
M A X I M E P E L C AT

M O D E L S , M E T H O D S A N D T O O L S

F O R B R I D G I N G T H E D E S I G N

P R O D U C T I V I T Y G A P O F

E M B E D D E D S I G N A L P R O C E S S I N G

S Y S T E M S

Soutenue le 10 ju i l l e t 2017 devan t un ju ry composé de

RAPPORTEURS :

M I C H E L A U G U I N, D R C N R S
J E A N - P I E R R E TA L P I N , D R I N R I A
C H R I S T O P H E J É G O , P R O F. E N S E I R B - M AT M E C A
EXAM I NAT EURS :

J O C E LY N S É R O T, P R O F. U C A
F R A N Ç O I S B E R R Y, M C F H D R U C A
J E A N - F R A N Ç O I S N E Z A N , P R O F. I N S A R E N N E S / I E T R
D A N I E L M É N A R D, P R O F. I N S A R E N N E S / I E T R
S H U V R A S . B H AT TA C H A R Y YA , P R O F. U M D / T U T

H A B I L I TAT I O N À D I R I G E R D E S R E C H E R C H E S

Contents

List of Personal Publications 5

Foreword 9

Abstract 11

1 Design Productivity 13

A Using Dataflow MoCs for Raising Design Productivity 19

2 Improving Design Efficiency 21

3 Improving Implementation Quality 41

4 Evaluating Design Productivity 51

B Introducing MoAs for Raising Design Productivity 71

5 Models of Architecture: A New Design Abstraction 73

6 State of the Art of Models of Architecture 85

7 Models of Architecture in Practice 105

8 Research Perspectives 121

Bibliography 129

List of Personal Publications

[1] Carlo Sau, Francesca Palumbo, Maxime Pelcat, Julien Heulot, Erwan Nogues, Daniel Ménard, Paolo Meloni,

and Luigi Raffo. Challenging the best HEVC fractional pixel FPGA interpolators with reconfigurable and multi-

frequency approximate computing. IEEE Embedded Systems Letters, 2017. IEEE, to appear.

[2] Alexandre Mercat, Florian Arrestier, Wassim Hamidouche, Maxime Pelcat, and Daniel Menard. Energy reduction

opportunities in an HEVC real-time encoder. In Proceedings of the ICASSP conference. IEEE, 2017.

[3] Alexandre Mercat, Florian Arrestier, Wassim Hamidouche, Maxime Pelcat, and Daniel Menard. Constrain the

docile CTUs: an in-frame complexity allocator for HEVC intra encoders. In Proceedings of the ICASSP conference.

IEEE, 2017.

[4] Michael Masin, Francesca Palumbo, Hans Myrhaug, Julio de Oliveira Filho, Max Pastena, Maxime Pelcat, Luigi

Raffo, Francesco Regazzoni, Angel Sanchez, Antonella Toffetti, Eduardo de la Torre, and Katiuscia Zedda. Cross-

layer design of reconfigurable cyber-physical systems. In Proceedings of the DATE Conference. IEEE ACM, 2017.

[5] Erwan Raffin, Wassim Hamidouche, Erwan Nogues, Maxime Pelcat, and Daniel Menard. Scalable HEVC De-

coder for Mobile Devices: Trade-offs between Energy Consumption and Quality. In Proceedings of the DASIP

conference. IEEE, 2016.

[6] Alexandre Mercat, Wassim Hamidouche, Maxime Pelcat, and Daniel Menard. Estimating encoding complexity of

a real-time embedded software hevc codec. In Proceedings of the DASIP conference. IEEE, 2016.

[7] Raquel Lazcano, Daniel Madroñal, Karol Desnos, Maxime Pelcat, Raúl Guerra, Sebastián López, Eduardo Juarez,

and César Sanz. Parallelism Exploitation of a Dimensionality Reduction Algorithm Applied to Hyperspectral

Images. In Proceedings of the DASIP Conference. IEEE, 2016.

[8] Kamel Abdelouahab, Cédric Bourrasset, Maxime Pelcat, François Berry, Jean-Charles Quinton, and Jocelyn Serot.

A holistic approach for optimizing DSP block utilization of a CNN implementation on FPGA. In Proceedings of

the ICDSC Conference. ACM, 2016.

[9] Maxime Pelcat, Karol Desnos, Luca Maggiani, Yanzhou Liu, Julien Heulot, Jean-François Nezan, and Shuvra S.

Bhattacharyya. Models of Architecture: Reproducible Efficiency Evaluation for Signal Processing Systems. In

Proceedings of the SiPS Workshop. IEEE, 2016.

[10] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi. Distributed memory allocation tech-

nique for synchronous dataflow graphs. In Proceedings of the SiPS Workshop. IEEE, 2016.

6

[11] Francesca Palumbo, Carlo Sau, Davide Evangelista, Paolo Meloni, Maxime Pelcat, and Luigi Raffo. Runtime

Energy versus Quality Tuning in Motion Compensation Filters for HEVC. In Proceedings of PDeS. IEEE, 2016.

[12] Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, and François Berry. Design productivity of a high level

synthesis compiler versus HDL. In Proceedings of the IC-SAMOS Workshop. IEEE, 2016.

[13] Erwan Nogues, Daniel Menard, and Maxime Pelcat. Algorithmic-level approximate computing applied to energy

efficient HEVC decoding. IEEE Transactions on Emerging Topics in Computing, 2016. IEEE.

[14] Erwan Nogues, Julien Heulot, Glenn Herrou, Ladislas Robin, Maxime Pelcat, Daniel Menard, Erwan Raffin,

and Wassim Hamidouche. Efficient DVFS for low power HEVC software decoder. Journal of Real-Time Image

Processing, 2016. Springer Verlag.

[15] John McAllister, Maire O’neill, and Maxime Pelcat. Guest editorial: New frontiers in signal processing applica-

tions and embedded processing technologies. Journal of VLSI Signal Processing Systems for Signal, Image, and

Video Technology (JSPS), 2016. Springer Verlag.

[16] Erwan Nogues, Maxime Pelcat, Daniel Menard, and Alexandre Mercat. Energy efficient scheduling of real time

signal processing applications through combined DVFS and DPM. In Proceedings of the PDP conference. IEEE,

2016.

[17] Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid. On Exploiting Energy-

Aware Scheduling Algorithms for MDE-Based Design Space Exploration of MP2SoC. In Proceedings of the PDP

Conference. IEEE, 2016.

[18] Miguel Chavarrias, Fernando Pescador, Matias Garrido, Maxime Pelcat, and Eduardo Juarez. Design of Multicore

HEVC Decoders Using Actor-based Dataflow Models and OpenMP. In Proceedings of the ICCE Conference.

IEEE, 2016.

[19] Karol Desnos, Maxime Pelcat, Jean François Nezan, and Slaheddine Aridhi. On Memory Reuse Between Inputs

and Outputs of Dataflow Actors. ACM Transactions on Embedded Computing Systems (TECS), 2016. ACM.

[20] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, Daniel Menard, and Johan Lilius. Energy-

awareness and performance management with parallel dataflow applications. Journal of VLSI Signal Processing

Systems for Signal, Image, and Video Technology (JSPS), 2015. Springer Verlag.

[21] Erwan Raffin, Erwan Nogues, Wassim Hamidouche, Seppo Tomperi, Maxime Pelcat, and Daniel Menard. Low

power HEVC software decoder for mobile devices. Journal of Real-Time Image Processing, 2015. Springer Verlag.

[22] Erwan Nogues, Erwan Raffin, Maxime Pelcat, and Daniel Menard. A modified HEVC decoder for low power

decoding. In Proceedings of the Computing Frontiers Conference. ACM, 2015.

[23] Erwan Raffin, Wassim Hamidouche, Erwan Nogues, Maxime Pelcat, Daniel Menard, and Tomperi Seppo. En-

ergy Efficiency of a Parallel HEVC Software Decoder for Embedded Devices. In Proceedings of the Computing

Frontiers Conference. ACM, 2015.

[24] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi. Buffer Merging Technique for Min-

imizing Memory Footprints of Synchronous Dataflow Specifications. In Proceedings of the ICASSP Conference.

IEEE, 2015.

7

[25] Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid. Automatic generation

of S-LAM descriptions from UML/MARTE for the DSE of massively parallel embedded systems. In Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. 2015. Springer Verlag.

[26] Erwan Nogues, Berrada Romain, Maxime Pelcat, Daniel Menard, and Erwan Raffin. A DVFS based HEVC

decoder for energy-efficient software implementation on embedded processors. In Proceedings of the ICME con-

ference. IEEE, 2015.

[27] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi. Memory Analysis and Optimized

Allocation of Dataflow Applications on Shared-Memory MPSoCs. Journal of VLSI Signal Processing Systems for

Signal, Image, and Video Technology (JSPS), 2014. Springer Verlag.

[28] Julien Heulot, Maxime Pelcat, Jean-François Nezan, Yaset Oliva, Slaheddine Aridhi, and Shuvra S Bhattacharyya.

Just-in-time scheduling techniques for multicore signal processing systems. In Proceedings of the GlobalSIP con-

ference. IEEE, 2014.

[29] Karol Desnos, Safwan El Assad, Aurore Arlicot, Maxime Pelcat, and Daniel Menard. Efficient multicore imple-

mentation of an advanced generator of discrete chaotic sequences. In Proceedings of the ICITST conference. IEEE,

2014.

[30] Zheng Zhou, William Plishker, Shuvra S Bhattacharyya, Karol Desnos, Maxime Pelcat, and Jean-François Nezan.

Scheduling of parallelized synchronous dataflow actors for multicore signal processing. Journal of VLSI Signal

Processing Systems for Signal, Image, and Video Technology (JSPS), 2014. Springer Verlag.

[31] Julien Heulot, Maxime Pelcat, Karol Desnos, Jean François Nezan, Slaheddine Aridhi, et al. SPIDER: A syn-

chronous parameterized and interfaced dataflow-based RTOS for multicore DSPs. Proceedings of the EDERC

Conference, 2014.

[32] Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid. MARTE to πSDF transfor-

mation for data-intensive applications analysis. In Proceedings of the DASIP Conference. IEEE, 2014.

[33] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, and Johan Lilius. Energy efficiency and

performance management of parallel dataflow applications. In Proceedings of the DASIP conference. IEEE, 2014.

[34] Erwan Nogues, Simon Holmbacka, Maxime Pelcat, Daniel Menard, and Johan Lilius. Power-aware HEVC de-

coding with tunable image quality. In Proceedings of the SiPS Workshop. IEEE, 2014.

[35] Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy, Jean-François Nezan, and Slaheddine Aridhi.

PREESM: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming. In Pro-

ceedings of the EDERC Conference, 2014.

[36] Jinglin Zhang, Jean-François Nezan, Maxime Pelcat, and Jean-Gabriel Cousin. Real-time GPU-based local stereo

matching method. In Proceedings of the DASIP Conference. IEEE, 2013.

[37] Zheng Zhou, Karol Desnos, Maxime Pelcat, Jean-François Nezan, William Plishker, and Shuvra S Bhattacharyya.

Scheduling of parallelized synchronous dataflow actors. In Proceedings of the SoC Conference. IEEE, 2013.

[38] Karol Desnos, Maxime Pelcat, Jean François Nezan, Shuvra S. Bhattacharyya, and Slaheddine Aridhi. PiMM:

Parameterized and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In Proceedings of the

IC-SAMOS Workshop. IEEE, 2013.

8

[39] Julien Heulot, Jani Boutellier, Maxime Pelcat, Jean François Nezan, and Slaheddine Aridhi. Applying the Adaptive

Hybrid Flow-Shop Scheduling Method to Schedule a 3GPP LTE Physical Layer Algorithm onto Many-Core Digital

Signal Processors. In Proceedings of the AHS conference, NASA/ESA, 2013.

[40] Karol Desnos, Maxime Pelcat, Jean François Nezan, and Slaheddine Aridhi. Pre- and post-scheduling memory

allocation strategies on MPSoCs. In Proceedings of the ESLsyn conference. IEEE, 2013.

[41] Julien Heulot, Karol Desnos, Jean François Nezan, Maxime Pelcat, Mickaël Raulet, Hervé Yviquel, Pierre-Laurent

Lagalaye, and Jean-Christophe Le Lann. An Experimental Toolchain Based on High-Level Dataflow Models of

Computation For Heterogeneous MPSoC. In Proceedings of the DASIP Conference. IEEE, 2012.

[42] Karol Desnos, Maxime Pelcat, Jean François Nezan, and Slaheddine Aridhi. Memory Bounds for the Distributed

Execution of a Hierarchical Synchronous Data-Flow Graph. In Proceedings of the IC-SAMOS Workshop. IEEE,

2012.

[43] Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-François Nezan. Physical Layer Multi-Core Prototyp-

ing: A Dataflow-Based Approach for LTE eNodeB. Springer Verlag, 2012.

[44] Yaset Oliva, Maxime Pelcat, Jean-François Nezan, Jean-Christophe Prevotet, and Slaheddine Aridhi. Building a

RTOS for MPSoC dataflow programming. In Proceedings of the SoC Conference. IEEE, 2011.

The regularly updated list of my publications is available on :

http://mpelcat.org/publications.

http://mpelcat.org/publications

Foreword

This Habilitation à Diriger des Recherches (HDR) report presents past and

future research directions resulting from the work I conducted since 2010 to-

gether with colleagues at IETR/INSA Rennes and more recently at Institut

Pascal in Clermont-Ferrand, as well as with researchers from University of

Maryland, Tampere University of Technology, Texas Instruments, ENIS, Abo

Akademi, Scuola Sant’ Anna, Università degli studi di Cagliari, Università

degli Studi di Sassari, Universidad Politécnica de Madrid and Queen’s Univer-

sity Belfast.

I am very grateful for all the enriching discussions I had the chance to partic-

ipate in during laboratory and project meetings, research stays and seminars. A

special thank you to the doctors I co-advised: Karol Desnos, Julien Heulot and

Erwan Nogues, as well as to the PhD students I currently co-advise: Alexan-

dre Mercat, El Mehdi Abdali, Jonathan Bonnard, and Kamel Abdelouahab. I

would like to thank the colleagues with whom I had the chance to closely col-

laborate, and in particular Daniel Ménard, Jean-François Nezan, Karol Desnos,

and François Berry who have helped many ideas to ripen that now appear in

this document. Thanks also to all my colleagues at the VAADER team of IETR

and DREAM team of Institut Pascal. Finally, I am grateful to Jocelyn Sérot

for accepting to direct this Habilitation à Diriger la Recherche (HDR) and for

helping with the creation of this report.

Abstract

The complexity of systems is currently growing faster than the productivity of

system designers and programmers. This phenomenon is called Design Pro-

ductivity Gap and results in inflating design costs. This Habilitation à Diriger

des Recherches (HDR) report present models, methods and tool for improving

the Design Productivity (DP) of embedded Digital Signal Processing (DSP)

systems and reducing this Design Productivity Gap. The notion of Design

Productivity (DP) is commonly used without defining it. This report starts

by precisely defining DP before presenting different methods to improve and

evaluate it.

In a first part, methods based on Models of Computation (MoCs) are ex-

plored. They constitute our past and present work on the subject. Dataflow

MoCs are used to study application properties (liveness, schedulability, paral-

lelism, etc.) at a high level of abstraction, often before implementation details

are known. We have over the last seven years explored how dataflow MoCs

can influence the performance and design efforts of modern multicore Digital

Signal Processing (DSP) systems.

In the second part of this report, the focus is shifted on the notion of Model

of Architecture (MoA) we recently introduced. Parallel and heterogeneous

platforms are becoming ever more complex. MoAs have the potential to coun-

teract the DP reduction caused by this rising complexity and constitute the

main subject I intend to continue studying in the next years.

MoAs, and in general Model-Based Design, can have a great impact on

future design methods. Together with the concepts of Cyber-Physical Systems

(CPS), Approximate Computing and Rapid Prototyping, they represent new

opportunities for reducing the Design Productivity Gap of future DSP systems.

1

Design Productivity

1.1 Chapter Abstract

In this introductory chapter, the concept of DP is defined in the context of

DSP system design. DP a ratio between the quality of a system — in terms of

Non-Functional Properties (NFPs) — and the efforts spent to build the system,

expressed as Non-Recurring Engineering (NRE) costs. This definition allows

for evaluations and comparisons of the DPs from several methods.

My work over the last 7 years is then overviewed under the perspective of

DP reduction for DSP embedded systems. DP improvements are finally argued

to be necessary in the long run to follow the upward trend of embedded system

exposed complexity.

1.2 Design Productivity

The concept of DP is often evoked in literature but we only recently proposed

a definition1. Design Productivity (DP) relates to a compromise between the 1 Maxime Pelcat, Cédric Bourrasset, Luca

Maggiani, and François Berry. Design pro-

ductivity of a high level synthesis compiler

versus HDL. In Proceedings of IC-SAMOS,

2016

efforts spent to build a system and the quality of the system resulting from

these design efforts. A generic representation of system DP is proposed in

Figure 1.1. DP may be augmented by two factors:

• when design effort is reduced. This corresponds to augmenting design effi-

ciency,

• when, for a fixed effort, implementation quality is increased.

Design effort can be measured by Non-Recurring Engineering (NRE) cost

metrics such as design time, test and validation time, the number of lines of

code to write, the NRE monetary expenses, etc. Implementation quality can

be measured by Non-Functional Property (NFP) costs such as the energy con-

sumption of the system, its latency, throughput, production cost, silicon area,

etc. A DSP system can be considered functional when it produces, for a given

input data stream, the corresponding correct output data stream. NFPs cor-

respond to all the properties, except functional behavior, that may participate

14 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

to make a system conform to its specification. For a given design, DP can be

characterized by the area under the radar chart curve of Figure 1.1. The smaller

this area is, the more DP the design process offers.

NRE cost 1

NFP cost 1

Design
efficiency

Implementation
quality

NFP cost 2

NRE cost 2 NRE cost 3

NRE cost 4

NFP cost 3

NFP cost 4

Des
ig

n P
roductivity

Figure 1.1: Design Productivity represen-

tation as a combination of Non-Recurring

Engineering (NRE) costs and system Non-

Functional Property (NFP) costs.

The NRE and NFP cost metrics chosen to appear in the chart strongly im-

pact how the Design Productivity is measured. They should be chosen accord-

ing to the most important design constraints and the most important features

of the built system. As a consequence, a unique scalar value can not alone

quantify DP. However, if two design methods are compared on the same use

case, in the same conditions and with the same NRE and NFP metrics, a fair

DP ratio can be measured, provided that the conditions for producing this ratio

are explained. A fair DP comparison will be demonstrated in Chapter 4.

DP fair assessment is a promising tool to promote new system design prac-

tices. We recently prototyped such a system DP fair assessment[1] to demon-

strate its feasibility. Platform technologies and architectures currently evolve

at a tremendous pace but design practices clearly evolve at a more leisurely

pace. Fair DP studies have the potential to boost design practices and foster

new tools, languages and methods.

The next section illustrates my research activities under the prism of DP

augmentation.

1.3 Research Activities on Design Productivity

Figure 1.2 illustrates my carrier as maître de conférences over the last 7 years.

Dots represent personal publications, ordered by their main subjects.

The research subjects we have tackled over these years are diverse. They

however have in common a long term objective of DP enhancement.

In the context of the 3 PhD thesis of Karol Desnos (2011-2013), Julien

Heulot (2012-2014) and Erwan Nogues (2013-2015), we have studied dif-

ferent aspects of DP, with a particular focus on application modeling with

dataflow MoCs. Playing with a DSP application representation to enhance its

performance and portability is possible using dataflow MoCs that represent the

high-level aspects (e.g. parallelism, exchanged data, triggering events, etc.) of

DESI GN PRODUC TI VI TY 15

Dataflow compilation

DSP applications

Memory allocation

System adaptivity

Energy reduction

Approximate Computing

Design Productivity

Cyber-Physical Systems

Models of Architecture

professional carrier

publication

co-advised PhDs

projects

2010 2011 2012 2013 2014 2015 20172016

PhD ATER MCF IETR/INSA Rennes MCF IETR/Institut Pascal/INSA

PhD Karol Desnos

PhD Julien Heulot

PhD Erwan Nogues

PhD Alexandre Mercat

PhD Kamel Abdelouahab

PhD El Mehdi Abdali

PhD Jonathan BonnardANR Compa

FUI GreenVideo

ANR HPeC

ANR ARTEFaCT

H2020 CERBERO

Figure 1.2: Research timeline from 2010 to

today.

an application while hiding its detailed implementation. We have tackled the

subjects of representing complex systems with predictable models, automating

memory allocation, automating energy reduction and adapting the execution of

a multicore system to hardware and software states. Alongside this work on

design methods, we have built several DSP designs to test and demonstrate

the methods. This MoC-based design approach is described in Chapters 2 and

3 and illustrated in Figure 1.3 that represents our main past and current re-

search subjects and the NFPs and NREs they address. In the figure, latency

corresponds to the real-time response time of the system, energy is the en-

ergy consumption due to processing and memory is the memory footprint of

the application. New architecture porting time corresponds to the design time

necessary to port and application to a new architecture.

Our focus is currently shifting, motivated by the continuous augmentation

of the number of cores in systems and their rising heterogeneity. In particular,

the complexity of embedded processors is ever more exposed. An exposed

architecture is a set of hardware features that a designer must know to exploit

the potential performance of a platform. We oppose to exposed architectures

the hidden architectures that are hardware- or software-managed and can be

ignored by the designer while still getting acceptable performance. Our focus

16 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

Design time

Latency

Energy

New architecture
porting time

Test time

Memory

Dataflow compilation

DSP applications

Memory allocation

System adaptivity

Energy reduction

Design time

Latency
Energy

New architecture
porting time

Test time

Memory

Design
efficiency

Implementation
quality

Research subjects NRE and NFP costs

Des
ig

n P
roductivity

Figure 1.3: Relating the main research sub-

jects addressed by our past and current work

(Figure 1.2) and their influence on the ad-

dressed DP-related metrics.
is now set on a new notion we recently proposed2: Models of Architecture

2 Maxime Pelcat, Karol Desnos, Luca

Maggiani, Yanzhou Liu, Julien Heulot,

Jean-François Nezan, and Shuvra S

Bhattacharyya. Models of architecture:

Reproducible efficiency evaluation for signal

processing systems. In Proceedings of the

SiPS Workshop. IEEE, 2016

(MoAs).

Equivalently to MoCs on the application side, Models of Architecture (MoAs)

can be used on the architectural side to extract the fundamental elements af-

fecting efficiency. An MoA is a model abstracting away details of a hardware

platform but producing, when combined with an application model, a repro-

ducible evaluation of a system’s Non-Functional Property (NFP). The notion

of MoA will be defined in Chapter 5. Related works and an example use of an

MoA are respectively presented in Chapters 6 and 7.

New ideas are currently emerging into our research: Cyber-Physical Sys-

tems (CPS), adaptable hardware, approximate computing, and hardware/soft-

ware High-Level Synthesis (HLS). All of them can benefit from the concept

of MoAs. These starting research directions will be presented in Chapter 8,

together with perspectives.

1.4 Why Addressing Embedded Systems’ DP?

In computer science, system performance is often used as a synonym for real-

time performance, i.e. adequate processing speed. However, most DSP sys-

tems must, to fit their market, meet at the same time several NFPs, including

high performance, low cost, and low power consumption.

Observing the available processing systems, three categories can be distin-

guished, based on their power consumption, as displayed in Figure 1.4. Em-

bedded systems are often battery powered and characterized by a processing

power dissipation below 20W. Between 20W and 20kW are either conventional

processing, including personal computers, and dedicated systems such as cel-

lular base stations or large medical devices. Over 20kW and below 20MW are

High Performance Computing (HPC) systems, 20MW being a common upper

bound of processing power consumption for future exascale facilities. One data

center facility can require even more than 20MW (up to around 200MW) but a

data center is constantly shared between millions of independent applications

DESI GN PRODUC TI VI TY 17

and thus cannot be considered as one processing system.

0W

embedded systems

20W 20kW 20MW

conventional systems
dedicated systems

high performance
computing

2W 7W
need
a fan

need a
dissipator

high performance
embedded systems

Figure 1.4: Categories of processing systems

based on their power consumption.

A great variety of processors is available for the embedded processing do-

main and embedded processors have a great influence on all domains of

processing as a consequence of their high energy efficiency. For instance,

the influence of embedded systems on HPC is visible in the Mont-Blanc Eu-

ropean projects [3] that design ARM-based HPC platforms. Moreover, mobile

devices, built around embedded processors, have become the main driver of

processing innovation and future systems, either in the Internet of Things (IoT)

or in the CPS domain, are predicted to continue this trend.

The energy efficiency of embedded processors comes at the price of very

complex design and programming procedures due to considerable exposed

complexities. As an example, porting complex applications to an FPGA or

a many-core processor can easily take several tens or hundreds of men-months

to exploit an acceptable share of platform performances and a large set of hard-

ware skills is expected from the design teams. The 2011 ITRS report warns that

“design implementation productivity must be improved to the same de-

gree as design complexity is scaled” for design costs to remain sustainable[4].

The examples of processors studied in this document have a limited number

of cores: for example the Exynos 5410 and 5422 processors, each composed

of 4 energy-efficient ARM Cortex-A7 cores and 4 high-performance ARM

Cortex-A15 cores, and the Texas Instruments TMS320C6678 processor com-

posed of 8 c66x DSP cores interconnected by a Network-on-Chip (NoC) with

access to an internal shared memory. However, both these processors already

require hardware knowledge to properly program them. For instance, com-

municating between cores through the shared memory of the TMS320C6678

processor necessitates manual data cache coherency management, taking ac-

count of the cache line size of 128Bytes to avoid invalidating or writing back

the wrong data in memory.

This kind of programming is difficult to maintain for the currently released

many-core processors. The upward trend currently followed by platforms’ ex-

posed complexity is likely to continue in the next years and the number of

cores in mobile systems is forecast to grow at least until the end of the 2020s

[5]. In this context, one major challenge of electronic system design is the

growing Design Productivity Gap referring to a faster increase in the complex-

ity of systems than in the productivity of system designers. As a consequence,

Design Productivity (DP) is at the heart of system costs and should be carefully

18 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

addressed in future research, especially for the cost and performance-critical

DSP applications exploiting embedded processors.

This report is organized into two Parts. Part A covers our previous work on

augmenting and measuring the DP of DSP embedded systems using dataflow

MoCs while part B proposes the new concept of MoAs to further improve DP

in the next years.

In Part A, Chapter 2 presents our work on augmenting the DP of embed-

ded processing systems by raising the design efficiency while Chapter 3 fo-

cuses on the improvement of the implementation quality. Chapter 4 overviews

the use cases leveraged on to assess our models and methods and shows on a

High-Level Synthesis (HLS) example how DP can be measured in practice. In

Part B, Chapters 5, 6 and 7 respectively concentrate on the definition, state-of-

the-art and applicability of Models of Architecture (MoAs) as a new direction

to explore. Finally, Chapter 8 presents some research perspectives I intend to

follow in the next years.

Part A

Using Dataflow MoCs for Raising Design

Productivity

2

Improving Design Efficiency

No
n-

Re
cu

rrin
g Engineering (NRE) costsDesign

efficiency

Figure 2.1: Improving design efficiency on

the DP chart.

2.1 Chapter Abstract

This chapter highlights our contributions on Design Productivity (DP) with a

particular focus on the design efficiency of DSP systems. These contributions

are based on the PiMM dataflow metamodel we introduced in 2013. They aim

at automating design phases and hiding parts of the system complexity.

The PiMM metamodel is first presented. PiMM can be used in conjunction

with any dataflow MoC. When combining the PiMM metamodel together with

the Synchronous Dataflow (SDF) MoC, a hierachical, predictible, composi-

tional and parameterized model of computation is obtained called PiSDF. The

benefits offered by the PiSDF dataflow MoC on design efficiency come from the

portable nature of a PiSDF algorithm representation. Indeed, PiSDF, inher-

iting properties from the formerly existing parameterized dataflow and IBSDF

models, represents both the parallelism of the application, and the data com-

municated between computational actors, while supporting dynamic applica-

tion reconfigurability.

Then, a scheduling method called JIT-MS is introduced. The objective of

Just-In-Time Multicore Scheduling (JIT-MS) is to find a balance between a

static scheduling that has no runtime overhead but does not take into account

the application and architecture modifications, and dynamic scheduling that

costs time and resources to take decisions. JIT-MS exploits the information of

a PiSDF application representation to adapt a dynamic application execution

to potentially dynamic platform resources. JIT-MS maintains a graph of the

current application state and optimizes the application execution as soon as

its parameters are resolved. It splits the scheduling of a PiSDF dataflow graph

into steps to identify locally static regions. It also provides efficient assignment

and ordering of actors into Processing Elements (PEs), leveraging on dataflow

information.

When compared to the current programming methods for parallel systems

based on manual parallelization and imperative languages such as C and ex-

tension such as OpenMP or OpenCL, PiMM and JIT-MS aim to foster a shift

22 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

in the programming paradigm of DSP embedded systems from state-machine-

based languages to parallelism-aware dataflow representations.

2.2 Building the PiMM Metamodel to improve De-

sign Efficiency

Currently available high performance DSP platforms all have multiple cores.

They sometimes also bring together programmable cores and programmable

hardware. The procedure to design systems for these platforms is complex

and specific to each architecture. Our work on design efficiency consists of

designing models, methods and tools to decouple the application model from

the architecture model.

On the application side, the parameters of applications (e.g. the size of a

processed image, the bandwidth of a telecommunication algorithm„ the size

of a cryptographic key to generate, etc.) impact their parallelism and the effi-

ciency of their execution. If this impact is extensive, a runtime management of

the system is necessary to migrate processing tasks, manage data movements

and handle external event. If on the contrary the impact of parameters on con-

currency is limited, it is desirable to take as many code and memory locality

decisions at compile time, avoiding runtime management overheads.

A common method to design a DSP system today is to first build a versatile

simulation model of the application algorithms using Matlab, Scilab or Python.

Then, this model is used as a golden reference to separately build the hardware

and software subparts of the system and then verify the functional properties

of the system. The hardware is written in VHDL or Verilog to be ported for

instance on an Field-Programmable Gate Array (FPGA) or to be implemented

as an ASIC IP. The software is written is imperative code, usually in C code,

and must be adapted to the number of of available cores, their performance,

their communication facilities, their memory, and the interfaces they use to

communicate with the their environment.

There are several ways to reduce the efforts necessary to build a system in

this context, and thus increase its design efficiency:

• The design time can be reduced, corresponding to the time needed to rep-

resent the application in a language or model serving as an input for the

compilation/synthesis process. This reduction can come from a more user

friendly language, a Domain specific language (DSL) making language se-

mantics fitting closely the applicative needs and automating some repetitive

procedures, an Integrated Development Environment (IDE) with advanced

language semantics analysis, etc. Another possibility is for the golden ref-

erence code to be made executable for the designer to write application

functionalities only once and infer the total system.

• The test time can be reduced, for instance by setting correct-by-design con-

structs in the input language or automating the construction of test benches.

IMPROVIN G DESI GN EFFI CI ENCY 23

• The porting time to another platform can be shortened. A processor is

currently commercialized only for a few years before being replaced by

a new one, often with a very different architecture. Porting applications

between architectures of different types is currently very time consuming.

During the last years and particularly as part of the PhD thesis of Karol

Desnos and Julien Heulot, we have developed a new dataflow metamodel

named Parameterized and Interfaced Dataflow Meta-Model (PiMM) and com-

bined it with the SDF MoC to form a hierachical, predictible and parameterized

model named Parameterized and Interfaced Synchronous Dataflow (PiSDF).

We have also built the compilation and runtime tools PREESM1 and Spider2 1 M. Pelcat, K. Desnos, J. Heulot, C. Guy,

J.-F. Nezan, and S. Aridhi. PREESM: A

dataflow-based rapid prototyping framework

for simplifying multicore dsp programming.

In Proceedings of the EDERC Conference,

Sept 2014
2 Julien Heulot, Maxime Pelcat, Karol

Desnos, Jean François Nezan, Slaheddine

Aridhi, et al. SPIDER: A synchronous

parameterized and interfaced dataflow-based

rtos for multicore dsps. Proceedings of the

EDERC Conference, 2014

to generate multicore software from PiSDF. In a partnership with the Poly-

technic University of Madrid (UPM), we are currently extending PiSDF to

hardware design.

Our work on dataflow compilation has focused on enhancing the predictabil-

ity of algorithm modeling because a predictable model is compulsory when a

DSP processing algorithm is to be mapped onto a multicore system with a de-

gree of guaranteed efficiency. In particular, the added value of an embedded

system lies in the possibility to ensure properties such as real-time and en-

ergy consumption. The PiMM metamodel, published in IC-SAMOS 2013 3 3 K. Desnos, M. Pelcat, J.-F. Nezan, S. S.

Bhattacharyya, and S. Aridhi. PiMM: Pa-

rameterized and interfaced dataflow meta-

model for MPSoCs runtime reconfiguration.

In SAMOS XIII, 2013

complements previous work on Interface-Based SDF (IBSDF) from Jonathan

Piat[9]. It favors the design of highly-efficient heterogeneous multicore sys-

tems, specifying algorithms with customizable trade-offs among predictability

and exploitation of both static and adaptive task, data and pipeline parallelism.

Next sections discuss a selection of our contributions on PiSDF and JIT-MS.

2.3 Dataflow Compilation: The PiMM Meta-Model

and PiSDF MoC

2.3.1 State of the Art of Dataflow MoCs

Dataflow MoCs can be used to specify a wide range of DSP applications such

as video decoding [10], telecommunication 4, and computer vision [12] appli- 4 Maxime Pelcat, Slaheddine Aridhi,

Jonathan Piat, and Jean-François Nezan.

Physical Layer Multi-Core Prototyping: A

Dataflow-Based Approach for LTE eNodeB.

Springer, 2012

cations. The popularity of dataflow MoCs is due to their great analysability and

their natural expressivity of the parallelism of a DSP application which make

them particularly suitable to exploit the parallelism offered by heterogeneous

Multiprocessor Systems-on-Chips (MPSoCs). The increasing complexity of

applications leads to the continuing introduction of new dataflow MoCs, and

the extension of previously developed MoCs for different types of modeling

contexts. Dataflow MoCs are differentiated by their capacity to either describe

dynamic application behaviors (expressive models) or to feed a behaviour pre-

diction process efficiently (predictible models).

Representing an application with a Dataflow Process Network (DPN) [13]

consists of dividing this application into persistent processing entities, named

24 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

actors, connected by First In, First Out data queues (FIFOs). An actor per-

forms processing (it “fires”) when its incoming FIFOs contain enough data

tokens. The number of data tokens consumed and produced by an actor for

each firing is given by a set of firing rules [14]. Firing rules can be static or

they can depend on data, as in the CAPH language, or on parameters, as in the

Parameterized Synchronous Dataflow (PSDF) MoC [15].

Static Dataflow MoCs Synchronous Dataflow (SDF) [16] is a static DPN

MoC. Production and consumption token rates set by firing rules are fixed

scalars in an SDF graph. A static analysis of an SDF graph ensures consistency

and schedulability properties that imply deadlock-free execution and bounded

FIFO memory needs.

An SDF graph G = (A,F) (Figure 2.2) contains a set of actors A that are

interconnected by a set of FIFOs F . An actor a∈A comprises a set of data ports

(Pin
data,Pout

data) where Pin
data and Pout

data respectively refer to a set of data input and

output ports, used as anchors for FIFO connections. Functions src : F → Pout
data

and snk : F → Pin
data associate source and sink ports to a given FIFO and a

data rate is specified for each port by the function rate : Pin
data ∪ Pout

data → N

corresponding to the fixed firing rules of an SDF actor. A delay d : F → N is

set for each FIFO, corresponding to a number of tokens initially present in the

FIFO.

A Actor

FIFO

Port name
and rate A Bd: 1 d: 1

di: 2

fi: 4 fo: 4
Cdo: 6

d: 3

*4*4
Delay and
number of tokens

Figure 2.2: Example of an SDF Graph

If an SDF graph is consistent and schedulable, a fixed sequence of actor

firings can be repeated indefinitely to execute the graph, and there is a well

defined concept of a minimal sequence for achieving an indefinite execution

with bounded memory. Such a minimal sequence is called graph iteration and

the number of firings of each actor in this sequence is given by the graph

Repetition Vector (RV).

Graph consistency means that no FIFO accumulates tokens indefinitely when

the graph is executed (preventing FIFO overflow). Consistency can be proved

by verifying that the graph topology matrix has a non-zero vector in its null

space [16]. When such a vector exists, it gives the RV for the graph. The

topology of an SDF graph characterizes actor interconnections as well as to-

ken production and consumption rates on each FIFO. A graph is schedulable

if and only if it is consistent and has enough initial tokens to execute the first

graph iteration (preventing deadlocks by FIFO underflow).

Research on dataflow modeling leads to the continuing introduction of new

dataflow models. Static extensions of the SDF model such as the Cyclo-Static

Dataflow (CSDF) [17], the multidimensional SDF [18], the IBSDF [9], and the

Affine Dataflow (ADF) [19] have been proposed to enhance its expressiveness

IMPROVIN G DESI GN EFFI CI ENCY 25

and conciseness while preserving its predictability.

The Compositional Temporal Analysis (CTA) model is a non-executable

timed abstraction of the SDF MoC that can be used to analyze efficiently the

schedulability and the temporal properties of applications [20]. The IBSDF

and the CTA models both enforce the compositionality of applications. A

model is compositional if the properties (schedulability, deadlock freeness, ...)

of an application graph composed of several sub-graphs are independent from

the internal specifications of these sub-graphs [21].

Interface-Based Synchronous Dataflow MoC Interface-Based SDF (IBSDF)

[9] is a hierarchical extension of the SDF model interpreting hierarchy levels

as code closures. IBSDF fosters subgraph composition, making subgraph exe-

cutions equivalent to imperative language function calls. IBSDF has proved to

be an efficient way to model dataflow applications [11]. IBSDF interfaces are

inherited by the PiMM proposed meta-model (Section 2.3.2).

In addition to the SDF semantics, IBSDF adds interface elements to insulate

levels of hierarchy in terms of schedulability analysis. An IBSDF graph G =

(A,F , I) contains a set of interfaces I = (Iin
data, Iout

data) (Figure 2.3).

A data input interface iindata ∈ Iin
data in a subgraph is a vertex transmitting

to the subgraph the tokens received by its corresponding data input port. If

more tokens are consumed on a data input interface than the number of tokens

received on the corresponding data input port, the data input interface behaves

as a circular buffer, producing the same tokens several times.

A data output interface iout
data ∈ Iout

data in a subgraph is a vertex transmitting

tokens received from the subgraph to its corresponding data output port. If a

data output interface receives too many tokens, it will behave like a circular

buffer and output only the last pushed tokens.

A Bd: 1
di: 2

fi: 4 fo: 4
C

do: 6
d: 3

sr
c

sn
k

data input
interface
data output
interface

B1
di1: 1

di2: 4 do2: 4

do1: 3di
fi

do
fo

2

4

6

4

*4

Figure 2.3: Example of an IBSDF Graph

[9] details the behavior of IBSDF data input and output interfaces as well

as the IBSDF properties in terms of compositionality and schedulability check-

ing. Through PiMM, interface-based hierarchy can be applied to other dataflow

models than SDF with less restrictive firing rules.

Parameterized Dataflow MoCs Parameterized dataflow is a meta-modeling

framework introduced in [15] that is applicable to all dataflow MoCs that

present graph iterations. When this meta-model is applied, it extends the tar-

geted MoC semantics by adding dynamically reconfigurable hierarchical ac-

tors. A reconfiguration occurs when values are dynamically assigned to the

26 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

parameters of a reconfigurable actor, causing changes in the actor computation

and in the production and consumption rates of its data ports. As presented

in [22], reconfigurations can only occur at certain points, namely quiescent

points, during the execution of a graph in order to ensure the runtime integrity

of the application.

An objective of PiMM is to further improve parameterization compared to

parameterized dataflow by introducing an explicit parameter dependency tree

and by enhancing graph compositionality. Indeed, in a PSDF graph, ports are

simple connectors between data FIFOs that do not insulate levels of hierarchy

(Section 2.3.1). Other parameterized dataflow MoCs were previously devel-

oped such as the Scenario-Aware Dataflow (SADF) [10], an analysis-oriented

model based on a probabilistic description of the dynamic firing rules of ac-

tors; or the Compaan generated KPN (CPN) [12], a parameterized extension

of the Kahn Process Network (KPN) MoC. In these models, the complexity of

the parameterization mechanism is handled by actors that can reconfigure the

firing rules of other actors (or their own) via “control channels”. This recon-

figuration mechanism differs from that of PiMM in that the latter relies on the

explicit definition of parameters and their dependencies which allows for a pre-

cise specification of what is influenced by a parameter, even in multiple levels

of hierarchy, leading to an enhanced predictability and quasi-static scheduling

potential for the model.

2.3.2 Our Contribution on Parameterized and Interfaced Dataflow

Meta-Modeling

Most of the following discussion is borrowed from our publication on PiMM

[8]. PiMM can be used similarly to the parameterized dataflow to extend the

semantics of all dataflow MoCs implementing the concept of graph iteration.

PiMM adds both interface-based hierarchy and an explicit parameter depen-

dency tree to the semantics of the extended MoC. In this section, we formally

present PiMM through its application to the SDF MoC, composing the PiSDF

model. The pictograms associated to the different elements of the PiSDF se-

mantics are presented in Figures 2.4 and 2.5.

A PiSDF graph G = (A,F , I,Π,∆) contains, in addition to the SDF actor

set A and FIFO set F , a set of hierarchical interfaces I, a set of parameters Π,

and a set of parameter dependencies ∆.

Parameterization semantics

A parameter π ∈ Π is a vertex of the graph associated to a parameter value

v∈N that is used to configure elements of the graph. For a better analyzability

of the model, a parameter can be restricted to take only values of a finite subset

of N. A configuration of a graph is the assignation of parameter values to all

parameters in Π.

An actor a ∈ A is now associated to a set of ports (Pin
data, Pout

data, Pin
cfg, Pout

cfg)

IMPROVIN G DESI GN EFFI CI ENCY 27

where Pin
cfg and Pout

cfg are a set of configuration input and output ports respec-

tively. A configuration input port pin
cfg ∈ Pin

cfg of an actor a ∈ A is an input port

that depends on a parameter π ∈ Π and can influence the computation of a and

the production/consumption rates on the dataflow ports of a. A configuration

output port pout
cfg ∈ Pout

cfg of an actor a ∈ A is an output port that can dynamically

set the value of a parameter π ∈ Π of the graph (Section 2.3.2).

A parameter dependency δ ∈ ∆ is a directed edge of the graph that links

a parameter π ∈ Π to a graph element influenced by this parameter. For-

mally a parameter dependency δ is associated to the two functions setter :

∆ → Π∪Pout
cfg and getter : ∆ → Π∪Pin

cfg∪F which respectively give the source

and the target of δ . A parameter dependency set by a configuration output port

pout
cfg ∈ Pout

cfg of an actor a ∈ A can only be received by a parameter vertex of the

graph that will dispatch the parameter value to other graph elements, building

a parameter dependency tree. Dynamism in PiMM relies on parameters whose

values can be used to influence one or several of the following properties: the

computation of an actor, the production/consumption rates on the ports of an

actor, the value of another parameter, and the delay of a FIFO (Section 2.3.1).

In PiMM, if an actor has all its production/consumption rates set to 0, it will

not be executed.

A parameter dependency tree T = (Π,∆) is formed by the set of parameters

Π and the set of parameter dependencies ∆. The parameter dependency tree T

is similar to a set of combinational relations where the value of each parameter

is resolved virtually instantly as a function of the parameters it depends on.

This parameter dependency tree is in contrast to the precedence graph (A,F)

where the firing of the actors is enabled by the data tokens flowing on the

FIFOs.

πSDF hierarchy semantics

The hierarchy semantics used in PiSDF inherits from the interface-based dataflow

introduced in [9] and presented in Section 2.3.1. In PiSDF, a hierarchical actor

is associated to a unique PiSDF subgraph. The set of interfaces I of a sub-

graph is extended as follows: I = (Iin
data, Iout

data, Iin
cfg, Iout

cfg) where Iin
cfg is a set of

configuration input interfaces and Iout
cfg a set of configuration output interfaces.

Configuration input and output interfaces of a hierarchical actor are respec-

tively seen as a configuration input port pin
cfg ∈ Pin

cfg and a configuration output

port pout
cfg ∈ Pout

cfg from the upper level of hierarchy (Section 2.3.2).

From the subgraph perspective, a configuration input interface is seen as a

locally static parameter whose value is left undefined.

A configuration output interface enables the transmission of a parameter

value from the subgraph of a hierarchical actor to upper levels of hierarchy.

In the subgraph, this parameter value is provided by a FIFO linked to a data

output port pout
data of an actor that produces data tokens with values v ∈ N. In

cases where several values are produced during an iteration of the subgraph, the

configuration output interface behaves like a data output interface of size 1 and

28 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

only the last value written will be produced on the corresponding configuration

output port of the enclosing hierarchical actor (Section 2.3.1).

Figure 2.4 presents an example of a static PiSDF description. Compared

to Figure 2.3, it introduces parameters and parameter dependencies that com-

pose a PiMM parameter dependency tree. The modeled example illustrates the

modeling of a test bench for an image processing algorithm. In the example,

one token corresponds to a single pixel in an image. Images are read, pixel

by pixel, by actor A and stored, pixel by pixel, by actor C. A whole image is

processed by one firing of actor B. A feedback edge with a delay stores the

previous image for comparison with the current one. Actor B is refined by an

actor B1 processing one Nth of the image. In Figure 2.4, the size of the image

picsize and the parameter N are locally static.

N

di: picsize/N do: picsize/N

A B
d: 1

picsize

C

picsize

d: 1

B1

di
fi

do
fo

picsize

size locally static
parameter

parameter
dependency

configuration
input port

*picsize

picsize picsizefi: picsize/N fo: picsize/N

configuration
input interface

Figure 2.4: Example of a PiSDF Graph with

Static Parameters

πSDF Reconfiguration As introduced in [22], the frequency with which the

value of a parameter is changed influences the predictability of the applica-

tion. A constant value will result in a high predictability while a value which

changes at each iteration of a graph will cause many reconfigurations, thus

lowering the predictability.

There are two types of parameters π ∈Π in PiSDF: configurable parameters

and locally static parameters. Both restrict how often the value of the parameter

can change. Regardless of the type, a parameter must have a constant value

during an iteration of the graph to which it belongs.

Configurable parameters

A configurable parameter πcfg ∈ Π is a parameter whose value is dynamically

set once at the beginning of each iteration of the graph to which it belongs.

Configurable parameters can influence all elements of their subgraph except

the production/consumption rates on the data interfaces Iin
data and Iout

data. As ex-

plained in [15], this restriction is essential to ensure that, as in IBSDF, a parent

graph has a consistent view of its actors throughout an iteration, even if the

topology may change between iterations.

The value of a configurable parameter can either be set through a param-

eter dependency coming from an other configurable parameter or through a

IMPROVIN G DESI GN EFFI CI ENCY 29

parameter dependency coming from a configuration output port pout
cfg of a con-

figuration actor (Section 2.3.2). In Figure 2.5, N is a configurable parameter.

Locally static parameters

A locally static parameter πstat ∈ Π of a graph has a value that is set before the

beginning of the graph execution and which remains constant over one or sev-

eral iterations of this graph. In addition to the properties listed in Section 2.3.2,

a locally static parameter belonging to a subgraph can also be used to influence

the production and consumption rates on the Iin
data and Iout

data interfaces of its hi-

erarchical actor.

The value of a locally static parameter can be statically set at compile time,

or it can be dynamically set by configurable parameters of upper levels of hi-

erarchy via parameter dependencies. For example, a subgraph sees a config-

uration input interface as a locally static parameter but this interface can take

different values at runtime if its corresponding configuration input port is con-

nected to a configurable parameter. In Figure 2.5, picsize is a locally static

parameter both in main graph and in subgraph B.

A partial configuration state of a graph is reached when the parameter val-

ues of all its locally static parameters are set. Hierarchy traversal of a hierar-

chical actor is possible only when the corresponding subgraph has reached a

partial configuration state.

A complete configuration state of a graph is reached when the values of

all its parameters (locally static and configurable) are set. If a graph does not

contain any configurable parameter, its partial and complete configurations are

equivalent. Only when a graph is completely configured is it possible to check

its consistency, compute a schedule, and execute it.

Configuration Actors

A firing of an actor a with a configuration output port pout
cfg produces a pa-

rameter value that can be used via a parameter dependency δ to dynamically

set a configurable parameter π (Section 2.3.2), provoking a reconfiguration

of the graph elements depending on π . In PiMM, such an actor is called a

configuration actor. The execution of a configuration actor is the cause of a

reconfiguration and must consequently happen only at quiescent points during

the graph execution, as explained in [22]. To ensure the correct behavior of

PiSDF graphs, a configuration actor acfg ∈ A of a subgraph G is subject to the

following restrictions:

R1. acfg must be fired exactly once per iteration of G before the firing of any

non-configuration actor. Indeed, G reaches a complete configuration only

when all its configuration actors have fired.

R2. acfg must consume data tokens only from hierarchical interfaces of G and

must consume all available tokens during its unique firing.

30 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

R3. The production/consumption rates of a acfg can only depend on locally

static parameters of G.

R4. Data tokens produced by acfg are seen as a data input interface by other

actors of G. (i.e. they are made available using a ring-buffer and can be

consumed more than once).

These restrictions naturally enforce the local synchrony conditions of parame-

terized dataflow defined in [15] and reminded in Section 2.3.2.

The firing of all configuration actors of a graph is needed to obtain a com-

plete configuration of this graph. Consequently, configuration actors will al-

ways be executed before other (non-configuration) actors of the graph to which

they belong. Configuration actors are the only actors whose firing is not data-

driven but driven by hierarchy traversal.

The sets of configuration and non-configuration actors of a graph are respec-

tively equivalent to the subinit φs and the body φb subgraphs of parameterized

dataflow [15]. Nevertheless, configuration actors provide more flexibility than

subinit graphs as they can produce data tokens that will be consumed by non-

configuration actors of their graph. The init subgraph φi has no equivalent

in PiMM as its responsibility, namely the configuration of the production/-

consumption rates on the actor interfaces, is performed by configuration input

interfaces and parameter dependencies.

Figure 2.5 presents an example of a PiSDF description with reconfiguration.

It is a modified version of the example in Figure 2.4 presented in Section 2.3.2.

In Figure 2.5, the parameter N is a configurable parameter of subgraph B, while

the parameter picsize is a locally static parameter. The number of firings of ac-

tor B1 for each firing of actor B is dynamically configured by the configuration

actor setN. In this example, the dynamic reconfiguration dynamically adapts

the number N of firings of B1 to the number of cores available to perform the

computation of B. Indeed, since B1 has no self-loop FIFO, the N firings of B1

can be executed concurrently.

configuration
output port

A
configuration
actor

di: picsize/N do: picsize/N

A B
d: 1

picsize

C

picsize

d: 1

B1

di
fi

do
fo

picsize

*picsize

picsize picsizefi: picsize/N fo: picsize/N

setNdi: picsize N

configurable
parameterN

Figure 2.5: Example of a PiSDF Graph with

Reconfiguration

Model Analysis and Behavior The PiSDF MoC presented in Section 2.3.2

is dedicated to the specification of applications with both dynamic and static

IMPROVIN G DESI GN EFFI CI ENCY 31

parameterizations. This dual degree of dynamism implies a two-step analysis

of the behavior of applications described in PiSDF: a compile time analysis

and a runtime analysis. In each step a set of properties of the application can be

checked, such as the consistency, the deadlock freeness, and the boundedness.

Other operations can be performed during one or both steps of the analysis such

as the computation of a schedule or the application of graph transformation to

enhance the performance of the application.

Compile Time Schedulability Analysis PiSDF inherits its schedulability prop-

erties both from the interface-based dataflow modeling and the parameterized

dataflow modeling.

In interface-based dataflow modeling, as proved in [9], a (sub)graph is

schedulable if its precedence SDF graph (A,F) (excluding interfaces) is con-

sistent and deadlock-free. When a PiSDF graph reaches a complete configura-

tion, it becomes equivalent to an IBSDF graph. Given a complete configura-

tion, the schedulability of a PiSDF graph can thus be checked using the same

conditions as in interface-based dataflow.

In parameterized dataflow, the schedulability of a graph can be guaranteed

at compile time for certain applications by checking their local synchrony [15].

A PSDF (sub)graph is locally synchronous if it is schedulable for all reachable

configurations and if all its hierarchical children are locally synchronous. As

presented in [15], a PSDF hierarchical actor composed of three subgraphs φi,

φs and φb must satisfy the 5 following conditions in order to be locally syn-

chronous:

1. φi, φs and φb must be locally synchronous, i.e. they must be schedulable for

all reachable configurations.

2. Each invocation of φi must give a unique value to parameter set by this

subgraph.

3. Each invocation of φs must give a unique value to parameter set by this

subgraph.

4. Consumption rates of φs on interfaces of the hierarchical actor cannot de-

pend on parameters set by φs.

5. Production/consumption rates of φb on interfaces of the hierarchical actor

cannot depend on parameters set by φs.

The last four of these conditions are naturally enforced by the PiSDF seman-

tics presented in Section 2.3.2. However, the schedulability condition number

1., which states that all subgraphs must be schedulable for all reachable con-

figurations, cannot always be checked at compile time. Indeed, since values of

the parameters are freely chosen by the application developer, non-schedulable

graphs can be described. It is the responsibility of the developer to make sure

32 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

that an application will always satisfy the schedulability condition; this respon-

sibility is similar to that of writing non-infinite loops in imperative languages.

PiSDF inherits from PSDF the possibility to derive quasi-static schedules at

compile time for some applications. A quasi-static schedule is a schedule that

statically defines part of the scheduling decisions but also contains parameter-

ized parts that will be resolved at runtime.

2.3.3 Comparison or PiMM with other MoCs

Table 2.1 presents a comparison of dataflow MoCs based on a set of common

MoC features. The compared MoCs include the static SDF [16], ADF [19],

and IBSDF [9]. Also compared are the dynamic PSDF [15], SADF [10],

DPN [13], and PiSDF.

In Table 2.1, a black dot indicates that the feature is implemented by a

MoC, an absence of dot means that the feature is not implemented, and an

empty dot indicates that the feature may be available for some applications

described with this MoC. It is important to note that the full semantics of the

compared MoCs is considered here. Indeed, some features can be obtained by

using only a restricted semantics of other MoCs. For example, all MoCs can

be restricted to describe a SDF, thus benefiting from the static schedulability

and the decidability but losing all reconfigurability.

Feature SDF
ADF

IB
SDF

PSDF
PiS

DF

SADF

DPN

Hierarchy • • •

Compositional • •

Reconfigurable • • • •

Configuration dependency • •

Statically schedulable • • •

Decidability • • • ◦ ◦ •

Variable rates • • • • •

Non-determinism • •

Table 2.1: Features comparison of different

dataflow MoCs

The features compared in Table 2.1 are the following: Hierarchy: compos-

ability can be achieved by associating a subgraph to an actor. Compositional:

graph properties are independent from the internal specifications of the sub-

graphs that compose it [21]. Reconfigurable: actors firing rules can be recon-

figured dynamically. Configuration dependency: the MoC semantics includes

an element dedicated to the transmission of configuration parameters. Stati-

cally schedulable: a fully static schedule can be derived at compile time [16].

Decidability: the schedulability is provable at compile time. Variable rates:

production/consumption rates are not a fixed scalar. Non-determinism: output

of an algorithm does not solely depends on inputs, but also on external factors

(e.g. time, randomness).

In the next section on system adaptivity, we put the focus on using the

IMPROVIN G DESI GN EFFI CI ENCY 33

PiSDF model to efficiently use the resources of a system even in the case of

highly variable application, and this without requiring additional design effort.

2.4 System Adaptivity

A system is qualified as adaptive when it can use variations on application

loads to save resources and optimize Non-Functional Properties. Adaptivity

also refers to the capacity to receive, at runtime, a new application, adapt to

it and resume execution. We have started in the PhD thesis of El Mehdi Ab-

dali a study of adaptive systems for hardware-defined applications using the

Dynamic and Partial Reconfiguration (DPR) capabilities of modern FPGAs.

In the former PhD thesis of Julien Heulot, we have targeted software-defined

systems over heterogeneous multi-core architectures and a dynamic schedul-

ing method has been developed for the PiSDF MoC. The following discussion

has been published in the Proceedings of the GlobalSIP 2014 conference5. 5 Julien Heulot, Maxime Pelcat, Jean-

François Nezan, Yaset Oliva, Slaheddine

Aridhi, and Shuvra S Bhattacharyya. Just-

in-time scheduling techniques for multicore

signal processing systems. In Proceedings of

the GlobalSIP conference. IEEE, 2014

The proposed scheduling method, named JIT-MS, aims to efficiently sched-

ule PiSDF graphs on multicore architectures. This method exploits features of

PiSDF to find locally static regions that exhibit predictable communications.

As evoked in the introduction of this report, embedded processors contain

an increasingly number of cores [24, 25, 26]. This trend is mainly due to limi-

tations in the processing power of individual PEs as a result of power consump-

tion considerations. Concurrently, signal processing applications are becoming

increasingly dynamic in terms of hardware resource requirements. For exam-

ple, the Scalable High Efficiency Video Coding (SHVC) standard provides a

mechanism to temporarily reduce the resolution of a transmitted video in order

to match the instantaneous bandwidth of a network [27].

One of the main challenges of the design of multicore signal processing

systems is to distribute computational tasks efficiently onto the available PEs

while taking into account dynamic application and architecture changes. The

process of assigning, ordering and timing actors on PEs in this context is re-

ferred to as multicore scheduling. Inefficient use of the PEs affects latency and

energy consumption, making multicore scheduling an important challenge [28].

JIT-MS addresses this challenge. JIT-MS is a flexible scheduling method that

determines scheduling decisions at run-time to optimize the mapping of an ap-

plication onto multicore processing resources. In relation to the scheduling

taxonomy defined by Lee and Ha [29], JIT-MS is a fully dynamic schedul-

ing strategy. In the context of the taxonomy used in Singh’s survey [30], our

method can be classified as “On-the-fly” mapping, targeting heterogeneous

platforms with a centralized resource management strategy.

JIT-MS exploits the fact that between two quiescent points[22], the applica-

tion can be considered static. Decisions are taken Just-In-Time, immediately

after the quiescent points are reached, unveiling new application parallelism.

Various competing frameworks based on OpenMP [31] and OpenCL [32]

language extensions are currently proposed to address the multicore schedul-

34 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

ing challenge. However, these extensions are based on imperative languages

(e.g., C, C++, Fortran) that do not provide mechanisms to model specific signal

flow graph topologies. In the experimental results on this section we demon-

strate that JIT-MS is capable of challenging, on an 8-core DSP processor, an

OpenMP implementation provided by Texas Instruments. Latency improve-

ments of up to 26% are observed, obtained because advanced information is

known by the runtime manager on the application. The next sections detail

JIT-MS.

2.4.1 Context

Runtime Architecture JIT-MS is applicable to heterogeneous platforms. On

such platforms, a locally optimal decision to fire an actor (e.g., based on the

availability of its input data) can be inefficient when considering the system

globally. In order to take effective decisions globally, a Master/Slave execution

scheme is chosen for the system.

Scheduling

Element
Processing

Element

Processing

Element

Parameters

Jobs

Jobs

Parameters

Data

Tokens

Figure 2.6: JIT-MS Runtime execution

scheme.

The JIT-MS method relies on multiple software or hardware Processing

Elements (PEs) that are slave components responsible for processing actors

(Figure 2.6). PEs can be of multiple types, such as General Purpose Processors

(GPPs), DSPs, or hardware accelerators. The master processor of the JIT-MS

system is called Scheduling Element (SE). This is the only component that

has access to the general algorithm topology. Jobs are used to communicate

between the SE and PEs. Each PE has a job queue from which it pops jobs

out prior to their execution. Parameters influence dataflow graph topology or

execution timing of actors. When a parameter value is set by a configuration

actor, its value is sent to the SE via a parameter queue. Finally, Data FIFOs

are used by the PEs to exchange data tokens. A data FIFO can be implemented

either over a shared memory or over network-on-chip communication.

Benchmark We illustrate the JIT-MS scheduling algorithm in this report by

the scheduling of a benchmark application. This benchmark is an extension of

the MP-sched benchmark [33]. The MP-sched benchmark can be viewed as

a two-dimensional grid involving N channels, where each branch consists of

M cascaded Finite Impulse Response (FIR) filters of NbS samples. We extend

IMPROVIN G DESI GN EFFI CI ENCY 35

the MP-sched benchmark by allowing the M parameter to vary across different

branches, as illustrated in Figure 2.7. We refer to this extended version of

the MP-sched benchmark as heterogeneous-chain-length MP-sched (HCLM-

sched).

Figure 2.7: Description of the HCLM-Shed

benchmark used to test JIT-MS scheduling.

A PiSDF representation of the HCLM-sched benchmark is shown in Fig-

ure 2.8. To represent the channels in the HCLM-sched benchmark, a hierar-

chical actor called FIR_Chan is introduced. The top level graph is designed

to repeat N times this actor. In the subgraph describing the behavior of the

FIR_Chan actor, M pipelined FIR filter repetitions in the branches are handled

by a feedback loop and specific control actors (Init, Switch and Broadcast).

N

FIR_Chan

in out

MSrc
srcN

Snk
N

snk

config
N

M

NbS N*NbSN*NbS Nbs

In

Out

MM

1

Nmax

MFilter

M

N

M
NNmax

NbS

NbS

NbS

NbS

NbS

NbS

NbS

NbSNbS NbSNbS

Figure 2.8: A PiSDF model of the HCLM-

sched benchmark.

Notations To describe JIT-MS, the following notation is used. CA represents

the set of configuration actors of the given PiSDF graphand CA represents all

actors in the given PiSDF graph that are not configuration actors.

2.4.2 Just-In-Time Multicore Scheduling (JIT-MS)

Multicore Scheduling of Static Subgraphs JIT-MS involves decomposing the

scheduling of a given PiSDF graph into the scheduling of a sequence X1,X2, . . .

of SDF graphs. Different executions (with different sets of input data) can

result in different sequences of SDF graphs for the same PiSDF graph. For

a given execution, we refer to each Xi as a step of the JIT-MS scheduling

process. At each step, resolved parameters trigger the transformation of the

36 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

PiSDF graph into an SDF graph, which can be scheduled by any of the numer-

ous existing SDF scheduling heuristics that are relevant for multicore architec-

tures [34]. For example, [35] presents a set of techniques that can be applied

upon transforming the resulting SDF graph into an single rate SDF (srSDF)

graph. An srSDF graph is an SDF graph in which the production rate on each

edge is equal to the consumption rate on that edge. A consistent SDF graph

can be transformed into an equivalent srSDF graph for instance by applying

techniques that were introduced by Lee and Messerschmitt [36].

The Just-In-Time Multicore Scheduling (JIT-MS) method is based on a

static multicore scheduling method which is composed of the following se-

quence of phases:

1. Computing the Repetition Vector (RV) of the current graph (the graph that

is presently being scheduled). The RV is a positive-integer vector and rep-

resents the number of firings of each actor in a minimal periodic scheduling

iteration for the graph. We note however, that certain technical details of

PiSDF require adaptations to the conventional repetitions vector computa-

tion process from [16].

2. Converting the SDF graph into an equivalent srSDF graph, where each ac-

tor is instantiated a number of times equal to its corresponding RV compo-

nent.

3. Scheduling actors and communications from a derived acyclic srSDF graph

onto the targeted heterogeneous platform. Any scheduling heuristic that is

applicable to acyclic srSDFs graphs can be chosen here — e.g., the applied

schedule can be a list scheduler, fast scheduler, flow-shop or genetic sched-

uler [30, 37, 35]. Upon completing the described scheduling process, the

resulting schedule S is executed.

A complete JIT-MS schedule of a PiSDF hierarchical graph consists of sev-

eral of these phases, repeated as many times as needed.

In a PiSDF graph, some data FIFOs behave as Round Buffers (RBs) — i.e.,

such FIFOs produce multiple copies of individual tokens as necessary to sat-

isfy consumption demand. In particular, FIFOs at the interface of a hierarchical

actor have RBs behavior to help ensure composability in hierarchical specifi-

cations. FIFOs connecting configuration actors to other actors also behave as

RBs to ensure that configuration actors fire only once per subgraph. Applica-

tion designers using the PiSDF model of computation need to take such RB

behavior into account during the development process.

Configuration Actors and such RBs are excluded from the RV computation

as they are forced to fire only once.

Multicore Scheduling of Full Graphs The JIT-MS method is based on the

PiSDF runtime operational semantic. As shown in [8], the JIT-MS scheduler

has to proceed in multiple steps, each one unveiling a new portion of srSDF

IMPROVIN G DESI GN EFFI CI ENCY 37

graph for scheduling. In one step, configuration actors have to be fired first,

they produce parameters needed to resolve the rest of the subgraph. When all

parameters are solved at one hierarchy level, scheduling of other actors of this

hierarchy level is made possible. The complete srSDF graph is only known

when all configuration actors have been executed.

Once an srSDF graph has been generated, it can be analyzed to exploit

the parallelism of the application (Section 2.4.2). The JIT-MS runtime sched-

ules the actors and communications and fires their execution on the platform.

Newly instantiated hierarchical actors are added to a global srSDF graph, called

execution graph, and the same process can be used until the whole graph has

been processed.

To keep track of actor’s execution, each actor of the execution graph is

tagged with a flag representing its execution state. An actor can be Run (R),

Not Executable (N) or Executable (E). An actor is Executable only when all its

parameters are resolved and when all its predecessors are Executable or Run.

Cfg
M

RB
I O

10 10

Src
src

MFil
MM

FIR_C
M

I O
Snk
snk

FIR_C
M

I O

Join

I1 O

I0

2

8000

1

4000

1

4000

Fork

I

O0

O1

Fork

I

O0

O1

4000

4000 8000

Cfg
M

RB
I O

10 10

Src
src

MFil
MM

Snk
snk

Join

I1 O

I0

2

8000

1

4000

1

4000

Fork

I

O0

O1

Fork

I

O0

O1

4000

4000 8000

RB
I O

RB
I O

RB
I O

RB
I O

RB
I O

RB
I O

SM
M

SM
M

1

1

Cfg
M

RB
I O

10 10

Src
src

MFil
MM

Snk
snk

Join

I1 O

I0

2

8000

1

4000

1

4000

Fork

I

O0

O1

Fork

I

O0

O1

4000

4000 8000

RB
I O

RB
I O

RB
I O

RB
I O

RB
I O

RB
I O

SM
M

SM
M

1

1

Init
sel

Sw

O

sel
i0

i1

FIR
OI

Br

I

O0

O1

Fork

I

O1

O0

Fork

I

O0

O1

Join

I0 O

I1

1

4000

4000 4000

4000

Init
sel

Sw

O

sel
i0

i1

FIR
OI

Br

I

O0

O1

2

4000

4000 4000

8000

1

Sw

O

sel
i1

i0

FIR
OI

Br

I

O0

O1
4000 4000

4000

4000

4000

4000

4000

1

8000

4000

Cfg
M

RB
I O

10

a) Loop I.a b) Loop I.b c) Loop II.a

d) Loop II.b

Figure 2.9: single rate SDFs (srSDFs) graphs

generated from the HCLM-sched benchmark

of Figure 2.8. Blue actors are not executable,

green ones are executable and black ones are

already run. Red dashed actors are hierarchi-

cal.

Applying JIT-MS to the Benchmark The execution graph shape at each step

of the HCLM-sched benchmark can be seen in Figure 2.9.

Figure 2.9.a corresponds to the execution graph state at the end of the first

phase of the first iteration of the while loop (loop I.a). At this point, N is set

to 2. Then Figure 2.9.b corresponds to execution graph state after the third

phase of the first iteration (loop I.b). The hierarchical FIR_Chan actors are

instanciated. Then, Figures 2.9.c and 2.9.d correspond to the execution, first of

the internal configuration actors of FIR_Chan (SM), then of their actors with

parameter M = {1,2}.

38 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

2.4.3 Experimental Results

The main goal of JIT-MS is to parallelize dynamic applications. The following

experimental results focus on the comparison between the JIT-MS approach

and an OpenMP runtime system with similar objectives. Results are acquired

by studying the latency of single and multiple iterations of the HCLM-sched

benchmark on a Texas Instruments TMS320C6678 multicore DSP processor

[24].

OpenMP is a framework designed for shared memory multiprocessing. It

provides mechanisms for launching parallel teams of threads to execute an al-

gorithm on a multicore architecture. OpenMP applications are designed with

a succession of sequential code sections, executed by a master thread, and par-

allel code sections, distributed in a team of threads dispatched onto multiple

cores [31]. The c6678 processor is composed of 8 c66x DSP cores intercon-

nected by a NoC called TeraNet with access to an internal shared memory.

To perform synchronization between cores, hardware queues provided by the

Texas Instruments Multicore Navigator[38] have been used in this study.

Results on execution time are displayed in Figure 2.10.a.

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

7 8 9 10 11 12 13 14 15 16 17

L
a
te

n
c
y
 (

c
y
c
le

s
)

 N

JIT-MS
OpenMP

Figure 2.10: JIT-MS Latency versus values

of N for the HCLM-sched benchmark

Experimental results of Figure 2.10 show that the OpenMP implementa-

tion latency curve displays a step shape when increasing N. With the JIT-MS

implementation, the graph transformation and scheduling phases introduce an

overhead but the execution efficiency over varying parameters is smoother. The

overhead can be observed on the figure when N equals to 7 or 8 as the result-

ing scheduling is the same as OpenMP. The transformation to srSDF extracts

more parallelism than OpenMP from the subdivision of channels into multiple

FIRs. These choices make JIT-MS suitable for unbalanced applications. In the

HCLM-sched benchmark with 9 channels, the overall latency is reduced of up

to 26%. Figures 2.11 and 2.12 illustrate this effect by displaying the real Gantt

chart of execution, based on measurements from the internal processor timer.

Spider scheduling is shown to introduce an initial latency due to graph manage-

ment (the red block on the left of Figure 2.12) but then efficiently interleaves

IMPROVIN G DESI GN EFFI CI ENCY 39

the executed actors while OpenMP fails to mix iterations.

0 2500 5000 7500 10000 12500

msDSP 1

DSP 2

DSP 3

DSP 4

DSP 5

DSP 6

DSP 7

DSP 8 Figure 2.11: Gantt Chart of the OpenMP

schedule with N = 9 and M = 12

0 2500 5000 7500 10000 12500

msDSP 1

DSP 2

DSP 3

DSP 4

DSP 5

DSP 6

DSP 7

DSP 8 Figure 2.12: Gantt Chart of the Spider

schedule with N = 9 and M = 12

2.5 Conclusions on Design Efficiency

PiMM can be applied to a dataflow MoC to increase its expressiveness, en-

able the specification of reconfigurable applications, and feed either a quasi-

static schedule or the JIT-MS dynamic schedule. We have shown on the PiSDF

MoC that while bringing dynamism and compositionality, the explicit param-

eter dependency tree and the interface-based hierarchy mechanism introduced

by PiMM maintain strong predictability for the extended model and enforce

the conciseness and readability of application descriptions.

JIT-MS aims to find a balance between a static scheduling that has no run-

time overhead but does not take into account the application modifications,

and a fully dynamic scheduling that costs time and resources. Additionally to

the example benchmark presented in this report, the Just-In-Time Multicore

Scheduling (JIT-MS) scheduling method applied to a PiSDF-modeled appli-

cation has been shown to obtain good performance also on a stereo matching

algorithm and on large Fast Fourier Transforms (FFTs) 6. The Spider run- 6 Julien Heulot. Runtime multicore schedul-

ing techniques for dispatching parameterized

signal and vision dataflow applications on

heterogeneous MPSoCs. PhD thesis, INSA

Rennes, 2015

time implementing JIT-MS is currently extended to support manycore Kalray

MPPA processors in context of the PhD thesis of Julien Hascoët. Its effi-

ciency results motivate future work on model-based parallel system design

where the advanced application knowledge offered by the dataflow MoC is

complemented by architecture knowledge stored in an MoA.

Additionally to this work on parameterized dataflow, we have also explored

how internal actor parallelism can influence dataflow execution7. In this work,

7 Zheng Zhou, William Plishker, Shuvra S

Bhattacharyya, Karol Desnos, Maxime Pel-

cat, and Jean-Francois Nezan. Scheduling of

parallelized synchronous dataflow actors for

multicore signal processing. Journal of Sig-

nal Processing Systems, 2016

40 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

a type of parallel task scheduling problem called Parallel Actor Scheduling

(PAS) has been defined. It combines intra- and inter-actor parallelism for plat-

forms in which individual actors can be parallelized across multiple cores. We

demonstrated that the PAS-targeted scheduling framework provides a useful

range of trade-offs between synthesis time requirements and the quality of the

derived solutions.

The UML Modeling And Analysis Of Real-Time Embedded Systems (MARTE)

standard defines semantics close to the PiSDF model to represent applications.

We have, in collaboration with Ecole Nationale d’Ingénieurs de Sfax (ENIS),

demonstrated the compatibility of the UML MARTE model with PiSDF and

the possibility to generate PiSDF from a UML MARTE compliant model and

derive Design Space Exploration (DSE) results from this generated model 8. 8 Manel Ammar, Mouna Baklouti, Maxime

Pelcat, Karol Desnos, and Mohamed Abid.

Marte to πsdf transformation for data-

intensive applications analysis. In Proceed-

ings of the DASIP Conference. IEEE, 2014

All our studies on PiSDF are implemented in the PREESM tool9 available on

9 M. Pelcat, K. Desnos, J. Heulot, C. Guy,

J.-F. Nezan, and S. Aridhi. PREESM: A

dataflow-based rapid prototyping framework

for simplifying multicore dsp programming.

In Proceedings of the EDERC Conference,

Sept 2014

Github:

http://preesm.sourceforge.net.

In the next chapter, PiSDF is also employed but this time for improving the

Non-Functional Properties (NFPs) of the built system and increase its imple-

mentation quality.

http://preesm.sourceforge.net

3

Improving Implementation Quality

Implementation
quality

Non-Functional Property (N
FP

) c
os

ts

Figure 3.1: Improving implementation qual-

ity on the DP chart.

3.1 Chapter Abstract

After the previous chapter looking into the reduction of design efforts, this

chapter puts the focus on the Non-Functional Properties (NFPs) of DSP sys-

tems we aim to optimize. The latency (time between input and output) and

throughput (acceptable input rate) real-time NFPs are historically the main

optimized properties by compilers and tools and solutions exist in the litera-

ture to optimize and guarantee them. We have thus focused on the NFPs that

are often the other main concerns of designers: the energy consumption and

the memory footprint.

Memory is often very limited in embedded systems compared to the mem-

ory required by modern DSP algorithms. As a consequence, complex hardware

and software features are used to fit the application into the platforms. Based

on the PiSDF MoC, we have studied pre-scheduling and post-scheduling au-

tomated memory allocations methods, and computed memory bounds for de-

ciding early whether a platform can execute or not a given application. Pre-

scheduling and post-scheduling memory allocations have been compared and

memory bounds computed for deciding early whether a platform can execute

or not a given application. Finally, aggressive memory optimizations have

been obtained using additional information on the internal actor behavior re-

garding memory access types and order. A Domain specific language (DSL)

has been created to capture this behavior and feed the memory optimization

process. The resulting compilation process has been demonstrated to gain

substantial memory when compared to state-of-the-art methods.

In terms of energy consumption, we have observed that modern multi-

core platforms with Dynamic Voltage and Frequency Scaling (DVFS) and

Dynamic Power Management (DPM) capabilities present a non-trivial en-

ergy consumption behavior. Depending on the parallelism of the application,

the latency constraints and the static and dynamic power consumption of the

platform, different strategies should be adopted and neither the As-Slow-As-

Possible (ASAP) nor the As-Fast-As-Possible (AFAP) actor execution strate-

42 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

gies obtains the optimal energy consumption. These first results encourage us

to explore further the use of dataflow information for driving complex MPSoC

platforms.

3.2 Using Dataflow Application Representations to

Improve System Non-Functional Properties

Real-time processing is the main NFP a DSP system must respect. Ensuring

real-time (in terms of either latency or throughput) is compulsory and the pre-

dictability of PiSDF is particularly useful for obtaining time guarantees. The

State of the Art of real-time multicore scheduling of dataflow modeled applica-

tions is rich. As a consequence, we have mostly used methods from literature

for mapping and scheduling actors to multiple cores and worked on extending

these methods to balancing the loads over the available cores1. 1 Maxime Pelcat, Slaheddine Aridhi,

Jonathan Piat, and Jean-François Nezan.

Physical Layer Multi-Core Prototyping: A

Dataflow-Based Approach for LTE eNodeB.

Springer, 2012

The two NFPs we extensively studied in the past years from PiSDF de-

scribed applications are memory consumption and energy consumption.

In terms of memory consumption, dataflow MoCs, including PiSDF, tend

to favor parallelism to the detriment of memory consumption. Within the PhD

thesis of Karol Desnos, this drawback has been eliminated and state-of-the-art

memory allocation techniques defined.

In terms of energy consumption, battery powered systems represent a large

share of embedded systems. Energy consumption is thus certainly the second

most important NFP after real-time. The reduction of the computational en-

ergy consumption has been studied during the PhD thesis of Erwan Nogues

and experimented on use case implementations of the MPEG High Efficiency

Video Coding (HEVC) standard. New strategies of energy reduction have been

designed, in particular from PiSDF application descriptions.

The next sections give some insights on these memory and energy studies.

3.3 Dataflow Memory Optimizations

Having a predictable model of an application such as PiSDF, the causality of

the actors in the application is precisely known and this information can be

employed to reuse memory between different parts of an application.

Within the PhD thesis of Karol Desnos, we have covered several aspects of

memory allocation on a multicore platform from a static dataflow description

of an application 2. 2 Karol Desnos. Memory Study and Dataflow

Representations for Rapid Prototyping of

Signal Processing Applications on MPSoCs.

PhD thesis, INSA Rennes, 20143.3.1 Computing Upper and Lower Memory Bounds

We have computed upper and lower bounds for the amount of memory to be

allocated to implement an application described with SDF3. The First In, First 3 Karol Desnos, Maxime Pelcat,

Jean François Nezan, and Slaheddine

Aridhi. Memory Bounds for the Distributed

Execution of a Hierarchical Synchronous

Data-Flow Graph. In Proceedings of the

IC-SAMOS Conference, 2012

Out data queues (FIFOs) used to exchange data between SDF actors can either

be allocated without reusing memory between them or different methods can

I MPROVIN G I MPLEMENTATION QUA LITY 43

be used to allocate them in overlapping memory locations. If no memory reuse

is employed, the size of the memory footprint can be very high, due to the

potentially large number of FIFOs employed to decouple actors’ executions.

A PiSDF application representation with static parameters being convertible to

an SDF graph, this study is applicable to static PiSDF applications.

To compute the bounds, a graph representing FIFO exclusions is built from

the original SDF graph. This graph is called Memory Exclusion Graph (MEG)

and can be studied to characterize the application memory consumption. Fig-

ures 3.2, 3.3 and 3.4 display on an example the bound computation procedure.

As shown in Figure 3.3, an intermediate acyclic graph must be built before ob-

taining the MEG. An algorithm to build such a Directed Acyclic Graph (DAG)

can be found in [44]. In Figure 3.4, each graph vertice represents a FIFO in

the DAG of Figure 3.3. Edges model exclusions, i.e. the impossibility to share

memory between two FIFOs.

A
20

B
40

C
10

F
10

E
30

D
20

200 100 50 100 15
0
15
0

100
100

15
0
15
0

100
100

50 50

100100

x100
Figure 3.2: Example of an SDF graph used to

study its memory bounds.

A
20

C
10

F
10

E
30

D
20

B1
40

B2
40

15
0

100
15
0

100
10
0

100
50

50

50

100

x100

Figure 3.3: Result from transforming the

SDF graph from Figure 3.2 into a Directed

Acyclic Graph (DAG) [44]. This transforma-

tion is a necessary step before studying the

memory consumption.

AB2
100

AB1
100

CE
100

CD
150

CF
50

EF
150

DF
100

B1C
50

B2C
50

The Maximum-Weight CliqueA clique

Figure 3.4: Memory Exclusion Graph

(MEG) extracted from the DAG from Fig-

ure 3.3. Two cliques are displayed, including

the maximum weight clique that represents a

lower bound on algorithm memory consump-

tion. The lower bound for this example is 550

tokens.

Different computation methods for the lower memory bound are proposed,

ranging from the costly but exact interval coloring problem to the approxi-

mate MEG maximum-weight clique problem and a fast heuristic to approach

it. These bounds are illustrated in As illustrated in Figure 3.5. A MEG clique

is a totally connected subgraph in the MEG and represents an indivisible unit

of memory. The maximum-weight clique is the indivisible unit with largest

memory. It represents a lower bound for allocating the graph on a platform

but does not mean that the actual allocation procedure will effectively manage

to allocate this amount of memory. As a consequence, the maximum-weight

44 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

clique memory lower bound is optimistic. However, if this bound is larger

than the platform memory, a decision can already be taken to either change

platform or redesign the algorithm because the algorithm tested representation

is guaranteed not to fit on the platform.

Insu�cient
memory

Possible
allocated memory

Wasted
memory

Available
Memory

Maximum-Weight
Clique Problem

Heuristic for
Maximum-Weight

Clique Problem

≤ ≤ Interval Coloring
Problem

Sum of
vertices weights

0

Figure 3.5: Memory bounds computed from

the FIFOs of a SDF application representa-

tion.

3.3.2 Allocating Memory for a Dataflow Application

We have tested different memory allocation policies to offer precise trade-offs

between system adaptivity and necessary memory 4. In this work, the dataflow 4 Karol Desnos, Maxime Pelcat,

Jean François Nezan, and Slaheddine

Aridhi. Pre- and post-scheduling memory

allocation strategies on MPSoCs. In

Proceedings of the ESLsyn conference, 2013

FIFOs are all considered allocated in a unique memory shared between the

platform cores. This hypothesis is motivated by the architecture of the first

processor used to test these methods: the Texas Instruments TMS320C6678

processor that contains 8 cores sharing 4MBytes of memory [24]. The allo-

cation of dataflow FIFOs to precise memory addresses has been shown to be

possible at different steps during the design process:

1. Pre-scheduling Memory Allocation signifies that memory locations are cho-

sen before choosing where and in which order actor firings will be executed,

2. Post-scheduling Memory Allocation means that memory locations are cho-

sen after choosing actor firings mapping and scheduling,

3. Timed Memory Allocation means that not only the firing order of actors is

chosen but also the exact time of these firings.

The allocation step is demonstrated in 5 to have a great influence on the

5 Karol Desnos, Maxime Pelcat, Jean-

François Nezan, and Slaheddine Aridhi.

Memory Analysis and Optimized Allocation

of Dataflow Applications on Shared-Memory

MPSoCs. Journal of VLSI Signal Processing

Systems for Signal, Image, and Video

Technology (JSPS), 2014

amount of memory to allocate. The later the FIFOs are allocated in the design

process, the less memory they require, but the more limited execution choices

are. Additionally to previously presented allocation techniques, the internal

behavior of actors, i.e. the moment when they read and write their input and

output FIFOs, has been used to further reduce the memory consumption of

executing dataflow applications 6,7. This behavior is described with a DSL

6 Karol Desnos, Maxime Pelcat, Jean-

François Nezan, and Slaheddine Aridhi.

Buffer Merging Technique for Minimiz-

ing Memory Footprints of Synchronous

Dataflow Specifications. In Proceedings of

the ICASSP Conference, 2015

7 Karol Desnos, Maxime Pelcat,

Jean François Nezan, and Slaheddine

Aridhi. On Memory Reuse Between Inputs

and Outputs of Dataflow Actors. ACM

Transactions on Embedded Computing

Systems (TECS), 2016
expressing the opportunities to use the same memory for the input and output

FIFOs of a single actor. Experiments on a set of real DSP applications have

shown that the proposed techniques result on average in memory footprints

48% smaller than previous state-of-the-art optimization techniques.

Finally, a method has been created to jointly optimize shared memory and

distributed memory allocations8. This last set of optimizations do not only save

8 Karol Desnos, Maxime Pelcat, Jean-

François Nezan, and Slaheddine Aridhi.

Distributed memory allocation technique

for synchronous dataflow graphs. In

Proceedings of the SiPS Workshop. IEEE,

2016

I MPROVIN G I MPLEMENTATION QUA LITY 45

memory but also improve the execution speed by playing with data locality.

To the extent of our knowledge, this work constitutes the state of the art of

memory allocation for dataflow applications.

3.4 Energy Reduction

System energetic optimization has been the objective of Erwan Nogues PhD

thesis, with a particular focus on MPSoC implementations of MPEG HEVC

decoders. This thesis has been deeply involved in the GreenVideo FUI project.

Current embedded processors are all based on Complementary Metal Ox-

ide Semi-conductor (CMOS) transistors. The power consumed by a processor

based on CMOS transistors is composed of 3 elements [50]:

Ptot = Pdyn +Pshort +Pstat (3.1)

where the dynamic power Pdyn is consumed by the charging and discharging

of the capacitive load on the output of each logic gate. The second component

Pshort captures the power resulting from a short-circuit current which momen-

tarily flows between the supply voltage and the ground due to a short-circuit

current appearing when a CMOS logic gate output switches. However this

component is relatively small compared to the others [50] and can be neglected.

The third component Pstat is due to the leakage current and is not related to the

gate state. While the two first components are related to circuit activity and

called dynamic power, Pstat is consumed regardless of computational activity

and referred to as static power.

Energy consumption in modern MPSoCs can be controlled through Dy-

namic Voltage and Frequency Scaling (DVFS) and Dynamic Power Manage-

ment (DPM). While DVFS consists of varying the frequency and voltage of

cores in order to adapt their power consumption to their instantaneous load,

DPM is the process of dynamically shutting down unused cores.

DVFS reduces the dynamic power consumption Pdyn caused by transistors’

activity. Pdyn can be expressed as:

Pdyn = α .C. f .V 2
dd (3.2)

where C is the total capacitance seen by the outputs of the logic gates, Vdd is the

supply voltage, f is the frequency of operation, and α is the processor activity

(number of modified gates per clock change). Reducing the frequency f has a

direct effect on Pdyn but also an indirect effect because a lower frequency makes

computation reliable with a lower Vdd (explaining the term DVFS), strongly

impacting Pdyn.

DPM reduces the static power consumption, unrelated to transistor activity.

Indeed, DPM disconnect the power supply of a given silicon area (correspond-

ing for exemple to one core in the system) and, as a consequence, removes

most of the transitors’ leakage in this area. A processor combining DPM and

46 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

DVFS offers a large number of energetic configurations, as illustrated in Fig-

ure 3.6.

Figure 3.6: Power consumption vs. operat-

ing frequency and number of on cores on an

Exynos 5410 MPSoC with DVFS and DPM

While DVFS and DPM strongly impact energy consumption, they also

bring the processor into states of low processing capabilities. As a conse-

quence, when executing a DSP application, a compromise must be found at

runtime between energy consumptions and real-time processing. Significant

energy gains can be obtained by using DVFS and DPM provided that a sub-

stantial “slack-time” exist between the real-time deadline and the processing

time when executing at full speed.

In a partnership with Abo Akademi in Finland, we have studied how to pre-

cisely control DVFS and DPM based on the parallelism data extracted from an

SDF dataflow representation 9,10. The dataflow representation is transformed

9 Simon Holmbacka, Erwan Nogues,

Maxime Pelcat, Sébastien Lafond, and

Johan Lilius. Energy efficiency and per-

formance management of parallel dataflow

applications. In Proceedings of the DASIP

conference. IEEE, 2014

10 Simon Holmbacka, Erwan Nogues,

Maxime Pelcat, Sébastien Lafond, Daniel

Menard, and Johan Lilius. Energy-awareness

and performance management with parallel

dataflow applications. Journal of Signal

Processing Systems, 2015

into “p-values” (Figure 3.7) that represent the instantaneous execution paral-

lelism. P-values are then fed to a Linux-based runtime management system

to adapt DVFS and DPM to this parallelism. Energy gains of up to 20% have

been obtained w.r.t. the reactive DVFS and DPM management of Linux that

observes the current load of the processor and adapts a posteriori the execution.

Figure 3.7: Transforming a dataflow appli-

cation representation into a sequence of p-

values to exploit parallelism for energy re-

duction.

Considering only DVFS, the energy consumption of a modern MPSoC, rel-

ative to its frequency and number of ON core, is not simple. Figures 3.8 and

3.9 give the energetic performances of a fully loaded Samsung Exynos 5410

processor, consisting of a cluster of 4 ARM Cortex-A7 cores and a cluster of 4

ARM Cortex-A15 cores. Contrary to the true octo-core Exynos 5422 that will

I MPROVIN G I MPLEMENTATION QUA LITY 47

be used in Chapter 7, only one cluster of an Exynos 5410 can run at a time

and the system is switched from the A7 cluster to the A15 cluster when the

frequency reaches 800MHz.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

Normalized Frequency

P
o
w

er
co

n
su

m
p
ti

o
n

(W
)

Cortex A15 Cluster

Cortex A7 Cluster

Figure 3.8: Power consumption vs. operat-

ing frequency with 4 fully loaded cores on an

Exynos 5410 MPSoC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Normalized Frequency

N
o
rm

al
iz
ed

E
n
er
g
y

1.0

Cortex A7

Energy Efficient

frequency

Cortex A15 Cluster

Cortex A7 Cluster

Cortex A15

Energy Efficient

frequency

Figure 3.9: Energy per cycle as a function

of normalized operating frequency of a fully

loaded Exynos 5410 MPSoC

Figure 3.8 depicts the power consumption of the processor versus its fre-

quency while Figure 3.9 depicts its energy consumption per cycle. The fre-

quency is normalized versus its maximum of 1.6GHz. One can observe that,

while the power is minimal at the lowest frequency, the energy consumption

is minimal at a higher frequency. This is due to the processing time that aug-

ments when the frequency is lowered. Longer time makes energy rise because

the time during which power is spent is longer.

Considering also DPM, the problem becomes more complex. Indeed, de-

pending on the leakage of the different cores, it may be beneficial to use them

or not for a particular processing, at either a high or a low frequency. The

capacity to use these cores efficiently also depends on the true concurrency of

the application and the amount of data exchanged between cores.

48 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

From a static dataflow representation of a pipeline shaped application, con-

vex programming is used in Erwan Nogues PhD thesis to choose, for each

actor, the most optimal frequency and number of operating cores on a complex

MPSoC11. The result is non-trivial and the most optimal operating point de- 11 Erwan Nogues. Energy optimization of Sig-

nal Processing on MPSoCs and its Applica-

tion to Video Decoding. PhD thesis, INSA de

Rennes, 2016

pends much on the amount of concurrency of the application and the energetic

behaviour of the platform.

in out
actor 2

out
actor 1

in out
actor 3 actor 4

in

w1 = 115e6 w2 = 1.15e6 w3 = 460e6 w4 = 23.03e6

1 1 1 11 1

Figure 3.10: example of a simple dataflow

application to be optimize in energy over an

MPSoC with DVFS and DPM capabilities.

Figure 3.10 shows a single-rate SDF application with static loads expressed

in numbers of cycles. 4 iterations of the applications are assumed to be exe-

cutable in parallel. Potential execution strategies for this application are illus-

trated in 3.11, 3.12 and 3.13.

core

time

frequency

deadline

actor 1.2

out

actor 1.1

out

actor 1.1

out

actor 1.1

out

actor 2.4

out

actor 2.3

out

actor 2.2

out

actor 2.1

outin

actor 3.4

out

actor 3.3

out

actor 3.2

out

actor 3.1

outin

actor 4.4

actor 4.3

actor 4.2

actor 4.1

in

Figure 3.11: As-fast-as-possible execution

of the application from Figure 3.10 on an

MPSoC with DVFS and DPM capabilities.

out

out

out

out

actor 1.1

actor 1.2

actor 1.3

actor 1.4

core

time

frequency
deadline

actor 2.3

actor 2.4

actor 2.1

actor 2.2

in

in

in

in out

out

out

out

in

out

out

out

outactor 3.3

actor 3.4

actor 3.2

actor 3.1
actor 4.3

actor 4.4

actor 4.1

actor 4.2

in

in

in

in

Figure 3.12: As-slow-as-possible execution

of the application from Figure 3.10 on an

MPSoC with DVFS and DPM capabilities.

Figure 3.11 illustrates the case where the application 4 iterations are run

over a 4-core platform with maximum frequency and parallelism. This strat-

egy is called As-Fast-As-Possible (AFAP). Figure 3.12 illustrates the case,

I MPROVIN G I MPLEMENTATION QUA LITY 49

out

out

out

out

in

actor 1.1

actor 1.2

actor 1.3

actor 1.4

in

in
out

in

in

in

actor 2.1

actor 2.2
actor 3

actor 4.1

actor 4.2

actor 4.3

core

time

frequency

deadline

out

out

Figure 3.13: Most energy-efficient execu-

tion of application from Figure 3.10 on an

MPSoC with DVFS and DPM capabilities.

called As-Slow-As-Possible (ASAP), where the frequency is lowered as much

as possible while still respecting the application deadline. Energetic models

of an MPSoC platform are used to demonstrate that the most energy optimal

solution is neither as-fast-as-possible not As-slow-as-possible but rather a tai-

lored solution where some actors are forced to run on a limited number of

cores and different frequencies are set depending on the actor[53]. Energy

gains between 5% and 34% have been reported versus AFAP and ASAP on

synthetic benchmarks by using Geometric Programming (GP)[54] to find the

most energy optimal solution.

These results show the positive impact of exploiting the information of a

dataflow MoC for energy reduction. They open new opportunities for model-

based energy optimizations. These opportunities will be discussed in the con-

cluding Chapter 8.

The energy consumption studies of Erwan Nogues have been applied to

MPEG HEVC embedded decoding12. In the current PhD thesis of Alexandre 12 Erwan Nogues, Julien Heulot, Glenn Her-

rou, Ladislas Robin, Maxime Pelcat, Daniel

Menard, Erwan Raffin, and Wassim Hami-

douche. Efficient DVFS for low power

HEVC software decoder. Journal of Real-

Time Image Processing, 2016. Springer Ver-

lag

Mercat, we are starting a new study of the complexity and energy consump-

tion of an embedded HEVC encoder. The encoder is more computationally

intensive than the decoder13 and an encoder must test many possible encod-

13 Alexandre Mercat, Wassim Hamidouche,

Maxime Pelcat, and Daniel Menard. Estimat-

ing encoding complexity of a real-time em-

bedded software hevc codec. In Proceedings

of the DASIP conference. IEEE, 2016

ing methods for choosing the most optimal configuration in terms of bitrate and

image quality. In this context, energy is gained by smartly reducing the amount

of tested encoding methods14. This gain has an impact on the performance of

14 Alexandre Mercat, Florian Arrestier, Was-

sim Hamidouche, Maxime Pelcat, and Daniel

Menard. Energy reduction opportunities in an

hevc real-time encoder. In Proceedings of the

ICASSP conference, 2017

the encoder and this impact must be precisely controlled for the optimisations

to be useful in practice15. Such a system behavior where the functional behav-

15 Alexandre Mercat, Florian Arrestier, Was-

sim Hamidouche, Maxime Pelcat, and Daniel

Menard. Constrain the docile ctus: an in-

frame complexity allocator for hevc intra en-

coders. In Proceedings of the ICASSP con-

ference, 2017

ior, and non only NFPs, is affected by implementation optimizations goes out

of the scope of Design Productivity as defined in Chapter 1. It opens to the

domain of Approximate Computing that will be evoked in Chapter 8.

3.5 Conclusions on Implementation Quality

This chapter has focused on the gains obtained by using dataflow MoCs on the

processing memory consumption and the energy consumption of an MPSoC.

One important point to note is that our methods and tools have been created to

automate these gains. As a consequence, the developed approaches make low

50 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

memory and low energy attainable without additional effort for the designer.

This element makes our studies impact DP through implementation quality.

The next section studies the use cases and protocol we developed to assess

DP in its different modalities.

4

Evaluating Design Productivity

DP

?
Figure 4.1: Evaluating Design Productivity.

4.1 Chapter Abstract

Two elements are essential for measuring the productivity of a DSP system

design procedure. Use case systems must be built in realistic conditions and

these use cases should be representative of the DSP systems targeted by the

evaluated set of models, methods and tools. Moreover, a fair protocol must

be adopted to ensure that the benefits offered by the new design process are

not overrated or underrated. In this chapter, we first overview the use cases

we built in the last years to evaluate design processes. Then, a protocol is pro-

posed for fair DP evaluation and this protocol is demonstrated on an example.

Design Productivity (DP) is a multi-faceted concept and the amount of DP

observed for a given design depends on the experience of designers, on the

amount of constraints on implementation quality, on the time-to-market, etc.

As a consequence, building reliable DP comparisons between several design

methods is a delicate operation that requires a precise protocol and an equal

treatment of the compared design methods. However, DP evaluation is impor-

tant for assessing the maturity of design tools, evaluate the user-friendliness

of a language or check the appropriateness of a design method.

This chapter demonstrates the fair DP assessment protocol on an HLS com-

piler compared to the synthesis of manually written VHDL code. The choices of

Non-Functional Properties (NFPs) and Non-Recurring Engineerings (NREs)

costs for measuring respectively the implementation quality and the design ef-

ficiency are discussed. Experimental results are generated from the evaluation

of the CAPH HLS compiler and the reasons that make CAPH higher level than

VHDL are discussed.

4.2 Building DSP Use Cases for Testing Design Meth-

ods

Precise and complex use cases are needed to test “in vivo” new system de-

sign procedures in terms of both design efficiency and implementation quality.

52 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

We have developed over the years a set of challenging use case designs and

published on the obtained performances. These use case applications belong

to the technical fields of telecommunications, cryptology, computer vision,

video compression, medical imaging, and artificial intelligence. From these

use cases, we analyse the difficulties of automating design and the causes of

DP losses. The next section exemplifies this effort on the use case of a 4G base

station algorithm modeling with PiSDF1. 1 Karol Desnos. Memory Study and Dataflow

Representations for Rapid Prototyping of

Signal Processing Applications on MPSoCs.

PhD thesis, INSA Rennes, 20144.2.1 A 4G Telecommunication Use Case: the LTE PUSCH

3GPP Long Term Evolution (LTE), which commercially corresponds to the

fourth generation of mobile telecommunications (4G), is a wireless telecom-

munication standard released in 2009. A complete method to describe a 4G

base station with a dataflow MoC is presented in our book 2. 2 Maxime Pelcat, Slaheddine Aridhi,

Jonathan Piat, and Jean-François Nezan.

Physical Layer Multi-Core Prototyping: A

Dataflow-Based Approach for LTE eNodeB.

Springer, 2012

Figure 4.2 presents a PiSDF specification of the bit processing algorithm of

the Uplink Physical Layer data processing (PUSCH) decoding which is part

of LTE. LTE PUSCH decoding is executed once per millisecond in the phys-

ical layer of an LTE base station. An LTE base station manipulates the data

of the hundreds of User Equipments (UEs) (for instance mobile phones) lo-

cated in its geographical region composed of “cells”. It consists of receiving

multiplexed data from several UEs, decoding and demultiplexing the data, and

transmitting it to upper Open Systems Interconnection (OSI) layers of the LTE

standard. This procedure is complex and computationally intensive. The in-

formation is received on several antenna at the base station side and time and

frequency multiplexed using Single-Carrier Frequency Division Multiple Ac-

cess (SC-FDMA).

Config
NbCB

Config
NbUE NbUE

Converge
NbCB: NbUE

Symbols: maxCBsPerUE*NbUE

m
ac

sy
m

bo
ls

sn
k

PUSCH Bit Processing

Symbols: maxCBsPerUE

NbCB: 1

NbCB

KeepCurrent
Tones

N
bC

B
S

ym
bo

ls

PerUE
Process.

Bit
Process.

Turbo
Dec.

CRC
Check

sn
k

Symbols: NbCB
Symbols: maxCBsPerUE

CBs: NbCB
CB: 1

CB: 1
CBs: NbCB

Channel Decoding

CB: 1

max
CBsPerUE

Channel
Decoding

Figure 4.2: PiSDF Model of the Bit Process-

ing Part of the LTE PUSCH Decoding

Because the number of UEs connected to a base station and the data rate

EVALUATING DESIG N PRO DUCTI VITY 53

received from each UE can change every millisecond, the bit processing of

PUSCH decoding is inherently dynamic and cannot be modeled with static

MoCs such as SDF [11]. The PUSCH bit processing specification can be mod-

eled by two hierarchical actors: the PUSCH Bit Processing actor and the Chan-

nel Decoding actor. For clarity, Figure 4.2 shows a simplified specification of

the LTE PUSCH decoding process where some actors and parameters are not

depicted.

The PUSCH Bit Processing actor is executed once per invocation of the

PUSCH decoding process (i.e. once per millisecond) and has a static pa-

rameter, maxCBsPerUE, that represents the maximum number of data blocks

(named Code Block (CB)) received per UE. maxCBsPerUE statically sets the

configuration input interface of the lower level of the hierarchy, according to

the base station limitation of bitrate for a single UE. The ConfigNbUE configu-

ration actor consumes data tokens coming from the upper OSI Medium Access

Control (MAC) layer and sets the configurable parameter NbUE representing

the number of UEs whose data must be decoded in the current millisecond.

The converge actor consumes the multiplexed CBs received from the several

antennas of the base station on the symbols data input interface of the graph.

It produces NbUE tokens, each containing the number of CBs for one UE, and

produces NbUE packets of maxCBsPerUE CBs, each containing the CBs of a

UE.

The Channel Decoding hierarchical actor fires NbUE times, once for each

UE, because each UE has specific signal channel conditions and thus a specific

channel decoding procedure. This actor has a configuration input interface

maxCBsPerUE that receives the eponymous locally static parameter from the

upper hierarchy level. The ConfigNbCB configuration actor sets the NbCB

parameter with the number of CBs allocated for the current UE.

The numbers of UEs and CBs can both reach 100. The number of potential

application configurations is thus very high [11]. This example illustrates how

a very dynamic applications can be modeled with PiSDF.

4.2.2 Other Modeled DSP Use Cases

In the cryptology domain, we have studied a cryptographic algorithm based on

chaos theory 3. We have used the memory and parallelism analysis offered by

3 Karol Desnos, Safwan El Assad, Aurore Ar-

licot, Maxime Pelcat, and Daniel Menard.

Efficient multicore implementation of an

advanced generator of discrete chaotic se-

quences. In Proceedings of the ICITST con-

ference, pages 31–36. IEEE, 2014

PiSDF to provide details on the performance of a cryptographic key generator.

In the image processing domain, we recently explored a dimensionality re-

duction algorithm for hyperspectral images 4. This algorithm is used to choose

4 Raquel Lazcano, Daniel Madroñal, Karol

Desnos, Maxime Pelcat, Raúl Guerra, Se-

bastián López, Eduardo Juarez, and César

Sanz. Parallelism Exploitation of a Dimen-

sionality Reduction Algorithm Applied to

Hyperspectral Images. In Proceedings of the

DASIP Conference, 2016

among a very large number of spectral bands the few spectral bands that con-

tain the most information. It uses Principal Component Analysis (PCA) and

represents a challenging use case due to large processed data. The algorithm is

ported to a many-core MPPA processor from Kalray and applied to detecting

brain cancer cells from hyperspectral images taken live during a brain opera-

tion.

54 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

The MPEG HEVC encoder 5 and decoder 6,7 are some of our preferred use 5 Alexandre Mercat, Wassim Hamidouche,

Maxime Pelcat, and Daniel Menard. Estimat-

ing encoding complexity of a real-time em-

bedded software hevc codec. In Proceedings

of the DASIP conference. IEEE, 2016
6 Erwan Raffin, Erwan Nogues, Wassim

Hamidouche, Seppo Tomperi, Maxime Pel-

cat, and Daniel Menard. Low power hevc

software decoder for mobile devices. Jour-

nal of Real-Time Image Processing, 2016
7 Carlo Sau, Francesca Palumbo, Maxime

Pelcat, Julien Heulot, Erwan Nogues, Daniel

Ménard, Paolo Meloni, and Luigi Raffo.

Challenging the best HEVC fractional pixel

FPGA interpolators with reconfigurable and

multi-frequency approximate computing.

IEEE Embedded Systems Letters, 2017.

IEEE, to appear

cases, video compression being one of the main specialties of the VAADER

team from IETR. As an example,an algorithm from the HEVC standard is used

in the next sections to illustrate the creation of a DP evaluation procedure.

We are also extensively using a computer stereo vision matching algorithm8

8 Jinglin Zhang, Jean-Francois Nezan,

Maxime Pelcat, and Jean-Gabriel Cousin.

Real-time gpu-based local stereo matching

method. In Proceedings of the DASIP

Conference. IEEE, 2013

for our DP studies. This algorithm will be used in Chapter 7 to evaluate the

learning procedure of a Model of Architecture (MoA) from platform measure-

ments.

We are starting in the PhD thesis of Kamel Abdelouahab to address deep

learning use cases based on Convolutional Neural Networks (CNNs) 9. CNNs

9 Kamel Abdelouahab, Cédric Bourrasset,

Maxime Pelcat, François Berry, Jean-Charles

Quinton, and Jocelyn Serot. A holistic ap-

proach for optimizing dsp block utilization of

a cnn implementation on fpga. In Proceed-

ings of the ICDSC Conference. ACM, 2016

are exponentially gaining interest because of their demonstrated ability to per-

form image and video recognition and natural language processing with un-

precedented performances. Their regular structure and data locality make them

particularly well suited to dataflow-based methods.

Finally, the undergoing PhD thesis of Jonathan Bonnard and and El Mehdi

Abdali both study the hardware implementation of computer vision algorithms

in the objective of porting them to smart cameras.

The next section exposes on one use case our proposed protocol for evalu-

ating DP.

4.3 Introducing a Design Productivity Evaluation Pro-

tocol

The rest of this chapter describes a protocol for measuring the DP of a method

when compared to a reference. In order to make the study more concrete

and create the protocol, an HEVC video compression use case is implemented

and an HLS method is compared to writing VHDL manually for building an

FPGA-based system. We first introduce the notion of HLS before analyzing

the protocol and its results. This protocol has been published in the Proceed-

ings of IC-SAMOS 201610. 10 Maxime Pelcat, Cédric Bourrasset, Luca

Maggiani, and François Berry. Design pro-

ductivity of a high level synthesis compiler

versus HDL. In Proceedings of IC-SAMOS,

2016
4.3.1 HLS as a Tool for Improving Hardware Design DP

The most commonly used languages for Electronic Design Automation (EDA)

logic synthesis today are the VHDL, Verilog and SystemVerilog Hardware

description languages (HDLs). HDL languages are used to describe a hard-

ware implementation at a Register Transfer Level (RTL), i.e. at a level where

an implementation is constructed from signal transfers between registers and

from logical and arithmetic operations applied to these signals. However, this

domination of HDL languages is currently regressing and High-Level Synthe-

sis (HLS) methods are becoming market practice in the industry [65]. An HLS

method raises the level of abstraction of the code manipulated by designers

higher than RTL and replaces the VHDL or Verilog entry languages by a soft-

ware language such as plain C code, often accompanied by additional informa-

EVALUATING DESIG N PRO DUCTI VITY 55

tions such as pragmas. HLS methods ambition to improve design efficiency

while maintaining solid implementation Quality of Results (QoR).

In this chapter, we use HLS as a use case for testing our DP measurement

method. The scope of this HLS DP study is illustrated in Figure 4.3 as the first

step of the design process and before compilation, optimization and place &

route.

Optimized netlist
(Gate level)

Netlist
(Gate level)

VHDL files
(RTL level)

HLS entry
(High level)

Place & Route
Physical
Device

High-Level Synthesis

Synthesis Optimization

Compilation

Simulation

Simulation

Scope of
the Study

Figure 4.3: Scope of the HLS versus VHDL

DP study.

The main motivation behind HLS is to improve the DP of hardware design-

ers by providing some correct-by-construction features and by separating the

correctness design concern from the timing design concern. This separation of

concerns is provided by a design process consisting of three steps:

1. the HLS compiler is fed with an untimed description of the algorithm. Us-

ing a timeless test bench, the correctness of the produced output values can

be checked regardless of their arrival time,

2. RTL code is generated either in VHDL or in Verilog from the higher level

language, and the correct arrival time of the output signals is checked,

3. additional constraints can be set on the RTL code generator to correct po-

tential violations of time and resource constraints.

Depending on the HLS method, different high-level descriptions are used

such as the imperative C and C++ languages and their extensions SystemC and

OpenCL, or the BlueSpec functional language [66]. Dataflow based descrip-

tions, built over the DPN paradigm [13] like the models introduced in Chap-

ter 2, are an alternative to classical HLS methods where the input language

does not follow an imperative paradigm.

While imperative languages decompose a computation into a sequence of

successive operations (similarly to an algorithmic description), dataflow lan-

guages decompose a computation into actors communicating only via FIFOs.

A drawback of using a dataflow language when compared to C/C++ or Sys-

temC code is that a less common programming paradigm, close to the func-

tional programming paradigm, must be learned by the designer. However,

56 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

whereas parallelism must be inferred from code analysis in imperative HLS,

parallelism is naturally present in a dataflow algorithm description. Dataflow

languages for HLS exist both in academia (e.g. CAL [67] and CAPH [68]) and

in the industry (e.g. Cx [69]). The DPN paradigm is specifically suited to sig-

nal processing problems where limited control is necessary and computation

should be triggered by data availability. For that reason, we use a dataflow-

based language in this chapter to build our DP evaluation protocol for DSP

systems.

The following study does not intend to promote a particular HLS language

or method or to display advanced quality metrics on a given FPGA. Instead, a

precise and reproducible procedure is defined for assessing DP. While difficult,

this task is fundamental to drive the future developments of design methods.

The application chosen for applying the method is the MPEG HEVC [70]

interpolation filter. This 2-dimensional separable FIR filter is a simple yet

costly operation that requires fine implementation tuning. Moreover, the con-

volutions composing this filter are canonical examples of signal processing.

The HLS system chosen for evaluating DP assessment is the CAPH dataflow

compiler, compiling the CAPH language [68]. CAPH is a dataflow language

based on a functional paradigm.

4.3.2 Choosing NFPs and NREs Metrics and Designing the Pro-

tocol

As stated in Chapter 1, the DP of a design method is a trade-off between an

implementation quality to optimize, expressed as a set of NFPs (frequency,

area, memory, etc.) and design efficiency expressed as NRE costs.

The objective of the study is to produce DP radar charts equivalent to the

ones in Figure 1.1 and also a DP metric representative of the tested method

performance.

The obtained radar charts for the use case are displayed later in Figure 4.7.

We introduce 3 metrics to assess DP: the gain in NRE design time GNRE eval-

uating design efficiency, the quality loss LQ evaluating implementation quality

and finally the design productivity PD evaluating the trade-off between design

quality and design efficiency. These metrics are then computed on the use case

and lead to the results presented in Section 4.3.8.

Choosing the NREs Metrics to Evaluate Design Efficiency Design efficiency

results from a combination of parameters including the complexity of the de-

sign under development, the amount of NRE tasks to execute (i.e. the cost of

the new code to produce), the expressiveness, and “developer friendliness” of

the design languages, the available legacy code, the designer’s experience, the

testability of the results, the simulation time (influencing the time of design

and verification steps), and the maturity of the design tools.

Quantitative quality metrics can be computed to characterize both the tested

EVALUATING DESIG N PRO DUCTI VITY 57

HLS and reference HDL methods. System development time can be divided

into:

— 1.a NRE design time, i.e. time necessary for writing the code of a function-

ality,

— 1.b NRE verification time, i.e. time used for building a testbench and unit

testing,

— 1.c the system integration time, i.e. time necessary to build from compo-

nents a system respecting its requirements.

The system integration time, comprising verification and validation, de-

pends on features that go beyond DSP system design (analog to digital con-

version, energy management, physical environment, etc.). Reducing integra-

tion time by an HLS method would require a system completely defined with

the HLS method, including for example I/O drivers. The system tested in this

chapter, like all systems using HLS today, integrates HLS generated blocks

within a framework written with standard HDL. Integration time is thus con-

sidered out of the scope of this study.

Design times are controversial because they depend on the designer’s ex-

perience. Different times may be required for a design by a junior hardware

designer and a senior hardware designer. Software developers may themselves

require a different time. The design time is not systematically reproducible

(who has never experienced losing a few hours on a simple bug and its non-

explicit bug report?). Moreover, design time can not really be weighted by

an “experience rate” — an experienced designer is likely to spend more time

in unit testing and commenting, in order to save time in code integration and

training of colleagues. This study intends to overcome these difficulties by

comparing HDL and HLS in the same conditions. In the experiments, design

times measured for HDL and HLS reflect the time required by a single devel-

oper experienced on software signal processing but novice in both VHDL and

HLS languages. The experiments reflect the capacity of HLS to offer a high-

level API to a novice designer. This choice is consistent with the important

objective of HLS to open hardware design to a broader public of developers. A

selection of the time taken into account in measurements reduces the subjectiv-

ity of the approach. The time taken to refer to books and chapters for syntactic

details is excluded from the measured time. The development times are thus

sums of short design and verification times with a quantum of 1’ (minute) and

an average length of 15’.

Code properties complement the timing results:

— 2.a number of Source Lines Of Code (SLOC) (excluding blank lines and

comments),

— 2.b number of characters in the code (excluding blank lines and com-

ments).

58 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

These grades reflect the complexity and expressiveness of the languages.

A lower number of lines in the HLS code than in the HDL code reflects the

abstraction of some implementation concerns. These numbers do not fully

reflest complexity, as for instance, one line of regular expression may have a

greater complexity than 20 lines of C code. As a consequence, SLOCs are not

used in the DP metric but rather as an additional information.

Choosing the NFP Metrics to Evaluate Implementation Quality The NFPs

Metrics depend on the chosen hardware platform. In this study, we choose as

a target a Field-Programmable Gate Array (FPGA). On an FPGA implemen-

tation, quality metrics are divided into area and time information. We propose

the following metrics:

— 3.a number of Lookup tables (LUTs)

— 3.b number of registers,

— 3.c number of Random Access Memory (RAM) blocks,

— 3.d number of DSP cores.

— 4.a processing latency,

— 4.b minimum operating period.

Computing a Metric for Design Productivity As HLS aims at reducing design

time, the gain in global NRE time GNRE is the most important metric of design

efficiency. GNRE is defined formally as:

GNRE =
tHDL
design + tHDL

veri f

tHLS
design + tHLS

veri f

(4.1)

where tHDL
design and tHDL

veri f are respectively the design and verification times when

writing the application in HDL. Similarly, tHLS
design and tHLS

veri f are the design and

verification times when writing the application in HLS. A time gain GNRE

greater than 1 reflects the ability of an HLS method to save design and/or ver-

ification time. If only design and verification times are evaluated to assess an

HLS method, methods resulting in a fast design with low quality are favored.

In the proposed method, a quality degradation metric is included that penalizes

low quality systems.

Implementation quality metrics depend on the constraints of the design

(strict frequency constraint, strong resource limitations...). To take into ac-

count in a single cost the different quality metrics constituting a QoR vector,

the implementation cost is defined as the weighted sum of normalized features

to minimize [71]. The normalization of the different hardware quality met-

rics is done with respect to the maximum amount on the chosen system. For

EVALUATING DESIG N PRO DUCTI VITY 59

instance, the maximum period of the design obtained with HDL is computed

as:

prdHDL
norm = prdHDL/prdsystem

max , (4.2)

where prd
system
max is the maximum period for supporting the application (for in-

stance, to ensure the frame rate). In the general case of HLS DP measurement,

we define quality loss as:

LQ =
∑φHLS

i ∈ΦHLS αi × (φ HLS
i)

∑φHDL
i ∈ΦHDL αi × (φ HDL

i)
, (4.3)

where Φ
HLS is the sets of normalized quality metrics to minimize and αi are

normalizing coefficients. In particular, in the case of an FPGA, we can define

quality loss as:

LQ =
α1 × lutHLS

norm +α2 × regHLS
norm +α3 × ramHLS

norm+

α1 × lutHDL
norm +α2 × regHDL

norm +α3 × ramHDL
norm+

α4 ×dspHLS
norm +α5 × latHLS

norm +α6 × prdHLS
norm

α4 ×dspHDL
norm +α5 × latHDL

norm +α6 × prdHDL
norm

(4.4)

where lutHDL
norm and lutHLS

norm are numbers of LUTs (3.a), regHDL
norm and regHLS

norm are

numbers of registers (3.b), ramHDL
norm and ramHLS

norm are numbers of RAM blocks

(3.c), dspHDL
norm and dspHLS

norm are numbers of DSP blocks (3.d), latHDL
norm and latHLS

norm

are latencies (4.a), and prdHDL
norm and prdHLS

norm are operating periods (4.b).

The parameters αi can be tuned to favor different hardware features. We

propose 2 approaches: 1) architecture-relative where each al phai is set to 1,

and 2) fair to place all metrics on an equal footing, where each (non null) pair

of values is normalized to its maximum:

αi =







0, if max(φ HLS
i ,φ HDL

i) = 0.

(max(φ HLS
i ,φ HDL

i))−1, otherwise.
(4.5)

for φ HLS
i ∈ Φ

HLS and φ HDL
i ∈ Φ

HDL. The architecture-relative approach is

specific to a single device because it favors metrics that are sparse on the

measured platform. Experimental results (Section 4.3.8) focus on the fair ap-

proach, putting all parameters on the same footing.

Quality loss LQ reflects the loss due to rising the level of abstraction. A low

LQ reflects a good HLS generated code quality. We introduce the HLS Design

Productivity (DP) metric as a unique grade to assess the trade-off between

design efficiency and quality. System DP ratio is defined as:

PD = GNRE /LQ (4.6)

A new design method can be considered successful if its DP is greater than

1. Two design methods can be compared in terms of DP, provided that the

60 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

same approach is used for both methods, a greater DP reflecting a better trade-

off between design efficiency and implementation quality.

Design Productivity Assessment Protocol A few rules must be respected to

evaluate in practice the DP of a design method versus a reference design method:

the same hardware platform and the same synthesis or compilation (back-end)

tools should be used for both methods, the designer should have similar expe-

rience in both the methods, the developed use case should have precise spec-

ifications and requirements, design periods in both languages should be inter-

leaved, and the same (preferably default) common tool configurations should

be used for both methods. A particular effort is made in this chapter to obtain

reliable DP measurements by following these different rules.

4.3.3 Experimental Set-up to Evaluate the Design Productivity

of an HLS Compiler versus HDL

In this section, we present the use case and the tools that this study leverages

on to assess the DP evaluation protocol.

The HEVC Interpolation Filter Use Case The motivations for using HEVC

interpolation filtering as the application for design productivity assessment are

threefold. The use case is specifically chosen because it requires bit-exact

implementation to conform to the HEVC standard. Moreover, it is based on

canonical DSP operations. Finally, the HEVC interpolation filter requires only

fixed point operations that are efficiently implementable on an FPGA.

Video compression leverages on redundancies between images to reduce

data rate. The performance of the latest video compression algorithms such

as MPEG HEVC [70] is mostly due to a precise matching between blocks in

an image and the corresponding blocks in near images. This matching must

be precise also when a motion has occurred that is not an exact multiple of the

pixel size. HEVC interpolation filters provide fractional-pixel motion compen-

sation between images with a quarter-pixel precision on luminance.

The HEVC interpolation filter generates a shifted version of a block of pix-

els by applying a filter with coefficients (taps) generated from a Discrete Co-

sine Transform (DCT) and an Inverse Discrete Cosine Transform (IDCT) [70].

The block can be left shifted of 1/4, 1/2 or 3/4 of a pixel by the filter displayed

in Figure 4.4. The upper part of the figure is a shift register. The filter coeffi-

cients tap[i] depend on the selected sub-pixel position σ . The filter has 8 taps

for the 1/2 pixel position and 7 taps for the 1/4 and 3/4 positions [70].

Figure 4.4 only represents horizontal filtering. The extension to a 2-D fil-

tering version requires 8 horizontal filters. The results of these filters undergo

a second 8-tap filtering operation with equivalent coefficients for 1/4, 1/2 and

3/4 upper shifts. This bidirectional filter is illustrated in Figure 4.5 where line

FIFOs delay the pixels of one line length L to correctly synchronize the outputs

EVALUATING DESIG N PRO DUCTI VITY 61

x[t]

tap[7]
tap[6]

x[t-1]

tap[5]

x[t-2]

tap[4]

x[t-3]

tap[3]

x[t-4]

tap[2]

x[t-5]

tap[1]

x[t-6]

tap[0]

x[t-7]

y[t-7]

8

16 16 16 16 16 16 16 16

8 888888

16

/64
10

clip8
8

horizontal filter
input pixel flow

filtered pixel flow

Figure 4.4: Signal flow of an HEVC interpo-

lation filter for horizontal shift of 1/4, 1/2 or

3/4 of a pixel.

of the different horizontal filters.

horizontal filter

horizontal filter

horizontal filter

horizontal filter

horizontal filter

horizontal filter

input
pixel
flow picture line FIFO

x[t]

x[t-L]

x[t-2L]

x[t-3L]

x[t-4L]

x[t-5L]

x[t-6L]

x[t-7L]

8

16

16

16

16

16

16

horizontal filter

horizontal filter 16

16

22

22

22

22

22

22

22

22

22
/642

10

clip8

8

filtered
pixel
flow

y[t-7L-7]

tap[0]

tap[1]

tap[2]

tap[3]

tap[4]

tap[5]

tap[6]

tap[7]

Figure 4.5: Signal flow of a 2-dimensional

HEVC interpolation filter for horizontal and

vertical shift of 1/4, 1/2 or 3/4 of a pixel.

The use case being normative, data sizing is derived from the standard spec-

ifications. This is an important point because it limits the design choices and

helps comparing different versions of the code. The presented filters corre-

spond to the core of the luminance filters. In the next sections, the presented

filters serve as the basis for the HLS vs. HDL study.

Used Design Tools and Platform The software tools and versions used for

the study are:

• Altera Quartus II versions 13.1.0.162 and VHDL 2008,

• Mentor Graphics Modelsim ASE, delivered with Quartus,

• CAPH Compiler version 2.7.0.

A golden reference of the filter Design Under Test (DUT) is coded in C

language. This implementation is out of the scope of the study and serves

for verifying both the HDL and the HLS implementations. The HDL code is

62 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

ported to an FPGA-based smart camera named DreamCAM [72]. This camera

embeds an Altera Cyclone III EP3C120F780C7N FPGA. Using a camera aims

at making the study close to designer’s best practices by not limiting the study

to simulations. A complex pattern of data valid signals makes the filter not

trivial to port on the camera.

4.3.4 Designing HEVC Interpolation Filters in VHDL

In this section, the use case is implemented in HDL and qualitative as well as

quantitative elements are given on the design effort. VHDL [73] is a language

for hardware description standardized in 1987 and revised in 1993, 2000, 2002,

and 2008. A VHDL program consists of explaining how a digital circuit is

structured and what the behavior of each component is. These behaviors can

be purely combinatorial, sequential or more commonly mixed.

Assumptions and Verification of the Use Case Design The number of possible

designs in HDL for a filter such as the ones presented in Section 4.3.3 is large.

Accesses to external memory to store intermediate values can alter much the

quality. It is also possible to use existing Intellectual Property core (IP) blocks

or “design templates” (especially for FIR filters). The choice of parallelizing

or sequencing operations is also very important.

In order to narrow the design space, some assumptions are taken on the

input and output pixel streams of our use case. The filter is synchronous to

a unique clock and has asynchronous reset. The input pixel stream comes

in raster order (i.e. scanning the image from left to right and from top to

bottom) in a stream of 8-bit pixels. A data valid signal states whether the

current clock corresponds to a data value. Each filter configuration (1/4, 1/2

or 3/4 horizontal and vertical shifts) is studied independently and coefficients

are considered constant. In an HEVC encoder or decoder, the filter must then

be duplicated for the different positions. A sufficient number of clock events

without data is given for the filter to resume execution at the end of a pixel

line. The last assumption is compatible with most CMOS image sensors that

provide horizontal and vertical blanking. The assumptions foster a pipelined

design with FIFOs such as the ones illustrated in Figures 4.4 and 4.5. Several

versions of the filter are designed with their test benches. A golden reference

code in C language provides reference values for debug.

VHDL Version 1: Horizontal Filter with Minimal Interfaces In this version

of the filter, implementing the diagram in Figure 4.4, the stream of input pixels

is considered continuous (1 clock event = 1 data). A transition to zero of the

data valid signal resets the filter. It is interpreted as the beginning of a new

line and thus, the filter needs to gather 8 data before outputting the first valid

data. Based on the writing of this HDL filter, the time needed to describe the

pipelined quarter pixel filter in HDL is 358’ for design and 288’ for verifica-

EVALUATING DESIG N PRO DUCTI VITY 63

tion, including time for writing the test bench, RTL simulation, and debug.

The algorithm description time includes all the reflections on the description

(data types, generics, sizing, the use of functions, data conversions, use of best

practices...) and the writing, from scratch, of the VHDL files.

VHDL Version 2: Horizontal Filter with Interfaces for the DreamCAM Cam-

era When porting the filter onto the camera, the VHDL block must input and

output a data valid signal (indicating pixel validity for each clock event) as

well as a frame valid signal. The frame valid signal is continuously set during

the reception of a frame and reset at the end of the frame. Clock events that do

not carry data happen pseudo randomly during the reception of an image.

The time needed to describe the filter in HDL is 162’ for design and 783’ for

debug, including 152’ on a test bench and 631’ on the DreamCAM platform.

VHDL Version 2 shows that porting an algorithm onto a real platform has a

large cost, even when the algorithm has already passed some RTL verification

process.

VHDL Version 3: 2-D Filter with Interfaces for the DreamCAM Camera This

filter is designed by reusing the VHDL version 2 horizontal filter and combin-

ing filter results of several lines such as in Figure 4.5. The time needed to

describe the filter in HDL is 232’ for design and 775’ for verification.

The main difficulties comes again from the control part of the filter that

determines when a data is valid or not and on which cycle it must appear on

a given signal. In particular, synchronizing data valid and frame valid sig-

nals have necessitated most of the time. Next section discusses the sources of

VHDL non-optimality in terms of design productivity that make room for HLS

methods.

4.3.5 Discussion on the Origins of VDHL Complexity

The Counterpart of VHDL Versatility In order to build verifiable logic, it is

recommended to design a fully synchronous system. Using VHDL, a designer

is however free to design asynchronous circuits and gated clocks that are chal-

lenging to verify. For instance, while rarely being necessary, latch constructs

may be generated by mistake with VHDL, for instance with an incomplete

IF T HEN ELSE statement in a combinatorial process. Latches are strongly

discouraged in literature [73] and this type of “low level implementation bugs”

is at the heart of the need for HLS methods [66].

A Unique Language for Different Objectives A difficulty of VHDL comes

from the combination, in a single language, of simulation-oriented and implementation-

oriented features. For example, operators such as modulus MOD or remainder

REM are generally not synthesizable [73].

64 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

Some Unintuitive Properties The absence of precedence in logical operators

makes the following expression:

y <= a and b or c and d

equivalent to:

y <= ((a and b) or c) and d.

This property stands in contradiction to the mathematical order of operation

and can cause errors that are difficult to detect for a new programmer.

The Historical Reasons Some difficulties of the VHDL language come from

the different techniques available to implement a single functionality. For in-

stance, an 8-bit unsigned integer signal data can be declared by

SIGNAL data : INTEGER RANGE 0 TO 255;

or by

SIGNAL data : UNSIGNED (7 DOWNTO 0);

Choosing between the two solutions requires a knowledge that is not related

to system design but rather to language implementation details. The integer

style is typically used to manipulate data within a design while the unsigned

style is used for designing I/Os.

The Fundamental Reason The main productivity limitation while using VHDL

is the tangle of value and timing concerns. A value is considered as correctly

received only if it arrives at an exact predefined clock event. During design, a

lot of time is spent to obtain a value one cycle later or, worse, one cycle sooner

than what the current design outputs. As an input signal of an entity must be

present when its corresponding valid signal occurs, much of the design time is

spent to synchronize data and control signals.

Now that VHDL design characteristics have been presented, next section

details for comparison the design of the same filter versions with the CAPH

HLS language.

4.3.6 Introduction to the CAPH Language

CAPH [68] is a domain-specific language (DSL) for describing and imple-

menting stream processing applications on configurable hardware, such as

FPGAs. CAPH was first released in 2011 and is based upon the dataflow model

of computation where an application is described as a network of autonomous

processing elements (actors) exchanging tokens through unidirectional chan-

nels (FIFOs).

As the CAPH language is not mainstream like the VHDL language, details

on the syntax and semantics are given in this section. The behavior of indi-

vidual actors in CAPH is specified using a set of transition rules, where a rule

consists of a set of patterns, involving inputs and local variables, and a set of

expressions, describing modifications of outputs and local variables. Tokens

EVALUATING DESIG N PRO DUCTI VITY 65

circulating on channels and manipulated by actors are either data tokens (car-

rying actual values, such as pixels for example) or control tokens (acting as

structuring delimiters). With this approach, fine grain processing (down to the

pixel level) is expressed without global control or synchronization.

As an example, the actor coded in Listing 4.1 computes the sum of a list

of values. Given the input stream < 1 2 3 > < 4 5 6 >, — where 1, 2,

. . . represent data tokens and < and > control tokens respectively encoding the

start and the end of a list — the CAPH program produces the values 6, 15.

For this, the CAPH code uses two local variables : An accumulator s and a

state variable st. st indicates whether the actor is actually processing a list or

waiting for a new list to start. In the first state, the accumulator keeps track of

the running sum. The first rule can be read as : when waiting for a list (st=S0)

and reading the start of a new one (i=’<), then reset accumulator (s:=0) and

start processing (st=S1). The second rule says : When processing (st=S1)

and reading a data value (i=’v), then update accumulator (s:=s+v). The last

rule is fired at the end of the list (i=’>); the final value of the accumulator

is written on output o. This style of description fits a stream-based execution

model where pixels are processed “on the fly”.

Listing 4.1: An actor computing the sum of values along lists in CAPH.

actor suml

in (i: signed<8> list)

out (o: signed<16>)

var st: {S0,S1}=S0

var s : signed<16>

rules

(st:S0, i:’<) -> (st:S1, s:0)

| (st:S1, i:’v) -> (st:S1, s:s+v)

| (st:S1, i:’>) -> (st:S0, o:s)

For describing the structure of dataflow graphs, CAPH embeds a textual

Network Description Language (NDL). NDL is a higher-order, purely func-

tional language in which dataflow graphs are described by defining and ap-

plying wiring functions. A wiring function is a function accepting and return-

ing wires (graph edges). This concept is illustrated in Figure 4.6, where the

dataflow graph on the left is described by the CAPH program on the right. In

this example, two wiring functions are defined : neigh13 and neigh33. The

former takes a wire and produces a bundle of three wires representing the 1×3

neighborhood of the input stream, by applying twice the one-pixel delay actor

dp. The latter takes a wire and produces a bundle of nine wires representing

the 3×3 neighborhood of the input stream, by applying the previously defined

neigh13 function and the dl actor (one-line delay)

The tool chain supporting the CAPH language comprises a reference inter-

preter and a compiler producing both SystemC and synthetizable, platform-

independent VHDL code. The SystemC back-end is used for verification.

66 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

net neigh13(x) =

 x,

 dp x,

 dp (dp x);

net neigh33(x) =

 neigh13 x,

 neigh13 (dl x),

 neigh13 (dl (dl x));

net

 (o11,o12,o13),

 (o21,o22,o23),

 (o31,o32,o33)

= neigh33(i);

DPDP

DL DP DP

DL DP DP

i

o11

o12

o13

o21

o22

o23

o31

o32

o33

Figure 4.6: Example of a graph description

in CAPH.

4.3.7 Writing the MPEG HEVC Interpolation Filters in CAPH

Assumptions and Verification of the Use Case Design The assumptions on

the filter are the same as in the VHDL description case: pixel flow in raster

order, unique clock, valid signal and sufficient blanking (Section 4.3.4).

Data validation is automated by the CAPH compiler based on the struc-

tural tokens < and > in the bitstream (Section 4.3.6). The CAPH environment

provides FIFOs implemented in VHDL that automate data valid management.

Moreover, a VHDL wrapper for the CAPH-generated VHDL code exists for

the DreamCAM camera, driving inputs and FIFOs with the data valid signals

of the camera. These features may appear unfair for the comparison between

VHDL and CAPH but, in our opinion, VHDL and CAPH are treated on an

equal footing, as they are both ported to the platform with tools helping the

connection of their communication means (signals in VHDL, FIFOs in CAPH)

to their environment (a CMOS sensor and a USB port).

CAPH Version 1: Horizontal Filter with Minimal Interfaces In version 1 of

the HEVC filter in CAPH, the code is composed of a single actor receiving

the image bitstream and sending the horizontally filtered data. The test bench

represents only 5 lines of code connecting the actor to the input and output

streams. This simple test bench is possible because the HLS compiler performs

only functional verification and time verification is left to the synthesizer. The

actor implements a shift register and a counter discards the 7 first output tokens

that do not represent valid data. The actor has four transition rules and most of

the design time is taken to find the right way to represent the shift register in

CAPH. In this version, the shift register is made of a set of internal variables in

the CAPH actor. The filter is functionally equivalent to its VHDL counterpart

after 103’ for design and 65’ for writing the test bench and debugging the filter

with a SystemC simulation.

EVALUATING DESIG N PRO DUCTI VITY 67

CAPH Version 2: Horizontal Filter with Interfaces for the DreamCAM Cam-

era Similarly to its VHDL counterpart, this version 2 of the filter in CAPH is

adapted to the DreamCAM needs, resetting the filter at the end of each line and

adding modularity to the description. The filter is decomposed into 8 pipelined

multiply-accumulate actors. The last actor in the pipeline has a different code.

It gathers the intermediate products into a filtered and clipped value and gen-

erates the output flow. The main difficulty comes from getting rid of unwanted

tokens, i.e. tokens that appear while the pipeline is filled up and emptied. The

time for designing this version, composed of 9 actors, can be decomposed into

71’ for design and 72’ for verification.

CAPH Version 3: 2-D Filter In this 2-D version of the filter, 7 new delay

actors are first instantiated and connected. CAPH higher order functions are

used to create a large number of actors with a code of limited size. Delay actors

insert L first dummy tokens in the stream, where L is the length of a picture line,

and then forward the arriving pixel values. The time needed to describe the

2-D filter in CAPH is split into 187’ for design and 169’ for verification.

4.3.8 Experimental Results: Evaluating the Design Productivity

of the CAPH HLS Compiler versus VHDL

Overview of the Experimental Results Table 4.1 summarizes the experimen-

tal results of the different versions of the use case and Figure 4.7 illustrates

them. Concerning CAPH results, values reported in brackets correspond to the

total hardware resources including the overhead of the transformation from the

platform signals (frame and data valid) to the token representation. These num-

bers are the fairest to compare to VHDL so they are the ones used for quality

assessment.

VHDL CAPH VHDL CAPH VHDL CAPH

v1 v1 v2 v2 v3 v3

NREdesign (minutes) 358 103 162 71 232 187

NREveri f (minutes) 288 65 783 72 775 169

SLOCs 147 43 333 61 805 194

chars 4114 1351 9465 2395 22072 6099

LUTs 193 226 282 3161 2868 11398

(445) (3380) (11636)
Regs 81 103 115 2209 1252 7557

(269) (2375) (7723)
RAM 0 0 (1) 0 0 (1) 18 14

Frequency (MHz) 64.7 68.0 71.8 83.0 65.2 84.2

Table 4.1: VHDL vs. CAPH design effi-

ciency and implementation quality figures.

Figure 4.7 displays values normalized to the largest of the two values. One

can see that HLS is obtaining gains on design efficiency because, in the upper

part of the charts, the CAPH values are smaller than the VHDL values (smaller

is better). Conversely, there is a quality loss due to HLS that makes the VHDL

values smaller than the CAPH values in the lower part of the chart. The CAPH

68 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

HLS method is efficient for frequency; it even obtains slightly better mini-

mum period than manual VHDL. This effect can be explained by the insula-

tion of each actors by FIFOs that build a pipeline. However, CAPH presents

a large overhead in terms of LUTs and registers. This effect is explained by

the automatic insertion of FIFO queues between actors that are not present in

VHDL (VHDL). Improving the footprint of the VHDL generated from CAPH

is thus an important objective to make this HLS method competitive. Globally,

a smaller area in the clear red zone than in the dark blue zone is a good indica-

tor that HLS is reaching a higher DP than VHDL; this fact will be confirmed

in the next sections.

NREdesign

NREveri f

SLOC

LUTs

Regs

prd

(a) v1

NREdesign

NREveri f

SLOC

LUTs

Regs

prd

(b) v2

NREdesign

NREveri f

SLOC

RAM

LUTs Regs

prd

(c) v3

Figure 4.7: Design efficiency and implemen-

tation quality chart (the smaller the better) for

each filter in CAPH (clear red) and VHDL

(dark blue).Gain in NRE Design Time of CAPH vs. Manual VHDL Table 4.2 shows

for each use case version the Gain in NRE Design Time GNRE introduced in

Section 4.3.2. In average, designing the use case versions with the CAPH HLS

method took 4.42× less time than writing and testing VHDL by hand. The

standard deviation is large (1.96). This fact shows that, depending on the code

type (raw 1-D filter, 1-D filter with control or 2-D filter), the gain in design

time varies.

CAPH vs. CAPH vs. CAPH vs. Average

VHDL v1 VHDL v2 VHDL v3

GNRE 3.84× 6.60× 2.82× 4.42×

LQ 1.70× 2.53× 1.47× 1.90×

PD 2.26× 2.61× 1.92× 2.26×

Table 4.2: Gain in NRE Design Time GNRE ,

Quality Loss LQ and Design Productivity PD

of CAPH vs. manual VHDL.

Quality Loss of CAPH vs. Manual VHDL The quality loss, defined in Section

4.3.2, is evaluated to study the productivity of the HLS method. We focus in

this chapter on the fair approach, putting all parameters on equal footing to

make results not very dependent on the type of FPGA so normalization to

maximum values is skipped and parameters αi are computed by equation 4.5.

EVALUATING DESIG N PRO DUCTI VITY 69

Numbers of DSPs and latency are ignored in quality loss computation (α4 =

0 and α5 = 0) because the use case does not generate multipliers and the la-

tency of a few cycles introduced by VHDL and CAPH is negligible when com-

pared to the latency of several picture lines, mandatory in the 2-D filter, so

latency does not reflect system quality.

Quality loss LQ figures are displayed in Table 4.2. They show that, when

putting all quality metrics on an equal footing, there is in average a quality loss

of about 2× due to using the CAPH HLS method when compared to VHDL

manual writing. The standard deviation of 0.6 is limited.

Design Productivity of CAPH HLS versus Manual HDL From the previously

computed gain in NRE design time and quality loss, we can derive the Design

Productivity PD for the different use case versions. The values of PD are shown

in Table 4.2. The HLS Design Productivity (DP) metric for the tested CAPH

compiler version 2.7.0 is 2.2×. This number is an evaluation of the gains

obtained by the HLS compiler. The small standard deviation of 0.34 between

the different versions is an encouraging sign of the relevance of the DP metric

evaluation method proposed in this chapter. Finally, one can see in Figure 4.1

that while verification takes in average 3× the time of design in VHDL, it takes

in average only 85% of the design time in CAPH.

4.4 Discussion on the Reduction of Complexity when

using CAPH HLS Instead of VHDL

More than numbers, this DP studies gives us some insights on what makes the

tested HLS method higher level than the reference.

A dataflow MoC abstracts two elements:

• time. Instead of reacting to clock events, actors react to the arrival of data

tokens,

• amount of data stored in FIFOs. The MoC assumes FIFOs of sufficient size

to store pending tokens.

These two abstractions make it possible a first verification of the process

independently from the notion of time. The designer can thus verify very early

in the design process whether the output values conform to the specification.

Moreover, by generating SystemC code for simulation and verification, the

CAPH compiler leverages on an optimized simulation environment. Writing

the test bench in CAPH is also fairly less complex than in VHDL.

These advantages come at the cost of a higher memory consumption, mostly

due to the allocation of FIFO queues between actors.

70 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

4.5 Conclusion and Perspectives

In this chapter, our use cases and a protocol to assess DP gains have been

presented. Using this protocol, an HLS compiler based on the CAPH dataflow

programming language has been compared to manual VHDL.

The framework for design productivity estimation proposed in this chap-

ter can be extended to any type of software and hardware system design.

Figures of merit for the implementation quality and design efficiency should

be adapted to the system under test. However, the method and recommen-

dations remain valid. Crossbreeding different design methods and combining

their best features in a unique method could offer new opportunities of DP

enhancement for complex heterogeneous system design.

Assessing and comparing systems at a higher level of abstraction that the

RTL level used in this chapter is possible if cross-hardware Non-Functional

Properties (NFPs) are chosen to represent implementation performance. For

instance, if silicon area instead of LUTs is measured to estimate resource

needs, an FPGA can be compared to a multicore processor. Predicting such

high-level NFPs is the role of MoAs that will be developed in the second Part

of this document. The fairness of DP comparisons comes at the price of op-

timisation efforts both for the reference and tested methods and of a precise

protocol for evaluating design efficiency and implementation performance. To

the extent of our knowledge, the protocol presented in this chapter is the first

fair protocol for assessing DP. As new levels of abstractions appear for system

design and as model-based methods are increasingly adopted, fair DP assess-

ment becomes essential to better understand where efficiency lies and which

features bring a substantial productivity gain.

Our work of the last years has concentrated on DP improvements from ap-

plications modeled with dataflow MoCs. However, having information on the

platform architecture is crucial to automate the design of complex systems and

the body of work on architecture modeling is much more reduced than the one

on application modeling. The next sections of Part B detail a new research sub-

ject I wish to further investigate in the next years to provide this architectural

information: Models of Architecture.

Part B

Introducing MoAs for Raising Design

Productivity

5

Models of Architecture: A New Design Abstrac-

tion Model of
Architecture

Application

Map

Architecture

NFPs

R
edesign

R
edesign

Figure 5.1: MoAs in the Y-chart.

5.1 Chapter Abstract

This chapter initiates the second part of this report that introduces and posi-

tions in state-of-the-art the new concept of Models of Architecture (MoAs) to

complement the work on MoCs and further improve the DP of DSP embedded

systems.

This chapter precisely defines the MoA concept that aims at representing

platform architectures at a high level of abstraction with the objective of feed-

ing efficient Design Space Exploration methods and, in turn, enhance design

productivity by automating some design decisions. MoAs formalize the archi-

tecture input of the Y-chart design approach in the same way MoCs formal-

ize the application input. The application/architecture separation of concerns

should not be confused with the hardware/software separation of concerns.

While the former is a fundamental model-related notion, the second is a tool-

related notion that tends to fade away with the adoption of virtualization and

HLS.

To be an MoA, an architecture model must respect three constraints: 1)

offer a reproducible cost computation for a Non-Functional Property (NFP)

when combined with an application model respecting a precise MoC, 2) be

application independent, and 3) abstract the computed cost. An architecture

model respecting only a subset of these rules is referred to as a quasi-MoA.

This chapter also introduces the notion of application activity that serves as

an intermediate between application and architecture models. Indeed, the NFP

cost (e.g. energy consumption) results from the activity of the application sup-

ported by the hardware platform.

In order to make the MoA concept more concrete, this chapter also in-

troduces a first MoA named Linear System-Level Architecture Model (LSLA).

LSLA computes an abstract NFP cost as a linear combination of the computa-

74 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

tion and communication tokens composing application activity. LSLA will be

compared to state-of-the-art architecture description languages and models in

Chapter 6 and its capacities will be demonstrated in Chapter 7.

5.2 The Context of Models of Architecture

5.2.1 Models of Architecture in the Y-Chart Approach

The main motivation for developing Models of Architecture is for them to

formalize the specification of an architecture in a Y-chart approach of system

design. The Y-chart approach, introduced in [74], consists in separating in two

independent models the application-related and architecture-related concerns

of a system’s design.

Model of
Architecture

Model of
Computation Application

Mapper and Simulator

efficiency metrics

conform to conform to

redesign redesign

What How

Architecture

Figure 5.2: MoC and MoA in the Y-chart.

This concept is refined in Figure 5.2 where a set of applications is mapped

to a set of architectures to obtain a set of efficiency metrics. In Figure 5.2,

the application model is required to conform to a specified MoC and the ar-

chitecture model is required to conform to a specified MoA. This approach

aims at separating What is implemented from How it is implemented. In this

context, the application is qualified by a Quality of Service (QoS) and the ar-

chitecture, offering resources to this application, is characterized by a given

efficiency when supporting the application. For the discussion not to remain

abstract, next section illustrates the problem on an example.

5.2.2 Illustrating Iterative Design Process and Y-Chart on an

Example System

QoS and efficiency metrics are multi-dimensional and can take many forms.

For a signal processing application, QoS may be the Signal-to-Noise Ratio

(SNR) or the Bit Error Rate (BER) of a transmission system, the compression

rate of an encoding application, the detection precision of a radar, etc. In terms

of architectural decisions, the obtained set of efficiency metrics is composed

of some of the following Non-Functional Properties (NFPs):

• over time:

MODELS O F ARCH ITECTU RE : A N EW D ESIGN ABSTRACTIO N 75

– latency (also called response time) corresponds to the time duration be-

tween the arrival time of data to process and the production time of pro-

cessed data,

– throughput is the amount of processed data per time iterval,

– jitter is the difference between maximal and minimal latency over time,

• over energy consumption:

– energy corresponds to the energy consumed to process an amount of

data,

– peak power is the maximal instantaneous power required on alimentation

to process data,

– temperature is the effect of dissipated heat from processing,

• over memory:

– RAM requirements corresponds to the amount of necessary read-write

memory to support processing,

– Read-Only Memory (ROM) requirements is the amount of necessary read-

only memory to support processing,

• over security:

– reliability is 1− p f with p f the probability of system failure over time,

– electromagnetic interference corresponds to the amount of non-desired

emitted radiations,

• over space:

– area is the total surface of semiconductor required for a given process-

ing,

– volume corresponds to the total volume of the built system.

– weight corresponds to the total weight of the built system.

• and cost corresponds to the monetary cost of building one system unit under

the assumption of a number of produced units.

When compared to the implementation efficiency metrics developed in Sec-

tion 4.3.2, these system efficiency metrics are more generic, architecture-independent

and application-related. They make it possible to compare software-defined

and hardware-defined systems by observing the NFPs of a “black-box” sys-

tem.

The high complexity of automating system design with a Y-chart approach

comes from the extensive freedom (and imagination) of engineers in redesign-

ing both application and architecture to fit the efficiency metrics, among this

76 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

list, falling into their applicative constraints. Figure 5.3 is an illustrating ex-

ample of this freedom on the application side. Let us consider a video com-

pression system to be ported on a platform. As shown in Figure 5.3 a), the

application initially has only pipeline parallelism. Assuming that all four tasks

are equivallent in complexity and that they receive and send at once a full im-

age as a message, pipelining can be used to map the application to a multicore

processor with 4 cores, with the objective to rise throughput (in frames per

second) when compared to a monocore execution. However, latency will not

be reduced because data will have to traverse all tasks before being output. In

Figure 5.3 b), the image has been split into two halves and each half is pro-

cessed independently. The application QoS in this second case will be lower,

as the redundancy between image halves is not used for compression. The

compression rate or image quality will thus be degraded. However, by accept-

ing QoS reduction, the designer has created data parallelism that offers new

opportunities for latency reduction, as processing an image half will be faster

than processing a whole image.

color
processing

prediction
transform &
quantization

entropy
coding

color
processing

prediction
transform &
quantization

entropy
coding

color
processing

prediction
transform &
quantization

entropy
coding

compressed
bitstream 1

compressed
bitstream 2

a) original video compression application

b) redesigned video compression application forcing data parallelism

Figure 5.3: Illustrating designer’s freedom on

the application side with a video compression

example.

In terms of architecture, and depending on money and design time resources,

the designer may chose to run some tasks in hardware and some in software

over processors. He can also choose between different hardware intercon-

nects to connect these architecture components. For illustrative purpose, Fig-

ure 5.4 shows different configurations of processors that could run the appli-

cations of Figure 5.3. rounded rectangles represent Processing Elements (PEs)

performing computation while ovals represent Communication Nodes (CNs)

performing inter-PE communication. Different combinations of processors

are displayed, leveraging on high-performance out-of-order ARM Cortex-A15

cores, on high-efficiency in-order ARM Cortex-A7 cores, on the Multi-Format

Codec (MFC) hardware accelerator for video encoding and decoding, or on

Texas Instruments C66x Digital Signal Processing cores. Figure 5.4 g) cor-

responds to a 66AK2L06 Multicore DSP+ARM KeyStone II processor from

Texas Instruments where ARM Cortex-A15 cores are combined with C66x

cores connected with a Multicore Shared Memory Controller (MSMC) [75].

In these examples, all PEs of a given type communicate via shared memory

MODELS O F ARCH ITECTU RE : A N EW D ESIGN ABSTRACTIO N 77

with either hardware cache coherency (Shared L2) or software cache coherency

MSMC), and with each other using either the Texas Instruments TeraNet switch

fabric or the ARM AXI Coherency Extensions (ACE) with hardware cache co-

herency [76].

ARM
CortexA7

ARM
CortexA7

ARM
CortexA7

ARM
CortexA7

Shared
L2

ARM
CortexA15

ARM
CortexA15

ARM
CortexA15

ARM
CortexA15

Shared
L2

ACE

ARM
CortexA7

ARM
CortexA7

ARM
CortexA7

ARM
CortexA7

Shared
L2

MFCACE

ARM
CortexA7

a) monocore
energy-efficient

ARM
CortexA15

b) monocore
high-performance ARM

CortexA7
ARM

CortexA7

ARM
CortexA7

ARM
CortexA7

Shared
L2

c) quad-core energy-efficient

e) quad-core energy-efficient + accelerator f) octo-core big.LITTLE

ARM
CortexA15

ARM
CortexA15

ARM
CortexA15

ARM
CortexA15

Shared
L2

c) quad-core high-performance

ARM
CortexA15

ARM
CortexA15

Shared
L2

TI
C66x

TI
C66x

TI
C66x

TI
C66x

MSMCTeraNet

g) multi-ARM + multi-DSP processor from Texas Instruments

Figure 5.4: Illustrating designer’s freedom

on the architecture side with some current

ARM-based and Digital Signal Processor-

based multi-core architectures.

Each architecture configuration and each mapping and scheduling of the

application onto the architecture leads to different efficiencies in all the previ-

ously listed NFPs. Considering only one mapping per application-architecture

couple, models from Figures 5.3 and 5.4 already define 2× 7 = 14 systems.

Adding mapping choices of tasks to PEs, and considering that they all can

execute any of the tasks and ignoring the order of task executions, the num-

ber of possible system efficiency points in the Pareto Chart is already roughly

19.000.000. This example shows how, by modeling application and archi-

tecture independently, a large number of potential systems is generated which

makes automated multi-dimensional DSE necessary to fully explore the design

space.

5.2.3 On the separation between application and architecture

concerns

Separation between application and architectural concerns should not be con-

fused with software (SW) / hardware (HW) separation of concerns. The soft-

ware/hardware separation of concerns is often put forward in the term HW/SW

co-design. Software and its languages are not necessarily architecture-agnostic

representations of an application and may integrate architecture-oriented fea-

tures if the performance is at stake. This is shown for instance by the differ-

ences existing between the C++ and CUDA languages. While C++ builds an

imperative, object-oriented code for a processor with a rather centralized in-

struction decoding and execution, CUDA is tailored to GPGPUs with a large

78 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

set of cores. As a rule of thumb, software qualifies what may be reconfigured

in a system while hardware qualifies the static part of the system.

The separation between application and architecture is very different in the

sense that the application may be transformed into software processes and

threads, as well as into hardware IPs. Software and Hardware application parts

may collaborate for a common applicative goal. In the context of Digital Signal

Processing (DSP), this goal is to transform, record, detect or synthetize a signal

with a given QoS. MoCs follow the objective of making an application model

agnostic of the architectural choices and of the HW/SW separation. The ar-

chitecture concern relates to the set of hardware and software support features

that are not specific to the DSP process, but create the resources supporting the

application.

On the application side, many MoCs have been designed to represent the

behavior of a system. The Ptolemy II project [77] has a considerable influence

in promoting MoCs with precise semantics. Different families of MoCs exist

such as finite state machines, process networks, Petri nets, synchronous MoCs

and functional MoCs. This chapter defines MoAs as the architectural counter-

parts of MoCs and presents a state-of-the-art on architecture modeling for DSP

systems.

5.2.4 Scope of this Part B

In this Part B, we focus on architecture modeling for the performance estima-

tion of a DSP application over a complex distributed execution platform. We

keep functional testing of a system out of the scope of the chapter and rather

discuss the early evaluation of system non-functional properties. As a con-

sequence, virtual platforms such as QEMU [78], gem5 [79] or Open Virtual

Platforms simulator (OVPsim), that have been created as functional emulators

to validate software when silicon is not available, will not be discussed. MoAs

work at a higher level of abstraction where functional simulation is not central.

The concept of MoA has been introduced in1. 1 Maxime Pelcat, Karol Desnos, Luca

Maggiani, Yanzhou Liu, Julien Heulot,

Jean-François Nezan, and Shuvra S

Bhattacharyya. Models of architecture:

Reproducible efficiency evaluation for signal

processing systems. In Proceedings of the

SiPS Workshop. IEEE, 2016

The considered systems being dedicated to digital signal processing, the

study concentrates on signal-dominated systems where control is limited and

provided together with data. Such systems are called transformational, as

opposed to reactive systems that can, at any time, react to non-data-carrying

events by executing tasks.

Finally, the focus is put on system-level models and design rather than on

detailed hardware design, already addressed by large sets of existing literature.

Next section introduces the concept of an MoA, as well as an MoA example

named Linear System-Level Architecture Model (LSLA).

MODELS O F ARCH ITECTU RE : A N EW D ESIGN ABSTRACTIO N 79

5.3 The Model of Architecture Concept

The concept of MoA is evoked in 2002 in [80] where it is defined as “a formal

representation of the operational semantics of networks of functional blocks

describing architectures”. This definition is broad, and allows the concepts

of MoC and MoA to overlap. As an example, a SDF graph [16] represent-

ing a system fully specialized to an application may be considered as a MoC,

because it formalizes the application. It may also be considered as an MoA

because it fully complies with the definition from [80]. The Definition 4 of

this chapter is a new definition [2] of an MoA that does not overlap with the

concept of MoC. The LSLA model is then presented to clarify the concept by

an example.

5.3.1 Definition of an MoA

Prior to defining MoA, the notion of application activity is introduced that en-

sures the separation of MoC and MoA. Figure 5.5 illustrates how application

activity provides intermediation between application and architecture. Appli-

cation activity models the computational burden supported by the architecture

when executing the application.

Application model
MoC

Architecture model
MoA

application
activity

abstract
efficiency
cost

activity token
activity quantum

data data

efficiency
cost

fixing
physical

unit

Figure 5.5: Application activity as an inter-

mediate model between application and ar-

chitecture.

Definition 1 Application activity A corresponds to the amount of process-

ing and communication necessary for accomplishing the requirements of the

considered application during the considered time slot. Application activity is

composed of processing and communication tokens, themselves composed of

quanta.

Definition 2 A quantum q is the smallest unit of application activity. There

are two types of quanta: processing quantum qP and communication quantum

qC.

Two distinct processing quanta are equivalent, thus represent the same amount

of activity. Processing and communication quanta do not share the same unit

of measurement. As an example, in a system with a unique clock and byte-

addressable memory, 1 cycle of processing can be chosen as the processing

quantum and 1 byte as the communication quantum.

80 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

Definition 3 A token τ ∈ TP∪TC is a non-divisible unit of application activity,

composed of a number of quanta. The function size : TP ∪TC → N associates

to each token the number of quanta composing the token. There are two types

of tokens: processing tokens τP ∈ TP and communication tokens τC ∈ TC.

The activity A of an application is composed of the set:

A = {TP,TC} (5.1)

where TP = {τ1
P,τ2

P,τ3
P...} is the set of processing tokens composing the appli-

cation processing and TC = {τ1
C,τ2

C,τ3
C...} is the set of communication tokens

composing the application communication.

An example of a processing token is a run-to-completion task with always

identical computation. All tokens representing the execution of this task en-

close the same number N of processing quanta (e.g. N cycles). An example of

a communication token is a message in a message-passing system. The token

is then composed of M communication quanta (e.g. M Bytes). Using the two

levels of granularity of a token and a quantum, an MoA can reflect the cost

of managing a quantum, and the overhead of managing a token composed of

several quanta.

Definition 4 A Model of Architecture (MoA) is an abstract efficiency model of

a system architecture that provides a unique, reproducible cost computation,

unequivocally assessing an architecture efficiency cost when supporting the

activity of an application described with a specified MoC.

This definition makes three aspects fundamental for an MoA:

• reproducibility: using twice the same MoC and activity computation with a

given MoA, system simulation should return the exact same efficiency cost,

• application independence: the MoC alone carries application information

and the MoA should not comprise application-related information such as

the exchanged data formats, the task representations, the input data or the

considered time slot for application observation. Application activity is an

intermediate model between a MoC and an MoA that prevents both models

to intertwine. An application activity model reflects the processing burden

to be supported by architecture and should be versatile enough to support a

large set of MoCs and MoAs, as demonstrated in [2].

• abstraction: a system efficiency cost, as returned by an MoA, is not bound

to a physical unit. The physical unit is associated to an efficiency cost out-

side the scope of the MoA. This is necessary not to redefine the same model

again and again for energy, area, weight, etc.

Definition 4 does not compel an MoA to match the internal structure of the

hardware architecture, as long as the generated cost is of interest. An MoA for

MODELS O F ARCH ITECTU RE : A N EW D ESIGN ABSTRACTIO N 81

energy modeling can for instance be a set of algebraic equations relating appli-

cation activity to the energy consumption of a platform. To keep a reasonably

large scope, this chapter concentrates on graphical MoAs defined hereafter:

Definition 5 A graphical MoA is an MoA that represents an architecture with

a graph Λ = 〈M,L, t, p〉 where M is a set of “black-box” components and

L ⊆ M×M is a set of links between these components.

The graph Λ is associated with two functions t and p. The type function

t : M × L 7→ T associates a type t ∈ T to each component and to each link.

The type dedicates a component for a given service. The properties function

p : M×L×Λ 7→ P(P), where P represents powerset, gives a set of properties

pi ∈ P to each component, link, and to the graph Λ itself. Properties are

features that relate application activity to implementation efficiency.

When the concept of MoA is evoked throughout this chapter, a graphical

MoA is supposed, respecting Definition 5. When a model of a system ar-

chitecture is evoked that only partially compels with this definition, the term

quasi-MoA is used, equivalent to quasi-moa in [2] and defined hereafter:

Definition 6 A quasi-MoA is a model respecting some of the aspects of Defi-

nition 4 of an MoA but violating at least one of the three fundamental aspects

of an MoA, i.e. reproducibility, application independence, and abstraction.

All state-of-the-art languages and models presented in Sections 6.2 and 6.3

define quasi-MoAs. As an example of a graphical quasi-MoAs, the graphical

representation used in Figure 5.4 shows graphs Λ = 〈M,L〉 with two types of

components (PE and CN), and one type of undirected link. However, no infor-

mation is given on how to compute a cost when associating this representation

with an application representation. As a consequence, reproducibility is vio-

lated. Next section illustrates the concept of MoA through the LSLA example.

5.3.2 Example of an MoA: the Linear System-Level Architecture

Model (LSLA)

The LSLA model computes an additive reproducible cost from a minimalistic

representation of an architecture [2]. As a consequence, LSLA fully complies

with Definition 5 of a graphical MoA. The LSLA composing elements are

illustrated in Figure 5.6. An LSLA model specifies two types of components:

Processing Elements and Communication Nodes, and one type of link. LSLA

is categorized as linear because the computed cost is a linear combination of

the costs of its components.

Definition 7 The Linear System-Level Architecture Model (LSLA) is a Model

of Architecture (MoA) that consists of an undirected graph Λ= (P,C,L,cost,λ)

where:

82 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

Link

PE Processing Element

CN Communication Node

10s+1 Per token cost
(s=size(token))

z

PE2

1s

x y

10s 1s
PE110s+1

5s+1 PE4

PE3 2s+1

2s+1λ=0.3

Figure 5.6: LSLA MoA semantics elements.

• P is a set of Processing Elements (PEs). A PE is an abstract processing

facility with no assumption on internal parallelism, Instruction Set Archi-

tecture (ISA), or internal memory. A processing token τP from application

activity must be mapped to a PE p ∈ P to be executed.

• C is the set of architecture Communication Nodes (CNs). A communication

token τC must be mapped to a CN c ∈C to be executed.

• L = {(ni,n j)|ni ∈ C,n j ∈ C ∪ P} is a set of undirected links connecting

either two CNs or one CN and one PE. A link models the capacity of a CN

to communicate tokens to/from a PE or to/from another CN.

• cost is a property function associating a cost to different elements in the

model. The cost unit is specific to the non-functional property being mod-

eled. It may be in mJ for studying energy or in mm2 for studying area.

Formally, the generic unit is denoted ν .

On the example displayed in Figure 5.6, PE1−4 represent Processing Ele-

ments (PEs) while x, y and z are Communication Nodes (CNs). As an MoA,

LSLA provides reproducible cost computation when the activity A of an ap-

plication is mapped onto the architecture. The cost related to the management

of a token τ by a PE or a CN n is defined by:

cost : TP ∪TC ×P∪C → R

τ ,n 7→ αn.size(τ)+βn,

αn ∈ R,βn ∈ R

(5.2)

where αn is the fixed cost of a quantum when executed on n and βn is the

fixed overhead of a token when executed on n. For example, in an energy

modeling use case, αn and βn are respectively expressed in energy/quantum

and energy/token, as the cost unit ν represents energy. A token communicated

between two PEs connected with a chain of CNs Γ = {x,y,z...} is reproduced

card(Γ) times and each occurrence of the token is mapped to 1 element of

Γ. This procedure is illustrated in Figure 5.7. In figures representing LSLA

architectures, the size of a token size(τ) is abbreviated into s and the affine

equations near CNs and PEs (e.g. 10s + 1) represent the cost computation

related to Equation 5.2 with αn = 10 and βn = 1.

A token not communicated between two PEs, i.e. internal to one PE, does

not cause any cost. The cost of the execution of application activity A on an

MODELS O F ARCH ITECTU RE : A N EW D ESIGN ABSTRACTIO N 83

LSLA graph Λ is defined as:

cost(A ,Λ) = ∑τ∈TP
cost(τ ,map(τ))+

λ ∑τ∈TC
cost(τ ,map(τ))

(5.3)

where map : TP ∪TC → P∪C is a surjective function returning the mapping of

each token onto one of the architecture elements.

• λ ∈ R is a Lagrangian coefficient setting the Computation to Communica-

tion Cost Ratio (CCCR), i.e. the cost of a single communication quantum

relative to the cost of a single processing quantum.

Similarly to the SDF MoC [16], the LSLA MoA does not specify relations

to the outside world. There is no specific PEs type for communicating with

non-modeled parts of the system. This is in contrast with Architecture Analysis

and Design Language (AADL) processors and devices that separate I/O

components from processing components (Section 6.2.1). The Definition 1

of activity is sufficient to support LSLA and other types of additive MoAs.

Different forms of activities are likely to be necessary to define future MoAs.

Activity Definition 1 is generic to several families of MoCs, as demonstrated

in [2].

Figure 5.7 illustrates cost computation for a mapping of the video compres-

sion application shown in Figure 5.3 b), described with the SDF MoC onto the

big.LITTLE architecture of Figure 5.4 f), described with LSLA. The number

of tokens, quanta and the cost parameters are not representative of a real execu-

tion but set for illustrative purpose. The natural scope for the cost computation

of a couple (SDF, LSLA), provided that the SDF graph is consistent, is one

SDF graph iteration [2].

LSLA architecture

activity of an iteration:

2 colorProc tokens,

2 Pred tokens,

2 trans&Quant tokens,

2 entropyCod tokens,

1 mux&send token,

8 data tokens

SDF application

tokens relative costs:

decomposition into quanta.

mapping tokens to PEs and CNs.

communication tokens local from

one PE to the same PE are

discarded.λ=0.2

10s+1

10s+1 2s1s

3s+1

3s+1

predcolorProc
1 1 trans&

Quant

1 1 1 1 1 2entropy
Cod

mux&
send

ARM72

ARM73 1s

ARM71

ARM74

ARM152

ARM153

ARM151

ARM154

10s+1

10s+1

3s+1

3s+1

SL21 SL22ACE

consuming 2 tokens

and forcing 2 executions

of other actors

Figure 5.7: Computing cost of executing an

SDF graph on an LSLA architecture. The

cost for 1 iteration is (looking first at pro-

cessing tokens then at communication tokens

from left to right) 31+ 31+ 41+ 41+ 41+
41+ 13+ 13+ 4+ 0.2× (5+ 5+ 5+ 10+
5+ 5+ 10+ 5) = 266 ν (Equation 5.3).

84 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

The SDF application graph has 5 actors colorProc, pred, trans&Quant,

entropyCod, and mux&Send and the 4 first actors will execute twice to pro-

duce the 2 image halves required by mux&Send. The LSLA architecture model

has 8 PEs ARM jk with j ∈ {7,15} and k ∈ {1,2,3,4}, and 3 CNs SL21, ACE

and SL22. Each actor execution during the studied graph iteration is trans-

formed into one processing token. Each dataflow token transmitted during one

iteration is transformed into one communication token. A token is embedding

several quanta (white squares), allowing a designer to describe heterogeneous

tokens to represent executions and messages of different weight.

In Figure 5.7, each execution of actors colorProc is associated with a cost

of 3 quanta and each execution of other actors is associated to a cost of 4 quanta

except mux&Send requiring 1 quantum. Communication tokens (representing

one half image transfer) are given 5 quanta each. These costs are arbitrary here

but should represent the relative computational burden of the task/communica-

tion.

Each processing token is mapped to one PE. Communication tokens are

“routed” to the CNs connecting their producer and consumer PEs. For in-

stance, the fifth and sixth communication tokens in Figure 5.7 are generating

3 tokens each mapped to SL21, ACE and SL22 because the data is carried from

ARM71 to ARM151. It is the responsibility of the mapping process to verify

that a link l ∈ L exists between the elements that constitute a communication

route. The resulting cost, computed from Equations 5.2 and 5.3, is 266ν . This

cost is reproducible and abstract, making LSLA an MoA.

5.4 What is New about MoAs?

LSLA is one example of an architecture model but many such models exist

in literature. Next chapter studies different languages and models from liter-

ature and explains the difference existing between an MoA fully respecting

Definition 4 and the quasi-MoAs state-of-the-art works define.

6

State of the Art of Models of Architecture

Figure 6.1: A common representation of 4

cores, a bus and a memory... without precise

semantics.

6.1 Chapter Abstract

This chapter positions the concept of Models of Architecture (MoAs) in state-

of-the-art languages and models for architecture description. This overview

will be published in the third edition of the Handbook of Signal Processing

Systems1. It covers three standard architecture modeling languages and four 1 Maxime Pelcat. Models of Architecture for

DSP Systems. In Shuvra S Bhattacharyya,

Ed F Deprettere, Rainer Leupers, and Jarmo

Takala, editors, Handbook of signal process-

ing systems, third edition. Springer Science

& Business Media, to appear, 2017

models from literature to help the understanding of previous work on MoAs.

All languages and models from literature are shown to define quasi-MoAs.

Indeed, none of the defined models respect the three MoA-defining constraints

specified in the previous chapter.

The AADL language is first studied and shown to define a quasi-MoA that

is reproducible but does not separate architectural concerns from application

concerns. Then, the quasi-MoA specified by the MCA SHIM standard language

is explained. It is tailored to the needs of multicore partitioning tools and

dedicated to time simulation. Finally, UML MARTE is demonstrated to specify

4 different quasi-MoAs with different simulation purposes. The computation of

NFPs from these quasi-MoAs is based on designer’s experience, which makes

reproducibility not guaranteed.

The evolution of formal architectural models is then presented with four

different models. These models have progressively introduced the notions of

system-level architecture abstraction, multi-dimensional exploration, internal

component parallelism and data transfer models. The notion of MoAs results

from this evolution and a property table gathering the properties of the dis-

cussed models is presented.

6.2 Architecture Design Languages and their Archi-

tecture Models

This section studies the architecture models provided by three standard Archi-

tecture Design Languages (ADLs) targeting architecture modeling at system-

level: AADL, MCA SHIM, and UML MARTE.

86 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

While AADL adopts an abstraction/refinement approach where components

are first roughly modeled, then refined to lower levels of abstraction, UML

MARTE is closer to a Y-Chart approach where the application and the archi-

tecture are kept separated and application is mapped to architecture.

For its part, MCA SHIM describes an architecture with “black box” pro-

cessors and communications and puts focus on inter-PE communication simu-

lation. All these languages have in common the implicit definition of a quasi-

MoA (Definition 6). Indeed, while they define parts of graphical MoAs, none

of them respect the 3 rules of MoA Definition 4.

6.2.1 The AADL Quasi-MoA

Architecture Analysis and Design Language (AADL) [82] is a standard lan-

guage released by SAE International, an organization issuing standards for

the aerospace and automotive sectors. The AADL standard is referenced as

AS5506 [83] and the last released version is 2.2.

Some of the most active tools supporting AADL are Ocarina2 [84] and OS- 2 https://github.com/OpenAADL/ocarina

ATE3. 3 https://github.com/osate

AADL provides semantics to describe a software application, a hardware

platform, and their combination to form a system. AADL can be represented

graphically, serialized in XML or described in a textual language [85]. The

term architecture in AADL is used in its broadest sense, i.e. a whole made

up of clearly separated elements. A design is constructed by successive re-

finements, filling “black boxes” within the AADL context. Figure 6.2 shows

two refinement steps for a video compression system in a camera. Blocks of

processing are split based on the application decomposition of Figure 5.3 a).

First, the system is abstracted with external data entering a video compres-

sion abstract component. Then, 4 software processes are defined for the

processing. Finally, processes are transformed into 4 threads, mapped onto

2 processes. The platform is defined with 2 cores and a bus and application

threads are allocated onto platform components. The allocation of threads to

processors is not displayed. Sensor data is assigned a rate of 30 Hz, corre-

sponding to 30 frames per second. Next sections detail the semantics of the

displayed components.

Software, hardware and systems are described in AADL by a composition

of components. In this chapter, we focus on the hardware platform modeling

capabilities of AADL, composing an implicit graphical quasi-MoA. Partly re-

specting Definition 5, AADL represents platform with a graph Λ = 〈M,L, t, p〉

where M is a set of components, L is a set of links, t associates a type to each

component and link and p gives a set of properties to each component and link.

As displayed in Figure 6.3, AADL defines 6 types of platform components

with specific graphical representations. The AADL component type set is

such that t(c∈M)∈{system, processor, device, bus, memory, abstract}.

There is one type of link t(l ∈ L) ∈ {connection}. A connection can be set

STATE OF THE A RT OF MODELS OF ARC HITEC TURE 87

abstract system
video compression

video compression system

sensor_data
compressed_data

sensor
color

processing
prediction

transform &
quantization

entropy
coding

compressed_data

video compression system

sensor
color

processing
prediction

transform &
quantization

entropy
coding

compressed_data

ACE

process 1 process 2

30Hz

re
fin

em
en

t
1

re
fin

em
en

t
2

ARM
Cortex-A7

ARM
Cortex-A15

HW component
SW component

thread
process

processor
bus
device

abstract component

data port
event data port

system

connection

Figure 6.2: The AADL successive refinement

system design approach.

between any two components among software, hardware or system. Contrary

to the Y-chart approach, AADL does not separate application from architecture

but makes them coexist in a single model.

device busprocessor memorysystem abstract
Figure 6.3: The basic components for de-

scribing a hardware architecture in AADL.

AADL is an extensible language but defines some standard component

properties. These properties participate to the definition of the quasi-MoA

determined by the language and make an AADL model portable to several

tools. The AADL standard set of properties targets only the time behavior of

components and differs for each kind of component. AADL tools are intended

to compute NFP costs such as the total minimum and maximum execution la-

tency of an application, as well as the jitter. An AADL representation can also

be used to extract an estimated bus bandwidth or a subsystem latency [86].

Processors are sequential execution facilities that must support thread schedul-

ing, with a protocol fixed as a property. AADL platform components are not

merely hardware models but rather model the combination of hardware and

low-level software that provides services to the application. In that sense, the

architecture model they compose is conform to MoA Definition 4. However,

what is mapped on the platform is software rather than an application. As a

consequence, the separation of concerns between application and architecture

is not supported (Section 5.2.3). For instance, converting the service offered by

a software thread to a hardware IP necessitates to deeply redesign the model.

A processor can specify a Clock_Period, a Thread_Swap_Execution_Time

and an Assign_Time, quantifying the time to access memory on the processor.

Time properties of a processor can thus be precisely set.

A bus can specify a fixed Transmission_Time interval representing best- and

worst-case times for transmitting data, as well as a PerByte Transmission_-

Time interval representing throughput. The time model for a message is thus an

affine model w.r.t. message size. Three models for transfer cost computation

are displayed in Figure 6.4: linear, affine, and stair. Most models discussed

in the next sections use one of these 3 models. The interpretation of AADL

88 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

time properties is precisely defined in [82] Appendix A, making AADL time

computation reproducible.

message size N

c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t
ζ

o
ffs

e
t

start

step_width

step_height

stair message cost

from equation (1)

800

700

600

500

400

300

200

100

0
8007006005004003002001000 900 1000

affine message cost

linear message cost
Figure 6.4: Examples of different data trans-

fer cost computation functions (in arbitrary

units): a linear function (with 1 parameter),

an affine function (with 2 parameters) and a

step function (with 4 parameters).

A memory can be associated to a Read_Time, a Write_Time, a Word_Count

and a Word_Size to characterize its occupancy rate. A device can be associ-

ated to a Period, and a Compute_Execution_Time to study sensors’ and actu-

ators’ latency and throughput. Platform components are defined to support a

software application. The next section studies application and platform inter-

actions in AADL.

AADL aims at analyzing the time performance of a system’s architecture,

manually exploring the mapping (called binding in AADL) of software onto

hardware elements. AADL quasi-MoA is influenced by the supported software

model. AADL is adapted to the currently dominating software representation

of Operating Systems (OS), i.e. the process and thread representation [82]. An

application is decomposed into process and thread components, that are purely

software concepts. A process defines an address space and a thread comes

with scheduling policies and shares the address space of its owner process.

A process is not executable by itself; it must contain a least one thread to

execute. AADL Threads are sequential, preemptive entities [82] and requires

scheduling by a processor. Threads may specify a Dispatch_Protocol or a

Period property to model a periodic behavior or an event-triggered callback or

routine.

A values or interval of Compute_Execution_Time can be associated to a

thread. However, in real world, execution time for a thread firing depends on

both the code to execute and the platform speed. Compute_Execution_Time is

not related to the binding of the thread to a processor but a Scaling_Factor

property can be set on the processor to specify its relative speed with regards

to a reference processor for which thread timings have been set. This property

is precise when all threads on a processor undergo the same Scaling_Factor,

but this is not the case in general. For instance, if a thread compiled for the

ARMv7 instruction set is first executed on an ARM Cortex-A7 and then on

an ARM Cortex-A15 processor, the observed speedup depends much on the

executed task. Speedups between 1.3× and 4.9× are reported in this context

STATE OF THE A RT OF MODELS OF ARC HITEC TURE 89

in 4. 4 Maxime Pelcat, Alexandre Mercat, Karol

Desnos, Luca Maggiani, Yanzhou Liu, Julien

Heulot, Jean-François Nezan, Wassim Hami-

douche, Daniel Menard, and Shuvra S

Bhattacharyya. Models of Architecture:

Application to ESL Model-Based Energy

Consumption Estimation. Research re-

port, IETR/INSA Rennes ; Scuola Superiore

Sant’Anna, Pisa ; Institut Pascal ; University

of Maryland, College Park ; Tampere Univer-

sity of Technology, Tampere, 2017

AADL provides constructs for data message passing through port features

and data memory-mapped communication through require data access fea-

tures. These communications are bound to busses to evaluate their timings.

A flow is neither a completely software nor a completely hardware con-

struct. It specifies an end-to-end flow of data between sensors and actuators for

steady state and transient timing analysis. A flow has timing properties such

as Expected_Latency and Expected_Throughput that can be verified through

simulation.

AADL specifies a graphical quasi-MoA, as it does define a graph of plat-

form components. AADL violates the abstraction rule because cost properties

are explicitely time and memory. It respects the reproducibility rule because

details of timing simulations are precisely defined in the documentation. Fi-

nally, it violates the application independance rule because AADL does not

conform to the Y-chart approach and does not separate application and archi-

tecture concerns.

AADL is a formalization of current best industrial practices in embedded

system design. It provides formalization and tools to progressively refine a

system from an abstract view to a software and hardware precise composition.

AADL targets all kinds of systems, including transformational DSP systems

managing data flows but also reactive system, reacting to sporadic events. The

thread MoC adopted by AADL is extremely versatile to reactive and transfor-

mational systems but has shown its limits for building deterministic systems

[88] [89]. By contrast, the quasi-MoAs presented in Section 6.3 are mostly

dedicated to transformational systems. They are thus all used in conjunction

with process network MoCs that help building reliable DSP systems. The next

section studies another state-of-the-art language: MCA SHIM.

6.2.2 The MCA SHIM Quasi-MoA

The Software/Hardware Interface for Multicore/Manycore (SHIM) [90] is a

hardware description language that aims at providing platform information to

multicore software tools, e.g. compilers or runtime systems. SHIM is a stan-

dard developped by the Multicore Association (MCA). The most recent re-

leased version of SHIM is 1.0 (2015) [91]. SHIM is a more focused language

than AADL, modeling the platform properties that influence software perfor-

mance on multicore processors.

SHIM components provide timing estimates of a multicore software. Con-

trary to AADL that mostly models hard real-time systems, SHIM primarily

targets best-effort multicore processing. Timing properties are expressed in

clock cycles, suggesting a fully synchronous system. SHIM is built as a set of

UML classes and the considered NFPs in SHIM are time and memory. Timing

performances in SHIM are set by a shim::Performance class that charac-

terizes three types of software activity: instruction executions for instructions

90 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

expressed in the LLVM instruction set, memory accesses, and inter-core com-

munications. LLVM [92] is used as a portable assembly code, capable of de-

composing a software task into instructions that are portable to different ISAs.

SHIM does not propose a chart representation of its components. How-

ever, SHIM defines a quasi-MoA partially respecting Definition 5. A shim::-

SystemConfiguration object corresponds to a graph Λ = 〈M,L, t, p〉 where

M is the set of components, L is the set of links, t associates a type to each

component and link and p gives a set of properties to each component and

link. A SHIM architecture description is decomposed into three main sets of

elements: Components, Address Spaces and Communications. We group

and rename the components (refered to as “objects” in the standard) to makes

them easier to compare to other approaches. SHIM defines 2 types of platform

components. The component types t(c ∈ M) are chosen among:

• processor (shim::MasterComponent), representing a core executing soft-

ware. It internally integrates a number of cache memories (shim::Cache)

and is capable of specific data access types to memory (shim::AccessType).

A processor can also be used to represent a Direct Memory Access (DMA),

• memory (shim::SlaveComponent) is bound to an address space (shim::Address-

Space).

Links t(l ∈ L) are used to set performance costs. They are chosen among:

• communication between two processors. It has 3 subtypes:

– fifo (shim::FIFOCommunication) refering to message passing with buffer-

ing,

– sharedRegister (shim::SharedRegisterCommunication) refering to a

semaphore-protected register,

– event (shim::EventCommunication for polling or shim::InterruptCommuni-

cation for interrupts) refering to inter-core synchronization without data

transfer.

• memoryAccess between a processor and a memory (modeled as a cou-

ple shim::MasterSlaveBinding, shim::Accessor) sets timings to each type

of data read/write accesses to the memory.

• sharedMemory between two processors (modeled as a triple shim::Shared-

MemoryCommunication, shim::MasterSlaveBinding, and shim::Accessor)

sets timing performance to exchanging data over a shared memory,

• InstructionExecution (modeled as a shim::Instruction) between a pro-

cessor and itself sets performance on instruction execution.

Links are thus carrying all the performance properties in this model. Ap-

plication activity on a link l is associated to a shim::Performance property,

STATE OF THE A RT OF MODELS OF ARC HITEC TURE 91

decomposed into latency and pitch. Latency corresponds to a duration in cycles

while pitch is the inverse (in cycles) of the throughput (in cycles−1) at which a

SHIM object can be managed. A latency of 4 and a pitch of 3 on a communica-

tion link, for instance, mean that the first data will take 4 cycles to pass through

a link and then 1 data will be sent per 3 cycles. This choice of time represen-

tation is characteristic of the SHIM objective to model the average behavior

of a system while AADL targets real-time systems. Instead of specifying time

intervals [min..max] like AADL, SHIM defines triplets [min,mode,max] where

mode is the statistical mode. As a consequence, a richer communication and

execution time model can be set in SHIM. However, no information is given

on how to use these performance properties present in the model. In the case of

a communication over a shared memory for instance, the decision on whether

to use the performance of this link or to use the performance of the shared

memory data accesses, also possible to model, is left to the SHIM supporting

tool.

MCA SHIM specifies a graphical quasi-MoA, as it defines a graph of plat-

form components. SHIM violates the abstraction rule because cost properties

are limited to time. It also violates the reproducibility rule because details of

timing simulations are left to the interpretation of the SHIM supporting tools.

Finally, it violates the application independance rule because SHIM supports

only software, decomposed into LLVM instructions.

The modeling choices of SHIM are tailored to the precise needs of mul-

ticore tooling interoperability. The two types of tools considered as targets

for the SHIM standard are Real-Time Operating Systems (RTOSs) and auto-

parallelizing compilers for multicore processors. The very different objectives

of SHIM and AADL have lead to different quasi-MoAs. The set of compo-

nents is more limited in SHIM and communication with the outside world is

not specified. The communication modes between processors are also more

abstract and associated to more sophisticated timing properties. The software

activity in SHIM is concrete software, modeled as a set of instructions and data

accesses while AADL does not go as low in terms of modeling granularity. To

complement the study on a third language, the next section studies the differ-

ent quasi-MoAs defined by the Unified Modeling Language (UML) MARTE

language.

6.2.3 The UML MARTE Quasi-MoAs

The UML Profile for Modeling And Analysis Of Real-Time Embedded Sys-

tems (MARTE) is standardized by the Object Management Group (OMG)

group. The last version is 1.1 and was released in 2011 [93]. Among the ADLs

presented in this chapter, UML MARTE is the most complex one. It defines

hundreds of UML classes and has been shown to support most AADL con-

structs [94]. MARTE is designed to coordinate the work of different engineers

within a team to build a complex real-time embedded system. Several persons,

92 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

expert in UML MARTE, should be able to collaborate in building the system

model, annotate and analyze it, and then build an execution platform from its

model. Like AADL, UML MARTE is focused on hard real-time application

and architecture modeling. MARTE is divided into four packages, themselves

divided into clauses. 3 of these clauses define 4 different quasi-MoAs. These

quasi-MoAs are named QMoAi
MART E | i ∈ {1,2,3,4} in this chapter and are

located in the structure of UML MARTE clauses illustrated by the following

list:

• The MARTE Foundations package includes:

– the Core Elements clause that gathers constructs for inheritance and com-

position of abstract objects, as well as their invocation and communica-

tion.

– the Non-Functional Property (NFP) clause that describes ways to spec-

ify non-functional constraints or values (Section 5.2.2), with a concrete

type.

– the Time clause, specific to the time NFP.

– the Generic Resource Modeling (GRM) clause that offers constructs to

model, at a high level of abstraction, both software and hardware ele-

ments. It defines a generic component named Resource, with clocks

and non-functional properties. Resource is the basic element of

UML MARTE models of architecture and application. The quasi-MoA

QMoA1
MART E is defined by GRM and based on Resources. It will be

presented in Section 6.2.3.

– the Allocation Modeling clause that relates higher-level Resources to

lower-level Resources. For instance, it is used to allocate Schedulable-

Resources (e.g. threads) to ComputingResources (e.g. cores).

• The MARTE Design Model package includes:

– the Generic Component Model (GCM) clause that defines structured

components, connectors and interaction ports to connect core elements.

– the Software Resource Modeling (SRM) clause that details software re-

sources.

– the Hardware Resource Modeling (HRM) clause that details hardware

resources and defines QMoA2
MART E and QMoA3

MART E (Section 6.2.3).

– the High-Level Application Modeling (HLAM) clause that models real-

time services in an OS.

• The MARTE Analysis Model package includes:

– the Generic Quantitative Analysis Modeling (GQAM) clause that spec-

ifies methods to observe system performance during a time interval. It

defines QMoA4
MART E .

STATE OF THE A RT OF MODELS OF ARC HITEC TURE 93

– the Schedulability Analysis Modeling (SAM) clause that refers to thread

and process schedulability analysis. It builds over GQAM and adds

scheduling-related properties to QMoA4
MART E .

– the Performance Analysis Modeling (PAM) clause that performs proba-

bilistic or deterministic time performance analysis. It also builds over

GQAM.

• MARTE Annexes include Repetitive Structure Modeling (RSM) to compactly

represent component networks, and the Clock Constraint Specification Lan-

guage (CCSL) to relate clocks.

The link between application time and platform time in UML MARTE is

established through clock and event relationships expressed in the CCSL lan-

guage [95]. Time may represent a physical time or a logical time (i.e. a contin-

uous repetition of events). Clocks can have causal relations (an event of clock

A causes an event of clock B) or a temporal relations with type precedence,

coincidence, and exclusion. Such a precise representation of time makes UML

MARTE capable of modeling both asynchronous and synchronous distributed

systems [96]. UML MARTE is capable, for instance, of modeling any kind of

processor with multiple cores and independent frequency scaling on each core.

The UML MARTE resource composition mechanisms give the designer

more freedom than AADL by dividing his system into more than 2 layers.

For instance, execution platform resources can be allocated to operating sys-

tem resources, themselves allocated to application resources while AADL

offers only a hardware/software separation. Multiple allocations to a sin-

gle resource are either time multiplexed (timeScheduling) or distributed in

space (spatialDistribution). Next sections explain the 4 quasi-MoAs defined

by UML MARTE.

The UML MARTE Quasi-MoAs 1 and 4 The UML MARTE GRM clause

specifies the QMoA1
MART E quasi-MoA. It corresponds to a graph Λ= 〈M,L, t, p〉

where M is a set of Resources, L is a set of UML Connectors between these

resources, t associates types to Resources and p gives sets of properties to

Resources.

«Processing Resource»

specializes

«Computing Resource» «Communication Media» «Device Resource»

«Storage Resource» «Synchronization Resource»«Timing Resource»

«Concurrency Resource»
Figure 6.5: Elements of the quasi-MoA

define in UML MARTE Generic Resource

Modeling (GRM).

7 types of resources are defined in GRM. Some inconsistencies between re-

source relations make the standard ambiguous on resource types. As an exam-

ple, CommunicationMedia specializes CommunicationResource on standard

p.96 [93] while CommunicationMedia specializes ProcessingResource on

standard p.99. SynchResource disappears after definition and is possibly

94 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

equivalent to the later SwSynchronizationResource. Considering the most

detailed descriptions as reference, types of resources (illustrated in Figure 6.5)

are:

• a Processing Resource, associated to an abstract speed Factor property

that can help the designer compare different Processing Resources. It

has 3 subtypes: Computing Resource models a real or virtual PE storing

and executing program code. It has no property. Device Resource com-

municates with the system environment, equivalently to an AADL device.

It also has no property. Communication Media can represent a bus or a

higher-level protocol over an interconnect. It has several properties: a mode

among simplex, half-duplex, or full-duplex specifies whether the media is

directed or not and the time multiplexing method for data. Communication

Media transfers one data of elementSize bits per clock cycle. A packet time

represents the time to transfer a set of elements. A block time represents

the time before the media can transfer other packets. A data rate is also

specified.

• a Timing Resource representing a clock or a timer, fixing a clock rate.

• a Storage Resource representing memory, associated with a unit size and

number of units. Memory read and write occur in 1 clock cycle.

• a Concurrency Resource representing several concurrent flows of execu-

tion. It is a generalization of SchedulableResources that model logical

concurrency in threads and processes.

The communication time model of QMoA1
MART E , set by the Communication

Media, is the affine model illustrated in Figure 6.4. Precise time properties are

set but the way to correctly compute a timing at system-level from the set of

resource timings is not explicitely elucidated.

QMoA1
MART E can be used for more than just time modeling. ResourceUsage

is a way to associate physical properties to the usage of a resource. When

events occur, amounts of physical resources can be specified as “consumed”.

A resource consumption can be associated to the following types of NFPs val-

ues: energy in Joules, message size in bits, allocated memory in bytes, used

memory in bytes (representing temporary allocation), and power peak in Watts.

The Generic Quantitative Analysis Modeling (GQAM) package defines an-

other quasi-MoA (QMoA4
MART E) for performing the following set of analysis:

counting the repetitions of an event, determining the probability of an execu-

tion, determining CPU requirements, determining execution latency, and de-

termining throughput (time interval between two occurrences). New resources

named GaExecHost (ExecutionHost) and GaCommHost (CommunicationHost)

are added to the ones of QMoA1
MART E and specialize the ProcessingResource

for time performance and schedulability analysis, as well as for the analysis of

other NFPs. QMoA4
MART E is thus close to QMoA1

MART E in terms of resource

STATE OF THE A RT OF MODELS OF ARC HITEC TURE 95

semantics but additional properties complement the quasi-MoA. In terms of

MoAs, QMoA1
MART E and QMoA4

MART E have the same properties and none of

them clearly states how to use their properties.

The UML MARTE Quasi-MoAs 2 and 3 The UML MARTE Hardware Re-

source Modeling (HRM) defines two other, more complex quasi-MoAs than

the previously presented ones: QMoA2
MART E (logical view) and QMoA3

MART E

(physical view).

An introduction of the related software model is necessary before present-

ing hardware components because the HRM is very linked to the SRM soft-

ware representation. In terms of software, the UML MARTE standard con-

stantly refers to threads as the basic instance, modeled with a swSchedulable-

Resource. The swSchedulableResources are thus considered to be man-

aged by an RTOS and, like AADL, UML MARTE builds on industrial best

practices of using preemptive threads to model concurrent applications. In or-

der to communicate, a swSchedulableResource references specifically de-

fined software communication and synchronization resources.

The HW_Logical subclause of HRM refers to 5 subpackages: HW_Computing,

HW_Communication, HW_Storage, HW_Device, and HW_Timing. It composes

a complex quasi-MoA referred to as QMoA2
MART E in this chapter. For brevity

and clarity, we will not enter the details of this quasi-MoA but give some in-

formation on its semantics.

The UML MARTE QMoA2
MART E quasi-MoA is, like AADL, based on a

HW/SW separation of concerns rather than on an application/architecture sep-

aration. In terms of hardware, UML MARTE tends to match very finely the

real characteristics of the physical components. UML MARTE HRM is thus

torn between the desire to match current hardware best practices and the ne-

cessity to abstract away system specificities. A QMoA2
MART E processing ele-

ment for instance can be a processor, with an explicit Instruction Set Architec-

ture (ISA), caches, and a Memory Management Unit (MMU), or it can be a

Programmable Logic Device (PLD). In the description of a PLD, properties go

down to the number of available LUTs on the PLD. However, modern PLDs

such as FPGAs are far too heterogeneous to be characterized by a number of

LUTs. Moreover, each FPGA has its own characteristics and in the space do-

main, for instance, FPGAs are not based on a RAM configuration memory, as

fixed in the MARTE standard, but rather on a FLASH configuration memory.

These details show the interest of abstracting an MoA in order to be resilient

to the fast evolution of hardware architectures.

HW_Physical composes the QMoA3
MART E quasi-MoA and covers coarser-

grain resources than QMoA2
MART E , at the level of a printed circuit board. Prop-

erties of resources include shape, size, position, power consumption, heat dis-

sipation, etc.

Interpreting the technological properties of HRM quasi-MoAs QMoA2
MART E

and QMoA3
MART E is supposed to be done based on designer’s experience be-

96 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

cause the UML MARTE properties mirror the terms used for hardware design.

This is however not sufficient to ensure the reproducibility of a cost computa-

tion.

Conclusions on UML MARTE Quasi-MoAs When considering as a whole

the 4 UML MARTE quasi-MoAs, the standard does not specify how the hun-

dreds of NFP standard resource parameters are to be used during simulation

or verification. The use of these parameters is supposed to be transparent,

as the defined resources and parameters match current best practices. How-

ever, best practices evolve over time and specifying precisely cost compu-

tation mechanisms is the only way to ensure tool interoperability in the lon

run. UML MARTE quasi-MoAs do not respect the abstraction rule of MoAs

because, while cost properties target multiple NFPs, each is considered inde-

pendently without capitalizing on similar behaviors of different NFPs. Finally,

QMoA1
MART E and QMoA4

MART E respect the application independance rule, and

even extend it to the construction of more than 2 layers, while QMoA2
MART E

and QMoA3
MART E rather propose a HW/SW decomposition closer to AADL.

6.2.4 Conclusions on ADL Languages

AADL and UML MARTE are both complete languages for system-level de-

sign that offer rich constructs to model a system. MCA SHIM is a domain-

specific language targeted to a more precise purpose. While the 3 languages

strongly differ, they all specify quasi-MoAs with the objective of modeling the

time behavior of a system, as well as other non-functional properties. None

of these 3 languages fully respects the three rules of MoA’s Definition 4. In

particular, none of them abstracts the studied NFPs to make generic the com-

putation of a model’s cost from the cost of its constituents. Abstraction is how-

ever an important feature of MoAs to avoid redesigning redundant simulation

mechanisms.

To complement this study on MoAs, the next section covers four formal

quasi-MoAs from literature.

6.3 Formal Quasi-MoAs

In this Section, we put the focus on graphical quasi-MoAs that aim at pro-

viding system efficiency evaluations when combined with a model of a DSP

application. The models and their contribution are presented chronologically.

6.3.1 The AAA Methodology Quasi-MoA

In 2003, an architecture model is defined for the Algorithm-Architecture Match-

ing (AAA) Y-chart methodology, implemented in the SynDEx tool [97]. The

AAA architecture model is tailored to the needs of an application model that

STATE OF THE A RT OF MODELS OF ARC HITEC TURE 97

splits processing into tasks called operations arranged in a DAG representing

data dependencies between them.

The AAA architecture model is a graphical quasi-MoA Λ = 〈M,L, t, p〉,

where M is a set of components, L is a set of undirected edges connecting

these components, and t and p respectively give a type and a property to com-

ponents. As illustrated in Figure 6.6, there are three types t ∈ T of compo-

nents, each considered internally as a Finite State Machine (FSM) perform-

ing sequencially application management services : memory, sequencer, and

bus/multiplexer/demultiplexer (B/M/D). For their part, edges only model the

capacity of components to exchange data.

component

operator communicator RAM SAM

RAMP RAMD RAMDP

memory B/M/Dsequencer

B/M/D with arb. B/M/D w/o arb.

specializes

P D DP

arbiter

Figure 6.6: Typology of the basic compo-

nents in the AAA architecture model. Leaf

components are instantiable.

In this model, a memory is a Sequencial Access Memory (SAM) or a Random

Access Memory (RAM). A SAM models a FIFO for message passing between

components. A SAM can be point-to-point or multipoint and support or not

broadcasting. A SAM with broadcasting only pops a data when all readers have

read the data. A RAM may store only data (RAMD), only programs (RAMP)

or both (RAMDP). When several sequencers can write to a memory, it has an

implicit arbiter managing writing conflicts.

A sequencer is of type operator or communicator. An operator is a PE

sequencially executing operations stored in a RAMP or RAMDP. An operation

reads and writes data from/to a RAMD or RAMDP connected to the operator.

A communicator models a DMA with a single channel that executes commu-

nications, i.e. operations that transfer data from a memory M1 to a memory

M2. For the transfer to be possible, the communicator must be connected to

M1 and M2.

A B/M/D models a bus together with its multiplexer and demultiplexer that

implement time division multiplexing of data. As a consequence, a B/M/D

represents a sequential schedule of transfered data. A B/M/D may require an

arbiter, solving write conflicts between multiple sources. In the AAA model,

the arbiter has a maximum bandwidth BPMax that is shared between writers

and readers.

Figure 6.7 shows an example, inspired by [97], of a model conforming the

AAA quasi-MoA. It models the 66AK2L06 processor [75] from Texas Instru-

ments illustrated in Figure 5.4 g). Operators must delegate communication to

communicators that access their data memory. The architecture has hardware

cache coherency on ARM side (L2CC for L2 Cache Control) and software

cache coherency on c66x side (SL2C for Software L2 Coherency). The com-

98 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRO DUCTI VI TY GAP OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

munication between ARML2 and MSMC memories is difficult to model with

AAA FSM components because it is performed by a NoC with complex topol-

ogy and a set of DMAs so it has been represented as a network of B/M/Ds and

communicators in Figure 6.7.

ARM

Cortex-A15

TI c66xL2
DP

SL2C

1024KB

L1P
P

32KB MSMC
DP

2048KB

L2CC

DMA

DMA

DMA

TI c66xL2
DP

SL2C

1024KB

TI c66xL2
DP

SL2C

1024KB

TI c66xL2
DP

SL2C

1024KB

TeraNet

arbiter

ARM

Cortex-A15

L1D
D

32KB
L2CC

ARML2
DP

1024KB

TeraNet

arbiter

TeraNet

arbiter

...

...

DMA

DMA

DMA

L1D
D

32KB

L1P
P

32KB

Figure 6.7: Example of an architecture de-

scription with the AAA quasi-MoA.

Properties p on components and edges define the quasi-MoA. An operator

Op has an associated function δOp setting a Worst Case Execution Time (WCET)

duration to each operation δOp(o) ∈ R≥0 where O is the set of all operations in

the application. This property results from the primary objective of the AAA

architecture model being the computation of an application WCET. Each edge

of the graph has a maximum bandwidth B in bits/s. The aim of the AAA

quasi-MoA is to feed a multicore scheduling process where application oper-

ations are mapped to operators and data dependencies are mapped to routes

between operators, made of communicators and busses. Each operator

and communicator being an FSM, the execution of operations and communi-

cations on a given sequencer is totally ordered. The application graph being

a DAG, the critical path of the application is computed and represents the la-

tency of one execution, i.e. the time distance beween the beginning of the first

operation and the end of the last operation. The computation of the latency

from AAA application model and quasi-MoA in [97] is implicit. The behavior

of the arbiter is not specified in the model so actual communication times are

subject to interpretations, especially regarding the time quantum for the update

of bandwidth utilization.

The AAA syntax-free quasi-MoA is mimicking the temporal behavior of

a processing hardware in order to derive WCET information on a system.

Many hardware features can be modeled, such as DMAs; shared memories

and hardware FIFO queues. Each element in the model is sequential, making

a coarse-grain model of an internally parallel component impossible. There is

no cost abstraction but the separation between architecture model and applica-

tion model is respected. The model is specific to dataflow application latency

computation, with some extra features dedicated to memory requirement com-

putation. Some performance figures are subject to interpretation and latency

computation for a couple application/architecture is not specified.

The AAA model contribution is to build a system-level architecture model

that clearly separates architecture concerns from algorithm concerns. Next

section discusses a second quasi-MoA, named CHARMED.

STATE OF THE A RT OF MODELS OF ARC HITEC TURE 99

6.3.2 The CHARMED Quasi-MoA

In 2004, the CHARMED co-synthesis framework [98] is proposed that aims

at optimizing multiple system parameters represented in Pareto fronts. Such

a multi-parameter optimization is essential for DSE activities, as detailed in

[99].

In the CHARMED quasi-MoA Λ = 〈M,L, t, p〉, M is a set of PEs, L is a set

of Communication Resources (CR) connecting these components, and t and

p respectively give a type and a property to PEs and CRs. There is only one

type of component so in this model, t = PE. Like in the AAA architecture

model, PEs are abstract and may represent programmable microprocessors as

well as hardware IPs. The PE vector of properties p is such that p(PE ∈ M) =

[α ,κ , µd , µi,ρidle]
T where α denotes the area of the PE, κ denotes the price

of the PE, µd denotes the size of its data memory, µi denotes the instruction

memory size and ρidle denotes the idle power consumption of the PE. Each CR

edge also has a property vector: p(CR ∈ L) = [ρ ,ρidle,θ]T where ρ denotes

the average power consumption per each unit of data to be transferred, ρidle

denotes idle power consumption and θ denotes the worst case transmission

rate or speed per each unit of data.

This model is close to the concept of MoA as stated by Definition 4. How-

ever, instead of abstracting the computed cost, it defines many costs altogether

in a vector. This approach limits the scope of the approach and CHARMED

metrics do not cover the whole spectrum on NFPs shown in Section 5.2.2.

The CHARMED architecture model is combined with a DAG task graph of a

stream processing application in order to compute costs for different system

solutions. A task in the application graph is characterized by its required in-

struction memory µ , its Worst Case Execution Time WCET and its average

power consumption ℘avg while a DAG edge is associated with a data size δ .

The cost for a system x has 6 dimensions: the area α(x), the price κ(x), the

number of used inter-processor routes ln(x), the memory requirements µ(x),

the power consumption ℘(x) and the latency τ(x). Each metric has an op-

tional maximum value and can be set either as a constraint (all values under

the constraint are equally good) or as an objective to maximize.

Cost computation is not fully detailed in the model. We can deduce from

definitions that PEs are sequential units of processing where tasks are time-

multiplexed and that a task consumes℘avg×WCET energy for each execution.

The power consumption for a task is considered independent of the PE execut-

ing it. The latency is computed after a complete mapping and scheduling of

the application onto the architecture. The price and area of the system are the

sums of PE prices and areas. Memory requirements are computed from data

and instruction information respectively on edges and tasks of the application

graph. Using an evolutionary algorithm, the CHARMED framework produces

a set of potential heterogeneous architectures together with task mappings onto

these architectures.

100 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

For performing DSE, the CHARMED quasi-MoA has introduced a model

that jointly considers different forms of NFP metrics. The next section presents

a third quasi-MoA named System-Level Architecture Model (S-LAM).

6.3.3 The System-Level Architecture Model (S-LAM) Quasi-MoA

In 2009, the S-LAM model 5 is proposed to be inserted in the PREESM rapid 5 M. Pelcat, J.-F. Nezan, J. Piat, Jerome

Croizer, and S. Aridhi. A system-level ar-

chitecture model for rapid prototyping of het-

erogeneous multicore embedded systems. In

Proceedings of DASIP conference, 2009

prototyping tool. S-LAM is designed to be combined with an application

model based on extensions of the Synchronous Dataflow (SDF) dataflow MoC

and a transformation of a UML MARTE architecture description into S-LAM

has been conducted in 6. 6 Manel Ammar, Mouna Baklouti, Maxime

Pelcat, Karol Desnos, and Mohamed Abid.

Automatic generation of s-lam descriptions

from uml/marte for the dse of massively par-

allel embedded systems. In Software En-

gineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing 2015.

Springer, 2016

S-LAM defines a quasi-MoA Λ = 〈M,L, t, p〉 where M is a set of com-

ponents, L is a set of links connecting them, and t and p respectively give a

type and a property to components. As illustrated in Figure 6.8, there are five

instantiable types of components: operator, parallel node, contention

node, RAM, and DMA.

component link

 data link

 directed data link undirected data link

control link

RAM DMA

communication
enabler

operatorcommunication
node

parallel node contention node

refines

Figure 6.8: Typology of the basic compo-

nents in the S-LAM. Leaf components are

instantiable.

Operators represent astract processing elements, capable of executing tasks

(named actors in dataflow models) and of communicating data through links.

Actors’ executions are time-multiplexed over operators, as represented by the

black dot on the graphical view, symbolizing scheduling. There are also data

links and control links. A data link represents the ability to transfer

data between components. Control links specify that an operator can pro-

gram a DMA. Two actors can not be directly connected by a data link. A route

must be built, comprising at least one parallel node or one contention

node. A parallel node Np virtually consists of an infinite number of data

channels with a given speed σ(Np) in Bytes/s. As a consequence, no schedul-

ing is necessary for the data messages sharing a parallel node. A contention

node Nc represents one data channels with speed σ(Nc). Messages flowing

over a contention node need to be scheduled, as depicted by the black dot

in its representation. This internal component parallelism is the main novelty

of S-LAM w.r.t. the AAA model. When transferring a data from operator O1

to operator O2, three scenarios are considered:

1. direct messaging: the sender operator itself sends the message and, as a

consequence, cannot execute code simultaneously. It may have direct ac-

cess to the receiver’s address space or use a messaging component.

STATE OF THE ART OF MODELS OF ARC HITEC TURE 101

2. DMA messaging: the sender delegates the communication to a DMA. A

DMA component must then be connected by a data link to a communica-

tion node of the route between O1 and O2 and a control link models the

ability of the sender operator to program the DMA. In this case, the sender

is free to execute code during message transfer.

3. shared memory: the message is first written to a shared memory by O1,

then read by O2. To model this, a RAM component must be connected by a

data link to a communication node of the route between O1 and O2.

An S-LAM representation of an architecture can be built where different

routes are possible between two operators O1 and O2
7. The S-LAM model 7 M. Pelcat, J.-F. Nezan, J. Piat, Jerome

Croizer, and S. Aridhi. A system-level ar-

chitecture model for rapid prototyping of het-

erogeneous multicore embedded systems. In

Proceedings of DASIP conference, 2009

has for primary purpose system time simulation. An S-LAM model can be

more compact than an AAA model because of internal component parallelism.

Indeed, there is no representation of a bus or bus arbiter in S-LAM and the

same communication facility may be first represented by a parallel node to

limit the amount of necessary message scheduling, then modeled as one or a

set ofcontention nodes with or without DMA to study the competition for

bus resources. Moreover, contrary to the AAA model, operators can send data

themselves. Figure 6.9 illustrates such a compact representation on the same

platform example than in Figure 6.7. Local PE memories are ignored because

they are considered embedded in their respective operator. The TeraNet NoC

is modeled with a parallel node, modeling it as a bus with limited through-

put but with virtually infinite inter-message parallelism.

L2CC

ARM
Cortex-A15

ARM
Cortex-A15

TeraNet

ARML2

SL2C

MSMC

DMA

DMA

DMA

DMA
TI c66x

TI c66x

TI c66x

TI c66x

α bits/s β bits/s γ bits/s

DMA prog
time (s)

Figure 6.9: Example of an architecture model

with the S-LAM quasi-MoA.

The transfer latency of a message of M Bytes over a route R= (N1,N2, ...,NK),

where Ni are communication nodes, is computed as l(M) = minN∈R(σ(N)) ∗

M. It corresponds in the linear model presented in Figure 6.4 where the slope

is determined by the slowest communication node. If the route comprises con-

tention nodes involved in other simultaneous communications, the latency is

increased by the time multiplexing of messages. Moreover, a DMA has an off-

set property and, if a DMA drives the transfer, the latency becomes l(M) =

o f f set +minNinR(σ(N))∗M, corresponding to the affine message cost in Fig-

ure 6.4.

As in the AAA model, an S-LAM operator is a sequential PE. This is

a limitation if a hierarchical architecture is considered where PEs have inter-

nal observable parallelism. S-LAM operators have an operator ISA type (for

instance ARMv7 or C66x) and each actor in the dataflow application is associ-

ated to an execution time cost for each operator type. S-LAM clearly separates

102 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

algorithm from architecture but it does not specify cost computation and does

not abstract computation cost.

S-LAM has introduced a compact quasi-MoA to be used for DSP applica-

tions. The next section presents one last quasi-MoA from literature.

6.3.4 The MAPS Quasi-MoA

In 2012, a quasi-MoA is proposed in [102] for programming heterogeneous

MPSoCs in the MAPS compiler environment. It combines the multi-modality

of CHARMED with a sophisticated representation of communication costs.

The quasi-MoA serves as a theoretical background for mapping multiple con-

current transformational applications over a single MPSoC. It is combined

with KPN application representations [103] and is limited to the support of

software applications.

The MAPS quasi-MoA is a graph Λ = 〈M,L, t, p〉 where M is a set of PEs,

L is a set of named edges called Communication Primitives (CPs) connecting

them, and t and p respectively give a type and a property to components. Each

PE has properties p(PE ∈ M) = (CMPT ,XPT ,V PT) where CMPT is a set of

functions associating NFP costs to PEs. An example of NFP is ζ PT that as-

sociates to a task Ti in the application an execution time ζ PT (Ti). XPT is a

set of PE attributes such as context switch time of the OS or some resource

limitations, and V PT is a set of variables, set late after application mapping

decisions, such as the processor scheduling policy. A CP models a software

Application Programming Interface (API) that is used to communicate among

tasks in the KPN application. A CP has its own set of cost model functions

CMCP associating costs of different natures to communication volumes. A

function ζCP ∈CMCP is defined. It associates a communication time ζCP(N)

to a message of N bytes. Function ζCP is a stair function modeling the mes-

sage overhead and performance bursts frequently observed when transferring

data for instance with a DMA and packetization. This function, displayed in

Figure 6.4, is expressed as:

ζCP : N 7→=

{

o f f set i f N < start

o f f set + scale_height ×⌈(N − start + 1)/scale_width⌉ otherwise,

(6.1)

where start, o f f set, scale_height and scale_width are 4 CP parameters. The

primary concern of the MAPS quasi-MoA is thus time. No information is

given on whether the sender or the receiver PE can compute a task in parallel to

communication. A CP also refers to a set of Communication Resources (CRs),

i.e. a model of a hardware module used to implement the communication.

A CRs has two attributes: the number of logical channels and the amount of

available memory in the module. For example, a CR may model a shared

memory, a local memory, or a hardware communication queue.

This quasi-MoA does not specify any cost computation procedure from the

STATE OF THE ART OF MODELS OF ARC HITEC TURE 103

data provided in the model. Moreover, the MAPS architecture model, as the

other architecture models presented in this Section, does not abstract the gen-

erated costs. Next section summarizes the results of studying the four formal

architecture models.

6.3.5 Evolution of Formal Architecture Models

The four presented models have inspired the Definition 4 of an MoA. Theses

formal models have progressively introduced the ideas of:

• architecture abstraction by the AAA quasi-MoA [97],

• architecture modeling for multi-dimensional DSE by CHARMED [98],

• internal component parallelism by S-LAM 8, 8 M. Pelcat, J.-F. Nezan, J. Piat, Jerome

Croizer, and S. Aridhi. A system-level ar-

chitecture model for rapid prototyping of het-

erogeneous multicore embedded systems. In

Proceedings of DASIP conference, 2009

• complex data transfer models by MAPS [102].

The next section concludes this chapter on MoAs for DSP systems.

6.4 Concluding Remarks on the State-of-the-art of

MoA and quasi-MoAs for stream processing sys-

tems

In this chapter, the notions of Model of Architecture (MoA) and quasi-MoA

have been defined and several models have been studied, including fully ab-

stract models and language-defined models. To be an MoA, an architecture

model must capture efficiency-related features of a platform in a reproducible,

abstract and application-agnostic fashion.

The existence of many quasi-MoAs and their strong resemblance demon-

strate the need for architecture modeling semantics. Table 6.1 summarizes

the objectives and properties of the different studied models. As explained

throughout this chapter, LSLA is, to the extent of our knowledge, the only

model to currently comply with the 3 rules of MoA definition (Definition 4).

Model Repro-

ducible

Appli.

Agnostic

Abstract Main Objective

AADL quasi-MoA ✓ ✗ ✗ HW/SW codesign of hard RT system

MCA SHIM quasi-MoA ✗ ✗ ✗ multicore performance simulation

UML MARTE quasi-MoAs ✗ ✓/ ✗ ✗ holistic design of a system

AAA quasi-MoA ✗ ✓ ✗ WCET evaluation of a DSP system

CHARMED quasi-MoA ✗ ✓ ✗ DSE of a DSP system

S-LAM quasi-MoA ✗ ✓ ✗ multicore scheduling for DSP

MAPS quasi-MoA ✗ ✓ ✗ multicore scheduling for DSP

LSLA MoA ✓ ✓ ✓ System-level modeling of a NFP

Table 6.1: Properties (from Definition 4) and

objectives of the presented MoA and quasi-

MoAs.

104 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

LSLA is one example of an MoA but many types of MoAs are imaginable,

focusing on different modalities of application activity such as concurrency

or spatial data locality. A parallel with MoCs on the application side of the Y-

chart motivates for the creation of new MoAs. MoCs have the ability to greatly

simplify the system-level view of a design, and in particular of a DSP design.

For example, MoCs based on Dataflow Process Networks (DPNs) are able to

simplify the problem of system verification by defining globally asynchronous

systems that synchronize only when needed, i.e. when data moves from one

location to another. DPN MoCs are naturally suited to modeling DSP applica-

tions that react upon arrival of data by producing data. MoAs to be combined

with DPN MoCs do not necessarily require the description of complex rela-

tions between data clocks. They may require only to assess the efficiency of

“black box” PEs, as well as the efficiency of transferring, either with shared

memory or with message passing, some data between PEs. This opportunity is

exploited in the semantics of the 4 formal languages presented in Section 6.3

and can be put in contrast with the UML MARTE standard that, in order to sup-

port all types of transformational and reactive applications, specifies a generic

clock relation language named CCSL [95].

The 3 properties of an MoA open new opportunities for system design.

While abstraction makes MoAs adaptable to different types of NFPs, cost com-

putation reproducibility can be the basis for advanced tool compatility. Inde-

pendance from application concerns is moreover a great enabler for Design

Space Exploration methods.

Architecture models are also being designed in other domains than Digital

Signal Processing. As an example in the HPC domain, the Open MPI Portable

Hardware Locality (hwloc) [104] models processing, memory and communi-

cation resources of a platform with the aim of improving the efficiency of HPC

applications by tailoring thread locality to communication capabilities. Sim-

ilarly to most of the modeling features described in this chapter, the hwloc

features have been chosen to tackle precise and medium-term objectives. The

convergence of all these models into a few generic MoAs covering different

aspects of design automation is a necessary step to manage the complexity of

future large scale systems.

The next chapter complements our study by illustrating the use of an MoA

on a practical case study.

7

Models of Architecture in Practice

Figure 7.1: The Odroid XU3 board used

for measuring execution energy consumption

and learning a LSLA MoA.

7.1 Chapter Abstract

The MoA named Linear System-Level Architecture Model (LSLA) has been

introduced in Section 5.3.2. As an MoA, it abstracts the internal organisa-

tion of a computing platform. This MoA has also been demonstrated in the

Section 5.3.2 to compute an abstract NFP cost when combined with a SDF

modeled application. Its linear nature comes from the fact that it computes

a NFP cost as a linear combination of individual costs due to an application

activity.

In this chapter, LSLA is further studied in collaboration with SDF. The

Chapter demonstrates the capacity of a simple LSLA MoA to model in prac-

tice the energy consumption of a complex MPSoC. The parameters of the LSLA

model are learnt from physical measurements of the platform energy consump-

tion by linear regression. The additive nature of energy consumption is used to

abstract away many of the hardware and software features and still efficiently

predict energy.

The generated model is shown to represent the hardware behavior with a

fidelity of 86% while the model remains simple and inexpensive. Such result is

a great incentive to progress further in MoA semantics formulation and MoA-

based system design.

7.2 Learning an LSLA Model from Platform Mea-

surements

This section first introduces a method to learn the parameters of a LSLA model

from hardware measurements of the MoA-modeled cost. The method being

based on algebra, the next section presents an algebraic representation of an

LSLA model. This study has been made public in a research report1.

1 Maxime Pelcat, Alexandre Mercat, Karol

Desnos, Luca Maggiani, Yanzhou Liu, Julien

Heulot, Jean-François Nezan, Wassim Hami-

douche, Daniel Menard, and Shuvra S

Bhattacharyya. Models of Architecture:

Application to ESL Model-Based Energy

Consumption Estimation. Research re-

port, IETR/INSA Rennes ; Scuola Superiore

Sant’Anna, Pisa ; Institut Pascal ; University

of Maryland, College Park ; Tampere Univer-

sity of Technology, Tampere, 2017

106 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

7.2.1 Algebraic Expression of costs in an LSLA Model

Let us consider an LSLA model (Section 5.3.2) with fixed topology, i.e. the

sets P, C and L of respectively PEs, CNs and Links are fixed. The param-

eters αn and βn are initially unknown and will be learnt from measurements

of the modeled non-functional property on the platform (e.g. energy). The

Lagrangian coefficient λ is fixed to 1. The parameters of an LSLA MoA are

gathered in a vector m of size 2η such that:

m = (αn,∀n ∈ P∪C;βn,∀n ∈ P∪C). (7.1)

The size of 2η is due to the concatenation of token- and quanta-related

parameters. An arbitrary order is thus chosen for PEs and CNs and the per-

quantum costs αn and per-token costs βn are concatenated in a unique vector.

7.2.2 Applying Parameter Estimation to LSLA Model Inference

Parameter estimation [105] consists of solving an inverse problem to learn the

parameters of a model from real-life measurements. In the case of LSLA, the

relationship between activity and cost is assumed to be linear and the inverse

problem is solved by a linear regression. A series of measured cost d can be

ideally expressed as the result of the following forward problem:

d = Gm+ ε , (7.2)

where d = (d1, ...,dM)T is a set of M cost samples (e.g. energy samples), m is

the vector of 2η costs defined in Equation 7.1, ε is the measurements noise

resulting in the error vector ε = (ε1, ...,εm), and each line Gk ∈ G corresponds

to an activity vector containing the number of quanta and tokens mapped to the

corresponding PEs or CNs for a sample dk. Gk can be decomposed into:

Gk = (∑size(τ),∀τ ∈ Mk(n1);

∑size(τ),∀τ ∈ Mk(n2); ...;∑size(τ),∀τ ∈ Mk(nη);

card(Mk(n1));card(Mk(n2)); ...;card(Mk(nη)))

(7.3)

where Mk : P ∪C → TP ∪ TC is the mapping function for experiment k that

associates to each PE or CN the set of tokens executed by this component.

card refers to the cardinality of the considered set, i.e. the number of tokens

while the sum of sizes return the number of quanta.

In order to obtain reliable parameter values, the system is overdetermined

by performing more measurements than there are parameters in the model,

i.e. M >> 2η . Furthermore, the error vector ε is assumed as random vari-

able with zero mean µε and constant standard deviation σε among samples.

From the forward problem in Equation 7.2, we can derive the Ordinary Least

Square (OLS) solution to the inverse problem [105]:

mL2 = (GT
G)−1

G
T

d. (7.4)

MODELS O F ARCH ITECTU RE IN PRACTI CE 107

This equation performs the training of the model. mL2 is thus a set of pa-

rameters αn and βn, deduced from measurements d, that can be entered in the

LSLA model. For a new system activity G′, cost evaluation is computed with:

d
LSLA = G

′
mL2. (7.5)

This equation performs the prediction of the cost based on the LSLA model

and on the application activity. The residual error of the prediction can be

evaluated as follows:

εm = d
LSLA
m −dm m = 1, ...,M (7.6)

where the error term is expressed as the deviation between measures and the

trained model. Such residuals represent the measures’ variability that is not

considered in the regression model (e.g., correlated side-effect among mea-

sures) [106]. In section 7.3.4, the impact of the error term ε on the trained

model is empirically evaluated. In the next section, parameter inference is put

into practice for predicting the energy consumption of an MPSoC.

7.3 Experimental Evaluation with LSLA of an MP-

SoC Energy Consumption

7.3.1 Objectives and Modeled Hardware Architecture

We intend to model with LSLA the dynamic energy consumption when exe-

cuting an application, modeled with SDF, on an MPSoC running at full speed

where the number of cores reserved for the application is tuned. The moti-

vation for this study lies in the hypothesis that dynamic energy consumption

depends additively on application activity.

The modeled architecture is an Exynos 5422 processor from Samsung. This

processor is integrated in an Odroid-XU3 platform that offers real-time power

consumption measurements of the cores and memory. The Exynos 5422 pro-

cessor embeds 8 ARM cores in a big.LITTLE configuration. Four of the cores

are of type Cortex-A7 and form an A7 cluster sharing a clock with frequency

up to 1.4GHz. The four remaining cores are of type Cortex-A15 and form an

A15 cluster with frequency up to 2GHz. An external Dynamic Random Access

Memory (DRAM) of 2GBytes is connected as a Package on Package (PoP). A

Linux Ubuntu Symmetric Multiprocessing (SMP) operating system is running

on the platform. Four Texas Instruments INA231 power sensors measure the

instantaneous power of the A7 cluster, the A15 cluster, the Graphics Process-

ing Unit (GPU) and the external DRAM memory. The energy consumed by

the GPU is left out of the scope of the chapter but its modeling with an MoA

constitutes a promising extension. Power values are read from an I2C driver. A

lightweight script runs in parallel to the measured program, forces the proces-

sor to run at full speed and reports current and voltage at 10Hz during program

108 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

execution. This data is exported into files to be processed offline. In our experi-

ments, the power measurements from the A7 and A15 clusters and the memory

are summed up and used as the energy consumption vector d.

7.3.2 Choosing the lsla topology

We consider a fixed target platform from which a model is learnt. While the

parameters set on PEs and CNs are learnt, their number and topology are cho-

sen, based on assumptions and on prior knowledge of the real hardware fea-

tures. This type of model is qualified as a “hybrid combination of mechanistic

and empirical modeling” in [99]. Mechanistic choices are made “from a ba-

sic understanding of the mechanics of the modeled system” while empirical

modeling corresponds to the set of trained parameters. A method is introduced

hereunder to perform the mechanistic choices. It is assumed that the hardware

being characterized preexists the study. The method is decomposed into:

1. the number of coarse-grain PEs to consider in the study (cores, coproces-

sors, GPUs...) is determined. One PE is instantiated in the model per con-

sidered physical PE on the platform,

2. the different communication hardware features on the platform for inter-

core communication are located (including shared bus, DMA, shared mem-

ory, hardware cache coherency management, etc.). If several PEs share the

same communication hardware feature, one CN is allocated on the model,

connected to all the cores sharing this feature,

3. if communication hardware features, already modeled by CNs, are them-

selves communicating through "higher-level" hardware communication, a

new CN is created and connected to their corresponding CNs,

4. step 3 is repeated until the MoA forms a connected component.

Applying this method to the experimental setup, the 8 PEs corresponding

to the 8 cores of the Exynos 5422 processor are first instantiated. Then, each

cluster being connected by a shared memory with hardware cache coherency,

A7 and A15 clusters are each associated to a CN connecting the 4 cores of the

CN. Finally, The ARM ACE (AXI Coherency Extension) higher-level cache

coherency protocol, connecting the two clusters, is associated to a CN. The

resulting model is shown at the bottom of Figure 7.2.

Once this mechanistic model creation step has been performed, the model

may be simplified to reduce its number of parameters. First, two connected

CNs may be connected if 1- the number of tokens crossing each CN is forecast

or measured to be equivalent, or 2- one of the 2 CNs is forecast or measured

to strongly dominate the other in terms of generated cost. Moreover, equiv-

alently performing PEs can be merged to simplify the model. Such a model

simplification will be experimented in Section 7.3.4.

MODELS O F ARCH ITECTU RE IN PRACTI CE 109

7.3.3 Experimental Setup

PREESM
multicore
scheduler

A7
A15A15

A15

A7

A7 A7 A15

Application
(PiSDF)

PREESM
SDF

generator

fixing
application
parameters

(configuration)

Texas Instruments

INA 231 power monitor

architecture
model

application
SDF model G

C
C
 C

om
p
ile

r

C code of the SDF actors

PREESM
code gen.

measuring energy
for E application executions

Linux Multicore OS

3) Code Generation

5) Learning
Model
Parameters

LSLA architecture

application
activity

measured
energy

A15CN PE6

PE5

PE8

PE7

PE2
A7CN

PE1αPE1
.s+βPE1

PE3

PE4

ICC

λ=1

αPE2.s+βPE2

αPE3.s+βPE3

αPE4.s+βPE4

αPE5.s+βPE5

αPE6.s+βPE6

αPE7.s+βPE7

αPE8.s+βPE8

αA7CN.s+βA7CN

αICC.s+βICC

αA15CN.s+βA15CN

1) Executable
application
specification

2) Static Mapping and Scheduling

4) Executing
Application

6) Energy prediction from LSLA

Figure 7.2: Experimental setup for inferring

the LSLA execution energy model of a Sam-

sung Exynos 5422 MPSoC.Software Tools Figure 7.2 summarizes the experimental setup used to train

and test the LSLA MoA of an Exynos 5422 processor from energy measure-

ments. The PREESM dataflow framework 2 is used to generate code for dif- 2 M. Pelcat, K. Desnos, J. Heulot, C. Guy,

J.-F. Nezan, and S. Aridhi. PREESM: A

dataflow-based rapid prototyping framework

for simplifying multicore dsp programming.

In Proceedings of the EDERC Conference,

Sept 2014

ferent SDF configurations of a stereo matching application from a PiSDF exe-

cutable specification (Section 2.3.2. The motivation for using a PiSDF descrip-

tion is that, by fixing various values for application parameters, different func-

tional SDF applications are obtained. Once the parameters of the application

are fixed, PREESM generates an executable SDF graph that feeds a multicore

mapper and scheduler. Mapping and scheduling are statically and automati-

cally computed, based on the list scheduling algorithm from [35]. PREESM

then generates a self-timed multicore code for the application that runs on the

target platform. The internal code of the actors is manually written in C code.

PREESM manages the inter-core communication and allocates the application

buffers statically in the .bss segment of the executable. PREESM generates

one thread per target core and forces the thread to the corresponding core via

affinities.

Communication between actors occurs through shared memory with cache

coherency between different threads. Semaphores are instantiated to synchro-

nize memory accesses. The whole procedure of mapping, scheduling and gen-

erating code with PREESM is either manually launched or scripted. For the

current experiment, scripts have been developed to automate large numbers of

code generations, compilations, application executions and energy measure-

ments. An application activity exporter has also been added to PREESM that

computes the activity for each core, from which αn and βn LSLA parameters

are learnt. Finally, once its parameters have been learnt, the LSLA model of

the platform can be used, together with application activity information, to

110 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

predict the energy consumption of the platform.

Benchmarked Application The stereo matching algorithm from 3, shown in 3 A. Mercat, J.-F. Nezan, D. Menard, and

J. Zhang. Implementation of a stereo match-

ing algorithm onto a manycore embedded

system. In Proceedings of the ISCAS con-

ference. IEEE, 2014

its SDF form in Figure 7.3, is used for the study. From a pair of views of the

same scene, the stereo matching application computes a disparity map, corre-

sponding to the depth of the scene for each pixel. The disparity corresponds

to the distance in pixels between the representations of the same object in both

views. Parameters can be customized such as the size of the input images,

the number of tested disparities and the number of refinement iterations in the

algorithm. These parameters allow for various configurations and application

activities to be created. The tested configurations for this study are summa-

rized in Table 7.1. The size of the obtained SDF graph is stated, as well as its

maximum speedup in latency if executed on a homogeneous architecture with

an infinite number of Cortex-A7 cores and costless communication.

Configuration ID 1 2 3 4 5 6

input image size 450×375 90×75 270×225

disparities 30 2 15 60 60 60

iterations 4 2 3 4 4 4

of actors 177 67 134 297 317 317

total # of FIFOs 560 102 323 1040 1050 1050

max. speedup 6× 2.5× 4.7× 6.6× 6.5× 6.6×

Table 7.1: Configurations of the stereo

matching application employed to assess the

energy modelling.

The stereo matching application is open source and available at 4. Below 4 K. Desnos and J. Zhang. PREESM

project - stereo matching, 2017.

svn://svn.code.sf.net/p/preesm/code/trunk/tests/stereo
each actor in the SDF graph of Figure 7.3 is a repetition factor indicating the

number of actor executions during an iteration of the graph. This number

is deduced from the data production and consumption rates of actors. Two

parameters are shown in the graph: NbDisparities represents the number of

distinct values that can be found in the output disparity map, and NbOffsets

is a parameter influencing the size of the pixel area considered for the pixel

weight and aggregation calculus of the algorithm. NbIterations affects the

computational load of actors.

The SDF graph contains 12 distinct actors: ReadRGB reads from a file the

RGB data of an image, BrdX is a broadcast actor. It duplicates on its out-

put ports the data token consumed on its input port. It generates only pointer

manipulations in the code. GetLeft gets the RGB left view of the stereo pair.

RGB2Gray converts an RGB image into grayscale. Census produces an 8-bit

signature for each pixel, obtained by comparing the pixel to its 8 neighbors: if

the value of the neighbor is greater than the value of the pixel, the signature bit

is set to 1, and otherwise to 0. CostConstruction is executed once per potential

disparity level. By combining the two images and their census signatures, it

produces for each pixel the cost of matching this pixel from the first image

with the corresponding pixel in the second image shifted by a disparity level.

ComputeWeights produces 3 weights for each pixel, using characteristics of

MODELS O F ARCH ITECTU RE IN PRACTI CE 111

neighboring pixels. AggregateCosts computes the matching cost of each pixel

for a given disparity. Computations are based on an iterative method that is

executed NbOffsets times. DisparitySelect produces a disparity map by com-

puting the disparity of the input cost map from the lowest matching cost for

each pixel. RoundBuffer forwards the last disparity map consumed on its input

port to its output port. MedianFilter applies a 3×3 pixels median filter to the

input disparity map to smooth the results. The filter is data parallel and 15

occurrences of the actor are fired to process 15 slices in the image. Finally,

Display writes the depth map in a file.

ReadRGB

3

3

3

2*3

2*3 2

2

1

1

2

12*3

2*3

3
rgb

3*2*NbOffsets

3*2*NbOffsets

3*2*NbOffsets
*NbDisparities

3

3

3*2*NbOffsets

x1

NbDisparities

1 1 1

11

1

111

1

2*NbDisparities

2

2

2*NbDisparities
Brd0
i o0

o1

rgb

RGB2Gray
gray

GetLeft
rgb rgbLeft

cen

cost

Brd1
i o0

o1

Census
gray cen

Brd2
i o

Brd3
i o weight

Brd4
i o

cost

weights

aggregate aggregate

feed

result

back

i o result filtered filtered

gray

CostConstruction

DisparitySelectAggregateCosts

rgbLeft

DisplayMedianFilterRoundBuffer

ComputeWeights

x1

x2 x1

x1x1 x2*NbOffsets

x1
xNbDisparitiesxNbDisparities

x1x15

xNbDisparitiesx1
x2

x1
x2

Figure 7.3: Illustration of the stereo match-

ing application graph. The number of dupli-

cations of each actor is specified. All rates

are implicitly multiplied by the picture size.

The SDF description of the algorithm provides a high degree of parallelism

since it is possible to execute in parallel the repetitions of the three most com-

putationally intensive actors: CostConstruction, AggregateCosts, and Com-

puteWeights.

The generated application code is compiled by GCC with −O3 optimiza-

tion. For each configuration, 255 different PE mappings are tested by enabling

different subsets of the platform cores. PREESM schedules the application on

the subsets with the objective of minimizing application latency.

Energy Measurements Only the dynamic energy consumption is considered

in this experiment. All the eight cores are activated and their frequency is fixed

at their maximum. Thus, the static power, measured at 2.4362W in the given

conditions, is subtracted from power samples. d in Equation 7.2 is a vector of

energy samples expressed in Joules. The energy of an application execution is

measured by integrating the instantaneous power consumed by the A7 cluster,

the A15 cluster and the memory during application execution time.

The unit being measured and analyzed is one execution of the application,

from the beginning of the retrieval of 2 images to the end of the production of a

depth map. By varying application parameters and the set of authorized cores,

a population of executions is built, modeled and analyzed.

112 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

Application Activity The activity of the application must be expressed in

terms of tokens and quanta (Section 5.3). The stereo matching application

is represented by a static SDF graph and the computational loads of its actors

do not depend on input data. Its application activity does thus not depend on

input data. For supporting a more dynamic application with data-dependent

loads and topology, a time scope, as well as training input data, representative

of application data, would be necessary be chosen to compute activity.

Several possibilities arise when choosing the format of tokens and quanta.

In the code generated by PREESM, each PE runs a loop that processes a sched-

ule of actors and the different PEs are synchronized by blocking messages. Us-

ing PREESM information, the number of computational tokens on a given PE

is set to the number of actor firings onto this PE and the number of communi-

cation tokens is the number of messages between actors. Time computational

quanta in nanoseconds are used, corresponding to the execution time of the ac-

tor on the considered core. They are measured by repeating actor execution and

running the C clock() function to retrieve timings. This operation is automated

in the PREESM tool. As an example, the timings of actors for application con-

figuration 4 are shown in Table 7.2. Communication quanta correspond to the

size of exchanged messages (in Bytes).

Instead of time computation quanta, the per-actor computational energy

could be used. Each computation quantum could correspond, for instance, to

1mJ of energy to execute the actor on the considered core. Such an approach

requires each actor to be characterized in energy. Section 7.3.4 evokes how

energy quanta could be used to extend the present study. Activity focuses on

particular aspects of a design while ignoring others. For instance, application-

related GPU and cache activities are not modeled in the chosen application ac-

tivity and they are also ignored in the MoA. As the energy of cores is measured

independently from the energy of the GPU, the model can ignore its presence.

However, the multiport caches with hardware coherency management are be-

ing measured and their activity depend on the data flowing between cores. In

the built model, the energetic cost of managing a message by cache coherency

is assumed to be affine w.r.t number and sizes of messages. This model is ba-

sic but proves useful in the next sections. More sophisticated MoAs could be

developed to precise simulation. The parameter λ of the LSLA model is fixed

to 1 in the following experiments. λ aims at obtaining similar orders of mag-

nitude for computation and communication tokens. It can be fixed to 1 here

because the units for communication quanta (Bytes) and computation quanta

(ns) have been chosen so that communication-related and computation-related

parameters have the same orders of magnitude.

7.3.4 Experimental Results

Measuring Computational Dynamic Energy Each of the six application con-

figurations from Table 7.1 are scheduled with each of the 255 possible mapping

MODELS O F ARCH ITECTU RE IN PRACTI CE 113

Actor time on time on tA7

name Cortex-A7 Cortex-A15 tA15

ReadRGB 1,813 719 2.5×

RGB2Gray 6,682 2,459 2.7×

Census 6,846 2,320 3.0×

ComputeWeights 85,265 32,251 2.6×

CostConstruction 13,240 2,698 4.9×

AggregateCosts 76,262 29,052 2.6×

disparitySelect 6,192 1,128 5.5×

MedianF ilter 4,923 2,555 1.9×

Display 131,638 100,411 1.3×

Table 7.2: Time quanta (in us) per actor type

and core type for configuration 4.

patterns in the Odroid architecture, resulting in M = 1530 energy measure-

ments. Having M = 1530 measurements for 2η = 22 parameters, the con-

straint M >> 2η stated in Section 7.2.2 is respected. The mapping pattern

refers to a binary-composed integer representing the currently used subset of

cores (1 for PE1, 2 for PE2, 3 for PE1 + PE2, 4 for PE3, etc.).

To ensure reliable measures, application iteration is repeated from 10 to 100

times for each measurement. All energy measurements are repeated 10 times

to obtain the energy standard deviation. As illustrated in Figure 7.4, the av-

erage standard deviation of measurements is moderate (0.21J, or 2.4%). This

low variation shows that energy consumption is stable for a given application

activity and motivates for LSLA modeling. For each configuration, the first

measurements on the left (in a dashed circle on Figure 7.4) show less energy

than the rest of the measurements of their application configuration on their

right. This is due to the fact that PEs 1 to 4 are A7 cores and these cores

are more energy efficient than A15 cores. These samples use only Cortex-A7

cores and, as a consequence, show more energy-efficiency. One may note in

the third column of Table 7.2 that the energy efficiency of Cortex-A7 cores

comes at the price of a significantly lower speed.

0

5

10

15

20

25
energy(J)

configuration 1
10 executions

configuration 2
10 executions

configuration 3
10 executions

configuration 4
10 executions

configuration 5
100 executions

configuration 6
10 executions

0 200 400 600 800 1000 1200
experiment number

increasing
mapping pattern

increasing
mapping pattern

increasing
mapping pattern

increasing
mapping pattern

increasing
mapping pattern

increasing
mapping pattern

Figure 7.4: Training set composed of proces-

sor energy measurements. The dynamic of

measurements is displayed.

Learning the Energy Model with LSLA Following the experimental setup de-

picted in Figure 7.2 and the learning method from Section 7.2, an LSLA model

114 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

is inferred from the energy measurements of previous section and from the ap-

plication activity provided by PREESM.

The learning curve is drawn in Figure 7.5 to evaluate the test error εte of

the model as a function of the number of training points. The measured energy

samples are split into two parts: a training set containing between 1 sample

and 80% of the samples (1224 samples), and a test set with the remaining 20%

of the samples (306 samples). The samples of the training set are randomly

chosen. Figure 7.5 displays the training root-mean-square (RMS) error and

the test RMS error as the number of training samples rises.

The training error εtr is calculated over the training dataset while the test

error εte is calculated over the test dataset. According to equation 7.6, the

RMS deviations are computed as follows:

RMSte =
√

E{ε2
te}

RMStr =
√

E{ε2
tr} (7.7)

The model reasonably fits data, as test error lowers rapidly when the number

of training samples grows and reaches a plateau at about 150 training samples

before stabilizing at RMSte = 1.37J. The training error rises until RMStr =

1.21J, showing that, as expected, the model does not capture the entire physical

sources of energy consumption, but the rising rate of the training error lowers

with the number of training samples.

200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

R
M

S
er

ro
r

(i
n

Jo
u
le

s)
b
et

w
ee

n
 p

re
d
ic

ti
on

 a
n
d
 m

ea
su

re

Size in samples of the LSLA model training set

Test RMSte error

Training RMStr error

Figure 7.5: LSLA dynamic energy model

learning curve for a fixed test set of 306 sam-

ples and a variable training set of 0 to 1224

samples.

Discussion on the LSLA Model Parameters The model is now trained over

M = 1224 samples and the test set is fixed to 306 samples. The data vector d

of Equation 7.2 is of size 1224, the matrix G is of size 1224×22 and the model

vector m is of size 22. The values of the obtained parameters are displayed in

Figure 7.6. The solid line in Figure 7.7 corresponds to the energy predicted

with the model from Figure 7.6 on the test set. Points correspond to energy

MODELS O F ARCH ITECTU RE IN PRACTI CE 115

-0.551×s+0.010

PE6

PE5 1.232×s+0.119

1.237×s+0.107

PE8

PE7 1.212×s+0.084

1.257×s+0.068

PE2

-1.322×s-0.018

A7CN

PE1

PE3

PE4

1.018×s+0.038

λ=1

0.246×s+0.024

0.230×s+0.048

0.230×s+0.044

0.239×s+0.011

A15CNICC

Figure 7.6: LSLA dynamic energy model

inferred from energy measurements with

computational quanta in ns, communication

quanta in Bytes, and energy data vector d in

nJ. PE1−4 are Cortex-A7 cores and PE5−8 are

Cortex-A15 cores.

samples. The full model offers an energy assessment with a RMSte of 1.37J,

corresponding to an average error of 16%.

config. 1

LSLA predicted
costs

median of
energy samples
in test set

en
er

gy
(J

)

30

20

10

0

25

15

5

experiment number
0 100 200 300

config. 2 config. 4

config. 5 config. 6

config. 3 Figure 7.7: Comparing the LSLA predicted

cost and the median of the corresponding en-

ergy measurements in test set.

Easily explainable parameters in Figure 7.6 are αPE1
to αPE8

because they

translate into average core execution dynamic power, in nJ/ns =W . PEs 1 to

4 have an average dynamic power of 236mW and PEs 5 to 8 have an average

dynamic power of 1.23W . These values are credible and correspond to the

average dynamic powers of a Cortex-A7 core (PEs 1 to 4) and of a Cortex-

A15 core (PEs 5 to 8) running at full speed.

One may observe in Figure 7.7 that the last energy samples of each configu-

ration are lower than their prediction with LSLA. This effect can be explained

by the intra-cluster parallelism that reduces the execution time of the appli-

cation without increasing as much the instantaneous power. This intra-cluster

parallelism tends to decrease the dynamic energy. This effect is partly cap-

tured by the learnt negative costs on internal cluster communication quanta

αA7CN = −1.322nJ/Byte and αA15CN = −0.551nJ/Byte because more paral-

lelism in a cluster leads in general to more communication in this cluster. How-

ever, the amount of communication in a cluster is not fully correlated with the

load balancing inside this cluster, leading to errors. The per-quantum cost of

ICC αICC = 1.018nJ/Byte is positive but, as a token flowing through ICC also

flows through A7CN and A15CN, each inter-cluster exchanged quantum finally

116 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

costs 1.018−1.322−0.551 =−0.855nJ/Byte. As a consequence, the energy

gain obtained by parallelizing over the whole processor dominates the energy

cost of the communication. This phenomenon motivates for research on a new,

more precise MoA especially capable of capturing the effects of caches.

The LSLA model from Figure 7.6 does not model the mere hardware. In-

stead, it represents hardware together with its operating system, the PREESM

scheduler and the communication and synchronization library. For example,

PREESM tends to favor A15 cores because PREESM optimizes the schedule

for latency and, because A15 cores are much faster than Cortex-A7 cores, the

demand placed on them is greater. An A15 core is less energy efficient than a

Cortex-A7 so the scheduling choices will tend to raise the consumed dynamic

energy.

While the average error of the model is substantial, the built LSLA model is

characterized by an extreme simplicity, the implementation of the cost compu-

tation being reduced to 22 multiplications and a limited number of additions.

Moreover, neither application code nor architecture hardware of low-level rep-

resentation are needed to compute this model cost. Only a MoC and an MoA

are needed, as well as a well defined activity inference method.

Discussion on the Trained LSLA Model Stability In this section, the stability

of the trained LSLA model is tested to account for outliers in training data. To

this end, 100 training sets of size 1224 samples are randomly chosen among

available data, the rest serving as test set. The standard deviations of param-

eters σ(αn) and σ(βn) in the LSLA model, caused by training set modifica-

tions, are reported in Table 7.3. They show that, by far, not all parameters are

equivalent in stability. While parameters αn (applied to quanta) all have mod-

erate standard deviations under 5% (except for A15CN with 7.7%), showing a

rather precise determination, parameters βn (applied to tokens) have in average

standard deviations of 30%. This difference shows that the most stable infor-

mation relevant for energy estimation lies in the number of quanta (in this case,

in the execution time of actors). The number of tokens (number of executed

actors) is less reliably related to energy.

PE/CN PE1 PE2 PE3 PE4 PE5 PE6

αn 0.246 0.230 0.230 0.238 1.239 1.238

σ(αn) 2.9% 3.0% 2.7% 3.0% 0.7% 0.7%

βn 0.027 0.048 0.046 0.012 0.119 0.107

σ(βn) 45.7% 27.3% 23.9% 82.2% 7.1% 6.8%

PE/CN PE7 PE8 A7CN A15CN ICC

αn 1.213 1.258 −1.324 −0.552 1.018

σ(αn) 0.8% 0.6% 1.8% 7.7% 4.6%

βn 0.083 0.068 −0.018 0.010 0.038

σ(βn) 9.2% 13.1% 27.9% 63.1% 16.8%

Table 7.3: Average and standard deviation of

trained LSLA parameters αn and βn when the

training set is varied.

MODELS O F ARCH ITECTU RE IN PRACTI CE 117

Discussion on the Trained LSLA Model Accuracy The RMSte prediction er-

ror of 16% is is provoked by a vast amount of factors, including cache non-

deterministic behaviour, shared memory access arbitration, Linux scheduler

decisions, background tasks, energy measurement sampling effect, etc.

The particular features of the training application (limited parallelism, power

consumed by each actor, correlation between number of tokens and number of

quanta, etc.) make the energy model learning mostly specific, not to one appli-

cation but to a set of applications with similar behavior.

As an example of this specialization, by using LSLA with time quanta to

predict energy, the present analysis assumes the power consumed by a core to

be equivalent for each executed actor. However, it is not the case in reality.

From low-power to high-power actors in the stereo matching application, the

difference of power consumption is +55% on A7 cores and +102% on A15

cores. It is worth noting that the LSLA model averages away most of these

variations on the considered application. However, these variations prevent

from using the same model for predicting the energy of distinct applications.

Characterizing actors with energy and using an activity composed of energy

quanta instead of time quanta is a promising extension for making a single

energy LSLA model usable for different applications.

The fidelity of an LSLA model is certainly more important than its average

error. The next section discusses the fidelity of the inferred LSLA energy

model.

Fidelity of the LSLA Energy Model Model fidelity, as presented in [109],

refers to the probability, for a couple of data di and d j, that the order of the

simulated costs dLSLA
i and dLSLA

j matches the order of the measured costs. The

fidelity f of the LSLA energy model is formally defined by

f =
2

M(M−1)

M−1

∑
i=1

M

∑
j=i+1

fi j, (7.8)

where M is the number of measurements and

fi j =







1 if sgn(dLSLA
i −dLSLA

j) = sgn(di −d j)

0 otherwise
, (7.9)

with dLSLA
i and di respectively the ith LSLA-evaluated and measured energy,

and

sgn(x) =















(−1) if (x < 0)

0 if x = 0

1 if x > 0

. (7.10)

The fidelity of the inferred LSLA model for the considered problem is of

more than 86%, suggesting that the model can be used for taking energy-based

118 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

decisions at a system level. Fidelity is illustrated by Figure 7.8 where mea-

surements have been sorted in ascending order and are displayed together with

their LSLA prediction.

Simplifying a LSLA Model As explained in Section 7.3.2, different LSLA

topologies can be used to represent a single platform and metric, for example

by merging PEs and CNs. Each cluster of the Exynos 5422 processor having

homogeneous cores, a simplified model of the platform has been experimented

where PEs of one cluster are undifferentiated. As a consequence, only 2 PEs

are retained that each fuse the 4 PEs of one cluster. By doing so, we remove the

cost of intra-cluster communication because the new model does not differen-

tiate intra-core communication from intra-cluster communication. The results

on the same training and test sets of using the simplified model instead of

the original one show a limited degratation of RMStr (1.32J instead of 1.21J)

and RMSte (1.49J instead of 1.21J) and a very slight degradation of fidelity

(85.8% instead of 86.1%). Such a simplification is thus adequate and reduces

cost computation to a set of additions and 6 multiplications.

energy(J)

validation set experiment index after reordering

Ordered energy measurements
Corresponding LSLA energy estimations

50 100 150 200 250 300 350
0

5

10

15

20

25

30

0

Figure 7.8: Test set sorted in ascending order

and their corresponding LSLA predictions.

7.4 Conclusions on the Practical Use of MoAs for

Raising System DP

In this chapter, the LSLA Model of Architecture (MoA) has been put into prac-

tice. LSLA represents hardware performance with a linear model, summing

the influences of processing and communication on system efficiency. LSLA

has been demonstrated on an example to predict the dynamic energy of an

MPSoC executing a complex SDF application with a fidelity of 86%. Addi-

tionally, a method for learning the LSLA parameters from hardware measure-

ments has been introduced, automating the creation of the model.

MODELS O F ARCH ITECTU RE IN PRACTI CE 119

LSLA opens new perspectives in building system-level architecture models

that provide reproducible prediction fidelity for a limited complexity.

The example developed in this study is focused on dynamic energy mod-

eling with LSLA for a given operating frequency. A vast amount of potential

extensions exist, defining new models, exploring different NFPs and scaling

up to large numbers of heterogeneous cores. Most of the potential DP gains

are related to predicting the performances of a system to automate decisions.

As a consequence, MoAs will certainly have a key role to play in future im-

provements of DP.

8

Research Perspectives

8.1 Chapter Abstract

This concluding chapter proposes some research directions to continue our

work on improving the DP of DSP systems presented in this report. First, some

achievements are presented that motivate us to propose these new directions

as a continuity of our previous research. Then, the current evolution of DSP

platforms and applications is analyzed and the exposed complexity of embed-

ded DSP architectures, as well as the complexity of applications are shown to

follow an upward trend.

These evolutions motivate for new research on model-based design and

MoAs to focus on the truly relevant parameters when taking system-level deci-

sions. They also motivate us to consider new parameters in automated design

methods such as the relationships between the system and its environment, cap-

tured by the models of Cyber-Physical Systems (CPS). Additionally, if a soft

degradation of applicative QoS can drastically gain performance, it should

also be considered by a design process, as advocated by approximate comput-

ing methods.

Finally, for orders of magnitude of DP to be gained in the next decades,

new rapid prototyping tools will need to be invented that will compile models

of the key non-functional aspects of the system and perform both Design Space

Exploration and functional code generation from a unique set of models. We

intend in the next years to propose models, methods and tools for building this

new generation of DSP system design processes.

8.2 Recent Achievements

This HDR report has covered models, methods and tools for the enhancement

of Design Productivity in DSP systems. A particular focus has been put on the

new concept of Model of Architecture (MoA). Several achievement indicators

encourage us to build on our previously proposed approaches and continue

proposing models and methods for augmenting Design Productivity. We have

122 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

for instance received the Best Paper awards at the DASIP conference 2014

and 2016 editions and the best demo awards at EDERC 2014 and ICME 2015

respectively for the low energy Open HEVC decoder1 and for the PREESM 1 Erwan Nogues, Morgan Lacour, Erwan Raf-

fin, Maxime Pelcat, and Daniel Menard. Low

power software hevc decoder demo for mo-

bile devices. In Proceedings of the ICME

conference, 2015

tool2. The PREESM website is steadily receiving more than 2500 visits per

2 M. Pelcat, K. Desnos, J. Heulot, C. Guy,

J.-F. Nezan, and S. Aridhi. PREESM: A

dataflow-based rapid prototyping framework

for simplifying multicore dsp programming.

In Proceedings of the EDERC Conference,

Sept 2014

year since 2014. Our book3 has received a positive review by Grant Martin

3 Maxime Pelcat, Slaheddine Aridhi,

Jonathan Piat, and Jean-François Nezan.

Physical Layer Multi-Core Prototyping: A

Dataflow-Based Approach for LTE eNodeB.

Springer, 2012

in IEEE Design and Test [111]. Erwan Nogues has received in 2017 the PhD

award “1er Prix de la Fondation Rennes 1 de l’école doctorale MATISSE”.

Finally, the CERBERO H2020 project, in which INSA Rennes is deeply in-

volved, has been accepted for funding notwithstanding a strong competition

and has started in January 2017. The next section proposes a snapshot of cur-

rent evolutions of DSP embedded systems and the last section exposes research

directions we wish to follow in the next years.

8.3 Current Evolutions in Embedded DSP Systems

8.3.1 More Dynamic and Computation-Intensive Applications

From one generation to the next, signal processing applications gain Quality of

Service (QoS) at the price of additional complexity and, often, of an additional

share of data-dependent processing.

In the video compression domain for instance, the HEVC [70] standard

represents the state-of-the-art of video coding. When compared with the pre-

ceding MPEG Advanced Video Coding (AVC) standard, the HEVC Main pro-

file reduces the bitrate of an encoded video by 40% on average for a similar

objective video quality [112]. The HEVC reference encoder and decoder are

however in average respectively 80% and 60% more complex than the ref-

erence codec of the previous AVC standard [112]. HEVC also comes with

extensive parallelism and much data-dependent processing, caused by a com-

pression method based on the prediction of image blocks from other previously

encoded blocks. Hundreds of different prediction modes are made possible for

a block in order to efficiently reduce block redundancy and, in turn, data rate.

The selection of these modes is based on the processed data and, as a conse-

quence, the amount and type of processing to be executed over time is very

variable. Such variations make multicore load balancing complex and require

runtime execution management such as the one offered by the Spider runtime

and JIT-MS scheduling method (Chapter 2).

Application complexity augmentation applies to all types of DSP process-

ing, from telecommunications to multimedia and from remote sensing to med-

ical appliances. It motivates for DP studies in order for the system price not to

follow the application complexity trend.

RESEAR CH PER SPEC TIVES 123

8.3.2 More Complex Exposed Architectures

Figure 8.1 illustrates different types of recent embedded processor architec-

tures. Most of these processors separate a set of cores dedicated to the con-

trol path and a set of cores or programmable logic dedicated to the data path.

While the control path is responsible for all the decisions in the system —

what, where and when to process — the data path is organized as a stream pro-

cessing pipeline that leverages on data locality to provide good performance-

per-Watt. The energy consumption in systems being largely dominated by data

movements, this heterogeneous system architecture is currently at the heart of

embedded processor energy efficiency.

control path

data path
Multi-ARM GPGPU

Multi-ARM FPGA

Multi-ARM DSP

Multi-Bostan Many-Bostan

a)

b)

c)

d) core

Figure 8.1: Current types of available embed-

ded heterogeneous processor architectures.

Figure 8.1 a) represents the Jetson TX1 module from NVidia that com-

bines a quad-core Cortex-A57 ARM multiprocessor for the control path and

a 256-core Maxwell General Purpose Graphics Processing Unit (GPGPU) for

the data path, organized into 32-core Streaming Multiprocessors (SM). Fig-

ure 8.1 b) represents a Xilinx Virtex Ultrascale+ FPGA that gathers a quad-

core Cortex-A57 ARM multiprocessor and a dual-core low power Cortex-R5

processor together with a large array of programmable logic for the data path.

Figure 8.1 c) represents a 12-core Texas Instruments Keystone II processor

that combines a quad-core Cortex-A15 ARM processor with 8 DSP cores for

the data path. Finally, the Kalray Bostan processor illustrated in Figure 8.1 d)

has quad-core clusters of Kalray Bostan cores for the control path and input-

s/outputs, and 256 Bostan Very Long Instruction Word (VLIW) cores for the

data path. These processors are representative of current high performance

embedded processors.

All the processors illustrated in Figure 8.1 extensively expose complex-

ity and cannot be programmed efficiently without knowing their internal

structure. Apart from the exposed complexity of their heterogeneous cores,

their inter-core interconnects, composed of shared multiport memory banks,

caches, busses, NoCs, switch fabrics, DMAs and interrupt controllers, are also

extremely complex and must be mastered by the system designer for the ob-

tained performance to justify the use of a specific processor.

Adaptable hardware, available in partially reconfigurable FPGA, adds

up to this complexity by introducing a new level of abstraction between tra-

ditional hardware and software. Partially reconfigurable architectures have a

great performance potential due to high versatility combined with a non-Von-

Neumann architecture that removes memory access bottlenecks in the system.

124 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

However, their Design Productivity is restrained by complex and costly design

and test processes. This restriction could be removed by model-based design

approaches, making partially reconfigurable hardware a prime choice for high

performance processing.

The increasing exposed complexity of embedded hardware architectures in-

volves higher design efforts and amplifies the Design Productivity Gap.

8.4 New Research Directions

So as to further progress in solving the Design Productivity Gap problem, new

models, methods and tools are necessary.

8.4.1 Models

Model-based design is increasingly necessary, as the exposed complexity of

systems rises. A dataflow MoC provides to a compiler or a runtime systems ad-

vanced information on an application state and dependencies. The use of this

information for system NFPs optimizations such as energy efficiency is mostly

unexplored. For instance, the work initiated by Erwan Nogues on dataflow

MoC-based energy optimization4 opens great opportunities for DP improve- 4 Erwan Nogues. Energy optimization of Sig-

nal Processing on MPSoCs and its Applica-

tion to Video Decoding. PhD thesis, INSA de

Rennes, 2016

ments. New evolutions of the PiSDF MoC are also to be envisaged to bet-

ter customize the compromise between application predictability and system

adaptivity. A challenge for application models will be to scale up to the hun-

dreds (and soon thousands) of cores offered by modern architectures. Another

important problem to solve is to mitigate the current limitations of dataflow

MoCs that enforce in-order communication of data tokens in the whole appli-

cation, making the description of some algorithms awkward or even impos-

sible. Relaxing this condition will open many new potential applications to

dataflow-based methods.

Contrary to Models of Computation (MoCs) that have been strongly ex-

plored over the last 3 decades, MoAs constitute a new research field (Chap-

ter 5). We believe that this field will be particularly active in the next few years

and we intend to have a leading role in this evolution. The formal definition of

an MoA proposed in5 is a starting point and much work will be necessary to 5 Maxime Pelcat, Karol Desnos, Luca

Maggiani, Yanzhou Liu, Julien Heulot,

Jean-François Nezan, and Shuvra S

Bhattacharyya. Models of architecture:

Reproducible efficiency evaluation for signal

processing systems. In Proceedings of the

SiPS Workshop. IEEE, 2016

understand the potential of these models, their different forms and their possi-

ble levels of abstraction.

8.4.2 Methods

Considering a system as a CPS makes the environment physical constraints

enter system design. They represent a new level of design automation and new

opportunities of Design Productivity improvements. Within the starting H2020

CERBERO project6, a model-based continuous design method is being built,

6 M. Masin, F. Palumbo, H. Myrhaug, J. A.

de Oliveira Filho, M. Pastena, M. Pelcat,

L. Raffo, F. Regazzoni, A. Sanchez, A. Tof-

fetti, E. de la Torre, and K. Zedda. Cross-

layer design of reconfigurable cyber-physical

systems. Proceedings of the DATE Confer-

ence, 2017

integrating our research results on dataflow-based design methods. We intend

RESEAR CH PER SPEC TIVES 125

to explore forward in the next years the potential of model-based design for

designing CPS.

Approximate computing, consisting in degrading in a controlled way the

Quality of Service (QoS) or a system to dramatically raise its efficiency, is cur-

rently a very active domain. Following the work from Erwan Nogues 7 and the 7 Erwan Nogues, Daniel Menard, and

Maxime Pelcat. Algorithmic-level approxi-

mate computing applied to energy efficient

hevc decoding. IEEE Transactions on

Emerging Topics in Computing, 2016

current PhD of Alexandre Mercat, a vast research field is open, particularly on

using approximate computing for low energy processing. Approximate com-

puting adds a new dimension to the Design Productivity chart where the appli-

cation Quality of Service (QoS) is manipulated together with NRE and NFP

properties. The ARTEFaCT ANR project finances our current research on the

subject.

8.4.3 Tools

A successful example of DP increase is the evolution followed in the last 20

years by Very Long Instruction Word (VLIW) compilers. As VLIW compil-

ers improve, they hide the previously exposed architecture of VLIW cores and

make them transparently programmable by portable code. For example, the

Texas Instruments compiler for C6x cores has hidden most of the VLIW com-

plex internal structure of C6x cores by making it possible to efficiently program

the 8 internal Arithmetic Logic Units (ALUs) of a core from the imperative C

language. Writing assembly code for the C6x core, and thus exposing the

architecture, can still provide execution speedups when compared to C pro-

gramming but these speedups are substancially more limited than in the early

2000s. Importantly, the complexity is resolved at compile time, and thus does

not introduce any runtime management overhead. Such tooling improvement

exemplifies what is needed to augment DPat system level by enabling portable

performances for a unique code executed on different forms of hardware.

However, the optimized performance in VLIW compilers is limited to la-

tency. The situation of embedded system design is much more complicated, as

systems must respects multi-dimensional constraints (time, energy, cost, etc.).

Many innovations will be necessary to provide an acceptable level of code

portability between the previously presented processors. The problem is also

compounded by the complexity of architectures to come, that are forecast to

expose even more complexity than today’s architectures.

A promising approach for gaining orders of magnitude of Design Produc-

tivity is rapid prototyping. A rapid prototyping tool is composed of a Design

Space Exploration (DSE) process and a functional code generation. While the

DSE process [99] performs high-level multi-dimensional optimization, tak-

ing into account both “cyber” and physical system information, as well as a

set of system relevant Non-Functional Properties (NFPs), the functional code

generation produces system design information compatible with lower-level

compilers. Exploring the design space consists in creating a Pareto chart such

as the one in Figure 8.2 and choosing solutions on the Pareto front, i.e. solu-

126 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

tions that represent the best alternative in at least one dimension and respect

constraints in the other dimensions. As an example, p1 on Figure 8.2 may be

energy consumption and p2 may represent the response time to input data. Fig-

ure 8.2 illustrates in 2 dimensions a problem that, in general, has many more

dimensions.

better p1

better p2

worse p1

worse p2

constraint on maximum p1

Pareto curve and

Pareto-optimal points

explored system

with sub-optimal efficiency

non-achieved efficiency

Figure 8.2: The problem of Design Space Ex-

ploration (DSE) illustrated on a 2-D Pareto

chart with efficiency metrics p1 and p2.

Using rapid prototyping for gaining productivity by raising the abstraction

of compiler models is one of our motivations for proposing the new domain

of MoAs. Indeed, separating the application concern (modeled by a MoC) and

architecture concern (modeled by an MoA) makes it possible to generate many

points for the DSE Pareto by separately varying application and architecture

parameters and observing their effects on system efficiency. For example, the

designer can build an application, test its efficiency on different platform ar-

chitectures and, if constraints are not met by any point on the Pareto, iterate

this process until reaching a satisfactory efficiency. This process is illustrated

on Figure 8.3 and leads to the Pareto points from Figure 8.2. The more a rapid

prototyping tool can, by itself, play with application and architecture parame-

ters, the better the resulting DP should be.

Tools also need to enter designers’ best practices at a higher pace than

today. On the hardware design side for example, the VHDL, Verilog and

SystemVerilog most commonly used languages for logic synthesis today are

progressively complemented with High-Level Synthesis (HLS) languages such

as C or OpenCL (Chapter 4). However, between the creation of the first C-

based HLS methods and the beginning of broad adoption, more than 30 years

have passed [65], equivalent in technological years to a geological era. For

speeding up the introduction of future model-based design tools, we intend to

continue our efforts on fair DP evaluation that provide in-depth information

on what makes a method higher-level than another(Chapter 4).

The privileged subjects for our future research are illustrated in Figure 8.4.

Future studies on model-based approaches, approximate computing, cyber-

physical systems and rapid prototyping will need to follow the rapid — and

hardly predictable — evolution of applications and platforms. In particular,

with the exponential expansion of artificial intelligence applications, an in-

flexion is likely to be observed in the next years on processor architectural

RESEAR CH PER SPEC TIVES 127

iterations on application design

iterations on architecture design

system design

redesign

application

redesign

application

constraints

not met

constraints

not met

constraints

met

mapping

application

to different

architectures

system

efficiency

to be assessed

with N-D Pareto

curve

redesign architecture redesign architecture

affect QoS & efficiency

affect efficiency

MoC

MoA

Figure 8.3: Example of an iterative design

process where application is refined and, for

each refinement step, tested with a set of

architectures to generate new points for the

Pareto chart.

choices. Moreover, hardware partial reconfiguration will certainly become a

standard feature and may provoke a spectacular establishment of virtualization

into the hardware world. Finally, the Internet of Things (IoT) and Internet of

Everything (IoE) trends are fostering interconnected systems with collective

intelligence. These subjects are at the heart of the current PhD thesis of Kamel

Abdelouahab, El Mehdi Abdali, Jonathan Bonnard and Alexandre Mercat, and

I am proud and happy to participate to this dynamic research process.

Ever more complex

and variable applications

Ever increasing

exposed architecture complexity

Growing Design Productivity Gap

Slow tool adoption

Approximate Computing

Fair Design Productivity Evaluation

Cyber-Physical Systems
Models of Architecture

Rapid Prototyping

Embedded systems' evolution Next research subjects

motivates

Figure 8.4: Priviledged next research sub-

jects.

Bibliography

[1] Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, and François Berry.

Design productivity of a high level synthesis compiler versus HDL. In

Proceedings of IC-SAMOS, 2016.

[2] Maxime Pelcat, Karol Desnos, Luca Maggiani, Yanzhou Liu, Julien

Heulot, Jean-François Nezan, and Shuvra S Bhattacharyya. Models of

architecture: Reproducible efficiency evaluation for signal processing

systems. In Proceedings of the SiPS Workshop. IEEE, 2016.

[3] Mont-Blanc European projects.

[4] International technology roadmap for semiconductors - executive sum-

mary, 2011.

[5] International technology roadmap for semiconductors - executive re-

port, 2015.

[6] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi.

PREESM: A dataflow-based rapid prototyping framework for simplify-

ing multicore dsp programming. In Proceedings of the EDERC Confer-

ence, Sept 2014.

[7] Julien Heulot, Maxime Pelcat, Karol Desnos, Jean François Nezan, Sla-

heddine Aridhi, et al. SPIDER: A synchronous parameterized and in-

terfaced dataflow-based rtos for multicore dsps. Proceedings of the ED-

ERC Conference, 2014.

[8] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi.

PiMM: Parameterized and interfaced dataflow meta-model for MPSoCs

runtime reconfiguration. In SAMOS XIII, 2013.

[9] J. Piat, S.S. Bhattacharyya, and M. Raulet. Interface-based hierarchy for

synchronous data-flow graphs. In Proceedings of the SiPS Workshop,

2009.

[10] B.D. Theelen, MCW Geilen, T. Basten, JPM Voeten, S.V. Gheorghita,

and S. Stuijk. A scenario-aware dataflow model for combined long-run

average and worst-case performance analysis. In MEMOCODE, 2006.

130 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

[11] Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-François

Nezan. Physical Layer Multi-Core Prototyping: A Dataflow-Based Ap-

proach for LTE eNodeB. Springer, 2012.

[12] H. Nikolov, T. Stefanov, and E. Deprettere. Modeling and FPGA imple-

mentation of applications using parameterized process networks with

non-static parameters. In FCCM Proceedings, 2005.

[13] Edward Lee and Thomas M Parks. Dataflow process networks. Pro-

ceedings of the IEEE, 1995.

[14] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of

the IEEE, 1995.

[15] B. Bhattacharya and S.S. Bhattacharyya. Parameterized dataflow mod-

eling for dsp systems. Signal Processing, IEEE Transactions on, 2001.

[16] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceed-

ings of the IEEE, 1987.

[17] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static

dataflow. Signal Processing, IEEE Transactions on, 1996.

[18] P.K. Murthy and E.A. Lee. Multidimensional synchronous dataflow.

Signal Processing, IEEE Transactions on, 2002.

[19] Adnan Bouakaz, Jean-Pierre Talpin, and Jan Vitek. Affine data-flow

graphs for the synthesis of hard real-time applications. ACSD, 2012.

[20] Joost P.H.M. Hausmans, Stefan J. Geuns, Maarten H. Wiggers, and

Marco J.G. Bekooij. Compositional temporal analysis model for in-

cremental hard real-time system design. In EMSOFT ’12 Proceedings,

2012.

[21] J.S. Ostroff. Abstraction and composition of discrete real-time systems.

Proc. of CASE, 1995.

[22] S. Neuendorffer and E. Lee. Hierarchical reconfiguration of dataflow

models. In Proceedings of MEMOCODE Conference. IEEE, 2004.

[23] Julien Heulot, Maxime Pelcat, Jean-François Nezan, Yaset Oliva, Sla-

heddine Aridhi, and Shuvra S Bhattacharyya. Just-in-time scheduling

techniques for multicore signal processing systems. In Proceedings of

the GlobalSIP conference. IEEE, 2014.

[24] Texas Instruments. Multicore Fixed and Floating-Point Digital Signal

Processor - SPRS691E.

[25] Kalray. MPPA MANYCORE: a multicore processors family.

[26] Adapteva. Epiphany: A breakthrough in parallel processing.

BI BLIO GRAPH Y 131

[27] Philipp Helle, Haricharan Lakshman, Mischa Siekmann, Jan Stege-

mann, Tobias Hinz, Heiko Schwarz, Detlev Marpe, and Thomas Wie-

gand. A scalable video coding extension of HEVC. In Data Compres-

sion Conference (DCC), 2013, 2013.

[28] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee,

Q. Xu, and L. Huang. Mapping of applications to MPSoCs. In Proceed-

ings of the CODES+ISSS conference. ACM, 2011.

[29] E. Lee and S. Ha. Scheduling strategies for multiprocessor real-time

dsp. In Proceedings of the GLOBECOM conference. IEEE, 1989.

[30] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg

Henkel. Mapping on multi/many-core systems: Survey of current and

emerging trends. In Proceedings of the DAC conference. ACM, 2013.

[31] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard

api for shared-memory programming. Computational Science & Engi-

neering, IEEE, 1998.

[32] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel pro-

gramming standard for heterogeneous computing systems. Computing

in science & engineering, 2010.

[33] George F Zaki, William Plishker, Shuvra S Bhattacharyya, Charles

Clancy, and John Kuykendall. Integration of dataflow-based hetero-

geneous multiprocessor scheduling techniques in gnu radio. Journal of

Signal Processing Systems, 2013.

[34] S. Sriram and S. S. Bhattacharyya. Embedded multiprocessors:

Scheduling and synchronization. CRC press, 2012.

[35] Yu-Kwong Kwok. High-performance algorithms for compile-time

scheduling of parallel processors. Ph. D. thesis, 1997.

[36] Edward Lee and David G. Messerschmitt. Static scheduling of syn-

chronous data flow programs for digital signal processing. Computers,

IEEE Transactions on, 1987.

[37] Jani Boutellier, Shuvra S Bhattacharyya, and Olli Silvén. A low-

overhead scheduling methodology for fine-grained acceleration of sig-

nal processing systems. Journal of Signal Processing Systems, 2010.

[38] Texas Instruments. KeyStone Architecture Multicore Navigator.

[39] Julien Heulot. Runtime multicore scheduling techniques for dispatch-

ing parameterized signal and vision dataflow applications on heteroge-

neous MPSoCs. PhD thesis, INSA Rennes, 2015.

132 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

[40] Zheng Zhou, William Plishker, Shuvra S Bhattacharyya, Karol Desnos,

Maxime Pelcat, and Jean-Francois Nezan. Scheduling of parallelized

synchronous dataflow actors for multicore signal processing. Journal

of Signal Processing Systems, 2016.

[41] Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and

Mohamed Abid. Marte to πsdf transformation for data-intensive appli-

cations analysis. In Proceedings of the DASIP Conference. IEEE, 2014.

[42] Karol Desnos. Memory Study and Dataflow Representations for Rapid

Prototyping of Signal Processing Applications on MPSoCs. PhD thesis,

INSA Rennes, 2014.

[43] Karol Desnos, Maxime Pelcat, Jean François Nezan, and Slaheddine

Aridhi. Memory Bounds for the Distributed Execution of a Hierarchi-

cal Synchronous Data-Flow Graph. In Proceedings of the IC-SAMOS

Conference, 2012.

[44] Jonathan Piat. Data flow modelling and optimization of loops for multi-

core architectures. PhD thesis, INSA de Rennes, 2010.

[45] Karol Desnos, Maxime Pelcat, Jean François Nezan, and Slaheddine

Aridhi. Pre- and post-scheduling memory allocation strategies on MP-

SoCs. In Proceedings of the ESLsyn conference, 2013.

[46] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine

Aridhi. Memory Analysis and Optimized Allocation of Dataflow Ap-

plications on Shared-Memory MPSoCs. Journal of VLSI Signal Pro-

cessing Systems for Signal, Image, and Video Technology (JSPS), 2014.

[47] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine

Aridhi. Buffer Merging Technique for Minimizing Memory Footprints

of Synchronous Dataflow Specifications. In Proceedings of the ICASSP

Conference, 2015.

[48] Karol Desnos, Maxime Pelcat, Jean François Nezan, and Slaheddine

Aridhi. On Memory Reuse Between Inputs and Outputs of Dataflow

Actors. ACM Transactions on Embedded Computing Systems (TECS),

2016.

[49] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine

Aridhi. Distributed memory allocation technique for synchronous

dataflow graphs. In Proceedings of the SiPS Workshop. IEEE, 2016.

[50] Trevor Mudge. Computer power: A first-class architectural design con-

straint. IEEE Computer Magazine, 2001.

[51] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond,

and Johan Lilius. Energy efficiency and performance management of

BI BLIO GRAPH Y 133

parallel dataflow applications. In Proceedings of the DASIP conference.

IEEE, 2014.

[52] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond,

Daniel Menard, and Johan Lilius. Energy-awareness and performance

management with parallel dataflow applications. Journal of Signal Pro-

cessing Systems, 2015.

[53] Erwan Nogues. Energy optimization of Signal Processing on MPSoCs

and its Application to Video Decoding. PhD thesis, INSA de Rennes,

2016.

[54] David G Luenberger. Optimization by vector space methods. John Wi-

ley & Sons, 1969.

[55] Erwan Nogues, Julien Heulot, Glenn Herrou, Ladislas Robin, Maxime

Pelcat, Daniel Menard, Erwan Raffin, and Wassim Hamidouche. Effi-

cient DVFS for low power HEVC software decoder. Journal of Real-

Time Image Processing, 2016. Springer Verlag.

[56] Alexandre Mercat, Wassim Hamidouche, Maxime Pelcat, and Daniel

Menard. Estimating encoding complexity of a real-time embedded soft-

ware hevc codec. In Proceedings of the DASIP conference. IEEE, 2016.

[57] Alexandre Mercat, Florian Arrestier, Wassim Hamidouche, Maxime

Pelcat, and Daniel Menard. Energy reduction opportunities in an hevc

real-time encoder. In Proceedings of the ICASSP conference, 2017.

[58] Alexandre Mercat, Florian Arrestier, Wassim Hamidouche, Maxime

Pelcat, and Daniel Menard. Constrain the docile ctus: an in-frame com-

plexity allocator for hevc intra encoders. In Proceedings of the ICASSP

conference, 2017.

[59] Karol Desnos, Safwan El Assad, Aurore Arlicot, Maxime Pelcat, and

Daniel Menard. Efficient multicore implementation of an advanced

generator of discrete chaotic sequences. In Proceedings of the ICITST

conference, pages 31–36. IEEE, 2014.

[60] Raquel Lazcano, Daniel Madroñal, Karol Desnos, Maxime Pelcat, Raúl

Guerra, Sebastián López, Eduardo Juarez, and César Sanz. Parallelism

Exploitation of a Dimensionality Reduction Algorithm Applied to Hy-

perspectral Images. In Proceedings of the DASIP Conference, 2016.

[61] Erwan Raffin, Erwan Nogues, Wassim Hamidouche, Seppo Tomperi,

Maxime Pelcat, and Daniel Menard. Low power hevc software decoder

for mobile devices. Journal of Real-Time Image Processing, 2016.

[62] Carlo Sau, Francesca Palumbo, Maxime Pelcat, Julien Heulot, Erwan

Nogues, Daniel Ménard, Paolo Meloni, and Luigi Raffo. Challenging

134 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

the best HEVC fractional pixel FPGA interpolators with reconfigurable

and multi-frequency approximate computing. IEEE Embedded Systems

Letters, 2017. IEEE, to appear.

[63] Jinglin Zhang, Jean-Francois Nezan, Maxime Pelcat, and Jean-Gabriel

Cousin. Real-time gpu-based local stereo matching method. In Pro-

ceedings of the DASIP Conference. IEEE, 2013.

[64] Kamel Abdelouahab, Cédric Bourrasset, Maxime Pelcat, François

Berry, Jean-Charles Quinton, and Jocelyn Serot. A holistic approach

for optimizing dsp block utilization of a cnn implementation on fpga.

In Proceedings of the ICDSC Conference. ACM, 2016.

[65] Grant Martin and Gary Smith. High-level synthesis: Past, present, and

future. IEEE Design & Test of Computers, 2009.

[66] Haoxing Ren. A brief introduction on contemporary high-level synthe-

sis. In 2014 IEEE International Conference on IC Design & Technol-

ogy, 2014.

[67] Johan Eker and J Janneck. Cal language report: Specification of the cal

actor language, 2003.

[68] J. Sérot and F. Berry. High-level dataflow programming for reconfig-

urable computing. In Proceedings of the SBAC-PAD Workshop, 2014.

[69] Synflow. The Cx programming language. http://cx-lang.org,

2015. Accessed: 2015-09-25.

[70] Gary J Sullivan, Jens Ohm, Woo-Jin Han, and Thomas Wiegand.

Overview of the high efficiency video coding (hevc) standard. IEEE

Transactions on circuits and systems for video technology, 2012.

[71] Oleg Grodzevich and Oleksandr Romanko. Normalization and other

topics in multi-objective optimization. In Proceedings of the Fields -

MITACS Industrial Problems Workshop, 2006.

[72] Merwan Birem and François Berry. Dreamcam: A modular fpga-based

smart camera architecture. Journal of Systems Architecture, 2014.

[73] Volnei Pedroni. Circuit design with VHDL. MIT press, 2004.

[74] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An ap-

proach for quantitative analysis of application-specific dataflow archi-

tectures. In Proceedings of the ASAP Conference. IEEE, 1997.

[75] Texas Instruments. 66AK2L06 Multicore DSP+ARM KeyStone II

System-on-Chip (SoC) - SPRS930. Texas Instruments, 2015.

[76] Ashley Stevens. Introduction to amba 4 ace and big.little processing

technology, 2011.

http://cx-lang.org

BI BLIO GRAPH Y 135

[77] J. Eker, J. W Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,

S. Sachs, Y. Xiong, et al. Taming heterogeneity-the ptolemy approach.

Proceedings of the IEEE, 2003.

[78] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In

USENIX Annual Technical Conference, FREENIX Track, 2005.

[79] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,

Tushar Krishna, Somayeh Sardashti, and others. The gem5 simulator.

ACM SIGARCH Computer Architecture News, 2011.

[80] B. Kienhuis, E. F. Deprettere, P. Van Der Wolf, and K. Vissers. A

methodology to design programmable embedded systems. In Embed-

ded processor design challenges. Springer, 2002.

[81] Maxime Pelcat. Models of Architecture for DSP Systems. In Shuvra S

Bhattacharyya, Ed F Deprettere, Rainer Leupers, and Jarmo Takala, ed-

itors, Handbook of signal processing systems, third edition. Springer

Science & Business Media, to appear, 2017.

[82] Peter H Feiler and David P Gluch. Model-based engineering with

AADL: an introduction to the SAE architecture analysis & design lan-

guage. Addison-Wesley, 2012.

[83] SAE International. Architecture analysis and design language (aadl) -

http://standards.sae.org/as5506c/ (accessed 03/2017), 2012.

[84] Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérome Hugues. Oca-

rina: An environment for aadl models analysis and automatic code gen-

eration for high integrity applications. In International Conference on

Reliable Software Technologies. Springer, 2009.

[85] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis

& design language (AADL): An introduction. Technical report, DTIC

Document, 2006.

[86] Morten Larsen. Modelling field robot software using aadl. Technical

Report Electronics and Computer Engineering, 2016.

[87] Maxime Pelcat, Alexandre Mercat, Karol Desnos, Luca Maggiani,

Yanzhou Liu, Julien Heulot, Jean-François Nezan, Wassim Hami-

douche, Daniel Menard, and Shuvra S Bhattacharyya. Models of Ar-

chitecture: Application to ESL Model-Based Energy Consumption Es-

timation. Research report, IETR/INSA Rennes ; Scuola Superiore

Sant’Anna, Pisa ; Institut Pascal ; University of Maryland, College Park

; Tampere University of Technology, Tampere, 2017.

[88] Edward A Lee. The problem with threads. Computer, 2006.

136 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

[89] Peter Van Roy et al. Programming paradigms for dummies: What every

programmer should know. New computational paradigms for computer

music, 2009.

[90] Masaki Gondo, Fumio Arakawa, and Masato Edahiro. Establishing a

standard interface between multi-manycore and software tools-SHIM.

In COOL Chips XVII, 2014 IEEE. IEEE, 2014.

[91] Multicore Association. Software/Hardware Interface

for Multicore/Manycore (SHIM) - http://www.multicore-

association.org/workgroup/shim.php/ (accessed 03/2017), 2015.

[92] Chris Lattner and Vikram Adve. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the in-

ternational symposium on Code generation and optimization: feedback-

directed and runtime optimization. IEEE Computer Society, 2004.

[93] OMG. UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded Systems. Object Management Group, 2011.

[94] Madeleine Faugere, Thimothee Bourbeau, Robert De Simone, and Se-

bastien Gerard. Marte: Also an uml profile for modeling aadl appli-

cations. In Engineering Complex Computer Systems, 2007. 12th IEEE

International Conference on. IEEE, 2007.

[95] Frédéric Mallet and Charles André. UML/MARTE CCSL, signal and

petri nets. PhD thesis, INRIA, 2008.

[96] Frédéric Mallet and Robert De Simone. Marte vs. aadl for discrete-

event and discrete-time domains. In Languages for Embedded Systems

and Their Applications. Springer, 2009.

[97] Thierry Grandpierre and Yves Sorel. From algorithm and architecture

specifications to automatic generation of distributed real-time execu-

tives: a seamless flow of graphs transformations. In Proceedings of the

MEMOCODE conference. ACM/IEEE, 2003.

[98] V. Kianzad and S. S. Bhattacharyya. CHARMED: A multi-objective

co-synthesis framework for multi-mode embedded systems. In

Application-Specific Systems, Architectures and Processors, 2004. Pro-

ceedings. 15th IEEE International Conference on. IEEE, 2004.

[99] Andy D. Pimentel. Exploring exploration: A tutorial introduction to

embedded systems design space exploration. IEEE Design & Test,

2017.

[100] M. Pelcat, J.-F. Nezan, J. Piat, Jerome Croizer, and S. Aridhi. A system-

level architecture model for rapid prototyping of heterogeneous multi-

core embedded systems. In Proceedings of DASIP conference, 2009.

BI BLIO GRAPH Y 137

[101] Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and

Mohamed Abid. Automatic generation of s-lam descriptions from um-

l/marte for the dse of massively parallel embedded systems. In Soft-

ware Engineering, Artificial Intelligence, Networking and Parallel/Dis-

tributed Computing 2015. Springer, 2016.

[102] J. Castrillon Mazo and R. Leupers. Programming Heterogeneous MP-

SoCs. Springer International Publishing, Cham, 2014.

[103] Gilles Kahn. The semantics of a simple language for parallel program-

ming. In Information Processing, 1974.

[104] Brice Goglin. Managing the topology of heterogeneous cluster nodes

with hardware locality (hwloc). In High Performance Computing &

Simulation (HPCS), 2014 International Conference on. IEEE, 2014.

[105] R. C Aster, B. Borchers, and C. H Thurber. Parameter estimation and

inverse problems. Academic Press, 2011.

[106] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.

Introduction to linear regression analysis. John Wiley & Sons, 2015.

[107] A. Mercat, J.-F. Nezan, D. Menard, and J. Zhang. Implementation of

a stereo matching algorithm onto a manycore embedded system. In

Proceedings of the ISCAS conference. IEEE, 2014.

[108] K. Desnos and J. Zhang. PREESM project - stereo matching, 2017.

svn://svn.code.sf.net/p/preesm/code/trunk/tests/stereo.

[109] N. K. Bambha and S. S. Bhattacharyya. A joint power/performance op-

timization algorithm for multiprocessor systems using a period graph

construct. In Proceedings of the 13th international symposium on Sys-

tem synthesis. IEEE Computer Society, 2000.

[110] Erwan Nogues, Morgan Lacour, Erwan Raffin, Maxime Pelcat, and

Daniel Menard. Low power software hevc decoder demo for mobile

devices. In Proceedings of the ICME conference, 2015.

[111] Grant Martin. Let’s get physical [review of" physical layer multi-core

prototyping: A dataflow-based approach for lte enodeb"]. IEEE Design

& Test, 2014.

[112] Jarno Vanne, Marko Viitanen, Timo D Hamalainen, and Antti Halla-

puro. Comparative rate-distortion-complexity analysis of hevc and avc

video codecs. IEEE Transactions on Circuits and Systems for Video

Technology, 2012.

[113] M. Masin, F. Palumbo, H. Myrhaug, J. A. de Oliveira Filho, M. Pastena,

M. Pelcat, L. Raffo, F. Regazzoni, A. Sanchez, A. Toffetti, E. de la

138 MODELS , METHODS AND TOOLS FO R BR IDG ING THE DESI GN PRODUCTI VI TY GA P OF EMBEDDED

SIG NAL PROCESSI NG SY STEMS

Torre, and K. Zedda. Cross-layer design of reconfigurable cyber-

physical systems. Proceedings of the DATE Conference, 2017.

[114] Erwan Nogues, Daniel Menard, and Maxime Pelcat. Algorithmic-

level approximate computing applied to energy efficient hevc decoding.

IEEE Transactions on Emerging Topics in Computing, 2016.

