
HAL Id: tel-01609837
https://theses.hal.science/tel-01609837

Submitted on 4 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to graph partitioning problems under
resource constraints

Dang Phuong Nguyen

To cite this version:
Dang Phuong Nguyen. Contributions to graph partitioning problems under resource constraints.
Distributed, Parallel, and Cluster Computing [cs.DC]. Université Pierre et Marie Curie - Paris VI,
2016. English. �NNT : 2016PA066697�. �tel-01609837�

https://theses.hal.science/tel-01609837
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Dang Phuong NGUYEN

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Contributions à des problèmes de partitionnement de graphe
sous contraintes de ressources

soutenue le dd mm 2016

devant le jury composé de :

M. Ridha Mahjoub Rapporteur
Mme. Hoai An Le Thi Rapporteur
M. Christophe Picouleau Rapporteur
M. Patrice Perny Examinateur
M. Michel Minoux Diecteur de thèse
M. Viet Hung Nguyen Co-Encadrant
M. Renaud Sirdey Co-Encadrant
M. Thanh Hai Nguyen Tuteur

L’école doctorale informatique, télécommunications et électronique (EDITE)

Contributions to graph partitioning problems
under resource constraints

Document proposed for thesis defence

Dang Phuong Nguyen

Committee members :

Ridha Mahjoub1 Reviewer
Hoai An Le Thi2 Reviewer
Christophe Picouleau3 Reviewer
Patrice Perny4 Examiner
Michel Minoux5 Advisor
Viet Hung Nguyen6 Co-advisor
Renaud Sirdey7 Co-advisor
Thanh Hai Nguyen8 Tutor

1R. Mahjoub, Professeur, Université Paris Dauphine.
2H.A. Le Thi, Professeur, Université de Lorraine
3Ch. Picouleau, Professeur, CNAM
4P. Perny, Professeur, UPMC
5M. Minoux, Professeur Emérite, UPMC
6V.H. Nguyen, Mâıtre de Conférences, UPMC
7R. Sirdey, HDR, CEA/LIST
8T.H. Nguyen, CEA/LIST

2

Résumé

Le problème de partitionnement de graphe est un problème fondamental en opti-
misation combinatoire. Le problème revient à décomposer l’ensemble des noeuds
d’un graphe en plusieurs sous-ensembles disjoints de noeuds (ou clusters), de sorte
que la somme des poids des arêtes dont les extrémités se trouvent dans différents
clusters est réduite au minimum. Dans cette thèse, nous étudions le problème de
partitionnement de graphes avec des poids (non négatifs) sur les noeuds et un en-
semble de contraintes supplémentaires sur les clusters (GPP-SC) précisant que la
capacité totale (par exemple, le poids total des noeuds dans un cluster, la capacité
totale sur les arêtes ayant au moins une extrémité dans un cluster) de chaque groupe
ne doit pas dépasser une limite prédéfinie (appelée limite de capacité). Ceci diffère
des variantes du problème de partitionnement de graphe le plus souvent abordées
dans la littérature en ce que:

• Le nombre de clusters n’est pas imposé (et fait parti de la solution),

• Les poids des noeuds ne sont pas homogènes.

Le sujet de ce travail est motivé par le problème de la répartition des tâches
dans les structures multicoeurs. Le but est de trouver un placement admissible de
toutes les tâches sur les processeurs tout en respectant leur capacité de calcul et de
minimiser le volume total de la communication inter-processeur. Ce problème peut
être formulé comme un problème de partitionnement de graphe sous contraintes de
type sac-à-dos (GPKC) sur des graphes peu denses, un cas particulier de GPP-SC.
En outre, dans de telles applications, le cas des incertitudes sur les poids des noeuds
(poids qui correspondent par exemple à la durée des tâches) doit être pris en compte.

La première contribution de ce travail est de prendre en compte le caractère peu
dense des graphes G = (V,E) typiques rencontrés dans nos applications. La plupart
des modèles de programmation mathématique existants pour le partitionnement
de graphe utilisent O(|V |3) contraintes métriques pour modéliser les partitions de
noeuds et donc supposent implicitement que G est un graphe complet. L’utilisation
de ces contraintes métriques dans le cas où G n’est pas complet nécessite l’ajout de
contraintes qui peuvent augmenter considérablement la taille du programme. Notre
résultat montre que, pour le cas où G est un graphe peu dense, nous pouvons réduire
le nombre de contraintes métriques à O(|V ||E|) [1], [4].

La deuxième contribution de ce travail est de calculer des bornes inférieures
pour les graphes de plus grande taille. Nous proposons un nouveau modèle de
programmation pour le problème de partitionnement de graphe qui fait usage de
O(m) variables seulement. Le modèle contient les inégalités de cycle et les inégalités

3

4

liées aux chemins dans le graphe pour formuler les partitions admisibles. Etant donné
qu’il existe un nombre exponentiel de contraintes, la résolution du modèle a besoin
d’un procédé de séparation pour accélérer les temps de calcul. Nous proposons une
telle méthode de séparation qui utilise un algorithme de plus court chemin de toutes
les paires de noeuds, et est donc en temps polynomial. Les résultats des calculs
montrent que notre nouveau modèle et la méthode donne des bornes inférieures
serrées pour des graphes d’assez grande taille allant jusqu’à quelques milliers noeuds.

La troisième contribution de ce travail est de prendre en compte l’incertitude sur
le poids des noeuds. Nous proposons de modéliser les incertitudes en utilisant des
contraintes en probabilité. Sous l’hypothèse que les poids de noeuds suivent une
distribution gaussienne multivariée, les contraintes de type sac-à-dos stochastiques
peuvent être reformulés comme des contraintes de cône du second ordre. Ces con-
traintes de cône du second ordre peuvent à leur tour être exprimés sous la forme de
contraintes quadratiques et nous montrons comment gérer celle-ci par des méthodes
de linéarisation. Nous fournissons des résultats de calcul montrant que la formula-
tion quadratique peut être plus efficacement résolue (en utilisant un algorithme de
branch-and-bound) que la formulation de cône du second ordre [2], [5].

Abstract

The graph partitioning problem is a fundamental problem in combinatorial opti-
mization. The problem refers to partitioning the set of nodes of an edge weighted
graph in several disjoint node subsets (or clusters), so that the sum of the weights
of the edges whose end-nodes are in different clusters is minimized. In this thesis,
we study the graph partitioning problem on graph with (non negative) node weights
with additional set constraints on the clusters (GPP-SC) specifying that the total
capacity (e.g. the total node weight, the total capacity over the edges having at least
one end-node in the cluster) of each cluster should not exceed a specified limit (called
capacity limit). This differs from the variants of graph partitioning problem most
commonly addressed in the literature in that:

• The number of clusters is not imposed (and is part of the solution),

• The weights of the nodes are not homogeneous.

The subject of the present work is motivated by the task allocation problem in multi-
core structures. The goal is to find a feasible placement of all tasks to processors
while respecting their computing capacity and minimizing the total volume of inter-
processor communication. This problem can be formulated as a graph partitioning
problem under knapsack constraints (GPKC) on sparse graphs, a special case of
GPP-SC. Moreover, in such applications, the case of uncertain node weights (weights
correspond for example to task durations) has to be taken into account.

The first contribution of the present work is to take into account the sparsity
character of the graphG = (V,E). Most existing mathematical programming models
for the graph partitioning problem use O(|V |3) metric constraints to model the
partition of nodes and thus implicitly assume that G is a complete graph. Using
these metric constraints in the case where G is not complete requires adding edges
and constraints which may greatly increase the size of the program. Our result
shows that for the case where G is a sparse graph, we can reduce the number of
metric constraints to O(|V ||E|) [1],[4].

The second contribution of present work is to compute lower bounds for large
size graphs. We propose a new programming model for the graph partitioning prob-
lem that make use of only O(m) variables. The model contains cycle inequalities
and all inequalities related to the paths in the graph to formulate the feasible par-
titions. Since there are an exponential number of constraints, solving the model
needs a separation method to speed up the computation times. We propose such a
separation method that use an all pair shortest path algorithm thus is polynomial
time. Computational results show that our new model and method can give tight
lower bounds for large size graphs of thousands nodes.

5

6

The third contribution of the present work is to take into account the uncertainty
over node weights. We propose to model uncertainties using chance constraints.
Under the assumption that the node weights follow a multivariate Gaussian distri-
bution, the stochastic knapsack constraints can be modeled as second order cone
constraints. These second order cone constraints can in turn be reformulated as
quadratic 0-1 constraints and we show how to handle the latter via linearization
methods. We provide computational results showing that the quadratic 0-1 refor-
mulation can be more efficiently solved (using branch-and-bound) than the second
order cone formulation [2],[5].

Publications

1. D.P. Nguyen, T.H. Nguyen, P. Dubrulle. Hierarchical synchronization be-
tween processes in a high-performance execution support of dataflow process
networks on many-core architectures. 8th International Conference on Com-
plex, Intelligent and Software Intensive Systems (CISIS), Birmingham, UK,
July 2014, p:439-444, doi: 10.1109/CISIS.2014.62.

2. V.H. Nguyen, M.Minoux, D.P. Nguyen. Improved compact formulations for
metric and cut polyhedra. Electronic Notes in Discrete Mathematics, Volume
52, June 2016, Pages 125-132, ISSN 1571-0653, http://dx.doi.org/10.1016/j.endm.2016.03.017.

3. D.P. Nguyen, M. Minoux, V.H. Nguyen, T.H. Nguyen, and R. Sirdey. Stochas-
tic graph partitioning: Quadratic versus SOCP formulations. Optimization
Letters, p.1 - p.14, 2015, doi: 10.1007/s11590-015-0953-9

4. D.P. Nguyen, M. Minoux, V.H. Nguyen, T.H. Nguyen, and R. Sirdey. Im-
proved compact formulations for a wide class of graph partitioning problems
in sparse graphs. Discrete Optimization, Available online 30 May 2016, ISSN
1572-5286, http://dx.doi.org/10.1016/j.disopt.2016.05.003.

5. V.H. Nguyen, M.Minoux, D.P. Nguyen. Improved compact formulations for
metric and cut polyhedra. Submitted to Networks, 2015.

7

8

Contents

1 Introduction 11
1.1 Research context . 12

1.1.1 Graph partitioning problem under knapsack constraints (GPKC) 12
1.1.2 Graph partitioning under capacity constraints (GPCC) 12

1.2 Graph partitioning problem under set constraints 13
1.3 Motivation and Contributions . 14

2 Literature review 17
2.1 Fundamental concepts . 17

2.1.1 Graph theory . 17
2.1.2 Graph partitioning and multicuts 18
2.1.3 Problems, algorithms and complexity 19

2.2 Overview of models and solution methods 20
2.2.1 Node-Node formulations . 21
2.2.2 Node-Cluster formulation . 23
2.2.3 Approaches of mixing Node-Node and Node-Cluster models . 24
2.2.4 Semi-definite formulation . 24
2.2.5 Discussion of the graph partitioning formulations 25

3 Improved compact formulations for sparse graphs 27
3.1 Basic 0/1 programming model for GPP-SC 27
3.2 Improved 0/1 programming model for GPP-SC 29
3.3 Extension . 32
3.4 Computational experiments . 34

3.4.1 Experimental results for GPKC 35
3.4.2 Experimental results for GPCC 37

3.5 Conclusions . 37

4 Cutting plane approach for large size graph 41
4.1 Preliminary: Node-Node formulation for GPKC 42
4.2 A m-variable formulation for GPKC and its solution via cutting-planes 43

4.2.1 A m-variables formulation for GPKC 43
4.2.2 Solving the separation subproblem via shortest path compu-

tations . 45
4.2.3 Efficient implementation of the cutting plane algorithm 45

4.3 Efficient computation of upper bounds: heuristic solutions 47
4.3.1 Building feasible partitions: upper rounding procedure (UR) . 48

9

10 CONTENTS

4.3.2 Building feasible partitions: progressive aggregation proce-
dure (PA) . 48

4.4 Numerical experiments . 49
4.4.1 Experiments for the cycle model using the cutting plane algo-

rithms . 49
4.4.2 Experiments for the cycle model using efficient implementa-

tion of the cutting plane algorithm 51
4.4.3 GPKC upper bound computation 52
4.4.4 Convergence profile of the cutting plane algorithm 53

4.5 Conclusion . 53

5 Stochastic graph partitioning 57
5.1 Stochastic programming . 57

5.1.1 Optimization under uncertainty, an overview 57
5.1.2 Chance constrained programming 58
5.1.3 Convexity studies . 59
5.1.4 Stochastic graph partitioning 60
5.1.5 Stochastic graph partitioning under knapsack constraint for-

mulation . 60
5.2 Partitioning process networks . 61
5.3 Second order cone formulation . 63
5.4 Quadratic 0-1 reformulation . 64

5.4.1 Classical linearization technique 64
5.4.2 Sherali-Smith’s linearization technique 65

5.5 Computational results . 67
5.6 Conclusion . 69

6 Conclusions and perspectives 73
6.1 Conclusions . 73
6.2 Perspectives . 73

Chapter 1

Introduction

Recently, with the arising of sites such as MySpace, Friendster, Orkut, Twitter,
Facebook, etc. social networks have reached major popularity and another reason of
social networks popularity is that they are easy to use. These networks make people
of all over the world able to communicate with each other. One of the common
features of these networks is called community structure which represents connected
groups (clusters) that there should be many edges within each group and few be-
tween the groups. Resulted groups are fraction of individuals that have similar
features or connected via relations. Groups in social networks are corresponding
with social relations and are used for understanding the data structure such as
organization structures, scientific collaboration and relations in telecommunication
networks. Communities are useful in many applications. Web clients clustering
(community detection) which have same or similar interests or are near together via
location can improve the World Wide Web services performance. One of the com-
munity detection benefits is to provide better recommendation systems for efficient
customer’s guidance and increasing the business opportunities via representing the
lists of retailer items which produces the clusters of customers with similar interests.
The goal of graphs community detection is the identification of modules and their
hierarchical structure by using the information which is encoded in graph topology.

In computer science we face a similar dilemma. Graphs are frequently used by
computer scientists as abstractions when modeling an application problem. Cutting
a graph into smaller pieces is one of the fundamental algorithmic operations. Even
if the final application concerns a different problem (such as traversal, finding paths,
trees, and flows), partitioning large graphs is often an important subproblem for
complexity reduction or parallelization. With the advent of ever larger instances in
applications such as scientific simulation, social networks, or road networks, graph
partitioning therefore becomes more and more important, multifaceted, and chal-
lenging.

11

12 CHAPTER 1. INTRODUCTION

1.1 Research context

1.1.1 Graph partitioning problem under knapsack constraints
(GPKC)

Until the 2000 decade, Moore’s Law was a good indicator in the prediction of the
performance of new microprocessors. For each new generation of hardware, new op-
timization challenges also appear for performance enhancement. With the end of the
frequency version of Moore’s law, new clusterized embedded parallel microprocessor
architectures, known as manycores, have been developed. New challenges consist in
applying combinatorial optimization techniques to problems in software compilation
of applications, like in signal processing, image processing or multimedia, on these
massively parallel architectures. Such applications can be represented under the
static dataflow parallel programming model, in which one expresses computation-
intensive applications as networks of concurrent processes (also called agents or
actors) interacting through (and only through) unidirectional FIFO channels. They
provide strong guarantee of determinism, absence of deadlocks and execution in
bounded memory. The main difficulty in the development of this kind of applications
for those architectures consists in handling resource limitations, a high exploitation
difficulty of massive parallelism and global efficiency. On top of more traditional
compilation aspects, compiling a dataflow program in order to achieve a high level
of dependability and performance on such complex processor architectures involves
solving a number of difficult, large-size discrete optimization problems among which
graph partitioning, quadratic assignment and (constrained) multi-flow problems are
worth mentioning [2].

Our applicative work focuses on the task allocation problem in multi-core struc-
tures. The goal is to find a feasible placement of all tasks to processors while re-
specting their computing capacity and minimizing the total volume of inter-processor
communication. In this dissertation, the task allocation is processed under assign-
ment and capacity constraints (of knapsack type). A task cannot be placed on
several processors and the total amount of all tasks weights must not exceed the
capacity of the processor.

1.1.2 Graph partitioning under capacity constraints (GPCC)

For various technological reasons, network operators often want to partition the
node set V into clusters on which a certain network topology is imposed. For
instance, in SONET/SDH optical networks, a common requirement is that every
cluster is connected by a local network forming a cycle. Local networks are then
interconnected by a secondary federal network which has one access node in each
local network. Access nodes carry all the traffic internal to their local network and
all the traffic exiting it but have a limited capacity. If we consider the traffic demand
t(u,v) as the capacity of the edge (u, v), then the capacity of a local network (cluster)
with node set U ⊂ V follows our definition of capacity. As the topology and the
capacity of local networks are imposed, the cost of these networks is almost fixed
(except the cost of physical cables for building them) once the partition of V is

1.2. GRAPH PARTITIONING PROBLEM UNDER SET CONSTRAINTS 13

determined. Thus, the objective of the problem could be focused on minimizing
either the number of local networks (clusters) or the cost of the federal network. For
the latter, an objective function often used it to minimize the total length of the
edges in the interconnection with lengths given by the product of the traffic and the
distance between nodes.

The SONET/SDH network design problem minimizing the number of local net-
works has been introduced in 2003 by Goldschmidt et al. [32] under the name SRAP
problem. Bonami et al. [11] modeled this problem as a variant of the graph partition-
ing problem that they call graph partitioning under capacity constraints (GPCC)
where the constraints on the weights of the clusters are replaced with constraints
related to the edges incident to the nodes of each cluster. Suppose that, each edge
e ∈ E is assigned a capacity te ∈ Z+. For any subset U ⊆ V , we define the ca-
pacity of U as the sum of the capacities of the edges incident to at least one node
of U , i.e. the edges in E(U) ∪ δ(U) where E(U) is the set of the edges with both
end nodes in U and δ(U) is the set of the edges with exactly one end in U . The
capacity constraint is to bound the capacity of each cluster by a given constant T .
The objective function we consider is to minimize the total length of the edges in
the interconnection (with weights given by the lengths le) between the clusters.

1.2 A more general model: Graph partitioning

problem under set constraints (GPP-SC)

We now introduce a more general model denoted GPP-SC (where SC stands for
”set constraints”) which encompasses GPKC and GPCC as special cases. GPP-SC
can be mathematically defined as follows. Given an undirected connected graph
G = (V,E) where V = {1, . . . , n}, |E| = m and a length le ∈ Z+ is associated with
each edge e ∈ E, find a partition of V into disjoint sets (or clusters) such that:

• every cluster C ⊂ V satisfies a constraint of the form G(yC) ≤ 0 where yC is
the incidence vector of C in {0, 1}n and G : {0, 1}n → R is a given monotone
nondecreasing pseudoboolean function (Note that G can also be viewed as a set
function: P(V) → R which associates the real value G(yC) with each subset
C ⊂ V).

• the sum of the lengths of the edges having end-nodes in different clusters is
minimized.

Note that in the above definition, the number k of clusters is not imposed and is a
part of the output of the optimization process. The above class of problems is fairly
general.

In mathematical form, the task allocation problem can be modeled as a special
case of GPP-SC where each cluster C is required to satisfy a node weight constraint
of the form

∑
v∈C wv ≤ W where wv for all v ∈ V are given nonnegative node weights

and W is a given upper limit on the total node weight of the cluster. This corre-
sponds to considering the linear constraint G(yC) ≤ 0 where G is the nondecreasing

14 CHAPTER 1. INTRODUCTION

pseudoboolean function defined by∑
v∈V

wvy
C
v −W ≤ 0

Note that this special case of GPP-SC is the classical version of the graph parti-
tioning problem defined in Garey and Johnson’s book [31] which is known to be
NP-hard [38].

The graph partitioning problem under capacity constraints can be modeled as
a special case of GPP-SC where each cluster C is subject to a constraint of the
form G(yC) ≤ 0 where G is a given nondecreasing quadratic pseudoboolean function
{0, 1}n → R defined as:

G(yC) =
∑

(u,v)∈E

tuv(y
C
u + yCv − yCu yCv)− T ≤ 0

for given tuv ∈ R+ for all (u, v) ∈ E and T a given positive constant. If one considers
tuv as the capacity of the edge (u, v), then

∑
(u,v)∈E tuv(y

C
u + yCv − yCu yCv) represents

the total capacity over the edges having at least one end-node in the cluster C. The
constraint limits this capacity to a constant T . It has been shown in [11] that GPCC
is NP-hard.

A number of new results investigated in the present work will turn out to be
applicable to general GPP-SC problem.

1.3 Motivation of this thesis and overview of our

contributions

Since the general topic of the present study has been introduced, let us now mention
some of the research questions which drew our attention and guided our research
path:

1. The graphs of the task allocation problem and of SONET/SDH network design
problem are often sparse. Thus what is the benefit of taking into account the
sparsity characteristics of the graph in using existing programming models for
graph partitioning problem?

2. Despite our increased understanding of the graph partitioning problem over the
last decades, today’s techniques seem insufficient for obtaining exact solutions
for large graphs (from thousands to millions of nodes). Various heuristics can
give upper bounds for the problem in such graphs, but how the validity and
the quality of heuristics can be examined?

3. In practice, uncertainty is encountered each day, everywhere where the task
allocation problem and the SONET/SDH network design problem are not
exceptions. What is the benefit of taking into account uncertainty instead of
solving the deterministic version ? And, which programming models can be
used to solve the stochastic version efficiently?

1.3. MOTIVATION AND CONTRIBUTIONS 15

The objective of this thesis is to improve our understanding of the determinis-
tic/stochastic graph partitioning problem under set constraints by answering the
above questions.

Addressing the first question, most existing mathematical programming mod-
els for the graph partitioning problem use O(n3) triangle constraints (see Chapter
2) to model the partition nodes and thus implicitly assume that G is a complete
graph [33]. This requires their use in the case where G is not complete adding edges
and constraints which greatly increases the size of the program, it was reported
in the literature that it is rather difficult in the presence of all the O(n3) triangle
constraints even for small values of n (i.e. n ≤ 20). Indeed, the number of tri-
angle constraints becomes quickly large as n increases and the program turns out
to be difficult to solve even with the most efficient programming solvers. Several
authors have tried to overcome this difficulty by dualizing all or only a subset of
the triangle inequalities via a Lagrangian approach [30]. But beyond that, it would
be interesting to be able to reduce intrinsically the number of triangle inequalities
without weakening the relaxation quality, especially for sparse graphs (i.e. when
m = O(n)). In Chapter 3, we will show that with only O(mn) triangle constraints,
instead of O(n3) as classically, we can obtain an 0/1 formulation equivalent to the
problem, and more importantly an equivalent relaxation formulation. Moreover, we
prove that the result holds even for a generic class of graph partitioning problem
with additional constraints satisfying some monotonicity property. Computational
results are discussed to show the benefit of using the reduced formulation in term of
computational efficiency.

To answer the second question, exact solutions of the graph partitioning problem
are often obtained by considering a 0/1 programming formulation to which a branch-
and-bound based approach is applied. To validate the heuristics for large graphs,
the linear relaxation of the 0/1 programming formulations is usually used to obtain
lower bound for the problem. Among the programming models, the Node-Node
model is known to give a good quality of the bound. This model is based on the
choice of decision variables xij which are equal to 1 iff node i and node j are not
in the same cluster thus the result is a 0/1 linear program and makes use of O(n2)
variables and O(n3) triangle inequalities. Even when applying the results in Chapter
3 that can reduce the number of triangle inequalities in the Node-Node model to
O(nm) without weakening the linear relaxation, the number of variables is still in
order O(n2), it quickly becomes extremely large as n increases and even the linear
relaxation turns out to be difficult to solve. It is therefore interesting to be able to
reduce intrinsically the number of variables of the problem in preserving the quality
of the linear relaxation.

In order to do so, in Chapter 4, we consider an alternative programming model
representing the node partitions of a graph partitioning problem that makes use of m
decision variables (xe)e∈E which are equal to 1 iff the end-nodes of e are in different
clusters, together with the cycle inequalities defined on them [5], [15]. We prove
that the node partitions and thus the knapsack constraints can be defined using all
pair shortest path of G respected to the weights (xe)e∈E. The result is a m variable
programming model for GPP-SC. This model is referred to as the cycle model and
it is shown to be equivalent to the Node-Node model. It is shown that this model

16 CHAPTER 1. INTRODUCTION

yields significant improvement in case of sparse graphs where m � n(n−1)
2

. Note
that since there is a priori no known polynomial upper bound (in terms of n and m)
on the number of cycles and of paths of the graph G, the cycle model have a priori
an exponential number of inequalities thus a cutting plane algorithm is needed to
speed up the computations. We introduce a such algorithm which can determine
both violated cycle inequalities and violated knapsack constraints in using all pair
shortest path of G respected to the weights (xe)e∈E. Computational experiments
carried out instances of GPKC, show that, when applying cutting plane algorithm,
the cycle model outperform the Node-Node model in terms of computation time.

Chapter 5 addresses the third question related to uncertainty which frequently
arises in applications of GPP-SC. For instance in the task allocation problem, one
of the main sources of uncertainties lies in the intrinsic indeterminism of duration
of tasks for computing kernels of intermediate granularity. This indeterminism is
due in part to some of the characteristics of the processor architecture such as the
cache memories and memory access controllers and is also inherently due to data
dependent control flows (conditional branches and loops). We consider GPKC in the
case the node weights are uncertain hence this stochastic version of GPKC referred
to as SGPKC. Dealing with uncertainty in an optimization problem can be done
in various ways e.g using robust optimization [7],[9], or various stochastic program-
ming models [60],[56]. We have chosen to handle uncertainty via chance constrained
programming [14]. Given a probability level ε ∈ (0, 1), the knapsack constraints in
(i) can be formulated as chance constraints of the form P (

∑
v∈Vi wv ≤ W) ≥ 1 − ε

for i = 1, . . . , k. In chapter 5 we investigate SGPKC under the assumption that the
node weights w follows a multivariate Gaussian distribution. In the case of indi-
vidual chance constraints and with the probability level ε less than 0.5, the chance
constraints can then be reformulated as binary second order cone programming prob-
lem (Binary SOCP) [47].

A first possible approach is thus to apply branch-and-bound algorithm (B&B)
directly on this Bi-SOCP formulation. Our computational results (see Chapter 3.2)
suggest however that only moderate efficiency can be expected from this approach.
There are two main reasons for this: (a) in spite of the fact that the SOCP relaxation
is a convex problem, it is still more computationally demanding than solving a linear
program in each node of the B&B tree; (b) SOCP solvers do not offer warm-starting
capabilities comparable to the simplex algorithm to speed up the B&B computation.
This is why we have explored another approach which consists in: (i) reformulat-
ing Bi-SOCP constraints as quadratic 0-1 constraints; (ii) applying a linearization
technique to solve the resulting quadratically constrained 0-1 problem. Several such
linearization techniques are discussed with special emphasis on ”compact” lineariza-
tion which only moderately increase the number of necessary additional variables.

Finally Chapter 6 gives conclusions of the present work and several possible
directions for future investigations.

Chapter 2

Literature review

2.1 Fundamental concepts

This section contains a collection of the most basic concepts that are used in the
following chapters. It covers some fundamental concepts of graph theory, and com-
putational complexity theory. The reader is assumed to be familiar with linear
programming (LP) and integer linear programming including the dual simplex algo-
rithm for linear programming and the branch-and-bound algorithm for integer linear
programming.

2.1.1 Graph theory

A graph G = (V,E) consists of a nonempty finite set of nodes V and a set of edges
E ⊆ {(u, v)|u, v ∈ V }. If e = (u, v) is an edge of E , each of the nodes u and v
is called an end-node of e. For notational convenience the braces and the comma
will usually be omitted when referring to an edge. An edge (u, v) ∈ E is said to be
incident to each of the end-nodes u, v ∈ V , and u and v are said to be adjacent or
they are called neighbors with respect to E. Almost all graphs to be considered are
assumed to be simple graphs. A graph is said to be simple if it does not contain
multiple edges and loops. That is, every edge e ∈ E with end-nodes u and v is
unique (u, v) = e = (v, u) and the end-nodes are distinct u 6= v.

A complete graph is a simple graph where every two distinct nodes are adjacent.
The complete graph on n nodes is denoted by Kn = (Vn, En), i.e. En = {(u, v)|u, v ∈
Vn} and |Vn| = n . This subscript notation applies only to K , V , and E; that is,
Gi = (Ui, Fi) may be any graph, and i tells nothing about the number of nodes in
Gi.

A digraph (directed graph) D = (N,A) consists of a nonempty finite set of nodes
N and a set of arcs A ⊆ {(u, v)|u, v ∈ N} whose elements are ordered pairs of nodes.
An arc (u, v) ∈ A is said to ”go from” node u to node v. Digraphs are not considered
in this thesis.

The following notation will be used for some special edge sets. Let G = (V,E) be
a simple graph. For every subset U ⊆ V , the set of edges in G with both end-nodes
in U is denoted by E(U), i.e.

E(U) = {(u, v) ∈ E|u, v ∈ U}

17

18 CHAPTER 2. LITERATURE REVIEW

If F is a subset of edges in a graph G = (V,E), the set of end-nodes of the edges
in F is denoted by V (F) that is,

V (F) = {u, v ∈ V |(u, v) ∈ F}

If G = (V,E) and H = (U, F) are two graphs such that U ⊆ V and F ⊆ E(U),
then H is called a subgraph of G . If U ⊆ V , then H = (U,E(U)) is the subgraph
of G induced by U . This subgraph is also denoted by G[U]. Similarly, every edge
set F ⊆ E induces a subgraph H = (V (F), F) of G.

If G1 = (U1, F1) and G2 = (U2, F2) are two graphs, the union of G1 and G2,
denoted by G1 ∪ G2, is obtained in the obvious way. That is, G1 ∪ G2 = (U1 ∪
U2, F1 ∪ F2). Similarly, the addition of edges to a graph G = (V,E) is performed
in the natural way. Suppose that F ⊆ {(u, v)|u, v ∈ V } and F ∩ E = ∅. Then
H = (V,E ∪F) is the graph obtained by adding to G the edges of F . If U ⊆ V is a
subset of nodes in G, G− U denotes the subgraph obtained by deleting from G all
nodes of U and all edges incident to the nodes in U , i.e. G−U = (V \U,E(V \U)).

A walk of length p in a graph is a sequence of p edges e1, . . . , ep , where every
edge is of the form ei = vi−1vi, i = 1, . . . , p . Let v0v1, . . . , vp−1vp be a walk of length
p. Then the edge set P = {v0v1, . . . , vp−1vp} is called a path if all nodes v0, . . . , vp
are distinct. If, on the other hand, the nodes v1, . . . , vp are all distinct (p ≥ 3) and
v0 = vp then the edge set C = {v0v1, . . . , vp−1vp, } is called a cycle. The path P and
the cycle C both have length p , and the path P is said to connect nodes v0 and vp.
Note that all cycles are of length 3 or greater, while a path may be a single edge.
If a cycle (path) has odd length, it is called an odd cycle (path). Even paths and
cycles are defined analogously. A dipath in a digraph is analogous to a path in a
simple graph, except that it has a direction.

A graph G = (V,E) is said to be connected if, for every pair of nodes u, v ∈ V ,
there exists a path P ⊆ E that connects u and v. A forest F ⊆ E in G is an edge
set that contains no cycle. If the subgraph H = (V (F), F) induced by a forest F is
connected, then F is called a tree. A tree T is a star if there is a node v such that
every edge in T is incident to v. If T ⊆ E is a tree in a graph G = (V,E) such that
V (T) = V , then T is said to be a spanning tree in G.

2.1.2 Graph partitioning and multicuts

A partition of a set S is a collection of subsets of S such that every element of S
is contained in exactly one of the subsets. Let G = (V,E) be a simple graph. The
subsets in a partition of the node set V are called clusters. So a partition of V is a
set of clusters {C1, . . . , Cp} such that

Ci ∈ V and Ci 6= ∅ ∀i = 1 . . . , p,

Ci ∩ Cj = ∅ ∀1 ≤ i < j ≤ p,

C1 ∪ . . . ∪ Cp = V.

A partition of G, also called a graph partitioning, is a collection of disjoint
subgraphs {G1, . . . , Gp} induced by the clusters of a partition of V . That is, Gi =
G[Ci] = (Ci, E(Ci)), i = 1, . . . , p.

2.1. FUNDAMENTAL CONCEPTS 19

The edge set of a graph partitioning, referred to as the edges of a partition, is
the set of all edges with both end-nodes in the same cluster. This set is written as
E(C1 . . . , Cp) := ∪pi=1E(Ci), where {C1, . . . , Cp} is a partition of V . The comple-
ment, with respect to E, of the edges of a partition is called a multicut, i.e. the edge
set E \ E(C1, . . . , Cp). When p = 2 it is called a cut.

2.1.3 Problems, algorithms and complexity

This section gives an informal description of some basic concepts of computational
complexity theory in order to clarify what is meant by a ”hard” problem. A much
more rigorous treatment of these concepts can be found in the book by Garey and
Johnson [31]. The treatment given here corresponds to the one in Grotschel [33].

A problem is a general question to be answered. It is described by one or more
parameters and a statement of what properties the answer (or solution) must satisfy.
An instance of a problem is obtained by the specification of particular values for all
the problem parameters.

Algorithms are general step-by-step procedures for solving problems. It is con-
venient to think of an algorithm as a computer program. An algorithm is said to
solve a problem if the algorithm can be applied to any instance of the problem and
it is guaranteed always to produce a solution for that instance.

The time requirements of an algorithm, i.e. the necessary number of elemen-
tary steps such as addition, subtraction, multiplication, comparison, etc., to solve a
problem instance must be expected to vary roughly with the size of that particular
instance. The size of a problem instance is the amount of input data needed to
describe the instance. For example, the input to a computer is encoded as a binary
string, and the size (or input length) of a particular problem instance is the number
of zeros and ones used to encode the instance. The time complexity function for an
algorithm expresses its time requirements by giving, for each possible input length,
the largest amount of time needed by the algorithm to solve a problem instance of
that size. This worst-case running time of the algorithm, expressed as a function
f(l) of the input length l, is said to be O(g(l)) (read: on the order of g(l)) if there
exists a positive constant k such that f(l) ≤ kg(l) for all l ≥ 0.

A polynomial time algorithm has a time complexity function f(l) which is O(p(l))
for some polynomial function p . Any algorithm whose time complexity function
cannot be bounded by a polynomial function is said to be an exponential (or su-
perpolynomial) time algorithm. Polynomial time algorithms are considered much
more efficient than exponential time algorithms (for large problem instances), be-
cause polynomial functions grow much slower than exponential functions. It follows
that an exponential time algorithm, although it is finite, may require an inordinately
huge amount of computation time even for moderate size problem instances.

A problem is said to be well-solved if a polynomial time algorithm for it is known.
If a problem cannot possibly be solved by any polynomial time algorithm it must
be considered intractable. However, in general it is not known how to prove that a
problem is intractable in this strict sense. But there is a class of problems for which
the existence of polynomial time algorithms is very unlikely. It is most convenient
first to consider decision problems. A decision problem has two possible solutions,

20 CHAPTER 2. LITERATURE REVIEW

either the answer ”yes” or the answer ”no”. The class of all decision problems for
which polynomial time algorithms exist is called the class P. There are many decision
problems for which no polynomial time algorithm is known. In order to capture
(some of) these problems another class NP is defined. The decision problems in NP
share the common feature that, for any problem instance, there exists a polynomial
time algorithm which can verify the truth or falsity of the claim that the answer for
this instance is ”yes”.

All decision problems in NP can be solved by a nondeterministic polynomial time
algorithm | hence the name NP. A nondeterministic algorithm is a hypothetical (and
powerful) algorithm which is composed of two stages: a guessing stage and a checking
stage. The first stage has the capability somehow to guess some structure, which
is subsequently given as input (together with the problem instance) to the checking
stage. In the checking stage the algorithm proceeds, in a normal deterministic
manner, to find out if the structure provided by the guessing stage complies with
the answer ”yes”.

1. if the answer is ”yes”, then there exists some structure that can be guessed, for
which the checking stage will respond ”yes”,

2. if the answer is ”no”, then there exists no structure that can be guessed, for
which the checking stage will respond ”yes”.

One should note the limited capability of a nondeterministic algorithm to halt
with the answer ”no”. In fact, it may run forever if the answer is ”no”.

A nondeterministic algorithm that solves a decision problem is said to operate
in polynomial time if, for every ”yes”-instance, there is some structure that, when
guessed, leads the checking stage to respond ”yes” within time bounded by a poly-
nomial in the input lengths of the problem instance and the guessed structure.

2.2 Overview of models and solution methods

There is a large amount of literature on methods that solve graph partitioning
problem optimally. This includes methods dedicated to the bipartitioning case [12],
[40], [27], [54], [3], [21], [20], [25], [35], [34], [46] and some methods that solve the
general graph partitioning problem [28], [55], [58], [11]. Most of the methods rely
on the branch-and-bound framework [22].

Bounds are derived using various approaches: Karisch et al. [40] use semi-definite
programming, and Sellman et al. [54] and Sensen [55] employ multi-commodity
flows. Linear programming is used by Brunetta et al. [12], Ferreira et al. [28],
Lisser et al. [46] and by Armbruster et al. [3]. Felner et al. [27] and Delling et al.
[20], [21] utilize combinatorial bounds. Delling et al. [20], [21] derive the bounds by
computing minimum s− t cuts between partial assignments (A,B) , i. e., A,B ⊆ V
and A∩B = ∅ . The method can partition road networks with more than a million
nodes, but its running time highly depends on the bisection width of the graph.

In general, depending on the method used, two alternatives can be observed.
Either the bounds derived are very good and yield small branch-and-bound trees
but are hard to compute. Or the bounds are somewhat weaker and yield larger

2.2. OVERVIEW OF MODELS AND SOLUTION METHODS 21

trees but are faster to compute. The latter is the case when using combinatorial
bounds. On finite connected subgraphs of the two dimensional grid without holes,
the bipartitioning problem can be solved optimally in O(n4) time [25].

All of these methods can typically solve only very small problems requiring huge
running times, or if they can solve large bipartitioning instances using a moderate
amount of time [20], [21], highly depend on the bisection width of the graph. Meth-
ods that solve the general graph partitioning problem [Ferreira1998, Sensen2001]
have immense running times for graphs with up to a few hundred nodes. More-
over, the experimental evaluation of these methods only considers small number of
clusters k ≤ 4.

We will discuss in the following the models and solutions methods that solve
graph partitioning problem optimally in the literature and their application in the
case GPP-SC.

2.2.1 Node-Node formulations

We first consider the node partitions formulation introduced by Chopra and Rao [16],[17].
Given a graph G = (V,E) with n = |V | and m = |E|. The nodes and the edges are
respectively weighted by vectors w ∈ R|V | and l ∈ R|E| , define π = (Vi, i = 1, . . . , r)
to be a partition of G. We denote E(π) the set of edges with endpoints in two
different subsets in the partition π, i.e:

E(π) = {(u, v) ∈ E|{u, v} * Vi ∀i ∈ {1, . . . , r}}

Define the incidence vector x as:

xuv =

{
1 for (u, v) ∈ E(π)

0 othewise
(2.1)

Note that if G is a complete graph, E(π) coincides with the set of all ordered pairs

of V (i.e. |E(π)| = |V |(|V |−1)
2

. If G is not complete, we have to add zero weight edges
to compete the graph then the incidence vector x is defined for all ordered pairs of
V .

Using the above variables, Chopra and Rao [16] used the cycle inequalities orig-
inally introduced by Barahona and Mahjoub [5], to define the partitions of G. Let
C be the set of all cycles in G. For a vector x ∈ R|E| , xe with e ∈ E denotes the
component of x associated with the edge e ∈ E and for any subset F ⊆ E, let
x(F) =

∑
e∈F xe. The 0-1 formulation can be then written as follows:

(CIP)

{
xe − xC\e ≤ 0 ∀e ∈ C, ∀C ∈ C
xe ∈ {0, 1} e ∈ E

It has been shown by Chopra [15] that for series-parallel graphs, the linear program-
ming relaxation of (CIP) characterize completely the convex hull of the incidence
vectors of all the possible partitions of V , i.e. the vectors that are the solutions of
CIP. Note that since there is a priori no known polynomial upper bound on the num-
ber of cycles, the above formulation CIP has a priori no known polynomial number

22 CHAPTER 2. LITERATURE REVIEW

of inequalities. Moreover, using CIP becomes difficult in the presence of additional
constraints (e.g. knapsack constraints and capacity constraints) since the decision
variables (2.1) are often insufficient to formulate these constraints in a compact way.
To overcome this difficulty, new variables are added in completing the graph by the
edges of weight 0.

When G = Kn = (Vn, En), the complete graph of n nodes, the decision variables
are set for all pair of nodes (u, v) in En:

xuv =

{
1 iff u and v are in different clusters

0 othewise

CIP is of polynomial size since in this case C reduces to the set of the triples
u 6= v 6= w ∈ V . Concretely, let T be the set of all the (ordered) triples of distinct
nodes u, v, w ∈ V , the following system:

(IP) =

xuv + xuw ≥ xvw (u, v, w) ∈ T
xuv + xvw ≥ xuw (u, v, w) ∈ T
xvw + xuw ≥ xuv (u, v, w) ∈ T
xuv ∈ {0, 1} (u, v) ∈ En

consisting of commonly called the triangle inequalities defines the partitions of G.
This formulation was introduced by Grötschel and Wakabayashi in [33] to study the
clique partitioning problem.

Theorem 2.2.1. The incidence vector x defines a partition of the graph G if and
only if x is a feasible point of IP.

Proof. See Grötschel and Wakabayashi [33].

The number of inequalities of IP is O(|V |3) = O(n3) whatever the value of
|E| = m may be. Using IP the graph partitioning problems (e.g. GPP-SC) can be
easily formulated. More precisely, the node partitions can be defined as follows. For
a node u in V that is assigned in the cluster C, a node v 6= u in V is also assigned
in C iff xuv = 0. Moreover, the objective function is in linear form:

min
∑

(u,v)∈En

luvxuv

The node-node formulation was used in most existing mathematical program-
ming models for the graph partitioning problems. For instance, Sørensen [58] uses
node-node formulation to formulate simple graph partitioning problem (a special
case of GPKC where all node weights are equal to 1), Labbé et al. [43] uses node-
node formulation to formulate the graph partitioning problem in which the cluster
cardinality is bounded both from above and from below, Bonami et al. [11] and
Goldschmidt et al. [32]) use node-node formulation to formulate GPCC.

2.2. OVERVIEW OF MODELS AND SOLUTION METHODS 23

2.2.2 Node-Cluster formulation

For the graph partitioning problem where the number of clusters is bounded from
above by a constant k (note that even when k is not imposed as in GPP-SC, we
can always set k = n), the Node-Cluster [32][11] can be used. This model is based
on the choice of decision variables xiq that for all node i ∈ V and for all cluster
q ∈ {1, . . . , k}:

xiq =

{
1 node i belongs to cluster q

0 othewise
(2.2)

then the node partitions can be defined easily by:
k∑
q=1

xiq = 1 ∀i ∈ V

xiq ∈ {0, 1} ∀i ∈ V, 1 ≤ q ≤ k

(2.3)

the assignment constraints in 2.3 imposes that each node is assigned to exactly
one cluster. The number of assignment constraints is n. However, this model is
highly highly symmetric [48] (it is easy to see that the same partition has many
representations in the model) and gives poor results in practice. Some constraints
were proposed in [48] to remove some of the symmetry of the model. For the case
q ∈ {1, . . . , n}, Bonami et al. [11] proposes two families of constraints that remove
all the symmetry related to having several different representations for the same
partition. They impose that if the cluster indexed by q is not empty then the node
of index q should be the smallest node contained in it by adding the constraints:

xiq ≤ xqq ∀i = q + 1, . . . , n

xiq = 0 ∀i = 1, . . . , i− 1

Note that with this modification, the upper bound constraint on the number of
clusters can be modeled by the number of non-empty clusters (i.e.

∑n
q=1 xqq ≤ k).

the graph partitioning problems (e.g. GPP-SC) can be easily formulated using
Node-Cluster model since the node partitions are well defined. However, the ob-
jective of minimization of the sum of the lengths of the edges having end-nodes in
different clusters:

min
∑

(i,j)∈E

k∑
q=1

(xiq(1− xjq) + (1− xiq)xjq)lij

is in quadratic form. Solving Node-Cluster formulation in a LP solver requires some
linearization techniques such as the classical linearization [29] and the linearization
of Sherali and Smith [57]. Some authors tried to overcome these difficulties by
mixing the Node-Node model and the Node-Cluster model.

24 CHAPTER 2. LITERATURE REVIEW

2.2.3 Approaches of mixing Node-Node and Node-Cluster
models

To obtain the mixed formulation for the node partitions, we use both decision vari-
ables of the Node-Node model and of the Node-Cluster model that are, for all node
i ∈ V and for all cluster q ∈ {1, . . . , k}:

yiq =

{
1 node i belongs to cluster q

0 othewise
(2.4)

and for all edge (i, j) ∈ E:

xij =

{
1 if i and j belong to different clusters

0 othewise
(2.5)

then the node partitions can be defined as:

k∑
q=1

yiq = 1 ∀i ∈ V

yiq − yjq ≤ xij ∀(i, j) ∈ E, 1 ≤ q ≤ k

xij ∈ {0, 1} ∀(i, j) ∈ E
yiq ∈ {0, 1} ∀i ∈ V, 1 ≤ q ≤ k

(2.6)

as compared with the Node-Cluster model, the mixed model contains more con-
straints to define the relationship between the variables x and y. These constraints
express the fact that, if i belongs to cluster q and j does not belongs to cluster q
then i et j belong to different clusters, and if i et j belong to the same cluster, then
there exists a cluster q such that both i et j belong to the cluster q. Furthermore,
the objective function becomes linear:

min
∑

(i,j)∈E

lijxij

as in the Node-Node model. However, the mixed model is also highly symmetric
as the Node-Cluster model. Some authors tried to remove the symmetries of the
model, e.g. Ferreira et al. [28] studies various valid inequalities, Kaibel et al. [39]
proposes a new technique called orbitopal fixing. Note that the symmetries of the
mixed model can also be removed in adding the triangle inequalities [37] but in this
case, the mixed model can be considered as a variant of the Node-Node model in
which the variables of the Node-Cluster model are considered as additional variables
modeling the constraint on the number of clusters.

2.2.4 Semi-definite formulation

Semidefinite programming (SDP) is a subfield of convex optimization concerned
with the optimization of a linear objective function over the intersection of the cone

2.2. OVERVIEW OF MODELS AND SOLUTION METHODS 25

of positive semidefinite matrices with an affine space. Semidefinite programming is
a relatively new field of optimization which is of growing interest. Many practical
problems in operations research and combinatorial optimization including the graph
partitioning problem can be modeled or approximated as semidefinite programming
problems.

To understand how the graph partitioning problem can be formulated in a
semidefinite programming model, we start with the Node-Node model. If the deci-
sion variables are defined for all pair of nodes (u, v) such that u, v ∈ V :

xuv =

{
1 iff u and v are in different clusters

0 othewise

then (xuv)u,v∈V forms a square matrix in Mn. We note that if x is a feasible point
of the graph partitioning problem then 1n−x where 1n is the square matrix inMn

in which all the entries are equal to 1, is a positive semidefinie matrix. Indeed, we
suppose that x corresponds to a partition of G into k clusters, then the decision
variables in the Node-Cluster model, for all node i ∈ V and for all cluster q ∈
{1, . . . , k}:

yiq =

{
1 node i belongs to cluster q

0 othewise
(2.7)

form a matrix in Mn×k. It is obvious that:

1n − x = yyT

thus 1n − x is positive semidefinie matrix.
Hence, the semi-definite formulation for formulating the graph partitions can be

obtained in adding the positive semidefinie constraint in the triangle inequalities
system:

xuv + xuw ≥ xvw u, v, w ∈ V
1n − x � 0

xuv ∈ {0, 1} u, v ∈ V
The objective function is also in linear form as in the Node-Node formulation:

min
∑

(u,v)∈E

luvxuv

The semi-definite formulation is studied in [46] for the graph partitioning problem
with additional balance constraints (i.e. equicut problem).

2.2.5 Discussion of the graph partitioning formulations

In this section, we give a brief discussion of the above graph partitioning formula-
tions. We point out advantages and also drawback of each formulation as compared
with each other.

The Node-Node model contains linear form objective, there are not symmetric.
However, there are a huge number of triangle inequalities (O(n3)).

26 CHAPTER 2. LITERATURE REVIEW

The Node-Cluster model is highly symmetric, moreover the objective function in
this model is in the quadratic form requiring some linearization techniques to apply
in a LP solver. The authors in [11] shows that the Node-Node model outperforms
the Node-Clusters model in term of the quality of the continuous relaxation.

The mixed model of Node-Node and Node-Cluster model has the objective func-
tion also in the linear form. However, as same as the Node-Cluster model, this
model is highly symmetric and that make use of more variables than Node-Node
and Node-Cluster model.

The semi-definite formulation contains an additional semi-definite constraint as
compared with the Node-Node model. Moreover, the semi-definite programming
still can not be compared with linear programming in term of computation times.
The authors in [46] report that the semi-definite formulation is better than the Node-
Node model with a few number of clusters, otherwise, when the number of clusters
is bigger, the Node-Node model is preferable.

In all the investigation of the present work, we are interested only on the Node-
Node formulations.

Chapter 3

Improved compact formulations
for sparse graphs

Most existing mathematical programming models for the graph partitioning problem
including GPP-SC use O(|V |) = O(n3) triangle constraints (2.2.1) to model the
node partitions. Several works (e.g. [58], [43], [11], [32]) proposed branch-and-
bound ou branch-and-cut algorithms which are all based on (IP) enhanced by several
additional class of valid inequalities. Consequently, these algorithms have to solve
repeatedly the continuous programming relaxation (IP) of (IP). As the number of
triangle inequalities in this model is O(n3), it quickly becomes extremely large as n
increases and even the relaxations turn out to be difficult to solve. Some authors
have tried to overcome this difficulty by dualizing all or only a subset of the triangle
inequalities via a Lagrangian approach [30].

Another possible approach considered in this chapter, is to try and reduce the
number of triangle inequalities without weakening the relaxation. We will show that
with only O(nm) triangle inequalities, instead of O(n3), we can obtain an equivalent
formulation, not only for the Node-Node model for GPP-SC, but also for its relax-
ations. Obviously, such a reduction opens the way to considerable improvement in
case of sparse graphs where m� n(n−1)

2
.

Note that in the definition of GPP-SC, the number of clusters is not bounded
and it is part of the output of the optimization process. However, we will show
that this reduction of the triangle inequalities remains valid for GPP-SC even in the
presence of an upper limit constraint on the number of clusters.

Computational results are discussed to show the benefit of using the reduced
formulation in term of computational efficiency.

3.1 Basic 0/1 programming model for GPP-SC

The basic 0/1 programming model for GPP-SC which is considered in the sequel

can be described as follows. We introduce n(n−1)
2

binary variables xuv for all the
pairs of nodes u, v ∈ V , u < v, such that

xuv =

{
0 if u and v belong to the same cluster,
1 otherwise.

27

28CHAPTER 3. IMPROVED COMPACT FORMULATIONS FOR SPARSE GRAPHS

The triangle inequalities together with the binary constraints are often used to define
the partitions of a graph G [33], [5]. They will be used here as part of the constraints
for formulating GPP-SC. Denoting T the set of all triples (u, v, w) of nodes in V such

that u < v < w and En the set of all ordered pairs of node in V (i.e. |En| = n(n−1)
2

),
these constraints can be written as:

(I)

∀(u, v, w) ∈ T
xuv + xuw ≥ xvw (1)

xuv + xvw ≥ xuw (2)

xvw + xuw ≥ xuv (3)

xuv ∈ {0, 1} ∀(u, v) ∈ En

The number of triangle inequalities in system (I) is 3

(
n
3

)
whatever the value of

m may be. It has been shown by Chopra [15] that for series-parallel graphs, the
linear programming relaxation of (I) characterize completely the convex hull of the
incidence vectors of all the possible partitions of V , i.e. the vectors that are the
solutions of (I).
The Node-Node model for GPP-SC can be described as follows. Denoting 1 the
n-vector with all components equal to 1, for every node u ∈ V and for the cluster C
that contains u, the incidence vector yC is equal to the n-vector 1−χu, where χu is
the n-vector with components defined for all v ∈ V as:

χuv = x|uv| =

xuv if u < v,
xvu if u > v,
0 if u = v,

∀v ∈ V.

Now the constraint G(yC) ≤ 0 to be satisfied by every cluster C in the solution can be
equivalently reformulated as the n separate constraints G(1−χu) ≤ 0, for all u ∈ V .
Denoting gu(x) = G(1− χu), for all u ∈ V , the Node-Node model for GPP-SC is:

(IP)

min
∑

(u,v)∈E

luvxuv

s.t. ∀(u, v, w) ∈ T
xuv + xuw ≥ xvw (1)

xuv + xvw ≥ xuw (2)

xvw + xuw ≥ xuv (3)

gu(x) ≤ 0 ∀u ∈ V (4)

xuv ∈ {0, 1} (u, v) ∈ En
Observe that assuming G nondecreasing with respect to yC implies that each pseu-
doboolean function gu : {0, 1}n → R+ should be nonincreasing with respect to
x (note that gu actually only depends on the subset of variables xij such that either
i = u or j = u). Let (IP) denote the continuous relaxation of (IP). This formulation
has O(n2) variables and O(n3) constraints.
Variants of the above graph partitioning problem with various additional constraints
have already been considered by several authors [33], [58], [43], [11]. These works

3.2. IMPROVED 0/1 PROGRAMMING MODEL FOR GPP-SC 29

proposed branch-and-bound or branch-and-cut algorithms which are all based on
(IP) enhanced by using various types of valid inequalities. Consequently, these
algorithms have to solve repeatedly the continuous relaxation (IP) of (IP). As already
mentioned above, the (IP) model does not take advantage of the possible sparsity
of the graph under consideration: it always requires O(n3) constraints, even in the

case m � n(n−1)
2

. Although the latter is just a standard linear program with a
polynomial number of constraints, it was reported in the literature (e.g. [30],[11])

that it is rather difficult to solve in the presence of all the 3

(
n
3

)
triangle inequalities

even for small values of n (i.e. n ≤ 20). In the next section, we will show that we
can obtain an equivalent formulation for (IP) and (IP) with only 3m(n− 2) triangle

inequalities, instead of 3

(
n
3

)
as classically.

As will become apparent in the sequel, the above formulation (IP) is quite general
and encompasses many possible variants of graph partitioning. Depending on the
type of problem considered, the functions gu(x) involved in constraint (4) can be
linear or nonlinear. In the latter case, solving (IP) with a MILP solver requires
linearization of these functions (this will be the case of GPCC for instance, see
section 6.2 in the computational section). However, it should be stressed that all
the results in the forthcoming sections 3 and 4 concerning the reduction of the
number of triangle inequalities will be applicable independently of the linearization
technique used.

3.2 Improved 0/1 programming model for GPP-

SC

We now process to show that, for the case of sparse graphs, the number of triangle
inequalities can be significantly reduced while preserving the equivalence both for
(IP) and (IP). The idea is instead of considering all triples of T , we only consider
those such that at least one pair of nodes forms an edge in E. Precisely, let T ′ be
the family of these triples, i.e. T ′ = {(u, v, w) : u < v < w ∈ V and at least one of
the edges (u, v), (u,w) and (v, w) ∈ E}. Then the reduced programming model is
obtained from (IP) with the triangle inequalities expressed only for the triples in T ′

(RIP)

min
∑

(u,v)∈E

luvxuv

s.t. ∀(u, v, w) ∈ T ′

xuv + xuw ≥ xvw (5)

xuv + xvw ≥ xuw (6)

xvw + xuw ≥ xuv (7)

gu(x) ≤ 0 ∀u ∈ V (8)

xuv ∈ {0, 1} (u, v) ∈ E
xuv ∈ [0, 1] (u, v) ∈ En\E

30CHAPTER 3. IMPROVED COMPACT FORMULATIONS FOR SPARSE GRAPHS

It is clear that |T ′ | ≤ m(n− 2) thus the number of triangle inequalities in (RIP) is
at most 3m(n − 2). The continuous relaxation of (RIP) is denoted (RIP). Due to
this reduction of the triangle inequalities, (RIP) will obviously be more interesting
than (IP) for LP solvers when applied to sparse graphs.
Given a point x ∈ R|En|, we note xE the restriction of x on R|E| i.e. the components
of x whose index are in E. We will show the following main lemma.

Lemma 3.2.1. Given a point xr ∈ [0, 1]|En| satisfying the inequalities (5-8). There

always exists a point x ∈ [0, 1]|En| satisfying the inequalities (1-4) such that xE = xrE.

To prove Lemma 3.2.1, let us specify how to construct x from xr:

Let us consider the graph G = (V,E) where the edges in E are weighted
by xrE and let puv denote the value of the shortest path in G between

u and v with respect to weights xrE. Then x ∈ [0, 1]|En| is defined as:
xuv = min{1, puv} for all (u, v) ∈ En.

Before showing that the resulting x is feasible for (IP), let us prove the following
proposition.

Proposition 3.2.2. xuv ≥ xruv for all (u, v) ∈ En.

u0 ≡ u

u1

u2

u3

u4

u5 u6

u7 ≡ v

Figure 3.1: A example of triangularization for a path uv.

Proof. Let us consider any pair (u, v) and suppose that {u ≡ u0, . . . , up ≡ v} is
the shortest path in G between (u, v) with respect to weights xrE. Let us consider
successively the triangles composed of vertex u0 and an edge of the shortest path as
showed in Figure 4.1. Since each of these triangles contains at least one edge in E,
xr satisfies the triangle inequalities (5-7) issued from these triangles. We want to
show that xr|u0up| ≤

∑p
η=1 x

r
|uη−1uη |. In fact, by induction:

• If p = 1, it is obvious that xr|u0u1| = xr|u0u1|.

• If p = 2, the inequality xr|u0u2| ≤ xr|u0u1|+x
r
|u1u2| is one of the triangle inequalities

(5-7) for the triple (u0, u1, u2) that is verified by xr.

3.2. IMPROVED 0/1 PROGRAMMING MODEL FOR GPP-SC 31

• Assume that the inequality was satisfied for p = pr for some pr ≥ 2, i.e. that

xr|u0up| ≤
pr∑
η=1

xr|uη−1uη |

We will show that it is also true for p = pr + 1. In fact, one of the triangle
inequalities for the triple (u0, upr , upr+1) gives

xr|u0upr+1| ≤ xr|u0upr | + xr|uprupr+1|

By combining with the induction hypothesis we obtain

xr|u0up| ≤
pr+1∑
η=1

xr|uη−1uη |.

As u0 = u, up = v and
∑p

η=1 x
r
|uη−1uη | = puv, we deduce that xruv ≤ min{1, puv} =

xuv.

We are now ready to provide a proof for Lemma 3.2.1.

Proof of Lemma 3.2.1. We prove that the point x constructed as above from xr

verifies the inequalities (1-4) and in addition xE = xrE.
We prove first that x satisfies the triangle inequalities (1-3). We only need to prove
that x satisfies (1), by symmetry, x satisfies also (2) and (3). Let us consider any
triple (u, v, w) in T and suppose that puv, pvw and puw are respectively the shortest
path lengths in G between (u, v), (v, w) and (u,w) with respect to weights xrE. Note
that the union of two shortest paths between (u, v) and (u,w) is also a path between
(v, w), thus we have puv+puw ≥ pvw. Hence min{1, puv}+min{1, puw} ≥ min{1, pvw}
which implies inequality (1).
We now show that x satisfies the inequalities (4). Indeed, as g is nonincreasing, we
have gu(x) ≤ gu(x

r) ≤ 0 for all u ∈ V .
Finally, we show that xE = xrE, i.e. we show that if (u, v) is an edge in E, the
shortest path in G between u and v with respect to xrE is xruv. This is shown by
contradiction. Suppose that (u, v) is an edge in E and suppose that the shortest
path in G between u and v with respect to xrE is {u ≡ u0, . . . , up ≡ v} 6= (u, v). From
the construction of x and Proposition 3.2.2 we have puv =

∑p
η=1 x

r
|uη−1uη | > xruv. A

contradiction. Hence we conclude that xE = xrE.

We now show the main result of this section:

Theorem 3.2.3. (IP) and (RIP) have the same optimal value.

Proof. The result of the theorem readily follows from the Lemma 3.2.1 using the
fact that xE = xrE.

A similar result holds for (IP) and (RIP) since in the construction of x from xr,
xrE ∈ {0, 1}|E| leads x ∈ {0, 1}|En|.

Corollary 3.2.4. (IP) and (RIP) have the same optimal value.

32CHAPTER 3. IMPROVED COMPACT FORMULATIONS FOR SPARSE GRAPHS

3.3 Extension to the case when the number of

clusters is bounded from above

In this section, it will be shown that part of the above results can be extended to
the case when the number of clusters is bounded from above by a given constant.
Note that the limitation on the number of clusters is somewhat conflicting with
the monotone nondecreasing property of the cluster constraints in GPP-SC due to
the fact that the number of clusters will increase as the number of nodes in the
clusters is decreased. Therefore Theorem 3.2.3 seems to be non applicable in this
case. Nevertheless, we prove in the following that the result of Corollary 3.2.4 is still
applicable. To achieve this and exploiting some analogies with the analysis in [1],
we introduce a vector z ∈ {0, 1}|V | that is defined as follows: zi = 1 if and only if i
is the smallest node index in the cluster that contains i, in this case the node i is
called a representative. Therefore z can be computed from x as, for all i ∈ V ,

zi =

 1 if
∑

j∈V, j<i

(1− xji) = 0,

0 otherwise.

For a given positive integer k, the Node-Node model for GPP-SC with at most k
clusters is then:

(kIP)

min
∑

(u,v)∈E

luvxuv

s.t. ∀(u, v, w) ∈ T
xuv + xuw ≥ xvw

xuv + xvw ≥ xuw

xvw + xuw ≥ xuv

gu(x) ≤ 0 ∀u ∈ V (8)

zu − xvu ≤ 0 ∀u, v ∈ V, v < u (9)

zu +
u−1∑
v=1

(1− xvu) ≥ 1 ∀u ∈ V (10)

n∑
u=1

zu ≤ k (11)

xuv ∈ {0, 1} (u, v) ∈ En
zu ∈ [0, 1] u ∈ V

Constraints (8) are the same as in (IP) and as in (RIP) where gu : {0, 1}n → R+ is
a nonincreasing pseudoboolean function. Constraints (9) ensure that every cluster
contains no more than one representative (i.e. no more than one node i such that zi =
1). Constraints (10) guarantee that a cluster contains at least one representative.
Finally, constraint (11) ensures that the number of clusters is no more than a given
positive integer number k. The reduced programming model (kRIP) is obtained by
replacing the set of triples T with T ′ .

3.3. EXTENSION 33

Lemma 3.3.1. Given (xr, zr) ∈ {0, 1}|En| × {0, 1}|V | a feasible point for (kRIP). It
is always possible to find a feasible point (x, z) ∈ {0, 1}|En|×{0, 1}|V | for (kIP) such
that xE = xrE.

The main idea of the proof of this lemma is quite similar to the one given in Section
3.2, except for the construction of (x, z) from (xr, zr) which is now done as follows:

Assume that (xr, zr) is a feasible point of (kRIP). We can construct a
partition P of V as follows. For node i from 1 to n = |V |, if zi = 1 (i.e.
i is a representative) then for all node j from i+ 1 to n, j is assigned to
the same cluster as i if and only if j has not been assigned before and
xrij = 0. The point (x, z) ∈ {0, 1}En × [0, 1]V is then computed from the
partition P as:

for all (i, j) ∈ En, xij =

{
0 if i and j belong to the same cluster,
1 otherwise.

and

for all i ∈ V, zi =

1 if i is the smallest node index in the

cluster that contains the node i ,
0 otherwise.

To show that such a point (x, z) is feasible point for (kIP), we need the following
proposition :

Proposition 3.3.2.

(1) Node j > i is assigned to the same cluster as the representative i if and only
if i is the smallest index of a representative such that xrij = 0.

(2) z = zr.

(3) For every representative i ∈ V (i.e. zi = 1), xji = xrji = 1, for all j ∈ V, j < i
and xij ≥ xrij, for all j ∈ V, j > i.

Proof. The proof directly follows from the construction of (x, z).

We are now ready to provide a proof for Lemma 3.3.1.

Proof of Lemma 3.3.1. We prove that (x, z) constructed as above from (xr, zr) is a
feasible point of (kIP) and in addition that xE = xrE.
The point (x, z) is deduced from the partition construction and thus x satisfies the
triangle inequalities whereas z satisfies the representative constraints (9) and (10).
As zr satisfies the constraint (11) in (kRIP) and z = zr (Proposition 3.3.2 item (2)),
z also satisfies this constraint. For every representative i ∈ V, zi = 1, Proposition
3.3.2 item (3) guarantees that constraints (8) are satisfied for i, since gi(x

r) ≤ 0 and
gi is a nonincreasing function. For every node u that is not a representative, assume
that u belong to the cluster with the representative i, we have gu(x) = gi(x) ≤ 0 as
they are defined on the same cluster. Thus all the constraints of (kIP) are satisfied
by (x, z) and we can conclude that (x, z) is a feasible point for (kIP).
We now show that xE = xrE (i.e. xuv = xruv, for all (u, v) ∈ E). Indeed, for all
(u, v) ∈ E:

34CHAPTER 3. IMPROVED COMPACT FORMULATIONS FOR SPARSE GRAPHS

• if xruv = 1, u and v are not in the same cluster since otherwise, there would
exist a cluster with i as representative such that xriu = xriv = 0, and the triangle
inequality xriu + xriv ≥ xruv would be violated. Hence xuv = xruv = 1.

• if xruv = 0, u and v will be assigned to the same cluster. Indeed, we remark that
for any representative i such that xriu = 0, the triangle inequality xriu+xruv ≥ xriv
implies xriv = 0, and reciprocally for any representative i such that xriv = 0,
the triangle inequality xriv + xruv ≥ xriu implies xriu = 0. Due to this remark,
if i is the smallest representative index such that xriu = 0, then i is also the
smallest representative index such that xriv = 0. By Proposition 3.3.2 item
(1), u and v are then assigned to the same cluster with i as representative and
hence xuv = xruv = 0.

A similar result as Corollary 3.2.4 now holds for (kIP) and (kRIP).

Theorem 3.3.3. (kIP) and (kRIP) have the same optimal value.

Proof. The proof of the theorem follows trivially from the Lemma 3.3.1 by the fact
that xE = xrE.

3.4 Computational experiments

In this section, we present computational results obtained with the improved com-
pact formulation (RIP) as compared with the standard compact formulation (IP)
for both variants GPKC and GPCC of GPP-SC. To carry out the computational
comparisons, a sufficiently diverse set of test instances of relatively small size (typ-
ically less than 100 nodes) was needed. However (a) such instances for GPKC are
only very scarce in the existing literature (e.g only four instances with n < 100 can
be found in the DIMACS data set [4]); (b) there is no data set corresponding to the
sparse instances for GPCC. Therefore it was decided to generate the required test
set for GPKC and GPCC in the following way:

• For a choice of graph type and for a given number of nodes n and number of
edges m, the graph is firstly generated. To verify our results in the present
paper, four well known sparse graph types are chosen to be generated that are :
series-parallel graph, planar grid graph, toroidal grid graph and random graph.
Except the planar grid graphs and the toroidal grid graphs that have fixed
structure, the series-parallel graphs are generated using a generator named
Task Graphs For Free (TGFF) [53] and the random graphs are generated by
picking edges uniformly at random until the number of edges reaches m, and
testing connectedness.

• The edge weights tuv, (u, v) ∈ E and the node weights wu, u ∈ V are drawn
independently and uniformly from the interval [1, 1000].

3.4. COMPUTATIONAL EXPERIMENTS 35

• The upper bounds of the knapsack constraints W and of the capacity con-
straints T are chosen in such a way as to ensure that the generated instances
will not be ”too easy” to solve. More precisely we used METIS[41] to create
an ”optimal” partition of the graph with k clusters that we call the initial par-
tition, we then do 1000 random perturbations of this partition. The bounds
W and T are then chosen so that only 10% of these partitions correspond to
feasible solutions.

All experiments are run on a machine with Intel Core i7-3630QM 2.40GHz processor
and 16 GB of RAM. The solver CPLEX 12.6 is used to solve respectively (IP), (IP),
(RIP) and (RIP). CPLEX pre-solve is switched off as is classically done to avoid
possible undesirable side-effects due to the uncontrolled behaviour of this ”black-box”
procedure. All computation times are CPU seconds and the computation times of
(IP) and (RIP) are subject to a time limit of 12000 seconds while the computation
times of (IP) and (RIP) are subject to a time limit of 3600 seconds.

3.4.1 Experimental results for GPKC

The graph partitioning problem under knapsack constraints (GPKC) has been de-
fined in Introduction section as a special case of GPP-SC. The problem contains
knapsack constraints of type

∑
v∈C wv ≤ W for each cluster C in the partition. In

the Node-Node model, knapsack constraints can be written as:∑
v∈V

(1− x|uv|)wv ≤ W, ∀u ∈ V (12)

These constraints express that for all u ∈ V , the total weight of the cluster that
contains u is bounded by a given constant W . Note that the total weight of each
cluster is equal to sum of the weights of nodes contained in it. Note that in our
formulation, all pairs in En are ordered thus the nodes u and v are in the same
cluster or not, determined by x|uv|, i.e. xvu if v < u, xuv if v > u and 0 if u ≡ v.
In Table 3.1 we report the results obtained for (IP) and (RIP) when applying on
GPKC instances, denoted (IPKC) and (RIPKC) respectively and for their linear
relaxations (IPKC) and (RIPKC). In our experiments, each instance belongs to
one of four graph types: series-parallel graphs, planar grid graphs, toroidal grid
graphs and random graphs. Series-parallel graphs are highly sparse while random
graphs are denser graphs with m

n
≈ (4 to 8). As for each value of n,m, we have

five instances, the first two columns in this table report the average CPU time to
obtain the solution of (IPKC) and its linear relaxation (IPKC), the third and fourth
columns show the average CPU time to obtain the solution of (RIPKC) and its
continuous relaxation (RIPKC), and the last column gives the average value of the
integrality gap.
As can be seen from Table 3.1, (RIPKC) and (RIPKC) are much better than (IPKC)
and (IPKC) in terms of computation times. The difference becomes more significant
as the number of nodes increases. With series-parallel graphs, the gain of (RIPKC)
and (RIPKC) is extremely clear as we report a reduction of solution time by a
factor 10 to 50 for (RIPKC) as compared with (IPKC) and by a factor 3 to 60
for (RIPKC) as compared with (IPKC). The difference naturally decreases as m

36CHAPTER 3. IMPROVED COMPACT FORMULATIONS FOR SPARSE GRAPHS

increases. For instance with random graphs, we report a reduction of solution time
by a factor 3 to 15 for (RIPKC) as compared with (IPKC) and by a factor 3 for
(RIPKC) as compared with (IPKC). There are also instances for which CPLEX is
not even capable to solve the continuous relaxation with the classical formulation
within the prescribed time-limits but succeeds at finding an optimal integer solution
with our reduced formulation (series-parallel (80,130) and bigger, planar grid 8×10
and larger, toroidal grid 8×10). With (RIPKC) we can solve exactly large instances,
e.g, (n = 140) for series-parallel graphs, (n = 110) for planar grid graphs, (n = 80)
for toroidal grid graphs and (n = 50) for random graphs.

Also it can be seen that the continuous relaxation (RIPKC) is rather strong for
GPKC, especially for instances related to series-parallel and planar grid graphs (6.5%
on average). For toroidal grid and random graphs, the gaps is slightly bigger (10.5%
on average).

Compared efficiency with and without upper bound on the
number of clusters

Computation experiments are also made to compare the efficiency of solving GPKC
with and without upper bound on the number of clusters. To highlight the differences
between them, the experiments are done in the following way. For any GPKC
instance i, we first solve (RIPKC), the corresponding number of clusters of the
optimal solution is denoted k∗i . We then solve (kRIPKC) (i.e. (kRIP) applying on
GPKC instances) for the same instance i in adding the upper bound on the number
of clusters ki. It is obvious that if ki ≥ k∗i , the solutions of (RIPKC) and (kRIPKC)
are identical. Computational results are shown in Table 3.2 for ki = k∗i − 1 and
ki = k∗i − 2 . For each value of n,m, five instances are solved. The third and the
fourth columns in the table report the CPU time to obtain the optimal solution
using (RIPKC) and the number of clusters in the optimal solution, the fifth and
the sixth columns report the CPU time to obtain the optimal solution using ((k∗-
1)RIPKC) and ((k∗-2)RIPKC) respectively. The acronym ”NF” indicates a non-
feasible instance, and the computation time to prove the infeasibility is shown in
parenthesis.

As can be seen from Table 3.2, while all instances can be solved for (RIPKC), there
are only part of instances can be solved for (kRIPKC) within the time limit of 12000
seconds. Moreover, for the instances that can be solved for both models, (kRIPKC)
is from 3 to 6 times slower than (RIPKC). A possible explanation of this is as follows.
From the results in Table 3.2, it is seen that for all instances considered, the number
of clusters k∗ in the optimal solution to (RIPKC) is close to its minimum possible
value. Indeed, for k = k∗ − 1, about 50% of the instances become infeasible, and
for k = k∗ − 2, about 90% of the instances turn out to be infeasible. The observed
increase in the computation times is thus due at least in part, to the fact that, when
decreasing k, the instances become close to the boundary between feasibility and
infeasibility.

3.5. CONCLUSIONS 37

3.4.2 Experimental results for GPCC

In this section we present the computation results for (IP) and (RIP) on GPCC
instances, denoted (IPCC) and (RIPCC) respectively, and for their continuous re-
laxation (IPCC) and (RIPCC). Let us rewrite the capacity constraints proposed
in [32] in the Node-Node model:∑

(v,w)∈E

tvwx|uv|x|uw| ≥
∑

(v,w)∈E

tvw − T, ∀u ∈ V (13)

It expresses the fact that the complement of the capacity of the cluster containing u
should be greater than the total capacity of the graph minus T . This is equivalent
to say that the capacity of the cluster containing u should be bounded by T .
We observe that the capacity constraint (13) is in non-convex quadratic form for
which CPLEX cannot be used. We therefore have to transform the capacity con-
straints to linear form via some linearization techniques. We note that the results of
the present paper remain applicable whatever linearization technique used. In the
computational experiments presented below, we use the classical Fortet lineariza-
tion [29], which is both simple and known to achieve a good compromise between
the number of additional variables needed and the strength of the resulting relax-
ation. Application of this technique to GPCC leads to introduce new variables yuvw
to represent each product x|uv|x|uw| thus the constraint (13) becomes:

∑
(v,w)∈E

tvwyuvw ≥
∑

(v,w)∈E

tvw − C, ∀u ∈ V

max
{

0, x|uv| + x|uw| − 1
}
≤ yuvw ≤ min

{
x|uv|, x|uw|

}
Hence our quadratic 0-1 formulations for GPCC become a mixed integer linear
program that can be solved more easily by CPLEX. Note that the constraint (13)
is the same for (IPCC), (RIPCC), (IPCC) and (RIPCC) so that the linearization
does not influence the comparison between them.
Since usually the traffic matrix for a SONET/SDH optical networks are quite dense,
we generate instances for GPCC with number of edges m

n
≈ (1.5 to 8), the results

are shown in Table 3.3.
As we can see in Table 3.3 , (RIPCC) and (RIPCC) is much better than (IPCC)
and (IPCC) in terms of computation times. We report a reduction of solution time
by a factor 3 to 18 for (RIPCC) as compared with (IPCC) and by a factor about
4 for (RIPCC) as compared with (IPCC). The difference is even more clear when
increasing the number of nodes. The instances used in this section feature higher
density than those in the previous section thus we can only solve those up to n = 80.
We finally observe that the quality of the continuous relaxation of the Node-Node
model for GPCC is not as good as for the GPKC problem: the value of the gap is
observed to be in the range 10.4% to 18.1%.

3.5 Conclusions

We have given an improved compact formulation for a wide class of graph parti-
tioning problem using O(nm) triangle inequalities instead of O(n3) in the classical

38CHAPTER 3. IMPROVED COMPACT FORMULATIONS FOR SPARSE GRAPHS

formulation, while preserving equivalence, both in the integral version and in the
relaxed version. Numerical experiments comparing our improved formulation with
the classical formulation have been presented for two problems: the graph partition-
ing problem under knapsack constraints and the graph partitioning problem under
capacity constraints. These numerical results have shown that solution times are
reduced drastically from 3 to 50 times with our improved formulation. There are
instances for which the LP solver is not even capable of solving the continuous relax-
ation with the classical formulation but succeeds at finding optimal integer solutions
with our reduced formulation.
The largest instances solved to exact optimality with the approach of the present
chapter are limited in size (n ≤ 140, m ≤ 280) while practical applications would
require handling much bigger problems. For bigger problems, only approximate
(heuristic) solutions can be hoped for, and a key issue in this context is to validate
the approximate solutions obtained by computing lower bounds. This is the subject
addressed in the next chapter.

3.5. CONCLUSIONS 39

Table 3.1: Computation results of (IPKC) and (RIPKC) for sparse graphs.

graph types n,m (IPKC) (IPKC) (RIPKC) (RIPKC) Cont.Rlx

CPU CPU CPU CPU GAP(%)
series-parallel 22, 38 2.18 0.22 0.65 0.02 6.7
series-parallel 25, 40 3.43 0.55 0.67 0.04 8.4
series-parallel 27, 45 6.36 0.63 0.38 0.05 6.1
series-parallel 30, 50 19.36 1.96 2.12 0.10 5.6
series-parallel 35, 60 34.25 2.04 3.10 0.13 4.3
series-parallel 40, 65 114.3 6.40 5.13 0.27 4.5
series-parallel 45, 75 486.1 11.63 8.28 0.35 7.2
series-parallel 50, 80 - 23.48 15.32 0.85 4.7
series-parallel 60, 90 - 186.33 33.61 3.45 4.2
series-parallel 80, 130 - - 83.38 10.67 5.8
series-parallel 100, 170 - - 95.66 25.12 4.1
series-parallel 120, 180 - - 588.58 68.26 5.2
series-parallel 130, 200 - - 3276.3 98.27 2.7
series-parallel 140, 210 - - 8783.4 155.66 5.9

planar grid 4×10 40, 66 120.3 5.78 5.41 0.36 6.3
planar grid 5×10 50, 85 - 26.96 16.8 0.89 6.3
planar grid 6×10 60, 104 - 174.31 61.4 1.72 5.7
planar grid 7×10 70, 123 - 951.72 123.94 3.26 6.1
planar grid 8×10 80, 142 - - 427.7 12.19 7.5
planar grid 9×10 90, 161 - - 1478.2 15.77 8.0
planar grid 10×10 100, 180 - - 2147.2 26.51 5.4
planar grid 11×10 110, 199 - - 8044.8 40.78 7.3
toroidal grid 4×10 40, 80 424.4 6.39 18.37 0.44 10.1
toroidal grid 5×10 50, 100 - 36.68 117.29 1.03 10.6
toroidal grid 6×10 60, 120 - 199.63 431.51 2.08 8.2
toroidal grid 7×10 70, 140 - 1233.61 3361.7 3.66 9.7
toroidal grid 8×10 80, 160 - - 10934.5 14.23 11.6

random graph 22, 120 58.8 0.54 16.75 0.15 9.3
random graph 25, 150 120.2 1.13 34.34 0.7 12.5
random graph 27, 150 379.5 1.25 139.7 0.49 10.8
random graph 30, 200 1436.8 2.79 458.5 0.98 8.4
random graph 35, 250 - 7.97 945.6 2.65 10.5
random graph 40, 280 - 14.5 3326.9 4.97 10.2
random graph 45, 200 - 19.0 3884.2 1.47 12.7
random graph 50, 200 - 35.88 9024.8 2.32 11.4

40CHAPTER 3. IMPROVED COMPACT FORMULATIONS FOR SPARSE GRAPHS

Table 3.2: Comparison between (RIPKC) and (kRIPKC) for random sparse graphs.
NF indicates non-feasible instances.

n,m Instance (RIPKC) ((k∗-1)RIPKC) ((k∗-2)RIPKC)

number CPU k∗ CPU CPU
#1 276 3 NF(0.12) NF(0.13)
#2 402 5 NF(0.14) NF(0.12)

30, 200 #3 452 5 1395 NF(0.15)
#4 507 6 1558 NF(0.17)
#5 558 8 1681 1847
#1 733 4 NF(0.22) NF(0.17)
#2 911 5 NF(0.21) NF(0.21)

35, 250 #3 906 5 3286 NF(0.38)
#4 992 6 NF(0.25) NF(0.20)
#5 1071 7 4492 NF(0.28)
#1 2954 4 NF(0.30) NF(0.20)
#2 3038 5 NF(0.29) NF(0.31)

40, 280 #3 3353 6 9822 NF(0.35)
#4 3827 7 9376 NF(0.35)
#5 4158 9 >12000 >12000
#1 3535 5 NF(0.39) NF(0.33)
#2 3642 5 NF(0.39) NF(0.30)

45, 200 #3 3701 7 >12000 NF(0.43)
#4 3936 9 >12000 NF(0.41)
#5 4053 10 >12000 >12000

Table 3.3: Computation results of (IPCC) and (RIPCC) for random graphs.

n,m (IPCC) (IPCC) (RIPCC) (RIPCC) Cont.Rlx

CPU CPU CPU CPU GAP(%)
22, 120 68.3 0.64 17.8 0.15 15.0
25, 125 156.9 1.1 37.3 0.32 10.4
27, 150 344.5 1.4 107.3 0.55 13.7
30, 200 1944.2 3.64 438.5 1.23 14.8
35, 200 - 9.56 1025.9 3.65 16.2
40, 250 - 20.67 3853.4 6.73 18.1
45, 200 - 28.39 3328.5 1.81 16.7
50, 200 - 45.31 11038.6 2.88 15.2
60, 150 - 327.63 5291.4 4.36 12.3
70, 140 - - 10038.2 5.05 11.8
80, 120 - - 8615.7 9.49 14.1

Chapter 4

Cutting plane approach for large
size graphs: Lower bounds and
efficient generation of heuristic
solutions

Graph partitioning problem (e.g. GPP-SC) is known to be NP-hard in general. So
in the last years a lot of effort has been spent in the development of fast and good
heuristics for the problem, a recent survey is given in [13]. These heuristics often
can handle rather large graphs with thousand nodes and deliver good solutions. As
a natural requirement, the validation of the heuristics need to be verified.

Exact solutions can be used as important factors to validate of heuristics. However,
only a little expense has been done in the development of exact algorithms [28], [58],
[39], [11]. From the NP-hardness fact it is clear that generally only relatively small
graphs can be solved exactly. To verify the validation of heuristics for large graphs,
the linear relaxation of the 0/1 programming formulations is usually used to obtain
lower bound for the problem. Among the programming models, the Node-Node
model is known to give a good quality of the bound [11], [58], [43], [51]. Although
Chapter 3 shows that one can reduce the number of triangle inequalities in the
Node-Node model to O(nm) without weakening the linear relaxation, the number of
variables is still in order O(n2) that quickly becomes extremely large as n increases
and even the continuous relaxation turns out to be difficult to solve. It is therefore
interesting to be able to reduce intrinsically the number of variables of the problem
in preserving the quality of linear relaxation.

We consider in this chapter an alternative programming model representing the node
partitions of a graph partitioning problem that makes use of m decision variables
(xe)e∈E which are equal to 1 iff the end-nodes of e are in different clusters, together
with the cycle inequalities defined on them [5], [15]. We prove that the node parti-
tions and thus the knapsack constraints can be defined using all pair shortest path
of G respected to the weights (xe)e∈E. The result is a m variable programming
model for GPP-SC. This model is referred to as the cycle model and it is shown to
be equivalent to the Node-Node model. Obviously, this model yields considerable
improvement in case of sparse graphs where m � n(n−1)

2
. Note that since there is

41

42 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

a priori no known polynomial upper bound (in terms of n and m) on the number
of cycles and of paths of the graph G, the cycle model have a priori an exponential
number of inequalities thus a cutting plane algorithm is needed to speed up the
computations. We introduce a such algorithm which can determine both violated
cycle inequalities and violated knapsack constraints in using all pair shortest path
of G respected to the weights (xe)e∈E.

Computational experiments show that, when applying cutting plane algorithm, the
cycle model outperform the Node-Node model with triangle inequalities in terms
of computation time. With the new model, the linear relaxation of GPKC can be
solved optimally for the large size graph of thousands nodes (see Section 4.4).

In Section 4.3, we study a progressive aggregation procedure that can build
feasible partitions of the graph G satisfying the knapsack constraints in GPKC.
Using this method and the new cycle model, we introduce an efficient generation
of heuristic solutions. Computational results are discussed to show the quality of
the new generation. We are not aware of any existing heuristic approach capable
of consistently producing solutions with such guarantees of quality for graphs of
comparable size.

In this chapter, we focus our studies on the special case GPKC of GPP-SC.
However, it should be stressed that all the results in the forthcoming Section 4.2
and 4.3 will be applicable for all the class GPP-SC.

4.1 Preliminary: Node-Node formulation for GPKC

The Node-Node model for GPKC can be obtained as a special case of the Node-Node
model for GPP-SC that was described in Chapter 3. The model makes use of n(n−1)

2

binary variables xuv for all the pairs of nodes u, v ∈ V , u < v, such that

xuv =

{
0 if u and v belong to the same cluster,
1 otherwise.

GPKC contains additional node weights constraints (of knapsack type) of the
form

∑
v∈Vi wv ≤ W for all i = 1, . . . , r and W is a given upper limit of the total

node weight of the cluster. Using the above variable, the knapsack constraints can
be formulated as:

∑
j∈V, j<i

wj(1− xji) +
∑

j∈V, j>i

wj(1− xij) ≤ W − wi ∀i ∈ V (4.1)

4.2. AM -VARIABLE FORMULATION FORGPKCAND ITS SOLUTION VIA CUTTING-PLANES43

Hence the Node-Node formulation for GPKC is:

(NN)

min
∑

(u,v)∈E

tuvxuv

s.t. ∀(u, v, w) ∈ T ′

xuv + xuw ≥ xvw

xuv + xvw ≥ xuw

xvw + xuw ≥ xuv∑
j∈V, j<i

wj(1− xji) +
∑

j∈V, j>i

wj(1− xij) ≤ W − wi ∀i ∈ V

xuv ∈ {0, 1} ∀(u, v) ∈ En
Let LNN be the linear relaxation of NN. The number of constraints in NN is O(nm)
and thus it represents a compact 0-1 formulation for GPKC.

4.2 A m-variable formulation for GPKC and its

solution via cutting-planes

4.2.1 A m-variables formulation for GPKC

Define π = (Vi, i = 1, . . . , r) to be a partition of G. We denote E(π) the set of edges
whose end-nodes are in two different clusters in the partition π, i.e.:

E(π) = {(u, v) ∈ E|{u, v} * Vi,∀i ∈ {1, . . . , r}}

Define the incidence vector x(π) as:

xe(π) =

{
1 for e ∈ E(π)
0 otherwise.

Reciprocally, given an incidence vector (xe)e∈E, we can build a partition π as follows:

Let G
′

be a copy of G where the edges are weighted by (xe)e∈E. For
all pair of node i and j, let Pij be the set of all possible i − j paths in
G
′
. For all part pij ∈ Pij, let xpij be its total path weight defined as

xpij =
∑

(u,v)∈pij xuv. Hence node i and node j are assigned to the same
cluster iff min

pij∈Pij
xpij = 0.

The so-called cycle inequalities together with the binary constraints can be used to
define the partitions of a graphG [5]. They will be used here as part of the constraints
for formulating GPKC. Denoting C the set of all cycles of G, these constraints can
be written as:

(IC)

{
xe − xC\e ≤ 0 ∀e ∈ C, ∀C ∈ C
xe ∈ {0, 1} ∀e ∈ E

Note that there is no known polynomial upper bound (in terms of n and m) on
the number of cycles of G thus there is no known polynomial upper bound on the

44 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

number of cycle inequalities in (IC). It has been shown by Chopra [15] that for series-
parallel graphs, the linear programming relaxation of (IC) characterize completely
the convex hull of the incidence vectors of all the possible partitions of V , i.e. the
vectors that are the solutions of (IC).
GPKC contains additional node weight constraints (of knapsack type) of the form∑

v∈Vi wv ≤ W for all i = 1, . . . , r and W is a given upper limit of the total node
weight of the cluster. Using the above construction of the partition from a incidence
vector, the knapsack constraints can be formulated as, for all node i ∈ V :∑

j∈V, j 6=i

wj(1−min{1, min
pij∈Pij

xpij}) ≤ W − wi (4.2)

Let p0 be a virtual path that is defined as xp0 = 1, then (4.2) can be rewritten as,
for all node i ∈ V : ∑

j∈V, j 6=i

wj(1− min
pij∈Pij∪{p0}

xpij) ≤ W − wi (4.3)

Note that the left-hand side of (4.3) is a nonincreasing function with respect to xpij ,
thus (4.3) is equivalent to the following linear system, for all node i ∈ V :∑

j∈V, j 6=i

wj(1− xpij) ≤ W − wi, ∀pij ∈ Pij ∪ {p0} (4.4)

Hence the 0/1 linear formulation for GPKC is:

(ICP)

min
∑
e∈E

texe

s.t. xe − xC\e ≤ 0 ∀e ∈ C, ∀C ∈ C∑
j∈V, j 6=i

wj(1− xpij) ≤ W − wi ∀i ∈ V, ∀pij ∈ Pij ∪ {p0}

xe ∈ {0, 1} ∀e ∈ E

Let LCP be the linear relaxation of ICP. Note that the number of knapsack con-
straints in LCP is extremely large due to a large number of paths in G and due to
an exponential number of choices for the paths in each knapsack constraint. Hence
LCP turns out to be difficult to solve. A separation method may help to speed up
computation times.

Lemma 4.2.1. Given x ∈ [0, 1]|En| a feasible point of LNN then xE is a feasible
point of LCP. Reciprocally, given xc a feasible point of LCP, there always exists
x ∈ [0, 1]|En| a feasible point of LNN such that xE = xc.

Proof. ”⇒” Given x ∈ [0, 1]|En| a feasible point of LNN, Theorem 3.2.1 in Chap-
ter 3 shows that, using xE, we can build a partition of G satisfying the knapsack
constraints in GPKC. Hence xE is a feasible point of LCP.

”⇐” Given xc a feasible point of LCP, we can always build a partition of G using
the above construction. Constraints 4.4 in LCP show that this partition satisfies
the knapsack constraint in GPKC. Hence the point x ∈ [0, 1]|En| associated with this
partition is a feasible point of LNN. It is obvious that xE = xc.

4.2. AM -VARIABLE FORMULATION FORGPKCAND ITS SOLUTION VIA CUTTING-PLANES45

Using the Lemma 4.2.1, we can show the equivalent of LNN and LCP in the following
theorem:

Theorem 4.2.2. LNN and LCP have the same optimal value.

4.2.2 Solving the separation subproblem via shortest path
computations

We introduce in this section a polynomial separation method both for cycle con-
straints and for knapsack constraints in LCP. Given an intermediate incidence vector
(x̄e)e∈E ∈ [0, 1]|E|, the method is to determine the constraints that are most violated
by (x̄e)e∈E. Note that the cycle constraints and the knapsack constraints can be
written as:

xij − min
pij∈Pij

xpij ≤ 0 ∀(i, j) ∈ E∑
j∈V, j 6=i

wj(1− min
pij∈Pij
xpij<1

xpij) ≤ W − wi ∀i ∈ V (4.5)

The system (4.5) contains m + n constraint (polynomial in terms of m and n).
Let Ḡ be a copy of G where the edges are weighted by (x̄e)e∈E, the most violated
constraints in (4.5) can be determined using the all pair shortest paths on Ḡ that
can be computed in polynomial time. The violated constraints are integrated to the
intermediate formulation as follows:

• If some cycle constraint in (4.5) is violated for a edge (i, j) ∈ E, let p̄ij be the
path that verifies x̄p̄ij = min

pij∈Pij\{(ij)}
xpij (i.e. shortest path), hence the cycle

constraint xij − xp̄ij ≤ 0 is appended to the current formulation.

• If some knapsack constraint in (4.5) is violated for a node i ∈ V , for all j ∈ V
and j 6= i, let p̄ij be the path that verifies x̄p̄ij = min

pij∈Pij
xpij<1

xpij (i.e. shortest path),

hence the knapsack constraint
∑

j∈V, j 6=iwj(1−xp̄ij) ≤ W −wi is appended to
the current formulation.

The number of violated constraints which are added in each iteration is at most
m+ n and moreover these are the most violated constraints.

4.2.3 Efficient implementation of the cutting plane algo-
rithm

4.2.3.1 Eliminating constraints featuring largest slacks

Cutting-plane is a method frequently used to solve large linear problems featuring
huge number of constraints. Experiments show that, using a cutting-plane algorithm
on a linear formulation, the solvers make use of fewer constraints, as compared with
the complete formulation. Practically, the violated constraints are determined in
each iteration and part of them (or all of them) are integrated to the next iteration.

46 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

By doing so, we expect that only necessary constraints are used to solve the problem.
However, experiments show that, many unnecessary constraints are also included in
the course of the computations. We suggest here a method to remove as much as
possible the unnecessary constraints in each iteration and then limit the number of
constraints.

We focus our improvement on the knapsack constraints. The main idea being to
ensure that the number of knapsack constraints never exceeds k×m for same param-
eter k, typically chosen in the range [3, 5]. This is achieved by applying the following
simple rule : if, at some stage of the procedure, p knapsack constraints are already
present in the current formulation, and q violated inequalities are generated, then if
p+ q ≥ k ×m then p+ q − k ×m constraints having largest slacks are deleted.

4.2.3.2 Truncated shortest path computations

We provided a polynomial separation method for LCP using the computation of all
pair shortest path of G with respect to weights x. Although the all pair shortest
path can be computed in polynomial time, but when repeating this algorithm in each
iteration of the separation procedure, this may cause of large solution time for the
model. Computation results in Section 4.4 show that the shortest path computation
times are accounted for about 2/3 of the total computation times. Reducing the
computation time of shortest path algorithm is thus a necessity.

Note that the cycle constraints and the knapsack constraints can be written as:

xij − min

pij∈Pij
xpij<1

xpij ≤ 0 ∀(i, j) ∈ E

∑
j∈V, j 6=i

wj(1− min
pij∈Pij
xpij<1

xpij) ≤ W − wi ∀i ∈ V
(4.6)

It can be observed that only the paths that have weights less than 1 are necessary
for the separation procedure. This observation leads us to modify the shortest path
algorithm in the following ways:

• All paths are set to be 1 at the input.

• Only the paths that have weights less than 1 are computed.

• The paths that are not computed (i.e. the weights are more than 1), remain
of weight 1.

For all the numerical experiments in Section 4.4, we make use of Dijkstra’s shortest
path algorithm [?]. The truncated version of this algorithm (the original pseudo-code
can be found in [?]) can be presented as follows.

4.3. EFFICIENT COMPUTATION OF UPPER BOUNDS: HEURISTIC SOLUTIONS47

Result: Truncated-Dijkstra(Graph, source)
dist[source] ←− 0
create vertex set Q
for vertex v in Graph do

if v 6= source then
dist[v] ←− 1
prev[v] ←− UNDEFINED

end
Q.add-with-priority(v, dist[v])

end
while Q is not empty do

u ←− Q.extract-min()
if dist[u]=1 then

break the while loop
end
for neighbor v of u do

alt = dist[u] + length(u, v)
if alt < dist[v] then

dist[v] ←− alt
prev[v] ←− u
Q.decrease-priority(v, alt)

end

end

end
return dist[], prev[]

Algorithm 1: Truncated Dijkstra’s algorithm

This modification is denoted truncated shortest path algorithm. Generally, the
truncated algorithm contains less operations than the original ones thus it can be
computed in polynomial time. The complexity is unchanged since in the worst
case, all the paths are computed. However, in practice, the computation times are
significantly reduced (see Section 4.4).
In the computational experiments discussed in Section 4.4 below, the implementation
of LCP using the techniques in Section 4.2.3.1 and Section 4.2.3.2 is referred to as
iLCP (”improved LCP”).

4.3 Efficient computation of upper bounds: heuris-

tic solutions

NN and its equivalent ICP give a good quality of continuous relaxation (i.e. LNN
and LCP) [51], our experiments (see section 4.4) show that the gaps are less than
10% for series-parallel graphs and less than 20% for random graphs. Experiments
also show that for series-parallel graphs, the fractional solution vector x of LCP
contains many integer components (i.e. 0 and 1). This phenomenon leads us, in this
section, to find an efficient method of building feasible partitions (i.e. integer points
x†) of ICP from a solution incidence vector x of LCP on series-parallel graphs. Base

48 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

on x†, we obtain an upper bound for ICP and hence for GPKC.

4.3.1 Building feasible partitions: upper rounding proce-
dure (UR)

Let us show a basic deduction of x† from x as follows, for all xe, e ∈ E:

x†e =

{
0 if xe = 0
1 if xe > 0

We prove that x† obtained form such construction is a feasible point of ICP. Indeed,
by the construction, we have trivially x† ≥ x, thus x† satisfies the knapsack con-
straints since these constraints form nonincreasing functions with respect to x. It
remains to show that x† satisfies also the cycle inequalities, indeed, for all xe, e ∈ E:

• if xe = 0, x†e = 0 and the cycle inequality x†e − x†C\e ≤ 0 is satisfied trivially.

• if xe > 0, x†e = 1. The cycle inequality xe − xC\e ≤ 0 is satisfied thus there

exist an edge e
′ ∈ C\e such that xe′ > 0. We deduce that x†

e′
= 1 hence the

cycle inequality x†e − x†C\e ≤ 0 is satisfied.

The above deduction of x† form x is called upper rounding procedure (UR). It seems
to be too trivial and cannot convince ourselves that it is the method leading to the
most optimized results. Moreover, this method is reasonable only in the case when
there are a large number of integer components in x (e.g. for series-parallel graph).
We aim in the following, to study a more advanced method that can be applied for
all graph types and it will give better upper bounds than UR.

4.3.2 Building feasible partitions: progressive aggregation
procedure (PA)

We study in this section a more advanced method to build feasible partitions of
GPKC based on the relaxed solution x. Experiments in Section 4.4 report that x
give good lower bounds for GPKC and many components of x close to integer values
(i.e. 0 or 1). This report leads us to have two important remarks as follows:

• For an edge (u, v) ∈ E such that xuv close or equal to 0, there is large possibility
that u and v are in the same cluster.

• For two edges (i, j) and (u, v) in E such that xij < xuv, the possibility that i
and j are in the same cluster is higher than the one of u and v.

The remarks are important basis for us to establish a progressive aggregation pro-
cedure (PA) for feasible partitions of GPKC that use the components of the current
fractional solution to define the order according to which the aggregation takes place.
Throughout the procedure, the knapsack constraints are verified. The procedure can
be stated as follows.

4.4. NUMERICAL EXPERIMENTS 49

Result: Progressive-aggregation(Graph, x) # Graph G=(V,E)
create partition P of V #i.e.
P = {V 1, . . . , Vk}|V1 ∪ . . . ∪ Vk = V, Vi ∩ Vj = ∅ ∀1 ≤ i 6= j ≤ k
P ←− {{1}, {2}, . . . , {n}} #P is the trivial partition
xs ←− sort(x) # Use sort(x) as priority indicator array
Es ←− edge-array(xs) # Extract edge array in order of xs

for edge e in order in Es do
(u, v) ←− edge-end-nodes(e) #Extract end-nodes of the edge e
su ←− find-set(P, u) #Find cluster su in P that contains u
sv ←− find-set(P, v) #Find cluster sv in P that contains v
if su 6≡ sv then

temp ←− fusion(su, sv) # Union of two cluster
temp-weight ←− weight(temp) # Weight of the temporary cluster
temp

if temp-weight ≤ W then
#Verify the knapsack constraints

remove(P, su) #remove cluster su
remove(P, sv) #remove cluster sv
add(P, temp) #add the union of cluster su and sv

end

end

end
return P # Return the partition matrix

Algorithm 2: Progressive aggregation procedure

This progressive aggregation is an improvement of the upper rounding procedure.
Indeed, in PA the relaxed solution are sorted to as the priority indicator array thus
the edges e such that xe = 0 are considered first to the aggregation of nodes. Hence
UR is a first part of running PA. We conclude that PA can only produce upper
bounds atleast as good as with UR.

4.4 Numerical experiments

In this section, numerical experiments are done to verify our results in Section 4.2
and Section 4.3. We used the same instances generated as in Chapter 3.

All experiments are run on a machine with Intel Core i7-3630QM 2.40GHz processor
and 16 GiB of RAM. The solver GUROBI 6.5 is used to solve the programming
models while GUROBI pre-solve switched off. All computation times are CPU
seconds and the computation times are subject to a time limit of 3600 seconds.

4.4.1 Experiments for the cycle model using the cutting
plane algorithms

In this section, we show the comparison between the Node-Node model and the cycle
model when applying the cutting plane algorithms. The number of constraints in the

50 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

final iteration of cutting plane algorithms are also presented beside the computation
times (CPU).

We first solve LCP using the original cutting plane algorithm proposed in Section
5.4 (i.e. without the improvement techniques in Section 4.2.3). As shown in Table
5.1, LCP outperform LNN in terms of computation times and it is obvious that they
have the same gaps. In terms of number of constraints in the final iteration, LCP use
much less than LNN. For large instances or for more complex graphs, the number of
constraints in LNN becomes extremely large and it obviously cannot be solved on
the time limit (3600 seconds). LNN can only solve small instances: maximum 500
nodes for series-parallel graphs, 400 nodes for planar grid graphs and 225 nodes for
toroidal grid graphs.

Table 4.1: Computation results of LCP and LNN for sparse graphs.

graph types n,m (LNN) (LCP) Cont.Rlx

CPU Nb Ctr CPU Nb Ctr GAP(%)
SP 50, 78 0.85 4211 0.3 1053 5.8
SP 100, 164 14.6 18241 1.2 3124 8.1
SP 150, 237 23.1 36733 4.8 6228 7.9
SP 200, 300 44.7 65164 11.5 7634 -
SP 300, 474 148 148325 34.2 13875 -
SP 400, 598 295 251456 61.2 21066 -
SP 500, 753 573 398427 117 30169 -
SP 600, 956 >3600 - 264 42352 -
SP 800, 1221 >3600 - 661 55738 -

PG 8×8 64, 112 1.9 7162 0.6 1512 6.9
PG 10×10 100, 180 19.5 20045 2.1 3730 8.3
PG 15×15 225, 420 103 96281 27.4 11422 -
PG 20×20 400, 760 1376 311765 159 28218 -
PG 25×25 625, 1200 >3600 - 3383 63870 -
TG 8×8 64, 128 1.9 7564 0.9 2031 11.5

TG 10×10 100, 200 28.1 21544 2.5 4587 10.2
TG 15×15 225, 450 431 109362 31.2 12178 -
TG 20×20 400, 800 >3600 - 267 30572 -

To show more the benefit of using the cycle model as compared with the Node-
Node model, we experience LNN using simple separation method obtained by num-
bering the triangle inequalities. This separation method can be described as follows.

Given an intermediate incidence vector (xuv)(u,v)∈En ∈ [0, 1]
(n−1)n

2 , the
method is to determine the inequalities that are violated by (xuv)(u,v)∈En .
The number of triangle inequalities is O(nm) thus polynomial in terms
of n, the violated inequalities are therefore separable in polynomial time.
we propose a choice of violated triangle inequalities as follows. For each
edge (u, v) in E, if w is a random node in V \{u, v} = {1, . . . , n}\{u, v}
such that one of three triangle inequalities corresponding to the triple

4.4. NUMERICAL EXPERIMENTS 51

(u, v, w) are violated, then all three inequalities are chosen (valid inequal-
ities are also added to the intermediate formulation). Note that in each
iteration, the number of additional inequalities is at most |E| = 3m and
they are unbiasedly spread over the edges in E.

We note SNN as LNN when applying in the cutting plane algorithm. Computa-
tional results comparing LCP and SNN are shown in the Table 4.2. As we can see
in the table, LCP outperforms SNN in term of computational times, specially for
the planar grid graphs and the toroidal grid graphs. LCP can solve larger instances
than SNN although the latter is already better than LNN. In terms of the number
of constraints at the final iteration, LCP contains much less than SNN that seems
to be the reason why it run faster.

Table 4.2: Computation results of LCP and SNN for sparse graphs.

graph types n,m (SNN) (LCP)

CPU Nb Ctr CPU Nb Ctr
SP 100, 164 0.9 3241 0.8 3124
SP 200, 300 8.9 15164 8.5 7634
SP 400, 598 58.0 81456 51.2 21066
SP 600, 956 344 210583 264 42352
SP 800, 1221 >3600 - 661 55738

PG 10×10 100, 180 3.3 12336 2.1 3730
PG 20×20 400, 760 451 227178 159 28218
PG 25×25 625, 1200 >3600 - 3383 63870
TG 10×10 100, 200 8.2 21544 2.5 4587
TG 15×15 225, 450 299 139362 31.2 12178
TG 20×20 400, 800 >3600 - 267 30572

As we indicated in Section 4.2.3, the computation of shortest path algorithm may
be the cause of a large computation time for optimal solution. As we report in Table
4.3, the shortest path algorithm can be accounted from 57% to 73% total resolution
times of LCP. This report leads us to do the experiments in the next section to show
the benefit of using the improvement techniques represented in Section 4.2.3 on the
cutting plane algorithm.

4.4.2 Experiments for the cycle model using efficient imple-
mentation of the cutting plane algorithm

The numerical results in this section show the benefit of using improved cutting
plane algorithm for LCP, that we note as iLCP, as compared to the original one
(i.e. LCP) both in terms of computation times and of number of constraints. For all
the computation of iLCP represented in this section, the threshold slacks Sk were
chosen in order to limit the number of knapsack constraints by 3×m.
As shown in Table 5.2, iLCP outperforms LCP. When applying iLCP, a large number
of unnecessary constraints are removed in the formulation, the number of constraints
in iLCP is from two to seven times less than LCP. As a consequence, iLCP is much

52 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

Table 4.3: Report on the resolution times

graph types n,m (LCP)

CPU % separation % short path
SP 50, 78 0.1 62 57
SP 100, 164 0.8 73 60
SP 150, 237 3.0 75 68
SP 200, 300 8.4 80 70
SP 300, 474 19.9 78 70
SP 400, 598 28.2 71 65
SP 500, 753 43.5 76 66
SP 600, 956 118 80 72
SP 800, 1221 306 68 59
SP 1000, 1569 918 70 65
SP 2000, 3117 3208 78 73

faster than LCP in terms of computation times. iLCP can solve larger instances
than using LCP: up to 2000 nodes for series-parallel graphs, 625 nodes for toroidal
grid graphs.

4.4.3 GPKC upper bound computation

In this section, we present the computational results on the upper bounds for GPKC
on series-parallel graphs using the upper rounding procedure and the progressive
aggregation procedure that are presented in Section 4.3. To show the quality of our
method, we compute the gap between the lower bounds given by iLCP and the upper
bound deduced from its solution, we note this gap as Res in the table of results.

As shown in Table 4.5, PA give better upper bounds than UR. The relaxation
solution of planar grid instances and toroidal grid instances contain too few integer
components thus UR is not applicable. PA shows the quality for all the graph types.
As we can see in the table, the gaps are low, specially for the case of series-parallel
graphs (less than 10%). We report also that the running times for both two methods
are almost for free.

We note that the progressive aggregation procedure can be applied not only on
the relaxed solution but also on any value of the priority indicator array. This remark
leads us to improve PA in finding the best heuristic solution given when applying PA
on each rounds of the constraint-generation procedure. The new method is denoted
iPA (”improved PA”) and the numerical experiments are shown in Table 4.6.

As can be seen in Table 4.6, iPA gives slightly better heuristic solutions than
PA. On the other hand, iPA runs significantly lower than PA. This report make
iPA poor practical. However, we report also that the best heuristic solutions can be
obtained on several last rounds of the constraint-generation procedure thus we only
need to apply the progressive aggregation procedure on these rounds and the the
computation times can be significantly reduced. However due to lack of time, this
implementation can only be done in future works.

4.5. CONCLUSION 53

Table 4.4: Improved versus original cutting plane algorithm

graph types n,m (LCP) (iLCP)

CPU Nb Ctr CPU Nb Ctr
SP 50, 78 0.3 1053 0.1 432
SP 100, 164 1.2 3124 0.4 838
SP 150, 237 4.8 6228 1.0 1037
SP 200, 300 11.5 7634 3.6 1576
SP 300, 474 34.2 13875 7.9 2602
SP 400, 598 61.2 21066 12.7 3488
SP 500, 753 117 30169 19.1 4384
SP 600, 956 264 42352 38.3 5182
SP 800, 1221 661 55738 134 7333
SP 1000, 1569 >3600 - 449 9566
SP 2000, 3117 >3600 - 1892 17594

PG 8×8 64, 112 0.6 1512 0.1 591
PG 10×10 100, 180 2.1 3730 0.7 969
PG 15×15 225, 420 27.4 11422 7.8 2501
PG 20×20 400, 760 159 28218 39 4733
PG 25×25 625, 1200 3383 63870 342 7427
TG 8×8 64, 128 0.9 2031 0.4 671

TG 10×10 100, 200 2.5 4587 1.1 1203
TG 15×15 225, 450 31.2 12178 8.4 2405
TG 20×20 400, 800 267 30572 54 5341
TG 25×25 625, 1250 >3600 - 511 7759

4.4.4 Convergence profile of the cutting plane algorithm

In this section, we illustrate the convergence of LCP using the improvement tech-
niques proposed in Section 4.2.3 (i.e. iLCP). The relaxed solutions given by iLCP
can be used as lower bounds for the problem. Note that in using cutting plane al-
gorithms, a lower bound of GPKC can usually be obtained even if the computation
process is stopped before a solution is found, and we gain much of computation time.
The quality of this bound depends on the time of which the computation process is
stopped. Hence to evaluate the quality of a cutting plane algorithm, the convergence
profile is also an important reference.
Figure 4.1 shows the convergence of isCP in terms of factors on the number of
variables (i.e. number of edges). The Figure shows that the separation procedure
approaches the relaxed solution rapidly.

4.5 Conclusion

In the present chapter we investigate a new formulation for the graph partitioning
problem under knapsack constraints (GPKC) that makes use of only O(m) variables.
As there are an exponential number of constraints in the formulation, we introduce
a separation method to speed up the computation times. The separation method

54 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

Table 4.5: Progressive aggregation versus upper rounding for GPKC.

graph types n,m (UR) (PA) Cont.Rlx

CPU Res(%) CPU Res(%) GAP(%)
SP 50, 78 0.1 10.2 0.1 8.4 5.8
SP 100, 164 0.4 17.1 0.4 9.3 8.1
SP 150, 237 1.0 16.6 1.0 10.4 7.9
SP 200, 300 7.9 18.8 8.1 8.2 -
SP 400, 598 12.7 11.5 13.0 9.9 -
SP 500, 753 19.1 20.2 19.2 7.5 -
SP 600, 956 38.3 14.3 38.5 5.9 -
SP 800, 1221 134 15.4 136 8.9 -
SP 1000, 1569 449 13.4 451 9.2 -
SP 2000, 3117 1892 16.2 1901 7.0 -
PG 64, 112 - - 0.1 14.2 10.1
PG 100, 180 - - 0.7 11.4 -
PG 400, 760 - - 40 10.1 -
PG 625, 1200 - - 345 15.6 -
TG 64, 128 - - 0.4 16.8 11.7
TG 100, 200 - - 1.2 13.1 -
TG 225, 450 - - 8.6 19.0 -
TG 400, 800 - - 55 12.8 -
TG 625, 1250 - - 515 15.2 -

makes use of all pair shortest path algorithm thus is in polynomial time. Numerical
experiments comparing our new formulation with the classical Node-Node formu-
lation have been presented to compute lower bounds for GPKC. These numerical
results show that, the new formulation outperforms the Node-Node formulation in
term of resolution times, while preserving the quality of lower bounds. The new
formulation succeeds at finding relaxed solutions for large size graphs up to 2000
nodes.

In addition, we introduce a generation of feasible partitions for GPKC based on
the relaxed solution. This generation follows a progressive aggregation procedure
that makes use of the relaxed solution as priority indicator. Numerical experiments
show that our generation gives tight upper bounds for GPKC, the gaps are less than
20% in general and less than 10% for series-parallel graphs.

Although in the present chapter, only GPKC has been investigated, but all the
results will turn out to be applicable to general GPP-SC problem.

4.5. CONCLUSION 55

Table 4.6: Improved progressive aggregation procedure for GPKC.

graph types n,m (PA) (iPA)

CPU Res(%) CPU Res(%)
SP 50, 78 0.1 8.4 0.2 8.4
SP 100, 164 0.4 9.3 0.6 9.0
SP 150, 237 1.0 10.4 1.5 10.4
SP 200, 300 8.1 8.2 11.8 7.8
SP 400, 598 13.0 9.9 20 9.9
SP 500, 753 19.2 7.5 27.1 7.5
SP 600, 956 38.5 5.9 51.7 5.9
SP 800, 1221 136 8.9 187 8.0
SP 1000, 1569 451 9.2 655 8.5
SP 2000, 3117 1901 7.0 2470 7.0
PG 64, 112 0.1 14.2 0.1 13.5
PG 100, 180 0.7 11.4 1.0 10.6
PG 400, 760 40 10.1 58.5 10.1
PG 625, 1200 345 15.6 463 15.0
TG 64, 128 0.4 16.8 0.6 15.1
TG 100, 200 1.2 13.1 1.7 13.0
TG 225, 450 8.6 19.0 11.3 17.4
TG 400, 800 55 12.8 75.5 12.8
TG 625, 1250 515 15.2 714 14.9

56 CHAPTER 4. CUTTING PLANE APPROACH FOR LARGE SIZE GRAPH

Figure 4.1: Convergence of iLCP

2 4 6 8 10

0.2

0.4

0.6

0.8

1

(nb of constr.)/(nb. of var.)

(o
b
j.

v
a
l.
)/

(o
p
t.

o
b
j.

v
a
l.
)

m = 150

m = 300

m = 750

m = 1500

Chapter 5

Stochastic graph partitioning

5.1 Stochastic programming

5.1.1 Optimization under uncertainty, an overview

A large majority of algorithms and methods intended to solve combinatorial opti-
mization problems suppose that input data are known precisely. As such, a generic
way of mathematically representing an optimization problem is as follows:

min
x

f(x)

s. t.: Gi(x, ξi) ≤ 0 i ∈ {1, . . . ,m}
(5.1)

where x ∈ Rn is the design parameter, f(x) ∈ R is the objective function and we
have m inequality constraints G(x, ξ) ∈ R with ξ = (ξ1, . . . , ξm) a m-dimensional
parameter vector.

However, for real-world optimization problems, one might ask if the formula-
tion above is as general and practical as it seems since the design space is often
characterized by data which are uncertain or inexact.

Beginning with the seminal works of Dantzig [19], Charnes and Cooper [14],
Miller and Wagner [49], Bellman and Zadeh [6], optimization under uncertainty is
an extremely active domain of research, both in theory and algorithms, and thanks
to recent studies, there is an increased regain of interest. The recent case study
of Ben-Tal and Nemirovski [8] on a collection of 90 problems from NETLIB library
showed that systems optimized in the classical sense (see formulation 5.1) can be very
sensitive to small changes and that only 1% perturbation of the data can severely
affect the feasibility properties of deterministic solutions.

One such example from Ben-Tal et al. [8] is an antenna design problem in which
only 5% errors can entirely destroy the radiation characteristics established during
nominal optimization. Another example analyzed in [8] is a LP program PILOT4

57

58 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

from Netlib library with 1000 variables and 410 constraints, constraint j being:

[Aj]Tx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362414x829

−1.526049x830 − 0.031883x849 − 28.725555x850 − 10.792065x851

−0.19004x852 − 2.757176x853 − 12.290832x854 + 717.562256x855

−0.057865x856 − 3.785417x857 − 78.30661x858 − 122.163055x859

−6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870

−0.401597x871 + x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

. with Aj ∈ Rn the line j of the constraints matrix and x ∈ Rn. This kind of
”ugly” coefficients could model certain technological processes and we could make
the hypothesis that they cannot be specified with high accuracy and thus, they are
uncertain and have inaccurate last digits. For the optimal solution x∗ when the
uncertain coefficients are perturbed within 0.01% margin by independent random
perturbations, distributed uniformly, the constraint is violated by at most 150%
of the right hand side with a probability of 0.18. In the worst case (all uncertain
coefficients are perturbed with 0.01%), the constraint is violated in x∗ by 450% of
the right hand side.

Let us give another simple example illustrating that the optimal solution of
problem 5.1 might actually be unfeasible if uncertainty on the parameter vector ξ
is ignored. Let ξ = (ξ1, . . . , ξm) with ξ1, . . . , ξm, m independent observations of
a standard normal distribution, x ∈ R, f(x) = x and Gi(x, ξ) = ξi − x, for all
i = 1, . . . ,m. If the uncertainty on the parameter is ignored and ξ is substituted by
the expected value E(ξ) in problem 5.1, then the optimal solution is obtained for
x∗ = 0. However, the probability that x∗ = 0 is a feasible solution equals to

Pi{Gi(x
∗, ξi) ≤ 0,∀i ∈ {1, . . . ,m}} = P{x∗ξi,∀i ∈ {1, . . . ,m}} = 0.5m

As the value of m increases, this probability becomes very small (e.g. for m = 7, it
is less than 0.01).

As shown by the previous case studies, taking into account uncertainty impact-
ing the parameters required for optimization is necessary in order to find optimal
solutions which are feasible in a meaningful sense. Nevertheless, as we will point
out in the next section, optimizing under uncertainty induces several additional dif-
ficulties and a crucial point is the way uncertainty is formalized and the underlying
assumptions.

5.1.2 Chance constrained programming

Chance constrained programming [14] is one of the standard methods for handling
uncertainty in optimization, dealing with constraints of the form:

P(g(x, ξ) ≤ 0) ≥ 1− ε (5.2)

where x ∈ Rn is the decision vector, ξ ∈ Ra a random variable and g : Rn ×
Ra → Rb a constraint mapping. The level ε ∈ (0, 1) is user given and defines

5.1. STOCHASTIC PROGRAMMING 59

the preference for safety of the decision x. The constraint (5.2) means that we
wish to take a decision x that satisfies the b-dimensional random inequality system
g(x, ξ) ≤ 0 with high enough probability. To investigate with the constraint (5.2)
using chance constrained programming, ξ is usually assumed well-characterized and
that knowledge of the distribution is available. Such a situation naturally arises
when ξ has been investigated by statisticians.

Two conceptually different versions of (5.2) exist and are referred to as Individ-
ual Chance Constraints (ICC) or Joint Chance Constraints (JCC). The equation
appearing in (5.2) is a version of a Joint Chance Constraint. A deduced set of
Individual Chance Constraints would be:

P(gi(x, ξ) ≤ 0) ≥ 1− εi, i = 1, . . . , b (5.3)

where gi refers to the i-th component of the mapping g and εi are arbitrary choices.
The situation of (5.3) refers to a situation wherein we wish to satisfy each individual
equation in the random b-dimensional inequality system g(x, ξ) ≤ 0 with high enough
probability, but we make no request on the system as a whole.

5.1.3 Convexity studies

Some of the earliest studies from stochastic optimization were interested in estab-
lishing conditions in which the probabilistic distributions and the functions defining
the constraints define a convex feasible space. As such, almost all exact solutions
existing for chance constrained programs require a continuous distribution and a
convex structure of the problem.

Charnes and Cooper [14] studied the case of single chance constraints (m =
1) when the continuous random variables are only on the right hand-side of the
constraints (i.e. completely decoupled of the decision variables) and proposed a
deterministic nonlinear equivalent problem. Also, when m = 1 and the randomness
is continuous and on the left hand-side, Kataoka [42] proved that these chance
constrained programs are convex for independently normal distribution and ε ≥ 0.5.

For joint chance constrained programs with more than one constraint, the most
difficult case to solve is the one in which the random distributions are affecting
the left hand-side. Instead, for random right hand-side parameters, Prékopa [52]
showed that if the random variables have a log-concave distribution (e.g. the mul-
tivariate normal distribution, uniform distribution are log-concave), then the initial
probabilistic program can be rewritten as a convex deterministic equivalent prob-
lem. Prékopa also proved that for normal distributed left hand-side parameters,
if all covariance and cross-variance matrices for columns or rows are proportional
between them, then the problem is convex. A later study of Henrion [36] gives con-
vexity conditions in which program for left hand-side random parameters normally
distributed with independent components, and improved convexity conditions have
been investigated in [50].

To the best of our knowledge, existing studies determined convexity conditions
only for linear probabilistic constraints with normal distributions on the left hand-
side or log-concave distributions on the right hand-side.

60 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

5.1.4 Stochastic graph partitioning

Previous work related to the stochastic form of the problem treated in the present
dissertation is quite scarce. Fan et Pardalos [23] studied a problem relatively close
to ours: partition the vertex set of a graph into several disjoints subsets so that
the sum of weights of the edges between the disjoint subsets is minimized, with a
cardinality constraint on each subset and the uncertainty affecting the edge weights.
In Fan et al. [23], assuming there is no information on the probability distribution
other than that the weights on the links are independent and bounded in known
intervals, they formulate the problem using a robust optimization model, similar to
Bertsimas et al. [10]. The equivalent linear programming formulation is then solved
by an algorithm based on a decomposition method. In a more recent study Fan
et al. [24], introduce a two-stage stochastic graph partitioning problem, assuming
that the distribution of edge weights has finite explicit scenarios. Having as objec-
tive to minimize the expected weight of edges in the set of cuts over all scenarios,
they present a nonlinear stochastic mixed integer model and propose an equivalent
integer programming formulation for solving the problem using CPLEX. Taskin et
al. [61] study the stochastic edge-partition problem, where the edge weights are
uncertain, and are realized only after the node-to-subgraph assignments have been
made. They introduce a two-stage cutting plane algorithm with integer variables in
both stages and, to overcome the computational difficulties, they also prescribe a
hybrid integer/constraint programming method as an alternative.

The approaches above differ in several aspects from our study. First, in our case,
the problem formulation is not the same, dealing with multidimensional capacity
constraints on the nodes instead of cardinality constraints. Consequently, uncer-
tainty is addressed in a different manner, the assumption of uncertainty being made
on the weights of the nodes rather than on the weights of the edges. Finally, we
remark that the existing methods are exact and thus, mostly suited for small-size
instances of the problem, the numerical experiments being performed on graphs with
at most 100 nodes. On the contrary, for the processes placement problem, we are
interested in practice to partition much larger graphs.

In this chapter, we focus our studies on the case of GPKC with the presence of
uncertainty on the node weights. We note that all the results in this chapter remain
applicable for GPP-SC.

5.1.5 Stochastic graph partitioning under knapsack constraint
formulation

In this thesis, we chose dealing with the uncertainties by Individual Chance Con-
strained programming, hence the stochastic knapsack constraints (5.6) can be refor-
mulated as :

P(
∑
v∈V
v 6=u

(1− xvu)wv ≤ W) ≥ 1− ε ∀u ∈ V (5.4)

where we chose the same probability level for all constraints.

Hence the stochastic graph partitioning under knapsack constraints is reformu-

5.2. PARTITIONING PROCESS NETWORKS 61

lated as follows :

(SGPKC) =

min
∑

(u,v)∈E

tuvxuv

s. t.: xuv + xuw ≥ xvw (u, v, w) ∈ T
xuv + xvw ≥ xuw (u, v, w) ∈ T
xvw + xuw ≥ xuv (u, v, w) ∈ T
P(
∑
v∈V
v 6=u

(1− xvu)wv ≤ W) ≥ 1− ε u ∈ V

xuv ∈ {0, 1} (u, v) ∈ En

(5.5)

.
To investigate the formulation (5.5) in an efficient way, we have to overcome two

main difficulties : the large number of triangle constraint (O(n3)) and the complex-
ity of the chance constraints. In Chapter 3.1 we propose an improved formulation
for GPKC in the case of sparse graphs; in Chapter 3.2 we introduce several reformu-
lations of the stochastic graph partitioning problem (SGPKC) and compare them
computationally.

5.2 Problem of partitioning process networks un-

der uncertain processing time

As a typical example of application of GPKC, we can mention a problem arising in
the field of compilation for real-time embedded systems, the partitioning of process
networks on a clusterized parallel architecture. This problem is an extension of the
standard problem of graph partitioning, which is known to be NP-hard [31]. The
specific class of partitioning problems considered in this paper consists in assigning
the weighted nodes of a graph to clusters (representing the processors), in order
to minimize the sum of costs for edges having their endpoints in different clusters,
without exceeding the limited capacity of each clusters (e.g. the memory footprint)
and by taking into account uncertainty affecting on vertex weights. Known for the
one-dimensional and deterministic case as the Node Capacitated Graph Partitioning
problem [28], the stochastic version of the problem does not seem to have been
investigated so far except from a non-parametric and approximate resolution view
point [59].

In this problem, one of the main sources of uncertainties lies in the intrinsic
indeterminism of execution times for computing kernels of intermediate granularity.
This indeterminism is due in part to some of the characteristics of the processor
architecture such as the cache memories and memory access controllers and is also
inherently due to data dependent control flows (conditional branches and loops).
The distributions of processing times are often complex, sometimes giving use to
multimodal distributions (due to the presence of data dependent control).

The example above shows that the uncertainties can affect the node weights of
the graph G hence we have to deal the stochastic version of GPKC (i.e. SGPKC).
To handle the problem with chance constrained programming, we assume that the

62 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

uncertainties nodes weights w following a multivariate Gaussian distribution. More-
over, even when the Gaussian assumption on the random variables is not verified,
the use of multivariate Gaussian approximation is still reasonable, based on the ex-
tended central limit theorem. Indeed if we assume that for a given u, the number of
xvu variables equal to 0 (i.e the cardinality of the cluster containing u) is sufficiently
large (typically more than 30-40), the stochastic knapsack constraints∑

v∈V
v 6=u

(1− xvu)wv ≤ W ∀u ∈ V (5.6)

involve a combination of sufficiently many random variables, which can be approxi-
mated as a normal random variable under some conditions that the means and the
variances have to satisfy. These conditions were introduced in the Lindeberg-Feller
theorem [45][26] and its corollary, the Liapounov’s theorem [44]. This condition
was studied for sums of N independent random variables (Xi)1≤i≤N with means
(mi)1≤i≤N and variances (a2

i)1≤i≤N . Let s2
n =

∑N
i=1 a

2
i then :

lim
N→∞

1

s2n

N∑
i=1

E
[
(Xi −mi)

2
1{|Xi−mi|>εsn}

]
= 0, ∀ε > 0 =⇒

∑N
i=1 (Xi −mi)

sn

P−→ N (0, 1) (5.7)

Lindeberg’s condition is sufficient, but not in general necessary. However if

lim
N→∞

max
i=1,...,N

a2
i

s2
n

→ 0,

this condition is both sufficient and necessary. For dependent random variables,
the central limit theorem remains valid under conditions investigated in [18]. We
have carried out some systematic experiments showing that, for sum of N multi-
modal random variables (three modes were considered in our experiments), good
approximations of the Gaussian cdf are obtained as soon as N exceeds typically 30
to 40.

In this chapter, we investigate SGPKC under the assumption that the node
weights w follows a multivariate Gaussian distribution. In the case of individual
chance constraints and with the probability level ε less than 0.5, the chance con-
straints can then be reformulated as binary second order cone constraints (Binary
SOCC) [47]. We study a comparison of several alternative techniques for solving SG-
PKC: First, we consider the second-order cone formulation for the chance constraint
which handle SGPKC as a binary second-order cone program (Binary SOCP). The
CPLEX solver is used to solve this program. Second, we consider the quadratic
formulation for the chance constraint which handle SGPKC as a binary quadratic
constrained program. Several linearization techniques are discussed to transform
this binary quadratic program into binary linear program. In particular, we con-
sider the classical linearization technique (Fortet [29]) and the linearization using
bilinear forms given by Sherali-Smith [57]. Note that contrary to the former, the
latter uses much fewer additional variables. Again the CPLEX solver is used for
solving the resulting binary linear programs.

The numerical results obtained show that the solution technique using Sherali-
Smith linearization provides better efficiency for SGPKC, than the one using binary

5.3. SECOND ORDER CONE FORMULATION 63

SOCP; the latter in turn outperforms the classical linearization technique. This
shows that despite the fact that the quadratic formulation of chance constraint
when relaxed is not convex (contrary to the second-order formulation), it turns out
to provide better efficiency as compared with the second-order cone formulation
when the variables are binary and a branch-and-bound procedure has to be applied.

5.3 Second order cone formulation

We assume that the probability distribution of node weights follows a multivariate
Gaussian distribution with given means (w̄i)1≤i≤n and covariance matrix (σij)1≤i,j≤n.
We therefore reformulate the chance constraints (5.4) by the Binary SOCCs as fol-
lows. For all clusters i = 1, . . . , n,

n∑
u=1

(1−xui)w̄u+γ

√√√√ n∑
u=1

σuu(1− xui)2 + 2
n−1∑
u=1

n∑
v=u+1

σuv(1− xui)(1− xvi) ≤ W (5.8)

where γ = F−1(1−ε), F denoting the cumulative distribution function ofN (0, 1) (e.g
γ ' 1.685 for ε = 0.05).

Then the resulting model for SGPKC is the following Binary SOCP (Bi-SOCP)
program :

min
∑

(i,j)∈E

tijxij

s. t.: xij + xik ≥ xjk, ∀(i, j, k) ∈ T ′

xij + xjk ≥ xik, ∀(i, j, k) ∈ T ′

xik + xjk ≥ xij , ∀(i, j, k) ∈ T ′

n∑
u=1

(1− xui)w̄u+

+ γ

√√√√ n∑
u=1

σuu(1− xui)2 + 2

n−1∑
u=1

n∑
v=u+1

σuv(1− xui)(1− xvi) ≤W i = 1, . . . , n

xuu = 0 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

We can see that the continuous relaxation of (Bi-SOCP) is a second-order cone
program thus it can be solved using SOCP. SOCP has shown its effectiveness in
solving nonlinear convex problem that include linear and (convex) quadratic pro-
grams as special cases. Several efficient primal-dual interior-point for SOCP have
been developed in the last few years which share many of the features of primal-
dual interior-point methods for linear programming (LP). However, the algorithmic
efficiency of SOCP solvers when embedded into a tree search branch-and-bound to
handle Bi-SOCP problem partly remains an open research problem.

64 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

5.4 Quadratically constrained 0-1 programming

reformulation and linearization techniques

As an alternative to Binary SOCP, we investigate here a quadratic formulation for
the SGPKC. To achieve this, we only need to replace the SOCCs (5.8) in (Bi-SOCP)
with their equivalent quadratic forms :

−2

n−1∑
u=1

n∑
v=u+1

(w̄uw̄v − γ2σuv)(1− xui)(1− xvi) +

n∑
u=1

(2Ww̄u + γ2σuu − w̄2
u)(1− xui) ≤W 2

n∑
u=1

(1− xui)w̄u ≤W

(5.9)

Since the quadratic formulation is difficult to handle directly, we will consider
reformulations using various linearization techniques. The first technique discussed
below is basically the classical linearization technique [29] and the second one is the
linearization technique proposed by Sherali and Smith [57].

We first simplify (5.9) by setting :

{
quv = 2(w̄uw̄v − γ2σuv)

du = 2Ww̄u + γ2σuu − w̄2
u

(5.10)

then the quadratic constraint in (5.9) reads :

n∑
u=1

du(1− xui)−
n−1∑
u=1

n∑
v=u+1

quv(1− xui)(1− xvi) ≤ W 2 (5.11)

5.4.1 Classical linearization technique

Introducing variable yuvi to represent each product xuixvi then (5.11) is replaced
with :

n∑
u=1

du(1− xui)−
n−1∑
u=1

n∑
v=u+1

quvyuvi ≤ W 2

max {0, 1− xui − xvi−} ≤ yuvi ≤ min {1− xui, 1− xvi}
(5.12)

Using the classical linearization technique, SGPKC can be reformulated as fol-

5.4. QUADRATIC 0-1 REFORMULATION 65

lows :

(CL)

min
∑

(i,j)∈E

tijxij

s. t.: xij + xik ≥ xjk, ∀(i, j, k) ∈ T ′

xij + xjk ≥ xik, ∀(i, j, k) ∈ T ′

xik + xjk ≥ xij, ∀(i, j, k) ∈ T ′
n∑
u=1

(1− xui)w̄u ≤ W i = 1, . . . , n

n∑
u=1

du(1− xui)−
n−1∑
u=1

n∑
v=u+1

quvyuvi ≤ W 2 i = 1, . . . , n

yuvi ≤ 1− xui ∀u, v, i = 1, . . . , n

yuvi ≤ 1− xvi ∀u, v, i = 1, . . . , n

max {0, 1− xui − xvi} ≤ yuvi ∀u, v, i = 1, . . . , n

xuu = 0 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

It can easily be shown that the constraints max {0, 1− xui − xvi} ≤ yuvi is redun-
dant and can be removed. A drawback of the above formulation (referred to as an
”extended formulation” because of the introduction of the extra variables yuvi) is
the large number of variables and constraints it requires. Note that in our graph
partitioning problem, for a complete graph with n nodes the quadratic formulations
we study already have O(n2) variables and the extended formulation O(n3) vari-
ables and also O(n3) added constraints. This can become rapidly unpractical. In
the following subsection, we discuss an alternative linearization technique requiring
fewer additional variables and additional constraints.

5.4.2 Sherali-Smith’s linearization technique

This linearization technique has been introduced in [57]. The basic idea underlying
this technique is :

• To transform each quadratic form into a bilinear form using O(n) additional
variables: applied to the quadratic constraint (5.11), it consists in introducing

variables λui to represent each sum
n∑

v=u+1

quv(1−xvi). If a lower bound λminui and

an upper bound λmaxui are known for λui then the quadratic constraint (5.11)
can be rewritten as:

∑n
u=1 dui(1− xui)−

∑n−1
u=1(1− xui)λui ≤ W 2∑n

v=u+1 quv(1− xvi) = λui, ∀u = 1, . . . , n− 1
λminui ≤ λui ≤ λmaxui , ∀u = 1, . . . , n− 1
x ∈ {0, 1}n

66 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

• Linearizing the various bilinear terms resulting from the above transformation:
this is done by introducing a variable zui to represent each product (1−xui)λui :

∑n
u=1 dui(1− xui)−

∑n−1
u=1 zui ≤ W 2∑n

v=u+1 quv(1− xvi) = λui, ∀u = 1, . . . , n− 1
λminui (1− xui) ≤ zui ≤ λmaxui (1− xui), ∀u = 1, . . . , n− 1
λminui xui ≤ λui − zui ≤ λmaxui xui, ∀u = 1, . . . , n− 1
x ∈ {0, 1}n

• In the case of our problem for the uncertain weights, we assume that the
variances are small compared to the means, so that quv = 2(w̄uw̄v − γ2σuv) >
0,∀1 ≤ u < v ≤ n. Therefore λminui = 0 and the constraints λminui xui ≤
λui − zui ≤ λmaxui xui, ∀u = 1, . . . , n− 1 can be removed.

Applying the various transformations above to constraints (5.11) in the quadratic
formulation of SGPKC, we can reformulate it as follows:

(SS)

min
∑

(i,j)∈E

tijxij

s. t.: xij + xik ≥ xjk, ∀(i, j, k) ∈ T ′

xij + xjk ≥ xik, ∀(i, j, k) ∈ T ′

xik + xjk ≥ xij, ∀(i, j, k) ∈ T ′
n∑
u=1

(1− xui)w̄u ≤ W i = 1, . . . , n

n∑
u=1

du(1− xui)−
n−1∑
u=1

zui ≤ W 2 i = 1, . . . , n

zui ≤
n∑

v=u+1

quv(1− xvi) i, u = 1, . . . , n

0 ≤ zui ≤ λmaxui (1− xui) i, u = 1, . . . , n

xuu = 0 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

The above formulation (SS) requires fewer variables and constraints when com-
pared with the classical linearization (CL). For instance, in our problem for a graph
with n nodes, the number of added variables and the number of added constraints
are O(n2). However as shown in [57], this is at the expense of weaker relaxation as
compared with the classical linearization technique.

The last unknown parameters in this formulation are the bounds λmaxui that can
be estimated based on the definition of added variables (zui)1≤i≤n−1. We will consider
two such estimates in the following, two variants of the Sherali-Smith reformulation
will thus be obtained.

5.5. COMPUTATIONAL RESULTS 67

Simple bounds on λmaxui

Note that since quv ≥ 0, ∀(u, v), we can take

λmaxui =
n∑

v=u+1

quv (5.13)

It is observed that λmaxui does not depend on i, so at most n values have to be
computed. Using these bounds for λmaxui in (SS), we obtain a first formulation based
on Sherali-Smith’s technique.

Improved bounds on λmaxui

The application of of Sherali-Smith technique can be made more efficient if we can
obtain a better estimate of the bounds λmaxui . The idea is the fact that we can get

stronger bounds of each sum
n∑

v=u+1

quv(1 − xvi) by adding valid inequalities in the

process of computing them. In our problem, one of the valid inequalities that can
be chosen is the stochastic knapsack constraint (5.8), whereby the bounds can be
estimated, for all i = 1, . . . , n as :

λmaxui =

max

n∑
v=u+1

quv(1− xv) = max

n∑
v=u+1

2(w̄uw̄v − γ2σuv)(1− xv)

s. t.:

n∑
v=1

w̄v(1− xv)+

+ γ

√√√√ n∑
v=1

σvv(1− xv)2 + 2

n−1∑
v=1

n∑
v′=v+1

σvv′ (1− xv)(1− xv′) ≤W

x ∈ {0, 1}n

(5.14)

Again λmaxui does not depend on i so at most n problems of the form (5.14) have
to be solved. Using the improved bounds λmaxui deduced from (5.14), we obtain
the improved Sherali-Smith formulation (ISS). In addition, we chose the continuous
relaxation version of (5.14) to estimate the bounds λmaxui because our experiments
shows that using the integer formulation (5.14) would not lead to a significant im-
provement in the quality of the bounds.

5.5 Computational results

In this section, we present computational results for the SGPKC comparing the
formulations that were discussed in Section 5.3 and Section 5.4. The formulations
are compared in both computation times and gaps.

For a given number of nodes n and number of edges m, we generate five instances
by picking edges uniformly at random until the number of edges reaches m. The edge
weights t and the means of node weights w̄ are drawn independently and uniformly
from the interval [1, 1000], the covariance matrix σ of node weights is generated as

68 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

diagonally dominant matrix where each point σii ∀i = 1, . . . , n in the diagonal is
drawn independently and uniformly from the interval [1, 20%w̄i]. For each instance,
we calibrate the upper bounds of knapsack constraints W in order to ensure that the
generated instances will be not ”easy”to solved. To achieve this, we used METIS [41]
to estimate the solution with the number of clusters k = 4 (or 6, 8, 12) that we call
the initial partition, we then do 1000 perturbations of this partition. These bounds
W then were chosen so that only 10% of these partitions are satisfied. Finally the
probability level ε was chosen to be 0.05 (= 5%) a fairly standard value in practice.

All experiments are run on a machine with Intel Core i7-3630QM 2.40GHz pro-
cessors and 16 GiB of RAM. The solver CPLEX 12.6 is used to solve respectively
(Bi-SOCP), (CL), (SS) and (ISS) and to ensure that comparisons will be not biased
we switch off CPLEX pre-solve. All computation times are CPU seconds and the
computation times are subject to a time limit of 7200 seconds.

In Table 5.1 we report the results obtained with (Bi-SOCP), (CL), (SS) and
(ISS). In our experiments, each instance belongs to one of four graph types: series-
parallel graph (SP), planar grid graph (PG), toroidal grid graph (TG) and random
graph (RG). Series-parallel graphs are highly sparse while random graphs are denser
graphs with m ≈ (4 to 8)× n. As for each value of n,m, we have five instances, the
first column of each technique in this table report the average CPU time to obtain
the solution, the second column of each technique report the average gaps at root
node. For the (ISS), the CPU time to calculate the bounds is included in the total
CPU time to obtain the solution. For a specific technique and for the instances
that this technique guarantee a solution, we note the CPU time as ”Nopt” and we
indicate the residual gap in parenthesis.

As can be seen from Table 1, (ISS) has the highest performance while (CL) is
the least efficient technique in term of computation times. We can arrange the order
of effectiveness of these techniques as (ISS)�(SS)�(Bi-SOCP)�(CL).

The main observations which arise from the results are the following :

• As discussed above, the (CL) technique does not perform well for large in-
stances due to a large number of added variables and added constraints. We
report the solution times for (CL) are worse by a factor 2 to 4 than the (Bi-
SOCP).

• For the small instances, (SS) does not outperform (Bi-SOCP). However for
the larger instances, (SS) is slightly faster than (Bi-SOCP) in spite of the fact
that the number of nodes in the search tree for (Bi-SOCP) is quite reduced. A
possible explanation of this is that : a) the computational effort required for
solving each node is significant, and b) SOCP solvers do not enjoy the same
warm-starting capabilities as simplex-based LP solvers.

• (ISS) clearly dominates the other techniques as we can see in the table, it is
faster by a factor 1.5 to 3 than (SS) in term of solution times.

• There are also instances for which CPLEX is not even capable to solve (Bi-
SOCP) and (CL) but succeeds to find optimal integer solution with (SS) and
(ISS). With (ISS) we can solve larger instances, e.g, (n = 80) for series-parallel

5.6. CONCLUSION 69

graphs, (n = 70) for planar grid graphs, (n = 60) for toroidal grid graphs and
(n = 60) for random graphs.

• We also report the average gaps at root node for each solution technique. (Bi-
SOCP) provides the best gaps, sightly better than (CL) and (SS) and (ISS),
however the difference is small (<5%). This is not surprise due to the fact that
(CL), (SS) and (ISS) may be considered as relaxations of (Bi-SOCP). Another
observation is that although improved bounds λmax have been used in (ISS),
the gaps at root node have not changed. However the number of nodes in the
tree search is reduced in most cases, leading to the reduction of CPU times.

Finally, Table 5.2 shows the impact of computing the improved bounds for λmaxui on
total CPU times for (ISS). The computation times of the bounds reported in the
third column are very small as compared to the total solution times of (ISS), while
the average improvement on the bounds is quite significant.

5.6 Conclusion

In this chapter, a stochastic version of the node weighted graph partitioning problem
has been investigated. Practical application in the context of partitioning process
network problem has been discussed. It has been shown that transforming an initial
SOCP based formulation into quadratic constraints and applying some linearization
techniques can be more efficient than solving the usual binary SOCP formulation.

70 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

Table 5.1: Comparison of the various solution techniques. Nopt indicates that the
exact optimal solution could not be found within the imposed time limit (7200s).
In such cases, the value of the relative residual gap is shown in parenthesis.

Instances Bi-SOCP CL SS ISS

types n,m CPU GAP CPU GAP CPU GAP CPU GAP
(Nodes) (Nodes) (Nodes) (Nodes)

SP 25, 40 4.3 16.2 12.6 17.0 4.4 18.3 2.2 18.3
(6) (11) (22) (15)

SP 30, 50 30.8 11.4 100.9 13.1 27.5 15.6 15.6 15.6
(17) (142) (366) (254)

SP 35, 60 40.4 10.5 177.3 15.4 43.5 15.9 29.3 15.9
(32) (336) (829) (599)

SP 40, 65 126.3 9.8 513.4 11.3 122.4 12.7 63.8 12.7
(59) (573) (1136) (729)

SP 45, 75 665.2 13.2 1539 14.6 595.0 17.2 336.5 17.2
(88) (612) (1387) (874)

SP 50, 80 862.8 9.1 2238 10.4 978.7 13.3 517.2 13.3
(117) (935) (1843) (1311)

SP 60, 90 3127 10.6 Nopt 12.3 1844 16.5 699.3 16.5
(156) (6.8%) (1033) (2552) (1566)

SP 80, 130 Nopt 12.7 Nopt 14.8 Nopt 17.3 5273 17.3
(2.4%) (187) (7.3%) (1426) (2.8%) (3136) (3629)

PG 30, 47 105.4 13.2 256.8 14.6 97.2 15.3 41.1 15.3
(49) (395) (866) (542)

PG 40, 66 583.4 12.6 1727 14.1 556.2 15.0 236.5 15.0
(74) (528) (1344) (836)

PG 50, 85 2193 11.4 Nopt 12.8 2386 13.8 827.7 13.8
(125) (3.7%) (1057) (2546) (1888)

PG 60, 104 Nopt 13.2 Nopt 14.4 6216 15.8 2397 15.8
(0.2%) (146) (5.6%) (1791) (4728) (3352)

PG 70, 123 Nopt 12.0 Nopt 12.2 Nopt 14.7 6163 14.7
(2.4%) (168) (7.1%) (2032) (3.2%) (4759) (5292)

TG 30, 60 359.2 14.9 1044 15.2 332.7 18.8 154.3 18.8
(68) (539) (1353) (877)

TG 40, 80 989.5 12.2 5268 13.2 937.2 15.4 443.4 15.4
(128) (572) (1736) (1255)

TG 50, 100 5453 14.3 Nopt 16.7 4829 18.3 1537.3 18.3
(183) (6.9%) (1682) (3357) (2172)

TG 60, 120 Nopt 13.8 Nopt 14.2 Nopt 16.5 5234 16.5
(3.7%) (175) (8.6%) (1843) (3.2%) (3776) (4275)

(55) (474) (973) (666)
RG 25, 150 442.3 15.0 945.2 16.2 489.1 17.1 226.4 17.1

(72) (553) (1296) (924)
RG 30, 200 Nopt 15.5 Nopt 16.1 7111 17.9 3123 17.9

(0.2%) (127) (4.1%) (1183) (6421) (4318)
RG 40, 120 3612 13.2 Nopt 14.8 3828 16.4 1805 16.4

(196) (3.3%) (974) (3689) (3150)
RG 50, 120 Nopt 14.7 Nopt 15.6 Nopt 17.2 6006 17.2

(2.3%) (188) (8.6%) (2158) (2.6%) (4523) (5298)
RG 60, 100 Nopt 16.2 Nopt 17.2 Nopt 19.4 6419 19.4

(3.8%) (209) (9.9%) (1542) (3.6%) (4175) (4941)

5.6. CONCLUSION 71

Table 5.2: Computation times of the bounds λmaxui by (5.14)

n,l CPU Percentage(%) average improvement
of total CPU on bounds(%)

25, 55 0 0 40
30, 70 0.1 0.7 39
35, 80 0.2 0.6 43
40, 75 0.4 0.7 36
45, 95 0.6 0.6 48
50, 80 0.8 0.5 45
60, 90 1.0 0.2 50
80, 130 1.8 0 43

72 CHAPTER 5. STOCHASTIC GRAPH PARTITIONING

Chapter 6

Conclusions and perspectives

6.1 Conclusions

The graph partitioning problem under set constraints (GPP-SC) has been inves-
tigated in this thesis. Practical applications in the context of partitioning process
network problem and the SONET/SDH network design problem have been discussed.

We have given an improved compact formulation for the problem problem us-
ing O(|V ||E|) triangle inequalities instead of O(|V |3) triangle inequalities as usual.
Numerical results have shown that solution times are reduced drastically from 3 to
50 times with our improved formulation. There are instances for that CPLEX is
even not capable to solve the continuous relaxation with the classical formulation
but succeed to find optimal integer solution with our reduced formulation.

For large size graphs, only approximate (heuristic) solutions can be hoped for,
and the key issue in this context is to validate the approximate solutions obtained
by computing lower bounds. We investigate a new formulation for the problem that
makes use of only O(|E|) decision variables. As there are an exponential number of
constraints in the formulation, a separation method is needed to speed up the com-
putation times. We introduce such a separation that makes use of all pair shortest
path algorithm to determine violate constraints, thus the separation is in polynomial
time. Numerical results have shown that lower bounds for large size problems can be
given by our new formulation with up to 2000 nodes. In addition, we introduce also
an efficient generation of heuristic solutions base on the relaxed solution given by the
new formulation. Numerical experiments show that our generation gives tight up-
per bounds for the problem with the gaps less than 20%, specially for series-parallel
graphs with the gaps less than 10%.

We have also investigated a stochastic version of the node weighted graph par-
titioning problem. It has been shown that transforming an initial SOCP based
formulation into quadratic constraints and applying some linearization techniques
can be more efficient than solving the usual binary SOCP formulation.

6.2 Perspectives

As a possible direction for future investigation, exhibiting further constraint struc-
tures, lending themselves to significant reduction of the number of triangle inequal-

73

74 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

ities would be worth considering. We mention the search for additional polyhedral
results related to the formulations of the Chapter 3, possibly leading to improved
computational efficiency of branch-and-bound based procedures. We note also that
carrying out an extensive comparison in terms of efficiency of Node-Cluster versus
Node-Node models remains a potentially interesting subject for future work in the
area.

In regarding the results in Chapter 4, we plan to expand the investigation of the
cycle model for general GPP-SC problem. In addition, we mention the search for
additional solution techniques related to the separation procedure, possibly leading
to speed up even more the computation times. We plan also to improve the gen-
eration of heuristic solutions, in applying the progressive aggregation procedure on
several last rounds of the constraint-generation procedure.

We will expand our research on SGPKC for others probability distributions on
the node weights such as uniform distribution or truncated Gaussian distribution.

Bibliography

[1] Z. Ales, A. Knippel, and A. Pauchet. On the polyhedron of the K-partitioning
problem with representative variables. ArXiv e-prints, November 2014.

[2] V. Alexandrov, M. Lees, V. Krzhizhanovskaya, J. Dongarra, P.M.A. Sloot,
P. Aubry, P.-E. Beaucamps, F. Blanc, B. Bodin, S. Carpov, L Cudennec,
V. David, P. Dore, P. Dubrulle, B. Dupont de D., F. Galea, T. Goubier, M. Har-
rand, S. Jones, J.-D. Lesage, S. Louise, N.M. Chaisemartin, T.H. Nguyen,
X. Raynaud, and R. Sirdey. 2013 international conference on computational
science extended cyclostatic dataflow program compilation and execution for
an integrated manycore processor. Procedia Computer Science, 18:1624 – 1633,
2013.

[3] M. Armbruster, M. Fügenschuh, C. Helmberg, and A. Martin. A Compara-
tive Study of Linear and Semidefinite Branch-and-Cut Methods for Solving the
Minimum Graph Bisection Problem, pages 112–124. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[4] D.A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Graph Parti-
tioning and Graph Clustering. 10th DIMACS Implementation Challenge Work-
shop. February 13-14, 2012. Georgia Institute of Technology, Atlanta, GA. Con-
temporary Mathematics 588. American Mathematical Society and Center for
Discrete Mathematics and Theoretical Computer Science, 2013.

[5] F. Barahona and A.R. Mahjoub. On the cut polytope. Mathematical Program-
ming, 36(2):157–173, 1986.

[6] R.E. Bellman and L.A. Zadeh. Decision-making in a fuzzy environment. Man-
agement Science, 17(4):B–141–B–164, 1970.

[7] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res.,
23(4):769–805, November 1998.

[8] A. Ben-Tal and A. Nemirovski. Robust optimization – methodology and appli-
cations. Mathematical Programming, 92(3):453–480, 2002.

[9] D. Bertsimas and M. Sim. The price of robustness. Oper. Res., 52(1):35–53,
January 2004.

[10] D. Bertsimas and M. Sim. The price of robustness. Oper. Res., 52(1):35–53,
January 2004.

75

76 BIBLIOGRAPHY

[11] P. Bonami, V.H Nguyen, M. Klein, and M. Minoux. On the solution of a
graph partitioning problem under capacity constraints. In A.R. Mahjoub,
V. Markakis, I. Milis, and V.Th. Paschos, editors, ISCO, volume 7422 of Lecture
Notes in Computer Science, pages 285–296. Springer, 2012.

[12] L. Brunetta, M. Conforti, and G. Rinaldi. A branch-and-cut algorithm for the
equicut problem. Mathematical Programming, 78(2):243–263, 1997.

[13] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances
in Graph Partitioning. ArXiv e-prints, November 2013.

[14] A. Charnes and W. Cooper. Chance-constrained programming. Management
Science, 6(1):73–79, 1959.

[15] S. Chopra. The graph partitioning polytope on series-parallel and4-wheel free
graphs. SIAM J. Discret. Math., 7(1):16–31, February 1994.

[16] S. Chopra and M.R. Rao. The partition problem. Mathematical Programming,
59(1-3):87–115, 1993.

[17] S. Chopra and M.R. Rao. Facets of the k-partition polytope. Discrete Applied
Mathematics, 61(1):27 – 48, 1995.

[18] W. J. Cocke. Central limit theorems for sums of dependent vector variables.
The Annals of Mathematical Statistics, 43(3):pp. 968–976, 1972.

[19] G.B. Dantzig. Linear programming under uncertainty. Management Science,
1(3-4):197–206, 1955.

[20] D. Delling, A.V. Goldberg, I. Razenshteyn, and R.F. Werneck. Exact combina-
torial branch-and-bound for graph bisection. In Proceedings of the Meeting on
Algorithm Engineering & Expermiments, ALENEX ’12, pages 30–44, Philadel-
phia, PA, USA, 2012. Society for Industrial and Applied Mathematics.

[21] D. Delling and R.F. Werneck. Better bounds for graph bisection. In Proceedings
of the 20th Annual European Conference on Algorithms, ESA’12, pages 407–
418, Berlin, Heidelberg, 2012. Springer-Verlag.

[22] A. G. Doig, Bya H. Land, and A. G. Doig. An automatic method for solving
discrete programming problems. Econometrica, pages 497–520, 1960.

[23] N. Fan and P.M. Pardalos. Robust Optimization of Graph Partitioning and
Critical Node Detection in Analyzing Networks, pages 170–183. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[24] N. Fan, Q.P. Zheng, and P.M. Pardalos. On the two-stage stochastic graph par-
titioning problem. In Proceedings of the 5th International Conference on Com-
binatorial Optimization and Applications, COCOA’11, pages 500–509, Berlin,
Heidelberg, 2011. Springer-Verlag.

BIBLIOGRAPHY 77

[25] A.E. Feldmann and P. Widmayer. An o(n4) time algorithm to compute the
bisection width of solid grid graphs. Algorithmica, 71(1):181–200, January 2015.

[26] W. Feller. Über den zentralen grenzwertsatz der wahrscheinlichkeitsrechnung.
Mathematische Zeitschrift, 40(1):521–559, 1936.

[27] A. Felner. Finding optimal solutions to the graph partitioning problem with
heuristic search. Annals of Mathematics and Artificial Intelligence, 45(3-4):293–
322, December 2005.

[28] C.E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel, and L.A. Wolsey. The
node capacitated graph partitioning problem: A computational study. Mathe-
matical Programming, 81(2):229–256, 1998.

[29] R. Fortet. L’algèbre de boole et ses applications en recherche operationnelle.
Trabajos de Estadistica, 11(2):111–118, 1960.

[30] A. Frangioni, A. Lodi, and G. Rinaldi. New approaches for optimizing over the
semimetric polytope. Mathematical Programming, 104(2-3):375–388, 2005.

[31] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[32] O. Goldschmidt, A. Laugier, and E.A. Olinick. Sonet/sdh ring assignment with
capacity constraints. Discrete Applied Mathematics, 129(1):99 – 128, 2003.
Algorithmic Aspects of Communication.

[33] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering
problem. Math. Program., 45(1):59–96, August 1989.

[34] W.W. Hager and Y. Krylyuk. Graph partitioning and continuous quadratic
programming. SIAM J. Discret. Math., 12(4):500–523, October 1999.

[35] W.W. Hager, D.T. Phan, and H. Zhang. An exact algorithm for graph parti-
tioning. Mathematical Programming, 137(1):531–556, 2013.

[36] R. Henrion and C. Strugarek. Convexity of chance constraints with independent
random variables. Computational Optimization and Applications, 41(2):263–
276, 2008.

[37] S. Holm and M.M. Sørensen. The optimal graph partitioning problem.
Operations-Research-Spektrum, 15(1):1–8, 1993.

[38] L. Hyafil and R.L. Rivest. Graph partitioning and constructing optimal de-
cision trees are polynomial complete problems. Technical Report Rapport de
Recherche no. 33, IRIA – Laboratoire de Recherche en Informatique et Au-
tomatique, Domaine de Voluceau, Rocquencourt 78150 - Le Chesnay, France,
1973.

[39] V. Kaibel, M. Peinhardt, and M.E. Pfetsch. Orbitopal fixing. Discrete Opti-
mization, 8(4):595 – 610, 2011.

78 BIBLIOGRAPHY

[40] S.E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection problems with
semidefinite programming. INFORMS J. on Computing, 12(3):177–191, July
2000.

[41] G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 4.0, 2009.

[42] S. Kataoka. A stochastic programming model. Econometrica, 31(1/2):181–196,
1963.

[43] M. Labbé and F.A. Özsoy. Size-constrained graph partitioning polytopes. Dis-
crete Mathematics, 310(24):3473 – 3493, 2010.

[44] A.M. Liapunov. Collected Works of Academician A.M. Lyapunov. Number v.
1-2 in Collected Works of Academician A.M. Lyapunov. Translation Division,
Foreign Technology Division, 1967.

[45] J.W. Lindeberg. Eine neue herleitung des exponentialgesetzes in der
wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 15(1):211–225, 1922.

[46] A. Lisser and F. Rendl. Graph partitioning using linear and semidefinite pro-
gramming. Mathematical Programming, 95(1):91–101, 2003.

[47] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-
order cone programming. Linear Algebra and its Applications, 284(1-3):193 –
228, 1998. International Linear Algebra Society (ILAS) Symposium on Fast
Algorithms for Control, Signals and Image Processing.

[48] E.M. Macambira, N. Maculan, and C.C. de Souza. A column generation ap-
proach for sonet ring assignment. Networks, 47(3):157–171, 2006.

[49] B.L. Miller and H.M. Wagner. Chance constrained programming with joint
constraints. Operations Research, 13(6):930–945, 1965.

[50] M. Minoux and R. Zorgati. Convexity of gaussian chance constraints and of re-
lated probability maximization problems. Computational Statistics, 31(1):387–
408, 2016.

[51] D.P. Nguyen, M. Minoux, V.H. Nguyen, T.H. Nguyen, and R. Sirdey. Improved
compact formulations for a wide class of graph partitioning problems in sparse
graphs. Discrete Optimization, pages –, 2016.

[52] A. Prékopa. Stochastic Programming. Springer, 1995.

[53] D. Rhodes, R. Dick, and K. Vallerio. Task graphs for free. http://ziyang.

eecs.umich.edu/~dickrp/tgff/.

[54] M. Sellmann, N. Sensen, and L. Timajev. Multicommodity Flow Approximation
Used for Exact Graph Partitioning, pages 752–764. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

BIBLIOGRAPHY 79

[55] N. Sensen. Lower Bounds and Exact Algorithms for the Graph Partitioning
Problem Using Multicommodity Flows, pages 391–403. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2001.

[56] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Pro-
gramming. Society for Industrial and Applied Mathematics, 2009.

[57] H.D. Sherali and J.C. Smith. An improved linearization strategy for zero-one
quadratic programming problems. Optimization Letters, 1(1):33–47, 2007.

[58] M.M. Sørensen. Facet-defining inequalities for the simple graph partitioning
polytope. Discrete Optimization, 4(2):221 – 231, 2007.

[59] O. Stan, R. Sirdey, J. Carlier, and D. Nace. The robust binomial approach to
chance-constrained optimization problems with application to stochastic parti-
tioning of large process networks. Journal of Heuristics, 20(3):261–290, 2014.

[60] W.W. Stein and T.Z. William, editors. Applications of Stochastic Programming.
Society for Industrial and Applied Mathematics, 2005.

[61] Z.C. TaşKiN, J.C. Smith, S. Ahmed, and A.J. Schaefer. Cutting plane al-
gorithms for solving a stochastic edge-partition problem. Discret. Optim.,
6(4):420–435, November 2009.

