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Abstract
Many different species behave in a cooperative fashion and cooperation is central to most
of the major transitions in evolution. However, explaining its evolution is a major chal-
lenge in evolutionary biology. The evolution of altruistic actions in particular, where
individuals pay a cost to bring benefits to others, has been widely studied. In compari-
son, mutually beneficial actions, which benefit every individual participating, have been
relatively ignored. Yet, while this type of cooperation is stable once evolved, explaining its
origin is a challenge, in particular when it requires the coordination of several individuals.

In order to study the evolution of mutualistic cooperation, it is classical to use the
evolutionary game theoretical model of the stag hunt. In this game, cooperating is more
rewarding than acting in a solitary fashion but it is risky when rare. The issue is thus to
study the emergence of the cooperative equilibrium. Here we claim that classical models
in evolutionary biology make critical assumptions about the mechanics of behaviour that
may impact the emergence of mutualistic cooperation. In consequence, we choose to
address this issue with a framework that allows to take these mechanics into account:
evolutionary robotics.

The fields to which we contribute in this thesis are twofold. First we use evolutionary
robotics to model the evolution of mutualistic cooperation. Taking inspiration from the
game of the stag hunt, we design an experiment of collective hunting. We show that
while the transition to cooperation is easy in a classical game theoretical model, this
transition becomes impossible with our model in evolutionary robotics. We thus reveal
how modeling the practical mechanics of behaviours impacts the emergence of mutualistic
actions. Then we show how individual selection alone may optimize collective actions as
the emergence of coordination allows the transition to the optimum. Additionally, we
reveal that the nature of the coordination behaviours evolved impacts the probability for
this transition to occur.

In a second Part, we focus on the automatic design of controllers for distributed multi-
robot systems. More precisely, we study the influence of genetic team composition on the
design of cooperative agents in evolutionary robotics. We first compare a clonal approach
(i.e. homogeneous team) and two aclonal approaches (i.e. heterogeneous team) in a col-
lective foraging task. We reveal the existence of a tradeoff between the capacity to evolve
cooperation, best achieved with homogeneous robots, and the efficiency of the coopera-
tive solutions, where the more efficient cooperators are evolved with a particular aclonal
approach: cooperative coevolution. Then we focus on the issue of evolving specialisation
among heterogeneous robots. We study how specialisation can evolve at the level of the
population, i.e. genotypic polymorphism. We reveal the critical challenges raised by this
issue and that for genotypic polymorphism to occur, it is necessary to protect against the
invasion of generalists as well as maintain sufficient genetic diversity in the population.

In conclusion, we show in this thesis how evolutionary robotics can contribute to a
same problem (in our case the evolution of cooperation) in two very different directions:
towards modeling in evolutionary biology or the automatic design of robots.

..
3

...





Contents

List of Figures 13

List of Tables 17

1 General Introduction 19
1.1 The Evolution of Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Model and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3 Evolving Coordination in Evolutionary Robotics . . . . . . . . . . . . . . . 36

I Modeling the Mechanics of Coordination in the Evolution
of Cooperation 39

2 Models in Evolutionary Biology and Evolutionary Robotics 41
2.1 Classical Models in Evolutionary Biology . . . . . . . . . . . . . . . . . . . 42
2.2 Individual-Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Evolutionary Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 The Impact of Behavioural Mechanisms in the Evolution of Cooperation 53
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Supporting Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 The optimization of Collective Actions by Individual Selection 71
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

..
5

.
Contents

..



II Designing Cooperative Robots in Evolutionary Robotics 87

5 Multirobot Systems and Automatic Design in Evolutionary Robotics 89
5.1 Multirobot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Designing the Control of Collective Robots . . . . . . . . . . . . . . . . . . 94
5.3 Evolutionary Design for Distributed Robotics . . . . . . . . . . . . . . . . 98
5.4 Genetic Team Composition and the Evolution of Cooperation . . . . . . . 101
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 The Tradeoff between Evolvability and Efficiency in the Evolution of
Cooperation 107
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Cooperative Foraging Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Going Beyond the Evolvability vs. Efficiency Tradeoff using Incremental Evolution115
Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 The Evolution of Specialisation through Genotypic Polymorphism 123
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Behaviours of Specialists in a Cooperative Foraging Task . . . . . . . . . . . . . 128
Evolving Heterogeneous Behaviours with an Elitist Selection . . . . . . . . . . . 130
Evolution Under a Fitness-Proportionate Selection . . . . . . . . . . . . . . . . 132
Computational Analyses of Population Dynamics . . . . . . . . . . . . . . . . . 134
Key Properties for Evolving Heterogeneous Behaviours . . . . . . . . . . . . . . 136
Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Discussion 139
8.1 Modeling the Evolution of Cooperation . . . . . . . . . . . . . . . . . . . . 139
8.2 Automatic Design of Collective Robots . . . . . . . . . . . . . . . . . . . . 143
8.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Publications 149

Bibliography 151

..
6

.
Contents

..



List of Figures

1.1 Multiple examples of cooperation. (A) Eusocial insects like Hy-
menoptera (e.g. ants) are capable of highly developed cooperative be-
haviours. (B) Some social carnivores like the spotted hyena perform various
cooperative behaviours and are capable of advanced coordination strate-
gies during collective hunts. (C) Social grooming is a cooperative behaviour
where individuals groom each other reciprocally (here shown in impalas).
(D) Interspecific cooperation (or mutualism) is a common cooperative be-
haviour. Here we show a Labroides dimidiatus involved in a cleaning sym-
biosis where the individual cleans another from parasites. . . . . . . . . . . 21

1.2 Payoff matrix of the stag hunt. In the stag hunt (Skyrms 2004), we
consider that while hunting, two hunters can either hunt a hare or a stag.
Hunting a hare can be done in a solitary or cooperative fashion, which
ensures that any individual which hunts gets a reward. In comparison,
hunting a stag can only be achieved in a cooperative fashion but rewards
more than a hare. In consequence, an individual who would hunt a stag
alone would not get any benefit. Payoffs are indicated in pair as follows:
(Payoff for hunter 1; Payoff for hunter 2). The exact payoffs do not rep-
resent the most important aspect of the game as long as the different
situations are in that order: R (reward for cooperation) > T (temptation
for defection) = P (punishment for defection) > S (sucker’s payoff). The
payoff-dominant equilibrium is the equilibrium where the hunters maxi-
mize their maximum payoff whereas the risk-dominant equilibrium is the
one where they maximize their minimum payoff. . . . . . . . . . . . . . . . 28

1.3 General workflow of an evolutionary robotics algorithm. The main
goal of ER is to evolve a population of genotypes. To that end, each
genotype must be evaluated to obtain a fitness score. A genotype is thus
translated into a phenotype (here an artifical neural network) and then
embedded into a robot to act as its controller. The robot is situated in its
environment and its behaviour is evaluated in accordance to the specificities
of the task. Once every genotype has been asigned a fitness score, they
undergo an evolutionary algorithm. This process selects the genotypes
deemed fit to create offspring, on which variation is then applied. Finally
this new population of genotypes replace the previous population and the
process can go on for a new generation. . . . . . . . . . . . . . . . . . . . . 30
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1.4 Robot model of our experimental setting. This figure represents
the sensory and neural architecture of the simulated robotic agents used
in our experimental study. On the robot diagram, proximity sensors are
represented by the blue lines whereas the front camera is shown as a red
cone. The neural network is a multilayer perceptron with one hidden layer
and whose inputs are constituted of all the sensory information of the
individual. The outputs of the neural networks are the speeds of both of
the robot’s wheels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Screenshot of a robotic simulation. The red dots represent the two
hunters, the green dots the hares, and the pink dots the stags. The black
lines around the agents’ body represent the proximity sensors and the black
cones on front the cameras described in the text. Hunters are allowed to
move throughout the environment. Hares and stags remain at their starting
positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Diagram of the simulated robotic agent used in the simulation
(inset) and its neural network controller. The blue lines represent the
12 proximity sensors and the red lines represent the front camera. Inputs
”Type 1” and ”Type 2” are two boolean values used to represent the type
of the agent (encoded with two bits) recognized by the camera ray. . . . . 59

3.3 Evolution of cooperation in a robotic simulation with an initial
hare-hunting strategy. (A) Evolution of the mean percentage of stags
hunted successfully (i.e. cooperatively) with respect to the total number of
prey hunted. (B) Mean number of prey hunted during the last generation
of evolution for each independent run. The bottom green bar represents
the number of hares hunted, the middle pink bar the number of stags
hunted successfully (cooperatively), and the top grey bar the number of
failed hunts (stags hunted alone). The standard deviation for each quantity
is shown by black lines. The population for each of the 30 independent
runs was previously evolved in an environment with only hares. Rewards
were 50 for a hare, 0 for a stag hunted alone, and 500 for a stag hunted
cooperatively as presented in Table 3.1. The number of prey (18) was kept
constant throughout the simulation by replacing killed prey by a prey of
the same type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Evolution of cooperation in a game-theoretic simulation with an
initial hare-hunting strategy. Evolution of the mean percentage of
stags hunted successfully (i.e. cooperatively) with respect to the total
number of prey hunted when starting with a population of hare hunters
for 30 independent runs. Rewards were 50 for a hare, 0 for a stag hunted
alone, and 500 for a stag hunted cooperatively as presented in Table 3.1. . 62
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3.5 Evolution of cooperation with no initial hunting strategy. (A) Evo-
lution of the mean percentage of stags hunted successfully (i.e. coopera-
tively) with respect to the total number of prey hunted in a robotic sim-
ulation. (B) Mean number of prey hunted during the last generation of
evolution for each independent run. The bottom green bar represents the
number of hares hunted, the middle pink bar the number of stags hunted
successfully (cooperatively) and the top grey bar the number of failed hunts
(stags hunted alone). The standard deviation for each quantity is shown
by black lines. Rewards were 50 for a hare, 0 for a stag hunted alone, and
500 for a stag hunted cooperatively, as presented in Table 3.1. The num-
ber of prey (18) was kept constant throughout the simulation by replacing
killed prey by a prey of the same type. . . . . . . . . . . . . . . . . . . . . 63

3.6 Evolution of cooperation with an initial hare-hunting strategy
and a reward for solitary stag hunting. (A) Evolution of the mean
percentage of stags hunted successfully (i.e. cooperatively) with respect
to the total number of prey hunted in a robotic simulation. (B) Mean
number of prey hunted during the last generation of evolution for each
independent run. The bottom green bar represents the number of hares
hunted, the middle pink bar the number of stags hunted cooperatively and
the top grey bar the number of stags hunted alone. The standard deviation
for each quantity is shown by black lines. The population for each of the
30 independent runs was previously evolved in an environment with only
hares. Rewards were 50 for a hare, 50 for a stag hunted alone, and 500 for
a stag hunted cooperatively as presented in Table 3.3. The number of prey
(18) was kept constant throughout the simulation by replacing killed prey
by a prey of the same type. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Evolution of cooperation under maximal genetic relatedness with
an initial hare-hunting strategy. (A) Evolution of the mean percent-
age of stags hunted successfully (i.e. cooperatively) with respect to the
total number of prey hunted in a robotic simulation. (B) Mean number of
prey hunted during the last generation of evolution for each independent
run. The bottom green bar represents the number of hares hunted, the
middle pink bar the number of stags hunted successfully (cooperatively)
and the top grey bar the number of failed hunts (stags hunted alone). The
standard deviation for each quantity is shown by black lines. The pop-
ulation for each of the 30 independent runs was previously evolved in an
environment with only hares. The genetic relatedness between paired indi-
viduals was 1. Rewards were 50 for a hare, 0 for a stag hunted alone, and
500 for a stag hunted cooperatively as presented in Table 3.1. The num-
ber of prey (18) was kept constant throughout the simulation by replacing
killed prey by a prey of the same type. . . . . . . . . . . . . . . . . . . . . 66
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3.8 Snapshots of a simulation after two hunts. In each of these snapshots,
we show the path travelled by each hunter (in different colours) since their
last prey was hunted. The black dots represent the positions of the hunters
at their last kill. The red star on the stag (pink circle) converged on by the
hunters indicates not only that the prey was killed but, more importantly,
that it was killed cooperatively by the two hunters. . . . . . . . . . . . . . 67
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and a varied density of prey. Evolution of the mean percentage of
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was (A) 6 and (B) 30. The population for each of the 30 independent
runs was previously evolved in an environment with only hares. Rewards
were 50 for a hare, 0 for a stag hunted alone, and 500 for a stag hunted
cooperatively as presented in Table 3.1. The number of prey was kept
constant throughout the simulation by replacing killed prey by a prey of
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4.1 Mean proportion of prey hunted cooperatively. (A) Mean propor-
tion of boars and stags hunted cooperatively by the best individual in each
of the 30 independant replications. The colored areas around the medians
represent the first and third quartiles. The red line represents the separa-
tion between the pre-evolution step (when hunting stags rewards nothing)
and the rest of the evolution. (B) Repartition of the prey hunted at the
last generation of evolution by the best individual in each replication. Re-
wards for a boar are 50 if hunted alone and 125 if hunted cooperatively.
A stag hunted alone rewards 0 and 250 if hunted in a cooperative fashion
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4.2 Proportion of stag hunting runs and proportion of prey hunted.
(A) Number of replications (out of a total of 30) where stag hunting evolved
in the Control and Coordination settings. We consider that stag hunting
evolved when more than 50% of the prey hunted were stags hunted coop-
eratively. In the Control setting, the environment is constituted of one
boar and one stag. In comparison, in the Coordination setting, 18 prey
are present in the environment and it is thus necessary to coordinate for
cooperation to happen. Rewards for a boar are 50 if hunted alone and 125
if hunted cooperatively. A stag hunted alone rewards 0 and 250 if hunted
in a cooperative fashion (Table 4.1). (B) Repartition of prey hunted at the
last generation of evolution by the best individual in every replication in
the Coordination setting. The population for each replication previously
evolved in an environment where hunting stags rewarded nothing. . . . . . 78

4.3 Display of a turning stategy after an entire simulation. Both indi-
viduals adopt a turning strategy during a complete simulation. The paths
of the agents are represented in red and blue, starting from their initial
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if the red agent (resp. blue) arrived on this prey first. . . . . . . . . . . . . 79

4.4 Proportion of cooperative runs. Number of replications (out of a total
of 30) where stag hunting evolved in the Control, Coordination and Co-
ordination+Duplication settings. We consider that stag hunting evolved
when more than 50% of the prey hunted were stags hunted cooperatively.
In the Control setting, the environment is constituted of one boar and one
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4.6 Mean reward comparison of turning and leader/follower strate-
gies. Mean reward of the best individuals in the 30 replications over
evolutionary time by individuals adopting a turning strategy (evolved in
the Coordination setting) or a leader/follower strategy (evolved in the Co-
ordination+Duplication strategy) during the pre-evolution step. Rewards
were 50 for a boar if hunted alone, 125 if hunted cooperatively, 0 for a stag
hunted alone and 250 if hunted in a cooperative fashion (Table 4.1). . . . . 83

4.7 Proportion of cooperative runs. Number of replications (out of a total
of 30) where stag hunting evolved in the Control, Coordination and Co-
ordination+Duplication settings. We consider that stag hunting evolved
when more than 50% of the prey hunted were stags hunted cooperatively.
In the Control setting, the environment is constituted of one boar and one
stag. In comparison, in the Coordination setting, 18 prey are present in the
environment and it is thus necessary to coordinate for cooperation to hap-
pen. Finally, in the Coordination+Duplication setting, the environment
is also constituted of 18 prey but individuals have added neural plasticity
which allows them to adopt more complex strategies. At a beginning of
a simulation, both individuals use the same neural network. A change of
network occurs for an individual when the other individual gets on a prey.
Rewards for a boar are 50 if hunted alone and 125 if hunted cooperatively.
A stag hunted alone rewards 0 and 250 if hunted in a cooperative fashion
(Table 4.1). The population of each replication previously evolved in an
environment where hunting stags rewards nothing. . . . . . . . . . . . . . . 85

4.8 Mean reward comparison of turning and search/join strategies.
Mean reward of the best individuals in the 30 replications over evolu-
tionary time by individuals adopting a turning strategy (evolved in the
Coordination setting) or a search/join strategy (evolved in the Coordina-
tion+Ducpliation strategy) during the pre-evolution step. Rewards were
50 for a boar if hunted alone, 125 if hunted cooperatively, 0 for a stag
hunted alone and 250 if hunted in a cooperative fashion (Table 4.1). . . . . 86

6.1 Performance of the cooperative solutions. Median fitness score of
the best individuals in each of the runs where cooperation evolved for each
setup over time. The fitness score of an individual is computed as the
average reward the individual earned per trial by foraging targets. The
colored areas around the medians represent the first and third quartiles. . . 114

6.2 Snapshots of the simulation after an entire trial in the foraging
task. The path of each robotic agent from their initial positions (black
dots) is represented in red and blue. The green and purple discs represent
the 18 targets in the environment. When a target is foraged by the two
agents, a red cross (resp. blue) is drawn on the target if the red agent
(resp. blue) arrived on it first. Each snapshot corresponds to a trial where
agents adopted a different behavior: (A) turning or (B) leader/follower. . . 115

..
12

.
List of Figures

..



6.3 Performance of the cooperative solutions. Median fitness score of
the best individuals in each of the 60 independent runs and for each setup
over time. Fitness score is computed as the average longest sequence of
waypoints shared by both agents per trial. The colored areas around the
medians represent the first and third quartiles. . . . . . . . . . . . . . . . . 117

6.4 Proportion of leadership. Boxplots of the proportion of leadership over
time for the best individuals in each runs where the proportion at the
last evaluation was greater than 0.75 in the (A) control, (B) clonal or
(C) coevolution setup. This value represents the proportion of waypoints
crossed by both individuals for which the leader arrived first. . . . . . . . . 119

6.5 Performance of the cooperative solutions. Median fitness score of
the best individuals in each of the runs where cooperation evolved for each
setup over time. The fitness score of an individual is computed as the
average reward the individual earned per trial by foraging targets. The
colored areas around the medians represent the first and third quartiles. . . 120

7.1 Snapshots of the simulation after an entire trial in the foraging
task. The path of each robotic agent from their initial positions (black
dots) is represented in red and blue. The blue discs represent the 18 targets
in the environment. When a target is foraged by the two agents, a red cross
(resp. blue) is drawn on the target if the red agent (resp. blue) arrived
on it first. Each snapshot corresponds to a trial where agents adopted a
different strategy: (A) turning or (B) leader/follower. . . . . . . . . . . . . 128

7.2 Average reward and leadership proportion with a leader/follower
or turning strategy Boxplots of (A) the average reward and (B) the
leadership proportion over 20 independent trials for the leader/follower
and turning strategies. The leadership ratio of an individual represents
the propensity for one individual among the pair to arrive first more often
than its partner on a target collected in a cooperative fashion. The position
of each target at the beginning of each trial was randomized. . . . . . . . . 129

7.3 Proportion of time with a leader/follower strategy. Boxplots of the
number of generations where the best individual in each replicate adopted
a leader/follower strategy out of the total number of generations. We
consider that the best individual adopted a leader/follower strategy when
its leadership ratio was over a threshold value of 0.6. . . . . . . . . . . . . 131

7.4 Vector field of the gradient of phenotypes’ proportions and pro-
portions of phenotypes at last generation of evolution. (A) Vector
field of the gradient of phenotypes’ proportions in an infinite population.
The strength of variation is indicated by the color of the arrow. (B) Repar-
tition of phenotypes at the last generation of evolution for all three popu-
lation sizes. Evolution lasted 1500 generations and results were replicated
across 11 independent simulations. The initial population was entirely
composed of leaders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

..
13

.
List of Figures

..





List of Tables

1.1 Experimental parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Payoff matrix of the prisoner’s dilemma. The strategy of player A
(resp. player B) is symbolized by each row (resp. column). The payoff of
player A (resp. player B) is shown on the left (resp. right). This is the
payoff matrix which was used by Axelrod & Hamilton in their work on Tit
for Tat in the prisoner’s dilemma (Axelrod 1984). . . . . . . . . . . . . . . 44

3.1 Food rewards for hunting different prey. The reward depends on
whether these prey were hunted alone or cooperatively. There is no reward
for stags hunted alone in this case. . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Food rewards for hunting different prey. The reward depends on

whether these prey were hunted alone or cooperatively. There is a reward
for stags hunted alone in this case. . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Food Rewards for hunting. Rewards depend on whether the hunt was
solitary or cooperative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Architecture choices in multirobot systems. . . . . . . . . . . . . . . 92

6.1 Rewards for the foraging of the different targets. Rewards depend
on whether they were collected alone or cooperatively. . . . . . . . . . . . 112

6.2 Evolution of a cooperative strategy. Number of simulations where the
best individual evolved a cooperative strategy (collecting purple targets) or
a solitary strategy (collecting green targets) for each setup in the foraging
task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Evolution of a cooperative strategy. Repartition of the different
strategies evolved in each of the runs where cooperation evolved for each
setup in the foraging task. We indicate in each cell the number of simula-
tions where a particular strategy evolved. . . . . . . . . . . . . . . . . . . . 116

..
15

.
List of Tables

..



6.4 Cooperative strategies evolved. Repartition of the different strategies
evolved in each of the 60 independent runs for each setup in the way-
points task. We indicate in each cell the number of simulations where a
particular strategy evolved: Leader/follower (Lead.), Turning (Turn.) or
Other. “Other” regroups wall-following strategies or simulations where no
recognizable strategy evolved. . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Evolution of a cooperative strategy. Proportion of the 60 indepen-
dent simulations where the best individual evolved a cooperative strategy
(collecting purple targets) or a solitary strategy (collecting green targets)
for each setup in the foraging task when individuals are previously evolved
in the waypoints task. In addition, the repartition of the different strate-
gies is indicated when cooperation evolved: Leader/Follower (Lead.) or
Turning (Turn.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Rewards for the foraging of targets. Rewards depend on whether the
targers were collected in a solitary or cooperative fashion. . . . . . . . . . . 127

7.2 Strategies evolved by the best individuals under elitist selection
with an initially random population. Repartition of the different
strategies adopted by the best individuals at the last evaluation in each of
the replicates for different population sizes N . We indicate in each cell the
number of simulations where a particular strategy evolved. Populations
were evolved under an (µ + λ) elitist selection, with µ = N

2
and λ = N

2
.

Individuals’ genotype values were intially random. In the table ”L/F”
stands for leader/follower and ”NC” for ”Non-Cooperative”. . . . . . . . . 130

7.3 Strategies evolved by the best individuals under elitist selection
when adding followers. Repartition of the different strategies adopted
by the best individuals at last evaluation in each of the replicates for differ-
ent population sizes N . We indicate in each cell the number of simulations
where a particular strategy evolved. Populations were evolved under a
(µ + λ) elitist selection, with µ = N

2
and λ = N

2
. The population was

initially seeded with a population of leaders in which we added a specific
amount of followers. In the table ”L/F” stands for leader/follower and
”NC” for ”Non-Cooperative”. . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Strategies evolved by the best individuals under fitness-proportionate
selection with an initially random population. Repartition of the
different strategies adopted by the best individuals at the last evaluation
in each of the replicates for different population sizes. We indicate in
each cell the number of simulations where a particular strategy evolved.
Populations were evolved under a fitness-proportionate selection. Individ-
uals’ genotype values were initially random. In the table ”L/F” stands for
leader/follower and ”NC” for ”Non-Cooperative”. . . . . . . . . . . . . . . 133

..
16

.
List of Tables

..



7.5 Strategies evolved by the best individuals under fitness-proportionate
selection when adding followers. Repartition of the different strate-
gies adopted by the best individuals at the last evaluation in each of the
replicates for different population sizes N . We indicate in each cell the
number of simulations where a particular strategy evolved. Populations
were evolved under a fitness-proportionate selection. The population was
initially seeded with a population of leaders in which we added a specific
amount of followers. In the table ”L/F” stands for leader/follower and
”NC” for ”Non-Cooperative”. . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.6 Payoff matrix for pair-wise simulations of each phenotype. Av-
erage payoffs of each phenotype against every phenotype in a pair-wise
simulation. Each pair was evaluated 10 times in order to decrease the
stochastic effects of the initial conditions (i.e. random positions of the
targets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.7 Strategies evolved by the best individuals when coevolving two
populations. Repartition of the different strategies adopted bt the best
individuals at the last evaluation in each of the 11 replicates. We indicate
in each cell the number of simulations where a particular strategy evolved.
Two populations were coevolved under elitist selection and the individu-
als’ genotype values were initially random. In the table ”L/F” stands for
leader/follower and ”NC” for ”Non-Cooperative”. . . . . . . . . . . . . . . 136

..
17

.
List of Tables

..





Chapter 1

General Introduction
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1

Natural selection cannot possibly produce any modification in any one
species exclusively for the good of another species.

— Charles Robert Darwin

1.1 The Evolution of Cooperation . . . . . . . . . . . . . . . . . . . 19
1.1.1 The Problem of Evolving Cooperation . . . . . . . . . . . . . . 19
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1.1 The Evolution of Cooperation
1.1.1 The Problem of Evolving Cooperation
Many different species exhibit cooperative behaviours in very diverse manners. It is even
argued that cooperation is one of the leading factors in most of the major transitions in
evolution (e.g. the appearance of eukaryotes or the evolution of multicellularity) (Sza-
thamàry and Maynard Smith 1995). The classical definition of cooperation in evolutionary
biology is as follows: cooperation is a behaviour where an actor (the individual who ini-
tiates the behaviour) behaves in such a way that is beneficial to a recipient (West et
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al. 2007b). Given how broad this definition is, numerous biological phenomena can be
included under this label.

Cooperative actions are present at every level of the natural world. Even unicellular
organisms such as bacteria and microorganisms are known to frequently act in a cooper-
ative manner. By using secretions, microorganisms are capable of collective sharing and
communication (Elena and Lenski 2003; Keller and Surette 2006; West et al. 2006). Pseu-
domonas aeruginosas for example produce nutrients that every organism in the vicinity
can benefit from (Popat et al. 2012; Harrison 2013). Insects from the Hymenoptera (e.g.
ants, wasps, bees) and Isoptera (e.g. termites) orders are known for the presence of euso-
ciality (Figure 1.1 (A)) (Wilson 1990) which entails highly cooperative behaviours between
individuals. In particular, the most distinctive feature of eusociality is the existence of
division of reproductive labor. This means that reproductive and non-reproductive castes
(e.g. worker caste) coexist, where individuals which cannot reproduce care for the youngs
of others. Some social carnivores are capable of collective hunting, where several members
of the same group coordinate their actions to catch a challenging prey. Spotted hyenas
(see Figure 1.1 (B)) in particular are efficient hunters which rely on signaling and com-
munication to coordinate (Drea and Carter 2009; Smith et al. 2010, 2012) and are able
to defend their catch against lions. But they are also considered to be the most social
taxon among Carnivora (Mills 2003) and the complexity of their social organization is
comparable to that of primates (Drea and Frank 2003). Finally, the scope of cooperative
behaviours is such that even cooperation between individuals from different species (i.e.
interspecific cooperation or mutualism) is abundant (Bshary 2004). Cleaning symbio-
sis, where a ”client” has its teeth or body cleaned from parasites or dead tissues by a
smaller ”cleaner” (Poulin and Grutter 1996), is an example of mutualism. In particular
some fishes, especially Labroides dimidiatus (wrasses, Figure 1.1 (D)), are known to clean
other bigger fishes to the point that there exists ”cleaning station” where multiple aquatic
animals converge to benefit from their services.

Yet explaining the evolution of cooperation has been one of the major challenges in
evolutionary biology (Hamilton 1964; Dugatkin 2002; West et al. 2011). Charles Darwin
had already said that the evolution of cooperation could pose a problem to his theory.
He thought that the existence of a non-reproductive caste in eusocial insects was ”one
special difficulty, which at first appeared to me to be insuperable, and actually fatal to
my whole theory” (Darwin 1859). According to the theory of evolution, life is a struggle
where only the fittest individuals survive. The main purpose of evolutionary biology is
to explain adaptation (West et al. 2011). In particular, natural selection is driven by
the reproduction of individuals. Namely, because transmission of genetic material occurs
through reproduction, evolution leads to an increase in genes and traits that increase the
relative number of offspring (i.e. fitness) of the organism. This is where this understanding
of adaptation appears to contradict with the evolution of cooperation.

Cooperation is defined as a behaviour that benefits another individual than the actor.
One must keep in mind that ”costs” and ”benefits” refer to the fitness of the individual
(i.e. the number of this individual’s offspring) and not direct material elements. In
consequence, a cooperative behaviour decreases the relative fitness of the actor compared
to that of others in the population and should then be selected against. In particular,
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are left in the population. From this comes that cooperation should not be able to exist.
Biologists have therefore been studying the mechanisms which could explain the evo-

lution of cooperation for several decades. Because cooperative actions are so diverse,
numerous models have been proposed to classify the different mechanisms which could
explain the adaptation of cooperative traits (Dugatkin 2002; Keller and Surette 2006;
Bergmüller et al. 2007; West et al. 2007a). For our overview of cooperation in this present
manuscript, we follow the classification of West and colleagues (West et al. 2007b). In par-
ticular, these mechanisms can be classified in two main categories: direct fitness benefits
and indirect fitness benefits.

1.1.2 Altruism and Indirect Fitness Benefits
A particular type of cooperative actions that has garnered a lot of attention is altruism.
We consider a behaviour to be altruistic when the actor of the behaviour pays a fitness
cost in an action benefitting another individual (Hamilton 1964; West et al. 2007b). The
costly secretion of nutrients by P. aeruginosas corresponds, in its simplest form, to an
altruistic action. Eusociality is also a major example of altruism in the natural world. In
particular, the distribution of reproductive labour means that part of the individuals do
not reproduce at all, thus paying the highest fitness cost possible.

The main problem posed by the evolution of altruism is its stability against the invasion
of cheaters. As previously explained with the example of P. aeruginosas, cheaters can
easily invade the population and take over cooperators. This sparked numerous research
on the evolution of altruism. The now well-known explanation for the evolution of altruism
was proposed by Hamilton: kin selection (Hamilton 1964). This mechanism conveys the
idea that a particular trait can spread through the reproduction of relatives. If we consider
the unit of selection in evolution to be the gene (as explained by Dawkins with the selfish
gene metaphor (Dawkins 1976)), then the ultimate ”goal” of a gene is to spread in the
population. It thus does not really matter if a particular individual reproduces or not.
If an individual helps another individual that is genetically close to her (i.e. genetically
related), she is still transmitting similar genetic material even if she ultimately does not
produce offspring. In consequences, an altruistic trait can still spread in the population
through helping a relative who may bear this trait: this is kin selection. This general idea
of the transmission of one’s genes through a relative is encapsulated into the concept of
indirect fitness benefits. Namely, if a trait contributes to the fitness of relatives, then this
trait will also be favoured by natural selection. This wider definition of fitness is called the
inclusive fitness (Grafen 1984), which is constituted of both the direct and indirect fitness
benefits. As an example, it is now known that kin selection is a driving evolutionary
mechanism for the evolution of eusociality. In particular empirical works on eusocial
insects have shown that colonies are composed of strongly related organisms. Namely all
members of the colony are offspring of a single individual (i.e. the queen) (Queller and
Strassmann 1998; Bourke 2014).

While discussing altruism we want to address the long time debate about the influence
of group selection on the evolution of altruistic behaviours. In particular, the evolution
of cooperation was not deemed worthy of studying for some time because it was thought
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that it could easily be explained by group selection (Axelrod and Hamilton 1981). There
has been two major branches of this theory, now called old and new group selection
theory (West et al. 2007b). In the old group selection, it was considered that a cooperative
trait could evolve because it was beneficial to the whole group. For example, assume
that there are two groups in competition, one constituted of cooperators and the other
of defectors, who consume resources selfishly. Because defectors exploit their resources
selfishly, they would go extinct when resources disappear. Thus the group of cooperators,
and therefore cooperation, could survive because selection acts at the level of the group.
This is why we may often hear the idea that an individual behaves in a certain way
”for the good of the species”. While this particular theory of group selection was then
dismissed as nonexistent (Maynard Smith 1976), a new group selection theory arised. In
this new theory, the main idea is that individuals interact in small groups, which exist
inside a given population (whereas old group selection considered the whole population
to be the group). Because interactions take place between a small number of individuals
inside a given group, then the emergence of cooperative traits can be favored. Since then,
it has been shown that kin selection and new group selection are mathematically identical
concepts (Hamilton 1975; Van Baalen and Rand 1998; Gardner et al. 2007) and that it is
generally easier to use the kin selection framework (West et al. 2007b). Still, it is argued
that group selection might occur in the maintenance of sex through the effects of lineage
selection (Nunney 1989; Vienne et al. 2013).

1.1.3 Direct Fitness Benefits and Mutualism
But not all cooperative actions are altruistic. In fact cooperation can also be directly
beneficial to the actor (Leimar and Hammerstein 2010). In this case, both the actor and
the recipient benefit from the cooperative behaviour and we then say that the behaviour
is mutually beneficial (West et al. 2007b). Before we talk more thoroughly about this sub-
ject we must clarify some confusions that sometimes arise in the literature (Bergmüller
et al. 2007). Some have considered cooperation to only refer to mutually beneficial be-
haviours (Trivers 1985; Lehmann and Keller 2006) in comparison to altruism. Here we
consider the broader definition where cooperation includes both altruistic and mutualistic
actions (West et al. 2007b). There is also some confusion about the definition of mutu-
alism. While it can be used to describe mutually beneficial actions or sometimes even
cooperation as a whole (as previously explained), it may also strictly refer only to inter-
specific mutualism. In the context of this thesis, we are mainly interested in intraspecific
cooperation. As such, we follow the advice of West et al. (West et al. 2007a) and use
”mutually beneficial behaviours” rather than mutualism throughout this manuscript.

Different mechanisms have been proposed in order to explain how cooperation can be
adaptive through direct benefits. For example the benefits for the actor can be enforced
in multiple manners. An exhaustive review of enforcement is beyond the scope of this
manuscript but we will quickly describe this mechanism to give a general overview of
its influence. First, one way those benefits can be enforced is through reciprocal inter-
actions (Trivers 1971). Under reciprocity, individuals will tend to help those who have
helped them in the past and thus provide mutual (albeit delayed) benefits. In this case, we
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talk about direct reciprocity. In comparison, under indirect reciprocity an individual will
tend to help an individual who is known to help others, hence the notion of ”reputation-
based reciprocity”. It is interesting to note that, outside humans, reciprocity is thought
to be generally unimportant (Dugatkin 1997). However, one well-known example of non-
human reciprocity is in the allogrooming behaviour of impalas (see Figure 1.1 (C)) (Hart
and Hart 1992). Impalas groom each other in order to remove ticks from the other in-
dividual. What is particularly interesting is that grooming occurs in several alternative
bouts where one individual bouts the other. More importantly, each individual is actor
and recipient for the same number of bouts. This behaviour is widespread and can involve
pairs of males, females and fawns. Furthermore, the individuals are unlikely to be related,
which removes kin selection as a possible explanation.

Other forms of enforcement (or coercion (Clutton-Brock 2002)) include rewards, pun-
ishment, sanctions and policing. These types of enforcement are common in humans (Fehr
and Gächter 2002) but also in a lot of different social animals. Spotted hyenas (Drea and
Frank 2003; Drea and Carter 2009; Smith et al. 2012) enforce cooperation inside the group
through suppressed reproduction. Dominant females may attack lower ranking females if
they get pregnant or even attack their cubs directly. They thus ensure that their offspring
are the only youngs in the group. This way, they enforce cooperative care (alloparent-
ing) of youngs and increase the survival chances of their offspring. The cleaner fishes we
previously talked about provide an elegant way to distinguish between various enforce-
ment mechanisms. While they eat parasites from their client, their preference is to eat
the mucus and tissue. In return, clients use different ways to solve this conflict and en-
force cooperation (i.e. the cleaner must only eat parasites): partner choice, which means
that they only go to ”good” cleaners (i.e. cooperators), partner switching, which means
that they choose to be cleaned by another individual, and directly punishing the cleaner
through aggression (Bshary and Grutter 2005). Additionally, in the case of wrasses this
means that there are specific mechanisms which sustain this mutualism. In consequence,
this implies that there is a particular investment in this behaviour for the specific benefits
of the mutualistic relation.

In the context of this thesis we study the case where cooperation between individuals
is not enforced. Rather, all individuals have a shared interest in cooperating. This is
something which is often called by-product benefits, conveying the idea that cooperation
is a by-product from an otherwise self-interested action. For example, a large group of
individuals entails higher chances of survival (against both the environment and predators)
and an increase in the benefits from foraging or hunting. This leads individuals to have
a mutual benefit in creating groups and societies, something which is known as group
augmentation (Bergmüller et al. 2007) and has been well studied, for example in the
case of meerkats (Clutton-Brock 2002). But by-products can also lead to high degrees of
coordination between individuals through the benefits of coordinated by-products (Leimar
and Connor 2003). In this case, individuals act in their own interest but also react to
the behaviour of others. In particular, cooperative hunting is a very significant type of
coordinated by-products. For instance, we previously talked about spotted hyenas which
display complex and very coordinated hunting strategies.

An example of the selfishness involved in by-products was provided by Caraco & Brown
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with the Mexican Jay (Caraco and Brown 1986; Dugatkin 2002). When there is food in
large enough quantity, these birds will share food with other individuals’ offspring. While
this behaviour may appear altruistic at first, it can be explained by purely selfish motives.
In particular, chicks beg loudly until they are fed, which might attract nearby predators.
Thus, an individual may share food so that another individual’s chicks do not attract the
attention of predators to its own offspring. This example illustrates how it can be easy
to confuse purely selfish behaviours for altruistic ones. Similar observations have been
made from the behaviours of sentinels, where individuals will take the role of watching
for predators in order to alert others in the group. One could think that sentinels act
in an altruistic manner as they do not forage while they stand guard and might attract
the predator’s attention to themselves when signaling to others. Yet in the case of the
Arabian babbler (Wright et al. 2001), an individual goes on sentinel duty only under
certain conditions. In particular, individuals will act as watchers when they have already
collected enough food to satisfy their needs. Being a sentinel is then a way to increase
their own survival chances against predators. Similarly, meerkats selfishly benefit from
standing guard (Clutton-Brock et al. 1999). Additionally, it was shown that there exists
no evidence that they take a higher risk to be killed by a predator when acting as sentinels.

Finally, as a conclusion, it is important to state that the differences between all these
mechanisms are generally subtle and challenging to differentiate. In particular, indirect
and direct fitness benefits are not necessarily mutually exclusive and a behaviour can
evolve thanks to kin selection but then its benefits may be generated through enforcement.
Mutually beneficial actions are prevalent in among social actions and thus the question
of their evolutionary origin is critical.

1.1.4 Stability Versus Origin
When interested in the adaptation of cooperation, we can distinguish between two dif-
ferent issues: stability and origin. In the case of altruistic behaviours, the stability of
cooperation is under the constant threat of invasion by freeloaders. As such the main
problem involved is to study their stability against subversion by cheaters. In compari-
son, when benefits are mutual there does not seem to be any evolutionary puzzle in the
same way as with altruism: once a mutualistic behaviour has evolved, there is no incentive
to free-ride (Forber and Smead 2015). Thus the main focus for mutualistic behaviours is
not to understand the stability of cooperation but its origin (West et al. 2007a).

In particular, there is an issue raised by the evolution of mutually beneficial behaviours
when they require that individuals coordinate (Alvard and Nolin 2002; Alvard 2003;
Leimar and Connor 2003; Drea and Carter 2009). For example, the evolution of collective
hunting is one that is based on interdependence between the individuals (Tomasello et al.
2012), which means that the collective success of the group is dependent on the coordi-
nation between several individuals. Because of this interdependence, the problem is not
one of stability as their is no selective advantage in cheating. However there is a fitness
valley to cross where all the individuals have to evolve coordination before they are able
to reap the benefits of collective actions. To put it more simply, we face a chicken and
egg dilemma. For a cooperative trait to be selected, it needs to benefit the individual.
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In this case this benefit cannot be obtained unless others are also able to coordinate. In
consequence, the other individuals must have already evolved cooperation. There has thus
been a recent shift in evolutionary biology toward the study of the origin of cooperation
(in the case of mutualistic actions) rather than its stability (Forber and Smead 2015).

1.1.5 Proximate and Ultimate Mechanisms
There are two ways in which we can approach the study of animal behaviours and this
distinction is critical in the context of this thesis. These two approaches were introduced
by Niko Tinbergen (Tinbergen 1963; West et al. 2007b) as complementary manners in the
way we look for evolutionary explanations of behaviours :

• We can study the mechanics of behaviour to give proximate explanations

• We can be interested in the fitness consequences of the behaviour and reveal the
ultimate explanations

To put it more simply, we can abstract from the practical interactions that take place
and focus on explaining why a particular behaviour is adaptive, which is an ultimate
explanation. Or we can consider how the behaviour functions and thus be interested in
the proximate mechanisms. Tinbergen illustrated this difference with the example of the
black-headed gull. These birds remove the eggshells from their nest. The proximate (or
mechanistic) explanation is that individuals will more likely remove objects from the nest
when they have frilly edges and are egg-coloured and feather-light. The ultimate expla-
nation is that predators are this way less likely to spot their offspring. The conclusion
is that both explanations are necessary so that we can fully understand this behaviour.
Scott-Phillips and colleagues (Scott-Phillips et al. 2011) provided another way to sum-
marize the difference between these two explanations: proximate mechanisms generate
behaviours whereas ultimate functions explain why these behaviours are favored.

In this thesis, we want to show that when we are interested in the origin of cooperation
rather than its stability it is necessary to study the proximate as well as the ultimate
explanations. In particular, because we are interested in the origin of cooperative actions
rather than their stability, proximate mechanisms are critical. These mechanisms indeed
affect the availability of individual mutations. Namely, the possibility for particular mu-
tants to appear is dependent on the nature of these mechanisms. When we are interested
in the study of the stability of cooperation, the goal is to show that no mutant can invade
and replace cooperators in the population. In consequence we do not focus on the manner
in which these mutants may appear in the population because it is conservative to do
so. However it is not conservative with regards to the emergence of cooperative actions.
Studying the origin of cooperation implies that it is necessary to prove that there exists
a gradual convergence toward a cooperative behaviour. Therefore assumptions about the
appearance of mutants may be critical to the evolution of cooperation. In particular, we
will show in Chapter 2 that one such assumption made by classical models in evolutionary
biology is to consider that the effect of mutations are small (Geritz et al. 1998; McGill
and Brown 2007). While this may be true when we are interested in the adaptation of
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quantative traits, we claim that this hypothesis is not appropriate for the evolution of
more qualitative aspects of cooperative behaviour. In particular here we take the example
of collective hunting. Because the evolution of coordination is necessary for the emer-
gence of the collective behaviour, this means that the mechanistic constraints may have
a crucial influence on the emergence of cooperators and the evolution of cooperation. In
consequence, we want to show that by considering the mechanics of behaviour as a black
box, critical effects are often neglected and that proximate mechanisms influence ultimate
explanations.

1.2 Model and Method
Now that we have properly introduced the global question asked in this thesis, we will
present the method with which our study is conducted.

1.2.1 Game Theory and the Stag Hunt
It is classic to use abstract models to study the evolution of cooperation, as we will explain
more thoroughly in Chapter 2 where we will provide a more extensive review of models
used to that end. Models are convenient because they consider general mechanisms and
capture the relations between key factors. From purely computational models to spatial
simulations, the toolbox of models has been expanded during the past decades in order
to increase our understanding of the evolution of cooperation.

Among all these types of models, the most famous for studying cooperation dilemmas
are game theoretical models. The principle is that each game represents a particular social
interaction between several (most often two) players. Each game is defined by a payoff
matrix whose goal is to indicate for each player, given her strategy and that of the other
player, what is her expected reward. This way, the payoff matrix is used to describe the
specificity of the game as a whole. Game theoretical models are well used in economics
and some of them, like the Prisoner’s Dilemma, are even highly popular outside of the
scientific community. As such, evolutionary biologists have also been interested in using
game theory as a way to study the evolution of cooperative behaviours. In the case of
evolutionary biology, the general framework is called evolutionary game theory (Maynard
Smith and Price 1973).

In the context of this thesis, we are interested in mutually beneficial actions that require
coordination between several individuals. As such, we focus on a particular type of games:
coordination games. The most well-known representent of coordination games is called
the Stag Hunt (Skyrms 2004). Following a metaphor of the social contract introduced by
Jean-Jacques Rousseau and then popularized as a game by Brian Skyrms, the stag hunt
follows a simple story (see Figure 1.2)). Two hunters have the choice of either hunting a
hare or a stag. Catching a hare is easy for any of the hunters and these prey are present
in such availability that we can consider that hunting a hare has no influence on the other
hunter’s strategy. However, a stag represents a much more challenging prey to hunt and
hunters need to cooperate if they want to reap the benefits of hunting a stag. Finally,
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cannot be beneficial unless coordination is evolved and coordination is not beneficial on
its own. In consequence, the emergence of the cooperative equilibrium entails complex
modifications in the behaviours of individuals. Thus the mechanics of these behaviours
may impact the evolution of this equilibrium.

Our aim is thus to model the pratical mechanics of coordination behaviours to study
how they influence the emergence of cooperation. To this end, our approach is that of
modeling in evolutionary robotics2 (Nolfi and Floreano 2000).

1.2.2 Evolutionary Robotics
Evolutionary robotics (ER) is a method based on designing robots by taking a loose inspi-
ration from natural evolution. Namely, ER takes the concepts of selection and variation
in order to explore the complex space of candidate solutions for the design of a whole
robotic system. The idea of using evolutionary processes in order to solve engineering
problems is not new. The whole field of evolutionary computing was created on this idea
and offered success in optimization problems where more classical methods fail (Holland
1975; Goldberg 1989; Eiben and Smith 2015). Evolutionary robotics use the same prin-
ciples to take on the complex task of designing part or all of a complete robot: sensors,
morphology and control (Nolfi and Floreano 2000; Floreano et al. 2008; Doncieux et al.
2015). Keep in mind that the term ”robot” is used loosely here and can refer either to
a physical or simulated robot. This does not impact the general method of evolutionary
robotics.

Evolutionary robotics is constituted of an evolutionary algorithm whose goal is to evolve
a population of artificial genotypes according to a fitness function (see Figure 1.3). While
the actual format of the genotypes is of no particular interest here, it is but rarely similar
to a real genotype in both complexity and features. One classical choice in ER is to use
a collection of real values for each genotype but some other popular choices are to use
booleans (i.e. genetic algorithms) or data trees (i.e. genetic programming) (Eiben and
Smith 2015). This genotype is then translated into a phenotype which constitutes the
robot’s morphology and/or control. Again, the transition from genotype to phenotype
as well as the actual phenotype itself can both vary greatly from one model to another.
On that matter, one must choose what best fits his/her needs. The important point is
that in ER the phenotype is what is evaluated. To that end, the robot is situated in its
environment and let to interact with the environment and/or other robots.

In the more classical models, a fitness function is used to compute the fitness score
based on the behaviour of the robot in its environment. For example, in one of the first
experiments where an evolutionary process was used to automatically design the control
of a robot (Floreano and Mondada 1994), the goal was for a robot to navigate a looping
maze. As such, the fitness function that had to be maximized was designed as follows:

2The choice of using evolutionary robotics is not without consequences and is not made arbitrarily.
There are critical reasons which justify that we use this technique rather than any other among the
numerous modeling frameworks available in evolutionary biology. As this first Chapter is a general
introduction to this manuscript, we will carefully motivate this choice in Chapter 2. In addition, a brief
motivation will be provided in the next Section.
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individuals, a selection scheme based on the fitness score is applied. Some of the most
popular methods for the selection of individuals are (µ + λ)-ES, fitness proportionate
and tournament-based selection. The first two methods will be thoroughly described in
the next Section. As an example, we quickly describe the process of tournament-based
selection. Under this scheme, an offspring results from a tournament between several (from
two to population size minus one) randomly chosen genotypes in the population. These
genotypes are then ranked by fitness score. Next the ”winning” genotype is selected based
on a given paramater T . A random value p is generated. If p < T then the best genotype
is selected. Otherwise we select one of the other genotypes with the same method. This
parameter is used to tackle the tradeoff between exploration and exploitation. It is often
absent from tournament-based selection as the size of the tournament can also address
this dilemma.

Variation is then finally applied on the offspring to create the population of the next
generation. Variation can consist of mutations and/or crossover. A mutation is the
process of randomly choosing one or several genes in the genotype, for example according
to a uniform distribution, whose value is then randomly changed (in the way that depends
from the format of the genotype). In comparison, crossover is used to mix the genotypes
of two different offspring. In the most classical way to do crossover, one point crossover,
a random point is selected in the genotype and genetic material is swapped between two
individuals around this point. Numerous operators of variation exist and which one to
use depends on the problem at hand.

In this thesis, we are interested in the modeling of proximate mechanisms in the evolu-
tion of mutually beneficial actions. As such, evolutionary robotics is a suitable approach.
ER focuses on the modeling of individual-level behaviours resulting from the evolved geno-
types situated in a specific environment. This allows to take into account interactions
with both the environment and other individuals under complex ecological features. As
such, ER has been used to address specific biological hypothesis with a strong emphasis
on the mechanistic constraints at play in these evolutionary phenomena (Floreano and
Keller 2010; Mitri et al. 2013). Several recent works demonstrated the convenience of ER
in this context by investigating for example the evolution of cooperation (Waibel et al.
2011, 2009), the evolution of communication (Mitri et al. 2011; Wischmann et al. 2012) or
division of labour (Ferrante et al. 2015). These works will be carefully reviewed in Chap-
ter 2, where we will also provide a more detailted justification of our modeling choice. In
consequence, ER is a fitting choice to model the proximate mechanisms of coordination
and study their impact on the evolution of cooperation: the mechanics of behaviours are
not considered a black box anymore.

Around the common theme of the evolution of coordination, we also want to address an
additional problem which is the design of cooperative robots. This is another manner in
which evolutionary robotics can contribute to scientific research (Trianni 2014; Doncieux
et al. 2015). In particular, ER is a valuable approach when designing multirobot systems.
The design of multirobot systems is complex because it requires to take into account the
interactions between multiple individuals in order to produce the emergence of collective
functionalities. The automatic design of robot control with classical learning methods
in particular is challenging because of the sheer complexity produced by the size of the
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problem. In comparison, ER can be used as a black-box optimization technique which
does not need to make approximations about the problem at hand. In consequence,
several works have focused on designing multirobot systems with ER, be it for the design
of robot swarms (Baldassarre et al. 2007), the evolution of specialisation (Ferrante et
al. 2015) or the design of flying communicative robots (Hauert et al. 2014). In this
manuscript we thus focus on the automatic design of multirobot systems in evolutionary
robotics. In particular, we study the influence of team composition (i.e. homogeneous or
heterogeneous individuals) on the evolution of cooperative robots (Waibel et al. 2009).
We will introduce this problem more thoroughly in Chapter 5.

1.2.3 Experimental Setting
We are interested in the dual objective of both modeling the evolution of cooperation and
designing multirobot systems with an evolutionary robotics approach. Both these aspects
are independent and may be considered separate problems. However these two facets
share the common problem of the nature of coordination behaviours in the evolution of
cooperation and as such we use a similar setting for each of them. In particular, our
inspiration is the framework of the stag hunt which we model in evolutionary robotics.
As previously explained, this gives us the possibility to model the mechanistic constraints
at play in the evolution of mutually beneficial cooperation. However it also serves as
an appropriate inspiration for designing multirobot systems. In particular, we want to
investigate the nature of coordination behaviours between heterogeneous robots (in terms
of robot control) and the influence of such team composition on the evolution of cooper-
ation when selfish behaviours are possible. In consequence, while both our problems are
separate we chose to use a similar (or at least strongly similar) experimental setting for
each of these approaches. In this Section, we present this setting. As they may change
depending on the exact experiments presented in this manuscript, some of the parameter
values are not specified in this Section (see Table 1.1). All the parameters that we use
have been chosen after conducting preliminary studies.

Robot model

We want to study the evolution of simulated robotic agents (see Figure 1.4). These
agents are capable of movement thanks to two independent wheels and are equiped with
a collection of sensors. Those sensors are of two types: 12 proximity sensors and a 90
degrees front camera. On the one hand, the proximity sensors are equally distributed
all around the robot’s body and return the proximity of any obstacle nearby (i.e. in a
radius which equals twice of the body’s diameter). On the other hand, the camera cannot
sense obstacles but can feed the agent with the type of any object its rays collide with in
the environment (including other agents). More precisely, this camera is composed of 12
rays with an infinite range equally divided in the camera’s angle. When one of these rays
intersects with an object, it returns the type of this object and its proximity. The robot is
thus constituted of simple sensory capabilities. The choice of having two different sensory
feedbacks is not innocent. By dividing the sensory capabilities between the proximity
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Parameter Value
Evolutionary Algorithm

Per locus mutation probability 5× 10−3

Mutation operator Gaussian N (0, 0.01)
Number of partners 5
Number of simulations per pair 5

Artificial Neural Network
Input neurons 49
Hidden neurons 8
Output neurons 2

Simulation
Simulation duration (in time steps) 20000
Capture duration (in time steps) 800

Table 1.1 – Experimental parameters.

sensors and the camera, we are essentially facilitating the process of evolving two basic
skills necessary for the robot: obstacles avoidance and agents recognition. This design is
not to be considered as a realistic approach to animal modeling but rather as a way to ease
the acquisition of these skills that are of no particular interest here. Furthermore, while
the obstacles avoidance mechanism is not expected to improve much during evolution,
the appearance of cooperative behaviours in comparison should lead to variation on the
manner with which to recognize agents.

Controller

The controller of each agent is an artificial neural network (ANN). While a lot of different
types of controllers are used in evolutionary robotics, ANN are widely employed for their
versatility (Doncieux et al. 2015). The principle behind a very basic neural network is
that it is constituted of a layer of input neurons and a layer of output neurons which are
connected (sometimes fully) to each other. Each of the connection has a value, which is
called a connection weight. The value of each output neuron is computed as the sum of the
input neurons connected to it weighted by the connection weight. A transfer function can
then be applied to this output to compute the final value. ANN are really diverse in how
they are implemented and can include recurrence or have their topology evolve (Stanley
and Miikkulainen 2002).

In our case, we use a fully connected multilayer perceptron with one hidden layer.
This neural network is composed of two outputs which are used to compute the speed of
each of the robot’s wheels. The inputs of the network are constituted of all the sensory
information of the robot in addition to a bias neuron whose value is always 1. This
amounts to a total number of 49 input neurons: 1 for each proximity sensors, 3 for each
camera ray and 1 for bias. The feedback from each camera is encoded by 3 neurons as
we use 2 bits to encode the type of each object (hare, stag or the other agent) and 1 last
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x 12

Type 1 : {0,1} 

Type 2 : {0,1} 

Distance : [0,1] 

Distance : [0,1] x 12

Motor 1

Motor 2

Bias

INPUT NEURONS HIDDEN NEURONS OUTPUT NEURONS

49 8 2

Figure 1.4 – Robot model of our experimental setting. This figure represents the sensory
and neural architecture of the simulated robotic agents used in our experimental study. On the
robot diagram, proximity sensors are represented by the blue lines whereas the front camera is
shown as a red cone. The neural network is a multilayer perceptron with one hidden layer and
whose inputs are constituted of all the sensory information of the individual. The outputs of the
neural networks are the speeds of both of the robot’s wheels.

neuron for the proximity of this object. The hidden layer is constituted of 8 neurons.
Finally, the transfer function used in each neuron is a sigmoid and the topology of the
ANN is never changed throughout evolution.

Environment

We place two evolved robots in an arena with four solid walls. This arena is filled with
randomly positioned objects of different types, where the type can be recognized by the
camera. These objects represent the prey that can be hunted by the individuals in our
modeling of the stag hunt game. The objects cannot move while the robots can move
freely. We conducted preliminary experiments with moving objects but it was shown
that this did not significantly impact the behaviours of the individuals. Additionally, the
presence of multiple stationary objetcs already implies that the individuals need to evolve
coordination. In consequence, the addition of motion for the objects is not critical for the
conduct of our study.

In order to catch an object, an individual needs to move to this object and then stay
next to it for a specified amount of time steps (800 time steps out of 20000). After this
duration, the object is removed from its position and replaced at another random position
in the environment; we thus ensure a constant ratio of each type of object. For cooperation
to occur, both robots need to be close to the object at the end of this duration. This thus
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implies that robots need to display actual coordination behaviours in order to be able to
cooperate. This also means that an individual can reap the benefits of cooperation simply
by being there at the very last step of the capture period.

An object is always removed if an individual is next to it after this period of time,
regardless of whether it requires cooperation. What varies are the rewards given to the
individuals. Even in the case of cooperation, we do not study the way rewards are
distributed between individuals: they are both equally rewarded.

Evolutionary algorithm

The genotype of each individual is constituted of all of the connection weights of the
neural network. Each gene is initially randomized in the interval where it takes its values,
i.e. in [0, 1]. To evolve these genotypes we use a classical evolutionary algorithm. At
each generation of the algorithm we evaluate each individual from the population in the
arena presented before. Its partner is randomly selected in the population. To ensure
that each individual encounters a fair sample of the population, each individual is sep-
aratly paired with 5 different partners. From a biological perspective, this means that
encounters between individuals are rare w.r.t. the life of a given individual. Then a pair
of individuals interacts in the arena during 20000 time steps. In order to decrease the
effects of stochasticity due to the objects’ random positioning, each pair plays 5 different
simulations. Thus, each individual plays a total number of 25 simulations. Fitness is
obtained by computing the average reward of the individual in these simulations.

The individuals are then selected to produce offspring. Throughout our experiments, we
mainly study two different selection methods: fitness proportionate and elitist. The former
is the more classical one when modeling evolutionary biology because it corresponds to
a Wright-Fisher model (Wright 1931) with constant population size. Under this model,
we randomly sample through the population to select a parent in order to create each
offspring that will constitute the population of the next generation. Each individual in
the population has a higher probability to be selected if its fitness is higher and can be
selected multiple times. The latter selection scheme is implemented as a (µ+λ)-ES. With
this selection method, we always keep the µ best individuals of each generation for the
next generation. Then we add λ offspring to the population of the next generation, where
the parents of these offspring are taken from the µ best individuals ranked by fitness score.
In the case of biological modeling, fitness-proportionate is thus a more realistic choice.
However, we observed that the elistist selection strategy would reach similar results as
fitness proportionate but with smaller population sizes. Thus it allowed to decrease the
computational time of our experiments.

Whatever the selection strategy, we always create the offspring in the same way. Each
offspring is a mutated clone of its parent. Then mutation is applied independently on
each gene according to a mutation rate of 5 × 10−3. If a gene mutates, mutation is
sampled according to a gaussian distribution N (0, 0.01). Lastly, we use no recombination
(i.e. crossover) in any of our experiments. Because this thesis is focused on cooperation
between unrelated individuals (in model and in design), it raises no particular issue to
limit variation to mutations.
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1.3 Evolving Coordination in Evolutionary Robotics
While this introduction was mainly focused on the biological aspect of cooperation and the
problem its origin poses for evolutionary biology, we want to study several facets around
this general problem. We believe that our approach in evolutionary robotics entails that
the contributions of this thesis can serve different purposes around the common subject
of the evolution of coordination. Historically, evolutionary robotics has been used at the
beginning for the automatic design of robotic systems. However, there has been a debate
on how the works in this field could really contribute to scientific research as well as to
whom they may be of interest (Trianni 2014; Doncieux et al. 2015). It is now admitted
that reseach in evolutionary robotics should be clearly directed toward either of two goals:
modeling biological phenomena or designing robots (Trianni 2014). In this thesis, our goal
is to present different contributions which separately aim for each of these goals. In this
last Section, we briefly present the structure of the manustript.

1.3.1 Modeling the Evolution of Coordination
In the first Part of this manuscript, we use evolutionary robotics in order to model the
evolution of cooperation. Because we tend to generally ignore or minimize the pratical
mechanics of behaviour, the role of coordination in the evolution of mutualistic actions
is often underestimated. Yet, the proximate mechanisms of coordination may influence
the convergence to a cooperative solution. We thus study how the nature of coordination
behaviours and the mechanisms that underlie their evolution may impact the evolution
of cooperation. The particular issue we address here could be summarized as follows:
what are the proximate mechanisms which hinder or facilite the evolution of mutualistic
cooperation ?

To that end, we will spend some time in the introduction of this Part to motivate
our choice regarding evolutionary robotics, something we deliberately skipped in this
general introduction. One reason why the proximate causes of coordination have often
been overlooked is that classical models used for studying evolutionary problems may not
be appropriate for this particular goal. We believe that among the distinct assumptions
made by these models, some are critical if we plan to fully understand the evolution of
coordination. However, it is important to make clear that we do not pretend our approach
to be a more realistic depiction of nature. Rather we claim that, while we still study a
theoretical abstraction of cooperative actions, the assumptions behind our model allow
us to study particular mechanisms we believe of importance for this issue.

1.3.2 Designing Cooperative Robots
In the second Part of the manuscript, we study the evolution of cooperation in a team
of heterogeneous robots. In consequence, we focus on the automatic design of multirobot
systems. As we will explain in details in Chapter 5, multirobot systems have now been
investigated for a long time for their advantages over single robots. In particular, they
may allow to design more efficient and cheaper robotic systems as well as benefit from
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the redundancy of multiple robots to design more robust systems. Moreover, it can
sometimes be necessary to have several robots acting at the same time to achieve a
particular task. The practical applications of such systems are numerous, in particular
in environments where humans cannot go and where using a single and generally more
complex robot would simply not be reliable enough. As such, multirobot systems could be
used for collective manipulation, building or exploration of hazardous environments. For
example, cooperative robots could investigate and perform repairs inside nuclear plants
after particularly catastrophic incidents.

However designing this sort of systems is challenging. It is one thing to engineer a
factory robot which is programmed to perform a very specific and repetitive task in a
controlled environment. It is another to design a robot capable of acting in an uncertain
environment and able to adapt to the unexpected. And even more complicated when
multiple robots must both possess the qualities expected from a single robot and also
coordinate in an efficient manner. Multiple techniques for automatic design have been
proposed, especially regarding the control of robots. However, when it comes to dealing
with changing environment and uncertainty, the ”easiest” way is to design a robot that
is capable to learn from previous experiences. Among the learning methods used in
this context, ER is a promising one when robots are expected to perform in an open and
unknown environment. Therefore we explore how ER can be used for the auomatic design
of collective robots.

We are interested in the nature of the coordination behaviours that could be evolved
between heterogeneous individuals. Heterogeneous teams of robots allow for more diverse
behaviours to emerge inside a group of individuals. However, while there has always been
a clear interest in designing heterogeneity in multirobot systems (Parker 1994, 2008), most
research on the evolution of cooperative robots have been focused on homogeneous groups
of individuals (Waibel et al. 2009). This is indeed one of the safiest way to ensure that
robots will evolve a cooperative behaviour, as there is no selfish interest to act in a solitary
fashion. However, we believe that the influence of heterogeneity on the quality of the
coordination behaviours is as much of importance as the capacity to evolve a cooperation
solution. In particular, when coordination is needed heterogeneity may lead to more
efficient cooperative behaviours. However, conflict can arise from the selfish interests of
the individuals. Thus, the issue we focus on in this second Part of the manuscript is: how
can we evolve efficient coordination behaviours in a group of heterogeneous robots ?

1.3.3 Organization of the Manuscript
This manuscript is composed of two Parts that each addresses one of the two problems we
described here. Each Part is constituted of an introduction Chapter and two results Chap-
ters. Each of the results Chapters begins with a short introduction and quick summary
of the results presented in the Chapter. After the two Parts, a final concluding Chapter
is present. Chapter 2 presents a brief overview of the modeling techniques used in evolu-
tionary biology and for the evolution of cooperation in particular. The goal is to provide
the reader with a motivation about our choice to use evolutionary robotics to model the
evolution of cooperation. Chapter 3 is presented as an article published in an interna-
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tional journal. It focuses on a comparison between a classical game theoretical analysis of
the stag hunt and the results we obtained with our evolutionary robotics model. Chapter
4 is shown as the draft for a future journal article. This Chapter addresses the issue of
optimizing collective actions by way of individual selection and the impact of the nature of
coordination strategies in that context. Chapter 5 briefly presents the field of multirobot
systems and then review the different methods used to design the control of distributed
robots. The design problem of evolving cooperation between heterogeneous robots is then
described. Chapter 6 reads as an article published in an international conference. It
focuses on a comparison between clonal and aclonal approaches in a cooperative foraging
task on evolvability and efficiency. Chapter 7 is presented as another article published in
an international conference. It deals with the evolution of specialisation at the level of the
population, i.e. the evolution of genotypic polymorphism. Finally, Chapter 8 summarizes
our contributions and addresses their limits as well as the perspectives this thesis opens
for future research.
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Chapter 2

Models in Evolutionary Biology and
Evolutionary Robotics

..

2

So far, we have been able to study only one evolving system and we
cannot wait for interstellar flight to provide us with a second. If we
want to discover generalizations about evolving systems, we will have to
look at artificial ones.

— John Maynard Smith

2.1 Classical Models in Evolutionary Biology . . . . . . . . . . . . . 42
2.1.1 Population Genetics . . . . . . . . . . . . . . . . . . . . . . . . 42
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2.3.2 The Evolution of Cooperation in Evolutionary Robotics . . . . 50

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

In the first Part of this manuscript, our goal is to model the proximate mechanisms in
the evolution of coordination and study their impact on the emergence of cooperation.
As in most fields of science, modeling is a standard approach to study questions that
cannot be understood by simply observing the physical world. Everything that we now
contemplate is the consequence of thousands of millions of years of evolution; the earliest
appearance of life is dated back to 4000 millions years ago and a little more than 2000 mil-
lions for the eukaryotes. This means that we are mostly left with evidence from the past
(i.e. paleontological records) (Aiello and Wheeler 1995; Wrangham et al. 1999) or direct
observation of evolved behaviours (i.e. ethology). Evolution can also be studied as it is
taking place in organisms where it is a much faster process, like microorganisms1 (Elena

1On that subject, a noteworthy experiment is that of Richard Lenski’s ”Long-Term Evolution Exper-
iment” on Escherichia coli (Fox and Lenski 2015), where he set up in 1988 12 populations of the same
strain of E. coli and observed their evolution since then.
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and Lenski 2003). However, while empirical works can indeed study the proximate mech-
anisms of cooperation, they do not inform on the ultimate explanations of behaviours and
are not sufficient on their own to garner a full understanding of the process. Thus models
are now commonly accepted in the field of evolutionary biology, even if this may not have
always been the case (Shou et al. 2015).

As said in the Introduction of this manuscript, we chose evolutionary robotics as our
modeling technique for the problem studied. However, we only briefly justified this choice.
Thus, the next Sections will be devoted to this task. We will first focus on the different
modeling approaches used in the field of evolutionary biology. To that end, we will distin-
guish between the more classical methods for modeling evolution and the computational
methods that arose with the availability of computers. Rather than doing an extensive
review of models, we will present the relevance and benefits of these models with regard
to our subject. This will finally give us the opportunity to motivate our approach in
evolutionary robotics in light of the set of models available and the problem studied in
this thesis.

2.1 Classical Models in Evolutionary Biology

It is nowadays classical in evolutionary biology to use modeling to address the evolution of
cooperation (among other evolutionary traits). It is also necessary to do so to fully grasp
the mechanisms at play. Models are thus numerous and a lot of different frameworks have
been proposed to classify cooperative actions (Dugatkin 2002; Sachs et al. 2004; Lehmann
and Keller 2006). To that end, mathematical models dominate the field (Servedio et al.
2014).

2.1.1 Population Genetics

Population genetics form a large part of the literature in evolutionary biology. The incep-
tion of this field was mostly the result of Ronald Fisher, J.B.S. Haldane and Sewal Wright.
Fisher was the first to link mendelian inheritance (i.e. the inheritance of biological traits)
with mathematical models of natural selection in his book The Genetical Theory of Natu-
ral Selection (Fisher 1930). Population genetics is concerned with studying the changes in
alleles’ frequencies at a particular locus in the genotype. In particular, the focus is put on
population wide variations of evolutionary traits within one or a few loci. As such, there
has been a strong emphasis on studying genetic mechanisms like dominance, epistasis or
genetic drift. A notable branch of this field, quantitative genetics have in comparison
been more focused on the phenotypical aspects of evolution. More precisely, quantitative
genetics deals with continuously varying phenotypical traits. It thus abstracts from the
genetic details of evolution. However, population and quantitative genetics both tend to
abstract from the role of ecological features which we are interested in here.
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2.1.2 Evolutionary Game Theory

Matrix games

In comparison to population genetics, evolutionary game theory (EGT) puts a strong em-
phasis on ecological aspects. Game theory was originally conceived by the mathematician
John von Neumann as a way to determine the optimal strategies in a contest between
several (usually two) ”players”. Given a payoff matrix, each player can expect a certain
payoff depending on his strategy and that of other players. In this framework, players
are expected to be rational and follow this optimal strategy. One of the most important
concepts of game theory is the Nash equilibrium (Nash 1950). Under a Nash equilibrium,
no player benefits in deviating from his strategy if the other players keep their strategy.
This framework was first adapted to darwinian evolution by John Maynard Smith and
George Price under the name of evolutionary game theory (Maynard Smith and Price
1973). The novel idea is that the players’ strategies are based on their phenotypes rather
than a rational choice. Therefore, an individual’s strategy is now inherited and the evolu-
tionary success of the different strategies are studied. To that end, the payoff matrix of an
evolutionary game corresponds to the fitness value of each strategy. In order to study the
evolutionary dynamics of an evolutionary game, we consider a population of individuals
all playing the same strategy. We then assume the appearance of a rare mutant who
plays a different strategy and study the fate of these two strategies. If the strategy of
the mutant has a higher fitness than that of the initial population (called the resident
strategy), then it may invade the population and replace the resident strategy. Otherwise,
the mutant strategy will not be favoured by selection and will disappear. If this resident
strategy is stable against any mutant strategy, we say that this strategy is evolutionarily
stable (ESS) (Maynard Smith and Price 1973). Interestingly, all ESS are Nash equilibria
(but the opposite may not hold).

One of the main feature of evolutionary game theory in comparison to population ge-
netics is that it takes into account the influence of an individual’s behaviour on the fitness
of others. More precisely, the fitness of an individual depends on the proportion and
behaviours of other individuals in the population, which is known as frequency-dependent
selection. As such, EGT is convenient in order to account for the ecological features of
a particular evolutionary phenomenon (Hammerstein and Selten 1994). Because it rep-
resents conflictual and cooperative interactions, there is a great interest in using EGT
for the study of the evolution of social behaviours (Bshary and Oliveira 2015). A large
body of work in particular has focused on the stability of altruism when faced with the
appearance of free-riders (defectors) in the prisoner’s dilemma (Requejo-Martinez 2013).
The prisonner’s dilemma is a famous game where the only evolutionary stable strategy is
for both individuals to defect. Therefore studying how the cooperative equilibrium could
be stable in this situation is challenging. Another famous example is that of reciprocity in
the Iterated Prisoner’s Dilemma (Axelrod 1984). Axelrod & Hamilton proposed that indi-
viduals play an iterated version of the prisoner’s dilemma (of which you can find Axelrod
& Hamilton’s payoff matrix in Table 2.1). To put it more simply, when individuals have
engaged in one prisoner’s dilemma interaction, there is a probability that they will meet
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again in a later interaction. They showed that, under those circumstances a particularly
efficient strategy was one called Tit for Tat (TFT). Under this strategy an individual
always cooperates when meeting an opponent for the first time. It then always copies the
opponent’s last move which means that it (1) retaliates and (2) does not hold grudges.
This strategy was thus presented as a theoretical example of reciprocity (Trivers 1971).

Cooperation Defection
Cooperation 3,3 0,5
Defection 5,0 1,1

Table 2.1 – Payoff matrix of the prisoner’s dilemma. The strategy of player A (resp.
player B) is symbolized by each row (resp. column). The payoff of player A (resp. player B) is
shown on the left (resp. right). This is the payoff matrix which was used by Axelrod & Hamilton
in their work on Tit for Tat in the prisoner’s dilemma (Axelrod 1984).

In the case of coordination which we are interested in here, the prisoner’s dilemma is
not appropriate to model the evolutionary dynamics of cooperation (Alvard and Nolin
2002; Skyrms 2004). As such, another type of games more suitable for this question was
introduced as coordination games and in particular the stag hunt (Skyrms 2004; Requejo-
Martinez 2013). The details of this game have already been covered in the Introduction.
The major difference with the prisoner’s dilemma is the presence of a second ESS as
the cooperative equilibrium (i.e. stag hunting). Thus the emphasis of this game is not
on the stability of a population of cooperators against the invasion of free-riders (as the
cooperative equilibrium is evolutionarily stable) but on the transition from the solitary
equilibrium to the cooperative one. In his book, Skyrms mainly studied the influence
of location, signaling and partner choice on the evolution of cooperators (Skyrms 2004).
However, coordination games like the stag hunt have received relatively little attention,
especially in comparison to the prisoner’s dilemma (Iyer and Killingback 2016).

Adaptive dynamics

In classical EGT (i.e. matrix games), strategies are discrete and generally constitute a
finite list. In comparison, most evolutionary traits take values in a continuous domain.
We can for example think about the size, flowering rate or investment and allocation of
resources (McGill and Brown 2007). In order to study the evolutionary dynamics of those
traits, a continuous version of EGT rose as adaptive dynamics (or continuous-trait game
theory). This modeling technique can be seen as a way to combine quantitative genetics,
by studying the rate of change of a population’s strategy, and EGT, by applying the
ecological aspect of frequency-dependent selection (Geritz et al. 1998; McGill and Brown
2007). More precisely, adaptive dynamics extends on the notion of evolutionarily stable
strategies from EGT. In particular, the concept of ESS as it exists in EGT lacks precise
knowledge about the convergence of a given strategy. Namely, we know that an ESS may
not be invaded by any mutant strategy once it has spread in the population. Yet, we do
not know if this strategy will eventually become established given the initial conditions.
This problem of convergence is represented by convergence stability. Convergence stability
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implies that a strategy, thanks to multiple small evolutionary steps, will be able to fix in
the population. Both concepts of evolutionary stability and convergence stability do not
always come together (Eshel and Motro 1981; Eshel 1983). Behind convergence stability
is the idea that the shape of the fitness landscape changes as the resident strategy changes.
From this it stems that it may be impossible to evolve an ESS even when it represents a
fitness maximum.

Several key evolutionary concepts that could not be modeled by classical EGT have
been introduced through the framework of adaptive dynamics. One such concept is that of
”branching points”. These occur when a strategy is convergence stable but not evolution-
arily stable (Geritz et al. 1998). Namely this strategy acts as an evolutionary attractor
from afar but, because the fitness landscape changes as the resident strategy changes, this
strategy may be a fitness minimum (and thus not ESS). These are called branching points
because two different evolving populations may coexist and evolve separately. Branching
points have thus been used to model the evolution of speciation (Geritz et al. 2004).

Proximate mechanisms in evolutionary game theory

Models in EGT represent a classic framework for the study of the evolution of cooperation.
However, they make assumptions that we deem critical for the evolution of mutualistic
cooperation. In matrix games, it is often considered that any given strategy can evolve
regardless of the resident strategy. In particular, the phenotype of a given individual is
often simply modeled as either a ”Cooperator” or a ”Defector”. As such a single mutation
is sufficient to evolve one phenotype or the other. In the context of adaptive dynamics, the
issue of converging towards a strategy under particular ecological context (i.e. convergence
stability) is well studied. However, convergence is addressed under the assumption that
the effects of mutations are small and that convergence can be achieved through a series
of small evolutionary steps.

In both cases, these models make assumptions on the availability of mutations; they are
considered not to be limiting and the mapping between the genotype and the phenotype
is thus not explicitly modeled. As we already explained, the effect of such assumptions
is not equivalent depending on whether we are interested in the stability or the origin of
cooperation. If we find a strategy to be an ESS when mutations are not limiting (i.e. any
mutant can appear in the population), then this strategy is also an ESS under stronger
limitations. In comparison, the evolution of such strategy may vary depending on the
effects of mutations. In particular, there needs to be a succession of mutants which are
each favored by selection between the different equilibria. In consequence, the availability
of mutants may be critical for the origin of cooperative traits. Because mutations affect
the proximate mechanisms of behaviours, then the nature of these mechanisms is crucial
to the appearance of cooperative mutants. In particular, this may be true when the
ability to coordinate is necessary for cooperation to be beneficial. Therefore, we believe
that there needs to be complementary models that consider these mechanics of behaviour
in the context of the evolution of cooperation. Namely, we are interested in models where
the individuals are explicitly modeled and thus where minimal assumptions are made on
the mechanistic constraints at play in the mapping from genotype to phenotype.
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2.2 Individual-Based Modeling
The mathematical models presented before are oftentimes labelled as ”classical mod-
els” (DeAngelis and Mooij 2005; Adami et al. 2014) and this is how we will refer to them
in this manuscript. This term is not used in a derogatory fashion. Rather, this is a way
to discriminate between the mostly mathematical models which have been classical in
evolutionary biology and a range of models which were born thanks to an easier access
to computational power. This allowed to approach biological questions from a different
direction that, some would argue, enables to go beyond what is possible with purely math-
ematical models (Adami 2012). However, the line between classical and computational
models can sometimes be not so easy to draw and there is a real scientific interest in
trying to get the best of both worlds (Wilson 1998). In our case, we are interested in
the modeling of individuals so that we can take into account the mechanistic constraints
in the evolution of coordination behaviours. To that end, we now present the field of
individual-based models (IBM)2 (Huston et al. 1988).

As stated in the name, the goal of an IBM is to model individual-level mechanisms. This
is very different from most classical models in ecology where the emphasis is mainly put on
population dynamics (Grimm and Railsback 2005). This does not mean that research in
IBMs do not deal with population dynamics but rather that these dynamics are studied
as a consequence of the interactions between individuals. The main focus of an IBM
is to study the collective dynamics emerging from individual-level interactions (whether
with other individuals or the environment). And more importantly, the particularity of
an IBM is that these individuals, which are the building blocks of the system, are the
results of adaptation: collective properties arise from these (sometimes simple) individual
behaviours.

IBMs are mostly used to study biological phenomena for which individual variations,
and the assumptions that stem from them, are important. DeAngelis & Mooij (DeAngelis
and Mooij 2005) set forth five axes along which IBMs are used to model mechanistic details
in the variations between individuals:

Spatial variability While classical models sometimes take into account spatial organi-
zation, IBMs allow to model local heterogeneity between individuals.

Life cycle The variability of ontogenetic history can be modeled with finer details by
using IBMs than with classical models.

Phenotypical variation and plasticity The influence of individual experience on be-
haviours can be taken into account. In particular, IBMs can be more appropriate
to model the interactions of multiple different behaviours than classical (game the-
oretical) models.

2The term agent-based model can often be found in the literature in lieu of individual-based model.
Both names refer to the same framework and are interchangeable. While individual-based models are
found more often in biological applications (Grimm and Railsback 2005), no real consensus exists on
which term to use. We choose to use the latter throughout this manuscript.
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Learning Learning is a consequence of lifetime interactions which are dependent on
individual variations.

Genetics and evolution The computational power of IBMs can help study complex
evolutionary genetics.

Thus IBMs have been widely used in behavioural ecology for very diverse applica-
tions (DeAngelis and Mooij 2005). For example, spatial variability has been of great in-
terest for the study of group patterns. Most notably, models on the formation of groups
of animals, whether swarms of insects, flocks of birds, herds of mammals or schools of
fishes (Huth and Wissel 1992; Reynolds 1992; Gueron et al. 1996; Couzin et al. 2002) rely
heavely on the framework of IBMs. Aggregation behaviours were found to easily arise
from simple local (individual-level) sets of rules, leading to complex collective behaviours.
More generally, IBMs have been used to model ecological phenomena as diverse as the
optimal gap between trees in forests models (Botkin et al. 1972), movement patterns in
prey-predators interactions (Smith 1991) or differences in foraging between solitary birds
and large flocks (Toquenaga et al. 1995).

Interplays between IBM and EGT are numerous. Indeed, both methods can be used
to focus on the evolution of phenotypes and rely heavily on the ecological features of
the system. This led to a great number of research bringing together these two fields
”with ease”. In particular, it is now common to take spatial interactions into account
(e.g. how individuals are located on a graph or network) when studying the evolution of
(mostly altruistic) cooperation (Hauert and Doebeli 2004). IBMs also give the possibility
to more accurately predict the effects of a finite population size while most models in
EGT use infinite population sizes (Hauert et al. 2009). Additionally, it is possible to
more easily model stochastic or conditional strategies. These ecological features can be
modeled with classical game theoretical models but at the cost of increased mathematical
complexity (Hauert et al. 2009).

Moreover, individual-level modeling implies that minimal assumptions are made about
the effects of mutations on the evolution of individual behaviours. This makes IBMs an
interesting addition to EGT when dealing with the modeling of proximate mechanisms.
By putting the emphasis on the individual, it is thus possible to clearly study how indi-
vidual adaptation can lead to the fixation of evolutionary traits at population level. In
consequence, some have used IBMs to study the evolution of cooperation. Olson and col-
leagues have been interested in the evolution of herds (Olson et al. 2013b). More precisely,
while collective aggregation benefits the individuals in the group, it is also costly for them
(i.e. sharing ressources and increasing the risk of being spotted by predators). Thus there
is an evolutionary question on the origin of such collective behaviours. They confirmed
that the formation of herds could be explained by Hamilton’s theory of the selfish herd
(i.e. aggregation emerges because every individual tries to put others between itself and
the predator) (Hamilton 1971). They also showed that predator confusion through aggre-
gation could explain the evolution of such behaviours (Olson et al. 2013a). Additionally,
they revealed that predator confusion may also lead to the coevolution of morphology (vi-
sion system) and behaviour for both predators and prey (Olson et al. 2016). Finally they
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showed that group vigilance could allow the appearance of gregarious foraging behaviours
without any kinship relations (Olson et al. 2014). Others have been interested in symbio-
genesis, which refers to the creation of a new species through the symbiosis of previously
independent species. Watson et al. showed with an IBM that such process could occur
without any relatedness between the individuals (Watson and Pollack 2000). Wilder &
Stanley used both an IBM and a classical analytical model to show that altruism could
evolve thanks to the creation of ecological niches (Wilder and Stanley 2015).

Lastly, some have been interested in the individual-based modeling of biological phe-
nomena thanks to the simulation of digital organisms. In AVIDA (Lenski et al. 1999), the
organisms are programs that compete for CPU time and evolve in a digital environment
and the whole framework can be used to model bacterial evolution. The genome of an
individual is composed of a sequence of instructions. With this framework, Goldsby and
colleagues (Goldsby et al. 2012) modeled the evolution of division of labour (or specialisa-
tion), where individuals specialise between different roles. They showed that the evolution
of specialists was more frequent when task-switching costs were high. Additionally, they
observed that the individuals were able to used stochastic information, location awareness
and messaging in order to specialise. The Aevol platform (Knibbe et al. 2005; Batut et al.
2013) also aims at simulating in silico bacterial evolution with digital organisms but with
an emphasis on a realistic modeling of genomes. As such it has also been used to model
the evolution of cooperation. For instance Frénoy et al. (Frénoy et al. 2013) simulated the
evolution of cooperation through the production of public goods (i.e. the costly secretion
of nutrients). They investigated the influence of genetic architecture for the maintenance
of cooperators in the population. They demonstrated the role of second order selection in
the protection of cooperation by the entanglement of the genetic architecture.

2.3 Evolutionary Robotics

2.3.1 Individual-Based Modeling and Evolutionary Robotics
In this thesis, we focus on a particular type of individual-based models: evolutionary
robotics (ER) (Nolfi and Floreano 2000; Doncieux et al. 2015). The technical details of
this framework have already been covered in the Introduction of the manuscript. As
such we want to present in this Section the reasons for which one could use evolutionary
robotics above (or in addition to) any other modeling techniques presented before. Why
should evolutionary biologists be interested in using ER ? And why should we use ER in
the context of this thesis ?

The main addition of ER when compared to more general IBMs is that ER models are
IBMs where the individual is an embodied agent (Mitri et al. 2013). By definition, robots
have a body (physical or simulated). In consequence, this creates an additional level of
interactions with the environment. Sensory feedback is also part of a robot’s design, which
means that there often is imperfect information about the environment. In comparison,
IBMs will usually (but not necessarily) provide a global and perfect description of the
world. Finally, modeling in ER implies that the environment (whether simulated or not)
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exists in a bounded space, which again may not be the case in IBMs. All of this can have
lasting consequences on the dynamics of a system. When those physical properties are
expected to be of importance for the phenomenon studied, it may be beneficial to use ER
rather than IBMs. Mitri and colleagues (Mitri et al. 2009) provided an elegant example
of a case where physical embodiement led to unexpected results. While their study was
focused on the evolution of communication between simulated robots for foraging, they
found that the aggregation of robots on a foraging site provided additional information
that did not require the use of direct communication. More generally, the line between
IBMs and ER in the literature can be blurry. Oftentimes, the differences between both
frameworks mainly rest upon terminology and history. Namely, these two techniques
come from (at least originally) different communities. ER is deeply rooted in the field
of robotics design. In comparison, a large part of the works in IBM is interested in the
design of more general multi-agent systems and their applications. While ER and IBM
can be very similar, these historical divergences tend to have a lasting effect. Yet, we
can simply consider ER models to be a particular instance of IBM as we do here. As
such, ER is endowed with similar advantages w.r.t. modeling proximate mechanisms in
the evolution of behaviours as IBM.

There has been an extensive, though recent, effort in using ER as a modeling tool
for social behaviours as well as evolution (Mitri et al. 2013; Trianni 2014; Eiben 2013;
Doncieux et al. 2015). However there still is a lack of communication between communities
which implies that ER research sometimes fail to reach those who could be interested
by these findings in the evolutionary biology community. This also means that some
works in ER may sometimes focus on questions that are of no particular relevance for
evolutionary biologists (Trianni 2014; Doncieux et al. 2015). We now present some of the
more significant works in ER that have been interested in modeling the evolution of social
behaviours.

First, the evolution of communication has been a major subject of interest in ER. The
modeling of individual-level interactions is adamant in understanding the evolution of
communication. Additionally, the embodiement of individuals in space can have some
unexpected effects on communication behaviours (Mitri et al. 2009). Floreano & col-
leagues (Floreano et al. 2007) showed how the evolution of communication could vary
depending on the relatedness inside a group of foraging robots. Robots had to correctly
choose between a food site and a poison site, where the difference between both sites could
only be determined at close range. Communication could easily evolve when there was
strong relatedness (i.e. robots were clones of each other). In comparison, when individ-
uals were unrelated, deceptive strategies would also evolve. In a similar setting Mitri et
al. (Mitri et al. 2011) revealed a strong correlation between signal reliability and related-
ness between individuals. Related individuals would produce more reliable signals in order
to direct others towards the food source. Wischmann, Floreano and Keller (Wischmann
et al. 2012) conducted a study where they observed that purely historical contingencies
could lead to divergences in the communication strategies evolved in independent evolu-
tionary runs. In particular they showed that signaling strategies of varying complexity
could evolve based on these contingencies. The more complex strategy would not ensure
higher performance unless in a competitive setting between different populations (a set-
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ting in which populations were not evolved). Finally, Mitri and colleagues (Mitri et al.
2009) focused on the evolution of both communication and suppression of signaling in a
competitive environment. They observed suprising evolutionary dynamics. While robots
were quickly selected not to emit light on the food source (because it helped competitors
find the food source), signaling was never completely suppressed. They found that it
could be explained by the fact that the strength of selection for suppression decreased as
the information in the signal diminished. Others have been interested in the evolution of
swarming behaviours. As said earlier Olson & colleagues have studied the evolutionary
mechanisms behind the emergence of herding behaviours (Olson et al. 2013a,b; Haley
et al. 2014). While they categorize their work solely as IBM, it could be argued that
their study belongs more precisely to the field of ER as they model evolution between
embodied agents.

In consequence, evolutionary robotics allows to model individual variations and thus
study their influence on the evolution of a given evolutionary trait. This implies that
we can model the mapping from genotype to phenotype without making critical assump-
tions about the mechanistic constraints at play. Additionally, in comparison to IBM the
embodiement that comes with ER decreases the assumptions we make on the exact na-
ture of behaviours. This means that it may be possible for evolution to find unexpected
solutions to coordinate which may not require any particular sensory or communication
capabilities. This is appropriate as we do no want to limit the diversity of the possible
behaviours which could evolve.

2.3.2 The Evolution of Cooperation in Evolutionary Robotics
As a final Section for this Chapter we review the works in ER that have been inter-
ested in the evolution of cooperation to present where we stand in this context. As is
common when studying the evolution of cooperation, most works have been focused on
altruism. Waibel & colleagues (Waibel et al. 2011) conducted an empirical test of Hamil-
ton’s rule3 (Hamilton 1964) for the evolution of altruism in a group of robots. They
designed a foraging task where robots had the possibility to share with others their ben-
efits obtained from foraging. They then tested how the coefficient of relatedness between
robots influenced the evolution of altruism (i.e. sharing foraged ressources). They showed
that, in this context, Hamilton’s rule is indeed quantitatively validated. Similarly in an-
other study they have been interested in the influence of both the genetic composition of
groups of robots (homogeneous or heterogeneous) and the level of selection (individual-
level or group-level) in the evolution of cooperation (Waibel et al. 2009). In particular,
they studied the impact of these two criteria on the performance of robots in three dif-
ferent foraging tasks: a solitary one, a cooperative one and an altruistic one. As could
be expected, teams where individuals were homogeneous (i.e. where genetic relatedness

3Hamilton’s rule is a way to summarize the effect of kin selection by stating that an altruistic trait
may be selected if the following inequation is respected: rb > c, where b and c are respectively the fitness
benefits on the recipient and costs on the actor of the cooperative interaction and r is the relatedness
between the recipient and the actor. In consequence, an altruistic behaviour is favoured when the benefits
of this behaviour weighted by the relatedness with the actor outweigh the cost of cooperating.
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was equal to 1) performed better in tasks which required cooperation. Montanier and
Bredeche have also studied the evolution of altruism in an environment-driven model. In
this type of models, selection pressure comes solely from the environment. As such no
fitness function is explicitly defined and individuals need to meet each other so that they
can exchange genetic material (Bredeche and Montanier 2010), which is a more ”realistic”
approach to modeling evolution. In particular, they studied the evolution of altruism in
a foraging setting under a ”tragedy of commons” situation (Hardin 1968; Montanier and
Bredeche 2011). This means that individuals have to share a common limited ressource
to such extent that some individuals may have to die so that the whole population does
not go extinct. They showed that altruism can evolve under sufficient genetic relatedness.
In another similar study (Montanier and Bredeche 2013), these authors validated the ex-
istence of a negative correlation between the evolution of altruism and spatial dispersion.
More precisely, under low dispersion individuals tend to interact with other nearby indi-
viduals. Thus they interact with individuals that are more genetically related to them,
which generates sufficient genetic relatedness so that kin selection can occur (Van Baalen
and Rand 1998).

Others have been interested in the evolution of division of labour. These studies have
in particular focused on the evolution of specialisation in ants. Ferrante et al. (Ferrante
et al. 2015) proposed an ER model of task-partitioning (where a task has to be done in
sequence) in leafcutter ants. In this species, some ants are tasked with cutting leaves
and leave them in a storage location from which other ants collect the leaves and bring
them back to the nest. They showed that division of labour could evolve when particular
environmental features (in their case a slope) could be exploited to reduce switching
costs. They thus validated a biological hypothesis about the role of switching costs in the
evolution of specialisation (Duarte et al. 2011).

Solomon and colleagues (Solomon et al. 2012) are among the few who have been inter-
ested in modeling the evolution of cooperation between unrelated individuals, i.e. where
cooperation is necessarily mutually beneficial (as altruism cannot evolve between unre-
lated individuals). They studied the evolution of signaling strategies in cooperative robots.
In particular, they took inspiration from the hunting behaviours of spotted hyenas (Smith
et al. 2012) in the context of competition against lions for the stealing of a prey. They
compared the performance of two different signaling strategies: (1) one where all individ-
uals can signal to the others and (2) another one where only a particular individual, the
flag-bearer, may signal. The latter strategy was revealed to achieve higher coordination
between individuals and therefore to increase the benefits of the cooperative action.

2.4 Conclusions
In conclusion of this Chapter, we do not claim any model to be fundamentally better than
the others. As we previously stated in the general Introduction each model is based on
assumptions and a specific level of abstraction. The choice of a model is made depending
on which assumptions we expect to be of critical importance. Even considering a par-
ticular model to be globally more realistic can be tricky; some models simply represent
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more accurately a particular aspect of a phenomenon. Mitri and colleagues (Mitri et al.
2013) classified models for the study of social behaviours according to their situatedness,
which they defined as ”the extent to which individuals are embedded in an environment
that they can sense and modify”. In this Chapter, our goal was to show that classical
models in evolutionary biology make assumptions on the availability of mutations that
we consider to be of importance in the evolution of mutualistic cooperation. In partic-
ular, we claim that the appearance of mutants (and thus the emergence of cooperation)
depends on the proximate mechanisms of coordination. We thus motivated our choice of
using individual-based modeling to address this issue. Thus we can model the mapping
between genotype and phenotype and thus study the influence of mechanistic constraints
on the evolution of cooperation. The framework of evolutionary robotics is relevant as
we make no assumption on the nature of the behaviours evolved, which may allow for a
higher diversity of coordination strategies.

In the next two Chapters, we will thus be interested in using ER to study the impact of
the mechanics of coordination behaviours on the evolution of cooperation. First, we focus
on comparing the evolution of collective hunting in a classical game theoretical model
and in evolutionary robotics. We study the differences between these two approaches
with regard to the emergence of a cooperative strategy. We thus investigate the role of
coordination in the transition to cooperation. Then, in a second Chapter, we study more
precisely how the nature of coordination strategies influence the evolution of collective
actions. Namely, we are interested in the transition from a suboptimal collective equilib-
rium to the optimal one. We want to study how the evolution of different coordination
strategies may impact the emergence of such transition thanks to individual selection
only. In both of these studies, no physical robots are used. While it could allow to endow
our studies with real physics (e.g. friction), we do not believe that level of realism to be of
critical importance in this context. As with any model, we choose to abstract from some
aspects of the real world that we think do not impact our results. Moreover, experiments
on physical robots are in any case unfortunately too time-consuming to consider using
them to such scope (Mitri et al. 2013; Doncieux et al. 2015).
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In this Chapter, we focus on the impact of proximate mechanisms in the evolution of
mutualistic cooperation. This work is presented in the form of a published journal paper:

Arthur Bernard, Jean-Baptiste André, and Nicolas Bredeche (2016b). “To
Cooperate or Not to Cooperate: Why Behavioural Mechanisms Matter”. In:
PLOS Computational Biology 12.5, pp. 1–14

Our aim here is to show that the behavioural mechanisms of coordination are critical
in the evolution of collective actions. In particular, we are interested in the evolution
of mutually beneficial actions. As previously explained in the Introduction, mutually
beneficial behaviours are stable once evolved because they benefit all of the individuals.
However, their origin is not trivial because they often require the emergence of coordi-
nation. In consequence, no single individual may benefit from cooperation unless others
also cooperate.

We take inspiration from the game theoretical model of the stag hunt (Skyrms 2004).
We claim that crucial assumptions are made in classical theoretical models which may
hide the complexity of evolving mutualistic actions. In particular, it is often assumed that
a single mutation is sufficient to evolve a cooperative individual from a solitary individual.
In reality, the evolution of cooperation entails the emergence of multiple traits that are not
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beneficial on their own. We thus believe that the impact of mechanistic constraints on the
evolution of coordination has been neglected by these classical models. In order to take
these mechanisms into account, we model the stag hunt in evolutionary robotics (Nolfi
and Floreano 2000; Doncieux et al. 2015). Two individuals evolve in an enclosed arena
filled with 18 prey, half of them being hares, the other half being stags. Hunting a hare
rewards less than hunting a stag and can be achieved in a solitary or cooperative fashion.
In comparison, the benefits of hunting a stag cannot be reaped unless both individuals
capture the prey together.

In this Chapter, we reveal drastic differences when the transition to stag hunting is
modeled in evolutionary robotics. In particular, we show that the evolution of the co-
operative equilibrium (i.e. stag hunting) when starting from initially solitary individuals
(i.e. hare hunting) always occurs with a classical game theoretical model. In comparison,
in evolutionary robotics the evolution of cooperation is nearly impossible as it happens in
only 1 replication out of 30. Moreover, even when individuals are genetically related, the
transition to cooperation is still unlikely as it occurs in 20% of all replications. Our model
thus reveals that the transition to cooperation is faced with a chicken and egg dilemma.
More precisely, cooperation cannot be selected unless it is beneficial for the individual.
Yet the benefits of cooperation cannot be reaped unless other individuals are capable of
coordination. In particular, we observe that the evolution of coordination requires the
emergence of a complex behaviour which is unlikely to evolve on its own. In consequence,
we demonstrate that the practical mechanics of coordination deeply impact the evolution
of mutually beneficial cooperation. We thus argue that models that consider the proxi-
mate explanations of cooperation are crucial in order to grasp a full understanding of the
evolution of mutualistic cooperation.
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To Cooperate or not to Cooperate:
why Behavioural Mechanisms
Matter
Abstract
Mutualistic cooperation often requires multiple individuals to behave in a coordinated
fashion. Hence, while the evolutionary stability of mutualistic cooperation poses no par-
ticular theoretical difficulty, its evolutionary emergence faces a chicken and egg problem:
an individual cannot benefit from cooperating unless other individuals already do so.
Here, we use evolutionary robotic simulations to study the consequences of this problem
for the evolution of cooperation. In contrast with standard game-theoretic results, we find
that the transition from solitary to cooperative strategies is very unlikely, whether inter-
acting individuals are genetically related (cooperation evolves in 20% of all simulations)
or unrelated (only 3% of all simulations). We also observe that successful cooperation
between individuals requires the evolution of a specific and rather complex behaviour.
This behavioural complexity creates a large fitness valley between solitary and coopera-
tive strategies, making the evolutionary transition difficult. These results reveal the need
for research on biological mechanisms which may facilitate this transition.

Introduction
It is well known that, in the absence of genetic relatedness, altruistic behaviours in which
individuals pay a fitness cost for the benefit of others cannot evolve by natural selec-
tion (Hamilton 1964; West et al. 2007b). However, it is often assumed that mutualistic
behaviours, wherein individuals collectively gain a common benefit (Leimar and Connor
2003; Leimar and Hammerstein 2010), do not pose such a problem, and are therefore of
limited interest to evolutionists: they simply evolve because they benefit the individuals
who express them.

However, mutualistic behaviours do often pose a different kind of evolutionary problem
than altruism: they require coordination (Alvard and Nolin 2002; Alvard 2003; Drea
and Carter 2009; Leimar and Connor 2003). Many collective traits are only mutually
beneficial if several individuals express them together in a coordinated fashion. That is,
it would not be beneficial for a single individual to express the cooperative trait if others
did not express it as well. Consequently, whereas altruistic behaviours pose a problem
of stability, which can only be solved by genetic relatedness, many forms of mutualistic
behaviours pose a problem of evolution. These collective strategies are stable equilibria
but their evolution is complex.

This problem has been formalized in game theory as the stag hunt game (Skyrms 2004).
In the stag hunt, two hunters are confronted with the choice of either hunting a hare alone
for a small but guaranteed benefit, or coordinating to hunt a stag cooperatively for a bigger
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reward, with the risk of not being rewarded at all if they hunt the stag alone. There are
two evolutionarily stable Nash equilibria in this game: (1) simultaneous defection (i.e.
both players hunt hares), which is risk-dominant as it maximizes the minimum payoff an
individual can expect, and (2) simultaneous cooperation (i.e. both players hunt stags),
which is payoff-dominant as it maximizes the total payoff at equilibrium. One of the
aims of evolutionary analyses of the stag hunt is to characterize the mechanisms that
facilitate the transition from the solitary equilibrium to the cooperative equilibrium. The
difficulty is that cooperation can only be favoured by selection when a sufficient proportion
of individuals in the population also cooperate. The transition from a population with
a majority of solitary individuals to one with a majority of social individuals requires
the rise of cooperation above an invasion threshold, which must occur for non-selective
reasons.

In game-theoretic analyses, the hunting strategy of individuals is generally assumed to
be encoded by a single genetic locus with two alleles: solitary or social (Skyrms 2004). In
this case, random mutations and/or demographic stochasticity can lead to the appearance
of a subpopulation of mutants playing the social strategy which is sufficient to overcome
the invasion threshold. Moreover, Skyrms (Skyrms 2004) showed that this cooperation
can be further facilitated in a spatially structured population in which individuals tend
to interact more with genetically related partners.

However, this approach makes a very strong assumption about the underlying mecha-
nistic nature of behaviour: that a single mutation is sufficient to transform an individual
playing a solitary strategy into an individual playing a perfectly efficient social strategy.
In reality, hunting socially implies several novel behavioural abilities. In particular, it
implies the ability to coordinate with others in order to focus on the same prey, which is
unlikely to occur with only a single random mutation. In this Chapter, we postulate that
critical aspects of coordinated cooperation have been neglected by game-theoretic analyses
and investigate the mechanistic constraints which interfere with the evolution of coordi-
nation in a more realistic setting where the mapping between genotype and phenotype is
not limited to a strict binary encoding.

Evolutionary robotics is a useful methodology for the simulation and study of this
more realistic conception of behaviour and its genetic underpinnings(Nolfi and Floreano
2000; Doncieux et al. 2015). This approach allows to simulate the evolution of com-
plex genotypes and observe the resulting behaviours in robotic agents. Such simulations
also make it possible to investigate the complex mechanistic constraints at play in the
translation from genotype to phenotype (Mitri et al. 2013). A considerable body of work
has already been dedicated to modeling social evolution with robotic approaches (Trianni
2014). These studies have been interested in a large diversity of issues: the evolution of
swarms (Olson et al. 2013a), the mechanics of division of labour in social insects (Tara-
pore et al. 2010; Ferrante et al. 2015) or the evolution of communication (Floreano et al.
2007; Mitri et al. 2011; Wischmann et al. 2012; Solomon et al. 2012). The evolution of
cooperation in particular has been addressed in numerous papers. In the vast majority
of this literature, however, social partners are genetically related (Waibel et al. 2009),
whether motivated by design (Hauert et al. 2014; Trianni et al. 2007) or to study the
evolution of altruism (Waibel et al. 2011; Montanier and Bredeche 2013). Few articles,
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in comparison, have been interested in the evolution of mutualistic cooperation between
genetically unrelated individuals (Solomon et al. 2012). Moreover the specific problem
posed by the stag hunt game, where cooperation is not the only evolutionarily stable
strategy and a non-collective solution acts as a stable attractor, has never been studied
in evolutionary robotics.

In this Chapter, we use an experimental model where simulated robotic agents inter-
act in a situation equivalent to the stag hunt and compare the results of our model to
those of standard game-theoretic analyses. Our results shed new light on the influence of
mechanistic constraints in the evolution of coordinated actions. We then use this model
to explore realistic mechanisms that could drive the transition to collective behaviours.

Materials and Methods
Experimental Setup
We consider an environment with two hunters and several prey, both hares and stags.
Hunters can choose to hunt either of these prey, earning different food rewards depending
on whether they hunt alone or cooperate (see Fig. 3.1).

Figure 3.1 – Screenshot of a robotic simulation. The red dots represent the two hunters,
the green dots the hares, and the pink dots the stags. The black lines around the agents’ body
represent the proximity sensors and the black cones on front the cameras described in the text.
Hunters are allowed to move throughout the environment. Hares and stags remain at their
starting positions.

Food rewards for killing a prey are shown in Table 3.1. A hare yields a reward of 50,
regardless of whether it is hunted in a solitary or cooperative fashion. A stag yields a
reward of 500 for each hunter only if it is hunted cooperatively. If a stag is killed by a
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single hunter, it is still removed from the arena but is considered a failed hunt and rewards
nothing. None of the rewards are split between cooperators.

Prey Food Reward
Hare alone 50

coop. 50
Stag alone 0

coop. 500

Table 3.1 – Food rewards for hunting different prey. The reward depends on whether
these prey were hunted alone or cooperatively. There is no reward for stags hunted alone in this
case.

Simulated robotic agents are evaluated in an 800 by 800 unit square arena, which has
four solid walls and is devoid of any obstacles aside from other agents. Each circular-
shaped agent, with a diameter of 14 units, is equipped with two independent wheels and
a collection of sensors. Hunters can use the information provided by 12 proximity sensors
and a front camera. Proximity sensors have a range of approximately twice the diameter
of the agent’s body, and provide the agent with the proximity of the nearest obstacle.
They are evenly distributed around the agent’s body. The front camera consists of 12
rays with infinite range spread out in a 90 degree cone in front of the body. Each ray in
the camera provides two different pieces of information about the first target it intersects
with: the type of target (hunter, hare, or stag) and its proximity. This robot model
facilitates the evolution of basic walls avoidance and agents recognition behaviours, which
we consider not to be of interest here. Hence we separate obstacles recognition (by the
proximity sensors) from agents’ recognition (by the camera).

Only the hunters are capable of movement; prey remain at their initial positions. (Com-
plementary experiments with moving prey capable of avoidance behaviours did not pro-
duce significantly different results; not shown.) A prey is caught if any hunter remains
close enough during a fixed amount of time steps (800 steps, in a simulation lasting 20.000
time steps). Cooperative hunting is defined as a prey with two hunters in catching dis-
tance at the time of its capture. Therefore, cooperation happens even if only one of the
two hunters is in catching distance of the prey for most of the time, as long as the two
hunters are there in the final step. The prey is then immediately replaced at a random
position in the arena, thus keeping a fixed number of agents and prey during the whole
simulation.

Neural Network for Agent Control
The hunters’ behaviour is computed by an artificial neural network which maps sensory
inputs to motor outputs. The neural network is a fully connected multi-layer perceptron
with a single hidden layer of 8 neurons. The inputs of this network are the perceptions
of the agent, with 12 neurons for the proximity sensors and 48 for the camera (4 for
each of the 12 rays) plus a bias neuron (whose value is always 1), for a total of 61 input
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neurons. The two outputs of the network control the speed of each of the agent’s wheels
and the mapping function between inputs and outputs is a sigmoid function (see Fig. 3.2).
Changing the number of hidden neurons did not yield significantly different results (not
shown).

Figure 3.2 – Diagram of the simulated robotic agent used in the simulation (inset)
and its neural network controller. The blue lines represent the 12 proximity sensors and
the red lines represent the front camera. Inputs ”Type 1” and ”Type 2” are two boolean values
used to represent the type of the agent (encoded with two bits) recognized by the camera ray.

Simulating Artificial Evolution
To simulate evolution, we use an evolutionary algorithm to evolve the genome of the
hunters. This genome is comprised of a collection of 410 real values in the range [0, 1],
one for each of the neural network’s weights, and is initially randomized for each individual
in the population. In order to obtain its fitness, each individual is successively paired five
times with a partner randomly chosen each time (except itself) in the arena presented in
the Experimental Setup section, for an evaluation round of 20.000 time steps. The payoff
of the evaluated individual at the end of a round is given by the total amount of food it
has managed to obtain by killing prey in this round. As this quantity depends heavily on
the initial conditions (random initial positions of the prey), five simulations are performed
for each pair of individuals. The individual’s fitness is then obtained by computing the
sum of payoffs averaged over the total number of simulations for the individual. In this
case the number of simulations is 25, with 5 partners and 5 simulations with each partner.
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Experiments were conducted using a Wright-Fisher model (Wright 1931) with constant
population size (20 individuals), which is commonly known as a fitness-proportionate
selection method in evolutionary robotics (Eiben and Smith 2015). Using this model, the
population of the next generation is formed by a random sampling of offspring from the
previous generation, with the probability of sampling a particular parent proportional to
the parent’s fitness. Each offspring is simply a mutated clone of its parent; recombination
is not included in our simulation. Consequently, new genotypes appear only through
mutation. These mutations are performed using a Gaussian function, with a standard
deviation of 2 × 10−1 and a mutation probability of 5 × 10−3. Each experiment lasted
3000 generations. All simulation parameters are summarised in Table 3.2.

Parameter Value
Evolutionary Algorithm

Selection method Fitness-proportionate
Population size 20
Gene mutation probability 5× 10−3

Mutation operator Gaussian N (0, 0.01)
Number of partners 5
Number of simulations per pair 5

Artificial Neural Network
Input neurons 61
Hidden neurons 8
Output neurons 2

Table 3.2 – Simulation parameters.

Results
Starting with a population of hare hunters
In order to explore the evolutionary transition between the risk-dominant equilibrium
(hare hunting) and the payoff-dominant equilibrium (cooperative stag hunting), individ-
uals first evolved in an environment composed solely of hares. This ensured that the
populations initially reached the solitary equilibrium. Only then did we add stags and
study the dynamics of evolution. Fig. 3.3(A) shows the evolution of the mean percentage
of stags hunted successfully (i.e., hunted cooperatively) out of the total number of prey
hunted over time for 30 independent runs. Fig. 3.3(B) shows the mean proportion of each
type of prey hunted during the last generation of each run. Stag hunting evolved in only
one run out of 30 and even in that run accounted for less than 30% of the total number
of prey hunted. In the other 29 runs, the individuals hunted only hares as they had
previously evolved to do. These simulations demonstrate that the evolution of collective
hunting is very unlikely when the population is composed of individuals who are already
efficient solitary hunters.
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Figure 3.4 – Evolution of cooperation in a game-theoretic simulation with an initial
hare-hunting strategy. Evolution of the mean percentage of stags hunted successfully (i.e.
cooperatively) with respect to the total number of prey hunted when starting with a population of
hare hunters for 30 independent runs. Rewards were 50 for a hare, 0 for a stag hunted alone,
and 500 for a stag hunted cooperatively as presented in Table 3.1.

stags hunted over time and the mean number of prey hunted during the last generation.
We observed the transition to a clearly cooperative strategy in a single run, while in two
other runs, 50% of prey hunted were stags. In the 27 remaining runs the proportion of
stags hunted was less than 25%. In comparison, in simulations using the standard game-
theoretic version of the stag hunt where individuals are initially unable to hunt, stag
hunting evolved and remained stable in every run (see supporting information, Fig. 3.9).

The above experiments show that mechanistic constraints have a critical effect on the
evolution of coordinated collective actions. In a simple game-theoretic analysis in which
the hunting strategy is encoded by a single binary gene, collective behaviour systemat-
ically evolved. However, in a setting where the hunting strategy was determined by a
more complex artificial neural network, cooperative behaviour evolved in fewer than 10%
of cases. These results encourage further exploration into the evolutionary origin of co-
ordinated collective actions and the mechanisms which may facilitate their evolution. In
the following section, we explore two such mechanisms.

When stags can be hunted alone
In the next experiment, food was also rewarded for hunting a stag in a solitary fashion
so that cooperative behaviour did not entail a risk. We wanted to study whether hunting
a stag alone could act as a transition towards the evolution of the collective strategy.
Hunting a stag alone was given the same reward as hunting a hare (Table 3.3), differing
from classical models of the stag hunt.
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Prey Food Reward
Hare alone 50

coop. 50
Stag alone 50

coop. 500

Table 3.3 – Food rewards for hunting different prey. The reward depends on whether
these prey were hunted alone or cooperatively. There is a reward for stags hunted alone in this
case.

we considered an extreme situation in which each individual is always paired with a clone
of itself, known as ”clonal selection” in robotics, ensuring a maximal genetic relatedness
of 1.

These results show that genetic relatedness has a positive effect on the evolution of coop-
eration (Fig. 3.7). In four out of 30 runs the population evolved the cooperative strategy.
Moreover, in two other runs, stags accounted for more than 75% of prey hunted, as com-
pared to less than 25% without relatedness (Mann-Whitney, p-value <0.005). When the
initial population was random, rather than only hare hunters (see supporting information,
Fig. 3.10), the positive effect of genetic relatedness was also observed in 12 out of 30 runs,
where more than 50% of prey hunted were stags.

Discussion
There is a profound difference between evolutionary game-theoretic and robotic simula-
tions of the stag hunt. Using identical model parameters, the transition from the solitary
equilibrium to the social equilibrium always occurred in game-theoretic simulations, but
was extremely unlikely in robotic simulations, occurring in 1 run out of 30. The com-
plexity of the mapping between genotype and phenotype is responsible for much of this
contrast. Individuals involved in a coordination game such as the stag hunt face a chicken
& egg problem: the cooperative behaviour must be beneficial in order to evolve, but no
individual can benefit from this behaviour unless the behaviour is already expressed by
other individuals. When binary variation at a single genetic locus encodes the expression
of the solitary or cooperative strategy, a single mutation is sufficient for a cooperative
mutant to appear in a resident population of solitary individuals. In a finite population,
demographic stochasticity can then lead to the rise of cooperators above the invasion
threshold, at which point natural selection leads to their fixation, switching from a soli-
tary equilibrium to a social one. In contrast, in our robotic simulations, the mapping
between genotype and phenotype is more complex. Adopting the social strategy entails
both a modification of the preferred hunting target and the ability to coordinate with oth-
ers. Thus, several mutations are necessary for the appearance of full-fledged cooperative
behaviour. As several individuals must carry these multiple mutations for the behaviour
to become beneficial, the transition to the cooperative equilibrium is nearly impossible.

In particular, in our robotic simulations we were able to observe that coordination
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Supporting Information

Figure 3.9 – Evolution of cooperation in a game-theoretic simulation with an initial
hare-hunting strategy. Evolution of the mean percentage of stags hunted with respect to the
total number of prey hunted where individuals are initially unable to hunt for 30 independent runs.
Rewards were 50 for a hare, 0 for a stag hunted alone, and 500 for a stag hunted cooperatively.
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In this Chapter, we investigate how the nature of coordination behaviours influences
the optimization of collective actions. This Chapter is presented as a draft for a journal
article.

In the previous Chapter we revealed that the evolution of collective actions was hin-
dered by the evolution of coordination. In particular, we used evolutionary robotics to
shed a light on the mechanistic constraints at play in the transition from a solitary to a
cooperative equilibrium. Here we are interested in understanding how individual selection
can lead to the transition between different collective equilibria.

Collective actions reap their benefits through the interactions between multiple individ-
uals. However while they may benefit every individual in a mutualistic fashion, it is not
clear how these collective behaviours are reached. More precisely, because they require
the coordination of several individuals, multiple stable equilibria can emerge. Addition-
ally, because benefits are reached through a collective action, a single individual deviating
from the evolved equilibrium would not be favored by selection. In other words, a mutant
acting toward a different collective equilibrium would not be selected, even if the equilib-
rium is more advantageous for the group. In consequence, the issue of the optimization
of collective actions arises. Namely we wonder how it is possible for individual selection
to lead the transition toward an optimal equilibrium when another collective equilibrium
already evolved ?

One classical mechanism to solve this issue is group selection. Because those behaviours
are beneficial at the level of the group then selection could only occur at the same level,
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so the argument goes. Here we hypothesize that collective behaviours can be optimized
by individual selection only. To that end, we model the example of collective hunting.
Individuals evolve in an environment where they can hunt two differently rewarding types
of prey: boar and stag. In comparison to the hare of stag hunt, the boar can be hunted
in a solitary fashion but rewards more when hunted cooperatively. Each type of prey
corresponds to a different collective equilibrium: suboptimal for the boar and optimal for
the stag. Our goal is thus to study the transition from the suboptimal equilibrium (i.e.
boar hunting) to the optimal equilibrium (i.e. stag hunting).

We reveal that under simple ecological features where only two prey are present in the
environment, the transition to the optimum is impossible. However, under more realistic
assumptions where the individuals have to choose between multiple prey, then the optimal
equilibrium evolved in 8 replications out of 30. In particular, the individuals now have to
coordinate in order to achieve cooperation. This means that they need to react to each
other’s behaviour. From this it stems that they also react to a mutant’s behaviour. This
in turn may allow the group to reap the benefits of stag hunting.

However, in the collective strategy evolved by the individuals, they both separately
decide which prey to hunt, leading to weak coordination. We then study how a more
asymmetrical coordination strategy could impact the transition to the optimum. To
that end, we increase the complexity of the artificial neural networks controlling the
individuals in order to allow them to evolve more complex coordination strategies. In this
case, we reveal that the transition to the optimum is facilitated as stag hunting evolves
in 24 replications out of 30. Furthermore, we observe the evolution of a more efficient
asymmetrical strategy where the individuals adopt two different roles: the leader/follower
strategy. In this strategy, only the leader decides on which prey to hunt and the follower
goes on the same prey. In consequence, while choosing to cooperatively hunt a stag was
previously a collective decision making problem, it is now an individual problem. This
means that a mutant leader going for a stag is now sufficient for both individuals to reap
the benefits of stag hunting. Moreover, the leader/follower strategy evolved because it
was more efficient for each individual. Thus we show that the evolution of an individually
adaptive coordination strategy may lead to the optimization of a collective behaviour.
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The Optimization of Collective
Actions by Individual Selection
Abstract
Many social behaviours lead to the coexistence of multiple stable equilibria. However,
a single individual deviating from a given collective equilibrium cannot be favored by
selection. In consequence the transition to the optimal equilibrium when another collective
equilibrium already emerged is commonly explained by group selection. Here we study
the optimization of group-traits thanks to individual selection. We focus on a problem of
collective hunting, where individuals have to choose between a suboptimal and an optimal
prey, which we model in evolutionary robotics. We reveal that while the switch to the
optimum is impossible under simple environmental conditions, it can occur when the
environment is more complex. In particular, when coordination is necessary to cooperate,
individuals react to each other’s behaviour. As such a mutant’s behaviour can affect
that of the group and lead to the optimum. We then reveal that when a more efficient
coordination strategy is evolved, the transition to the optimum is facilitated. Furthermore,
the evolution of this new strategy is individually beneficial and is not enforced on the
individuals. In consequence, we show that the optimization of collective actions can
occur by individual selection.

Introduction
Many social traits are beneficial thanks to the emergence of collective features. For
instance, collective hunting may allow to kill stronger or faster prey than what could
be done in a solitary fashion. However this behaviour is only individually adaptive in
interaction with a group of other collective hunters. The benefits of these behaviours are
thus reached through the emergence of a group-trait. This raises the issue of how they
could evolve under individual selection.

Once a collective strategy has emerged, a single mutant following a different strategy
would not be favoured by selection. As such multiple evolutionarily stable equilibria may
exist, as is the case in coordination games (Maynard Smith 1982; Skyrms 2004). Yet
it is not clear how to predict which equilibrium will emerge. In particular, individuals
may evolve a suboptimal equilibrium instead of the optimal one. Therefore, because no
individual can benefit by deviating from the equilibrium evolved by the group, this raises
the issue of optimizing the collective behaviour. Namely, how can the optimal equilibrium
be reached when a suboptimal equilibrium has already emerged ?

A popular mechanism to explain the selection of equilibria is that of group selec-
tion (Boyd and Richerson 1990). Because these collective traits are adaptive at the level
of the group it seems that only a selective pressure acting at the same level can lead to
their optimization. Different groups will reach various collective equilibria and thus ben-
efit differently from the evolved equilibria. In consequence, the groups for which a higher
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payoff equilibrium emerged will be at a selective advantage in comparison to others and
their strategy is thus expected to spread in the population. The evolution of cultural
norm in particular is a popular group-level explanation for the emergence of collective
traits in Humans (Boyd and Richerson 2002; Binmore 2011; Smaldino 2014).

In this Chapter, we show that the optimization of collective actions can be reached
thanks to individual selection alone. To that end, we take the example of collective
hunting. Because it is necessary to agree on which prey to hunt, this behaviour requires
the coordination of several individuals (Alvard and Nolin 2002; Alvard 2003; Drea and
Carter 2009). This implies that a single mutant choosing a different prey than that
agreed upon would not benefit from this behaviour. Thus several equilibria can evolve.
The group can specialise on the optimal prey, but it can also specialise on suboptimal
ones. In this case no individual mutation can divert the group from a suboptimal prey.
Here, we want to understand how individual selection can switch the group’s strategy
towards the optimal prey.

To that end, we model collective hunting in evolutionary robotics (Nolfi and Floreano
2000; Doncieux et al. 2015). We use evolutionary robotics in this context as it allows to
study the nature of the coordination behaviours evolved which, we will show, turns out to
have critical effects on collective optimization. Evolutionary robotics has been previously
applied to model the mechanistic constraints at play in the mapping between genotype
and phenotype (Mitri et al. 2013; Trianni 2014; Bernard et al. 2016b). We design a setting
where a pair of individuals can hunt two different types of prey: a suboptimal one and
an optimal one. For the sake of simplicity (and not behavioural realism) we choose to
arbitrarily call these two prey respectively boar and stag. The reward from hunting a prey
depends on the type of prey hunted and the manner in which it is hunted: solitarily or
cooperatively. More precisely, two robotic agents are placed in an arena where they can
capture non-moving prey. Both these agents are controlled by artificial neural networks,
whose connection weights are evolved. Thus, individuals have to coordinate in order to
hunt in a cooperative manner. We design the model so that the individuals have evolved
the suboptimal equilibrium and that it is not beneficial for a single individual to switch
to a different prey alone. We study under which conditions the transition to the optimal
equilibrium could occur.

We show that the transition from the suboptimal to the optimal equilibrium is im-
possible under simple environmental conditions. However, in a more realistic setting,
individuals are expected to be able to coordinate. We reveal that when this is the case,
the evolution of coordination also enables the switch toward the optimum. Furthermore,
the nature of coordination strategies also happens to change the probability for this switch
to occur.
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Materials and Methods

Experimental Setup
The environment is constituted of a 800 by 800 units arena with four solid walls. We
place a collection of circular agents (with a diameter of 20 units) in this arena. The
agents are divided between two categories: predators and prey. Predators can move
freely in the environment according to the inputs of their sensors which are comprised of
several proximity sensors and a camera. Proximity sensors are evenly distributed around
the robotic agent’s body and have a range of twice the body’s diameter. Each of these
proximity sensors gives the agent the distance to any obstacle (walls or other agents) it
senses in its direction. In comparison, the camera is placed on the front of the robotic
agent and is constituted of 12 rays spread in a 90 degrees cone. Each ray gives the type
(hunter, boar or stag) and proximity of the nearest agent in its direction. Each hunter
begins the simulation next to the other agent at one side of the arena.

In opposition to the predators, prey are static and stay at their initial position until
either the end of the simulation or their capture by a hunter (experiments with moving
prey capable of avoidance behaviours did not show significantly different results). For
a prey to be successfully captured, a hunter needs to remain in contact of this prey for
800 time steps (out of a total number of 20000 simulation steps). The hunter is then
rewarded with the value corresponding to the prey. The prey is finally removed from the
environment and replaced at a random position in the arena. We thus ensure that both
the number of prey and the ratio of the types of prey are kept constant. We consider that
collective hunting happens when both hunters are in contact of the prey at the last time
step of its capture. This implies that is not necessary for the two agents to be in contact
of the prey during all of the hunting time for cooperation to happen.

Each hunter is controlled by a fully-connected multilayer perceptron with a single hidden
layer. The inputs of this neural network are constituted of all the sensory information
of the agent and a bias neuron whose value is always 1. 1 input neuron is used for each
of the 12 proximity sensors and 3 neurons for each of the 12 rays of the camera (the
type of an agent is encoded by 2 binary values and 1 value is used to encode proximity).
In consequence, the total number of input neurons amounts to 49. The hidden layer is
constituted of 8 neurons while the output layer has 2 neurons, each one of them encoding
for the speed of each of the agent’s wheels. While the connection weights of the network
are evolved, the topology is kept identical. Finally, the mapping function used to compute
the outputs is a sigmoid.

Simulating Artificial Evolution
The genome has a varying size. Indeed, to increase neural complexity, each individual
can evolve two topologically similar neural networks. At the start of evolution, genomes
are initialized with 410 real values sampled uniformly in the range [0, 1]. This amounts to
the number of connection weights of a single neural network. At each generation of the
algorithm, a genome encoding for a single neural network has a probability of 5 × 10−2
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to be duplicated. When a duplication event occurs, the genome then encodes separately
for the two neural networks, which means that its size is 820. Each generation, there is
also a probability of 5 × 10−3 that a deletion event occurs for a genome which encodes
for two neural networks. If this happens, one of the two neural networks encoded by this
genome is randomly lost and the size of this genome is reverted back to 410. Here we are
not interested in a realistic approach to neural modeling. Rather, we want to ensure that
the neural complexity of the individuals is sufficient to evolve more complex coordination
behaviours.

Evolution is simulated by a classical evolutionary algorithm. At each generation of
the algorithm, every individual is paired 5 times with a randomly chosen partner (which
may be different each time). Each of these pairs is then independently evaluated in the
environment during 20000 steps. In order to decrease the stochasticity effects occuring
because of the random positioning of the prey, each pair is evaluated 5 times. Hence 25
simulations are performed for each individual per generation. The fitness of an individual
is then computed as the average reward obtained over these 25 simulations.

Selection is conducted according to a (10 + 10) elitist selection strategy. Namely, the
population of the next generation is constituted of the 10 best individuals of the previous
generation and 10 offsprings sampled from these 10 best individuals. Each offspring is
a mutated clone of its parent and no recombination is used. Mutations are sampled
according to a Gaussian operator, with a standard deviation of 2 × 10−1 and a per-gene
mutation probability of 5 × 10−3. Finally, each experiment was conducted during 9000
generations and replicated 30 times.

Results

The transition to the optimum is impossible
In this first experiment, we are interested in the transition to the optimum strategy in a
very simple environment w.r.t. collective hunting. More precisely, individuals are evolved
in an environment constituted of only a single prey of each type. Rewards for hunting are
summarized in Table 4.1. The agents are initially pre-evolved during 3000 generations in
an environment where hunting stags grants nothing. We thus ensure that the suboptimal
equilibrium (i.e. hunting boars cooperatively) has been evolved. Then the individuals are
evolved during 6000 additional generations where hunting stags is rewarded.

Prey Food Reward
Boar alone 50

coop. 125
Stag alone 0

coop. 250

Table 4.1 – Food Rewards for hunting. Rewards depend on whether the hunt was solitary
or cooperative.
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quickly. In consequence, they are able to achieve cooperation to solve the issue raised by
the necessity to decide on which prey to hunt (Figure 4.2(B)). More importantly, because
the hunters now react to each other, the behaviour of a mutant can affect that of the other
individual. This explains why the transition to the optimal equilibrium was enabled.

However we can observe several drawbacks from this strategy. All these drawbacks
come from the fact that both individuals adopt a symmetrical behaviour. In particular,
they both steer towards a desired prey and thus react only weakly to the other individual’s
behaviour. First, as both individuals can guide the group towards a different prey, this
may lead to a situation where it is hard to achieve consensus between them. This can
considerably slow them down and thus cause suboptimal performance w.r.t. the number
of prey hunted. Then, if prey are close to one another, the fact that both individuals can
choose a different prey can lead to non-cooperative hunts. Finally, even when the two
hunters are moving to the same prey, their constant turning motion to see the other indi-
vidual implies that they do not take the most direct course towards the prey. Therefore,
the evolution of this symmetrical behaviour seems to leave much room for improvement.

Figure 4.3 – Display of a turning stategy after an entire simulation. Both individuals
adopt a turning strategy during a complete simulation. The paths of the agents are represented
in red and blue, starting from their initial positions (represented by black dots). Each disc
represents a prey in the environment. Boars are represented in green and stags in purple. When
a prey was killed cooperatively, a red cross (resp. blue) is shown on the prey if the red agent
(resp. blue) arrived on this prey first.
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A more efficient coordination strategy increases the probability
to switch to stag hunting
In a next experiment, we address how the evolution of a different coordination strategy
could change the outcome of evolution. More precisely, we are interested in the impact
of evolving a less symmetrical strategy. We investigate the behaviours of individuals
specialised in different roles. To that end, an individual may now duplicate its neural net-
work and thus co-evolve two networks as its controller. The network adopted as controller
during the simulation is randomly selected.

Figure 4.4 shows a comparison of the number of replications (out of 30 in each setting)
where the best individual evolved a cooperative strategy on the stags in different settings.
The Control and Coordination settings are defined as in the previous Section and serve as
comparison. In the Coordination+Duplication setting, the environment is constituted of
18 prey as in the Coordination setting but the duplication of neural networks is possible.
We observe that when increasing neural complexity, the transition to the optimum is
facilitated as it evolves in 24 replications out of 30. More importantly, the proportion of
replications where the switch to stag hunting occured is significantly higher than without
duplication.

There is a drastic difference between the behaviours evolved with and without two
networks. Whereas without the duplication of neural networks we revealed that the
individuals adopted a turning behaviour, a leader/follower strategy systematically evolved
when duplication occured (Figure 4.5). When agents adopt this strategy, they divide
between two very different roles. The leader looks for prey, gets on them first and checks
but rarely on its partner. In comparison, the follower tries to keep the leader in its line
of sight at all time and join its partner on a common prey. Therefore, in comparison
to the coordination strategy previously presented, the individuals adopt asymmetrical
behaviours.

This second strategy is more efficient than the turning strategy w.r.t. the rewards
obtained (as shown in Figure 4.6, Mann-Whitney U test on the mean reward at last
generation, p-value <0.001). This can be explained by two main factors. Firstly the
hunters are faster, as the decision about which prey to hunt is made by only one of
the two individuals. Thus they hunt a significantly higher number of prey. Secondly,
the asymmetry in the decision making process implies that they are more precise to
hunt. Therefore, the proportion of successful cooperative hunts is significantly greater.
Consequently, the leader/follower strategy is a collective behaviour that is both more
efficient at hunting cooperatively but also leads to a higher probability to evolve stag
hunting.

Similar results are observed when roles are not set
We previously showed that the evolution of a leader/follower strategy leads to a more
frequent selection of the optimum than with a less efficient strategy. We claim that our
results are caused by the general asymmetry in the leader/follower behaviour. Indeed
this implies that only one of the two individuals is responsible for taking the decision of
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Figure 4.5 – Display of a leader/follower stategy after an entire simulation. Both
individuals adopt a leader/follower strategy during a complete simulation. The paths of the
agents are represented in red and blue, starting from their initial positions (represented by black
dots). Each disc represents a prey in the environment. Boars are represented in blue and stags
in purple. When a prey was killed cooperatively, a red cross (resp. blue) is shown on the prey if
the red agent (resp. blue) arrived on this prey first.

the Coordination+Duplication setting. Only this time, the choice between which neural
network to use is done as previously explained. Results are shown in Figure 4.7. We see
again that the transition to the optimum is facilitated in the Coordination+Duplication
setting as in 23 out of 30 replications, there was a transition to the optimal equilibrium.
Interestingly, the number of replications where the transition happened is similar to that
of the previous experiment. And again, the number of replications where optimization
occurred is significantly higher with increase neural complexity than without.

In terms of behaviours evolved, we observe the evolution of another similar asymmet-
rical behaviour, which we call the search/join strategy. More precisely, as long as both
individuals use the same neural network, they each look for a prey. However, as soon
as one of them finds a prey, the switch in networks for the second individual leads to
the adoption of a very different behaviour. Even if the collective behaviour is somewhat
different from what could be observed in a leader/follower strategy, this strategy is still
more efficient than in the turning strategy (Figure 4.8, Mann-Whitney U test on the mean
reward at last generation, p-value <0.001).

Discussion
Because collective hunting is dependent on the simultaneous actions of several individuals,
its optimization is difficult. In particular, when a suboptimal equilibrium already evolved,
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search/join strategy. In both of these strategies, the individuals adopt asymmetrical
behaviours. We show that when one of these two strategies is evolved, the probability for
the transition to the optimal equilibrium to happen is significantly higher (respectively 24
and 23 replications out of 30). This drastic difference can be explained by the asymmetry
of both these behaviours. More precisely, the decision making process of choosing the
prey on which to cooperate is now one-sided. In the leader/follower strategy, only the
leader chooses the prey. In comparison, in the search/join strategy, as soon as one of the
two individuals gets on a prey, the other tries immediatly to join it. This means that, in
both cases, the hunting preference of the follower (whether its role is temporary or not)
does not matter. In comparison to the previous experiment now the follower only reacts
to the leader. This implies that a change in the leader’s behaviour indirectly changes that
of the follower. Consequently, a modification in the hunting preference of the individual
choosing the prey is sufficient for cooperation on the stag to occur. The mutational
distance is thus decreased by both the recycling and the evolution of an asymmetrical
coordination strategy. From this, it stems that the probability to switch to stag hunting
is higher.

More generally, what we reveal through these results is something more critical about
the optimization of collective traits. Thanks to the asymmetry of both these strategies,
coordination switched from a collective decision making problem to an individual decision
making problem. Initially, the transition to the optimum is a collective problem but it
now depends on the mutations of a single individual. Furthermore, both strategies are
more efficient than the turning strategy which means they can evolve because they are
beneficial to the individuals: they are individually adaptive. In consequence, individual
selection can lead to the adaptation of a collective trait. This suggests that the emergence
of other group behaviours may also be explained by such mechanisms, opening a wide
range of interesting perspectives on this matter.
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Chapter 5

Multirobot Systems and Automatic
Design in Evolutionary Robotics

..

5

5.1 Multirobot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2 Architecture Choices . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Designing the Control of Collective Robots . . . . . . . . . . . 94
5.2.1 The Deliberative Approach . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Manual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 Learning for Automatic Design . . . . . . . . . . . . . . . . . . 96

5.3 Evolutionary Design for Distributed Robotics . . . . . . . . . . 98
5.3.1 Evolutionary Robotics . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Evolving Collective Robots . . . . . . . . . . . . . . . . . . . . 100

5.4 Genetic Team Composition and the Evolution of Cooperation 101
5.4.1 Team Composition and Levels of Selection . . . . . . . . . . . . 101
5.4.2 Team Composition in Evolutionary Robotics . . . . . . . . . . 103

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

In this Part of the manuscript, we study the automatic design of a distributed mul-
tirobot system. In particular, we are interested in the use of evolutionary robotics to
design cooperative robots and the influence of genetic team composition (Waibel et al.
2009) in the emergence of efficient coordination behaviours. Namely, we want to study
the impact of genetically different robots (i.e. aclonal approaches) (Quinn 2001) on (1)
the probability to evolve cooperation and (2) the efficiency of the cooperative solutions.

Multirobot systems are many and widely diverse in the way they are designed. Mul-
tiple methods have been proposed for both the manual and automatic design of these
systems. In this Chapter, we thus review the features (both negative and positive) of
evolutionary robotics with regard to the design of distributed robotics in comparison to
other techniques. First we give a quick overview of multirobot systems as well as their
main advantages when compared to single robots. We emphasize on the design choices
that come with building those systems. Additionally, we present a few applications of
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multirobot systems that are either seminal and/or noteworthy. Then we focus on the
control of collective robotics systems. As there has been a strong interest in taking in-
spiration from single robots to apply the same solutions to multiple robots, we reveal the
particular challenges brought up by these systems. We thus discuss the different manners
in which multirobot systems have been manually designed with handcrafted behaviours.
Then we address the automatic design of distributed robots thanks to machine learning
and reinforcement learning in particular. Our goal is thus to shed some light on the ad-
vantages and limits of such approaches. We then move to evolutionary techniques and
how they have been applied to the design of multirobot systems. We thus expose the
main differences with classical machine learning in this context and quickly review the
main results obtained in the design of collective behaviours. Finally, we present the open
issue raised by choosing a clonal or aclonal team composition when designing cooperative
robots.

5.1 Multirobot Systems
5.1.1 General Properties
Multirobot systems (MRS), or sometimes multi-agent robotics (Dudek et al. 2002), es-
sentially gained fame during the 1980s. The main motivation was to use cooperation
between autonomous robots in order to cope with tasks that a classical single robot
would not achieve. Multiple advantages may be obtained by using MRS (Cao et al. 1997;
Arkin 1998) :

• The parallel execution of multiple robots allows the task to be achieved faster.

• Using multiple robots can ensure robustness and reliability through redundancy.

• It can be both cheaper and simpler to produce several simple robots compared to a
single complex one (especially if the robot may suffer damages).

• It may be necessary to distribute several robots at the same time to complete the
task, in which case a single robot would simply not be sufficient.

This implies that there are several crucial properties that are expected of MRS (Parker
1994). First, MRS are supposed to be adaptable. This means that each robot is expected to
react to environmental change and, most importantly, to a change in others or induced by
them. This also means that, in the lesser decentralized systems, the control system should
change the global organization accordingly. Then, a MRS should be robust. This implies
that the system should not be critically impacted by failure (and in particular individual
failures). This is easier said than done but this is also one of the main advantages of such
an approach. Because we rely on multiple agents, it is possible to design the system so
that a fault on one or several robots does not critically impact the whole system. Finally,
it is often expected of MRS to be fully autonomous. This means that the system as well
as all the agents that compose it should be able to act without human intervention. In
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particular, the system should be able to face the unexpected without human control for
some time.

From these properties, it stems that there is a range of tasks that are especially ap-
propriate for MRS. While these tasks often relate to real-world applications, they mainly
represent general domains in order to design proof-of-concepts on a particular aspect of
a MRS (Parker 2000). We can briefly draw a list of the main tasks on which MRS are
studied (Cao et al. 1997; Parker 2000; Farinelli et al. 2004) :

Foraging In this sort of tasks, the goal is to collect objects which are scattered in the
environment. They then may or may not have to bring these back to a ”home”.
Foraging refers to the real-world tasks of harvesting, toxic waste cleanup or search
& rescue. Most often, robots perform the task in a very independent manner, where
the individual behaviour of a single entity does not really impact that of others.
However, they may also rely on communication and stigmergy in particular, i.e.
indirect communication achieved by the previous modification of the local envi-
ronment by an individual. Additionally, foraging tasks also have strong ties with
biology and the behaviours of eusocial insects in particular. A main challenge in for-
aging is for the robots to efficienctly explore the environment, i.e. without repeating
each other’s actions.

Collective transport The goal here is for several robots to collectively push an object
(also called box pushing). This object is usually too big or too heavy for a single
robot to move it alone and it thus requires the coordination of several individuals. A
specific type of box pushing, cooperative manipulation, may require robots to carry
the objects to a destination (rather than pushing). Box pushing may not necessarily
require that robots be aware of the others for the task to be achieved (Sen et al.
1994).

Collective motion A popular task is to design robots that are able to move in a co-
ordinated manner. This may imply that we simply desire robots to move together
towards a path, as in the case of flocking, or that we want them to adopt a par-
ticular formation for the duration of the motion. This sort of task can often be
accomplished by agents with minimal capabilities in terms of sensors, effectors and
communication. One of the central issues studied in collective motion is the design
of simple and local (i.e. individual-level) control rules that allow for the collective
emergence of the desired behaviour.

Traffic control Another common task is that of traffic control. This is a problem of
multirobot path planning, where several individuals often have their own personal
goal. They must then coordinate with others in order to accomplish their goal
without causing collisions or deadlocks. This is akin to a problem of resource conflict
where robots have to share the environment with others.

Monitoring Monitoring refers to the task of using multiple robots to observe and track a
defined number of targets moving in the environment. Robots have thus to cooperate
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in order to ensure that all targets are monitored during the longest amount of time.
In particular, there is a strong emphasis on coordination so that the agents can
efficiently follow the targets and switch between them when necessary.

5.1.2 Architecture Choices

Control Centralized Decentralized
Team composition Homogeneous Heterogeneous
Communication Environmental Passive Intentional
Group size Small (∼ 10) Swarm (> 100))

Table 5.1 – Architecture choices in multirobot systems.

Because applications vary greatly, there is no canonical architecture for MRS (Cao
et al. 1997; Parker 2008). There are some more popular choices that we will highlight
here but mainly one can use what best fits his/her needs. The main design choices w.r.t.
architecture are the following (see also Table 5.1 for a quick summary) :

Control The control of an MRS can be centralized or decentralized. In a centralized
architecture, a single agent is responsible for controlling the system. Thus while
this agent has full knowledge of the whole system, it represents a critical point for
failures. Therefore, this type of organization is rare in MRS and most use a decen-
tralized approach (Parker 2008). However, the work of D’Andrea (D’Andrea 2012)
on the development of the Kiva systems, where a large group of robots (hundreds)
move in a wharehouse to bring products to the workers, is of note in this category.
In particular, a central control was responsible for the coordination of all the robots.
In comparison, decentralized architectures can be of two types: hierarchical or
distributed (Cao et al. 1997). In a hierarchical architecture, the system is locally
centralized and some agents are in charge of a group of other agents to organize the
task at hand. For instance, in one of the very first successful MRS, CEBOT (Fukuda
et al. 1988), particular robots (called ”master cells”) could communicate with other
master cells and allocate subtasks to all of the agents in the system. On the con-
trary, in a distributed system, all agents are equal w.r.t. control which, while robust,
implies that it is harder to achieve coherence between every agent.

Team composition It is possible to use homogeneous or heterogeneous groups of robots.
In an homogeneous team, individuals are all identical in terms of both software (con-
trol) or hardware (morphology and sensors). In comparison, heterogeneous robots
vary between one another on any or both of these aspects. In consequence, homoge-
neous teams are more resilient to failures as every agent has the same capabilities,
thus decreasing the impact on the system of losing a given individual. It is also
easier to allocate tasks between robots because every agent can perform equally.
However heterogeneous groups allow to benefit from differences between individuals
to achieve more diverse behaviour, in particular when coordination is required.

..
92

.
Multirobot Systems and Automatic Design in Evolutionary Robotics

..



Communication We can mainly divide the type of communication implemented in
MRS into three categories: environmental, passive and intentional (Cao et al. 1997;
Parker 2008). Environmental communication refers to the indirect communication
we briefly mentioned previously: stigmergy. Stigmergy means that the agents will
sense modifications in the environment done by a previous agent and use this in-
formation to modify their behaviour. It is as if one agent indirectly communicated
to the other through the environment. This type of communication is thus limited
by the capabilities of agents to perceive complex information from the environment.
Passive communication is another type of indirect communication where the agents
rely on their sensors to observe the actions of others in the group. Thanks to
this sensory feedback, robots can interact with each other without needing direct
communication. However, it shares the same limitations as with stigmergy. Finally,
intentional communication refers to direct communication between the robots. This
thus allows to exchange complete information between teammates.

Group size On this point, MRS are really diverse and the number of robots involved
in a collective task can scale from two to a thousand (Rubenstein et al. 2014). A
smaller group size usually means that it is possible to design more morphologically
complicated robots where each individual may have elaborate capabilities. On the
contrary, when we are interested in bigger teams, individual capacities tend to de-
crease in favour of collective complexity. However, an open challenge is to scale up
algorithms that were designed for a small group of robots to a larger team. Large
groups of robots are often referred to as swarms (Beni 2005). In this case, robots
in a swarm often possess very basic sensory capabilities and may not achieve much
on their own. The emphasis is put on the emergence of collective functionnalities
from individual interactions (Kube and Zhang 1993; Parker 2008). This means that
we expect to see the appearance of global collective complexity from the local in-
teractions between agents of the swarm, a process also known as self-organization.
More precisely, swarm robotics are based on the principle of superadditivity (Parker
2008), where the whole result (collective behaviour) is better than a simple sum of
all its parts (the agents’ behaviours).

In this manuscript we study a particular instance of MRS. Namely, we focus on the
design challenges of fully distributed MRS (i.e. decentralized) where a small group of
robots are morphologically homogeneous. In this context, we are interested in the critical
differences that come with using a team of homogeneous or heterogeneous robots w.r.t.
control. Lastly, as communication is not the focus of our study, we do not explicitly give
the robots particular communication capabilities. Therefore, if any communication takes
place between individuals then it can be considered to be passive. The rest of this Chapter
is to be understood in the context of these specific architecture choices.
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5.2 Designing the Control of Collective Robots
So far we have presented a general overview of the properties and choices that come
with designing a MRS. Namely, we discussed the what and why of multirobot systems.
In this Section, we focus on the how. More precisely, we are interested in the design
techniques involved in creating a distributed multirobot system. Designing the control of
a robot mainly depends on its situatedness, i.e. the complexity and uncertainty of the
environment in which it operates (Matarić and Michaud 2008). Most of the early design
techniques used in MRS have been inspired by classical single robots techniques.

5.2.1 The Deliberative Approach
This approach is also referred to as the Sense-Model-Plan-Act architecture (Albus 1991;
Iocchi et al. 2001; Matarić and Michaud 2008). This has been the classical approach
in robotics (Nilsson 1984) and AI and is concerned with representing high reasoning
capacities. As such, it has also historically been one of the first manners in which to
approach MRS design. The basic principle is that all sensory information is computed
under the internal knowledge of the robot in order to plan and determine the next action.
This means that these architectures are based on an internal representation of the world.
The model is often constituted of a set of symbols which are computed by a logical
system. However, planning is a classical problem in AI and is known to be time costly.
Therefore, while this architecture would be the most efficient in a perfect world, the
process of building a world representation and planning is computationally expensive and
lacks critical real-time reactivity.

In the case of multirobot systems, we may define an additional global level of control
as social deliberative (Iocchi et al. 2001). In a social deliberative MRS, a global strategy
will be planned so that the organization of the whole system (e.g. task allocation) can
handle environmental changes. This type of MRS may have a global representation of the
world shared between the agents but it is not necessary. Do note that, as we will see, the
global control design of the MRS often differs from that of the individuals (e.g. a social
deliberative system may be composed of behaviour-based robots).

Mostly, when a deliberative approach is adopted, it is used as a global level control only.
Werger and Matarić (Werger and Matarić 2000) designed a MRS tasked with multi-target
observation (i.e. monitoring) with a social deliberative distributed MRS. While robotic
agents were individually behaviour based (see next Section), group-level deliberation was
achieved thanks to an architecture they called the ”Broadcast of Local Eligibility”. More
precisely, each robot could evaluate its eligibility to accomplish a given task and then
broadcast this value. The robot with the highest value could then claim the task. They
were thus able to solve the issue of task assignment in their system. In the context of
the RoboCup (Kitano et al. 1997), a soccer competition between teams of robots, Candea
and colleagues (Candea et al. 2001) developed a distributed and heterogeneous soccer
team in a deliberative system. In their proposed architecture, each robot was capable of
playing any role and they could switch during a match. In particular, a voting system
coupled with the possibility to evaluate and communicate the utility of an agent for a
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given role was used to efficiently assign these roles to the individuals. They could thus
achieve strong coordination between distributed and heterogeneous robotic agents.

5.2.2 Manual Design
Because deliberation alone is hard to achieve in a distributed multirobot context, there has
been a strong interest in using ad-hoc methods for the programming of robots behaviours.

Reactive approaches

In light of the complexity of deliberative architectures was born the opposite stance: the
reactive approach (Brooks 1986). In comparison with deliberation, this architecture is
not based on reasoning nor planning. Rather, there is a direct connection from sensors
to effectors, inspired by the biological concept of stimulus-response. This architecture
is usually constituted of a programmed set of rules which, given the sensory inputs,
return the desired output actions. This implies that reactive systems can achieve very
fast computation and thus are convenient when quick reaction is necessary. However,
as robots do not keep any representation of the world and most often do not store any
information, they are basically myopic. This can be useful when a priori knowledge of the
environment is sufficient but does not fare well with uncertainty and novelty. Additionally,
there is a strong emphasis on the concept of emergence we previously mentioned. Because
the control of agents under a reactive approach does not allow for complex individual
capacities, we expect functionalities to come from the emergent collective behaviour. This
means that designing a reactive distributed system is a bottom-up approach which often
implies a back and forth between handcrafting individual behaviours and observing the
collective result.

A popular way to design reactive behaviours is also to take inspiration from nature. For
instance, the well-known work of Reynolds on the ”boids” (Reynolds 1987) was inspired
by the collective motion of flocks of birds. He developed a simulation of the collective
behaviours of a swarm of simple agents with no cognitive capabilities under three ordered
basic rules: collision avoidance, velocity matching and flock centering. Namely, agents
should avoid collisions with neighbours, match their direction and speed (i.e. velocity)
with that of others in the flock and stay close to other individuals. He was able to thus
design a group of agents behaving in a similar way as a flock. Hauert et al. (Hauert
et al. 2011) implemented Reynolds’ boids on 10 real flying robots. In particular, they
were interested in the influence of communication range and turn rate on the emergence
of flock-like behaviours. They showed in simulation that communication range needed
to be high enough so that coherent flocks could be maintained. Rubenstein and col-
leagues (Rubenstein et al. 2014) used a swarm of a thousand individuals capable of self-
assembly. The robots, called kilobots, were embedded with an infrared transmitter and
receiver to communicate with neighbours and measure their proximity. The system was
given a 2D image by a user defining the shape the robots must replicate. One after the
other, the agents then used very simple local rules by following the edge of the group and
tracking the distance from their origin to collectively organize into the desired shape.
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Behaviour-based approaches

Behaviour-based approaches (Arkin 1998) were proposed after the appearance of reactive
approaches, with the desire to improve on the latter’s capacity to react to dynamic envi-
ronments. This was mostly introduced and popularized by Rodney Brooks subsumption
architecture (Brooks 1986). In behaviour-based architectures, the robot control is consti-
tuted of several basic behaviours, which are organised in separate modules. In a similar
way as the reactive approach, these behaviours are directly connected to the sensors and
will activate according to a certain set of rules. However, in comparison to a purely reac-
tive approach, these behavioural modules can keep a state as well as a representation of
the world, allowing for higher reasoning and planning. Additionally, they are connected
to each other in a hierarchical fashion. Those modules are designed to interact with one
another in order to collectively achieve the task at hand. Complexity is thus expected to
emerge from the interactions between low-level behaviours. In consequence, behaviour-
based architectures are efficient when the environment is dynamic but pure reactivity
alone is not sufficient. In a similar way as reactive control, these architectures are usually
designed in a bottom-up approach where behaviours are coded incrementally as building
blocks in an increasing complexity.

Behaviour-based approaches are among the most used for handcrafted robot control
in MRS (Arkin 1998; Matarić and Michaud 2008; Parker 2008). For instance, Parker
proposed and developed the ALLIANCE architecture which she successfully implemented
on real robots (Parker 1994). The issue was to design a fault-resistant system of hetero-
geneous robots which could achieve coordination. Based on a subsumption architecture,
the system was composed of low-level behaviours combined together in a set to accom-
plish a particular task. Then, given environmental information (e.g. which task is being
taken care of, what needs to be done), a motivation was computed to select the appro-
priate behaviour set. Matarić proposed the Nerd Herd (Matarić 1995), a group of 20
identical robots capable only of detecting obstacles and other robots. Each robot was
constituted of the same set of pre-programmed behaviours as obstacle avoidance, homing,
aggregation, dispersion, following and safe wandering. The system could combine these
behaviours in order to achieve higher functionnalities. For instance, collective foraging
was obtained by applying a temporal combination operator in order to switch between
avoidance, dispersion, following, homing and wandering.

5.2.3 Learning for Automatic Design
In comparison to the approaches presented in the previous Section, there has been also a
strong interest in using automatic design for MRS. In particular, handcrafted behaviours
do not fair well in the face of uncertainty and varying environmental conditions and may
require a tedious back and forth before the adequate collective behaviour is obtained. In
consequence, there is a large body of work on using learning for the design of MRS. For
instance, in an article published in Science, Werfel et al. (Werfel et al. 2014) focused on real
robots capable of building structures. They used a team of homogeneous robots, taking
inspiration from the mount-building capabilites of termites. The goal was to achieve the
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construction of a user-specified structure with 3 robots and small identical bricks. While
the robots were fully reactive and relied only on stigmergy, the rules they followed were
automatically generated. This was done by an offline compilation process which, given
the building structure, generated a representation of movement guidelines for robots, akin
to traffic laws. They showed that their group of robots was able to collectively construct
the structures as well as dynamically react to changes in the built structure.

However, most learning techniques in MRS rely on machine learning. Machine learning
has always been a critical challenge in artificial intelligence. Thus it has naturally been
applied to robotics (Hertzberg and Chatila 2008). Classical machine learning can be
divided into three different categories: supervised, unsupervised and reward-based. While
the goal in machine learning is generally to optimize performance (e.g. for classifiers), the
emphasis in mobile robotics is that the robot may adapt quickly. As such, most of the
literature on learning in robotics has been focused on reward-based techniques (Matarić
and Michaud 2008), most commonly referred to as reinforcement learning (RL) (Sutton
and Barto 1998). RL rests upon the mathematical framework of markov decision processes
(MDP) (Bellman 1957). In RL a robot learns an optimal policy (i.e. a sequence of
actions depending on the states the robot is in) thanks to a value function. Learning is
thus achieved through rewards and punishments attributed to the robot according to its
actions. The general goal in RL is to estimate the value function. This value function
corresponds to the expected value of a state given a certain policy.

The main RL method applied to robotics is temporal-difference (TD) learning (Sutton
1988; Bradtke et al. 1996). Based on the principles of TD learning, two major algo-
rithms have been developed: on-policy SARSA (State-Action-Reward-State-Action) and
off-policy Q-learning (Watkins 1989). Additionally, most RL techniques have theoretical
proofs of convergence 1 (Panait and Luke 2005).

In the case of learning for multiple robots, the process is more challenging. In par-
ticular, other robots are often expected to be learning at the same time. At the very
least, the learning process must take into account the presence of other dynamic agents.
Yet the theoretical foundations behind MDPs rest upon the assumption that the envi-
ronment is stationary (Littman 1994; Parker 2008). Consequently, adapting RL methods
to multiple robots is not trivial. However, there is an extensive literature on learning
in multiagent systems (MAS), of which some can be applied to MRS (Stone and Veloso
2000; Yang and Gu 2005; Panait and Luke 2005). In particular in the case of distributed
control, concurrent learning, where each individual is an independant learner, has been
widely studied. To that end, the framework of Dec-POMDP (for Decentralized Partially
Observable Markov Decision Process) has been of interest in the MAS community (Bern-
stein et al. 2002; Amato et al. 2013). This model is a decentralized extension of basic
POMDP (Åström 1965), which deals with real world partial observability. However, the
optimal resolution of a Dec-POMDP (i.e. finding an optimal joint policy) was proven
to be NEXP-complete (Bernstein et al. 2002) and thus intractable. As such, most ap-

1Please note that what we have presented here is only a crude summary of RL in order to give sufficient
context to the rest of our discussion. We point those interested by the subject to more exhaustive
literature (Sutton and Barto 1998; Deisenroth 2011)
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proaches rely on approximations of the model in order to solve the problem (Beynier and
Mouaddib 2011; Amato et al. 2013). For instance, Seuken & Zilberstein (Seuken and
Zilberstein 2007) have combined top-down heuristics with bottom-up dynamic program-
ming to ensure linear complexity w.r.t. horizon length. Called memory-bounded dynamic
programming, this method uses heuristics in order to limit the number of agents policies
generated by dynamic programming. Dinbangoye et al. (Dibangoye et al. 2015) assumed
that interactions between agents took place locally in order to exploit the separability
of the value function. This way they could transform a Dec-POMDP into a MDP to
significantly gain in scalability. They thus could solve a task between up to fifteen agents
while preserving convergence to an optimal solution.

However, as big as the literature on learning in MAS is, transferring reinforcement
learning techniques from MAS to MRS still represents a challenge (Yang and Gu 2005).
In particular, while results in MAS offer interesting perspectives, MRS necessitate con-
tinuous actions and/or states spaces. This is something which is not that much studied in
classical MAS. To overcome these problems, and the issue of continuous spaces in particu-
lar, several different solutions based on approximations have been proposed. For example
Matarić proposed to extract the features from the learning space by reformulating states
and actions into conditions and behaviours (Matarić 1997). This way, the size of the
spaces was greatly decreased. She also implemented shaping (i.e. decomposing a complex
task into several simpler subtasks which are then learned in succession) in order to ease
the learning process. In comparison, Fernández and colleagues (Fernández et al. 2005)
developed a learning MRS by discretizing the states space and then applying an algo-
rithm to generalize from this discrete space. This particular algorithm, called ENNC-QL,
is based on a supervised approximation of the value function. In the case of an adver-
sarial MRS learning for soccer, Bowling & Veloso (Bowling and Veloso 2003) introduced
GraWoLF (for Gradient-based WoLF). They used a policy gradient technique, which was
proposed to overcome intractable and continuous states spaces (Sutton et al. 2000) as
well as WoLF (Win or Learn Fast), an algorithm to ensure convergence in the context
of concurrent learning. Lastly, Stone & Sutton (Stone and Sutton 2001) also proposed
a reinforcement learning method for a soccer competition. They implemented a SMDP
(Semi-Markov Decision Process) Sarsa(λ) with linear tile-coding function approximation.
With this method, they were able to have robots learn in a keepaway task.

5.3 Evolutionary Design for Distributed Robotics

5.3.1 Evolutionary Robotics
In this thesis, we study a different technique for the automatic design of robots: evolution-
ary robotics (ER) (Nolfi and Floreano 2000; Doncieux et al. 2015). As we already covered
some of the more technical details of ER in the Introduction, we are more interested
here in briefly reviewing the contributions to the field of distributed MRS and highlight
the challenges that are associated with. The key idea behind ER is to apply concepts
of evolutionary computation to the design of robots. This means implementing concepts
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of selection and variation to build robust and adaptable robots. We previously showed
that several design techniques have often been inspired in part by biology. For example
reactive controllers are inspired by the concept of stimulus-response (Brooks 1986), swarm
robotics took inspiration from the collective behaviours of eusocial insects (Bonabeau et
al. 1999) and it is sometimes argued that major advancements in reinforcement learning
mimic natural cognitive processes (Montague et al. 1996). Thus there is an interest in
taking inspiration from evolution for the design of complex machines. In particular, ER
uses evolution to approach robotic design in an holistic manner. The robot is considered
as a whole and the evolution of its behaviour results from the interactions with the envi-
ronment (and the other individuals in the case of MRS): ER works on embodied agents.
Additionally, the evolutionary process is used as a meta-heuristic to search through the
space of candidate solutions. In particular, ER works well in open environment because
it can be used as a black-box optimization technique thanks to a loose formulation of the
objective function. As such a minimum set of assumptions have to been made when using
ER to design a robot (Bongard 2013). The major open issues in ER are on the transfer-
ability to real robots (i.e. reality gap) (Mouret et al. 2012; Cully et al. 2015), the genotype
and phenotype encodings (e.g. evolution of neural network topology (Stanley and Miikku-
lainen 2002)) and the selective pressures applied by the evolutionary algorithm (Lehman
and Stanley 2011; Mouret and Doncieux 2012).

At its core, ER can be considered as a learning technique. However, it may be trouble-
some to classify ER among learning algorithms. Indeed, while ER is a learning process
in the machine learning sense of the word (i.e. a process which improves and optimizes
candidate solutions according to a certain goal), it is not the case in a more biological
sense: evolution is a phylogenetic adaptation while learning is an ontogenetic adaptation.
This difference is even more critical now that combining evolution and learning repre-
sents an open issue in the field (Urzelai and Floreano 2001; Mouret and Tonelli 2014;
Doncieux et al. 2015). Here we thus are careful to use the latter (i.e. biological) defi-
nition of learning and refer more precisely to reinforcement learning in this case. It is
also important to note that ER and RL share several similarities (Whiteson 2012; Stulp
and Sigaud 2013; Doncieux et al. 2015). In both frameworks, the goal is for a robot
to evolve (or learn) a behaviour (which is akin to a policy in RL) which maximizes a
particular value: rewards in RL or fitness in ER. In particular, we can compare ER to
a direct policy search in RL (Kober et al. 2013) because it does not focus on finding an
estimation of the value function of the states and actions but exploits the global value (i.e.
fitness) of a policy. However, ER often necessitates higher computational time to find a
good solution while dynamic programming in RL is guaranteed to find an optimal policy
in polynomial time (Littman 1994; Whiteson 2012). In comparison ER works very well
under partial observability and with problems that would require continuous or a large
number of states in RL (as is the case for distributed MRS). In particular, ER explores
the space of behaviours rather than that of states (Panait and Luke 2005).

ER can also be used as an online design method. In the ”classical” framework of
evolutionary robotics, the evolutionary algorithm is called offline. This implies that there
are two distinct phases in the development of a robot: the design phase (i.e. evolution
of controllers) and the operational phase (i.e. deployment of robots) (Doncieux et al.
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2015; Francesca and Birattari 2016). This thus is based on the assumption that the
environment where the robots are deployed is the same that the one where they were
evoled. Or at least it considers that the evolved controller will be capable of adapting to
the new environmental conditions. In an online method the design process is done directly
in the operation environment. In the case of multiple robots, this gave rise to distributed
online evolutionary robotics, often called embodied evolution (Ficici et al. 1999; Watson
et al. 2002). Because of the complexity of learning exact policies with multiple robots,
the field of online evolution has sparked greater interest in multirobot settings than with
a single robot (Doncieux et al. 2015).

5.3.2 Evolving Collective Robots
While ER has been mainly focused on the design of single robots (Nolfi and Floreano
2000; Doncieux et al. 2015) 2, its potential for the engineering of complex collective
systems is well known (Baldassarre et al. 2003b). For instance, Reynolds (Reynolds 1992)
proposed an evolved version of its ”boids” simulation. He evolved a herd of between
16 and 20 critters whose goal was to avoid both obstacles and a predator. He used
genetic programming where the evolved programs (i.e. genotypes) were Lisp expressions
based on simple behavioural functions: turn, look-for-obstacle, look-for-friend and look-
for-predator. He showed that he could evolve vision-based coordinated motion for a herd
that avoided collisions.

More generally, evolution has been widely used in the context of swarms (Brambilla
et al. 2012; Francesca and Birattari 2016). In particular, it allows to divert from the
classical approach of manually designing individual behavioural rules. On the contrary,
ER can automatically evolve self-organized control according to a group-level fitness score.
Evolution was used in the context of the Swarm-bot project (Mondada et al. 2005), where
the goal was to engineer a swarm of simple identical robots capable of using self-assembly
to navigate accross rough terrain and achieve different collective tasks. In particular,
Baldassarre and colleagues (Baldassarre et al. 2003a, 2007) achieved coordinated motion
between a swarm of 36 simulated robots. Because the robots were connected to each other
in line, they had to coordinate their movement in order for the whole swarm to reach the
objective. Robots were controlled by a neural network which, given the traction on the
robot in 4 directions, computed the desired motion. They showed that the evolved robots
were also capable of high adaptability and generalization under various environmental
conditions: number of robots, shape of the swarm, variation in the rigidity of the robots’
connections, rough terrain and robots connected through a passive object. The controllers
were also successfully transferred on real robots. The swarm-bot framework was also
investigated for collective transport of objects by Groß and Dorigo (Groß and Dorigo
2004). They evolved the neural networks of up to 16 autonomous robots that were capable
of collectively push or pull an objet towards a moving target. Trianni et al. evolved a
swarm of robots displaying aggregation behaviours (Trianni et al. 2003) and that later

2As the focus of this manuscript is on multirobot systems, we will not discuss the literature on the
subject of ER for single robots. Interested readers should direct their attention towards more extensive
reviews of the field (Floreano et al. 2008; Bongard 2013; Trianni 2014; Doncieux et al. 2015).
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cooperatively navigated an environment to overcome their limited sensory capabilities
and avoid falling into holes (Trianni et al. 2004). In the context of swarms, Duarte and
colleagues (Duarte et al. 2016) developed 10 simple and small real robotic boats that
they evolved for basic tasks: homing, dispersion, clustering and area monitoring. They
used artificial neural networks evolved with NEAT (Stanley and Miikkulainen 2002). The
best 3 controllers of each evolutionary run were then transferred into real robots to test
them. Finally, Hauert et al. (Hauert et al. 2009) evolved a group of 20 simulated flying
robots, or MAVs (Micro Air Vehicles), tasked with the establishment of a communication
network. Launched from a human rescuer, the robots had to coordinate to find the other
rescuer and then set and maintain a multi-hop communication link between these two
rescuers. Every robot was controlled by a neural network which outputted the turn rate
of the MAV given the heading compass of the robot and the number of network hops that
separate it from the two rescuers. The connection weights of the network were encoded
in a binary string and evolved by a genetic algorithm.

Additionally, D’Ambrosio and Stanley have been interested in using HyperNEAT (Stan-
ley et al. 2009) to evolve teams of agents capable of coordination. For instance, they im-
plemented (D’Ambrosio and Stanley 2008) HyperNEAT in a predator-prey experiment.
In particular, they evolved neurocontrollers for predators’ behaviours which had to hunt
moving prey. The predators could not see other predators and thus had to learn comple-
mentary roles so that they would not interfere with each other. They used Computational
Pattern Producing Networks (CPPNs) which allowed for the agents to assign roles de-
pending on their relative geometry. Furthermore, they showed that seeding evolution
with the genome of a single pre-evolved agent could benefit the learning process by inject-
ing domain knowledge. D’Ambrosio and colleagues (D’Ambrosio et al. 2012) investigated
coordination between 4 robots thanks to direct neural network communication. More
precisely, the neural network of each robot was connected to the internal nodes of the
networks of other agents, which they called the hive brain. Robots could simply move left
or right and the task was for them to synchronize their motion (akin to several pendula)
with no sensory information about other robots. They showed that the agents could
evolve an efficient communication strategy that led them to synchronize their motion.
Moreover, the evolved controllers could transfer well to real robots.

5.4 Genetic Team Composition and the Evolution of
Cooperation

5.4.1 Team Composition and Levels of Selection
While ER is often viewed as a black-box optimization framework, several critical design
decisions impact its efficiency when applied to robotics (Trianni 2014). As such, these
design choices represent a specific problem in the field of evolutionary robotics (Doncieux
and Mouret 2014). We are interested here in the evolution of cooperative robots in ER.
In that context, two features of the evolutionary algorithm are especially critical (Waibel
et al. 2009; Lichocki et al. 2013):
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Level of selection This represents the level at which selection is applied, which is in
part impacted by the way fitness is distributed between individuals.

Team composition This is the genetic composition of the team of robots, which corre-
sponds to the manner in which robots from a group are encoded given the population
of evolved genotypes.

Selection can act at the level of the group or that of the individual. Namely, the level
of selection is concerned with the way fitness is attributed to each individual in the team.
If group-level (or team-level) selection is used, every individual is equally rewarded by
the team’s performance in the task. This means that in the case where every individual
separately evolves, the evolutionary process may be slowed down by the fact that the
performance feedback may not be adequatly tailored to the individual. In comparison,
under individual-level selection, each individual is rewarded based on its own performance.
This in turn means that the emergence of cooperative behaviours is not ensured as the
individuals could benefit from selfish actions. This problem is often known in multiagent
learning as ”credit assignment”.

On the other hand, team composition is a well-known design choice for MRS in general
(as we previously talked about in Section 5.1). Here we focus solely on the issue of
team composition with relation to the control of robots, regardless of morphology. In
evolutionary robotics, every individual in an homogeneous team is composed of the same
genotype. This approach is thus often called a clonal approach (as agents are clones of
each other). In comparison in an heterogeneous group every individual is encoded by a
different genotype, a process also known as an aclonal approach.

Homogeneity tends to facilitate the maintenance of novel beneficial mutations that could
be lost in an heterogeneous context (Quinn 2001). As such, using homogeneous teams can
lead to finding solutions in less computational time. Also, because the performance of one
individual (w.r.t. fitness score) is the same as every other agent in the team, it should be
easier to evolve cooperative solutions. Indeed, an individual can benefit from its behaviour
as soon as it benefits the whole group 3. Additionally, because every individual has the
same control, it is easier to achieve coordination when it is expected that the agents
behave similarly. However heterogeneity implies that individuals are different and as such
may rely on diverse capabilities. In particular, when it is expected that the agents work
together in complementary ways (e.g. division of labour), this behavioural asymmetry
is easier to achieve with heterogeneous individuals. However an issue in heterogeneous
teams is that, depending on the level of selection, the evolution of cooperative solutions
may be hindered by the exploitation of selfish behaviours. Indeed, if each individual
can selfishly benefit from its behaviour, it may not contribute to the collective action.
The main approaches that have been adopted in ER have been centered on using team-
level selection with homogeneous teams or individual-level selection with heterogeneous
teams (Waibel et al. 2009).

3Given the strong ties of this thesis with biology, it is interesting to note that this process is similar
to the evolution of altruism under kin selection mechanism (which requires genetic relatedness between
individuals).
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5.4.2 Team Composition in Evolutionary Robotics

When evolving cooperation is concerned, the classical approach is to use homogeneous
teams of individuals (or clonal approaches). In particular, a large part of the literature
is concerned with swarms, which most often are constituted of homogeneous individuals.
For instance, the works in swarm behaviours presented in the previous Section all evolved
a single population of genotypes where each genotype encoded for every agent in the
group. As we previously explained, this can be explained by the fact that homogeneous
teams are a good choice when evolving cooperation and strongly coordinated behaviours.
Waibel and colleagues (Waibel et al. 2009) gave an experimental proof of this assertion in
a work dedicated to this issue. They produced a study on the influence of team composi-
tion (homogeneous or heterogeneous) and level of selection (team-level or individual-level)
in 3 different foraging tasks that did not require specialisation: an individual one, a co-
operative one and an altruistic one (i.e. that required individuals to pay a cost when
cooperating). The manner in which they evaluated or selected the individuals depended
on the exact combination of team composition and level of selection. They showed that,
when cooperation was needed, an homogeneous team of individuals under group selec-
tion was the best performing setting. But others have also used homogeneous teams in
tasks that may require heterogeneous behaviours. For example, division of labour can be
achieved between homogeneous individuals if the agents specialise during their lifetime
thanks to varying initial conditions, development or environmental cues. In that context,
Ferrante and colleagues (Ferrante et al. 2015) studied task partitioning, i.e. where differ-
ent tasks have to be done in sequence, in the context of an evolved population of simulated
foragers. They investigated the evolution of generalist behaviours (i.e. individuals who
carry every task) and specialist behaviours. The teams of robots were homogeneous and
they simulated evolution both with pre-evolved building blocks (i.e. pre-adapted basic be-
haviours) and de-novo starting only from low-level behavioural primitives. They showed
that specialisation could evolve based on environmental information which was used by
the agents to dynamically assign roles. Additionally, they demonstrated that particular
environmental conditions, in their case a slope which made task partitioning more useful,
could affect the evolution of specialists. Indeed, this slope could be used to facilitate
transport and also decrease the cost of switching from one role to the other.

A particular manner in which heterogeneity is sometimes studied, especially in the field
of multiagent learning, is by using Cooperative CoEvolutionary Algorithms (CCEAs) (Pot-
ter and De Jong 1994). Originally, CCEAs are used to search solutions to a given problem
by decomposing this problem into subcomponents and have different populations concur-
rently search for a solution for each subproblem. In the context of ER, the principle is
that a team is composed of robots whose controllers are separately evolved in different
populations. This approach is loosely inspired by the biological coevolution of multiple
species. This method is particularly useful when trying to evolve highly specialised in-
dividuals. Blumenthal & Parker (Blumenthal and Parker 2004) used a CCEA to evolve
four differently abled hexapod predators in a predator-prey scenario. The issue was to
ensure that the predators would evolve a correct behaviour given their own movement
capabilities to prevent the prey from escaping. They used a genetic algorithm based on
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punctuated learning, where the learning system is updated only after a given number
of generations, and showed they could successfully evolve the predators to capture the
prey. Each individual was controlled by a neural network evolved in a different popula-
tion. Similarly, Yong & Miikkulainen (Yong and Miikkulainen 2009) evolved 3 agents in
predator-prey scenario where the prey is faster than the predators. They used a method
of neuro evolution, enforced subpopulations, which is a cooperative coevolution method
where several populations of hidden neurons are separately evolved. Each of the 3 preda-
tors was encoded by neurons from a different subpopulation. The authors showed that
the individuals evolved by cooperative coevolution outperformed a single centralized con-
troller on both efficiency and robustness. Lastly, Nitschke and colleagues (Nitschke et
al. 2012) introduced Collective Neuro-Evolution (CONE), a cooperative coevolutionary
algorithm for the evolution of artificial neural networks, in order to evolve specialists.
They evolved recurrent feed-forward networks for a team of between 50 and 100 robots,
where the genotype of each robot is separately evolved. The robots had to collect blocks
of different types and place them in sequence in a designated area. CONE implemented
two metrics to control for specialisation and genotype similarity in order to efficiently
apply recombination between populations. The goal was thus not to lose specialists dur-
ing recombination. Therefore, coevolution can be used to efficiently evolve heterogeneous
behaviours. However one main issue with this method is that it relies on evolving a pop-
ulation for each of the expected behaviours. In consequence, it needs a priori knowledge
on the task at hand in order to structure the population accordingly. Additonally, as
population size is critical in the evolutionary process, evolving several populations at the
same time may be costly.

In comparison, few works have been interested in using an heterogeneous team of in-
dividuals evolved from a single population. The exact advantages of heterogeneous ap-
proaches are still not clear in the literature. Quinn (Quinn 2001) produced a comparison
of homogeneous and heterogeneous approaches in a task which required two individuals
to adopt coordinated motion. He compared a clonal approach, where both individuals
come from the same genotype (i.e. homogeneous team), and an aclonal approach, where
individuals come from different genotypes (i.e. heterogeneous team). Coordination was
achieved when the individuals moved from their starting positions while staying close to
one another without collision occurring. Individuals needed to take specific roles in order
to coordinate efficiently. He showed that the aclonal approach outperformed the clonal
approach in this task. However, Tuci & Trianni (Tuci and Trianni 2014) then ran a sim-
ilar study and found different results. More precisely, they evolved a team of two robots
in a setting where one of them had to stay in a designated area (the nest) and another
had to move back and forth between the nest and foraging sites. As such specialisation
was explicitly required to carry the task and the roles were clearly distinct. In this case,
they showed that this time the clonal approach clearly outperformed the aclonal one in
both efficiency and robustness. Therefore, the exact impact of genetic team composition
on the evolution of cooperation is still an open issue. In particular, the manner in which
specialisation is affected by homogeneous or heterogeneous teams is still debatable. The
evolution of heterogeneous behaviours does not require heterogeneous control. However,
it then requires that the individuals have the capabilities to dynamically specialise. In

..
104

.
Multirobot Systems and Automatic Design in Evolutionary Robotics

..



the case of Tuci and Trianni, this was achieved thanks to a continuous time recurrent
neural network. However, it may not always be desired nor cheap to endow agents with
those specific capabilities depending on the context. With no a priori knowledge of the
environment, it could be preferable to design the evolutionary process so that it may
evolve efficient behaviours in simple robots. Additionally, it is not always known be-
forehand whether heterogeneous behaviours would even be advantageous. In conclusion,
there is the need for additional works on team composition with regard to the evolution
of cooperative behaviours.

5.5 Conclusions
Our goal in this Chapter was to give a brief presentation of multirobot systems and to
discuss the different methods with which they could be designed. Furthermore, we wanted
to highlight a critical design choice that we will explore in the two following Chapters.
We showed that the design of distributed MRS, as for robotics in general, is complex and
may be facilitated by resorting to automatic design. However, this is not an easy task.
In particular, machine learning methods (i.e. RL) which may work for single robots do
not cope well with the complexity of MRS and require to approximate the problem at
hand so that it can be dealt with. In comparison, ER is another possible method which
functions as a black-box optimization and thus may function well in open environment.
As such we are interested in studying an open question in the field of ER: the influence
of genetic team composition in the evolution of cooperative robots.

In the next two Chapters, we are interested in the evolution of cooperation among a
group of heterogeneous robots. We focus on the nature of the coordination strategies
evolved. Thus we consider teams of two genetically unrelated robots. While these two
robots are morphologically identical, the heterogeneity in their control raises the issue
of evolving cooperation when selfish behaviours can emerge. From this stems a tradeoff
between using heterogeneity to evolve efficient coordination strategies and the challenge of
evolving cooperation. This issue is discussed in the first Chapter. In the second Chapter,
we focus solely on evolving a particular type of coordination: division of labour. Because
we want this strategy to appear among heterogeneous individuals with no added capabil-
ities, we study the issue of achieving genotypic polymorphism. Namely, we want multiple
different behaviours encoded by different genotypes to coexist at the same time in a single
population. In both studies, we do not use real robots. We consider our contributions
here to be mainly theoretical and act as general design concepts regardless of a specific
robot model. Furthermore, the transferability of evolved behaviours on real robots as well
as the online evolution on physical robots are both major challenges (Floreano et al. 2008;
Doncieux et al. 2015) in ER that would represent a separately substantial study for this
thesis. We thus consider these issues to be beyond the scope of our work.
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Chapter 6

The Tradeoff between Evolvability
and Efficiency in the Evolution of
Cooperation
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This Chapter is centered on the evolution of coordination behaviours in a task of col-
lective foraging. It is organized as a published paper in an international conference:

Arthur Bernard, Jean-Baptiste André, and Nicolas Bredeche (2015). “Evolu-
tion of Cooperation in Evolutionary Robotics : the Tradeoff between Evolv-
ability and Efficiency”. In: Proceedings of the European Conference on Artifi-
cial Life 2015, pp. 495–502

We are interested in the subject of evolving cooperation among a population of het-
erogeneous robots. In particular, we aim at comparing an homogeneous approach (i.e. a
clonal approach) and an heterogeneous approach. As we previously discussed in Chap-
ter 5, the classical approach to designing MRS in evolutionary robotics is to use a team
of homogeneous robots. This is indeed the easiest way to ensure the evolution of coop-
eration because the fitness of the individuals is the same as that of the group. However,
this means that we often focus only on the evolvability of the cooperative solution, i.e. the
probability to evolve cooperative individuals 1. However groups of heterogeneous robots

1It is important to note that the term ”evolvability” has a strong connotation in the field of evolutionary
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may achieve greater efficiency (in terms of fitness performance) when coordination is re-
quired. Because individuals can adopt distinct behaviours, they could evolve more diverse
coordination strategies. Yet heterogeneity may hinder the evolution of cooperation in an
environment where it is possible for robots to act in a selfish manner. We thus want to
compare both these approaches in such an environment on these two criteria: evolvability
and efficiency.

To that end, we designed a simple collective foraging task inspired by the stag hunt.
More precisely, two individuals are placed in an arena where they can forage two different
types of targets: green and purple. Green targets reward the same whether they are
collected alone or cooperatively. In comparison, purple targets need to be collected in
a cooperative fashion but reward more than the green ones. Given this setting, we are
interested in the evolution of cooperative behaviours, i.e. individuals foraging the purple
targets cooperatively. We study three different approaches w.r.t. team composition:

• A control setup, where both individuals come from the same population but are
genetically different.

• A clonal setup, where the two individuals are clones of each other.

• A coevolution setup, where each individual comes from a separate population.

We thus compare the results of two heterogeneous approaches (control and coevolution)
and a clonal approach on the two criteria presented before.

We reveal a tradeoff between evolvability and efficiency in our foraging task. In particu-
lar, the clonal approach is shown to be the best w.r.t. evolving cooperative individuals. In
comparison, the coevolution approach allows the emergence of more efficient cooperative
behaviours. Furthermore, we observe in the coevolution setup the evolution of division of
labour through a leader/follower strategy. We then want to overcome this tradeoff and
thus improve on both evolvability and efficiency in every setup.

To that end we use incremental evolution. The individuals are first pre-evolved in
a simpler cooperative task where they have to cross a set of waypoints. Rewards are
obtained by crossing the same waypoints in the same order. After that, these individuals
are evolved in the previous cooperative foraging task. We show that, while the probability
to evolve cooperation increases in the coevolution setup, no significant differences are
observed in the clonal setup. This leads to the coevolution approach attaining highest
evolvability and efficiency compared to the other setups. However, incremental evolution
implies that it is necessary to pre-evolve the individuals in the waypoints task. We thus
reveal a new tradeoff: it is possible to increase the evolvability of efficient coordination
strategies but at the cost of additional computational time.

robotics and may correspond to various definitions. In particular, one such definition is that it conveys
the capacity for an individual to adapt to environmental change (Wagner and Altenberg 1996). This is a
rising topic in artificial evolution (Banzhaf et al. 2006; Lehman and Stanley 2013; Doncieux et al. 2015;
Taylor et al. 2016) and as such we do not want to create confusion with our use of the term here. In this
Chapter, evolvability strickly refers to the capacity to evolve a particular trait (in our case, cooperation).
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Evolution of Cooperation in
Evolutionary Robotics: the Tradeoff
between Evolvability and Efficiency
Abstract
In this Chapter, we investigate the benefits and drawbacks of different approaches for solv-
ing a cooperative foraging task with two robots. We compare a classical clonal approach
with an additional approach which favors the evolution of heterogeneous behaviors accord-
ing to two defining criteria: the evolvability of the cooperative solution and the efficiency
of the coordination behaviors evolved. Our results reveal a tradeoff between evolvability
and efficiency: the clonal approach evolves cooperation with a higher probability than a
non-clonal approach, but heterogeneous behaviors evolved with the non-clonal approach
systematically show better fitness scores. We then propose to overcome this tradeoff and
improve on both of these criteria for each approach. To this end, we investigate the use
of incremental evolution to transfer coordination behaviors evolved in a simpler task. We
show that this leads to a significant increase in evolvability for the non-clonal approach,
while the clonal approach does not benefit from any gain in terms of efficiency.

Introduction
The evolution of cooperative actions in evolutionary robotics is as much a challenge as an
interesting perspective for the design of complex collective systems (Doncieux et al. 2015).
As such, it has been widely studied with very diverse approaches and objectives (Waibel
et al. 2009; Hauert et al. 2014; Trianni et al. 2007; Lichocki et al. 2013). These works
often use a clonal paradigm, where each robot has a copy of the same genome. This makes
sense as this is the easiest way to ensure cooperation when individuals are expected to
display similar behaviors. Moreover, using clones ensures minimal genetic relatedness
between individuals, which is known to allow the evolution of altruism (Waibel et al.
2011; Montanier and Bredeche 2011). As such, most research focus on increasing the
probability for the cooperative solution to evolve.

In comparison, the nature of coordination behaviors and their influence on the qual-
ity of cooperation has yet to be thoroughly studied. In particular, interactions between
clones in evolutionary robotics tend to produce homogeneous behaviors when most co-
ordination tasks could benefit from heterogeneous behaviors. This could be solved by
using a non-clonal approach where paired individuals do not use the same genome, and
could possibly evolve different behaviors more easily. However, a non-clonal approach
may face a chicken-and-egg dilemma: multiple individuals need to behave in a particu-
lar fashion for cooperation to be rewarding, but no benefit can be extracted from this
behavior unless all individuals cooperate. Therefore, without cooperating partners, those
behaviors cannot be selected by the evolution as they do not benefit the individual. This
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is particularly problematic when a moderately rewarding solitary strategy overshadows a
more rewarding, but also more challenging to evolve, cooperative strategy (Skyrms 2004).

In this Chapter, we are interested in the comparison between clonal and non-clonal
approaches on two different criteria:

• Evolvability 2 of cooperation, which is the number of successful runs where cooper-
ation evolved.

• Efficiency of cooperation. This criteria is focused on the quality of the evolved
behaviors and is determined by the performance (w.r.t. fitness score) of the coordi-
nation strategies.

To that end, we design a foraging task where both cooperative and solitary strategies
are possible but where cooperation provides the largest reward. This task is favored by
the evolution of efficient cooperative behaviors and we compare different approaches on
both criteria. The first approach is a straightforward implementation of the literature
where interacting individuals are clones. In comparison, the second approach is a rather
extreme implementation of a non-clonal approach: we use coevolution, where individuals
are from two different populations, and where fitness scores are computed independently
for each individual. While this scheme is typical of competitive coevolution (Floreano and
Nolfi 1997; Floreano et al. 1998; Panait and Luke 2005), the nature of the task considered
here makes cooperation more interesting, as both individuals can selfishly benefit from
being cooperative.

In the next section, we describehe methods and experimental setup used throughout
our study. Then, we compare the results of the two approaches on the cooperative task.
This first experiment reveals that both approaches face a tradeoff between evolvability
and efficiency, where neither one dominates the other on both criteria. We investigate in
a second experiment the possibility to overcome this tradeoff for both approache s. To
this end, we use incremental evolution (Harvey et al. 1994; Urzelai et al. 1998) and evolve
coordination in a simpler task in order to improve both the evolvability and efficiency on
the target task for each approach. Finally, we discuss the implication of our findings in
the last section, in particular with respect to maximizing evolvability and efficiency alike.

Methods
Two robotic agents are placed in a 800 by 800 units square arena with four solid walls
and emptied from any obstacle apart from the targets in the foraging task. Each circular-
shaped agent, with a diameter of 20 units, has a collection of sensors divided between a
90 degrees front camera and 12 uniformly distributed proximity sensors. The camera is
composed of 12 rays with infinite range which indicate the type (coded on 3 bits) and
proximity (one value in Rn) of the nearest object or agent in their direction. Proximity
sensors have a range of twice the agent body’s diameter and are used to get the distance

2As a reminder, we restrict here the definition of evolvability to the capacity to evolve cooperative
solutions.
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to any obstacle nearby such as solid objects, the other agent or walls. The two agents
always begin the simulation next to one another at one end of the arena, whereas all the
objects’ initial positions are randomized.

Agents can move freely in the environment and are controlled by a fully connected
multi-layer perceptron with a single hidden layer, the topology of which does not change
during the evolution. Inputs of this neural network are fed with all the data extracted
from the sensors: 48 neurons for the camera (4 neurons for each of the 12 rays) and 12
neurons for the proximity sensors. A bias neuron, whose value is always 1, brings the
total number of input neurons to 61. The hidden layer is comprised of 8 neurons and the
output layer of 2 neurons giving the speed of each of the agent’s wheels. The activation
function used is a sigmoid.

In each experiment, individuals evolved during a fixed amount of evaluations thanks
to an evolutionary algorithm. Their genome consists of a collection of the 506 connec-
tion weights (as real-values) of the neural network and is initially randomized for each
individual in the population. Three evaluation setups are used to compare the different
approaches of our experiment:

• In the control setup, each individual is evaluated against 5 other randomly chosen
individuals in the population except itself. Therefore we ensure that there is no
genetic relatedness between individuals in each pair. However, it is not clear how
the evolutionary algorithm itself may impact the population’s diversity, especially
because elitism is used;

• In the clonal setup, each individual is evaluated once against a clone of itself. This
setup is used to study the results of the classical clonal approach (Waibel et al.
2009; Hauert et al. 2014; Trianni et al. 2007; Lichocki et al. 2013). While previous
works have shown on multiple occasions that cooperation can evolve, it is not clear
if individuals can take different roles during a cooperative interaction;

• In the coevolution setup, each ofhe two individuals comes from two different coe-
volved populations. In this setup, each individual from one population encounters 5
random individuals from the other population. As pairing considers individuals from
two seperate populations, the evolution of heterogeneous behaviors is theoretically
easier. As a matter of fact, such a relation where two very different individuals find
a selfish interest in mutual cooperation is actually quite common in nature (Connor
1995).

A pair of individuals then interact in the arena described before for a fixed number of
simulation steps called a trial. Each trial is conducted 5 times to account for the random
initial positions of the objects and decrease the influence of the initial conditions on the
individuals’ performance.

The selection method used in the evolutionary algorithm is an elitist (10+10)-ES
where the 10 best individuals in the population are used to generate 10 offsprings for
the next generation. We use no recombination and therefore each offspring is a mu-
tated copy of its parent. Mutations were sampled according to a gaussian operator
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with a standard deviation of 1.10−2 and a gene’s mutation rate of 5.10−3. Finally,
population size was kept constant through the evolution with a number of 20 indi-
viduals. All experiments were done using the framework for evolutionary computa-
tion SFERESv2 (Mouret and Doncieux 2010), which includes a fast 2D robotic sim-
ulator. The source code for reproducing the experiments is available for download at
http://pages.isir.upmc.fr/~bredeche/Experiments/ECAL2015-coop.tgz.

Cooperative Foraging Task
In this first experiment, we investigate the evolution of cooperation in a foraging task.
The environment is filled with 18 solid targets that the agents can collect. To collect a
target, an agent has to stay close to this object for a fixed amount of simulation steps
(800). After this duration, the target disappears and any agent close to it is rewarded
with its value. Targets are of two types. Green targets always reward 50 when collected
whereas purple ones reward 250 only when the agents collect it together (Table 6.1). If a
solitary agent collects a purple target, it disappears and rewards nothing. Consequently,
there is both an incentive and a risk to cooperate as cooperation is dependent on successful
coordination. This setup is a robotic implementation of a well-known problem in game
theory for studying the evolution of mutualistic cooperation: the Stag Hunt (Skyrms
2004).

The fitness score (F ) of an individual is the average reward per trial:

F =
1

N ∗M

N∑

i=1

M∑

j=1

fij

Where N is the number of individuals encountered (5 in the control and coevolution
setups, 1 in the clonal setup), M the number of trials (5) and fij the rewards obtained at
trial j with individual i.

When a target is collected, another target of the same type is then placed at a random
position in the arena to keep a constant ratio between green and purple targets. Each
evaluation lasted 20000 simulation steps and 60 independent runs were conducted for each
experimental setup, each one lasting 40000 evaluations.

Target Reward
Green

alone 50
coop 50

Purple
alone 0
coop 250

Table 6.1 – Rewards for the foraging of the different targets. Rewards depend on
whether they were collected alone or cooperatively.
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Results

Setting # Coop. # Solitary Total
Control 10 50 60
Clonal 28 32 60
Coevolution 14 46 60

Table 6.2 – Evolution of a cooperative strategy. Number of simulations where the best in-
dividual evolved a cooperative strategy (collecting purple targets) or a solitary strategy (collecting
green targets) for each setup in the foraging task.

We are interested in the number of simulations where cooperation evolved (i.e. the
evolvability of each approach), which means simulations where the best individual in
the population evolved the cooperative foraging of the purple targets (i.e. more than
50% of the collected targets are purple). Results for the three setups are displayed in
Table 6.2. As could be expected from the literature, the clonal setup displays a greater
evolvability w.r.t. evolving cooperation (28/60), whereas coevolution (14/60) is on par
with the control setup (10/60). It is also apparent that cooperation is still difficult to
evolve as in the best case (clonal), no more than half the simulations display the evolution
of cooperative behaviors.

However, cooperative individuals do not perform with the same efficiency from one
setup to another. We show in Figure 6.1 the median fitness score of the best individuals
in each independent run where cooperation evolved over time and for each setup. Fitness
scores are significantly different in each setup with the best score obtained in the coevolu-
tion setup and the worst in the control setup (Mann-Whitney U-test on the fitness score
of the best individuals at the last evaluation, p-value < 0.001).

These differences in efficiency can be explained by looking at the nature of the coopera-
tive behaviors evolved, which reveals two types of behaviors: turning and leader/follower.

Individuals adopting the turning strategy turn around one another so that they always
see the other individual as well as stay close to it (Figure 6.2(A)). This allows the two
individuals to approach simultaneously a same target and therefore forage it in a coop-
erative fashion. In this strategy, both individuals have a similar behavior and no role
division is necessary for their successful cooperation.

In comparison, individuals which evolve a leader/follower strategy adopt a differentia-
tion between two roles: leader and follower (Figure 6.2(B)). The individual we call leader
always goes first on a target whereas the follower always arrives second on the same tar-
get. We observe that the follower’s behavior consists in staying close to the leader and
always keeping it in front of itself. In comparison the leader shows a lesser interest in the
presence of its follower and rarely checks on its position.

Table 6.3 shows the distribution of cooperative strategies for all three setups. Whereas
the control and clonal setups always resulted in turning strategies (resp. 10/10 and 28/28),
the coevolution setup always displayed the evolution of a leader/follower strategy (14). We
observe that this latter strategy leads to more efficient cooperation. Indeed, individuals
adopting the turning strategy are forced to check constantly on the other individual’s
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Setting # Leader/Follower # Turning Total
Strategy Strategy

Control 0 10 10
Clonal 0 28 28
Coevolution 14 0 14

Table 6.3 – Evolution of a cooperative strategy. Repartition of the different strategies
evolved in each of the runs where cooperation evolved for each setup in the foraging task. We
indicate in each cell the number of simulations where a particular strategy evolved.

task described earlier, hoping that cooperative behavior will be recycled from the first
task to the second task.

Waypoints Crossing Task
We consider a task where robotic agents have to cross randomly positioned waypoints.
As such, these round waypoints do not act as obstacles and have a diameter of 30 units.
As soon as an agent goes through a waypoint, it can not be seen by this agent anymore.
All 18 waypoints have the same color and can be crossed in any order. The fitness score
(F ) of each individual is defined as the average longest sequence of waypoints shared by
both agents per trial:

F =
1

N ∗M

N∑

i=1

M∑

j=1

lmaxij

Where N is the number of individuals encountered (5 in the control and coevolution
setups, 1 in the clonal setup), M the number of trials (5) and lmaxij

the longest sequence
of waypoints shared by both individuals at trial j with individual i.

This implies that the two individuals are rewarded when crossing waypoints in the same
order as well as maximizing the number of waypoints crossed. Each evaluation lasted
10000 simulation steps and 60 independent runs were conducted for each experimental
setup, each one lasting 40000 evaluations.

All simulations showed an increase in fitness score for each of the three setups (cf.
Figure 6.3). This was expected as this task does not represent a particular challenge for the
individuals: it simply needs the evolution of a successful coordination strategy. However,
whereas the coevolution and clonal setups performed equally, they both surpassed the
performance of individuals from the control setup (Mann-Whitney, p-value < 0.001).

As with the previous foraging task, we can hypothesize that these differences in fitness
scores are due to differences in the behaviors evolved. Table 6.4 gives a classification of the
cooperative behaviors for each setup. They are similar to those in the previous task with
the addition of a third rare strategy: the wall-following strategy (which is regrouped in
“Other”). Wall-followers simply follow the walls around the arena and cross any waypoints
close to the wall they are adjacent to. As such, this is a far less efficient strategy than the
two others.
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Setting # Lead. # Turn. # Other Total
Control 19 37 4 60
Clonal 23 31 6 60
Coevolution 59 1 0 60

Table 6.4 – Cooperative strategies evolved. Repartition of the different strategies evolved
in each of the 60 independent runs for each setup in the waypoints task. We indicate in each
cell the number of simulations where a particular strategy evolved: Leader/follower (Lead.),
Turning (Turn.) or Other. “Other” regroups wall-following strategies or simulations where no
recognizable strategy evolved.

on the right. They both turn to the same direction (left or right, depending on the runs)
at the beginning of the simulation which results in one individual (the leader) turning its
back to the other, while the second individual (the follower) looking at its partner.

Recycling Cooperative Behaviors in the Foraging Task
Coming back to the initial foraging task, we perform the exact same experiment described
at the beginning of this Chapter, with one notable exception: the initial population
is initialized with genomes evolved for solving the waypoint task. This implies that
coordination is possible starting from the very first generation of each setup. Given that
we have already shown that such coordination is a desirable feature, the question is: will
it be possible to retain cooperative behaviors in order to solve the foraging task?

Setting # Coop. # Solitary Total# Lead. # Turn.
Control 0 20 40 60
Clonal 0 24 36 60
Coevolution 28 0 32 60

Table 6.5 – Evolution of a cooperative strategy. Proportion of the 60 independent sim-
ulations where the best individual evolved a cooperative strategy (collecting purple targets) or a
solitary strategy (collecting green targets) for each setup in the foraging task when individuals are
previously evolved in the waypoints task. In addition, the repartition of the different strategies
is indicated when cooperation evolved: Leader/Follower (Lead.) or Turning (Turn.).

Table 6.5 gives the results in terms of evolved behaviors from the 60 independent runs
for each setup. The coevolution setup evolves cooperation slightly more often (28/60)
than both the control (20/60) and the clonal (24/60) setups. A first remark is that the
number of occurences of cooperation for the coevolution and control setups have actually
doubled compared to previous results without incremental evolution (see Table 6.2). This
is not the case for the clonal setup, which does not appear to benefit from incremental
evolution.

A second remark is that cooperation in the coevolution setup systematically corresponds
to a leader/follower strategy, which is never the case with the two other setups. This has a
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of pure performance whenever cooperation evolved. The non-clonal approach actually
enables the evolution of asymmetric behaviors, such as a leader/follower strategy.

We then used incremental evolution to evolve coordination behaviors using a simpler
task in order to overcome this tradeoff and improve both evolvability and efficiency in
each setup. We showed that while no improvement was observed in the clonal setup on
either criteria, the outcome is very different for the coevolution setup: the probability of
evolving cooperation actually increases, and the evolved cooperative solutions remain the
most efficient.

This work raises several questions. Firstly, heterogeneous behaviors were obtained
with coevolution, a rather radical way to enable asymmetrical behaviors during cooper-
ation. However, the waypoints task revealed that breaking symmetry can also be done
with identical individuals using environmental feedback, even though such cooperation
is difficult to obtain. As a consequence, the evolution of cooperation with heterogeneous
behavior without resorting to coevolution could be investigated. In particular, we could
study how more elaborated neural architectures (e.g. using plasticity) can switch to a
particular persistant regime depending on environmental cues available at the beginning
of the evaluation.

Secondly, incremental evolution requires an added computational cost in order to in-
crease evolvability in the non-clonal approach. However, it may be possible to avoid this
extra cost by considering other evolutionary methods. In particular, a multiobjective ap-
proach which considers both performance and diversity could improve the optimization
process (Lehman and Stanley 2008; Doncieux and Mouret 2014). Though this approach
looks promising, it is not clear yet how diversity should be implemented in the context of
cooperative problem solving.
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Chapter 7

The Evolution of Specialisation
through Genotypic Polymorphism
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We now investigate the evolution of division of labour between heterogeneous robots via
genotypic polymorphism. Results are presented as a published article in an international
conference:

Arthur Bernard, Jean-Baptiste André, and Nicolas Bredeche (2016a). “Evolv-
ing Specialisation in a Population of Heterogeneous Robots: the Challenge of
Bootstrapping and Maintaining Genotypic Polymorphism”. In: Proceedings
of the Artificial Life Conference 2016 (ALIFE XV), pp. 152–159

In the previous Chapter we showed that it could be beneficial to consider the quality of
cooperative behaviours in addition to the probability to evolve cooperation. In particular,
we revealed that a particular heterogeneous approach, cooperative coevolution, led to the
emergence of a more efficient coordination behaviour: leader/follower. This behaviour
entails the evolution of task specialisation (or division of labour). Here we focus on the
evolution of a leader/follower strategy in a single population of individuals.

Because in evolutionary robotics cooperation is often evolved among homogeneous
robots, this means that in order to achieve division of labour, individuals must be ca-
pable to dynamically allocate their roles during their lifetime. In consequence, specialisa-
tion often relies on neuronal plasticity or environmental cues. Here we are interested in
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evolving specialisation without those additional mechanisms. This means that we want
to achieve division of labour at the level of the population. In consequence, we want to
investigate the maintenance of several different genotypes encoding for different roles in
a single population, i.e. genotypic polymorphism. In particular, we focus on the impact
of selection strategies on evolving genotypic polymorphism.

To that end, we use a simpler foraging task than the one presented in Chapter 6. Two
genetically different individuals are placed in arena where they can collect a single type
of targets. This target is more rewarding when collected in a cooperative manner. This
means that evolving cooperation is easy (we are not interested in the issue of evolving
cooperation here) and that the task is favored by the evolution of efficient coordination
strategies. As we showed in the previous Chapter, two different cooperative strategies can
evolve in this setting. On the one hand, there is the turner strategy, where both individuals
adopt the same behaviour to coordinate. Therefore this is a generalist behaviour. On the
other hand, they can also evolve specialist behaviours and adopt a leader/follower strategy.
We are interested on studying the evolutionary differences of two selection schemes: (1)
a (µ + λ)-ES (elitist) selection strategy and (2) fitness-proportionate selection. We also
study the impact of varying population sizes.

We reveal that specialisation is nearly impossible to evolve under an elitist selection
strategy. Indeed, in only one replication under high population size do we observe the
presence of specialists in the population at the end of evolution. Surprisingly however,
specialists do appear in multiple replications but are never maintained. Even when the
population is initially seeded with specialists, similar results are observed. In comparison,
while specialists nearly never evolved under fitness-proportionate selection, they are easily
maintained throughout evolution (especially when starting with a population of special-
ists). We thus reveal that evolving genotypic polymorphism is hindered by the challenge
of both evolving and maintaining specialists in the population and that none of these two
classical selection schemes are suitable to that end.

We then use computational analyses to garner a deeper understanding of the underlying
dynamics at play. We show that while specialists are the most efficient, generalists can
invade the population because they fare quite well against any other phenotype. In com-
parison, specialists need to be paired with other specialists of a different type to perform
adequatly. Additional analyses show that, under finite population size genetic diversity
can be lost from one generation to the other. This can, especially with small population
sizes, lead to the disappearance of specialists from the population. We thus highlight two
critical properties for the evolution of genotypic polymorphism: (1) protection against
the invasion of generalists and (2) maintenance of genotypic diversity. We argue that
an algorithm endowed with such properties would enable genotypic polymorphism to be
achieved.
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Evolving Specialisation in a
Population of Heterogeneous
Robots: the Challenge of
Bootstrapping and Maintaining
Genotypic Polymorphism
Abstract
In this Chapter, we are interested in the evolution of specialisation among a single pop-
ulation of heterogeneous robotic agents in a cooperative foraging task. In particular, we
want to compare (1) the emergence and (2) fixation of genotypic polymorphism under
two different selection methods: elitist and fitness-proportionate. We show that, while
the emergence of specialists is easy under an elitist selection, this method cannot main-
tain heterogeneous behaviours throughout the whole simulation. In comparison a fitness-
proportionate algorithm proves to be inefficient in evolving any cooperative strategy but
ensures the conservation of heterogeneity when it is present in the population. We then
reveal through additional experiments two key factors for the evolution of heterogenous
behaviours in our task: (1) protection of genotypic diversity and (2) efficient selection
of partners. We finally demonstrate this assertion and, while our main problem remains
unsolved, we provide directions on how it could be successfully approached.

Introduction
Task specialisation is a defining characteristic in achieving efficient coordination and is
thus considered to be crucial in the evolution of complex cooperative behaviours (Sza-
thamàry and Maynard Smith 1995). The problem of evolving cooperation has been largely
studied in evolutionary robotics as it raises interesting persepectives for the design of col-
lective robotics (Trianni et al. 2007; Hauert et al. 2014; Doncieux et al. 2015). As a
consequence, the manner in which robotic agents could evolve specialisation (or division
of labour) for a cooperative task represents a compelling challenge in evolutionary robotics.
As such, a large body of litterature has already been dedicated to this subject. However,
most research focus on the particular case of homogeneous groups of individuals (Waibel
et al. 2009) as is classic in evolutionary robotics. This means that the individuals are
forced to rely on phenotypical plasticity (Waibel et al. 2006; Ferrante et al. 2015; Es-
kridge et al. 2015) and/or environmental cues (Waibel et al. 2006; Goldsby et al. 2010)
in order to achieve specialisation.

In this Chapter, we focus on a slightly different problem: the evolution of a polymorphic
population where division of labour is encoded at the genotypic level. More precisely, we
want to study the evolution of a population containing two (or more) different types
of genotypes. Each of these types of genotype should be able to encode for a different
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role without requiring the addition of mechanisms for lifetime specialisation. Thus it
poses the problem of both evolving and maintaining genotypic polymorphism in a single
population. Here we want to investigate the conditions under which specialised behaviours
for a cooperative task can evolve in a single population of heterogeneous individuals. In
particular, we are interested in the influence of the selection process in achieving division
of labour.

We design a 2-robots cooperative foraging task where both a solitary and a cooperative
strategies can evolve but where cooperation is highly rewarded. The genotype of each
robotic agent is separately chosen in the population and the individuals therefore form an
heterogeneous group. This task is greatly favored by the evolution of efficient coordination
strategies. In particular, our previous work on a similar task (Bernard et al. 2015) showed
that two types of cooperative strategy could evolve: one where both individuals adopt ho-
mogeneous behaviours (generalists) and the other one where they adopt a leader/follower
strategy (specialists). Moreover, it was shown that the latter could only emerge between
heterogeneous individuals. As it is also the more efficient behaviour, we study the condi-
tions for its emergence. The evolutionary dynamics of two popular selection methods are
studied: (1) an elitist (µ + λ) evolution strategy and (2) fitness-proportionate selection.
Fitness-proportionate in particular is interesting with regards to genotypic polymorphism
as it is known to allow the evolution of frequency-dependent selection (Altenberg 1991).

In the next Section, we introduce the experimental setup. Then we present the two
types of cooperative strategies that can evolve. Next, we investigate whether any of the
selection methods could evolve heterogeneous behaviours. In particular, we study for
both schemes the evolutionary outcomes depending on whether the population is initially
constituted of random individuals or seeded with pre-evolved efficient specialists. Then
we present the results of computational analyses in order to reveal and understand more
deeply the mechanisms at play. In a final experiment, we reveal key mechanisms which
could be investigated to solve this problem. Finally we discuss our findings and shed light
on interesting perspectives for future work.

Methods
We evaluate two robotic agents in a 800 by 800 units square arena devoid of any obstacles
except for the foraging targets. At the beginning of a simulation, 18 targets are randomly
positioned in the environment. While the agents may move freely in the arena, the targets’
positions are fixed. For a target to be collected, any agent needs to stay in contact with
it for a specified amount of time (800 simulation steps). The target is removed after
this duration and put back at another random position so that the number of targets is
kept the same throughout a simulation. We consider that cooperative foraging happens if
both individuals are in contact of the target when it is removed. When an agent collects
a target, it is rewarded 50 if this target has been foraged in a solitary manner or 250 if
both agents have cooperated to collect it.

Each agent is circular-shaped with a diameter of 20 units and possesses a collection
of different sensory inputs. The first type of inputs is a 90 degrees front camera and
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Foraging Reward
Solitary 50
Cooperatively 250

Table 7.1 – Rewards for the foraging of targets. Rewards depend on whether the targers
were collected in a solitary or cooperative fashion.

is composed of 12 rays, each one indicating the type and distance to the nearest object
(either another agent or a target). The other type of inputs are 12 proximity sensors
evenly distributed around the agent’s body. With a range of twice the agent’s diameter,
each proximity sensor outputs the proximity of the nearest obstacle in its range.

Both agents begin the simulation next to each other at the same end of the arena and
can move according to the outputs of their neural network. This neural network is a fully
connected multi-layer perceptron with one hidden layer. The inputs of the neural network
are comprised of all the sensory information of the agent, i.e. 36 input neurons for the
camera (3 inputs for each ray) and 12 for the proximity sensors. A final input neuron
whose value is always 1 is used as a bias neuron. This amounts the total number of input
neurons to 49. The hidden layer is constituted of 8 neurons while the 2 neurons of the
output layer return the speed of the agent’s wheels. A sigmoid is used as the activation
function of each neuron. Finally, the topology of the network is kept constant during the
experiments.

The population of individuals is evolved thanks to a classical evolutionary algorithm.
The genotype of each individual is constituted of a collection of the 410 real-valued connec-
tion weights of the neural network. At each generation of the algorithm, every individual
is evaluated by being successively paired with another individual randomly chosen in the
population 5 times. Each pair interacts in the setting presented before during 20000 sim-
ulation steps which we call a trial. We perform 5 trials for each pair of individuals in order
to decrease the impact of the targets’ random positions on the individuals’ performance.
The fitness score of an individual is computed as the average reward per trial.

The population for the next generation is created according to two different selection
schemes :

• (µ + λ) elitist selection: the population of the next generation is constituted of
the µ best individuals from this generation and λ offsprings sampled from the best
individuals.

• Fitness-proportionate: offsprings are randomly sampled from the current gener-
ation to constitute the population of the next generation. The probability to sample
a particular parent is proportional to this parent’s fitness score.

Regardless of the selection method used, every offspring is a mutated clone of its par-
ent and no recombination is used in our algorithm. The probability for each gene to
mutate is 5 × 10−3 and mutations are sampled according to a gaussian operator with a
standard deviation of 2 × 10−2. Finally, experiments were conducted with the robotic
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Evolving Heterogeneous Behaviours with an Elitist Se-
lection

Bootstrapping leader/follower strategies
In this first experiment, we are interested in the emergence of a leader/follower strategy
when starting with a population of random individuals under an (µ+ λ) elitist selection.
In order to investigate the influence of population size, we tested three different sizes N :
20, 40 and 100. For each population size, we conducted 11 independent runs, each one
lasting 90000 evaluations. For each population size N , we defined µ (i.e. the number of
parents) and λ (i.e. the number of offsprings) as N

2
. For example, when population size

was 100, 50 individuals were kept from the previous generation and used to create 50
mutated offsprings.

Pop. # L/F # Turning # NC Total
size Strat. Strat. Strat.
20 0 11 0 11
40 0 11 0 11
100 1 10 0 11

Table 7.2 – Strategies evolved by the best individuals under elitist selection with
an initially random population. Repartition of the different strategies adopted by the best
individuals at the last evaluation in each of the replicates for different population sizes N . We
indicate in each cell the number of simulations where a particular strategy evolved. Populations
were evolved under an (µ + λ) elitist selection, with µ = N

2
and λ = N

2
. Individuals’ genotype

values were intially random. In the table ”L/F” stands for leader/follower and ”NC” for ”Non-
Cooperative”.

Table 7.2 shows the repartition of the best individuals’ strategies at the last generation
of evolution for each population size. We consider a behaviour to be cooperative when
more than 50% of the total number of targets collected are foraged cooperatively. First, we
observe that in every replicate individuals always end up evolving a cooperative strategy.
We also see that evolving a leader/follower strategy is difficult as specialists evolve in only
1 run (out of 33) and when the population size is 100. These results suggest that it is
nearly impossible to evolve such heterogeneous behaviours with this setting.

However, when looking at the whole evolutionary history we can reveal additional
information about the evolution of specialists. We show in Figure 7.3 the proportion of
evolutionary time when the best individual of each run adopted a leader/follower strategy.
This value is computed as the ratio of the number of generations when the leadership ratio
was high enough (over a threshold value of 0.6) out of the total number of generations.
We observe that even if the best individuals end up adopting a generalist strategy, this
was not the case during the entirety of the evolution. In particular, there is a significant
increase (Mann-Whitney, p-value < 0.05) in the number of generations where the best
individual showed a leader/follower strategy when population size was 100 compared to
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Pop. Followers # L/F # Turning # NC Total
size added Strat. Strat. Strat.
40 1 0 11 0 11
40 20 0 11 0 11
100 1 1 10 0 11
100 50 2 9 0 11

Table 7.3 – Strategies evolved by the best individuals under elitist selection when
adding followers. Repartition of the different strategies adopted by the best individuals at last
evaluation in each of the replicates for different population sizes N . We indicate in each cell
the number of simulations where a particular strategy evolved. Populations were evolved under
a (µ + λ) elitist selection, with µ = N

2
and λ = N

2
. The population was initially seeded with

a population of leaders in which we added a specific amount of followers. In the table ”L/F”
stands for leader/follower and ”NC” for ”Non-Cooperative”.

eventually adopted (out of 44) did the specialists initially added were maintained. In the
2 other runs we observe multiple emergences and disappearances of specialists throughout
evolution.

Evolution Under a Fitness-Proportionate Selection
In this next experiment we want to investigate the evolution of heterogeneous behaviours
when using a fitness-proportionate selection. As fitness-proportionate is known to al-
low frequency-dependent selection, we hypothesize that it may facilitate the evolution of
specialists.

Bootstrapping leader/follower strategies
Similarly to the elitist selection, we replicated our experiments in 11 independent runs
during 90000 evaluations. Likewise, population sizes were 20, 40 and 100.

We show in Table 7.4 that results are highly different when using such selection scheme.
In particular, the fitness-proportionate selection performed poorly w.r.t. evolving coop-
erative strategies. For each population size, no cooperative strategy evolved at all in the
vast majority of replicates. However in one particular run we do observe the emergence
and fixation of specialists. This is similar to what was observed under elitist selection
w.r.t. evolving specialists.

Yet a closer look at the dynamics of evolution under a fitness-proportionate selection
yields interesting results. In particular, there is not much variation in the strategy adopted
by the best individuals throughout evolution. This is consistent with the fact that the
bootstrap of a cooperative strategy was not observed in most of the replicates: fitness-
proportionate is not efficient in evolving any cooperative behaviour. In consequence, there
is not much variation in the proportion of individuals adopting a leader/follower strategy
during evolution. As a matter of fact, we observe that in the only replicate where there was
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Pop. # L/F # Turning # NC Total
size Strat. Strat. Strat.
20 0 1 10 11
40 0 1 10 11
100 1 2 8 11

Table 7.4 – Strategies evolved by the best individuals under fitness-proportionate
selection with an initially random population. Repartition of the different strategies
adopted by the best individuals at the last evaluation in each of the replicates for different
population sizes. We indicate in each cell the number of simulations where a particular strategy
evolved. Populations were evolved under a fitness-proportionate selection. Individuals’ genotype
values were initially random. In the table ”L/F” stands for leader/follower and ”NC” for
”Non-Cooperative”.

genotypic polymorphism at the end of the simulation, specialists were already present at
the random initialisation of the population and did not evolve through mutation. This is
very different with the elitist selection where we observe multiple emergences of specialists
(even briefly) during evolution in many different runs.

Maintaining heterogeneity in a population seeded with specialists

Pop. Followers # L/F # Turning # NC Total
size added Strat. Strat. Strat.
40 1 7 0 4 11
40 20 8 0 3 11
100 1 10 0 1 11
100 50 10 0 1 11

Table 7.5 – Strategies evolved by the best individuals under fitness-proportionate
selection when adding followers. Repartition of the different strategies adopted by the best
individuals at the last evaluation in each of the replicates for different population sizes N . We
indicate in each cell the number of simulations where a particular strategy evolved. Populations
were evolved under a fitness-proportionate selection. The population was initially seeded with
a population of leaders in which we added a specific amount of followers. In the table ”L/F”
stands for leader/follower and ”NC” for ”Non-Cooperative”.

As expected from previous results, fitness-proportionate performs well in terms of sta-
bility of heterogeneous behaviours. We show in Table 7.5 that in the majority of replicates
the best individuals adopt a leader/follower strategy at the end of the simulations. This is
particularly true when population size is high enough (100). A major difference with the
elitist selection is that in all replicates where a leader/follower strategy was observed at
the end of the run, the specialists were maintained from the start throughout evolution-
ary time. These results suggest that, although not efficient at bootstrapping cooperative
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behaviours, fitness-proportionate performs well w.r.t. the stability of genotypic hetero-
geneity. Furthermore, we can hypothesize that this selection scheme is good at maintain-
ing heterogeneity specifically because it largely fails (under our choice of parameters) at
bootstrapping any cooperative strategy.

Computational Analyses of Population Dynamics
In this present section, our goal is to understand more deeply the dynamics at play which
allow the invasion of suboptimal generalists even when efficient specialists are present.
To that end we run computational analyses based on the expected fitness of each of the
three phenotypes. Table 7.6 shows the average payoff of pair-wise simulations between
each type of phenotypes. We consider the payoffs for both phenotypes in each pair to be
identical as no significant differences were observed between their payoffs.

Phenotype Leader Follower Turner
Leader 1265 5000 3480

Follower 5000 100 2750
Turner 3480 2750 2755

Table 7.6 – Payoff matrix for pair-wise simulations of each phenotype. Average payoffs
of each phenotype against every phenotype in a pair-wise simulation. Each pair was evaluated 10
times in order to decrease the stochastic effects of the initial conditions (i.e. random positions
of the targets).

Several observations can be made directly from these results. First, we can confirm
that the leader/follower strategy displayed by a (leader, follower) pair is clearly the best
strategy. However each one of these two phenotypes performs very poorly against itself
with the worst payoff obtained by a pair constituted of two followers. Secondly, turner
individuals perform also very well against leaders. Last, there is no significant differences
w.r.t. payoffs when a turner is paired with a follower or another turner. These last two
points hint at a shared lineage between followers and turners.

Indeed analyses of the genotypes’ histories in our previous experiments reveal that
turner individuals in fact descend from follower individuals. This means that they act
as followers when interacting with leaders but are not as efficient. However they are a
lot more efficient than followers when paired with individuals of the same phenotype (or
followers).

From this payoff matrix, we run computational analyses to model the gradient of phe-
notypes’ repartition in an infinite population. The fitness W of a particular phenotype i

is computed as follows:

Wi =
M∑

j=1

P (ij) ∗ F (j)
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Figure 7.4(B) shows the final repartition of phenotypes after 1500 generations of evo-
lution for N = 20, N = 100 and N = 1000 in 11 independent replicates. We can see
that when increasing population size we also increase the probability that an equilibrium
where the three phenotypes exist is reached. We actually observe that the repartition of
phenotypes at last generation of evolution gets closer to the predicted equilibrium as pop-
ulation size increases. This implies that when population size increases, the probability
to lose particular phenotypes decreases. In other words, the effect that the stochastic-
ity of fitness evaluation has on the sampling of the genotypes for the next generation is
mitigated: population size is essential to the maintenance of specialists.

Key Properties for Evolving Heterogeneous Behaviours
From the previous Section, we can hypothesize two key properties for the successful evo-
lution of genotypic polymorphism. First, we showed that population size needed to be
large enough in order to decrease the probability that heterogeneity could be lost dur-
ing the evolutionary time. Even under an elitist selection where the best individuals are
immediately selected, the stochastic nature of fitness evaluation entails that there is no
guarantee that both types get selected. This means that a performance biased selection
may lead to the composition of the new population not accurately representing the geno-
typic diversity of the previous one. Therefore, there needs to be a mechanism for the
preservation of genotypic diversity. Second, we previously saw that one key reason for the
invasion of turner individuals is that, while followers perform badly against themselves,
this is not the case for the formers. This means that the manner in which robots are
paired is essential for achieving specialisation.

In order to test these hypotheses we design a last experiment where we diverge from
the initial problem and now coevolve two separate populations. In this coevolution algo-
rithm, each individual of one population is always evaluated against an individual of the
other population (5 times as in previous experiments). Then, each population separately
undergoes selection under an elitist (10+10) selection method to create the population of
the next generation (which means that each population size is 20). We conducted 11 in-
dependent replicates which lasted 90000 evaluations each. The populations were initially
constituted of random individuals.

# L/F # Turning # NC Total
Strat. Strat. Strat.

11 0 0 11

Table 7.7 – Strategies evolved by the best individuals when coevolving two popula-
tions. Repartition of the different strategies adopted bt the best individuals at the last evaluation
in each of the 11 replicates. We indicate in each cell the number of simulations where a particu-
lar strategy evolved. Two populations were coevolved under elitist selection and the individuals’
genotype values were initially random. In the table ”L/F” stands for leader/follower and ”NC”
for ”Non-Cooperative”.
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We show (Table 7.7) that when using coevolution, we always evolve specialists in every
replicates. Moreover, this algorithm is highly stable as the heterogeneous behaviours that
emerged were never lost during evolution in every replicates. This means that coevolution
is highly efficient both for the bootstrap of a leader/follower strategy and its maintenance
throughout evolution. Regarding our hypothesized properties, we can check that the
coevolution algorithm respects both of them. Firstly, as populations are separatly coe-
volved, we make sure that performance-based selection does not accidentally lead to the
disappearance of specialists. Thus we ensure that the populations’ genotypic diversity is
highly protected. Secondly, we create a very specific pairing between individuals. Indeed
individuals inside the same population are never partnered with one another. This means
that followers are always paired with leaders. As turners thus possesses no fitness benefit
over the other phenotypes, their invasion is prevented. The question is open as to how to
endow an algorithm working on a single population with such properties.

Discussion and Conclusions
In this Chapter, we investigated the evolution of specialisation through a leader/follower
strategy in a cooperative foraging task. Our goal was to reveal the difficulties that arise
when trying to evolve genotypic polymorphism in a single population. To that end, we
mainly studied the dynamics of evolution with two different selection methods: an (µ+λ)
elitist evolution strategy and fitness-proportionate selection.

We first showed that the long term evolution of a leader/follower strategy was nearly
impossible with an elitist selection. However bootstrapping specialists was not a prob-
lem as we observed that they frequently emerged during evolution. The major obstacle
was rather to maintain heterogeneity over evolutionary time. Indeed, even when adding
efficient followers to a population of leaders to force the adoption of a leader/follower
strategy, specialists couldn’t be maintained. In comparison, the properties shown by
the fitness-proportionate algorithm were quite the opposite. While it was almost not
capable of evolving a leader/follower strategy (nor any other cooperative strategy), the
fitness-proportionate selection demonstrated high stability. It was therefore capable of
maintaining specialists when present. We thus revealed two critical properties for evolv-
ing heterogeneous behaviours in a single population: bootstrapping these behaviours and
maintaining them throughout evolution.

We then ran computational analyses and showed that while a pair of turners is indeed
less efficient w.r.t. payoff than a pair of leader and follower, it is a lot more efficient than a
pair of leaders or a pair of followers. As a result, these individuals can easily invade part of
the population. Moreoever, we also showed that the maintenance of specialists was very
sensible to population size. Performance biased selection can indeed affect heterogeneity
in the composition of the next generation’s population. Finally, a coevolution algorithm,
which we showed to be always successful in evolving heterogeneous behaviours, solved
both of these two problems with (1) specific partners selection as pairs were constituted
of individuals from different populations and (2) protection of the behaviours evolved
by applying selection separately on the two populations. While this algorithm is not
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concerned with genotypic polymorphism in a single population, it is useful to yield effective
mechanisms which could be studied to solve our problem.

This raises several interesting perspectives on how to solve this problem. First, niche
protection could prevent the disappearance of the efficient but unstable leader/follower
strategy. As a matter of fact, coevolution is akin to a particular type of niches protection
with 2 niches. However, such mechanism could be implemented without specifying the
explicit number nor the organization of the niches. Rewarding diversity (Lehman and
Stanley 2008) is also known as an effective way to protect novel behaviours and could be
another promising direction. In particular, a multiobjective algorithm on performance and
diversity (Doncieux and Mouret 2014), by rewarding genotypic and phenotypic diversity,
may protect evolved specialists.

Secondly, we showed that because partners were chosen randomly among the popu-
lation, it created the opportunity for a ”parasitic” strategy to invade. An interesting
direction for future works could be to investigate restrictions in the choice of partners.
For example it would be compelling to investigate how the individuals could evolve to
select their partner based on genotypic or phenotypic information.
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The contributions of this thesis have been divided in two parts that, while they revolve
around evolutionary robotics, are centered on very different problems. As such, we choose
to discuss and conclude on each part separately.

8.1 Modeling the Evolution of Cooperation
8.1.1 Summary of Contributions
In the first Part of this manuscript we have been interested in the influence of coordination
on the evolution of mutualistic cooperation. We focused in particular on the proximate
explanations of coordination and their impact on the evolution of cooperation. Most
studies centered on cooperation have often been dedicated to explaining the stability
of altruistic behaviours. Mutualistic actions in comparison have usually been ignored.
However, while mutually beneficial actions do not raise any issue of stability, the origin
of this type of cooperative behaviours is not trivial. Because they require coordination,
the spread of a cooperative behaviour from an initial population of solitary individuals
remains an open question. We thus were interested in the boostrapping problem faced by
the emergence of mutually beneficial cooperation.

To that end, we used evolutionary robotics as our modeling framework. Because we
were interested in the origin of cooperative actions rather than their stability, the modeling
of mechanistic constraints is critical. Namely, the convergence to a cooperative solution
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is impacted by the availability of mutations, i.e. the possibility for a particular mutant
to appear in the population. While classical models in evolutionary biology are of great
help in understanding the dynamics of the evolution of cooperation, they make critical
assumptions with regard to the convergence towards a cooperative solution. This is what
has motivated our choice to use individual-based modeling and evolutionary robotics in
particular as a modeling method. In particular, evolutionary robotics allows to model the
mapping between genotype and phenotype and thus study the proximate mechanisms at
play in the evolution of cooperation.

In a first study, we focused on the impact of modeling the mechanics of behaviour
in the evolution of mutualistic cooperation. To that end we took inspiration from the
game theoretical model of the stag hunt and studied the transition from the solitary
equilibrium (hare hunting) to the cooperative equilibrium (stag hunting). We first revealed
that there is a drastic difference between the results predicted by classical models in
game theory and what we observed in evolutionary robotics. With a classical model, the
transition to stag hunting always occurred. In comparison, with a model in evolutionary
robotics, this transition was nearly impossible. Furthermore, we showed that even under
maximal genetic relatedness (i.e. individuals were clones of each other), the evolution
of cooperation was still unlikely. We thus revealed that the mechanistic constraints are
critical for the origin of cooperation in the stag hunt game. The evolution of cooperation
is faced with a chicken and egg dilemma: for cooperation to be selected, it needs to be
beneficial. Yet the success of the cooperative action requires that others have evolved the
capacity to coordinate, which is not beneficial on its own. If one assumes that a single
mutation can lead to the evolution of cooperation then it is considered that the same
mutation is responsible for both the modification of the preferred prey and the capacity
to coordinate. We showed here that doing so hides part of the issue. Moreover we showed
in our simulations that the individuals needed to evolve a complex behaviour in order to
be able to coordinate. Therefore, it is necessary to take into account the mechanics of
behaviours in order to fully understand the evolution of cooperation. This means that
there is a need for complementary frameworks which model these mechanisms.

In the second Chapter, we studied how the nature of coordination behaviours may
impact the transition between collective equilibria. More precisely, we focused on the
issue of selecting between multiple stable equilibria. When a collective equilibrium has
emerged, no single mutant has a selective advantage to deviate from this equilibrium. As
such, this raises the issue of the transition to the optimal equilibrium. Our goal was to
study if individual selection alone could lead to the optimization of group-traits. To that
end, we used a model of collective hunting where individuals could choose between two
types of prey: boar (suboptimal prey) and stag (optimal prey). We revealed that the
transition towards the optimal prey was impossible under simple environmental features
(only one prey of each type). However, we revealed that results were different when
more realistic assumptions about collective hunting were made. Surprisingly, when the
environment was more complex (nine prey of each type), the switch to stag hunting could
sometimes occur. Under such environmental conditions, it was necessary to collectively
decide on which prey to hunt. This meant that the evolution of coordination was required
in order to achieve cooperation. In consequence, each individual evolved the capacity
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to react to the other individual’s behaviour. Thus a mutant could indirectly change
the behaviour of the group and thus lead to stag hunting. However, we observed that
the coordination strategy evolved was a very symmetrical one where both individuals
could adopt the same behaviour. We then increased the neural complexity of individuals
and showed that the transition to stag hunting was highly facilitated. Furthermore, we
revealed that individuals evolved a strongly asymmetrical coordination strategy through
specialisation: a leader/follower strategy. In this strategy, the follower only reacted to the
behaviour of the leader which it tried to follow. This meant that a mutation on the leader
was sufficient to change the group’s behaviour and thus reap the benefits of cooperative
stag hunting. Additionally, we observed that this strategy was more efficient than the
previous one in terms of rewards obtained. We thus showed that the evolution of an
individually adaptive strategy led to the transition to the optimal collective behaviour.
Therefore, it was possible for individual selection alone to explain the optimization of
group traits.

In both of these studies, we thus revealed the critical role of coordination in the evolution
of cooperation. In consequence, we demonstrated that it is indeed necessary to take the
mechanics of coordination behaviours into account in order not to neglect crucial aspects
of the evolutionary dynamics. Additionally, we also presented a general mechanism for
the evolution of cooperation in the stag hunt. The boar we introduced in our study on
the selection of equilibria could act as an evolutionary pathway in the stag hunt. Namely,
this prey can be hunted alone but rewards more when it is hunted cooperatively, which
is a realistic expectation for hunting in the natural world. As such, coordination and
cooperation could initially be bootstrapped on this prey (because it is not as risky as
hunting stags). Then, we showed that when coordination was present it was possible for
individual selection to optimize the collective behaviour. In consequence, this could lead
to the transition to the purely cooperative equilibrium: stag hunting.

8.1.2 Limits and Perspectives
The evolution of communication

During this thesis, we have studied coordination strategies that did not require any direct
communication between individuals. We wanted to study if coordination was possible
without endowing individuals with communication capabilities. Indeed, we aimed at
keeping the complexity of our robot model as low as possible so that we could focus on
the most basic mechanisms that could lead to the evolution of cooperation. More complex
agents could beg the question of the role of the robots’ capabilities on the observed
phenomena. In particular, the goal behind the first Part of our study was to compare
classical models in evolutionary biology with modeling under an evolutionary robotics
framework. As such, it was important that no particular design choice could alter the
relevance of this comparison.

We found that our robots were capable of coordination without any means of commu-
nication. Indeed, they could evolve a surprising behaviour which, while it was not the
most efficient way to coordinate, allowed them to cooperate. In a way, we can make here
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a similar observation as Mitri and colleagues (Mitri et al. 2009). Namely, individuals
could rely on indirect communication cues resulting from their embodiement. However
we could also implement a more direct way for them to communicate. Communication is
used in numerous different social species, among which we already gave the example of
the spotted hyenas (Drea and Carter 2009; Smith et al. 2010, 2012). They are capable
of using signaling techniques and communication in order to achieve high level of coor-
dination during collective hunting. As such, while the emphasis of our second study was
mainly put on division of labour, communication may deeply impact the nature of coordi-
nation behaviours. In consequence, we hypothesize that the evolution of communication
strategies could affect the evolution of collective actions. Additionally, an interesting
perspective would be to let the individuals evolve how to communicate from basic com-
munication capabilities (e.g. the broadcast of a simple signal). As such, this could lead to
coevolutionary dynamics between communication strategies and coordination behaviours.

Moreover, the evolution of communication has already been studied in several works
in evolutionary robotics. We already mentioned in Chapter 2 that some have been inter-
ested in the general evolution of communication between foraging robots (Floreano et al.
2007), information suppression (Mitri et al. 2009) or the role of historical contingencies
on the evolution of signaling strategies (Wischmann et al. 2012). As with the evolution
of cooperation, few have been interested in the emergence of communication among unre-
lated individuals. A notable counterexample is the work of Solomon et al. (Solomon et al.
2012) who modeled communication strategies between hyenas. However, the impact of
communication on the origin of mutualistic actions has not been studied.

Cooperation between bigger groups of agents

Our initial inspiration was the game theoretical framework of the stag hunt. As such
interactions take place between only a pair of individuals. However, it could be interesting
to increase the number of agents and to study how the evolutionary dynamics would
change. In particular, in our second study we have been interested in the optimization
of group-traits by way of individual selection. We showed that the transition between
multiple equilibria could occur without any group-level mechanism. As we provided no
evidence that our demonstration could be scaled up to more than two individuals, it could
be argued that what we consider a group-trait is limited in this context.

However, we believe that similar results would be observed in larger groups of individ-
uals. We even hypothesize that the results could be more explicit in this case. Assume
that we have a scaled-up version of our study where interactions take place between 5
agents. Hunting stag would now require that the 5 individuals cooperate together to reap
the benefits of the hunt. Because the coordination of 5 individuals is more challenging
than that of a pair, the evolution of efficient coordination strategies would be even more
favored. As such, the evolution of asymmetrical behaviours like the leader/follower strat-
egy should have a bigger impact on the transition towards the optimum. Indeed, it would
be impossible for a single mutant to lead the group to stag hunting without an asymmet-
rical strategy. We have begun working on preliminary experiments where we increase the
number of agents in our simulation (with groups of 3, 4 or 5 robots).
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Online evolution

An interesting continuation of our work would be to model the evolution of mutualistic
cooperation in a more ecologically realistic setup. More precisely, in the classical frame-
work of evolutionary robotics we use an offline evolutionary algorithm. This initially
means that there is a separation between the design of a robot and its deployment; robots
evolve in a different environment than the one where they are used. In comparison, under
an online paradigm evolution occurs directly in the operational environment. The field
of embodied evolution (Watson et al. 2002) was created in order to address this question
and in particular the issue of transferability that stems from evolving robots in an offline
manner. As such, embodied evolution is mainly concerned with design questions. In our
case, it would be interesting to use online evolution as another manner in which to model
evolutionary phenomena.

Furthermore, in the particular case of environment-driven embodied evolution the se-
lection pressure is driven by the environment. In classical ER (and embodied evolution),
a fitness function is used to evaluate the performance of individuals and determine if they
will produce offspring. In this case, there is an objective-driven selective pressure. This is
different from the biological definition of fitness, where fitness is an a posteriori evaluation
of the reproductive sucess of a given individual. As such, a more realistic approach to
the modeling of evolution would be to require that the individuals meet with each other
in order to exchange genetic material (Bredeche and Montanier 2010). This is the prin-
ciple of environment-driven embodied evolution. In consequence, a perspective would be
to study the evolution of mutualistic cooperation under such paradigm. In this case an
interesting feature is that the selection process also evolves.

Few have focused on this aspect of biological modeling. Montanier and Bredeche in-
vestigated the evolution of altruism among a population of simulated robots under an
online environment-driven algorithm (Montanier and Bredeche 2011, 2013). This way
they could study the impact of genetic relatedness and dispersion on the emergence and
stability of altruistic behaviours.

8.2 Automatic Design of Collective Robots
8.2.1 Summary of Contributions
In the second Part of this thesis our goal was to study how to design the evolution of
cooperation in evolutionary robotics. More precisely, we were interested in the impact of
genetic team composition on the evolution of efficient coordination strategies in multirobot
systems. Multirobot systems have multiple advantages in comparison to using a single
robot among which robustness, efficiency and the capacity to achieve tasks that a single
robot could not. However, because they require the control of several agents, they are
also more challenging to design. In this context, multiple different architectures exist for
multirobot systems and several ways to design the control of collective robots have been
proposed. But while a popular and often efficient method has been to manually design
the robots, there has been a strong interest in creating methods to automatically design
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them. Automatic design can lead to robots which better react to environmental changes
and unknown environment. Additionally, some problems are simply nearly impossible to
design in a manual fashion. In this context, we focused on evolutionary robotics as an
approach to the automatic design of distributed robots.

An open issue when designing cooperative robots in evolutionary robotics is team com-
position. Namely, the robots that constitute a team can be homogeneous or heteroge-
neous, whether in terms of morphology or control. Here we focused on the influence of
team composition on the control of agents only. The classical approach in evolutionary
robotics has been to use an homogeneous group of robots, where every individual comes
from the same genotype. However, it is argued that heterogeneity could lead to more
diverse behaviours between robots and thus generate higher efficiency.

In the first Chapter of this Part, we compared homogeneous and heterogeneous ap-
proaches on two criteria: evolvability and efficiency. We designed a collective foraging
task inspired by the stag hunt where the individuals could forage two types of ressources:
one that could be foraged alone and an other more rewarding that needed to be collected
cooperatively. In this context, we use a restricted definition of evolvability where it cor-
responds to the capacity of a particular method to evolve cooperators. In comparison,
efficiency refers to the performance of the cooperative solution w.r.t. ressources collected.
We compared a clonal approach (i.e. where individuals are homogeneous) to two aclonal
ones (i.e. where the composition is heterogeneous): one where individuals were taken from
the same population and the other where they came from two separately coevolved popu-
lations. We revealed that there was a tradeoff between evolvability, which is best achieved
with the clonal approach and efficiency, where coevolution evolved more efficient coop-
erative strategies. In particular we showed that division of labour would systematically
evolve with coevolution. In order to go beyond this tradeoff and improve each method on
both criteria we then added incremental evolution. The goal of incremental evolution is
to decompose a complex task into several sub-tasks that are evolved separately in order
to ease the learning process. In our case, we pre-evolved our individuals in a simpler
cooperative task. We showed that while this produced no significant differences for the
clonal approach, the evolvability of coevolution was greatly increased. In consequence we
showed that an aclonal approach, coevolution, was the best method on both evolvability
and efficiency. However, this increase in evolvability comes at the price of a pre-evolution
step. We thus revealed a new tradeoff: coevolution may outperform a clonal approach
but at the cost of additional computations.

In the next Chapter, we focused on the evolution of specialisation between hetero-
geneous individuals. We took a simpler task than that of the previous Chapter where
cooperation is easy to evolve but efficient coordination strategies are favoured. In this
task, we showed that two coordination strategies could evolve: a turner strategy where
both individuals are generalists and a leader/follower strategy where the two robots spe-
cialise. We thus wanted to study how division of labour could evolve between hetero-
geneous individuals at the level of the population. Namely, we studied the evolution of
genotypic polymorphism, i.e. the coexistence of several different genotypes (encoding for
diverse phenotypes) in a single population. We compared two selection schemes based
on their capacity to achieve genotypic polymorphism: a (µ + λ) evolution strategy and
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fitness proportionate. We revealed that while specialists could easily evolve under an
elitist selection they could rarely be maintained throughout evolution. In comparison,
fitness proportionate easily maintained genotypic polymorphism but was not efficient at
evolving specialists. In order to understand the evolutionary dynamics at play, we then
ran computational analyses based on the expected fitness of each strategy (turner, leader
or follower) against every other strategy. We showed that generalists could invade the
population by benefiting from the fact that specialists needed to be paired with comple-
mentary specialists in order to be efficient. Additionally, we revealed that under small
population sizes, genetic diversity in the population could be lost during selection thus
leading to the disappearance of specialists. From these results, we extracted two key
properties for the evolution of genotypic polymorphism: stability of genotypic diversity
and protection against the invasion of cheaters. While we could not achieve genotypic
polymorphism in our study, we argued that an algorithm validating these properties could
achieve this goal.

8.2.2 Limits and Perspectives
Diversity and novelty

A popular open issue in evolutionary robotics is about the selective pressures of evolution-
ary algorithms (Doncieux et al. 2015). The view of evolution as an optimization process
led to the majority of works in ER typically relying on using a performance-based fitness.
This means that an evaluation of performance is used to drive the search process toward
the desired solutions. However, it has been shown that this approach of ER may lead to
premature convergence which restricts the range of behaviours evolved as well as select
solutions which are efficient on the short term only (Mouret and Doncieux 2012). In
comparison there has been a recent interest for methods that do not rely exclusively on
performance. Lehman and Stanley (Lehman and Stanley 2011) introduced novelty search
for searching the goal of a maze and the evolution of bipedal walk. Selection was based on
the novelty of behaviours compared to previous solutions rather than performance. They
showed that this led to better results thanks to a more extensive research through the
space of behaviours than with performance-oriented fitness. Mouret & Doncieux (Mouret
and Doncieux 2012) used a multi-objective approach to optimize on both performance
and behavioural diversity. They revealed that this allowed to improve performance in
comparison to a more classical performance-based search.

In our case, we showed that there is a tradeoff between evolvability and efficiency.
Aclonal approaches could evolve more efficient cooperative solutions but less easily than
a clonal approach. Performance-based selection may in this case drive the evolutionary
process to prematurely lose cooperative individuals as they are not efficient on their own.
As such, multi-objective optimization on both diversity and performance could allow to
maintain these individuals in the population and thus lead to the evolution of cooperation.
In our study on genotypic polymorphism, diversity could also be used in order to protect
the evolution of specialists. In this case we expect a population of specialists to be more
diverse (in terms of genotype and phenotype) than one constituted of generalists. As such
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diversity could allow to maintain the presence of division of labour in the population.
Preliminary results of multi-objective optimization with diversity did not unfortunately

produce satisfying results w.r.t. evolving cooperation. Diversity is not a magic trick that
luckily happens to find novel solutions. One of the main challenges when using diversity
is to find an efficient measure of behavioural distance. While we think that diversity
could be helpful in our case, finding both a correct and sufficiently general measure of
this distance in the case of cooperation is challenging.

The transfer to real robots

In every experiment in this manuscript, we used simulated robots. While we believe our
findings to mostly contribute to theoretical knowledge and not to be constrained by a
particular robot model, we are aware of the open issue of transferability to real robots
(i.e. the reality gap) (Jakobi et al. 1995; Mouret et al. 2012; Doncieux et al. 2015). As
we already mentioned, several assumptions are made when using simulations of robotic
agents. While we model a sensory system for our robots, sensors in the real world are
noisy. Also, frictions can alter the way individuals move or collide with each other. As
such, this creates a reality gap where evolved behaviours may not perform well when
embedded in physical robots.

During this thesis, we also worked on building a robotic platform for the control of col-
lective robots. The goal was to use simple and cheap robots in order to address distributed
robotics questions. We thus designed robots composed of a Thymio-II, a raspberry PI
and a camera module for raspberry. The Thymio constitutes the base of the robot and
is equipped with two wheels and a collection of proximity sensors. The raspberry acts
as the controller and can be used to write instructions to the Thymio and read sensory
inputs.

As such one perspective could potentially be to apply our evolved behaviours in these
real robots. This point might relate to both Parts of the thesis. However, in the case
of modeling the evolution of cooperation, we would not learn more by using real robots
rather than simulated ones. As previously explained, this would mostly ensure that no
unrealistic physical assumptions are made in our simulations. We thus believe real robots
to be more of an interesting perspective in our study of automatic design in evolutionary
robotics. Preliminary experiments on those robots showed that the evolved leader/follower
strategy could transfer well in simple situations. Additional experiments are needed to
really validate the transferability of our solutions.

8.3 Concluding Remarks
The present work aimed at contributing to the field of evolutionary robotics in two dif-
ferent ways: model and design (Trianni 2014; Doncieux et al. 2015). On the one hand,
we modeled the evolution of mutualistic cooperation. Thanks to evolutionary robotics
we could show that the proximate aspects of behaviours are critical in understanding the
origin of mutually beneficial actions. On the other hand, we studied the automatic design
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of controllers for distributed robotics. We revealed that there are advantages in using
heterogeneous teams of individuals and that it may be useful no to always restort to the
classical approach of evolving clonal controllers. As a conclusion, we believe that it is of
utter importance that these two aspects of evolutionary robotics are clearly separated, as
we did throughout this thesis. However we also believe that by studying a common topic
but with different motivations, each aspect could nurture our general intuitions about the
other aspect.
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