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Thèse de doctorat

présentée en vue de l’obtention du

grade de docteur en Mathématiques
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4. Nikolay Tzvetkov (examinateur)
5. András Vasy (examinateur)
6. Maciej Zworski (rapporteur)
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Résumé

Estimations de dispersion et de Strichartz dans un domaine cylindrique con-
vexe: Dans ce travail, nous allons établir des estimations de dispersion et des applications
aux inégalités de Strichartz pour les solutions de l’équation des ondes dans un domaine
cylindrique convexe Ω ⊂ R3 à bord C∞, ∂Ω 6= ∅. Les estimations de dispersion sont
classiquement utilisées pour prouver les estimations de Strichartz. Dans un domaine Ω
général, des estimations de Strichartz ont été démontrées par Blair, Smith, Sogge [6, 7].
Des estimations optimales ont été prouvées dans [29] lorsque Ω est strictement convexe.
Le cas des domaines cylindriques que nous considérons ici généralise les resultats de [29]
dans le cas où la courbure positive dépend de l’angle d’incidence et s’annule dans cer-
taines directions.

Mots Clés: estimations de dispersion, estimations de Strichartz, L’équation des ondes,
domaines cylindriques.
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Abstract
Dispersive and Strichartz Estimates for The Wave Equation Inside

Cylindrical Convex Domains

by Len MEAS

In this work, we establish local in time dispersive estimates and its application to
Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylin-
drical convex domains Ω ⊂ R3 with smooth boundary ∂Ω 6= ∅. Let us recall that dis-
persive estimates are key ingredients to prove Strichartz estimates. Strichartz estimates
for waves inside an arbitrary domain Ω have been proved by Blair, Smith, Sogge [6, 7].
Optimal estimates in strictly convex domains have been obtained in [29]. Our case of
cylindrical domains is an extension of the result of [29] in the case where the nonnegative
curvature radius depends on the incident angle and vanishes in some directions.

Keywords: dispersive estimates, Strichartz estimates, wave equation, cylindrical
convex domains.
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Chapter 1

Introduction

Dispersive phenomena, which informally refer to the spread out of the wave packet as
the time goes by, often play a crucial role in the study of evolution partial differential
equations. Mathematically, exhibiting dispersion often amounts to proving a decay esti-
mate for L∞ norm of the solution at time t in terms of some (negative) power of t and
of L1 norm of the data. The dispersive inequality provides two types of information.
The first concerns the precise decay rate of L∞ norm of solution as t → ∞ while the
second provides information about the regularity of L∞ norm of solution for t > 0. In
many cases, proving these estimates relies on the (possibly degenerate) stationary phase
theorem and on explicit representation of the solution.

The dispersive estimates for the wave equation in Rd or on a smooth Riemannian
manifolds without boundary are well known. In these cases, we can get the pointwise
decay estimates for the kernel of parametrix, which may be constructed in a suitable way
by Fourier integral operators whose phase function is nondegenerate. In domains with
boundary, the difficulties arise from the behaviour of the wave flow near the points of the
boundary. In the case of a concave boundary, dispersive estimates follow by using the
Melrose and Taylor parametrix for Dirichlet wave equation and the approach by Smith,
Sogge in [41].

Recently, in [29], Ivanovici, Lebeau, and Planchon have established the optimal local
in time dispersive estimates with losses inside the strictly convex domain, and this is due
to caustics generated in arbitrarily small time near the boundary. A main approach of the
proof consists in a detailed description of wave front set of the solution near the boundary.
The dispersion is optimal because of the presence of swallowtail type singularities in the
wave front set of the solution.

The analysis of wave front set consists two main ingredients: location of singularities
and direction they propagate, namely along bicharacteristics. It appears in problems of
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the propagation of singularities in the phase space. On manifold without boundary, this
phase space is the contangent bundle. In the case with non-empty boundary, the main
challenge arises from the behaviour of singularities near the boundary. In the interior
of the domain, due to Hörmander rather general theorem, these singularities propagate
along the bicharacteristic curves (optical rays). The simplest case is that the singularities
striking the boundary transversely simply reflect according to the usual law of geometric
optics (“angle of incident equals angle of reflection”) for the reflection of bicharacteristics.
Melrose and Sjöstrand introduced the notion of generalized bicharacteristic rays to proved
the propagation of singularities near the boundary. The difficulties arise when dealing
with the rays tangent to the boundary. They proved that, at these “diffractive points”,
the singularities may only propagate along certain generalized bicharacteristics. The the-
orem on propagation of singularities in strictly convex domains was proved by Eskin in
[17] by the construction of the parametrix near tangential direction to the boundary and
was proved independently by Andersson and Melrose in [1].

A simplest geometry of wave front set is a spherical wave front, it moves outward
from the source point at a constant speed and the energy propagates equally in all direc-
tions. In the case of half space or concave boundary, the reflected waves do not generate
caustics. Interior of a strictly convex domains, reflected waves generate infinitely many
singularities such as cusps and swallowtails.

In domains whose boundaries have the order of tangency greater or equal 3, there
are no known results concerning dispersion except the approach of doubling the metric
across the boundary and considering a boundaryless manifold with a Lipschitz metric
across the boundary. These arguments require to work on a very short time intervals in
order to construct parametrix in the case of only one reflection. But this approach yields
non sharp dispersive estimates since the metric is not smooth enough.

In this thesis, we will study a model case of cylindrical domains with a convex bound-
ary with zero curvature along the axis of the cylinder. The main result in this thesis
is that we have proved the optimal local in time dispersive estimates with losses. Our
approach of construction the parametrix allows us to give a detailed description of the
wave front set, which shows precisely that the caustics appear between the first and the
second reflection of the wave on the boundary. The result for dispersion is optimal due
to the presence of the swallowtail type singularities in the wave front set.

Let us recall that it is now well established that these dispersive estimates, combined
with an abstract functional analysis argument—the TT ∗ argument— yield a number of
inequalities involving space-time Lebesgue norms Lqt (L

r
x)—the so-called Strichartz esti-

mates. The Strichartz estimates have proven to be of great importance in the study of
semilinear or quasilinear Schrödinger and wave equations, in particular mixed (in time
and space) Lqt (L

r
x) estimates are often the key to proving well-posedness results.
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In Rd, the first global Lqt (L
r
x) estimates was proved by Strichartz for the wave equation

[see [47]] first in the particular case q = r. The extension to the whole set of admissible
indices was achieved by Ginibre and Velo in [19] for Schrödinger equations, where (q, r)
are sharp admissible and q > 2; the estimates for the wave equations were obtained in-
dependently by Ginibre, Velo in [20] and Lindblad, Sogge in [35], following earlier works
by Kapitanski [see [31]]. The endpoint case estimates for both equations was established
later by Keel and Tao in [33]. The so-called Knapp wave provides counter examples away
from the endpoint.

For general manifolds, phenomena such as the existence of trapped geodesics or finite-
ness of volume can preclude the development of global estimates, leading us to consider
just local in time estimates. Only partial progress has been made in establishing these
estimates on manifolds, domains or singular spaces such as cones. For the conic case, its
singularity affects the flow of energy and complicates many of the known techniques for
proving these inequalities.

In [5], Blair, Ford, and Marzuola proved the dispersive and scale invariant Strichartz
estimates for the wave equation on the flat cones by using the explicit representation of
the solution operator in regions related to flat wave propagation and diffraction by the
cone point. They also proved the corresponding inequalities on wedge domains, polygons,
and Euclidean surfaces with conic singularities.

In [52], Zhang proved the global-in-time Strichartz estimates for wave equations on
the nontrapping asymptotically conic manifolds . These type of estimates was dealt with
in [48] outside normally hyperbolic trapped on odd dimensional Euclidean space. In [9],
Bouclet proved Strichartz estimates for the wave and Schrödinger on surface with cusps.

In the case of a compact manifold with boundary, the finite speed of propagation
allows us to work in coordinate charts and to establish the local Strichartz estimates
for the variable coefficients wave operators in Rd. In this case, Kapitanski in [32] and
Mockenhaupt, Seeger and Sogge in [39] established such inequalities for operators with
smooth coefficients. Smith in [40] and Tataru in [50] have proven Strichartz estimates
for operators with C1,1 coefficients. Local and global in time Strichartz estimates for
exterior in Rd to a compact set with smooth boundary under a nontrapping assumption
were obtained by Smith, Sogge in [42] for the case of odd dimensions and Burq in [11],
Metcalfe in [38] for the case of even dimensions.

Using the Lr(Ω) estimates for the spectral projectors obtained by Smith and Sogge
in [43], Burq, Lebeau, Planchon in [13] established Strichartz estimates for bounded do-
mains in R3 for a certain range of triples (q, r, γ). In [7], Blair, Smith, Sogge expanded
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the range of indices q and r obtained in [13] and generalized results to higher dimensions.

For manifold with smooth, strictly geodesically concave boundary, the Melrose and
Taylor parametrix had been used by Smith and Sogge in [41] in order to obtain the non-
endpoint Strichartz estimates for the wave equation with Dirichlet boundary condition.

Recently in [29], Ivanovici, Lebeau, and Planchon have deduced the usual Strichartz
estimates from the optimal dispersive estimates inside strictly convex domains of dimen-
sions d ≥ 2 for a certain range of the wave admissibility.

1.1 The cylindrical model problem

Let Ω = {x ≥ 0, (y, z) ∈ R2} ⊂ R3 with smooth boundary ∂Ω = {x = 0} , and let P be
the wave operator:

P = ∂2
t − (∂2

x + (1 + x)∂2
y + ∂2

z ).

We consider solutions of the linear Dirichlet-wave equation inside Ω

Pu = 0, u|t=0 = δa, ∂tu|t=0 = 0, u|x=0 = 0, (1.1.1)

with u = u(t, x, y, z), and for a > 0, δa = δx=a,y=0,z=0. We use the notation τ = h
i
∂t, η =

h
i
∂y, ξ = h

i
∂x, ζ = h

i
∂z for the Fourier variables and h ∈ (0, 1]. The Riemannian manifold

(Ω,∆) with ∆ = ∂2
x + (1 + x)∂2

y + ∂2
z can be locally seen as a cylindrical domain in R3 by

taking cylindrical coordinates (r, θ, z), where r = 1−x/2, θ = y, and z = z. The problem
is local near the boundary ∂Ω = {x = 0}. Let (a, 0, 0) ∈ Ω, a > 0. In local coordinates,
a is the distance from the source point to the boundary. We assume a is small enough as
we are interested only in highly reflected waves, which we do not observe if the waves do
not have time to hit the boundary. This gives us interesting phenomena such as caustics
near the boundary.

We remark that when there is no z variable (or when y ∈ Rn and ∂2
y is replaced

by ∆y), it is the Friedlander model. In this case, the optimal dispersive estimates were
recently obtained by Ivanovici, Lebeau, and Planchon in [29].

Recall that at time t > 0, the waves propagating from the source of light highly con-
centrate around a sphere of radius t. For a variable coefficients metric, if two different
light rays emanating from the source do not cross (that is, if t is smaller than the in-
jectivity radius), one may then construct parametrices using oscillatory integrals where
the phase encodes the geometry of wave front. In our scenario, the geometry of the wave
front becomes singular in arbitrarily small times which depend on the frequency of the
source and its distance to the boundary. In fact, a caustic appears between the first and
the second reflection of the wave front. Let us give a brief overview of what caustics are
[see [29] section 1.1]. Geometrically, caustics are defined as envelopes of light rays coming
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from the source of light. At the caustic point we expect the light to be singularly intense.
Analytically, caustics can be characterized as points where usual bounds on oscillatory
integrals are no longer valid. The classification of asymptotic behavior of the oscillatory
integrals with caustics depends on the number and the order of their critical points that
are real. Let us consider an oscillatory integral

uh(z) =
1

(2πh)1/2

∫
e
i
h

Φ(z,ζ)g(z, ζ, h)dζ, z ∈ Rd, ζ ∈ R, h ∈ (0, 1].

We assume that Φ is smooth and that g is compactly support in z and ζ. If ∂ζΦ 6= 0
in an open neighborhood of the support of g, the repeated integration by parts yields
|uh(z)| = O(hN) for any N > 0. If ∂ζΦ = 0 and ∂2

ζΦ 6= 0 (nondegenerate critical points),
then the stationary phase method yields ‖uh‖L∞ = O(1). If there are degenerate critical
points, we define them to be caustics, as ‖uh‖L∞ is no longer uniform bounded. The
order of a caustic κ is defined as the infimum of κ′ such that ‖uh‖L∞ = O(h−κ

′
). Let us

give some useful examples of degenerate phase functions. The phase function of the form
ΦF (z, ζ) = ζ3

3
+ z1ζ + z2 corresponds to a fold with order κ = 1

6
. A typical example is

the Airy function. The next canonical form is given by the phase function of the form
ΦC(z, ζ) = ζ4

4
+z1

ζ2

2
+z2ζ+z3, which corresponds to a cusp singularity with order κ = 1

4
.

A swallowtail canonical form is given by the phase ΦS(z, ζ) = ζ5

5
+ z1

ζ3

3
+ z2

ζ2

2
+ z3ζ + z4

with order κ = 3/10.

The crucial result of this work is the extension of the result of [29] to the case of our
model cylindrical convex domains which have the following property: the nonnegative
curvature radius depends on the incident angle and vanishes in some directions.

The main goals of this work are:

• To construct a local parametrix and establish local in time dispersive estimates for
solution u to (1.1.1).

• To prove the Strichartz estimates inside cylindrical domains for solution u to (1.1.1).

1.2 Some known results

The dispersive estimates for the wave equation in Rd follows from the representation of
solution as a sum of Fourier integral operators [see [10, 20, 3]]. They read as follows:

‖χ(hDt)e
±it
√
−∆Rd‖L1(Rd)→L∞(Rd) ≤ Ch−d min

{
1,

(
h

|t|

) d−1
2

}
, (1.2.1)
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where ∆Rd is the Laplace operator in Rd. Here and in the sequel, the function χ belongs
to C∞0 (]0,∞[) and is equal to 1 on [1, 2] and Dt = 1

i
∂t.

Inside strictly convex domains ΩD of dimensions d ≥ 2, the optimal (local in time)
dispersive estimates for the wave equations have been established by Ivanovici, Lebeau,
and Planchon in [29]. More precisely, they have proved that

‖χ(hDt)e
±it
√
−∆D‖L1(ΩD)→L∞(ΩD) ≤ Ch−d min

{
1,

(
h

|t|

) d−1
2
− 1

4

}
, (1.2.2)

where ∆D is the Laplace operator on ΩD. Due to the caustics formation in arbitrarily
small times, (1.2.2) induces a loss of 1/4 powers of (h/|t|) factor compared to (1.2.1).

Let us also recall a few results about Strichartz estimates [see [29], section 1]: let
(Ω, g) be a Riemannian manifold without boundary of dimensions d ≥ 2. Local in time
Strichartz estimates state that

‖u‖Lq((−T,T );Lr(Ω)) ≤ CT

(
‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)

)
, (1.2.3)

where Ḣβ denotes the homogeneous Sobolev space over Ω of order β and 2 ≤ q, r ≤ ∞
satisfy

1

q
+
d

r
=
d

2
− β, 1

q
≤ d− 1

2

(
1

2
− 1

r

)
.

Here u = u(t, x) is a solution to the wave equation

(∂2
t −∆g)u = 0 in (−T, T )× Ω, u(0, x) = u0(x), ∂tu(0, x) = u1(x),

where ∆g denotes the Laplace-Beltrami operator on (Ω, g). The estimates (1.2.3) hold
on Ω = Rd and gij = δij.

In [7], Blair, Smith, Sogge proved the Strichartz estimates for the wave equation on
(compact or noncompact) Riemannian manifold with boundary. They proved that the
Strichartz estimates (1.2.3) hold if Ω is a compact manifold with boundary and (q, r, β)
is a triple satisfying

1

q
+
d

r
=
d

2
− β , for

{
3
q

+ d−1
r
≤ d−1

2
, d ≤ 4,

1
q

+ 1
r
≤ 1

2
, d ≥ 4.

Recently in [29], Ivanovici, Lebeau, and Planchon have deduced a local in time
Strichartz estimates (1.2.3) from the optimal dispersive estimates inside strictly convex
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domains of dimensions d ≥ 2 for a triple (d, q, β) satisfying

1

q
≤
(
d− 1

2
− 1

4

)(
1

2
− 1

r

)
, and β = d

(
1

2
− 1

r

)
− 1

q
.

For d ≥ 3 this improves the range of indices for which sharp Strichartz estimates do hold
compared to the result by Blair, Smith, Sogge in [7]. However, the results in [7] apply to
any domains or manifolds with boundary.

1.3 Main results

Our main results concerning the local in time dispersive estimates and Strichartz esti-
mates inside the cylindrical convex domain Ω are stated below. Let Ga be the Green
function for (1.1.1).

Theorem 1.3.1. There exists C such that for every h ∈]0, 1], every t ∈ [−1, 1] and every
a ∈]0, 1] the following holds:

‖χ(hDt)Ga(t, x, y, z)‖L∞ ≤ Ch−3 min

{
1,

(
h

|t|

)3/4
}
. (1.3.1)

As in [29], Theorem 1.3.1 states that a loss of 1/4 powers of (h/|t|) appears compared
to (1.2.1) . We will obtain in Theorems 1.4.1, 1.4.2, 1.4.3 better results, in particular
near directions which are close to the axis of the cylinder.

As a consequence of Theorem 1.3.1, conservation of energy, interpolation and TT ∗

arguments, we obtain the following set of (local in time) Strichartz estimates.

Theorem 1.3.2. Let (Ω,∆) as before. Let u be a solution of the wave equation on Ω:

(∂2
t −∆)u = 0 in Ω,

u|t=0 = u0, ∂tu|t=0 = u1,

u|x=0 = 0.

Then for all T there exists CT such that

‖u‖Lq((0,T );Lr(Ω)) ≤ CT

(
‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)

)
,

with
1

q
≤ 3

4

(
1

2
− 1

r

)
, and the scaling β = 3

(
1

2
− 1

r

)
− 1

q
.

Theorem 1.3.2 improves the range of indices for which sharp Strichartz estimates do
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hold compared to [7]. Notice however that the results in [7] apply to arbitrary domains or
manifolds with non-empty boundary. To prove the Strichartz estimates in Theorem 1.3.2,
we first prove the frequency-localized Strichartz estimates by utilizing the frequency-
localized dispersive estimates, interpolation and TT ∗ arguments. We then apply the
Littlewood-Paley squarefunction estimates [see [4, 5, 30]] to get the Strichartz estimates
[Theorem 1.3.2] in the context of cylindrical domains.

1.4 Green function and precise dispersive estimates

The proofs of frequency-localized dispersive estimates are based on the construction of
parametrices for the fundamental solution of the wave equation (1.1.1) and (possibly de-
generate) stationary phase method.

We begin with the construction of the local parametrix for (1.1.1) by utilizing the
spectral analysis of −∆ with Dirichlet condition on the boundary to obtain first the
Green function associated to (1.1.1). The Laplace operator we work with on the half
space Ω is equal to

∆ = ∂2
x + (1 + x)∂2

y + ∂2
z ,

with the Dirichlet condition on the boundary ∂Ω. We notice that a useful feature of this
particular Laplace operator is that the coefficients of the metric do not depend on the
vairables y, z and therefore this allows us to take the Fourier transform in y and z. Now
taking the Fourier transform in y, z-variables yields

−∆η,ζ = −∂2
x + (1 + x)η2 + ζ2.

For η 6= 0,−∆η,ζ is a self-adjoint, positive operator on L2(R+) with compact resolvent.
Let (ek)k≥1 be an orthonormal basis in L2(R+) of Dirichlet eigenfunctions of −∆η,ζ and
let (λk)k be the associated eigenvalues. We get easily

ek =ek(x, η) = fk
|η|1/3

k1/6
Ai(|η|2/3x− ωk).

and

λk =λk(η, ζ) = η2 + ζ2 + ωk|η|4/3,

where (−ωk)k denote the zeros of Airy function in decreasing order and for all k ≥ 1, fk are
constants so that ‖ek(., η)‖L2(R+) = 1. Observe that (fk)k is uniformly bounded in a fixed

compact subset of ]0,∞[ since
∫ −2

−ωk
Ai2(ω)dω ' 1

4π

∫ −2

−ωk
|ω|−1/2(1 + O(ω−1))dω ' |ω|1/2

and ωk '
(

3
2
πk
)2/3

(1 +O(k−1)).
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For a ∈ Ω, let ga(t, x, η, ζ) be the solution of

(∂2
t − (∂2

x − (1 + x)η2 − ζ2))ga = 0,

ga|x=0 = 0, ga|t=0 = δx=a, ∂tga|t=0 = 0.

We have

ga(t, x, η, ζ) =
∑
k≥1

cos(tλ
1/2
k )ek(x, η)ek(a, η). (1.4.1)

Here δx=a denotes the Dirac distribution on R+, a > 0 and it reads as follows:

δx=a =
∑
k≥1

ek(x, η)ek(a, η).

Now taking the inverse Fourier transform, the Green function for (1.1.1) is given by

Ga(t, x, y, z) =
1

4π2

∫
ei(yη+zζ)ga(t, x, η, ζ)dηdζ,

=
1

4π2h2

∑
k≥1

∫
ei(yη+zζ)/h cos(tλ

1/2
k )ek(x, η/h)ek(a, η/h)dηdζ. (1.4.2)

We thus get the following formula for 2χ(hDt)Ga

2χ(hDt)Ga(t, x, y, z) =
1

4π2h2

∑
k≥1

∫
e
i
h

(yη+zζ)ei
t
h

(η2+ζ2+ωkh
2/3|η|4/3)1/2ek(x, η/h)ek(a, η/h)

χ((η2 + ζ2 + ωkh
2/3|η|4/3)1/2)dηdζ. (1.4.3)

On the wave front set of the above expression, one has τ = (η2 + ζ2 +ωkh
2/3|η|4/3)1/2. In

order to prove Theorem 1.3.1, we only need to work near tangential directions; therefore
we will introduce an extra cutoff to insure |τ − (η2 + ζ2)1/2| small, which is equivalent to
ωkh

2/3|η|4/3 small. Then, we are reduced to prove the dispersive estimate for Ga,loc:

Ga,loc(t, x, y, z) =
1

4π2h2

∑
k≥1

∫
e
i
h

(yη+zζ)ei
t
h

(η2+ζ2+ωkh
2/3|η|4/3)1/2ek(x, η/h)ek(a, η/h)

χ0(η2 + ζ2)χ1(ωkh
2/3|η|4/3)dηdζ, (1.4.4)

where the cut-off functions χ0 and χ1 are defined in section 2.1.
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η

ζ

Phase space

To obtain the local in time dispersive estimates, we will cut the η integration in (1.4.4)
in different pieces [as figure above]. More precisely, we write

Ga,loc = Ga,c0 +
∑

ε0
√
a≤2m

√
a≤c0

Ga,m + Ga,ε0 , (1.4.5)

where Ga,c0 is associated with the integration for |η| ≥ c0, Ga,m is associated with the
integration for |η| ' 2m

√
a, and Ga,ε0 is associated with the integration for 0 < |η| ≤ ε0

√
a.

We will prove the following results. Let ε ∈]0, 1/7[.

Theorem 1.4.1. There exists C such that for every h ∈]0, 1], every t ∈ [h, 1] the following
holds:

‖Ga,c0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(
h

t

)1/2

γ(t, h, a), (1.4.6)

with

γ(t, h, a) =

{(
h
t

)1/3
if a ≤ h

2
3

(1−ε),(
h
t

)1/2
+ a1/8h1/4 if a ≥ h

2
3
−ε′ , ε′ ∈]0, ε[.

Observe that in Theorem 1.4.1 we get the same estimate as in Ivanovici-Lebeau-
Planchon [29].

Theorem 1.4.2. There exists C such that for every h ∈]0, 1], every t ∈ [h, 1] the following
holds :

‖Ga,m(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(
h

t

)1/2

γm
(
t, h, a), (1.4.7)
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with

γm(t, h, a) =


(
h
t

)1/3
(2m
√
a)1/3 if a ≤

(
h

2m
√
a

) 2
3

(1−ε)
,

min
{(

h
t

)1/2
, 2m
√
a| log(2m

√
a)|
}

+ a1/8h1/4(2m
√
a)3/4 if a ≥

(
h

2m
√
a

) 2
3
−ε′
,

ε′ ∈]0, ε[.

For 2m
√
a ∼ 1, Theorem 1.4.2 yields the same result as in Theorem 1.4.1. We notice

that the estimates get better when |η| (∼ 2m
√
a) decreases. This is compatible with the

intuition: less curvature implies better dispersion.

Theorem 1.4.3. There exists C such that for every h ∈]0, 1], every t ∈ [h, 1], the fol-
lowing holds:

‖Ga,ε0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(
h

t

)1/2

min
{

(h/t)1/2,
√
a| log(a)|

}
. (1.4.8)

Let us verify that Theorem 1.3.1 is a consequence of Theorems 1.4.1, 1.4.2 and
1.4.3. We may assume |t| ≥ h, since for |t| ≤ h, the best bound for the dispersive
estimate is equal to Ch−3 by Sobolev inequality. Then, by symmetry of the Green func-
tion, we may assume t ∈ [h, 1] and x ≤ a. Then Theorem 1.3.1 is a consequence of∑

m≤M(2m
√
a)ν ' (2M

√
a)ν for ν > 0.
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Chapter 2

Dispersive Estimates For The Model
Problem

In this chapter, we prove Theorems 1.4.1, 1.4.2 and 1.4.3. This chapter is organized as
follows:

In section 2.1, we prove Theorem 1.4.1. To do so, we use the representation of Ga,c0
as a sum over the eigenmodes which is used to prove the estimates for a ≤ h

2
3

(1−ε),
ε ∈]0, 1/7[. Using the Airy-Poisson summation formula [see Lemma 2.1.4], Ga,c0 can be

also represented as a sum over multiple reflections for a ≥ h
2
3
−ε′ , for ε′ ∈]0, ε[. These

local parametrices can be written in terms of oscillatory integrals to which we can apply
degenerate stationary phase results.

In section 2.2, we prove Theorem 1.4.2. To get the estimates for Ga,m , we distinguish

between two different cases. The first case is a ≤
(

h
2m
√
a

) 2
3

(1−ε)
, ε ∈]0, 1/7[: here, we

follow ideas in section 2.1 and construct a local parametrix as a sum over eigenmodes.

The second case is a ≥
(

h
2m
√
a

) 2
3
−ε′

, for ε′ ∈]0, ε[: there, the Airy-Poisson summation

formula yields the representation of Ga,m as a sum over multiple reflections.

In section 2.3, we prove Theorem 1.4.3. Notice that as ε0 is small, the estimates for
Ga,ε0 are in fact those in free case. To get that, we first compute the trajectories of the
Hamiltonian flow for the operator P . At this frequency localization there is at most
one reflection on the boundary of the cylinder. Moreover, we follow the techniques from
section 2.1 and obtain an expression for Ga,ε0 to which we apply the stationary phase
method. It is particularly interesting that this localization gives us an oscillatory integral
(the local parametrix) with nondegenerate phase function; this is due to the geometric
study of the associated Lagrangian which rules out the cusps and swallowtails regimes

13
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for a given fixed time t, |t| ≤ 1 if ε0 is small.

In all these sections, we will assume that the integration with respect to η is restricted
to η > 0, since the case η < 0 is exactly the same.

2.1 Dispersive Estimates for |η| ≥ c0.

In this section, we prove Theorem 1.4.1. The key ingredient is to construct local para-
metrices for the regimes a ≤ h

2
3

(1−ε) for ε ∈]0, 1/7[, and for a ≥ h
2
3
−ε′ , for ε′ ∈]0, ε[

respectively. These are oscillatory integrals to which we apply the (degenerate) station-
ary phase type arguments to get the desired estimates. The Airy-Poisson summation
formula [see Lemma 2.1.4] gives us the parametrix as a sum over multiple reflections.

2.1.1 Dispersive Estimates for 0 < a ≤ h
2
3 (1−ε), with ε ∈]0, 1/7[.

In this section, we prove local in time dispersive estimates for the function Ga,c0 . In the

regime 0 < a ≤ h
2
3

(1−ε), with ε ∈]0, 1/7[, the parametrix reads as a sum over eigenmodes
k. Taking into account the asymptotic behaviour of the Airy functions, we deal with
different values of k as follows: for small values of k, we use Lemma 3.5[29] to get the
estimates; for large values of k, we use the asymptotic expansion of the Airy functions.
The last case, the parametrix is a sum of oscillatory integrals to which we apply Lemma
2.20[29]. Recall that the parametrix in this frequency localization and near tangential
directions is equal to

Ga,c0(t, x, y, z) =
1

4π2h2

∑
k≥1

∫
e
i
h

(yη+zζ)ei
t
h

(η2+ζ2+ωkh
2/3|η|4/3)1/2ek(x, η/h)ek(a, η/h)

× χ0(ζ2 + η2)ψ0(η)χ1(ωkh
2/3|η|4/3)(1− χ1)(εωk)dηdζ. (2.1.1)

Here

• χ0 ∈ C∞0 , 0 ≤ χ0 ≤ 1, χ0 is supported in the neighborhood of 1.

• ψ0 ∈ C∞0 (c0/2,∞), 0 ≤ ψ0 ≤ 1, ψ0(η) = 1 for η ≥ c0.

• χ1 ∈ C∞0 , 0 ≤ χ1 ≤ 1, χ1 is supported in (−∞, 2ε], χ1 = 1 on (−∞, ε], for ε > 0
small. χ1 is used to localize in tangential directions. Notice that on the support
of χ1, we have ωkh

2/3|η|4/3 ≤ 2ε and since ωk ' k2/3; we obtain k ≤ ε
h|η|2 . Thus

since η is bounded from below, we may assume that k ≤ ε/h. Moreover, we have
(1− χ1)(εωk) = 1 for every k ≥ 1 since ω1 ' 2.33.
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The main result of this section is the following proposition.

Proposition 2.1.1. Let ε ∈]0, 1/7[. There exists C such that for every h ∈]0, 1],

every 0 < a ≤ h
2
3

(1−ε), and every t ∈ [h, 1], y ∈ R, z ∈ R, the following holds:

‖Ga,c0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(
h

t

)5/6

. (2.1.2)

Proof. First, we study the integration in ζ. Let

J =

∫
ei

t
h
φkχ0(ζ2 + η2)dζ.

Recall that χ0 ∈ C∞0 is supported near 1. The phase function φk is given by

φk(ζ) =
z

t
ζ +

(
η2 + ζ2 + γη2

)1/2
,

with γ = h2/3ωk|η|−2/3 > 0. We introduce a change of variables ζ = |η|ζ̃ , z = tz̃. Then
we obtain

φk(ζ) = |η|
(
z̃ζ̃ + (1 + ζ̃2 + γ)1/2

)
.

Differentiating with respect to ζ̃, we get

∂ζ̃φk = |η|

(
z̃ +

ζ̃

(1 + ζ̃2 + γ)1/2

)
.

Since η is bounded from below, ζ̃ = ζ/|η| is bounded, therefore we have
∣∣∣ ζ̃

(1+ζ̃2+γ)1/2

∣∣∣ ≤
1 − 2δ1, for some δ1 > 0 small. Then if |z̃| ≥ 1 − δ1, the contribution of ζ̃-integration
is OC∞((h/t)∞) by integration by parts. Thus we may assume that |z̃| ≤ 1 − δ1. In
this case, the phase φk has a unique critical point on the support of χ0. It is given by

ζ̃c = − z̃(1+γ)1/2√
1−z̃2 and this critical point is nondegenerate since

∂2
ζ̃
φk = |η|

(
1 + γ

(1 + ζ̃2 + γ)3/2

)
> 0.

Then we obtain by the stationary phase method (as |z̃| < 1− δ1)

J =

(
h

t

)1/2

ei
t
h
|η|
√

1−z̃2(1+γ)1/2χ̃0,
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where χ̃0 is a classical symbol of order 0 with small parameter h/t. Hence we get

Ga,c0(t, x, y, z) =
1

4π2h2

(
h

t

)1/2∑
k≥1

∫
e
i
h

(
yη+|η|t

√
1−z̃2(1+γ)1/2

)
ek(x, η/h)ek(a, η/h)

× χ̃0ψ0(η)χ1(γ|η|2)(1− χ1)(εγh−2/3|η|2/3)dη. (2.1.3)

Next, we observe that Ga,c0 contains Airy functions which behave differently depending
on the various values of k. To deal with it, we split the sum over k into Ga,c0 = Ga,<L +
Ga,>L, where in Ga,<L only the sum over 1 ≤ k ≤ L is considered. To get the estimates for
Ga,<L, we need the next lemma, which follows from the bound |Ai(s)| ≤ C(1 + |s|)−1/4.

Lemma 2.1.2. (Lemma 3.5[29]) There exists C0 such that for L ≥ 1, the following holds:

sup
b∈R

( ∑
1≤k≤L

k−1/3Ai2(b− ωk)

)
≤ C0L

1/3.

We use the Cauchy-Schwarz inequality for (2.1.3) and Lemma 2.1.2 to get

‖Ga,<L‖L∞ . h−2

(
h

t

)1/2 ∑
1≤k≤L

h−2/3k−1/3Ai(|η/h|2/3x− ωk)Ai(|η/h|2/3a− ωk),

. h−3

(
h

t

)1/2

h1/3

( ∑
1≤k≤L

k−1/3Ai2(h−2/3|η|2/3x− ωk)

)1/2

×

( ∑
1≤k≤L

k−1/3Ai2(h−2/3|η|2/3a− ωk)

)1/2

,

. h−3

(
h

t

)1/2

h1/3L1/3.

We only have to prove (2.1.2) for t > h. Let ε ∈]0, 1/3[ and L = h−ε. If t ≤ hε, then
L ≤ 1

t
, hence

‖Ga,<L(t, x, y, z)‖L∞ ≤ Ch−3

(
h

t

)5/6

.

We are reduced to the case t > hε ≥ h1/3. Then we apply the stationary phase for
η-integration of the form∫

e
i
h

ΦkAi(h−2/3|η|2/3x− ωk)Ai(h−2/3|η|2/3a− ωk)dη,
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with the phase function

Φk(η) = η(y + t
√

1− z̃2(1 + γ)1/2).

To deal with this integral, we rewrite Φk = hλΨk where λ = tωkh
−1/3 is a large parameter.

We have |∂2
ηΨk| ≥ c > 0. To apply the stationary phase, we need to check that one has

for some ν > 0 one has

|∂jηAi(h−2/3|η|2/3x− ωk)| ≤ Cjλ
j(1/2−ν).

Since one has supb≥0 |blAi(l)(b − ωk) ≤ Clω
3l/2
k , it is sufficient to check that there exists

ε > 0 such that for t > hε and k ≤ h−ε,

ω
3/2
k ≤ (tωkh

−1/3)(1/2−ν)

This holds if ε < 1/7. Therefore the estimate for ε < 1/7 and t > hε is

‖1x≤aGa,<L(t, x, y, z)‖L∞ ≤ Ch−3

(
h

t

)1/2

[h1/3
∑

1≤k≤h−ε
k−1/3λ−1/2],

≤ Ch−3

(
h

t

)1/2

[h1/3
∑

1≤k≤h−ε
k−1/3(tωkh

−1/3)−1/2],

≤ Ch−3

(
h

t

)1/2
[(

h

t

)1/2

h−ε/3

]
,

≤ Ch−3

(
h

t

)1/2(
h

t

)1/3

.

We now deal with large values of k, L ≤ k ≤ ε/h with L ≥ Dmax{h−ε, 1/t}, D > 0
large constant. We are left to prove (2.1.2) holds true for Ga,>L, defined by the sum over

L ≤ k ≤ ε
h
. For k > Dh−ε and 0 ≤ x ≤ a ≤ h

2
3

(1−ε), we have

ωk − |η|2/3h−2/3x > ωk/2.

Therefore we can use the asymptotic expansion of the Airy function (see Appendix A)

Ai(ϑ) =
∑
±

ω±e∓
2
3
i(−ϑ)3/2(−ϑ)−1/4Ψ±(−ϑ) for − ϑ > 1,where ω± = e±iπ/4

and where Ψ± are given in the Appendix. By the definition of ek, we have
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ek(x, η/h) = fk
|η|1/3h−1/3

k1/6
Ai(h−2/3|η|2/3x− ωk),

= fk
|η|1/3h−1/3

k1/6

∑
±

ω±e∓
2
3
i(ωk−|η|2/3h−2/3x)3/2 Ψ±(ωk − |η|2/3h−2/3x)

(ωk − |η|2/3h−2/3x)1/4
.

We can rewrite Ga,>L as follows:

Ga,>L(t, x, y, z) =
∑

L≤k≤ ε
h

1

4π2h2

(
h

t

)1/2∑
±,±

∫
e
i
h

Φ±,±k σ±,±k dη, (2.1.4)

with the phase functions are defined by

Φ±,±k (t, x, y, z, a; η) = yη + |η|t
√

1− z̃2(1 + γ)1/2 ± 2

3
|η|(γ − x)3/2 ± 2

3
|η|(γ − a)3/2,

and the symbols are given by

σ±,±k (x, a, h; η) = h−1/3|η|1/3χ̃0χ1(γη2)(1− χ1)(εγh−2/3|η|2/3)
f 2
k

k1/3
ω±ω±

× (γ − x)−1/4(γ − a)−1/4Ψ±(|η|2/3h−2/3(γ − x))Ψ±(|η|2/3h−2/3(γ − a)).

We have 3η∂η = −2γ∂γ and for 0 ≤ x ≤ a ≤ 2γ,

|(γ∂γ)j((γ − x)−1/4)| ≤ Cjγ
−1/4 ≤ C ′j(hk)−1/6;

moreover, Ψ± are classical symbols of order 0 at infinity which is true in this case since
we have

|η2/3h−2/3(γ − x)| ≥ ωk/2 ≥ Ch−2ε/3,

since k ≥ L ≥ h−ε. Hence we obtain that for all j, there exists Cj such that

|∂jησ
±,±
k (x, a, h; η)| ≤ Cj(hk)−2/3,

since in the symbols σ±,±k there is a factor (hk)−1/3 and we apply η derivatives to the
product (γ − x)−1/4(γ − a)−1/4 to get another factor (hk)−1/3.

Now we study the oscillatory integral of the form∫
e
i
h

Φ±,±k σ±,±k dη.

To get the estimates for this integral, we set Φ±,±k = hλψ±,±k , where λ = tωkh
−1/3. It

defines a new large parameter since λ ≥ c > 0 as ωk ' k2/3, k ≥ 1/t, and t ≥ h. The
following result gives an estimate of these oscillatory integrals.
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Proposition 2.1.3. Let ε ∈]0, 1/7[. For small ε, there exists a constant C independent

of a ∈ (0, h
2
3

(1−ε)], t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R and k ∈ [L, ε
h
] such that the following

holds: ∣∣∣∣∫ eiλψ
±,±
k σ±,±k dη

∣∣∣∣ ≤ C(hk)−2/3λ−1/3.

Proof of Proposition 2.1.3. Since (hk)2/3σ±,±k are classical symbols of degree 0 compactly
supported in η, we apply the stationary phase method to an integral of the form

J1 =

∫
eiλψ

±,±
k (hk)2/3σ±,±k dη.

We have to prove that the following inequality holds uniformly with respect to the pa-
rameters:

|J1| ≤ Cλ−1/3.

Let us recall that

hλψ±,±k (t, x, y, z; η) = yη + |η|t
√

1− z̃2(1 + γ)1/2 ± 2

3
|η|(γ − x)3/2 ± 2

3
|η|(γ − a)3/2.

We compute

hλ∂ηψ
±,±
k = y + t

√
1− z̃2

1 + 2
3
γ

√
1 + γ

± 2

3
x(γ − x)1/2 ± 2

3
a(γ − a)1/2,

and we need to consider four cases. Let δ = x
a
∈ [0, 1], α = a

ωkh2/3
∈ [0, α0]. Indeed, since

ωk ' k2/3, k ≥ Dh−ε and a ≤ h
2
3

(1−ε), we have α = ak−2/3h−2/3 ≤ D−2/3ah−
2
3

(1−ε) ≤
D−2/3 := α0. Let ρ = |η|−2/3, V = y+t

√
1−z̃2

tωkh2/3
and define the function F (γ) by

1 + 2
3
γ

√
1 + γ

= 1 + γF (γ), F (γ) =
1

6
+

γ

24
+O(γ2).

With these notations we get:

∂ηψ
±,±
k = V +

√
1− z̃2ρF (h2/3ωkρ) +

2

3
µ
(
±δ(ρ− δα)1/2 ± (ρ− α)1/2

)
,

where µ = ah−1/3

tω
1/2
k

; it satisfies 0 ≤ µ ≤ h
1
3 (1−ε)

t
min{1, h−ε/3t1/3} and thus µ may be small

or arbitrary large. In fact, if t ≥ hε, µ ≤ h
1
3

(1−ε)t−1 ≤ h1/3−4ε/3, which is small if ε ≤ 1/4.
If t ≤ hε, we have µ ≤ h1/3−2ε/3t−2/3 which could be large when t ≤ h1/2−ε.
First, we consider the case where µ is bounded. We now study the critical points. We
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take ρ = |η|−2/3 as variable, we get

∂ρ∂ηψ
±,±
k =

√
1− z̃2(F (γ) + γF ′(γ)) +

µ

3

(
± δ(ρ− δα)−1/2 ± (ρ− α)−1/2

)
,

∂2
ρ∂ηψ

±,±
k =

√
1− z̃2h2/3ωk(2F

′(γ) + γF ′′(γ))− µ

6

(
± δ(ρ− δα)−3/2 ± (ρ− α)−3/2

)
.

For ε small enough, there exists c > 0 independent of k ≤ ε
h

such that

|∂ρ∂ηψ±,±k |+ |∂2
ρ∂ηψ

±,±
k | ≥ c. (2.1.5)

Indeed, we observe that (ρ − α)−1/2 ≥ δ(ρ − δα)−1/2 and F (γ) + γF ′(γ) ' 1
6
. Thus we

get |∂ρ∂ηψ±,+k | ≥ c1 > 0. Other cases, ∂ρ∂ηψ
±,−
k could vanish and when this happens we

have
|∂ρ∂ηψ±,−k | ≤ 1/100 =⇒ µ

3
(ρ− α)−1/2 ≥ 0.05.

Then we have |∂2
ρ∂ηψ

−,−
k | ≥ c2 > 0. Moreover, for any function f , we have

f(ρ− α)− δf(ρ− δα) = (1− δ)f(ρ− δα)−
∫ α(1−δ)

0

f ′(ρ− δα− t)dt. (2.1.6)

Taking f(t) = t−1/2, we get that

|∂ρ∂ηψ+,−
k | ≤ 1/100 =⇒ µ(1− δ) ≥ c > 0.

Applying (2.1.6) with f(t) = t−3/2, we obtain |∂2
ρ∂ηψ

+,−
k | ≥ c/2 > 0. As a consequence

of (2.1.5) together with Lemma 2.20 in [29][see Appendix], we get that the proposition
holds true for µ bounded.

It remains to study the case where µ is large. For (+,+) or (−,+) case, we study
again the critical points and we take Λ = λµ as a large parameter. Since δ(ρ− δα)−1/2 +
(ρ − α)−1/2 ≥ c > 0, we have |∂ρ∂ηψ±,+k | ≥ c > 0. Hence |J1| ≤ C(λµ)−1/2. For (+,−)
and (−,−) cases, we can use (2.1.6). We distinguish between two cases: if µ(1 − δ)
is bounded, the computation of the derivatives of the phase functions ψ±,−k yields the
inequality (2.1.5) and the conclusion follows the Lemma 2.20 [29]. If µ(1− δ) is large, we
take Λ′ = λµ(1− δ) as a large parameter in J1 . Since by (2.1.6), we have

|(ρ− α)−1/2 − δ(ρ− δα)−1/2| ≥ c(1− δ)

with c > 0. We get that |∂ρ∂ηψ±,−k | ≥ c > 0 and hence |J1| ≤ C(λµ(1− δ))−1/2.

To summarize, the Proposition 2.1.3 yields the dispersive estimates for the large values
of k, L ≤ k ≤ ε/h as follows:
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‖1x≤aGa,>L(t, x, y, z)‖L∞ ≤ Ch−2

(
h

t

)1/2∑
k≤ ε

h

(hk)−2/3λ−1/3,

≤ Ch−2

(
h

t

)1/2∑
k≤ ε

h

(hk)−2/3(tωkh
−1/3)−1/3,

≤ Ch−2

(
h

t

)1/2∑
k≤ ε

h

(hk)−2/3t−1/3k−2/9h1/9,

≤ Ch−3

(
h

t

)1/2(
h

t

)1/3

h1/9

∑
k≤ ε

h

k−8/9

 ,

≤ Ch−3

(
h

t

)5/6

,

where we used λ = tωkh
−1/3 in the second line, and ωk ' k2/3 in the third line.

This concludes the proof of Proposition 2.1.1.

2.1.2 Airy-Poisson Summation Formula.

Let A±(z) = e∓iπ/3Ai(e∓iπ/3z) , we have Ai(−z) = A+(z) + A−(z). For ω ∈ R, set

L(ω) = π + i log

(
A−(ω)

A+(ω)

)
.

As in Lemma 2.7 in [27], the function L is analytic, strictly increasing and satisfies

L(0) = π/3, lim
ω→−∞

L(ω) = 0, L(ω) =
4

3
ω3/2 −B(ω3/2), for ω ≥ 1,

with
B(ω) '

∑
j≥1

bjω
−j, bj ∈ R, b1 6= 1,

and for all k ≥ 1, the following holds

L(ωk) = 2πk ⇔ Ai(−ωk) = 0, L′(ωk) = 2π

∫ ∞
0

Ai2(x− ωk)dx.

Recall that fk are constants such that ‖ek(., η)‖L2(R+) = 1. This yields∫ ∞
0

Ai2(x− ωk)dx =
k1/3

f 2
k

=
L′(ωk)

2π
.
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The next lemma, whose proof is in the Appendix, is the key tool to transform the sum
over the eigenmodes k to the sum over N .

Lemma 2.1.4 (Airy-Poisson Summation Formula). The following equality holds true in
D′(Rω), ∑

N∈Z

e−iNL(ω) = 2π
∑
k∈N∗

1

L′(ωk)
δω=ωk .

Now we rewrite (1.4.4) and we replace the factor
f2k
k1/3

by 2π
L′(ωk)

. We get

Ga,c0(t, x, y, z) =
1

(2π)2h8/3

∫
e
i
h

(yη+zζ)
∑
k≥1

|fk|2

k1/3
ei

t
h

(η2+ζ2+ωkh
2/3|η|4/3)1/2|η|2/3χ0(η2 + ζ2)

× ψ0(η)χ1(ωkh
2/3|η|4/3)(1− χ1)(εωk)Ai

(
h−2/3|η|2/3x− ωk

)
Ai
(
h−2/3|η|2/3a− ωk

)
dηdζ,

=
1

(2π)2h8/3

∫
e
i
h

(yη+zζ)
∑
k≥1

2π

L′(ωk)
ei

t
h

(η2+ζ2+ωkh
2/3|η|4/3)1/2 |η|2/3χ0(η2 + ζ2)

× ψ0(η)χ1(ωkh
2/3|η|4/3)(1− χ1)(εωk)Ai

(
h−2/3|η|2/3x− ωk

)
Ai
(
h−2/3|η|2/3a− ωk

)
dηdζ,

=
1

(2π)2h8/3

∫
e
i
h

(yη+zζ)2π
∑
k≥1

δω=ωk

L′(ωk)
ei

t
h

(η2+ζ2+ωh2/3|η|4/3)1/2 |η|2/3χ0(η2 + ζ2)

× ψ0(η)χ1(ωh2/3|η|4/3)(1− χ1)(εω)Ai
(
h−2/3|η|2/3x− ω

)
Ai
(
h−2/3|η|2/3a− ω

)
dωdηdζ.

Using Lemma 2.1.4, Ga,c0 becomes

Ga,c0(t, x, y, z) =
1

(2π)2h8/3

∫
e
i
h

(yη+zζ)
∑
N∈Z

e−iNL(ω)ei
t
h

(η2+ζ2+ωh2/3|η|4/3)1/2|η|2/3χ0(ζ2 + η2)

× ψ0(η)χ1(ωh2/3|η|4/3)(1− χ1)(εω)Ai
(
h−2/3|η|2/3x− ω

)
Ai
(
h−2/3|η|2/3a− ω

)
dωdηdζ.

=
∑
N∈Z

(−1)N

(2π)2h8/3

∫
e
i
h

(yη+zζ)ei
t
h

(η2+ζ2+ωh2/3|η|4/3)1/2|η|2/3χ0(ζ2 + η2)ψ0(η)χ1(ωh2/3|η|4/3)

× (1− χ1)(εω)

(
A−(ω)

A+(ω)

)N
Ai
(
h−2/3|η|2/3x− ω

)
Ai
(
h−2/3|η|2/3a− ω

)
dωdηdζ,

=
∑
N∈Z

(−i)N

(2π)4h10/3

∫
e
i
h

(
yη+zζ+t(η2+ζ2+ωh2/3|η|4/3)1/2+ s3

3
+s(|η|2/3x−ωh2/3)+σ3

3
+σ(|η|2/3a−ωh2/3)

)

× |η|2/3χ0(ζ2 + η2)ψ0(η)χ1(ωh2/3|η|4/3)(1− χ1)(εω)e−
4
3
iNω3/2+iNB(ω3/2)dsdσdωdηdζ,

(2.1.7)
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where we used the definition of the Airy function [see Appendix A]

Ai(−z̃) =
1

2π

∫
R
ei(s

3/3−sz̃)ds, and

(
A−(ω)

A+(ω)

)N
= iNe−

4
3
iNω3/2

eiNB(ω3/2),

where for z̃ ∈ R+, we recall that B(z̃) ∈ R and B(z̃) ∼
∑
j≥1

bj z̃
−j for z̃ → +∞ and b1 6= 0.

From the second to the third line, we made a change of variables s = Sh−1/3, σ = Σh−1/3

in the Airy functions; but for simplicity we keep the notations s, σ.

Therefore, (2.1.7) is a local parametrix that reads as a sum over N . Notice that our
parametrix coincides with the constructed sum over reflected waves in [29] since each
term has essentially the same phase. In the sequel, we refer N as multiple reflections.

2.1.3 Dispersive Estimates for a ≥ h
2
3−ε

′
, ε′ ∈]0, ε[.

In this section, we establish the local in time dispersive estimates for the parametrix
in the form (2.1.7) as a sum over multiple reflections on the boundary in the regime

a ≥ h
2
3
−ε′ , for ε′ ∈]0, ε[. Recall that our local parametrix under the form (2.1.7) is

constructed from (1.4.4) together with the Lemma 2.1.4. It is a sum of oscillatory integrals
with phase functions containing an Airy type terms with degenerate critical points.

y

x

a

N = 2 Swallowtails regime

To deal with (2.1.7), we introduce a change of variables aω̃ = h2/3ω|η|−2/3, x = aX,
ζ = |η|ζ̃ , s = a1/2|η|1/3s̃, σ = a1/2|η|1/3σ̃. Then we can rewrite Ga,c0 as follows:

Ga,c0(t, x, y, z) =
∑
N∈Z

Ga,N , (2.1.8)
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with for each N ∈ Z,

Ga,N(t, x, y,z) =
(−i)Na2

(2π)4h4

∫
e
i
h

ΦN,a,h |η|3χ0(η2(1 + |ζ̃|2))ψ0(η)χ1(aω̃η2)

× (1− χ1)(εah−2/3|η|2/3ω̃)ds̃dσ̃dω̃dζ̃dη, (2.1.9)

with the phase function ΦN,a,h = ΦN,a,h(t, x, y, z; s̃, σ̃, ω̃, ζ̃, η),

ΦN,a,h = yη + |η|zζ̃ + |η|t(1 + ζ̃2 + aω̃)1/2 + a3/2|η|
(
s̃3

3
+ s̃(X − ω̃) +

σ̃3

3
+ σ̃(1− ω̃)

− 4

3
Nω̃3/2 +

h

a3/2|η|
NB

(
ω̃3/2a3/2|η|/h

))
.

The main result of this section is Theorem 2.1.5. It gives the estimate of the sum
over N of the oscillatory integrals of the form (2.1.9) by using the stationary phase type
estimates with degenerate critical points.

Theorem 2.1.5. Let α < 2/3. There exists C such that for all h ∈]0, h0], all a ∈ [hα, a0],
all X ∈ [0, 1], all T ∈]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:∣∣∣∣∣∣

∑
0≤N≤C0a−1/2

Ga,N(T,X, Y, z;h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2
((

h

t

)1/2

+ a1/8h1/4

)
. (2.1.10)

Notice that the first part on the right hand side of (2.1.10) corresponds to the free
space estimates in R3, while the contribution in the second part appears as a consequence
of the presence of caustics ( cusps and swallowtails type).

First of all, we observe that when N = 0, Ga,0 satisfies PGa,0 = 0 and the associated
data at time t = 0 is a localized Dirac at x = a, y = 0, z = 0. Therefore, Ga,0 satisfies the
classical dispersive estimate for the wave equation in three-dimensional space; that is,

|Ga,0(T,X, Y, z, h)| ≤ Ch−3

(
h

t

)
.

Thus it remains to prove the theorem for the sum over 1 ≤ N ≤ C0a
−1/2.

Lemma 2.1.6. One has

JN,a,h =

∫
e
i
h
|η|(zζ̃+t(1+ζ̃2+aω̃)1/2)χ0(η2(1 + |ζ̃|2))dζ̃ =

(
h

t

)1/2

e
i
h
|η|
√
t2−z2(1+aω̃)1/2χ̃0,

where χ̃0 is a classical symbol of order 0 with small parameter h/t.

Proof. We apply the classical stationary phase method for JN,a,h. First we make a change
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of variable z = tz̃. Let the phase function φ be

φ(ζ̃; z̃, ω̃, a) = z̃ζ̃ + (1 + ζ̃2 + aω̃)1/2.

Differentiating with respect to ζ̃, we get

∂ζ̃φ = z̃ +
ζ̃

(1 + ζ̃2 + aω̃)1/2
.

On the support of χ0, we have
∣∣∣ ζ̃

(1+ζ̃2+aω̃)1/2

∣∣∣ ≤ 1−2δ1 for some δ1 > 0 small. If |z̃| ≥ 1−δ1,

then the contribution of ζ̃-integration is OC∞((h/t)∞) by integration by parts. Thus we
may assume that |z̃| < 1− δ1. In this case, the phase φ admits a unique critical point on

the support of χ0. It is given by ζ̃c = − z̃(1+aω̃)1/2√
1−z̃2 and this critical point is nondegenerate

since

∂2
ζ̃
φ =

1 + aω̃

(1 + ζ̃2 + aω̃)3/2
> 0.

Then by the stationary phase method ( as |z̃| < 1− δ1),

JN,a,h =

(
h

t

)1/2

ei|η|
t
h

√
1−z̃2(1+aω̃)1/2χ̃0.

By Lemma 2.1.6,(2.1.8) becomes:

Ga,c0(t, x, y, z) =
∑
N∈Z

(−i)Na2

(2π)6h4

(
h

t

)1/2 ∫
e
i
h

Φ̃N,a,h |η|3χ̃0ψ0χ1(1− χ1)ds̃dσ̃dω̃dη, (2.1.11)

where Φ̃N,a,h = ΦN,a,h(., ζ̃c, .); that is,

Φ̃N,a,h = yη + |η|t
√

1− z̃2(1 + aω̃)1/2 + a3/2|η|
( s̃3

3
+ s̃(X − ω̃) +

σ̃3

3
+ σ̃(1− ω̃)

− 4

3
Nω̃3/2 +

h

a3/2|η|
NB

(
ω̃3/2a3/2|η|/h

))
. (2.1.12)

First we study geometrically the set of critical points CN,a,h of the associated Lagrangian
manifold ΛN,a,h for the phase function Φ̃N,a,h. The set of critical points is defined by

Ca,N,h = {(t, x, y, s̃, σ̃, ω̃, η)|∂s̃Φ̃N,a,h = ∂σ̃Φ̃N,a,h = ∂ω̃Φ̃N,a,h = ∂ηΦ̃N,a,h = 0}.
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Hence Ca,N,h is defined by a system of equations

x

a
= ω̃ − s̃2,

ω̃ = 1 + σ̃2,

a−1/2t =
2(1 + aω̃)1/2

√
1− z̃2

(
s̃+ σ̃ + 2Nω̃1/2

(
1− 3

4
B′
(
ω̃3/2λ

)))
,

a−3/2y = −a−3/2t
√

1− z̃2(1 + aω̃)1/2 − s̃3

3
− s̃(x

a
− ω̃)− σ̃3

3
− σ̃(1− ω̃)

+Nω̃3/2

(
4

3
−B′

(
ω̃3/2λ

))
.

Let Λa,N,h ⊂ T ∗R3 be the image of Ca,N,h by the map

(t, x, y, s̃, σ̃, ω̃, η) 7−→ (x, t, y, ξ = ∂xΦ̃N,a,h, τ = ∂tΦ̃N,a,h, η = ∂yΦ̃N,a,h).

Then Λa,N,h ⊂ T ∗R3 is a Lagrangian submanifold parametrized by (s̃, σ̃, η)

x

a
= ω̃ − s̃2,

ω̃ = 1 + σ̃2,

a−1/2t =
2(1 + aω̃)1/2

√
1− z̃2

(
s̃+ σ̃ + 2Nω̃1/2

(
1− 3

4
B′
(
ω̃3/2λ

)))
,

a−3/2y = −a−3/2t
√

1− z̃2(1 + aω̃)1/2 − s̃3

3
− s̃(x

a
− ω̃)− σ̃3

3
− σ̃(1− ω̃)

+Nω̃3/2

(
4

3
−B′

(
ω̃3/2λ

))
,

ξ = ηs̃a1/2,

τ = η
√

1− z̃2(1 + a+ aσ̃2)1/2,

η = η.

Now we introduce t = a1/2T, y+ t
√

1− z̃2 = a3/2Y, (1+aω̃)1/2−1 = aγa(ω̃) = aω̃
1+(1+aω̃)1/2

,

and λ = a3/2

h
|η|. We get (2.1.12) as follows:

Φ̃N,a,h = a3/2|η|

{
Y + T

√
1− z̃2γa(ω̃) +

s̃3

3
+ s̃(X − ω̃) +

σ̃3

3
+ σ̃(1− ω̃)

− 4

3
Nω̃3/2 +

h

a3/2|η|
NB

(
ω̃3/2a3/2|η|/h

)}
. (2.1.13)
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Then Ca,N,h is now defined by a system of equations

X = ω̃ − s̃2,

ω̃ = 1 + σ̃2,

T =
2(1 + aω̃)1/2

√
1− z̃2

(
s̃+ σ̃ + 2Nω̃1/2

(
1− 3

4
B′
(
ω̃3/2λ

)))
,

Y = −T
√

1− z̃2γa(ω̃)− s̃3

3
− s̃(X − ω̃)− σ̃3

3
− σ̃(1− ω̃) +Nω̃3/2

(
4

3
−B′

(
ω̃3/2λ

))
.

We may parametrize Ca,N,h by (s̃, σ̃) near origin:

X = 1 + σ̃2 − s̃2,

ω̃ = 1 + σ̃2,

T =
2√

1− z̃2
(1 + a+ aσ̃2)1/2

(
s̃+ σ̃ + 2N(1 + σ̃2)1/2

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
)))

,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

4

3
NH2(a, σ̃)

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
))

,

with

H1(a, σ̃) = −(1 + σ̃2)
(1 + a+ aσ̃2)1/2

1 + (1 + a+ aσ̃2)1/2
,

H2(a, σ̃) = (1 + σ̃2)3/2 −3− 4a− 4aσ̃2

2 + a+ aσ̃2 + 3(1 + a+ aσ̃2)1/2
.

The Lagrangian submanifold Λa,N,h ⊂ T ∗R3 is parametrized by (s̃, σ̃, η)

X = 1 + σ̃2 − s̃2,

T =
2√

1− z̃2
(1 + a+ aσ̃2)1/2

(
s̃+ σ̃ + 2N(1 + σ̃2)1/2

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
)))

,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

4

3
NH2(a, σ̃)

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
))

,

ξ = ηs̃a1/2,

τ = η
√

1− z̃2(1 + a+ aσ̃2)1/2,

η = η.



28

On Ca,N,h, we have ω̃ = 1 + σ̃2, thus the projection of Λa,N,h onto R3 is

X = 1 + σ̃2 − s̃2,

T =
2√

1− z̃2
(1 + a+ aσ̃2)1/2

(
s̃+ σ̃ + 2N(1 + σ̃2)1/2

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
)))

,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

4

3
NH2(a, σ̃)

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
))

.

As in [29], we rewrite the system (2.1.14) in the following form

X = 1 + σ̃2 − s̃2, (2.1.14)

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

2

3
H2(a, σ̃)(1 + σ̃2)−1/2

(
T
√

1− z̃2

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)
,

and

2N

(
1− 3

4
B′
(
ω̃3/2λ

))
= (1 + σ̃2)−1/2

(
T
√

1− z̃2

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)
. (2.1.15)

Remark 2.1.7. Notice that from (2.1.15) in the range of T ∈]0, a−1/2], we can reduce
the sum over N ∈ Z of Ga,N in (2.1.8) to the sum over 1 ≤ N ≤ C0a

−1/2.

For a given a and (X, Y, T ) ∈ R3, (2.1.14) is a system of two equations for unknown
(s̃, σ̃) and (2.1.15) gives an equation for N . We are looking for a solutions of (2.1.14) in
the range

a ∈ [hα, a0], α < 2/3, a|σ̃|2 ≤ ε0, 0 < T ≤ a−1/2, X ∈ [0, 1] with a0, ε0 small.

Then for a given point (X, Y, T ) ∈ [−2, 2] × R × [0, a−1/2], let us denote by N (X, Y, T )
the set of integers N ≥ 1 such that (2.1.14) admits at least one real solution (s̃, σ̃, λ) with
a|σ̃|2 ≤ ε0 and λ ≥ λ0.

We observe that (2.1.15) implies forN0 > 0 independent of (X, Y, T ) thatN (X, Y, T ) ⊂
[1, T/2 + N0]. For all (X, Y, T ) ∈ [0, 1] × R × [0, a−1/2], there exists a constant C0 such
that |N (X, Y, T )| ≤ C0. Set

N1(X, Y, T ) =
⋃

|Y ′−Y |+|T ′−T |≤1,|X′−X|≤1

N (X ′, Y ′, T ′).

In fact from (2.1.15) we have if N,N ′ ∈ N1,

2|N −N ′| ≤ C0(1 + Tλ−2ω̃−3).
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Hence we deduce a better estimate as follows [see Appendix E]:

|N1(X, Y, T )| ≤ C0(1 + Tλ−2ω̃−3).

We notice that for ω̃ ≤ 3/4, we get rapid decay in λ by integration by part in σ̃.
In particular, we may replace 1 − χ1 by 1 in (2.1.11). Moreover, the swallowtails will
appear when s̃ = σ̃ = 0 i.e for ω̃ = 1. For this reason, we introduce a cutoff function
χ2(ω̃) ∈ C∞0 (]1/2, 3/2[), 0 ≤ χ2 ≤ 1, χ2 = 1 on ]3

4
, 5

4
[ in the integral (2.1.11) and we

denote by Ga,N,2 the corresponding integral. This Ga,N,2 corresponds to the regime of
swallowtails. We write Ga,N = Ga,N,1 + Ga,N,2. Ga,N,1 is defined by introducing χ3 in
(2.1.11). We will have ω̃ ≥ 5/4 on the support of χ3.
To summarize, we have Ga,c0 as follows:

Ga,c0 =
∑

1≤N≤C0a−1/2

Ga,N =
∑

1≤N≤C0a−1/2

(Ga,N,1 +Ga,N,2) ,

where

Ga,N,1 =
(−i)Na2

(2π)6h4

(
h

t

)1/2 ∫
e
i
h

Φ̃N,a,h |η|3χ̃0ψ0χ1χ3(ω̃)ds̃dσ̃dω̃dη,

Ga,N,2 =
(−i)Na2

(2π)6h4

(
h

t

)1/2 ∫
e
i
h

Φ̃N,a,h |η|3χ̃0ψ0χ1χ2(ω̃)ds̃dσ̃dω̃dη.

In what follows, we get the estimates for these oscillatory integrals based on the (degen-
erate) stationary phase type result which consists in the precise study of where the phase
Φ̃N,a,h may be stationary.

The Analysis of Ga,N,1

Let us recall that the Ga,N,1 is the oscillatory integral which corresponds to the regime
where there are no swallowtails. Our main results of this subsection are Proposition 2.1.8
and Proposition 2.1.9.

Proposition 2.1.8. There exists C such that for all h ∈]0, h0], all a ∈ [hα, a0], all
X ∈ [0, 1], all T ∈]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:∣∣∣∣∣∣

∑
2≤N≤C0a−1/2

Ga,N,1(T,X, Y, z;h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

h1/3.

Proof. First of all, we apply the stationary phase method to (s̃, σ̃)-integrations since on
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the support of χ3 we have ω̃ > 1. Let I be defined by

I =

∫
e
iλ
(
s̃3

3
−s̃(ω̃−X)+ σ̃3

3
−σ̃(ω̃−1)

)
ds̃dσ̃

= (ω̃ −X)1/2(ω̃ − 1)1/2

∫
e
iλ(ω̃−X)3/2

(
s̃3

3
−s̃

)
e
iλ(ω̃−1)3/2

(
σ̃3

3
−σ̃

)
ds̃dσ̃,

where in the second line we made a change of variables s̃ = (ω̃ −X)1/2s̄, σ̃ = (ω̃ − 1)1/2σ̄
but for simplicity, we keep the notations s̃, σ̃. Thus by the stationary phase near the
critical points s̃ = ±1, σ̃ = ±1 and integration by parts in s̃, σ̃ elsewhere we get

I = λ−1(ω̃ −X)−1/4(ω̃ − 1)−1/4eiλ(±
2
3

(ω̃−X)3/2± 2
3

(ω̃−1)3/2)b±c± +O(λ−∞),

with b±, c± are classical symbols of degree 0 in large parameter λ(ω̃−X)3/2 and λ(ω̃−1)3/2

respectively. Notice that I is a part of the Ga,N,1 corresponding to the integrations in
s̃, σ̃. Therefore, we obtain

Ga,N,1(T,X, Y, z;h) =
(−i)Na2λ−1

(2π)6h4

(
h

t

)1/2 ∫
ei
a3/2

h
Y η|η|3G̃a,N,1dη,

G̃a,N,1(T,X, Y, z;h) =
∑
ε1,ε2

∫
eiλΦ̃N,ε1,ε2Θε1,ε2dω̃ +O(λ−∞),

where εj = ±, Θε1,ε2(ω̃, a, λ) = χ̃0ψ0χ1χ3(ω̃)(ω̃ −X)−1/4(ω̃ − 1)−1/4bε1cε2 which satisfy∣∣ω̃l∂lω̃Θε1,ε2

∣∣ ≤ Clω̃
−1/2, and the phase functions are given by

Φ̃N,ε1,ε2(T,X, z, ω̃; a, λ) = T
√

1− z̃2γa(ω̃) +
2

3
ε1(ω̃ −X)3/2 +

2

3
ε2(ω̃ − 1)3/2

− 4

3
Nω̃3/2 +

N

λ
B(ω̃3/2λ). (2.1.16)

Let us denote

Ga,N,1,ε1,ε2(T,X, Y, z;h) =
(−i)Na2λ−1

(2π)6h4

(
h

t

)1/2 ∫
ei
a3/2

h
Y η|η|3G̃a,N,1,ε1,ε2dη, (2.1.17)

G̃a,N,1,ε1,ε2(T,X, z;λ) =

∫
eiλΦ̃N,ε1,ε2Θε1,ε2(ω̃, a, λ)dω̃.

We are reduced to proving the following inequality:∣∣∣∣∣∣
∑

2≤N≤C0a−1/2

Ga,N,1,ε1,ε2(T,X, Y, z;h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

h1/3, (2.1.18)

with a constant C independent of h ∈]0, h0], a ∈ [h2/3, a0], X ∈ [0, 1], T ∈ [0, a−1/2]. For
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convenience, let Ω = ω̃3/2 be a new variable of integration and we get

G̃a,N,1,ε1,ε2(T,X, z;λ) =

∫
eiλΦ̃N,ε1,ε2 Θ̃ε1,ε2(Ω, a, λ)dΩ; (2.1.19)

Θ̃ε1,ε2(Ω, a, λ) are smooth functions with compact support in Ω. Since dω̃ = 2
3
Ω−1/3dΩ,

we get
∣∣∣Ωl∂lΩΘ̃ε1,ε2

∣∣∣ ≤ ClΩ
−2/3 with Cl independent of a, λ and the phases (2.1.16) become

Φ̃N,ε1,ε2(T,X, z, ω̃; a, λ) = T
√

1− z̃2γa(Ω) +
2

3
ε1(Ω2/3 −X)3/2 +

2

3
ε2(Ω2/3 − 1)3/2

− 4

3
NΩ +

N

λ
B(Ωλ).

We now study the critical points. We have

∂ΩΦ̃N,ε1,ε2 =
2

3

(
Ha,ε1,ε2(T,X, z; Ω)− 2N

(
1− 3

4
B′(Ωλ)

))
, (2.1.20)

Ha,ε1,ε2 = Ω−1/3

(
T

2

√
1− z̃2(1 + aΩ2/3)−1/2 + ε1(Ω2/3 −X)1/2 + ε2(Ω2/3 − 1)1/2

)
,

∂ΩHa,ε1,ε2 =
1

3
Ω−4/3

(
− T

2

√
1− z̃2(1 + aΩ2/3)−3/2(1 + 2aΩ2/3) + ε1X(Ω2/3 −X)−1/2

+ ε2(Ω2/3 − 1)−1/2
)
.

We will first prove that (2.1.18) holds true in the case (ε1, ε2) = (+,+). We have that the
equation ∂ΩHa,+,+(Ω) = 0 admits a unique solution Ωq = Ω+

q (T,X, z, a) > 1 such that

lim
T→∞

Ω+
q (T,X, z, a) = 1 uniformly in X, z, a. (2.1.21)

0 >
9

2
Ω5/3
q ∂2

ΩHa,+,+(Ωq) = −aT
2

√
1− z̃2

(
1 + aΩ2/3

q

)−5/2(1

2
− aΩ2/3

q

)
− 1

2

(
Ω2/3
q − 1

)−3/2 − 1

2
X
(
Ω2/3
q −X

)−3/2
.

Therefore the function Ha,+,+(Ω) is strictly increasing on [1,Ωq[ and strictly decreasing
on ]Ωq,∞[. Observe that

Ha,+,+(1) =
T

2

√
1− z̃2(1 + a)−1/2 + (1−X)1/2, lim

Ω→∞
Ha,+,+ = 2. (2.1.22)

For all k, we have

∀Ω ≥ 1, |∂kΩ(NB′(Ωλ))| ≤ CkNλ
−2Ω−(k+2). (2.1.23)

Let T0 � 1. First suppose that 0 ≤ T ≤ T0. Since Ha,+,+(Ω) ≤ C(1 + T ) and for
N ≥ N(T0) = C(1 + T0), we get |∂ΩΦ̃N,+,+| ≥ c0N with c0 > 0. Then by integration by
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parts, we get |G̃a,N,1,+,+| ∈ O(N−∞λ−∞) and this implies

sup
T≤T0,X∈[0,1],Y ∈R,z∈R

∣∣∣∣∣∣
∑

N(T0)≤N≤C0a−1/2

Ga,N,1,+,+(T,X, Y, z)

∣∣∣∣∣∣ ∈ O(h∞).

Next for 0 ≤ T ≤ T0 and 2 ≤ N ≤ N(T0), we may estimate the sum by the sup of each
term. In this case, we see that Φ̃N,+,+ has at most a critical point of order 2 near Ω = Ωq

and
|∂ΩΦ̃N,+,+|+ |∂2

ΩΦ̃N,+,+|+ |∂3
ΩΦ̃N,+,+| ≥ c > 0.

Moreover if N ≥ 2, we have a positive lower bound for |∂ΩΦ̃N,+,+(Ω)| for large values of
Ω; thus the contribution of G̃a,N,1,+,+ is OC∞(λ−∞) for large values of Ω. Near the critical
point of order 2 Ω = Ωq, the estimate of G̃a,N,1,+,+ is given by the Lemma 2.20 [29] which
yields |G̃a,N,1,+,+(T,X, z;λ)| ≤ Cλ−1/3 with C independent of T ∈ [0, T0], X ∈ [0, 1].
Hence from (2.1.17), we get

sup
X∈[0,1],Y ∈R,z∈R

∣∣∣∣ ∑
2≤N≤N(T0)

Ga,N,1,+,+(T,X, Y, z, h)

∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1a2λ−1λ−1/3],

≤ Ch−3

(
h

t

)1/2

h1/3.

Then we prove that (2.1.18) holds true for T0 ≤ T ≤ a−1/2. As before, we may assume
N ≤ C1T with C1 large, the contribution of the sum on N such that C1T ≤ N ≤ C0a

−1/2

being negligible. From (2.1.21), we may choose T0 large enough so that Ω+
q (T,X, z, a) <

Ω0 with Ω0 > 1 for T ≥ T0 and we may assume with a constant c > 0 that

|∂2
ΩΦ̃N,+,+(Ω)| ≥ cTΩ−4/3, ∀Ω ≥ Ω0,∀T ≥ T0,∀N ≤ C0a

−1/2.

Therefore, on the support of Θ̃+,+, the phase Φ̃N,+,+ admits at most one critical point
Ωc = Ωc(T,X, z,N, λ, a) and this critical point is nondegenerate. Since N ≥ 2, from the

first item of (2.1.20) we get Ω
1/3
c ≤ T and this implies Ω

1/3
c ' T/N . As a consequence, if

T/N is bounded then Ωc is bounded. By stationary phase method, we get

|G̃a,N,1,+,+(T,X, z;λ)| ≤ Cλ−1/2T−1/2 with C independent of N.

If T/N is large, then we perform the change of variable Ω = Ω̃(T/N)3 in (2.1.19); the
unique critical point Ω̃c remains in a fixed compact interval of ]0,∞[. We have

∂k
Ω̃

Θ̃+,+(Ω̃(T/N)3, a, λ) ≤ ck(N/T )2Ω̃−2/3−k.

Thus by the stationary phase method, we get

sup
2≤N≤C1T,X∈[0,1],z∈R

|G̃a,N,1,+,+(T,X, z;λ)| ≤ Cλ−1/2T−1/2.
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It remains to estimate the sum∣∣∣∣∣∣
∑

2≤N≤C0a−1/2

Ga,N,1,+,+(T,X, Y, z;h)

∣∣∣∣∣∣ .
Let GN(T,X, z, λ, a) = Φ̃N,+,+(T,X, z,Ωc(T,X, z,N, λ, a), λ, a). Then by the stationary
phase method at the critical point Ωc = Ωc(T,X, z,N, λ, a) in (2.1.19) we get

G̃a,N,1,+,+(T,X, z, h) = λ−1/2T−1/2eiλGN (T,X,z,λ,a)ψN(T,X, λ, a),

with ψN(T,X, λ, a) is a classical symbol of order 0 in λ. Hence with λ̃ = a3/2/h = λ/η ,
we have

Ga,N,1,+,+(T,X, Y, z;h) =
(−i)Na2λ−1

(2π)6h4

(
h

t

)1/2

λ−1/2T−1/2

∫
eiλ̃|η|(Y+GN (T,X,z,λ̃η,a))ψN |η|3dη.

(2.1.24)

It is an oscillatory integral with large parameter λ̃ and phase

LN(T,X, Y, z, ηλ̃) = |η|
(
Y +GN(T,X, z, λ̃η, a)

)
.

By construction, the equation

∂ηLN = Y +GN(T,X, z, λ, a) + λ∂λGN(T,X, z, λ, a) = 0

implies that (X, Y, T ) belongs to the projection of Λa,N,h on R3. As in the proof of
Proposition 2.14 [29], we see that the contribution of Ga,N,1,+,+ for the sum over N such
that N /∈ N1(X, Y, T ) is O(λ−∞). Thus it remains to estimate the sum∣∣∣∣∣∣

∑
N∈N1(X,Y,T )

Ga,N,1,+,+(T,X, Y, z, h)

∣∣∣∣∣∣ . (2.1.25)

We apply the stationary phase method for η-integral with the phase function LN . We
have

∂ηLN = Y +GN + λ∂λGN ,

with

λ∂λGN = λ∂λΦ̃N,+,+(T,X,Ωc, a, λ) =
N

λ

(
−B(λΩc) + λΩcB

′(λΩc)
)
.

Then we obtain

∂2
ηLN =

N

η
(λΩc)∂λ(λΩc)B

′′(λΩc).
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On the other hand, ∂λΩc satisfies

∂λΩc∂
2
ΩΦ̃N,+,+(Ωc) = −∂λ∂ΩΦ̃N,+,+(Ωc) = −NΩcB

′′(λΩc).

As we have ∂2
ΩΦ̃N,+,+(Ωc) ≥ cTΩ

−4/3
c , Ω

1/3
c ' T/N , and for ω large, we have B′′(ω) '

cω−3. We get
|∂λΩc| ≤ cT−1Ω4/3

c NΩc(λ
−3Ω−3

c ) ≤ cλ−3Ω−1
c .

This yields
|∂λ(λΩc)| = |λ∂λΩc + Ωc| ≥ cΩc(1− cλ−2Ω−2

c ) ≥ c′Ωc.

Hence we deduce that
|∂2
ηLN | ≥ CNλ−2Ω−1

c .

Therefore η-integration produces a factor q−1/2 with q = Nλ−1Ω−1
c . Let us recall that

|N1(X, Y, T )| ≤ C0(1 + Tλ−2Ω−2
c ).

We get the estimates of the sum in (2.1.25) by distinguishing between many cases which
depend on whether there are contributions from η-integration and |N1(X, Y, T )| as follows:

First case, if Ω
1/3
c ' T/N is bounded, then T ∼ N and

• if N ≤ λ, then there is no contribution from η-integration and we have |N1| ≤ C0.
Hence the estimate is∣∣∣∣∣ ∑

N∈N1

Ga,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1λ−1a2λ−1/2T−1/2],

≤ Ch−3

(
h

t

)1/2

a−1/4h1/2,

≤ Ch−3

(
h

t

)1/2

h1/3,

since a−1/4h1/2 ≤ h1/3 when a ≥ h2/3.

• if λ < N ≤ λ2, then there is a contribution q−1/2 factor from η-integration and we
also have |N1| ≤ C0. We get∣∣∣∣∣ ∑

N∈N1

Ga,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2],

≤ Ch−3

(
h

t

)1/2

[h−1a2λ−2],

≤ Ch−3

(
h

t

)1/2

h1/3.
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• if N > λ2, then there are contributions from both q−1/2 factor from η-integration
and |N1| ≤ C0Tλ

−2. Thus the estimate is

∣∣∣∣∣ ∑
N∈N1

Ga,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2 ∑
N∈N1

[h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2],

≤ Ch−3

(
h

t

)1/2

[h−1λ−1a2T−1|N1(X, Y, T )|],

≤ Ch−3

(
h

t

)1/2

[a−5/2h2],

≤ Ch−3

(
h

t

)1/2

h1/3.

Second case, if T/N is large then Ωc is large. We have

• if N ≤ λΩc, then there is no contribution from η-integration. Moreover we have
|N1| ≤ C0. To see this point, assume by contradiction T ≥ λ2Ω2

c ; this implies

Ω
1/3
c ' T/N ≥ λΩc which is impossible since Ωc is large. Thus the estimate is∣∣∣∣∣ ∑

N∈N1

Ga,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1λ−1a2λ−1/2T−1/2],

≤ Ch−3

(
h

t

)1/2

a−1/4h1/2,

≤ Ch−3

(
h

t

)1/2

h1/3.

• if N > λΩc and λΩ
2/3
c < T ≤ λ2Ω2

c , then there is a contribution q−1/2 factor from
η-integration and we also have |N1| ≤ C0. We get∣∣∣∣∣ ∑

N∈N1

Ga,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2Ω1/2
c ],

≤ Ch−3

(
h

t

)1/2

[h−1a2λ−2],

≤ Ch−3

(
h

t

)1/2

h1/3.

• if N > λΩc and T > λ2Ω2
c , then there are contributions from both q−1/2 factor from

η-integration and |N1| ≤ C0Tλ
−2Ω−2

c . We get
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∣∣∣∣∣ ∑
N∈N1

Ga,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2 ∑
N∈N1

[h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2Ω1/2
c ],

≤ Ch−3

(
h

t

)1/2

[h−1λ−1a2T−1Ω2/3
c |N1(X, Y, T )|],

≤ Ch−3

(
h

t

)1/2

[h−1a2λ−3](T/N)−4,

≤ Ch−3

(
h

t

)1/2

h1/3.

Next, we prove that (2.1.18) holds true in the case (ε1, ε2) = (+,−). In this case, from
the last item of (2.1.20), X ∈ [0, 1], and B′′(λΩ) = O(λ−3Ω−3) we get that for T > 0,
∂ΩHa,+,−(Ω) + 3N

2
λB′′(λΩ) < 0; that is, the function Ha,+,−(Ω) + 3N

2
B′(λΩ) decreases

on [1,∞[ from Ha,+,−(1) + 3N
2
B′(λ) = T

2

√
1− z̃2(1 + a)−1/2 + (1 − X)1/2 + 3N

2
B′(λ) to(

Ha,+,− + 3N
2
B′(λ.)

)
(∞) = 0. The equation ∂ΩΦN,+,− = 0 admits a unique solution Ωc

and it is nondegenerate; thus we can argue as (+,+) case. Finally, the case (ε1, ε2) =
(−,+) is similar to (+,+) case and (ε1, ε2) = (−,−) is similar to (+,−) case. The proof
of proposition is complete.

Now we prove the estimates for N = 1.

Proposition 2.1.9. There exists C such that for all h ∈]0, h0], all a ∈ [hα, a0], all
X ∈ [0, 1], all T ∈]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:

|Ga,1,1(T,X, Y, z;h)| ≤ Ch−3

(
h

t

)1/2
((

h

t

)1/2

+ h1/3

)
.

Proof. Let us recall that

Ga,1,1 =
(−i)a2λ−1

(2π)6h4

(
h

t

)1/2 ∫
ei
a3/2

h
Y η|η|3G̃a,1,1dη,

G̃a,1,1 =
∑
ε1,ε2

∫
eiλΦ̃1,ε1,ε2Θε1,ε2dω̃ +OC∞(h∞).

The only difference with the case N ≥ 2 is in the study of the phase Φ̃1,+,+ since in
the case N = 1 we may have a critical point ω̃c large. Let

G̃a,1,1,+,+ =

∫
eiλΦ̃1,+,+Θ+,+(ω̃, a, λ)dω̃, (2.1.26)
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with the phase function

Φ̃1,+,+(T,X, z; ω̃) = T
√

1− z̃2γa(ω̃) +
2

3
(ω̃ −X)3/2 +

2

3
(ω̃ − 1)3/2 − 4

3
ω̃3/2 +

1

λ
B(λω̃3/2),

and Θ+,+(ω̃, a, λ) is a classical symbol of order −1/2 with respect to ω̃. Let χ3(ω̃) ∈
C∞0 (]ω̃1,∞[) with ω̃1 large and set

J̃1,+,+ =

∫
eiλΦ̃1,+,+Θ+,+(ω̃, a, λ)χ3(ω̃)dω̃. (2.1.27)

To prove the proposition, we just have to verify |J̃1,+,+| ≤ Cλ−1/2T−1/2. We have

∂ω̃Φ̃1,+,+ =
T

2

√
1− z̃2(1 + aω̃)−1/2 − ω̃−1/2

2
(1 +X) +O(ω̃−3/2),

∂2
ω̃ω̃Φ̃1,+,+ =

−Ta
4

√
1− z̃2(1 + aω̃)−3/2 +

ω̃−3/2

4
(1 +X) +O(ω̃−5/2).

Therefore, to get a large critical point ω̃c, T must be small. Then we have ω̃
−1/2
c ' T

and thus ∂2
ω̃Φ̃1,+,+(ω̃c) ' T 3. We make a change of variable ω̃ = T−2υ̃ in (2.1.27). Since

Θ+,+(ω̃, a, λ) is a classical symbol in ω̃ of order −1/2; thus T−1υ̃1/2Θ+,+(T−2υ̃, a, λ) is a
symbol of order 0 in υ̃ ≥ υ̃0 > 0 uniformly in T ∈]0, T0] and we also have ∂2

υ̃υ̃Φ̃1,+,+ ' T−1.
The stationary phase method yields |J̃1,+,+| ≤ Cλ−1/2T−1/2.

The Analysis of Ga,N,2

Recall that the Ga,N,2 is a sum of oscillatory integrals which corresponds to the swallow-
tails regime. Our result of this subsection is Proposition 2.1.10.

Proposition 2.1.10. There exists C such that for all h ∈]0, h0], all a ∈ [hα, a0], all
X ∈ [0, 1], all T ∈]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:∣∣∣∣∣∣

∑
1≤N≤C0a−1/2

Ga,N,2(T,X, Y, z;h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

a1/8h1/4.

Proof. First, we rewrite Ga,N,2 in the form

Ga,N,2 =
(−i)Na2

(2π)6h4

(
h

t

)1/2 ∫
ei
a3/2

h
Y η|η|3G̃a,N,2dη, (2.1.28)

G̃a,N,2 =

∫
eiλφ̃N,a,hχ̃0ψ0χ1χ2(ω̃)ds̃dσ̃dω̃,
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with the phase

φ̃N,a,h(T,X, z; s̃, σ̃, ω̃) = T
√

1− z̃2γa(ω̃) +
s̃3

3
+ s̃(X − ω̃) +

σ̃3

3
+ σ̃(1− ω̃)− 4

3
Nω̃3/2

+
N

λ
B(ω̃3/2λ).

Since ω̃ is close to 1 on the support of χ2, we may localize s̃, σ̃ in a compact set. Let
K = {s̃, σ̃ ∈ [−1, 1], ω̃ = 1} and K1 be a suitable neighborhood of K depending on the
support of χ2. Introduce a cutoff function χ4(s̃, σ̃, ω̃) ∈ C∞0 equal to 1 near K1. Then the
contribution of G̃a,N,2 outside K1 is O(λ−∞) as a result of integration by parts. Therefore
we obtain

G̃a,N,2(T,X, z, h) =

∫
eiλφ̃N,a,hχ(s̃, σ̃, ω̃, a)ds̃dσ̃dω̃ +O(λ−∞), (2.1.29)

χ(s̃, σ̃, ω̃, a, h) = χ̃0ψ0χ1χ2(ω̃)χ4(s̃, σ̃, ω̃),

with O(λ−∞) uniform in T,X, z,N, a and χ is a classical symbol of order 0 in h with
support near K1. We first perform the integration with respect to ω̃. We have

∂ω̃φ̃N,a,h =
T

2

√
1− z̃2(1 + aω̃)−1/2 − s̃− σ̃ − 2Nω̃1/2

(
1− 3

4
B′(ω̃3/2λ)

)
,

∂2
ω̃ω̃φ̃N,a,h = −Nω̃−1/2(1 +O(λ−2ω̃−3)) +O(a1/2).

Since ∂2
ω̃ω̃φ̃N,a,h < 0, then ∂ω̃φ̃N,a,h decreases from ∂ω̃φ̃N,a,h(1) > 0 to ∂ω̃φ̃N,a,h(∞) < 0.

Therefore φ̃N,a,h admits a unique nondegenerate critical point ω̃c and we are interested
in the values of parameters such that ω̃c close to 1; then we must have T̃ = T/4N ∈
compact set of R+, say [1/2, 3/2]. In addition, from the equation ∂ω̃φ̃N,a,h = 0, we get

T

2

√
1− z̃2(1 + aω̃)−1/2 = s̃+ σ̃ + 2Nω̃1/2

(
1− 3

4
B′(ω̃3/2λ)

)
. (2.1.30)

Now we study the solution of (2.1.30) with λ =∞; in this case, we have

ω̃1/2(1 + aω̃)1/2 = T̃
√

1− z̃2 − 1

2N
(s̃+ σ̃)(1 + aω̃)1/2.

The solution of this equation is of the form ω̃c =
∑
fk(a, T̃ , s̃/N, σ̃/N) where fk are

homogeneous function of degree k in (s̃/N, σ̃/N). By comparing the terms with the same
homogeneous degree in (s̃/N, σ̃/N), we get

f0(1 + af0) = T̃ 2(1− z̃2) which gives F0 =: f0 =
2T̃ 2(1− z̃2)

1 +
√

1 + 4aT̃ 2(1− z̃2)
,
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and

(1 + 2aF0)f1 = − T̃
N

√
1− z̃2(s̃+ σ̃)(1 + aF0)1/2.

We define

F1 : = f1 = −E0

N
(s̃+ σ̃)(1 + aF0)1/2,

E−1
0 : =

√
F0

√
1 + aF0

(
1

F0

+
a

1 + aF0

)
.

Therefore ω̃c = F0 + F1 + O2 with the notation Oj means any function of the form
f =

∑
k≥j

fk. Then by the implicit function theorem, we get that the equation

ω̃1/2(1 + aω̃)1/2
(
1− 3

4
B′(ω̃3/2λ)

)
= T̃
√

1− z̃2 − 1

2N
(s̃+ σ̃)(1 + aω̃)1/2

has solution of the form ω̃c = F0 + F1 + O2 + g0
λ2

with g0 is a function of degree 0 in λ.

Substituting ω̃c into φ̃N,a,h, we get a phase function denoted by Ψ̃N,a,h = φ̃N,a,h(., ω̃c, .).
It is given by

Ψ̃N,a,h = T
√

1− z̃2γa(F0) +
s̃3

3
+ s̃(X − F0) +

σ̃3

3
+ σ̃(1− F0) +

E0

N
(1 + aF0)1/2(s̃+ σ̃)2

− 1

4N2
(s̃+ σ̃)3 + aNO3 +

g0

λ2
+N

(
−4

3
F

3/2
0 +

g1

λ2

)
.

Hence by applying the stationary phase method for (2.1.29), we get

G̃a,N,2 =
1√
λN

∫
eiλΨ̃N,a,hχ̃(T̃ , s̃, σ̃, 1/N, a, h)ds̃dσ̃ +O(λ−∞),

with χ̃ is a classical symbol of order zero in h. Now with λ̃ = λ/η, (2.1.28) becomes

Ga,N,2 =
(−i)Na2

(2π)6h4

(
h

t

)1/2
1√
λN

∫
eiλ̃|η|(Y+Ψ̃N,a,h)|η|3χ̃ds̃dσ̃dη +O(λ−∞).

We study the η-integration with the phase function LN = η(Y + Ψ̃N,a,h) and a large
parameter λ̃. Follow the arguments in the proof of Proposition 2.1.8, we have

∂ηLN = Y + Ψ̃N,a,h + λ∂λΨ̃N,a,h = 0

implies that (X, Y, T ) belongs to the projection of ΛN,a,h on R3 and the sum for N such
that N /∈ N1(X, Y, T ) gives O(λ−∞) [see Lemma 2.24 [29]]. Hence it remains to estimate
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the sum ∣∣∣∣∣ ∑
N∈N1

Ga,N,2(T,X, Y, z;h)

∣∣∣∣∣ .
We also have |∂2

ηLN | ≥ CNλ−2ω̃
−3/2
c . Hence by the stationary phase method, the η-

integration gives a factor q−1/2 with q = Nλ−1 since ω̃c ≈ 1. It yields

Ga,N,2 =
(−i)Na2

(2π)6h4

(
h

t

)1/2
1√
λN

λ1/2N−1/2

∫
eiλ̃LN (ηc)|η|3χ̃1ds̃dσ̃ +O(λ−∞). (2.1.31)

We observe that the phase function LN(ηc) satisfies ∂s̃LN(ηc) = ηc∂s̃Ψ̃N,a,h, ∂σ̃LN(ηc) =
ηc∂σ̃Ψ̃N,a,h. Moreover, when ∂s̃LN(ηc) = ∂2

s̃LN(ηc) = 0 ; that is, when ∂s̃Ψ̃N,a,h =
∂2
s̃ Ψ̃N,a,h = 0, we have ∂3

s̃LN(ηc) = ηc∂
3
s̃ Ψ̃N,a,h and similar for σ̃. Thus the study the

critical points of the phase LN(ηc) in (s̃, σ̃)-integrations is the same as ones with the
phase Ψ̃N,a,h. As in [29], to avoid multiplication of symbol by a classical symbol of order
0 in λ, we can replace Ψ̃N,a,h by ψ̃a,N,h, where

ψ̃N,a,h(T,X; s̃, σ̃) = T
√

1− z̃2γa(F0) +
s̃3

3
+ s̃(X − F0) +

σ̃3

3
+ σ̃(1− F0)

+
G0

N
(1 + aF0)1/2(s̃+ σ̃)2 − 1

4N2
(s̃+ σ̃)3 + aNO3.

In what follows, we get the estimates of the oscillatory integral associated with the phase
function ψ̃a,N,h for different values of N , namely for N ≥ λ1/3 and N < λ1/3. Our results
are Lemma 2.1.11 and Lemma 2.1.12.

Lemma 2.1.11. There exists C such that for all N ≥ λ1/3,

1√
N

∣∣∣∣∫ eiλψ̃N,a,hχ̃1ds̃dσ̃

∣∣∣∣ ≤ Cλ−5/6. (2.1.32)

Here remark that C is any constant that is independent of N ≥ 1, X ∈ [0, 1], T ∈
]0, a−1/2], a ∈ [hα, a0] and λ ∈ [λ0,∞[ with a0 small and λ0 large.

Proof. Adapting the arguments in the proof of Lemma 2.25 [29]. It is sufficient to prove
that for all N ≥ λ1/3, ∣∣∣∣∫ eiλψ̃N,a,hχ̃1ds̃dσ̃

∣∣∣∣ ≤ Cλ−2/3. (2.1.33)

Set X − F0 = −Aλ−2/3, 1− F0 = −Bλ−2/3, s̃ = λ−1/3x′, σ̃ = λ−1/3y′. It remains to prove
that ∣∣∣∣∫ eiψ̂N,a,hχ̃1(λ−1/3x′, λ−1/3y′, ...)dx′dy′

∣∣∣∣ ≤ C, (2.1.34)
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with the phase function ψ̂N,a,h given by

ψ̂N,a,h = Tλ
√

1− z̃2γa(F0)− Ax′ + x′3

3
−By′ + y′3

3
+
E0λ

1/3

N
(1 + aF0)1/2(x′ + y′)2

− 1

4N2
(x′ + y′)3 + aNO3.

Then (2.1.34) is an oscillatory integral over a domain of integration of size λ1/3 with
parameters F0, E0, λ

1/3/N are bounded and we will prove that the constant C is uniform
in (A,B) = (r cos θ, r sin θ) with r ≤ c0λ

2/3 . We have

∂x′ψ̂N,a,h = −A+ x′2 +
2E0

N
(1 + aF0)1/2λ1/3(x′ + y′)− 3

4N2
(x′ + y′)2 + aO

(
(x′, y′)2

)
,

∂y′ψ̂N,a,h = −B + y′2 +
2E0

N
(1 + aF0)1/2λ1/3(x′ + y′)− 3

4N2
(x′ + y′)2 + aO

(
(x′, y′)2

)
.

Moreover, the compactly support of χ̃1 in (s̃, σ̃) yields

sup
(x′,y′)

∣∣∂α(x′,y′)χ̃1(λ−1/3x′, λ−1/3y′, ...)
∣∣ ≤ Cα(1 + |x′|+ |y′|)−|α|,

with Cα independent of T, a,N, λ. Therefore for r ∈ [0, r0],∀r0 the oscillatory integral is
bounded by integration by parts for large (x, y).
For r ∈ [r0, c0λ

2/3], we rescale variables (x′, y′) = r1/2(x′′, y′′) and we set ψ̂N,a,h =
r3/2ψ∗N,a,h and χ′(x′′, y′′, ...) = χ̃1(r1/2λ−1/3x′′, r1/2λ−1/3y′′, ...). Since r1/2λ−1/3 is bounded,
we still have

sup
(x′′,y′′)

∣∣∂α(x′′,y′′)χ′∣∣ ≤ Cα(1 + |x′′|+ |y′′|)−|α|.

It remains to prove

r

∣∣∣∣∫ eir
3/2ψ∗N,a,hχ′dx′′dy′′

∣∣∣∣ ≤ C. (2.1.35)

Now we study the critical points of ψ∗N,a,h. We have

∂x′′ψ
∗
N,a,h = − cos θ + x′′2 − 3

4N2
(x′′ + y′′)2 +O(r−1/2 + a),

∂y′′ψ
∗
N,a,h = − sin θ + y′′2 − 3

4N2
(x′′ + y′′)2 +O(r−1/2 + a).

For small a and large r0, we may localize the integral to a compact set in (x′′, y′′) as a
result of integration by parts for large (x′′, y′′). The Hessian of ψ∗N,a,h,

HN(x′′, y′′) = 4x′′y′′ − 3

N2
(x′′ + y′′)2 +O(r−1/2 + a).

Thus for N ≥ 2, a small and r0 large, outside (x′′, y′′) = (0, 0), define a smooth curve
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Γ = {(x′′, y′′) such that HN(x′′, y′′) = 0}; that is, Γ is close to the union of two lines
c(x′′ + y′′)± (x′′ − y′′) = 0, c2 = N2−3

N2 ∈ [1/4, 1]. Then we have 2 cases to consider

• The contribution of points (x′′, y′′) outside Γ to the integral is O(r−3/2) by the usual
stationary phase method and we get

r

∣∣∣∣∫ eir
3/2ψ∗N,a,hχ′dx′′dy′′

∣∣∣∣ ≤ Cr−1/2.

• The contribution of points (x′′, y′′) close to Γ is given by Lemma 2.21 [29]. For any
values of θ, the hypothesis of part (a) Lemma 2.21 [29] holds true, then we get

r

∣∣∣∣∫ eir
3/2ψ∗N,a,hχ′dx′′dy′′

∣∣∣∣ ≤ Cr(r3/2)−5/6 = Cr−1/4.

Hence in any cases, (2.1.35) is satisfied.

To summarize, recall that T ∼ N and |N1(X, Y, T )| ≤ C0(1 + Tλ−2) in this case. We
deduce the estimates for the sum of Ga,N,2 with Lemma 2.1.11 for N ≥ λ1/3 as follows:

• If λ1/3 ≤ N ≤ λ, there is no contribution from η- integration and we have |N1| ≤ C0.
We obtain ∣∣∣∣∣ ∑

N∈N1

Ga,N,2(T,X, Y, z;h)

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1a2λ−1/2λ−5/6],

≤ Ch−3

(
h

t

)1/2

h1/3.

• If λ ≤ N ≤ λ2, then there is a q−1/2 factor contribution from η-integration and we
also have |N1| ≤ C0. We get∣∣∣∣∣ ∑

N∈N1

Ga,N,2(T,X, Y, z;h)

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1a2T−1/2λ−5/6],

≤ Ch−3

(
h

t

)1/2

[h−1a2λ−1/2λ−5/6],

≤ Ch−3

(
h

t

)1/2

h1/3.

• If N > λ2, then there are contributions from both q−1/2 from η-integration and
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|N1| ≤ C0Tλ
−2. We get∣∣∣∣∣ ∑

N∈N1

Ga,N,2(T,X, Y, z;h)

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2 ∑
N∈N1

[
h−1a2 1

N
λ−2/3

]
,

≤ Ch−3

(
h

t

)1/2

[h−1a2λ−2/3T−1|N1(X, Y, T )|],

≤ Ch−3

(
h

t

)1/2

[a−2h5/3],

≤ Ch−3

(
h

t

)1/2

h1/3.

Lemma 2.1.12. There exists C such that for all N < λ1/3,

1√
N

∣∣∣∣∫ eiλψ̃N,a,hχ̃1ds̃dσ̃

∣∣∣∣ ≤ CN−1/4λ−3/4. (2.1.36)

Notice that Lemma 2.1.12 says that for N large it gives a better estimate and it is
compatible with the estimate (2.1.32) for N ' λ1/3.

Proof. Let λ
N3 = Λ ≥ 1 and we take Λ as a new large parameter. To get the estimates of

our oscillatory integral, we set X−F0 = −pN−2, 1−F0 = −qN−2, s̃ = −x̄/N, σ̃ = −ȳ/N .
It yields ψ̃N,a,h = N−3ψ̄N,a,h. Then it remains to prove that∣∣∣∣∫ eiΛψ̄N,a,hχ̃1(x̄/N, ȳ/N, ...)dx̄dȳ

∣∣∣∣ ≤ CΛ−3/4, (2.1.37)

with the phase ψ̄N,a,h takes the form

ψ̄N,a,h = px̄− x̄3

3
+ qȳ − ȳ3

3
+ E0(1 + aF0)1/2(x̄+ ȳ)2 +

1

4N2
(x̄+ ȳ)3

+ TN3
√

1− z̃2γa(F0) + aN−2O
(
(x̄, ȳ)3

)
.

We have

∂x̄ψ̄N,a,h = p− x̄2 + 2E0(1 + aF0)1/2(x̄+ ȳ) +
3

4N2
(x̄+ ȳ)2 + aO

(
(x̄, ȳ)2

)
, (2.1.38)

∂ȳψ̄N,a,h = q − ȳ2 + 2E0(1 + aF0)1/2(x̄+ ȳ) +
3

4N2
(x̄+ ȳ)2 + aO

(
(x̄, ȳ)2

)
,

and the Hessian of ψ̄N,a,h is

HN(x̄, ȳ, a) = 4x̄ȳ − 4E0(1 + aF0)1/2(x̄+ ȳ)− 3

N2
(x̄+ ȳ)2 + aO

(
(x̄, ȳ)

)
.



44

Lemma 2.1.13. There exist r0 and C such that for all (p, q) with |(p, q)| ≥ r0,∣∣∣∣∫ eiΛψ̄N,a,hχ̃1(x̄/N, ȳ/N, ...)dx̄dȳ

∣∣∣∣ ≤ CΛ−5/6. (2.1.39)

Proof of Lemma 2.1.13. Apply the arguments in the proof of Lemma 2.26 [29]. Set
(p, q) = (r cos θ, r sin θ) with r ≥ r0. Let χ ∈ C∞0 (|(x̄, ȳ)| < c) with small c and χ = 1
near 0. Then from (2.1.38), we get by integration by parts in (x̄, ȳ), for all k,∣∣∣∣∫ eiΛψ̄N,a,hχ(r−1/2(x̄, ȳ))χ̃1(x̄/N, ȳ/N, ...)dx̄dȳ

∣∣∣∣ ≤ Cr−kΛ−k.

For (x̄, ȳ) large, we make a change of variable (x̄, ȳ) = r1/2(x′, y′) and set ψ̄′N,a,h =

r−3/2ψ̄N,a,h. Then it remains to prove∣∣∣∣r ∫ eir
3/2Λψ̄′N,a,h(1− χ)(x′, y′)χ̃1(r1/2x′/N, r1/2y′/N, ...)dx′dy′

∣∣∣∣ ≤ CΛ−5/6.

We observe that since (1 − χ)(x′, y′) = 0 near 0, (1 − χ)(x′, y′) = 1 for |(x′, y′)| ≥ c and
χ̃1 is compactly support, we still have

sup
(x′,y′)

∣∣∂α(x′,y′)(1− χ)(x′, y′)χ̃1(r1/2x′/N, r1/2y′/N, ...)
∣∣ ≤ Cα(1 + |x′|+ |y′|)−|α|.

The phase ψ̄′N,a,h is of the form

ψ̄′N,a,h = cos θx′ − x′3

3
+ sin θy′ − y′3

3
+

1

4N2
(x′ + y′)3 +

TN3

r3/2

√
1− z̃2γa(F0) +O(r−1/2 + a).

We get that

∂x′ψ̄
′
N,a,h = cos θ − x′2 +

3

4N2
(x′ + y′)2 +O(r−1/2 + a),

∂y′ψ̄
′
N,a,h = sin θ − y′2 +

3

4N2
(x′ + y′)2 +O(r−1/2 + a).

Thus for small a and large r0, by integration by parts, we may localize the integral to a
compact set in (x′, y′). The Hessian of ψ̄′N,a,h is

H′N(x′, y′, a) = 4x′y′ − 3

N2
(x′ + y′)2 +O(r−1/2 + a).

The same argument as before, for N ≥ 2, a small and r0 large, outside (x′, y′) = (0, 0),
we set Γ = {(x′, y′) such that H′N(x′, y′) = 0} and there are 2 cases to consider:

• The contribution of points (x′, y′) outside Γ to the integral is O(r−3/2Λ−1) by the
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usual stationary phase method; that is,∣∣∣∣r ∫ eir
3/2Λψ̄′N,a,h(1− χ)(x′, y′)χ̃1(r1/2x′/N, r1/2y′/N, ...)dx′dy′

∣∣∣∣ ≤ Cr−1/2Λ−1.

• The contribution of points (x′, y′) close to Γ given by Lemma 2.21[29]. For any
values of θ, the hypothesis of part (a) Lemma 2.21[29] holds true, then we get∣∣∣∣r ∫ eir

3/2Λψ̄′N,a,h(1− χ)(x′, y′)χ̃1(r1/2x′/N, r1/2y′/N, ...)dx′dy′
∣∣∣∣ ≤ Cr(r3/2Λ)−5/6,

≤ Cr−1/4Λ−5/6.

Lemma 2.1.14. There exist r0 and C such that for all (p, q) with |(p, q)| ≤ r0,∣∣∣∣∫ eiΛψ̄N,a,hχ̃1(x̄/N, ȳ/N, ...)dx̄dȳ

∣∣∣∣ ≤ CΛ−3/4. (2.1.40)

Proof of Lemma 2.1.14. Now we consider the case |(p, q)| ≤ r0. There exists c > 0
independent of N ≥ 2 such that

∀(x̄, ȳ) ∈ R2,

∣∣∣∣x̄2 − 3

4N2
(x̄+ ȳ)2

∣∣∣∣+

∣∣∣∣ȳ2 − 3

4N2
(x̄+ ȳ)2

∣∣∣∣ ≥ c(x̄2 + ȳ2). (2.1.41)

Then by integration by parts, (2.1.38) gives a contribution OC∞(Λ−∞) to the integral
(2.1.37) for large values (x̄, ȳ). Then we may assume that (x̄, ȳ) is in compact set. It
remains to prove ∣∣∣∣∫ eiΛψ̄N,a,hχ̃1dx̄dȳ

∣∣∣∣ ≤ CΛ−3/4,

with the phase

ψ̄N,a,h = px̄− x̄3

3
+ qȳ − ȳ3

3
+ T̃ (x̄+ ȳ)2 +

1

4N2
(x̄+ ȳ)3 + TN3

√
1− z̃2γa(F0) +O(a).

We have

∂x̄ψ̄N,a,h = p− x̄2 + 2T̃ (x̄+ ȳ) +
3

4N2
(x̄+ ȳ)2 +O(a),

∂ȳψ̄N,a,h = q − ȳ2 + 2T̃ (x̄+ ȳ) +
3

4N2
(x̄+ ȳ)2 +O(a),
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and the Hessian of ψ̄N,a,h is

HN(x̄, ȳ, T̃ , a) = 4x̄ȳ − 4T̃ (x̄+ ȳ)− 3

N2
(x̄+ ȳ)2 +O(a).

For a small, the set Γ = {(x̄, ȳ) such that HN(x̄, ȳ) = 0} is a smooth curve that is
close to the elliptic 4x̄ȳ − 4T̃ (x̄ + ȳ) − 3(x̄ + ȳ)2 = 0 for N = 1 and close to hyperbola
4x̄ȳ − 4T̃ (x̄ + ȳ) − 3

N2 (x̄ + ȳ)2 = 0 for N ≥ 2. It remains to use Lemma 2.21 [29] [see
Appendix] for (x̄, ȳ) near (p, q) with |(p, q)| ≤ r0. Then there are 3 cases to consider:

• If (p, q) is outside Γ, then the contribution to the integral is O(Λ−1) by usual
stationary phase method.

• If (0, 0) 6= (p, q) is close to Γ, the contribution to the integral is given by Lemma
2.21[29]. Since the hypothesis of part (a) in Lemma 2.21[29] holds true, then near
(p, q) the contribution to the integral is O(Λ−5/6).

• If (p, q) = (0, 0), we have (x, y) near (0, 0) and hypothesis of part (b) in Lemma
2.21 [29] holds true. Then the contribution to the integral is O(Λ−3/4).

Lemma 2.1.13 and Lemma 2.1.14 yield the proof of Lemma 2.1.12.

Notice that when N < λ1/3, there is no contribution from η-integration and we have
|N1| ≤ C0. As a consequence, we obtain the estimates for the sum of Ga,N,2 for N < λ1/3

as follows: ∣∣∣∣∣ ∑
N∈N1

Ga,N,2(T,X, Y, z;h)

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1a2λ−1/2N−1/4λ−3/4],

≤ Ch−3

(
h

t

)1/2

[a1/8h1/4N−1/4].

We notice that we get the same estimates for N = 1,

|Ga,1,2(T,X, Y, z;h)| ≤ Ch−3

(
h

t

)1/2

[h−1a2λ−1/2λ−3/4],

≤ Ch−3

(
h

t

)1/2

[a1/8h1/4].

To summarize, putting these estimates together we proved that∣∣∣∣∣∣
∑

1≤N≤C0a−1/2

Ga,N,2(T,X, Y, z;h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h1/3 + a1/8h1/4].
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Notice that h1/3 ≤ a1/8h1/4 when a ≥ h2/3; hence the proof of the Proposition 2.1.10 is
complete.

Proof of Theorem 2.1.5. Putting the estimates in Proposition 2.1.8, 2.1.9 and 2.1.10 to-
gether yields the desired result.

2.2 Dispersive Estimates for ε0

√
a ≤ η ≤ c0.

In this section, we prove Theorem 1.4.2. Recall that we have

Ga(t, x, y, z) =
1

4π2h2

∑
k≥1

∫
e
i
h

Φkσkdηdζ, (2.2.1)

where the phase Φk and the function σk are defined by

Φk = yη + zζ + t(η2 + ζ2 + ωkh
2/3η4/3)1/2,

σk = ek(x, η/h)ek(a, η/h)χ0(ζ2 + η2)χ1(ωkh
2/3η4/3)(1− χ1)(εωk).

We have to get L∞ estimates for Ga in the range t ∈ [h, 1], when the integral in (2.2.1) is
restricted to values of η ∈ [ε0

√
a, c0] with c0 small. Let µ2 be defined by

µ2 = η2 + ωkh
2/3η4/3.

Observe that µ2 is small since ωkh
2/3η4/3 is small by the truncation χ1 and η is small.

Let χ4 ∈ C∞0 ]− 1, 1[ with χ4 = 1 on [−1/2, 1/2] and D ≥ 1. Let Na(t, x, y, z) be defined
by

Na(t, x, y, z) =
1

4π2h2

∑
k≥1

∫
e
i
h

Φkχ4

(
tµ2

Dh

)
σkdηdζ.

The following lemma tells us that Na satisfies the free dispersive estimate.

Lemma 2.2.1. There exists C independent of D such that

|Na(t, x, y, z)| ≤ Ch−3

(
h

t

)
D.

Proof. On the support of χ4, one has η2 ≤ Dh/t and hω
3/2
k η2 ≤ (Dh/t − η2)3/2. This

implies that the sum over k is restricted to k ≤ c0
(Dh/t−η2)3/2

hη2
. Since ek(x, η/h) =
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fkk
−1/6(η/h)1/3Ai((η/h)2/3x− ωk), Lemma 2.1.2 gives

|Na(t, x, y, z)| ≤ Ch−2

∫
η2≤Dh/t

(η/h)2/3 (Dh/t− η2)1/2

h1/3η2/3
dη (2.2.2)

= Ch−3

∫
η2≤Dh/t

(Dh/t− η2)1/2dη

and the result follows from
∫
η2≤Dh/t(Dh/t− η

2)1/2dη = (Dh/t)
∫
x2≤1

(1− x2)1/2dx.

Observe that in the range η ≥ c0, one has µ2 ≥ c2
0, so the condition tµ2/h ≤ D is

equivalent to t ≤ Ch and the above lemma is irrelevant. But in the range η ∈ [ε0
√
a, c0],

the above lemma becomes useful since it tells us that we may now assume that λ = tµ2/h
is a large parameter. Since we allow some loss in the dispersive estimate with respect
to the free case, we may even assume that we have λ = tµ2/h ≥ (h

t
)−ε for some ε > 0

(take D = (h
t
)−ε), and therefore in the sequel a term like O(λ−∞) will be neglectible.

We are now in position to eliminate the ζ integration in (2.2.1). This is the purpose
of the following lemma. Recall that the truncation χ0(ζ2 + η2) localizes ζ2 + η2 near 1.
Therefore, for η small, ζ will be close to 1 or −1. In the sequel, we assume ζ near 1.

Lemma 2.2.2. Let λ = tµ2/h ≥ 1, z̃ = z/t and φ(z̃, µ2, ζ) = 1
µ2

(z̃ζ + (ζ2 + µ2)1/2). Let

I(z̃, µ2, η;λ) =

∫
ζ'1

eiλφ(z̃,µ2,ζ)χ0(ζ2 + η2)dζ.

There exists 0 < c1 < C1 such that the following holds true.

For z̃ /∈ [−1 + c1µ
2,−1 + C1µ

2] one has supz̃,µ2,η|I(z̃, µ2, η;λ)| ∈ O(λ−∞). (2.2.3)

For z̃ ∈ [−1 + c1µ
2,−1 + C1µ

2], set z̃ = −1 + z∗µ2. There exists a classical symbol of
degree 0 in λ, σ0(z∗, η, µ2;λ), such that one has

I(z̃, µ2, η;λ) =

(
h

tµ2

)1/2

ei
tµ
h

(1−z̃2)1/2σ0(z∗, η, µ2;λ). (2.2.4)

Proof. One has ∂ζφ = 1
µ2

(z̃ + ζ(ζ2 + µ2)−1/2), ∂2
ζφ = (ζ2 + µ2)−3/2 ≥ c > 0 and ∂jζφ

is bounded for all j ≥ 2. Since ζ(ζ2 + µ2)−1/2 = 1 − µ2

2ζ2
+ O(µ4), (2.2.3) follows by

integration by parts. For z̃ ∈ [−1 + c1µ
2,−1 + C1µ

2], and with z̃ = −1 + z∗µ2, one has
φ = z∗ζ+(ζ+(ζ2 +µ2)1/2)−1 and a unique critical point ζc = −µz̃(1− z̃2)1/2 with critical
value φ(ζc) = ζc

µ2
(z̃ − 1/z̃) = (1− z̃2)1/2/µ ∈ O(1). Therefore, by stationary phase we get

that (2.2.4) holds true.
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Using Lemmas 2.2.1 and 2.2.2, we are now reduced to the study of

1

4π2h2
(h/t)1/2

∑
k≥1

∫
e
i
h

(yη+tµ(1−z̃2)1/2) σ̃k
µ
dη (2.2.5)

where σ̃k is defined by

σ̃k = σ0(z∗, η, µ2;λ)(1− χ4(
tµ2

Dh
))ek(x, η/h)ek(a, η/h)χ1(ωkh

2/3η4/3)(1− χ1)(εωk).

To get L∞ estimate for the parametrix in the range η ∈ [ε0
√
a, c0], we will use a

Litttlewood-Paley decomposition in η. We choose ψ1 ∈ C∞0 (]0.5, 2.5[), 0 ≤ ψ1 ≤ 1 such
that

∑
m∈Z ψ1(2mx) = 1 for all x > 0, and we introduce the cut-off function ψ1( η

2m
√
a
) in

(2.2.5). In the sequel, we will therefore have

ε0 ≤ 2m ≤ c0/
√
a.

We will use the notations
η = 2m

√
a η̃, h = 2m

√
a h̃

µ2 = η2 + ωkh
2/3η4/3 = (2m

√
a)2(η̃2 + ωkh̃

2/3η̃4/3) = (2m
√
a)2µ̃2

γ = ωkh
2/3η−2/3 = ωkh̃

2/3η̃−2/3

We define Ga,m by the formula

Ga,m(t, x, y, z) =
1

4π2h2
(h/t)1/2

∑
k≥1

∫
e
i
h

(yη+tµ(1−z̃2)1/2)ψ1

(
η

2m
√
a

)
σ̃k
µ
dη. (2.2.6)

Observe that due to the truncation χ1, we have k ≤ ε
hη2

in the above sum. Using the

change of variable η = 2m
√
aη̃, we get with ỹ = y/t, since dη/µ = dη̃/µ̃

Ga,m(t, x, y, z) =
1

4π2h2
(h/t)1/2

∑
1≤k≤ ε

(2m
√
a)3h̃

∫
e
it
h̃

(ỹη̃+µ̃(1−z̃2)1/2)gkψ1(η̃)dη̃, (2.2.7)

where gk is defined by

gk =
1

µ̃
σ0(z∗, η, µ2;λ)(1− χ4(

tµ2

Dh
))ek(x, η̃/h̃)ek(a, η̃/h̃)χ1(ωkh

2/3η4/3)(1− χ1)(εωk).

Lemma 2.2.3. Let M ≥ 1 be given. There exists CM such that for all m, a, h such that
2m
√
a ≤ hM , the following holds true:

|Ga,m| ≤ CMh
−3(h/t)1/22m

√
a| log(2m

√
a)|. (2.2.8)

Proof. One has h̃ ≥ 1/M and therefore |ek(x, η̃/h̃)| ≤ Ck−1/6( η̃
h̃
)1/3ω

−1/4
k . Moreover, we
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have µ̃ ≥ ω
1/2
k h̃1/3η̃2/3. Therefore we get

|Ga,m| ≤ C ′′h−2(h/t)1/2
∑

1≤k≤ ε
(2m
√
a)3h̃

ω
−1/2
k h̃−1/3k−1/3(

1

h̃
)2/3ω

−1/2
k

≤ C ′h−3(h/t)1/22m
√
a| log(22mah)| ≤ Ch−3(h/t)1/22m

√
a| log(2m

√
a)|. (2.2.9)

From the above lemma, we get in the range h̃ ≥ 1/M the estimate

|Ga,m| ≤ CMh
−3(h/t)1/2(2m

√
a)1/3(hM)2/3| log(hM)|. (2.2.10)

This estimate is even better than the free estimate Ch−3(h/t). Therefore, in the sequel
we will assume h̃ ≤ h̃0 with h̃0 small. To establish the local in time estimates for the Ga,m,
we follow the strategy of section 2.1 . We distinguish between two different cases. First
case, if a ≤ h̃

2
3

(1−ε), for a given ε ∈]0, 1/7[, we use the sum over eigenmodes. Second case,

if a ≥ h̃
2
3

(1−ε′), with ε′ ∈]0, ε[, we use the Airy-Poisson summation formula [see Lemma
2.1.4] and we rewrite Ga,m as a sum over multiple reflections.

2.2.1 Dispersive Estimates for 0 < a ≤ h̃
2
3 (1−ε), with ε ∈]0, 1/7[.

The following Proposition 2.2.4 gives a local in time dispersive estimates for Ga,m and is
the main result of this subsection.

Proposition 2.2.4. Let ε ∈]0, 1/7[. There exists C such that for all h ∈]0, 1], all 0 <

a ≤ h̃
2
3

(1−ε), and all t ∈ [h, 1], the following holds true:

‖1x≤aGa,m(t, x, y, z)‖L∞ ≤ Ch−3(2m
√
a)1/3

(
h

t

)5/6

. (2.2.11)

Proof. Recall that Ga,m is defined by

Ga,m(t, x, y, z) =
1

4π2h2
(h/t)1/2

∑
1≤k≤ ε

(2m
√
a)3h̃

∫
e
it
h̃

(ỹη̃+µ̃(1−z̃2)1/2)gkψ1(η̃)dη̃, (2.2.12)

with gk equal to

gk =
1

µ̃
σ0(z∗, η, µ2;λ)(1− χ4(

tµ2

Dh
))ek(x, η̃/h̃)ek(a, η̃/h̃)χ1(ωkh

2/3η4/3)(1− χ1)(εωk).

Recall from (2.2.10) that we may assume h̃ ≤ h̃0 with h̃0 small. Since Ga,m contains
Airy functions which behave differently depending on the various values of k, we split
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the sum over k in (2.2.12) in two pieces. We fix a large constant D and we write Ga,m =
Ga,m,< + Ga,m,>, where in Ga,m,< only the sum over 1 ≤ k ≤ Dh̃−ε is considered.

Proof of (2.2.11) for Ga,m,<.

Recall the definition of Ga,m,<:

Ga,m,<(t, x, y, z) =
1

4π2h2
(h/t)1/2

∑
1≤k≤Dh̃−ε

∫
e
it
h̃

(ỹη̃+µ̃(1−z̃2)1/2)gkψ1(η̃)dη̃. (2.2.13)

gk = f 2
kk
−1/3(

η̃2/3

µ̃h̃2/3
)σ0(z∗, η, µ2;λ)(1− χ4(

tµ2

Dh
))χ1(ωkh

2/3η4/3)(1− χ1)(εωk)nk.

nk = Ai((η̃/h̃)2/3x− ωk)Ai((η̃/h̃)2/3a− ωk).

Let us first assume t2m
√
a ≤ h̃ε. Since we have µ̃ = (η̃2 + ωkh̃

2/3η̃4/3)1/2 ≥ η̃, we get the
estimate

|gk| ≤ Ch̃−2/3k−1/3
∣∣∣Ai((η̃/h̃)2/3x− ωk)Ai((η̃/h̃)2/3a− ωk)

∣∣∣ .
By Lemma 2.1.2, this implies

∑
1≤k≤Dh̃−ε

|gk| ≤ Ch̃−2/3(h̃−ε)1/3 ≤ C(h̃)−2/3(t2m
√
a)−1/3 = Ch−1(2m

√
a)1/3

(
h

t

)1/3

and (2.2.11) follows from (2.2.13).

Let us now assume t2m
√
a ≥ h̃ε. Observe that in the range k ≤ D̃h−ε, we have ωkh̃

2/3 ≤
Ch̃2/3(1−ε) ≤ Ch̃

2/3(1−ε)
0 small. Hence γ = ωkh̃

2/3η̃−2/3 is small and µ̃ = η̃(1 + γ)1/2 =

η̃+ η̃1/3ωkh̃
2/3/2 +O((ωkh̃

2/3)2). Therefore we get |∂2µ̃
∂η̃2
| ≥ cωkh̃

2/3 with c > 0, and for all

j ≥ 2, |∂j µ̃
∂η̃j
| ≤ Cjωkh̃

2/3. We will apply the stationary phase in η̃ in each term of the sum

in (2.2.13) with the phase function Φk(η̃) = t
h̃
(ỹη̃+µ̃(1− z̃2)1/2). Let Λk = th̃−1/3ωk2

m
√
a,

and let Ψk(η̃) the phase function defined by

tΦk

h̃
= ΛkΨk.

Lemma 2.2.5. Let g̃k = k1/3h̃2/3gk. There exists C such that for all 1 ≤ k ≤ Dh̃−ε, the
following holds true: ∣∣∣∣∫ eiΛkΨk g̃kψ1(η̃)dη̃

∣∣∣∣ ≤ C min
{

1,Λ
−1/2
k

}
. (2.2.14)

Proof. We may assume Λk ≥ 1 since we have |g̃k| ≤ C. Recall from Lemma 2.2.2 that
we may assume

√
1− z̃2 ' µ = 2m

√
aµ̃ ' 2m

√
a. Therefore, there exists c > 0 such that
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for all 1 ≤ k ≤ Dh̃−ε one has∣∣∣∣∂2Ψk

∂η̃2

∣∣∣∣ =

∣∣∣∣ t

h̃Λk

∂2µ̃

∂η̃2

√
1− z̃2

∣∣∣∣ ≥ c > 0

and for all j ≥ 2,
∣∣∣∂jΨk∂η̃j

∣∣∣ ≤ Cj. Thus, to apply the stationary phase, we just need to check

that there exist ν > 0 and for all j, a constant Cj such that∣∣∣∣∂j g̃k∂η̃j

∣∣∣∣ ≤ CjΛ
j(1/2−ν)
k , ∀k ≤ Dh̃−ε . (2.2.15)

In Lemma 2.2.2, z∗ is defined by z̃ = −1 + z∗µ2, but since we have here µ ' 2m
√
a we

may as well define z∗ by z̃ = −1 + z∗22ma. Then z∗ becomes independent of η̃. Recall
λ = tµ2/h. Since η = 2m

√
aη̃ and all the derivatives of γ and µ̃ with respect to η̃ are

bounded, we get |∂jλ
∂η̃j
| ≤ Cjλ for all j. Since λ is bounded on the support of derivatives

of χ4, the term

f 2
k η̃

2/3σ0(z∗, η, µ2;λ)(1− χ4(
tµ2

Dh
))χ1(ωkh

2/3η4/3)(1− χ1)(εωk)

satisfies the estimate (2.2.15), and it remains to show that the function Ai(( η̃
h̃
)2/3x− ωk)

satisfies the estimate (2.2.15) uniformly in x ∈ [0, a]. Let θ = xh̃−2/3 ≥ 0 and r = η̃2/3

which belongs to a compact subset of ]0,∞[. One has ∂lr(Ai(rθ−ωk)) ' (rθ)lAi(l)(rθ−ωk).
Since for all l one has

sup
b≥0
|blAi(l)(b− ωk)| ≤ Clω

3l/2
k

we get that (2.2.15) holds true if

∃β > 3, c > 0, cωβk ≤ Λk = th̃−1/3ωk2
m
√
a

We have t2m
√
a ≥ h̃ε, and cω2

k ≤ h̃−4ε/3, thus this holds for ε < 1/7.

Therefore we get the following estimate for Ga,m,< and t2m
√
a ≥ h̃ε

‖1x≤aGa,m,<(t, x, y, z)‖L∞ ≤ Ch−2

(
h

t

)1/2
[ ∑

1≤k≤Dh̃−ε

k−1/3h̃−2/3(th̃−1/3ωk2
m
√
a)−1/2

]

≤ Ch−2

(
h

t

)1/2

(t2m
√
a)−1/2h̃−(1/2+ε/3)

≤ Ch−3(2m
√
a)1/3

(
h

t

)5/6

×

[
h

(
t

h

)1/3

(2m
√
a)−1/3(t2m

√
a)−1/2h̃−(1/2+ε/3)

]
.
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This concludes the proof of Proposition 2.2.4 for Ga,m,< since t2m
√
a ≥ h̃ε implies

h2/3t−1/6(2m
√
a)−5/6h̃−(1/2+ε/3) ≤ h̃1/6−ε/2.

Proof of (2.2.11) for Ga,m,>.

For k ≥ Dh̃−ε with D large and a ≤ h̃2/3(1−ε) one has

ωk − h̃−2/3η̃2/3a ≥ ωk/2.

Since γ = ωkh̃
2/3η̃−2/3, we get γ − a ≥ a and γ − a ≥ γ/2. Then by the definition of ek

and asymptotic of the Airy functions, we obtain

Ga,m,>(t, x, y, z) =
∑

h̃−ε≤k≤ ε
(2m
√
a)3h̃

1

4π2h2

(
h

t

)1/2∑
±,±

∫
e
i
h̃

Φ±,±k σ±,±k ψ1(η̃)dη̃, (2.2.16)

with phase functions defined by

Φ±,±k (η̃) = η̃
[
y + t

√
1− z̃2(1 + γ)1/2 ± 2

3
(γ − x)3/2 ± 2

3
(γ − a)3/2

]
, (2.2.17)

and the symbols are given by

σ±,±k (η̃) = f 2
kk
−1/3h̃−1/3η̃−2/3σ0(z∗, η, µ2, λ)(1− χ4(

tµ2

Dh
))χ1(ωkh

2/3η4/3)(1− χ1(εωk))

× (γ − x)−1/4(γ − a)−1/4(1 + γ)−1/2ω±ω±Ψ±

(
η̃2/3h̃−2/3(γ − x)

)
Ψ±

(
η̃2/3h̃−2/3(γ − a)

)
,

where Ψ± are classical symbols of order 0 at infinity. In Lemma 2.2.2, z∗ is defined by
z̃ = −1 + z∗µ2, but since we have here µ ' 2m

√
a(1 +ωkh̃

2/3)1/2 we may as well define z∗

by z̃ = −1 + z∗22ma(1 + ωkh̃
2/3). Then z∗ becomes independent of η̃. Observe that for

all j, there exists Cj, C
′
j such that for all k one has

|∂jη̃γ| ' Cjγ, |∂jη̃µ̃| ≤ C ′jµ̃, |∂jη̃µ2| ≤ C ′jµ
2 ≤ C ′j.

Since λ = tµ2/h = t2m
√
a

h̃
(1 + γ), we get |∂jλ

∂η̃j
| ≤ Cjλ for all j. Finally, λ is bounded on

the support of derivatives of χ4 and there exists c1 > 0 such that η̃2/3h̃−2/3(γ − a) ≥ c1.
Since γ ' (kh̃)2/3, we get that for all j, there exists Cj such that for all k one has

|∂jη̃σ
±,±
k (η̃)| ≤ Cj(kh̃)−2/3(1 + γ)−1/2. (2.2.18)

We notice that for the values of k,Dh̃−ε ≤ k ≤ 1
hη2

, we get γ ∈ [2a, 1
22ma

]. In what

follows, we distinguish between the two cases: γ ∈ [2a, 1] and γ ∈ [1, 1
22ma

].
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• The first case γ ∈ [2a, 1] corresponds to h̃−ε ≤ k ≤ h̃−1. Let Λk = t2m
√
aωkh̃

−1/3

and Φ±,±k = h̃ΛkΨ
±,±
k .

Proposition 2.2.6. There exists a constant C independent of a ∈]0, h̃2/3(1−ε)],
t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R, and k ∈ [h̃−ε, h̃−1] such that the following
holds: ∣∣∣∣∫ eiΛkΨ±,±k σ±,±k ψ1(η̃)dη̃

∣∣∣∣ ≤ C(h̃k)−2/3Λ
−1/3
k .

Proof of Proposition 2.2.6. By (2.2.18) , Proposition 2.2.6 is obvious for Λk ≤ 1.
In the case Λk ≥ 1, we use µ̃ ' 2m

√
a which implies t

√
1− z̃2 ' t2m

√
a. Then

the proof is the same as the proof of Proposition 2.1.3, if one replaces (h, t) in
Proposition 2.1.3 by (h̃, t2m

√
a).

Hence the corresponding estimate of Ga,m,> for h̃−ε ≤ k ≤ h̃−1 is given by

‖1x≤aGa,m,>(t, x, y, z)‖L∞ ≤ Ch−2

(
h

t

)1/2 ∑
h̃−ε≤k≤h̃−1

(h̃k)−2/3(t2m
√
aωkh̃

−1/3)−1/3

≤ Ch−2

(
h

t

)1/2

h̃−2/3(t2m
√
a)−1/3h̃1/9

∑
k≤1/h̃

k−8/9

≤ Ch−3

(
h

t

)5/6

(2m
√
a)1/3.

• The second case γ ∈ [1, 1
22ma

] corresponds to h̃−1 ≤ k ≤ 1
22mah

. We still define Λk

and Ψ±,±k by Λk = t2m
√
aωkh̃

−1/3 and Φ±,±k = h̃ΛkΨ
±,±
k .

Proposition 2.2.7. There exists a constant C independent of a ∈]0, h̃2/3(1−ε)],
t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R, and k ∈ [h̃−1, 1

22mah
] such that the following

holds: ∣∣∣∣∫ eiΛkΨ±,±k σ±,±k ψ1(η̃)dη̃

∣∣∣∣ ≤ C(h̃k)−1Λ
−1/3
k .

Proof of Proposition 2.2.7 . One has γ ' (kh̃)2/3. Thus γ ≥ 1 and (2.2.18) imply
|∂jη̃σ

±,±
k (η̃)| ≤ Cj(kh̃)−1. Hence Proposition 2.2.7 is obvious for Λk ≤ 1. In the case

Λk ≥ 1 we proceed as in the Proposition 2.1.3 . Recall that z̃ is close to −1 and
z̃ = −1 + z∗22ma(1 + ωkh̃

2/3) with z∗ in a compact set of ]0,∞[. We write

t
√

1− z̃2

h̃Λk

1 + 2γ/3

(1 + γ)1/2
=
√
z∗(1− z̃)1/2η̃−2/3F̃ (γ), F̃ (γ) =

2(1 + ωkh̃
2/3)1/2

3(1 + γ)1/2
(1+1/γ).
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For γ large one has F̃ (γ) ' 1, F̃ (γ) + γF̃ ′(γ) ' 1. Moreover, one has

ωkh̃
2/3(2F̃ ′(γ) + γF̃ ′′(γ)) ' ωkh̃

2/3γ−1 ' 1.

Hence the proof is the same as the proof of Proposition 2.1.3, if one replaces (h, F )
in Proposition 2.1.3 by (h̃, F̃ ).

Using Proposition 2.2.7, we get the estimate of Ga,m,> for h̃−1 ≤ k ≤ 1
22mah

:

‖1x≤aGa,m,>(t, x, y, z)‖L∞ ≤ Ch−2

(
h

t

)1/2∑
h̃−1≤k

(h̃k)−1(t2m
√
aωkh̃

−1/3)−1/3

≤ Ch−2

(
h

t

)1/2

t−1/3(2m
√
a)−1/3h̃−8/9

∑
h̃−1≤k

k−11/9

≤ Ch−3

(
h

t

)5/6

(2m
√
a)1/3.

This concludes the proof of Proposition 2.2.4.

2.2.2 Dispersive Estimates for a ≥ h̃
2
3 (1−ε

′), for ε′ ∈]0, ε[.

In this subsection, we assume a ≥ h̃
2
3

(1−ε′), for some ε′ ∈]0, ε[ and we establish a local in
time dispersive estimates for Ga,m. Observe that Λ = a3/2/h̃ ≥ h̃−ε

′
is a large parameter.

Recall from (2.2.12) that Ga,m is defined by

Ga,m(t, x, y, z) =
1

4π2h2
(h/t)1/2

∑
1≤k≤ ε

(2m
√
a)3h̃

∫
e
i
h̃

(yη̃+tµ̃(1−z̃2)1/2)g(ωk, η̃, h̃)ψ1(η̃)dη̃,

(2.2.19)
with g(ωk, η̃, h̃) equal to

g =
1

µ̃
σ0(z∗, η, µ2;λ)(1− χ4(

tµ2

Dh
))ek(x, η̃/h̃)ek(a, η̃/h̃)χ1(ωkh

2/3η4/3)(1− χ1)(εωk),

and we recall h = 2m
√
ah̃, η = 2m

√
aη̃, µ = 2m

√
aµ̃, and

γ = ωh̃2/3η̃−2/3, µ̃ = η̃(1 + γ)1/2 .

We will use the same notations as in section 2.1, t = a1/2T, x = aX, y+t
√

1− z̃2 = a3/2Y .
Let ω = η̃2/3h̃−2/3aω̃. We get γ = aω̃ and (1 + aω̃)1/2 − 1 = aγa(ω̃) = aω̃

1+(1+aω̃)1/2
. Then
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we use the Airy Poisson summation formula, and we get

Ga,m =
∑
N

Ga,m,N

with

Ga,m,N(t, x, y, z) =
(−1)N

(2π)4h4
(h/t)1/2a2(2m

√
a)2

∫
eiΛΦNfmη̃

2ψ1(η̃)ds̃dσ̃dω̃dη̃ (2.2.20)

with the phase function

ΦN(s̃, σ̃, ω̃, η̃) = η̃

[
Y + T (1− z̃2)1/2γa(ω̃)+

s̃3

3
+ s̃(X − ω̃) +

σ̃3

3
+ σ̃(1− ω̃)

− 4

3
Nω̃3/2 +

N

Λη̃
B
(
ω̃3/2Λη̃

) ]
,

and symbol fm(a, t, z; η̃, ω̃, h̃) equal to, with λ = t2m
√
aµ̃2/h̃,

fm =
1

µ̃
σ0(z∗, η, µ2;λ)(1− χ4(λ/D))χ1((2m

√
a)2η̃2aω̃)(1− χ1)(εη̃2/3h̃−2/3aω̃). (2.2.21)

Observe that we get the same phase function ΦN as in section 2.1, but we have to take
care of the fact that now (1− z̃2)1/2 may be small. Therefore, in order to use the results
of section 2.1, we introduce the notation T̃ = T (1− z̃2)1/2. Set

Ca,m,N,h = {(t, x, y, s̃, σ̃, ω̃, η̃) such that ∂s̃ΦN = ∂σ̃ΦN = ∂ω̃ΦN = ∂η̃ΦN = 0}.

Hence Ca,m,N,h is defined by the system of equations

X = ω̃ − s̃2,

ω̃ = 1 + σ̃2,

T̃ = 2(1 + aω̃)1/2

(
s̃+ σ̃ + 2Nω̃1/2

(
1− 3

4
B′
(
ω̃3/2Λη̃

)))
,

Y = −T̃ γa(ω̃)− s̃3

3
− s̃(X − ω̃)− σ̃3

3
− σ̃(1− ω̃) +Nω̃3/2

(
4

3
−B′

(
ω̃3/2Λη̃

))
.

We define the Lagrangian submanifold Λa,m,N,h ⊂ T ∗R3 as the image of Ca,m,N,h by the
map

(t, x, y, s̃, σ̃, ω̃, η̃) 7−→ (x, t, y, ξ = ∂xΦN , τ = ∂tΦN , η = ∂yΦN).
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Then the projection of Λa,m,N,h onto R3 is defined by the system of equations

X = 1 + σ̃2 − s̃2, (2.2.22)

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

2

3
H2(a, σ̃)(1 + σ̃2)−1/2

(
T̃

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)
,

where H1, H2 are defined in Section 2.1 and

2N

(
1− 3

4
B′
(
ω̃3/2Λη̃

))
= (1 + σ̃2)−1/2

(
T̃

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)
. (2.2.23)

Remark 2.2.8. We notice from (2.2.23) in the range of T ∈]0, a−1/2], we can still reduce
the sum over N ∈ Z to the sum over 1 ≤ N ≤ C0a

−1/2 since T̃ ≤ T .

This system yields N (X, Y, T ) ≤ C0 and N1(X, Y, T ) ≤ C0

(
1 + T̃Λ−2ω̃−3

)
. Recall

that here the notations N ,N 1 are those defined in Section 2.1.

Our main result of this subsection is Theorem 2.2.9, which gives dispersive estimates
for the sum over N of Ga,m,N .

Theorem 2.2.9. Let α < 2/3. There exists C such that for all h ∈]0, h0], all a ∈
[
h̃α, a0

]
,

all x ∈ [0, a], all t ∈]h, 1], all y ∈ R, all z ∈ R, the following holds:∣∣∣∣∣ ∑
1≤N≤C0a−1/2

Ga,m,N(t, x, y, z)

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2
(

min

{(
h

t

)1/2

, 2m
√
a

}
+ a1/8h1/4(2m

√
a)3/4

)
.

We notice as in section 2.1, that for ω̃ ≤ 3/4, we get rapid decay in Λ by integration
by parts in σ̃. In particular, we may replace 1 − χ1 by 1 in (2.2.21). As in section 2.1,
we introduce a cutoff function χ2(ω̃) ∈ C∞0 (]1/2, 3/2[), 0 ≤ χ2 ≤ 1, χ2 = 1 on ]3

4
, 5

4
[ and

we denote by Ga,m,N,2 the corresponding integral. We get Ga,m,N = Ga,m,N,1 +Ga,m,N,2 +
O(Λ−∞) where Ga,m,N,1 is defined by a cutoff χ3 with ω̃ ≥ 5/4 on the support of χ3.

The Analysis of Ga,m,N,1

The main results in this subsection are Proposition 2.2.10 and Proposition 2.2.11.

Proposition 2.2.10. Let α < 2/3.There exists C such that for all h ∈]0, h0], all a ∈[
h̃α, a0

]
, all x ∈ [0, a], all t ∈]h, 1], all y ∈ R, all z ∈ R, the following holds:∣∣∣∣∣∣

∑
2≤N≤C0a−1/2

Ga,m,N,1(t, x, y, z;h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.
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Proof. On the support of χ3, we can apply the stationary phase method for (s̃, σ̃)-
integrations with large parameter Λη̃; hence we get

Ga,m,N,1 =
(−1)Na2Λ−1

(2π)4h4
(2m
√
a)2

(
h

t

)1/2 ∫
eiΛY η̃η̃ψ1(η̃)G̃a,m,N,1dη̃,

G̃a,m,N,1 =
∑
ε1,ε2

∫
eiΛη̃ΦN,m,ε1,ε2Θε1,ε2(1 + aω̃)−1/2dω̃,

with symbols Θε1,ε2 with support in ω̃ ≤ (2m
√
a)−2/a, and such that |ω̃l∂lω̃Θε1,ε2| ≤

Clω̃
−1/2 with Cl independent of a,m, and where εj = ±. The phase functions are

ΦN,m,ε1,ε2(ω̃) = T̃ γa(ω̃)+
2

3
ε1(ω̃ −X)3/2+

2

3
ε2(ω̃ − 1)3/2− 4

3
Nω̃3/2+

N

Λη̃
B
(
ω̃3/2Λη̃

)
.

Let us define

Ga,m,N,1,ε1,ε2 =
(−1)Na2Λ−1

(2π)4h4
(2m
√
a)2

(
h

t

)1/2 ∫
eiΛY η̃η̃ψ1(η̃)G̃a,m,N,1,ε1,ε2dη̃,

G̃a,m,N,1,ε1,ε2 =
∑
ε1,ε2

∫
eiΛη̃ΦN,m,ε1,ε2Θε1,ε2(1 + aω̃)−1/2dω̃.

We are reduce to prove the following inequality∣∣∣∣∣∣
∑

2≤N≤C0a−1/2

Ga,m,N,1,ε1,ε2(t, x, y, z, h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3, (2.2.24)

with a constant C independent of m, h ∈]0, h0], a ∈
[
h̃2/3, a0

]
, x ∈ [0, a], t ∈ [h, 1]. We

proceed as in the proof of Proposition 2.1.8. Let us recall that on the support of χ1 we
have aω̃ ≤ ε/22ma; hence aω̃ could be small or large. We distinguish between two cases:

The first case is aω̃ ≤ 1. Let T̃0 � 1. We get the following results:

• For 0 ≤ T̃ ≤ T̃0, N ≥ N(T̃0), then we apply the integration by parts to get
|G̃a,m,N,1,+,+|∈O(N−∞Λ−∞) and

sup
T̃≤T̃0,X∈[0,1],(y,z)∈R2

∣∣∣∣∣∣
∑

N(T̃0)≤N≤Ca−1/2

Ga,m,N,1,+,+

∣∣∣∣∣∣ ∈ O(h∞).

• For 0 ≤ T̃ ≤ T̃0, 2 ≤ N ≤ N(T̃0), Lemma 2.20[29] yields the following estimate
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|G̃a,m,N,1,+,+| ≤ CΛ−1/3 and

sup
T̃≤T̃0,X∈[0,1],(y,z)∈R2

∣∣∣∣∣∣
∑

2≤N≤N(T̃0)

Ga,m,N,1,+,+

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2(
h−1a2(2m

√
a)2Λ−4/3

)
,

≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.

• For T̃0 ≤ T̃ ≤ a−1/2(1−z̃2)1/2, we use the same notation as before Ω = ω̃3/2; we have
|∂2

ΩΦN,m,+,+| ≥ cT̃Ω−4/3 and a nondegenerate critical point Ωc which satisfies for

N ≥ 2, Ω
1/3
c ' T̃

N
. We have also either T̃ /N bounded or large, the stationary phase

yields |G̃a,m,N,1,+,+| ≤ CΛ−1/2T̃−1/2. Moreover, the η̃ -integration produces a q−1/2

factor contribution with q = NΛ−1Ω−1
c when q ≥ 1. Thus, we get the estimates as

follows:

If T̃ /N is bounded, Ωc stays in a compact subset of [1,∞[, and we get T̃ ' N .

• If N ≤ Λ2, we have |N1| ≤ C0. Hence the estimate is∣∣∣∣∣ ∑
N∈N1

Ga,m,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h−1Λ−1a2(2m
√
a)2Λ−1/2T̃−1/2]

≤ Ch−3

(
h

t

)1/2

a−1/4h1/2(2m
√
a)1/2T̃−1/2

≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3,

since T̃ ≥ T̃0 and a−1/4h1/2 ≤ h1/3(2m
√
a)1/6 when a ≥ h̃2/3.

• If N > Λ2, then there is the contribution q−1/2 from η̃-integration and |N1| ≤
C0T̃Λ−2. Thus the estimate is∣∣∣∣∣ ∑
N∈N1

Ga,m,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2 ∑
N∈N1

[h−1Λ−1a2(2m
√
a)2Λ−1/2T̃−1/2N−1/2Λ1/2]

≤ Ch−3

(
h

t

)1/2

[h−1Λ−1a2(2m
√
a)2T̃−1|N1(X, Y, T )|]

≤ Ch−3

(
h

t

)1/2

[a−5/2h̃22m
√
a]

≤ Ch−3

(
h

t

)1/2

h̃1/32m
√
a = Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.
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Next, if T̃ /N is large then Ωc is large.

• If N ≤ ΛΩc, then there is no contribution from η̃-integration. Moreover we have
|N1| ≤ C0 since T̃ ≥ Λ2Ω2

c implies Ω
1/3
c ' T̃ /N ≥ λΩc which is impossible since Ωc

is large. Thus the estimate is

∣∣∣∣∣ ∑
N∈N1

Ga,m,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.

• If N > ΛΩc and T̃ ≤ Λ2Ω2
c , we also have |N1| ≤ C0. Thus we get the estimate∣∣∣∣∣ ∑

N∈N1

Ga,m,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.

• If N > λΩc and T̃ > Λ2Ω2
c , then there is the contribution q−1/2 from η̃-integration

and |N1| ≤ C0T̃Λ−2Ω−2
c . We get∣∣∣∣∣ ∑

N∈N1

Ga,m,N,1,+,+

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2 ∑
N∈N1

[h−1Λ−1a2(2m
√
a)2T̃−1/2N−1/2Ω1/2

c ]

≤ Ch−3

(
h

t

)1/2

[h−1Λ−1a2(2m
√
a)2T̃−1Ω2/3

c |N1(X, Y, T )|]

≤ Ch−3

(
h

t

)1/2

[h−1a2(2m
√
a)2Λ−3]

≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.

The result of the other cases of (ε1, ε2) can be achieved by proceeding along the same
lines as in the proof for Ga,N,1 in section 2.1.

If aω̃ ≥ 1, then a critical point Ωc will satisfy Ω
1/3
c (1 + aΩ

2/3
c )1/2 ' T̃

N
for N ≥ 2. This

yields, since T ≥ CT̃ with C large,

T ≥ CT̃ ≥ CNΩ1/3
c = CNω1/2

c ≥ CNa−1/2

which contradicts t ≤ 1.

Now we prove the following estimate for N = 1.
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Proposition 2.2.11. Let α < 2/3. There exists C such that for all h ∈]0, h0], all
a ∈ [h̃α, a0], all x ∈ [0, a], all t ∈ [h, 1], all y ∈ R, all z ∈ R, the following holds:

|Ga,m,1,1(t, x, y, z;h)| ≤ Ch−3

(
h

t

)1/2
(

min

{(
h

t

)1/2

, 2m
√
a| log(2m

√
a)|

}
+ h1/3(2m

√
a)2/3

)
.

Proof. Let us recall

Ga,m,1,1 =
(−1)a2Λ−1

(2π)4h4
(2m
√
a)2

(
h

t

)1/2 ∫
eiΛY η̃η̃ψ1(η̃)G̃a,m,1,1dη̃,

G̃a,m,1,1 =
∑
ε1,ε2

∫
eiΛη̃Φ1,m,ε1,ε2Θε1,ε2(1 + aω̃)−1/2dω̃.

The only difference with the case N ≥ 2 is in the study of the phase Φ1,m,+,+ since in
the case N = 1 we may have a critical point ω̃c large. Let

G̃a,m,1,1,+,+ =

∫
eiΛΦ1,m,+,+Θ+,+(1 + aω̃)−1/2dω̃, (2.2.25)

with the phase function

Φ1,m,+,+ = T̃ γa(ω̃) +
2

3
(ω̃ −X)3/2 +

2

3
(ω̃ − 1)3/2 − 4

3
ω̃3/2 +

1

Λη̃
B(Λω̃3/2η̃),

and Θ+,+ is a classical symbol of order −1/2 with respect to ω̃ which satisfy |ω̃l∂lω̃Θ+,+| ≤
Clω̃

−1/2. Let χ3(ω̃) ∈ C∞0 (]ω̃1,∞[) with ω̃1 large and set

J =

∫
eiΛΦ1,m,+,+Θ+,+χ3(ω̃)(1 + aω̃)−1/2dω̃. (2.2.26)

To prove the proposition, we just have to verify

a1/22m
√
a|J | ≤ C min

{(
h

t

)1/2

, 2m
√
a| log(2m

√
a)|

}
. (2.2.27)

We first observe that on the support of the integral in (2.2.26), one has aω̃ ≤ (2m
√
a)−2 =

L. Hence we get

|J | ≤ C

(
1 +

∫ L/a

1

1√
x(1 + ax)

dx

)
= C

(
1 + a−1/2

∫ L

a

1√
y(1 + y)

dy

)
≤ Ca−1/2 logL.

This implies
a1/22m

√
a|J | ≤ C2m

√
a| log(2m

√
a)|.
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We have

∂ω̃Φ1,m,+,+ =
T̃

2
(1 + aω̃)−1/2 − ω̃−1/2

2
(1 +X) +O(ω̃−3/2),

∂2
ω̃ω̃Φ1,m,+,+ =

−T̃ a
4

(1 + aω̃)−3/2 +
ω̃−3/2

4
(1 +X) +O(ω̃−5/2).

At a large critical point we have T̃ 2 ' (a + ω̃−1
c )(1 + X)2. Hence T̃ is small and

∂2
ω̃Φ1,+,+(ω̃c) ' T̃ 3(1 + aω̃c)

−5/2. Let S = (T̃ /(1 +X))2 − a. Then we have S ' ω̃−1
c , and

by stationary phase we will get

|J | ≤ C(1 + aω̃c)
3/4Λ−1/2T̃−3/2S1/2.

We have to take care in this section that aω̃c may be large. In the case aω̃c ≤ 1, we have
S ' T̃ 2, and we get as before |J | ≤ CΛ−1/2T̃−1/2, which gives

a1/22m
√
a|J | ≤ C

(
h

t

)1/2

.

In the case aω̃c ≥ 1, we must have T̃ '
√
a, and S = aρ with ρ > 0 small. We get

|J | ≤ Cρ−1/4a−1/4Λ−1/2. This gives

a1/22m
√
a|J | ≤ Ch1/2

(
(2m
√
a)1/2a−1/2ρ−1/4

)
Finally, we observe that we have

√
a ' T̃ ' ta−1/22m

√
a(1 + aω̃c)

1/2 ⇒ t ' a(2m
√
a)−1ρ1/2,

which gives a1/22m
√
a|J | ≤ C(h/t)1/2. The proof of Proposition 2.2.11 is complete.

The Analysis of Ga,m,N,2

The main result in this subsection is Proposition 2.2.12.

Proposition 2.2.12. Let α < 2/3. There exists C such that for all h ∈]0, h0], all
a ∈ [h̃α, a0], all x ∈ [0, a], all t ∈]h, 1], all y ∈ R, all z ∈ R, the following holds:∣∣∣∣∣∣

∑
1≤N≤C0a−1/2

Ga,m,N,2(t, x, y, z;h)

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

a1/8h1/4(2m
√
a)3/4.

Proof. Recall

Ga,m,N,2(t, x, y, z) =
(−1)N

(2π)4h4
(h/t)1/2a2(2m

√
a)2

∫
eiΛΦNfmη̃

2ψ1(η̃)χ2(ω̃)ds̃dσ̃dω̃dη̃

(2.2.28)
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with the phase function

ΦN(s̃, σ̃, ω̃, η̃) = η̃

[
Y + T̃ γa(ω̃)+

s̃3

3
+ s̃(X − ω̃) +

σ̃3

3
+ σ̃(1− ω̃)

− 4

3
Nω̃3/2 +

N

Λη̃
B
(
ω̃3/2Λη̃

) ]
.

To start with, we rewrite Ga,m,N,2 in the following form

Ga,m,N,2 =
(−1)N

(2π)4h4
(h/t)1/2a2(2m

√
a)2

∫
eiΛY η̃η̃2ψ1(η̃)G̃a,m,N,2dη̃,

G̃a,m,N,2 =

∫
eiΛη̃φ̃N,mfmχ2(ω̃)ds̃dσ̃dω̃,

with the phase function

φ̃N,m(s̃, σ̃, ω̃)= T̃ γa(ω̃) +
s̃3

3
+ s̃(X − ω̃)+

σ̃3

3
+σ̃(1− ω̃)− 4

3
Nω̃3/2+

N

Λη̃
B
(
ω̃3/2Λη̃

)
.

Now we can proceed as in the analysis of Ga,N,2 in section 2.1. More precisely, we
apply the stationary phase method for ω̃, η̃-integrations. It yields Λ−1/2 and q−1/2 with
q = NΛ−1 respectively. We have the following facts [see Section 2.1]:

• Lemma 2.1.11: For N ≥ Λ1/3, there exists C such that∣∣∣∣∫ eiΛψ̃N,mχ̃ds̃dσ̃

∣∣∣∣ ≤ CΛ−2/3, and
1√
N

∣∣∣∣∫ eiΛψ̃N,mχ̃ds̃dσ̃

∣∣∣∣ ≤ CΛ−5/6,

with ψ̃N,m is a perturbation of the phase function obtained from φ̃N,m at the critical
point ω̃c. Hence we obtain the following estimates:

– When |N1(X, Y, T )| ≤ C0, we get∣∣∣∣∣ ∑
N∈N1

Ga,m,N,2

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2 [
(2m
√
a)2h−1a2Λ−1/2Λ−5/6

]
,

≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.

– When |N1(X, Y, T )| ' C0T̃Λ−2, the q−1/2 factor contributes to the η̃-integration,
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and we get∣∣∣∣∣ ∑
N∈N1

Ga,m,N,2

∣∣∣∣∣ ≤ ∑
N∈N1

Ch−3

(
h

t

)1/2 [
(2m
√
a)2h−1a2N−1Λ−2/3

]
,

≤ Ch−3

(
h

t

)1/2 [
(2m
√
a)2h−1a2Λ−8/3

]
,

≤ Ch−3

(
h

t

)1/2

h1/3(2m
√
a)2/3.

Recall that we used N ' T̃ , |N1| ≤ C0(1 + T̃Λ−2) and a ≥ h̃2/3.

• Lemma 2.1.12: For N ≤ Λ1/3, we have

1√
N

∣∣∣∣∫ eiΛψ̃N,mχ̃ds̃dσ̃

∣∣∣∣ ≤ CN−1/4Λ−3/4.

Therefore, the estimate in this case is given by∣∣∣∣∣ ∑
N∈N1

Ga,m,N,2

∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2 [
(2m
√
a)2h−1a2Λ−1/2Λ−3/4

]
,

≤ Ch−3

(
h

t

)1/2

a1/8h1/4(2m
√
a)3/4.

Hence putting these estimates together, we get∣∣∣∣∣∣
∑

1≤N≤C0a−1/2

Ga,m,N,2

∣∣∣∣∣∣ ≤ Ch−3

(
h

t

)1/2

[h1/3(2m
√
a)2/3 + a1/8h1/4(2m

√
a)3/4].

We notice that h1/3(2m
√
a)2/3 ≤ a1/8h1/4(2m

√
a)3/4 when a ≥

(
h

2m
√
a

)2/3

. The proof of

the Proposition 2.2.12 is complete.

Proof of Theorem 2.2.9. The estimate follows from Propositions 2.2.10, 2.2.11, 2.2.12.

2.3 Dispersive Estimates for |η| ≤ ε0

√
a .

In this section, we prove Theorem 1.4.3. We first compute the trajectories of the Hamil-
tonian flow for the operator P . At this frequency localization there is at most one
reflection on the boundary. Moreover, we follow the techniques from section 2.1 and
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2.2. It is particularly interesting that at this localization, Ga,ε0 is an oscillatory integral
with nondegenerate phase function; this is due to the geometric study of the associated
Lagrangian which rules out the swallowtails regime for |t| ≤ 1 if ε0 is small enough.

2.3.1 Free Space Trajectories.

Recall that the operator P is given by P (t, x, y, z, ∂t, ∂x, ∂y, ∂z) = ∂2
t −(∂2

x+(1+x)∂2
y+∂2

z ).
Now we compute the trajectories in the free space for the associated symbol

p = ξ2 + ζ2 + (1 + x)η2 − τ 2.

To do so, we start at t0, x0, y0, z0 with ξ0 close to 0, η0 = θζ0, |θ| ≤ ε0
√
a, ζ0 ∼ 1,

τ0 = 1, ξ2
0 + (1 + x0)η2

0 + ζ2
0 = 1. The Hamilton Jacobi equation is

ẋ = 2ξ; ẏ = 2η(1 + x); ż = 2ζ; ṫ = −2τ

ξ̇ = −η2; η̇ = 0; ζ̇ = 0; τ̇ = 0.

This yields

τ(s) = τ0;

η(s) = η0;

ζ(s) = ζ0;

ξ(s) = ξ0 − η2
0s;

t(s) = t0 − 2τ0s;

z(s) = z0 + 2ζ0s;

x(s) = x0 + 2ξ0s− η2
0s

2;

y(s) = y0 + 2η0

(
(1 + x0)s+ ξ0s

2 − 1

3
η2

0s
3
)
.

In our case, we start at t0 = 0, x0 = a, y0 = z0 = 0; the system becomes

τ(s) = τ0; η(s) = η0; ζ(s) = ζ0; ξ(s) = ξ0 − η2
0s; (2.3.1)

t(s) = −2τ0s; z(s) = 2ζ0s; x(s) = a+ 2ξ0s− η2
0s

2; y(s) = 2η0

(
(1 + a)s+ ξ0s

2 − 1

3
η2

0s
3
)
.

The Lagrangian Λ ⊂ T ∗(R4
t,x,y,z): we have Λ ⊂ {p = 0} is parametrized by the system

(2.3.1) with parameters (s, ξ0, η0, ζ0) together with (ξ2
0 + (1 + a)η2

0 + ζ2
0 )1/2 = τ0 ; s is

homogeneous of degree −1. Since t(s) = −2τ0s⇒ s = − t
2τ0

, we replace it in the system
(2.3.1). Then (2.3.1) becomes an homogeneous system parametrizing the Lagrangian Λ
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as follows:

x(t) = a− ξ0

τ0

t− η2
0

4τ 2
0

t2,

y(t) =
η0

τ0

(
− (1 + a)t+

ξ0

2τ0

t2 +
η2

0

12τ 2
0

t3
)
,

z(t) = −ζ0

τ0

t,

ξ(t) = ξ0 +
η2

0

2τ0

t,

τ(t) = τ0 = 1.

The trajectories hit the boundary when x(t) = 0; that is ,

η2
0

4
t2 + tξ0 − a = 0.

This yields the time t∗ when x(t∗) = 0:

t∗ξ0 = a− ζ2
0θ

2

4
t2∗ ∼ a.

We want to prove that at this frequency localization, the trajectories hit the boundary
only once for a given fixed time 0 < t ≤ 1. To do this, suppose that the trajectory hit the
boundary at (x = 0, y∗, z∗, ξ∗, η∗, ζ0), which is given by the system (2.3.1). More precisely,

ξ∗ = −(ξ0 +
η20
2
t∗) and we get

ξ(s) = ξ∗ − η2
0s,

x(s) = 2ξ∗s− η2
0s

2,

t(s) = t∗ − 2s.

Now we assume that the trajectory, issuing from the point (x = 0, y∗, z∗, ξ∗, η∗, ζ0), hits
the boundary; that is, x(t) = 0, then tη2

0 = 2ξ∗. This yields

tθ2ζ2
0 = −2

(
ξ0 +

θ2ζ2
0

2
t∗

)
= −2

(
ξ0 +

θ2ζ2
0

2

(
a− θ2ζ2

0

4
t2∗

)
/ξ0

)
,

|tθ2ζ2
0 | ≥ 4

√
aθ2

2
⇒ |t| ≥

4
√
a/2

ζ2
0 |θ|

≥ 1

ε0
� 1.

Therefore, we can only see at most one reflection on the boundary of the cylinder for
0 < t ≤ 1 at this frequency location.
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2.3.2 Dispersive Estimates for |η| ≤ ε0
√
a.

In this part, we prove dispersive estimates for Ga,ε0 . The main result is Theorem 2.3.1.

Theorem 2.3.1 (Theorem 1.4.3). There exists C such that for every h ∈]0, 1], every
t ∈ [h, 1], the following holds:

‖Ga,ε0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3(h/t)1/2 min
{

(h/t)1/2,
√
a| log(a)|

}
. (2.3.2)

We start as in section 2.2. Recall that we have

Ga,ε0(t, x, y, z) =
1

4π2h2

∑
k≥1

∫
e
i
h

Φkσkdηdζ, (2.3.3)

where the phase Φk and the function σk are defined by

Φk = yη + zζ + t(η2 + ζ2 + ωkh
2/3η4/3)1/2,

σk = ψ2(η/
√
a)ek(x, η/h)ek(a, η/h)χ0(ζ2 + η2)χ1(ωkh

2/3η4/3)(1− χ1)(εωk),

with ψ2 ∈ C∞0 (] − 2ε0, 2ε0[) equal to 1 on [−ε0, ε0]. We still use the notation µ2 =
η2 + ωkh

2/3η4/3. Let χ4 ∈ C∞0 ] − 1, 1[ with χ4 = 1 on [−1/2, 1/2]. The following lemma
(for |η| ≤ ε0

√
a) is a refinement of Lemma 2.2.1.

Lemma 2.3.2. Let

N =
1

4π2h2

∑
k≥1

∫
e
i
h

Φkχ4

(
tµ2

h

)
σkdηdζ.

There exists C such that

|N | ≤ Ch−3(h/t)1/2 min
{

(h/t)1/2,
√
a
}
.

Proof. As in Lemma 2.2.1, and taking in account the cutoff ψ2(η/
√
a), we get

|N | ≤ Ch−3(h/t)

∫ 1

−1

(1− x2)1/2ψ2(x
√
h/(ta))dx

and the result follows from

(h/t)1/2

∫ 1

−1

(1− x2)1/2ψ2(x
√
h/(ta))dx ≤ min

{
(h/t)1/2,

√
a
}
.

By the proof of Lemma 2.2.3, in the case
√
a ≤Mh, we get the estimate

|Ga,ε0| ≤ CMh
−3(h/t)1/2

√
a| log(

√
a)|,
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hence we may assume in what follows that h̃ = h/
√
a is a small parameter.

Using Lemmas 2.3.2 and 2.2.2, we are now reduced to the study of

Ja,ε0 =
1

4π2h2
(h/t)1/2

∑
k≥1

∫
e
i
h

(yη+tµ(1−z̃2)1/2)σ̃(ωk)(η/h)2/3 2π

L′(ωk)

ψ2(η/
√
a)

µ
dη, (2.3.4)

with σ̃(ω) defined by

σ̃ = σ0(z∗, η, µ2;λ)(1−χ4(λ))Ai((η/h)2/3x−ω)Ai((η/h)2/3a−ω)χ1(ωh2/3η4/3)(1−χ1)(εω),

where λ = tµ2/h. By Airy Poisson summation formula, we have Ja,ε0 =
∑

N∈Z JN with

JN =
1

4π2h2
(h/t)1/2

∫
e
i
h

(yη+tµ(1−z̃2)1/2)σ̃(ω)(η/h)2/3ψ2(η/
√
a)

µ
e−iNL(ω)dωdη. (2.3.5)

By the preceding paragraph, we know that it is sufficient to prove an estimate on J−1 +
J0 + J1. We will focus on J1, since J−1 is similar and J0 is simpler since it is the free
wave. One has J1 equal to:

J1 =
(h/t)1/2

(2π)4h2
h−4/3

∫
e
i
h
φ1|η|2/3f(ω, η, µ2, λ, h)

ψ2(η/
√
a)

µ
dsdσdηdω, (2.3.6)

with the phase function

φ1 = yη + tµ(1− z̃2)1/2 +
s3

3
+ s(|η|2/3x− ωh2/3) +

σ3

3
+ σ(|η|2/3a− ωh2/3)− hL(ω),

and symbol

f(ω, η, µ2, λ, h) = σ0(z∗, η, µ2;λ)(1− χ4(λ))χ1(ωh2/3η4/3)(1− χ1)(εω).

Recall that

L(ω) =
4

3
ω3/2 −B(ω3/2), for ω ≥ 1,

with
B(ω) '

∑
j≥1

bjω
−j, bj ∈ R, b1 6= 1.

Lemma 2.3.3. Let L as in section 2.1.2,

L(ω) = π + i log

(
A−(ω)

A+(ω)

)
.

Then for all ω ≥ 0, we have
L′(ω) ≥ 2ω1/2.
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This lemma, whose proof is in the Appendix, is useful in the geometric study of the
canonical set and the Lagrangian submanifold associated to the phase function of J1.

Proof of theorem 2.3.1. To study J1 in (2.3.6), we restrict the integral to η > 0 and we
first make the change of variables ω = h−2/3η2/3ω∗, s = η1/3s∗, σ = η1/3σ∗, and we obtain,
since µ = η(1 + ω∗)1/2

J1 =
(h/t)1/2

(2πh)4

∫
e
iη
h

(y+φ̃1) η (1 + ω∗)−1/2 f ψ2(η/
√
a)ds∗dσ∗dω∗dη, (2.3.7)

with the phase function φ̃1 equal to

φ̃1 = t(1− z̃2)1/2(1 + ω∗)1/2 + s∗
3

/3 + s∗(x− ω∗) + σ∗
3

/3 + σ∗(a− ω∗)− h

η
L(η2/3h−2/3ω∗).

(2.3.8)

We have

∂s∗φ̃1 = s∗
2

+ x− ω∗,
∂σ∗φ̃1 = σ∗

2

+ a− ω∗,

∂ω∗φ̃1 =
t(1− z̃2)1/2(1 + ω∗)−1/2

2
− (s∗ + σ∗)− h1/3

η1/3
L′(η2/3h−2/3ω∗).

Therefore, at a stationary point in s∗, σ∗, ω∗ of φ̃1, we must have, using Lemma 2.3.3,
|s∗| ≤

√
ω∗ and |σ∗| ≤

√
(ω∗ − a):

t(1− z̃2)1/2(1 + ω∗)−1/2 ≥ 2
(√

ω∗ −
√

(ω∗ − a)
)
.

Since (1− z̃2) ' µ = η(1 + ω∗)1/2, t ≤ 1 and η ≤ ε0
√
a we get

ε0
√
a ≥ ε0t

√
a ≥ 2

(√
ω∗ −

√
(ω∗ − a)

)
,

and therefore, we may assume ω∗ > Ma with M large if ε0 is small. This proves that
the swallowtail in the first reflection appears after a time t > 1. Hence we are reduced
to study what happen before the first occurence of a swallowtail. This case corresponds
to a regime where there are no swallowtails and no cusps. We are reduce to estimate the
oscillatory integral J :

J =
(h/t)1/2

(2πh)4

∫
e
iη
h

(y+φ̃1) η (1 + ω∗)−1/2 f ψ2(η/
√
a)κ(ω∗/(Ma))ds∗dσ∗dω∗dη, (2.3.9)

where κ ∈ C∞(]1/2,∞[), 0 ≤ κ ≤ 1, and κ equal to 1 on [1,∞[. We then re-perform the
ds∗dσ∗ integration using the definition of the Airy function, and we make the change of
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variables η =
√
aη̃ and ω∗ = aω̃. As in Proposition 2.2.11, we get with Λ = a3/2/h̃ = a2/h

J =
a

(2π)4h3

(
h

t

)1/2 ∫
eiΛY η̃ J̃ ψ2(η̃)dη̃,

J̃ =
∑
±,±

∫
eiΛη̃Φ±,± Θ±,± κ(ω̃/M) (1 + aω̃)−1/2dω̃,

Φ±,± = T̃ γa(ω̃)± 2

3
(ω̃ −X)3/2 ± 2

3
(ω̃ − 1)3/2 − 4

3
ω̃3/2 +

1

Λη̃
B(Λω̃3/2η̃),

Θ±,± = (ω̃ − 1)−1/4(ω̃ −X)−1/4Ψ±(Λ2/3η̃2/3(ω̃ − 1))Ψ±(Λ2/3η̃2/3(ω̃ −X)) f ,

where Ψ±(z̃) ∈ C∞([0,∞[) are classical symbols of degree 0 in z̃ → ∞. Therefore it
remains to prove ∣∣∣∣∫ eiΛY η̃ aJ̃ ψ2(η̃)dη̃

∣∣∣∣ ≤ C min
{

(h/t)1/2,
√
a| log(a)|

}
. (2.3.10)

Since on the support of f one has ω̃ ≤ 1
a2η̃2

, we get

|J̃ | ≤ C

∫ 1
a2η̃2

1

ω̃−1/2(1 + aω̃)−1/2dω̃ ≤ Ca−1/2| log(aη̃2)|, (2.3.11)

and this implies ∣∣∣∣∫ eiΛY η̃ aJ̃ ψ2(η̃)dη̃

∣∣∣∣ ≤ C
√
a| log(a)| .

Next, we have

∂ω̂Φ̃±,± =
T̃

2
(1 + aω̂)−1/2 ± (ω̃ −X)1/2 ± (ω̃ − 1)1/2 − 2ω̃1/2 +O(ω̃−1/2),

and (1 + aω̃)−1/2T̃ ' Tη ≤ ε0t ≤ 1. Hence the phases Φ−,±,Φ+,− have no critical points
ω̃ ≥M/2 large, and this implies in particular for their contribution J∗ to J the estimate
|J∗| ≤ C(Λη̃)−1/2 = Ch1/2η̃−1/2a−1, which implies∣∣∣∣∫ eiΛY η̃ aJ̃∗ ψ2(η̃)dη̃

∣∣∣∣ ≤ Ch1/2

∫
η̃−1/2ψ2(η̃)dη̃ ≤ C(h/t)1/2.

For the contribution to J of the phase Φ+,+, we use the same proof as the proof of
Proposition 2.2.11. We thus get the estimate

a|J̃ | ≤ C(h/t)1/2.

This concludes the proof of Theorem 1.4.3



Chapter 3

Strichartz Estimates For The Model
Problem

In this chapter, we present details for the derivation of Strichartz estimates for the so-
lutions u of the wave equation (1.1.1) in cylindrical convex domains (Ω,∆). The key
ingredients to prove Strichartz estimates are dispersive estimates, energy estimates, in-
terpoloation and TT ∗ arguments. The main result in this section is Theorem 1.3.2.

We first prove the frequency-localized Strichartz estimates [Theorem 3.1.1] from the
frequency-localized dispersive estimates. We then deduce the Theorem 1.3.2 by the
Littlewood-Paley squarefunction estimates.

Let us recall some notations: For any I ⊂ R,Ω ⊂ Rd, we define the mixed space-time
norms

‖u‖Lq(I;Lr(Ω)) :=

(∫
I

‖u(t, .)‖qLr(Ω)dt

)1/q

, if 1 ≤ q <∞,

‖u‖L∞(I;Lr(Ω)) := ess sup
t∈I
‖u(t, .)‖Lr(Ω).

3.1 Frequency-Localized Strichartz Estimates

In this section, we prove Theorem 3.1.2. The classical strategy is as follows: we begin by
interpolating between the energy estimates and dispersive estimates. This yields a new
estimate, which we further manipulate via a classical Lp inequality to establish (3.1.10).
This last step imposes conditions on space-time exponent pair (q, r); these are precisely
the wave admissibility criteria. The classical inequalities used are the Young, Hölder, and
Hardy-Littlewood-Sobolev inequalities. Let us recall the Littlewood-Paley decomposition
and some links with Sobolev spaces. For more details see the book of [ [3], chapter 2].

71
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Let χ ∈ C∞0 (R∗) and equal to 1 on [1/2, 2] such that∑
j∈Z

χ(2−jλ) = 1, λ > 0.

We define the associated Littlewood-Paley frequency cutoffs χ(2−j
√
−∆) using spectral

theorem for ∆ and we have∑
j∈Z

χ(2−j
√
−∆) = Id : L2(Ω) −→ L2(Ω).

This decomposition takes a single function and writes it as a superposition of a countably
infinite family of functions χ each one having a frequency of magnitude ∼ 2j, for j ≥ 1.
We have that a norm of the homogeneous Sobolev of Ḣβ is defined as follows: for all
β ≥ 0,

‖u‖Ḣβ :=

(∑
j∈Z

22jβ‖χ(2−jDt)u‖2
L2

)1/2

.

With this decomposition, the result about the Littlewood-Paley squarefunction estimate
[see [4, 5, 30]] reads as follows: for f ∈ Lr(Ω),∀r ∈ [2,∞[,

‖f‖Lr(Ω) ≤ Cr

∥∥∥∥∥∥
(∑
j∈Z

|χ(2−j
√
−∆)f |2

)1/2
∥∥∥∥∥∥
Lr(Ω)

. (3.1.1)

The proof follows from the Stein classical argument involving Rademacher functions and
an appropriate Mikhlin-Hörmander multiplier theorem.

We define the frequency localization vj of u by vj = χ(2−j
√
−∆)u. Hence u =

∑
j≥0 vj.

Let h = 2−j. We deduce from Theorem 1.3.1 the frequency-localized dispersive estimates
for the solution vj = χ(hDt)u of the (frequency-localized) wave equation

(∂2
t −∆)vj = 0 in Ω, vj |t=0 = χ(hDt)u0, ∂tvj |t=0 = χ(hDt)u1, vj |∂Ω = 0 (3.1.2)

read as follows: ∥∥∥U̇(t)χ(hDt)u0

∥∥∥
L∞

. h−3 min

{
1,
(h
t

) 3
4

}
‖χ(hDt)u0‖L1 , (3.1.3)

‖U(t)χ(hDt)u1‖L∞ . h−2 min

{
1,
(h
t

) 3
4

}
‖χ(hDt)u1‖L1 , (3.1.4)
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where we use the notations

U(t) :=
sin
(
t
√
−∆

)
√
−∆

and U̇(t) := cos
(
t
√
−∆

)
.

These estimates yiled the following Strichartz estimates.

Theorem 3.1.1 (Frequency-localized Strichartz estimates). Let (Ω,∆) as before. Let
vj be a solution of the (frequency-localized) wave equation (3.1.2). Then for all T there
exists CT such that

hβ
∥∥∥U̇(t)χ(hDt)u0

∥∥∥
Lqt (L

r
x)
. ‖χ(hDt)u0‖L2 , (3.1.5)

hβ−1 ‖U(t)χ(hDt)u1‖Lqt (Lrx) . ‖χ(hDt)u1‖L2 , (3.1.6)

with q ∈]2,∞], r ∈ [2,∞], 1
q
≤ α3

(
1
2
− 1

r

)
, α3 = 3

4
, and the scaling β = 3

(
1
2
− 1

r

)
− 1

q
.

Remark that if 1
q

= α3

(
1
2
− 1

r

)
then β = (3 − α3)

(
1
2
− 1

r

)
. Let us recall also the

following facts:

• The Riesz-Thorin Interpolation Theorem [see [22]. Thm.7.1.12] states that if T is
a linear map from Lp1 ∩ Lp2 to Lq1 ∩ Lq2 such that

‖Tf‖Lqj ≤Mj‖f‖Lpj , j = 1, 2

and if 1
pθ

= θ
p1

+ 1−θ
p2
, 1
qθ

= θ
q1

+ 1−θ
q2
, for some θ ∈ (0, 1), then

‖Tf‖Lqθ ≤M θ
1M

1−θ
2 ‖f‖Lpθ , f ∈ Lp1 ∩ Lp2 . (3.1.7)

• TT ∗ argument: let H be Hilbert space, B and its dual B∗ be Banach spaces. Let
T : H → B be linear operator and T ∗ : B∗ → H its adjoint. The followings are
equivalent:

1. The operator T is continuous from H to B, ‖Tf‖B ≤ C‖f‖H,
2. The operator T ∗ is continuous from B∗ to H, ‖T ∗g‖H ≤ C‖g‖B∗ ,
3. The operator T ∗T is continuous from B∗ to B, ‖T ∗Tg‖B ≤ C2‖g‖B∗ .

In particular, let (U(t))t∈R be a bounded family of continuous operators on L2(Rd).
Let T be the solution operator

T : u0 7−→ [t 7→ U(t)u0],

then

T ∗ : φ 7−→
∫
U∗(t)φ(t)dt.
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Moreover, TT ∗ coincides with the operator

φ 7−→
[
t 7→

∫
R
U(t)U∗(t′)φ(t′)dt′

]
.

We have

‖U(t)u0‖Lqt (Lrx) = sup
φ∈Bq,r

∣∣∣∣∫ U(t)u0(x)φ(t, x)dtdx

∣∣∣∣
= sup

φ∈Bq,r

∣∣∣∣∫ (U(t)u0(x)|φ(t))L2dt

∣∣∣∣
where Bq,r := {φ ∈ D(R1+d;C)/‖φ‖

Lq
′
t (Lr′x )

≤ 1}.
By the definition of the adjoint operator, we have

‖U(t)u0‖Lqt (Lrx) = sup
φ∈Bq,r

∣∣∣∣(u0

∣∣∣ ∫ U∗(t)φ(t)dt
)
L2

∣∣∣∣ .
Using the Cauchy-Schwarz inequality, we deduce that

‖U(t)u0‖Lqt (Lrx) ≤ ‖u0‖L2 sup
φ∈Bq,r

∥∥∥∥∫ U∗(t)φ(t)dt

∥∥∥∥
L2

.

Moreover, we have

∥∥∥∥∫ U∗(t)φ(t)dt

∥∥∥∥2

L2

=

∫
(U∗(t′)φ(t′)|U∗(t)φ(t))L2dt′dt

=

∫
(U(t)U∗(t′)φ(t′)|φ(t))L2dt′dt

=

∫
〈U(t)U∗(t′)φ(t′), φ̄(t)〉dt′dt

≤
∥∥∥∥∫ U(t)U∗(t′)φ(t′)dt′

∥∥∥∥
LqtL

r
x

‖φ̄‖
Lq
′
t L

r′
x
,

by the Hölder inequality in t and x.

Proof of Theorem 3.1.1. We prove only (3.1.5) since (3.1.6) follows analogously. We have
the frequency-localized dispersive estimates in Ω in (3.1.3) for |t| ≥ h as follows:

‖U̇(t)χ(hDt)u0‖L∞ . h−3
(h
t

)α3

‖χ(hDt)u0‖L1 , (3.1.8)
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and the energy estimates

‖U̇(t)χ(hDt)u0‖L2 . ‖χ(hDt)u0‖L2 (3.1.9)

We apply the Riesz-Thorin Interpolation Theorem (3.1.7) to the operator U̇(t)χ(hDt) for
fixed time t ∈ R. Interpolating between (3.1.8) and (3.1.9) with θ = 1− 2

r
yields

‖U̇(t)χ(hDt)u0‖Lr ≤ Ch(−3+α3)(1− 2
r

)t−α3(1− 2
r

)‖χ(hDt)u0‖Lr′ , (3.1.10)

for all 2 ≤ r ≤ ∞, where r′ denote the exponent conjugate to r; that is, 1
r

+ 1
r′

= 1.

Let T be the operator solution defined by

T : φ0 ∈ L2 7−→ Tφ0 = U̇(t)χ(hDt)φ0 ∈ LqtLrx,

the its adjoint is given by

T ∗ : ψ ∈ Lq
′

t L
r′

x 7−→ T ∗ψ =

∫
U̇(t)χ∗(hDt)ψ(t)dt ∈ L2.

Moreover, we have

T ∗T : ψ ∈ Lq
′

t L
r′

x 7−→ T ∗Tψ =

∫
U̇(t− s)χ∗(hDt)χ(hDt)ψ(s)ds ∈ LqtLrx.

By TT ∗ argument, it is sufficient to prove

‖T ∗Tψ‖LqtLrx . h−2β‖ψ‖
Lq
′
t L

r′
x
.

We have

‖T ∗Tψ‖LqtLrx =

∥∥∥∥∫ U̇(t− s)χ∗(hDt)χ(hDt)ψ(s)ds

∥∥∥∥
LqtL

r
x

,

. h−2(3−α3)( 1
2
− 1
r

)

∥∥∥∥∫ |t− s|−2α3( 1
2
− 1
r

)‖ψ‖Lr′x ds
∥∥∥∥
Lqt

. (3.1.11)

When 1
q
< α3

(
1
2
− 1

r

)
, we use Young’s inequality, which states that for 1 ≤ p, q ≤ ∞,

‖K ∗ u‖Lq ≤ ‖K‖Lr̃‖u‖Lp (3.1.12)

for 1 + 1
q

= 1
r̃

+ 1
p
. We apply (3.1.12) with r̃ = q/2, p = q′ and 1

q
+ 1

q′
= 1 to get an
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estimate ∥∥∥∥∫ ∞
h

|t− s|−2α3( 1
2
− 1
r

)‖ψ‖Lr′x ds
∥∥∥∥
Lqt

≤ ‖ψ‖
Lq
′
t L

r′
x

∥∥∥t−2α3( 1
2
− 1
r

)
∥∥∥
L
q/2
|t|≥h

,

≤ h−2α3( 1
2
− 1
r

)+ 2
q ‖ψ‖

Lq
′
t L

r′
x
,

since 1
q
< α3

(
1
2
− 1

r

)
, we get that

‖t−2α3( 1
2
− 2
r

)‖
L
q/2
|t|≥h

=

(∫ ∞
h

t−2α3( 1
2
− 2
r

)q/2dt

)2/q

' h−2α3( 1
2
− 1
r

)+ 2
q .

Then (3.1.11) becomes

‖T ∗Tψ‖LqtLrx . h−2(3−α3)( 1
2
− 1
r

)

∥∥∥∥∫ |t− s|−2α3( 1
2
− 1
r

)‖ψ‖Lr′x ds
∥∥∥∥
Lqt

,

. h−2[3( 1
2
− 1
r

)− 1
q

]‖ψ‖
Lq
′
t L

r′
x
,

. h−2β‖ψ‖
Lq
′
t L

r′
x
.

When 1
q

= α3

(
1
2
− 1

r

)
, we instead use Hardy-Littlewood-Sobolev inequality [see[22].

Thm. 4.5.3] which says that for K(t) = |t|−1/γ and 1 < γ <∞ that

‖K ∗ u‖Lr̃(R) . ‖u‖Lp′ (R), (3.1.13)

for 1
γ

= 1
p

+ 1
r̃
. Here, we apply (3.1.13) with r̃ = q, p = q and 1

γ
= 2

q
= 2α3

(
1
2
− 1

r

)
to get

that for q > 2, t−2/q∗ : Lq
′ → Lq is bounded. Hence, we get from (3.1.11) that

‖T ∗Tψ‖LqtLrx . h−2(3−α3)( 1
2
− 1
r

)‖ψ‖
Lq
′
t L

r′
x
,

. h−2β‖ψ‖
Lq
′
t L

r′
x
.

3.2 Homogeneous Strichartz Estimates

Let us restate Theorem 1.3.2 as:

Theorem 3.2.1 (Theorem 1.3.2). Let (Ω,∆) as before. Let u be a solution of the fol-
lowing wave equation on Ω:

(∂2
t −∆)u = 0 in Ω, u|t=0 = u0, ∂tu|t=0 = u1, u|x=0 = 0. (3.2.1)
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Then for all T there exists CT such that

‖u‖Lq((0,T );Lr(Ω)) ≤ CT

(
‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)

)
,

with
1

q
≤ 3

4

(
1

2
− 1

r

)
, and β = 3

(
1

2
− 1

r

)
− 1

q
.

Proof. Using the square function estimates (3.1.1), we get that

‖u‖LqtLrx .

(∑
j

‖vj‖2
LqtL

r
x

)1/2

. (3.2.2)

Indeed, we have

‖u‖Lr(Ω) .

∥∥∥∥∥∥
(∑
j≥0

|vj|2
)1/2

∥∥∥∥∥∥
Lr(Ω)

=

∥∥∥∥∥∑
j≥0

|vj|2
∥∥∥∥∥

1/2

Lr/2(Ω)

.

{∑
j≥0

‖v2
j‖Lr/2(Ω)

}1/2

=

{∑
j≥0

‖vj‖2
Lr(Ω)

}1/2

,

Hence, we get

‖u‖LqtLrx .

∥∥∥∥∥∥
{∑
j≥0

‖vj‖2
Lrx

}1/2
∥∥∥∥∥∥
Lqt

=


∥∥∥∥∥∑
j≥0

‖vj‖2
Lrx

∥∥∥∥∥
L
q/2
t


1/2

,

.

{∑
j≥0

∥∥‖vj‖2
Lrx

∥∥
L
q/2
t

}1/2

=

{∑
j≥0

‖vj‖2
LqtL

r
x

}1/2

.

The solution u to the wave equation (3.2.1) with localized initial in frequency 1/h = 2j

is given by

u =
∑
j

vj, where vj = U̇(t)χ(2−jDt)u0 + U(t)χ(2−jDt)u1.
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Therefore, we get that

‖u‖LqtLrx .

(∑
j

‖U̇(t)χ(2−jDt)u0‖2
LqtL

r
x

+ ‖U(t)χ(2−jDt)u1‖2
LqtL

r
x

)1/2

,

.

(∑
j

22jβ‖χ(2−jDt)u0‖2
L2 + 22j(β−1)‖χ(2−jDt)u1‖2

L2

)1/2

,

.

(∑
j

22jβ‖χ(2−jDt)u0‖2
L2

)1/2

+

(∑
j

22j(β−1)‖χ(2−jDt)u1‖2
L2

)1/2

,

. ‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω).

where we used Minkowski inequality in the third line.



Appendix

A. Airy function

Let z > 0. The Airy function Ai is defined as follows:

Ai(−z) =
1

2π

∫
R
ei(s

3/3−sz)ds.

It satisfies the Airy equation

Ai′′(z)− zAi(z) = 0, denoted by (A)

Let ω = e2iπ/3. Obviously, z 7→ Ai(ωz) is a solution to (A). Any two of these three
solutions Ai(z), Ai(ωz), Ai(ω2z) yield a basis of solutions to (A) and the linear relation
between them is

∑
j∈{0,1,2} ω

jAi(ωjz) = 0. Then Ai(z) = −ωAi(ωz) − ω̄Ai(ω̄z), which
we rewrite as follows:

Ai(−z) = e−iπ/3Ai(e−iπ/3z) + eiπ/3Ai(eiπ/3z) = A+(z) + A−(z),

where we set A±(z) = e∓iπ/3Ai(e∓iπ/3z). Notice that A−(z) = A+(z̄). We also have the
following asymptotic expansions

A−(z) =
1

2
√
πz1/4

eiπ/4e−
2
3
iz3/2 exp Υ(z3/2) =

1

z1/4
eiπ/4e−

2
3
iz3/2Ψ−(z),

with exp Υ(z3/2) ∼ (1 +
∑

l≥1 clz
−3l/2) ∼ 2

√
πΨ−(z) as z → +∞ and the corresponding

expansion for A+, where we define Ψ+(z) = Ψ̄−(z̄). Moreover, we have

A−(z)

A+(z)
= ie−

4
3
iz3/2eiB(z3/2), with iB = Υ− Ῡ.

Notice that for z ∈ R+, B(z) ∈ R and B(z) ∼
∑

j≥1 bjz
−j for z → +∞ and b1 6= 0.

79
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B. Phase Integrals

Lemma (Lemma 2.20[29]). Let K ⊂ R, and let a(ξ, λ) be a classical symbol of degree 0
in λ ≥ 1 with a(ξ, λ) = 0 for ξ /∈ K. Let k ≥ 2, c0 > 0 and Φ(ξ) a phase function such
that ∑

2≤j≤k

|Φ(j)(ξ)| ≥ c0, ξ ∈ K.

Then there exists C such that∣∣∣∣∫ eiλΦ(ξ)a(ξ, λ)dξ

∣∣∣∣ ≤ Cλ−1/k, ∀λ ≥ 1.

Moreover, the constant C depends only on c0 and on an upper bound of a finite number
of derivatives of order ≥ 2 of Φ, a in a neighbourhood of K.

Let H(ξ) be a smooth function defined in a neighbourhood of (0, 0) in R2 such that
H(0) = 0 and ∇H(0) = 0. We assume that the Hessian H ′′ satisfies rank(H ′′(0)) = 1
and ∇ det(H ′′)(0) 6= 0. Then the equation det(H ′′)(ξ) = 0 defines a smooth curve C near
0 in R2 with 0 ∈ C. Let s→ ξ(s) be a smooth parametrization of C, with ξ(0) = 0, and
define the curve X(s) in R2 by

X(s) = H ′(ξ(s)).

Lemma (Lemma 2.21[29]). Let K = {ξ ∈ R2, |ξ| ≤ r}, and let a(ξ, λ) be a classical
symbol of degree 0 in λ ≥ 1 with a(ξ, λ) = 0 for ξ /∈ K. For x ∈ R2 close to 0 set

I(x, λ) =

∫
eiλ(x.ξ−H(ξ))a(ξ, λ)dξ.

Then for r > 0 small enough, the followings hold true:

(a) If X ′(0) 6= 0, there exists C such that for all x close to 0,

|I(x, λ)| ≤ Cλ−5/6.

(b) If X ′(0) = 0 and X ′′(0) 6= 0, there exists C such that for all x close to 0,

|I(x, λ)| ≤ Cλ−3/4.

Moreover, if a is elliptic at ξ = 0, there exists C ′ such that

|I(0, λ)| ≥ C ′λ−3/4.

Lemma. Let 0 < γ < 1 and let

J(λ) =

∫ ∞
0

eiλξ
γ

f(ξ)dξ,
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where f ∈ C∞(R), suppf ⊂ [1,∞[, |ξj∂jξf(ξ)| ≤ ξm. Then one has

J(λ) ∈ O(λ−∞).

Proof. The result follows the integration by parts. We have

J(λ) =

∫ ∞
0

eiλξ
γ

Ln(f)dξ,

with

L(f) =
i

γλ

d

dx

[
ξ1−γf(ξ)

]
,

which is a symbol of degree m− γ. Then we get

|J(λ)| ≤ 1

λn

∣∣∣∣∫ ∞
0

eiλξ
γ

gn(ξ)dξ

∣∣∣∣ ≤ 1

λn

∫ ∞
0

(1 + |ξ|)m−nγdξ,

with gn is a symbol of degree m−nγ. Choose n large enough, then the result follows.

C. Proof of Airy-Poisson Formula

Let us recall the Lemma 2.1.4:

Lemma. The following equality holds true in D′(Rω),∑
N∈Z

e−iNL(ω) = 2π
∑
k∈N∗

1

L′(ωk)
δω=ωk .

Proof. Let φ ∈ C∞0 (]0,∞[) ⊂ C∞0 (R) and z = L(ω)⇔ φ(z) = ω. The Poisson summation
formula read as follows:

2π
∑
k∈Z

φ(2πk) =
∑
N∈Z

∫
e−iNzφ(z)dz.

2π
∑
k∈Z

φ(2πk) =
∑
N∈Z

∫
e−iNL(ω)φ[L(ω)]L′(ω)dω.

Let F (ω) = Ai(−ω). With A+(ω) = ρ(ω)eiθ(ω), we get F (ω) = 2ρ(ω) cos(θ(ω)). There-
fore, the equation F (ω) = 0 is equivalent to θ(ω) = π/2+ lπ, l ∈ Z, which is equivalent to
L(ω) = 2π(1 + l). Since L is a diffeomorphism from R onto ]0,∞[, one has for all integer
k ≥ 1, Ai(−ωk) = 0 iff L(ωk) = 2πk. Let H(ω) = φ[L(ω)]L′(ω) ∈ C∞0 (R). Then we get

2π
∑
k∈Z

H(ωk)

L′(ωk)
=
∑
N∈Z

∫
e−iNL(ω)H(ω)dω.
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This is equivalent to ∑
N∈Z

e−iNL(ω) = 2π
∑
k∈N∗

1

L′(ωk)
δω=ωk in D′(Rω).

Finally, using the Airy equation F ′′(y) + yF (y) = 0 and integration by part, we get∫ ω

∞
F 2(y)dy = ωF 2(ω)−

∫ ω

−∞
2yFF ′ dy = ωF 2(ω) +

∫ ω

−∞
2F ′′F ′ dy = ωF 2(ω) + F ′2(ω).

Since F ′(ωk) = 2ρ′(ωk) cos(θ(ωk)) + 2ρ(ωk)θ
′(ωk) sin(θ(ωk)), we get∫ ∞

0

Ai2(x− ωk) dx = F ′2(ωk) = 4ρ2(ωk)θ
′2(ωk) = ρ2(ωk)L

′2(ωk) = c0L
′(ωk) ,

From 2πAi(0) = 3−1/6Γ(1/3), 2πAi′(0) = −31/6Γ(2/3) and the Euler reflection formula
for the Γ function, Γ(x)Γ(1− x) = π/sin(πx), we get 2πc0 = 1, thus∫ ∞

0

Ai2(x− ωk) dx =
L′(ωk)

2π
.

D. Proof of Lemma 2.3.3

Proof. To prove the inequality in Lemma 2.3.3, let us recall that

δx=a =
∑
k≥1

ek(x, η)ek(a, η)

=
∑
k≥1

1

L′(ωk)
|η|2/3Ai(|η|2/3x− ωk)Ai(|η|2/3a− ωk),

=

∫ ∑
k≥1

δω=ωk

L′(ωk)
|η|2/3Ai(|η|2/3x− ω)Ai(|η|2/3a− ω)dω,

=
1

4π2

∫ ∑
N∈Z

e−iNL(ω)|η|2/3ei
(
s3

3
+s(|η|2/3x−ω)+σ3

3
+σ(|η|2/3a−ω)

)
dω.

Now we rewrite
δx=a =

∑
N∈Z

TN ,

with

TN =
1

4π2

∫
|η|2/3ei

(
s3

3
+s(|η|2/3x−ω)+σ3

3
+σ(|η|2/3a−ω)−NL(ω)

)
dω.
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Since we also have δx=a = T0, then the wave front set satisfies

WF
(∑
N 6=0

TN
)
⊂ {x ≤ 0}.

Moreover, WF(TN) are pairwise disjoint, and we have

∀N,WF(TN) ⊂ {x ≤ 0}.

The Lagrangian submanifold associated to TN is defined by a system of equations:

s2 + |η|2/3x− ω = 0,

σ2 + |η|2/3a− ω = 0,

s+ σ = −NL′(ω)

We have

|η|2/3x = ω − s2 = σ2 + |η|2/3a−
(
σ +NL′(σ2 + |η|2/3a)

)2
,

= |η|2/3a− 2σNL′(|η|2/3a+ σ2)−N2[L′(|η|2/3a+ σ2)]2.

Since x ≤ 0 on WT, then we get ∀a > 0,∀σ ∈ R,∀N 6= 0,

|η|2/3a− 2σNL′(|η|2/3a+ σ2)−N2[L′(|η|2/3a+ σ2)]2 ≤ 0,

|η|2/3a ≤ inf
σ∈R

{
|N |L′(|η|2/3a+ σ2)

(
|N |L′(|η|2/3a+ σ2) + 2σ

N

|N |

)}
.

Let ã = |η|2/3a. It is equivalent to have ∀ã ≥ 0,∀r ≥ 0,∀N ≥ 1,

ã ≤ inf
r≥0

{
NL′(ã+ r2)

(
NL′(ã+ r2)− 2r

)}
.

This reduces to ∀ã ≥ 0,∀r ≥ 0, since N ≥ 1

ã ≤ inf
r≥0

{
L′(ã+ r2)

(
L′(ã+ r2)− 2r

)}
.

For ã = 0, since L is strictly increasing, it yields

L′(r2) ≥ 2r, ∀r ≥ 0.

Now let â = ã+ r2, then we have ∀0 ≤ ã ≤ â,

ã+ 2L′(â)
√
â− ã ≤ L′(â)2.

Since sup0≤ã≤â ã+ 2L′(â)
√
â− ã = 2L′(â)

√
â; we get the desired inequality.

The inequality is strict for large values of ω; that is, we have L′(ω) > 2ω1/2. From the
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asymptotic expansion of the Airy functions, we have

A−(ω) =
1

2
√
πω1/4

eiπ/4e−
2
3
iω3/2

(1 +
b

ω3/2
+ · · · ); A+(ω) = A−(ω).

Then we get

L(ω) =
π

2
+

4

3
ω3/2 − 2

Im(b)

ω3/2
+ · · · ,

L′(ω) = 2ω1/2 + 3Im(b)ω−5/2 + · · ·

To prove that L′(ω) > 2ω1/2 for ω large, it is sufficient to prove that Im(b) > 0 as follows:

A−(ω) = eiπ/3Ai(eiπ/3ω) =
eiπ/3

2π

∫
R
ei(

s3

3
+seiπ/3ω)ds

=
eiπ/3

2π

∫
R
ω1/2eiω

3/2(X
3

3
+Xeiπ/3)dX, (s = ω1/2W )

Let W = ieiπ/6 + t, then W 3

3
+Weiπ/3 = t3

3
+ ieiπ/6t2 − 2

3
and

A−(ω) =
eiπ/3

2π
ω1/2e−

2
3
ω3/2

∫
R
eiω

3/2( t
3

3
+ieiπ/6t2)dt,

=
eiπ/4

2π
ω1/2e−

2
3
ω3/2

∫
R
e−ω

3/2(t′2−ie−iπ/4 t
′3
3

)dt′, (t = e−iπ/12t′),

=
eiπ/4

2
√
πω1/4

e−
2
3
ω3/2 1√

π

∫
R
e
−(t̃2−ie−iπ/4 t̃3

3ω3/4
)
dt̃, (t′ = ω−3/4t̃),

=
eiπ/4

2
√
πω1/4

e−
2
3
ω3/2 1√

π

∫
R
e−t̃

2

(1 + ie−iπ/4
t̃3

3ω3/4
+

i

18

t̃6

ω3/2
+ · · · ),

=
eiπ/4

2
√
πω1/4

e−
2
3
ω3/2

(1 +
i

18ω3/2

∫
t̃6e−t̃

2

dt̃+ · · · ).

Hence, we get that

Im(b) =
1

18

∫
t̃6e−t̃

2

dt̃ > 0.

E. Geometric Estimates

Let f(a, aσ̃2) be various analytic functions defined for a and aσ̃2 small, with f(a, b) ∈ R
for (a, b) ∈ R2. Recall that the projection of Λa,N,h onto R3 is given by
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X = 1 + σ̃2 − s̃2, (3.2.3)

T̃ = 2(1 + a+ aσ̃2)1/2

(
s̃+ σ̃ + 2N(1 + σ̃2)1/2

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
)))

,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

4

3
NH2(a, σ̃)

(
1− 3

4
B′
(

(1 + σ̃2)3/2λ
))

,

where

H1(a, σ̃) = −(1 + σ̃2)
(1 + a+ aσ̃2)1/2

1 + (1 + a+ aσ̃2)1/2
,

H2(a, σ̃) = (1 + σ̃2)3/2 −3− 4a− 4aσ̃2

2 + a+ aσ̃2 + 3(1 + a+ aσ̃2)1/2
.

We can rewrite H1, H2 as follows:

H1 = f0(a, aσ̃2) + σ̃2f1(a, aσ̃2), f0(0, 0) = f1(0, 0) = −1/2,

(1 + σ̃2)−3/2H2 = f2(a, aσ̃2), f2(0, 0) = −3/5.

As in [29], we rewrite the system in the following form

X = 1 + σ̃2 − s̃2, (3.2.4)

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

2

3
H2(a, σ̃)(1 + σ̃2)−1/2

(
T̃

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)
,

and with ω̃ = 1 + σ̃2,

2N

(
1− 3

4
B′
(
ω̃3/2λ

))
= (1 + σ̃2)−1/2

(
T̃

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)
. (3.2.5)

For a given a and (X, Y, T̃ ) ∈ R3, (3.2.4) is a system of two equations for unknown
(s̃, σ̃) and (3.2.5) gives an equation for N . We are looking for a solutions of (3.2.4) in the
range

a ∈ [hα, a0], α < 2/3, a|σ̃|2 ≤ ε0, 0 < T ≤ a−1/2, X ∈ [0, 1] with a0, ε0 small.

Let us recall Lemma 2.18 [29]. Let R = 2(1− 3Y/T̃ ), T̃ ≥ T̃0 > 0, X ∈ [−2, 2], Y ∈ R.
There exists σ̃j(X, Y, T̃ , a) ∈ C, j = 1, 2, 3, 4 such that

{σ̃ ∈ C, a|σ̃|2 ≤ ε0,∃s̃ ∈ C, (s̃, σ̃) is a solution of (3.2.4)} ⊂ {σ̃1, σ̃2, σ̃3, σ̃4}.

Moreover, there exists a function f∗(a, aσ̃
2) with f∗(0, 0) = 1 and constants C0, C1, C2 >
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0, R0,M0 > 0 such that the following holds:

(a) If |R| ≥ R0, two of the σ̃jf∗(a, aσ̃
2
j ) are in the complex disk D(

√
R,A), the two others

are in the complex disk D(−
√
R,A) with A = C0

(
1
T̃

+ a(1+|R|)√
|R|

)
. Moreover, one has√

|R| ≥ 2A.

(b) If |R| ≤ R0 and |R|T̃ ≥M0, two of the σ̃jf∗(a, aσ̃
2
j ) are in the complex disk D(

√
R,A),

the two others are in the complex disk D(−
√
R,A) with A = C1

T̃
√
|R|

. Moreover, one

has
√
|R| ≥ 2A.

(c) If |R| ≤ R0 and |R|T̃ ≤M0, one has |σ̃j| ≤ C2T̃
−1/2 for all j.

Then for a given point (X, Y, T̃ ) ∈ [−2, 2] × R × [0, a−1/2], let us denote by N (X, Y, T̃ )
the set of integers N ≥ 1 such that (3.2.4) has at least one real solution (s̃, σ̃, λ) with
a|σ̃|2 ≤ ε0 and λ ≥ λ0. We denote by N C(X, Y, T̃ ) the set of complex N such that (3.2.4)
has at least one complex solution (s̃, σ̃, λ) with a|σ̃|2 ≤ ε0 and λ ≥ λ0. Let us now rewrite
the equation (3.2.5) as

2N = T̃Φa(σ̃) +O(T̃ λ−2ω̃−3) +O(1), Φa(σ̃) =
1

2〈σ̃〉(1 + a+ aσ̃2)1/2
, (3.2.6)

with 〈σ̃〉 = (1+σ̃2)1/2 and Φa(σ̃) is bounded on the set U = {σ̃ ∈ C, |σ̃| ≤ 1/2 or |Im(σ̃)| ≤
|Re(σ̃)|/

√
3} and

|Φa(σ̃)− Φa(σ̃
′)| ≤ C|σ̃2 − σ̃′2|

sup(〈|σ̃|〉, 〈|σ̃′|〉)

(
a+

1

〈|σ̃|〉〈|σ̃′|〉

)
, ∀σ̃, σ̃′ ∈ U. (3.2.7)

We observe that (3.2.6) implies for N0 > 0 independent of (X, Y, T̃ ) that

N (X, Y, T̃ ) ⊂ [1, T̃ /2 +N0]. (3.2.8)

Lemma. There exists a constant C0 such that the followings hold:

(a) For all (X, Y, T̃ ) ∈ [0, 1]×R× [0, a−1/2], one has |N (X, Y, T̃ )| ≤ C0, and N C(X, Y, T̃ )
is a subset of the union of four disks of radius C0.

(b) For all (X, Y, T̃ ) ∈ [0, 1]× R× [0, a−1/2], the subset of N,

N1(X, Y, T̃ ) =
⋃

|Y ′−Y |+|T̃ ′−T̃ |≤1,|X′−X|≤1

N (X ′, Y ′, T̃ ′).

satisfies
|N1(X, Y, T̃ )| ≤ C0(1 + T̃ λ−2ω̃−3).
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Proof. Part (a) is a consequence of (3.2.4). Indeed, for a given (X, Y, T̃ ≥ T̃0), there are
at most four possible values of σ̃ by Lemma 2.18 [29]. For T̃ ≤ T̃0, we use (3.2.8). To
prove part (b), we may assume that T̃ ≥ T̃1, with T̃1 large. Recall that R = 2(1− 3Y/T̃ ).
Let (X ′, Y ′, T̃ ′) be such that |Y ′− Y |+ |T̃ ′− T̃ | ≤ 1, X ′ ∈ [0, 1]. Set R′ = 2(1− 3Y ′/T̃ ′).
We have |R−R′| ≤ C(1 + |R|)/T̃ .

• If |R| ≥ 2R0, with R0 as in Lemma 2.18 [29]. Since T̃ is large, we have |R′| ≥ R0

and |R| ' |R′|. Let N ′ ∈ N (X ′, Y ′, T̃ ′) and σ̃′ such that (3.2.4) holds. By Lemma
2.18 [29] (a), we may assume σ̃′∗ ∈ D(

√
R′, A′). Take σ̃∗ ∈ D(

√
R,A) associated

to (X, Y, T̃ ). Since σ̃′ is real, we have R′ ≥ R0, thus R ≥ 2R0, and σ̃ ∈ U . Let
N ∈ N C(X, Y, T̃ ) associated to σ̃. Since a1/2 ≤ 1/T̃ , we get

|σ̃ − σ̃′| ≤ C|σ̃∗ − σ̃′∗| ≤ C
(
A+ A′ + |

√
R−
√
R′|
)
≤ C(1 + |R|)

T̃
√
|R|

.

Since |σ̃|+ |σ̃′| ≤ C
√
|R|, we get

|σ̃2 − σ̃′2| ≤ C(1 + |R|)
T̃

.

By (3.2.7) and (3.2.6), we have since a|R| ' a|σ̃′|2 ≤ ε0,

2|N −N ′| ≤ |T̃ − T̃ ′|Φa(σ̃
′) + T̃ |Φa(σ̃

′)− Φa(σ̃)|+O((|T̃ |+ |T̃ ′|)λ−2ω̃−3) +O(1),

≤ C(a+ 1/|R|)(1 + |R|)√
|R|

+O(T̃ λ−2ω̃−3) +O(1) ∈ O(T̃ λ−2ω̃−3) +O(1).

• If |R| ≤ 2R0 and T̃ |R| ≥M0 + 8. Since |RT̃ −R′T̃ ′| ≤ 8, we get |R′|T̃ ′ ≥M0. Thus
we may apply Lemma 2.18 [29] (b). Let N ′ ∈ N (X ′, Y ′, T̃ ′) and σ̃′ ∈ R such that
(3.2.4) holds. Since σ̃′ is real, we have R′ > 0. Thus R′T̃ ′ > M0 and this implies
R > 0 (take M0 large). Moreover, we have |R − R′| ≤ C(1 + |R|)/T̃ , |R′| ≤ 3R0,

and |R| ' |R′|. Now, we get |σ̃ − σ̃′| ≤ C(1+R0)

T̃
√
R

and since |σ̃| + |σ̃′| ≤ C
√
|R|, we

get |σ̃2 − σ̃′2| ≤ C(1+R0)

T̃
. Therefore, we get

2|N −N ′| ≤ CT̃ (a+O(1))(1 +R0)/T̃ +O(T̃ λ−2ω̃−3) +O(1) ∈ O(T̃ λ−2ω̃−3) +O(1).

• If |R| ≤ 2R0 and T̃ |R| ≤M0 + 8. We have T̃ ′|R′| ≤M0 + 16. Thus by Lemma 2.18
[29](c), we have |σ̃′j| ≤ CT̃ 1/2, |σ̃j| ≤ CT̃−1/2. We get |σ̃2 − σ̃′2| ≤ C/T̃ and thus

2|N −N ′| ∈ O(T̃ λ−2ω̃−3) +O(1).
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Abstract

Dispersive and Strichartz Estimates for The Wave Equation Inside
Cylindrical Convex Domains

by Len MEAS

In this work, we establish local in time dispersive estimates and its application to
Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylin-
drical convex domains Ω ⊂ R3 with smooth boundary ∂Ω 6= ∅. Let us recall that dis-
persive estimates are key ingredients to prove Strichartz estimates. Strichartz estimates
for waves inside an arbitrary domain Ω have been proved by Blair, Smith, Sogge [6, 7].
Optimal estimates in strictly convex domains have been obtained in [29]. Our case of
cylindrical domains is an extension of the result of [29] in the case where the nonnegative
curvature radius depends on the incident angle and vanishes in some directions.

Keywords: dispersive estimates, Strichartz estimates, wave equation, cylindrical convex
domains.

Résumé: Estimations de dispersion et de Strichartz dans un domaine cylin-
drique convexe. Dans ce travail, nous allons établir des estimations de dispersion et
des applications aux inégalités de Strichartz pour les solutions de l’équation des ondes
dans un domaine cylindrique convexe Ω ⊂ R3 à bord C∞, ∂Ω 6= ∅. Les estimations de
dispersion sont classiquement utilisées pour prouver les estimations de Strichartz. Dans
un domaine Ω général, des estimations de Strichartz ont été démontrées par Blair, Smith,
Sogge [6, 7]. Des estimations optimales ont été prouvées dans [29] lorsque Ω est stricte-
ment convexe. Le cas des domaines cylindriques que nous considérons ici généralise les
resultats de [29] dans le cas où la courbure positive dépend de l’angle d’incidence et
s’annule dans certaines directions.

Mots Clés: estimations de dispersion, estimations de Strichartz, l’équation des ondes,
domaines cylindriques.
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