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Résumé

Estimations de dispersion et de Strichartz dans un domaine cylindrique con-
vexe: Dans ce travail, nous allons établir des estimations de dispersion et des applications
aux inégalités de Strichartz pour les solutions de I’équation des ondes dans un domaine
cylindrique convexe Q0 C R3 & bord C*®, 9Q # 0. Les estimations de dispersion sont
classiquement utilisées pour prouver les estimations de Strichartz. Dans un domaine {2
général, des estimations de Strichartz ont été démontrées par Blair, Smith, Sogge [6, [7].
Des estimations optimales ont été prouvées dans [29] lorsque 2 est strictement convexe.
Le cas des domaines cylindriques que nous considérons ici généralise les resultats de [29]
dans le cas ou la courbure positive dépend de I'angle d’incidence et s’annule dans cer-
taines directions.

Mots Clés: estimations de dispersion, estimations de Strichartz, [’équation des ondes,
domaines cylindriques.
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Abstract

Dispersive and Strichartz Estimates for The Wave Equation Inside
Cylindrical Convex Domains

by Len MEAS

In this work, we establish local in time dispersive estimates and its application to
Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylin-
drical convex domains 0 C R?® with smooth boundary 99 # (. Let us recall that dis-
persive estimates are key ingredients to prove Strichartz estimates. Strichartz estimates
for waves inside an arbitrary domain 2 have been proved by Blair, Smith, Sogge [6] [7].
Optimal estimates in strictly convex domains have been obtained in [29]. Our case of
cylindrical domains is an extension of the result of [29] in the case where the nonnegative
curvature radius depends on the incident angle and vanishes in some directions.

Keywords: dispersive estimates, Strichartz estimates, wave equation, cylindrical
convex domains.
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Chapter 1

Introduction

Dispersive phenomena, which informally refer to the spread out of the wave packet as
the time goes by, often play a crucial role in the study of evolution partial differential
equations. Mathematically, exhibiting dispersion often amounts to proving a decay esti-
mate for L* norm of the solution at time ¢ in terms of some (negative) power of ¢ and
of L' norm of the data. The dispersive inequality provides two types of information.
The first concerns the precise decay rate of L norm of solution as ¢ — oo while the
second provides information about the regularity of L> norm of solution for ¢t > 0. In
many cases, proving these estimates relies on the (possibly degenerate) stationary phase
theorem and on explicit representation of the solution.

The dispersive estimates for the wave equation in R? or on a smooth Riemannian
manifolds without boundary are well known. In these cases, we can get the pointwise
decay estimates for the kernel of parametrix, which may be constructed in a suitable way
by Fourier integral operators whose phase function is nondegenerate. In domains with
boundary, the difficulties arise from the behaviour of the wave flow near the points of the
boundary. In the case of a concave boundary, dispersive estimates follow by using the
Melrose and Taylor parametrix for Dirichlet wave equation and the approach by Smith,
Sogge in [41].

Recently, in [29], Ivanovici, Lebeau, and Planchon have established the optimal local
in time dispersive estimates with losses inside the strictly convex domain, and this is due
to caustics generated in arbitrarily small time near the boundary. A main approach of the
proof consists in a detailed description of wave front set of the solution near the boundary.
The dispersion is optimal because of the presence of swallowtail type singularities in the
wave front set of the solution.

The analysis of wave front set consists two main ingredients: location of singularities
and direction they propagate, namely along bicharacteristics. It appears in problems of



the propagation of singularities in the phase space. On manifold without boundary, this
phase space is the contangent bundle. In the case with non-empty boundary, the main
challenge arises from the behaviour of singularities near the boundary. In the interior
of the domain, due to Hormander rather general theorem, these singularities propagate
along the bicharacteristic curves (optical rays). The simplest case is that the singularities
striking the boundary transversely simply reflect according to the usual law of geometric
optics (“angle of incident equals angle of reflection”) for the reflection of bicharacteristics.
Melrose and Sjostrand introduced the notion of generalized bicharacteristic rays to proved
the propagation of singularities near the boundary. The difficulties arise when dealing
with the rays tangent to the boundary. They proved that, at these “diffractive points”,
the singularities may only propagate along certain generalized bicharacteristics. The the-
orem on propagation of singularities in strictly convex domains was proved by Eskin in
[17] by the construction of the parametrix near tangential direction to the boundary and
was proved independently by Andersson and Melrose in [1].

A simplest geometry of wave front set is a spherical wave front, it moves outward
from the source point at a constant speed and the energy propagates equally in all direc-
tions. In the case of half space or concave boundary, the reflected waves do not generate
caustics. Interior of a strictly convex domains, reflected waves generate infinitely many
singularities such as cusps and swallowtails.

In domains whose boundaries have the order of tangency greater or equal 3, there
are no known results concerning dispersion except the approach of doubling the metric
across the boundary and considering a boundaryless manifold with a Lipschitz metric
across the boundary. These arguments require to work on a very short time intervals in
order to construct parametrix in the case of only one reflection. But this approach yields
non sharp dispersive estimates since the metric is not smooth enough.

In this thesis, we will study a model case of cylindrical domains with a convex bound-
ary with zero curvature along the axis of the cylinder. The main result in this thesis
is that we have proved the optimal local in time dispersive estimates with losses. Our
approach of construction the parametrix allows us to give a detailed description of the
wave front set, which shows precisely that the caustics appear between the first and the
second reflection of the wave on the boundary. The result for dispersion is optimal due
to the presence of the swallowtail type singularities in the wave front set.

Let us recall that it is now well established that these dispersive estimates, combined
with an abstract functional analysis argument—the TT* argument— yield a number of
inequalities involving space-time Lebesgue norms L{(L})—the so-called Strichartz esti-
mates. The Strichartz estimates have proven to be of great importance in the study of
semilinear or quasilinear Schrédinger and wave equations, in particular mixed (in time
and space) L{(L") estimates are often the key to proving well-posedness results.



In RY, the first global L{(L") estimates was proved by Strichartz for the wave equation
[see [47]] first in the particular case ¢ = r. The extension to the whole set of admissible
indices was achieved by Ginibre and Velo in [19] for Schrédinger equations, where (g, r)
are sharp admissible and ¢ > 2; the estimates for the wave equations were obtained in-
dependently by Ginibre, Velo in [20] and Lindblad, Sogge in [35], following earlier works
by Kapitanski [see [31]]. The endpoint case estimates for both equations was established
later by Keel and Tao in [33]. The so-called Knapp wave provides counter examples away
from the endpoint.

For general manifolds, phenomena such as the existence of trapped geodesics or finite-
ness of volume can preclude the development of global estimates, leading us to consider
just local in time estimates. Only partial progress has been made in establishing these
estimates on manifolds, domains or singular spaces such as cones. For the conic case, its
singularity affects the flow of energy and complicates many of the known techniques for
proving these inequalities.

In [5], Blair, Ford, and Marzuola proved the dispersive and scale invariant Strichartz
estimates for the wave equation on the flat cones by using the explicit representation of
the solution operator in regions related to flat wave propagation and diffraction by the
cone point. They also proved the corresponding inequalities on wedge domains, polygons,
and Euclidean surfaces with conic singularities.

In [52], Zhang proved the global-in-time Strichartz estimates for wave equations on
the nontrapping asymptotically conic manifolds . These type of estimates was dealt with
in [48] outside normally hyperbolic trapped on odd dimensional Euclidean space. In [9],
Bouclet proved Strichartz estimates for the wave and Schrodinger on surface with cusps.

In the case of a compact manifold with boundary, the finite speed of propagation
allows us to work in coordinate charts and to establish the local Strichartz estimates
for the variable coefficients wave operators in R%. In this case, Kapitanski in [32] and
Mockenhaupt, Seeger and Sogge in [39] established such inequalities for operators with
smooth coefficients. Smith in [40] and Tataru in [50] have proven Strichartz estimates
for operators with C'! coefficients. Local and global in time Strichartz estimates for
exterior in R? to a compact set with smooth boundary under a nontrapping assumption
were obtained by Smith, Sogge in [42] for the case of odd dimensions and Burq in [11],
Metcalfe in [38] for the case of even dimensions.

Using the L7()) estimates for the spectral projectors obtained by Smith and Sogge
in [43], Burq, Lebeau, Planchon in [13] established Strichartz estimates for bounded do-
mains in R? for a certain range of triples (¢,7,7). In [7], Blair, Smith, Sogge expanded



the range of indices ¢ and r obtained in [I3] and generalized results to higher dimensions.

For manifold with smooth, strictly geodesically concave boundary, the Melrose and
Taylor parametrix had been used by Smith and Sogge in [41] in order to obtain the non-
endpoint Strichartz estimates for the wave equation with Dirichlet boundary condition.

Recently in [29], Ivanovici, Lebeau, and Planchon have deduced the usual Strichartz
estimates from the optimal dispersive estimates inside strictly convex domains of dimen-
sions d > 2 for a certain range of the wave admissibility.

1.1 The cylindrical model problem

Let Q = {z >0, (y,2) € R?} C R?® with smooth boundary 92 = {x = 0} , and let P be
the wave operator:
P =98] —(0:+ (1+2)0; +92).

We consider solutions of the linear Dirichlet-wave equation inside €2
Pu=0, w,,=04 Ou,,=0, wu,,=0, (1.1.1)

with u = u(t, x,y, 2), and for a > 0, d, = dy—ay—0..—0. We use the notation 7 = %&, n=
%8%5 = %8174 = %@ for the Fourier variables and h € (0,1]. The Riemannian manifold
(Q,A) with A = 92 + (1 +2)9; + 07 can be locally seen as a cylindrical domain in R? by
taking cylindrical coordinates (7,0, z), where r = 1 —x /2,0 = y, and z = z. The problem
is local near the boundary 092 = {z = 0}. Let (a,0,0) € 2,a > 0. In local coordinates,
a is the distance from the source point to the boundary. We assume a is small enough as
we are interested only in highly reflected waves, which we do not observe if the waves do
not have time to hit the boundary. This gives us interesting phenomena such as caustics
near the boundary.

We remark that when there is no z variable (or when y € R™ and 83 is replaced
by A,), it is the Friedlander model. In this case, the optimal dispersive estimates were
recently obtained by Ivanovici, Lebeau, and Planchon in [29].

Recall that at time ¢ > 0, the waves propagating from the source of light highly con-
centrate around a sphere of radius ¢t. For a variable coefficients metric, if two different
light rays emanating from the source do not cross (that is, if ¢ is smaller than the in-
jectivity radius), one may then construct parametrices using oscillatory integrals where
the phase encodes the geometry of wave front. In our scenario, the geometry of the wave
front becomes singular in arbitrarily small times which depend on the frequency of the
source and its distance to the boundary. In fact, a caustic appears between the first and
the second reflection of the wave front. Let us give a brief overview of what caustics are
[see [29] section 1.1]. Geometrically, caustics are defined as envelopes of light rays coming



from the source of light. At the caustic point we expect the light to be singularly intense.
Analytically, caustics can be characterized as points where usual bounds on oscillatory
integrals are no longer valid. The classification of asymptotic behavior of the oscillatory
integrals with caustics depends on the number and the order of their critical points that
are real. Let us consider an oscillatory integral

1 i
uh(z) = W /6h<1>(27<)g(2’ Ca h’)dC7 KAS Rda C € R, h e (Oa 1]

We assume that ¢ is smooth and that g is compactly support in z and ¢. If 9P # 0
in an open neighborhood of the support of g, the repeated integration by parts yields
lun(2)| = O(AN) for any N > 0. If :® = 0 and 97® # 0 (nondegenerate critical points),
then the stationary phase method yields ||up|/z~ = O(1). If there are degenerate critical
points, we define them to be caustics, as ||up||L is no longer uniform bounded. The
order of a caustic x is defined as the infimum of &’ such that |Jup |z~ = O(h™*). Let us
give some useful examples of degenerate phase functions. The phase function of the form
Sp(z,() = % + z1( + z3 corresponds to a fold with order k = %. A typical example is
the Airy funftion. 2The next canonical form is given by the phase function of the form
bc(z,() = % + zl% + 29(C + 23, which corresponds to a cusp singularity with order k = ;11.
A swallowtail canonical form is given by the phase ®5(z,() = % + zlg + z2§ + 23C + 24
with order x = 3/10.

The crucial result of this work is the extension of the result of [29] to the case of our
model cylindrical convex domains which have the following property: the nonnegative
curvature radius depends on the incident angle and vanishes in some directions.

The main goals of this work are:

e To construct a local parametrix and establish local in time dispersive estimates for
solution w to (1.1.1]).

e To prove the Strichartz estimates inside cylindrical domains for solution u to (|1.1.1]).

1.2 Some known results

The dispersive estimates for the wave equation in R follows from the representation of
solution as a sum of Fourier integral operators [see [10, 20, [3]]. They read as follows:

d—1
. K\ T
IX(BDy)e™™ V=25 || 11 gy oo ey < Ch™* min {17 (—) } ) (1.2.1)

iz



where Aga is the Laplace operator in R?. Here and in the sequel, the function y belongs
to C5°(]0, 00[) and is equal to 1 on [1,2] and D, = 19,.

Inside strictly convex domains Qp of dimensions d > 2, the optimal (local in time)
dispersive estimates for the wave equations have been established by Ivanovici, Lebeau,
and Planchon in [29]. More precisely, they have proved that

d—1 1
L B ) h T2 T 1
HﬁhmﬁﬂwzbmﬂmﬁﬂwmﬂSChdmm{L(EO }, (1.22)

where Ap is the Laplace operator on 2p. Due to the caustics formation in arbitrarily

small times, ([1.2.2]) induces a loss of 1/4 powers of (h/|t|) factor compared to (|1.2.1]).

Let us also recall a few results about Strichartz estimates [see [29], section 1]: let
(2, g) be a Riemannian manifold without boundary of dimensions d > 2. Local in time
Strichartz estimates state that

lellzoq-rryaron < Cr (ol sy + il o) (123

where H? denotes the homogeneous Sobolev space over  of order 8 and 2 < ¢,r < oo

satisfy
1 d d 1 d-1/1 1
Lo fp S ().
qg r 2 q 2 2 r
Here u = u(t, z) is a solution to the wave equation
(0} = Au=0in (-T,T) x Q, u(0,z) =wug(z), u(0,z)=u(z),
where A, denotes the Laplace-Beltrami operator on (€2, ¢). The estimates (1.2.3) hold

on ) = Rd and gij = 51]

In [7], Blair, Smith, Sogge proved the Strichartz estimates for the wave equation on
(compact or noncompact) Riemannian manifold with boundary. They proved that the
Strichartz estimates hold if € is a compact manifold with boundary and (¢, , )
is a triple satisfying

U

—1
r

+
+

wi— | A

Ghod<y,
,d> 4.

Q=W
3 =
IN

1 d d
——|——:——ﬁ,for{
q r 2

Recently in [29], Ivanovici, Lebeau, and Planchon have deduced a local in time
Strichartz estimates ([1.2.3]) from the optimal dispersive estimates inside strictly convex



domains of dimensions d > 2 for a triple (d, g, 5) satisfying

1 d—1 1 1 1 1 1 1
e (o) (222, andB=d=——) =2
q_( 2 4) <2 r>,an b (2 7’) q

For d > 3 this improves the range of indices for which sharp Strichartz estimates do hold
compared to the result by Blair, Smith, Sogge in [7]. However, the results in [7] apply to
any domains or manifolds with boundary.

1.3 Main results

Our main results concerning the local in time dispersive estimates and Strichartz esti-
mates inside the cylindrical convex domain 2 are stated below. Let G, be the Green
function for (1.1.1]).

Theorem 1.3.1. There exists C' such that for every h €]0, 1], every t € [—1, 1] and every
a €0, 1] the following holds:

B\ 3/4
IX(ADOGa(t, 2,1, 2l < Ch mm{l, (H) } (1.3.1)

As in [29], Theorem [I.3.1] states that a loss of 1/4 powers of (h/|t|) appears compared
to (1.2.1) . We will obtain in Theorems [1.4.1] [1.4.2] |1.4.3| better results, in particular
near directions which are close to the axis of the cylinder.

As a consequence of Theorem [1.3.1] conservation of energy, interpolation and 7T7™
arguments, we obtain the following set of (local in time) Strichartz estimates.

Theorem 1.3.2. Let (2, A) as before. Let u be a solution of the wave equation on §):

(0} = Au=0 inQ,
Ujt=0 = Uo, a1tu|t:0 = Uy,

Ulp=0 = 0.

Then for all T there exists Cr such that

[l Lago,ryier @) < Cr (HUOHHﬁ(Q) + HulﬂHﬂ—l(Q)) ’

1 1 1 1 1 1
—<3(———>,andthescalmg B:3<———)——.
r r q

with
g~ 4\2 2

Theorem [1.3.2 improves the range of indices for which sharp Strichartz estimates do



hold compared to [7]. Notice however that the results in [7] apply to arbitrary domains or
manifolds with non-empty boundary. To prove the Strichartz estimates in Theorem [1.3.2]
we first prove the frequency-localized Strichartz estimates by utilizing the frequency-
localized dispersive estimates, interpolation and 7T7T* arguments. We then apply the
Littlewood-Paley squarefunction estimates [see [4, [, B0]] to get the Strichartz estimates
[Theorem in the context of cylindrical domains.

1.4 Green function and precise dispersive estimates

The proofs of frequency-localized dispersive estimates are based on the construction of
parametrices for the fundamental solution of the wave equation (|1.1.1)) and (possibly de-
generate) stationary phase method.

We begin with the construction of the local parametrix for by utilizing the
spectral analysis of —A with Dirichlet condition on the boundary to obtain first the
Green function associated to ([{1.1.1)). The Laplace operator we work with on the half
space 2 is equal to

A=0+ (1+x)0, + 02,

with the Dirichlet condition on the boundary 9€2. We notice that a useful feature of this
particular Laplace operator is that the coefficients of the metric do not depend on the
vairables y, z and therefore this allows us to take the Fourier transform in y and z. Now
taking the Fourier transform in y, z-variables yields

_AM = —8:% + (1 + x)TIQ + CQ-

For n # 0, —A, ¢ is a self-adjoint, positive operator on L?(R ) with compact resolvent.
Let (ex)g>1 be an orthonormal basis in L?(R) of Dirichlet eigenfunctions of —A, - and
let (A\g)r be the associated eigenvalues. We get easily

_ _ |7]|1/3A 2/3,.
er =er(w,n) = fim g A" 2 — w).

and

>\k :/\k(nv C) = 772 + <2 + Wk-|77’4/3,

where (—wy,) denote the zeros of Airy function in decreasing order and for all k > 1, f; are
constants so that ||ex(.,n)| 2w, ) = 1. Observe that (f;)x is uniformly bounded in a fixed

compact subset of 0, oo since f:jk Ait(w)dw ~ = :oi w721 + O(w™1))dw =~ |w|'/?

T 4w
and wy, ~ (%Wk)2/3 (1+O(k™1)).



For a € Q, let g,(t,z,n, () be the solution of
(07 = (97 — (L +2)n* = ¢*))ga = 0,
Ya|z=0 = 0, Yajt=0 = Ozr=a; atga\tzo = 0.
We have

ga(t,z,m,¢) = Z cos(t/\,lf)ek(x, n)ex(a,n). (1.4.1)

k>1

Here §,—, denotes the Dirac distribution on R, ,a > 0 and it reads as follows:

5m:a = Z ek(xa n)€k<a7 77)

k>1

Now taking the inverse Fourier transform, the Green function for ([1.1.1)) is given by

1 .
Galt, 2,9, 2) = — / =0 g (1 2,7, C)dndC,

472

1 |
=03 / w0/ cos(tIN2Ver (2, m/h)er(a,n/h)dndC.  (1.4.2)
k>1

We thus get the following formula for 2x(hD;)G,

2X(hDy)Gu(t, x,y, 2) = 2h2 Z/ # (un+20) gigs (1P +C+wh®/ S| 312 k(z,n/h)eg(a,n/h)
X((0? + C + wph®P | )2 dndC. (1.4.3)

On the wave front set of the above expression, one has 7 = (7% + (% + w,h?/3|n|*/3)Y/2. In
order to prove Theorem [1.3.1] we only need to work near tangential directions; therefore
we will introduce an extra cutoff to insure |7 — (n? + ¢2)'/?| small, which is equivalent to
wh?3|n|*? small. Then, we are reduced to prove the dispersive estimate for G jo.:

Gatoc(t,z,y, 2) = ym 2h2 Z/eh (y1+20) i (7P +C2 kB[ 4/3)1/2 o n/Rex(a,n/h)

k>1

Xo(n” + ¢*)xa (wph®|n|**)dndc, (1.4.4)

where the cut-off functions yo and x; are defined in section [2.1]
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Phase space

To obtain the local in time dispersive estimates, we will cut the 7 integration in (|1.4.4))
in different pieces [as figure above|. More precisely, we write

gCL,ZOC - ga,co + Z ga7m + ga,607 (145)
e0v/a<2m/a<co

where G, ., is associated with the integration for |n| > co, Ga . is associated with the
integration for |n| ~ 2"™y/a, and G, ., is associated with the integration for 0 < |n| < €yv/a.
We will prove the following results. Let € €]0,1/7].

Theorem 1.4.1. There exists C' such that for every h €]0,1], everyt € [h, 1] the following
holds:

B 172
1Gaco(t, 2,1, 2)|| Lo (w<a)y < Ch—3 <¥) ~(t, h,a), (1.4.6)

with
i if a<h30=o),

)1/2 +aBRA if a > ki € €]0, €.

—~
+|S >
~—

v(t,h,a) = {(

Observe that in Theorem [1.4.1] we get the same estimate as in Ivanovici-Lebeau-
Planchon [29].

Theorem 1.4.2. There exists C' such that for every h €]0,1], everyt € [h, 1] the following
holds :

B 172
Hga,m@v‘xay?Z)HLw@Sa) < Ch’_3 <?) /Ym(ta h,(l), <147)
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with
(%)1/3 (2mJa)l/3 ifa< <2mhf)§(1_6)7
¢ 2 /
Yl s 0) = 9 iy { (2)'7? 2m./a| log(2m\/5)|} L aMBRARm @) if > (thﬁ)g_e,
€ €]0, €.

For 2"y/a ~ 1, Theorem yields the same result as in Theorem We notice
that the estimates get better when || (~ 2™y/a) decreases. This is compatible with the
intuition: less curvature implies better dispersion.

Theorem 1.4.3. There ezists C' such that for every h €)0,1], every t € [h,1], the fol-
lowing holds:

L, (h\"?
1Ga.co(ts 2y, 2) || oo (azay < CRT2 (?) min {(h/t)"/?, v/a|log(a)|} . (1.4.8)

Let us verify that Theorem [[.3.1] is a consequence of Theorems [[.4.1] and
. We may assume |t| > h, since for [t| < h, the best bound for the dispersive
estimate is equal to Ch~3 by Sobolev inequality. Then, by symmetry of the Green func-
tion, we may assume ¢t € [h,1] and x < a. Then Theorem is a consequence of

ngM(Qm\/a)V ~ (2M\/a)? for v > 0.
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Chapter 2

Dispersive Estimates For The Model
Problem

In this chapter, we prove Theorems [1.4.1] [1.4.2) and [1.4.3, This chapter is organized as
follows:

In section 2.1}, we prove Theorem To do so, we use the representation of G, .,
as a sum over the eigenmodes which is used to prove the estimates for a < h%(1_€),
€ €]0,1/7[. Using the Airy-Poisson summation formula [see Lemma [2.1.4], G, ., can be

also represented as a sum over multiple reflections for a > h35=< for ¢ €]0,¢[. These
local parametrices can be written in terms of oscillatory integrals to which we can apply
degenerate stationary phase results.

In section 2.2, we prove Theorem [I.4.2] To get the estimates for G, , , we distinguish
2(1-¢)
between two different cases. The first case is a < (#) ", € €)0,1/7]: here, we

follow ideas in section [2.1] and construct a local parametrix as a sum over eigenmodes.
2 ’

The second case is a > (=2~)" |, for € €]0, ¢[: there, the Airy-Poisson summation
2my/a

formula yields the representation of G, ,, as a sum over multiple reflections.

In section we prove Theorem [1.4.3] Notice that as €y is small, the estimates for
Ga, are in fact those in free case. To get that, we first compute the trajectories of the
Hamiltonian flow for the operator P. At this frequency localization there is at most
one reflection on the boundary of the cylinder. Moreover, we follow the techniques from
section and obtain an expression for G, ., to which we apply the stationary phase
method. It is particularly interesting that this localization gives us an oscillatory integral
(the local parametrix) with nondegenerate phase function; this is due to the geometric
study of the associated Lagrangian which rules out the cusps and swallowtails regimes

13



14

for a given fixed time ¢, [t| < 1 if ¢ is small.

In all these sections, we will assume that the integration with respect to 7 is restricted
to n > 0, since the case n < 0 is exactly the same.

2.1 Dispersive Estimates for |n| > .

In this section, we prove Theorem The key ingredient is to construct local para-
metrices for the regimes a < h31=9 for € €]0,1/7[, and for a > h3~ for ¢ €]0,¢|
respectively. These are oscillatory integrals to which we apply the (degenerate) station-
ary phase type arguments to get the desired estimates. The Airy-Poisson summation
formula [see Lemma gives us the parametrix as a sum over multiple reflections.

2.1.1 Dispersive Estimates for 0 < a < h3179, with ¢ €]0,1/7].

In this section, we prove local in time dispersive estimates for the function G, ., . In the
regime 0 < a < h3179, with € €]0, 1/7[, the parametrix reads as a sum over eigenmodes
k. Taking into account the asymptotic behaviour of the Airy functions, we deal with
different values of k as follows: for small values of k, we use Lemma 3.5[29] to get the
estimates; for large values of k, we use the asymptotic expansion of the Airy functions.
The last case, the parametrix is a sum of oscillatory integrals to which we apply Lemma
2.20[29]. Recall that the parametrix in this frequency localization and near tangential
directions is equal to

1 i t
gajco (t, $’ y, Z) = W Z / eﬁ(ynJFZC)elﬁ(772+42+wkh2/3|77|4/3)1/2 ek(x’ n/h)ek(a’ n/h)

k>1
X X0(C% + 0o (n)xa (weh 2| (1 — x1) (ewr)dndC. (2.1.1)

Here

e X0 € C5°,0 < xo <1, x0 is supported in the neighborhood of 1.
e 1)y € C§°(co/2,00),0 < vy <1, 1hg(n) =1 for n > co.

e x; € C§°,0 < x1 < 1,x; is supported in (—o0,2¢],x1 = 1 on (—o0,¢], for € > 0

small. y; is used to localize in tangential directions. Notice that on the support

of x1, we have wyh?3|n*/? < 2¢ and since wy, ~ k%3; we obtain k < moz- Thus

since 7 is bounded from below, we may assume that k& < ¢/h. Moreover, we have
(1 —x1)(ewg) =1 for every k > 1 since w; ~ 2.33.
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The main result of this section is the following proposition.

Proposition 2.1.1. Let € €]0,1/7[. There exists C' such that for every h €0, 1],
every 0 < a < h30=9, and every t € [h, 1],y € R,z € R, the following holds:

B\ /6
[Gacalt0: ) e < €17 () 2.12)

Proof. First, we study the integration in (. Let
J = /eiid’kXO(Cz —|—772)dC.
Recall that xo € C° is supported near 1. The phase function ¢y is given by

or(¢) = ;C + (P + ),

with v = h¥3w|n|~2/* > 0. We introduce a change of variables ¢ = ||, z = tZ. Then
we obtain

O(Q) =l (3¢ + (14 83 +9)2).

Differentiating with respect to 5 , we get

- ¢
Octi = Inl <Z " (1+C2+ 7)1/2) '

Since 7 is bounded from below, ¢ = ¢/|n| is bounded, therefore we have

1 — 26y, for some ¢; > 0 small. Then if |Z| > 1 — 07, the contribution of (-integration
is Oc((h/t)*) by integration by parts. Thus we may assume that |Z] < 1 —4§;. In
this case, the phase ¢, has a unique critical point on the support of xo. It is given by

QN" = iy~ and this critical point i d te si
.= R point is nondegenerate since

1+~
D2y, = _ >0

Then we obtain by the stationary phase method (as |Z| < 1 — d1)

Y

h 1/2 i L nlV/1=52(1 1/2
J= " eln IMv1=22(1+7) %o
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where Yq is a classical symbol of order 0 with small parameter h/t. Hence we get

1 R\ 2 . _
Gl 3,9, 2) = (‘) S [ Rl ) e )

k>1

Am2h2 \ t

x Xoo(n)x1(¥In*) (1 = x1) (evh ™3 [n|**)dn. (2.1.3)

Next, we observe that G, ., contains Airy functions which behave differently depending
on the various values of k. To deal with it, we split the sum over k into G, ¢, = Ga <1 +
Ga,>1, Wwhere in G, .1, only the sum over 1 < k < L is considered. To get the estimates for
Ga.<1, we need the next lemma, which follows from the bound |Ai(s)| < C(1 + |s|)~Y/4.

Lemma 2.1.2. (Lemma 3.5[29]) There exists Cy such that for L > 1, the following holds:

beR

sup ( Z k=13 Ai% (b — wk)> < CoL3.
1<k<L

We use the Cauchy-Schwarz inequality for (2.1.3)) and Lemma to get

B 172
Guctlie S0 (1) 30 W25 i /1 = ) Al — ),

1<k<L

1/2
L (P 1/3 —1/3 4;2(1,—2/3],,12/3 :
<h n h Z k=2 A (W2 g e — wy,)

1<k<L
1/2
% ( Z kfl/BAZ'2<h72/3’n‘2/3a . wk)) ’

1<k<L

B 172
< h73 (_) h1/3L1/3.
~ t
We only have to prove (2.1.2)) for ¢t > h. Let € €]0,1/3[ and L = h™°. If t < h°, then
L< %, hence

B\ 5/6
Hga,<L(t,l’,y, Z)HLOO < Ch_3 (;) .

We are reduced to the case t > h¢ > hY3. Then we apply the stationary phase for
n-integration of the form

/ e ® Ai (W23 0|3 n — wy) Ai (R |n|*3a — wy,)dn,
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with the phase function
Oi(n) = nly + V1= 22(1+7)"?).

To deal with this integral, we rewrite ®, = hAU;, where A\ = tw,h~'/3 is a large parameter.
We have |8%\Ifk| > ¢ > 0. To apply the stationary phase, we need to check that one has
for some v > 0 one has

10 Ai(h |3 — wy)| < CEAI0270),

Since one has sup,-, [b'Ai") (b — wy) < C’lw,‘:’l/ ? it is sufficient to check that there exists
€ > 0 such that for t > h® and k£ < h™°,

wz/? S (twkhfl/3)(1/2*l/)
This holds if € < 1/7. Therefore the estimate for e < 1/7 and t > A€ is

1/2
||]lm§aga,<L(tv x,Y, Z) ||L°° S Ch_3 (%) [h1/3 Z k_1/3)\—1/2]’

1<k<h—¢

B\ 12
_> [hl/3 Z k_l/g(twkh_l/g)_l/2],

1<k<h—¢

<
o ()]
( .

We now deal with large values of k, L < k < ¢/h with L. > Dmax{h ¢, 1/t},D > 0
large constant. We are left to prove (2.1.2)) ho
Lgkg%. Fork>Dhcand 0<z<a<h

o

s true for G, -1, defined by the sum over
1—e¢)

SN
—

, we have
wp — [NPPR2 P > w2
Therefore we can use the asymptotic expansion of the Airy function (see Appendix A)

Ai(9) = Zwieigi(fﬁ)sm(_19)71/4\1&(_19) for — 9 > 1, where w* = ¥/
+

and where W are given in the Appendix. By the definition of e, we have
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n[V3h-13
exlr,n/h) = fil e A — ),
‘77’1/% e Zw oF 5ilwn—[n*/3h=2/32)3/2 Uy (wy — |77‘2/3h_2/3$)
I L1/6 (wi — ||?3h—23z) /A

We can rewrite G, -1, as follows:
1 R\ /2 PR
ga,>L(t7:B7yvz) = Z W (;) /eh(pk O'I:Ctd:dﬁ, (214)
L<k<2 ++

with the phase functions are defined by

= 2 2
i w,y, 2, asm) =y + [tV = 2214+ £ Sl (v — )Y £ Sinl(y — @),

and the symbols are given by

_ - 12
o5 (2,0, hin) = W Roxa (yn®) (1 = xa) (eyh ™ ) s wtew®
< (7= 2) VA — @) (P h 0 — )W (PR — a).
We have 310, = =270, and for 0 <z < a < 27,
(0, ((y — &) V™M) < Cpy ™V < Cl(hk) VS,

moreover, ¥, are classical symbols of order 0 at infinity which is true in this case since
we have

PRy — )| > wi/2 = O,
since k > L > h™°. Hence we obtain that for all j, there exists C; such that

(8503 (2, a by )| < Cj(hk) 7%,

since in the symbols a,f’ there is a factor (hk)™'/% and we apply 7 derivatives to the
product (y — 2)~4(y — a)~'/* to get another factor (hk)~'/3.

Now we study the oscillatory integral of the form

i &L
/ehq)k aki’idn.

To get the estimates for this integral, we set ®F = h\yp ™, where A = twyh™ /3. It
defines a new large parameter since A > ¢ > 0 as wy, ~ k*3,k > 1/t,and t > h. The
following result gives an estimate of these oscillatory integrals.
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Proposition 2.1.3. Let € €]0,1/7[. For small ¢, there exists a constant C' independent
of a € (0, h%(l_ﬁ)], telh 1,z (0,al,y cR,z€R and k € [L, ;] such that the following
holds:

‘ / eiwf’iajvidn' < O(hk) 23N,

Proof of Proposition[2.1.5. Since (hk)% 3U:’i are classical symbols of degree 0 compactly
supported in 7, we apply the stationary phase method to an integral of the form

Jy = / M (hk) ot dn,.

We have to prove that the following inequality holds uniformly with respect to the pa-
rameters:

|Jy| < CA7Y3,
Let us recall that

_ 2 9
XY (t w0y, 25m) = yn + [ntv1 — 22(1 + )2 £ Sy = )% £ Sy = a)®?.

We compute

1+ 2 2 9
h)\an ]:Ct’:t =y +iv 1— 22\/% 4 ggj(fy _ ZL‘)I/2 + ga(,y . a)1/2’

and we need to consider four cases. Let 0 = £ € [0,1], & = —57 € [0, ap]. Indeed, since
wih

wp = k*3, k > Dh~¢ and a < h31'=9, we have a = ak™?/3h=/% < D2/3qh=50-9 <
D723 .= q. Let p = |n|~2/3, V = Y12 and define the function F(v) by

twk h2/3

ﬂ=1+7F(7), F(y) = 1+l+0(v2)-
VIt

6 24
With these notations we get:
2
O™ =V + V1 = 2pF (h*3wp) + rla (£d(p — da)? £ (p— oz)l/Q) :

JEAeED)
t

where © = ah 1% 5t satisfies 0 <pu<

to.),i/2 !
or arbitrary large. In fact, if t > h¢, pu < h3(1=9¢=1 < p1/3=4¢/3 which is small if € < 1/4.
If t < h¢, we have p < hY/372¢/3t=2/3 which could be large when t < hY/?7.
First, we consider the case where p is bounded. We now study the critical points. We

min{1, h~¢/3t/3} and thus p may be small
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|—2/3

take p = |n as variable, we get

00 = VI=Z(F(3) + YF' (1) + 5 (£ 6(p = 60) 7 £ (p = a) ),

G = VI= 2 Pw2F' (1) +7F'(7) = £ (£8(p = 60) 2 & (p — a) 7).

For & small enough, there exists ¢ > 0 independent of k& < ; such that
10,0000 | + 020,007 > c. (2.1.5)

Indeed, we observe that (p — a)™"/2 > §(p — da)'/% and F(v) + vF'(y) ~ . Thus we
get |8p8,71p,;t’+| > c¢; > 0. Other cases, 8,)8771/1:’7 could vanish and when this happens we

have
10,0,0°5 7| < 1/100 = g(p — )2 > 0.05.

Then we have |8§&7¢k_’_| > ¢ > 0. Moreover, for any function f, we have

a(1-9)
Flo— ) — 8f(p— 6a) = (1— 8)f(p — ba) — / [lp—ba—tydt.  (2.16)

Taking f(t) = t~/2, we get that
10,0, 7| <1/100 = p(1 — ) > ¢ > 0.

Applying (2.1.6) with f(t) = t7%/2, we obtain [020,¢,"| > ¢/2 > 0. As a consequence
of (2.1.5)) together with Lemma 2.20 in [29][see Appendix|, we get that the proposition
holds true for pu bounded.

It remains to study the case where p is large. For (4,+) or (—,+) case, we study
again the critical points and we take A = A\i as a large parameter. Since §(p — )~/ +
(p—a) V2 > ¢ >0, we have |9,0,0"| > ¢ > 0. Hence |J1| < C(Au)~"2. For (+,—)
and (—,—) cases, we can use (2.1.6). We distinguish between two cases: if p(1 — &)
is bounded, the computation of the derivatives of the phase functions w,f’f yields the
inequality and the conclusion follows the Lemma 2.20 [29]. If u(1 —0) is large, we
take A’ = Au(1 — &) as a large parameter in .J; . Since by (2.1.6), we have

(p— )2 = 6(p— 6a) 2| 2 ¢(1 - §)

with ¢ > 0. We get that [9,0,4:""| > ¢ > 0 and hence |.J;| < C(\u(1 — )~ 1/2. O

To summarize, the Proposition yields the dispersive estimates for the large values
of k, L <k <c¢e/h as follows:
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(hk)_2/3)\_1/3,

(]

Z(hk)72/3(twkhfl/3)fl/37

Z(hk’)_z/?)t_l/gk_Q/ghl/g,

B\ /3
(_) h1/9 Z k—8/9
P )

[
k<=

h 5/6
<Ch 3| =
<o ()

where we used A = twih /% in the second line, and wy, ~ k%3 in the third line.

This concludes the proof of Proposition [2.1.1] O

2.1.2 Airy-Poisson Summation Formula.

Let AL(2) = eT™/3Ai(eT™/32) | we have Ai(—z) = AL(2) + A_(2). For w € R, set

L(w) =7 +ilog (ﬁ;gg;) .

As in Lemma 2.7 in [27], the function L is analytic, strictly increasing and satisfies

4
L(O) = 7'('/37 lim L(w) = O7 L(w) — _w3/2 _ B(MS/Q), for w > 17

w—r—00 3

with
B(w)~> bw™, bR, b #l,

Jj=1

and for all k£ > 1, the following holds
L(wg) =27k & Ai(—wi) =0, L'(wg) = 27r/ Ai*(x — wy)dz.
0

Recall that f; are constants such that ||eg(.,n)||r2r,) = 1. This yields

> kY3 L (wy)
) . _ N
/0 Ai*(x — wy)dx 7 o
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The next lemma, whose proof is in the Appendix, is the key tool to transform the sum
over the eigenmodes k to the sum over N.

Lemma 2.1.4 (Airy-Poisson Summation Formula). The following equality holds true in

D'(R,,),
—iNL(w) __
Z e ) = o Z L’ Sy -
NeZ keN*
Now we rewrite (|1.4.4)) and we replace the factor kl e by L, . We get
1 i z |flc 24 0 h2/3|p|4/3)1/2
Qa,co(t,%y, ) (27T)2h8/3/ en (yn+2¢) Z k1/3 77+C Fwph?/3|n|*/3) | ’2/3 (?72+C2)
k>1

X o) (weh® ) (1 = xa)(ewn) Ai (2 e — ) Ai (2|0l — e ) dnd

1 i > 27 it (p2402 4w, h2/3|n|4/3)1/2
= W/eh(yw 9 Z L’(wk)e n P+ B 2030 02 4 2)

k>1
X o m)xa (weh® ) (1 - X1)(€wk)Ai(h‘2/3|nl2/3x = wn ) Ai (02 — ) dnd,
1 B Owewo L (242 wh2/3 | A/3)1/2
et (209 k L(n2+¢2+wh?/3n|1/3) 2/3 2 2
(27r)2h8/3/ W; L)€ 17 x0(n” +¢7)

X wo(n)xl(whz/s\n|4/3)(1 —x1)(ew)Ai (h_2/3]77\2/3x — w)Az’ <h_2/3\77]2/3a — w) dwdnd(.

Using Lemma [2.1.4] G, ., becomes

g [ 0T D e H O R )

NEeZ

x () (Rl (1 = x1)(ew) A (h22 |20 = ) Ai (B2 0 a - w) dwdndC.

ga,co (t7 17, y7 Z) -

—1)N i 20) it (n2aC2wh2/3|n]4/3)1/2
= 3 g OO (€ ) )
NeZ

N
X (1 —x1)(ew) (ﬁii;) Az( 2By — w)Ai(h_2/3|n|2/3a — w)dwdnd(,

AN .
-y (=) o (UG k2 3 A1) 4 ([ S0 —h® )+ 5o (02 Pa—wh?/2))
(2m)4h10/3

NeZ

> |77|2/3X0(C2 + 772>¢0(77)X1(Wh2/3|77|4/3)(1 . Xl)(gw)e—%z’NWS/2.H‘NB(W3/2)dsdo_dwdndg7
(2.1.7)
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where we used the definition of the Airy function [see Appendix A]

N
Ai(—2) = %/ei(sz)’/?’_sads, and (ﬁgwi) — N giNWY? iNB(W¥?)
™ Jr +\w

where for Z € R, we recall that B(2) € R and B(2) ~ Y b;z77 for Z — 400 and by # 0.
Jj>1

From the second to the third line, we made a change of variables s = Sh™/3 o = L h~1/3

in the Airy functions; but for simplicity we keep the notations s, 0.

Therefore, (2.1.7)) is a local parametrix that reads as a sum over N. Notice that our
parametrix coincides with the constructed sum over reflected waves in [29] since each
term has essentially the same phase. In the sequel, we refer N as multiple reflections.

2.1.3 Dispersive Estimates for a > hi ¢, ¢ €|0, €[.

In this section, we establish the local in time dispersive estimates for the parametrix
in the form as a sum over multiple reflections on the boundary in the regime
a > h3~, for ¢ €]0,¢[. Recall that our local parametrix under the form is
constructed from together with the Lemma It is a sum of oscillatory integrals
with phase functions containing an Airy type terms with degenerate critical points.

|/

‘ N = 2 Swallowtails regime ‘

To deal with (2.1.7)), we introduce a change of variables a@ = = h2Bw|n| =2 r = aX,
= [n|¢, s = a2 |35, 0 = a'/?|n|'/36. Then we can rewrite G, as follows:

Gorco(t,2,9,2) = Y Gan, (2.1.8)

NEeZ
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with for each N € Z,

_A\N 2 ; B
Gunlt2) = oz [ e#® s aPralaP(1L + )l (o)

x (1 — x1)(eah™2n*30)dsdadodldny, (2.1.9)

with the phase function @y, = Py anlt, z,y, 2; 5,6, 0, ¢, n),

33
~ ~ ~ S - - - -
Prvan = yn+ nl=C+ [l + C + a@) ' + a2y (3 +IX -0+ Z+5(1-9)

_Z_JLN@3/2_|_ h

~3/2 3/2
3 —a3/2|n|NB(w a |n|/h))

The main result of this section is Theorem [2.1.5] It gives the estimate of the sum
over N of the oscillatory integrals of the form (2.1.9) by using the stationary phase type
estimates with degenerate critical points.

Theorem 2.1.5. Let a < 2/3. There exists C' such that for all h €]0, hol, all a € [h*, ag],
all X € (0,1, all T €]0,a7Y?], all Y € R, all z € R, the following holds:

1/2 1/2
> Gun(T,X,Y,zh) gOh‘?’(%) <(%) —|—a1/8h1/4). (2.1.10)

0<N<Cgpa—1/2

Notice that the first part on the right hand side of (2.1.10]) corresponds to the free
space estimates in R?, while the contribution in the second part appears as a consequence
of the presence of caustics ( cusps and swallowtails type).

First of all, we observe that when N = 0, G, satisfies PG, = 0 and the associated
data at time ¢ = 0 is a localized Dirac at = a,y = 0, 2 = 0. Therefore, G, satisfies the
classical dispersive estimate for the wave equation in three-dimensional space; that is,

|Gao(T, X, Y, z,h)| < Ch™? <%> .

Thus it remains to prove the theorem for the sum over 1 < N < Coa= /2,

Lemma 2.1.6. One has

Y

1 = ol ~ - - h 1/2 s ) )
INan = /eh'”(Z<+t(1+<2+“w)1/2)><0(772(1 +|¢*))dC = (;) ek IMVE=2 (a2 5

where Yo 1s a classical symbol of order O with small parameter h/t.

Proof. We apply the classical stationary phase method for Jy, 5. First we make a change
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of variable z = tz. Let the phase function ¢ be

6(C;2,0,a) = 2+ (1 + 2+ ad) V2.

Differentiating with respect to ¢, we get

. ¢
0:p =2+ - )
¢ (1+ ¢+ a@)'/?
On the support of yg, we have ‘m < 1-26; for some ¢; > 0 small. If |Z| > 1—4;,

then the contribution of (-integration is Oce ((h/t)*°) by integration by parts. Thus we
may assume that |Z| < 1 — d;. In this case, the phase ¢ admits a unique critical point on

the support of xq. It is given by 56 = —% and this critical point is nondegenerate
since B
14 aw

D¢ = - >0
c? (1+¢%+ aw)®/?

Then by the stationary phase method ( as |Z| < 1 — d1),

' ilnlEvV1I-22(1+a@)'/2 -
INah = 3 en Xo-

By Lemma (2.1.8)) becomes:

(=)a® (RN [ iayt e o
Gao(t2,y,2) = ) @rht \ & /eh Nt n*Xovoxi (1 — x1)dsdodwdn, (2.1.11)
Nez

where &)N,a,h = (I)N,a,h('a é:c, ), that iS,

~ =3 ~3
O = yn+ V1 = 22(1 + a@) "2 + a*2n| (% (X —0) + % +5(1— )
4 h
— SND? 4 a3/2|n|NB(@3/2a3/2]n\/h)). (2.1.12)

First we study geometrically the set of critical points Cy,n of the associated Lagrangian
manifold Ay, for the phase function ®y 5. The set of critical points is defined by

Coni = {(t,2,4,5,5,0,0)|0:PN0n = 05Pnan = 0aPnan = 0yPnan = 0}



26

Hence C, v, is defined by a system of equations
X ~
- =w-3§,
a
O=1+2d2,

VI- 22
3
a3y = —a?V1 — 22(1 + a)'V? - % —3(

+ N3/ (% _ B (@3/2)\>> .

Let Ay n C T*R? be the image of C, v, by the map

2(1 + a)/? 3
T U ) (s 45+ 2NGY? (1 -8 <d)3/2>\>)> :
5.3

o) - —5(1-w)

QIR

3

(tv z,y, §7 5-a (Da 77) — (.’L’, tv y7£ = 8x(i)N,a,ha T = at&)N,a,ha n= ay&)N,a,h)-

Then A, C T*R? is a Lagrangian submanifold parametrized by (3, d,7)

N
3 ~
a2y = —a=32%\/T— 32(1 + a@)/? — % —5E @) - % — 51— @)
a

+ N2 (% B (aﬂ/?A)) ,

2(1 ~\1/2
T T U ) (s 45+ 2NGY? (1 _ 23’ (a)?’/?A))) ,
3

¢ = nsa'’?,
T =nV1—22(1+a+ as*)"?,
n=mn
Now we introduce t = a'/2T,y+ty/1 — 22 = a32Y, (1+a@)"? — 1 = a7, (@) = —-2=

1+(14aw)1/2?

and A = aZQ In|]. We get (2.1.12)) as follows:

~ ~3 ~
Oy an = a3/2!77|{Y +TV1 = 227,(@) + % +5(X —Q)+ % +5(1—a)

4 h
. _N~3/2
3

NB(@3/2a3/2|77]/h)}. (2.1.13)



27

Then C, n,, is now defined by a system of equations

X =0-3§,
w=1+257
2(1 + ai)/? < i o ( 3 7.
T=2""""  (545+2No"? 1——B'(w3/2)\> ,
V-2 4
=3 ~3 4
Y = —TV1 = 22,(@) — % X — @) — % — (1 — @) + N2 (g ~ B <@3/2/\>) .

We may parametrize C, n 5 by (5,) near origin:

X =1+5*-3,

O=1+d>
2 3
T = 1+ a+ as?)/? (§+&+2N 1+ G212 (1——3’( 1+ 52 3/2)\>)),
m( ) ( ) 1 ( )
2 4 3
Y = Hy(a,5)(5+6) + 5(53 +6%) + gNHz(a, ) (1 - ZIB’((1 + &2)3/2)\>) :
with

(1+a+ ag?)'/?
14+ (14 a+ac?)V/?’
-3 — 4a — 4ac?
2+a+ac?+3(1+a+ac?)l/?

Hi(a,5) = —(1+5&%)

Hy(a,5) = (1+5°)%2

The Lagrangian submanifold A, v, C T*R? is parametrized by (3,7, 7)

X=1+5"-37,

_ 2 ~on1/2 [ 2 | = ~2\1/2 _§ / ~2\3/2
T= = (lta+a) (§+5+2N(+59) (1 4B<(1+0) A) ,
2 . 4 ,
Y = Hi(a,5)(5+6) + 5(53 +6%) + gNHz(a, ) (1 - ZB’((l + &2)3/2)\>) :
¢ = nsa'l?,

T=nV1—2(1+a+as*)"?

n=mn.
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On Cy n,p, we have @ =1+ &2, thus the projection of Ao N onto R3 is

X =1+5%-3,

2
T = m(l —i—a—i—a&?)l/z (§+6+ 2N (1 +52)1/2 (1 _ EB,((l _1_52)3/2)\))) |
2 4
V= H(0,0)(5+0)+ 5(5 47 + N Hz(a,9) (1 - 23'<(1 + &2)3/2A>) .

As in [29], we rewrite the system ([2.1.14)) in the following form

X=1+5" -5, (2.1.14)
~\N(z . = 2~3 ~3 2 ~ ~2\—1/2 V1 -2z ~  ~
Y=H1(a,0)(s+0)+§(s +0o )+§Hz(a,0)(1+0) / A +atashiz ° %)

and

1+ a+ ag?)t/?

oN (1 - ZB’ (@3/%)) = (1483712 (2< TVi-2 a) . (2.1.15)

Remark 2.1.7. Notice that from in the range of T €]0,a"/2], we can reduce
the sum over N € Z of Gun in ([2.1.8) to the sum over 1 < N < Copa™ /2,

For a given a and (X,Y,T) € R, (2.1.14)) is a system of two equations for unknown

(5,5) and (2.1.15]) gives an equation for N. We are looking for a solutions of (2.1.14) in
the range

a € [h® ao],a <2/3,al6]* < e,0<T <a'? X ecl0,1] with ag,e small.

Then for a given point (X,Y,T) € [-2,2] x R x [0,a/], let us denote by N'(X,Y,T)
the set of integers N > 1 such that (2.1.14) admits at least one real solution (3,4, A) with
ala|* < € and A > \g.

We observe that (2.1.15]) implies for Ny > 0 independent of (X, Y, T) that N (X, Y, T) C
[1,T/2 + Ny. For all (X,Y,T) € [0,1] x R x [0,a~'/?], there exists a constant Cj such
that IN(X,Y,T)| < Cp. Set

M(X,Y,T) = U N(X', Y, T.

Y=Y |+|T"~T|<1,| X'~ X |<1
In fact from (2.1.15)) we have if N, N’ € Ny,

2IN — N'| < Co(1+ TA 077,
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Hence we deduce a better estimate as follows [see Appendix EJ:

IM(X,Y,T)| < Co(1+TA2073).

We notice that for @ < 3/4, we get rapid decay in A by integration by part in &.
In particular, we may replace 1 — x; by 1 in . Moreover, the swallowtails will
appear when s = ¢ = 0 i.e for @ = 1. For this reason, we introduce a cutoff function
x2(w) € C°(11/2,3/2[),0 < x2 < 1,x2 = 1 on ]2, 2[ in the integral and we
denote by G, 2 the corresponding integral. This G, 2 corresponds to the regime of
swallowtails. We write G, v = Gon1 + Gangz. Gon,i is defined by introducing xs in
. We will have @ > 5/4 on the support of xs.

To summarize, we have G, ., as follows:

Gaco = Z GunN = Z (Gani+ Gang),

1<N<Coa~1/2 1<N<Cha—1/2
where
—\Na2 R\ V2 ig - N e e oo
Ganva = W <?) /eh@N‘“’h|77\3X0¢0X1X3(W)d8d0dwd?77
—\Na2 R\ V2 Qg N N e e oo
Gz = W (f) /eh@N‘“’h’77\3X0¢0X1X2(w)d8d0dwd77-

In what follows, we get the estimates for these oscillatory integrals based on the (degen-
erate) stationary phase type result which consists in the precise study of where the phase
Dy 4, may be stationary.

The Analysis of G, v

Let us recall that the G, n is the oscillatory integral which corresponds to the regime
where there are no swallowtails. Our main results of this subsection are Proposition [2.1.8
and Proposition [2.1.9]

Proposition 2.1.8. There exists C' such that for all h €]0,hg], all a € [h* apl, all
X €10,1], all T €]0,a7Y?], all Y € R, all z € R, the following holds:

B\ /2
Z Gana(T,X,Y, 2 h) < Ch™3 (?> Rl/3.

2<N<Cpa—1/2

Proof. First of all, we apply the stationary phase method to (3, )-integrations since on
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the support of y3 we have @ > 1. Let I be defined by
7 /ei,\(f—g(w—X)Jr&;—&(@—l)) Jid
3

N\~ 3 ~ S\~ 53 -
= (@—-X)"*@-1)" / GN@=X2 (5 =5) NG (5 -0) g

where in the second line we made a change of variables § = (& — X)'/?5,6 = (& — 1)'/%5
but for simplicity, we keep the notations §,6. Thus by the stationary phase near the
critical points § = +1,6 = +1 and integration by parts in s, 6 elsewhere we get

[=X\"'@ - X)_1/4(&; _ 1)—1/461',\(%(@7)()3/%%(w71)3/2)bici + O™,

with by, ci. are classical symbols of degree 0 in large parameter \(&—X)3/2 and A(@—1)%/2
respectively. Notice that I is a part of the G, n1 corresponding to the integrations in

3, 0. Therefore, we obtain

_N\N 2)\71 h 1/2 a3/2 ~
Ga,N,l(Ty Xa}/az;h) = % (‘) /61 h Yn|77‘3Ga,N,1d777

2ment \
éa,N,l(Ta X, Y, 2, h) = Z ei)\éN’el’GQ @el,e2da) + O(}\—oo)’

where € = :l:a @61762 ((I), a, )‘) = )20¢0X1X3(w)(@ - X)71/4(JJ - ]‘)71/4b61062 which SatiSfy
|1 0LO¢, ¢, | < Ciw~'/2, and the phase functions are given by

- — 2 2
(I)N,617€2<T7 X; Z,(IJ; a, )‘> =TV1 -z a(a]) + 561(@ - X)3/2 + 562((1) — 1)3/2

4 N

_ gN@w + XB(J;?’/Q)\). (2.1.16)

Let us denote

N2 Y (NYE s N
Ga,N,l,el,Q(T) X7 Y7Z; h) - ((Q)W <?) /eZ h Yn‘nPG(Z,N,Lel,Ezdn; (2117)

Ga7N717€1’E2 (T, X, z; )\) — / ei>\<I>N,e1,e2 661,62 ((1}, a, )\)dd}

We are reduced to proving the following inequality:

B 12
Y Guniaw(T. XY,z h)| < Ch7 (Z) W3, (2.1.18)
2<N<Coa—1/2

with a constant C' independent of h €]0, ho|,a € [h?*/3,a0], X € [0,1],T € [0,a=*/?]. For
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convenience, let Q = @%/2 be a new variable of integration and we get

GanNiereo(T, X, 2;\) = /ei’\éN"bf?éel@(Q,a, A)dS; (2.1.19)

651,52(97 a, A) are smooth functions with compact support in . Since dw = %Q*1/3d§2,

we get ‘Qlaf)(:) < Q27?3 with C, independent of a, A and the phases (2.1.16)) become

€1,€2

N 2 2
Dneren(T, X, 2,050, ) = TV1 — 227,(Q) + g61(92/3 — X)*? 4 562(92/3 —1)32

4 N
— -NQ+ =B(Q)N).
s NQ+ +B(QA)

We now study the critical points. We have
~ 2 3,
OoOncrer = 5 (Hura T X, 59) = 2N (1= 2B(V) ). (2.1.20)
T
Hyeoy = Q712 (5\/1 — 2(1 4+ a?3) V2 4 (QY3 — X)V2 4 (023 — 1)1/2),

1 T
OoHqye e = 59*4/3( — 5\/1 — 22(1 + aQ¥?) 7321 4 2aQ%3) + €, X (2P — X) 712

(02— 1))

We will first prove that (2.1.18]) holds true in the case (€1, €2) = (+, +). We have that the
equation 9o H, 1 4 (2) = 0 admits a unique solution Q, = QF (T, X, z,a) > 1 such that
lim Q;(T, X, z,a) = 1 uniformly in X, z, a. (2.1.21)

T— o0
aTl

9 — —5/2,1
0> 592/38?2Ha,+,+(9q) = —7\/1 —2(1+ an/S) (5 - an]/S)

(@ — 1) = X (@2 - x)

DO | —

Therefore the function H, 4 () is strictly increasing on [1,€),[ and strictly decreasing
on |©,, 00[. Observe that

T
Hy (1) = 5\/1 — 21 4a) P+ (1 -X)Y2%  lim Hy\y =2. (2.1.22)

Q—o00

For all k, we have
VQ > 1, [95(NB'(QN)| < CpNAT2Q k2, (2.1.23)

Let Ty > 1. First suppose that 0 < T < Ty. Since H, 4 4(2) < C(1 +T) and for
N > N(Ty) = C(1 + Tp), we get |0qPn 4+ 4| > coN with ¢y > 0. Then by integration by
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parts, we get |Gy n11.+| € O(N~°X\~>) and this implies

sup Z Ga,N71,+,+(T7 X? K 2) S O(hoo)

<
T<Ty,X€[0,1],YER,zeR N(Tp)<N<Coa—1/2

Next for 0 < T < Ty and 2 < N < N(Tj), we may estimate the sum by the sup of each
term. In this case, we see that i)N7+7+ has at most a critical point of order 2 near €2 = €},
and . . .

00PN 44| + 05PN+, + 10PN+ 4] > ¢ > 0.

Moreover if N > 2, we have a positive lower bound for [0q®y ;1 ()] for large values of
Q; thus the contribution of Gy v 1.1+ is Opes (A~) for large values of Q. Near the critical
point of order 2 Q = Q, the estimate of G, x4+ is given by the Lemma 2.20 [29] which
yields |Ganig4 (T, X, 2 0)| < CA™Y3 with C independent of T' € [0,Ty], X € [0,1].
Hence from , we get

B 12
Z Goni++(T, XY, 2, h)' < Ch™3 (?> [h*1a2)f1)\*1/3],

2<N<N(Tp)
1/2
< Ch3 (%) h/3,

Then we prove that 1’ holds true for Ty < T < a~1/2. As before, we may assume
N < C4T with C] large, the contribution of the sum on /N such that C;T < N < Coa~1/?
being negligible. From ({2.1.21]), we may choose Tj large enough so that Q7 (T, X, z,a) <
Qo with Qg > 1 for T' > Ty and we may assume with a constant ¢ > 0 that

sup
X€[0,1],Y€EeR,zeR

BB+ (Q)] > T3, YQ > QYT > Ty, VN < Coa™ 2.

Therefore, on the support of (:)+7+, the phase ® N,+,+ admits at most one critical point
Q. =Q(T, X, 2z,N, A\ a) and this critical point is nondegenerate. Since N > 2, from the
first item of we get QL* < T and this implies O ~ T/N. As a consequence, if
T/N is bounded then €. is bounded. By stationary phase method, we get

|Ganias (T, X, 2, 0)] < CATY2T12 with C independent of N.

If T/N is large, then we perform the change of variable () = Q(T/N)? in (2.1.19); the
unique critical point 2. remains in a fixed compact interval of |0, co[. We have

050+ 1+ (UT/N)?,a,A) < er(N/T)Q23F,
Thus by the stationary phase method, we get

sup |Ganias (T, X, 2, 0)| < CATV2T1/2,
2<N<CiT,X€0,1],2€R
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It remains to estimate the sum

Z Ga,N,1,+,+ (Tv X7 }/a 2 h) :

2<N<Cpa—1/2

Let GN(T, X, 2, A\, a) = CEDN#HF(T, X,2,9.T, X, 2z, N,\,a), A\,a). Then by the stationary
phase method at the critical point Q. = Q.(T, X, z, N, \,a) in (2.1.19) we get

éa,N,1,+,+(T, X,z h) = )\—1/2T—1/26i>\GN(T,X,z,>\,a)wN(T7 X\ a),

with ¢ (T, X, \, a) is a classical symbol of order 0 in A. Hence with A = a®2/h = \/n ,
we have

(—i)Na?At R\ 5 5
Gapasp (T XY, 23h) = o sgie (—) AT / R ONT

t
(2.1.24)
It is an oscillatory integral with large parameter A and phase
Ln(T, XY, z,n\) = |n| <Y+ Gn(T, X,z \n, a)> .
By construction, the equation
Oy =Y +GN(T, X, z,\,a) + \O\GN(T, X, 2,\,a) =0

implies that (X,Y,T) belongs to the projection of A, n; on R®. As in the proof of
Proposition 2.14 [29], we see that the contribution of G, v 1+ + for the sum over N such
that N ¢ N1(X,Y,T) is O(A~>°). Thus it remains to estimate the sum

Y Gunast (T, XY, 2,0)|. (2.1.25)

NeN1(X,Y,T)

We apply the stationary phase method for n-integral with the phase function Ly. We
have

anLN == Y ‘I’ GN ‘l’ )\a)\GN,
with

. N
ANNGy = AP (T, X, Qs N) = (= BOQ) +AQB(AQ)).

Then we obtain

N
O2Ly = g(/\QC)aA(/\QC)B”(/\QC).
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On the other hand, 0,(2. satisfies
NQOZPN 4 1+ () = —020aPy 1.+ () = —NQUB"(AQ.).

As we have 03Py 4 1 (Q.) > IO QY* ~ T/N, and for w large, we have B”(w) ~
cw™3. We get
05| < TIQENQAT3Q%) < e300t

This yields
|ON(AQ)| = (A + Q| > (1 — eAT2%) > Q...

Hence we deduce that
02Ln| > CNAT2Q

Therefore n-integration produces a factor ¢~*/2 with ¢ = NA7'Q'. Let us recall that
N(X, Y, T)| < Co(1+TA2Q.2).

We get the estimates of the sum in (2.1.25)) by distinguishing between many cases which
depend on whether there are contributions from 7-integration and [N, (X, Y, T')| as follows:

First case, if Q8% ~ T/N is bounded, then T~ N and

e if N < ), then there is no contribution from n-integration and we have |[N;| < Cy.
Hence the estimate is

: : Ga7N71’+7+

B\ 172
< Chf?,u (_> [hfl)\flaZAfl/QTfl/Q]
> ; )
NeMN;

-3 (h)1/2 —1/411
Ch=3 | = a " V/ApL/?
t )

1/2
Ch_3 (ﬁ) h1/3
+ s

IN

IN

since a Y42 < B3 when a > h2/3.

e if A\ < N < A2, then there is a contribution ¢~'/? factor from n-integration and we
also have |[NV;| < Cp. We get

E GaN 1+, +

NeN;

1/2
< Ch_3 (ﬁ) [h_l)\_1(I2>\_1/2T_1/2N_1/2)\1/2]
> P )

-3 h V2 -1 _2y-—2
<o) htaa,

1/2
Ch=3 (ﬁ) hl/3,
t

IA
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e if N > A2, then there are contributions from both ¢~'/? factor from 7-integration
and |N;| < CoTA~2. Thus the estimate is

B\ /2
Z Goniyi| <ChT3 (?> Z [N A~ V212 N—1/2)12)
NeM NeM
-3 h i —1y—1 _2p—1
<Ch " [ IA@*T HNL(X, Y, T)]],
-3 h s —5/27.2
<Ch ? [(1 h ],
1/2
< Oh~3 (E) B3
t

Second case, if T'/N is large then (). is large. We have

o if N < A\, then there is no contribution from 7-integration. Moreover we have
IN1] < Cp. To see this point, assume by contradiction 7" > A\?Q?; this implies
92/3 ~ T/N > X2, which is impossible since (). is large. Thus the estimate is

: : Ga7N71’+7+

NeN;

-3 h V2 —1y—1 _2y\—1/2—1/2
<Ch3 (=) [phIATTaENTYRT?)
= t

-3 (h)1/2 —1/471/2
< Ch — a 'thE,
- t

-3 (h)1/2 1/3
< Ch — h™/”.
- t

o if N > AQ, and AN2* < T < A2Q2, then there is a contribution ¢~'/2 factor from
n-integration and we also have |N;| < Cy. We get

: : Ga?N71’+7+

1/2
< COh3 (ﬁ) [h—l)\—la2)\—1/2T—1/2N—1/2)\1/29(1:/2]’
NeMN; t

-3 h 12 -1 _2y-2
<o) hlaa 7,

-3 (h)1/2 1/3
<Ch3 (= h/3,
= t

o if N > \Q. and T > \2Q2, then there are contributions from both ¢~'/2 factor from
n-integration and |N;| < CoTA2Q, 2 We get
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1/2
Z [h—1)\—1a2/\—1/2T—1/2N—1/2>\1/2Qi/2]’
NeM

1/2
(PN T TIQIPIN(X, Y, T,

< Ch3

E Ga,N,1,+,+

NeM

- =

1/2

(A ta* A7) (T/N)™*

1/2
) hl/3.

Next, we prove t - holds true in the case (€1, €2) = (+, —). In this case, from
the last item of (2.1.20 - X € [0,1], and B"(AQ2) = O(A3Q73) we get that for T > 0,
OaHa+—(Q) + 2AB"(AQ) < 0 that is, the function H,; _(Q) + 2XB'(AQ) decreases
on [1,00[ from Ha,+7 () + 3B\ =ZVI—22(1+a) 2+ (1 - X)V2+ 2 B()) to
(Ho4— + 23X B'(X.)) (00) = 0. The equation do®y 4+ = 0 admits a unique solution €.
and it is nondegenerate; thus we can argue as (+,+) case. Finally, the case (€1, €) =
(—,+) is similar to (4, +) case and (€1, €3) = (—, —) is similar to (+, —) case. The proof
of proposition is complete. n

IN IN
Q Q
5T
AN TN /N
~ ~— ~—

S * D>

AN

Q

=
A/~

Now we prove the estimates for N = 1.

Proposition 2.1.9. There exists C' such that for all h €]0,ho|, all a € [h*, ao], all
X €10,1], all T €]0,a7"?], all Y € R, all z € R, the following holds:

h 1/2 h 1/2
|Gaaa(T, X, Y, z:h)| < Ch™° (f) (E) + R3]

Proof. Let us recall that

(—i)a®A~t (R\Y? [ w2
Cort =gt \1) 7

Corn =Y / M@, L dio + Oce (h).

€1,€2

3 =
a,1,1d?7,

The only difference with the case N > 2 is in the study of the phase @1,+,+ since in
the case N =1 we may have a critical point @, large. Let

Gotgp s = /e“‘i’l’+v+@+,+(cb,a, A)dw, (2.1.26)
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with the phase function

= 2 2 4 1
1 (T X, 20) = TV = P0(@) + 50 = X)*2 4 26 = DY = 20% + $BOGY?),

and O, ,(w,a, ) is a classical symbol of order —1/2 with respect to @. Let y3(w) €
C§°(Ja, 00]) with @, large and set

j17+7+ = /ei)\&)l’+’+@+7+((;}, a, )\)Xg((:])dﬁz) (2127)

To prove the proposition, we just have to verify |.J; 4 | < CA~Y2T—/2. We have

- T /
0o®Pr 4 = 3V 1—22(1 4 a@)~V2 - MT(l + X)+ O0@@??),

2 & _ _Tam ~\—3/2 w2 ~—5/2
0zpP1 44 = 1 1—22(1+aw) + 1 (14 X)+ O(@ 7).

Therefore, to get a large critical point @.,T must be small. Then we have @, 2 o7
and thus 92®; , (@) ~ T°. We make a change of variable @ = T~2¢ in (2.1.27). Since
O, 4 (@,a, ) is a classical symbol in @ of order —1/2; thus T~'¢'/20,  (T~%0,a,)) is a
symbol of order 0 in © > ¥y > 0 uniformly in 7" €]0, Ty] and we also have 8§6<§17+7+ ~ T
The stationary phase method yields |J; 4 | < CA~V/2T—1/2, O

The Analysis of G v 2

Recall that the G, n2 is a sum of oscillatory integrals which corresponds to the swallow-
tails regime. Our result of this subsection is Proposition [2.1.10]

Proposition 2.1.10. There exists C' such that for all h €0, ho|, all a € [h*, ac], all
X €[0,1], all T €]0,a"/?], all Y € R, all z € R, the following holds:

B\ /2
Z Gana(T, X, Y, 2;h)| < Ch™? <?> QL8R4

1<N<Cya—1/2

Proof. First, we rewrite Gy n2 in the form

(=)"a® (h 2 iy 135
Ga,m:W n e 7 PGy v 2dn, (2.1.28)

Gang = /6iA¢N’“’h>~<0¢0X1X2(cD)dEd&ch,
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with the phase

s3 53 4

TV = Py(@) + o 45X — @)+ 2 1 6(1— @) — SN2

Onan(T, X, 23,5,0) 3 3

N
+ XB(&;W)\).

Since w is close to 1 on the support of x5, we may localize §,6 in a compact set. Let
K ={5,6 € [-1,1],0 = 1} and K, be a suitable neighborhood of K depending on the
support of x2. Introduce a cutoff function x4(8, 5, w) € C3° equal to 1 near K;. Then the
contribution of éa, ~2 outside K7 is O(A™>°) as a result of integration by parts. Therefore
we obtain

Gruna(T, X, 2, 1) = / PNy (5, 5,0, a)didedD + O, (2.1.29)
X(5,0,0,a,h) = Xotox1x2(@)x4(5, 0, 0),

with O(A™°°) uniform in 7, X, z, N,a and x is a classical symbol of order 0 in A with
support near K. We first perform the integration with respect to @. We have

: T 3
Osdnan = 3V1—2(1+a@) 2 =5 -5 —2NG'? (1 - ZB’(@?’/z/\)),

Podnan = —NOV2(1+ON2073)) + O(al/?).
Since 8%@@\/@& < 0, then QDQNSN@,h decreases from (%ggN’a,h(l) > 0 to a@q;N’aﬁ(OO) < 0.
Therefore ¢y, admits a unique nondegenerate critical point @, and we are interested

in the values of parameters such that @, close to 1; then we must have T = T/AN €
compact set of R, say [1/2,3/2]. In addition, from the equation Jz¢nqn = 0, we get

T 3
E\/1 —2(14ad) ? =5+6+2No'?(1 - ZB’(af”/%)). (2.1.30)

Now we study the solution of (2.1.30) with A = oo; in this case, we have

D1+ ad)? =TV1 =32 — %(5 +6)(1 4 aw)Y?.

The solution of this equation is of the form &, = 3 fi(a,T,5/N,5/N) where f; are
homogeneous function of degree k in (§/N,5/N). By comparing the terms with the same
homogeneous degree in (§/N,5/N), we get

27%(1 — 2?)

fo(l+afy) = T2(1 — #?) which gives Iy =: fy = = ’
1+ \/1 + 4aT?(1 — 2?)
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and

(1+2aFy)f1 = —%\/1 — 22(5+6)(1 + aFy)Y2.

We define

E
Fii=fi=-5 G+ +aR)"?,

m\WaFO( 1+aFo)

Therefore w. = Fy + Fy + Oy with the notation O; means any function of the form

f =>_ fr- Then by the implicit function theorem, we get that the equation
k>j

~ 1
23’(@3/2») = TVT= 2 (54 6)(1 +a2)?

D21+ a@)? (1 -
has solution of the form @, = Fy + F; + Oy + % with gg is a function of degree 0 in \.
Substituting @. into ¢y 4n, we get a phase function denoted by ¥y on = Onan(., @e, ).
It is given by

33 3

- 5 E
Unan =TV1 - 227,(Fy) + ‘% +3(X - Fy) + % +6(1 — Fy) + Wo(l + aFy)? (54 6)*
1 4 312 0
—4N2( §+0)° +aN(’)3+)\2+N(—§F +33)-

Hence by applying the stationary phase method for (2.1.29)), we get

Gang = \/_/ NN n g X(T,3,6,1/N,a, h)d3ds + O(A\™),

with Y is a classical symbol of order zero in h. Now with \ = A/n, (2.1.28) becomes

(i)

G = et (—) Nov / PO TN ) I Ydsderdn + O(A).

We study the n-integration with the phase function Ly = n(Y + @N,a,h) and a large
parameter A. Follow the arguments in the proof of Proposition 2.1.8] we have

anLN =Y + @N,a,h + AaA\ijN,a,h =0

implies that (X, Y T) belongs to the projection of Ay, on R* and the sum for N such
that N ¢ N1(X,Y,T) gives O(A\™>°) [see Lemma 2.24 [29]]. Hence it remains to estimate
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the sum

> Gana(T, XY, 2 h)
NeN:

We also have |07 Ly| > CNA20.%?%. Hence by the stationary phase method, the 7-
integration gives a factor ¢~'/? with ¢ = NA~! since &, ~ 1. It yields

. 1/2
Guno = M h / L)\l/QN—l/Q/eiS\LN(Wc)
»N2Tenet \t) VO

We observe that the phase function Ly (n,.) satisfies 0Ly (n.) = ncﬁgﬁlN,%h, 0Ly (ne) =
n08&@N7a,h. Moreover, when 0;Ly(n.) = 02Ln(n.) = 0 ; that is, when ag\i/N’a,h =
RUnan = 0, we have 2Ly(1.) = 1.02¥n o5 and similar for 5. Thus the study the
critical points of the phase Ly(n.) in (8,0)-integrations is the same as ones with the
phase ¥ Nah- As in [29], to avoid multiplication of symbol by a classical symbol of order
0 in A\, we can replace U N,a,n DY @@& N, Where

n*51dsds + O(A™).  (2.1.31)

3 ~3

i 3
Inan(T. X:5,6) = TV — 52y,(Fy) + S X R+ ‘% +o(l— Fy)
G o 1
+ Wo(l +aFy)*(54+6) - m(s +5)* + aNOs.

In what follows, we get the estimates of the oscillatory integral associated with the phase
function 1, x for different values of N, namely for N > A3 and N < A3, Our results
are Lemma 2.17.11] and Lemma 2.1.12

Lemma 2.1.11. There exists C' such that for all N > \/3,

1 )\,(2; ~ g
— eNah v dsdo
\/N ‘/ Xl

Here remark that C' is any constant that is independent of N > 1, X € [0,1],T €
10,a7Y?],a € [h%, ag) and \ € [\g, oo[ with ag small and )\ large.

< ON7O/8, (2.1.32)

Proof. Adapting the arguments in the proof of Lemma 2.25 [29]. It is sufficient to prove
that for all N > /3,

' / eMNan g dide| < CN2/3, (2.1.33)

Set X — Fy = —AN"2/31 — Fy = —BA2/3, 5§ = \"V/32/, 5 = \~'/3y/. It remains to prove
that

‘/e“&N,a,hxl(A_l/sx/? >\‘1/3y’,...)dx/dy’ <C, (2.1.34)
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with the phase function @@N@,h given by

3 /3 1/3

/ / Eg\
UNah =TIV — 22y, (Fp) — Az’ + % — By + % + ON (1+aF)"* (@' +y')?

4N2( +9)? 4+ aNOs.
Then (2.1.34) is an oscillatory integral over a domain of integration of size A'/3 with

parameters Fy, Fy, \1/3 /N are bounded and we will prove that the constant C' is uniform
n (A, B) = (rcosf,rsinf) with r < ¢gA?3 . We have

A 2F
Opnan = —A+ 2%+ To(l + aFp)YVANY3(2! 4+ o) 2 +y')?+a0((2',y)?),

B 4N2<

2F),
Oytbnan=—B+y*+ == (L4 ak) PN +yf) = S5 (@ +y)? a0 (2 y)).

4N?

Moreover, the compactly support of y; in (8, ) yields

sup lﬁx ) Xl()\_l/3x', A3y )‘ < Co(1+ |2/ + |y/|)_|a|,
(=",y")

with C, independent of T, a, N, . Therefore for r € [0, 19|, Vro the oscillatory integral is
bounded by integration by parts for large (z,y).
For r € [ro,coA?3], we rescale variables (z/,y') = r'/2(2",y") and we set {yon =
P25 o and X (27" ) = xa(rPATYB p 2By ) Since /2 X713 is bounded,
we still have

0 | < Col1-+ 12" 157

It remains to prove

r

/eirg/%*vﬂvhx'dx”dy” <C. (2.1.35)
Now we study the critical points of ¢y, ,. We have

Oty an = —cost + 2™ — "+ 9"+ 00 +a),

4N2(

3
Oyt = —sinb +y"” — (@ +y")* + O™ +a).

For small @ and large 7, we may localize the integral to a compact set in (z”,3") as a
result of integration by parts for large (2”,y"”). The Hessian of ¢y, 1,

3
(l‘”—‘r //) —l—O( 1/2_+_a).

HN($/, ) _ 4ZE” " e

Thus for N > 2,a small and rq large, outside (z”,y"”) = (0,0), define a smooth curve
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I' = {(2",y") such that Hy(2",y") = 0}; that is, " is close to the union of two lines

cla’ +y")+ (@ —y") =0, = N;;i” € [1/4,1]. Then we have 2 cases to consider

e The contribution of points (2", y") outside I to the integral is O(r~%/?) by the usual
stationary phase method and we get

:23/2 1%
r /ezr ¢N’“»hX/d£L‘”dy//

< COr12,

e The contribution of points (z”,y") close to I is given by Lemma 2.21 [29]. For any
values of 6, the hypothesis of part (a) Lemma 2.21 [29] holds true, then we get
[ ety

r < Cr(r*/*) =6 = or=/4,

Hence in any cases, (2.1.35|) is satisfied. n

To summarize, recall that T ~ N and [N (X,Y,T)| < Co(1 +TA?) in this case. We
deduce the estimates for the sum of G, x» with Lemma [2.1.11{ for N > A\!/3 as follows:

e If \'/3 < N < ), there is no contribution from 7- integration and we have |A7| < Cp.
We obtain

-3 h 12 -1 _2y-1/2y-5/6
<Ch3 (=) [hta®ATYANTYE
- t

_3<h)”2 13
<Ch3 (= h/3,
= t

Z Ga,N,Q(Ta X7 Y7 <3 h)

NeM

o If A < N < )2, then there is a ¢~'/? factor contribution from n-integration and we
also have |[N;| < Cp. We get

- =

1/2
Z Gang(T,X,Y, 2 h) ) Q2T 12 A/6),

NeN;

< Ch3 (

IN

-3 (h)1/2 -1 _2y-1/2\-5/6
Ch - ) A ],
t

-3 (h)1/2 1/3
< Ch — h'?.
- t

e If N > A2, then there are contributions from both ¢~'/? from n-integration and
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IN1| < CoTA™2 We get

B\ 12
Z Gano(T,X,Y, z;h)| < Ch=3 (—> Z {h1a2i)\2/3} ’
N, : N
NGNl NGNl
3 (h 2 -1 2y—2/37—1
3 (h 12 —275/3
<Ch {5 [a™ =R,
1/2
< Ch* (ﬁ) B3
o t

Lemma 2.1.12. There exists C' such that for all N < \'/3,

L ’/GMJJN’“”‘)Zldgd5
VN

Notice that Lemma [2.1.12] says that for N large it gives a better estimate and it is
compatible with the estimate (2.1.32)) for N ~ \'/3.

< ONVANT3/A, (2.1.36)

Proof. Let % = A > 1 and we take A as a new large parameter. To get the estimates of
our oscillatory integral, we set X — Fy = —pN~? 1 - Fy = —qN~* 5= —Z/N,6 = —j/N.
It yields Yngn = N _SQ/JN,M. Then it remains to prove that

' / eMnans (2/N, /N, .. )dzdy| < CA~/4, (2.1.37)

with the phase zEMa,h takes the form

B i’S ’Ij?’ 1
u oy = I En(1 F1/2_ —\2 (= —\3
UNan = DT gt - S+ o(1+ aFp)'*(T + 1) +4N2(x+y)
+ TN*V1 — 2279,(Fy) + aN20((z,9)°).
We have
_ B - 3 o
Oxtnan =p — T2+ 2Eo(1 + aFp)*(z + 9) + W(flf +9)° + aO((z, y)Q)a (2.1.38)
_ - o 3 o
Ogbnan =q— T + 2Eo(1+ aFy)?(z + 9) + m@ +79)* 4+ a0((7,9)*),
and the Hessian of @N,mh is
3
Hn (2,7, a) = 427 — 4Ey(1 + aFp) (T + §) — (T + §)° + aO((Z,7)).
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Lemma 2.1.13. There exist ro and C' such that for all (p,q) with |(p,q)| > ro,

[ erato /g s < oA (21.30)

Proof of Lemma[2.1.15. Apply the arguments in the proof of Lemma 2.26 [29]. Set
(p,q) = (rcos@,rsin) with r > ro. Let x € C5°(|(Z,9)| < ¢) with small ¢ and y =1
near 0. Then from ([2.1.38]), we get by integration by parts in (z, %), for all k,

‘ / Ny (1722, )50 (2/N, g/ N, -.-)dwdy’ < CrFATh

For (z,7) large, we make a change of variable (z,7) = r'/*(2/,y/) and set ¢} ,, =
r=3/ 21/7N’a,h. Then it remains to prove

‘T/eiﬁmm’z;\m,h(l —x)(:r'7y')>21( 1/2 ,/N T1/2 //N )dx'dy' < CA_5/6.

We observe that since (1 — x)(2’,y") = 0 near 0, (1 — x)(2’,y") = 1 for |(2',y)] > ¢ and
X1 is compactly support, we still have

s 100y (1= X) (@', ) (22 N2y N )| < Cal(1 4 [2/] + (o)) 7.
=’y

The phase ¢y, ,, is of the form

3 e
Uy ap = cos 0z —?+Sln0y —?—1—4]\72(

a + )%+ 3/2 \/ 227, (Fy) + O(r~ Y2 + a).

We get that

@z’&f]\/,a,h = cosf — 317,2 + x4y ) + O(T'_l/2 + a>,

4N2(

Oyt o =sin0 —y” + ——(2' +y)> + O(r~/* + a).

4N?

Thus for small a and large 7o, by integration by parts, we may localize the integral to a
compact set in (2',y’). The Hessian of ¢y, ; is

i(az:’ + )+ 0 Y2 +a).

H/N(x/7 y/7 CL) = 4$/y/ - N2

The same argument as before, for N > 2,a small and r( large, outside (z/,3") = (0,0),
we set I' = {(2/,9') such that H'y(2',y’) = 0} and there are 2 cases to consider:

e The contribution of points (z/,y') outside I' to the integral is O(r~3/2A~1) by the
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usual stationary phase method; that is,

‘T’ / eiTB/QAJ’fN,a,h(l . X)(I/7 y’)f(l(rl/%’/N, 7“1/2y'/N, ...)dm’dy’ < OT_I/QA_l.

e The contribution of points (2’,%') close to I' given by Lemma 2.21[29]. For any
values of , the hypothesis of part (a) Lemma 2.21[29] holds true, then we get

‘7‘ / ei’"g/QAl%v,a,h(l i X)(x/a y/))~(1(7“1/2$//N, r1/2y//N, ...)dx/dy/ < 070(7,3/2A>—5/67

< Or AN,

Lemma 2.1.14. There exist ro and C such that for all (p,q) with |(p,q)| < ro,

' / Mgy (z/N, g /N, .'.)dxdy‘ < CA¥1, (2.1.40)

Proof of Lemma[2.1.14. Now we consider the case |(p,q)| < 19. There exists ¢ > 0
independent of N > 2 such that

L, 3

3
_— —_— _2 —_—
T UN?

V(z,7) € R?, (@ +9)| + |7 = ;@0 Z @+ 7). (2141)

Then by integration by parts, (2.1.38) gives a contribution Oge(A™>) to the integral
(2.1.37) for large values (z,y). Then we may assume that (Z,y) is in compact set. It
remains to prove

' / ei’wNv“’h)Zldxdy‘ < CAA,

with the phase

_ =3 =3 ~ 1
Unan =2 = 5 +qi = 5+ T@ +9) + 155 @ +9)° + TNVI=29(R) + Ofa)
We have
_ 5 3
Oethnan =p— 2+ 2T(T +9) + m(f +7)2 + O(a),
3

Ogthnan=q =7 + 21T +§) + 5T+ 7+ O(a),
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and the Hessian of @Z_)N,aﬁ is

For a small, the set I' = {(Z,y) such that Hy(Z,y) = 0} is a smooth curve that is
close to the elliptic 477 — 4T(Z 4+ 7) — 3(Z 4+ 7)? = 0 for N = 1 and close to hyperbola
A7y — AT(T +§) — (T +§)? = 0 for N > 2. It remains to use Lemma 2.21 [29] [see
Appendix] for (z,y) near (p,q) with |(p,q)| < ro. Then there are 3 cases to consider:

e If (p,q) is outside T', then the contribution to the integral is O(A™!) by usual
stationary phase method.

e If (0,0) # (p,q) is close to I, the contribution to the integral is given by Lemma
2.21]29]. Since the hypothesis of part (a) in Lemma 2.21[29] holds true, then near
(p, q) the contribution to the integral is O(A=/6).

o If (p,q) = (0,0), we have (z,y) near (0,0) and hypothesis of part (b) in Lemma
2.21 [29] holds true. Then the contribution to the integral is O(A=3/4).

O

Lemma [2.1.13| and Lemma [2.1.14] yield the proof of Lemma [2.1.12] O]

Notice that when N < A2, there is no contribution from n-integration and we have
N1 < Cp. As a consequence, we obtain the estimates for the sum of G,y for N < A\1/3
as follows:

h

1/2
Y Gana(T. XY, 2;h)| < Ch? (5) O N e Sl

NeM

-3 h1/2 1/812,1/4 n7—1/4
<Ch3 (=) [a/ShV/ANTY,
- t

We notice that we get the same estimates for N =1,
B\ /2
|Gar2(T, X, Y, 2; )] < Ch™° (?) [h a2\~ )3/,
B\ /2
<on () e

To summarize, putting these estimates together we proved that

B 12
Y GawalT, XY,z h)| < Ch™*° (;) B3 1 g /3],

1<N<Coa—1/2
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Notice that hY? < a'/*hY* when a > h?/3; hence the proof of the Proposition [2.1.10| is
complete. n

Proof of Theorem |2.1.5. Putting the estimates in Proposition [2.1.8] [2.1.9 and [2.1.10] to-
gether yields the desired result. O]

2.2 Dispersive Estimates for ¢)/a < n < ¢.
In this section, we prove Theorem [1.4.2] Recall that we have

Gult,x,y,2) = 2h2 Z/eh Fodnd(, (2.2.1)

where the phase &, and the function o} are defined by
i = yn + 26+ 10 + ¢+ w2,

o = ex(w,n/h)er(a, n/h)xo(¢* +n*)xa (weh®*n*?) (1 = x1) (ewr).-

We have to get L™ estimates for G, in the range ¢ € [h, 1] when the integral in is
restricted to values of € [egv/a, co] With ¢y small. Let p? be defined by

MQ _ 772 4 wkh2/3774/3-

Observe that p? is small since w,h?3n*? is small by the truncation y; and 7 is small.
Let x4 € C§°] — 1,1 with x4 = 1 on [—1/2,1/2] and D > 1. Let N,(t,z,y, z) be defined

by
No(t,x,y,2) = th Z/ < )dendg
The following lemma tells us that N, satisfies the free dispersive estimate.

Lemma 2.2.1. There exists C independent of D such that

N, (t,z,y,2)| < Ch™? (%) D.

Proof. On the support of x4, one has n? < Dh/t and hw2/2n2 < (Dh/t — n?)%?2. This

implies that the sum over k is restricted to k < COW. Since e(xz,n/h) =
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fuk™6(n/h) 3 Ai((n/R)?3x — wy), Lemma 2.1.2 gives

B Dh/t — 772 1/2
Watta<on [ st Sy 222)

n?*<Dh/t

= Ch™® / (Dh/t —n*)Y2dn
n2<Dh/t

and the result follows from fn (Dh/t —n*)Y2dny = (DhJt) [, (1 — 2*)"/dz. O

2<Dh/t 2<1

Observe that in the range n > ¢, one has p? > ¢, so the condition tu?/h < D is
equivalent to ¢t < Ch and the above lemma is irrelevant. But in the range 1 € [/, col,
the above lemma becomes useful since it tells us that we may now assume that A = tu?/h
is a large parameter. Since we allow some loss in the dispersive estimate with respect
to the free case, we may even assume that we have A = tu*/h > (%)= for some € > 0
(take D = (%)), and therefore in the sequel a term like O(A™>°) will be neglectible.
We are now in position to eliminate the { integration in . This is the purpose
of the following lemma. Recall that the truncation x((¢? + n?) localizes (? + n* near 1.
Therefore, for n small, ¢ will be close to 1 or —1. In the sequel, we assume ( near 1.

Lemma 2.2.2. Let A =tp*/h > 1, 2= 2/t and ¢(Z, 1%, C) = 5 (2C + (¢* + p?)'?). Let

1,2 \) = / NGO (1 ),
(~

There exists 0 < ¢y < Cy such that the following holds true.
For 2 ¢ [—1+ cipi®, —1 + Chp®] one has sups 2 ,|1(Z, 1%, m; )| € O(N™°).  (2.2.3)

For z € [=1+ cypu?,—1 + C1p?], set 2 = —1+ z*u®. There exists a classical symbol of
degree 0 in X, oo(2*,n, u*; \), such that one has

h

1/2
ﬁ) et 0= 5o (2% m, 1 ). (2.2.4)

f(é,u?n;A)Z(

Proof. One has 0cd = (2 + ¢(¢* + p*)71%), 93¢ = (C +p?)™** > ¢ > 0 and ol
is bounded for all j > 2. Since ((¢% + p?) /2 =1 — % + O(u*), ([2.2.3) follows by
integration by parts. For Z € [—=1 + ¢pu?, —1 + Cyp?], and with Z = —1 + 2*u?, one has
¢ = 2*C+ (C+(¢2+p*)Y?)~! and a unique critical point ¢, = —uZ(1 — 22)1/2 with critical
value ¢(C.) = 5(2 — 1/2) = (1 — 2%)Y/2/u € O(1). Therefore, by stationary phase we get

n
that (2.2.4)) holds true. O
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Using Lemmas [2.2.1f and [2.2.2] we are now reduced to the study of

Ok
(h/4) 1/2} :/eh (ntp(1-212) 7k ) (2.2.5)
2],2
47T h k>1 a

where 7}, is defined by
2

e (e m B er(a /B xa (e 3) (1 — xo) (w)-

1, = oo(2*,n, 1 )\)(1—X4(Dh

To get L™ estimate for the parametrix in the range n € [egy/a,co], we will use a
Litttlewood-Paley decomposition in 7. We choose ¢, € C§°(]0.5,2.5]),0 < ¢y < 1 such
that >, ¥1(2™x) =1 for all x > 0, and we introduce the cut- off function wl(zm\/a) in
- In the sequel, we will therefore have

€0 < 2" < ¢/

We will use the notations )
n=2"Van, h=2"/ah
,u _77 + Wy h2/3 4/3 __ (2m\/_) (7] + Wy, h2/3 4/3) (Zm\/_>
N = wkh2/3n— /3 _ wkh2/377_2/3

We define G, ,, by the formula

1/2 (yn+tu(1—32)1/2) Ui O
2h2 (h/t) Z/ i (- ta( Uy (2m\/_) —dn. (2.2.6)

k>1

ga,m<t7 Ia y7 Z) -

Observe that due to the truncation y;, we have k < hLWQ in the above sum. Using the
change of variable n = 2™,/af), we get with ¢ = y/t, since dn/u = di/j

it 32 1/2 ~
Gom(t, 7, y,2) = W(h/t)l” > / WO gy () diy, (2.2.7)

L<kS G

where g, is defined by

9k = %"o(Z*,n,;f; AL~ m(i;ih))ek(x i/h)ex(a, i/h)xa(weh®*n"?) (1 = xa) (ewn).

Lemma 2.2.3. Let M > 1 be given. There exists Cy; such that for all m,a,h such that
2my/a < hM, the following holds true:

(Gam| < Crash™ (/)22 /a] log (2™ V/a) . (2.2.8)

Proof. One has h > 1/M and therefore |ey(z,7/h)| < C’k:*l/G(%)l/‘gw,:lM. Moreover, we
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have i > w,i/ *R1/372/3 . Therefore we get

_ 1 _
Go| S CR2R/ME Y W R

1<k< G ash

< C'R3(h/) 2™ /a|log (22 ah)| < Ch™3(h/t) Y22 /a| log(27V/a)|.  (2.2.9)
]

From the above lemma, we get in the range h>1 /M the estimate
1Gam| < Carh™3(h/1)Y2(27/a) 3 (R M)*/3| log(hM)]. (2.2.10)

This estimate is even better than the free estimate Ch™3(h/t). Therefore, in the sequel
we will assume 5 < BO with iLO small. To establish the local in time estimates for the G, ,,,
we follow the Strategy of section [2.1] . We distinguish between two different cases. First
case, if a < h3(179 for a given e €]0, 1/7[, we use the sum over eigenmodes. Second case,
if @ > h3=<), Wlth ¢ €]0, €[, we use the Airy-Poisson summation formula [see Lemma
2.1.4] and we rewrite G, ,,, as a sum over multiple reflections.

2.2.1 Dispersive Estimates for 0 < a < hi(1"9, with € €]0,1/7[.

The following Proposition gives a local in time dispersive estimates for G, ,, and is
the main result of this subsection.

Proposition 2.2.4. Let € €]0,1/7[. There exists C' such that for all h €]0,1], all 0 <
a<h30=9 and allt € [h, 1], the following holds true:

B\ /6
”]lzﬁaga,m(taw7yaz)HL°° S Ch73(2m\/a)1/3 <¥) . (2211)
Proof. Recall that G, ,, is defined by

1 L (gi+i(1—52)1/2) -
Gomlts.9.2) = W0 Y0 [FTTE Ng yan, (2:212)

with g equal to
2

o1 = == N1 = xa(p Denta i/ Ren{a i/ o 2) (1 = xa) e

Recall from ([2.2.10) that we may assume h < ﬁg with l~10 small. Since G, ,, contains
Airy functions which behave differently depending on the various values of k, we split
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the sum over & in ([2.2.12) in two pieces. We fix a large constant D and we write G, =
Gam.< + Gam,>, where in G, ,,, - only the sum over 1 < k < Dh™¢ is considered.

Proof of (2.2.11)) for G <.

Recall the definition of G, <:

it (gh4i(1—22)1/ N
(W2 37 [ R TRE E g p (7)di. (2.2.13)

1<k<Dh—¢

a,m ta I =
g, ,<( T,y Z) 47T2h2

~9/3 2
—1y3p N . tu
Ik = ’fk 1/3(/1712/3)00(2 )1 Mz; A1 - X4(D—h))X1(wkh2/3774/3)(1 — X1)(Ewk )N
ng = Ai((7/R)*x — w) Ai((7/h)*Pa — wy).
Let us first assume t2™/a < h¢. Since we have fi = (72 + wph?/37%/3)1/2 > 7, we get the
estimate

g8l < CR=3K13 | Ai((/7)* 2 = ) Ai((7/ )0 = )|

By Lemma 2.1.2, this implies

~ - . - 1/3
S ol < OIS < Oy e ya) e = ontnva ()

1<k<Dh~¢

and follows from ([2.2.13)).

Let us now assume $2"/a > h¢. Observe that in the range k < Dh™¢, we have wyh?? <
Ch230-9 < CR2A™) gmall. Hence v = w,h?3772/3 is small and fi = (1 + )2 =
7l + 73w h2/3 /2 + O((wrh?/?)?). Therefore we get |giﬁ’;‘| > cwph?? with ¢ > 0, and for all
j>2, \g]Tﬂ < Cjwph?/®. We will apply the stationary phase in 7 in each term of the sum
in (2.2.13) with the phase function ®(7) = £(g77+ (1 —2%)"/?). Let A = th=3w,2m/a,

and let Wy (7)) the phase function defined by

Lemma 2.2.5. Let §, = kY/3h*3g,. There exists C such that for all 1 < k < Dh™¢, the
following holds true:

‘/emmgkwl(f,)dﬁ‘ < Cmin{l,A;W}. (2.2.14)

Proof. We may assume Ay > 1 since we have |gx| < C. Recall from Lemma that
we may assume /1 — 22 ~ y = 2" /aji ~ 2™\/a. Therefore, there exists ¢ > 0 such that
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forall1 <k < Dh~¢ one has

PP |

t 0%
972 'uvl—z2>c>()
n

hAk on?

and for all j > 2, ’awk ) < (. Thus, to apply the stationary phase, we just need to check
that there exist ¥ > 0 and for all j, a constant C;; such that

g gk

= | <6 AU < DR (2.2.15)
i

In Lemma 2* is defined by z = —1 + 2*u?, but since we have here p ~ 2™\/a we
may as well define z* by Z = —1 + 2*2?"a. Then 2* becomes independent of 7. Recall
A = tp?/h. Since n = 2™/a7 and all the derivatives of v and ji with respect to 7 are
bounded, we get |d])‘| < ;A for all 5. Since A is bounded on the support of derivatives
of x4, the term

SRR 002", % ) (1 = xa( o) () (1 = xa) ewn)

satisfies the estimate |D and it remains to show that the function Aé((} 1Y2/30 — ()

satisfies the estimate 5) uniformly in = € [0,a]. Let § = zh~2/3 > 0 and r = 72/3
which belongs to a compact subset of |0, 0o[. One has 9%(Ai(r0—wy)) ~ (r0)' Ai®(ro—wy).
Since for all | one has

sup [P AiD (b — wy)| < C’lw?’l/Q

b>0
we get that (2.2.15)) holds true if
46 > 3,¢> 0, cwk < Ay, = th ™ Buw2™/a

We have t2"/a > h¢, and aw?i < h=4</3 thus this holds for € < 1/7. O]

Therefore we get the following estimate for G, ,, « and t2™\/a > h*

B 172 ) )
[facaam (.0, < 007 (1) [ > k‘”f”h*/?’(th—%kzm¢a>—1/2]

1<k<Dh—*¢

B 12
< Ch72 (_) (tzmﬁ)fl/257(1/2+e/3)
- t
B\ 5/
< Ch73<2m\/5>1/3 (?>

1/3
y [h (%) (2m\/5)1/3(t2m\/5)1/25(1/2+e/3)]
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This concludes the proof of Proposition for Gu.m.< since t2™y/a > h¢ implies

h2/3t—1/6(2m\/a)—5/67l—(1/2+e/3) < JM/6=e/2.

Proof of (2.2.11)) for Gg >

For k > Dh~ with D large and a < h2/3(=9 one has
Wg — iz_z/?’ﬁw?’a > wy /2.

Since v = wph*3772/3, we get v —a > a and v — a > /2. Then by the definition of e,
and asymptotic of the Airy functions, we obtain

1 h i ii s
Goms>(tw,y,2) = ) W(i) 2 / o Un(7)dip,  (2.2.16)
+,+

h=e<k< mmran

with phase functions defined by

~ ~ _ 2 2
BEt) =iyt T E e e S0 -0 22

3

and the symbols are given by

2

. 137 1 /3~ tu
G T) = SRR (2, i N (1= (o) (b0 ) (1= xaes)

X (v = 2) iy = @) V14 ) Pty (PR - 2)) U (PR — )
where Uy are classical symbols of order 0 at infinity. In Lemma [2.2.2] z* is defined by
Z = —1+2*42, but since we have here 1 ~ 2™\/a(1 4 wyh?*?)"/? we may as well define z*

by 2 = —1 + 2*22"a(1 4 w,h?/?). Then z* becomes independent of 7. Observe that for
all j, there exists C}, C]’- such that for all k£ one has

|00y = Cjy, |02 < Cii,  |02u?] < Cjp? < C

Since A = tpu?/h = 22 f(l + ), we get |8])‘| < CjA for all j. Finally, A is bounded on

the support of derivatives of x4 and there exists ¢; > 0 such that n2/3h 23(y —a) > ¢.
Since 7 =~ (kh)?/3, we get that for all j, there exists C; such that for all k one has

00 ()] < Cy(kh) ™/ (14 7)™, (2.2.18)

We notice that for the values of k, Dh~¢ < k < h 5, we get 7 € [2a, 5—]. In what
follows, we distinguish between the two cases: v € [2a 1] and v € [1, o)
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e The first case v € [2a, 1] corresponds to h~¢ < k < h~'. Let Ay = 2™ \/aw,h~'/?

and @f’i = iLAk\Ifki’i.

Proposition 2.2.6. There exists a constant C independent of a €]0, h2/30-9)],
€ [h1], z € [0,a],y € R,z € R, and k € [h,h™1]| such that the following
holds:

‘/ NVES g (i)di| < C(k) A

Proof of Proposition[2.2.6. By (2.2.18) , Proposition is obvious for A, < 1.
In the case Ay > 1, we use i ~ 2™y/a which implies tv/1 — 22 ~ 2™ /a. Then
the proof is the same as the proof of Proposition if one replaces (h,t) in

Proposmon-by (h,t2™\/a). ]

Hence the corresponding estimate of G, ~ for h™* < k < h~! is given by

B /2 )
||]lz§aga,m,> (t, z,Y, Z) ||Loo < C’h72 (?> ( ) 2/3(t2m\/awkh71/3)71/3
1

e<k<h—

1/2
< Oh~2 (ﬁ) ﬁ72/3(t2m\/a>71/3%‘1/9 Z k78/9
- t

k<1/h

(N o s
<Ch 7 (27™Va)'"?.

The second case v € |1, 22# | corresponds to Wl <k<
and \Ilkjt’i by A = tQmﬁwkh 1/3 and @: = hA \I/: o+

We still define Aj

22’” h*

Proposition 2.2.7. There exists a constant C independent of a €]0, h¥/3(1=9],
e [h1], z € [0,a,y € R,z € R, and k € [h™" such that the following
holds:

+ 5
’/ M gt () dif| < C (k)T AL

Proof of Proposition [2.2.7 . One has y ~ (kh)?3. Thus v > 1 and (2.2.18) imply
|8] *(7)| < C;(kh)~'. Hence Proposition is obvious for Ay < 1 In the case
Ak 2 1 we proceed as in the Proposition 2.1.3 . Recall that Z is close to —1 and
7= —1+ 2°2*"a(1 4 w,h??) with z* in a compact set of 0, co[. We write

5 2(1 +wk’ﬁ2/3)1/2

WI=2L4E0/8  r apgsp), By = 3(1+7)12

hAy  (1+7)Y2

(14+1/7).
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For ~ large one has F'(y) ~ 1, F(y) + vF'(y) ~ 1. Moreover, one has
weh®P(2F (7) + 7 F" (7)) = wph®y 7 = 1.

Hence the proof is the same as the proof of Proposition if one replaces (h, F')
in Proposition “ 3 by (h, F). O

Using Proposition , we get the estimate of G, for hl<k< 22,}Lah:

B 172
Lotz 2 < 072 (1) SR 02 i)

h—1<k

1/2
< Chz(ﬁ) 1/3(2m\/_ 1/3h 8/92 kL 11/9

t
h1<k
B\ /6
< Ch™3 (t) (2my/a)'/3
This concludes the proof of Proposition O

2.2.2 Dispersive Estimates for a > k3=, for ¢ €]0, ¢[.

In this subsection, we assume a > ﬁg(l’e/), for some ¢ E}O,f[ and we establish a local in
time dispersive estimates for G, ,,. Observe that A = a*?2/h > h™ is a large parameter.
Recall from (2.2.12) that G, ,, is defined by

Gam(t, @y, 2) = (h/O)"2 Y /eh WIHEQEDY) g w7, B (),

N NG

2h2
) (2.2.19)
with g(wg, 77, h) equal to

2

ex(,77/D)er(a, 7/h)xa (weh™*n*?) (1 = x1) (ews),

9= == N =l B)

and we recall h = 2™\/ah,n = 2™\/aij, i = 2™+\/aji, and
= wh P =14 )

We will use the same notations as in sectlon |t =a?’T,x = aX,y+t\V/1 -2 = a®?y.

Let w = 7*3h~3a@. We get v = aw and (1 —|— aid)? — 1 = av, (@) = Titeme- Then
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we use the Airy Poisson summation formula, and we get

ga,m = Z Ga,m,N
N
with
—1\V )
Gamn(t, vy, 2) = ﬁ(h/t}”%@m\/&)? / NN £ 2y (R)dsdedodi  (2.2.20)
T
with the phase function
§ 53
dy(5,6,0,7) =Y +T(1 - 22)1/2%(@)+§ X -0+ 5 +5(1-w)
4

N
_ Eare3/2 . AV pe3/2) o
3Nw +AﬁB (w An) ,

and symbol f,,(a,t, z;7, o, fz) equal to, with A = t2m\/5ﬂ2/ﬁ,
1 9 - 9/3% -
fn = =00(z*,0, 1% M) (1 = xa(A/D))xa (2" Va)iPa@) (1 = xa) (e *h™Paw). (2.2.21)

Observe that we get the same phase function ®y as in section 2.1} but we have to take
care of the fact that now (1 — 22)Y/2 may be small. Therefore, in order to use the results

of section , we introduce the notation 7' = T'(1 — 22)1/2. Set
Ca,m,N,h = {(t, T, Yy, §, CNT,(Z), ﬁ) SllCh that 85®N = &;CI)N = a@q)]v = 877(I>N = 0}

Hence Cgm, v, is defined by the system of equations

We define the Lagrangian submanifold A, ., np C T*R? as the image of Cam,N,n Dy the

map
(t,z,y,8,6,0,10) — (z,t,y,§ = 0,Pn, 7 =0, PN,n = 0, Dn).
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Then the projection of A, nx onto R? is defined by the system of equations

X =1+5%-3, (2.2.22)

SNy 2z a3y 2 ~ ~27\—1/2 T .
Y:Hl(a,a)(s+0)+§(s +J)+§H2(a,a)(1+0) / 2(1—|—a+a52)1/2_8_0 :

where H;, Hy are defined in Section [2.1] and

2N (1 - 23’ (@3/2/\77)) = (1+ 6372 (2( T —5— &) . (22.23)

1+ a+ ag?)l/?

Remark 2.2.8. We notice from (2.2.23)) in the range of T E]OJ a=Y?], we can still reduce
the sum over N € Z to the sum over 1 < N < Cya='/? since T < T.

This system yields N'(X,Y,T) < Cy and N1(X,Y,T) < Cy (1 + TA*%TFS). Recall
that here the notations N, N'; are those defined in Section [2.1}

Our main result of this subsection is Theorem [2.2.9, which gives dispersive estimates
for the sum over N of Gy n.

Theorem 2.2.9. Let o < 2/3. There exists C' such that for all h €]0, hy], all a € VLQ, ag},
all z € [0,al, all t €]h, 1], all y € R, all z € R, the following holds:

B /2 B /2
< ChfS (?) <1’I111’l { (?> ’zmﬁ} + a1/8h1/4<2m\/6)3/4> )

We notice as in section , that for @ < 3/4, we get rapid decay in A by integration
by parts in . In particular, we may replace 1 — y; by 1 in . As in section 2.1},
we introduce a cutoff function x»(@) € C§°(11/2,3/2[),0 < x2 < 1,x2 = 1 on ]2, 3[ and
we denote by G, n2 the corresponding integral. We get Go v = Gamni + Gamn2 +
O(A™*°) where G, v is defined by a cutoff x5 with @ > 5/4 on the support of xs.

Z Gamn(t,z,y,2)

1<N<Cya—1/2

The Analysis of G N1

The main results in this subsection are Proposition [2.2.10| and Proposition [2.2.11

Proposition 2.2.10. Let o < 2/3.There ezists C such that for all h €0, hg], all a €
[71“, ao] ,allz €10,al, allt €]h,1], ally € R, all z € R, the following holds:

h 1/2
Y. Gamnalt,z,y,zh)| < Ch* (5) W3 (2m\fa)¥3.

2<N<Cpa—1/2
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Proof. On the support of x3, we can apply the stationary phase method for (§,a)-
integrations with large parameter An; hence we get

—1)Na2A! R\ V2 AvE _
Ga,m,N,l = ((Q)W(Qm\/a)2 (?) /emynﬁ% (U)Ga,m,N,ldﬁ,

Ga7m7N71 — § eZA"')(I)N,m,el,eQ @61,62(1 + ad’))*l/Zda)’

€1,€2

with symbols O, ., with support in @ < (2™y/a)"?/a, and such that |&'0LO,, | <
C,&~Y? with C) independent of a, m, and where ¢; = . The phase functions are

~ 2 2 4 N
¢’N,m,61762(@) = T'Va(cw‘*‘gel(@ - X)3/2+§€2(0~d — 1)3/2—§N@3/2+A—ﬁ3 (@3/2/\77) .

Let us define

(—1)Na?A~!

m h
Ga,m,N,l,q,eg = W(Q \/5)2 (

1/2
?) /emynﬁwl (ﬁ)Ga,m,N,l,el,ez dn,

Ga,m,N,l,el,eg = E 6ZAH¢N’m’El’€2 @51762 (1 + (Z(.:))_l/Qd(I).

€1,€2

We are reduce to prove the following inequality

IANE
> Gamniaw(tzy, zh)| < Ch (;) hl3(2m\/a)3, (2.2.24)

2<N<Cpa—1/2

with a constant C' independent of m, h €]0, hg],a € [52/3,%} ;o € [0,a],t € [h,1]. We
proceed as in the proof of Proposition Let us recall that on the support of y; we
have aw < £/2?™a; hence aw could be small or large. We distinguish between two cases:

The first case is aw < 1. Let Tp > 1. We get the following results:

e For 0 < T < Ty, N > N(Tp), then we apply the integration by parts to get

|éa,m,N,1,+,+| € O(NiOOAioO> and

sup Z GoamN++| € O(h).

T<To,X€[0,1],(y,2)€R? N(TO)SNSCQ71/2

e For 0 < T < Ty,2 < N < N(Tp), Lemma 2.20[29] yields the following estimate
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|éa,m,N,1,+,+| S CAil/g and

AN .
. sup Z Ga,m,N,l,-i—,-l— <Ch s (z) (h 1a2(2m\/a)2/\ 4/3);
TSTO,XE[O,l],(y,z)€R2 QSNSN(TO)

3 (h V2 1/3 2/3
< Ch n h'3(2m\/a)*?.

o For Ty <T < a*1/~2(1 — 22172 we use the same notation as before Q = @3/2; we have
103® Nt 1| > ¢T'Q7*3 and a nondegenerate critical point (2, which satisfies for
N > 2, Qi/ S~ % We have also either T /N bounded or large, the stationary phase
yields |Gamni 44| < CAV2T=1/2 Moreover, the 7 -integration produces a ¢~ /2
factor contribution with ¢ = NA7!Q ! when ¢ > 1. Thus, we get the estimates as
follows:

If T/N is bounded, Q. stays in a compact subset of [1, o[, and we get T~ N.

o If N < A% we have |NV;| < Cy. Hence the estimate is

: : Ga7m7N717+’+

NeM

1/2 .
< Ch*B <%) [hflAflaQ(Qm\/5)2A71/2T71/2]

-3 h 12 —1/43.1/2 1/2—1
<Ch (=) aVARV2(m\/a)2T 2
- t

3 (h V2 1/3 2/3
o5 PRV

since T > Ty and a~/4h/2 < h/3(2m/a)V/6 when a > h%/3.

o If N > A? then there is the contribution ¢~'/? from 7-integration and |A;| <
CoTA=2. Thus the estimate is

E Gam,N1+,+

NeN;

1/2
Z [h—lA—1a2<2m\/a)QA—1/2T—1/2N—1/2A1/2]
NeN;

1/2 3
AL @R T NG (X, Y, T))]

< Ch3 (

1/2 )
[a75/2h22m\/5]

1/2

IA

Q

>

&
TN TN TN
N~ N N~

S >

) B 12
h1/32m\/_:Ch73 (?) h1/3<2m\/a>2/3.
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Next, if T/N is large then €, is large.

o If N < AQ)., then there is no contrlbutlon from 7-integration. Moreover we have
V| < Cp since T > A202 implies QF ~ T/N > AQ. which is impossible since
is large. Thus the estimate is

: : Ga7m7N717+7+

NeN;

-3 h 2 1/3/9m 2/3
< Ch n R (2™ a)?3.

o If N > AQ. and T < A%2Q2, we also have |[V;| < Cy. Thus we get the estimate

: : Ga’7m7N71?+7+

NeN;

-3 h 2 1/3 (9m 2/3
<Ch n h'3(2m\/a)??.

o If N > A\, and T > A?Q2, then there is the contribution ¢~/ from fj-integration
and |N;| < CoTA2Q2. We get

Y Gamnpss| < Ch” (ﬁ) h AT G (2ma) T AN 2O
t
NENl NENl
S (%) lA 1a2 2m\/_> 192/3|N1(X YT)”

<Cn? (t) W32 a)*?,

The result of the other cases of (e, 62) can be achieved by proceeding along the same
lines as in the proof for G, y1 in section

If a® > 1, then a critical point Q. will satisfy Q&> (14 CLQQ/B)l/Z T for N > 2. This
yields, since T > CT with C' large,

T>CT>CNQY3 =CNw? > CNa™'/?

which contradicts ¢ < 1.

Now we prove the following estimate for N = 1.
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Proposition 2.2.11. Let o < 2/3. There exists C' such that for all h €]0, ho], all
a € [h% ap), all x € [0,a], allt € [h,1], ally € R, all z € R, the following holds:

B\ /2 B\ /2
Gumasltzsio] < o7 (1) (m{(;) ,Wauog@wan}+h1/3<2wa>2/3).

Proof. Let us recall

(—1)a*A™!
(2m)*ht

Ga}m}l’l — E elAn(bl,nz,el,eggel’EQ(l + CL(Z))il/Qd(_:)

€1,€2

Ga,m,l,l - ?

b 1/2 ' - . .
(2m\/a>2< ) /emynrﬂ/}l(n)Ga,m,l,ldn7

The only difference with the case N > 2 is in the study of the phase ®; ,, ; ; since in
the case N =1 we may have a critical point @, large. Let

Gam11 44 = /eiA%m’+’+@+,+(1 +aw) 2w, (2.2.25)

with the phase function

P (5) 4 2(c 2, 4 1
Dy oyt =T (@) + §(w — X)3/2 + §(w _ 1)3/2 _ §w3/2 i A_ﬁB(AW?’/Q??),

and O, , is a classical symbol of order —1/2 with respect to & which satisfy [0'0L0, ;| <
Ciw~Y2. Let x3(@) € C°(Jir, oo) with @&y large and set

J = / eBPLmt @ | xs(@)(1 4 ad) M 2d. (2.2.26)

To prove the proposition, we just have to verify

1/2
a'/?2™\/a|J| < C min { (%) L2\ /al 1og(2m\/5)l} : (2.2.27)

We first observe that on the support of the integral in ([2.2.26]), one has aw < (2™/a) ™% =
L. Hence we get

L/a 1

L 1
- dx|=C 1+a_1/2/ ——dy| <CaV*logL.
1 Va(l+az) ) ( o Vy(l+y)

|J|§C<1+

This implies

a'?2™\/a|J| < C2"\/a|log(2™V/a).
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We have
T o-1/2
0o Prmr = 5 (1 + aw) M2 — ——(1+X)+ O(&~3?),
-T ~—3/2
O @1 e = — (14 a@) 2+ (14 X) + 0@,

At a large critical point we have T? ~ (a+a7" (1 4 X)*. Hence T is small and
D20, (D) =~ T3(1 +ai.) 2. Let S = (T/(1+ X))? — a. Then we have S ~ &', and
by stationary phase we will get

|J| < C(1 4 ak)¥/*N~V2T—3/281/2,
We have to take care in this section that aw. may be large. In the case aw. < 1, we have

S ~ T2, and we get as before |.J| < CA~Y2T—1/2 which gives

B\ /2
a’?2m\/alJ| < C (¥> .
In the case a@, > 1, we must have T ~ Va, and S = ap with p > 0 small. We get
|J| < Cp~Y4a=Y4A~1/2. This gives
a1/22m\/E|J] < Ch1/2 ((2’”\/5)1/2@_1/2[1/4)
Finally, we observe that we have
Va~T ~ta V22" /a1 + ak,)"? = t ~ a(2™Va) " p"/?,

which gives a'/22™,/a|.J| < C(h/t)*/2. The proof of Proposition [2.2.11|is complete. [

The Analysis of Gy, n2

The main result in this subsection is Proposition [2.2.12]

Proposition 2.2.12. Let o < 2/3. There ewists C' such that for all h €]0,he], all
a € [h* apl, all x € [0,al, all t €)h,1], ally € R, all z € R, the following holds:

IR\ 2
Z Gamne(t,z,y,z,h)| < Ch™2 (?) a1/8h1/4(2m\/a)3/4.

1<N<Cpa—1/2
Proof. Recall

—_1)N ,
Gumalt,1:2) = (oS (W02 [ 0 £ (va(@)dsdadandy
(2.2.28)
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with the phase function

z3 ~3
Oy (5,6,0,7) = 7|V + Tra(@)+> +3(X — @) + % +5(1 - @)
4 N
__N~3/2 B ~3/2A~ )
SNw +Aﬁ (@A)

To start with, we rewrite G, n2 in the following form

—1)N o )
Gumova = i WO [ 000G

G(a,m,N,2 = /eiAﬁqBN’mmeQ((D)dgd&daJ,

with the phase function

C s S A A N o g
AN (8,0,0)=Tv,(0) —i-g—l— S(X —w)—l-?—i-a(l —w)—§Nw +A_ﬁB (@*2A7) .

Now we can proceed as in the analysis of G,y in section More precisely, we

apply the stationary phase method for @, #i-integrations. It yields A~'/2? and ¢~'/? with
q = NA~! respectively. We have the following facts [see Section :

e Lemmal2.1.11f For N > A2 there exists C such that

’ / e MNm  d5dE < CATO/8,

1 AT
< CA™23 and —— | [ e¥Vmxdsds
iy 9 \/N

with @ZJN,m is a perturbation of the phase function obtained from gENm at the critical
point w.. Hence we obtain the following estimates:

— When |[N(X,Y,T)| < Cy, we get

§ Ga,m,N,Q

NeM

3 (h 2 m 27 -1 25—1/2A—5/6
< Ch 7 [(2 Va)y’hta* AN } ,

3 (h 2 1/3 2/3
< Ch n R (2™ a)*®.

— When [N1(X,Y,T)| ~ CoTA2, the ¢~/2 factor contributes to the 7-integration,
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and we get
B\ /2
Z Ga,m,N,2 < Z Ch™® (;) [(Qm\/a)2h_1a2N_1A_2/3] ’
N€N1 Ne/\/’l

3 (h 12 m 27 -1 _24-8/3
<on () [envarnen e,

3 (h V2 1/3 2/3
<Ch n hY2 (27 a)??.

Recall that we used N ~ T, N1 < Co(1+ TA2) and a > h2/3.

e Lemmal2.1.12f For N < A3 we have

]_ A’L,ZY  ae am
— "Ny dsdo
JN ‘/ X

Therefore, the estimate in this case is given by

E Ga,m,N,Q

NeN;

< CN_1/4A_3/4.

1/2
< Chig (%) [(2m\/5)2h—1a2A71/2A73/4] ’

B 12
<Ch? (-) a'htt (2 a)Pt,
- t
Hence putting these estimates together, we get

h 1/2
Z Gamnz| < Ch™3 <?) [h1/3(2m\/5)2/3+al/8h1/4(2m\/a)3/4]'

1<N<Cpa~1/2

2/3
We notice that h'/3(27/a)?? < a/*h'/4(2™\/a)*/* when a > (2mh\/a> . The proof of
the Proposition [2.2.12|is complete. O

Proof of Theorem[2.2.9. The estimate follows from Propositions 2.2.10] 2.2.11} 2.2.12]
]

2.3 Dispersive Estimates for |n| < ¢/a .

In this section, we prove Theorem [1.4.3] We first compute the trajectories of the Hamil-
tonian flow for the operator P. At this frequency localization there is at most one
reflection on the boundary. Moreover, we follow the techniques from section [2.1] and
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. It is particularly interesting that at this localization, G, ., is an oscillatory integral
with nondegenerate phase function; this is due to the geometric study of the associated
Lagrangian which rules out the swallowtails regime for |¢| <1 if ¢, is small enough.

2.3.1 Free Space Trajectories.

Recall that the operator P is given by P(t,x,y, 2,0, 0, 0y, 0.) = 0f — (03 + (142)02402).
Now we compute the trajectories in the free space for the associated symbol

p=&+C+ L +any -1

To do so, we start at tg,zo, Yo, 20 with & close to 0, ng = 0o, 0] < ev/a,(o ~ 1,
10 =1,8 4 (1 + zo)n? + (2 = 1. The Hamilton Jacobi equation is

i=2¢ y=2(l+z); 2=2( t=-27

E==n" =0 (=0 7=0.

This yields

7(8) = T0;

1(s) = no;

C(s) = Go;

£(s) =& 77357

t(s) =tg — 27ps;

2(s) = 2o + 2Gos;

x(s) = 2 + 2&9s — N2s?;

y(5) = go + 2m0((1 + 70)s + €57 — <nEs?).

3

In our case, we start at tg = 0,29 = a,yo = 29 = 0; the system becomes

T(s)=10; n(s)=mo; ((s)=Co; &(s) =& —mps; (2.3.1)

1
t(s) = —2708; 2(s) = 2(os; x(s) = a+2&s —nps™; y(s) = 2mo((1 + a)s + &s* — 577333)-

The Lagrangian A C T*(R{,,.): we have A C {p = 0} is parametrized by the system

(2.3.1) with parameters (s, &y, m0, (o) together with (€2 + (1 + a)n2 + ()V? = 79 ; s is
t

homogeneous of degree —1. Since {(s) = —27s = s = —5—, we replace it in the system

(2.3.1). Then (2.3.1) becomes an homogeneous system parametrizing the Lagrangian A
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as follows:
o 773 2
t)y=a—22¢— 104
(t) =a To 4787
770( o 0 770 3)
= 1
y(t) - (1+a )t+20t +12 t
o
t) = ——t
oAt) = -,
773
£(t) = fo+2
To
7(t) =19 = 1.

The trajectories hit the boundary when z(t) = 0; that is ,

772
Zot2+t€0—a:0.

This yields the time t, when x(t,) = 0:

202

t*go =a — Oth ~ a.

We want to prove that at this frequency localization, the trajectories hit the boundary
only once for a given fixed time 0 < ¢ < 1. To do this, suppose that the trajectory hit the
boundary at ( = 0, Ys, Z4, &4y M, Co), which is given by the system (2.3.1)). More precisely,

&=—(&%+ "Ot .) and we get

5(5) = 5* - 77857
w(s) = 26,5 — m5s”,
t(s) = t. — 2s.

Now we assume that the trajectory, issuing from the point (z = 0, yx, 24, &4, s, o), hits
the boundary; that is, z(t) = 0, then tnf = 2&,. This yields

2,2 9 )
G = —2 (50 T %t) — 2 (go Sy ) /&])

1
t0%¢3| > 4 t> Va2 1 1.
G2 /5 2 e 2 e

Therefore, we can only see at most one reflection on the boundary of the cylinder for
0 <t <1 at this frequency location.
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2.3.2 Dispersive Estimates for |n| < ¢+/a.

In this part, we prove dispersive estimates for G, ,. The main result is Theorem [2.3.1]

Theorem 2.3.1 (Theorem |1.4.3)). There exists C' such that for every h €]0,1], every
t € [h,1], the following holds:

1Gaseo (t: %y, 2) | Lo (ezay < CHT3(R/t)? min { (h/t)"/?, \/a| log(a)| } . (2.3.2)
We start as in section 2.2 Recall that we have

1 i
ga,eo (ta z,y, Z) = W Z / eﬁékakdndc, (233)
E>1

where the phase &, and the function o} are defined by
i = yn + 26+ 10 + ¢+ w2,

ok = Ya(n/Va)er(z,n/h)ex(a, n/h)xo(¢® +n*)xa(weh®*n*?)(1 = xa) (ewr),
with 1, € C5°(] — 2¢0,2¢60[) equal to 1 on [—eg,€]. We still use the notation p? =
0?4+ wph?3n'3. Let x4 € C§°] — 1,1] with x4 = 1 on [~1/2,1/2]. The following lemma
(for || < €gy/a) is a refinement of Lemma [2.2.1]
Lemma 2.3.2. Let

N=—1 Z/ i (t“Q) dnd¢
=5 2 [ e (= ) owdndC.
4m2h? = h

There exists C' such that
N < C'h*?’(h/zf)l/2 min {(h/t)1/2, \/5}

Proof. As in Lemma and taking in account the cutoff ¥»(n/\/a), we get

1

V] < Ch3(h/t)/_ (1 — )2y (z \/h/(ta))dx

1

and the result follows from

(h/t)l/Q/_ (1 — a2)Y24y(x \/h/(ta))dz < min {(h/t)l/z, va} .

1

By the proof of Lemma [2.2.3] in the case v/a < Mh, we get the estimate

(Gacol < Carh™> (/1) V] log(Va),
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hence we may assume in what follows that h = h/y/a is a small parameter.

Using Lemmas [2.3.2 and [2.2.2], we are now reduced to the study of

1 i _52)1/2) 21 1ha(n/va)
Jaeo = h/t)? / (1 =255 h)?/3 dn, (2.3.4
«@ = oz (/1) ; e 6(wn) (/) oS = dn, (234)

& = ao(2*,m, 1% ) (1=xa(\) Ai((n/h)*Pz—w) Ai((n/h)*Pa—w)x1 (Wh* ") (1=x1) (ew),
where X =ty /h. By Airy Poisson summation formula, we have Jo, = Y yey Jv With

1

—
N7 gn2p2

(h/t)l/2 / e,il(yn+tp(1_g2)1/2)&(w)(n/h)Q/s%/\/a)e—iNL(w)dwdn' (2'3.5)

By the preceding paragraph, we know that it is sufficient to prove an estimate on J_; +
Jo + J1. We will focus on Ji, since J_; is similar and J; is simpler since it is the free
wave. One has J; equal to:

(h/t)'
(2m)*h?

J = hs / A f o, 20 ) 2D g, (236)
14

with the phase function
53 o3
o1 =yn+tp(l =)+ =+ s(inPPr — wh®?) + = + o(In]*a —wh?) — hL(w),

and symbol

f(wv 7, “27 )\7 h’) = UO(Z*’ n, ILL2; A)(l - X4()\))X1(Wh2/3774/3)(1 - Xl)(EW)

Recall that 4

L(w) = gwg/z — B(w*?), for w > 1,
with '

B(W) ~ ijw_j, bj S R, bl 7& 1.

Jj=1

Lemma 2.3.3. Let L as in section

L(w) =7 +ilog (A‘(w)> .

Ay (w)

Then for all w > 0, we have
L'(w) > 2w'/?.
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This lemma, whose proof is in the Appendix, is useful in the geometric study of the
canonical set and the Lagrangian submanifold associated to the phase function of .J;.

Proof of theorem[2.3.1. To study J; in ({2.3.6)), we restrict the integral to n > 0 and we
first make the change of variables w = h=2/3n?/3w*, s = n'/3s*, 0 = n*/3c*, and we obtain,
since p = n(1 + w*)!/?

(h/t)2

N Gy / RO (14 w) 72 f s (n//a)ds*dodu*dn, (237)

with the phase function gz;l equal to

5 52\1/2 €\1/2 4 * * *3 * o P o o

o =t(1-2)""14+w)"*+s"/3+s(r—w)4+0"/3+0"(a—w )—;L(n h=25w*).
(2.3.8)

We have

~ 2

Oy =5 +a—w,
~ 2

aa*¢1 =0 +a_(JJ*>

N tH1 — 32 1/21 *\—1/2
g H= )20+ )

h1/3 2/3 2/3
* * / — *

Therefore, at a stationary point in s*, 0", w* of (51, we must have, using Lemma 2.3.3

|s*| < Vw* and |o*| < \/(w* — a):
t(1— 221+ w) ™2 > 2(Vw — /(w* —a)).

Since (1 — 22) ~ pu=n(1 +w*)"/2, ¢t <1 and 1 < €y\/a we get

cov/a > egtv/a > 2(\/6? — vV (w* = a)),

and therefore, we may assume w* > Ma with M large if ¢, is small. This proves that
the swallowtail in the first reflection appears after a time ¢ > 1. Hence we are reduced
to study what happen before the first occurence of a swallowtail. This case corresponds
to a regime where there are no swallowtails and no cusps. We are reduce to estimate the
oscillatory integral J:

(h/t)'?

J = (27h)* /eig(ﬁ&l) n (1 +w*)V2 fahy(n/vVa)s(w* /(Ma))ds*do*dw*dy, (2.3.9)

where k € C*(]1/2,0]),0 < k < 1, and & equal to 1 on [1,00[. We then re-perform the
ds*do* integration using the definition of the Airy function, and we make the change of
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variables n = \/af] and w* = a@. As in Proposition [2.2.11] we get with A = a3/2/h = a®/h

a h\ '/ NG
J = (277—4h3 (;) /61 "J %(ﬁ)dﬁ,
J = Z/emﬁ‘l’ti Orx k(W/M) (14 a®) 2dw,
+,+

. 2 2 4 1
Dy =T, (@) + g(@ - X)*?+ 5(@ —1)%% - §w3/2 + A—ﬁB(ACu?’/Qﬁ),

Ors = (@— 1)@ — X) VAL (AEPRG - 1)UL (AR (0 - X)) f,

where W, (2) € C*([0,00]) are classical symbols of degree 0 in Z — oo. Therefore it
remains to prove

‘/e“\yﬁ aJ %(ﬁ)dﬁ’ < Cmin{(h/t)l/Q,\/a log(a)|}. (2.3.10)

Since on the support of f one has W < #, we get

- =
|J| < C’/ OV + a@) V2o < Cam 2| log(a?)|, (2.3.11)
1

and this implies

[ ad vt < Cvalioga)l
Next, we have

0ubis = = (1+ad) ™ £ (B~ X)V2 & (& — )2 — 2" 4+ 0@ 72),

o | M

and (1 + a@)~ V2T ~ Tn < et < 1. Hence the phases ®_ ,,d, _ have no critical points
@ > M /2 large, and this implies in particular for their contribution J* to J the estimate
|J*| < O(A7)~Y2 = ChY?7571/267" | which implies

‘ / MY g ¢ 1/J2(77)dﬁ' < Ch'/? / 7o ()di < C(h/t)2.

For the contribution to J of the phase ®, ., we use the same proof as the proof of
Proposition [2.2.11] We thus get the estimate

alJ| < C(h/t)Y2.

This concludes the proof of Theorem [1.4.3 O



Chapter 3

Strichartz Estimates For The Model
Problem

In this chapter, we present details for the derivation of Strichartz estimates for the so-
lutions u of the wave equation in cylindrical convex domains (2, A). The key
ingredients to prove Strichartz estimates are dispersive estimates, energy estimates, in-
terpoloation and 77 arguments. The main result in this section is Theorem [1.3.2]

We first prove the frequency-localized Strichartz estimates [Theorem [3.1.1] from the
frequency-localized dispersive estimates. We then deduce the Theorem by the
Littlewood-Paley squarefunction estimates.

Let us recall some notations: For any I C R, C R%, we define the mixed space-time
norms

1/q
lullogrser ey = (/ Hu(t,»nqr(mdt) 1< oo,

lw||Loo(r,2m () = esssup ||u(t, )| zr@)-
tel

3.1 Frequency-Localized Strichartz Estimates

In this section, we prove Theorem [3.1.2] The classical strategy is as follows: we begin by
interpolating between the energy estimates and dispersive estimates. This yields a new
estimate, which we further manipulate via a classical LP inequality to establish .
This last step imposes conditions on space-time exponent pair (g, 7); these are precisely
the wave admissibility criteria. The classical inequalities used are the Young, Holder, and
Hardy-Littlewood-Sobolev inequalities. Let us recall the Littlewood-Paley decomposition
and some links with Sobolev spaces. For more details see the book of [ [3], chapter 2].

71



72

Let x € C§°(R*) and equal to 1 on [1/2,2] such that
d x@7N =1, A>o0.
jez

We define the associated Littlewood-Paley frequency cutoffs y(277v/—A) using spectral
theorem for A and we have

> XxQ7IV=A) =1d: L*(Q) — L*(Q).

This decomposition takes a single function and writes it as a superposition of a countably
infinite family of functions y each one having a frequency of magnitude ~ 27 for j > 1.
We have that a norm of the homogeneous Sobolev of H” is defined as follows for all
>0,

1/2
[ll 5 := <222j5||x(2th)U||iQ> -

JEZ.

With this decomposition, the result about the Littlewood-Paley squarefunction estimate
[see [, [5, [30]] reads as follows: for f € L"(Q),Vr € [2, 0],

1/2
1fllzr@) < <Z|X f|2> : (3.1.1)

JEZ L7 (Q)

The proof follows from the Stein classical argument involving Rademacher functions and
an appropriate Mikhlin-Hormander multiplier theorem.

We define the frequency localization v; of u by v; = x(277v=A)u. Henceu = 3., v;.
Let h = 277. We deduce from Theorem [1.3.1] the frequency-localized dispersive estimates
for the solution v; = x(hD;)u of the (frequency-localized) wave equation

(0} — A)v; =0 in Q, Vjjmo = X(ADy)uo,  Opvjy,_g = X(hDy)ur,  vjjpq =0 (3.1.2)

read as follows:

99

>

Hu th)uoHLoo < h~3 min {1, (%) } I (hDy)uol| 11, (3.1.3)
} [x(hDy¢)us L1, (3.1.4)

JU(t)x(hDp)us | e S B2 min {1’ (3)
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where we use the notations

Ut) = % and  U(t) := cos <tm> :

These estimates yiled the following Strichartz estimates.

Theorem 3.1.1 (Frequency-localized Strichartz estimates). Let (2, A) as before. Let
vj be a solution of the (frequency-localized) wave equation (3.1.2). Then for all T there
exists Ct such that

Be Ha(t)xmpt)UOHLqm < I (hD2)uo|| 12, (3.1.5)
ROHIU @) x (WD)l oy S X (BDe)ual| 2, (3.1.6)

with q €]2,00],1 € [2,00], Sag(l—l),a3:§ and the scalingﬁzii(l—%)—%.

2 T 47 2

Remark that if % = a3(3—2) then 8 = (3 —a3) (3 —1). Let us recall also the
following facts:

e The Riesz-Thorin Interpolation Theorem [see [22]. Thm.7.1.12] states that if T is
a linear map from LP' N LP?2 to L9 N L% such that

1T f Nl < Myl|fllzes, 7= 1,2

and ifpig = pilqtlp;f, é = ‘;iljth—;e, for some 0 € (0,1), then
| T fllpoe < MMy fllzve, f € L' (L. (3.1.7)

o 1T argument: let H be Hilbert space, B and its dual B* be Banach spaces. Let
T : H — B be linear operator and T : B* — H its adjoint. The followings are
equivalent:

1. The operator T is continuous from H to B, ||T'f||z < C||f |2,

2. The operator T* is continuous from B* to H, ||[T%g|lx < Clgl|5+,

3. The operator T*T is continuous from B* to B, ||[T*Tg|z < C?|g]

B*-

In particular, let (U());er be a bounded family of continuous operators on L?(IR%).
Let T be the solution operator

T :ug —> [t — U(t)ug),

then
T : ¢ r—> /U*(t)gb(t)dt.
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Moreover, TT* coincides with the operator

¢ [t > /RU(t)U*(t’)gzﬁ(t’)dt’] .

We have

/ U(t)uo(z)op(t, z)dtdx

||U(t)“0||L§(L;) = d)SUp

q,7

= sup
PEBy

W @@)lo)mde

where By, := {¢ € DR C)/|19]l g 1,y < 1}
By the definition of the adjoint operator we have

ol f

Using the Cauchy-Schwarz inequality, we deduce that

1U#)uollLy(r;) = sup

#EBg.r

1U#)uollza(zry < lluollzz sup
PEBy

/wawﬂ

L2

Moreover, we have

H/U%meQ

— [ o) v o)
- [war@owow)sda
- [waw el o)

< |froresne

by the Holder inequality in ¢ and z.

HQEHL?'LQ’?

LiLy

Proof of Theorem[3.1.1. We prove only ([3.1.5)) since (3.1.6]) follows analogously. We have
the frequency-localized dispersive estimates in €2 in (3.1.3) for [t| > h as follows:

. . rhyos
U@ x D)ol S 07 (T ) (Do, (3.1.8)
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and the energy estimates

led () x (hDe)uo| 2 S IIx(hD)yuol| 12 (3.1.9)

We apply the Riesz-Thorin Interpolation Theorem ([3.1.7)) to the operator U (t)x(hD;) for
fixed time ¢ € R. Interpolating between (3.1.8) and (3.1.9) with § =1 — 2 yields

() x (D)ol - < ChEFHe)O= D=5 0=D I (RDyJug | (3.1.10)

for all 2 <r < oo, where 7’ denote the exponent conjugate to r; that is, % + % =1.

Let T be the operator solution defined by
T: ¢ € L* — To = U(t)x(hDy)¢o € LILL,
the its adjoint is given by
T e LD s THp = / Uty (WD) (t)dt € L.
Moreover, we have
T*T:¢ e LILY — T*Ty) = /z;{(t — 8)x*(hD)x(hD,)y(s)ds € LIL".
By T'T* argument, it is sufficient to prove
1T T gy S R0 -
We have

)

LiLy

IT*TYllsa1, = H [N AN

< h—2(3—a3)(%—%) (3111)

\ [ 1t s s

L{

When % < (g (% — %), we use Young’s inequality, which states that for 1 < p,q < oo,
1 ul| o < (| K e flul e (3.1.12)

ith 7 = = 4 1,1
We apply (3.1.12) with 7 = ¢/2,p = ¢’ and ; + 7 = 1togetan
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estimate

20(3-1)
)

since = < Qs (

/|wﬂWM%Wme
h

<
L lWHLg/LQI L2,

—9qa(i_1y12
< WD

% }_), we get that

2 1_2 o 2 1_2y./9 2/a —9 (l_l)+2
[t~ a3(5_;)||Lq/2 - / t2es(z =2 gy o~ pT T T
> h

Then (3.1.11) becomes

||T T¢||Lqm < h~ 2(3—a3) (3 H/|t s| 203(%— ?)||¢||erd8

)

q
t

1_1y_1
<h” 2Bz =) q]||¢||Lg’Lg’=
Shy|

/
q’ gt
Lt Lac

When % = a3 (3 — 1), we instead use Hardy-Littlewood-Sobolev inequality [see[22].
Thm. 4.5.3] which says that for K (¢) = [t|7'/7 and 1 < v < 0o that

HK * UHLF(R) S ||U||Lp’(R)> (3.1.13)

for % = % + % Here, we apply (3.1.13)) with 7 = ¢,p = ¢ and % — % — 2a3 (_ _ _) to get

that for ¢ > 2,t72/% : LY — L9 is bounded. Hence, we get from (3.1.11)) that
”T*TQ/JHLQLT S hAEes (7_7)||¢||Lq L'

S

!
q /.
Ly Ly

3.2 Homogeneous Strichartz Estimates

Let us restate Theorem [[.3.2 as:

Theorem 3.2.1 (Theorem [1.3.2). Let (2, A) as before. Let u be a solution of the fol-

lowing wave equation on ):

(2 —A)u=0 inQQ, U—p = Uo, OyUp—o = U1, Up—o = 0. (3.2.1)



7
Then for all T' there exists Cp such that

[ull Lagomyrr @) < Cr <||UOHHB(Q) + ||ulllmsfl(m> ,

with

Proof. Using the square function estimates (3.1.1]), we get that

1/2
HUHL;?L; S (Z H%’H%m) . (3.2.2)
J

Indeed, we have

1/2 1/2
lullzr @) S (ZIW) =D Iyl
Jj=0 L7 () Jj=0 Lr/2(Q)
1/2 1/2
S {Z HU?HLT/Z(Q)} = {Z ||Uj||%r(9)} )
7>0 7>0
Hence, we get
1/2 1/2
lullpor; < {ZH%II%;} = (1D vz, :
J=20 I j>0 L3/
t

1/2 1/2
(St} ~{ St}
Jj=0 Jj=0
The solution u to the wave equation (3.2.1]) with localized initial in frequency 1/h = 27

is given by

u= Z v;, where v; =U)(27D)ug + U)X (27 Dy)uy.

J
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Therefore, we get that
1/2
lullzgzy S (Z et (t)x (27 Deuol 7, + Hu(t)X(Qth)ulHigL;> :
1/2
(Z 2277 1x (277 Dy)uo[72 + 22j(5_1)||X(2_th)U1||%z> :

1/2 1/2
( > 278 x(2” ”Dt)uOHm) + (Z22j(5_1)||X(2_th)u1||2L2>
J

S Mol sy + lwll o1 ()

where we used Minkowski inequality in the third line.



Appendix
A. Airy function

Let z > 0. The Airy function A: is defined as follows:

1 .
Ai(=2) = = / /352 g,
2 Jr
It satisfies the Airy equation
Ai"(z) — zAi(z) = 0, denoted by (A)

Let w = €*™/3. Obviously, z — Ai(wz) is a solution to (A). Any two of these three
solutions Ai(z), Ai(wz), Ai(w?z) yield a basis of solutions to (A) and the linear relation
between them is -, (o, oy w? Ai(w’2) = 0. Then Ai(z) = —wAi(wz) — ©Ai(wz), which

we rewrite as follows:

Ai(—z) = e B Ai(e™™32) + ™ B Ai(e™2) = AL(2) + A_(2),
where we set Ai(z) = eT™/3Ai(e¥7/32). Notice that A_(z) = A,(z). We also have the
following asymptotic expansions

B e )

in/4 —2iz3/2 3/2\ __
e 3% exp Y (277) = i

1
A-() = 5 mme

with exp T(2%2) ~ (14 35,z %) ~ 2,/7¥_(2) as z — +o00 and the corresponding
expansion for A, where we define ¥, (2) = ¥_(2). Moreover, we have

A e )
(2) _ jo-tisr2 im( 9 with iB=_"T—-T.
A (2)

Notice that for z € Ry, B(2) € R and B(2) ~ >_ .. bjz™/ for z — +o0 and b; # 0.
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B. Phase Integrals

Lemma (Lemma 2.20[29]). Let K C R, and let a(§,\) be a classical symbol of degree 0
in A > 1 with a(§,\) =0 for § ¢ K. Let k > 2,¢9 > 0 and ®(§) a phase function such
that

S 100 >0, €K

2<j<k

Then there exists C' such that

‘/ei’\‘b(f)a(ﬁ,/\)df‘ < COXVE L wA> 1.

Moreover, the constant C' depends only on co and on an upper bound of a finite number
of deriwatives of order > 2 of ®,a in a neighbourhood of K.

Let H(&) be a smooth function defined in a neighbourhood of (0,0) in R? such that
H(0) = 0 and VH(0) = 0. We assume that the Hessian H” satisfies rank(H"”(0)) = 1
and V det(H"”)(0) # 0. Then the equation det(H")(£) = 0 defines a smooth curve C near
0 in R? with 0 € C. Let s — £(s) be a smooth parametrization of C, with £(0) = 0, and
define the curve X (s) in R? by

X(s) = H'(§(s)).

Lemma (Lemma 2.21[29]). Let K = {§ € R?,[¢] < r}, and let a(§,\) be a classical
symbol of degree 0 in A > 1 with a(§,\) =0 for £ ¢ K. For x € R? close to 0 set

I(z,\) = / eAN@E=H©) g (e N)de.

Then for r > 0 small enough, the followings hold true:

(a) If X'(0) # 0, there exists C' such that for all x close to 0,
[I(z, \)| < CA™/6,
(b) If X'(0) =0 and X"(0) # 0, there exists C such that for all x close to 0,
[I(z, \)| < CA3/4,
Moreover, if a is elliptic at £ = 0, there exists C' such that
11(0,\)| > C'A=3/4,

Lemma. Let 0 <y <1 and let

J\) = /Ooo P F(€)de,
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where f € C®(R), suppf C [1,00], |§Jﬁgf(§)] <&, Then one has
J(A) € O(A™).

Proof. The result follows the integration by parts. We have

J(A) = /OOO e L(f)de,

with . g
i 1
L) = 2y (€770

which is a symbol of degree m — ~. Then we get

1
JAN| < —
IO < -

Yl , d < — 1 mfn’yd’
[T < 55 [av e

with g, is a symbol of degree m —n~y. Choose n large enough, then the result follows. [

C. Proof of Airy-Poisson Formula

Let us recall the Lemma 2.1.4
Lemma. The following equality holds true in D'(R,,),

. 1
Z e INLw) — on Z méw:wk.

NeZ keN*

Proof. Let ¢ € C3°(]0,00]) C Cg°(R) and z = L(w) < ¢(z) = w. The Poisson summation
formula read as follows:

2WZ¢(27TI-C) = Z /e_iNz(ﬁ(z)dz.

keZ NeZ

2 Y (2mk) =) / e N g T (w)] L (w) dw.
keZ Nez
Let F(w) = Ai(—w). With A, (w) = p(w)e?@, we get F(w) = 2p(w) cos(f(w)). There-
fore, the equation F'(w) = 0 is equivalent to §(w) = 7/2+ I, [ € Z, which is equivalent to

L(w) = 27(1+1). Since L is a diffeomorphism from R onto |0, co[, one has for all integer
k> 1, Ai(—wy) = 0 iff L(wy) = 27k. Let H(w) = ¢[L(w)]L'(w) € Cg°(R). Then we get

H (wy, —iNL(w
QWZ L’Ewk; = Z/e ) H(w)dw.

kEZ NeZ
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This is equivalent to

d eV —or N ——— L, Oy, in D'(R,).

NEZ keN*

Finally, using the Airy equation F”(y) + yF(y) = 0 and integration by part, we get
/ F2(y)dy = wF?*(w) — / uFF dy = wF?(w) + / 2F"F dy = wF?*(w) + F?*(w).

e} —00 — 00

Since F'(wy) = 2p'(wg) cos(8(wy)) + 2p(wi )0 (wi) sin(f(wy)), we get
/000 A% (2 — wy) do = F(wy) = 4p% (wi) 0 (wi) = p*(wi) L (wi) = coL' (wy) ,

From 27Ai(0) = 371/°T(1/3), 27 Ai’(0) = —3Y/°T'(2/3) and the Euler reflection formula
for the I' function, I'(x)I'(1 — z) = 7/sin(7x), we get 2mcy = 1, thus

/ Az k) dx = L (wk)
21

D. Proof of Lemma [2.3.3
Proof. To prove the inequality in Lemma [2.3.3] let us recall that

5:c:a = Z €k (l’, 77)%(% 77)

k>1

=2 L, Sl Al — o) Al — )

k>1

/ > Qi g0 Ai( [ = ) Ai* %0 — )

k>1

/Z —iNL(w) |77|2/3 1( +s(|n|?/ 3e—w)+ % +U(|n\2/3a w))d
T 42 '

NEz
Now we rewrite

6w:a - Z TN7

with ( )
T — 2/3 i (% (2 *e—0)+ % o (I Pa—w)~NL()) g,
v=g [ I
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Since we also have d,_, = Ty, then the wave front set satisfies

WF (Y Ty) C {z <0}

N0
Moreover, WF (T ) are pairwise disjoint, and we have
VN, WF(Ty) C {z < 0}.
The Lagrangian submanifold associated to T is defined by a system of equations:

s+ n*Pz —w=0,
o + \7}|2/3a —w =0,
s+o0=-NL(w)

We have

]17\2/3:16 —w—s2=0>+n"%a— (0 + NL' (0 + |77]2/3 ))
= [n*Pa — 20 NL'(|n|**a + %) = N*[L'(|n|*/*a + o*)]*.

Since x < 0 on WT, then we get Va > 0,Vo € R,VN # 0,
n]**a — 20N L' (|n*PPa + %) — N[L'(|n|**a + 0®)]?

<0,
N
% < int {INZ 50 + 0%) (INIZ G 5a + 0% + 20730 )}
oc

Let @ = |n|*/?a. It is equivalent to have Ya > 0,¥r > 0,VYN > 1,

a < inf {NL’ a+r?) (NL/(EL+T2) —2r)}.

r>0

This reduces to Va > 0,Vr > 0, since N > 1

a<inf{L'(a+r*) (L'(@a+r*)—2r)}.

r>0
For a = 0, since L is strictly increasing, it yields
L'(r*) >2r, Vr>0.

Now let @ = a + r?, then we have V0 < a < a,
a+2L'(a)Va—a< L'(a)*

Since supg<z<q @+ 2L (@)va — a = 2L'(a)Va; we get the desired inequality.
The inequality is strict for large values of w; that is, we have L/(w) > 2w'/2. From the
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asymptotic expansion of the Airy functions, we have

1 ) 2. 3/2 _
_ iw/4 iw . _
A-(w) =g e e (I )i Av(w) = A-(),
Then we get
™ 4 5, _Im(b)
L(w):§+§w —2 3 +-

L'(w) = 2w"? + 3Im(b)w ™2 + - ..

To prove that L'(w) > 2w'/? for w large, it is sufficient to prove that Im(b) > 0 as follows:

) ] im/3 3 in
A_(w) _ em/BAi(eerw) _ € /ez(3+se /3w)d8
R

2T
Z’?T/3 . 3 in

_ € /w1/261w3/2(X3+Xe /S)dX, (S _ wl/QW)
2 R

Let W = ie™/5 4 t, then > + Wein/? = £ 4 jein/0¢2 — 2 and

im/3 ’
A_(LU) e e_wl/Qe—%w:g/Q / eiw3/2(§+iezr/6t2)dt’
2T R
im/4 ) [ ' /
=g / e~ M TR gyt (1 = emin12y),
T R
i /4 1 o 8
€ —24,8/2 —(P—demim/ AL ) o~ , 347
= ——¢ 3 _ e 3,,3/4 dt7 t = W t 7
2/mw!/A V7 Je ( )
i /4 1 ) ' 7?3 . t~6
€ —2,,3/2 2 - inj4 i
=5 =1 =/ ¢ (+ie L
2/mwl/A 7= ) (1+ it gt ),

ei7r/4
- 2ﬁw1/46

2, 3/2

—32(1 4

Hence, we get that

E. Geometric Estimates

Let f(a,ac?) be various analytic functions defined for @ and ag? small, with f(a,b) € R
for (a,b) € R?. Recall that the projection of A,y onto R? is given by
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X =1+4+5%-3, (3.2.3)
T =2(1+a+ as?)"? (s +6 4+ 2N(1 + 6242 (1 — %B’((l + 52)3/2)\>)) ,

2 4
Y = Hi(a,8)(5+6) + 5(5 +5%) + s NHy(a,) (1 - %B'(a v 62)3/2)\>> :

where

(14 a+ ac?)'/?
1+ (14+a+ac?)l/?’
-3 — 4a — 4ac?
2+ a+ad?+3(1+a+ as?)/?

Hi(a,6) = —(1+5%)

Hy(a,5) = (1+5%)%?

We can rewrite Hy, Hs as follows:

Hl - fO(a'7 a&Q) + 52f1(a7a&2)7 fO(an) = f1(0>0) = _1/2a
(1463 732H, = fy(a,a6?), £2(0,0) = —3/5.

As in [29], we rewrite the system in the following form

X=1+5"-3, (3.2.4)

N 2.3 .3 2 ~ ~2\—1/2 T s =
Y = (@ 8)(3+6) + 5 +5") 4 S Ha(0,.0)(146) | g 86 )

and with @ = 1 + &2,

_§ 1 =3/2 _ ~2\—1/2 T .~
2N(1 4B(w /\))—(1+U) i TarayE ) (3.2.5)

For a given a and (XY, T) € R3, 1' is a system of two equations for unknown
(3,0) and (3.2.5)) gives an equation for N. We are looking for a solutions of (3.2.4)) in the

range

a € [h® ag),a < 2/3,al5] < €,0 < T <a Y* X €0,1] with ag, ¢y small.

Let us recall Lemma 2.18 [29]. Let R = 2(1—3Y/T),T > T; > 0,X € [-2,2],Y € R.
There exists 7,;(X,Y,T,a) € C,j = 1,2,3,4 such that

{6 € C,a|5]* < e,35 € C,(5,5) is a solution of (3.2.4)} C {51, 59, 53,54}

Moreover, there exists a function f.(a,ad?) with f,(0,0) = 1 and constants Cy, Cy, Cy >
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0, Ry, My > 0 such that the following holds:

(a) If|R| > Ry, two of the ¢, f.(a,ad7) are in the complex disk D(vV/R, A), the two others
are in the complex disk D(—+v/R, A) with A = C, (% + G(L\/%TD) Moreover, one has
VIR| > 2A.

(b) If |R| < Ry and |R|T > My, two of the &, f.(a, ag?) are in the complex disk D(VR, A),
the two others are in the complex disk D(—+v/R, A) with A = TL Moreover, one

VB
has y/|R| > 2A.

C < Ry an ~§ 0, one has |0;| < 2~* or all j.
If |R| < Ry and |R|T < M, has |5;| < CyT~1/? for all

Then for a given point (X,Y,T) € [=2,2] x R x [0,a=/?], let us denote by N(X,Y,T)
the set of integers N > 1 such that (3.2.4) has at least one real solution (3,5, \) with
alg)? < € and A > \g. We denote by N(X, Y, T) the set of complex N such that (3.2.4)

has at least one complex solution (5,5, \) with a|5|? < ¢y and A > Ag. Let us now rewrite

the equation ([3.2.5) as
i . 1
2N =T®,(5) + O(TA*07?) + 0(1), @,(5) = (3.2.6)

23V (1 +at ag?)/2

with (5) = (1+52)"/2 and ®,(5) is bounded on theset U = {6 € C, || < 1/2 or |Im(5)| <
Re(3)]/v/3)} and

C|62 — 67| 1

- ~ a+ =
sup((|al), (|o"])) ( (o) (le"])
We observe that (3.2.6) implies for Ny > 0 independent of (X,Y,T) that

1B,(5) — ()] < )Naan. (3.2.7)

N(X,Y,T) C [1,T/2+ Ny|. (3.2.8)

Lemma. There exists a constant Cy such that the followings hold:

(a) For all (X,Y,T) € [0,1] xR x [0,a""/?], one has [IN(X,Y,T)| < Cy, and N¢(X,Y,T)
is a subset of the union of four disks of radius Cy.

(b) For all (X,Y,T) € [0,1] x R x [0,a""/?], the subset of N,

MX,Y,T) = U N(X'Y' T,

Y=Y |[+|T"=T|<1,| X=X |<1

satisfies

INMU(X,Y, T)| < Co(1+TA2073%).
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Proof. Part (a) is a consequence of (3.2.4)). Indeed, for a given (X,Y, T > TO) there are
at most four possible values of ¢ by Lemma 2.18 [29] For T < Ty, we use . To
prove part (b), we may assume that T> T1 with T} large. Recall that R = 2(1 — 3Y/ T)
Let (X', Y, T') be such that |Y' — Y|+ [T —=T| < 1,X’ € [0,1]. Set R' = 2(1 —3Y"/T").
We have |R — R'| < C(1 +|R|)/T.

e If |[R| > 2Ry, with Ry as in Lemma 2.18 [29]. Since T is large, we have |R'| > Ry
and |R| ~ |R'|. Let N’ € N(X',Y’,T") and &' such that ( - ) holds. By Lemma
2.18 [29] (a), we may assume 6™ € D(VR',A"). Take 6* € D(V/R, A) associated

o (X,Y,T). Since o' is real, we have R’ > Ry, thus R > 2Ry, and 6 € U. Let
N € NY(X,Y,T) associated to &. Since a'/? < 1/T, we get

1
p- ol <Clo =" < C (A+ 4+ VR-VRI) < S5 +|1|rzR|—|>_

Since || + |¢'| < Cy/|R|, we get

C(1+|R|)
7
By (3.2.7) and (3.2.6)), we have since a|R| ~ a|d'|* < e,

2AN = N'| < |T = T'|®a(6") + T|®a(5") — @a(3)] + O((IT] + [T')A207%) + O(1),
A +[R)

VIRl

o If [R| < 2Ry and T|R| > My +38. Since |[RT — R'T’'| < 8, we get |R’|T’ > My. Thus
we may apply Lemma 2.18 [29] (b). Let N' € N(X',Y',T") and ¢’ € R such that
(3-2.4) holds. Since &' is real, we have R’ > 0. Thus R’ T' > M, and this implies
R > 0 (take M, large). Moreover, we have |R — R'| < C(1+ |R|)/T,|R'| < 3Ry,
and |R| ~ |R'|. Now, we get |0 — ¢'| < C(%;\/%O) and since |o| + 6’| < C\/|R|, we

get |02 — 6| < @. Therefore, we get

|5_2 o 5_/2| S

< C(a+1/|R|) +O(TA207H) +0(1) € O(TA207%) + O(1).

2|N — N'| < CT(a+ O(1))(1 + Ro)/T + O(TA207*) + O(1) € O(TA*&7%) + O(1).

o If |R| < 2Ry and T|R| < My +8. We have T’|R'| < My + 16. Thus by Lemma 2.18
29](c), we have |65 < CTY2,|6;| < CT~'/2. We get |62 — 6”| < C/T and thus

2|N — N'| € O(TA2073) + O(1).
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Abstract

Dispersive and Strichartz Estimates for The Wave Equation Inside
Cylindrical Convex Domains

by Len MEAS

In this work, we establish local in time dispersive estimates and its application to
Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylin-
drical convex domains  C R3 with smooth boundary 99 # ). Let us recall that dis-
persive estimates are key ingredients to prove Strichartz estimates. Strichartz estimates
for waves inside an arbitrary domain 2 have been proved by Blair, Smith, Sogge [6] [7].
Optimal estimates in strictly convex domains have been obtained in [29]. Our case of
cylindrical domains is an extension of the result of [29] in the case where the nonnegative
curvature radius depends on the incident angle and vanishes in some directions.

Keywords: dispersive estimates, Strichartz estimates, wave equation, cylindrical convex
domains.

Résumé: Estimations de dispersion et de Strichartz dans un domaine cylin-
drique convexe. Dans ce travail, nous allons établir des estimations de dispersion et
des applications aux inégalités de Strichartz pour les solutions de 1’équation des ondes
dans un domaine cylindrique convexe Q C R® & bord C>, 92 # (). Les estimations de
dispersion sont classiquement utilisées pour prouver les estimations de Strichartz. Dans
un domaine {2 général, des estimations de Strichartz ont été démontrées par Blair, Smith,
Sogge [6l [7]. Des estimations optimales ont été prouvées dans [29] lorsque 2 est stricte-
ment convexe. Le cas des domaines cylindriques que nous considérons ici généralise les
resultats de [29] dans le cas ou la courbure positive dépend de l'angle d’incidence et
s’annule dans certaines directions.

Mots Clés: estimations de dispersion, estimations de Strichartz, I’équation des ondes,
domaines cylindriques.
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