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 dans le cas où la courbure positive dépend de l'angle d'incidence et s'annule dans certaines directions.

Chapter 1 Introduction

Dispersive phenomena, which informally refer to the spread out of the wave packet as the time goes by, often play a crucial role in the study of evolution partial differential equations. Mathematically, exhibiting dispersion often amounts to proving a decay estimate for L ∞ norm of the solution at time t in terms of some (negative) power of t and of L 1 norm of the data. The dispersive inequality provides two types of information. The first concerns the precise decay rate of L ∞ norm of solution as t → ∞ while the second provides information about the regularity of L ∞ norm of solution for t > 0. In many cases, proving these estimates relies on the (possibly degenerate) stationary phase theorem and on explicit representation of the solution.

The dispersive estimates for the wave equation in R d or on a smooth Riemannian manifolds without boundary are well known. In these cases, we can get the pointwise decay estimates for the kernel of parametrix, which may be constructed in a suitable way by Fourier integral operators whose phase function is nondegenerate. In domains with boundary, the difficulties arise from the behaviour of the wave flow near the points of the boundary. In the case of a concave boundary, dispersive estimates follow by using the Melrose and Taylor parametrix for Dirichlet wave equation and the approach by Smith, Sogge in [START_REF] Smith | On the critical semilinear wave equation outside convex obstacles[END_REF].

Recently, in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF], Ivanovici, Lebeau, and Planchon have established the optimal local in time dispersive estimates with losses inside the strictly convex domain, and this is due to caustics generated in arbitrarily small time near the boundary. A main approach of the proof consists in a detailed description of wave front set of the solution near the boundary. The dispersion is optimal because of the presence of swallowtail type singularities in the wave front set of the solution.

The analysis of wave front set consists two main ingredients: location of singularities and direction they propagate, namely along bicharacteristics. It appears in problems of the propagation of singularities in the phase space. On manifold without boundary, this phase space is the contangent bundle. In the case with non-empty boundary, the main challenge arises from the behaviour of singularities near the boundary. In the interior of the domain, due to Hörmander rather general theorem, these singularities propagate along the bicharacteristic curves (optical rays). The simplest case is that the singularities striking the boundary transversely simply reflect according to the usual law of geometric optics ("angle of incident equals angle of reflection") for the reflection of bicharacteristics. Melrose and Sjöstrand introduced the notion of generalized bicharacteristic rays to proved the propagation of singularities near the boundary. The difficulties arise when dealing with the rays tangent to the boundary. They proved that, at these "diffractive points", the singularities may only propagate along certain generalized bicharacteristics. The theorem on propagation of singularities in strictly convex domains was proved by Eskin in [START_REF] Eskin | Parametrix and propagation of singularities for the interior mixed hyperbolic problem[END_REF] by the construction of the parametrix near tangential direction to the boundary and was proved independently by Andersson and Melrose in [START_REF] Andersson | The propagation of singularities along gliding rays[END_REF].

A simplest geometry of wave front set is a spherical wave front, it moves outward from the source point at a constant speed and the energy propagates equally in all directions. In the case of half space or concave boundary, the reflected waves do not generate caustics. Interior of a strictly convex domains, reflected waves generate infinitely many singularities such as cusps and swallowtails.

In domains whose boundaries have the order of tangency greater or equal 3, there are no known results concerning dispersion except the approach of doubling the metric across the boundary and considering a boundaryless manifold with a Lipschitz metric across the boundary. These arguments require to work on a very short time intervals in order to construct parametrix in the case of only one reflection. But this approach yields non sharp dispersive estimates since the metric is not smooth enough.

In this thesis, we will study a model case of cylindrical domains with a convex boundary with zero curvature along the axis of the cylinder. The main result in this thesis is that we have proved the optimal local in time dispersive estimates with losses. Our approach of construction the parametrix allows us to give a detailed description of the wave front set, which shows precisely that the caustics appear between the first and the second reflection of the wave on the boundary. The result for dispersion is optimal due to the presence of the swallowtail type singularities in the wave front set.

Let us recall that it is now well established that these dispersive estimates, combined with an abstract functional analysis argument-the T T * argument-yield a number of inequalities involving space-time Lebesgue norms L q t (L r x )-the so-called Strichartz estimates. The Strichartz estimates have proven to be of great importance in the study of semilinear or quasilinear Schrödinger and wave equations, in particular mixed (in time and space) L q t (L r x ) estimates are often the key to proving well-posedness results.

In R d , the first global L q t (L r x ) estimates was proved by Strichartz for the wave equation [see [START_REF] Strichartz | Restriction of Fourier transform to quadratic surfaces and decay of solution of wave equation[END_REF]] first in the particular case q = r. The extension to the whole set of admissible indices was achieved by Ginibre and Velo in [START_REF] Ginibre | On the global Cauchy problem for some nonlinear Schrödinger equations[END_REF] for Schrödinger equations, where (q, r) are sharp admissible and q > 2; the estimates for the wave equations were obtained independently by Ginibre, Velo in [START_REF] Ginibre | Generalized Strichartz inequalities for the wave equation[END_REF] and Lindblad, Sogge in [START_REF] Lindblad | On existence and Scattering with minimal regularity for semilinear wave equations[END_REF], following earlier works by Kapitanski [see [START_REF] Kapitanski | Some generalizations of the Strichartz-Brenner inequality[END_REF]]. The endpoint case estimates for both equations was established later by Keel and Tao in [START_REF] Keel | Endpoint Strichartz estimates[END_REF]. The so-called Knapp wave provides counter examples away from the endpoint.

For general manifolds, phenomena such as the existence of trapped geodesics or finiteness of volume can preclude the development of global estimates, leading us to consider just local in time estimates. Only partial progress has been made in establishing these estimates on manifolds, domains or singular spaces such as cones. For the conic case, its singularity affects the flow of energy and complicates many of the known techniques for proving these inequalities.

In [START_REF] Blair | Strichartz estimates for the wave equation on flat cones[END_REF], Blair, Ford, and Marzuola proved the dispersive and scale invariant Strichartz estimates for the wave equation on the flat cones by using the explicit representation of the solution operator in regions related to flat wave propagation and diffraction by the cone point. They also proved the corresponding inequalities on wedge domains, polygons, and Euclidean surfaces with conic singularities.

In [START_REF] Zhang | Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds[END_REF], Zhang proved the global-in-time Strichartz estimates for wave equations on the nontrapping asymptotically conic manifolds . These type of estimates was dealt with in [START_REF] Sun | Strichartz-type estimates for wave equation for normally hyperbolic trapped domains[END_REF] outside normally hyperbolic trapped on odd dimensional Euclidean space. In [START_REF] Bouclet | Strichartz Inequalities on Surfaces with Cusps[END_REF], Bouclet proved Strichartz estimates for the wave and Schrödinger on surface with cusps.

In the case of a compact manifold with boundary, the finite speed of propagation allows us to work in coordinate charts and to establish the local Strichartz estimates for the variable coefficients wave operators in R d . In this case, Kapitanski in [START_REF] Kapitanski | Norm estimates in Besov and Lizorkin-Triebel spaces for the solutions of second order linear hyperbolic equations[END_REF] and Mockenhaupt, Seeger and Sogge in [START_REF] Mockenhaupt | Local smoothing of Fourier integral operators and Carleson-Sjölin estimates[END_REF] established such inequalities for operators with smooth coefficients. Smith in [START_REF] Smith | A parametrix construction for wave equations with C 1,1 coefficients[END_REF] and Tataru in [START_REF] Tataru | Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients[END_REF] have proven Strichartz estimates for operators with C 1,1 coefficients. Local and global in time Strichartz estimates for exterior in R d to a compact set with smooth boundary under a nontrapping assumption were obtained by Smith, Sogge in [START_REF] Smith | Global Strichartz estimates for nontrapping perturbations of the Laplacian[END_REF] for the case of odd dimensions and Burq in [START_REF] Burq | Global Strichartz estimates for nontrapping geometries: a remark about article by H. Smith and C. Sogge[END_REF], Metcalfe in [START_REF] Metcalfe | Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle[END_REF] for the case of even dimensions.

Using the L r (Ω) estimates for the spectral projectors obtained by Smith and Sogge in [START_REF] Smith | On the L p norm of spectral clusters for compact manifold with boundary[END_REF], Burq, Lebeau, Planchon in [START_REF] Burq | Global existence for energy critical waves in 3-D domains[END_REF] established Strichartz estimates for bounded domains in R 3 for a certain range of triples (q, r, γ). In [START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF], Blair, Smith, Sogge expanded the range of indices q and r obtained in [START_REF] Burq | Global existence for energy critical waves in 3-D domains[END_REF] and generalized results to higher dimensions.

For manifold with smooth, strictly geodesically concave boundary, the Melrose and Taylor parametrix had been used by Smith and Sogge in [START_REF] Smith | On the critical semilinear wave equation outside convex obstacles[END_REF] in order to obtain the nonendpoint Strichartz estimates for the wave equation with Dirichlet boundary condition.

Recently in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF], Ivanovici, Lebeau, and Planchon have deduced the usual Strichartz estimates from the optimal dispersive estimates inside strictly convex domains of dimensions d ≥ 2 for a certain range of the wave admissibility.

The cylindrical model problem

Let Ω = {x ≥ 0, (y, z) ∈ R 2 } ⊂ R 3 with smooth boundary ∂Ω = {x = 0} , and let P be the wave operator:

P = ∂ 2 t -(∂ 2 x + (1 + x)∂ 2 y + ∂ 2 z
). We consider solutions of the linear Dirichlet-wave equation inside Ω

P u = 0, u | t=0 = δ a , ∂ t u | t=0 = 0, u | x=0 = 0, (1.1.1) 
with u = u(t, x, y, z), and for a > 0, δ a = δ x=a,y=0,z=0 . We use the notation τ = h i ∂ t , η = h i ∂ y , ξ = h i ∂ x , ζ = h i ∂ z for the Fourier variables and h ∈ (0, 1]. The Riemannian manifold (Ω, ∆) with ∆ = ∂ 2

x + (1 + x)∂ 2 y + ∂ 2 z can be locally seen as a cylindrical domain in R 3 by taking cylindrical coordinates (r, θ, z), where r = 1 -x/2, θ = y, and z = z. The problem is local near the boundary ∂Ω = {x = 0}. Let (a, 0, 0) ∈ Ω, a > 0. In local coordinates, a is the distance from the source point to the boundary. We assume a is small enough as we are interested only in highly reflected waves, which we do not observe if the waves do not have time to hit the boundary. This gives us interesting phenomena such as caustics near the boundary.

We remark that when there is no z variable (or when y ∈ R n and ∂ 2 y is replaced by ∆ y ), it is the Friedlander model. In this case, the optimal dispersive estimates were recently obtained by Ivanovici, Lebeau, and Planchon in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF].

Recall that at time t > 0, the waves propagating from the source of light highly concentrate around a sphere of radius t. For a variable coefficients metric, if two different light rays emanating from the source do not cross (that is, if t is smaller than the injectivity radius), one may then construct parametrices using oscillatory integrals where the phase encodes the geometry of wave front. In our scenario, the geometry of the wave front becomes singular in arbitrarily small times which depend on the frequency of the source and its distance to the boundary. In fact, a caustic appears between the first and the second reflection of the wave front. Let us give a brief overview of what caustics are [see [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] section 1.1]. Geometrically, caustics are defined as envelopes of light rays coming from the source of light. At the caustic point we expect the light to be singularly intense. Analytically, caustics can be characterized as points where usual bounds on oscillatory integrals are no longer valid. The classification of asymptotic behavior of the oscillatory integrals with caustics depends on the number and the order of their critical points that are real. Let us consider an oscillatory integral

u h (z) = 1 (2πh) 1/2 e i h Φ(z,ζ) g(z, ζ, h)dζ, z ∈ R d , ζ ∈ R, h ∈ (0, 1].
We assume that Φ is smooth and that g is compactly support in z and ζ.

If ∂ ζ Φ = 0
in an open neighborhood of the support of g, the repeated integration by parts yields

|u h (z)| = O(h N ) for any N > 0. If ∂ ζ Φ = 0 and ∂ 2
ζ Φ = 0 (nondegenerate critical points), then the stationary phase method yields u h L ∞ = O(1). If there are degenerate critical points, we define them to be caustics, as u h L ∞ is no longer uniform bounded. The order of a caustic κ is defined as the infimum of κ such that u h L ∞ = O(h -κ ). Let us give some useful examples of degenerate phase functions. The phase function of the form

Φ F (z, ζ) = ζ 3 3 + z 1 ζ + z 2 corresponds
to a fold with order κ = 1 6 . A typical example is the Airy function. The next canonical form is given by the phase function of the form

Φ C (z, ζ) = ζ 4 4 + z 1 ζ 2 2 + z 2 ζ + z 3
, which corresponds to a cusp singularity with order κ = 1 4 . A swallowtail canonical form is given by the phase Φ S (z, ζ)

= ζ 5 5 + z 1 ζ 3 3 + z 2 ζ 2 2 + z 3 ζ + z 4 with order κ = 3/10.
The crucial result of this work is the extension of the result of [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] to the case of our model cylindrical convex domains which have the following property: the nonnegative curvature radius depends on the incident angle and vanishes in some directions.

The main goals of this work are:

• To construct a local parametrix and establish local in time dispersive estimates for solution u to (1.1.1).

• To prove the Strichartz estimates inside cylindrical domains for solution u to (1.1.1).

Some known results

The dispersive estimates for the wave equation in R d follows from the representation of solution as a sum of Fourier integral operators [see [START_REF] Brener | On L p -L p estimates for the wave equation[END_REF][START_REF] Ginibre | Generalized Strichartz inequalities for the wave equation[END_REF][START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]]. They read as follows:

χ(hD t )e ±it √ -∆ R d L 1 (R d )→L ∞ (R d ) ≤ Ch -d min 1, h |t| d-1 2 , (1.2.1)
where ∆ R d is the Laplace operator in R d . Here and in the sequel, the function χ belongs to C ∞ 0 (]0, ∞[) and is equal to 1 on [START_REF] Andersson | The propagation of singularities along gliding rays[END_REF][START_REF] Artzi | Dispersion Estimates for Third Order Equations in Two Dimensions[END_REF] and

D t = 1 i ∂ t .
Inside strictly convex domains Ω D of dimensions d ≥ 2, the optimal (local in time) dispersive estimates for the wave equations have been established by Ivanovici, Lebeau, and Planchon in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. More precisely, they have proved that 

χ(hD t )e ±it √ -∆ D L 1 (Ω D )→L ∞ (Ω D ) ≤ Ch -d min 1, h |t| d-1 2 -1 4 , ( 1 
u L q ((-T,T );L r (Ω)) ≤ C T u 0 Ḣβ (Ω) + u 1 Ḣβ-1 (Ω) , (1.2.3) 
where Ḣβ denotes the homogeneous Sobolev space over Ω of order β and 2 ≤ q, r ≤ ∞

satisfy 1 q + d r = d 2 -β, 1 q ≤ d -1 2 1 2 - 1 r .
Here u = u(t, x) is a solution to the wave equation

(∂ 2 t -∆ g )u = 0 in (-T, T ) × Ω, u(0, x) = u 0 (x), ∂ t u(0, x) = u 1 (x),
where ∆ g denotes the Laplace-Beltrami operator on (Ω, g). The estimates (1.2.3) hold on Ω = R d and g ij = δ ij .

In [START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF], Blair, Smith, Sogge proved the Strichartz estimates for the wave equation on (compact or noncompact) Riemannian manifold with boundary. They proved that the Strichartz estimates (1.2.3) hold if Ω is a compact manifold with boundary and (q, r, β) is a triple satisfying

1 q + d r = d 2 -β , for 3 q + d-1 r ≤ d-1 2 , d ≤ 4, 1 q + 1 r ≤ 1 2 , d ≥ 4.
domains of dimensions d ≥ 2 for a triple (d, q, β) satisfying

1 q ≤ d -1 2 - 1 4 1 2 - 1 r , and β = d 1 2 - 1 r - 1 q .
For d ≥ 3 this improves the range of indices for which sharp Strichartz estimates do hold compared to the result by Blair, Smith, Sogge in [START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF]. However, the results in [START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF] apply to any domains or manifolds with boundary.

Main results

Our main results concerning the local in time dispersive estimates and Strichartz estimates inside the cylindrical convex domain Ω are stated below. Let G a be the Green function for (1.1.1).

Theorem 1.3.1. There exists C such that for every h ∈]0, 1], every t ∈ [-1, 1] and every a ∈]0, 1] the following holds:

χ(hD t )G a (t, x, y, z) L ∞ ≤ Ch -3 min 1, h |t| 3/4 . (1.3.1) 
As in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF], Theorem 1.3.1 states that a loss of 1/4 powers of (h/|t|) appears compared to (1.2.1) . We will obtain in Theorems 1.4.1, 1.4.2, 1.4.3 better results, in particular near directions which are close to the axis of the cylinder.

As a consequence of Theorem 1.3.1, conservation of energy, interpolation and T T * arguments, we obtain the following set of (local in time) Strichartz estimates.

Theorem 1.3.2. Let (Ω, ∆) as before. Let u be a solution of the wave equation on Ω:

(∂ 2 t -∆)u = 0 in Ω, u |t=0 = u 0 , ∂ t u |t=0 = u 1 , u |x=0 = 0.
Then for all T there exists C T such that

u L q ((0,T );L r (Ω)) ≤ C T u 0 Ḣβ (Ω) + u 1 Ḣβ-1 (Ω) , with 1 q ≤ 3 4 1 2 - 1 r
, and the scaling

β = 3 1 2 - 1 r - 1 q .
Theorem 1.3.2 improves the range of indices for which sharp Strichartz estimates do hold compared to [START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF]. Notice however that the results in [START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF] apply to arbitrary domains or manifolds with non-empty boundary. To prove the Strichartz estimates in Theorem 1.3.2, we first prove the frequency-localized Strichartz estimates by utilizing the frequencylocalized dispersive estimates, interpolation and T T * arguments. We then apply the Littlewood-Paley squarefunction estimates [see [START_REF] Blair | Strichartz estimates for the Schrödinger equation on polygonal domains[END_REF][START_REF] Blair | Strichartz estimates for the wave equation on flat cones[END_REF][START_REF] Ivanovici | Square function and heat flow estimates on domains[END_REF]] to get the Strichartz estimates [Theorem 1.3.2] in the context of cylindrical domains.

Green function and precise dispersive estimates

The proofs of frequency-localized dispersive estimates are based on the construction of parametrices for the fundamental solution of the wave equation (1.1.1) and (possibly degenerate) stationary phase method.

We begin with the construction of the local parametrix for (1.1.1) by utilizing the spectral analysis of -∆ with Dirichlet condition on the boundary to obtain first the Green function associated to (1.1.1). The Laplace operator we work with on the half space Ω is equal to

∆ = ∂ 2 x + (1 + x)∂ 2 y + ∂ 2 z
, with the Dirichlet condition on the boundary ∂Ω. We notice that a useful feature of this particular Laplace operator is that the coefficients of the metric do not depend on the vairables y, z and therefore this allows us to take the Fourier transform in y and z. Now taking the Fourier transform in y, z-variables yields

-∆ η,ζ = -∂ 2 x + (1 + x)η 2 + ζ 2 .
For η = 0, -∆ η,ζ is a self-adjoint, positive operator on L 2 (R + ) with compact resolvent. Let (e k ) k≥1 be an orthonormal basis in L 2 (R + ) of Dirichlet eigenfunctions of -∆ η,ζ and let (λ k ) k be the associated eigenvalues. We get easily

e k =e k (x, η) = f k |η| 1/3 k 1/6 Ai(|η| 2/3 x -ω k ).
and

λ k =λ k (η, ζ) = η 2 + ζ 2 + ω k |η| 4/3 ,
where (-ω k ) k denote the zeros of Airy function in decreasing order and for all k ≥ 1, f k are constants so that e k (., η)

L 2 (R + ) = 1. Observe that (f k ) k is uniformly bounded in a fixed compact subset of ]0, ∞[ since -2 -ω k Ai 2 (ω)dω 1 4π -2 -ω k |ω| -1/2 (1 + O(ω -1 ))dω |ω| 1/2
and ω k

3 2 πk 2/3 (1 + O(k -1 )).
For a ∈ Ω, let g a (t, x, η, ζ) be the solution of

(∂ 2 t -(∂ 2 x -(1 + x)η 2 -ζ 2 ))g a = 0, g a |x=0 = 0, g a |t=0 = δ x=a , ∂ t g a |t=0 = 0.
We have

g a (t, x, η, ζ) = k≥1 cos(tλ 1/2 k )e k (x, η)e k (a, η).
(1.4.1)

Here δ x=a denotes the Dirac distribution on R + , a > 0 and it reads as follows:

δ x=a = k≥1 e k (x, η)e k (a, η).
Now taking the inverse Fourier transform, the Green function for (1.1.1) is given by

G a (t, x, y, z) = 1 4π 2 e i(yη+zζ) g a (t, x, η, ζ)dηdζ, = 1 4π 2 h 2 k≥1 e i(yη+zζ)/h cos(tλ 1/2 k )e k (x, η/h)e k (a, η/h)dηdζ. (1.4.2)
We thus get the following formula for 2χ

(hD t )G a 2χ(hD t )G a (t, x, y, z) = 1 4π 2 h 2 k≥1 e i h (yη+zζ) e i t h (η 2 +ζ 2 +ω k h 2/3 |η| 4/3 ) 1/2 e k (x, η/h)e k (a, η/h) χ((η 2 + ζ 2 + ω k h 2/3 |η| 4/3 ) 1/2 )dηdζ. (1.4.3)
On the wave front set of the above expression, one has τ = (η 2 + ζ 2 + ω k h 2/3 |η| 4/3 ) 1/2 . In order to prove Theorem 1.3.1, we only need to work near tangential directions; therefore we will introduce an extra cutoff to insure |τ -(η 2 + ζ 2 ) 1/2 | small, which is equivalent to ω k h 2/3 |η| 4/3 small. Then, we are reduced to prove the dispersive estimate for G a,loc :

G a,loc (t, x, y, z) = 1 4π 2 h 2 k≥1 e i h (yη+zζ) e i t h (η 2 +ζ 2 +ω k h 2/3 |η| 4/3 ) 1/2 e k (x, η/h)e k (a, η/h) χ 0 (η 2 + ζ 2 )χ 1 (ω k h 2/3 |η| 4/3 )dηdζ, (1.4.4)
where the cut-off functions χ 0 and χ 1 are defined in section 2.1.

η ζ

Phase space

To obtain the local in time dispersive estimates, we will cut the η integration in (1.4.4) in different pieces [as figure above]. More precisely, we write

G a,loc = G a,c 0 + 0 √ a≤2 m √ a≤c 0 G a,m + G a, 0 , (1.4.5) 
where G a,c 0 is associated with the integration for |η| ≥ c 0 , G a,m is associated with the integration for |η| 2 m √ a, and G a, 0 is associated with the integration for 0 < |η| ≤ 0 √ a.

We will prove the following results. Let ∈]0, 1/7[.

Theorem 1.4.1.

There exists C such that for every h ∈]0, 1], every t ∈ [h, 1] the following holds:

G a,c 0 (t, x, y, z) L ∞ (x≤a) ≤ Ch -3 h t 1/2 γ(t, h, a), (1.4.6) 
with

γ(t, h, a) = h t 1/3 if a ≤ h 2 3 (1-) , h t 1/2 + a 1/8 h 1/4 if a ≥ h 2 3 -, ∈]0, [.
Observe that in Theorem 1.4.1 we get the same estimate as in Ivanovici-Lebeau-Planchon [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF].

Theorem 1.4.2. There exists C such that for every h ∈]0, 1], every t ∈ [h, 1] the following holds :

G a,m (t, x, y, z) L ∞ (x≤a) ≤ Ch -3 h t 1/2 γ m t, h, a), (1.4.7) 
with

γ m (t, h, a) =          h t 1/3 (2 m √ a) 1/3 if a ≤ h 2 m √ a 2 3 (1-) , min h t 1/2 , 2 m √ a| log(2 m √ a)| + a 1/8 h 1/4 (2 m √ a) 3/4 if a ≥ h 2 m √ a 2 3 - , ∈]0, [.
For 2 m √ a ∼ 1, Theorem 1.4.2 yields the same result as in Theorem 1.4.1. We notice that the estimates get better when |η| (∼ 2 m √ a) decreases. This is compatible with the intuition: less curvature implies better dispersion.

Theorem 1.4.3. There exists C such that for every h ∈]0, 1], every t ∈ [h, 1], the following holds: 

G a, 0 (t, x, y, z) L ∞ (x≤a) ≤ Ch -3 h t 1/2 min (h/t)
(2 m √ a) ν (2 M √ a) ν for ν > 0.
Chapter 2

Dispersive Estimates For The Model Problem

In this chapter, we prove Theorems 1.4.1, 1.4.2 and 1.4.3. This chapter is organized as follows:

In section 2.1, we prove Theorem 1.4.1. To do so, we use the representation of G a,c 0 as a sum over the eigenmodes which is used to prove the estimates for a ≤ h In section 2.2, we prove Theorem 1.4.2. To get the estimates for G a,m , we distinguish between two different cases. The first case is a ≤

h 2 m √ a 2 3 (1-)
, ∈]0, 1/7[: here, we follow ideas in section 2.1 and construct a local parametrix as a sum over eigenmodes.

The second case is

a ≥ h 2 m √ a 2 3 -
, for ∈]0, [: there, the Airy-Poisson summation formula yields the representation of G a,m as a sum over multiple reflections.

In section 2.3, we prove Theorem 1.4.3. Notice that as 0 is small, the estimates for G a, 0 are in fact those in free case. To get that, we first compute the trajectories of the Hamiltonian flow for the operator P . At this frequency localization there is at most one reflection on the boundary of the cylinder. Moreover, we follow the techniques from section 2.1 and obtain an expression for G a, 0 to which we apply the stationary phase method. It is particularly interesting that this localization gives us an oscillatory integral (the local parametrix) with nondegenerate phase function; this is due to the geometric study of the associated Lagrangian which rules out the cusps and swallowtails regimes for a given fixed time t, |t| ≤ 1 if 0 is small. In all these sections, we will assume that the integration with respect to η is restricted to η > 0, since the case η < 0 is exactly the same.

2.1 Dispersive Estimates for |η| ≥ c 0 .

In this section, we prove Theorem 1.4.1. The key ingredient is to construct local parametrices for the regimes a ≤ h 2 3 (1-) for ∈]0, 1/7[, and for a ≥ h 2 3 -, for ∈]0, [ respectively. These are oscillatory integrals to which we apply the (degenerate) stationary phase type arguments to get the desired estimates. The Airy-Poisson summation formula [see Lemma 2.1.4] gives us the parametrix as a sum over multiple reflections.

Dispersive Estimates for

0 < a ≤ h 2 3 (1-) , with ∈]0, 1/7[.
In this section, we prove local in time dispersive estimates for the function G a,c 0 . In the regime 0 < a ≤ h 2 3 (1-) , with ∈]0, 1/7[, the parametrix reads as a sum over eigenmodes k. Taking into account the asymptotic behaviour of the Airy functions, we deal with different values of k as follows: for small values of k, we use Lemma 3.5 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] to get the estimates; for large values of k, we use the asymptotic expansion of the Airy functions. The last case, the parametrix is a sum of oscillatory integrals to which we apply Lemma 2.20 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. Recall that the parametrix in this frequency localization and near tangential directions is equal to

G a,c 0 (t, x, y, z) = 1 4π 2 h 2 k≥1 e i h (yη+zζ) e i t h (η 2 +ζ 2 +ω k h 2/3 |η| 4/3 ) 1/2 e k (x, η/h)e k (a, η/h) × χ 0 (ζ 2 + η 2 )ψ 0 (η)χ 1 (ω k h 2/3 |η| 4/3 )(1 -χ 1 )(εω k )dηdζ. (2.1.1)
Here

• χ 0 ∈ C ∞ 0 , 0 ≤ χ 0 ≤ 1, χ 0 is supported in the neighborhood of 1. • ψ 0 ∈ C ∞ 0 (c 0 /2, ∞), 0 ≤ ψ 0 ≤ 1, ψ 0 (η) = 1 for η ≥ c 0 . • χ 1 ∈ C ∞ 0 , 0 ≤ χ 1 ≤ 1, χ 1 is supported in (-∞, 2ε], χ 1 = 1 on (-∞, ε],
for ε > 0 small. χ 1 is used to localize in tangential directions. Notice that on the support of χ 1 , we have ω k h 2/3 |η| 4/3 ≤ 2ε and since ω k k 2/3 ; we obtain k ≤ ε h|η| 2 . Thus since η is bounded from below, we may assume that k ≤ ε/h. Moreover, we have (1 -χ 1 )(εω k ) = 1 for every k ≥ 1 since ω 1 2.33.

The main result of this section is the following proposition. Proposition 2.1.1. Let ∈]0, 1/7[. There exists C such that for every h ∈]0, 1], every 0 < a ≤ h 2 3 (1-) , and every t ∈ [h, 1], y ∈ R, z ∈ R, the following holds:

G a,c 0 (t, x, y, z) L ∞ (x≤a) ≤ Ch -3 h t 5/6 . (2.1.2)
Proof. First, we study the integration in ζ. Let

J = e i t h φ k χ 0 (ζ 2 + η 2 )dζ.
Recall that χ 0 ∈ C ∞ 0 is supported near 1. The phase function φ k is given by

φ k (ζ) = z t ζ + η 2 + ζ 2 + γη 2 1/2 , with γ = h 2/3 ω k |η| -2/3 > 0. We introduce a change of variables ζ = |η| ζ, z = tz. Then we obtain φ k (ζ) = |η| z ζ + (1 + ζ2 + γ) 1/2 .
Differentiating with respect to ζ, we get

∂ ζ φ k = |η| z + ζ (1 + ζ2 + γ) 1/2 .
Since η is bounded from below, ζ = ζ/|η| is bounded, therefore we have

ζ (1+ ζ2 +γ) 1/2 ≤ 1 -2δ 1 , for some δ 1 > 0 small. Then if |z| ≥ 1 -δ 1 , the contribution of ζ-integration is O C ∞ ((h/t) ∞
) by integration by parts. Thus we may assume that |z| ≤ 1 -δ 1 . In this case, the phase φ k has a unique critical point on the support of χ 0 . It is given by ζc = -z(1+γ) 1/2 √ 1-z 2 and this critical point is nondegenerate since

∂ 2 ζ φ k = |η| 1 + γ (1 + ζ2 + γ) 3/2 > 0.
Then we obtain by the stationary phase method (as |z| < 1 -δ 1 )

J = h t 1/2 e i t h |η| √ 1-z 2 (1+γ) 1/2 χ0 ,
where χ0 is a classical symbol of order 0 with small parameter h/t. Hence we get

G a,c 0 (t, x, y, z) = 1 4π 2 h 2 h t 1/2 k≥1 e i h yη+|η|t √ 1-z 2 (1+γ) 1/2 e k (x, η/h)e k (a, η/h) × χ0 ψ 0 (η)χ 1 (γ|η| 2 )(1 -χ 1 )(εγh -2/3 |η| 2/3 )dη. (2.1.3)
Next, we observe that G a,c 0 contains Airy functions which behave differently depending on the various values of k. To deal with it, we split the sum over k into G a,c 0 = G a,<L + G a,>L , where in G a,<L only the sum over 1 ≤ k ≤ L is considered. To get the estimates for G a,<L , we need the next lemma, which follows from the bound |Ai(s)| ≤ C(1 + |s|) -1/4 . Lemma 2.1.2. (Lemma 3.5 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]) There exists C 0 such that for L ≥ 1, the following holds:

sup b∈R 1≤k≤L k -1/3 Ai 2 (b -ω k ) ≤ C 0 L 1/3 .
We use the Cauchy-Schwarz inequality for (2.1.3) and Lemma 2.1.2 to get

G a,<L L ∞ h -2 h t 1/2 1≤k≤L h -2/3 k -1/3 Ai(|η/h| 2/3 x -ω k )Ai(|η/h| 2/3 a -ω k ), h -3 h t 1/2 h 1/3 1≤k≤L k -1/3 Ai 2 (h -2/3 |η| 2/3 x -ω k ) 1/2 × 1≤k≤L k -1/3 Ai 2 (h -2/3 |η| 2/3 a -ω k ) 1/2 , h -3 h t 1/2 h 1/3 L 1/3 .
We only have to prove (2.1.2) for t > h.

Let ∈]0, 1/3[ and L = h -. If t ≤ h , then L ≤ 1 t , hence G a,<L (t, x, y, z) L ∞ ≤ Ch -3 h t 5/6
.

We are reduced to the case t > h ≥ h 1/3 . Then we apply the stationary phase for η-integration of the form

e i h Φ k Ai(h -2/3 |η| 2/3 x -ω k )Ai(h -2/3 |η| 2/3 a -ω k )dη,
with the phase function

Φ k (η) = η(y + t √ 1 -z2 (1 + γ) 1/2 ).
To deal with this integral, we rewrite Φ k = hλΨ k where λ = tω k h -1/3 is a large parameter.

We have

|∂ 2 η Ψ k | ≥ c > 0.
To apply the stationary phase, we need to check that one has for some ν > 0 one has

|∂ j η Ai(h -2/3 |η| 2/3 x -ω k )| ≤ C j λ j(1/2-ν) . Since one has sup b≥0 |b l Ai (l) (b -ω k ) ≤ C l ω 3l/2
k , it is sufficient to check that there exists > 0 such that for t > h and k ≤ h -,

ω 3/2 k ≤ (tω k h -1/3 ) (1/2-ν)
This holds if < 1/7. Therefore the estimate for < 1/7 and t > h is

1 x≤a G a,<L (t, x, y, z) L ∞ ≤ Ch -3 h t 1/2 [h 1/3 1≤k≤h - k -1/3 λ -1/2 ], ≤ Ch -3 h t 1/2 [h 1/3 1≤k≤h - k -1/3 (tω k h -1/3 ) -1/2 ], ≤ Ch -3 h t 1/2 h t 1/2 h -/3 , ≤ Ch -3 h t 1/2 h t 1/3
.

We now deal with large values of k, L ≤ k ≤ ε/h with L ≥ D max{h -, 1/t}, D > 0 large constant. We are left to prove (2.1.2) holds true for G a,>L , defined by the sum over

L ≤ k ≤ ε h . For k > Dh -and 0 ≤ x ≤ a ≤ h 2 3 (1-) , we have ω k -|η| 2/3 h -2/3 x > ω k /2.
Therefore we can use the asymptotic expansion of the Airy function (see Appendix A)

Ai(ϑ) = ± ω ± e ∓ 2 3 i(-ϑ) 3/2 (-ϑ) -1/4 Ψ ± (-ϑ) for -ϑ > 1, where ω ± = e ±iπ/4
and where Ψ ± are given in the Appendix. By the definition of e k , we have

e k (x, η/h) = f k |η| 1/3 h -1/3 k 1/6 Ai(h -2/3 |η| 2/3 x -ω k ), = f k |η| 1/3 h -1/3 k 1/6 ± ω ± e ∓ 2 3 i(ω k -|η| 2/3 h -2/3 x) 3/2 Ψ ± (ω k -|η| 2/3 h -2/3 x) (ω k -|η| 2/3 h -2/3 x) 1/4 .
We can rewrite G a,>L as follows:

G a,>L (t, x, y, z) = L≤k≤ ε h 1 4π 2 h 2 h t 1/2 ±,± e i h Φ ±,± k σ ±,± k dη, (2.1.4)
with the phase functions are defined by

Φ ±,± k (t, x, y, z, a; η) = yη + |η|t √ 1 -z2 (1 + γ) 1/2 ± 2 3 |η|(γ -x) 3/2 ± 2 3 |η|(γ -a) 3/2 ,
and the symbols are given by

σ ±,± k (x, a, h; η) = h -1/3 |η| 1/3 χ0 χ 1 (γη 2 )(1 -χ 1 )(εγh -2/3 |η| 2/3 ) f 2 k k 1/3 ω ± ω ± × (γ -x) -1/4 (γ -a) -1/4 Ψ ± (|η| 2/3 h -2/3 (γ -x))Ψ ± (|η| 2/3 h -2/3 (γ -a)).
We have 3η∂ η = -2γ∂ γ and for 0 ≤ x ≤ a ≤ 2γ,

|(γ∂ γ ) j ((γ -x) -1/4 )| ≤ C j γ -1/4 ≤ C j (hk) -1/6 ;
moreover, Ψ ± are classical symbols of order 0 at infinity which is true in this case since we have

|η 2/3 h -2/3 (γ -x)| ≥ ω k /2 ≥ Ch -2 /3 , since k ≥ L ≥ h -.
Hence we obtain that for all j, there exists C j such that

|∂ j η σ ±,± k (x, a, h; η)| ≤ C j (hk) -2/3 , since in the symbols σ ±,± k
there is a factor (hk) -1/3 and we apply η derivatives to the product (γ -x) -1/4 (γ -a) -1/4 to get another factor (hk) -1/3 .

Now we study the oscillatory integral of the form

e i h Φ ±,± k σ ±,± k dη.
To get the estimates for this integral, we set Φ

±,± k = hλψ ±,± k , where λ = tω k h -1/3 . It defines a new large parameter since λ ≥ c > 0 as ω k k 2/3
, k ≥ 1/t, and t ≥ h. The following result gives an estimate of these oscillatory integrals.

Proposition 2.1.3. Let ∈]0, 1/7[. For small ε, there exists a constant C independent of a ∈ (0, h 2 3 (1-) ], t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R and k ∈ [L, ε
h ] such that the following holds:

e iλψ ±,± k σ ±,± k dη ≤ C(hk) -2/3 λ -1/3 . Proof of Proposition 2.1.3. Since (hk) 2/3 σ ±,±
k are classical symbols of degree 0 compactly supported in η, we apply the stationary phase method to an integral of the form

J 1 = e iλψ ±,± k (hk) 2/3 σ ±,± k dη.
We have to prove that the following inequality holds uniformly with respect to the parameters:

|J 1 | ≤ Cλ -1/3 .
Let us recall that

hλψ ±,± k (t, x, y, z; η) = yη + |η|t √ 1 -z2 (1 + γ) 1/2 ± 2 3 |η|(γ -x) 3/2 ± 2 3 |η|(γ -a) 3/2 .
We compute

hλ∂ η ψ ±,± k = y + t √ 1 -z2 1 + 2 3 γ √ 1 + γ ± 2 3 x(γ -x) 1/2 ± 2 3 a(γ -a) 1/2 ,
and we need to consider four cases.

Let δ = x a ∈ [0, 1], α = a ω k h 2/3 ∈ [0, α 0 ]. Indeed, since ω k k 2/3 , k ≥ Dh -and a ≤ h 2 3 (1-) , we have α = ak -2/3 h -2/3 ≤ D -2/3 ah -2 3 (1-) ≤ D -2/3 := α 0 . Let ρ = |η| -2/3 , V = y+t √ 1-z 2
tω k h 2/3 and define the function F (γ) by

1 + 2 3 γ √ 1 + γ = 1 + γF (γ), F (γ) = 1 6 + γ 24 + O(γ 2 ).
With these notations we get:

∂ η ψ ±,± k = V + √ 1 -z2 ρF (h 2/3 ω k ρ) + 2 3 µ ±δ(ρ -δα) 1/2 ± (ρ -α) 1/2 , where µ = ah -1/3 tω 1/2 k ; it satisfies 0 ≤ µ ≤ h 1 3 (1-) t min{1, h -/3 t 1/3
} and thus µ may be small or arbitrary large. In fact

, if t ≥ h , µ ≤ h 1 3 (1-) t -1 ≤ h 1/3-4 /3 , which is small if ≤ 1/4. If t ≤ h , we have µ ≤ h 1/3-2 /3 t -2/3
which could be large when t ≤ h 1/2-. First, we consider the case where µ is bounded. We now study the critical points. We take ρ = |η| -2/3 as variable, we get

∂ ρ ∂ η ψ ±,± k = √ 1 -z2 (F (γ) + γF (γ)) + µ 3 ± δ(ρ -δα) -1/2 ± (ρ -α) -1/2 , ∂ 2 ρ ∂ η ψ ±,± k = √ 1 -z2 h 2/3 ω k (2F (γ) + γF (γ)) - µ 6 ± δ(ρ -δα) -3/2 ± (ρ -α) -3/2 .
For ε small enough, there exists c > 0 independent of k ≤ ε h such that

|∂ ρ ∂ η ψ ±,± k | + |∂ 2 ρ ∂ η ψ ±,± k | ≥ c. (2.1.5) Indeed, we observe that (ρ -α) -1/2 ≥ δ(ρ -δα) -1/2 and F (γ) + γF (γ) 1 6 . Thus we get |∂ ρ ∂ η ψ ±,+ k | ≥ c 1 > 0. Other cases, ∂ ρ ∂ η ψ ±,-
k could vanish and when this happens we have

|∂ ρ ∂ η ψ ±,- k | ≤ 1/100 =⇒ µ 3 (ρ -α) -1/2 ≥ 0.05. Then we have |∂ 2 ρ ∂ η ψ -,- k | ≥ c 2 > 0.
Moreover, for any function f , we have

f (ρ -α) -δf (ρ -δα) = (1 -δ)f (ρ -δα) - α(1-δ) 0 f (ρ -δα -t)dt. (2.1.6) 
Taking f (t) = t -1/2 , we get that

|∂ ρ ∂ η ψ +,- k | ≤ 1/100 =⇒ µ(1 -δ) ≥ c > 0. Applying (2.1.6) with f (t) = t -3/2 , we obtain |∂ 2 ρ ∂ η ψ +,- k | ≥ c/2 > 0.
As a consequence of (2.1.5) together with Lemma 2.20 in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF][see Appendix], we get that the proposition holds true for µ bounded.

It remains to study the case where µ is large. For (+, +) or (-, +) case, we study again the critical points and we take Λ = λµ as a large parameter. Since δ(ρ -δα)

-1/2 + (ρ -α) -1/2 ≥ c > 0, we have |∂ ρ ∂ η ψ ±,+ k | ≥ c > 0. Hence |J 1 | ≤ C(λµ) -1/2
. For (+, -) and (-, -) cases, we can use (2.1.6). We distinguish between two cases: if µ(1 -δ) is bounded, the computation of the derivatives of the phase functions ψ ±,- k yields the inequality (2.1.5) and the conclusion follows the Lemma 2.20 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. If µ(1 -δ) is large, we take Λ = λµ(1 -δ) as a large parameter in J 1 . Since by (2.1.6), we have

|(ρ -α) -1/2 -δ(ρ -δα) -1/2 | ≥ c(1 -δ) with c > 0. We get that |∂ ρ ∂ η ψ ±,- k | ≥ c > 0 and hence |J 1 | ≤ C(λµ(1 -δ)) -1/2 .
To summarize, the Proposition 2.1.3 yields the dispersive estimates for the large values of k, L ≤ k ≤ ε/h as follows:

1 x≤a G a,>L (t, x, y, z) L ∞ ≤ Ch -2 h t 1/2 k≤ ε h (hk) -2/3 λ -1/3 , ≤ Ch -2 h t 1/2 k≤ ε h (hk) -2/3 (tω k h -1/3 ) -1/3 , ≤ Ch -2 h t 1/2 k≤ ε h (hk) -2/3 t -1/3 k -2/9 h 1/9 , ≤ Ch -3 h t 1/2 h t 1/3 h 1/9   k≤ ε h k -8/9   , ≤ Ch -3 h t 5/6
, where we used λ = tω k h -1/3 in the second line, and ω k k 2/3 in the third line.

This concludes the proof of Proposition 2.1.1.

Airy-Poisson Summation Formula.

Let A ± (z) = e ∓iπ/3 Ai(e ∓iπ/3 z) , we have Ai(-z)

= A + (z) + A -(z). For ω ∈ R, set L(ω) = π + i log A -(ω) A + (ω) .
As in Lemma 2.7 in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains II[END_REF], the function L is analytic, strictly increasing and satisfies

L(0) = π/3, lim ω→-∞ L(ω) = 0, L(ω) = 4 3 ω 3/2 -B(ω 3/2 ), for ω ≥ 1, with B(ω) j≥1 b j ω -j , b j ∈ R, b 1 = 1,
and for all k ≥ 1, the following holds

L(ω k ) = 2πk ⇔ Ai(-ω k ) = 0, L (ω k ) = 2π ∞ 0 Ai 2 (x -ω k )dx.
Recall that f k are constants such that e k (., η)

L 2 (R + ) = 1. This yields ∞ 0 Ai 2 (x -ω k )dx = k 1/3 f 2 k = L (ω k ) 2π .
The next lemma, whose proof is in the Appendix, is the key tool to transform the sum over the eigenmodes k to the sum over N .

Lemma 2.1.4 (Airy-Poisson Summation Formula). The following equality holds true in

D (R ω ), N ∈Z e -iN L(ω) = 2π k∈N * 1 L (ω k ) δ ω=ω k .
Now we rewrite (1.4.4) and we replace the factor

f 2 k k 1/3 by 2π L (ω k ) . We get G a,c 0 (t, x, y, z) = 1 (2π) 2 h 8/3 e i h (yη+zζ) k≥1 |f k | 2 k 1/3 e i t h (η 2 +ζ 2 +ω k h 2/3 |η| 4/3 ) 1/2 |η| 2/3 χ 0 (η 2 + ζ 2 ) × ψ 0 (η)χ 1 (ω k h 2/3 |η| 4/3 )(1 -χ 1 )(εω k )Ai h -2/3 |η| 2/3 x -ω k Ai h -2/3 |η| 2/3 a -ω k dηdζ, = 1 (2π) 2 h 8/3 e i h (yη+zζ) k≥1 2π L (ω k ) e i t h (η 2 +ζ 2 +ω k h 2/3 |η| 4/3 ) 1/2 |η| 2/3 χ 0 (η 2 + ζ 2 ) × ψ 0 (η)χ 1 (ω k h 2/3 |η| 4/3 )(1 -χ 1 )(εω k )Ai h -2/3 |η| 2/3 x -ω k Ai h -2/3 |η| 2/3 a -ω k dηdζ, = 1 (2π) 2 h 8/3 e i h (yη+zζ) 2π k≥1 δ ω=ω k L (ω k ) e i t h (η 2 +ζ 2 +ωh 2/3 |η| 4/3 ) 1/2 |η| 2/3 χ 0 (η 2 + ζ 2 ) × ψ 0 (η)χ 1 (ωh 2/3 |η| 4/3 )(1 -χ 1 )(εω)Ai h -2/3 |η| 2/3 x -ω Ai h -2/3 |η| 2/3 a -ω dωdηdζ. Using Lemma 2.1.4, G a,c 0 becomes G a,c 0 (t, x, y, z) = 1 (2π) 2 h 8/3 e i h (yη+zζ) N ∈Z e -iN L(ω) e i t h (η 2 +ζ 2 +ωh 2/3 |η| 4/3 ) 1/2 |η| 2/3 χ 0 (ζ 2 + η 2 ) × ψ 0 (η)χ 1 (ωh 2/3 |η| 4/3 )(1 -χ 1 )(εω)Ai h -2/3 |η| 2/3 x -ω Ai h -2/3 |η| 2/3 a -ω dωdηdζ. = N ∈Z (-1) N (2π) 2 h 8/3 e i h (yη+zζ) e i t h (η 2 +ζ 2 +ωh 2/3 |η| 4/3 ) 1/2 |η| 2/3 χ 0 (ζ 2 + η 2 )ψ 0 (η)χ 1 (ωh 2/3 |η| 4/3 ) × (1 -χ 1 )(εω) A -(ω) A + (ω) N Ai h -2/3 |η| 2/3 x -ω Ai h -2/3 |η| 2/3 a -ω dωdηdζ, = N ∈Z (-i) N (2π) 4 h 10/3 e i h yη+zζ+t(η 2 +ζ 2 +ωh 2/3 |η| 4/3 ) 1/2 + s 3 3 +s(|η| 2/3 x-ωh 2/3 )+ σ 3 3 +σ(|η| 2/3 a-ωh 2/3 ) × |η| 2/3 χ 0 (ζ 2 + η 2 )ψ 0 (η)χ 1 (ωh 2/3 |η| 4/3 )(1 -χ 1 )(εω)e -4 3 iN ω 3/2 +iN B(ω 3/2 ) dsdσdωdηdζ, (2.1.7) 
where we used the definition of the Airy function

[see Appendix A] Ai(-z) = 1 2π R e i(s 3 /3-sz) ds, and A -(ω) A + (ω) N = i N e -4 3 iN ω 3/2 e iN B(ω 3/2 ) ,
where for z ∈ R + , we recall that B(z) ∈ R and B(z) ∼ j≥1 b j z-j for z → +∞ and b 1 = 0.

From the second to the third line, we made a change of variables s = Sh -1/3 , σ = Σh -1/3 in the Airy functions; but for simplicity we keep the notations s, σ.

Therefore, (2.1.7) is a local parametrix that reads as a sum over N . Notice that our parametrix coincides with the constructed sum over reflected waves in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] since each term has essentially the same phase. In the sequel, we refer N as multiple reflections.

Dispersive Estimates for

a ≥ h 2 3 -, ∈]0, [.
In this section, we establish the local in time dispersive estimates for the parametrix in the form (2.1.7) as a sum over multiple reflections on the boundary in the regime a ≥ h 

= h 2/3 ω|η| -2/3 , x = aX, ζ = |η| ζ, s = a 1/2 |η| 1/3 s, σ = a 1/2 |η| 1/3 σ. Then we can rewrite G a,c 0 as follows: G a,c 0 (t, x, y, z) = N ∈Z G a,N , (2.1.8) 
with for each N ∈ Z,

G a,N (t, x, y,z) = (-i) N a 2 (2π) 4 h 4 e i h Φ N,a,h |η| 3 χ 0 (η 2 (1 + | ζ| 2 ))ψ 0 (η)χ 1 (aωη 2 ) × (1 -χ 1 )(εah -2/3 |η| 2/3 ω)dsdσdωd ζdη, (2.1.9)
with the phase function Φ N,a,h = Φ N,a,h (t, x, y, z; s, σ, ω, ζ, η),

Φ N,a,h = yη + |η|z ζ + |η|t(1 + ζ2 + aω) 1/2 + a 3/2 |η| s3 3 + s(X -ω) + σ3 3 + σ(1 -ω) - 4 3 N ω3/2 + h a 3/2 |η| N B ω3/2 a 3/2 |η|/h .
The main result of this section is Theorem 2.1.5. It gives the estimate of the sum over N of the oscillatory integrals of the form (2.1.9) by using the stationary phase type estimates with degenerate critical points.

Theorem 2.1.5. Let α < 2/3. There exists C such that for all h ∈]0,

h 0 ], all a ∈ [h α , a 0 ], all X ∈ [0, 1], all T ∈]0, a -1/2 ], all Y ∈ R, all z ∈ R, the following holds: 0≤N ≤C 0 a -1/2 G a,N (T, X, Y, z; h) ≤ Ch -3 h t 1/2 h t 1/2 + a 1/8 h 1/4 . (2.1.10)
Notice that the first part on the right hand side of (2.1.10) corresponds to the free space estimates in R 3 , while the contribution in the second part appears as a consequence of the presence of caustics ( cusps and swallowtails type).

First of all, we observe that when N = 0, G a,0 satisfies P G a,0 = 0 and the associated data at time t = 0 is a localized Dirac at x = a, y = 0, z = 0. Therefore, G a,0 satisfies the classical dispersive estimate for the wave equation in three-dimensional space; that is,

|G a,0 (T, X, Y, z, h)| ≤ Ch -3 h t .
Thus it remains to prove the theorem for the sum over 1

≤ N ≤ C 0 a -1/2 .
Lemma 2.1.6. One has

J N,a,h = e i h |η|(z ζ+t(1+ ζ2 +aω) 1/2 ) χ 0 (η 2 (1 + | ζ| 2 ))d ζ = h t 1/2 e i h |η| √ t 2 -z 2 (1+aω) 1/2 χ0 ,
where χ0 is a classical symbol of order 0 with small parameter h/t.

Proof. We apply the classical stationary phase method for J N,a,h . First we make a change of variable z = tz. Let the phase function φ be

φ( ζ; z, ω, a) = z ζ + (1 + ζ2 + aω) 1/2 .
Differentiating with respect to ζ, we get

∂ ζ φ = z + ζ (1 + ζ2 + aω) 1/2 .
On the support of χ 0 , we have

ζ (1+ ζ2 +aω) 1/2 ≤ 1-2δ 1 for some δ 1 > 0 small. If |z| ≥ 1-δ 1 , then the contribution of ζ-integration is O C ∞ ((h/t) ∞
) by integration by parts. Thus we may assume that |z| < 1 -δ 1 . In this case, the phase φ admits a unique critical point on the support of χ 0 . It is given by ζc = -z(1+aω

) 1/2 √ 1-z 2
and this critical point is nondegenerate since

∂ 2 ζ φ = 1 + aω (1 + ζ2 + aω) 3/2 > 0.
Then by the stationary phase method ( as |z| < 1 -δ 1 ), 

J N,a,h = h t 1/2 e i|η| t h √ 1-z 2 (1+aω)
G a,c 0 (t, x, y, z) = N ∈Z (-i) N a 2 (2π) 6 h 4 h t 1/2 e i h ΦN,a,h |η| 3 χ0 ψ 0 χ 1 (1 -χ 1 )dsdσdωdη, (2.1.11)
where ΦN,a,h = Φ N,a,h (., ζc , .); that is,

ΦN,a,h = yη + |η|t √ 1 -z2 (1 + aω) 1/2 + a 3/2 |η| s3 3 + s(X -ω) + σ3 3 + σ(1 -ω) - 4 3 N ω3/2 + h a 3/2 |η| N B ω3/2 a 3/2 |η|/h . (2.1.12)
First we study geometrically the set of critical points C N,a,h of the associated Lagrangian manifold Λ N,a,h for the phase function ΦN,a,h . The set of critical points is defined by

C a,N,h = {(t, x, y, s, σ, ω, η)|∂ s ΦN,a,h = ∂ σ ΦN,a,h = ∂ ω ΦN,a,h = ∂ η ΦN,a,h = 0}.
Hence C a,N,h is defined by a system of equations

x a = ω -s2 , ω = 1 + σ2 , a -1/2 t = 2(1 + aω) 1/2 √ 1 -z2 s + σ + 2N ω1/2 1 - 3 4 B ω3/2 λ , a -3/2 y = -a -3/2 t √ 1 -z2 (1 + aω) 1/2 - s3 3 -s( x a -ω) - σ3 3 -σ(1 -ω) + N ω3/2 4 3 -B ω3/2 λ .
Let Λ a,N,h ⊂ T * R 3 be the image of C a,N,h by the map

(t, x, y, s, σ, ω, η) -→ (x, t, y, ξ = ∂ x ΦN,a,h , τ = ∂ t ΦN,a,h , η = ∂ y ΦN,a,h ).
Then Λ a,N,h ⊂ T * R 3 is a Lagrangian submanifold parametrized by (s, σ, η)

x a = ω -s2 , ω = 1 + σ2 , a -1/2 t = 2(1 + aω) 1/2 √ 1 -z2 s + σ + 2N ω1/2 1 - 3 4 B ω3/2 λ , a -3/2 y = -a -3/2 t √ 1 -z2 (1 + aω) 1/2 - s3 3 -s( x a -ω) - σ3 3 -σ(1 -ω) + N ω3/2 4 3 -B ω3/2 λ , ξ = ηsa 1/2 , τ = η √ 1 -z2 (1 + a + aσ 2 ) 1/2 , η = η. Now we introduce t = a 1/2 T, y + t √ 1 -z2 = a 3/2 Y, (1 + aω) 1/2 -1 = aγ a (ω) = aω 1+(1+aω) 1/2
, and λ = a 3/2 h |η|. We get (2.1.12) as follows:

ΦN,a,h = a 3/2 |η| Y + T √ 1 -z2 γ a (ω) + s3 3 + s(X -ω) + σ3 3 + σ(1 -ω) - 4 3 N ω3/2 + h a 3/2 |η| N B ω3/2 a 3/2 |η|/h . (2.1.13)
Then C a,N,h is now defined by a system of equations

X = ω -s2 , ω = 1 + σ2 , T = 2(1 + aω) 1/2 √ 1 -z2 s + σ + 2N ω1/2 1 - 3 4 B ω3/2 λ , Y = -T √ 1 -z2 γ a (ω) - s3 3 -s(X -ω) - σ3 3 -σ(1 -ω) + N ω3/2 4 3 -B ω3/2 λ .
We may parametrize C a,N,h by (s, σ) near origin:

X = 1 + σ2 -s2 , ω = 1 + σ2 , T = 2 √ 1 -z2 (1 + a + aσ 2 ) 1/2 s + σ + 2N (1 + σ2 ) 1/2 1 - 3 4 B (1 + σ2 ) 3/2 λ , Y = H 1 (a, σ)(s + σ) + 2 3 (s 3 + σ3 ) + 4 3 N H 2 (a, σ) 1 - 3 4 B (1 + σ2 ) 3/2 λ , with H 1 (a, σ) = -(1 + σ2 ) (1 + a + aσ 2 ) 1/2 1 + (1 + a + aσ 2 ) 1/2 , H 2 (a, σ) = (1 + σ2 ) 3/2 -3 -4a -4aσ 2 2 + a + aσ 2 + 3(1 + a + aσ 2 ) 1/2 . The Lagrangian submanifold Λ a,N,h ⊂ T * R 3 is parametrized by (s, σ, η) X = 1 + σ2 -s2 , T = 2 √ 1 -z2 (1 + a + aσ 2 ) 1/2 s + σ + 2N (1 + σ2 ) 1/2 1 - 3 4 B (1 + σ2 ) 3/2 λ , Y = H 1 (a, σ)(s + σ) + 2 3 (s 3 + σ3 ) + 4 3 N H 2 (a, σ) 1 - 3 4 B (1 + σ2 ) 3/2 λ , ξ = ηsa 1/2 , τ = η √ 1 -z2 (1 + a + aσ 2 ) 1/2 , η = η.
On C a,N,h , we have ω = 1 + σ2 , thus the projection of Λ a,N,h onto R 3 is

X = 1 + σ2 -s2 , T = 2 √ 1 -z2 (1 + a + aσ 2 ) 1/2 s + σ + 2N (1 + σ2 ) 1/2 1 - 3 4 B (1 + σ2 ) 3/2 λ , Y = H 1 (a, σ)(s + σ) + 2 3 (s 3 + σ3 ) + 4 3 N H 2 (a, σ) 1 - 3 4 B (1 + σ2 ) 3/2 λ .
As in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF], we rewrite the system (2.1.14) in the following form

X = 1 + σ2 -s2 , (2.1.14) Y = H 1 (a, σ)(s + σ) + 2 3 (s 3 + σ3 ) + 2 3 H 2 (a, σ)(1 + σ2 ) -1/2 T √ 1 -z2 2(1 + a + aσ 2 ) 1/2 -s -σ , and 2N 1 - 3 4 B ω3/2 λ = (1 + σ2 ) -1/2 T √ 1 -z2 2(1 + a + aσ 2 ) 1/2 -s -σ . (2.1.15) Remark 2.1.7. Notice that from (2.1.15) in the range of T ∈]0, a -1/2 ], we can reduce the sum over N ∈ Z of G a,N in (2.1.8) to the sum over 1 ≤ N ≤ C 0 a -1/2 .
For a given a and (X, Y, T ) ∈ R 3 , (2.1.14) is a system of two equations for unknown (s, σ) and (2.1.15) gives an equation for N . We are looking for a solutions of (2.1.14) in the range

a ∈ [h α , a 0 ], α < 2/3, a|σ| 2 ≤ 0 , 0 < T ≤ a -1/2 , X ∈ [0, 1] with a 0 , 0 small. Then for a given point (X, Y, T ) ∈ [-2, 2] × R × [0, a -1/2 ]
, let us denote by N (X, Y, T ) the set of integers N ≥ 1 such that (2.1.14) admits at least one real solution (s, σ, λ) with a|σ| 2 ≤ 0 and λ ≥ λ 0 .

We observe that (2.1.15) implies for

N 0 > 0 independent of (X, Y, T ) that N (X, Y, T ) ⊂ [1, T /2 + N 0 ]. For all (X, Y, T ) ∈ [0, 1] × R × [0, a -1/2 ], there exists a constant C 0 such that |N (X, Y, T )| ≤ C 0 . Set N 1 (X, Y, T ) = |Y -Y |+|T -T |≤1,|X -X|≤1 N (X , Y , T ). In fact from (2.1.15) we have if N, N ∈ N 1 , 2|N -N | ≤ C 0 (1 + T λ -2 ω-3 ).
Hence we deduce a better estimate as follows [see Appendix E]:

|N 1 (X, Y, T )| ≤ C 0 (1 + T λ -2 ω-3 ).
We notice that for ω ≤ 3/4, we get rapid decay in λ by integration by part in σ. In particular, we may replace 1 -χ 1 by 1 in (2. 1.11). Moreover, the swallowtails will appear when s = σ = 0 i.e for ω = 1. For this reason, we introduce a cutoff function

χ 2 (ω) ∈ C ∞ 0 (]1/2, 3/2[), 0 ≤ χ 2 ≤ 1, χ 2 = 1 on ] 3 4 , 5 4 
[ in the integral (2.1.11) and we denote by G a,N,2 the corresponding integral. This G a,N,2 corresponds to the regime of swallowtails. We write G a,N = G a,N,1 + G a,N,2 . G a,N,1 is defined by introducing χ 3 in (2.1.11). We will have ω ≥ 5/4 on the support of χ 3 .

To summarize, we have G a,c 0 as follows:

G a,c 0 = 1≤N ≤C 0 a -1/2 G a,N = 1≤N ≤C 0 a -1/2 (G a,N,1 + G a,N,2 ) , where G a,N,1 = (-i) N a 2 (2π) 6 h 4 h t 1/2 e i h ΦN,a,h |η| 3 χ0 ψ 0 χ 1 χ 3 (ω)dsdσdωdη, G a,N,2 = (-i) N a 2 (2π) 6 h 4 h t 1/2 e i h ΦN,a,h |η| 3 χ0 ψ 0 χ 1 χ 2 (ω)dsdσdωdη.
In what follows, we get the estimates for these oscillatory integrals based on the (degenerate) stationary phase type result which consists in the precise study of where the phase ΦN,a,h may be stationary.

The Analysis of G a,N,1

Let us recall that the G a,N,1 is the oscillatory integral which corresponds to the regime where there are no swallowtails. Our main results of this subsection are Proposition 2.1.8 and Proposition 2.1.9.

Proposition 2.1.8. There exists C such that for all h ∈]0,

h 0 ], all a ∈ [h α , a 0 ], all X ∈ [0, 1], all T ∈]0, a -1/2
], all Y ∈ R, all z ∈ R, the following holds:

2≤N ≤C 0 a -1/2 G a,N,1 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 h 1/3 .
Proof. First of all, we apply the stationary phase method to (s, σ)-integrations since on the support of χ 3 we have ω > 1. Let I be defined by

I = e iλ s3 3 -s(ω-X)+ σ3 3 -σ(ω-1) dsdσ = (ω -X) 1/2 (ω -1) 1/2 e iλ(ω-X) 3/2 s3 3 -s e iλ(ω-1) 3/2 σ3 3 -σ dsdσ,
where in the second line we made a change of variables s = (ω -X) 1/2 s, σ = (ω -1) 1/2 σ but for simplicity, we keep the notations s, σ. Thus by the stationary phase near the critical points s = ±1, σ = ±1 and integration by parts in s, σ elsewhere we get

I = λ -1 (ω -X) -1/4 (ω -1) -1/4 e iλ(± 2 3 (ω-X) 3/2 ± 2 3 (ω-1) 3/2 ) b ± c ± + O(λ -∞ ),
with b ± , c ± are classical symbols of degree 0 in large parameter λ(ω-X) 3/2 and λ(ω-1) 3/2 respectively. Notice that I is a part of the G a,N,1 corresponding to the integrations in s, σ. Therefore, we obtain

G a,N,1 (T, X, Y, z; h) = (-i) N a 2 λ -1 (2π) 6 h 4 h t 1/2 e i a 3/2 h Y η |η| 3 Ga,N,1 dη, Ga,N,1 (T, X, Y, z; h) = 1 , 2 e iλ ΦN, 1 , 2 Θ 1 , 2 dω + O(λ -∞ ), where j = ±, Θ 1 , 2 (ω, a, λ) = χ0 ψ 0 χ 1 χ 3 (ω)(ω -X) -1/4 (ω -1) -1/4 b 1 c 2 which satisfy ωl ∂ l ωΘ 1 , 2 ≤ C l ω-1/2
, and the phase functions are given by

ΦN, 1 , 2 (T, X, z, ω; a, λ) = T √ 1 -z2 γ a (ω) + 2 3 1 (ω -X) 3/2 + 2 3 2 (ω -1) 3/2 - 4 3 N ω3/2 + N λ B(ω 3/2 λ). (2.1.16) Let us denote G a,N,1, 1 , 2 (T, X, Y, z; h) = (-i) N a 2 λ -1 (2π) 6 h 4 h t 1/2 e i a 3/2 h Y η |η| 3 Ga,N,1, 1 , 2 dη, (2.1.17) Ga,N,1, 1 , 2 (T, X, z; λ) = e iλ ΦN, 1 , 2 Θ 1 , 2 (ω, a, λ)dω.
We are reduced to proving the following inequality:

2≤N ≤C 0 a -1/2 G a,N,1, 1 , 2 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 h 1/3 , (2.1.18) with a constant C independent of h ∈]0, h 0 ], a ∈ [h 2/3 , a 0 ], X ∈ [0, 1], T ∈ [0, a -1/2 ].
For convenience, let Ω = ω3/2 be a new variable of integration and we get

Ga,N,1, 1 , 2 (T, X, z; λ) = e iλ ΦN, 1 , 2 Θ 1 , 2 (Ω, a, λ)dΩ; (2.1.19) Θ 1 , 2 (Ω, a, λ) are smooth functions with compact support in Ω. Since dω = 2 3 Ω -1/3 dΩ, we get Ω l ∂ l Ω Θ 1 , 2 ≤ C l Ω -2/3
with C l independent of a, λ and the phases (2.1.16) become

ΦN, 1 , 2 (T, X, z, ω; a, λ) = T √ 1 -z2 γ a (Ω) + 2 3 1 (Ω 2/3 -X) 3/2 + 2 3 2 (Ω 2/3 -1) 3/2 - 4 3 N Ω + N λ B(Ωλ).
We now study the critical points. We have

∂ Ω ΦN, 1 , 2 = 2 3 H a, 1 , 2 (T, X, z; Ω) -2N 1 - 3 4 B (Ωλ) , (2.1.20) H a, 1 , 2 = Ω -1/3 T 2 √ 1 -z2 (1 + aΩ 2/3 ) -1/2 + 1 (Ω 2/3 -X) 1/2 + 2 (Ω 2/3 -1) 1/2 , ∂ Ω H a, 1 , 2 = 1 3 Ω -4/3 - T 2 √ 1 -z2 (1 + aΩ 2/3 ) -3/2 (1 + 2aΩ 2/3 ) + 1 X(Ω 2/3 -X) -1/2 + 2 (Ω 2/3 -1) -1/2 .
We will first prove that (2.1.18) holds true in the case ( 1 , 2 ) = (+, +). We have that the equation ∂ Ω H a,+,+ (Ω) = 0 admits a unique solution Ω q = Ω + q (T, X, z, a) > 1 such that lim T →∞ Ω + q (T, X, z, a) = 1 uniformly in X, z, a.

(2.1.21)

0 > 9 2 Ω 5/3 q ∂ 2 Ω H a,+,+ (Ω q ) = - aT 2 √ 1 -z2 1 + aΩ 2/3 q -5/2 1 2 -aΩ 2/3 q - 1 2 Ω 2/3 q -1 -3/2 - 1 2 X Ω 2/3 q -X -3/2 .
Therefore the function H a,+,+ (Ω) is strictly increasing on [1, Ω q [ and strictly decreasing on ]Ω q , ∞[. Observe that

H a,+,+ (1) = T 2 √ 1 -z2 (1 + a) -1/2 + (1 -X) 1/2 , lim Ω→∞ H a,+,+ = 2. (2.1.22)
For all k, we have 

∀Ω ≥ 1, |∂ k Ω (N B (Ωλ))| ≤ C k N λ -2 Ω -(k+2) . ( 2 
T ≤T 0 ,X∈[0,1],Y ∈R,z∈R N (T 0 )≤N ≤C 0 a -1/2 G a,N,1,+,+ (T, X, Y, z) ∈ O(h ∞ ).
Next for 0 ≤ T ≤ T 0 and 2 ≤ N ≤ N (T 0 ), we may estimate the sum by the sup of each term. In this case, we see that ΦN,+,+ has at most a critical point of order 2 near Ω = Ω q and

|∂ Ω ΦN,+, 

+ | + |∂ 2 Ω ΦN,+,+ | + |∂ 3 Ω ΦN,+,+ | ≥ c > 0. Moreover if N ≥ 2,
+,+ is O C ∞ (λ -∞
) for large values of Ω. Near the critical point of order 2 Ω = Ω q , the estimate of Ga,N,1,+,+ is given by the Lemma 2.20 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] 

which yields | Ga,N,1,+,+ (T, X, z; λ)| ≤ Cλ -1/3 with C independent of T ∈ [0, T 0 ], X ∈ [0, 1].
Hence from (2.1.17), we get sup

X∈[0,1],Y ∈R,z∈R 2≤N ≤N (T 0 ) G a,N,1,+,+ (T, X, Y, z, h) ≤ Ch -3 h t 1/2 [h -1 a 2 λ -1 λ -1/3 ], ≤ Ch -3 h t 1/2 h 1/3 .
Then we prove that (2.1.18) holds true for T 0 ≤ T ≤ a -1/2 . As before, we may assume N ≤ C 1 T with C 1 large, the contribution of the sum on N such that C 1 T ≤ N ≤ C 0 a -1/2 being negligible. From (2.1.21), we may choose T 0 large enough so that Ω + q (T, X, z, a) < Ω 0 with Ω 0 > 1 for T ≥ T 0 and we may assume with a constant c > 0 that

|∂ 2 Ω ΦN,+,+ (Ω)| ≥ cT Ω -4/3 , ∀Ω ≥ Ω 0 , ∀T ≥ T 0 , ∀N ≤ C 0 a -1/2 .
Therefore, on the support of Θ+,+ , the phase ΦN,+,+ admits at most one critical point Ω c = Ω c (T, X, z, N, λ, a) and this critical point is nondegenerate. Since N ≥ 2, from the first item of (2.1.20) we get Ω 1/3 c ≤ T and this implies Ω

1/3 c
T /N . As a consequence, if T /N is bounded then Ω c is bounded. By stationary phase method, we get

| Ga,N,1,+,+ (T, X, z; λ)| ≤ Cλ -1/2 T -1/2 with C independent of N .
If T /N is large, then we perform the change of variable Ω = Ω(T /N ) 3 in (2.1.19); the unique critical point Ωc remains in a fixed compact interval of ]0, ∞[. We have

∂ k Ω Θ+,+ ( Ω(T /N ) 3 , a, λ) ≤ c k (N/T ) 2 Ω-2/3-k .
Thus by the stationary phase method, we get sup

2≤N ≤C 1 T,X∈[0,1],z∈R | Ga,N,1,+,+ (T, X, z; λ)| ≤ Cλ -1/2 T -1/2 .
It remains to estimate the sum

2≤N ≤C 0 a -1/2
G a,N,1,+,+ (T, X, Y, z; h) .

Let G N (T, X, z, λ, a) = ΦN,+,+ (T, X, z, Ω c (T, X, z, N, λ, a), λ, a). Then by the stationary phase method at the critical point

Ω c = Ω c (T, X, z, N, λ, a) in (2.1.19) we get Ga,N,1,+,+ (T, X, z, h) = λ -1/2 T -1/2 e iλG N (T,X,z,λ,a) ψ N (T, X, λ, a),
with ψ N (T, X, λ, a) is a classical symbol of order 0 in λ. Hence with λ = a 3/2 /h = λ/η , we have

G a,N,1,+,+ (T, X, Y, z; h) = (-i) N a 2 λ -1 (2π) 6 h 4 h t 1/2 λ -1/2 T -1/2 e i λ|η|(Y +G N (T,X,z, λη,a)) ψ N |η| 3 dη. (2.1.24)
It is an oscillatory integral with large parameter λ and phase

L N (T, X, Y, z, η λ) = |η| Y + G N (T, X, z, λη, a) .
By construction, the equation

∂ η L N = Y + G N (T, X, z, λ, a) + λ∂ λ G N (T, X, z, λ, a) = 0
implies that (X, Y, T ) belongs to the projection of Λ a,N,h on R 3 . As in the proof of Proposition 2.14 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF], we see that the contribution of G a,N,1,+,+ for the sum over

N such that N / ∈ N 1 (X, Y, T ) is O(λ -∞
). Thus it remains to estimate the sum

N ∈N 1 (X,Y,T )
G a,N,1,+,+ (T, X, Y, z, h) .

(2.1.25)

We apply the stationary phase method for η-integral with the phase function L N . We have

∂ η L N = Y + G N + λ∂ λ G N , with λ∂ λ G N = λ∂ λ ΦN,+,+ (T, X, Ω c , a, λ) = N λ -B(λΩ c ) + λΩ c B (λΩ c ) .
Then we obtain

∂ 2 η L N = N η (λΩ c )∂ λ (λΩ c )B (λΩ c ).
On the other hand, ∂ λ Ω c satisfies

∂ λ Ω c ∂ 2 Ω ΦN,+,+ (Ω c ) = -∂ λ ∂ Ω ΦN,+,+ (Ω c ) = -N Ω c B (λΩ c ).
As we have

∂ 2 Ω ΦN,+,+ (Ω c ) ≥ cT Ω -4/3 c
, Ω

1/3 c
T /N , and for ω large, we have B (ω) cω -3 . We get

|∂ λ Ω c | ≤ cT -1 Ω 4/3 c N Ω c (λ -3 Ω -3 c ) ≤ cλ -3 Ω -1 c . This yields |∂ λ (λΩ c )| = |λ∂ λ Ω c + Ω c | ≥ cΩ c (1 -cλ -2 Ω -2 c ) ≥ c Ω c . Hence we deduce that |∂ 2 η L N | ≥ CN λ -2 Ω -1 c . Therefore η-integration produces a factor q -1/2 with q = N λ -1 Ω -1 c . Let us recall that |N 1 (X, Y, T )| ≤ C 0 (1 + T λ -2 Ω -2 c ).
We get the estimates of the sum in (2.1.25) by distinguishing between many cases which depend on whether there are contributions from η-integration and |N 1 (X, Y, T )| as follows: First case, if Ω

1/3 c T /N is bounded, then T ∼ N and
• if N ≤ λ, then there is no contribution from η-integration and we have

|N 1 | ≤ C 0 .
Hence the estimate is

N ∈N 1 G a,N,1,+,+ ≤ Ch -3 h t 1/2 [h -1 λ -1 a 2 λ -1/2 T -1/2 ], ≤ Ch -3 h t 1/2 a -1/4 h 1/2 , ≤ Ch -3 h t 1/2 h 1/3 , since a -1/4 h 1/2 ≤ h 1/3 when a ≥ h 2/3 . • if λ < N ≤ λ 2 ,
then there is a contribution q -1/2 factor from η-integration and we also have

|N 1 | ≤ C 0 . We get N ∈N 1 G a,N,1,+,+ ≤ Ch -3 h t 1/2 [h -1 λ -1 a 2 λ -1/2 T -1/2 N -1/2 λ 1/2 ], ≤ Ch -3 h t 1/2 [h -1 a 2 λ -2 ], ≤ Ch -3 h t 1/2 h 1/3 .
• if N > λ 2 , then there are contributions from both q -1/2 factor from η-integration and |N 1 | ≤ C 0 T λ -2 . Thus the estimate is

N ∈N 1 G a,N,1,+,+ ≤ Ch -3 h t 1/2 N ∈N 1 [h -1 λ -1 a 2 λ -1/2 T -1/2 N -1/2 λ 1/2 ], ≤ Ch -3 h t 1/2 [h -1 λ -1 a 2 T -1 |N 1 (X, Y, T )|], ≤ Ch -3 h t 1/2 [a -5/2 h 2 ], ≤ Ch -3 h t 1/2 h 1/3 .
Second case, if T /N is large then Ω c is large. We have

• if N ≤ λΩ c
, then there is no contribution from η-integration. Moreover we have

|N 1 | ≤ C 0 . To see this point, assume by contradiction T ≥ λ 2 Ω 2 c ; this implies Ω 1/3 c T /N ≥ λΩ c which is impossible since Ω c is large. Thus the estimate is N ∈N 1 G a,N,1,+,+ ≤ Ch -3 h t 1/2 [h -1 λ -1 a 2 λ -1/2 T -1/2 ], ≤ Ch -3 h t 1/2 a -1/4 h 1/2 , ≤ Ch -3 h t 1/2 h 1/3 . • if N > λΩ c and λΩ 2/3 c < T ≤ λ 2 Ω 2 c
, then there is a contribution q -1/2 factor from η-integration and we also have

|N 1 | ≤ C 0 . We get N ∈N 1 G a,N,1,+,+ ≤ Ch -3 h t 1/2 [h -1 λ -1 a 2 λ -1/2 T -1/2 N -1/2 λ 1/2 Ω 1/2 c ], ≤ Ch -3 h t 1/2 [h -1 a 2 λ -2 ], ≤ Ch -3 h t 1/2 h 1/3 .
• if N > λΩ c and T > λ 2 Ω 2 c , then there are contributions from both q -1/2 factor from η-integration and

|N 1 | ≤ C 0 T λ -2 Ω -2 c . We get N ∈N 1 G a,N,1,+,+ ≤ Ch -3 h t 1/2 N ∈N 1 [h -1 λ -1 a 2 λ -1/2 T -1/2 N -1/2 λ 1/2 Ω 1/2 c ], ≤ Ch -3 h t 1/2 [h -1 λ -1 a 2 T -1 Ω 2/3 c |N 1 (X, Y, T )|], ≤ Ch -3 h t 1/2 [h -1 a 2 λ -3 ](T /N ) -4 , ≤ Ch -3 h t 1/2 h 1/3 .
Next, we prove that (2.1.18) holds true in the case ( 1 , 2 ) = (+, -). In this case, from the last item of (2.1.20), X ∈ [0, 1], and B (λΩ) = O(λ -3 Ω -3 ) we get that for T > 0,

∂ Ω H a,+,-(Ω) + 3N 2 λB (λΩ) < 0; that is, the function H a,+,-(Ω) + 3N 2 B (λΩ) decreases on [1, ∞[ from H a,+,-(1) + 3N 2 B (λ) = T 2 √ 1 -z2 (1 + a) -1/2 + (1 -X) 1/2 + 3N 2 B (λ) to H a,+,-+ 3N 2 B (λ.) (∞) = 0.
The equation ∂ Ω Φ N,+,-= 0 admits a unique solution Ω c and it is nondegenerate; thus we can argue as (+, +) case. Finally, the case ( 1 , 2 ) = (-, +) is similar to (+, +) case and ( 1 , 2 ) = (-, -) is similar to (+, -) case. The proof of proposition is complete. Now we prove the estimates for N = 1.

Proposition 2.1.9. There exists C such that for all h ∈]0, h 0 ], all a ∈ [h α , a 0 ], all X ∈ [0, 1], all T ∈]0, a -1/2 ], all Y ∈ R, all z ∈ R, the following holds:

|G a,1,1 (T, X, Y, z; h)| ≤ Ch -3 h t 1/2 h t 1/2 + h 1/3 . Proof. Let us recall that G a,1,1 = (-i)a 2 λ -1 (2π) 6 h 4 h t 1/2 e i a 3/2 h Y η |η| 3 Ga,1,1 dη, Ga,1,1 = 1 , 2 e iλ Φ1, 1 , 2 Θ 1 , 2 dω + O C ∞ (h ∞ ).
The only difference with the case N ≥ 2 is in the study of the phase Φ1,+,+ since in the case N = 1 we may have a critical point ωc large. Let Ga,1,1,+,+ = e iλ Φ1,+,+ Θ +,+ (ω, a, λ)dω, (2.1.26) with the phase function To prove the proposition, we just have to verify | J1,+,+ | ≤ Cλ -1/2 T -1/2 . We have

Φ1,+,+ (T, X, z; ω) = T √ 1 -z2 γ a (ω) + 2 3 (ω -X) 3/2 + 2 3 (ω -1)
∂ ω Φ1,+,+ = T 2 √ 1 -z2 (1 + aω) -1/2 - ω-1/2 2 (1 + X) + O(ω -3/2 ), ∂ 2 ω ω Φ1,+,+ = -T a 4 √ 1 -z2 (1 + aω) -3/2 + ω-3/2 4 (1 + X) + O(ω -5/2 ).
Therefore, to get a large critical point ωc , T must be small. Then we have ω-1/2 c T and thus ∂ 2 ω Φ1,+,+ (ω c ) T 3 . We make a change of variable ω = T -2 υ in (2.1.27). Since Θ +,+ (ω, a, λ) is a classical symbol in ω of order -1/2; thus T -1 υ1/2 Θ +,+ (T -2 υ, a, λ) is a symbol of order 0 in υ ≥ υ0 > 0 uniformly in T ∈]0, T 0 ] and we also have

∂ 2 υ υ Φ1,+,+ T -1 . The stationary phase method yields | J1,+,+ | ≤ Cλ -1/2 T -1/2 .

The Analysis of G a,N,2

Recall that the G a,N,2 is a sum of oscillatory integrals which corresponds to the swallowtails regime. Our result of this subsection is Proposition 2.1.10. Proposition 2.1.10. There exists C such that for all h ∈]0, h 0 ], all a ∈ [h α , a 0 ], all X ∈ [0, 1], all T ∈]0, a -1/2 ], all Y ∈ R, all z ∈ R, the following holds:

1≤N ≤C 0 a -1/2 G a,N,2 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 a 1/8 h 1/4 .
Proof. First, we rewrite G a,N,2 in the form

G a,N,2 = (-i) N a 2 (2π) 6 h 4 h t 1/2 e i a 3/2 h Y η |η| 3 Ga,N,2 dη, (2.1.28)
Ga,N,2 = e iλ φN,a,h χ0 ψ 0 χ 1 χ 2 (ω)dsdσdω, with the phase φN,a,h (T, X, z; s, σ, ω

) = T √ 1 -z2 γ a (ω) + s3 3 + s(X -ω) + σ3 3 + σ(1 -ω) - 4 3 N ω3/2 + N λ B(ω 3/2 λ).
Since ω is close to 1 on the support of χ 2 , we may localize s, σ in a compact set. Let K = {s, σ ∈ [-1, 1], ω = 1} and K 1 be a suitable neighborhood of K depending on the support of χ 2 . Introduce a cutoff function χ 4 (s, σ, ω) ∈ C ∞ 0 equal to 1 near K 1 . Then the contribution of Ga,N,2 outside K 1 is O(λ -∞ ) as a result of integration by parts. Therefore we obtain Ga,N,2 (T, X, z, h) = e iλ φN,a,h χ(s, σ, ω, a)dsdσdω + O(λ -∞ ),

(2.1.29)

χ(s, σ, ω, a, h) = χ0 ψ 0 χ 1 χ 2 (ω)χ 4 (s, σ, ω),
with O(λ -∞ ) uniform in T, X, z, N, a and χ is a classical symbol of order 0 in h with support near K 1 . We first perform the integration with respect to ω. We have

∂ ω φN,a,h = T 2 √ 1 -z2 (1 + aω) -1/2 -s -σ -2N ω1/2 1 - 3 4 B (ω 3/2 λ) , ∂ 2 ω ω φN,a,h = -N ω-1/2 (1 + O(λ -2 ω-3 )) + O(a 1/2 ).
Since ∂ 2 ω ω φN,a,h < 0, then ∂ ω φN,a,h decreases from ∂ ω φN,a,h (1) > 0 to ∂ ω φN,a,h (∞) < 0. Therefore φN,a,h admits a unique nondegenerate critical point ωc and we are interested in the values of parameters such that ωc close to 1; then we must have T = T /4N ∈ compact set of R + , say [1/2, 3/2]. In addition, from the equation ∂ ω φN,a,h = 0, we get

T 2 √ 1 -z2 (1 + aω) -1/2 = s + σ + 2N ω1/2 1 - 3 4 B (ω 3/2 λ) . (2.1.30)
Now we study the solution of (2.1.30) with λ = ∞; in this case, we have

ω1/2 (1 + aω) 1/2 = T √ 1 -z2 - 1 2N (s + σ)(1 + aω) 1/2 .
The solution of this equation is of the form ωc = f k (a, T , s/N, σ/N ) where f k are homogeneous function of degree k in (s/N, σ/N ). By comparing the terms with the same homogeneous degree in (s/N, σ/N ), we get

f 0 (1 + af 0 ) = T 2 (1 -z2 ) which gives F 0 =: f 0 = 2 T 2 (1 -z2 ) 1 + 1 + 4a T 2 (1 -z2 )
, and

(1 + 2aF 0 )f 1 = - T N √ 1 -z2 (s + σ)(1 + aF 0 ) 1/2 .
We define

F 1 : = f 1 = - E 0 N (s + σ)(1 + aF 0 ) 1/2 , E -1 0 : = F 0 1 + aF 0 1 F 0 + a 1 + aF 0 .
Therefore ωc = F 0 + F 1 + O 2 with the notation O j means any function of the form f = k≥j f k . Then by the implicit function theorem, we get that the equation

ω1/2 (1 + aω) 1/2 1 - 3 4 B (ω 3/2 λ) = T √ 1 -z2 - 1 2N (s + σ)(1 + aω) 1/2
has solution of the form ωc = F 0 + F 1 + O 2 + g 0 λ 2 with g 0 is a function of degree 0 in λ. Substituting ωc into φN,a,h , we get a phase function denoted by ΨN,a,h = φN,a,h (., ωc , .). It is given by

ΨN,a,h = T √ 1 -z2 γ a (F 0 ) + s3 3 + s(X -F 0 ) + σ3 3 + σ(1 -F 0 ) + E 0 N (1 + aF 0 ) 1/2 (s + σ) 2 - 1 4N 2 (s + σ) 3 + aN O 3 + g 0 λ 2 + N - 4 3 F 3/2 0 + g 1 λ 2 .
Hence by applying the stationary phase method for (2.1.29), we get

Ga,N,2 = 1 √ λN e iλ ΨN,a,h χ( T , s, σ, 1/N, a, h)dsdσ + O(λ -∞ ),
with χ is a classical symbol of order zero in h. Now with λ = λ/η, (2.1.28) becomes

G a,N,2 = (-i) N a 2 (2π) 6 h 4 h t 1/2 1 √ λN e i λ|η|(Y + ΨN,a,h ) |η| 3 χdsdσdη + O(λ -∞ ).
We study the η-integration with the phase function L N = η(Y + ΨN,a,h ) and a large parameter λ. Follow the arguments in the proof of Proposition 2.1.8, we have

∂ η L N = Y + ΨN,a,h + λ∂ λ ΨN,a,h = 0
implies that (X, Y, T ) belongs to the projection of Λ N,a,h on R 3 and the sum for N such that N / ∈ N 1 (X, Y, T ) gives O(λ -∞ ) [see Lemma 2.24 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]]. Hence it remains to estimate the sum

N ∈N 1 G a,N,2 (T, X, Y, z; h) .
We also have

|∂ 2 η L N | ≥ CN λ -2 ω-3/2 c
. Hence by the stationary phase method, the ηintegration gives a factor q -1/2 with q = N λ -1 since ωc ≈ 1. It yields

G a,N,2 = (-i) N a 2 (2π) 6 h 4 h t 1/2 1 √ λN λ 1/2 N -1/2 e i λL N (ηc) |η| 3 χ1 dsdσ + O(λ -∞ ). (2.1.31)
We observe that the phase function

L N (η c ) satisfies ∂ sL N (η c ) = η c ∂ s ΨN,a,h , ∂ σL N (η c ) = η c ∂ σ ΨN,a,h . Moreover, when ∂ sL N (η c ) = ∂ 2 s L N (η c ) = 0 ; that is, when ∂ s ΨN,a,h = ∂ 2 s ΨN,a,h = 0, we have ∂ 3 s L N (η c ) = η c ∂ 3
s ΨN,a,h and similar for σ. Thus the study the critical points of the phase L N (η c ) in (s, σ)-integrations is the same as ones with the phase ΨN,a,h . As in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF], to avoid multiplication of symbol by a classical symbol of order 0 in λ, we can replace ΨN,a,h by ψa,N,h , where ψN,a,h (T, X;

s, σ) = T √ 1 -z2 γ a (F 0 ) + s3 3 + s(X -F 0 ) + σ3 3 + σ(1 -F 0 ) + G 0 N (1 + aF 0 ) 1/2 (s + σ) 2 - 1 4N 2 (s + σ) 3 + aN O 3 .
In what follows, we get the estimates of the oscillatory integral associated with the phase function ψa,N,h for different values of N , namely for N ≥ λ 1/3 and N < λ 1/3 . Our results are Lemma 2.1.11 and Lemma 2.1.12.

Lemma 2.1.11. There exists C such that for all N ≥ λ 1/3 , 1 √ N e iλ ψN,a,h χ1 dsdσ ≤ Cλ -5/6 .

(2.1.32)

Here remark that C is any constant that is independent of N ≥ 1, X ∈ [0, 1], T ∈ ]0, a -1/2 ], a ∈ [h α , a 0 ] and λ ∈ [λ 0 , ∞[ with a 0 small and λ 0 large.

Proof. Adapting the arguments in the proof of Lemma 2.25 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. It is sufficient to prove that for all N ≥ λ 1/3 , e iλ ψN,a,h χ1 dsdσ ≤ Cλ -2/3 .

(2.1.33)

Set X -F 0 = -Aλ -2/3 , 1 -F 0 = -Bλ -2/3 , s = λ -1/3
x , σ = λ -1/3 y . It remains to prove that e i ψN,a,h χ1 (λ -1/3 x , λ -1/3 y , ...)dx dy ≤ C, (2.1.34)

with the phase function ψN,a,h given by ψN,a,h

= T λ √ 1 -z2 γ a (F 0 ) -Ax + x 3 3 -By + y 3 3 + E 0 λ 1/3 N (1 + aF 0 ) 1/2 (x + y ) 2 - 1 4N 2 (x + y ) 3 + aN O 3 .
Then (2.1.34) is an oscillatory integral over a domain of integration of size λ 1/3 with parameters F 0 , E 0 , λ 1/3 /N are bounded and we will prove that the constant C is uniform in (A, B) = (r cos θ, r sin θ) with r ≤ c 0 λ 2/3 . We have

∂ x ψN,a,h = -A + x 2 + 2E 0 N (1 + aF 0 ) 1/2 λ 1/3 (x + y ) - 3 4N 2 (x + y ) 2 + aO (x , y ) 2 , ∂ y ψN,a,h = -B + y 2 + 2E 0 N (1 + aF 0 ) 1/2 λ 1/3 (x + y ) - 3 4N 2 (x + y ) 2 + aO (x , y ) 2 .
Moreover, the compactly support of χ1 in (s, σ) yields sup

(x ,y ) ∂ α (x ,y ) χ1 (λ -1/3 x , λ -1/3 y , ...) ≤ C α (1 + |x | + |y |) -|α| ,
with C α independent of T, a, N, λ. Therefore for r ∈ [0, r 0 ], ∀r 0 the oscillatory integral is bounded by integration by parts for large (x, y).

For r ∈ [r 0 , c 0 λ 2/3 ], we rescale variables (x , y ) = r 1/2 (x , y ) and we set ψN,a,h = r 3/2 ψ * N,a,h and χ (x , y , ...) = χ1 (r 1/2 λ -1/3 x , r 1/2 λ -1/3 y , ...). Since r 1/2 λ -1/3 is bounded, we still have sup

(x ,y ) ∂ α (x ,y ) χ ≤ C α (1 + |x | + |y |) -|α| .
It remains to prove r e ir 3/2 ψ * N,a,h χ dx dy ≤ C.

(2.1.35)

Now we study the critical points of ψ * N,a,h . We have

∂ x ψ * N,a,h = -cos θ + x 2 - 3 4N 2 (x + y ) 2 + O(r -1/2 + a), ∂ y ψ * N,a,h = -sin θ + y 2 - 3 4N 2 (x + y ) 2 + O(r -1/2 + a).
For small a and large r 0 , we may localize the integral to a compact set in (x , y ) as a result of integration by parts for large (x , y ). The Hessian of ψ * N,a,h ,

H N (x , y ) = 4x y - 3 N 2 (x + y ) 2 + O(r -1/2 + a).
Thus for N ≥ 2, a small and r 0 large, outside (x , y ) = (0, 0), define a smooth curve Γ = {(x , y ) such that H N (x , y ) = 0}; that is, Γ is close to the union of two lines

c(x + y ) ± (x -y ) = 0, c 2 = N 2 -3 N 2 ∈ [1/4, 1]
. Then we have 2 cases to consider

• The contribution of points (x , y ) outside Γ to the integral is O(r -3/2 ) by the usual stationary phase method and we get r e ir 3/2 ψ * N,a,h χ dx dy ≤ Cr -1/2 .

• The contribution of points (x , y ) close to Γ is given by Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. For any values of θ, the hypothesis of part (a) Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] holds true, then we get r e ir 3/2 ψ * N,a,h χ dx dy ≤ Cr(r 3/2 ) -5/6 = Cr -1/4 .

Hence in any cases, (2.1.35) is satisfied.

To summarize, recall that T ∼ N and

|N 1 (X, Y, T )| ≤ C 0 (1 + T λ -2
) in this case. We deduce the estimates for the sum of G a,N,2 with Lemma 2.1.11 for N ≥ λ 1/3 as follows:

• If λ 1/3 ≤ N ≤ λ, there is no contribution from η-integration and we have |N 1 | ≤ C 0 .

We obtain

N ∈N 1 G a,N,2 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 [h -1 a 2 λ -1/2 λ -5/6 ], ≤ Ch -3 h t 1/2 h 1/3 . • If λ ≤ N ≤ λ 2 ,
then there is a q -1/2 factor contribution from η-integration and we also have

|N 1 | ≤ C 0 . We get N ∈N 1 G a,N,2 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 [h -1 a 2 T -1/2 λ -5/6 ], ≤ Ch -3 h t 1/2 [h -1 a 2 λ -1/2 λ -5/6 ], ≤ Ch -3 h t 1/2 h 1/3 .
• If N > λ 2 , then there are contributions from both q -1/2 from η-integration and

|N 1 | ≤ C 0 T λ -2 . We get N ∈N 1 G a,N,2 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 N ∈N 1 h -1 a 2 1 N λ -2/3 , ≤ Ch -3 h t 1/2 [h -1 a 2 λ -2/3 T -1 |N 1 (X, Y, T )|], ≤ Ch -3 h t 1/2 [a -2 h 5/3 ], ≤ Ch -3 h t 1/2 h 1/3 .
Lemma 2.1.12. There exists C such that for all N < λ 1/3 ,

1 √ N e iλ ψN,a,h χ1 dsdσ ≤ CN -1/4 λ -3/4 . (2.1.36)
Notice that Lemma 2.1.12 says that for N large it gives a better estimate and it is compatible with the estimate (2.1.32) for N λ 1/3 .

Proof. Let λ N 3 = Λ ≥ 1 and we take Λ as a new large parameter. To get the estimates of our oscillatory integral, we set X -

F 0 = -pN -2 , 1 -F 0 = -qN -2 , s = -x/N, σ = -ȳ/N . It yields ψN,a,h = N -3
ψN,a,h . Then it remains to prove that e iΛ ψN,a,h χ1 (x/N, ȳ/N, ...)dxdȳ ≤ CΛ -3/4 , (2.1.37)

with the phase ψN,a,h takes the form ψN,a,h = px -

x3 3 + q ȳ - ȳ3 3 + E 0 (1 + aF 0 ) 1/2 (x + ȳ) 2 + 1 4N 2 (x + ȳ) 3 + T N 3 √ 1 -z2 γ a (F 0 ) + aN -2 O (x, ȳ) 3 .
We have

∂ x ψN,a,h = p -x2 + 2E 0 (1 + aF 0 ) 1/2 (x + ȳ) + 3 4N 2 (x + ȳ) 2 + aO (x, ȳ) 2 , (2.1.38) ∂ ȳ ψN,a,h = q -ȳ2 + 2E 0 (1 + aF 0 ) 1/2 (x + ȳ) + 3 4N 2 (x + ȳ) 2 + aO (x, ȳ) 2 ,
and the Hessian of ψN,a,h is

H N (x, ȳ, a) = 4xȳ -4E 0 (1 + aF 0 ) 1/2 (x + ȳ) - 3 N 2 (x + ȳ) 2 + aO (x, ȳ) .
Lemma 2.1.13. There exist r 0 and C such that for all (p, q) with |(p, q)| ≥ r 0 , e iΛ ψN,a,h χ1 (x/N, ȳ/N, ...)dxdȳ ≤ CΛ -5/6 .

(2.1.39)

Proof of Lemma 2.1.13. Apply the arguments in the proof of Lemma 2.26 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. Set (p, q) = (r cos θ, r sin θ) with r ≥ r 0 . Let χ ∈ C ∞ 0 (|(x, ȳ)| < c) with small c and χ = 1 near 0. Then from (2.1.38), we get by integration by parts in (x, ȳ), for all k, e iΛ ψN,a,h χ(r -1/2 (x, ȳ)) χ1 (x/N, ȳ/N, ...)dxdȳ ≤ Cr -k Λ -k .

For (x, ȳ) large, we make a change of variable (x, ȳ) = r 1/2 (x , y ) and set ψ N,a,h = r -3/2 ψN,a,h . Then it remains to prove r e ir 3/2 Λ ψ N,a,h (1 -χ)(x , y ) χ1 (r 1/2 x /N, r 1/2 y /N, ...)dx dy ≤ CΛ -5/6 .

We observe that since (1 -χ)(x , y ) = 0 near 0, (1 -χ)(x , y ) = 1 for |(x , y )| ≥ c and χ1 is compactly support, we still have sup

(x ,y ) ∂ α (x ,y ) (1 -χ)(x , y ) χ1 (r 1/2 x /N, r 1/2 y /N, ...) ≤ C α (1 + |x | + |y |) -|α| .
The phase ψ N,a,h is of the form ψ N,a,h = cos θx -

x 3 3 + sin θy - y 3 3 + 1 4N 2 (x + y ) 3 + T N 3 r 3/2 √ 1 -z2 γ a (F 0 ) + O(r -1/2 + a).
We get that

∂ x ψ N,a,h = cos θ -x 2 + 3 4N 2 (x + y ) 2 + O(r -1/2 + a), ∂ y ψ N,a,h = sin θ -y 2 + 3 4N 2 (x + y ) 2 + O(r -1/2 + a).
Thus for small a and large r 0 , by integration by parts, we may localize the integral to a compact set in (x , y ). The Hessian of ψ N,a,h is

H N (x , y , a) = 4x y - 3 N 2 (x + y ) 2 + O(r -1/2 + a).
The same argument as before, for N ≥ 2, a small and r 0 large, outside (x , y ) = (0, 0), we set Γ = {(x , y ) such that H N (x , y ) = 0} and there are 2 cases to consider:

• The contribution of points (x , y ) outside Γ to the integral is O(r -3/2 Λ -1 ) by the usual stationary phase method; that is, r e ir 3/2 Λ ψ N,a,h (1 -χ)(x , y ) χ1 (r 1/2 x /N, r 1/2 y /N, ...)dx dy ≤ Cr -1/2 Λ -1 .

• The contribution of points (x , y ) close to Γ given by Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. For any values of θ, the hypothesis of part (a) Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] holds true, then we get r e ir 3/2 Λ ψ N,a,h (1 -χ)(x , y ) χ1 (r 1/2 x /N, r 1/2 y /N, ...)dx dy ≤ Cr(r 3/2 Λ) -5/6 , ≤ Cr -1/4 Λ -5/6 . Lemma 2.1.14. There exist r 0 and C such that for all (p, q) with |(p, q)| ≤ r 0 , e iΛ ψN,a,h χ1 (x/N, ȳ/N, ...)dxdȳ ≤ CΛ -3/4 .

(2.1.40)

Proof of Lemma 2.1.14. Now we consider the case |(p, q)| ≤ r 0 . There exists c > 0 independent of N ≥ 2 such that

∀(x, ȳ) ∈ R 2 , x2 - 3 4N 2 (x + ȳ) 2 + ȳ2 - 3 4N 2 (x + ȳ) 2 ≥ c(x 2 + ȳ2 ).
(2.1.41)

Then by integration by parts, (2.1.38) gives a contribution O C ∞ (Λ -∞ ) to the integral (2.1.37) for large values (x, ȳ). Then we may assume that (x, ȳ) is in compact set. It remains to prove

e iΛ ψN,a,h χ1 dxdȳ ≤ CΛ -3/4 , with the phase ψN,a,h = px - x3 3 + q ȳ - ȳ3 3 + T (x + ȳ) 2 + 1 4N 2 (x + ȳ) 3 + T N 3 √ 1 -z2 γ a (F 0 ) + O(a).
We have

∂ x ψN,a,h = p -x2 + 2 T (x + ȳ) + 3 4N 2 (x + ȳ) 2 + O(a), ∂ ȳ ψN,a,h = q -ȳ2 + 2 T (x + ȳ) + 3 4N 2 (x + ȳ) 2 + O(a),
and the Hessian of ψN,a,h is

H N (x, ȳ, T , a) = 4xȳ -4 T (x + ȳ) - 3 N 2 (x + ȳ) 2 + O(a).
For a small, the set Γ = {(x, ȳ) such that H N (x, ȳ) = 0} is a smooth curve that is close to the elliptic 4xȳ -4 T (x + ȳ) -3(x + ȳ) 2 = 0 for N = 1 and close to hyperbola 4xȳ -4 T (x + ȳ) -3 N 2 (x + ȳ) 2 = 0 for N ≥ 2. It remains to use Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] [see Appendix] for (x, ȳ) near (p, q) with |(p, q)| ≤ r 0 . Then there are 3 cases to consider:

• If (p, q) is outside Γ, then the contribution to the integral is O(Λ -1 ) by usual stationary phase method.

• If (0, 0) = (p, q) is close to Γ, the contribution to the integral is given by Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. Since the hypothesis of part (a) in Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] holds true, then near (p, q) the contribution to the integral is O(Λ -5/6 ).

• If (p, q) = (0, 0), we have (x, y) near (0, 0) and hypothesis of part (b) in Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] holds true. Then the contribution to the integral is O(Λ -3/4 ).

Lemma 2.1.13 and Lemma 2.1.14 yield the proof of Lemma 2.1.12.

Notice that when N < λ 1/3 , there is no contribution from η-integration and we have |N 1 | ≤ C 0 . As a consequence, we obtain the estimates for the sum of G a,N,2 for N < λ 1/3 as follows:

N ∈N 1 G a,N,2 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 [h -1 a 2 λ -1/2 N -1/4 λ -3/4 ], ≤ Ch -3 h t 1/2 [a 1/8 h 1/4 N -1/4 ].
We notice that we get the same estimates for N = 1,

|G a,1,2 (T, X, Y, z; h)| ≤ Ch -3 h t 1/2 [h -1 a 2 λ -1/2 λ -3/4 ], ≤ Ch -3 h t 1/2 [a 1/8 h 1/4 ].
To summarize, putting these estimates together we proved that

1≤N ≤C 0 a -1/2 G a,N,2 (T, X, Y, z; h) ≤ Ch -3 h t 1/2 [h 1/3 + a 1/8 h 1/4 ].
Notice that h 1/3 ≤ a 1/8 h 1/4 when a ≥ h 2/3 ; hence the proof of the Proposition 2.1.10 is complete.

Proof of Theorem 2.1.5. Putting the estimates in Proposition 2.1.8, 2.1.9 and 2.1.10 together yields the desired result.

Dispersive Estimates for

0 √ a ≤ η ≤ c 0 .
In this section, we prove Theorem 1.4.2. Recall that we have

G a (t, x, y, z) = 1 4π 2 h 2 k≥1 e i h Φ k σ k dηdζ, (2.2.1)
where the phase Φ k and the function σ k are defined by

Φ k = yη + zζ + t(η 2 + ζ 2 + ω k h 2/3 η 4/3 ) 1/2 , σ k = e k (x, η/h)e k (a, η/h)χ 0 (ζ 2 + η 2 )χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k ).
We have to get L ∞ estimates for G a in the range t ∈ [h, 1], when the integral in (2.2.1) is restricted to values of η ∈ [ 0 √ a, c 0 ] with c 0 small. Let µ 2 be defined by

µ 2 = η 2 + ω k h 2/3 η 4/3 .
Observe that µ 2 is small since ω k h 2/3 η 4/3 is small by the truncation χ 1 and η is small.

Let χ 4 ∈ C ∞ 0 ] -1, 1[ with χ 4 = 1 on [-1/2, 1/2] and D ≥ 1.
Let N a (t, x, y, z) be defined by

N a (t, x, y, z) = 1 4π 2 h 2 k≥1 e i h Φ k χ 4 tµ 2 Dh σ k dηdζ.
The following lemma tells us that N a satisfies the free dispersive estimate.

Lemma 2.2.1. There exists C independent of D such that

|N a (t, x, y, z)| ≤ Ch -3 h t D.
Proof. On the support of χ 4 , one has η 2 ≤ Dh/t and hω

3/2 k η 2 ≤ (Dh/t -η 2 ) 3/2 . This implies that the sum over k is restricted to k ≤ c 0 (Dh/t-η 2 ) 3/2 hη 2
. Since e k (x, η/h) = Using Lemmas 2.2.1 and 2.2.2, we are now reduced to the study of

1 4π 2 h 2 (h/t) 1/2 k≥1 e i h (yη+tµ(1-z 2 ) 1/2 ) σk µ dη (2.2.5)
where σk is defined by

σk = σ 0 (z * , η, µ 2 ; λ)(1 -χ 4 ( tµ 2 Dh ))e k (x, η/h)e k (a, η/h)χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k ).
To get L ∞ estimate for the parametrix in the range η ∈ [ 0 √ a, c 0 ], we will use a Litttlewood-Paley decomposition in η. We choose ψ 1 ∈ C ∞ 0 (]0.5, 2.5[), 0 ≤ ψ 1 ≤ 1 such that m∈Z ψ 1 (2 m x) = 1 for all x > 0, and we introduce the cut-off function ψ 1 ( η 2 m √ a ) in (2.2.5). In the sequel, we will therefore have

0 ≤ 2 m ≤ c 0 / √ a.
We will use the notations

η = 2 m √ a η, h = 2 m √ a h µ 2 = η 2 + ω k h 2/3 η 4/3 = (2 m √ a) 2 (η 2 + ω k h2/3 η4/3 ) = (2 m √ a) 2 μ2 γ = ω k h 2/3 η -2/3 = ω k h2/3 η-2/3
We define G a,m by the formula

G a,m (t, x, y, z) = 1 4π 2 h 2 (h/t) 1/2 k≥1 e i h (yη+tµ(1-z 2 ) 1/2 ) ψ 1 η 2 m √ a σk µ dη. (2.2.6)
Observe that due to the truncation χ 1 , we have k ≤ ε hη 2 in the above sum. Using the change of variable η = 2 m √ aη, we get with ỹ = y/t, since dη/µ = dη/μ

G a,m (t, x, y, z) = 1 4π 2 h 2 (h/t) 1/2 1≤k≤ ε (2 m √ a) 3 h e it h (ỹ η+μ(1-z 2 ) 1/2 ) g k ψ 1 (η)dη, (2.2.7)
where g k is defined by

g k = 1 μ σ 0 (z * , η, µ 2 ; λ)(1 -χ 4 ( tµ 2 Dh ))e k (x, η/ h)e k (a, η/ h)χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k ).
Lemma 2.2.3. Let M ≥ 1 be given. There exists C M such that for all m, a, h such that 2 m √ a ≤ hM , the following holds true:

|G a,m | ≤ C M h -3 (h/t) 1/2 2 m √ a| log(2 m √ a)|. (2.2.8)
Proof. One has h ≥ 1/M and therefore

|e k (x, η/ h)| ≤ Ck -1/6 ( η h ) 1/3 ω -1/4 k . Moreover, we have μ ≥ ω 1/2 k h1/3 η2/3 . Therefore we get |G a,m | ≤ C h -2 (h/t) 1/2 1≤k≤ ε (2 m √ a) 3 h ω -1/2 k h-1/3 k -1/3 ( 1 h) 2/3 ω -1/2 k ≤ C h -3 (h/t) 1/2 2 m √ a| log(2 2m ah)| ≤ Ch -3 (h/t) 1/2 2 m √ a| log(2 m √ a)|. (2.2.9)
From the above lemma, we get in the range h ≥ 1/M the estimate

|G a,m | ≤ C M h -3 (h/t) 1/2 (2 m √ a) 1/3 (hM ) 2/3 | log(hM )|. (2.2.10)
This estimate is even better than the free estimate Ch -3 (h/t). Therefore, in the sequel we will assume h ≤ h0 with h0 small. To establish the local in time estimates for the G a,m , we follow the strategy of section 2.1 . We distinguish between two different cases. 

1 x≤a G a,m (t, x, y, z) L ∞ ≤ Ch -3 (2 m √ a) 1/3 h t 5/6 . (2.2.11) Proof. Recall that G a,m is defined by G a,m (t, x, y, z) = 1 4π 2 h 2 (h/t) 1/2 1≤k≤ ε (2 m √ a) 3 h e it h (ỹ η+μ(1-z 2 ) 1/2 ) g k ψ 1 (η)dη, (2.2.12) 
with g k equal to

g k = 1 μ σ 0 (z * , η, µ 2 ; λ)(1 -χ 4 ( tµ 2 Dh ))e k (x, η/ h)e k (a, η/ h)χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k ).
Recall from (2.2.10) that we may assume h ≤ h0 with h0 small. Since G a,m contains Airy functions which behave differently depending on the various values of k, we split the sum over k in (2.2.12) in two pieces. We fix a large constant D and we write G a,m = G a,m,< + G a,m,> , where in G a,m,< only the sum over 1 ≤ k ≤ D his considered.

Proof of (2.2.11) for G a,m,< .

Recall the definition of G a,m,< :

G a,m,< (t, x, y, z) = 1 4π 2 h 2 (h/t) 1/2 1≤k≤D h- e it h (ỹ η+μ(1-z 2 ) 1/2 ) g k ψ 1 (η)dη.
(2.2.13)

g k = f 2 k k -1/3 ( η2/3 μh2/3 )σ 0 (z * , η, µ 2 ; λ)(1 -χ 4 ( tµ 2 Dh ))χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k )n k . n k = Ai((η/ h) 2/3 x -ω k )Ai((η/ h) 2/3 a -ω k ).
Let us first assume t2 m √ a ≤ h . Since we have μ = (η 2 + ω k h2/3 η4/3 ) 1/2 ≥ η, we get the estimate

|g k | ≤ C h-2/3 k -1/3 Ai((η/ h) 2/3 x -ω k )Ai((η/ h) 2/3 a -ω k ) . By Lemma 2.1.2, this implies 1≤k≤D h- |g k | ≤ C h-2/3 ( h-) 1/3 ≤ C( h) -2/3 (t2 m √ a) -1/3 = Ch -1 (2 m √ a) 1/3 h t 1/3
and (2.2.11) follows from (2.2.13).

Let us now assume t2 m √ a ≥ h . Observe that in the range k ≤ Dh -, we have

ω k h2/3 ≤ C h2/3(1-) ≤ C h2/3(1-) 0 small. Hence γ = ω k h2/3 η-2/3 is small and μ = η(1 + γ) 1/2 = η + η1/3 ω k h2/3 /2 + O((ω k h2/3 ) 2 ). Therefore we get | ∂ 2 μ ∂ η2 | ≥ cω k h2/3 with c > 0, and for all j ≥ 2, | ∂ j μ ∂ ηj | ≤ C j ω k h2/3 .
We will apply the stationary phase in η in each term of the sum in (2.2.13) with the phase function Φ

k (η) = t h (ỹ η + μ(1-z2 ) 1/2 ). Let Λ k = t h-1/3 ω k 2 m √
a, and let Ψ k (η) the phase function defined by

tΦ k h = Λ k Ψ k .
Lemma 2.2.5. Let gk = k 1/3 h2/3 g k . There exists C such that for all 1 ≤ k ≤ D h-, the following holds true:

e iΛ k Ψ k gk ψ 1 (η)dη ≤ C min 1, Λ -1/2 k . ( 2 

.2.14)

Proof. We may assume Λ k ≥ 1 since we have

|g k | ≤ C. Recall from Lemma 2.2.2 that we may assume √ 1 -z2 µ = 2 m √ aμ 2 m √ a.
Therefore, there exists c > 0 such that for all 1 ≤ k ≤ D hone has

∂ 2 Ψ k ∂ η2 = t hΛ k ∂ 2 μ ∂ η2 √ 1 -z2 ≥ c > 0
and for all j ≥ 2, ∂ j Ψ k ∂ ηj ≤ C j . Thus, to apply the stationary phase, we just need to check that there exist ν > 0 and for all j, a constant C j such that

∂ j gk ∂ ηj ≤ C j Λ j(1/2-ν) k , ∀k ≤ D h-. (2.2.15) 
In Lemma 2.2.2, z * is defined by z = -1 + z * µ 2 , but since we have here µ 2 m √ a we may as well define z * by z = -1 + z * 2 2m a. Then z * becomes independent of η. Recall λ = tµ 2 /h. Since η = 2 m √ aη and all the derivatives of γ and μ with respect to η are bounded, we get | ∂ j λ ∂ ηj | ≤ C j λ for all j. Since λ is bounded on the support of derivatives of χ 4 , the term

f 2 k η2/3 σ 0 (z * , η, µ 2 ; λ)(1 -χ 4 ( tµ 2 Dh ))χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k )
satisfies the estimate (2.2.15), and it remains to show that the function Ai(

( η h ) 2/3 x -ω k ) satisfies the estimate (2.2.15) uniformly in x ∈ [0, a]. Let θ = x h-2/3 ≥ 0 and r = η2/3 which belongs to a compact subset of ]0, ∞[. One has ∂ l r (Ai(rθ-ω k )) (rθ) l Ai (l) (rθ-ω k ). Since for all l one has sup b≥0 |b l Ai (l) (b -ω k )| ≤ C l ω 3l/2 k
we get that (2.2.15) holds true if

∃β > 3, c > 0, cω β k ≤ Λ k = t h-1/3 ω k 2 m √ a
We have t2 m √ a ≥ h , and cω 2 k ≤ h-4 /3 , thus this holds for < 1/7.

Therefore we get the following estimate for G a,m,< and t2 m √ a ≥ h

1 x≤a G a,m,< (t, x, y, z) L ∞ ≤ Ch -2 h t 1/2 1≤k≤D h- k -1/3 h-2/3 (t h-1/3 ω k 2 m √ a) -1/2 ≤ Ch -2 h t 1/2 (t2 m √ a) -1/2 h-(1/2+ /3) ≤ Ch -3 (2 m √ a) 1/3 h t 5/6 × h t h 1/3 (2 m √ a) -1/3 (t2 m √ a) -1/2 h-(1/2+ /3) .
This concludes the proof of Proposition 2.2.4 for G a,m,< since t2 m √ a ≥ h implies

h 2/3 t -1/6 (2 m √ a) -5/6 h-(1/2+ /3) ≤ h1/6-/2 .
Proof of (2.2.11) for G a,m,> .

For k ≥ D hwith D large and a ≤ h2/3(1-) one has

ω k -h-2/3 η2/3 a ≥ ω k /2.
Since γ = ω k h2/3 η-2/3 , we get γ -a ≥ a and γ -a ≥ γ/2. Then by the definition of e k and asymptotic of the Airy functions, we obtain

G a,m,> (t, x, y, z) = h-≤k≤ ε (2 m √ a) 3 h 1 4π 2 h 2 h t 1/2 ±,± e i h Φ ±,± k σ ±,± k ψ 1 (η)dη, (2.2.16) 
with phase functions defined by

Φ ±,± k (η) = η y + t √ 1 -z2 (1 + γ) 1/2 ± 2 3 (γ -x) 3/2 ± 2 3 (γ -a) 3/2 , (2.2.17) 
and the symbols are given by

σ ±,± k (η) = f 2 k k -1/3 h-1/3 η-2/3 σ 0 (z * , η, µ 2 , λ)(1 -χ 4 ( tµ 2 Dh ))χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 ( ω k )) × (γ -x) -1/4 (γ -a) -1/4 (1 + γ) -1/2 ω ± ω ± Ψ ± η2/3 h-2/3 (γ -x) Ψ ± η2/3 h-2/3 (γ -a) ,
where Ψ ± are classical symbols of order 0 at infinity. In Lemma 2.2.2, z * is defined by z = -1 + z * µ 2 , but since we have here µ 2 m √ a(1 + ω k h2/3 ) 1/2 we may as well define z * by z = -1 + z * 2 2m a(1 + ω k h2/3 ). Then z * becomes independent of η. Observe that for all j, there exists C j , C j such that for all k one has

|∂ j ηγ| C j γ, |∂ j η μ| ≤ C j μ, |∂ j ηµ 2 | ≤ C j µ 2 ≤ C j . Since λ = tµ 2 /h = t2 m √ a h (1 + γ), we get | ∂ j λ ∂ ηj | ≤ C j λ for all j.
Finally, λ is bounded on the support of derivatives of χ 4 and there exists c 1 > 0 such that η2/3 h-2/3 (γ -a) ≥ c 1 . Since γ (k h) 2/3 , we get that for all j, there exists C j such that for all k one has

|∂ j ησ ±,± k (η)| ≤ C j (k h) -2/3 (1 + γ) -1/2 .
(2.2.18)

We notice that for the values of k

, D h-≤ k ≤ 1 hη 2 , we get γ ∈ [2a, 1 2 2m a ].
In what follows, we distinguish between the two cases:

γ ∈ [2a, 1] and γ ∈ [1, 1 2 2m a ]. • The first case γ ∈ [2a, 1] corresponds to h-≤ k ≤ h-1 . Let Λ k = t2 m √ aω k h-1/3 and Φ ±,± k = hΛ k Ψ ±,± k .
Proposition 2.2.6. There exists a constant

C independent of a ∈]0, h2/3(1-) ], t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R, and k ∈ [ h-, h-1 ]
such that the following holds: Hence the corresponding estimate of G a,m,> for h-≤ k ≤ h-1 is given by

e iΛ k Ψ ±,± k σ ±,± k ψ 1 (η)dη ≤ C( hk) -2/3 Λ -1/3 k . Proof of
1 x≤a G a,m,> (t, x, y, z) L ∞ ≤ Ch -2 h t 1/2 h-≤k≤ h-1 ( hk) -2/3 (t2 m √ aω k h-1/3 ) -1/3 ≤ Ch -2 h t 1/2 h-2/3 (t2 m √ a) -1/3 h1/9 k≤1/ h k -8/9 ≤ Ch -3 h t 5/6 (2 m √ a) 1/3 . • The second case γ ∈ [1, 1 2 2m a ] corresponds to h-1 ≤ k ≤ 1 2 2m ah . We still define Λ k and Ψ ±,± k by Λ k = t2 m √ aω k h-1/3 and Φ ±,± k = hΛ k Ψ ±,± k . Proposition 2.2.7. There exists a constant C independent of a ∈]0, h2/3(1-) ], t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R, and k ∈ [ h-1 , 1 2 
2m ah ] such that the following holds:

e iΛ k Ψ ±,± k σ ±,± k ψ 1 (η)dη ≤ C( hk) -1 Λ -1/3 k . Proof of Proposition 2.2.7 . One has γ (k h) 2/3 . Thus γ ≥ 1 and (2.2.18) imply |∂ j ησ ±,± k (η)| ≤ C j (k h) -1 . Hence Proposition 2.2.7 is obvious for Λ k ≤ 1. In the case Λ k ≥ 1 we proceed as in the Proposition 2.1.3 . Recall that z is close to -1 and z = -1 + z * 2 2m a(1 + ω k h2/3 ) with z * in a compact set of ]0, ∞[. We write t √ 1 -z2 hΛ k 1 + 2γ/3 (1 + γ) 1/2 = √ z * (1 -z) 1/2 η-2/3 F (γ), F (γ) = 2(1 + ω k h2/3 ) 1/2 3(1 + γ) 1/2 (1 + 1/γ).
For γ large one has F (γ) 1, F (γ) + γ F (γ) 1. Moreover, one has

ω k h2/3 (2 F (γ) + γ F (γ)) ω k h2/3 γ -1 1.
Hence the proof is the same as the proof of Proposition 2.1.3, if one replaces (h, F ) in Proposition 2.1.3 by ( h, F ).

Using Proposition 2.2.7, we get the estimate of G a,m,> for h-1 ≤ k ≤ 1 2 2m ah :

1 x≤a G a,m,> (t, x, y, z) L ∞ ≤ Ch -2 h t 1/2 h-1 ≤k ( hk) -1 (t2 m √ aω k h-1/3 ) -1/3 ≤ Ch -2 h t 1/2 t -1/3 (2 m √ a) -1/3 h-8/9 h-1 ≤k k -11/9 ≤ Ch -3 h t 5/6 (2 m √ a) 1/3 .
This concludes the proof of Proposition 2.2.4.

Dispersive

Estimates for a ≥ h2 3 (1-) , for ∈]0, [.

In this subsection, we assume a ≥ h2 3 (1-) , for some ∈]0, [ and we establish a local in time dispersive estimates for G a,m . Observe that Λ = a 3/2 / h ≥ his a large parameter. Recall from (2.2.12) that G a,m is defined by

G a,m (t, x, y, z) = 1 4π 2 h 2 (h/t) 1/2 1≤k≤ ε (2 m √ a) 3 h e i h (y η+tμ(1-z 2 ) 1/2 ) g(ω k , η, h)ψ 1 (η)dη, (2.2.19) with g(ω k , η, h) equal to g = 1 μσ 0 (z * , η, µ 2 ; λ)(1 -χ 4 ( tµ 2 Dh ))e k (x, η/ h)e k (a, η/ h)χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k ),
and we recall h = 2 m √ a h, η = 2 m √ aη, µ = 2 m √ aμ, and

γ = ω h2/3 η-2/3 , μ = η(1 + γ) 1/2 .
We will use the same notations as in section 2.1, t = a 1/2 T, x = aX, y +t

√ 1 -z2 = a 3/2 Y . Let ω = η2/3 h-2/3 aω. We get γ = aω and (1 + aω) 1/2 -1 = aγ a (ω) = aω 1+(1+aω) 1/2 . Then
Then the projection of Λ a,m,N,h onto R 3 is defined by the system of equations

X = 1 + σ2 -s2 , (2.2.22) 
Y = H 1 (a, σ)(s + σ) + 2 3 (s 3 + σ3 ) + 2 3 H 2 (a, σ)(1 + σ2 ) -1/2 T 2(1 + a + aσ 2 ) 1/2 -s -σ ,
where H 1 , H 2 are defined in Section 2.1 and

2N 1 - 3 4 B ω3/2 Λη = (1 + σ2 ) -1/2 T 2(1 + a + aσ 2 ) 1/2 -s -σ . (2.2.23)
Remark 2.2.8. We notice from (2.2.23) in the range of T ∈]0, a -1/2 ], we can still reduce the sum over N ∈ Z to the sum over

1 ≤ N ≤ C 0 a -1/2 since T ≤ T . This system yields N (X, Y, T ) ≤ C 0 and N 1 (X, Y, T ) ≤ C 0 1 + T Λ -2 ω-3 .
Recall that here the notations N , N 1 are those defined in Section 2.1.

Our main result of this subsection is Theorem 2.2.9, which gives dispersive estimates for the sum over N of G a,m,N . Theorem 2.2.9. Let α < 2/3. There exists C such that for all h ∈]0, h 0 ], all a ∈ hα , a 0 , all x ∈ [0, a], all t ∈]h, 1], all y ∈ R, all z ∈ R, the following holds:

1≤N ≤C 0 a -1/2 G a,m,N (t, x, y, z) ≤ Ch -3 h t 1/2 min h t 1/2 , 2 m √ a + a 1/8 h 1/4 (2 m √ a) 3/4 .
We notice as in section 2.1, that for ω ≤ 3/4, we get rapid decay in Λ by integration by parts in σ. In particular, we may replace 1 -χ 1 by 1 in (2.2.21). As in section 2.1, we introduce a cutoff function χ

2 (ω) ∈ C ∞ 0 (]1/2, 3/2[), 0 ≤ χ 2 ≤ 1, χ 2 = 1 on ] 3 4 , 5 4 
[ and we denote by G a,m,N,2 the corresponding integral. We get G a,m,N = G a,m,N,1 + G a,m,N,2 + O(Λ -∞ ) where G a,m,N,1 is defined by a cutoff χ 3 with ω ≥ 5/4 on the support of χ 3 .

The Analysis of G a,m,N,1

The main results in this subsection are Proposition 2.2.10 and Proposition 2.2.11. Proposition 2.2.10. Let α < 2/3.There exists C such that for all h ∈]0, h 0 ], all a ∈ hα , a 0 , all x ∈ [0, a], all t ∈]h, 1], all y ∈ R, all z ∈ R, the following holds:

2≤N ≤C 0 a -1/2 G a,m,N,1 (t, x, y, z; h) ≤ Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 .
| Ga,m,N,1,+,+ | ≤ CΛ -1/3 and sup

T ≤ T0 ,X∈[0,1],(y,z)∈R 2 2≤N ≤N ( T0 )
G a,m,N,1,+,+ ≤ Ch -3 h t

1/2 h -1 a 2 (2 m √ a) 2 Λ -4/3 , ≤ Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 .
• For T0 ≤ T ≤ a -1/2 (1-z2 ) 1/2 , we use the same notation as before Ω = ω3/2 ; we have |∂ 2 Ω Φ N,m,+,+ | ≥ c T Ω -4/3 and a nondegenerate critical point Ω c which satisfies for N ≥ 2, Ω 1/3 c T N . We have also either T /N bounded or large, the stationary phase yields | Ga,m,N,1,+,+ | ≤ CΛ -1/2 T -1/2 . Moreover, the η -integration produces a q -1/2 factor contribution with q = N Λ -1 Ω -1 c when q ≥ 1. Thus, we get the estimates as follows:

If T /N is bounded, Ω c stays in a compact subset of [1, ∞[, and we get T N .

• If N ≤ Λ 2 , we have |N 1 | ≤ C 0 . Hence the estimate is N ∈N 1 G a,m,N,1,+,+ ≤ Ch -3 h t 1/2 [h -1 Λ -1 a 2 (2 m √ a) 2 Λ -1/2 T -1/2 ] ≤ Ch -3 h t 1/2 a -1/4 h 1/2 (2 m √ a) 1/2 T -1/2 ≤ Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 ,
since T ≥ T0 and a -1/4 h 1/2 ≤ h 1/3 (2 m √ a) 1/6 when a ≥ h2/3 .

• If N > Λ 2 , then there is the contribution q -1/2 from η-integration and |N 1 | ≤ C 0 T Λ -2 . Thus the estimate is

N ∈N 1 G a,m,N,1,+,+ ≤ Ch -3 h t 1/2 N ∈N 1 [h -1 Λ -1 a 2 (2 m √ a) 2 Λ -1/2 T -1/2 N -1/2 Λ 1/2 ] ≤ Ch -3 h t 1/2 [h -1 Λ -1 a 2 (2 m √ a) 2 T -1 |N 1 (X, Y, T )|] ≤ Ch -3 h t 1/2 [a -5/2 h2 2 m √ a] ≤ Ch -3 h t 1/2 h1/3 2 m √ a = Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 .
Next, if T /N is large then Ω c is large.

• If N ≤ ΛΩ c , then there is no contribution from η-integration. Moreover we have

|N 1 | ≤ C 0 since T ≥ Λ 2 Ω 2 c implies Ω 1/3 c T /N ≥ λΩ c which is impossible since Ω c is large. Thus the estimate is N ∈N 1 G a,m,N,1,+,+ ≤ Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 . • If N > ΛΩ c and T ≤ Λ 2 Ω 2 c , we also have |N 1 | ≤ C 0 .
Thus we get the estimate

N ∈N 1 G a,m,N,1,+,+ ≤ Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 .
• If N > λΩ c and T > Λ 2 Ω 2 c , then there is the contribution q -1/2 from η-integration and

|N 1 | ≤ C 0 T Λ -2 Ω -2 c . We get N ∈N 1 G a,m,N,1,+,+ ≤ Ch -3 h t 1/2 N ∈N 1 [h -1 Λ -1 a 2 (2 m √ a) 2 T -1/2 N -1/2 Ω 1/2 c ] ≤ Ch -3 h t 1/2 [h -1 Λ -1 a 2 (2 m √ a) 2 T -1 Ω 2/3 c |N 1 (X, Y, T )|] ≤ Ch -3 h t 1/2 [h -1 a 2 (2 m √ a) 2 Λ -3 ] ≤ Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 .
The result of the other cases of ( 1 , 2 ) can be achieved by proceeding along the same lines as in the proof for G a,N,1 in section 2.1.

If aω ≥ 1, then a critical point Ω c will satisfy Ω

1/3 c (1 + aΩ 2/3 c ) 1/2 T N for N ≥ 2. This yields, since T ≥ C T with C large, T ≥ C T ≥ CN Ω 1/3 c = CN ω 1/2 c ≥ CN a -1/2
which contradicts t ≤ 1. Now we prove the following estimate for N = 1. Proposition 2.2.11. Let α < 2/3. There exists C such that for all h ∈]0, h 0 ], all a ∈ [ hα , a 0 ], all x ∈ [0, a], all t ∈ [h, 1], all y ∈ R, all z ∈ R, the following holds:

|G a,m,1,1 (t, x, y, z; h)| ≤ Ch -3 h t 1/2 min h t 1/2 , 2 m √ a| log(2 m √ a)| + h 1/3 (2 m √ a) 2/3 . Proof. Let us recall G a,m,1,1 = (-1)a 2 Λ -1 (2π) 4 h 4 (2 m √ a) 2 h t 1/2 e iΛY η ηψ 1 (η) Ga,m,1,1 dη, Ga,m,1,1 = 1 , 2 e iΛηΦ 1,m, 1 , 2 Θ 1 , 2 (1 + aω) -1/2 dω.
The only difference with the case N ≥ 2 is in the study of the phase Φ 1,m,+,+ since in the case N = 1 we may have a critical point ωc large. Let Ga,m,1,1,+,+ = e iΛΦ 1,m,+,+ Θ +,+ (1 + aω) -1/2 dω, (

with the phase function To prove the proposition, we just have to verify

Φ 1,m,+,+ = T γ a (ω) + 2 3 (ω -X) 3/2 + 2 3 (ω -1)
a 1/2 2 m √ a|J| ≤ C min h t 1/2 , 2 m √ a| log(2 m √ a)| . (2.2.27)
We first observe that on the support of the integral in (2.2.26), one has aω ≤ (2 m √ a) -2 = L. Hence we get

|J| ≤ C 1 + L/a 1 1 x(1 + ax) dx = C 1 + a -1/2 L a 1 y(1 + y) dy ≤ Ca -1/2 log L.
This implies

a 1/2 2 m √ a|J| ≤ C2 m √ a| log(2 m √ a)|.
We have

∂ ωΦ 1,m,+,+ = T 2 (1 + aω) -1/2 - ω-1/2 2 (1 + X) + O(ω -3/2 ), ∂ 2 ω ωΦ 1,m,+,+ = -T a 4 (1 + aω) -3/2 + ω-3/2 4 (1 + X) + O(ω -5/2 ).
At a large critical point we have T 2 (a + ω-1 c )(1 + X) 2 . Hence T is small and

∂ 2 ωΦ 1,+,+ (ω c ) T 3 (1 + aω c ) -5/2 . Let S = ( T /(1 + X)) 2 -a.
Then we have S ω-1 c , and by stationary phase we will get

|J| ≤ C(1 + aω c ) 3/4 Λ -1/2 T -3/2 S 1/2 .
We have to take care in this section that aω c may be large. In the case aω c ≤ 1, we have S T 2 , and we get as before |J| ≤ CΛ -1/2 T -1/2 , which gives

a 1/2 2 m √ a|J| ≤ C h t 1/2 .
In the case aω c ≥ 1, we must have T √ a, and S = aρ with ρ > 0 small. We get |J| ≤ Cρ -1/4 a -1/4 Λ -1/2 . This gives

a 1/2 2 m √ a|J| ≤ Ch 1/2 (2 m √ a) 1/2 a -1/2 ρ -1/4
Finally, we observe that we have The main result in this subsection is Proposition 2.2.12.

√ a T ta -1/2 2 m √ a(1 + aω c ) 1/2 ⇒ t a(2 m √ a) -1 ρ 1/2 , which gives a 1/2 2 m √ a|J| ≤ C(h/t)
Proposition 2.2.12. Let α < 2/3. There exists C such that for all h ∈]0, h 0 ], all a ∈ [ hα , a 0 ], all x ∈ [0, a], all t ∈]h, 1], all y ∈ R, all z ∈ R, the following holds:

1≤N ≤C 0 a -1/2 G a,m,N,2 (t, x, y, z; h) ≤ Ch -3 h t 1/2 a 1/8 h 1/4 (2 m √ a) 3/4 . Proof. Recall G a,m,N,2 (t, x, y, z) = (-1) N (2π) 4 h 4 (h/t) 1/2 a 2 (2 m √ a) 2 e iΛΦ N f m η2 ψ 1 (η)χ 2 (ω)dsdσdωdη (2.2.28)
and we get

N ∈N 1 G a,m,N,2 ≤ N ∈N 1 Ch -3 h t 1/2 (2 m √ a) 2 h -1 a 2 N -1 Λ -2/3 , ≤ Ch -3 h t 1/2 (2 m √ a) 2 h -1 a 2 Λ -8/3 , ≤ Ch -3 h t 1/2 h 1/3 (2 m √ a) 2/3 . Recall that we used N T , |N 1 | ≤ C 0 (1 + T Λ -2
) and a ≥ h2/3 .

• Lemma 2.1.12: For N ≤ Λ 1/3 , we have

1 √ N e iΛ ψN,m χdsdσ ≤ CN -1/4 Λ -3/4 .
Therefore, the estimate in this case is given by

N ∈N 1 G a,m,N,2 ≤ Ch -3 h t 1/2 (2 m √ a) 2 h -1 a 2 Λ -1/2 Λ -3/4 , ≤ Ch -3 h t 1/2 a 1/8 h 1/4 (2 m √ a) 3/4 .
Hence putting these estimates together, we get

1≤N ≤C 0 a -1/2 G a,m,N,2 ≤ Ch -3 h t 1/2 [h 1/3 (2 m √ a) 2/3 + a 1/8 h 1/4 (2 m √ a) 3/4 ].
We notice that

h 1/3 (2 m √ a) 2/3 ≤ a 1/8 h 1/4 (2 m √ a) 3/4 when a ≥ h 2 m √ a 2/3
. The proof of the Proposition 2.2.12 is complete.

Proof of Theorem 2.2.9. The estimate follows from Propositions 2.2.10, 2.2.11, 2.2.12.

Dispersive Estimates for

|η| ≤ 0 √ a .
In this section, we prove Theorem 1.4.3. We first compute the trajectories of the Hamiltonian flow for the operator P . At this frequency localization there is at most one reflection on the boundary. Moreover, we follow the techniques from section 2.1 and as follows:

x(t) = a - ξ 0 τ 0 t - η 2 0 4τ 2 0 t 2 , y(t) = η 0 τ 0 -(1 + a)t + ξ 0 2τ 0 t 2 + η 2 0 12τ 2 0 t 3 , z(t) = - ζ 0 τ 0 t, ξ(t) = ξ 0 + η 2 0 2τ 0 t, τ (t) = τ 0 = 1.
The trajectories hit the boundary when x(t) = 0; that is ,

η 2 0 4 t 2 + tξ 0 -a = 0.
This yields the time t * when x(t * ) = 0:

t * ξ 0 = a - ζ 2 0 θ 2 4 t 2 * ∼ a.
We want to prove that at this frequency localization, the trajectories hit the boundary only once for a given fixed time 0 < t ≤ 1. To do this, suppose that the trajectory hit the boundary at (x = 0, y * , z * , ξ * , η * , ζ 0 ), which is given by the system (2.3.1). More precisely, ξ * = -(ξ 0 + η 2 0 2 t * ) and we get

ξ(s) = ξ * -η 2 0 s, x(s) = 2ξ * s -η 2 0 s 2 , t(s) = t * -2s.
Now we assume that the trajectory, issuing from the point (x = 0, y * , z * , ξ * , η * , ζ 0 ), hits the boundary; that is, x(t) = 0, then tη 2 0 = 2ξ * . This yields

tθ 2 ζ 2 0 = -2 ξ 0 + θ 2 ζ 2 0 2 t * = -2 ξ 0 + θ 2 ζ 2 0 2 a - θ 2 ζ 2 0 4 t 2 * /ξ 0 , |tθ 2 ζ 2 0 | ≥ 4 aθ 2 2 ⇒ |t| ≥ 4 a/2 ζ 2 0 |θ| ≥ 1 0 1.
Therefore, we can only see at most one reflection on the boundary of the cylinder for 0 < t ≤ 1 at this frequency location.

Dispersive

Estimates for |η| ≤ 0 √ a.

In this part, we prove dispersive estimates for G a, 0 . The main result is Theorem 2.3.1.

Theorem 2.3.1 (Theorem 1.4.3). There exists C such that for every h ∈]0, 1], every t ∈ [h, 1], the following holds:

G a, 0 (t, x, y, z) L ∞ (x≤a) ≤ Ch -3 (h/t) 1/2 min (h/t) 1/2 , √ a| log(a)| . (2.3.2)
We start as in section 2.2. Recall that we have

G a, 0 (t, x, y, z) = 1 4π 2 h 2 k≥1 e i h Φ k σ k dηdζ, (2.3.3) 
where the phase Φ k and the function σ k are defined by

Φ k = yη + zζ + t(η 2 + ζ 2 + ω k h 2/3 η 4/3 ) 1/2 , σ k = ψ 2 (η/ √ a)e k (x, η/h)e k (a, η/h)χ 0 (ζ 2 + η 2 )χ 1 (ω k h 2/3 η 4/3 )(1 -χ 1 )(εω k ), with ψ 2 ∈ C ∞ 0 (] -2 0 , 2 0 [) equal to 1 on [-0 , 0 ]. We still use the notation µ 2 = η 2 + ω k h 2/3 η 4/3 . Let χ 4 ∈ C ∞ 0 ] -1, 1[ with χ 4 = 1 on [-1/2, 1/2]. The following lemma (for |η| ≤ 0 √ a) is a refinement of Lemma 2.2.1. Lemma 2.3.2. Let N = 1 4π 2 h 2 k≥1 e i h Φ k χ 4 tµ 2 h σ k dηdζ.
There exists C such that

|N | ≤ Ch -3 (h/t) 1/2 min (h/t) 1/2 , √ a .
Proof. As in Lemma 2.2.1, and taking in account the cutoff ψ 2 (η/ √ a), we get

|N | ≤ Ch -3 (h/t) 1 -1 (1 -x 2 ) 1/2 ψ 2 (x h/(ta))dx
and the result follows from

(h/t) 1/2 1 -1 (1 -x 2 ) 1/2 ψ 2 (x h/(ta))dx ≤ min (h/t) 1/2 , √ a .
By the proof of Lemma 2.2.3, in the case √ a ≤ M h, we get the estimate 

|G a, 0 | ≤ C M h -3 (h/t)
J a, 0 = 1 4π 2 h 2 (h/t) 1/2 k≥1 e i h (yη+tµ(1-z 2 ) 1/2 ) σ(ω k )(η/h) 2/3 2π L (ω k ) ψ 2 (η/ √ a) µ dη, (2.3.4) with σ(ω) defined by σ = σ 0 (z * , η, µ 2 ; λ)(1-χ 4 (λ))Ai((η/h) 2/3 x-ω)Ai((η/h) 2/3 a-ω)χ 1 (ωh 2/3 η 4/3 )(1-χ 1 )(εω),
where λ = tµ 2 /h. By Airy Poisson summation formula, we have J a, 0 = N ∈Z J N with

J N = 1 4π 2 h 2 (h/t) 1/2 e i h (yη+tµ(1-z 2 ) 1/2 ) σ(ω)(η/h) 2/3 ψ 2 (η/ √ a) µ e -iN L(ω) dωdη. (2.3.5)
By the preceding paragraph, we know that it is sufficient to prove an estimate on J -1 + J 0 + J 1 . We will focus on J 1 , since J -1 is similar and J 0 is simpler since it is the free wave. One has J 1 equal to:

J 1 = (h/t) 1/2 (2π) 4 h 2 h -4/3 e i h φ 1 |η| 2/3 f (ω, η, µ 2 , λ, h) ψ 2 (η/ √ a) µ dsdσdηdω, (2.3.6) 
with the phase function

φ 1 = yη + tµ(1 -z2 ) 1/2 + s 3 3 + s(|η| 2/3 x -ωh 2/3 ) + σ 3 3 + σ(|η| 2/3 a -ωh 2/3 ) -hL(ω),
and symbol

f (ω, η, µ 2 , λ, h) = σ 0 (z * , η, µ 2 ; λ)(1 -χ 4 (λ))χ 1 (ωh 2/3 η 4/3 )(1 -χ 1 )(εω). Recall that L(ω) = 4 3 ω 3/2 -B(ω 3/2 ), for ω ≥ 1, with B(ω) j≥1 b j ω -j , b j ∈ R, b 1 = 1. Lemma 2.3.3. Let L as in section 2.1.2, L(ω) = π + i log A -(ω) A + (ω) .
Then for all ω ≥ 0, we have

L (ω) ≥ 2ω 1/2 .
This lemma, whose proof is in the Appendix, is useful in the geometric study of the canonical set and the Lagrangian submanifold associated to the phase function of J 1 .

Proof of theorem 2.3.1. To study J 1 in (2.3.6), we restrict the integral to η > 0 and we first make the change of variables ω = h -2/3 η 2/3 ω * , s = η 1/3 s * , σ = η 1/3 σ * , and we obtain, since µ = η(1

+ ω * ) 1/2 J 1 = (h/t) 1/2 (2πh) 4 e iη h (y+ φ1 ) η (1 + ω * ) -1/2 f ψ 2 (η/ √ a)ds * dσ * dω * dη, (2.3.7) 
with the phase function φ1 equal to

φ1 = t(1 -z2 ) 1/2 (1 + ω * ) 1/2 + s * 3 /3 + s * (x -ω * ) + σ * 3 /3 + σ * (a -ω * ) - h η L(η 2/3 h -2/3 ω * ).
(2.3.8)

We have

∂ s * φ1 = s * 2 + x -ω * , ∂ σ * φ1 = σ * 2 + a -ω * , ∂ ω * φ1 = t(1 -z2 ) 1/2 (1 + ω * ) -1/2 2 -(s * + σ * ) - h 1/3 η 1/3 L (η 2/3 h -2/3 ω * ).
Therefore, at a stationary point in s * , σ * , ω * of φ1 , we must have, using Lemma 2.3.3,

|s * | ≤ √ ω * and |σ * | ≤ (ω * -a): t(1 -z2 ) 1/2 (1 + ω * ) -1/2 ≥ 2 √ ω * -(ω * -a) . Since (1 -z2 ) µ = η(1 + ω * ) 1/2 , t ≤ 1 and η ≤ 0 √ a we get 0 √ a ≥ 0 t √ a ≥ 2 √ ω * -(ω * -a) ,
and therefore, we may assume ω * > M a with M large if 0 is small. This proves that the swallowtail in the first reflection appears after a time t > 1. Hence we are reduced to study what happen before the first occurence of a swallowtail. This case corresponds to a regime where there are no swallowtails and no cusps. We are reduce to estimate the oscillatory integral J: 

J = (h/t) 1/2 (2πh) 4 e iη h (y+ φ1 ) η (1 + ω * ) -1/2 f ψ 2 (η/ √ 
= a 3/2 / h = a 2 /h J = a (2π) 4 h 3 h t 1/2 e iΛY η J ψ 2 (η)dη, J = ±,± e iΛηΦ ±,± Θ ±,± κ(ω/M ) (1 + aω) -1/2 dω, Φ ±,± = T γ a (ω) ± 2 3 (ω -X) 3/2 ± 2 3 (ω -1) 3/2 - 4 3 ω3/2 + 1 Λη B(Λω 3/2 η), Θ ±,± = (ω -1) -1/4 (ω -X) -1/4 Ψ ± (Λ 2/3 η2/3 (ω -1))Ψ ± (Λ 2/3 η2/3 (ω -X)) f , where Ψ ± (z) ∈ C ∞ ([0, ∞[) are classical symbols of degree 0 in z → ∞. Therefore it remains to prove e iΛY η a J ψ 2 (η)dη ≤ C min (h/t) 1/2 , √ a| log(a)| . (2.3.10)
Since on the support of f one has ω ≤ 1 a 2 η2 , we get

| J| ≤ C 1 a 2 η2 1 ω-1/2 (1 + aω) -1/2 dω ≤ Ca -1/2 | log(aη 2 )|, (2.3.11) 
and this implies

e iΛY η a J ψ 2 (η)dη ≤ C √ a| log(a)| .
Next, we have

∂ ω Φ±,± = T 2 (1 + aω) -1/2 ± (ω -X) 1/2 ± (ω -1) 1/2 -2ω 1/2 + O(ω -1/2 ),
and (1 + aω) -1/2 T T η ≤ 0 t ≤ 1. Hence the phases Φ -,± , Φ +,-have no critical points ω ≥ M/2 large, and this implies in particular for their contribution J * to J the estimate

|J * | ≤ C(Λη) -1/2 = Ch 1/2 η-1/2 a -1 , which implies e iΛY η a J * ψ 2 (η)dη ≤ Ch 1/2 η-1/2 ψ 2 (η)dη ≤ C(h/t) 1/2 .
For the contribution to J of the phase Φ +,+ , we use the same proof as the proof of Proposition 2.2.11. We thus get the estimate a| J| ≤ C(h/t) 

h β U(t)χ(hD t )u 0 L q t (L r x ) χ(hD t )u 0 L 2 , (3.1.5) h β-1 U(t)χ(hD t )u 1 L q t (L r x ) χ(hD t )u 1 L 2 , (3.1.6) with q ∈]2, ∞], r ∈ [2, ∞], 1 q ≤ α 3 1 2 -1 r , α 3 = 3 4
, and the scaling

β = 3 1 2 -1 r -1 q . Remark that if 1 q = α 3 1 2 -1 r then β = (3 -α 3 ) 1 2 -1 r .
Let us recall also the following facts:

• The Riesz-Thorin Interpolation Theorem [see [START_REF] Hörmander | The analysis of linear partial differential operators I: Distribution theory and Fourier analysis[END_REF]. Thm.7.1.12] states that if T is a linear map from L p 1 ∩ L p 2 to L q 1 ∩ L q 2 such that T f L q j ≤ M j f L p j , j = 1, 2 and if 1 p θ = θ p 1 + 1-θ p 2 , 1 q θ = θ q 1 + 1-θ q 2 , for some θ ∈ (0, 1), then

T f L q θ ≤ M θ 1 M 1-θ 2 f L p θ , f ∈ L p 1 ∩ L p 2 . (3.1.7)
• T T * argument: let H be Hilbert space, B and its dual B * be Banach spaces. Let T : H → B be linear operator and T * : B * → H its adjoint. The followings are equivalent:

1. The operator T is continuous from

H to B, T f B ≤ C f H , 2. The operator T * is continuous from B * to H, T * g H ≤ C g B * , 3. The operator T * T is continuous from B * to B, T * T g B ≤ C 2 g B * .
In particular, let (U (t)) t∈R be a bounded family of continuous operators on L 2 (R d ).

Let T be the solution operator

T : u 0 -→ [t → U (t)u 0 ], then T * : φ -→ U * (t)φ(t)dt.
Moreover, T T * coincides with the operator

φ -→ t → R U (t)U * (t )φ(t )dt .
We have

U (t)u 0 L q t (L r x ) = sup φ∈Bq,r U (t)u 0 (x)φ(t, x)dtdx = sup φ∈Bq,r (U (t)u 0 (x)|φ(t)) L 2 dt
where B q,r := {φ ∈ D(R 1+d ; C)/ φ L q t (L r

x ) ≤ 1}. By the definition of the adjoint operator, we have

U (t)u 0 L q t (L r x ) = sup φ∈Bq,r u 0 U * (t)φ(t)dt L 2
.

Using the Cauchy-Schwarz inequality, we deduce that

U (t)u 0 L q t (L r x ) ≤ u 0 L 2 sup φ∈Bq,r U * (t)φ(t)dt L 2
.

Moreover, we have

U * (t)φ(t)dt 2 L 2 = (U * (t )φ(t )|U * (t)φ(t)) L 2 dt dt = (U (t)U * (t )φ(t )|φ(t)) L 2 dt dt = U (t)U * (t )φ(t ), φ(t) dt dt ≤ U (t)U * (t )φ(t )dt L q t L r x φ L q t L r x ,
by the Hölder inequality in t and x.

Proof of Theorem 3.1.1. We prove only (3.1.5) since (3.1.6) follows analogously. We have the frequency-localized dispersive estimates in Ω in (3.1.3) for |t| ≥ h as follows:

U(t)χ(hD t )u 0 L ∞ h -3 h t α 3 χ(hD t )u 0 L 1 , (3.1.8) 
and the energy estimates

U(t)χ(hD t )u 0 L 2 χ(hD t )u 0 L 2 (3.1.9)
We apply the Riesz-Thorin Interpolation Theorem (3.1.7) to the operator U(t)χ(hD t ) for fixed time t ∈ R. Interpolating between (3.1.8) and (3.1.9) with θ = 1 -2 r yields

U(t)χ(hD t )u 0 L r ≤ Ch (-3+α 3 )(1-2 r ) t -α 3 (1-2 r ) χ(hD t )u 0 L r , (3.1.10) 
for all 2 ≤ r ≤ ∞, where r denote the exponent conjugate to r; that is, 1 r + 1 r = 1. Let T be the operator solution defined by

T : φ 0 ∈ L 2 -→ T φ 0 = U(t)χ(hD t )φ 0 ∈ L q t L r x ,
the its adjoint is given by

T * : ψ ∈ L q t L r x -→ T * ψ = U(t)χ * (hD t )ψ(t)dt ∈ L 2 .
Moreover, we have

T * T : ψ ∈ L q t L r x -→ T * T ψ = U(t -s)χ * (hD t )χ(hD t )ψ(s)ds ∈ L q t L r x .
By T T * argument, it is sufficient to prove

T * T ψ L q t L r x h -2β ψ L q t L r x .
We have

T * T ψ L q t L r x = U(t -s)χ * (hD t )χ(hD t )ψ(s)ds L q t L r x , h -2(3-α 3 )( 1 2 -1 r ) |t -s| -2α 3 ( 1 2 -1 r ) ψ L r x ds L q t . (3.1.11) When 1 q < α 3 1 
2 -1 r , we use Young's inequality, which states that for 1 ≤ p, q ≤ ∞,

K * u L q ≤ K L r u L p (3.1.12)
for 1 + 1 q = 1 r + 1 p . We apply (3.1.12) with r = q/2, p = q and 1 q + 1 q = 1 to get an estimate

∞ h |t -s| -2α 3 ( 1 2 -1 r ) ψ L r x ds L q t ≤ ψ L q t L r x t -2α 3 ( 1 2 -1 r ) L q/2 |t|≥h , ≤ h -2α 3 ( 1 2 -1 r )+ 2 q ψ L q t L r x , since 1 q < α 3 1 2 -1 r , we get that t -2α 3 ( 1 2 -2 r ) L q/2 |t|≥h = ∞ h t -2α 3 ( 1 2 -2 r )q/2 dt 2/q h -2α 3 ( 1 2 -1 r )+ 2 q .
Then (3.1.11) becomes

T * T ψ L q t L r x h -2(3-α 3 )( 1 2 -1 r ) |t -s| -2α 3 ( 1 2 -1 r ) ψ L r x ds L q t , h -2[3( 1 2 -1 r )-1 q ] ψ L q t L r x , h -2β ψ L q t L r x .
When 1 q = α 3 1 2 -1 r , we instead use Hardy-Littlewood-Sobolev inequality [see [START_REF] Hörmander | The analysis of linear partial differential operators I: Distribution theory and Fourier analysis[END_REF]. Thm. 4.5.3] which says that for K(t) = |t| -1/γ and 1 < γ < ∞ that

K * u L r (R) u L p (R) , (3.1.13) 
for 1 γ = 1 p + 1 r . Here, we apply (3.1.13) with r = q, p = q and 1 γ = 2 q = 2α 3 1 2 -1 r to get that for q > 2, t -2/q * : L q → L q is bounded. Hence, we get from (3.1.11) that Proof. Using the square function estimates (3.1.1), we get that , Hence, we get

T * T ψ L q t L r x h -2(3-α 3 )( 1 2 -1 r ) ψ L q t L r x , h -2β ψ L q t L r x .

Homogeneous Strichartz Estimates

u L q t L r x j v j 2 L q t L r x 1/2 . ( 3 
u L q t L r x j≥0 v j 2 L r x 1/2 L q t =    j≥0 v j 2 L r x L q/2 t    1/2 , j≥0 v j 2 L r x L q/2 t 1/2 = j≥0 v j 2 L q t L r x 1/2
.

The solution u to the wave equation (3.2.1) with localized initial in frequency 1/h = 2 j is given by u = j v j , where v j = U(t)χ(2 -j D t )u 0 + U(t)χ(2 -j D t )u 1 .

where f ∈ C ∞ (R), suppf ⊂ [1, ∞[, |ξ j ∂ j ξ f (ξ)| ≤ ξ m . Then one has J(λ) ∈ O(λ -∞ ).

Proof. The result follows the integration by parts. We have

J(λ) = ∞ 0 e iλξ γ L n (f )dξ, with L(f ) = i γλ d dx ξ 1-γ f (ξ) ,
which is a symbol of degree m -γ. Then we get

|J(λ)| ≤ 1 λ n ∞ 0 e iλξ γ g n (ξ)dξ ≤ 1 λ n ∞ 0 (1 + |ξ|) m-nγ dξ,
with g n is a symbol of degree m -nγ. Choose n large enough, then the result follows.

C. Proof of Airy-Poisson Formula

Let us recall the Lemma 2. The Lagrangian submanifold associated to T N is defined by a system of equations:

s 2 + |η| 2/3
x -ω = 0,

σ 2 + |η| 2/3 a -ω = 0, s + σ = -N L (ω)
We have 

E. Geometric Estimates

Let f (a, aσ 2 ) be various analytic functions defined for a and aσ 2 small, with f (a, b) ∈ R for (a, b) ∈ R 2 . Recall that the projection of Λ a,N,h onto R 3 is given by 0, R 0 , M 0 > 0 such that the following holds: Proof. Part (a) is a consequence of (3.2.4). Indeed, for a given (X, Y, T ≥ T0 ), there are at most four possible values of σ by Lemma 2.18 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. For T ≤ T0 , we use (3. 
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 23 (1-) , ∈]0, 1/7[. Using the Airy-Poisson summation formula [see Lemma 2.1.4], G a,c 0 can be also represented as a sum over multiple reflections for a ≥ h 2 , for ∈]0, [. These local parametrices can be written in terms of oscillatory integrals to which we can apply degenerate stationary phase results.
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 32 , for ∈]0, [. Recall that our local parametrix under the form (2.1.7) is constructed from (1.4.4) together with the Lemma 2.1.4. It is a sum of oscillatory integrals with phase functions containing an Airy type terms with degenerate critical points. Swallowtails regime To deal with (2.1.7), we introduce a change of variables aω

.1. 23 ) Let T 0 1 .

 231 First suppose that 0 ≤ T ≤ T 0 . Since H a,+,+ (Ω) ≤ C(1 + T ) and for N ≥ N (T 0 ) = C(1 + T 0 ), we get |∂ Ω ΦN,+,+ | ≥ c 0 N with c 0 > 0. Then by integration by parts, we get | Ga,N,1,+,+ | ∈ O(N -∞ λ -∞ ) and this implies sup

  we have a positive lower bound for |∂ Ω ΦN,+,+ (Ω)| for large values of Ω; thus the contribution of Ga,N,1,

  a)κ(ω * /(M a))ds * dσ * dω * dη, (2.3.9) where κ ∈ C ∞ (]1/2, ∞[), 0 ≤ κ ≤ 1, and κ equal to 1 on [1, ∞[. We then re-perform the ds * dσ * integration using the definition of the Airy function, and we make the change of variables η = √ aη and ω * = aω. As in Proposition 2.2.11, we get with Λ

  Let us restate Theorem 1.3.2 as: Theorem 3.2.1 (Theorem 1.3.2). Let (Ω, ∆) as before. Let u be a solution of the following wave equation on Ω:(∂ 2 t -∆)u = 0 in Ω, u |t=0 = u 0 , ∂ t u |t=0 = u 1 , u |x=0 = 0. (3.2.1)Then for all T there exists C T such that u L q ((0,T );L r (Ω)) ≤ C T u 0 Ḣβ (Ω) + u 1 Ḣβ-1 (Ω) ,

1 . 4 : 1 L 1 L∞F 2 0 0 Ai 2 3 Proof. 1 L 2 Ne i s 3 3 3 32 |η| 2 /3 e i s 3 3

 14112023123323 Lemma. The following equality holds true in D (R ω ),N ∈Z e -iN L(ω) = 2π k∈N * (ω k ) δ ω=ω k . Proof. Let φ ∈ C ∞ 0 (]0, ∞[) ⊂ C ∞ 0 (R) and z = L(ω) ⇔ φ(z) = ω.The Poisson summation formula read as follows:2π k∈Z φ(2πk) = N ∈Z e -iN z φ(z)dz. 2π k∈Z φ(2πk) = N ∈Z e -iN L(ω) φ[L(ω)]L (ω)dω. Let F (ω) = Ai(-ω). With A + (ω) = ρ(ω)e iθ(ω) , we get F (ω) = 2ρ(ω) cos(θ(ω)). Therefore, the equationF (ω) = 0 is equivalent to θ(ω) = π/2 + lπ, l ∈ Z, which is equivalent to L(ω) = 2π(1 + l). Since L is a diffeomorphism from R onto ]0, ∞[, one has for all integer k ≥ 1, Ai(-ω k ) = 0 iff L(ω k ) = 2πk. Let H(ω) = φ[L(ω)]L (ω) ∈ C ∞ 0 (R). Then we get 2π k∈Z H(ω k ) L (ω k ) = N ∈Z e -iN L(ω) H(ω)dω.This is equivalent toN ∈Z e -iN L(ω) = 2π k∈N * (ω k ) δ ω=ω k in D (R ω ).Finally, using the Airy equation F (y) + yF (y) = 0 and integration by part, we getω (y)dy = ωF 2 (ω) -ω -∞ 2yF F dy = ωF 2 (ω) + ω -∞ 2F F dy = ωF 2 (ω) + F 2 (ω). Since F (ω k ) = 2ρ (ω k ) cos(θ(ω k )) + 2ρ(ω k )θ (ω k ) sin(θ(ω k )), we get ∞ Ai 2 (x -ω k ) dx = F 2 (ω k ) = 4ρ 2 (ω k )θ 2 (ω k ) = ρ 2 (ω k )L 2 (ω k ) = c 0 L (ω k ) ,From 2πAi(0) = 3 -1/6 Γ(1/3), 2πAi (0) = -3 1/6 Γ(2/3) and the Euler reflection formula for the Γ function, Γ(x)Γ(1 -x) = π/sin(πx), we get 2πc 0 = 1, thus∞ (x -ω k ) dx = L (ω k ) 2π .D. Proof of Lemma 2.3.To prove the inequality in Lemma 2.3.3, let us recall thatδ x=a = k≥1 e k (x, η)e k (a, η) = k≥1 (ω k ) |η| 2/3 Ai(|η| 2/3 x -ω k )Ai(|η| 2/3 a -ω k ), = k≥1 δ ω=ω k L (ω k ) |η| 2/3 Ai(|η| 2/3 x -ω)Ai(|η| 2/3 a -ω)dω, ∈Z e -iN L(ω) |η| 2/3 +s(|η| 2/3 x-ω)+ σ +σ(|η| 2/3 a-ω) dω. +s(|η| 2/3 x-ω)+ σ 3 3 +σ(|η| 2/3 a-ω)-N L(ω) dω.Since we also have δ x=a = T 0 , then the wave front set satisfies WF N =0T N ⊂ {x ≤ 0}.Moreover, WF(T N ) are pairwise disjoint, and we have ∀N, WF(T N ) ⊂ {x ≤ 0}.

|η| 2 / 2 . 2 . 2 √ 3 / 2 + 1 /2 e - 2 3 ω 3/ 2 R e iω 3 / 2 ( t 3 3 = e iπ/4 2π ω 1 /2 e - 2 3 ω 3/ 2 Re

 222232122323122 3 x = ω -s 2 = σ 2 + |η| 2/3 a -σ + N L (σ 2 + |η| 2/3 a) 2 , = |η| 2/3 a -2σN L (|η| 2/3 a + σ 2 ) -N 2 [L (|η| 2/3 a + σ 2 )] Since x ≤ 0 on WT, then we get ∀a > 0, ∀σ ∈ R, ∀N = 0, |η| 2/3 a -2σN L (|η| 2/3 a + σ 2 ) -N 2 [L (|η| 2/3 a + σ 2 )] 2 ≤ 0, |η| 2/3 a ≤ inf σ∈R |N |L (|η| 2/3 a + σ 2 ) |N |L (|η| 2/3 a + σ 2 ) + 2σ N |N | . Let ã = |η| 2/3 a. It is equivalent to have ∀ã ≥ 0, ∀r ≥ 0, ∀N ≥ 1, ã ≤ inf r≥0 N L (ã + r 2 ) N L (ã + r 2 ) -2r .This reduces to ∀ã ≥ 0, ∀r ≥ 0, sinceN ≥ 1 ã ≤ inf r≥0 L (ã + r 2 ) L (ã + r 2 ) -2r .For ã = 0, since L is strictly increasing, it yieldsL (r 2 ) ≥ 2r, ∀r ≥ 0. Now let â = ã + r 2 , then we have ∀0 ≤ ã ≤ â, ã + 2L (â) √ â -ã ≤ L (â) Since sup 0≤ã≤â ã + 2L (â) √ â -ã = 2L (â) √ â;we get the desired inequality. The inequality is strict for large values of ω; that is, we have L (ω) > 2ω 1/2 . From the asymptotic expansion of the Airy functions, we haveA -(ω) = 1 πω 1/4 e iπ/4 e -2 3 iω 3/2 (1 + b ω 3/2 + • • • ); A + (ω) = A -(ω). • • • , L (ω) = 2ω 1/2 + 3Im(b)ω -5/2 + • • • To prove that L (ω) > 2ω 1/2for ω large, it is sufficient to prove that Im(b) > 0 as follows:A -(ω) = e iπ/3 Ai(e iπ/3 ω) = e iπ/3 2π R e i( s 3 3 +se iπ/3 ω) ds = e iπ/3 2π R ω 1/2 e iω 3/2 ( X 3 3 +Xe iπ/3 ) dX, (s = ω 1/2 W ) Let W = ie iπ/6 + t, then W 3 3 + W e iπ/3 = t 3 3 + ie iπ/6 t 2 -2 3 and A -(ω) = e iπ/32π ω +ie iπ/6 t 2 ) dt, -ω 3/2 (t 2 -ie -iπ/4 t 3 3 ) dt , (t = e -iπ/12 t ), t6 e -t2 d t + • • • ).Hence, we get that Im(b) = 1 18 t6 e -t2 d t > 0.

1 T

 1 (a) If |R| ≥ R 0 , two of the σj f * (a, aσ 2 j ) are in the complex disk D( √ R, A), the two others are in the complex disk D(-√ R, A) with A = C 0 + a(1+|R|) √ |R| . Moreover, one has |R| ≥ 2A. (b) If |R| ≤ R 0 and |R| T ≥ M 0 , two of the σj f * (a, aσ 2 j ) are in the complex disk D( √ R, A), the two others are in the complex disk D(-√ R, A) with A = C 1 T √ |R| . Moreover, one has |R| ≥ 2A. (c) If |R| ≤ R 0 and |R| T ≤ M 0 , one has |σ j | ≤ C 2 T -1/2 for all j.Then for a given point (X, Y,T ) ∈ [-2, 2] × R × [0, a -1/2], let us denote by N (X, Y, T ) the set of integers N ≥ 1 such that (3.2.4) has at least one real solution (s, σ, λ) with a|σ| 2 ≤ 0 and λ ≥ λ 0 . We denote by N C (X, Y, T ) the set of complex N such that (3.2.4) has at least one complex solution (s, σ, λ) with a|σ| 2 ≤ 0 and λ ≥ λ 0 . Let us now rewrite the equation (3.2.5) as2N = T Φ a (σ) + O( T λ -2 ω-3 ) + O(1), Φ a (σ) = 1 2 σ (1 + a + aσ 2 ) 1/2 ,(3.2.6)with σ = (1+σ 2 ) 1/2 and Φ a (σ) is bounded on the setU = {σ ∈ C, |σ| ≤ 1/2 or |Im(σ)| ≤ |Re(σ)|/ √ 3}and|Φ a (σ) -Φ a (σ )| ≤ C|σ 2 -σ 2 | sup( |σ| , |σ | ) a + 1 |σ| |σ | , ∀σ, σ ∈ U.(3.2.7)We observe that (3.2.6) implies for N 0 > 0 independent of (X, Y, T ) thatN (X, Y, T ) ⊂ [1, T /2 + N 0 ]. (3.2.8)Lemma. There exists a constant C 0 such that the followings hold: (a) For all (X, Y, T ) ∈ [0, 1]×R×[0, a -1/2 ], one has |N (X, Y, T )| ≤ C 0 , and N C (X, Y, T ) is a subset of the union of four disks of radius C 0 . (b) For all (X, Y, T ) ∈ [0, 1] × R × [0, a -1/2 ], the subset of N, N 1 (X, Y, T ) = |Y -Y |+| T -T |≤1,|X -X|≤1 N (X , Y , T ). satisfies |N 1 (X, Y, T )| ≤ C 0 (1 + T λ -2 ω-3 ).

.

  2.8). To prove part (b), we may assume that T ≥ T1 , with T1 large. Recall that R = 2(1 -3Y / T ). Let (X , Y , T ) be such that|Y -Y | + | T -T | ≤ 1, X ∈ [0, 1]. Set R = 2(1 -3Y / T ). We have |R -R | ≤ C(1 + |R|)/ T .• If |R| ≥ 2R 0 , with R 0 as in Lemma 2.18 [29]. Since T is large, we have |R | ≥ R 0 and |R| |R |. Let N ∈ N (X , Y , T ) and σ such that (3.2.4) holds. By Lemma 2.18 [29] (a), we may assume σ *∈ D( √ R , A ). Take σ * ∈ D( √ R, A) associated to (X, Y, T ). Since σ is real, we have R ≥ R 0 , thus R ≥ 2R 0 , and σ ∈ U . Let N ∈ N C (X, Y, T ) associated to σ. Since a 1/2 ≤ 1/ T , we get |σ -σ | ≤ C|σ * -σ * | ≤ C A + A + | √ R -√ R | ≤ C(1 + |R|) T |R| . Since |σ| + |σ | ≤ C |R|, we get |σ 2 -σ 2 | ≤ C(1 + |R|) T .By (3.2.7) and (3.2.6), we have since a|R| a|σ| 2 ≤ 0 , 2|N -N | ≤ | T -T |Φ a (σ ) + T |Φ a (σ ) -Φ a (σ)| + O((| T | + | T |)λ -2 ω-3 ) + O(1), ≤ C(a + 1/|R|) (1 + |R|) |R| + O( T λ -2 ω-3 ) + O(1) ∈ O( T λ -2 ω-3 ) + O(1). • If |R| ≤ 2R 0 and T |R| ≥ M 0 + 8. Since |R T -R T | ≤ 8, we get |R | T ≥ M 0 . Thus we may apply Lemma 2.18 [29] (b). Let N ∈ N (X , Y , T ) and σ ∈ R such that (3.2.4) holds. Since σ is real, we have R > 0. Thus R T > M 0 and this implies R > 0 (take M 0 large). Moreover, we have |R -R | ≤ C(1 + |R|)/ T , |R | ≤ 3R 0 , and |R| |R |. Now, we get |σ -σ | ≤ C(1+R 0 ) T √ R and since |σ| + |σ | ≤ C |R|, we get |σ 2 -σ 2 | ≤ C(1+R 0 )T Therefore, we get2|N -N | ≤ C T (a + O(1))(1 + R 0 )/ T + O( T λ -2 ω-3 ) + O(1) ∈ O( T λ -2 ω-3 ) + O(1). • If |R| ≤ 2R0 and T |R| ≤ M 0 + 8. We have T |R | ≤ M 0 + 16. Thus by Lemma 2.18 [29](c), we have |σ j | ≤ C T 1/2 , |σ j | ≤ C T -1/2 . We get |σ 2 -σ 2 | ≤ C/ T and thus 2|N -N | ∈ O( T λ -2 ω-3 ) + O(1).

  .2.2)where ∆ D is the Laplace operator on Ω D . Due to the caustics formation in arbitrarily small times, (1.2.2) induces a loss of 1/4 powers of (h/|t|) factor compared to (1.2.1).

Let us also recall a few results about Strichartz estimates [see

[START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]

, section 1]: let (Ω, g) be a Riemannian manifold without boundary of dimensions d ≥ 2. Local in time Strichartz estimates state that

  We may assume |t| ≥ h, since for |t| ≤ h, the best bound for the dispersive estimate is equal to Ch -3 by Sobolev inequality. Then, by symmetry of the Green function, we may assume t ∈ [h, 1] and x ≤ a. Then Theorem 1.3.1 is a consequence of

	1/2 ,	√ a| log(a)| .	(1.4.8)
	Let us verify that Theorem 1.3.1 is a consequence of Theorems 1.4.1, 1.4.2 and
	1.4.3. m≤M		

  , with ∈]0, [, we use the Airy-Poisson summation formula [see Lemma 2.1.4] and we rewrite G a,m as a sum over multiple reflections.

			First
	case, if a ≤	h2 3 (1-) , for a given ∈]0, 1/7[, we use the sum over eigenmodes. Second case,
	if a ≥	h2 3 (1-)

2.2.1 Dispersive Estimates for

0 < a ≤ h2 3 (1-) , with ∈]0, 1/7[.

The following Proposition 2.2.4 gives a local in time dispersive estimates for G a,m and is the main result of this subsection. Proposition 2.2.4. Let ∈]0, 1/7[. There exists C such that for all h ∈]0, 1], all 0 < a ≤ h2 3 (1-) , and all t ∈ [h, 1], the following holds true:

  Proposition 2.2.6. By (2.2.18) , Proposition 2.2.6 is obvious for Λ k ≤ 1. Then the proof is the same as the proof of Proposition 2.1.3, if one replaces (h, t) in Proposition 2.1.3 by ( h, t2 m √ a).

	In the case Λ k ≥ 1, we use μ	2 m √ a which implies t √	1 -z2	t2 m √	a.

  1/2 . The proof of Proposition 2.2.11 is complete.

	The Analysis of G a,m,N,2

  1/2 . Theorem 3.1.1 (Frequency-localized Strichartz estimates). Let (Ω, ∆) as before. Let v j be a solution of the (frequency-localized) wave equation (3.1.2). Then for all T there exists C T such that

	where we use the notations		
	U(t) :=	sin t √ -∆ √ -∆	and	U(t) := cos t √ -∆ .
	These estimates yiled the following Strichartz estimates.
	This concludes the proof of Theorem 1.4.3	
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f k k -1/6 (η/h) 1/3 Ai((η/h) 2/3 x -ω k ), Lemma 2.1.2 gives |N a (t, x, y, z)| ≤ Ch -2 η 2 ≤Dh/t (η/h) 2/3 (Dh/t -η 2 ) 1/2 h 1/3 η 2/3 dη (2.2.2) = Ch -3 η 2 ≤Dh/t (Dh/t -η 2 ) 1/2 dη and the result follows from η 2 ≤Dh/t (Dh/t -η 2 ) 1/2 dη = (Dh/t) x 2 ≤1 (1 -x 2 ) 1/2 dx.

Observe that in the range η ≥ c 0 , one has µ 2 ≥ c 2 0 , so the condition tµ 2 /h ≤ D is equivalent to t ≤ Ch and the above lemma is irrelevant. But in the range η ∈ [ 0 √ a, c 0 ], the above lemma becomes useful since it tells us that we may now assume that λ = tµ 2 /h is a large parameter. Since we allow some loss in the dispersive estimate with respect to the free case, we may even assume that we have λ = tµ 2 /h ≥ ( h t ) -for some > 0 (take D = ( h t ) -), and therefore in the sequel a term like O(λ -∞ ) will be neglectible. We are now in position to eliminate the ζ integration in (2.2.1). This is the purpose of the following lemma. Recall that the truncation χ 0 (ζ 2 + η 2 ) localizes ζ 2 + η 2 near 1. Therefore, for η small, ζ will be close to 1 or -1. In the sequel, we assume ζ near 1. There exists 0 < c 1 < C 1 such that the following holds true.

For z / ∈ [-1 + c 1 µ 2 , -1 + C 1 µ 2 ] one has sup z,µ 2 ,η |I(z, µ 2 , η; λ)| ∈ O(λ -∞ ).

(2.2.3)

There exists a classical symbol of degree 0 in λ, σ 0 (z * , η, µ 2 ; λ), such that one has

3) follows by integration by parts. For z ∈ 

with the phase function

and symbol f m (a, t, z; η, ω, h) equal to, with λ = t2 m √ aμ 2 / h,

Observe that we get the same phase function Φ N as in section 2.1, but we have to take care of the fact that now (1 -z2 ) 1/2 may be small. Therefore, in order to use the results of section 2.1, we introduce the notation T = T (1 -z2 ) 1/2 . Set C a,m,N,h = {(t, x, y, s, σ, ω, η) such that

Hence C a,m,N,h is defined by the system of equations

We define the Lagrangian submanifold Λ a,m,N,h ⊂ T * R 3 as the image of C a,m,N,h by the map (t, x, y, s, σ, ω, η) -→ (x, t, y, ξ

Proof. On the support of χ 3 , we can apply the stationary phase method for (s, σ)integrations with large parameter Λη; hence we get

ω-1/2 with C l independent of a, m, and where j = ±. The phase functions are

Let us define

We are reduce to prove the following inequality

. We proceed as in the proof of Proposition 2.1.8. Let us recall that on the support of χ 1 we have aω ≤ ε/2 2m a; hence aω could be small or large. We distinguish between two cases:

The first case is aω ≤ 1. Let T0 1. We get the following results:

• For 0 ≤ T ≤ T0 , N ≥ N ( T0 ), then we apply the integration by parts to get

• For 0 ≤ T ≤ T0 , 2 ≤ N ≤ N ( T0 ), Lemma 2.20 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] yields the following estimate with the phase function

To start with, we rewrite G a,m,N,2 in the following form

Now we can proceed as in the analysis of G a,N,2 in section 2.1. More precisely, we apply the stationary phase method for ω, η-integrations. It yields Λ -1/2 and q -1/2 with q = N Λ -1 respectively. We have the following facts [see Section 2.1]:

• Lemma 2.1.11: For N ≥ Λ 1/3 , there exists C such that e iΛ ψN,m χdsdσ ≤ CΛ -2/3 , and 1 √ N e iΛ ψN,m χdsdσ ≤ CΛ -5/6 , with ψN,m is a perturbation of the phase function obtained from φN,m at the critical point ωc . Hence we obtain the following estimates:

-

, the q -1/2 factor contributes to the η-integration, 2.2. It is particularly interesting that at this localization, G a, 0 is an oscillatory integral with nondegenerate phase function; this is due to the geometric study of the associated Lagrangian which rules out the swallowtails regime for |t| ≤ 1 if 0 is small enough.

Free Space Trajectories.

Recall that the operator P is given by

). Now we compute the trajectories in the free space for the associated symbol

To do so, we start at t 0 , x 0 , y 0 , z 0 with ξ 0 close to 0,

This yields

In our case, we start at t 0 = 0, x 0 = a, y 0 = z 0 = 0; the system becomes

The Lagrangian Λ ⊂ T * (R 4 t,x,y,z ): we have Λ ⊂ {p = 0} is parametrized by the system (2.3.1) with parameters (s, ξ 0 , η 0 , ζ 0 ) together with (ξ

2τ 0 , we replace it in the system (2.3.1). Then (2.3.1) becomes an homogeneous system parametrizing the Lagrangian Λ Chapter 3

Strichartz Estimates For The Model Problem

In this chapter, we present details for the derivation of Strichartz estimates for the solutions u of the wave equation ( 1 Let us recall some notations: For any I ⊂ R, Ω ⊂ R d , we define the mixed space-time norms

Frequency-Localized Strichartz Estimates

In this section, we prove Theorem 3.1.2. The classical strategy is as follows: we begin by interpolating between the energy estimates and dispersive estimates. This yields a new estimate, which we further manipulate via a classical L p inequality to establish (3.1.10). This last step imposes conditions on space-time exponent pair (q, r); these are precisely the wave admissibility criteria. The classical inequalities used are the Young, Hölder, and Hardy-Littlewood-Sobolev inequalities. Let us recall the Littlewood-Paley decomposition and some links with Sobolev spaces. For more details see the book of

We define the associated Littlewood-Paley frequency cutoffs χ(2 -j √ -∆) using spectral theorem for ∆ and we have j∈Z

This decomposition takes a single function and writes it as a superposition of a countably infinite family of functions χ each one having a frequency of magnitude ∼ 2 j , for j ≥ 1.

We have that a norm of the homogeneous Sobolev of Ḣβ is defined as follows: for all β ≥ 0,

With this decomposition, the result about the Littlewood-Paley squarefunction estimate [see [START_REF] Blair | Strichartz estimates for the Schrödinger equation on polygonal domains[END_REF][START_REF] Blair | Strichartz estimates for the wave equation on flat cones[END_REF][START_REF] Ivanovici | Square function and heat flow estimates on domains[END_REF]] reads as follows:

The proof follows from the Stein classical argument involving Rademacher functions and an appropriate Mikhlin-Hörmander multiplier theorem.

We define the frequency localization v j of u by v j = χ(2 -j √ -∆)u. Hence u = j≥0 v j . Let h = 2 -j . We deduce from Theorem 1.3.1 the frequency-localized dispersive estimates for the solution v j = χ(hD t )u of the (frequency-localized) wave equation

read as follows:

Therefore, we get that

where we used Minkowski inequality in the third line.

Appendix A. Airy function

Let z > 0. The Airy function Ai is defined as follows:

Ai(-z) = 1 2π R e i(s 3 /3-sz) ds.

It satisfies the Airy equation

Ai (z) -zAi(z) = 0, denoted by (A)

Let ω = e 2iπ/3 . Obviously, z → Ai(ωz) is a solution to (A). Any two of these three solutions Ai(z), Ai(ωz), Ai(ω 2 z) yield a basis of solutions to (A) and the linear relation between them is j∈{0,1,2} ω j Ai(ω j z) = 0. Then Ai(z) = -ωAi(ωz) -ωAi(ωz), which we rewrite as follows:

Ai(-z) = e -iπ/3 Ai(e -iπ/3 z) + e iπ/3 Ai(e iπ/3 z) = A + (z) + A -(z), where we set A ± (z) = e ∓iπ/3 Ai(e ∓iπ/3 z). Notice that A -(z) = A + (z). We also have the following asymptotic expansions

as z → +∞ and the corresponding expansion for A + , where we define Ψ + (z) = Ψ-(z). Moreover, we have

Notice that for z ∈ R + , B(z) ∈ R and B(z) ∼ j≥1 b j z -j for z → +∞ and b 1 = 0.

B. Phase Integrals

Lemma (Lemma 2.20 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]). Let K ⊂ R, and let a(ξ, λ) be a classical symbol of degree 0 in λ ≥ 1 with a(ξ, λ) = 0 for ξ / ∈ K. Let k ≥ 2, c 0 > 0 and Φ(ξ) a phase function such that 2≤j≤k

Then there exists C such that

Moreover, the constant C depends only on c 0 and on an upper bound of a finite number of derivatives of order ≥ 2 of Φ, a in a neighbourhood of K.

Let H(ξ) be a smooth function defined in a neighbourhood of (0, 0) in R 2 such that H(0) = 0 and ∇H(0) = 0. We assume that the Hessian H satisfies rank(H (0)) = 1 and ∇ det(H )(0) = 0. Then the equation det(H )(ξ) = 0 defines a smooth curve C near 0 in R 2 with 0 ∈ C. Let s → ξ(s) be a smooth parametrization of C, with ξ(0) = 0, and define the curve X(s) in R 2 by X(s) = H (ξ(s)).

Lemma (Lemma 2.21 [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]). Let K = {ξ ∈ R 2 , |ξ| ≤ r}, and let a(ξ, λ) be a classical symbol of degree 0 in λ ≥ 1 with a(ξ, λ) = 0 for ξ / ∈ K. For x ∈ R 2 close to 0 set I(x, λ) = e iλ(x.ξ-H(ξ)) a(ξ, λ)dξ.

Then for r > 0 small enough, the followings hold true:

(a) If X (0) = 0, there exists C such that for all x close to 0, |I(x, λ)| ≤ Cλ -5/6 .

(b) If X (0) = 0 and X (0) = 0, there exists C such that for all x close to 0,

Moreover, if a is elliptic at ξ = 0, there exists C such that

Lemma. Let 0 < γ < 1 and let

where

We can rewrite H 1 , H 2 as follows:

As in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF], we rewrite the system in the following form

and with ω = 1 + σ2 ,

For a given a and (X, Y, T ) ∈ R 3 , (3.2.4) is a system of two equations for unknown (s, σ) and (3.2.5) gives an equation for N . We are looking for a solutions of (3.2.4) in the range

Moreover, there exists a function f * (a, aσ 2 ) with f * (0, 0) = 1 and constants C 0 , C [START_REF] Blair | On Strichartz estimates for Schrödinger operators in compact manifolds with boundary[END_REF][START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF]. Optimal estimates in strictly convex domains have been obtained in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF]. Our case of cylindrical domains is an extension of the result of [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] in the case where the nonnegative curvature radius depends on the incident angle and vanishes in some directions.

Keywords: dispersive estimates, Strichartz estimates, wave equation, cylindrical convex domains.

Résumé: Estimations de dispersion et de Strichartz dans un domaine cylindrique convexe. Dans ce travail, nous allons établir des estimations de dispersion et des applications aux inégalités de Strichartz pour les solutions de l'équation des ondes dans un domaine cylindrique convexe Ω ⊂ R 3 à bord C ∞ , ∂Ω = ∅. Les estimations de dispersion sont classiquement utilisées pour prouver les estimations de Strichartz. Dans un domaine Ω général, des estimations de Strichartz ont été démontrées par Blair, Smith, Sogge [START_REF] Blair | On Strichartz estimates for Schrödinger operators in compact manifolds with boundary[END_REF][START_REF] Blair | Strichartz estimates for the wave equation on manifolds with boundary[END_REF]. Des estimations optimales ont été prouvées dans [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] lorsque Ω est strictement convexe. Le cas des domaines cylindriques que nous considérons ici généralise les resultats de [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] dans le cas où la courbure positive dépend de l'angle d'incidence et s'annule dans certaines directions.