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The pessimist complains about the wind;
the optimist expects it to change;

the realist adjusts the sails.

William Arthur Ward
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Morié, Maxime Taillardat, Ivan Kojadinovic and, last but not least, Philippe Naveau.





Contents
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Résumé en français

Abstract La présente thèse concerne l’amélioration des prévisions météorologiques grâce à
des méthodes de post-traitement statistique, dans un contexte opérationnel. Des prévisions
de vitesse de vent sont construites sur la grille d’un modèle, ce qui pose des problèmes de
temps de traitement dus au nombre potentiellement élevé de points de grille dans les
modèles de prévision météorologique actuels. Ce résumé esquisse d’abord la procédure de
post-traitement des prévisions météorologiques et les motivations du sujet choisi. Ensuite,
chaque partie du présent travail est présentée en termes de motivations des problèmes
spécifiques traités et de principaux résultats.

0.1 Introduction

La plupart des services météorologiques nationaux et certaines entreprises privées emploient
des modèles de prévision numérique du temps (PNT) pour produire des prévisions météo-
rologiques et des prévisions dérivées pour des domaines météo-sensibles, tels que certains
risques économiques (Alexandridis and Zapranis 2012; Bertrand et al. 2015), la production
d’énergie renouvelable (Costa et al. 2008; Dubus et al. 2014; Zamo et al. 2014a,b), la
consommation électrique (Taylor and Buizza 2002), la qualité de l’air (Mallet and Sportisse
2006; Besse et al. 2007) ou l’agriculture (Cantelaube and Terres 2005; Baker and Kirk 2007;
Trnka et al. 2011), entre autres. Chaque modèle de PNT commet des erreurs qui ne sont
pas totalement aléatoires et, à ce titre, peuvent être partiellement réduites grâce à des
méthodes de post-traitement statistique qui ont été utilisées dès le début de l’ère de la
prévision météorologique moderne (Glahn and Lowry 1972).

L’approche la plus usuelle pour post-traiter les prévisions météorologiques consiste à con-
struire automatiquement une relation statistique entre les observatiosn passées et les pa-
ramètres associés prévus par PNT. Pour cela, les nombreux outils statistiques développés
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dans les domaines de la fouille de données ou de l’apprentissage machine sont mis à contri-
bution (Hastie et al. 2009; Kuhn and Johnson 2013; Alpaydin 2014). La relation trouvée est
ensuite appliquée aux prévisions futures afin d’améliorer leur performance, ou de prévoir
des paramètres observés non directement prévus par un modèle de PNT. Cette approche est
appelée Adaptation Statisque (AS) pour une prévision de PNT déterministe, ou Adapta-
tion Statistique d’ensemble (Gneiting et al. 2005) lorsque la prévision post-traitée s’appuie
sur une gamme de valeurs générées par un modèle de PNT d’ensemble (Leutbecher and
Palmer 2008). Les méthodes d’AS produisent une valeur scalaire qui peut être la moyenne
attendue de l’observation (Jacks et al. 1990; Zamo et al. 2014a) ou un quantile quel-
conque (Friederichs and Hense 2008), voir également Gneiting (2011a). Les méthodes
d’AS d’ensemble prévoient tout ou partie de la distribution de l’observation (Oesting et al.
2013; Zamo et al. 2014b). Bien que des modèles de PNT de plus en plus sophistiqués
et performants ont été développés durant les dernières décennies (Lynch 2008; Inness and
Dorling 2013; Bauer et al. 2015), les méthodes d’AS et d’AS d’ensemble parviennent encore
à améliorer la performance des prévisions (Ruth et al. 2009; Hemri et al. 2014; Taillardat
et al. 2016).

Puisque aucun résultat théorique ne permet de choisir a priori les meilleures méthodes d’AS
ou d’AS d’ensemble pour un problème donné, plusieurs méthodes d’AS ou d’AS d’ensemble
sont comparées, afin de choisir la meilleure, selon un critère de performance. Cependant,
plusieurs études (Bates and Granger 1969; Clemen 1989) ont montré que combiner plusieurs
prévisions (post-traitées ou pas) d’un ou plusieurs modèles de PNT (Fritsch et al. 2000)
peut améliorer les performances de prévision pour des prévisions déterministes (Vislocky
and Fritsch 1995) ou d’ensemble (Baudin 2015). Là encore, plusieurs manières de combiner
les prévisions existent (Cesa-Bianchi et al. 2006; Allard et al. 2012; Gneiting et al. 2013),
parmi lesquelles il faut choisir grâce à une comparaison empirique (Palm and Zellner 1992;
Mallet et al. 2007; Gerchinovitz et al. 2008).

Étant généralement ajustées pour obtenir de bonnes performances de prévision sur une
période d’un an environ, les méthodes d’AS et d’AS d’ensemble gomment les biais de long
terme des modèles de prévision. Des méthodes de filtrage ou de corrections en ligne du biais
permettent d’améliorer encore les prévisions post-traitées. Ces corrections dynamiques
permettent de corriger les biais sur des intervalles de temps courts, ou résultant de possibles
changements dans l’implémentation du modèle de PNT post-traité (Fritsch et al. 2000;
Woodcock and Engel 2005; Glahn 2014).

Météo-France, le service météorologique national français, a la charge de la surveillance et
de la prévision de l’évolution de l’atmosphère, et de la production des alertes de risques
météorologiques. Des alertes efficaces requièrent des prévisions météorologiques précises,
afin d’éviter les manques et les fausses alarmes autant que faire se peut. Puisque les
méthodes d’AS et d’AS d’ensemble requièrent des mesures, elles sont principalement em-
poyées pour les emplacements des stations météorologiques, sur les surfaces continentales.
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0.1. INTRODUCTION

Actuellement, des prévisions avec AS et AS d’ensemble sont disponibles pour plusieurs
paramètres et modèles de PNT uniquement à l’emplacement des stations météorologiques,
et à un pas de temps de 3 heures. Les utilisateurs finaux dans l’industrie et les secteurs
du service (électricité, aéronautique,. . . ), tels que le Conseil supérieure de la Météorologie
(CSM), un organisme officiel rassemblant d’importants utilisateurs des prévisions météo-
rologiques, demandent des prévisions améliorées en dehors des emplacements des stations
météorologiques et à une résolution temporelle plus fine. Une évolution naturelle est de
constuire des AS et AS d’ensemble sur la grille de modèles de PNT, avec une résolution
temporelle d’une heure. Cela exige de revoir les méthodes actuelles du fait d’un change-
ment d’échelle de la quantité de données traitées : environ 600 emplacements pour des AS
ou AS d’ensemble construites pour des stations météorologiques, contre plusieurs milliers
de points de grille pour un modèle de PNT typique. L’objectif de ce travail est de constru-
ire des prévisions améliorées pour la vitesse du vent mesurée chaque heure à dix mètres
de hauteur, aux points de grille de différents modèles de PNT sur la France. La vitesse
du vent a été choisie du fait de son impact potentiellement important pour la sécurité
des personnes et des biens, et de la complexité des champs de vitesse de vent près du
sol, ce qui constitue un bon test des méthodes de post-traitement. Le présent travail s’est
déroulé à DOP (Données et outils de prévision), l’équipe opérationnelle de Météo-France en
charge du post-traitement statistique des prévisions météorologiques. Étant donnée la visée
opérationnelle de DOP, une attention constante a été d’utiliser des méthodes compatibles
avec les contraintes opérationnelles, telles des contraintes de temps, de ressources informa-
tiques et de capacités de stockage. Le travail a été effectué avec le langage statistique R
(R Core Team 2015), pour des raisons de compatibilité avec le logiciel de post-traitement
statistique développé en interne.

Ce résumé se poursuit en présentant, pour chaque chapitre de la thèse, les motivations
pour les problèmes spécifiquement étudiés et les résultats de notre travail. La Section 0.2
aborde la question de la construction d’AS pour des prévisions de vitesse de vent sur une
grille. La Section 0.3 présente des détails sur l’estimation du score de probabilité de rangs
continus (CRPS), une mesure de performance très utilisée pour les prévisions probablistes
d’une observation scalaire. Les résultats obtenus dans cette seconde partie sont utilisés
dans la partie suivante de la thèse. La Section 0.4 introduit le dernier sujet, à savoir la
comparaison de plusieurs manières de combiner différents ensembles post-traités par des
méthodes d’AS d’ensemble. Enfin, la Section 0.5 conclue et résume les principaux sujets
et résultats.
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0.2 Chapitre 2: Improved Gridded Wind Speed Forecasts

with Block MOS

0.2.1 Motivation

Sur les continents, les observations ne sont souvent disponibles qu’aux emplacements des
stations météorologiques. De ce fait, les AS et AS d’ensemble ne sont généralement pro-
duites qu’à ces emplacements, qui peuvent ne pas cöıncider avec les localisations intéressant
les utilisateurs finaux. Un objectif naturel est de construire des prévisions post-traitées
sur les grilles d’un modèle de PNT. Cela peut être effectué en interpolant des AS ou AS
d’ensemble depuis les emplacements des stations vers les emplacements des points de grille,
ou en appliquant les méthodes d’AS et d’AS d’ensemble sur une grille avec des mesures
précédemment interpolées comme observations. Cette thèse utilise la seconde approche,
qui permet de construire une archive d’observations en points de grille utile pour des études
climatologiques et pour entrâıner des méthodes d’AS et d’AS d’ensemble pour plusieurs
modèles de PNT, ce qui est fait par la suite. De plus, comme indiqué dans Bosart (2003) et
Novak et al. (2014), une analyse précise et en temps réel s’avère utile pour les prévisionnistes
pour maintenir une connaissance suffisante des biais des AS, les corriger et ajouter leur
expertise à des prévisions automatiques.

Des domaines étendus et/ou des grilles fines peuvent contenir des milliers de points de
grille, ce qui demande des méthodes d’AS et d’AS d’ensemble rapides ou une optimisation
soigneuse des codes pour obéir aux délais alloués pour produire et diffuser les prévisions
aux utilisateurs finaux. Cela motive dans cette partie de la thèse une étude des moyens
d’accélérer les traitements opérationnels.

Deux objectifs sont atteints : produire des pseudo-mesures de vitesse de vent en points de
grille sur la France; et construire des méthodes rapides d’AS pour post-traiter les prévisions
de vitesse de vent sur des milliers de points de grille sur la France, comme demandé par
les utilisateurs finaux et les membres du CSM.

0.2.2 Résultats

Plusieurs techniques statistiques sont testées pour construire des mesures en points de grille,
en interpolant la vitesse du vent mesurée aux emplacements des stations météorologiques
vers une grille régulière de maille environ 0,025◦ (soit 2,5 km). Ces nouvelles analyses de
vitesse de vent sont construites car les analyses existantes à Météo-France n’ont pas été
jugées suffisamment précises à cause d’un défaut de vents forts et parce qu’elles n’étaient
disponibles, jusqu’en Avril 2015, qu’au pas de temps tri-horaire, ce qui est insuffisant pour
construire des AS horaires comme demandé. La principale difficulté ici est que la vitesse du
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0.2. CHAPITRE 2: Improved Gridded Wind Speed Forecasts with Block MOS

vent en surface constitue un phénomène très inhomogène et non stationnaire, dans l’espace
et dans le temps. Des effets locaux, tels que l’effet Venturi, la friction de surface ou des
effets d’abri par des obstacles interagissent d’une manière très complexe, s’ajoutant aux
variations additionnelles selon les conditions météorologiques du jour. Par exemple, dans
une traine, des cellules convectives s’accompagnent de courants de densité, c’est-à-dire de
zones localisées de masses d’air descendantes qui accroissent la vitesse du vent sur quelques
kilomètres. D’un autre côté, le long du front associé à une dépression, de fortes vitesses de
vent existent sur plusieurs centaines de kilomètres de long et quelques dizaines de kilomètres
de large. Mais des courants de densité peuvent également exister dans un front, renforçant
le vent localement. Ces phénomènes, ainsi que d’autres tels que les brises côtières, les vents
orographiques et d’autres, rendent difficile la modélisation des structures des champs de
vent près de la surface. Dans notre étude, certaines techniques d’interpolation modélisent
explicitement la dépendance spatiale, d’autres non. Afin de capturer la bonne longueur de
corrélation du champ de vent, l’interpolation est faite sur des domaines de taille variable.
La meilleure technique d’interpolation statistique, parmi 48 testées, fait appel aux splines
plaque mince de régression (SPMR), ajustées sur la vitesse de vent mesurée au même
instant en chaque station météorologique de France. La fonction d’interpolation s’avère
très parsimonieuse, comportant seulement deux composantes additives: une première spline
fonction de la plus récente prévision de vent moyen du modèle local de haute résolution de
Météo-France, AROME, et une seconde spline fonction des coordonnées tri-dimensionnelle
des points. Ce n’est pas surprenant : la modélisation de la dépendance entre points de grille
est rendue inutile par l’usage des prévisions d’AROME, qui contiennent une information
sur la structure spatiale du champ de vent. D’un autre côté, du fait de la complexité du
champ de vitesse de vent, des méthodes classiques d’interpolation telles que le krigeage ne
peuvent modéliser efficacement la dépendance spatiale du vent.

Une comparaison par validation croisée montre que la nouvelle analyse est plus précise
que l’analyse AROME existante. La vérification des performances de l’analyse de vitesse
de vent d’AROME n’avait jamais été effectuée. Cette étude montre que vérifier l’analyse
AROME en utilisant des mesures de vitesse de vent non assimilées aboutit à des per-
formances très différentes que celles obtenues lors d’une vérification avec les données as-
similées. Un code implémentant ce banc d’essai de méthodes d’interpolation a été écrit,
afin de l’appliquer à d’autres paramètres (la force des rafales de vent a également été in-
terpolée). Les mesures en points de grille obtenues couvrent une période de quatre ans,
débutant le 1er janvier 2011, au pas horaire. Cette longue archive sert d’observation pour
ajuster les méthodes d’AS et d’AS d’ensemble testées dans la suite de ce travail.

Avec ces mesures en points de grille comme observation, plusieurs méthodes d’AS sont
ensuite comparées pour post-traiter ARPEGE, le modèle global de Météo-France avec une
maille de 10 km sur la France. La régression linéaire multiple sert d’AS simple de référence.
Les forêts aléatoires constituent une méthode d’AS plus complexe. Cependant, alors que
l’information nécessaire pour prédire avec la régression linéaire multiple nécessite quelques
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kilo-octets de stockage sur disque et un temps de chargement en mémoire de quelques
millisecondes, l’information nécessaire pour utiliser les forêts aléatoires requiert plusieurs
méga-octets de stockage et un temps de chargement d’environ une demie-seconde. La
France comportant plusieurs centaines de points de grille, des solutions pour traiter une
telle quantité de données dans des délais opérationnels sont développées. Premièrement,
des “AS par bloc” sont employées, à savoir que chaque forêt aléatoire est ajustée sur des
points de grille proches simultanément. Pour les applications opérationnelles, la France
sera divisée en blocs contigus, chacun étant post-traité avec sa propre AS. Ce traitement
par bloc permet de réduire le nombre d’objets R utilisés pour stocker les forêts aléatoires,
sans réduire les performances de prévision en comparaison de forêts aléatoires ajustées pour
chaque point de grille séparément. Deuxièmement, les forêts aléatoires sont optimisées en
réduisant le nombre et la profondeur de leurs arbres constitutifs, à nouveau sans diminution
de la performance de prévision. Ces deux améliorations réduisent le nombre et la taille de
stockage des objets R à charger en mémoire lors des applications. Le temps de chargement
se voit réduit d’un facteur 10, soit un temps total estimé d’une demie minute pour toute
la France. Les forêts aléatoires obtiennent de meilleures performances que la régression
linéaire multiple. Ces AS par bloc avec des forêts aléatoires deviendront opérationnelles
courant 2017, pour la vitesse du vent et la force des rafales.

Ce chapitre reproduit l’article Zamo et al. (2016) paru dans Weather and Forecasting.

0.3 Chapitre 3: Estimation of the CRPS with Limited In-

formation

0.3.1 Motivation

Dans le Chapitre 4, plusieurs prévisions probabilistes sont combinées linéairement afin
d’obtenir une prévision plus performante. Pour certaines méthodes de combinaison testées,
les poids de la combinaison dépendent d’une mesure de performance des prévisions proba-
blistes, le score de probabilité des rangs continus (CRPS). Certaines distributions prévues
sont paramétriques et donc totalement connues, ce qui autorise un calcul analytique exact
du CRPS. D’autres distributions prévues sont non paramétriques, et donc partiellement
connues, le CRPS devant alors être estimé. Afin de calculer de manière précise les poids de
la combinaison, le CRPS des prévisions probabilistes non paramétriques doit être estimé
précisément, ce qui motive l’étude de ce chapitre.

Lorsque une distribution prévue est partiellement connue à travers un ensemble de M
valeurs (appelées “membres” en Météorologie), comme c’est le cas dans le Chapitre 4, la
précision de l’estimation du CRPS et le temps de calcul de ce score augmentent avec M .
Une motivation de ce chapitre est d’estimer la précision de l’estimation du CRPS avec le
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nombre de membres, afin de dégager un bon compromis entre une estimation précise et un
nombre de membres réduit, ce qui accélère les calculs.

Nous avons établi des bornes d’erreur de l’estimation du CRPS, qui se sont avérées d’un
intérêt pratique limité car demandant de connâıtre la distribution prévue. De ce fait,
l’approche utilisée dans cette partie du travail est de simuler des cas pour lesquels la
distribution prévue est partiellement connue et de calculer les estimations associées du
CRPS. Les simulations sont effectuées en supposant que la distribution prévue consiste en
une distribution paramétrique dont le CRPS possède une forme analytique. Cela permet
une étude empirique des biais et variance d’estimation.

0.3.2 Résultats

Quatre estimateurs du CRPS proposés dans la littérature sont comparés. On démontre
qu’ils se réduisent à deux, et une relation est établie entre ces deux estimateurs. Ces
résultats ne requièrent aucune hypothèse. En particulier, l’ensemble des M valeurs peut
ne pas être issu d’un tirage aléatoire selon une distribution, et aucune hypothèse de sta-
tionnarité ou d’échangeabilité n’est requise.

Suite à ces résultats, des simulations permettent d’étudier la précision des deux estimateurs
avec un ensemble de valeurs aléatoires issues de la distribution prévue ou un ensemble de
quantiles d’ordres connus de la distribution prévue. D’autres études ne concernaient que
des ensembles aléatoires. Cette étude avec des ensembles de quantiles est motivée par le
Chapitre 4, où de tels ensembles sont employés. Les simulations montrent que l’estimateur
le plus précis dépend du type d’ensemble prévu : un échantillon aléatoire ou un ensemble
de quantiles d’ordres connus. Pour un ensemble aléatoire, les simulations confirment que
le “fair CRPS” de Ferro et al. (2008) est non biaisé, et elles dégagent des indications em-
piriques sur la variabilité de l’estimateur pour des faibles nombres de paires de prévisions et
d’observations. Dans le cas d’un ensemble de quantiles, l’estimation la plus précise s’obtient
en choisissant les ordres optimaux introduits dans Bröcker (2012), mais le fair CRPS ne
constitue pas un bon estimateur. La présence de valeurs égales dans un ensemble de quan-
tiles, possible avec certaines méthodes d’AS d’ensemble employées dans le Chapitre 4, peut
fortement réduire la précision de l’estimation du CRPS. Une méthode d’interpolation est
proposée pour rétablir une meilleure précision. À notre connaissance, cette possible exis-
tence d’ex aequos dans des prévisions d’AS d’ensemble n’a pas été pointée dans les études
précédentes, ni son impact sur l’estimation du CRPS. Suite à ces simulations, des recom-
mendations sont émises pour estimer précisément le CRPS d’une prévision probabiliste
lorsque la distribution prévue n’est pas exhaustivement connue. Bien que le caractère non
biaisé du “fair CRPS” d’un ensemble aléatoire peut être démontré, il n’a pas été possible
de justifier théoriquement ces recommendations dans le cas d’un ensemble de quantiles
d’ordres connus. Mais une large gamme de distributions prévues ayant été utilisées durant
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les simulations, cela conduit à penser que les recommendations sont assez générales. De
plus, une explication qualitative mais logique de la bonne précision d’estimation dans le cas
d’un ensemble de quantiles est avancée. Cette explication ne dépend pas de la distribution
prévue, ce qui renforce la présomption sur la généralité de nos résultats.

0.4 Chapitre 4: Aggregation of Probabilistic Wind Speed

Forecasts

0.4.1 Motivation

Les utilisateurs finaux des prévisions météorologiques auraient intérêt à utiliser des prévi-
sions probabilistes, mais ne sont pas satisfaits de leur performance. Des prévisions fiables
constitueraient une aide pour évaluer l’incertitude de la prévision et pour la prise de décision
en contexte incertain. Cette partie de la thèse compare dans un banc d’essai plusieurs
méthodes pour combiner de manière linéaire plusieurs prévisions d’ensemble opérationnelles
à Météo-France et ces mêmes prévisions d’ensemble post-traitées avec des méthodes d’AS
d’ensemble. La combinaison d’AS d’ensemble vise à améliorer la prévision par rapport à
une seule AS d’ensemble. Le point principal est ici la méthode de combinaison plus que les
méthodes d’AS d’ensemble, dont l’apport a été étudié dans une autre thèse à Météo-France
(Taillardat et al. 2016). Dans la présente thèse, trois moyens permettent d’améliorer la
performance de la prévision combinée. D’abord, l’apprentissage de plusieurs méthodes d’AS
d’ensemble sur des périodes glissanes ou fixes fournit une vaste gamme de performances.
Ensuite, l’utilisation de plusieurs méthodes d’ensembles et de différents ensembles vise à
produire des prévisions avec des structures d’erreurs différentes dans le temps et l’espace.
Enfin, les poids de la combinaison sont calculés sur une période glissante, afin que la
méthode de combinaison puisse s’adapter rapidement à l’évolution des performances et
puisse pondérer fortement les prévisions avec les meilleures performances.

Du fait de la variabilité importante de l’état de l’atmosphère dans le temps et l’espace
(Slingo and Palmer 2011; Holton and Hakim 2012; Rohli et al. 2013), la plupart des
méthodes d’AS ou d’AS d’ensemble requièrent une archive d’observations et de prévisions
associées couvrant plusieurs années et un nombre suffisant de situations météorologiques
différentes. Le code du modèle de PNT doit rester contant sur ces années d’apprentissage,
de sorte que les structures d’erreurs de prévision puissent être modélisées par les méthodes
d’AS et d’AS d’ensemble. Les modèles de PNT sont généralement modifiés une ou deux
fois par an, de sorte que de légères modifications des performances s’accumulent au fil
du temps ou que d’importantes améliorations de performances surviennent. Ces change-
ments finissent par rendre caduque la relation statistique construite précédemment entre
les observations et les prévisions. Par exemple, Erickson et al. (1991) étudie l’impact des
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changements d’un modèle de PNT sur la performance d’une AS pour différents paramètres,
et montre que la performance de l’AS pour la couverture nuageuse est diminuée. Le schéma
de combinaison proposé plus haut tente de traiter ce problème. Une autre solution serait de
construire des reprévisions, c’est-à-dire prévoir le passé avec la nouvelle version du modèle
(Wilks and Hamill 2007; Hagedorn et al. 2008; Hamill et al. 2008) puis de redévelopper
une AS. Cela s’avère toutefois cher en ressources, et la combinaison de prévisions pourrait
rendre cela inutile, comme suggéré dans Miller et al. (1992).

Le post-traitement est effectué sur une grille, avec pour observation les mesures de vitesse
de vent en points de grille présentées au Chapitre 2. Les quatre ensembles employés
proviennent du projet TIGGE (Bougeault et al. 2010; Swinbank et al. 2016), qui rassemble
les prévisions d’ensemble de différents services météorologiques.

0.4.2 Résultats

Deux méthodes d’AS d’ensemble sont employées : la régression non homogène (Hemri et al.
2014) et les forêts aléatoires quantiles (Meinshausen 2006). Les forêts aléatoires quantiles
(QRF) montrent de bonnes performances pour la vitesse du vent, comme montré dans une
précédente étude (Taillardat et al. 2016). Ces bonnes performances découlent du caractère
non paramétrique des QRF, ce qui leur permet d’ajuster la distribution de la vitesse du
vent de manière plus flexible que la régression non homogène (NR). Comme QRF requiert
une longue période d’apprentissage, elles sont toutefois combinées avec NR, moins flexible
mais pouvant être entrâınée sur une période plus courte grâce à son nombre réduit de
paramètres d’ajustement. Conformément à Hemri et al. (2014), qui montre que c’est le
meilleur choix pour la vitesse du vent, une distribution normale tronquée en zéro de la
racine carrée de la vitesse du vent est choisie pour NR. Plusieurs versions sont ajustées
sur des fenêtres d’apprentissage de tailles différentes, afin de construire des distributions
prévues qui évoluent plus ou moins rapidement. Cela vise à permettre à la combinaison
d’adapter ses poids à des régimes de temps plus ou moins stables.

Puisque QRF ne permet de produire que des fonctions de répartition (CDF) en escalier,
les différentes versions de NR sont également transformées en CDF en escalier pour ren-
dre possible la combinaison des prévisions. Cela s’inspire de la thèse de Baudin (2015),
qui combine d’une manière similaire les valeurs prévues triées par valeur croissante de
plusieurs ensembles mis en commun. Cela signifie que les prévisions probabilistes indi-
viduelles sont des CDFs en escalier avec une seule marche. Ces prévisions individuelles de
Baudin (2015) ne sont pas identifiables au cours du temps, ce qui est requis par la théorie de
la prévision avec avis d’experts employée dans ce travail et le nôtre. Par exemple, la valeur
minimale à différents instants peut être issue d’un membre différent et/ou d’un ensemble
différent. Étant un ensemble (post-traité ou brut) en soi, chacune de nos prévisions com-
binées constitue une prévision probabiliste identifiable au fil du temps. Afin d’utiliser les
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méthodes de combinaison, nous avons dû d’abord généraliser certaines formules de Baudin
(2015), valides pour des CDFs en escalier avec une marche, au cas de CDFs en escalier
avec un nombre quelconque de marches. Finalement, avec quatre ensembles bruts et six
versions post-traitées de chaque ensemble, 28 CDFs en escalier sont combinées avec des
poids convexes pour produire une CDF en escalier valide. Les poids de la combinaison
sont calculés selon cinq méthodes. Certaines de ces méthodes sont empiriques. D’autres
sont basées sur la théorie de la prévision avec avis d’experts présentée dans ce chapitre,
et possèdent d’intéressantes propriétés théoriques en termes de performance. L’utilisation
de cette théorie pour la combinaison de prévisions probabilistes est relativement innovante
dans le cadre de la Météorologie.

Deux critères de performance sont employés : le CRPS moyenné sur tous les points de grille
et tous les instants, et la proportion de points de grille avec un histogramme des rangs plat.
L’histogramme des rangs est simplement l’histogramme du rang de l’observation lorsqu’elle
est ajoutée à l’ensemble des valeurs prévues associées. La platitude de l’histogramme des
rangs, condition nécessaire pour une prévision fiable, est évaluée avec les tests de platitude
de Jolliffe-Primo, introduits dans Jolliffe and Primo (2008). Ces tests estiment l’existence
de types de déviation particulière à la platitude de l’histogramme des rangs. Ils ne sont
pas encore très utilisés pour la vérification de prévision, bien qu’ils éclairent l’origine des
défauts des prévisions probabilistes, telles qu’un biais ou un manque de dispersion. Ces tests
sont employés ici comme diagnostic automatique, ce qui est rendu nécessaire par le nombre
important de points de grille à traiter opérationnellement. Ces deux critères de performance
ne conduisent pas au même classement des 28 prévisions individuelles et des méthodes de
combinaison. Minimiser le CRPS peut s’obtenir avec très peu d’histogrammes des rangs
plats, tandis que la maximisation du nombre d’histogrammes des rangs plats s’accompagne
d’une augmentation du CRPS très faible. Ce résultat est nouveau car l’approche habituelle
est de minimiser dans un premier temps le CRPS puis de tester si l’histogramme des
rangs peut être considéré plat. Il est donc proposé de choisir la méthode de combinaison
selon la platitude de l’histogramme des rangs testée avec les tests de platitude de Jolliffe-
Primo. Selon ce critère, la meilleure méthode de combinaison est la pondération par
poids exponentiels (EWA), basée sur la théorie de prévision avec avis d’experts. EWA
produit une importante proportion d’histogrammes des rangs plats sur la France (environ
85%), tout en obtenant un CRPS moyen similaire à celui de la méthode de combinaison
minimisant le CRPS. La meilleure prévision avec EWA, bien qu’ajustée séparément pour
chaque point de grille et échéance de prévision, présente une corrélation spatio-temporelle.
Également, les poids de la combinaison peuvent varier rapidement comme attendu, ce
qui autorise une adaptation rapide de la combinaison aux modifications des ensembles de
PNT. Finalement, le choix optimal des paramètres de EWA peut être déterminé avec une
seule année d’observations et de prévisions, ce qui permet de mettre à jour fréquemment
le post-traitement par AS d’ensemble.
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0.5. CONCLUSION

0.5 Conclusion

Cette thèse étudie plusieurs aspects du post-traitement de la prévision météorologique de
la vitesse du vent sur la France. L’objectif est de produire des prévisions de vitesse de vent
améliorées sur une grille, pour des prévisions déterministes et probabilistes. La stratégie
adoptée procède en interpolant d’abord les mesures aux stations météorologiques vers la
grille d’un modèle de haute résolution, puis en utilisant ces mesures en points de grille pour
entrâıner des méthodes d’AS et d’AS d’ensemble.

Pour les prévisions déterministes, des AS par blocs sont introduites, ainsi qu’une optimisa-
tion méticuleuse de la taille et des objets R associés. Ces AS par blocs allégées présentent
de bonnes performances tout en autorisant une importante accélération des traitements en
conditions opérationnelles. Ces AS sont en cours d’implémentation.

En ce qui concerne les AS d’ensemble, des méthodes empiriques de combinaison de pré-
visions et des méthodes de combinaisons basées sur la théorie de la prévision avec avis
d’experts sont comparées. Puisque des CDFs en escalier sont combinées, cette partie de la
thèse requiert d’étudier les propriétés des estimateurs du CRPS lorsque l’information sur la
distribution prévue est limitée. Cette étude conduit à des recommandations pour estimer
précisément le CRPS. Également, à cause de différences entre la platitude des histogrammes
de rangs et de la valeur du CRPS, il est proposé de choisir parmi les prévisions probabilistes
en imposant dans un premier temps la platitude de l’histogramme des rangs selon les tests
de Jolliffe-Primo. La meilleure méthode de combinaison choisie selon ce critère obtient un
CRPS similaire à celui de la prévision individuelle minimisant le CRPS, tout en présentant
bien plus d’histogrammes des rangs jugées plats. Ces méthodes doivent également être
mises en opérationnel dans le courant de l’année 2017.
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Chapter 1

Introduction and Summary

Abstract This PhD thesis deals with the improvement of weather forecasts by statistical
post-processing methods in an operational context. Improved wind speed forecasts are
built on a grid, which poses issues due to the potentially high number of grid points in
current weather forecast models. This introduction begins with a brief description of the
post-processing procedure of weather forecasts and the motivation of the chosen topic.
Then each part of the work is successively presented, with the motivations to the specific
addressed issues, the state of the art and the main results.
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CHAPTER 1. INTRODUCTION AND SUMMARY
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1.1 Introduction

Most national weather services and some private firms use numerical weather prediction
(NWP) models to produce weather forecasts and derived predictions in weather-sensitive
fields, such as weather-related economic risks (Alexandridis and Zapranis 2012; Bertrand
et al. 2015), renewable energy production (Costa et al. 2008; Dubus et al. 2014; Zamo
et al. 2014a,b), electricity consumption (Taylor and Buizza 2002), air quality (Mallet and
Sportisse 2006; Besse et al. 2007), agriculture (Cantelaube and Terres 2005; Baker and
Kirk 2007; Trnka et al. 2011), to name but a few. Every NWP model is prone to errors
that are not completely random and, as such, may be partly reduced thanks to statistical
post-processing techniques that have been used since the early times of modern weather
forecasting (Glahn and Lowry 1972).

The most frequent approach to post-process weather forecasts is to automatically build a
statistical relationship between past observations and associated NWP forecast parameters
thanks to the many statistical tools developed in the fields of data mining or machine
learning (Hastie et al. 2009; Kuhn and Johnson 2013; Alpaydin 2014). The relationship
is then applied to future forecasts to improve their performance, or to forecast observed
parameters not directly predicted by the NWPmodel. This approach is called model output
statistics (MOS) for a deterministic, or point, NWP forecast, and ensemble MOS (EMOS,
Gneiting et al. 2005) when the post-processed forecast uses the several values generated by
an ensemble NWP model (Leutbecher and Palmer 2008). MOS methods forecast a scalar
value that may be the expected mean of the observation (Jacks et al. 1990; Zamo et al.
2014a) or any quantile (Friederichs and Hense 2008), see also Gneiting (2011a). EMOS
methods forecast all or several aspects of the predictive distribution of the observation
(Oesting et al. 2013; Zamo et al. 2014b). Although increasingly sophisticated and skillful
NWP models have been developed during the last decades (Lynch 2008; Inness and Dorling
2013; Bauer et al. 2015), (E)MOS methods can still improve forecast performances, e.g.
(Ruth et al. 2009; Hemri et al. 2014; Taillardat et al. 2016).

Since no theoretical result exists to choose a priori the best (E)MOS methods for a problem
at hand, several (E)MOS methods, and sophistications thereof, are put to the test, in
order to choose the best one according to some performance criterion. However, several
studies (Bates and Granger 1969; Clemen 1989) have shown that combining different (post-
processed or not) forecasts from one or several NWP models (Fritsch et al. 2000) may
improve forecast performance of deterministic (Vislocky and Fritsch 1995) and ensemble
forecasts (Baudin 2015). Again, many combination approaches exist (Cesa-Bianchi et al.
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2006; Allard et al. 2012; Gneiting et al. 2013), among which one chooses after an empirical
comparison (Palm and Zellner 1992; Mallet et al. 2007; Gerchinovitz et al. 2008).

Being usually fitted to get good forecast performances over a year or so, (E)MOS remove
the long-term biases in the forecast errors. Filtering techniques or online bias corrections
may thus further improve the post-processed forecasts. These dynamical corrections may
remove biases occurring on short time intervals or resulting from possible changes in the
implementation of the post-processed NWP model since the (E)MOS training (Fritsch et al.
2000; Woodcock and Engel 2005; Glahn 2014).

Météo-France, the French national weather service, is in charge of surveying and forecasting
the evolution of the atmosphere, and to issue warnings in case of forthcoming weather
hazards. Efficient warnings require accurate weather forecasts, to avoid misses and false
alarms as much as possible. Since (E)MOS requires measurements, they are mainly built
for the locations of meteorological stations, over continental areas. Currently, (E)MOS
forecasts are available for several parameters and several models at meteorological station
locations only, and with a time-step of 3 h. End-users from the industry and service sectors
(electricity, aeronautics,. . . ), such as the “Conseil supérieur de la météorologie” (CSM, High
Council of Meteorology), an official gathering of important end-users of weather forecasts,
require improved forecasts at locations that may not correspond to meteorological stations
and with a finer temporal resolution. Thus a natural evolution is to build (E)MOS on the
grid of NWP models, with a temporal resolution of 1 h. This requires to revise current
methods due to a change of scale, from about 600 locations for (E)MOS at meteorological
station locations to thousands of locations on a typical model grid. The objective of this
work is thus to build improved 10 m hourly wind speed forecasts at the grid points of
different NWP models over France. Wind speed has been chosen due to its possible severe
impact on the safety of people and goods, and because the complexity of surface wind speed
fields constitutes a good test for post-processing methods. The present work takes place at
DOP (“Données de prévisions”, or forecast data), the operational team of Météo-France in
charge of the statistical post-processing of weather forecasts. Due to the operational goals
of DOP, a constant concern is also to use methods compatible with operational constraints,
such as time delays, available computer resources and memory storage. The work is done
with the R statistical language (R Core Team 2015), for compatibility with the team’s
internally-developed tool for statistical post-processing.

This introduction proceeds by presenting, successively for each chapter of this study, our
motivation to study the specific issues of the concerned chapter, then the state of the
art and finally the results of our work. Section 1.2 deals with the issue of building MOS
methods for wind speed forecasts on a grid. Section 1.3 gives details on the estimation
of the continuous ranked probability score (CRPS), a performance measure much used for
probabilistic forecasts of a scalar observation. The results obtained in this second part are
required in the following part of the work. Section 1.4 presents the last topic, namely the
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comparison of several ways to combine different EMOS-post-processed ensembles. Last,
Section 1.5 concludes and summarizes the main topics and results.

1.2 Chapter 2: Improved Gridded Wind Speed Forecasts

with Block MOS

1.2.1 Motivation

Over continental areas, observations are often available only at locations of meteorological
stations. Therefore, (E)MOS are usually produced at these locations only, which may not
coincide with end-users’ desired locations. Thus a natural goal is to build post-processed
forecasts at the grid points of a NWP model. This may be achieved by interpolating
(E)MOS forecasts from station locations to grid point locations, or apply (E)MOS methods
on a grid with previously gridded measurements as the observation. This work adopts the
second approach, because it allows to build an archive of gridded observations that may be
used for climatic studies and for training (E)MOS methods for several NWP models, which
is done in the following. Furthermore, as stated in Bosart (2003) and Novak et al. (2014),
a real-time accurate analysis of the atmospheric state is required for human forecasters to
keep a sufficient knowledge of MOS biases to correct them and add a value to automatic
forecasts. Large domains and/or fine grids may contain thousands of grid points, which
requires fast (E)MOS methods or a careful optimization of the code to abide by the time
delays allotted to produce and diffuse the forecasts to the end-users. This motivates a
study of means to speed up operations in this part of the work.

Two goals are achieved: gridded measurements of wind speed over France; and quick MOS
methods to post-process wind speed forecasts on thousands of grid points over France, as
required by end-users and members of the CSM.

1.2.2 State of the art of wind speed MOS and gridded MOS

MOS methods for wind speed forecasts have been applied and studied deeply in the field
of wind power generation, due to the important economic impacts of wind speed forecast
errors for wind power firms and grid regulators. These methods are usually applied to
the locations of wind farms only. Based on the reviews of Lei et al. (2009) and Jung and
Broadwater (2014), two main approaches are used in the wind power field: time series
analysis methods or data mining techniques.

As for the time series methods, autoregressive (AR), moving average (MA), autoregressive-
moving average (ARMA) and so on are used to forecast wind speed or wind power for very
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short term (less than 6 h ahead). These models build the forecast as a linear combination
of past forecasts and/or forecast errors. For instance, Liu et al. (2010) decompose the wind
speed time series in wavelet components, model each wavelet component with a time series
method, then add the forecasted component wavelets.

For farther lead times, the main approach is to use support vector machines (SVM) or
neural network (NN). Colak et al. (2012) review data mining techniques for wind speed
and wind power forecasting. Some applications build an hybrid model with a modeling of
the linear evolution of wind speed with time series methods, and a correction with SVM
or NN to take account of the nonlinear evolution. Bhaskar and Singh (2012) decompose
the wind speed time series on wavelets, then uses each wavelet component to regress on
with an adaptive wavelet neural network. Guo et al. (2012) decompose the wind speed
time series on a small number of mode functions, use NN to forecast each sub-series (with
a variable selection step) then add the different forecast components. Douak et al. (2013)
select weather predictors with an active learning technique, then use kernel ridge regression
to build the MOS. Shi et al. (2012) and Cadenas and Rivera (2010) use ARIMA to model
the linear evolution of the wind speed time series, and NN or SVM to model the nonlinear
part. With ARIMA, Liu et al. (2012) choose the structure of an NN MOS or initialize a
Kalman filter that serves to build their MOS. Haque et al. (2012) build different versions of
NN, and add as inputs the average observed values on “similar days”. Adding the similar
days’ average observation improves the performance over the NN without the similar days.
Qin et al. (2011) choose dynamically between an NN method and a persistence method
according to the wind conditions. In the meteorological community, Sfanos and Hirschberg
(2000) from the National Oceanographic and Atmospheric Administration (NOAA) use
multiple linear regression. Kusiak et al. (2009) compare the performance of different data
mining techniques (SVM, NN, regression trees and random forest) to forecast wind speed
and wind power up to a forecast horizon of 84 h. Some authors build several MOS forecasts
and combine them to further improve their performance. Bouzgou and Benoudjit (2011)
combine four MOS forecasts (linear regression, two neural networks and SVM), with three
combination strategies (a simple average, a weighted average and NN). Li et al. (2011) use
the Bayesian framework to combine several neural network MOS, for short term forecasts.
Zhou et al. (2011) compare several SVM-based MOS with different kernels, and conclude
that the choice of the kernel is not important but that forecast performances are sensitive
to the value of the fitting parameters. Cheng and Steenburgh (2007) compare traditional
MOS to bias removal with a Kalman filter or a 7-day running mean. They conclude that
traditional MOS work better when the weather changes, the others perform the best during
quiescent cool regimes, and both approaches are equivalent during quiescent warm regimes.
They do not propose to combine the forecasts to try and get the best of each.

As for the gridded MOS, no consensus exists in the literature on whether one should grid
MOS previously built at measurement locations, or grid measurements before building
MOS on a grid. To the best of our knowledge, no systematic comparison of the two
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approaches has been achieved. The NOAA uses gridded MOS operationally, by gridding
MOS built at station locations. Glahn et al. (2009) and Gilbert et al. (2009) detail how
their method iteratively corrects grid-point forecasts after comparing them to MOS built
at nearby station locations. Based on the same methodology, Im et al. (2010) detail
the NOAA analysis to grid hourly measurement of surface parameters, in order to verify
the gridded MOS and produce very-short term forecasts. Mass et al. (2008) grid MOS
by estimating the bias at station locations, associating each grid point to a station with
similar elevation and/or land-use characteristics and estimating the bias correction at the
grid point. Solari et al. (2012) use simulations with a very fine grid of 270 m on port areas
to build a linear relationship between wind speed measurements and simulated values over
the area. The statistical relationship built at measurement locations is used to correct
wind speed forecasts all over the grid. Burlando et al. (2010) adopt a similar approach to
forecast wind speed along a railway line. Charba and Samplatsky (2009) and Charba and
G. Samplatsky (2011) build their MOS on a grid by using as observation an analysis of
rainfall accumulation. Thorey et al. (2015) use previously gridded radiation measurements
as observation.

1.2.3 Results

Several statistical techniques are tested to obtain gridded measurements, by interpolating
wind speed measured at station locations towards a regular grid with a grid size of about
0.025◦ (about 2.5 km). These new wind speed analyses are built because existing analyses
at Météo-France were not deemed accurate enough due to a lack of high wind speed or,
until April 2015, were available for a time-step of 3 hours, which is not sufficient to build
hourly MOS as required. The main difficulty here is that surface wind speed is a very
unstationary and inhomogeneous phenomenon, in space and time. Local effects, such as
tunneling, surface friction or sheltering by obstacles interact in very intricate ways, along
with additional variations due to specific meteorological conditions of the day. For instance,
in the tail end of a low, convective cells are accompanied with so-called density currents,
that is, areas with descending air masses that increase surface wind speed over a few
kilometers. On the other hand, along the front of a storm, strong wind speeds exist in
areas of hundreds of kilometers in length and of only a few tens of kilometers in width.
But density currents can also exist in some areas of the front, increasing wind speed locally.
These, and other phenomena such as coastal breezes, orographic winds, and so on, make it
very difficult to model the structure of surface wind fields. In our study, some interpolation
techniques explicitly model the dependence between locations, others do not. In order to
catch the right correlation length of the wind speed field, the interpolation is done over
domains of varying sizes. The best statistical interpolation technique, among 48 techniques
or variations tested, is based on thin plate regression splines (TPRS), trained on wind speed
measured at all meteorological stations in France at the same time. The interpolation
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function is very parsimonious with only two additive components: a first spline with the
most recent wind speed forecast of Météo-France’s fine grid, local area model AROME as
the only input, and a second spline with a correction based on the 3-dimensional coordinates
of the points. This is not surprising: the modeling of the dependence between grid-points
is made unnecessary by the use of AROME forecasts, that contain information about the
spatial structure of the wind field. On the other hand, due to the complexity of the wind
speed field, classical spatialisation methods such as kriging cannot efficiently model the
spatial dependence of wind speed.

By cross-validation, it is shown that this new analysis performs consistently better than
the available AROME analysis. The verification of AROME wind speed analysis had
never been done with cross-validation. This study shows that verifying AROME analysis
against non assimilated wind speed measurements gives very different performances than
when it is verified against assimilated data. A flexible code implementing this test-bed
of interpolation methods has been written, to be applied to other parameters (gust wind
speed has also been interpolated). The obtained gridded measurements are produced for
a period of 4 years, starting on 01 January 2011, every hour. This long archive is used as
the observation for training the (E)MOS tested in the remaining of this work.

Using these gridded measurements as the observation, several MOS methods are then
compared to post-process ARPEGE, Météo-France’s global model with a grid size of 10 km
over France. Since forecasts up to several days ahead are required, only data mining
techniques have been retained, the literature showing that time series methods perform
well only up to a few hours ahead. SVM and NN have not been tried since, as noticed
in Zhou et al. (2011) and during previous studies at DOP (unpublished), these methods
obtain good forecast performances if their parameters are tuned with a great accuracy,
which may not be achieved quickly enough in an automatic way on thousands of grid
points. One tested technique is based on functional regression and forecasts the whole
curve of hourly wind speed for the next 24 h by averaging previously observed curves. The
goal is to take advantage of the diurnal cycle of wind speed, and to produce a realistic
evolution of the forecast wind speed. Such functional MOS have been rarely studied in
the literature about wind speed forecasts. Although this functional MOS improves over
ARPEGE forecasts, it does not perform as well as the two other MOS trained for each lead
time separately, probably because the diurnal cycle of wind speed is not regular enough.
Multiple linear regression serves as a simple reference MOS. Random forests are used as a
more complex MOS method. However, whereas the information to predict with multiple
linear regression can be stored on a disk as a few kilobytes and uploaded in memory in
a few milliseconds, the information necessary to use random forests can require several
megabytes and a loading time of about half a second. Since France contains thousands of
ARPEGE grid points, ways to treat such a large amount of grid points within operational
delays have to be found. First, “block MOS” is used, meaning each random forest MOS is
trained on nearby grid points pooled together. For operations, France will be divided into
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contiguous blocks, each of which will be post-processed with its own MOS relationship. This
pooling allows to reduce the number of R objects used to store the random forest without
reducing the forecast performance compared to MOS trained grid-point-wise. Second,
random forests can be optimized by reducing the number and depth of its constituent
trees, again with no reduction in forecast performances. These two improvements reduce
the number and storage size of R objects to load in memory when it comes to effectively
produce the forecasts in operations. A reduction of loading time by a factor 10 is achieved,
for an estimated total loading time of half a minute for the whole France. Random forests
outperform multiple linear regression. This block MOS with random forest is expected to
be implemented on Fall 2016, for wind speed and gust wind speed. This will produce full
post-processed wind speed fields over France, which was not done during the work. Before
going operational, it will be necessary to check that this block MOS does not produce
unrealistic wind speed discontinuities at the boundaries of the blocks.

This chapter reproduces an article accepted in Weather and Forecasting.

1.3 Chapter 3: Estimation of the CRPS with Limited Infor-

mation

1.3.1 Motivation

In Chapter 4, several probabilistic forecasts are linearly combined to get a more skillful
forecast. For some of the tested combination methods, the combination weights depend on
a performance measure for probabilistic forecasts, the continuous ranked probability score
(CRPS). These probabilistic forecasts are either parametric and fully known, in which case
the CRPS can be computed from a closed-form expression, or nonparametric and partly
known, in which case the CRPS has to be estimated. To compute accurate combina-
tion weights, the CRPS of the nonparametric probabilistic forecasts have to be precisely
estimated, which motivates the study in this chapter.

When the forecast distribution is partly known through a set of M values (called an “en-
semble” in Meteorology), as it is the case in Chapter 4, both the precision of the CRPS
estimation and the computation time increase with M . A motivation of this chapter is to
assess the precision of the CRPS estimation with M , in order to find a good compromise
between a high estimation precision and a low size M , which speeds up computation during
operations.

We established error bounds of the CRPS estimation, that were of no practical use since
they require to know the forecast distribution. Therefore, the approach used in this part
of the work is to simulate cases where the forecast distribution is partly known and com-
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pute the associated CRPS estimations. The simulations are produced by supposing the
forecast distribution is some parametric distribution for which the CRPS has a closed form
expression. This allows an empirical study of the estimation bias and variance.

This work was done under the precious guidance of Philippe Naveau.

1.3.2 State of the art of the estimation of the CRPS

The effect of the ensemble size M on the estimation of different performance measures for
probabilistic forecasts has been studied in several articles, whose results are gathered and
compared in Ferro et al. (2008). As for the CRPS, Ferro et al. (2008) demonstrate that, for
an exchangeable and stationary ensemble and a stationary observation, the expectation of
the usual CRPS estimator with an ensemble of size M , noted E[CRPS](M) is biased with

E[CRPS](M) = E[CRPS](∞) +
1

M

E|X1 −X2|
2

, (1.1)

where E[CRPS](∞) is the expectation of the CRPS of an infinite ensemble, that is, the true
CRPS, and X1, X2 are any two of the M available values for the same forecast/observation
pair. This result holds for an ensemble of values randomly drawn from the unknown forecast
distribution. Based on these remarks, Ferro et al. (2008) propose an unbiased version of the
CRPS for a random ensemble. Ferro (2014) introduces the notion of fair scores, a measure
of performance that is minimized for an ensemble of random values drawn from the same
distribution as the observation. The unbiased estimator of the CRPS is shown to be fair.
Specific structures of dependence between the random values may be taken account of to
develop a fair CRPS.

The CRPS can be decomposed in the sum of three terms: the reliability term that quan-
tifies the agreement between a forecast distribution and the distribution of the associated
observation; the resolution term that quantifies the ability of the ensemble model to asso-
ciate different distributions of the observation to different forecast distributions; and the
uncertainty term that quantifies the variability of the observation (Bröcker 2009). Among
other topics, Candille (2003) investigates the effect of a finite ensemble size and of a finite
number of forecast/observation pairs on the reliability and resolution terms. The impact
of the ensemble size on the usual estimation of the CRPS is also studied, leading to Equa-
tion (1.1). As Ferro et al. (2008), Candille (2003) also supposes that the ensemble is a
random sample from an unknown forecast distribution.

Bröcker (2012) investigates the nature of the ensemble of M fixed values that minimizes the
estimator of the CRPS averaged over the distribution of the observation. It demonstrates
that these fixed values are the quantiles of orders 0.5

M , . . . , M−0.5
M of the forecast distribution.
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1.3.3 Results

Four estimators of the CRPS proposed in the literature are reviewed and shown to reduce
to only two, and a relationship between these two is demonstrated. These results do not re-
quire any hypothesis. Specifically, the ensemble of M values is not required to be a random
sample from the forecast distribution, and no stationarity or exchangeability assumption
is required. The relationship between the two estimators relaxes all the hypotheses leading
to Equation (1.1) and is valid for one forecast/observation pair.

Based on these findings, simulations are used to study the accuracy of the two estimators
with an ensemble of random values from the forecast distribution or an ensemble of quan-
tiles of known orders from the forecast distribution. Other studies focused only on random
ensembles. This focus on ensembles of quantiles is motivated by Chapter 4, where such
ensembles are used. The simulations show that the most accurate estimator depends on
the kind of forecast ensemble: a random sample or a set of quantiles of known orders. For
a random ensemble, the simulations confirm that the fair CRPS of Ferro et al. (2008) is,
as proved, unbiased, and also add some new empirical indications about the variability of
this estimator for small samples of forecast/observation pairs. In the case of an ensemble
of quantiles, the most accurate estimation is obtained with the optimal set of orders found
in Bröcker (2012), but the fair CRPS is not a good choice of estimator. The presence of
ties in the ensemble of quantiles, possible with some EMOS methods used in Chapter 4,
may dramatically decrease the accuracy of the CRPS estimation. An interpolation method
is proposed to recover a better accuracy. To the best of our knowledge, this possible ex-
istence of ties in some EMOS forecasts has not been highlighted in previous studies, and
its impact on the CRPS estimation has not been assessed. Based on these simulations,
recommendations are issued to accurately estimate the CRPS of a probabilistic forecast
when the forecast distribution is not fully known. Whereas the unbiasedness of the fair
CRPS for a random ensemble can be demonstrated, it has not been possible to find the-
oretical justification of the validity of these recommendations in the case of an ensemble
of quantiles of known orders. But a large variety of forecast distributions has been used
in the simulations, from simple ones to complex mixtures, which leads to believe that the
recommendations are quite general. Furthermore, a qualitative but sensible explanation of
the good estimation accuracy in the case of an ensemble of quantiles is advanced. Since
this explanation does not depend on the forecast distribution, it also hints at the generality
of our results.
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1.4 Chapter 4: Aggregation of Probabilistic Wind Speed

Forecasts

1.4.1 Motivation

End-users of weather forecasts would be interested in using probabilistic forecasts, but may
not be satisfied by their current performances (personal communications). Reliable fore-
casts would help them to assess the forecast uncertainty and use them as tools for decision
making under uncertainty. This part of the work compares in a test-bed several methods
to linearly combine several wind speed ensemble forecasts operationally available at Météo-
France and the same ensemble forecasts post-processed with EMOS. The combination of
EMOS is intended to improve forecast performance over a single EMOS. The focus is on
the combination methods rather than on EMOS, whose performance has been investigated
in another thesis at Météo-France and published by Taillardat et al. (2016). Here, three
means are used to improve the performance of the combination. First, training several
EMOS methods over different sliding or fixed periods produces different forecasts with a
large range of performance patterns. Second, using several EMOS methods and ensembles
should also produce forecasts with different error patterns. Third, the combination weights
are computed over a sliding period so that the combination method may adapt quickly to
performance changes and weight heavily forecasts with better performances.

Due to the high variability of the atmospheric state over space and time (Slingo and
Palmer 2011; Holton and Hakim 2012; Rohli et al. 2013), most (E)MOS methods require an
archive of past observations and associated forecasts covering several years and a sufficient
number of different meteorological situations. The NWP model code must be constant over
these several training years, so that patterns in the forecast errors can be modeled by the
(E)MOS methods. The code of NWP models may be updated once or twice yearly, so that
small performance changes accumulate over time or large performance breakthrough are
achieved. These changes may eventually render the previously built relationship between
the observations and the NWP forecasts useless for, or even detrimental to, the post-
processed forecasts’ performance. For instance, Erickson et al. (1991) investigate the impact
of changes in a NWP model on the performance of MOS for different parameters, and show
that the performance of MOS of cloud cover is adversely affected. The combination scheme
proposed above intends to address this issue. An alternative would be to build reforecasts,
that is, forecasting the past with the new version of the model (Wilks and Hamill 2007;
Hagedorn et al. 2008; Hamill et al. 2008), and to recompute the (E)MOS relationship. This
is very costly, and combining forecasts may probably render it unnecessary, as hinted in
Miller et al. (1992).

The post-processing is done on a grid, with the gridded wind speed measurements built in
Chapter 2 as observation. The four ensembles come from the TIGGE data set (Bougeault
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et al. 2010; Swinbank et al. 2016), containing several ensemble forecasts from different
weather services.

1.4.2 State of the art of EMOS and combination thereof

EMOS are much studied and used in the weather forecast community, as reviewed in
Gneiting (2014). The issue is addressed with parametric or nonparametric approaches. In
parametric EMOS, a forecast distribution is taken from a family of probability distribu-
tion, whose parameters depend on the ensemble. For wind speed, several distributions have
been tried, such as the gamma distribution (Sloughter et al. 2010; Möller and Scheuerer
2013), the truncated normal distribution for the wind speed (Thorarinsdottir and Gneiting
2010) or transformation thereof (Hemri et al. 2014) or the log-normal distribution (Baran
and Lerch 2015). The parameters of the distribution are modeled as a linear regression
with the forecast values or statistics thereof as inputs. This kind of approach is called non
homogeneous regression (NR, Gneiting et al. 2005). The more flexible Bayesian model
averaging (BMA), introduced by Raftery et al. (2005), builds a mixture of several para-
metric distributions, whose weights are dynamically computed in a Bayesian framework
(Baran et al. 2014). As noted in Gneiting (2014), other EMOS methods use kernel func-
tions to estimate the forecast density or to fit density functions on the ensemble, but can
be interpreted in the framework of BMA. As for nonparametric EMOS methods, quantile-
to-quantile transformation, introduced by Bremnes (2007), is used operationally at the
Hungarian Meteorological Service (HMS) to post-process ensemble forecasts (Ihász et al.
2010). This method establishes a bijection between quantiles of the same order in the
climatology of the observation and in the climatology of the forecast. Each forecast value
is then transformed to the associated observed value thanks to this bijection. Several vari-
ations exist to compute the required forecast climatology, such as using a rolling period as
in Flowerdew (2012), or running the ensemble NPW model over past years as is done at
the HMS. Hamill and Whitaker (2006) advocate the use of analog methods as an EMOS
methods, by forecasting observations from past days whose ensemble forecast are much
alike as the current ensemble forecast. In Hamill and Colucci (1998), the rank histogram
is used to estimate the forecast distribution. The rank histogram is just the histogram of
the rank of the observation in each forecast/observation pair. The proportion of observa-
tions of each possible rank in a training sample is used to associate an order to the future
sorted forecast values. Between two consecutive sorted values, the distribution is supposed
uniform. Extrapolating the probability function outside the range of the forecast values
may require some parametric assumption. Taillardat et al. (2016) compare NR to EMOS
based on random forests for several parameters.

The combination of EMOS does not seem to be a common practice. In some ways, BMA
can be considered as a combination method. Baran (2014) uses non homogeneous regression
for wind speed ensemble forecasts with a truncated normal and a log-normal distribution
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then chooses among them according to the value of the ensemble mean. Baran and Lerch
(2016) use as their final forecast a weighted average of the same two previous NR EMOS.
The combination weight and the parameters of the two combined distributions are fitted
by optimizing the CRPS or the likelihood. Baudin (2015) combines the pooled and sorted
values of several ensembles with combination methods that have theoretical guarantees
that the combination cannot perform much worse than some reference forecast. The used
combination methods are an adaptation to probabilistic forecasts of methods to combine
point forecasts (Cesa-Bianchi et al. 2006; Mallet et al. 2007). The weights are computed
with functions of the CRPS as a measure of performance.

1.4.3 Results

The choice of the EMOS methods used in this part of the work is motivated as follows.
BMA has been discarded due to its long computing time, incompatible with operational
constraints. The quantile-to-quantile transformation and the rank histograms, tested in
previous internal studies, did not seem to be efficient enough. The two retained EMOS
methods are nonhomogeneous regression and quantile random forest (Meinshausen 2006).
QRF was chosen because it performs well for wind speed, as proven in a previous study
(Taillardat et al. 2016). These good performances stem from the nonparametric nature of
QRF, which lets the method fit the wind speed distribution more freely than NR. Since
QRF requires a long training period, it is combined with NR, which is less flexible but
can be trained on short periods of time thanks to its few parameters. Following Hemri
et al. (2014), who advocated it as the best choice for wind speed, a truncated normal
distribution for the square-root of wind speed is chosen for NR. Several versions are trained
with different sizes of sliding training window to build distributions that evolve more or less
rapidly. This may allow the combination to adapt its weighting to more or less quiescent
weather regimes.

Since QRF allows to produce only step-wise cumulative distribution functions (CDF), the
different versions of NR are also discretized as step-wise CDF so that the combination can
be achieved. This is much alike the work of Baudin (2015), who combines in a similar
way the sorted forecast values of several pooled ensembles. This means that his individual
probabilistic forecasts are step-wise CDF with one step. The individual forecasts from
Baudin (2015) are not identifiable over time as required by the philosophy behind the
theory of prediction with expert advice used in this work and ours. For instance, the
lowest forecast value at different times can come from a different member of a different
ensemble. Being a whole (post-processed or raw) ensemble, each of our combined forecasts
is a truly probabilistic forecast identifiable over time. To use the combination methods,
we had first to generalize some new formulae of Baudin (2015), valid for step-wise CDFs
with one step, to the case of step-wise CDFs with any number of steps. Finally, with
4 raw ensembles and 6 post-processed versions of each, 28 step-wise CDFs are combined
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as a convex combination to produce a valid step-wise CDF. The combination weights are
computed with five methods. Some of these combination methods are empirical. Others
are based on the theory of prediction with expert advice presented in this chapter, and
exhibit interesting theoretical properties in terms of performance. The use of this theory
for the combination of probabilistic forecasts is quite new in the field of Meteorology.

Two performance criteria are used: the CRPS averaged over all grid points and times,
and the proportion of grid-points with a flat rank histogram. The flatness of the rank
histogram, a necessary condition for a reliable forecast, is assessed with the Jolliffe-Primo
flatness tests introduced in Jolliffe and Primo (2008). These tests assess the existence of
particular kind of deviations from flatness in the rank histogram. They are yet not much
used in forecast verification, despite the insight they give of the origin of forecasts issues,
such as bias or lack of dispersion. These tests are used here as an automatic diagnosis,
which is necessary due to the huge number of grid-points to be handled during operations.
Both performance criteria do not give the same ranking of the 28 single forecasts and
the combination methods. Minimizing the CRPS may be achieved with very few flat rank
histograms, whereas maximizing the number of flat rank histograms goes with only a slight
increase in CRPS. This result is new since the usual procedure is to first minimize the CRPS
then to check whether the rank histogram can be deemed flat. It is therefore proposed
to choose a combination method based on the flatness of the rank histogram as tested
with the Jolliffe-Primo flatness tests. According to this criterion, the best combination
method is the exponentiated weighted average (EWA) forecaster, based on the theory of
prediction with expert advice. EWA produces a large proportion of flat rank histograms
over France (about 85%), while getting an average CRPS similar to the one obtained by the
combination method with the lowest average CRPS. This best EWA forecaster, although
trained separately for each grid-point and at each lead time, exhibits some spatio-temporal
correlation. Also, the combination weights can change quickly as expected, which may
allow a fast adaptation of the combination to updates of the NWP ensembles. Finally, the
optimal setting of the EWA forecaster’s parameter can be chosen with only one year of
forecast/observation pairs, a good asset to update frequently the EMOS post-processing.

1.5 Conclusion

This work investigates several aspects of weather forecast post-processing for wind speed
over France. The aim is to build improved wind speed forecasts on a grid, for deterministic
and probabilistic predictions. The adopted strategy is to first grid measurements, then to
use these gridded measurements to train (E)MOS methods.

For deterministic forecasts, block MOS is introduced along with a careful optimization of
the size and number of the associated R objects. This lightweight block MOS shows good

30



1.5. CONCLUSION

performance while allowing an important speeding up of operations. It will be implemented
during Fall 2016 for operations.

As for the EMOS, empirical combination methods and combination methods based on the
theory of prediction with expert advice are compared. Since step-wise CDF are combined,
this part of the work required to study the properties of the estimators of the CRPS
with limited information about the forecast distribution. This led to recommendations
to accurately estimate the CRPS. Also, due to some discrepancy of the flatness of the
rank histograms and the value of the CRPS in this study, it is proposed to choose among
probabilistic forecasts by first imposing to have a flat histogram according to the Jolliffe-
Primo tests. The best combination method chosen with this criterion obtains a similar
CRPS as the one minimizing the CRPS, while exhibiting much more flat rank histograms.
It is also planned to make it operational by the end of next year.
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Chapter 2

Improved Gridded Wind Speed

Forecasts by Statistical

Post-Processing of Numerical

Models with Block Regression

This chapter reproduces an article accepted in Weather and Forecasting, and written by
Michaël Zamo (Météo-France), Liliane Bel (AgroParisTech), Olivier Mestre (Météo-France)
and Joël Stein (Météo-France). This article is licensed under CC-BY.

Abstract Numerical weather forecast errors are routinely corrected through statistical
post-processing by several national weather services. These statistical post-processing
methods build a regression function called “model output statistics” (MOS) between obser-
vations and forecasts that is based on an archive of past forecasts and associated observa-
tions. Because of limited spatial coverage of most near-surface parameters’ measurements,
MOS have been historically produced only at meteorological station locations. Neverthe-
less, forecasters and forecast users increasingly ask for improved gridded forecasts. The
present work aims at building improved hourly wind speed forecasts over the grid of a
numerical weather prediction model. First, a new observational analysis, which performs
better in terms of statistical scores than those operationally used at Météo-France, is
described as gridded pseudo-observations. This analysis, which is obtained by using an
interpolation strategy that was selected among other alternative strategies after an in-
tercomparison study conducted internally at Météo-France, is very parsimonious since it
requires only two additive components, and it requires little computation resources. Then,
several scalar regression methods are built and compared, using the new analysis as ob-
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servation. The most efficient MOS is based on random forests trained on blocks of nearby
grid points. This method greatly improves forecasts compared to raw output of numerical
weather prediction model. Furthermore, building each random forest on blocks and limit-
ing those forests to shallow trees do not impair performances compared to unpruned and
point-wise random forests. This alleviates the storage burden of the objects and speeds
operations up.
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2.1 Introduction

Numerical weather prediction (NWP) models, although essential for forecasting the dynam-
ics of the atmosphere, are not perfect and may be consistently biased. This is particularly
true near the surface (Haiden et al. 2015) because processes such as stress and surface heat-
ing are not well modeled and because model topography may not be accurate. Furthermore
sources of errors, such as initial condition errors, model errors, parametrisation errors, ac-
cumulate in a very intricate way (e.g, initial condition errors are a mixture of model and
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assimilation errors). These errors may not be easily or quickly corrected through improve-
ment in the knowledge of the atmospheric behaviour or in the performance of computers
or computing science. A cheap, quick and efficient means of correcting systematic errors
is the so-called model output statistics (MOS, Glahn and Lowry 1972) method, which is
used by many national weather services (Wilson and Vallée 2002; Baars and Mass 2005;
Schmeits et al. 2005; European Center for Medium-Range Weather Forecasts 2006; Kang
et al. 2011; Zamo et al. 2014a). MOS is a statistical post-processing technique consisting
of building a statistical regression function between a predictand or response (what is to be
predicted) and predictors or explanatory variables (what is used to make the prediction).
Predictors are usually outputs of some NWP model, thus the term MOS. The chosen sta-
tistical regression function is then applied to future forecasts to improve their performance
in terms of objective scores, such as the root mean squared error (RMSE) or the mean
error.

The predictand in MOS is usually variable measured at meteorological stations. As a
consequence, MOS is mainly applied to station locations and its performance is evaluated
against measurements at those stations. However, forecast users need improved forecasts
at arbitrary locations where measurements are not always available. For a national weather
service, a most interesting goal is to have MOS available over the grid of some NWP model.
To achieve this goal, two possible strategies are (1) to build MOS at station locations
and then to grid them, as the National Oceanographic and Atmospheric Administration
(NOAA) does (Glahn et al. 2009; Gilbert et al. 2009), or (2) to grid measurements and
then to build MOS using this gridded field as predictand. In this study the second strategy
is preferred and described.

Specifically, the aim is to build over France gridded MOS fields for hourly 10-m wind
speed forecasts. Wind forecast fields have been selected due to their importance in warn-
ing systems and potential damages (damages to building roofs, fallen tower cranes, and
injuries or death caused by fallen objects are just some examples). Furthermore, due to
local phenomenon (e.g. slope wind, tunneling), surface wind speed is not the easiest field
to interpolate or improve and, as such, it is a good candidate to test the efficiency of
MOS methods. The same methodology will be applied to other fields, such as gusts and
temperature. The first step is to build a new wind speed analysis and to demonstrate
that it performs better in terms of statistical scores than those operational analyses at
Météo-France. The necessity to use a different wind analysis comes from the insufficient
availability of operational analyses (every 3 hours until April 2015), the requirement to
have at least 3 years of hourly gridded wind speed to train MOS methods, and the oppor-
tunity to get more accurate analyses. The interpolation strategy described in this study
has been selected among 48 strategies after an intercomparison led at Météo-France (not
shown here). The 48 interpolation strategies varied with the interpolation function, the
information used and the modelling of the spatial dependence. The second step is to build
the best MOS using the new analysis. For that aim, two regression methods are com-
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pared. Both are trained by pooling together the data at nearby grid points (or “blocks”)
and getting the most parsimonious regression functions while keeping the same forecast
performance. By reducing the number of regression functions, this so-called “block MOS”
is useful to speed up operations when using MOS over a whole country such as France.

The manuscript is organized as follow. In Section 2.2 the more efficient gridded analysis is
introduced and compared against the analysis operational at Météo-France. Section 2.3 is
devoted to build gridded MOS of wind forecasts using the more efficient analysis strategy
as observation. Section 2.4 sums all the results up.

2.2 Gridding 10-m windspeed measurements

In order to get gridded fields of 10-m wind speed measurements even where actual measure-
ments are not available, several interpolation strategies exist. The most straightforward
one is to use as the predictand an existing analysis of some NWP model. However classical
variational assimilation schemes such as 3D-Var (Courtier et al. 1991) or 4D-Var (Courtier
et al. 1994) assimilate station measurements. Therefore, an objective verification of such an
analysis versus those measurements is not straightforward and may lead to overconfidence
in the forecasts’ performances, as will be shown later. Furthermore, since assimilation
schemes mix in some way forecasts and observations, the obtained analysis could be af-
fected by the forecast bias. As presented in Schaefer and Doswell (1979), it is also possible
to work on the two dimensional wind field, interpolating divergence and vorticity instead of
the wind vector itself. This may allow imposing physical constraints, such as mass conser-
vation, and working on the wind vector instead of the wind speed only. But while working
on a limited domain, this solution requires boundary conditions which may not be trivial.
A third efficient method to interpolate measurements is to run a very high resolution model
and find a statistical relationship between measurements and short lead-time forecasts at
the same (or nearby) locations. This interpolation function is built for locations where the
predictand and the predictors are available and applied to points where only the predictors
are known, as presented in Burlando et al. (2013). This approach typically uses NWP
model with a resolution of the order of a few tens of meters. This is not feasible for a
whole country as wide as France, but a good compromise could be using a model over the
entirety of France with a grid size of a few kilometers. This statistical interpolation is the
approach chosen here and compared to an analysis existing at Météo-France, which is a
kilometer-scale analysis based on 4D-var assimilation. The methodology is presented in
more detail hereafter.

36



2.2. GRIDDING 10-M WINDSPEED MEASUREMENTS

2.2.1 Methodology

Let us suppose we have at our disposal past predictand and predictor values, at time
t = 1, . . . , T for N s stations located at sites si where i = 1, . . . , N s. Let us note S a fine
(model) grid covering the region of interest and T be a fine temporal grid covering (1;T ).
Then, for a generic spatio-temporal point (s, t), with s ∈ S and t ∈ T , let us note y(s, t)
and x(s, t) the value of the predictand and the vector of predictors, respectively.

Interpolating the predictand consists in building some function f such that y(s, t) =
f(x(s, t)) + ǫ(s, t), with ǫ an interpolation error. The function f is built to have the
best generalization capability, that is the lowest possible errors ǫ over the sites in S. It
is fitted locally, that is, for a given spatio-temporal point (si, t) the training set D(si, t) is
made of a subset of {s1, . . . , sNS} × T depending on (si, t).

Many interpolation strategies can be tried by varying the training set, the family of func-
tions to which f belongs, the choice of the predictors x, and the optional modelling of
the error ǫ. The error can be supposed deterministic (Hengl 2007) with no modelling
at all. Alternatively, the error can be modelled with statistical models either without
spatio-temporal dependence (Hastie et al. 2009; Kuhn and Johnson 2013) or with spatial
dependence explicitly modelled (Hengl 2007; Cressie and Wikle 2011).

2.2.2 Data description

The predictand is the hourly 10-m wind speed defined as the average of the instantaneous
wind speed measurements taken during the ten minutes before each hour. These measure-
ments are available at 436 meteorological stations over mainland France (named above si,
with i = 1, . . . , Ns), which are managed by Météo-France. In order to balance quantity
and quality of measurements, retained data are actually measured at heights between 8
and 13 m for stations of environmental class lower than or equal to 3 according to the
World Meteorological Organization’s Guide to Meteorological Instruments and Methods of
Observation (World Meteorological Organisation 2008, Chapter 1, Annex 1.B). For wind
speed measurements, environmental class 3 requires that “the mast should be located at a
distance of at least 5 times the height of surrounding obstacles” and that “sensors should
be situated at a minimum distance of 10 times the width of narrow obstacles (mast, thin
tree) higher than 8 m”. Mean distance between couples of nearest stations is 21 km. The
study period goes from January 2011 to March 2015.

For the best interpolation strategy described hereafter, the vector of predictors x at a site
s is composed of the position of the site and the most recent wind speed forecast from an
NWP model.

• Position: the position of each site s ∈ S is specified by its horizontal coordinates (sx
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and sy) in the extended Lambert-93 georeferencing system and its altitude (sz). The
value of sz is obtained by considering the altitude of the nearest point in the digital
elevation model (DEM), called BDAlti1, of the French geographical institute (IGN,
Institut national de l’information géographique et forestière). The freely available
version of this DEM, which is used in this study, has a resolution of 75 m and covers
France only.

• Most recent wind speed forecast from an NWP model: the NWP model used is
AROME (Applications de la Recherche à l’Opérationnel à Méso-Echelle, or mesoscale
applications of research for operational use), Météo-France’s high resolution NWP
model. It is a limited area and non-hydrostatic model. During the study period, it
had a 2.5 km grid size over France (Seity et al. 2011). For one specific site, date and
time, the wind speed forecast comes from the most recent run, excluding the analysis,
and it is noted WAROME(s, t). Since AROME runs four times per day, the used lead-
times range from 1 to 6 hours. As an example, for an interpolation at 1600 UTC, the
predictors come from the run of 1200 UTC with a lead-time of 4 hours. The wind
speed forecast used at station locations is AROME’s forecast bilinearly interpolated
from AROME’s grid towards these locations.

2.2.3 Verification strategy

Since no wind speed measurement is available at grid points, assessment of the interpola-
tion strategy is achieved through cross-validated interpolation towards some test stations.
Cross-validation consists in splitting the available archive into two subsets: one training
set is used to fit the interpolation functions, one test set is used to assess the interpolation
performance.

Since cross validation is time consuming, a subset of 150 test stations were chosen, repre-
sentative of the French topography and hourly wind speed climatology. Ten lists of fifteen
stations were built as test sets, so that each list gathers stations far enough from one an-
other to ensure that results are close to those of leave-one-out cross validation. The closest
test stations in each list are separated by at least 80 km. Interpolation is done toward each
of these ten test lists separately and performance is assessed. Consequently, the training
is always done with 421 stations (up to missing data).

Comparing this new analysis against the existing AROME analysis provides an assess-
ment of its usefulness for operational purposes. However, AROME assimilation scheme
already assimilates station measurements, which biases its scores toward better perfor-
mances. Thus, in order to get an accurate assessment of the analysis performance as an
interpolator, 10 AROME assimilations were rerun without assimilating one test set of 15

1http://professionnels.ign.fr/bdalti
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stations each. Since this reanalysis takes time, it was only run for 120 dates between July
2013 and July 2014, at 1500 UTC corresponding to the maximum of the diurnal cycle of
wind speed. This reanalysis is referred hereinafter as AROMEcv, since it is computed with
cross-validation.

Last, until April 2015, AROME analysis was available only every 3 hours, whereas MOS
is required at hourly rate. Consequently, a simple reference hourly interpolation method
is built by a bilinear interpolation of AROME most recent wind speed forecast, with a
lead-time of 1 to 6 hours. At some site s with geographical coordinates (sx, sy), bilinear
interpolation takes as interpolation function f(x(s, t)) = a+bsx+csy+dsxsy. The param-
eters a, b, c and d are fitted on the 4 nearest AROME grid points from the interpolation
point s. If this bilinear interpolation performs better, the retained analysis is simply the
most recent wind speed AROME forecast.

For each of these analyses, the interpolation performance is assessed by pooling together
the interpolated values in the 150 test stations at the 120 test dates. Classical performance
measures are used such as:

• Bias:

BIAS = −ǫ(s, t)

• Root mean square error:

RMSE =

√
ǫ2(s, t)

• Mean absolute error:

MAE = |ǫ(s, t)|
where ǫ(s, t) is the aforementioned interpolation error and · signifies the mean over
all test stations and test dates.

Since RMSE and MAE values alone do not give information about the distribution of
errors, specifically about large errors, measures of error dispersion are also computed:

• Percentage of absolute errors lower than or equal to w, with w = 1 or 4 m s−1, noted
%≤1 and %≤4, respectively.

• Quantile of order τ of absolute errors with τ = 0.5 (median) or 0.9, noted Q(0.5) and
Q(0.9), respectively.

2.2.4 Results about the best interpolation strategy

The best interpolation strategy among the 48 interpolation strategies previously tested is
presented.
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First, the training set D(s, t) is global and for a fixed time. This means that whatever the
interpolation point (s, t) is, the training domain pools all the stations over France but it
takes into account only the measurements at time t.

Second, the interpolation function is a mixture of two thin plate regression splines (TPRS,
Wood 2003). This is a special case of Generalized additive models (GAM, Wood 2006).
In GAM the actual predictand is some link function g of the expectation of y, taken as

the sum of p functions: g(E(y|x)) =
p∑

j=1
fj(xj), with xj one or several components of the

predictors vector. Here the link function is the identity, and the functions fi are two TPRS.
Indeed, our best interpolation function is simply f(x(s, t;D(s, t))) = tps(WAROME(s, t))+
tps′(sx, sy, sz), where tps and tps′ are two TPRS, whose parameters are fitted for each date
and time in an automatic way by means of the function gam in the R package mgcv (R
Core Team 2015).

Third, the spatial dependence between the errors is not explicitly modelled in this strategy.
It appears to be unnecessary since using AROME wind speed forecast implicitly imposes
some structure to the interpolated field.

Unless otherwise stated, the following results are computed for the 150 test stations, the
120 test dates and at 1500 UTC.

Comparison to reference and cross-validated AROME analyses

The two first columns of Table 2.1 present the measures of performance for the TPRS
analysis and the reference. For the whole sample, both analyses are unbiased. However,
TPRS performs better than bilinear interpolation for the other measures of performance.
The RMSE is improved by 16% and most of the errors are less than 4 m s−1in absolute
value.

This table also shows the same measures of performance but for classes defined by the
terciles of the wind speed distribution over France during the study period: weak (below
2.9 m s−1), average (between 2.9 m s−1and 4.8 m s−1) and strong (above 4.8 m s−1). For the
lowest measured wind speeds, TPRS and reference tend to yield slightly too strong wind
(positive bias) and the converse for the strongest measured wind speeds (negative bias).
However, the bias remains low. Whatever the wind speed regime, TPRS outperforms
bilinear interpolation whatever other performance measure is considered.

Figures 2.1 and 2.2 show the evolution of RMSE and BIAS over time of the day for TPRS
and reference analyses, computed over the 150 test stations and all the dates in the study
period. The curves may show abrupt changes every 6 hours, when the predictors are taken
from a different run. This is due to the better performance of the underlying forecast
thanks to the proximity of AROME assimilation. Anyway, TPRS is consistently better
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Table 2.1 – Measures of performance for TPRS, bilinear reference interpolation (ref.),
operational AROME analysis (AROME) and AROME reanalysis computed with cross-
validation (AROMEcv). These figures concern 150 test stations and 120 dates at 1500 UTC,
for all wind speed values and three different intervals of wind speed measurements. Bold
figures indicate best performances among TPRS, reference and AROMEcv.

TPRS ref. AROME AROMEcv

All windspeed values

BIAS 0.0 0.3 -0.1 0.0
MAE 1.0 1.2 0.6 1.1
RMSE 1.4 1.6 0.8 1.5
Q(0.5) 0.8 0.9 0.4 0.8
Q(0.9) 2.1 2.5 1.2 2.3
%≤1 63.1 53.8 86.3 58.3
%≤4 98.8 97.6 99.6 98.3

Weak wind (below 2.9 m s−1)

BIAS 0.7 0.8 0.1 0.5
MAE 0.9 1.1 0.5 0.9
RMSE 1.2 1.5 0.7 1.3
Q(0.5) 0.7 0.9 0.3 0.7
Q(0.9) 2.0 2.4 1.0 2.0
%≤1 66.9 56.2 90.1 64.9
%≤4 99.4 97.7 99.8 98.9

Medium wind (between 2.9 m s−1and 4.8 m s−1)

BIAS 0.1 0.4 -0.1 0.0
MAE 0.8 1.1 0.5 0.9
RMSE 1.1 1.4 0.7 1.2
Q(0.5) 0.7 0.8 0.3 0.7
Q(0.9) 1.7 2.2 1.0 2.0
%≤1 70.6 56.8 89.3 63.1
%≤4 99.8 99.1 100.0 99.5

Strong wind (above 4.8 m s−1)

BIAS -0.7 -0.3 -0.4 -0.7
MAE 1.3 1.3 0.7 1.4
RMSE 1.7 1.8 1.1 1.8
Q(0.5) 1.0 1.0 0.5 1.1
Q(0.9) 2.7 2.8 1.6 2.9
%≤1 51.9 48.8 79.5 46.8
%≤4 97.4 96.1 99.0 96.5
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than the reference. And its performance shows less variability. This is also true for other
performance measures (not shown here).
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Figure 2.1 – Evolution of RMSE over time for TPRS and reference interpolation strategies,
computed over the 150 test stations.
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Figure 2.2 – Same as in Figure 2.1, but for the bias.

Table 2.1 also shows the performance measures of the operational AROME analysis with
all stations assimilated and of the AROMEcv reanalysis. As an example of the usefulness
of this cross-validated reanalysis for assessing the performance of the TPRS analysis, let
us note that without blacklisting some stations the operational AROME analysis gets an
RMSE of about 0.8 m s−1over the test stations, a significantly better score compared to
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the actual cross-validated RMSE of 1.5 m s−1(87.5% higher). This shows the strong local
impact of the observations in the assimilation fields.

As for the new analysis, it appears that actually TPRS performs better than the AROMEcv

reanalysis, whatever the interval of measured wind speeds and the performance measure.
Moreover, TPRS is computed very quickly: the complete hourly interpolated wind speed
grid from January 2011 to March 2015 required only four days of computation at the
resolution of AROME (2.5 km) on a standard workstation. This may allow a real-time
computation of wind speed analysis to be used routinely, and gives a long enough archive
to train MOS methods.

Spatial structures of gridded measurements

The used performance measures quantify the quality of interpolation strategies but say
nothing about the likeliness of structures represented in the gridded wind field. Figure 2.3
allows a subjective evaluation of these structures. It concerns the storm Joachim that hit
Western Europe in December 2011.

First, TPRS may increase or decrease wind speed compared to AROME forecast. As an
example, in Figure 2.3 gridded wind speeds with TPRS are lower than forecasts in the
south-west of France but more variable and stronger on the Pyrénées. The wind speed
in the new analysis is also increased at the tip of Brittany and decreased on a large area
to the East and South-East of Brittany. This high-impact event has been appraised by
meteorologists thanks to Météo-France’s internal reports of this event. The structures in
TPRS have been judged more in agreement with the reality.

Moreover, gridded wind speeds, although usually smoother than AROME because of the
use of smooth functions such as TPRS, still exhibit realistic physical structures. This may
not be systematic for every interpolation strategy. Indeed, as an example, ordinary kriging
led to unrealistic smooth wind speed fields (not shown). In Figure 2.3, the wind speed field
is more variable on the Pyrénées for TPRS than for AROME forecast. Because AROME
only includes a 2.5 km resolution topography whereas the new analysis includes the 75 m
resolution BDAlti topography, this increased spatial variability of gridded wind speed over
the mountains seems to be a positive feature.

Similar results hold for other dates and hours that have been subjectively appraised by
Météo-France (not shown).
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Figure 2.3 – Results of interpolation at 1800 UTC 15 December 2011. Top left: map of
gridded wind speeds with TPRS. Top right: map of AROME wind speed forecast (run:
1200 UTC, lead time: +6 h). Bottom left: residuals of interpolation at station locations.
Bottom right: differences between TPRS and AROME forecast. Under each map title is
the interval of the corresponding quantity.

Why a global training domain?

A local training domain, containing only stations within a certain radius around each site s,
was used for a sensitivity experiment. This training radius was varied between 20 km and
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2000 km. Indeed, a variographic study (not shown here) showed that the correlation length
of wind speed measurements is about 50 km, albeit with large differences according to the
kind of meteorological and geographical zone (warm sector, tail end of a low, neighborhood
of a front, mountains, slopy areas, etc.). It could be expected that, with smaller training
domains, the wind speed measurements would be more correlated and the performances
improved. But it turns out that these local training domains gave worse performance
than a global training domain. It happens that the smaller the training domain, the less
numerous the data and the less precise the estimation of the interpolation function, whence
the worse interpolation performance (not shown). Inversely, by taking a global training
domain, the interpolation method takes the best of all available data at one specific time.
To improve performance by reducing the size of the training domain would require a much
denser measurement network. In hilly or mountainous areas, with very local topographic
effects, this requirement would become unrealistic.

Further post-processing of TPRS interpolation

By construction, TPRS linearly extrapolates as soon as there is a predictor exceeding the
values in the training data. Due to this linear extrapolation, interpolated wind speeds may
reach unrealistic values. Contrary to other tried interpolation strategies, TPRS nearly
never exhibits such excessive wind speeds. In order to filter out and prevent these rare
occurrences, a post-processing of the gridded wind speed fields illustrated before is applied
(see example in Figure 2.4). The meteorological spline in TPRS, tps(WAROME(s, t)), is
constrained at each grid point to be less than tps(maxtraining(WAROME)), where the max-
imum AROME forecast in the training data set is noted maxtraining(WAROME) . Since
this filtering rarely changes the gridded measurements, performance measures of TPRS are
not modified.

Finally, a visual comparison of measured values and TPRS interpolation at the station
locations showed that for 12 stations, although the new analysis gets better performance
than AROME analysis, very high errors (up to 80% below the measured value) remain.
These stations are situated in hilly areas and exhibit very high values. These features make
it very unlikely to get a good interpolation at these locations. To keep high wind speeds
in the new analysis, measurements at all stations are simply copied out to the nearest grid
point.

To conclude this section, TPRS is a quick and more efficient alternative to the usual data
assimilation scheme to create a long archive of hourly gridded wind speed measurements.
It also requires less computational resources and it can be run on a standard workstation.

The following section describes how to improve wind speed NWP forecasts using MOS with
the new analysis based on TPRS as predictand (or response).
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Figure 2.4 – Post-processing of gridded wind speed to prevent excessive extrapolation in
TPRS. WAROME is AROME wind speed forecast. The blue dashed line is the original
meteorological spline component at the chosen grid point. The red continuous line is the
post-processed meteorological spline. The green square is the actual gridded wind speed
at the chosen grid point (unchanged in this case).

2.3 Improving wind speed forecasts on a grid by block re-

gression

MOS aims at correcting forecasts by means of a regression function r between the variable
Y to be predicted and some explanatory variable(s) (or predictors) X that can be NWP
model output(s) or any other source of information. This regression function is estimated
on an archive of past forecasts and associated observations and it is then applied to future
forecasts to increase their accuracy. It is much similar to what has been done in the previous
section when building an interpolation function, provided that the regression function
is applied at future times (t > T ) instead at non-monitored locations (s /∈ {si, i =
1, . . . , N s}).

In this study, two classical regression methods, namely linear model and random forest, are
compared. The functional kernel regression (Ferraty and Vieu 2006; Ferraty et al. 2012)
was also tested but results are not presented since this method is largely outperformed by

46



2.3. IMPROVING WIND SPEED FORECASTS ON A GRID BY BLOCK
REGRESSION

Table 2.2 – List of ARPEGE’s explanatory variables, available for wind speed regression.

Abbreviations Description

ffH10, ddH10f 10 m wind speed and discretised direction (North, South,
East and West)

lat, lon, elevation Latitude, longitude and elevation
month Month as a qualitative variable with 12 categories
capeins Convective available potential energy
nc, nt, nb, nm, nh Nebulosities (c: convective, t: total, b: low altitude

clouds, m: medium altitude clouds, h: high altitude
clouds)

SLP Adv, SLP Trend Advection and 3 h trend of sea level pressure
tpwHPA850, tp-
wHPA850 Adv, tp-
wHPA850 HVar

Potential wet-bulb air temperature at 850 hPa, and its
advection (Adv) and horizontal variance (HVar)

tH PCi, i = 1 . . . 3 First three components of a principal component analysis
of temperature vertical profile (up to 1500 m)

ffH PC, i = 1 . . . 3 First three components of a principal component analysis
of wind speed vertical profile (up to 1500 m)

the two classical regression methods (not shown).

2.3.1 Data

The explanatory variables X come from Météo-France global NWP model ARPEGE (Ac-
tion de Recherche Petite Échelle Grande Échelle or Small Scale Large Scale Research
Project, Courtier et al. 1991). ARPEGE is a stretched-grid, hydrostatic NWP model,
with an horizontal grid size of 0.1◦ (about 10 km) over France. It runs every six hours
with hourly lead-times up to 60 or 102 hours depending on the run. Table 2.2 lists the
24 explanatory variables selected for building regression functions of the analyzed wind
speed on forecasts. SLP Adv, SLP Trend, tpwHPA850 and tpwHPA850 Adv have been
chosen as proxies of the synoptic dynamics of the atmosphere. capeins, tH PCs, ffH PCs
and tpwHPA850 HVar aim at quantifying the instability of the boundary layer.

The response Y is ARPEGE wind speed forecast errors relative to the new TPRS wind
speed analyses post-processed presented in Section 2.2.4). Several attempts showed that
the performances were slightly improved when predicting the wind speed error instead of
the wind speed itself. Performances are computed for the corrected wind speed forecasts.
The regression function is build only on ARPEGE grid points and not for all AROME
grid points due to computation time constraints for operational purposes and because of
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ARPEGE’s larger lead time range. Since the new analysis is available on the AROME
2.5 km grid, block MOS for AROME at its full resolution is planned for future applications
and should probably accelerate operations a lot.

The study period covers three years, from 1 September 2011 to 31 August 2014.

Due to long computation times, regression methods have been trained only over ten spatial
domains noted D01 to D10 (see Figure 2.5). Each domain contains a grid of 9x9 ARPEGE
grid points (about 90x90 km2). These domains have been chosen so that they represent a
large range of conditions of winds and topography over France. Domains D06, D09, D07
and D08 cover increasingly ragged topography. Domains D01, D02 and D03 can be subject
to strong local winds, namely Marin, Cers for the first two domains, Mistral for the third
one.
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Figure 2.5 – The ten training domains used in this study.

Each regression method is trained separately for lead times 3 h, 15 h and 48 h of ARPEGE
run of 0000 UTC. The lead times have been chosen to cover short and long lead times and,
for 15 h, as representative of the hours in the day with usually the strongest winds.
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2.3.2 Block MOS

The following regression methods (Hastie et al. 2009; Kuhn and Johnson 2013) are tested:

• Linear model (Azäıs and Bardet 2006; Weisberg and Fox 2010): the regression func-
tion is a second-order polynomial relationship of the explanatory variables: r̂(X) =
β0 +βββ ·X1,2 where β0 is a real, βββ is a vector of reals and X1,2 is the vector contain-
ing every possible combination of product of explanatory variables of order 1 and 2
(called interactions). The parameters β0 and βββ are fitted on the training data with an
ascending selection of predictors based on the Bayesian information criterion (BIC,
Schwarz 1978; Lebarbier and Mary-Huard 2006).

• Random forest (Breiman 2001): this is an average of several regression trees (Breiman
et al. 1984). For a single regression tree, the regression function is built through
an iterative splitting of available training data into two subsets. Splitting is done
according to some threshold of a quantitative explanatory variable or some subset
of modalities of a qualitative explanatory variable. The best split is chosen so that
the two subsets of response values are the most homogeneous inside each subset and
the most dissimilar between one another. The (dis)similarity criterion is the intra- or
between- group variance. Splitting is stopped for some criterion, such as a maximum
number of groups, called leaves. The predicted value is then the average of the
response values in the leaf. A regression tree has usually a low bias but strongly
depends on the training data.

In random forest, each tree is similar to a regression tree but with two further random-
izations. The first randomization is to start each tree from a bootstrapped sample
of the training data (Diaconis and Efron 1983). Then each split, or node, of each
tree is built from a random subset of the available explanatory variables. The final
predicted value is the average of all leaves reached by the value of the vector of ex-
planatory variables. This double randomization makes the trees of the forest more
independent and thus decreases the variance of the errors without increasing the bias
of each tree. The regression function r̂ is an average of block-wise constant functions
over the space of the explanatory variables. In this study, the fitted parameters are
the number of trees in the forest and the number of tried predictors at each node.

In Statistics, more data sometimes imply better inference. Therefore, in the aim of further
improving MOS performance, block regression is used. This means that inside each domain,
the regression methods described above are trained by pooling data across several grid
points. The area containing these pooled grid points is called a block. Consequently,
one regression function r̂ is built for a block and applied to all the grid points inside the
block. However, the position of each grid point is available as a predictor through its
latitude, longitude and elevation. If these predictors are selected during the training step,
the regression function may actually depend on the grid point location. Another advantage
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expected from block regression is to have fewer models which may speed up operations.

The size of the block is varied to assess its impact on the MOS performance. The sizes
are 1x1 (or point-wise training), 3x3, 5x5, 7x7 and 9x9 grid points. The blocks of size 3x3,
5x5 and 7x7 contain the central square with respectively 9, 25 and 49 grid points of the
domain. If MOS performs better for non point-wise block, it is planned to map France
with contiguous blocks for using MOS in operations.

In order to assess forecast performances, the same measures of performance as in Sec-
tion 2.2.3. are computed. In order to compare on the same data the training with dif-
ferent block sizes, performance measures are computed for the central 3x3 grid points in
each domain. The so-called skill scores are also used: if SA, SB and S∞ are the mea-
sures of performance for forecasts A, B and a perfect forecast, the associated skill score
is SSA/B = SA−SB

S∞−SB
∈ (−∞; 1]. For RMSE, MAE, Q(0.5) and Q(0.9), S∞ = 0 whereas

for %≤1 and %≤4, S∞ = 100. A positive skill score implies the forecast A gets better
performance than forecast B.

Furthermore, the variability of the performances are assessed thanks to 3-fold cross-validation:
two years serve as training data, the remaining one being used as a test sample. All three
possible combinations of two training years/one test year are tried.

2.3.3 Results

Best block MOS

Figure 2.6 presents the RMSE of raw ARPEGE forecasts and MOS forecasts built with
the two regression methods and different combinations of parameters. The scores are
computed for the three test years and with a training domain of 1x1, 3x3, 5x5, 7x7 and
9x9 grid points. The figure is for domain D03 and lead time 15 h.

Whatever the chosen training settings, both MOS methods improve performance over raw
ARPEGE forecasts.

Performances of random forests are sensitive to the number of trees and number of tried
predictors at each node. For a given number of trees and tried predictors, performance are
slightly decreased by increasing the block size, but this effect is marginal. The best tuning
is therefore to take about 6 to 8 tried predictors and at least 50 trees trained in 3x3 blocks.
This optimal setting remains true for other domains and lead times (not shown here). In
order to speed up operations, shallower trees may be used if this does not reduce forecast
performance. With default settings, the complete random forests have 2,300 leaves for each
tree, for a 3x3 grid points training domain. Constraining trees to a maximum number of
leaves have been tested. Best performances are achieved by random forests even with no
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more than 200 leaves as shown in Figure 2.7 for domain D03 and lead time 15 h. However,
for some rare other domains and lead times, the minimum optimal number of leaves may be
around 500 (not shown). To sum up, the best random forest MOS is obtained by building
200 trees with 8 tried predictors at each node and 500 leaves.
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Figure 2.6 – RMSE for several MOS methods and settings, along with raw ARPEGE forecasts. In
each panel, lines show the evolution of performance of random forest with the number of trees, for
a specific training block size and number of tried predictors at each node and the three test years.
In each panel, vertical bars indicate the interval of variation over the three test years of ARPEGE
performance (left bars) and block MOS with a linear regression (right bar). For linear model and
random forest, the training domain can be of size 1x1, 3x3, 5x5, 7x7 and 9x9 grid points from left
to right. Scores are computed over 1 year of test (starting on 1 September), over the 3x3 central
points of domain D03 and for lead time 15 h.
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Figure 2.7 – Variation of measures of performance for random forests, with varying number
of maximum allowed nodes. Random forests are built with 200 trees and 8 tried predictors
at each node. This figure is for domain D03, lead time 3 h and a 3x3 training block.

As for the linear regression MOS specifically, Figure 2.6 shows that its performance varies
a lot with the training block size. However, the best performance is achieved with a point-
wise training in this case, and also whatever the domain, lead time or performance measure
(not shown).

On Figure 2.6, the best linear model (trained point wise) and the best random forests
apparently get similar performances. By showing skill scores for random forests (model
A) versus the point-wise trained linear MOS (model B), Figure 2.8 shows that forecast
performances are improved by several percents with random forests. The only exception
is for the percentage of absolute errors lower than 4 m s−1(%≤4) where performances may
be decreased when using random forest compared to using linear regression. This figure
also confirms that random forests trained on a 3x3 block get similar performances than
point-wise random forests. Thus, even though training random forests on blocks does not
improve forecast performance as could be hoped, it does not decrease it either. Skill scores
computed for other domains and/or lead times confirm that random forest is usually a
better choice than linear regression by a few percent, except for %≤4 where the best MOS
is not always the same (see, e.g., Figure 2.8). In conclusion, the best MOS method is
random forest with 6 to 8 tried predictors, 200 trees, 500 leaves and a 3x3 block training.
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Figure 2.8 – Evolution of skill scores with the size of training block for random forest MOS,
with point-wise trained linear MOS as a reference. 200 trees and 8 tried predictors are
used to train the random forest with several sizes of training block.

On a more qualitative side, MOS successfully corrects the tendency of the raw model to
overestimate wind speed, as illustrated in Figure 2.9 with a smoothed scatter plot. As
can be seen, the MOS scatter plot is much more concentrated along the first bisecting line
than the raw forecast. This line corresponds to the point set of perfect forecasts. This
improvement is obvious whatever the strength of the gridded wind speed. These results
hold for every other domain or lead time (not shown).

Performance at station locations

Table 2.3 shows performance measures of forecasts bilinearly interpolated at the locations
of the meteorological stations inside the ten training domains. Scores are computed relative
to measurements at those stations by pooling forecasts for all three test years and for all
three lead times. Only 5 stations were included in any of the ten training domains. For the
raw AROME forecasts, lead time 48 h is actually lead time 6 h for the run of 1800 UTC,
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Test: from 01 Sept. 2013 to 31 Aug. 2014, lead: 15h, Domain: D03
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Figure 2.9 – Smoothed scatter plot of gridded observation against raw forecast (left) or
random forest based MOS forecast (right). The darker the blue, the denser the points.
The red oblique line is the first bisecting line. These scatter plots are for test grid-points in
domain D03, the test year starting on 1 September 2013, lead time 15 h and a training on
3x3 grid points. The random forest is built with 200 trees and 8 input variables randomly
drawn at each node.

since AROME does not yield forecasts beyond lead time 36 h. However, valid dates are
the same for MOS at lead times 48 h and this lagged raw AROME.

The scores show that random forest gets better overall performance than interpolated
raw ARPEGE forecasts, for a training domain of point-wise or 3x3 blocks. Furthermore,
random forests get similar or better performance than interpolated forecasts from Météo-
France’s high resolution model AROME. Concerning the bias, whereas random forests have
a negative bias and AROME is unbiased, the bias of random forests remains low (only -
0.3 m s−1). For lead times 48 h, MOS are as good as raw AROME at a lead time of 6 h,
an improved anticipation of 42 h.

However, the results vary at the scale of single stations. Table 2.4 shows the scores obtained
for a station picked at random for different lead times. For this station situated in domain
D03, random forests achieve much better performance than ARPEGE or AROME for a
lead time of 3 h. At a lead time of 15 h, spatially interpolated random forests still get
the upper hand over raw AROME but differences are slightly reduced. At a lead time of
48 h (6 h for raw AROME), random forests and AROME yield similar results. Over the
5 stations in the training domains, results are that variable, even though usually random
forests get at least as good performances as interpolated AROME forecasts. Whatever,
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Table 2.3 – Measures of overall performance of bilinearly interpolated forecasts at station
locations. The forecasts are MOS based on random forest, with a training domain of size
1x1 or 3x3, raw ARPEGE forecast and raw AROME forecast. Scores are computed by
pooling together forecasts over the three test years, every stations inside any study domain
and the three lead times (3, 15 and 48 h). For AROME, lead-time 48 h is actually lead-
time 6 h, since AROME forecasts do not extend up to 48 h. Bold scores indicate best
performance.

Random forest
ARPEGE AROME

1x1 3x3

BIAS -0.3 -0.3 0.2 0.0
MAE 1.2 1.3 1.7 1.4
RMSE 1.7 1.8 2.3 1.9
Q(0.5) 0.9 1.0 1.2 1.0
Q(0.9) 2.7 2.8 3.9 3.1
%≤1 54.0 52.8 45.1 50.8
%≤4 96.5 96.1 90.7 94.9

ARPEGE never prevails. Since the sample is small (only 5 stations), further investigations
would be necessary to assess the best choice of interpolated forecasts. This will first require
to build MOS forecasts for all the chosen grids over whole France. This will be done for
future applications at Météo-France, but such a training will require weeks. Nevertheless,
those first results point at interpolating MOS forecasts trained on a 3x3 blocks as a good
solution to get improved forecasts at station locations.

Speeding up operations

Running MOS on a grid with thousands of grid points may be time consuming, at the train-
ing stage and during operations. One purpose of block regression is to build less regression
models to accelerate memory loading during operations. Indeed, since the prediction with
random forest is very quick, a limiting factor for operational purpose is the loading time
of models in memory. For the linear models, only the regression coefficients β have to be
saved on disk, with a disk occupation of a few kB. A random forest object can be much
bigger if not optimized. In our case a random forest trained on one grid point amounts to
2 MB (for a total of 18 MB for a 9 grid point domain), whereas a random forest trained on
a 3x3 domain requires 12 MB, one third less. Additionally, a shallow forest with 200 trees,
8 tried predictors and only 500 leaves, trained over 3x3 grid points requires only about
5 MB for each domain, a further reduction of 60 %. Removing components of R random
forest objects unnecessary for prediction leads to a final storage size of 1.7 MB on disk.
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Table 2.4 – Same as in Table 2.3, but for one station in domain D03 and for each lead time.

Random forest
ARPEGE AROME

1x1 3x3

Lead time: 3 h
Lead time: 3 h

BIAS 0.2 0.2 1.5 0.9
MAE 1.0 1.0 1.7 1.3
RMSE 1.3 1.3 2.1 1.6
Q(0.5) 0.9 0.9 1.5 1.0
Q(0.9) 2.0 2.0 3.4 2.6
%≤1 60.1 60.4 33.8 48.2
%≤4 99.5 99.5 95.3 99.0

Lead time: 15 h
BIAS -0.1 0.2 0.3 -0.1
MAE 1.2 1.2 1.4 1.2
RMSE 1.5 1.5 1.8 1.6
Q(0.5) 1.0 1.0 1.1 1.0
Q(0.9) 2.3 2.3 2.9 2.5
%≤1 51.5 52.2 45.1 49.3
%≤4 98.8 99.1 96.3 97.4

Lead time: 48 h (6 h)
BIAS 0.2 0.2 1.4 0.8
MAE 1.2 1.2 1.8 1.2
RMSE 1.5 1.5 2.2 1.5
Q(0.5) 1.0 1.0 1.5 1.1
Q(0.9) 2.4 2.4 3.6 2.5
%≤1 49.8 50.1 35.5 47.6
%≤4 98.5 98.5 92.7 99.0

In order to compare loading times for several MOS models as stored in R, the above objects
have been loaded from disk 300 times for the ten studied domains. Figure 2.10 shows that
the linear model objects load much more quickly (about 15 ms for the ten domains) than
point-wise trained random forest objects (a few seconds accumulated over the ten domains).
However, combining block regression, shallow trees and removal of unnecessary components
allows dividing loading times of random forests by a factor 10. Since the complete mapping
of France requires about 830 domains, the loading time would be about half a minute for
the whole country. This still makes random forest longer to load than linear models, but
it is compatible with operational constraints. As seen above, this acceleration is achieved
without reducing the overall forecast performance.
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Figure 2.10 – Box plots of 300 loading times for the whole R objects over the 10 training
domains for several MOS models: complete random forest trained point wise (RF1x1),
complete random forest trained over a 3x3 block (RF3x3), shallow random forest trained
over a 3x3 block (shallowRF3x3), shallow random forest trained over a 3x3 block and
with removal of unnecessary elements for prediction in objects (shallowRF3x3clean), and
point-wise linear model (LM1x1).

2.4 Conclusion

Accurate wind speed forecasts are crucial for decision making in weather-related activities
or for weather warnings by national and regional weather services. NWP models provide
forecasts that are not exempt of errors. Since these errors are not completely random,
statistical post-processing methods, known as MOS, can be used to improve future forecasts
by using regression functions fitted on past forecasts and associated observations. In order
to apply those methods to wind speed forecasts at grid point locations, a new gridded
analysis of wind speed measured at meteorological stations is built. An internal comparison
of 48 interpolation strategies led at Météo-France showed the best hourly analysis is based
on thin plate regression splines. This regression is very parsimonious with only two additive
components: a first one with the most recent wind speed forecast of the high resolution
model AROME as the only input and the second one with a correction based on the
3-dimensional coordinates of the points. By cross-validation, it is shown that this new
analysis performs consistently better than available AROME analysis while keeping realistic
structures of wind speed fields thanks to the use of AROME forecast in the interpolation
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function. This allows to build an archive of gridded wind speed over France with a 2.5 km
grid size starting in January 2011 and ending in March 2015.

This new analysis is used to build improved wind speed forecasts of Météo-France 10 km
NWP model, ARPEGE, over France. The use of classical regression methods shows that
ARPEGE forecasts are easily and greatly improved by all regression methods. The best
MOS is based on random forests. The best combination of parameters for this model is
shown to be not very sensitive: taking more than 200 trees with 6 to 8 tried predictors at
each node is sufficient. Furthermore, random forests can be trained by pooling together
data from nearby grid points without degrading performances. Also, the trees in the
optimal random forests need not be very deep in order to achieve the best performances.
These last remarks lead to building less numerous and shallower random forests. After
removing unnecessary components in R random forest objects, the storage resources and
loading times of the random forests is reduced by a factor 10. The time to produce MOS
forecasts is mainly determined by the loading time of all the random forests into memory.
Thanks to their reduced size and number, this operation can be done in a reasonable
timing (about half a minute) that enables its application in every day operations. By Fall
2016, this MOS method with random forests trained over blocks will be made operational at
Météo-France by covering France with contiguous blocks. Block MOS for other parameters
of interest, such as gusts, will also be made operational.
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Chapter 3

Estimation of the Continuous

Ranked Probability Score with

Limited Information - Applications

to Ensemble Weather Forecasts

This work was done under the precious guidance of Philippe Naveau.

Abstract The continuous ranked probability score (CRPS) is a much used measure of
performance for probabilistic forecasts of a scalar observation. It is a quadratic measure
of the difference between the forecast cumulative distribution function (CDF) and the
empirical CDF of the observation. Analytic formulations of the CRPS can be derived
for most of the classical parametric distributions, and be used to assess the efficiency of
different CRPS estimators. When the true forecast CDF is not fully known but represented
as an ensemble of values, the CRPS is estimated with some error. Thus, using the CRPS
to compare parametric probabilistic forecasts with ensemble forecasts may be misleading
due to the unknown error of the estimated CRPS for the ensemble. With simulated data,
the impact of the type of the verified ensemble (a random sample or a set of quantiles)
on the CRPS estimation is studied. Based on these simulations, recommendations are
issued to choose the most accurate CRPS estimator according to the type of ensemble.
The interest of these recommendations is illustrated with real ensemble weather forecasts.
Also, relationships between several estimators of the CRPS are demonstrated and used to
explain the differences of accuracy between the estimators.
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3.1 Introduction

Verifying the quality of forecasts expressed in a probabilistic form requires specific graphical
or numerical tools (Jolliffe and Stephenson 2011), among them some numerical measures
of performance such as the Brier score (Brier 1950), the Kullback-Leibler divergence (Weijs
et al. 2010) and many others (Winkler et al. 1996; Gneiting and Raftery 2007). When the
probabilistic forecast is a cumulative distribution function (CDF) and the observation is
a scalar, the continuous ranked probability score (CRPS) is often used as a quantitative
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measure of performance. Classically (Matheson and Winkler 1976; Hersbach 2000), the in-
stantaneous CRPS is defined as the quadratic measure of discrepancy between the forecast
CDF, noted F , and 1(x ≥ y), the empirical CDF of the scalar observation y,

crps(F, y) =

∫

R

[F (x)− 1(x ≥ y)]2 dx, (INT)

where 1 is the indicator function.

Analytic formulations of crps(F, y) can be derived for most of the classical parametric
distributions, some of which are listed in Table 3.1. In some situations, the forecast CDF
may not be fully known, such as for ensemble numerical weather prediction (NWP) or other
kinds of Monte Carlo simulations, or the forecast CDF may be known but an analytic
formulation of the CRPS may not be derivable. In the latter case, one may be able to
sample values from F . Anyway, in these two situations, the forecast CDF is summarized
with a set ofM values xi=1,...,M . Following the convention in Meteorology, such a set will be
called here an ”ensemble” and each value xi will be called a ”member”. The instantaneous
CRPS must then be estimated with this ensemble. This may be problematic when using
the CRPS to compare parametric forecasts, whose CRPS may be computed exactly, and
forecasts whose CRPS is estimated based on the limited information about F contained in
the ensemble. The unknown error in the CRPS estimation may lead to the wrong choice
of the best forecast.

Usually, the instantaneous CRPS is averaged in space and/or time, over several pairs
of forecast/observation. Candille (2003) and Ferro et al. (2008) showed that, when the
ensemble is a random sample from F , the usual estimator of the instantaneous CRPS
based on (INT), introduced later, is biased: its expectation over an infinite number of
forecast/observation pairs does not give the right theoretical value. This bias stems from
the limited information about F contained in an ensemble with finite size M . Several
solutions have been proposed to remove this bias. Ferro (2014) introduced the notion of
fair score and a formula to correct the bias in the estimation of the averaged CRPS. Müller
et al. (2005) proposed two solutions to the same problem of biased estimation of the ranked
probability score (RPS), the version of the CRPS for ordinal random variables. Adapted
to the CRPS, their first solution would be to use an absolute value instead of a square
inside the integral (INT). As demonstrated in Appendix 3.A, this score for an ensemble is
minimized if all the members xi equal the median of F , which is obviously not the purpose
of an ensemble. Their second solution is to compute the RPS skill score against some
ensemble of size M whose RPS is estimated by bootstrapping past observations. Although
interesting, this solution does not allow to assess the absolute performance of the ensemble
but only the performance relative to this bootstrapped ensemble.

This study aims at improving heuristically the estimation of the average CRPS of a forecast
CDF under limited information. The information is limited in two ways: (1) the CDF is
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Table 3.1 – List of distributions whose closed-form CRPS exists and were used in this study.
The reference of the original article where to find the formula is also given. Taillardat et al.
(2016) gathers the closed form expression of the CRPS for these and other distributions.

Distribution Original reference

Beta: Y ∼ Beta(α, β) Taillardat et al. (2016)
Gamma: Y ∼ Gamma(α, β) Möller and Scheuerer (2013)
Gaussian mixture: Y ∼∑p

i=1 ωiN (µi, σi), with Grimit et al. (2006)∑p
i=1 ωi = 1, ωi=1,...,p > 0

Generalized Extreme Value: Y ∼ GEV (µ, σ, ξ) Friederichs and Thorarinsdottir (2012)
Generalized Pareto: Y ∼ GPD(µ, σ, ξ) Friederichs and Thorarinsdottir (2012)
Log-normal: ln(Y ) ∼ N (µ, σ) Baran and Lerch (2015)
Normal: Y ∼ N (µ, σ) Gneiting et al. (2005)

Square-root truncated normal:
√
Y ∼ N 0(µ, σ) Hemri et al. (2014)

Truncated normal: Y ∼ N 0(µ, σ) Thorarinsdottir and Gneiting (2010)

known only through an ensemble as defined above; and (2) the average CRPS is computed
over a finite number of forecast/observation pairs. The problem is not to estimate the
unknown forecast CDF F , but to estimate the CRPS of F under limited information
about F . To improve the estimation with this limited information, the usual strategy is
to correct the empirical mean score, as in Ferro (2014) or Müller et al. (2005). Here the
approach is to improve the estimation of each term of the average, that is, the estimation
of the instantaneous CRPS crps(F, y).

The rest of this paper is organized as follows. Section 3.2 reviews several estimators of
the instantaneous CRPS proposed in the literature, and demonstrates relationships among
them. In particular, it is shown that the four proposed estimators reduce to two only. In
Section 3.3, synthetic data are used to study the variations in accuracy of these two CRPS
estimators, with the size M of the ensemble and the way this ensemble is built. These
simulations lead to recommendations on the best estimation of the CRPS. Section 3.4
illustrates issues in CRPS estimation with two real meteorological data sets. Improvements
in the inference obtained by following the recommendations from Section 3.3 are shown
on these data. Section 3.5 gives a summary of the recommendations to get an accurate
estimation of the instantaneous CRPS, concludes and discusses the results.
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3.2 Review of available estimators of the CRPS

he instantaneous CRPS is defined as a quadratic discrepancy measure between the forecast
CDF and the empirical CDF of the observation,

crps(F, y) =

∫

R

[F (x)− 1(x ≥ y)]2 dx. (INT)

Equation (INT) is called the integral form of the CRPS.

Gneiting and Raftery (2007) showed that, for forecast CDFs with a finite first moment,
the CRPS can be written as

crps(F, y) =EX |X − y| − 1

2
EX,X′ |X −X ′|, (NRG)

where X and X ′ are two independent random variables distributed according to F , and
EA is the expectation according to the law of the random variable(s) A. This form is called
the energy form of the CRPS, since it is just the one-dimensional case of the energy score
introduced by Gneiting and Raftery (2007), based on the energy distance of Székely and
Rizzo (2013).

Taillardat et al. (2016) introduced a third expression of the CRPS, valid for continuous
forecast CDFs,

crps(F, y) =EX |X − y|+ EXX − 2EXXF (X), (PWM)

which is called the probability weighted moment (PWM) form of the CRPS because its
third term is a probability weighted moment (Greenwood et al. 1979; Rasmussen 2001;
Furrer and Naveau 2007).

When F is known only through an M -ensemble xi=1,...,M , the above definitions lead to the
following estimators of the instantaneous CRPS,

ĉrpsINT (M, y) =

∫

R

[
1

M

M∑

i=1

1(x ≥ xi)− 1(x ≥ y)

]2
dx, (eINT)

ĉrpsNRG(M, y) =
1

M

M∑

i=1

|xi − y| − 1

2M2

M∑

i,j=1

|xi − xj |, (eNRG)

ĉrpsPWM (M, y) =
1

M

M∑

i=1

|xi − y|+ β̂0 − 2β̂1, (ePWM)

respectively, where EXX is estimated by β̂0 = 1
M

∑M
i=1 xi, and EXXF (X) is estimated

by β̂1 = 1
M(M−1)

∑M
i=1(i − 1)xi. Without loss of generality, the members xi are supposed

sorted in increasing order, and the size M of the ensemble is supposed greater than two.
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Candille (2003) and Ferro et al. (2008) showed that the expectation of (eINT) over an
infinite number of forecast/observation pairs is biased with, under conditions of stationarity
of the observation and the ensemble, and exchangeability of the members,

EY ĉrpsINT (M,Y ) =EY crps(F, Y ) +
1

M
EX1,X2

|X1 −X2|
2

, (3.1)

where X1 and X2 are any two distinct members of one ensemble forecast. This relation
holds only when the ensemble is a random sample from F . Ferro (2014) proposed the
notion of fair score for an ensemble of random values, which leads to a fourth estimator of
the instantaneous CRPS, the fair CRPS defined as

ĉrpsFair(M,y) =
1

M

M∑

i=1

|xi − y| − λ̂2, (eFAIR)

where λ̂2 = 1
2M(M−1)

∑M
i,j=1 |xi − xj | estimates EX1,X2

|X1−X2|
2 , and is unbiased when the

members are independently sampled from F .

These four estimators reduce to only two since, as shown in Appendix 3.B,

ĉrpsINT (M, y) = ĉrpsNRG(M, y),

ĉrpsPWM (M,y) = ĉrpsFair(M,y).

The properties of only two estimators have to be studied. In the light of the second equality,
the fair CRPS can be interpreted as a PWM-based estimator of the instantaneous CRPS,
which explains why it is an unbiased estimator of the average CRPS of a random ensemble
as proven by Ferro (2014). Indeed, the unbiasedness property of the mean for the first
term and of the PWMs for the second term, in the case of a random sample, immediately
proves that the two terms in Equation (ePWM) are unbiased estimators of their population
counterpart, if the members are randomly and independently drawn from F .

Moreover, the relationship

ĉrpsINT (M,y) = ĉrpsPWM (M,y) +
λ̂2

M
(3.2)

holds for these two estimators, as shown in Appendix 3.B. Equation (3.2) holds for a
single forecast/observation pair, and requires no assumption on the nature or statistical
properties of the ensemble.

3.3 Study with simulated data

The accuracy of the two instantaneous CRPS estimators presented above, ĉrpsPWM (M, y)
and ĉrpsINT (M,y), is studied with synthetic forecast/observation pairs. The forecast CDF

66



3.3. STUDY WITH SIMULATED DATA

F is chosen such that the theoretical CRPS crps(F, y) can be exactly computed with a
closed-form expression (see Table 3.1 for a list of such distributions). To mimic actual
situations when F is not fully known, two types of ensembles are built from this forecast
CDF. The two types of ensembles successively used in the remaining of this section are
random ensembles and ensembles of quantiles, defined later. The estimators are then
computed and compared to the theoretical value.

3.3.1 CRPS estimation with a random ensemble

Methodology

A random ensemble is a sample of M independent draws from F . In actual applications,
a random ensemble may be viewed as M members from an NWP ensemble model, or,
more generally, as an M -sample from Monte Carlo simulations. Protocol 1 describes the
simulation plan.

Protocol 1: Estimation of the CRPS with simulated random ensembles.

Input: M : number of members.
F : forecast CDF.
G: CDF of the observation.
N : number of ensemble forecast/observation pairs.

Output: N values of instantaneous CRPS for each estimator.
1 for n← 1 to N do
2 Draw the observation y from G.
3 Compute the theoretical CRPS crpsth(F, y) with its closed-form expression.
4 Draw xi=1,...,M from F .
5 Compute and store ĉrpsINT (M, y) and ĉrpsPWM (M, y) with this ensemble.

Results

The results are presented for a standard normal forecast CDF F . For the sake of simplicity
the CDF of the observation is also standard normal (G = F ).

Since the ensemble is random, the estimated CRPS is also a random variable that depends
on the observation y and the members xi=1,...,M . In order to study the variability of the
estimated CRPS with the ensemble only, the observation is first held constant (with a
value of -0.0841427, for each n in Protocol 1), while N = 1000 ensembles of M members
are drawn from F . The impact of M on the accuracy of the estimated CRPS is assessed
by observing Protocol 1 with different ensemble sizes M .
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Figure 3.1 – Intervals of estimation error of ĉrpsINT (left) or ĉrpsPWM (right) for a ran-
dom ensemble of varying size. Intervals are computed point-wise, with the 1000 CRPS of
independently built random ensembles with the same observation. The observation and
members come from a standard normal distribution.

The point-wise 10 %, 50 % and 95 % intervals of the estimation error crpsth − ĉrps (with
crpsth = 0.2365178 here) are computed over these 1000 ensembles for each ensemble size
M . The intervals contain the corresponding proportion of the 1000 computed CRPS errors
for a given ensemble size. As shown in Figure 3.1 (left) for ĉrpsINT , the error tends toward
0 when the ensemble size increases. However, important errors (as high as ±10 % of crpsth)
can still occur even for very large ensembles of several hundreds of members. As shown in
Figure 3.1 (right), the estimator ĉrpsPWM exhibits a similar behaviour for large random
ensembles, as deduced from Equation 3.2 if M →∞. But ĉrpsPWM becomes unbiased for
much smaller ensemble sizes than ĉrpsINT . The unbiasedness of ĉrpsPWM proven by Ferro
(2014) holds only for ensembles with more than about 20 members. The variability of the
estimation, as quantified by the half-width of the 50% central interval, may be important
when the random ensemble contains less than 50 members (more than 10% of crpsth, in
Figure 3.2). With increasing ensemble sizes, the variability of this estimation does not
scale linearly with the number of members, as shown in Figure 3.2. Tripling the ensemble
size from M = 100 to about M = 300 decreases the half-width of the 50% central interval
of the relative estimation error by only about 2% (from 7% to 4%).

Common practice is to average instantaneous CRPSs over several locations and/or times.
Here, this is mimicked by taking the average of N instantaneous CRPSs generated ac-
cording to Protocol 1, without holding the observation constant any more. The number
of forecast/observation pairs N is varied from 1 to 1000. The size M of the ensemble is
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Figure 3.2 – Same as in Figure 3.1, but for the relative estimation error of ĉrpsPWM .

also varied, with 10, 30, 50, 100 and 300 members. The average theoretical CRPS and
average estimation are computed for each combination of N and M . As shown in the
left of Figure 3.3 for ĉrpsINT , a stable estimation of the average CRPS is reached if the
number of averaged estimations is large enough (more than 300 for a random ensemble
of 10 members). But a large ensemble is required to get an accurate estimation of the
true average CRPS. As shown in the right of Figure 3.3, the averaged ĉrpsPWM shows a
better estimate than the averaged ĉrpsINT , even for small ensembles and small numbers
of averaged estimations.

These behaviours for the instantaneous and the averaged estimates remain true for every
distribution listed in Table 3.1, every parameters’ value and even if the G and F are
different (not shown).

The added value of these simulations to the results of Ferro (2014) is to show the behaviour
of ĉrpsPWM for small ensemble sizes M and finite numbers of forecast/observation pairs.
The poor scaling of this estimator’s variability with the ensemble size has been empirically
shown, which had never been done, to the best of our knowledge. Finding a formula for
the variability of ĉrpsPWM would be interesting to quantify the estimation uncertainty for
practical purposes. We demonstrated error bounds that were not usable in practice since
they require to know the forecast distribution (not shown).

The conclusion of these simulations is that, for a random ensemble, the estimation of the
instantaneous CRPS is not very accurate whatever the estimator is used, but the averaged
CRPS can be estimated with a good accuracy. The unbiasedness of ĉrpsPWM for random
ensembles stems from the use of estimators that are unbiased for independent samples
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Figure 3.3 – Evolution of the relative estimation error of the averaged ĉrpsINT (left) or
ĉrpsPWM (right) with the number of members for a random ensemble. The averaged CRPS
is an arithmetic mean of the CRPS of several pairs of ensemble/observation among 1000.
The vertical grey dashed lines correspond to an average computed with 30, 90 and 365
ensembles (to mimic a monthly, seasonal or yearly average CRPS).

from the underlying distribution F . In practice, if one seeks to estimate the potential
performance of an ensemble with an infinite number of members, one should use the PWM
estimator of the CRPS. The integral estimator of the CRPS assesses the global performance
of the actual ensemble, and should be used for actual performance verification.

3.3.2 CRPS estimation with an ensemble of quantiles

Methodology

An ensemble of M quantiles of orders τi=1,...,M ∈ [0; 1] is a set of M values xi=1,...,M such
that: xi = F−1(τi) ∀i ∈ {1, . . . ,M}. Contrasting with a random ensemble, the orders τi
associated to the members xi are known.

In this case, the data are simulated according to Protocol 2. The two built ensembles of
quantiles are defined as:

• regular ensemble (reg): it is the ensemble of the M quantiles of orders τi, with
τi ∈ { 1

M , 2
M , . . . , M−1

M , M−0.1
M } of F . The last order is not 1 to prevent infinite values.

• optimal ensemble (opt): it is the set ofM quantiles of orders τi ∈ {0.5M , 1.5M , . . . , M−0.5
M }
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of F . This ensemble is called “optimal” because Bröcker (2012) showed that this set
of quantiles minimizes the expectation of the CRPS of an ensemble over an infinite
number of forecast/observation pairs, when using Equation (eINT).

Protocol 2: Estimation of the CRPS with simulated ensembles of quan-

tiles.

Input: M : number of quantiles.
F : forecast CDF.
G: CDF of the observation.
N : number of ensemble forecast/observation pairs.

Output: N values of the instantaneous CRPS for each estimator and kind of
quantile ensemble.

1 Compute the ensemble of M regular quantiles of F .
2 Compute the ensemble of M optimal quantiles of F .
3 for n← 1 to N do
4 Draw y from G.
5 Compute and store the theoretical CRPS crpsth(F, y) with this observation.
6 Compute and store ĉrpsINT (M,y) and ĉrpsPWM (M, y) with this observation for

the ensemble of regular quantiles.
7 Compute and store ĉrpsINT (M,y) and ĉrpsPWM (M, y) with this observation for

the ensemble of optimal quantiles.

Results

Relative estimation errors of ĉrpsINT and ĉrpsPWM have been computed for a fixed ob-
servation (N = 1, y = −0.0841427) and regular and optimal ensembles, all built from a
standard normal distribution (G = F for the sake of simplicity). As shown in Figure 3.4,
the CRPSs estimated with quantile ensembles clearly outperform the ĉrpsPWM estimation
with one random ensemble whatever the number of members. Averaging the ĉrpsPWM

estimations of 1000 random ensembles gives a similar estimation accuracy to the one of
the best estimation with quantile ensembles, namely ĉrpsINT with optimal quantiles. This
configuration is not feasible in most applications, since it requires 1000 forecast/observation
pairs with the same observation. Anyway, computing one set of quantiles may be much
simpler and quicker than creating 1000 random ensembles. Among the estimation with en-
sembles of quantiles, the combination of ĉrpsINT and optimal quantiles exhibits a dramatic
improvement in accuracy over the other combination, even for ensembles with less than
10 quantiles. Whatever the distribution F is used, ĉrpsINT computed with the optimal
quantiles gives a much more accurate estimation, for all ensemble sizes, than the other
combinations of estimator and type of ensemble of quantiles (not shown).
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Figure 3.4 – Evolution with ensemble size of relative error of several estimations of CRPS,
for different ensembles and different estimators of CRPS. All computation are done with
the same observation for all forecasts. The ensembles and the observation come from a
standard normal distribution.

In order to assess the robustness of the remarks in the last paragraph in regards to the
observation, data are simulated with Protocol 2 for several ensemble sizes M , with N =
1000 ensemble forecast/observation pairs for each ensemble size. Note that, at M fixed,
the ensemble of quantiles is the same for all the forecast/observation pairs. From the
point-wise intervals of the relative estimation errors represented in Figure 3.5, it appears
that computing ĉrpsINT with the optimal quantiles gives the most accurate estimation of
crps(F, y), whatever the number of quantiles is used. With only a few tens of quantiles, this
estimation achieves a much higher precision than the other ones with several hundreds of
quantiles. Figure 3.5 also shows that, for finite ensembles of quantiles, the PWM estimator
is biased, being too low (positive relative errors). Indeed, according to Equation (3.2),
since ĉrpsINT is an unbiased estimator of the average CRPS of an ensemble of quantiles
as shown here, and since λ̂2 is positive, ĉrpsPWM must be biased towards low values.

These conclusions hold for all the tried distributions and the set of parameters values for
each distribution (not shown).
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Figure 3.5 – 10%, 50%, 95% and 100% point-wise intervals of relative error for several
combination of quantile ensembles and CRPS estimator. Intervals are computed by drawing
1000 observations from a standard normal distribution. Ensembles are regular (left column)
or optimal (right column) quantiles of a standard normal distribution. The CRPS is
estimated with the PWM (top) or integral (bottom) estimator.

As for the bad performance of ĉrpsPWM with an ensemble of quantiles, let us recall that
ĉrpsPWM is a sum of terms that are unbiased estimators of their population counterpart
when computed with a random sample, which is not the case of an ensemble of quantiles.
The computation of ĉrpsINT uses the approximation of the forecast distribution as a step-
wise CDF, with a fixed stair-step height 1

M . The difference in estimation accuracy with
the type of quantiles comes from the position of the stair steps. With regular quantiles,
the step-wise CDF is always located below the forecast CDF. With optimal quantiles,
the associated quantiles are shifted leftward, making the stair steps sometimes above F
and sometimes below. This better approximates the forecast CDF F than with regular
quantiles, thus improves the estimation of the CRPS.
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Influence of ties in an ensemble of quantiles

An ensemble of quantiles may be produced by statistical methods called quantile regression
(White 1992; Koenker 2005; Meinshausen 2006; Takeuchi et al. 2006). Some of these
quantile regression methods can produce only a subset τavj=1,...,Nτ

∈ [0; 1] of Nτ orders. The
quantiles associated to these available orders are called “available quantiles” hereafter, and
correspond to the abscissa of the black dots in Figure 3.6. If one requires a quantile with an
order τ outside of the subset of available orders, the quantile regression will not return the
associated quantile of the forecast CDF (abscissa of the blue circles in Figure 3.6), but the
available quantile corresponding to the highest available order lower than τ (abscissa of the
red triangles of Figure 3.6). The set of different values returned by the quantile regression
method when certain orders are requested is called the “unique quantiles” hereafter. It is
a subset of the available quantiles. The quantile regression methods with this feature will
introduce many ties in the produced ensembles of quantiles, as shown in Figure 3.7 on real
data. For the Canadian ensemble forecasts, although 1002 regular quantiles are required
from a quantile regression method at one grid point and one lead time, the number of unique
quantiles returned by the quantile regression function varies from a few tens of values to
a few hundreds. On average, only about one hundred unique quantiles are produced in
this example. Some implementations of quantile regression methods, such as the function
rq in R package quantreg, have an option to produce the available orders τavj and their
associated quantiles. Other packages, such as quantregForest, have not yet implemented
this possibility, and will return only forecast quantiles with (potentially many) ties.

In order to assess the impact of ties on the accuracy of the CRPS estimators for an en-
semble of quantiles, ensembles of quantiles with ties are simulated with Protocol 3, with
N = 1000 forecast/observation pairs. The left side of Figure 3.8 shows that with only
Nτ = 30 available orders, the four estimates become inaccurate. The distribution of the
estimated CRPS becomes clearly biased whatever ensemble size is considered. This bias
is pessimistic (negative estimation errors) for most ensemble sizes, but may be optimistic
(positive estimation errors).

A way to address this issue of equal quantiles is to remove the ties by interpolation. The
first considered case is when the implementation of the quantile regression method do not
propose to know the available quantiles. Protocol 3 is modified as follow at lines 3 and
4: after computing the quantiles with ties, linear interpolation is done between unique
values to recover the number of required regular or optimal quantiles, as explained in
Figure 3.6. As shown in the right side of Figure 3.8, this interpolation results in a better
estimation accuracy, even though the curves are less smooth than when all orders are
available (compare with Figure 3.5). The best CRPS estimation is now obtained with
ĉrpsINT and regular quantiles, with at least M = 30 regular quantiles to get a sufficient
accuracy. This behavior barely depends on the chosen distribution and parameters’ value,
but requiring 100 regular quantiles seems to be the minimal number to get satisfactory
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Figure 3.6 – Graphical illustration of the production of ties by quantile regression methods. The
black continuous line is the forecast CDF. The abscissa (resp. ordinates) of the Nτ = 4 black dots
are the available quantiles (resp. orders), that can produce the quantile regression method. The
empty blue dots are the 5 requested points. The red triangles are the 5 points actually obtained, due
to the limited number of available quantiles and orders. Within each group of obtained points whose
abscissa is the same, only the point with the lowest order is kept (3 red diamonds) for removing the
ties by interpolation. The interpolation function (dashed red line) is a linear interpolation between
the red diamonds, and a constant order of 0 or 1 outside (left and right, respectively).

accuracy, whatever the forecast distribution F is used (not shown). If the available quantiles
and orders can be produced by the implementation of the quantile regression method,
similar linear interpolation can be done relatively to the associated points, that is, the black
dots in Figure 3.6. Figure 3.9 shows that this linear interpolation nearly fully reproduces
the good accuracy obtained when all orders are available. The best estimation strategy is
again to use ĉrpsINT with optimal quantiles, albeit with a slightly worst accuracy than the
one reached without ties.

The influence of the number of available orders Nτ and the kind of post-processing on
ĉrpsINT is crucial as shown in Figure 3.10. If the number of available quantiles is too
low, no matter the post-processing of the quantile ensemble, the estimated CRPS will
not converge to the true value due to insufficient information about F . The number of
available quantiles necessary to achieve a good accuracy depends on the complexity of the
forecast distribution: a gaussian mixture with many different modes requires more available
quantiles to be accurately described (not shown here).
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Figure 3.7 – Number and percentage of unique quantiles among 1002 regular quantiles
requested from a quantile regression method applied to the Canadian ensemble model.

Protocol 3: Estimation of the CRPS with simulated ensembles of quan-

tiles, with ties.

Input: M : number of quantiles.
F : forecast CDF.
G: CDF of the observation.
N : number of ensemble forecast/observation pairs.
Nτ : number of available quantiles.

Output: N values of instantaneous CRPS for each estimator and kind of quantile ensemble.
1 Draw uniformly in [0; 1] the Nτ available orders τavj .

2 Compute the available quantiles of F : F−1(τavj )∀j ∈ {1, . . . , Nτ}.
3 Compute the ensemble of M regular quantiles of F . Make each regular quantile xi equal to

the available quantile with order τavj immediately inferior to τi.

4 Compute the ensemble of M optimal quantiles of F . Make each optimal quantile xi equal to
the available quantile with order τavj immediately inferior to τi.

5 for n← 1 to N do
6 Draw y from G.
7 Compute and store the theoretical CRPS crpsth(F, y) with this observation.
8 Compute and store ĉrpsINT (M,y) and ĉrpsPWM (M, y) with this observation for the

ensemble of rounded regular quantiles.
9 Compute and store ĉrpsINT (M,y) and ĉrpsPWM (M, y) with this observation for the

ensemble of rounded optimal quantiles.
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Figure 3.8 – Same as in Figure 3.5 but with ties in the ensembles and only Nτ = 30 available
orders (left), and after removing ties by linear interpolation of the unique quantiles in the
forecasts (right).

Based on these simulations, several recommendations can be drawn to estimate the instan-
taneous CRPS of an ensemble of quantiles. First, if the quantile regression cannot yield
enough available quantiles (less than about Nτ = 30), the instantaneous CRPS should
not be used whatsoever. Even the average CRPS should be used with care due to a
(possibly large) estimation bias. However, if the number of available unique quantiles is
sufficient (more than 30), the estimation of the instantaneous CRPS can be much improved
by interpolating the quantiles and using of ĉrpsINT . The best interpolation depends on
the available information: if the whole set of available quantiles in the quantile regression
method is not accessible, linear interpolation between the unique quantiles and their associ-
ated order toward regular quantiles should be preferred. However, if the available quantiles
and orders can be known, linear interpolation of those quantiles and orders toward optimal
quantiles is the best approach.

Table 3.2 sums up the recommendations to estimate the instantaneous CRPS for a random
ensemble or an ensemble of quantiles.

3.4 Real data examples

With two real data sets, issues resulting from the uncertainty in the estimation of the in-
stantaneous CRPS are illustrated. The practical benefits of following the recommendations
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Observation is varied
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Figure 3.9 – Same as in Figure 3.5 but with ties in the ensembles, only Nτ = 30 available
orders, and linear interpolation of the Nτ available quantiles.

Table 3.2 – Summary of recommendations to estimate the CRPS.

Type of
ensemble

Condition Recommendation

Random

The purpose is to assess the perfor-
mance of an infinite ensemble.

Use average ĉrpsPWM .

tThe purpose is to assess the perfor-
mance of the actual ensemble.

Use average ĉrpsINT .

Quantiles

All orders available. Use average ĉrpsINT with optimal
quantiles.

Nτ . 30. Use average ĉrpsINT with care.
Nτ & 30 and available quantiles un-
known.

Use average ĉrpsINT with linearly
interpolated regular quantiles be-
tween unique quantiles.

Nτ & 30 and available quantiles
known.

Use average ĉrpsINT with linearly
interpolated optimal quantiles be-
tween available quantiles.

listed in Table 3.2 are highlighted.
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Figure 3.10 – Influence of post-processing. The ensemble quantiles are post-processed
by linear interpolation between unique quantiles (linjitter) or between the Nτ available
quantiles (fulljitter). Each panel represents the same intervals as in figure 3.5 for ĉrpsINT

computed from post-processed quantile ensembles with a varying number Nτ of available
quantiles.
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3.4.1 Raw and calibrated ensemble forecast data sets

The first forecast data set consists in four NWP ensembles from the TIGGE project
(Bougeault et al. 2010). 10 m height wind speed forecasts have been extracted from
four operational ensemble models issued by meteorological forecast services: the U.S. Na-
tional Centers for Environmental Prediction (NCEP), the Canadian Meteorological Center
(CMC), the European Center for Medium-Range Weather Forecasts (ECMWF) and Météo-
France (MF). Those ensembles have respectively 21, 21, 51 and 35 members. The study
domain is France with a grid size of 0.5◦ (about 50 km), for a total of 267 grid points.
Available forecast lead-times are every six hours. The period goes from 2011 to 2014.

The second forecast data set is composed of two versions of each ensemble calibrated with
statistical post-processing methods. In order to improve the forecast performance, each
ensemble has been post-processed thanks to two statistical methods: non homogeneous
regression (NR, Gneiting et al. 2005) and quantile regression forests (QRF, Meinshausen
2006). In NR, the forecast probability distribution F is supposed to be some known distri-
bution: here the square root of forecast wind speed follows a truncated normal distribution
whose mean and variance depend on the ensemble forecast. This is similar to the work of
Hemri et al. (2014), who also gives the closed form expression of the instantaneous CRPS
for this case. QRF is non parametric and yields a set of quantiles xi with chosen orders
τi. We use here a simplified version of the model proposed in Taillardat et al. (2016).
Since QRF is non parametric, the CRPS has to be estimated with limited information.
Furthermore, QRF cannot yield every order and may lead to many ties among predicted
quantiles, as seen in Figure 3.7. To the best of our knowledge, no implementation of QRF
in R allows to know the available quantiles. Post-processing was done separately for each
of the 267 grid points, each ensemble and each lead time. The regression was trained with
cross-validation: three years were used as training data, the fourth one being used as test
data. The four possible combinations of three training years and one test year were tested.
The raw ensembles can be seen as random ensembles whereas the ensembles calibrated
with QRF are ensembles of quantiles as defined above.

The observation comes from a wind speed analysis made at Météo-France, presented in
Zamo et al. (2016).

3.4.2 Issues estimating the CRPS of real data

In figures 3.11 and 3.12, the CRPS is estimated with the first M members of the raw
CMC ensemble at one grid point and for lead time +42 h. First, as shown in Figure 3.11,
for very small ensemble sizes, differences between ĉrpsINT and ĉrpsPWM may be huge.
With an increased ensemble size, both estimators get very similar values. Even for the
largest number of members, ĉrpsINT is systematically higher than ĉrpsPWM , in agreement
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Raw cmc, longitude:  0
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Figure 3.11 – Scatter plots of instantaneous CRPS computed for raw ensemble forecasts,
with the two CRPS estimators. The forecasts are for one grid point of the Canadian
ensemble forecast model. The number of members goes from 2 to 21 (the actual size of the
ensemble). Each point corresponds to one forecast (one date and valid time).

with Equation (3.2). These differences result in important differences on the averaged
CRPS, as shown in Figure 3.12, representing the evolution with M of the yearly-averaged
ĉrpsINT and ĉrpsPWM . Whereas the yearly-averaged ĉrpsPWM is nearly independent of
M , the average ĉrpsINT requires a minimum ensemble size to yield a stable value. But
even then, the two estimators do not yield the same average CRPS: for the year 2011, on
average ĉrpsINT (M = 21) ≃ 0.75m/s whereas ĉrpsPWM (M = 21) ≃ 0.7m/s, a difference
of 7 %. These conclusions from Figure 3.12 are in agreement with those from Figure 3.3,
that shows that the average ĉrpsPWM attains the true value with much smaller ensembles
than ĉrpsINT . The left side of Figure 3.3 exhibits negative estimation errors which is
in agreement with the averaged ĉrpsINT being higher than the averaged ĉrpsPWM in
Figure 3.12 and in agreement with Equation (3.2).

Figure 3.13 uses the version of the CMC ensemble calibrated with QRF. For each of the two
sets of quantiles, ĉrpsINT and ĉrpsPWM are computed for each forecast date and averaged
over each test year. The number M of requested quantiles is varied from 2 to 50 and are
either of regular or optimal orders. Figure 3.13 shows the evolution of the four estimated
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Figure 3.12 – Evolution of the yearly-averaged CRPS with the number of members for
the raw CMC ensemble. Each panel contains the average CRPS computed by averaging
the instantaneous CRPS estimator, ĉrpsINT (left) or ĉrpsPWM (right). Each curve is
computed by averaging the estimated instantaneous CRPS over one test year, for forecasts
at one grid point and for one lead time.

average CRPS with the number of quantiles, for the same grid point and lead time as
above. First, the average ĉrpsINT decreases rapidly toward some value, whatever the kind
of quantiles. Second, the yearly-averaged ĉrpsPWM is not independent of the number
of quantiles, as it was independent of the number of members in Figure 3.12. Here, it
slowly increases toward some value for a fixed kind of quantiles. Third, the limit values
are on average ĉrpsPWM (50) ≃ 0.48m/s, ĉrpsINT (50) ≃ 0.47m/s a difference of only 2 %.
Last, the rate of evolution of the average CRPS with the ensemble size strongly depends
on the choice of the CRPS estimator and of the type of required quantiles. For these
data, removing ties in the forecast quantiles do not change the conclusions (not shown).
In agreement with the recommendations from the simulated data, the fastest converging
estimate is the average ĉrpsINT computed with optimal quantiles.

Other ensembles, grid points and lead-times give similar results (not shown).
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Figure 3.13 – Evolution with the number of members of the estimated CRPS averaged over
one year for CMC ensemble forecast calibrated with quantile regression forests. Two sets
of quantiles are requested: regular (left) and optimal (right). Ties between quantiles are
not removed. The two formulae (eINT) (top) and (ePWM) (bottom) are used to estimate
the instantaneous CRPS for each quantile sets. Each curve is then computed by averaging
the estimated instantaneous CRPS over one year, for forecasts at one grid point and for
one lead time.

3.4.3 Issues on the choice between QRF and NR

For the real data set, the CRPS of QRF has been estimated with ĉrpsINT and ĉrpsPWM

computed with optimal quantiles, and ties have been kept or removed by interpolation.
Figure 3.14 shows the proportion of times QRF gets a lower CRPS than NR, out of the 365
forecasts during test year 2012, for one grid point and one lead time with calibrated CMC
data. The proportion of times QRF outperforms NR strongly depends on the number of
quantiles but stabilizes at similar values when ĉrpsINT or ĉrpsPWM is used. In agreement
with the conclusions on simulated data, the proportion stabilizes with less quantiles when
ĉrpsINT is used. With too few quantiles (less than about 20), the difference of performance
between QRF and NR may be deemed significant depending on the estimator. But in this
specific case, after the curves have stabilized, the performance of QRF and NR are not
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Figure 3.14 – Proportion of forecasts when QRF gets a lower CRPS than NR, for calibrated
CMC ensemble, at one grid point, for one lead time and one test year. QRF yields M op-
timal quantiles and its CRPS is estimated with ĉrpsPWM (continuous line) or ĉrpsINT

(dashed line), without removing ties (black curves) or after removing ties with linear inter-
polation between unique quantiles (red curves). NR’s CRPS is computed with the closed
form expression available in Hemri et al. (2014). The grey zone is the 0.01-confidence in-
terval that the proportion is not significantly different from 0.5 (quantiles 0.995 and 0.005
of a binomial distribution with 365 tries).

statistically different to the level 0.01 for all the estimations. This shows that the choice
of the best post-processed forecast may be misguided by poor performance estimates if
the wrong estimator is used and/or not enough quantiles are required. The number of
available quantiles is unknown but has been estimated to be at least 52 for this test year.
Based on the recommendations in Table 3.2, the best method to estimate the CRPS of
QRF would be to use ĉrpsINT and at least 30 optimal quantiles, which is in agreement
with the previous remarks.

3.5 Conclusion and discussion

A review of four estimators of the instantaneous CRPS when the forecast CDF is known
through a set of values have been done. Among these four estimators proposed in the
literature, only two, called the integral estimator and the probability weighted moment
estimator, are not equal. Furthermore, a relationship between these two estimators have
been demonstrated, and generalizes to the instantaneous CRPS of any ensemble, a relation-
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ship established by Ferro et al. (2008) for the average CRPS of a random ensemble. With
simulated data, the accuracy of the two estimators has been studied, when the forecast
CDF is known with a limited information and the number of forecast/observation pairs
is finite. The study leads to recommendations on the best CRPS estimator depending on
the type of ensemble, whether random or a set of quantiles. For a random ensemble, the
best estimator of the CRPS is the PWM estimator ĉrpsPWM if one wants to assess the
performance of the ensemble of infinite size, whereas the integral estimator ĉrpsINT must
be used to assess the performance of the ensemble with its current size. For an ensemble
of quantiles, ties introduced by quantile regression methods strongly affect the estimation
accuracy, and removing these ties by an interpolation step is paramount to allow a good
estimation accuracy. If the number of available quantiles is too low (say, Nτ ≤ 30) all the
studied estimators exhibit a strong bias. But if the number of available quantiles is larger,
the best estimation is obtained by computing the integral estimator ĉrpsINT with linearly
interpolated quantiles, between the available quantiles if they are known or between the
unique quantiles otherwise.

The established relationships between the estimators proposed in the literature have been
linked to previous results. These relationships also explain why an estimator is more accu-
rate for one type of ensemble and not for the other. The PWM estimator performs better
on random ensembles because it is based on estimators that are unbiased for independent
samples from the true underlying distribution. On the other hand, the integral estimator
gives a good estimate when computed with optimal quantiles. This is because regular
weights are associated to the members in the estimator formula but, when using optimal
quantiles, the associated quantiles are shifted to better approximate the underlying forecast
CDF.

The important consequences on the choice of method of estimation of the CRPS has also
been illustrated on real meteorological data with raw ensembles and calibrated ensembles.
As an example, the comparison of several calibrated ensembles may be mislead by a poor
estimate of the average CRPS of ensembles of quantiles.
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Appendix

3.A What is elicited when the 1-norm CRPS of an ensemble

is minimized?

Let {xi}i=1,...,M be an ensemble of M values. Let Fe(x) =
∑M

i=1 ωi1(x ≥ xi) be the associ-

ated empirical CDF, with weights ωi, such that ωi ≥ 0 ∀i ∈ {1, . . . ,M} and∑M
i=1 ωi = 1.

Let y be the observation.

Following Müller et al. (2005), the 1-norm CRPS of this ensemble relative to this observa-
tion is defined as

crps1(Fe, y) =

∫

R

|Fe(x)− 1(x ≥ y)|dx.

This can be rewritten in a more interpretable form.

crps1(Fe, y) =

∫ y

−∞

∣∣∣∣∣
M∑

i=1

ωi1(x ≥ xi)

∣∣∣∣∣ dx

+

∫ +∞

y

∣∣∣∣∣
M∑

i=1

ωi (1(x ≥ xi)− 1)

∣∣∣∣∣ dx

=

∫ y

−∞

M∑

i=1

ωi1(x ≥ xi)dx

+

∫ +∞

y

M∑

i=1

ωi (1− 1(x ≥ xi)) dx

=
M∑

i=1

ωi

[ ∫ y

−∞
1(x ≥ xi)dx

+

∫ +∞

y
1− 1(x ≥ xi)dx

]
.

If y ≥ xi,
∫ y

−∞
1(x ≥ xi)dx =

∫ xi

−∞
0dx+

∫ y

xi

1dx = y − xi,

and
∫ +∞

y
1− 1(x ≥ xi)dx =

∫ +∞

y
0dx = 0.
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If y ≤ xi,
∫ y

−∞
1(x ≥ xi)dx =

∫ y

−∞
0dx = 0,

and
∫ ∞

y
1− 1(x ≥ xi)dx =

∫ xi

y
1dx+

∫ +∞

xi

0dx = xi − y.

Therefore, ∀y and ∀i
∫ y

−∞
1(x ≥ xi)dx+

∫ +∞

y
1− 1(x ≥ xi)dx =|y − xi|.

Finally,

crps1(Fe, y) =

M∑

i=1

ωi|y − xi|.

The 1-norm CRPS is just the weighted mean of the absolute error of each member. The
average 1-norm CRPS is thus minimized if all the members are equal to the median of the
observation CDF (Gneiting 2011b).

3.B Relationships between the estimators of the CRPS

Without loss of generality, the forecast is an ensemble of M values xi=1,...,M sorted in
increasing order.

3.B.1 Equality of ĉrpsFair and ĉrpsPWM

Following the definition of L-moments and their relationship with PWMs (Wang 1996;
Hosking 1990), one can rewrite

λ̂2 =
1

2M(M − 1)

M∑

i,j=1

|xi − xj |

=2β̂1 − β̂0

=
1

M(M − 1)

M∑

i,j=1

(2i−M − 1)xi, (3.3)
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where λ̂2, β̂1 and β̂0 are estimators of the second linear moment, the PWM of order 1 and
the PWM of order 0 (i.e. the average), respectively. These estimators are unbiased if the
ensemble is a random sample.

Introducing these notations in Equation (eFAIR) leads to

ĉrpsFair(M, y) =
1

M

M∑

i=1

|xi − y|+ β̂0 − 2β̂1

=ĉrpsPWM (M,y).

3.B.2 Equality of ĉrpsNRG and ĉrpsINT

As Gneiting and Raftery (2007) showed, the representations (INT) and (NRG) are equiv-
alent for forecast CDFs with a finite first moment. Since empirical distributions have a
finite first moment, and since (INT) and (NRG) reduce to (eINT) and (eNRG) respectively,
equality of ĉrpsINT and ĉrpsNRG follows immediately.

Thanks to Pr. Tilmann Gneiting for this proof, much more straightforward than the one
initially proposed.

3.B.3 Relationship between ĉrpsPWM and ĉrpsNRG

Using (3.3) leads to

ĉrpsNRG(M, y) =
1

M

M∑

i=1

|xi − y| − 2M(M − 1)

2M2
(2β̂1 − β̂0)

=
1

M

M∑

i=1

|xi − y|+ β̂0 − 2β̂1 +
λ̂2

M

=ĉrpsPWM (M, y) +
λ̂2

M
.
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4.1 Introduction

As a chaotic dynamical system, the atmosphere has an evolution that is intrinsically uncer-
tain (Malardel 2005; Holton and Hakim 2012). In the field of numerical weather prediction
(NWP), assessing the forecast uncertainty is the primary goal of ensemble forecasts (Leut-
becher and Palmer 2008). An ensemble forecast consists in a set of deterministic forecasts,
called members. The most common ensemble NWP forecasts consist in several members
obtained by running the same NWP model with different initial conditions and/or different
parametrizations of the model physics (Descamps et al. 2011). From the distribution of the
members, the uncertainty may be derived in a probabilistic way. Nowadays, several ensem-
ble forecast systems are available routinely (Bougeault et al. 2010; Descamps et al. 2014).
Being often biased and under-dispersed (Hamill and Colucci 1998; Buizza et al. 2005), these
ensemble forecast systems are sometimes post-processed with statistical methods, called
ensemble model output statistics (EMOS) to improve the forecast performances (Wilson
et al. 2007; Thorarinsdottir and Gneiting 2010; Möller and Scheuerer 2013; Baran and
Lerch 2015; Taillardat et al. 2016).

In the following, we investigate several ways to aggregate several raw or post-processed
ensembles, called “experts”, in order to create a more skillful “meta ensemble”. Loosely
speaking, the aggregation is simply a linear combination of the ensembles. Since we are
dealing with probability distributions, only convex aggregation strategies will be investi-
gated: the individual experts’ weights are constrained to be positive and to sum up to
one.

The desired properties of the aggregation are two-fold. The first one is to get a better
forecast performance. It has been shown for deterministic forecasts (Fritsch et al. 2000;
Baars and Mass 2005; Woodcock and Engel 2005) and, less commonly, for probabilistic
forecasts (Allard et al. 2012; Gneiting et al. 2013; Baudin 2015; Baran and Lerch 2016)
that aggregating several forecasts may improve the forecast performance compared to the
most skillful post-processed forecast. Some aggregation methods even have theoretical
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guarantees that the aggregated forecast will not perform much worse than some skillful
reference forecast, called the oracle (Cesa-Bianchi et al. 2006; Stoltz 2010). In practice, the
aggregated forecast may even outperform the oracle. The second goal is to dynamically
tackle changes in the ensemble models, that may strongly affect the performance of the raw
or post-processed ensembles. A good aggregation method should quickly detect changes in
the performance of the experts and adapt the aggregation weights to discard the bad ones
and favor the good ones. In this work, we will focus on forecasting the 10 m wind speed
over France.

This work is inspired by the work of Baudin (2015) who aggregated in a similar way several
ensembles, the experts being the sorted forecast values of the pooled ensembles. Thus, the
experts from Baudin (2015) are not identifiable over time as required by the theory used in
this work and ours. As an example, at different times, the lowest forecast value could come
from a different member of a different ensemble. Furthermore, the experts are weighted as
deterministic forecasts. Being a whole ensemble, each expert used in the present work is a
truly probabilistic forecast identifiable over time.

In Section 4.2, the theoretical framework of sequential aggregation of step-wise cumulative
distribution functions (CDF), used in this study, is presented, along with notations. The
tools used to assess the performances of the forecasts are also introduced. Section 4.3
presents the different aggregation methods investigated. Some are rather empirical, while
others exhibit interesting theoretical properties. Section 4.4 describes the ensemble fore-
casts, the EMOS methods used to post-process the ensembles, and the wind speed ob-
servation. The results of the comparison of the aggregation methods are presented in
Section 4.5. These results motivate a discussion of the methodology of the post-processing
and aggregation of ensemble forecasts, in Section 4.6. Finally, Section 4.7 concludes with
a summary of the results.

4.2 Theoretical framework and verification strategy

4.2.1 The individual sequence prediction framework

The theoretical framework underlying the present study requires no assumption about the
properties of the sequences of observations and forecasts, whose generating process can be
deterministic or statistical, stationary or not, or anything else. Cesa-Bianchi et al. (2006)
and Stoltz (2010) describe this very general framework, called the prediction of individual
sequences.

An individual sequence is any sequence of values yt ∈ Y, at times t = 1, 2, . . ., of a parameter
of interest, or observation. The set of possible values of yt, Y, is usually but not necessarily
the set of real numbers. At each time t, and before the value of yt is revealed, a forecaster
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produces a forecast ŷt ∈ Ŷ, based on some information It, possibly with Ŷ 6= Y. The
information It may contain the past observations of yt, and any other piece of information
such as outputs of numerical models, experts’ advice, measurements of parameters related
to the observation, and so on.

When the observation yt is revealed, the forecaster suffers a loss, quantified with a loss
function ℓ : Ŷ × Y → R. The most general goal of the forecaster would be to build
the best possible forecast, that is, to minimize its cumulative loss over a period of time
t = 1, . . . , T . This minimization is not possible for all possible individual sequences, since
one can always build a sequence of observations that makes the forecaster’s cumulative
loss arbitrarily high. Therefore, a more realistic goal is to build the best possible forecast
relatively to the best element from some class of reference forecasts. Let us note C a class
of functions ỹ : I ′t → ỹt ∈ Ŷ, defined as a class of forecast algorithms based on information
I ′t, with possibly I ′t 6= It. Common classes C are the set of experts, or the set of fixed
convex combinations of experts. Let us note

RC
T =

T∑

t=1

ℓ(ŷt, yt)− inf
ỹ∈C

T∑

t=1

ℓ(ỹt, yt) (4.1)

the regret of the forecaster relatively to the class C. The regret is the cumulative additional
loss suffered by the forecaster who used its own forecast algorithm instead of the best
forecast algorithm from class C. The computation of this best forecast algorithm from
class C, called the oracle, requires all the information for the whole period. Thus, the
oracle cannot be used for real-time applications. It can be shown that, for some specific
forecast algorithms and specific classes C, the regret is sub-linear in T , that is, if the loss
function ℓ is convex in its first argument, then

supRC
T = o(T ), (4.2)

where the supremum is taken over all possible individual sequences of the observation, and
over all the sources of information It available to the forecaster. The class C depends on
the algorithm used by the forecaster. Since the bounds hold for any individual sequence,
the individual sequence prediction framework is very interesting to ensure to the forecaster
good forecast performances.

4.2.2 Sequential aggregation of step-wise CDFs

The prediction with expert advice is the special situation of individual sequence prediction
considered in this study. The information It available to the forecaster is composed of the
current forecasts of E ∈ N

∗ so-called “experts” and of the past observations yj=1,...,t−1.
An expert is any means, in a very general sense, to produce a forecast at each time t, and
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before the observation yt is revealed. The forecast of expert e at time t is noted ŷe;t ∈ Ŷ,
with e ∈ {1, . . . , E}. The forecaster produces an aggregated forecast as a combination of
the experts’ current forecasts ŷe=1,...,E;t,

ŷt =

E∑

e=1

ωe;tŷe;t,

where ωe;t ∈ Ω is the aggregation weight of expert e at time t, and Ω is R or a subset
thereof. The aggregation weights are computed using only past information (I1, . . . , It−1),
namely the past experts’ forecasts ŷe;j and the past observations yj , with e = 1, . . . , E and
j = 1, . . . , t−1. The aggregation is initialized with equal weights, that is, ωe;1 =

1
E , ∀e =

1, . . . , E. Finally, in prediction with expert advice, the class C mentioned above is defined
on a subset ΩE of the aggregation weights’ space, so that

ỹt =

E∑

e=1

ω̃e;tŷe;t,

with the weights ω̃e;t ∈ ΩE ⊆ Ω. The specific subset depends on the sequential aggregation
algorithm used by the forecaster, some of which are described in Section 4.3. Mallet et al.
(2007) and Gerchinovitz et al. (2008) contain concise reviews of many aggregation methods
with expert advice, and numerical algorithms thereof. These two papers concern the case
of real experts (Ŷ ⊆ R) and a real observation (Y ⊆ R), along with theoretical bounds for
the L2-loss (ℓ̂(ŷt, yt) = (ŷt − yt)

2), when they exist.

This study is more specifically concerned with sequential aggregation of step-wise CDFs,
that is, the forecast space Ŷ is the set of piece-wise constant, non-decreasing functions
taking their values in [0; 1]. The experts are supposed to produce forecasts in the form of a
discrete set of values from some (possibly unknown) CDF Fe;t(x). For instance, these sets of
values can be members from an NWP ensemble model, a set of quantiles from a statistical
quantile regression method, or a sample from Monte Carlo simulations In mathematical
notations, each expert forecast ŷe;t is a step function with jumps of heights pme

e (called
weights) at the Me values xme

e;t . The weights are such that pme

e > 0, for me = 1, . . . ,Me,

and
∑Me

me=1 p
me

e = 1. Then each expert’s forecast CDF is approximated by the step-wise

CDF ŷe;t = F̂e;t(x) =
∑Me

me=1 p
me

e H(x− xme

e;t ), H being the Heaviside function, with x ∈ Y.
Without loss of generality, the xme

e;t are supposed sorted in ascending order for each expert

and at each time t, so that xme

e;t is the quantile of order τme

e =
∑me

m′

e=1 p
m′

e
e of Fe;t(x).

The aggregated forecast CDF, ŷt = F̂t(x), consists in the pooled values {xme

e;t ;me =
1, . . . ,Me, e = 1, . . . , E} with a jump of height ωe;tp

me

e associated to the value xme

e;t , thus

F̂t(x
me

e;t ) =
∑E

e′=1 ωe′;t

(∑M
e′

m′

e′
=1

p
m′

e′

e′ H(xme

e;t − x
m′

e′

e′;t )
)

= τme

e;t . (4.3)
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Figure 4.1 – Example of aggregation of E = 2 CDFs. The forecast CDFs (blue continuous
line for expert e = 1, red dashed line for expert e = 2) are known only through a set of
M1 = M2 = 3 values xme

e with associated jumps pme

e = 1
3 (blue for expert 1, red for expert

2). Following Equation (4.3), since x12 is greater than x11 and x21, it is the quantile of order
τ12;t = ω1;t(p

1
1 + p21) + ω2;tp

1
2 = 2

3ω1;t +
1
3ω2;t of Ft. If ω1;t = ω2;t =

1
2 , then τ12;t =

1
2 and the

aggregated step-wise CDF is the black continuous line.

In other words, xme

e;t is the quantile of order τme

e;t of Ft, whose computation is illustrated in
Figure 4.1.

To produce a valid step-wise CDF, the aggregation algorithm must ensure that the ag-
gregation weights are such that ωe;t ≥ 0, ∀e ∈ {1, . . . , E} and ∀t ∈ {1, . . . , T}, and that∑E

e=1 ωe;t = 1, ∀t ∈ {1, . . . , T}. Thus, the aggregated forecast is a convex combination of
the expert forecasts.

4.2.3 Verification strategy

Three graphical or numerical tools are used to assess the forecast performance: the Con-
tinuous Ranked Probability Score, the rank histogram and the sharpness diagram.

For probabilistic forecasts expressed as a CDF F and a scalar observation y ∈ Y ⊆ R, a
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natural and much used loss function ℓ is the Continuous Ranked Probability Score (CRPS,
Matheson and Winkler 1976), defined as

ℓ(F, y) =

∫

x∈Y
(F (x)−H(x− y))2 dx.

As all average score, the average CRPS can be decomposed into three terms that quantify
specific properties of a forecast system or an observation: the reliability, the resolution
and the uncertainty. A forecast system is reliable if the observations associated with a
specific forecast distribution are distributed according to this distribution. As an example,
for a stationary forecast system and observation, always forecasting the climatological dis-
tribution of the observation gives a perfectly reliable forecast system, although being not
very informative. A forecast system has a high resolution if he can issue forecast distribu-
tions very different from the climatological distribution. By definition, the climarological
distribution, although reliable, has no resolution at all. Uncertainty is a property of the
observation only, and is defined as the variability of the observation. The interested reader
is refered to Bröcker (2009) for the formulae defining the corresponding three terms in an
average score, and to Hersbach (2000) for the method to compute them in the case of the
CRPS of an ensemble forecast. The existence of theoretical bounds for the regret requires
that the loss function is convex in its first argument, which is the case of the CRPS. Since
the experts are step-wise CDFs, the information about the underlying forecast CDF is
incomplete, which creates issues about the accuracy of the CRPS estimation as investi-
gated in Chapter 3. The recommendations from this previous study have been followed to
estimate accurately the CRPS of the experts and aggregated forecasts.

The rank histogram of an ensemble forecast, simultaneously introduced by Anderson
(1996), Hamill and Colucci (1996) and Talagrand et al. (1997), is the histogram of the
rank of the observation when it is pooled with its corresponding forecast members. For a
reliable ensemble, the observation and the members must have the same statistical prop-
erties, resulting in a flat rank histogram. The deviations from flatness gives indications
about the flaws of an ensemble. For instance, an L-shape histogram means the forecasts are
consistently too high, while a J-shape histogram indicates consistently too low forecasts.
But Hamill (2001) showed on synthetic data that a flat rank histogram can be obtained
with an observation and members differently distributed, that is, for an unreliable ensem-
ble. A flat rank histogram is thus a necessary but not sufficient condition for a forecast to
be reliable. Since a necessary quality of a probabilistic forecast useful for decision making
is its reliability, the flatness of the rank histogram is required to retain an expert or an ag-
gregation method as a possible candidate for operational purposes. The flatness of a rank
histogram can be statistically tested thanks to the chi-square test as follows. Consider the
vector of normalized deviation from flatness in each rank,

δ =

(
n1 − nth√

nth
, . . . ,

nk − nth√
nth

)′

,
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where k is the number of possible ranks, ni is the count of rank i and nth =
∑

k

i=1 ni

k is
the theoretical count in each rank for a flat histogram. Under the null hypothesis that
the rank histogram is compatible with a flat histogram up to sampling noise, the squared
norm ||δ||2 is the chi-square test statistic. The chi-square test statistic is insensitive to
the shape of the deviations to a flat histogram, as shown in Figure 4.2. To build this
figure, as in Elmore (2005), 60 integer values from 1 to 16 have been drawn from a uniform
distribution. Four histograms are shown: the histogram computed with the raw sample
(top left), with the same counts sorted in ascending order (top right), with the counts
reassigned to have a peak-shaped histogram (bottom left), and with the counts reassigned
in a wave shape (bottom right). The p-value of the chi-square test and three other flatness
tests presented below is reproduced under the histograms. Although the counts of each
rank are reorganized, the p-value of the χ2-test of the four histograms is the same. Because
of this, in this study, the flatness of each rank histogram is assessed with the decomposition
of the chi-square test statistic, as detailed in Jolliffe and Primo (2008). Any projection of
δ onto an orthonormal basis of R

k has k− 1 components whose squares are asymptotically
independent χ2 random variables, each with 1 degree of freedom. If the basis vectors are
chosen to describe a sloped histogram, a convex histogram, or any other shape of interest,
the existence of the shape in the rank histogram can be tested. The existence of a shape
is not rejected if the projection of δ onto the corresponding basis vector has a component
statistically different from 0. Jolliffe and Primo (2008) gives formulae to compute the
basis vectors for deviations from flatness commonly encountered on real data. As an
example, if k = 2p+ 1, the basis vector for the slope (resp. convexity) test is proportional

to (−p,−p + 1, . . . ,−p + (k − 1)) (resp. (p2 − p (p+1)
3 , (p − 1)2 − p (p+1)

3 , . . . ,−p (p+1)
3 , 1 −

p (p+1)
3 , . . . , p2 − p (p+1)

3 )). In this study, three tests are used, the slope and convexity tests,
and the “wave” test not described in Jolliffe and Primo (2008). This last test assesses the
presence of a deviation from flatness in the shape of a tilde, that was frequently observed
in the literature (Scheuerer et al. 2015; Baran and Lerch 2016; Taillardat et al. 2016) and
in internal studies at Météo-France. The corresponding basis vector is built thanks to the
Grahm-Schmidt process as follows: the vector (0, sin( 2π

k−1), sin(2π
2

k−1), . . . , sin(2π
k−2
k−1), 0)

is made orthogonal to the slope basis vector, and the resulting vector is normalized to get
the basis vector for testing the presence of a wave shape. In Figure 4.2, the p-values for
the test of existence of a slope, a convexity or a wave are in agreement with the shape of
the histograms1. For instance, the slope test gets the lowest p-value for the sloped rank-
histogram (top right), and it does not reject the existence of a slope as expected. In the
results, a histogram is deemed flat at the 0.01 significance level if its p-values for the slope,
convexity and wave tests under the null hypothesis of flatness are all higher than 0.01

3 , the
factor 1

3 being the Bonferroni correction for multiple testing.

1The p-values of the Jolliffe-Primo test for slope and convexity have been computed with the function
TestRankhist in the R package SpecsVerification (Siegert 2015). The function has been modified to
compute also the p-value for the Jolliffe-Primo test for a wave shape.
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Figure 4.2 – Illustration of the Jolliffe-Primo flatness tests of a rank histogram.

The sharpness diagram proposed in Gneiting et al. (2007) is a box plot of the range of the
central 50% and 90% forecast intervals (respectively noted IQ50 and IQ90) of each fore-
cast distribution. As its name suggests, it graphically assesses the forecast concentration.
Among reliable forecasts, more concentrated forecasts are preferred.

4.3 Aggregation methods

Several aggregation methods are introduced, from simple empirical ones to more sophis-
ticated ones derived from the theory of prediction with expert advice. For all but the
sharpness-calibration aggregation method, the loss function ℓ is the CRPS, so that each
expert has a weight depending on its past forecast performance, in terms of CRPS.
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4.3.1 Inverse CRPS weighting

The inverse CRPS weighting method (INV) weights each expert inversely proportional to
its average CRPS over the last W days. In mathematical notations,

ωINV
e;t =

CRPS
−1
e;t (W )

∑E
e=1CRPS

−1
e;t (W )

(4.4)

where CRPSe;t(W ) is the average CRPS of expert e during the W days before time t.

4.3.2 Sharpness-calibration paradigm

Gneiting et al. (2007) proposed that probabilistic forecast performance should be evaluated
according to the paradigm of maximizing the sharpness of the predictive distributions sub-
ject to calibration. This means that a calibration method should aim at providing reliable
probabilistic forecasts that are the less dispersed possible. Ideally, this would lead to a
deterministic forecast (the highest sharpness possible) that would always be equal to the
associated observation (i.e. that is reliable): the perfect forecast indeed. A more realis-
tic and practical motivation of this sharpness-calibration paradigm is that decisions taken
with this calibrated forecast would be optimal due to the reliability of the forecast and less
uncertain due to the forecast’s low dispersion (Zhu et al. 2002; Mylne 2002).

Here, this sharpness-calibration paradigm (SHARP) is used for the aggregation of experts.
In words, the aggregated forecast is the forecast of the expert whose rane of the central
90% interval IQ90, averaged over the last W days is the lowest, among the experts whose
reliability term, as computed in Hersbach (2000), is lower than a chosen threshold Relith
over the last W days. Roughly speaking, the aggregation weight is 1 for the sharpest
reliable expert and 0 for the others. This defines an aggregated forecast computed with
the weights

ωSHARP
e;t = 1

(
e = argmin

{e|Relie;t(W )<Relith}
IQ90e;t(W )

)
, (4.5)

where Relie;t(W ) is the reliability term of expert e over the W days before time t, and
IQ90e;t(W ) is the average range of the interval between quantiles of orders 0.95 and 0.05,
forecasted by the expert e over the W days before time t. If no expert has a reliability term
over the last W days lower than the reliability threshold Relith, the aggregated forecast is
just the expert with the lowest mean CRPS over the last W days.

The three following methods have a theoretically bounded regret, whose bound are derived
from the theory of prediction with expert advice.
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4.3.3 Minimum CRPS

The minimum CRPS method (MIN) chooses the best recent expert in terms of CRPS, that
is, the aggregation weight is 1 for the expert with the lowest average CRPS over the last
W days, and 0 for all the other experts. The mathematical formulation is

ωMIN
e;t = 1(e = e⋆t (W )), (4.6)

where e⋆t (W ) is the index of the expert with the minimum average CRPS during the last
W days. The reference class C is the set of the E available experts, so that the oracle for
this method is the expert with the lowest CRPS averaged over the period {1, . . . , T}. This
aggregation method is called “follow-the-best-expert” in Cesa-Bianchi et al. (2006), which
proves that, under several assumptions on the loss function, the regret of the aggregated
forecast relatively to the oracle is o(ln(T )).

4.3.4 Exponential weighting

The exponentially weighted average forecaster (EWA) computes the aggregation weights as

ωEWA
e;t =

exp{−ηCRPSe;t(W )}
∑E

e=1 exp{−ηCRPSe;t(W )}
, (4.7)

where η ∈ R
+ is called the learning rate and CRPSe;t(W ) is the cumulative CRPS of expert

e over the last W days. The reference class C is the set of the E available experts. Thus,
the oracle is the best expert, in terms of average CRPS over the whole period {1, . . . , T}.
If W spans the whole period before t, that is, if W = t − 1 days, the EWA forecaster’s
regret relatively to the oracle is bounded. In Appendix 4.B, a proof, similar to the one
in Cesa-Bianchi et al. (2006), is given of the following theoretical bound

supRC
T ≤

lnE

η
+

ηT

8
B2, (4.8)

where B is the upper bound of the loss function. In practice, for an unbounded loss function
such as the CRPS, B is the maximum of observations and expert forecasts over the whole
period t = 1, . . . , T .

4.3.5 Exponentiated gradient

The exponentiated gradient forecaster (GRAD) weights the experts with

ωGRAD
e;t =

exp{−η∂eCRPSGRAD
t (W )}

∑E
e=1 exp{−η∂eCRPSGRAD

t (W )}
, (4.9)
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where CRPSGRAD
t (W ) is the cumulative CRPS over the lastW days of the GRAD forecast,

and ∂eCRPSGRAD
t (W ) =

∂CRPSGRAD
t

(W )
∂ωe;t

. Using Equation (4.13) from Appendix 4.A,

∂eCRPSGRAD
t (W ) =

t−1∑

s=t−W

∂CRPSGRAD

∂ωe
(ŷs, ys)

=

t−1∑

s=t−W





Me∑

me=1

pme

e |xme

e;s − ys| −
E∑
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p
m

e′
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m
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 ,

(4.10)

which generalizes Equation (5.13) of Baudin (2015) to the case of the aggregation of en-
sembles with any number of members.

For this aggregation method, the reference class C is the set of convex combinations with
constant weights over the whole period {1, . . . , T}, that is, such that ωe;t = ωe, ∀e ∈
{1, . . . , E} and t ∈ {1, . . . , T}. The oracle is the best, in terms of cumulative CRPS,
constant convex combination of experts. This is usually a better oracle than the best
expert. If W = t − 1 days, the following bound immediately follows from Mallet et al.
(2007) or Baudin (2015),

supRC
T ≤

lnE

η
+

ηT

2
C2, (4.11)

where C = maxt∈{1,...,T},e∈{1,...,E}|∂CRPSGRAD

∂ωe
(ŷt, yt)|.

4.4 The experts and the observation

This section presents the E = 28 experts aggregated in this study, and the wind speed
observation used to verify the forecasts.

4.4.1 The TIGGE data set and experts

The International Grand Global Ensemble, formerly the THORPEX Interactive Grand
Global Ensemble (TIGGE) was an international project aiming, among other things, to
provide ensemble prediction data from leading operational forecast centers (Bougeault et al.
2010; Swinbank et al. 2016). Although the TIGGE data set2 includes 10 ensemble NWP

2The data set can be retrieved from the ECMWF at http://apps.ecmwf.int/datasets or from the Chinese
Meteorological Administration at http://wisportal.cma.gov.cn/wis/
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Table 4.1 – Ensembles from TIGGE used in this study, with some of their characteristics.

Weather service Members Used run (UTC) Lead times

Canadian Meteorological Center (CMC) 21 1200 12h to 54h
European Center for Medium-Range
Weather Forecasts (ECMWF)

51 1200 12h to 54h

Météo-France (MF) 35 1800 6h to 48h
US National Centers for Environmental
Prediction (NCEP)

21 1800 6h to 48h

models, only the four ensemble models operationally available at Météo-France have been
retained, due to the operational constraint of this study (see Table 4.1).

The TIGGE grid size is 0.5◦ over France, for a total of 267 grid points. The period goes
from the 1st January, 2011 to the 31st December, 2014 (so T = 1461 in the notations of
Section 4.2). The lead times go from 12 h to 54 h depending on the ensemble, with an
interval of 6 h.

Each ensemble is an expert whose forecast CDF F̂e;t is the empirical CDF of the members
associated with the same weight pme

e = 1
M , where M is the number of members in the

ensemble.

4.4.2 The calibrated experts

Each ensemble is calibrated with two kinds of EMOS: quantile random forest (QRF, Mein-
shausen 2006, Taillardat et al. 2016) and non-homogeneous regression (NR, Gneiting et al.
2005, Hemri et al. 2014).

In QRF, the regression equation is built in a similar way as with random forest (see Zamo
et al. 2016). A forecast CDF is then produced by going down the forest with the vector
of explanatory variables, computing the step-wise CDF of the observations associated to
each leave and averaging those CDFs. In practice, one requires a set of quantile orders
and get the corresponding quantiles3. The forecast CDF Fe;t is thus only partly known.
The obtained quantiles may contain many ties, that must be suppressed with a proper
interpolation, as explained in Chapter 3. QRF are here trained by 4-fold cross-validation
and the chosen explanatory variables are the most important ones according to Taillardat
et al. (2016).

With NR, the forecast CDF Fe is parametric. Following Hemri et al. (2014), the square
root of the forecast wind speed f̂t is supposed to follow a normal distribution truncated at

3In R package quantregForest (R Core Team 2015; Meinshausen and Schiesser 2015).
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Table 4.2 – Summary description of the EMOS methods used to calibrate each ensemble.

Quantile Regression Forest (QRF)

Distribution Non-parametric (set of quantiles).
Explanatory variables Control member, ensemble mean, ensemble 0.1 and 0.9 quantiles,

month.
Training method 4-fold cross-validation (3 training years, 1 test year).
Orders of the forecast quantiles 0, 1

100
, . . . , 99

100
, 1.

Non-homogeneous Regression (NR)

Distribution Parametric (truncated normal distribution for the square-root of wind
speed).

Explanatory variables Mean and standard deviation of the raw ensemble.
Training method Sliding window over the Wtr previous days, with Wtr =

7, 30, 90, 365, t− 1 days.
Orders of the forecast quantiles 0, 1

100
, . . . , 99

100
, 0.999.

0 √
f̂t ∼ N 0(a+ bxt, c

2 + d2sdt)

where xt and sdt are the mean and standard deviation of the associated ensemble, forecasted
at time t. The real parameters a, b, c and d are optimized by maximizing the log-likelihood4

over the last Wtr forecast days. To produce a step-wise CDF F̂e;t that may be aggregated in
the framework of step-wise CDF aggregation, the quantiles of orders {0, 1

100 , . . . ,
99
100 , 0.999}

are computed from the parametric CDFs produced by NR, and squared. The last order is
not 1 to avoid infinite values.

Table 4.2 gives the different values of the tuning parameters for both calibration methods.

4.4.3 The observation

The observation is the 10 m average wind speed analysis built in Zamo et al. (2016), for
the 267 TIGGE grid points over France. Since each of these grid points is located at the
same coordinates as one AROME grid point, no interpolation from the analysis grid to the
TIGGE grid is required.

The calibration and the aggregation are produced and verified separately for eight lead
times h (from 6 h to 48 h, with a time step of 6 h), and at each grid point. For computation
of the aggregation weights, the supposed time of the day t is 1800 UTC, which implies that
for experts based on CMC and ECMWF, whose runtime is 1200 UTC, the actual lead time
is h+ 6.

4With the function optim in R (R Core Team 2015).
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Table 4.3 – Tried values for the parameters of the aggregation methods.

Aggregation method Parameters

Minimum CRPS or Inverse CRPS W = 7, 15, 30, 90, 365, t− 1 days

Sharpness-calibration
W = 7, 15, 30, 90, 365, t− 1 days
Relith = 0.1 m/s

Exponentiated weighting or Exponentiated
gradient weighting

W = 7, 15, 30, 90, 365, t− 1 days
η = 10−1.5, 10−1, . . . , 102

4.5 Results

The five aggregation methods presented in Section 4.3 have been investigated, with the
values of the tuning parameters listed in Table 4.3. When two parameters exist, all com-
binations have been tested.

The best forecast method can be chosen according to two criteria: the minimization of
the average CRPS, as is classically done, or the maximization of the proportion of rank
histograms who passed the three flatness tests. Hereafter, the best calibration or aggre-
gation method in terms of minimum CRPS (resp. maximum proportion of simultaneously
passed flatness tests) is called the most skillful (resp. reliable) method. Both choices are
successively analyzed in the following section.

4.5.1 CRPS, reliability and sharpness

The time series of the regret of each most skillful or reliable aggregation method of each
type relatively to the most skillful expert over the four years (QRF-calibrated ECMWF
ensemble) is drawn in Fig. 4.3, for lead time 24 h. Whereas the best SHARP aggregation
gets a consistently higher CRPS than the most skillful expert, the other aggregation meth-
ods manage to outperform the latter at least for some part of the four years. As could be
hoped due to the existence of the theoretical bound on the regret, the most skillful EWA
and GRAD settings get a negative regret. But for these two aggregation methods, the
most reliable setting gets a positive final regret at the end of the period, slightly different
than the negative regret of the most skillful settings. In terms of averaged CRPS over all
lead times, this difference is about 4 %, as shown in Table 4.4. The time series of the regret
exhibits an increasing trend and a diurnal cycle with the lead times (see figures 4.14 to
4.20 in Appendix 4.C), and so does the averaged CRPS (see Table 4.4). This is a frequent
evolution of performance measures with lead time. The performance gets less good with
farther lead times, and decreases during the late afternoon when the wind strengthens.
According to the minimization of the CRPS, the chosen forecast method would be the
most skillful GRAD settings, that is log10(η) = −1 and W = 2000 days.
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Figure 4.3 – Time series of the cumulative average regret, at lead time 24 h, for each
aggregation method. At each valid date, the regret relatively to the most skillful expert
(QRF-calibrated ECMWF ensemble) is computed at each grid-point, then averaged over
the 267 grid-points. For each aggregation method, two settings are used to compute the
regret: the most skillful one (blue continuous line) and the most reliable one (pink dashed
line).
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Table 4.4 – Comparison of the CRPS averaged over the four years and the 267 grid points,
for the best (over all lead times) expert and aggregated forecasts. The average CRPS of
the most skillful raw ensemble (ECMWF) is indicated. For each calibration or aggregation
method, the average CRPS of the most skillful or the most reliable setting is indicated.

Method
Parameters Lead time (h)

log10(η) W/Wtr all 6 12 18 24 30 36 42 48

RAW
ECMWF

0.76 0.79 0.79 0.73 0.73 0.78 0.78 0.73 0.74

Most skillful settings.

QRF
ECMWF

0.49 0.47 0.46 0.48 0.50 0.49 0.49 0.52 0.53

SHARP 1095 0.55 0.52 0.52 0.55 0.56 0.55 0.55 0.59 0.60
GRAD -1 2000 0.47 0.44 0.44 0.46 0.47 0.47 0.47 0.51 0.51
EWA -1 365 0.48 0.44 0.44 0.47 0.48 0.47 0.48 0.52 0.52
INV 7 0.49 0.46 0.46 0.47 0.48 0.49 0.49 0.52 0.52
MIN 365 0.51 0.47 0.47 0.51 0.52 0.50 0.51 0.56 0.56

Most reliable settings.

NR
CMC

90 0.56 0.52 0.52 0.56 0.56 0.55 0.56 0.62 0.61

SHARP 1095 0.55 0.52 0.52 0.55 0.56 0.55 0.55 0.59 0.60
GRAD 0.5 2000 0.50 0.46 0.46 0.50 0.50 0.49 0.50 0.54 0.54
EWA 0.5 30 0.50 0.46 0.46 0.50 0.50 0.50 0.50 0.55 0.54
INV 30 0.49 0.46 0.46 0.47 0.48 0.49 0.50 0.53 0.53
MIN 365 0.51 0.47 0.47 0.51 0.52 0.50 0.51 0.56 0.56

In terms of rank histograms, as shown in Figure 4.4 (a) for lead time h = 6 h, the raw CMC
ensemble is consistently biased with too strong forecast wind speeds in the north-west of
France and too weak forecast wind speeds over the Alps and the Pyrénées. Elsewhere,
although the ensemble is much less biased, the rank histogram is not deemed flat due
to an obvious U-shape. The rank histograms at the other lead times and for the other
raw ensembles exhibit the same features, albeit with variations in the importance of the
bias and/or the convexity, as shown in Appendix 4.D. For the calibrated and aggregated
forecasts, the rank histograms are computed with the nine forecast deciles. As illustrated
in figures 4.4 (b) and (c), the QRF- and NR-calibrated versions of the CMC ensemble
yield a higher number of flat rank histograms than the raw ensemble. The slope, convexity
and wave tests simultaneously do not reject the null hypothesis of a flat rank histogram at
many of the grid points. When this is not true, the rank histogram does not usually exhibit
obviously rugged histograms. This result holds for the other lead times and calibrated
ensembles, except when calibration is done with NR and a sliding training windows of 7
days. This last calibration produces rank histograms with a statistically significant U-shape
for most of grid points and at all lead times (not shown). Finally, Figure 4.4 (d) shows that,
the Jolliffe-Primo tests do not reject the flatness hypothesis at many more grid-points for
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Table 4.5 – Same as Table 4.4 but for the proportion of grid points where the three flatness
tests do not reject the hypothesis of a flat rank histogram.

Method
Parameters Lead time (h)

log10(η) W/Wtr all 6 12 18 24 30 36 42 48

Most skillful settings.

QRF
ECMWF

0.50 0.28 0.21 0.57 0.72 0.39 0.34 0.76 0.74

SHARP 1095 0.38 0.29 0.25 0.39 0.36 0.50 0.43 0.43 0.40
GRAD -1 2000 0.05 0.06 0.06 0.03 0.04 0.07 0.08 0.03 0.05
EWA -1 365 0.05 0.04 0.04 0.04 0.04 0.06 0.06 0.05 0.04
INV 7 0.02 0.03 0.02 0.00 0.01 0.03 0.02 0.00 0.01
MIN 365 0.70 0.67 0.67 0.72 0.61 0.73 0.74 0.81 0.62

Most reliable settings.

NR
CMC

90 0.78 0.81 0.71 0.83 0.72 0.84 0.78 0.83 0.72

SHARP 1095 0.38 0.29 0.25 0.39 0.36 0.50 0.43 0.43 0.40
GRAD 0.5 2000 0.57 0.40 0.36 0.82 0.62 0.42 0.43 0.90 0.64
EWA 0.5 30 0.86 0.83 0.78 0.87 0.92 0.85 0.79 0.94 0.93
INV 30 0.02 0.03 0.02 0.00 0.01 0.02 0.02 0.00 0.01
MIN 365 0.70 0.67 0.67 0.72 0.61 0.73 0.74 0.81 0.62

the most reliable EWA forecast. Table 4.5 confirms quantitatively that the most reliable
EWA outperforms the most reliable expert (NR-calibrated CMC with Wtr = 90 days) in
terms of flatness of the rank histogram, at each lead time. However this may not be true
depending on the chosen values for η and W , as illustrated in Figure 4.5. A bad choice
of η and W may actually decrease the number of flat histograms compared to calibrated
ensembles. For the EWA method, the most reliable settings is η = 100.5 and W = 30
days. All the other aggregation methods produce fewer flat rank histograms than the most
reliable (and sometimes the most skillful) expert, for their respective most skillful settings
and for all lead times, as shown in Table 4.5. So, in terms of flatness of the rank histograms,
the best forecasts would be the most reliable EWA setting, with log10(η) = 0.5 and W = 30
days. This discrepancy between the two criteria for choosing the best forecasts is discussed
more deeply in Section 4.6. Since a reliable forecast is a necessary condition for optimal
decision making, the best retained forecast is EWA with log10(η) = 0.5 and W = 30 days.

The difference in sharpness of two forecasts xxx and yyy are represented in Figure 4.6
with the difference in average interquantile ranges IQ

xxx
τ − IQ

yyy
τ at each grid point, with

τ = 50, 90. If IQ
xxx
τ − IQ

yyy
τ > 0 then forecast xxx is on average more dispersed than

forecast yyy. The sharpness of the most reliable calibrated or aggregated forecast at each
grid point is similar to or better than the average spread of the raw calibrated ensemble.
Whatever the lead time is considered, the most reliable aggregated forecast is on average
sharper than the most reliable calibrated expert, for more than 75% of the grid points.
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Although the differences in sharpness remain low, getting sharper forecasts than the raw
ensemble is noticeable. Indeed, as illustrated in Taillardat et al. (2016) or Baran and
Lerch (2016), calibration tends to increase the spread of the forecast distribution, when
the CRPS is minimized. Similarly, in Baran and Lerch (2016) the aggregation of two NR-
calibrated versions of an ensemble resulted in a further increased dispersion compared to
each calibrated version. So, getting aggregated forecasts as sharp as the calibrated experts,
or as the raw ensembles, is not guaranteed by the optimization of the CRPS.

4.5.2 Spatio-temporal characteristics of the most reliable aggregated fore-

cast

The most reliable aggregation method (EWA, log10(η) = 0.5, W = 30 days) exhibits a
proportion of flat rank histograms very stable over the lead times and seasons, as illustrated
in Figure 4.7. Only for autumn forecasts, at lead times 18 h, 24 h, 42 h and 48 h (that is,
at 1200UTC and 1800UTC), the reliability is decreased. This reflects an increase of rank
histograms biased toward too high forecasts, over north-western France.

Despite the point-wise calibration and aggregation, some spatio-temporal structures exists
in the best aggregated forecast (EWA with log10(η) = 0.5 and W = 30 days). As an
example, a storm that hit the north-west of France on 08 January 2011 in the morning is
forecast by EWA as the green area of high medians moving along the north-west of France
in the top three panels of Figure 4.8. It is in qualitative agreement with a short range
deterministic forecast for the same valid dates (bottom three panels). Spatially extended
spells of strong regional winds, such as Cers or Mistral in southern France, can also be
forecasted as shown in figures 4.9 and 4.10 respectively.

The most reliable EWA aggregation is able to quickly redistribute the aggregation weights
between the experts, as illustrated in Figure 4.11. For instance, during the middle of the
year 2011, nearly all the aggregation weight shifts from the QRF-calibrated MF ensemble
to the QRF-calibrated ECMWF ensemble, in a few days. The aggregation weights can also
remain stable for long periods of time, such as during mi-2014, when the QRF-calibrated
MF ensemble keeps a high weight for about two months. Moreover, although the raw
ensembles do not perform well on their own, the EWA method may find periods where the
raw ensembles can significantly contribute to the aggregated forecasts, such as in late 2012
in this example, for the raw CMC ensemble. Last, the time series of the aggregation weights
is very different from one lead time to another, as shown in Appendix 4.E. These features
make this aggregation method very adaptive. This may be very useful for operations when
an ensemble undergoes important changes: the aggregation method will quickly detect a
modification in performances and adjust its weighting accordingly.
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4.6 Discussion about calibration and aggregation procedures

We now discuss more deeply the discrepancy already noticed between the choice of the best
forecast according to the CRPS or the flatness of rank histograms. Although the CRPS
is a natural measure of performances of forecast CDF, minimizing it does not ensure to
get the highest number of grid-points with a flat histogram, as illustrated in figures 4.12
and 4.13. For instance, at lead time 36 h, the QRF-calibrated ECMWF ensemble (green
dot) minimizes the CRPS of the experts, but exhibits less than 40% of flat histograms,
whereas the NR-calibrated CMC ensemble (with W = 90 days, red downward triangle) has
nearly 80% of flat histograms for a slightly higher CRPS. As for the aggregation methods,
for each lead time, SHARP and MIN minimize their average CRPS while maximizing their
proportion of flat rank histograms, whereas EWA and GRAD shows a minimum average
CRPS for very low proportions of rank histograms. For these aggregation methods, when η
gets lower, the experts get more and more similar weights. If the window W is well chosen,
this allows to minimize the CRPS but reduce a lot the proportion of flat rank histograms.
Actually, the point corresponding to this optimal CRPS is indicated by the graph of INV
in Figure 4.13. Therefore, the average CRPS may be misleading as a main criterion to
calibrate or aggregate ensemble forecasts. Instead of choosing the most skillful calibration
or aggregation method, retaining the most reliable one comes with a very moderate increase
in CRPS (compare the most skillful and most reliable EWA in Table 4.4), while greatly
increasing the number of flat rank histograms (see Table 4.5).

The best aggregation methods and its parameters have been chosen a posteriori over a
period of four years, and not with an on-line choice as proposed in Gerchinovitz et al.
(2008); Devaine et al. (2009). In order to assess the variability of this choice, the proportion
of flat rank histograms of the experts and the aggregated forecasts have been computed
for each year separately. Whereas the most reliable expert varies from year to year, the
most reliable aggregation is always EWA with η = 100.5 and W = 30 days, which is also
the best set of values over the four years. The proportion of flat rank histograms is higher
when computed over one year (about 90%) than over four years (about 80%). Although
the actual proportion of flat rank histograms is sensitive to the sample used to compute it,
it gives a stable ranking of the aggregation methods. This allows to have a fair confidence
in the future performance of the aggregated forecast, even after fitting its parameters over
only one year.

4.7 Conclusion and perspectives

The goal of the present study was to aggregate several ensemble forecasts (or experts) of
10 m wind speed over France. Contrary to the work of Baudin (2015) who aggregated
unidentifiable experts constituted of the pooled and sorted members of several ensembles,
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each expert used in the present work is a whole ensemble. The aggregation weight for the
members of the same expert are also constrained to be equal. Therefore, as required by
the theoretical framework of prediction with expert advice, each expert is thus identifiable
over time. Some formulae of Baudin (2015) valid for step-wise CDFs with one step have
been generalized to the case of step-wise CDFs with any number of steps.

Several aggregation methods to combine step-wise forecast CDFs have been presented and
compared in terms of reliability, sharpness and CRPS. The reliability has been assessed
by using the Jolliffe-Primo tests, who assess the presence in the rank histogram of typical
deviations from a flat histogram. The systematic use of the Jolliffe-Primo flatness test
highlighted that the minimization of the CRPS may not produce the maximum number
of flat rank histograms, whether for the calibrated ensembles or the aggregated forecasts.
It was also shown that choosing the best forecast by maximizing the proportion of rank
histograms ensures reliable forecasts, without significantly increasing the CRPS.

On our data set, the best aggregation method, in terms of proportion of flat rank his-
tograms, is the exponentially weighted average forecaster, with a learning rate η = 100.5

and an aggregation window W = 30 days. This aggregated forecast has a similar CRPS
as the best expert in terms of CRPS, and produces many more flat rank histograms than
the most reliable expert. Concerning sharpness, the best aggregated forecasts yields CDF
with the same average spread as the raw ensembles, which was not expected since pre-
vious studies showed that calibration and aggregation both increase the forecast disper-
sion. Furthermore, the parameter value for this most reliable aggregation method is the
same for all grid points and lead times, and may be found with a 1-year sample of fore-
cast/observation pairs. It is also a very flexible method, that can produce weights with
very different temporal patterns: rapidly evolving weighting of the experts, long period
with constant weighting, short period with large weights for the raw ensembles. Added to
the use of experts fitted over sliding windows of different size, this flexibility may help to
solve a recurrent problem of calibrated experts: important changes in the NWP models
that sometimes destroy the calibration property. Although the calibration and aggrega-
tion were conducted for each lead time and grid point separately, the aggregated forecast
exhibits realistic spatio-temporal structures.

As for the perspectives, it is planned to study the same and other aggregation methods
by pooling data in blocks of nearby grid-points. This may improve the fit or, at the very
least, speed up operations on finer grids with thousands of points. Since calibration of
other meteorological parameters, such as temperature and rainfall, has been already tested
internally at Météo-France, aggregation methods will be tried on these parameters also.
A deeper study of the discrepancy between the CRPS and the proportion of flat rank
histograms as a performance criterion and its implication on calibration and aggregation
constitutes a more theoretical perspective. At last, making these methods operational is a
main perspective for the upcoming months.
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Figure 4.4 – Maps of sketches of the rank histograms computed over the 4 years, for (a) the
raw CMC ensemble, the CMC ensembles calibrated with (b) QRF and (c) NR (Wtr = t−1
days), and (d) EWA (with η = 100.5 and W = 90 days). At each grid-point, the rank
histogram is represented as a line, with the same vertical scale at all grid-points and for
all maps. The lead time is h = 6 h. A blue line means that none of the slope, convexity
and wave tests rejects the flatness hypothesis at a significance level of 0.01

3 , whereas a red
line indicates at least one of the tests rejects the flatness hypothesis.
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Figure 4.5 – Evolution with the lead time of the proportion of Jolliffe-Primo tests that
do not reject the hypothesis of a flat rank histogram. The proportion is computed over
the 267 grid points, for the different values of the parameters (log10(η),W ) in the EWA
aggregation method.
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Figure 4.6 – Box plots of differences of average forecast interquantile ranges (IQ) at each
grid point. The box plots are built from the interquantile ranges forecasted at each grid
point, averaged over the four years of the study. IQxxx

50 (resp. IQxxx
90 ) signifies the range

between forecast quantiles of order 0.75 and 0.25 (resp. 0.95 and 0.05) of forecast xxx.
The forecasts are the raw CMC ensemble (xxx = raw), the most reliable calibrated expert
(xxx = cal, NR-calibrated ECMWF ensemble with Wtr = 90 days) and the most reliable
aggregation method (xxx = aggr, EWA with log10(η) = 0.5 and W = 30 days).
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Figure 4.7 – Evolution of the proportion of flat rank histograms with the lead time and
season, for the most reliable aggregation method (EWA, log10(η) = 0.5, W = 30 days).
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Figure 4.8 – Maps of forecast and observed wind speed for 08 January 2011, at 0000, 0600
and 1200 UTC from left to right. Top: median of wind speed forecasted on 06 January
2011 for lead times 30h, 36h and 42h by EWA with η = 100.5 and W = 30 days. Bottom:
Corresponding observations. Wind speeds are in m s−1.
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4.7. CONCLUSION AND PERSPECTIVES

Figure 4.9 – Maps of forecast and observed wind speed for 08 March 2011, at 0000UTC.
Left: median of wind speed forecasted on 06 March 2011 for lead time 30h by EWA with
η = 100.5 and W = 30 days. Right: Corresponding observations. The Cers appears as the
green zone in southern France. Wind speeds are in m s−1.

Figure 4.10 – Maps of forecast and observed wind speed for 19 January 2011, at 1200UTC.
Left: median of wind speed forecasted on 17 January 2011 for lead time 18 h by EWA with
η = 100.5 and W = 30 days. Right: Corresponding observations. The Mistral appears as
the green zone in southern France. Wind speeds are in m s−1.
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Figure 4.11 – Evolution of the aggregation weights with the valid date, for lead time 42 h.
The aggregation method is the EWA forecaster with η = 100.5 and W = 30 days.
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Figure 4.12 – CRPS averaged over space and time, versus the proportion of rank histograms
deemed flat by the slope, convexity and wave tests, for each expert, by lead time.
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Figure 4.13 – CRPS averaged over space and time, versus the proportion of rank histograms
deemed flat by the slope, convexity and wave tests, for each aggregation method, by lead
time. For EWA and GRAD, each colored line corresponds to a fixed value of η.
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4.A. FORMULA FOR THE GRADIENT OF THE CRPS

Appendix

4.A Formula for the gradient of the CRPS

Baudin (2015) considers the aggregation of step-wise CDFs with one single step (Me =
1 ∀e ∈ {1, . . . , E}). This appendix generalizes equations (5.10) and (5.13), of Baudin
(2015) for, respectively, the CRPS, and gradient thereof, to an aggregation of step-wise
CDFs with any number of steps.

Dropping the time index t in the notations, the aggregated CDF at time t is

ŷ(x) =
E∑

e=1

ωe

[
Me∑

me=1

pme

e Hxme
e

(x)

]
,

with the notation Ha(x) = H(x− a).

Therefore, the CRPS of the aggregated CDF at time t is

CRPS(ŷ, y) =

∫

R

{
Hy(x)−

E∑

e=1

ωe

[
Me∑

me=1

pme

e Hxme
e

(x)

]}2

dx

=

∫ Γ

γ

{
Hy(x)−

E∑

e=1

ωe

[
Me∑

me=1

pme

e Hxme
e

(x)

]}2

dx,

where γ = min(y, x11, . . . , x
ME

E ) and Γ = max(y, x11, . . . , x
ME

E ).

By developing the square inside the integral,

CRPS(ŷ, y) =

∫ Γ

γ
Hy(x)dx

− 2

∫ Γ

γ

E∑

e=1

ωe

[
Me∑

me=1

pme

e Hxme
e

(x)Hy(x)

]
dx

+

∫ Γ

γ

{
E∑

e=1

ωe

[
Me∑

me=1

pme

e Hxme
e

(x)

]}


E′∑

e′=1

ωe′




M
e′∑

m
e′
=1

pme

e H
x
m

e′

e′

(x)





 dx.
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Noting that Ha(x)Hb(x) = Hmax(a,b)(x), and
∫ Γ
γ Ha(x)dx = Γ− a ∀a ∈ [γ; Γ], then

CRPS(ŷ, y) =Γ− y

− 2

E∑

e=1

ωe

{
Me∑

me=1

pme

e [Γ−max(xme

e , y)]

}

+
E∑

e,e′=1

ωeωe′





Me∑

me=1

M
e′∑

m
e′
=1

pme

e p
m

e′

e′

[
Γ−max(xme

e , x
m

e′

e′ )
]




=− y

+ 2
E∑

e=1

ωe

[
Me∑

me=1

pme

e max(xme

e , y)

]

−
E∑

e,e′=1

ωeωe′





Me∑

me=1

M
e′∑

m
e′
=1

pme

e p
m

e′

e′ max(xme

e , x
m

e′

e′ )



 ,

because
∑E

e=1 ωe = 1, and
∑Me

me=1 p
me

e = 1 ∀e ∈ {1, . . . , E}.

Since max(a, b) = 1
2 (a+ b+ |a− b|),

CRPS(ŷ, y) =− y

+

E∑

e=1

ωe

[
Me∑

me=1

pme

e (xme

e + y + |xme

e − y|)
]

− 1

2

E∑

e,e′=1

ωeωe′





Me∑

me=1

M
e′∑

m
e′
=1

pme

e p
m

e′

e′ (xme

e + x
m

e′

e′ + |xme

e − x
m

e′

e′ |)





=

E∑

e=1

ωe

[
Me∑

me=1

pme

e (xme

e + |xme

e − y|)
]

− 1

2

E∑

e,e′=1

ωeωe′





Me∑

me=1

M
e′∑

m
e′
=1

pme

e p
m

e′

e′ (xme

e + x
m

e′

e′ + |xme

e − x
m

e′

e′ |)



 .

(4.12)
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The derivation with respect to ωe results in

∂CRPS

∂ωe
(ŷ, y) =

Me∑

me=1

pme

e (xme

e + |xme

e − y|)

−
E∑

e′=1

ωe′





Me∑

me=1

M
e′∑

m
e′
=1

pme

e p
m

e′

e′ (xme

e + x
m

e′

e′ + |xme

e − x
m

e′

e′ |)



 .

Finally, recalling that
∑E

e=1 ωe = 1, and
∑Me

me=1 p
me

e = 1 ∀e ∈ {1, . . . , E}

∂CRPS

∂ωe
(ŷ, y) =

Me∑

me=1

pme

e |xme

e − y| −
E∑
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ωe′

M
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m
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m

e′
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−
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M
e′∑

m
e′
=1

pme

e p
m

e′

e′ |xme

e − x
m

e′

e′ |



 . (4.13)

Formulae (4.12) and (4.13) generalize equations (5.10) and (5.13), respectively, of Baudin
(2015).

4.B Proof of the theoretical bounds for the regret of the

exponentially weighted average forecaster

The proof of Equation (4.8) closely follows the proof of theorem 2.2 in Cesa-Bianchi et al.
(2006).

Let ℓ : Ŷ × Y → [a; b] be a real-valued, bounded loss function. ℓ is supposed convex in its
first argument.

The EWA weights at time t are computed as

ωEWA
e;t =

exp{−ηLe;t}∑E
e=1 exp{−ηLe;t}

,

with Le;t =
∑t−1

s=1 ℓ(ŷe;s, ys) the cumulative loss of expert e at time t, and with the conven-
tion Le;1 = 0 so that ωEWA

e,1 = 1
E ∀e.

Let us define Wt =
∑E

e=1 exp{−ηLe;t}∀t ≥ 1 and W0 = E. At all times t = 1, . . . , T , and
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using the convention that a sum over 0 elements is 0 (for t = 1, such that ωEWA
e,0 = 1

E ∀e),

ln
Wt

Wt−1
= ln

∑E
e=1 exp{−ηℓ(ŷe;t, yt)}exp{−ηLe;t−1}∑E

e′=1 exp{−ηLe′;t−1}

= ln

∑E
e=1 ω

EWA
e;t−1 exp{−ηℓ(ŷe;t, yt)}∑E

e′=1 ω
EWA
e′;t−1

. (4.14)

The proof now needs Hoeffding’s inequality (Hoeffding 1963). Let a, b ∈ R with a < b. Let
Z be a bounded random variable with values in [a; b], then, ∀s ∈ R, Hoeffding’s inequality
states that

lnE
[
esZ
]
≤ sE[Z] +

s2

8
(b− a)2.

Using Equation (4.14) and Hoeffding’s inequality for the random variable Z taking the
values ℓ(ŷe;t, yt) with discrete probability ωEWA

e;t−1 , taking s = −η and summing over t =
1, . . . , T leads to

ln
WT

W0
≤− η

T∑

t=1

E∑

e=1

ωEWA
e;t ℓ(ŷe;t, yt) +

η2

8
(b− a)2T

≤− η

T∑

t=1

ℓ

(
E∑

e=1

ωEWA
e;t ŷe;t, yt

)
+

η2

8
(b− a)2T

=− η

T∑

t=1

ℓ (ŷt, yt) +
η2

8
(b− a)2T,

after using the convexity of the loss function ℓ in its first argument, and the definition of
the EWA forecast.

Noting that the following relationship also holds

ln
WT

W0
= ln

(
E∑

e=1

exp{−ηLe;T }
)
− lnE

≥ ln

(
max

e=1,...,E
exp{−ηLe;T }

)
− lnE

=− η min
e=1,...,E

Le;T − lnE,

and combining it with the previous relationship leads to

−η min
e=1,...,E

Le;T − lnE ≤ −η
T∑

t=1

ℓ (ŷt, yt) +
η2

8
(b− a)2T.
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Finally, dividing by −η results in the following bound of the regret of the aggregated
forecast relatively to the best expert

T∑

t=1

ℓ (ŷt, yt)− min
e=1,...,E

Le;T ≤
lnE

η
+

η

8
(b− a)2T. (4.15)

Noting that this bound for the regret holds for any bounded loss function ℓ convex in its
first argument, which are properties of the CRPS, concludes the demonstration.

4.C Time series of the regret at each lead time
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Figure 4.14 – Same as Figure 4.3, for lead time 6 h.
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Lead time: 12 h
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Figure 4.15 – Same as Figure 4.3, for lead time 12 h.

Lead time: 18 h
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Figure 4.16 – Same as Figure 4.3, for lead time 18 h.
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Lead time: 30 h
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Figure 4.17 – Same as Figure 4.3, for lead time 30 h.

Lead time: 36 h
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Figure 4.18 – Same as Figure 4.3, for lead time 36 h.
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Lead time: 42 h
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Figure 4.19 – Same as Figure 4.3, for lead time 42 h.

Lead time: 48 h
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Figure 4.20 – Same as Figure 4.3, for lead time 48 h.

126



4.D. MAPS OF RANK HISTOGRAMS OF RAW ENSEMBLES

4.D Maps of rank histograms of raw ensembles

Figure 4.21 – Same as Figure 4.4 (a), but for lead times 6 h (top left), 12 h (top right),
18 h (bottom left) and 24 h (bottom right).
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Figure 4.22 – Same as Figure 4.4 (a), but for lead times 30 h (top left), 36 h (top right),
42 h (bottom left) and 48 h (bottom right).
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4.D. MAPS OF RANK HISTOGRAMS OF RAW ENSEMBLES

Figure 4.23 – Same as Figure 4.4 (a), but for raw ECMWF ensemble, and for lead times
6 h (top left), 12 h (top right), 18 h (bottom left) and 24 h (bottom right).
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Figure 4.24 – Same as Figure 4.4 (a), but for raw ECMWF ensemble, and for lead times
30 h (top left), 36 h (top right), 42 h (bottom left) and 48 h (bottom right).
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4.D. MAPS OF RANK HISTOGRAMS OF RAW ENSEMBLES

Figure 4.25 – Same as Figure 4.4 (a), but for raw MF ensemble, and for lead times 6 h
(top left), 12 h (top right), 18 h (bottom left) and 24 h (bottom right).
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Figure 4.26 – Same as Figure 4.4 (a), but for raw MF ensemble, and for lead times 30 h
(top left), 36 h (top right), 42 h (bottom left) and 48 h (bottom right).
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4.D. MAPS OF RANK HISTOGRAMS OF RAW ENSEMBLES

Figure 4.27 – Same as Figure 4.4 (a), but for raw NCEP ensemble, and for lead times 6 h
(top left), 12 h (top right), 18 h (bottom left) and 24 h (bottom right).
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Figure 4.28 – Same as Figure 4.4 (a), but for raw NCEP ensemble, and for lead times 30 h
(top left), 36 h (top right), 42 h (bottom left) and 48 h (bottom right).
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4.E. TIME SERIES OF THE AGGREGATION WEIGHTS

4.E Time series of the aggregation weights
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Figure 4.29 – Same as figure 4.11 but for lead time 6 h.
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Figure 4.30 – Same as figure 4.11 but for lead time 12 h.
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Figure 4.31 – Same as figure 4.11 but for lead time 18 h.
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Figure 4.32 – Same as figure 4.11 but for lead time 24 h.
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Figure 4.33 – Same as figure 4.11 but for lead time 30 h.

137



CHAPTER 4. AGGREGATION OF PROBABILISTIC WIND SPEED FORECASTS

Valid Time

NR t−1 

NR 365

NR 90

NR 30

NR 7

QRF

RAW

0.2
0.8 CMC

0.2
0.8 ECMWF

0.2
0.8 MF

0.2
0.8 NCEP

0.2
0.8 CMC

0.2
0.8 ECMWF

0.2
0.8 MF

0.2
0.8 NCEP

0.2
0.8 CMC

0.2
0.8 ECMWF

0.2
0.8 MF

0.2
0.8 NCEP

0.2
0.8 CMC

0.2
0.8 ECMWF

0.2
0.8 MF

0.2
0.8 NCEP

0.2
0.8 CMC

0.2
0.8 ECMWF

0.2
0.8 MF

0.2
0.8 NCEP

0.2
0.8 CMC

0.2
0.8 ECMWF

0.2
0.8 MF

0.2
0.8 NCEP

0.2
0.8 CMC

0.2
0.8 ECMWF

0.2
0.8 MF

0.2
0.8

07 janv. 2011
1200UTC

07 janv. 2012
1200UTC

07 janv. 2013
1200UTC

07 janv. 2014
1200UTC

02 janv. 2015
1200UTC

NCEP

Figure 4.34 – Same as figure 4.11 but for lead time 36 h.
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Figure 4.35 – Same as figure 4.11 but for lead time 42 h.
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Figure 4.36 – Same as figure 4.11.
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Chapter 5

Conclusion and Perspectives

This work investigated several aspects of weather forecast post-processing for wind speed
forecasts over France. The aim was to build improved wind speed forecasts on a grid, for
deterministic and probabilistic predictions. The adopted strategy is to first grid measure-
ments, then to use these gridded measurements to train (E)MOS methods.

For deterministic forecasts, block MOS has been introduced along with a careful optimiza-
tion of the size and number of the associated R objects. This lightweight block MOS
shows good performances while allowing an important speeding up of operations. It will
be implemented during Fall 2016 for operations.

As for the EMOS, empirical combination methods and combination methods based on the
theory of prediction with expert advice have been compared. Since step-wise CDF are
combined, this part of the work required to study the properties of the estimators of the
CRPS with limited information about the forecast distribution. This led to recommenda-
tions to accurately estimate the CRPS. Also, due to some discrepancy of the flatness of the
rank histograms and the value of the CRPS in this study, it is proposed to choose among
probabilistic forecasts by first imposing to have a flat histogram according to the Jolliffe-
Primo tests. The best combination method chosen with this criterion obtains a similar
CRPS as the one minimizing the CRPS, while exhibiting much more flat rank histograms.
It is also planned to make it operational by the end of next year.

The discrepancy between the forecast selection with the minimization of the CRPS or with
the maximization of the proportion of flat rank histograms deserves more investigation on
what this implies on the post-processing of ensemble forecasts.

Concerning the perspectives, when block MOS built on other models than ARPEGE are
available for wind speed at Météo-France, aggregation methods will be tested. Aggregated
MOS for temperature already exist at Météo-France, with much improved performances
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compared to single MOS. A similar improvement in aggregated MOS for wind speed is
expected. When they are chosen to minimize the RMSE, MOS forecasts estimate the
conditional mean of the observation, and so do the mean of the aggregated EMOS forecasts.
Therefore, an interesting study would be to compare the forecast performance of these two
estimations.

The dynamic filtering step that usually ends forecast post-processing has not been im-
plemented. Thus the performance of our aggregated wind speed EMOS forecasts may be
further improved by the use of filtering techniques such as the ensemble Kalman filter.

For the longer term, implementing the same (E)MOS and aggregation methods for other
parameters of interest, such as wind gusts or temperature, is aimed.

As for the probabilistic forecasts, due to the low number of grid-points for ensemble fore-
casts, the speeding up of the EMOS and aggregation methods was not a concern. But
Météo-France high resolution ensemble forecast is expected to become operational by the
end of 2017, with a grid size of 2.5 km and thousands of grid-points. A study of spatialised
calibration and aggregation method is planned, to try to manage efficiently and quickly
such an increase of the workload. The most obvious approach is to try block EMOS and
block aggregation, since this pooling strategy worked well for MOS. An alternative would
be to build EMOS and use aggregation methods on a manageable sub-sample of the grid
points, before using geostatistical techniques to interpolate the parameters of the methods
as in Scheuerer et al. (2015) and Dabernig et al. (2016), or even the forecast distributions
themselves with functional kriging. An alternative and recent technique, multiple-point
statistics, detailed in Mariethoz and Caers (2014), may allow to take into account the
spatial dependence beyond the simple covariance, what kriging cannot do. Multiple-point
statistics proceeds with some measured or simulated spatial representation of the spatial
structures of the parameter of interest, called a “training image”. This training image is
then cut and paste over the new field of measurements, with some consistency conditions,
to interpolate these measurements. Some “functional multiple-point statistics” may be
used to interpolate the forecast distributions, but, to the best of our knowledge, this has
never been developed.

The purpose of ensemble forecasts is to propose several alternative scenarios for the evo-
lution of the atmosphere, in order to quantify the forecast uncertainty. Because EMOS
methods are usually applied separately at each point or lead time of interest, the fore-
cast spatio-temporal structures are not preserved after post-processing. For instance, we
showed that the maps of forecast medians do contain information about incoming storm
trajectories or occurrences of local winds, but a map of medians has no real physical inter-
pretation as a possible scenario. In other words, the post-processing destroys the notion
of alternative scenarios described by each member of the ensemble. Statistically speaking,
we thus get calibrated forecasts of the marginal distribution at each point and time, but
all information about the joint distribution over several points and/or times is lost. This
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joint distribution is important for many applications. For instance, in France, warnings are
issued if wind speed exceeds some threshold over half of a county, the probability of which
cannot be assessed without knowing the joint distribution of the wind speed. Forecasting
the probability of flooding may require a forecast of the joint distribution of rainfall over
a catchment as input to hydrological models. A further post-processing step is usually
applied to reconstruct calibrated members from the EMOS forecast, that is, a sample from
the forecast joint distribution. Due to a lack of time, this step has not been achieved
during the thesis. A most promising approach is the use of empirical copula. A copula is
a multivariate function that links the marginal distributions of several random variables
to their joint distribution. Empirical copula are estimates of the unknown copula based
on a multivariate sample from the joint distribution. Two empirical copula methods are
used in Meteorology: the ensemble copula coupling (ECC) and the Schaake shuffle (SS).
ECC estimates the copula based from the forecast members of the raw ensemble (Schefzik
2011; Bouallegue et al. 2015). In our case, since several ensembles are combined, there is
no notion of “raw ensemble” associated to the aggregated forecasts, and ECC cannot be
used. The Schaake shuffle estimates the copula from past observations (Clark et al. 2004).
It could thus be used for our aggregated forecasts. Since the copula is better estimated if
a large sample is available, we should extend our gridded wind speed measurements to the
longest period possible, that is from early 2009, when AROME became operational. Para-
metric copula could also be tried, but the spatial structure of the wind speed may be too
complex to be easily modeled. An interesting alternative would be a Bayesian hierarchical
modeling approach, as in Milliff et al. (2011). A Bayesian hierarchical model describes
the probability distribution of a random variable with several nested models. Cressie and
Wikle (2011) describe the approach and show how physical equations can be introduced in
this hierarchy of nested models, allowing to mix Physics and Statistics. The physical equa-
tions are used as an implicit description of the spatio-temporal structure of the random
variable of interest. The statistical part of the model describes the uncertainty sources,
such as measurement errors, uncertain parameters, and so on. Due to a lack of time, a
Bayesian hierarchical model was not investigated. An idea would be to use the governing
equations of the atmosphere to model the joint distribution of the EMOS forecasts as the
marginal distribution of the wind speed. Discussions with experts of this kind of approach
showed that it may be a work of a thesis. Whatever approach is chosen, the verification of
the reconstructed spatial structures would require the use of specific tools described in a
special collection of the American Meteorological Society1.

Besides the reconstruction of the joint distribution over space and time, the joint distribu-
tion of several parameters (e.g. temperature and wind speed) may be of interest for some
applications. Vrac and Friederichs (2015) tackle this problem with the Schaake shuffle,
while Wilks (2015) shows that the Schaake shuffle outperforms ECC. Another approach
used in Pinson (2012) is to translate and dilate the members within a parametric and

1http://journals.ametsoc.org/topic/verification icp
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multivariate framework. The forecasts is thus not the joint distribution but a multivariate
sample which supposedly reproduces the inter-parameter dependence. Here again, specific
tools for verification of multivariate probabilistic forecasts the topic of ongoing studies, and
may be interesting to investigate. In the case of multivariate probabilistic forecasts, the
energy score can be used as a measure of performance. Since it is a generalization of the
CRPS to the multivariate case, it is likely that the estimation of the energy score suffers
similar issues as the one studied in Chapter 3 for the estimation of the CRPS. However, to
the best of our knowledge, a closed-form expression of the energy score exists only for spe-
cial cases of a multivariate normal random vector (Pinson and Tastu 2013). Furthermore,
assessing the impact of the estimation of the copula would probably not be a straight-
forward task. For instance, the presence of ties would have to be taken into account, as
suggested in Kojadinovic (2016). Furthermore, the CRPS is not sensitive to changes in
the tail of the forecast distribution. Therefore, it cannot distinguish between two forecasts
that predicts different probabilities of occurrence of rare, and usually hazardous, events.
Developing a measure of performance for probabilistic forecasts that would not suffer this
problem would be an interesting, but daunting, task. The SEDI is a measure of perfor-
mance that was developed to solve the same kind of problems for point forecasts. Following
the same reasoning that led to this score is maybe a lead to a solution for probabilistic
forecasts.
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École normale supérieure, Paris.

149



BIBLIOGRAPHY

Gilbert, K. K., B. Glahn, R. Cosgrove, K. Sheets, and G. Wagner, 2009: Gridded model
output statistics: Improving and expanding. Preprints, 23rd Conf. Weather Analysis
and Forecasting and 19th Conf. Numerical Prediction, Omaha, NE, Amer. Meteor. Soc,
URL https://ams.confex.com/ams/23WAF19NWP/techprogram/paper 154285.htm.

Glahn, B., 2014: Determining an Optimal Decay Factor for Bias-Correcting MOS Temper-
ature and Dewpoint Forecasts. Weather and Forecasting, 29 (4), 1076–1090.

Glahn, B., K. Gilbert, R. Cosgrove, D. P. Ruth, and K. Sheets, 2009: The gridding of
MOS. Weather and Forecasting, 24 (2), 520–529.

Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective
weather forecasting. Journal of applied meteorology, 11 (8), 1203–1211.

Gneiting, T., 2011a: Making and evaluating point forecasts. Journal of the American
Statistical Association, 106 (494), 746–762.

Gneiting, T., 2011b: Quantiles as optimal point forecasts. International Journal of Fore-
casting, 27 (2), 197–207.

Gneiting, T., 2014: Calibration of medium-range weather forecasts. Technical Memoranda
719, ECMWF.

Gneiting, T., F. Balabdaoui, and A. Raftery, 2007: Probabilistic forecasts, calibration and
sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
69 (2), 243–268.

Gneiting, T., and A. Raftery, 2007: Strictly proper scoring rules, prediction, and estima-
tion. Journal of the American Statistical Association, 102 (477), 359–378.

Gneiting, T., A. Raftery, A. Westveld III, and T. Goldman, 2005: Calibrated probabilis-
tic forecasting using ensemble model output statistics and minimum CRPS estimation.
Monthly Weather Review, 133 (5), 1098–1118.

Gneiting, T., R. Ranjan, and Coauthors, 2013: Combining predictive distributions. Elec-
tronic Journal of Statistics, 7, 1747–1782.

Greenwood, J. A., J. M. Landwehr, N. C. Matalas, and J. R. Wallis, 1979: Probability
weighted moments: definition and relation to parameters of several distributions express-
able in inverse form. Water Resources Research, 15 (5), 1049–1054.

Grimit, E., T. Gneiting, V. Berrocal, and N. Johnson, 2006: The continuous ranked prob-
ability score for circular variables and its application to mesoscale forecast ensemble
verification. Quarterly Journal of the Royal Meteorological Society, 132 (621C), 2925–
2942.

150



BIBLIOGRAPHY

Guo, Z., W. Zhao, H. Lu, and J. Wang, 2012: Multi-step forecasting for wind speed using
a modified EMD-based artificial neural network model. Renewable Energy, 37 (1), 241–
249.

Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration
using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures. Monthly
Weather Review, 136 (7), 2608–2619.

Haiden, T., and Coauthors, 2015: Evaluation of ECMWF forecasts, including 2014-2015
upgrades. Tech. Rep. 765, ECMWF, 53 pp.

Hamill, T., 2001: Interpretation of rank histograms for verifying ensemble forecasts.
Monthly Weather Review, 129 (3), 550–560.

Hamill, T., and S. Colucci, 1998: Evaluation of Eta-RSM ensemble probabilistic precipita-
tion forecasts. Monthly Weather Review, 126 (3), 711–724.

Hamill, T. M., and S. J. Colucci, 1996: Random and systematic error in NMC’s short-range
Eta ensembles. Preprints, 13th Conf. on Probability and Statistics in the Atmospheric
Sciences, San Francisco, CA, Amer. Meteor. Soc, 51–56.

Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration
using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Monthly weather
review, 136 (7), 2620–2632.

Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation fore-
casts based on reforecast analogs: Theory and application. Monthly Weather Review,
134 (11), 3209–3229.

Haque, A. U., P. Mandal, M. E. Kaye, J. Meng, L. Chang, and T. Senjyu, 2012: A new
strategy for predicting short-term wind speed using soft computing models. Renewable
and sustainable energy reviews, 16 (7), 4563–4573.

Hastie, T., R. Tibshirani, and J. Friedman, 2009: The elements of statistical learning.
Springer, 745 pp.

Hemri, S., M. Scheuerer, F. Pappenberger, K. Bogner, and T. Haiden, 2014: Trends in the
predictive performance of raw ensemble weather forecasts. Geophysical Research Letters,
41 (24), 9197–9205.

Hengl, T., 2007: A practical guide to geostatistical mapping of environmental variables.
JRC Scientific and Technichal Reports. Office for Official Publication of the European
Communities, Luxembourg.

Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble
prediction systems. Weather and Forecasting, 15 (5), 559–570.

151



BIBLIOGRAPHY

Hoeffding, W., 1963: Probability inequalities for sums of bounded random variables. Jour-
nal of the American statistical association, 58 (301), 13–30.

Holton, J. R., and G. J. Hakim, 2012: An introduction to dynamic meteorology, Vol. 88.
Academic press.

Hosking, J., 1990: L-Moments: Analysis and Estimation of Distributions Using Linear
Combinations of Order Statistics. Journal of the Royal Statistical Society. Series B
(Methodological), 52 (1), 105–124.
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