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In this introductory chapter, the concept of DP is defined in the context of DSP system design. DP a ratio between the quality of a system -in terms of Non-Functional Properties (NFPs) -and the efforts spent to build the system, expressed as Non-Recurring Engineering (NRE) costs. This definition allows for evaluations and comparisons of the DPs from several methods.

My work over the last 7 years is then overviewed under the perspective of DP reduction for DSP embedded systems. DP improvements are finally argued to be necessary in the long run to follow the upward trend of embedded system exposed complexity.

Design Productivity

The concept of DP is often evoked in literature but we only recently proposed a definition 1 . Design Productivity (DP) relates to a compromise between the 1 Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, and François Berry. Design productivity of a high level synthesis compiler versus HDL. In
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Abstract

The complexity of systems is currently growing faster than the productivity of system designers and programmers. This phenomenon is called Design Productivity Gap and results in inflating design costs. This Habilitation à Diriger des Recherches (HDR) report present models, methods and tool for improving the Design Productivity (DP) of embedded Digital Signal Processing (DSP) systems and reducing this Design Productivity Gap. The notion of Design Productivity (DP) is commonly used without defining it. This report starts by precisely defining DP before presenting different methods to improve and evaluate it.

In a first part, methods based on Models of Computation (MoCs) are explored. They constitute our past and present work on the subject. Dataflow MoCs are used to study application properties (liveness, schedulability, parallelism, etc.) at a high level of abstraction, often before implementation details are known. We have over the last seven years explored how dataflow MoCs can influence the performance and design efforts of modern multicore Digital Signal Processing (DSP) systems.

In the second part of this report, the focus is shifted on the notion of Model of Architecture (MoA) we recently introduced. Parallel and heterogeneous platforms are becoming ever more complex. MoAs have the potential to counteract the DP reduction caused by this rising complexity and constitute the main subject I intend to continue studying in the next years.

MoAs, and in general Model-Based Design, can have a great impact on future design methods. Together with the concepts of Cyber-Physical Systems (CPS), Approximate Computing and Rapid Prototyping, they represent new opportunities for reducing the Design Productivity Gap of future DSP systems. efforts spent to build a system and the quality of the system resulting from these design efforts. A generic representation of system DP is proposed in Figure 1.1. DP may be augmented by two factors:

• when design effort is reduced. This corresponds to augmenting design efficiency,

• when, for a fixed effort, implementation quality is increased.

Design effort can be measured by Non-Recurring Engineering (NRE) cost metrics such as design time, test and validation time, the number of lines of code to write, the NRE monetary expenses, etc. Implementation quality can be measured by Non-Functional Property (NFP) costs such as the energy consumption of the system, its latency, throughput, production cost, silicon area, etc. A DSP system can be considered functional when it produces, for a given input data stream, the corresponding correct output data stream. NFPs correspond to all the properties, except functional behavior, that may participate to make a system conform to its specification. For a given design, DP can be characterized by the area under the radar chart curve of Figure 1.1. The smaller this area is, the more DP the design process offers. The NRE and NFP cost metrics chosen to appear in the chart strongly impact how the Design Productivity is measured. They should be chosen according to the most important design constraints and the most important features of the built system. As a consequence, a unique scalar value can not alone quantify DP. However, if two design methods are compared on the same use case, in the same conditions and with the same NRE and NFP metrics, a fair DP ratio can be measured, provided that the conditions for producing this ratio are explained. A fair DP comparison will be demonstrated in Chapter 4.

DP fair assessment is a promising tool to promote new system design practices. We recently prototyped such a system DP fair assessment [1] to demonstrate its feasibility. Platform technologies and architectures currently evolve at a tremendous pace but design practices clearly evolve at a more leisurely pace. Fair DP studies have the potential to boost design practices and foster new tools, languages and methods.

The next section illustrates my research activities under the prism of DP augmentation. The research subjects we have tackled over these years are diverse. They however have in common a long term objective of DP enhancement.

Research Activities on Design Productivity

In the context of the 3 PhD thesis of Karol Desnos (2011Desnos ( -2013)), Julien [START_REF] Heulot | An Experimental Toolchain Based on High-Level Dataflow Models of Computation For Heterogeneous MPSoC[END_REF]Heulot ( -2014) ) and Erwan Nogues (2013Nogues ( -2015)), we have studied different aspects of DP, with a particular focus on application modeling with dataflow MoCs. Playing with a DSP application representation to enhance its performance and portability is possible using dataflow MoCs that represent the high-level aspects (e.g. parallelism, exchanged data, triggering events, etc.) of an application while hiding its detailed implementation. We have tackled the subjects of representing complex systems with predictable models, automating memory allocation, automating energy reduction and adapting the execution of a multicore system to hardware and software states. Alongside this work on design methods, we have built several DSP designs to test and demonstrate the methods. This MoC-based design approach is described in Chapters 2 and 3 and illustrated in Figure 1.3 that represents our main past and current research subjects and the NFPs and NREs they address. In the figure, latency corresponds to the real-time response time of the system, energy is the energy consumption due to processing and memory is the memory footprint of the application. New architecture porting time corresponds to the design time necessary to port and application to a new architecture.

Our focus is currently shifting, motivated by the continuous augmentation of the number of cores in systems and their rising heterogeneity. In particular, the complexity of embedded processors is ever more exposed. An exposed architecture is a set of hardware features that a designer must know to exploit the potential performance of a platform. We oppose to exposed architectures the hidden architectures that are hardware-or software-managed and can be ignored by the designer while still getting acceptable performance. Our focus is now set on a new notion we recently proposed 2 : Models of Architecture 2 Maxime Pelcat, Karol Desnos, Luca Maggiani, Yanzhou Liu, Julien Heulot, Jean-François Nezan, and Shuvra S Bhattacharyya. Models of architecture: Reproducible efficiency evaluation for signal processing systems. In Proceedings of the SiPS Workshop. IEEE, 2016 (MoAs).

Equivalently to MoCs on the application side, Models of Architecture (MoAs) can be used on the architectural side to extract the fundamental elements affecting efficiency. An MoA is a model abstracting away details of a hardware platform but producing, when combined with an application model, a reproducible evaluation of a system's Non-Functional Property (NFP). The notion of MoA will be defined in Chapter 5. Related works and an example use of an MoA are respectively presented in Chapters 6 and 7.

New ideas are currently emerging into our research: Cyber-Physical Systems (CPS), adaptable hardware, approximate computing, and hardware/software High-Level Synthesis (HLS). All of them can benefit from the concept of MoAs. These starting research directions will be presented in Chapter 8, together with perspectives.

Why Addressing Embedded Systems' DP?

In computer science, system performance is often used as a synonym for realtime performance, i.e. adequate processing speed. However, most DSP systems must, to fit their market, meet at the same time several NFPs, including high performance, low cost, and low power consumption.

Observing the available processing systems, three categories can be distinguished, based on their power consumption, as displayed in Figure 1.4. Embedded systems are often battery powered and characterized by a processing power dissipation below 20W. Between 20W and 20kW are either conventional processing, including personal computers, and dedicated systems such as cellular base stations or large medical devices. Over 20kW and below 20MW are High Performance Computing (HPC) systems, 20MW being a common upper bound of processing power consumption for future exascale facilities. One data center facility can require even more than 20MW (up to around 200MW) but a data center is constantly shared between millions of independent applications and thus cannot be considered as one processing system. A great variety of processors is available for the embedded processing domain and embedded processors have a great influence on all domains of processing as a consequence of their high energy efficiency. For instance, the influence of embedded systems on HPC is visible in the Mont-Blanc European projects [3] that design ARM-based HPC platforms. Moreover, mobile devices, built around embedded processors, have become the main driver of processing innovation and future systems, either in the Internet of Things (IoT) or in the CPS domain, are predicted to continue this trend.

The energy efficiency of embedded processors comes at the price of very complex design and programming procedures due to considerable exposed complexities. As an example, porting complex applications to an FPGA or a many-core processor can easily take several tens or hundreds of men-months to exploit an acceptable share of platform performances and a large set of hardware skills is expected from the design teams. The 2011 ITRS report warns that "design implementation productivity must be improved to the same degree as design complexity is scaled" for design costs to remain sustainable [4].

The examples of processors studied in this document have a limited number of cores: for example the Exynos 5410 and 5422 processors, each composed of 4 energy-efficient ARM Cortex-A7 cores and 4 high-performance ARM Cortex-A15 cores, and the Texas Instruments TMS320C6678 processor composed of 8 c66x DSP cores interconnected by a Network-on-Chip (NoC) with access to an internal shared memory. However, both these processors already require hardware knowledge to properly program them. For instance, communicating between cores through the shared memory of the TMS320C6678 processor necessitates manual data cache coherency management, taking account of the cache line size of 128Bytes to avoid invalidating or writing back the wrong data in memory.

This kind of programming is difficult to maintain for the currently released many-core processors. The upward trend currently followed by platforms' exposed complexity is likely to continue in the next years and the number of cores in mobile systems is forecast to grow at least until the end of the 2020s [5]. In this context, one major challenge of electronic system design is the growing Design Productivity Gap referring to a faster increase in the complexity of systems than in the productivity of system designers. As a consequence, Design Productivity (DP) is at the heart of system costs and should be carefully addressed in future research, especially for the cost and performance-critical DSP applications exploiting embedded processors.

This report is organized into two Parts. Part A covers our previous work on augmenting and measuring the DP of DSP embedded systems using dataflow MoCs while part B proposes the new concept of MoAs to further improve DP in the next years.

In Part A, Chapter 2 presents our work on augmenting the DP of embedded processing systems by raising the design efficiency while Chapter 3 focuses on the improvement of the implementation quality. Chapter 4 overviews the use cases leveraged on to assess our models and methods and shows on a High-Level Synthesis (HLS) example how DP can be measured in practice. In Part B, Chapters 5, 6 and 7 respectively concentrate on the definition, state-ofthe-art and applicability of Models of Architecture (MoAs) as a new direction to explore. Finally, Chapter 8 presents some research perspectives I intend to follow in the next years.
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Chapter Abstract

This chapter highlights our contributions on Design Productivity (DP) with a particular focus on the design efficiency of DSP systems. These contributions are based on the PiMM dataflow metamodel we introduced in 2013. They aim at automating design phases and hiding parts of the system complexity.

The PiMM metamodel is first presented. PiMM can be used in conjunction with any dataflow MoC. When combining the PiMM metamodel together with the Synchronous Dataflow (SDF) MoC, a hierachical, predictible, compositional and parameterized model of computation is obtained called PiSDF. The benefits offered by the PiSDF dataflow MoC on design efficiency come from the portable nature of a PiSDF algorithm representation. Indeed, PiSDF, inheriting properties from the formerly existing parameterized dataflow and IBSDF models, represents both the parallelism of the application, and the data communicated between computational actors, while supporting dynamic application reconfigurability.

Then, a scheduling method called JIT-MS is introduced. The objective of Just-In-Time Multicore Scheduling (JIT-MS) is to find a balance between a static scheduling that has no runtime overhead but does not take into account the application and architecture modifications, and dynamic scheduling that costs time and resources to take decisions. JIT-MS exploits the information of a PiSDF application representation to adapt a dynamic application execution to potentially dynamic platform resources. JIT-MS maintains a graph of the current application state and optimizes the application execution as soon as its parameters are resolved. It splits the scheduling of a PiSDF dataflow graph into steps to identify locally static regions. It also provides efficient assignment and ordering of actors into Processing Elements (PEs), leveraging on dataflow information.

When compared to the current programming methods for parallel systems based on manual parallelization and imperative languages such as C and extension such as OpenMP or OpenCL, PiMM and JIT-MS aim to foster a shift in the programming paradigm of DSP embedded systems from state-machinebased languages to parallelism-aware dataflow representations.

Building the PiMM Metamodel to improve Design Efficiency

Currently available high performance DSP platforms all have multiple cores. They sometimes also bring together programmable cores and programmable hardware. The procedure to design systems for these platforms is complex and specific to each architecture. Our work on design efficiency consists of designing models, methods and tools to decouple the application model from the architecture model. On the application side, the parameters of applications (e.g. the size of a processed image, the bandwidth of a telecommunication algorithm" the size of a cryptographic key to generate, etc.) impact their parallelism and the efficiency of their execution. If this impact is extensive, a runtime management of the system is necessary to migrate processing tasks, manage data movements and handle external event. If on the contrary the impact of parameters on concurrency is limited, it is desirable to take as many code and memory locality decisions at compile time, avoiding runtime management overheads.

A common method to design a DSP system today is to first build a versatile simulation model of the application algorithms using Matlab, Scilab or Python. Then, this model is used as a golden reference to separately build the hardware and software subparts of the system and then verify the functional properties of the system. The hardware is written in VHDL or Verilog to be ported for instance on an Field-Programmable Gate Array (FPGA) or to be implemented as an ASIC IP. The software is written is imperative code, usually in C code, and must be adapted to the number of of available cores, their performance, their communication facilities, their memory, and the interfaces they use to communicate with the their environment.

There are several ways to reduce the efforts necessary to build a system in this context, and thus increase its design efficiency:

• The design time can be reduced, corresponding to the time needed to represent the application in a language or model serving as an input for the compilation/synthesis process. This reduction can come from a more user friendly language, a Domain specific language (DSL) making language semantics fitting closely the applicative needs and automating some repetitive procedures, an Integrated Development Environment (IDE) with advanced language semantics analysis, etc. Another possibility is for the golden reference code to be made executable for the designer to write application functionalities only once and infer the total system.

• The test time can be reduced, for instance by setting correct-by-design constructs in the input language or automating the construction of test benches.

• The porting time to another platform can be shortened. A processor is currently commercialized only for a few years before being replaced by a new one, often with a very different architecture. Porting applications between architectures of different types is currently very time consuming.

During the last years and particularly as part of the PhD thesis of Karol Desnos and Julien Heulot, we have developed a new dataflow metamodel named Parameterized and Interfaced Dataflow Meta-Model (PiMM) and combined it with the SDF MoC to form a hierachical, predictible and parameterized model named Parameterized and Interfaced Synchronous Dataflow (PiSDF). We have also built the compilation and runtime tools PREESM 1 to generate multicore software from PiSDF. In a partnership with the Polytechnic University of Madrid (UPM), we are currently extending PiSDF to hardware design.

Our work on dataflow compilation has focused on enhancing the predictability of algorithm modeling because a predictable model is compulsory when a DSP processing algorithm is to be mapped onto a multicore system with a degree of guaranteed efficiency. In particular, the added value of an embedded system lies in the possibility to ensure properties such as real-time and energy consumption. The PiMM metamodel, published in IC-SAMOS 2013 3 3 K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi. PiMM: Parameterized and interfaced dataflow metamodel for MPSoCs runtime reconfiguration. In SAMOS XIII, 2013 complements previous work on Interface-Based SDF (IBSDF) from Jonathan Piat [9]. It favors the design of highly-efficient heterogeneous multicore systems, specifying algorithms with customizable trade-offs among predictability and exploitation of both static and adaptive task, data and pipeline parallelism.

Next sections discuss a selection of our contributions on PiSDF and JIT-MS.

Dataflow Compilation:

The PiMM Meta-Model and PiSDF MoC

State of the Art of Dataflow MoCs

Dataflow MoCs can be used to specify a wide range of DSP applications such as video decoding [10], telecommunication 4 , and computer vision [12] applications. The popularity of dataflow MoCs is due to their great analysability and their natural expressivity of the parallelism of a DSP application which make them particularly suitable to exploit the parallelism offered by heterogeneous Multiprocessor Systems-on-Chips (MPSoCs). The increasing complexity of applications leads to the continuing introduction of new dataflow MoCs, and the extension of previously developed MoCs for different types of modeling contexts. Dataflow MoCs are differentiated by their capacity to either describe dynamic application behaviors (expressive models) or to feed a behaviour prediction process efficiently (predictible models).

Representing an application with a Dataflow Process Network (DPN) [13] consists of dividing this application into persistent processing entities, named actors, connected by First In, First Out data queues (FIFOs). An actor performs processing (it "fires") when its incoming FIFOs contain enough data tokens. The number of data tokens consumed and produced by an actor for each firing is given by a set of firing rules [14]. Firing rules can be static or they can depend on data, as in the CAPH language, or on parameters, as in the Parameterized Synchronous Dataflow (PSDF) MoC [15].

Static Dataflow MoCs Synchronous Dataflow (SDF) [16] is a static DPN MoC. Production and consumption token rates set by firing rules are fixed scalars in an SDF graph. A static analysis of an SDF graph ensures consistency and schedulability properties that imply deadlock-free execution and bounded FIFO memory needs.

An SDF graph G = (A, F) (Figure 2.2) contains a set of actors A that are interconnected by a set of FIFOs F. An actor a ∈ A comprises a set of data ports (P in data , P out data ) where P in data and P out data respectively refer to a set of data input and output ports, used as anchors for FIFO connections. Functions src : F → P out data and snk : F → P in data associate source and sink ports to a given FIFO and a data rate is specified for each port by the function rate : P in data ∪ P out data → N corresponding to the fixed firing rules of an SDF actor. A delay d : F → N is set for each FIFO, corresponding to a number of tokens initially present in the FIFO. If an SDF graph is consistent and schedulable, a fixed sequence of actor firings can be repeated indefinitely to execute the graph, and there is a well defined concept of a minimal sequence for achieving an indefinite execution with bounded memory. Such a minimal sequence is called graph iteration and the number of firings of each actor in this sequence is given by the graph Repetition Vector (RV).

Graph consistency means that no FIFO accumulates tokens indefinitely when the graph is executed (preventing FIFO overflow). Consistency can be proved by verifying that the graph topology matrix has a non-zero vector in its null space [16]. When such a vector exists, it gives the RV for the graph. The topology of an SDF graph characterizes actor interconnections as well as token production and consumption rates on each FIFO. A graph is schedulable if and only if it is consistent and has enough initial tokens to execute the first graph iteration (preventing deadlocks by FIFO underflow).

Research on dataflow modeling leads to the continuing introduction of new dataflow models. Static extensions of the SDF model such as the Cyclo-Static Dataflow (CSDF) [17], the multidimensional SDF [18], the IBSDF [9], and the Affine Dataflow (ADF) [19] have been proposed to enhance its expressiveness and conciseness while preserving its predictability.

The Compositional Temporal Analysis (CTA) model is a non-executable timed abstraction of the SDF MoC that can be used to analyze efficiently the schedulability and the temporal properties of applications [20]. The IBSDF and the CTA models both enforce the compositionality of applications. A model is compositional if the properties (schedulability, deadlock freeness, ...) of an application graph composed of several sub-graphs are independent from the internal specifications of these sub-graphs [21].

Interface-Based Synchronous Dataflow MoC Interface-Based SDF (IBSDF) [9] is a hierarchical extension of the SDF model interpreting hierarchy levels as code closures. IBSDF fosters subgraph composition, making subgraph executions equivalent to imperative language function calls. IBSDF has proved to be an efficient way to model dataflow applications [11]. IBSDF interfaces are inherited by the PiMM proposed meta-model (Section 2.3.2).

In addition to the SDF semantics, IBSDF adds interface elements to insulate levels of hierarchy in terms of schedulability analysis. An IBSDF graph G = (A, F, I) contains a set of interfaces I = (I in data , I out data ) (Figure 2.3). A data input interface i in data ∈ I in data in a subgraph is a vertex transmitting to the subgraph the tokens received by its corresponding data input port. If more tokens are consumed on a data input interface than the number of tokens received on the corresponding data input port, the data input interface behaves as a circular buffer, producing the same tokens several times.

A data output interface i out data ∈ I out data in a subgraph is a vertex transmitting tokens received from the subgraph to its corresponding data output port. If a data output interface receives too many tokens, it will behave like a circular buffer and output only the last pushed tokens. [9] details the behavior of IBSDF data input and output interfaces as well as the IBSDF properties in terms of compositionality and schedulability checking. Through PiMM, interface-based hierarchy can be applied to other dataflow models than SDF with less restrictive firing rules.

Parameterized Dataflow MoCs Parameterized dataflow is a meta-modeling framework introduced in [15] that is applicable to all dataflow MoCs that present graph iterations. When this meta-model is applied, it extends the targeted MoC semantics by adding dynamically reconfigurable hierarchical actors. A reconfiguration occurs when values are dynamically assigned to the parameters of a reconfigurable actor, causing changes in the actor computation and in the production and consumption rates of its data ports. As presented in [22], reconfigurations can only occur at certain points, namely quiescent points, during the execution of a graph in order to ensure the runtime integrity of the application.

An objective of PiMM is to further improve parameterization compared to parameterized dataflow by introducing an explicit parameter dependency tree and by enhancing graph compositionality. Indeed, in a PSDF graph, ports are simple connectors between data FIFOs that do not insulate levels of hierarchy (Section 2.3.1). Other parameterized dataflow MoCs were previously developed such as the Scenario-Aware Dataflow (SADF) [10], an analysis-oriented model based on a probabilistic description of the dynamic firing rules of actors; or the Compaan generated KPN (CPN) [12], a parameterized extension of the Kahn Process Network (KPN) MoC. In these models, the complexity of the parameterization mechanism is handled by actors that can reconfigure the firing rules of other actors (or their own) via "control channels". This reconfiguration mechanism differs from that of PiMM in that the latter relies on the explicit definition of parameters and their dependencies which allows for a precise specification of what is influenced by a parameter, even in multiple levels of hierarchy, leading to an enhanced predictability and quasi-static scheduling potential for the model.

Our Contribution on Parameterized and Interfaced Dataflow Meta-Modeling

Most of the following discussion is borrowed from our publication on PiMM [8]. PiMM can be used similarly to the parameterized dataflow to extend the semantics of all dataflow MoCs implementing the concept of graph iteration. PiMM adds both interface-based hierarchy and an explicit parameter dependency tree to the semantics of the extended MoC. In this section, we formally present PiMM through its application to the SDF MoC, composing the PiSDF model. The pictograms associated to the different elements of the PiSDF semantics are presented in Figures 2.4 and 2.5.

A PiSDF graph G = (A, F, I, Π, ∆) contains, in addition to the SDF actor set A and FIFO set F, a set of hierarchical interfaces I, a set of parameters Π, and a set of parameter dependencies ∆.

Parameterization semantics

A parameter π ∈ Π is a vertex of the graph associated to a parameter value v ∈ N that is used to configure elements of the graph. For a better analyzability of the model, a parameter can be restricted to take only values of a finite subset of N. A configuration of a graph is the assignation of parameter values to all parameters in Π.

An actor a ∈ A is now associated to a set of ports (P in data , P out data , P in cfg , P out cfg )

where P in cfg and P out cfg are a set of configuration input and output ports respectively. A configuration input port p in cfg ∈ P in cfg of an actor a ∈ A is an input port that depends on a parameter π ∈ Π and can influence the computation of a and the production/consumption rates on the dataflow ports of a. A configuration output port p out cfg ∈ P out cfg of an actor a ∈ A is an output port that can dynamically set the value of a parameter π ∈ Π of the graph (Section 2.3.2).

A parameter dependency δ ∈ ∆ is a directed edge of the graph that links a parameter π ∈ Π to a graph element influenced by this parameter. Formally a parameter dependency δ is associated to the two functions setter : ∆ → Π ∪ P out cfg and getter : ∆ → Π ∪ P in cfg ∪ F which respectively give the source and the target of δ . A parameter dependency set by a configuration output port p out cfg ∈ P out cfg of an actor a ∈ A can only be received by a parameter vertex of the graph that will dispatch the parameter value to other graph elements, building a parameter dependency tree. Dynamism in PiMM relies on parameters whose values can be used to influence one or several of the following properties: the computation of an actor, the production/consumption rates on the ports of an actor, the value of another parameter, and the delay of a FIFO (Section 2.3.1). In PiMM, if an actor has all its production/consumption rates set to 0, it will not be executed.

A parameter dependency tree T = (Π, ∆) is formed by the set of parameters Π and the set of parameter dependencies ∆. The parameter dependency tree T is similar to a set of combinational relations where the value of each parameter is resolved virtually instantly as a function of the parameters it depends on. This parameter dependency tree is in contrast to the precedence graph (A, F) where the firing of the actors is enabled by the data tokens flowing on the FIFOs.

πSDF hierarchy semantics

The hierarchy semantics used in PiSDF inherits from the interface-based dataflow introduced in [9] and presented in Section 2.3.1. In PiSDF, a hierarchical actor is associated to a unique PiSDF subgraph. The set of interfaces I of a subgraph is extended as follows: I = (I in data , I out data , I in cfg , I out cfg ) where I in cfg is a set of configuration input interfaces and I out cfg a set of configuration output interfaces. Configuration input and output interfaces of a hierarchical actor are respectively seen as a configuration input port p in cfg ∈ P in cfg and a configuration output port p out cfg ∈ P out cfg from the upper level of hierarchy (Section 2.3.2). From the subgraph perspective, a configuration input interface is seen as a locally static parameter whose value is left undefined.

A configuration output interface enables the transmission of a parameter value from the subgraph of a hierarchical actor to upper levels of hierarchy. In the subgraph, this parameter value is provided by a FIFO linked to a data output port p out data of an actor that produces data tokens with values v ∈ N. In cases where several values are produced during an iteration of the subgraph, the configuration output interface behaves like a data output interface of size 1 and only the last value written will be produced on the corresponding configuration output port of the enclosing hierarchical actor (Section 2.3.1).

Figure 2.4 presents an example of a static PiSDF description. Compared to Figure 2.3, it introduces parameters and parameter dependencies that compose a PiMM parameter dependency tree. The modeled example illustrates the modeling of a test bench for an image processing algorithm. In the example, one token corresponds to a single pixel in an image. Images are read, pixel by pixel, by actor A and stored, pixel by pixel, by actor C. A whole image is processed by one firing of actor B. A feedback edge with a delay stores the previous image for comparison with the current one. Actor B is refined by an actor B 1 processing one Nth of the image. In Figure 2.4, the size of the image picsize and the parameter N are locally static. πSDF Reconfiguration As introduced in [22], the frequency with which the value of a parameter is changed influences the predictability of the application. A constant value will result in a high predictability while a value which changes at each iteration of a graph will cause many reconfigurations, thus lowering the predictability. There are two types of parameters π ∈ Π in PiSDF: configurable parameters and locally static parameters. Both restrict how often the value of the parameter can change. Regardless of the type, a parameter must have a constant value during an iteration of the graph to which it belongs.

Configurable parameters

A configurable parameter π cfg ∈ Π is a parameter whose value is dynamically set once at the beginning of each iteration of the graph to which it belongs. Configurable parameters can influence all elements of their subgraph except the production/consumption rates on the data interfaces I in data and I out data . As explained in [15], this restriction is essential to ensure that, as in IBSDF, a parent graph has a consistent view of its actors throughout an iteration, even if the topology may change between iterations.

The value of a configurable parameter can either be set through a parameter dependency coming from an other configurable parameter or through a parameter dependency coming from a configuration output port p out cfg of a configuration actor (Section 2.3.2). In Figure 2.5, N is a configurable parameter.

Locally static parameters

A locally static parameter π stat ∈ Π of a graph has a value that is set before the beginning of the graph execution and which remains constant over one or several iterations of this graph. In addition to the properties listed in Section 2.3.2, a locally static parameter belonging to a subgraph can also be used to influence the production and consumption rates on the I in data and I out data interfaces of its hierarchical actor.

The value of a locally static parameter can be statically set at compile time, or it can be dynamically set by configurable parameters of upper levels of hierarchy via parameter dependencies. For example, a subgraph sees a configuration input interface as a locally static parameter but this interface can take different values at runtime if its corresponding configuration input port is connected to a configurable parameter. In Figure 2.5, picsize is a locally static parameter both in main graph and in subgraph B.

A partial configuration state of a graph is reached when the parameter values of all its locally static parameters are set. Hierarchy traversal of a hierarchical actor is possible only when the corresponding subgraph has reached a partial configuration state.

A complete configuration state of a graph is reached when the values of all its parameters (locally static and configurable) are set. If a graph does not contain any configurable parameter, its partial and complete configurations are equivalent. Only when a graph is completely configured is it possible to check its consistency, compute a schedule, and execute it.

Configuration Actors

A firing of an actor a with a configuration output port p out cfg produces a parameter value that can be used via a parameter dependency δ to dynamically set a configurable parameter π (Section 2.3.2), provoking a reconfiguration of the graph elements depending on π. In PiMM, such an actor is called a configuration actor. The execution of a configuration actor is the cause of a reconfiguration and must consequently happen only at quiescent points during the graph execution, as explained in [22]. To ensure the correct behavior of PiSDF graphs, a configuration actor a cfg ∈ A of a subgraph G is subject to the following restrictions: R1. a cfg must be fired exactly once per iteration of G before the firing of any non-configuration actor. Indeed, G reaches a complete configuration only when all its configuration actors have fired.

R2. a cfg must consume data tokens only from hierarchical interfaces of G and must consume all available tokens during its unique firing.

R3. The production/consumption rates of a a cfg can only depend on locally static parameters of G.

R4. Data tokens produced by a cfg are seen as a data input interface by other actors of G. (i.e. they are made available using a ring-buffer and can be consumed more than once).

These restrictions naturally enforce the local synchrony conditions of parameterized dataflow defined in [15] and reminded in Section 2.3.2.

The firing of all configuration actors of a graph is needed to obtain a complete configuration of this graph. Consequently, configuration actors will always be executed before other (non-configuration) actors of the graph to which they belong. Configuration actors are the only actors whose firing is not datadriven but driven by hierarchy traversal.

The sets of configuration and non-configuration actors of a graph are respectively equivalent to the subinit φ s and the body φ b subgraphs of parameterized dataflow [15]. Nevertheless, configuration actors provide more flexibility than subinit graphs as they can produce data tokens that will be consumed by nonconfiguration actors of their graph. The init subgraph φ i has no equivalent in PiMM as its responsibility, namely the configuration of the production/consumption rates on the actor interfaces, is performed by configuration input interfaces and parameter dependencies. In Figure 2.5, the parameter N is a configurable parameter of subgraph B, while the parameter picsize is a locally static parameter. The number of firings of actor B 1 for each firing of actor B is dynamically configured by the configuration actor setN. In this example, the dynamic reconfiguration dynamically adapts the number N of firings of B 1 to the number of cores available to perform the computation of B. Indeed, since B 1 has no self-loop FIFO, the N firings of B 1 can be executed concurrently. Model Analysis and Behavior The PiSDF MoC presented in Section 2.3.2 is dedicated to the specification of applications with both dynamic and static parameterizations. This dual degree of dynamism implies a two-step analysis of the behavior of applications described in PiSDF: a compile time analysis and a runtime analysis. In each step a set of properties of the application can be checked, such as the consistency, the deadlock freeness, and the boundedness. Other operations can be performed during one or both steps of the analysis such as the computation of a schedule or the application of graph transformation to enhance the performance of the application.

Compile Time Schedulability Analysis PiSDF inherits its schedulability properties both from the interface-based dataflow modeling and the parameterized dataflow modeling.

In interface-based dataflow modeling, as proved in [9], a (sub)graph is schedulable if its precedence SDF graph (A, F) (excluding interfaces) is consistent and deadlock-free. When a PiSDF graph reaches a complete configuration, it becomes equivalent to an IBSDF graph. Given a complete configuration, the schedulability of a PiSDF graph can thus be checked using the same conditions as in interface-based dataflow.

In parameterized dataflow, the schedulability of a graph can be guaranteed at compile time for certain applications by checking their local synchrony [15]. A PSDF (sub)graph is locally synchronous if it is schedulable for all reachable configurations and if all its hierarchical children are locally synchronous. As presented in [15], a PSDF hierarchical actor composed of three subgraphs φ i , φ s and φ b must satisfy the 5 following conditions in order to be locally synchronous:

1. φ i , φ s and φ b must be locally synchronous, i.e. they must be schedulable for all reachable configurations.

2. Each invocation of φ i must give a unique value to parameter set by this subgraph.

3. Each invocation of φ s must give a unique value to parameter set by this subgraph.

4.

Consumption rates of φ s on interfaces of the hierarchical actor cannot depend on parameters set by φ s .

5. Production/consumption rates of φ b on interfaces of the hierarchical actor cannot depend on parameters set by φ s .

The last four of these conditions are naturally enforced by the PiSDF semantics presented in Section 2.3.2. However, the schedulability condition number 1., which states that all subgraphs must be schedulable for all reachable configurations, cannot always be checked at compile time. Indeed, since values of the parameters are freely chosen by the application developer, non-schedulable graphs can be described. It is the responsibility of the developer to make sure that an application will always satisfy the schedulability condition; this responsibility is similar to that of writing non-infinite loops in imperative languages.

PiSDF inherits from PSDF the possibility to derive quasi-static schedules at compile time for some applications. A quasi-static schedule is a schedule that statically defines part of the scheduling decisions but also contains parameterized parts that will be resolved at runtime.

Comparison or PiMM with other MoCs

Table 2.1 presents a comparison of dataflow MoCs based on a set of common MoC features. The compared MoCs include the static SDF [16], ADF [19], and IBSDF [9]. Also compared are the dynamic PSDF [15], SADF [10], DPN [13], and PiSDF.

In Table 2.1, a black dot indicates that the feature is implemented by a MoC, an absence of dot means that the feature is not implemented, and an empty dot indicates that the feature may be available for some applications described with this MoC. It is important to note that the full semantics of the compared MoCs is considered here. Indeed, some features can be obtained by using only a restricted semantics of other MoCs. For example, all MoCs can be restricted to describe a SDF, thus benefiting from the static schedulability and the decidability but losing all reconfigurability. The features compared in Table 2.1 are the following: Hierarchy: composability can be achieved by associating a subgraph to an actor. Compositional: graph properties are independent from the internal specifications of the subgraphs that compose it [21]. Reconfigurable: actors firing rules can be reconfigured dynamically. Configuration dependency: the MoC semantics includes an element dedicated to the transmission of configuration parameters. Statically schedulable: a fully static schedule can be derived at compile time [16]. Decidability: the schedulability is provable at compile time. Variable rates: production/consumption rates are not a fixed scalar. Non-determinism: output of an algorithm does not solely depends on inputs, but also on external factors (e.g. time, randomness).

Feature S D F A D F I B S D F P S D F P i S D F S A D F D P N Hierarchy • • • Compositional • • Reconfigurable • • • • Configuration dependency • • Statically schedulable • • • Decidability • • • • • • Variable rates • • • • • Non-determinism • •
In the next section on system adaptivity, we put the focus on using the PiSDF model to efficiently use the resources of a system even in the case of highly variable application, and this without requiring additional design effort.

System Adaptivity

A system is qualified as adaptive when it can use variations on application loads to save resources and optimize Non-Functional Properties. Adaptivity also refers to the capacity to receive, at runtime, a new application, adapt to it and resume execution. We have started in the PhD thesis of El Mehdi Abdali a study of adaptive systems for hardware-defined applications using the Dynamic and Partial Reconfiguration (DPR) capabilities of modern FPGAs.

In the former PhD thesis of Julien Heulot, we have targeted software-defined systems over heterogeneous multi-core architectures and a dynamic scheduling method has been developed for the PiSDF MoC. The following discussion has been published in the Proceedings of the GlobalSIP 2014 conference 5 . The proposed scheduling method, named JIT-MS, aims to efficiently schedule PiSDF graphs on multicore architectures. This method exploits features of PiSDF to find locally static regions that exhibit predictable communications.

As evoked in the introduction of this report, embedded processors contain an increasingly number of cores [24,25,26]. This trend is mainly due to limitations in the processing power of individual PEs as a result of power consumption considerations. Concurrently, signal processing applications are becoming increasingly dynamic in terms of hardware resource requirements. For example, the Scalable High Efficiency Video Coding (SHVC) standard provides a mechanism to temporarily reduce the resolution of a transmitted video in order to match the instantaneous bandwidth of a network [27].

One of the main challenges of the design of multicore signal processing systems is to distribute computational tasks efficiently onto the available PEs while taking into account dynamic application and architecture changes. The process of assigning, ordering and timing actors on PEs in this context is referred to as multicore scheduling. Inefficient use of the PEs affects latency and energy consumption, making multicore scheduling an important challenge [28]. JIT-MS addresses this challenge. JIT-MS is a flexible scheduling method that determines scheduling decisions at run-time to optimize the mapping of an application onto multicore processing resources. In relation to the scheduling taxonomy defined by Lee and Ha [29], JIT-MS is a fully dynamic scheduling strategy. In the context of the taxonomy used in Singh's survey [30], our method can be classified as "On-the-fly" mapping, targeting heterogeneous platforms with a centralized resource management strategy.

JIT-MS exploits the fact that between two quiescent points [22], the application can be considered static. Decisions are taken Just-In-Time, immediately after the quiescent points are reached, unveiling new application parallelism.

Various competing frameworks based on OpenMP [31] and OpenCL [32] language extensions are currently proposed to address the multicore schedul-ing challenge. However, these extensions are based on imperative languages (e.g., C, C++, Fortran) that do not provide mechanisms to model specific signal flow graph topologies. In the experimental results on this section we demonstrate that JIT-MS is capable of challenging, on an 8-core DSP processor, an OpenMP implementation provided by Texas Instruments. Latency improvements of up to 26% are observed, obtained because advanced information is known by the runtime manager on the application. The next sections detail JIT-MS.

Context

Runtime Architecture JIT-MS is applicable to heterogeneous platforms. On such platforms, a locally optimal decision to fire an actor (e.g., based on the availability of its input data) can be inefficient when considering the system globally. In order to take effective decisions globally, a Master/Slave execution scheme is chosen for the system. The JIT-MS method relies on multiple software or hardware Processing Elements (PEs) that are slave components responsible for processing actors (Figure 2.6). PEs can be of multiple types, such as General Purpose Processors (GPPs), DSPs, or hardware accelerators. The master processor of the JIT-MS system is called Scheduling Element (SE). This is the only component that has access to the general algorithm topology. Jobs are used to communicate between the SE and PEs. Each PE has a job queue from which it pops jobs out prior to their execution. Parameters influence dataflow graph topology or execution timing of actors. When a parameter value is set by a configuration actor, its value is sent to the SE via a parameter queue. Finally, Data FIFOs are used by the PEs to exchange data tokens. A data FIFO can be implemented either over a shared memory or over network-on-chip communication.

Scheduling

Benchmark We illustrate the JIT-MS scheduling algorithm in this report by the scheduling of a benchmark application. This benchmark is an extension of the MP-sched benchmark [33]. The MP-sched benchmark can be viewed as a two-dimensional grid involving N channels, where each branch consists of M cascaded Finite Impulse Response (FIR) filters of NbS samples. We extend the MP-sched benchmark by allowing the M parameter to vary across different branches, as illustrated in Figure 2.7. We refer to this extended version of the MP-sched benchmark as heterogeneous-chain-length MP-sched (HCLMsched). Notations To describe JIT-MS, the following notation is used. CA represents the set of configuration actors of the given PiSDF graphand CA represents all actors in the given PiSDF graph that are not configuration actors.

Just-In-Time Multicore Scheduling (JIT-MS)

Multicore Scheduling of Static Subgraphs JIT-MS involves decomposing the scheduling of a given PiSDF graph into the scheduling of a sequence X 1 , X 2 , . . . of SDF graphs. Different executions (with different sets of input data) can result in different sequences of SDF graphs for the same PiSDF graph. For a given execution, we refer to each X i as a step of the JIT-MS scheduling process. At each step, resolved parameters trigger the transformation of the PiSDF graph into an SDF graph, which can be scheduled by any of the numerous existing SDF scheduling heuristics that are relevant for multicore architectures [34]. For example, [35] presents a set of techniques that can be applied upon transforming the resulting SDF graph into an single rate SDF (srSDF) graph. An srSDF graph is an SDF graph in which the production rate on each edge is equal to the consumption rate on that edge. A consistent SDF graph can be transformed into an equivalent srSDF graph for instance by applying techniques that were introduced by Lee and Messerschmitt [36].

The Just-In-Time Multicore Scheduling (JIT-MS) method is based on a static multicore scheduling method which is composed of the following sequence of phases:

1. Computing the Repetition Vector (RV) of the current graph (the graph that is presently being scheduled). The RV is a positive-integer vector and represents the number of firings of each actor in a minimal periodic scheduling iteration for the graph. We note however, that certain technical details of PiSDF require adaptations to the conventional repetitions vector computation process from [16].

2. Converting the SDF graph into an equivalent srSDF graph, where each actor is instantiated a number of times equal to its corresponding RV component.

3. Scheduling actors and communications from a derived acyclic srSDF graph onto the targeted heterogeneous platform. Any scheduling heuristic that is applicable to acyclic srSDFs graphs can be chosen here -e.g., the applied schedule can be a list scheduler, fast scheduler, flow-shop or genetic scheduler [30,37,35]. Upon completing the described scheduling process, the resulting schedule S is executed.

A complete JIT-MS schedule of a PiSDF hierarchical graph consists of several of these phases, repeated as many times as needed.

In a PiSDF graph, some data FIFOs behave as Round Buffers (RBs) -i.e., such FIFOs produce multiple copies of individual tokens as necessary to satisfy consumption demand. In particular, FIFOs at the interface of a hierarchical actor have RBs behavior to help ensure composability in hierarchical specifications. FIFOs connecting configuration actors to other actors also behave as RBs to ensure that configuration actors fire only once per subgraph. Application designers using the PiSDF model of computation need to take such RB behavior into account during the development process.

Configuration Actors and such RBs are excluded from the RV computation as they are forced to fire only once.

Multicore Scheduling of Full Graphs The JIT-MS method is based on the PiSDF runtime operational semantic. As shown in [8], the JIT-MS scheduler has to proceed in multiple steps, each one unveiling a new portion of srSDF graph for scheduling. In one step, configuration actors have to be fired first, they produce parameters needed to resolve the rest of the subgraph. When all parameters are solved at one hierarchy level, scheduling of other actors of this hierarchy level is made possible. The complete srSDF graph is only known when all configuration actors have been executed.

Once an srSDF graph has been generated, it can be analyzed to exploit the parallelism of the application (Section 2.4.2). The JIT-MS runtime schedules the actors and communications and fires their execution on the platform. Newly instantiated hierarchical actors are added to a global srSDF graph, called execution graph, and the same process can be used until the whole graph has been processed.

To keep track of actor's execution, each actor of the execution graph is tagged with a flag representing its execution state. An actor can be Run (R), Not Executable (N) or Executable (E). An actor is Executable only when all its parameters are resolved and when all its predecessors are Executable or Run. Applying JIT-MS to the Benchmark The execution graph shape at each step of the HCLM-sched benchmark can be seen in Figure 2.9. Figure 2.9.a corresponds to the execution graph state at the end of the first phase of the first iteration of the while loop (loop I.a). At this point, N is set to 2. Then Figure 2.9.b corresponds to execution graph state after the third phase of the first iteration (loop I.b). The hierarchical FIR_Chan actors are instanciated. Then, Figures 2.9.c and 2.9.d correspond to the execution, first of the internal configuration actors of FIR_Chan (SM), then of their actors with parameter M = {1, 2}.

Experimental Results

The main goal of JIT-MS is to parallelize dynamic applications. The following experimental results focus on the comparison between the JIT-MS approach and an OpenMP runtime system with similar objectives. Results are acquired by studying the latency of single and multiple iterations of the HCLM-sched benchmark on a Texas Instruments TMS320C6678 multicore DSP processor [24].

OpenMP is a framework designed for shared memory multiprocessing. It provides mechanisms for launching parallel teams of threads to execute an algorithm on a multicore architecture. OpenMP applications are designed with a succession of sequential code sections, executed by a master thread, and parallel code sections, distributed in a team of threads dispatched onto multiple cores [31]. The c6678 processor is composed of 8 c66x DSP cores interconnected by a NoC called TeraNet with access to an internal shared memory. To perform synchronization between cores, hardware queues provided by the Texas Instruments Multicore Navigator [38] have been used in this study.

Results on execution time are displayed in Figure 2.10.a. Experimental results of Figure 2.10 show that the OpenMP implementation latency curve displays a step shape when increasing N. With the JIT-MS implementation, the graph transformation and scheduling phases introduce an overhead but the execution efficiency over varying parameters is smoother. The overhead can be observed on the figure when N equals to 7 or 8 as the resulting scheduling is the same as OpenMP. The transformation to srSDF extracts more parallelism than OpenMP from the subdivision of channels into multiple FIRs. These choices make JIT-MS suitable for unbalanced applications. In the HCLM-sched benchmark with 9 channels, the overall latency is reduced of up to 26%. Figures 2.11 and 2.12 illustrate this effect by displaying the real Gantt chart of execution, based on measurements from the internal processor timer. Spider scheduling is shown to introduce an initial latency due to graph management (the red block on the left of Figure 2.12) but then efficiently interleaves the executed actors while OpenMP fails to mix iterations. 

Conclusions on Design Efficiency

PiMM can be applied to a dataflow MoC to increase its expressiveness, enable the specification of reconfigurable applications, and feed either a quasistatic schedule or the JIT-MS dynamic schedule. We have shown on the PiSDF MoC that while bringing dynamism and compositionality, the explicit parameter dependency tree and the interface-based hierarchy mechanism introduced by PiMM maintain strong predictability for the extended model and enforce the conciseness and readability of application descriptions.

JIT-MS aims to find a balance between a static scheduling that has no runtime overhead but does not take into account the application modifications, and a fully dynamic scheduling that costs time and resources. Additionally to the example benchmark presented in this report, the Just-In-Time Multicore Scheduling (JIT-MS) scheduling method applied to a PiSDF-modeled application has been shown to obtain good performance also on a stereo matching algorithm and on large Fast Fourier Transforms (FFTs) 6 . The Spider runtime implementing JIT-MS is currently extended to support manycore Kalray MPPA processors in context of the PhD thesis of Julien Hascoët. Its efficiency results motivate future work on model-based parallel system design where the advanced application knowledge offered by the dataflow MoC is complemented by architecture knowledge stored in an MoA.

Additionally to this work on parameterized dataflow, we have also explored how internal actor parallelism can influence dataflow execution 7 . In this work, 7 Zheng Zhou, William Plishker, Shuvra S Bhattacharyya, Karol Desnos, Maxime Pelcat, and Jean-Francois Nezan. Scheduling of parallelized synchronous dataflow actors for multicore signal processing. Journal of Signal Processing Systems, 2016 a type of parallel task scheduling problem called Parallel Actor Scheduling (PAS) has been defined. It combines intra-and inter-actor parallelism for platforms in which individual actors can be parallelized across multiple cores. We demonstrated that the PAS-targeted scheduling framework provides a useful range of trade-offs between synthesis time requirements and the quality of the derived solutions.

The 

Chapter Abstract

After the previous chapter looking into the reduction of design efforts, this chapter puts the focus on the Non-Functional Properties (NFPs) of DSP systems we aim to optimize. The latency (time between input and output) and throughput (acceptable input rate) real-time NFPs are historically the main optimized properties by compilers and tools and solutions exist in the literature to optimize and guarantee them. We have thus focused on the NFPs that are often the other main concerns of designers: the energy consumption and the memory footprint. Memory is often very limited in embedded systems compared to the memory required by modern DSP algorithms. As a consequence, complex hardware and software features are used to fit the application into the platforms. Based on the PiSDF MoC, we have studied pre-scheduling and post-scheduling automated memory allocations methods, and computed memory bounds for deciding early whether a platform can execute or not a given application. Prescheduling and post-scheduling memory allocations have been compared and memory bounds computed for deciding early whether a platform can execute or not a given application. Finally, aggressive memory optimizations have been obtained using additional information on the internal actor behavior regarding memory access types and order. A Domain specific language (DSL) has been created to capture this behavior and feed the memory optimization process. The resulting compilation process has been demonstrated to gain substantial memory when compared to state-of-the-art methods.

In terms of energy consumption, we have observed that modern multicore platforms with Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Management (DPM) capabilities present a non-trivial energy consumption behavior. Depending on the parallelism of the application, the latency constraints and the static and dynamic power consumption of the platform, different strategies should be adopted and neither the As-Slow-As-Possible (ASAP) nor the As-Fast-As-Possible (AFAP) actor execution strate-gies obtains the optimal energy consumption. These first results encourage us to explore further the use of dataflow information for driving complex MPSoC platforms.

Using Dataflow Application Representations to

Improve System Non-Functional Properties

Real-time processing is the main NFP a DSP system must respect. Ensuring real-time (in terms of either latency or throughput) is compulsory and the predictability of PiSDF is particularly useful for obtaining time guarantees. The State of the Art of real-time multicore scheduling of dataflow modeled applications is rich. As a consequence, we have mostly used methods from literature for mapping and scheduling actors to multiple cores and worked on extending these methods to balancing the loads over the available cores 1 .

The two NFPs we extensively studied in the past years from PiSDF described applications are memory consumption and energy consumption.

In terms of memory consumption, dataflow MoCs, including PiSDF, tend to favor parallelism to the detriment of memory consumption. Within the PhD thesis of Karol Desnos, this drawback has been eliminated and state-of-the-art memory allocation techniques defined.

In terms of energy consumption, battery powered systems represent a large share of embedded systems. Energy consumption is thus certainly the second most important NFP after real-time. The reduction of the computational energy consumption has been studied during the PhD thesis of Erwan Nogues and experimented on use case implementations of the MPEG High Efficiency Video Coding (HEVC) standard. New strategies of energy reduction have been designed, in particular from PiSDF application descriptions.

The next sections give some insights on these memory and energy studies.

Dataflow Memory Optimizations

Having a predictable model of an application such as PiSDF, the causality of the actors in the application is precisely known and this information can be employed to reuse memory between different parts of an application. Within the PhD thesis of Karol Desnos, we have covered several aspects of memory allocation on a multicore platform from a static dataflow description of an application 2 . 

Computing Upper and Lower Memory Bounds

We have computed upper and lower bounds for the amount of memory to be allocated to implement an application described with SDF 3 . The First In, First Out data queues (FIFOs) used to exchange data between SDF actors can either be allocated without reusing memory between them or different methods can be used to allocate them in overlapping memory locations. If no memory reuse is employed, the size of the memory footprint can be very high, due to the potentially large number of FIFOs employed to decouple actors' executions. A PiSDF application representation with static parameters being convertible to an SDF graph, this study is applicable to static PiSDF applications.

To compute the bounds, a graph representing FIFO exclusions is built from the original SDF graph. This graph is called Memory Exclusion Graph (MEG) and can be studied to characterize the application memory consumption. Different computation methods for the lower memory bound are proposed, ranging from the costly but exact interval coloring problem to the approximate MEG maximum-weight clique problem and a fast heuristic to approach it. These bounds are illustrated in As illustrated in Figure 3.5. A MEG clique is a totally connected subgraph in the MEG and represents an indivisible unit of memory. The maximum-weight clique is the indivisible unit with largest memory. It represents a lower bound for allocating the graph on a platform but does not mean that the actual allocation procedure will effectively manage to allocate this amount of memory. As a consequence, the maximum-weight clique memory lower bound is optimistic. However, if this bound is larger than the platform memory, a decision can already be taken to either change platform or redesign the algorithm because the algorithm tested representation is guaranteed not to fit on the platform.
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Allocating Memory for a Dataflow Application

We have tested different memory allocation policies to offer precise trade-offs between system adaptivity and necessary memory 4 . In this work, the dataflow 4 
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Desnos, Maxime Pelcat, Jean François Nezan, and Slaheddine Aridhi. Pre-and post-scheduling memory allocation strategies on MPSoCs.

In Proceedings of the ESLsyn conference, 2013 FIFOs are all considered allocated in a unique memory shared between the platform cores. This hypothesis is motivated by the architecture of the first processor used to test these methods: the Texas Instruments TMS320C6678 processor that contains 8 cores sharing 4MBytes of memory [24]. The allocation of dataflow FIFOs to precise memory addresses has been shown to be possible at different steps during the design process:

1. Pre-scheduling Memory Allocation signifies that memory locations are chosen before choosing where and in which order actor firings will be executed, 2. Post-scheduling Memory Allocation means that memory locations are chosen after choosing actor firings mapping and scheduling, 3. Timed Memory Allocation means that not only the firing order of actors is chosen but also the exact time of these firings.

The allocation step is demonstrated in 5 to have a great influence on the amount of memory to allocate. The later the FIFOs are allocated in the design process, the less memory they require, but the more limited execution choices are. Additionally to previously presented allocation techniques, the internal behavior of actors, i.e. the moment when they read and write their input and output FIFOs, has been used to further reduce the memory consumption of executing dataflow applications 6,7 . This behavior is described with a DSL expressing the opportunities to use the same memory for the input and output FIFOs of a single actor. Experiments on a set of real DSP applications have shown that the proposed techniques result on average in memory footprints 48% smaller than previous state-of-the-art optimization techniques.

Finally, a method has been created to jointly optimize shared memory and distributed memory allocations 8 . This last set of optimizations do not only save memory but also improve the execution speed by playing with data locality. To the extent of our knowledge, this work constitutes the state of the art of memory allocation for dataflow applications.

Energy Reduction

System energetic optimization has been the objective of Erwan Nogues PhD thesis, with a particular focus on MPSoC implementations of MPEG HEVC decoders. This thesis has been deeply involved in the GreenVideo FUI project.

Current embedded processors are all based on Complementary Metal Oxide Semi-conductor (CMOS) transistors. The power consumed by a processor based on CMOS transistors is composed of 3 elements [START_REF] Mudge | Computer power: A first-class architectural design constraint[END_REF]:

P tot = P dyn + P short + P stat (3.1)
where the dynamic power P dyn is consumed by the charging and discharging of the capacitive load on the output of each logic gate. The second component P short captures the power resulting from a short-circuit current which momentarily flows between the supply voltage and the ground due to a short-circuit current appearing when a CMOS logic gate output switches. However this component is relatively small compared to the others [START_REF] Mudge | Computer power: A first-class architectural design constraint[END_REF] and can be neglected. The third component P stat is due to the leakage current and is not related to the gate state. While the two first components are related to circuit activity and called dynamic power, P stat is consumed regardless of computational activity and referred to as static power.

Energy consumption in modern MPSoCs can be controlled through Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Management (DPM). While DVFS consists of varying the frequency and voltage of cores in order to adapt their power consumption to their instantaneous load, DPM is the process of dynamically shutting down unused cores.

DVFS reduces the dynamic power consumption P dyn caused by transistors' activity. P dyn can be expressed as:

P dyn = α.C. f .V 2 dd (3.2)
where C is the total capacitance seen by the outputs of the logic gates, V dd is the supply voltage, f is the frequency of operation, and α is the processor activity (number of modified gates per clock change). Reducing the frequency f has a direct effect on P dyn but also an indirect effect because a lower frequency makes computation reliable with a lower V dd (explaining the term DVFS), strongly impacting P dyn .

DPM reduces the static power consumption, unrelated to transistor activity. Indeed, DPM disconnect the power supply of a given silicon area (corresponding for exemple to one core in the system) and, as a consequence, removes most of the transitors' leakage in this area. A processor combining DPM and While DVFS and DPM strongly impact energy consumption, they also bring the processor into states of low processing capabilities. As a consequence, when executing a DSP application, a compromise must be found at runtime between energy consumptions and real-time processing. Significant energy gains can be obtained by using DVFS and DPM provided that a substantial "slack-time" exist between the real-time deadline and the processing time when executing at full speed.

In a partnership with Abo Akademi in Finland, we have studied how to precisely control DVFS and DPM based on the parallelism data extracted from an SDF dataflow representation 9,10 . The dataflow representation is transformed Considering only DVFS, the energy consumption of a modern MPSoC, relative to its frequency and number of ON core, is not simple. Figures 3.8 and 3.9 give the energetic performances of a fully loaded Samsung Exynos 5410 processor, consisting of a cluster of 4 ARM Cortex-A7 cores and a cluster of 4 ARM Cortex-A15 cores. Contrary to the true octo-core Exynos 5422 that will be used in Chapter 7, only one cluster of an Exynos 5410 can run at a time and the system is switched from the A7 cluster to the A15 cluster when the frequency reaches 800MHz. .8 depicts the power consumption of the processor versus its frequency while Figure 3.9 depicts its energy consumption per cycle. The frequency is normalized versus its maximum of 1.6GHz. One can observe that, while the power is minimal at the lowest frequency, the energy consumption is minimal at a higher frequency. This is due to the processing time that augments when the frequency is lowered. Longer time makes energy rise because the time during which power is spent is longer.

Considering also DPM, the problem becomes more complex. Indeed, depending on the leakage of the different cores, it may be beneficial to use them or not for a particular processing, at either a high or a low frequency. The capacity to use these cores efficiently also depends on the true concurrency of the application and the amount of data exchanged between cores.

From a static dataflow representation of a pipeline shaped application, convex programming is used in Erwan Nogues PhD thesis to choose, for each actor, the most optimal frequency and number of operating cores on a complex MPSoC 11 . The result is non-trivial and the most optimal operating point de- 11 called As-Slow-As-Possible (ASAP), where the frequency is lowered as much as possible while still respecting the application deadline. Energetic models of an MPSoC platform are used to demonstrate that the most energy optimal solution is neither as-fast-as-possible not As-slow-as-possible but rather a tailored solution where some actors are forced to run on a limited number of cores and different frequencies are set depending on the actor [START_REF] Nogues | Energy optimization of Signal Processing on MPSoCs and its Application to Video Decoding[END_REF]. Energy gains between 5% and 34% have been reported versus AFAP and ASAP on synthetic benchmarks by using Geometric Programming (GP) [START_REF] David | Optimization by vector space methods[END_REF] to find the most energy optimal solution. These results show the positive impact of exploiting the information of a dataflow MoC for energy reduction. They open new opportunities for modelbased energy optimizations. These opportunities will be discussed in the concluding Chapter 8.

The energy consumption studies of Erwan Nogues have been applied to MPEG HEVC embedded decoding 12 . In the current PhD thesis of Alexandre 12 Erwan Nogues, Julien Heulot, Glenn Herrou, Ladislas Robin, Maxime Pelcat, Daniel Menard, Erwan Raffin, and Wassim Hamidouche. Efficient DVFS for low power HEVC software decoder. Journal of Real-Time Image Processing, 2016. Springer Verlag Mercat, we are starting a new study of the complexity and energy consumption of an embedded HEVC encoder. The encoder is more computationally intensive than the decoder 13 and an encoder must test many possible encod-

Conclusions on Implementation Quality

This chapter has focused on the gains obtained by using dataflow MoCs on the processing memory consumption and the energy consumption of an MPSoC. One important point to note is that our methods and tools have been created to automate these gains. As a consequence, the developed approaches make low memory and low energy attainable without additional effort for the designer. This element makes our studies impact DP through implementation quality.

The next section studies the use cases and protocol we developed to assess DP in its different modalities. 

Evaluating Design Productivity

Chapter Abstract

Two elements are essential for measuring the productivity of a DSP system design procedure. Use case systems must be built in realistic conditions and these use cases should be representative of the DSP systems targeted by the evaluated set of models, methods and tools. Moreover, a fair protocol must be adopted to ensure that the benefits offered by the new design process are not overrated or underrated. In this chapter, we first overview the use cases we built in the last years to evaluate design processes. Then, a protocol is proposed for fair DP evaluation and this protocol is demonstrated on an example.

Design Productivity (DP) is a multi-faceted concept and the amount of DP observed for a given design depends on the experience of designers, on the amount of constraints on implementation quality, on the time-to-market, etc. As a consequence, building reliable DP comparisons between several design methods is a delicate operation that requires a precise protocol and an equal treatment of the compared design methods. However, DP evaluation is important for assessing the maturity of design tools, evaluate the user-friendliness of a language or check the appropriateness of a design method.

This chapter demonstrates the fair DP assessment protocol on an HLS compiler compared to the synthesis of manually written VHDL code. The choices of Non-Functional Properties (NFPs) and Non-Recurring Engineerings (NREs) costs for measuring respectively the implementation quality and the design efficiency are discussed. Experimental results are generated from the evaluation of the CAPH HLS compiler and the reasons that make CAPH higher level than VHDL are discussed.

Building DSP Use Cases for Testing Design Methods

Precise and complex use cases are needed to test "in vivo" new system design procedures in terms of both design efficiency and implementation quality.

We have developed over the years a set of challenging use case designs and published on the obtained performances. These use case applications belong to the technical fields of telecommunications, cryptology, computer vision, video compression, medical imaging, and artificial intelligence. From these use cases, we analyse the difficulties of automating design and the causes of DP losses. The next section exemplifies this effort on the use case of a 4G base station algorithm modeling with PiSDF 1 . Because the number of UEs connected to a base station and the data rate received from each UE can change every millisecond, the bit processing of PUSCH decoding is inherently dynamic and cannot be modeled with static MoCs such as SDF [11]. The PUSCH bit processing specification can be modeled by two hierarchical actors: the PUSCH Bit Processing actor and the Channel Decoding actor. For clarity, Figure 4.2 shows a simplified specification of the LTE PUSCH decoding process where some actors and parameters are not depicted.

The PUSCH Bit Processing actor is executed once per invocation of the PUSCH decoding process (i.e. once per millisecond) and has a static parameter, maxCBsPerUE, that represents the maximum number of data blocks (named Code Block (CB)) received per UE. maxCBsPerUE statically sets the configuration input interface of the lower level of the hierarchy, according to the base station limitation of bitrate for a single UE. The ConfigNbUE configuration actor consumes data tokens coming from the upper OSI Medium Access Control (MAC) layer and sets the configurable parameter NbUE representing the number of UEs whose data must be decoded in the current millisecond. The converge actor consumes the multiplexed CBs received from the several antennas of the base station on the symbols data input interface of the graph. It produces NbUE tokens, each containing the number of CBs for one UE, and produces NbUE packets of maxCBsPerUE CBs, each containing the CBs of a UE.

The Channel Decoding hierarchical actor fires NbUE times, once for each UE, because each UE has specific signal channel conditions and thus a specific channel decoding procedure. This actor has a configuration input interface maxCBsPerUE that receives the eponymous locally static parameter from the upper hierarchy level. The ConfigNbCB configuration actor sets the NbCB parameter with the number of CBs allocated for the current UE.

The numbers of UEs and CBs can both reach 100. The number of potential application configurations is thus very high [11]. This example illustrates how a very dynamic applications can be modeled with PiSDF.

Other Modeled DSP Use Cases

In the cryptology domain, we have studied a cryptographic algorithm based on chaos theory 3 . We have used the memory and parallelism analysis offered by 3 Karol Desnos, Safwan El Assad, Aurore Arlicot, Maxime Pelcat, and Daniel Menard. Efficient multicore implementation of an advanced generator of discrete chaotic sequences. In Proceedings of the ICITST conference, pages 31-36. IEEE, 2014 PiSDF to provide details on the performance of a cryptographic key generator.

In the image processing domain, we recently explored a dimensionality reduction algorithm for hyperspectral images 4 . This algorithm is used to choose 4 Raquel Lazcano, Daniel Madroñal, Karol Desnos, Maxime Pelcat, Raúl Guerra, Sebastián López, Eduardo Juarez, and César Sanz. Parallelism Exploitation of a Dimensionality Reduction Algorithm Applied to Hyperspectral Images. In Proceedings of the DASIP Conference, 2016 among a very large number of spectral bands the few spectral bands that contain the most information. It uses Principal Component Analysis (PCA) and represents a challenging use case due to large processed data. The algorithm is ported to a many-core MPPA processor from Kalray and applied to detecting brain cancer cells from hyperspectral images taken live during a brain operation.

The MPEG HEVC encoder 5 and decoder 6,7 are some of our preferred use 5 cases, video compression being one of the main specialties of the VAADER team from IETR. As an example,an algorithm from the HEVC standard is used in the next sections to illustrate the creation of a DP evaluation procedure.

We are also extensively using a computer stereo vision matching algorithm 8 for our DP studies. This algorithm will be used in Chapter 7 to evaluate the learning procedure of a Model of Architecture (MoA) from platform measurements.

We are starting in the PhD thesis of Kamel Abdelouahab to address deep learning use cases based on Convolutional Neural Networks (CNNs) 9 . CNNs 9 Kamel Abdelouahab, Cédric Bourrasset, Maxime Pelcat, François Berry, Jean-Charles Quinton, and Jocelyn Serot. A holistic approach for optimizing dsp block utilization of a cnn implementation on fpga. In Proceedings of the ICDSC Conference. ACM, 2016 are exponentially gaining interest because of their demonstrated ability to perform image and video recognition and natural language processing with unprecedented performances. Their regular structure and data locality make them particularly well suited to dataflow-based methods.

Finally, the undergoing PhD thesis of Jonathan Bonnard and and El Mehdi Abdali both study the hardware implementation of computer vision algorithms in the objective of porting them to smart cameras.

The next section exposes on one use case our proposed protocol for evaluating DP.

Introducing a Design Productivity Evaluation Protocol

The rest of this chapter describes a protocol for measuring the DP of a method when compared to a reference. In order to make the study more concrete and create the protocol, an HEVC video compression use case is implemented and an HLS method is compared to writing VHDL manually for building an FPGA-based system. We first introduce the notion of HLS before analyzing the protocol and its results. This protocol has been published in the Proceedings of IC-SAMOS 2016 10 . The main motivation behind HLS is to improve the DP of hardware designers by providing some correct-by-construction features and by separating the correctness design concern from the timing design concern. This separation of concerns is provided by a design process consisting of three steps:

1. the HLS compiler is fed with an untimed description of the algorithm. Using a timeless test bench, the correctness of the produced output values can be checked regardless of their arrival time, 2. RTL code is generated either in VHDL or in Verilog from the higher level language, and the correct arrival time of the output signals is checked, 3. additional constraints can be set on the RTL code generator to correct potential violations of time and resource constraints.

Depending on the HLS method, different high-level descriptions are used such as the imperative C and C++ languages and their extensions SystemC and OpenCL, or the BlueSpec functional language [START_REF] Ren | A brief introduction on contemporary high-level synthesis[END_REF]. Dataflow based descriptions, built over the DPN paradigm [13] like the models introduced in Chapter 2, are an alternative to classical HLS methods where the input language does not follow an imperative paradigm.

While imperative languages decompose a computation into a sequence of successive operations (similarly to an algorithmic description), dataflow languages decompose a computation into actors communicating only via FIFOs. A drawback of using a dataflow language when compared to C/C++ or Sys-temC code is that a less common programming paradigm, close to the functional programming paradigm, must be learned by the designer. However, whereas parallelism must be inferred from code analysis in imperative HLS, parallelism is naturally present in a dataflow algorithm description. Dataflow languages for HLS exist both in academia (e.g. CAL [START_REF] Eker | Cal language report: Specification of the cal actor language[END_REF] and CAPH [START_REF] Sérot | High-level dataflow programming for reconfigurable computing[END_REF]) and in the industry (e.g. Cx [START_REF] Synflow | The Cx programming language[END_REF]). The DPN paradigm is specifically suited to signal processing problems where limited control is necessary and computation should be triggered by data availability. For that reason, we use a dataflowbased language in this chapter to build our DP evaluation protocol for DSP systems.

The following study does not intend to promote a particular HLS language or method or to display advanced quality metrics on a given FPGA. Instead, a precise and reproducible procedure is defined for assessing DP. While difficult, this task is fundamental to drive the future developments of design methods.

The application chosen for applying the method is the MPEG HEVC [START_REF] Gary J Sullivan | Overview of the high efficiency video coding (hevc) standard[END_REF] interpolation filter. This 2-dimensional separable FIR filter is a simple yet costly operation that requires fine implementation tuning. Moreover, the convolutions composing this filter are canonical examples of signal processing. The HLS system chosen for evaluating DP assessment is the CAPH dataflow compiler, compiling the CAPH language [START_REF] Sérot | High-level dataflow programming for reconfigurable computing[END_REF]. CAPH is a dataflow language based on a functional paradigm.

Choosing NFPs and NREs Metrics and Designing the Protocol

As stated in Chapter 1, the DP of a design method is a trade-off between an implementation quality to optimize, expressed as a set of NFPs (frequency, area, memory, etc.) and design efficiency expressed as NRE costs.

The objective of the study is to produce DP radar charts equivalent to the ones in Figure 1.1 and also a DP metric representative of the tested method performance.

The obtained radar charts for the use case are displayed later in Figure 4.7. We introduce 3 metrics to assess DP: the gain in NRE design time G NRE evaluating design efficiency, the quality loss L Q evaluating implementation quality and finally the design productivity P D evaluating the trade-off between design quality and design efficiency. These metrics are then computed on the use case and lead to the results presented in Section 4.3.8.

Choosing the NREs Metrics to Evaluate Design Efficiency Design efficiency results from a combination of parameters including the complexity of the design under development, the amount of NRE tasks to execute (i.e. the cost of the new code to produce), the expressiveness, and "developer friendliness" of the design languages, the available legacy code, the designer's experience, the testability of the results, the simulation time (influencing the time of design and verification steps), and the maturity of the design tools.

Quantitative quality metrics can be computed to characterize both the tested HLS and reference HDL methods. System development time can be divided into:

-1.a NRE design time, i.e. time necessary for writing the code of a functionality, -1.b NRE verification time, i.e. time used for building a testbench and unit testing, -1.c the system integration time, i.e. time necessary to build from components a system respecting its requirements.

The system integration time, comprising verification and validation, depends on features that go beyond DSP system design (analog to digital conversion, energy management, physical environment, etc.). Reducing integration time by an HLS method would require a system completely defined with the HLS method, including for example I/O drivers. The system tested in this chapter, like all systems using HLS today, integrates HLS generated blocks within a framework written with standard HDL. Integration time is thus considered out of the scope of this study.

Design times are controversial because they depend on the designer's experience. Different times may be required for a design by a junior hardware designer and a senior hardware designer. Software developers may themselves require a different time. The design time is not systematically reproducible (who has never experienced losing a few hours on a simple bug and its nonexplicit bug report?). Moreover, design time can not really be weighted by an "experience rate" -an experienced designer is likely to spend more time in unit testing and commenting, in order to save time in code integration and training of colleagues. This study intends to overcome these difficulties by comparing HDL and HLS in the same conditions. In the experiments, design times measured for HDL and HLS reflect the time required by a single developer experienced on software signal processing but novice in both VHDL and HLS languages. The experiments reflect the capacity of HLS to offer a highlevel API to a novice designer. This choice is consistent with the important objective of HLS to open hardware design to a broader public of developers. A selection of the time taken into account in measurements reduces the subjectivity of the approach. The time taken to refer to books and chapters for syntactic details is excluded from the measured time. The development times are thus sums of short design and verification times with a quantum of 1' (minute) and an average length of 15'.

Code properties complement the timing results:

-2.a number of Source Lines Of Code (SLOC) (excluding blank lines and comments), -2.b number of characters in the code (excluding blank lines and comments).

These grades reflect the complexity and expressiveness of the languages. A lower number of lines in the HLS code than in the HDL code reflects the abstraction of some implementation concerns. These numbers do not fully reflest complexity, as for instance, one line of regular expression may have a greater complexity than 20 lines of C code. As a consequence, SLOCs are not used in the DP metric but rather as an additional information.

Choosing the NFP Metrics to Evaluate Implementation Quality The NFPs Metrics depend on the chosen hardware platform. In this study, we choose as a target a Field-Programmable Gate Array (FPGA). On an FPGA implementation, quality metrics are divided into area and time information. We propose the following metrics: 

G NRE = t HDL design + t HDL veri f t HLS design + t HLS veri f (4.1)
where t HDL design and t HDL veri f are respectively the design and verification times when writing the application in HDL. Similarly, t HLS design and t HLS veri f are the design and verification times when writing the application in HLS. A time gain G NRE greater than 1 reflects the ability of an HLS method to save design and/or verification time. If only design and verification times are evaluated to assess an HLS method, methods resulting in a fast design with low quality are favored. In the proposed method, a quality degradation metric is included that penalizes low quality systems.

Implementation quality metrics depend on the constraints of the design (strict frequency constraint, strong resource limitations...). To take into account in a single cost the different quality metrics constituting a QoR vector, the implementation cost is defined as the weighted sum of normalized features to minimize [START_REF] Grodzevich | Normalization and other topics in multi-objective optimization[END_REF]. The normalization of the different hardware quality metrics is done with respect to the maximum amount on the chosen system. For instance, the maximum period of the design obtained with HDL is computed as:

prd HDL norm = prd HDL /prd system max , (4.2)

where prd system max is the maximum period for supporting the application (for instance, to ensure the frame rate). In the general case of HLS DP measurement, we define quality loss as:

L Q = ∑ φ HLS i ∈Φ HLS α i × (φ HLS i ) ∑ φ HDL i ∈Φ HDL α i × (φ HDL i ) , (4.3) 
where Φ HLS is the sets of normalized quality metrics to minimize and α i are normalizing coefficients. In particular, in the case of an FPGA, we can define quality loss as: . The parameters α i can be tuned to favor different hardware features. We propose 2 approaches: 1) architecture-relative where each al pha i is set to 1, and 2) fair to place all metrics on an equal footing, where each (non null) pair of values is normalized to its maximum:

L Q = α 1 × lut HLS norm + α 2 × reg HLS norm + α 3 × ram HLS norm + α 1 × lut HDL norm + α 2 ×
α i =    0, if max(φ HLS i , φ HDL i ) = 0. (max(φ HLS i , φ HDL i )) -1 , otherwise. (4.5) 
for φ HLS i ∈ Φ HLS and φ HDL i ∈ Φ HDL . The architecture-relative approach is specific to a single device because it favors metrics that are sparse on the measured platform. Experimental results (Section 4.3.8) focus on the fair approach, putting all parameters on the same footing.

Quality loss L Q reflects the loss due to rising the level of abstraction. A low L Q reflects a good HLS generated code quality. We introduce the HLS Design Productivity (DP) metric as a unique grade to assess the trade-off between design efficiency and quality. System DP ratio is defined as:

P D = G NRE /L Q (4.6)
A new design method can be considered successful if its DP is greater than 1. Two design methods can be compared in terms of DP, provided that the same approach is used for both methods, a greater DP reflecting a better tradeoff between design efficiency and implementation quality.

Design Productivity Assessment Protocol A few rules must be respected to evaluate in practice the DP of a design method versus a reference design method: the same hardware platform and the same synthesis or compilation (back-end) tools should be used for both methods, the designer should have similar experience in both the methods, the developed use case should have precise specifications and requirements, design periods in both languages should be interleaved, and the same (preferably default) common tool configurations should be used for both methods. A particular effort is made in this chapter to obtain reliable DP measurements by following these different rules.

Experimental Set-up to Evaluate the Design Productivity of an HLS Compiler versus HDL

In this section, we present the use case and the tools that this study leverages on to assess the DP evaluation protocol.

The HEVC Interpolation Filter Use Case The motivations for using HEVC interpolation filtering as the application for design productivity assessment are threefold. The use case is specifically chosen because it requires bit-exact implementation to conform to the HEVC standard. Moreover, it is based on canonical DSP operations. Finally, the HEVC interpolation filter requires only fixed point operations that are efficiently implementable on an FPGA. Video compression leverages on redundancies between images to reduce data rate. The performance of the latest video compression algorithms such as MPEG HEVC [START_REF] Gary J Sullivan | Overview of the high efficiency video coding (hevc) standard[END_REF] is mostly due to a precise matching between blocks in an image and the corresponding blocks in near images. This matching must be precise also when a motion has occurred that is not an exact multiple of the pixel size. HEVC interpolation filters provide fractional-pixel motion compensation between images with a quarter-pixel precision on luminance.

The HEVC interpolation filter generates a shifted version of a block of pixels by applying a filter with coefficients (taps) generated from a Discrete Cosine Transform (DCT) and an Inverse Discrete Cosine Transform (IDCT) [START_REF] Gary J Sullivan | Overview of the high efficiency video coding (hevc) standard[END_REF]. The block can be left shifted of 1/4, 1/2 or 3/4 of a pixel by the filter displayed in tap [7] tap [6] x[t-1] tap [5] x[t-2] tap [4] x[t-3] tap [3] x[t-4] tap [2] x[t-5] tap [1] x x tap [1] tap [2] tap [3] tap [4] tap [5] tap [6] tap [7] The use case being normative, data sizing is derived from the standard specifications. This is an important point because it limits the design choices and helps comparing different versions of the code. The presented filters correspond to the core of the luminance filters. In the next sections, the presented filters serve as the basis for the HLS vs. HDL study.
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Used Design Tools and Platform

The software tools and versions used for the study are:

• Altera Quartus II versions 13.1.0.162 and VHDL 2008,

• Mentor Graphics Modelsim ASE, delivered with Quartus,

• CAPH Compiler version 2.7.0.

A golden reference of the filter Design Under Test (DUT) is coded in C language. This implementation is out of the scope of the study and serves for verifying both the HDL and the HLS implementations. The HDL code is ported to an FPGA-based smart camera named DreamCAM [START_REF] Birem | Dreamcam: A modular fpga-based smart camera architecture[END_REF]. This camera embeds an Altera Cyclone III EP3C120F780C7N FPGA. Using a camera aims at making the study close to designer's best practices by not limiting the study to simulations. A complex pattern of data valid signals makes the filter not trivial to port on the camera.

Designing HEVC Interpolation Filters in VHDL

In this section, the use case is implemented in HDL and qualitative as well as quantitative elements are given on the design effort. VHDL [START_REF] Pedroni | Circuit design with VHDL[END_REF] is a language for hardware description standardized in 1987 and revised in 1993, 2000, 2002, and 2008. A VHDL program consists of explaining how a digital circuit is structured and what the behavior of each component is. These behaviors can be purely combinatorial, sequential or more commonly mixed.

Assumptions and Verification of the Use Case Design

The number of possible designs in HDL for a filter such as the ones presented in Section 4.3.3 is large. Accesses to external memory to store intermediate values can alter much the quality. It is also possible to use existing Intellectual Property core (IP) blocks or "design templates" (especially for FIR filters). The choice of parallelizing or sequencing operations is also very important.

In order to narrow the design space, some assumptions are taken on the input and output pixel streams of our use case. The filter is synchronous to a unique clock and has asynchronous reset. The input pixel stream comes in raster order (i.e. scanning the image from left to right and from top to bottom) in a stream of 8-bit pixels. A data valid signal states whether the current clock corresponds to a data value. Each filter configuration (1/4, 1/2 or 3/4 horizontal and vertical shifts) is studied independently and coefficients are considered constant. In an HEVC encoder or decoder, the filter must then be duplicated for the different positions. A sufficient number of clock events without data is given for the filter to resume execution at the end of a pixel line. The last assumption is compatible with most CMOS image sensors that provide horizontal and vertical blanking. The assumptions foster a pipelined design with FIFOs such as the ones illustrated in Figures 4. 4 The algorithm description time includes all the reflections on the description (data types, generics, sizing, the use of functions, data conversions, use of best practices...) and the writing, from scratch, of the VHDL files.

VHDL Version 2: Horizontal Filter with Interfaces for the DreamCAM Camera When porting the filter onto the camera, the VHDL block must input and output a data valid signal (indicating pixel validity for each clock event) as well as a frame valid signal. The frame valid signal is continuously set during the reception of a frame and reset at the end of the frame. Clock events that do not carry data happen pseudo randomly during the reception of an image.

The time needed to describe the filter in HDL is 162' for design and 783' for debug, including 152' on a test bench and 631' on the DreamCAM platform. VHDL Version 2 shows that porting an algorithm onto a real platform has a large cost, even when the algorithm has already passed some RTL verification process.

VHDL Version 3: 2-D Filter with Interfaces for the DreamCAM Camera This filter is designed by reusing the VHDL version 2 horizontal filter and combining filter results of several lines such as in Figure 4.5. The time needed to describe the filter in HDL is 232' for design and 775' for verification.

The main difficulties comes again from the control part of the filter that determines when a data is valid or not and on which cycle it must appear on a given signal. In particular, synchronizing data valid and frame valid signals have necessitated most of the time. Next section discusses the sources of VHDL non-optimality in terms of design productivity that make room for HLS methods.

Discussion on the Origins of VDHL Complexity

The Counterpart of VHDL Versatility In order to build verifiable logic, it is recommended to design a fully synchronous system. Using VHDL, a designer is however free to design asynchronous circuits and gated clocks that are challenging to verify. For instance, while rarely being necessary, latch constructs may be generated by mistake with VHDL, for instance with an incomplete IF T HEN ELSE statement in a combinatorial process. Latches are strongly discouraged in literature [START_REF] Pedroni | Circuit design with VHDL[END_REF] and this type of "low level implementation bugs" is at the heart of the need for HLS methods [START_REF] Ren | A brief introduction on contemporary high-level synthesis[END_REF].

A Unique Language for Different Objectives A difficulty of VHDL comes from the combination, in a single language, of simulation-oriented and implementationoriented features. For example, operators such as modulus MOD or remainder REM are generally not synthesizable [START_REF] Pedroni | Circuit design with VHDL[END_REF].

Some Unintuitive Properties

The absence of precedence in logical operators makes the following expression: This property stands in contradiction to the mathematical order of operation and can cause errors that are difficult to detect for a new programmer.

The Historical Reasons Some difficulties of the VHDL language come from the different techniques available to implement a single functionality. For instance, an 8-bit unsigned integer signal data can be declared by Choosing between the two solutions requires a knowledge that is not related to system design but rather to language implementation details. The integer style is typically used to manipulate data within a design while the unsigned style is used for designing I/Os.

The Fundamental Reason

The main productivity limitation while using VHDL is the tangle of value and timing concerns. A value is considered as correctly received only if it arrives at an exact predefined clock event. During design, a lot of time is spent to obtain a value one cycle later or, worse, one cycle sooner than what the current design outputs. As an input signal of an entity must be present when its corresponding valid signal occurs, much of the design time is spent to synchronize data and control signals.

Now that VHDL design characteristics have been presented, next section details for comparison the design of the same filter versions with the CAPH HLS language.

Introduction to the CAPH Language

CAPH [START_REF] Sérot | High-level dataflow programming for reconfigurable computing[END_REF] is a domain-specific language (DSL) for describing and implementing stream processing applications on configurable hardware, such as FPGAs. CAPH was first released in 2011 and is based upon the dataflow model of computation where an application is described as a network of autonomous processing elements (actors) exchanging tokens through unidirectional channels (FIFOs).

As the CAPH language is not mainstream like the VHDL language, details on the syntax and semantics are given in this section. The behavior of individual actors in CAPH is specified using a set of transition rules, where a rule consists of a set of patterns, involving inputs and local variables, and a set of expressions, describing modifications of outputs and local variables. Tokens circulating on channels and manipulated by actors are either data tokens (carrying actual values, such as pixels for example) or control tokens (acting as structuring delimiters). With this approach, fine grain processing (down to the pixel level) is expressed without global control or synchronization.

As an example, the actor coded in Listing 4.1 computes the sum of a list of values. Given the input stream < 1 2 3 > < 4 5 6 >, -where 1, 2, . . . represent data tokens and < and > control tokens respectively encoding the start and the end of a list -the CAPH program produces the values 6, 15.

For this, the CAPH code uses two local variables : An accumulator s and a state variable st. st indicates whether the actor is actually processing a list or waiting for a new list to start. In the first state, the accumulator keeps track of the running sum. The first rule can be read as : when waiting for a list (st=S0) and reading the start of a new one (i='<), then reset accumulator (s:=0) and start processing (st=S1). The second rule says : When processing (st=S1) and reading a data value (i='v), then update accumulator (s:=s+v). The last rule is fired at the end of the list (i='>); the final value of the accumulator is written on output o. This style of description fits a stream-based execution model where pixels are processed "on the fly". For describing the structure of dataflow graphs, CAPH embeds a textual Network Description Language (NDL). NDL is a higher-order, purely functional language in which dataflow graphs are described by defining and applying wiring functions. A wiring function is a function accepting and returning wires (graph edges). This concept is illustrated in Figure 4.6, where the dataflow graph on the left is described by the CAPH program on the right. In this example, two wiring functions are defined : neigh13 and neigh33. The former takes a wire and produces a bundle of three wires representing the 1 × 3 neighborhood of the input stream, by applying twice the one-pixel delay actor dp. The latter takes a wire and produces a bundle of nine wires representing the 3 × 3 neighborhood of the input stream, by applying the previously defined neigh13 function and the dl actor (one-line delay)

The tool chain supporting the CAPH language comprises a reference interpreter and a compiler producing both SystemC and synthetizable, platformindependent VHDL code. The SystemC back-end is used for verification. 

CAPH Version 1: Horizontal Filter with Minimal Interfaces

In version 1 of the HEVC filter in CAPH, the code is composed of a single actor receiving the image bitstream and sending the horizontally filtered data. The test bench represents only 5 lines of code connecting the actor to the input and output streams. This simple test bench is possible because the HLS compiler performs only functional verification and time verification is left to the synthesizer. The actor implements a shift register and a counter discards the 7 first output tokens that do not represent valid data. The actor has four transition rules and most of the design time is taken to find the right way to represent the shift register in CAPH. In this version, the shift register is made of a set of internal variables in the CAPH actor. The filter is functionally equivalent to its VHDL counterpart after 103' for design and 65' for writing the test bench and debugging the filter with a SystemC simulation. One can see that HLS is obtaining gains on design efficiency because, in the upper part of the charts, the CAPH values are smaller than the VHDL values (smaller is better). Conversely, there is a quality loss due to HLS that makes the VHDL values smaller than the CAPH values in the lower part of the chart. The CAPH HLS method is efficient for frequency; it even obtains slightly better minimum period than manual VHDL. This effect can be explained by the insulation of each actors by FIFOs that build a pipeline. However, CAPH presents a large overhead in terms of LUTs and registers. This effect is explained by the automatic insertion of FIFO queues between actors that are not present in VHDL (VHDL). Improving the footprint of the VHDL generated from CAPH is thus an important objective to make this HLS method competitive. Globally, a smaller area in the clear red zone than in the dark blue zone is a good indicator that HLS is reaching a higher DP than VHDL; this fact will be confirmed in the next sections. Gain in NRE Design Time of CAPH vs. Manual VHDL Quality Loss of CAPH vs. Manual VHDL The quality loss, defined in Section 4.3.2, is evaluated to study the productivity of the HLS method. We focus in this chapter on the fair approach, putting all parameters on equal footing to make results not very dependent on the type of FPGA so normalization to maximum values is skipped and parameters α i are computed by equation 4.5.

Numbers of DSPs and latency are ignored in quality loss computation (α 4 = 0 and α 5 = 0) because the use case does not generate multipliers and the latency of a few cycles introduced by VHDL and CAPH is negligible when compared to the latency of several picture lines, mandatory in the 2-D filter, so latency does not reflect system quality.

Quality loss L Q figures are displayed in Table 4.2. They show that, when putting all quality metrics on an equal footing, there is in average a quality loss of about 2× due to using the CAPH HLS method when compared to VHDL manual writing. The standard deviation of 0.6 is limited.

Design Productivity of CAPH HLS versus Manual HDL From the previously computed gain in NRE design time and quality loss, we can derive the Design Productivity P D for the different use case versions. The values of P D are shown in Table 4.2. The HLS Design Productivity (DP) metric for the tested CAPH compiler version 2.7.0 is 2.2×. This number is an evaluation of the gains obtained by the HLS compiler. The small standard deviation of 0.34 between the different versions is an encouraging sign of the relevance of the DP metric evaluation method proposed in this chapter. Finally, one can see in Figure 4.1 that while verification takes in average 3× the time of design in VHDL, it takes in average only 85% of the design time in CAPH.

Discussion on the Reduction of Complexity when using CAPH HLS Instead of VHDL

More than numbers, this DP studies gives us some insights on what makes the tested HLS method higher level than the reference. A dataflow MoC abstracts two elements:

• time. Instead of reacting to clock events, actors react to the arrival of data tokens,

• amount of data stored in FIFOs. The MoC assumes FIFOs of sufficient size to store pending tokens.

These two abstractions make it possible a first verification of the process independently from the notion of time. The designer can thus verify very early in the design process whether the output values conform to the specification. Moreover, by generating SystemC code for simulation and verification, the CAPH compiler leverages on an optimized simulation environment. Writing the test bench in CAPH is also fairly less complex than in VHDL.

These advantages come at the cost of a higher memory consumption, mostly due to the allocation of FIFO queues between actors.

Conclusion and Perspectives

In this chapter, our use cases and a protocol to assess DP gains have been presented. Using this protocol, an HLS compiler based on the CAPH dataflow programming language has been compared to manual VHDL.

The framework for design productivity estimation proposed in this chapter can be extended to any type of software and hardware system design. Figures of merit for the implementation quality and design efficiency should be adapted to the system under test. However, the method and recommendations remain valid. Crossbreeding different design methods and combining their best features in a unique method could offer new opportunities of DP enhancement for complex heterogeneous system design.

Assessing and comparing systems at a higher level of abstraction that the RTL level used in this chapter is possible if cross-hardware Non-Functional Properties (NFPs) are chosen to represent implementation performance. For instance, if silicon area instead of LUTs is measured to estimate resource needs, an FPGA can be compared to a multicore processor. Predicting such high-level NFPs is the role of MoAs that will be developed in the second Part of this document. The fairness of DP comparisons comes at the price of optimisation efforts both for the reference and tested methods and of a precise protocol for evaluating design efficiency and implementation performance. To the extent of our knowledge, the protocol presented in this chapter is the first fair protocol for assessing DP. As new levels of abstractions appear for system design and as model-based methods are increasingly adopted, fair DP assessment becomes essential to better understand where efficiency lies and which features bring a substantial productivity gain.

Our work of the last years has concentrated on DP improvements from applications modeled with dataflow MoCs. However, having information on the platform architecture is crucial to automate the design of complex systems and the body of work on architecture modeling is much more reduced than the one on application modeling. The next sections of Part B detail a new research subject I wish to further investigate in the next years to provide this architectural information: Models of Architecture. 

Models of Architecture: A New Design Abstraction

Model of Architecture

Chapter Abstract

This chapter initiates the second part of this report that introduces and positions in state-of-the-art the new concept of Models of Architecture (MoAs) to complement the work on MoCs and further improve the DP of DSP embedded systems.

This chapter precisely defines the MoA concept that aims at representing platform architectures at a high level of abstraction with the objective of feeding efficient Design Space Exploration methods and, in turn, enhance design productivity by automating some design decisions. MoAs formalize the architecture input of the Y-chart design approach in the same way MoCs formalize the application input. The application/architecture separation of concerns should not be confused with the hardware/software separation of concerns. While the former is a fundamental model-related notion, the second is a toolrelated notion that tends to fade away with the adoption of virtualization and HLS.

To be an MoA, an architecture model must respect three constraints: 1) offer a reproducible cost computation for a Non-Functional Property (NFP) when combined with an application model respecting a precise MoC, 2) be application independent, and 3) abstract the computed cost. An architecture model respecting only a subset of these rules is referred to as a quasi-MoA. This chapter also introduces the notion of application activity that serves as an intermediate between application and architecture models. Indeed, the NFP cost (e.g. energy consumption) results from the activity of the application supported by the hardware platform.

In order to make the MoA concept more concrete, this chapter also introduces a first MoA named Linear System-Level Architecture Model (LSLA). LSLA computes an abstract NFP cost as a linear combination of the computa-tion and communication tokens composing application activity. LSLA will be compared to state-of-the-art architecture description languages and models in Chapter 6 and its capacities will be demonstrated in Chapter 7.

The Context of Models of Architecture

Models of Architecture in the Y-Chart Approach

The main motivation for developing Models of Architecture is for them to formalize the specification of an architecture in a Y-chart approach of system design. The Y-chart approach, introduced in [START_REF] Kienhuis | An approach for quantitative analysis of application-specific dataflow architectures[END_REF], consists in separating in two independent models the application-related and architecture-related concerns of a system's design. This concept is refined in Figure 5.2 where a set of applications is mapped to a set of architectures to obtain a set of efficiency metrics. In Figure 5.2, the application model is required to conform to a specified MoC and the architecture model is required to conform to a specified MoA. This approach aims at separating What is implemented from How it is implemented. In this context, the application is qualified by a Quality of Service (QoS) and the architecture, offering resources to this application, is characterized by a given efficiency when supporting the application. For the discussion not to remain abstract, next section illustrates the problem on an example.

Illustrating Iterative Design Process and Y-Chart on an Example System

QoS and efficiency metrics are multi-dimensional and can take many forms. For a signal processing application, QoS may be the Signal-to-Noise Ratio (SNR) or the Bit Error Rate (BER) of a transmission system, the compression rate of an encoding application, the detection precision of a radar, etc. In terms of architectural decisions, the obtained set of efficiency metrics is composed of some of the following Non-Functional Properties (NFPs):

• over time:

latency (also called response time) corresponds to the time duration between the arrival time of data to process and the production time of processed data, throughput is the amount of processed data per time iterval, jitter is the difference between maximal and minimal latency over time,

• over energy consumption:

energy corresponds to the energy consumed to process an amount of data,

peak power is the maximal instantaneous power required on alimentation to process data, temperature is the effect of dissipated heat from processing,

• over memory:

-RAM requirements corresponds to the amount of necessary read-write memory to support processing, -Read-Only Memory (ROM) requirements is the amount of necessary readonly memory to support processing,

• over security:

reliability is 1p f with p f the probability of system failure over time,

electromagnetic interference corresponds to the amount of non-desired emitted radiations,

• over space:

area is the total surface of semiconductor required for a given processing,

volume corresponds to the total volume of the built system.

weight corresponds to the total weight of the built system.

• and cost corresponds to the monetary cost of building one system unit under the assumption of a number of produced units.

When compared to the implementation efficiency metrics developed in Section 4.3.2, these system efficiency metrics are more generic, architecture-independent and application-related. They make it possible to compare software-defined and hardware-defined systems by observing the NFPs of a "black-box" system.

The high complexity of automating system design with a Y-chart approach comes from the extensive freedom (and imagination) of engineers in redesigning both application and architecture to fit the efficiency metrics, among this list, falling into their applicative constraints. Figure 5.3 is an illustrating example of this freedom on the application side. Let us consider a video compression system to be ported on a platform. As shown in Figure 5.3 a), the application initially has only pipeline parallelism. Assuming that all four tasks are equivallent in complexity and that they receive and send at once a full image as a message, pipelining can be used to map the application to a multicore processor with 4 cores, with the objective to rise throughput (in frames per second) when compared to a monocore execution. However, latency will not be reduced because data will have to traverse all tasks before being output. In Figure 5.3 b), the image has been split into two halves and each half is processed independently. The application QoS in this second case will be lower, as the redundancy between image halves is not used for compression. The compression rate or image quality will thus be degraded. However, by accepting QoS reduction, the designer has created data parallelism that offers new opportunities for latency reduction, as processing an image half will be faster than processing a whole image. In terms of architecture, and depending on money and design time resources, the designer may chose to run some tasks in hardware and some in software over processors. He can also choose between different hardware interconnects to connect these architecture components. For illustrative purpose, In these examples, all PEs of a given type communicate via shared memory with either hardware cache coherency (Shared L2) or software cache coherency MSMC), and with each other using either the Texas Instruments TeraNet switch fabric or the ARM AXI Coherency Extensions (ACE) with hardware cache coherency [START_REF] Stevens | Introduction to amba 4 ace and big.little processing technology[END_REF]. Each architecture configuration and each mapping and scheduling of the application onto the architecture leads to different efficiencies in all the previously listed NFPs. Considering only one mapping per application-architecture couple, models from Figures 5.3 and 5.4 already define 2 × 7 = 14 systems. Adding mapping choices of tasks to PEs, and considering that they all can execute any of the tasks and ignoring the order of task executions, the number of possible system efficiency points in the Pareto Chart is already roughly 19.000.000. This example shows how, by modeling application and architecture independently, a large number of potential systems is generated which makes automated multi-dimensional DSE necessary to fully explore the design space.

On the separation between application and architecture concerns

Separation between application and architectural concerns should not be confused with software (SW) / hardware (HW) separation of concerns. The software/hardware separation of concerns is often put forward in the term HW/SW co-design. Software and its languages are not necessarily architecture-agnostic representations of an application and may integrate architecture-oriented features if the performance is at stake. This is shown for instance by the differences existing between the C++ and CUDA languages. While C++ builds an imperative, object-oriented code for a processor with a rather centralized instruction decoding and execution, CUDA is tailored to GPGPUs with a large set of cores. As a rule of thumb, software qualifies what may be reconfigured in a system while hardware qualifies the static part of the system. The separation between application and architecture is very different in the sense that the application may be transformed into software processes and threads, as well as into hardware IPs. Software and Hardware application parts may collaborate for a common applicative goal. In the context of Digital Signal Processing (DSP), this goal is to transform, record, detect or synthetize a signal with a given QoS. MoCs follow the objective of making an application model agnostic of the architectural choices and of the HW/SW separation. The architecture concern relates to the set of hardware and software support features that are not specific to the DSP process, but create the resources supporting the application.

On the application side, many MoCs have been designed to represent the behavior of a system. The Ptolemy II project [START_REF] Eker | Taming heterogeneity-the ptolemy approach[END_REF] has a considerable influence in promoting MoCs with precise semantics. Different families of MoCs exist such as finite state machines, process networks, Petri nets, synchronous MoCs and functional MoCs. This chapter defines MoAs as the architectural counterparts of MoCs and presents a state-of-the-art on architecture modeling for DSP systems.

Scope of this Part B

In this Part B, we focus on architecture modeling for the performance estimation of a DSP application over a complex distributed execution platform. We keep functional testing of a system out of the scope of the chapter and rather discuss the early evaluation of system non-functional properties. As a consequence, virtual platforms such as QEMU [START_REF] Bellard | QEMU, a Fast and Portable Dynamic Translator[END_REF], gem5 [START_REF] Binkert | The gem5 simulator[END_REF] or Open Virtual Platforms simulator (OVPsim), that have been created as functional emulators to validate software when silicon is not available, will not be discussed. MoAs work at a higher level of abstraction where functional simulation is not central. The concept of MoA has been introduced in 1 .

1 Maxime Pelcat, Karol Desnos, Luca Maggiani, Yanzhou Liu, Julien Heulot, Jean-François Nezan, and Shuvra S Bhattacharyya.

Models of architecture: Reproducible efficiency evaluation for signal processing systems. In Proceedings of the SiPS Workshop. IEEE, 2016

The considered systems being dedicated to digital signal processing, the study concentrates on signal-dominated systems where control is limited and provided together with data. Such systems are called transformational, as opposed to reactive systems that can, at any time, react to non-data-carrying events by executing tasks.

Finally, the focus is put on system-level models and design rather than on detailed hardware design, already addressed by large sets of existing literature. Next section introduces the concept of an MoA, as well as an MoA example named Linear System-Level Architecture Model (LSLA).

The Model of Architecture Concept

The concept of MoA is evoked in 2002 in [START_REF] Kienhuis | A methodology to design programmable embedded systems[END_REF] where it is defined as "a formal representation of the operational semantics of networks of functional blocks describing architectures". This definition is broad, and allows the concepts of MoC and MoA to overlap. As an example, a SDF graph [16] representing a system fully specialized to an application may be considered as a MoC, because it formalizes the application. It may also be considered as an MoA because it fully complies with the definition from [START_REF] Kienhuis | A methodology to design programmable embedded systems[END_REF]. The Definition 4 of this chapter is a new definition [2] of an MoA that does not overlap with the concept of MoC. The LSLA model is then presented to clarify the concept by an example.

Definition of an MoA

Prior to defining MoA, the notion of application activity is introduced that ensures the separation of MoC and MoA. Figure 5.5 illustrates how application activity provides intermediation between application and architecture. Application activity models the computational burden supported by the architecture when executing the application. Definition 1 Application activity A corresponds to the amount of processing and communication necessary for accomplishing the requirements of the considered application during the considered time slot. Application activity is composed of processing and communication tokens, themselves composed of quanta.

Definition 2 A quantum q is the smallest unit of application activity. There are two types of quanta: processing quantum q P and communication quantum q C .

Two distinct processing quanta are equivalent, thus represent the same amount of activity. Processing and communication quanta do not share the same unit of measurement. As an example, in a system with a unique clock and byteaddressable memory, 1 cycle of processing can be chosen as the processing quantum and 1 byte as the communication quantum. Definition 3 A token τ ∈ T P ∪ T C is a non-divisible unit of application activity, composed of a number of quanta. The function size : T P ∪ T C → N associates to each token the number of quanta composing the token. There are two types of tokens: processing tokens τ P ∈ T P and communication tokens τ C ∈ T C .

The activity A of an application is composed of the set:

A = {T P , T C } (5.1)
where T P = {τ 1 P , τ 2 P , τ 3 P ...} is the set of processing tokens composing the application processing and

T C = {τ 1 C , τ 2 C , τ 3 C ...}

is the set of communication tokens composing the application communication.

An example of a processing token is a run-to-completion task with always identical computation. All tokens representing the execution of this task enclose the same number N of processing quanta (e.g. N cycles). An example of a communication token is a message in a message-passing system. The token is then composed of M communication quanta (e.g. M Bytes). Using the two levels of granularity of a token and a quantum, an MoA can reflect the cost of managing a quantum, and the overhead of managing a token composed of several quanta. Definition 4 A Model of Architecture (MoA) is an abstract efficiency model of a system architecture that provides a unique, reproducible cost computation, unequivocally assessing an architecture efficiency cost when supporting the activity of an application described with a specified MoC. This definition makes three aspects fundamental for an MoA:

• reproducibility: using twice the same MoC and activity computation with a given MoA, system simulation should return the exact same efficiency cost,

• application independence: the MoC alone carries application information and the MoA should not comprise application-related information such as the exchanged data formats, the task representations, the input data or the considered time slot for application observation. Application activity is an intermediate model between a MoC and an MoA that prevents both models to intertwine. An application activity model reflects the processing burden to be supported by architecture and should be versatile enough to support a large set of MoCs and MoAs, as demonstrated in [2].

• abstraction: a system efficiency cost, as returned by an MoA, is not bound to a physical unit. The physical unit is associated to an efficiency cost outside the scope of the MoA. This is necessary not to redefine the same model again and again for energy, area, weight, etc. Definition 4 does not compel an MoA to match the internal structure of the hardware architecture, as long as the generated cost is of interest. An MoA for energy modeling can for instance be a set of algebraic equations relating application activity to the energy consumption of a platform. To keep a reasonably large scope, this chapter concentrates on graphical MoAs defined hereafter: Definition 5 A graphical MoA is an MoA that represents an architecture with a graph Λ = M, L,t, p where M is a set of "black-box" components and L ⊆ M × M is a set of links between these components.

The graph Λ is associated with two functions t and p. The type function t : M × L → T associates a type t ∈ T to each component and to each link. The type dedicates a component for a given service. The properties function p : M × L × Λ → P(P), where P represents powerset, gives a set of properties p i ∈ P to each component, link, and to the graph Λ itself. Properties are features that relate application activity to implementation efficiency.

When the concept of MoA is evoked throughout this chapter, a graphical MoA is supposed, respecting Definition 5. When a model of a system architecture is evoked that only partially compels with this definition, the term quasi-MoA is used, equivalent to quasi-moa in [2] and defined hereafter: Definition 6 A quasi-MoA is a model respecting some of the aspects of Definition 4 of an MoA but violating at least one of the three fundamental aspects of an MoA, i.e. reproducibility, application independence, and abstraction.

All state-of-the-art languages and models presented in Sections 6.2 and 6.3 define quasi-MoAs. As an example of a graphical quasi-MoAs, the graphical representation used in Figure 5.4 shows graphs Λ = M, L with two types of components (PE and CN), and one type of undirected link. However, no information is given on how to compute a cost when associating this representation with an application representation. As a consequence, reproducibility is violated. Next section illustrates the concept of MoA through the LSLA example.

Example of an MoA: the Linear System-Level Architecture Model (LSLA)

The LSLA model computes an additive reproducible cost from a minimalistic representation of an architecture [2]. As a consequence, LSLA fully complies with Definition 5 of a graphical MoA. The LSLA composing elements are illustrated in Figure 5.6. An LSLA model specifies two types of components: Processing Elements and Communication Nodes, and one type of link. LSLA is categorized as linear because the computed cost is a linear combination of the costs of its components. • P is a set of Processing Elements (PEs). A PE is an abstract processing facility with no assumption on internal parallelism, Instruction Set Architecture (ISA), or internal memory. A processing token τ P from application activity must be mapped to a PE p ∈ P to be executed.

• C is the set of architecture Communication Nodes (CNs). A communication token τ C must be mapped to a CN c ∈ C to be executed. • cost is a property function associating a cost to different elements in the model. The cost unit is specific to the non-functional property being modeled. It may be in mJ for studying energy or in mm 2 for studying area. Formally, the generic unit is denoted ν.

• L = {(n i , n j )|n i ∈ C, n j ∈ C ∪ P}
On the example displayed in Figure 5.6, PE 1-4 represent Processing Elements (PEs) while x, y and z are Communication Nodes (CNs). As an MoA, LSLA provides reproducible cost computation when the activity A of an application is mapped onto the architecture. The cost related to the management of a token τ by a PE or a CN n is defined by: cost :

T P ∪ T C × P ∪C → R τ, n → α n .size(τ) + β n , α n ∈ R, β n ∈ R (5.2)
where α n is the fixed cost of a quantum when executed on n and β n is the fixed overhead of a token when executed on n. For example, in an energy modeling use case, α n and β n are respectively expressed in energy/quantum and energy/token, as the cost unit ν represents energy. A token communicated between two PEs connected with a chain of CNs Γ = {x, y, z...} is reproduced card(Γ) times and each occurrence of the token is mapped to 1 element of Γ. This procedure is illustrated in Figure 5.7. In figures representing LSLA architectures, the size of a token size(τ) is abbreviated into s and the affine equations near CNs and PEs (e.g. 10s + 1) represent the cost computation related to Equation 5.2 with α n = 10 and β n = 1.

A token not communicated between two PEs, i.e. internal to one PE, does not cause any cost. The cost of the execution of application activity A on an LSLA graph Λ is defined as:

cost(A , Λ) = ∑ τ∈T P cost(τ, map(τ))+ λ ∑ τ∈T C cost(τ, map(τ)) (5.3)
where map : T P ∪ T C → P ∪C is a surjective function returning the mapping of each token onto one of the architecture elements.

• λ ∈ R is a Lagrangian coefficient setting the Computation to Communication Cost Ratio (CCCR), i.e. the cost of a single communication quantum relative to the cost of a single processing quantum.

Similarly to the SDF MoC [16], the LSLA MoA does not specify relations to the outside world. There is no specific PEs type for communicating with non-modeled parts of the system. This is in contrast with Architecture Analysis and Design Language (AADL) processors and devices that separate I/O components from processing components (Section 6.2.1). The Definition 1 of activity is sufficient to support LSLA and other types of additive MoAs. Different forms of activities are likely to be necessary to define future MoAs. Activity Definition 1 is generic to several families of MoCs, as demonstrated in [2].

Figure 5.7 illustrates cost computation for a mapping of the video compression application shown in Figure 5.3 b), described with the SDF MoC onto the big.LITTLE architecture of Figure 5.4 f), described with LSLA. The number of tokens, quanta and the cost parameters are not representative of a real execution but set for illustrative purpose. The natural scope for the cost computation of a couple (SDF, LSLA), provided that the SDF graph is consistent, is one SDF graph iteration [2]. The SDF application graph has 5 actors colorProc, pred, trans&Quant, entropyCod, and mux&Send and the 4 first actors will execute twice to produce the 2 image halves required by mux&Send. The LSLA architecture model has 8 PEs ARM j k with j ∈ {7, 15} and k ∈ {1, 2, 3, 4}, and 3 CNs SL2 1 , ACE and SL2 2 . Each actor execution during the studied graph iteration is transformed into one processing token. Each dataflow token transmitted during one iteration is transformed into one communication token. A token is embedding several quanta (white squares), allowing a designer to describe heterogeneous tokens to represent executions and messages of different weight.

In Figure 5.7, each execution of actors colorProc is associated with a cost of 3 quanta and each execution of other actors is associated to a cost of 4 quanta except mux&Send requiring 1 quantum. Communication tokens (representing one half image transfer) are given 5 quanta each. These costs are arbitrary here but should represent the relative computational burden of the task/communication.

Each processing token is mapped to one PE. Communication tokens are "routed" to the CNs connecting their producer and consumer PEs. For instance, the fifth and sixth communication tokens in Figure 5.7 are generating 3 tokens each mapped to SL2 1 , ACE and SL2 2 because the data is carried from ARM7 1 to ARM15 1 . It is the responsibility of the mapping process to verify that a link l ∈ L exists between the elements that constitute a communication route. The resulting cost, computed from Equations 5.2 and 5.3, is 266ν. This cost is reproducible and abstract, making LSLA an MoA.

What is New about MoAs?

LSLA is one example of an architecture model but many such models exist in literature. Next chapter studies different languages and models from literature and explains the difference existing between an MoA fully respecting Definition 4 and the quasi-MoAs state-of-the-art works define. 

Chapter Abstract

This chapter positions the concept of Models of Architecture (MoAs) in stateof-the-art languages and models for architecture description. This overview will be published in the third edition of the Handbook of Signal Processing Systems 1 . It covers three standard architecture modeling languages and four 1 Maxime Pelcat. Models of Architecture for DSP Systems. In Shuvra S Bhattacharyya, Ed F Deprettere, Rainer Leupers, and Jarmo Takala, editors, Handbook of signal processing systems, third edition. Springer Science & Business Media, to appear, 2017 models from literature to help the understanding of previous work on MoAs. All languages and models from literature are shown to define quasi-MoAs. Indeed, none of the defined models respect the three MoA-defining constraints specified in the previous chapter.

The AADL language is first studied and shown to define a quasi-MoA that is reproducible but does not separate architectural concerns from application concerns. Then, the quasi-MoA specified by the MCA SHIM standard language is explained. It is tailored to the needs of multicore partitioning tools and dedicated to time simulation. Finally, UML MARTE is demonstrated to specify 4 different quasi-MoAs with different simulation purposes. The computation of NFPs from these quasi-MoAs is based on designer's experience, which makes reproducibility not guaranteed.

The evolution of formal architectural models is then presented with four different models. These models have progressively introduced the notions of system-level architecture abstraction, multi-dimensional exploration, internal component parallelism and data transfer models. The notion of MoAs results from this evolution and a property table gathering the properties of the discussed models is presented.

Architecture Design Languages and their Architecture Models

This section studies the architecture models provided by three standard Architecture Design Languages (ADLs) targeting architecture modeling at systemlevel: AADL, MCA SHIM, and UML MARTE.

While AADL adopts an abstraction/refinement approach where components are first roughly modeled, then refined to lower levels of abstraction, UML MARTE is closer to a Y-Chart approach where the application and the architecture are kept separated and application is mapped to architecture.

For its part, MCA SHIM describes an architecture with "black box" processors and communications and puts focus on inter-PE communication simulation. All these languages have in common the implicit definition of a quasi-MoA (Definition 6). Indeed, while they define parts of graphical MoAs, none of them respect the 3 rules of MoA Definition 4.

The AADL Quasi-MoA

Architecture Analysis and Design Language (AADL) [START_REF] Peter | Model-based engineering with AADL: an introduction to the SAE architecture analysis & design language[END_REF] is a standard language released by SAE International, an organization issuing standards for the aerospace and automotive sectors. The AADL standard is referenced as AS5506 [START_REF]Architecture analysis and design language (aadl[END_REF] and the last released version is 2.2. Some of the most active tools supporting AADL are Ocarina 2 [START_REF] Lasnier | Ocarina: An environment for aadl models analysis and automatic code generation for high integrity applications[END_REF] and OS-2 https://github.com/OpenAADL/ocarina ATE 3 .

3 https://github.com/osate AADL provides semantics to describe a software application, a hardware platform, and their combination to form a system. AADL can be represented graphically, serialized in XML or described in a textual language [START_REF] Feiler | The architecture analysis & design language (AADL): An introduction[END_REF]. The term architecture in AADL is used in its broadest sense, i.e. a whole made up of clearly separated elements. A design is constructed by successive refinements, filling "black boxes" within the AADL context. Figure 6.2 shows two refinement steps for a video compression system in a camera. Blocks of processing are split based on the application decomposition of Figure 5.3 a). First, the system is abstracted with external data entering a video compression abstract component. Then, 4 software processes are defined for the processing. Finally, processes are transformed into 4 threads, mapped onto 2 processes. The platform is defined with 2 cores and a bus and application threads are allocated onto platform components. The allocation of threads to processors is not displayed. Sensor data is assigned a rate of 30 Hz, corresponding to 30 frames per second. Next sections detail the semantics of the displayed components.

Software, hardware and systems are described in AADL by a composition of components. In this chapter, we focus on the hardware platform modeling capabilities of AADL, composing an implicit graphical quasi-MoA. Partly respecting Definition 5, AADL represents platform with a graph Λ = M, L,t, p where M is a set of components, L is a set of links, t associates a type to each component and link and p gives a set of properties to each component and link. As displayed in Figure 6.3, AADL defines 6 types of platform components with specific graphical representations. The AADL component type set is such that t(c ∈ M) ∈ {system, processor, device, bus, memory, abstract}. There is one type of link t(l ∈ L) ∈ {connection}. A connection can be set between any two components among software, hardware or system. Contrary to the Y-chart approach, AADL does not separate application from architecture but makes them coexist in a single model. AADL is an extensible language but defines some standard component properties. These properties participate to the definition of the quasi-MoA determined by the language and make an AADL model portable to several tools. The AADL standard set of properties targets only the time behavior of components and differs for each kind of component. AADL tools are intended to compute NFP costs such as the total minimum and maximum execution latency of an application, as well as the jitter. An AADL representation can also be used to extract an estimated bus bandwidth or a subsystem latency [START_REF] Larsen | Modelling field robot software using aadl[END_REF].

Processors are sequential execution facilities that must support thread scheduling, with a protocol fixed as a property. AADL platform components are not merely hardware models but rather model the combination of hardware and low-level software that provides services to the application. In that sense, the architecture model they compose is conform to MoA Definition 4. However, what is mapped on the platform is software rather than an application. As a consequence, the separation of concerns between application and architecture is not supported (Section 5.2.3). For instance, converting the service offered by a software thread to a hardware IP necessitates to deeply redesign the model. A processor can specify a Clock_Period, a Thread_Swap_Execution_Time and an Assign_Time, quantifying the time to access memory on the processor. Time properties of a processor can thus be precisely set.

A bus can specify a fixed Transmission_Time interval representing best-and worst-case times for transmitting data, as well as a PerByte Transmission_-Time interval representing throughput. The time model for a message is thus an affine model w.r.t. message size. Three models for transfer cost computation are displayed in Figure 6.4: linear, affine, and stair. Most models discussed in the next sections use one of these 3 models. The interpretation of AADL time properties is precisely defined in [START_REF] Peter | Model-based engineering with AADL: an introduction to the SAE architecture analysis & design language[END_REF] Appendix A, making AADL time computation reproducible. A memory can be associated to a Read_Time, a Write_Time, a Word_Count and a Word_Size to characterize its occupancy rate. A device can be associated to a Period, and a Compute_Execution_Time to study sensors' and actuators' latency and throughput. Platform components are defined to support a software application. The next section studies application and platform interactions in AADL.

AADL aims at analyzing the time performance of a system's architecture, manually exploring the mapping (called binding in AADL) of software onto hardware elements. AADL quasi-MoA is influenced by the supported software model. AADL is adapted to the currently dominating software representation of Operating Systems (OS), i.e. the process and thread representation [START_REF] Peter | Model-based engineering with AADL: an introduction to the SAE architecture analysis & design language[END_REF]. An application is decomposed into process and thread components, that are purely software concepts. A process defines an address space and a thread comes with scheduling policies and shares the address space of its owner process. A process is not executable by itself; it must contain a least one thread to execute. AADL Threads are sequential, preemptive entities [START_REF] Peter | Model-based engineering with AADL: an introduction to the SAE architecture analysis & design language[END_REF] and requires scheduling by a processor. Threads may specify a Dispatch_Protocol or a Period property to model a periodic behavior or an event-triggered callback or routine.

A values or interval of Compute_Execution_Time can be associated to a thread. However, in real world, execution time for a thread firing depends on both the code to execute and the platform speed. Compute_Execution_Time is not related to the binding of the thread to a processor but a Scaling_Factor property can be set on the processor to specify its relative speed with regards to a reference processor for which thread timings have been set. This property is precise when all threads on a processor undergo the same Scaling_Factor, but this is not the case in general. For instance, if a thread compiled for the ARMv7 instruction set is first executed on an ARM Cortex-A7 and then on an ARM Cortex-A15 processor, the observed speedup depends much on the executed task. Speedups between 1.3× and 4.9× are reported in this context in 4 . 4 AADL provides constructs for data message passing through port features and data memory-mapped communication through require data access features. These communications are bound to busses to evaluate their timings.

A flow is neither a completely software nor a completely hardware construct. It specifies an end-to-end flow of data between sensors and actuators for steady state and transient timing analysis. A flow has timing properties such as Expected_Latency and Expected_Throughput that can be verified through simulation.

AADL specifies a graphical quasi-MoA, as it does define a graph of platform components. AADL violates the abstraction rule because cost properties are explicitely time and memory. It respects the reproducibility rule because details of timing simulations are precisely defined in the documentation. Finally, it violates the application independance rule because AADL does not conform to the Y-chart approach and does not separate application and architecture concerns.

AADL is a formalization of current best industrial practices in embedded system design. It provides formalization and tools to progressively refine a system from an abstract view to a software and hardware precise composition. AADL targets all kinds of systems, including transformational DSP systems managing data flows but also reactive system, reacting to sporadic events. The thread MoC adopted by AADL is extremely versatile to reactive and transformational systems but has shown its limits for building deterministic systems [START_REF] Edward | The problem with threads[END_REF] [START_REF] Van | Programming paradigms for dummies: What every programmer should know[END_REF]. By contrast, the quasi-MoAs presented in Section 6.3 are mostly dedicated to transformational systems. They are thus all used in conjunction with process network MoCs that help building reliable DSP systems. The next section studies another state-of-the-art language: MCA SHIM.

The MCA SHIM Quasi-MoA

The Software/Hardware Interface for Multicore/Manycore (SHIM) [START_REF] Gondo | Establishing a standard interface between multi-manycore and software tools-SHIM[END_REF] is a hardware description language that aims at providing platform information to multicore software tools, e.g. compilers or runtime systems. SHIM is a standard developped by the Multicore Association (MCA). The most recent released version of SHIM is 1.0 (2015) [START_REF]Multicore Association. Software/Hardware Interface for Multicore/Manycore (SHIM)[END_REF]. SHIM is a more focused language than AADL, modeling the platform properties that influence software performance on multicore processors.

SHIM components provide timing estimates of a multicore software. Contrary to AADL that mostly models hard real-time systems, SHIM primarily targets best-effort multicore processing. Timing properties are expressed in clock cycles, suggesting a fully synchronous system. SHIM is built as a set of UML classes and the considered NFPs in SHIM are time and memory. Timing performances in SHIM are set by a shim::Performance class that characterizes three types of software activity: instruction executions for instructions expressed in the LLVM instruction set, memory accesses, and inter-core communications. LLVM [START_REF] Lattner | LLVM: A compilation framework for lifelong program analysis & transformation[END_REF] is used as a portable assembly code, capable of decomposing a software task into instructions that are portable to different ISAs.

SHIM does not propose a chart representation of its components. However, SHIM defines a quasi-MoA partially respecting Definition 5. A shim::-SystemConfiguration object corresponds to a graph Λ = M, L,t, p where M is the set of components, L is the set of links, t associates a type to each component and link and p gives a set of properties to each component and link. A SHIM architecture description is decomposed into three main sets of elements: Components, Address Spaces and Communications. We group and rename the components (refered to as "objects" in the standard) to makes them easier to compare to other approaches. SHIM defines 2 types of platform components. The component types t(c ∈ M) are chosen among:

• processor (shim::MasterComponent), representing a core executing software. It internally integrates a number of cache memories (shim::Cache) and is capable of specific data access types to memory (shim::AccessType).

A processor can also be used to represent a Direct Memory Access (DMA),

• memory (shim::SlaveComponent) is bound to an address space (shim::Address-Space).

Links t(l ∈ L) are used to set performance costs. They are chosen among:

• communication between two processors. It has 3 subtypes:

fifo (shim::FIFOCommunication) refering to message passing with buffering,

-sharedRegister (shim::SharedRegisterCommunication) refering to a semaphore-protected register,

event (shim::EventCommunication for polling or shim::InterruptCommunication for interrupts) refering to inter-core synchronization without data transfer.

• memoryAccess between a processor and a memory (modeled as a couple shim::MasterSlaveBinding, shim::Accessor) sets timings to each type of data read/write accesses to the memory.

• sharedMemory between two processors (modeled as a triple shim::Shared-MemoryCommunication, shim::MasterSlaveBinding, and shim::Accessor) sets timing performance to exchanging data over a shared memory,

• InstructionExecution (modeled as a shim::Instruction) between a processor and itself sets performance on instruction execution.

Links are thus carrying all the performance properties in this model. Application activity on a link l is associated to a shim::Performance property, decomposed into latency and pitch. Latency corresponds to a duration in cycles while pitch is the inverse (in cycles) of the throughput (in cycles -1 ) at which a SHIM object can be managed. A latency of 4 and a pitch of 3 on a communication link, for instance, mean that the first data will take 4 cycles to pass through a link and then 1 data will be sent per 3 cycles. This choice of time representation is characteristic of the SHIM objective to model the average behavior of a system while AADL targets real-time systems. Instead of specifying time intervals [min..max] like AADL, SHIM defines triplets [min, mode, max] where mode is the statistical mode. As a consequence, a richer communication and execution time model can be set in SHIM. However, no information is given on how to use these performance properties present in the model. In the case of a communication over a shared memory for instance, the decision on whether to use the performance of this link or to use the performance of the shared memory data accesses, also possible to model, is left to the SHIM supporting tool.

MCA SHIM specifies a graphical quasi-MoA, as it defines a graph of platform components. SHIM violates the abstraction rule because cost properties are limited to time. It also violates the reproducibility rule because details of timing simulations are left to the interpretation of the SHIM supporting tools. Finally, it violates the application independance rule because SHIM supports only software, decomposed into LLVM instructions.

The modeling choices of SHIM are tailored to the precise needs of multicore tooling interoperability. The two types of tools considered as targets for the SHIM standard are Real-Time Operating Systems (RTOSs) and autoparallelizing compilers for multicore processors. The very different objectives of SHIM and AADL have lead to different quasi-MoAs. The set of components is more limited in SHIM and communication with the outside world is not specified. The communication modes between processors are also more abstract and associated to more sophisticated timing properties. The software activity in SHIM is concrete software, modeled as a set of instructions and data accesses while AADL does not go as low in terms of modeling granularity. To complement the study on a third language, the next section studies the different quasi-MoAs defined by the Unified Modeling Language (UML) MARTE language.

The UML MARTE Quasi-MoAs

The UML Profile for Modeling And Analysis Of Real-Time Embedded Systems (MARTE) is standardized by the Object Management Group (OMG) group. The last version is 1.1 and was released in 2011 [START_REF] Omg | UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems[END_REF]. Among the ADLs presented in this chapter, UML MARTE is the most complex one. It defines hundreds of UML classes and has been shown to support most AADL constructs [START_REF] Faugere | Marte: Also an uml profile for modeling aadl applications[END_REF]. MARTE is designed to coordinate the work of different engineers within a team to build a complex real-time embedded system. Several persons, expert in UML MARTE, should be able to collaborate in building the system model, annotate and analyze it, and then build an execution platform from its model. Like AADL, UML MARTE is focused on hard real-time application and architecture modeling. MARTE is divided into four packages, themselves divided into clauses. 3 of these clauses define 4 different quasi-MoAs. These quasi-MoAs are named QMoA i MART E | i ∈ {1, 2, 3, 4} in this chapter and are located in the structure of UML MARTE clauses illustrated by the following list:

• The MARTE Foundations package includes:

the Core Elements clause that gathers constructs for inheritance and composition of abstract objects, as well as their invocation and communication.

the Non-Functional Property (NFP) clause that describes ways to specify non-functional constraints or values (Section 5.2.2), with a concrete type.

the Time clause, specific to the time NFP.

the Generic Resource Modeling (GRM) clause that offers constructs to model, at a high level of abstraction, both software and hardware elements. It defines a generic component named Resource, with clocks and non-functional properties. Resource is the basic element of UML MARTE models of architecture and application. The quasi-MoA QMoA 1 MART E is defined by GRM and based on Resources. It will be presented in Section 6.2.3.

the Allocation Modeling clause that relates higher-level Resources to lower-level Resources. For instance, it is used to allocate Schedulable-Resources (e.g. threads) to ComputingResources (e.g. cores).

• The MARTE Design Model package includes:

the Generic Component Model (GCM) clause that defines structured components, connectors and interaction ports to connect core elements.

the Software Resource Modeling (SRM) clause that details software resources.

the Hardware Resource Modeling (HRM) clause that details hardware resources and defines QMoA 2 MART E and QMoA 3 MART E (Section 6.2.3). the High-Level Application Modeling (HLAM) clause that models realtime services in an OS.

• The MARTE Analysis Model package includes:

the Generic Quantitative Analysis Modeling (GQAM) clause that specifies methods to observe system performance during a time interval. It defines QMoA 4 MART E .

the Schedulability Analysis Modeling (SAM) clause that refers to thread and process schedulability analysis. It builds over GQAM and adds scheduling-related properties to QMoA 4 MART E . the Performance Analysis Modeling (PAM) clause that performs probabilistic or deterministic time performance analysis. It also builds over GQAM.

• MARTE Annexes include Repetitive Structure Modeling (RSM) to compactly represent component networks, and the Clock Constraint Specification Language (CCSL) to relate clocks.

The link between application time and platform time in UML MARTE is established through clock and event relationships expressed in the CCSL language [START_REF] Mallet | UML/MARTE CCSL, signal and petri nets[END_REF]. Time may represent a physical time or a logical time (i.e. a continuous repetition of events). Clocks can have causal relations (an event of clock A causes an event of clock B) or a temporal relations with type precedence, coincidence, and exclusion. Such a precise representation of time makes UML MARTE capable of modeling both asynchronous and synchronous distributed systems [START_REF] Mallet | Marte vs. aadl for discreteevent and discrete-time domains[END_REF]. UML MARTE is capable, for instance, of modeling any kind of processor with multiple cores and independent frequency scaling on each core.

The UML MARTE resource composition mechanisms give the designer more freedom than AADL by dividing his system into more than 2 layers. For instance, execution platform resources can be allocated to operating system resources, themselves allocated to application resources while AADL offers only a hardware/software separation. Multiple allocations to a single resource are either time multiplexed (timeScheduling) or distributed in space (spatialDistribution). Next sections explain the 4 quasi-MoAs defined by UML MARTE.

The UML MARTE Quasi-MoAs 1 and 4 The UML MARTE GRM clause specifies the QMoA 1 MART E quasi-MoA. It corresponds to a graph Λ = M, L,t, p where M is a set of Resources, L is a set of UML Connectors between these resources, t associates types to Resources and p gives sets of properties to 7 types of resources are defined in GRM. Some inconsistencies between resource relations make the standard ambiguous on resource types. As an example, CommunicationMedia specializes CommunicationResource on standard p.96 [START_REF] Omg | UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems[END_REF] while CommunicationMedia specializes ProcessingResource on standard p.99. SynchResource disappears after definition and is possibly equivalent to the later SwSynchronizationResource. Considering the most detailed descriptions as reference, types of resources (illustrated in Figure 6 • a Timing Resource representing a clock or a timer, fixing a clock rate.

• a Storage Resource representing memory, associated with a unit size and number of units. Memory read and write occur in 1 clock cycle.

• a Concurrency Resource representing several concurrent flows of execution. It is a generalization of SchedulableResources that model logical concurrency in threads and processes.

The communication time model of QMoA 1 MART E , set by the Communication Media, is the affine model illustrated in Figure 6.4. Precise time properties are set but the way to correctly compute a timing at system-level from the set of resource timings is not explicitely elucidated.

QMoA 1 MART E can be used for more than just time modeling. ResourceUsage is a way to associate physical properties to the usage of a resource. When events occur, amounts of physical resources can be specified as "consumed". A resource consumption can be associated to the following types of NFPs values: energy in Joules, message size in bits, allocated memory in bytes, used memory in bytes (representing temporary allocation), and power peak in Watts.

The Generic Quantitative Analysis Modeling (GQAM) package defines another quasi-MoA (QMoA 4 MART E ) for performing the following set of analysis: counting the repetitions of an event, determining the probability of an execution, determining CPU requirements, determining execution latency, and determining throughput (time interval between two occurrences). New resources named GaExecHost (ExecutionHost) and GaCommHost (CommunicationHost) are added to the ones of QMoA 1 MART E and specialize the ProcessingResource for time performance and schedulability analysis, as well as for the analysis of other NFPs. QMoA 4 MART E is thus close to QMoA 1 MART E in terms of resource semantics but additional properties complement the quasi-MoA. In terms of MoAs, QMoA 1 MART E and QMoA 4 MART E have the same properties and none of them clearly states how to use their properties.

The UML MARTE Quasi-MoAs 2 and 3 The UML MARTE Hardware Resource Modeling (HRM) defines two other, more complex quasi-MoAs than the previously presented ones: QMoA 2 MART E (logical view) and QMoA 3

MART E

(physical view). An introduction of the related software model is necessary before presenting hardware components because the HRM is very linked to the SRM software representation. In terms of software, the UML MARTE standard constantly refers to threads as the basic instance, modeled with a swSchedulable-Resource. The swSchedulableResources are thus considered to be managed by an RTOS and, like AADL, UML MARTE builds on industrial best practices of using preemptive threads to model concurrent applications. In order to communicate, a swSchedulableResource references specifically defined software communication and synchronization resources.

The HW _ Logical subclause of HRM refers to 5 subpackages: HW _ Computing, HW _ Communication, HW _ Storage, HW _ Device, and HW _ Timing. It composes a complex quasi-MoA referred to as QMoA 2 MART E in this chapter. For brevity and clarity, we will not enter the details of this quasi-MoA but give some information on its semantics.

The UML MARTE QMoA 2 MART E quasi-MoA is, like AADL, based on a HW/SW separation of concerns rather than on an application/architecture separation. In terms of hardware, UML MARTE tends to match very finely the real characteristics of the physical components. UML MARTE HRM is thus torn between the desire to match current hardware best practices and the necessity to abstract away system specificities. A QMoA 2 MART E processing element for instance can be a processor, with an explicit Instruction Set Architecture (ISA), caches, and a Memory Management Unit (MMU), or it can be a Programmable Logic Device (PLD). In the description of a PLD, properties go down to the number of available LUTs on the PLD. However, modern PLDs such as FPGAs are far too heterogeneous to be characterized by a number of LUTs. Moreover, each FPGA has its own characteristics and in the space domain, for instance, FPGAs are not based on a RAM configuration memory, as fixed in the MARTE standard, but rather on a FLASH configuration memory. These details show the interest of abstracting an MoA in order to be resilient to the fast evolution of hardware architectures.

HW _ Physical composes the QMoA 3 MART E quasi-MoA and covers coarsergrain resources than QMoA 2

MART E , at the level of a printed circuit board. Properties of resources include shape, size, position, power consumption, heat dissipation, etc.

Interpreting the technological properties of HRM quasi-MoAs QMoA 2

MART E

and QMoA 3 MART E is supposed to be done based on designer's experience be-cause the UML MARTE properties mirror the terms used for hardware design. This is however not sufficient to ensure the reproducibility of a cost computation.

Conclusions on UML MARTE Quasi-MoAs When considering as a whole the 4 UML MARTE quasi-MoAs, the standard does not specify how the hundreds of NFP standard resource parameters are to be used during simulation or verification. The use of these parameters is supposed to be transparent, as the defined resources and parameters match current best practices. However, best practices evolve over time and specifying precisely cost computation mechanisms is the only way to ensure tool interoperability in the lon run. UML MARTE quasi-MoAs do not respect the abstraction rule of MoAs because, while cost properties target multiple NFPs, each is considered independently without capitalizing on similar behaviors of different NFPs. Finally, QMoA 1 MART E and QMoA 4 MART E respect the application independance rule, and even extend it to the construction of more than 2 layers, while QMoA 2 MART E and QMoA 3 MART E rather propose a HW/SW decomposition closer to AADL.

Conclusions on ADL Languages

AADL and UML MARTE are both complete languages for system-level design that offer rich constructs to model a system. MCA SHIM is a domainspecific language targeted to a more precise purpose. While the 3 languages strongly differ, they all specify quasi-MoAs with the objective of modeling the time behavior of a system, as well as other non-functional properties. None of these 3 languages fully respects the three rules of MoA's Definition 4. In particular, none of them abstracts the studied NFPs to make generic the computation of a model's cost from the cost of its constituents. Abstraction is however an important feature of MoAs to avoid redesigning redundant simulation mechanisms.

To complement this study on MoAs, the next section covers four formal quasi-MoAs from literature.

Formal Quasi-MoAs

In this Section, we put the focus on graphical quasi-MoAs that aim at providing system efficiency evaluations when combined with a model of a DSP application. The models and their contribution are presented chronologically.

The AAA Methodology Quasi-MoA

In 2003, an architecture model is defined for the Algorithm-Architecture Matching (AAA) Y-chart methodology, implemented in the SynDEx tool [START_REF] Grandpierre | From algorithm and architecture specifications to automatic generation of distributed real-time executives: a seamless flow of graphs transformations[END_REF]. The AAA architecture model is tailored to the needs of an application model that splits processing into tasks called operations arranged in a DAG representing data dependencies between them.

The AAA architecture model is a graphical quasi-MoA Λ = M, L,t, p , where M is a set of components, L is a set of undirected edges connecting these components, and t and p respectively give a type and a property to components. As illustrated in Figure 6.6, there are three types t ∈ T of components, each considered internally as a Finite State Machine (FSM) performing sequencially application management services : memory, sequencer, and bus/multiplexer/demultiplexer (B/M/D). For their part, edges only model the capacity of components to exchange data. In this model, a memory is a Sequencial Access Memory (SAM) or a Random Access Memory (RAM). A SAM models a FIFO for message passing between components. A SAM can be point-to-point or multipoint and support or not broadcasting. A SAM with broadcasting only pops a data when all readers have read the data. A RAM may store only data (RAM D ), only programs (RAM P ) or both (RAM DP ). When several sequencers can write to a memory, it has an implicit arbiter managing writing conflicts.

A sequencer is of type operator or communicator. An operator is a PE sequencially executing operations stored in a RAM P or RAM DP . An operation reads and writes data from/to a RAM D or RAM DP connected to the operator. A communicator models a DMA with a single channel that executes communications, i.e. operations that transfer data from a memory M 1 to a memory M 2 . For the transfer to be possible, the communicator must be connected to M 1 and M 2 .

A B/M/D models a bus together with its multiplexer and demultiplexer that implement time division multiplexing of data. As a consequence, a B/M/D represents a sequential schedule of transfered data. A B/M/D may require an arbiter, solving write conflicts between multiple sources. In the AAA model, the arbiter has a maximum bandwidth BPMax that is shared between writers and readers. Figure 6.7 shows an example, inspired by [START_REF] Grandpierre | From algorithm and architecture specifications to automatic generation of distributed real-time executives: a seamless flow of graphs transformations[END_REF], of a model conforming the AAA quasi-MoA. It models the 66AK2L06 processor [START_REF]Texas Instruments. 66AK2L06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) -SPRS930[END_REF] from Texas Instruments illustrated in Figure 5.4 g). Operators must delegate communication to communicators that access their data memory. The architecture has hardware cache coherency on ARM side (L2CC for L2 Cache Control) and software cache coherency on c66x side (SL2C for Software L2 Coherency). The com-munication between ARML2 and MSMC memories is difficult to model with AAA FSM components because it is performed by a NoC with complex topology and a set of DMAs so it has been represented as a network of B/M/Ds and communicators in Figure 6.7. Properties p on components and edges define the quasi-MoA. An operator Op has an associated function δ Op setting a Worst Case Execution Time (WCET) duration to each operation δ Op (o) ∈ R ≥0 where O is the set of all operations in the application. This property results from the primary objective of the AAA architecture model being the computation of an application WCET. Each edge of the graph has a maximum bandwidth B in bits/s. The aim of the AAA quasi-MoA is to feed a multicore scheduling process where application operations are mapped to operators and data dependencies are mapped to routes between operators, made of communicators and busses. Each operator and communicator being an FSM, the execution of operations and communications on a given sequencer is totally ordered. The application graph being a DAG, the critical path of the application is computed and represents the latency of one execution, i.e. the time distance beween the beginning of the first operation and the end of the last operation. The computation of the latency from AAA application model and quasi-MoA in [START_REF] Grandpierre | From algorithm and architecture specifications to automatic generation of distributed real-time executives: a seamless flow of graphs transformations[END_REF] is implicit. The behavior of the arbiter is not specified in the model so actual communication times are subject to interpretations, especially regarding the time quantum for the update of bandwidth utilization.

The AAA syntax-free quasi-MoA is mimicking the temporal behavior of a processing hardware in order to derive WCET information on a system. Many hardware features can be modeled, such as DMAs; shared memories and hardware FIFO queues. Each element in the model is sequential, making a coarse-grain model of an internally parallel component impossible. There is no cost abstraction but the separation between architecture model and application model is respected. The model is specific to dataflow application latency computation, with some extra features dedicated to memory requirement computation. Some performance figures are subject to interpretation and latency computation for a couple application/architecture is not specified.

The AAA model contribution is to build a system-level architecture model that clearly separates architecture concerns from algorithm concerns. Next section discusses a second quasi-MoA, named CHARMED.

The CHARMED Quasi-MoA

In 2004, the CHARMED co-synthesis framework [START_REF] Kianzad | CHARMED: A multi-objective co-synthesis framework for multi-mode embedded systems[END_REF] is proposed that aims at optimizing multiple system parameters represented in Pareto fronts. Such a multi-parameter optimization is essential for DSE activities, as detailed in [START_REF] Pimentel | Exploring exploration: A tutorial introduction to embedded systems design space exploration[END_REF].

In the CHARMED quasi-MoA Λ = M, L,t, p , M is a set of PEs, L is a set of Communication Resources (CR) connecting these components, and t and p respectively give a type and a property to PEs and CRs. There is only one type of component so in this model, t = PE. Like in the AAA architecture model, PEs are abstract and may represent programmable microprocessors as well as hardware IPs. The PE vector of properties p is such that p(PE ∈ M) = [α, κ, µ d , µ i , ρ idle ] T where α denotes the area of the PE, κ denotes the price of the PE, µ d denotes the size of its data memory, µi denotes the instruction memory size and ρ idle denotes the idle power consumption of the PE. Each CR edge also has a property vector: p(CR ∈ L) = [ρ, ρ idle , θ ] T where ρ denotes the average power consumption per each unit of data to be transferred, ρ idle denotes idle power consumption and θ denotes the worst case transmission rate or speed per each unit of data.

This model is close to the concept of MoA as stated by Definition 4. However, instead of abstracting the computed cost, it defines many costs altogether in a vector. This approach limits the scope of the approach and CHARMED metrics do not cover the whole spectrum on NFPs shown in Section 5.2.2. The CHARMED architecture model is combined with a DAG task graph of a stream processing application in order to compute costs for different system solutions. A task in the application graph is characterized by its required instruction memory µ, its Worst Case Execution Time WCET and its average power consumption ℘ avg while a DAG edge is associated with a data size δ . The cost for a system x has 6 dimensions: the area α(x), the price κ(x), the number of used inter-processor routes l n (x), the memory requirements µ(x), the power consumption ℘(x) and the latency τ(x). Each metric has an optional maximum value and can be set either as a constraint (all values under the constraint are equally good) or as an objective to maximize.

Cost computation is not fully detailed in the model. We can deduce from definitions that PEs are sequential units of processing where tasks are timemultiplexed and that a task consumes℘ avg ×WCET energy for each execution. The power consumption for a task is considered independent of the PE executing it. The latency is computed after a complete mapping and scheduling of the application onto the architecture. The price and area of the system are the sums of PE prices and areas. Memory requirements are computed from data and instruction information respectively on edges and tasks of the application graph. Using an evolutionary algorithm, the CHARMED framework produces a set of potential heterogeneous architectures together with task mappings onto these architectures.

For performing DSE, the CHARMED quasi-MoA has introduced a model that jointly considers different forms of NFP metrics. The next section presents a third quasi-MoA named System-Level Architecture Model (S-LAM).

6.3.3

The System-Level Architecture Model (S-LAM) Quasi-MoA

In 2009, the S-LAM model 5 is proposed to be inserted in the PREESM rapid 5 M. Pelcat, J.-F. Nezan, J. Piat, Jerome Croizer, and S. Aridhi. A system-level architecture model for rapid prototyping of heterogeneous multicore embedded systems. In Proceedings of DASIP conference, 2009 prototyping tool. S-LAM is designed to be combined with an application model based on extensions of the Synchronous Dataflow (SDF) dataflow MoC and a transformation of a UML MARTE architecture description into S-LAM has been conducted in 6 . 6 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid. Automatic generation of s-lam descriptions from uml/marte for the dse of massively parallel embedded systems. In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2015. Springer, 2016 S-LAM defines a quasi-MoA Λ = M, L,t, p where M is a set of components, L is a set of links connecting them, and t and p respectively give a type and a property to components. As illustrated in Figure 6.8, there are five instantiable types of components: operator, parallel node, contention node, RAM, and DMA. Operators represent astract processing elements, capable of executing tasks (named actors in dataflow models) and of communicating data through links. Actors' executions are time-multiplexed over operators, as represented by the black dot on the graphical view, symbolizing scheduling. There are also data links and control links. A data link represents the ability to transfer data between components. Control links specify that an operator can program a DMA. Two actors can not be directly connected by a data link. A route must be built, comprising at least one parallel node or one contention node. A parallel node N p virtually consists of an infinite number of data channels with a given speed σ (N p ) in Bytes/s. As a consequence, no scheduling is necessary for the data messages sharing a parallel node. A contention node N c represents one data channels with speed σ (N c ). Messages flowing over a contention node need to be scheduled, as depicted by the black dot in its representation. This internal component parallelism is the main novelty of S-LAM w.r.t. the AAA model. When transferring a data from operator O 1 to operator O 2 , three scenarios are considered:

1. direct messaging: the sender operator itself sends the message and, as a consequence, cannot execute code simultaneously. It may have direct access to the receiver's address space or use a messaging component. has for primary purpose system time simulation. An S-LAM model can be more compact than an AAA model because of internal component parallelism. Indeed, there is no representation of a bus or bus arbiter in S-LAM and the same communication facility may be first represented by a parallel node to limit the amount of necessary message scheduling, then modeled as one or a set ofcontention nodes with or without DMA to study the competition for bus resources. Moreover, contrary to the AAA model, operators can send data themselves. Figure 6.9 illustrates such a compact representation on the same platform example than in Figure 6.7. Local PE memories are ignored because they are considered embedded in their respective operator. The TeraNet NoC is modeled with a parallel node, modeling it as a bus with limited throughput but with virtually infinite inter-message parallelism. As in the AAA model, an S-LAM operator is a sequential PE. This is a limitation if a hierarchical architecture is considered where PEs have internal observable parallelism. S-LAM operators have an operator ISA type (for instance ARMv7 or C66x) and each actor in the dataflow application is associated to an execution time cost for each operator type. S-LAM clearly separates algorithm from architecture but it does not specify cost computation and does not abstract computation cost.

S-LAM has introduced a compact quasi-MoA to be used for DSP applications. The next section presents one last quasi-MoA from literature.

The MAPS Quasi-MoA

In 2012, a quasi-MoA is proposed in [START_REF] Mazo | Programming Heterogeneous MP-SoCs[END_REF] for programming heterogeneous MPSoCs in the MAPS compiler environment. It combines the multi-modality of CHARMED with a sophisticated representation of communication costs. The quasi-MoA serves as a theoretical background for mapping multiple concurrent transformational applications over a single MPSoC. It is combined with KPN application representations [START_REF] Kahn | The semantics of a simple language for parallel programming[END_REF] and is limited to the support of software applications.

The MAPS quasi-MoA is a graph Λ = M, L,t, p where M is a set of PEs, L is a set of named edges called Communication Primitives (CPs) connecting them, and t and p respectively give a type and a property to components. Each PE has properties p(PE ∈ M) = (CM PT , X PT ,V PT ) where CM PT is a set of functions associating NFP costs to PEs. An example of NFP is ζ PT that associates to a task T i in the application an execution time ζ PT (T i ). X PT is a set of PE attributes such as context switch time of the OS or some resource limitations, and V PT is a set of variables, set late after application mapping decisions, such as the processor scheduling policy. A CP models a software Application Programming Interface (API) that is used to communicate among tasks in the KPN application. A CP has its own set of cost model functions CM CP associating costs of different natures to communication volumes. A function ζ CP ∈ CM CP is defined. It associates a communication time ζ CP (N) to a message of N bytes. Function ζ CP is a stair function modeling the message overhead and performance bursts frequently observed when transferring data for instance with a DMA and packetization. This function, displayed in Figure 6.4, is expressed as: This quasi-MoA does not specify any cost computation procedure from the data provided in the model. Moreover, the MAPS architecture model, as the other architecture models presented in this Section, does not abstract the generated costs. Next section summarizes the results of studying the four formal architecture models.
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Evolution of Formal Architecture Models

The four presented models have inspired the Definition 4 of an MoA. Theses formal models have progressively introduced the ideas of:

• architecture abstraction by the AAA quasi-MoA [START_REF] Grandpierre | From algorithm and architecture specifications to automatic generation of distributed real-time executives: a seamless flow of graphs transformations[END_REF],

• architecture modeling for multi-dimensional DSE by CHARMED [START_REF] Kianzad | CHARMED: A multi-objective co-synthesis framework for multi-mode embedded systems[END_REF],

• internal component parallelism by S-LAM • complex data transfer models by MAPS [START_REF] Mazo | Programming Heterogeneous MP-SoCs[END_REF].

The next section concludes this chapter on MoAs for DSP systems.

Concluding Remarks on the State-of-the-art of MoA and quasi-MoAs for stream processing systems

In this chapter, the notions of Model of Architecture (MoA) and quasi-MoA have been defined and several models have been studied, including fully abstract models and language-defined models. To be an MoA, an architecture model must capture efficiency-related features of a platform in a reproducible, abstract and application-agnostic fashion.

The existence of many quasi-MoAs and their strong resemblance demonstrate the need for architecture modeling semantics. Table 6.1 summarizes the objectives and properties of the different studied models. As explained throughout this chapter, LSLA is, to the extent of our knowledge, the only model to currently comply with the 3 rules of MoA definition (Definition 4).

Model

Repro LSLA is one example of an MoA but many types of MoAs are imaginable, focusing on different modalities of application activity such as concurrency or spatial data locality. A parallel with MoCs on the application side of the Ychart motivates for the creation of new MoAs. MoCs have the ability to greatly simplify the system-level view of a design, and in particular of a DSP design. For example, MoCs based on Dataflow Process Networks (DPNs) are able to simplify the problem of system verification by defining globally asynchronous systems that synchronize only when needed, i.e. when data moves from one location to another. DPN MoCs are naturally suited to modeling DSP applications that react upon arrival of data by producing data. MoAs to be combined with DPN MoCs do not necessarily require the description of complex relations between data clocks. They may require only to assess the efficiency of "black box" PEs, as well as the efficiency of transferring, either with shared memory or with message passing, some data between PEs. This opportunity is exploited in the semantics of the 4 formal languages presented in Section 6.3 and can be put in contrast with the UML MARTE standard that, in order to support all types of transformational and reactive applications, specifies a generic clock relation language named CCSL [START_REF] Mallet | UML/MARTE CCSL, signal and petri nets[END_REF].

The 3 properties of an MoA open new opportunities for system design. While abstraction makes MoAs adaptable to different types of NFPs, cost computation reproducibility can be the basis for advanced tool compatility. Independance from application concerns is moreover a great enabler for Design Space Exploration methods.

Architecture models are also being designed in other domains than Digital Signal Processing. As an example in the HPC domain, the Open MPI Portable Hardware Locality (hwloc) [START_REF] Goglin | Managing the topology of heterogeneous cluster nodes with hardware locality (hwloc)[END_REF] models processing, memory and communication resources of a platform with the aim of improving the efficiency of HPC applications by tailoring thread locality to communication capabilities. Similarly to most of the modeling features described in this chapter, the hwloc features have been chosen to tackle precise and medium-term objectives. The convergence of all these models into a few generic MoAs covering different aspects of design automation is a necessary step to manage the complexity of future large scale systems.

The next chapter complements our study by illustrating the use of an MoA on a practical case study. 

Models of Architecture in Practice

Chapter Abstract

The MoA named Linear System-Level Architecture Model (LSLA) has been introduced in Section 5.3.2. As an MoA, it abstracts the internal organisation of a computing platform. This MoA has also been demonstrated in the Section 5.3.2 to compute an abstract NFP cost when combined with a SDF modeled application. Its linear nature comes from the fact that it computes a NFP cost as a linear combination of individual costs due to an application activity.

In this chapter, LSLA is further studied in collaboration with SDF. The Chapter demonstrates the capacity of a simple LSLA MoA to model in practice the energy consumption of a complex MPSoC. The parameters of the LSLA model are learnt from physical measurements of the platform energy consumption by linear regression. The additive nature of energy consumption is used to abstract away many of the hardware and software features and still efficiently predict energy.

The generated model is shown to represent the hardware behavior with a fidelity of 86% while the model remains simple and inexpensive. Such result is a great incentive to progress further in MoA semantics formulation and MoAbased system design.

Learning an LSLA Model from Platform Measurements

This section first introduces a method to learn the parameters of a LSLA model from hardware measurements of the MoA-modeled cost. The method being based on algebra, the next section presents an algebraic representation of an LSLA model. This study has been made public in a research report 1 . 

Algebraic Expression of costs in an LSLA Model

Let us consider an LSLA model (Section 5.3.2) with fixed topology, i.e. the sets P, C and L of respectively PEs, CNs and Links are fixed. The parameters α n and β n are initially unknown and will be learnt from measurements of the modeled non-functional property on the platform (e.g. energy). The Lagrangian coefficient λ is fixed to 1. The parameters of an LSLA MoA are gathered in a vector m of size 2η such that: m = (α n , ∀n ∈ P ∪C; β n , ∀n ∈ P ∪C).

(7.1)

The size of 2η is due to the concatenation of token-and quanta-related parameters. An arbitrary order is thus chosen for PEs and CNs and the perquantum costs α n and per-token costs β n are concatenated in a unique vector.

Applying Parameter Estimation to LSLA Model Inference

Parameter estimation [START_REF] Aster | Parameter estimation and inverse problems[END_REF] consists of solving an inverse problem to learn the parameters of a model from real-life measurements. In the case of LSLA, the relationship between activity and cost is assumed to be linear and the inverse problem is solved by a linear regression. A series of measured cost d can be ideally expressed as the result of the following forward problem:

d = Gm + ε, (7.2) 
where d = (d 1 , ..., d M ) T is a set of M cost samples (e.g. energy samples), m is the vector of 2η costs defined in Equation 7.1, ε is the measurements noise resulting in the error vector ε = (ε 1 , ..., ε m ), and each line G k ∈ G corresponds to an activity vector containing the number of quanta and tokens mapped to the corresponding PEs or CNs for a sample d k . G k can be decomposed into:

G k = ( ∑ size(τ), ∀τ ∈ M k (n 1 ); ∑ size(τ), ∀τ ∈ M k (n 2 ); ...; ∑ size(τ), ∀τ ∈ M k (n η ); card(M k (n 1 )); card(M k (n 2 )); ...; card(M k (n η ))) (7.3) 
where M k : P ∪ C → T P ∪ T C is the mapping function for experiment k that associates to each PE or CN the set of tokens executed by this component. card refers to the cardinality of the considered set, i.e. the number of tokens while the sum of sizes return the number of quanta.

In order to obtain reliable parameter values, the system is overdetermined by performing more measurements than there are parameters in the model, i.e. M >> 2η. Furthermore, the error vector ε is assumed as random variable with zero mean µ ε and constant standard deviation σ ε among samples. From the forward problem in Equation 7.2, we can derive the Ordinary Least Square (OLS) solution to the inverse problem [START_REF] Aster | Parameter estimation and inverse problems[END_REF]:

m L2 = (G T G) -1 G T d. (7.4) 
This equation performs the training of the model. m L2 is thus a set of parameters α n and β n , deduced from measurements d, that can be entered in the LSLA model. For a new system activity G ′ , cost evaluation is computed with:

d LSLA = G ′ m L2 . (7.5)
This equation performs the prediction of the cost based on the LSLA model and on the application activity. The residual error of the prediction can be evaluated as follows:

ε m = d LSLA m -d m m = 1, ..., M (7.6) 
where the error term is expressed as the deviation between measures and the trained model. Such residuals represent the measures' variability that is not considered in the regression model (e.g., correlated side-effect among measures) [START_REF] Douglas C Montgomery | Introduction to linear regression analysis[END_REF]. In section 7.3.4, the impact of the error term ε on the trained model is empirically evaluated. In the next section, parameter inference is put into practice for predicting the energy consumption of an MPSoC. We intend to model with LSLA the dynamic energy consumption when executing an application, modeled with SDF, on an MPSoC running at full speed where the number of cores reserved for the application is tuned. The motivation for this study lies in the hypothesis that dynamic energy consumption depends additively on application activity. The modeled architecture is an Exynos 5422 processor from Samsung. This processor is integrated in an Odroid-XU3 platform that offers real-time power consumption measurements of the cores and memory. The Exynos 5422 processor embeds 8 ARM cores in a big.LITTLE configuration. Four of the cores are of type Cortex-A7 and form an A7 cluster sharing a clock with frequency up to 1.4GHz. The four remaining cores are of type Cortex-A15 and form an A15 cluster with frequency up to 2GHz. An external Dynamic Random Access Memory (DRAM) of 2GBytes is connected as a Package on Package (PoP). A Linux Ubuntu Symmetric Multiprocessing (SMP) operating system is running on the platform. Four Texas Instruments INA231 power sensors measure the instantaneous power of the A7 cluster, the A15 cluster, the Graphics Processing Unit (GPU) and the external DRAM memory. The energy consumed by the GPU is left out of the scope of the chapter but its modeling with an MoA constitutes a promising extension. Power values are read from an I 2 C driver. A lightweight script runs in parallel to the measured program, forces the processor to run at full speed and reports current and voltage at 10Hz during program execution. This data is exported into files to be processed offline. In our experiments, the power measurements from the A7 and A15 clusters and the memory are summed up and used as the energy consumption vector d.

Experimental Evaluation with LSLA of an MP-

Choosing the lsla topology

We consider a fixed target platform from which a model is learnt. While the parameters set on PEs and CNs are learnt, their number and topology are chosen, based on assumptions and on prior knowledge of the real hardware features. This type of model is qualified as a "hybrid combination of mechanistic and empirical modeling" in [START_REF] Pimentel | Exploring exploration: A tutorial introduction to embedded systems design space exploration[END_REF]. Mechanistic choices are made "from a basic understanding of the mechanics of the modeled system" while empirical modeling corresponds to the set of trained parameters. A method is introduced hereunder to perform the mechanistic choices. It is assumed that the hardware being characterized preexists the study. The method is decomposed into: Applying this method to the experimental setup, the 8 PEs corresponding to the 8 cores of the Exynos 5422 processor are first instantiated. Then, each cluster being connected by a shared memory with hardware cache coherency, A7 and A15 clusters are each associated to a CN connecting the 4 cores of the CN. Finally, The ARM ACE (AXI Coherency Extension) higher-level cache coherency protocol, connecting the two clusters, is associated to a CN. The resulting model is shown at the bottom of Figure 7.2.

Once this mechanistic model creation step has been performed, the model may be simplified to reduce its number of parameters. First, two connected CNs may be connected if 1-the number of tokens crossing each CN is forecast or measured to be equivalent, or 2-one of the 2 CNs is forecast or measured to strongly dominate the other in terms of generated cost. Moreover, equivalently performing PEs can be merged to simplify the model. Such a model simplification will be experimented in Section 7.3.4. [35]. PREESM then generates a self-timed multicore code for the application that runs on the target platform. The internal code of the actors is manually written in C code. PREESM manages the inter-core communication and allocates the application buffers statically in the .bss segment of the executable. PREESM generates one thread per target core and forces the thread to the corresponding core via affinities.

Communication between actors occurs through shared memory with cache coherency between different threads. Semaphores are instantiated to synchronize memory accesses. The whole procedure of mapping, scheduling and generating code with PREESM is either manually launched or scripted. For the current experiment, scripts have been developed to automate large numbers of code generations, compilations, application executions and energy measurements. An application activity exporter has also been added to PREESM that computes the activity for each core, from which α n and β n LSLA parameters are learnt. Finally, once its parameters have been learnt, the LSLA model of the platform can be used, together with application activity information, to neighboring pixels. AggregateCosts computes the matching cost of each pixel for a given disparity. Computations are based on an iterative method that is executed NbOffsets times. DisparitySelect produces a disparity map by computing the disparity of the input cost map from the lowest matching cost for each pixel. RoundBuffer forwards the last disparity map consumed on its input port to its output port. MedianFilter applies a 3×3 pixels median filter to the input disparity map to smooth the results. The filter is data parallel and 15 occurrences of the actor are fired to process 15 slices in the image. Finally, Display writes the depth map in a file. The SDF description of the algorithm provides a high degree of parallelism since it is possible to execute in parallel the repetitions of the three most computationally intensive actors: CostConstruction, AggregateCosts, and Com-puteWeights.

The generated application code is compiled by GCC with -O3 optimization. For each configuration, 255 different PE mappings are tested by enabling different subsets of the platform cores. PREESM schedules the application on the subsets with the objective of minimizing application latency.

Energy Measurements Only the dynamic energy consumption is considered in this experiment. All the eight cores are activated and their frequency is fixed at their maximum. Thus, the static power, measured at 2.4362W in the given conditions, is subtracted from power samples. d in Equation 7.2 is a vector of energy samples expressed in Joules. The energy of an application execution is measured by integrating the instantaneous power consumed by the A7 cluster, the A15 cluster and the memory during application execution time.

The unit being measured and analyzed is one execution of the application, from the beginning of the retrieval of 2 images to the end of the production of a depth map. By varying application parameters and the set of authorized cores, a population of executions is built, modeled and analyzed.

Application Activity The activity of the application must be expressed in terms of tokens and quanta (Section 5.3). The stereo matching application is represented by a static SDF graph and the computational loads of its actors do not depend on input data. Its application activity does thus not depend on input data. For supporting a more dynamic application with data-dependent loads and topology, a time scope, as well as training input data, representative of application data, would be necessary be chosen to compute activity.

Several possibilities arise when choosing the format of tokens and quanta. In the code generated by PREESM, each PE runs a loop that processes a schedule of actors and the different PEs are synchronized by blocking messages. Using PREESM information, the number of computational tokens on a given PE is set to the number of actor firings onto this PE and the number of communication tokens is the number of messages between actors. Time computational quanta in nanoseconds are used, corresponding to the execution time of the actor on the considered core. They are measured by repeating actor execution and running the C clock() function to retrieve timings. This operation is automated in the PREESM tool. As an example, the timings of actors for application configuration 4 are shown in Table 7.2. Communication quanta correspond to the size of exchanged messages (in Bytes).

Instead of time computation quanta, the per-actor computational energy could be used. Each computation quantum could correspond, for instance, to 1mJ of energy to execute the actor on the considered core. Such an approach requires each actor to be characterized in energy. Section 7.3.4 evokes how energy quanta could be used to extend the present study. Activity focuses on particular aspects of a design while ignoring others. For instance, applicationrelated GPU and cache activities are not modeled in the chosen application activity and they are also ignored in the MoA. As the energy of cores is measured independently from the energy of the GPU, the model can ignore its presence. However, the multiport caches with hardware coherency management are being measured and their activity depend on the data flowing between cores. In the built model, the energetic cost of managing a message by cache coherency is assumed to be affine w.r.t number and sizes of messages. This model is basic but proves useful in the next sections. More sophisticated MoAs could be developed to precise simulation. The parameter λ of the LSLA model is fixed to 1 in the following experiments. λ aims at obtaining similar orders of magnitude for computation and communication tokens. It can be fixed to 1 here because the units for communication quanta (Bytes) and computation quanta (ns) have been chosen so that communication-related and computation-related parameters have the same orders of magnitude.

Experimental Results

Measuring Computational Dynamic Energy Each of the six application configurations from To ensure reliable measures, application iteration is repeated from 10 to 100 times for each measurement. All energy measurements are repeated 10 times to obtain the energy standard deviation. As illustrated in Figure 7.4, the average standard deviation of measurements is moderate (0.21J, or 2.4%). This low variation shows that energy consumption is stable for a given application activity and motivates for LSLA modeling. For each configuration, the first measurements on the left (in a dashed circle on Figure 7.4) show less energy than the rest of the measurements of their application configuration on their right. This is due to the fact that PEs 1 to 4 are A7 cores and these cores are more energy efficient than A15 cores. These samples use only Cortex-A7 cores and, as a consequence, show more energy-efficiency. One may note in the third column of Table 7.2 that the energy efficiency of Cortex-A7 cores comes at the price of a significantly lower speed. Learning the Energy Model with LSLA Following the experimental setup depicted in Figure 7.2 and the learning method from Section 7.2, an LSLA model is inferred from the energy measurements of previous section and from the application activity provided by PREESM.

The learning curve is drawn in Figure 7.5 to evaluate the test error ε te of the model as a function of the number of training points. The measured energy samples are split into two parts: a training set containing between 1 sample and 80% of the samples (1224 samples), and a test set with the remaining 20% of the samples (306 samples). The samples of the training set are randomly chosen. Figure 7.5 displays the training root-mean-square (RMS) error and the test RMS error as the number of training samples rises.

The training error ε tr is calculated over the training dataset while the test error ε te is calculated over the test dataset. According to equation 7.6, the RMS deviations are computed as follows:

RMS te = E{ε 2 te } RMS tr = E{ε 2 tr } (7.7)
The model reasonably fits data, as test error lowers rapidly when the number of training samples grows and reaches a plateau at about 150 training samples before stabilizing at RMS te = 1.37J. The training error rises until RMS tr = 1.21J, showing that, as expected, the model does not capture the entire physical sources of energy consumption, but the rising rate of the training error lowers with the number of training samples. samples. The full model offers an energy assessment with a RMS te of 1.37J, corresponding to an average error of 16%. Easily explainable parameters in Figure 7.6 are α PE 1 to α PE 8 because they translate into average core execution dynamic power, in nJ/ns = W . PEs 1 to 4 have an average dynamic power of 236mW and PEs 5 to 8 have an average dynamic power of 1.23W . These values are credible and correspond to the average dynamic powers of a Cortex-A7 core (PEs 1 to 4) and of a Cortex-A15 core (PEs 5 to 8) running at full speed.

One may observe in Figure 7.7 that the last energy samples of each configuration are lower than their prediction with LSLA. This effect can be explained by the intra-cluster parallelism that reduces the execution time of the application without increasing as much the instantaneous power. This intra-cluster parallelism tends to decrease the dynamic energy. This effect is partly captured by the learnt negative costs on internal cluster communication quanta α A7CN = -1.322nJ/Byte and α A15CN = -0.551nJ/Byte because more parallelism in a cluster leads in general to more communication in this cluster. However, the amount of communication in a cluster is not fully correlated with the load balancing inside this cluster, leading to errors. The per-quantum cost of ICC α ICC = 1.018nJ/Byte is positive but, as a token flowing through ICC also flows through A7CN and A15CN, each inter-cluster exchanged quantum finally costs 1.018 -1.322 -0.551 = -0.855nJ/Byte. As a consequence, the energy gain obtained by parallelizing over the whole processor dominates the energy cost of the communication. This phenomenon motivates for research on a new, more precise MoA especially capable of capturing the effects of caches.

The LSLA model from Figure 7.6 does not model the mere hardware. Instead, it represents hardware together with its operating system, the PREESM scheduler and the communication and synchronization library. For example, PREESM tends to favor A15 cores because PREESM optimizes the schedule for latency and, because A15 cores are much faster than Cortex-A7 cores, the demand placed on them is greater. An A15 core is less energy efficient than a Cortex-A7 so the scheduling choices will tend to raise the consumed dynamic energy.

While the average error of the model is substantial, the built LSLA model is characterized by an extreme simplicity, the implementation of the cost computation being reduced to 22 multiplications and a limited number of additions. Moreover, neither application code nor architecture hardware of low-level representation are needed to compute this model cost. Only a MoC and an MoA are needed, as well as a well defined activity inference method.

Discussion on the Trained LSLA Model Stability In this section, the stability of the trained LSLA model is tested to account for outliers in training data. To this end, 100 training sets of size 1224 samples are randomly chosen among available data, the rest serving as test set. The standard deviations of parameters σ (α n ) and σ (β n ) in the LSLA model, caused by training set modifications, are reported in Table 7.3. They show that, by far, not all parameters are equivalent in stability. While parameters α n (applied to quanta) all have moderate standard deviations under 5% (except for A15CN with 7.7%), showing a rather precise determination, parameters β n (applied to tokens) have in average standard deviations of 30%. This difference shows that the most stable information relevant for energy estimation lies in the number of quanta (in this case, in the execution time of actors). The number of tokens (number of executed actors) is less reliably related to energy. Discussion on the Trained LSLA Model Accuracy The RMS te prediction error of 16% is is provoked by a vast amount of factors, including cache nondeterministic behaviour, shared memory access arbitration, Linux scheduler decisions, background tasks, energy measurement sampling effect, etc. The particular features of the training application (limited parallelism, power consumed by each actor, correlation between number of tokens and number of quanta, etc.) make the energy model learning mostly specific, not to one application but to a set of applications with similar behavior.

As an example of this specialization, by using LSLA with time quanta to predict energy, the present analysis assumes the power consumed by a core to be equivalent for each executed actor. However, it is not the case in reality. From low-power to high-power actors in the stereo matching application, the difference of power consumption is +55% on A7 cores and +102% on A15 cores. It is worth noting that the LSLA model averages away most of these variations on the considered application. However, these variations prevent from using the same model for predicting the energy of distinct applications. Characterizing actors with energy and using an activity composed of energy quanta instead of time quanta is a promising extension for making a single energy LSLA model usable for different applications.

The fidelity of an LSLA model is certainly more important than its average error. The next section discusses the fidelity of the inferred LSLA energy model.

Fidelity of the LSLA Energy Model Model fidelity, as presented in [START_REF] Bambha | A joint power/performance optimization algorithm for multiprocessor systems using a period graph construct[END_REF], refers to the probability, for a couple of data d i and d j , that the order of the simulated costs d LSLA (7.10)

The fidelity of the inferred LSLA model for the considered problem is of more than 86%, suggesting that the model can be used for taking energy-based decisions at a system level. Fidelity is illustrated by Figure 7.8 where measurements have been sorted in ascending order and are displayed together with their LSLA prediction.

Simplifying a LSLA Model As explained in Section 7.3.2, different LSLA topologies can be used to represent a single platform and metric, for example by merging PEs and CNs. Each cluster of the Exynos 5422 processor having homogeneous cores, a simplified model of the platform has been experimented where PEs of one cluster are undifferentiated. As a consequence, only 2 PEs are retained that each fuse the 4 PEs of one cluster. By doing so, we remove the cost of intra-cluster communication because the new model does not differentiate intra-core communication from intra-cluster communication. The results on the same training and test sets of using the simplified model instead of the original one show a limited degratation of RMS tr (1.32J instead of 1.21J) and RMS te (1.49J instead of 1.21J) and a very slight degradation of fidelity (85.8% instead of 86.1%). Such a simplification is thus adequate and reduces cost computation to a set of additions and 6 multiplications. 

Conclusions on the Practical Use of MoAs for

Raising System DP

In this chapter, the LSLA Model of Architecture (MoA) has been put into practice. LSLA represents hardware performance with a linear model, summing the influences of processing and communication on system efficiency. LSLA has been demonstrated on an example to predict the dynamic energy of an MPSoC executing a complex SDF application with a fidelity of 86%. Additionally, a method for learning the LSLA parameters from hardware measurements has been introduced, automating the creation of the model.

LSLA opens new perspectives in building system-level architecture models that provide reproducible prediction fidelity for a limited complexity.

The example developed in this study is focused on dynamic energy modeling with LSLA for a given operating frequency. A vast amount of potential extensions exist, defining new models, exploring different NFPs and scaling up to large numbers of heterogeneous cores. Most of the potential DP gains are related to predicting the performances of a system to automate decisions. As a consequence, MoAs will certainly have a key role to play in future improvements of DP.

Research Perspectives 8.1 Chapter Abstract

This concluding chapter proposes some research directions to continue our work on improving the DP of DSP systems presented in this report. First, some achievements are presented that motivate us to propose these new directions as a continuity of our previous research. Then, the current evolution of DSP platforms and applications is analyzed and the exposed complexity of embedded DSP architectures, as well as the complexity of applications are shown to follow an upward trend.

These evolutions motivate for new research on model-based design and MoAs to focus on the truly relevant parameters when taking system-level decisions. They also motivate us to consider new parameters in automated design methods such as the relationships between the system and its environment, captured by the models of Cyber-Physical Systems (CPS). Additionally, if a soft degradation of applicative QoS can drastically gain performance, it should also be considered by a design process, as advocated by approximate computing methods.

Finally, for orders of magnitude of DP to be gained in the next decades, new rapid prototyping tools will need to be invented that will compile models of the key non-functional aspects of the system and perform both Design Space Exploration and functional code generation from a unique set of models. We intend in the next years to propose models, methods and tools for building this new generation of DSP system design processes.

Recent Achievements

This HDR report has covered models, methods and tools for the enhancement of Design Productivity in DSP systems. A particular focus has been put on the new concept of Model of Architecture (MoA). Several achievement indicators encourage us to build on our previously proposed approaches and continue proposing models and methods for augmenting Design Productivity. We have for instance received the Best Paper awards at the DASIP conference 2014 and 2016 editions and the best demo awards at EDERC 2014 and ICME 2015 respectively for the low energy Open HEVC decoder 1 and for the PREESM 1 Erwan Nogues, Morgan Lacour, Erwan Raffin, Maxime Pelcat, and Daniel Menard. Low power software hevc decoder demo for mobile devices. In Proceedings of the ICME conference, 2015 tool 2 . The PREESM website is steadily receiving more than 2500 visits per in IEEE Design and Test [START_REF] Martin | Let's get physical [review of" physical layer multi-core prototyping: A dataflow-based approach for lte enodeb[END_REF]. Erwan Nogues has received in 2017 the PhD award "1er Prix de la Fondation Rennes 1 de l'école doctorale MATISSE". Finally, the CERBERO H2020 project, in which INSA Rennes is deeply involved, has been accepted for funding notwithstanding a strong competition and has started in January 2017. The next section proposes a snapshot of current evolutions of DSP embedded systems and the last section exposes research directions we wish to follow in the next years. From one generation to the next, signal processing applications gain Quality of Service (QoS) at the price of additional complexity and, often, of an additional share of data-dependent processing.

In the video compression domain for instance, the HEVC [START_REF] Gary J Sullivan | Overview of the high efficiency video coding (hevc) standard[END_REF] standard represents the state-of-the-art of video coding. When compared with the preceding MPEG Advanced Video Coding (AVC) standard, the HEVC Main profile reduces the bitrate of an encoded video by 40% on average for a similar objective video quality [START_REF] Vanne | Comparative rate-distortion-complexity analysis of hevc and avc video codecs[END_REF]. The HEVC reference encoder and decoder are however in average respectively 80% and 60% more complex than the reference codec of the previous AVC standard [START_REF] Vanne | Comparative rate-distortion-complexity analysis of hevc and avc video codecs[END_REF]. HEVC also comes with extensive parallelism and much data-dependent processing, caused by a compression method based on the prediction of image blocks from other previously encoded blocks. Hundreds of different prediction modes are made possible for a block in order to efficiently reduce block redundancy and, in turn, data rate. The selection of these modes is based on the processed data and, as a consequence, the amount and type of processing to be executed over time is very variable. Such variations make multicore load balancing complex and require runtime execution management such as the one offered by the Spider runtime and JIT-MS scheduling method (Chapter 2).

Application complexity augmentation applies to all types of DSP processing, from telecommunications to multimedia and from remote sensing to medical appliances. It motivates for DP studies in order for the system price not to follow the application complexity trend. Most of these processors separate a set of cores dedicated to the control path and a set of cores or programmable logic dedicated to the data path. While the control path is responsible for all the decisions in the systemwhat, where and when to process -the data path is organized as a stream processing pipeline that leverages on data locality to provide good performanceper-Watt. The energy consumption in systems being largely dominated by data movements, this heterogeneous system architecture is currently at the heart of embedded processor energy efficiency. ) represents a Xilinx Virtex Ultrascale+ FPGA that gathers a quadcore Cortex-A57 ARM multiprocessor and a dual-core low power Cortex-R5 processor together with a large array of programmable logic for the data path. Figure 8.1 c) represents a 12-core Texas Instruments Keystone II processor that combines a quad-core Cortex-A15 ARM processor with 8 DSP cores for the data path. Finally, the Kalray Bostan processor illustrated in Figure 8.1 d) has quad-core clusters of Kalray Bostan cores for the control path and inputs/outputs, and 256 Bostan Very Long Instruction Word (VLIW) cores for the data path. These processors are representative of current high performance embedded processors.

More Complex Exposed Architectures

All the processors illustrated in Figure 8.1 extensively expose complexity and cannot be programmed efficiently without knowing their internal structure. Apart from the exposed complexity of their heterogeneous cores, their inter-core interconnects, composed of shared multiport memory banks, caches, busses, NoCs, switch fabrics, DMAs and interrupt controllers, are also extremely complex and must be mastered by the system designer for the obtained performance to justify the use of a specific processor.

Adaptable hardware, available in partially reconfigurable FPGA, adds up to this complexity by introducing a new level of abstraction between traditional hardware and software. Partially reconfigurable architectures have a great performance potential due to high versatility combined with a non-Von-Neumann architecture that removes memory access bottlenecks in the system. However, their Design Productivity is restrained by complex and costly design and test processes. This restriction could be removed by model-based design approaches, making partially reconfigurable hardware a prime choice for high performance processing.

The increasing exposed complexity of embedded hardware architectures involves higher design efforts and amplifies the Design Productivity Gap.

New Research Directions

So as to further progress in solving the Design Productivity Gap problem, new models, methods and tools are necessary.

Models

Model-based design is increasingly necessary, as the exposed complexity of systems rises. A dataflow MoC provides to a compiler or a runtime systems advanced information on an application state and dependencies. The use of this information for system NFPs optimizations such as energy efficiency is mostly unexplored. For instance, the work initiated by Erwan Nogues on dataflow MoC-based energy optimization 4 opens great opportunities for DP improve- ments. New evolutions of the PiSDF MoC are also to be envisaged to better customize the compromise between application predictability and system adaptivity. A challenge for application models will be to scale up to the hundreds (and soon thousands) of cores offered by modern architectures. Another important problem to solve is to mitigate the current limitations of dataflow MoCs that enforce in-order communication of data tokens in the whole application, making the description of some algorithms awkward or even impossible. Relaxing this condition will open many new potential applications to dataflow-based methods.

Contrary to Models of Computation (MoCs) that have been strongly explored over the last 3 decades, MoAs constitute a new research field (Chapter 5). We believe that this field will be particularly active in the next few years and we intend to have a leading role in this evolution. The formal definition of an MoA proposed in 5 is a starting point and much work will be necessary to 5 Maxime Pelcat, Karol Desnos, Luca Maggiani, Yanzhou Liu, Julien Heulot, Jean-François Nezan, and Shuvra S Bhattacharyya.

Models of architecture: Reproducible efficiency evaluation for signal processing systems. In Proceedings of the SiPS Workshop. IEEE, 2016 understand the potential of these models, their different forms and their possible levels of abstraction.

Methods

Considering a system as a CPS makes the environment physical constraints enter system design. They represent a new level of design automation and new opportunities of Design Productivity improvements. Within the starting H2020 CERBERO project 6 , a model-based continuous design method is being built, to explore forward in the next years the potential of model-based design for designing CPS.

Approximate computing, consisting in degrading in a controlled way the Quality of Service (QoS) or a system to dramatically raise its efficiency, is currently a very active domain. Following the work from Erwan Nogues 7 

Tools

A successful example of DP increase is the evolution followed in the last 20 years by Very Long Instruction Word (VLIW) compilers. As VLIW compilers improve, they hide the previously exposed architecture of VLIW cores and make them transparently programmable by portable code. For example, the Texas Instruments compiler for C6x cores has hidden most of the VLIW complex internal structure of C6x cores by making it possible to efficiently program the 8 internal Arithmetic Logic Units (ALUs) of a core from the imperative C language. Writing assembly code for the C6x core, and thus exposing the architecture, can still provide execution speedups when compared to C programming but these speedups are substancially more limited than in the early 2000s. Importantly, the complexity is resolved at compile time, and thus does not introduce any runtime management overhead. Such tooling improvement exemplifies what is needed to augment DPat system level by enabling portable performances for a unique code executed on different forms of hardware.

However, the optimized performance in VLIW compilers is limited to latency. The situation of embedded system design is much more complicated, as systems must respects multi-dimensional constraints (time, energy, cost, etc.). Many innovations will be necessary to provide an acceptable level of code portability between the previously presented processors. The problem is also compounded by the complexity of architectures to come, that are forecast to expose even more complexity than today's architectures.

A promising approach for gaining orders of magnitude of Design Productivity is rapid prototyping. A rapid prototyping tool is composed of a Design Space Exploration (DSE) process and a functional code generation. While the DSE process [START_REF] Pimentel | Exploring exploration: A tutorial introduction to embedded systems design space exploration[END_REF] performs high-level multi-dimensional optimization, taking into account both "cyber" and physical system information, as well as a set of system relevant Non-Functional Properties (NFPs), the functional code generation produces system design information compatible with lower-level compilers. Exploring the design space consists in creating a Pareto chart such as the one in Figure 8. 2 
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 11 Figure 1.1: Design Productivity representation as a combination of Non-Recurring Engineering (NRE) costs and system Non-Functional Property (NFP) costs.
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 1 Figure 1.2 illustrates my carrier as maître de conférences over the last 7 years. Dots represent personal publications, ordered by their main subjects.The research subjects we have tackled over these years are diverse. They however have in common a long term objective of DP enhancement.In the context of the 3 PhD thesis of Karol Desnos (2011-2013), Julien Heulot (2012-2014) and Erwan Nogues (2013-2015), we have studied different aspects of DP, with a particular focus on application modeling with dataflow MoCs. Playing with a DSP application representation to enhance its performance and portability is possible using dataflow MoCs that represent the high-level aspects (e.g. parallelism, exchanged data, triggering events, etc.) of
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 13 Figure 1.3: Relating the main research subjects addressed by our past and current work (Figure 1.2) and their influence on the addressed DP-related metrics.
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 14 Figure 1.4: Categories of processing systems based on their power consumption.
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 21 Figure 2.1: Improving design efficiency on the DP chart.
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 22 Figure 2.2: Example of an SDF Graph
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 23 Figure 2.3: Example of an IBSDF Graph

Figure 2 . 4 :

 24 Figure 2.4: Example of a PiSDF Graph with Static Parameters
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 2 5 presents an example of a PiSDF description with reconfiguration. It is a modified version of the example in Figure 2.4 presented in Section 2.3.2.
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 25 Figure 2.5: Example of a PiSDF Graph with Reconfiguration

Figure 2 . 6 :

 26 Figure 2.6:JIT-MS Runtime execution scheme.
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 27 Figure 2.7: Description of the HCLM-Shed benchmark used to test JIT-MS scheduling.
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 28 Figure 2.8: A PiSDF model of the HCLMsched benchmark.
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  Figure 2.9: single rate SDFs (srSDFs) graphs generated from the HCLM-sched benchmark of Figure 2.8. Blue actors are not executable, green ones are executable and black ones are already run. Red dashed actors are hierarchical.
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 210 Figure 2.10: JIT-MS Latency versus values of N for the HCLM-sched benchmark
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 211212 Figure 2.11: Gantt Chart of the OpenMP schedule with N = 9 and M = 12
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 31 Figure 3.1: Improving implementation quality on the DP chart.

  Figures 3.2, 3.3 and 3.4 display on an example the bound computation procedure. As shown in Figure 3.3, an intermediate acyclic graph must be built before obtaining the MEG. An algorithm to build such a Directed Acyclic Graph (DAG) can be found in [44]. In Figure 3.4, each graph vertice represents a FIFO in the DAG of Figure 3.3. Edges model exclusions, i.e. the impossibility to share memory between two FIFOs.
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 32 Figure 3.2: Example of an SDF graph used to study its memory bounds.
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 33 Figure 3.3: Result from transforming the SDF graph from Figure 3.2 into a Directed Acyclic Graph (DAG)[44]. This transformation is a necessary step before studying the memory consumption.
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 34 Figure 3.4: Memory Exclusion Graph (MEG) extracted from the DAG from Figure 3.3. Two cliques are displayed, including the maximum weight clique that represents a lower bound on algorithm memory consumption. The lower bound for this example is 550 tokens.
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 35 Figure 3.5: Memory bounds computed from the FIFOs of a SDF application representation.

  DVFS offers a large number of energetic configurations, as illustrated in Figure 3.6.
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 36 Figure 3.6: Power consumption vs. operating frequency and number of on cores on an Exynos 5410 MPSoC with DVFS and DPM
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  Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, and Johan Lilius. Energy efficiency and performance management of parallel dataflow applications. In Proceedings of the DASIP conference. IEEE, 2014 10 Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, Daniel Menard, and Johan Lilius. Energy-awareness and performance management with parallel dataflow applications. Journal of Signal Processing Systems, 2015 into "p-values" (Figure 3.7) that represent the instantaneous execution parallelism. P-values are then fed to a Linux-based runtime management system to adapt DVFS and DPM to this parallelism. Energy gains of up to 20% have been obtained w.r.t. the reactive DVFS and DPM management of Linux that observes the current load of the processor and adapts a posteriori the execution.
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 37 Figure 3.7: Transforming a dataflow application representation into a sequence of pvalues to exploit parallelism for energy reduction.
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 3839 Figure 3.8: Power consumption vs. operating frequency with 4 fully loaded cores on an Exynos 5410 MPSoC
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 310 Figure 3.10: example of a simple dataflow application to be optimize in energy over an MPSoC with DVFS and DPM capabilities.
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 3311 Figure3.10 shows a single-rate SDF application with static loads expressed in numbers of cycles. 4 iterations of the applications are assumed to be executable in parallel. Potential execution strategies for this application are illustrated in 3.11, 3.12 and 3.13.
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 312 Figure 3.12: As-slow-as-possible execution of the application from Figure 3.10 on an MPSoC with DVFS and DPM capabilities.
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 3 Figure 3.11 illustrates the case where the application 4 iterations are run over a 4-core platform with maximum frequency and parallelism. This strategy is called As-Fast-As-Possible (AFAP). Figure3.12 illustrates the case,

Figure 3 .Figure 3 . 13 :

 3313 Figure 3.11 illustrates the case where the application 4 iterations are run over a 4-core platform with maximum frequency and parallelism. This strategy is called As-Fast-As-Possible (AFAP). Figure3.12 illustrates the case,
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 41 Figure 4.1: Evaluating Design Productivity.
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 42 Figure 4.2: PiSDF Model of the Bit Processing Part of the LTE PUSCH Decoding
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 3 a number of Lookup tables (LUTs) -3.b number of registers, -3.c number of Random Access Memory (RAM) blocks, -3.d number of DSP cores.

- 4 .

 4 a processing latency, -4.b minimum operating period.Computing a Metric for Design ProductivityAs HLS aims at reducing design time, the gain in global NRE time G NRE is the most important metric of design efficiency. G NRE is defined formally as:
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 44 The upper part of the figure is a shift register. The filter coefficients tap[i] depend on the selected sub-pixel position σ . The filter has 8 taps for the 1/2 pixel position and 7 taps for the 1/4 and 3/4 positions[START_REF] Gary J Sullivan | Overview of the high efficiency video coding (hevc) standard[END_REF].
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 4 4 only represents horizontal filtering. The extension to a 2-D filtering version requires 8 horizontal filters. The results of these filters undergo a second 8-tap filtering operation with equivalent coefficients for 1/4, 1/2 and 3/4 upper shifts. This bidirectional filter is illustrated in Figure 4.5 where line FIFOs delay the pixels of one line length L to correctly synchronize the outputs x[t]
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 44 Figure 4.4: Signal flow of an HEVC interpolation filter for horizontal shift of 1/4, 1/2 or 3/4 of a pixel.

Figure 4 . 5 :

 45 Figure 4.5: Signal flow of a 2-dimensional HEVC interpolation filter for horizontal and vertical shift of 1/4, 1/2 or 3/4 of a pixel.

  and 4.5. Several versions of the filter are designed with their test benches. A golden reference code in C language provides reference values for debug.VHDL Version 1: Horizontal Filter with Minimal InterfacesIn this version of the filter, implementing the diagram in Figure4.4, the stream of input pixels is considered continuous (1 clock event = 1 data). A transition to zero of the data valid signal resets the filter. It is interpreted as the beginning of a new line and thus, the filter needs to gather 8 data before outputting the first valid data. Based on the writing of this HDL filter, the time needed to describe the pipelined quarter pixel filter in HDL is 358' for design and 288' for verifica-tion, including time for writing the test bench, RTL simulation, and debug.

y

  <= a and b or c and d equivalent to: y <= ((a and b) or c) and d.

SIGNAL

  data : INTEGER RANGE 0 TO 255; or by SIGNAL data : UNSIGNED (7 DOWNTO 0);

Listing 4 . 1 :

 41 An actor computing the sum of values along lists in CAPH.actor suml in (i: signed<8> list) out (o: signed<16>) var st: {S0,S1}=S0 var s : signed<16> rules (st:S0, i:'<) -> (st:S1, s:0) | (st:S1, i:'v) -> (st:S1, s:s+v) | (st:S1, i:'>) -> (st:S0, o:s)
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 46 Figure 4.6: Example of a graph description in CAPH.

CAPH Version 2 :

 2 Horizontal Filter with Interfaces for the DreamCAM Camera Similarly to its VHDL counterpart, this version 2 of the filter in CAPH is adapted to the DreamCAM needs, resetting the filter at the end of each line and adding modularity to the description. The filter is decomposed into 8 pipelined multiply-accumulate actors. The last actor in the pipeline has a different code. It gathers the intermediate products into a filtered and clipped value and generates the output flow. The main difficulty comes from getting rid of unwanted tokens, i.e. tokens that appear while the pipeline is filled up and emptied. The time for designing this version, composed of 9 actors, can be decomposed into 71' for design and 72' for verification.CAPH Version 3: 2-D FilterIn this 2-D version of the filter, 7 new delay actors are first instantiated and connected. CAPH higher order functions are used to create a large number of actors with a code of limited size. Delay actors insert L first dummy tokens in the stream, where L is the length of a picture line, and then forward the arriving pixel values. The time needed to describe the 2-D filter in CAPH is split into 187' for design and 169' for verification.
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 4 Figure 4.7 displays values normalized to the largest of the two values. One can see that HLS is obtaining gains on design efficiency because, in the upper part of the charts, the CAPH values are smaller than the VHDL values (smaller is better). Conversely, there is a quality loss due to HLS that makes the VHDL values smaller than the CAPH values in the lower part of the chart. The CAPH
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 47 Figure 4.7: Design efficiency and implementation quality chart (the smaller the better) for each filter in CAPH (clear red) and VHDL (dark blue).
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 51 Figure 5.1: MoAs in the Y-chart.
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 52 Figure 5.2: MoC and MoA in the Y-chart.
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 53 Figure 5.3: Illustrating designer's freedom on the application side with a video compression example.

  Figure 5.4 shows different configurations of processors that could run the applications of Figure 5.3. rounded rectangles represent Processing Elements (PEs) performing computation while ovals represent Communication Nodes (CNs) performing inter-PE communication. Different combinations of processors are displayed, leveraging on high-performance out-of-order ARM Cortex-A15 cores, on high-efficiency in-order ARM Cortex-A7 cores, on the Multi-Format Codec (MFC) hardware accelerator for video encoding and decoding, or on Texas Instruments C66x Digital Signal Processing cores. Figure 5.4 g) corresponds to a 66AK2L06 Multicore DSP+ARM KeyStone II processor from Texas Instruments where ARM Cortex-A15 cores are combined with C66x cores connected with a Multicore Shared Memory Controller (MSMC) [75].

  -ARM + multi-DSP processor from Texas Instruments
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 54 Figure 5.4: Illustrating designer's freedom on the architecture side with some current ARM-based and Digital Signal Processorbased multi-core architectures.
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 55 Figure 5.5: Application activity as an intermediate model between application and architecture.
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 756 Figure 5.6: LSLA MoA semantics elements.
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 57 Figure 5.7: Computing cost of executing an SDF graph on an LSLA architecture. The cost for 1 iteration is (looking first at processing tokens then at communication tokens from left to right) 31 + 31 + 41 + 41 + 41 + 41 + 13 + 13 + 4 + 0.2 × (5 + 5 + 5 + 10 + 5 + 5 + 10 + 5) = 266 ν (Equation 5.3).
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 61 Figure 6.1: A common representation of 4 cores, a bus and a memory... without precise semantics.
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 62 Figure 6.2:The AADL successive refinement system design approach.
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 63 Figure 6.3: The basic components for describing a hardware architecture in AADL.
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 64 Figure 6.4: Examples of different data transfer cost computation functions (in arbitrary units): a linear function (with 1 parameter), an affine function (with 2 parameters) and a step function (with 4 parameters).
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 65 Figure 6.5: Elements of the quasi-MoA define in UML MARTE Generic Resource Modeling (GRM).

Figure 6 . 6 :

 66 Figure 6.6: Typology of the basic components in the AAA architecture model. Leaf components are instantiable.
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 67 Figure 6.7: Example of an architecture description with the AAA quasi-MoA.
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 68 Figure 6.8: Typology of the basic components in the S-LAM. Leaf components are instantiable.
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 69 Figure 6.9: Example of an architecture model with the S-LAM quasi-MoA.

. 1 )

 1 where start, o f f set, scale_height and scale_width are 4 CP parameters. The primary concern of the MAPS quasi-MoA is thus time. No information is given on whether the sender or the receiver PE can compute a task in parallel to communication. A CP also refers to a set of Communication Resources (CRs), i.e. a model of a hardware module used to implement the communication. A CRs has two attributes: the number of logical channels and the amount of available memory in the module. For example, a CR may model a shared memory, a local memory, or a hardware communication queue.
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 71 Figure 7.1: The Odroid XU3 board used for measuring execution energy consumption and learning a LSLA MoA.
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 31 Objectives and Modeled Hardware Architecture
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 73 Figure 7.3: Illustration of the stereo matching application graph. The number of duplications of each actor is specified. All rates are implicitly multiplied by the picture size.
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 74 Figure 7.4: Training set composed of processor energy measurements. The dynamic of measurements is displayed.
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 75 Figure 7.5: LSLA dynamic energy model learning curve for a fixed test set of 306 samples and a variable training set of 0 to 1224 samples.
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 77 Figure 7.7: Comparing the LSLA predicted cost and the median of the corresponding energy measurements in test set.
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  and d LSLA j matches the order of the measured costs. The fidelity f of the LSLA energy model is formally defined by f = 2 M(M -1) respectively the ith LSLA-evaluated and measured energy, and sgn(x) =
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 78 Figure 7.8: Test set sorted in ascending order and their corresponding LSLA predictions.
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 2 . Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi. PREESM: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming. In Proceedings of the EDERC Conference, Sept 2014 year since 2014. Our book 3 has received a positive review by Grant Martin 3 Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-François Nezan. Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE eNodeB. Springer, 2012
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 3 Current Evolutions in Embedded DSP Systems 8.3.1 More Dynamic and Computation-Intensive Applications

Figure 8 .

 8 Figure 8.1 illustrates different types of recent embedded processor architectures. Most of these processors separate a set of cores dedicated to the control path and a set of cores or programmable logic dedicated to the data path. While the control path is responsible for all the decisions in the systemwhat, where and when to process -the data path is organized as a stream processing pipeline that leverages on data locality to provide good performanceper-Watt. The energy consumption in systems being largely dominated by data movements, this heterogeneous system architecture is currently at the heart of embedded processor energy efficiency.
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 81 Figure 8.1: Current types of available embedded heterogeneous processor architectures.

Figure 8 .

 8 Figure 8.1 a) represents the Jetson TX1 module from NVidia that combines a quad-core Cortex-A57 ARM multiprocessor for the control path and a 256-core Maxwell General Purpose Graphics Processing Unit (GPGPU) for the data path, organized into 32-core Streaming Multiprocessors (SM). Figure 8.1 b) represents a Xilinx Virtex Ultrascale+ FPGA that gathers a quadcore Cortex-A57 ARM multiprocessor and a dual-core low power Cortex-R5 processor together with a large array of programmable logic for the data path. Figure8.1 c) represents a 12-core Texas Instruments Keystone II processor that combines a quad-core Cortex-A15 ARM processor with 8 DSP cores for the data path. Finally, the Kalray Bostan processor illustrated in Figure8.1 d) has quad-core clusters of Kalray Bostan cores for the control path and inputs/outputs, and 256 Bostan Very Long Instruction Word (VLIW) cores for the data path. These processors are representative of current high performance embedded processors.All the processors illustrated in Figure8.1 extensively expose complexity and cannot be programmed efficiently without knowing their internal structure. Apart from the exposed complexity of their heterogeneous cores, their inter-core interconnects, composed of shared multiport memory banks, caches, busses, NoCs, switch fabrics, DMAs and interrupt controllers, are also extremely complex and must be mastered by the system designer for the obtained performance to justify the use of a specific processor.Adaptable hardware, available in partially reconfigurable FPGA, adds up to this complexity by introducing a new level of abstraction between traditional hardware and software. Partially reconfigurable architectures have a great performance potential due to high versatility combined with a non-Von-Neumann architecture that removes memory access bottlenecks in the system.
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  PiSDF specification of the bit processing algorithm of the Uplink Physical Layer data processing (PUSCH) decoding which is part of LTE. LTE PUSCH decoding is executed once per millisecond in the physical layer of an LTE base station. An LTE base station manipulates the data of the hundreds of User Equipments (UEs) (for instance mobile phones) located in its geographical region composed of "cells". It consists of receiving multiplexed data from several UEs, decoding and demultiplexing the data, and transmitting it to upper Open Systems Interconnection (OSI) layers of the LTE standard. This procedure is complex and computationally intensive. The information is received on several antenna at the base station side and time and frequency multiplexed using Single-Carrier Frequency Division Multiple Access (SC-FDMA).
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  HLS methods ambition to improve design efficiency while maintaining solid implementation Quality of Results (QoR).In this chapter, we use HLS as a use case for testing our DP measurement method. The scope of this HLS DP study is illustrated in Figure4.3 as the first step of the design process and before compilation, optimization and place & route.

	Scope of the Study	HLS entry (High level)	Figure 4.3: Scope of the HLS versus VHDL DP study.
		High-Level Synthesis
		VHDL files (RTL level)	
		Compilation	
		Netlist (Gate level)	
	Synthesis	Optimization
		(Gate level) Optimized netlist	Simulation
		Place & Route
		Device Physical	Simulation
	The most commonly used languages for Electronic Design Automation (EDA)
	logic synthesis today are the VHDL, Verilog and SystemVerilog Hardware
	description languages (HDLs). HDL languages are used to describe a hard-
	ware implementation at a Register Transfer Level (RTL), i.e. at a level where
	an implementation is constructed from signal transfers between registers and
	from logical and arithmetic operations applied to these signals. However, this
	domination of HDL languages is currently regressing and High-Level Synthe-
	sis (HLS) methods are becoming market practice in the industry [65]. An HLS
	method raises the level of abstraction of the code manipulated by designers
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Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, and François Berry. Design productivity of a high level synthesis compiler versus HDL. In Proceedings of IC-SAMOS, 2016 4.3.1 HLS as a Tool for Improving Hardware Design DP higher than RTL and replaces the VHDL or Verilog entry languages by a software language such as plain C code, often accompanied by additional informa-tions such as pragmas.

  reg HDL norm + α 3 × ram HDL norm + α 4 × dsp HLS norm + α 5 × lat HLS norm + α 6 × prd HLS

norm α 4 × dsp HDL norm + α 5 × lat HDL norm + α 6 × prd HDL norm (4.4) where lut HDL norm and lut HLS norm are numbers of LUTs (3.a), reg HDL norm and reg HLS norm are numbers of registers (3.b), ram HDL norm and ram HLS norm are numbers of RAM blocks (3.c), dsp HDL norm and dsp HLS norm are numbers of DSP blocks (3.d), lat HDL norm and lat HLS norm are latencies (4.a), and prd HDL norm and prd HLS norm are operating periods (4.b)

Table 4 .

 4 4.3.8 Experimental Results: Evaluating the Design Productivity of the CAPH HLS Compiler versus VHDL Overview of the Experimental Results Table 4.1 summarizes the experimental results of the different versions of the use case and Figure 4.7 illustrates them. Concerning CAPH results, values reported in brackets correspond to the total hardware resources including the overhead of the transformation from the platform signals (frame and data valid) to the token representation. These numbers are the fairest to compare to VHDL so they are the ones used for quality assessment.

		VHDL	CAPH VHDL	CAPH	VHDL	CAPH
		v1	v1	v2	v2	v3	v3
	NRE design (minutes)	358	103	162	71	232	187
	NRE veri f (minutes)	288	65	783	72	775	169
	# SLOCs	147	43	333	61	805	194
	# chars	4114	1351	9465	2395	22072	6099
	# LUTs	193	226	282	3161	2868	11398
			(445)		(3380)		(11636)
	# Regs	81	103	115	2209	1252	7557
			(269)		(2375)		(7723)
	# RAM	0	0 (1)	0	0 (1)	18	14
	Frequency (MHz)	64.7	68.0	71.8	83.0	65.2	84.2

1: VHDL vs. CAPH design efficiency and implementation quality figures.

Table 4
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		CAPH vs. CAPH vs. CAPH vs. Average
		VHDL v1 VHDL v2 VHDL v3	
	G NRE	3.84×	6.60×	2.82×	4.42×
	L Q	1.70×	2.53×	1.47×	1.90×
	P D	2.26×	2.61×	1.92×	2.26×

.2 shows for each use case version the Gain in NRE Design Time G NRE introduced in Section 4.3.2. In average, designing the use case versions with the CAPH HLS method took 4.42× less time than writing and testing VHDL by hand. The standard deviation is large

(1.96)

. This fact shows that, depending on the code type (raw 1-D filter, 1-D filter with control or 2-D filter), the gain in design time varies.

Table 4 .

 4 2: Gain in NRE Design Time G NRE , Quality Loss L Q and Design Productivity P D of CAPH vs. manual VHDL.

  is a set of undirected links connecting either two CNs or one CN and one PE. A link models the capacity of a CN to communicate tokens to/from a PE or to/from another CN.

  Maxime Pelcat, Alexandre Mercat, Karol Desnos, Luca Maggiani, Yanzhou Liu, Julien Heulot, Jean-François Nezan, Wassim Hamidouche, Daniel Menard, and Shuvra S

	Bhattacharyya.	Models of Architecture:
	Application to ESL Model-Based Energy
	Consumption Estimation.	Research re-
	port, IETR/INSA Rennes ; Scuola Superiore
	Sant'Anna, Pisa ; Institut Pascal ; University
	of Maryland, College Park ; Tampere Univer-
	sity of Technology, Tampere, 2017

  Processing Resource, associated to an abstract speed Factor property that can help the designer compare different Processing Resources. It has 3 subtypes: Computing Resource models a real or virtual PE storing and executing program code. It has no property. Device Resource communicates with the system environment, equivalently to an AADL device. It also has no property. Communication Media can represent a bus or a higher-level protocol over an interconnect. It has several properties: a mode among simplex, half-duplex, or full-duplex specifies whether the media is directed or not and the time multiplexing method for data. Communication Media transfers one data of elementSize bits per clock cycle. A packet time represents the time to transfer a set of elements. A block time represents the time before the media can transfer other packets. A data rate is also specified.

	.5)
	are:
	• a

2 .

 2 DMA messaging: the sender delegates the communication to a DMA. A DMA component must then be connected by a data link to a communication node of the route between O 1 and O 2 and a control link models the ability of the sender operator to program the DMA. In this case, the sender is free to execute code during message transfer. 3. shared memory: the message is first written to a shared memory by O 1 , then read by O 2 . To model this, a RAM component must be connected by a data link to a communication node of the route between O 1 and O 2 .

	An S-LAM representation of an architecture can be built where different	
	routes are possible between two operators O 1 and O 2	7 . The S-LAM model	7 M. Pelcat, J.-F. Nezan, J. Piat, Jerome
			Croizer, and S. Aridhi. A system-level ar-
			chitecture model for rapid prototyping of het-
			erogeneous multicore embedded systems. In
			Proceedings of DASIP conference, 2009

Table 6 .
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	1: Properties (from Definition 4) and
	objectives of the presented MoA and quasi-
	MoAs.

  1. the number of coarse-grain PEs to consider in the study (cores, coprocessors, GPUs...) is determined. One PE is instantiated in the model per considered physical PE on the platform, 2. the different communication hardware features on the platform for intercore communication are located (including shared bus, DMA, shared memory, hardware cache coherency management, etc.). If several PEs share the same communication hardware feature, one CN is allocated on the model, connected to all the cores sharing this feature,

	3. if communication hardware features, already modeled by CNs, are them-
	selves communicating through "higher-level" hardware communication, a
	new CN is created and connected to their corresponding CNs,
	4. step 3 is repeated until the MoA forms a connected component.

  Software Tools Figure7.2 summarizes the experimental setup used to train and test the LSLA MoA of an Exynos 5422 processor from energy measurements. The PREESM dataflow framework 2 is used to generate code for dif-

	7.3.3 Experimental Setup
	1) Executable	2) Static Mapping and Scheduling
	PREESM multicore scheduler architecture model application PREESM SDF generator fixing application parameters (configuration) specification Application (PiSDF) application SDF model application activity PE 2 A7CN PE 1 PE 4 λ=1 α PE4 .s+β PE4 PE 3 α PE2 .s+β PE2 α PE3 .s+β PE3 α PE 1 .s+β PE1 α A7CN .s+β A7CN α ICC .s+β ICC C code of the SDF actors A7 A7 Linux Mult icore OS A15 A15 A15 A7 A7 A15 3) Code Generation Texa s Instru ment s INA 231 powe r moni tor measuring energy 5) Learning Model Parameters energy A15CN PE 6 PE 5 PE 8 PE 7 α PE8 .s+β PE8 ICC α PE7 .s+β PE7 α PE6 .s+β PE6 α PE5 .s+β PE5 α A15CN .s+β A15CN measured for E application executions GCC Compiler PREESM 4) Executing code gen. Application
		LSLA architecture	6) Energy prediction from LSLA
			Figure 7.2: Experimental setup for inferring
			the LSLA execution energy model of a Sam-
			sung Exynos 5422 MPSoC.
	ferent SDF configurations of a stereo matching application from a PiSDF exe-cutable specification (Section 2.3.2. The motivation for using a PiSDF descrip-	: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming.
	tion is that, by fixing various values for application parameters, different func-	In Proceedings of the EDERC Conference,
	tional SDF applications are obtained. Once the parameters of the application	Sept 2014
	are fixed, PREESM generates an executable SDF graph that feeds a multicore
	mapper and scheduler. Mapping and scheduling are statically and automati-
	cally computed, based on the list scheduling algorithm from

2 M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi. PREESM
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 7 1 are scheduled with each of the 255 possible mapping

	Actor	time on	time on	t A7
	name	Cortex-A7 Cortex-A15 t A15
	ReadRGB	1, 813	719 2.5×
	RGB2Gray	6, 682	2, 459 2.7×
	Census	6, 846	2, 320 3.0×
	ComputeWeights	85, 265	32, 251 2.6×
	CostConstruction	13, 240	2, 698 4.9×
	AggregateCosts	76, 262	29, 052 2.6×
	disparitySelect	6, 192	1, 128 5.5×
	Median F ilter	4, 923	2, 555 1.9×
	Display	131, 638	100, 411 1.3×

Table 7 .

 7 2: Time quanta (in us) per actor type and core type for configuration 4. patterns in the Odroid architecture, resulting in M = 1530 energy measurements. Having M = 1530 measurements for 2η = 22 parameters, the constraint M >> 2η stated in Section 7.2.2 is respected. The mapping pattern refers to a binary-composed integer representing the currently used subset of cores (1 for PE 1 , 2 for PE 2 , 3 for PE 1 + PE 2 , 4 for PE 3 , etc.).

  Figure 7.6: LSLA dynamic energy model inferred from energy measurements with computational quanta in ns, communication quanta in Bytes, and energy data vector d in nJ. PE 1-4 are Cortex-A7 cores and PE 5-8 are Cortex-A15 cores.

	0.246×s+0.024	PE 1	-1.322×s-0.018		1.232×s+0.119
			A7CN	ICC	A15CN
	0.230×s+0.048	PE 2	1.018×s+0.038	1.237×s+0.107
	0.230×s+0.044	PE 3		λ=1	PE 7 1.212×s+0.084
	0.239×s+0.011	PE 4			PE 8	1.257×s+0.068

Table 7 .

 7 3: Average and standard deviation of trained LSLA parameters α n and β n when the training set is varied.

  and the 7 Erwan Nogues, Daniel Menard, and Maxime Pelcat. Algorithmic-level approximate computing applied to energy efficient hevc decoding. IEEE Transactions on Emerging Topics in Computing, 2016 current PhD of Alexandre Mercat, a vast research field is open, particularly on using approximate computing for low energy processing. Approximate computing adds a new dimension to the Design Productivity chart where the application Quality of Service (QoS) is manipulated together with NRE and NFP properties. The ARTEFaCT ANR project finances our current research on the subject.

  and choosing solutions on the Pareto front, i.e. solu-Example of an iterative design process where application is refined and, for each refinement step, tested with a set of architectures to generate new points for the Pareto chart. choices. Moreover, hardware partial reconfiguration will certainly become a standard feature and may provoke a spectacular establishment of virtualization into the hardware world. Finally, the Internet of Things (IoT) and Internet of Everything (IoE) trends are fostering interconnected systems with collective intelligence. These subjects are at the heart of the current PhD thesis of Kamel Abdelouahab, El Mehdi Abdali, Jonathan Bonnard and Alexandre Mercat, and I am proud and happy to participate to this dynamic research process.
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Julien Heulot. Runtime multicore scheduling techniques for dispatching parameterized signal and vision dataflow applications on heterogeneous MPSoCs. PhD thesis, INSA Rennes, 2015

Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid. Marte to πsdf transformation for dataintensive applications analysis. In Proceedings of the DASIP Conference. IEEE, 2014 All our studies on PiSDF are implemented in the PREESM

tool9 available on9 M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi. PREESM: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming. In Proceedings of the EDERC Conference, Sept 2014Github: http://preesm.sourceforge.net.In the next chapter, PiSDF is also employed but this time for improving the Non-Functional Properties (NFPs) of the built system and increase its implementation quality.

Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-François Nezan. Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE eNodeB. Springer,

Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi. Distributed memory allocation technique for synchronous dataflow graphs. In Proceedings of the SiPS Workshop. IEEE,

Alexandre Mercat, Wassim Hamidouche, Maxime Pelcat, and Daniel Menard. Estimating encoding complexity of a real-time embedded software hevc codec. In Proceedings of the DASIP conference. IEEE, 2016 ing methods for choosing the most optimal configuration in terms of bitrate and image quality. In this context, energy is gained by smartly reducing the amount of tested encoding

methods14 . This gain has an impact on the performance of14 Alexandre Mercat, Florian Arrestier, Wassim Hamidouche, Maxime Pelcat, and Daniel Menard. Energy reduction opportunities in an hevc real-time encoder. In Proceedings of the ICASSP conference, 2017 the encoder and this impact must be precisely controlled for the optimisations to be useful

in practice15 . Such a system behavior where the functional behav-15 Alexandre Mercat, Florian Arrestier, Wassim Hamidouche, Maxime Pelcat, and Daniel Menard. Constrain the docile ctus: an inframe complexity allocator for hevc intra encoders. In Proceedings of the ICASSP conference, 2017 ior, and non only NFPs, is affected by implementation optimizations goes out of the scope of Design Productivity as defined in Chapter 1. It opens to the domain of Approximate Computing that will be evoked in Chapter 8.
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M. Masin, F. Palumbo, H. Myrhaug, J. A. de Oliveira Filho, M. Pastena, M. Pelcat, L. Raffo, F. Regazzoni, A. Sanchez, A. Toffetti, E. de la Torre, and K. Zedda. Crosslayer design of reconfigurable cyber-physical systems. Proceedings of the DATE Conference, 2017 integrating our research results on dataflow-based design methods. We intend
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This Habilitation à Diriger des Recherches (HDR) report presents past and future research directions resulting from the work I conducted since 2010 together with colleagues at IETR/INSA Rennes Finally, I am grateful to Jocelyn Sérot for accepting to direct this

Benchmarked Application

The stereo matching algorithm from 3 , shown in 3 A. Mercat, J.-F. Nezan, D. Menard, and J. Zhang. Implementation of a stereo matching algorithm onto a manycore embedded system. In Proceedings of the ISCAS conference. IEEE, 2014 its SDF form in Figure 7.3, is used for the study. From a pair of views of the same scene, the stereo matching application computes a disparity map, corresponding to the depth of the scene for each pixel. The disparity corresponds to the distance in pixels between the representations of the same object in both views. Parameters can be customized such as the size of the input images, the number of tested disparities and the number of refinement iterations in the algorithm. These parameters allow for various configurations and application activities to be created. The tested configurations for this study are summarized in Table 7 7.3 is a repetition factor indicating the number of actor executions during an iteration of the graph. This number is deduced from the data production and consumption rates of actors. Two parameters are shown in the graph: NbDisparities represents the number of distinct values that can be found in the output disparity map, and NbOffsets is a parameter influencing the size of the pixel area considered for the pixel weight and aggregation calculus of the algorithm. NbIterations affects the computational load of actors.

The SDF graph contains 12 distinct actors: ReadRGB reads from a file the RGB data of an image, BrdX is a broadcast actor. It duplicates on its output ports the data token consumed on its input port. It generates only pointer manipulations in the code. GetLeft gets the RGB left view of the stereo pair. RGB2Gray converts an RGB image into grayscale. Census produces an 8-bit signature for each pixel, obtained by comparing the pixel to its 8 neighbors: if the value of the neighbor is greater than the value of the pixel, the signature bit is set to 1, and otherwise to 0. CostConstruction is executed once per potential disparity level. By combining the two images and their census signatures, it produces for each pixel the cost of matching this pixel from the first image with the corresponding pixel in the second image shifted by a disparity level. ComputeWeights produces 3 weights for each pixel, using characteristics of tions that represent the best alternative in at least one dimension and respect constraints in the other dimensions. As an example, p 1 on Figure 8.2 may be energy consumption and p 2 may represent the response time to input data. Using rapid prototyping for gaining productivity by raising the abstraction of compiler models is one of our motivations for proposing the new domain of MoAs. Indeed, separating the application concern (modeled by a MoC) and architecture concern (modeled by an MoA) makes it possible to generate many points for the DSE Pareto by separately varying application and architecture parameters and observing their effects on system efficiency. For example, the designer can build an application, test its efficiency on different platform architectures and, if constraints are not met by any point on the Pareto, iterate this process until reaching a satisfactory efficiency. This process is illustrated on Figure 8.3 and leads to the Pareto points from Figure 8.2. The more a rapid prototyping tool can, by itself, play with application and architecture parameters, the better the resulting DP should be.

Tools also need to enter designers' best practices at a higher pace than today. On the hardware design side for example, the VHDL, Verilog and SystemVerilog most commonly used languages for logic synthesis today are progressively complemented with High-Level Synthesis (HLS) languages such as C or OpenCL (Chapter 4). However, between the creation of the first Cbased HLS methods and the beginning of broad adoption, more than 30 years have passed [START_REF] Martin | High-level synthesis: Past, present, and future[END_REF], equivalent in technological years to a geological era. For speeding up the introduction of future model-based design tools, we intend to continue our efforts on fair DP evaluation that provide in-depth information on what makes a method higher-level than another(Chapter 4).

The privileged subjects for our future research are illustrated in Figure 8.4. Future studies on model-based approaches, approximate computing, cyberphysical systems and rapid prototyping will need to follow the rapid -and hardly predictable -evolution of applications and platforms. In particular, with the exponential expansion of artificial intelligence applications, an inflexion is likely to be observed in the next years on processor architectural