
HAL Id: tel-01609910
https://theses.hal.science/tel-01609910v1

Submitted on 4 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Segmentation and study of anatomical variability of the
cochlea from medical images

Thomas Demarcy

To cite this version:
Thomas Demarcy. Segmentation and study of anatomical variability of the cochlea from medical im-
ages. Other. COMUE Université Côte d’Azur (2015 - 2019), 2017. English. �NNT : 2017AZUR4052�.
�tel-01609910�

https://theses.hal.science/tel-01609910v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ CÔTE D’AZUR

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

PHD THESIS
to obtain the title of

PhD of Science

of the University of Nice Sophia Antipolis

Specialty : Computer Science

Written by

Thomas Demarcy

Segmentation and Study of Anatomical
Variability of the Cochlea from Medical Images

prepared at Inria Sophia Antipolis, Asclepios Research Team

to be defended on July 4th, 2017

Jury :

Advisors : Nicholas Ayache - Inria (Asclepios)
Hervé Delingette - Inria (Asclepios)

Reviewers : Miguel Angel
González Ballester - Pompeu Fabra University, Spain
Rasmus Paulsen - Technical University of Denmark
Mauricio Reyes - University of Bern, Switzerland

President : Maureen Clerc - Inria (Athena)
Examinators : Dan Gnansia - Oticon Medical
Invited : Nicolas Guevara - Head and Neck

University Institute (IUFC, Nice)
Charles Raffaelli - Nice University Hospital (CHU)





Acknowledgments

J’aimerais remercier chaleureusement mes directeurs de thèse Nicholas Ayache et
Hervé Delingette pour leur soutien et leurs conseils éclairés au cours de ces trois
dernières années. Hervé, merci énormément pour le temps consacré et les excellentes
idées qui ont grandement participées aux résultats présentés dans ce manuscrit.
Nicholas, merci de m’avoir accepté dans ton équipe, où tu as su réunir toutes ces
personnes talentueuses et créer une atmosphère de travail chaleureuse.

À Dan Gnansia, un grand merci pour ton encadrement bienveillant et d’avoir
été mon interlocuteur privilégié au sein d’Oticon Medical. J’ai une pensée pour
Jonathan Laudanski, qui a initié ce projet avec une grande motivation et qui nous
a tragiquement quittés.

Mille mercis aux cliniciens niçois, Nicolas Guevara, Charles Raffaelli et Clair
Vandersteen, pour votre vision éclairée de l’otologie et de la médecine computation-
nelle. Nicolas, merci d’avoir su fédéré par ton enthousiasme chercheurs, cliniciens et
industriels autour de ce projet prometteur. Charles, merci d’avoir partagé la passion
sans limite de ton travail et de m’avoir convaincu de faire partie de cette aventure.
Clair, mon binôme, chien fou et touche à tout de génie, j’espère que tout ceci n’est
qu’un début !

Je suis très reconnaissant aux rapporteurs qui ont pris le temps de lire mon
manuscrit : Miguel Gonzalez, Rasmus Paulsen et Mauricio Reyes. Merci pour vos
commentaires et vos compliments. Merci à Maureen Clerc d’avoir accepté de faire
partie de mon jury.

Merci à tous les collègues de l’équipe Asclepios. Jan, merci d’avoir été un co-
bureau hors pair, je n’oublierai pas les bons moments passés ensemble que ce soit au
travail, à Bratislava ou sur les rivières ! Milky Matt et Chloé, quel dommage qui vous
soyez maintenant exilés si loin, j’espère vous revoir vite ! Special thanks to Marc-
Mich et Nina, mes compagnons roux des premiers jours. Enfin, et j’espère n’oublier
personne, merci à Alan, Anant, Aurélie, Aziz, Bishesh, Federico, Florent, Florian,
Hakim, Héloïse, Hervé L, Hugo, Isabelle, Krissy, Loïc, Luigi, Manon, Marco, Marine,
Maxime, Mehdi, Mike, Nicoco C, Nicolas C, Nicolas D, Pauline, Pawel, Pietro, Qiao,
Rafifou, Roch, Rocio, Shuman, Sofia, Sophie, Thomas, Vikash, Wen, Xavier et Yann
sans qui mon quotidien n’aurait pas été le même !

Merci à tous ceux qui ont animé l’Epic Sax House, je pense particulièrement à
Zoomizoom, Lionyyy, Nina, Clémencebenardcinéma, Nico, Manon, Zouzemarmar,
Charline Leguenec et Schmittyschmitt.

Je remercie également les rostagniens, les kayakistes et mes amis parisiens qui
m’ont encouragé à distance, en particulier Paul, Jules, Clément et Clara.

J’ai également une pensée particulière pour Lucile et tous les Auvergnats pour
m’avoir supporté et apporté cette bouffée d’air frais dont j’avais tant besoin pendant
ces trois ans.

Enfin je remercie toute ma famille pour leur soutien inconditionnel, mes par-
ents que je ne pourrais jamais suffisamment remercier pour l’éducation qu’ils m’ont
donnée, et ma jumelle Laura.





Contents

1 Introduction 1

1.1 Context of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Focus of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Cochlear Anatomy and Imaging 5

2.1 Anatomy and Physiology of Hearing . . . . . . . . . . . . . . . . . . 5
2.2 Hearing Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Cochlear Implant Surgery . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Inner Ear Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Cochlear Segmentation From CT Images . . . . . . . . . . . . . . . . 15

3 Analysis of Human Cochlea Shape Variability from µCT Images 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Nondestructive Preparation of Human Cochleae . . . . . . . . 20
3.2.2 Interactive Segmentation . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Automated Centerline Extraction . . . . . . . . . . . . . . . . 24
3.2.4 Robust Modiolar Axis Estimation . . . . . . . . . . . . . . . . 27
3.2.5 Cochlear Moving Frame . . . . . . . . . . . . . . . . . . . . . 33

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Centerlines Measurements . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Modiolar Axis Estimation . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Cross-sections Measurements . . . . . . . . . . . . . . . . . . 44

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Parameterization Framework . . . . . . . . . . . . . . . . . . 45
3.4.2 Variability Study . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Modiolar Axis Estimation . . . . . . . . . . . . . . . . . . . . 50
3.4.4 Implication for Cochlear Implantation . . . . . . . . . . . . . 51

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 A New Parametric Cochlear Shape Model 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Parametric Cochlear Shape Model . . . . . . . . . . . . . . . 55
4.2.3 Parameters Posterior Probability . . . . . . . . . . . . . . . . 69
4.2.4 Controlling Model Complexity . . . . . . . . . . . . . . . . . 70
4.2.5 Clinical Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



iv Contents

4.3.1 Model Complexity Evaluation . . . . . . . . . . . . . . . . . . 71
4.3.2 CT Uncertainty Evaluation . . . . . . . . . . . . . . . . . . . 72

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Joint Shape and Intensity Model-Based Segmentation of CT Im-

ages of the Cochlea 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.1 Detailed Cochlear Shape Model Fitting from CT Images . . . 80
5.1.2 Joint Shape and Intensity Model for Segmentation . . . . . . 81

5.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.3 Rigid Registration . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.4 Generic Multi-class Approach for Joint Shape and Intensity

Model-based Segmentation . . . . . . . . . . . . . . . . . . . 89
5.2.5 Specific Approach for Cochlear Segmentation . . . . . . . . . 95
5.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.1 Dataset #1 Segmentation . . . . . . . . . . . . . . . . . . . . 103
5.3.2 Dataset #2 Segmentation . . . . . . . . . . . . . . . . . . . . 107
5.3.3 Anatomical Variability on Dataset #2 . . . . . . . . . . . . . 113
5.3.4 Bilateral Symmetry . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Conclusion 119

6.1 Current Clinical and Industrial Applications . . . . . . . . . . . . . . 119
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Cochlear Shape Description . . . . . . . . . . . . . . . . . . . 122
6.2.2 Cochlear Shape Variability Analysis . . . . . . . . . . . . . . 122
6.2.3 Cochlear Model-based Segmentation From CT Images . . . . 122
6.2.4 Clinical and Industrial Applications . . . . . . . . . . . . . . 123

6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A Equations for the discretization scheme of the centerline 127

B Additional algorithm: Point to triangle signed Euclidean distance129

C Additional tables for model fitting and segmentation results ob-

tained on dataset #1 131

Bibliography 135



List of Figures

2.1 Anatomy of the hearing . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Sketch of the physiology of hearing . . . . . . . . . . . . . . . . . . . 7
2.3 Three-dimensional model of the inner ear . . . . . . . . . . . . . . . 8
2.4 Section of the cochlea . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Section of the organ of Corti . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Surgical view for cochlear implantation . . . . . . . . . . . . . . . . . 11
2.7 Temporal bone CT image . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Temporal bone CBCT image . . . . . . . . . . . . . . . . . . . . . . 13
2.9 CT scan of an implanted cochlea . . . . . . . . . . . . . . . . . . . . 14
2.10 µCT scans of the cochlea with sample preparation . . . . . . . . . . 14
2.11 Temporal bone MRI image . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 Example of cochlear segmentation . . . . . . . . . . . . . . . . . . . . 16

3.1 Acquired µCT and segmentation of the scala tympani and the scala
vestibuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Manually segmented µCT slices and segmentation volumes . . . . . . 21
3.11 Flowchart of the automated centerline extraction . . . . . . . . . . . 24
3.12 Scala tympani centerlines . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13 Comparison of anatomical coordinate system . . . . . . . . . . . . . 29
3.14 Flowchart of the shape parameterization . . . . . . . . . . . . . . . . 30
3.15 Cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.16 Logarithmic spiral pitch . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.17 Frenet-Serret and cochlear moving frame . . . . . . . . . . . . . . . . 35
3.18 Arc lengths of the scala tympani . . . . . . . . . . . . . . . . . . . . 37
3.19 Lateral, central and modiolar paths of a scala tympani . . . . . . . . 38
3.20 Radial component of the tympanic centerline . . . . . . . . . . . . . 38
3.21 Mean radial component of the tympanic and vestibular centerline . . 39
3.22 Longitudinal component of the tympanic centerline . . . . . . . . . . 39
3.23 Mean longitudinal component of the tympanic and vestibular centerline 40
3.24 Example of modiolar axis estimation . . . . . . . . . . . . . . . . . . 40
3.25 Automatic and manual modiolar axis estimation . . . . . . . . . . . 41
3.26 Synthetic cochlear model with noise . . . . . . . . . . . . . . . . . . 42
3.27 Sensitivity of the algorithm A with respect to initialization . . . . . . 43
3.28 Noise sensitivity of the algorithm A . . . . . . . . . . . . . . . . . . . 43
3.29 Influence of the axis estimation on the projected centerline . . . . . . 44
3.30 Example of longitudinal component of the cochlear centerline . . . . 45
3.31 Example of cross-sections . . . . . . . . . . . . . . . . . . . . . . . . 46
3.32 Tilt angle measurements . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.33 Cross-section area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34 Heights of the tympanic and vestibular scalae . . . . . . . . . . . . . 47



vi List of Figures

3.35 Width of the tympanic and vestibular scalae . . . . . . . . . . . . . . 48
3.36 Number of cochlear turns . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Slices of CT and µCT . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Parametric cochlear shape model . . . . . . . . . . . . . . . . . . . . 57
4.3 Solid shape model from [Baker 2008] . . . . . . . . . . . . . . . . . . 60
4.4 Radial component of the modeled centerline . . . . . . . . . . . . . . 61
4.5 Illustration of the influence of the radial component parameters . . . 61
4.6 First term of longitudinal component of the centerline . . . . . . . . 62
4.7 Illustration of the influence of the parameters of the first term of the

longitudinal component . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8 Second term of longitudinal component of the centerline . . . . . . . 63
4.9 Illustration of the influence of the parameters of the second term of

the longitudinal component . . . . . . . . . . . . . . . . . . . . . . . 64
4.10 Parametric cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.11 Electrode position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.12 Posterior estimation for the parameter r0 . . . . . . . . . . . . . . . 72
4.13 Posterior estimation for the parameter wST0 . . . . . . . . . . . . . . 73
4.14 Example of parameter influence on the shape . . . . . . . . . . . . . 73
4.15 Maximum a posteriori shape on µCT images . . . . . . . . . . . . . . 74
4.16 CDF of the maximal insertion depth estimation . . . . . . . . . . . . 75
4.17 Maximal insertion depth estimation discrepancy . . . . . . . . . . . . 76

5.1 Example of labyrinth segmentation . . . . . . . . . . . . . . . . . . . 81
5.2 Modeling the contingency of CT images . . . . . . . . . . . . . . . . 82
5.3 Overview of the methods . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Summary of the registration procedures applied to dataset #1 . . . . 86
5.5 Summary of the registration procedures applied to dataset #2 . . . . 87
5.6 Image from the dataset #2 . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Image from the dataset #2 registered to the reference image . . . . . 89
5.8 Image from the dataset #2 aligned in the cochlear coordinate system 89
5.9 Graphical model for shape fitting . . . . . . . . . . . . . . . . . . . . 90
5.10 Graphical model for joint shape and intensity model-base segmentation 91
5.11 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.12 Graphical illustration of the M-step used to update θ[t]S . . . . . . . . 94
5.13 Kullback-Leibler divergence between the intensity and the joint model

probability maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.14 Graphical illustration of the M-step used to update θ[t]I . . . . . . . . 95
5.15 Derivation of the shape model parameters . . . . . . . . . . . . . . . 97
5.16 Example of intensity probability distributions . . . . . . . . . . . . . 100
5.17 Comparison of the manual and the automatic segmentation . . . . . 104
5.18 Examples of three-dimensional shape reconstruction . . . . . . . . . 108
5.27 Shape parameter w1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.28 Shape parameter w2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



List of Figures vii

5.29 Shape parameters of the longitudinal component of the centerline . . 115
5.30 Shape parameter a and θmax . . . . . . . . . . . . . . . . . . . . . . . 115
5.31 Centerline generated with the shape parameter w2 . . . . . . . . . . 116

6.1 Pre- and postoperative CT images . . . . . . . . . . . . . . . . . . . 120
6.2 Inserted electrode array . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3 Post-implantation electrode position . . . . . . . . . . . . . . . . . . 121
6.4 Microdissected cochlea . . . . . . . . . . . . . . . . . . . . . . . . . . 121





List of Tables

2.1 Severity of hearing loss . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Logarithmic helico-spiral constants for cochlear model . . . . . . . . 30
3.2 Centerline measurements . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Parameters used to implement [Yoo 2000b]’s algorithm A . . . . . . 41

4.1 Parameters of Cohen’s model . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Polynomial coefficients for the cross-section functions . . . . . . . . . 67
4.3 Dice indices between the MAP and manual segmentation . . . . . . . 75
4.4 Standard deviation of probability distribution function of the maxi-

mum insertion depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Discrepancy between CT and µCT . . . . . . . . . . . . . . . . . . . 76

5.1 Hounsfield unit of the main structures of the cochlear region . . . . . 100
5.2 Available segmentations for dataset #1 . . . . . . . . . . . . . . . . . 103
5.3 Mean model fitting and segmentation results obtained on dataset #1 105
5.4 Summary of the comparison with previous studies . . . . . . . . . . . 107
5.5 Qualitative segmentation evaluation on dataset #2 . . . . . . . . . . 108
5.6 Covariance matrix of the 4 shape parameters . . . . . . . . . . . . . 113
5.7 Quantification of the bilateral symmetry . . . . . . . . . . . . . . . . 116





List of Algorithms

1 Signed distance map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2 Point to triangle mesh signed Euclidean distance . . . . . . . . . . . . 102
3 Expectation Maximization algorithm . . . . . . . . . . . . . . . . . . . 103

4 Point to triangle signed Euclidean distance . . . . . . . . . . . . . . . 130





Chapter 1

Introduction

1.1 Context of the Thesis

Computer Tomography (CT) scanning is now used routinely by radiologists and sur-
geons for diagnosis, surgery planning and postoperative evaluation, to the point that
clinicians have access to a large number of data. However, the process of analyzing
CT data is complex, time consuming and requires highly trained professionals.

The cochlea, the sensory organ of hearing, is an anatomical structure whose CT
images is specifically difficult to analyze. Cochlear internal cavities have complex
spiraling shapes and are nearly invisible with clinically available CT scans due to
the relative small size of the cochlea with respect to the scanner resolution.

Cochlear implants (CI) are used to treat severe to profound hearing loss by surgi-
cally implanting these electronic medical devices into the cochlea. CI, which convert
sound energy to electrical stimulation, were the first implanted neural prosthesis
and are now the most widespread with approximately 400.000 cochlear-implanted
individuals worldwide. The implantation procedure involves drilling through the
mastoid part of the temporal bone to open one of the three cochlear chambers and
insert an electrode array to directly stimulate the auditory nerve, which induces
the sensation of hearing. The surgical procedure performed manually with limited
visual and sensitive feedback is challenging. The functional outcome of the im-
plantation often varies among patients and depends on multiple factors, which are
not yet clearly identified. In particular, hearing restoration is correlated with the
preservation of innervated cochlear structures.

1.2 Focus of the Thesis

Patient-specific three-dimensional reconstruction of cochlea and its substructures
could contribute to the improvement of different aspects of cochlear implantation.
First of all, it can provide a better anatomical understanding for the clinicians and
suggest electrode array design improvements for cochlear implant manufacturers.
Quantitative analysis of the anatomical cochlear shape from medical images is es-
sential for diagnosis of shape abnormality such as cochlear hypoplasia, an incomplete
development of the cochlea. Using three-dimensional anatomical reconstruction, the
cochlear implantation could be optimized to be the least traumatic by selecting the
drilling trajectory that avoids sensitive structures such as the facial nerve and that
estimates the insertion angle between the electrode and the basal turn of the cochlea.
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The insertion can be evaluated postoperatively in order to give feedback for the sur-
geons and to improve the set-up of the CI by evaluating to exact position of the
electrode with respect to cochlear nerve. Acquisition of surgical skills requires a lot
of practice and deep anatomical knowledge, thus three-dimensional models could be
used for surgery simulation and training.

In the context of this thesis, several clinical and methodological questions arise:

• What is a proper geometric model to measure the cochlear shape?

The particular spiraling shape of the cochlea leads to a need for new
application-specific models in order to estimate anatomical measurements of
the cochlea. What is the variability of this shape among a population? Statis-
tics on the quantitative measurements help to establish normal and healthy
shapes and detect outliers. Is there intra-patient bilateral symmetry?

• Can we construct a “good” cochlear shape model? That is to say a
model anatomically correct that can provide meaningful and intuitive clinical
interpretation. According to Occam’s razor, the law of parsimony, the model
should be compact, while providing a good generalization, namely the ability
to represent the shape variation across the population. Eventually the shape
variability could be embedded in the model in order to generate realistic data
or provide prior knowledge for model fitting.

• What information can we extract from CT images? Is this information
sufficient to extract clinically exploitable measurements such as the maximal
depth insertion? To answer these questions one must quantify the uncertainty
of the measurements extracted from CT images in relation to more precise
acquisition methods such as high-resolution µCT.

• How can be addressed industrial and clinical challenges of cochlear

implantation? For example, the following questions are of interest: Can we
optimize patient-specifically the choice of CI model before the surgery? Can
we estimate postoperatively the position of the electrode array with respect
to the cochlear internal cavities?

1.3 Structure of the Thesis

The thesis work is presented in a chronological order. Although a given chapter
relies on the preceding ones, each chapter is meant to be self-contained.

Chapter 2 provides background knowledge about the anatomy and physiology
of hearing, focusing on the cochlea and its imaging. The chapter includes an intro-
duction to cochlear implant and its surgical procedure as well as a short state of the
art review on segmentation of the cochlea from medical images.

Chapter 3 aims at defining automatic image processing methods adapted to
the spiral shape of the cochlea to study the cochlear shape variability from high-
resolution µCT images. This chapter is adapted from [Demarcy 2017].
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Chapter 4 aims at developing and evaluating a new parametric cochlear shape
model. The model is applied to extract patient-specific clinically relevant metrics
such as the maximal insertion depth for different designs of CI electrode array.
Thanks to the uncertainty quantification, provided by the model, we can assess the
reliability of CT-based segmentation as compared to the ground truth segmentation
provided by µCT scans. This chapter is adapted form [Demarcy 2016b] and its
clinical application has been presented in [Gnansia 2016].

Chapter 5 describes a joint model of the cochlear shape (and its substructures)
model and its appearance within a generative probabilistic Bayesian framework.
The proposed segmentation method estimates jointly the shape and appearance
parameters and applies an iterative expectation-maximization (EM) strategy that
interleaves shape model parameters fitting and image segmentation with mixture
of Student’s t-distributions. The method was applied to a large database of 987
CT images and allowed the statistical characterization of the cochlear anatomical
variability along with the quantification of the bilateral symmetry.

Chapter 6 highlights a clinical application of cochlear substructures segmen-
tation as presented in [Demarcy 2016a], which consists of assessing postoperatively
the position of the electrode array with respect to the anatomy, and concludes the
thesis.
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2.1 Anatomy and Physiology of Hearing

The ear is the organ of hearing and balance. The hearing anatomy is usually de-
scribed as having three parts:

• Outer Ear is the external part of the ear. It consists of the auricle (or pinna)
which is the visible part of the external ear and ear canal (or external acoustic
meatus), which is around 25 mm deep. It amplifies the sound and focuses it
on the eardrum which separates the inner and middle ears.

• Middle Ear is the internal part of the ear between the eardrum and the oval
window. It contains the eardrum and three ossicles: malleus (or hammer),
incus (or anvil) and stapes (or stirrups). The chain of ossicles transfers the
compression waves in air at the eardrum into waves in the fluid and membranes
of the inner ear. The vibration may be stiffened, when facing with for example
very loud sound, by two muscles: the stapedius muscle and the tensor tympani
muscle. The footplate of the stapes is connected to the oval window. Through
the middle ear area passes also the facial nerve and its branch, the chorda
tympani.

• Inner Ear is the innermost part of the ear. It consists of a closed and fluid-
filled cavity, the bony labyrinth which can be separates in two parts: the
cochlea, dedicated to the hearing and the vestibular system, dedicated to the
balance (equilibrioception). The membranous labyrinth is inserted within the
bony labyrinth and has the same general shape. The vestibular system consists
of the three semicircular canals, providing sensory input of rotary movements
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Figure 2.1: Anatomy of hearing adapted from [Miroir 2012]

along the pitch, roll and yaw axes (kinetic balance), and the vestibule, pro-
viding sensory input of acceleration and head-tilts in the horizontal plane, in
the utricle, and in the vertical plane, in the saccule (static balance). The
inner ear has two membrane-covered openings into the middle: the round
and oval windows which vibrate with opposite phase since the fluid is nearly
incompressible.

The cochlea (Latin word for snail) is the small organ responsible of the sense of
hearing. In this small spiral structure, the sound, a mechanical wave is transformed
into an electrical pulse (Fig. 2.2). A normal human cochlea completes about two
and a half turns. It grows to its definitive size within the first 17 to 19 weeks of
gestation, then the otic capsule, also known as the bony labyrinth ossifies. The
cochlea, in which waves propagate from the base (near the round and oval window)
to the apex (the top), is mainly composed of fluids inside soft tissues and bony walls.
The whole cochlea is within the petrous part of the temporal bone. The cochlea is a
set of different spiraling substructures called scalae: the scala tympani (or tympanic
duct), the scala vestibuli (or vestibular duct) and the scala media (or cochlear duct).
The scala tympani and the scala vestibuli are filled with perilymph and communicate
at the most apical part of the cochlea, called helicotrema. The scala media is filled
with endolymph. Perilymph and endolymph contains different ionic composition and
concentration. The cochlear cross-sections look roughly like a cardioid. The cochlea
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Figure 2.2: Sketch of the physiology of hearing (top) and of the cross-section of
the cochlea (bottom). Mechanical waves are represented with arrows and electrical
pulses with thunderbolt symbols.
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Figure 2.3: Three-dimensional model of the inner ear

is wrapped around the modiolus, a coned-shape porous bone with a theoretical axis
of revolution, the modiolar axis. From the modiolus in the radial direction is the
osseous spiral lamina and the basilar membrane, which separate the scala tympani
and the scala vestibuli. The Reissner’s membrane separates the scala media and the
scala vestibuli. The organ of Corti (Fig 2.5) is a tiny structure located in the scala
media on top of the basilar membrane that contains the hair cells, sensory receptors
linked to the auditory nerve. Above the organ of Corti, the tectorial membrane
overlies the hair cells and stimulates them in neural processing of sounds.

Frequency Analysis The range of audible sound frequency for human is generally
estimated between 20 Hz and 20 kHz [Greenwood 1990]. There is a relationship
between the perceived sound frequency and the anatomical location in the cochlea.
This relationship is called the tonotopic map. The tonotopy is mostly linked to the
mechanical properties of the basilar membrane. Along the length of the cochlear
spiral, the width and the stiffness of the basilar membrane gradually vary and it
resonates at specific wave-frequency. Basically the resonance frequency reduces from
the base of the cochlea to the apex. Neurons can be activated selectively and
interpreted by the brain.

2.2 Hearing Loss

Preserving the ear integrity is essential to ensure the perception of a stimulus. Hear-
ing requires good functional outcome of the outer, middle and inner ear in order
to best convert acoustic pressure waves into an electrical pulses. Otology is one
of the specialties of Otorhinolaryngology and is aimed at treating ear pathologies.
There are different types of hearing impairments, such as conductive, neurosensory
or mixed deafness. Surgical hearing loss treatments include otosclerosis surgery,
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Figure 2.4: Diagrammatic longitudinal section of the cochlea (from [Gray 1918])

Figure 2.5: Section through the spiral organ of Corti (from [Gray 1918])

tympanoplasty, or cochlear implantation.

Conductive Deafness occurs when the sound waves are not properly conducted
in the external ear canal and the middle ear. Damages to the ossicular chain, in
the case of otosclerosis notably, can be the cause of conductive hearing loss. Most
often, it is reversible and can be treated with hearing aids or surgical procedures.

Sensory Neural Deafness originates from sensory organ, vestibulocochlear
nerve or neural part. When the root cause lies in the cochlea, it is caused by
loss or degeneration of the hair cells. The amount of preserved hair cells is linked
to the severity of the hearing loss (see Table 2.1), in the case of insensitivity of the
cochlea direct neural stimulation with an auditory prosthesis is required.
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rank decibels of hearing loss

slight 16 to 25 dB HL
mild 26 to 40 dB HL

moderate 41 to 54 dB HL
moderately severe 55 to 70 dB HL

Severe 71 to 90 dB HL
Profound greater than 91 dB HL

Table 2.1: Severity of hearing loss

Mixed Eventually, hearing loss can be caused by a combination of the two above
categories.

2.3 Cochlear Implant Surgery

Cochlear Implant A cochlear implant (CI) is a surgically implanted electronic
device that restores a sense of hearing. CI bypass the normal hearing process. Typ-
ically a cochlear implant system consists in an external speech processor generally
worn behind the ear, which transmits a signal to an array of electrodes inserted in
the cochlea, which stimulate the cochlear nerve.

The external processor is equipped with a microphone and several digital signal
processors to perform signal processing, which basically consists in noise reduction,
automatic gain control and decomposition into series of bandpass-filtered channels.

CI can be considered as one the great medical advances of the 20th century
provoking a revolution in the treatment of profound hearing loss [Wilson 2008]. This
technology, commonly used in clinical practice since the 1990’s, allowed to restore
an usable hearing to patients handicapped by severe to profound deafness. Besides,
CI transformed the lives of children born deaf allowing them to access the hearing
world and to have an intellectual and educational development identical to normally
hearing children. More recently, through technological and surgical progress, CI
could be proposed to patients with severe hearing loss. The principle of CI is to
rehabilitate the sense of sound by electrically stimulating the auditory pathways.
CI substitutes the inner ear function by producing significant electrical stimulation
around the damaged hair cells and directly stimulating the residual neurons of the
auditory nerve, in order to reconnect the afferent signals to the central nervous
system. CI consists of an array of about twenty electrodes placed along the cochlea
which stimulate the auditory nerve with electrical impulses whose sequences depend
on the cochlear tonotopy: the basal portion of the cochlea is normally sensitive
to sounds with high pitch whereas the apical part of the cochlea is sensitive to
sounds with low pitch. The objective is to transmit a signal to the brain that best
reproduces the neuronal encoding of sound in natural hearing, the signal delivered
by the implant must have an encoding adapted in frequency and intensity. The
implanted patient needs then auditory re-education and speech therapy to learn
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Figure 2.6: Surgical view of the approach for cochlear implantation (right ear).
The approach is performed by mastoidectomy (blue dotted lines) and posterior
tympanotomy (yellow dotted lines) (from [Nguyen 2011])

how to interpret newly perceived auditory stimuli.

Currently, CI has matured with more than 400,000 patients implanted world-
wide. This number is much larger than the sum of all other types of neural prosthe-
ses. Furthermore, the restoration of the function provided thus far by CI far exceeds
the ones achieved with other neuroprostheses. The major benefit in terms of quality
of life compared to its cost allows its coverage by the majority of the health-care
systems in the world. Moreover, CI remains a model in the development of other
implants such as restoration of sight (retinal implants) or balance (vestibular im-
plants). This remarkable capacity to adapt to the implant is linked to the capacity
of the nervous system to create and reorganize neural networks: this is referred to
as neuroplasticity. The brain plasticity can be observed throughout the life course,
with however a maximum of effectiveness during the childhood. Thus creating the
human-implant interface at the earliest performs the best functional outcome. The
age of implantation is anti-correlated to the implant performance. Children im-
planted before the age of two generally perform better than those implanted over
age five. Although some studies have confirmed that neural plasticity persists with
postlingually deaf adult patients implanted with CI, the results are nevertheless
inconsistent and dependent on multiple factors, which are not yet clearly identified.

Currently, the overall challenge with cochlear implantation is twofold. First of
all, there is a limitation of speech recognition performance, which is progressing very
slowly since the major evolution of the last century, which are the evolution from
mono-electrode to multi-electrode and the evolution from simultaneous to sequential
stimulation. Average speech recognition rates stagnate around 60% for monosyllabic
word understanding in quiet environment. Understanding in noisy environments
is even more limited. Secondly, there is a major interindividual variability, some
patients recognize 100% of the words in quiet environment while others nearly 0%.
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Figure 2.7: Temporal bone CT image

Surgical Procedure During the CI surgery, the insertion can lead to lesions of
the modiolus, osseous spiral lamina or basilar membrane, resulting in degeneration
of the hair and spiral ganglion cells. Because the viability of these cells is correlated
with neuronal survival and speech expression, it is crucial to avoid destroying them
during surgery and to minimize injury to the previously cited anatomic structures
with so-called atraumatic or minimally invasive surgery techniques [Weber 2017].
An improved knowledge of the cochlea shape variability is not only essential for
diagnosis of shape abnormality, atraumatic surgery planning and post-operative
insertion assessment but it also provides a better anatomical understanding for the
clinicians and can suggest electrode array design improvements for cochlear implant
manufacturers.

Cochlear implantation is performed through a mastoidectomy and a posterior
tympanotomy. The insertion of the electrode array is performed manually by the
ear, nose, and throat (ENT) surgeon with limited visual and sensitive feedback.

Electrode Array Design Several parameters of the design of the electrode array
can vary depending of the products proposed by cochlear implant manufacturers:
the length, the number of electrodes, the electrode spacing, the width, the rigidity,
the curvature, etc. The link between those parameters and the clinical outcomes
such as the insertion trauma and the quality of hearing restoration is not completely
understood and controlled.
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Figure 2.8: Temporal bone CBCT image (from [Peltonen 2009]) acquired to inves-
tigate postoperatively an ossicular prosthesis (arrow).

2.4 Inner Ear Imaging

Clinical CT and Cone Beam CT (CBCT) are commonly used to provide
anatomical information about the cochlea and its surrounding structures. However,
the relative small size of the cochlea with respect to the typical voxel size, restrains
the observation of intracochlear details. The cochlea measures about 8.5x7x5 mm3

while the typical CT image spacing is larger than 0.2 mm. The complete spiral
can be difficult to recognize especially at the apex. The basilar membrane that
separates the scala tympani and the scala vestibuli is partially visible at the first
cochlear basal turn. CBCT (Fig. 2.8) has several advantages over CT (Fig. 2.7):
the acquisition is faster with a lower dose exposure for the patient and a superior
spatial resolution so that few cochlear structures, such as the osseous spiral lamina,
seem identified more easily [Zou 2015]. However the reconstruction algorithm used
for CBCT does not produce image as anatomically correct as classical CT. Cochlear
implant electrodes produce metal artifacts in post-implantation CT [Reda 2014b],
which makes difficult to characterize intracochlear anatomy (Fig. 2.9).

Micro-computed Tomography (µCT) is designed to assess the anatomy with
high accuracy by acquiring images with voxel size of few micrometers (usually be-
tween 5 and 50 µm). This imaging modality is typically used to scan small animals or
biomedical samples. Due to the limited size of the object that can be scanned (with
a diameter smaller than 100 mm), it is not possible to acquire µCT scan of in vivo

temporal bones. High resolution imaging can be performed on cadaveric specimens,
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Figure 2.9: CT scan of an implanted cochlea (from [Verbist 2005])

after cropping the temporal bone around the bony labyrinth. It allows visualiza-
tion of the fine cochlear structures, especially the thin bony structures that are well
contrasted such as the osseous spiral lamina [Lane 2004]. With µCT modality, it
becomes possible to assess the position of the scala tympani and the scala vestibuli.
However, without chemical sample preparation and with a resolution above 10 µm
the Reissner’s membrane, that separates the scala media and the scala vestibuli is
still not observable. Chemical sample preparations include dehydration (or drying),
freezing, decalcification, fixation and staining (Fig. 2.10), and can produce artifacts
such as tissue distortion.

Figure 2.10: µCT scans of the cochlea with sample preparation (from [Kjer 2015b]).
Thiel-solution was used for fixation with cochlea specimen without fluid (left) and
fluid-filled specimen (right).
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Figure 2.11: Temporal bone MRI sagittal slices (from [Shi 2011]). The cochlear
region is indicated by semi-transparent red color.

MRI can be used as a complementary imaging modality (Fig. 2.11). Fluids within
the membranous labyrinth can be imaged with good quality [Lane 2005, Shi 2011]
and fusion of CT and MRI imaging can be used to identified nerves, such as the
facial nerve and the chorda tympani [Bartling 2005].

2.5 Cochlear Segmentation From CT Images

The segmentation of intracochlear structures represents a great challenge. CT im-
ages of the temporal bone have low resolution with respect to the small size of the
anatomical structures and the topology of the cochlea is complex. The main cham-
bers of the cochlea, the scala tympani and the scala vestibuli, form a nested double
helix where the spatial division between each turn (basal, middle and apical) is
weakly visible and where the stiff structural elements separating the scala tympani
and the scala vestibuli, such as the basilar membrane and the spiral lamina ossea
are weakly visible or invisible. Finally the cochlea is filled with fluids which can
be similarly found in the vestibular system and other neighboring structures, with
similar appearance in CT images.
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Figure 2.12: Example of cochlear segmentation (from [Noble 2011]). Segmentation
of the scala tympani (red) and the scala vestibuli (blue) are shown on CT (top) and
µCT (bottom) images.

This challenging task requires additional information to achieve successful seg-
mentation. Anatomical atlases and shape models can be combined with intensity
information to provide sufficient prior knowledge.

In order to performed segmentation of the cochlea, two main approaches have
been previously developed can be summarized as follows.

First set of methods consists in an optimization procedure to perform parametric
model fitting [Baker 2005]. A parametric model-image registration procedure is used
to align the model surface with the image gradient.

Second set of methods consists in a non rigid registration procedure
between an input CT image and an atlas embedding statistical shape
prior [Noble 2010, Noble 2011, Reda 2011, Noble 2012, Reda 2012, Noble 2013,
Reda 2013, Kjer 2014a, Reda 2014a, Reda 2014b, Kjer 2015d]. Anatomical mod-
eling is performed from high-resolution datasets, usually ex-vivo µCT scans. The
shape prior is provided by a statistical shape model (SSM) of the intra-cochlear
anatomy, which guides the registration between a CT scan and an enhanced CT-
atlas (Fig. 2.12).
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Abstract

The aim of this study is to define an automated and reproducible framework for
cochlear anatomical analysis from high-resolution segmented images and to provide
a comprehensive and objective shape variability study suitable for cochlear implant
design and surgery planning. For the scala tympani, the scala vestibuli and the
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whole cochlea, the variability of the arc lengths and the radial and longitudinal
components of the lateral, central and modiolar paths are studied. The robustness
of the automated cochlear coordinate system estimation is validated with synthetic
and real data. Cochlear cross-sections are statistically analyzed using area, height
and width measurements. The cross-section tilt angle is objectively measured and
this data documents a significant feature for occurrence of surgical trauma.

3.1 Introduction

The human cochlea is a spiral-shaped structure located in the inner ear. Essential
organ of audition, its largest diameter is about 8.5 mm at the basal turn and its
height about 7 mm [Dimopoulos 1990]. Cochlear structures include three scalae (or
ducts) with complex morphology and showing interindividual variability in size and
shape.

Cochlear implant surgery is an effective treatment for severe to profound sen-
sorineural hearing loss. The classical implantation procedure involves drilling a path
through the mastoid in order to reach the tympanic cavity allowing the surgeon to
open the scala tympani (one of the three cochlear ducts) and insert an electrode ar-
ray. The functional outcomes for these subjects are linked to the potential insertion
traumas [Aschendorff 2007, Finley 2009]. The insertion can lead to lesions of the
modiolus, osseous spiral lamina or basilar membrane, resulting in degeneration of the
ciliated [Adunka 2004] and spiral ganglion cells [Leake 1999]. Because the viability
of these cells is correlated with neuronal survival [Nadol 1997] and speech expres-
sion [Xu 2012, Fayad 2006], it is crucial to avoid destroying them during surgery
and to minimize injury to the previously cited anatomic structures with so-called
atraumatic surgery techniques [James 2005].

An improved knowledge of the cochlea shape variability is not only essential
for diagnosis of shape abnormality, atraumatic surgery planning and post-operative
insertion assessment but it also provides a better anatomical understanding for the
clinicians and can suggest electrode array design improvements for cochlear implant
manufacturers.

Various methods have been used for the analysis of human cochlear anatom-
ical structures. Methods using several type of plastic casts have been
widely employed to evaluate the dimensions of cochlear anatomy [Zrunek 1980,
Zrunek 1981, Dimopoulos 1990, Hatsushika 1990, Wysocki 1999, Erixon 2009,
Rask-Andersen 2011], but they do not allow accurate preservation of the geometric
relationships of fragile cochlear structures and artifact-free measurements. Microdis-
sections enable measurements of basic external dimensions of the cochlea like the
width of the cochlear base [Wright 2005], but as plastic casts, it cannot provide
detailed three-dimensional reconstruction.

Histological sections offer the best image resolutions for the examination of fine
cochlear structure [Hardy 1938, Gulya 1996, Biedron 2010, Makary 2010]. However
just as plastic casts and microdissection it is a destructive method. Indeed, the
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method needs several chemical steps such as dehydration, decalcification, fixation
and staining, which may induce some tissue distortion and shrinkage [Buytaert 2011,
Rau 2013].

Medical imaging techniques provide nondestructive methods. CT and MRI are
common preoperative procedures. For the purpose of cochlear anatomy analysis,
CT provides more information and even though MRI could be a complementary
imaging modality [Thorne 1999, Gibson 2012], most of the studies published to date
have focused on CT [Skinner 2002, Escudé 2006, Baker 2008, van der Marel 2014].
However, conventional CT scan gives rather poor image resolution with respect to
the cochlear dimensions.

As important cochlear anatomical structures such as the basilar membrane are
not visible in CT imaging, analyses of the cochlea are commonly performed using
µCT images [Verbist 2009, Poznyakovskiy 2011, Gunz 2012, Shin 2013, Avci 2014,
Ceresa 2014]. In order to improve contrast, temporal bone samples can be fixed
and stained before imaging [Poznyakovskiy 2011, Kjer 2015b]. Cochlear fluids are
commonly removed [Postnov 2006, Poznyakovskiy 2011, Avci 2014, Ceresa 2014] but
this operation requires to drill through the round and oval windows and to replace
the perilymph with air by suction. The influence of this method on the geometry
of the membranous structures is unknown [Rau 2013] and µCT scanning with fluid
removal cannot be considered as nondestructive.

Previous analyses include measurements of the length of the cochlea and the
number of cochlear turns [Hardy 1938, Kawano 1996, Skinner 2002, Escudé 2006,
Stakhovskaya 2007, Erixon 2009, Gunz 2012, Shin 2013, van der Marel 2014],
measurements of the heights, widths and sectional areas of the scala
tympani [Zrunek 1980, Zrunek 1981, Hatsushika 1990, Gulya 1996,
Wysocki 1999, Thorne 1999, Biedron 2010, Avci 2014], the scala vestibuli
[Zrunek 1981, Gulya 1996, Wysocki 1999, Thorne 1999, Biedron 2010]
and the cochlea [Erixon 2009, Shin 2013], measurements of the radial
component of the cochlear centerlines (also called cochlear curvature)
[Cohen 1996, Baker 2008, van der Marel 2014], and studies of the longitudi-
nal component of the centerlines of the scala tympani [Avci 2014] and the cochlea
itself [Verbist 2009].

In this chapter, the variability of the human cochlea was studied from nine µCT
scans with a nondestructive preparation technique. The anatomical study provides
a comprehensive set of measurements on the basis of new methods, which avoid
inter-expert variability of manual measurements and can cope with the presence of
noise and outliers. The central path analysis includes not only measurements of the
scala tympani but also of the scala vestibuli and the whole cochlea, including lat-
eral and modiolar paths. The centerlines were extracted with an image processing
pipeline and expressed in an non-ambiguous cylindrical “cochlear” coordinate sys-
tem, estimated with an original robust method. From the centerlines, cross-sections
of the tympanic and vestibular ducts were acquired in a new non-ambiguous moving
frame. The heights, widths, areas and their respective variability across the nine
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Figure 3.1: (a) µCT image acquired on patient #4. An anisotropic diffusion filter
was applied to reduce image noise. (b) Segmentations of the scala tympani (blue)
and the scala vestibuli (yellow). The round window is not present in this slice.

samples, were estimated along the centerline. The cross-section tilt angle was for
the first time quantified.

3.2 Materials and Methods

3.2.1 Nondestructive Preparation of Human Cochleae

Nine healthy human temporal bones (5 right and 4 left sides) were obtained from
cadavers harvested within 24 hours after death. An otologic surgeon harvested the
entire temporal bone keeping intact the mastoid, the tympanic cavity and cochlear
fluids in order to prevent any damage of the membranous structures. Using an
in vivo high-resolution µCT scanner (GE eXplore speCZT system), µCT images
with isotropic voxel size of 24.79 µm were acquired in the laboratory Transporters,
Imaging and Radiotherapy in Oncology (TIRO, UMR-E4320) in Nice under the
supervision of Pr Thierry Pourcher. Unlike previous studies no destructive prepara-
tion techniques, such as cochlear fluids removal, were performed. The contrast level
was, however, sufficient to perform manual segmentation (Fig 3.1).

3.2.2 Interactive Segmentation

Automatic segmentation of the cochlear structures has been widely studied over
the last decade [Xianfen 2005, Schuman 2010, Noble 2011, Reda 2013, Reda 2014a,
Reda 2014b, Franz 2014]. Image segmentation is not the main focus of this study
but a prerequisite for the shape analysis of delineated structures.
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(a) (b) (c)

Figure 3.2: Patient 1
Manually segmented µCT slices in the yz- (a) and xz-planes (b) and volume (c) of

the ST (blue) and SV(orange).

(a) (b) (c)

Figure 3.3: Patient 2

(a) (b) (c)

Figure 3.4: Patient 3
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Figure 3.5: Patient 4

(a) (b) (c)

Figure 3.6: Patient 5.

(a) (b) (c)

Figure 3.7: Patient 6
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Figure 3.8: Patient 7

(a) (b) (c)

Figure 3.9: Patient 8

(a) (b) (c)

Figure 3.10: Patient 9
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The µCT images were cropped around the inner ear region. In order to im-
prove the quality of the images before segmentation an anisotropic diffusion filter
[Perona 1990] was applied (Fig. 3.1a), which denoises the image while preserving
edge contrast. Histogram equalization was then performed to enhance the contrast
of the images. Each image was segmented using the interactive semi automated
tool GeoS [Criminisi 2008] by a head and neck imaging expert (Fig. 3.1b). The
image resolution is high enough to identify the basilar membrane but insufficient to
identify the Reissner’s membrane and distinguish the scala media (or cochlear duct)
from the scala vestibuli. The first segmented area corresponds to the round window,
the second to the scala tympani and the third to the scala vestibuli, the scala media
and the semi-circular canals taken together. Here we focused on the anatomy of
the cochlea, discarding the vestibule. Henceforth, unless otherwise specified, the
label “scala vestibuli” refers to both vestibular and cochlear ducts (as frequently in
other studies [Gulya 1996, Wysocki 1999, Yoo 2000a, Postnov 2006, Meshik 2010,
Noble 2011, Braun 2012]). Fig. 3.2-3.10 present the nine segmented µCT images.

3.2.3 Automated Centerline Extraction

Extreme points 
detection 

Initialization 
Active 

contours 

Cross-sections 
centroids 

ST, SV, RW 

segmentations 

ST, SV, C 

centerlines 

inputs 

outputs 

Figure 3.11: Flowchart of the automated centerline extraction. (Abbreviations: ST,
scala tympani; SV, scala vestibuli; RW, round window; C, cochlea).

The challenge of cochlear centerline extraction has already been dealt with
[Baker 2004, Verbist 2009, Poznyakovskiy 2011, Gunz 2012]. A flowchart of the
method applied in this study and the results are respectively given on Fig. 3.11 and
Fig. 3.12. We performed a standard active contours approach [Kass 1988] driven by
the signed distance function which determines the distance of a given point from the
shape boundary of the segmented anatomical structure. The method is followed by
an adjustment using cross-section centroids to ensure that the centerline is properly
centered. Right cochleae are similar to right-handed helices and symmetrically for
left cochleae. Therefore to compare all centerlines, left cochleae are flipped in an
arbitrary direction.

The cochlea is topologically equivalent to a cylinder, which means that the
cochlear shape can be obtained by sweeping a planar surface along an axis. The
planar surface has a varying shape along the axis, it is referred as the cross-sections.
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Its axis is not straight and is set as the centerline (or central path), we defined as
the centerline as the space curve inside the cochlea which maximizes its distance to
the shape boundary.

With this definition, several image processing methods can be used for cochlear
centerlines extraction. One of the most intuitive methods is skeletonization, a topo-
logical skeleton consists of a thin version of shape represented by one-dimensional
branches. It is obtained by computing the locus of the centers of maximally in-
scribed spheres. This method was previously applied for the cochlear centerlines
extraction problem [Verbist 2009] but is very sensitive to small variations of the
shape, the resulting skeletons are highly noisy and correcting techniques, such as
wave propagation, must be used. [Gunz 2012] claimed that skeleton are so inaccu-
rate for cochlea that it is more appropriate to create manual skeletons. [Baker 2004]
proposed an alternative technique based on principal flow, which is able to deal with
non-circular cross-sections but also generates noisy outliers. [Poznyakovskiy 2011]
developed a segmentation method that extracts the centerline as well as the cross-
section contours, the algorithm iteratively computes the centerline from the mass
center of the cross-section and using Kalman filter and segments the cross-section
contours from the centerline normal planes using active contours until convergence.
This method works well on µCT scans with cochlear fluids removal, providing high
contrast between emptied structures filled with air and bony structures.

The problem of cochlear centerlines extraction is a specific problem of tubular
structure extraction, which has already been considerably studied by the computer
vision and medical imaging communities [Lesage 2009], in particular for vascular
network segmentation or virtual endoscopy [Deschamps 2001].

Extreme Points Detection of the Scala Tympani The starting and target
positions of the scala tympani were extracted automatically from the segmentations.
The starting point was set as the voxel labeled “scala tympani” closest to the round
window centroid. The detection of the target point is not straightforward. The
most apical point is aimed. For this purpose, a roughly approximated modiolar axis
(z-axis in the cochlear coordinate system by [Verbist 2010], see Fig. 3.13 in subsec-
tion 3.2.4) is needed. Since the cochlear diameter is about 8.5 mm at the basal turn
and the cochlear height is about 7 mm, the axis of least inertia, defined as the small-
est component using principal component analysis (PCA) of a voxel-based shape,
is roughly aligned with the modiolar axis . So the voxel labeled “scala tympani”,
whose projection on this axis is furthest from the starting point, corresponds to the
most apical point. This point was chosen as the target point.

Active Contours A signed distance function which determines the distance of a
given point from the shape boundary of the segmented anatomical structure can be
defined from segmented surface structures. In this study, inner points have negative
values whereas outer points have positive values.

Active contours can be used to solve the problem of tubular structure centerline
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extraction. The basic idea is to find a global minimum of an energy E,

E(x) =

∫ 1
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2
)

ds (3.1)

where x(s) is the three-dimensional centerline parameterized by s ∈ [0, 1] the nor-
malized curvilinear coordinate of the curve. In our case x(0) and x(1) are set to
what we called respectively the starting and target points (extreme points). The
first term P is chosen as the signed distance function previously introduced. The
two other terms are regularization terms called internal energy. The tension and
the bending of the centerline can be controlled respectively by w1 and w2.

The energy is similar to the one introduced in the seminal work of [Kass 1988]
coined as the snake method. The minimization procedure is based on a finite differ-
ence approximations (see appendix A) of the Euler-Lagrange differential equation,

∂x

∂t
= −∇P (x) + w1

∂2x

∂s2
− w2

∂4x

∂s4
. (3.2)

The centerline x evolves with respect to an artificial time t, and is initialized
with contour x0, which must be close enough to avoid falling in an undesired local
minimum. The iterations end when the change in the value of the energy E is
smaller than a threshold value ε, i.e. |E(x(t +∆t)) − E(x(t))| < ε, the number of
iterations is also limited. It can be noted that snake methods have been already
used for segmenting cochlear images by [Yoo 2001].

Initialization The initialization is based on the [Dijkstra 1959]’s algorithm after
defining a graph of voxels in 6-adjacency. Each voxel was considered as a node
and the weight between neighboring voxels was set as the mean signed distance of
the two adjacent voxels. An offset is added to keep positive weights. Even if the
results suffer from approximation errors (it uses the L1 norm) and tends to follow
the modiolar wall (opposite the lateral wall) of the scala tympani, it leads to a good
initialization of the helico-spiral centerline.

Cross-section Centroids The centerline obtained with the snake algorithm al-
lows us to define tangent vectors along the centerline. To ensure that the centerline
is properly centered, a slightly corrected centerline is computed from the locus of
the cross-sections centroids computed by slicing the segmentations in planes whose
normals are aligned with the centerline tangent vectors.

Initialization of the Scala Vestibuli The centerline of the scala vestibuli was
also extracted with the same approach but with a different initialization step, only
the initialization step differs from the pipeline used for the scala tympani. An
initialized vestibular centerline xSV

0 can be estimated directly from the tympanic
centerline xST .
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xSV
0 (s) = xST (s) + f(s)ẑ (3.3)

where ẑ is the unit vector of the modiolar axis (z-axis in the basal cochlear coordinate
system, see subsection 3.2.4), and f is an affine function of the normalized parameter
s, expressed in millimeters.

f(s) = 1− 0.8s (3.4)

based on the measurement of the heights of the tympanic and vestibular ducts found
in [Wysocki 1999]. As for the scala tympani, even if it suffers from approximation
errors, this initialization method is good enough to play the role of x0 in the mini-
mization procedure.

Centerlines Extraction of the Cochlea The centerline of the union of the
tympanic and vestibular ducts (called here the whole cochlea) xC was finally com-
puted from the scalae tympani and vestibuli as the mean centerline weighted by
the cross-sectional areas (respectively AST and ASV ) computed again by slicing the
segmentations in planes whose normal vectors are the centerlines tangents.

xC(s) =
AST (s)xST (s) +ASV (s)xSV (s)

AST (s) +ASV (s)
. (3.5)

3.2.4 Robust Modiolar Axis Estimation

The cochlear coordinate system (x, y, z) by [Verbist 2010] provide a standard and
unambiguous framework for anatomic studies of the cochlea. It can be defined inde-
pendently from a modality-centered anatomical coordinate system. The modiolus
is a cone-shape bony structure around which the first two turns of the cochlea are
wrapped. The z-axis is chosen as the modiolar-axis. As [Verbist 2010] point out,
there exist two main alternatives for the origin: the helicotrema (at the apex) with
the z-axis oriented from the apex to the base of the modiolus, or the base with the
reversed orientation. To remove any ambiguity, we call the former option “apical
cochlear coordinate system” (ACCS) [Verbist 2010] and the latter “basal cochlear
coordinate system” (BCCS) (see Fig. 3.13). In both coordinate systems, the xz-
plane passes through the center of the round window, x values being positive at
the level of the round window. The y-axis is set in order to have (x̂, ŷ, ẑ) being an
orthonormal basis. In this study we chose the BCCS. A flowchart of the methods
used for anatomical analysis of the cochlea is given on Fig. 3.14.

One of the major difficulties is to define the modiolar axis. Most of
previous studies define this axis by manually adjusted multiplanar reconstruc-
tion [Baker 2008, van der Marel 2014] or simply by setting manually two points
[Poznyakovskiy 2008, Verbist 2009, Kjer 2015a]. [Escudé 2006] proposed maximiza-
tion of dark pixel area using minimum intensity projection. [Yoo 2000b] determined
the modiolar axis using three nonlinear least square minimization based algorithms.
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Misalignment of the modiolar axis may greatly impact the measurements and can
be a cause of non reproducibility of the results.

Helico-spiral Axis Inference The challenge is to estimate the unknown modio-
lar axis ẑ from the cochlear centerline x expressed in another coordinate system. We
propose a method based on the intrinsic geometrical properties of the centerlines,
more specifically based on the locus of the centers of curvature of the centerline.

The cochlear centerline is most frequently described as a logarithmic spiral
[Cohen 1996, Xu 2000, Yoo 2000a, Yoo 2000b, Baker 2008]. In a cylindrical coor-
dinate system (where (r̂, θ̂, ẑ) are the local radial, circumferential and longitudinal
unit vectors) an ideal logarithmic helico-spiral can be written as:

x = ae−bθr̂+ cθẑ (3.6)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12: Nine ST centerlines overlaid over their corresponding three-dimensional
segmented cochleae.
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Figure 3.13: Comparison of modality-centered anatomical coordinate system (l, a, s)

and BCCS (x, y, z). (a) Left sagittal view from posterior to anterior (a-axis) and
from inferior to superior (s-axis) and (b) its corresponding close-up view. (c) Supe-
rior transverse view from left (l-axis) to right and from posterior to anterior (a-axis)
and (d) its corresponding close-up view. The segmented scala tympani (blue) and
the bony labyrinth (yellow) of the patient #1 (right cochlea) are represented. The
z-axis oriented from the base to the apex of the modiolus, the x-axis passes through
the center of the round window. There is no simple relationship (such as coplanarity)
between axes and planes from the two coordinate systems. The angle between a and
z-axes is know to be around 45◦ [Xu 2000], which is not exactly the case here.
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Figure 3.14: Flowchart of the shape parameterization. The centerline is derived in
its radial r(θ) and longitudinal z(θ) components in a cylindrical coordinate system
called BCCS. The cross-sections are expressed in a cochlear moving frame allowing
for measurements of their heights h(θ), widths w(θ) and tilt angles α(θ). (Abbrevi-
ations: ST, scala tympani; SV, scala vestibuli; C, cochlea).

Table 3.1: Logarithmic helico-spiral constants for cochlear model. The values for
the constants are given by [Clark 2011].

a

(mm)

b

(rad−1)

c

(mm·rad−1)

θ0

(rad)

θ1

(rad)

3.762 0.07546 0.1751 0 15.71

where a, b and c are positive constants. This cochlear model, completely param-
eterized by θ ∈ [θ0, θ1], is close to the one given by [Clark 2011], discarding the
piecewise definition of the radial function used to model the basal turn.

The radial and longitudinal components of x are:

r(θ) = ae−bθ (3.7)

z(θ) = cθ. (3.8)

Let us consider an infinitesimal part of the curve in the cylindrical coordinate
system

ds2 = dr2(θ) + r2(θ)dθ2 + dz2(θ) (3.9)

ds2 = b2r2(θ)dθ2 + r2(θ)dθ2 + c2dθ2 (3.10)

ds =
√

(b2 + 1)r2(θ) + c2dθ. (3.11)

We assume that c2 ≪ r(θ)2 ∀θ ∈ [θ0, θ1] since, in practice, using the values in
table 3.1,



3.2. Materials and Methods 31

2.2× 10−3 ≈ c2

r(θ0)2
≤ c2

r(θ)2
≤ c2

r(θ1)2
≈ 2.3× 10−2 (3.12)

.
We define differential arc length ds̃ as follows,

ds̃ =
√

b2 + 1r(θ)dθ (3.13)

Let us define the function γ and ε,

γ =
ds̃

ds
=

√
b2 + 1r(θ)

√

(b2 + 1)r2(θ) + c2

= 1− c2

2(b2 + 1)r2(θ)
+ o

(

c2

r2(θ)

)

≈ 1

(3.14)
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r3(θ)
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(3.15)

The tangent unit vector t̂ is defined as:

t̂ =
dx

ds
=

dx

ds̃

ds̃

ds
=
−br(θ)r̂+ r(θ)θ̂ + cẑ√

b2 + 1r(θ)
γ (3.16)

κn̂ =
dt̂

ds
=

d2x

ds2
=

d

ds

(

dx

ds̃

ds̃

ds

)

=
d2x

ds̃2

(

ds̃

ds

)2

+
dx

ds̃

d2s̃

ds̃2
=

d2x

ds̃2
γ2 − dx

ds̃
ε

(3.17)

where κ is the curvature and n̂ is the normal unit vector. Using the approximations
of γ and ε,

κn̂ ≈ d2x

ds̃2
=
−r(θ)r̂− br(θ)θ̂ + bcẑ

(b2 + 1)r2(θ)
(3.18)

κ2 = ‖κn̂‖2 ≈ (b2 + 1)r2(θ) + b2c2
(

(b2 + 1)2 r2(θ)
)2

≈ 1

(b2 + 1)r2(θ)
+

b2c2
(

(b2 + 1)2 r2(θ)
)2

(3.19)

where the second term in the right-hand side equation (∝ c2/r4(θ)) can be neglected,
the curvature is then,

κ ≈ 1√
b2 + 1r(θ)

. (3.20)
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We can now approximate the following terms,

t̂

κ
≈ −br(θ)r̂+ r(θ)θ̂ + cẑ (3.21)

n̂

κ
≈ −r(θ)r̂− br(θ)θ̂ + bcẑ. (3.22)

The evolute e of curve x is the locus of all its centers of curvature, the evolute
of an logarithmic helico-spiral has the parametric equation:

e = x+
n̂

κ
≈ −br(θ)θ̂ + c · (θ + b)ẑ. (3.23)

We propose to build a corrected evolute ec which is a sole function of the modi-
olar axis enabling to remove the circumferential dependency,

ec = x+
b

1 + b2
t̂

κ
+

1

1 + b2
n̂

κ

≈ c ·
(

θ +
2b

1 + b2

)

ẑ.

(3.24)

The corrected evolute estimates the modiolar axis, aligned with ẑ, using only
the intrinsic geometrical properties of the cochlear centerline, the curve x i.e. its
position, its local tangent and normal unit vector t̂ and n̂, its local curvature κ,
and a constant parameter b. The result is independent from the modality-centered
coordinate system (defined in the axial, coronal and sagittal planes).

The parameter b is a widely studied cochlear measurement, here it was set to
the optimum value found by [Cohen 1996] among 30 patients (b = 0.075 rad−1).

Robust Principal Component Analysis (PCA) The modiolar axis is thus
computed from the cochlear centerline as the locus of the corrected evolute. In
practice, discretization errors (see A for more details) and model errors (the cen-
terline may not be a perfect logarithmic spiral) cause the discrete corrected evolute
points to lie close to the modiolar axis but not exactly on it. Thus it is necessary
to estimate the line which best approximates the discrete corrected evolute in a
robust manner in order to cope with the presence of noise and outliers. This is
equivalent to performing robust PCA as we are looking for the first principle com-
ponent of the cloud of points. Robust PCA is performed using an extension of the
expectation maximization (EM) algorithm called ECME [Liu 1995] fitting Student’s
t-distributions instead of Gaussian distributions. The Student’s t-distribution can
be interpreted as an infinite weighted sum of normal distributions with the same
mean and variance determined by a gamma distribution. In the Maximization step
the mean and the variance are updated by computing a weighted sum of the data.

In the cylindrical coordinate system (r, θ, z) (Fig. 3.15) constructed from the BCCS
(x, y, z), the radial component r(θ) and the longitudinal component z(θ) of the
centerlines were extracted for the tympanic and vestibular ducts and the cochlea.
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Figure 3.15: Cylindrical coordinates.

3.2.5 Cochlear Moving Frame

In order to evaluate the internal dimensions of the cochlea, cross-section mea-
surements were performed in radial planes (a.k.a mid-modiolar cross-sections)
[Zrunek 1980, Zrunek 1981, Erixon 2009], in parallel planes such as histological sec-
tions [Biedron 2010] and in planes normal to the centerline [Poznyakovskiy 2011,
Avci 2014]. This last method does not induce measurement errors (e.g. the section
of a circular cylinder performed in plane not normal to the axis produces an ellipse).

Planes normal to the centerline can be defined in the Frenet-Serret moving frame
(where (̂t, n̂, b̂) are the basis vectors). This coordinate system is traditionally used
for centerline-based cochlear models [Viergever 1978], however, its moving frame
presents the significant drawback that the binormal unit vector may be ill-defined
at inflection points (see Fig. 3.17a). Instead, to overcome this drawback, let us
define the vectors:

û =
ẑ× t̂

‖ẑ× t̂‖
(a) v̂ = t̂× û (b) (3.25)

where ẑ is the unit vector of modiolar axis, t̂ is the unit vector tangent to the
centerline and the symbol × denotes the cross product. (̂t, û, v̂) defines a moving
frame which is always well defined because t̂ (and ẑ) is never degenerated (see
Fig. 3.17b). The cross-sectional measurements can then be performed locally in the
uv-planes.

Oriented Cross-sections Along the cochlear centerline the cross-sections of the
scalae tympani and vestibuli were acquired in the normal uv-planes. The cross-
sections may have problems with accuracy at the two extremities of the centerline.
Near the round window the cross-sections of the label “scala vestibuli” can leak
into the vestibule as well as the cross-sections may not be perfectly defined at the
apical turn since both scalae are supposed to merge at the apex. Potential errors
are detected with the change in the cross-sectional areas. An abrupt increase of
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Figure 3.16: û and v̂ can be linked to the radial r(θ) and longitudinal component
z(θ) of the central paths. û is defined in the xy-plane and ∠ûr̂ the angle between û

and r̂, the radial unit vector, is the complementary to the logarithmic spiral pitch
ψ = cot−1(b) where b is constant for a logarithmic spiral (a.k.a. equiangular spiral)
(as in Eq. 3.6). ∠v̂ẑ the angle between v̂ and ẑ, is the longitudinal growth rate,
∠v̂ẑ(θ) = arctan(dz/dθ).

one of the areas is indeed related to a leakage. The improper cross-sections were
constrained to vary smoothly, by imposing incorrect cross-sections to be inside the
morphological dilatation of their correct neighbor.

Cross-sections are fitted independently for each normal plane with ellipses using
classical principal component analysis. The major axes define the widths of the
ducts wST and wSV and the minor axes define the heights of the ducts hST and
hSV . The ellipses also provide an orientation. Let us call αST (respectively αSV )
the angle between û (i.e. the xy-plane) and the major axis of the scala tympani
(respectively the scala vestibuli). The cochlear tilt angle α is defined as the mean of
αST and αSV (see Fig. 3.31b). Positive values of the tilt angle mean that locally the
scala tympani is more lateral than the scala vestibuli and conversely for negative
values (to be consistent with the profile tilt angles in [Clark 2011]).

xSTlat (respectively xSTmod) that represents the set of points defining the paths along
the tympanic lateral (respectively modiolar) walls can be computed from the tym-
panic centerline xST using the cross-section measurements.

xSTlat (s) = xST (s)− wST

2
(cos(αST )û− sin(αST )v̂)

xSTmod(s) = xST (s) +
wST

2
(cos(αST )û− sin(αST )v̂).

(3.26a)

(3.26b)

These values can be computed similarly on the scala vestibuli.
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Figure 3.17: (a) Frenet-Serret frame. The start of the first basal turn is known to be
not perfectly logarithmic [Cohen 1996] and can present inflection points. Here the
normal unit vector n̂ (blue) and the binormal unit vector b̂ (red) vary singularly,
as we can see notably within first five represented moving frames. (b) New cochlear
moving frame. The vectors û (blue) and v̂ (red) vary smoothly along the centerline.
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3.3 Results

3.3.1 Centerlines Measurements

Table 3.2 shows the variability of basic measurements determined from the individual
cochlear centerlines. The number of cochlear turn is statistically equal to 2.57
± 0.28 (mean and ± 1 standard deviation), the length of the cochlear centerline
is equal to 24.4 mm ± 1.0. No significant correlation was found between these
two measurements (R2 = 0.39). Most of the variability occurs at the apical turn.
Fig. 3.18 illustrates the arc length along the scala tympani following the central
path (i.e. centerline), the lateral or modiolar walls. A projected representation of
the automatically extracted lateral, central and modiolar paths of a scala tympani
is shown in Fig. 3.19.

Fig. 3.20 presents the individual radial component of the tympanic centerlines
and Fig. 3.21, the mean radial component of the two scalae and their union. In
the first part of the basal turn the scala tympani is sightly more lateral than the
scala vestibuli. The radial component after 180◦ are roughly the same following a
logarithmic form. The standard deviation of the radial component of the cochlear
centerline (r(θ)) averaged over the patients and the angular coordinate θ (between
0 and 900◦) is equal to 0.11 mm.

Fig. 3.22 demonstrates the individual longitudinal component of the tympanic
centerlines and Fig. 3.23, the mean longitudinal component of the two scalae and
their union. The standard deviation of the cochlear longitudinal component of the
cochlear centerline (z(θ)) averaged over the patients and the angular coordinate θ
(between 0 and 900◦) is equal to 0.46 mm, which is more than four times the value
obtained for the radial component.

3.3.2 Modiolar Axis Estimation

Automated vs. Manual Estimation In order to compare the current method,
four cochlear anatomy experts estimated the modiolar axis by manually setting two
points, several times for each temporal bones.

Let us consider the modiolar axis as a line L = {p+ sẑ|s ∈ R}, where ẑ is a unit
vector. We evaluate respectively the angle of rotation and the distance between two
axes Li and Lj using,

dr(Li, Lj) =
∣

∣sin−1(‖ẑi × ẑj‖)
∣

∣ ∈ [0, π]

dt(Li, Lj) =

∣

∣

∣

∣

ẑi × ẑj

‖ẑi × ẑj‖
· (pj − pi)

∣

∣

∣

∣

≥ 0

(3.27a)

(3.27b)

The inter- and intra-expert standard deviation equal respectively to 10.0◦ and
8.7◦ for the angle of rotation and 0.14 mm and 0.12 mm for the distance. The
mean angle and distance between the automatically estimated and manually defined
modiolar axis are respectively 10.2◦ and 0.28 mm. Fig. 3.25 shows an example of
automatic and manual axis estimation.
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patient
cochlear

turns

cochlear

length

(mm)

ST

length

(mm)

SV

length

(mm)

1 2.32 23.6 25.3 22.9

2 2.57 23.5 25.3 22.9

3 2.74 26.1 26.7 27.0

4 3.08 25.5 27.8 25.6

5 2.14 24.5 25.8 24.5

6 2.32 23.0 24.3 22.6

7 2.74 24.6 26.0 24.6

8 2.54 23.9 26.5 23.2

9 2.67 24.6 26.8 24.2

Table 3.2: Measurements determined from the individual cochlear centerlines
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Figure 3.18: Individual and mean arc length of the lateral, central and modiolar
paths of the scala tympani as a function of the angular coordinate.
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Figure 3.19: Lateral, central and modiolar paths of a scala tympani (patient #2)
projected into the xy-plane. The mean intensity projection of the segmentation is
in the background.
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Figure 3.20: Individual and mean radial component of the tympanic centerline (ST).
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Figure 3.21: Mean radial component of the tympanic (ST) and vestibular (SV)
central paths as a function of the angular coordinate.
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Figure 3.22: Individual and mean longitudinal component of the tympanic centerline
(ST). The origin corresponds to the centers of the round windows.
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Figure 3.23: Mean longitudinal component of the tympanic (ST) and vestibular
(SV) central paths as a function of the angular coordinate.
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Figure 3.24: Modiolar axis estimation from a real cochlear centerline (patient #3). A
robust PCA of a multivariate Student’s t-distribution is performed on the corrected
centers of curvature. The weights are shown with the color map, the green points
are weighted more in the Student’s t-distribution whereas the red points belong to
the tail of the distribution and are almost not taken into account.



3.3. Results 41

5

0

-5
5

0

-5

-2

0

2

automatic

manual

Figure 3.25: Automatic and manual modiolar axis estimation from a real cochlear
centerline (patient #1).

parameters µA1 THA1

µA2

(mm)

THA2

(mm)

Cinit

(mm)

values 10−5 10−5 10−3 10−3 2.8

Table 3.3: Parameters used to implement [Yoo 2000b]’s algorithm A

Least Square Minimization Method vs. Evolute-based [Yoo 2000b] de-
signed two algorithms for the estimation of the modiolar axis from centerlines. Al-
gorithm A utilized the longitudinal variation, while algorithm B considers the radial
variation. They claimed that the former one is more accurate and suitable for three-
dimensional data, which led us to implement it. Algorithm A is based on nonlinear
optimization using steepest-descent algorithm and requires five parameters (µA1,
THA1, µA2, THA1, Cinit) whose values were not all specified in the article. We per-
formed ourselves parameters tuning in order to get good results with the synthesized
curves designed by the authors (summarized in Table 3.3).

The method described in subsection 3.2.4 is compared with the method in-
troduced by [Yoo 2000b] using their own parametric model and angular sampling
in order to perform a accurate comparison. Their centerline model is based on
[Fowler 1992]’s model with a logarithmic spiral and an exponential term for the ra-
dial and the longitudinal component of the centerline. Fig. 3.26 shows the model
for which the ideal axis is known.

[Yoo 2000b]’s method repeatedly updates the rotation parameters and the pa-
rameter C using the steepest-decent algorithm. The final rotation error depends
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on the initialization. The parameter C is an amplitude parameter that is used to
model the longitudinal component of the helico-spiral. C depends on the (uniform)
sampling (150 vertices for a total length of 35 mm). A criterion of convergence
is that for each sampled point i = 1, . . . , n, C needs to be greater than difference
between the adjacent longitudinal component (xi − xi−1) · ẑ. Fig. 3.27 shows the
rotation error with an optimized value of Cinit (2.8 mm) but with different initial
rotation around the x-axis (Rx), [Yoo 2000b] have tested the convexity of their ob-
jective function within a small orientation change (-10◦ to 10◦), but in this study,
µCT images of the temporal bones are acquired in random orientations.

We evaluated the robustness of both methods by adding Gaussian noise to the
original centerline. For every noise amplitude we generated 100 noisy centerlines
and evaluated the mean rotation error. Since [Yoo 2000b]’s algorithm needs to be
initialized, we used the most favorable conditions, i.e. the values in Table 3.3 with
the initial rotation around the x and y-axis (Rx and Ry) equal to 45◦ and 0◦ and
different Cinit values. Our method is run only once since it does not depend on
parameter Cinit and it uses the Frenet-Serret formulas which are independent from
the initial coordinate system. The mean errors are plotted in Fig. 3.28.

We also estimated the distance (dt) between the estimated modiolar axis and
the ideal one, it is equal 0.005 µm, which would represent 0.2 pixel on a µCT image,
while [Yoo 2000b] claimed 0 mm error.
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Figure 3.26: Synthetic cochlear model as defined by [Yoo 2000b] with and without
random Gaussian noise at three different scale (0.23 mm, 0.94 mm, 3.76 mm) with
a total amplitude of 0.18 mm.

Application to Real Data Fig. 3.24 presents the method applied on real patient
data, while Fig. 3.29 and Fig. 3.30 express the influence of the estimated modiolar
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Figure 3.27: Sensitivity of the algorithm A developed by [Yoo 2000b] with respect
to the initial rotation Rx.
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axis on the radial and longitudinal components of the centerlines. With a rota-
tion of the modiolar axis of 11.5◦, the projected components can be significantly
different. [Avci 2014] defined categories of the longitudinal component of the tym-
panic centerline. Among other categories, the “rollercoaster” category was defined
as a decreasing longitudinal component from the round window, changing to an in-
creasing curve between 5 and 10 mm. The “sloping” category follows an increasing
curve without any significant decreasing trends, local peaks located between 10 and
15 mm being also a feature of this category. Following this taxonomy, the estimated
projection in Fig. 3.30 would have been classified as a “rollercoaster” whereas the
perturbed one appears more to correspond to the “sloping” category with a peak
around 10 mm.
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Figure 3.29: Influence of the axis estimation on the centerline projected onto the
modiolar axis (called longitudinal component). The angle between the original and
the modified axis is equal to 11.5◦.

3.3.3 Cross-sections Measurements

Fig. 3.31 gives a sample of 24 cross-sections (represented in the uv-planes) computed
from the three-dimensional segmentations.

The mean cross-section area (Fig. 3.33), height (Fig. 3.34) and width (Fig. 3.35)
of the tympanic and vestibular ducts are presented. After 360◦the width of the scala
tympani and vestibuli tend to be equal.

Fig. 3.32 presents the individual tilt angle α, the mean angle between û and the
major axes of the tympanic and vestibular scalae. Examples of the influence of the
tilt angle can be appreciated in Fig. 3.31a, b and c.
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Figure 3.30: Longitudinal component of the cochlear centerline as a function of the
arc length. Both longitudinal components are extracted from the same cochlear
centerline.

3.4 Discussion

3.4.1 Parameterization Framework

The distance along the cochlear central path s and its angular parameterization θ

are both used in the literature. The distance can be measured from the different
centerlines (scala tympani, scala vestibuli or the whole cochlea), which produces
different parameterization (see the different final length in table 3.2). Depending on
the extraction method chosen, the cochlear central path may be shifted closer to the
lateral (as in [Wysocki 1999, Avci 2014]) or modiolar wall which would entail again
highly different parameterization (see Fig. 3.18 for the scala tympani). The angular
coordinate on the other hand is independent from the centerline. Therefore, as con-
cluded by [Verbist 2010] to allow accurate comparisons the angular parameterization
should be preferred.

A significant variability is observed for the longitudinal components. The origin
chosen for the coordinate system aligns all round windows but not the apexes,
whereas the apical coordinate system introduced by [Verbist 2010] would have
aligned all apexes but not the round windows.

The cochlear moving frame defined in this chapter allows one to easily measure
the profile tilt angle. To our knowledge this chapter provides a first quantification
of the tilt angle along the full centerline. [Clark 2011] introduced this parameter
but without any estimation from real data. Their proposed model captures some of
the variability (Fig. 3.32) but our systematic measurements provide a new insight
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(a) θ = 1° (b) θ = 8° (c) θ = 17° (d) θ = 26° (e) θ = 37° (f) θ = 49° 

(g) θ = 63° (h) θ = 79° (i) θ = 97° (j) θ = 117° (k) θ = 139° (l) θ = 165° 

(m) θ = 193° (n) θ = 226° (o) θ = 263° (p) θ = 304° (q) θ = 351° (r) θ = 404° 

(s) θ = 464° (t) θ = 532° (u) θ = 608° (v) θ = 694° (w) θ = 792° (x) θ = 902° 
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Figure 3.31: Cross-sections (patient #3), with the scala tympani (blue) and the
scala vestibuli (yellow) from the base to the apex. Subfigure (a) illustrates a leakage
of the label “scala vestibuli” to the vestibule. Subfigure (x) illustrates the difficulty
to have well defined centerlines at the apex, where both scalae merge.
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Figure 3.32: Individual and mean cochlear tilt angle α, the mean angle between û

and the major axes of the tympanic and vestibular scalae.
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Figure 3.33: Cross-section area of the tympanic and vestibular scalae. The thinner
lines represent ± 1 standard deviation.
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Figure 3.34: Heights of the tympanic and vestibular scalae.
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Figure 3.35: Width of the tympanic and vestibular scalae.

in the cochlear structure. [Gibson 2012] measured the rotation of the osseous spiral
lamina in the hook region. The measurements are assessed at four locations (1, 3,
5 and 7 mm distal to the round window) along the basal turn of the cochlea. Slices
of MRI images are extracted using an oblique sagittal plane. The acquisition of this
plane called Pöschl projection is radiologist-dependent and the rotations measured
are difficult to compare with the tilt angle.

The tilt angle measurements shows a relatively repetitive pattern. Close to the
round window, the tilt angle is on average greater than 45◦. Between 60 and 360◦,
the tilt angle falls around 0◦, making the radial component of the tympanic and
vestibular centerlines coincident. This decrease of the tilt angle along the basal
turn matches with the prominent rotation noted in [Gibson 2012]’s study which has
been performed between approximately 10 and 100◦. After 360◦ the tilt angle turns
positive before becoming flat again at the apex.

Additionally, the cochlear moving frame allows to deduct unambiguously the
lateral and the modiolar path from the central one.

3.4.2 Variability Study

When the number of cochlear turns is not specifically detailed [Kawano 1996,
Braun 2012, Kjer 2015a], many authors transcribed the mean, the standard de-
viation, the range and the number of the measurements [Erixon 2009, Shin 2013,
Avci 2014]. For illustration purposes, Fig. 3.36 shows sets of data values which ful-
fill the measures listed above (the standard deviation was arbitrarily set to 0.14
for the data in [Erixon 2009]). A normal distribution was fit to the concatenated
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data. Comparing the results of this current study with previous findings shows that,
on one hand the mean number of cochlear turn (2.58) falls extremely close to the
mode of the normal distribution (2.59), on the other hand the standard deviation
(0.28) is broader than what is found in the literature (0.11 [Kawano 1996], 0.09
[Shin 2013], 0.17 [Avci 2014]). This result could be explained by the presence of
two extreme cases. Patient #5 (2.14) is close the lower end of the range observed
by [Erixon 2009] (2.15) and according to [Jackler 2009]’s classification is not mal-
formed. Cochleae with 3 turns such as the second outlier (3.08) were previously
reported by [Tian 2006].

Irrespective to the parameterization, our cross-sections measurements are very
similar to the ones from [Wysocki 1999] and [Thorne 1999], our height measure-
ments being also comparable with diameter measurements obtained from inscribed
circles [Biedron 2010, Avci 2014]. Tympanic cross-section area appears greater to
the vestibular one in the basal turn and conversely in the middle and apical turns
(as shown in Fig .3.33) match with [Gulya 1996, Wysocki 1999]’s observations.

The radial component of the different cochlear ducts shows low variability. In
accordance with the results from previous studies [Cohen 1996, Baker 2008], a log-
arithmic spiral seems to describe well the projected cochlear shape.

The longitudinal component of the cochlea, as described by [Verbist 2009], shows
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Figure 3.36: Comparison of measurements of the number of cochlear turns. A
normal distribution was fitted to the concatenated measurements.
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a pattern similar to the one in Fig. 3.23, which is a decreasing slope, changing
to an increasing curve. The “proximal short rising” described by the authors has
not been observed in our mean cochlear centerline data but can still be noticed in
the mean tympanic and vestibular centerlines. The longitudinal component of the
scala tympani was studied by [Avci 2014]. Unlike [Avci 2014] all the scala tympani
showed the same profile, which would have been classified as a “rollercoaster” (see
subsection 3.3.2).

Finally, despite the challenge in shape analysis at the apex, the results of this
study have the advantage of being meaningful even after the second turn (720◦).

3.4.3 Modiolar Axis Estimation

The comparison between manual and subsection 3.3.2 shows that automatically
estimated axis is on average sightly further from the axis defined by the experts
than the inter- and intra-expert standard deviation. More specifically, the rotation
error is similar to the inter-expert variability while the translation is greater. The
variability of the manually defined axes comes from the estimation of the apical
axial point rather than the basal axial point. The experts tend to choose a point
directly on the centerline rather than at the hypothetical center of the helico-spiral
(see Fig. 3.25). Theoretically the radius of a logarithmic spiral converges to zero
but never reaches it. We can reasonably assume these results can be explained by a
bias that occurs with the manual estimation.

Moreover we have shown an example of the influence of a rotation error of
11.5◦ (Fig. 3.29), which is of the same order of magnitude as the mean angle error
between the automatically and manually estimated axis (10.2◦). In some cases the
influence is large enough to change the profile of the longitudinal component. For
these reasons we can hypothesize that the fact that only one class of [Avci 2014]’s
classification is found in this study can be explained either by a lack of variability of
our database or by the influence of our more reproducible modiolar axis estimation
method compared with the manual one.

The comparison between the two estimation methods of the modiolar axis shows
that the method of [Yoo 2000b] provides a good estimate only when the parameter
Cinit is correctly estimated and when the initialization angle is within a close range
of the true value. However, the parameter Cinit cannot be estimated easily since it
depends on the curve discretization and the initial coordinate system. Our method
on the other hand is an unbiased estimator of the axis in the absence of noise and
does not depend on the choice of an additional extrinsic parameter or the reference
frame. Its performance in the presence of noise is fairly similar (up to 2◦ difference)
to the best estimate of [Yoo 2000b] and is robust to outliers. Since our approach
relies on computing the center of curvature (Eq. ) in the supplementary materials),
of a noisy centerline, it could be improved by considering scale sensitive discrete
curvature computation.
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3.4.4 Implication for Cochlear Implantation

The preparation and the segmentation of the human cochlea allow us to assess with
confidence meaningful information for cochlear implantation and even after the first
two basal cochlear turns.

The centerlines of the scala tympani are useful to identify the potential location
of insertion trauma. Most longitudinal components show an important “bump” at
184.5◦ ± 80.9 (mean and ± 1 standard deviation), which matches well with the
empirical position (around 180◦), observed by surgeons, of cochlear trauma and
basilar perforation sites [Eshraghi 2003, Wardrop 2005, Nguyen 2012].

In order to make the centerline projections significant, one must pay attention
on how to define correctly the cochlear coordinate system.

Fig. 3.32 shows a distinctive tilt angle, on average greater than 45◦ close to the
round window (as in Fig. 3.31b). Such a feature may make the electrode array
deviate in the scala vestibuli shortly after an insertion through a cochleostomy. The
tilt angle may have implication for occurrence of trauma and cochleostomy site
selection [Briggs 2009].

Straight electrodes tend to follow the lateral wall of the scala tympani whereas
perimodiolar electrodes are designed to follow the modiolar wall. The measure
of the lateral, central and modiolar arc lengths (Fig. 3.18) could provide, as in
[Escudé 2006], information about ideal electrode array length according to the type
of electrode and the desired insertion depth.

The height of the scala tympani was measured as the minor axis of the cross-
sections, it is also comparable with the diameter of the inscribed circle (subsec-
tion 3.4.2). The results are independent from the cross-section plane orientation.
It provides an upper limit for the dimension of an electrode array. We showed
(Fig. 3.34) that it is of primary importance to have an electrode diameter smaller
than 0.5 mm in order to be atraumatic after 360◦.

3.5 Conclusion

We designed an automated method for the cochlear centerline extraction given a
segmented cochlea image. A robust method for modiolar axis estimation was devel-
oped, validated on a synthetic cochlear model, compared with manual estimation
and another algorithm from the literature and finally applied on segmented images
of nine temporal bones. Objective geometrical measurement were performed on the
tympanic and vestibular duct segmentations assessing, among others, the radial and
longitudinal components of the lateral, central and modiolar paths. Cross-section
measurements were estimated within a new non-ambiguous moving frame. Close
to the round window, the cross-section tilt angle shows an important feature for
insertion trauma comprehension. This study was meant to be reproducible and
suitable for a larger database in order to improve significantly the knowledge of the
cochlea shape variability. Finally, this study could provide the key measurements
to validate a parametric shape model of the cochlea and its inner structures. This
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model could be used to provide prior anatomical information required for analyzing
clinical CT images. Indeed due to spatial resolution limitation, conventional CT
images alone cannot provide enough fine information about anatomical structures
relevant for cochlear implantation [Shin 2013]. Specifically the basilar membrane
that delimits the scala tympani is nearly invisible with clinically available imaging
techniques. Based on the presented results, further studies will analyzed the human
cochlear shape variability from large CT image databases.
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Abstract

Cochlear implants (CI) are used to treat severe hearing loss by surgically inserting an
electrode array into the cochlea. Since current electrodes are designed with various
insertion depth, ENT surgeons must choose the implant that will maximize the
insertion depth without causing any trauma based on preoperative CT images. In
this chapter, we propose a novel framework for estimating the insertion depth and
its uncertainty from segmented CT images based on a new parametric shape model.
Our method relies on the posterior probability estimation of the model parameters
using stochastic sampling and a careful evaluation of the model complexity compared
to CT and µCT images. The results indicate that preoperative CT images can be
used by ENT surgeons to safely select patient-specific cochlear implants.
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4.1 Introduction

A cochlear implant (CI) is a surgically implanted device used to treat severe to
profound sensorineural hearing loss. The implantation procedure involves drilling
through the mastoid to open one of the three cochlear ducts, the scala tympani (ST),
and insert an electrode array to directly stimulate the auditory nerve, which induces
the sensation of hearing. The post-operative hearing restoration is correlated with
the preservation of innervated cochlear structure, such as the modiolus and the
osseous spiral lamina, and the viability of hair cells [Nadol 1997].

Therefore for a successful CI insertion, it is crucial that the CI is fully inserted
in the ST without traumatizing the neighboring structures. This is a difficult task
as deeply inserted electrodes are more likely to stimulate wide cochlear regions but
also to damage sensitive internal structures. Current electrode designs include arrays
with different lengths, diameters, flexibilities and shapes (straight and preformed).
Based on the cochlear morphology selecting the patient-appropriate electrode is a
difficult decision for the surgeon [van der Marel 2014].

For routine CI surgery, a conventional CT is usually acquired for insertion plan-
ning and abnormality diagnosis. However, the anatomical information that can be
extracted is limited. Thus, important structures, such as the basilar membrane that
separates the ST from other intracochlear cavities, are not visible. On the other
hand, high resolution µCT images leads to high quality observation of the cochlear
cavities but can only be acquired on cadaveric temporal bones.

Several authors have devised reconstruction methods of the cochlea from CT
images by incorporating shape information extracted from µCT images. In partic-
ular, [Noble 2011] and [Kjer 2015b] created statistical shape models of the cochlea
based on high-resolution segmented µCT images. Those shape models are created
from a small number of µCT images (typically 10) and therefore may not represent
well the generality of cochlear shapes that can bias the CT anatomical reconstruc-
tion. [Baker 2005] used a parametric model based on 9 parameters to describe the
cochlear as a spiral shell surface. This model was fit to CT images by assuming that
the surface model matches high gradient voxels.

In this chapter, we aim at estimating to which extent a surgeon can choose a
proper CI design for a specific patient based on CT imaging. More specifically, we
consider 3 types of implant designs based on their positioning behavior (see Fig. 4.10)
and evaluate for each design the uncertainty in their maximal insertion depth. If
this uncertainty is too large then there is a risk of damaging the ST during the
insertion by making a wrong choice. For this uncertainty quantification, we take
specific care of the bias-variance tradeoff induced by the choice of the geometric
model. Indeed, considering an oversimplified model of the cochlea will typically
lead to an underestimation of the uncertainty whereas an overparameterized model
would conversely lead to an overestimation of uncertainty.

Therefore, we introduce in this chapter a new parametric model of the cochlea
and estimate the posterior distribution of its parameters using Markov Chain Monte
Carlo (MCMC) method with non informative priors. We devised likelihood functions
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that relate this parametric shape with the segmentation of 9 pairs of CT and µCT
images. The risk of overparameterization is evaluated by measuring the entropy
of those posterior probabilities leading to possible correlation between parameters.
This generic approach leads to a principled estimation of the probability of CI
insertion depths for each of the 9 CT and µCT cases.

4.2 Methods

4.2.1 Data

Healthy temporal bones from 9 different cadavers were scanned using CT and µCT
scanners. CT scans were acquired at the Imaging Center of the Nice University Hos-
pital using a GE LightSpeed VCT CT system under the supervision of Pr Charles
Raffaelli, while µCT scans were acquired in the laboratory Transporters, Imaging
and Radiotherapy in Oncology (TIRO, UMR-E4320) in Nice using the GE eX-
plore speCZT120 scanner under the supervision of Pr Thierry Pourcher. Unlike
CT images, which have a voxel size of 0.1875x0.1875 x0.25 mm3 (here resampled to
0.2x0.2x0.2 mm3) the resolution of µCT images (0.025 mm per voxel) is high enough
to identify the basilar membrane that separates the ST from the scala vestibuli (SV)
and the scala media. The scala media represents a negligible part of the cochlear
anatomy, for simplicity purposes, both SV and scala media will be referred as the
SV. Since intracochlear anatomy are not visible in CT images, only the cochlea was
manually segmented by an head and neck imaging expert, while the ST and the SV
were segmented in µCT images (see Fig. 4.1). All images were rigidly registered us-
ing a pyramidal block-matching algorithm [Ourselin 2000] and aligned in a cochlear
coordinate system [Verbist 2010].

4.2.2 Parametric Cochlear Shape Model

Since we have a very limited number of high resolution images of the cochlea, we
cannot use statistical shape models to represent the generality of those shapes. In-
stead, we propose a novel parametric modelM of the 3 spiraling surfaces: the whole
cochlea, the scala tympani and scala vestibuli (see Fig. 4.2). The cochlea corresponds
to the surface enclosing the 2 scalae and we introduce a compact parameterization
T = {τi} based on 22 parameters for describing the 3 surfaces. This model extends in
several ways the ones previously proposed in the literature [Baker 2005] as to prop-
erly capture the complex longitudinal profile of the centerline and the specific shapes
of the cross-sections detailed in clinical studies [Wysocki 1999]. More precisely, in
this novel model, the cochlea and two scalae can be seen as generalized cylinders,
i.e cross-sections swept along a spiral curve. This centerline is parameterized in a
cylindrical coordinate system by its radial r(θ) and longitudinal z(θ) functions of
the angular coordinate θ within a given interval [0, θf ]. The cross-sections of the ST
and SV are modeled by a closed planar curve on which a varying affinity transforma-
tion is applied along the centerline, parameterized by an angle of rotation α(θ) and
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Slices of CT (a,c,e) and µCT (b,d,f) with segmented cochlea (red), ST
(blue) and SV (yellow).
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Figure 4.2: Parametric model with the ST (blue), the SV (yellow) and the whole
cochlea (translucent white).

two scaling parameters w(θ) and h(θ). In particular, the three modeled anatomical
structures shared the same centerline, the tympanic and vestibular cross-sections are
modeled with two half pseudo-cardioids within the same oriented plane while the
cochlear cross-section corresponds the minimal circumscribed ellipse of the union of
the tympanic and vestibular cross-sections (see Fig. 4.10). The center of the ellipse
is on the centerline. Eventually the shapes are fully described by 7 one-dimensional
functions of θ: r(θ), z(θ), α(θ), wST (θ), wSV (θ), hST (θ), hSV (θ), combinations of
simple functions (i.e polynomial, logarithmic, . . .) of θ.

4.2.2.1 Previous models

Historically, cochlear models first described the cochlear centerline prior to emer-
gence of solid shape models.

Early Models The cochlea had long been identified as shell-like spiral structure
[Leidy 1883], hence it etymology derived from the Latin word for snail-shell.

Parametric modeling of seashell was emphasized before parametric shape mod-
eling of cochlea [Thompson 1917]. As described in the review of shell parametric
models by [Stone 1996], [Moseley 1838] was the first to model properly shell shape
using polar coordinates.

[Ketten 1990] identified two cochlear canal spiral types in cetaceans : Archime-
dian spiral (4.1) and logarithmic spiral (4.2) while, at the same time, [Voie 1990]
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parameters a b c d θ0 θ1 θ2 θf
values 3.76 0.0755 3.82 0.269 0.0873 0.180 1.74 15.9

Table 4.1: Parameters of Cohen’s model (4.4) with θ ∈ [θ1, θf ] (in radians). a and
c are in millimeters, all others are dimensionless.

noted the resemblance of the guinea pig scala tympani with an Euler spiral (4.3) .

r(θ) = aθ (4.1)

r(θ) = ae−bθ (4.2)

x(l) =

∫ l

0
cos s2ds

y(l) =

∫ l

0
sin s2ds

(4.3a)

(4.3b)

Cohen’s Model [Cohen 1996] introduced a two-dimensional parametric model
describing the radial component r(θ) of the electrode array placed in the human
scala tympani. The radial component consists in a piecewise logarithmic function.
The piecewise defined functions allow to take into account the shape of the basal
turn.

r(θ) =

{

c(1− d log(θ − θ0)) if θ < θ2

ae−bθ else.

(4.4a)

(4.4b)

Ketten’s Model [Ketten 1998] introduced a three-dimensional parametric model
of the human cochlea based on their previous work [Ketten 1990] adopting the Archi-
median spiral (Eq 4.1) as radial component r(θ) of the cochlear central path. A ma-
jor motivation was to measure the cochlear length easily so the vertical component
was defined such as the Pythagorean theorem relates, on one hand the arc length of
the Archimedian spiral in the xy-plane spol (defined in Eq 4.5) and the height h of
the cochlea and, and on the other hand, the cochlear arc length scyl (Eq 4.6) .

spol(θ) =

∫ θ

0

√

r(t)2 +

(

dr(t)

dt

)2

dt (4.5)

scyl(θmax) =
√

spol(θmax)2 + h2. (4.6)

The vertical component defined as above would be suitable with Ketten’s defi-
nition (Eq 4.5 and Eq 4.6):
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z(θ) =
spol(θ)

spol(θmax)
h. (4.7)

Despite its reasonably complex formulation and its lack of anatomical relevance,
Ketten’s model offers the advantage that it only needs three parameters to describe
the three-dimensional cochlear central path. Besides, the parameters are physically
meaningful: θmax depicts the number of cochlear turns, a is a scale factor represent-
ing the cochlear diameter at the basal turn and h is the cochlear height.

Helico-spiral Models Several other three-dimensional models were built from
two-dimensional models adding the longitudinal component z(θ) . Yoo et al.
modeled the helico-spiral cochlear shape adapting, first the seashell model of
[Fowler 1992] with a logarithmic spiral (Eq 4.2) and an exponential longitudinal
component (Eq 4.8) [Yoo 2000b], and second Cohen’s model (Eq 4.4) by adding a
linear longitudinal component (Eq 4.9) [Yoo 2000a].

z(θ) = cedθ (4.8)

z(θ) = e(θ − θ1) (4.9)

Solid Shape Models Based on the centerline modeling, solid shape models were
introduced by modeling the cross-sectional shapes. [Manoussaki 2000] modeled the
cross-section of the combined scala vestibuli and scala media as a constant rectan-
gle, [Baker 2005] and [Zhang 2006] modeled the cochlear cross-section as an ellipse
(Fig. 4.3) and [Clark 2011] modeled the cross-section of the scala tympani as semi-
circular ends connected by straight segments. The latter can be considered as the
most realistic three-dimensional parametric shape model.

Statistical Cochlear Models Other approaches try to learn the intra-cochlear
anatomy using Statistical Shape Model (SSM), Active Shape Model (ASM) or Atlas-
based procedure [Noble 2011, Noble 2012, Noble 2013, Noble 2013, Kjer 2014a,
Kjer 2015d, Romera Romero 2016]. Statistical Shape Model are usually built from
high-resolution µCT. The basic idea is to describe the shape as a set of points. After
aligning the training shape using rigid registration and defining a mapping from the
landmarks of one shape to another, the dimensionality of the data is reduced using
most frequently Principle Component Analysis (PCA). For a detailed explanation
of the SSM methodology please refer to [Paulsen 2004, Heimann 2009].

4.2.2.2 New Parametric Model Equations

Centerline The centerline is a curve defined in a cylindrical coordinate system
(where (r̂, θ̂, ẑ) are the local radial, circumferential and longitudinal unit vectors)
as,
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Figure 4.3: Example of cochlear solid shape model from [Baker 2008]

xc(θ) = r(θ)r̂(θ) + z(θ)ẑ. (4.10)

The radial component is defined piecewise with a polynomial function and a
logarithmic function,

r(θ) =

{

p2θ
2 + p1θ + p0 if θ < θ2

ae−bθ else.

(4.11a)

(4.11b)

The longitudinal component is defined as a sum of two terms,

z(θ) = z0(θ) ∗
1

w
Π

(

θ

w

)

+ z1(θ) (4.12)

where the symbol ∗ denotes the convolution and Π is the rectangle function that is
null outside [−1/2, 1/2] and unity inside, the constant w parameterized the width
of the rectangle function and thus the span of the smoothing on z0(θ).

z0(θ) =

{

q1θ + q0 if θ < θ1

r1θ + r0 else

(4.13a)

(4.13b)
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Figure 4.4: Radial component of the centerline.

scale factor (ܽ < ܽ) spiral pitch, � =  cot−ଵ ܾ (� < �) 

 angular threshold (�ଶ < �ଶ) radius at origin (� < �) 

Figure 4.5: Illustration of the influence of the parameters a, ψ, θ2, p0.
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Figure 4.6: First term z0 of longitudinal component of the centerline.

z0(θ) ∗
1

w
Π

(

θ

w

)

=



























































q1θ + q0 if θ < θ1 −
w

2
q1
2

(

θ21 −
(

θ − w

2

)2
)

+ q0

(

θ1 −
(

θ − w

2

))

+
r1
2

(

(

θ +
w

2

)2
− θ21

)

+ r0

((

θ +
w

2

)

− θ1
)

if θ1 −
w

2
≤ θ < θ1 +

w

2

r1θ + r0 else

(4.14a)

(4.14b)

(4.14c)

z1(θ) = ke
−
(θ − µ)2
2σ2 cos(ωθ + ϕ) (4.15)

Cross-section The cross-section shapes are defined for the scala tympani, the
scala vestibuli and the cochlea as a whole. Respectively, the subscripts ST , SV and
Co are used for identification purposes.

u0(φ) =



























2

9

(

2 cosφ− cos 2φ+
1

2

)

+
5

9

√
1− 2τ if 0 ≤ φ ≤ φ0

5

9
(τ cos(f(φ))) if φ0 ≤ φ ≤ π

g(φ) if π ≤ φ ≤ 2π

(4.16a)

(4.16b)

(4.16c)
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Figure 4.7: Illustration of the influence of the parameters q1, q0, θ1, r1.
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Figure 4.8: Second term z1 of longitudinal component of the centerline.
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v0(φ) =



















2

3
√
3
(2 sinφ− sin 2φ) if 0 ≤ φ ≤ φ0

τ sin(f(φ)) + τ if φ0 ≤ φ ≤ π
0 if π ≤ φ ≤ 2π

(4.17a)

(4.17b)

(4.17c)

Eq. 4.16a and 4.17a define a cardioid segment, Eq. 4.16b and 4.17b define an ellipse
segment and Eq. 4.16c and 4.17c define a line segment. τ ∈ [0, 1/2]. The affine
functions f(φ) and g(φ) and the angular threshold φ0 are defined as,

f(φ) =

π

2
+ arcsin

(

τ

1− τ

)

π − φ0
(x− φ0) + π − arcsin

(

τ

1− τ

)

(4.18)

g(φ) =
5

9π

(

3

5
+
√
1− 2τ

)

(x− π) (4.19)

φ0 = arccos

(

1−
√
A2 +B2

2

)

(4.20)

amplitude (� < �) center of the peak (� < �) 

angular frequency (� < �) phase (� < �) 

Figure 4.9: Illustration of the influence of the parameters k, µ, ω, φ.
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with,

A =
−5
√
1− 2τ

2(1− τ) − 3

2
(4.21)

B =
3
√
3τ

2(1− τ) . (4.22)

Introducing the following parametric equations parameterized by φ ∈ [0, 2π],

[

ũST (θ, φ)

ṽST (θ, φ)

]

=

[

cosβ sinβ

− sinβ cosβ

] [

wST (θ) 0

0 −hST (θ)

] [

u0(φ)

v0(φ)

]

(4.23)

[

ũSV (θ, φ)

ṽSV (θ, φ)

]

=

[

cosβ − sinβ

sinβ cosβ

] [

wSV (θ) 0

0 hSV (θ)

] [

u0(φ)

v0(φ)

]

. (4.24)

Let us define the Löwner-John ellipse [Henk 2012, John 2014], parameterized by
φ ∈ [0, 2π],

eLJ(θ, φ) =

[

t1(θ)

t2(θ)

]

+

[

T1,1(θ) T1,2(θ)

T2,1(θ) T2,2(θ)

] [

cosφ

sinφ

]

(4.25)

as a minimal circumscribed ellipse of:

⋃

φ∈[0,2π]

{[

ũST (θ, φ)

ṽST (θ, φ)

]

,

[

ũSV (θ, φ)

ṽSV (θ, φ)

]}

. (4.26)

∀i ∈ {ST, SV },
[

ui(θ, φ)

vi(θ, φ)

]

=

[

cosα(θ) sinα(θ)

− sinα(θ) cosα(θ)

]([

ũi(θ, φ)

ṽi(θ, φ)

]

−
[

t1(θ)

t2(θ)

])

(4.27)

[

uCo(θ, φ)

vCo(θ, φ)

]

=

[

cosα(θ) sinα(θ)

− sinα(θ) cosα(θ)

] [

T1,1(θ) T1,2(θ)

T2,1(θ) T2,2(θ)

] [

cosφ

sinφ

]

(4.28)

Cross-section Parameters Along the Centerline From now on, unless other-
wise specified, the variables using the subscripts i are defined for i ∈ {ST, SV,Co}.
The cross-section parametric equations ui(θ, φ) and vi(θ, φ) represent functions of
the parameters wST (θ), hST (θ), wSV (θ), hSV (θ), α(θ), β and τ .

wST (θ) = wST (θ) + wST1θ + wST0 (4.29)

α(θ) = α(θ) (4.30)

were wST (θ) and α(θ) are constant polynomial functions (Table 4.2). hST (θ),
wSV (θ), hSV (θ) are as defined in the equivalent manner as for wST (θ). β and τ

are constants set to 0.25 and 0.04.



66 Chapter 4. A New Parametric Cochlear Shape Model

Full Model The full parametric cochlear shapes xi(θ, φ) can be written as gener-
alized cylinders [Voie 1990],

xi(θ, φ) = xc(θ) + ui(θ, φ)û(θ) + vi(θ, φ)v̂(θ) (4.31)

parameterized by (θ, φ) ∈ [0, θmax] × [0, 2π], and where (̂t, û, v̂) define a moving
frame, with t̂(θ) the tangent unit vector of xc(θ), such as,

t̂(θ) =
dxc(θ)

ds(θ)
(4.32)

û(θ) =
ẑ× t̂(θ)

‖ẑ× t̂(θ)‖
(4.33)

v̂(θ) = t̂(θ)× û(θ) (4.34)

where the symbol × denotes the cross product and the infinitesimal part of the curve
ds(θ),

Scala Vestibuli (SV) 

Scala Tympani (ST) 

Figure 4.10: Parametric cross-sections (ST in blue, SV in orange, cochlea in white)
fitted to a microscopic images from [Rask-Andersen 2012], here θ ≈ 3π/4.
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p α wST hST wSV hSV

0 0.966 2.59 0.952 2.09 1.27

1 −1.15 −0.815 1.15 −0.937 −1.03
2 −0.784 0.545 −1.36 0.593 0.632

3 2.17 −0.196 0.670 −0.165 −0.166
4 −1.60 3.73× 10−2 −0.180 2.39× 10−2 2.29× 10−2

5 0.620 −4.00× 10−3 2.95× 10−2 −1.94× 10−3 −1.80× 10−3

6 −0.150 2.52× 10−4 −3.08× 10−3 8.85× 10−5 8.16× 10−5

7 2.43× 10−2 −9.25× 10−6 2.12× 10−4 −2.13× 10−6 −1.97× 10−6

8 −2.76× 10−3 1.84× 10−7 −9.47× 10−6 2.09× 10−8 1.97× 10−8

9 2.23× 10−4 −1.52× 10−9 2.67× 10−7

10 −1.31× 10−5 −4.29× 10−9

11 5.45× 10−7 3.01× 10−11

12 −1.59× 10−8

13 3.08× 10−10

14 −3.56× 10−12

15 1.86× 10−14

Table 4.2: Polynomial coefficients of degree p for cross-section functions α(θ),
wST (θ), hST (θ), wSV (θ) and hSV (θ)

ds(θ) =
√

dr2(θ) + r2(θ)dθ2 + dz(θ) (4.35)

ds(θ) =

√

(

dr(θ)

dθ

)2

+ r2(θ) +

(

dz(θ)

dθ

)2

dθ (4.36)

4.2.2.3 Surface Self-intersection Avoidance

Local Self-intersection The generalized cylinders xi(θ, φ) have local self-inter-
sections if the radius of their cross-sections is greater than the radius of curvature
of the axis xc(θ) [Zerroug 1996, Gansca 2002]. More specifically, they have local
self-intersections if and only if the following condition is not satisfied:

(xi(θ, φ)− xc(θ)) · n̂(θ) ≤
1

κ(θ)
(4.37)

where n̂(θ) is the normal unit vector of xc(θ) and κ(θ) its local curvature, such as,

κ(θ)n̂(θ) =
dt̂

ds
(4.38)

Global Self-intersection Several kinds of global self-intersections are possible
but the way the shapes were constructed restricts the set of possible anomalies.
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The full parametric shapes xi(θ, φ) can also be written in a cylindrical coordinate
system (in a non-unique manner) as,

xi(θ, φ) = r̃i(θ, φ)r̂(θ̃i(θ, φ)) + z̃i(θ, φ)ẑ (4.39)

with r̃i(θ, φ), θ̃i(θ, φ) and z̃i(θ, φ) are defined in R and calculated as follows,

θ̃0,i(θ, φ) = atan2(xi(θ, φ) · ŷ,xi(θ, φ) · x̂) (4.40)

where the function atan2(y, x) is the four-quadrant inverse tangent and returns
values in [−π, π] based on the values of y and x.

n∗i (θ, φ) = argmin
n∈Z
{|θ̃0(θ, φ)− θ + nπ|} (4.41)

θ̃i(θ, φ) = θ̃0,i(θ, φ) + n∗i (θ, φ)π (4.42)

r̃i(θ, φ) = (−1)n∗

i (θ,φ)
√

(xi(θ, φ) · x̂)2 + (xi(θ, φ) · ŷ)2 (4.43)

z̃i(θ, φ) = xi(θ, φ) · ẑ (4.44)

There could be global self-intersection between {xi(θ, φ)|θ̃i(θ, φ) = x} and
{xi(θ, φ)|θ̃i(θ, φ) = x+ 2π}, what might be called inter-turn self-intersection.

We introduce,

l(θ) = xc(θ + 2π)− xc(θ) (4.45)

l(θ) = ‖l(θ)‖ l̂(θ) =
l(θ)

l(θ)
(4.46)

To improve the readability θ̃i(θ, φ) is now written θ̃i. The following inequalities
are sufficient conditions to avoid inter-turn self-intersections,



























(xCo(θ, φ)− xc(θ̃Co)) · l̂(θ̃Co) ≤ λ(θ̃Co)l(θ̃Co)

(xCo(θ, φ)− xc(θ̃Co)) · l̂(θ̃Co − 2π) ≥ (λ(θ̃Co − 2π)− 1)l(θ̃Co − 2π)

(xSV (θ, φ)− xc(θ̃SV )) · l̂(θ̃SV ) ≤ λ(θ̃SV )l(θ̃ST )
(xST (θ, φ)− xc(θ̃ST )) · l̂(θ̃ST − 2π) ≥ (λ(θ̃ST − 2π)− 1)l(θ̃ST − 2π)

(4.47a)

(4.47b)

(4.47c)

(4.47d)

where λ could be any function R→ [0, 1].
In practice,

rmax(x) = max
θ,φ|θ̃Co(θ,φ)=x

(xCo(θ, φ)− xc(x)) · l̂(x) (4.48)
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rmin(x) = min
θ,φ|θ̃Co(θ,φ)=x

(xCo(θ, φ)− xc(x)) · l̂(x− 2π) (4.49)

λ(x) =
rmax(x)

2 + l(x)2 − rmin(x+ 2π)2

2l(x)2
(4.50)

Self-intersection correction The conditions to avoid local (Eq. 4.37) and global
(Eq. 4.47) self-intersections can be written in a general way as,

x · û ≤ f (4.51)

where x parametrizes the shape, û represents any mobile unit vector and f is a
scalar function. In order to avoid the self-intersection the following substitution,
which satisfied Eq. 4.37 and 4.47, is proposed:

x← min {x · û, f}
x · û x (4.52)

4.2.3 Parameters Posterior Probability

Given a binary manual segmentation S of the cochlea from CT imaging, we want
to estimate the posterior probability p(T |S) ∝ p(S|T ) p(T ) proportional to the
product of the likelihood p(S|T ) and the prior p(T ).

Likelihood The likelihood measures the discrepancy between the known segmen-
tation S and the parametric model M(T ). The shape model can be rasterized, we
obtain a binary filled image R(T ) which can be compared to the manual segmen-
tation. Note that the rigid transformation is known after the alignment in cochlear
coordinate system [Verbist 2010]. The log-likelihood was chosen to be proportional
to the negative square Dice index s2(R(T ),S) between the rasterized parametric
model and the manually segmented cochlea, p(S|T ) ∝ exp(−s22(R(T ),S)/σ2). The
square Dice allows to further penalize the shape with low Dice index (e.g. less
than 0.7) and σ was set to 0.1 after multiple tests as to provide sufficiently spread
posterior distribution.

Prior The prior is chosen to be as uninformative as possible while authorizing
an efficient stochastic sampling. We chose an uniform prior for all 22 parameters
within a carefully chosen range of values. From 5 manually segmented cochlear
shapes from 5 µCT images we have extracted the 7 one-dimensional functions of θ
modeling the centerline and the cross-sections using a Dijkstra algorithm combined
with an active contour estimation. θ was discretized and subsampled 1000 times.
The 22 parameters were least-square fit on the subsampled centerline and cochlear
points. This has provided us with an histogram of each parameter value from the 5
combined datasets, and eventually the parameter range for the prior was set to the
average value plus or minus 3 standard deviations.
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Posterior Estimation We use the Metropolis-Hastings Markov Chain Monte-
Carlo method for estimating the posterior distribution of the 22 parameters. We
choose Gaussian proposal distributions with standard deviations equal to 0.3% of
the whole parameter range used in the prior distribution. Since the parameter
range is finite, we use a bounce-back projection whenever the random walk leads a
parameter to leave this range.

Posterior From µCT Images In µCT images, the scala tympani and vestibuli
can be segmented separately as SST and SSV thus requiring a different likelihood
function. The 2 scalae generated by the model M(T ) are separately rasterized as
RST (T ) and RSV (T ) and compared to the 2 manual segmentations using a single
multi-structure Dice index s3(RST (T ),RSV (T ),SST ,SSV ). This index is computed
as the weighted average of the 2 Dice indices associated with the 2 scalae. The
likelihood function is then p(SST ,SSV |T ) ∝ exp(−s23/σ2).

4.2.4 Controlling Model Complexity

We want to limit the extent of overestimation of uncertainty induced by our rich
parametric model. Therefore, we look at the observability of each parameter through
its marginalized posterior distribution p(τi|S) =

∫ ∫

τj 6=τi
p(T |S) dτj . In an ideal sce-

nario, all model parameters should be observable thus indicating that we have not
overparameterized the cochlear shape. Therefore we consider the information gain

IG(τi) = −
∫

τi
p(τi) log p(τi) dτi +

∫

τi
p(τi|S) log p(τi|S) dτi computed as differ-

ence of entropy between the prior (uniform) distribution and the marginal posterior
distribution. The entropy is estimated by binning the distributions using 256 bins
covering the range defined by the uniform prior. A low information gain indicates
either that the parameter has no observed influence on the shape or that it is cor-
related with another set of parameters such that many combinations of them lead
to the same shape. To test if we are in the former situation, we simply check if the
parameter i decreases significantly the likelihood around the maximum a posteriori

(MAP) by plotting the probability p(τi|S, T MAP
−i ).

4.2.5 Clinical Metrics

We consider three types of electrodes having the same constant diameter of 0.5 mm.
Straight electrodes follow the lateral (outer) wall of the ST, whereas perimodiolar
ones follow the modiolar (inner) wall of the ST and mid-scala electrodes are located
in the geometric center of the cross-section (see Fig. 4.10).

For a given parameter T and a certain type of electrode, it is relatively simple to
compute its trajectory in the ST, by considering each cross-section of the parametric
shape model and positioning the center of the CI relative to the inner and outer wall.
Furthermore, the maximum insertion depth of a CI lMax(T ) can be computed by the
arc length of the curve defined by the locus of the electrode positions and by testing
if the inscribed circle of the ST boundaries is larger than the electrode. We propose
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modiolar (inner) wall lateral (outer) wall 

Figure 4.11: Lateral wall (red), mid-scala (orange) and perimodiolar (yellow) posi-
tions of a 0.5 mm diameter electrode.

to estimate the posterior probability p(lMax|S) for each CI type by marginalizing
over the set of cochlea parameters : p(lMax|S) =

∫

T p(T |S) lMax(T ) dT . Similarly,
we can compute the prior probability of insertion depth which is governed by the
prior of the set of parameters : p(lMax(T )) =

∫

τi
p(T )lMax(T ) dτi.

4.3 Results

4.3.1 Model Complexity Evaluation

For each image, 20,000 iterations of the MCMC estimation were performed using
a 3.6 GHz Intel Xeon processor machine. The computational time per iteration is
less than 4 s for the CT images and less than 20 s for the µCT images. The MCMC
mean acceptance rate is 0.38.

The Dice index between the samples corresponding to the maximum a posteri-

ori probability (MAP) and the manual segmentations are summarized in Table. 4.3.
Note that s3 indices are lower on µCT because it considers more substructures (ST
and SV) than s2 indices on CT (cochlea only). A careful inspection of the two
structures in Fig 4.15 suggests that our parametric model has enough degree of free-
dom to account the complexity of the cochlear shape. The model even appears to
regularize the incomplete manual segmentation without overfitting the noise. The
mean surface error between the segmented µCT images and the maximum a poste-
riori models estimated from segmented CT images is less than 0.3 mm. This error
depends on the complexity of the model, the rigid registration and the segmenta-
tions (independently performed for each modality) but still comparable with the
score of 0.2 mm obtained with statistical shape models for cochlear substructures
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Figure 4.12: Estimated posterior for the parameter r0 with patient #1.
IGCT = 0.91, IGµCT = 2.03.

segmentations in CT [Noble 2011].
On µCT scans, 78% of the cross-sections parameters have an information

gain greater than 0.1, while the mean information gain over the 22 parameters
is IG = 0.41. Furthermore, we checked that on µCT scans, for all parameters, any
local variation leads to a significant decrease of likelihood p(τi|S, T MAP

−i ) and thus
showing an influence on the observed shape (as in Fig. 4.14). This implies that
some parameters might be correlated and that shapes may be described by different
parameters combinations. Thus we may slightly overestimate the uncertainty (and
minimize bias) which is preferable than underestimating it through an oversimpli-
fied model. Setting some of those parameters to a constant may be a too strong
assumption given that only 9 patient data are considered and therefore we decided
to keep the current set of 22 parameters.

On CT scans, 28% of the cross-sections parameters have an information gain

greater than 0.1 and IG = 0.23. The information gain is smaller for CT images
than µCT images, which is expected as far less details are visible. In particular, the
two scalae are not distinguishable making their model parameters unidentifiable.

4.3.2 CT Uncertainty Evaluation

We evaluate the posterior probability of the maximal insertion depth p(lMax|S) for
each patient, modality and electrode design. Their cumulative distribution function
(CDF) can be clinically interpreted, as it expresses the probability that the maximal
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Figure 4.13: Estimated posterior for the parameter wST0 with patient #1.
IGCT = 0.16, IGµCT = 0.38.
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Figure 4.14: Example of p(τi|S, T MAP
−i ) with i = θ2.
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manual segmentation 

 ST 

 SV 

 

MAP 

 ST 

 SV 

 cochlea 

Figure 4.15: Shape models of the cochlea (light line) of the MAP of patient 1 with
the segmented ST (blue) and SV (orange) on µCT images.
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patient with µCT with CT

1 0.78 0.82

2 0.78 0.86

3 0.76 0.75

4 0.79 0.82

5 0.76 0.80

6 0.78 0.79

7 0.75 0.76

8 0.79 0.79

9 0.79 0.79

mean 0.77 0.80

Table 4.3: Dice indices between the MAP and manual segmentation.
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Figure 4.16: CDF of the maximal insertion depth estimation for Patient #1.
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Figure 4.17: Maximal insertion depth estimation discrepancy between CT and µCT
for electrodes following lateral wall at different quantiles (5%, 10% and 25%). Note
that the lateral position is the least favorable result in terms of discrepancy between
modalities (see Table 4.5).

µCT posterior CT posterior prior

3.42 4.14 5.54

Table 4.4: Standard deviation of probability distribution function of the maximum
insertion depth averaged over all patients and electrode designs (mm).

lateral midscala perimodiolar

2.34 1.32 0.92

Table 4.5: Discrepancy between CT and µCT averaged over all patients (mm).
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insertion depth of a cochlea is less or equal than a given value. Therefore if an
electrode has a length l, it also indicates the probability to traumatize the cochlea
(if fully inserted). Hence maximal insertion depth corresponding to a CDF of 5%,
can be understood as a 95% chance that the electrode actually fits in the ST. The
CDF accounts for the uncertainty in the whole shape, including cochlear length or
diameter. A cochlea with a longer or larger ST would naturally result in a CDF
shifted to the right.

The mean standard deviation of the distributions across the patients and elec-
trode designs (see Table 4.4) shows that uncertainty with CT images is greater than
µCT images but still more informative than the prior. To evaluate the bias of max-
imal insertion depth estimated from CT images we measure the mean discrepancy
between the estimation from µCT and CT images. Fig. 4.17 shows the estimation
differences between modalities for the worse case, namely straight electrodes. We
must stress that all maximal insertion depths are underestimated with CT images.
The ST is usually larger than the SV at the first basal turn [Wysocki 1999] and this
information is not explicitly embedded in the prior. Since only little cross-section
information can be inferred from CT images, we could hypothesize that the diam-
eters of the ST are more likely to be underestimated with CT images, leading to
underestimate insertion depth.

4.4 Conclusion

In this study, we have proposed a novel parametric model for detailed cochlea shape
reconstruction. We evaluated its complexity in order to optimize the uncertainty
quantification of intracochlear shapes from CT images. Based on anatomical consid-
erations, our results introduce a measurements of the risk of trauma given a cochlear
design and an insertion depth. Most of the CI have a linear electrode depth between
10 and 30 mm, corresponding to the range within which our results are the most
revealing. For this data set, the maximal insertion depth spans a 4 mm range. One
cochlea (Patient 4) presents a deeper maximal insertion depth than others, we ob-
served that it had a high number of cochlear turns (3.08 compared to an average of
2.6) which was confirmed by a radiologist on µCT. This exemplifies the importance
of providing a patient-specific estimation of the maximal insertion depth.

Our experiments show that under the best possible conditions (careful image
segmentation, stochastic sampling of a detailed cochlear model), classical preopera-
tive CT images could be used by ENT surgeons to safely select a patient-specific CI.
Indeed, the discrepancy is limited (maximum of 2.34 mm for the lateral position)
and always lead to an underestimation of the maximal insertion depth from CT im-
ages which is more safe for the patient. In future work, more data will be considered
to improve the correlation between CT and µCT predictions and to estimate more
thoroughly the bias between both modalities in order to apply a correction.
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Abstract

Cochlear implants (CI) are used to treat severe hearing loss by surgically inserting
an electrode array into the cochlea. Cochlear internal cavities have complex spiraling
shapes and are nearly invisible with clinically available CT scans due to the relative
small size of the cochlea with respect to the scanner resolution. In this chapter we
propose a joint model of the cochlear shape (and its substructures) model and its
appearance within a generative probabilistic Bayesian framework. The proposed
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segmentation method performed on CT images is compared to high-resolution man-
ually segmented µCT images and applied to a large database of 987 CT images.
This allows the statistical characterization of the cochlear anatomical variability
along with the quantification of the bilateral symmetry.

5.1 Introduction

Manual segmentations are expensive and time consuming to produce, thus a fully-
automated segmentation method is preferable. The segmentation of intracochlear
structures represents a great challenge. CT images of the temporal bone have low
resolution with respect to the small size of the anatomical structures and the topol-
ogy of the cochlea is complex. The cochlea measures about 8.5x7x5 mm3 while
the typical CT image spacing is larger than 0.2 mm. The main chambers of the
cochlea, the scala tympani and the scala vestibuli, form a nested double helix where
the spatial division between each turn (basal, middle and apical) is weakly visible
and where the stiff structural elements separating the scala tympani and the scala
vestibuli, such as the basilar membrane and the spiral lamina ossea are weakly visi-
ble or invisible. Finally the cochlea is filled with fluids which can be similarly found
in the vestibular system and other neighboring structures, with similar appearance
in CT images.

This challenging task requires additional information to achieve successful seg-
mentation. Anatomical atlases and shape models can be combined with intensity
information to provide sufficient prior knowledge. While those methods are com-
monly available for major organs such as the brain or the heart, few cochlear shape
models have been developed.

5.1.1 Detailed Cochlear Shape Model Fitting from CT Images

Cochlear Model Fitting In order to fit cochlea models to CT images, two main
approaches can be summarized as follows.

A first set of methods consists in an optimization procedure to perform paramet-
ric model fitting [Baker 2005]. A parametric model-image registration procedure is
used to align the model surface with the salient image features, for instance captured
by high intensity gradient voxels.

A second set of methods consists in a non rigid registration proce-
dure between an input CT image and an atlas embedding statistical shape
prior [Noble 2010, Noble 2011, Reda 2011, Noble 2012, Reda 2012, Noble 2013,
Reda 2013, Kjer 2014a, Reda 2014a, Reda 2014b, Kjer 2015d]. Anatomical models
are extracted from high-resolution datasets, usually ex-vivo µCT scans. The shape
prior is provided by a statistical shape model (SSM) of the intra-cochlear anatomy,
which guides the registration between a CT scan and an enhanced CT-atlas.
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Figure 5.1: Example of labyrinth segmentation with SSM (from [Kjer 2015d]).

5.1.2 Joint Shape and Intensity Model for Segmentation

Anatomical structures defined by weakly visible boundaries in medical im-
ages are often segmented by defining an appearance model of the struc-
tures of interest and by encoding the spatial prior information [Pohl 2006a,
Heimann 2007]. To do so, a strong shape model needs to be realistic and
to provides good generalization, i.e. the ability to represent realistically
shapes that are not present in the training set. Most of the cochlear seg-
mentation algorithms incorporating shape prior use Statistical Shape Models
(SSM) [Noble 2010, Noble 2011, Reda 2011, Noble 2012, Reda 2012, Noble 2013,
Reda 2013, Kjer 2014a, Reda 2014a, Reda 2014b, Kjer 2015d] as introduced by
[Cootes 1995]. However when the number of training observations is limited (in
our case N = 9), the shape variability might be too constrained and the model may
not generalize well enough. Alternatively to SSM, an analytic parametric shape
model can be defined “manually” but may also be considered too simple and not
realistic enough since it creates an idealized shape model with few parameters. As
highlighted in section 4.3.1 there is an inherent problem in shape fitting, since the
number of degrees of freedom of SMM or parametric models may be arbitrarily in-
creased, but possibly leading to the issue of overparameterization. In this case, the
parameters are difficult to estimate uniquely because they are correlated and are
not easily interpretable.

To overcome this limitation due to a low number of training shapes, we propose
to move away from a simple model fitting approach where the resulting shape
is an instance of a compact parametric model. Instead, we propose to combine this
parametric model with an appearance model such that the shape model constrains
the output segmentation without restricting it to a low dimensional space.

The goal is to unify the cochlear shape (and its substructures) model fitting with
a local appearance model within a Bayesian framework. Using a generative proba-
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Figure 5.2: Modeling the contingency of CT images through shape and appearance
model (adapted from [Eslami 2013a]).

bilistic model, which describes the label of each voxel having shape and appearance
parameters as hidden variables, the problem is formulated as an incomplete data
problem marginalizing over all possible labels for which the maximum a posteriori

is estimated. The proposed method estimates jointly the shape and appearance
parameters and applies an iterative expectation-maximization (EM) strategy that
interleaves shape model parameters fitting and image segmentation with a mixture
of Student’s t-distributions.

Our approach relies on a generative probabilistic model as it is a natural way to
describe the image content. As such, the estimated parameters and variables have
a clear interpretation and the underlying hypothesis are well understood. As our
approach alternates between the optimization of shape and intensity parameters, it
is related to prior work on joint segmentation and registration approaches.

Related Previous Work on Segmentation and Registration Object segmen-
tation can be performed using generative probabilistic models and exhibit good gen-
eralization [Eslami 2013b]. In medical images analysis, most of the studies have fo-
cused on generative models for brain imaging segmentation [Wyatt 2003, Pohl 2005,
Ashburner 2005, Riklin-Raviv 2009, Patenaude 2011, Wu 2013, Puonti 2016] In
neuroimaging studies, several challenges must be addressed such as the presence
of a bias field or the presence of brain lesions, thus intensity of magnetic res-
onance images (MRI) needs often to be corrected and brain tumors need to be
specifically handled differently than healthy tissues. Several articles have demon-
strated that by using an approach that exploits and solves different problems of
neuroimaging in a joint way could improve the results as opposed to performing
them sequentially. We can cite for example, joint image registration, tissue classi-
fication and bias correction [Ashburner 2005], joint segmentation and registration
[Pohl 2006a, Riklin-Raviv 2009], joint registration and estimations of tumor dis-
placement [Gooya 2011] or joint label fusion and multi-atlas registration [Wu 2013].

Joint segmentation and registration methods benefit from the fact that given a
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registered label image, the segmentation task becomes an easier problem to solve
and conversely, given a pair of segmented images the registration task is simplified.
The idea behind the combined method presented in [Pohl 2006a, Riklin-Raviv 2009]
is to register an atlas to an image and simultaneously estimate the contour of the
structures of interest. This requires first to model within a Bayesian framework
the relationship between the segmentation, the image data and the registration
parameters.

Contribution The aforementioned methods the shape constraints were modeled
from a multi-atlas learned from annotated training images and deformed onto the
target image using an image registration method. In contrast to these methods,
in our approach the shape constraints are described by the parameters of a para-
metric shape model. Different deformations were previously used: rigid transforma-
tions [Wyatt 2003], hierarchical (global and structure-dependent) affine deforma-
tions [Pohl 2005], B-spline [Riklin-Raviv 2009] or diffeomorphic Demons [Wu 2013].
It has been shown that due to its complex spiral shape, natural shape variability of
the cochlea such as deformations under local torque forces are very difficult to ob-
tained with classical deformation methods such as B-spline [Kjer 2015a]. We tackle
this challenge by using a parametric shape model defined in a cylindrical coordinate
system that is specific to cochlear structures.

Since the proposed segmentation method is not an instance of the shape but
a combination of shape and intensity priors, a new cochlear parameterization in
a very low-dimensional space is introduced. This compact shape model addresses
the problem of shape and pose parameters correlation by eliminating most shape
parameters strongly correlated to the pose and by estimating simultaneously the
pose and the shape. An underparameterization model is sufficient because the local
shape variability can be taken into account by the intensity model.

Furthermore, instead of using a Gaussian mixture for the intensity probability
distribution [Pohl 2006a, Patenaude 2011, Puonti 2016], we used a mixture of Stu-
dent’s t-distributions in order to make the intensity model estimation more robust
to image artifacts (heavy-tailed distributions).

5.2 Material and Methods

5.2.1 Overview

A graphical abstract of the method developed for intracochlear structures segmen-
tation is shown in Fig. 5.3.

The rigid registration method used to orient the cochlea in its standard coor-
dinate system will be first presented. The hypothesis of the generative probabilis-
tic model and then the inference method will be introduced in a generic way for
multi-class segmentation. The specific approach for cochlear segmentation will be
described in the following order: shape modeling, intensity modeling and final hard
segmentation. Finally, the implementation details will be further presented.
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Figure 5.3: Overview of the method. Rigid registration is first performed in or-
der to orient the cochlea in the cochlear coordinate system centered on a small
region of interest. Intra-cochlear structures probabilities are estimated by itera-
tively optimizing the shape and intensity model parameters so that it minimizes the
discrepancy between the posterior probability of the label knowing the shape and in-
tensity (combined model) and the probability knowing the shape only (shape model)
on one hand, and knowing the intensity only (intensity model) on the other hand.
Eventually hard segmentation is performed with the maximum a posteriori (MAP)
of intracochlear structures probabilities. Resulting isocontours and isosurfaces are
represented.
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5.2.2 Data

Two datasets were available. Dataset #1 consists in 9 cadaveric temporal bones
(4 left and 5 right sides) with low-resolution CT and high-resolution µCT acqui-
sitions performed in inconsistent radiological planes. The images, noted I#1,CT

i

and I#1,µCT
i , for i = 1, . . . , 9, are segmented. Indeed, a head and neck imag-

ing expert produced manual segmentations of the scala tympani and the scala
vestibuli using interactive segmentation software ITK-Snap [Yushkevich 2006] and
GeoS [Criminisi 2008].

Dataset #2 consists in 987 clinical CT images (452 left and 535 right sides) of
temporal bones acquired in standard imaging plane, noted I#2

i for i = 1, . . . , 987.
All CT scans were acquired at the Imaging Center of the Nice University Hos-

pital using a GE LightSpeed VCT CT system under the supervision of Pr Charles
Raffaelli. All µCT scans were acquired in the laboratory Transporters, Imaging
and Radiotherapy in Oncology (TIRO, UMR-E4320) in Nice using the GE eXplore
speCZT120 scanner under the supervision of Pr Thierry Pourcher.

5.2.3 Rigid Registration

We seek to initialize the segmentation by aligning roughly all images in the same
orientation.

5.2.3.1 Cochlear Coordinate System

The Stenvers’ plane [Lane 2015] is an oblique radiological reconstruction plane that
is in the plane of the superior semicircular canal (also known as the short axis of
the temporal bone). The Stenvers’ plane is also roughly aligned with the cochlea
coordinate system, defined by 16 cochlear implantation experts [Verbist 2010], which
includes an origin in addition to an orientation.

The cochlear coordinate system (CCS) appears as a consensual choice between
the radiologists and otologists, and we seek to aligned all CT and µCT images in the
coordinate system where the z-axis coincides with the modiolar axis, the xz-plane
passes through the center of the round window (Fig. 3.13).

5.2.3.2 Temporal Bone Image Registration

Image registration is a well known challenge in medical image analysis and requires
to define several main components: a transformation model (rigid or non-rigid), a
cost function (similarity metric and regularization), and an optimization method.
For a comprehensive reviews for theory and application the reader could refer to
[Maintz 1998, Sotiras 2013]. Registration methods depend on the modality and they
have been applied to temporal bone CT and µCT images [Whiting 2001, Kjer 2015b,
Kjer 2015a, Kjer 2015c], to pre- and intra-operative CT images [Reda 2012] and to
fuse complementary information of CT and MRI [Bartling 2005, Neri 2005].
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Figure 5.4: Summary of the registration procedures applied to dataset #1. Rounded
rectangles represent images, black arrows represent rigid transformation T , connec-
tors © represent image registration where the red arrow indicates the fixed image
and the blue arrow the moving image.

The goal here is to estimate and analyze the cochlear shape variability. To
preserve the global anatomy, only rigid registration is considered. Unlike the cochlea,
the temporal bone and its pneumatization show a very large interpatient variability.
Pneumatization consists in air cells in the temporal bone that have different patterns
and sizes based on environmental and genetic factors. It is initiated after birth and is
completed during childhood. To avoid the potential nuisance caused by the temporal
bone high variability, we apply our image processing pipeline on a small region of
interest (ROI) around the cochlea.

5.2.3.3 Dataset #1 Registration

From the manually segmented µCT images, we write T#1,µCT
i→CSS the rigid transfor-

mation retrieved from the robust modiolar axis estimation method (subsec-
tion 3.2.4), such that I#1,µCT

i ◦ T#1,µCT
i→CSS corresponds to the µCT images in the

cochlear coordinate system. All applied rigid transforms are resampled using trilin-
ear interpolation.

We also define WCSS(·), as the function that resamples and crops an image so
that the spacing is [0.2, 0.2, 0.2] mm, the physical extent is 12x10x10 mm3 and the
offset is [−4.8,−4,−4] mm, corresponding to a bounding box around the cochlea
known to measure roughly 8.5x7x5 mm3 [Dimopoulos 1990].

Multimodal image registration can be performed between CT, I#1,CT
i , and µCT

images from the same temporal bone. We set T#1,CT
i→CSS as,

T#1,CT
i→CSS = arg min

T∈SE(3)

∑

(

WCSS

(

I#1,µCT
i ◦ T#1,CT

i→CSS

)

− I#1,µCT
i ◦ T

)2
, (5.1)

where SE(3) is the space of rigid transformations. The downsampled µCT image is
very similar to the CT image since they are acquired on the same patient, have the
same spacing and the intensities correspond to the Hounsfield unit (HU). For this
reason, the sum of squared differences (SDD) is used as the dissimilarity measure.
The registration were performed using the block-matching algorithm called Baloo
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Figure 5.5: Summary of the registration procedures applied to dataset #2. Rounded
rectangles represent images, black arrows represent rigid transformation T , connec-
tors © represent image registration where the red arrow indicates the fixed image
and the blue arrow the moving image.

[Ourselin 2000] from the software MedInria [Toussaint 2007]. Fig. 5.4 summarized
the registration procedures applied to the dataset #1.

5.2.3.4 Dataset #2 Registration

No manual segmentation was available to register dataset #2. The transformations
from the dataset #1 (defined with the robust modiolar axis estimation) can therefore
be used. A reference couple of CT and µCT images, I#1,CT

ref and I#1,µCT
ref was chosen

as the medoid with respect to the intensity sum squared difference, i.e the image
whose average dissimilarity with all images in the dataset #1 is minimal,

ref#1 = arg min
i=1,...,9

9
∑

j=1

N
∑

n=1

(

WCSS

(

I#1,CT
i ◦ T#1,CT

i→CSS

)

(n)

−WCSS

(

I#1,CT
j ◦ T#1,CT

j→CSS

)

(n)
)2
,

(5.2)

where I(n) represents the intensity of voxel n in image I. Similarly we choose a
reference image from the dataset #2, I#2

ref , in order estimate only once the transfor-

mation (noted T#2
ref→CSS) between the standard imaging plane in which all images

I#2
i from dataset #2 have been acquired and the cochlear coordinate system. The

reference image was chosen, once again, as the medoid image among the dataset
#2,

ref#2 = arg min
i=1,...,987

987
∑

j=1

N
∑

n=1

(

I#2
i (n)− I#2

j (n)
)2

. (5.3)
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Figure 5.6: Image I#2
31 from the dataset #2 shown in the axial, sagittal and coronal

planes

Since, the field of view of I#2
ref is much larger than the resampled and cropped

version of I#1,CT
i ◦ T#1,CT

i→CSS (typically 512x512x200 compared to 60x50x50 voxels),

we initialized the transformation T#2
ref→CSS by manually selecting the center of the

cochlea. We define another ROI around the cochlea with the function Wref(·) which
creates an image with a spacing of [0.1875, 0.1875, 0.25] mm (corresponding to the
typical spacing of a temporal bone CT image), a physical extent of 30x30x30 mm3

and an offset of [−15,−15,−15] mm. The rigid transformation was estimated with
a registration procedure minimizing the following criteria,

T#2
ref→CSS = arg min

T∈SE(3)
NC

(

WCSS

(

I#1,CT
ref ◦ T#1,CT

ref→CSS

)

,Wref

(

I#2
ref

)

◦ T
)

, (5.4)

where the similarity criterion NC is the normalized correlation criterion (as sug-
gested by [Jenkinson 2001] for monomodal image registration),

NC(X,Y ) =

∑

(XY )
√

∑

X2
√

∑

Y 2
. (5.5)

For every CT images I#2
i for i = 1, . . . , 987 we performed a rigid registration using

I#2
ref as a reference image. This has the advantage of reducing the registration pa-

rameter space to explore since all images are relatively “close”. The transformation
is then estimated as,

T#2
i→ref = arg min

T∈SE(3)
NC

(

Wref

(

I#2
ref

)

, I#2
i ◦ T

)

. (5.6)

The registration were performed using the FMRIB’s Linear Image Registration Tool
from the FSL library [Jenkinson 2001, Jenkinson 2002].

Eventually, images I#2
i ◦T

#2
i→ref◦T

#2
ref→CSS are expressed in the cochlear coordinate

system. Fig. 5.5 summarizes the registration procedures applied to dataset #2.
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5.2.3.5 Laterality

The presented pipeline is valid for right ears. An equivalent pipeline was applied to
the left ears with a different reference image I#2

ref (chosen as the medoid among the
left ears) except that the images were first flipped along the x-axis.

Figure 5.7: Wref

(

I#2
31 ◦ T

#2
31→ref

)

, image I#2
31 from the dataset #2 registered to the

reference image I#2
ref cropped around the cochlea in a 30x30x30 mm3 box, shown in

the axial, sagittal and coronal planes

5.2.4 Generic Multi-class Approach for Joint Shape and Intensity
Model-based Segmentation

5.2.4.1 Model Hypothesis

Shape Model Fitting Classical multi-class parametric shape model fitting con-
sists in the estimation of θS the parameters of the shape model S in order to fit an
observed image I. A graphical representation of shape fitting is shown in Fig. 5.9.
Let Zn be the tissue class of the voxels n, such as Zn ∈ {zi}i=1,...,L, with L different
classes (for example, z1 for the foreground and z2 for the background). We write

Figure 5.8: WCSS

(

I31
#2 ◦ T#2

31→ref ◦ T
#2
ref→CSS

)

, image I#2
31 from the dataset #2

aligned in the cochlear coordinate system cropped around the cochlea in a
12x10x10 mm3 box
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n = 1, . . . , N

In
α

Zn θS
θ⋆I

Figure 5.9: Graphical model for the for shape fitting. In this model, In the intensity
of the voxel for n = 1, . . . , N is linked to the latent label Zn and the intensity model
parameter θ⋆I . The label Zn is linked to shape model parameter θS . The observed
(known) variables are shaded.

Z = {Zn}n=1,...,N as the set of voxel categorical variables. It is assumed that the N
voxels of the image I are conditionally independent given Zn.

A classical approach is to estimate the maximum of the likelihood L(θS |I) of fit-
ting a shape model S parameterized by θS given the image I (ML), or the maximum
a posteriori (MAP)

θ̂ML
S = argmax

θS
(L(θS |I))

= argmax
θS

(p(I|θS))

θ̂MAP
S = argmax

θS
(p(θS |I))

= argmax
θS

(p(I|θS)p(θS)) .

(5.7)

Given θ̂S the final segmentation can be obtained by assigning the class with the
maximum probability.

Joint Shape and Intensity Modeling In order to perform joint shape and
intensity model-based segmentation, the intensity model parameter θ⋆I is no longer
considered as a model parameter but a random variable θI . We introduce the model
whose graphical representation is shown in Fig. 5.10.

Following the conditional dependence between the variables, the joint probability
of the observed and hidden variables p(θS , θI , Zn, In) factorizes as,

p(θS , θI , Zn, In) = p(In|Zn, θI)p(θI |β)p(Zn|θS)p(θS |α) . (5.8)

Let us paraphrase the following probabilities:

p(Zn = zi|θS) (5.9)

is the probability that the voxel n belongs to the label zi knowing the shape param-
eters θS . Note that we extend the definition of the shape to include its pose.

p(In|Zn = zi, θI) (5.10)
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n = 1, . . . , N

In θS

β
θI

α
Zn

Figure 5.10: Graphical model for the generic multi-class approach for joint shape
and intensity model-based segmentation. In this model, In the intensity of the voxel
n = 1, . . . , N is linked to the latent label Zn and the intensity model parameter
θI . The label Zn is linked to shape model parameter θS . The observed (known)
variables are shaded.

is the probability of observing intensity In knowing the label Zn = zi and the
parameters that characterize the intensity of this label,

We seek to estimate the posterior probability that the voxel n belongs to the
label zi,

p(Zn = zi|θS , θI , In) , (5.11)

which can also be rewritten following Bayes rules,

p(Zn = zi|θS , θI , In) =
p(In|Zn = zi, θI)p(Zn = zi|θS)

∑L
i=1 p(In|Zn = zi, θI)p(Zn = zi|θS)

. (5.12)

5.2.4.2 Model Inference

We seek to estimate the MAP, that is to find the optimal parameters θ̂S and θ̂I
which maximize the following log-posterior probability,

log p(θS , θI |I) =
N
∑

n=1

log

(

L
∑

i=1

p(In|Zn = zi, θI)p(Zn = zi|θS)
)

+N (log p(θS |α) + log p(θI |β)) + cst ,

(5.13)

where the first term corresponds to the log-likelihood, logL, and the second term
corresponds to the log-prior and cst is a normalization constant corresponding to the
log-evidence term. Since the log-likelihood is intractable because of the logarithm
of a sum, we use the expectation maximization (EM) algorithm which takes
an alternative strategy. Instead of considering the log-likelihood which is difficult
because it involves the latent variable Z, we consider the complete log-likelihood
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logLc as if Z were observable,

logLc(θS , θI) = log p(I, Z|θS , θI)

=

N
∑

n=1

log p(In, Zn|θS , θI)

=

N
∑

n=1

log p(In|Zn, θI) + log p(Zn|θS) .

(5.14)

Let θ = {θS , θI} be the whole set of shape and intensity parameters. Since Z

is hidden, the complete log-likelihood cannot be evaluated directly, therefore we
consider its conditional expectation (under the posterior distribution of Z), noted
Q

Q(θ, θ[t]) = EZ [logLc(θ)|I, θ[t]]

=

N
∑

n=1

L
∑

i=1

p(Zn = zi|θ[t], In)

(log p(In|Zn = zi, θI) + log p(Zn = zi|θS))

≤
N
∑

n=1

L
∑

i=1

(log p(In|Zn = zi, θI) + log p(Zn = zi|θS))

≤
N
∑

n=1

log

(

L
∑

i=1

p(In|Zn = zi, θI)p(Zn = zi|θS)
)

= logL .

(5.15)

Using the Jensen’s inequality, the auxiliary function Q(θ, θ[t]) is a lower bound of
the log-likelihood logL.

Following Bayes rules, the posterior of the hidden variable p(Zn = zi|θ[t], In) in
equation 5.15 can be written,

p(Zn = zi|θ[t], In) =
p(In|Zn = zi, θ

[t])p(Zn = zi|θ[t])
∑L

i=1 p(In|Zn = zi, θ[t])p(Zn = zi|θ[t])

=
p(In|Zn = zi, θ

[t]
I )p(Zn = zi|θ[t]S )

∑L
i=1 p(In|Zn = zi, θ

[t]
I )p(Zn = zi|θ[t]S )

.

(5.16)

In the EM algorithm we alternate between expectation steps (E-steps) and max-
imization steps (M-steps) (Fig. 5.11). In the M-step, we update the estimation of
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Figure 5.11: EM algorithm (adapted from [Prince 2012]). The red and blue curves
represent respectively the log-likelihood, logL, and the lower bound, Q(θ, θ[t]).

θS and θI by maximizing the Q function,

θ̂
[t]
S = argmax

θS
Q(θ, θ[t−1])

= argmax
θS

N
∑

n=1

L
∑

i=1

p(Zn = zi|θ[t−1], In) log p(Zn = zi|θS)

= argmax
θS

N
∑

n=1

L
∑

i=1

−p(Zn = zi|θ[t−1], In) log
p(Zn = zi|θ[t−1], In)

p(Zn = zi|θS)

= argmin
θS

DKL(p(Z|θ[t−1], I)‖p(Z|θS))

θ̂
[t]
I = argmax

θI
Q(θ, θ[t−1])

= argmax
θI

N
∑

n=1

L
∑

i=1

p(Zn = zi|θ[t−1], In) log p(In|Zn = zi, θI)

= argmax
θI

N
∑

n=1

L
∑

i=1

−p(Zn = zi|θ[t−1], In) log
p(Zn = zi|θ[t−1], In)

p(In|Zn = zi, θI)

= argmin
θI

DKL(p(Z|θ[t−1], I)‖p(I|Z, θI)) ,

(5.17)

where the maximization procedure for each parameter is equivalent to the mini-
mization of the Kullback-Leibler divergence between p(Z|θ[t−1], I) and p(Z|θS) for
the shape model parameters and p(I|Z, θI) for the intensity model parameters. The
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log-prior is now added to perform maximum a posteriori (MAP) estimation,

θ̂
[t]
S = argmax

θS

(

N log p(θS |α)

+

N
∑

n=1

L
∑

i=1

p(Zn = zi|θ[t−1], In) log p(Zn = zi|θS)
)

= argmin
θS

DKL(p(Z|θ[t−1], I)‖p(Z|θS))−N log p(θS |α)

θ̂
[t]
I = argmax

θI

(

N log p(θI |β)

+

N
∑

n=1

L
∑

i=1

p(Zn = zi|θ[t−1], In) log p(In|Zn = zi, θI)

)

= argmin
θI

DKL(p(Z|θ[t−1], I)‖p(I|Z, θI))−N log p(θI |β) .

(5.18)

In the E-step we evaluate the new value of p(Zn = zi|θ[t], In) to update the Q

function.

Figure 5.12: Graphical illustration of the M-step used to update θ[t]S

Summary In a nutshell, the algorithm proceeds with 3 probability maps for each
class:

• p(Z|θS), probability defined by the shape model

• p(I|Z, θI), probability defined by the intensity model

• p(Z|θ, I), joint posterior probability due to the shape and intensity model

The algorithm adjusts iteratively the shape and intensity model parameters in
the following manner:
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Figure 5.13: Kullback-Leibler divergence between the joint and the intensity model
probability maps, DKL(p(Z|θ[t−1], I)‖p(I|Z, θI)).

Figure 5.14: Graphical illustration of the M-step used to update θ[t]I by minimiz-
ing DKL(p(Z|θ[t−1], I)‖p(I|Z, θI)) with respect to θI . The illustration shows the
probability distribution for the label cochlea (or foreground fg).

1. M-step, update θ[t]S (Fig. 5.12) by minimizing the divergence between the shape
model and the joint posterior probability maps

2. E-step, update the joint posterior probability with the new shape model pa-
rameters

3. M-step, update θ[t]I (Fig. 5.14) by minimizing the divergence between the in-
tensity model and the joint posterior probability maps

4. E-step, update the joint posterior probability with the new intensity model
parameters

5.2.5 Specific Approach for Cochlear Segmentation

5.2.5.1 Specific Shape Model Probability Map

We seek to define p(Z|θS). The shape model is specified to include or yield metrics
that are clinically relevant.

More precisely, the shape model parameters θS characterize three surfaces: the
cochlea, the scala tympani (ST) and the scala vestibuli (SV), the two scalae being
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enclosed by the cochlea. Each surface is fully parametric, oriented and represented
in the physical space as already detailed in section 4.2.2.2.

The probability that voxel n belongs to the label zi knowing the shape param-
eters θS , is evaluated using the logit function of the signed distance d(Zn = zi, θS)

between the center of the voxel n and the surface shape model S(θS) of the cochlea,
which is similar to the LogOdds representation [Pohl 2006b].

p(Zn = zi|θS) =
1

1 + exp (c · d(Zn = zi, θS))
, (5.19)

where c is a positive constant. The signed distance function d(Zn = zi, θS) returns
positive values inside the shape and negative values outside.

We consider 4 labels: the cochlea (or foreground fg), the scala tympani (ST ),
the scala vestibuli (SV ) and the background (bg). Since the cochlea encloses the
two scalae, we assume that the cochlea is the union of the scala tympani and the
scala vestibuli.

fg = ST ∪ SV , (5.20)

furthermore the background is the absolute complement of the cochlea

bg = f∁g , (5.21)

d(Zn = bg, θS) = −d(Zn = fg, θS) , (5.22)

p(Zn = bg|θS) = 1− p(Zn = fg|θS) . (5.23)

An example of p(Z = fg|θS) is shown for a slice of the CT in Fig. 5.12 illustrating
“shape model”.

5.2.5.2 Specific Cochlear Shape Model

The surfaces S(Z = zi, θS) are hierarchically described in Fig. 5.15. The parameters
θS include pose (with three position parameters and three orientation parame-
ters) and shape parameterization.

The cochlear structures are defined as generalized cylinders, i.e. as cross-

sections swept along a centerline.
The centerline is parameterized in a cylindrical coordinate system by its radial

and longitudinal coordinates within a given interval which defines the length of
the centerline.

The cross-sections are modeled by a closed planar shape on which a varying
affinity is applied along the centerline. The scala tympani and the scala vestibuli are
modeled with two half pseudo-cardioids while the cochlear cross-section corresponds
to the minimal circumscribed ellipse of the union of the tympanic and vestibular
cross-sections.

The affinity of cross-section is parameterized by a rotation, a width and a
height scaling.
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Eventually each of the derived component of the model is represented by a
vector or an one-dimensional function of the angular coordinate. One-dimensional
functions are themselves parameterized by combinations of simple functions (i.e
polynomial, logarithmic, etc.).

Cochlear model

Shape

Cross-
sections Planar

shape

Affinity

Height
scaling

Width
scaling

Rotation

Centerline

Length

Longitudinal
coordinate

Radial
coordinate

Pose

Rotation

Translation

Figure 5.15: Derivation of the model parameters describing the surface shape
model S

The shape parameters probability distribution were modeled using either an uni-
form distribution (uninformative prior) or a Dirac δ distribution (fixed parameter).
Since the segmentation is not an instance of the shape model and part of the vari-
ability is taken into account by the intensity model parameters θI , we can use a very
compact shape model. Without considering the fixed parameters θS includes:

• 3 translation parameters, tx, ty and tz (in the direction x, y and z)

• 3 rotation parameters, rx, ry and rz (about the x-, y- and z-axis)

• 1 scale parameter of the radial component of the centerline, a

• 2 parameters of longitudinal component of the centerline, w1 and w2

• 1 parameter of the length (or more precisely the number of cochlear turn) θmax

A small number of degrees of freedom was chosen in order to limit as much as
possible the correlation between the shape parameters.
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Radial Component The radial component is defined piecewise with a polynomial
function and a logarithmic function of the angular coordinate θc in the cylindrical
coordinate system,

r(θc) =

{

p2θ
2
c + p1θc + p0 if θc < θ2

ae−bθc else
(5.24)

By constraining r(θc) to be continuously differentiable, 4 free parameters remain, a,
b, θ2 and p0 since,

p2 =
C1θ2 − C2 + p0

θ22
p1 =

−C1θ2 + 2C2 + 2p0
θ2

, (5.25)

where
C2 = ae−bθ2 C1 = −C2b . (5.26)

The parameter b is a widely studied cochlear measurements [Cohen 1996] that can
be fixed (b = 0.15 rad−1). The parameters a, θ2 and p0 are correlated with the
rotation parameter rz since

r(θc + rz|a, b, θ2, p0)⇔ r(θc|a′, b, θ′2, p′0) , (5.27)

where
a′ = ae−brz , θ′2 = θ2 − rz, p′0 = p2r

2
z + p1rz + p0 . (5.28)

To avoid this correlation we fixed the base of the spiral by setting θ2 and p0 (re-
spectively to 5π/6 and 5 mm).

Longitudinal Component Concerning the longitudinal component of the cen-
terline we used the following simplified version,

z(θc) = αe−βθc cos(θc + φ) + q1θc + q0 , (5.29)

which is the sum of an exponentially damped sinusoidal and a linear function. The
parameter q0 is linearly correlated with the translation parameter tz, the slope pa-
rameter p1 varies sightly and α, β and φ have complex correlation with the rotation
parameters.

To overcome this complex correlation and reduce the number of degrees of free-
dom we performed a principal component analysis of the parameters {α, β, φ, q1, q0}
obtained by minimizing the sum of squared differences between the fitted function
and discretized longitudinal component extracted manually from 20 CT images.
The centerlines were extracted by manually setting 17 points, the projection on
the z-axis was performed with the robust modiolar axis estimation method (sub-
section 3.2.4). Two principal components weighted by parameters w1 and w2, were
kept because in practice only the initial amplitude α and the phase φ of the expo-
nentially damped sinusoidal part influence significantly the centerline. Note that α
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and φ are respectively roughly aligned with w2 and w1,
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 (5.30)

Cross-sectional Parameters All cross-sectional parameters are fixed because
they deformed the shape only locally and this variability is well captured by the
intensity model. The cross-sectional parameters are comprehensively described in
Table 4.2.

5.2.5.3 Specific Intensity Model

Mixture of Student’s t-distributions The probability of observing intensity In
knowing the label Zn is parameterized with mixtures of Student’s t-distributions.

p(In|Zn = zi, θI) =

Ki
∑

k=1

φi,k t(In|µi,k, σi,k, νi,k) , (5.31)

where Ki corresponds to the number of components of the mixture for the label zi,
the weights φi,k are positive and sum to one and the Student’s t-distribution is

t(In|µ, σ, ν) =
Γ
(

ν+1
2

)

Γ
(

ν
2

)

1√
πν

(

1 +
(In − µ)2
σ2ν

)−( ν+1

2 )
, (5.32)

where Γ(·) is the gamma function.
We assume that the scala tympani, the scala vestibuli and the cochlea share the

same probability of observing the intensity In,

p(In|Zn = ST, θI) = p(In|Zn = SV, θI) = p(In|Zn = fg, θI) . (5.33)

An example of p(I|Z = fg, θI) is shown for a slice of the CT in Fig. 5.3 illustrating
quotesintensity model.

Intensity Distributions in Cochlear CT images The dimension of the region
of interest around the cochlea is 12x10x10 mm3.

In this region, the background (bg) consists mainly in fluids (perilymph and
endolymph in the vestibular labyrinth), extremely dense bone (bony labyrinth),
air and less dense bone (pneumatized temporal bone).

The foreground (the cochlea, fg) contains mainly fluids (perilymph and en-
dolymph), bony structures (cochlear walls) and negligible stiff structures (basilar
membrane, organ of Corti, Reissner’s membrane, etc.).

The set of images is CT scans, the Hounsfield unit (HU) is applicable here
(Table 5.1).
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Substance Anatomy HU

fluid
perilymph,
endolymph

0

dense bone bony labyrinth 2000
air pneumatization -1000

less dense bone
temporal bone,
bony walls

700

Table 5.1: Hounsfield unit (HU) of the main structures of the cochlear region

Based on the anatomy, the number of modes Kfg and Kbg of the mixtures of
Student’s t-distributions of respectively the foreground and background are set to 2

(expected at 0 HU and 700 HU) and 4 (expected at 0 HU, 2000 HU, -1000 HU and
700 HU).

-1000 -500 0 500 1000 1500 2000 2500 3000

Figure 5.16: Example of intensity probability distributions of the foreground (fg, in
red) and the background (bg, in blue) as functions of the Hounsfield unit.

5.2.5.4 Hard Segmentation

Given the considered labels and their relations (Eq. 5.20 and 5.21), two sets of label
can be considered {fg, bg} or {ST, SV, bg}.

The hard segmentation Ẑn of the voxel n is then obtained by MAP which is
equivalent to local majority voting,

Ẑn = argmax
zi

(p(Zn = zi|θ̂, In)) , (5.34)

where θ̂ is computed using the EM algorithm. An example of Ẑn is shown on the
right side of Fig. 5.3 as isocontours and isosurfaces.
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5.2.6 Implementation

5.2.6.1 Signed Distance Evaluation

We call signed distance a function that has positive values when a point p is inside
the label (p ∈ zi) and negative values outside the label (p ∈ z∁i ). In order to evaluate
d(Z = zi, θS), we use Algorithm 1 which computes the signed distance function with
a coarse-to-fine approach. First parametric surfaces were discretized into triangular
meshes so that all edges length are of the same order of magnitude (0.30±0.15 mm),
which leads to meshes M with about 2500 points and 5000 triangles.

The distance is first approximated by rasterizing each mesh triangle in the im-
age space (with the [Bresenham 1965]’s line algorithm). The holes of the resulting
binary image BW are then filled (using morphological reconstruction [Soille 1999]),
a hole being a set of background connected components that are not adjacent to
the 6 sides of the three-dimensional image. The Euclidean distance between inside
voxels and the closest outside voxel is approximated inside the binary image and
conversely outside (but with negative values) (with the fast algorithm described in
[Maurer 2003]).

The values of the voxels close to the mesh (within a given margin |d| < T =

0.6 mm) are reevaluated by computing the exact signed distance between the center
of the voxels and the mesh (as described in Algorithm 2). This algorithm requires
the computation of the signed distance between a point and an oriented triangle,
Algorithm 4 in appendix B was used.

Eventually, the evaluation of the exact signed distance d(Z = zi, θS) is time-
consuming and the running time is O(Nnp), where N is the number of voxels and
np is the number of points in the triangle surface mesh.

The constant c in Eq. 5.19 is set to 4 mm−1, such that the margin of 0.6 mm
covers all voxels that have a probability to belong to a given label between 0.08
and 0.92. We assume that voxels far away from the surface shape (where p → 1

inside and p→ 0 outside) do not influence the optimization procedure so that a first
approximation is sufficient.

5.2.6.2 Optimization Algorithm

During the M-step of the EM algorithm, the equivalent minimization of
the Kullback-Leibler divergences (Eq. 5.17) were performed using the quasi-
Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [Broyden 1970,
Fletcher 1970, Goldfarb 1970, Shanno 1970] considering unconstrained functions
(fminunc in MATLAB). The shape parameters θS were rescaled so that minimum
and the maximum values of the uniform priors corresponds to -5 and 5. The gra-
dient was estimated with central finite differences with a step size of 0.1 for both
shape and intensity parameters.
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Algorithm 1: Signed distance map
Input: parametric surfaces S(Z = zi, θS) for all labels {zi}i=1,...,L and image

I

Output: signed distance maps d(Z = zi, θS) for all labels {zi}i=1,...,L

1 for i = 1, . . . , L− 1 do

2 M ← discretize S(Z = zi, θS) in a triangle mesh (np points, {pi}i=1,...,np

and nt triangles, {v1,i, v2,i, v3,i}i=1,...,nt);
3 BW ← rasterize all triangles [Bresenham 1965];
4 BW ← fill in topological holes [Soille 1999];
5 d(Z = zi, θS)← points (center of In) to binary image BW signed

Euclidean distance [Maurer 2003] ;
6 for n = 1, . . . , N do

7 if |d(Zn = zi, θS)| < T then

8 d(Zn = zi, θS)← PointToMesh(M,p), where p is the center of In;
9 end

10 end

11 end

12 for n = 1, . . . , N do

13 d(Zn = zL, θS) = −maxi=1,...,L−1(d(Zn = zi, θS));
14 end

Algorithm 2: PointToMesh(p,M)

Point to triangle mesh signed Euclidean distance
Input: point, p
oriented mesh M = {np points, {pi}i=1,...,np

and nt triangles, {v1,i, v2,i, v3,i}i=1,...,nt}
Output: signed Euclidean distance d

1 {di}i=1,...,np ← Euclidean distances between point p and each point of the
triangular mesh {pi}i=1,...,np ;

2 i∗ ← argmini di ;
3 for i = 1, . . . , nt do

4 if p∗i ∈ {v1,i, v2,i, v3,i} then

5 if |PointToTriangle(p, v1,i, v2,i, v3,i))| < |d| then

6 d← PointToTriangle(p, v1,i, v2,i, v3,i) ;
7 end

8 end

9 end

5.3 Results

Two datasets were segmented.
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Algorithm 3: EM algorithm

1 θ̂[t−1] ← θ0 ;

2 θ̂[t] ← θ0 ;
3 ∆Q←∞ ;
4 while ∆Q > ε do

5 for i = 1, . . . , L− 1 do

6 Pi ← p(Z = zi|θ[t−1], I) ;
7 end

8 PL ← 1−
∑L−1

i=1 Pi ;

9 QS(x)← N log p(x|α) +
∑N

n=1

∑L
i=1 Pi,n log p(Zn = zi|x) ;

10 QI,fg(x)← N log p(x|βfg) +
∑N

n=1 Pi|zi=fg ,n log p(In|Zn = fg, x) ;

11 QI,bg(x)← N log p(x|βbg) +
∑N

n=1 Pi|zi=bg ,n log p(In|Zn = bg, x) ;

12 θ̂[t] ← BFGS(QS(x), θ̂
[t]) ;

13 θ̂[t] ← BFGS(QI,fg(x), θ̂
[t]) ;

14 θ̂[t] ← BFGS(QI,bg(x), θ̂
[t]) ;

15 ∆Q← QS(θ̂
[t]) +QI,fg(θ̂

[t]) +QI,bg(θ̂
[t])−Q ;

16 Q← Q+∆Q ;

17 θ̂[t−1] ← θ̂[t] ;

18 end

5.3.1 Dataset #1 Segmentation

A summary of the available segmentations is given in Table 5.2. When compar-
ing different modalities, the quantitative results will actually reflect both the seg-
mentation and the registration quality. The segmentation are obtained from the
probability maps using hard segmentation as described in section 5.2.5.4.

fg
(ST ∪ SV )

ST SV

CT µCT CT µCT CT µCT
manual segmentation Z0 X X X X

model fitting S X X X

automatic segmentation Ẑ X X X

Table 5.2: Available segmentations for dataset #1

We compared quantitatively the fitted parametric shape model S and the auto-
matic segmentation Ẑ with manual segmentation Z0.

The Dice score (Eq 5.38) was computed between the rasterization of the shape
model S and the automatic segmentation Ẑ on one hand and the manual segmen-
tation Z0 on the other hand. The Hausdorff distance was computed symmetrically
between the surface shape model of the cochlea and the isosurface of the automatic
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.17: Comparison of the manual segmentation Z0 (a), (b), (c) and (g) and
the automatic segmentation Ẑ (d), (e), (f), (h) and (i) on CT images
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segmentation on one side and the isosurface of the manual segmentation on the
other side. The parametric surfaces were discretized in triangle meshes so that all
edge lengths are of the same order of magnitude (0.30± 0.15 mm) and the meshes
have the same number of vertices, in order to guarantee the homogeneity of the
measurement. Table 5.3 presents the mean results obtained on dataset #1. The
compared labels are described as method/modality/label, where the method can be
manual segmentation Z0, model fitting S or automatic segmentation Ẑ, the modality

may be CT or µCT and the label my be the scala tympani (ST ), the scala vestibuli
(SV ), the cochlea (or foreground fg).

To compare the cochlea fg and the union of the scalae ST ∪SV , only the Dice is
evaluated since the Hausdorff distance expresses a surface error and the isosurface
of the union of different labels is not equivalent to the union of the isosurfaces of
different labels.

Detailed results on the nine cochleae are presented in the appendix C.

Dice Hausdorff distance (mm)

Compared labels score 50% 68% 95% 100%

Z0/CT/fg
S/CT/fg 0.79 0.13 0.21 0.48 1.42 Table

C.1Ẑ/CT/fg 0.84 0.10 0.16 0.40 1.31

Z0/µCT/
ST ∪ SV

S/CT/fg 0.70 - - - -
Table
C.2

Ẑ/CT/fg 0.78 - - - -
Z0/CT/fg 0.76 - - - -

Z0/µCT/ST
S/CT/ST 0.72 0.11 0.17 0.40 0.88 Table

C.3Ẑ/CT/ST 0.77 0.08 0.14 0.37 0.87

Z0/µCT/SV
S/CT/SV 0.70 0.10 0.16 0.37 0.96 Table

C.4Ẑ/CT/SV 0.73 0.08 0.14 0.34 0.97

Table 5.3: Mean model fitting and segmentation results obtained on dataset #1.

Comparison with the State of the Art Previous works already performed
cochlear anatomy segmentation and several metrics have been used to evaluate
the segmentation quality. Since the goal is to performed segmentation of conven-
tional CT and despite the great interest of the methods, µCT segmentation methods
[Kjer 2014b, Ruiz Pujadas 2016a, Ruiz Pujadas 2016b] are not involved in the com-
parison.

Above all, it is important to stress that the Dice-score obtained by comparing the
registered manual segmentation performed on CT (Z0/CT/fg) and the manual seg-
mentation performed by the same expert on µCT (Z0/µCT/ST ∪SV ) is on average
equal to 0.76 which is not as good as the results obtained with automatic segmen-
tation (Ẑ/CT/fg, 0.78), as detailed in Table C.2. This highlights the limitations
(large inter-rater variability) of manual CT images segmentation (Fig. 5.17).

Cochlear shape fitting was studied by Gavin Baker, his model-image registration
framework presented in [Baker 2005] and detailed in [Baker 2008] was validated by
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evaluating the precision, the recall and the Jaccard index between fitted shape and
synthetic noisy images. As a reminder, when comparing the results of a segmentation
Z and a reference mask A, we write

precision =
A ∩ Z
Z

(5.35)

recall =
A ∩ Z
A

(5.36)

Jaccard index =
A ∩ Z
A ∪ Z (5.37)

Dice score = 2
A ∩ Z
A+ Z

= F1 score = 2 · precision · recall
precision + recall

. (5.38)

In [Baker 2008], a cochlear shape model was fitted to four CT images of the
temporal bone. After being manually initialized the precision was evaluated by
comparing with manual segmentations. The method performed with a precision of
0.72 ± 0.09, while our method presented in this study provides a precision of 0.80
± 0.06 considering model fitting only and 0.81 ± 0.05 with joint shape and intensity
model-based segmentation.

The problem and validation described in [Noble 2011] are similar to the problem
dealt with in this study. Indeed, in [Noble 2011] manually segmented ST and SV
from high-resolution images were compared to five automatically segmented con-
ventional CT in order to obtain quantitative measurements. This is equivalent to
compare the label Z0/µCT/ST and the label Ẑ/CT/ST , as in Table C.3 (and sim-
ilarly for SV in Table C.4). The authors used a four modes active shape model
trained with a leave-one-out approach and claimed a Dice score of 0.77 for the scala
tympani and 0.72 for the scala vestibuli, which is close to the score of 0.77 and
0.73 obtained here. Their segmentation method applied to five cadaveric cochleae
achieved an average mean and maximum surface errors of 0.21 mm and 0.8 mm,
while our method achieved 0.12 mm and 0.92 mm. [Noble 2012, Noble 2013] applied
also the method for spiral ganglion segmentation with similar outcomes.

Almost the same validation (i.e comparing detailed µCT based segmentation and
CT) was performed by [Kjer 2015d], with the exception that the label considered
was a unique shape of what we can call the labyrinth, i.e. the vestibule, semicircular
canals, and cochlea. The fairest comparison would be to compare with segmentation
errors between the label Z0/µCT/ST ∪SV and the label Ẑ/CT/fg, as in Table C.2.
For the same reason that prevented us to compute the Hausdorff distance, the
authors refrained from computing the symmetric distances and computed the mean
(± 1 std) and maximum surface errors from the automatic CT segmentation to the
manual µCT segmentation: 1.15 mm and 0.22 ± 0.16 mm for one case and 0.89 mm
and 0.23 ± 0.18 mm for the other, while the average measurements calculated here
are 0.88 mm and 0.12 ± 0.13 mm.

Hans Martin Kjer’s PhD thesis [Kjer 2015b], shows promising results that it
would be interesting to compare to. In the last chapter, the testing dataset has no
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Study Comparison Metric

Proposed
method
(N = 9)

Baker 2008
(N = 4)

S/CT/fg
vs

Z0/CT/fg

Precision
0.72
± 0.09

0.80

± 0.06

Noble 2011
(N = 5)

Ẑ/CT/ST
vs

Z0/µCT/ST

Dice score 0.77 0.77

Mean surface error 0.18 0.12

Hausdorff distance 0.8 0.87
Ẑ/CT/SV

vs
Z0/µCT/SV

Dice score 0.72 0.73

Mean surface error 0.22 0.12

Hausdorff distance 0.8 0.97

Kjer 2015
(N = 2)

Ẑ/CT/fg
vs

Z0/µCT/ST ∪ SV

Mean (± 1 std)
surface error
CT to µCT

0.22
± 0.17

0.12

± 0.13

Table 5.4: Summary of the comparison with previous studies. N indicates the
number of segmented images

ground truth segmentation making quantitative evaluation impossible. The training
dataset is composed of manually segmented µCT and a fitted statistical deformation
model is evaluated on downsampled µCT images to CT resolutions. By avoiding
the multi-modal registration, the study achieved labyrinth segmentation with a Dice
score of 0.88 ± 0.02, a mean surface error of 0.11 ± 0.01 and a Hausdorff distance
of 0.58 ± 0.11.

Other studies [Reda 2013, Reda 2014a, Reda 2014b] performed ST and SV seg-
mentation by using the active shape model-based method developed in [Noble 2011].

5.3.2 Dataset #2 Segmentation

Since no manual segmentation was available for all datasets, a qualitative visual
check was performed by a head and neck imaging expert using 15 slices in 3 orien-
tation planes per cochlea (see Fig. 5.19 as an example of such panel).

The quality of the automatic segmentation was classified into 4 categories : fail-
ure (the segmentation does not match the intensity), major imperfection (over 100
voxels are misclassified), minor imperfection (less 100 voxels are misclassified) and
success. Major and minor imperfections were themselves classified into 2 categories:
undersegmentation and oversegmentation.

95% of the segmentations were considered satisfactory as reported in Table 5.5.
Failed segmentations are due to pathological cochleae (Fig. 5.25) or bad initialization
procedure (Fig. 5.26).
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# %
Success 937 95%

minor
imperfection

undersegmentation 5
2%

oversegmentation 15
major

imperfection
undersegmentation 6

2.5%
oversegmentation 19

Failure 5 0.5%

Table 5.5: Qualitative segmentation evaluation on dataset #2

Figure 5.18: Examples of three-dimensional shapes of the ST (blue) and SV (orange)
obtained with automatic segmentation from CT images.
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Figure 5.19: Example of automatic segmentation considered as a “success”

Figure 5.20: Example of automatic segmentation considered as a “success”
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Figure 5.21: Example of automatic segmentation considered as a “minor imperfec-
tion” with undersegmentation. Segmentation errors are marked in red.

Figure 5.22: Example of automatic segmentation considered as a “minor imperfec-
tion” with oversegmentation. Segmentation errors are marked in red.
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Figure 5.23: Example of automatic segmentation considered as a “major imperfec-
tion” with undersegmentation. Segmentation errors are marked in red.

Figure 5.24: Example of automatic segmentation considered as a “major imperfec-
tion” with oversegmentation. Segmentation errors are marked in red.
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Figure 5.25: Example of automatic segmentation considered as a “failure”

Figure 5.26: Example of automatic segmentation considered as a “failure”
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w1 w2 a θmax

w1 0.12 -0.03 0.01 0.01
w2 -0.03 0.52 -0.01 -0.03
a 0.01 -0.01 0.27 -0.02

θmax 0.01 -0.03 -0.02 0.09

Table 5.6: Covariance matrix of the 4 shape parameters
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Figure 5.27: Shape parameter w1

5.3.3 Anatomical Variability on Dataset #2

We analyze the variability of the 4 shape parameters estimated with the large
dataset. As a reminder, the parameters are initially scaled so that the minimum and
the maximum values of the uniform priors corresponds to -5 and 5. The absolute
value of the Pearson correlation coefficient between each shape parameters is lower
than 0.16. The covariance matrix (Table 5.6) is diagonal dominant confirming that
parameters are mostly independent.

Shape parameters of the longitudinal component, w1 (Fig. 5.27), the radial com-
ponent, a (Fig. 5.30a) and the length θmax (Fig. 5.30b) of the centerline follow
roughly normal distributions (slightly skewed) while the parameter w2 is bimodal
follows the distribution of the mixture of two normal distributions. Parameter w2

modeled the longitudinal component of the centerline. Fig. 5.29 shows the typical
longitudinal profile of the centerline for each of the two modes by evaluating the
cochlear with the mean value of each mode. Most of the variation occurs at the be-
ginning of the basal turn. The first mode (N = 306) generates a cochlea with almost
a straight longitudinal component of the centerline, while the second mode (N =
681) generates a cochlea that has been classified by [Avci 2014] as a rollercoaster.
The classification of [Avci 2014] was created from 16 cadaveric µCT images.
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Figure 5.28: Shape parameter w2

5.3.4 Bilateral Symmetry

The bilateral symmetry was reported by [Reda 2014a], where the hypothesis of
symmetry was supported from data acquired on 10 patients. In order to characterize
it, we evaluate the shape variability between pairs of left and right cochleae compared
with interpatient cochlear shape variability.

The anatomical variability study has confirmed the existence of two categories
of cochlear shape, one called “straight” and the other one called “rollercoaster”.
After classifying each right and left cochleae, we statistically examine the database.
Based on the value of w2, 69% of all the cochleae are categorized as “rollercoaster”
(i.e w2 > −2.1 ), 64% of the patients have the left and right ears within the same
category (50% with two “rollercoaster” and 14% with two “straight” cochleae) and
36% of the patients have one cochlea in one category and the other one in the other
category.

Note that the fraction of the bilateral cochlea belonging to the same category
(64%) is slightly higher than the probability that two independent cochleae belong
to the same category (57%), p(rollercoaster)2 + p(straight)2.

We also characterize the symmetry by evaluating the distance between cochleae
in the shape parameters space by using the Mahalanobis distance (Table 5.7) dM ,

d̄M =

∑

i

∑

j

√

(θS(i)− θS(j))TΣ−1(θS(i)− θS(j))
∑

i

∑

j 1
, (5.39)
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Figure 5.29: Shape parameters of the longitudinal component of the centerline.
The right line represents α(w1, w2) = 0, The color map represents φ(w1, w2). α,
correlated with w2, and φ, correlated with w1, are respectively the initial amplitude
and the phase of the exponentially damped sinusoidal part.
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Figure 5.30: Shape parameter a (a) and θmax (b)
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Figure 5.31: Longitudinal components of the centerline generated with the shape
parameter w2 at the mean value of each mode.

Figure 5.32: Longitudinal component of the centerline generated with values of the
shape parameter w2 taken around the mean of the second model, called “roller-
coaster”. Similarly, variations of the parameter w1 around its mean mainly affect
the position of the bump (minimum).

Mahalanobis distance Dice score
intrapatient bilateral 0.61 0.91

interpatient 0.74 0.87

Table 5.7: Quantitative evaluation of the shape variability between pairs of left and
right cochleae compared with interpatient cochlear shape variability
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where θS(i) are the shape parameters (without the pose) of the ith cochlea and Σ

is the covariance matrix of [θS(i)]i=1,...,987 (Table 5.6). For the intrapatient bilat-
eral Mahalanobis i and j were such as they indicate the left and right cochleae of
the patient, while for the interpatient Mahalanobis distance i and j are indices of
different patients.

Finally to take advantage of the output of the automatic segmentation, we per-
formed fine registration between all segmented CT by removing the rigid transfor-
mation, which has been estimated within the cochlear shape parameters. The Dice
score between the segmented cochleae was compared (Table 5.7).

5.4 Discussion

We presented a new method for detailed cochlea segmentation from CT images
with a joint shape and intensity model. The method was applied to two different
datasets, a small one with high-resolution manually segmented µCT on cadaveric
patients and a large one based on clinical CT patient images without any ground
truth for which a quantitative evaluation was not available.

Dataset #1 For the first dataset we have provided the most common quantitative
scores and compared then as fairly as possible with previous methods. It seems that
the parametric shape model alone is realistic enough to overcome the limitations of
the prior work, pointed out by [Baker 2005]. The segmentation method combining
shape and intensity model performed better compared to previous methods with
most of the metrics, although the small number of cases (N ≤ 9) considered make
this statement difficult to assert. Despite having a mean surface errors at least 50%
larger than our proposed method, SSM-based method performed slightly better
with respect to the Hausdorff distance. We can interpret this as a result of the
strict constraint of SSM in the allowable shapes. Thus it offers robust performance
with limited deformation but poor generalization. We can also note that our model
cannot determine the border between the cochlea and the vestibule. Indeed, there
is no clear anatomical and visible boundary since the vestibule communicates with
the scala vestibuli, and is filled with perilymph and thus having the same intensity
than the cochlea. This fuzzy anatomical boundary is an important source of error.
To overcome this limitation, our proposed parametric model could be extended by
adding the vestibule and the semicircular canals using a 3-torus model similar to
what was done by [Bradshaw 2010, Zhang 2014, Kjer 2015b].

Dataset #2 To the best of our knowledge, this is the first time that tridiemen-
sional reconstruction of the cochlea was reported on such a large dataset. The
shape variability study performed on 987 cochleae indicates that 2 categories of
cochlear shapes can be identified, instead of the 3 categories from a previous study
[Avci 2014]. Given the strong bimodal distribution of the data, we could assume
that the “intermediate” category is not a proper category and can be corrected by
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robust modiolar axis estimation. Thanks to the large dataset, a statistical study can
be performed and indicates that 69% of the cochleae present a typical “rollercoaster”
bump just before 180 degrees.

Several studies [Reda 2014a, Reda 2014b] conclude to a high bilateral symme-
try. Our study mitigates this statement, indeed if the interpatient cochlear shape
variability is greater than the intrapatient bilateral variability, we have shown that
the symmetry is not obvious as 36% of the patient have two cochleae that can be
categorized differently with respect to their longitudinal profiles.



Chapter 6

Conclusion

6.1 Current Clinical and Industrial Applications

Our knowledge of the cochlear shape and its anatomical variation in the population
is currently limited. By studying the anatomical variability, we obtained statistics
on parameters that are clinically relevant (number of cochlear turn, scala tympani
diameter, maximal insertion depth, etc.). It can provide a better anatomical un-
derstanding for the clinicians and suggest electrode array design improvements for
cochlear implant manufacturers.

CT imaging is used routinely as a non-invasive method for diagnosis, cochlear
implant surgery planning and post-operative evaluation. Automatic cochlear cav-
ities segmentation methods such as the one proposed in this thesis, may help the
diagnosis by identifying pathological cochlear shapes or assist preoperatively

the surgeon to choose the optimal electrode design and the optimal drilling tra-
jectory.

Finally, very preliminary study has been performed to estimate the position

of the electrode array in the post-operative scan with respect to the scala tym-
pani identified in the preoperative scan [Demarcy 2016a]. To illustrate this clinical
application, Pre- and postoperative CT images (Fig. 6.1) have been rigidly regis-
tered. Postoperative CT images present metal artifacts due to the electrode array
(Fig. 6.1b), which can be easily segmented with image thresholding (Fig. 6.2b).
Knowing the design of electrode array (Fig. 6.2a), it is possible to deform the model
of electrode array so that it shares the same centerline as the skeletonization of the
segmentation (Fig. 6.2c). The fusion of the cochlear shape model and the inserted
electrode model allows to estimate the position of the electrode relative to the in-
tracochlear cavities and the basilar membrane (Fig. 6.3). An evaluation of a critical
factor of the surgery can be assessed: knowing the position and the insertion depth,
the electrode array can be optimally activated, by deactivating electrodes located
closed to basilar membrane trauma.

6.2 Contributions

The segmentation of the cochlea from medical images was challenging and several
difficulties needed to be overcome. This thesis introduced original and significant
contributions, specifically:
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(a) (b)

Figure 6.1: (a) Pre- (b) Postoperative CT images

(a)

(b) (c)

Figure 6.2: (a) Electrode array model before insertion. (b) Electrode segmentation
from postoperative CT with metal artifacts. (c) Electrode model fitted to postop-
erative CT.
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(a) (b)

(c) (d)

Figure 6.3: Post-implantation electrode position obtained by rigid registration be-
tween pre- and postoperative CT image with cochlear and electrode model fitting.

Figure 6.4: Microdissected cochlea performed by [Vandersteen 2015]
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6.2.1 Cochlear Shape Description

An automated and reproducible framework for cochlear shape analysis was intro-
duced. Particularly, a robust modiolar axis estimation was proposed from cochlear
centerlines. It was applied on segmented µCT images and validated on a syn-
thetic cochlear model, quantitatively compared to manual axis estimation and an-
other algorithm from the literature. A new non-ambiguous moving frame was de-
scribed and allowed rigorous cross-section measurements and cross-section modeling
[Demarcy 2017].

We proposed a new cochlear shape model modeling the scala tympani and
the scala vestibuli, fully parametric, realistic, with self-intersection avoidance
[Demarcy 2016b]. Compared to previous work, the model, with 22 parameters,
represents not only shapes with straight longitudinal component of the centerline
but also typical “rollercoaster” shapes [Avci 2014]. The sections are no longer mod-
eled by constant ellipses but half pseudo-cardioids with varying width and height.
We proposed as well a compact cochlear shape model with only 4 parameters.

6.2.2 Cochlear Shape Variability Analysis

Thanks to the framework proposed for cochlear shape variability analysis, the cross-
section tilt angle was measured from µCT images quantitatively along the cochlear
centerline for the first time [Demarcy 2017]. The tilt angle may have implication for
occurrence of trauma and cochleostomy site selection [Briggs 2009].

The shape variability was studied with a large database (N = 987) and two
categories of cochlear shape were identified and their proportions were measured on
CT images. 69% of cochleae present a “dip” in the longitudinal component within
the first basal turn which can have implications with respect to the surgical gesture
and the design of the electrodes.

The bilateral symmetry in cochlear anatomy was quantified and the statement
of high symmetry was mitigated. Indeed, if the interpatient cochlear shape vari-
ability is greater than the intrapatient bilateral variability, we have shown that the
symmetry is not observed very broadly as 36% of the patient have two cochleae that
can be categorized differently with respect to their longitudinal profiles.

6.2.3 Cochlear Model-based Segmentation From CT Images

Using the new parametric model, CT-based measurements uncertainty was quanti-
fied and compared to the ground truth high-resolution segmentation. In addition
to the shape parameters, such as the number of cochlear turns or the cross-section
parameters, the uncertainty of the maximal insertion depth given a patient and
an electrode array design was quantified. One of the findings of this study was
that despite their limited resolution classical CT images could be used by ENT sur-
geons to improve the surgery by safely selecting a patient-specific CI for instance
[Demarcy 2016b].
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We introduced a new cochlear segmentation method within a generative proba-
bilistic Bayesian framework for CT images. We unify cochlear shape model fitting
with a local appearance model using a model which describes the label of each
voxel having shape and appearance parameters as hidden variables. The method
applies an iterative expectation-maximization (EM) strategy that interleaves shape
model parameters fitting and image segmentation with a mixture of Student’s t-
distributions. The results show that using the joint intensity and shape model the
scala tympani and the scala vestibuli can be segmented from CT images with a
mean surface error of 0.12 mm, which is at least 33% lower than previous studies.

6.2.4 Clinical and Industrial Applications

Automatic cochlear segmentation methods can be used to extract parameters that
are clinically relevant and provide diagnosis of shape abnormality, for instance
pathological cochleae with 1.5 turns instead of the expected 2.5 are diagnosed with
cochlear hypoplasia such as the Mondini malformation [Sennaroglu 2002]. We intro-
duced a measurements of the risk of trauma given different electrode array designs
(lengths, diameters, flexibilities and shapes) and gave a proof of concept of the es-
timation of the electrode array position with respect to the cochlea cavities from
clinically available CT images [Demarcy 2016a].

6.3 Perspectives

In the continuation of this work of thesis the following perspectives are envisaged.

Methodological Perspectives It is important to predict and analyze the uncer-
tainty of the shape parameters and the estimated clinical measurements: variational
Bayesian methods, stochastic sampling or estimation based on the Hessian matrix
could be tested.

Modeling and Validation Our proposed parametric model only describes the
cochlea and could be extended by adding the vestibule and the semicircular canals,
using a 3-torus model similar to what was done by [Bradshaw 2010, Zhang 2014,
Kjer 2015b]. Furthermore, the method should be tested on a wider database includ-
ing pediatric cases as it represents an important cohort of implanted patients. A
more thorough evaluation must be performed by more independent raters and could
be validated on a larger dataset of segmented high-resolution images (CT and µCT
images) of the inner ear to be released by the Hear-EU project [Gerber 2017].

Scientific Applications The contributions of this thesis open the doors for more
scientific collaborations. A realistic and patient-specific cochlear could be used to
improve electrophysiological simulation studied by Kai Dang from the Inria team
Athena [Dang 2015] or mechanical insertion simulation studied by Inria team Defrost



124 Chapter 6. Conclusion

and the Inserm research structure Minimally invasive and robotic surgical rehabil-

itation of hearing (UMR 1159) [Goury 2016]. A study of the correlation between
the anatomical position of the implant, the insertion quality (complete, incomplete,
traumatic) electrophysiological measurements (interaction in particular) and the
functional results of implantation could be carried out by Dr Clair Vandersteen and
Dr Julien Lahmar under the supervision of Pr Nicolas Guevara from the Nice Uni-
versity Hospital [Vandersteen 2015]. The segmentation of the cochlear substructure
could be validated by comparing the relative position of the electrode array esti-
mated from CT images and observed from microdissection (Fig. 6.4). This requires
to apply the segmentation method, to estimate the electrode position CT images
acquired from cadaveric temporal bones and to perform a careful microdissection.
Under the supervision of Pr Charles Raffaelli, the temporal bone database could
be increased to include more pathological and pediatric data. Using our cochlear
segmentation method, a comprehensive study of the density of the bony labyrinth
could be conducted in order to improved the identification of grade 2 otospongiosis,
which is characterized by a calcification of the cochlea.

Clinical and Industrial Perspectives On the clinical and industrial side, a
software application could be provided to ENT surgeons enabling them to se-
lect the most suitable cochlear implant model for a given patient before surgery.
Surgical skills require practice and deep anatomical knowledge. By developing a
cochlear insertion simulator, it could be possible to virtually augment the surgi-
cal experience before the implantation, with patient specific or randomly generated
cochlear models. Indeed due to the complexity of the temporal anatomy and the
lack of preoperative landmarks to planned the ideal axis of electrode insertion, it
has been shown that experienced clinician determined better insertion approaches
[Vandersteen 2015, Torres 2015].

Given the broad potential for clinical and industrial applications, the models
and methods developed in this thesis would profit from future research.
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Appendix A

Equations for the discretization

scheme of the centerline

In practice the continuous curve x is approximated by a piecewise linear curve
denoted {xi}ni=1.

In subsection 3.2.3 and more specifically in Eq. 4.3, x has also a temporal di-
mension t. {xi}ni=1 are rediscretized at each time step using linear interpolation to
obtain all line segments xixi+1 of equal length ∆s. Derivatives were approximated
using finite difference methods,

∂x(t)

∂t
=
−x(t) + x(t+∆t)

∆t
+O(∆t) (A.1)

∂2xi

∂s2
=

xi−1 − 2xi + xi+1

(∆s)2
+O((∆s)2) (A.2)

∂4xi

∂s4
=

xi−2 − 4xi−1 + 6xi − 4xi+1 + xi+2

(∆s)4
+O((∆s)2) (A.3)

∇P (x) was approximated using trilinear interpolation onto the gradient maps in the
three dimensions computed from the distance map P using the Prewitt operator.

In subsection 3.2.4, line segments xixi+1 are not constant. The left and right
discrete tangent unit vectors, respectively ti− and ti+ are estimated:

ti− =
xi − xi−1

‖xi − xi−1‖
(A.4)

ti+ =
xi+1 − xi

‖xi+1 − xi‖
. (A.5)

The discrete tangent and normal unit vectors, ti and ni can be calculated as
follows:

ti =
ti− + ti+

‖ti− + ti+‖
(A.6)

ni =
ti+ − ti−

‖ti+ − ti−‖
. (A.7)

The discrete curvature κi can be set as,
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κi =
2 ‖ti+ − ti−‖

‖xi+1 − xi‖+ ‖xi − xi−1‖
(A.8)

using a discretization of Serret-Frenet formulas or,

κi =
2 ‖(xi+1 − xi)× (xi − xi−1)‖

‖xi+1 − xi‖ ‖xi − xi−1‖ ‖xi+1 − xi−1‖
(A.9)

as the inverse of the circumradius of the triangle xi−1 xi xi+1.



Appendix B

Additional algorithm: Point to

triangle signed Euclidean distance

Algorithm 4 can be interpreted as follow: Lines 1 to 5, compute the normal n to
the plane defined by {v1, v2, v3}, the signed distance between d between the point p
and the plane and its projection p0. Lines 6 to 8, express the projected point p0 in
the barycentric coordinate system of the triangle such as,

p0 = λ1 v1 + λ2 v2 + λ3 v3 (B.1)

The coefficients λ are used to determine if the projected point is inside or outside
the triangle. If it is outside, we check if the closest point in the triangle belongs to
a vertex (lines 12 and 16) or an edge (line 18).

We use the convention that surface normal are oriented toward the outside and
that the signed distance is positive inside, so line 22 returns the opposite value.
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distance

Algorithm 4: PointToTriangle(p, v1, v2, v3)

Point to triangle signed Euclidean distance
Input: point, p
oriented triangle, {v1, v2, v3}
Output: signed Euclidean distance d

1 n← (v2 − v1)× (v3 − v1);
2 λ← ‖n‖;
3 n← n/λ;
4 d← (p− v1) · n;
5 p0 ← p− d n;
6 λ1 ← det[v2 − p0, v3 − p0, n]/λ;
7 λ2 ← det[v3 − p0, v1 − p0, n]/λ;
8 λ3 ← 1− λ1 − λ2;
9 sort {(λi, vi)} such as λ1 ≥ λ2 ≥ λ3;

10 if λ3 < 0 then

11 if λ2 < 0 then

12 d← ‖p− v1‖ sgn(d) ;
13 else

14 λ2 ← ((p− v1) · (v2− v1))/((v2− v1) · (v2− v1));
15 if λ2 < 0 then

16 d← ‖p− v1‖ sgn(d) ;
17 else

18 d← ‖p− ((1− λ2)v1 + λ2 v2)‖ sgn(d) ;
19 end

20 end

21 end

22 d← −d;
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Additional tables for model fitting

and segmentation results obtained

on dataset #1

Dice Hausdorff distance (mm)

score 50% 68% 95% 100%
# S Ẑ S Ẑ S Ẑ S Ẑ S Ẑ

1 0.79 0.85 0.14 0.10 0.21 0.15 0.43 0.35 1.17 0.93
2 0.80 0.87 0.13 0.08 0.20 0.12 0.44 0.31 1.07 1.02
3 0.75 0.78 0.14 0.12 0.21 0.18 0.50 0.49 1.30 1.12
4 0.79 0.82 0.12 0.10 0.19 0.15 0.49 0.47 1.19 1.42
5 0.78 0.83 0.14 0.11 0.21 0.18 0.55 0.44 1.17 1.15
6 0.78 0.84 0.18 0.13 0.26 0.19 0.54 0.38 1.13 1.17
7 0.79 0.85 0.14 0.10 0.21 0.15 0.53 0.36 1.13 1.05
8 0.80 0.86 0.12 0.08 0.20 0.14 0.52 0.44 1.33 1.02
9 0.82 0.85 0.11 0.10 0.17 0.15 0.38 0.35 3.30 2.91

mean 0.79 0.84 0.13 0.10 0.21 0.16 0.48 0.40 1.42 1.31

Table C.1: Model fitting and segmentation results obtained on dataset #1 be-
tween Z0/CT/fg, the manual segmentation of the cochlea on CT and S/CT/fg
and Ẑ/CT/fg, respectively the fitted shape and the automatic segmentation of the
cochlea on CT.
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results obtained on dataset #1

Dice

score

# S Ẑ Z0

1 0.71 0.78 0.74
2 0.69 0.76 0.73
3 0.67 0.76 0.73
4 0.71 0.80 0.78
5 0.71 0.80 0.77
6 0.69 0.78 0.76
7 0.66 0.75 0.75
8 0.72 0.80 0.79
9 0.73 0.82 0.81

mean 0.70 0.78 0.76

Table C.2: Model fitting and segmentation results obtained on dataset #1 between
Z0/µCT/ST ∪SV , the union of the manual segmentation of the ST and SV on µCT
and S/CT/fg, Ẑ/CT/fg and Z0/CT/fg respectively the fitted shape, the automatic
segmentation and the manual segmentation of the cochlea on CT.

Dice Hausdorff distance (mm)

score 50% 68% 95% 100%
# S Ẑ S Ẑ S Ẑ S Ẑ S Ẑ

1 0.72 0.76 0.11 0.08 0.18 0.15 0.44 0.39 0.80 0.76
2 0.67 0.73 0.16 0.10 0.22 0.17 0.45 0.40 0.87 0.78
3 0.70 0.74 0.12 0.09 0.18 0.15 0.39 0.39 0.89 1.03
4 0.73 0.78 0.10 0.07 0.16 0.12 0.38 0.35 1.00 0.96
5 0.73 0.77 0.10 0.08 0.16 0.13 0.40 0.38 1.27 1.26
6 0.73 0.77 0.10 0.08 0.16 0.14 0.43 0.42 0.72 0.74
7 0.71 0.76 0.13 0.08 0.18 0.14 0.33 0.31 0.72 0.69
8 0.75 0.80 0.09 0.06 0.15 0.11 0.39 0.36 0.91 0.90
9 0.73 0.79 0.10 0.07 0.17 0.12 0.37 0.32 0.75 0.69

mean 0.72 0.77 0.11 0.08 0.17 0.14 0.40 0.37 0.88 0.87

Table C.3: Model fitting and segmentation results obtained on dataset #1 be-
tween Z0/µCT/ST , the manual segmentation of the ST on µCT and S/CT/ST
and Ẑ/CT/ST , respectively the fitted shape and the automatic segmentation of the
cochlea on CT.
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Dice Hausdorff distance (mm)

score 50% 68% 95% 100%
# S Ẑ S Ẑ S Ẑ S Ẑ S Ẑ

1 0.67 0.73 0.12 0.10 0.19 0.15 0.40 0.34 0.77 0.82
2 0.67 0.68 0.11 0.09 0.18 0.16 0.38 0.39 0.60 0.73
3 0.70 0.74 0.10 0.08 0.15 0.14 0.38 0.34 1.19 1.19
4 0.71 0.73 0.10 0.09 0.16 0.15 0.33 0.31 0.77 0.51
5 0.70 0.73 0.10 0.08 0.16 0.15 0.36 0.36 0.71 0.69
6 0.66 0.75 0.12 0.08 0.19 0.14 0.37 0.32 0.64 1.39
7 0.74 0.77 0.08 0.06 0.12 0.12 0.32 0.28 0.75 0.68
8 0.72 0.73 0.08 0.08 0.14 0.14 0.40 0.37 2.45 2.08
9 0.71 0.75 0.10 0.09 0.18 0.15 0.38 0.33 0.72 0.62

mean 0.70 0.73 0.10 0.08 0.16 0.14 0.37 0.34 0.96 0.97

Table C.4: Model fitting and segmentation results obtained on dataset #1 be-
tween Z0/µCT/SV , the manual segmentation of the ST on µCT and S/CT/SV
and Ẑ/CT/SV , respectively the fitted shape and the automatic segmentation of
the cochlea on CT.





Bibliography

[Adunka 2004] Oliver Adunka, Marc H Unkelbach, Martin Mack, Markus Hambek,
Wolfgang Gstoettner and Jan Kiefer. Cochlear implantation via the round

window membrane minimizes trauma to cochlear structures: a histologically

controlled insertion study. Acta Oto-Laryngologica, vol. 124, no. 7, pages
807–12, sep 2004. (Cited on page 18.)

[Aschendorff 2007] A Aschendorff, J Kromeier, T Klenzner and Roland Laszig.
Quality control after insertion of the nucleus contour and contour advance

electrode in adults. Ear and Hearing, 2007. (Cited on page 18.)

[Ashburner 2005] John Ashburner and Karl J. Friston. Unified segmentation. Neu-
roImage, vol. 26, no. 3, pages 839–851, 2005. (Cited on page 82.)

[Avci 2014] Ersin Avci, Tim Nauwelaers, Thomas Lenarz, Volkmar Hamacher and
Andrej Kral. Variations in microanatomy of the human cochlea. The Journal
of Comparative Neurology, vol. 00, pages 1–17, mar 2014. (Cited on pages 19,
33, 44, 45, 48, 49, 50, 113, 117 and 122.)

[Baker 2004] Gavin Baker and Nick Barnes. Principal flow for tubular objects with

non-circular cross-sections. Proceedings of the 17th International Conference
on Pattern Recognition, 2004. ICPR 2004., pages 750–753 Vol.3, 2004. (Cited
on pages 24 and 25.)

[Baker 2005] Gavin Baker and Nick Barnes. Model-image registration of parametric

shape models: fitting a shell to the cochlea. Insight Journal, 2005. (Cited on
pages 16, 54, 55, 59, 80, 105 and 117.)

[Baker 2008] Gavin Baker. Tracking, modelling and registration of anatomical ob-

jects: the human cochlea. PhD thesis, The University of Melbourne, 2008.
(Cited on pages vi, 19, 27, 28, 49, 60, 105 and 106.)

[Bartling 2005] Soenke Heinrich Bartling, Kersten Peldschus, Thomas Rodt, Florian
Kral, Herbert Matthies, Ron Kikinis and Hartmut Becker. Registration and

fusion of CT and MRI of the temporal bone. Journal of computer assisted
tomography, vol. 29, no. 3, pages 305–10, 2005. (Cited on pages 15 and 85.)

[Biedron 2010] Slavomir Biedron, Andreas Prescher, Justus Ilgner and Martin West-
hofen. The internal dimensions of the cochlear scalae with special reference

to cochlear electrode insertion trauma. Otology & Neurotology, vol. 31, no. 5,
pages 731–7, jul 2010. (Cited on pages 18, 19, 33 and 49.)

[Bradshaw 2010] Andrew P Bradshaw, Ian S Curthoys, Michael J Todd, John S
Magnussen, David S Taubman, Swee T Aw and G Michael Halmagyi. A

mathematical model of human semicircular canal geometry: a new basis for



136 Bibliography

interpreting vestibular physiology. Journal of the Association for Research in
Otolaryngology, vol. 11, no. 2, pages 145–59, jun 2010. (Cited on pages 117
and 123.)

[Braun 2012] Katharina Braun, Frank Böhnke and Thomas Stark. Three-

dimensional representation of the human cochlea using micro-computed to-

mography data: presenting an anatomical model for further numerical cal-

culations. Acta oto-laryngologica, vol. 132, no. 6, pages 603–13, jun 2012.
(Cited on pages 24 and 48.)

[Bresenham 1965] J E Bresenham. Algorithm for computer control of a digital plot-

ter. IBM Systems Journal, vol. 4, no. 1, pages 25–30, 1965. (Cited on
pages 101 and 102.)

[Briggs 2009] Robert J.S Briggs, Michael Tykocinski, Katrina Stidham and
Joseph B Roberson. Cochleostomy site: Implications for electrode place-

ment and hearing preservation. Acta Oto-Laryngologica, jul 2009. (Cited on
pages 51 and 122.)

[Broyden 1970] Charles George Broyden. The convergence of a class of double-rank

minimization algorithms. IMA Journal of Applied Mathematics, vol. 6, no. 1,
pages 76–90, 1970. (Cited on page 101.)

[Buytaert 2011] Jan A N Buytaert, Wasil H M Salih, Manual Dierick, Patric Jacobs
and Joris J J Dirckx. Realistic 3D computer model of the gerbil middle ear,

featuring accurate morphology of bone and soft tissue structures. JARO -
Journal of the Association for Research in Otolaryngology, vol. 12, no. 6,
pages 681–696, 2011. (Cited on page 19.)

[Ceresa 2014] Mario Ceresa, Nerea Mangago Lopez, Hector Dejea Velardo,
Noemi Carranza Herrezuelo, Pavel Mistrik, Hans Martin Kjer, Sergio Vera,
Rasmus Reinhold Paulsen and Miguel Angel González Ballester. Patient-

Specific Simulation of Implant Placement and Function for Cochlear Implan-

tation Surgery Planning. Medical Image Computing and Computer-Assisted
Intervention, pages 49–56, 2014. (Cited on page 19.)

[Clark 2011] James R Clark, Frank M Warren and Jake J Abbott. A Scalable Model

for Human Scala-Tympani Phantoms. Journal of Medical Devices, vol. 5,
no. 1, page 014501, 2011. (Cited on pages 30, 34, 45 and 59.)

[Cohen 1996] Lawrence T Cohen, Jin Xu, Shi Ang Xu and Graeme M Clark. Im-

proved and simplified methods for specifying positions of the electrode bands

of a cochlear implant array. The American Journal of Otology, vol. 17, no. 6,
pages 859–865, 1996. (Cited on pages 19, 28, 32, 35, 49, 58 and 98.)

[Cootes 1995] Tim F Cootes, Christopher J Taylor, David H Cooper and Jim Gra-
ham. Active Shape Models-Their Training and Application. Computer Vision



Bibliography 137

and Image Understanding, vol. 61, no. 1, pages 38–59, jan 1995. (Cited on
page 81.)

[Criminisi 2008] Antonio Criminisi, Toby Sharp and Andrew Blake. GeoS: Geodesic

Image Segmentation. ECCV, pages 99–112, 2008. (Cited on pages 24 and 85.)

[Dang 2015] Kai Dang, Maureen Clerc, Clair Vandersteen, Nicolas Guevara and
Dan Gnansia. In situ validation of a parametric model of electrical field

distribution in an implanted cochlea. International IEEE/EMBS Conference
on Neural Engineering, NER, vol. 2015-July, pages 667–670, 2015. (Cited on
page 123.)

[Demarcy 2016a] Thomas Demarcy, Clair Vandersteen, Dan Gnansia, Charles Raf-
faelli, Nicholas Ayache, Hervé Delingette and Nicolas Guevara. Estimation of

postoperative cochlear implant electrode-array position from clinical computed

tomography. Annales françaises d’Oto-rhino-laryngologie et de Pathologie
Cervico-faciale, oct 2016. (Cited on pages 3, 119, 123 and 126.)

[Demarcy 2016b] Thomas Demarcy, Clair Vandersteen, Charles Raffaelli, Dan
Gnansia, Nicolas Guevara, Nicholas Ayache and Hervé Delingette. Uncer-
tainty Quantification of Cochlear Implant Insertion from CT Images, pages
27–35. Springer International Publishing, Cham, 2016. (Cited on pages 3,
53, 122 and 125.)

[Demarcy 2017] Thomas Demarcy, Clair Vandersteen, Nicolas Guevara, Charles
Raffaelli, Dan Gnansia, Nicholas Ayache and Hervé Delingette. Automated

analysis of human cochlea shape variability from segmented µ CT images.
Computerized Medical Imaging and Graphics, vol. 59, pages 1–12, 2017.
(Cited on pages 2, 17, 122 and 125.)

[Deschamps 2001] Thomas Deschamps and Laurent D Cohen. Fast extraction of

minimal paths in 3D images and applications to virtual endoscopy. Medical
Image Analysis, vol. 5, no. 4, pages 281–299, dec 2001. (Cited on page 25.)

[Dijkstra 1959] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, vol. 1, pages 269–271, 1959. (Cited on page 26.)

[Dimopoulos 1990] Panos Dimopoulos and Catharina Muren. Anatomic variations

of the cochlea and relations to other temporal bone structures. Acta Radio-
logica, vol. 31, no. 5, pages 439–44, sep 1990. (Cited on pages 18 and 86.)

[Erixon 2009] Elsa Erixon, Herman Högstorp, Karin Wadin and Helge Rask-
Andersen. Variational anatomy of the human cochlea: implications for

cochlear implantation. Otology & Neurotology, vol. 30, no. 1, pages 14–22,
jan 2009. (Cited on pages 18, 19, 33, 48 and 49.)

[Escudé 2006] Bernard Escudé, Chris James, Olivier Deguine, Nadine Cochard,
Elias Eter and Bernard Fraysse. The size of the cochlea and predictions



138 Bibliography

of insertion depth angles for cochlear implant electrodes. Audiology & Neu-
rotology, vol. 11 Suppl 1, no. suppl 1, pages 27–33, jan 2006. (Cited on
pages 19, 27 and 51.)

[Eshraghi 2003] Adrien A Eshraghi, Nathaniel W Yang and Thomas J Balkany.
Comparative study of cochlear damage with three perimodiolar electrode de-

signs. The Laryngoscope, vol. 113, no. 3, pages 415–9, mar 2003. (Cited on
page 51.)

[Eslami 2013a] Abouzar Eslami, Athanasios Karamalis, Amin Katouzian and Nassir
Navab. Segmentation by retrieval with guided random walks: application to

left ventricle segmentation in MRI. Medical Image Analysis, vol. 17, no. 2,
pages 236–53, feb 2013. (Cited on page 82.)

[Eslami 2013b] S M Ali Eslami. Generative Probabilistic Models for Object Segmen-

tation. PhD thesis, School of Informatics University of Edinburgh, 2013.
(Cited on page 82.)

[Fayad 2006] Jose N Fayad and Fred H Linthicum. Multichannel cochlear implants:

relation of histopathology to performance. The Laryngoscope, vol. 116, no. 8,
pages 1310–20, aug 2006. (Cited on page 18.)

[Finley 2009] Charles C Finley, Timothy A Holden, Laura K Holden, Bruce R Whit-
ing, Richard A Chole, J Gail Neely, Timothy E Hullar and Margaret W
Skinner. NIH Public Access. October, vol. 29, no. 7, pages 920–928, 2009.
(Cited on page 18.)

[Fletcher 1970] Roger Fletcher. A new approach to variable metric algorithms. The
computer journal, vol. 13, no. 3, pages 317–322, 1970. (Cited on page 101.)

[Fowler 1992] Deborah R. Fowler, Hans Meinhardt and Przemyslaw Prusinkiewicz.
Modeling seashells. ACM SIGGRAPH Computer Graphics, vol. 26, no. 2,
pages 379–387, jul 1992. (Cited on pages 41 and 59.)

[Franz 2014] Daniela Franz, Mathias Hofer, Matthias Pfeifle, Markus Pirlich, Marc
Stamminger and Thomas Wittenberg. Wizard-Based Segmentation for

Cochlear Implant Planning. In Thomas Martin Deserno, Heinz Handels,
Hans-Peter Meinzer and Thomas Tolxdorff, editors, Bildverarbeitung für die
Medizin 2014 SE - 49, Informatik aktuell, pages 258–263. Springer Berlin
Heidelberg, 2014. (Cited on page 20.)

[Gansca 2002] I Gansca, W F Bronsvoort, G Coman and L Tambulea. Self-

intersection avoidance and integral properties of generalized cylinders. Com-
puter Aided Geometric Design, vol. 19, no. 9, pages 695–707, dec 2002. (Cited
on page 67.)



Bibliography 139

[Gerber 2017] Nicolas Gerber, Mauricio Reyes, Livia Barazzetti, Hans Martin Kjer,
Sergio Vera, Martin Stauber, Pavel Mistrik, Mario Ceresa, Nerea Man-
gado, Wilhelm Wimmer, Thomas Stark, Rasmus Paulsen, Stefan Weber,
Marco Caversaccio and Miguel Angel González Ballester. Multiscale Imag-

ing Dataset of the Human Inner Ear. To be published, 2017. (Cited on
page 123.)

[Gibson 2012] Daren Gibson, Michael Brian Gluth, Andy Whyte and Marcus David
Atlas. Rotation of the osseous spiral lamina from the hook region along the

basal turn of the cochlea: results of a magnetic resonance image anatomi-

cal study using high-resolution DRIVE sequences. Surgical and radiologic
anatomy : SRA, vol. 34, no. 8, pages 781–5, oct 2012. (Cited on pages 19
and 48.)

[Gnansia 2016] Dan Gnansia, Thomas Demarcy, Clair Vandersteen, Charles Raf-
faelli, Nicolas Guevara, Hervé Delingette and Nicholas Ayache. Optimal

electrode diameter in relation to volume of the cochlea. European Annals
of Otorhinolaryngology, Head and Neck Diseases, vol. 133, pages S66–S67,
2016. (Cited on pages 3 and 125.)

[Goldfarb 1970] Donald Goldfarb. A family of variable-metric methods derived by

variational means. Mathematics of computation, vol. 24, no. 109, pages
23–26, 1970. (Cited on page 101.)

[Gooya 2011] A Gooya, G Biros and Christos Davatzikos. Deformable Registration

of Glioma Images Using EM Algorithm and Diffusion Reaction Modeling.
Medical Imaging, IEEE . . . , vol. 30, no. 2, pages 375–390, 2011. (Cited on
page 82.)

[Goury 2016] Olivier Goury, Yann Nguyen, Renato Torres, Jeremie Dequidt and
Christian Duriez. Numerical Simulation of Cochlear-Implant Surgery: To-
wards Patient-Specific Planning, pages 500–507. Springer International Pub-
lishing, Cham, 2016. (Cited on page 124.)

[Gray 1918] Henry Gray. Anatomy of the human body. Lea & Febiger, 1918. (Cited
on page 9.)

[Greenwood 1990] Donald D Greenwood. A cochlear frequency-position function for

several species—29 years later. The Journal of the Acoustical Society of
America, vol. 87, no. 6, pages 2592–2605, 1990. (Cited on page 8.)

[Gulya 1996] A J Gulya and R L Steenerson. The scala vestibuli for cochlear im-

plantation. An anatomic study. Archives of Otolaryngology - Head & Neck
Surgery, vol. 122, no. 2, pages 130–132, feb 1996. (Cited on pages 18, 19, 24
and 49.)

[Gunz 2012] Philipp Gunz, Marissa Ramsier, Melanie Kuhrig, Jean-Jacques Hublin
and Fred Spoor. The mammalian bony labyrinth reconsidered, introducing



140 Bibliography

a comprehensive geometric morphometric approach. Journal of Anatomy,
vol. 220, no. 6, pages 529–43, jun 2012. (Cited on pages 19, 24 and 25.)

[Hardy 1938] Mary Hardy. The length of the organ of Corti in man. American
Journal of Anatomy, vol. 62, no. 2, pages 291–311, jan 1938. (Cited on
pages 18 and 19.)

[Hatsushika 1990] S-I Hatsushika, R K Shepherd, Y C Tong, Graeme M Clark and
S Funasaka. Dimensions of the Scala Tympani in the Human and Cat with

Reference to Cochlear Implants. Annals of Otology, Rhinology & Laryngol-
ogy, vol. 99, no. 11, pages 871–876, nov 1990. (Cited on pages 18 and 19.)

[Heimann 2007] Tobias Heimann, Sascha Münzing, Hans-Peter Meinzer and Ivo
Wolf. A shape-guided deformable model with evolutionary algorithm initial-

ization for 3D soft tissue segmentation. Inf Process Med Imaging, vol. 20,
pages 1–12, 2007. (Cited on page 81.)

[Heimann 2009] Tobias Heimann and Hans-Peter Meinzer. Statistical shape mod-

els for 3D medical image segmentation: a review. Medical Image Analysis,
vol. 13, no. 4, pages 543–63, aug 2009. (Cited on page 59.)

[Henk 2012] Martin Henk. Löwner-John Ellipsoids. Optimization Stories, Docu-
menta Mathematica, vol. I, no. 2012, pages 95–106, 2012. (Cited on page 65.)

[Jackler 2009] Robert K Jackler, William M Luxfor and William F House. Congen-

ital malformations of the inner ear: A classification based on embryogenesis.
The Laryngoscope, vol. 97, no. S40, pages 2–14, oct 2009. (Cited on page 49.)

[James 2005] Chris James, Klaus Albegger, Rolf Battmer, Sandro Burdo, Naima
Deggouj, Olivier Deguine, Norbert Dillier, Michel Gersdorff, Roland Laszig,
Thomas Lenarz, Manuel Manrique Rodriguez, Michel Mondain, F Erwin
Offeciers, Ángel Ramos Macías, Richard Ramsden, Olivier Sterkers, Ernst
Von Wallenberg, Benno Weber and Bernard Fraysse. Preservation of residual

hearing with cochlear implantation: How and why. Acta Oto-Laryngologica,
vol. 125, no. 5, pages 481–491, may 2005. (Cited on page 18.)

[Jenkinson 2001] Mark Jenkinson and Stephen M Smith. A global optimisation

method for robust affine registration of brain images. Medical Image Analysis,
vol. 5, no. 2, pages 143–156, 2001. (Cited on page 88.)

[Jenkinson 2002] Mark Jenkinson, Peter Bannister, Michael Brady and Stephen M
Smith. Improved optimization for the robust and accurate linear registration

and motion correction of brain images. NeuroImage, vol. 17, no. 2, pages
825–841, 2002. (Cited on page 88.)

[John 2014] Fritz John. Extremum Problems with Inequalities as Subsidiary Con-
ditions, pages 197–215. Springer Basel, Basel, 2014. (Cited on page 65.)



Bibliography 141

[Kass 1988] Michael Kass, Andrew Witkin and Demetri Terzopoulos. Snakes: Ac-

tive contour models. International Journal of Computer Vision, vol. 1, no. 4,
pages 321–331, 1988. (Cited on pages 24 and 26.)

[Kawano 1996] A Kawano, H L Seldon and Graeme M Clark. Computer-Aided

Three-Dimensional Reconstruction in Human Cochlear Maps: Measurement

of the Lengths of Organ of Corti, Outer Wall, Inner Wall, and Rosenthal’s

Canal. Annals of Otology, Rhinology & Laryngology, vol. 105, no. 9, pages
701–709, sep 1996. (Cited on pages 19, 48 and 49.)

[Ketten 1990] Darlene R Ketten and Douglas Wartzok. Three-Dimensional Re-

constructions of the Dolphin Ear. In JeanetteA. Thomas and RonaldA.
Kastelein, editors, Sensory Abilities of Cetaceans SE - 6, volume 196 of
NATO ASI Series, pages 81–105. Springer US, 1990. (Cited on pages 57
and 58.)

[Ketten 1998] Darlene R Ketten, Margaret W Skinner, Ge Wang, Michael W Van-
nier, George A Gates and J Gail Neely. In vivo measures of cochlear length

and insertion depth of nucleus cochlear implant electrode arrays. Annals of
Otology, Rhinology & Laryngology, vol. 175, no. 12, page 1998, nov 1998.
(Cited on page 58.)

[Kjer 2014a] Hans Martin Kjer, Jens Fagertun, Sergio Vera, Miguel Angel González
Ballester and Rasmus Reinhold Paulsen. Shape modelling of the inner ear

from micro-CT data. Shape Symposium, 2014. (Cited on pages 16, 59, 80
and 81.)

[Kjer 2014b] Hans Martin Kjer, Sergio Vera, Frederic Pérez, Miguel Angel González
Ballester and Rasmus Reinhold Paulsen. Semi-automatic anatomical mea-

surements on microCT 3D surface models. In International Conference on
Cochlear Implants and Other Implantable Auditory Technologies, Munich,
Germany, page 711, 2014. (Cited on page 105.)

[Kjer 2015a] Hans Martin Kjer, Jens Fagertun, Sergio Vera, Debora Gil, Miguel An-
gel González Ballester and Rasmus Reinhold Paulsen. Free-form image reg-

istration of human cochlear µCT data using skeleton similarity as anatomical

prior. Pattern Recognition Letters, page 0000, jul 2015. (Cited on pages 27,
48, 83 and 85.)

[Kjer 2015b] Hans Martin Kjer and Rasmus Reinhold Paulsen. Modelling of the

Human Inner Ear Anatomy and Variability for Cochlear Implant Applica-

tions. PhD thesis, Technical University of Denmark (DTU), 2015. (Cited on
pages 14, 19, 54, 85, 106, 117 and 123.)

[Kjer 2015c] Hans Martin Kjer, Sergio Vera, Jens Fagertun, Debora Gil, Miguel An-
gel González Ballester and Rasmus Reinhold Paulsen. Image registration of

cochlear muCT data using heat distribution similarity. In Lecture Notes in



142 Bibliography

Computer Science (Scandinavian Conference on Image Analysis - SCIA),
volume 9127, pages 234–245. Springer, 2015. (Cited on page 85.)

[Kjer 2015d] Hans Martin Kjer, Sergio Vera, Jens Fagertun, Frederic Pérez, Javier
Herrero Jover, Miguel Angel González Ballester, Rasmus Reinhold Paulsen
and Miguel Angel Gonzalez Ballester. Predicting detailed inner ear anatomy

from pre-operational CT for cochlear implant surgery. International Journal
of Computer Assisted Radiology and Surgery (Computer Assisted Radiology
and Surgery, Barcelona, Spain), vol. 10, pages S98—-99, 2015. (Cited on
pages 16, 59, 80, 81 and 106.)

[Lane 2004] John I Lane, Robert J Witte, Colin L W Driscoll, John J Camp and
Richard A Robb. Imaging microscopy of the middle and inner ear: Part

I: CT microscopy. Clinical Anatomy, vol. 17, no. 8, pages 607–612, 2004.
(Cited on page 14.)

[Lane 2005] John I Lane, Robert J Witte, Odell W Henson, Colin L W Driscoll,
John J Camp and Richard A Robb. Imaging microscopy of the middle and

inner ear: Part II: MR microscopy. Clinical Anatomy, vol. 18, no. 6, pages
409–415, 2005. (Cited on page 15.)

[Lane 2015] John I Lane. MultiPlanar Reformation in CT of the Temporal Bone,
pages 367–380. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. (Cited
on page 85.)

[Leake 1999] P A Leake, G T Hradek and R L Snyder. Chronic electrical stimula-

tion by a cochlear implant promotes survival of spiral ganglion neurons after

neonatal deafness. The Journal of Comparative Neurology, vol. 412, no. 4,
pages 543–62, oct 1999. (Cited on page 18.)

[Leidy 1883] Joseph Leidy. A Study of the Human Temporal Bone - II. Science,
vol. 1, no. 17, pages 475–477, jun 1883. (Cited on page 57.)

[Lesage 2009] David Lesage, Elsa D Angelini, Isabelle Bloch and Gareth Funka-Lea.
A review of 3D vessel lumen segmentation techniques: models, features and

extraction schemes. Medical Image Analysis, vol. 13, no. 6, pages 819–45,
dec 2009. (Cited on page 25.)

[Liu 1995] Chuanhai Liu and Donald B Rubin. ML estimation of the t distribution

using EM and its extensions, ECM and ECME. Statistica Sinica, vol. 5,
pages 19–39, 1995. (Cited on page 32.)

[Maintz 1998] J.B.Antoine Maintz and Max A. Viergever. A survey of medical image

registration. Medical Image Analysis, vol. 2, no. 1, pages 1–36, mar 1998.
(Cited on page 85.)

[Makary 2010] Chadi Makary, Jennifer Shin, Paul Caruso, Hugh D Curtin and
Saumil N Merchant. A histological study of scala communis with radiological



Bibliography 143

implications. Audiology & Neurotology, vol. 15, no. 6, pages 383–93, jan
2010. (Cited on page 18.)

[Manoussaki 2000] Daphne Manoussaki and Richard S Chadwick. Effects of Ge-

ometry on Fluid Loading in a Coiled Cochlea. SIAM Journal on Applied
Mathematics, vol. 61, no. 2, pages 369–386, jan 2000. (Cited on page 59.)

[Maurer 2003] C R Maurer and V Raghavan. A linear time algorithm for com-

puting exact Euclidean distance transforms of binary images in arbitrary di-

mensions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 2, pages 265–270, 2003. (Cited on pages 101 and 102.)

[Meshik 2010] Xenia Meshik, Timothy A Holden, Richard A Chole and Timothy E
Hullar. Optimal cochlear implant insertion vectors. Otology & neurotology,
vol. 31, no. 1, pages 58–63, 2010. (Cited on page 24.)

[Miroir 2012] Mathieu Miroir, Yann Nguyen, Guillaume Kazmitcheff, Evelyne Fer-
rary, Olivier Sterkers and Alexis Bozorg Grayeli. Friction force measurement

during cochlear implant insertion: application to a force-controlled insertion

tool design. Otology & neurotology : official publication of the American
Otological Society, American Neurotology Society [and] European Academy
of Otology and Neurotology, vol. 33, no. 6, pages 1092–100, aug 2012. (Cited
on page 6.)

[Moseley 1838] H Moseley. On the Geometrical Forms of Turbinated and Discoid

Shells. Philosophical Transactions of the Royal Society of London, vol. 128,
pages 351–370, jan 1838. (Cited on page 57.)

[Nadol 1997] Joseph B Nadol. Patterns of neural degeneration in the human cochlea

and auditory nerve: Implications for cochlear implantation. Otolaryngology
- Head and Neck Surgery, vol. 117, no. 3, pages 220–228, sep 1997. (Cited
on pages 18 and 54.)

[Neri 2005] Emanuele Neri, Stefano Berrettini, Luca Salvatori, Francesca Forli,
Stefano Sellari Franceschini and Carlo Bartolozzi. 3-D CT and MRI co-

registration in the assessment of cochlear implantation. Medical science mon-
itor : international medical journal of experimental and clinical research,
vol. 11, no. 10, pages MT63–7, oct 2005. (Cited on page 85.)

[Nguyen 2011] Yann Nguyen. Accés mini invasif à la cochlée, application à

l’implantation cochléaire. PhD thesis, Université Pierre et Marie Curie, 2011.
(Cited on page 11.)

[Nguyen 2012] Yann Nguyen, Mathieu Miroir, Guillaume Kazmitcheff, Jasmine Sut-
ter, Morad Bensidhoum, Evelyne Ferrary, Olivier Sterkers and Alexis Bozorg
Grayeli. Cochlear implant insertion forces in microdissected human cochlea

to evaluate a prototype array. Audiology & Neurotology, vol. 17, no. 5, pages
290–8, jan 2012. (Cited on page 51.)



144 Bibliography

[Noble 2010] Jack H Noble, Robert B Rutherford, Robert Frederick Labadie, Omid
Majdani and Benoit M Dawant. Modeling and segmentation of intra-cochlear

anatomy in conventional CT. In Benoit M. Dawant and David R. Haynor, ed-
itors, SPIE Medical Imaging, pages 762302–762302–9. International Society
for Optics and Photonics, mar 2010. (Cited on pages 16, 80 and 81.)

[Noble 2011] Jack H Noble, Robert Frederick Labadie, Omid Majdani and Benoit M
Dawant. Automatic segmentation of intracochlear anatomy in conventional

CT. IEEE Transactions on Biomedical Engineering, vol. 58, no. 9, pages
2625–32, sep 2011. (Cited on pages 16, 20, 24, 54, 59, 72, 80, 81, 106
and 107.)

[Noble 2012] Jack H Noble, René H Gifford, Robert Frederick Labadie and Benoit M
Dawant. Statistical shape model segmentation and frequency mapping of

cochlear implant stimulation targets in CT. Medical Image Computing and
Computer-Assisted Intervention, vol. 15, no. Pt 2, pages 421–8, jan 2012.
(Cited on pages 16, 59, 80, 81 and 106.)

[Noble 2013] Jack H Noble, Robert Frederick Labadie, René H Gifford and Benoit M
Dawant. Image-Guidance enables new methods for customizing cochlear im-

plant stimulation strategies. IEEE Transactions on Neural Systems and Re-
habilitation Engineering, vol. 21, no. 5, pages 820–829, 2013. (Cited on
pages 16, 59, 80, 81 and 106.)

[Ourselin 2000] Sébastien Ourselin, A Roche, S Prima and Nicholas Ayache. Block

Matching : A General Framework to Improve Robustness of Rigid Registra-

tion of Medical Images. Medical Image Computing and Computer-Assisted
Intervention, pages 557–566, 2000. (Cited on pages 55 and 87.)

[Patenaude 2011] Brian Patenaude, Stephen M Smith, David N Kennedy and Mark
Jenkinson. A Bayesian model of shape and appearance for subcortical brain

segmentation. NeuroImage, vol. 56, no. 3, pages 907–922, 2011. (Cited on
pages 82 and 83.)

[Paulsen 2004] Rasmus Reinhold Paulsen. Statistical Shape Analysis of the Human

Ear Canal with Application to In-the-Ear Hearing Aid Design. PhD thesis,
Technical University of Denmark, 2004. (Cited on page 59.)

[Peltonen 2009] L I Peltonen, Antti A Aarnisalo, Y Käser, M K Kortesniemi,
S Robinson, A Suomalainen and J Jero. Cone-beam computed tomography:

A new method for imaging of the temporal bone. Acta Radiologica, vol. 50,
no. 5, pages 543–548, jun 2009. (Cited on page 13.)

[Perona 1990] P Perona and J Malik. Scale-space and edge detection using

anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 7, pages 629–639, jul 1990. (Cited on page 24.)



Bibliography 145

[Pohl 2005] Kilian M Pohl, John Fisher, James J Levitt, Martha E Shenton, Ron
Kikinis, W Eric L Grimson and William M Wells. A unifying approach to reg-

istration, segmentation, and intensity correction. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), vol. 3749 LNCS, pages 310–318, 2005. (Cited
on pages 82 and 83.)

[Pohl 2006a] Kilian M Pohl, John Fisher, W Eric L Grimson, Ron Kikinis and
William M Wells. A Bayesian model for joint segmentation and registration.
NeuroImage, vol. 31, no. 1, pages 228–239, 2006. (Cited on pages 81, 82
and 83.)

[Pohl 2006b] Kilian M Pohl, John Fisher, Martha E Shenton, Robert W Mccarley,
W Eric L Grimson, Ron Kikinis, William M Wells and W L Eric. Log-

arithm Odds Maps for Shape Representation. Medical image computing
and computer-assisted intervention : MICCAI ... International Conference
on Medical Image Computing and Computer-Assisted Intervention, vol. 9,
no. Pt 2, pages 955–963, 2006. (Cited on page 96.)

[Postnov 2006] A Postnov, Andrzej Zarowski, N De Clerck, F Vanpoucke, F Erwin
Offeciers, D Van Dyck and S Peeters. High resolution micro-CT scanning

as an innovative tool for evaluation of the surgical positioning of cochlear

implant electrodes. Acta Oto-Laryngologica, vol. 126, no. 5, pages 467–74,
may 2006. (Cited on pages 19 and 24.)

[Poznyakovskiy 2008] Anton A Poznyakovskiy, Thomas Zahnert, Yannis
Kalaidzidis, Rolf Schmidt, Björn Fischer, Johannes Baumgart and
Yury M Yarin. The creation of geometric three-dimensional models of the

inner ear based on micro computer tomography data. Hearing Research,
vol. 243, no. 1-2, pages 95–104, sep 2008. (Cited on page 27.)

[Poznyakovskiy 2011] Anton A Poznyakovskiy, Thomas Zahnert, Yannis
Kalaidzidis, Nikoloz Lazurashvili, Rolf Schmidt, Hans-Jürgen Hardtke,
Björn Fischer and Yury M Yarin. A segmentation method to obtain a

complete geometry model of the hearing organ. Hearing Research, vol. 282,
no. 1-2, pages 25–34, dec 2011. (Cited on pages 19, 24, 25 and 33.)

[Prince 2012] Simon J D Prince. Computer vision: models, learning, and inference.
Computer Vision: Models, Learning, and Inference. Cambridge University
Press, 2012. (Cited on page 93.)

[Puonti 2016] Oula Puonti, Juan Eugenio Iglesias and Koen Van Leemput. Fast

and sequence-adaptive whole-brain segmentation using parametric Bayesian

modeling. NeuroImage, vol. 143, pages 235–249, 2016. (Cited on pages 82
and 83.)



146 Bibliography

[Rask-Andersen 2011] Helge Rask-Andersen, Elsa Erixon, Anders Kinnefors, Hu-
bert Löwenheim, Anneliese Schrott-Fischer and Wei Liu. Anatomy of the

human cochlea – implications for cochlear implantation. Cochlear Implants
International, vol. 12, no. s1, pages S13–S8, may 2011. (Cited on page 18.)

[Rask-Andersen 2012] Helge Rask-Andersen, Wei Liu, Elsa Erixon, Anders Kin-
nefors, Kristian Pfaller, Annelies Schrott-Fischer and Rudolf Glueckert. Hu-

man cochlea: anatomical characteristics and their relevance for cochlear im-

plantation. The Anatomical Record, vol. 295, no. 11, pages 1791–811, nov
2012. (Cited on page 66.)

[Rau 2013] Thomas S Rau, Waldemar Würfel, Thomas Lenarz and Omid Majdani.
Three-dimensional histological specimen preparation for accurate imaging and

spatial reconstruction of the middle and inner ear. International Journal of
Computer Assisted Radiology and Surgery, vol. 8, no. 4, pages 481–509, apr
2013. (Cited on page 19.)

[Reda 2011] Fitsum A Reda, Jack H Noble, Alejandro Rivas, Theodore R
McRackan, Robert Frederick Labadie and Benoit M Dawant. Automatic seg-

mentation of the facial nerve and chorda tympani in pediatric CT scans. Med-
ical Physics, vol. 38, no. 10, pages 5590–600, oct 2011. (Cited on pages 16,
80 and 81.)

[Reda 2012] Fitsum A Reda, Jack H Noble, Robert Frederick Labadie and Benoit M
Dawant. Automatic pre- to intra-operative CT registration for image-guided

cochlear implant surgery. IEEE Transactions on Biomedical Engineering,
vol. 59, no. 11, pages 3070–7, nov 2012. (Cited on pages 16, 80, 81 and 85.)

[Reda 2013] Fitsum A Reda, Benoit M Dawant, Theodore R McRackan,
Robert Frederick Labadie and Jack H Noble. Automatic segmentation of

intra-cochlear anatomy in post-implantation CT. Proc. SPIE, vol. 8671, pages
86710I–86710I–9, mar 2013. (Cited on pages 16, 20, 80, 81 and 107.)

[Reda 2014a] Fitsum A Reda, Theodore R McRackan, Robert Frederick Labadie,
Benoit M Dawant and Jack H Noble. Automatic segmentation of intra-

cochlear anatomy in post-implantation CT of unilateral cochlear implant re-

cipients. Medical Image Analysis, vol. 18, no. 3, pages 605–615, feb 2014.
(Cited on pages 16, 20, 80, 81, 107, 114 and 118.)

[Reda 2014b] Fitsum A Reda, Jack H Noble, Robert Frederick Labadie and
Benoit M Dawant. An artifact-robust, shape library-based algorithm for auto-

matic segmentation of inner ear anatomy in post-cochlear-implantation CT.
In Sebastien Ourselin and Martin A. Styner, editors, SPIE Medical Imaging,
volume 9034, page 90342V. International Society for Optics and Photonics,
mar 2014. (Cited on pages 13, 16, 20, 80, 81, 107 and 118.)



Bibliography 147

[Riklin-Raviv 2009] Tammy Riklin-Raviv, Koen Van Leemput, William M Wells
and Polina Golland. Joint Segmentation of Image Ensembles via Latent

Atlases Tammy. Medical Image Computing and Computer-Assisted Inter-
vention, 2009. (Cited on pages 82 and 83.)

[Romera Romero 2016] Jordi Romera Romero, Hans Martin Kjer, Gemma Piella,
Mario Ceresa and Miguel Angel González Ballester. Multi-region statistical

shape model for cochlear implantation. In SPIE Medical Imaging, San Diego,
USA, volume 9784, pages 97840T1—-8. SPIE, 2016. (Cited on page 59.)

[Ruiz Pujadas 2016a] Esmeralda Ruiz Pujadas, Hans Martin Kjer, Gemma Piella,
Mario Ceresa and Miguel Angel González Ballester. Random walks with

shape prior for cochlea segmentation in ex vivo CT. International Journal of
Computer Assisted Radiology and Surgery, vol. 11, no. 9, pages 1647–1659,
2016. (Cited on page 105.)

[Ruiz Pujadas 2016b] Esmeralda Ruiz Pujadas, Hans Martin Kjer, Sergio Vera,
Mario Ceresa and Miguel Angel González Ballester. Cochlea segmentation

using iterated random walks with shape prior, 2016. (Cited on page 105.)

[Schuman 2010] Theodore A Schuman, Jack H Noble, Charles G Wright, George B
Wanna, Benoit M Dawant and Robert Frederick Labadie. Anatomic verifica-

tion of a novel method for precise intrascalar localization of cochlear implant

electrodes in adult temporal bones using clinically available computed tomog-

raphy. The Laryngoscope, vol. 120, no. 11, pages 2277–83, nov 2010. (Cited
on page 20.)

[Sennaroglu 2002] Levent Sennaroglu and Isil Saatci. A New Classification for

Cochleovestibular Malformations. The Laryngoscope, vol. 112, no. 12, pages
2230–2241, 2002. (Cited on page 123.)

[Shanno 1970] David F Shanno. Conditioning of quasi-Newton methods for function

minimization. Mathematics of computation, vol. 24, no. 111, pages 647–656,
1970. (Cited on page 101.)

[Shi 2011] Lin Shi, Defeng Wang, Winnie C W Chu, Geoffrey R Burwell, Tien-Tsin
Wong, Pheng Ann Heng and Jack C Y Cheng. Automatic MRI segmentation

and morphoanatomy analysis of the vestibular system in adolescent idiopathic

scoliosis. NeuroImage, vol. 54 Suppl 1, pages S180–8, jan 2011. (Cited on
page 15.)

[Shin 2013] Kang-Jae Shin, Ju-Young Lee, Jeong-Nam Kim, Ja-Young Yoo, Chuog
Shin, Wu-Chul Song and Ki-Seok Koh. Quantitative analysis of the cochlea

using three-dimensional reconstruction based on microcomputed tomographic

images. The Anatomical Record, vol. 296, no. 7, pages 1083–8, jul 2013.
(Cited on pages 19, 48, 49 and 52.)



148 Bibliography

[Skinner 2002] Margaret W Skinner, Darlene R Ketten, Laura K Holden, Gary W
Harding, Peter G Smith, George A Gates, J Gail Neely, G Robert Kletzker,
Barry Brunsden and Barbara Blocker. CT-derived estimation of cochlear

morphology and electrode array position in relation to word recognition in

Nucleus-22 recipients. Journal of the Association for Research in Otolaryn-
gology : JARO, vol. 3, no. 3, pages 332–50, sep 2002. (Cited on page 19.)

[Soille 1999] Pierre Soille. Morphological image analysis: principles and applica-
tions. Springer Science & Business Media, 1999. (Cited on pages 101
and 102.)

[Sotiras 2013] Aristeidis Sotiras, Christos Davatzikos and Nikos Paragios. De-

formable Medical Image Registration: A Survey. IEEE transactions on med-
ical imaging, vol. 32, no. 7, pages 1153–1190, jul 2013. (Cited on page 85.)

[Stakhovskaya 2007] Olga Stakhovskaya, Divya Sridhar, Ben H Bonham and Patri-
cia A Leake. Frequency map for the human cochlear spiral ganglion: Implica-

tions for cochlear implants. JARO - Journal of the Association for Research
in Otolaryngology, vol. 8, no. 2, pages 220–233, 2007. (Cited on page 19.)

[Stone 1996] JR Stone. The evolution of ideas: a phylogeny of shell models. Amer-
ican Naturalist, 1996. (Cited on page 57.)

[Thompson 1917] D’Arcy Wentworth Thompson. On growth and form, 1917. (Cited
on page 57.)

[Thorne 1999] M Thorne, A N Salt, J E DeMott, M M Henson, Odell W Henson
and S L Gewalt. Cochlear fluid space dimensions for six species derived

from reconstructions of three-dimensional magnetic resonance images. The
Laryngoscope, vol. 109, no. 10, pages 1661–8, oct 1999. (Cited on pages 19
and 49.)

[Tian 2006] Qing Tian, Fred H Linthicum and Jose N Fayad. Human cochleae with

three turns: an unreported malformation. The Laryngoscope, vol. 116, no. 5,
pages 800–3, may 2006. (Cited on page 49.)

[Torres 2015] Renato Torres, Guillaume Kazmitcheff, Daniele Bernardeschi, Daniele
De Seta, Jean Loup Bensimon, Evelyne Ferrary, Olivier Sterkers and Yann
Nguyen. Variability of the mental representation of the cochlear anatomy

during cochlear implantation. European Archives of Oto-Rhino-Laryngology,
sep 2015. (Cited on page 124.)

[Toussaint 2007] Nicolas Toussaint, Jean-Christophe Souplet and Pierre Fillard.
MedINRIA: Medical Image Navigation and Research Tool by INRIA. In Proc.
of MICCAI’07 Workshop on Interaction in medical image analysis and visu-
alization, Brisbane, Australia, Australia, 2007. (Cited on page 87.)



Bibliography 149

[van der Marel 2014] Kim S van der Marel, Jeroen Johannes Briaire, Ron Wolter-
beek, Jorien Snel-Bongers, Berit M Verbist and Johan H M Frijns. Diversity

in cochlear morphology and its influence on cochlear implant electrode po-

sition. Ear and Hearing, vol. 35, no. 1, pages e9–20, jan 2014. (Cited on
pages 19, 27 and 54.)

[Vandersteen 2014] Clair Vandersteen, Thomas Demarcy, Hervé Delingette, Charles
Raffaelli, Jonathan Laudanski, Thierry Pourcher, Jacques Darcourt, Philippe
Franken, Dan Gnansia, Nicholas Ayache and Nicolas Guevara. Teaching tool

for advanced visualization of temporal bone structures by fusion of µCT and

CT scan images. In 8th International Symposium on Objective Measures in
Auditory Implants, 2014. (Cited on page 126.)

[Vandersteen 2015] Clair Vandersteen, Thomas Demarcy, Coralie Roger, Eric
Fontas, Charles Raffaelli, Nicholas Ayache, Hervé Delingette and Nicolas
Guevara. Impact of the surgical experience on cochleostomy location : a com-

parative temporal bone study between endaural and posterior tympanotomy

approaches for cochlear implantation. European Archives of Oto-Rhino-
Laryngology, vol. 273, no. 9, pages 2355–2361, 2015. (Cited on pages 121,
124 and 125.)

[Verbist 2005] Berit M Verbist, Johan H M Frijns, Jakob Geleijns and Mark A van
Buchem. Multisection CT as a Valuable Tool in the Postoperative Assessment

of Cochlear Implant Patients. American Journal of Neuroradiology, vol. 26,
no. 2, pages 424 LP – 429, feb 2005. (Cited on page 14.)

[Verbist 2009] Berit M Verbist, Luca Ferrarini, Jeroen Johannes Briaire, Andrzej
Zarowski, Faiza Admiraal-behloul, Hans Olofsen, Johan H C Reiber and
Johan H M Frijns. Anatomic considerations of cochlear morphology and its

implications for insertion trauma in cochlear implant surgery. Otology &
Neurotology, vol. 30, no. 4, pages 471–7, jun 2009. (Cited on pages 19, 24,
25, 27 and 49.)

[Verbist 2010] Berit M Verbist, Margaret W Skinner, Lawrence T Cohen, Patricia A
Leake, Chris James, Colette Boëx, Timothy A Holden, Charles C Finley, Pe-
ter S Roland, J Thomas Roland, Matt Haller, Jim F Patrick, Claude N Jolly,
Mike A Faltys, Jeroen Johannes Briaire and Johan H M Frijns. Consensus

panel on a cochlear coordinate system applicable in histologic, physiologic,

and radiologic studies of the human cochlea. Otology & Neurotology, vol. 31,
no. 5, pages 722–30, jul 2010. (Cited on pages 25, 27, 45, 55, 69 and 85.)

[Viergever 1978] Max A. Viergever. Basilar membrane motion in a spiral-shaped

cochlea. The Journal of the Acoustical Society of America, vol. 64, no. 4,
page 1048, oct 1978. (Cited on page 33.)

[Voie 1990] Arne H Voie and Francis A Spelman. Analysis Of The Guinea Pig

Cochlea Using A General Cylindrical Coordinate System. In IEEE Engineer-



150 Bibliography

ing in Medicine & Biology Society, pages 206–207. IEEE, 1990. (Cited on
pages 57 and 66.)

[Wardrop 2005] Peter Wardrop, David Whinney, Stephen J Rebscher, J Thomas
Roland, William Luxford and Patricia A Leake. A temporal bone study of

insertion trauma and intracochlear position of cochlear implant electrodes. I:

Comparison of Nucleus banded and Nucleus ContourTM electrodes. Hearing
Research, vol. 203, no. 1-2, pages 54–67, may 2005. (Cited on page 51.)

[Weber 2017] Stefan Weber, Kate Gavaghan, Wilhelm Wimmer, Tom Williamson,
Nicolas Gerber, Juan Anso, Brett Bell, Arne Feldmann, Christoph Rathgeb,
Marco Matulic, Manuel Stebinger, Daniel Schneider, Georgios Mantokoudis,
Olivier Scheidegger, Franca Wagner, Martin Kompis and Marco Caversaccio.
Instrument flight to the inner ear. Science Robotics, vol. 2, no. 4, mar 2017.
(Cited on page 12.)

[Whiting 2001] B R Whiting, K T Bae and Margaret W Skinner. Cochlear im-

plants: three-dimensional localization by means of coregistration of CT and

conventional radiographs. Radiology, vol. 221, no. 2, pages 543–9, nov 2001.
(Cited on page 85.)

[Wilson 2008] Blake S Wilson and Michael F Dorman. Cochlear implants: a re-

markable past and a brilliant future. Hearing Research, vol. 242, no. 1-2,
pages 3–21, aug 2008. (Cited on page 10.)

[Wright 2005] Charles G Wright and Peter S Roland. Temporal bone microdissec-

tion for anatomic study of cochlear implant electrodes. Cochlear Implants
International, vol. 6, no. 4, pages 159–168, 2005. (Cited on page 18.)

[Wu 2013] Guorong Wu, Qian Wang, Daoqiang Zhang, Feiping Nie, Heng Huang
and Dinggang Shen. A generative probability model of joint label fusion for

multi-atlas based brain segmentation. Medical Image Analysis, vol. 18, no. 6,
pages 881–890, nov 2013. (Cited on pages 82 and 83.)

[Wyatt 2003] Paul P Wyatt and J Alison Noble. MAP MRF joint segmentation and

registration of medical images. Medical Image Analysis, vol. 7, no. 4, pages
539–552, 2003. (Cited on pages 82 and 83.)

[Wysocki 1999] Jarosław Wysocki. Dimensions of the human vestibular and tym-

panic scalae. Hearing Research, vol. 135, no. 1-2, pages 39–46, 1999. (Cited
on pages 18, 19, 24, 27, 45, 49, 55 and 77.)

[Xianfen 2005] Diao Xianfen, Chen Siping, Liang Changhong and Wang Yuanmei.
3D semi-automatic segmentation of the cochlea and inner ear. Engineering
in Medicine and Biology Society, vol. 6, pages 6285–6288, jan 2005. (Cited
on page 20.)



Bibliography 151

[Xu 2000] Jin Xu, Shi Ang Xu, Lawrence T Cohen and Graeme M Clark. Cochlear

view: postoperative radiography for cochlear implantation. The American
Journal of Otology, vol. 21, no. 1, pages 49–56, jan 2000. (Cited on pages 28
and 29.)

[Xu 2012] Helen X Xu, Grace H Kim, Eugene P Snissarenko, Sebahattin Cureoglu
and Michael M Paparella. Multi-channel cochlear implant histopathology:

are fewer spiral ganglion cells really related to better clinical performance?

Acta Oto-Laryngologica, vol. 132, no. 5, pages 482–90, may 2012. (Cited on
page 18.)

[Yoo 2000a] Sun K Yoo, Ge Wang, Jay T Rubinstein, Margaret W Skinner and
Michael W Vannier. Three-dimensional modeling and visualization of the

cochlea on the Internet. IEEE Transactions on Information Technology in
Biomedicine, vol. 4, no. 2, pages 144–51, jun 2000. (Cited on pages 24, 28
and 59.)

[Yoo 2000b] Sun K Yoo, Ge Wang, Jay T Rubinstein and Michael W Vannier.
Three-dimensional geometric modeling of the cochlea using helico-spiral ap-

proximation. IEEE Transactions on Biomedical Engineering, vol. 47, no. 10,
pages 1392–402, oct 2000. (Cited on pages ix, 27, 28, 41, 42, 43, 50 and 59.)

[Yoo 2001] Sun K Yoo, Ge Wang, Jay T Rubinstein and Michael W Vannier. Semi-

automatic segmentation of the cochlea using real-time volume rendering and

regional adaptive snake modeling. Journal of Digital Imaging, vol. 14, no. 4,
pages 173–181, dec 2001. (Cited on page 26.)

[Yushkevich 2006] Paul A Yushkevich, Joseph Piven, Heather Cody Hazlett,
Rachel Gimpel Smith, Sean Ho, James C Gee and Guido Gerig. User-guided

3D active contour segmentation of anatomical structures: significantly im-

proved efficiency and reliability. NeuroImage, vol. 31, no. 3, pages 1116–28,
jul 2006. (Cited on page 85.)

[Zerroug 1996] Mourad Zerroug and Ramakant Nevatia. Three-dimensional descrip-

tions based on the analysis of the invariant and quasi-invariant properties of

some curved-axis generalized cylinders. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 18, no. 3, pages 237–253, 1996. (Cited on
page 67.)

[Zhang 2006] Jian Zhang, Kai Xu, Nabil Simaan and Spiros Manolidis. A pilot study

of robot-assisted cochlear implant surgery using steerable electrode arrays.

Medical Image Computing and Computer-Assisted Intervention Intervention,
vol. 9, no. Pt 1, pages 33–40, 2006. (Cited on page 59.)

[Zhang 2014] Minqi Zhang, Fang Li, Xingce Wang, Zhongke Wu, Shi-Qing Xin,
Lok-Ming Lui, Lin Shi, Defeng Wang and Ying He. Automatic registration



152 Bibliography

of vestibular systems with exact landmark correspondence. Graphical Models,
apr 2014. (Cited on pages 117 and 123.)

[Zou 2015] Jing Zou, Jaakko Lähelmä, Juha Koivisto, Anandhan Dhanasingh,
Claude N Jolly, Antti A Aarnisalo, Jan Wolff and Ilmari Pyykkö. Imag-

ing cochlear implantation with round window insertion in human temporal

bones and cochlear morphological variation using high-resolution cone beam

CT. Acta oto-laryngologica, vol. 135, no. 5, 2015. (Cited on page 13.)

[Zrunek 1980] M Zrunek, M Lischka, I Hochmair-Desoyer and K Burian. Dimen-

sions of the scala tympani in relation to the diameters of multichannel elec-

trodes. Archives Of Oto-Rhino-Laryngology, vol. 229, pages 159–165, 1980.
(Cited on pages 18, 19 and 33.)

[Zrunek 1981] M Zrunek and M Lischka. Dimensions of the scala vestibuli and

sectional areas of both scales. Archives Of Oto-Rhino-Laryngology, vol. 233,
no. 4151, pages 99–104, 1981. (Cited on pages 18, 19 and 33.)



Segmentation and Study of Anatomical Variability
of the Cochlea from Medical Images

Abstract: Cochlear implants (CI) are used to treat hearing loss by surgically
inserting an electrode array into the organ of hearing, the cochlea.

Pre- and post-operative CT images are used routinely for surgery planning and
evaluation of cochlear implantation. However, due to the small size and the complex
topology of the cochlea, the anatomical information that can be extracted from the
images is limited.

The first focus of this work aims at defining automatic image processing methods
adapted to the spiral shape of the cochlea to study the cochlear shape variability
from high-resolution µCT images.

The second focus aims at developing and evaluating a new parametric cochlear
shape model. The model is applied to extract patient-specific clinically relevant
metrics such as the maximal insertion depth of CI electrode arrays. Thanks to the
uncertainty quantification, provided by the model, we can assess the reliability of
CT-based segmentation as compared to the ground truth segmentation provided by
µCT scans.

Finally, the last focus concerns a joint model of the cochlear shape (and its
substructures) model and its appearance within a generative probabilistic Bayesian
framework. The proposed segmentation method was applied to a large database of
987 CT images and allowed the statistical characterization of the cochlear anatom-
ical variability along with the quantification of the bilateral symmetry.

This work paves the way to novel clinical applications such as improved diag-
nosis by identifying pathological cochlear shapes; preoperative optimal electrode
design and insertion axis planning; postoperative electrode position estimation and
implantation evaluation; and cochlear implantation simulation.

Keywords: cochlea, segmentation, shape model, shape variability
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