N

N

Optimisation de précodeurs linéaires pour les systéemes
MIMO a récepteurs itératifs
Nhat-Quang Nhan

» To cite this version:

Nhat-Quang Nhan. Optimisation de précodeurs linéaires pour les systemes MIMO a récepteurs itérat-
ifs. Traitement du signal et de I'image [eess.SP]. Université de Bretagne occidentale - Brest, 2016.
Frangais. NNT: 2016BRES0062 . tel-01599256

HAL Id: tel-01599256
https://theses.hal.science/tel-01599256
Submitted on 2 Oct 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01599256
https://hal.archives-ouvertes.fr

i UNIVERSITE|
B O ' BRETAGNE

Brest

# METROPOLE

THESE / UNIVERSITE DE BRETAGNE OCCIDENTALE  présentée par

sous le sceau de I'Université Bretagne Loire N h at_Qu ang N HAN

pour obtenir le titre de 5 ol L
DOCTEUR DE L’'UNIVERSITE DE BRETAGNE OCCIDENTALE  Préparée a l'unité de recherche LAB-STICC,
Mention : Sciences et Technologies de I'lnformation et dela CNRS UMR 6285

Communication . "y :
Spécialité: Communications numériques Universite de Bretagne Occidentale et

Ecole Doctorale SICMA TELECOM Bretagne

Theése soutenue le 05 octobre 2016
devant le jury composé de :

Benoit GELLER
Professeur, ENSTA ParisTech / rapporteur

OptimizatiOn Of Iinear Charly POULLIAT

Professeur, INP-ENSEEIHT Toulouse/ rapporteur

Olivier BERDER

p reco d ers fo ' CO d e d Professeur, Université de Rennes 1/ examinateur

Telex M. N. NGATCHED

A. Professor, Memorial University of Newfoundland / examinateur

MIMQO systems with ... s

Maitre de Conférences HDR, TELECOM Bretagne / co-directrice de
thése

iterative receivers cmame o

Professeur, Université de Bretagne Occidentale / directeur de thése

Philippe ROSTAING
Maitre de Conférences, Université de Bretagne Occidentale /
encadrant






"Opportunity is missed by most people because it is dressed in overalls and looks like work."

— T. A. Edison






Acknowledgements

1 would like to express my sincere gratitude to my first supervisor, Prof. Emanuel Radoi,
for encouraging my research and for allowing me to grow as a research scientist under
his supervision. His constant support on my professional and personal life as well as his
advice on my future career have been invaluable. His technical advice and encouragement
gave me full of motivation, for every single day in the previous three years, to pursuit

my research works.

Similar, profound gratitude goes to my second supervisor, Dr. Karine Amis. 1 am
especially grateful to her for the encouragement and continuous support during my PhD
study. At the beginning of my PhD, she spent a lot of time to teach and help me to
build up my scientific background for this thesis. I have learnt and improved myself
from her immense knowledge. Her valuable guidance helped me in all the time of doing

research, writing research papers and writing this dissertation.

I would equally like to thank Dr. Philippe Rostaing, who is also my supervisor. I am
particularly indebted to his advice, guidance, encouragement and inspiration, which have
been invaluable over the years. He has patiently corrected my mistakes and guided me to
the right direction. His ideas are always interesting and inspiring me. I still remember he
used to drive me home after our technical discussions, which usually lasting until the late

evening. This thesis would not have been completed without his guidance and support.

Thanks to my supervisors, the three year graduate work at Lab-STICC is one of the most
wonderful period in my life. They gave me the opportunities to have two international
collaborations in Canada and US. They also gave me the opportunity to improve my
teaching experience in the last year of my PhD. It is not sufficient to express my gratitude

to them with only few words.

I would like to thank the two reviewers of my PhD dissertation, Prof. Benoit Geller
at ENSTA ParisTech and Prof. Charly Poulliat at INP-ENSEEIHT Toulouse, for their
constructive comments and suggestions on my PhD report. I am also grateful to the
first examiner of the jury, Prof. Olivier Berder at Université de Rennes 1. Prof. Berder
was my master thesis supervisor. The experience working with him gave me a great
motivation to pursuit a PhD and to develop my career as a researcher. I am equally
very thankful to the second examiner of the jury, Dr. Telex M. N. Ngatched at Memorial
University of Newfoundland (MUN), Canada. I was supervised by Dr. Ngatched when I
was a visiting student at MUN. I very appreciate for his help and for the time he spent

for the technical discussion with me via Skype, after I had comeback to France.



I would like to thank Prof. Octavia Dobre at MUN, Canada, for giving me a great
opportunity to join her research group as a visiting student. It has been a great privilege
to be a part of her research team. She gave me valuable help whenever 1 asked for
assistance. Her supervision on my research works is invaluable. I have learnt from her
many things that will be useful for my future scientific career and personal life. T would
also like to thank Dr. Deyuan Chang, Dr. Yi Zhang, Dr. Yahia Eldemerdash and Mr.
Trung Nguyen for their helps during the time I was at MUN.

I was lucky to be supervised by many experts in the field. I am very thankful to Prof.
Yahong Rosa Zheng and Prof. Chengshan Xiao at Missouri University of Science and
Technology (MST), USA, for allowing me to be a part of their research group as a visiting
student. At MST, I have got the opportunity to study and work in a very dynamic
laboratory. All of their excellent supervision, feedback, suggestions and kindness at
various stages have been significantly improved my knowledge, scientific mind, and skills
of critical thinking, writing and presentation. Many thanks to Mr. Leo David Fan, Mr.
Juening Jin, Mr. Niaz Ahmed, Mr. Weimin Duan, Dr. Tu Nguyen, Dr. Dao Lam,
Ms. Jenny Mai Huynh and the other Vietnamese friends at MST for their helps and for

making my visit at MST such a great experience.

The warmest thank to my Lab-STICC colleagues at both University of Western Brit-
tany and Telecom Bretagne for the stimulating discussions, and for providing the fun
environment in which I have learnt and grown during the past three years. I also want

to thank all of my friends in Brest who make my stay a memorial period.

I would also like to thank Prof. Stéphane Azou at Ecole Nationale d’Ingénieurs de Brest
(ENIB), for giving the kindly flexibility on my workload during the first period of my
postdoc at ENIB. His understanding helps me to prepare my PhD defense easily.

I would like to express my special thanks to Dr. Tuan-Duc Nguyen, Prof. Tue Huynh,
Dr. L. Q. Vinh Tran, Dr. T. K. Ngan Nguyen, Dr. Viet-Hoa Nguyen and Dr. Minh-Tan
Pham for their constant support and encouragement. The discussions with them have

strongly inspired me.

I would like to thank my parents, for their constant love, encouragement, and limitless
support throughout my life. Finally, I would like to thank my fiancée, Thuy Tran, who

is also a PhD, for her understanding, her helps, and her endless love.



Contents

Acknowledgements

Abbreviations

List of Figures

List of Tables

Introduction

1 Channel coding and MIMO iterative receivers

2

1.1

1.2

1.3
14

Channel coding . . . . . . . .. L
1.1.1  Recursive systematic convolutional (RSC) codes . . . . .. ... ..
1.1.1.1 RSCencoder ... .. ... ... ... .. ..........
1.1.1.2 BCJR soft-decoder . . . . .. .. ... ... .. .......
1.1.2 NB-LDPCcode . ... ... ... . . ... ... . ... .. ...
1.1.2.1  Parity check matrix and Tanner graph . . ... ... ...
1.1.2.2 NB-LDPCencoder . . ... ... ... ... .. .......
1.1.2.3 Log-BP soft-decoder . . . . . ... ... ... ... ...
Iterative receivers for MIMO wireless communications . . . . . . ... ...
1.2.1 MIMO transSmisSion . . . . . . . v v v i i e e e e
1.2.2 Turbo detection . . . . . . ... ... ...
1.2.3 Turbo equalization . . .. ... ... ... ... . ... . ...
1.2.3.1 Interference canceller . . . ... ... ... ... ......
1.2.3.2 SBC and BSC converters . . .. ... ... ... ......
EXIT chart . .. .. . . . .
Conclusion . . . . . . . . .. o

MIMO linear precoding techniques

2.1
2.2

2.3

Precoded MIMO systems . . . . . . .. . . . .
Channel transformation technique . . . . . . . ... ... ... ... ... ..
2.2.1 Noise whitening . . . . . ... .. oo o
2.2.2  Channel diagonalization . . ... ... ... ... ... ... ... ..
2.2.3 Dimensionality reduction . . . . ... ... Lo
Existing precoders . . . ...
2.3.1 Diagonal precoders . . ... ... .. ... oo

2.3.1.1  Water-filling precoder . . . ... ... ... ... ... ...

2.3.1.2  Mercury/water-filling precoder . . . . ... ... ... ...

iii

vil

-~ S O ot

11
11
13
15
18
19
20
22
23
25
26
29



2.3.2 Non-diagonal precoders . . . . .. ... ... ... . L. 39

2.3.2.1  Globally optimal precoder . . ... ... ... ....... 40

2.3.2.2 max-dpyi, precoder . ... ... 41

2.3.3 Comparison between precoders . . . . ... ... ... ... .. ... 45

2.4 Conclusion . . . . . . . . e e e e 47

Joint Optimization of MIMO Precoding and Symbol Mapping for Turbo

Detection 49

3.1 Introduction . . . . . . . . 50

3.2 Preliminaries . . . . . . . 5l

3.2.1 System Model . . ... ... .. 51

3.22 SNR definition . . .. . . ... L 52

3.3 Optimized precoder for the conventional mapping . . . .. ... ... ... 53
3.3.1 Upper bound of Turbo detection assuming precoder with perfect

CST . e 53

3.3.2 Theoretical analysis . . . . .. ... .. L L 95

3.3.3 Simulation results . . . . ..o 29

3.4 Performance enhancement . .. ... ... ... ................ 62

3.4.1 Direct mapping at the received constellation . . . . ... ... ... 62

3.4.2 EXIT chart analysis . . . . ... ... ... ... . ... .. ... 65

3.4.3 Simulation results . . . ... ... ... 68

3.5 Conclusion . . . . . ... 70

A Calculation of Ug .................................. 73

B Proofof Lemma2 ... ... ... . ... 74

C  Proofof Lemma 3 . ... ... ... 74

Complexity Reduction for the Optimization of Linear Precoders over

Random MIMO Channels 77
4.1 Introduction . . . . . . . . . . 77
4.2 Preliminaries . . . . . . ... e 79
421 Systemmodel .. ... 79
4.2.2  Globally Optimized (GOPT) precoders . ... ............ 80
4.3 Analysis . ... 81
4.3.1 Low Complexity Optimized (LCOPT) precoders . . . . ... .. .. 81
4.3.2  Selection of input © for Algorithm 2incaseb=2 . ... ... ... 84
4.3.3 Selection of input © for Algorithm 2incaseb>2 . ... ... ... 87
4.3.4 LCOPT precoder and MIMO symbol mapper association . . ... 88
4.4 Simulations . . ... Lo 89
4.4.1 Codebook construction for GOPT . . .. ... ... ......... 89
4.4.2  Simulation scheme . . . . . . ... L L o 90
4.4.3 Simulation results . . . . ... L 90
4.5 Conclusion . . . . . ..o 94
A Proof of Proposition 1 . . . . .. ... ... . 97
B An example of solving dwp, and 6vp from dw incase b=2 ... ... ... 98
C  Find mutual information in function of W . . .. .. ... ... ... L. 99

Optimization of linear MIMO precoding assuming MMSE-based turbo
equalization 101



5.1 Introduction . . . . . . . . . e 101

5.2 System model and preliminaries . . . .. .. ... ... L. 103
5.2.1 System model . ... .. 103
5.2.2 MIMO precoder for turbo equalization. . . . ... . ... ... ... 104
5.2.3 EXIT function of turbo equalizer . . . . . .. ... ... ... .... 104

5.3 Association and Joint Optimization of max-du;, Precoder with MIMO
Turbo Equalization . . . . . . . . .. . . . 105
5.3.1 Analysis . . ... 105
5.3.2 Results . ... ... e 108

5.4 Optimization of the defining precoder parameters: Genie-optimized precoder109
5.4.1 Problem statement . .. ... ... ... o oL 109
5.4.2 Optimizing I(z,8[S=8) . . . . . ... 110
5.4.3 Improving I(z,s[8=0) ... .. ... ... ... ... . 113

5.5 Validation through EXIT chart . .. ... .. ... ... . ... ... ... 115
5.5.1 Comparison with the theoretical results . . . . ... ... ... ... 115
5.5.2 Comparison with the existing precoders . . . . . .. ... ... ... 115

5.6 Simulation results and discussion . . ... ... ... L. 118

5.7 Conclusion . . . . . . Lo 122

A Proofof Lemma b . . ... ... .. ... ... 125

6 Turbo Detection of NB-LDPC Codes in Precoded MIMO Systems 127

6.1 Introduction . . . . . . . . 127
6.2 Preliminaries . . . . . . .. . e 129
6.2.1 System model . ... ... L 129
6.2.2 MIMO precoders. . . . . ... . L 131

6.3 Analysis . . . ... 132
6.3.1 Computational complexity . . . .. .. ... ... .. L. 132
6.3.2 Non-binary EXIT chart . . . . .. ... ... ... ... ... ... 133

6.4 Simulation results . . . . . ... ... 134
6.5 Conclusion . . . . . . ... e 138

7 Multiple-Votes Parallel Symbol-Flipping Decoding Algorithm for Non-

Binary LDPC Codes 139
7.1 Introduction . . . . . . . . e 139
7.2 Preliminaries . . . . . . ... 141
7.2.1 Notations and Definitions . . . .. .. ... ... ... ... 141
7.2.2 PSFD Algorithm . . . . ... ... ... 142

7.3 Multiple-Votes PSFD Algorithm . . . . ... ... .. .. ... .. ..... 144
7.3.1 Algorithm . . . ... .. 144
7.3.2  Complexity Computation . .. ... ... ... ... ... . ... .. 146

7.4 Simulation Results . . . . . . ..o 147
7.5 Conclusion . . . . . . . e 151
Conclusion and perspectives 153

Bibliography 161






Abbreviations

a vector notation (bold lowercase)

A matrix notation (bold uppercase)

Af Hermitian (conjugate transpose) of matrix A
AT transpose of matrix A

Tr{A} trace of matrix A

|A|F Frobenius norm of matrix A

E[a] mathematical expectation of a

I identity matrix of size bx b

[EY vector 2-norm

|A] cardinality of set A

la] the greatest integer less than or equal to a

diag{ai,as,--,a,}  diagonal matrix with n diagonal elements aj,as, -, a,

nr number of transmit antennas

ngR number of receive antennas

b number of datastreams

H [nr xnp] channel matrix

F [ny x b] precoding matrix

G [bxng] postcoding matrix

s [bx1] transmitted symbol vector

H, [bxb] virtual channel matrix

F, [bxb] precoding matrix for virtual channel

n [bx1] additive virtual noise vector

v angle of the virtual channel in case b = 2
p gain of the virtual channel in case b =2
I(y,s) channel mutual information between channel output y

and input symbol s
dmin minimum Euclidean distance of the received constellation
0y minimum squared Euclidean distance between the pair of
symbol vectors, whose associated binary mappings differ

by exactly one bit

i






List of Figures

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

2.10

2.11
2.12

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8
3.9

A rate 1/2, (13,15),ctq; recursive systematic convolutional encoder. . . . .

Trellis representation of the (1,3),cq1 RSC code. k=1, n =2, cgl) = Uy,
C£2) =u + cgi and ugl) SUE e e e e e e e e e e
Tanner graph representation of a (4,8) parity check matrix. ... ... ..
Graphical representation of messages calculation at variable nodes. . . . .
Graphical representation of messages calculation at check nodes. . . . ..
MIMO model with ny transmit antennas and ng receive antennas . . . .
Turbo detection. . . . . . . . . .

Turbo Equalization. . . . . . . . .. . .. ..

Precoding schema. . . . ... ... L
MIMO precoding system structure. . . . .. ... . ... ... ... ...
Equivalent MIMO precoding system structure. . . . .. .. ... ... ...
Precoding schema after channel transformation. . ... ... ... .. ...
Diagonal precoding structure. . . . .. ... ... Lo L.
Water-filling concept. . . .. . ...
Mercury /water-filling concept. . . . . ... .. ... L
Received constellation x; on the first sub-channel in case Fy=F,,. . . ..
Received constellation x; on the first and second sub-channels in case
Fa=Focta - -« o o o e
The received normalized dpin versus . . . . . oo oo
Range of precoder selection for 4-QAM modulation . . .. ... ... ...
EXIT chart for turbo detection, SNR = 8 dB, v = 30° and (13, 15),ctal
RSCcode. . . . . . e

Equivalent system model. . . . . . . . . ...
Equivalent encoder and mapper block. . . . ... ... ... ... ... ...
The received constellation on first subchannel of Fy, precoder, Channel A,
Gray-M mapping and 4-QAM modulation. . ... ... ... ... ... ..
BER (solid lines) and FER (dashed lines) of Channel A, Gray-M mapping,
(13,15)-RSC code and 4-QAM modulation. . . ... ... ... ... ....
BER (solid lines) and FER (dashed lines) of Channel B, Gray-M mapping,
(13,15)-RSC code and 4-QAM modulation. . . ... ... ... ... ....
Conventional mapping versus mapping with MIMO symbol mapper. . . .
The received constellation on the first subchannel of F; -mod precoder,
Channel A, Gray-M mapping and 4-QAM modulation. . . ... ... ...
Normalized ¢; versus v for different MSEW mapped precoders. . . . . ..
Block model for the EXIT chart measurement . . ... ... ... .....

iii

32
35
35



3.10 EXIT chart at SNR = 8.1 dB, Channel A, MSEW mapping given in TABLE 3.1. 66
3.11 EXIT chart at SNR = 8.1 dB, Channel B, MSEW mapping given in TABLE 3.1. 67
3.12 BER performance of the precoders associated with the corresponding map-

pings, 4-QAM, Channel A. . . . . ... ... .. ... 68
3.13 BER performance of the precoders associated with the corresponding map-

pings, 4-QAM, Channel B. . . . . ... ... .. ..o L 69
3.14 BER performance of the precoders associated with the MSEW mappings

over random channels. . . . . . ... ... 69

4.1 Scaling factor between the received constellations of the first substream

over the second substream. . . . .. . . ... L 86
4.2 Convergence trajectories for mutual information, b = 2, 4-QAM, channel

v=175%and SNR =12dB. . . ... ... ... .. 86
4.3 Convergence trajectories for mutual information, b = 3, 4-QAM and SNR =

9.77 dB. . . . e 89
44 FER (dashed-lines) and BER (solid-lines) performances, all precoders are

used with Gray-M mapping. . . ... . ... ... 91

4.5 FER (dashed-lines) and BER (solid-lines) performances, max-dmin and the
proposed LCOPT precoders are used with optimized MSEW mappings,

GOPT precoder is used with Gray-M mapping. . . . . . . ... . ... ... 92
4.6 EXIT chart for channel v =17.5°at SNR =9dB. . ... ... ....... 93
4.7 BER performances, the proposed LCOPT precoders are used with opti-

mized MSEW mappings, b = 2, 4-QAM modulation. . . . . ... ... ... 95
5.1 Precoded turbo equalization system. . . ... .. .. ... ... ... ... 104

5.2 EXIT chart of turbo equalization vs. the real trajectory (obtained from
simulation) for Channel A, SNR = 10 dB, 4-QAM and (13,15)-RSC code. 105

5.3 IL(1) versus v at different SNR.. . . . .. .. .. ... .. ... .. ... 106
5.4 The new threshold 7, in function of SNR. . .. ... ... ... .. ... .. 107
5.5 BER (dashed lines) and FER (solid lines) performance of the max-d,y;, and

max-dpjymod precoded turbo equalization in a 2 x 2 MIMO system. . . . 108
5.6 The extrinsic MI of IC at optimum convergence state (I} = 1), i.e. IL(1),

¢ =30°, Channel A, SNR =11 dB, 4-QAM, v and € are in degree. . ... 114
5.7 EXIT charts of IC using the considered precoders at SNR = 10 dB, Chan-

nel A, 4-QAM and (13,15)-RSC code. . . . ... ... .. ... ... ... 116
5.8 EXIT charts of IC using the considered precoders at SNR = 10 dB, Chan-

nel B, 4-QAM and (13,15)-RSC code. . . . . ... ... .. ... ... ... 117
5.9 I at I =1 versus the angle v at SNR = 10 dB and 4-QAM. . ... ... 118
5.10 BER of Channel A, 4-QAM and (13,15)-RSC code. . . . . ... ... ... 119
5.11 BER of Channel B, 4-QAM and (13,15)-RSC code. . . . . ... ... ... 120
5.12 Average BER over random channels, 4-QAM and (13,15)-RSC code. . . . 121
5.13 Average FER over random channels, 4-QAM and (13,15),c0;-RSC code. 122
6.1 System model. . . . ... 129
6.2 EXIT chart of a given channel at SNR=18dB.. . . ... ... ... .. .. 133
6.3 FER of the fixed channel Hey. . . . . . . . . . .. ... ... ... ... 135
6.4 Average FER of random channel. . . . ... ... .. ... ... ... .. 136

6.5 Receiver complexity. . . . . . . ..o 137



7.1
7.2
7.3
7.4
7.5

7.6

7.7
7.8

7.9

Conventional PSFD voting procedure. . . . . ... . ... ... ... ..
Conventional PSFD parallel flipping procedure. . . . . . . . ... ... ...
The proposed MV-PSFD voting procedure. . . . .. ... ... ... ....
The proposed MV-PSFD parallel flipping procedure. . ... ... ... ..
FER (solid) and BER (dashed) performance versus rate-normalized SNR
of MV-PSED and PSFD for Code 1 (low column weight). . . ... .. ..
FER (solid) and BER (dashed) performance versus rate-normalized SNR
of MV-PSFD and PSFD for Code 2 (low column weight). . . ... .. ..
Voting levels comparison for Code 1 (low column weight). . ... ... ..
FER (solid) and BER (dashed) performance versus rate-normalized SNR
of MV-PSFEFD and PSFD for Code 3 (high column weight). . . .. ... ..
Average number of iterations versus rate-normalized SNR of MV-PSFD
and PSFD for Code 1 (solid) and 2 (dashed). . . .. ... ..........






List of Tables

2.1

3.1

5.1

6.1

6.2
6.3

7.1

Optimized angles in degree for the precoders Fye, and Fge, ... .. . ..

The optimized binary representation in the constellation map of the pre-
coders for two different mappings. . . . . . .. ...

The defining parameters of max-dyi, precoder and the proposed Genie-
optimized precoder. . . . . ...

Parameters for the five matrices of max-dni, precoder in case of 16-QAM

- - 6
andb—2,a—1+\/3_4 ...............................

Number of operations used at the iterative receiver for each codeword. . .
GOPT precoding matrices at some selected SNR (in dB), which are found
by applying the Algorithm 1 (reported in Chapter 4) with the initial pa-
rameters (w = Z,v = {5) over Heyx channel, and the corresponding channel
capacities (in bits/s/Hz). . . . .. .. .. o

134

Complexity by operators at each iteration of NB-LDPC decoding algorithms. 147

vii






Introduction

With the dramatic increase of mobile users along with the development of social media
in this decade, the challenge of improving the capacity of modern radio-cellular networks
must be taken up. Long Term Evolution (LTE) and LTE-Advanced (LTE-A) standards
were developed in 2004 and 2008 respectively to tackle it. In fact, the development of
the fifth-generation (5G) radio mobile networks is ongoing to replace the current fourth-
generation (4G) LTE and 4.5G LTE-A. Nevertheless, the transition from 4G to 5G, which
has effectively already begun, could take a decade or longer. Though several technologies
appeared to be key ingredients for the next generation, LTE-A is expected to continue
playing a vital role in the 5G era |1|. The main output of the studies into LTE and
LTE-A were the standardizations for the air interface, in which the most important
requirements were high data rate and high quality of service, which assure low error-rate
and low latency [2-5]. Besides, as discussed in the recent surveys [6, 7|, low complexity
communication systems are also essential in the next 5G mobile networks. To adapt
with the modern trend of technology, in this PhD thesis, we investigate the wireless
communication schemes, in which simple forward error correction (FEC) codes are used
for low complexity and latency. We then optimize the error-rate performance of these

systems in order to be used in LTE and LTE-A.

One of the vital technologies that is exploited to catch up the specifications proposed
in LTE and LTE-A is the multiple-input multiple-output (MIMO) technology. Indeed,
multiple antenna wireless systems, commonly referred to as MIMO systems, have become
increasingly popular since the late of 1990s after the practical demonstration and the
theoretical prediction of very high spectral efficiencies in |8] and [9] respectively. The
advantages of using multiple antennas at the transmitter and the receiver of a wireless
MIMO system have been well exploited in the recent years [10]. By using multiple

antenna transceivers, MIMO technology not only offers multiplexing and diversity gains,

1



Introduction 2

but it also achieves higher conventional point-to-point link reliability in comparison with
single transceiver systems [11]. The main challenge is to design a MIMO scheme that
fully exploits the presence of multiple antennas. In fact, in [12, 13], multiple copies of
transmitted data symbols have been proposed to map across antennas for diversity and
transmission robustness. The association of this technique with iterative receivers has
shown promising performance [14, 15]. More importantly, in time domain duplex closed-
loop schemes, the channel state information (CSI) is readily available at the transmitter
through a feedback link, which allows us to further design a precoder that is able to
adapt to the channel conditions. Indeed, several kinds of linear precoders have been
proposed in the literature. They were designed according to different criteria such as
maximization of the minimum Euclidean distance on the received constellation (referred
to as max-dmin [16-21]), globally maximization of the channel mutual information [22]
(referred to as GOPT) and power allocation optimization (referred to as minimization of
bit-error-rate (BER) [23]), weighted MMSE |24], max-SNR (maximization of the received
SNR or beamforming) [25], water filling (WF) [9] or mercury/water-filling (m/WF) [26].

Unfortunately, neither the outer FEC code nor the receiver structure was taken into ac-
count in most of the designs of linear precoder except for the design of space time block
codes, which only considers CSI at the receiver side [27]. The low density parity check
code was considered in [22]|, however, the precoder is not designed for any specific re-
ceiver. Its design criterion is the global maximization of the mutual information between
the finite alphabet input and the corresponding channel output. Since this precoder is
globally optimized, it is referred to as GOPT precoder. A drawback of the GOPT pre-
coder is that it requires the search for optimal precoder for each channel realization and
signal-to-noise ratio, with an extremely high computational complexity. This drawback
makes the GOPT precoder implementation infeasible in practice, but its performance
can be used as a lower bound for other precoder design purpose. In this thesis, we
consider the concatenation of the FEC encoder and the MIMO linear precoder. The

investigations are twofold.

On one hand, we optimize the MIMO linear precoder assuming simple binary FEC en-
coder and iterative receivers. Firstly, turbo detection is considered at the receiver side.
We propose, in Chapter 3, a precoder (referred to as Fy, precoder), which significantly
improves the system error-rate performance by maximizing the minimum Fuclidean dis-

tance between the pair of symbols, whose associated binary patterns are different by only



3 Introduction

one bit. In addition, by considering a direct mapping at the received constellation, we
introduce a novel precoder (referred to as EX IT-based precoder), which adapts to the op-
timal mapping, to improve the system error-rate performance. We compare the proposed
precoders with the max-dpi, precoder, which shows good error-rate performance com-
pared to other precoders of literature when maximum likelihood detection and uncoded
system are considered. However, in FEC encoded systems, a good optimization crite-
rion for MIMO precoder is channel mutual information maximization. Unfortunately,
the best precoder that maximizes the channel mutual information, which is the previ-
ously mentioned GOPT precoder, can not be used over random channels due to the high
computational complexity. Therefore, in Chapter 4, we introduce an algorithm that
combines the design criteria of max-dni, and GOPT to propose a new low complexity
optimized precoder (referred to as LCOPT precoder), which asymptotically maximizes
the channel mutual information in a complexity competitive way. The proposed LCOPT
precoder has fixed received constellation forms and, therefore, it can easily apply the
mappings proposed in Chapter 3. Secondly, we focus our study on precoder optimiza-
tion assuming turbo equalization at the receiver, which has lower complexity compared
to turbo detection. However, with turbo equalization, the received symbols are initially
processed by an interference canceller, where they are decomposed into parallel sub-
streams, before being converted into soft-messages and entering the decoder. Therefore,
the mapping with respect to the received constellation is not essential for this receiver.
In addition, since the soft-messages fed to the decoder come from the interference can-
celler (not channel output), it is important to maximize the mutual information between
the transmitted symbols and the symbols at interference canceller output rather than
maximizing the channel mutual information. Therefore, we propose, in Chapter 5. a
new precoder that maximizes the mutual information at the interference canceller output
(referred to as Genie-optimized precoder). Simulations assuming a turbo equalization at
the receiver indeed show a significant performance gain of the proposed Genie-optimized
precoder compared to the GOPT precoder, which aims to maximize the channel mutual

information.

On the other hand, we also consider the case when non-binary low density parity check
(NB-LDPC) FEC codes are used. We firstly investigate the concatenation of NB-LDPC
codes with MIMO linear precoders. Conventionally, high-order Galois field (GF) is used

at the NB-LDPC encoder to increase the data rate. Each GF symbol is mapped onto one
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MIMO symbol vector. Though several algorithms have been proposed in the literature
to reduce the decoding complexity, the computational complexity spent for decoding the
high-order field codes is still painfully expensive. Therefore, in Chapter 6, we propose
to map multiple low-order GF symbols onto one MIMO symbol vector assuming non-
binary turbo detection at the receiver side. It is proved that this mapping significantly
reduces the computational complexity at the receiver. Additionally, we propose to apply
MIMO linear precoding to enhance the system error-rate performance as well as to further
reduce the complexity by limiting the number of internal iterations inside the NB-LDPC
decoder. To complete our study about the complexity reduction for the communication
systems that use NB-LDPC codes, we propose, in Chapter 7, a novel low complexity
reliability-based hard output decoding algorithm for NB-LDPC codes.



Chapter 1

Channel coding and MIMO iterative

recelvers

In most of the precoder designs, channel coding was not taken into account. In other
words, the systems were considered as uncoded systems. In this study, we consider the
channel coding. As mentioned in the introduction, this thesis contains two main parts.
In the first part, we aim to optimize the MIMO linear precoder assuming simple FEC
codes (for low complexity) and iterative receivers. The recursive systematic convolutional
(RSC) code is used in the first part. In the second part, we optimize the complexity and
performance for the NB-LDPC encoded MIMO precoded systems. Following this struc-
ture, we respectively introduce, in Section 1.1 and Section 1.2 of this chapter, the forward
error correction codes and the iterative receivers that will be considered throughout this
thesis. Section 1.3 briefly introduces the extrinsic information (EXIT) chart, which is a
useful tool to analyze the convergence behavior as well as the performance of iterative

receivers. Section 1.4 wraps up this chapter with a conclusion.

1.1 Channel coding

We recall hereinafter the encoding and decoding processes of RSC and NB-LDPC codes.
The structure of RSC codes is simple and has been well-exploited. In contrast, the

presentation of NB-LDPC codes is more complicated and the studies about NB-LDPC
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codes are still ongoing. In this section, after a short introduction to RSC codes, we

present in more details the NB-LDPC codes.

1.1.1 Recursive systematic convolutional (RSC) codes
1.1.1.1 RSC encoder

In contrast to a block code, which encodes a finite-length input message, a convolutional
encoder works as a finite-state machine that takes in a continuous sequence of informa-
tion bits and produces a continuous sequence of encoded bits. Hence, a convolutional
encoder can be represented by a linear finite-state register circuit. The number of reg-
ister elements in the circuit is called the memory order of the encoder. The coding rate
of a convolutional code is calculated by R = %, where, at each time instance ¢, k is the

number of input bits and n is the number of output bits.

A recursive systematic convolutional code is a convolutional code that takes into account
the output from previous state to produce the output for next state, i.e. the encoder
output is fed back into the encoder state. Let us denote by m the memory order of
the RSC code, and by [SM, ..., S(™] the contents of the shift-register, which shifts
data from left to right. In this thesis, we mostly focus on precoder design for MIMO
systems assuming outer FEC code and iterative receiver. With the purpose of considering
simple FEC codes, we restrict the memory order of the RSC code used in this study to
m = 3. The comparison in terms of error-rate performances of the considered system over
different memory orders will also be illustrated in Chapter 4. An encoder with m = 3 is
demonstrated in FIGURE 1.1. a is the input information bit, ¢(!) is the systematic bit,
@ is the parity bit after encoding. The termination bit e is used to make sure that
all of memory elements will return to zeros at the end of every block sequence before
encoding a new block. The number of termination bits is equal to the memory order m.
In F1GURE 1.1, the generator functions of the feedback and feed-forward links at input
and output of the shift-register are 1+ D? + D3 and 1+ D + D3 respectively, where D is
interpreted as a delay of one unit of time. This pair of polynomials can be represented

in octal form as (13,15)ctai-
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FIGURE 1.1: A rate 1/2, (13,15),cta recursive systematic convolutional encoder.

1.1.1.2 BCJR soft-decoder

The BCJR algorithm was invented by Bahl, Cocke, Jelinek and Raviv in 1972 [28]. It can
be applied to convolutional codes to obtain a soft-input soft-output decoder. In order
to reduce the computational cost and memory requirement, the traditional BCJR algo-
rithm can be transfered into logarithmic domain and named Log-BCJR algorithm [29)].
We herein briefly recall the Log-BCJR algorithm in a practical way by using Jacobian
logarithm. We restrict ourselves to binary codes. Let us start with the definition of

notations.

e The information message is denoted by

u=[uj...ug]= [ugl)...ugk);...;ugl)...ugk);...;ug})...ugf)]

Uy Uy Up
t=1 t t=T

where K stands for the message binary length. We define T = %

e The codeword is denoted by

c:[cl...cN]:[cgl)...cgn);...;cgl)...cgn);...;cg})...c(Tn)]

Cy S Cr
t=1 t t=T

where N = % =nT is the codeword length.

e The noisy message received from the channel is denoted by

v=[vi...on] = [vil)...vin);...;v,fl)...vgn);...;vél)...vgpn)]

Al v Yr
t=1 t t=T
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e Given the memory order m, there are 2" possible states. Let us consider a time
instant t. We denote by S, the encoder state at time instant ¢t — 1 and by S5 the

encoder state at time instant ¢. In the trellis representation, a branch will connect

Sy to Ss.
State ug e W@
$-=0 Ss=0
0]00
Sr=1 Ss=1

0jo1

FIGURE 1.2: Trellis representation of the (1,3),ca; RSC code. k=1, n =2, cgl) = Uy,

c§2) =up + cl(f)l and ugl) =uy

For illustration purpose, we have represented in FIGURE 1.2. the trellis of the (1,3) RSC
code. The constraint length equals 2 and the number of states is 2. A branch connecting

two states is labeled by the encoder input bit value and the corresponding output bit

values. In this example, u; is original input bit, cgl) = and c§2) are encoded bits. Let
us define the Jacobian logarithm max as
max (z,y) = In (¢* + €¥) = max (z,y) + In (1 + ei|‘”7y|) . (1.1)

Then
ln(ieai) = max(. .. max (m’éx(al,ag),ag) ... ,an) ) (1.2)

The Log-BCJR algorithm used with max can be summarized by the following steps:

1. Calculating the log-probability of all transition paths.

In FIGURE 1.2, S, and S can take two values each, yielding four possible tran-
sitions. Let us consider a given pair (S,, Ss). If we denote by 7; the log of the
probability of the transition between S, and Ss at time instant ¢, then, in case

k=1 and n =2 (as shown in FIGURE 1.2), ~, is calculated as follows

Vi (S'r"7 SS) =1In [P (Qt = M7“5) P(Qt‘grs)] )

(1.3)
=In [P (Ut = urs) P (1}51)‘@%)) P (U§2)|C$§)):| )
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where u,., is the value of u, defining the transition from S, to Ss in the trellis and
¢, is the associated encoder output. Calculation yields
(2)

(1)
R, R,
¢ (Sy, Ss) = sign (ut) '+ sign (c§ )) g * sign (cg )) 5 Frue e Tcgl),
Ty

v, (Sr,Ss)
(1.4)

where T is a constant at time instant ¢, A; is the a priori log-likelihood ratio (LLR)
of uy, REI) and REQ) are the LLRs of vt(l) and vt@) respectively and sign(.) is the sign
of the LLR according to each bit (e.g. sign (us = 0) = -1 and sign (u¢ = 1) = +1).

. Calculating the log-probability of the current state based on the previous states.

Let us denote by a; the log of the probability such that the current state is S

based on the previous states, then, o4 is calculated as follows.
ar (Ss) =In[P(s® = 5,)] - 1n[ZP(S<H> =S PS4 = 5,80 = s, )]

=1In [Z eOét—l(Si)e’Yt(Si7Ss):| 7
i

(1.5)
where SO stands for the encoder state at time instant ¢. Based on FIGURE 1.2,

calculation yields

t * ! ! 4 !
a: (0) = ¥ Yo+ max(a,_y (0) +7 (0,0), 4y (1) +7 (1,0)),

t N , , ) ) (1.6)
a (1) = ngl T, +max (c,_; (0) +7; (0,1), 0,1 (1) +7; (1,1)).
In general,
ag (Ss) = ZT +max(at 1(S)+*yt(5'1,5)) (1.7)

n=1

ag(Ss)
. Calculating the log-probability of the current state based on the future states.

Let us denote by B; the log of the probability such that the current state is .S,

based on the future states, then, §; is calculated as follows

ﬁt(sr)=ln|:P(S(t)— )]—m[zp( S+1) _ ) (5(” S, 8+ - 5)]

=In |:Z 65t+1(51)6’yt+1(ST,Si):| .
(1.8)
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Calculation yields

T * ! ! 4 4
/Bt (0) = nZ::t Tn + max (ﬁt+1 (0) T Vis1 (O, O) aﬁﬂl (1) T Vi1 (07 1)) )

T * ’ 7 ’ / (1.9)
/Bt (1) = nZ::tTn + max (6t+1 (0) T Vi1 (LO) ’Btﬂ (1) T Vi1 (17 1)) :
In general,
T
Br (Sr) = 20 Yo+ maax By (i) + Va1 (91, 5)).- (1.10)
n=t ¢

By (Sr)
4. Calculating a posteriori log-probability of the current transition.

Let us denote by 6;(Sy,Ss) the log-probability of the transition from S, to S;.

Calculation yields

5(Sy,8s) =l [P (841 = 5,80 = 5, v)],

= In [eam(Sr)ewsmss)em(ss)] ,
T , , , (1.11)
= Z Yo+ a1 (Sr) +7:(Sr, Ss) + B (Ss) -
n=1
T éé(Sr,Ss)
5. Calculating the a posteriori LLR of input bit u;.
The LLR of the input bit u; given the received bits v is calculated by
L(u|v) =1n Plu=1lv) ,
| P (ug = 0[v)
[ » P(s¢=50,50 = Ov) P (v)
i|ut:1
=1In . . , 1.192
5 P(500-59,.50 - 5O P(w) (1.12)
| i|ut=0
[ (4) (%) (4) (i)
=In| > eét(ST s )] - ln! >, eét(ST o )] :
| i|ut=1 ilug=0
Substitution yields
L(ulv) = max (5:(8%,860)) - max (5,(8,8Dy). (1.13)
ut= tut=

Note that u; = CEI). The a posteriori LLRs of CEQ) can be computed in a similar way. In

that case, the max operation is done with ng) instead of u¢. In summary, the Log-BCJR

algorithm can be carried out directly from ay,7;, 5; and d;.
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1.1.2 NB-LDPC code

Low density parity check (LDPC) code was pioneered by Robert Gallager in his doctoral
dissertation in 1962 [30], twelve years after error correction codes were firstly introduced
by Hamming in 1950. In 1981, R. Michael Tanner generalized LDPC codes and intro-
duced a graphical representation for LDPC codes, which is widely used later and known
as Tanner graph. Since 1993, with the invention of Turbo codes, researchers focused
on finding a low complexity code that can approach Shannon channel capacity. Conse-
quently, the LDPC was re-invented with the works of David Mackay [31], [32]. In 1998,
Davey and Mackay proposed LDPC codes over high order Galois field GF(q), where ¢
is the field order [33]. When ¢ = 2, the code is known as binary LDPC code. When
q > 2 the code is called Non-Binary LDPC code [34]. It is shown that, the NB-LDPC
codes achieve better performance compared to their binary counterpart. On the other
hand, for the moderate code lengths, the error-rate performance can be improved by
increasing ¢ [35]. Nowadays, LDPC codes are popularly used in many communication

applications.

NB-LDPC codes are investigated in the second part of this document. We herein provide
an overview about NB-LDPC codes. The well-known log-domain Belief-Propagation

decoding algorithm for NB-LDPC codes is presented at the end of this subsection.

1.1.2.1 Parity check matrix and Tanner graph

Let us firstly introduce the code construction for binary LDPC codes. The extension to
non-binary (NB-LDPC) is straightforward and consequently presented at the end of this
subsection. As suggested by their name, LDPC codes are block codes with parity-check
matrices that contain only a very small number of non-zero elements. The essential of
this sparseness property is the complexity reduction for iterative decoders. In LDPC
codes, the complexity increases linearly with the code length and the computations of
decoding algorithms. Unfortunately, finding such a sparse matrix for an existing code
is not practical. Therefore, for LDPC codes, the parity check matrices with low den-
sity distribution of non-zero entries are firstly constructed, the encoders are determined

afterwards.
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An LDPC matrix is denoted by an M x N matrix H. M is the number of rows (number
of check-sums) and N is the number of columns (codewords length). The sparseness of
the matrix is generally represented by d! and dg, which respectively stand for the degree
of the i*" variable (or column weight) and the degree of the 5" check (or row weight).
The matrix H is sparse if d, << M and d. << N. An LDPC matrix is called regular when
d and & keep constant for all columns and rows. An LDPC matrix is called irregular
when d’ and d? do not keep constant. The construction for an irregular LDPC matrix
normally based on the degree distributions, which are the percentages of different values
of d’ and & Finally, an LDPC matrix is called partly reqular when only d or & keeps

constant while the other is varied.

An LDPC matrix can be represented in a graphical form known as Tanner graph. Most of
decoding algorithms will be based on the information exchanges in this graph to perform
the decoding. Let us consider an example of regular d, = 2,d. =4, M =4, N = 8 binary
parity check matrix H as shown in (1.14). The Tanner graph representation of this

matrix is presented in FIGURE 1.3.

01 011001
1 1100100
H = (1.14)
00100111
10011010

V1

C1

V2

V3

Uy

Us

Ve

vy

Vg

FIGURE 1.3: Tanner graph representation of a (4,8) parity check matrix.
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As shown in FIGURE 1.3, the Tanner graph of a parity check matrix # contains M check
nodes (number of rows) and N variable nodes (number of columns). The connections
between check nodes and variable nodes correspond to the positions of non-zero entries
in the parity check matrix. Another important factor to qualify a good LDPC matrix
construction is the girth. The girth of an LDPC matrix is defined as the minimum
propagation steps among all of the closed-loops in the Tanner graph. In other words, we
should design an LDPC matrix such that the path starting from a node and ending up
at the same node is as long as possible in the Tanner graph. We should avoid short cycle

in the design of LDPC matrix, 4.e. girth equals 4.

When the non-zero elements in ‘H are order-q Galois field (GF (g > 2)) symbols, then we
obtain a NB-LDPC code. All calculations related to the NB-LDPC matrix are performed
in GF(q). The NB-LDPC parity check matrix can be structurally constructed using some
algorithms such as Progressive Edge Growth [36] or defining Non-Binary Cyclic and Quasi
Cyclic LDPC codes [37].

1.1.2.2 NB-LDPC encoder

Construction of GF(¢) symbols

We can construct codes using symbols from any Galois field GF(q). However, the symbols
from the binary field GF(2) and its extension GF(2") are most widely used in digital data
transmission and storage systems because information in these systems is universally
coded in binary form. This subsection presents the method to construct the GF(2™)

symbols. The details of field algebra can be founded in [38, Chapter 2|.

Let us start with a definition of polynomials, whose coefficients are taken from the
binary field GF(2). A polynomial f(X) with variable X and binary coefficients f; is
represented by

F(X) = fo+ AX + fo X2+ + [ X7 (1.15)

where f; is 0 or 1 for 0 <4 < n. The degree of the polynomial, which is denoted by m, is
the largest power of X with a non-zero coefficient. In general, there are 2" polynomials

over GF(2) with degree m =n.

A polynomial p(X) over GF(2) of degree m is called irreducible over GF(2) if p(X) is

not divisible by any polynomial over GF(2) of degree less than m but greater than zero.
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An irreducible polynomial p(X) of degree m is said to be primitive polynomial if the
smallest positive integer n for which p(X) divides X™ + 1 is n = 2™ — 1. For example,
p(X) = X*+ X +1 divides X'® + 1 but does not divide any X" + 1 such that 1 <n < 15.

List of primitive polynomials for different degrees is shown in [38, pp. 47].

The GF(2™) symbols are constructed from a primitive polynomial with degree m over
GF(2). Let us consider an example for the construction of GF(2* = 16) symbols with
degree m = 4 primitive polynomial p(X) = 1+ X + X*. Set p(z) = 1 +z+x*, we then have
2% =1+ 2. From this relation we can define the polynomials for each symbol in GF(2%):

ao=2 =001 =2 =100 = 2" =z, 05 = 2%, a4 = 2%, 5 = 2* = 1 + . We can denote

5

by 0 the symbol ag in GF(q). From z° we can do the back substitutions

5

g =1’ =x(1+2) =+ >

6

a7 =2 =2(2°) = z(x +2?) = 2% + 23

We finally get the representations for the elements of GF(16) which are generated from

primitive polynomial p(X) =1+ X + X%,
NB-LDPC codes encoding

In high-order Galois fields, the Gauss-Jordan elimination shows its limitation to find
the systematic form of H. In general, the NB-LDPC code encoding can be done as
follows [39].

The matrix H is written as H = [A  B], with A an M x M matrix and B an M x K
matrix. Under the systematic form, a codeword v is written as v = [r i], with r the
redundant symbol part and i the information symbol part. Therefore, the redundant

vector r can be found by

HvT = 0,
<[A B][r i]'=0, (1.16)
< r=A"'Bi,

where A~! is the inverse of matrix A. However, there is an issue that the matrix A is
not always invertible. A solution for this problem is to introduce a permutation matrix

P of size N x N such that

H=HP=[A B]. (1.17)
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Matrix A is now invertible, therefore, there exists a vector v = [# i] with ¥ = A™'Bi.

Another approach to encode NB-LDPC codes is back-substitution. In this approach, the
parity check matrix is reformed into upper triangularization form by applying columns
permutation. From the upper-triangular matrix, the redundant part r can be calculated

step by step thanks to the back-substitution method.

1.1.2.3 Log-BP soft-decoder

Variants of the belief-propagation (BP) algorithm for NB-LDPC codes can be found in
[34] and [35]. An extension of the BP algorithm for NB-LDPC codes over log-domain,
which is referred to as Log-BP algorithm, was proposed in [40|. The Log-BP algorithm is
less expensive in practical implementation compared to the conventional one. Therefore,

the Log-BP decoding algorithm for NB-LDPC codes is introduced in this subsection.

Let us start with the definition of log-likelihood ratio (LLR) in Galois field. LLR of a
GF symbol is defined as a vector. Thus, we refer to LLR vector (LLRV) as the LLR of
a GF symbol. LLRV of a GF symbol at variable node vg is defined by

L(vg) = [L(vo = a1) ... L(vo = ag-1)]%, (1.18)
where the elements read
L(v=aq) = In D0 =) (1.19)
Y T Pv=a)’ '

with P(v = ;) is the probability that v takes the value a; € GF(q). Box-plus operator
(@) was introduced in [40] to compute (in terms of LLRV of each variable node) the LLRV
of the linear combination of variable nodes connected to one check node. Considering
L; and Ly the LLRVs of v; and vy respectively and {A1, A2} € GF(q) two GF symbols,
the box-plus operator for NB-LDPC codes is denoted by

L(Al’l)l + AQ’UQ) = (Ll,LQ,Al,AQ). (120)

The LLRV at the output of parity check nodes can then be simply expressed in terms
of box-plus operators. The Log-BP for NB-LDPC codes in [40] is split into four main

steps.

Step 1: Initialization
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Let us denote by L. (v;) the LLRV that a variable node v; receives from channel. In
addition, we denote by N; and M; the set of check nodes connected to the variable
node v; and the set of variable nodes connected to the check node ¢; respectively (see
FIGURE 1.4 and FIGURE 1.5). With 1 <4 <|N;| and 1 < j < |M;], the messages that the

variable node v; sends to a check node ¢j and vice versa are respectively defined by

VS,)) = Len(vi),

©) (1.21)
C, =0, Vj
Step 2: Tentative decoding
At this step, we compute the a posteriori LLRV for each variable node as
Lyost(vi) = Lan(v) + Y. CY). (1.22)

i'e N;

From Ly (vi), the hard decision can be easily determined at each variable node. With

ke{l,...,q—1} the component of the LLRV, we find kmax = argmax (Lpost(vi)1), then,
k

v; = ap if Lpost (Vi) g < 0, otherwise v; = . After hard decision, the most likely

codeword v is determined. The syndrome is calculated by
s=Hv". (1.23)

If s =0, v is a codeword and the algorithm is stopped at this step.
Step 3: Horizontal step

This step calculates the messages from variable nodes to check nodes. The message Vg)

from v; to ¢; at iteration [ reads

VO L)+ Y cgéj). (1.24)
i'e Ninj

FIGURE 1.4 shows the graphical representation of step 3.
Step 4: Vertical step

This step calculates the messages from check nodes to variable nodes. In NB-LDPC

codes, each check node ¢; should take into account the GF values of the non-zero elements
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Lep(vy)

FI1GURE 1.4: Graphical representation of messages calculation at variable nodes.

in H that connect to it as shown in FIGURE 1.5. The message that the check node ¢;
sends to the adjacent variable node v; is a LLRV, which satisfies the check sum condition.

We have
l
Cf) = L(hjivi + 3 by =0),
1# 4

=L(vi=hj 3 ).

g,
T E

(1.25)

To apply the definition of GF box-plus operator in (1.20), two variables were introduced

in [40] as follows

oji= 25 by,

i< (1.26)
pii = 2. hy vy
i'> i
Then,
L (0ji) = L (o)1) + hjivi) ,
= L(O’ ie ),L(Ui),l,h'i .
s i) (1.27)

=

L (pji) =

H

(
(pj(is1) + hjivi)
(L(pjcis1y), L(vi), 1, hji)

where L(v;) is Vg*l) . This means that we split M; in FIGURE 1.5 into upper and lower

parts and recursively calculate L(o;;) and L(pj;) as in (1.27) with i€ {1,...,dy}. The
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[O)

FIGURE 1.5: Graphical representation of messages calculation at check nodes.

message from check node ¢; to variable node v; is finally calculated by

() _ -1 -1
Cji =L (hji 0j(i-1) T hji pj(i+1)) )

=8 (L(056-1)) L (pjaen)) 15 i ) -

(1.28)

The algorithm will run until it meets the stopping condition at step 2 or until the

maximum number of iterations is reached.

The complexity of this algorithm will be later discussed in Chapter 6. The most time
consuming step of the Log-BP algorithm is the vertical step (step 4). Several decoding al-
gorithms were proposed to reduce the decoding complexity, especially at the vertical step,
namely Log-BP-FFT [41] (fast Fourier transform (FFT)-based) and EMS [42](extended
min-sum, which significantly reduces the decoding complexity over high-order GF, e.g.
q=064,128,...). However, by considering a low to moderate order of GF (e.g. ¢ =16 as
will be considered in this thesis), the complexity of the presented Log-BP algorithm is ac-
ceptable. Moreover, it is quasi-optimal for large-girth parity check matrices. Therefore,
Log-BP algorithm is considered in Chapter 6 of this thesis. The study about complexity
of decoding algorithms for NB-LDPC codes will be carried out in Chapter 7.

1.2 Iterative receivers for MIMO wireless communications

Let us consider a communication scheme that takes into account the concatenation of

FEC encoder and symbol mapping. The mapped symbols are then precoded before the
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transmission. The optimal receiver is the maximum likelihood (ML) detection of the
information message from the channel output. However, it is infeasible in practice to
implement this kind of optimal receiver. Therefore, iterative receiver is used to asymp-
totically achieve the performance of the ML solution. In this section, we introduce the
MIMO wireless communication systems and the two iterative receivers, turbo detection

and turbo equalization, which will be later exploited in this study.

1.2.1 MIMO transmission

Receiving Yy
Block

Transmitting S
Block /X

FIGURE 1.6: MIMO model with ny transmit antennas and np receive antennas

MIMO technology has become essential in the recent years to take up the challenges
of higher data rate and increasing data traffic that radio-cellular networks have to face
up. It is one of the most crucial distinction between 3G and 4G wireless systems [10].
The idea of using multiple transceiver antennas not only offers the multiplexing and
diversity gains, but it also achieves higher conventional point-to-point link reliability in
comparison with single transmitter and single receiver systems [11]. Because of these
properties, MIMO has become an important part of modern wireless communication
standards such as IEEE 802.11ac/n (WiFi), 3GPP LTE & LTE-A (4G & 4.5G) and the

upcoming 5G.

Let us consider a MIMO transmission with ny transmit and ng receive antennas. We
assume that the channel is time-invariant and non-frequency selective over the data
transmission. The basic MIMO system model is illustrated in FIGURE 1.6. The received

signal at antenna j reads

nr
Yy; = Z hﬂsi + TLj, (129)
i=1

where hj; is the channel gain of the path from the transmit antenna i to the receive

antenna j, s; is the complex transmit signal at antenna ¢, and n; is the noise at the
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receive antenna j. In general, the received vector y reads
y =Hs+n, (1.30)

where y = [Y1,Y2, s Unp |*, and s = [51, 82, ..., Spp ] is the transmitted symbol vector, H
is the channel matrix, and n is the noise vector. The channel matrix H, which represents
ng xnp connection paths between np transmitting and npg receiving antennas, is defined
by
hii - hin,
H-= : : . (1.31)

hTLR,l h’I’LR,’rLT

The channel matrix components are random and chosen based on different statistical
models. The noise is considered as an additive white Gaussian noise (AWGN) and its
elements n; are independent from each other and have a complex circularly-symmetric

Gaussian distribution.

1.2.2 Turbo detection

Turbo detection was firstly introduced in [43]. Later applied in many MIMO systems
[44], it shows significant error-rate performance improvement compared to non-iterative
MIMO detection. It is based on the well-known turbo principle [45]. It consists of a
MIMO symbol soft demapper and a soft decoder, which iteratively perform the maximum
a posteriori (MAP) detection and the soft decoding to enhance the system error-rate
performance. FIGURE 1.7 shows the turbo detection model assuming bit-interleaved
coded modulation and the MIMO transmission as shown in (1.30). L%, L} and L}
respectively stand for the a priori, the a posteriori and the extrinsic log likelihood ratios

(LLRs) of the soft demapper, while those values for the soft decoder are LQA, Ll% and L%.

From (1.30), let us assume E[nn'] = 021,,, and E[ss'] = ¢21,,,. and let I, , be the identity
matrix of size nr. In addition, let Q"7 be the set of symbol vectors with the mapping

rule defined by

k k

nr
(al,...,aq)a?e{(xl} — s € Q"7
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FIGURE 1.7: Turbo detection.

where q = log,(|Q"7|). The conditional probability density function (pdf) of the received
vector y is defined by

N |y - Hsy |
p(yls =s) = (ro2ynm &P (—O_—% : (1.32)
Given y, the a posteriori LLR of the bit at position ¢ is calculated by
, P (a; =1ly)
Lp(i) =ln ——2 1.33
where both nominator and denominator are defined by
P(ai=ely)= ), P(ai=gs=sly),
SeQ"r (1.34)
= ) P(s=sily), e<{0,1}.
SEE€Q"T |a;=¢
Applying (1.32) with the Bayesian rule, we obtain
N |y = s=s;)P(s=s
L) =1 Ysre0r|a;-1 P (Y8 =sk) P ( k;)' (1.35)
ZskeQ"T|ai=0p (Y|S = Sk) P (S = Sk)
Hence, from (1.32) and (1.35)
> exp (——Hyf?f’“”Q ) P(s=s;)
LL(i) = In 222! (1.36)

— 2 °
5 exp(—”y S%Sku )P(S = s1)

sLeQ™T |a; =0
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At first iteration, the a priori probability is set to P(s =si) = (equiprobability).

1
|Q"T|
From the second iteration, it is computed from L}x (which reads value from the interleaved

L% see FIGURE 1.7) by

q
P(s=sgL}) =] P (ci=af|L}), (1.37)
=1

where the probabilities of each bit are calculated by

exp((2e-1) A(z)
exp (“42) + exp (- 42)

P(oj=¢|L}) = ce{0,1}. (1.38)

The computational complexity for L} p (i) can be reduced by using the Jacobian logarithm

as follows

Lh(i)= max (Ily HSk:H2 2(2 k_ )A(J))

skEQ"T|ai=1 J?L

I (_ny H |2 Z(?’“ )Em)

sL€Q"T |o; =0

(1.39)

1.2.3 Turbo equalization

Turbo equalization, which was first introduced in [46] and subsequently investigated in
[47, 48], has become essential to take up the challenge of data transmission over a channel
with intersymbol interference. A turbo equalizer consists of an interference canceller
and a soft decoder, which iteratively exchange extrinsic information through symbol-to-
binary (SBC) and binary-to-symbol converters (BSC). In modern turbo equalization, the
iterative information exchanges are taken into account not only between the minimum
mean square error (MMSE)-based interference canceller (MMSE IC) and the soft decoder,
but also between the soft decoder and the symbol-to-binary converter. Assuming bit-
interleaved coded modulation and MIMO transmission, the turbo equalization model at
the receiver side is shown in FIGURE 1.8, where L}X,LllD and L]lE respectively stand for
the a priori, the a posteriori and the extrinsic log likelihood ratios (LLRs) of the SBC,

while the equivalent notations for the soft decoder are L3 ,L% and L%.

By applying the turbo principle under an intersymbol interference cancellation criterion,
turbo equalization achieves a good system error-rate performance [49-52]. In addition,
the complexity of turbo equalization is less than that of turbo detection. Indeed, thanks

to the interference canceller, the received signal can be separated into parallel substreams



23 Chapter 1. Literature review
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FIiGURE 1.8: Turbo Equalization.

and demapped independently as will be presented hereinafter. Since the MAP detection
(SBC block) is performed for each substream, it significantly reduces the computational

complexity.

1.2.3.1 Interference canceller

The interference canceller consists of a feed-forward and a feedback filters, which are
respectively denoted by W and Q. At the output of the Interference Canceller, the

detected vector, which is denoted by z, reads
z =Wy - Qs, (1.40)

where § is an estimation of the transmitted symbol vector s (BSC output) and W
(nr xng), Q (nr x ny) are obtained by using the MMSE criterion. Let us denote by
ACI the g priori LLR input of BSC and by w'®™ the a priori LLR input of SBC.
We assume E[§] = E[s] = 0 (zero mean modulation) and E[8s'] = E[8§'] = 02 x I,,,..
The mean square error function is defined by € = E[[|z - s|?] = E[Tr {(z-s)(z -s)'}].
The problem is to minimize the mean square error € under constraint Q;; = 0 Vi. The
constraint implies that the diagonal elements of matrix Q are zeros, 4.e. the calculation
of symbol z; does not depend on the estimated symbol §; at the same time. In other
words, the constraint means that only the inter-symbol interference has to be canceled.
The optimization problem can be written as

min B[z - s|*],

(1.41)
subject to Q;; =0 Vi.
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Let us define B = (02 — 02)HH + ¢21,,,. Using the Lagrangian multipliers, the opti-

mization problem yields
W, = o?H! (B+o2H, 1T, )™, (1.42)
and
Qr = Wi H- W H. ey, (1.43)

where e}, is the k" row of I,,, H.; and H;, . respectively denote the k™ column and &t

row of H.

Let us define (B+o’§H:7;¢H:Tk)71 = C. Then, the computation cost of W, . can be reduced

by using the Woodbury’s theorem, which yields

0?B~'H.  H, B!

C=B'- e (1.44)
l+o;H, B~'H.},
Hence, we can also deduce the following expression
o?H! B'H,,
0< Wk’:H;7k = - T = ug < 1. (1.45)
1+0ZH!, B'H,,
From (1.40) we deduce that
z=WHs- Qs+ Wn,
(1.46)
=WHs - (WH - )+ Wn,
where p is a np x np diagonal matrix, whose diagonal elements are uy, k€ {1,...,np}.
Hence,
2k = WSk + Z Wk7;H;7m(Sm - §m) + W].WII .
mk (1.47)
&k
Finally, the IC output at the k' substream can be modeled as follows
Zk:,uksk"‘fk fOrkE{l,...,TLT}, (1.48)

where &, is independent from s, has Gaussian distribution with zero mean and variance

agk = 02up(1 - pg). Thus, the signal-to-noise ratio at IC output of the k'™ substream,
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which is denoted by pg, reads

2 _2
piio k

pp= s o Mk (1.49)
¢ L

where, from (1.42),(1.44) and (1.45), calculation yields

1+02H! B'H,, - o?H! B'H,,
1+02H! B-1H, '

1 — U = (150)

Then, the SNR py is calculated by

JEHIKB%H;JC
1+ (02— O'?)H:TkB_lH;’k.

P = (1.51)

At the optimum convergence state, i.e. 02 = 02 § = s, the following expressions hold

2k = Sk + Wy,

— (1.52)
3
-1
Wi, = olH (oFH H], + 07La,) (1.53)

o2 ¢yt
O'_%Hl,kH:7k
Pk = — (1.54)
1+ a_%H:,kH%k
and

pr = U;HT H. ;. (1.55)

1.2.3.2 SBC and BSC converters

Let Q be the set of @Q-ary modulation symbols, with the mapping rule defined by
(af,...,ag)a%{o 1y s € Q, where ¢ = logy(Q). Then, thanks to (1.48), the LLRs
at the output of SBC (see FIGURE 1.8) can be calculated by a low-complexity procedure,

in a similar way as presented in (1.39), as follows

Lpy(i) = max (_w 2(2 ¢_q) Ak(]))

sp€Q|a;=1 O-fk

(1.56)
C i (_|y ~ sl 2(2 - Ako))

SgEQ‘OLi=0 gk
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On the other hand, the symbol 5 on the k" stream of the IC output is estimated by

S.=E [Sle}&k] = Z seP(sg = Sf’Lil,k)y

s0€Q
, . (1.57)
= Z se[ [ P(e =05 |Ly ),
SZEQ i=1

where P(; = of|LY ;) can be calculated from LY ,, which reads value from the inter-
leaved LQE i» in a similar way as presented in (1.38). The estimated vector § is then used

in the next iteration to find the IC output as shown in (1.40).

1.3 EXIT chart

Introduced by Stephan ten Brink in 1999 [53, 54| and later widely applied in iterative
concatenated system analyses [55, 56], the extrinsic information transfer (EXIT) chart is
a useful tool to analyze the convergence behavior of a soft-in/soft-out iterative receiver
by tracking its mutual information (MI) transfer characteristic. For example, EXIT chart
allows us to predict the minimum required number of iterations for convergence as well
as the minimum SNR required for convergence. EXIT chart is constructed from two
extrinsic transfer functions (EXIT functions) of two components of a iterative receiver.
Each curve plots the MI of the extrinsic log-likelihood ratios (LLRs) versus the MI of
the a priori LLRs of each receiver component. Note that the two EXIT functions in the

EXIT chart are measured independently.

Let us denote by Lp the a posteriori LLR at the output of a receiver component, while
the a priori LLR, which is fed back from the other receiver component, is denoted by
L. The extrinsic LLR (Lg) is calculated by subtracting L4 from Lp. In this thesis, we
only investigate the serial concatenations, whose inner receiver component is the detector
and the outer receiver component is the decoder. For the iterative receivers presented
in Section 1.2, the detectors are the soft-demapper (in the case of turbo detection) and
the MMSE IC revolved around the SBC and BSC (in the case of turbo equalization).
One should note that, to measure the EXIT function of detector, we have to take into
account not only the a priori LLR from the decoder, but also the LLR from channel

output, which depends on the signal-to-noise ratio (SNR).
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In order to measure the EXIT function of one receiver component (detector or decoder),
we need to select a set of T4 (e.g. 14 ranges from 0 to 1 in the binary case) that we want
to measure for the corresponding set of Ip. For each value of 14, we apply the following

procedure, which is presented by 3 main steps.

Step 1: The inputs of a soft-in/soft-out receiver component are LLR values. Thus, I4
should be transformed into L 4. The a priori information from the partner decoder could
be modeled using an AWGN channel. This assumption follows two conditions. Firstly,
for a large interleaver, the a priori values are uncorrelated from the channel observation.
Secondly, the probability density functions of L4 can be approached from a Gaussian
distribution. Thanks to the Gaussian assumption, the following symmetry condition [57]

holds E[L] = 0% /2. We can then generate the a priori LLRs as
o2
LA:7AX+BA, (1.58)

where By is Gaussian distributed with zero mean and variance 0%, X € {-1,+1} are
symbols of the binary sequence at input of the corresponding encoding component. With
the symmetry condition, for any pair of binary random variable X and the corresponding

LLR L, the mutual information between X and L can be calculated by

+o0
I(X,L)=1- f pL(7|X = +1) log,[1 + ¢77] d;. (1.59)
Therefore, from (1.58) and (1.59), we can express 14 as a function of o4, which is known

as J(.) function. J(.) reads

In=J(oa)21- | ———logy[l+e 7] d. (1.60)
A

Let us denote by J71(.) the reverse function of J(.). Hence, o4 can be calculated from
14 by
oa=J1a). (1.61)

The J(.) and J~!(.) functions could be closely approximated as follows

H:
J(o) m (1-2Me) (1.62)
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JIa) w —ilog o)) (1.63)

The numerical optimization by minimizing the total squared difference between (1.60)
and (1.62) gives H; = 0.3073, Hy = 0.8935, and Hs = 1.1064 [58]. With this approxima-
tion, we can firstly compute o4 from I4 by (1.61) and subsequently generate L4 from

o4 by (1.58).

Step 2: The a posteriori LLRs Lp will be obtained at the output of the component. For
the decoder in serial concatenated schemes, Lp is only calculated from the L4 generated
in step 1. For the detector in serial concatenated schemes, Lp is calculated from both
the L, and L., which is the channel output LLR calculated by taking the input X at

the transmitter. Thus, the extrinsic LLRs are calculated as follows

Lg=Lp-Ly. (1.64)

Step 3: This step aims to calculate the extrinsic mutual information Ig from Lg. Due
to the nonlinearity of the component, the LLR distribution of the extrinsic output is
unknown and no longer Gaussian. However, we can rewrite (1.59) as I(X,L) = 1 -
E{logy(1+e )} x-,1. The expectation can be replaced by the time average and we can
measure the mutual information from a large number N of samples even for non-Gaussian

or unknown distributions as follows.

I(X,L) =1-E[logy(1+e = BIE)]

X=+1"
~11N 1- P, )log,(1+e ) + P, log,(1 + el
Y nZ::l (1-F,)logy(l+e™) + P, logy(1+e™) |, (1.65)

1/(1-Pe,) 1/P,

en

1 N
v1l-— Hy (P, ).

where Hy is the binary entropy and P, = P(sign(L) = -1|X =+1) = ﬁ and P(sign(L)
+1|X =+1) =1- P, . The extrinsic MI Iy is then measured by (1.65).

To plot an EXIT chart for any iterative receiver presented in Section 1.2, we firstly
apply the procedure above for both of the detector and decoder (the EXIT function of
detector takes into account not only the a priori LLR from the decoder, but also the

LLR from channel output). Let us denote by (I},I5) and (Ii,[%) the pairs of a priori
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and extrinsic mutual informations of the detector and decoder respectively. A complete
EXIT chart is consequently obtained by plotting Ii‘ versus I}J and I%; versus [f‘ in only

one figure.

1.4 Conclusion

The primary purpose of this chapter is to review briefly the principal characteristics of the
systems and tools that will be used in this document. Firstly, we described RSC and NB-
LDPC codes and the corresponding soft decoding algorithms. After that, MIMO iterative
receivers were briefly introduced. These iterative receivers include turbo detection and
turbo equalization. Finally, we presented the extrinsic information transfer (EXIT) chart,
which is a useful tool to analyze the characteristic of these iterative receivers. Thanks to
the EXIT chart, we can easily analyze the convergence behavior of the iterative receivers
when they are used with MIMO precoding techniques. Next chapter focuses on MIMO

linear precoding and schemes used as references in this PhD are described in details.






Chapter 2

MIMO linear precoding techniques

2.1 Precoded MIMO systems

In MIMO wireless communications, several techniques have been studied to exploit the
presence of multiple transceiver antennas. These techniques can be categorized into three

main groups: spatial multiplexing (SM), diversity coding, and precoding.

e Spatial multiplexing splits a high data rate signal into ny independent data-streams
and each stream is transmitted by a transmit antenna. Spatial multiplexing can be
used without CSI at transmitter (CSI-T) but CSI at receiver (CSI-R) is required.
A drawback of this technique is the error-rate performance loss. In practice, it is
also limited to small Tx and Rx numbers due to receiver complexity and antenna

correlation [59].

e Diversity coding applies a static space-time coding form onto the transmitting
symbols before transmission. It exploits the diversity gain to achieve a higher
reliability compared to single transceiver systems. Diversity coding does not require
the CSI-T but it requires the CSI at the receiver. The two well-known techniques
in this group are space-time block codes (STBCs) and space-time trellis codes

(STTCs) [60].

e Precoding is a technique of pre-processing the modulated symbol vector by mul-
tiplying it with a precoding matrix before transmission. The precoding matrix

exploits the CSI-T and is designed according to different performance criteria [61].

31
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In LTE and LTE-A specifications, the CSI is expected to be readily available at
the transmitter and the receiver. Therefore, precoding plays an essential role in

the LTE and LTE-A standards in order to provide high quality of services.

A basic precoding system structure, which contains a precoder F and a postcoder G, is
shown in FIGURE 2.1. A codeword ¢, which is output from a forward error correction
(FEC) encoder, is grouped and mapped onto complex modulation symbols s. These
symbols are then converted by a serial-to-parallel converter to form a modulated symbol
vector s. The precoder processes the symbol vector s before transmission according to
the channel state information. At the receiver side, a postcoder is considered for post-
processing. We assume average unit transmit power. Thus, to conserve the total average

transmit power, the precoder must satisfy the following condition
Tr{FF'} = 1. (2.1)

The power allocations are different according to the design criterion, the signal to noise

ratio, and the CSI. The received symbol vector at output of the postcoder, which is

n
c s s y
Channel
—> Modulator | S/P I H
FIGURE 2.1: Precoding schema.
denoted by y, reads
y = GHFs + Gn, (2.2)

where n is a vector of additive noise samples. The received symbol vector y is then

detected to obtain an estimation of the transmitted codeword c.

2.2 Channel transformation technique

Thanks to the precoding matrix, we can control the number of independent data streams
that are transmitted over the MIMO system. Let us consider the MIMO system presented

in (2.2) thanks to which we want to transmit b independent data streams. Hence, the
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modulated symbol vector s has size b x 1, F is the ny x b precoding matrix, H is the
ng x nr channel matrix, G is the b x np postcoding matrix, and n is the ng x 1 additive
noise vector. One should note that b < rank(H) < min(np,ng), so np and ngr can be
larger than b. We assume E[ss'] = I,E[sn’] = 0 and E[nn'] = R,,, where I is the

identity matrix of size b x b and R, is the noise covariance matrix.

Assuming the channel state information (CSI) is perfectly known at both the transmitter
and receiver, channel diagonalization and noise whitening techniques can be applied to
transform the model presented in (2.2) into a simpler form. The operation is decomposed
in three steps and is referred to as virtual transformation. Let us define F; and F,, such
that F = F,F;. The decompositions of the two matrices F,, and G as the product of

three matrices yield
Fv = F1F2F3 and G= GlGQGg, (23)

where (F;, G;) performs the particular operations which are detailed hereinafter.

2.2.1 Noise whitening
Let us consider the eigenvalue decomposition of the noise covariance matrix, which yields
R, = E[nn'] = QAQT, (2.4)

where Q is an unitary matrix and A is a diagonal matrix. This step aims to transform
the additive noise vector into white circularly-symmetric complex gaussian noise vector.
To achieve that goal, we impose that the correlation matrix R,, = E[Ginn!G;] =

GIQAQTGlT becomes U%INR. The matrix Gy is therefore defined by
G1 = o, A ?Q". (2.5)
The intermediate channel matrix at this step, which is denoted by H,, , reads
H,, = G HF,, (2.6)

where F is an identity matrix of size ny.
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2.2.2 Channel diagonalization

At this step, in order to diagonalize the channel, we apply the singular value decompo-

sition (SVD) to the intermediate matrix H,, as follows.
H,, = AXB', (2.7)

where A and B' are unitary matrices, and ¥ is a diagonal matrix whose elements
represent the square roots of all eigenvalues of the matrix HUIHLI. Note that these
eigenvalues are real positive numbers and sorted in decreasing order. The number of

non-null eigenvalues depends on the rank of the matrix H,,

k = rank(H,, ) < min(ng,ng). (2.8)

The diagonal matrix 3 can be then expressed by separating the non-null eigenvalues

from the null ones.

S 0
> = (2.9)
0 o

where the matrix ¥ contains all of the non-null eigenvalues. In order to diagonalize the

intermediate channel matrix H,,, we must select
F; =B and Gy=Al (2.10)

Hence, the second intermediate channel matrix, which is denoted by H,,, is a diagonal
matrix that reads

H,, = GoH, F, = . (2.11)

In addition, the correlation matrix R,, is then given by
- T_ 2 T_ 2
Ry, = GoRy, Gy = 0;,G2Gy = 071, (2.12)

since Go is an unitary matrix.



35 Chapter 2. MIMO linear precoding techniques

\/\/ \A/
/XN
7 N
///// o0 \\\\
Z/// \i\
,,,,,,,,, Y
tnT rnR
— —
MIMO
Precoder Channel Postcoder

F1GURE 2.2: MIMO precoding system structure.
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FicUrE 2.3: Equivalent MIMO precoding system structure.

2.2.3 Dimensionality reduction

The diagonal matrix H,, consists of the subchannel gains, which appear in decreasing
order on its main diagonal. The goal of this operation is to adjust the dimension to the

number of desired data-streams b in case b < k. The matrices Fg and Gg3 are then defined

by
I,
F3 = and G3 = (Ib 0) (213)
0
The resulting matrix is given by
H, = G3H,,F3 =3, (2.14)

where X, represents the b largest singular values of H,,,. The correlation matrix of the

noise is also truncated, which reads

R, = .1, (2.15)
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FIGURE 2.4: Precoding schema after channel transformation.

Finally, we obtain the following equivalent writing of (2.2)
y=H,Fys+n, (2.16)

where 7 is the b x 1 additive white circularly-symmetric complex gaussian virtual noise
vector with E[nnt] = O'?,Ib. The matrix H, = diag(oq,...,0p) is the b x b eigen-channel
matrix, where {01,...,05} are the b most significant singular values of H sorted in de-
scending order. F is the precoding matrix to be optimized according to one or several
criteria. It satisfies the power constraint |Fy|% = 1. FIGURE 2.2 and FIGURE 2.3 re-
spectively show the structures of the MIMO precoded system before and after applying
the channel transformation. The resulting equivalent transmission schema after channel

transformation is presented in FIGURE 2.4.

2.3 Existing precoders

The precoding techniques can be classified into two categories: diagonal and non-diagonal
schemes. A precoder is called diagonal when the precoding matrix F; in (2.16) is a
diagonal matrix. The general working structure of the diagonal precoders is illustrated
in the Figure 2.5. The principle is to find the power allocation expressed by the diagonal
entries of Fy, which are denoted by f;, to optimize a particular criterion. In contrast, a

precoder is called non-diagonal when the precoding matrix F; is not a diagonal matrix.

There are a variety of diagonal and non-diagonal precoders that have been investigated
so far in the literature. In this section, we present only the selected precoders that aim to
maximize the channel capacity, which is an essential optimization criterion for precoder

in MIMO encoded systems as will be illustrated hereinafter in Section 2.3.3.
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F1GURE 2.5: Diagonal precoding structure.

2.3.1 Diagonal precoders

Let us denote by Fy = diag(f1,..., fp) the diagonal precoding matrix. Many researches
have been carried out to optimize this diagonal precoding matrix according to differ-
ent optimization criteria such as the received signal to noise ratio (SNR) maximization
(max-SNR precoder [25]), the weighted mean square error minimization (MMSE pre-
coder [24]), power allocation optimization (minimization of bit-error-rate (BER) [23]),
and quality of service |24|. Another criterion, on which we focused during this PhD is
the mutual information maximization. Diagonal precoders optimized with respect to
this criterion are water-filling (WF) precoder [9] and its variant mercury/water-filling

(M/WF) precoder |26, 62].

2.3.1.1 Water-filling precoder

This precoder aims to maximize the capacity of the precoded MIMO system with Gaus-

sian inputs. The capacity of a virtual channel can be simplified as

b b
C =Y logy(1+ ffo7), with > ff=1. (2.17)
i=1 i=1

The optimized solution is given by

\I[WF -4 if \IIWF > L
£2= o o with i=1,..,b (2.18)
0 otherwise
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where the threshold Vwr depends on the virtual channel and is defined by

1 bwr
Uy = — VB Gith = Z p (2.19)
bwr -1 0;

with bywr the number of subchannels used by the water-filling precoder.

The water-filling precoder removes some subchannels and spreads power on the others
to improve the channel capacity. As implied by its name, the water-filling precoder can
be interpreted by the simple concept illustrated in FIGURE 2.6. The principle is to pour
water into each unit vessel, which has initial solid level 2, up to a fixed water level

Uy p. The amount of water in each unit vessel then represents ff . Finally, the power

f? will be allocated to the corresponding subchannel.

= Wy

essssmieea
v
]
]
]| g
]

FIGURE 2.6: Water-filling concept.

2.3.1.2 Mercury/water-filling precoder

Similar to the ordinary water-filling precoder, the mercury/water-filling precoder searches
for the best power allocation on every subchannel to maximize the channel capacity for
Q-ary inputs. We firstly define a minimum mean square error (MMSE) in function of
fi, which reads MMSE;(f;) = E[]si—éi (yi,fi)m, where 8; (yi, fi) = E[silyi, fi]. Let
us denote by MMSE;!(.) the inverse function of the MMSE;(.) function, with domain
equal to [0,1] and MMSE; (1) = 0, i.e. MMSE;*(MMSE;(f;)) = ;. The power for each

subchannel is then allocated by

2
0;

1
f? = MMSE;" (min 1,4, (2.20)

i
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where & is found by solving the following equation

b 1 1 K
i=1 9§ 7

2
0'i>li

Let us define a function G;(¢) such that

1/¢-MMSE; 1 (¢),  ¢€[0,1]
Gi(¢) = (2.22)
1. ¢(>1

Thanks to the G;(.) function, the mercury/water-filling precoder can be interpreted by
a simple concept illustrated in FIGURE 2.7. The principle is to firstly pour mercury
into each unit vessel, which has initial solid level 0—12, up to a mercury level Gz(a—’g) /01‘2 .
Consequently, water is poured into each unit Vessél up to a fixed water level { The
amount of water in each unit vessel then represents fi2 . Finally, the power ff will be
allocated to the corresponding subchannel.
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FIGURE 2.7: Mercury/water-filling concept.

2.3.2 Non-diagonal precoders

In this subsection we present two non-diagonal precoders. The first precoder, which glob-
ally maximizes the channel mutual information, is referred to as globally optimal (GOPT)
precoder [22|. The GOPT precoder searches for the optimal precoding solution by using
an optimization algorithm. However, the computational complexity of the algorithm is
painfully high. The second precoder is max-d,i, precoder, which was firstly introduced

by Collin et al. in [16]. This precoder aims to maximize the minimum Euclidean distance
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(dmin) between the received constellation symbols. Maximizing d,i, asymptotically max-
imizes the lower bound of the channel mutual information. Therefore, this precoder can
force the channel mutual information to a higher value and achieve a channel capacity

that is close to the one exhibited by GOPT precoder.

2.3.2.1 Globally optimal precoder

For non-diagonal precoders, the SVD of F; gives Fg = UFEFV;. It will be proved
in Chapter 4 that the matrix U can always be chosen to coincide with the identity
matrix I in order to maximize the channel mutual information, 7.e. Ug =1;,. Hence, by

rewriting ¥ = Xp, O = V;, we deduce
F;=90. (2.23)

The matrix W controls the power allocation on each subchannel, while ® concerns itself

with the form of the received constellation.

With the equivalent model (2.16), the channel mutual information between the discrete

input s and the channel output y is given by

1 Q° Q° ~
Z(y,s) =blog, Q - o > E llog2 e Gmoke | (2.24)
m=1 k=1

where (= (|HoFa(sm —sk) +n[? - [n]?) /0% and @ is the cardinality of the Q-ary
modulation. Let us define W = FLHI)HUFUZ. It is proved that the mutual information

Z(y,s) is a concave function with respect to W and W2

With F; = ¥O, the authors in [22| proposed an iterative algorithm that respectively
updates ® and W based on the gradient ascent method (instead of directly updating F 4,
which seems to be infeasible). Though ¥ can be updated directly using its gradient, we
however must rely on the incremental of W to update ®, which significantly increases
the computational complexity of the algorithm. The algorithm is referred to as GOPT

algorithm and will be presented in further details in Chapter 4.
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FIGURE 2.8: Received constellation x; on the first sub-channel in case Fg=F,.,.

2.3.2.2 max-dyi, precoder

max-dyin, precoder aims to optimize the matrix F; so as to maximize the minimum
Euclidean distance, denoted by dpin = mirgl |xm — x¢| where x = H,F4s, between the
m#

received constellation symbols.
Solution for b =2 data streams

The max-dpi, precoder was firstly proposed in [16] and the solution was given for the
case b = 2 data streams with 4-QAM modulation. With b =2, the two eigenvalues of the

H, are rewritten as

2. 2
01 = pCos =\/or+0o
PESY L1 PEVOLT (2.25)
o9 = psiny ~ = arctan g—;
Hence, the conversion from cartesian to polar form of H, gives
op 0 cos 0
H, - o , (2.26)
0 o9 0 siny

where p and «y respectively represent the channel gain and angle. As 1 > g2 > 0, we have

0 < v < w/4. Hence, the optimal solution depends on v and by defining the threshold
o = arctan y /% (~17,289), Fy reads

e if0<y<
3+V/3 3-V3 i~
F,=F, = 6 6 , (2.27)
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FIGURE 2.9: Received constellation x; on the first and second sub-channels in case
Fd = Focta~

o if yp<y<m/d
1 [cosvy 0 1 €1

Fy=Foua = — . (2.28)
VRl 00 sing)\o1 e

where 1) = arctan % In the case v < v, i.e. Fq = F,,, the precoder only spreads
power on the first sub-channel. FIGURE 2.8 shows the received constellation on the first
sub-channel of precoder max-dy,;, in this case. The constellation is similar to the one
of 16-QAM modulation with a rotation by 15° in each quadrant. On the other hand,
in the case v > g, i.e. Fq = Foeq, the precoder spreads power on both sub-channels,
where the received constellations are shown in FIGURE 2.9. It is shown that, thanks to

the optimization criterion, a pair of neighbor symbols in the first sub-channel, e.g. x3

and x4, is separated in the second sub-channel.

FiquRE 2.10 shows the received dp,i, normalized by p for F,.1 and F,q. We can see that,
in order to keep the high value of the received normalized dpiy, the max-dyi, precoder
uses 7o as a threshold to switch between F,; and F,.,. Note that 7 is signal-to-noise
ratio (SNR)-independent and designed for uncoded system. The extension of max-dpin
precoder for higher-order modulation in case b = 2 data streams was proposed in [17, 63].

We will later recall in Chapter 6 the solution for 16-QAM modulation.
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Solution for b =3 data streams

An extension of max-dyi, precoder for the case b = 3 data streams was proposed in |20,

63]. With b =3, H, can be rewritten as

€Os Y1 0 0
H,=p| 0  sinycosye 0 ; (2.29)
0 0 sin yp sinys

where p, v1 and ~» represent the channel gain and the channel angles respectively. As the

diagonal elements of H, are sorted in decreasing order, 0 < v9 < /4 and cos~y, < cotan~;.

The parameterized form of max-dpi, precoder is given by

F,;= \I’BQBW (2.30)
~—
[C]
1 0 0 (] 51C2 5152

where B, =10 €2 0 |, Bg=]s1c3 —cicoc3—e¥Plsoss —c18903 + ePlegsy | and ¥

0 0 ers §153 —C1€2563 + 6“0152&3 —C15253 — el CoC3
is power allocation matrix. We define ¢; = cos#; and s; = sinf; for ¢ = 1,..,3 with

0 <0; <90° and ; < 360°. If we introduce ® = ByB,, the expression of F; becomes
similar to (2.23).

In the case of 4-QAM modulation, the authors in [20, 63| proposed a precoder that

switches among three following precoders: Fgc1, Fye2 and Fg3. The Fy. precoder
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Fyc, 01 02 03 P1 P2 ¥3
(a) | 44.49197 | 30.59366 | 39.65316 0 161.56505 0
(b) | 32.34322 | 37.85164 | 56.71270 180 0 45
(c) | 62.52239 | 22.59606 | 66.97236 | 85.31834 | 21.52669 | 118.15496
(d) | 37.42924 22.5 38.45324 180 90 135
Fycs 01 02 03 Y1 P2 3
(a) | 42.33339 15 50.63553 90 155.25922 | 24.74077
(b) | 52.86439 | 40.77576 | 53.32112 | 115.27892 | 145.43734 | 72.71867
(¢) | 52.01812 45 90 0 45 135

TABLE 2.1: Optimized angles in degree for the precoders F., and F 4., [20].

N w w F A
@ =) a S o

n
=]

Yp in degrees

. I I I L
0 5 10 15 20 25 30 35 40 45 50
¥y in degrees

FIGURE 2.11: Range of precoder selection for 4-QAM modulation [20].

spreads power only on the first (strongest) subchannel and has only one precoding form.
The optimal solution of Fg reads (6; = arctan %,92 = arctan%,@;», = 0), and
(1 =0,92 = p3 =15%). The Fyco precoder spreads power on the two first (two strongest)
subchannels and has four different precoding forms with the defined parameters of (0;, ¢;)
given in TABLE 2.1. The F,3 precoder spreads power on all the three subchannels
and has three different precoding forms with the defined parameters of (6;, ;) given in
TABLE 2.1. The power allocation for each of the three precoders is given in [20, 63].
The selection among these precoders depends on the channel, characterized by (v1,72)-

Thus, based on 7; and =9, the range of precoder definition for 4-QAM modulation in the

case b =3 is presented in FIGURE 2.11.
Generalization of max-d,,;, precoder

The main difficulty of the precoder design using the minimum Euclidean distance maxi-
mization criterion is twofold. Firstly, the space of solutions is large and its dimension is
exponentially proportional to the number of data streams b. Secondly, the exact expres-

sion of max-dpyi, precoder depends on many parameters. Therefore, the authors in [21]
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proposed a generalized max-dp,i, precoder. This precoder is a suboptimal solution that
can come close to the desired goal, which is the dpi, maximization. The principle of this
precoder is as follows. Firstly, the authors in [21] proved that, by selecting © to be equal
to the discrete Fourier transform (DFT) matrix, dpi, can be forced to a higher value.
Given the suboptimal DFT matrix @, the power allocation matrix ¥ is searched so as

to maximize dpin.

2.3.3 Comparison between precoders

We mostly consider the case b = 2 in this thesis, since we mainly focus on precoder
design for different iterative receivers. In addition, the case b = 2 is suitable for FEC
encoded precoding system used with iterative receivers. Because the smaller b, the lower
complexity at soft-demapper (see Section 1.2.2). The extensions of precoders proposed
in this thesis to the case b > 2 will be considered as perspectives. Note that we, however,
have a discussion in case b > 2 for our precoder design in Chapter 4, which focuses on

channel mutual information maximization criterion.

In this subsection, we present the EXIT charts of the water filling, mercury /water filling,
GOPT and max-dpni, precoders in case b = 2. Firstly, we observe that diagonal precoders
are less suitable than non-diagonal precoders to be used in concatenation with outer
FEC codes. Secondly, we point out that the non-diagonal precoders, whose optimization
criterion is to maximize the channel capacity, achieve good error-rate performances in

FEC encoded system assuming iterative receivers.

Let us consider the turbo detection receiver, which is introduced in Section 1.2.2 of
Chapter 1, to detect the channel output y from (2.16). We consider the case b = 2 data
streams and pick a fixed channel with v = 30° to plot the EXIT charts of the iterative
receiver when the presented precoders are used at the transmitter. In FIGURE 2.12, the
solid lines represent the EXIT functions of the soft demapper in case different precoders
are used at the transmitter (or, in short, the solid lines represent the EXIT functions of
different precoders). The dashed line stands for the EXIT function of the soft decoder,
which is fixed for all SNRs and channel realizations. The a priori and extrinsic mutual
information for soft demapper are denoted by I}l and I}E. The equivalent notations for

soft decoder are Ii and 1123. The iterative detection-decoding converges at the crossing



Chapter 2. MIMO linear precoding techniques 46
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FIGURE 2.12: EXIT chart for turbo detection, SNR = 8 dB, v = 30° and (13,15),ctal
RSC code.

point, where the two EXIT functions intersect each other. The higher the crossing point,

the better system error-rate performance.

As illustrated in FIGURE 2.12, the EXIT functions of water-filling and mercury/water-
filling precoders remain constant because of their diagonal precoding forms. Therefore,
there is no iterative improvement when these precoders are used. Hence, it can be
concluded that the use of diagonal precoders does not allow us to exploit the channel
diversity attained through the outer FEC code in combination with the coding diversity.
In constrast, the non-diagonal precoders enable to take advantage of available diversity
to iteratively improve the crossing point, which is equivalent to the convergence point,

and then improve the system error-rate performance.

One should note that, (only) in case maximum a posteriori soft demapper is used, the
area beneath the EXIT function of soft demapper is proportional to the channel mutual
information. Hence, by maximizing the channel mutual information, we can force the
crossing point to a higher value. For this reason, the GOPT precoder (globally maximiz-
ing the channel mutual information) and max-dp,i, precoder (asymptotically maximizing
the lower bound of the channel mutual information) are used regularly as references

throughout this work.
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2.4 Conclusion

In LTE and LTE-A systems, the channel state information (CSI) is expected to be
available at the transmitter through a feedback link. Hence, by assuming full CSI at
both transmitter and receiver, linear precoders can be designed to optimize the MIMO
system according to various criteria. In this chapter, we firstly recalled the virtual
transformation technique. The technique helps to transform any MIMO system into
a simpler structure, which transmits the modulated symbol vectors through a desired
number of subchannels b. Secondly, we briefly described several selected diagonal and
non-diagonal precoders that aim to maximize the channel mutual information. Finally,
we relied on the extrinsic information transfer (EXIT) chart to compare the selected
precoders. We observed from the EXIT chart that, when used in concatenation with an
outer FEC code, the diagonal precoders do not provide a full diversity exploitation as
the non-diagonal precoder do. Additionally, we pointed out that maximizing the channel
capacity is an essential criterion for MIMO linear precoder design. Therefore, the non-
diagonal precoders that maximize (GOPT) or asymptotically maximize (max-dp,) the
channel mutual information will be considered as references in this thesis. Next chapter
investigates the concatenation of FEC codes with MIMO linear precoder assuming turbo
detection at the receiver. Two new precoders will be proposed for two different symbol
mappings. The first mapping is the conventional @-ary modulation followed by MIMO
conversion. The second mapping takes into account a direct mapping on the received

constellation.
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3.1 Introduction

In this chapter, we consider the concatenation of the MIMO precoder with a binary
convolutional code. The turbo detection, introduced in Section 1.2.2, is applied at the
receiver. We assume perfect CSI at both the transmitter and the receiver. Our main
contributions are threefold. First, we propose a new precoder, which is referred to as Fy,
precoder. This precoder is particularly designed for the turbo detection with the usual
mapping scheme consisting of binary to @-ary symbol conversion followed by Q-ary
symbol to MIMO symbol conversion (referred to as Gray-M mapping). The parameters
of the proposed Fy, precoder are fixed for all channels and, therefore, it simplifies the
complexity for practical design. Second, we introduce a MIMO symbol mapper to replace
the usual Gray-M mapping. This MIMO symbol mapper can be considered as a direct
mapping onto the received constellation. We then demonstrate that the robustness of
the linear precoder is improved by applying the MSEW mapping strategy at the mapper.
As for the third contribution, we rely on the EXIT chart analysis to propose another
new precoder (referred to as EX IT-based precoder), which is adapted to be used with
the MSEW mapping at the MIMO symbol mapper. The max-di, precoder, introduced
in Section 2.3.2.2, is considered for comparison. Numerical results show that the novel

precoders significantly outperform the max-dy,;, precoder.

The remainder of this chapter is organized as follows. Section 3.2 introduces the sys-
tem model along with a definition of signal-to-noise ratio (SNR). In Section 3.3, a new
precoder (Fy, precoder) for turbo detection used with the usual Gray-M mapping is pro-
posed. Firstly, the upper bound of the turbo detection assuming a precoder with full
CSI is defined. Secondly, theoretical analysis is given to look for the defining parameters
of the new precoder. Finally, numerical results are presented to validate the analysis and
demonstrate the advantages of the new precoder in terms of error rate performance. In
Section 3.4, a MIMO symbol mapper is investigated to replace the usual Gray-M map-
ping. The MSEW mapping technique is considered. Thanks to EXIT chart analysis,
another precoder (EX IT-based precoder), which is adapted to be used with the MSEW
mapping, is proposed. Error-rate comparisons for the association of the precoders and
MSEW mapping are also presented at the end of the section to validate the analyses.

Section 3.5 concludes the chapter and gives some perspectives.
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3.2 Preliminaries

3.2.1 System Model

a FEC c C | Modulator | S S | Pre-coder
Input bits| Encoder . (4-QAM) S/P Fyq
Virtual Channel
I L+ Lp H
v
a BCJR B MIMO Symbol- y Ny
Soft demapper
Decoded| pecoder (SD)
bits T

1
13 + L La . Interleaver
: De-interleaver

FIGURE 3.1: Equivalent system model.

Let us consider a MIMO system with ng receive, np transmit antennas and b independent
data streams to be transmitted. We assume full-CSI at both the transmitter and the
receiver. A binary recursive-systematic convolutional (RSC) code is used at the outer
FEC encoder to encode information data bits. The FEC codeword is then interleaved
before entering a modulator. In the modulator, the interleaved FEC-encoded binary
sequence ¢ is grouped and mapped onto a sequence of @Q-ary quadrature amplitude
modulation (QAM) symbol s, which is then converted into b parallel streams, i.e. every
b symbols of s are grouped and transposed to a MIMO symbol s of size bx 1. The vector
s is then precoded with a matrix F and transmitted through the MIMO channel. At
the receiver side, the turbo detection, which has been introduced in Section 1.2.2, is
investigated. According to (2.16), the channel output y after the channel transformation

reads y = H,Fgs + 7.

We consider the case b = 2, which is widely used in the fourth-generation (4G) cellular
networks. We would like to point out that the transformation in Section 1.2.2 requires
b < rank(H) < min(np,ng), so ny and ng can be larger than b. Therefore, though the
proposed precoder is derived by considering b = 2, its applications are not limited to 2x2

MIMO systems. We remind the singular value decomposition of F; expressed as

Fy=UpSp Vi
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Let us rewrite the diagonal matrix ¥, in a polar form as follows

costyy 0
0 sin ‘

XE, =

This polar form satisfies the power constraint |Fg|% = 1. With a given 1, it is proved
that the best selection of Up, to maximize the singular values of H,F4 is Up, =T, [16].
It is known that the remaining 2 x 2 unitary matrix Vjpd can also be written as
; cosf  sinfe®
vl =D |
—sinf cosfe’®
where D is a diagonal unitary matrix [22]. Without loss of generality, let us select D = I5.

Hence, a parameterized definition of F; can be defined as

cosy 0 cosf sinf)[1 O
Fg= 1, (3.1)
0 siney)\-sinf cosfJ\0 e
where ¢ (0° < 1) < 90°) is linked to the power allocation on the eigen-subchannels, 6

(0°<6<90°) and ¢ (0° < ¢ <90°) allow us to respectively mix and rotate the symbols

onto the two eigen-subchannels.

The equivalent scheme is shown in FIGURE 3.1, where L' ,L}g and L}E respectively stand
for the a priori, the a posteriori and the extrinsic log likelihood ratios (LLRs) of the soft

demapper, while the equivalent notations for the BCJR soft decoder are L? ,L?D and LQE.

3.2.2 SNR definition

With b =2, the conversion from cartesian to polar form of H, gives

or 0 cosy 0
H, - “p , (3.2)
0 o2 0 siny
where p and v respectively represent the channel gain and angle. As o1 > o9 > 0,

0 < v £ 45°. Therefore, any random MIMO channel can be simply characterized by the

pair (p,7) thanks to the virtual transformation. Let us define the instantaneous received
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SNR as
2 2
SNR = Z—%HHH%: Z—%pZ. (3.3)

This SNR definition will be considered in all chapters of the thesis. With this definition
of SNR, a channel is only characterized by its angle +. For instance, the channel H =
[2 1;1 1], which was also used in [22, 64], has v = arctan 22 ~ 8.3°. In the remainder of
this chapter, we classify channels by value of . The channel H = [2 1;1 1] is referred to
as Channel A. We also denote by Channel B another channel with + = 30°.

3.3 Optimized precoder for the conventional mapping

In this section, we consider the conventional Gray-M mapping as illustrated in FIGURE 3.1
(i.e. the encoded codeword ¢ is modulated by a modulator before being converted to
MIMO symbol vectors s by using a serial-to-parallel converter). Let us denote by ¢; the
minimum squared Euclidean distance between any pair of MIMO symbol vectors with
associated binary conversions differing by only one bit. The goal of this section is to pro-
pose a novel precoder that maximize ¢; in the case of the conventional Gray-M mapping.
We firstly show that maximizing ¢; results in a low asymptotic BER. Consequently, we
propose a new precoding solution (referred to as Fy,) that maximizes ¢; for the case

b =2. Simulation is then carried out to validate the analysis.

3.3.1 Upper bound of Turbo detection assuming precoder with perfect
CSI

2!
@l

a FEC C
encoder

Inner
Mapper

T

Equivalent encoder & mapper

FIGURE 3.2: Equivalent encoder and mapper block.

Let us consider the concatenation of the modulator and the serial-to-parallel converter in
FIGURE 3.1 as a binary to MIMO symbol mapper (inner mapper). The chain of the outer
FEC encoder, the interleaver and this inner mapper can be considered as an equivalent
encoder and mapper block, which maps every Hamming weight w input binary sequence

a of length W into a sequence of MIMO symbols § of size bx U as shown in FIGURE 3.2.
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Denoting by B = H,F; the new channel matrix of size bxb. The received vector sequence,
denoted by ¥, reads
y=H,Fys+1], (3.4)

where 7] is the additional Gaussian noise vector sequence of size b x U. Elements of 7 are

independent and identically distributed as 7; ; ~ CA/ (0, 0727 )

In the case of maximum likelihood detection, assuming that B is known at the transmit-

ter, the pairwise error probability of the sequences § and §' is then given by
P(s'~5|B,8)<P(|ly-Bs|% <|y-Bs|}). (3.5)
From (3.4), we can deduce that given B and §’,

|7-Bs|} - |- B} = [BE -8)|}3 + 20 {T {(BE -9) n}}.  (36)

3

where 02 = 207|B(s' - §)[ % (see Appendix A).
Substitution of (3.6) into (3.5) yields

P(s-5|B,s)<P(¢<-|BE -9)[F),

1 B(s' -8 2 (37)
§exp(_ <4J%>||F).

IN

Let us denote by w(5',8) = |[B(8'-8)|% the received squared Euclidean distance between
§ and §’, and by §p the sequence mapped by the all-zero codeword. Let us denote by S
the set of all possible § and by S; = {8 € S|w(5p,5) = [} the set of the sequences § that
have the received squared Euclidean weights (SEWs) equal to [ (or SEW-I, for brevity).
The probability of fault detection for any § € S (word-error probability) reads

P.-P.G)< Y P(,—~5|B3),

€S, 545,

<> AP (5, —5|B,5,),
l

(3.8)

where the equality (P. = P.(5,)) is obtained due to the linearity of the outer FEC
code [65], §; € §; and A; is the cardinality of S;. We further denote by A,,; the number
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of § that has input Hamming weight-w and output SEW-I. Hence, A; can be calculated

in function of A, ; as

A=Y Ay (3.9)

On the other hand, when §, is wrongly decoded into §;, there are w binary errors among
K components. Therefore, from (3.7), (3.8) and (3.9), the bit-error probability of the

input binary message is upper bounded by

WAy l
P>y : exp(——). (3.10)
7T 2K 4ol

The encoded binary sequence ¢ has length N and Hamming weight- (so does its inter-
leaved sequence €). We can deduce that, assuming a uniform interleaver, a Hamming
weight-x outer codeword ¢ can be interleaved into (JZ ) possible €. Therefore, A, ; can
be calculated as follows

N AT

Aw,l = Z

k=dy (JZ) ’

where AQ(B l,f) is the number of FEC codewords with weight-x generated by data words

(3.11)

with weight-w, AS?) is the number of modulated sequences with SEW-[ generated by

FEC codewords with weight-x and d; is the free distance of convolutional codes.

The conditional weight enumerating function (CWEF) of the inner mapper can be de-

fined by

AW (L) =S AW Ly | . (3.12)
7 ’ L(l):%exp(—é)
From (3.10), (3.11) and (3.12), we deduce that
w N A(out) )
P<y — wr A (5 L), (3.13)
2W.E )

3.3.2 Theoretical analysis

The sequence MIMO symbol mapper (which maps the whole € into §) is equal to apply-
ing N/m times the MIMO symbol mapper, which instantaneously maps every m binary

bits of ¢ into a MIMO symbol s of size bx 1, i.e. §=[s182 ... Sy/m]. At the outer
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FEC decoder, the most probable error event is the error sequence with minimum Ham-
ming weight, i.e. kK =dy. Assuming a uniform interleaver for the minimum weight error
sequence, there is a very small chance that the dy error bits, after they are interleaved,
be mapped to the same symbol. Hence, with N > dy, we assume a perfect interleaver
such that the d; bits are scattered throughout the sequence and grouped into dy dif-
ferent Hamming weight-1 blocks before being mapped to dy different symbol vectors.
Therefore, the SEW of the Hamming weight-1 symbols is critical to the asymptotic bit-
error-rate (BER) performance. In other words, a low asymptotic BER can be achieved

by maximizing the corresponding SEW of Hamming weight-1 symbol vectors.

Indeed, with a given outer FEC code, we can see from (3.13) that the smaller A0 (x, L),
the lower the asymptotic BER. For a codeword with Hamming weight dy, i.e. k = dy, the
CWEF A (k, L) becomes A(in)(df,L) = [T(1,L)]% [66], where T'(1, L) stands for the
CWEF among the Hamming weight-1 symbols of the MIMO symbol mapper. Therefore,
in order to achieve a lower BER, T'(1, L) must be minimized. The general expression of

T(1,L), which is averaged over all possible reference points on the constellation, reads

T(1,L) = ZaiL(Ei) | (3.14)

L(€)=% exp(—4¢2)7
N
where £1 <+ <l; <+ <lpax. We can see that L(¢;) is exponentially increased with the

decrease of ¢;. Therefore, to minimize T'(1, H), the maximization of ¢; is crucial.

In this subsection, we propose a novel precoder, which maximizes ¢; for the conven-
tional Gray-mapped scheme. Indeed, ¢; can be maximized by maximizing the squared
Euclidean distance ¢ between any pair of the received constellation points located at
Hamming distance equal to 1 from each other. Note that the received constellation is

fixed thanks to the precoder. Thus, the distance ¢ is defined by
0= |H,Fa(3-8)]7 (3.15)

where § and § represent any pair of symbol vectors with associated binary conversions

differing by only one bit. Let us denote by ¥ = [}, 15]7 the difference vector between
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§ and §'. From (3.1) and (3.2), calculations yield

|H Fq|? = |7 (O’% cos? 1 cos” 0 + o5 sin® 1) sin? 0) +15)? (62 cos? i sin® 0 + o5 sin® ¢ cos? 0)

D1 Do

+sin 0 cos (1) e + 115" ) (02 cos? 1) — o5 sin ) .

D3
(3.16)

Lemma 1. In case b = 2, with the conventional Gray-M mapping (bit-interleaved code-
words are mapped at the modulator before being converted to MIMO symbols) and

U=[v) 5] is the difference vector between any pair of symbol vectors § and &', whose

binary mapped sequences differ exactly one bit, we have vjvs = 0.

Proof. With b = 2, let us rewrite § = {3(1) $(2)} and & = {§'(1) &(2)}. Since the
binary mapped sequences of § and §" differ by only one bit and since the elements of §
and §" are modulated before being serial-to-parallel converted to § and §', §(1) # §'(1)
and 5(2) # §'(2) can not be satisfied at the same time. Note that this property holds for
any modulation type applied at the modulator (before the MIMO symbols conversion).
Therefore, with 7 = §(1) — 8'(1) and % = §(2) — §'(2), we deduce that 105 =0 (i.e. at
least v or U5 equals zero for any pair of symbol vectors § and §', whose associated binary
mappings differ by exactly one bit). For example, let us denote by s, s1, s2, s3 the 4-QAM
constellation symbols, whose binary mapped sequences are 00,01, 10,11 respectively. We
arbitrarily pick up two 4-bits binary sequences 0101 and 0111 differing by only one bit.
After applying the 4-QQAM symbol mapping followed by the serial-to-parallel conversion,
the corresponding symbol vectors are 81 = {s1 s1} and 8§ = {s1 s3} respectively.
Hence, V) = 0 and > = s1 — s3 in this case, i.e. 105 = 0. For any other selection of the
two 4-bits binary sequences differing by only one bit, it always comes that at least v} or

Vs is equal to zero. O

Taking into account Lemma 1, we deduce that D3 = 0. From (3.16), we deduce that
in order to maximize |H,F4|? independently with |1|* and |t5[?, we need to jointly
maximize Dj and Ds, which depend only on v and 6 (the first two parameters of the
precoding matrix F; as shown in (3.1)). The joint maximization of (D1, D2) is consid-
ered as a multi-objective optimization without any special expectation for the solutions.

Therefore, a non-preference method [67] is applied. The problem of finding (¢, 6) that
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jointly maximizes (D1, Dy) becomes
(¢*,6%) = agmin (B(v, 6) = (D1 - D*™)” + (D2 - Dy™)°), (3.17)

where D" is the maximum value of Dy, over the set F, defined by 0° < ¢ < 90° and
0° <6 <90°.

Lemma 2. The maximum values of Dy and D over the set F are D"® = DIax = 52,

Proof. See Appendix B O

The optimization problem (3.17) can be solved by searching for (1, 6) that satisfy the
first and second order conditions for a local minimum. Taking into account Lemma 2,

the partial derivatives of U with respect to 8 and ¢ yield

Z—S(zp, 0) = —sin(40) (o7 cos® ¢ — o2 sin>)”
20w jf;sinmw) (20 + o) sin ¢ - 20303 +(0% + 03) sin(20) (07 - (0% + 03) sin )]
(3.18)
The set of points (1,6) of F that satisfy the first order conditions for a local minimum
(VU =0), denoted by F*, equals

F* = {(0, 0), (0,45°), (0,90°), (90°,0), (90°, 45°), (90°, 90°), (arcsin LQ) 0) ,

T, 1
. 0102
(arcsm ﬁ,%o)}.
(o] +03)

(o] + 03
(3.19)
The only point of F* that satisfies the second order conditions for a local minimum
(the Hessian matrix V20 is positive-definite) is (¥,6) = (0,45°), where 22—1/}25(0,450) =
oi(o? - 03), %279(0,450) = 407 and 557%(0,450) =0. As U is convex, the minimum is

global.

/1 is maximized by taking (1 = 0,6 = 45°). However, the detection performance can be
further improved by forcing the minimum FEuclidean distances between all symbols on
the received constellation, which is denoted by dpyin, to a higher value. This helps to
improve the other ¢;, with i > 1. Therefore, the last parameter ¢ will be selected so as
to maximize dpi, while assuming (¢ = 0,6 = 45°). Let us denote by v = [v1  1»]7 the

difference vector between any pair of symbol vectors s and § (s #§). With (¢ = 0,6 = 45°),
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2 .
substitution yields |H,Fqv|? = Z|v1 + 12€[2. Hence, the optimum value of ¢, referred

to as @gpt, can be found by

0'1\/5

Gopt = argmax | min ‘yl + V26i¢| . (3.20)

0°<p<90° v

d(¢)

Lemma 3. For any symmetric QAM modulation, the searching interval of ¢ can be

restricted from 0° < ¢ <90° to 0° < ¢ < 45°.

Proof. See Appendix C. O

Up to this step, we resort to numerical optimization to look for ¢. We consider 4-QAM
modulation and the searching range is limited to 0° < ¢ < 45° thanks to Lemma 3.

Numerical search over all possible symbol vectors shows that dy;, can be obtained by

considering only the two following pairs of symbol vectors: {(17’% ’;;)T ; ( ’;; %)T} and

{(‘;; ‘zi)T;(% -;;‘)T}_ The former couple has difference vector v = (\/5 - \/§)T,
which yields d(¢) = 011/2(1 — cos ¢) referred to as dy. The latter couple has difference
vector v = (-2 +iV2 —iﬁ)T, which yields d(¢) = o11/3 — 2(cos ¢ + sin @) referred

to as ds. Hence, dyi, is equal to di for 0 < ¢ < 30° and to dy for 30° < ¢ < 45°. The

optimum value of ¢, which maximizes dy;y, is obtained at the intersection between d;
(increasing function of ¢) and dy (decreasing function of ¢), which yields ¢op = 30°.
Therefore, we propose to take ¢ = 30°. The proposed precoder with optimized defining
parameters (¢ = 0°,0 = 45°, ¢ = 30°), is referred to as Fy, precoder. It should also be
noted that the parameters of this precoder are fixed, which makes its design and practical

application easier.

3.3.3 Simulation results

We now provide examples to demonstrate the advantages of the proposed F,, precoder
in terms of error-rate performance. Monte-Carlo simulations have been performed for
a np = 2 transmit and nr = 2 receive antennas MIMO configuration. The half-rate
(13,15) petar-RSC code is used at the outer encoder. The frame length is 800 uncoded
bits. The modulator uses Gray mapping rule (Gray-M) for the 4-QAM symbols before

their conversion into symbol vectors.
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FI1GURE 3.3: The received constellation on first subchannel of Fy, precoder, Channel A,
Gray-M mapping and 4-QAM modulation.

In the case of two data streams transmission (b = 2) and 4-QAM modulation, we compare

the error-rate performance of Fy, precoder with the max-dpyin precoder (Fyq1 or Focq),

which shows a better uncoded error-rate performance with maximum likelihood detection

than the other precoders such as MMSE, water-filling, max-SNR and minimum BER,

as mentioned in Section 2.3.2.2. The received constellations on the first and the second

subchannels of F,., are plotted in FIGURE 2.9(a) and FIGURE 2.9(b) respectively, while

the received constellation on the first subchannel of F,q is given in FIGURE 2.8. The

received constellation of the Fy, precoder is given in FIGURE 3.3.

—8— F,; + Gray-M (max—dy,)
—6— F;, + Gray-M
Analytic bound of F;, + Gray-M

7 8 9

11 12

FIGURE 3.4: BER (solid lines) and FER (dashed lines) of Channel A, Gray-M mapping,
(13,15)-RSC code and 4-QAM modulation.
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F1GURE 3.5: BER (solid lines) and FER (dashed lines) of Channel B, Gray-M mapping,
(13,15)-RSC code and 4-QAM modulation.

The Channel A (v ~ 8.3%) is considered to illustrate the case v < ~,. FIGURE 3.4 shows
the BER performance of the Fy, and max-dy,i, precoders on this channel. Note that the
max-dmin precoder uses F,; mode in this case (7 < 7,). We observe that the Fy, precoder
achieves a gain of 2 dB at BER = 107% and roughly 2.5 dB at BER = 1077 compared to
the max-dpi, precoder. In terms of frame-error-rate (FER), the gain of Fy, compared to
max-dyin precoder is also remarkable, namely, 2 dB at FER = 1072 and about 2.25 dB
at FER = 10™*. As shown in FIGURE 3.4, with the change of slope of the curves, we
observe that the gain of Fy, compared to max-dp;, is more significant with the increase

of SNR.

The Channel B (v = 30°) is also considered to illustrate the case v > 7,. The error-rate
performances of Fy, and max-dpi, precoders on this channel are shown in FIGURE 3.5.
Note that the max-dyi, precoder uses F,eq mode in this case (v > 7,). We observe that
the proposed Fy, precoder achieves a gain of 1 dB at BER = 1075 compared to max-dpin
precoder. In terms of FER, the gain is more than 1 dB at FER = 107%. The change
of slope of the curves in this channel is slower than in Channel A. Hence, comparing
Channel A and Channel B, it can be concluded that the advantage of Fy, precoder is

more significant over the low angle v channels.

An analytic bound for the error-free feedback performance is also taken into account. The

bound expressed by (3.13) is plotted by considering only codewords with free Hamming
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distance (df). To compute this bound, we assume a perfect interleaver, which allows
the inner mapper to map dy error bits into different symbol vectors. As observed from
both FIGURE 3.4 and FIGURE 3.5, the analytic bound of the Fy, precoder matches the
simulated curve at high SNR. The max-di, precoder also reaches its analytic bound,

which is not plotted here for brevity but will be shown later in Section 3.4.3.

3.4 Performance enhancement

In this section, we assume that the encoded codeword ¢ is directly mapped onto MIMO
symbol vectors s. Since H, and Fy are known, this is equivalent to a direct mapping
onto the received constellation, where the received symbol is denoted by x = H,Fys.
Therefore, we are able to apply the maximum squared Euclidean weight (MSEW) crite-
rion [66] (maximizing ¢; and minimizing «; in (3.14)) to look for the optimized mapping
at the received constellation. The F,, precoder proposed for the conventional Gray-M
mapping in Section 3.3 is then modified to adapt to the MSEW mapping. The modified

precoder is referred to as Fy,-mod precoder.

We firstly look for the optimized MSEW mappings for all of the considered precoding
forms (Fr1,Focta, Fr,-mod). We observe that, thanks to the MSEW mapping criterion
(maximizing ¢, and minimizing o), the error-floors achieved by the listed precoders are
very low, which are out of the commonly used BER. Therefore, since ¢; has been opti-
mized thanks to the MSEW mapping, the precoding optimization criterion of maximizing
£1 is no more interesting. The goal of this section is thus to propose a precoding strategy
that improves the turbo-cliff region by switching among the available MSEW-mapped
precoders. With that criterion in mind, we resort to EXIT chart to find the optimized
solution. Thanks to EXIT chart analysis, we propose a second novel precoder (referred
to as EXIT-based precoder), which uses the MSEW-mapped Fy,-mod and F ., forms
with the switching threshold v, = 22.5°. Simulation coincides with the analysis and is

presented at the end of this section.

3.4.1 Direct mapping at the received constellation

From (3.1) and (3.2), it comes that, for F,1, Focta, Fy, and Fy,-mod precoders, B =

H,F,; = 8B, where B is a fixed matrix and j is a scalar, which depends on v and p.
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Binary bits Q-ary symbols MIMO symbol

¢ Q-ary S [Sserial to parallel s (size b x 1)
modulator converter

Conventional (Gray-M) mapping

<L =

Mapping with MIMO
symbol mapper

With s; is the Q-ary symbol, we define all possibilities
of S = [Sl, ...,Sj, ...,Sb]T ES= {Sl, e S, ...,sz}.

Binary bits MIMO symbol
C | MIMOsymbol | § €S
mapper

F1cURE 3.6: Conventional mapping versus mapping with MIMO symbol mapper.

Hence, for a given Fy, the received constellation is unchanged and just scaled by a scalar
factor S for all channel realizations. On the other hand, though the performance has
been improved by using the Fy, precoder, T'(1, H) can be further maximized if we can
control the mapping at the received constellation. Since the received constellation is
fixed, a direct mapping on it is possible. In this section, we propose a direct MIMO
symbol mapping at the inner mapper as illustrated in FIGURE 3.6, which maps a block
of m binary bits onto a vector of symbol s. This is equivalent to a direct mapping onto

the received symbol vector x = H,Fys since H, and F; are known.

The maximum squared Euclidean weight (MSEW) mapping strategy is considered for
the mapping at the received constellation. Pioneered in [66], the purpose of MSEW is
to achieve a low error-rate by optimizing two mapping criteria. Firstly, it maximizes the
minimum Euclidean distance between symbols with binary mapped sequences differing by
one position (i.e. £1in (3.14)). Secondly, it minimizes the number of pairs of symbols with
binary mapped sequences differing by one position separated by the minimum Euclidean
distance ¢1 (i.e. aq in (3.14)). With these two criteria, the best MSEW mapping is then

obtained by computer search.

Since jointly finding the best mapping and optimizing all defining parameters of precoder
is intractable, we propose to fix the first two parameters of the Fy, precoder as found in
Section 3.3, i.e. (¢ =0°60 =45°), and to look for the parameter ¢ that yields the best
MSEW mapping. With (¢ = 0°,6 = 45%), we firstly vary ¢ from 0 to 45°. Secondly, we
search the optimized MSEW mapping for each value of ¢ € [0,45°]. Finally, we look for
the value of ¢ that yields the maximum ¢; and minimum «a;. Computer search shows that

the best MSEW mapping is achieved at ¢ = 45°. We refer to the new precoder, with the



Chapter 3. Turbo Detection: Precoding and Symbol Mapping Jointly Optimization — 64

defining parameters (¢ = 0°,0 = 45°,¢ = 45°), as Fy,-mod precoder. The constellation
of this precoder is shown in FIGURE 3.7. For comparison, the MSEW mappings for the

F,1 and F,., precoders are also considered.
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FIGURE 3.7: The received constellation on the first subchannel of Fy,-mod precoder,
Channel A, Gray-M mapping and 4-QAM modulation.

. s1 = [s0 511", s2 =[50 s2]",

]T

Let us denote the 16 possible values of s by sg = [so so]T

s3 = [s0 83", 84 = [s150]", 85 = [s1 1], s6 = [s1 52]", 87 = [s1 s3]", s = [52 50]",
s9 = [52 81]T, s10 = [s2 SQ]T, s11 = [s2 83]T, s12 = [s3 So]T, s13 = [s3 Sl]T, s14 = [s3 82]T
and si5 = [s3 s3]7, where 5o = (-1 —i)/v/2, s1 = (-1 +9)/V/2, s3 = (1 -i)/V/2, s3 =
(1+14)/\/2. The received symbol x;, which is mapped onto the received constellation,
reads x; = H,Fys;. With this definition, the mappings can be easily presented as shown
in TABLE 3.1. This table provides the optimized MSEW mappings (but not unique)
applied to the received constellations shown in FIGURE 2.9, FIGURE 2.8 and FIGURE 3.7.
Each decimal value represents 4 binary bits that are mapped onto symbol vector s;,
which corresponds to the received constellation point x;. For example, with MSEW
mapping of the F,; precoder, the symbol vector sy is mapped to (7)1¢ in decimal, which
equals to (0111)9 in binary. Note that the received constellation with x; in FIGURE 2.9,
F1aURE 3.3 and FIGURE 3.7 are plotted for Gray-M. Thus, for the Gray-M in TABLE. 3.1,

the mapping is normally in the range from 0 to 15.

TABLE 3.1: The optimized binary representation in the constellation map of the pre-
coders for two different mappings.

Mapping Precoder [S0...S;i...S15]

Gray-M | F, [Foua/Fy, | 012345678910 11 12 13 14 15]
F., [7211113481412610155309]

MSEW | Foeto/Fp,-mod | 2570912101511 14813431 6]
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In order to compare the precoders associated with the MSEW mapping shown in TABLE. 3.1,
let us firstly compare their respective values ¢1. FIGURE 3.8 shows the plots of normal-
ized ¢1 (¢1 is normalized by p) versus v (i.e. all possible channels). As observed, under
the criterion of maximizing ¢1, it comes that the best precoding solution associated with
MSEW mapping corresponds to the switch between the F.; and F,q, precoders at the
newfound threshold ) = 30.7°. Indeed, as will be later demonstrated in Section 3.4.3,
the performance of max-dpi, assuming MSEW mapping is improved by using the new
threshold ~(. However, the criterion of maximizing ¢; shows its advantages only at the
error-floor, which is very low with MSEW mapping and out of the commonly-used SNR
region. In this section, we are mostly interested in the turbo-cliff region. In Section 3.4.2,
we resort to EXIT chart analysis to completely propose an appropriate precoding solution

to be used with MSEW mapping at the received constellation.

14
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F1cURE 3.8: Normalized ¢; versus ~ for different MSEW mapped precoders.

3.4.2 EXIT chart analysis

Asintroduced in Section 1.3, EXIT chart is a useful tool to optimize the convergence of an
iterative receiver based on extrinsic information exchanges between the two elementary
component devices. For the turbo detection scheme, one device is the soft-input soft-
output FEC decoder and the other one is the MIMO symbol-demapper. We use EXIT
chart to analyze the influence of the precoders as well as the mappings on the evolution

of the MI between the interleaved FEC-encoded binary sequence ¢ and its LLRs at input
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FIGURE 3.9: Block model for the EXIT chart measurement
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FiGUure 3.10: EXIT chart at SNR = 8.1 dB, Channel A, MSEW mapping given
in TABLE 3.1.

and output of the demapper. The extrinsic MI at output of demapper is a function
of the a priori knowledge Iix and the SNR. We define I+, = T} (IA,SNR). Similarly,
I2 = Ty(I3) stands for the extrinsic MI at output of decoder. FIGURE 3.9 illustrates the
way we compute the EXIT functions of both devices. The MI extraction as well as the
LLRs generation have been introduced in Section 1.3. In this chapter, each EXIT chart

measurement is averaged over 100 random realizations.

FIGURE 3.10 shows the EXIT charts of Fy,-mod and F,; precoders for Channel A
at SNR = 8.1 dB. Both precoders are associated with the MSEW mapping shown in
TABLE. 3.1. We observe that both precoders converge towards a similar ending point.
However, the starting point of F,; is lower than the one of Fy -mod precoder. This
can lead to an intersection between the EXIT functions of F,q precoder and the BCJR

decoder. Hence, the EXIT chart predicts that the error-rate performance of F,q is worse
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FiGure 3.11: EXIT chart at SNR = 8.1 dB, Channel B, MSEW mapping given
in TABLE 3.1.

compared to Fy, -mod at the turbo-cliff region.

Similar analysis is also applied for Channel B as shown in FIGURE 3.11. We observe
that the EXIT function of F ., predicts a better error-rate performance of this precoder
compared to Fy -mod precoder at the turbo-cliff region. Additionally, the EXIT chart
shows that F,1 is the worst precoder at the turbo-cliff. Note that max-d i, precoder does
not work in F,.; mode for Channel B. However, in the case of MSEW mapping, we also
consider the F,q precoder for Channel B. This is to emphasize that, even if maximizing
¢1 is a good criterion to design the precoders associated with the MSEW mapping as
shown in Section 3.4.1, we need to also consider the EXIT chart analysis to define the best
precoding solution in terms of mutual information exchange optimization. According to
the EXIT chart analysis, F,; should be discarded when designing a precoder optimized
from the mutual information point of view. We thus keep only F,u, and Fy -mod
and resort to the ¢; analysis reported in FIGURE 3.8 to set the switching threshold.
The resulting optimized precoder is referred to as EXIT-based precoder. It has two
precoding forms depending on a threshold +; = 22.5° (see FIGURE 3.8). For the channels
with v <y, the EXTIT based precoder uses Fy,-mod. For the channels with v > v, the
EXIT-based precoder uses Fociq.
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o —B8— max—dy, (F1 + Gray-M)
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FicUrRe 3.12: BER performance of the precoders associated with the corresponding
mappings, 4-QAM, Channel A.

3.4.3 Simulation results

In this section, we present the simulation results in terms of error-rate performance of the
precoders associated with the MSEW mapping to confirm the EXIT chart analysis done
in Section 3.4.2. Performance of the max-dp,, precoder (i.e. F,1 or Foeq used with Gray-
M mapping), which has been shown in Section 3.3.3, is also put again for comparison

purpose. The similar simulation setup as presented in Section 3.3.3 is considered.

FIGURE 3.12 shows the error-rate performance of the precoders used with the correspond-
ing mappings for Channel A. As illustrated in this figure, the FXIT-based precoder
achieves a gain of 2.6 dB at BER = 107° compared to the max-dmi, precoder (with F,q
mode for Channel A and Gray-M mapping). The F,; used with MSEW also achieves a
significant gain compared to the conventional max-dny;, precoder, which is about 2.1 dB
at BER = 107°. On the other hand, we observe that the analytical bound of the F,q
used with MSEW mapping is lower than the one of EXIT-based precoder, which is in
accordance with the ¢; analysis done in Section 3.4.1. However, the convergence to the
analytical bound is achieved for very low BER values out of the commonly targeted BER
range. In contrast, the performance at the turbo-cliff region is more interesting. We see
that, at the turbo-cliff, the EX I'T"based precoder achieves a gain of 0.5 dB at BER =
1076 compared to the F,; used with MSEW. This is in accordance with the EXIT chart

analysis done in Section 3.4.2.
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Similar conclusions are also obtained for Channel B. As illustrated in FIGURE 3.13, the
EXIT-based precoder achieves a gain of 2.3 dB at BER = 107 compared to max-dmin
precoder. At the turbo-cliff, the E X IT-based achieves a gain of 0.5 dB and 1 dB respec-
tively at BER = 107 compared to F/,-mod and F,; precoders, both being associated
with MSEW mapping.

—B— max—duin (Focta + Gray-M)

. —&4— F,1 + MSEW

—&— Fi,-mod + MSEW

—O— EXIT-based (F,u, + MSEW)

= B = Analytic bound for F,, + Gray-M

= & = Analytic bound for Fy,-mod + MSEW

= © = Analytic bound for EXIT-based + MSEW
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100 ¢ SO0
~

108 F

10° \
95 10 105 11

FiGUre 3.13: BER performance of the precoders associated with the corresponding
mappings, 4-QAM, Channel B.

We finally illustrate the average error-rate performance over random channels, ¢.e. each

—©— proposed EXIT-based (Fy,-mod/F,, + MSEW, with threshold v, = 22.5%)
—3¥— proposed F,1/F,, + MSEW, with threshold ~{ = 30.7°
F,1/Fyuq + MSEW, with threshold vy = 17.3°

BER

10 1 1 1 1 1 ]
7 75 8 85 9 9.5 10 105

SNR (dB)

FIGURE 3.14: BER performance of the precoders associated with the MSEW mappings
over random channels.
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element of H is distributed as H; j ~ CN(0,1). Thus, on average, each channel element
has unit energy (E[|H;;|*] = 1). Note that, with the definition of instantaneous SNR
in (3.3), the error-rate performance does not depend on p?. Therefore, the system per-
formance for different values of v is obtained by taking the average of the randomly
generated channels. Applying the optimized MSEW mappings for both F,; and Fgcq
forms, as observed from FIGURE 3.14, the proposed precoding strategy that uses the
switching threshold at ~) = 30.7° (the criterion is to maximize {1, see FIGURE 3.8) out-
performs the one that uses the conventional switching threshold ~y = 17.3° (proposed
in [16] for max-dmyin precoder). The proposed EX IT-based precoder, which assumes the
optimized MSEW mapping for Fy,-mod and F,., and switches among them by using
the threshold ~; = 22.5° outperforms the other solutions at the commonly used BER
region. This is in accordance with the EXIT chart analysis done in Section 3.4.2. At the
very low BER (BER = 107%), the EXIT based precoder begins to saturate. This is in
accordance with the ¢; analysis done for MSEW mapping as shown in FIGURE 3.8. Since
EX IT-based precoder yields the priority to optimize the turbo-cliff region (corresponds
to the bottle-neck of EXIT chart) rather than the error-floor region (corresponds to ¢y,

or the ending point of the EXIT function of the soft-demapper).

3.5 Conclusion

A first precoder referred to as Fy, precoder, which focuses on the maximization of the
minimum FEuclidean distance between symbols with binary mapped sequences differing
by one position, was proposed for the conventional Gray-M mapping (bit-interleaved
codewords are mapped at the modulator before converted to MIMO symbols). In terms
of error-rate performance, the F,, precoder significantly outperforms the max-dpn pre-
coder, which shows the best performance for the Gray-M mapped, maximum likelihood
detected, uncoded systems. Additionally, since the received constellation is fixed, we
proposed a MIMO symbol mapper that directly maps the interleaved FEC-encoded bi-
nary sequence into MIMO symbols. Thanks to the MIMO symbol mapper, the MSEW
mapping technique can be applied to the received constellation. By using the MSEW
mapping criterion, ¢; is maximized. Consequently, the error-floor of the MSEW-mapped
precoded system is very low, which are out of the commonly used BER. Therefore, in

the case of MSEW mapping, we focused on the precoding optimization at the turbo-cliff
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region rather than at the error-floor (i.e. rather than maximizing ¢;). Taking benefit
from the EXIT chart analysis, another precoder referred to as EX I'T-based precoder was
proposed in this chapter. The FE X IT-based precoder is not only adapted to be used with
the MSEW mapping at the received constellation but also takes into account the opti-
mization at turbo-cliff region. We observed from the simulation that the EXIT-based
precoder significantly outperforms the other precoders when used with an outer FEC

code and a turbo detection.

As aresult from this chapter, we deduce that optimizing only ¢; (e.g. by using the MSEW
mapping) results in a lower error-floor but it may lead to an intersection at the bottle-neck
of EXIT chart, which scales the turbo-cliff region to a higher SNR. On the other hand, let
us recall from Section 2.3.3 that the area beneath the EXIT function of the soft-demapper
is proportional to the channel capacity. Therefore, it is interesting to firstly maximize the
channel capacity (maximize the area beneath the EXIT function of the soft-demapper
to avoid the intersection at bottle-neck) and consequently apply MSEW mapping to
maximize /1 (maximize the ending point of the EXIT function of the soft-demapper) to
achieve a lower error-floor. Therefore, the investigation of the GOPT precoder, which
globally maximizes the channel capacity as introduced in Section 2.3.2.1, is interesting for
this scheme. The main drawback of the GOPT algorithm is the high complexity. In the
next chapter, we propose a low-complex suboptimal precoding algorithm to overcome
this drawback. The new algorithm not only significantly reduces the complexity and
assures a close channel capacity to GOPT, but also allows us to apply MSEW mapping,

which is intractable for the conventional GOPT algorithm.






Appendices of chapter 3

A Calculation of ag

To simplify the notation, let us write C = B(5 - 5§;) and D = Cfn. Since D;; are
independent complex random variable, the variance of the complex random variable

Tr{D} reads

var (Tr{D}) = var (;{Di,i}) ,
= zijvar (Di,i),
= Zijvar (chin.),
- Y| (Clims~EICLn. 1) (Clin.i - BIC!n.)' |

(5.21)
= Z CTz E [(n:,i -E[n.,]) (n.; - E[n:,i])T] C..,

2
UnIb

=02y cl.c.,
]
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2
ICl%

= 0, |B(5 -5

Therefore, we have Tr{(B(é—él))Tn} ~CN(0,07|B(5-5))[%). Hence, & ~ N (0,0%),

where og = 203,”]3(5 —gl)H%«“
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B Proof of Lemma 2

From (3.16), the problem of finding (¢, 0) that maximize D; becomes
(¥°,6°) = argmax (o7 cos® 1 cos 0 + 5 sin® ¢ sin® 0) . (5.22)
f

Recall that the set F is defined by 0° < <90° and 0° < § < 90°. Partial derivatives of
Dy with respect to 6 and v yield

0D,

o - sin 24 (03 sin® 0 — o cos®9) (5.23)
D
% = sin20 (o3 sin® ¢ - o7 cos® ). (5.24)

The set of points (1,0) of F that satisfy the first order conditions for a local maximum
(VD; =0), denoted by F°, equals

FO = {(0, 0), (0,90°), (90°,0) , (90°,90°) , (arctan 9L arctan ﬂ)} . (5.25)
09 o9

The only point of F° that satisfies the second order conditions for a local maximum is
(1,0) = (0,0), where which yields D"® = ¢?. The same optimization is applied for Ds,
which yields D = o2 at (1 = 0,60 = 90°).

C Proof of Lemma 3

For any difference vector v = (1, 12)7, let us define

2 )
¢1 = arg max (min 01v2 |1/1 + I/2€7'¢‘) (5.26)
0°<¢p<45° 2

and

¢o = argmax (min a1 ‘Vl + ygeiqB ) ) (5.27)

45°<$<90°
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By considering ¢ = 5 — ¢, we obtain

2 e
¢9 = argmax | min 01v2 |v1 + 1/26’(5—@‘ :
00<p<dse 2

5.28
( . o1V2 ( )
= argmax | min —
where v stands for the conjugation of v. Further, for Q-ary QAM modulation, given any

s 1
Vi +e 2 plel?

00<p<45°

x \T
difference vector v = (11 VQ)T €V, the vector (Vf e 25 ) is also a valid difference
vector in V thanks to the symmetry of the constellation. Therefore, from (5.26) and

(5.28), we obtain that ¢y = ¢9, i.e. the lemma is proved.






Chapter 4

Complexity Reduction for the
Optimization of Linear Precoders

over Random MIMO Channels

The content of this chapter is mainly based on the following paper:

e Nhat-Quang Nhan, Philippe Rostaing, Karine Amis, Ludovic Collin, and Emanuel
Radoi. "Complexity Reduction for the Optimization of Linear Precoders over Ran-
dom MIMO Channel". Submitted to IEEE Transaction on Wireless Communica-

tions, pending for review.

4.1 Introduction

The optimal precoder for encoded systems over MIMO channels is the globally optimized
(referred to as GOPT) precoder [22], which has been introduced in Section 2.3.2.1. The
GOPT precoder aims to globally maximize the mutual information between the finite
alphabet input and the corresponding channel output. In [22], the authors proposed
an algorithm (referred to as GOPT algorithm) to find the optimal precoding matrix
for each MIMO channel at a given SNR value. Thus, this precoder does not have a
fixed closed-form and it is SNR-dependent. Unfortunately, since it was targeted for the
optimal solution, the computational complexity of the GOPT algorithm is painfully high.

7
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It is the high complexity that limits the application of GOPT over random channels and

makes GOPT to be considered as a lower bound for fixed channels only.

In this chapter, we focus on the complexity reduction for the GOPT precoding algorithm.
Our main contributions are twofold. On one hand, by using a lower bound of the channel
mutual information, it is proved in [68| that maximizing the minimum Euclidean dis-
tance dmin is asymptotically equivalent to maximizing the channel mutual information.
On the other hand, transformation allows us to present a precoding matrix as Fy = ¥O,
where the diagonal matrix W links to the power allocation on the subchannels and the
unitary matrix @ links to the forms of the received constellations. Therefore, as the first
contribution, we propose a novel low complexity optimized (referred to as LCOPT) pre-
coding algorithm, which has a lower computational complexity compared to GOPT. The
proposed algorithm uses fixed unitary matrix ® taken from the solution of maximizing
dmin and optimizes only the power allocation matrix W based on mutual information cri-
terion. The selection of © is discussed for two cases namely b =2 and b > 2. With a fixed
O, the received constellation form of LCOPT is fixed. Thus, as the second contribution,
we propose to apply the maximum squared Euclidean weight (MSEW) mapping [66],
which has been introduced in Chapter 3, on the received constellation of the proposed
LCOPT precoder. Note that it is impractical to apply MSEW mapping on the received
constellation of GOPT since its constellation is changed for each channel realization and
SNR. To avoid the search of optimal GOPT precoding matrix for each channel realization
and SNR in case b =2, we also propose in this chapter a method to construct precoding

codebooks for GOPT precoder.

The remainder of this chapter is organized as follows. Section 4.2 introduces the system
model. In this section, the conventional GOPT precoding algorithm is recalled in a more
general scheme, which takes into account the channel matrix dimension reduction as
introduced in Chapter 2. This allows us to apply GOPT to the systems that desire a
given number of data streams. Section 4.3 presents the proposed LCOPT algorithm. The
selections of @ are also discussed in this section for two cases, namely b=2 and b > 2. In
addition, the association of LCOPT precoder and MIMO symbol mapper, which allows
mapping on received constellation, is introduced. Section 4.4 begins with the proposed
codebook construction method for GOPT in case b = 2. The simulation results are then
presented. Finally, the EXIT chart analysis is used to validate the simulation results.

Section 4.5 concludes the chapter.



79 Chapter 4. Low complexity optimized precoder

4.2 Preliminaries

4.2.1 System model

We consider a MIMO system with ngr receive, np transmit antennas and b indepen-
dent data streams to be transmitted. The transmitting binary sequence is grouped and
mapped onto Q-ary modulated symbols s. These symbols are then converted into MIMO
symbol vectors s, which have size b x 1. Fach vector s is then precoded with a precoding
matrix F and transmitted through the MIMO channel. According to (2.16), the channel
output y after the channel transformation reads y = H,F4s + . With the equivalent
model, the channel mutual information between the discrete input s and the channel
output y (Z(y,s)) is given by (2.24). It is proved that the mutual information Z(y,s)
is a concave function with respect to W [22]|. Note that (,,  in (2.24) can be directly
expressed in terms of W as shown in Appendix C. The gradient of Z(y,s) with respect
to W, which is denoted by VwZ(y,s), reads

P
VWI(Y7S) = ﬁa (41)
n

where @ is the minimum mean square error (MMSE) matrix, which is estimated by
P - E{(s—é)(s—é)T}, § = E{s|y}. Note that, using the gradient ascent method, we
may update

Wi = Wi +6W, (4.2)

where W = uwVwZ(y,s), in which puw is a sufficient step size. Then, we have to also
update
k+1 k
F - 4 6Ry, (4.3)

where the updated precoder has to satisfy the power constraint ||F((ik+1) |1% = HFék) |% = 1.
However, solving directly for the incremental update 6F4 can be difficult. Additionally,
in that case, the step size uw must be very small to avoid divergence and, hence, it
slows down the convergence. To tackle this challenge, the authors in [22] developed an
algorithm that partially optimizes Fy in order to maximize Z(y,s). The algorithm is

briefly recalled in Section 4.2.2.
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4.2.2 Globally Optimized (GOPT) precoders

In this subsection, we summary the GOPT [22] algorithm in a more accessible way to
make a foundation for our proposed scheme in Section 4.3.1. The contribution in this part
is that we recall the GOPT algorithm for the equivalent model in (2.16). The equivalent
model is more general than the model considered in [22] since the channel dimension
reduction has been taken into account in (2.16), which allows the transmission of any

desired number of data streams. The SVD of F; gives Fy = UFEFV;

Proposition 1. With Fy = UFZFV;, the matrix Ug must be equal to the identity matrix

I, to achieve the maximum channel mutual information.
Proof. See Appendix A. O

As we aim to maximize the mutual information according to Proposition 1, we have to

set Up =I;. Hence, by rewriting ¥ = Xp, O = VI?, we deduce
F;=90. (4.4)

The matrix W controls the power allocation on each subchannel, while ® concerns itself
with the rotation and scaling of the symbols on the received constellation. Note that the
authors in [22] proposed to select the left singular matrix of F to be equal to the right
singular matrix of H. In our case, we consider the equivalent model in (2.16). Therefore,

the conditions established in Proposition 1 must be taken into account.

It is proved that the mutual information Z(y,s) is also a concave function with respect
to W2 [22]. The gradient of Z(y,s) with respect to W2, which is denoted by Vg2Z(y,s),
reads

Ve I(y,s) = diag (H20901). (4.5)

With Fy = ¥O, the authors in [22| proposed an iterative algorithm that respectively
updates ® and W based on the gradient ascent method (instead of directly update F,
which seems to be infeasible). Though ¥ can be updated directly using its gradient in

(4.5), we however must rely on the incremental of W to update @. The matrix © can
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be updated by 6W as follows. Any b x b unitary matrix @ can be written as

b

1
©=D H H Upg (Wpgs Vpg), (4.6)
p=b—1g=p+1

where D is an b x b unitary diagonal matrix, which does not affect Z(y,s) and can
be chosen as an identity matrix in this case. The matrix Upq(wpq,Vpq) is formed by
replacing the (p,p)"™,(q,¢)™, (p,q)™ and (¢,p)™ entries of the identity matrix I, by
COS Wpq, COSWpq, sinwpqe_j”pq and —Sinwpqej”m respectively, where w,, € (-7, 7] and
Vpq € [-5, 5] The incremental dw,, and dv,g, which are used to update ©, can be found
by solving

5upq, (4.7)

00 = Z Z 0pq6wpq+ Z Z

p=b-1g=p+1 pblqp+1aypq

where 0O is calculated from dW by the following first-order approximation
W =~ [60]TH?¥?0 + OTH?¥?[§0]. (4.8)

An example, which solves for dw,, and dvp,, from W in case b = 2, is given in Appendix B.
The associated algorithm is briefly recalled hereinafter as Algorithm 1. The precoding

matrices, which are found by using this algorithm, are referred to as GOPT precoders.

4.3 Analysis

4.3.1 Low Complexity Optimized (LCOPT) precoders

Although the GOPT precoder globally maximizes the channel capacity thanks to Algo-
rithm 1, the computational complexity of this algorithm is painfully expensive. Indeed,

the complexity cost is caused by two main issues listed below.

As for the first issue, in order to find the step sizes pw and pg2, Algorithm 1 has to
compute the channel mutual information Z(y,s) many times during the backtracking line
search (BTLS) process. However, as shown in (2.24), the computation cost of Z(y,s) is
high, since it needs a high number of trials for the accuracy of expectation. To tackle
the challenge, in 68|, the lower bound of channel mutual information was proposed to

avoid the estimation of Z(y,s). The lower bound of channel mutual information, which
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Algorithm 1 Globally optimization algorithm for linear precoders [22].

1:

10:

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

26:

27:
28:

Inputs: Maximum number of iterations l,,.., equivalent channel matrix H, and
signal-to-noise ratio (SNR).

: Initialization: Define f(W) as a function of mutual information Z(y,s) with input

W (see Appendix C). Define g(¥?) as a function of mutual information Z(y,s) with
input W2 (using (2.24), where Fy = ¥®). Select the initial values for w,, and vy,
and the initial diagonal matrix for ¥, which satisfies Tr{®?} = 1. Normally, we
select Winiy = I/b. Select ¥ € [0 0.5] and ( € [0 1] for the backtracking line search
(BTLS). Calculate the MMSE matrix ®.
while k < k4, or non-convergence do
From @, find VwZ(y,s) by (4.1)
Determine the ascent direction Aw = VwZ(y,s)
Find the step size uw using BTLS: set uw =1
while f(W +uwAw) < f(W) +uw[VwI(y,s)]" Aw do
pw = Cpw
end while
Update W = uw VwZ(y,s). From the updated dW, solve for §© by (4.8). From
90, solve for dwyy and dvpy by (4.7). Update wpg = wpq + dwpg and vpg = Vpg + 6
Update © using the new wy,, and v,
From the new value of ®, recompute the MMSE matrix ® (for the next calcula-
tion of Vg2Z(y,s))
Find Vg2Z(y,s) = diag (H2©@®O") - AL, where \ = Tr{diag (H2©®O1)}/b
Determine the ascent direction Age = Vg2Z(y,s)
Find the step size g2 using BTLS: set ug2 =1
while g(P? + g2 Ag2) < g(P?) + Vpug2[Ve2Z(y,s)]T Ag: do
pg? = Cllg?
end while
if pg2 ~ 0 then
Update W2 = W2 — ;4,0 W2
else
Update W2 = W2 4 /14,0 W2
end if
Set any negative diagonal entry of ¥? to zero before normalizing the updated ¥?
to satisfy Tr{®?2} =1
From the new value of ¥, update the MMSE matrix ® (for the next calculation
of VwZI(y,s))
k=k+1
end while
Output: F;=¥0.
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is denoted by Z15(y,s), reads

Zi(y,s) =blogy @ - (1/In2-1)b

b b 4.9
S B HECn sl 9
QL 207 .

The channel mutual information is then approximated by [68]
I(y,s) ~I1g(y,s) + (1/In2 - 1)b. (4.10)

Since there is no expectation in (4.9), the complexity of Algorithm 1 is reduced by using

the approximated mutual information in (4.10) to replace (2.24).

As for the second factor that penalizes the complexity, the computation required for
updating © (i.e. to calculate (4.6), (4.7) and (4.8)) is high, especially with high data
stream number b. In addition, the convergence of Algorithm 1 is sensible to the initial
values (wpq,Vpq) of ©, which must be carefully selected for fast convergence. In this
chapter, we propose a suboptimal solution to overcome these drawbacks. On one hand,
it can be obviously derived from (4.10) that maximizing Z; 3(y, s) helps maximizing the
channel mutual information Z(y,s). According to [68], the asymptotic optimality at
high SNR region shows that maximizing 7y 3(y,s) at high SNR leads to the following

optimization problem
max {min {|HFa(sm - sk) ]2}} ,
mk (4.11)

subject to |Fg|% = 1.
Therefore, at high SNR region, maximizing Z;5(y,s) is equivalent to maximizing the
minimum Euclidean distance dpyin = ?nlig{ﬂxm —xi|?} among the received constellation
symbols, which are defined by x; = H,Fys;. On the other hand, let us recall from (4.4)
that the matrix ¥ controls the power allocation on each subchannel, while ® concerns
itself with the rotation and scaling of the symbols on the received constellation. Hence,
with a fixed matrix ©, the received constellation form is fixed. Therefore, by assuming
that the matrix ® can be chosen thanks to the solution of maximizing dpi,, we propose
a novel low-complexity sub-optimal algorithm (see Algorithm 2 below) that only updates
the power allocation matrix ¥. We refer to the precoding matrices found by using the
new low-complexity algorithm as low-complexity optimized (LCOPT) precoders. We

would like to point out that, with high-order modulation, the computational complexity
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for the estimation of the MMSE matrix @ is high. By using the new method, we only
estimate the MMSE matrix ® once per iteration, instead of twice per iteration as by
using Algorithm 1 [22]. Therefore, the complexity is further reduced. Discussions about
the selection of ® in cases b =2 and b > 2 are presented in Section 4.3.2 and Section 4.3.3

respectively.

Algorithm 2 Low complexity optimization algorithm for linear precoders.

1: Inputs: Maximum number of iterations l,4,, equivalent channel matrix H,, SNR
and ©.

2: Initialization: Define g(¥?) as a function of mutual information Z(y,s) with input
W2 (using (2.24) or (4.10), where Fy = ¥@). Select Wiy = I/b. Calculate the MMSE
matrix ®.

3: while k < k;,q, Or non-convergence do

Find Vg2Z(y,s) = diag(H2©®0O") - AI,, where A = Tr{diag (H2©0®0O")}/b
(note that © is fixed and reads value from the input)

Determine the ascent direction Age = Vg2Z(y,s)

Find the step size pg2 by using BTLS and update ¥ in a similar way as presented
in Algorithm 1

T From the new value of ¥, update the MMSE matrix ® (for the next calculation
of Vg21(y,s))

k=k+1

9: end while

10: Output: F;=¥0O

4.3.2 Selection of input ©® for Algorithm 2 in case b =2

The precoder that maximizes dpyin, which is referred to as max-dnyi, precoder, has dif-
ferent solutions categorized by the modulation order [16, 17]. For the commonly used
4-QQAM modulation, the optimal solution is the one introduced in Section 2.3.2.2. Let

us respectively rewrite (2.27) and (2.28) in Section 2.3.2.2 as follows

o if 0<y<
1o\ V3+v3 V3-V3eiT) |
Fd = F7‘1 = o 76, (412)
0 0J\-V3-V3 V3+3eit
®Ff1
o ifyy<y<m/4
cos 0 1 €1
Fszoctaz 1/) . \/Lia (413)
0 siny)\-1 €'t
| S —
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where ¢ = arctan \t/fn_wl and g = arctan. /% (» 17,28"). Note that this
solution is SNR-independent and it depends on v (defined in Section 3.2.2) to

switch between the two precoding forms.

Since the forms of the received constellations are fixed and since the max-dy,;, precoder
has been designed such that dpi, is maximum, we can define the LCOPT precoder by
taking the optimized matrix © of the max-dyin precoder and by searching for the power
allocation matrix W that maximizes the channel mutual information. Note that it is not
necessary to use both @, and Oy, ., . In fact, with v < 79 (01 > 02), the suitable
power allocation is ¢ = 0, ¢.e spreading power only on the first subchannel. Therefore,
we just need to use the Algorithm 2 with the input © = Og__,, fixed for any value of ~.
The found precoder is then compared to F,; in terms of channel mutual information to

find the best precoding matrix.

Let us denote by RPA; the received power allocated on the i*! subchannel, which
reads RPA; = 0;1/P;, and by T the ratio between RPA; and RPA, (I' = RPA;/RPA»).
F1GURE 4.1 illustrates I' for all values of v. We observe that I" of F,., keeps constant
for all v > 79 and SNRs. Indeed, we can deduce from the expression of ¢ in (4.13) that
tant tanvy = v/2 - 1, which implies T = 1/(v/2 - 1). For LCOPT, the received power al-
located on the first subchannel is always greater than on the second one (RPA; > RPAj,
the equality is reached at the limit for v = 45°). Considering LCOPT precoder for a fixed
SNR, we observe that the lower «, the greater RPA; compared to RPAy. Considering
LCOPT precoder for a fixed channel with low v (v § 30°), we observe that the lower
SNR, the higher RPA;. The reverse is observed for high values of +. In conclusion, the

power allocation strategy of LCOPT precoder is completely different from max-dpiy.

The proposed LCOPT precoding algorithm not only reduces the computational com-
plexity of the conventional GOPT algorithm (as apparently observed from Algorithms 1
and 2) but also achieves a fast convergence while avoiding the initial values (wpq, Vpq)-
Indeed, without loss of generality, we select a channel with v = 17.5°, which is close to the
expectation of v for 2 x 2 MIMO systems. Hence, H, = [cos(17.5°) 0; 0 sin(17.5%)].
FIGURE 4.2 shows the convergence trajectories of GOPT (Algorithm 1) with different
initial values of (wpq, Vpq) and LCOPT (Algorithm 2, initial values are not required) over

this channel at SNR = 12 dB, 4-QAM modulation. With b = 2 and 4-QAM, LCOPT
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F1cURE 4.2: Convergence trajectories for mutual information, b = 2, 4-QAM, channel
v =17.5° and SNR = 12 dB.

uses © = Op,__, (see (4.13)). It is observed from FIGURE 4.2 that, for each channel and
SNR value, the conventional GOPT precoding algorithm requires suitable initial values
(wpq, Vpq) for fast convergence. In contrast, the proposed LCOPT algorithm achieves a

fast convergence speed without initial values requirement.
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4.3.3 Selection of input © for Algorithm 2 in case b > 2

In this subsection, we propose a suboptimal solution for ® in case b > 2. The idea is to
find © that improves the channel mutual information. The selection of ® is independent
from W, i.e. in this subsection we suppose that ¥ is fixed. From (4.9), we deduce
that the mutual information can be improved by increasing the squared distance d? =
IH,Fy(sm - si)|? for a large number of difference vectors e = s, — s,. The squared

distance d? can be expressed by

2 = e'We, (4.14)
b b
= 25i|€i|2+2 Z %{G;ijij}, (415)
i=1 i=1,7>1

where w;; stands for the (4,j) entry of W = @ ¥*H2@'. The diagonal entries of W (w;;)

are denoted by §; fori=1,...,0.

On one hand, d? tends to minimum as soon as, for at least one index i, e; attains its
minimum value (i.e. when |e;| = |emin|)- Therefore, we need to focus on the case when,
for at least one index i, |e;| = |emin| in order to maximize d®. On the other hand, it comes
from (4.15) that the dominant term of d? is ¥.2_; &|e;|*. This term can be maximized
thanks to © since ¢; >0 (W is an hermitian matrix). By considering only the dominant
terms (i.e. first term in (4.15)), the derivation of the inner summation over k in (4.9)
leads to the optimization problem for finding § = [d1,...,ds], which can be expressed as

follows

b
: -5 . |2 2
4= arg mln{ E n;e dilemin| /207]}’

g i=1
b
subject to Y 8; = Tr{W} = P,,
i=1

where n; is the number of e such that |e;| = |emin| on the i'" entry of e = [e1,...,e;,...,ep]".

As all the streams use the same modulation, it comes that n; = n;,Vi,j. Therefore,

: i .12 2
8 = argmin {Zi-il ¢~ ilemin] /20,]}.
6

b
Lemma 4. With ¢ = |emin|*/ 20727 and Y. &y = P, the following inequality holds
(=1

b _
> e i > e, (4.17)
i=1

S| =

with 6 = PT’“. The equality occurs if 6; = 8, Vi.
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KX

Proof. The convexity of exponential function yields e < Y r;e® with 0 < k; < 1 and
i

> ki = 1. Therefore, by applying this property with x; = % and x; = —cd;, the lemma is

i

proved. O

b
Let us denote by 3, the diagonal elements of W?H2. Then P, = Tr{W} = ¥ 3, as ©
=1
_ b
is unitary. According to Lemma 4, the solution to (4.16) is §; = = % Y. B¢, ¥i. On the
=1

b
other hand &; = 3. 34|10, j|*. We thus deduce that |0, j|* = %, Vi,j. The discrete Fourier
j=1

transform (DFT) matrix defined by @ ppr = % [e‘i%kl/b] is a unitary matrix

b k,l=0,...,b—1

that satisfies that condition. Therefore in case b > 2, we propose to use @ ppr as input
of Algorithm 2. Note that, by using a different criterion (maximizing dp,, instead of
maximizing the channel mutual information), the authors in [21] also proposed @ ppr

for the generalization of max-dpyi, as presented in Section 2.3.2.2.

Let us consider a 3 x 3 channel, which is characterized by (71 = 40°,7v2 = 27°) as shown
in (2.29), to illustrate the convergence of the suboptimal LCOPT precoder compared to
the optimal GOPT precoder in case b > 2. The convergence trajectories of the mutual
information of LCOPT and GOPT over this channel, at SNR = 9.77 dB (equivalent
to 5 dB in [22]'), are presented in FIGURE 4.3. We observe that the GOPT precoder
needs good initial pair (w,v) for fast convergence. For LCOPT, beside of ® ppr, we also

take into account the ©® of max-dy;, solution for b = 3 (© ), which has been

max-dmin
presented in Section 2.3.2.2. It is observed that the convergence speeds of LCOPT using

both of the ® ppr and Gmax'dmin are faster than GOPT.

4.3.4 LCOPT precoder and MIMO symbol mapper association

In this subsection, we exploit the MIMO symbol mapper introduced in Section 3.4 (see
FIGURE 3.6) and apply the MSEW mapping on the received constellation. Let us recall
that the channel matrix H, and the power allocation matrix ¥ only scale the amplitude
of the constellations between subchannels. However, the matrix ® completely changes
the form of the received constellation. Therefore, in order to apply MSEW mapping, the
search must be done for each matrix ®. For example, in Section 3.4, we presented two

different mapping strategies for two precoding forms ¥, and F e of max-dnin precoder,

Yin [22], the SNR is normalized by nr. Therefore, the corresponding SNR reads SNR = 5 +
10log,,(3) ~9.77 dB.
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F1GURE 4.3: Convergence trajectories for mutual information, b = 3, 4-QAM and
SNR =9.77 dB.

which respectively have Op_, and Op,_,,. Unfortunately, the GOPT precoder [22]| has
different © for each channel and SNR. Hence, in order to use the MSEW mapping
with the GOPT precoder, we must search for the optimized mapping for each channel
realization at each SNR. Thus, it is impractical to apply the MSEW mapping on the
received constellation of the GOPT precoder. However, thanks to the proposed LCOPT
precoder, we can fix the matrix ® and then find the best MSEW mapping for the
corresponding received constellation form. The simulation results in Section 4.4 show

significant error-rate performance improvement of LCOPT used with MSEW mapping.

4.4 Simulations

4.4.1 Codebook construction for GOPT

The main drawback of the GOPT [22] precoder is that its optimum definition depends on
the channel realization and on the SNR. Therefore, applying this precoder over random
channels involves high computation time. In order to compare the proposed LCOPT
precoder with the GOPT precoder over random channels, we propose in this subsection
a simple method to construct a precoding codebook based on GOPT precoder in case

b = 2 data streams.
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Let us recall from (3.2) that, by defining the instantaneous received SNR as SNR =
pQZ—g, the virtual channel H, can be only characterized by angle v. We then rely on
~v and SNR to build a precoding codebook for each MIMO configuration. Without
loss of generality, let us pick up an example to demonstrate the codebook construction
method. We consider (np = 2,ng = 2) MIMO systems, which satisfy the condition
b <min(np,ng). Thanks to the cumulative distribution function (CDF), we firstly split
~ into N ranges, which are equal in probability. For example, we split v into N = 10
ranges, which are separated by the thresholds from 1 to 79, and each range corresponds
to 10% of distribution. Secondly, we select v = &;, which is the mean of the distribution
on each range [vi-1 Vilieqr,..,ny (56 Pr(y € [vi-1,&]) = Pr(y € [§,7]): 70 = 0 and
yn = 45°), to represent any < falling in the range. The Algorithm 1 is then applied to
find the optimal precoding matrix F¢, for the channel with v = ;. Finally, any channel
that has angle v;_1 <y <; will be associated with the precoding matrix F; = F¢,. The

process is repeated for all SNRs of interest to construct the codebook.

4.4.2 Simulation scheme

To illustrate the benefit of LCOPT precoder, we test the MIMO system with the same
system model considered in Chapter 3. The transceiver structure is depicted in FIGURE 3.1.
In order to compare with the max-dyi, precoder presented in Section 4.3.2 as well as
to avoid complexity for the codebook construction of GOPT [22] precoder, we consider
b = 2 data streams and 4-QAM modulation (M = 4) for the simulation. The optimized
MSEW mappings for F,1 and F,, provided in TABLE 3.1 are considered. Note that,
in general, the LCOPT precoder may use input ® = O , or © = Op__,,. However, for
the SNR range considered in this chapter, the proposed LCOPT precoder uses input
® = Op,,,, only (i.e. the constellation forms of LCOPT and F,., are similar in this
case). Therefore, the optimized MSEW mapping for LCOPT precoder is the same as the
one of Fye. Thus LCOPT and max-d,;, precoders only differ by their power allocation

matrix W.

4.4.3 Simulation results

In this subsection, we illustrate results for the case b = 2. A randomly generated 2 x 2

MIMO channel is considered for the Monte-Carlo simulation, i.e. each element of H is
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FIGURE 4.4: FER (dashed-lines) and BER (solid-lines) performances, all precoders are
used with Gray-M mapping.

distributed as H; ; ~CN(0,1). The equivalent channel H,, is then computed from H by
the transformation presented in Section 2.2. The frame length is set to 800 uncoded bits

and its components are interleaved by a random interleaver. The half-rate (13,15)

RSC code is used as FEC encoder.

octal”™

We firstly consider the conventional Gray-M mapping. FIGURE 4.4 shows frame-error
rate (FER) and bit-error rate (BER) performances of the system in FIGURE 3.1 when
the precoders are used with Gray-M mapping. The GOPT precoder is simulated by
using a predefined codebook, which is constructed by using the method proposed in
Section 4.4.1 with the codebook resolution N = 10. We observe that the proposed low
complexity sub-optimal LCOPT precoder has a similar error-rate performance compared
to the GOPT precoder. Note that the LCOPT slightly outperforms the GOPT in this
case because GOPT relies on the codebook. The LCOPT precoder also outperforms
max-dpin precoder in terms of both FER and BER performances. For example, at BER
= 107% and FER = 107#, the LCOPT precoder respectively achieves the gains of roughly

1 dB and 0.8 dB compared to max-di, precoder.

Secondly, we apply, at the MIMO symbol mapper, the optimized MSEW mappings of
max-dpi, and LCOPT precoders. The simulation results are shown in FIGURE 4.5. It is

observed that, assuming MSEW mappings, the LCOPT precoder achieves a gain of more
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FIGURE 4.5: FER (dashed-lines) and BER (solid-lines) performances, max-dui, and
the proposed LCOPT precoders are used with optimized MSEW mappings, GOPT
precoder is used with Gray-M mapping.

than 1.5 dB at BER = 1079 and roughly 1.5 dB at FER = 107 compared to max-dmin
precoder. In FIGURE 4.5, we present again the result of Gray-M-mapped LCOPT pre-
coder from FIGURE 4.4 to show the important role of MSEW mapping in error-rate
performance. Indeed, by using MSEW mapping, we observe that the proposed LCOPT
precoder significantly improves its error-rate performance compared to the case when
Gray-M mapping is used. The LCOPT precoder used with MSEW mapping achieves a
gain of roughly 4.1 dB at BER = 1078 and more than 4 dB at FER = 107% compared
to the LCOPT precoder used with Gray-M mapping. We would like to point out that,
as mentioned in Section 4.4.2, searching for the optimized MSEW mappings of GOPT
precoder is impractical since the MSEW search must be done for each channel realiza-
tion and SNR value. However, with a fixed constellation form (fixed ®), the MSEW
mapping for LCOPT precoder is fixed for all channel realizations and SNRs. This shows
the advantage of the proposed LCOPT precoder compared to the GOPT precoder.

We resort to extrinsic information (EXIT) chart [57] to account for the saturation in
terms of FER in the high SNR region in FIGURE 4.5. The EXIT chart also helps to
explain the gain of LCOPT used with Gray-M mapping compared to LCOPT used with
MSEW mapping at the SNR region before the turbo-cliff. Introduction to EXIT chart

can be found in Section 1.3.
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We exploit the channel v = 17.5°, which has been used in FIGURE 4.2, to plot EXIT chart
at SNR = 9 dB. The EXIT chart is shown in FIGURE 4.6. The dashed line represents
the EXIT function of decoder, while the solid lines are the EXIT functions of demapper
when different precoders and mappings are used. On one hand, we observe that, at SNR
= 9 dB, the EXIT function of LCOPT used with MSEW mapping has a higher ending
point I};(l) compared to the other solutions. This validates the performance gain of
LCOPT used with MSEW at this SNR (see FIGURE 4.5). Additionally, in case LCOPT
used with MSEW| since there is no intersection between the two EXIT functions, the
iterative receiver converges easily. Hence, in this case, the erroneous frames can result
from a few of erroneous bits. This accounts for the saturation in terms of FER (or, in
other words, the FER curve has reached its lower bound, which increases the gap between
FER and BER) as shown in FIGURE 4.5. On the other hand, at SNR = 9 dB, though
the EXIT function of max-dpy, is used with MSEW has a higher I}E(l) compared to
LCOPT used with Gray-M, the EXIT tunnel is however closed (early-crossing between
two EXIT functions). Thus, the error-rate performance of LCOPT used with Gray-M
is better than max-dpi, used with MSEW at this SNR. Note that, at higher SNR, the
EXIT tunnel in case max-dy, used with MSEW is wider. Hence, it avoids the early
crossing and converges to a higher I1(1) (i.e. achieves a better error-rate performance)

compared to LCOPT used with Gray-M. This is in accordance with the simulation shown
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in FIGURE 4.5.

We conclude from previous simulation results that among the precoders that we proposed
so far, whose designs took into account the outer FEC encoder and a turbo detection
at the receiver, the LCOPT performs the best in terms of error-rate. To complete our
study, we illustrate in FICURE 4.7 the influence of the FEC error-correction capability
on the performance. The encoded sequence length is 1600 bits. We consider three RSC
codes differing by their memory order and thus free distance (dy¢) and the corresponding
number of error events (e, ) with dy. The dy and e, are (dy = 5,€0, = 1), (df = 6, €y = 2)
and (df = 6,ee, = 1) for the memory order-2 (7,5)octqr, the memory order-3 (13,15)octal
and the memory order-4 (23,37),ct1 RSC codes respectively. We observe that the error-
floor is all the lower as the memory order is high. This is accounted for by the error
probability whose dominant term at high SNR corresponds to error events defined by a
decided sequence located at free distance from the original sequence. On the other hand
we notice that the water-fall happens in a SNR range all the more shifted to the left as
the memory-order is low. The EXIT chart accounts for it. Indeed the higher the free
distance, the flatter the EXIT function of the RSC code. Given an SNR value, the EXIT
function of the soft demapper is fixed and if the SNR value is low, the intersection of
both curves is all the more probable as the RSC EXIT function is flat. By using the
LCOPT, the error-floor happens at BER values lower than 107%, beyond the BER range
of interest with respect to the targeted applications. As a conclusion, for rather short
frames, we recommend to use the LCOPT precoder with low memory-order RSC codes

(vielding an additional advantage in terms of computational complexity).

4.5 Conclusion

In this chapter, we have proposed a novel low complexity optimized (LCOPT) precoding
algorithm to overcome the complexity of the globally optimized (GOPT) precoding al-
gorithm introduced in [22]. The proposed LCOPT algorithm uses a fixed unitary matrix
® taken from the solution of maximizing dp,in. The optimization of the power allocation
W is then carried out by using the BTLS algorithm. The LCOPT algorithm has a fast
convergence and avoids the initial selection of (wpq, Vpg), which has vital impact on the
convergence speed of GOPT algorithm. Assuming mappings on the received constel-

lation, searching for the optimized MSEW mapping of GOPT precoder is intractable,
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FicUre 4.7: BER performances, the proposed LCOPT precoders are used with opti-
mized MSEW mappings, b = 2, 4-QAM modulation.

since the constellation form is changed by each channel realization and SNR. However,
this drawback is easily solved by the proposed LCOPT, whose received constellation
form is fixed with ©. In order to compare with the computational time-consuming al-
gorithm GOPT over random channels, we performed simulations for the case b = 2 data
streams and 4-QAM modulation. We have proposed a method to construct precoding
codebook for GOPT precoder to avoid the search of optimal GOPT precoding matrix
for each channel realization and SNR. Simulations show similar performances of the
LCOPT and GOPT. Both outperform the max-dni, in case Gray-M mapping is used.
In addition, the results show significant error-rate performance improvement of LCOPT
precoder thanks to MSEW mapping. It is also shown that, assuming MSEW mapping,
the LCOPT precoder significantly outperforms max-dni, precoder. Finally, EXIT chart
analysis was provided to validate the simulation. As future work, the error-rate com-
parison between LCOPT and the generalized max-dpyin (DFT-max-dpin) precoder [21]
is needed. In addition, we propose to test LCOPT precoder with different encoders and
iterative receivers. It would be also interesting to optimize the choice of ® for b > 2 and

extend the constellation size per data stream.
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In the next chapter, we focus our study on precoder optimization assuming turbo equal-
ization at the receiver, which has lower complexity compared to turbo detection. With
turbo equalization, the received symbols are initially processed by an interference can-
celler, where they are decomposed into parallel sub-streams, before being converted into
soft-messages and entering the decoder. Therefore, the mapping on received constellation

is not essential for the turbo equalization scheme.



Appendices of chapter 4

A Proof of Proposition 1

Let us consider Fg = UFEFVL (|Fal% = 1). The channel mutual information directly

depends on the hermitian matrix W = FZHI,Hde. The eigen-decomposition of W yields
W = QAQT, (5.18)

where Q is a unitary matrix and A is a diagonal matrix with real positive values. One
can always find a diagonal matrix Sp with real positive values such that A = Hgf]%

Then, the hermitian matrix W reads
W = QErH2ERQ'. (5.19)

Thus, the new precoding matrix F/, = EFQT yields the same mutual information as the
one obtained when the precoding matrix Fy = UFZFVI‘, is applied. The matrix trace of
W reads

Tr{W} = Tr{H25%} = Tr{SpULH?UpZg} < TH{H2ZE?). (5.20)

Note that the equality holds only for a unitary matrix Up equal to the identity matrix

I. The proof of the inequality in (5.20) can be found in [69]. Let us denote by o; and &;
2

i

the diagonal elements of £g and Zp respectively. From (5.20), we deduce that 62 < o

fori=1,...,b. Hence, the power constraint of F/, satisfies the following inequality

IFal = Tr{E%} < Te{Zp?} = |FalF = 1. (5.21)

97
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In order to keep the unity power constraint, the new precoding matrix must be normal-
ized as F/] = aF/, where a = 1/|F/[% with o > 1 thanks to (5.21). Let us denote by
I(H,F})), I(H,F}) and I(H,F;) the mutual information obtained when F/, F/, and
F, are respectively applied. Note that I(H,F}) = I(H,F;). As o > 1, the following
expression holds

I(H,F) > I(H,F,) = I(H,F,) (5.22)

The equality holds only for Ug =T, which yields F/] =F/, =F; (i.e. =1, Q= Vg and
Sp=3p).

B An example of solving dw,, and dv,, from dw in case b =2

With b =2, from (4.6), the b x b unitary matrix © reads

cos w sinw (cosv — jsinv)
O = . (5.23)
—sinw (cosv — jsinv) cosw
From (4.7), calculation yields
—sinw cosw (cosv — jsinv
[6@] = ( ( )) 60.)
—cosw (cosv + jsinv) —-sinw
(5.24)
0 —sinw (sinv + j cosv)
+ .
sinw (sinv — j cosv) 0
9o A O )
Let us define H,; ¥~ = and denote K = A; - As. From (4.8), calculation
0 A
yields:
( -K sin(2w) K cos(2w) (cosv —jsiny))
ow = du
K cos(2w) (cosv + jsinv) K sin(2w)
(5.25)

0 —% sin(2w) (sinv + j cosv)
+ Ou,

—% sin(2w) (sinv - jcosv) 0
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Bi1 B _
where dw = pw®. Let us define B = . In this case, Bs; and Bis form a

5 By Bao

complex conjugate pair. Hence,

Bgl + Blg = 29{{321} (5 26)

= 2K cos(2w) cos véw — K sin(2w) sin v4,,

and

|B21 = Bia| = [723{ Ba1 }|
(5.27)
=17 (2K cos(2w) sin v, + K sin(2w) cosvd, ) |,

where R{a} and J{a} are the real and the imaginary parts of a respectively. Finally, the

four equations to solve for (d,,d,) can be formulated as

-K sin(2w) 0 B
Ksin(2 0 0w B
sin(2) o Bl IS I (5.28)
K cos(2w) cosv  —& sin(2w) sinv 5y R{Bo1 }
K cos(2w) sinv %sin(Qw) cosv J{Ba1}
C Find mutual information in function of W
Let us rewrite
Gk = (IHoFaen i +nl* ~ [n]*)/oy
= (el ,FIHIH,Fye, i + n'H,Fe,, . + ) FiHIn)/o?,
R — (5.29)
= %ejn s Wenm i + %{ieiﬂ i FLH]; n}‘
op "™ op "™
R
The singular value decomposition of W yields
11
W =UwXwVw =UwX X& Vw. (5.30)
——
R

1
Thus R = UwXZ,.






Chapter 5

Optimization of linear MIMO
precoding assuming MMSE-based

turbo equalization

The content of this chapter is mainly based on the following papers:

e Nhat-Quang Nhan, Philippe Rostaing, Karine Amis, Ludovic Collin, and Emanuel
Radoi. "Optimization of linear MIMO precoding assuming MMSE-based turbo
equalization". Submitted to IEEE Transaction on Wireless Communications, pend-

ing for review.

e Nhat-Quang Nhan, Philippe Rostaing, Karine Amis, Ludovic Collin, and Emanuel
Radoi. "Association and joint optimization of max-dmin precoder with MIMO
turbo equalization". In IEEE Global Communications Conference (GLOBECOM),
pages 1 - 6, 2015.

5.1 Introduction

The optimization of linear precoders for frequency domain minimum mean square er-
ror (MMSE) turbo equalization has been investigated in several papers [70-72]. How-
ever, a closed-form precoding matrix was not proposed. These designs relied on convex
programming algorithms to find power allocation strategies that minimize transmission
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power while maintaining acceptable error-rate performance. For time domain MMSE
turbo equalization, the authors in [73] applied a Hadamard precoding matrix and opti-
mized the equalization coefficients by assuming full channel state information (CSI) at
the receiver only, instead of optimizing the precoding matrix by assuming full CSI at

both transmitter and receiver.

In this chapter, non-frequency selective channels are still considered and the association
of multiple-input multiple-output (MIMO) linear precoder and MMSE interference can-
cellation (IC) turbo equalizer in time domain duplex closed-loop schemes is investigated.
We firstly propose a threshold adaptation for the max-dpyi, precoder in order to improve
the system error-rate performance when it is used with time domain MMSE IC turbo
equalization. The new precoder is referred to as max-dpyirmod precoder. Secondly, we
propose a novel MIMO precoder, which is targeted for low-complex outer forward error
correction codes assuming time domain MMSE IC turbo equalization at the receiver.
The proposed precoder is referred to as Genie-optimized precoder. Simulation results
show that the Genie-optimized precoded scheme outperforms the other selected refer-
ence precoded schemes in terms of error-rate. The results in this chapter can be applied
to communication systems that require low complexity, where low-complex FEC codes

are used.

The remainder of this chapter is organized as follows. Section 5.2 introduces the system
model along with main expressions of the low-complexity interference canceller, which
takes into account the associated MIMO precoder. A short introduction to extrinsic
information transfer (EXIT) chart for turbo equalization is also presented. In Section 5.3,
by assuming that the two precoding forms (F,; and Fieq) of max-dpi, precoder are
used at the transmitter, we propose a dynamic switching threshold adaptation to replace
for the conventional fixed switching threshold of max-dp, precoder. The precoder,
which uses the proposed SNR-dependent dynamic threshold to switch between F,q; and
Foctq precoding forms, is referred to as max-dpjrmod precoder. Simulation shows that
the max-dpirmod precoder significantly enhances the system error-rate performance
over random channels. In Section 5.4, we propose a new precoder that is particularly
well designed when turbo equalization is used at the receiver. Firstly, the optimization
problem at the initial state and at the optimum convergence state of turbo equalization
is defined, which solves the judicious selection of the three parameters involved in the

parameterized form of precoding matrix. Consequently, the optimized parameters define
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the novel Genie-optimized precoder introduced above. In Section 5.5, EXIT chart is
used to support the analytical results. The EXIT chart comparison between existing
precoders and the new one is also illustrated. In Section 5.6, simulated error rates are
presented to validate the theoretical analysis. Section 5.7 concludes the chapter and

gives some perspectives.

5.2 System model and preliminaries

5.2.1 System model

Let us consider a MIMO system with np receive, ny transmit antennas and b independent
data streams to be transmitted. We assume full-CSI at both the transmitter and the
receiver. A binary recursive-systematic convolutional (RSC) code is used to encode the
information data bits. The FEC codeword is then interleaved before being mapped to
Q-ary quadrature amplitude modulation (QAM) symbols. The modulated symbols are
converted into a b-dimensional symbol vector s. The vector s is then precoded by a
matrix F and transmitted through the MIMO channel. At the receiver side, the MMSE

IC turbo equalization, which has been introduced in Section 1.2.3, is investigated.

According to (2.16), the channel output y reads y = H,F4s + . For ease of reading,
let us recall in this chapter the parameterized form of F,4, which has been introduced

in (3.1), for b =2 as follows

costyp 0 cosf sinf)[1 O
Fd = . ) (51)
0 sing ] \-sinf cosf)\0 €
where 1 (0° < 1) < 90°) is linked to the power allocation on the eigen-subchannels, 6

(0°<6<90°) and ¢ (0° < ¢ <90°) allow us to respectively mix and rotate the symbols

onto the two eigen-subchannels.

A complete system including the equivalent model and the turbo equalization structure
is shown in FIGURE 5.1, where L/&,Lll3 and LlE respectively stand for the a priori, the a
posteriori and the extrinsic log likelihood ratios (LLRs) of the SBC, while the equivalent
notations for the BCJR soft decoder are Li, Ll% and L]%].
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FIGURE 5.1: Precoded turbo equalization system.

5.2.2 MIMO precoder for turbo equalization

The turbo equalization principle as well as its structure are detailed in Section 1.2.3.
We apply herein the derivation results from Section 1.2.3 while taking into account the
precoder at the transmitter. Let us denote A =H,F;. We then deduce from (1.30)
that A is equivalent to a new channel matrix (see FIGURE 5.1). Hence, by applying the

equivalent channel matrix A to (1.42) and (1.42), we respectively obtain
25t 2 i\
Wi =05 A (B - UéA:,kA:,k) 7 (5.2)

and

Qi: = Wi . A-W; A e, (5.3)

where ey, is the k" row of I,. A. ) and Ay . respectively denote the k™ column and &P

row of A. We also recall from (1.48) that the IC output can be modeled as follows
2k = Sk + &k (5.4)

where £ is independent from s, has zero mean and variance ng =02u,(1 - py). Note
that, throughout this chapter, we refer to z as the IC output while y denotes the virtual

channel output.

5.2.3 EXIT function of turbo equalizer

In this chapter, we use extrinsic information transfer (EXIT) chart, which has been
introduced in Section 1.3, to analyze the convergence behavior of the turbo equalizer.

In the particular case when turbo equalizer is used at the receiver, one component in
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FIGURE 5.2: EXIT chart of turbo equalization vs. the real trajectory (obtained from
simulation) for Channel A, SNR = 10 dB, 4-QAM and (13,15)-RSC code.

the EXIT chart is the soft-input soft-output FEC decoder (with input L}4 and output
L) and the other one contains the BSC and SBC revolved around the MMSE-based IC
(with input L% and output L%) as shown in FIGURE 5.1. The mutual information (MI)
extraction as well as the log-likelihood ratio (LLR) generation are carried out according
to the method described in Section 1.3. Parameters of the J-function are taken from [74].

We consider the half-rate RSC defined by its generator polynomials in octal form (13,15).

FiquRrE 5.2 shows the EXIT charts of turbo equalization with spatial multiplexing and
max-dpi, precoder used at the transmitter. The EXIT charts are computed for Chan-
nel A (defined in Chapter 3 with v =8.3°) at SNR = 10 dB. The trajectory is matching
with the EXIT functions.

5.3 Association and Joint Optimization of max-d,,;, Precoder

with MIMO Turbo Equalization

5.3.1 Analysis

Let us denote by I}(1) the extrinsic MI at output of the SBC at the convergence when

I}l = 1. As shown in FIGURE 5.2, the I};(l) of precoder max-dpy;, is higher than the
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FIGURE 5.3: I} (1) versus ~ at different SNR.

spatial multiplexing one. It predicts that the max-dy, precoded system has a lower
error-floor [75] . In addition, the opening of tunnel between the two EXIT functions
corresponding to max-dpi, s wider, which means that the turbo equalizer with max-dpin
converges faster than with the spatial multiplexing. Moreover, the SNR lower-bound,
which avoids early crossing of EXIT chart, is lower with the opening of tunnel. These
properties show the advantages of using precoder in association with the outer code and

a turbo equalization applied at the receiver side.

Recall from Section 2.3.2.2 that the threshold g, which is used to switch between F,q
and F,qq of the precoder max-dyi,, was selected so as to maximize the dy;, of the
received constellation points for the uncoded systems. In this subsection, we focus on
the convergence state of the turbo equalization to show that performance corresponding
to the max-dpin precoder can be further optimized by selecting a new threshold for each

SNR such that I},(1) is maximized.

F1GURE 5.3 shows the plots in terms of I}J(l) of both F,1 and F e, for all values of +,
at each SNR. Note that p? = 1 in this case. The interest of this figure is threefold. First,
it shows that, using the original threshold 7o, there is a falling gap g between the I}(1)
of F,1 and the one of F,eq, i.e. the I}E(l) at the v > vp is smaller than the counterpart,
which reduces the performance. Therefore, we need to select a new threshold ~, (see
the bold circles in FIGURE 5.3) that takes into account the outer FEC code as well as
turbo equalization assumption. Second, we found that +y, is a function of SNR satisfying

Yen > Yo- Third, we obtain that the falling gap g is very small at the very high SNR, i.e.



107 Chapter 5. Precoder design for turbo equalization

45 ‘ ‘
Fitting function Yin
O  Newth
208 ew res:olds
== =y,=17.28

w
(6]
T

/function Yin

y (degree)
w
o

25f
20t
yo-——-——— ———————————— PR
15 L L L L L L
2 4 6 8 10 12 14 16
SNR (dB)

F1GURE 5.4: The new threshold = in function of SNR.

the difference in terms of I};(l) between the original threshold ~ and the new one is not

significant.

FiGURE 5.4 shows the fitting curve as a function of SNR, which is obtained by plotting the
new thresholds defined in FIGURE 5.3 for many different SNRs and fitting the obtained
values with the least-squares method [76, Chapter 6|. Similar to the falling gap g, the
difference between 7y and the new = is inversely proportional to the SNR. This is in
accordance with the simulation results given in next subsection. The obtained fitting

function v, (x) is a cubic polynomial, which reads
Ve () = g + 3z + anz® + a2, (5.5)

where z is SNRin dB, o = 8.66524x1073, avg = —0.19457, a3 = —0.50131 and oy = 42.15576.
The 74, (x) is measured in degree and the fitting is obtained for x € {2,...,16}. For the
region x > 16, we fix 1, = 20°. The region x < 2 is not interesting due to the early

crossing in the EXIT chart of the turbo equalization.

In summary, instead of using the static threshold vy to switch between F,1 and F,eq
as max-dpi, does, we propose the new threshold ~, for each SNR as presented in (5.5).

The new precoder, that uses v, is now referred to as max-dy;-mod precoder.
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Ficure 5.5: BER (dashed lines) and FER (solid lines) performance of the
max-dp,i, and max-dy;rmod precoded turbo equalization in a 2 x 2 MIMO system.

5.3.2 Results

In this subsection, we provide simulation results to illustrate the advantage of max-dpyjrmod
compared to max-dpyi, over random channels. A randomly generated MIMO channel is
considered for the Monte-Carlo simulation, i.e. each element of H is distributed as
H;; ~ CN(0,1). The half-rate (13,15),.,-RSC code is used as FEC encoder. The
frame length is set to 2000 uncoded bits and its components are interleaved by a random

interleaver. We consider the instantaneous received SNR as defined in Chapter 3.

Let us consider a MIMO system with ny = 2 transmit and ng = 2 receive antennas
(MIMO 2 x 2) configuration. FIGURE 5.5 shows the bit-error-rate (BER) performance
of the turbo equalization when the spatial multiplexing, max-dpyi, and max-dpirmod
precoders are used at the transmitter side. We observe that, in case of an outer FEC with
turbo equalization at the receiver, the MIMO precoder improves the system performance.
More precisely, the max-dpi, precoder achieves a gain of 1.5 dB at BER = 1072 and of
roughly 3.5 dB at BER = 103 compared to the spatial multiplexing. The gain is even
larger in the high SNR region, which is in accordance with the analysis in FIGURE 5.2,
since the MI at the convergence state, I};(l), of max-dpiy is higher than the one of spatial

multiplexing.
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Moreover, it is shown from FIGURE 5.5 that, by using the proposed threshold vy, the
max-dmirmod precoder respectively achieves a gain of roughly 0.8 dB and of 1 dB at
BER = 1073 and BER = 107 compared to max-dmin precoder. In addition, the perfor-
mance of max-dpin and max-dpyirmod precoders are close to each other at the very high
SNR (e.g. max-dyirmod achieves a gain of roughly 0.5 dB at BER = 1077 compared to
max-dpin ). This confirms the conclusion drawn from Section 5.3.1 that, at the very high

SNR, 4, is close to vg. Similar observations are obtained in terms of frame-error-rate

(FER).

We have proposed in this section the new threshold 7y to maximize I}E(l) by using
the two fixed forms of max-dni,. In the next subsection, we will propose a completely
new form of the precoding matrix Fy. The new precoder aims to maximize the mutual
information between channel input s and the symbol y at output of the equalizer. To
this end, analytical results from the next section show that we need to maximize I3 (1)
and I1,(0) respectively. As the maximization of I(1) is substantial, it further accounts
for the significant advantage of the max-dyirmod compared to the max-dyi, precoder

as shown in this section.

5.4 Optimization of the defining precoder parameters: Genie-

optimized precoder

5.4.1 Problem statement

As shown in FIGURE 5.1, the input LLRs fed to the FEC decoder are calculated from
the output z of the interference canceller. Therefore, the MI I(z,s) plays an essential
role on the system error-rate performance. In addition, we obtain directly from (1.40)
that the MI between channel output y and the corresponding input s (channel capacity)
is different from I(z,s), i.e. I(y,s) # I(z,s). This relationship motivates our quest for
a precoder that maximizes I(z,s), since GOPT precoder (see Section 2.3.2.1), which is

the globally optimal precoder in the literature, maximizes the channel capacity I(y,s).

Since z takes into account the a priori information (8) from FEC decoder, it is infeasible
to find a precoder that globally optimizes I(z,s). However, the chain rule of mutual

information enables to decompose the symbol-wise MI into a sum of M bitwise MIs, which
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allows us to write I(z,s) = Mil I(z,s|L other bits known) [54, 77], where M = (log, Q)®
is the number of bits per mLazgped symbol. On one hand, ten-Brink has also shown in
[77] that I(z,s|no other bit known)(~ I(z,s|S = 0)) and I(z,slall other bits known)(~
I(z,s[s = s)) respectively correspond to the starting (15(0)) and ending (I},(1)) points
in the EXIT function. On the other hand, the results in [75] show that maximizing
the ending point of the equalizer EXIT function results in a low error-floor of turbo
equalization, while maximizing the starting point of the equalizer EXIT function not
only leads to a fast convergence but also shifts the turbo-cliff region to a lower SNR.
Indeed, it is apparently shown in FIGURE 5.2 that maximizing I3 (1) avoids the early
intersection of the two EXIT functions at the convergence (i.e. it forces the early-crossing
point in Fig. 5.2 to a higher position) and maximizing I5(0) gives a good initial point

for the trajectory, which helps to avoid the intersection at bottleneck.

In summary, we propose in this section a precoder that maximizes I(z,s|S = s) (I(z,s)
at the optimum convergence state) and I(z,s|s = 0) (I(z,s) at the initial state). The
optimization is split into two steps. First, the priority is to maximize I(z,s|S = s) in
order to minimize the error-floor. Thanks to this step, the first two parameters (1, 6)
in (5.1) of Fy are found. Second, with the values of (1,6) found in the first step, we

optimize the last parameter ¢ in (5.1) of Fy to further improve I(z,s|S = 0).

5.4.2 Optimizing /(z,s|S=s)

In this subsection, we firstly prove that maximizing I(z,s) leads to jointly maximizing
the SNRs on all sub-streams of the IC output. Subsequently, we solve the thus defined

optimization problem by considering the optimum convergence state.

Let us assume that the sub-streams at the output of IC are independent, then I(z,s) =
Zb: I(zk, sk). Hence, maximizing I(z,s) is equivalent to jointly maximizing I(zx, sk),
W:Irllere ke[l,...,b] and s is the Q-ary modulated symbol on the k" sub-stream. By
applying the same reasoning as in [68| to the equivalent single-input single-output sub-

stream expressed in (5.4), a lower-bound of I(zg, si) can be formulated as

1 & Hi|5m—3n|2
s (o) = lom @ = (5 1) - 5 X log | Yoo HEZZTL | o)
m=1 n=1

2
20'€k
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Thus, in order to maximize I(zg, k), we maximize the lower bound I p(zg, si), which

2
connects to maximize :T’“, where Jgk = 02 (1 - pg). From (1.49), this is equivalent to

maximize the SNR py él;l the sub-stream. Note that the same conclusion is obtained
when we maximize the analytical EXIT function on each sub-stream. Indeed, from [74],
the EXIT function on each sub-stream is given by Igj ~ (1 - 2‘H1(4pk)H2)H3 in case of
complex-valued modulation. With 4-QAM modulation, H; = 0.3073, Hy = 0.8935 and

Hs =1.1064. Therefore, maximizing Ig ; is also equivalent to maximize py.

Let us step forward to jointly optimize pg, k € [1,...,b]. Recall from (1.54) that, with

2
ZeAl A
s=8§,B= 0'72711,, W = 072’2;, and & depends only on 7. The SNR thus equals
1+Z5 AT AL
n
0'2 +
Pi = _;A kA:,k- (57)
o2
n
. o1 0 0% cos?p 0 .
From (5.1), with H, = , we have AAT = . Expansion of
0 o9 0 o2 sin? )
(5.7) yields
_ Ug 2 2 2 .2 204 52 in?
p1= ;( (07 cos® ¢ — 03 sin® b)) cos® 0 + o3 sin ¢)7 (5.8)
n
_ 03 2 2 2 2 in20 + o2 sin2
P2 = ;( (01 cos” 1 — o5 sin w) sin® § + o3 sin 1/1). (5.9)
n

The joint maximization of (p1,p2) is considered as a multi-objective optimization without
any special expectation for the solutions. Therefore, a non-preference method [67] is

applied. The problem of finding (v, 0) that jointly maximizes (p1,p2) becomes

(¢",07) = arg;nin (B(,0) = (p1 = PI™)? + (p2 - P5™)?) , (5.10)

max

where p;*®* is the maximum value of p; over the set F, defined by 0° < 1 < 90° and
0°<6<90°.

2
Lemma 5. The maximum value of p; and p2 over the set F are p|"®* = p5'®* = Z—%a%.

Proof. See Appendix A. O
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Exploiting (5.8), (5.9), Lemma 5 and trigonometry results, the expression of U reads

4
O(y,0) = %[(cos 0 + sin’ 0) (0 cos* ) — o3 sin’ ) +207 sin® (o7 - a%sin%b)].
"

(5.11)

The optimization problem (5.10) can be solved by searching for (1, 6) that satisfy the
first and second order conditions for a local minimum. Partial derivatives of U with

respect to 6 and ¢ yield

4

(1/1, ) = —Z—%sln(éle) (01 cos® ¢ — o5 sin 7,[))

o

G000 - 7 sin(20) (2004 + o) sin y 20080 + o) sin(20) (07 - (o1 + oD )]

(5.12)

The set of points (1,0) of F that satisfy the first order conditions for a local minimum
(VU = 0), denoted by F*, equals

F* =1(0,0),(0,45%), (0,90%), (90°,0), (90°,45°), (90°,90°), | arcsin ——=— 0|,
o1 +03)

arcsin &, 90° ] ;.
(0] +03)

(5.13)
Second order partial derivatives of U with respect to 6 and ¥ yield
0?0 ol . 2
W(w’ ) = —4; cos(40) (0’% cos® 1 — o3 sin” V),
n
80 U;L 2, 2\ 2 2 2 2y 2 2 2 4, 4y i 2
8—1/)2(7,&, ) = 2; cos(2¢)[ (o7 + 03) sin”(20) (01 - (o7 + 05)sin w) - 20705 +2(07 + 05 ) sin“ ]
n
4
o; . .
- U—Z 31n2(2w) [(0% + 0'%) sm2(29) - 2(0‘11 + O’%)] ,
7
4
US
898@& = (02 + 03) sin(46) sin(2¢)) (01 cos® ¢ — o5 sin ¢)
n
(5.14)

The only point of F* that satisfies the second order conditions for a local minimum
(the Hessian matrix V20 is positive-definite) is (¢,6) = (0°,45°). As U is convex, the

minimum is global.
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5.4.3 Improving I(z,s|§=0)

At the initial state, where 8§ = 0, the equalizer coincides with a MMSE linear equalizer.
The output of IC reads
zp = Wy = WAs+ Wnp . (5.15)

—

€
Let us assume that & ~ CN(O,J?Ib). We denote by S = {s(l), s ,S(N)} the set
of all possible values of the symbol vector s, where N = Q°, in which Q is the size of
Q-ary QAM alphabet and b = 2 is the number of data streams. By applying directly [68],
a lower bound of I(z,s|S = 0) for the MIMO equivalent channel is given by

1 1 Qb Qb WA S(k) —S(Z) 2
ILB(Z07S) ZbIOgQQ—(E—l)b—@ 210g2 !Zexp _” ( 202 )H . (516)
k=1 (=1 13

Thus, to maximize I(z,s|S = 0), we maximize the lower bound I75(zg,s) by maximizing
WAL ED |2, where () = (l/fk’e) yék’g))T = s —s(®) is the difference vector between
the vector symbols. Up to this step, we fix (1,0) to the optimum values obtained in
Section 5.4.2, i.e. (¢ =0°6 =45°), and we aim to find the best value for ¢. With § = 0,
we deduce W = agAT (UEAAJr + 0'72715)_1. Hence, with (¢ = 0°,60 = 45°), calculation yields

2 2 2 2
(L 4 g2 SO (60 i
WAL )2 = (2—5)) ( ! 2 . (5.17)

2 4 .
91 . 2\2 _ 91 (k,0) —i¢ ,  (k)0)
(5 + ag) 1 vy e 4 vy

Since |(V§k7€) + Vg(k,f)ei¢)|2 = |(V£W)€_i¢ + I/z(u))‘Q, the optimum value of ¢, referred to as
®opt, can be found by

¢opt = argmax (dfn?n) ) (518)
0°<p<90°

dIC

. k¢ kJ0)
where d; =Iili? uf ) +y2( ’ )e“z’.

a0 ()

Lemma 6. For any symmetric QAM modulation, the searching interval of ¢ can be

restricted from 0° < ¢ <90° to 0° < ¢ < 45°.

Proof. See Appendix C of Chapter 3. O
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FIGURE 5.6: The extrinsic MI of IC at optimum convergence state (I’ = 1), i.e. I5(1),
¢ =30°, Channel A, SNR =11 dB, 4-QAM, ¢ and 6 are in degree.

Since finding a complete analytical solution for ¢ is intractable, up to this step, we resort
to numerical optimization to look for ¢. We consider 4-QAM modulation and the search-

ing range is limited to 0° < ¢ < 45° thanks to Lemma 6. Numerical search over all possible
1C

symbol vectors shows that d,;,

i . \T . \T . T . \T

pairs of symbol vectors: {(% ’\1/;) ;(’\1/; 1—\;%) } and {(’\1/; ’\1/;) ,(1—\;% ’\1/*5’) } The
former couple has difference vector v = (\/§ - \/§)T, which yields d*9(¢) = 2/T-cos
referred to as dy. The latter couple has difference vector v = (—\/§+i\/§ —i\/i)T,

which yields d®9(¢) = \/6 — 4(cos ¢ + sin @) referred to as do. The dL§ is equal to d;

can be obtained by considering only the two following

for 0° < ¢ < 30° and to ds for 30° < ¢ < 45°. The optimum value of ¢, which maximizes
dIC

ins 1S obtained at the intersection between d; (increasing function in ¢) and da (de-
creasing function in ¢), which yields ¢op = 30°. Therefore, we propose to take ¢ = 30°.
The proposed precoder with optimized defining parameters (¢ = 0°,0 = 45°, ¢ = 30°), is
referred to as Genie-optimized precoder. It should be noted that the parameters of this

precoder are fixed, which makes its design and practical application easier.



115 Chapter 5. Precoder design for turbo equalization

5.5 Validation through EXIT chart

5.5.1 Comparison with the theoretical results

To check the consistency of the proposed solution, we fix ¢ = 30° and make (1), 0) vary.
We analyze the mutual information at the optimum convergence state in FIGURE 5.6 for
SNR = 11 dB. The maximum value of I}, is obtained at (¢ = 0°,6 = 45°), which confirms
the theoretical calculations. We also would like to point out that there is no significant
difference in terms of I}E(l) when other values of ¢ are considered, since ¢ only shows

its influence at the starting point I,(0).

5.5.2 Comparison with the existing precoders

In this subsection, we compare the proposed precoder to other selected existing precoders.
The analysis is carried out through EXIT chart comparison. We consider the Channel A
(v =8.3%) and Channel B (v = 30°) as already introduced in Chapter 3.

The two best precoders that give the high channel capacity I(y,s), which are GOPT
(see Section 2.3.2.1) and max-dmin(see Section 2.3.2.2) precoders, are considered for
comparison. Let us recall that the GOPT precoder gives the best capacity over the
complex-valued MIMO channels since it aims to globally maximize the mutual infor-
mation between the finite alphabet input and the corresponding channel output. The
max-dmin precoder can also achieve a channel capacity close to the GOPT precoder one at
high SNR. In the case of two data streams transmission (b = 2) and 4-QAM modulation,
the max-d,;, precoder shows a better uncoded error-rate performance with maximum
likelihood detection than the other precoders such as MMSE, WF, MWF, max-SNR and

minimum BER. The parameters of max-dp,i, applied to (5.1) are reminded in TABLE 5.1.

Precoder P 0 ¢
Genie-optimized 0° 45° 30°
V2-1 o o

maedy Focta(y > v0) arctan ( ran ) 45 45
Fri (7 <0 = 17.289) 0° 27.37° | 15°

TABLE 5.1: The defining parameters of max-d,;, precoder and the proposed Genie-
optimized precoder.

The EXIT charts for the considered precoders over Channel A and Channel B are given
in FIGURE 5.7 and FIGURE 5.8 respectively. We notice that the EXIT functions of
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FiGure 5.7: EXIT charts of IC using the considered precoders at SNR = 10 dB,
Channel A, 4-QAM and (13,15)-RSC code.

GOPT and max-dy;, precoders are close to each other. This is in accordance with the
conclusion in [68] about the similarity between GOPT and max-dp;, at high SNR. More
importantly, it is observed that the EXIT function of IC corresponding to the Genie-
optimized precoder converges to a much higher I}E than the others, which predicts a better
error-rate performance at the error floor. This is also demonstrated in FIGURE 5.9. In this
figure, the extrinsic MI at the ending points of the EXIT chart, d.e. I}, at I} =1 or I5(1),
are plotted for all of possible channels, which are represented by the parameter . Recall
that, for max-dy, precoder, the threshold to switch between F,.1 and Fetq is g ~ 17.28°.
As observed, the EXIT charts always predict significant gains (in terms of I(1)) of
the Genie-optimized precoder compared to the others. This confirms the theoretical
calculations done in Section 5.4. In addition, it is apparently observed from Fig. 5.9 that
the Genie-optimized precoder (which has only one precoding form) is represented by one
stable curve, and the max-d,;, precoder (which has two precoding forms) is represented
by a curve combined from two different stable parts separated by vy (see Table 5.1).
While the GOPT precoder, which is optimized by running an algorithm for each channel
realization and SNR, does not have fixed forms. It has different precoding forms for

different gammas and SNRs. Therefore, the plot of GOPT in Fig. 5.9 shows a fluctuated
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FiGure 5.8: EXIT charts of IC using the considered precoders at SNR = 10 dB,
Channel B, 4-QAM and (13,15)-RSC code.

curve. This shows a high impact of the precoding form represented by the triple (1,6, ¢)
on I3(1) (i.e. on the error-rate performance at the error-floor), which is optimized by

the Genie-optimized precoder.

In Fig. 5.9, we also present the plot for max-dpirmod precoder proposed in Section 5.3.
It is observed that, thanks to the new threshold v, the values of I5,(1) in the interval
Yo < v < Y4, is improved by using the max-dyirmod precoder compared to the max-dpyin
precoder. One should note that, in Section 5.3, we proposed the max-dpjrmod precoder
by keeping the two precoding forms (F,; and Fiea) of max-dpyiy and introduced the
threshold 7, to improve I}J(l). In this section, we completely optimize the parameterized

precoding form of Fy (see (5.1)) to maximize I5(1) and IL(0) respectively.

We would like to point out that, though EXIT charts in this subsection are plotted
at SNR=10 dB, similar observations are obtained at other SNR values. Thanks to the
EXIT chart analysis, it is predicted that the proposed Genie-optimized precoder achieves
a better error-rate performance compared to the selected reference precoders at the SNR.

values that are high enough to avoid intersections at bottleneck of the EXIT charts. Our
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FIGURE 5.9: I} at I =1 versus the angle v at SNR = 10 dB and 4-QAM.

simulation results are in excellent agreement with these analytical results and will be

presented in Section 5.6.

We conclude this section by mentioning that maximizing I5(1) only results in significant
error-rate performance gains when low-complex FEC codes are used. Because the slope
of the EXIT function of FEC decoder is flatter with strong FEC codes than weak (low-
complex) FEC codes, as a result, the decoder is able to reach a low error-rate (i.e. to
reach 1125’ =1) even at a lower Ii. In contrast, since the slope of the EXIT function of FEC
decoder is steep with low-complex FEC codes, the decoder needs high a priori informa-
tion from equalizer to reach the low error-rate. In other words, it requires a high 1 }3(1) to
avoid early intersection, which leads to high error-rate. Therefore, the proposed Genie-
optimized precoder is suitable to be used in the applications that need a low-complex

FEC code, which could be crucial in the future machine-to-machine communications.

5.6 Simulation results and discussion

We now provide examples to demonstrate the advantages of the proposed precoder in

terms of error-rate performance. Recall from Section 5.4 that we characterize a channel
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FIGURE 5.10: BER of Channel A, 4-QAM and (13,15)-RSC code.

by the angle =y, where 0° < v < 45°. As in Section 5.5, we consider Channel A and
Channel B to illustrate the two precoding forms of the max-dyi, precoder. We complete
the analysis by simulations over randomly generated channels to cover all possible values
of 7. The half-rate (13,15)-RSC code is used in a ny = 2 transmit and ng = 2 receive
antennas MIMO configuration. The frame length is 2000 uncoded bits. The Monte-Carlo
simulations stop when 100 error frames have occurred with the condition that at least

5000 frames have been generated. The number of iterations is fixed to 10.

Channel A with v = 8.3° is considered to illustrate the case v < 4. Note that with v = 8.3°
max-dmin uses only the strongest subchannel o1. The GOPT algorithm also yields the
optimal precoder that uses only the strongest subchannel. FIGURE 5.10 shows the BER
performance of the different precoders on this channel. The performances of max-dpin
and GOPT precoders are close to each other over this channel. The Genie-optimized
precoder achieves a gain of almost 2 dB compared to max-dpyi, at BER ~ 1075, Note
that, in case v < 79, max-dpyiy uses the F,; form. In addition, the optimum convergence
state of turbo equalization referred to as the genie bound, with the Genie-optimized
precoder used at transmitter, is also simulated. The bound is obtained by providing

both SBC and BSC blocks with the maximum a priori LLRs, i.e. LY = (26-1)K, where
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FIGURE 5.11: BER of Channel B, 4-QAM and (13,15)-RSC code.

C is the bit-interleaved coded binary sequence and K is a large-enough positive constant.
The error-rate performance is directly measured at the first iteration. We can see from

FiquRrE 5.10 that the Genie-optimized precoder converges close to its lower bound.

Channel B with « = 30° is considered to illustrate the case v > 49, where max-dp,;, uses
Foctq form. With the fixed precoding form, the Genie-optimized precoder continues to use
only the strongest subchannel 1. While, in contrary to the solutions for Channel A, the
max-dpin and GOPT (in the considered SNR range) precoders use both subchannels o
and oo. This shows the difference in terms of precoding strategies between the proposed
Genie-optimized precoder compared to the max-dyi, precoder (asymptotically maximizes
the channel capacity at high SNRs) and the GOPT precoder (maximizes the channel
capacity). FIGURE 5.11 shows the BER performance of the considered precoders. The
Genie-optimized precoder achieves a gain of roughly 1 dB at BER = 107% compared to
max-dmin and GOPT. At low SNR, the GOPT and max-dp,, perform slightly better than
Genie-optimized. This is in accordance with the EXIT chart analysis done for Channel B
(see FIGURE 5.8), which predicts the early intersection at the bottleneck of the chart for
Genie-optimized precoder at low SNR. By comparing Channel A and Channel B, it can

be concluded that the advantage of Genie-optimized precoder is more significant over
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FIGURE 5.12: Average BER over random channels, 4-QAM and (13,15)-RSC code.

the low angle 7 channels (i.e. 09 < 07).

Randomly generated channels (with h;; ~ CN(0,1), where h;; is element of the 2 x 2
channel matrix H) are considered in this subsection to affirm the advantage of Genie-
optimized precoder for any value of . By taking the average over randomly generated
channels, the performance curve in Fig. 5.12 shows the average error-rate over . As ob-
served, GOPT precoder performs slightly better than Genie-optimized precoder at low
SNR. The explanation for this very little gain is similar to the one done for Channel B,
since the results for random channels are averaged over different values of v including the
high ~ channels such as Channel B. More importantly, the proposed solution achieves a
gain of roughly 4.5 dB at BER = 1072 and 2 dB at BER = 107% compared to spatial mul-
tiplexing and max-dp, respectively. Compared to GOPT, the proposed Genie-optimized
precoder achieves a gain of roughly 1 dB at BER = 10~7. Note that the Genie-optimized
precoder has significant advantage in terms of computational complexity compared to
GOPT precoder. Because Genie-optimized uses a fixed SNR-independent closed-form,
instead of using the complex SNR-dependent algorithm to find precoding matrices as in

the case of GOPT.

We observe that, over random channels, GOPT precoder achieves a significant gain
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FIGURE 5.13: Average FER over random channels, 4-QAM and (13, 15)¢t0i-RSC code.

compared to max-dmi, precoder, which is not observed over the fixed channels A and B.
This can be explained by the significant differences in terms of I} (1) between GOPT
and max-dyi, precoders in the interval 79 < v < v, (see Fig. 5.9), where, over random
channels, the random angle v can be distributed in. In contrast, the differences are not
significant at the s of Channel A and Channel B. The performance of max-dyjrmod
precoder, which achieves a gain compared to the conventional max-d,i, precoder, is
plotted again for comparison. Similar observations are obtained in terms of FER as
illustrated in Fig. 5.13. Note that, in terms of FER, the proposed Genie-optimized
precoder always outperforms the other reference precoders (even at low SNRs). It early
reaches the Genie-bound and exhibits significant performance gains compared to the

other ones.

5.7 Conclusion

The association of MIMO linear precoder and turbo equalization is investigated in this
chapter. We propose a novel convergence-based SNR-dependent threshold for the two

working modes of max-dpyi, precoder (referred to as max-dpirmod precoder). More
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importantly, a new Genie-optimized MIMO linear precoder is proposed in this chapter
under the assumption of an outer FEC encoder and turbo equalization at the receiver.
In contrast to the conventional precoders that maximize the mutual information (MI)
between finite alphabet input and the corresponding output over the precoded MIMO
channel (channel capacity), the proposed precoder aims to maximize the MI between the
finite alphabet input and the corresponding output of the equalizer. The optimizations
were carried out at the convergence state and the initial state of the turbo equaliza-
tion, which respectively correspond to the ending and starting points in the EXIT chart.
Thanks to the EXIT chart analysis, we have shown that the extrinsic MI at the conver-
gence state, i.e. 15(1), corresponding to the new precoder, is higher than I}(1) achieved
by the other precoders. This confirms the theoretical analysis. Simulations show high
improvement in terms of error-rate of the MIMO scheme at high enough SNR thanks to
the new precoder, which appears to be a promising solution for modern MIMO communi-
cations whose applications require low-complex FEC codes. The increase of b, however,
is necessary for the high data-rate purpose. In fact, in large scale MIMO systems [78],

the constraint min(ny,ng) > b for a high value of b can be easily fulfilled.

As mentioned in Section 1.1, NB-LDPC codes show advantages compared to its binary
counterpart. Therefore, the association of NB-LDPC with MIMO systems is interesting.
The main challenge in the NB-LDPC encoded systems is the high computational com-
plexity at the receiver (mostly spent at the decoding procedure due to the high-order
GF). In the next chapter, we investigate the NB-LDPC encoded MIMO systems. We
show that the computational complexity at the receiver can be significantly reduced by
mapping multiple lower-order GF symbols onto one MIMO symbol instead of mapping
one high-order GF symbol. We then propose to apply MIMO precoder at the transmitter
and turbo detection at the receiver to compensate for the performance loss due to the

multiple mapping.






Appendices of chapter 5

A Proof of Lemma 5

From (5.8), the problem of finding (4, ) that maximize p; becomes
(¢°,0°) = arg max (Z—g [(U% cos? 1) — o2 sin? w) cos? 0 + o2 sin” w]) (5.19)
F "

Recall that the set F is defined by 0° < ¢ < 90° and 0° < 8 < 90°.

Partial derivatives of p; with respect to 6 and v yield

2
o G_;Smw[ag_(gfmg)coee], (5.20)
o
n
op1 a? : 22 2 2
0 - —2811129(0'28111 1 — 07 cos 1/1). (5.21)
o
n

The set of points (1,0) of F that satisfy the first order conditions for a local maximum
(Vp1 =0), denoted by F°, equals

F° ={(0,0),(0,90%),(90°,0),(90°,90%)} . (5.22)

Second order partial derivatives of p; with respect to 6 and ¢ yield

(?;—1521 = 2;—‘3 cos 21) [ag - (a% + Jg) cos? 0], (5.23)
"

% = 2Z—§cos20(ag sin® ¢ — o7 cos® ¥), (5.24)
"

88;’;19 - Z—j;sin 20sin 2 (o7 + 03) . (5.25)
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The only point of F° that satisfies the second order conditions for a local maximum is
2
(¢,0) = (0,0), which yields p"** = Z—%a%. The same optimization is applied for py, which

yields p§®* = Z—EU% at (¢ =0,60=90°).
n



Chapter 6

Turbo Detection of NB-LDPC
Codes in Precoded MIMO Systems

The content of this chapter is mainly based on the following paper:

e Nhat-Quang Nhan, Philippe Rostaing, Karine Amis, Emanuel Radoi, and Y. Rosa
Zheng. "Turbo detection of NB-LDPC codes in precoded MIMO systems" Sub-

mitted to IFEFE Transaction on Vehicular Technology, pending for review.

6.1 Introduction

This chapter investigates the association of NB-LDPC codes with MIMO linear precoders
assuming non-binary turbo detection at the receiver. Let us firstly recall that, in the
conventional binary encoded MIMO communications, the codeword bits are grouped
and mapped onto @Q-ary modulated symbols. Then, a serial-to-parallel conversion is
applied to convert these symbols into MIMO symbol vectors, which define a MIMO
constellation. The size of this constellation is therefore equal to Q°, where b is the
number of data streams (layers) in the MIMO system. In contrast to this conventional
binary mapping, the researches reported in |79, 80] show that the GF order of NB-LDPC
codes can be chosen to be equal to the MIMO constellation size. Subsequently, each GF
symbol is directly mapped onto a data symbol vector. This mapping is convenient for
the association of NB-LDPC in MIMO communications and we refer to it as one-by-one
mapping.
127
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Modern wireless communications, especially the fifth generation (5G) cellular networks,
require high data-rate with low transmission latency [81]. Thus, the high-order modula-
tion would be used extensively [82]. Using high-order modulation leads to an exponen-
tial increase of the MIMO constellation size. Thereby, a very high-order GF is needed
for one-by-one mapping. Unfortunately, high-order GF NB-LDPC codes require very
high computational complexity at the NB-LDPC decoder, which increases the system
latency. To overcome that problem, we consider in this chapter a mapping such that
several low-order GF symbols are mapped onto one MIMO symbol. We refer to this
mapping as multiple mapping. Then, the jointly detection-decoding iterative receiver
(or turbo detection) is investigated. It is shown that, with the same modulation order,
the multiple mapping used with turbo detection scheme impressively reduces the com-
putational complexity at receiver compared to the one-by-one mapping. However, this
advantage is counterbalanced by two main challenges. The first challenge is that multi-
ple mapping leads to error-rate performance degradation at the error-floor (an erroneous
demodulated symbol yields multiple erroneous FEC codeword components). The second
challenge includes the optimization of iteration number between detector and decoder
in turbo detection scheme as well as iteration number inside of the decoder to further

reduce the decoding complexity.

The NB-LDPC iterative receiver scheme has been investigated in several papers, but
no paper focuses on the two challenges as listed above. Indeed, the paper in [83] pre-
sented the advantage of using a rate-1 encoder in concatenation with the NB-LDPC
codes assuming sphere packing demapper. The main focus in [84] was the design and
performance comparisons of different cycle code constructions. The most likely related
paper can be found in [85]. However, the paper [85] focused on space-time mapping
strategy and accumulator trade-off comparisons rather than on the decoding complexity

or the error-rate performance improvement.

In this chapter, we apply one technique to tackle both of the mentioned challenges.
The contributions of this chapter are summarized as follows. Firstly, we propose to
use MIMO precoders to overcome the drawback of turbo detection scheme in terms of
error-rate performance, especially at the error-floor. These precoders are selected from
precoders in literature under the criterion of maximizing the channel mutual information,
which are well adapted for MIMO encoded systems as presented in Chapter 2. By using

the precoders, significant performance gains are achieved. Secondly, we show that the
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computational complexity at receiver is remarkably reduced thanks to precoders. The
optimization for the turbo detection scheme configuration is also discussed. Last but
not least, we show that the iteration number inside the decoder can be minimized by
using the precoders. Hence, with few iterations, the well-known belief propagation (BP)
NB-LDPC decoding algorithm achieves optimality [86, Chapter 3], especially when it is
used with large girth parity check matrices. Indeed, by using a small number of iterations
to decode a large-girth code, only the extrinsic information are exchanged between the
check and the variable nodes as in the case of cycle-free codes [87]. Therefore, the BP
in log-domain (Log-BP [40]) decoding algorithm is considered throughout this chapter.
However, as we consider the detector and the demapper in turbo detection scheme as
two independent blocks (only soft information are exchanged), the extension to other

decoding algorithms is straightforward.

Since the receiver complexity is significantly reduced and the error-rate performance is
enhanced thanks to the proposed solution, the results in this chapter can be applied to
the communication schemes that take into account NB-LDPC codes but require low-
complex fast-decoding at the receiver such as machine-to-machine communications. The
organization of this chapter is as follows: In Section 6.2, some preliminaries and the
MIMO precoders are briefly reviewed. The complexity of receiver and the EXIT chart
analysis of the proposed solution are introduced in Section 6.3. Simulation results are

presented in Section 6.4. Finally, Section 6.5 wraps up with a summary of conclusions.

6.2 Preliminaries

6.2.1 System model

e NB-LDPC| u — U | GF to MIMO symbol | s | Precoder
Input | Encoder = Mapper F
symbols Channel
[A2 IEL + [P H
I3 + 1
é NB-LDPC MAP 1Postcoder n
Decoded | Soft Decoder | Soft Detector G
symbols ‘ + n d o
1P + [E2 141 (7 J: Symbol-wise interleaver.

[r=1): Symbol-wise de-interleaver.

FIGURE 6.1: System model.
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Let us consider a MIMO system with np receive, ny transmit antennas and b independent
data streams to be transmitted as shown in FIGURE 6.1. We assume full-CSI at both
the transmitter and the receiver. A NB-LDPC encoder of Galois field order ¢ (GF(q))
is used for channel coding. The obtained codeword u is then interleaved into @ by a
symbol-wise interleaver. At the mapper, every b Q-ary quadrature amplitude modulation
(QAM) symbols are grouped into a vector s of size b x 1. By taking all possibilities of s,
a constellation of MIMO symbols S = {so,...,sk,... ,sz,l} is defined. Following this,
every ng GF symbols in @ are grouped and mapped onto a MIMO symbol s € S with a
mapping rule X. The MIMO symbol s is then precoded by a precoder F before being
transmitted through the MIMO channel. Although ng GF symbols in @ can be mapped
onto multiple MIMO symbols instead of one MIMO symbol, that mapping is however

not interesting since it requires a higher complexity at the demapper.

Though non-binary mapping is considered, the MIMO precoding scheme as introduced
in Chapter 2 does not change. Therefore, the channel transformation with the channel
output presented in (2.16) is exploited again in this chapter. The receiver consists of a
maximum a posteriori (MAP) soft-detector and an NB-LDPC soft-decoder, which itera-
tively exchange the extrinsic log-likelihood ratio vectors (LLRVs). This iterative loop is
called outer-loop, where the number of iterations in this loop is denoted by ngyt. Similarly,
inner-loop refers to the iterative loop inside the decoder with the number of iterations
equal to nj,. Let us denote by {0, 1, ..., 4, ..., a4-1} the non-binary symbols in GF(q).

Then, a LLRV of a GF symbol a is defined by I = [I(a1), ..., 1(c;),...,l(ag-1)]T, where

Pla=a;)
P(a=0) *

each element of [ is calculated by I(«;) =In

The a priori, a posteriori and extrinsic LLRVs of the detector are denoted by lAl, 11
1 142 172 and 172 respectively. Re-

and . The equivalent notations for decoder are
call that s = X (a=[ai,...,a,...,an,]). Therefore, for each input vector y, the ex-
trinsic output of detector is a matrix of nys LLR column vectors, which is defined

by LF1 = [lfl,...,lfl,...,lgsl]. With the corresponding a priori LLR matrix L’fl =

[l’f‘l7 ... ,l?l, ... ,lfj], each element of lel is then calculated by
. ~lly -H,Fgs|?* &
lfl(ai) = max Hy—;d” + Y, l?l(ag)
seSlaiaj=a; o 0=1,0%5

max + 3 1 (a)

O B e 8 Y
seSla:a;=0 o2 =1,0+j ’
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Fy F, Fy Fs Fy Fs
P 0 arctan %{?;7 arccos z:‘gz;’:; ;Y arctan %ﬁ arctan ‘t/fn’}
0 arctan(2sin ¢) /4 /4 %arctan@ /4
1) arctan 6+1 = /4 arctan% arctan% w/4
~ range (in degree) | 0°<~y<5.12° | 5.12° <~ <5.26° | 5.26°<~y<84° | 8.4°<~v<15.38° | 15.38° <y <45°

TABLE 6.1: Parameters for the five matrices of max-d,;, precoder in case of 16-QAM
and b=2, a =1+ - [63].

V34
Additions Multiplications max
Detector o P (76% + b - 2) + nout No(qns — 1) M@b(32+3b+1) nout[Nvq(g - 1)]
Decoder [40] | noutnin[2(3de — 4)Ne(q - 1)2 +d.N.(d, -1)(g-1)] Nout Min [2(3d(; -4)N.(q- 1)2]

TABLE 6.2: Number of operations used at the iterative receiver for each codeword.

where max stands for the Jacobian logarithm as introduced in Chapter 1.

6.2.2 MIMO precoders

Recent research [88] has shown that significant error-rate performance improvement can
be achieved by maximizing the channel capacity of the NB-LDPC encoded MIMO system
assuming the one-by-one mapping. Following this, we consider again in this chapter
the GOPT and max-di, precoders, which have been introduced in Section 2.3.2.1 and

Section 2.3.2.2 respectively. These two precoders result in high channel capacity.

Considering 16-QAM modulation and b = 2 data streams, Ngo et al. proposed in [17, 63]
an extension of max-dp;, precoder that has five different closed-form precoding matrices.
The precoder switches among these matrices depending on v = arctan Z—f In other words,
this precoder also adapts to the channel thanks to the parameter . The five precoding
matrices, which are denoted by F; to F5 respectively, are obtained by substituting the
corresponding triplet (1,0, ¢) in TABLE 6.1 into the parameterized form of Fy in (6.2).
The corresponding operating ranges of v are also given in TABLE 6.1. Note that the five

precoding matrices are fixed for all SNRs (SNR independent).

costyy 0 cosf sinf)[1 O
Fy= - (6.2)
0 sineg)\-sinf cosf)\0 e
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6.3 Analysis

6.3.1 Computational complexity

As mentioned, we assume that the Log-BP algorithm is used at the decoder. Let us
denote by N, and N, the number of check nodes (CNs) and variable nodes (VNs) in an
NB-LDPC code where the corresponding CNs and VNs degrees are d. and d,, respectively.
The complexity of the iterative receiver, that is required to decode every codeword, is

summarized in TABLE 6.2.

It is explicitly shown that the considered system significantly reduces the decoding com-
plexity. Indeed, let us pick up an example with b = 2, 16-QAM modulation, the parity
check matrix derived from matrices designed in the framework of DAVINCI project
[89, 90] with N, = 192, N, = 96,d. = 4, d, = 2 and the girth equal to 14. The MIMO
constellation size is therefore equal to Q¥ = 256. On one hand, if the one-by-one map-
ping is applied, i.e. ng = 1 and ney = 1, we need to use an NB-LDPC code with GF
order ¢ = 256. On the other hand, if the multiple mapping and iterative receiver are
applied (as considered in this chapter), we can map every ns = 2 GF order ¢ = 16 into
a MIMO symbol. Note that ngye > 1 in this case. Without loss of generality, let us
select noyy = 10 and i, = 10. We denote by nt™! and né’by'l the total additions and

max operations required in the case of one-by-one mapping. The equivalent notations

by- by-1

for the case of multiple mapping are n’* ' and ng respectively. Calculation yields
eV byl oy e byl EPYL 0,036, In other words, the number of additions and
max operations is reduced by roughly 96.4% using the multiple mapping. Note that, in
this example, we select ni, = 10 for both one-by-one and multiple mappings. In practice,
the one-by-one mapping needs more ny, for decoding than the multiple mapping, which
leads to the fact that the complexity reduction by using the multiple mapping becomes
even more significant. This shows the advantage of the multiple mapping assuming

iterative receiver as considered in this chapter.

In addition, it comes out directly from TABLE 6.2 that the complexity of turbo detection
scheme can be further reduced by minimizing the factor A = ngoytnin, which is the total
iterations used at the decoder. However, by doing so, the error-rate will also raise up as
a compensation. In the next subsection, we propose to use MIMO precoders to take up

the error-rate challenge. The selection of A will also be discussed.
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FiGURE 6.2: EXIT chart of a given channel at SNR = 18 dB.

6.3.2 Non-binary EXIT chart

The extension of extrinsic information transfer (EXIT) chart for symbol-based iterative

decoding in [91] is used to analyze the iterative receiver. We consider the decoder with a

max
mn

given maximum number of nj, (nh®*) as an individual component in the chart, while the
other one is the detector. The same simulation parameters as in the example given in
Section 6.3.1 are considered. The SNR definition is given in (3.3). For instance, let us ar-
bitrarily select a channel H = [0.4067-0.1801¢ 0.0419+0.20154; —0.8206—0.0268i 0.2896 —
0.0428i] for demonstration. We denote this channel by Hex. The GOPT precoding ma-
trices at some selected SNR along with the corresponding channel capacities, which are
found by applying the algorithm in [22] over the channel Hey, are provided in TABLE 6.3.
One should note that, in order to apply these matrices to the model in (2.2), we need to
normalize them to satisfy the power constraint |F|% = 1. The channel capacities obtained

by max-dmin precoder, which are not far from the one achieved by GOPT precoder, are

also given in TABLE 6.3.

Figurk 6.2 shows the EXIT chart for this channel at SNR = 18 dB. The dashed lines
represent the EXIT functions of the decoder for different n{;**. The solid lines are the

EXIT functions of the detector when spatial multiplexing (SM), max-dpi, (precoding

matrix is given by Fy in TABLE 6.1 since ym,, » 10°) and GOPT (precoding matrix
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SNR F (of GOPT) Chan. cap. GOPT | Chan. cap. max-dmpin

—-0.8645 + 0.0360¢ —0.8346 + 0.2190:7 g .
18 0.5359 +0.3961¢  —0.1780 - 0.17657 59125 56448

~0.7986 + 0.04267 —0.8320 + 0.2087i -
20 1] 05654 +0.4320i  ~0.2648 - 0.2174i 6.6352 6.4969

073141 0.04847 —0.8237 + 0.1976i i
2211 05889+ 0.4642i  ~0.3439 — 0.2541 7.2743 7.2519

TABLE 6.3: GOPT precoding matrices at some selected SNR (in dB), which are found
by applying the Algorithm 1 (reported in Chapter 4) with the initial parameters (w =

Tv= over Hey channel, and the corresponding channel capacities (in bits/s/Hz).

10)
is given in TABLE 6.3 at SNR = 18 dB) precoders are used at the transmitter (or, in
short, EXIT functions of the precoders). Note that only EXIT functions of detector
are changed with SNR. The starting and ending points of a non-binary detector EXIT

function are denoted by Iy and I; respectively.

As shown in FIGURE 6.2, the receiver starts to converge from ni’® = 10. We firstly

in
observe that the EXIT function of decoder can be used to predict the required minimum

max
m

n in the conventional non-iterative scheme. In turbo detection scheme used with SM,
although limiting nj;** can reduce A, the EXIT functions of SM detector and the decoder
are early crossed. This leads to a bad error-rate performance. However, the problem of
early crossing can be solved by using precoders. We observe from FIGURE 6.2 that I of
GOPT and max-dpi, precoders are much higher than the one of SM. This predicts better
error-floors for the system used with precoders. In contrast with I, the Iy of precoders
are lower than SM. This may causes intersection between EXIT functions of detector
and decoder at low SNR. Moreover, the lower Iy, the more closed the tunnel between

two EXIT functions, which requires a high ngy; for convergence. Therefore, although

using precoders can significantly enhance the error-rate performance and allow us to use

max

low nih®*, the best selection of nih®* (to reduce \) however depends on each precoder.

max

Indeed, simulations in Section 6.4 show that different optimized nj;** are obtained for

SM, max-d,i, and GOPT precoders.

6.4 Simulation results

We now propose examples to demonstrate the advantages of using precoders in terms of
error-rate performance as well as complexity reduction. Monte-Carlo simulations have

been carried out for (ny = 2,ng = 2) MIMO systems with b = 2 data streams, @ = 16
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SNR (dB)

FIGURE 6.3: FER of the fixed channel He,.

(16-QAM modulation), GF(¢q = 16) and ngs = 2 GF symbols per MIMO symbol. The
MIMO constellation size is therefore equal to Q = 256. Let us recall that the NB-LDPC
matrix is derived from matrices designed in the framework of DAVINCI project [89, 90]
with (N, = 192, N, = 96,d. = 4, d, = 2, girth = 14) and the Log-BP decoding algorithm
|40] is considered in this chapter. The maximum iteration number that has been used to

limit the outer-loop is 10.

We firstly evaluate the error-rate performance over the fixed channel Hey, which has
been used for the EXIT chart analysis. FIGURE 6.3 shows the system frame error-rate
(FER) performance versus SNR over this channel in case SM (dashed lines), max-din

(solid lines) and GOPT (dotted lines) precoders are used at the transmitter. The lines

max

with equivalent ny®* share the same marker. We observe that error-floor of the system

is significantly reduced thanks to the precoders. With the same n;**, the error-rate

performance is enhanced by using precoder. For example, for nj;®* =5 at FER = 1073,

the GOPT precoder achieves a gain of roughly 6 dB and 3 dB compared to SM and

max-dmin precoder respectively. In addition, for SM and max-dni, precoders, the re-

max
mn

by the increase of I; to the top-right corner of the EXIT chart at high SNR. For GOPT

spective plots associated to different n converge at high SNR. This can be explained

precoder, this convergence happens at a lower SNR (see FIGURE 6.2). All of the simu-

lation results for the fixed channel Heyx are in accordance with the EXIT chart analysis
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16 18 20 22 24 26 28 30
SNR (dB)

FI1GURE 6.4: Average FER of random channel.

done in Section 6.3.2.

Let us step forward to evaluate the error-rate performance of the considered system over
the random channel (h;; ~ CN(0,1), where h;; is element of the channel matrix H).
FIGURE 6.4 shows the average system FER performance versus SNR over the randomly

generated channels in case SM (dashed lines) and max-dmi, precoder (solid lines) are used

max
m

at the transmitter. The lines with equivalent n share the same marker. As mentioned,
with a large MIMO constellation size as considered in this chapter, finding the best
solutions of GOPT precoder for each channel at different SNRs takes a long simulation
time. Therefore, we do not consider GOPT for the random channel. However, we would
like to point out that it could be practical to use GOPT for constructing a codebook
of precoding matrices as done in Chapter 4. As shown in FIGURE 6.4, the performance

gain achieved by using max-dy;, precoder is even more significant compared to the one

max
mn

gain of roughly 5 dB compared to SM used with nj;** =10 at FER = 1074,

achieved over the fixed channel. The max-d;, precoder used with n = 5 achieves a

The average A (denoted by A) is also taken into account. In case SM is used over the fixed

channel Hey, the lowest X is obtained when n"® = 10 as demonstrated in FIGURE 6.5(a).

in
Note that high value of nyy, is counterbalanced by low value of ngy,t, which totally results in

max
mn

a low X in this case. The best ni’®* selection (in terms of \) of GOPT is also presented
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FIGURE 6.5: Receiver complexity.

in FIGURE 6.5(a) for comparison. It is observed that the GOPT precoder used with

max

nip® = 3 requires a lower A than the lowest one of SM, namely n"® = 10. Note that,

in

max
m

with the corresponding n;"?*, the GOPT precoder achieves a gain of roughly 4.5 dB at

FER = 1073 compared to SM (see FIGURE 6.3). FIGURE 6.5(b) shows the plots of A

versus SNR for SM precoder in case the random fading channel is considered. The best

nit@X gelection (in terms of A) of max-dmin precoder is also presented in FIGURE 6.5(b).

We can see that, in fact, the best n"® for SM (in terms of A\) over random channel
is equal to 5. More importantly, the complexity reduction by using max-d,i, precoder
(with ni;®* = 5) is significant. In addition, with the girth of NB-LDPC code equal to 14
as considered in this chapter, the constraint for this NB-LDPC code to become cycle-

free-likely is niy < 6 [85], which is easily satisfied by using the precoders (nj®* = 3 for
GOPT and ni}® =5 for max-dmin).
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6.5 Conclusion

This chapter has considered the mapping of multiple low-order GF symbols of NB-
LDPC codewords onto a MIMO symbol at the transmitter to replace the conventional
one-by-one high-order GF to MIMO symbol mapping, which requires high complexity for
decoding when high order modulation is applied. The turbo detection scheme has been
used at the receiver. Complexity analysis has been carried out to show the advantages of
the considered system. We propose to use MIMO precoders to overcome the drawback
of the system in terms of error-rate performance, especially at the error-floor. The
simulation results, which match perfectly with the EXIT chart analysis, show that using
precoders not only enhances the error-rate performance, but also further reduces the
computational complexity at the receiver. Obviously, reducing (or maintaining) the
complexity of NB-LDPC decoder, while improving the decoding performance in terms
of error-rate, is necessary. Therefore, in the next chapter, we focus our study on low-

complexity decoding algorithms for NB-LDPC codes.



Chapter 7

Multiple-Votes Parallel
Symbol-Flipping Decoding
Algorithm for Non-Binary LDPC
Codes

The content of this chapter is mainly based on the following paper:

e Nhat-Quang Nhan, Telex M. N. Ngatched, Octavia A. Dobre, Philippe Rostaing,
Karine Amis, and Emanuel Radoi. "Multiple-Votes Parallel Symbol-Flipping De-
coding Algorithm for Non-Binary LDPC", In IEEE Communication Letters, pp.
905 - 908, Vol. 19, 2015.

7.1 Introduction

The results in Chapter 6 show that the computational complexity of decoding algorithm
at the decoder plays a vital role in the total complexity of the NB-LDPC encoded systems.
Therefore, the investigation into low complexity decoding algorithms is essential and will

be considered in this chapter.

The algorithms for decoding NB-LDPC codes can be classified into three general cate-
gories: hard-decision decoding [92], soft-decision decoding [40, 42, 93, 94], and hybrid
139
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decoding (also known as reliability-based decoding) [95-98|. From an implementation
point of view, hard-decision decoding is the simplest in complexity. However, its simplic-
ity results in a relatively poor performance that can be as far away as a few decibels from
that of soft-decision decoding. Soft-decision decoding provides the best performance but
requires the highest computational complexity. Hybrid decoding is in between the two

extremes and provides a good trade-off between performance and complexity.

Among reliability-based message-passing algorithms, the parallel symbol flipping decod-
ing (PSFD) algorithm recently introduced in [97] offers one of the best trade-off between
performance and complexity. By using a flipping function which combines both the
weighted check-based message of the normalized check-sums and the variable-based mes-
sage of the received sequence, the algorithm identifies, in each decoding iteration, the
relatively unreliable symbols in the hard-decision symbol sequence and decodes them
based on the corresponding flipping symbols. The unreliable symbols are found using a
voting system whereby each unsatisfied check node (CN) gives one vote to the variable
node (VN) with the largest flipping function checked by it. Variable nodes thus accumu-
late votes and those with a total number of votes exceeding a predefined threshold are
identified as unreliable. By only playing with the reliabilities of hard-decisions, PSFD
is a good choice to decode high-rate finite-field NB-LDPC codes. However, simulation
results show that PSFD is suitable for decoding only regular NB-LDPC codes whose
parity-check matrices have large column weights, e.g., column weights of at least 8. In
addition, PSFD employs a code-dependent voting threshold, which should be optimized
through simulation. Furthermore, the computation of its flipping function involves a
pair of scaling factors, (n, ), which also depends on the code and is optimized through

simulation.

This chapter proposes a new algorithm, referred to as multiple-votes PSFD (MV-PSFD).
When compared with PSFD, it introduces a method of error estimation which results in
avoiding the use of the voting threshold, and passes multiple votes from the unsatisfied
CNs to the corresponding VNs. The proposed algorithm significantly outperforms PSFD
for low column weight parity check matrices, as shown by simulation results. Such

improvements are achieved with a similar computational complexity.

The organization of this chapter is as follows: In Section 7.2, some preliminaries and

the PSFD algorithm are briefly reviewed. The proposed algorithm and its complexity
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analysis are introduced in Section 7.3. Simulation results are presented in Section 7.4.

Finally, Section 7.5 concludes the chapter.

7.2 Preliminaries

7.2.1 Notations and Definitions

A regular NB-LDPC code C of length N and dimension K over the Galois field of order ¢
(GF(q)) is completely described by a row-column (RC)-constrained parity-check matrix
of size M x N (M > K) H = [h;;] over GF(q), which has a constant column weight d,
and a constant row weight d.. For practical purpose, we only consider binary extension
fields, where ¢ = 2P. Let M, = {i: 0 <@ < N,hj; # 0} be the set of all indices of VNs
which connect to the CN ¢; and N; = {j : 0 < j < M, hj; # 0} be the set of all indices of
CNs which connect to the VN v;.

Suppose that a regular (N, K) NB-LDPC code is used for error control over a binary-
input additive white Gaussian noise (BIAWGN) channel with zero mean and two-sided
power spectral density Nyp/2. Assume binary phase-shift-keying (BPSK) signaling with
unit energy. A codeword ¢ = (cp,c1,...,cy-1) in C, where ¢, = (¢n0,Cn 1, Cnp-1)
€ GF(2P) with ¢,; € GF(2), is mapped into the sequence & = (2o, x1,...,xn-1) before its
transmission, where x,, = (Zn,0,Zn 1, Tnp-1) With the mapping rule z,; = (2¢,; - 1)
e {+1,-1}. Let y = (vo0,y1,---,Yn-1) be the soft-decision received sequence at the
output of the receiver matched filter. For 0 < ¢ < N -1, yn = (Yn,0,Yn,1, YUnp-1) =
(Zn,0 + Vn0,Tn1 +Vni, - Tnp-1+ Vnp-1) in which the v, ;’s are statistically independent
Gaussian random variables with zero mean and variance Np/2. The hard-decision symbol

sequence at the decoder is denoted by z = (20, 21,...,2N-1)-

For any hard-decision symbol sequence z, the syndrome vector s is computed as s = z-H”
where s; = hjozo + hj1z1+- -+ hjny_1)2n-1 With 0 < j < M. s; is known as the 4t check-
sum of z. z is a valid codeword in C if and only if s = 0. Let S;(2) = {s;:j € N;} be a
set of check-sums that contain the symbol z; at the VN v; and S;(2) = {5;:(2) = hj_-ilsj :
sj € Si(2)} be a normalized check-sum set. Finally, let S;(2) be S;(2) excluding zero

elements, i.e., S (2) = Si(2) ~ {0}.
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7.2.2 PSFD Algorithm

Given the initial hard-decision symbol vector z(®) = (zéo),z§0),...,z](\?31), the PSFD
algorithm iteratively flips erroneous symbols in z(9 until either a codeword is found or a
maximum number of iterations is reached. In other words, the algorithm finds an error
symbol vector e = [eg,e1,...,en_1], such that z = z(O) — e is a codeword. The error
symbol vector is recursively computed by e® =0 and eV = &) 4 e where each
component of e® is chosen so as to maximize a flipping function that is updated at each

iteration and which is defined by

FY = max FO(a). (7.1)
aeS:(l)(z)

In (7.1), Fi(l)(oz) with o € GF(q) is given by
FP(a) = EV(a) - Li(a+ ), (7.2)

where the weighted check-based message about z(1), Ei(l) (o), and the variable-based

message, [;(a+ egl)), are respectively defined by

l
j'e/\/’izg(_l,)_(z):a j’EMfg(_l/)_(Z)ZO
j J
and
Ii(a) = ngi(a), (7.4)

where 7 is a scaling factor. Wj; in (7.3) is the weighting coefficient contributed to z; by

other z;’s checked by s; and is defined by

WjiZ/\ min Ri" (75)
i'eMN{i}

where A is a scaling factor. R; is the reliability of the initial hard-decision symbol zi(o)
and is given by

R; = ool gi(a), (7.6)
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IfV > Vip, then z; should be flipped

FiGure 7.1: Conventional PSFD voting procedure.

(0)

i

with ¢;(a) being a log-likelihood ratio representing the gap of likelihood between z
and 2V - o defined by

[

P(v; = 2y
P(v; = zl.(

#i(a)="Tn (7.7)

5 .
'~ aly:)
To speed up the decoding, it is essential to be able to flip multiple symbols in each
decoding iteration. The PSFD algorithm achieves this by adopting a voting system
whereby each unsatisfied CN gives one vote to the VN with the largest flipping function
checked by it, as demonstrated in FIGURE 7.1. At the I** iteration, VN v; accumulates
the number of votes, VZ.(Z), from all the unsatisfied CNs. That is
! I
Vi = > v, (7.8)
JeN;
where VY = 1if s £ 0; otherwise V' = 0 with 1o = argmax, FY The hard-
Jio j ’ ji dem; Ey
@

decision z; will be flipped to zl.(“l) = zl.(l) —egl) when Vi(l) > Vi, (as shown in FIGURE 7.2),

where Vjy, is a code-dependent threshold.
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FIGURE 7.3: The proposed MV-PSFD voting procedure.

7.3 Multiple-Votes PSFD Algorithm

7.3.1 Algorithm

The voting threshold, Vi, in the PSFD is code-dependent and should be optimized
through simulation [97]. In the sequel, we design a new decoding algorithm which miti-

gates this drawback while maintaining the strong aspects of the PSFD.

First, we introduce multiple voting levels, allowing each unsatisfied CN to pass more
than one vote to the VNs checked by it. Without loss of generalization, let us introduce
two voting levels (o > (1 > 0. At each VN wv;, the voting function is still given by (7.8)

but with the voting principle defined as follows
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For s§l) #0,

l . . l
. Vj(io) = (o with 7o = arg max; cpq. FZ(, ),

. Vj(ill) =y with 47 = argmaxX; caq .« (i} Fi(/l)-

7

° Vj(il) =0 elsewhere.

The unsatisfied CN ¢; gives (g to the VN that has the largest flipping function and gives (1
to the VN that has the second largest flipping function as shown in FIGURE 7.3. Though
it might appear that the two factors (p and (3 should be optimized, we will show through

simulations, in the next section, that their optimal values are not code-dependent.
Secondly, we derive a relationship between the syndrome weight, the number of errors,
and the parity-check matrix column weight d, from the following Lemma [99].

Lemma 7. For regular LDPC matrices, the average syndrome weight increases linearly

with the number of errors.

Proof. (Heuristic.) For any regular LDPC matrix, a plot of the average syndrome weight

in terms of the number of errors yield a straight line with slope d,,. O

Based on the above Lemma, at iteration [, the number of errors in the hard-decision

vector z¥), and hence the number of symbols to be flipped, can be estimated by

w® (s)
W _(ws)
N, _{ 7 J (7.9)

where | x| denotes the greatest integer less than or equal to x, and w® (s) is the syndrome

weight at iteration [ defined by
w® (s) = Y°(s! 2 0). (7.10)
J

The use of a voting threshold can therefore be avoided by flipping the first N.® symbols

with the highest votes Vi(l). This procedure is demonstrated in FIGURE 7.4.

The steps of the new algorithm, which we call Multiple-Votes Parallel Symbol-Flipping
Decoding (MV-PSFD), can be summarized as shown in Algorithm 3.
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Number of symbols to flip: average syndrome N,

Sort 4] > > Uy, > > Uy
Flipped Unchanged

Zi:Zi+ &i

FiGURE 7.4: The proposed MV-PSFED parallel flipping procedure.

Algorithm 3 MV-PSFD algorithm

1: Inputs: Maximum number of iterations [,,q,, hard-decision z(®) and the received

symbol vector y.
2: Initialization: Set iteration index [ = 0, maximum number of iterations to Lz,
and error symbol vector e = 0. Find ¢;(a) by (7.7) and the variable-based message
I;(«) by (7.4). Compute the coefficients Wj; by (7.5) and store them.
while [ < ;4. do

Compute the syndrome st

if s =0 then

Stop the while loop
end if
With 0 <4 < N, compute the flipping function Fi(l) and find its corresponding

flipping symbol « = 851) by (7.1)
9: Compute Vi(l) by (7.8) using the multiple-votes principle
10.  Estimate the number of errors N, by (7.9)
11: With 0<¢< N, sort VNs according to descending order of VZ»(Z)
(1+1) _ ZZ(Z) ~ ggn

12: Flip the first N, VNs by setting new hard-decision symbols z;
(1) _ 0, O

and new error symbols e;
13: l<1+1
14: end while

15: Output: z(0.

7.3.2 Complexity Computation

We evaluate the computational complexity of the new algorithm based on the number

of integer addition (IA), multiplication (IM) and comparison (IC) operators as in [40].

At the initialization, the computations of I;(«) and R; (BPSK) need O(Nqloga(q)) IAs,
O(Ngq) IMs, and O(N(log2(q) - 1)) ICs. Additionally, O(M (2d.-3)) ICs and O(Md,)
IMs are needed for Wj;.

At each iteration, check-sums computations require O(M (d.—1)) IAs and O(Md,) IMs.

The normalized check-sums ‘SN’;(I) need O(Md.) IMs. The flipping functions and flipping
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TABLE 7.1: Complexity by operators at each iteration of NB-LDPC decoding algo-

rithms.
| [ IA | IM | IC |
PSFD [97] 3o 20 20 - M

MV-PSED | 30+ M -1 | 20+1 | 20 -M - N + Nloga(N)

IA: Integer Addition IM: Integer Multiplication IC: Integer Comparison
o =Md.(= Nd,): Number of non-zero elements in parity check matrix.

symbols require at most O(2N(d, - 1)) TAs for Fi(l)(a) and at most O(N(d, -1)) ICs
for Fi(l). The error estimation needs at most O(M — 1) 1As for d,") and O(1) IM for
N.® . For voting function Vi(l), it requires at most O(M (d.—1)) ICs and at most O(M)
[As. If the Quick Sort algorithm [100] is used, the sorting needs at most O(Nlogz2(N))
ICs. Note that the Quick Sort is not the best choice in terms of operators saving, but

it is the fastest algorithm to achieve high system throughput. Finally, O(2N) IAs are
(1+1) (1+1)

used for z; and e,

The total computational complexity of MV-PSFD and PSEFD algorithm for each iteration
is shown in TABLE 7.1. From [97], it is proved that PSFD is the algorithm that costs
the lowest decoding complexity among the reliability-based decoding algorithms. The
MV-PSFD requires slightly more comparison operators than PSFD due to the sorting
process. However, in practice, the cost of comparators is much cheaper than those of
multiplications and additions. Thus, for small to moderate length codes, we can conclude

that the complexity of MV-PSFD is close to the original PSFD.

7.4 Simulation Results

In this section, using Monte Carlo simulations, the error performance in terms of bit-error
rate (BER), frame-error rate (FER), and average number of iterations as a function of the
rate-normalized signal-to-noise ratio (SNR) per information bit (E,/Ny), of the proposed
algorithm is compared with that of the PSFD algorithm on a number of NB-LDPC
codes of various constructions with short to medium block lengths. These constructions
include Euclidean geometry [37], progressive edge-growth [101] and the original method
of Gallager. The maximum number of iterations is set to 50 for both algorithms. At

each SNR value, at least 100 erroneously received codewords are detected.
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FIGURE 7.5: FER (solid) and BER (dashed) performance versus rate-normalized SNR
of MV-PSFD and PSFD for Code 1 (low column weight).

The optimal values of n, A, Vi, (1, and (p, are selected through simulations for each code.
It should be noted that only the ratios g and % are actually needed. An interesting result
is that the optimum ratio % is % for all codes. Moreover, no significant difference in error
performance was observed using C—; = % and g—é = 1. Thus, the parameters (; and (p in

MV-PSFD are not code-dependent.

We firstly present results for two codes, referred to as Code 1 and 2, whose parity-check
matrices have small column weights, ¢.e., the column weights are less than 8. Code
lis a (dy = 3,d. = 6) [102] and Code 2 is a (d, = 5,d. = 10) [103]; both are regular
(102, 204) NB-LDPC codes over GF(2%) constructed based on Gallager’s method, whose

parity-check matrix satisfies the RC-constraint.

FiGURE 7.5 shows the BER and FER performances of Code 1. It can be observed
that, unlike PSFD, the performance of the proposed algorithm is not sensitive to the
parameters 17 and A. Moreover, the proposed algorithm outperforms the PSFD by about
0.5 dB at the BER of 107°. Note that the PSFD is plotted with the optimized g and
Vin.

FiquRE 7.6 shows the BER and FER performances of Code 2. Contrary to the previous

case, the performance of the proposed algorithm is sensitive to the parameters n and A.
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FIGURE 7.6: FER (solid) and BER (dashed) performance versus rate-normalized SNR
of MV-PSFD and PSFD for Code 2 (low column weight).

However, using an optimized value of %, the MV-PSFD outperforms the PSFD with a
gain of about 0.3 dB at the BER of 107 and 0.4 dB at the BER of 107%. It can also
be observed that, when MV-PSFD is used without the optimized values of n and A, the

performance is close to that of PSFD.

We would like to point out that, although the proposed algorithm could be generalized
to more than two voting levels, no significant performance improvement was observed for
more than two voting levels for all the codes simulated. This is illustrated by FIGURE 7.7
for Code 1. Therefore, taking into account the additional complexity, two voting levels
appears to be the best choice for the proposed algorithm. Furthermore, for regular
NB-LDPC codes whose parity-check matrices have large column weights, i.e., column
weights of at least 8, the proposed algorithm yields similar performance to the standard
one. Indeed, let us take another (8,13)-regular (175, 255) NB-LDPC code over GF(2%),
whose parity-check matrix also satisfies the RC-constraint. This code is constructed by
Progressive Edge Growth method. We refer to this code as Code 3. The FER and BER
performances of Code 3 are shown in FIGURE 7.8. We observe that there is a slightly
improvement of MV-PSFD in terms of FER compared to PSFD, while the performances

of the two algorithms are similar in terms of BER.

With these performance studies in mind, we move on to the average number of iterations
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comparison. FIGURE 7.9 depicts the average number of iterations for Codes 1 and 2.
We see that, at low to medium SNR, the proposed algorithm with optimized parameters
converges faster than the standard one. However, at high SNR, the convergence of
the two algorithms is similar. Overall, one can conclude that there is no significant
difference between the two algorithms in terms of convergence rate. As such, the excellent
performance of the proposed algorithm is not obtained at the expense of the convergence

rate.

7.5 Conclusion

In this chapter, we investigated the low complexity decoding algorithms for NB-LDPC
codes in order to extend our study about complexity reduction for the NB-LDPC encoded
MIMO communication systems. A new algorithm based on the PSFD algorithm for reg-
ular NB-LDPC codes has been proposed. Simulation results performed on a number of
NB-LDPC codes of various column weights show that the proposed algorithm signifi-
cantly outperforms the standard one for low column weight parity-check matrices, i.e.,

column weights less than 8, with a similar complexity. Since we focus on the decoding
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algorithm, single-input single-output (SISO) communication scheme with binary phase-
shift keying (BPSK) is considered in this chapter for simplicity. However, the extension
to MIMO scheme and to higher order modulation is straight forward. The MV-PSFD
solution proposed in this chapter is a hybrid decoding algorithm with hard-output. For
the perspective, we propose to apply the list decoding method [104] in order to have
a hybrid decoding soft-output algorithm, which can be apply to the iterative receiving

scheme considered in Chapter 6.



Conclusion and perspectives

Since the LTE-A standard is expected to continue playing a vital role in the 5G era [1],
the studies in this thesis were targeted for LTE-A applications. As mentioned in the
introduction, the most important requirements of LTE-A are high data rate and high
quality of service, which assures low error-rate and low latency. Besides, low complexity
is also an important criterion to design the next generation wireless communication
systems. Throughout this thesis, we focused on the optimization of linear precoders for
coded MIMO systems with various iterative receivers. We then optimized the error-rate
performance while taking into account the complexity of these systems in order to meet

the modern demand of LTE-A.

In Chapter 1, we briefly recalled the encoding and decoding algorithms for the FEC codes
that were exploited throughout this thesis. In addition, the turbo detection and turbo
equalization iterative receivers were presented to support for their later applications in
the other chapters. Finally, EXIT chart, which is a good tool to analyze the convergence
behavior of the iterative receivers, was introduced. In Chapter 2, the precoded MIMO
systems along with channel transformation technique were introduced. The existing
diagonal and non-diagonal precoders were presented and compared in order to find the

best references for comparison with our new precoder propositions.

In Chapter 3, the concatenation of MIMO precoder with an outer FEC code assuming
turbo detection at the receiver was investigated. We proposed a first new precoder for the
usual scheme consisting of binary to Q-ary symbol conversion followed by Q-ary symbol
to MIMO symbol conversion. This precoder aims to maximize the minimum Euclidean
distance between symbols with binary mapped sequences differing by one position. In

addition, we investigated a MIMO symbol mapper that directly maps the interleaved

153
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FEC-encoded binary sequence into MIMO symbols, which allowed us to apply the max-
imum squared Euclidean weight (MSEW) mapping strategy on received constellation.
Thanks to the EXIT chart analysis, we proposed a second novel precoder, which is
adapted to be used with the MSEW mapping applied on the received constellation. Sim-
ulation results showed that, by using the new precoders, the improvement in terms of

error-rate of the precoded MIMO system assuming turbo detection is significant.

Precoder optimization for finite alphabet signals over MIMO random channels was in-
vestigated in Chapter 4. We proposed a novel sub-optimal low-complexity precoding
algorithm and compared it to an optimal one, which globally maximizes the channel mu-
tual information. The new solution not only achieves a lower computational complexity
but also avoids the use of initial values, which must be carefully selected for each chan-
nel and SNR for fast convergence in the case of GOPT. Another advantage of the new
algorithm is that the resulting precoder has a fixed form of received constellation. This
allowed us to optimize the symbol mapping on the received constellation. Simulations,
in consistency with EXIT chart analysis, showed that the proposed low-complexity pre-
coder achieves error-rate performance that is close to performance of the optimal one
when the conventional Gray mapping is used. In addition, the new precoder used with
optimized mapping at received constellation showed significant error-rate performance
improvement. It is the best precoder for the turbo detection scheme introduced in Sec-
tion 1.2.2. This precoder is more complex than F, and F,-mod due to the power
optimization at each SNR and channel realization. However, the complexity of this

precoder is significantly reduced compared to GOPT.

In Chapter 5, we focused on the optimization of a linear MIMO precoder assuming an
outer forward error correction code and an iterative MMSE-based interference cancella-
tion (turbo equalization) at the receiver side. Given perfect channel state information
at both sides of the communication, we proposed a novel precoder that is specifically
designed to use with turbo equalization. In contrast to the conventional precoders that
maximize the mutual information between channel input and channel output symbols
(channel capacity), the proposed precoder aims to maximize the mutual information
between the channel input and symbols at output of the equalizer. The precoder was
targeted for applications that require low complexity, where simple FEC codes are used.
Simulation results showed the error-rate performance gain of the resulting precoder com-

pared to two other reference precoders presented in the literature, which are derived from
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the maximization of channel capacity.

MIMO systems encoded by NB-LDPC codes were investigated in Chapter 6. Assum-
ing high-order modulation, a group of low-order GF codeword symbols were mapped
onto one @Q-ary modulated symbol vector (multiple mapping), instead of mapping one
high-order GF symbol (one-by-one mapping). At the receiver, the iterative detection-
decoding of NB-LDPC codes was considered. It was shown that the multiple mapping
technique leads to significant complexity reduction at the receiver. MIMO precoders
were introduced to not only further reduce the computational complexity of the iterative
receiver but also significantly enhance error-rate performance of the system compared
to the spatial multiplexing scheme. EXIT chart was exploited to analyze the iterative

receiver performance. Finally, simulation results were presented to assess our analysis.

To complete our study about the complexity reduction for the communication systems
that use NB-LDPC codes, we proposed in Chapter 7 a novel decoding algorithm for
NB-LDPC codes. The algorithm builds on the recently designed parallel symbol-flipping
decoding (PSFD) algorithm and combines a technique of error estimation and a method
of multiple voting levels from each unsatisfied check-sum to the corresponding variable
nodes. Simulations results, performed on a number of NB-LDPC codes of various lengths
and column weights constructed using several methods, showed that the new algorithm
not only avoids using code-dependent voting threshold but also improves the error rate
performance of the PSFD algorithm, particularly for low column weight parity-check

madtrices.

The wireless communication systems for the next generation mobile networks employ a
high number of antennas at the transceivers (commonly referred to as massive MIMO
systems). Therefore, the increase of number of data streams is important. As future
work, we could adapt the proposed precoding solutions to high data streams according
to two directions. On the first direction, by taking into account the systems models
considered in this thesis, we could look for other precoders that are optimized for b > 2
(note that this has been done for LCOPT precoder in Chapter 4 but there is still room
for improvement). However, optimizing precoder for a very high number of b could
lead to high complexity for the practical design of precoder. Therefore, as the second
direction, we propose to apply the channel transformation and split the MIMO system

into multiple subsystems in order to apply the precoding solutions proposed in this thesis.
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For example, with b = 4, we propose to precode the virtual channel by a block diagonal
matrix F), = [Fg1  0;0 Fgo], where Fyp, Fgo are the 2x2 precoding matrices that were

optimized during this thesis.

The extension to higher order modulation (e.g. @ =16) is also interesting. With higher
order modulation the complexity of soft-demapper is dramatically increased. Hence, we
must focus on the turbo equalization scheme in order to reduce the complexity. How-
ever, the extension of the proposed precoder for 4-QAM to higher order modulation is
not straightforward. Indeed, with high order modulation, applying the Genie-optimized
precoder proposed in Chapter 5 (which maximizes the mutual information between chan-
nel input and output of interference canceller) leads to a very low starting point in the
EXIT chart, which causes non-convergence of the iterative receiver. We propose to in-
vestigate three solutions. The first one would search the best mapping to increase the
initial mutual information at the detector (interference canceller revolves around SBC
and BSC) output. The second one would focus on the precoder definition. We could
mix the max-dni, and the Genie-optimized precoder. The third one would consider the
receiver structure. We could use a MAP detection at first iteration and a MMSE IC for

the following iterations of a iterative receiver.

Throughout this thesis, we assume perfect CSI at the transmitter. In practical applica-
tions, the imperfect CSI at the transmitter can lead to performance loss. Therefore, the
extension of the studies in this thesis to imperfect CSI scheme could also be interesting

for future work.

The results from this thesis immediately apply to MIMO-OFDM (orthogonal frequency
division multiplexing) and its extension to frequency selective channels assuming single

carrier, precoding and detection in the frequency domain could be investigated.
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Introduction

L’augmentation spectaculaire des utilisateurs de systémes mobiles et le développement
des réseaux sociaux ces derniéres années rendent nécessaire I’amélioration continue de la
capacité des réseaux cellulaires radio modernes. Les normes LTE (Long Term Evolution)
et LTE-A (LTE-Advanced), élaborées en 2004 et 2008 respectivement, répondent a ce
besoin. Le développement de la cinquiéme génération (5G) de réseaux radio mobiles est
en cours, afin de remplacer l'actuelle quatriéme génération (4G) LTE et (4.5G) LTE-
A. Néanmoins, la transition de la 4G a la 5G pourrait prendre une dizaine d’années,
voire plus. Bien que plusieurs technologies semblent constituer des éléments clefs de la
prochaine génération, la norme LTE-A devrait continuer a jouer un role important dans
Pavénement de la 5G [1]. Le principal résultat des études sur les normes LTE et LTE-A
est représenté par les standards sans fil, sous les contraintes de haut débit de données
et de qualité de service élevée, permettant d’assurer des taux d’erreur faibles et une
latence réduite [2-5]. Par ailleurs, les systémes de communications & faible complexité
sont également essentiels pour les réseaux mobiles 5G [6,7]. Cette thése s’inscrit dans les
tendances technologiques actuelles, en proposant des schémas de communications sans fil
a complexité et latence réduites, qui utilisent des codes FEC (Forward Error Correction)
simples. Nous optimisons ensuite les performances de ces systémes en termes de taux

d’erreur afin qu’ils puissent étre utilisés avec les normes LTE et LTE-A.

L’un des éléments essentiels permettant de satisfaire les spécifications des normes LTE et
LTE-A est la technologie MIMO (Multiple-Input Multiple-Output). En effet, les systémes
sans fil & antennes multiples, communément appelés systémes MIMO, sont devenus de
plus en plus populaires depuis la fin des années 90, aprées la prédiction théorique et
la. démonstration pratique de leurs capacités, notamment en termes de haute efficacité
spectrale [8,9]. Les avantages de l'utilisation de plusieurs antennes en émission et en
réception par un systéme MIMO sans fil ont été intensivement exploités ces derniéres
années [10]. En utilisant des émetteurs-récepteurs multi-antennes, la technologie MIMO
offre non seulement la possibilité du multiplexage et le gain de diversité, mais permet
également d’obtenir une fiabilité de liaison point-a-point plus importante par rapport

aux systémes mono-antenne [11]. Le principal défi consiste & concevoir des systémes

1
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MIMO qui exploitent pleinement la présence de plusieurs antennes. Ainsi, la répétition
des symboles sur plusieurs antennes a été proposée en [12,13]| pour obtenir la diversité
et la robustesse de la transmission. L’association de cette technique avec les récepteurs
itératifs conduit a des performances prometteuses [14, 15]. Plus important encore, dans
les schémas duplex en boucle fermée dans le domaine temporel, la réponse du canal
(Channel State Information - CSI) est disponible & I’émetteur via un lien de retour, ce
qui permet de mettre en place un précodeur adapté aux caractéristiques du canal. Dés
lors, plusieurs précodeurs linéaires ont été proposés dans la littérature. Ils ont été concus
en fonction de différents critéres, tels que la maximisation de la distance Euclidienne
minimale dans la constellation reque (max-dmi, [16]), 'optimisation de 1’allocation de
la puissance (minimisation du taux d’erreur binaire (BER) [17]), erreur quadratique
moyenne minimale (MMSE) pondérée [18], max-SNR (maximisation du rapport signal a
bruit (SNR) regu ou formation de voie) [19], water filling (WF) [9] ou le mercury /water-
filling (m/WF) [20].

Malheureusement, ni le code FEC externe, ni la structure du récepteur n’ont été pris
en compte dans la conception de la plupart des précodeurs linéaires, & ’exception des
codes espace-temps en bloc, qui tiennent compte de la CSI seulement coté récepteur [21].
Bien que les codes LDPC (Low Density Parity Check) aient été considérés en [22], le
précodeur associé n’est pas adapté & un récepteur spécifique. Son critére de conception est
la maximisation globale de I'information mutuelle entre ’alphabet fini d’entrée et la sortie
du canal. Puisque ce précodeur est globalement optimisé, il est appelé précodeur GOPT.
L’inconvénient majeur du précodeur GOPT est représenté par sa complexité, puisqu’il
implique la recherche de la solution optimale pour chaque réalisation du canal et valeur
du SNR. Bien que la mise en ceuvre du précodeur GOPT soit de ce fait irréalisable
en pratique, ses performances peuvent étre utilistes comme limite inférieure pour la

conception d’autres précodeurs.

Dans cette thése, nous considérons la concaténation d’un codeur FEC et d’un précodeur
MIMO linéaire. Nos investigations sont orientées dans deux directions. D’une part, nous
optimisons le précodeur MIMO linéaire en considérant un codeur FEC binaire simple et
des récepteurs itératifs. Tout d’abord, nous étudions une structure de réception qui utilise
un turbo-détecteur. Nous proposons, au chapitre 3, un précodeur(noté Fy, ), qui amé-
liore considérablement le taux d’erreur du systéme en optimisant la distance Euclidienne
minimale entre chaque couple de symboles, dont les configurations binaires associées dif-
ferent par un seul bit. En outre, en considérant un mapping direct de la constellation
recue, nous introduisons également un nouveau précodeur (appelé EXIT-based), associé
au mapping optimal et optimisé en exploitant des diagrammes de transfert d’informa-
tion extrinséeque (EXIT) afin d’améliorer le taux d’erreur du systéme. Nous comparons

les précodeurs proposés au précodeur max-dmiy, dont les performances en termes de taux
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d’erreur sont supérieures par rapport aux autres précodeurs existants pour des systémes
non-codés et une détection au sens du maximum de vraisemblance. Néanmoins, pour
des systémes utilisant des codeurs FEC, un bon critére d’optimisation pour le préco-
deur MIMO est la maximisation de 'information mutuelle du canal. Malheureusement,
le meilleur précodeur maximisant I'information mutuelle du canal, qui est le précodeur
GOPT mentionné précédemment, ne peut pas étre utilisé sur des canaux aléatoires en
raison de sa complexité élevée. Par conséquent, dans le chapitre 4, nous introduisons
un algorithme combinant les critéres de conception des précodeurs max-dmi, et GOPT,
et proposons un nouveau précodeur optimisé a faible complexité (appelé LCOPT), qui
maximise asymptotiquement U'information mutuelle du canal, avec une complexité ac-
ceptable. Le précodeur LCOPT proposé fonctionne avec des constellations regues fixes,
et peut donc facilement utiliser les mappings proposés dans le chapitre 3. Deuxiéme-
ment, nous concentrons notre étude sur I’optimisation du précodeur en considérant une
structure de réception & base de turbo-égalisation, dont la complexité est inférieure par
rapport & la turbo-détection. Toutefois, dans le cas de la turbo-égalisation, les sym-
boles recus sont tout d’abord décomposés en flux de données paralléles pour annuler les
interférences, avant d’étre convertis en information souple en entrée du décodeur. Par
conséquent, le mapping de la constellation recue n’est pas essentiel pour ce récepteur.
En outre, puisque le décodeur ne recoit pas en entrée directement la sortie du canal,
mais l'information souple obtenue aprés I’annulation des interférences, il est important
de maximiser 'information mutuelle entre les symboles transmis et les symboles aprés
I’annulation des interférences plutot que U'information mutuelle du canal. Par conséquent,
nous proposons, dans le chapitre 5, un nouveau précodeur qui maximise 'information
mutuelle aprés ’annulation des interférences (appelé précodeur Génie optimisé). Les si-
mulations réalisées en présence d’un turbo-égaliseur en réception montrent en effet un
gain de performance significatif du précodeur Génie optimisé par rapport au précodeur
GOPT, qui vise & maximiser 'information mutuelle du canal. D’autre part, nous consi-
dérons 'utilisation des codes FEC LDPC non-binaires (NB-LDPC). Nous étudions tout
d’abord la concaténation des codes NB-LDPC avec des précodeurs MIMO linéaires. Ha-
bituellement, les codeurs NB-LDPC utilisent des corps de Galois (GF) d’ordre élevé pour
augmenter le débit de données. Chaque symbole GF est généralement mappé sur un vec-
teur symbole MIMO. Bien que plusieurs algorithmes aient été proposés dans la littérature
pour réduire la complexité du décodage, celle-ci reste toutefois significative. Nous pro-
posons alors, dans le chapitre 6, de mapper plusieurs symboles GF d’ordre réduit en
un vecteur symbole MIMO, en considérant un turbo-détecteur non-binaire en réception.
Nous démontrons que ce mapping réduit significativement la complexité calculatoire au
niveau du récepteur. En plus, nous proposons d’ajouter un précodeur MIMO linéaire afin
d’améliorer le taux d’erreur du systéme et de diminuer encore davantage la complexité en

limitant le nombre d’itérations du décodeur NB-LDPC. Enfin, pour achever notre étude
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sur la réduction de la complexité des systémes de communications qui utilisent des codes
NB-LDPC, nous proposons au chapitre 7 un nouvel algorithme de décodage & faible

complexité pour ces codes, basé sur la fiabilité des décisions dures en sortie.

Le projet de recherche associé & cette thése nous a offert 'opportunité de deux col-
laborations internationales initiées via des séjours scientifiques (deux mois & Memorial
University of Newfoundland, en collaboration avec les professeurs Octavia Dobre et Te-
lex M. N. Ngatched, et deux mois & Missouri University of Science and Technology, en

collaboration avec les professeurs Yahong Rosa Zheng et Chengshan Xiao).



Modéle de la chaine de transmission

Notre étude concerne les systémes MIMO sans fil en bande de base. Considérons un
systéeme MIMO avec ng et nr antennes de réception et d’émission respectivement, et b
flux de données indépendants & transmettre. Nous supposons une connaissance parfaite
du canal a la fois & I’émetteur et au récepteur. Cété émetteur, nous étudions la conca-
ténation d’un codeur FEC et d’un précodeur MIMO linéaire. Le modéle de la chaine de

transmission est illustré sur la Figure 1.

a FEC 4 .C_ . S/P s | Pre-coder Channel y
Input bits [Encoder Modulation converter F H %

FIGURE 1: Modéle de la chaine de transmission.

Un codeur FEC a faible complexité est utilisé pour coder les bits d’information. Les mots
de code FEC sont ensuite entrelacés avant d’étre mappés sur les symboles d’une modu-
lation QAM (Quadrature Amplitude Modulation). Les symboles modulés sont convertis
en un vecteur symbole b-dimensionnel s. Le vecteur s est ensuite précodé par une matrice

F et transmis dans le canal MIMO. La sortie du détecteur y est alors exprimée par :
y = GHF's + Gn, (1)

ol F est la matrice de précodage, de taille ny x b, avec la contrainte de puissance
|F[|% = 1, G est la matrice de détection, de taille b x ng, H est la matrice du canal,
de taille ng X np, et n est le vecteur ng x 1 du bruit additif blanc Gaussien complexe,
& symétrie circulaire. Nous supposons que E[nn'] = 021, et E[ss'] = 021, ou E[] et
(.)T représentent respectivement l’espérance mathématique et la transposée conjuguée,

et I, est la matrice identité de taille ng.

nR

Sous 'hypothése de la connaissance parfaite du canal & I’émetteur, nous considérons la
transformation suivante pour simplifier le modéle du systéme. Considérons les matrices
F, et F, telles que F = F,F,. La décomposition en valeurs singuliéres de la matrice

du canal H de taille ngp X np conduit &8 H = UHEHVI{. Avec les notations F, =

5
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T
VI{ <Ib 0) et G = <Ib 0) UL, nous obtenons :

T
GHF = (Ib 0) U'uzviv (Ib 0) Fqg=H,Fy, (2)

ou H, = [Xy], = diag(oy, ..., 0p) est la matrice propre du canal, de taille bx b, {01, ..., 0p}
sont les b valeurs singuliéres les plus significatives de H triées par ordre décroissant, et
F, représente la nouvelle matrice de précodage, qui satisfait également la contrainte de

puissance ||[Fyl|% = 1. L’équation (1) peut étre alors réécrite sous la forme :

y =H,F4s+n, (3)

2

otl 1 est le vecteur bruit de taille b x 1, avec E[nn'] = ooy et 07 = 0y

Nous considérons le plus souvent dans cette thése le cas b = 2, qui est largement utilisé
dans la 4°™¢ génération (4G) de réseaux cellulaires (les normes LTE et LTE-A). Il est &
noter que la transformation ci-dessus requiert I'inégalité b < rank(H) < min(np,ng),
de sorte que np et ng soient supérieurs & b. Par conséquent, les résultats des analyses

effectuées en considérant b = 2, ne sont pas forcément limités aux systémes MIMO 2 x 2.

Soit la décomposition en valeurs singulieres de Fy : Fg = Up, X FdV}d. Dans le cas

0 sin v
de puissance ||F4||2 = 1. Pour une valeur de v, il peut étre démontré que le meilleur

cos 0
b =2 Yp = < 4 > Cette forme polaire satisfait également la contrainte

choix de Up,, qui maximise les valeurs singuliéres de H,Fy est Ug, = I, [16]. 11 est

également connu que la matrice unitaire 2 x 2 restante V}d peut étre décomposée en

t cosf  sinfe'® . ) ) o
V. =D | 122], ot D est la matrice diagonale unitaire. Sans aucune
Fy . i¢

—siné cosfe

perte de généralité, considérons D = I». Par conséquent, F; admet la forme paramétrée

cosyy 0 cosf sinf 1 0
Fq = . . e (4)
0 sin ¢ —sinf cosf 0 e

o ¥ (0° <1 < 90°) est lié a lallocation de puissance sur les canaux propres, tandis

que 6 (0° < 0 < 90°) et ¢ (0° < ¢ < 90°) permettent de mélanger et faire pivoter

ci-dessous :

respectivement des symboles sur les deux canaux propres.

FEn outre, la conversion des coordonnées cartésiennes en coordonnées polaires de H,, donne :

or O cosy O
Hv = =p . ; (5)
0 o2 0 sinvy
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ol p et v représentent le gain et ’angle du canal respectivement. Puisque o1 > g2 > 0,
on en déduit que 0° < v < 45°. Nous définissons alors le SNR instantané en réception
par :

SNR = 75 [HI} = 7" (©)

Avec cette définition du SNR, le canal est caractérisé seulement par I’angle . Il en résulte
une fagon intéressante de représenter n’importe quel canal dans le cas b = 2 (notons que

np et nr peuvent étre supérieurs a b).

Les contributions originales de cette thése sont présentées dans les prochains chapitres.
La numérotation de ces chapitres est la méme que dans le manuscrit complet, qui se

trouve aprés ce résumé étendu.






Chapitre 3

Optimisation conjointe du
précodeur MIMO et du mapping

symbole pour turbo-détection

3.1 Principales contributions

Dans ce chapitre, notre étude concerne ’optimisation du précodeur F 4, en considérant un
turbo-détecteur en réception, et a comme résultat quatre contributions principales. Tout
d’abord, nous proposons une nouvelle étude de cas, qui tient compte de la concaténation

du précodeur MIMO avec un code FEC externe, en supposant un récepteur itératif.

Deuxiémement, nous proposons un nouveau précodeur, qui est particuliérement adapté a
la turbo-détection dans le cas du schéma de mapping usuel, représenté par la conversion
du train binaire en symboles Q-aires, suivie par la conversion des symboles Q)-aires en
symboles MIMO (mapping Gray-M). Les parameétres de ce précodeur sont fixes pour tous

les canaux, ce qui réduit la complexité de la conception.

Comme 3éme contribution, nous introduisons un mapping des symboles MIMO, qui peut
étre vu comme une correspondance directe avec la constellation recue, et qui remplace
I’habituelle concaténation du modulateur et du convertisseur des symboles Q-aires en
symboles MIMO. Nous démontrons que la robustesse du précodeur linéaire est améliorée

en appliquant la stratégie de mapping MSEW (Minimum Squared Euclidean Weight).

Enfin, nous proposons un nouveau précodeur basé sur ’analyse des diagrammes EXIT, et
adapté au mapping MSEW. Le précodeur max-dmin, qui présente le meilleur taux d’erreur
pour des systémes non-codés et une détection au sens du maximum de vraisemblance,

est considéré ici pour comparaison. Les résultats numériques montrent que le nouveau

9
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précodeur surpasse largement le précodeur max-dp,, dans cette configuration (codeur

FEC externe, turbo-détection, mapping MSEW).

3.2 Modéle du systéme

Un code RSC (Recursive Systematic Convolutional) binaire est utilisé comme codeur
FEC externe pour coder les bits d’information. Les mots de code FEC sont ensuite
entrelacés avant d’étre appliqués au modulateur. Dans le modulateur, la séquence binaire
encodée et entrelacée € est mappée sur une séquence s de symboles Q-aires QAM, qui est
ensuite convertie en b flux paralléles, c’est-a-dire que les b symboles de s sont regroupés
et transposés en un symbole MIMO s de taille b x 1. Le vecteur s est ensuite précodé et
transmis dans le canal MIMO. A la réception, aprés la détection MIMO, un démappeur
MIMO souple échange 'information extrinséque de maniére itérative avec un décodeur
souple BCJR [23]. Aprés lapplication de la transformation de canal, nous obtenons le
schéma équivalent représenté sur la figure 3.1, ot L} ,L%) et L}E sont respectivement les
rapports de log-vraisemblance (LLR) a priori, a posteriori, et extrinséque du démappeur
souple, tandis que les notations équivalentes pour le décodeur BCJR souple sont L3 ,Ll%

2
et L.

a FEC c C | Modulator | S S | Pre-coder
— _._. (I P
Input bits| Encoder (4-QAM) s/ F4

2 1 L Virtual Channel
LA L + P H'y
a BCIR [ MIMO Symbol-| ,, 1
Soft demapper
Decoded| pecoder (sD)
bits

)
S ) )
13 t L Ly : Interleaver
-1 .
: De-interleaver

FIGURE 3.1: Systeéme précodé a turbo-détecteur.

3.3 Précodeur optimisé pour le mapping standard Gray-M

3.3.1 Analyse

Soit £ le carré de la distance Euclidienne entre les symboles de la constellation recue,
dont les séquences binaires mappées différent par un seul bit (distance de Hamming égale

a 1). Par conséquent, ¢ s’écrit :

(= H,Fq(3 -8 (3.1)
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ou § et § désignent tout couple de vecteurs symbole, dont les représentations binaires
associées ne différent que par un seul bit. La valeur minimale de ¢ sur ’ensemble de
constellations recues est notée £1. Nous démontrons tout d’abord que la maximisation
de f1 permet d’améliorer le taux d’erreur du systéme précodé, avec turbo-détection.
Deuxiemement, nous proposons un nouveau précodeur, appelé Fy, , qui vise & maximiser

£1 dans le cas du mapping Gray-M standard.

3.3.2 Sélection de résultats obtenus

Dans le cas ou deux flux de données sont transmis (b = 2), en utilisant la modulation 4-
QAM, le précodeur max-dp;, [16] montre de bonnes performances en termes de taux d’er-
reur pour un systéme non-codé, avec détection au sens du maximum de vraisemblance.
Nous comparons les précodeurs Fy, et max-dmi, en termes de taux d’erreur. Le précodeur
max-dmin vise & maximiser la distance Euclidienne minimale entre les points de la constel-
lation recue. Ce précodeur a deux formes différentes en fonction de 'angle de canal ~v. Il
distribue la puissance sur les deux sous-canaux (précodeur Foe,) si vy > v >~ 17.28°, et
utilise uniquement le premier sous-canal avec le gain du canal maximum (précodeur F,1)
si v < 9. Afin d’assurer une comparaison objective, les simulations ont été effectuées
pour deux canaux, notés A et B, qui sont caractérisés respectivement par v = 8.3° < g
and v =~ 30° > 9. Les taux d’erreur des précodeurs Fy, et max-dmi, sur ces deux ca-

naux sont montrés respectivement sur les figures 3.2(a) et 3.2(b). Nous constatons que

10? T T T T T 109G

—8— Fl, + Gray-M (max—dy,

—8— 1 + Gray-M (max—du)

—— Proposed Fj, + Gray-M

—©— Proposed F}, + Gray-M 07 —— Analytic bound of F}, + Gray-M
—— Analytic bound of Fy, + Gray-M
10% ! ! | | 10° . . . .
6 7 8 9 10 1 12 6 7 9 10 11 12
SNRp (dB) SN Rp (dB)
(a) Canal A. (b) Canal B.

FIGURE 3.2: BER (courbes en trait plein) et FER (courbes en trait discontinu), pour
le mapping Gray-M et un code (13,15)-RSC.

le précodeur proposé Fy, a de meilleures performances que le précodeur max-dmyi, pour
les deux canaux. Il est aussi & noter que la variation des pentes des courbes pour le canal
B est plus lente que pour le canal A. Il en résulte que l'utilisation du précodeur Fy, est

encore plus avantageuse pour les canaux caractérisés par un faible angle .
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3.4 Amélioration des performances en utilisant le mapping
des symboles MIMO

3.4.1 Analyse

Bien que les performances aient ét¢ améliorées par l'utilisation du précodeur Fy,, ¢1 peut
étre maximisée encore davantage si nous pouvons controler le mapping de la constellation
regue. Puisque celle-ci est fixe, il est possible de réaliser un mapping direct la-dessus. Par
conséquent, nous proposons de réaliser un mapping direct des symboles MIMO au niveau
du mappeur intérieur, qui transforme un bloc de m bits en un vecteur symbole s. Cette
opération équivaut & un mapping direct sur le vecteur symbole recu x = H,F4s puisque
les matrices H, et Fy sont connues. Au niveau de la constellation recue nous utilisons la
stratégie du mapping MSEW. Introduit en [24], 'objectif du mapping MSEW est d’obte-
nir un faible taux d’erreur asymptotique (région du plancher d’erreur) en optimisant deux
critéres. Tout d’abord, celui-ci maximise la distance Euclidienne quadratique minimale
entre les symboles dont les séquences binaires associées ne différent que par un seul bit
(c’est-a-dire ¢1). Deuxiémement, il minimise le nombre de couples de symboles dont les
séquences binaires associées différent par un seul bit, et qui sont séparés par la distance
Euclidienne quadratique minimale £1. A partir de ces deux critéres, le meilleur mapping
MSEW est ensuite obtenu de maniére numérique. Puisque les formes des constellations
regues sont différentes en fonction du précodeur utilisé, 'optimisation MSEW doit étre

effectuée pour chaque précodeur Fy.

14

T T
—o— Fi, + MSEW 1
—— Foao + M

F,; + MSEW n

121

08
0.6 [
04

|
|
|
|
I
I
I
|
|
|
|
|
1
I
I
|
02 |
|
|
U

22.5%
0 . . I ™l
0 5 10 15 20 2 30 35 % 45
7 (degree)

FIGURE 3.3: Variation de ¢; en fonction de v pour différents précodeurs en utilisant le
mapping MSEW.

Nous comparons les précodeurs associés au mapping MSEW par le biais du parametre /5.
La figure 3.3 montre la variation de ¢; en fonction de 7 (c’est-a-dire tous les canaux
possibles). Tel qu'il peut étre constaté, en considérant comme critére la maximisation
de /1, la meilleure solution consiste & associer le mapping MSEW & un précodeur qui

commute de Fyq & Foey au-deld de 7, = 30.7°, qui devient la nouvelle valeur de seuil.
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Toutefois, il est & noter que le critére de la maximisation de ¢; montre ses avantages
seulement dans la région du plancher d’erreur, qui est trés faible dans le cas du mapping
MSEW et hors du domaine des SNR couramment utilisés. En revanche, nous sommes
surtout intéressés par la région de turbo-cliff, pour laquelle nous proposons une solution
de précodage, basée sur analyse des diagrammes EXIT, & utiliser conjointement avec
le mapping MSEW de la constellation recue. Ce précodeur a deux modes de travail
déterminés par le seuil v, = 22.5° (voir la figure 3.3). Pour les canaux ayant v < ~,,
le précodeur a base de diagrammes EXIT utilise Fy,, alors que pour les canaux ayant

v > 7y, , celui-ci utilise Foeq.

3.4.2 Sélection de résultats obtenus

—8— max—dyiy (Foua + Gray-M)
10t i i —8— max—dy, (F1 + Gray-M) 10t i | ——F + N
—&— F + MSEW Fy, + MSEW
[ —©— Proposed EXIT-based (Fy, + MSEW) [ —©— Proposed EXIT-based (Fu, + MSEW)
102k - & - Analytic bound of F}; + Gray-M 102L = & - Analytic bound for Fiu, + Gray-M
— < - Analytic bound of F,; + MSEW - Analytic bound for F;, + MSEW
 — = @ - Analytic bound of EXIT-based + MSEW R R ¥ - @& - Analytic bound for EXIT-based + MSEW
10°F S~ ] 109E
<
107 - 4 104
~ ~o. - =
= -3 g
2 ~3
10°F B oy 1 10°
N Ny
3 ki S e
~
10°F T~ g 4 10 ~2
4 Ss B
4
7 > b ~ 7
107F S < El 10
S ~
S <
~
108 | q | N | | | | 108 |
6 6.5 7 75 8 85 9 95 10 105 11 7 75 8 85 9 95 10 105 11
SNRp (dB) SNRp (dB)
(a) Canal A. (b) Canal B.

FIGURE 3.4: Performances en termes de BER des précodeurs associés aux mappings
correspondants : canal A et canal B.

La figure 3.4(a) montre le taux d’erreur des précodeurs utilisés avec les mappings corres-
pondant au canal A. Tel qu'il peut étre constaté sur cette figure, le précodeur Fy, permet
d’obtenir un gain de 2.6 dB, pour un BER = 10~°, comparé au précodeur max-dyi, (avec
le mode F,; pour le canal A et mapping Gray-M). Le F,jutilisé conjointement avec
le mapping MSEW conduit également & un gain important par rapport au précodeur
max-dpin, qui est d’environ 2.1 dB pour un BER = 107°. D’autre part, nous constatons
que la limite théorique de F,; utilisé conjointement avec le mapping MSEW, est infé-
rieure a celle du précodeur Fy, . Néanmoins, la région du BER permettant d’atteindre ces
limites est trés faible et hors du domaine des SNR couramment utilisés. En revanche, les
résultats au niveau de la région de turbo-cliff sont plus intéressants. Ainsi, nous consta-
tons que dans cette région le précodeur Fy, permet d’obtenir un gain de 0.5 dB pour un
BER = 1075, comparé au précodeur F,; utilisé conjointement avec le mapping MSEW.
Des conclusions similaires peuvent étre aussi tirées pour le canal B, tel qu’il est illustré
sur la figure 3.4(b).
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3.4.3 Publications en lien avec ce chapitre

[J1]

[C1]

[C2]

N.-Q. Nhan, Philippe Rostaing, Karine Amis, Ludovic Collin, and Emanuel Radoi,
Joint optimization of MIMO precoding and symbol mapping for turbo detection,

article revue en cours de soumission.

N.-Q. Nhan, P. Rostaing, K. Amis, L. Collin, and E. Radoi, Optimized MIMO
symbol mapping to improve the turbo cliff region of iterative precoded MIMO detec-
tion, actes de la 23°™® conférence européenne en traitement du signal (EUSIPCO),
Septembre 2015, pp. 909-913.

N.-Q. Nhan, P. Rostaing, K. Amis, L. Collin, and E. Radoi, Optimized maxdmin
precoder assuming mazimum squared Euclidean weight-mapping and turbo detec-

tion, actes du 9™ symposium international « Turbo Codes & Iterative Information
Processing » (ISTC), Septembre 2016.



Chapitre 4

Précodeur optimisé a faible
complexité pour les canaux MIMO

aléatoires

4.1 Principales contributions

Dans ce chapitre, notre objectif est de diminuer la complexité de l'algorithme de préco-

dage GOPT. Nos principales contributions concernent deux aspects.

D’une part, en utilisant une limite inférieure de I'information mutuelle du canal, il peut
étre démontré que maximiser la distance Euclidienne minimale dy,;, équivaut asympto-
tiquement & maximiser l'information mutuelle du canal [25].Par ailleurs, nous pouvons
mettre la matrice de précodage sous la forme F; = WO, ou la matrice diagonale W est
lie & 'allocation de puissance sur les différents sous-canaux et la matrice unitaire @
dépend des formes des constellations recues. Par conséquent, comme premiére contribu-
tion, nous proposons un nouvel algorithme de précodage a faible complexité optimisé,
appelé LCOPT, qui réduit de maniére significative la charge de calcul, comparé & GOPT.
L’algorithme proposé utilise la matrice unitaire fixe @ déterminée a partir de la solution
de la maximisation de dnin, et optimise uniquement la matrice d’allocation de puissance

W selon le critére de 'information mutuelle.

Le choix de la matrice ® est discuté pour b = 2 et b > 2, sachant que ce choix détermine
aussi la forme de la constellation regue du précodeur LCOPT. Notre deuxiéme contri-
bution est alors de réaliser le mapping MSEW de la constellation recue du précodeur
LCOPT proposé. Nous rappelons que le mapping MSEW a été proposé dans [24] et a

déja été appliqué dans nos travaux de recherche précédents (voir le chapitre 3 et [26]). 11

15
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est & noter qu’il n’est pas pratique de réaliser le mapping MSEW de la constellation regue
du précodeur GOPT puisque dans ce cas la constellation change pour chaque réalisation
du canal et valeur du SNR. Dans ce chapitre, nous utilisons le méme modéle du systéme

représenté sur la figure 3.1.

4.2 Analyse

L’information mutuelle du canal entre 'entrée discréte s et la sortie du canal y est donnée
par [22] :

QP Q°
1 _
I(y,s) = blogy, @ — Qb E E { log, E e ok b (4.1)
m=1 k=1

ot (g = ([HuFa(sm — si) +nl|* — [|n]|?) /03] et ) est 'ordre de la modulation Q-aire.
Soit W = FLHleFd. On montre que l'information mutuelle Z(y,s) est une fonction
concave par rapport a la matrice W. La décomposition en valeurs singuliéres de Fy
conduit & Fy = UFEFVI;\. Il peut étre démontré [27, Proposition 1] que la matrice Up
peut toujours étre choisie égale & la matrice identité,I,. Par conséquent, en réécrivant
U =g, © = Vi, il en résulte :

F,=90O. (4.2)

La matrice ¥ contréle l'allocation de puissance sur chaque sous-canal, tandis que la
matrice © est liée & la rotation et & la mise & I’échelle des symboles de la constellation
recue. On montre que l'information mutuelle Z(y,s) est aussi une fonction concave par

rapport W2,

Avec F; = WO, dans [22] les auteurs ont proposé un algorithme itératif (appelé GOPT),
qui met & jour les matrices @ et ¥ en utilisant la méthode du gradient ascendant (au
lieu de mettre a jour directement Fg, qui ne semble pas faisable). Alors que la matrice ¥
peut étre mise & jour directement par le biais de son gradient, dans le cas de la matrice
® nous devons utiliser la variation de la matrice W, notée 0W. Bien que le précodeur
GOPT maximise globalement la capacité du canal, la complexité de cet algorithme est
trop élevée. En effet, la mise & jour de la matrice © exige un temps de calcul important,
notamment lorsque le nombre de flux de données b devient élevé. En outre, la convergence
de I'algorithme GOPT est sensible au choix de la valeur initiale de la matrice @. Dans ce

chapitre, nous proposons une solution sous-optimale pour contourner cet inconvénient.
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Nous utilisons ’expression suivante pour la limite inférieure de 'information mutuelle

du canal :
Iig(y,s) = blogy Q@ — (1/In2 — 1)b

b b
Q 203 '

m=1

D’une part, nous pouvons en déduire que maximiser Zyg(y,s) permet de maximiser
I'information mutuelle du canal Z(y,s). L’optimalité asymptotique dans la région des
SNR élevés montre que maximiser Zyg(y, s) & haut SNR équivaut & maximiser la distance
Euclidienne minimale dyijn = nrgl;g; {||Xm - Xk;||2} entre les symboles de la constellation
recue, qui sont définis par x; = HyFys;. D’autre part, rappelons que dans 1’équation
(4.2) la matrice ¥ controle ’allocation de puissance sur chaque sous-canal, tandis que la
matrice © est liée & la rotation et & la mise & I’échelle des symboles de la constellation
recue. Par conséquent, pour une matrice ® donnée, la constellation recue est fixée. En
considérant une matrice ® obtenue par la maximisation de d,,, nous proposons alors un
nouvel algorithme sous-optimal a faible complexité, qui met a jour seulement la matrice
d’allocation de puissance W. Nous appelons les matrices de précodage obtenues grice au

nouvel algorithme des précodeurs a faible complexité optimisés (ou précodeurs LCOPT).

Rappelons que la matrice du canal H, et la matrice d’allocation de puissance W effec-
tuent seulement une mise & 1’échelle des constellations entre les sous-canaux, alors que la
matrice ® modifie complétement la forme de la constellation reque. Afin d’appliquer le
mapping MSEW, une recherche doit donc étre effectuée pour chaque matrice . Malheu-
reusement, dans le cas du précodeur GOPT [22], celle-ci change pour chaque réalisation
du canal et valeur du SNR. Par conséquent, afin d’utiliser le mapping MSEW avec le
précodeur GOPT, nous devrions rechercher le meilleur mapping pour chaque réalisation
du canal et chaque SNR. Il n’est donc pas pratique d’utiliser le mapping MSEW pour la
constellation regue du précodeur GOPT. Néanmoins, grace au précodeur LCOPT pro-
posé, nous pouvons fixer la matrice © , et trouver ensuite le meilleur mapping MSEW

pour la forme de la constellation recue correspondante.

4.3 Sélection de résultats obtenus

Nous considérons un canal MIMO 2 x 2, généré de fagon aléatoire, pour les simulations
de Monte-Carlo, c’est-a-dire que chaque élément de H est distribué¢ H; ; ~ CA(0,1).
Le canal équivalent H, est ensuite obtenu & partir de H par la transformation (3).
L’encodeur FEC utilise le code (13,15),,,,,-RSC, de rendement 1/2.

octa

Prenons tout d’abord le mapping Gray-M standard. La figure 4.1 montre le taux d’er-

reur trame (FER) et le taux d’erreur binaire (BER) du systéme lorsque les précodeurs



Résumé étendu 18

min

== O  GOPT using codebook with N=10
10 :5: S max-d
= {  proposed LCOPT

BER/FER

SNR (dB)

FIGURE 4.1: BER (courbes en trait plein) et FER (courbes en trait discontinu), tous
les précodeurs sont utilisés avec le mapping Gray-M.

sont utilisés avec le mapping Gray-M standard. Le précodeur GOPT est simulé a I’aide
d’une méthode de construction d’un dictionnaire, qui est aussi proposée dans ce chapitre,
ayant une résolution de N = 10 précodeurs par valeur du SNR. Nous constatons que le
précodeur LCOPT sous-optimal, & faible complexité, présente un taux d’erreur similaire
a celui du précodeur GOPT. Notons cependant que dans ce cas le résultat est légérement
meilleur pour le LCOPT que pour le GOPT, car ce dernier n’utilise pas le précodeur
optimal, mais un précodeur le plus proche, tiré du dictionnaire. Il est également & re-
marquer que le LCOPT surpasse le précodeur max-dmin, & la fois en termes de FER et
de BER.

v max-dmm + MSEW mapping

O  poposed LCGOPT + MSEW mapping
{  poposed LCGOPT + Gray-M mapping

BER/FER
5
S

10°
N
5 N
10 N
N

107 ®
10 :

7 8 9 10 1 12 13 14

SNR (dB)

FIGURE 4.2: BER (courbes en trait plein) et FER (courbes en trait discontinu); les
précodeurs max-dy;, et LCOPT sont utilisés avec des mappings MSEW optimaux,
tandis que le précodeur GOPT est utilisé avec le mapping Gray-M.

Deuxiémement, nous appliquons les mappings MSEW optimaux des précodeurs max-dpin
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et LCOPT, au niveau du mappeur symbole MIMO. Les résultats des simulations, présen-
tés sur la figure 4.2, montrent que le précodeur LCOPT surpasse le précodeur max-dpiy .
Sur la méme figure nous présentons & nouveau le résultat du précodeur LCOPT avec
le mapping Gray-M de la figure 4.1 afin de montrer 'efficacité du mapping MSEW en
termes de taux d’erreur. Fn effet, en utilisant le mapping MSEW, nous remarquons que
le précodeur LCOPT améliore considérablement le taux d’erreur par rapport au map-
ping Gray-M. Ainsi, le gain obtenu est d’environ 4.1 dB pour un BER — 1078 et de
plus de 4 dB pour un at FER = 10~ % Rappelons encore une fois que la recherche des
mappings MSEW optimaux dans le cas du précodeur GOPT n’est pas pratique puisque
celle-ci devrait étre effectuée pour chaque réalisation du canal et valeur du SNR. Tou-
tefois, pour une forme de constellation fixée (@ fixée), le mapping MSEW associé au
précodeur LCOPT est fixe pour toutes les réalisations du canal, ce qui montre ’avan-
tage du précodeur LCOPT proposé par rapport au précodeur GOPT, dans le cas des

mappings optimisés au niveau de la constellation regue.

4.4 Publication en lien avec ce chapitre

[J2] N.-Q. Nhan, P. Rostaing, K. Amis, L. Collin, and E. Radoi, Complezity Reduction
for the Optimization of Linear Precoders over Random MIMQO Channels, article

soumis a la revue IEEE Transactions on Communications.






Chapitre 5

Optimisation du précodage MIMO
linéaire avec turbo-égalisation
MMSE en réception

5.1 Principales contributions

Dans ce chapitre, notre objectif consiste & optimiser le précodeur F; en considérant en
réception I'annulation itérative des interférences (turbo-égalisation) basée sur la mini-
misation de l'erreur quadratique moyenne (MMSE). Nous proposons donc un nouveau
précodeur, qui est spécifiquement concu pour étre utilisé avec un turbo-équaliseur au
niveau du récepteur. Contrairement aux précodeurs classiques qui maximisent l'infor-
mation mutuelle entre les symboles a l'entrée et la sortie du canal (capacité du canal),
le précodeur proposé vise & maximiser I'information mutuelle entre les symboles & 1’en-
trée du canal et a la sortie de I'égaliseur. Ce précodeur est adapté pour les applications

nécessitant une faible complexité, ot des codes FEC simples doivent étre utilisés.

5.2 Modéle du systéme

Un systéme complet, incluant le modéle équivalent décrit par ’équation (3) et un turbo-
égaliseur, est illustré sur la figure 5.1, ol Lk, L%) et L]1E sont respectivement les rapports
de log-vraisemblance (LLR) a priori, a posteriori, et extrinséque du convertisseur des
symboles en binaire, tandis que les notations équivalentes pour le décodeur BCJR souple

sont L% ,Ll% et L%. L’annulation des interférences est réalisée par des filtres avant et

21
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FIGURE 5.1: Systéme de turbo-égalisation précodé.

arriére, qui sont désignés par W et Q respectivement. Les deux filtres sont de taille b x b,

ou b représente le nombre de flux de données transmis via le précodeur.

Nous appliquons directement ici les expressions de W et Q, en prenant en compte la pré-
sence du précodeur Fg. Des informations plus détaillées sur la turbo-égalisation peuvent
étre trouvées en [28-30]. Soit A = H,F4. A la sortie du module d’annulation des inter-

férences (IC) on obtient le vecteur détecté :

z=Wy —Qs (5.1)

ou §, qui est la sortie du BSC (voir la figure 5.1), est l’estimation du vecteur symbole s,
avec E[88'] = 021, et E[s8'] = 021, Les filtres W et Q sont obtenus par 'optimisation du
critére MMSE. Soit B = (02 — 02)AAT + 071,. La minimisation de l'erreur quadratique

moyenne sous la contrainte Qg = 0,Vk € {1,2,...b} conduit a [31] :
-1
Wy, = o?Al, (B + agA:kA:Tk) , (5.2)

et
Qi = Wi . A - W, A e, (5.3)

ol ey, est la k®™€ ligne de I, tandis que A. ;. et Ay . représentent respectivement la Jeme

colonne et la k™€ ligne de la matrice A.
Considérons également 'inégalité suivante [31] :

oAl B71A,,
1+ 02A], B-1A.,

0< Wk:,:A:,k: = = < 1. (5.4)

La sortie du module IC peut étre modélisée sous la forme :

2k = Sk + &k, (5.5)
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ou & est indépendant de si, a une moyenne nulle, et la variance ng = 02 up(1 — pg). Le

rapport signal a bruit a la sortie du module IC est noté pi et vaut :

m
= . 5.6
Pe= (5.6)

Nous utilisons les diagrammes de transfert de 'information extrinséque (EXIT) pour ana-
lyser la convergence du turbo-égaliseur. Une description compléte de la fagon de calculer
les fonctions EXIT est donnée dans [32]. Nous considérons le code RSC de rendement 1,2
défini par ses polyndémes générateurs sous forme octale (13, 15). La figure 5.2 illustre un
diagramme EXIT complet du turbo-égaliseur, avec multiplexage spatial utilisé au niveau
de I’émetteur. Le diagramme EXIT est calculé pour un canal fixe et un SNR = 10 dB.

09 r

’ = = = BCJR decoder of RSC code

—6— Equalizer EXIT function associated with Spatial Multiplexing

0 0.1 0.2 03 04 05 0.6 0.7 08 0.9 1
1,2
/e

FIGURE 5.2: Diagramme EXIT du turbo-égaliseur en fonction de la trajectoire réelle
(obtenu par simulation) pour un canal fixe, SNR = 10 dB, 4-QAM et un code (13,15)-
RSC.

5.3 Analyse

Comme illustré sur la figure 5.1, les LLR d’entrée appliqués au décodeur FEC sont cal-
culés & partir de la sortie z du module d’annulation des interférences. Par conséquent,
I'information mutuelle I(z,s) joue un role essentiel concernant le taux d’erreur du sys-
téme. En outre, & partir de (5.1) il en résulte que U'information mutuelle entre la sortie du
canal y et l’entrée correspondante s, est différente de 1(z,s), ¢’est-a-dire I(y,s) # I(z,s).
C’est bien cette relation qui motive la recherche d’un précodeur qui maximise I(z,s). ,

sachant que le précodeur GOPT [22] maximise seulement la capacité du canal I(y,s).

Puisque z prend en compte Uinformation a priori (§) du décodeur FEC, il n’est pas
possible de trouver un précodeur qui optimise globalement I(z,s). Cependant, la régle

de la chaine relative & 'information mutuelle, exprimée au niveau symbole, permet de
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la, décomposer en une somme de M informations mutuelles exprimées au niveau bit, &
M—1

savoir : I(z,s) = > I(z,s|L bits connu) [33,34], ot M = (logy Q) est le nombre de
L=0

bits par symbole mappé.

D’une part, ten-Brink a également montré [34] que I(z,s|aucun autre bit connu) (=
I(z,s|s = 0)) et I(z,s|tous les autres bits connu)(~ I(z,s|S = s)) correspondent res-
pectivement aux points initial et final du diagramme EXIT. D’autre part, les résultats
présentés dans [35] montrent que le fait de maximiser le point final du diagramme EXIT
de ’égaliseur entraine un plancher d’erreur bas pour la turbo-égalisation, tandis que la
maximisation de son point initial conduit & une convergence rapide. En effet, tel qu’il
peut étre constaté sur la figure 5.2 que la maximisation de I3(1) évite le croisement
prématuré des deux fonctions EXIT, tandis que la maximisation de I}E (0) conduit & un

bon point initial pour la trajectoire.

En résumé, nous proposons dans ce chapitre un précodeur qui maximise respectivement
I(z,s|8 = s) (I(z,s) a I’état de convergence optimale) et I(z,s|§ = 0) (I(z,s) a l’état
initial). L’optimisation est effectuée en deux étapes. Tout d’abord, la priorité est d’opti-
miser I(z,s|S = s) afin de minimiser le plancher d’erreur. Cette étape permet de trouver
les deux premiers paramétres (1, 6) de Fy dans (4). Deuxiémement, avec les valeurs de
(1, 0) déterminées précédemment, nous optimisons le dernier parameétre ¢ de Fy dans (4)
afin d’améliorer I(z,s|S = 0). La solution du probléme d’optimisation ci-dessus pour le
précodeur proposé vaut (¢ = 0,0 = w/4, ¢ = 7/6). Puisque le nouveau précodeur est op-
timisé a I’état de convergence optimal (obtenu pour § = s et également connu sous le nom

de borne Génie), nous appelons celui-ci précodeur Génie optimisé (Genie-optimized).

5.4 Sélection de résultats obtenus

Nous illustrons maintenant, par quelques exemples, les avantages du précodeur Génie op-
timisé par rapport & d’autres précodeurs existants, en termes de taux d’erreur. Le premier
est le précodeur [22]. A notre connaissance, ce précodeur permet d’obtenir la meilleure
capacité sur des canaux MIMO complexes, car celui-ci vise & maximiser 'information
mutuelle entre ’alphabet fini d’entrée et la sortie correspondante du canal. Le deuxiéme
précodeur, qui a des expressions non diagonales distinctes, indépendantes du SNR, est
le précodeur max-dp;, [16]. Ce précodeur vise & maximiser la distance Euclidienne mi-
nimale (dmin) entre les points de la constellation regue (x; = H,Fy4s;). Par conséquent,
puisque maximiser dpyi, est équivalent & maximiser la limite inférieure de la capacité du
canal MIMO a SNR élevé [25], le précodeur max-dp,;, permet également d’obtenir une
capacité de transmission trés proche de celle assurée par un précodeur GOPT & haut
SNR.
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Les canaux aléatoires sont considérés pour montrer l'avantage du précodeur Génie opti-
misé pour toute valeur de 7. Avec la définition du SNR donnée par (6), I’énergie du canal
|H||% = p? est intégrée dans le SNR. Par conséquent, le taux d’erreur ne dépend pas de
p?. Ainsi, en moyennant sur les canaux générés aléatoirement, la courbe de performance
représentée sur la figure 5.3 montre le taux d’erreur moyen en fonction de ~y. Tel qu’il peut
étre constaté, la solution proposée conduit a un gain de plus de 4 dB pour un BER =
1072 et de 2 dB pour un BER = 1079 respectivement, comparée au multiplexage spatial
et au max-dp, respectively. Comparé au précodeur GOPT, le précodeur Génie optimisé
permet de réaliser respectivement un gain d’environ 1 dB et de 2 dB pour un BER =
1076 et BER = 10~7. En conclusion, un gain considérable peut étre obtenu en utilisant
un précodeur, surtout le précodeur Génie optimisé, comparativement au multiplexage
spatial (aucune CSI exploitée du coté émetteur). Le précodeur Génie optimisé atteint
toujours trés tot la borne Génie et montre des gains de performance comparé a d’autres

précodeurs.

0
10 T T T T T
—&— Genie-optimized (the proposed)
. = = = Genie bound
10_1 —6— max_dmin
GOPT
—¢— Spatial Multiplexing
-2
10° 8
~
~
~
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o
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104
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FIGURE 5.3: BER moyen sur des canaux aléatoires, 4-QAM et un code (13,15)-RSC.

5.5 Publications en lien avec ce chapitre

[J3] N.-Q. Nhan, P. Rostaing, K. Amis, L. Collin, and E. Radoi, Optimization of li-
near MIMO precoding assuming MMSE-based turbo equalization, article soumis a

la revue IEEE Transactions on Wireless Communications.

[C3] N.-Q. Nhan, P. Rostaing, K. Amis, L. Collin, and E. Radoi, Association and Joint
Optimization of max-dyin Precoder with MIMO Turbo Equalization, actes de la
conférence internationale IEEE GLOBECOM, Decembre 2015, pp. 1-6.






Chapitre 6

Turbo-détection des codes
NB-LDPC dans les systémes MIMO

précodés

6.1 Principales contributions

Depuis qu'ils ont été redécouverts par Mackay et al. [36], les codes LDPC ont été étudiés
de maniére approfondie dans le domaine du codage de canal. Parmi les codes LDPC, les
codes non-binaires (NB) surpassent leurs homologues binaires, plus particuliérement pour
des longueurs de code courtes a modérées [37|. Les codes NB-LDPC montrent également
des avantages lorsqu’ils sont utilisés dans les systémes MIMO. En effet, rappelons que
dans les communications MIMO conventionnelles, utilisant le codage binaire, les mots
de code binaires sont regroupés et mappés dans les symboles d’'une modulation Q-aire.
Ensuite, ces symboles sont transformés en vecteurs symboles MIMO par une conversion
série-paralléle. Les vecteurs symbole ainsi obtenus constituent une constellation MIMO.
La taille de cette constellation est donc égale & Q°, ot b est le nombre de flux de don-
nées (couches) du systéme MIMO. Contrairement & ce mapping binaire classique, les
recherches présentées en [38,39] montrent que 'ordre du GF des codes NB-LDPC peut
étre choisi égal a la taille de la constellation MIMO. Par la suite, chaque symbole GF est
directement mappé sur un vecteur symbole. Ce mapping, que nous appelons « mapping

un & un », est utile pour associer les codes NB-LDPC aux communications MIMO.

Les communications sans fil modernes, en particulier les réseaux cellulaires de cinquiéme
génération (5QG), exigent des débits de données élevés et une faible latence de transmission
[40]. Ces contraintes entrainent l'utilisation extensive des modulations d’ordres élevés

[41], ce qui conduit & une augmentation exponentielle de la taille de la constellation

27
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MIMO. Par conséquent, des GF d’ordres trés élevés seraient nécessaires dans le cas d’un
mapping un & un. Malheureusement, les codes NB-LDPC construits sur des GF d’ordre
élevé induisent une complexité importante au niveau du décodeur NB-LDPC, ce qui

augmente la latence du systéme.

Pour surmonter ce probléme, nous considérons dans ce chapitre un « mapping multiple »
qui transforme plusieurs symboles définis sur un GF d’ordre réduit en un symbole MIMO.
Ensuite, nous étudions le récepteur itératif ou turbo-détecteur, qui effectue conjointement
le décodage et la détection. Il est démontré que, pour le méme ordre de modulation,
le mapping multiple utilisé avec le turbo-détection réduit de maniére significative la
complexité du récepteur par rapport au mapping un a un. Cependant, cet avantage est
associé & deux principaux défis. Le premier défi est que le mapping multiple produit des
interférences inter-symboles, ce qui conduit & une dégradation des performances au niveau
du plancher d’erreur. Le deuxiéme défi concerne 'optimisation du nombre d’itérations
entre le détecteur et le décodeur dans le turbo-détection, ainsi qu’a 'intérieur du décodeur

pour réduire encore davantage la complexité du décodage.

Les contributions de ce chapitre peuvent étre résumées de la maniére suivante. Tout
d’abord, nous proposons l'utilisation des précodeurs MIMO pour surmonter 'inconvé-
nient du turbo-détection concernant les performances, surtout au niveau du plancher
d’erreur. Ces précodeurs sont sélectionnés parmi ceux présentés dans la littérature, selon
le critére de la maximisation de 'information mutuelle du canal, qui est bien adapté
pour les systemes MIMO encodés. Des gains de performances importants sont réalisés
en utilisant ces précodeurs. Deuxiémement, nous montrons qu’ils permettent également
de réduire la complexité du récepteur et de minimiser le nombre d’itérations internes du

décodeur. L’optimisation de la configuration turbo-détection est finalement discutée.

6.2 Modéle du systéme

Un encodeur NB-LDPC sur un GF d’ordre g (GF(q)) est utilisé pour le codage du canal
(figure 6.1). Les mots de code obtenus u sont ensuite entrelacés au niveau symbole.
Les mots de code en sortie de 'entrelaceur sont notés . Au niveau du mappeur, les
symboles obtenus par une modulation QAM (Q-aire sont regroupés dans un vecteur s de
taille b x 1. Toutes les valeurs possibles de s définissent une constellation de symboles
MIMO S = {so,...,Sk,... ,sz_l}. Ensuite, les symboles GF de @ sont regroupés et
mappés sur un symbole MIMO s € S selon une régle de mapping X'. Le symbole MIMO
s est precodé par un précodeur Fy avant d’étre transmis dans le canal MIMO. Bien que

ng symboles de 1 puissent étre mappés sur plusieurs symboles MIMO au lieu d’un seul, ce
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mapping n’est toutefois pas intéressant puisqu’il induit une complexité élevée au niveau

du démappeur.

Le récepteur comprend un détecteur MAP (maximum a posteriori) souple et un déco-
deur NB-LDPC souple, qui échangent de fagon itérative les vecteurs LLR. Cette boucle
itérative est ainsi appelée « boucle externe », le nombre d’itérations correspondant étant
noté ney. De méme, la boucle itérative & l'intérieur du décodeur est appelée « boucle

interne », le nombre d’itérations correspondant étant noté nj,.

e NB-LDPC| u — U | GF to MIMO symbol | s | Precoder
Input | Encoder = Mapper F,
symbols

Channel

142 11 + [P H
e NB-LDPC MAP y ;;1

Decoded | Soft Decoder Soft Detector
symbols

[E2 A1 ( ): Symbol-wise interleaver.
(z=1): Symbol-wise de-interleaver.

FIGURE 6.1: Modéle du systéme.

6.3 Analyse

L’analyse du récepteur itératif est effectuée en utilisant le diagramme EXIT pour le dé-

codage itératif des symboles [42]. Nous considérons le décodeur avec un nombre maximal

max

donné nj, (n,**), en tant qu’élément de décodage individuel dans le diagramme, l'autre

élément étant constitué par le détecteur. A titre d’exemple, prenons au hasard le canal
H = [0.4067 — 0.18014 0.0419 + 0.20153; —0.8206 — 0.0268i 0.2896 — 0.0428i]. La fi-
gure 6.2 montre le diagramme EXIT pour ce canal et un SNR= 18 dB. Les courbes a

trait discontinu représentent les fonctions EXIT du décodeur pour différentes valeurs de

max

ni®*, tandis que les courbes & trait plein représentent les fonctions EXIT du détecteur

lorsque le multiplexage spatial (SM), ou les précodeurs max-dpi, et GOPT sont utilisés
au niveau de ’émetteur. Il est & noter que seules les fonctions EXIT du détecteur varient
avec le SNR. Les points initial et final d’'une fonction EXIT du détecteur sont notés

respectivementy Iy et I;.

Comme illustré sur la figure 6.2, les fonctions EXIT du décodeur commencent & converger

max = 10. Nous constatons tout d’abord que la fonction EXIT du décodeur peut

an
étre utilisée pour prédire nji®* dans le schéma non-itératif classique. Dans le schéma
max

turbo-détection utilisé avec le SM, bien que la limitation de nji** diminue la complexité,
les fonctions EXIT du SM et du décodeur se croisent trop tot, ce qui conduit & de

faibles performances en termes de taux d’erreur. Cependant, ce probléme du croisement
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FI1GURE 6.2: Diagrammes EXIT pour une réalisation du canal et un SNR = 18 dB.

prématuré des deux courbes peut étre réglé en utilisant les précodeurs. Ainsi, la figure
6.2 montre que les valeurs de I; pour les précodeurs GOPT et max-dpyi, sont bien plus
élevées que pour le SM, ce qui prédit des planchers d’erreur meilleurs pour le systéme

précodé.

6.4 Sélection de résultats obtenus

Nous illustrons maintenant, par quelques exemples, les avantages de l'utilisation des pré-
codeurs en termes de taux d’erreur et de réduction de complexité. Les simulations de
Monte Carlo ont été effectuées pour des systémes MIMO avec np = 2,ngp = 2, b = 2
flux de données, @) = 16 (modulation 16-QAM), GF(q = 16) et ny = 2 symboles GF
par symbole MIMO, et algorithme de décodage log-BP [45]. La taille de la constellation
MIMO est donc égale & Q¥ = 256. Nous rappelons que la matrice NB-LDPC est dé-
terminée & partir des matrices concues dans le cadre du projet DAVINCI [43, 44] avec
(N, =192, N, = 96,d. = 4, d, = 2, longueur du plus court cycle ou girth = 14). Le

nombre maximum d’itérations dans la boucle externe est fixé a 10.

La figure 6.3 montre le FER du systéme en fonction du SNR pour le canal Hey, qui
a fait 'objet de lanalyse des diagrammes EXIT, dans le cas ou le SM (courbes a trait
discontinu), le précodeur max-dmin (courbes a trait plein) et le précodeur GOPT (courbes
en pointillés) sont utilisés au niveau de ’émetteur. Les courbes correspondant a un méme
max

nt

0% partagent le méme marqueur. Nous pouvons constater que le plancher d’erreur du

systéme est considérablement réduit grace aux précodeurs. Avec le méme n1%*, le taux

d’erreur est amélioré en présence des précodeurs.



31 Résumé étendu

SNR_, (dB)

FIGURE 6.3: FER pour le canal Hey.

Par exemple, pour nj}®* = 5 et FER — 1073, le précodeur GOPT reéalise un gain d’environ
6 dB et 3 dB respectivement par rapport au SM et au précodeur max-dy,;in. En outre, pour
le SM et précodeur max-dmin, les courbes correspondant aux différents nj;** convergent a
SNR élevé. Ce comportement peut étre expliqué par 'augmentation de I1 en haut & droite
du diagramme EXIT a SNR élevé. Dans le cas du précodeur GOPT, cette convergence
se produit & un SNR plus faible (voir la figure 6.2). Tous les résultats des simulations

pour le canal Heyx sont conformes a I'analyse des diagrammes EXIT.

6.5 Publication en lien avec ce chapitre

[J4] N.-Q. Nhan, P. Rostaing, K. Amis, L. Collin, E. Radoi, and Y. Rosa Zheng, Turbo
detection of NB-LDPC codes in precoded MIMO systems, article soumis a la revue
IEEE Transactions on Vehicular Technology.






Chapitre 7

Algorithme de décodage paralléle
par retournement des symboles et

votes multiples pour les codes
LDPC non-binaires

7.1 Principales contributions

Les algorithmes de décodage des codes NB-LDPC peuvent étre regroupés en trois classes
principales : décodage a décision dure [46], décodage & décision souple [45,47-49], et
décodage hybride (également connu comme décodage basé sur la fiabilité des décisions
dures) [50-53]. Du point de vue de la mise ceuvre, la premiére classe présente la com-
plexité de décodage la plus réduite. Cependant, sa simplicité entraine des performances
relativement faibles, la différence par rapport & la deuxiéme classe étant typiquement
de lordre de plusieurs dB. Le décodage & décision souple fournit les meilleures perfor-
mances, mais conduit au niveau de complexité le plus élevé. Le décodage hybride se situe
entre les deux, en réalisant un bon compromis entre les performances et la complexité

du décodeur.

Parmi les algorithmes basés sur la fiabilité, 'algorithme de décodage paralléle par re-
tournement des symboles (PSFD), récemment introduit dans [52] offre un des meilleurs
compromis entre performance et complexité. En utilisant une fonction de retournement
qui combine le message de parité pondéré issu des sommes de controle normalisées et
le message de variable issu de la séquence recue, l'algorithme identifie, & chaque itéra-

tion de décodage, les symboles relativement non-fiables dans la séquence des symboles
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obtenus par décision dure, et les décode en utilisant les symboles retournés correspon-
dants. Les symboles non-fiables sont trouvés a I'aide d’un systéme de vote, ot chaque
nceud de controle (CN) non-satisfait donne une voix au nceud de variable (VN) ayant
la plus grande valeur de la fonction de retournement contrélé par celui-ci. Les nceuds
de variable accumulent ainsi des voix et ceux qui dépassent un nombre total de voix
au-dessus d’un seuil prédéfini sont identifiés comme non-fiables. En jouant simplement
avec les fiabilités des décisions dures, I'algorithme PSFD est un bon choix pour déco-
der des codes NB-LDPC haut débit, définis sur des corps finis. Cependant, les résultats
des simulations montrent que ’algorithme PSFD est adapté pour décoder seulement des
codes NB-LDPC réguliers, dont les matrices de controle de parité ont des colonnes de
poids élevés (au moins 8). En outre, 'algorithme PSFD utilise un seuil pour le nombre
de voix qui dépend du code et qui doit étre optimisé par simulation. Le calcul de sa
fonction de retournement implique un couple de facteurs d’échelle, (n, \), qui dépendent

également du code et qui sont aussi a optimiser par simulation.

Ce chapitre propose un nouvel algorithme, appelé PSFD a votes multiples (MV-PSFED).
Comparé au PSFD, celui-ci introduit une méthode pour 'estimation de 'erreur, qui per-
met d’éviter l'utilisation du seuil pour le nombre de voix, et passe les votes multiples
des CN non-satisfaits aux VN correspondants. L’algorithme proposé surpasse significa-
tivement le PSFD pour des matrices de contréle de parité avec des colonnes de faible
poids, comme indiqué par les résultats des simulations. A noter que ces améliorations

sont obtenues pour une complexité similaire.

7.2 Sélection de résultats obtenus

Nous présentons les résultats des simulations pour deux codes, désignés par Code 1 et
Code 2. Code 1 est caractérisé par (d, = 3,d. = 6) [54] et Code 2 par (d, = 5,d. = 10)
[55] ; les deux sont des codes NB-LDPC réguliers (102, 204) sur GF(2%) construits avec

la méthode de Gallager, et dont la matrice de controle de parité vérifie la contrainte RC.

La figure 7.1 montre les performances en termes de BER et de FER du Code 1. 1l peut
étre constaté que, contrairement & l'algorithme PSFD, les performances de ’algorithme
proposé ne dépendent pas des paramétres n et A\. En outre, 'algorithme proposé surpasse
le PSFD optimal d’environ 0.5 dB pour un BER de 107°. A noter que les courbes de

I’algorithme de référence sont tracées pour le rapport g optimisé et V.

La figure 7.2 montre les performances du Code 2 en termes de BER et de FER. Contrai-

rement au cas précédent, les performances de l'algorithme proposé sont sensibles aux
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FIGURE 7.1: Performances des algorithmes MV-PSEFD et PSFD en termes de FER
(courbes en trait plein) et BER (courbes en trait discontinu), en fonction du SNR
normalisé, pour le Code 1.

parameétres 7 et A. Cependant, en utilisant la valeur optimale de i, I'algorithme MV-

PSFD présente des gains d’environ 0.3 dB et 0.4 dB respectivement pour des valeurs

de BER=10"° et BER=107°. Il peut également étre constaté que, lorsque 1'algorithme

MV-PSFD est utilisé sans les valeurs optimales de 7 et A, ses performances sont proches

de celles de ’algorithme de référence.
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FIGURE 7.2: Performances des algorithmes MV-PSEFD et PSFD en termes de FER
(courbes en trait plein) et BER (courbes en trait discontinu), en fonction du SNR
normalisé, pour le Code 2.
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7.3 Publication en lien avec ce chapitre

[J5] N.-Q. Nhan, Telex M. N. Ngatched, Octavia A. Dobre, P. Rostaing, K. Amis, and
E. Radoi. Multiple-Votes Parallel Symbol-Flipping Decoding Algorithm for Non-
Binary LDPC, IEEE Communication Letters, pp. 905 - 908, Vol. 19, June 2015.



Conclusions

Nous avons investigué, dans cette thése, des schémas de communications qui utilisent des
codes FEC simples pour le codage du canal, afin de réduire la complexité et la latence des
systémes sans fil, dans le cadre des normes LTE et LTE-A. Nous avons ensuite optimisé

leurs performances en termes de taux d’erreur, en vue de leur utilisation avec ces normes.

D’une part, nous avons étudié la concaténation de codes FEC binaires et précodeurs
MIMO linéaires. Premiérement, en considérant un récepteur & turbo-détection, nous
avons proposé différentes solutions de précodage et mapping afin d’améliorer le taux d’er-
reur du systéme. Deuxiémement, nous avons proposé un précodeur spécialement concu

pour améliorer le taux d’erreur lorsque le récepteur est un turbo-égaliseur.

D’autre part, nous avons examiné les codes FEC NB-LDPC. Nous avons introduit une
technique de mapping multiple, qui permet une réduction importante de la complexité
du décodage NB-LDPC. Ensuite, nous avons proposé d’utiliser des précodeurs linéaires
MIMO pour améliorer le taux d’erreur du systéme, ainsi que réduire encore davantage
la complexité du récepteur NB-LDPC. Enfin, un nouvel algorithme de décodage a faible
complexité a été proposé pour achever ’étude sur la réduction de la complexité des

systémes de communications qui utilisent des codes NB-LDPC.

Les résultats obtenus pendant la thése ont été présentés dans un article revue et trois
articles publiés dans les actes de trois conférences internationales. Quatre autres articles

sont également en cours de soumission dans différents journaux.
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RESUME

Les standards « Long-term evolution » (LTE) et LTE-Advanced (LTE-A) devraient
influencer fortement I'avenir de la cinquiéme génération (5G) des réseaux mobiles.
Ces normes exigent de hauts débits de données et une qualité de service de trés bon
niveau, ce qui permet d’assurer un faible taux d’erreur, avec une faible latence. Par
ailleurs, la complexité doit étre limitée. Dans le but de déterminer des solutions
technologiques modernes qui satisfont ces contraintes fortes, nous étudions dans la
thése des systéemes de communication sans fil MIMO codés. D’abord, nous imposons
un simple code convolutif récursif systématique (RSC) pour limiter la complexité et
la latence. En considérant des récepteurs itératifs, nous optimisons alors la
performance en termes de taux derreur de ces systéemes en définissant un
précodage linéaire MIMO et des techniques de mapping appropriées. Dans la
deuxieme partie de la these, nous remplacons le RSC par un LDPC non-binaire
(NB-LDPC). Nous proposons d’utiliser les techniques de précodage MIMO afin de
réduire la complexité des récepteurs des systemes MIMO intégrant des codes NB-
LDPC. Enfin, nous proposons également un nouvel algorithme de décodage itératif
a faible complexité adapté aux codes NB-LDPC.

Mots clefs : Précodage linéaire MIMO, information mutuelle, mapping des
symboles, turbo-détection, turbo-égalisation, codes LDPC non-binaires,
diagrammes EXIT.

ABSTRACT

The long-term evolution (LTE) and the LTE-Advanced (LTE-A) standardizations
are predicted to play essential roles in the future fifth-generation (5G) mobile
networks. These standardizations require high data rate and high quality of service,
which assures low error-rate and low latency. Besides, as discussed in the recent
surveys, low complexity communication systems are also essential in the next 5G
mobile networks. To adapt to the modern trend of technology, in this PhD thesis, we
investigate the multiple-input multiple-output (MIMO) wireless communication
schemes. In the first part of this thesis, low-complex forward error correction (FEC)
codes are used for low complexity and latency. By considering iterative receivers at
the receiver side, we exploit MIMO linear precoding and mapping methods to
optimize the error-rate performance of these systems. In the second part of this
thesis, non-binary low density parity check (NB-LDPC) codes are investigated. We
propose to use MIMO precoders to reduce the complexity for NB-LDPC encoded
MIMO systems. A novel low complexity decoding algorithm for NB-LDPC codes is
also proposed at the end of this thesis.

Keywords: Linear MIMO precoding, mutual information, symbol mapping,
turbo-detection, turbo-equalization, iterative receiver, NB-LDPC codes,
EXIT charts.
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