A B S T R A C T

A study of the swimming dynamics of Escherichia coli bacteria in different physical conditions presented. Their 3D motion is assessed by means of a device for automated 3D Lagrangian tracking of fluorescent objects, developed for that purpose. The main working principle of the instrument is described in detail and its performance is tested.

Bacteria studied in that way display consistently large dispersion of the rotational diffusion coefficient, contradicting the standard vision of run-and-tumble dynamics established for an adapted bacterium like a wild-type E. coli . The result is interpreted as a consequence of the power law distribution of run times experimentally found for individual flagella, that up to now has remained uncoupled with the motility description.

Bacterial swimming is modified in polymeric solutions. Magnitudes as velocity distribution and wobbling angle are affected as the polymeric concentration increases. The trajectories eventually become very persistent, although tumbles are not suppressed. This increased "directionality" can be explained by considering only the shear thinning properties of the suspending solution.

Bacteria swimming in more concentrated active suspensions show persistence times that grow with the environment concentration. In addition, a dependence between the superdiffusive exponent of the ballistic regime and the individual bacterial activity is identified.

In confined flows, upstream migration of E. coli takes place at the edges and remains possible at much larger flow rates compared to the motion at the flat surfaces. The bacteria speed at the edges mainly results from collisions between bacteria moving along this single line, not influenced by the advective flow. Upstream motion not only takes place at the edges but also in an "edge boundary layer" whose size varies with the applied flow rate. The bacterial fluxes along the bottom walls and the edges are here quantified and shown to be the result from the bacterial transport and the decrease of surface concentration with increasing flow rate due to erosion processes.

Upstream migration under flow and direction persistence combine during contamination processes. Here it is shown that bacteria can contaminate initially clean regions by upstream swimming in confined environments. A simple model considering the motor rotation statistics describes well the main features of the contamination process, assuming a power law distribution of run times. However, the model fails to reproduce the qualitative dynamics when the classical run-and-tumble distribution is considered. It is then concluded that v the macroscopic transport of bacteria is determined by the motor rotation statistics. Microorganisms are found in environments of very different scales in nature. They are part of the plankton transported in the oceans and forming part of the water cycle by initiating rain in the clouds at very large spatial scales. They are also present in very confined structures like porous media as rocks and soils or transported in biological networks.

They are special particles in many aspects. They are motile because they can transform chemical energy into mechanical energy and they transfer momentum to the liquid in which they swim. They interact with surfaces and flows differently than passive particles and therefore they present a different phenomenology.

The question of motility and transfer of microorganisms in their environment is at the center of numerous issues. In many practical situations as in porous or fractured media, the pore size or the gap left for the microorganisms to move can be very small and in these confined situations surfaces become predominant. In addition, internal walls of porous media, as well as biological conducts like blood vessels, lymphatic ducts, urinary and reproductive tracks, are not simply perfect cylinders, but their surfaces have irregularities, as grooves and crevices, where bacteria move differently than close to simple regular surfaces. In these cases the presence of flow imposes additional complexity to the transport dynamics. The understanding of bacteria motion along complex surfaces in the presence of flows is thus of strong importance for the control of microorganism transport in underground water resources, catheters or biological conducts.

The main objective of this thesis is to establish a quantitative link between the microscopic fundamental aspects of bacterial swimming and the transport properties under flow in confined irregular structures.

The multiflagellated bacterium Escherichia coli (E. coli) is the best understood microorganism today, and also the optimal environmental conditions for its development and use in the laboratory are well known. E. coli is often the model of choice for understanding molecular biological processes. The genomic sequences of thousands of different E. coli strains have been determined, which makes its genetic manipulation possible to achieve specific "unnatural" behaviors suitable to specific experiments. It is therefore, a "well controlled" biolog-ical object very convenient for the study of micro swimmers from a physical point of view.

generalities

Escherichia coli is commonly found in the lower intestine of warmblooded organisms. They are facultatively anaerobic. Most E. coli strains are harmless and form part of the normal flora of the gut. They can benefit their hosts by producing vitamin K2 and preventing colonization of the intestine with pathogenic bacteria, although they can cause serious health problems if they are present in organs where they are not normally living, like the blood stream, the renal or reproductive systems. Some serotypes can cause serious food poisoning in their hosts.

The E. coli bacterium (Fig. 1) is a ∼ 2µm body-length swimmer that has two to six ∼ 10µm length flagella, i.e, long thin helical filaments, each driven at its base by a reversible rotary motor [START_REF] Sowa | Bacterial flagellar motor[END_REF]. When rotating synchronized and counterclockwise (CCW), flagella form a bundle (left-handed helix with a pitch of 2.3µm and a diameter of 0.4µm [START_REF] Darnton | On Torque and Tumbling in Swimming Escherichia coli[END_REF]) that propels the cell forward for a while. This is named "a run". During a run, the flagellar rotation is counterbalanced by the clockwise (CW) body rotation of the cell. The propulsive force of flagella competes with the drag viscous force, keeping the bacterium moving at an almost constant speed until it "tumbles" [START_REF] Berg | coli in motion[END_REF]. Since the motion occurs in a fluid, runs are not entirely straight but are subjected to rotational diffusion.

During a tumble, one or more filaments change their rotation direction for a short time, enough to disassemble the bundle and change the bacterium's swimming direction to a more or less random new direction [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF]. Then, flagella re-synchronize and another run begins. In this way, they execute random walks, while alternating sequences of runs for long times, and tumbles for relatively short time intervals during which the bacterium reorients. If successive sensing of the en-vironment return an increasing concentration of a "chemoattractant", the rate of CCW CW switching (i.e. the tumble rate) is reduced, resulting in a biased random walk which constitutes chemotaxis [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF][START_REF] Schnitzer | Theory of continuum random walks and application to chemotaxis[END_REF].

Run and Tumble statistics

In a 1972 seminal work, Berg and Brown [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF] have tracked individual microorganisms in three dimensions. It was a determinant step to understand bacterial motility and chemotactic response to chemical gradients. At that time the device built by Berg [START_REF] Howard | How to track bacteria[END_REF] suited to perform the Lagrangian tracking and 3D trajectory reconstruction, was conceptually and technically outstanding [START_REF] Berg | The tracking microscope[END_REF]. For four decades the setup was not reproduced but other techniques of Eulerian 3D tracking have emerged, accessing to the third dimension by out-of-focus image analysis of fluorescent [START_REF] Wu | Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique[END_REF], dark field [START_REF] Matthew R Edwards | Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics[END_REF], or phase contrast [START_REF] Km Taute | High-throughput 3D tracking of bacteria on a standard phase contrast microscope[END_REF] images. Other techniques use holographic video microscopy [START_REF] Chiong | Rapid, high-throughput tracking of bacterial motility in 3D via phase-contrast holographic video microscopy[END_REF][START_REF] Saglimbeni | Threeaxis digital holographic microscopy for high speed volumetric imaging[END_REF].

Recently a new Lagrangian tracking by piezo-driven displacement of the microscope objective combined with a motorized xy stage has been developed [START_REF] Liu | Helical motion of the cell body enhances Caulobacter crescentus motility[END_REF]. These are all techniques allowing the tracking of the cell body, but recently the group of Berg has extended the tracking microscope with the original detection principle, to visualize both body and fluorescently labeled flagella [START_REF] Turner | Visualizing Flagella while Tracking Bacteria[END_REF].

The run and tumble time distributions, as well as the tumble angle distribution have been established in 1972 by Berg and Brown [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF] (Fig. 2). The run times and tumble times are reported to follow a Poissonian distribution with mean times of approximately 1s and 0.1s respectively in a basic homogeneous environment, although this values change in the presence of chemoatractants.

Saragosti, Silberzan, and Buguin [START_REF] Saragosti | Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis[END_REF] have modeled the reorientation process during tumbles as a random walk of the bacterium orientation on the unitary sphere. The probability density distribution p(θ, φ, t) for the particle to have an orientation of polar angle θ and azimuthal angle φ at a given time t, follows the equation

∂p ∂t = D r ∆p, (1) 
where D r is the rotational diffusion of the bacterium during tumbles. For initial conditions p(θ, φ, 0) = δ(θ) where the particle is aligned with the polar axis, the solution to equation ( 1) is given by the expansion in spherical harmonics p(θ, t) = ∞ l=0 2l + 1 2 e -D r l(l+1) P l (cos θ) sin θ, fitting the experimental measurements of Berg and Brown [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF].

where P l is the Legendre's polynomial of order l. This leads to an average reorientation angle during tumbles that follows the expression cos θ (t) = exp(-2D r t).

(3)

The model of Saragosti, Silberzan, and Buguin [START_REF] Saragosti | Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis[END_REF] reproduces well the experimental measurements of Berg and Brown (Fig. 2 (b)), estimating this way a value D r = 3.5rad 2 /s.

The biological origins of Run and Tumble

The E. coli motor is driven by an ion gradient acting across the cell membrane [START_REF] Sowa | Bacterial flagellar motor[END_REF]. The flow of protons through the motor induces conformational changes in the stator proteins, which generate a torque on the rotor. The motor switches direction stochastically, with the switching rates controlled by a network of sensory and signaling proteins. The binding of a protein molecule CheYp to the cell motor induces a conformational change of the motor, promoting the switching of the direction from CCW to CW and initiating a tumbling event.

When CheYp molecules unbind, the motor regains its original conformation and reverses direction again. This is, however, a simplified picture, since due to the complexity of the motor much remains to be discovered, in particular structural details of the torque-generating mechanisms [START_REF] Sowa | Bacterial flagellar motor[END_REF]. Many studies converge in modeling the switch process of the motor as a two-state (CW or CCW) model with each state sitting in a potential well. The transitions between the states are governed by termal fluctuations over an energy barrier ∆G and the switching rate is proportional to e -∆G/kT [START_REF] Khan | The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force[END_REF][START_REF] Sowa | Bacterial flagellar motor[END_REF]. The binding of CheYp molecules to the motor lowers the free energy barrier. Then the energy barrier ∆G depends on the CheYp concentration.

In 2004, single-cell experiments were performed by Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] on RP437, a widely used wild type (WT) strain of E. coli cells. They were able to attach a small bead (0.5µm) to one flagellum of a bacterium tethered to a surface and study the sequence of CW (tumbles) and CCW (runs) events performed by the bead during 170 minutes. (See diagram on Fig. 3 (a)).

From the analysis of the sequence they obtain a power law distribution for the times of run, instead of the exponential distribution expected from the work of Berg and Brown [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF]. This can be seen in Fig. 3 (b). The tumble times stay exponentially distributed. The run and tumble times are temporally correlated (panel (c)) and the tumble biasing changes along the experiment. The corresponding time series of the binary switching pattern CCW CW appears to show a power spectrum with 1/f-type behavior at low frequency [START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF]. It is unclear, Distribution of CW (tumbles, grey) and CCW (runs, black) intervals from a cell. Inset, cumulative distribution of the same CCW intervals (black line), corresponding to a power law with an exponent approximately -1.2 (gray straight line). From Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF]. (c) Duration correlation and autocorrelation of CCW and CW events. Figure from Tu and Grinstein [START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF] using the experimental data of Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF].

however, if all the bacteria have the same power law exponent or if the exponent was part of a distribution. The original idea of Khan and Macnab [START_REF] Khan | The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force[END_REF] about an energy barrier description for the CCW CW transitions have been considered by Tu and Grinstein [START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF]. They have shown that white noise coming from the intrinsic stochastic nature of the signaling pathway kinetics and the reduced number of molecules inside the cell lead to a powerlaw regime in the CCW times distribution. Correlations between the duration times of nearby CCW (CW) intervals arise from the slow temporal dynamics of the mean CheYp level. Some other more sophisticated models involving various molecular species composing the chemotactic pathway also predict power law CCW distributions due to low molecule numbers fluctuations [START_REF] Matthäus | On the origin and characteristics of noise-induced Lévy walks of e. coli[END_REF].

In 2006 Wu et al. [START_REF] Wu | Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique[END_REF] have developed a method for three-dimensional tracking of bacteria from the unfocused images of bacteria. An analysis of the accessed trajectories revealed a crossover to diffusion for times as large as 3.6 seconds, a value larger the standard Berg's measurement (∼ 1s).

Based on the works by Korobkova et al. and Wu et al. some authors have predicted the existence of Lévy walks-type individual bacterial trajectories. However, there is no experimental confirmation of this or other consequences of the power law run time distribution.

Lévy walks in bacterial trajectories have recently be found by Ariel et al. [START_REF] Ariel | Swarming bacteria migrate by Lévy Walk[END_REF], but for swarming bacteria. The mechanism underlying this superdiffusive behavior is fundamentally different than those hypothesized for swimming bacteria. Swarming bacteria do not behave like Lévy walker as a result of their run-and-tumble dynamics. Instead, it is the collective flow that induces the motion.

Swimming at low Reynolds numbers

Microorganisms move autonomously, free from any external force or torque in relatively viscous environments. The typical Reynolds number for bacteria like E. coli is around 10 -4 and essentially Stokes' hydrodynamics equation applies. Therefore, far from the swimmer, the velocity field can be model in leading approximation as a force dipole [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. Then, two classes of swimmers can be distinguished: the "pushers", with the motor on the back as in the case of bacteria or sperm cells; and the "pullers" with the propulsive mechanism in the front, swimming with a breaststroke as algae. The corresponding velocity fields are shown in Fig. 4.

The velocity fields of pushers and pullers look similar, but with an inversion of velocity directions. This causes significant differences in their interactions with surfaces and other swimmers, and also the constitutive relations for the suspension [START_REF] López | Turning bacteria suspensions into superfluids[END_REF].
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Figure 4: Velocity fields of (a) Echerichia coli and (b) Chlamydomonas reinhardtii (from Drescher et al. [START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF] and [START_REF] Drescher | Direct measurement of the flow field around swimming microorganisms[END_REF]).

The presence of walls modifies the velocity field and bacteria are known to be attracted by flat surfaces. Several studies have shown that the concentration of bacteria is significantly larger at the top and bottom walls of square microchannels compared to the concentration in the bulk [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF][START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF][START_REF] Frymier | Three-dimensional tracking of motile bacteria near a solid planar surface[END_REF].

Bacteria described as pushers [START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF] are attracted to their specular hydrodynamic image close to a solid wall [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF][START_REF] Chilukuri | Impact of external flow on the dynamics of swimming microorganisms near surfaces[END_REF][START_REF] Di Leonardo | Swimming with an image[END_REF][START_REF] Leal | Advanced transport phenomena: fluid mechanics and convective transport processes[END_REF]. Furthermore, near a surface the rate of tumble has been observed to decrease with respect to the bulk [START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF], also contributing to the long time bacteria spend very close to solid surfaces [START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF][START_REF] Schaar | Detention times of microswimmers close to surfaces: influence of hydrodynamic interactions and noise[END_REF]. On the other hand, a purely kinetic approach [START_REF] Ezhilan | Transport of a dilute active suspension in pressure-driven channel flow[END_REF][START_REF] Li | Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion[END_REF], not taking hydrodynamic interactions with walls into account, also predicts increased bacteria concentrations at walls in confined geometries.

Bacteria motion at the surface is also modified compared to motion in the bulk due to lubrication forces between swimmers and walls. The viscous drag acting on bacteria slows them down [START_REF] Di Leonardo | Swimming with an image[END_REF] and leads to the existence of circular trajectories due to their body rotation [START_REF] Berg | coli in motion[END_REF][START_REF] Frymier | Three-dimensional tracking of motile bacteria near a solid planar surface[END_REF][START_REF] Lauga | Swimming in Circles: Motion of Bacteria near Solid Boundaries[END_REF] . Moreover, the orientation (clockwise or counterclockwise) depends on surface properties [START_REF] Hu | Physical Sensing of Surface Properties by Microswimmers-Directing Bacterial Motion via Wall Slip[END_REF].

Swimming in sheared flows

Bulk

In a shear flow, solid objects undergo periodic rotations known as Jeffery orbits [START_REF] Jeffery | The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid[END_REF]. A sphere rotates with constant angular velocity, whereas for an elongated body, such as a helix, the velocity depends on the orientation. The more elongated a body, the longer its residence time when aligned with streamlines.

In addition, as underlined by Zöttl and Stark [START_REF] Zöttl | Nonlinear dynamics of a microswimmer in Poiseuille flow[END_REF], in confined flows displaying a shear-gradient such as Poiseuille flows, families of quasiperiodic trajectories appear as a result of the shear gradient experienced by the swimmers. This result indicates that the transport and dispersion properties of active suspensions are in this case non-trivial. This is currently a very open problem which outcome turns out to be qualitatively different from the standard hydrodynamic transport of passive colloidal particles [START_REF] Ezhilan | Transport of a dilute active suspension in pressure-driven channel flow[END_REF].

Marcos et al. [START_REF] Marcos | Bacterial rheotaxis[END_REF] have recently seen that bacteria drift perpendicular to the shear plane in Poiseuille flows. The drift has been explained as a consequence of the interaction between the swimming bacterium (composed of chiral flagella attached to a body) and the shear flow [START_REF] Marcos | Separation of microscale chiral objects by shear flow[END_REF][START_REF] Marcos | Bacterial rheotaxis[END_REF]. As a consequence bacteria drift in opposite directions in the upper and lower half of a Poiseuille flow, induced by the opposite signs of the shear rate component.

The origin of chirality-dependent drift at low Reynolds number can be simply understood for the case of a helix. Consider the following example from Marcos et al. [START_REF] Marcos | Separation of microscale chiral objects by shear flow[END_REF] of a right-handed helix aligned with a simple shear flow (Fig. 5), and decompose the velocity at a segment of the helix into components perpendicular and parallel to the segment. The red and black solid lines in the inset represent the top and bottom halves of the helix. Drag on a thin rod in low Reynolds number flow is anisotropic, with a greater resistance when oriented perpendicular rather than parallel to the flow [START_REF] Childress | Mechanics of swimming and flying[END_REF]. The perpendicular components of drag will add to produce a drift in theŷ direction. Changing the sign of the shear or reversing the chirality of the helix will result in a drift in the opposite direction. Furthermore, the drift depends on the orientation of the helix. The inset shows the net force acting on one pitch of the helix is alongŷ (adapted from Marcos et al. [START_REF] Marcos | Separation of microscale chiral objects by shear flow[END_REF]). (c) Sketch indicating forces and torques acting on a bacterium in a shear flow (adapted from Marcos et al. [START_REF] Marcos | Bacterial rheotaxis[END_REF]).

In addition to rotating in a Jeffery orbit, a helix drifts across streamlines. The combination of a helix and a body attached to it in a shear flow results in a different phenomenology, as it has been explained by Marcos et al. [START_REF] Marcos | Bacterial rheotaxis[END_REF]. A helix is subjected to a net chirality-induced lateral force pulling it to theŷ direction, while the body will have a big hydrodynamic drag opposing the helix drift. The result is a torque aligning the bacterium to head the ŷ direction, which is the vorticity direction (see Fig. 5 (c)). Since the object is self-propelled, it will migrate in the vorticity direction. This phenomenon is purely physical, not as the case of fish and aquatic invertebrates' rheotaxis, that are able to sense the shear and behaviorally respond to it [START_REF] Gp | Rheotropism in fishes[END_REF][START_REF] John C Montgomery | The lateral line can mediate rheotaxis in fish[END_REF][START_REF] Richardson | Microcrustacea in flowing water: experimental analysis of washout times and a field test[END_REF].

Surfaces

Recent studies suggest that when swimming in the vicinity of a surface, upstream swimming takes place above a given threshold in shear rate for any front-back asymmetric microswimmer [START_REF] Tung | Emergence of Upstream Swimming via a Hydrodynamic Transition[END_REF]. In the presence of the flow (but no cell propulsion), the swimmer's head and flagellum are carried downstream by the flow, but the head experiences a larger resistive force, due to the hydrodynamic interaction with the wall, than does the flagellum. This larger resistance leads to a torque orienting the cell upstream. This mechanism is independent of flagella chirality and below a given threshold of fluid velocity, the swimmers can overcome the flow and migrate upstream [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF], which is named "positive rheotaxis".

Upstream swimming have been reported for mammalian sperm by Bretherton and Rothschild [START_REF] Bretherton | Rheotaxis of spermatozoa[END_REF], Miki et al. [START_REF] Miki | Rheotaxis guides mammalian sperm[END_REF] and Kanstler et al. [START_REF] Kantsler | Rheotaxis facilitates upstream navigation of mammalian sperm cells[END_REF], and for E. coli bacteria by Kaya and Koser [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF] and our group [START_REF] Figueroa-Morales | Living on the edge: transfer and traffic of E. coli in a confined flow[END_REF]. However, while rheotaxis has been observed for bacteria navigation in the bulk of a flow (i.e., far from surfaces and edges) [START_REF] Marcos | Bacterial rheotaxis[END_REF], there is no report of continuous upstream motion in such environment.

In addition, the coupling with the chirality-induced torque on bacteria result in a diagonal orientation of the swimmer, with a component facing upstream and a transversal component facing the local vorticity direction. This angle against the flow is function of the applied shear rate and at high shear rates bacteria orient perpendicular to the flow direction. Although this is qualitatively understood, to our knowledge there is not yet a model explaining the angular distribution of bacteria orientation under flow close to surfaces.

The combination of bacteria swimming at a given angle and bacteria transport by the flow leads to diagonal trajectories in the flow. Since the transversal orientation depends on the vorticity direction, bacteria trajectories are thus oriented in opposite directions at top and bottom surfaces of a microchannel.

Concentration profiles stay flat in the bulk with a strong increase of concentration at the surfaces for small applied shear rates [START_REF] Gachelin | Rheologie et comportement de suspensions de E. coli en milieu confiné[END_REF], but for higher shear rates more complex concentration profiles have been observed and predicted in the direction of the channel height [START_REF] Chilukuri | Impact of external flow on the dynamics of swimming microorganisms near surfaces[END_REF][START_REF] Ezhilan | Transport of a dilute active suspension in pressure-driven channel flow[END_REF][START_REF] Rusconi | Bacterial transport suppressed by fluid shear[END_REF]. Ezhilan and Saintillan [START_REF] Ezhilan | Transport of a dilute active suspension in pressure-driven channel flow[END_REF] and Chilukuri, Collins, and Underhill [START_REF] Chilukuri | Impact of external flow on the dynamics of swimming microorganisms near surfaces[END_REF] predict a decrease of the surface concentration with increasing shear rate, but to our knowledge no experimental investigation of this phenomenon, previous than ours [START_REF] Figueroa-Morales | Living on the edge: transfer and traffic of E. coli in a confined flow[END_REF], has been performed so far.

Less work has been devoted to the study of bacteria motion at wall interceptions. Bacteria concentration have been found to be even higher at these edges compared to flat surfaces [START_REF] Altshuler | Flow-controlled densification and anomalous dispersion of E. coli through a constriction[END_REF] and under flow bacteria motion at the edges is observed in a predominantly upstream way [START_REF] Altshuler | Flow-controlled densification and anomalous dispersion of E. coli through a constriction[END_REF][START_REF] Hill | Hydrodynamic Surface Interactions Enable Escherichia Coli to Seek Efficient Routes to Swim Upstream[END_REF] over long distances. This upstream motion is at the origin of anomalous reconcentrations observed to be closely linked to the specific details of the confining structure [START_REF] Altshuler | Flow-controlled densification and anomalous dispersion of E. coli through a constriction[END_REF][START_REF] Figueroa-Morales | Two-dimensional continuous model for bacterial flows through microfluidic channels[END_REF].

The rich phenomenology exposed up to here is nothing but a small part of the known bacterial behavior in diluted suspensions. It is, however, almost the minimal knowledge necessary for the understanding of the rest of this work and the results that will be presented.

organization

In the rest of the thesis we will focus first, on the development of a Lagrangian tracking technique for accessing the three spatial coordinates of bacterial trajectories. Using this tool we study some features of individual bacterial behavior in the bulk of Newtonian and non-Newtonian fluids, as well as in more concentrated active suspensions. Later, we study the properties of the bacterial transport under flow close to the surfaces and edges of confined channels. Finally, we tackle the practical case of upstream bacterial contamination in very confined structures.

A synthesis of every chapter is exposed below.

Chapter 2 3d lagrangian tracker -We present a technique of Lagrangian 3D tracking of fluorescent microscopic objects. It provides the 3D object trajectory and a direct image of the particle in its close environment. We test its performance by tracking fluorescent beads undergoing Brownian motion, as well as under flow.

Chapter 3 three-dimensional motion of bacteria -Using the developed instrument from the previous chapter, we study the three-dimensional trajectories of E. coli bacteria in motion and find a different behavior from the globally accepted run-and-tumble picture with exponentially distributed run and tumble times. We find a great diversity between bacteria from the same bath, which manifests as variability in the magnitude and fluctuations of velocity and persistence of trajectories. This is in agreement with the scientific literature regarding individual cell's behavior in tethered conditions.

We measure the rotational diffusion coefficient from 3D tracks and report values that are widely dispersed. We compare the results for various strains of run-and-tumble bacteria and a strain of smooth swimmers. This large distribution is found to be robust to changes in concentration, to chemical environment and also to changes of E. coli strains. We relate the large distribution of orientation persistence to the motor rotation statistics.

We track bacteria in polymeric suspensions, presenting shear thinning and viscoelasticity. We find a rectification of the trajectories for the higher polymer concentrations, that we are able to explain only considering the shear thinning effects.

From the tracking of fluorescent cells in a more crowded suspension of non-fluorescent bacteria, we have identified a dependence between the bacterium's activity and the exponent displayed by its superdiffusive behavior.

Chapter 4 transfer and traffic in a confined flow -We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacteria motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the bacteria speed at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacteria fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of the local variations of the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.

Chapter 5 upstream contamination in narrow channels -At the end we study the upstream migration of bacteria in extremely confined environments. This comprises swimming in the bulk and on the surfaces and edges of the confining structures. We demonstrate the possibility of a net transport of bacteria established against the flow for specific flow and confinement conditions. We study the upstream invasion of bacteria from a reservoir towards a source of clean liquid as a function of the bacterial velocity and imposed perfusion flow. We have found that the persistence in individual trajectories, previously identified in chapter 3, is at the origin of supercontamination processes, therefore, influencing the macroscopic transport properties. We explain quantitatively our observations based on a simple model, which makes the link between the motor statistics and the macroscopic transport of bacteria.

In a 1972 seminal work, Berg and Brown have shown that tracking individual micro-organisms in 3D was a determinant step to understand bacterial motility and chemotactic response to chemical gradients [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF]. At that time the device built by Berg and suited to perform the tracking and 3D trajectory reconstruction, was conceptually and technically outstanding [START_REF] Berg | The tracking microscope[END_REF].

Since then, other techniques of 3D tracking have emerged For example, the development of fast piezo scanning has allowed high speed image stack acquisition techniques. This was used to reconstruct by post analysis micro-organisms swimming trajectories [START_REF] Corkidi | Tracking sperm in three-dimensions[END_REF]. This method though very potent to obtain multiple object trajectories finds its limitation, if the object speed is high. Also, it turns out to be strongly dependent on free computer memory capacities limiting the long time tracking possibilities. Interestingly, there are alternative techniques using the defocussing rings of fluorescent particles to access the XYZ position and a large number of tracks at the same time [START_REF] Wu | Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique[END_REF]. The limitation here is the complexity of the post-analysis, increasing with the particle concentration and also the limited range in Z exploration. Past the year 2000, there was a surge in the development of holographic 3D particle reconstruction techniques (see for example a review by Memmolo et al. [START_REF] Memmolo | Recent advances in holographic 3D particle tracking[END_REF] and refs inside). This tracking method allows by post-analysis, the 3D reconstruction of few simple objects trajectories such as the Brownian motion of spherical colloids [START_REF] Chiong | Strategies for three-dimensional particle tracking with holographic video microscopy[END_REF] and bacteria [START_REF] Saglimbeni | Threeaxis digital holographic microscopy for high speed volumetric imaging[END_REF]. This method has led recently to important advances in the understanding of sperm swimming trajectories [START_REF] Jikeli | Sperm navigation along helical paths in 3D chemoattractant landscapes[END_REF][START_REF] Su | High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories[END_REF].

However, these recent 3D tracking methods are of Eulerian type, meaning that the volume of observation is fixed in the laboratory reference frame. It is important to notice that inherently, such Eulerian methods may lead to a systematic statistical bias as, for trajectories displaying large persistent speed, the particles are likely to leave the volume of observation faster than for other trajectories undergoing for example, a diffusive motion.

Lately, increasing interest into the swimming dynamics of microorganisms made the development of reliable Lagrangian tracking techniques using modern tools [START_REF] Liu | Helical motion of the cell body enhances Caulobacter crescentus motility[END_REF] particularly important again. Here we present a technique of Lagrangian 3D tracking extending the work of Berg with modern tools of visualization which allow for a time resolved refocusing of a fluorescent object (Fig. 6). The fluorescent particle can be studied in a quiescent fluid as well as in an imposed flow. It has the advantage of providing, besides the full 3D object tra-jectory, a direct image of the particle in its close environment. The same system can also be used to track fluorescent passive objects like silica or latex tracers, to be used, for example, for an accurate determination of the flow velocity profiles in microfluidic devices (Fig. 16). In addition, a unique feature of this technique is the possibility to track only the bright spots in a crowded environment of opaque objects, such as specific fluorescent bacteria in a suspension of normal bacteria displaying collective motion. 

experimental set-up

The set-up is sketched in Fig. 6. It is composed of an inverted microscope (Zeiss-Observer, Z1) with a high magnification objective (100 × /0.9DIC Zeiss EC Epiplan-Neofluar), an xy mechanically controllable stage with a z piezo-mover from ASI and a digital camera ANDOR iXon 897 EMCCD. The camera output and the stage input/output signals are connected to a multi-threaded Labview software capable of reassigning, by a real-time feedback loop, the stage position and to keep one particle in focus in the central visualization field region (see Fig. 6). The ANDOR camera is very sensitive (pixel size 16 microns) and suited to visualize weak fluorescent signals. It is thus relatively slow, working nominally at 30 fps on a 512 × 512 pix 2 matrix. Here, we present the performances achieved at a faster tracking speed of 80Hz reducing the spatial resolution to 128 × 128 pix 2 . The tracking limitations come essentially from the z exploration limits. The z-piezo module used here, has a range of exploration of 500µm, however in the present case, the vertical exploration limitation stems essentially from the 100× objective working distance which is of 150µm.

From the coordinates of the stage in the laboratory reference frame and the position of the target object in the images, we obtain the threedimensional trajectories and also a video recording of the fluorescent targeted object. In Fig. 16, we present some tracking results obtained with this technique, for passive tracers and for a bacterium in a Hele-Shaw microfluidic cell under flow.

Note that the same technique can also be adapted to an objective of lesser magnification or to a much faster (though less sensitive) SC-MOS technology. The rate of transfer of visual information, its processing and the reaction of the mechanical and piezo-components of the XY and Z stages have in all cases to be adapted to the current material possibilities. Nevertheless, the method described here remains valid despite possible changes of visualization technology.

General algorithm

In the following, we detail the general detection algorithm. First, when a fluorescent particle reaches the trapping area, the user can decide by clicking on the mouse to start the tracking process. The first action of the detector is to determine the XY position of the targeted object, put it in the center by moving the XY mechanical stage. Then the system proceeds by scanning very rapidly in Z to get a defocussing refocusing video that will immediately be analyzed. This first step allows to determine several initialization parameters that will be used subsequently to specify the detection functions. Then, the algorithm starts to work in the nominal mode. At every iteration step of the detection algorithm, an image (Image(t)) is obtained as well as the current stage coordinates and transferred to the labview program. The target position in the image reference frame, is determined and a move is performed by the stages before the next image exposure in t + dt, in order to keep the object in focus. For each iteration the determined object position and the image are recorded. In the following , we detail the principles of XY and of Z detection and thereafter, the XY and Z stage motions. Finally, we address the question of tracking performances.

XY detection

To track the targeted object in two-dimensions, we use a standard image processing method. The object xy C coordinates in the microfluidic chamber reference frame, are composed of the xy S coordinates of the stage in the laboratory reference frame when the image was exposed, and the xy I coordinates of the object in the image:

xy C (t) = xy I (t) -xy S (t). (4) 
Note that the object does not need to be in the center of the image to determine its xy l position, keeping it in the image bound is enough. Note that we could easily introduce some memory (as we did for z) to handle for example, a collisional interaction of two similar particles such as to decipher the trajectory continuity of both objects. Also, for the object detection other methods could be used, like the maximum correlation with a mask. However, the present one turns out to be quite efficient yielding a computational time under 5ms, which allows a margin of 5ms for the z computing and the stage motion, compatible -in principle-with a tracking at 100 frames per second.

Z detection

The principle for the z detection differs significantly from the horizontal xy coordinates assessment. It is based on an optimized search for a vertical position suited to keep the moving object in focus. The algorithm keeps the object in focus by minimizing the apparent object width w. The object width is minimal when it is in focus and grows as it is far from the focal plane both above or below as shown in Fig. 9. We could also have used the maximum of light intensity as a determinant for the focus value, but the width minimum allows us to account for the photo-bleaching of the target and it turns out to be a more robust criterion, since it is less sensitive to the noise induced by the presence of other bright objects that may temporally appear in the background. Once the xy object position on the image has been determined, the mean radial profile around xy I (t) is computed , i.e. the average intensity (I) as a function of the distance to the center (d). As a convention, we compute the width of the object (w) as twice the distance to the center at which the intensity has dropped to one half of the central maximum. Fig. 8 shows the radial intensity profile for three positions of the focal plane, below, close and above the particle. All along the tracking process, the minimum detected width w min and the central intensity I max at the moment of the minimum width detection, are kept in memory. Whenever a smaller width is encountered through the tracking process, its value becomes the new w min and the maximum intensity replaces the I max . The regular update of these parameters allow to keep track of the photo-bleaching that produces a drastic intensity decrease and a reduction in the object apparent size on the long run. The initial values of w min and I max are set at the beginning of the track by a procedure that we will described later.

The vertical coordinate z C of the object is defined as the sum of the coordinate of the stage z S in the laboratory reference, plus a correction ∆z representing its distance to the focal plane. In this way, z C = z S -∆z where ∆z can be positive or negative and is zero when the object is in focus (see Fig. 9). For the computation of ∆z we defined several criteria depending on the image of the object. The features of this function, allow to define three main possible regions for the position of the focal plane z S : (i) The far region below the object, when the focal plane is below the object (∆z < 0) , (ii) the far region above the object, when the focal plane is far above (∆z > 0) and (iii) the close central region as depicted in Fig. 10.

Far below -The far region below the object (z position above the focal plane) is characterized by the presence of rings around the particle (Fig. 10). Typically, the rings appear when the object is more than 6µm above the focal plane position. By measuring the radius R of the first ring one can estimate ∆z. The ring size as a function of the distance to the object is approximately linear up to 20µm from the object. This relation allows the reaching of the close central region out of a calibration which is particle and system dependent. Then ∆z = cR.

Far above -In the far region above the object, the particle appears as a wide and fuzzy white dot of low intensity with no ring. If the maximum object intensity I(t) is lower than a given fraction of the cur- rently stored I max value (this coefficient is typically set to 0.4 but can be adjusted), the algorithm recognizes that the focal plane is in the far region above the object. We have a calibrated function for the width of the particle as a function of its distance to the focus value w + (z). The correction will be calculated as ∆z(w, w min ) = (w -w min ) dz dw + w . It is a second order polynomial represented in Fig. 9 by the solid line on the right side of the curve.

The detection of this region takes place closer to the object than in the former case of the rings, this implies that a descending bacterium is better followed, i.e. with less noise, than a bacterium with an increasing z coordinate.

Central region -When the focal plane is in the central region of Fig. 10, from the scanning of a fixed "standard" fluorescent object (here a bacterium), two piece-wise curves for the object's width were fitted as a function to the distance to its center (Fig. 9). One curve for ∆z < 0 (w -(|∆z|), below the object) and the other one for ∆z > 0 (w + (|∆z|), above the object). The center ∆z = 0 is a local minimum and close enough to it, the two curves are almost symmetric.

From the image, one cannot know whether the focal plane is slightly above or below the object, therefore we have chosen the right branch w + (|∆z|) that works reasonably good in both cases. We relate the object's position to the measured width w by means of the inverse function. The absolute value will be |∆z|(w, w min ) = (w -w min ) dz dw w .

and the sign depends on whether the last stage move was successful (corresponding to width decrease) or not (corresponding to a width increase). If the last step was successful, we keep its direction and if not we invert it. As a result, the stage fluctuates around the z C object position. 
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XY and Z stage displacement

During the tracking initiation procedure, the fast z-scan yields a sequence of images typically separated 0.5µm around the object. For every image, the object width (w) is determined and thereafter the minimum width w min . From the image giving w min we also get and store the maximum intensity I max and position z C . At the end of this sweep, the stages goes to the best z coordinate and the tracking variables are fully initialized.

For the xy stage motion, a proportional integrative derivative (PID) algorithm is used and empirically tuned, to perform a progressive motion. This avoids to couple directly the detection and displacement, that would keep the object strictly centered in the image and which may introduce spurious mechanical perturbations and instabil-ities due to abrupt movements. This is possible since for xy detection we just need to keep the object in trapping zone and determined the true position from the particle center analysis.

For the z stage displacement, when the detected region is far below or above, the stage is moved with a value ∆z S (w, w min ) = ∆z(w, w min ) and reaches the central region in one step.

In the central region, the stage is moved at a displacement magnitude ∆z S (w, w min , v z ) where we take into account a second order contribution to the position, incorporating in the computation the object displacement between two consecutive images. This way, ∆z S (w, w min , v z ) = ∆z(w, w min ) -k(w, w min )v z ∆t, where v z is the object velocity along z, computed in real time from the previous displacement. The coefficient k(w, w min ) is positive between 0 and 1, being 0 when w is close to w min and 1 for low values of the ratio w min /w. We use the empirical extrapolation function k(w, w min ) = 1 2 tanh( 0.95-w min /w 0.05

) + 1 .
As said previously, the sign of ∆z(w) depends on the improvement (minimization) of w when compared to the previous step. Due to the buffer of the camera, we obtain the images with a delay of two periods of sampling, then, the more recent captured image is not a direct consequence of the last order given to the stage. To avoid taking bad decisions due to this lack of synchronization we have lowered the frequency of sampling and actuating in z to one third of the one in xy.

Importantly, the xy motion is performed using two lead screws, one for each axis. An inherent feature of such mechanical displacement stage is the existence of a backlash, i.e. the screws need some finite back-rotation to restart a reverse motion. For our system the backlash is of the order of 1µm. Since our stage controller uses rotary encoders, this repetitive error is not visible from the recorded stage data. So, we use a correction algorithm in the post-processing to remove this error from the track data. An improvement for the setup would be to replace the rotary encoder with an optical linear encoder which returns the real position of the stage, thus processing the backlash in real time.

Backlash correction

Now we describe how to correct the mechanical backlash inherent to mechanical systems as soon as there is an amount of clearance between mated mechanical components, like gear teeth. The backlash manifests itself when the motion direction is reversed and the slack or lost motion is taken up before the reversal of motion is completed. In the case of our tracking microscope, the mechanism for the xy displacement is mechanical, therefore, not exempt of backlash. The z displacement is a piezoelectric displacement, allowing essentially a high precision positioning at the nanometer scale.

In general, for many high precision microscopic devices, the stages allow to perform very precise displacements by following an algorithm for motion allowing to work around the backlash. Before a move, the stage goes to an intermediate position far away allowing to always come from the same direction to the targeted position. This is certainly not suitable for bacteria tracking, where the stages have to "follow" the swimmer as it moves. Here we compensate for the stage backlash in a post-processing treatment of the trajectories. Note that this step is crucial and special care needs to be taken when building a 3D tracking device to avoid false data recording due to backlash problems.

The first step is to characterize the backlash magnitude along the x and y directions. To this purpose, we tracked a fluorescent latex bead stuck on a glass plate, switching off the moving capability of the stage. In this condition, the software recognizes the particle position but does not move the stage to have it in focus. We start the tracking with the bead in focus in the center of the image and manually displace the stage in xy by means of the joystick while always keeping the particle in the image. In this case the bead displacement in the image should be equal to the stage displacement, and the sum should compensate at every time since the particle did not move with respect to the microfluidic chamber (see equation ( 4)). The apparent displacements with respect to the chamber are due to the backlash error. Fig. 12 shows with black circles in the top the y S stage position as we move it, and using the same scale in the bottom the resultant position of the object y C in the chamber is shown. We can then see that the later is not of constant value, but it is shifted by an quasi constant value of 2µm every time the direction of the stage is reversed and the stage displaces more than this distance.

To compensate for the backlash, we have analyzed independently the x S and y S stage coordinates' response to a motion reversal. As the stage moves and changes direction along one or both x or y, x S or y S will inverse displacement direction and the indicated stage position will be false. The stage may still be in the same place until the backlash is overcome. As a consequence, a wrong displacement information is introduced in the stage coordinates. To correct for the stage position, we assume that a real displacement does not take place until it is bigger than a certain distance dx in the case of motion inversion along x (or dy for backward motion along y). Once this gap is overcome, the rest of the trajectory is shifted to match the previous position where the stage was clutched. This correction can be seen in Fig. 12 (top). It results in a delay every time the direction is inverted with a subsequent reduction of stage displacement. The final particle position in the channel is affected following equation (4). We repeat this procedure for different values of dx and dy independently and determine the values dx * and dy * that minimize the standard devia- tion of the corrected positions x C and y C . These turn the step function in Fig. 12 (bottom) into an almost constant red line that better reflects the fixed position with respect to the chamber. The optimal values dx * = 0.45µm and dy * = 2.0µm turn out to be the same for independent realizations of the stage displacements.

Assessment of tracking performances

To assess the quality of the tracking method we follow latex beads performing Brownian motion. Due to the intrinsic difference in the tracking principles in XY and Z we separate the analysis. The motion in X and Y stemming from an endless screw machinery, the main source of uncertainty comes from the presence of backlash. Random Brownian motion is indeed a severe test. On the other hand, the main source of uncertainty for the Z position is not the backlash (piezo device), but the quality of the Z detection algorithm. Note that for the present fluorescent objects the Z detection algorithm is not a zerocrossing but a minimum detection method much less accurate to fix precisely a position.

For the X and Y coordinates, we first followed a diffusive latex bead in a quiescent suspension by switching off the moving capability of the stage. The position of the particle is determined in real time solely by the image analysis part of the algorithm, as long as the particle remains in the region of visualization. The hence obtained trajectories are typical of a thermal Brownian of diffusion coefficient

D E = k B T
6πµa according to Einstein's relation, where a is the particle radius and µ the fluid viscosity. For the particle of Fig. 13 (a) which is a round latex particle of diameter 1.75µm from Beckman Coulter (std = 0.02µm), the theoretical diffusion coefficient in water at 26 o C would be D E = 0.29µm 2 /s. Its mean squared displacement (MSD) is defined as ( r(t + ∆t) -r(t)) 2 t = 4D∆t in two dimensions, where the brackets denote the average along the time length of the trajectory. From the slope of the MSD we extract the diffusion coefficient D = 0.3215 ± 0.0004µm 2 /s. See thick line in Fig. 13 (b).

a b -2 0 2 4
x ( µm) To avoid the lack of statistics affecting the measurement for this calculation we have only considered time lags smaller than one-tenth of the track length. Nevertheless, the MSD of the different components X and Y have different slopes for different realizations, where the difference can be as large as 15 percent. This asymmetry evidences the shortness of the trajectory. The differences between the theoretical and experimental diffusion coefficient found can also arise from the uncertainty in the absolute determination of the colloid radius. Now we track the same particle as before, but with a moving stage. The tracking procedure will keep the particle in the trapping area (see Fig. 6). In this case, the obtained trajectory is affected by all the issues associated with the mechanical response of the stage. The signature of an uncorrected backlash in a Brownian object tracking is an offset and oscillations in the mean squared displacement plot as in Fig. 13 (a) (thin black solid line). When the obtained trajectory is corrected with the above explained method, using the found values of dx * and dy * independently for each horizontal axis, the MSD curve becomes a straight line (thin red dashed line) and the diffusion coefficient mea-sured from this corrected track is 0.3085 ± 0.0005µm 2 /s. This value is 96 percent close to the previously determined for a fixed stage, the difference is in the margin of the previously found asymmetry in the individual components. Now we address the question of the Z component. We performed a 3D tracking of a bead undergoing slow sedimentation (carboxylate particle from Polysciences of diameter 1.62µm, std = 1.65µm, ρ = 1.05g/cm 3 ) that we represent in Fig. 14 (a). The sedimentation speed is about 0.02µm/s which is close to the theoretically expected value. The diffusion coefficients for each of the three spacial directions agree withing 10 percent. The global diffusion coefficient keeps within the error margin of the expected value D E = 0.311µm 2 /s. We have experimentally found D = 0.309µm 2 /s. The MSD versus time lag for the three directions, after backlash correction in x and y, are represented in Fig. 14 (b). From this test we conclude that the Z tracking method is reliable for this kind of problems. Note that tracking Brownian particles is the most difficult situation for a stage in terms of backlash. The tracking of swimmers or objects under flow will introduce this error much less often, since their trajectories will be more persistent. As our method of correcting for the backlash works well for Brownian motion we are thus confident that is correctly treats swimming bacteria or objects transported under flow.

The captured trajectories contain the mark of the backlash as well as additional noise introduced by the tracking device. This noise can occur at various stages of the tracking process: in the detection phase when applying a local threshold to the image, during the stage mo-tion due to the mechanical response of the stage or due to temporal delays concerning computer time and data transfer between the camera, the computer and the stage.

The uncertainties in x and y coordinates have different values in the case of one direction motion or when direction reverses often, since bigger uncertainties are introduced during the backlash correction. From the noise in detection of the fixed bead used for the backlash correction we determine standard deviations of 0.02µm when there is not backlash at play. The backlash correction introduces an extra uncertainty of 0.17µm.

For determining the uncertainties in z detection we analyze our bead during sedimentation in Fig. 14. The displacements between two consecutive images in x and y will be due to Brownian motion plus the horizontal backlash and noise in horizontal detection. These variations are normally distributed with standard deviation 0.09µm around zero. The displacements along z, after subtraction of the sedimentation contribution, are due to Brownian motion plus detection uncertainties in z. These have a more flat distribution, also centered in zero with standard deviation 0.3µm. Since this latter distribution is wider than the expected one for Brownian motion comprised in the ones of x and y, we conclude that it is a consequence and a measure of the less precise position determination in z.

To address the time resolution of the device, the spectral response of the Brownian particle of diameter 1.62µm of Fig. 14 is shown on Fig. [START_REF] Corkidi | Tracking sperm in three-dimensions[END_REF]. We can see the 1/f 2 decay expected for Brownian motion. The spectrum of y has a peak at around 1Hz. It was introduced by the backlash correction since the raw data do not present this feature. For the z coordinate, the noise increases starting from a few Hertz, and has a cut off at the effective sampling frequency 80/3 ≈ 26.7Hz which corresponds to the sampling frequency in Z.

The sampling frequency being 80Hz in X and Y and of 26.6 in Z, should allow us to track bacteria with resolution high enough to study the tumbling events (0.1s ∼ 8 frames). We can even study periodic phenomena up to 40Hz in X and Y, like the wobbling dynamics of bacteria [START_REF] Liu | Helical motion of the cell body enhances Caulobacter crescentus motility[END_REF][START_REF] Ae Patteson | Running and tumbling with E. coli in polymeric solutions[END_REF].

Moreover, we have also tested this device for tracking under flow and we have been able to follow bright objects moving at the high speeds of 160µm/s in XY and at around 40µm/s along the Z direction.

In the following chapter we will use the tracking device to study fundamental questions about the motility of bacteria in different physical and chemical environments. 

T H R E E -D I M E N S I O N A L M O T I O N O F B A C T E R I A

Escherichia coli bacteria has become the paradigmatic example for the run-and-tumble particle realization. It has promoted the recent development of a statistical mechanics of active fluids of run-and-tumble particles [START_REF] Peter | Statistical measures of bacterial motility and chemotaxis[END_REF][START_REF] Schnitzer | Theory of continuum random walks and application to chemotaxis[END_REF] in parallel with active-Brownian particles [START_REF] Cates | When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motilityinduced phase separation[END_REF].

Here we study the three-dimensional trajectories of E. coli bacteria in motion in different chemical and physical environments and at different concentrations. We find that the swimming dynamics is different from the globally accepted behavior described by Berg and Brown in their famous paper of 1972 [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF].

experimental set-up and methods

We study a drop of a very diluted suspension of bacteria, placed between two microscope's slides separated a distance H = 250µm. Initially the concentration is extremely low, typically 10 5 bact/mL, corresponding to a volume fraction φ = 10 -7 . For computing the volume fraction we have assumed the volume of the cells to be 1µm 3 . We use the same setup for experiments varying the viscosity and rheology conditions of the surrounding fluid.

The very diluted suspensions are used in all but one experiment, where we mix fluorescent and non-fluorescent bacteria up to a volume fraction φ = 6 × 10 -3 . Otherwise, the great dilution guarantees enough oxygen in the medium for very long times, even when the boundaries are not permeable to gases.

The system is put on the stage of our tracking microscope and the cells are tracked at 80 frames per second while swimming in the lower 150µm of the chamber. The chamber is closed on the sides, so the advective flows are limited and bacteria swim in no-flow conditions. As we will mainly be interested in studying the 3D swimming of bacteria, we have chosen a measurement chamber higher than the maximal Z-span distance of the tracking device. This way we maximize the measurement length in the bulk.

Typically, bacteria describe circles on the bottom surface and eventually take off to swim in the bulk, where they have a different dynamics (Fig. 16). We analyze independently the bulk and surface segments of individual trajectories, defining by bulk the region 10µm farther from the solid surface.

Bacteria suspension -We use different strains of E. coli (RP437, AB1157, CR20) transfected with a fluorescent plasmid and prepared by the following protocol: 10µL of bacteria are grown overnight in 2.5 mL of the rich culture medium (M9G) plus antibiotics1 . This is placed in the incubator at 30°C and shaking at 250rpm until the culture reach optical density 0.5 for a wavelength of 595nm that we measure using an spectrophotometer. We have a calibration curve allowing the determination of the bacterial concentration by the measurement of the optical density of the suspension. This culture is centrifuged, the supernatant removed and the pellet re-suspended in 2.5mL of water. After centrifugation the new supernatant is retired and the pellet is re-suspended into Motility Buffer, mixed with polyvinylpyrrolidone (PVP-360 kDa: 0.002%) and L-Serine (0.04g/mL). We will refer to this medium as MB+LS. After incubating for 30 minutes in MB+LS to obtain a maximal activity, a reduced number of bacteria are transferred to the cell of measurements, containing the same solution that the reservoir but in which the swimmers will be in very low concentration. Other procedures, like re-suspending in Motility Buffer without L-Serine, in M9G medium, in polymeric solutions or in solutions with crowded non-fluorescent bacteria have also been used and whenever it will be the case it will be clarified through the text.

The three strains used are run-and-tumble cells in the case of RP437 and AB1157, and a strain of non tumbler mutants CR20 to which we refer as smooth swimmers , that almost never tumble. CR20 is a mutant strain derived from RP437 and it keeps most of its characteristics.

Data processing

The data coming from the 3D tracker will be first subjected to backlash correction in the x and y coordinates, as explained in 2.1.1.4.

It may happen, during the tracking process, that some image fail to be saved or that the tracker get "confused" and follow for a moment a different object and we decide to manually eliminate a few bad points from the trajectory. In these cases there will be holes in the track that we will fill with a linear interpolation, in the three spatial coordinates and the time, between the separated pieces of trajectory. This is certainly not taking place very often and depends on how bright the bacteria are. The brighter the bacterium, the lower the probability to have this problem. It typically happens one or two times in a fortyminute set of tracks.

As the sampling frequency in z is one-third of the frame rate (see Chapter 2), the z values change only every three points. We filter these performing the average on a moving window over ten points, equivalent to 0.125s.

The next step is the correction of bad points in z. Sometimes during the tracking process for a window of points the detected values of z are very different to their neighbors. This may happen, for example, when another bacterium crosses the targeted-one and the signal is affected. We detect these points when their local velocity in z is unusually large, i.e. larger than twice the mean velocity for the trajectory. In this cases we replace the wrong z coordinates by a linear interpolation between the neighboring good points.

The samples that we put in the tracking device are, in general, not perfectly horizontal. In this case the xy plane of the microscope will not be absolutely parallel to the bottom of the microfluidic cell. Now we proceed to a rotation of coordinates to have the new xy coordinates parallel to the bottom. Later on we do a translation to have the zero in z coincide with the bottom of the cell.

At this point, the three coordinates are similarly treated. For determining the local velocity v and acceleration a of the swimmer we analyze independently x, y and z. For simplicity in the explanation let's use x as example. To determine the local component the of velocity v x (i) in the i -th position inside the trajectory, we get the sublist of coordinates around this point [x(i -n), . . . , x(i), . . . , x(i + n)] and perform a polynomial fitting of order 2. The first derivative of the polynomial, evaluated in the center, gives the local velocity and the second derivative gives the local acceleration a x (i). We have tried several combinations of smoothing parameters and finally adopted n = 13 for our typical tracking at 80Hz. Finally, we discard the first and last n points of the track to avoid undesirable border effects due to filtering. We also split the acceleration in longitudinal a and transversal a ⊥ components, that we determine as

a = a • v v and a ⊥ = (a 2 -a 2 ) 1/2 . ( 5 
)
From each image we also extract the size and orientation of the ellipsoidal particle, that is a 2D projection of the bacterium, and we keep it with the local positions, velocities and curvatures along the trajectory.

results and discussion

The first striking feature consistently found is a big behavioral variability of the motility characteristics, between bacteria from the same bath. Fig. 17 exemplifies this, showing the trajectories of two swimmers with very different behaviors; one that tumbles often and the other with a very persistent swimming.

From the biological literature, it is well known that a bacterial culture which is genetically homogeneous, i.e., decendents from a single cell and grown in homogeneous nutrient conditions, nevertheless produces characteristically different individuals [START_REF] John L Spudich | Non-genetic individuality: chance in the single cell[END_REF], with a big variability in the time to return to normal run-and-tumble state after a brief chemotactic stimulus. Moreover, the individuality is not a function of position in the cell division cycle or nutriment conditions.

If the variability is not genetic, is it phenotypic? The term "nongenetic individuality" has been applied to organisms from a geneti- cally identical population that display differences in phenotype from individual to individual. Here we open the question on whether it is necessary to take into account the presence of different phenotypes to explain the variability within the population. Could it instead be enough to consider an homogeneous population with individuals that dynamically change behavior and that are not synchronized.

Velocity analysis

The variability also takes place in the velocity of bacteria. Our measurements show that the swimming velocity is not a constant with zeros every time there is a tumble, as in the classic (idealized) run and tumble description [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF]. Instead, it is very noisy, with fluctuations of very different magnitudes between individual bacteria. Fig. 18 shows the velocity curves for a run-and-tumble RP437 and two smooth swimmers bacteria CR20 mutant. Although the velocity in the wild type has more marked peaks towards low speed magnitude, the two cases, run and tumble, cannot be clearly separated. In the right panel corresponding to non-tumbler mutants we can also observe marked fluctuations in one of the two cases. The fluctuations are, however, higher in the case of wild type, as shown in Fig. 20.

The occurrence of tumbles cannot be clearly determined from sudden decreases in the bacterium velocity. Such a criterion will imply an arbitrary threshold.

Besides tumbling, velocity fluctuations may be due to multiples causes, as a dynamic arrangement of the flagellar bundle, fluctuating power of the individual motors, geometric changes taking place during the swimming process that produce changes in the drag experienced by the body, among others.

As shown in Fig. 19, the probability density function (PDF) of the velocity modulus is different for the run-and-tumble and the smooth swimmers. In the wild type strain the fluctuations are bigger, as shown in Fig. 20 (a). Up to this point, we cannot say if the level of noise found for smooth swimmers comes in fact form their intrinsic dynamics or if it is introduced by the tracking device. It will be certainly useful to clarify this point, since it would give and estimation of the noise associated to the dynamic flagella arrangement and the power of the motor. It can be seen that fluctuations in this case do not depend on the velocity magnitude.

In the run-and-tumble cells the velocity distributions are in general skewed towards the lower values, evidencing the presence of tumbles. The PDFs seem to be composed of two distributions of different centers whose tails overlap (Fig. 19). In these cases the mean velocity of the trajectory does not coincide with the peak of the distribution, which must be the run velocity. We determine the latter as the mode of the distribution and refer to it as v m . In the case of smooth swimmers both values, average and mode, coincide in general. As a result, the values of skewness are in general lower and with a wider distribution for run-and-tumble than for smooth swimmers bacteria. A very slightly decrease of skewness seem to take place for both populations as the velocity increases (Fig. 20 (b)).

The running velocity is largely distributed for RP437 (Fig. 20 (c)), and even more for the smooth swimmers, which present an almost flat distribution. For both populations a weak increase of the kurtosis with the velocity takes place, indicating heavier tails in the distribution as the mean velocity increases. For the run-and-tumble bacteria these values are in a wider range with a higher mean.

From the images of bacteria we have identified the main axis of the ellipse whenever this is pertinent (i.e., when the 2D projection of the main axis on the horizontal plane is long enough). The angle between the main axis of the ellipse and the velocity direction oscillates in time in a wobbling motion. We name this the wobbling angle and represent it in a sketch in Fig. 21 (a). The amplitude and frequency of wobbling changes from one individual to the other and depend on geometric characteristics of the bacteria, although other parameters as the swimming velocity may affect this oscillation mode. Fig. 21 (b) and (c) show the temporal evolution of the wobbling angle ϕ for a bacterium RP437 and a CR20 swimming close to a surface. Usually the smooth swimmers have longer bodies and present lower wobbling frequencies and higher amplitudes than the wild type, although in both cases a big variability takes place.

We have found the presence of peaked power spectra of the wobbling angles in most of the swimmers (see panels (d-e)). The frequency of the peak can be easily recognized form the temporal evolution of ϕ and also from the direct inspection of the videos of the tracked bacteria. In some cases, the wobbling frequency can be detected in the power spectrum of the velocity, like in the case slightly visible of panel (e). In many cases the power spectrum of v shows (d-e) Power spectra of wobbling angle and velocity for the previous bacteria. A mark of the tracking device is evident at the sampling frequency in z (26.6Hz). In both cases the wobbling frequencies are well defined and agree with panels (b-c). In the case of the CR20 bacterium the wobbling frequency is present in the power spectrum of the velocity. In both cases bacteria swim on the surface.

ϕ (t 2 ) ϕ (t 3 ) ϕ (t ) -Wobbling angle t 2 t 1 t 3 ⃗ v (t 3 ) ϕ (t 3 ) ⃗ v (t 2 ) ⃗ v (t 1 ) -Local

p(t)

p(t +Δ t ) θ(Δ t ) white noise up to 40Hz. We know this is not noise introduced by the tracking device or data analysis, since we have previously characterized the tracker's spectral response in section 2.1.2.

The mark of the tracker can be seen in the power spectra of the velocities as a peak at the frequency 26.66Hz = 80Hz 3 , corresponding to the sampling frequency in z.

Persistence of swimming direction

As the detection of independent run and tumble phases from the trajectories or velocities relay on arbitrary criteria, we do not seek to identify tumbling events. Instead, we will focus on the correlation of velocity direction for the characterization of the motile behavior of individual bacteria. For an arbitrary trajectory it is defined as

C(∆t) = cos θ(∆t) = p(t + ∆t) • p(t) t (6) 
where p(t) is the unitary vector of the swimming direction at time t (Fig. 22) and the brackets t denote the average along all the times of the given trajectory.

For particles performing run-and-tumble dynamics with a fixed run velocity, exponentially distributed run times τ run and turning angles that do not depend on any information such as direction or duration of previous runs, the correlation of velocity direction is the exponentially decreasing function C(∆t) = e -t/τ [START_REF] Peter | Statistical measures of bacterial motility and chemotaxis[END_REF]. The effective decorrelation time is:

τ = τ run 1 -cos φ 0 , (7) 
where cos φ 0 is the average cosine of turning angles. Following [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF], τ run 1s and cos φ 0 = 0.33, the orientation decorrelation time usually assumed for wild type E. coli is then:

τ β = 1.5s. (8) 
The mean squared displacement of trajectories for t <∼ τ should scale ballistically (slope 2 in loglog plot) and later on turn to the diffusive regime (slope 1). We have found strangely long times of slope slightly below 2 for times up to some seconds in the case of runand-tumble E. coli in Newtonian fluids. It is shown in Fig. 23 we have marked the average crossover time 1.5s from the literature with a red line. In addition to the large values of individual cross over times, these are also largely distributed, as can be seen from the positions where the lines corresponding to individual bacteria start turning towards lower slopes.

The data correspond to a restricted window of times since bacteria abandon the range of height of 150µm where our device can follow them, very often by swimming in almost straight paths. The mean squared displacement of individual trajectories of smooth swimmers is ballistic as expected, although we can notice some bacteria whose slope is slightly smaller than 2.

A solution for accessing longer temporal series will be to develop the 3D tracking associated with an objective of less magnification. Our z algorithm exploits the specific characteristics of the objective that are a consequence of its geometric shape. Adjusting the technique to an other objective will probably require modifying the z algorithm.

The correlation of swimming directions is shown for several bacteria in Fig. 24. For the run-and-tumble strain in panel (a) we have superposed the expected exponential decay of characteristic time τ β = 1.5s, also represented in log-normal scale (b). A large dispersion of decorrelation times is evident from the graph and some bacteria are hardly decorrelated within the observation window. Many trajectories display a dynamics much akin to the smooth swimmers in panel (c).

In general the correlation orientations have a fast decrease in the first fractions of second, being more evident in the smooth swimmers case. In addition, smooth swimmers have a more marked oscillating behavior. We associate this to the fast reorientation process due to cell wobbling. The smooth swimmers cells were in general more elongated than the run-and-tumble and the wobbling was more important.

The different lengths in the correlation curves comes from the different track duration. A bacterium swimming at 30µm/s will go through the region accessible to the tracker in around 5 seconds if it swims vertically, and in 7 seconds if it swims with an angle of 45 degrees. This way, the more persistent bacteria among the wild type population will quickly abandon the measurement volume and will only be in the bulk for short times. The maximal time lag ∆t displayed in the correlation functions is 1/5 of the full tracking time in the bulk.

Note that the standard methods for computing the mean squared displacement of bacteria from simultaneous tracking of many swimmers in the same video only consider the bacteria staying for long enough times in the field of view of the microscope. Typically, this measurements are done with low magnification objectives (20× or 40× [START_REF] Douarche | E. Coli and oxygen: a motility transition[END_REF][START_REF] López | Turning bacteria suspensions into superfluids[END_REF][START_REF] Wu | Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique[END_REF]), where the field depth can go to some tenths of microns. The majority of the persistent bacteria will go through this region in very short times, of the order of 1 to 3 seconds. A general procedure to avoid fake tracks produced by the noise in the images and detection issues, is to filter the trajectories by length. This procedure results in the filtering of a great number of real persistent trajectories, giving a strong weight to the less motile and more tumbling part of the population, in a systematic bias.

We observed times of swimming on the surfaces significantly higher for smooth swimmers than for run-and-tumble bacteria, meaning that tumbling is an important mechanism for desorption [START_REF] Elgeti | Run-and-tumble dynamics of self-propelled particles in confinement[END_REF]. Interestingly, some authors report tumble suppression due to hydrodynamic interactions with surfaces [START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF]. Then, depending on the experimental procedure, this observation may be biased by the time distribution of runs. Persistent bacteria within the run-and-tumble population will stay longer on surfaces independently of the existence of tumble suppression by the walls.

For test of robustness of our results, we have tracked wild type cells in Motility Buffer with (i) and without (ii) L-Serine as well as in the rich medium M9G (iii). No differences in the reorientation process were found once the cells are perfectly adapted to the environment solution. This adaptation typically takes place in the first minutes after bacteria are transferred to the cell of measurements. decay due to wobbling have taken place. The validity of the exponential model is shown in Fig. 29 (a). According to the model of Tu and Grinstein [START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF] for the run and tumble times duration, the exponential model is valid within a short-tracking-time approximation.

The most important features to notice in Fig. 25 are the widely distributed relaxation times for the run-and-tumble bacteria and the finite and less widely distributed relaxation times displayed by the smooth swimmers.

Brownian motion disorients the smooth swimmers. Following the clear explanation in [START_REF] Bwm Kuipers | Simultaneous measurement of rotational and translational diffusion of anisotropic colloids with a new integrated setup for fluorescence recovery after photobleaching[END_REF], let us estimate the rotational diffusion for bacteria. In a simple approximation we can see them as prolate ellipsoids of revolution of semiaxes a and b = c (Fig. 26).

The orientation of an ellipsoid at time t can be described by the cosine of the angle α between the axis i and the z-axis (see Fig. 26). The rotational relaxation time τ i is defined as the one for which the ensemble-averaged value of cos(α) has fallen to e 1 . Since the ellipsoid can move in any direction, the rotational relaxation time τ a of the long principal axis a around the remaining two axes b and c depends on the rotational diffusion coefficient of the latter two principal axes, which are equal for an ellipsoid of revolution (a = b = c). Then

τ a = 1 D b r + D c r = 1 2D r⊥ . ( 9 
)
The rotational friction coefficients of ellipsoids are described in the seminal articles of Perrin [START_REF] Perrin | Mouvement Brownien d'un ellipsoide (I). Dispersion diélectrique pour des molécules ellipsoidales[END_REF][START_REF] Perrin | Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales[END_REF]. For a rigid ellipsoid of revolution in a medium with viscosity µ, the transversal rotational diffusion coefficient is related to the aspect ratio p = a/b and given by

D r⊥ = k B T 6µV ol g ⊥ ( 10 
)
where

V ol = 4πab 2 /3 is the volume, g ⊥ = 2(p 4 -1) 3p[(2p 2 -1)S -p] (11) 
S = 1 p 2 -1 ln p + p 2 -1 . ( 12 
)
This expression for S corresponds to a prolate ellipsoid where a > b.

Using the typical values a = 5µm and b = 0.4µm as the semi-axes of the given bacterium, the relaxation time due to Brownian motion in water at 300K is τ B = 40s. This value is in agreement with the measured experimental times found for CR20 and also for some runand-tumble bacteria. The value of τ B is however, strongly dependent on the bacterium's dimensions and aspect ratio. A bacterium 2µm shorter (a = 4µm) will have a relaxation time τ B ∼ 22s, while one 2µm longer (a = 6µm) will have a longer time τ B ∼ 66s. Therefore, the wide distribution of relaxation times for CR20 could arise from the bacterial sizes distribution.

The velocity fluctuations are related to the relaxation times, as shown in Fig. 27. The larger the fluctuations, the smaller the relaxation times. This is in agreement with our previous discussion about the existence of a bimodal distribution for the velocities, with one peak at the run velocity and an other at a lower value accounting for the tumbles. The more often the tumbles, the bigger the width of the PDF of velocity. The skewness, represented in (b), do not say much about the relaxation time.

Fig. 27 (c) shows the relaxation times depending on the run velocity, i.e., v m , as it is the mode of the velocity distribution for each bacterium. No relation seems to exist between these magnitudes. The existence of a relation will be an argument towards a phenotype diversity, since one could think of the relaxation time as some intrinsic characteristic of every bacterium, as the velocity. A dynamic change of τ would remove any correlation between τ and v m . As they are not correlated, we cannot say anything about the existence of a phenotype diversity. The variability in bacterial dispersion for the run-and-tumble cells is very large. Fig. 28 (a) shows an histogram with relaxation times that can reach 30s and more. In panel (b) we have put together data from several baths and chosen logarithmic binning. We bring evidence of power law relation between 3.6s and 40s. The value 3.6s reminds us of the value found by Wu et al. [START_REF] Wu | Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique[END_REF] using a 3D Eulerian tracking technique. The upper values of relaxation time coincide with those of smooth swimmers bacteria. One question arises here: Do tumbles take place while persistent bacteria cross more than 150µm without been disoriented?

From the work of Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] we have seen the possibility of a very large run time distribution, where the number of runs longer than a certain value follows a power law of exponent -γ ∼ 1.2 in the asymptotic regime. The large distribution of orientation persistence times that we have found relate motility to motor rotation statistics. The relaxation times of the orientation direction p will arrive form the interplay of Brownian motion and tumbling events. Beyond this thesis, we will study the relation between the found slope close to one in Fig. 28 switching events to loose the memory of a given switching time that corresponds to a characteristic run time.

In our experiments, the measurement times are still below the memory time. To show it, let us first exclude from the curves of orientation correlation the first 0.2s of fast decorrelation due to wobbling and then shift the curves to start in (0, 1). The resulting curves, after normalizing the time in each case by the individual correlation time τ, show a fair collapse on the decreasing exponential e -t , represented with a dashed line in Fig. 29 (a). This indicates that, although the correlation times are widely distributed, the run-and-tumble dynamics remains almost Poissonian during the measurement process.

We could consider the decorrelation process of a bacterium resulting individually from a run-and-tumble mechanism as well as from Brownian motion. The resulting decorrelation time measured in our case will follow

1 τ = 1 τ B + 1 -cos φ 0 τ run . ( 13 
)
Assuming the Brownian time τ B = 35s from our previous estimates of rotational diffusivity and measurements, and taking from the literature cos φ 0 0.33, we estimate the run times τ run that we plot together with τ in Fig. 29 (b).

In Fig. 29 (b) we plot the line splitting the experimental points of measurement times T below and above this threshold corresponding to 20 switching events. Some points keep in the part below T/20, meaning that the bacterium switching time state could have evolved during the measurement time. As the collapse in the exponential was reasonably good (panel (a)), we will assume that bacteria have not undergone an important change of state. [START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF] on experimental data by Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] (see Fig. 3).

Inspired in the results of Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] and Wu et al. [START_REF] Wu | Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique[END_REF], some authors have predicted the existence of Lévy walks in bacterial displacements [START_REF] Matthäus | On the origin and characteristics of noise-induced Lévy walks of e. coli[END_REF][START_REF] Zaburdaev | Lévy walks[END_REF]. Lévy walk is a scale-invariant type of motion characterized by a power law run length distribution. A very intense debate is ongoing in the scientific literature regarding how optimal Lévy walks searching strategies are. Moreover, a new interdisciplinary research field arises regarding the quantitative analysis of animal motility patterns and the optimality of search. For a discussion on this subject see Zaburdaev, Denisov, and Klafter [START_REF] Zaburdaev | Lévy walks[END_REF] and references therein.

From the theory of Lévy walks [START_REF] Zaburdaev | Lévy walks[END_REF], a process with waiting times (times between successive twists) distributed as a power law ψ(t) = γ τ 0 (1+t/τ 0 ) γ+1 will have a mean squared displacement as

x 2 (t) =                  t 2 0 < γ < 1 ballistic t 2 / ln t γ = 1 t 3-γ 1 < γ < 2 superdiffusive t ln t γ = 2 t γ > 2 diffusive. ( 14 
)
The results of Korobkova et al. point to γ = 1.2, for a process with a finite mean flight time τ = τ 0 γ-1 and a divergent second moment. This classifies as a superdiffusive Lévy walk. It is not known, however, if this value of exponent is common for all bacteria or if it changes from one to the next. Note that this value of γ = 1.2 is very close to the lower boundary of its interval in relations [START_REF] Chilukuri | Impact of external flow on the dynamics of swimming microorganisms near surfaces[END_REF] and small variations in it could lead to bacteria with undefined mean run time, whose crossover for relaxation time will be given by rotational diffusion. Even for bacteria following the statistics of γ = 1.2, therefore with finite mean run time, there will exist certain runs long enough to make the rotational diffusion the actor of direction decorrelation.

For a superdiffusive process the velocity auto-correlation function v(t + ∆t) • v(t) is proportional to ∆t 1-γ [17]. This is also the case for the orientation correlation since the run velocity is almost constant in our case. Recently Ariel et al. have observed Lévy walk displacements of fluorescently labeled individuals within dense bacterial swarms. They have found power law mean squared displacements of exponent 1.6 corresponding to γ = 1.4 and the corresponding power law velocity correlation with exponent 1 -γ -0.4.

In our measurements, we have not observed power law direction correlations and we conclude that individual bacteria do not migrate by Lévy walks. We interpret our results based on the correlation of run lengths found by Korobkova et al., that are clearly shown by Tu and Grinstein [START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF] in Fig. 3 (c) from Chapter 1. As the run lengths are positively correlated for almost 20 consecutive runs, a bacterium tracked for a short time will be more likely to show a Poissonian statistics of run duration than a power law. For very long runs, however, we would rather observe ballistic motion. This can explain the exponential behavior found by Berg and Brown. If, however, the tracks are long enough to comprise different times of the evolving average run time, the orientation correlation will not be exponential, depending on the track length through a complicated way.

The motion of bacteria then could be studied in the more general context of continuous time random walk models. These are non-Markovian processes, meaning that the future of a particle depends not only on the particle's current state, like its position and velocity, but also on its prehistory, like how long it was waiting or how long it was flying already. Related to the power law distribution of run times, there is an important issue concerning a weak ergodicity breaking [START_REF] Zaburdaev | Lévy walks[END_REF]. It points to the fact that the time and ensemble averaged quantities can be different from each other.

Tethered cells and CW/CCW statistics

To study the tumbling frequency directly from the motor response, we have studied wild type AB1157 E. coli cells tethered to a surface by only one flagellum (see Figure 30 (a)). We have chosen this cells because they have a mutation that makes their flagella stick more easily to the glass. In principle this cells could be attached to the surface by various flagella at the time, but we have chosen those describing circles, which would not be possible with at least 2 anchoring flagella.

Pane (b) in Fig. 30 shows the temporal evolution of the phase ϕ of the mayor axis of the ellipsoid, the slope is the angular velocity in radians per second. When the slope is positive, corresponding to a counterclockwise rotation (CCW)), the bacterium "runs". When it is negative the movement is clockwise (CW) and the bacterium "tumbles". We have put vertical blue lines whenever a run starts, and red lines where the tumbles start.

The phase evolution shows a bacterium having a run for almost one minute during the video, and suddenly a sequence of frequent runs and tumbles. A bacterium running for a minute in the bulk will soon arrive to the surfaces of the experimental cell of any experimental device or escape from the objective field of view, unless it swim totally horizontally which is highly improbable. This way it is very unlikely to be counted in any statistics regarding only the longer trajectories.

The cell of Fig. 30 was tracked for 5 minutes. Its fraction of tumbles longer than a given time Ψ(t), this is, the probability for a tumble not take place until time t, has a power law behavior with exponent close to -1 shown in panel (d). This is in fact the value γ:

Ψ(t) = 1 - t 0 ψ(t) = 1 (1 + t/τ 0 ) γ F t (t) = t 0 ψ(t) = 1 - 1 (1 + t/τ 0 ) γ ψ(t) = γ τ 0 (1 + t/τ 0 ) γ+1 . ( 15 
)
This experiment is, of course, not the most appropriate to study the motor dynamics in normal swimming conditions, since it is the body that turns and not the flagellum. The body is subjected to a bigger hydrodynamic drag and imposes a load to the motor bigger than the one of the flagellum in normally swimming conditions. We have found with this experiment more questions than answers. Different realizations for different tethered bacteria give different values of the exponent γ. Therefore, we cannot say if the variability in γ is a consequence of the external load, the finite observation time or if it really takes place among the population. This experiment, however, reveals some characteristics of the run-and-tumble process like a large distribution of times for both runs (CCW) and tumbles (CW).

From [START_REF] Sowa | Bacterial flagellar motor[END_REF], we know the curve of response of the motor, sketched in Fig. 31. At low viscosity (µ) the bacterial velocities are almost independent of viscosity. As µ increases the load increases and the motor eventually changes to a regime of constant torque and viscositydependent velocity, where the stall torque is N 0 = 1450 ± 50 × pN • nm [START_REF] Sowa | Bacterial flagellar motor[END_REF]. From Darnton et al., the approximate torque of the bundle while swimming is N bundle ∼ 550 pN • nm.

Knowing the angular velocity of tethered bacteria (≈ 20rad/s), we estimated its viscous resistive torque following Darnton et al. [START_REF] Darnton | On Torque and Tumbling in Swimming Escherichia coli[END_REF] and found N t = 500 pN • nm. This is close to the free swimming torque value. Nevertheless, a correction must be applied to account for the vicinity of the solid surface. Typically, due the presence of an hydrodynamic image, a factor 2 could be applied for an effective torque value N eff ≈ 1000 pN • nm. This are the correct orders of magnitude, however, it is difficult to be more precise without more refined hydrodynamic and biological models. Moreover, the stall torque may change from one bacterium to the other.

Interestingly, for a few bacteria the CW times compared to the CCW times, as the case of Fig. 32. The average result changed in different media. Bacteria in Motility Buffer + L-Serine, had in average much longer CCW (run) events than CW (tumbles). In the case of only Motility Buffer the tumbles were longer than the runs. This relates the switching mechanism to the energy availability of the cell. Since the tumble frequency is controlled by internal processes involving the binding of a CheYp molecule on the motor, we speculate that an external forcing may also have effects on the equilibrium of biochemical species inside the cell.

A dilation of the CCW and CW times have been observed by Patteson et al. [START_REF] Ae Patteson | Running and tumbling with E. coli in polymeric solutions[END_REF] for tethered bacteria in polymeric solutions, a phe-nomenon that they call "tumble suppression", but we think it is more complicated. The transitions CW CCW are generally modeled as governed by thermal fluctuations over a barrier ∆G [START_REF] Khan | The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force[END_REF][START_REF] Sowa | Bacterial flagellar motor[END_REF]. Patteson et al. propose that under an external load, an additional energy barrier has to be overcome for reversing the motor rotation direction and that this will be proportional to the external torque. Following this line, a simple external energy barrier will make jumps CCW CW less frequent, but would not invert the ratio of times in each state as we have observed.

Our findings reinforce the now emergent concept of the flagellum as a mechanical detector. When the load is too big the bacterium behaves differently, as far as the motion characteristics are concerned.

Swimming in polymeric solutions

The study of bacterial dynamics in complex fluids is a subject that has recently started to attract the attention of the active matter scientific community [START_REF] Vincent A Martinez | Flagellated bacterial motility in polymer solutions[END_REF][START_REF] Arnold Jtm Mathijssen | Upstream swimming in microbiological flows[END_REF][START_REF] Ae Patteson | Running and tumbling with E. coli in polymeric solutions[END_REF]. Biological fluids, as mucus covering the respiratory, gastrointestinal and reproductive tracks, are composed of biomacromolecules. A group of diseases are related to the penetration of these protective layers by motile pathogens [START_REF] Houry | Bacterial swimmers that infiltrate and take over the biofilm matrix[END_REF][START_REF] Sanchez | Animal sources of salmonellosis in humans[END_REF][START_REF] Schreiber | The spatial orientation of Helicobacter pylori in the gastric mucus[END_REF]. The motion of sperm in seminal and vaginal fluids, both polymeric solutions [START_REF] Druart | Sperm interaction with the female reproductive tract[END_REF], is a determinant factor in reproduction.

Recently, Patteson et al. [START_REF] Ae Patteson | Running and tumbling with E. coli in polymeric solutions[END_REF] have reported increased bacterial velocities and tumble suppression when swimming in polymeric solutions. They relate the increased velocity to the medium elasticity, being the cause the decrease of the body wobbling. The tumble suppression is then associated to the solvent viscosity.

In that study the measurement of the run and tumble duration was done in tethered bacteria, not as results of free swimmers tracking. We have previously seen that tethered cells do not behave as swimming cells, therefore, the measurements of run and tumble times cannot be simply extrapolated to the case of swimmers. Moreover, even if the whole run-and-tumble statistics were perfectly known, the dispersion of bacteria in complex fluids depends on many other factors related to the fluid rheology and to the hydrodynamic interactions between the fluid and the bacteria structures. To investigate bacterial dispersion in complex fluids we have tracked them in viscous Newtonian fluids as well as in viscoelastic media.

We have used three polymeric suspensions at different concentrations in the solvent MB-LS.

• Polyvinylpyrrolidone (PVP) with molecular weight given as M = 40kDa, with a Newtonian behavior.

• PVP -360kDa (M = 360kDa), which presents shear thinning and whose rheology have been characterized in [START_REF] Vincent A Martinez | Flagellated bacterial motility in polymer solutions[END_REF].

• Polyacrylamide (PAAM), that have viscoelastic and more marked shear thinning properties.

It is known that bacteria can metabolize some impurities and this can be the reason for increased velocities when swimming in polymeric suspensions [START_REF] Vincent A Martinez | Flagellated bacterial motility in polymer solutions[END_REF]. Therefore, most of the polymer have been purified by means of dialysis by Dr Vincent Martinez2 . In one case, however, for attaining higher concentrations we have also used nondialysed PVP-40kDa with similar results.

For high polymer concentrations the probability distribution function of the velocity modulus becomes more symmetric, less skewed towards the low velocities. Some of these can be seen for the higher studied viscosities in Fig. 33. The change of shape indicates that something has changed in the swimming dynamics. Here the mean value and the mode of the distribution are very close, which justifies the use of the mean value in the analysis.

During the time-span of an experiment exploring different solvent concentrations, the velocity of bacteria decrease as a normal aging process. We have tracked bacteria in water-like medium at the beginning of the experiment, in the middle time and at the end. The average swimmers' velocity decreases at about 1µm/s per hour in agreement with the literature [START_REF] Schwarz-Linek | Escherichia coli as a model active colloid: A practical introduction[END_REF]. We show it in Fig. 34 for the measurements with PVP 360kDa at different concentrations. For every set of measurements during this time we have determined the reference velocity, and later on, normalized the velocities in the given set by the corresponding velocity in the reservoir. In Fig. 35 we show the normalized velocity decrease as the polymer concentration increases.

The normalization procedure makes possible the use of bacteria from the same bath in spite of their temporal evolution. In addition, we have always studied the highest polymer concentration immediately after the first set at the lowest concentration, so bacteria at the highest concentrations are always in optimal shape.

As the polymer concentration increases, bacteria swim slower. This can be seen in Fig. 35 for PVP-360kDa and PAAM. We have not found the velocity increase in the viscoelastic medium PAAM.

As bacteria swim, their body describe a wobbling motion around the velocity direction. Fig. 36 shows the wobbling amplitude decreasing as the polymer concentrations increase. It is an effect taking place in both solutions, not only in the one with elasticity. PAAM presents a higher shear thinning effect than the PVP 360kDa solution, therefore, a direct comparison between both viscosities is not pertinent. Now we study the dispersion in these media. The relaxation times are shown in Fig. 37. The solutions with PVP do not show representative changes when compared to the water-like solution at lower viscosities. For the highest studied concentration of PVP-360kDa some swimmers have more persistent trajectories, but more statistics is The velocities have been normalized by the mode (the most frequent velocity found), whose value is indicated for each swimmer in every chart. For each column the viscosity of the solution is indicated. In the case of PAAM the viscosity correspond to a quiescent state and has been determined from the rotational diffusion of dead bacteria. Note that bacteria manage to swim in this medium due to shear thinning effects. needed in order to discard that these are merely persistent swimmers independently of fluid properties. The solutions with PAAM present a more interesting phenomenology. The velocity PDF had become symmetric as in the case of smooth swimmers as shown in Fig. 33, but with lower velocity magnitudes in general. The bacterial dispersion is indeed affected for the highest concentration. The relaxation times change an order of magnitude and become comparable to those of smooth swimmers. Is tumble then suppressed in this medium?

3.2.4.1

The tumble is not suppressed. It is just inefficient.

We look now in detail to the three-dimensional trajectories of two runand-tumble bacteria at the highest PAAM concentration 3.8mg/mL. These are in Fig. 38 (a). The trajectories have started on the bottom surface and are very persistent. Their velocities are depicted in panel (b). From the velociy modulus we notice that tumble in the sense of motion stop still can take place often in this context, although it does not always imply directional changes, as can be seen for the bacterium 1. The tumble is not suppressed then, it is just inefficient to reorient the swimming direction.

Yet a very interesting phenomenon it to notice: bacteria spend anomalously long times at very low velocities; sometimes several seconds. In the case of bacterium 2 a long stop have come together with a noticeable reorientation.

The long stopping times could be an effect of the shear thinning: as the swimmer stops moving, the solvent viscosity increases abruptly and the bacterium have a hard time to start moving again.

The poor reorientation could also be a shear thinning effect. According to Saragosti, Silberzan, and Buguin [START_REF] Saragosti | Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis[END_REF], during a tumble the bacterium orientation performs a random walk on a unitary sphere. The average reorientation angle will be cos θ (t) = e -2D r t . The ro- tational diffusion D r for an ellipsoid, as given by equation [START_REF] Cates | When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motilityinduced phase separation[END_REF], is inversely proportional to the solvent viscosity. As the fluid presents shear thinning, the viscosity will be different for a swimming bacterium and for a static one, being the latter the highest. The rotational diffusion for dead cells in different PAAM concentrations have been determined by Dr Martinez. For the given concentration of this experiment the diffusion is 0.002 times the rotational diffusion in water-like medium and the ratio of viscosity is µ(PAAM) µ ( H 2 O) ∼ 500. Therefore, to experience in this medium the same average reorientation angle per tumble than in water, the tumbles would need to last ∼ 500 times longer in PAAM, i.e., 50s. An increased directionality is then expected. On the other hand, we do not discard that an increased tumble time take place in this medium, since the motor could be stall and we have observed that overloading the motor can lead to anomalous run-and-tumble statistics. To discern if this can take place one should mark the flagella for the direct observation in cases like the one where bacteria stop for 10s in Fig. 38.

We conclude that in viscoelastic and Newtonian viscous fluids bacteria do have tumble, but don't change direction. It's not that the flagella fail to turn backward, but that this is not efficient to reorient the trajectory.

We do not discard the effects of elasticity in the increased directionality found, but from our measurements, shear thinning effects are enough to explain the phenomenon.

Swimming in more concentrated active suspensions

The active nature of microorganisms gives rise to the emergence of complex phenomena not taking place in suspensions of passive particles. Some works have reported an enhanced diffusion of tracers suspended in a bacterial solution [START_REF] Mino | Enhanced diffusion due to active swimmers at a solid surface[END_REF][START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF]. A drastic decrease of the fluid viscosity takes place when bacterial suspensions are subjected to shear stresses [START_REF] López | Turning bacteria suspensions into superfluids[END_REF][START_REF] Sokolov | Reduction of viscosity in suspension of swimming bacteria[END_REF] and individual bacteria migrate by Lévy walks in concentrated suspension displaying collective motion [START_REF] Ariel | Swarming bacteria migrate by Lévy Walk[END_REF].

One of the issues to tackle these problems is the impossibility to track individual bacteria for long times in very concentrated suspensions. This has mainly two aspects: the difficulty in detecting individual swimmers in a crowded dynamic environment, and the other are the limits in the existing algorithms to link the positions of the detected objects and reconstruct correct trajectories. This also fails at not very high concentrations.

Here we demonstrate that our tracking technique allows us to follow individual fluorescent bacteria in a bath of non-fluorescent ones of the same type. We have explored different concentrations of the normal swimmers. The results for dispersion are shown in Fig. 39, where for the higher concentrations the relaxation times seem to slightly increase. The studied concentrations are in the range 0 to 5.9 × 10 9 bact/mL, the same where a viscosity decrease was found by López et al. [START_REF] López | Turning bacteria suspensions into superfluids[END_REF]. The volume fraction is computed assuming a volume of 1µm 3 for every bacterium (10 9 bact/mL ≡ 0.1%, φ = 10 -3 ). The slight increase in persistence in active suspensions is somehow paradoxical, since passive particles in similar conditions are subjected to higher diffusion. We expect that increasing the swimmer's concentration at some point will lead to a decrease in relaxation times.

An issue associated to the study of concentrated suspensions is the high rate of oxygen consumption taking place in the microfluidic device. To further increase concentration we have to provide oxygen to the suspension to avoid bacteria switching to an anaerobic state with reduced motility. Through some tests we have developed a technique to provide them with oxygen using a band of PDMS instead of a cover-slide as the top confinement boundary. In further studies beyond this thesis we will asses much higher concentrations where eventually collective motion can be important. Fig. 40 shows the mean squared displacement of bacteria for the two most concentrated suspensions. Most of the individuals have ballistic trajectories for several seconds, sometimes over 10s. The slopes are generally between 1.8 and 2, however, panel (a) shows two bacteria corresponding to slope ∼ 1.6.

For the short times the mean squared displacement behaves as r 2 (∆t) ∼ ∆t α and we have seen α between 1 and 2. In Fig. 40 (a-b) consistently the slower bacteria (lower intercept in MSD plot) display the lower exponents (slopes). Let us now determine the ballistic velocities for each trajectory as v 0 = r 2 (∆t) ∆t 2

for ∆t = 0.1s. This is not the mean velocity of the trajectory v, although it is quite similar as can be seen in panel (c). If the bacterium were diffusive, there would be no meaning in defining a velocity along the trajectory at unless it be an advection velocity. Pane (d) in Fig. 40 shows the exponent for each bacteria from the bath at 0.29% as a function of the ballistic velocity v 0 . It is interesting to note that the exponent α of the MSD seems to be a growing function of the velocity of the given bacterium, until it saturates around 2 in the ballistic regime.

For a passive sphere of diameter 2a = 1µm the diffusion coefficient D Brown = k B T 6πµa ∼= 0.5µm 2 /s. We could define a crossover velocity v 0-Brown = 6D Brown ∆t ∼ 5.5µm/s below which we could not determine whether the particle was diffusive or weakly active. This v 0-Brown is represented with a vertical line in Fig. 40 (d). In our sample there are clearly not very active bacteria.

In a classical work, Wu and Libchaber [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF] studied the motion of passive tracers of 10µm diameter in a bath of active bacteria in a suspended film. The authors found a superdiffusive process ( r 2 ∼ ∆t α , with α 1.5) below some crossover (t <∼ 5s) where activated diffusion (α = 1) is recovered.

Recently Ariel et al. [START_REF] Ariel | Swarming bacteria migrate by Lévy Walk[END_REF] have found, in a bacterial swarm close to a surface, trajectories consistent with Lévy walks by independent fluorescent bacteria within the bath of concentrated non-fluorescent ones. Their exponent α ∼ 1.6 is common to all the individuals. Somehow this exponent is close to the one for passive particles by Wu and Libchaber and close to the ones we have found in 3D for the weakly active swimmers.

Is it then possible that passive particles also describe Lévy walks in dense bacterial suspensions? How are advective transport driven by active suspensions and self-propulsion related to define the nontrivial α exponents found?

Summarizing the motility results

Fig. 41 compiles the rotational diffusion coefficients found for the strains and most of the different physical conditions explored. In addition, we present results obtained for the RP437 changing the chemical environment. Instead of the standard MB -LS suspending medium used more often along the chapter, the last point correspond to bacteria suspended in the rich medium for culture M9G. We come to the conclusion that the large distribution of persistence time measured for an adapted wild-type E.coli, i.e. experiencing a chemically homogeneous environment for a sufficiently long time, is a robust feature characterizing the run and tumble strategy for species exploring their environment in conditions of dilute bacterial concentration.

The rotational diffusion in water-like media for wild type bacteria can be in some cases very low, comparable to the mutant smooth swimmers. For smooth swimmers the value of rotational diffusion is imposed by the thermal limit. It is interesting to compare the points corresponding to solutions with PVP-40kDa and PVP-360kDa. For these experiments bacteria were swimming at almost the same velocity and had similar relaxation times, in spite of the difference in viscosities. It is certainly the effect of shear thinning present in the solution with PVP-360kDa that allows bacteria swimming in this conditions, in agreement with the results of Martinez et al. [START_REF] Vincent A Martinez | Flagellated bacterial motility in polymer solutions[END_REF].

We have found the most significant effect on the directional persistence for the PAAM solution, that rectifies the trajectories to the point of having smooth swimmer-like diffusion. In these conditions runand-tumble bacteria can go through shear thinning liquids with little reorientation, which could have important consequences for their penetration and later on colonization across biological barriers.

Close to surfaces bacteria behave qualitatively different than in the bulk of fluids. In confined structures the influence of walls becomes very relevant and the bacterial transport in response to flow can be qualitatively different than in open spaces [START_REF] Altshuler | Flow-controlled densification and anomalous dispersion of E. coli through a constriction[END_REF]. In addition, in biological conducts or porous matrices as soils, the surfaces are irregular with trenches and crevices, possibly affecting the transport of microorganisms.

As a first approach to understand their behavior in response to shear in confined irregular structures, here we study the behavior of bacteria while swimming in the vicinities and along the edges resulting from the interception between bottom and lateral walls of confined rectangular microchannels.

The experiment consists in observing a diluted suspension of E. coli bacteria as they flow through a microfluidic channel, as depicted in Fig. 42.

experimental set-up and methods

Bacteria suspension -The bacteria are wild-type E. coli (ATCC 11105). Suspensions are prepared using the following protocol: 10 µL of bacteria were grown overnight in 15 mL of a rich culture medium (LB). From this, 5 mL was washed using 25 mL of PBS and centrifuged. Thereafter, the pellet was re-suspended into Minimal Motility Medium (MMA) [START_REF] Minamino | Effect of Intracellular pH on Rotational Speed of Bacterial Flagellar Motors[END_REF] and supplemented with K-acetate (0.34 mM) and polyvinyl pyrolidone (PVP: 0.005%). The addition of PVP is classically used to prevent bacteria from sticking to surfaces [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF]. With this treatment, the only interaction forces between bacteria and surfaces that need to be taken into account are of hydrodynamic nature. After incubating for an hour in this medium to obtain a maximal activity, it was mixed with Percoll (1:1) to avoid bacteria sedimentation. This controlled environment promotes motility but does not allow bacteria replication. The experiments where performed at (25 ± 2) • C. Under these conditions, the average swimming speed (far from the surfaces) is 28.7 ± 1.3µm/s. E.coli perform run an tumble motions which can be regarded as a directed random walk process [START_REF] Berg | coli in motion[END_REF][START_REF] Darnton | On Torque and Tumbling in Swimming Escherichia coli[END_REF]. At short times, the trajectory is ballistic with a swimming velocity v 0 and at long times, the motion is diffusive with a translational diffusion coefficient: For the present experiments, the average bulk bacteria concentration is kept at n b = (3 ± 0.5) × 10 9 bact./mL (3 × 10 -3 bact./µm 3 ) unless otherwise stated. The volume fraction φ, based on a body volume of 1µm 3 is φ = 0.003 and corresponds to a dilute regime.

D = 1 6 v 2 0 τ,
Microfluidic channel -The experimental cell is a rectangular channel made in PDMS using soft lithography techniques. The channel is h = 20 µm deep, w = 200 µm wide and several millimeters long (see Fig. 42). Confinement of bacteria suspensions by two parallel walls can be quantified by comparing the distance between the two walls (the channel depth) to a typical distance over which bacteria swim between two successive tumbles, yielding the confinement parameter C = v 0 τ h [START_REF] Ezhilan | Transport of a dilute active suspension in pressure-driven channel flow[END_REF]. For C > 1 a bacterium crosses the channel depth essentially without changing direction and the walls play an important role in the bacteria dynamics. On the other hand, for C << 1 the motion of bacteria within the channel depth is diffusive and the channel walls only play a minor role. For our experimental system, C > 1 and we are thus in a situation where walls play a non-negligible role.

Experimental protocol and bacteria detection -The suspension is observed using an inverted microscope (Zeiss-Observer, Z1) with a high magnification objective 100× (field-depth 6 µm). Videos are taken with a digital camera Photron FastCam SA3 (1024 × 1024 pixels or 158 × 158 µm) at a frame-rate of 500 fps unless otherwise stated. The bacteria suspensions were seeded with latex beads (d = 2 µm, Beckman Coulter, density ρ = 1.027g/mL at a volume fraction 10 -7 ) and injected inside the micro-channel at different flow rates Q obtained by gravity over-pressure. The focus position is set at a height immediately above the bottom surface where a first homogeneous layer of moving bacteria can be detected. At this position the cell bodies appear as white areas surrounded by a dark halo. Through image postprocessing they are detected via their local intensity maximum. Then using a calibrated criterion for the maximal intensity, we quantified that bacteria detected in this way where within a maximum distance z 0 = 1.5µm from the surface. The gap between the body of the bacteria and the surface is thus of a maximun height of 1µm. Furthermore, we define that bacteria belong to the horizontal surfaces when they can be tracked in focus for at least 1 second, which corresponds to a traveling distance without flow of typically their own size including the flagella bundle.

Although the field depth of the microscope is quite small (6µm), beads can be observed over the whole channel depth when flowing through the micro-channel. The fastest bead in each video is used to determine the maximum flow velocity V max in the channel. The uncertainty of this method depends on the number of observed beads and is almost negligible as soon as we observe more than 10 beads. It can however be significant at very low flow rates. Maximal velocities detected vary between 0 and 4150µm/s.

velocity and shear profiles

The rectangular channel we use here has an aspect ratio w/h = 10. Velocity profiles differ thus from an ideal parabolic Hele-Shaw flow profile, where the velocity is invariant in the transverse direction y, for distances to the lateral wall larger than the cell height h. This will influence the local values of flow velocities and shear rates and thus the transport properties of bacteria at the surfaces. We present in Figs. 43 and44 the flow velocities and shear rates computed for a rectangular channel with the same aspect ratio as our experimental channel. Velocities and shear-rates are normalised respectively by the maximal velocity V max and by the average shear rate γ = 2V max h . The amplitude of the local shear rate is defined as: γlocal (y, z) = ( ∂V ∂y (y, z)) 2 + ( ∂V ∂z (y, z)) 2 . General views and zooms of the longitudinal velocities and shear rates are displayed on Figs. we are specifically interested in. The flow and shear rate profiles are obtained from an exact solution of the Stokes equation for the longitudinal velocity field V(y, z) with no-slip boundary conditions [START_REF] Tabeling | Introduction to microfluidics[END_REF]:

V(y, z) = ∞ n,odd 4h 2 c π 3 n 3 1 - cosh nπy h cosh nπw 2h sin nπz h (16) 
where c = -∇p µ , (with µ the dynamic viscosity and p the pressure), -w 2 < y < w 2 and 0 < z < h. Interestingly, one can see that close to the edges there is a significant variation of the hydrodynamic conditions compared to the situation at the bottom/top surfaces. At the distance z 0 = 1.5µm, corresponding to our observation plane, we find a velocity reduction (V surface ≈ 0.3V max ) and an increase in the local shear rate ( γsurface ≈ 1.7 γ), while at the same height and 1µm from the lateral wall, corresponding to the edge, we find V edge ≈ 0.05V max and γedge ≈ 0.5 γ.

results and discussion

Experimental observations

In absence of flow, a large amount of bacteria swim close to the bottom surface and we observe them performing circular trajectories (not shown) in agreement with previous observations [START_REF] Berg | coli in motion[END_REF][START_REF] Frymier | Three-dimensional tracking of motile bacteria near a solid planar surface[END_REF][START_REF] Lauga | Swimming in Circles: Motion of Bacteria near Solid Boundaries[END_REF].

When a flow is applied, the scenario changes radically. The swimming direction is modified and at very small shear rates we observe upstream motion of bacteria, as also reported by Kaya and Koser [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF]. At higher shear rates (corresponding to most of our experiments) bacteria swim downstream but at a given angle with the flow direction. The combined effect of swimming and transport by the flow results in diagonal trajectories with respect to the flow direction (left or right as a function of the sign of the shear rate), see Fig. 42 and snapshots on Fig. 45. This effect of "surface rheotaxis" is also in agreement with previous observations in [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF].

As bacteria reach an interception between the top and bottom surfaces with the vertical walls, they reorient along the edges, leading predominantly to an upstream motion. Due to shear, bacteria can also be eroded from the edges. In Fig. 46, we present two typical trajectories corresponding to attachment (left panel) and detachment (right panel) from an edge. Note that for these trajectories bacteria swim indeed upstream at the edge.

It is important to notice that surface rheotaxis has a strong influence on the balance of fluxes concerning the bacteria traffic at the 4 edges, as it breaks their geometrical symmetry. This is why we make a distinction between edges corresponding to "in-going" (green line) and "out-going" (red line), represented in Figs. 42 and45 and that will be discussed further in section 4.3.2. .

Surface vs. edge erosion

Here we quantify the evolution of the bacteria concentration as a function of the mean shear rate at the flat horizontal surfaces and the edges. Fig. 47 shows the mean bacteria surface concentration at the Mean shear rate is γ = 220s -1 , (the edge corresponds to an "ingoing" case, but it was not colored in green for clarity).

bottom wall and at the edges of the channel as a function of the mean shear rate. In Fig. 47 the surface concentration σ is defined as the number of bacteria observed within an area S of the surface, and within a distance z 0 = 1.5µm from it, divided by S. The volume concentration n s near the surface is then given by the number of bacteria observed in the same region, but divided by the volume z 0 S. The linear edge concentration λ is defined as the number of bacteria observed along a distance L of the edge, divided by L. Finally, the volume concentration near the edge n e is given by the edge linear concentration divided by 1.5µm 2 , i.e., we are assuming that bacteria swim along a corridor of width 1µm and height 1.5µm parallel to the edge. At zero shear rate, the volume concentrations for the surface and the edges shown in Fig. 47(a) and (b) are found to be around 1.5 × 10 -2 and 10 -1 bact/µm 3 respectively. Compared to the "bulk" volume concentration of the reservoir of (n b = 3 × 10 -3 bact/µm 3 ) the concentration is thus 5 times higher at the flat surfaces and 30 times higher at the edges. Ezhilan and Saintillan [START_REF] Ezhilan | Transport of a dilute active suspension in pressure-driven channel flow[END_REF] predict a typical increase of the surface concentration at a flat surface for parameters comparable to our experimental conditions of typically 2-3 times. A purely kinetic model as theirs might thus not be enough to explain the large increase in concentration observed in our experiments. This indicates the importance of hydrodynamic attractive forces [START_REF] Chilukuri | Impact of external flow on the dynamics of swimming microorganisms near surfaces[END_REF] (or others) to maintain bacteria near the walls for long times.

We now discuss the evolution of the concentrations when a flow is applied. From Fig. 47(a) one can see that with increasing shear rate, the surface concentration decreases strongly, indicating erosion of bacteria from the wall. The concentration decrease is well described by an exponential decay as A exp (-| γ|/ γ0 ) with γ0 = (143 ± 20)s -1 . This typical erosion shear rate is large compared to the inverse of a typical hydrodynamic time scale for swimming bacteria, that can be defined as v 0 /l, where v 0 is the bacteria swimming speed and l is a typical bacterium size. This difference might be explained once again by hydrodynamic interactions between the bacteria and the surface.

The viscous drag on a bacterium can be estimated as F e ∝ µl 2 γ, with µ the fluid viscosity and where modifications of the viscous drag due to the presence of the wall are neglected. On the other hand, the hydrodynamic attraction force in the presence of a flat surface scales as F a ∝ µl( l r w ) 2 v 0 , with r w the distance between the swimmer and the wall and l the dipole size, corresponding roughly to the bacteria body size (possibly including the flagella) [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF]. From the balance between F e and F a , a typical erosion shear rate can be obtained:

γ0 ∝ l z 0 2 v 0 /l. (17) 
Therefore, a distance of z 0 = 1µm, l = 10µm and v 0 = 30µm/s yields: γ0 ≈ 3 × 10 2 s -1 , which is about the right order of magnitude for erosion, as seen in Fig. 47(a). However, this estimation is critically sensitive to the choice of the ratio l z 0 and is also based on the far field expression for the image dipole flow that can only be considered as an approximation in our case. Clearly, it should be validated on a more refined hydrodynamic model, possibly also including the kinetic contribution of bacteria incoming from the bulk flow.

Fig. 47(b) shows the linear bacteria density at the two edges corresponding to the bottom of the channel as a function of the mean shear rate. An important observation can be made from this figure. The concentrations at the right and left edges are identical only at very small or very high shear rates. With increasing shear rate the concentration at the in-going edge increases whereas the concentration at the out-going edge decreases, leading to an asymmetry between the two edges. This has already been qualitatively observed in [START_REF] Hill | Hydrodynamic Surface Interactions Enable Escherichia Coli to Seek Efficient Routes to Swim Upstream[END_REF] and results from the bacteria transport at the flat surfaces. From the snapshots on Fig. 45 it is clear that bacteria swim, in average, with a finite angle compared to the flow direction. This brings bacteria preferentially towards a given edge (the in-going edge). At the bottom surface bacteria are observed to drift towards the left with respect to the flow direction, leading to a concentration increase at the left edge, from the point of view of an observer moving with the flow. At higher shear rates a decrease of the bacteria concentration with shear rate is again observed. At very large shear rates the erosion (detachment) of bacteria is so strong that the concentration tends towards zero for both edges. We attempt to adjust this decrease also by an exponential, and even if the quality of the fit for the edges is less good compared to the flat surface it leads to an estimate of the decay rate, which is found, by separately fitting the two data sets, to be approximately γ0 = (250 ± 100)s -1 for both edges.

So, the shear rate associated with the concentration decrease is larger for the edges than for the surfaces and bacteria are thus eroded more slowly from the edges compared to the surfaces. In section 4.2 we have shown that the local shear rate at the edges is 3 -4 times smaller compared to the local shear rate at the flat surfaces. This difference in local shear rate is enough to account for the difference in γ0 observed. We can however, within our experimental resolution, not exclude other effects that might make bacteria more resistant to erosion at the edges, as increased hydrodynamic attraction at the corner compared to the surface. Actually, the attractive interaction with the walls at the edges can be seen as stemming from the interaction between the bacterium and two specular images, each of them situated at the opposite side of each wall, plus a third specular image in a direction extrapolated from the segment going from the actual bacteria to the interception between the walls. Furthermore a smaller bacteria concentration at the flat surface for larger shear rates could also result in a smaller concentration at the edges, as less bacteria reach the edges reducing bacteria concentrations there.

Transport of bacteria by the flow

At the flat surfaces

We start by reporting the bacteria velocities at the flat surfaces. First, without flow, we noticed a significant decrease of bacteria velocities close to the surfaces (13 ± 2µm/s) when compared with the velocities in the bulk (28.7 ± 1.3µm/s). Second, we report the transversal and longitudinal velocities of bacteria at the flat surfaces under flow. Note that bacteria velocities result from a combination of bacteria swimming and transport by the flow. Bacteria move at the surfaces of the microchannel following transversal, straight trajectories as is illustrated in Fig. 45. By tracking individual bacteria, we were able to obtain their velocities and orientation. We project the velocities on the x and y axes to obtain the longitudinal and transversal bacteria velocities. The transversal velocity on the surface always points in the vorticity direction, indicating that bacteria move to the left with respect to the flow direction at the bottom surface. The longitudinal direction at the surface is referred to the fluid direction, being positive when bacteria move downstream and negative when they migrate upstream.

Fig. 48(a) shows the mean transversal bacteria velocity, oriented from the out-going to the in-going edge. If the flow is reversed, the transversal velocity also reverses, and the in-going and out-going edges exchange positions. The different symbols correspond to different flow directions. As the shear rate increases, we see a steep increase in the transversal velocity, until it saturates at a value that coincides with the average swimming velocity of the bacteria at surfaces without flow. This means that bacteria swim almost perpendicular to the flow, as reported by Kaya and Koser [36]. This saturation occurs for a mean shear rate of the order of 40 s -1 .

The bacteria moving at the surfaces feel a Stokes drag from the local flow and can thus be transported downstream. In Fig. 48(b), the mean longitudinal velocity far from the lateral walls is displayed as a function of the mean shear rate γ. The effect of the flow is an entrainment proportional to γ. Due to the fact that bacteria swim mostly in a direction perpendicular to the flow direction at higher mean shear rates the swimming speed does not influence the bacteria transport. The longitudinal bacteria velocity is found to be smaller than the local flow velocity (v longitudinal = 0.2V surface ), which can be explained by hydrodynamic interactions such as lubrication forces slowing down the mean transport velocity. At very small shear rates bacteria can swim upstream and average bacteria velocities in a direction opposite to the flow direction have been reported by Kaya and Koser [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF]. Here we explore much higher flow rates, and the mean entrainment direction is essentially along the flow. Only for the smallest applied flow rate (see inset 48(b)) negative bacteria velocities has been detected.

Upstream vs. downstream traffic at the edges

In this section, we quantify in detail the traffic of E. coli moving along the edges. Fig 49(a) displays the concentration of bacteria swimming upstream and downstream at a given edge as a function of the mean shear rate. Interestingly, the number of bacteria swimming upstream along the edges largely dominates the number of bacteria swimming downstream. The slight asymmetry in the curves for positive and negative mean shear rates is due to the fact that the edge switches from an in-going edge ( γ < 0) to an out-going ( γ > 0) edge when the flow is inverted. The concentration of bacteria swimming downstream is observed to be very small as soon as the mean shear rate is larger than | γ| 25 s -1 . Shear induced orientation near the edges seems to be the cause of this difference: as bacteria approach the edge transversally as illustrated in Figs. 42 and46, the local shear rotates the bacteria body that aligns preferentially in the direction facing the flow [START_REF] Altshuler | Flow-controlled densification and anomalous dispersion of E. coli through a constriction[END_REF][START_REF] Hill | Hydrodynamic Surface Interactions Enable Escherichia Coli to Seek Efficient Routes to Swim Upstream[END_REF]. This shear induced orientation of bacteria does not take place at very small flow rates, and the concentrations of upstream and downstream bacteria at the edges are similar.

In order to further quantify the bias in the direction of the bacteria traffic along the edges, we define a parameter called Bias in the Edge Traffic or BET number, as:

BET = λ up -λ down λ up + λ down , (18) 
where λ up and λ down are respectively the linear concentrations of bacteria moving in the positive and negative directions relative to the red arrow shown in Figs. 42 and 45(a). BET thus allows to visualize the bias in the bacteria navigation without taking the total bacteria concentration or the erosion of bacteria from the edges into account. Fig. 49(b) shows the dependence of BET on the mean shear rate γ for different experiments, i.e. different channels of similar geometry, different concentrations and measured at different edges. When γ = 0, there is an equal amount of bacteria moving up and downstream, so BET = 0. As the shear rate increases in the positive direction, more and more bacteria move upstream (i.e., in the negative direction), until BET = -1. A similar reasoning explains the shape of the curve of Fig. 49(b) for negative shear rates. We now consider bacteria transport velocities at the edges. The average velocities of bacteria moving upstream and downstream at the two bottom edges are displayed on Fig. 50. Bacteria velocities are found to be identical for the two populations for very small shear rates. Velocities of about 10µm/s (slightly smaller than the swim- ming speed at the flat surface) are observed. Surprisingly, with increasing shear rate upstream swimming bacteria become faster in average, whereas downstream swimming bacteria slow down. At even higher shear rates, the tendency is reversed and the downstream swimming bacteria see their velocity increased whereas the upstream swimming bacteria see their velocity decreased. These observations indicate transport dynamics very different from those reported at the flat surface, where the mean bacteria velocity is directly proportional to the shear rate (see. Fig. 48(b)). The transport velocities at the edges can thus not be simply explained by the hydrodynamic drag exerted by the local flow, but we associate these observations with the specific dynamics of bacteria moving along a unidimensional corridor along the edges. In general, bacteria can move up and downstream at the edge, leading to collisions between swimmers. We have observed that during frontal collisions, bacteria slow down for a certain time until they cross each other and continue swimming along the edge. We have also observed bacteria to detach from the edge during such a collision. Similar slowing down or detachment can also take place during rear collisions between two bacteria swimming in the same direction, but are much less frequent.

For very small shear rates the concentration of bacteria at the edges is large, and collisions are frequent. These collisions are at the origin of the decreased transport speed of bacteria at the edges compared to the flat surfaces. As soon as the shear rate is larger than 25s -1 the number of bacteria swimming upstream is much larger than the number of downstream swimmers (Fig. 49(a)), resulting in more frequent collisions for bacteria swimming in the flow direction, and the downstream swimming population is thus more strongly slowed down, provoking a decrease of their velocity compared to the upstream swimming population.

With increasing flow rate, the concentration of bacteria at the edges decreases and bacteria transport velocities increase again, due to a decrease in the number of collisions. At very high shear rates, only very little bacteria are left at the edges and we expect collisions not to play an important role any more. In this range of mean shear rates, the mean upstream bacteria velocities are observed to be close to the swimming speed measured at the flat surfaces without flow, indicating that bacteria swim upstream nearly undisturbed by the local flow. It is worth noticing that the speeds of individual upstream and downstream bacteria between collisions are always roughly similar and also very close to the bacteria swimming speed measured at the flat surfaces without flow. For the downstream swimming bacteria the small average velocities measured in this range of shear rates are due to their attachment dynamics. During a typical attachment process under flow, a bacterium, advected by the main stream arrives at an edge, flips and starts swimming upstream. During this flipping process, the swimmer changes its velocity direction from downstream to upstream, contributing to the statistics of downstream swimmers velocity for a short lapse of time, with a velocity that decreases to zero.

At even higher shear rates the viscous drag on the bacteria might become important, leading to a decrease of the mean velocity of upstream swimming bacteria and an increase for the downstream swimming bacteria. At a shear rate of γ=400s -1 the local flow velocity at the edge is 20µm/s. At the flat surfaces bacteria where transported downstream at velocities five times smaller compared to the local flow velocity. Assuming a similar relation at the edges this would correspond to a transport velocity of 4µm/s that needs to be added to the swimming speed of the bacteria. This is not in contradiction with the observed decrease in average transport velocity of upstream swimming bacteria at these high mean shear rates. Most likely a correct modeling of the lubrication forces would lead to an even smaller expected transport velocity at the edges. The striking fact that bacteria move at the edges nearly unperturbed by the flow can thus at last partially be explained by the decreased local flow velocities at the edges compared to the flat surfaces. Increased drag close to a corner and the significant strength of the hydrodynamic interactions between bacteria and the edges might even enhance this effect.

As overall bacteria speeds at the edges vary little as compared to concentrations variations, the total bacteria flux at the edges is directly proportional to the concentration profile represented on Fig. 49(a) and has not been represented separately.

Edge boundary layer

The previous measurements show that the edges have singular transport properties, as there is a significant flux of bacteria moving against the flow. Here we characterize whether this upstream motion is restricted to the edges, by measuring the bacteria flux along the flow direction at the surfaces and close to the edges and identify what we call the Edge Boundary Layer (EBL).

The bacteria surface flux at the bottom surface is represented on Fig. 51(a) as a function of the distance from the wall. It has been computed as the product of the surface concentration σ and the longitudinal bacteria velocity v longitudinal . If bacteria are transported upstream, the bacteria flux is negative, and it is positive if they are transported downstream. As can be seen in Fig. 51(a), at relatively large distances from the edge, bacteria are advected downstream with the flow and only at very small shear rates (see results for γ = 1s -1 ) they move upstream even far away from the edge. The bacteria flux far away from the edges, the saturation flux J 0 , is represented in Fig. 51(b).

When increasing the flow rate, the bacteria flux first increases and then decreases again, illustrating the interplay between bacteria transport and erosion. First the flux increases due to the linear increase in flow velocity (Fig. 48(b)), then, the effect of erosion starts to dominate and exponentially decreases the surface concentration (Fig. 47(a)), leading to an overall decrease of the surface flux. This can be quantified comparing the measured saturation flux J 0 with the product σ v longitudinal from the expressions obtained by fitting the experimental data in Fig. 47(a) and Fig. 48(b). The result is shown in Fig. 51(b) as the black line. We can also adjust the results for J 0 vs the mean shear rate directly with the same functional dependence J 0 = A γ expγ/ γc . The value obtained for γc is within the error bars in agreement with the critical shear rate for erosion at the flat surfaces γ0

s from Fig. 47(a). From the fit of the bacteria density and velocity we obtain for A = 1.8 × 10 -1 bact/µm slightly smaller than the prefactor obtained from the best fit to the saturation flux.

Close to the edge bacteria are observed to move upstream even at mean shear rates where the flux far from the edges is observed to be downstream. From the longitudinal flux profile, we determine the distance from the edge where the flux changes sign, defining the width of the EBL, which is shown in Fig. 51(c). The boundary layer builds up when the flow is turned on and reaches a maximal width of about 10µm at a mean shear rate of about γ = 20s -1 . When further increasing the mean shear rate the EBL decreases again and stabilizes at a value of 2µm corresponding to the width of a single bacterium and bacteria move upstream in a single line along the edge.

summarizing results

In this chapter, we have quantified the transport of bacteria at flat surfaces and edges in confined microfluidic channels under flow.

We have measured the decrease of the surface and edge concentrations as a function of applied mean shear rate. The slower decrease of the bacteria concentration at the edge can be explained by the smaller local shear rate at the edge and possibly increased hydrodynamic interactions at the intersection between two flat surfaces. Furthermore bacteria concentrations at different edges are not identical, because rheotaxis at the horizontal surfaces breaks the symmetry along the main axis of the channel, bringing bacteria preferentially towards a given edge: for a given shear flow in one direction, two diagonally opposed edges of the rectangular cross-section are outgoing edges, and the other two are ingoing edges.

We have observed that bacteria swim predominantly upstream at the edges as soon as a small flow is applied. This is attributed to shear induced reorientation of the bacteria attaching to the lateral edges. We have quantified the strong bias in the swimming direction of bacteria at the edges towards upstream swimming by means of an order parameter that accounts for the symmetry of up and downstream swimming bacteria concentrations at the edges: the proportion of bacteria moving upstream increases very quickly as the shear rate increases until all bacteria are observed to swim upstream. Bacteria swimming at the edges are nearly undisturbed by the applied flow even at mean shear rates where bacteria transport at the flat surfaces is already strongly influenced by the latter. This can be explained again by the decreased local shear rate at the edges and possibly increased hydrodynamic interactions. Interestingly, we have found that average bacteria velocities along the unidimensional corridor of the edges are mainly the result of collisions between up and downstream swimming bacteria. The number of collisions depends on the total concentration of bacteria at the edges as well as the percentage of up and downstream swimming bacteria and is thus found to be a non monotonic function of the shear rate.

Bacteria are able to swim upstream not only at the edges, but as well within an edge boundary layer (EBL). The width of the EBL decreases from approximately 10 bacteria body widths at small shear rates, to 1 body width at higher shear rates.

Our results thus quantify the bacteria fluxes at all surfaces of a confined microchannel as a function of the mean shear rate. In the future these results can be used to understand bacteria transport in more complex geometries, as rough cylindrical channels, channel networks or biological conducts. It can also be used to design specific flow geometries to guide bacteria fluxes to selected positions.

U P S T R E A M C O N TA M I N AT I O N I N N A R R O W C H A N N E L S

Bacteria live in a wide variety of natural and artificial environments in which fluid flow is present, including the capillary structures of animals and plants, porous soils, and medical apparatus. Upstream bacterial infections often occur in ducts where liquids are flowing in one direction continually or intermittently, such as the human urinary tract, and medical catheters. Then, understanding the upstream motility of bacteria in such confined scenarios is of central importance to prevent infections.

Up to now, we have studied the motion of bacteria in the bulk in quiescent liquids and close to surfaces and edges in shear flows. Then, an important question arises: how do bulk, surface and edge navigation of bacteria combine in highly confined flows at low shear rates?

In this chapter we address the problem of upstream contamination of bacterial suspensions in a thin microfluidic channel disemboguing into a reservoir filled with bacteria.

experimental set-up and methods

Bacteria suspension -We use a wild-type strain of E. coli (RP437), transfected with a yellow fluorescent plasmid, prepared by the following protocol: 10 µL of bacteria were grown overnight in 2.5 mL of the rich culture medium (M9G) until optical density 0D = 0.48. This culture was washed using 2.5 mL of water, and the pellet was resuspended into Motility Buffer (MB). After incubating for an hour in this medium to obtain maximal activity, it was mixed with polyvinylpyrrolidone (PVP-360 kDa: 0.005%) to avoid sticking to surfaces and seeded with plastic beads of diameter 1µm to be used as tracers for flow measurements. We also keep a stock of the suspending fluid, but free from bacteria, to be used in the contamination experiment.

The bulk concentration of the bacterial stock was (7.0 ± 0.5) × 10 7 bact./mL. At this small volume fractions (φ = 7 × 10 -6 based on a body volume of 1µm), hydrodynamic interactions between bacteria are negligible. This controlled environment promotes swimming, avoids bacterial replication and reduces the influence of chemotaxis and aerotaxis. The experiments where performed at (25 ± 2) • C.

Microfluidic channel -The experimental cell is a rectangular microchannel made in PDMS. The channels were 15mm long, with cross section of width w = 40µm and height h = 11µm, ending in cylindri- cal capacities of diameter ∼ 1mm, much larger than the microchannel's width (Fig. 52). These were fabricated using a conventional soft photolithography technique, and assembled onto glass plates covered by a thin layer of PDMS.

Experimental protocol and bacteria detection -In the contamination experiment, stainless steel tubes of 1 mm diameter were inserted at each end of the channel in the cylindrical capacities, connected to large liquid reservoirs through plastic flexible tubes. After perfectly filling the microfluidic system with the stock solution without bacteria, the metallic connector from the outlet was replaced by a similar one connected to a big reservoir containing the same liquid as the inlet, plus bacteria. As a result, we start the experiment with a bacterial suspension located at the left end of the channel (see the panel corresponding to t = 0 in Fig. 53), while the rest of its length was filled with a bacteria-free medium.

Flow is established by imposing a small height difference between the reservoirs, which allows to work with very small flow rates. The system was placed on an inverted microscope (Zeiss-Observer, Z1) with an xy mechanically controllable stage from ASI, a digital camera ANDOR iXon 897 EMCCD (512 × 512 pix 2 at a frequency of f = 30fps) for a magnification objective 40×. We visualize all the bacteria along the microchannel height. As time passes, bacteria mi-grate upstream along the channel. A single realization of the contamination experiment consists of periodically scanning the channel, to count bacteria along its length. To do it, we move the microscope stage along the channel axis at a scanning velocity of V s = 150µm/s while we take a video, taking a picture every 5µm. Later on, on image post-processing, we relate the number of bacteria in each frame to its distance x from the reservoir.

Between subsequent scans we take a video at a fixed position using direct light, enabling the tracers visualization. The velocity profile was determined for each applied pressure difference by the tracking of the plastic beads. For this specific geometry (cross-section 40µm × 11µm) the ratio between the average and maximal flow velocities is V

V max = 0.555. The maximal and mean shear rates are related as γmax = 2.14 γ. These values has been numerically determined from the solution of the Stokes equation in this geometry (equation ( 16)).

experimental observations

Figure 53 shows a combination of different images taken during scans at different moments. We visualize all the bacteria along the channel length, independently of their z position. Notice that this channel reconstruction does not constitute a snapshot, since different segments display the conditions at different instants. The displayed time intervals correspond to the beginning of the scan and the moment in which the farthest bacterium was visualized.

From Fig. 53, several features are to notice.

• Bacteria migrate upstream, towards the source of clean liquid.

• The contamination process does not appear as a well defined front, but rather as a progressive long range "contamination tongue".

• The concentration in the reservoir increases in time.

The contamination process takes place due to the upstream swimming of bacteria along both, edges and surfaces, for low flows and only along the edges for higher fluid velocities. When bacteria leave the wall interceptions or surfaces they are transported downstream by the stream. These advected bacteria eventually reattach on the surfaces and again start their upstream migration. Fig. 54 shows an experimental spatio-temporal diagram showing explicitly this upstreamdownstream dynamics. From this figure, we can see that most of the time, the bacteria move upstream. The downstream traveling distances d correspond to a distribution which is difficult to evaluate quantitatively, because for many bacteria, the detachment or reattachment locations are not within the window of visualization. However, for the several events of downstream migration corresponding to the flow of Fig. 54, we could evaluate d to be of some tenths of micrometers.

For each contamination experiment we define the maximal contamination length L c as the distance from the reservoir to the most advanced swimmer. It's temporal evolution is plotted in Fig. 55 for different experimental experimental conditions. The curves L c (t) are essentially linear and the slope gives us a contamination velocity v cont . For each experiment, we measure the average bacterial velocities in the reservoir v 0 . The values of maximal flow velocity, average bacterial velocities in the reservoir and contamination velocity are shown in Table and Fig. 55. The displayed uncertainties on the velocities of bacteria in the reservoir correspond to the standard deviation of the distribution.

Interestingly, the table associated to Fig. 55 shows for some of the flows (blue ring and red solid circle), values of the contamination velocities that are higher than the mean values of bacterial velocities in the reservoir. This may be the result of a selection process in which the fastest and more persistent bacteria are the most invasive. On the other hand, for the highest flow rate (black inverted triangle) and the one of lowest bacterial velocity (green star) the contamination velocity is lower than the average velocity v 0 . This is due to the repeated downstream transport of bacteria when detached from the surfaces. More in detail, the experiment corresponding to a green star does not correspond to a bath with very active bacteria. In general they have bigger wobbling amplitude, which we think can affect the interactions with surfaces and therefore are not equivalent to the other cases. To The table shows the maximum flow velocities ( V max ), the mean shear rates ( γ), the average bacteria velocities in the reservoir (v 0 ) and contamination velocities (v cont ).

our understanding, contamination velocity characterizes the motility of bacteria that enter the channel.

From the analysis of the scans, we record the temporal evolution of the macroscopic contamination profiles for every flow, as the one depicted in Fig. 56. To obtain such profiles, for each snapshot we measure the number of bacteria in the frame. Since the distance between two consecutive pictures (∆x s = V s /f, V s = 150µ/s, f = 30fps) is smaller than the longitudinal size of the picture, some bacteria will be recorded several times. The longitudinal length of a picture being L x = 160µm, to obtain a concentration profile, we normalize the total number of bacteria detected, by the average number of times that a bacterium was recorded: L x /∆x s .

Note that there is an issue concerning the experimental procedure of scanning. As the profiles do not come from snapshots, they are stretched, showing tails longer than what they really are. We have a simple approximation to decrease this artificial deformation of the concentration profiles, by artificially correcting the distance. Consider a bacterium in the position x > 0 at the starting moment of the scan and swimming upstream with a speed v cont . This bacterium will be registered at the moment t > 0 when it has traveled a distance ∆x = v cont t. In the reference frame of the channel, the objective, initially in x = 0, would have traveled a distance x m = x + ∆x = V s t when it captures our bacterium. Here V s is the scanning velocity (V s > v cont ). From the equality of times we obtain ∆x x m = v cont V s , which shows that the strain is linear with the distance to the reservoir. In our experiments the coefficient is in the range 0.02 < ∆x x m < 0.2. With this principle we could re-scale the x axis to reduce the profile deformation caused by the scanning method. The new x values will be

x = x m -∆x = x m 1 -v cont V s
, where x m is the measured coordinate from the scan. The result will not be perfect because the transport inside the channel is rather complex, but it is an approximation suited to diminish the influence of the imperfect measurement procedure.

To illustrate the changes undergone by the experimental profiles with this modification we show a raw and a modified concentration profile in Fig. 57 for the case of the maximum flow studied (V max = 80µm/s, v cont = 15.9µm/s) (numerical values in Fig. and Table 55). The tails of the profile have gotten slightly shorter but stay very important. Note that this is the maximal correction possible, since it has been obtained with the measured velocity of the most advanced bacterium. The real profiles will certainly be between the measured profiles and the corrected ones shown.

An interesting feature is the time evolution of concentration in the reservoir (Fig. 57). The low fluid velocities taking place in the big capacity -as compared with the flow in the channel-make bacteria migrate upstream. They accumulate in the entrance of the microchan- nel before starting their upstream contamination mediated by the channels' edges if the flow-confinement conditions allow them. Importantly for practical purposes, this process is a potential source of infection, since high bacterial concentrations can be locally reached. In addition, this accumulation effect sets the conditions to have a big number of swimmers localized near the entrance of the channel, ready to swim upstream whenever the flow in the channel gets low enough.

modeling the contamination problem

Now we will attempt to model the contamination problem as a onedimensional biased random-walk. A given bacterium performs an upstream displacement until it tumbles and detaches from the wall. Then, it will be transported downstream until it reattaches to one surface, where it starts its upstream swimming again. The fundamen-tal parameters of such a process will be the distance l of upstream swimming between two successive detachments and the length d of downstream transport after each detachment.

From our previous 3D tracking of run-and-tumble and smooth swimmers bacteria in Chapter 3, we have found tumbles to be a major cause of desorption from surfaces, since the non-tumbling mutant s stay much longer on the walls despite of a generally larger wobbling amplitude. It is reasonable that the existence of flow increase the desorption probability during a tumble, which would lead to a shearmediated erosion as observed in Chapter 4. From this hypothesis we can model the upstream swimming distance l as the bacterium velocity v 0 times a characteristic time τ related to the mean run time. Since there are hydrodynamic forces attracting bacteria to surfaces and the desorption rate can be lower than the tumbling rate, we introduce the parameter p e equal to the probability of a tumble to be effective, i.e., to produce desorption from surfaces. This leads to l = v 0 τ run p e , with τ run the average run time.

From Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] and our recent observations from 3D tracking we know that the run times are power law distributed, not exponentially as in the classical picture of Berg and Brown [START_REF] Howard | Chemotaxis in Escherichia coli analysed by three-dimensional tracking[END_REF]. A fundamental question arises now: Does the run time distribution affect the macroscopic transport of bacteria? We will be studying in parallel both, the Poissonian distribution ψ P of run times as used by Berg and Brown, and the power law distribution ψ PL to tackle this question. The corresponding probability distribution functions for run times will be in the Poissonian case ψ P (t) = e -t/τ P τ P , for an average run time τ run = τ P .

For the power law

ψ PL (t) = γ τ 0 (1 + t/τ 0 ) γ+1 , with τ run = τ 0 γ -1 . (20) 
Finally, we define a dimensionless parameter α = d l comprising the whole dynamics of the phenomenon. When α << 1 the ballistic upstream bacterial motion dominates the system and supercontamination takes place. On the other hand, when α ∼ 1, the contamination will be slow since bacteria will be transported downstream almost as much as they can swim upstream between successive detachments. For α > 1 no contamination will take place. The general expression will be:

α = p e d v 0 τ run . (21) 
In general, for an initially empty channel with an input flux q(t), where q(t)dt is the number of bacteria entering the channel in the time interval [t, t + dt], the concentration profile is

C(x, t) = t 0 q(t )K(x, t -t )dt , (22) 
where K(x, t)dx is the probability per unit time for a bacterium of being at the position [x, x + dx] in time t, provided that it entered the channel at x = 0 and time t = 0. It will be the Green's function of the problem.

The numerical solution for the propagator K(x, t) will be the result of simulating a fixed number of bacteria, all starting at the same moment and position t = 0 and x = 0. There will be later on a normalization to have the integral of the concentration profile equal 1 at t = 0. Since some of the simulated bacteria have left the channel by been advected downstream shortly after the experiment started, the probability to find a bacterium inside the channel at the time t ( ∞ 0 K(x , t)dx ) will be a decreasing function of time. The trajectory of each bacterium is simulated as follows. The particle starts at x = 0 (reservoir) and displaces towards the positive x at its mean velocity v 0 during a random time τ that corresponds to one of the distributions of equations ( 19) and ( 20) and a probability of effective tumble. When it undergoes an effective tumble it starts being advected downstream over a distance d. Once this distance is covered in the simulation, the particle retakes its upstream motion until the next effective tumble takes place. While being advected, the swimmer is "consuming" its run time. Note that a tumble can take place while the bacterium is being transported downstream. We repeat this operation for many particles and accumulate their positions for each measurement time. The resulting histograms of position for a given time will be proportional to the bacterial concentration.

From Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] we choose γ = 1.2 and τ 0 = 1s, giving an average run time of 5s. We will use these values for all the following simulations using the power law. For numerically studying the propagator evolution corresponding to the two models of run statistics, we adimensionalize the problem, normalizing the time by the mean upstream characteristic time τ = τ run /p e , and the distance by the typical upstream distance l = v 0 τ.

We have numerically computed the propagator K(x, t) in dimensionless variables (x and t) and show it for different times in Fig. 58. The panel (a) corresponds to the exponential probability distribution function for run times and (b) corresponds to the power law. Keeping in both cases the same average upstream time, velocity and downstream traveling distance, the value α is the same in both models. The propagator has been normalized in both cases so that the integral of probabilities at time t = 1 equals 1. The differences are very clear. The exponential case reminds us of the Green function for classical diffusion, with a bump that advances and gets lower and wider in time. In the power law distributed process the concentration spreads out faster. The most advanced bacteria have in average traveled farther than in the exponential case. Some other bacteria have tumbled much more than the average and can be found close to the reservoir. We can easily perceive the dispersive consequences of the infinite variance of the run time power law distribution.

Now we proceed to simulate the whole process of contamination, with an input flux q(t) at the tip of the channel.

The concentration profile after a certain time t of starting the contamination process will be composed of bacteria that have entered the channel at any time between 0 and t. Those entered at early times, if they have not left the channel, will probably be part of the first contaminating front. Those that have entered at times close to t will have had little time to travel towards the source of clean solution.

During the simulation, we discretize the time at which bacteria enter the channel. The division will be [0, ∆t, 2∆t, . . . , t]. In every one of these intervals a given number of bacteria proportional to q(t)∆t will be "released" at x = 0. We say proportional since to avoid fluctuations due to small values of the flux, we can simulate a bigger number of particles and normalize later on.

The concentration profiles for constant flux boundary conditions (q(t) = q 0 ) are shown in Fig. 59 calculated for both run times distributions (exponential and power law). The parameters are the same as in Fig. 58 and the resulting curves have been normalized to integrate 5 at t = 1, simulating a flux of 5 bacteria per unit time.

In the exponential case the concentrations have a common plateau next to the reservoir and at the farther end a tail whose length increases with time. The power law distribution leads to lower curves in general, composed essentially of heavy tails without plateau. Both cases are significantly different.

In the ideal experimental conditions we would have constant boundary conditions and a very long channel, to be able to see directly from the profile if the behavior is one of those of Fig. 59.

The real experiments are however more complicated, with temporal evolving boundary conditions that modify the profiles from what we have depicted in Fig. 59. To deal with the non stationary boundary conditions, we first estimate from the experiments the flux of bacteria entering the channel. It will be q(t) = dN(t) dt , where N(t) is the number of swimmers inside the channel at time t. Fig. 60 shows the temporal evolution of N that we fit with a parabola in this case. We have put attention in not including in this analysis the very long times in which some bacteria have had the time to escape by the opposite tip of the channel by swimming too far. Depending on the measured flux magnitude and the chosen time discretization, the number of bacteria entering the channel in an interval ∆t may be too small, even lower than one. To avoid the fluctuations due to a very reduced number of simulated bacteria, we always simulate a bigger number of swimmers, but keeping it proportional to the measured flux. At the end of the simulations we find the normalization value f i for each curve that makes the total number of bacteria N sim (t i ) from the simulated profile, equal to the measured number of bacteria N(t i ) from the experimental profile, at the corresponding time t i . That is f i = N sim (t i ) N(t i ) . All the curves will then be normalized by a single value f that is the average of the independent factors found from the different profiles (f = f i ).

In the case of noisy experimental curves at the beginning of the channel, we dismiss the part of the channel close to the reservoir. The We fit the experimental points with a parabola, giving rise to a flux q(t) linear in time.

analysis of the profile can typically start from x = 500µm, which in any case takes into account almost the total length of the channel, of around 15000µm. Now we proceed to a quantitative comparison between the experimental contamination profiles and the simulated ones for both models of run statistics and using different values of the dimensionless parameter α. We will focus on the same set of profiles of the maximum flow studied (V max = 80µm/s) and will use for the simulations bacterial velocities between 16 and 26µm/s.

For the quantitative comparison we will search to minimize the squared distance per unit length between the experimental profile and the simulated one for a given value of α. This quality factor will be defined as

F(α) = N curves i 1 N bins ∆x N bins j N Real (x j , t i ) -N α Sim (x j , t i ) 2 (23) 
where i counts the number of profiles corresponding to different scanning times and j counts the bins along the channel. N Real and N Sim are the numbers of particles, in experiment and simulation respectively, corresponding to the bin of width ∆x located at x j . When exploring the parameter α using the Poissonian law for the run distribution, we do not find an evident minimum of the function F(α). However, for the power law distribution function a clear minimum exists and its value is lower than the lower ones found in the exponential case. The two curves are shown in Fig. 61.

In addition, when looking directly at the profiles, it becomes obvious that the power law model reproduces the features of the experimental curves better (Fig. 62). In the simulation for an exponential run time distribution (a), the general features of the experimental curves are not reproduced. There is no the long tail observed in the experiments and the simulated profiles evolve preceded by an abrupt The thin lines are the experimental concentrations and the thick ones of same color their respectively simulated curves. Among the figures, the best qualitative agreement between experiments and simulations is found for the power law distribution and dimensionless parameter α = 0.34, which coincides with the quantitative best point in the curve F(α) (Fig. 61). The letters a,b,c,d of the different panels correspond to the labels on specific points in Fig. 61.

contamination front. Other attempts changing the bacterial velocity or the parameter α did not resulted in better qualitative agreement.

In the power law case, for α = 0.3 (panel (b)) the simulated contamination takes place too fast when compared to the experiments. The value α = 0.34 (c) fits the experiments better and for the last profiles shown, using α = 0.5 (d), the contamination is not sufficiently fast. These elements indicate that the microscopic run-and-tumble statistics affects the macroscopic transport properties of the solution. Moreover, it points to the power law run time to be the correct description for the phenomenon of contamination.

The large power law distribution implies the existence of a wide variety of behaviors in the population. Among the individuals we can find the supercontaminant bacteria, i.e., the ones very persistent that can swim for long distances with no interruption. These will be "selected" by the microfluidic geometry. The swimmers with small characteristic α will compose the first contamination front, while the less motile or less persistent will stay in the reservoir.

Knowing the typical α value for the contamination problem in this geometry and flow, we could try to model the downstream transport distance d. Effective tumbles taking place every 5s in average and the upstream swimming velocities of around 20µm give l ∼ 100µm. The experimental α being between 0.3 and 0.4 points to downstream distances of around 30 or 40µm, which is in agreement with our observations and can be directly appreciated in the spatio-temporal diagram in Fig. 54. Now we consider d = V R v 0 , where V is the mean fluid velocity and R v 0 is the time in which a bacterium traverses the channel crosssection. The mean fluid velocity in this case is 44µm/s. Assuming R = h = 10µm (the channel height) we obtain d ∼ 20µm, for R = w = 40µm (the channel width) d ∼ 90µm. The experimental observations lie between these limits (Fig. 54), therefore, it can be a hypothesis to quantitatively test in the future. Probably, choosing R equal the height or the width of the channel will depend on the flow. Since for small flows bacteria will be able to migrate upstream on the walls, the important magnitude will be h. For higher flows the swimmers will contaminate only mediated by edges, then R will be the typical distance to travel across the channel before arriving to another edge. In this case the presence of irregularities in biological ducts will be of crucial importance for the microorganism spread.

For the further study of this problem, including other flow velocities and confinements we could, instead of simulating each bacterium, just simulate the propagator for a thin enough grid of times, and later on perform the integral [START_REF] Druart | Sperm interaction with the female reproductive tract[END_REF] numerically. In addition, the stochastic problems using both the exponential and power law distributions of runs can probably be solved analytically.

In the future, other channel geometries should be tested to understand in more detail the microscopic swimming dynamics. In this way, the potentially dangerous upstream contamination of bacteria can be controlled.

In summary, we have shown experimentally that bacteria can contaminate narrow channels upstream over long distances. We have proposed a numerical model based on a 1D biased random walk that considers the run-and-tumble statistics of bacteria. We have shown that experimental results are well reproduced using the experimentally measured power law distribution for the run times.

To our knowledge this is the first time that a macroscopic transport process is directly associated with the motor rotation statistics.

C O N C L U S I O N S A N D P E R S P E C T I V E S

The first part of the thesis is dedicated to the Lagrangian tracking of individual bacteria swimming in various environmental conditions. To this purpose, we designed an automated tracking device suited to record the 3D trajectories of fluorescent microscopic objects. Wild type E.coli were monitored when swimming in different homogeneous environments, either chemically of in terms of bacterial concentration.

The first striking result is the consistently large dispersion of rotational diffusion coefficients found in almost all situations as long as the suspension is sufficiently dilute and the suspending fluid moderately viscous. This result contradicts one of the most accepted models for the run and tumble strategy, initially put forward by Berg and Brown in their seminal paper of 1972 and used as a base to interpret chemotactic response of bacteria in chemically changing environments.

The large diversity of run and tumble trajectories observed consistently in such monoclonal populations of wild type bacteria leads to many important questions concerning its origin. In particular, a line of thought very much spread among biologists, would favour explanations where a phenotype multiplicity would naturally be expressed in a given population, often related to a selective advantage. Bacteria with large run times could provide an insurance for the population to react positively to sudden environmental changes or to collectively harvest more efficiently the resources, therefore providing a global advantage for the survival capacity. Here, we do not necessarily dismiss this type of thinking but we argue that our experiments can be understood in a much simpler framework essentially based on behavioural variability undergone by bacteria in the course their existence. This interpretation is based on experimental facts drawn from the measurements on tethered bacteria by [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] Korobkova et al. and a physical explanation on the role of noise in the activation of the rotary motor CW/CCW switching by [START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF] .

The central idea is the existence of a memory for the switching times between CW and CCW motor rotation status, assessed by concentration of phosphorilated CheY protein available at a given time at proximity of the rotary motor. In practice, the 3D tracks are obtained in a finite region of space and thus, for a time span where the switching probability status is almost fixed. Therefore, for a given bacterium being tracked, one can only observe a typical switching time manifested macroscopically by a characteristic orientation-time persistence. The large distributions of switching times found by Korobkova et al. for a tethered bacterium is then reflected in the large distribution of orientation persistence times measured using the 3D tracking method when sampling on a given population. The powerlaw distribution of persistence times with an exponent close to -1 is then a central finding of this study connecting consistently the motor rotation properties to the motility features. When we increase the statistics by considering also the AB1157 bacteria as well as the two lower concentration studied for RP437 in the active environment, we find essentially the same slope -1. This also agrees with the slope emerging from stochastic simulations following Tu and Grinstein's model, that we have not included in this manuscript.

However, if we cannot here completely dismiss the existence of some phenotype variability for the population, we can propose a crucial experiment suited to measure the relative weight of the two explanations (i.e. phenotypical variability versus behavioural variability). The principle is to perform tracking experiments in shallower chambers such that a given bacterium can be kept in focus for a very long time (several minutes). The tracks will be composed of pieces in the bulk separated by pieces at the surfaces. Of course, the pieces of trajectories corresponding to the motion in the bulk will be slightly shorter than in the present report. This way, one could expect to compare the orientation correlation functions for the same bacterium at different moments of its switching time status and then, make a direct connection with the results of Korobkova et al.

In any case, the classical results for bacterial run-and-tumble strategy, which is the base for a standard motility description in bacteriology, may have to be reconsidered probably in depth. This is particularly relevant for its implications on chemotactic response, which is an important issue but out of the scope of the present work, essentially dealing with adapted bacteria. Also the existence of a large run time distribution could be an important element to consider in the assessment of macroscopic constitutive relations displayed by bacterial fluids [START_REF] López | Turning bacteria suspensions into superfluids[END_REF]. Note that López et al., who measured the viscous response of an active E.coli suspension, concluded that in the dilute limit the observed macroscopic response times were essentially longer than the classical expectancy based on a standard run and tumble process.

To extend this work on 3D tracking and motility of individual bacteria, we studied the trajectories of bacteria swimming in three types of polymeric fluids. First, a viscous polymeric fluid PVP of low molecular weight 40kDa, which remain Newtonian for the concentrations used. Then, a shear thinning suspension with PVP-360kDa and later on, a shear thinning visco-elastic complex fluid (PAAM). This issue can be relevant to a more general biological or medical context where bacterial motility takes place in suspending fluids which are often non-Newtonian or with a viscosity much higher than water. For ex-ample, one can think of the issue of penetration and contamination of mucus barriers by pathogen agents. This work was done in collaboration with Dr Vincent Martinez from the Institute of Condensed Matter and Complex System, at the University of Edinburgh, during his visit at the ESPCI in April 2016.

The study has revealed that microhydrodynamic swimming characteristics can be affected by the viscosity of the surrounding fluid. The velocity amplitude and the wobbling amplitude (body oscillations) were both found to decrease with the polymer concentrations in the PVP-40kDa, PVP-360kDa and in the PAAM cases. However, the persistent nature of the trajectories was significantly modified only in the case of high PAAM concentration. In opposition to previous explanations put forward by Patteson et al. [START_REF] Ae Patteson | Running and tumbling with E. coli in polymeric solutions[END_REF] we found that the increased directionality of the trajectories is not due to a mere tumble suppression. Significant velocity drops and long stops could still be observed within the tracks. The relation of these events with actual changes of direction is still an open question. It could be difficult but nevertheless interesting to handle this issue on a micro-hydrodynamical modeling basis in order to visualize directly the tumbling process close to a surface and under shear .

From the experimental point of view, a direct visualization of smooth swimmers and also the use of run-and-tumble wild types with stained flagella, would certainly help to decipher a mechanism. For the moment being, the apparent increase in directionality could qualitatively be explained by simply considering the viscous shear thinning properties of the suspending solution in the presence or absence of flagella and body rotations. Basically, as the apparent viscosity increases during the tumbling phase, tumbling becomes long and thus inefficient to modify the direction within the available CW rotation time. However, we cannot at this point totally dismiss other effects such as the role of fluid elasticity on the bacterial motion or the excess of mechanical load on the rotary motor.

Finally, the tracking of individual bacteria in more concentrated active suspensions was performed, but still the measurements remained in the limit of low densities. We found for the lower concentrations, results pretty much similar to the very dilute case as described previously. Interestingly, for the higher concentration studied, we identified instead of lower persistence times, a counter-intuitive increase in directionality. At short times a superdiffusive process ( r 2 ∝ ∆t α with 1.6 < α < 2) was measured with an exponent α directly related to the individual bacterium activity (the swimming velocity). The influence of the environmental hydrodynamics caused by other swimmers on individual trajectories could be a characteristic as important as their self propulsion velocities. It would be very interesting to pursue systematically these measurements at higher bacteria concentrations to reach the point where collective motion emerges.

In the second part of this thesis we focused more on macroscopic transport properties in micro-channels. In a first study, we were interested in the transport of a bacteria suspension in a wide rectangular channel (w = 200µm) but with a rather narrow height (h = 20µm) so that the surface effects remain relatively important. We studied the bacterial transport in such a confined flows as a first approach to the understanding the erosion/deposition dynamics of motile bacteria at surfaces in response to shear flow. Also, we focused on the differences between the 2D bottom and top surfaces as compared to the quasi 1D topology the edges, as a primer to understand the more general problem of bacterial populations swimming inside more irregular structures. We found that the bacteria concentration at the surfaces decreases exponentially with the shear rate, in a process of erosion/deposition. The slower decay of concentrations at the 1D edges can be explained by the smaller local shear rate experienced by bacteria when compared to the surfaces and also possibly, to different hydrodynamical interactions with the solid boundaries. We establish a link between bacteria motion at the horizontal surfaces and the anisotropic bacteria concentrations observed at opposite edges induced by a transverse rheotactic effect. An important result is that bacteria navigation along the edges takes place at speeds almost not affected by the fluid velocity and mainly given by the rate of collisions between bacteria moving along a single line. This is contrasting with the situation at the bottom and top surfaces where, as soon as a critical shear rate is overcome, bacteria are transported downstream at a speed proportional to the mean shear rate.

Along the edges, we observed a transition from a symmetric mix of downstream/upstream directions of navigation which occurs at very low mean shear rates, to a pure upstream navigation taking place at larger mean shear rates. We identified an "edge boundary layer" close to the edges, where bacteria also navigate upstream whereas those at the rest of the surface move in average, along the flow.

It would be important to pursue this work, essentially empirical, to provide a more clear vision of the micro-hydrodynamical mechanisms inducing the surface erosion properties and the capture by surfaces. In this perspective, the existence of a large distribution of run times as found earlier, could play a significant role on the typical dwelling times at surfaces for a swimming bacterium.

We moved towards this issue in a second work, where we addressed the question of upstream contamination in a narrow channel disemboguing in a bacterial bath. Such upstream bacteria migration at low flow velocities may have important practical consequences in the case of biological networks where spots of high infection probability or places where biofilm preferentially grow, can play a central role in the spreading and resistance of a microbial infection.

We show in a simple microfluidic experiment that bacteria can contaminate initially clean environments by propagating upstream. The fastest individuals pioneering the invasion were found to migrate upstream at a constant mean velocity for several millimetres. The contamination process takes place with long range contamination tongues that we characterized in space and time. We developed a simple unidimensional model of a biased random-walk to explain the contamination profile evolution. We associated desorption probability to the occurrence of a tumbling process. Considering two situations : (i) a classical Poissonian distribution of run times following Berg's results and (ii) a power law distribution reflecting the results of Korobkova et al. on the CCW/CW time distribution, we solved the stochastic model numerically. The model is simple with only one adjusting parameter rendering the ratio of backwards to forwards motion. The choice for the desorption probability leads to qualitatively very distinct macroscopic features in terms on contamination dynamics.

We found that the power-law model reproduces quantitatively the experimental results. The best adjusting parameter is consistent with a qualitative interpretation of the parameter based on microscopic measurements. To clarify these results, we seek to solve analytically the model of contamination with the two proposed run time hypothesis, exponential and power law . Also, we will perform a systematic study of this problem changing the imposed flow and the micro channel geometry to quantify the regime of upstream contamination. To our knowledge it is the first time that a macroscopic transport process as the contamination problem here described, is directly associated with the motor rotation statistics.

This contamination process constitutes an example of a larger issue concerning the influence of the microscopic run-and-tumble statistics on the macroscopic hydrodynamic dispersion of bacteria swimming under flow in complex environments. Along those lines an important work remains to be done which would be to assess directly the run and tumble statistics and the swimming dynamics of a bacterium in a flow. This is probably the next task for the 3D Lagrangian tracking device that we have built for this thesis.
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 1 Figure 1: (a) Sketch of a swimming E. coli bacterium. (b) Visualization of both body and flagella bundle of swimming E. coli (From Schwarz-Linek et al. [69])

Figure 2 :

 2 Figure 2: (a) Cumulative tumble (line a) and run (line b) times distributions. From Berg and Brown [7]. (b) Distribution of reorientation angles during tumbles. Figure of Saragosti, Silberzan, and Buguin [65] fitting the experimental measurements of Berg and Brown [7].

Figure 3 :

 3 Figure 3: Single motor statistics. (a) Schematic view of the experiment and binary time series indicating the direction of rotation. (b) Distribution of CW (tumbles, grey) and CCW (runs, black) intervals from a cell. Inset, cumulative distribution of the same CCW intervals (black line), corresponding to a power law with an exponent approximately -1.2 (gray straight line). From Korobkova et al. [38]. (c) Duration correlation and autocorrelation of CCW and CW events. Figure from Tu and Grinstein [76] using the experimental data of Korobkova et al. [38].
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 5 Figure 5: (a) Sketch of a left-handed helix in simple shear flow. (b) Top view.The inset shows the net force acting on one pitch of the helix is alongŷ (adapted from Marcos et al.[START_REF] Marcos | Separation of microscale chiral objects by shear flow[END_REF]). (c) Sketch indicating forces and torques acting on a bacterium in a shear flow (adapted from Marcos et al.[START_REF] Marcos | Bacterial rheotaxis[END_REF]).
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 6 Figure 6: Experimental set-up. The tracking systems consists of two superposed stages mounted on an inverted microscope. The horizontal xy position is controlled mechanically and the z-position via a piezoelectric positioner. The targeted fluorescent particle position is visualized in a given so-called "trapping area" by a CCD camera. The image is transferred to a Labview program processing the information. The program assesses the current xy and z positions and commands the mechanical and the piezo stages to move to a new position such as to keep the particle in focus and close to the trap center. The outputs are the xyz position and a video of the particle surrounding.
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 7 Figure 7: 3D track of latex beads (top) and a bacterium (bottom) under flow in the same experiment. The color code stands for local velocities in micrometers per second. The michochannel spans from z = 0µm to 110µm in height, and the width from x = -300µm to x = 300µm. The length is approximately 150mm. The bacterium here is a wildtype strain of E. coli (RP 437), transfected with a Yellow fluorescent plasmid.
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 8 Figure 8: Normalized intensity profile as a function of the distance d to the center of the particle. I max is the absolute intensity maximum when the particle is in focus.

Figure 9 :

 9 Figure 9: Half width of the particle as a function of the distance between object and focal plane. The particle is in focus at ∆z = 0.

Figure 10 :

 10 Figure 10: Sketch illustrating the regions of detection for an E.coli fluorescent bacterium : the bacterium position and possible stage position.

Figure 11 :

 11 Figure 11: Flow diagram of the z detection indicating in details the procedure for the coordinate determination starting from the object image. R = 0 means that no ring was detected.

FramesFigure 12 :

 12 Figure 12: y coordinates of the stage (top) and particle position (bottom).Black circles are the raw measurements and the red line the same magnitudes after backlash correction.

Figure 13 :

 13 Figure 13: Tracking of Brownian particles. (a) 2D trajectory of Brownian motion of a latex bead obtained with no moving stage. Depicted length 20s starting from (0,0) coordinates. The beginning and end of the trajectory segment are marked with red spots. (b) Mean squared displacement for a trajectory of the same bead obtained with no moving stage (solid thick line), and for a moving stage with no backlash correction (thin solid line) and same track after backlash correction (thick dashed line).

Figure 14 :

 14 Figure 14: Tracking of a Brownian particle during sedimentation. (a) 3D trajectory corresponding to 31s. (b) MSD by components. The X and Y components have had backlash correction. We have subtracted the drift velocity and found agreement between the three spatial coordinates.

Figure 15 :

 15 Figure 15: Power spectrum of x, y (top) and z coordinates (bottom).
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 16 Figure 16: 3D trajectory of an E. coli RP437 bacterium. It starts describing circles on the bottom surface and later it abandons the bottom for the bulk. The color code represents the velocity in microns per second. Bulk part for 10µm < z < 150µm.
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 17 Figure 17: Variability within the bath of RP437 wild type swimmers. (a) Very tumbling bacterium tracked for 77s. (b) Persistent bacterium tracked during 9.5s.

Figure 18 :

 18 Figure 18: Velocity modulus for two bacteria RP437 (wild type) and two CR20 (smooth swimmers). Velocity fluctuations exist in both cases, but are more biased towards the lower velocity values in the run-and-tumble population.

Figure 19 :

 19 Figure 19: Velocity distributions of run-and-tumble (RP437) and smooth swimmers (CR20) bacteria in MB-LS. The velocities have been normalized by the mode v m (the most frequent velocity found), whose value is indicated for each swimmer in every chart.

Figure 20 :

 20 Figure 20: Velocity fluctuations (a) and skewness (b) as a function of the mode velocity modulus. The bacteria are wild type (RP437) in MB-LS and in M9G solution. The smooth swimmers (CR20) are in MB-LS. Here no dependence with the velocity has been observed in the velocity fluctuations, however, the skewness shows a slight decrease when the speed increases. The velocity fluctuations decrease for the persistent bacteria with high relaxation times. (c) Distribution of run velocities v m for RP437. Only the pieces of track in the bulk are included in the analysis.

Figure 21 :

 21 Figure 21: (a) Sketch indicating the wobbling angle dynamics characterized by the wobbling angle ϕ. (b-c) Wobbling angle for an RP437 and a CR20 cell. The wobbling frequency changes for different individuals, being smaller for the geometrically more elongated bacteria.(d-e) Power spectra of wobbling angle and velocity for the previous bacteria. A mark of the tracking device is evident at the sampling frequency in z (26.6Hz). In both cases the wobbling frequencies are well defined and agree with panels (b-c). In the case of the CR20 bacterium the wobbling frequency is present in the power spectrum of the velocity. In both cases bacteria swim on the surface.

Figure 22 :

 22 Figure 22: Sketch of local velocity direction for a generic trajectory.

Figure 23 :

 23 Figure 23: Mean squared displacement of individual trajectories of (a) diluted run-and-tumbling bacteria and (b) smooth swimmers in minimal medium. The maximum time lag in each case is one fifth of the total length of the measured trajectory.

Figure 24 :

 24 Figure 24: Correlation of swimming direction for bacteria swimming in the bulk in minimal medium MB-LS. (a-b) RP437 (run-and-tumble strain), normal and semi-logarithmic scale. In dashed thicker line we have represented the exponential curve e -∆t/τ β , with τ β = 1.5s. (c-d) Orientation correlation for CR20 (smooth swimmers), normal and semi-logarithmic scale. The dashed line represents the exponential curve e -∆t/τ B , with τ B = 40s. Some tracks are shorter because bacteria were swimming faster and were soon abandoning the measurement region by swimming too high or returning to the bottom surface.

Fig. 25 Figure 25 :

 2525 Figure 25: (a) Relaxation time and (b) rotational diffusion for two strains of run-and-tumble bacteria (RP437 and AB1157) and the smooth swimmers strain CR20.z

Figure 26 :

 26 Figure 26: Sketch of a prolate ellipsoid rotating perpendicular to its main axis. Figure adapted from [39].

Figure 27 :

 27 Figure 27: Velocity fluctuations and skewness as a function of the relaxation time. The velocity fluctuations decrease for the persistent bacteria with high relaxation times. Only the pieces of track in the bulk are included in the analysis.

Figure 28 :

 28 Figure 28: (a) Histogram of relaxation times for RP437 showing a long tail. (b) Histogram of relaxation times for bacteria in several baths, showing a power law tail of exponent less than -1 for a total of 66 bacteria. Rotational diffusion imposes a cut-off on the relaxation times. Only the pieces of track in the bulk are included in the analysis.

Figure 29 :

 29 Figure 29: (a) Orientation correlation normalized by the individual correlation times τ, after dismissing the first 0.2s where fast decorrelation due to wobbling can take place. The collapse indicates that the dynamics remains Poissonian during the measurement time. (b) Correlation time τ and estimated run time τ run depending on the measurement time T for each bacterium. The line T/20 represents the lower boundary for measurements shorter than the internal memory time, according to the results of Tu and Grinstein[START_REF] Tu | How white noise generates powerlaw switching in bacterial flagellar motors[END_REF] on experimental data by Korobkova et al.[START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] (see Fig.3).
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 303132 Figure 30: (a) Sketch and picture of a tethered bacterium indicating the phase angle ϕ. (b) Phase as a function of time for a tethered bacterium that spends at least 55 seconds without tumbles. The CCW and CW phases are delimited with red and blue lines. CCW → ϕ > 0 → run, CW → ϕ < 0 → tumbles (c) Survival probability from a 5-minute long series showing a power law CCW time distribution.

Figure 33 :

 33 Figure 33: Velocity distributions of run-and-tumble bacteria RP437 in the polymeric solutions MB-LS with PVP 360 kDa and with PAAM.The velocities have been normalized by the mode (the most frequent velocity found), whose value is indicated for each swimmer in every chart. For each column the viscosity of the solution is indicated. In the case of PAAM the viscosity correspond to a quiescent state and has been determined from the rotational diffusion of dead bacteria. Note that bacteria manage to swim in this medium due to shear thinning effects.
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 3435 Figure 34: Velocity decrease in the reservoir during the time-span of an experiment. The rate of decrease is ∼ 1 µm/s h .
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 3637 Figure 36: Wobbling amplitude for PR437 in MB-LS mixed with (a) PVP 360 kDa and (b) PAAM at the different concentrations. The error bars represent the standard deviation within the population. Only bacteria swimming on the surface have been taken into account.

Figure 38 :

 38 Figure 38: (a) Three-dimensional trajectories and (b) velocity magnitudesfor two bacteria in high polymer concentration (MB-LS + PAAM 3.8mg/mL). Frequent and long tumbles can take place with little effect on the reorientation.

Figure 39 :

 39 Figure 39: Relaxation times of individual fluorescent bacteria as a function of the volume fraction of non-fluorescent swimmers. Each dot corresponds to an individual swimmer.

Figure 40 :

 40 Figure 40: Mean squared displacement of bright bacteria in a concentrated bath of non-fluorescent ones for the two higher studied concentrations at (a) φ = 0.29% and (b) φ = 0.55%. (c) Mean swimming velocity v and ballistic velocity v 0 for the bacteria in the bath at φ = 0.29%, showing that they are almost equivalent. (d) MSD exponent α as a function of ballistic velocity v 0 (φ = 0.29%).

Figure 41 :

 41 Figure 41: Resume of all different physical and chemical conditions explored. The last point correspond to M9G as suspending fluid, in all the other conditions the main solvent was MB-LS and

Figure 42 :

 42 Figure 42: Sketch of the experimental configuration. A rectangular microfluidic channel of height h = 20µm and width w = 200µm is observed using an inverted microscope. A bacteria suspension is flown at a volumetric rate Q in the direction indicated by the blue arrows. The red arrow in the x direction is our positive reference. Panels (a) and (b) indicate schematically typical bacteria motion at the top and bottom surfaces, respectively, as well as at their interceptions with the lateral edges. Edges with a green (red) color picture correspond to mostly "in-going" ("out-going") mean transverse flux.

  43 and Figs. 44 respectively. The zooms show the regions close to the edges that

Figure 43 :

 43 Figure 43: Flow velocities for a rectangular channel (w/h = 10) from the solution of Stoke's equations (eqn. 16). (a) Normalized velocity field V(y, z)/V max . (b) Zoom of normalized velocity profiles close to the lateral edges at different z positions versus distance normalized by the channel half-width w/2.

Figure 44 :

 44 Figure 44: Shear rates for a rectangular channel (w/h = 10) from the solution of Stoke's equations (eqn. 16). (a) Normalized shear rate amplitude γlocal (y, z)/ γ. (b) Zoom of the normalized shear rate profiles close to the lateral edges at different z positions versus distance normalized by the channel half-width w/2.

Figure 45 :

 45 Figure 45: Surface rheotaxis. Superposition of snapshots for the top and bottom channel surfaces. Individual bacteria trajectories in the channel are visible from image superposition and white arrows indicate the average direction of bacteria motion. The green and red lines indicate respectively "in-going" and "out-going" edges, analogous to the ones sketched in Fig. 42. For these snapshots the bulk bacteria concentration of the reservoir was (4 ± 0.5) × 10 9 bact./mL. The videos were taken at 40× magnification and 30 fps with a digital camera PixeLINK PL-A741-E (512 × 512 pixels or 197 × 197µm), at a mean shear rate of 19s -1 .

Figure 46 :

 46 Figure 46: Attachment/detachment processes visualized at the edge. The background (25 × 50µm) snapshots are taken near one lateral edge between the bottom surface and a lateral wall. The white line trajectories superimposed on the picture corresponds to bacteria detaching from the edge (left) and attaching to it (right).Mean shear rate is γ = 220s -1 , (the edge corresponds to an "ingoing" case, but it was not colored in green for clarity).

Figure 47 :

 47 Figure 47: Surface erosion: bacteria concentrations vs absolute shear rate value | γ| . Lines are exponential fits: A exp (-| γ|/ γ0 ). (a) Bacteria concentrations are measured at the channel bottom surface, excluding 10µm-wide stripes from the lateral walls. A s =(2.81 ± 0.12)10 -2 bact/µm 2 and γ0 s = (143 ± 20)s -1 . (b) Linear concentrations at the edges for "in-going" and "out-going" edges . Fit parameters: A i = (2.0 ± 0.7)10 -1 bact/µm and γ0 i = (250 ± 75)s -1 (in-going) and A o = (1.2 ± 0.7)10 -1 bact/µm and γ0 o = (240 ± 100)s -1 (out-going).

Figure 48 :

 48 Figure 48: (a) Average transverse bacteria velocities at the horizontal surfaces as a function of the mean shear rate. Experimental data collected for both positive (filled circles) and negative (open triangles) flow directions at the same surface. The horizontal line indicates the average swimming velocity of bacteria at the surface at zero shear rate. (b) Absolute value of the mean longitudinal bacteria velocities for various flow rates | γ| at the bottom horizontal surface. The line is a linear fit to the data with a slope Λ = 0.64 ± 0.02µm. In inset, zoom on the longitudinal velocity < v x >.

Figure 49 :

 49 Figure 49: Bacteria transport at the edges. (a) Concentration of bacteria along the left edge. Note that the "in-going" edge for γmean < 0 becomes an "out-going" edge when γmean > 0. (b) Bias parameter in Edge Traffic (BET) as a function of the shear rates (see Eq. 18), The meaning of the labels in the different symbols in the picture are: L1 and R1 Left and right walls respectively in an experiment at a bulk concentration in the reservoir of (3 ± 0.5) × 10 8 bact./mL; L2 left wall at (4 ± 0.5) × 10 8 bact./mL.

Figure 50 :

 50 Figure 50: Absolute value of the mean longitudinal velocity for the bacteria population moving along the edges. The horizontal line is their mean velocity at the center of the channel at zero flow.

Figure 51 :

 51 Figure 51: Edge Boundary layer: (a) longitudinal flux density of bacteria J x as a function of the vertical direction y for 3 values of the shear rate γ. For negative values of the horizontal axis bacteria move upstream inside the edge boundary layer, while they move downstream for positive values of the horizontal axis. The continuous lines are exponential fits of the form J 0 + B exp (-y/δ) where J 0 , B and δ depend on γ. (b) Longitudinal Bacteria flux J 0 from the exponential fitting of each bacteria flux vs γ. The black solid line is the product σ v longitudinal from independent fittings and the blue dashed line is the best fit to the data using A γ expγ/ γc , where A = (2.5 ± 0.3)10 -2 bact/µm and γc = 110 ± 10s -1 . (c) Width of the Edge Boundary Layer as a function of the mean shear rate γ.

Figure 52 :

 52 Figure52: Sketch of the microfluidic device. Clean liquid is injected though a microchannel towards a reservoir with bacteria. The whole system moves along the -x direction during a scanning stage in which the entire microchannel is visualized under the microscope.
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 53354 Figure 53: Concentration profiles at different times (figure to be seen landscape). The position of the farthest bacterium is marked with red dashed lines. The displayed time intervals correspond to the beginning of the scan and the moment in which the most advanced bacterium was detected (red line). The maximum flow velocity is 80µm/s. The width of the channel is w = 40µm and the height is h = 11µm.
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Figure 55 :

 55 Figure 55: Plot of position of the most advanced bacterium as a function of time (L c (t)) for different realizations of the contamination experiment.The table shows the maximum flow velocities ( V max ), the mean shear rates ( γ), the average bacteria velocities in the reservoir (v 0 ) and contamination velocities (v cont ).

Figure 56 :

 56 Figure 56: Concentration profiles evolution for a maximum fluid velocity V max = 80µm/s. The indicated times define the beginning of the scanning.

Figure 57 :

 57 Figure 57: Concentration profiles evolution after correction of scanning stretching. (a) Superposition of a raw profile and its corrected version for a starting scanning time of 1190s. (b) Concentration profiles after correction. The experiment has maximum fluid velocity V max = 80µm/s and the normalization factor v cont V s = 0.11. The indicated times define the beginning of the scanning.

aFigure 58 :

 58 Figure58: Simulation of the evolution of the propagator K(x, t) using (a)exponentially and (b) power law distributed run times from expressions (19) and (20) respectively. The unit time is τ and the unit length is l = v 0 τ. The curves were normalized to integral 1 at t = 1. Both cases correspond to the same dimensionless parameter α = 0.25. The binning for the distribution was ∆x = 1.3.

aFigure 59 :

 59 Figure 59: Concentrations for constant flux boundary conditions using (a) exponentially and (b) power law distributed run times from expressions 19 and 20 respectively. The unit length is the bacterial velocity v 0 times the characteristic upstream time τ. The unit time is τ. The curves have been normalized to surface 5 at t = 1, simulating a flux ≈ 5 bacteria per unit time. The concentration is expressed in bacteria per unit length. Both cases correspond to the same value α = 0.25.

Figure 60 :

 60 Figure 60: Number of bacteria inside the channel as a function of time.We fit the experimental points with a parabola, giving rise to a flux q(t) linear in time.
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 6162 Figure 61: Optimization factor as a function of the dimensionless parameter (α) of the model for the Poissonian and power law run time distributions.There exists a clear minimum for the power law distribution, while no optimization seems to take place for the exponential law. Some points have been labeled with letters corresponding to the profiles displayed in Fig.62.
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1.2 generalities

3d lagrangian tracker

The antibiotics is used to impose a selection pressure on the culture. Bacteria carry in the same circular DNA sequence the gene for being resistant to the specific antibiotics and the gene to be fluorescent. The expression of fluoresce represents an energetic cost for bacteria and some of them manage to lose the fluoresce. At the same time they lose the resistance to antibiotics and die, resulting in a culture of only fluorescent bacteria.
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