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Introduction

Context of the Thesis

Computer Tomography (CT) scanning is now used routinely by radiologists and surgeons for diagnosis, surgery planning and postoperative evaluation, to the point that clinicians have access to a large number of data. However, the process of analyzing CT data is complex, time consuming and requires highly trained professionals.

The cochlea, the sensory organ of hearing, is an anatomical structure whose CT images is specifically difficult to analyze. Cochlear internal cavities have complex spiraling shapes and are nearly invisible with clinically available CT scans due to the relative small size of the cochlea with respect to the scanner resolution.

Cochlear implants (CI) are used to treat severe to profound hearing loss by surgically implanting these electronic medical devices into the cochlea. CI, which convert sound energy to electrical stimulation, were the first implanted neural prosthesis and are now the most widespread with approximately 400.000 cochlear-implanted individuals worldwide. The implantation procedure involves drilling through the mastoid part of the temporal bone to open one of the three cochlear chambers and insert an electrode array to directly stimulate the auditory nerve, which induces the sensation of hearing. The surgical procedure performed manually with limited visual and sensitive feedback is challenging. The functional outcome of the implantation often varies among patients and depends on multiple factors, which are not yet clearly identified. In particular, hearing restoration is correlated with the preservation of innervated cochlear structures.

Focus of the Thesis

Patient-specific three-dimensional reconstruction of cochlea and its substructures could contribute to the improvement of different aspects of cochlear implantation. First of all, it can provide a better anatomical understanding for the clinicians and suggest electrode array design improvements for cochlear implant manufacturers. Quantitative analysis of the anatomical cochlear shape from medical images is essential for diagnosis of shape abnormality such as cochlear hypoplasia, an incomplete development of the cochlea. Using three-dimensional anatomical reconstruction, the cochlear implantation could be optimized to be the least traumatic by selecting the drilling trajectory that avoids sensitive structures such as the facial nerve and that estimates the insertion angle between the electrode and the basal turn of the cochlea.

Chapter 1. Introduction

The insertion can be evaluated postoperatively in order to give feedback for the surgeons and to improve the set-up of the CI by evaluating to exact position of the electrode with respect to cochlear nerve. Acquisition of surgical skills requires a lot of practice and deep anatomical knowledge, thus three-dimensional models could be used for surgery simulation and training.

In the context of this thesis, several clinical and methodological questions arise:

• What is a proper geometric model to measure the cochlear shape?

The particular spiraling shape of the cochlea leads to a need for new application-specific models in order to estimate anatomical measurements of the cochlea. What is the variability of this shape among a population? Statistics on the quantitative measurements help to establish normal and healthy shapes and detect outliers. Is there intra-patient bilateral symmetry?

• Can we construct a "good" cochlear shape model? That is to say a model anatomically correct that can provide meaningful and intuitive clinical interpretation. According to Occam's razor, the law of parsimony, the model should be compact, while providing a good generalization, namely the ability to represent the shape variation across the population. Eventually the shape variability could be embedded in the model in order to generate realistic data or provide prior knowledge for model fitting.

• What information can we extract from CT images? Is this information sufficient to extract clinically exploitable measurements such as the maximal depth insertion? To answer these questions one must quantify the uncertainty of the measurements extracted from CT images in relation to more precise acquisition methods such as high-resolution µCT.

• How can be addressed industrial and clinical challenges of cochlear implantation? For example, the following questions are of interest: Can we optimize patient-specifically the choice of CI model before the surgery? Can we estimate postoperatively the position of the electrode array with respect to the cochlear internal cavities?

Structure of the Thesis

The thesis work is presented in a chronological order. Although a given chapter relies on the preceding ones, each chapter is meant to be self-contained.

Chapter 2 provides background knowledge about the anatomy and physiology of hearing, focusing on the cochlea and its imaging. The chapter includes an introduction to cochlear implant and its surgical procedure as well as a short state of the art review on segmentation of the cochlea from medical images.

Chapter 3 aims at defining automatic image processing methods adapted to the spiral shape of the cochlea to study the cochlear shape variability from highresolution µCT images. This chapter is adapted from [START_REF] Demarcy | [END_REF]].

Structure of the Thesis 3

Chapter 4 aims at developing and evaluating a new parametric cochlear shape model. The model is applied to extract patient-specific clinically relevant metrics such as the maximal insertion depth for different designs of CI electrode array. Thanks to the uncertainty quantification, provided by the model, we can assess the reliability of CT-based segmentation as compared to the ground truth segmentation provided by µCT scans. This chapter is adapted form [Demarcy 2016b] and its clinical application has been presented in [Gnansia 2016].

Chapter 5 describes a joint model of the cochlear shape (and its substructures) model and its appearance within a generative probabilistic Bayesian framework. The proposed segmentation method estimates jointly the shape and appearance parameters and applies an iterative expectation-maximization (EM) strategy that interleaves shape model parameters fitting and image segmentation with mixture of Student's t-distributions. The method was applied to a large database of 987 CT images and allowed the statistical characterization of the cochlear anatomical variability along with the quantification of the bilateral symmetry.

Chapter 6 highlights a clinical application of cochlear substructures segmentation as presented in [Demarcy 2016a], which consists of assessing postoperatively the position of the electrode array with respect to the anatomy, and concludes the thesis. 

Anatomy and Physiology of Hearing

The ear is the organ of hearing and balance. The hearing anatomy is usually described as having three parts:

• Outer Ear is the external part of the ear. It consists of the auricle (or pinna) which is the visible part of the external ear and ear canal (or external acoustic meatus), which is around 25 mm deep. It amplifies the sound and focuses it on the eardrum which separates the inner and middle ears.

• Middle Ear is the internal part of the ear between the eardrum and the oval window. It contains the eardrum and three ossicles: malleus (or hammer), incus (or anvil) and stapes (or stirrups). The chain of ossicles transfers the compression waves in air at the eardrum into waves in the fluid and membranes of the inner ear. The vibration may be stiffened, when facing with for example very loud sound, by two muscles: the stapedius muscle and the tensor tympani muscle. The footplate of the stapes is connected to the oval window. Through the middle ear area passes also the facial nerve and its branch, the chorda tympani.

• Inner Ear is the innermost part of the ear. It consists of a closed and fluidfilled cavity, the bony labyrinth which can be separates in two parts: the cochlea, dedicated to the hearing and the vestibular system, dedicated to the balance (equilibrioception). The membranous labyrinth is inserted within the bony labyrinth and has the same general shape. The vestibular system consists of the three semicircular canals, providing sensory input of rotary movements The cochlea (Latin word for snail) is the small organ responsible of the sense of hearing. In this small spiral structure, the sound, a mechanical wave is transformed into an electrical pulse (Fig. 2.2). A normal human cochlea completes about two and a half turns. It grows to its definitive size within the first 17 to 19 weeks of gestation, then the otic capsule, also known as the bony labyrinth ossifies. The cochlea, in which waves propagate from the base (near the round and oval window) to the apex (the top), is mainly composed of fluids inside soft tissues and bony walls. The whole cochlea is within the petrous part of the temporal bone. The cochlea is a set of different spiraling substructures called scalae: the scala tympani (or tympanic duct), the scala vestibuli (or vestibular duct) and the scala media (or cochlear duct). The scala tympani and the scala vestibuli are filled with perilymph and communicate at the most apical part of the cochlea, called helicotrema. The scala media is filled with endolymph. Perilymph and endolymph contains different ionic composition and concentration. The cochlear cross-sections look roughly like a cardioid. The cochlea is wrapped around the modiolus, a coned-shape porous bone with a theoretical axis of revolution, the modiolar axis. From the modiolus in the radial direction is the osseous spiral lamina and the basilar membrane, which separate the scala tympani and the scala vestibuli. The Reissner's membrane separates the scala media and the scala vestibuli. The organ of Corti (Fig 2.5) is a tiny structure located in the scala media on top of the basilar membrane that contains the hair cells, sensory receptors linked to the auditory nerve. Above the organ of Corti, the tectorial membrane overlies the hair cells and stimulates them in neural processing of sounds.

Frequency Analysis The range of audible sound frequency for human is generally estimated between 20 Hz and 20 kHz [START_REF] Greenwood | [END_REF]]. There is a relationship between the perceived sound frequency and the anatomical location in the cochlea. This relationship is called the tonotopic map. The tonotopy is mostly linked to the mechanical properties of the basilar membrane. Along the length of the cochlear spiral, the width and the stiffness of the basilar membrane gradually vary and it resonates at specific wave-frequency. Basically the resonance frequency reduces from the base of the cochlea to the apex. Neurons can be activated selectively and interpreted by the brain.

Hearing Loss

Preserving the ear integrity is essential to ensure the perception of a stimulus. Hearing requires good functional outcome of the outer, middle and inner ear in order to best convert acoustic pressure waves into an electrical pulses. Otology is one of the specialties of Otorhinolaryngology and is aimed at treating ear pathologies.

There are different types of hearing impairments, such as conductive, neurosensory or mixed deafness. Surgical hearing loss treatments include otosclerosis surgery, Conductive Deafness occurs when the sound waves are not properly conducted in the external ear canal and the middle ear. Damages to the ossicular chain, in the case of otosclerosis notably, can be the cause of conductive hearing loss. Most often, it is reversible and can be treated with hearing aids or surgical procedures.

Sensory Neural Deafness originates from sensory organ, vestibulocochlear nerve or neural part. When the root cause lies in the cochlea, it is caused by loss or degeneration of the hair cells. The amount of preserved hair cells is linked to the severity of the hearing loss (see Table 2.1), in the case of insensitivity of the cochlea direct neural stimulation with an auditory prosthesis is required. 

Cochlear Implant Surgery

Cochlear Implant A cochlear implant (CI) is a surgically implanted electronic device that restores a sense of hearing. CI bypass the normal hearing process. Typically a cochlear implant system consists in an external speech processor generally worn behind the ear, which transmits a signal to an array of electrodes inserted in the cochlea, which stimulate the cochlear nerve.

The external processor is equipped with a microphone and several digital signal processors to perform signal processing, which basically consists in noise reduction, automatic gain control and decomposition into series of bandpass-filtered channels.

CI can be considered as one the great medical advances of the 20 th century provoking a revolution in the treatment of profound hearing loss [Wilson 2008]. This technology, commonly used in clinical practice since the 1990's, allowed to restore an usable hearing to patients handicapped by severe to profound deafness. Besides, CI transformed the lives of children born deaf allowing them to access the hearing world and to have an intellectual and educational development identical to normally hearing children. More recently, through technological and surgical progress, CI could be proposed to patients with severe hearing loss. The principle of CI is to rehabilitate the sense of sound by electrically stimulating the auditory pathways. CI substitutes the inner ear function by producing significant electrical stimulation around the damaged hair cells and directly stimulating the residual neurons of the auditory nerve, in order to reconnect the afferent signals to the central nervous system. CI consists of an array of about twenty electrodes placed along the cochlea which stimulate the auditory nerve with electrical impulses whose sequences depend on the cochlear tonotopy: the basal portion of the cochlea is normally sensitive to sounds with high pitch whereas the apical part of the cochlea is sensitive to sounds with low pitch. The objective is to transmit a signal to the brain that best reproduces the neuronal encoding of sound in natural hearing, the signal delivered by the implant must have an encoding adapted in frequency and intensity. The implanted patient needs then auditory re-education and speech therapy to learn The approach is performed by mastoidectomy (blue dotted lines) and posterior tympanotomy (yellow dotted lines) (from [Nguyen 2011]) how to interpret newly perceived auditory stimuli.

Currently, CI has matured with more than 400,000 patients implanted worldwide. This number is much larger than the sum of all other types of neural prostheses. Furthermore, the restoration of the function provided thus far by CI far exceeds the ones achieved with other neuroprostheses. The major benefit in terms of quality of life compared to its cost allows its coverage by the majority of the health-care systems in the world. Moreover, CI remains a model in the development of other implants such as restoration of sight (retinal implants) or balance (vestibular implants). This remarkable capacity to adapt to the implant is linked to the capacity of the nervous system to create and reorganize neural networks: this is referred to as neuroplasticity. The brain plasticity can be observed throughout the life course, with however a maximum of effectiveness during the childhood. Thus creating the human-implant interface at the earliest performs the best functional outcome. The age of implantation is anti-correlated to the implant performance. Children implanted before the age of two generally perform better than those implanted over age five. Although some studies have confirmed that neural plasticity persists with postlingually deaf adult patients implanted with CI, the results are nevertheless inconsistent and dependent on multiple factors, which are not yet clearly identified.

Currently, the overall challenge with cochlear implantation is twofold. First of all, there is a limitation of speech recognition performance, which is progressing very slowly since the major evolution of the last century, which are the evolution from mono-electrode to multi-electrode and the evolution from simultaneous to sequential stimulation. Average speech recognition rates stagnate around 60% for monosyllabic word understanding in quiet environment. Understanding in noisy environments is even more limited. Secondly, there is a major interindividual variability, some patients recognize 100% of the words in quiet environment while others nearly 0%. Surgical Procedure During the CI surgery, the insertion can lead to lesions of the modiolus, osseous spiral lamina or basilar membrane, resulting in degeneration of the hair and spiral ganglion cells. Because the viability of these cells is correlated with neuronal survival and speech expression, it is crucial to avoid destroying them during surgery and to minimize injury to the previously cited anatomic structures with so-called atraumatic or minimally invasive surgery techniques [Weber 2017]. An improved knowledge of the cochlea shape variability is not only essential for diagnosis of shape abnormality, atraumatic surgery planning and post-operative insertion assessment but it also provides a better anatomical understanding for the clinicians and can suggest electrode array design improvements for cochlear implant manufacturers.

Cochlear implantation is performed through a mastoidectomy and a posterior tympanotomy. The insertion of the electrode array is performed manually by the ear, nose, and throat (ENT) surgeon with limited visual and sensitive feedback.

Electrode Array Design Several parameters of the design of the electrode array can vary depending of the products proposed by cochlear implant manufacturers: the length, the number of electrodes, the electrode spacing, the width, the rigidity, the curvature, etc. The link between those parameters and the clinical outcomes such as the insertion trauma and the quality of hearing restoration is not completely understood and controlled. 

Inner Ear Imaging

Clinical CT and Cone Beam CT (CBCT) are commonly used to provide anatomical information about the cochlea and its surrounding structures. However, the relative small size of the cochlea with respect to the typical voxel size, restrains the observation of intracochlear details. The cochlea measures about 8.5x7x5 mm 3 while the typical CT image spacing is larger than 0.2 mm. The complete spiral can be difficult to recognize especially at the apex. The basilar membrane that separates the scala tympani and the scala vestibuli is partially visible at the first cochlear basal turn. CBCT (Fig. 2.8) has several advantages over CT (Fig. 2.7): the acquisition is faster with a lower dose exposure for the patient and a superior spatial resolution so that few cochlear structures, such as the osseous spiral lamina, seem identified more easily [Zou 2015]. However the reconstruction algorithm used for CBCT does not produce image as anatomically correct as classical CT. Cochlear implant electrodes produce metal artifacts in post-implantation CT [Reda 2014b], which makes difficult to characterize intracochlear anatomy (Fig. 2.9).

Micro-computed Tomography (µCT) is designed to assess the anatomy with high accuracy by acquiring images with voxel size of few micrometers (usually between 5 and 50 µm). This imaging modality is typically used to scan small animals or biomedical samples. Due to the limited size of the object that can be scanned (with a diameter smaller than 100 mm), it is not possible to acquire µCT scan of in vivo temporal bones. High resolution imaging can be performed on cadaveric specimens, Chapter 2. Cochlear Anatomy and Imaging Figure 2.9: CT scan of an implanted cochlea (from [Verbist 2005]) after cropping the temporal bone around the bony labyrinth. It allows visualization of the fine cochlear structures, especially the thin bony structures that are well contrasted such as the osseous spiral lamina [Lane 2004]. With µCT modality, it becomes possible to assess the position of the scala tympani and the scala vestibuli. However, without chemical sample preparation and with a resolution above 10 µm the Reissner's membrane, that separates the scala media and the scala vestibuli is still not observable. Chemical sample preparations include dehydration (or drying), freezing, decalcification, fixation and staining (Fig. 2.10), and can produce artifacts such as tissue distortion. MRI can be used as a complementary imaging modality (Fig. 2.11). Fluids within the membranous labyrinth can be imaged with good quality [Lane 2005, Shi 2011] and fusion of CT and MRI imaging can be used to identified nerves, such as the facial nerve and the chorda tympani [START_REF] Bartling | [END_REF]].

Cochlear Segmentation From CT Images

The segmentation of intracochlear structures represents a great challenge. CT images of the temporal bone have low resolution with respect to the small size of the anatomical structures and the topology of the cochlea is complex. The main chambers of the cochlea, the scala tympani and the scala vestibuli, form a nested double helix where the spatial division between each turn (basal, middle and apical) is weakly visible and where the stiff structural elements separating the scala tympani and the scala vestibuli, such as the basilar membrane and the spiral lamina ossea are weakly visible or invisible. Finally the cochlea is filled with fluids which can be similarly found in the vestibular system and other neighboring structures, with similar appearance in CT images. This challenging task requires additional information to achieve successful segmentation. Anatomical atlases and shape models can be combined with intensity information to provide sufficient prior knowledge.

In order to performed segmentation of the cochlea, two main approaches have been previously developed can be summarized as follows.

First set of methods consists in an optimization procedure to perform parametric model fitting [START_REF] Baker | [END_REF]]. A parametric model-image registration procedure is used to align the model surface with the image gradient.

Second set of methods consists in a non rigid registration procedure between an input CT image and an atlas embedding statistical shape prior [Noble 2010[START_REF] Noble | [END_REF], Reda 2011, Noble 2012, Reda 2012, Noble 2013, Reda 2013, Kjer 2014a, Reda 2014a, Reda 2014b, Kjer 2015d]. Anatomical modeling is performed from high-resolution datasets, usually ex-vivo µCT scans. The shape prior is provided by a statistical shape model (SSM) of the intra-cochlear anatomy, which guides the registration between a CT scan and an enhanced CTatlas (Fig. 2.12).

Chapter 3

Analysis of Human Cochlea Shape

Variability from µCT Images Contents 

Abstract

The aim of this study is to define an automated and reproducible framework for cochlear anatomical analysis from high-resolution segmented images and to provide a comprehensive and objective shape variability study suitable for cochlear implant design and surgery planning. For the scala tympani, the scala vestibuli and the Chapter 3. Analysis of Human Cochlea Shape Variability from µCT Images whole cochlea, the variability of the arc lengths and the radial and longitudinal components of the lateral, central and modiolar paths are studied. The robustness of the automated cochlear coordinate system estimation is validated with synthetic and real data. Cochlear cross-sections are statistically analyzed using area, height and width measurements. The cross-section tilt angle is objectively measured and this data documents a significant feature for occurrence of surgical trauma.

Introduction

The human cochlea is a spiral-shaped structure located in the inner ear. Essential organ of audition, its largest diameter is about 8.5 mm at the basal turn and its height about 7 mm [Dimopoulos 1990]. Cochlear structures include three scalae (or ducts) with complex morphology and showing interindividual variability in size and shape.

Cochlear implant surgery is an effective treatment for severe to profound sensorineural hearing loss. The classical implantation procedure involves drilling a path through the mastoid in order to reach the tympanic cavity allowing the surgeon to open the scala tympani (one of the three cochlear ducts) and insert an electrode array. The functional outcomes for these subjects are linked to the potential insertion traumas [START_REF] Aschendorff | Quality control after insertion of the nucleus contour and contour advance electrode in adults[END_REF], Finley 2009]. The insertion can lead to lesions of the modiolus, osseous spiral lamina or basilar membrane, resulting in degeneration of the ciliated [START_REF] Adunka | [END_REF]] and spiral ganglion cells [START_REF] Leake | Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness[END_REF]]. Because the viability of these cells is correlated with neuronal survival [Nadol 1997] and speech expression [Xu 2012[START_REF] Fayad | [END_REF], it is crucial to avoid destroying them during surgery and to minimize injury to the previously cited anatomic structures with so-called atraumatic surgery techniques [James 2005].

An improved knowledge of the cochlea shape variability is not only essential for diagnosis of shape abnormality, atraumatic surgery planning and post-operative insertion assessment but it also provides a better anatomical understanding for the clinicians and can suggest electrode array design improvements for cochlear implant manufacturers.

Various methods have been used for the analysis of human cochlear anatomical structures.

Methods using several type of plastic casts have been widely employed to evaluate the dimensions of cochlear anatomy [Zrunek 1980, Zrunek 1981, Dimopoulos 1990, Hatsushika 1990[START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF], Erixon 2009, Rask-Andersen 2011], but they do not allow accurate preservation of the geometric relationships of fragile cochlear structures and artifact-free measurements. Microdissections enable measurements of basic external dimensions of the cochlea like the width of the cochlear base [Wright 2005], but as plastic casts, it cannot provide detailed three-dimensional reconstruction.

Histological sections offer the best image resolutions for the examination of fine cochlear structure [Hardy 1938, Gulya 1996, Biedron 2010, Makary 2010]. However just as plastic casts and microdissection it is a destructive method. Indeed, the method needs several chemical steps such as dehydration, decalcification, fixation and staining, which may induce some tissue distortion and shrinkage [Buytaert 2011, Rau 2013].

Medical imaging techniques provide nondestructive methods. CT and MRI are common preoperative procedures. For the purpose of cochlear anatomy analysis, CT provides more information and even though MRI could be a complementary imaging modality [START_REF] Thorne | [END_REF][START_REF] Gibson | [END_REF], most of the studies published to date have focused on CT [Skinner 2002, Escudé 2006, Baker 2008[START_REF] Van Der | [END_REF]]. However, conventional CT scan gives rather poor image resolution with respect to the cochlear dimensions.

As important cochlear anatomical structures such as the basilar membrane are not visible in CT imaging, analyses of the cochlea are commonly performed using µCT images [Verbist 2009, Poznyakovskiy 2011, Gunz 2012, Shin 2013, Avci 2014, Ceresa 2014]. In order to improve contrast, temporal bone samples can be fixed and stained before imaging [Poznyakovskiy 2011, Kjer 2015b]. Cochlear fluids are commonly removed [START_REF] Postnov | High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes[END_REF], Poznyakovskiy 2011, Avci 2014, Ceresa 2014] but this operation requires to drill through the round and oval windows and to replace the perilymph with air by suction. The influence of this method on the geometry of the membranous structures is unknown [Rau 2013] and µCT scanning with fluid removal cannot be considered as nondestructive.

Previous analyses include measurements of the length of the cochlea and the number of cochlear turns [Hardy 1938, Kawano 1996, Skinner 2002, Escudé 2006, Stakhovskaya 2007, Erixon 2009, Gunz 2012, Shin 2013[START_REF] Van Der | [END_REF], measurements of the heights, widths and sectional areas of the scala tympani [Zrunek 1980, Zrunek 1981, Hatsushika 1990, Gulya 1996[START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF][START_REF] Thorne | [END_REF], Biedron 2010, Avci 2014], the scala vestibuli [Zrunek 1981, Gulya 1996[START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF][START_REF] Thorne | [END_REF], Biedron 2010] and the cochlea [Erixon 2009, Shin 2013], measurements of the radial component of the cochlear centerlines (also called cochlear curvature) [Cohen 1996, Baker 2008[START_REF] Van Der | [END_REF], and studies of the longitudinal component of the centerlines of the scala tympani [Avci 2014] and the cochlea itself [Verbist 2009].

In this chapter, the variability of the human cochlea was studied from nine µCT scans with a nondestructive preparation technique. The anatomical study provides a comprehensive set of measurements on the basis of new methods, which avoid inter-expert variability of manual measurements and can cope with the presence of noise and outliers. The central path analysis includes not only measurements of the scala tympani but also of the scala vestibuli and the whole cochlea, including lateral and modiolar paths. The centerlines were extracted with an image processing pipeline and expressed in an non-ambiguous cylindrical "cochlear" coordinate system, estimated with an original robust method. From the centerlines, cross-sections of the tympanic and vestibular ducts were acquired in a new non-ambiguous moving frame. The heights, widths, areas and their respective variability across the nine Images 1 mm samples, were estimated along the centerline. The cross-section tilt angle was for the first time quantified.

Materials and Methods

Nondestructive Preparation of Human Cochleae

Nine healthy human temporal bones (5 right and 4 left sides) were obtained from cadavers harvested within 24 hours after death. An otologic surgeon harvested the entire temporal bone keeping intact the mastoid, the tympanic cavity and cochlear fluids in order to prevent any damage of the membranous structures. Using an in vivo high-resolution µCT scanner (GE eXplore speCZT system), µCT images with isotropic voxel size of 24.79 µm were acquired in the laboratory Transporters, Imaging and Radiotherapy in Oncology (TIRO, UMR-E4320) in Nice under the supervision of Pr Thierry Pourcher. Unlike previous studies no destructive preparation techniques, such as cochlear fluids removal, were performed. The contrast level was, however, sufficient to perform manual segmentation (Fig 3 .1).

Interactive Segmentation

Automatic segmentation of the cochlear structures has been widely studied over the last decade [START_REF] Xianfen | 3D semi-automatic segmentation of the cochlea and inner ear[END_REF][START_REF] Schuman | [END_REF][START_REF] Noble | [END_REF], Reda 2013, Reda 2014a, Reda 2014b, Franz 2014]. Image segmentation is not the main focus of this study but a prerequisite for the shape analysis of delineated structures. The µCT images were cropped around the inner ear region. In order to improve the quality of the images before segmentation an anisotropic diffusion filter [Perona 1990] was applied (Fig. 3.1a), which denoises the image while preserving edge contrast. Histogram equalization was then performed to enhance the contrast of the images. Each image was segmented using the interactive semi automated tool GeoS [Criminisi 2008] by a head and neck imaging expert (Fig. 3.1b). The image resolution is high enough to identify the basilar membrane but insufficient to identify the Reissner's membrane and distinguish the scala media (or cochlear duct) from the scala vestibuli. The first segmented area corresponds to the round window, the second to the scala tympani and the third to the scala vestibuli, the scala media and the semi-circular canals taken together. Here we focused on the anatomy of the cochlea, discarding the vestibule. Henceforth, unless otherwise specified, the label "scala vestibuli" refers to both vestibular and cochlear ducts (as frequently in other studies [Gulya 1996[START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF], Yoo 2000a[START_REF] Postnov | High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes[END_REF], Meshik 2010[START_REF] Noble | [END_REF], Braun 2012]). present the nine segmented µCT images. The challenge of cochlear centerline extraction has already been dealt with [Baker 2004, Verbist 2009, Poznyakovskiy 2011, Gunz 2012]. A flowchart of the method applied in this study and the results are respectively given on Fig. 3.11 and Fig. 3.12. We performed a standard active contours approach [START_REF][END_REF]] driven by the signed distance function which determines the distance of a given point from the shape boundary of the segmented anatomical structure. The method is followed by an adjustment using cross-section centroids to ensure that the centerline is properly centered. Right cochleae are similar to right-handed helices and symmetrically for left cochleae. Therefore to compare all centerlines, left cochleae are flipped in an arbitrary direction.

Automated Centerline Extraction

The cochlea is topologically equivalent to a cylinder, which means that the cochlear shape can be obtained by sweeping a planar surface along an axis. The planar surface has a varying shape along the axis, it is referred as the cross-sections.

Its axis is not straight and is set as the centerline (or central path), we defined as the centerline as the space curve inside the cochlea which maximizes its distance to the shape boundary.

With this definition, several image processing methods can be used for cochlear centerlines extraction. One of the most intuitive methods is skeletonization, a topological skeleton consists of a thin version of shape represented by one-dimensional branches. It is obtained by computing the locus of the centers of maximally inscribed spheres. This method was previously applied for the cochlear centerlines extraction problem [Verbist 2009] but is very sensitive to small variations of the shape, the resulting skeletons are highly noisy and correcting techniques, such as wave propagation, must be used. [Gunz 2012] claimed that skeleton are so inaccurate for cochlea that it is more appropriate to create manual skeletons. [Baker 2004] proposed an alternative technique based on principal flow, which is able to deal with non-circular cross-sections but also generates noisy outliers. [Poznyakovskiy 2011] developed a segmentation method that extracts the centerline as well as the crosssection contours, the algorithm iteratively computes the centerline from the mass center of the cross-section and using Kalman filter and segments the cross-section contours from the centerline normal planes using active contours until convergence. This method works well on µCT scans with cochlear fluids removal, providing high contrast between emptied structures filled with air and bony structures.

The problem of cochlear centerlines extraction is a specific problem of tubular structure extraction, which has already been considerably studied by the computer vision and medical imaging communities [Lesage 2009], in particular for vascular network segmentation or virtual endoscopy [Deschamps 2001].

Extreme Points Detection of the Scala Tympani The starting and target positions of the scala tympani were extracted automatically from the segmentations. The starting point was set as the voxel labeled "scala tympani" closest to the round window centroid. The detection of the target point is not straightforward. The most apical point is aimed. For this purpose, a roughly approximated modiolar axis (z-axis in the cochlear coordinate system by [Verbist 2010], see Fig. 3.13 in subsection 3.2.4) is needed. Since the cochlear diameter is about 8.5 mm at the basal turn and the cochlear height is about 7 mm, the axis of least inertia, defined as the smallest component using principal component analysis (PCA) of a voxel-based shape, is roughly aligned with the modiolar axis . So the voxel labeled "scala tympani", whose projection on this axis is furthest from the starting point, corresponds to the most apical point. This point was chosen as the target point.

Active Contours A signed distance function which determines the distance of a given point from the shape boundary of the segmented anatomical structure can be defined from segmented surface structures. In this study, inner points have negative values whereas outer points have positive values.

Active contours can be used to solve the problem of tubular structure centerline The energy is similar to the one introduced in the seminal work of [START_REF][END_REF]] coined as the snake method. The minimization procedure is based on a finite difference approximations (see appendix A) of the Euler-Lagrange differential equation,

∂x ∂t = -∇P (x) + w 1 ∂ 2 x ∂s 2 -w 2 ∂ 4 x ∂s 4 . (3.
2)

The centerline x evolves with respect to an artificial time t, and is initialized with contour x 0 , which must be close enough to avoid falling in an undesired local minimum. The iterations end when the change in the value of the energy E is smaller than a threshold value ε, i.e. |E(x(t + ∆t)) -E(x(t))| < ε, the number of iterations is also limited. It can be noted that snake methods have been already used for segmenting cochlear images by [START_REF] Sun K Yoo | Semiautomatic segmentation of the cochlea using real-time volume rendering and regional adaptive snake modeling[END_REF]].

Initialization

The initialization is based on the [Dijkstra 1959]'s algorithm after defining a graph of voxels in 6-adjacency. Each voxel was considered as a node and the weight between neighboring voxels was set as the mean signed distance of the two adjacent voxels. An offset is added to keep positive weights. Even if the results suffer from approximation errors (it uses the L 1 norm) and tends to follow the modiolar wall (opposite the lateral wall) of the scala tympani, it leads to a good initialization of the helico-spiral centerline.

Cross-section Centroids

The centerline obtained with the snake algorithm allows us to define tangent vectors along the centerline. To ensure that the centerline is properly centered, a slightly corrected centerline is computed from the locus of the cross-sections centroids computed by slicing the segmentations in planes whose normals are aligned with the centerline tangent vectors.

Initialization of the Scala Vestibuli The centerline of the scala vestibuli was also extracted with the same approach but with a different initialization step, only the initialization step differs from the pipeline used for the scala tympani. An initialized vestibular centerline x SV 0 can be estimated directly from the tympanic centerline x ST .

x SV 0 (s) = x ST (s) + f (s)ẑ (3.3) where ẑ is the unit vector of the modiolar axis (z-axis in the basal cochlear coordinate system, see subsection 3.2.4), and f is an affine function of the normalized parameter s, expressed in millimeters. 3.4) based on the measurement of the heights of the tympanic and vestibular ducts found in [START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF]]. As for the scala tympani, even if it suffers from approximation errors, this initialization method is good enough to play the role of x 0 in the minimization procedure.

f (s) = 1 -0.8s ( 
Centerlines Extraction of the Cochlea The centerline of the union of the tympanic and vestibular ducts (called here the whole cochlea) x C was finally computed from the scalae tympani and vestibuli as the mean centerline weighted by the cross-sectional areas (respectively A ST and A SV ) computed again by slicing the segmentations in planes whose normal vectors are the centerlines tangents.

x C (s) = A ST (s)x ST (s) + A SV (s)x SV (s) A ST (s) + A SV (s) . (3.5) 

Robust Modiolar Axis Estimation

The cochlear coordinate system (x, y, z) by [Verbist 2010] provide a standard and unambiguous framework for anatomic studies of the cochlea. It can be defined independently from a modality-centered anatomical coordinate system. The modiolus is a cone-shape bony structure around which the first two turns of the cochlea are wrapped. The z-axis is chosen as the modiolar-axis. As [Verbist 2010] point out, there exist two main alternatives for the origin: the helicotrema (at the apex) with the z-axis oriented from the apex to the base of the modiolus, or the base with the reversed orientation. To remove any ambiguity, we call the former option "apical cochlear coordinate system" (ACCS) [Verbist 2010] and the latter "basal cochlear coordinate system" (BCCS) (see Fig. 3.13). In both coordinate systems, the xzplane passes through the center of the round window, x values being positive at the level of the round window. The y-axis is set in order to have (x, ŷ, ẑ) being an orthonormal basis. In this study we chose the BCCS. A flowchart of the methods used for anatomical analysis of the cochlea is given on Fig. 3.14. One of the major difficulties is to define the modiolar axis.

Most of previous studies define this axis by manually adjusted multiplanar reconstruction [Baker 2008[START_REF] Van Der | [END_REF] or simply by setting manually two points [Poznyakovskiy 2008, Verbist 2009, Kjer 2015a]. [Escudé 2006] proposed maximization of dark pixel area using minimum intensity projection. [Yoo 2000b] determined the modiolar axis using three nonlinear least square minimization based algorithms.

Chapter 3. Analysis of Human Cochlea Shape Variability from µCT Images

Misalignment of the modiolar axis may greatly impact the measurements and can be a cause of non reproducibility of the results.

Helico-spiral Axis Inference

The challenge is to estimate the unknown modiolar axis ẑ from the cochlear centerline x expressed in another coordinate system. We propose a method based on the intrinsic geometrical properties of the centerlines, more specifically based on the locus of the centers of curvature of the centerline.

The cochlear centerline is most frequently described as a logarithmic spiral [Cohen 1996, Xu 2000, Yoo 2000a, Yoo 2000b, Baker 2008]. In a cylindrical coordinate system (where (r, θ, ẑ) are the local radial, circumferential and longitudinal unit vectors) an ideal logarithmic helico-spiral can be written as: The centerline is derived in its radial r(θ) and longitudinal z(θ) components in a cylindrical coordinate system called BCCS. The cross-sections are expressed in a cochlear moving frame allowing for measurements of their heights h(θ), widths w(θ) and tilt angles α(θ). (Abbreviations: ST, scala tympani; SV, scala vestibuli; C, cochlea). Table 3.1: Logarithmic helico-spiral constants for cochlear model. The values for the constants are given by [Clark 2011]. The radial and longitudinal components of x are:

x = ae -bθ r + cθẑ (3.6) (a) (b) (c) (d) (e) (f) (g) (h) (i)
a (mm) b (rad -1 ) c (mm•rad -1 ) θ 0 (rad) θ 1 (rad)
r(θ) = ae -bθ (3.7) z(θ) = cθ. (3.8) 
Let us consider an infinitesimal part of the curve in the cylindrical coordinate system .11) We assume that c 2 ≪ r(θ) 2 ∀θ ∈ [θ 0 , θ 1 ] since, in practice, using the values in table 3.1,

ds 2 = dr 2 (θ) + r 2 (θ)dθ 2 + dz 2 (θ) (3.9) ds 2 = b 2 r 2 (θ)dθ 2 + r 2 (θ)dθ 2 + c 2 dθ 2 (3.10) ds = (b 2 + 1)r 2 (θ) + c 2 dθ. ( 3 
2.2 × 10 -3 ≈ c 2 r(θ 0 ) 2 ≤ c 2 r(θ) 2 ≤ c 2 r(θ 1 ) 2 ≈ 2.3 × 10 -2
(3.12)

.

We define differential arc length ds as follows,

ds = b 2 + 1r(θ)dθ (3.13)
Let us define the function γ and ε,

γ = ds ds = √ b 2 + 1r(θ) (b 2 + 1)r 2 (θ) + c 2 = 1 - c 2 2(b 2 + 1)r 2 (θ) + o c 2 r 2 (θ) ≈ 1 (3.14) ε = d 2 s ds 2 = d ds ds ds = √ b 2 + 1br(θ)c 2 (b 2 + 1) 2 r 2 (θ) + c 2 2 ∝ c 2 r 3 (θ) ≪ 1.
(3.15)

The tangent unit vector t is defined as:

t = dx ds = dx ds ds ds = -br(θ)r + r(θ) θ + cẑ √ b 2 + 1r(θ) γ (3.16) κn = d t ds = d 2 x ds 2 = d ds dx ds ds ds = d 2 x ds 2 ds ds 2 + dx ds d 2 s ds 2 = d 2 x ds 2 γ 2 - dx ds ε (3.17)
where κ is the curvature and n is the normal unit vector. Using the approximations of γ and ε,

κn ≈ d 2 x ds 2 = -r(θ)r -br(θ) θ + bcẑ (b 2 + 1)r 2 (θ) (3.18) κ 2 = κn 2 ≈ (b 2 + 1)r 2 (θ) + b 2 c 2 (b 2 + 1) 2 r 2 (θ) 2 ≈ 1 (b 2 + 1)r 2 (θ) + b 2 c 2 (b 2 + 1) 2 r 2 (θ) 2 (3.19)
where the second term in the right-hand side equation (∝ c 2 /r 4 (θ)) can be neglected, the curvature is then, .20)

κ ≈ 1 √ b 2 + 1r(θ) . ( 3 

Chapter 3. Analysis of Human Cochlea Shape Variability from µCT Images

We can now approximate the following terms, .22) The evolute e of curve x is the locus of all its centers of curvature, the evolute of an logarithmic helico-spiral has the parametric equation: .23) We propose to build a corrected evolute e c which is a sole function of the modiolar axis enabling to remove the circumferential dependency,

t κ ≈ -br(θ)r + r(θ) θ + cẑ (3.21) n κ ≈ -r(θ)r -br(θ) θ + bcẑ. ( 3 
e = x + n κ ≈ -br(θ) θ + c • (θ + b)ẑ. ( 3 
e c = x + b 1 + b 2 t κ + 1 1 + b 2 n κ ≈ c • θ + 2b 1 + b 2 ẑ. (3.24)
The corrected evolute estimates the modiolar axis, aligned with ẑ, using only the intrinsic geometrical properties of the cochlear centerline, the curve x i.e. its position, its local tangent and normal unit vector t and n, its local curvature κ, and a constant parameter b. The result is independent from the modality-centered coordinate system (defined in the axial, coronal and sagittal planes).

The parameter b is a widely studied cochlear measurement, here it was set to the optimum value found by [Cohen 1996] among 30 patients (b = 0.075 rad -1 ).

Robust Principal Component Analysis (PCA)

The modiolar axis is thus computed from the cochlear centerline as the locus of the corrected evolute. In practice, discretization errors (see A for more details) and model errors (the centerline may not be a perfect logarithmic spiral) cause the discrete corrected evolute points to lie close to the modiolar axis but not exactly on it. Thus it is necessary to estimate the line which best approximates the discrete corrected evolute in a robust manner in order to cope with the presence of noise and outliers. This is equivalent to performing robust PCA as we are looking for the first principle component of the cloud of points. Robust PCA is performed using an extension of the expectation maximization (EM) algorithm called ECME [Liu 1995] fitting Student's t-distributions instead of Gaussian distributions. The Student's t-distribution can be interpreted as an infinite weighted sum of normal distributions with the same mean and variance determined by a gamma distribution. In the Maximization step the mean and the variance are updated by computing a weighted sum of the data.

In the cylindrical coordinate system (r, θ, z) (Fig. 3.15) constructed from the BCCS (x, y, z), the radial component r(θ) and the longitudinal component z(θ) of the centerlines were extracted for the tympanic and vestibular ducts and the cochlea. 

Cochlear Moving Frame

In order to evaluate the internal dimensions of the cochlea, cross-section measurements were performed in radial planes (a.k.a mid-modiolar cross-sections) [Zrunek 1980, Zrunek 1981, Erixon 2009], in parallel planes such as histological sections [Biedron 2010] and in planes normal to the centerline [Poznyakovskiy 2011, Avci 2014]. This last method does not induce measurement errors (e.g. the section of a circular cylinder performed in plane not normal to the axis produces an ellipse).

Planes normal to the centerline can be defined in the Frenet-Serret moving frame (where ( t, n, b) are the basis vectors). This coordinate system is traditionally used for centerline-based cochlear models [Viergever 1978], however, its moving frame presents the significant drawback that the binormal unit vector may be ill-defined at inflection points (see Fig. 3.17a). Instead, to overcome this drawback, let us define the vectors:

û = ẑ × t ẑ × t (a) v = t × û (b) (3.25)
where ẑ is the unit vector of modiolar axis, t is the unit vector tangent to the centerline and the symbol × denotes the cross product. ( t, û, v) defines a moving frame which is always well defined because t (and ẑ) is never degenerated (see Fig. 3.17b). The cross-sectional measurements can then be performed locally in the uv-planes.

Oriented Cross-sections Along the cochlear centerline the cross-sections of the scalae tympani and vestibuli were acquired in the normal uv-planes. The crosssections may have problems with accuracy at the two extremities of the centerline.

Near the round window the cross-sections of the label "scala vestibuli" can leak into the vestibule as well as the cross-sections may not be perfectly defined at the apical turn since both scalae are supposed to merge at the apex. Potential errors are detected with the change in the cross-sectional areas. An abrupt increase of û is defined in the xy-plane and ∠ûr the angle between û and r, the radial unit vector, is the complementary to the logarithmic spiral pitch ψ = cot -1 (b) where b is constant for a logarithmic spiral (a.k.a. equiangular spiral) (as in Eq. 3.6). ∠vẑ the angle between v and ẑ, is the longitudinal growth rate, ∠vẑ(θ) = arctan(dz/dθ).

one of the areas is indeed related to a leakage. The improper cross-sections were constrained to vary smoothly, by imposing incorrect cross-sections to be inside the morphological dilatation of their correct neighbor.

Cross-sections are fitted independently for each normal plane with ellipses using classical principal component analysis. The major axes define the widths of the ducts w ST and w SV and the minor axes define the heights of the ducts h ST and h SV . The ellipses also provide an orientation. Let us call α ST (respectively α SV ) the angle between û (i.e. the xy-plane) and the major axis of the scala tympani (respectively the scala vestibuli). The cochlear tilt angle α is defined as the mean of α ST and α SV (see Fig. 3.31b). Positive values of the tilt angle mean that locally the scala tympani is more lateral than the scala vestibuli and conversely for negative values (to be consistent with the profile tilt angles in [Clark 2011]).

x ST lat (respectively x ST mod ) that represents the set of points defining the paths along the tympanic lateral (respectively modiolar) walls can be computed from the tympanic centerline x ST using the cross-section measurements.

x ST lat (s) = x ST (s) - w ST 2 (cos(α ST )û -sin(α ST )v) x ST mod (s) = x ST (s) + w ST 2 (cos(α ST )û -sin(α ST )v). (3.26a) (3.26b)
These values can be computed similarly on the scala vestibuli.
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x x z y (a)

x x z y (b) Figure 3.17: (a) Frenet-Serret frame. The start of the first basal turn is known to be not perfectly logarithmic [Cohen 1996] and can present inflection points. Here the normal unit vector n (blue) and the binormal unit vector b (red) vary singularly, as we can see notably within first five represented moving frames. (b) New cochlear moving frame. The vectors û (blue) and v (red) vary smoothly along the centerline. Images

Results

Centerlines Measurements

Table 3.2 shows the variability of basic measurements determined from the individual cochlear centerlines. The number of cochlear turn is statistically equal to 2.57 ± 0.28 (mean and ± 1 standard deviation), the length of the cochlear centerline is equal to 24.4 mm ± 1.0. No significant correlation was found between these two measurements (R 2 = 0.39). Most of the variability occurs at the apical turn. Fig. 3.18 illustrates the arc length along the scala tympani following the central path (i.e. centerline), the lateral or modiolar walls. A projected representation of the automatically extracted lateral, central and modiolar paths of a scala tympani is shown in Fig. 3.19. Fig. 3.20 presents the individual radial component of the tympanic centerlines and Fig. 3.21, the mean radial component of the two scalae and their union. In the first part of the basal turn the scala tympani is sightly more lateral than the scala vestibuli. The radial component after 180 • are roughly the same following a logarithmic form. The standard deviation of the radial component of the cochlear centerline (r(θ)) averaged over the patients and the angular coordinate θ (between 0 and 900 • ) is equal to 0.11 mm. Fig. 3.22 demonstrates the individual longitudinal component of the tympanic centerlines and Fig. 3.23, the mean longitudinal component of the two scalae and their union. The standard deviation of the cochlear longitudinal component of the cochlear centerline (z(θ)) averaged over the patients and the angular coordinate θ (between 0 and 900 • ) is equal to 0.46 mm, which is more than four times the value obtained for the radial component.

Modiolar Axis Estimation

Automated vs. Manual Estimation In order to compare the current method, four cochlear anatomy experts estimated the modiolar axis by manually setting two points, several times for each temporal bones.

Let us consider the modiolar axis as a line L = {p + sẑ|s ∈ R}, where ẑ is a unit vector. We evaluate respectively the angle of rotation and the distance between two axes L i and L j using,

d r (L i , L j ) = sin -1 ( ẑi × ẑj ) ∈ [0, π] d t (L i , L j ) = ẑi × ẑj ẑi × ẑj • (p j -p i ) ≥ 0 (3.27a) (3.27b)
The inter-and intra-expert standard deviation equal respectively to 10.0 • and 8.7 • for the angle of rotation and 0.14 mm and 0.12 mm for the distance. The mean angle and distance between the automatically estimated and manually defined modiolar axis are respectively 10.2 • and 0.28 mm. Fig. 3.25 

parameters µ A1 T H A1 µ A2 (mm) T H A2 (mm) C init (mm) 
values 10 -5 10 -5 10 -3 10 -3 2.8

Table 3.3: Parameters used to implement [Yoo 2000b]'s algorithm A Least Square Minimization Method vs. Evolute-based [Yoo 2000b] designed two algorithms for the estimation of the modiolar axis from centerlines. Algorithm A utilized the longitudinal variation, while algorithm B considers the radial variation. They claimed that the former one is more accurate and suitable for threedimensional data, which led us to implement it. Algorithm A is based on nonlinear optimization using steepest-descent algorithm and requires five parameters (µ A1 , T H A1 , µ A2 , T H A1 , C init ) whose values were not all specified in the article. We performed ourselves parameters tuning in order to get good results with the synthesized curves designed by the authors (summarized in Table 3.3).

The method described in subsection 3.2.4 is compared with the method introduced by [Yoo 2000b] using their own parametric model and angular sampling in order to perform a accurate comparison. Their centerline model is based on [Fowler 1992]'s model with a logarithmic spiral and an exponential term for the radial and the longitudinal component of the centerline. Fig. 3.26 shows the model for which the ideal axis is known. [Yoo 2000b]'s method repeatedly updates the rotation parameters and the parameter C using the steepest-decent algorithm. The final rotation error depends Chapter 3. Analysis of Human Cochlea Shape Variability from µCT Images on the initialization. The parameter C is an amplitude parameter that is used to model the longitudinal component of the helico-spiral. C depends on the (uniform) sampling (150 vertices for a total length of 35 mm). A criterion of convergence is that for each sampled point i = 1, . . . , n, C needs to be greater than difference between the adjacent longitudinal component (x ix i-1 ) • ẑ. Fig. 3.27 shows the rotation error with an optimized value of C init (2.8 mm) but with different initial rotation around the x-axis (R x ), [Yoo 2000b] have tested the convexity of their objective function within a small orientation change (-10 • to 10 • ), but in this study, µCT images of the temporal bones are acquired in random orientations.

We evaluated the robustness of both methods by adding Gaussian noise to the original centerline. For every noise amplitude we generated 100 noisy centerlines and evaluated the mean rotation error. Since [Yoo 2000b]'s algorithm needs to be initialized, we used the most favorable conditions, i.e. the values in Table 3.3 with the initial rotation around the x and y-axis (R x and R y ) equal to 45 • and 0 • and different C init values. Our method is run only once since it does not depend on parameter C init and it uses the Frenet-Serret formulas which are independent from the initial coordinate system. The mean errors are plotted in Fig. 3.28. We also estimated the distance (d t ) between the estimated modiolar axis and the ideal one, it is equal 0.005 µm, which would represent 0.2 pixel on a µCT image, while [Yoo 2000b] claimed 0 mm error. Application to Real Data Fig. 3.24 presents the method applied on real patient data, while Fig. 3.29 and Fig. 3.30 express the influence of the estimated modiolar • , the projected components can be significantly different. [Avci 2014] defined categories of the longitudinal component of the tympanic centerline. Among other categories, the "rollercoaster" category was defined as a decreasing longitudinal component from the round window, changing to an increasing curve between 5 and 10 mm. The "sloping" category follows an increasing curve without any significant decreasing trends, local peaks located between 10 and 15 mm being also a feature of this category. Following this taxonomy, the estimated projection in Fig. 3.30 would have been classified as a "rollercoaster" whereas the perturbed one appears more to correspond to the "sloping" category with a peak around 10 mm. The mean cross-section area (Fig. 3.33), height (Fig. 3.34) and width (Fig. 3.35) of the tympanic and vestibular ducts are presented. After 360 • the width of the scala tympani and vestibuli tend to be equal. Fig. 3.32 presents the individual tilt angle α, the mean angle between û and the major axes of the tympanic and vestibular scalae. Examples of the influence of the tilt angle can be appreciated in Fig. 

Cross-sections Measurements

Discussion

Parameterization Framework

The distance along the cochlear central path s and its angular parameterization θ are both used in the literature. The distance can be measured from the different centerlines (scala tympani, scala vestibuli or the whole cochlea), which produces different parameterization (see the different final length in table 3.2). Depending on the extraction method chosen, the cochlear central path may be shifted closer to the lateral (as in [START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF], Avci 2014]) or modiolar wall which would entail again highly different parameterization (see Fig. 3.18 for the scala tympani). The angular coordinate on the other hand is independent from the centerline. Therefore, as concluded by [Verbist 2010] to allow accurate comparisons the angular parameterization should be preferred. A significant variability is observed for the longitudinal components. The origin chosen for the coordinate system aligns all round windows but not the apexes, whereas the apical coordinate system introduced by [Verbist 2010] would have aligned all apexes but not the round windows.

The cochlear moving frame defined in this chapter allows one to easily measure the profile tilt angle. To our knowledge this chapter provides a first quantification of the tilt angle along the full centerline. [Clark 2011] introduced this parameter but without any estimation from real data. Their proposed model captures some of the variability (Fig. 3.32) but our systematic measurements provide a new insight Images in the cochlear structure. [START_REF] Gibson | [END_REF]] measured the rotation of the osseous spiral lamina in the hook region. The measurements are assessed at four locations (1, 3, 5 and 7 mm distal to the round window) along the basal turn of the cochlea. Slices of MRI images are extracted using an oblique sagittal plane. The acquisition of this plane called Pöschl projection is radiologist-dependent and the rotations measured are difficult to compare with the tilt angle.

(a) θ = 1° (b) θ = 8° (c) θ = 17° (d) θ = 26° (e) θ = 37° (f) θ = 49° (g) θ = 63° (h) θ = 79° (i) θ = 97° (j) θ = 117° (k) θ = 139° (l) θ = 165° (m) θ = 193° (n) θ = 226° (o) θ = 263° (p) θ = 304° (q) θ = 351° (r) θ = 404° (s) θ = 464° (t) θ = 532° (u) θ = 608° (v) θ = 694° (w) θ = 792° (x) θ = 902°
The tilt angle measurements shows a relatively repetitive pattern. Close to the round window, the tilt angle is on average greater than 45 • . Between 60 and 360 • , the tilt angle falls around 0 • , making the radial component of the tympanic and vestibular centerlines coincident. This decrease of the tilt angle along the basal turn matches with the prominent rotation noted in [START_REF] Gibson | [END_REF]]'s study which has been performed between approximately 10 and 100 • . After 360 • the tilt angle turns positive before becoming flat again at the apex.

Additionally, the cochlear moving frame allows to deduct unambiguously the lateral and the modiolar path from the central one.

Variability Study

When the number of cochlear turns is not specifically detailed [Kawano 1996, Braun 2012, Kjer 2015a], many authors transcribed the mean, the standard deviation, the range and the number of the measurements [Erixon 2009, Shin 2013, Avci 2014]. For illustration purposes, Fig. 3.36 shows sets of data values which fulfill the measures listed above (the standard deviation was arbitrarily set to 0.14 for the data in [Erixon 2009]). A normal distribution was fit to the concatenated data. Comparing the results of this current study with previous findings shows that, on one hand the mean number of cochlear turn (2.58) falls extremely close to the mode of the normal distribution (2.59), on the other hand the standard deviation (0.28) is broader than what is found in the literature (0.11 [Kawano 1996], 0.09 [Shin 2013], 0.17 [Avci 2014]). This result could be explained by the presence of two extreme cases. Patient #5 (2.14) is close the lower end of the range observed by [Erixon 2009] (2.15) and according to [Jackler 2009]'s classification is not malformed. Cochleae with 3 turns such as the second outlier (3.08) were previously reported by [Tian 2006].

Irrespective to the parameterization, our cross-sections measurements are very similar to the ones from [START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF]] and [START_REF] Thorne | [END_REF]], our height measurements being also comparable with diameter measurements obtained from inscribed circles [Biedron 2010, Avci 2014]. Tympanic cross-section area appears greater to the vestibular one in the basal turn and conversely in the middle and apical turns (as shown in Fig . 3.33) match with [Gulya 1996[START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF]]'s observations.

The radial component of the different cochlear ducts shows low variability. In accordance with the results from previous studies [Cohen 1996, Baker 2008], a logarithmic spiral seems to describe well the projected cochlear shape.

The longitudinal component of the cochlea, as described by [Verbist 2009], shows a pattern similar to the one in Fig. 3.23, which is a decreasing slope, changing to an increasing curve. The "proximal short rising" described by the authors has not been observed in our mean cochlear centerline data but can still be noticed in the mean tympanic and vestibular centerlines. The longitudinal component of the scala tympani was studied by [Avci 2014]. Unlike [Avci 2014] all the scala tympani showed the same profile, which would have been classified as a "rollercoaster" (see subsection 3.3.2).

Finally, despite the challenge in shape analysis at the apex, the results of this study have the advantage of being meaningful even after the second turn (720 • ).

Modiolar Axis Estimation

The comparison between manual and subsection 3.3.2 shows that automatically estimated axis is on average sightly further from the axis defined by the experts than the inter-and intra-expert standard deviation. More specifically, the rotation error is similar to the inter-expert variability while the translation is greater. The variability of the manually defined axes comes from the estimation of the apical axial point rather than the basal axial point. The experts tend to choose a point directly on the centerline rather than at the hypothetical center of the helico-spiral (see Fig. 3.25). Theoretically the radius of a logarithmic spiral converges to zero but never reaches it. We can reasonably assume these results can be explained by a bias that occurs with the manual estimation.

Moreover we have shown an example of the influence of a rotation error of 11.5 • (Fig. 3.29), which is of the same order of magnitude as the mean angle error between the automatically and manually estimated axis (10.2 • ). In some cases the influence is large enough to change the profile of the longitudinal component. For these reasons we can hypothesize that the fact that only one class of [Avci 2014]'s classification is found in this study can be explained either by a lack of variability of our database or by the influence of our more reproducible modiolar axis estimation method compared with the manual one.

The comparison between the two estimation methods of the modiolar axis shows that the method of [Yoo 2000b] provides a good estimate only when the parameter C init is correctly estimated and when the initialization angle is within a close range of the true value. However, the parameter C init cannot be estimated easily since it depends on the curve discretization and the initial coordinate system. Our method on the other hand is an unbiased estimator of the axis in the absence of noise and does not depend on the choice of an additional extrinsic parameter or the reference frame. Its performance in the presence of noise is fairly similar (up to 2 • difference) to the best estimate of [Yoo 2000b] and is robust to outliers. Since our approach relies on computing the center of curvature (Eq. ) in the supplementary materials), of a noisy centerline, it could be improved by considering scale sensitive discrete curvature computation.

Implication for Cochlear Implantation

The preparation and the segmentation of the human cochlea allow us to assess with confidence meaningful information for cochlear implantation and even after the first two basal cochlear turns.

The centerlines of the scala tympani are useful to identify the potential location of insertion trauma. Most longitudinal components show an important "bump" at 184.5 • ± 80.9 (mean and ± 1 standard deviation), which matches well with the empirical position (around 180 • ), observed by surgeons, of cochlear trauma and basilar perforation sites [Eshraghi 2003, Wardrop 2005[START_REF] Nguyen | [END_REF]].

In order to make the centerline projections significant, one must pay attention on how to define correctly the cochlear coordinate system. Fig. 3.32 shows a distinctive tilt angle, on average greater than 45 • close to the round window (as in Fig. 3.31b). Such a feature may make the electrode array deviate in the scala vestibuli shortly after an insertion through a cochleostomy. The tilt angle may have implication for occurrence of trauma and cochleostomy site selection [Briggs 2009].

Straight electrodes tend to follow the lateral wall of the scala tympani whereas perimodiolar electrodes are designed to follow the modiolar wall. The measure of the lateral, central and modiolar arc lengths (Fig. 3.18) could provide, as in [Escudé 2006], information about ideal electrode array length according to the type of electrode and the desired insertion depth.

The height of the scala tympani was measured as the minor axis of the crosssections, it is also comparable with the diameter of the inscribed circle (subsection 3.4.2). The results are independent from the cross-section plane orientation. It provides an upper limit for the dimension of an electrode array. We showed (Fig. 3.34) that it is of primary importance to have an electrode diameter smaller than 0.5 mm in order to be atraumatic after 360 • .

Conclusion

We designed an automated method for the cochlear centerline extraction given a segmented cochlea image. A robust method for modiolar axis estimation was developed, validated on a synthetic cochlear model, compared with manual estimation and another algorithm from the literature and finally applied on segmented images of nine temporal bones. Objective geometrical measurement were performed on the tympanic and vestibular duct segmentations assessing, among others, the radial and longitudinal components of the lateral, central and modiolar paths. Cross-section measurements were estimated within a new non-ambiguous moving frame. Close to the round window, the cross-section tilt angle shows an important feature for insertion trauma comprehension. This study was meant to be reproducible and suitable for a larger database in order to improve significantly the knowledge of the cochlea shape variability. Finally, this study could provide the key measurements to validate a parametric shape model of the cochlea and its inner structures. This

Introduction

A cochlear implant (CI) is a surgically implanted device used to treat severe to profound sensorineural hearing loss. The implantation procedure involves drilling through the mastoid to open one of the three cochlear ducts, the scala tympani (ST), and insert an electrode array to directly stimulate the auditory nerve, which induces the sensation of hearing. The post-operative hearing restoration is correlated with the preservation of innervated cochlear structure, such as the modiolus and the osseous spiral lamina, and the viability of hair cells [Nadol 1997].

Therefore for a successful CI insertion, it is crucial that the CI is fully inserted in the ST without traumatizing the neighboring structures. This is a difficult task as deeply inserted electrodes are more likely to stimulate wide cochlear regions but also to damage sensitive internal structures. Current electrode designs include arrays with different lengths, diameters, flexibilities and shapes (straight and preformed). Based on the cochlear morphology selecting the patient-appropriate electrode is a difficult decision for the surgeon [van der Marel 2014].

For routine CI surgery, a conventional CT is usually acquired for insertion planning and abnormality diagnosis. However, the anatomical information that can be extracted is limited. Thus, important structures, such as the basilar membrane that separates the ST from other intracochlear cavities, are not visible. On the other hand, high resolution µCT images leads to high quality observation of the cochlear cavities but can only be acquired on cadaveric temporal bones.

Several authors have devised reconstruction methods of the cochlea from CT images by incorporating shape information extracted from µCT images. In particular, [START_REF] Noble | [END_REF]] and [Kjer 2015b] created statistical shape models of the cochlea based on high-resolution segmented µCT images. Those shape models are created from a small number of µCT images (typically 10) and therefore may not represent well the generality of cochlear shapes that can bias the CT anatomical reconstruction. [START_REF] Baker | [END_REF]] used a parametric model based on 9 parameters to describe the cochlear as a spiral shell surface. This model was fit to CT images by assuming that the surface model matches high gradient voxels.

In this chapter, we aim at estimating to which extent a surgeon can choose a proper CI design for a specific patient based on CT imaging. More specifically, we consider 3 types of implant designs based on their positioning behavior (see Fig. 4.10) and evaluate for each design the uncertainty in their maximal insertion depth. If this uncertainty is too large then there is a risk of damaging the ST during the insertion by making a wrong choice. For this uncertainty quantification, we take specific care of the bias-variance tradeoff induced by the choice of the geometric model. Indeed, considering an oversimplified model of the cochlea will typically lead to an underestimation of the uncertainty whereas an overparameterized model would conversely lead to an overestimation of uncertainty.

Therefore, we introduce in this chapter a new parametric model of the cochlea and estimate the posterior distribution of its parameters using Markov Chain Monte Carlo (MCMC) method with non informative priors. We devised likelihood functions that relate this parametric shape with the segmentation of 9 pairs of CT and µCT images. The risk of overparameterization is evaluated by measuring the entropy of those posterior probabilities leading to possible correlation between parameters. This generic approach leads to a principled estimation of the probability of CI insertion depths for each of the 9 CT and µCT cases.

Methods

Data

Healthy temporal bones from 9 different cadavers were scanned using CT and µCT scanners. CT scans were acquired at the Imaging Center of the Nice University Hospital using a GE LightSpeed VCT CT system under the supervision of Pr Charles Raffaelli, while µCT scans were acquired in the laboratory Transporters, Imaging and Radiotherapy in Oncology (TIRO, UMR-E4320) in Nice using the GE eXplore speCZT120 scanner under the supervision of Pr Thierry Pourcher. Unlike CT images, which have a voxel size of 0.1875x0.1875 x0.25 mm 3 (here resampled to 0.2x0.2x0.2 mm 3 ) the resolution of µCT images (0.025 mm per voxel) is high enough to identify the basilar membrane that separates the ST from the scala vestibuli (SV) and the scala media. The scala media represents a negligible part of the cochlear anatomy, for simplicity purposes, both SV and scala media will be referred as the SV. Since intracochlear anatomy are not visible in CT images, only the cochlea was manually segmented by an head and neck imaging expert, while the ST and the SV were segmented in µCT images (see Fig. 4.1). All images were rigidly registered using a pyramidal block-matching algorithm [Ourselin 2000] and aligned in a cochlear coordinate system [Verbist 2010].

Parametric Cochlear Shape Model

Since we have a very limited number of high resolution images of the cochlea, we cannot use statistical shape models to represent the generality of those shapes. Instead, we propose a novel parametric model M of the 3 spiraling surfaces: the whole cochlea, the scala tympani and scala vestibuli (see Fig. 4.2). The cochlea corresponds to the surface enclosing the 2 scalae and we introduce a compact parameterization T = {τ i } based on 22 parameters for describing the 3 surfaces. This model extends in several ways the ones previously proposed in the literature [START_REF] Baker | [END_REF]] as to properly capture the complex longitudinal profile of the centerline and the specific shapes of the cross-sections detailed in clinical studies [START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF]]. More precisely, in this novel model, the cochlea and two scalae can be seen as generalized cylinders, i.e cross-sections swept along a spiral curve. This centerline is parameterized in a cylindrical coordinate system by its radial r(θ) and longitudinal z(θ) functions of the angular coordinate θ within a given interval [0, θ f ]. The cross-sections of the ST and SV are modeled by a closed planar curve on which a varying affinity transformation is applied along the centerline, parameterized by an angle of rotation α(θ) and two scaling parameters w(θ) and h(θ). In particular, the three modeled anatomical structures shared the same centerline, the tympanic and vestibular cross-sections are modeled with two half pseudo-cardioids within the same oriented plane while the cochlear cross-section corresponds the minimal circumscribed ellipse of the union of the tympanic and vestibular cross-sections (see Fig. 4.10). The center of the ellipse is on the centerline. Eventually the shapes are fully described by 7 one-dimensional functions of θ: r(θ), z(θ), α(θ), w ST (θ), w SV (θ), h ST (θ), h SV (θ), combinations of simple functions (i.e polynomial, logarithmic, . . .) of θ.

Previous models

Historically, cochlear models first described the cochlear centerline prior to emergence of solid shape models.

Early Models The cochlea had long been identified as shell-like spiral structure [START_REF] Leidy | A Study of the Human Temporal Bone -II[END_REF]], hence it etymology derived from the Latin word for snail-shell. Parametric modeling of seashell was emphasized before parametric shape modeling of cochlea [Thompson 1917]. As described in the review of shell parametric models by [Stone 1996], [START_REF] Moseley | On the Geometrical Forms of Turbinated and Discoid Shells[END_REF]] was the first to model properly shell shape using polar coordinates. [Ketten 1990] identified two cochlear canal spiral types in cetaceans : Archimedian spiral ( 4 Cohen's Model [Cohen 1996] introduced a two-dimensional parametric model describing the radial component r(θ) of the electrode array placed in the human scala tympani. The radial component consists in a piecewise logarithmic function.

The piecewise defined functions allow to take into account the shape of the basal turn.

r(θ) = c(1 -d log(θ -θ 0 )) if θ < θ 2 ae -bθ else. (4.4a) (4.4b)
Ketten's Model [Ketten 1998] introduced a three-dimensional parametric model of the human cochlea based on their previous work [Ketten 1990] adopting the Archimedian spiral (Eq 4.1) as radial component r(θ) of the cochlear central path. A major motivation was to measure the cochlear length easily so the vertical component was defined such as the Pythagorean theorem relates, on one hand the arc length of the Archimedian spiral in the xy-plane s pol (defined in Eq 4.5) and the height h of the cochlea and, and on the other hand, the cochlear arc length s cyl (Eq 4.6) .

s pol (θ) = θ 0 r(t) 2 + dr(t) dt 2 dt (4.5) s cyl (θ max ) = s pol (θ max ) 2 + h 2 . ( 4.6) 
The vertical component defined as above would be suitable with Ketten's definition (Eq 4.5 and Eq 4.6):

4.2. Methods 59 z(θ) = s pol (θ) s pol (θ max ) h. (4.7)
Despite its reasonably complex formulation and its lack of anatomical relevance, Ketten's model offers the advantage that it only needs three parameters to describe the three-dimensional cochlear central path. Besides, the parameters are physically meaningful: θ max depicts the number of cochlear turns, a is a scale factor representing the cochlear diameter at the basal turn and h is the cochlear height.

Helico-spiral Models Several other three-dimensional models were built from two-dimensional models adding the longitudinal component z(θ) . Yoo et al. modeled the helico-spiral cochlear shape adapting, first the seashell model of [Fowler 1992] with a logarithmic spiral (Eq 4.2) and an exponential longitudinal component (Eq 4.8) [Yoo 2000b], and second Cohen's model (Eq 4.4) by adding a linear longitudinal component (Eq 4.9) [Yoo 2000a].

z(θ) = ce dθ (4.8) z(θ) = e(θ -θ 1 ) (4.9) 
Solid Shape Models Based on the centerline modeling, solid shape models were introduced by modeling the cross-sectional shapes. [Manoussaki 2000] modeled the cross-section of the combined scala vestibuli and scala media as a constant rectangle, [START_REF] Baker | [END_REF]] and [Zhang 2006] modeled the cochlear cross-section as an ellipse (Fig. 4.3) and [Clark 2011] modeled the cross-section of the scala tympani as semicircular ends connected by straight segments. The latter can be considered as the most realistic three-dimensional parametric shape model. The basic idea is to describe the shape as a set of points. After aligning the training shape using rigid registration and defining a mapping from the landmarks of one shape to another, the dimensionality of the data is reduced using most frequently Principle Component Analysis (PCA). For a detailed explanation of the SSM methodology please refer to [Paulsen 2004, Heimann 2009].

Statistical Cochlear Models

New Parametric Model Equations

Centerline The centerline is a curve defined in a cylindrical coordinate system (where (r, θ, ẑ) are the local radial, circumferential and longitudinal unit vectors) as, The radial component is defined piecewise with a polynomial function and a logarithmic function,

r(θ) = p 2 θ 2 + p 1 θ + p 0 if θ < θ 2 ae -bθ else. (4.11a) (4.11b)
The longitudinal component is defined as a sum of two terms,

z(θ) = z 0 (θ) * 1 w Π θ w + z 1 (θ) (4.12)
where the symbol * denotes the convolution and Π is the rectangle function that is null outside [-1/2, 1/2] and unity inside, the constant w parameterized the width of the rectangle function and thus the span of the smoothing on z 0 (θ). 

z 0 (θ) = q 1 θ + q 0 if θ < θ 1 r 1 θ + r 0 else (4.
z 0 (θ) * 1 w Π θ w =                              q 1 θ + q 0 if θ < θ 1 - w 2 q 1 2 θ 2 1 -θ - w 2 2 + q 0 θ 1 -θ - w 2 + r 1 2 θ + w 2 2 -θ 2 1 + r 0 θ + w 2 -θ 1 if θ 1 - w 2 ≤ θ < θ 1 + w 2 r 1 θ + r 0 else (4.14a) (4.14b) (4.14c) z 1 (θ) = ke - (θ -µ) 2 2σ 2 cos(ωθ + ϕ) (4.15)
Cross-section The cross-section shapes are defined for the scala tympani, the scala vestibuli and the cochlea as a whole. Respectively, the subscripts ST , SV and Co are used for identification purposes. 

u 0 (φ) =              2 9 2 cos φ -cos 2φ + 1 2 + 5 9 √ 1 -2τ if 0 ≤ φ ≤ φ 0 5 9 (τ cos(f (φ))) if φ 0 ≤ φ ≤ π g(φ) if π ≤ φ ≤ 2π
v 0 (φ) =          2 3 √ 3 (2 sin φ -sin 2φ) if 0 ≤ φ ≤ φ 0 τ sin(f (φ)) + τ if φ 0 ≤ φ ≤ π 0 if π ≤ φ ≤ 2π (4.17a) (4.17b) (4.17c)
Eq. 4.16a and 4.17a define a cardioid segment, Eq. 4.16b and 4.17b define an ellipse segment and Eq. 4.16c and 4.17c define a line segment. τ ∈ [0, 1/2]. The affine functions f (φ) and g(φ) and the angular threshold φ 0 are defined as,

f (φ) = π 2 + arcsin τ 1 -τ π -φ 0 (x -φ 0 ) + π -arcsin τ 1 -τ (4.18) g(φ) = 5 9π 3 5 + √ 1 -2τ (x -π) (4.19) φ 0 = arccos 1 - √ A 2 + B 2 2 (4.20)
amplitude ( < ) center of the peak ( < ) angular frequency ( < ) phase ( < ) 

Methods

65

with, .22) Introducing the following parametric equations parameterized by φ ∈ [0, 2π],

A = -5 √ 1 -2τ 2(1 -τ ) - 3 2 (4.21) B = 3 √ 3τ 2(1 -τ ) . ( 4 
ũST (θ, φ) ṽST (θ, φ) = cos β sin β -sin β cos β w ST (θ) 0 0 -h ST (θ) u 0 (φ) v 0 (φ) (4.23) ũSV (θ, φ) ṽSV (θ, φ) = cos β -sin β sin β cos β w SV (θ) 0 0 h SV (θ) u 0 (φ) v 0 (φ) . ( 4 

.24)

Let us define the Löwner-John ellipse [Henk 2012, John 2014], parameterized by φ ∈ [0, 2π],

e LJ (θ, φ) = t 1 (θ) t 2 (θ) + T 1,1 (θ) T 1,2 (θ) T 2,1 (θ) T 2,2 (θ) cos φ sin φ (4.25)
as a minimal circumscribed ellipse of:

φ∈[0,2π] ũST (θ, φ) ṽST (θ, φ) , ũSV (θ, φ) ṽSV (θ, φ) . (4.26) 
∀i ∈ {ST, SV },

u i (θ, φ) v i (θ, φ) = cos α(θ) sin α(θ) -sin α(θ) cos α(θ) ũi (θ, φ) ṽi (θ, φ) - t 1 (θ) t 2 (θ) (4.27) u Co (θ, φ) v Co (θ, φ) = cos α(θ) sin α(θ) -sin α(θ) cos α(θ) T 1,1 (θ) T 1,2 (θ) T 2,1 (θ) T 2,2 (θ) cos φ sin φ (4.28)
Cross-section Parameters Along the Centerline From now on, unless otherwise specified, the variables using the subscripts i are defined for i ∈ {ST, SV, Co}.

The cross-section parametric equations u i (θ, φ) and v i (θ, φ) represent functions of the parameters w ST (θ), h ST (θ), w SV (θ), h SV (θ), α(θ), β and τ .

w ST (θ) = w ST (θ) + w ST 1 θ + w ST 0 (4.29) α(θ) = α(θ) (4.30)
were w ST (θ) and α(θ) are constant polynomial functions (Table 4.2). h ST (θ), w SV (θ), h SV (θ) are as defined in the equivalent manner as for w ST (θ). β and τ are constants set to 0.25 and 0.04.

Full Model

The full parametric cochlear shapes x i (θ, φ) can be written as generalized cylinders [Voie 1990],

x i (θ, φ) = x c (θ) + u i (θ, φ)û(θ) + v i (θ, φ)v(θ) (4.31) parameterized by (θ, φ) ∈ [0, θ max ] × [0, 2π],
and where ( t, û, v) define a moving frame, with t(θ) the tangent unit vector of x c (θ), such as,

t(θ) = dx c (θ) ds(θ) (4.32) û(θ) = ẑ × t(θ) ẑ × t(θ) (4.33) v(θ) = t(θ) × û(θ) (4.34)
where the symbol × denotes the cross product and the infinitesimal part of the curve ds(θ),

Scala Vestibuli (SV)

Scala Tympani (ST) 

Surface Self-intersection Avoidance

Local Self-intersection The generalized cylinders x i (θ, φ) have local self-intersections if the radius of their cross-sections is greater than the radius of curvature of the axis x c (θ) [Zerroug 1996[START_REF] Gansca | [END_REF]]. More specifically, they have local self-intersections if and only if the following condition is not satisfied:

(x i (θ, φ) -x c (θ)) • n(θ) ≤ 1 κ(θ) (4.37)
where n(θ) is the normal unit vector of x c (θ) and κ(θ) its local curvature, such as,

κ(θ)n(θ) = d t ds (4.38)
Global Self-intersection Several kinds of global self-intersections are possible but the way the shapes were constructed restricts the set of possible anomalies.

The full parametric shapes x i (θ, φ) can also be written in a cylindrical coordinate system (in a non-unique manner) as,

x i (θ, φ) = ri (θ, φ)r( θi (θ, φ)) + zi (θ, φ)ẑ (4.39)
with ri (θ, φ), θi (θ, φ) and zi (θ, φ) are defined in R and calculated as follows,

θ0,i (θ, φ) = atan2(x i (θ, φ) • ŷ, x i (θ, φ) • x) (4.40)
where the function atan2(y, x) is the four-quadrant inverse tangent and returns values in [-π, π] based on the values of y and x.

n * i (θ, φ) = arg min n∈Z {| θ0 (θ, φ) -θ + nπ|} (4.41) θi (θ, φ) = θ0,i (θ, φ) + n * i (θ, φ)π (4.42) ri (θ, φ) = (-1) n * i (θ,φ) (x i (θ, φ) • x) 2 + (x i (θ, φ) • ŷ) 2 (4.43) zi (θ, φ) = x i (θ, φ) • ẑ (4.44)
There could be global self-intersection between {x i (θ, φ)| θi (θ, φ) = x} and {x i (θ, φ)| θi (θ, φ) = x + 2π}, what might be called inter-turn self-intersection.

We introduce,

l(θ) = x c (θ + 2π) -x c (θ) (4.45) l(θ) = l(θ) l(θ) = l(θ) l(θ) (4.46)
To improve the readability θi (θ, φ) is now written θi . The following inequalities are sufficient conditions to avoid inter-turn self-intersections,

             (x Co (θ, φ) -x c ( θCo )) • l( θCo ) ≤ λ( θCo )l( θCo ) (x Co (θ, φ) -x c ( θCo )) • l( θCo -2π) ≥ (λ( θCo -2π) -1)l( θCo -2π) (x SV (θ, φ) -x c ( θSV )) • l( θSV ) ≤ λ( θSV )l( θST ) (x ST (θ, φ) -x c ( θST )) • l( θST -2π) ≥ (λ( θST -2π) -1)l( θST -2π) (4.47a) (4.47b) (4.47c) (4.47d)
where λ could be any function R → [0, 1].

In practice,

r max (x) = max θ,φ| θCo (θ,φ)=x (x Co (θ, φ) -x c (x)) • l(x) (4.48) 4.2. Methods 69 r min (x) = min θ,φ| θCo (θ,φ)=x (x Co (θ, φ) -x c (x)) • l(x -2π) (4.49) λ(x) = r max (x) 2 + l(x) 2 -r min (x + 2π) 2 2l(x) 2 (4.50)
Self-intersection correction The conditions to avoid local (Eq. 4.37) and global (Eq. 4.47) self-intersections can be written in a general way as,

x • û ≤ f (4.51)
where x parametrizes the shape, û represents any mobile unit vector and f is a scalar function. In order to avoid the self-intersection the following substitution, which satisfied Eq. 4.37 and 4.47, is proposed:

x ← min {x • û, f } x • û x (4.52)

Parameters Posterior Probability

Given a binary manual segmentation S of the cochlea from CT imaging, we want to estimate the posterior probability p(T |S) ∝ p(S|T ) p(T ) proportional to the product of the likelihood p(S|T ) and the prior p(T ).

Likelihood

The likelihood measures the discrepancy between the known segmentation S and the parametric model M(T ). The shape model can be rasterized, we obtain a binary filled image R(T ) which can be compared to the manual segmentation. Note that the rigid transformation is known after the alignment in cochlear coordinate system [Verbist 2010]. The log-likelihood was chosen to be proportional to the negative square Dice index s 2 (R(T ), S) between the rasterized parametric model and the manually segmented cochlea, p(S|T ) ∝ exp(-s 2 2 (R(T ), S)/σ 2 ). The square Dice allows to further penalize the shape with low Dice index (e.g. less than 0.7) and σ was set to 0.1 after multiple tests as to provide sufficiently spread posterior distribution.

Prior The prior is chosen to be as uninformative as possible while authorizing an efficient stochastic sampling. We chose an uniform prior for all 22 parameters within a carefully chosen range of values. From 5 manually segmented cochlear shapes from 5 µCT images we have extracted the 7 one-dimensional functions of θ modeling the centerline and the cross-sections using a Dijkstra algorithm combined with an active contour estimation. θ was discretized and subsampled 1000 times. The 22 parameters were least-square fit on the subsampled centerline and cochlear points. This has provided us with an histogram of each parameter value from the 5 combined datasets, and eventually the parameter range for the prior was set to the average value plus or minus 3 standard deviations.

Posterior Estimation We use the Metropolis-Hastings Markov Chain Monte-Carlo method for estimating the posterior distribution of the 22 parameters. We choose Gaussian proposal distributions with standard deviations equal to 0.3% of the whole parameter range used in the prior distribution. Since the parameter range is finite, we use a bounce-back projection whenever the random walk leads a parameter to leave this range.

Posterior From µCT Images In µCT images, the scala tympani and vestibuli can be segmented separately as S ST and S SV thus requiring a different likelihood function. The 2 scalae generated by the model M(T ) are separately rasterized as R ST (T ) and R SV (T ) and compared to the 2 manual segmentations using a single multi-structure Dice index s 3 (R ST (T ), R SV (T ), S ST , S SV ). This index is computed as the weighted average of the 2 Dice indices associated with the 2 scalae. The likelihood function is then p(S ST , S SV |T ) ∝ exp(-s 2 3 /σ 2 ).

Controlling Model Complexity

We want to limit the extent of overestimation of uncertainty induced by our rich parametric model. Therefore, we look at the observability of each parameter through its marginalized posterior distribution p(τ i |S) = τ j =τ i p(T |S) dτ j . In an ideal scenario, all model parameters should be observable thus indicating that we have not overparameterized the cochlear shape. Therefore we consider the information gain IG(τ i ) =τ i p(τ i ) log p(τ i ) dτ i + τ i p(τ i |S) log p(τ i |S) dτ i computed as difference of entropy between the prior (uniform) distribution and the marginal posterior distribution. The entropy is estimated by binning the distributions using 256 bins covering the range defined by the uniform prior. A low information gain indicates either that the parameter has no observed influence on the shape or that it is correlated with another set of parameters such that many combinations of them lead to the same shape. To test if we are in the former situation, we simply check if the parameter i decreases significantly the likelihood around the maximum a posteriori (MAP) by plotting the probability p(τ i |S, T MAP -i ).

Clinical Metrics

We consider three types of electrodes having the same constant diameter of 0.5 mm. Straight electrodes follow the lateral (outer) wall of the ST, whereas perimodiolar ones follow the modiolar (inner) wall of the ST and mid-scala electrodes are located in the geometric center of the cross-section (see Fig. 4.10).

For a given parameter T and a certain type of electrode, it is relatively simple to compute its trajectory in the ST, by considering each cross-section of the parametric shape model and positioning the center of the CI relative to the inner and outer wall. Furthermore, the maximum insertion depth of a CI l Max (T ) can be computed by the arc length of the curve defined by the locus of the electrode positions and by testing if the inscribed circle of the ST boundaries is larger than the electrode. We propose 

Results

Model Complexity Evaluation

For each image, 20,000 iterations of the MCMC estimation were performed using a 3.6 GHz Intel Xeon processor machine. The computational time per iteration is less than 4 s for the CT images and less than 20 s for the µCT images. The MCMC mean acceptance rate is 0.38. The Dice index between the samples corresponding to the maximum a posteriori probability (MAP) and the manual segmentations are summarized in Table. 4.3. Note that s 3 indices are lower on µCT because it considers more substructures (ST and SV) than s 2 indices on CT (cochlea only). A careful inspection of the two structures in Fig 4.15 suggests that our parametric model has enough degree of freedom to account the complexity of the cochlear shape. The model even appears to regularize the incomplete manual segmentation without overfitting the noise. The mean surface error between the segmented µCT images and the maximum a posteriori models estimated from segmented CT images is less than 0.3 mm. This error depends on the complexity of the model, the rigid registration and the segmentations (independently performed for each modality) but still comparable with the score of 0.2 mm obtained with statistical shape models for cochlear substructures 0 parameter, longitudinal intercept segmentations in CT [START_REF] Noble | [END_REF]].

On µCT scans, 78% of the cross-sections parameters have an information gain greater than 0.1, while the mean information gain over the 22 parameters is IG = 0.41. Furthermore, we checked that on µCT scans, for all parameters, any local variation leads to a significant decrease of likelihood p(τ i |S, T MAP -i

) and thus showing an influence on the observed shape (as in Fig. 4.14). This implies that some parameters might be correlated and that shapes may be described by different parameters combinations. Thus we may slightly overestimate the uncertainty (and minimize bias) which is preferable than underestimating it through an oversimplified model. Setting some of those parameters to a constant may be a too strong assumption given that only 9 patient data are considered and therefore we decided to keep the current set of 22 parameters.

On CT scans, 28% of the cross-sections parameters have an information gain greater than 0.1 and IG = 0.23. The information gain is smaller for CT images than µCT images, which is expected as far less details are visible. In particular, the two scalae are not distinguishable making their model parameters unidentifiable.

CT Uncertainty Evaluation

We evaluate the posterior probability of the maximal insertion depth p(l Max |S) for each patient, modality and electrode design. Their cumulative distribution function (CDF) can be clinically interpreted, as it expresses the probability that the maximal µCT lateral insertion depth (mm) CT lateral insertion depth (mm) number of cochlear turn 3.1 (> 2.6) Figure 4.17: Maximal insertion depth estimation discrepancy between CT and µCT for electrodes following lateral wall at different quantiles (5%, 10% and 25%). Note that the lateral position is the least favorable result in terms of discrepancy between modalities (see Table 4.5).

µCT posterior CT posterior prior 3.42 4.14 5.54 Table 4.4: Standard deviation of probability distribution function of the maximum insertion depth averaged over all patients and electrode designs (mm).

lateral midscala perimodiolar 2.34 1.32 0.92 Table 4.5: Discrepancy between CT and µCT averaged over all patients (mm).
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insertion depth of a cochlea is less or equal than a given value. Therefore if an electrode has a length l, it also indicates the probability to traumatize the cochlea (if fully inserted). Hence maximal insertion depth corresponding to a CDF of 5%, can be understood as a 95% chance that the electrode actually fits in the ST. The CDF accounts for the uncertainty in the whole shape, including cochlear length or diameter. A cochlea with a longer or larger ST would naturally result in a CDF shifted to the right.

The mean standard deviation of the distributions across the patients and electrode designs (see Table 4.4) shows that uncertainty with CT images is greater than µCT images but still more informative than the prior. To evaluate the bias of maximal insertion depth estimated from CT images we measure the mean discrepancy between the estimation from µCT and CT images. Fig. 4.17 shows the estimation differences between modalities for the worse case, namely straight electrodes. We must stress that all maximal insertion depths are underestimated with CT images. The ST is usually larger than the SV at the first basal turn [START_REF] Wysocki | Dimensions of the human vestibular and tympanic scalae[END_REF]] and this information is not explicitly embedded in the prior. Since only little cross-section information can be inferred from CT images, we could hypothesize that the diameters of the ST are more likely to be underestimated with CT images, leading to underestimate insertion depth.

Conclusion

In this study, we have proposed a novel parametric model for detailed cochlea shape reconstruction. We evaluated its complexity in order to optimize the uncertainty quantification of intracochlear shapes from CT images. Based on anatomical considerations, our results introduce a measurements of the risk of trauma given a cochlear design and an insertion depth. Most of the CI have a linear electrode depth between 10 and 30 mm, corresponding to the range within which our results are the most revealing. For this data set, the maximal insertion depth spans a 4 mm range. One cochlea (Patient 4) presents a deeper maximal insertion depth than others, we observed that it had a high number of cochlear turns (3.08 compared to an average of 2.6) which was confirmed by a radiologist on µCT. This exemplifies the importance of providing a patient-specific estimation of the maximal insertion depth.

Our experiments show that under the best possible conditions (careful image segmentation, stochastic sampling of a detailed cochlear model), classical preoperative CT images could be used by ENT surgeons to safely select a patient-specific CI. Indeed, the discrepancy is limited (maximum of 2.34 mm for the lateral position) and always lead to an underestimation of the maximal insertion depth from CT images which is more safe for the patient. In future work, more data will be considered to improve the correlation between CT and µCT predictions and to estimate more thoroughly the bias between both modalities in order to apply a correction. 

Abstract

Cochlear implants (CI) are used to treat severe hearing loss by surgically inserting an electrode array into the cochlea. Cochlear internal cavities have complex spiraling shapes and are nearly invisible with clinically available CT scans due to the relative small size of the cochlea with respect to the scanner resolution. In this chapter we propose a joint model of the cochlear shape (and its substructures) model and its appearance within a generative probabilistic Bayesian framework. The proposed

Introduction

Manual segmentations are expensive and time consuming to produce, thus a fullyautomated segmentation method is preferable. The segmentation of intracochlear structures represents a great challenge. CT images of the temporal bone have low resolution with respect to the small size of the anatomical structures and the topology of the cochlea is complex. The cochlea measures about 8.5x7x5 mm 3 while the typical CT image spacing is larger than 0.2 mm. The main chambers of the cochlea, the scala tympani and the scala vestibuli, form a nested double helix where the spatial division between each turn (basal, middle and apical) is weakly visible and where the stiff structural elements separating the scala tympani and the scala vestibuli, such as the basilar membrane and the spiral lamina ossea are weakly visible or invisible. Finally the cochlea is filled with fluids which can be similarly found in the vestibular system and other neighboring structures, with similar appearance in CT images.

This challenging task requires additional information to achieve successful segmentation. Anatomical atlases and shape models can be combined with intensity information to provide sufficient prior knowledge. While those methods are commonly available for major organs such as the brain or the heart, few cochlear shape models have been developed.

Detailed Cochlear Shape Model Fitting from CT Images

Cochlear Model Fitting In order to fit cochlea models to CT images, two main approaches can be summarized as follows.

A first set of methods consists in an optimization procedure to perform parametric model fitting [START_REF] Baker | [END_REF]]. A parametric model-image registration procedure is used to align the model surface with the salient image features, for instance captured by high intensity gradient voxels.

A second set of methods consists in a non rigid registration procedure between an input CT image and an atlas embedding statistical shape prior [Noble 2010[START_REF] Noble | [END_REF], Reda 2011, Noble 2012, Reda 2012, Noble 2013, Reda 2013, Kjer 2014a, Reda 2014a, Reda 2014b, Kjer 2015d]. Anatomical models are extracted from high-resolution datasets, usually ex-vivo µCT scans. The shape prior is provided by a statistical shape model (SSM) of the intra-cochlear anatomy, which guides the registration between a CT scan and an enhanced CT-atlas. 

Joint Shape and Intensity Model for Segmentation

Anatomical structures defined by weakly visible boundaries in medical images are often segmented by defining an appearance model of the structures of interest and by encoding the spatial prior information [Pohl 2006a, Heimann 2007]. To do so, a strong shape model needs to be realistic and to provides good generalization, i.e.

the ability to represent realistically shapes that are not present in the training set. Most of the cochlear segmentation algorithms incorporating shape prior use Statistical Shape Models (SSM) [Noble 2010[START_REF] Noble | [END_REF], Reda 2011, Noble 2012, Reda 2012, Noble 2013, Reda 2013, Kjer 2014a, Reda 2014a, Reda 2014b, Kjer 2015d] as introduced by [Cootes 1995]. However when the number of training observations is limited (in our case N = 9), the shape variability might be too constrained and the model may not generalize well enough. Alternatively to SSM, an analytic parametric shape model can be defined "manually" but may also be considered too simple and not realistic enough since it creates an idealized shape model with few parameters. As highlighted in section 4.3.1 there is an inherent problem in shape fitting, since the number of degrees of freedom of SMM or parametric models may be arbitrarily increased, but possibly leading to the issue of overparameterization. In this case, the parameters are difficult to estimate uniquely because they are correlated and are not easily interpretable.

To overcome this limitation due to a low number of training shapes, we propose to move away from a simple model fitting approach where the resulting shape is an instance of a compact parametric model. Instead, we propose to combine this parametric model with an appearance model such that the shape model constrains the output segmentation without restricting it to a low dimensional space.

The goal is to unify the cochlear shape (and its substructures) model fitting with a local appearance model within a Bayesian framework. Using a generative proba- bilistic model, which describes the label of each voxel having shape and appearance parameters as hidden variables, the problem is formulated as an incomplete data problem marginalizing over all possible labels for which the maximum a posteriori is estimated. The proposed method estimates jointly the shape and appearance parameters and applies an iterative expectation-maximization (EM) strategy that interleaves shape model parameters fitting and image segmentation with a mixture of Student's t-distributions.

Our approach relies on a generative probabilistic model as it is a natural way to describe the image content. As such, the estimated parameters and variables have a clear interpretation and the underlying hypothesis are well understood. As our approach alternates between the optimization of shape and intensity parameters, it is related to prior work on joint segmentation and registration approaches.

Related Previous Work on Segmentation and Registration

Object segmentation can be performed using generative probabilistic models and exhibit good generalization [Eslami 2013b]. In medical images analysis, most of the studies have focused on generative models for brain imaging segmentation [Wyatt 2003, Pohl 2005, Ashburner 2005[START_REF] Styner | [END_REF], Patenaude 2011, Wu 2013[START_REF] Puonti | [END_REF] In neuroimaging studies, several challenges must be addressed such as the presence of a bias field or the presence of brain lesions, thus intensity of magnetic resonance images (MRI) needs often to be corrected and brain tumors need to be specifically handled differently than healthy tissues. Several articles have demonstrated that by using an approach that exploits and solves different problems of neuroimaging in a joint way could improve the results as opposed to performing them sequentially. We can cite for example, joint image registration, tissue classification and bias correction [Ashburner 2005], joint segmentation and registration [Pohl 2006a[START_REF] Styner | [END_REF], joint registration and estimations of tumor displacement [START_REF] Gooya | Deformable Registration of Glioma Images Using EM Algorithm and Diffusion Reaction Modeling[END_REF]] or joint label fusion and multi-atlas registration [Wu 2013].

Joint segmentation and registration methods benefit from the fact that given a registered label image, the segmentation task becomes an easier problem to solve and conversely, given a pair of segmented images the registration task is simplified.

The idea behind the combined method presented in [Pohl 2006a[START_REF] Styner | [END_REF] is to register an atlas to an image and simultaneously estimate the contour of the structures of interest. This requires first to model within a Bayesian framework the relationship between the segmentation, the image data and the registration parameters.

Contribution

The aforementioned methods the shape constraints were modeled from a multi-atlas learned from annotated training images and deformed onto the target image using an image registration method. In contrast to these methods, in our approach the shape constraints are described by the parameters of a parametric shape model. Different deformations were previously used: rigid transformations [Wyatt 2003], hierarchical (global and structure-dependent) affine deformations [Pohl 2005], B-spline [Riklin-Raviv 2009] or diffeomorphic Demons [Wu 2013].

It has been shown that due to its complex spiral shape, natural shape variability of the cochlea such as deformations under local torque forces are very difficult to obtained with classical deformation methods such as B-spline [Kjer 2015a]. We tackle this challenge by using a parametric shape model defined in a cylindrical coordinate system that is specific to cochlear structures. Since the proposed segmentation method is not an instance of the shape but a combination of shape and intensity priors, a new cochlear parameterization in a very low-dimensional space is introduced. This compact shape model addresses the problem of shape and pose parameters correlation by eliminating most shape parameters strongly correlated to the pose and by estimating simultaneously the pose and the shape. An underparameterization model is sufficient because the local shape variability can be taken into account by the intensity model.

Furthermore, instead of using a Gaussian mixture for the intensity probability distribution [Pohl 2006a, Patenaude 2011[START_REF] Puonti | [END_REF], we used a mixture of Student's t-distributions in order to make the intensity model estimation more robust to image artifacts (heavy-tailed distributions).

Material and Methods

Overview

A graphical abstract of the method developed for intracochlear structures segmentation is shown in Fig. 5. 3.

The rigid registration method used to orient the cochlea in its standard coordinate system will be first presented. The hypothesis of the generative probabilistic model and then the inference method will be introduced in a generic way for multi-class segmentation. The specific approach for cochlear segmentation will be described in the following order: shape modeling, intensity modeling and final hard segmentation. Finally, the implementation details will be further presented. Rigid registration is first performed in order to orient the cochlea in the cochlear coordinate system centered on a small region of interest. Intra-cochlear structures probabilities are estimated by iteratively optimizing the shape and intensity model parameters so that it minimizes the discrepancy between the posterior probability of the label knowing the shape and intensity (combined model) and the probability knowing the shape only (shape model) on one hand, and knowing the intensity only (intensity model) on the other hand. Eventually hard segmentation is performed with the maximum a posteriori (MAP) of intracochlear structures probabilities. Resulting isocontours and isosurfaces are represented.

Material and Methods
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Data

Two datasets were available. Dataset #1 consists in 9 cadaveric temporal bones (4 left and 5 right sides) with low-resolution CT and high-resolution µCT acquisitions performed in inconsistent radiological planes. The images, noted I #1,CT i and I #1,µCT i , for i = 1, . . . , 9, are segmented. Indeed, a head and neck imaging expert produced manual segmentations of the scala tympani and the scala vestibuli using interactive segmentation software ITK-Snap [Yushkevich 2006] and GeoS [Criminisi 2008].

Dataset #2 consists in 987 clinical CT images (452 left and 535 right sides) of temporal bones acquired in standard imaging plane, noted I #2 i for i = 1, . . . , 987. All CT scans were acquired at the Imaging Center of the Nice University Hospital using a GE LightSpeed VCT CT system under the supervision of Pr Charles Raffaelli. All µCT scans were acquired in the laboratory Transporters, Imaging and Radiotherapy in Oncology (TIRO, UMR-E4320) in Nice using the GE eXplore speCZT120 scanner under the supervision of Pr Thierry Pourcher.

Rigid Registration

We seek to initialize the segmentation by aligning roughly all images in the same orientation.

Cochlear Coordinate System

The Stenvers' plane [Lane 2015] is an oblique radiological reconstruction plane that is in the plane of the superior semicircular canal (also known as the short axis of the temporal bone). The Stenvers' plane is also roughly aligned with the cochlea coordinate system, defined by 16 cochlear implantation experts [Verbist 2010], which includes an origin in addition to an orientation.

The cochlear coordinate system (CCS) appears as a consensual choice between the radiologists and otologists, and we seek to aligned all CT and µCT images in the coordinate system where the z-axis coincides with the modiolar axis, the xz-plane passes through the center of the round window (Fig. 3.13).

Temporal Bone Image Registration

Image registration is a well known challenge in medical image analysis and requires to define several main components: a transformation model (rigid or non-rigid), a cost function (similarity metric and regularization), and an optimization method. For a comprehensive reviews for theory and application the reader could refer to [Maintz 1998[START_REF] Sotiras | [END_REF]]. Registration methods depend on the modality and they have been applied to temporal bone CT and µCT images [Whiting 2001, Kjer 2015b, Kjer 2015a, Kjer 2015c], to pre-and intra-operative CT images [Reda 2012] and to fuse complementary information of CT and MRI [START_REF] Bartling | [END_REF], Neri 2005]. The goal here is to estimate and analyze the cochlear shape variability. To preserve the global anatomy, only rigid registration is considered. Unlike the cochlea, the temporal bone and its pneumatization show a very large interpatient variability. Pneumatization consists in air cells in the temporal bone that have different patterns and sizes based on environmental and genetic factors. It is initiated after birth and is completed during childhood. To avoid the potential nuisance caused by the temporal bone high variability, we apply our image processing pipeline on a small region of interest (ROI) around the cochlea.

Dataset #1 Registration

From the manually segmented µCT images, we write T #1,µCT i→CSS the rigid transformation retrieved from the robust modiolar axis estimation method (subsection 3.2.4), such that

I #1,µCT i • T #1,µCT
i→CSS corresponds to the µCT images in the cochlear coordinate system. All applied rigid transforms are resampled using trilinear interpolation.

We also define W CSS (•), as the function that resamples and crops an image so that the spacing is [0.2, 0.2, 0.2] mm, the physical extent is 12x10x10 mm 3 and the offset is [-4.8, -4, -4] mm, corresponding to a bounding box around the cochlea known to measure roughly 8.5x7x5 mm 3 [Dimopoulos 1990].

Multimodal image registration can be performed between CT, I #1,CT i , and µCT images from the same temporal bone. We set T #1,CT i→CSS as,

T #1,CT i→CSS = arg min T ∈SE(3) W CSS I #1,µCT i • T #1,CT i→CSS -I #1,µCT i • T 2 , ( 5.1) 
where SE( 3) is the space of rigid transformations. The downsampled µCT image is very similar to the CT image since they are acquired on the same patient, have the same spacing and the intensities correspond to the Hounsfield unit (HU). For this reason, the sum of squared differences (SDD) is used as the dissimilarity measure.

The registration were performed using the block-matching algorithm called Baloo [ Ourselin 2000] from the software MedInria [Toussaint 2007]. Fig. 5.4 summarized the registration procedures applied to the dataset #1.

Dataset #2 Registration

No manual segmentation was available to register dataset #2. The transformations from the dataset #1 (defined with the robust modiolar axis estimation) can therefore be used. A reference couple of CT and µCT images, I #1,CT ref and I #1,µCT ref was chosen as the medoid with respect to the intensity sum squared difference, i.e the image whose average dissimilarity with all images in the dataset #1 is minimal,

ref #1 = arg min i=1,...,9 9 j=1 N n=1 W CSS I #1,CT i • T #1,CT i→CSS (n) -W CSS I #1,CT j • T #1,CT j→CSS (n) 2 , (5.2) 
where I(n) represents the intensity of voxel n in image I. Similarly we choose a reference image from the dataset #2, I #2 ref , in order estimate only once the transformation (noted T #2 ref→CSS ) between the standard imaging plane in which all images I #2 i from dataset #2 have been acquired and the cochlear coordinate system. The reference image was chosen, once again, as the medoid image among the dataset #2, 

ref #2 = arg min i=1,...,987 987 j=1 N n=1 I #2 i (n) -I #2 j (n) 2 . ( 5.3) 
T #2 ref→CSS = arg min T ∈SE(3) N C W CSS I #1,CT ref • T #1,CT ref→CSS , W ref I #2 ref • T , (5.4) 
where the similarity criterion N C is the normalized correlation criterion (as suggested by [Jenkinson 2001] for monomodal image registration),

N C(X, Y ) = (XY ) X 2 Y 2 . ( 5.5) 
For every CT images I #2 i for i = 1, . . . , 987 we performed a rigid registration using I #2 ref as a reference image. This has the advantage of reducing the registration parameter space to explore since all images are relatively "close". The transformation is then estimated as,

T #2 i→ref = arg min T ∈SE(3) N C W ref I #2 ref , I #2 i • T . (5.6) 
The registration were performed using the FMRIB's Linear Image Registration Tool from the FSL library [Jenkinson 2001, Jenkinson 2002].

Eventually, images

I #2 i •T #2 i→ref •T #2
ref→CSS are expressed in the cochlear coordinate system. Fig. 5.5 summarizes the registration procedures applied to dataset #2.

Laterality

The presented pipeline is valid for right ears. An equivalent pipeline was applied to the left ears with a different reference image I #2 ref (chosen as the medoid among the left ears) except that the images were first flipped along the x-axis. (5.7)

Given θS the final segmentation can be obtained by assigning the class with the maximum probability.

Joint Shape and Intensity Modeling In order to perform joint shape and intensity model-based segmentation, the intensity model parameter θ ⋆ I is no longer considered as a model parameter but a random variable θ I . We introduce the model whose graphical representation is shown in Fig. 5.10. Following the conditional dependence between the variables, the joint probability of the observed and hidden variables p(θ S , θ I , Z n , I n ) factorizes as,

p(θ S , θ I , Z n , I n ) = p(I n |Z n , θ I )p(θ I |β)p(Z n |θ S )p(θ S |α) .
( 5.8) Let us paraphrase the following probabilities:

p(Z n = z i |θ S ) (5.9)
is the probability that the voxel n belongs to the label z i knowing the shape parameters θ S . Note that we extend the definition of the shape to include its pose. is the probability of observing intensity I n knowing the label Z n = z i and the parameters that characterize the intensity of this label,

We seek to estimate the posterior probability that the voxel n belongs to the label z i , p(Z n = z i |θ S , θ I , I n ) , (5.11) which can also be rewritten following Bayes rules,

p(Z n = z i |θ S , θ I , I n ) = p(I n |Z n = z i , θ I )p(Z n = z i |θ S ) L i=1 p(I n |Z n = z i , θ I )p(Z n = z i |θ S )
.

(5.12)

Model Inference

We seek to estimate the MAP, that is to find the optimal parameters θS and θI which maximize the following log-posterior probability, .13) where the first term corresponds to the log-likelihood, log L, and the second term corresponds to the log-prior and cst is a normalization constant corresponding to the log-evidence term. Since the log-likelihood is intractable because of the logarithm of a sum, we use the expectation maximization (EM) algorithm which takes an alternative strategy. Instead of considering the log-likelihood which is difficult because it involves the latent variable Z, we consider the complete log-likelihood ( 5.14) Let θ = {θ S , θ I } be the whole set of shape and intensity parameters. Since Z is hidden, the complete log-likelihood cannot be evaluated directly, therefore we consider its conditional expectation (under the posterior distribution of Z), noted ( 5.15) Using the Jensen's inequality, the auxiliary function Q(θ, θ [t] ) is a lower bound of the log-likelihood log L.

log p(θ S , θ I |I) = N n=1 log L i=1 p(I n |Z n = z i , θ I )p(Z n = z i |θ S ) + N (log p(θ S |α) + log p(θ I |β)) + cst , ( 5 
Q Q(θ, θ [t] ) = E Z [log L c (θ)|I, θ [t] ] = N n=1 L i=1 p(Z n = z i |θ [t] , I n ) (log p(I n |Z n = z i , θ I ) + log p(Z n = z i |θ S ))
Following Bayes rules, the posterior of the hidden variable p(Z n = z i |θ [t] , I n ) in equation 5.15 can be written,

p(Z n = z i |θ [t] , I n ) = p(I n |Z n = z i , θ [t] )p(Z n = z i |θ [t] ) L i=1 p(I n |Z n = z i , θ [t] )p(Z n = z i |θ [t] ) = p(I n |Z n = z i , θ [t] I )p(Z n = z i |θ [t] S ) L i=1 p(I n |Z n = z i , θ [t] I )p(Z n = z i |θ [t] S )
.

( 5.16) In the EM algorithm we alternate between expectation steps (E-steps) and maximization steps (M-steps) (Fig. 5.11). In the M-step, we update the estimation of Figure 5.11: EM algorithm (adapted from [Prince 2012]). The red and blue curves represent respectively the log-likelihood, log L, and the lower bound, Q(θ, θ [t] ).

θ S and θ I by maximizing the Q function, 5.17) where the maximization procedure for each parameter is equivalent to the minimization of the Kullback-Leibler divergence between p(Z|θ [t-1] , I) and p(Z|θ S ) for the shape model parameters and p(I|Z, θ I ) for the intensity model parameters. The I by minimizing D KL (p(Z|θ [t-1] , I) p(I|Z, θ I )) with respect to θ I . The illustration shows the probability distribution for the label cochlea (or foreground f g ).

θ[t] S = argmax θ S Q(θ, θ [t-1] ) = argmax θ S N n=1 L i=1 p(Z n = z i |θ [t-1] , I n ) log p(Z n = z i |θ S ) = argmax θ S N n=1 L i=1 -p(Z n = z i |θ [t-1] , I n ) log p(Z n = z i |θ [t-1] , I n ) p(Z n = z i |θ S ) = argmin θ S D KL (p(Z|θ [t-1] , I) p(Z|θ S )) θ[t] I = argmax θ I Q(θ, θ [t-1] ) = argmax θ I N n=1 L i=1 p(Z n = z i |θ [t-1] , I n ) log p(I n |Z n = z i , θ I ) = argmax θ I N n=1 L i=1 -p(Z n = z i |θ [t-1] , I n ) log p(Z n = z i |θ [t-1] , I n ) p(I n |Z n = z i , θ I ) = argmin θ I D KL (p(Z|θ [t-1] , I) p(I|Z, θ I )) , ( 

M-step, update θ

[t] S (Fig. 5.12) by minimizing the divergence between the shape model and the joint posterior probability maps 2. E-step, update the joint posterior probability with the new shape model parameters 3. M-step, update θ

[t] I (Fig. 5.14) by minimizing the divergence between the intensity model and the joint posterior probability maps 4. E-step, update the joint posterior probability with the new intensity model parameters 5.2.5 Specific Approach for Cochlear Segmentation

Specific Shape Model Probability Map

We seek to define p(Z|θ S ). The shape model is specified to include or yield metrics that are clinically relevant.

More precisely, the shape model parameters θ S characterize three surfaces: the cochlea, the scala tympani (ST) and the scala vestibuli (SV), the two scalae being enclosed by the cochlea. Each surface is fully parametric, oriented and represented in the physical space as already detailed in section 4.2.2.2. The probability that voxel n belongs to the label z i knowing the shape parameters θ S , is evaluated using the logit function of the signed distance d(Z n = z i , θ S ) between the center of the voxel n and the surface shape model S(θ S ) of the cochlea, which is similar to the LogOdds representation [Pohl 2006b]. .19) where c is a positive constant. The signed distance function d(Z n = z i , θ S ) returns positive values inside the shape and negative values outside.

p(Z n = z i |θ S ) = 1 1 + exp (c • d(Z n = z i , θ S )) , ( 5 
We consider 4 labels: the cochlea (or foreground f g ), the scala tympani (ST ), the scala vestibuli (SV ) and the background (b g ). Since the cochlea encloses the two scalae, we assume that the cochlea is the union of the scala tympani and the scala vestibuli. .20) furthermore the background is the absolute complement of the cochlea .23) An example of p(Z = f g |θ S ) is shown for a slice of the CT in Fig. 5.12 illustrating "shape model".

f g = ST ∪ SV , ( 5 
b g = f ∁ g , (5.21) 
d(Z n = b g , θ S ) = -d(Z n = f g , θ S ) , (5.22) 
p(Z n = b g |θ S ) = 1 -p(Z n = f g |θ S ) . ( 5 

Specific Cochlear Shape Model

The surfaces S(Z = z i , θ S ) are hierarchically described in Fig. 5.15. The parameters θ S include pose (with three position parameters and three orientation parameters) and shape parameterization.

The cochlear structures are defined as generalized cylinders, i.e. as crosssections swept along a centerline.

The centerline is parameterized in a cylindrical coordinate system by its radial and longitudinal coordinates within a given interval which defines the length of the centerline.

The cross-sections are modeled by a closed planar shape on which a varying affinity is applied along the centerline. The scala tympani and the scala vestibuli are modeled with two half pseudo-cardioids while the cochlear cross-section corresponds to the minimal circumscribed ellipse of the union of the tympanic and vestibular cross-sections.

The affinity of cross-section is parameterized by a rotation, a width and a height scaling.

Eventually each of the derived component of the model is represented by a vector or an one-dimensional function of the angular coordinate. One-dimensional functions are themselves parameterized by combinations of simple functions (i.e polynomial, logarithmic, etc.). The shape parameters probability distribution were modeled using either an uniform distribution (uninformative prior) or a Dirac δ distribution (fixed parameter). Since the segmentation is not an instance of the shape model and part of the variability is taken into account by the intensity model parameters θ I , we can use a very compact shape model. Without considering the fixed parameters θ S includes:

• 3 translation parameters, t x , t y and t z (in the direction x, y and z)

• 3 rotation parameters, r x , r y and r z (about the x-, y-and z-axis)

• 1 scale parameter of the radial component of the centerline, a

• 2 parameters of longitudinal component of the centerline, w 1 and w 2

• 1 parameter of the length (or more precisely the number of cochlear turn) θ max A small number of degrees of freedom was chosen in order to limit as much as possible the correlation between the shape parameters. CT Images of the Cochlea Radial Component The radial component is defined piecewise with a polynomial function and a logarithmic function of the angular coordinate θ c in the cylindrical coordinate system, .24) By constraining r(θ c ) to be continuously differentiable, 4 free parameters remain, a, b, θ 2 and p 0 since, .25) where .26) The parameter b is a widely studied cochlear measurements [Cohen 1996] that can be fixed (b = 0.15 rad -1 ). The parameters a, θ 2 and p 0 are correlated with the rotation parameter r z since

r(θ c ) = p 2 θ 2 c + p 1 θ c + p 0 if θ c < θ 2 ae -bθc else ( 5 
p 2 = C 1 θ 2 -C 2 + p 0 θ 2 2 p 1 = -C 1 θ 2 + 2C 2 + 2p 0 θ 2 , ( 5 
C 2 = ae -bθ 2 C 1 = -C 2 b . ( 5 
r(θ c + r z |a, b, θ 2 , p 0 ) ⇔ r(θ c |a ′ , b, θ ′ 2 , p ′ 0 ) , (5.27) 
where .28) To avoid this correlation we fixed the base of the spiral by setting θ 2 and p 0 (respectively to 5π/6 and 5 mm).

a ′ = ae -brz , θ ′ 2 = θ 2 -r z , p ′ 0 = p 2 r 2 z + p 1 r z + p 0 . ( 5 
Longitudinal Component Concerning the longitudinal component of the centerline we used the following simplified version, z(θ c ) = αe -βθc cos(θ c + φ) + q 1 θ c + q 0 , ( 5.29) which is the sum of an exponentially damped sinusoidal and a linear function. The parameter q 0 is linearly correlated with the translation parameter t z , the slope parameter p 1 varies sightly and α, β and φ have complex correlation with the rotation parameters.

To overcome this complex correlation and reduce the number of degrees of freedom we performed a principal component analysis of the parameters {α, β, φ, q 1 , q 0 } obtained by minimizing the sum of squared differences between the fitted function and discretized longitudinal component extracted manually from 20 CT images. The centerlines were extracted by manually setting 17 points, the projection on the z-axis was performed with the robust modiolar axis estimation method (subsection 3.2.4). Two principal components weighted by parameters w 1 and w 2 , were kept because in practice only the initial amplitude α and the phase φ of the exponentially damped sinusoidal part influence significantly the centerline. Note that α and φ are respectively roughly aligned with w 2 and w 1 , 

       α β φ q 1 q 0        =        1.
= z i , θ I ) = K i k=1 φ i,k t(I n |µ i,k , σ i,k , ν i,k ) , (5.31) 
where K i corresponds to the number of components of the mixture for the label z i , the weights φ i,k are positive and sum to one and the Student's t-distribution is .32) where Γ(•) is the gamma function.

t(I n |µ, σ, ν) = Γ ν+1 2 Γ ν 2 1 √ πν 1 + (I n -µ) 2 σ 2 ν -( ν+1 2 ) , ( 5 
We assume that the scala tympani, the scala vestibuli and the cochlea share the same probability of observing the intensity I n ,

p(I n |Z n = ST, θ I ) = p(I n |Z n = SV, θ I ) = p(I n |Z n = f g , θ I ) .
( 5.33) An example of p(I|Z = f g , θ I ) is shown for a slice of the CT in Fig. 5.3 illustrating quotesintensity model.

Intensity Distributions in Cochlear CT images

The dimension of the region of interest around the cochlea is 12x10x10 mm 3 . In this region, the background (b g ) consists mainly in fluids (perilymph and endolymph in the vestibular labyrinth), extremely dense bone (bony labyrinth), air and less dense bone (pneumatized temporal bone).

The foreground (the cochlea, f g ) contains mainly fluids (perilymph and endolymph), bony structures (cochlear walls) and negligible stiff structures (basilar membrane, organ of Corti, Reissner's membrane, etc.).

The set of images is CT scans, the Hounsfield unit (HU) is applicable here (Table 5.1).

Implementation

Signed Distance Evaluation

We call signed distance a function that has positive values when a point p is inside the label (p ∈ z i ) and negative values outside the label (p ∈ z ∁ i ). In order to evaluate d(Z = z i , θ S ), we use Algorithm 1 which computes the signed distance function with a coarse-to-fine approach. First parametric surfaces were discretized into triangular meshes so that all edges length are of the same order of magnitude (0.30±0.15 mm), which leads to meshes M with about 2500 points and 5000 triangles.

The distance is first approximated by rasterizing each mesh triangle in the image space (with the [Bresenham 1965]'s line algorithm). The holes of the resulting binary image BW are then filled (using morphological reconstruction [Soille 1999]), a hole being a set of background connected components that are not adjacent to the 6 sides of the three-dimensional image. The Euclidean distance between inside voxels and the closest outside voxel is approximated inside the binary image and conversely outside (but with negative values) (with the fast algorithm described in [Maurer 2003]).

The values of the voxels close to the mesh (within a given margin |d| < T = 0.6 mm) are reevaluated by computing the exact signed distance between the center of the voxels and the mesh (as described in Algorithm 2). This algorithm requires the computation of the signed distance between a point and an oriented triangle, Algorithm 4 in appendix B was used.

Eventually, the evaluation of the exact signed distance d(Z = z i , θ S ) is timeconsuming and the running time is O(N n p ), where N is the number of voxels and n p is the number of points in the triangle surface mesh.

The constant c in Eq. 5.19 is set to 4 mm -1 , such that the margin of 0.6 mm covers all voxels that have a probability to belong to a given label between 0.08 and 0.92. We assume that voxels far away from the surface shape (where p → 1 inside and p → 0 outside) do not influence the optimization procedure so that a first approximation is sufficient.

Optimization Algorithm

During the M-step of the EM algorithm, the equivalent minimization of the Kullback-Leibler divergences (Eq. 5.17) were performed using the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970] considering unconstrained functions (fminunc in MATLAB). The shape parameters θ S were rescaled so that minimum and the maximum values of the uniform priors corresponds to -5 and 5. The gradient was estimated with central finite differences with a step size of 0.1 for both shape and intensity parameters. CT Images of the Cochlea Algorithm 1: Signed distance map Input: parametric surfaces S(Z = z i , θ S ) for all labels {z i } i=1,...,L and image I Output: signed distance maps d(Z = z i , θ S ) for all labels {z i } i=1,...,L for i = 1, . . . , L -1 do M ← discretize S(Z = z i , θ S ) in a triangle mesh (n p points, {p i } i=1,...,np and n t triangles, {v 1,i , v 2,i , v 3,i } i=1,...,nt ); BW ← rasterize all triangles [Bresenham 1965]; BW ← fill in topological holes [Soille 1999]; d(Z = z i , θ S ) ← points (center of I n ) to binary image BW signed Euclidean distance [Maurer 2003] ; 

for n = 1, . . . , N do if |d(Z n = z i , θ S )| < T then d(Z n = z i , θ S ) ← PointToMesh(M, p),
d(Z n = z L , θ S ) = -max i=1,...,L-1 (d(Z n = z i , θ S ));
; for i = 1, . . . , n t do if p * i ∈ {v 1,i , v 2,i , v 3,i } then if |PointToTriangle(p, v 1,i , v 2,i , v 3,i ))| < |d| then d ← PointToTriangle(p, v 1,i , v 2,i , v 3,i ) ; end end end

Results

Two datasets were segmented.
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Algorithm 3: EM algorithm

1 θ[t-1] ← θ 0 ; 2 θ[t] ← θ 0 ; 3 ∆Q ← ∞ ; 4 while ∆Q > ε do 5 for i = 1, . . . , L -1 do 6 P i ← p(Z = z i |θ [t-1] , I) ; 7 end 8 P L ← 1 -L-1 i=1 P i ; 9 Q S (x) ← N log p(x|α) + N n=1 L i=1 P i,n log p(Z n = z i |x) ; 10 Q I,fg (x) ← N log p(x|β fg ) + N n=1 P i|z i =fg,n log p(I n |Z n = f g , x) ; 11 Q I,bg (x) ← N log p(x|β bg ) + N n=1 P i|z i =bg,n log p(I n |Z n = b g , x) ; 12 θ[t] ← BFGS(Q S (x), θ[t] ) ; 13 θ[t] ← BFGS(Q I,fg (x), θ[t] ) ; 14 θ[t] ← BFGS(Q I,bg (x), θ[t] ) ; 15 ∆Q ← Q S ( θ[t] ) + Q I,fg ( θ[t] ) + Q I,bg ( θ[t] ) -Q ; 16 Q ← Q + ∆Q ; 17 θ[t-1] ← θ[t] ;
18 end

Dataset #1 Segmentation

A summary of the available segmentations is given in Table 5.2. When comparing different modalities, the quantitative results will actually reflect both the segmentation and the registration quality. The segmentation are obtained from the probability maps using hard segmentation as described in section 5.2.5.4.

f g (ST ∪ SV ) ST SV
CT µCT CT µCT CT µCT manual segmentation Z 0 model fitting S automatic segmentation Ẑ Table 5.2: Available segmentations for dataset #1

We compared quantitatively the fitted parametric shape model S and the automatic segmentation Ẑ with manual segmentation Z 0 .

The Dice score (Eq 5.38) was computed between the rasterization of the shape model S and the automatic segmentation Ẑ on one hand and the manual segmentation Z 0 on the other hand. The Hausdorff distance was computed symmetrically between the surface shape model of the cochlea and the isosurface of the automatic Figure 5.17: Comparison of the manual segmentation Z 0 (a), (b), (c) and (g) and the automatic segmentation Ẑ (d), (e), (f), (h) and (i) on CT images segmentation on one side and the isosurface of the manual segmentation on the other side. The parametric surfaces were discretized in triangle meshes so that all edge lengths are of the same order of magnitude (0.30 ± 0.15 mm) and the meshes have the same number of vertices, in order to guarantee the homogeneity of the measurement. Table 5.3 presents the mean results obtained on dataset #1. The compared labels are described as method /modality/label, where the method can be manual segmentation Z 0 , model fitting S or automatic segmentation Ẑ, the modality may be CT or µCT and the label my be the scala tympani (ST ), the scala vestibuli (SV ), the cochlea (or foreground f g ).

To compare the cochlea f g and the union of the scalae ST ∪ SV , only the Dice is evaluated since the Hausdorff distance expresses a surface error and the isosurface of the union of different labels is not equivalent to the union of the isosurfaces of different labels.

Detailed results on the nine cochleae are presented in the appendix C. Above all, it is important to stress that the Dice-score obtained by comparing the registered manual segmentation performed on CT (Z 0 /CT/f g ) and the manual segmentation performed by the same expert on µCT (Z 0 /µCT/ST ∪ SV ) is on average equal to 0.76 which is not as good as the results obtained with automatic segmentation ( Ẑ/CT/f g , 0.78), as detailed in Table C.2. This highlights the limitations (large inter-rater variability) of manual CT images segmentation (Fig. 5.17).

Cochlear shape fitting was studied by Gavin Baker, his model-image registration framework presented in [START_REF] Baker | [END_REF]] and detailed in [Baker 2008] Other studies [Reda 2013, Reda 2014a, Reda 2014b] performed ST and SV segmentation by using the active shape model-based method developed in [START_REF] Noble | [END_REF]].

Dataset #2 Segmentation

Since no manual segmentation was available for all datasets, a qualitative visual check was performed by a head and neck imaging expert using 15 slices in 3 orientation planes per cochlea (see Fig. 5.19 as an example of such panel).

The quality of the automatic segmentation was classified into 4 categories : failure (the segmentation does not match the intensity), major imperfection (over 100 voxels are misclassified), minor imperfection (less 100 voxels are misclassified) and success. Major and minor imperfections were themselves classified into 2 categories: undersegmentation and oversegmentation. 95% of the segmentations were considered satisfactory as reported in Table 5. 5. Failed segmentations are due to pathological cochleae (Fig. 5.25) or bad initialization procedure (Fig. 5.26). We analyze the variability of the 4 shape parameters estimated with the large dataset. As a reminder, the parameters are initially scaled so that the minimum and the maximum values of the uniform priors corresponds to -5 and 5. The absolute value of the Pearson correlation coefficient between each shape parameters is lower than 0.16. The covariance matrix (Table 5.6) is diagonal dominant confirming that parameters are mostly independent.

Shape parameters of the longitudinal component, w 1 (Fig. 5.27), the radial component, a (Fig. 5.30a) and the length θ max (Fig. 5.30b) of the centerline follow roughly normal distributions (slightly skewed) while the parameter w 2 is bimodal follows the distribution of the mixture of two normal distributions. Parameter w 2 modeled the longitudinal component of the centerline. Fig. 5.29 shows the typical longitudinal profile of the centerline for each of the two modes by evaluating the cochlear with the mean value of each mode. Most of the variation occurs at the beginning of the basal turn. The first mode (N = 306) generates a cochlea with almost a straight longitudinal component of the centerline, while the second mode (N = 681) generates a cochlea that has been classified by [Avci 2014] as a rollercoaster. The classification of [Avci 2014] was created from 16 cadaveric µCT images. 

Bilateral Symmetry

The bilateral symmetry was reported by [Reda 2014a], where the hypothesis of symmetry was supported from data acquired on 10 patients. In order to characterize it, we evaluate the shape variability between pairs of left and right cochleae compared with interpatient cochlear shape variability.

The anatomical variability study has confirmed the existence of two categories of cochlear shape, one called "straight" and the other one called "rollercoaster". After classifying each right and left cochleae, we statistically examine the database. Based on the value of w 2 , 69% of all the cochleae are categorized as "rollercoaster" (i.e w 2 > -2.1 ), 64% of the patients have the left and right ears within the same category (50% with two "rollercoaster" and 14% with two "straight" cochleae) and 36% of the patients have one cochlea in one category and the other one in the other category.

Note that the fraction of the bilateral cochlea belonging to the same category (64%) is slightly higher than the probability that two independent cochleae belong to the same category (57%), p(rollercoaster) 2 + p(straight) 2 .

We also characterize the symmetry by evaluating the distance between cochleae in the shape parameters space by using the Mahalanobis distance (Table 5 Table 5.7: Quantitative evaluation of the shape variability between pairs of left and right cochleae compared with interpatient cochlear shape variability where θ S (i) are the shape parameters (without the pose) of the i th cochlea and Σ is the covariance matrix of [θ S (i)] i=1,...,987 (Table 5.6). For the intrapatient bilateral Mahalanobis i and j were such as they indicate the left and right cochleae of the patient, while for the interpatient Mahalanobis distance i and j are indices of different patients.

.7) d M , dM = i j (θ S (i) -θ S (j)) T Σ -1 (θ S (i) -θ S (j)) i j 1 , ( 5 
Finally to take advantage of the output of the automatic segmentation, we performed fine registration between all segmented CT by removing the rigid transformation, which has been estimated within the cochlear shape parameters. The Dice score between the segmented cochleae was compared (Table 5.7).

Discussion

We presented a new method for detailed cochlea segmentation from CT images with a joint shape and intensity model. The method was applied to two different datasets, a small one with high-resolution manually segmented µCT on cadaveric patients and a large one based on clinical CT patient images without any ground truth for which a quantitative evaluation was not available.

Dataset #1 For the first dataset we have provided the most common quantitative scores and compared then as fairly as possible with previous methods. It seems that the parametric shape model alone is realistic enough to overcome the limitations of the prior work, pointed out by [START_REF] Baker | [END_REF]]. The segmentation method combining shape and intensity model performed better compared to previous methods with most of the metrics, although the small number of cases (N ≤ 9) considered make this statement difficult to assert. Despite having a mean surface errors at least 50% larger than our proposed method, SSM-based method performed slightly better with respect to the Hausdorff distance. We can interpret this as a result of the strict constraint of SSM in the allowable shapes. Thus it offers robust performance with limited deformation but poor generalization. We can also note that our model cannot determine the border between the cochlea and the vestibule. Indeed, there is no clear anatomical and visible boundary since the vestibule communicates with the scala vestibuli, and is filled with perilymph and thus having the same intensity than the cochlea. This fuzzy anatomical boundary is an important source of error. To overcome this limitation, our proposed parametric model could be extended by adding the vestibule and the semicircular canals using a 3-torus model similar to what was done by [Bradshaw 2010, Zhang 2014, Kjer 2015b].

Dataset #2 To the best of our knowledge, this is the first time that tridiemensional reconstruction of the cochlea was reported on such a large dataset. The shape variability study performed on 987 cochleae indicates that 2 categories of cochlear shapes can be identified, instead of the 3 categories from a previous study [Avci 2014]. Given the strong bimodal distribution of the data, we could assume that the "intermediate" category is not a proper category and can be corrected by robust modiolar axis estimation. Thanks to the large dataset, a statistical study can be performed and indicates that 69% of the cochleae present a typical "rollercoaster" bump just before 180 degrees.

Several studies [Reda 2014a, Reda 2014b] conclude to a high bilateral symmetry. Our study mitigates this statement, indeed if the interpatient cochlear shape variability is greater than the intrapatient bilateral variability, we have shown that the symmetry is not obvious as 36% of the patient have two cochleae that can be categorized differently with respect to their longitudinal profiles.

Chapter 6

Conclusion

Current Clinical and Industrial Applications

Our knowledge of the cochlear shape and its anatomical variation in the population is currently limited. By studying the anatomical variability, we obtained statistics on parameters that are clinically relevant (number of cochlear turn, scala tympani diameter, maximal insertion depth, etc.). It can provide a better anatomical understanding for the clinicians and suggest electrode array design improvements for cochlear implant manufacturers.

CT imaging is used routinely as a non-invasive method for diagnosis, cochlear implant surgery planning and post-operative evaluation. Automatic cochlear cavities segmentation methods such as the one proposed in this thesis, may help the diagnosis by identifying pathological cochlear shapes or assist preoperatively the surgeon to choose the optimal electrode design and the optimal drilling trajectory.

Finally, very preliminary study has been performed to estimate the position of the electrode array in the post-operative scan with respect to the scala tympani identified in the preoperative scan [Demarcy 2016a]. To illustrate this clinical application, Pre-and postoperative CT images (Fig. 6.1) have been rigidly registered. Postoperative CT images present metal artifacts due to the electrode array (Fig. 6.1b), which can be easily segmented with image thresholding (Fig. 6.2b). Knowing the design of electrode array (Fig. 6.2a), it is possible to deform the model of electrode array so that it shares the same centerline as the skeletonization of the segmentation (Fig. 6.2c). The fusion of the cochlear shape model and the inserted electrode model allows to estimate the position of the electrode relative to the intracochlear cavities and the basilar membrane (Fig. 6.3). An evaluation of a critical factor of the surgery can be assessed: knowing the position and the insertion depth, the electrode array can be optimally activated, by deactivating electrodes located closed to basilar membrane trauma.

Contributions

The segmentation of the cochlea from medical images was challenging and several difficulties needed to be overcome. This thesis introduced original and significant contributions, specifically: 

Cochlear Shape Description

An automated and reproducible framework for cochlear shape analysis was introduced. Particularly, a robust modiolar axis estimation was proposed from cochlear centerlines. It was applied on segmented µCT images and validated on a synthetic cochlear model, quantitatively compared to manual axis estimation and another algorithm from the literature. A new non-ambiguous moving frame was described and allowed rigorous cross-section measurements and cross-section modeling [START_REF] Demarcy | [END_REF]].

We proposed a new cochlear shape model modeling the scala tympani and the scala vestibuli, fully parametric, realistic, with self-intersection avoidance [Demarcy 2016b]. Compared to previous work, the model, with 22 parameters, represents not only shapes with straight longitudinal component of the centerline but also typical "rollercoaster" shapes [Avci 2014]. The sections are no longer modeled by constant ellipses but half pseudo-cardioids with varying width and height. We proposed as well a compact cochlear shape model with only 4 parameters.

Cochlear Shape Variability Analysis

Thanks to the framework proposed for cochlear shape variability analysis, the crosssection tilt angle was measured from µCT images quantitatively along the cochlear centerline for the first time [START_REF] Demarcy | [END_REF]]. The tilt angle may have implication for occurrence of trauma and cochleostomy site selection [Briggs 2009].

The shape variability was studied with a large database (N = 987) and two categories of cochlear shape were identified and their proportions were measured on CT images. 69% of cochleae present a "dip" in the longitudinal component within the first basal turn which can have implications with respect to the surgical gesture and the design of the electrodes.

The bilateral symmetry in cochlear anatomy was quantified and the statement of high symmetry was mitigated. Indeed, if the interpatient cochlear shape variability is greater than the intrapatient bilateral variability, we have shown that the symmetry is not observed very broadly as 36% of the patient have two cochleae that can be categorized differently with respect to their longitudinal profiles.

Cochlear Model-based Segmentation From CT Images

Using the new parametric model, CT-based measurements uncertainty was quantified and compared to the ground truth high-resolution segmentation. In addition to the shape parameters, such as the number of cochlear turns or the cross-section parameters, the uncertainty of the maximal insertion depth given a patient and an electrode array design was quantified. One of the findings of this study was that despite their limited resolution classical CT images could be used by ENT surgeons to improve the surgery by safely selecting a patient-specific CI for instance [Demarcy 2016b].

Perspectives 123

We introduced a new cochlear segmentation method within a generative probabilistic Bayesian framework for CT images. We unify cochlear shape model fitting with a local appearance model using a model which describes the label of each voxel having shape and appearance parameters as hidden variables. The method applies an iterative expectation-maximization (EM) strategy that interleaves shape model parameters fitting and image segmentation with a mixture of Student's tdistributions. The results show that using the joint intensity and shape model the scala tympani and the scala vestibuli can be segmented from CT images with a mean surface error of 0.12 mm, which is at least 33% lower than previous studies.

Clinical and Industrial Applications

Automatic cochlear segmentation methods can be used to extract parameters that are clinically relevant and provide diagnosis of shape abnormality, for instance pathological cochleae with 1.5 turns instead of the expected 2.5 are diagnosed with cochlear hypoplasia such as the Mondini malformation [Sennaroglu 2002]. We introduced a measurements of the risk of trauma given different electrode array designs (lengths, diameters, flexibilities and shapes) and gave a proof of concept of the estimation of the electrode array position with respect to the cochlea cavities from clinically available CT images [Demarcy 2016a].

Perspectives

In the continuation of this work of thesis the following perspectives are envisaged.

Methodological Perspectives It is important to predict and analyze the uncertainty of the shape parameters and the estimated clinical measurements: variational Bayesian methods, stochastic sampling or estimation based on the Hessian matrix could be tested.

Modeling and Validation

Our proposed parametric model only describes the cochlea and could be extended by adding the vestibule and the semicircular canals, using a 3-torus model similar to what was done by [Bradshaw 2010, Zhang 2014, Kjer 2015b]. Furthermore, the method should be tested on a wider database including pediatric cases as it represents an important cohort of implanted patients. A more thorough evaluation must be performed by more independent raters and could be validated on a larger dataset of segmented high-resolution images (CT and µCT images) of the inner ear to be released by the Hear-EU project [Gerber 2017].

Scientific Applications

The contributions of this thesis open the doors for more scientific collaborations. A realistic and patient-specific cochlear could be used to improve electrophysiological simulation studied by Kai Dang from the Inria team Athena [START_REF] Dang | [END_REF]] or mechanical insertion simulation studied by Inria team Defrost and the Inserm research structure Minimally invasive and robotic surgical rehabilitation of hearing (UMR 1159) [Goury 2016]. A study of the correlation between the anatomical position of the implant, the insertion quality (complete, incomplete, traumatic) electrophysiological measurements (interaction in particular) and the functional results of implantation could be carried out by Dr Clair Vandersteen and Dr Julien Lahmar under the supervision of Pr Nicolas Guevara from the Nice University Hospital [START_REF] Vandersteen | [END_REF]]. The segmentation of the cochlear substructure could be validated by comparing the relative position of the electrode array estimated from CT images and observed from microdissection (Fig. 6.4). This requires to apply the segmentation method, to estimate the electrode position CT images acquired from cadaveric temporal bones and to perform a careful microdissection. Under the supervision of Pr Charles Raffaelli, the temporal bone database could be increased to include more pathological and pediatric data. Using our cochlear segmentation method, a comprehensive study of the density of the bony labyrinth could be conducted in order to improved the identification of grade 2 otospongiosis, which is characterized by a calcification of the cochlea.

Clinical and Industrial Perspectives On the clinical and industrial side, a software application could be provided to ENT surgeons enabling them to select the most suitable cochlear implant model for a given patient before surgery. Surgical skills require practice and deep anatomical knowledge. By developing a cochlear insertion simulator, it could be possible to virtually augment the surgical experience before the implantation, with patient specific or randomly generated cochlear models. Indeed due to the complexity of the temporal anatomy and the lack of preoperative landmarks to planned the ideal axis of electrode insertion, it has been shown that experienced clinician determined better insertion approaches [START_REF] Vandersteen | [END_REF], Torres 2015].

Given the broad potential for clinical and industrial applications, the models and methods developed in this thesis would profit from future research.

Dice

Hausdorff C.4: Model fitting and segmentation results obtained on dataset #1 between Z 0 /µCT/SV , the manual segmentation of the ST on µCT and S/CT/SV and Ẑ/CT/SV , respectively the fitted shape and the automatic segmentation of the cochlea on CT.

Segmentation and Study of Anatomical Variability of the Cochlea from Medical Images

Abstract: Cochlear implants (CI) are used to treat hearing loss by surgically inserting an electrode array into the organ of hearing, the cochlea. Pre-and post-operative CT images are used routinely for surgery planning and evaluation of cochlear implantation. However, due to the small size and the complex topology of the cochlea, the anatomical information that can be extracted from the images is limited.

The first focus of this work aims at defining automatic image processing methods adapted to the spiral shape of the cochlea to study the cochlear shape variability from high-resolution µCT images.

The second focus aims at developing and evaluating a new parametric cochlear shape model. The model is applied to extract patient-specific clinically relevant metrics such as the maximal insertion depth of CI electrode arrays. Thanks to the uncertainty quantification, provided by the model, we can assess the reliability of CT-based segmentation as compared to the ground truth segmentation provided by µCT scans.

Finally, the last focus concerns a joint model of the cochlear shape (and its substructures) model and its appearance within a generative probabilistic Bayesian framework. The proposed segmentation method was applied to a large database of 987 CT images and allowed the statistical characterization of the cochlear anatomical variability along with the quantification of the bilateral symmetry.

This work paves the way to novel clinical applications such as improved diagnosis by identifying pathological cochlear shapes; preoperative optimal electrode design and insertion axis planning; postoperative electrode position estimation and implantation evaluation; and cochlear implantation simulation.

Keywords: cochlea, segmentation, shape model, shape variability
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Figure 2 . 1 :

 21 Figure 2.1: Anatomy of hearing adapted from [Miroir 2012]

Figure 2 . 2 :

 22 Figure 2.2: Sketch of the physiology of hearing (top) and of the cross-section of the cochlea (bottom). Mechanical waves are represented with arrows and electrical pulses with thunderbolt symbols.

Figure 2 . 3 :

 23 Figure 2.3: Three-dimensional model of the inner ear

Figure 2 . 4 :

 24 Figure 2.4: Diagrammatic longitudinal section of the cochlea (from [Gray 1918])

Figure 2 . 6 :

 26 Figure 2.6: Surgical view of the approach for cochlear implantation (right ear).The approach is performed by mastoidectomy (blue dotted lines) and posterior tympanotomy (yellow dotted lines) (from[Nguyen 2011]) 

Figure 2 . 7 :

 27 Figure 2.7: Temporal bone CT image

Figure 2 . 8 :

 28 Figure 2.8: Temporal bone CBCT image (from [Peltonen 2009]) acquired to investigate postoperatively an ossicular prosthesis (arrow).

Figure 2 .

 2 Figure 2.10: µCT scans of the cochlea with sample preparation (from [Kjer 2015b]). Thiel-solution was used for fixation with cochlea specimen without fluid (left) and fluid-filled specimen (right).

2. 5 .

 5 Figure 2.11: Temporal bone MRI sagittal slices (from [Shi 2011]). The cochlear region is indicated by semi-transparent red color.

Figure 2 .

 2 Figure 2.12: Example of cochlear segmentation (from [Noble 2011]). Segmentation of the scala tympani (red) and the scala vestibuli (blue) are shown on CT (top) and µCT (bottom) images.

Figure 3 .

 3 Figure 3.1: (a) µCT image acquired on patient #4. An anisotropic diffusion filter was applied to reduce image noise. (b) Segmentations of the scala tympani (blue) and the scala vestibuli (yellow). The round window is not present in this slice.

Figure 3

 3 Figure 3.2: Patient 1 Manually segmented µCT slices in the yz-(a) and xz-planes (b) and volume (c) of the ST (blue) and SV(orange).

Figure 3 . 6 :

 36 Figure 3.3: Patient 2

  Figure 3.7: Patient 6

Figure 3 .

 3 Figure 3.11: Flowchart of the automated centerline extraction. (Abbreviations: ST, scala tympani; SV, scala vestibuli; RW, round window; C, cochlea).

Figure 3 .

 3 Figure 3.12: Nine ST centerlines overlaid over their corresponding three-dimensional segmented cochleae.

Figure 3 .Figure 3 .

 33 Figure 3.13: Comparison of modality-centered anatomical coordinate system (l, a, s) and BCCS (x, y, z). (a) Left sagittal view from posterior to anterior (a-axis) and from inferior to superior (s-axis) and (b) its corresponding close-up view. (c) Superior transverse view from left (l-axis) to right and from posterior to anterior (a-axis) and (d) its corresponding close-up view. The segmented scala tympani (blue) and the bony labyrinth (yellow) of the patient #1 (right cochlea) are represented.The z-axis oriented from the base to the apex of the modiolus, the x-axis passes through the center of the round window. There is no simple relationship (such as coplanarity) between axes and planes from the two coordinate systems. The angle between a and z-axes is know to be around 45 •[Xu 2000], which is not exactly the case here.

  b and c are positive constants. This cochlear model, completely parameterized by θ ∈ [θ 0 , θ 1 ], is close to the one given by[Clark 2011], discarding the piecewise definition of the radial function used to model the basal turn.

Figure 3 .

 3 Figure 3.15: Cylindrical coordinates.

Chapter 3 .Figure 3 .

 33 Figure3.16: û and v can be linked to the radial r(θ) and longitudinal component z(θ) of the central paths. û is defined in the xy-plane and ∠ûr the angle between û and r, the radial unit vector, is the complementary to the logarithmic spiral pitch ψ = cot -1 (b) where b is constant for a logarithmic spiral (a.k.a. equiangular spiral) (as inEq. 3.6). ∠vẑ the angle between v and ẑ, is the longitudinal growth rate, ∠vẑ(θ) = arctan(dz/dθ).

Figure 3 .Figure 3 .

 33 Figure 3.18: Individual and mean arc length of the lateral, central and modiolar paths of the scala tympani as a function of the angular coordinate.

Figure 3 .Figure 3 .Figure 3 .

 333 Figure 3.21: Mean radial component of the tympanic (ST) and vestibular (SV) central paths as a function of the angular coordinate.

Figure 3 .

 3 Figure3.24: Modiolar axis estimation from a real cochlear centerline (patient #3). A robust PCA of a multivariate Student's t-distribution is performed on the corrected centers of curvature. The weights are shown with the color map, the green points are weighted more in the Student's t-distribution whereas the red points belong to the tail of the distribution and are almost not taken into account.

Figure 3 .

 3 Figure 3.25: Automatic and manual modiolar axis estimation from a real cochlear centerline (patient #1).

Figure 3 .

 3 Figure3.26: Synthetic cochlear model as defined by[Yoo 2000b] with and without random Gaussian noise at three different scale (0.23 mm, 0.94 mm, 3.76 mm) with a total amplitude of 0.18 mm.

Figure 3 .

 3 Figure3.27: Sensitivity of the algorithm A developed by[Yoo 2000b] with respect to the initial rotation R x .

Figure 3 .

 3 Figure 3.29: Influence of the axis estimation on the centerline projected onto the modiolar axis (called longitudinal component). The angle between the original and the modified axis is equal to 11.5 • .

Fig. 3 .

 3 Fig. 3.31 gives a sample of 24 cross-sections (represented in the uv-planes) computed from the three-dimensional segmentations.The mean cross-section area (Fig.3.33), height (Fig.3.34) and width (Fig.3.35) of the tympanic and vestibular ducts are presented. After 360 • the width of the scala tympani and vestibuli tend to be equal.Fig. 3.32 presents the individual tilt angle α, the mean angle between û and the major axes of the tympanic and vestibular scalae. Examples of the influence of the tilt angle can be appreciated in Fig.3.31a, b and c. 

  Fig. 3.31 gives a sample of 24 cross-sections (represented in the uv-planes) computed from the three-dimensional segmentations.The mean cross-section area (Fig.3.33), height (Fig.3.34) and width (Fig.3.35) of the tympanic and vestibular ducts are presented. After 360 • the width of the scala tympani and vestibuli tend to be equal.Fig. 3.32 presents the individual tilt angle α, the mean angle between û and the major axes of the tympanic and vestibular scalae. Examples of the influence of the tilt angle can be appreciated in Fig.3.31a, b and c. 

Figure 3 .

 3 Figure 3.30: Longitudinal component of the cochlear centerline as a function of the arc length. Both longitudinal components are extracted from the same cochlear centerline.

Figure 3 .Figure 3 .

 33 Figure 3.31: Cross-sections (patient #3), with the scala tympani (blue) and the scala vestibuli (yellow) from the base to the apex. Subfigure (a) illustrates a leakage of the label "scala vestibuli" to the vestibule. Subfigure (x) illustrates the difficulty to have well defined centerlines at the apex, where both scalae merge.

Figure 3 .Figure 3 .Figure 3 .

 333 Figure 3.33: Cross-section area of the tympanic and vestibular scalae. The thinner lines represent ± 1 standard deviation.

Figure 4 . 1 :

 41 Figure 4.1: Slices of CT (a,c,e) and µCT (b,d,f) with segmented cochlea (red), ST (blue) and SV (yellow).

Figure 4 . 2 :

 42 Figure 4.2: Parametric model with the ST (blue), the SV (yellow) and the whole cochlea (translucent white).

  .1) and logarithmic spiral (4.2) while, at the same time,[START_REF] Arne | Analysis Of The Guinea Pig Cochlea Using A General Cylindrical Coordinate System[END_REF]] Parameters of Cohen's model(4.4) with θ ∈ [θ 1 , θ f ] (in radians). a and c are in millimeters, all others are dimensionless.noted the resemblance of the guinea pig scala tympani with an Euler spiral (4

Figure 4 . 3 :

 43 Figure 4.3: Example of cochlear solid shape model from[Baker 2008] 

Figure 4 . 4 :Figure 4 . 5 :

 4445 Figure 4.4: Radial component of the centerline.

Figure 4 . 6 :

 46 Figure 4.6: First term z 0 of longitudinal component of the centerline.

Figure 4 . 7 :Figure 4 . 8 :

 4748 Figure 4.7: Illustration of the influence of the parameters q 1 , q 0 , θ 1 , r 1 .

Figure 4 . 9 :

 49 Figure 4.9: Illustration of the influence of the parameters k, µ, ω, φ.

Figure 4 .

 4 Figure 4.10: Parametric cross-sections (ST in blue, SV in orange, cochlea in white) fitted to a microscopic images from [Rask-Andersen 2012], here θ ≈ 3π/4.

Figure 4 .

 4 Figure 4.11: Lateral wall (red), mid-scala (orange) and perimodiolar (yellow) positions of a 0.5 mm diameter electrode.

Figure 4 .

 4 Figure 4.12: Estimated posterior for the parameter r 0 with patient #1. IG CT = 0.91, IG µCT = 2.03.

Figure 4 .

 4 Figure 4.15: Shape models of the cochlea (light line) of the MAP of patient 1 with the segmented ST (blue) and SV (orange) on µCT images.

Figure 4 .

 4 Figure 4.16: CDF of the maximal insertion depth estimation for Patient #1.

Figure 5 .

 5 Figure 5.1: Example of labyrinth segmentation with SSM (from [Kjer 2015d]).

Chapter 5 .Figure 5 . 2 :

 552 Figure 5.2: Modeling the contingency of CT images through shape and appearance model (adapted from [Eslami 2013a]).

Figure 5 . 3 :

 53 Figure5.3: Overview of the method. Rigid registration is first performed in order to orient the cochlea in the cochlear coordinate system centered on a small region of interest. Intra-cochlear structures probabilities are estimated by iteratively optimizing the shape and intensity model parameters so that it minimizes the discrepancy between the posterior probability of the label knowing the shape and intensity (combined model) and the probability knowing the shape only (shape model) on one hand, and knowing the intensity only (intensity model) on the other hand. Eventually hard segmentation is performed with the maximum a posteriori (MAP) of intracochlear structures probabilities. Resulting isocontours and isosurfaces are represented.

Figure 5 . 4 :

 54 Figure 5.4: Summary of the registration procedures applied to dataset #1. Rounded rectangles represent images, black arrows represent rigid transformation T , connectors represent image registration where the red arrow indicates the fixed image and the blue arrow the moving image.

Figure 5 . 5 :

 55 Figure 5.5: Summary of the registration procedures applied to dataset #2. Rounded rectangles represent images, black arrows represent rigid transformation T , connectors represent image registration where the red arrow indicates the fixed image and the blue arrow the moving image.

Figure 5 . 6 :

 56 Figure 5.6: Image I #2 31 from the dataset #2 shown in the axial, sagittal and coronal planes

Figure 5 .Figure 5 . 9 :

 559 Figure 5.7: W ref I #2 31 • T #2 31→ref , image I #2 31 from the dataset #2 registered to the reference image I #2 ref cropped around the cochlea in a 30x30x30 mm 3 box, shown in the axial, sagittal and coronal planes

Figure 5 .

 5 Figure 5.10: Graphical model for the generic multi-class approach for joint shape and intensity model-based segmentation. In this model, I n the intensity of the voxel n = 1, . . . , N is linked to the latent label Z n and the intensity model parameter θ I . The label Z n is linked to shape model parameter θ S . The observed (known) variables are shaded.

  log L c as if Z were observable, log L c (θ S , θ I ) = log p(I, Z|θ S , θ I ) = N n=1 log p(I n , Z n |θ S , θ I ) = N n=1 log p(I n |Z n , θ I ) + log p(Z n |θ S ) .

(

  log p(I n |Z n = z i , θ I ) + log p(Z n = z i |θ S )) n |Z n = z i , θ I )p(Z n = z i |θ S ) = log L .

Figure 5 .

 5 Figure 5.13: Kullback-Leibler divergence between the joint and the intensity model probability maps, D KL (p(Z|θ [t-1] , I) p(I|Z, θ I )).

Figure 5 .

 5 Figure 5.14: Graphical illustration of the M-step used to update θ

Figure 5 .

 5 Figure 5.15: Derivation of the model parameters describing the surface shape model S

Chapter 5 . 5 :Figure 5 .

 555 Figure 5.18: Examples of three-dimensional shapes of the ST (blue) and SV (orange) obtained with automatic segmentation from CT images.

Figure 5 .Figure 5 .Figure 5 .

 555 Figure 5.19: Example of automatic segmentation considered as a "success"

Figure 5 .

 5 Figure 5.22: Example of automatic segmentation considered as a "minor imperfection" with oversegmentation. Segmentation errors are marked in red.

Figure 5 .

 5 Figure 5.23: Example of automatic segmentation considered as a "major imperfection" with undersegmentation. Segmentation errors are marked in red.

Figure 5 .

 5 Figure 5.24: Example of automatic segmentation considered as a "major imperfection" with oversegmentation. Segmentation errors are marked in red.

  Figure 5.27: Shape parameter w 1

Chapter 5 .Figure 5 .

 55 Figure 5.28: Shape parameter w 2

Figure 5 .Figure 5 .

 55 Figure 5.29: Shape parameters of the longitudinal component of the centerline. The right line represents α(w 1 , w 2 ) = 0, The color map represents φ(w 1 , w 2 ). α, correlated with w 2 , and φ, correlated with w 1 , are respectively the initial amplitude and the phase of the exponentially damped sinusoidal part.

Figure 5 .

 5 Figure 5.32: Longitudinal component of the centerline generated with values of the shape parameter w 2 taken around the mean of the second model, called "rollercoaster". Similarly, variations of the parameter w 1 around its mean mainly affect the position of the bump (minimum). Mahalanobis distance Dice score intrapatient bilateral 0.61 0.91 interpatient 0.74 0.87

Figure 6

 6 Figure 6.1: (a) Pre-(b) Postoperative CT images

Figure 6 . 3 :

 63 Figure 6.3: Post-implantation electrode position obtained by rigid registration between pre-and postoperative CT image with cochlear and electrode model fitting.

Figure 6 . 4 :

 64 Figure 6.4: Microdissected cochlea performed by[START_REF] Vandersteen | [END_REF] 
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  shows an example of automatic and manual axis estimation.

		patient	cochlear turns	cochlear length (mm)	ST length (mm)	SV length (mm)
		1		2.32	23.6		25.3	22.9
		2		2.57	23.5		25.3	22.9
		3		2.74	26.1		26.7	27.0
		4		3.08	25.5		27.8	25.6
		5		2.14	24.5		25.8	24.5
		6		2.32	23.0		24.3	22.6
		7		2.74	24.6		26.0	24.6
		8		2.54	23.9		26.5	23.2
		9		2.67	24.6		26.8	24.2
	Table 3.2: Measurements determined from the individual cochlear centerlines
	length s ST (mm) (3)	20 30 50 40		lateral path central path modiolar path mean curves	
	arc					
	ST	10				
		0				
		0	180	360	540	720	900 1080
			angular coordinate 3 (degree)

  Chapter 3. Analysis of Human Cochlea Shape Variability from µCTImages

	3				number of cochlear turn				
										this study
	2.5									Kjer et al. (2015)
										Avci et al. (2014)
	2									Shin et al. (2013)
										Braun et al. (2012)
	1.5									Erixon et al. (2009)
										Kawano et al. (1996)
	1										
	0.5										
	0										
	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3	3.1

probability Figure 3.36: Comparison of measurements of the number of cochlear turns. A normal distribution was fitted to the concatenated measurements.

Table 4 .

 4 2: Polynomial coefficients of degree p for cross-section functions α(θ), w ST (θ), h ST (θ), w SV (θ) and h SV (θ)

	p	α	w ST			h ST	w SV	h SV
	0	0.966	2.59			0.952	2.09	1.27
	1 2 3 4 5 6 7 8 9	-1.15 -0.784 2.17 -1.60 0.620 -0.150 2.43 × 10 -2 -2.76 × 10 -3 2.23 × 10 -4 -1.31 × 10 -5 5.45 × 10 -7 -1.59 × 10 -8 3.08 × 10 -10 -3.56 × 10 -12 1.86 × 10 -14	-0.815 0.545 -0.196 3.73 × 10 -2 -4.00 × 10 -3 2.52 × 10 -4 -9.25 × 10 -6 1.84 × 10 -7 -1.52 × 10 -9	1.15 -1.36 0.670 -0.180 2.95 × 10 -2 -3.08 × 10 -3 2.12 × 10 -4 -9.47 × 10 -6 2.67 × 10 -7 -4.29 × 10 -9 3.01 × 10 -11	-0.937 0.593 -0.165 2.39 × 10 -2 -1.94 × 10 -3 -1.80 × 10 -3 -1.03 0.632 -0.166 2.29 × 10 -2 8.85 × 10 -5 8.16 × 10 -5 -2.13 × 10 -6 -1.97 × 10 -6 2.09 × 10 -8 1.97 × 10 -8
			ds(θ) = dr 2 (θ) + r 2 (θ)dθ 2 + dz(θ)		(4.35)
		ds(θ) =	dr(θ) dθ	2	+ r 2 (θ) +	dz(θ) dθ	2	dθ	(4.36)

Table 4 .

 4 3: Dice indices between the MAP and manual segmentation.

	patient with µCT with CT
	1	0.78	0.82
	2	0.78	0.86
	3	0.76	0.75
	4	0.79	0.82
	5	0.76	0.80
	6	0.78	0.79
	7	0.75	0.76
	8	0.79	0.79
	9	0.79	0.79
	mean	0.77	0.80

  Cross-sectional Parameters All cross-sectional parameters are fixed because they deformed the shape only locally and this variability is well captured by the intensity model. The cross-sectional parameters are comprehensively described in Table4.2.5.2.5.3 Specific Intensity ModelMixture of Student's t-distributions The probability of observing intensity I n knowing the label Z n is parameterized with mixtures of Student's t-distributions.

	0.473  0.209   0.105 0.227 -0.114 100 -0.089 0.310 -0.211 0.571 0.558 -0.035 0.224 -0.028 0.014    	•	 	1 w 2 w 1	 	(5.30)

p(I n |Z n

  where p is the center of I n ;

		end
	10	end
	11 end
	12 for n = 1, . . . , N do
	13	

Table 5 .

 5 3: Mean model fitting and segmentation results obtained on dataset #1.Comparison with the State of the Art Previous works already performed cochlear anatomy segmentation and several metrics have been used to evaluate the segmentation quality. Since the goal is to performed segmentation of conventional CT and despite the great interest of the methods, µCT segmentation methods[Kjer 2014b, Ruiz Pujadas 2016a, Ruiz Pujadas 2016b] are not involved in the comparison.

			Dice Hausdorff distance (mm)
	Compared labels	score	50%	68%	95% 100%
	Z 0 /CT/f g	S/CT/f g Ẑ/CT/f g	0.79 0.84 0.10 0.16 0.40 1.31 0.13 0.21 0.48 1.42 Table C.1
	Z 0 /µCT/ ST ∪ SV	S/CT/f g Ẑ/CT/f g Z 0 /CT/f g	0.70 0.78 0.76	---	---	---	-Table -C.2 -
	Z 0 /µCT/ST	S/CT/ST Ẑ/CT/ST	0.72 0.77 0.08 0.14 0.37 0.87 0.11 0.17 0.40 0.88 Table C.3
	Z 0 /µCT/SV	S/CT/SV Ẑ/CT/SV	0.70 0.73 0.08 0.14 0.34 0.10 0.16 0.37 0.96 Table C.4 0.97

Table 5 . 4 :

 54 was validated by Summary of the comparison with previous studies. N indicates the number of segmented images ground truth segmentation making quantitative evaluation impossible. The training dataset is composed of manually segmented µCT and a fitted statistical deformation model is evaluated on downsampled µCT images to CT resolutions. By avoiding the multi-modal registration, the study achieved labyrinth segmentation with a Dice score of 0.88 ± 0.02, a mean surface error of 0.11 ± 0.01 and a Hausdorff distance of 0.58 ± 0.11.

					Proposed
					method
	Study	Comparison	Metric		(N = 9)
	Baker 2008 (N = 4)	S/CT/f g vs Z 0 /CT/f g	Precision	0.72 ± 0.09	0.80 ± 0.06
		Ẑ/CT/ST	Dice score	0.77	0.77
		vs	Mean surface error	0.18	0.12
	Noble 2011 (N = 5)	Z 0 /µCT/ST Ẑ/CT/SV	Hausdorff distance Dice score	0.8 0.72	0.87 0.73
		vs	Mean surface error	0.22	0.12
		Z 0 /µCT/SV	Hausdorff distance	0.8	0.97
	Kjer 2015 (N = 2)	Ẑ/CT/f g vs Z 0 /µCT/ST ∪ SV	Mean (± 1 std) surface error CT to µCT	0.22 ± 0.17	0.12 ± 0.13

Table 5 .

 5 6: Covariance matrix of the 4 shape parameters

		w 1	w 2	a	θ max
	w 1	0.12 -0.03 0.01 0.01
	w 2	-0.03 0.52 -0.01 -0.03
	a	0.01 -0.01 0.27 -0.02
	θ max 0.01 -0.03 -0.02 0.09

  .67 0.73 0.12 0.10 0.19 0.15 0.40 0.34 0.77 0.82 2 0.67 0.68 0.11 0.09 0.18 0.16 0.38 0.39 0.60 0.73 3 0.70 0.74 0.10 0.08 0.15 0.14 0.38 0.34 1.19 1.19 4 0.71 0.73 0.10 0.09 0.16 0.15 0.33 0.31 0.77 0.51 5 0.70 0.73 0.10 0.08 0.16 0.15 0.36 0.36 0.71 0.69 6 0.66 0.75 0.12 0.08 0.19 0.14 0.37 0.32 0.64 1.39 7 0.74 0.77 0.08 0.06 0.12 0.12 0.32 0.28 0.75 0.68 8 0.72 0.73 0.08 0.08 0.14 0.14 0.40 0.37 2.45 2.08 9 0.71 0.75 0.10 0.09 0.18 0.15 0.38 0.33 0.72 0.62 mean 0.70 0.73 0.10 0.08 0.16 0.14 0.37 0.34 0.96 0.97

								distance (mm)		
		score		50%		68%		95%		100%	
	#	S	Ẑ	S	Ẑ	S	Ẑ	S	Ẑ	S	Ẑ
	1 0Table										

(a) (b) (c)

(a) (b) (c) (d) (e) (f) (g) (h) (i)
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( 5.18) In the E-step we evaluate the new value of p(Z n = z i |θ [t] , I n ) to update the Q function.

Figure 5.12: Graphical illustration of the M-step used to update θ

[t] S Summary In a nutshell, the algorithm proceeds with 3 probability maps for each class:

• p(Z|θ S ), probability defined by the shape model

• p(I|Z, θ I ), probability defined by the intensity model

• p(Z|θ, I), joint posterior probability due to the shape and intensity model

The algorithm adjusts iteratively the shape and intensity model parameters in the following manner: 

Hard Segmentation

Given the considered labels and their relations (Eq. 5.20 and 5.21), two sets of label can be considered {f g , b g } or {ST, SV, b g }.

The hard segmentation Ẑn of the voxel n is then obtained by MAP which is equivalent to local majority voting, .34) where θ is computed using the EM algorithm. An example of Ẑn is shown on the right side of Fig. 5.3 as isocontours and isosurfaces.

Chapter 5. Joint Shape and Intensity Model-Based Segmentation of CT Images of the Cochlea evaluating the precision, the recall and the Jaccard index between fitted shape and synthetic noisy images. As a reminder, when comparing the results of a segmentation Z and a reference mask A, we write .36) .38) In [Baker 2008], a cochlear shape model was fitted to four CT images of the temporal bone. After being manually initialized the precision was evaluated by comparing with manual segmentations. The method performed with a precision of 0.72 ± 0.09, while our method presented in this study provides a precision of 0.80 ± 0.06 considering model fitting only and 0.81 ± 0.05 with joint shape and intensity model-based segmentation.

The problem and validation described in [START_REF] Noble | [END_REF]] are similar to the problem dealt with in this study. Indeed, in [START_REF] Noble | [END_REF]] manually segmented ST and SV from high-resolution images were compared to five automatically segmented conventional CT in order to obtain quantitative measurements. This is equivalent to compare the label Z 0 /µCT/ST and the label Ẑ/CT/ST , as in Table C.3 (and similarly for SV in Table C.4). The authors used a four modes active shape model trained with a leave-one-out approach and claimed a Dice score of 0.77 for the scala tympani and 0.72 for the scala vestibuli, which is close to the score of 0.77 and 0.73 obtained here. Their segmentation method applied to five cadaveric cochleae achieved an average mean and maximum surface errors of 0.21 mm and 0.8 mm, while our method achieved 0.12 mm and 0.92 mm. [Noble 2012, Noble 2013] applied also the method for spiral ganglion segmentation with similar outcomes.

Almost the same validation (i.e comparing detailed µCT based segmentation and CT) was performed by [Kjer 2015d], with the exception that the label considered was a unique shape of what we can call the labyrinth, i.e. the vestibule, semicircular canals, and cochlea. The fairest comparison would be to compare with segmentation errors between the label Z 0 /µCT/ST ∪ SV and the label Ẑ/CT/f g , as in Table C.2. For the same reason that prevented us to compute the Hausdorff distance, the authors refrained from computing the symmetric distances and computed the mean (± 1 std) and maximum surface errors from the automatic CT segmentation to the manual µCT segmentation: 1.15 mm and 0.22 ± 0.16 mm for one case and 0.89 mm and 0.23 ± 0.18 mm for the other, while the average measurements calculated here are 0.88 mm and 0.12 ± 0.13 mm.

Hans Martin Kjer's PhD thesis [Kjer 2015b], shows promising results that it would be interesting to compare to. In the last chapter, the testing dataset has no 
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Equations for the discretization scheme of the centerline

In practice the continuous curve x is approximated by a piecewise linear curve denoted {x i } n i=1 . In subsection 3.2.3 and more specifically in Eq. 4.3, x has also a temporal dimension t. {x i } n i=1 are rediscretized at each time step using linear interpolation to obtain all line segments x i x i+1 of equal length ∆s. Derivatives were approximated using finite difference methods,

∇P (x) was approximated using trilinear interpolation onto the gradient maps in the three dimensions computed from the distance map P using the Prewitt operator.

In subsection 3.2.4, line segments x i x i+1 are not constant. The left and right discrete tangent unit vectors, respectively t i-and t i+ are estimated: .4) .5) The discrete tangent and normal unit vectors, t i and n i can be calculated as follows: .6)

The discrete curvature κ i can be set as, 128 Appendix A. Equations for the discretization scheme of the centerline

using a discretization of Serret-Frenet formulas or,

as the inverse of the circumradius of the triangle x i-1 x i x i+1 .

Additional algorithm: Point to triangle signed Euclidean distance Algorithm 4 can be interpreted as follow: Lines 1 to 5, compute the normal n to the plane defined by {v 1 , v 2 , v 3 }, the signed distance between d between the point p and the plane and its projection p 0 . Lines 6 to 8, express the projected point p 0 in the barycentric coordinate system of the triangle such as,

The coefficients λ are used to determine if the projected point is inside or outside the triangle. If it is outside, we check if the closest point in the triangle belongs to a vertex (lines 12 and 16) or an edge (line 18).

We use the convention that surface normal are oriented toward the outside and that the signed distance is positive inside, so line 22 returns the opposite value. C.2: Model fitting and segmentation results obtained on dataset #1 between Z 0 /µCT/ST ∪ SV , the union of the manual segmentation of the ST and SV on µCT and S/CT/f g , Ẑ/CT/f g and Z 0 /CT/f g respectively the fitted shape, the automatic segmentation and the manual segmentation of the cochlea on CT.

Dice

Hausdorff distance (mm) score 50% 68% 95% 100% # S Ẑ S Ẑ S Ẑ S Ẑ S Ẑ 1 0.72 0.76 0.11 0.08 0.18 0.15 0.44 0.39 0.80 0.76 2 0.67 0.73 0.16 0.10 0.22 0.17 0.45 0.40 0.87 0.78 3 0.70 0.74 0.12 0.09 0.18 0.15 0.39 0.39 0.89 1.03 4 0.73 0.78 0.10 0.07 0.16 0.12 0.38 0.35 1.00 0.96 5 0.73 0.77 0.10 0.08 0.16 0.13 0.40 0.38 1.27 1.26 6 0.73 0.77 0.10 0.08 0.16 0.14 0.43 0.42 0.72 0.74 7 0.71 0.76 0.13 0.08 0.18 0.14 0.33 0.31 0.72 0.69 8 0.75 0.80 0.09 0.06 0.15 0.11 0.39 0.36 0.91 0.90 9 0.73 0.79 0.10 0.07 0.17 0.12 0.37 0.32 0.75 0.69 mean 0.72 0.77 0.11 0.08 0.17 0.14 0.40 0.37 0.88 0.87 Table C.3: Model fitting and segmentation results obtained on dataset #1 between Z 0 /µCT/ST , the manual segmentation of the ST on µCT and S/CT/ST and Ẑ/CT/ST , respectively the fitted shape and the automatic segmentation of the cochlea on CT.