper threshold for the number of possible configurations as a function of the defect ratio (see Tab. 3.4.1). From this table it seems computationally very expensive (and impossible for us) to test directly all the possible configurations. An alternative to the direct approach would be using a more general search technique based on genetic algorithms (see for instance [START_REF] Cerqueira | Materials design on-the-fly[END_REF] and [START_REF] Zhang | Structure prediction and targeted synthesis: A new N a n N 2 diazenide crystalline structure[END_REF]) that will span a larger configurational space. Unfortunately, such type of techniques will be limited to rather small cell sizes (∼ 10 atoms), and will again lead to unaffordable computational time when applied to our 96 atoms cell at our level of theory. We first address the search for configurations at a 3.23% defect ratio (mol % Y 2 O 3 concentration) which are constructed from the pure systems which display some crystal symmetries. These symmetries will indeed help to greatly reduce the number of inequivalent defect configurations. At this low defect ratio, the symmetry can be properly taken into account with paper and pencil, but a more systematic way is to assume formal charges for the ions (+4, +3 and -2 for Zr, Y and O respectively) and calculate a classical electrostatic energy in periodic systems from the Ewald [START_REF] Ewald | Die Berechnung optischer und elektrostatischer Gitterpotentiale[END_REF] summation technique. we wrote a small Ewald code to calculate these classical electrostatic energies. On output, all the configurations equivalent through symmetry operations give the same electrostatic energy and a set of relevant inequivalent configurations can therefore be extracted. Following this procedure we obtained only 26 configurations from c-ZrO 2 , 134 from t-ZrO 2 , and 981 configurations from m-ZrO 2 .

To further discuss our search scheme, we first consider the configurations constructed from the pure ZrO 2 tetragonal structure.

The range of classical electrostatic energies calculated from the Ewald code after a ZrO 2 substitution with a Y 2 O 3 unit and without any ionic relaxation are given in the inset of figure 3. The three curves in the inset correspond to three groups of configurations, in each group denoted by "nY-Vo " all the configurations have the same number of "links" between the Yions and the vacancy sites. Of course these "links" are not true bonds, but their number is easily calculated from the coordination of the Y atoms in the system (using a d(Y -O) bond threshold of 3.0 Å).

As expected from classical arguments, the lowest classical electrostatic energies are obtained for both Y-ions (negatively charged defect) close to the positively charged defect due to the O-vacancy (2Y-Vo , blue) while the highest electrostatic energies are for Y-ions distant from the vacancy site (0Y-Vo , black). We also notice that the electrostatic energies for the 3 groups are clearly decoupled from each others.

The DFT-LDA energies on the main graph in figure 3 are calculated at 350 eV with full cell and ionic relaxations; each curve corresponds to a given nY-Vo group with the same color code as in the inset. Along the x axis the configurations are ordered with increasing initial classical electrostatic energy (x=1 is the configuration with the lowest classical electrostatic energy in its group before any relaxation).

As in the classical case, the DFT-LDA energies of the 3 different Y-Vo groups are rather well separated, but from the electronic structure calculations the 0Y-Vo group gives the low energy configurations while the 2Y-Vo group has higher energies. Interestingly, within a single group the DFT-LDA energy may show large 'oscillations', but on average it follows well the evolution of the classical electrostatic energy represented by dashed curves in the main graph of figure 3(see caption for the details).

These results indicate that within a group containing configurations with the same average yttrium coordination, the classical electrostatic energy is a relevant parameter to estimate the final stability of the systems after the full relaxation within DFT-LDA. For instance, figure 3 tells us that testing only the 3 first 0 Y-V configurations, will be enough to find the best candidate at this percentage of defect from the tetragonal parent configuration.

Of course, several parent configurations can be considered, however the cubic and tetragonal parents are structurally close to each other and lead to similar, if not equal, final configura- Inset: ranges of the classical electrostatic energies (in eV) for these groups of configurations. Full lines, main graph : DFT-LDA energies (350 eV, 2×2×2 k-points, full cell and ionic relaxations).

x axis is a configuration index determined from the increasing values of the classical electrostatic energy. The origin of the energies is fixed to the energy of the first configuration (x=1) in the 0Y-Vo group. Dashed lines, the main graph: evolution of the classical electrostatic energy in each group. Each dashed curve has an origin relative to the first configuration of its group. The classical energy differences have been rescaled by a factor 8 to be represented on the same scale as their ab-initio counterparts.

tions. This was thoroughly tested on the 26 configurations at 3.23 mol.% obtained from the c-ZrO 2 parent, but also on some configurations with a higher defect ratio (see next section). Therefore we will no more consider the cubic parent configurations in the following.

After these considerations, we have not tried to compute directly the 981 possible configurations coming from the monoclinic parent, we have rather designed a simple scheme based on an 'educated' guess determined from the evaluation of the classical electrostatic energy with formal charges. In the next subsection we explain this scheme that has been used for the monoclinic parent but also for all the YSZ systems at a higher defect ratio.

Practical scheme for the configuration search

Based on the previous observations we designed a search scheme as follows :

• We first consider 2 sets of search "trees" starting either from the t-ZrO 2 or the m-ZrO 2 pure configurations.

• When searching for low energy configurations at defect concentration, we first define a minimum of 3 parent configurations from the low energy configurations at a lower percentage of defects. In the monoclinic case at 3.23 mol.% (m-YSZ 3.23 mol.% Y 2 O 3 ) only the pure monoclinic phase is used(m-ZrO 2 ). The lowest energy configurations from three Y-Vo groups are included.

• All the possible Y 2 O 3 substitution are applied to the parent configurations and their classical Ewald energies are calculated, leading to thousands of new configurations at this higher percentage of defects. only those that belonging to the nY-Vo groups in the range n 0 -2 ≤ n ≤ n 0 + 2 where n 0 Y-Vo is the group of the lowest energy configuration at the lower defect percentage. For instance, in the t-ZrO 2 search tree at 6.67 mol.% of defects, we will retain only configurations from the 0Y-Vo , 1Y-Vo and 2Y-Vo groups, since at 3.23 mol.% the best one is a 0Y-Vo configuration.

• From each Y-Vo group we then select the configurations having the lowest classical electrostatic energies before performing DFT-LDA calculations at 350eV cut-off energy relaxing both the cell and the atomic positions. Initially, a small number of configurations are taken from each parent, but if some parents systematically lead to high DFT-LDA energies they are discarded. In this process, at least 30 configurations are tested at the DFT-LDA level for each relevant Y-Vo group.

• Before concluding the search, few configurations (between 3 and 10) are randomly chosen in each Y-V group without any reference to their classical electrostatic energy.

• The lowest energy configurations are identified at the end of this procedure. 

Energetic properties and phase diagram of YSZ

In this section we will discuss the DFT-LDA results on YSZ systems. Mainly we will discuss, how Y 2 O 3 doping stabilizes one phase over another phase depending on the defect concentration. Energetics and general structural results are summarized in Fig. 4a and are compared with existing YSZ experimental phase diagram shown in Fig. 4b. The enthalpy formation energies of the defected systems are calculated respect to the most stable pure phases at 0K, namely the m-ZrO 2 (with 0 mol.% defect ratio) and the Y 2 O 3 cubic structure (100 mol.% 'defect' ratio) using equation 5.1 where n and m are the ZrO 2 and Y 2 O 3 formula units respectively.

∆H = E Y SZ -[nE ZrO 2 + mE Y 2 O 3 ] n + m (5.1)
In Fig. 4a, the red and blue line refer to the m-ZrO 2 and t-ZrO 2 search trees as explained in section 3.4.1. The green line corresponds to a series of checks where the starting cell to which the defects are added is always the pure cubic ZrO 2 cell. The points on these lines indicate the final structures (symbols) at the end of the simulation. As discussed in the previous section, we see that cubic starting points lead to final configurations with energies almost equal to to those obtained following the tetragonal search tree. The monoclinic phase is the most stable phase at low yttria concentration. Even with 3.23 mol.% of defect, it stays the most stable phase. But interestingly the tetragonal phase at 3.23 mol.% is energetically in competition, it lies only 10.9 meV per total formula units above the monoclinic structure, while in the pure phases the t-m energy difference is more than 4 times larger with 48.3 meV per total formula units. This clearly shows the stabilizing effect of yttria as well as the "metastability" of t-YSZ at this low defect ratio. In the range of ∼ 4 -8 mol.% of Y 2 O 3 doping, the tetragonal phase gets more stable, and starting from a range between 8 mol.% and 10 mol.% the cubic phase gets stabilized. Following the tetragonal tree, we find negative variations of ∆H upon the insertion of yttria above 3.23 mol.% defect ratio. This suggests an attractive interaction between Y 2 O 3 defects in these structures. And at 14.28 mol.% of yttria ∆H itself becomes negative from these DFT-LDA calculations. The situation is qualitatively different for monoclinic structures which have increasing ∆H with increasing Y 2 O 3 content; the defect interaction in this case is repulsive. We decided to stop the calculations on the monoclinic structures after 6.67 mol.% since they lead to high energies and they are also not expected to be relevant from the experimental point view.

These computational results very much agree with the existing experimental results, especially with the "yellow ellipse" region in the experimental phase diagram 4b. Here we focus on the low temperature part of the diagram, the interested reader can refer to Refs. [START_REF] Lughi | Low temperature degradation -aging-of zirconia: A critical review of the relevant aspects in dentistry[END_REF][START_REF] Chevalier | The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends[END_REF] for more details. The phases presented in Fig. 4b below the horizontal line at ∼ 1050 • C correspond to homogeneous defect distribution in the system. If the process of yttrium diffusion is taken into account, then the stable phase in all this region is a mixture of a pure monoclinic ZrO 2 phase with a c-YSZ phase containing all the yttrium ions. This point is in excellent agreement with our calculations that will give the lowest possible ∆H for a combination of pure m-ZrO 2 and c-YSZ at least for all yttria content below 14.28%. However, this phase separation can occur if yttrium diffusion is allowed by the preparation process which is almost never the case in usual conditions. Rather, homogeneous defected phases including tetragonal phase are observed. Their relative stability is shown in the lower part of Fig. 4b. By extrapolating the dashed curves that separates these different metastable phases to 0K we find a transition from monoclinic to tetragonal around 5.35 mol.% and a tetragonal to cubic transition around 10.2 mol.%. Again these two values are in rather good agreement with our DFT-LDA estimations given by the vertical dashed lines, noting that from our raw results the t-m and c-t transitions are respectively predicted between in the ranges 3.23-6.67 mol.% and 6.67-10.34 mol.%. In addition to these main results our search scheme provides more information on the nature of the configurations that give the lowest energies. In Fig. 5 we give the energies of the best configurations in each Y-Vo group respect to the best energy obtained from the tetragonal search tree, and this is for each studied defect percentage plus the 18.52 mol.% that we have tested at 350 eV.

At low defect percentage the monoclinic(red) and the tetragonal(black) structures show different kinds of low energy configuration. As it has been mentioned before, pure classical electrostatic arguments would predict configurations with yttrium ions first neighbours of the O-vacancy. At 3.23 mol% defect ratio, this is the case for the monoclinic structure, but not for the tetragonal structure. We will examine this important point in more details in the next sections, at this stage we simply observe that whenever low energy configurations are concerned, the two structural systems lead to different behaviors when subjected to a Y 2 O 3 substitution. The nature of the low energy configurations given by the ordering in Y-Vo groups also depend on the defect ratio. At high defect ratio, the cubic low energy configurations include some yttrium ions close to the vacancy and between 10.34 and 14.28 mol.% the configurations from different Y-Vo groups are in competition. The fuel cell devices using the YSZ as an electrolyte material show an optimal oxygen vacancy diffusion in this range of yttria percentage. From our calculations we can hypothetize that diffusion can be enhanced by the presence of several low lying energy configurations with different vacancy structures. Indeed, several possible diffusion channels at these percentage can then participate to a faster diffusion.

Lattice parameters and XRD patterns of YSZ

In the previous section we assigned crystal structures in output of our simulations without precising how this could be done. Our results on the pure phases strictly match the definitions of these structures but upon the insertion of Y 2 O 3 the perfect symmetry of pure ZrO 2 phases cannot be recovered especially because the cell parameters(a, b, c) and the angles were fully relaxed. To assign approximate structures we use the following criterion on the supercell lattice vectors. A cubic structure is identified for α ≈ β ≈ γ ≈ 90 • ± 0.5 • and c/a ≤ 1.003 where c is the largest lattice parameter and a the smallest. A tetragonal structure is assigned following the same angle criterion but for c/a > 1.003. Similarly the monoclinic structure is defined for a = b = c, α ≈ γ ≈ 90 • ± 0.5 • while β is different from 90 [START_REF] Ingel | Lattice Parameters and Density for Y 2 O 3 -Stabilized ZrO 2[END_REF] and [START_REF] Li | X-ray-absorption studies of zirconia polymorphs. II. Effect of Y 2 O 3 dopant on ZrO 2 structure[END_REF] and LDA-DFT other DFT-GGA calculations [START_REF] Sangalli | Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of yttrium-doped ZrO 2 : A first-principles approach[END_REF]). This means"breaking" 3 strong covalent bonds in the monoclinic structure, while in the tetragonal (or cubic) structure the oxygen vacancy implies 4 Zr-O bond disruptions. On top of the effect of the vacancy, the Y→Zr substitution will induce local variations of the ionocovalent character; the Y cations being expected to form longer and more ionic bonds with the O anions. As a conclusion, the low temperature total energies of the different systems will result from a complex balance between all of these intricated ingredients to which we shall add defect interaction at higher defect ratio (Y 2 O 3 concentrations). Nonetheless, some simple general remarks can be made about the expected relaxations in different cases. A simple way to reduce the relaxations due to electrostatic, is to generate defects with Y-ions and O-vacancy ( Vo ) close to each others (nearest neighbours N N ).

As already mentioned, such structures will lower the classical electrostatic energy calculated from formal charges, and the extended defect (2 Y-ions plus an Vo ) being neutral, it suggests that the relaxations due to the screening of the perturbation charges should be lower in these cases.

After this very general overview of the Y 2 O 3 defect in zirconia we now focus on this defect in the two competing structures at 3.23 mol.% defect ratio namely the t-YSZ and m-YSZ structures. The rest of this section will be organized as follows:

• Notations and definitions

• General properties of the Y 2 O 3 subsititution defect in 3.23 mol.% m-YSZ and t-YSZ.

• Structural versus energetic relaxations in 3.23 mol.% m-YSZ and t-YSZ.

• Ionocovalent screening model • In the previous section we defined groups of configurations using the number of Y-ions close to the Vo to differentiate them (Y Vo groups). In this section we will use the mNN notation to better precise the relative positions of Y-ions and O-vacancies, meaning that one yttrium is found in the m th shell of cations respect to the O-vacancy. These can be seen as sub-Y Vo groups. For instance for a single Y-Vo -Y defect with two Y-ions and an Vo both the 2NN-2NN and 3NN-3NN belong to the 0Y Vo group.

• If it is not precised otherwise, each time we refer to a given mNN-nNN defect configuration in the following we intend the lowest energy configuration among this subgroup of configuration.

• In the following we will use the term "topologically equivalent defect" when we want to refer to a Y-Vo -Y defect configuration with equivalent defect arrangement but in a different hosting structure. In all the studied systems, the relaxations of the ions in the immediate vicinity of the defect sites show the same trends that do not highly depend on the percentage of the defect. First, the cation-oxygen bond length increases around the Y substitution site. For instance, in the 2NN-2NN monoclinic configuration where the Y-ions are both 7 fold coordinated, the average cation-O bond length variation is +0.12 Å, for topologically equivalent 2NN-2NN configuration in t-YSZ where the yttriums are 8 fold coordinated we obtain an average increase of +0.10 Å. Because of the lower Y coordination, this change is smaller in 1NN-1NN configurations with +0.05 Å in monoclinic and +0.03 Å in tetragonal with a respective cation coordination of 6 and 7.

In the 2NN-2NN t-YSZ (see figure 12b), the final Y-O distances are found between Whenever Y-ions are first neighbours of the vacancy (1NN-1NN and 1NN-2NN configurations) their formal -1 charge itself contributes to screen the formal +2 perturbation charge due to the vacancy. In these cases the relaxations in the outer oxygen shell are reduced. Although the average displacement of the neighbouring ions are of similar amplitudes in the m-YSZ and t-YSZ systems, the number of Zr-ions that relax is larger in the t-YSZ which suggests a more efficient electrostatic screening. To better evaluate the effects due to classical electrostatics we provide the classical Ewald energies calculated with formal charges (Zr 4+ ,Y 3+ and O always lower in the monoclinic phases. For each system in both relaxed and unrelaxed cases the lowest energy cost is obtained for the 1NN-1NN configurations, and this cost increases regularly until the 3NN-3NN configurations. We note that the differences in energy cost in the relaxed systems are remarkably smaller. Another important observation is that the relaxation effects are notably smaller in the monoclinic structures. In agreement with the previous discussion energetic relaxations are larger when the three point charges due to the Y-Vo -Y defect are far away from each other. Smaller effect of the relaxations are then found in 1NN-1NN configurations, with even a positive value in the 1NN-1NN m-YSZ (see figure 12a) that is mainly due to a volume increase but also to the crude assumption of this simple classical electrostatic model.

Structural versus energetic relaxations in 3.23 mol.% m-YSZ and t-YSZ

At this point we have learned that the classical electrostatic contribution to the binding energy is larger in the tetragonal structure when compared to the monoclinic. Thus the energy cost of a Y-Vo -Y defect also have a larger classical electrostatic contribution in the tetragonal phase. Besides this, the presence of the vacancy implies the disruption of 3 strong covalent bonds in the monoclonic structure and 4 more ionic bonds in the tetragonal case. The balance between these effects cannot be guessed a priori, but the main DFT-LDA energetic results summarized in figure 8 will give further insights.

Before relaxations (both the cell and atomic positions fixed), we check that the energy difference between 1NN-1NN t-YSZ and the low energy 1NN-1NN m-YSZ is equal to 1.54 eV which is close to the value 1.55 eV found between pure t-ZrO 2 and m-ZrO 2 phases in the supercell. This t-m energy difference evolves only fairly for other Y-Vo -Y arrangements. Moreover, the energy ordering between the different arrangements (1NN-1NN to 3NN-3NN) at constant host structure follows the classical electrostatic expectations (see "unrelaxed" values in table 3.7.3). In each competing phase the 1NN-1NN configuration is more stable; this is where the negative charge perturbation associated to yttriums are close to the positive perturbation due to the vacancy, accordingly the 3NN-3NN configurations are found at higher energy. This shows that the highest electrostatic energetic cost of the defect in t-YSZ is almost equally balanced by the higher energetic cost due to the disruption of the 3 strong covalent Zr-O bonds in m-YSZ. As a result, the bare Y-Vo -Y defect has the same energy cost in both the monoclinic and tetragonal phases. Consequently, this bare defect energies can not explain the relative stability of these phases.

The data after relaxations given in figure 8 (lower panel) demonstrate a strong effect of the relaxations in the stability of the competing YSZ phases. The relaxation trends follow almost perfectly the intuition obtained from the Ewald energy calculations : the 1NN-1NN and 1NN-2NN structures relax less than the others because of the proximity of the perturbation charges. On the other hand, the 2NN-2NN and 3NN-3NN systems display larger relaxation energies. Quite surprisingly, the relaxation energy in the 2NN-2NN t-YSZ is almost as large as in the 3NN-3NN t-YSZ configuration. Since the 2NN-2NN t-YSZ structure has a lower bare defect energy cost, its final energy is close to the energy of 1NN-1NN m-YSZ, the lowest energy structure at this defect concentration (3.23 mol.% Y 2 O 3 ). The relaxations in the monoclinic system also exist, but are less efficient than in the tetragonal phase. This result is very important respect to the stability of the different phases : it shows that the relative stabilization of the t-YSZ phase is due to its capability to efficiently screen the Y 2 O 3 defect. These energetic considerations are related to structural data. In table 3.7.4 we evaluate the response of the Zr-O bond matrix by summing the absolute values of all the Zr-O bond length variations calculated with respect to the pure phase parents. We can clearly see that Zr-O bond lengths vary much more in t-YSZ than in m-YSZ. As suggested from the energetic data, the relaxations in 2NN-2NN t-YSZ are the strongest over all the systems being surprisingly slightly larger than those in 3NN-3NN t-YSZ. This prompts for a deeper analysis of the Zr-O bond structure in YSZ at low defect percentage. In all these systems we could notice succes- sive elongations and contractions of the Zr-O bonds starting from the Y-ions and going in the direction of the vacancy site. This is true in any of the studied YSZ systems, but the variation amplitudes are larger in t-YSZ. These alternated bond contractions and bond elongations are schematically represented in a small region close to the vacancy in 2NN-2NN t-YSZ in figure 9 (bond contractions are highlighted in green, elongations in magenta). In 2NN-2NN t-YSZ the Zr-O elongation can be locally larger than +0.4 Å(D++ bond in figure 9). We identify this atom as an additional 7-folded Zr-ion in the structure if we apply an arbitrary cut-off criterion of 2.65 Å for the Zr-O bond length. From this analysis we see that the relaxations in the 2NN-2NN t-YSZ configuration are so large that they lead to five 7-folded Zr-ions instead of the four that could be anticipated from the creation of the vacancy. In view of the large relaxation energy in the 2NN-2NN t-YSZ configuration, the presence of this supplementary 7-folded Zr-ion should probably participate to stabilize this structure respect to the others.
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Up to now we understand that the t-YSZ stabilization is not due to a low energy cost of the bare Y 2 O 3 defect in the tetragonal structure but rather to the capability of the tetragonal structure to relax and adapt upon the introduction of this defect. At first sight, one can argue that such relaxations do not happen in the monoclinic structure simply because the 6-fold Zr-ions are not energetically attractive respect to the 7-fold Zr cations that are obtained from the tetragonal structures. This statement generally agrees with our findings but in the next section we provide a different interpretation based on a ionocovalent screening mechanism that can qualitatively explain the main results described until this point. 

Ionocovalent screening model

The analysis presented here is extracted from the ionocovalent screening scheme given in references [START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF]62] in the context of titanium oxide systems. This screening mechanism influences Zr-O bond lengths, but since it depends on the binding states between Zr and O ions in the valence bands, it also exists in presence of a perturbation even in an unrelaxed systems.

The analysis here is based on the electron transfer ∆ b associated to the covalent character of a Zr-O bond b.

The electron transfer ∆ b

∆ b can be formally derived from a simple tight binding model using some effective atomic levels Zr and O together with a single hopping integral β [START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF]62]. Generally, the atomic levels depend on the nature of the atom but also on the local electrostatic potential and on the number of electrons on this atomic site. In the simplest case of a cation surrounded by Z Zr anions with a single binding orbital, we have:

∆ b = 1 Z Zr [1 - X √ X 2 + Z Zr ] (7.1) Where X = Zr -O β
. ∆ b is therefore equal to 0 if the bond is purely ionic ( X >> 1) and it has a maximum value for a purely covalent bond with X = 0. In more complex systems, ∆ b is defined as a sum over the contributions coming from the binding states in the valence band but it retains the same kind of dependence respect to X [START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF]. Importantly, ∆ b is related to the charge on the ions by :

Q Zr = 4 - b=1,Z Zr ∆ b (7.2)
and : In figure 10(a) we use a simplified (1D) picture where we define a given difference ∆E 0 between the Zr and O atomic levels in the unperturbated system. If we consider a constant first neighbour distance d between each site, this energy difference also defines the corresponding electron transfer ∆ 0 which is the same for all the bonds in the unperturbated system.

Q O = -2 + b=1,Z O ∆ b (7.3) 3 
To see how a screening mechanism appears upon the introduction of a Y-Vo -Y defect, we first consider in figure 10(b) yttrium substitution as a formal -1 charge perturbation on a cation site (note that the real perturbation also includes a reduction of β between Y and its first neighbours, but this is a local perturbation that affects mainly only the Y-O bonds and not the whole Zr-O network).

A formal -1 charge perturbation on a cation site changes the Madelung potential which raises all the effective atomic levels in the system. Starting from the oxygen first neighbours the effective atomic level variation is proportional to +1 d . Then the first Zr neighbour shell is affected by a level shift proportional to +1 2d . If we stop at this point and inspect the consequences of this perturbation on the first bond (bond 1 in the figure) we find that ∆E 1 < ∆E 0 . This means an increase of the electron transfer from O to Zr with ∆ 1 > ∆ 0 . Thus first bond becomes "more covalent". The situation for the next bond is exactly the opposite; the level of the second nearest oxygen is formally raised by +1 3d , less than the first Zr neighbour. Consequently, we have ∆E 2 > ∆E 0 and ∆ 2 < ∆ 0 , this second bond becomes "more ionic".

The same scheme applies further away from the original defect with an alternated succession of "more covalent" and "more ionic" bonds with values of ∆ that tend towards ∆ 0 but with alternatively larger and smaller values.

If we now look at the electron transfer respect to the unperturbated system, we have electrons going from oxygen to zirconium along the first bond that is more covalent, electrons are going from the same Zr to the next O along the second bond that is more ionic, and so on. This results into a net electron flow pointing away from the perturbation site that can be seen as an "ionocovalent screening" mechanism (red dashed line in figure 10(b)).

A similar analysis can be done from a vacancy represented as a +2 perturbation charge (there is also a bond breaking that will increase the electron transfer on the first Zr-O bond in the remaining network). Notably, we observe that the screening effects due to the O-vacancy and/or to the Y-ion substitution correspond to the same series of "more covalent" and "more ionic" bonds with the same variations for the electron transfer leading to the same direction for the electron flow. When the two perturbations are combined, the screening effects are in this case enhanced. And this enhancement would be even more pronounced whenever the two perturbations are close to each other, namely in the 2NN-2NN configurations. The same kind of reasoning results in a "frustrated screening" effect when two Y -perturbations are present. Whatever the case, we stress that the dominant effect in the Zr-O matrix response to the Y-Vo -Y defect will at first order be determined by the response of the first bond which in all cases becomes "more covalent".

Relation between Zr-O bond length and ∆ b

At this point our analysis only tells us that such a mechanism involving the electron of the valence band is expected and that some "electrons" should be conveyed from the Y sites towards the ions close to the vacancy. We shall now see why this screening can be useful to understand the different relaxations in tetragonal and monoclinic systems.

Whenever the atomic positions are relaxed together with the electronic structure the previous scheme incorporates the atomic displacements. It has been shown in titanium oxide [START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF]62] (which is quite comparable in this respect to ZrO 2 in this case) that the variations of the electron transfer respect to the distance are dominated by the hopping integral β which is a quickly (exponentially) decreasing function of the bond length. So within a simplistic tight-binding model, a decrease of Zr -O will give more weight to β in the energy and in its gradients. Mechanically, if the ions are relaxed, the Zr-O distance will decrease leading to a higher β and an even larger electron transfer. So, consistently with [START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF]62], a "more covalent" bond is also a shorter bond while a "more ionic" bond is longer. This is illustrated in fig. 11 where the electron transfers have been determined from DFT calculations as a function of the cation-anion distance in T iO 2 systems.

The electron flows represented in figure 10 are therefore associated with successive bond elongations and bond contractions that are given by blue signs in figure 10. This result corre-sponds well with the observed alternated variations of the Zr-O bonds in our systems (see for example figure 9) but it is not surprising since the classical electrostatic screening obtained from formal point charges also give exactly the same displacement directions. 

Application of the ionocovalent screening mechanism to the m-YSZ and t-YSZ phases

The structures under consideration are a rather more covalent monoclinic phase with short Zr-O bonds and a more ionic tetragonal phase longer Zr-O bonds (2.32 Å). The first perturbation on the Zr-O network due to the Y-Vo -Y defect is to induce more covalent bonds close to the perturbated sites. If we assume that the amplitude of the perturbating charges is similar in both systems, then the effective levels will be affected in the same way in both systems.

This means that rather similar variations of ∆ b should be obtained in both phases. However, the quickly decreasing ∆ b (r) dependence imposes only small bond length variations on the short bonds in the monoclinic phase while larger bond length variations on the long bond in the tetragonal phase are needed in order to obtain roughly the same ∆ b variation in the two phases. This means that from this analysis the relaxations are expected to be larger in the tetragonal phase as we observe it. Since the relaxations from the ionocovalent screening model follow the same directions as the relaxations expected from a pure classical point charges model, we can conclude that the ionocovalent screening will favour larger point charge motion in the tetragonal phase to classically screen the charged defects. Our analysis tells us that this is supported by the presence of the longer bonds in the tetragonal phase.

We checked this point and found that in the 2NN-2NN t-YSZ structure, 70% of the Zr-O bond relaxations given in table 3.7.4 are due to the variations of these long bonds while they represent 50% of the total number of Zr-O bonds. Moreover, these long bonds can be easily elongated without changing much the ∆ b value and without affecting much the surrounding covalent bonds.

The ions in the monoclinic phase are less mobile because large distance variations will be associated to a strong modification of their covalent character that stabilizes the structure.

Clearly an ionocovalent screening should exist in this phase too, but the ions being less mobile, their motion will give a lower contribution to the classical electrostatic screening due to the motion of point charges. This interpretation based on an ionocovalent screening mechanism, is consistent with our results at 3.23 mol.% Y 2 O 3 concentration.

The tetragonal structure relaxes more in presence of the defect, and develops a better classical electrostatic screening as suggested by the Ewald energies in table 3.7.3 The large relaxation of the long bonds in t-YSZ is also consistent with the creation of 7-fold Zr-ions. This is especially true if relaxations are favoured as in the of the 2NN-2NN configuration where the proximity between the Y-ions and Vo lead to an enhanced ionocovalent screening mechanism with large ∆ b and large distance variations. Again this interpretation coincides with the DFT-LDA results : in our calculations, the creation of a supplementary 7-folded Zr-ion, in addition to the those imposed by the vacancy, has been obtained at 3.23 mol.% defect ratio only in 2NN-2NN t-YSZ configuration. Supplementary 6-fold Zr-ions are absent from all m-YSZ systems at this defect ratio. Of course the previous statement implies the use of the 2.65 Å cut-off ratio to determine the 7-fold Zr-ions. But this point is not crucial if we keep the same definition for all systems. We note that a lowering of this cut-off to 2.55 Å will show the appearance of 7 folded Zr-ions in tetragonal 2NN-3NN, 1NN-2NN and 1NN-3NN configurations.

Conclusions about relaxations and relative stability of t-YSZ

and m-YSZ at 3.23 mol.% Y 2 O 3 content

The important points concerning the previous results and analysis can be summarized as follows :

• Independently on the precise configuration, the energetic cost of the Y-Vo -Y defect is comparable in the tetragonal and monoclinic phases. Analysis of the electrostatic energies together with bond length and bond topology (coordination) suggest that the weight of the electrostatic perturbation is higher in the tetragonal phase, while the weight of the "covalent energy cost" due to Zr-O bond disruptions is higher in the monoclinic phase. This point will be commented further in chapter IV.

• The fact that the tetragonal phase becomes energetically competitive with the monoclinic phase is due to atomic relaxations.

• Because of the strong covalent bonding in m-ZrO 2 , this structure is rather rigid and provides less efficient electrostatic screening of the Y-Vo -Y perturbation. As a consequence, the best monoclinic candidate at 3.23 mol.% defect ratio is the 1NN-1NN configuration that minimizes the energy cost of the bare perturbation.

• On the opposite, the tetragonal phase shows large relaxations upon the introduction of the Y-Vo -Y defect. Consistently with the ionocovalent screening mechanism, relaxations are larger in 2NN-2NN configurations where the screening is enhanced. These relaxations mainly involve the longest Zr-O bonds in the initial structure : in 2NN-2NN configuration they are large enough to generate a supplementary 7-fold Zr-ions in the structure if a 2.65 Å cut-off is applied to define Zr-O bond.

• Compared to other t-YSZ structures the 2NN-2NN configurations give a better ionocovalent screening and a lower electrostatic energy than the 2NN-3NN and 3NN-3NN configurations.

2NN-2NN, 1NN-1NN and 1NN-2NN configurations show similar Ewald electrostatic energies after relaxations, but in 2NN-2NN case this goes along with the formation of supplementary 7-folded Zr-ions.

Our results are therefore consistent with a stabilization due to the the appearance of 7fold Zr in the tetragonal structure. We note that the energetically competing 1NN-2NN structure also display elongated Zr-O bonds but to a lesser extent compared to the low energy 2NN-2NN configuration.

• The relevance of the Ewald electrostatic energies as well as the conclusions from the ionocovalent screening rely on some important hypothesis on the ionic charges, these will be tested in the next section about electronic structure.

Comparison of the

∼ 3 mol.% Y 2 O 3 doped ZrO 2 structures
with other theoretical and experimental works

Our best configuration in m-YSZ is a 1NN-1NN. Sangalli et al [START_REF] Sangalli | Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of yttrium-doped ZrO 2 : A first-principles approach[END_REF] found a 1NN-3NN configuration using a DFT GGA-PBE technique and ultrasoft pseudopotentials. This structure lies 0.27 eV/supercell above our more stable 1NN-1NN structure. We also checked through a direct GGA-PBE calculation that 1NN-3NN is still higher in energy by 0.37 eV/supercell compared to our 1NN-1NN best structure. Hence this discrepancy is not due to the exchange and correlation functional. Sangalli etal do not detail how they performed their configurational search nor if they relaxed both volume and positions (presumably they do no relax the volume and the cell). These points are the possible reasons for this mild disagreement, plus, potentially the use of ultrasoft pseudopotentials.

The theoretical structure of t-YSZ at 3.23 mol.% defect ratio has been the subject of many studies based on DFT as for instance [START_REF] Eichler | Tetragonal Y-doped zirconia: Structure and ion conductivity[END_REF][START_REF] Sangalli | Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of yttrium-doped ZrO 2 : A first-principles approach[END_REF][START_REF] Ding | Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia[END_REF]. Their findings together with our results and other electronic structure results on cubic YSZ [START_REF] Stapper | Ab-initio study of structural and electronic properties of yttria-stabilized cubic zirconia[END_REF][START_REF] Ostanin | Electron energy-loss near-edge shape as a probe to investigate the stabilization of yttria-stabilized zirconia[END_REF] all agree to identify a 2NN-2NN low energy configuration. More precisely, our results are in perfect agreement with those of Ding et al. [START_REF] Ding | Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia[END_REF] who employed all-electron DFT PW-LDA [START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF] found the 2NN-2NN t-YSZ configuration as the lowest energy configuration. However, we note that their explanation for this result differs from ours. They quickly state that the large size Y cation prefers to be 8-fold coordinated with large Y-O bond length. This argument is in contradiction with our own calculations since in the lowest energy 1NN-1NN m-YSZ structure, the Y atom has short distances with oxygens. From the experimental point of view, the determination of the local structure can be difficult due to the potentially inhomogeneous samples and similar signals from the Zr and Y cations in X-rays. Nonetheless, the 2NN-2NN position for Y-ions is confirmed from EXAFS-XANES analysis by Li and co-workers [START_REF] Li | X-ray-absorption studies of zirconia polymorphs. II. Effect of Y 2 O 3 dopant on ZrO 2 structure[END_REF] and it is also consistent with X-rays diffraction and neutron diffraction experiments by Goff. et al [START_REF] Goff | Defect structure of yttriastabilized zirconia and its influence on the ionic conductivity at elevated temperatur es[END_REF]. However we note that these experiments were conducted on samples with a Y 2 O 3 concenterations of ∼10 mol.% and greater. . t-YSZ 6.67 mol.% From the strict definition of crystal symmetry this structure is close to an orthorhombic system but we still denote it as t-YSZ because the ratio of the largest cell parameter over the smallest is still larger than 1.003. The important point to retain from the structure of Y-Vo -Y defects in the lowest energy configuration is that it reproduces all the important characteristics of the low energy t-YSZ at 3.23 mol.%. This structure is represented in figure 12d and shows no Y-Vo link. All the Y-ions are almost contained in a (111) like plane with an Vo located on each side of the plane (containing all the Y-ions). The number of Y-ions second nearest neighbour (2NN) is 4 for each vacancy and from the previous discussions such a configuration should favour an efficient ionocovalent screening, large relaxations and potentially the appearance of 7-fold Zr cations. Indeed, we find in this structure two supplementary 7-fold Zr cations in addition to the total 8 first neighbours (NNs) of the two oxygen vacancies. The average distance variation for a Zr-O bond in the matrix is 0.06 Å which is larger than the same variation at 3.23 mol.%. The table 3.7.5 shows that the classical electrostatic cost per Y-Vo -Y defect is almost the same as in the 3.23 mol.%, but relaxations contribute even more to lower the energy resulting in an effective attraction between the Y-Vo -Y defects in agreement with the lowering of the enthalpy for this system in figure 4a.

These results are again in good agreement with the previously cited experimental works [START_REF] Li | X-ray-absorption studies of zirconia polymorphs. II. Effect of Y 2 O 3 dopant on ZrO 2 structure[END_REF][START_REF] Goff | Defect structure of yttriastabilized zirconia and its influence on the ionic conductivity at elevated temperatur es[END_REF]. Concerning the relative positions of the O-vacancies, Goff at al. [START_REF] Goff | Defect structure of yttriastabilized zirconia and its influence on the ionic conductivity at elevated temperatur es[END_REF] suggest an arrangement along [START_REF] Kisi | Elastic Constants of Tetragonal Zirconia Measured by a New Powder Diffraction Technique[END_REF] direction at high defect ratio, this is supported by electronic structure calculations of Ostanin [START_REF] Ostanin | Electron energy-loss near-edge shape as a probe to investigate the stabilization of yttria-stabilized zirconia[END_REF] and Fabris [START_REF] Fabris | A Stabilization Mechanism of Zirconia Based on Oxygen Vacancies Only[END_REF] but at a higher percentage of oxygen vacancies (equivalent to 14.28 %). In the structure described here the vacancies are aligned along [0, 1 2 ,1]. Unfortunately this structure was not tested by Ding et al [START_REF] Ding | Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia[END_REF] who found a [1, 1 2 ,0] low energy configuration. In view of the previous analysis, the Vo -Vo arrangement should not be the main criterion to decide the quality of the final structure. We rather interpret our results noting that the best configuration provides a maximum number of 2NN Y-Vo arrangements which favours a larger ionocovalent screening, large relaxations allowing a good classical electrostatic screening and possibly the formation of 7-fold Zr cations. This analysis generally confirms the analysis of Ding and Li who also consider the 2NN Y-VO local arrangement as the most relevant in YSZ systems. c-YSZ 10.34 mol.% The description of the low energy structure at 10.34 mol.% Y 2 O 3 content (figure 12e) follows the same lines as the t-YSZ at lower percentage defect concentrations. There is no Y-Vo link in this configuration but the number of 2NN Y-Vo pairs continue to increase and reaches 13. Zr-O relaxations are large with 0.1 Å per bond in the matrix, and again 2 additional 7-fold Zr cations are found in the structure (the total is 14=3×4 + 2). Inspecting the local environment around these supplementary 7-fold Zr ions we find that the length of the elongated Zr-O bonds involving these Zr ions are 2.94 Å and 3.05 Å which is well beyond the 2.65 Å criterion used to determine the coordination and indicates an enhanced screening effect.

Contrary to the 6.67 mol.% case, the perturbating charges are here quite scattered in the structure. This should not be highly favorable from the electrostatic point of view, and from table 3.7.5 we can see that the energetic benefit of adding a third Y-Vo -Y defect without including Y-Vo links is less than it was from adding a second defect to the first. The scattering of the defect sites probably participates to make this structure more isotropic and more cubic than the YSZ structures with less defects. Also, we should not forget that as more defects are added, there is less and less Zr-O bonds in the network to screen them. So as the percentage of the defect increases, it is not surprising to observe a competition with configurations that have a lower "bare defect energy cost". namely the configuration containing Y-ions close to the vacancy. At 10.34% of yttria concentration, such an energetic competition clearly occurs with some 1Y-Vo configuration. We believe that these configurations of low energy but with different Y-Vo arrangement, could favour the diffusion mechanisms of the oxygen vacancies that are known to be efficient in YSZ around 10% defect ratio [START_REF] Stickler | Ionic Conductivity of Cubic Solid Solutions in the System CaO-Y 2 O 3 -ZrO 2[END_REF]. c-YSZ 14.28 mol.% Until now we observed that the stabilization of the tetragonal and cubic phases upon the addition of Y-Vo -Y defects is due to their specific capabilities to screen the defects through an efficient ionocovalent screening scheme. Large induced relaxations in these phases allow a better classical electrostatic screening due to the motion of point charges together with the formation of 7-fold zirconium ions that should represent low energy local structures. However, these relaxations rely on the presence of a Zr-O bond network with long and short bond lengths that would be able to vary, and to the possibility of building 2NN Y-Vo local arrangements. Since the number of Zr-O bonds decreases with the defect ratio and since these bonds already participate to the screening effects at lower Y 2 O 3 ratio, it is unlikely that similar low energy structures can be indefinitely produced for an increasing number of defects in the supercell. On the other hand, if screening and production of 7-fold Zr atoms is reduced, then the structures with a lower "bare defect energy cost" showing Y-Vo links should become energetically competitive. As seen in the previous paragraph, this competition starts at 10.34 % defect ratio, and at 14.28 mol.% the lowest configuration includes two Y-Vo links involving two different Y-ion and two different vacancies (see figure 12f). However, the transition towards a new kind of low energy structures that we describe here is very progressive. The screening effects are indeed still very strong at 14.28 mol.% with an average variation of the remaining Zr-O bonds of 0.11 Å, the presence of 16 2NN Y-Vo arrangements, and the presence of 17 7-fold Zr-ions. Note that due to the two Y-Vo links, the expected number of 7-fold Zr is here 14, we then have an excess of three 7-fold Zr-ions in this structure. As in the 10.34 mol.% case, the elongated Zr-O distances on these supplementary 7-fold Zrions are large, all of them are above 3.0 Å which clearly corresponds to broken bonds. The enhanced screening mechanism due to the presence of many Y-Vo -Y defects and many 2NN Y-Vo arrangements therefore leads in c-YSZ to a tendency to form very clear 7-folded Zr-ions local structures. We also note that the Y-Vo links involving two Y atoms give structures similar to the 1NN-2NN Y-Vo configurations that were already discussed at 3.23 mol.% as low energy configurations. Although this high percentage c-YSZ displays a rather neat cubic structure, the bonding in this system is completely different with respect to the pure cubic ZrO 2 fluorite structure. In 14.28 mol.% c-YSZ Zr-O bond lengths show large dispersion, with an important amount of 7-fold Zr cations and 3-fold O anions that make this structure probably more comparable to the pure monoclinic ZrO 2 . Moreover, at this defect ratio the structure of the defects in the cubic structure starts to show some similarity with m-YSZ at low defect percentage through the presence of some Y-Vo links. I will comment more on these results at high defect percentage in the conclusions of this section.

m-YSZ 6.67 mol.%

Although the monoclinic structure can show some ionocovalent screening in presence of the defect, this reflects weakly on the atomic relaxations. The structure being already strongly covalent, it hardly becomes even more covalent in the presence of the Y-Vo -Y defect. Contrary to the case of the defect in the tetragonal structure, the weak atomic relaxations do not permit a significant motion of point charges nor the possibility to generate significant change in the Zr coordination. Moreover, the choices to build a second oxygen vacancy at 6.67 mol.% is also limited. First, the bare energy cost to generate a vacancy on a 4-fold oxygen is prohibitive in this rather covalent system (see figure 8). This leaves the possibility to choose the vacancy location among the two [START_REF] Howard | Structures of ZrO 2 polymorphs at room temperature by high-resolution neutron powder diffraction[END_REF] planes of 3-fold oxygens. We checked over more than 30 structures that it is energetically unfavorable to put the second vacancy in the same plane as the first. Possibly because there is no cation in between the vacancies as suggested by Fabris et al [START_REF] Fabris | A Stabilization Mechanism of Zirconia Based on Oxygen Vacancies Only[END_REF].

The resulting low energy structure shown in figure 12c has 2 vacancies in different [START_REF] Howard | Structures of ZrO 2 polymorphs at room temperature by high-resolution neutron powder diffraction[END_REF] planes with some cations in between. One vacancy is surrounded by 2 yttrium first neighbours (NN) and the second by only one giving a 3 Y-Vo structure. As in the tetragonal case, most Y atoms are found as second nearest neighbours (2NN) of the vacancy with rather small distances. This should favour an enhanced ionocovalent screening but for the reasons mentioned before the global structure remains weakly affected with a modest 0.03 Å variation respect to the pure system. Nonetheless we noticed a peculiar event during the relaxations in this system with one Y-ions first neighbour to the vacancy that becomes 7-folded. This can happen in monoclinic systems because the oxygens approach the vacancy but contrary to zirconium, the yttrium NN of the Vo cannot relax outward because this would imply very short covalent Y-O bonds. Instead, Y remain close to Vo and can "bind" to oxygens approaching from other directions. This m-YSZ configuration therefore shows some relaxations that demonstrates a slight attraction between the two Y-Vo -Y defects with the presence of 2NN Y-Vo arrangement that favour more relaxations than in the 3.23 mol.% case. However, the energetic data in table 3.7.5 indicate a mild effect compared to the tetragonal structures. To conclude, our DFT-LDA calculations predict that the m-YSZ configuration at 6.67 mol.% is not energetically competitive respect to its tetragonal counterpart. 3.7.9 Conclusions on the atomic structure and relative stability of m-YSZ, t-YSZ and c-YSZ between 3.23 mol.% and 14.28

mol.% defect

In this section we have discussed the results coming from our extended search of low energy structures in YSZ systems. This search is rather general and involves more than 1000 configurations over the whole defect range with full minimization of the supercell parameters. As a result we obtained number of new structures that were not discussed in the literature before : 3.23 mol.% m-YSZ, 6.67 mol.% m-YSZ, 6.67 mol.% t-YSZ, 10.34 mol.% c-YSZ and 14.28 mol.% c-YSZ.

Still the most important result from this analysis is the rather deep understanding of the relative stability of the YSZ structures that we have achieved. First, the energetic cost of a bare Y-Vo -Y defect in absence of all relaxation is similar in the m and t phases. The weight of the classical electrostatic contribution being larger in the t phase while the covalent contribution, mainly due to the Zr-O bond disruptions, contributes more in the m phase. These Y-Vo -Y defects then induce relaxation of the system, in terms of electronic structure, cell shape and atomic positions. From a simple ionocovalent screening model we understand that the response to the Y-Vo -Y perturbation should be at first order an evolution towards a more covalent Zr-O network. This is consistent with the evolution of the average Zr-O bond distances shown in table 3.7.6. A deeper analysis parallel to what has been done in titanium oxide (T iO 2 ) systems [START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF] shows that this mechanism strongly favour large atomic relaxations in the tetragonal phase while the monoclinic phase more rigid. This is essentially because half of the Zr-O bonds in the tetragonal structure are more ionic with larger bond lengths than in m-ZrO 2 . Also, depending on the structure of the Y-Vo -Y defect, the ionocovalent screening and thus the relaxations can be enhanced which is the case when Y and Vo are second nearest neighbours (2NN). All these features from the ionocovalent screening model match extremely with the raw DFT-LDA results.

The large relaxations in t-YSZ have important energetical and structural effects. Despite the higher initial energies in presence of the bare defect the t-YSZ configurations provide the lowest energy configurations after relaxation above a defect ratio of 3.23 mol.%. Notably, these large energetic relaxations come together with the appearance of 7-fold Zr-ions and 3folded O-ions. We therefore believe, as suggested from the data summarized table 3.7.6, that these local 7-fold Zr structures are low energy ones and participate together with the classical electrostatic screening to the stabilization of the system.

In comparison m-YSZ systems are much more rigid and weakly screen the Y-Vo -Y defect through atomic relaxations. In these systems the low energy structure depends more on the energy of the unrelaxed or bare defect. The ionocovalent screening would effectively participate to the stabilization mechanism of the t-YSZ and c-YSZ phases as long as the final structure provides a sufficient number of unaffected Zr-O bonds that will be able to adapt to additional Y-Vo -Y defect. And because of the nature of the defect, the screening will be less efficient for more covalent structures. With increasing defect concentration, the number of 8 fold Zr cations is reduced in t-YSZ and c-YSZ, also it is clear from table 3.7.6 that these structures become more covalent. These evolutions of the system progressively favour the presence of Y-Vo pairs as in the m-YSZ systems. We observe such a transition towards another type of defect structure between 10 mol.% and 15 mol.%. This can probably have some consequences on the diffusion properties of the oxygen vacancies which is important in fuel cells applications [START_REF] Pornprasertsuk | Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles[END_REF][START_REF] Laguna-Bercero | Recent advances in high temperature electrolysis using solid oxide fuel cells: A review[END_REF].

The results presented so far agree remarkably well with the experimental analysis of Li and co-workers [START_REF] Li | X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures[END_REF][START_REF] Li | X-ray-absorption studies of zirconia polymorphs. II. Effect of Y 2 O 3 dopant on ZrO 2 structure[END_REF][START_REF] Li | Effect of Dopants on Zirconia Stabilization-An Xray Absorption Study: III, Charge-Compensating Dopants[END_REF]. Besides the 2NN-2NN relative positions of Y and Vo their Raman spectroscopy results indicate that t-YSZ systems at low defect percentage are characterized by low frequencies [START_REF] Li | Effect of Dopants on Zirconia Stabilization-An Xray Absorption Study: III, Charge-Compensating Dopants[END_REF]. This is to be put in parallel with the large Zr-O distances we found in these systems which are the signs of large relaxation effects. At higher defect percentage Li etal found high frequencies comparable to those in pure m-ZrO 2 . This is again in perfect agreement with our findings : due to enhanced relaxation effects that occurred after subsequent Y 2 O 3 addition, the large Zr-O bonds are fully broken, leaving a high number of 7-fold Zr in the structure with short Zr-O bonds. This evolution is also clearly given by the average Zr-O distances in table 3.7.6 that tend towards the Zr-O distances in pure monoclinic systems. Moreover, the behaviour of these high defect concentrations in c-YSZ upon the addition of supplementary Y 2 O 3 shows a transition towards the behaviour observed in m-YSZ system with the appearance of yttrium atoms first neighbours of the vacancies.

Charge analysis and electronic strucure

All the results presented in the previous section were interpreted after some hypothesis on the atomic charges and following a ionocovalent screening mechanism that implies other hypothesis on the charge transfer ∆ between oxygen and zirconium. The main goal of this section is to check these hypothesis respect to the results of a Bader charge analysis, mainly performed on the low energy YSZ configurations. This section is organized in three parts :

• Charge analysis in pure ZrO 2 systems.

• Ionocovalent screening from the Bader charge analysis

• Charges on Zr-ions as a function of the Y 2 O 3 content and density of states All the analysis performed in this section are done on fully relaxed systems (both cell and positions) at a 500 eV energy cut-off with a 2×2×2 special k-point mesh. We used finer FFT grid to represent the electronic density with a scale factor of 6 for the grid points in each direction, compared the factor 2 usually used in accurate self-consistent calculations. The analysis itself has been done using the software developed by the Henkelman group from the university of Texas adapted to the VASP ouput format, more details on the Bader charge analysis are given in Chapter 2.

Charge analysis and electronic properties of YSZ systems

The Bader charges are calculated after an integration over atomic basins that represent partition domains of the cell volume. These charges are therefore delocalized around the nuclei and do not represent point charges. For this reason they usually underestimate the effective point charges that will reproduce at best the electrostatic potential in the system. However, their relative values should approximately reflect the expected differences between effective point charges used in electrostatic model as well and the binding properties of the atoms.

The Bader charges calculated on Zr and O for the pure systems in the monoclinic, tetragonal and cubic phases are given in table 3.8.1. Their values are close to +2.3 for Zr and -1.15 for O in all systems. These values are much smaller than the formal ionic charges +4 and -2 used to calculate electrostatic energies in the previous sections. As just mentioned, this was expected and a good estimation of the effective charges for a better evaluation of the electrostatic energies should lie in between these two limiting case. More importantly, we see that the charge variations between the different systems are small which validates our previous approach that uses the same formal charges for all the phases. This analysis is not able to distinguish clearly between the tetragonal and the cubic phases and we think that the obtained charge differences of the order of ∼ 10 -3 are close to the error bar of the numerical scheme. The charge on the 4-fold oxygen in the m-ZrO 2 is a bit unexpected, it is slightly higher than in c-and t-ZrO 2 that are believed to be more ionic. But the higher electrostatic cost due to the removal of this oxygen inducing long range effects can partially explain the high energy cost of the vacancies on these sites. From these charges one can easily calculate the average electron transfers ( in number of electrons) in pure systems using the expression (see equation 7.2,7.3) :

Q Zr = +4 -Z Zr b=1 ∆ b = +4 -Z Zr * ∆ av .
∆ being a measure of the covalent character of the bonds, these results confirm that the Zr-O bonds in the monoclinic phase are on average more covalent than in the other phases. Using Q O = -2 + Z O * ∆ av we have access to more detailed values involving the different kind of oxygens. This gives ∆ av,O-4 = 0.1765 and ∆ av,O-3 = 0.2510. Our results correspond to similar 4-fold oxygens in all the three structures while the bonds involving 3-fold oxygens in m-ZrO 2 are much more covalent. However, we should stress that the electron transfers calculated here are averages except in the cubic phase where all Zr-O bonds are equivalent. For instance we expect that the average electron transfer in the tetragonal structure is the average between a large contribution coming from the short Zr-O bonds and a smaller contribution from the longer bonds. 

Q Zr Q O-4 Q O-3 Z Zr ∆ av c-ZrO 2 +2.

Ionocovalent screening from the Bader charge analysis

In the discussions about the ionocovalent screening mechanism we found that the variations of the electron transfer ∆ over a series of Zr-O bonds in the vicinity of a perturbated site should generate an electron flow that screens the charge perturbation. Moreover, we also supposed that this transfer should be of similar magnitude at low defect percentage in m-YSZ and t-YSZ for similar defect configurations.

The Bader analysis only gives charges in atomic basins, from those it is not possible, in a highly connected network, to precisely determine the electron transfer for each bond simply because there are more bonds than atoms which lead to a system with more unknown quantities than equations. Nevertheless, the calculation of the variation of the electron numbers between an initial system and a perturbated system in the vicinity of a perturbation can indirectly evidence an electron flow in this region. (Q Y -Q Zr is the sum of the yttrium charges in the relaxed structures minus the charges of the zirconium ions in the pure phases.

We follow this approach and we illustrate it in the m-YSZ and t-YSZ structures at a 3.23 mol.% defect ratio in figure 13. For a better comparison we choose the same 2NN-2NN Y-Vo topology in both systems and we concentrate on the atoms around the main charge defect due to the vacancy, i.e. the Zr atoms first neighbors of the vacancy and its the first oxygen neighbors included in a 3.0 Å radius from the vacancy. The ionocovalent model predicts an electron accumulation in this region around the vacancy to screen the relative positive perturbation charge. After calculating the sum of the variations in the electron numbers respect to the pure phases on all these atoms we find an excess of +0.305 electron in the tetragonal system with +0.186 electrons on the 6 oxygens surrounding the vacancy and +0.119 electron on the first neighbors zirconiums. In the monoclinic 2NN-2NN configuration we approximately find the same with +0.281 electrons for the total number of electron accumulated with + 0.150 electrons shared on the 7 oxygen atoms close to the vacancy and +0.131 on the 3 zirconium first neighbors. From these results we conclude that the ionocovalent screening in m-YSZ and t-YSZ at 3.23 mol.% defect generates variations of the electron transfer that are close to each other in both systems and give electron flows of comparable amplitude. This is not surprising since the nature of the bonds are the same in both systems, and from the charge analysis in pure system we also know that the effective charge perturbations on the vacancy in both systems are of the same amplitude ( roughly between +1.25 and +2). This charge analysis therefore validates the assumptions used in the description of the ionocovalent screening scheme. Notably, this charge analysis indicates that the screening of the perturbation charge is mainly due to the oxygen ions in t-YSZ while it is quite strong on the zirconium ions in m-YSZ especially if we consider that they are only 3 around the vacancy in this case. This is consistent with the the average relaxations given in table 3.7.2 and the higher mobility of the oxygen ions in the t-YSZ phase. It suggests that the weakening of the strong covalent bonds around the 3-fold oxygens is particularly unfavorable mechanism to screen the perturbation. This ionocovalent screening effect observed in these YSZ systems is only partial, with a variation of the electron number in the perturbated region that is less than 1 3 of the perturbating point charge. This is expected from an ionic insulator with an electronic gap. Therefore, the variations of the atomic charges and the atomic relaxations at long range play an important role in the total energy of these systems. The fact that the oxygen ions are more mobile in the t-YSZ structure and that can also adapt their charge will contribute to the stabilization of these systems.

Charges on Zr ions as a function of the Y 2 O 3 mol. percentage and density of states

In the structural analysis of the DFT-LDA results on YSZ systems we have pointed out that the large relaxations in t-YSZ and c-YSZ structures induce the presence of supplementary 7fold Zr-ions (and therefore 3-fold O-ions). Although these local structures are structurally well identified at high defect percentage we used a somehow arbitrary cut-off criterion of 2.65 Åto define their occurrence at low defect percentage in t-YSZ. It is therefore interesting to test if these structures show some specific signature from the electronic structure point of view. The density of states (DOS) for pure ZrO 2 systems are given in figures 14a,14b and 14c. For low energy YSZ configurations between 3.23 mol.% and 14.28 mol.% Y 2 O 3 concentrations, their DOS are depicted in figures 15a,15c, 15e, 16a and 16c. They confirm that all these systems are insulators with DFT-LDA gaps between 3eV and 4 eV. More details on the electronic properties of the pure systems are given for instance by Scheffler et al. [START_REF] Jiang | Electronic band structure of zirconia and hafnia polymorphs from the GW perspective[END_REF] where electronic structure is described beyond the limits of ground state DFT at the GW 0 level. Interestingly, the authors state that the quasi-particle band structure from GW in these systems essentially consists in a linear energy shift of the ground state DFT electronic states with nearly identical corrections in the three phases. We think this point is rather interesting in the context of our study because it has been proposed by Sangalli et al [START_REF] Sangalli | Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of yttrium-doped ZrO 2 : A first-principles approach[END_REF] from DFT-PBE calculations that the low energy of the monoclinic phase at 0 and 3.23 mol.% defect ratio is due to an exchange and correlation effect. If the exchange and correlation energy is the key quantity to explain the relative stability in ZrO 2 and YSZ systems then some phase dependent changes would be expected at the GW level, which is not the case. Apart from this detail it is difficult to extract valuable information from the density of states in these systems and relate them with our structural analysis. This would require a detailed inspection of the energy variation of the binding states in the valence band that we did not attempt. The charges on the Zr atoms are much more representative of the consequences of Y 2 O 3 doping, they are given from figure 14d to 16d. The values in 14d gather the Zr charges in pure systems which represent the initial references for 8-fold and 7-fold Zr coordination.

Starting from the Zr charges at 3.23 mol.% in m-YSZ (figure 15b) we can easily isolate the 6-fold Zr-ion (in asterisk)close to the vacancy in this system that carries a lower charge synonym of the ionocovalent screening due to the change in coordination and the proximity of the vacancy. All the other Zr charges in this system are close to the Zr charges in m-ZrO 2 . This is in excellent agreement with the previous discussions, the global defect is neutral and localized and very few relaxations are induced. The situation strongly differs in t-YSZ at 3.23 mol.% (figure 15d). The four 7-fold Zr atoms close to the vacancy are easily identified (shown with circles) but many other Zr atoms are also affected with charges below and above the Zr charge in pure t-ZrO 2 . This reflects the ionocovalent mechanism described above. Consistently with the analysis of the defect found in section 3.7.5, most of the variations consist in a reduction of the Zr charge in turn consistent with an evolution of the Zr-O network towards a more covalent binding. The supplementary 7-fold Zt-ions (in cross) detected from our arbitrary distance criterion is clearly among the Zr atom with intermediate low charges between the 7-fold and the 8-fold limits (structurally identified 7-fold Zr are indicated by crosses). However several other Zr atoms experience a similar charge evolution. This indicates that although our criterion helps to guide the understanding it represents an over simplified view of the nature of the Zr-ions in YSZ systems. Other Zr-ions are strongly involved in the screening mechanism but the variations of their bond lengths with oxygens are not sufficient to be qualified from our criterion as "7-fold" Zr. This charge analysis shows that this change in coordination is then progressive and involve several Zr cations in the structure. This intermediate coordination guessed from the charge analysis matches extremely well with the low Raman frequencies in t-YSZ evidenced by Li and co-workers : the intermediate Zr coordination between 7 and 8 means "very elongated" Zr-O bonds that indeed correspond to the Raman data.

Upon the addition of another Y-Vo -Y defect in the structure the Zr charges continue to evolve in the same way, in 6.67 mol.% t-YSZ (Fig. 15f) we find 8 (in circles) clearly defined 7-fold Zr atoms close to the vacancy with charges around the Zr charge in m-ZrO 2 . Also a larger number of other Zr atoms display charges in the intermediate region between the 8-fold and the 7-fold while the number of clearly 8-fold Zr-ions diminishes. This is again well interpreted within the ionocovalent screening scheme that acts as in the 3.23 mol.% case but on a larger number of Zr-O bonds. At 10.34 mol.% (Fig. 16b) and 14.28 mol.% (Fig. 16d) we can observe a slightly different evolution. The number of Zr-ions with intermediate charges decreases. This is the sign that the "very elongated" Zr-O bonds at 3.23 mol.% and at 6.67 mol.% that are even more elongated lead to Zr charges close to the 7-fold limit. The fact that this intermediate coordination of Zr disappears then coincides with the formation of the cubic phase in which the local Zr-O binding approaches progressively the limit of the monoclinic structure. Again these findings are in remarkably good agreement with the observations of Li and coworkers [START_REF] Li | Effect of Dopants on Zirconia Stabilization-An Xray Absorption Study: III, Charge-Compensating Dopants[END_REF] that point the absence of soft Raman modes in c-YSZ and the similarity between the monoclinic and c-YSZ frequencies. 

Elastic properties

One of the main reasons for using zirconia and zirconia based ceramics materials in many technological applications is for their interesting mechanical properties; mainly their hardness and fracture toughness. In this context we found important to evaluate the elastic properties of ZrO 2 and YSZ systems from our DFT-LDA calculations. In the case of YSZ systems the interesting mechanical properties are related to the competition between several polymorphs and especially to the transition between the tetragonal and monoclinic phase. Experimental facts as well as our own DFT calculations indicate that a yttria ratio of about 3% partially stabilizes the tetragonal phase. As shown in figure 1 this transition can be obtained geometrically from a shear deformation applied in the (011) plane. One of our initial motivations in calculating the elastic properties was then to compare the shear elastic constants in this plane (C 55 ) with or without yttria in both the tetragonal and monoclinic phases. This to examine if the presence of yttria would favour or hinder the deformations in this direction. One other important reason why we decided to conduct elastic constant calculations in YSZ systems is also that, from our knowledge, such calculations were not reported before.

Methodology

The calculations use the same parameters as before : an energy cut-off of 500 ev and a 2×2×2 special k-point grid. Extra tests done at 800 eV cut-off energy confirm that these parameters lead to converged elastic constants values. To evaluate the elastic stiffness C ijkl we imposed small deformations, ε kl ± 0.0035, to the relaxed supercells and we calculated the stress tensor σ ij after ionic relaxations. The C ijkl are then extracted from the linear relation between ε and σ at these small strains :

σ ij = C ijkl ε kl (9.1)
Our results are given in the more usual Voigt notations C ij defined as follows :

4 indices notation ij(kl) 11 [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF] ). Moreover, we know that the tetragonal cell can be represented in a "conventional" cubic cell and vice versa by rotating two of the lattice vectors by π 4 as mentioned in chapter 1. Thus the C c ij in this "conventional" cubic cell can be related to the normal definition of tetragonal elastic stiffness constants C t ij using the following equations 9.2 as given in the paper by Fadda et al [START_REF] Fadda | First-principles study of the structural and elastic properties of zirconia[END_REF].

C t 11 = 1 2 [C c 11 + C c 12 + 2C c 66 ] C t 12 = 1 2 [C c 11 + C c 12 -2C c 66 ] C t 66 = 1 2 [C c 11 -C c 12 ] C t 11 + C t 12 = C c 11 + C c 12 (9.
2)

The rest of the components are equal in both expressions (bases). The Bulk modulus (B) and Shear modulus (G) are calculated from the C ij matrix and its inverse compliance matrix S ij by Voigt-Reuss-Hill approximations using the following equations from Ref. [START_REF] Zhao | Elastic Properties of Cubic, Tetragonal and Monoclinic ZrO 2 from First-Principle's Calculations[END_REF] and therein. Voigt-approximation (upper limit):

B v = 1 9 (C 11 + C 22 + C 33 ) + 2 9 (C 12 + C 23 + C 13 ) G v = 1 15 (C 11 + C 22 + C 33 ) -1 15 (C 12 + C 23 + C 13 ) + 1 5 (C 44 + C 55 + C 66 ) (9.3) 
In the Voigt-approximation the quantities are evaluated at fixed strain. Reuss-approximation (lower limit): 

In the Reuss-approximation the quantities are evaluated at fixed stress. The Young's modulus (E) and the Possion's ratio ν then can be calculated from B and G as follows as given in equation 9.5.

E = 9BG 3B+G ν = 3B-2G 2(3B+G) (9.5) 
Hill's average-approximation:

B H = Bv+B R 2 G H = Gv+G R 2 E H = Ev+E R 2 ν H = νv+ν R 2 (9.6)

Results and discussion

The results for all studied systems, i.e. ZrO 2 pure phases as well as some comparisons with experimental works and other electronic structure calculations are collected in table 3.9.2. For the low energy YSZ configurations between 3.23% and 14.28% Y 2 O 3 concentrations, the C ij and quantities expressing elastic properties are given in table 3.9.3.

Table 3.9.2: Quantities expressing mechanical properties of pure ZrO 2 phases. Bulk modulus (B), Shear modulus (G), Young's modulus (E),and the Poisson's ratio ν are give the DFT-LDA calculations. Corresponding one DFT calculation from [START_REF] Zhao | Elastic Properties of Cubic, Tetragonal and Monoclinic ZrO 2 from First-Principle's Calculations[END_REF] and experimental [START_REF] Kisi | Elastic Constants of Tetragonal Zirconia Measured by a New Powder Diffraction Technique[END_REF] and [START_REF] Chan | Temperature Dependence of the Elastic Moduli of Monoclinic Zirconia[END_REF] are used for comparisons. Kisi et al [START_REF] Kisi | Elastic Constants of Tetragonal Zirconia Measured by a New Powder Diffraction Technique[END_REF] is a neutron study on doped cubic zirconia . Chan et al [START_REF] Chan | Temperature Dependence of the Elastic Moduli of Monoclinic Zirconia[END_REF] is an experiment based on Brillouin scattering on monoclinc ziroconia for different temperatures up to the monoclinic-tetragonal transformation temperature. And I compare my results with the ones done at at 20 [START_REF] Zhao | Elastic Properties of Cubic, Tetragonal and Monoclinic ZrO 2 from First-Principle's Calculations[END_REF](LDA) Expt. [ [START_REF] Kisi | Elastic Constants of Tetragonal Zirconia Measured by a New Powder Diffraction Technique[END_REF]] LDA [START_REF] Zhao | Elastic Properties of Cubic, Tetragonal and Monoclinic ZrO 2 from First-Principle's Calculations[END_REF](LDA) Expt.[ [START_REF] Kisi | Elastic Constants of Tetragonal Zirconia Measured by a New Powder Diffraction Technique[END_REF]] LDA [START_REF] Zhao | Elastic Properties of Cubic, Tetragonal and Monoclinic ZrO 2 from First-Principle's Calculations[END_REF] Note that, for the low energy pure phase (ZrO 2 ), our calculations very well agree with both the theoretical and the experimental findings. For the other phase (t-ZrO 2 and c-ZrO 2 ) it is difficult to find data as these phases are not stable at low temperature in their pure states. Thus some effort is done to compare our results with defected structures. The general trend in the computed quantities follow the experimental result, where was with the other theoretical results, they are in parallel agreement. Comparisons with experiments and other electronic structure calculations are given in table 3.9.2 for pure systems. We note that in this table the experimental references for c-ZrO 2 and t-ZrO 2 correspond to doped systems (see caption). Concerning the m-ZrO 2 phase we check the very good accuracy respect to experiments and the fair agreement with previous simulations also using DFT-LDA. Table 3.9.3 collects the data for pure ZrO 2 phases and the low energy YSZ configurations between 3.23 mol.% and 14.28 mol.% defect ratio. All the shear constants including C 55 are weakly affected at low defect percentage and evolve towards higher values in the cubic YSZ phases. The evolution of the C ii elastic constants is comparable with a decrease in the t-YSZ phases followed by a small increase at higher doping percentage. If we compare the 3.23 mol.% data to the pure systems we clearly observe a softening due to the initial incorporation of the defects. The mild variations of the averaged elastic constants in the right part of the table, shows that these properties do not strongly depend on doping and are rather independent of the phase. Finally, we see that the continuous reduction of the difference between the Voigt and Reuss approximations as a function of the defect ratio corresponds well with the more isotropic cubic phases at high defect ratio.

• C. c-ZrO 2 t-ZrO 2 m-ZrO 2 LDA
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Comments on exchange and correlation functionals

Most of the calculations presented in this chapter were done in the LDA approximation of the exchange and correlation functional. Before concluding, we have to comment about the results obtained with the GGA-PBE functional. Starting from the 10 lowest energy configurations found with LDA at each defect percentage, we performed GGA calculations. Some raw results follow the same trend as in LDA : t-YSZ and c-YSZ systems show large relaxations with extra 7 fold Zr-ions while m-YSZ configurations remain more rigid. However, LDA and GGA results differ on two important points. First, the energy difference e t-m = e t -e m is always larger in GGA. This is probably reminiscent from the large difference e GGA t-m found in pure systems that overestimates the Ackermann experimental estimation [START_REF] Ackermann | Thermodynamic properties of ZrO 2 (g)[END_REF] by a factor ∼ 1.7. At 3.23 mol.% the m-YSZ is way more stable than the t-YSZ than in LDA with e GGA t-m = 0.073 eV/ZrO 2 , and e LDA t-m = 0.011 eV/ZrO 2 , and more strikingly e GGA t-m remains positive at 6.67 mol.% defect ratio. This indicates that the GGA results do not predict any partial stability of the t-phase which disagrees strongly with the experimental phase diagram. For a quantitative comparison with experiments, it is therefore advised to rule out GGA-PBE functional in YSZ studies. From a more fundamental point of view, the wrong energy difference found in GGA calculations is not a serious problem if it remains a rigid shift. Moreover, this larger difference can be understood noting that GGA will energetically penalize systems with quickly varying densities. This is the case of the high density and more ionic tetragonal phase respect to the low density and more covalent monoclinic phase.

Unfortunately, the problem of GGA in YSZ systems is more serious than a rigid energy shift. We already mentioned that large relaxations in t-YSZ are due to the presence of the longer and more ionic Zr-O bond in the pure t-ZrO 2 phase. With GGA this bondlength (2.424 Å) is longer than in LDA (2.319 Å) and also larger than the experimental value (2.359 Å) [START_REF] Igawa | Crystal Structure of Metastable Tetragonal Zirconia by Neutron Powder Diffraction Study[END_REF]. Upon the addition of a Y-Vo -Y defect those long Zr-O bonds are then prone to further elongation leading to GGA structures with many 7-fold Zr atoms. At 3.23 mol.% t-YSZ, starting from a tetragonal structure, we found low energy configurations containing only 7-fold Zr-ions with local structures equivalent to the monoclinic arrangement. This spontaneous transformation towards a monoclinic is an erroneous result of GGA which contradicts the partial stability of the t-YSZ compounds used on daily basis in dentistry.

These GGA results show that the accurate description of YSZ systems is very delicate. Even if GGA globally fails to represent well YSZ systems it is still more accurate than LDA for the structure of the pure monoclinic phase. Also, the experimental measure of the long bond length in t-ZrO 2 lies in between the GGA and LDA values. All these observations prompts for the search of a better exchange and correlation functional for ZrO 2 and YSZ systems. After some tests we found that the PBEsol [START_REF] Perdew | Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces[END_REF] functional is almost perfect for pure systems giving for instance a long Zr-O bond length in t-ZrO 2 equal to 2.360 Å. However, we have discovered this fact lately which explains why we have not included the PBEsol results in this thesis.

Conclusions

In this chapter we studied the low energy configurations of yttriated zirconia systems between 3.23 mol.% and 14.28 mol.% mol yttria. Even though these systems have been the subject of several theoretical studies we think that our work contributes to a better fundamental understanding of these systems. Starting from three different phases of pure zirconia we performed a rather general search based on electrostatic considerations followed by extensive DFT calculations. From this we identified several new low energy configurations at different defect percentage. Besides their interest for conducting other studies on specific properties of YSZ systems they allowed us to investigate the relative stability of the monoclinic, tetragonal and cubic phases as a function of doping to obtain a low temperature phase diagram consistent with experimental observations. Importantly this work is not limited to the comparison of raw DFT results with experiments since we attempted to achieve a deeper understanding of the doping process by analyzing our results through an ionocovalent picture of the defect screening mechanism in these systems. Within this context the Y-Vo -Y defect is essentially viewed as local charge perturbation which induces an increased covalent character in the Zr-O bond network. Interestingly, the stabilization of the t-YSZ phases at low concentration is mainly due to a relaxation effect that reflects the capability of this phase to provide an efficient screening mechanism of the defect. The higher response of the t-YSZ phase is, from our analysis intimately, related to the presence of "long" ionic Zr-O bonds in the pure t-ZrO 2 phase. Contrary to the strong covalent bonds, their bond length can vary more at low energy cost to adapt the charges and the position of the ions. The importance of these "long" bonds in the tetragonal structure is also demonstrated by the differences between LDA and GGA descriptions of YSZ systems. One of the main difference between these two exchange and correlation functionals is indeed the description of this bond which certainly contributes to a less accurate description of the phase diagram in GGA. In relation with these arguments, we could identify intermediate coordination levels of Zr-ions in t-YSZ, first from the structural point of view with the further elongation of these "long" bonds but also more interestingly from the charge analysis. These intermediate coordination comes along the relaxation effect and corresponds well with the low Raman frequencies detected in t-YSZ at low defect percentage. Upon higher Y 2 O 3 doping the relaxation effects are still extremely important in the YSZ structures but tend to saturate due to the reduction of the Zr-O bond matrix and the fact that this matrix becomes more and more covalent and then less prone to large relaxation effects. This evolution is progressive and goes along with a transition from the intermediate Zr coordination towards clear 7-fold structures also evidenced from the charge analysis. Consequently, the formation of new defect structures with first neighbour Y-Vo occur at higher mol.% yttria concentrations, between 10 and 15 mol.% in c-YSZ. These defect structures, similar to the low energy defects in m-YSZ, involve less relaxation effects but are associated with a lower electrostatic energy cost. The strongly covalent structures obtained in c-YSZ display some resemblance with m-ZrO 2 again in good agreement with the high Raman frequencies found by Li and co-workers [START_REF] Li | Effect of Dopants on Zirconia Stabilization-An Xray Absorption Study: III, Charge-Compensating Dopants[END_REF].

Interestingly, this analysis can be connected to some of the properties of YSZ systems. First, the transition between different structures of the Y-Vo -Y defect arrangement occurs around 10 mol.% mol Y 2 O 3 content, which is close to the optimal doping for fuel cell applications involving a high mobility of the vacancies. At this doping level we find that several types of defect structures are in competition : the 2NN-2NN structures associated to strong relaxation effects but also some 1NN structures. This larger configurational space can help to understand the higher mobility of vacancies that can explore several type of arrangements at a lower energy cost. At higher doping, our results suggest that some of the vacancies can be trapped in low electrostatic energy structures and thus participate less to the conduction. Obviously, at lower defect content there are less vacancies which will not favor the conduction properties.

More closely related to the context of this study, we have shown that in presence of perturbations, the t-YSZ phases are prone to large relaxations involving local changes in the coordination of Zr ions. Upon mechanical deformation it is known that the t-phase can transform to a m-phase leading to high fracture toughness. At the atomic scale, this corresponds to the elongation and disruption of some of the "long" Zr-O bonds in the tetragonal structure which are consistent with larger relaxation of these "long" Zr-O bonds obtained from our simulations. And this is experimentally known from [START_REF] Chevalier | The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends[END_REF][START_REF] Sanon | A new testing prtocol for zirconia dental implants[END_REF][START_REF] Mochales | Monoclinic phase transforatmation of zirconia-based dental prostheses, indcued by clinically practised surface manipulations[END_REF][START_REF] Viazzi | Structural study of metastable tetragonal YSZ powders produced via a sol-gel route[END_REF] Chapter 4

Yttria Stabilized Zirconia in the presence of water : from ab-initio calculation

Introduction

Ytrria stabilized zirconia (YSZ) ceramics are used as structural bio-ceramics with the ability of withstanding very high loads for a very long time. Their good mechanical properties together with their chemical inertness and bio-compatibility, make them ideal materials for orthopedic and dental implants. As reported by J. Chevalier et al [START_REF] Chevalier | The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends[END_REF], 3 % mol yttria (Y 2 O 3 ) (3Y-TZP)-stabilized zirconia became the clinical choice over Ca-or Mg-stabilized zirconia due to its high strength at at room temperature and the possibility to keep the tetragonal state with a lower amount of dopant. Indeed, as shown in the previous chapter, the substitution of one formula unit of zirconia (ZrO 2 ) (on t-ZrO 2 ) by a trivalent oxide, yttria (Y 2 O 3 ) a powerful path to stabilize the tetragonal phase. However it suffers from Low temperature degradation (LTD) or "aging". LTD is mainly caused due to the phase transformation of a "meta-stable" tetragonal YSZ (t-YSZ) to the most stable monoclinic YSZ (m-YSZ) in the presence of water. This was known from early development of the material ( [START_REF] Kobayashi | Phase change and mechanical properties of ZrO 2 -Y 2 O 3 solid electrolyte after aging[END_REF]) but somehow underemphasized until 2001. In the year of 2001 and prior to that in 1997, the U.S Food and Drug Administration (FDA) reported fractures on femoral head implants made from 3Y-TZP which questioned their durability. These failures were due to LTD. The t-m transformation is triggered and facilitated due to the presence of water or humid atmosphere in the vicinity of the t-YSZ. Thus LTD has been the subject of many studies and investigations (for exam-ple: [START_REF] Chevalier | The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends[END_REF][126] [127][128][129] [START_REF] Hisbergues | Zirconia: Established facts and perspectives for a biomaterial in dental implantology[END_REF][13] and many more) for more than the last three decades. However after many years of research open questions remain unanswered regarding LTD. In particular, the exact mechanism leading to phase transformation is not yet firmly established. From the literature there are at least two more sounded hypotheses regarding the origin of LTD in YSZ. The first one is related the change in the free energy between the t-and m-phases in the presence of moist environment due to the filling of the O-vacancies, hence energy driven t-m transformation happens (as well explained in [START_REF] Chevalier | The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends[END_REF]). The second hypothesis is related to the change in the crystal structures : slight contraction of the t-YSZ cell in the presence of water radicals which leads to tensile stresses, thus a stress assisted t-m transformation occurs (Schubert and Frey [START_REF] Schubert | Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations[END_REF])). However, with regard to the mechanism of the phase transformation, there is no concrete evidence which explains it well, except a strong indication that it is related to the filling of oxygen vacancies created during doping zirconia with trivalent oxide such as Y 2 O 3 . A sound understanding of this problem would help material scientists to optimize and manufacture new hydrothermal degradation resistant zironia based materials for a better and optimum human use. This hypothesis with the filling of the oxygen vacancies (O-vacancies) in T-YZP is stated as the following : water species fill O-vacancies of t-YSZ which eventually could destabilize the t-YSZ at this low (3 mol %) concentration of yttria. This hypothesis makes us wonder what the situation regarding LTD would be if there were no oxygen vacancies in the material. When oxides such Ceria (CeO 2 ) are used as stabilizers to form CeO 2 -doped ZrO 2 (Ce-TZP), the doping does not induce O-vacancies [START_REF] Palmero | Surface Coating of Oxide Powders: A New Synthesis Method to Process Biomedical Grade Nano-Composites[END_REF] which make diffusion of water species in the ZrO 2 matrix very difficult, hence the material become less susceptible to LTD. The other open question left is, which water species are responsible for filling the O-vacancies in t-YSZ (3Y-TZP). Is it H 2 O, OH -, O 2-or H + ? Often proposed are the hydroxyl groups (OH -).

Other LTD effects are structural properties, of which the important ones are change in lattice parameters. Often t-m transformation for example in the case of phase transformation toughing (PTT), which is stress induced transformation near cracks are associated with a 4-5 % volume increase because monoclinic lattice occupies higher volume than tetragonal one. PTT is considered as the good side of the phase transformation associated with high toughness and resistance to crack propagation due the volume increase during the transformation which hinders the crack from propagating further. A recent study by Schubert and Frey [START_REF] Schubert | Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations[END_REF] on Y-TZP based on neutron experiments claimed that, during hydrothermal aging the filling of the O-vacancies may result in lattice decrease of Y-TZP. be discussed in detail later, originate from filling the O-vacancies (positively charged defects) in t-YSZ which are created as compensation charges to Y-ions (negatively charged defects). And the filling of the O-vacancies will be accomplished with either water or water radicals to mimic the presence of water (H 2 O) in the simulations. This step would give an insight on which water radicals are most likely to fill these O-vacancies.

Before going to the main results, we want the following thing to be noted, which can be considered as a recap from Chapter-3. The introduction of water is done to the "meta-stable" t-YSZ (2NN-2NN). The "meta-stability" of this phase is with respect to the most stable m-YSZ (1NN-1NN). The t-m transformation is martensitic (diffusionless transformation). Thus it is almost impossible for the cations, particularly the larger sized Y-ions to diffuse in the system (this is evident from diffusion coefficient measured experimentally in [START_REF] Chevalier | The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends[END_REF]). As a result, to study the t-m transformation (which we will come in detail later), another m-YSZ which topologically is the same as the "meta-stable" t-YSZ is modeled. Thus the m-YSZ in this chapter is not the most stable one, yet it is only 7meV per total formula units higher in energy from the most stable m-YSZ. Thus all the YSZwater complex systems are modeled with this information in account.

The following initial configurations are considered to answer the above question ("which water radical/s fill the Vo ?").

• Model A: H 2 O filling the Vo .

• Model B: O 2-filling the Vo and H 2 molecule as an interstitial defect.

• Model C: OH -filling the Vo and a H + attached to an other O-ion.

• Model D: H 2 molecule filling the Vo and an O-ions put as an interstitial.

In Figure 1, "Initial" represents the atomic configuration of the system at the start of the simulation while "Final" represents the final state of the system after full atomic and cell relaxations.

Figure 1: YSZ-water structures before and after the simulation. 'Initial" and "Final" represent the structures before and at the end of the simulations respectively. In Green, Cayn and white are the cations Zr 4+ ,Y 3+ and H + respectively. In red and blue are the O 2-anions, with the blue depicted the whereabouts of the ideal O-vacancy site. 

Model results

In this section we will present the results for the models presented above given in Fig. 1 From table 4.4.1, "Model C" is the reference structure and we can notice that the energy of "Model D" is way high. These results give three important messages. The first message is that H 2 O and H 2 as a molecules and an O 2-as interstitial defect are not energetically stable in the YSZ matrix after the incorporation of water. The second message is that since water does not exist as a molecule it dissociates making two hydroxyl (OH -) groups (as can be seen from "Model A" and "Model C"). And the last message that we can get from these model results is that an OH -group is responsible for filling the vacant O-site, again as it can be seen from "Model A" and "Model C". In fact the energy difference between these two models is small, ∼ 48 meV for 98 atoms (∼ 1.5 meV per total formula units) in favor to "Model C" . The only difference is based on their structures with respect to the type of O-ion to which the 2 nd H-ion is attached to. In the low energy model ("Model C") the 2 nd H-ion makes an OH - with an O-ion attached to a Y-ion and on the other case in "Model A", the OH -made with the 2 nd H-ion is with an O-ion attached to only Zr-ions. This shows that the H-ion would prefer to be sited close to a Y-ion than a Zr-ion and this makes sense from electrostatic point of view. If we take formal charges, the cations would have a charge of Zr = +4, Y = +3 and Zr = +4. Thus relatively the electrostatic repulsion between Zr = +4 and H = + would be larger to that of Y = +3 and H = +. Thus the whereabouts of H-ions would most likely be around a Y-ions than Zr-ions. Thus from this point onward all the calculations we did are based on this stable configuration from "Model C", which we will call it t-YSZ+H 2 O.

Energetics of YSZ with and without water

From this section onward, we will present properties of YSZ with and without water for the tand m-phases. we will start the discussion from the respective pure Zr 2 O phase and then go the YSZ phases and then to the water complex. These all systems are topologically the same, for example the relative position of Y-ions from the Vo are the same in the two YSZ phases. In table The enthalpy formation energies are in eV per total number of moles in the system for the two phases. Although we mainly focus on DFT with LDA EXc, but we also did DFT-GGA calculations on the same systems. As we saw from Chapter-3, at low concentration (∼ 3% mol.) the effect of dopant Y 2 O 3 is to retain the tetragonal phase at low temperature and profit from its good mechanical and structural properties.

We can clearly see from table 4.4.2 that the enthalpy energy change of t-m (∆H t-m ) of LDA are smaller than their respective GGA results, and this can be explained by the general known "over-binding" effect of LDA. Nevertheless both EXc. calculations have similar character and particularly show the stability of the t-phase as t-YSZ due to the added dopant Y 2 O 3 for the smallest ∆H t-m is in YSZ systems. These calculations also confirm that the m-phase is always the most stable phase. Moreover the interesting result is that with the hydration of both systems, the ∆H t-m almost retains back the same enthaly energy difference as in their pure systems even bigger in LDA by ∼ 8 meV/total mole. This shows that m-YSZ with the addition of water (m-YSZ +H 2 O) become more stable than the t-YSZ +H 2 O. This big energetic difference would suggest that the t-m transformation in the presence of water is most likely energy driven transformation. Therefore, if not alone, this energy difference plays a major role in the the t-m transformation during hydrothermal degradation of t-YSZ. Here it is worth mentioning that the choice of the EXc. that can be used (here LDA vs. GGA-PBE) has some general effects in the interpretation of my calculation results, which we will discuss later on some detailed level.

Defect's energy costs

In addition to the previous results we did static calculations starting from the pure unrelaxed systems to evaluate the energy cost of the defect. In presence of water O-vacancies are no more present and thus are not part of the defect as in previous chapter (Y-Vo -Y), but the perturbating charges remain similar as in the Y 2 O 3 substitution case with a -1 formal perturbation on each Y ion and a +1 formal perturbation on each proton. In the unrelaxed calculations we built the H + positions by keeping the same O-H local structure that is finally obtained in the relaxed configuration. All the other ions have the positions found in the pure crystal. Very interestingly, the energy difference between the unrelaxed topologically equivalent t-YSZ+H 2 O and m-YSZ+H 2 O in this case is 4.31 eV in the supercell. This is much higher than the ∼1.54 eV found previously in the case of the Y 2 O 3 substitutional defect.

Even if the t-YSZ+H 2 O shows again a large relaxation energy of ∼ -6.5eV, this is not enough to compete with the m-YSZ+H 2 O structure which shows a comparatively modest relaxation energy of -3.5 eV. From the static energy cost of the defect calculated here we can conclude that in absence of bond disruption, the energy cost of Y substitutions plus the point charges due to the Y ions and protons is much lower in m-ZrO 2 than in t-ZrO 2 . Following this, we deduce that the bond disruption in m-ZrO 2 is the main factor that destabilizes the monoclinic phase in the case of the Y 2 O 3 substitutional defect. If these bonds are restored with the introduction of water then the monoclinic phase becomes again the more stable phase. This discussion is in good agreement with the predominant role of the vacancies that has been discussed by Fabris [START_REF] Fabris | A Stabilization Mechanism of Zirconia Based on Oxygen Vacancies Only[END_REF] and tested experimentally by [START_REF] Soo | Local structures surrounding Zr in nanostructurally stabilized cubic zirconia: Structural origin of phase stability[END_REF].

Structural properties:

Lattice parameters of t-and m-phases of zirconia before and after addition of water In this table we can see the effect of the addition of defects specially with the addition of water. We see the LDA results compared to the GGA ones are with smaller lattice parameters and hence smaller unit cell volumes. Irrespective of the EXc., we see that the lattice parameters a and b of t-phase increases with the addition of defects. On the contrary, the lattice parameter c decreases with doping of yttria to the pure t-ZrO 2 and then becomes the largest with the addition of water in the t-YSZ. Correspondingly, the volumes of the unit cells increase with the addition of defects ; specially with the incorporation of water radicals on the t-YSZ, the cell volume increases which rather shows the expansion of the cell and which is in agreement to other authors that claim the increase of lattice parameters of a tetragonal phase when exposed to water [START_REF] Guo | Water Incorporation in Tetragonal Zirconia[END_REF]. This result is in contrast with a previous experimental work done by Schubert and Frey [START_REF] Schubert | Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations[END_REF]. From their neutron diffraction experiment they claim that a Y-TZP with 3 mol % Y 2 O 3 showed lattice contractions of the lattice parameters a and c after it is exposed to H 2 O due to the penetrations of water radicals. The exact vales in [START_REF] Schubert | Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations[END_REF] are given with the "tetragonal" definition of the cell. Here they are changed in to a "cubic" definition to directly compare to my results with a c = a t √ 2. And the lattice parameters of the "Reference Material" (t-YSZ) are in between the LDA and GGA results. The a and c from LDA are 0.8% and 1.5% smaller respectively and the GGA lattice parameters are slightly larger by 1.1% and 1.43% for a and c respectively.

Lattice parameters Angles

Phase a( Å) b( Å) c( Å) γ( • ) α( • ) β( • ) Vol.( Å3 

Structure and t-m transformation

In this section we will in detail discuss the stable t-YSZ-water complex which we mentioned before ("Model C"). Generally the preexisting O-vacant site is filled with an OH -group and another OH -is also formed with the same O making a bond to a Y-ion as seen in Fig. 2. As we can see in these 2 O-ions making OH -groups are 3-fold coordinated with the cations. This is also true in the m-YSZ+H 2 O. The formation of these hydroxyl groups is in parallel agreement with previously studied experimental studies by Guo et al [START_REF] Guo | On the degradation of zirconia ceramics during low-temperature annealing in water or water vapor[END_REF][START_REF] Guo | Water Incorporation in Tetragonal Zirconia[END_REF] (and reference therein) who observe based on X-ray photoelectron spectroscopy (XPS), there were hydroxyl groups (OH -) detected in tetragonal ZrO 2 during hydrothermal degradation. In another review study by the same author in [START_REF] Guo | Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction with Water Molecules[END_REF], it is stated that OH -groups diffuse from the surface and fill O-vacancies and thereby decrease their concentration. And as a result the tetragonal phase gets destabilized and eventually becomes prone to the t-m transformation leading to LTD. From this stable (minimum energy configuration) structure in Fig. 2 we see that the 2 hydroxyl groups make a Y -OH and Zr-OH bonds. In the Zr-OH bond the OH - is the one filling the vacant O-site. A DFT study by D. T. Chaopradith. et al [START_REF] Chaopradith | Adsorption of Water on Yttria-Stabilized Zirconia[END_REF] on (1 1 1) c-YSZ surface and other reference there in also shows that, adsorbed water molecule dissociates two OH -groups after structural relaxations; and water derived OH -fills an O-vacancy on the surface. They also mentioned that the dissociation of the water molecule is barrierless. And from all the test calculations we did, a H + never attaches to a 4-fold O-ion in both the t-YSZ+H 2 O and m-YSZ+H 2 O phases. Even if we start with a configuration where a H + ion attached to a 4-fold O-ion, it detaches itself and makes a bond with a nearby 3-fold O-ion. This shows the high diffusivity of the H-ions. This result is similar to a theoretical study on protonated m-ZrO 2 at a DFT level done by Y. A. Mantz et al [START_REF] Mantz | Protonated Forms of Monoclinic Zirconia: A Theoretical Study[END_REF] where a H-ion is bonded to a 3-fold O-ion is energetically favorable by 0.39 eV than the one bonded to a 4-fold O-ion.

The whole t-m transformation in YSZ in the presence of water can be understood chemically. The stabilizing mechanism in t-Zr 2 O due to trivalent oxide dopants (for example Y 2 O 3 ) is down to the presence of O-vacancies which are created for charge balance purposes. These O-vacancies in t-YSZ induce the formation of some 7-fold coordinated Zr-ions like an environment in m-ZrO 2 which play a role in lowering the system's energy hence thermodynamically stable. And during the simulation, we noticed that the number of 7-folded Zr-ions increases from 5 (in t-YSZ) to 6 (in t-YSZ+H 2 O) after filling the O-vacancy (with OH -). And this increase is of course related to the presence of H + ions which are known to be bond breakers in metal oxides [START_REF] Youssef | Hydrogen defects in tetragonal ZrO 2 studied using density functional theory[END_REF] thus have a consequence of mechanical instability in technological oxides. Thus by increasing 7-fold Zr-ions in t-YSZ after the incorporation of water, by cutting some long Zr-O bonds (previously 8-folded) in vicinity of a H-ion, hence t-YSZ becomes prone to a t-m transformation

NEB calculations

It is known that the nudged elastic band (NEB) method can be used to calculate energy barriers between two fixed stable structures or phases. In the work of A. Kushima et al [START_REF] Kushima | Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain?[END_REF], they used DFT and NEB calculations to determine oxygen anions (O 2-) migration paths and the corresponding energy barriers to study the diffusion of Oxygen anions and O-vacancies in YSZ. In this section results from NEB calculations will be presented to have an insight in the mechanism of the t-m transformation. In particular the climbing image NEB (CI-NEB) [START_REF] Henkelman | A climbing image nudged elastic band method for finding saddle points and minimum energy paths[END_REF] is used to calculate the barrier energy in the two set of t-m transformations : first in YSZ and the second in YSZ-water complex. We used 7 intermediate images between the stable t-YSZ and topologically similar m-YSZ structures to mimic the path along the transformation. Of course the m-YSZ is not energetically the most stable structure. The reason is that, in the most stable m-YSZ structure, the 2 Y-ions are positioned nearest neighbor (NN) to the O-vacancy, but not the case in the t-YSZ where the 2 Y-ions are rather at next nearest neighbor (NNN) position from the O-vacancy. And it is known that the t-m transformation is martensitic transformation where it does not involve big relaxations or diffusion of ions specially the heavy cations (Zr-and Y-ions). With regard to this, the NEB calculations are modeled and computed from a stable t-phase to a topologically similar stable m-phase. And the transformation as mentioned before is martensitic in nature, and can happen between different parent (t-phase) and product (m-phase) crystallographic directions. And in this study it is only considered one type of crystallographic direction transformation, namely ABC. This is from (a t , b t , c t ) of t-phase to (a m , b m , c m ) of m-phase. During the CI-NEB calculation, once the image with the highest energy is identified, the method drives this image to the saddle point (transition state) by maximizing its energy along the path. Hence it ensures us to calculate the energy barrier correctly. VASP together with the "Transition State Tools for VASP" (VTST) developed by Henkelman group [135] for a variable cell calculation is used. Here in the following, we will present results from two scenarios. The first one is the t-m transformation in YSZ without water; the second being in case of the presence of water radicals. The results we will present mainly are from DFT-LDA calculations. Some specific calculations done with GGA-PBE will be presented at the end of this chapter.

Figure 3a and 3b give the the barrier energies of the the t-m transformation in YSZ and YSZ+H 2 O respectively from the CI-NEB calculations. The first and last points (in the figures) are the t-and m-phases respectively. As it is shown (Fig. 3a) a barrier energy of ∼ 1.068eV is found for t-m transformation in YSZ. This is high barrier energy compared to the small energy difference of ∼ 0.11eV between the two stable phases for a total of 95 atoms (3.23 % mol. Y 2 O 3 ). So the physics behind this is that at this low yttria concentration, t-YSZ is almost stable ("meta-stable") due to the presence of dopants (specially O-vacancies) and a huge amount of energy is needed to destabilize the t-YSZ phase and stabilize more the m-YSZ. On the contrary in figure 3b we can observe two main things. The first and obvious thing is that the barrier energy in the presence water derived radicals is smaller (> 0.5eV ) than the earlier discussed case without water. With the addition of water the t-YSZ+H 2 O becomes energetically stable than t-YSZ but is way less stable than the m-YSZ+H 2 O. That is to mean, the enthalpy energy difference between the t-and m-phase is higher in the presence of water (∼ 1.8eV for 98 atoms) than without (∼ 0.11eV for 95 atoms). Hence without considering entropic or other effects, the t-YSZ is very much vulnerable to transform to the m-phase once it is exposed to water. We can understand the previous statement from the following discussion regarding Fig. 4. The transformation mechanism is done by cutting Zr-O strong covalent bonds and mainly it occurs on two planes of O-anions. In Figure 4, the two rows show the atomic configurations along the t-m transformation path in YSZ without and with water respectively. The middle images (4b,4e) are the transition states. Along the path the number of 3-folded O 2-anions (in purple) increases, which thereby means increasing 7-folded Zr-ions. Interestingly comparing Fig. 4a and4d, these are two t-YSZ phase before and after the addition of water respectively. As it can be seen clearly, 3-folded O-anions are more in number (6 in total) in the system with water in it than without (only 1). And these O-anions are mainly seen in the plane where the two H + cations are present. This suggests that indeed the H + cations play a major role in cutting Zr-O bonds by making a Grötthuss-type mechanism [START_REF] De Grötthuss | On the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity[END_REF] with the neighboring Oanions. This is due to their fast movement (high diffusing capability) relative to the other ions in the system. Thus gives us an insight of the mechanism of the t-m transformation in YSZ, with additional information on how t-YSZ becomes highly susceptible for the transformation once it is exposed to water with many 3-folded O-ions ( ), but the enthalpy energy difference with the t-YSZ lowers from 0.111eV in pure ZrO 2 to 0.077eV per total formula units in YSZ system, hence the addition of defects stabilize the t-YSZ. And again this enthalpy energy difference between these YSZ phases increases (from 0.077eV to 0.110eV ) after the incorporation of water. This supports the discussion given for the LDA results that the t-m transformation in the presence of water is energetics driven by over stabilizing the m-YSZ+H 2 O phase. This also goes parallel with the respective LDA result with the exception that the m-YSZ+H 2 O gets more stable with a negative enthalpy formation energy in LDA.

With all these similar trends qualitatively between the two EXcs, a CI-NEB with GGA-PBE is also done on the same system to compare the energy barriers with the LDA ones. The energy barriers to go from a t-phase to m-phase without (t-m YSZ) and with water (t-m YSZ-water complex) are computed as ∼ 111meV and ∼ 81meV respectively. These results show similar trend with the LDA results presented before, relatively high energy barrier in the system without water because of the "meta-stability" of the t-YSZ and smaller value in YSZ-water matrix because of the over stabilization of m-YSZ+H 2 O, which makes t-YSZ+H 2 O prone to the transformation. But quantitatively these values (GGA-PEB results) are 9 and more than 6 times smaller compared to the respective LDA results (1eV and 0.5eV ) presented in the previous section. As per to my understanding the reason is that the number of 7-fold Zr-ions in the t-YSZ (within the GGA frame) are quite a lot in number (16/30) which is more than half. This is related to the over estimation of the bond length within GGA. Thus within GGA-PBE, t-YSZ is more prone to transform to a more stale m-YSZ once it is exposed to water. And as an example we will present the kind of some how special but interesting result, "spontaneous" transformation.

We found in some cases that a t-YSZ which "spontaneously" transform to an m-phase after introducing the water (H-defects) to the system. This structural change is shown in figure 5. This structure was modeled starting from the pure t-ZrO 2 by adding the defects in the following way. 2 Zr-ions are substituted by 2 Y-ions at a 2NN position from an O-atom in which 2 H-ions are attached to mimic the water molecule and a 3.23% mol. concentration of Y 2 O 3 . In this initial configuration (model) which is depicted in figure 5-A, all the cations are attached to 8 O-ions just like in the pure t-ZrO 2 . The structure shown in figure 5-B is the final structure at the end of the simulation after full ionic and cell optimization. As it can be seen clearly from 5-B, there is an angle (β) different from 90 • between the a and c axes.

In the pure m-ZrO 2 , this angle is one of the lattice parameters (β ≈ 99.855 • in GGA-PBE) which defines the structure. And from this water complex calculation the initial angle (which was 90 • ) decreases to 80.64 • , but the angle between -a and c axes (99.358 • ) retains almost the same value in the pure m-phase. More over the c/a-ratio = 1.034, also is well compared with the pure m-ZrO 2 c/a-ratio = 1.035. Furthermore, all cations (Zr-and Y-ions) are 7-fold coordinated which is the main character of an m-ZrO 2 phase. And this kind of spontaneous t-m transformation starting from a well defined ideal positions of all the ions specially the O-ions (in t-ZrO 2 ) is never exhibited with any LDA calculations performed. This shows the relaxation effect of all the ions specially the H-ions play a major role in breaking strong covalent Zr-O bonds. From the literature [START_REF] Lughi | Low temperature degradation -aging-of zirconia: A critical review of the relevant aspects in dentistry[END_REF], in 2.5Y-TZP with some almunia content and ZrO 2 grain size of 300nm, evidence of "spontaneous" t-m transformation was reported. Additionally from other experimental studies [START_REF] Heuer | Stability of Tetragonal ZrO 2 Particles in Ceramic Matrices[END_REF], above some hundreds nm grain sizes, 3Y-TZP is less stable and more susceptible to spontaneous t-m transformation. These experimental results and facts together with this specific GGA result suggest that in some cases a "spontaneous" t-m transformation could happen and t-YSZ in relatively very fast rate. 

Conclusion

This chapter is devoted mainly to study the effect of water in YSZ. It is also dedicated to give some insights related to the mechanism of the t-m transformation in YSZ with and without water. To this end atomic scale based DFT calculations were performed which we believe are the first of this kind in this system. Moreover the results highly support one of the hypotheses regarding to the origin of LTD in YSZ, which is a t-m transformation in YSZ in the presence of water occurs due to an energetic difference between the t-phase and m-phase. At the heart of this energetics difference lies the filling of the O-vacancies in t-YSZ that were created as stabilizing defects with addition of the dopant Y 2 O 3 to retain the tetragonal crystal being in a "meta-stable" state at low temperature. These low energy structure of t-YSZ with the presence of water is when O-vacancies are filled with hydroxyl (OH -) groups. Thus we can clearly conclude that the OH -groups are the water radicals responsible for filling vacant Osites and thereby decrease the concentration of the stabilizing O-vacancies in t-YSZ. The filling of these O-vacancies induce the relative instability of the t-phase with respect to the m-phase. As a consequence of these all processes, the energetic difference between a t-YSZ and m-YSZ becomes large in the presence of water which was way smaller without water, therefore a t-m transformation which is energetically driven happens and leads to the degradation of t-YSZ based bioceramics materials. Moreover, not only filling the O-vacancies but also the presence of the proton defects in the YSZ-water matrix facilitate the transformation by cutting some Zr-O bonds. One major effect of the presence of the O-vacancies in t-YSZ (without water) is the creation of 7-folded Zr-ions locally next neighbours to these vacancies which is a way of stabilizing this phase. Interestingly, with the infusion of water radicals, OH -filling the vacant O-sites, one would expect the previously 7-folded Zr-ions to regain their normal 8fold coordination and a decrease in total number of 7-folded Zr-ions in the system would be expected. Yet, the total number of 7-folded Zr-ions has increased in whole system after the addition of water. This is mainly due to the presence of the H + cations, which thereby aid the t-m transformation by maximizing 7-folded Zr-ions. This is due to the presence of the H + cations, which thereby aid the t-m transformation by maximizing 7-folded Zr-ions. CI-NEB calculations were performed to mimic the mechanism of the t-m transformation with and without water. The first case, without water (in YSZ systems), showed how energetically costly it is to go from t-YSZ to m-YSZ compared to the second case (with water YSZ-water complex systems). The high energy barrier in t-m transformation of YSZ is credited to the presence of the O-vacancies in keeping the tetragonal phase stable even at low yttria concentration. Thus if the t-m transformation should happen many Zr-O strong covalent bonds must be cut and for that to happen some external help is needed, like external stresses. On the contrary, the relatively small barrier energy in the second case is evident that a t-YSZ is susceptible to transform to the most stable m-phase once it is exposed to water. The mechanism of the transformation is thus done in accordance with a plane of O-anions parallel to [1 0 0] plane, where the number of 3-folded O 2-anions (or 7-fold Zr 4+ cations) increasing. In addition in between two such planes there another O-anions plane in which all O-anions are 4-folded.

Lastly in some cases with DFT, with many flavors for the EXc. fucntionals, one has to take some care with their usage. In this particular case, we used and preferred LDA (over GGA) for many zirconia properties computed with LDA go parallel to existing data in the literature and are much more realistic.

instability (for example decrease in hardness) and eventually lead to the failure of the material.

Thus in this PhD thesis, computer based modeling and atomic scale simulations in the frame work of density functional theory (DFT) were employed to study, first the stabilization mechanism of dopant Y 2 O 3 on ZrO 2 polymorphs at different Y 2 O 3 concentrations and secondly to study the effect of water (water radicals) on ∼ 3 mol.% YSZ systems to gain a deep insight to the process of LTD at the atomic level.

Zirconia in its pure form displays three polymorphs with different temperature ranges. The monoclinic phase (m-ZrO 2 ) with space group P 2 1 /c is stable up to a temperature of 1440 K and then the tetragonal phase (t-ZrO 2 ) (space group P 4 2 /nmc) is stable to a temperature of 2640 K. The high symmetric cubic phase (space group F m 3m) is then stable between 2640-2980 K. Unfortunately the low temperature polymorph, m-ZrO 2 does not have the good mechanical properties as the high temperature phases. And the reason is due to the structural differences exhibited amongst the different phases. However, with the help of dopants, it is possible to retain either the tetragonal or cubic phases being stable at low temperature (as low as room temperature) which enables us to access the good structural properties of this material for different applications. Throughout this thesis, we focused on yttria doped zirconia, namely yttria stabilized zirconia (YSZ).

The ab-initio PAW code, Vienna Ab-initio Software Package (VASP) together with some other software (VTST tools and Bader charge analysis) which are used to analyze VASP outputs were mainly used in this thesis. Starting from identifying the stability order of pure ZrO 2 phase, we did extensive calculations on YSZ systems depending to the environment (with or with out water). The stability order of pure zirconia phases was identified with the m-ZrO 2 being the most stable phase with the largest volume followed by the t-ZrO 2 and then c-ZrO 2 .

Other calculations were also performed to collect data on structural parameters of these three phases. The results agree with previous experimental and earlier theoretical works and were used as benchmarks for further calculations for systems with defects. The addition of one mole of yttria induces a combination of defects ("Y-Vo -Y") into the host ZrO 2 matrix. Classically these defects can be considered as point like charge perturbation sites, with -1 (on Y-ions) and +2 (on O-vacancy ( Vo )) charges. We studied up to yttria concentrations of 14.28 mol.% using a supercell of 96 atoms in the pure ZrO 2 phases into which the defects are incorporated.

In order to study an equilibrium state of a YSZ system at a particular yttria content, determining the low energy defect arrangement in the host zirconia matrix is crucial. Nevertheless, it is impossible to investigate all the possible defect arrangements especially at high dopant concentrations. Hence, we developed a defect structure predictor code based on the classical electrostatic energy of point charges of the ions via the Ewald summation technique [START_REF] Ewald | Die Berechnung optischer und elektrostatischer Gitterpotentiale[END_REF].

Based on some subgroup of defect ordering and the electrostatic Ewald energies, we limited our full DFT calculations on a relatively hundreds of structures compared to the many hundred thousands of possible structures. After an extensive modeling and simulations of different YSZ samples, we found the following important results regarding to YSZ system.

• At low yttria concentration (3.23 mol.%), a monoclinic phase (m-YSZ) with a 1NN-1NN deffect configuration is the low energy structure.

• The low energy tetragonal structure (t-YSZ) at this defect ration is a 2NN-2NN configuration which is energetically in competition with the most stable 1NN-1NN m-YSZ phase, hence is a "meta-stable" phase.

• At 6.67 mol.% defect ratio, the relative stability of the phases is in favour of the t-YSZ with a defect arrangement of 2NN-2NN.

• At 10.34 mol.% and 14.28 mol.%, a cubic structure (c-YSZ) becomes more stable. Additionally, 1NN-1NN configurations become energetically competitive at 10.34 mol.% and at 14.28 mol.% there are 2 Y-ions at 1NN from two different O-vacancies.

• All these results are in parallel agreement with previous experimental low temperature phase diagram of YSZ and also with some theoretical studies with an exception to the m-YSZ which was not previously subjected to an extensive study.

With respect to the second part of the thesis, upon the addition of water to the YSZ system at 3.23 mol.% yttria content, the relative energetics difference of the t-YSZ and m-YSZ became large, which was small enough to keep the t-YSZ as a"meta-stable" phase in the absence of water. Quite importantly this large energetics difference was the consequence of the filling of the O-vacancies, which were part of the main stabilizing agents in YSZ system, that led to the over-stabilization of the m-YSZ with the addition of water. The low energy structures of YSZ systems in the presence of water evidenced that O-vacancies are filled with hydroxyl (OH -) groups. Another important result was that the expansion of the lattice parameters of the t-YSZ upon the infusion of water radicals into the matrix, which is contrast to a neutron diffraction experimental work by Schubert and Frey [START_REF] Schubert | Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations[END_REF], yet is in parallel agreement with X. Guo et al work [START_REF] Guo | Water Incorporation in Tetragonal Zirconia[END_REF]. Moreover, climbing image nudged elastic band (CI-NEB) calculations were performed to study the energy cost and the mechanism of the t-m phase transformation. The results of these calculations revealed that there is relatively less energy cost (∼0.5 eV) for a t-YSZ to transform to an m-YSZ once it is exposed to an aqueous environment compared to ∼1.068 eV in the absence of water. From the CI-NEB calculations, we also noticed that along the t-m transformation path, there are two O-ions planes (parallel to [1 0 0] plane) identified in which the transformation of 4-folded O-ion to 3-foled O-ions are active, with one plane interestingly being a plane containing the protonic defects.

Elastic properties of pure ZrO 2 and YSZ were calculated via the Voigt-Reuss-Hill approximations using the elastic stiffness constants C ij and elastic-compliance constants S ij . The Bulk modulus (B), Shear modulus (G), the Young's modulus (E) and the Possion's ratio ν of pure ZrO 2 and YSZ at different Y 2 O 3 concentrations were computed, and the addition of dopant Y 2 O 3 did not significantly change their values hence the good mechanical properties are still kept even with the presence of defects.

Conclusion

Our study on YSZ is rather extensive compared to previous theoretical studies, in such a way that much effort is done to explore the configurational space as much as possible to identify the low energy structures. These low energy (equilibrium) structures gave us better explanations of the relative stability of different phases of zirconia depending on the dopant Y 2 O 3 concentration. Hence as a conclusion, despite almost the same amount bare energy cost due to the introduction of the defects in the t-and m-phase prior to relaxations, the "meta-stability" of the tetragonal YSZ at low yttria content, with a 2NN-2NN Y-Vo -Y defect arrangement, is mainly due to the ability of this system to make large atomic relaxations which mainly affects the Zr-O bonds in the system. Additionally theses relaxations are also supported by the ionocovalent screening model which mainly involves the longest Zr-O bonds in t-YSZ. Consequently, these large atomic relaxations created additional 7-folded Zr-ions which were not next neighbours (NN) to O-vacancies, which is considered as a way of stabilizing YSZ systems. With increasing yttria content, the atomic relaxations are still crucial, but the stability of the t-YSZ and c-YSZ (at interemediate and high yttria content) mainly is due to the creation of supplementary 7 folded Zr-ions in the system which structurally make these systems more covalent and similar to the monoclinic zirconia phase. This is especially in parallel agreement with experimental findings of high Raman frequencies in these systems found by Li et al [START_REF] Li | Effect of Dopants on Zirconia Stabilization-An Xray Absorption Study: III, Charge-Compensating Dopants[END_REF] at high yttria content. The ionocovalent screening model adapted to YSZ systems was efficient in describing the stability mechanism subjected to perturbations due to the associated defects in the ziconia matrix.

With the addition of water to YSZ, the lattice parameters increase together with the energetics difference between a t-and m-phases. Thus we conclude that a t-m phase transformation which leads to "aging" or LTD of YSZ bioceramics materials is mainly an energetic driven transformation. We also noticed that the presence of the protonic defects greatly facilitate the t-m transformation via their hopping movement with the neighbouring O-ions and cut Zr-O bonds in the process and thereby create more 7-folded Zr-ions (inversely mean more 3-folded O-ions). Thus the t-YSZ becomes prone to the phase transformation in the presence of water which is the opposite scenario in the absence of water with higher barrier energy which points out that external help (for example internal stress) is needed for the transformation to happen. Thus we conclude that if there is a way to extract the protonic defects, the time needed to the t-m transformation can be reduced which results in very slow LTD or "aging" process.

Perspectives

Although the work on YSZ based on atomic scale simulations were subjected to many theoretical and experimental studies, we believe our work can give better understandings and information for people who are interested in zirconia, especially those who do theoretical work. In addition the part of the thesis regarding LTD in YSZ is the first of its kind as far as we know, for it is based on atomic scale simulations. In this work we have never done Ovacancy diffusion studies, but the extensive calculations that we presented (in Chapter-3) for different Y 2 O 3 concentrations can help people who are interested in ion conductivity studies, for example researchers in solid oxide flue cells. They can also give some insight to understand thermal conductivity in YSZ coatings. Furthermore, the thesis can be used as a guide for studying similar solid-solid solutions, for instance yttria-doped hafnia because hafnium oxide (hafnia: HfO 2 ) has very similar structural properties as ZrO 2 . Moreover, the work presented here can be prolonged with the following aspects. As all the calculations in here were solely based on bulk system, further calculations including surface effects can enhance the knowledge of zirconia based bioceramics materials. For example, as it is known the LTD process starts from the surface before water radicals are incorporated to the bulk material. Thus, surface studies including water dissociation on surfaces can lead to a better understanding of aging in zirconia and related materials. Moreover, some experimental studies reported the thermodynamic stability of pure t-ZrO 2 at room temperature at nanocrystalline size (< 30 nm). One of the reasons mentioned by Shukia et al [START_REF] Shukla | Thermodynamic Tetragonal Phase Stability in SolGel Derived Nanodomains of Pure Zirconia[END_REF] for this stability is surface contributions together with interfacial and strain energies. Hence further studies including surface effects, which was not part of this thesis, is something we put as possible extension in these systems, because there is still not enough work reported in the literature at least theoretically on YSZ surfaces. Furthermore this work can be expanded with the addition of other types of defects, for example grain boundaries. Again in the context of the aging process, with the addition of grain boundary calculations, we believe it is possible to study for example the diffusion process of hydroxyl groups which fill O-vacancies in YSZ-water complex systems. The ionocovalent screening model can also be adapted to YSZ-water systems which we did not cover in this thesis.

The last point is regarding the choice of the exchange and correlations (EXc.) functionals in our DFT calculations. We mainly presented results with DFT-LDA EXc. fucntionals and the reason is that calculations with GGA-PBE gave results which are not in good agreement with experimental known results (for instance total energy differences amongst the pure ZrO 2 phases and the YSZ low energy phase diagram). On the contrary our LDA calculations even with their underestimated values for some structural properties still gave results which are rather qualitatively and quantitatively comparable results with experimental findings and most of the time are in a parallel agreement with theoretical pre-existing findings. Nevertheless, with the need of computational accuracy but also with a higher computational cost we could try other EXc. fucntionals. Lately, we found GGA PBEsol to at least give better energy differences between pure phase of zirconia (E t-m and E c-t ) than both LDA and GGA-PBE yet still close to our LDA results, but we were in the course of time that we could never make extensive calculations and present them in this thesis. Thus we believe that a better accuracy in the results can be achieved with PBEsol but we strongly believe that our LDA calculations already give advanced understandings of bulk YSZ bioceramics materials. 
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Figure 1 :

 1 Figure 1: Unit cells of pure zirconia phases. Zr and O ions are in green and red respectively.

Figure 1 :

 1 Figure 1: Partitioning of space in to atomic basins for a C 2 H 4 molecule where the gradient path traced out by the vectors ∇ρ are arbitrarily terminated at the nuclei of the atoms: taken from [60].

Figure 2 :

 2 Figure 2: NEB and CI-NEB comparison: ('http://theory.cm.utexas.edu/vtsttools/neb.html')

( a )

 a Total energy per atom (eV) in cubic ZrO 2 Vs energy cutoff (eV) (4 × 4 × 4 k-points). (b) Total energy differences per atom (mev) Vs cutoff energy (eV); ZrO 2 polymorphs are c: cubic, t: tetragonal, m: monoclinic (4 × 4 × 4 k-points).

Figure 3 :

 3 Figure 3: Convergence respect to energy cutoff

Figure 4 :

 4 Figure 4: Convergence respect to k-points

Figure 1 :

 1 Figure 1: Equilibrium structures of c-ZrO 2 , t-ZrO 2 and m-ZrO 2 phases. In big grey are Zr-ions and small red and purple are O-ions. The purple and red represent 3-fold and 4-fold O-ions in the m-ZrO 2 respectively.

  (a) Total energy as function of volume curves fitted to EOS E(V ) = a + bV -1 3 + cV -2 3 + dV -1 [92]. (b) O-ion displacement along the c-axis in the t-ZrO 2 and c-ZrO 2 phases.

Figure 2 :

 2 Figure 2: Structural properties of pure ZrO 2 phases. (a) Energy-Volume curve for the three phases of ZrO 2 , (b) Total energies from a cubic cell (red) and from a tetragonal cell (blue) as function of the dz parameter. dz expresses the displacement of the z-coordinate (relative units) of the O-ions.

Figure 3 :

 3 Figure 3: Energies of the 134 possible YSZ configurations obtained 3.23 mol.% defect ratio from a t-ZrO 2 96 atoms supercell. Black, red and blue curves correspond to 0Y-Vo , 1Y-Vo and 2Y-Vo configurations (see text).Inset: ranges of the classical electrostatic energies (in eV) for these groups of configurations. Full lines, main graph : DFT-LDA energies (350 eV, 2×2×2 k-points, full cell and ionic relaxations).x axis is a configuration index determined from the increasing values of the classical electrostatic energy. The origin of the energies is fixed to the energy of the first configuration (x=1) in the 0Y-Vo group. Dashed lines, the main graph: evolution of the classical electrostatic energy in each group. Each dashed curve has an origin relative to the first configuration of its group. The classical energy differences have been rescaled by a factor 8 to be represented on the same scale as their ab-initio counterparts.

Figure 4 :

 4 Figure 4: Energetic and structural analysis of zirconia doped with different % mole of Y 2 O 3 content. Depending on the concentration of Y 2 O 3 , the m-, t-and c-phases of zirconia get stabilized at low, intermediate and high concentrations of yttria respectively at 0K.

Figure 5 :

 5 Figure 5: Total energies (eV/unit) for different Y 2 O 3 concentrations and its relation with Y-Vo links present in the structure. The symbols in red are for monoclinic phases. The black symbols are for t-YSZ and c-YSZ. The minimum energy configurations up to 10.34 mol.%. for t-YSZ and c-YSZ are with no Y-Vo link. At 14.28 mol.% and 18.52 mol.%, there are 2 and 1-Y-Vo links respectively, showing defect structures comparable to m-YSZ at low defect concentration.

[ 88 ]

 88 findings. y = Mole % Y O 1.5 , x = Mole % Y 2 O 3 and y = [ 2x 100+x ] , x = 100y 2-y .The lattice parameters of the unit cell of the tetragonal and cubic YSZ phases with respect to the pure ZrO 2 parameters (a 0 and c 0 ) are shown in figure6. The comparison is made with other experimental and calculation works with respect to the ratios a/a 0 and c/c 0 as a function of Y 2 O 3 % mol. concentration. The a/a 0 ratio of the DFT-LDA ("This work") for c-YSZ (in black line) and for t-YSZ (in black dashed line) are in a very good agreement with the experimental (Ref. 1 =[START_REF] Ingel | Lattice Parameters and Density for Y 2 O 3 -Stabilized ZrO 2[END_REF]) in red line and red dashed line respectively. These results are also in parallel agreement with another DFT-LDA work of[START_REF] Ding | Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia[END_REF] (Ref. 2). On the right panel of the same figure (Fig.6), we see how the c/a ratio decreases when Y 2 O 3 content increases. This shows the stability of a tetragonal and then cubic structure with more and more yttria. For more clarification, in table 3.6.2 these lattice parameters as a function of Y 2 O 3 content are given using a linear fit. It can be seen from the table, the lattice parameter a of both t-and c-YSZ phases increases with increasing in concentration of Y 2 O 3 . With the presence of the Vo , and the relaxations of the O-ions near the Vo towards it, one would expect in the contraction of the cell or reduce in the volume of the cell. But on the contrary, the lattice parameter of YSZ is larger with respect to pure zirconia, which indicates the addition of Y-ions in the zirconia matrix rather increases the average volume of YSZ. This is due to the larger size of Y-ions than the Zr-ions and the accumulated relaxations of all the ions in the system.Moreover these crystal definitions are checked against experimental definitions which are based on X-ray diffraction (XRD) patterns for the structures assigned with XRD are based on the lattice parameters of any system. As an example here we will present the DFT results against the experimental XRD patterns. The experimental X-ray diffraction (XRD) pattern of 3Y-TZP and m-YSZ (t-ZrO 2 and m-ZrO 2 doped with ∼3 mol.% Y 2 O 3 respectively) with the results from our DFT-LDA calculations are plotted in figures 7a and 7b.

Figure 6 : 3 Figure 7 :

 637 Figure 6: Equilibrium lattice parameters of YSZ. On the left are the the evolution of the lattice parameters a and c of a tetragonal and cubic YSZ as a function of Y 2 O 3 concentration. The results are put as a/a 0 and c/c 0 , where a 0 and c 0 are the lattice parameters of the pure ZrO 2 phases. The lattice parameter a increases with increasing Y 2 O 3 concentration and the lattice parameter c decreases for low concentration of Y 2 O 3 . And the same results are also found from previous experimental (Ref. 1 = [120]) and calculation (Ref. 2 = [88]). On the right the c/a of YSZ is plotted against the Y 2 O 3 concentration, and as shown it decreases to a value almost 1.00 which shows the stability of a tetragonal at low and a cubic phase at higher dopant concentration respectively.
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 73 General properties of the Y 2 O 3 subsititution defect in 3.23 mol.% m-YSZ and t-YSZ.

Figure 8 :

 8 Figure 8: Relaxation energies of m-YSZ and t-YSZ at 3.23 %mol. Y 2 O 3 content. Upper and lower panels show the total energy before and after relaxations for different Y-Vo -Y defect structures. O3-m and O4-m denote a 3-fold and 4-fold O-ions respectively in the m-ZrO 2 which become an Vo .

Figure 9 :

 9 Figure 9: Atomic relaxations in the vicinity of the defects in t-YSZ at 3.23% mol. Y 2 O 3 content. The grey and blue balls represent Zr-ions with 8 and 7 fold coordination respectively. In green are Y-ions. The O-ions are in magenta (3 fold coordinated) and red (4 fold coordinated) and the yellow ball represent the location of the vacant O-site ( Vo ). 'd' and 'D' represent short and long bonds in the pure t-ZrO 2 structure. A number is assigned to selected Zr-O bonds; their length variations after relaxation are given in Angströms; elongated Zr-O bonds are highlighted in magenta and contracted Zr-O bonds in green.
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 752 Figure 10 depicts the ionocovalent screening model adapted to zirconia systems. It mimics a series of successive Zr-O bonds in the system, potentially connected to a yttrium ions 10(b), to a vacancy 10(c) or in between these two 10(d).

Figure 10 :

 10 Figure 10: Model electron transfer in pure zirconia (a): ∆ 0 is the electron transfer that depends on ∆E 0 , the energy difference between Zr and oxygen effective levels. The red arrows show that ∆ 0 electrons is back-donated from O to Zr. (b): "Y -" local charged defect on a cation site creates a variation of the effective levels and induce a variation of the electron transfers. The net electronic flux is indicated in red. (c): Same as (b) but for a charged vacancy located on an oxygen site. (d): combined effects of the cation substitution plus the vacancy on the electron transfer and electronic flux.

Figure 11 :

 11 Figure 11: Electron transfer per bond ∆ as a function of the Ti-O bond length d in neutral (filled circles), anionic (down triangles) and cationic (up triangles) stoichiometric clusters, in nonstoichiometric clusters (stars), in bulk rutile T iO 2 (plus) and at the (110) surface (diamonds).taken from[START_REF] Albaret | First principles simulations of titanium oxide clusters and surfaces[END_REF].

  are used. The unrelaxed calculations correspond to yttrium and vacancy substiutions of Zr and O without any relaxation of the cell and atomic positions. The relaxed structures are those obtained after a full DFT-LDA relaxation of both the cell and atomic positions. The energy costs are calculated with respect to the corresponding pure phase classical Ewald energy.

Figure 12 :

 12 Figure 12: Low energy structures of YSZ from 3.23-14.28 mol.% Y 2 O 3 concentrations. In each structure, Zr-ions are in gray (with 8 fold coordination) and blue (with 7 fold coordination). In green are Y-ions. The O-ions are in red (with 4 fold coordination) and purple (with 3 fold coordination). And the O-vacant sites are designated by yellow balls.

(a) 3 .

 3 23 mol.% Y 2 O 3 m-YSZ (b) 3.23 mol.% Y 2 O 3 t-YSZ (c) 6.67 mol.% Y 2 O 3 m-YSZ (d) 6.67 mol.% Y 2 O 3 t-YSZ (e) 10.34 mol.% Y 2 O 3 c-YSZ (f) 14.28 mol.% Y 2 O 3 c-YSZ

Figure 13 :

 13 Figure 13: Local charge variations with respect to pure phases in 3.23 mol.% Y 2 O 3 content of t-YSZ (a) and m-YSZ (b) with similar defect topology. 2 Y-ions (in green) are at 2NN-2NN sites from the O-vacancy (in yellow) ( Vo ). The blue, purple and red balls represent Zr-ions with 7 fold (in t-YSZ) or 6 fold (in m-YSZ), O-ions with 3 fold and 4 fold coordinated respectively. δQ Zr and δQ O are the sum of the charge variations found on the Zr and O ions represented on the figure.Q V is the bare vacancy charge taken as minus the oxygen charge in the pure phase.(Q Y -Q Zr is the sum of the yttrium charges in the relaxed structures minus the charges of the zirconium ions in the pure phases.

  (a) DOS: c-ZrO 2 . (b) DOS: t-ZrO 2 . (c) DOS: m-ZrO 2 .(d) Bader: Pure ZrO 2 phases.

Figure 14 :

 14 Figure 14: DOS and pDOS plots for pure and doped Zirconia. The fermi-level at zero energy is designated by the broken lines in each figures. The bader charges of all the Zr-ions together with an average value is also depicted in 14d.

  (a) DOS: m-YSZ with 3.23% Y 2 O 3 . (b) Bader: m-YSZ with 3.23% Y 2 O 3 . (c) DOS: t-YSZ with 3.23% Y 2 O 3 . (d) Bader: t-YSZ with 3.23% Y 2 O 3 . (e) DOS: t-YSZ with 6.67% Y 2 O 3 . (f) Bader: t-YSZ with 6.67% Y 2 O 3 .

Figure 15 :

 15 Figure 15: DOS, pDOS and Bader plots for YSZ with 3.23 and 6.67 mol.% Y 2 O 3 concentrations. For the DOS plots the fermi-level at zero energy is designated by broken lines in each figures. The bader charges of all the Zr-ions together with an average value is also depicted in the Bader plots.93

93

 93 Figure 15: DOS, pDOS and Bader plots for YSZ with 3.23 and 6.67 mol.% Y 2 O 3 concentrations. For the DOS plots the fermi-level at zero energy is designated by broken lines in each figures. The bader charges of all the Zr-ions together with an average value is also depicted in the Bader plots.93

  (a) DOS: c-YSZ with 10.34% Y 2 O 3 . (b) Bader: c-YSZ with 10.34% Y 2 O 3 . (c) DOS: c-YSZ with 14.28% Y 2 O 3 . (d) Bader: c-YSZ with 14.28% Y 2 O 3 .

Figure 16 :

 16 Figure 16: DOS, pDOS and Bader plots for YSZ with 10.34 and 14.28 mol.% Y 2 O 3 concentrations. For the DOS plots the fermi-level at zero energy is designated by broken lines in each figures. The bader charges of all the Zr-ions together with an average value is also depicted in the Bader plots.

  (a) Model A: Initial (b) Model A: Final (c) Model B: Initial (d) Model B: Final (e) Model C: Initial (f) Model C: Final (g) Model D: Initial (h) Model D: Final 4.4 Results

Figure 2 :

 2 Figure 2: Minimum energy configuration of t-YSZ-water complex. In Green, cayn and small white are the cations Zr 4+ , Y 3+ and H + respectively. In Red and blue are O 2-ions, the blue is the O-ion filling the previously vacant O-site.

( a )

 a The t-m transformation without water. The initial and final states are the t-YSZ and m-YSZ phases. (b) The t-m transformation in the presenceof water. The initial and final states are the t-YSZ+H 2 O and m-YSZ+H 2 O phases.

Figure 3 :Figure 4 :

 34 Figure 3: t-m transformation in YSZ from CI-NEB calculations before and after it is exposed to water. 116

Figure 5 :

 5 Figure 5: A t-m transformation in the YSZ-water complex. The structure on the left (A) is the initial model system and on the right (B) is final structure after the simulation. The DFT calculation is done within GGA EXc. In Green, cyan and small white are the cations Zr 4+ , Y 3+ and H + respectively and O 2-ions are in small red.

  'UNIVERSITE DE LYON OPEREE AU SEIN DE L'INSA LYON NOM : GEBRESILASSIE DATE de SOUTENANCE : 29/04/2016 Prénoms : Abel Gebreegziabher TITRE : Atomic Scale Simulations in Zirconia : Eect of yttria doping and environment on stability of phases NATURE : Doctorat Numéro d'ordre : Ecole doctorale : Matériaux de Lyon Spécialité : Microstructure et comportement mécanique et macroscopique des matériaux Génie des Matériaux RESUME : Ce travail de thèse est une étude par des méthodes de simulation de structure électronique du phénomène de dégradation en milieu aqueux de la zircone yttriée. La zircone yttriée est notamment utilisée pour la fabrication de prothèses dont la duree de vie dépend du matériau et de son environnement. Pour ces applications, la zircone yttriée est de structure tetragonale, mais en fonction du dopage en yttrium et de l'environnement, cette phase est en compétitioavec des structures monoclinique et cubique. Cette compétition est cruciale dans ce travail car elle peut à la fois, augmenter la résistance, ou favoriser la détérioration de ce matériau. L'étude réalisée se concentre sur des taux de dopage iinférieurs à 20% mol. en oxyde d'yttrium Y 2 O 3 .Dans un premier temps, les structures atomiques d'équilibre à basse température ont été déterminées dans les trois phases en utilisant une méthode de calcul basée sur la Théorie de la Fonctionnelle de la Densité, dans l'approximation de la densité locale. Les résultats incluent de nouvelles structures qui n'ont jusqu'alors pas été discutees dans la littérature et qui sont cohérentes avec le diagramme de phase de la zircone yttriée à basée température. Une analyse plus détaillée suggère que le mécanisme de stabilisation de la zircone yttriée tetragonale est un effet d'décrantage ionocovalent particulièremen efficace dans cette phase et dont la signature dans la structure s'exprime par la présence d'ions zirconium de coordnence 7. Ceci représente un point important permettant de lier stabilité et structure dans ces systèmes. Une deuxième partie de ce travail est consacree à l'effet de l'eau dans la zircone yttriée en volume. Pour conclure, ce manuscript représente une contribution originale à la compréhension de mécanismes àl'échelle atomique qui sont à l'origine des propriétés de la zircone yttriée et de ses applications.MOTSCLÉS: YSZ, DFT, LTD Laboratoire (s) de recherche : MATEIS Directeur de thèse: Laurent GREMILARD Président de jury : Composition du jury : S. Fabris (Rapporteur), R. Tetot (Rapporteur), D. Clarke (Exminateur), M. Finnis (Exminateur), L. Gremilard, T. Albaret, J. Chevalier
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9.1: Some PAW parameters used for the Zirconia bioceramics simulations (LDA PAW data sets).

Table 2 .

 2 9.2: Bond length and bond angles in ZrO 2 and H 2 O molecules from my calculations compared to quantum chemistry results (CCSD(T) for ZrO 2 [77] and H 2 O [80]) and experiments. Our calculation use the LDA approximation and an energy cutoff of 500 eV for the wave-functions.

		Present Work Quantum Chemistry Calc.	Exp.
	ZrO 2 : d(Zr-O) ( Å)	1.773	1.797 [77]	1.771 [78]
	ZrO 2 : θ(O-Zr-O) (deg.)	106.20	109.6 [77]	108.1 [78]
	H 2 O : d(O-H) ( Å)	0.9940	0.9571 [80]	0.9579 [79]
	H 2 O : θ(H-O-H) (deg.)	105.68	104.22	104.5 [80] [79]

1.42 Å our PAW data set still produce good quality results. The reason being that for O and H elements the pseudo-wavefunctions weakly depart from the all-electron ones even at radii of about 0.6 and 0.4 Å for O and H respectively. Tab. 2.9.2 shows some simple structural parameters of H 2 O and ZrO 2 molecules obtained with our PAW data set. In both cases the intertomic distances are shorter than the sum of the augmentation radii, , and in both cases the results are still in fair agreement respect to advanced quantum chemistry techniques and experiments. The largest error being +3.8% on the small O-H bondlength in H 2 O.

Table 3 .

 3 3.1: Structural parameters of ZrO 2 phase. Calculated results versus experimental and previous calculated results. a : high temperature neutron diffraction

Table 3 .

 3 4.1: Total number of ions (Zr, Y, O and O-Vacancy) for different mol. % Y 2 O 3 concentration and total number of possible configurations.

	%Y 2 O 3 No Zr No Y No O No Vacancy No of Total configurations
	0.00	32	0	64	0	1
	3.23	30	2	63	1	31,744
	6.67	28	4	62	2	72,495,360
	10.34	26	6	61	3	∼ 3.7×10 10
	14.28	24	8	60	4	∼ 6.6×10 12

3.4.1 Search for the low energy configuration at 3.23 mol % Y 2 O 3 concentration from t-Zr0 2

Table 3 .

 3 4.2 summarizes the number of tested configurations in each case :

	System	tree Y-V groups	Tested configurations
	0.00	-	-	3
	YSZ 3.23 mol.%	t	0,1,2	160(includes cubic parent)
	YSZ 6.67 mol.%	t	0,1,2	137
	YSZ 10.34 mol.%	t	0,1,2,3	167
	YSZ 14.28 mol.%	t	0,1,2,3,4	272
	m-YSZ 3.23 mol.% m	0,1,2	92
	m-YSZ 6.67 mol.% m	0,1,2,3,4	194

Table 3 .

 3 

4.2: Total number of tested configuration to determine the low energy (equilibrium) YSZ structures at each mol.% yttria content.

  • ± 0.5 • . The calculated structural data for the lowest energy ZrO 2 and YSZ configurations obtained at 500 eV energy cut-off are collected in table 3.6.1. These data are for the lattice parameters of YSZ supercell (×2 unit cell) compared to the pure phases of zironia.

	mol.%Y 2 O 3	a( Å)	b( Å)	c( Å)	γ( • ) α( • ) β( • ) Structure
		10.1788 10.3742 10.4855	90	90	99.43 m-ZrO 2
	0.00	10.0728 10.0728 10.2132	90	90	90	t-ZrO 2
		10.0626 10.0626 10.0626	90	90	90	c-ZrO 2
		10.2223 10.3765 10.3937 89.95 90.02 99.28	m-YSZ
	3.23	10.1067 10.1115 10.1926 90.27 89.90 90.10	t-YSZ
		10.2386 10.3711 10.5413 89.90 90.28 98.80	m-YSZ
	6.67	10.1289 10.1599 10.1745 90.31 90.15 89.59	t-YSZ
	10.34	10.1647 10.1704 10.1878 89.82 90.16 90.46	c-YSZ
	14.28	10.1859 10.1942 10.1944 90.50 89.63 90.28	c-YSZ

Table 3 .

 3 6.1: Supercell lattice parameters of ZrO 2 and YSZ at different concentrations of Y 2 O 3 from our LDA-DFT calculations.

	mol.%Y 2 O 3	Structure	a( Å)	[117]	[120]
	3.23	t-YSZ	5.0534	5.1060	5.116
	6.67	t-YSZ	5.0645	5.1353	5.131
	10.34	c-YSZ	5.0824	5.1486	5.143
	14.34	c-YSZ	5.0930	5.1626	5.154
		t-YSZ			Ref.
	a t = 5.0428 + 0.0032x		(3 < x < 7)		Present work
	c t = 5.1048 -0.0026x		(3 < x < 7)		Present work
	a t = 5.0790 + 0.006x		(3 < x < 7)		[120]
	c t = 5.1940 -0.006x		(3 < x < 7)		[120]
		c-YSZ			
	a c = 5.0545 + 0.00269x		(10 < x < 15)		Present work
	a c = 5.1154 + 0.00282x		(8 < x < 35)		[120]
	a c = 5.1227 + 0.00262x		(10 < x < 20)		[117]
	a c = 5.0490 + 0.233 y		(0.0625< y < 0.25)		[88]

Table 3 .

 3 6.2: Unit cell lattice parameters of t-YSZ and c-YSZ with respect to concentrations of Y 2 O 3 from our LDA-DFT calculations compared to experimental

Table 3 .

 3 The peaks from our calculations (in red lines) are shifted some how specially in Fig 7b, nevertheless the peaks of the experimental XRD patterns (in black) are exactly picked out in terms of the exact peak numbers from the calculations. Also for the c-YSZ, XRD patterns of 10.34 and 14.28 mol.% Y 2 O 3 are compared with an experimental c-YSZ (∼8-YSZ). And again the LDA-DFT calculations are in parallel agreement with the experimental results except that the major peaks are shifted which is believed to be the consequence of the EXc. Similar structure comparisons with results from GGA-PBE EXc. show different number of peaks when compared to the experimental ones. Thus these calculations with LDA are in a good agreement with the experimental results and thus is another reason that we kept using LDA as EXc.Until now we described mainly the structural results in terms of cristallography. In this section we will concentrate on the atomistic consequences of the Y 2 O 3 substitution defect in different ZrO 2 host matrices, essentially tetragonal and monoclinic. Such analysis should provide some insight on the energetic results already presented and should give some ideas on the important features that lead to the stabilization of one phase respect to another. The Zr-O bond lengths calculated in the monoclinic, tetragonal and cubic pure ZrO 2 systems are given in table 3.7.1. These data show that the monoclinic structure, although it has a larger volume, displays the shortest average Zr-O bond lengths and is therefore the more covalent structure with 7-fold coordination of the Zr-ions while the tetragonal and cubic structures both show 8-fold Zr coordination. From a pure electrostatic argument, assuming Zr 4+ and O 2-formal charges in the initial systems, the Y 2 O 3 substitution corresponds to a -1 charge perturbation on the yttrium sites and a +2 charge perturbation on the O-vacancy site. The atomic relaxations in the ZrO 2 matrix should therefore incorporate a screening mechanism induced by these formal charge perturbations. Even if this charge effect will be important in determining the more stable structures, the Y 2 O 3 substitution also involves a perturbation of the local covalent character that depends on the host ZrO 2 structure. From both the electrostatic and covalent point of views it turns out that it is energetically favorable to place the vacancy on the three fold oxygen (O3-m) in the monoclinic structure (in agreement with ZrO 2 2.045 o3 2.045 o3 2.133 o4 2.145 o3 2.163 o4 2.215 o4 2.220 o4 t-ZrO 2 7.1: Zr-O distances ( Å) in pure zirconia systems (all DFT-LDA calculations at 500 eV energy cut-off), the exponents indicate which kind of oxygen (either 3-fold or 4-fold) in the monoclinic structure binds to Zirconium.

	3.7 Atomic structure, ionocovalent bonding and relax-
	ations in YSZ
	3.7.1 General overview

•

  Comparison of the ∼ 3 mol.% Y 2 O 3 doped ZrO 2 structures with other theoretical and experimental works 3.7.2 Notations and definitions • We will use the notation Y-Vo -Y defect to denote addition of 1 formula unit of Y 2 O 3 substitutional defect in the host ZrO 2 matrix.

Table 3 .

 3 YSZ. In this last system only 3 Y-O distances over 6 are found above 2.2 Å. The distribution of Y-O bond lengths show less dispersion than their Zr-O counterparts, and this coincides well with a picture of less directional and more ionic Y-O bonds.The second common feature to the YSZ systems is the relaxations around the O-vacancies. The Zr-ions nearest neighbours to Vo show relaxations away from the vacancy while the nearest O-ions neighbours of the Vo relax towards the vacancy. Again the amplitude of these relaxations depend on the number of Y atoms close to vacancy as it is shown in table 3.7.2.

	2.2-2.4	Å

7.2: Average relaxations (in Å) around an Vo in low energy t-YSZ and m-YSZ systems with 3.23 mol.% yttria concentration as a function of the relative positions of Y-ions with respect to the Vo . In between parenthesis are the number of atoms involved in each neighbour shell.+ and -vales shows the relaxations away from and towards to the Vo respectively.

  2-) for few relevant configurations in table 3.7.3. From this table, we see that the stabilization of the pure monoclinic phase cannot be understood from classical electrostatics (all the monoclinic structures have higher classical electrostatic energy than their tetragonal counterparts). The bonds in this phase should therefore be more covalent than in the tetragonal phase, consistently with the previous arguments based only on the first neighbour distances. Still with these formal charges, the electrostatic energy cost of a "static" Y 2 O 3 defect prior any relaxation is Table 3.7.3: Classical Ewald energies(eV) in pure ZrO2 and classical energy costs due to the Y 2 O 3 defect in YSZ phases at 3.23 mol.%. Formal charges Zr 4+ , Y 3+ and O 2-are used. The unrelaxed calculations correspond to yttrium and vacancy substitutions of Zr and O without any relaxation of the cell and atomic positions. The relaxed structures are those obtained after a full DFT-LDA relaxation of both the cell and atomic positions. The energy costs are calculated with respect to the corresponding pure phase classical Ewald energy.

	System	Pure phases 1NN-1NN 1NN-2NN 2NN-2NN 3NN-3NN
	t-ZrO 2	-4265.3	-	-	-	-
	m-ZrO 2	-4250.6	-	-	-	-
	t-YSZ, unrelaxed	-	+109.5	+114.0	+120.5	+125.6
	t-YSZ, relaxed	-	+109.2	+109.2	+109.7	+111.4
	m-YSZ, unrelaxed	-	+106.5	+111.6	+118.3	+121.1
	m-YSZ, relaxed	-	+107.5	+108.4	+109.0	+111.0

Table 3 .

 3 7.4: Average absolute variations of the Zr-O bond in Å upon a Y-Vo -Y defect in the supercell as a function of the defect arrangement. Note that the biggest relaxations are for the the 2NN-2NN t-YSZ configuration.

Table 3 .

 3 3.7.8 Low energy configurations of YSZ systems between 6.67 mol.% and 14.28 mol.% Y 2 O 3 concentrationsIn this section we will describe and discuss the organization of several Y-Vo -Y defects included in the 96 atoms supercells depending on the host structure (monoclinic or tetragonal). 7.5: Classical Ewald energies(eV) in pure ZrO 2 and classical energy costs due to the Y 2 O 3 defect in YSZ phases at 3.23%, 6.67%, 10.34% and 14.28% yttria concentartion YSZ systems. Formal charges Zr 4+ , Y 3+ and O2-

	System	Pure phases 3.23 mol.% 6.67 mol.% 10.34 mol.% 14.28 mol.%
	t-ZrO 2	-4265.3	-	-	-	-
	m-ZrO 2	-4250.6	-	-	-	-
	t-YSZ, unrelaxed	-	+120.5	+119.5	-	-
	t-YSZ, relaxed	-	+109.7	+108.1	-	-
	c-YSZ, unrelaxed	-	-	-	+119.9	+116.9
	c-YSZ, relaxed	-	-	-	+107.7	+107.4

Table 3 .

 3 7.6: Energetics and structural changes of YSZ systems at different mol.% Y 2 O 3 concentrations. The structural data are collected in terms of the number of 2NN Y-Vo in the systems and also with respect to the number of 7-folded supplementary Zr-ions which are not next neighbours to O-vacancies. The energetic data, ∆H, is from the full DFT LDA calculations from which the total energies of defected systems are computed with respect to the most stable (m-ZrO 2 ) at 0K as per equation 5.1.

				t-YSZ/c-YSZ			m-YSZ	
		0.0% 3.23% 6.67% 10.34% 14.28% 0.0% 3.23% 6.67%
	No. 2NN Y-Vo	0	2	8	13	16	0	0	3
	No. additional 7-fold Zr-ions	0	1	2	2	3	0	0	0
	Average Zr-O bond length	2.198 2.191 2.181	2.170	2.162	2.138 2.140 2.137
	∆H (eV/formula unit)	0.048 0.063 0.041	0.012	-0.014	0.0	0.052 0.086

Table 3 .

 3 8.1: Bader Charges in pure ZrO 2 systems
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 3 9.1: Voight notation Due to the diagonal symmetry of the C ij matrix and also the symmetry of the crystal structures three (C 11 ,C 12 ,C 44 ) and six (C 11 ,C 33 ,C 44 ,C 66 ,C 12 , C 13 ) elastic stiffness constants are needed for the cubic and tetragonal geometries respectively. For a monoclinic structure, a total of thirteen elastic stiffness constants are needed : six diagonal (C 11 ,C 22 ,C 33 ,C 44 ,C 55 ,C 66 ) and seven off diagonal components (C 12 , C 13 ,C 15 ,C 23 ,C 25 ,C 35 , C 46

	33 23,32 13,31 12,21

Table 3 .

 3 9.3: Elastic stiffness constants C ij for pure ZrO 2 and YSZ at different Y 2 O 3 concentrations from DFT-LDA calcualtions are collected. From C ij , S ij are calcualted via an internet matrix inversion program [109] to compute the Hill-average values (B H , G H , E H and ν H ) from the Voigt-Reuss approximations. All values are in GPa. C 11 C 22 C 33 C 44 C 55 C 66 C 12 C 13 C 23
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 4 . The total energy of these model systems is given in table 4.4.1. 4.1: Total energy (for a total of 98 atoms) of the Model systems in eV with respect to the stable Model C. Model C: Filling the Vo with an OH -and a H + making another OH -is the most stable configuration.

	Model Energy(eV)
	A	0.048
	B	0.124
	C	0.000
	D	4.718

Table 4 .

 4 4.4.2, we collected the enthalpy formation energies of all the systems with respect to the most stable pure m-Zr 2 O phase at 0K with the equation 4.1. ∆H = E Y SZ+H 2 O -[nE ZrO 2 + mE Y 2 O 3 + pE H 2 O ] 4.2: Enthalpy formation energies (per total formula units) of the t-and m-phases in their pure, yttriated and hydrated systems. The number n, m and p are for the number of formula unit (moles) of ZrO 2 , Y 2 O 3 and H 2 O in the supercell. total formula nuts = n+m + p, 32 in the case of only ZrO 2 , 31 in YSZ and 32 in YSZ+H 2 O.

		n + m + p	(4.1)
		Enthalpy Formation Energy (eV/mol.)	
	t-phases	LDA	GGA
	t-ZrO2	0.048362	0.111015
	t-YSZ	0.062957	0.124263
	t-YSZ +H 2 O	0.054085	0.132261
	m-phases	LDA	GGA
	m-ZrO2	0.000000	0.000000
	m-YSZ	0.059172	0.046806
	m-YSZ +H 2 O	-0.002131	0.021798
		∆H t-m = H t -H m	
	ZrO2	0.048362	0.111015
	YSZ	0.003785	0.077457
	YSZ +H 2 O	0.056216	0.110463

Table 4 .

 4 4.3 gives a summary of lattice parameters of t-and m-phases for pure ZrO 2 phases and YSZ-phases with and without water which are already discussed in the previous section.

Table 4 .

 4 4.3: Lattice parameters of pure ZrO 2 , YSZ and after the addition of water for t and m-phases from LDA and GGA EXc. calculations. The YSZ phases are at 3.23% of Y 2 O 3 content which is this the ideal concentration for orthopedic and dental implant applications. And below are the lattice parameters collected from Schubert and Frey[START_REF] Schubert | Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations[END_REF] after a reference material (Y-TZP with 3 mol % Y 2 O 3 ) is treated with H 2 O and D 2 O-atmosphere.

	)

  [START_REF] Lughi | Low temperature degradation -aging-of zirconia: A critical review of the relevant aspects in dentistry[END_REF]-folded Zr-ions) already existing in the t-phase. Moreover, using this model we could observe that one of the H + cations is always attached to the very same O-anion (in blue) filling the O-vacant site throughout the NEB calculation which is a strong indication that O-vacancies are filled with a hydroxyl group (OH -). Lastly in both cases, it worth noting that the t-m transformation starts in the region where the defects are present, O-vacancy in t-m of YSZ and H + cations (inverselyOH -groups) in t-m of YSZ+H 2 O.The question of using one EXc. over another is a matter of precision one gets in the results when comparing with experimental or other calculation results over the computational time of the calculations. It is known that some structural properties like lattice parameters, bond length with DFT is underestimated or overestimated if one uses LDA or GGA respectively. For example, in pure t-ZrO 2 there are two Zr-O bond lengths. Within LDA the smallest is 2.077 Å and the largest is 2.318 Å; and with GGA-PBE these same bond lengths are 2.082 Å and 2.424 Å respectively. And in m-ZrO 2 where there are 7 nonequivalent Zr-O bond lengths, the average Zr-O bond lengths in LDA is 2.138 Å and 2.175 Å in GGA-PBE. Yet both EXc. identify the smaller Zr-O bonds are in m-ZrO 2 hence relatively more covalent system and thereby more stable. Again qualitatively, if we refer back to table 4.4.2, the GGA enthalpy formation energies follow similar trend with respect to the LDA results. The m-YSZ is still stable at this rather low Y 2 O 3 concentration (3.23 % mol.

4.4.7 CI-NEB calculations with GGA-PBE EXc.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI038/these.pdf © [A.G. Gebresilassie],[2016], INSA Lyon, tous droits réservés
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In this chapter we will try to answer some of the questions related to LTD based on our atomic scale simulations, mainly ab-initio DFT calculations. We will present the results of the t and m-phases starting from their pure phases, and compare energetic and structural changes due to the addition of defects, first Y 2 O 3 and then water to the YSZ systems. As we know the doping step is done with creating a charge compensating O-vacancies in the system depending to the concentration of dopant Y 2 O 3 used. Towards the end of the chapter we will discuss the t-m phase transformation mechanism from Nudged Elastic Band (NEB) calculations for transition state calculations. To our best knowledge there exists none similar work from atomic scale simulations to study LTD in zirconia.

Computational method

All the calculations are done using the ab-initio DFT plane waves code VASP [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF]- [START_REF] Kresse | VASP the GUIDE[END_REF]. All the calculations are done on a supercell which is built by elongating the unit cell by 2x2x2 in the three directions of the lattice vectors ( a, b, c) to make a supercell. The unit cell has 4-ZrO 2 formula units which means 12 and 96 atoms in the unit and the supercell respectively. The calculations are done using the LDA and GGA-PBE [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF] exchange and correlation (EXc.) functionals . And a force of 1meV / Å and 10 -6 eV energy values are used as stopping criteria for ionic motion and electronic minimization steps respectively. 500eV cut-off energy for the expansion of the plane waves was used with a Monkhorst-Pack K-point mesh of 2 × 2 × 2. The climbing image nudged elastic band method (CI-NEB) [START_REF] Henkelman | A climbing image nudged elastic band method for finding saddle points and minimum energy paths[END_REF] with 7 intermediate images is used to study the t-m phase transformation.

YSZ-Water complex Models

The modeling aspect of the calculations are done first by optimizing the pure phases of t-ZrO 2 and m-ZrO 2 . Extensive DFT-LDA calculations are done to determine the equilibrium structures of m-YSZ , t-YSZ and c-YSZ for different Y 2 O 3 concentrations. All the results were already presented in Chapter-3. However from experimental facts, the important structural zirconia ceramic for orthopedic and dental applications and which at the same time is prone to LTD is the "3Y-TZP", which is a "meta-stable" tetragonal phase (t-ZrO 2 doped with ∼ 3 mol.% of Y 2 O 3 ). Thus this chapter mainly focuses on YSZ phases at 3.23% mol. Y 2 O 3 content, which namely are the m-YSZ and t-YSZ. The main results of this chapter, which will Chapter 5

Summary, conclusions and perspectives

Summary

With the advancement of technology and great innovations on a daily basis, we are in a human being era in which we can never spend a single day without using computers. Thus to this extent computer simulations have become powerful tools to a better understanding of natural , human and social systems. Specially in science and technology, nowadays prior to investing a huge amount of money and time, computer based experiments via modeling and simulations are conducted and better data analysis are done on systems under study. Thus over the last three years, I have been participating on an European Marie Curie Initial Training Network (ITN) project called BioBone, bioceramics for bone repairs. Particularity I was under the work package 2 of the project ("Biodegradation") to study the effect of environment on yttria stabilized zirconia (YSZ) via first-principles calculations. It is known that in the presence of aqueous environment zirconia based bioceramics materials are subjected to low temperature degradation (LTD) or "aging" of the materials. LTD is the tetragonal-to-monoclinic (t-m) phase transformation in zironia based bioceramics materials at low temperature due to the presence of water or humid environment. This t-m phase transformation especially in YSZ happens on the material of interest for many biomedical applications (for example dental implants and hip prosthesis), a ∼ 3 mol.% yttria (Y 2 O 3 ) doped tetragonal zirconia (ZrO 2 ), which usually is called 3Y-TZP in the community. LTD comes together with surface uplifts, cracks, volume increase of lattices which eventually result in roughening, mechanical