Toward particle size reduction by spray flash evaporation : the case of organic energetic crystals and cocrystals
Florent Pessina

To cite this version:

Florent Pessina. Toward particle size reduction by spray flash evaporation: the case of organic energetic crystals and cocrystals. Theoretical and/or physical chemistry. Université de Strasbourg, 2016. English. NNT: 2016STRAE031 . tel-01610731

HAL Id: tel-01610731
https://theses.hal.science/tel-01610731
Submitted on 5 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

École Doctorale de Physique et Chimie-Physique

Nanomatériaux pour les Systèmes Sous Sollicitations Extrêmes NS3E, UMR 3208 ISL-CNRS-UNISTRA

THÈSE présentée par :

 Florent PESSINAsoutenue le : 05 octobre 2016

pour obtenir le grade de : Docteur de l'université de Strasbourg Discipline/ Spécialité : Chimie Physique-Chimie

Toward Particle Size Reduction by Spray Flash Evaporation the case of organic energetic crystals and cocrystals

THÈSE dirigée par:
M. SPITZER Denis

Dr. HDR, université de Strasbourg

RAPPORTEURS :

M. CONDORET Jean-Stéphane
M. KLAPÖTKE Thomas M.

Prof., Laboratoire de Génie Chimique, INP Toulouse
Prof., Ludwig-Maximilians Universität

AUTRES MEMBRES DU JURY :
M. JANNIN Vincent
M. NOUGUEZ Bruno
M. WELTER Richard

Dr. HDR, Research Director - Pharmaceuticals GATTEFOSSÉ
Head of Innovation R\&D Department EURENCO
Prof., Institut de Biologie Moléculaire des Plantes, Unistra

$\infty * \infty$

«Qui a dit que la science désenchante le monde? Assurément un ignorant, car toutes les peurs se nourrissent de l'ignorance et des ignorances entretenues.»

Pascal Pic, Darwin et l'évolution expliqués à nos petits-enfants (2009).
"SCIENCE: A way of finding things out and then making them work. Science explains what is happening around us the whole time. So does RELIGION, but science is better because it comes up with more understandable excuses when it is wrong."

Terry Pratchett, Wings (1990, 2007), 147.
since we are living in a so-called modern age where PR and economic interests seems to have won against science.

Acknowledgments

I would like to thank all the people who provided supports in any way to my PhD , at work or outside.

First and foremost, I express my gratitude to my supervisor and director of the NS3E laboratory, Dr. Denis Spitzer, for being available while having many responsibilities. His quick answers and enthusiastic support for launching new projects were a driving force. I also greatly appreciated the opportunities to participate to congresses, workshops and fairs, but also the great autonomy accorded.

I am very grateful to Dr. Thomas M. Klapötke and Dr. Jean-Stéphane Condoret to review my manuscript. A special thank goes to Dr. Vincent Jannin who has accepted to review and is now part as the committee. I am also thankful for my two others committee members, Mr. Bruno Nouguez and Prof. Richard Welter, who are very representative of the two aspects of this thesis: the industry of energetic materials and the academic research on crystallisation. I thank Prof. Chinnayya to kindly attend to my modest PhD Defence.

I would like to thank the Institute of Saint Louis staff which allowed me to improve my patience and pugnacity. I hope one day to reach the high-level of management and communication skills of the Directors. On the other hand, some sincere thanks to Mr. Stehlin, Ms. Nicollet, Mr. Urban, Dr. Han, Dr. Braun, Ms. Dietlin and many others (PEM, PCD, MC etc.) for their technical support and their kind help.

Many thanks to the whole NS3E laboratory, where each person from undergraduates to doctors made this PhD a fantastic and memorable journey. Dr. Gibot for his help in BET and XRD, Dr. Comet for his energy and knowledge on chemistry and explosives, Dr. Bonnot for her kindness and Dr. Pichot for his pragmatic analyses and very wise help in many areas. MCF. Lobry arrived lately but significantly contributed to the SFE; I'm very grateful for the ideas shared, your endorsement and support in the projects at work, and for enduring my chatty mood in our office, in the train and at Strasbourg. Dr. Klaumünzer, Dr. Doblas, Dr. Blas, Dr. Bach, Dr. Schlur and Dr. Seve, thank you all for your help in chemistry, chemical engineering and LaTeX but mostly for the good time spent together, especially the team TER. I would like to thank Ing. Schaefer and express all my gratitude to our essential multi-skilled technician Mr. Hassler for his advices and tools.

Axel -or should I say now Dr. Le Brize?- your happiness and sense of humour made this journey quite enjoyable. I wish you the best and hope we will meet again to share our common passion. Cédric, Frank and Jérémy I thank you for the great moments and wish you the best too. A special thanks to Jean Edouard who contributed to this present project and to the SFE apparatuses with enthusiasm; you were kind enough to follow the advices of a simple PhD student.

I would like to thank the SNCF and especially the wide animals for all that
great time spent on board. Crystie and the 14 wrench will miss me. I sincerely thank Mr. Canevari, Ms. Ermis and Ms. Schmitt for their crucial and hard work to provide a solid and helpful environment to PhD students.

Huge thanks to dear lovely one Dr. Nguyen Huynh, who supported me every day and endured the writing period. We shared the joy and sorrow of our PhDs and I wish to continue this mutual enrichment as long as possible. I express my deep gratitude to my family who were very understanding; I promise to be more present from now.

Extended Abstract

The development of nano-technology took off with the invention of the Scanning Tunneling Microscopy (STM) and the Atomic Force Microscopy (AFM) in the early 80's at the IBM Zurich Research Laboratory (Binnig et al. 1986, 1983, 1982). By providing accurate and advanced characterizations on nanoparticles, those two crucial microscopy techniques allowed a control of the physicochemical properties of materials down to the atomic scale. Since then, the outstanding properties of new nano-materials led the research in energetic material to embrace this trend. The nano-structuration of classical explosives, such as 2,4,6-trinitrotoluene (TNT) or 1,3,5-trinitroper-hydro-1,3,5-triazine (RDX), can enhance their safety but also their reactive properties (critical diameter, tunable detonation velocity etc.).

Organic energetic materials release their intrinsic energy under an external stimulus such as a strong mechanical impulse, a great heat or an electrostatic discharge. This initiation is facilitated by the formation of hot-spots coming from the presence of impurities, open pores, entrapped gases or other inhomogeneities within the explosive matrix. Therefore, void free crystals have been an extensive research subject, but the mastering of crystallisation can be enhanced by the formation of particles smaller than the critical size of a hot spot. Moreover, achieving a controlled crystallisation enables further tailoring of the nanoparticles and thus of the physicochemical properties.

The continuous formation of nanosized energetic material is a long-standing challenge. From wet productions methods to dry crystallisation processes, Spray Flash Evaporation (SFE) is a major technique for continuously producing energetic materials at submicron or nano scale. It relies on the superheating of a solvent sprayed into vacuum and thus flashing. The versatility of the SFE internally developed (Doctoral Thesis Risse 2012; Risse et al. 2012) and patented ("Method for producing cocrystals by means of flash evaporation" 2016; "Préparation de nanoparticules par évaporation flash" 2013) allows the continuous engineering of nano-crystals and nano-cocrystals for oxides (Klaumünzer et al. 2015), medical and energetic applications (Spitzer et al. 2014).

This present research project aims to understand and control the crystallisation occurring in the SFE process, in order to reduce further the particle size of energetic crystals. 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) is chosen as a reference material for its wide use for civilian and military applications. Cocrystals -two or more molecules that form a unique crystalline structureare also relevant in energetic materials in order to decrease the sensitivity
without losing reactivity; for instance a low sensitive compound could be cocrystallised with another one having a high sensitivity and a high reactivity. Therefore, the cocrystal CL-20:HMX 2:1 was studied as proof-of-concept but also to overcome the limited in situ characterizations. Crystallisation depends on the supersaturation; in SFE, the supersaturation is a function of time and space as it is linked to the size distribution and velocity of droplets. Since those measurement was first out of reach, supersaturation was raised with an anti-solvent and the enhancement of the SFE with a dual nozzle system. Later, a Phase Doppler Analysis (PDA) was used to elucidate the question of supersaturation.

Another route to control the crystallisation is the addition of chemical agent. PolyVinylPyrrolidone (PVP) and PolyEthylene Clycol (PEG) were used to alter the two steps of the crystallisation, namely the nucleation and the growth. PEC 400 triggers the early nucleation of RDX with low nucleation rate leading to bigger particles up to $5 \mu \mathrm{~m}$. PVP 40K acts as a nucleation and growth inhibitor, forming RDX spherical particles with a mean size of 160 nm . Additionally, the synthesized RDX samples were less sensitive, especially toward electrostatic discharge.

During this work, many standard analytical methods have been found to be impossible or difficult to apply on energetic material, due to their sensitivity toward heat, or toward vacuum, or their organic nature; the nano scale and so the high specific surface area worsen those phenomena. The relevancy of the sensitivity tests is also questionable when reaching the nano scale.

Bibliography

1. Binnig, Gerd, Calvin F. Quate, and Ch Gerber (1986). "Atomic force microscope". In: Physical review letters 56.9, p. 930.
2. Binnig, Gerd and Heinrich Rohrer (1983). "Scanning tunneling microscopy". In: Surface science 126.1, pp. 236-244.
3. Binnig, Gerd, Heinrich Rohrer, Ch Gerber, and E. Weibel (1982). "Surface studies by scanning tunneling microscopy". In: Physical review letters 49.1, p. 57.
4. Klaumünzer, Martin, Laurent Schlur, Fabien Schnell, and Denis Spitzer (2015). "Continuous Crystallization of ZnO Nanoparticles by Spray Flash Evaporation versus Batch Synthesis". In: Chemical Engineering \& Technology 38.8, pp. 1477-1484. ISSN: 1521-4125. DoI: 10. 1002/ceat. 201500053.
5. "Method for producing cocrystals by means of flash evaporation" (2016). WO 2016001445. B. Risse and D. Spitzer. WO Patent App. PCT/EP2015/065,335.
6. "Préparation de nanoparticules par évaporation flash" (2013). WO2013117671 A1. B. Risse, D. Hassler, and D. Spitzer.
7. Risse, Benedikt (2012). "Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process".
8. Risse, Benedikt, Denis Spitzer, Dominique Hassler, Fabien Schnell, Marc Comet, Vincent Pichot, and Hervé Muhr (2012). "Continuous formation of submicron energetic particles by the flash-evaporation technique". In: Chemical Engineering Journal 203, pp. 158-165. ISSN: 1385-8947. DoI: 10.1016/j.cej.2012.07.032.
9. Spitzer, D., B. Risse, F. Schnell, V. Pichot, M. Klaumünzer, and M. R. Schaefer (2014). "Continuous engineering of nano-cocrystals for medical and energetic applications". In: Scientific Reports 4. Dol: 10.1038/srep06575.

Contents

Bibliography 5
Contents 7
Résumé étendu français 11
Bibliographie 29
1 Explosives and Characterization 31
1.1 Overview 31
1.2 Organic Secondary Explosives 32
1.2.1 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) 32
1.2.2 Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 34
1.2.3 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL- 20) 35
1.2.4 Cocrystal CL-20:HMX 2:1 36
1.3 Analytical Methods 36
1.3.1 Classic Material Characterization Methods 36
1.3.2 Explosive Specific Characterization Techniques 42
1.4 Submicron and nano explosives 45
1.4.1 Properties and Challenges 46
1.4.2 Challenges of the characterization of energetic materials 49
1.4.3 Specific health and safety hazards 53
1.5 Summary of the Chapter 55
Bibliography 57
2 Production of Nano Explosives 61
2.1 Wet production methods 61
2.1.1 Crystallisation from solution 61
2.1.2 Solvent substitution using reverse micelles 63
2.1.3 Sol-Gel 63
2.1.4 Melting 64
2.1.5 Milling 65
2.2 Dry production methods 66
2.2.1 Physical Vapor Deposition (PVD) 66
2.2.2 Electrospray 66
2.2.3 Plasma 67
2.2.4 Supercritical/Gas Anti-Solvent precipitation 68
2.2.5 Aerosol Solvent Extraction System (ASES) process 68
2.2.6 Solution Enhanced Dispersion by Supercritical fluids (SEDS) 68
2.2.7 Particles from Gas-Saturated Solutions (PGSS) 69
2.2.8 Rapid Expansion of Supercritical Solutions (RESS) 69
2.2.9 RESS-AS (or RESOLV) 70
2.2.10 Light Amplification by Stimulated Emission of Radiation (LASER) Ablation 70
2.2.11 Ultrasonic Spray Pyrolysis 70
2.2.12 Spray Drying 71
2.2.13 Spray Flash Evaporation (SFE) 71
2.3 Discussion on production methods 72
2.4 The Spray Flash Evaporation Technique 75
2.4.1 Theoretical Insights on the SFE technology 75
2.4.2 Comprehensive description of SFE 78
2.4.3 Versatility of the SFE 79
2.5 Scientific goals of the thesis 81
2.5.1 Particle Size Reduction 81
2.5.2 SFE understanding 82
2.6 Summary of the Chapter 82
Bibliography 85
3 Particle Size and Shape 95
3.1 Size Measurement 95
3.1.1 Sensitivity of nano-organic energetic particles 95
3.1.2 AFM 96
3.1.2.1 Methodology 96
3.1.2.2 Effect of the concentration on the particle size 98
3.1.2.3 Reliability and accuracy 103
3.1.2.4 Conclusion on the AFM pellet method 107
3.2 One Technique, One Size 111
3.2.1 XDR 111
3.2.1.1 Determination of the apparent volume weighted domain size 111
3.2.1.2 Rietveld refinement 112
3.2.2 Smallest observable object 117
3.3 Summary of the Chapter 119
Bibliography 121
4 Crystallisation study and comprehension of the SFE process 123
4.1 Crystallisation, Nucleation and supersaturation 123
4.1.1 Increasing Supersaturation in SFE with an Anti-solvent 126
4.1.2 Supersaturation Determination 130
4.2 CL-20:HMX 2:1 Cocrystal as a Tool for Understanding Crystalli- sation by SFE 134
4.2.1 Cocrystallisation 134
4.2.2 CL-20:HMX 2:1 Cocrystallisation from SFE 137
4.3 Summary of the Chapter 141
Bibliography 143
5 Tunable Particle Size 147
5.1 Material \& Methods 148
5.2 Results \& Discussion 149
5.2.1 Quantification by Nuclear Magnetic Resonance (NMR) Spectroscopy 149
5.2.2 RDX processed with PEG 400 152
5.2.2.1 Particle Size and Morphology 152
5.2.2.2 X-Ray Difraction (XRD) 153
5.2.2.3 Thermal Analysis 156
5.2.2.4 Infrared (IR) Spectroscopy 157
5.2.3 RDX processed with PVP 40K 157
5.2.3.1 Particle Size and Morphology 157
5.2.3.2 Thermal Analysis 160
5.2.3.3 IR Spectroscopy 161
5.2.4 Sensitivity 162
5.2.5 Comparison with mechanically mixed samples 164
5.3 Summary of the Chapter 164
Bibliography 167
Related Work 169
SFE innovations 169
Published Work 170
Conclusion 173
Bibliography 177
Appendices 178
A Rietveld refinement 179
A. 1 Calibration 179
A. 2 Sample of n-RDX processed pure at $2 \mathrm{wt} \%$ in acetone 206
A. 3 Sample of $n-R D X$ processed pure at $3 \mathrm{wt} \%$ in acetone 229
A. 4 Sample of n-RDX processed with $0.1 \mathrm{wt} \%$ of PEG 239
A. 5 Sample of n-RDX processed with $10 \mathrm{wt} \%$ of PVP 254
A. 6 Sample of n-RDX with $1 \mathrm{wt} \%$ of PVP through a 80 micron nozzle 265
Glossary 277
List of Figures 280
List of Tables 284

Résumé étendu français

Réduction de la taille des particules par Spray Flash Evaporation : le cas des cristaux et cocristaux organiques énergétiques.

Le développement des nanotechnologies a réellement décollé avec l'invention des microscopies par effet tunnel (STM) et à force atomique (AFM), au début des années 80 à l'Institut de Recherche IBM de Zurich (Binnig et al. 1986, 1983, 1982). Ces deux techniques permettent l'analyse directe de nanostructures jusqu'à l'échelle atomique, et sont donc devenues indispensables pour contrôler finement les propriétés physicochimiques des matériaux. Depuis quelques décennies, les nouveaux nanomatériaux ont pris leur essor dans notre société grâce à des propriétés remarquables pour de nombreuses application, et aux couts de production maîtrisés. Le développement des nanotechnologies a aussi permis la création et l'amélioration de technologies connexes. Contrairement à la révolution numérique, les secteurs scientifique et industriel des matériaux énergétiques sont restés bien longtemps en marge de cette vague technologique, et ne s'engagent que depuis peu dans l'exploration des propriétés de nanostructures énergétiques. Parmi les attentes, la nanostructuration d'explosifs classiques comme le 2,4,6-trinitrotoluene (TNT) ou le 1,3,5-trinitroperhydro-1,3,5triazine (RDX) peut améliorer leur sensibilité et donc faciliter leur manipulation, mais aussi nombre de leurs propriétés réactives (diamètre critique, vitesse de détonation, homogénéité...).

Les explosifs étudiés ici sont les matériaux énergétiques organiques; ils libèrent leur énergie intrinsèque suite à un stimulus tel une sollicitation mécanique importante, une forte chaleur ou une décharge électrostatique. Cette initiation est facilitée par la formation de points chauds, hot-spot, qui proviennent d'impuretés, de cavités et autres défauts dans la matrice cristalline. Ainsi, la production de cristaux à haute pureté et haute cristallinité fut un champ de recherche privilégié pendant des décennies, mais la maîtrise de la cristallisation peut être poussée encore plus loin par la formation de particules plus petites
que la taille critique d'un point chaud. De plus, atteindre une cristallisation contrôlée permet de façonner avec précision les nanoparticules et donc d'ajuster leurs propriétés physicochimiques.

L'étude des nanomatériaux énergétiques organiques commence par leur formation; le retard pris par la communauté pyrotechnique en nanotechnologie s'explique en partie par la difficulté de produire des nanoparticules d'explosifs. Ainsi la cristallisation en continu de matériaux énergétiques à une échelle au moins submicronique est un défi de longue date. Parmi les méthodes de production de la voie humide à la voie sèche, le procédé Spray Flash Evaporation (SFE) est une technique émergente majeure pour la production continue d'explosifs nanométriques ou de compositions énergétiques nanostructurées. Cette méthode se base sur la surchauffe d'un solvant pulvérisé dans un vide primaire/moyen, provoquant alors une évaporation quasi instantanée, flash. La polyvalence du SFE, développé en interne (Thèse de Doctorat Risse 2012) et breveté ("Method for producing cocrystals by means of flash evaporation" 2016; "Préparation de nanoparticules par évaporation flash" 2013), permet la formation d'oxydes (Klaumünzer et al. 2015) ainsi que de nanocristaux et co-cristaux pour des applications énergétiques et médicales (Spitzer et al. 2014).

Le présent projet de recherche vise à comprendre et contrôler la cristallisation au sein du procédé SFE, afin de réduire la taille des cristaux énergétiques. Le 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) a été choisi comme matériau énergétique de référence du fait de son utilisation large pour des applications civiles et militaires. La cristallisation dépend du degré de sursaturation; dans le SFE, la sursaturation est fonction du temps et de l'espace car liée à la distribution en taille des gouttes et à leur vitesse. La caractérisation in situ des gouttes requiert l'utilisation de techniques avancées d'interférométrie optique acquises à la fin du projet. Pour palier cette absence, la sursaturation a été augmentée par l'ajout d'un anti-solvant et la mise en place d'un système d'injection à double buses. Finalement, un appareil d'interférométrie optique, Phase Doppler Analysis (PDA), est utilisé pour déterminer les tailles et vitesses des gouttes.

Pour déterminer la persistance des gouttes, le co-cristal CL-20:HMX 2:1 sera employé avec le système d'injection à double buses. L'utilisation de co-cristaux (deux molécules ou plus dans un même réseau cristallin unique) pour étudier la cristallisation au sein du SFE est d'autant plus pertinente que la formation de co-cristaux énergétiques est une autre stratégie actuellement explorée pour réduire la sensibilité de l'explosif sans sacrifier sa réactivité.

La cristallisation au sein du SFE peut aussi être maîtrisée par l'ajout d'agents polymériques. Le PolyVinylPyrrolidone (PVP) et le PolyEthylene Gilycol (PEG) ont été employés pour modifier les conditions de cristallisation donc les étapes de nucléation et de croissance. Le PEG 400 provoque la nucléation anticipée du RDX
amenant à la formation de particules de 500 nm à $5 \mu \mathrm{~m}$. La PVP 40k s'adsorbe en surface et agit comme agent inhibiteur de nucléation et de croissance : le RDX cristallise en nanoparticules sphériques avec une taille moyenne de 160 nm . Les échantillons de RDX synthétisés ainsi sont également moins sensibles, tout spécialement à la décharge électrostatique.

Lors de ce travail de recherche, de nombreuses méthodes de caractérisation ont été testées et bien peu se sont avérées être applicables de manière fiable sur les nanomatériaux énergétiques. En effet, ces derniers -des cristaux moléculairessont sensibles à la chaleur et au vide; cette sensibilité est encore exacerbée pour les nanomatériaux du fait de leur grande surface spécifique. De plus, la pertinence des tests de sensibilité à cette échelle est critiquable.

Cristaux et cocristaux organiques énergétiques

Les matériaux énergétiques regroupent tous types de matériaux (composite, polymère, organiques...) qui peuvent libérer rapidement de l'énergie par une violente réaction d'oxydo-réduction. Un stimulus externe comme un choc, un frottement ou une décharge électrostatique peut initier localement la réaction de décomposition; cette dernière se propage à travers le matériau via le front de réaction. La vitesse de ce front de réaction dépend du matériau et du mode de décomposition.

On distingue trois modes de décomposition : la combustion (mm/s - m/s), la déflagration ($\mathrm{m} / \mathrm{s}-\mathrm{km} / \mathrm{s}$) et la détonation ($>\mathrm{km} / \mathrm{s}$). La combustion requiert un apport extérieur d'oxygène alors que la déflagration est auto-entretenue. Lors d'une détonation, la réaction se propage par une onde de choc supersonique. Par la suite, on peut classer les matériaux énergétiques selon leur mode normal de décomposition et leurs autres propriétés pyrotechniques. Les poudres propulsives brûlent de manière contrôlée avec une importante génération de gaz afin de produire la poussée nécessaire aux engins autopropulsés. Les explosifs détonent et sont également classés selon leurs sensibilités et puissances: les explosifs primaires, très sensibles, servent à l'initiation par onde de choc des explosifs secondaires, tels que le RDX ou le 2,4,6-trinitrotoluene (TNT). On retrouve parfois des matériaux comme le nitrate d'ammonium et le perchlorate d'ammonium classés comme explosifs tertiaires du fait de leur grande stabilité. D'un point de vue chimique, les explosifs organiques sont des cristaux moléculaires dont la cohésion est assurée par des forces faibles (Van der Waals : π stacking, liaison hydrogène ...).

Un co-cristal est un cristal comprenant plusieurs molécules électriquement neutres au sein de la même maille cristalline, avec un ratio stæchiométrique défini. La définition est toujours en débat (Sun 2013) mais les hydrates et
solvates sont généralement exclus. Bolton et al. (2012) furent les premiers à rapporter la formation et la caractérisation du co-cristal CL-20:HMX avec un ratio molaire de 2:1.

Procédés et Intérêt de la nanocristallisation

Ces matériaux hautement explosifs peuvent être accidentellement initiés, engendrant malheureusement nombre de victimes et ce bien trop souvent comme nous le rappellent les lettres de l'Inspecteur de l'armement pour les Poudres et Explosifs. Outre cet aspect, la désensibilisation du matériaux entraîne fréquemment des traitements supplémentaires (enrobage, mises en forme...) voire une perte de performances. Des inclusions, des défauts cristallins ou un habitus cristallin trop rugueux sont différents paramètres physico-chimiques pouvant fragiliser et sensibiliser le matériau; une cristallisation contrôlée à une échelle nanométrique permet d'éviter ce type de défauts micrométriques et de réduire le nombre d'étapes aboutissant au produit fini.

De nombreux procédés de recristallisation existent et ont été appliqués aux matériaux organiques énergétiques. Les méthodes par voie liquide permettent d'atteindre des tailles nanométriques et des morphologies contrôlées, deux caractéristiques intéressantes qui sont par la suite perdues lors du séchage : les processus de séchage les plus performants tels que le séchage supercritique réduisent la dégradation des cristaux mais fonctionnent par lot et non en continu. Les méthodes en voie sèche les plus abouties actuellement sont le Spray drying (Broadhead et al. 1992; Stein 1973) et le Rapid Expansion of Supercritical Solutions (RESS) (Krukonis 1984 ; Matson et al. 1987a,b) : le premier fonctionne en continu mais ne permet pas d'atteindre l'échelle nano ni le submicron, alors que le second permet d'atteindre de telles tailles mais opère séquentiellement. De plus le RESS est un procédé industriel coûteux du fait de l'utilisation de fluides supercritiques (faible solubilité, pression importante) rarement utilisés dans l'industrie (Sheth et al. 2012).

Le procédé Spray Flash Evaporation (SFE) permet la production en continu et en voie sèche de particules nanométriques ou submicrométriques ou de composites nanostructurés. Il se situe entre le RESS et le Spray drying en terme de pression et de température. Inventé (Doctoral Thesis RISSE 2012; RISSE et al. 2012) et breveté ("Method for producing cocrystals by means of flash evaporation" 2016; "Préparation de nanoparticules par évaporation flash" 2013) au sein du laboratoire NS3E, le SFE a été précédemment optimisé grâce à la thèse de Risse (2012) ; cependant seuls cinq paramètres ont été étudiés, chacun dans une certaine mesure. Il apparaît nécessaire qu'afin de contrôler et de réduire encore la taille des particules cristallisées par SFE, une bonne compréhension
de la cristallisation au sein du SFE doit être acquise soit directement par une métrologie en ligne, soit par des variations induites dans la cristallisation.

Spray Flash Evaporation : principe et cristallisation

Figure 0.1 - Schéma du procédé de Spray Flash Evaporation (SFE)

Le procédé SFE consiste à pressuriser et surchauffer un solvant comprenant un ou plusieurs composés organiques dissous, puis à pulvériser cette solution dans une enceinte sous vide. Le SFE repose alors sur le principe thermodynamique de flash évaporation : lorsqu'un liquide possède une énergie interne importante (ici d'origine thermique) et est soumis à un déséquilibre thermodynamique important (notamment lorsque la température du liquide est bien supérieure à sa température d'ébullition une fois sous vide), cette énergie est convertie en chaleur latente. Les gouttes se désintègrent et s'évaporent quasi instantanément.

La cristallisation est gouvernée par le degré de sursaturation dans chaque gouttelette; la conjonction de nombreux phénomènes thermodynamiques mène à une taille nanométrique. La fission des gouttelettes diminue le volume de chaque réacteur, le niveau de surchauffe du liquide influence la solubilité du(des) composé(s) dans le solvant mais aussi la méta-stabilité des gouttes avant le flash... A cela s'ajoute une composante temporelle essentielle où on peut distinguer deux plans d'évolution en fonction du temps: le moment de l'évaporation flash avec le taux d'évaporation d'un côté, et de l'autre le début de la nucléation primaire avec le taux de nucléation (Figure 0.2).

Figure 0.2 - Illustration schématique des phénomènes d'évaporation et cristallisation en jeu dans le SFE. La limite de 500 nm correspond à la limite actuelle de détection possible par mesure directe en ligne en anémo-granulométrie Phase Doppler

Compréhension du SFE

Peu de techniques sont à même de mesurer des aérosols à haute vitesse et de l'ordre du micron. L'interférométrie Phase Doppler est une méthode de mesure optique avancée qui, couplée à la vélocimétrie LASER, permet la mesure in situ, simultanée et en temps réel de la taille et de la vitesse d'objets quasi sphériques et microniques. Elle a été pour la première fois adaptée à la technologie SFE: la mesure des tailles dans l'espace du cône de pulvérisation permettra le calcul de la sursaturation. Dans un premier lieu, il s'agit de caractériser le phénomène de flash évaporation : les Figures 0.3 et 0.4 montrent les premiers résultats obtenus avec un appareil optimisé et calibré sur l'acétone. Il est remarquable d'observer trois distributions modales centrées en $2.1,2.8$ et $3.8 \mu \mathrm{~m}$ à toutes les températures; comme attendu, la taille moyenne chute vers la limite de détection proche du micron lorsque la température augmente. En revanche, l'étude montre alors que le phénomène de flash évaporation est transitoire et commence dès $100^{\circ} \mathrm{C}$ et semble ne pas être unique à $160^{\circ} \mathrm{C}$ du fait de la présence persistante de deux distributions à 2.1 et $2.8 \mu \mathrm{~m}$.

Figure 0.3 - Distribution en taille des gouttes pulvérisées à 100, 140 et $160^{\circ} \mathrm{C}$.

Définition d'une particule

La première année de recherche fut menée sur l'étude des paramètres du SFE influençant la taille et la morphologie des cristaux. Ces derniers ont été observés en suivant une méthode développée précédemment au sein du laboratoire : il s'agit de compresser la poudre obtenue et de lisser la surface par micro coupe pour imager par Microscopie à Force Atomique (AFM). L'AFM n'apporte aucune énergie à l'échantillon, contrairement à la Microscopie Électronique à Balayage (MEB) dont le faisceau d'électrons dégrade le matériau énergétique. La méthode par AFM souffrait en revanche d'une analyse des images longues et fastidieuses, ce qui fut tout d'abord amélioré. Une méthode semi automatique a été mise en place avec le logiciel Gıwyddion et la technique Watershed. Elle est composée des étapes suivantes:

Processus de localisation des grains La surface est inversée - les particules deviennent des creux - puis de l'eau virtuelle est déposée en chaque point. Ces gouttes d’eau glissent le long des pentes et la répétition de cette pluie virtuelle forme ainsi des lacs dans les minimum locaux. Ces lacs, ces ensembles virtuels, délimitent alors la position des grains.

(a) $100^{\circ} \mathrm{C}$

(b) $140^{\circ} \mathrm{C}$

(c) $160{ }^{\circ} \mathrm{C}$

Figure 0.4 - Régression des profils de distribution en taille des gouttes pulvérisées à 100,140 et $160^{\circ} \mathrm{C}$.

Segmentation Précédemment si deux lacs se touchaient lors d'une pluie virtuelle, ils étaient fusionnés. Dans l'étape de segmentation, deux lacs adjacents seront notés comme différents et une bordure sera définie. La qualité des frontière entre les grains s'améliore avec des gouttes plus fines, mais le temps de calcul augmente fortement avec la diminution de la taille de goutte.

Inspection visuelles et corrections mineures Le logiciel permet l'affichage en surbrillance, le marquage et l'édition manuelle des grains ainsi que plusieurs améliorations du contraste pour permettre une vérification visuelle efficace et une correction des défauts. Les autres canaux de données tels que la phase ou l'amplitude peuvent aider à déterminer la validité d'une frontière de grain.

Distribution en taille et régression Le logiciel permet l'affichage de la distribution en taille des particules mais, grâce à l'export des données, une régression des profils de distributions peut être appliquée par un logiciel tiers. Ici le diamètre est défini comme celui d'un disque d'aire équivalent à la particule mesurée. La distribution en taille semble suivre une loi log normale et non une loi Gaussienne ce qui signifie que les particules sont générées par l'effet de nombreux effets aléatoires et multiplicatifs comme le sont souvent les aérosols (Limpert et al. 2001).

Figure 0.5 - Analyse Watershed illustrée sur une simulation de sphères de 200 nm .

Une étude de la méthode a été entreprise pour déterminer sa fiabilité et sa robustesse. Deux facteurs prépondérants sur la taille de particules ont été dégagés:

L'effet de la pression La presse utilisée pour la compression des matériaux énergétiques consiste en un levier supporté par un piston hydraulique ; à l'extrémité du levier, des masses sont accrochées, puis le piston est actionné pour descendre doucement le levier et donc former le comprimé dans des conditions adiabatiques. La pression appliquée est calculée en fonction du poids employé; les valeurs utilisées sont affichées en Figure 0.1.

Poids (kg)	Pression (MPa)
2	12
5	26
10	50
20	97
30	140
45	210
70	330
97	460

Table 0.1 - Poids utilisé et pression correspondante calculée : l'effet de levier suit la loi $P=6 \cdot \frac{M}{A}+31$ où $A=\frac{\pi}{4} \cdot \varnothing^{2}$ avec M la masse du poids.

L'effet de la pression peut s'observer en Figure 0.6, où la même face de comprimé a été analysée par AFM et aucune micro coupe n'a été réalisée. Dans la Figure 0.6a une chute brutale de la taille de particule est clairement observable dès $S I 140 \mathrm{~kg}$ puis la valeur se stabilise autour de 90 nm : ce changement est aussi visible en Figure 0.6b. Dans les Figures 0.6c et 0.6d, les particules sont difficilement identifiables.

Les résultats provenant de comprimés micro coupés en Figure 0.7 montrent là encore que la pression joue un rôle crucial sur la taille de particule mesurée par AFM. La réduction de taille est progressive avec l'augmentation de la pression. Au delà de $97 \mathrm{MPa}(20 \mathrm{~kg})$, les comprimés sont bien trop cohésifs pour pouvoir être usinés par micro coupe ; leur grande dureté du fait d'un comportement quasi vitreux les rend cassants sous la lame.

Le RDX micronique (M5 Eurenco) utilisé pour la recristallisation a également été analysé selon cette méthode; les comprimés obtenus sont friables à un tel point qu'aucune micro coupe n'a pu être effectuée. Cependant, alors que la taille moyenne reste de l'ordre du micron, à la pression maximale de 97 MPa

Figure 0.6 - Effet de la pression, sans micro coupe, $5 \mu m \times 5 \mu m$ pour $1024 p x \times 1024 p x$, contraste amélioré.
une chute de la taille moyenne est observée de la même manière que le RDX recristallisé par SFE. Ainsi il apparaît clairement que le nano RDX est broyé à des contraintes plus faibles et donc plus facilement : cet effet de casse ou de désagrégation doit être étudié plus en profondeur car les explosifs sont utilisés notamment en charges pressées.

Effet de la micro coupe D'après les résultats en Figures 0.7a et 0.6a, la micro coupe réduit la taille moyenne et l'effet de la pression précédemment mis en évidence est accentué. Cet effet s'explique par la dureté accrue des comprimés avec la pression : la force de micro coupe doit être plus élevée donc l'effet de broyage en surface est accru.

Figure 0.7 - Effet de la pression, avec une micro coupe, $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ pour $1024 p x \times 1024 p x$, contraste amélioré.

Pression (MPa)	Brut	Avec micro coupe
12		280
26	180	
50	170	230
97	235	140
140	100	
210	80	
330	110	
460	90	

TABLE 0.2 - Diamètre moyen en nm selon la pression appliquée et le pré traitement par microtome ; par MEB, la taille moyenne est de 500 nm .

Découplage des phénomènes au sein du SFE et contrôle des tailles

La cristallisation se déroule principalement en deux étapes successives: la nucléation et la croissance cristalline, qui peuvent être contrôlés par l'ajout d'additifs. La PolyVinylPyrrolidone (PVP) est un additif polymérique notamment utilisé dans l'industrie comme émulsifiant et stabilisant, et est enregistré comme l'additif alimentaire E1201. Il est également utilisé comme inhibiteur de croissance et promoteur de nucléation grâce à sa propriété d'adsorption autour de cristaux organiques (Ozakı et al. 2013; Patel et al. 2015 ; Posteraro et al. 2015). De même, le PolyEthylène Cilycol (PEG) est un additif polymérique utilisé comme promoteur de croissance ou comme enrobant et est enregistré comme l'additif alimentaire E1521. L'effet stérique du PEG est principalement utilisé pour déclencher et permettre la croissance de cristaux de protéines (Внат et al. 1992).

Du PVP 40k sous forme solide et du PEG 400 sous forme liquide ont été utilisés avec succès pour la cristallisation du RDX par SFE. Outre l'extension de la polyvalence du SFE en permettant la cristallisation de composés organiques avec additif polymérique sous forme solide ou liquide, la taille moyenne et la morphologie de particules ont été contrôlés. Le RDX produit avec ajout de PVP a été réduit jusqu'à 160 nm avec une morphologie sphérique; de plus la stabilité dans le temps des tailles et morphologies ainsi que les sensibilités sont améliorées par la présence de PVP. Cette diminution de taille s'explique par la nucléation retardée par la PVP au delà du moment flash du solvant. L'ajout de PEG induit une nucléation très tôt dans des volumes de goutte plus important ainsi qu'un taux de nucléation faible. Les cristaux croissent jusqu'à des tailles micrométriques comparables à celles du RDX commercial mais avec des sensibilités grandement réduites notamment pour la décharge électrostatique.

Innovations du SFE comme outil de recherche

Au cours de ce projet, de nombreuses améliorations et changements ont été apportés au procédé SFE et ses appareils. Parmi les innovations majeures, se trouve être l'utilisation de plusieurs buses pour étudier la cristallisation par SFE.

L'hexane est un antisolvant parfait du RDX et est thermodynamiquement compatible avec le SFE. Le mélange acétone-hexane présente aussi un azéotrope permettant une température d'évaporation plus basse que les deux solvants purs: la force motrice du SFE réside dans le degré de surchauffe du fluide, ainsi une température d'ébullition plus faible permet d'atteindre plus rapidement

Figure 0.8 - Illustration du principe de cristallisation in situ via multi-buses
un degré de surchauffe élevé. Tous ces avantages sont étudiés en mono buse selon divers ratio solvants/anti solvants; l'abaissement du point d'ébullition et l'augmentation de la sursaturation réduisent effectivement la taille des cristaux de RDX. Dans la continuité, un système multi-buses a été mis en œuvre pour la première fois sur le SFE afin d'augmenter brutalement le degré de sursaturation, quelques instants après le début du spray alors que les gouttes sont dans un état méta-stable. Ce système a été protégé dans l'extension d'un brevet à l'internationale ("Method for producing cocrystals by means of flash evaporation" 2016). Les avantages de passer d'un système de mono buse à plusieurs buses sont nombreux. Ainsi pour des applications industrielles du SFE, l'ajout d'un anti solvent présente l'immense désavantage de réduire la solubilité du composé et donc de réduire la productivité du procédé : le multi-buse permet alors de conserver la haute solubilité du produit dans son solvant de prédilection, mais agir sur le nuage de gouttelettes permet également plus de flexibilité et autorise les réactions chimiques in situ.

De part la pulvérisation de l'anti solvent par une seconde buse, se pose alors la question de savoir dans quel état l'anti solvent arrive : est il gazeux ou liquide sur le nuage de gouttes de la première buse? La cocristallisation est alors étudiée en multi-buses avec des débits contrôlés et des solvants différents. Ce système multi-buse, à débit contrôlé par débitmètres de précision à effet Coriolis avec vanne intégrée, découple alors l'éternel triptyque suivant : solubilité, débit

Figure 0.9 - Diagramme ternaire d'un cocrystal 1 :1 AB
des buses et ratio du cocristal. La co-cristallisation à partir de deux réservoirs et buses différents a été réalisée avec succès pour la première fois au sein du SFE. En revanche, des études complémentaires sont à mener afin de déterminer les diagrammes de solubilité du cocrystal dans l'acétone-héxane.

Toutes ces études préliminaires ont posés les bases d'une étude complète et précise de la cristallisation par SFE et ont débloqué de nouvelles voies de recherche telles que les réactions in situ.

Liste des publications et communications

Communications

- Europyro 2015, 41^{e} International Pyrotechnic Seminar (Toulouse).
- $4^{\text {e }}$ ISL Budding Science Colloquium (Saint Louis, 2015).
- European Congress and Exhibition on Advanced Materials and Processes EUROMAT 2015, B1.3 Section Nanocrystallisation (Varsovie).
- Material Weekend Warsaw; un atelier de travail pour doctorant alliant présentations orales et cours.
- Exposant stand DGA à l'Eurosatory 2016, Defence and Security International Exhibition (572 exposants de 56 pays, 213 délégations officielles de 94 pays)
- 5^{e} ISL Budding Science Colloquium (Saint Louis, 2016).
- Junior EUROMAT 2016 (Lausanne).
- 6e NANOstructures and nanomaterials SElf-Assembly (NanoSEA) (Ciardini Naxos (ME), Italie 2016).
- 1 poster: 3^{e} ISL Budding Science Colloquium (2014).

Publications

- Blas, Lucia, Martin Klaumünzer, Florent Pessina, Silke Braun, and Denis Spitzer. "Nanostructuring of Pure and Composite-Based K6 Formulations with Low Sensitivities." Propellants, Explosives, Pyrotechnics 40, no. 6 (2015) : 938-44.
- Florent Pessina, Fabien Schnell, and Denis Spitzer. "Tunable Continuous Production of RDX from Microns to Nanoscale Using Polymeric Additives." Chemical Engineering Journal 291 (May 1, 2016) : 12-19. doi :10.1016/j.cej.2016.01.083.
- Martin Klaumünzer, Florent Pessina, and Denis Spitzer. "Indicating Inconsistency of Desensitizing High Explosives against Impact through Recrystallisation at the Nanoscale." Journal of Energetic Materials, July 1, 2016, $1-10$. doi :10.1080/07370652.2016.1199610.
- Denis Spitzer, Vincent Pichot, Florent Pessina, Fabien Schnell, Martin Klaumünzer, and Lucia Blas. "Continuous and Reactive Nanocrystallization : New Concepts and Processes for Dual-Use Advances." Comptes Rendus Chimie, July 2016. doi :10.1016/j.crci.2016.06.009.
- Florent Pessina and Denis Spitzer. "The longstanding challenge of the nano crystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)" Beilstein Journal of Nanotechnology Under Review.

Formations scientifiques suivies

- Sensibilisation à la pyrotechnie 3PSC17C, Centre de Formation de la Défense (Bourges 2013)
- Advanced Functional Materials and Characterization, CNRS-EWHA Winter School (Strasbourg 2014)
- Nano-OptoMechanics, School in Physics (Strasbourg 2014)

Bibliographie

1. Bhat, Rajiv et Serge N. Timasheff (1992). "Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols". In : Protein Science 1.9, p. 1133-1143. ISSN : 1469-896X. Dol : 10.1002/pro. 5560010907.
2. Binnig, Gerd, Calvin F. Quate et Ch Gierber (1986). "Atomic force microscope". In : Physical review letters 56.9, p. 930.
3. Binnig, Gerd et Heinrich Rohrer (1983). "Scanning tunneling microscopy". In : Surface science 126.1, p. 236-244.
4. Binnig, Gerd, Heinrich Rohrer, Ch Gerber et E. Weibel (1982). "Surface studies by scanning tunneling microscopy". In : Physical review letters 49.1, p. 57.
5. Bolton, Onas, Leah R. Simke, Philip F. Pagoria et Adam J. Matzger (2012). "High Power Explosive with Good Sensitivity : A 2 :1 Cocrystal of CL-20 :HMX". In : Crystal Growth \& Design 12.9, p. 4311-4314. IssN : 1528-7483. Dol : 10.1021/cg3010882.
6. Broadhead, J., S. K. Edmond Rouan et C. T. Rhodes (1992). "The spray drying of pharmaceuticals". In: Drug Development and Industrial Pharmacy 18.11-12, p. 1169-1206. Doו : 10.3109/03639049209046327.
7. Klaumünzer, Martin, Laurent Schlur, Fabien Schnell et Denis Spitzer (2015). "Continuous Crystallization of ZnO Nanoparticles by Spray Flash Evaporation versus Batch Synthesis". In : Chemical Engineering \& Technology 38.8, p. 1477-1484. ISSN: 1521-4125. Dol: 10.1002/ceat. 201500053.
8. Krukonis, Val (1984). "Supercritical Fluid Nucleation of Difficultto-Comminute Solids". In : Annual Meeting - American Institute of Chemical Engineers. cited By (since 1996)0.
9. Limpert, Eckhard, Werner A. Stahel et Markus Abbt (2001). "Log-normal Distributions across the Sciences : Keys and Clues". In : BioScience 51.5, p. 341-352. Issn : 0006-3568. DoI: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.C0; 2.
10. Matson, D.W., J.L. Fulton, R.C. Petersen et R.D. Smith (1987a). "Rapid expansion of supercritical fluid solutions: solute formation of powders, thin films, and fibers". In : Industrial and Engineering Chemistry Research 26.11. cited By (since 1996)248, p. 22982306.
11. Matson, D.W., R.C. Petersen et R.D. Smith (1987b). "Production of powders and films by the rapid expansion of supercritical solutions". In : Journal of Materials Science 22.6. cited By (since 1996)56, p. 1919-1928.
12. "Method for producing cocrystals by means of flash evaporation" (2016). WO 2016001445. B. Risse et D. Spitzer. WO Patent App. PCT/EP2015/065,335.
13. Ozaki, Shunsuke, Ikuo Kushida, Taro Yamashita, Takashi Hasebe, Osamu Shirai et Kenji Kano (2013). "Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs". In : Journal of Pharmaceutical Sciences 102.7, p. 2273-2281. ISSN : 00223549. DoI : 10.1002/jps. 23588.
14. Patel, Dhaval D. et Bradley D. Anderson (2015). "Adsorption of Polyvinylpyrrolidone and its Impact on Maintenance of Aqueous Supersaturation of Indomethacin via Crystal Growth Inhibition". In : Journal of Pharmaceutical Sciences 104.9, p. 2923-2933. ISsN : 1520-6017. DoI: 10.1002/jps. 24493.
15. Posteraro, Dany, Jonathan Verrett, Milan Maric et Phillip Servio (2015). "New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 1. Cirowth rate". In : Chemical Engineering Science 126, p. 99-105. Issn : 0009-2509. dol : http://dx.doi.org/10.1016/j.ces.2014.12.009.
16. "Préparation de nanoparticules par évaporation flash" (2013). WO2013117671 A1. B. Risse, D. Hassler et D. Spitzer.
17. Risse, Benedikt (2012). "Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process".
18. Risse, Benedikt, Denis Spitzer, Dominique Hassler, Fabien Schnell, Marc Comet, Vincent Рıснот et Hervé Muhr (2012). "Continuous formation of submicron energetic particles by the flash-evaporation technique". In : Chemical Engineering Journal 203, p. 158-165. ISSN : 1385-8947. Doו: 10.1016/j.cej.2012.07.032.
19. Sheth, Pratik, Harpreet Sandhu, Dharmendra Singhal, Waseem Malick, Navnit Shah et M. Serpil Kislalioglu (2012). "Nanoparticles in the Pharmaceutical Industry and the Use of Supercritical Fluid Technologies for Nanoparticle Production". In : Current Drug Delivery 9.3, p. 269-284. Doו: 10.2174/156720112800389052.
20. Spitzer, D., B. Risse, F. Schnell, V. Рichot, M. Klaumünzer et M. R. Schaefer (2014). "Continuous engineering of nano-cocrystals for medical and energetic applications". In : Scientific Reports 4. DOI: 10.1038/srep06575.
21. Stein, W. A. (1973). "Spray Drying. An Introduction to Principles, Operational Practice and Applications". In : Chemie Ingenieur Technik 45.13, p. 906-907. Issn : 1522-2640. Dol : 10.1002/cite. 330451311.
22. Sun, Changquan Calvin (2013). "Cocrystallization for successful drug delivery". In : Expert Opinion on Drug Delivery 10.2, p. 201-213. ISSN : 1742-5247. DoI : 10.1517/17425247. 2013.747508. pmid : 23256822.

Chapter 1

Explosives and Characterization

1.1 Overview

The term "energetic material" encompasses any type of material (composite, polymer, organic...) which can rapidly release energy by a violent reductionoxidation reaction. A stimulus like shock, friction, heat or electrostatic discharge triggers the local reaction; then it propagates through the material creating a reaction front. That decomposition usually produces large amount of gas and heat, and three modes of decompositions can be identified mainly from the velocity of the redox reaction front.

The combustion is the slowest mode of decomposition ($\mathrm{mm} / \mathrm{s}-\mathrm{m} / \mathrm{s}$), and is characterized by the complete oxidation of all intermediate products. The combustion requires so large amounts of oxygen, that oxygen is mainly provided by the environment. Faster than the combustion, the deflagration ($\mathrm{m} / \mathrm{s}-\mathrm{km} / \mathrm{s}$) occurs when the released heat propagates beyond the reaction front and so facilitates the redox reaction. Deflagration can be considered as a form of burning, but in contrast to pure combustion, the phenomena is self-propagating and does not require an external source of oxygen. Supersonic explosions created by high explosives are known as detonations which travel via supersonic shock waves ($>\mathrm{km} / \mathrm{s}$); that wave, and not the thermal front of reaction, propagates the reaction. Transition from one mode to another can happen intentionally or not; without compaction or enough ignition energy, the material may only burn (1,3,5-trinitroperhydro-1,3,5-triazine (RDX) in the C4 composition burns at $2 \mathrm{~cm} / \mathrm{s}$ whereas it detonates at $8.75 \mathrm{~km} / \mathrm{s}$), or when accidentally confined, a propellant detonates.

Therefore, depending on their decomposition mode and their pyrotechnic properties, energetic materials can be sorted in three classes: propellants, primary explosives (or initiating explosives) and secondary explosives (or base
charge). Materials such as Ammonium Nitrate (AN) or Ammonium Perchlorate (AP) are sometimes classified as tertiary explosives, which are even less sensitive and energetic. From a chemical point of view, explosives are intrinsic energetic materials in which usually nitro or nitramine groups react with the closest carbon available inside the same molecule; on the contrary, thermites are a physical mix of an oxidizer (e.g.: $\mathrm{Fe}_{3} \mathrm{O}_{4}$) and a reducing agent (e.g.: Al) (Comet et al. 2016).

Used in gunpowder, solid-fuel rockets and mining industry, propellants are deflagrating explosives with the specificity of producing high amount of gases, usually to get a thrust. Primary explosives detonates through the influence of a moderate external stimulus; less sensitive detonative ones are called secondary explosives. The initiation of secondary explosives generally requires the shock wave energy from a primary explosive: such succession of explosive event is called explosive train involved in detonators for instance. All explosives having a higher sensitivity than pentaerythritol tetranitrate (PETN) can be considered as primary, and the less sensitive ones as secondary explosives. The sensitivity to impact and friction of PETN is $3 \mathrm{~J}-4 \mathrm{~J}$ and 60 N , respectively. The notion of sensitivity for energetic materials is discussed in Section 1.3.2.

1.2 Organic Secondary Explosives

This work was focused on a very few organic explosives, in order to carefully study the crystallisation parameters independently from the chemical compound. The first one, RDX, is widely used in civilian and military applications, and serves as a reference energetic material in scientific studies. Both octahydro-1,3,5,7-tetra-nitro-1,3,5,7-tetrazocine (HMX) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are studied here due to their ability to cocrystallise; a cocrystal is simply a multicomponent molecular crystal, owning a unique crystalline structure with each compound included in the unit cell. The following short overview presents their structural characteristics and their physical and pyrotechnical properties.

1.2.1 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)

The 1,3,5-trinitroperhydro-1,3,5-triazine is also found under the following denominations cyclo-1,3,5-trimethylene-2,4,6-trinitramine, 1,3,5-trinitrohexahydro--s-triazine, cyclotrimethylenetrinitramine, hexahydro-1,3,5-trinitro-s-triazine, trimethylenetrinitramine, T 4, cyclonite, hexogene, and RDX. The most common and widely accepted one is the acronym RDX whose origin is surprisingly not known for sure; probably from its first secret code "Research Department

(a) Molecule of RDX with thermal ellipsoids drawn at 50% probability level (Hakey et al. 2008)

(b) Crystallographic cell of $\alpha-\mathrm{RDX}$

Figure 1.1 - RDX visual representations. H atoms have been omitted for clarity.

Explosive". RDX is probably the most important high-brisance explosive from the Second World War to nowadays.
$\alpha-\mathrm{RDX}$ is the stable form of RDX for all temperatures at 1 atm ; however, at high pressures, several polymorphs of RDX exist and have been recently discovered : γ-RDX is stable above 3.8 GPa between room temperature and $225^{\circ} \mathrm{C}$, and above that temperature β-RDX lies from $2.5 \mathrm{C}, \mathrm{Pa}-7 \mathrm{C}, \mathrm{Pa}$ (Hakey et al. 2008). A δ form has been reported but not resolved (Ciezak et al. 2007), and the dense $\varepsilon-R D X$ formed at 3.6 G . Pa can be recovered at 1 atm at $150 \mathrm{~K}-220 \mathrm{~K}$ (Millar et al. 2010).

RDX is soluble in acetone, dimethylsulfoxide (DMSO), DiMethylFormamide (DMF), N-Methyl-2-pyrrolidone (NMP) etc. (Sitzmann et al. 1973), sparingly soluble in ether and ethanol, almost insoluble in water (16, 35-52 and $123 \mathrm{mg} / \mathrm{L}$ at 5,20 and $40^{\circ} \mathrm{C}$ (Boyer et al. 2007)) and totally insoluble in n-hexane (PANT et al. 2013). Cyclohexanone, nitrobenzene and glycol are solvents at elevated temperatures (Sitzmann et al. 1973).

The RDX used in this work is provided by Eurenco, labelled as M5 and used as is, without further purification; the mean particle size is $6.8 \mu \mathrm{~m}$.

Figure 1.2 - HMX visual representations. H atoms have been omitted for clarity.

1.2.2 Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

The octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine is also found under the following denominations cyclotetramethylene tetranitramine, homocyclonit(e), octogen but is commonly named HMX. HMX was first discovered as a by-product of RDX by the Bachmann process (Bachmann et al. 1949). Therefore, like RDX, the HMX acronym may refers to High Melting eXplosive, Her Majesty's eXplosive, High-velocity Military eXplosive, or High-Molecular-weight RDX. Due the high density of its stable β phase, its high melting point and its detonation performances, the HMX is a prime secondary explosive. HMX exhibits three distinct polymorphic forms $-\alpha\left(105^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}\right), \beta$ and $\delta\left(160^{\circ} \mathrm{C}-\mathrm{m} . \mathrm{p}\right.$. $)$ - and a γ hydrated form metastable existing at all temperatures at 1 atm .

HMX solubilities are even worst when compared to RDX; HMX is soluble in DMSO but not in DMF nor NMP, and is slightly soluble in acetone ($2.8 \mathrm{wt} \%$ at Standard Ambient Temperature and Pressure as a temperature of 298.15 K and an absolute pressure of 100 kPa (1 bar) (SATP)).

1.2.3 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)

(a) Molecule of CL-20 with thermal ellipsoids drawn at 50% probability level at 20 K (Meents et al. 2008)

(b) Crystallographic cell of ε-CL-20

Figure 1.3 - CL-20 visual representations. H atoms have been omitted for clarity.
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane is also found under the following denominations hexanitrohexaazaisowurtzitan(e), 2,4,6,8,10,12-(hexa-nitro-hexaaza)-tetracyclododecane, HNIW or CL-20. CL-20 is the most widely used acronym and comes from the Naval Air Weapons Station (NAWS) China Lake facility where it was first produced by Nielsen (1997). CL-20 can be considered as a potent explosive due to its high density and high detonation velocities, but the difficult detection of the decomposition gas and the high oxygen balance place the CL-20 as a remarkable propellant too.

CL-20 exhibits also a high degree of polymorphism: four forms $(\alpha, \beta, \gamma, \varepsilon)$ have been observed at SATP conditions (Foltz et al. 1994; Russell et al. 1993) and two (δ, ζ) under pressure. The $\zeta-C L-20$ comes from the $\gamma \rightarrow \zeta$ transition at 0.7 GPa . The stability of different phases can be sorted as $\varepsilon>\gamma>\alpha>\beta$ and is schematically described in Figure 1.4a p. 36. However, the hydration of CL-20 plays an important role at intermediate pressures and temperatures in the stability of the α form as described in Figure 1.4b p. 36.

The solubility of ε-CL-20 is good at SATP in acetone ($100 \mathrm{wt} \%$), ethyl acetate ($45 \mathrm{wt} \%$) and tetrahydrofuran (THF) but slight in aromatic or organochloride
solvents (von Holtz et al. 1994). The $\varepsilon-C L-20$ is the phase of interest due the highest density ($\left.\rho_{\varepsilon}=2.04>\rho_{\beta}=1.98>\rho_{\alpha}=1.97>\rho_{\nu}=1.92 \mathrm{~g} / \mathrm{cm}^{3}\right)$ and the highest detonation velocity ($v_{\varepsilon}=9660>v_{\beta}=9380 \mathrm{~m} / \mathrm{s}$ (Dumas 2003)).

Figure 1.4 - CL-20 polymorphism adapted from Foltz et al. (1994).

1.2.4 Cocrystal CL-20:HMX 2:1

Bolton et al. (2012) first reported the crystallisation and characterization of the cocrystal CL-20:HMX with a molar ratio of 2:1. An impact sensitivity as low as $\beta-\mathrm{HMX}$ was measured while a higher detonation velocity than $\beta-\mathrm{HMX}$ was predicted. Those results are representative of the advantage of crystallisation as a solid state engineering strategy for improved energetic material. This approach is well know for pharmaceutical compounds (Fleischman et al. 2003; Schultheiss et al. 2011; Vishweshwar et al. 2006) and is also emergent for optic (Sun et al. 2006; Yan et al. 2011) and semiconductors (Sato et al. 2012).

1.3 Analytical Methods

1.3.1 Classic Material Characterization Methods

X-Ray Difraction (XRD) The periodicity of a crystal can be investigated by using a X-ray beam. In X-Ray Difraction (XRD), the incident beam penetrates through the matter within several hundreds of microns; the photons interact

Characteristics	$\alpha-R D X$	β-HMX	ع-CL-20
Colour	colourless	colourless	colourless
Molecular formula	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{6}$	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{O}_{8}$	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{12} \mathrm{O}_{12}$
Molecular weight	222.1	296.2	438.19
Space Group	Pbca	P2/lc	P2//c
CCDC IDs	$\begin{gathered} \hline \text { CTMTNA, 03, } \\ 08-12 \end{gathered}$	NA	$\begin{gathered} \hline \text { PUBMUU 02, } 05, \\ 12-22 \end{gathered}$
COD IDs	$\begin{gathered} 5000148, \\ 2019354-9, \\ 2219089 \end{gathered}$	4110146	2300020-4
Stability range at 1 atm	RT to 222.1	RT to $102-150^{\circ} \mathrm{C}$	RT to $56.5^{\circ} \mathrm{C}$
Energy of formation	$+401.8 \mathrm{~kJ} / \mathrm{kg}$	+353.6 kJ/kg	+1005.3 kJ/kg
Enthalpy of formation	$+301.4 \mathrm{~kJ} / \mathrm{kg}$	+253.3 kJ/kg	+920.5 kJ/kg
Oxygen balance	-21.6\%	-21.6\%	-10.95\%
Nitrogen content	37.84\%	37.83\%	38.3\%
Volume of explosion gases	903 l/kg	902 l/kg	NA
Heat of explosion ($\mathrm{H}_{2} \mathrm{O}$ liq.)	$5647 \mathrm{~kJ} / \mathrm{kg}$	$5249 \mathrm{~kJ} / \mathrm{kg}$	$6314 \mathrm{~kJ} / \mathrm{kg}$
Heat of explosion ($\mathrm{H}_{2} \mathrm{O}$ gas)	5297 kJ/kg	$5599 \mathrm{~kJ} / \mathrm{kg}$	$6084 \mathrm{~kJ} / \mathrm{kg}$
Heat of detonation ($\mathrm{H}_{2} \mathrm{O}$ liq.)	$6322 \mathrm{~kJ} / \mathrm{kg}$	$6197 \mathrm{~kJ} / \mathrm{kg}$	$N A$
Specific energy	$1375 \mathrm{~kJ} / \mathrm{kg}$	$1367 \mathrm{~kJ} / \mathrm{kg}$	$1323 \mathrm{~kJ} / \mathrm{kg}$
Density	$1.82 \mathrm{~g} / \mathrm{cm} 3$	$1.91 \mathrm{~g} / \mathrm{cm} 3$	$2.04 \mathrm{~g} / \mathrm{cm} 3$
Melting point	$204{ }^{\circ} \mathrm{C}$	$280{ }^{\circ} \mathrm{C}$	$\begin{gathered} >195^{\circ} \mathrm{C} \\ \text { (decomposition) } \end{gathered}$
Detonation velocity, confined	$8750 \mathrm{~m} / \mathrm{s} \text { at } 1.76$ g/cm3	$9100 \mathrm{~m} / \mathrm{s}$ at 1.9 $\mathrm{g} / \mathrm{cm}^{3}$	$\begin{aligned} & 9660 \mathrm{~m} / \mathrm{s} \text { (Dumas } \\ & \text { 2003) } \end{aligned}$
Impact sensitivity	7.4 N.m	7.4 N.m	4 N.m
Friction sensitivity	120 N	120 N	48 N

Table 1.1 - Characteristics of the most common crystalline forms of RDX (Krause 2005; Meyer et al. 2008; Miller et al. 2001), HMX (Krause 2005; Meyer et al. 2008; Miller et al. 2001) and CL-20 (Krause 2005; Meents et al. 2008; Meyer et al. 2008; Nair et al. 2005)

(a) Layers of CL-20 in yellow and HMX in blue in the co-crystal from CL-20 and HMX (CL-20:HMX) 2:1

(b) Crystallographic cell of CL-20:HMX

Figure 1.5 - CL-20:HMX visual representations (Bolton et al. 2012). H atoms have been omitted for clarity.
with the electrons of the material which oscillate at the same frequency and scatter the electromagnetic waves. Waves scattered from different points in space travel different paths and consequently exhibit a phase shift, therefore causing destructive interferences. The detectable X-ray emissions in a crystalline sample come from the resonance of ordered atoms in the crystallographic cell at a specific angles. The Bragg's law determines those specific directions where the interferences are constructive: $2 d \sin \theta=n \lambda$ where d is the spacing between diffracting planes, θ the incident angle, n an integer, and λ the wavelength of the incident beam. The rotation of both the emitter and detector allows the recording of the diffracted signal depending on the angle θ in a unique diffractogram. The powder diffraction pattern provides various information of the crystalline structure as summarized in Figure 1.6 p. 39.

Powder X-Ray Diffraction was obtained on a D8 Advance (Bruker), with a LynxEye detector and a copper source with no filtering of the second wavelength. Please note that hkl indexes mentioned in this work are made according to the standardization of the IUCr ; so previous publications mentioning abc indices are quoted here as cab. Figure 5.7 p. 155 and crystallographic studies have been made using the open-source software VESTA (Momma et al. 2011).

Figure 1.6 - Diagram highlighting the information available from the interpretation of an XRD pattern (Dinnebier 2001).

Scanning Electron Microscopy (SEM) allows the direct imaging of a sample at micron or nano scale with a focused beam of electrons. When interacting with the sample, both photons and electrons are emitted giving various information from the sample: X-rays for thickness and also qualitative and quantitative chemical information, secondary electrons for topology, Auger electrons for chemical information, catholuminescence for electrical information and primary backscattered electrons to determine the atomic number and the topography. Secondary electron detector and back-scattered detector are standard equipments for a Scanning Electron Microscopy (SEM). To avoid noisy interactions with gaseous molecules, the imaging occurs under vacuum. For conventional imaging in the SEM, the sample's surface must be electrically conductive and electrically grounded to prevent any accumulation of electrostatic charges.

Sizes measurements were made manually over at least one thousand particles per sample within the software Giwyddion (Nečas et al. 2012) then a log-normal fit was applied on the particles size distribution (PSD): geometrical mean and multiplicative standard deviation (dimensionless) (Limpert et al. 2001) are reported here and written as "mean(SD) unit". Gaussian fitting is in poor accordance; droplets size distributions of aerosols usually have a log-normal shape (Zender 2008) and colloids can be found also to follow a log-normal
distribution (Limpert et al. 2001).
Brunauer-Emmett-Teller theory (BET) Brunauer-Emmett-Teller theory (BET) theory explains the multilayer adsorption of gas molecules on solids. The BET apparatus measures the amount of gas adsorbed across a wide range of relative pressures at liquid nitrogen temperature (77 K) and applies the BET theory to calculate the specific surface area, the pore size distribution and the pore volume. The adsorption and desorption isotherms also return some information about the type of porosity of the sample. Decreasing the molecular size of the adsorbed gas used - for instance from nitrogen to krypton- increases the precision but limits the measurement to lower surface area ($\sim 1 \mathrm{~m}^{2} / \mathrm{g}$ for krypton).

Atomic Force Microscopy (AFM) The development of nano-technology started with the invention of the STM and quickly followed by the Atomic Force Microscopy (AFM) in the early 80's at the IBM Zurich Research Laboratory (Binnig et al. 1986, 1983, 1982). Specifically, AFM allows the visualization at the atomic scale of non-conductive samples by a vibrating cantilever with a tip at its end. When the tip is interacting with the surface of the sample (Van der Waals forces, dipole-dipole interactions, electrostatic forces, etc.), the amplitude of the cantilever oscillation decreases. Therefore, this change is used to detect the proximity of the surface: the altitude of the cantilever is regulated to keep a constant amplitude oscillation thus to give the topographic image of the sample surface. This mode of acquisition is called tapping mode and the phase of the cantilever oscillation is also recorded. Phase changes occur when heat is dissipated by the cantilever, allowing the detection of variation in hardness or adhesive properties.

Dynamic Light Scaterring (DLS) When a light source passes through a colloid, particles with a size smaller than the wavelength scatters the light in all direction. Just as in XRD, the diffraction comes from different positions in space and exhibits constructive or destructive interferences. Due to the Brownian motion, the optical path length is constantly changing in time, so the resulting noisy diffracted pattern changes in time and with the size of the particles. The intensity fluctuations from this motion, namely the computed intensity correlation function, is analysed to provide the diffusion coefficient of the particles. Then an hydrodynamic radius is calculated from the Stokes-Einstein equation

$$
\begin{equation*}
D=\frac{k_{B} T}{6 \pi \eta r} \tag{1.1}
\end{equation*}
$$

where η is the dynamic viscosity, r the radius of the assumed spherical particle, k_{B} the Boltzmann's constant, and T the absolute temperature.

Figure 1.7 - DSC peak analysed from Höhne et al. (2003): (1) baseline (interpolated), (2) auxiliary lines, T_{i} initial peak temperature, T_{e} extrapolated peak onset temperature, T_{p} peak maximum temperature, T_{c} extrapolated peak offset temperature, T_{f} final peak temperature.

Differential Scanning Calorimetry (DSC) Differential Scanning Calorimeters measure the change of the differential heat flow rate between the sample and the reference while regulating the temperature. A few milligrams of the sample are placed in a hermetically closed gold crucible. An identical empty pan is used as reference. The rate of heating heavily influences the peak shapes and resolutions; keeping a small rate is of interest to separate peaks, especially for energetic materials having the melting point close to their decomposition (e.g. RDX), but too small rate will result in broad peaks of small intensities overlapping each others. So the position of the peak maximum changes with the heating rate but also with the thermal conductance and the mass of the sample. Only the extrapolated peak onset temperature is relatively independent of experimental parameters (Höhne et al. 2003).

Differential Scanning Calorimetry (DSC) was performed with a Q-1000 DSC, from TA instruments, under N_{2} flow of $50 \mathrm{ml} / \mathrm{min}$ at $2^{\circ} \mathrm{C} / \mathrm{min}$; the low thermal ramp is a compromise between peak separation and intensity. Extrapolated temperatures were obtained using the tangent technique as described by Höhne
et al. (2003) in Figure 1.7. The exothermic energy released by the decomposition is calculated from the integration of the heat flow over the temperature range of the peak.

Infrared (IR) Spectroscopy Bonded atoms in molecules are in motion between each other; each motion is periodic with a unique frequency and different modes of molecular vibration can be distinguished such as stretching and bending. When a molecule is hit by a radiation having the same energy of the transition energy of a vibration -the resonant frequency-, that radiation is absorbed. Since the related wavelengths are in the middle-infrared, between 10 et 4000 cm^{-1}, the technique is named infrared spectroscopy (IR). The energy from the resonant frequency depends on the molecular potential energy surfaces, the masses of the atoms involved and the associated vibronic coupling, therefore allowing the identification of the chemical groups of the compounds and their interactions. However, the transition has to change the dipole moment of the molecule to be "IR active", unlike the stretching of C-C bond in ethane for instance. Furthermore, the greater the dipole is, the greater the absorbance intensity will be. The method used to measure infrared absorption and emission spectra is the Fourier Transform Infrared Spectroscopy (FTIR); the instrument uses a Michelson interferometer coupled with a Fourier transformation of the interferogram in order to obtain the final spectrum.

Nuclear Magnetic Resonance (NMR) Spectroscopy NMR occurs when the nucleus of certain atoms is placed in a static magnetic field and an additional oscillating magnetic field. Only some atoms can exhibit NMR: nuclei possessing a not null spin, more usually a spin of $1 / 2$ such as in ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$. Schematically, the transition between the two possible energy states of such nuclei is triggered when the frequency of the oscillating magnetic field matches that transition energy: such frequencies are typically in the radio frequency range for magnetic fields or around 20 T . NMR spectroscopy detects and records that magnetic resonant absorption.

1.3.2 Explosive Specific Characterization Techniques

The determination of the sensitivity of an explosive is the prime set of characterizations. Not surprisingly, pyrotechnic scientists put safety first, especially when it comes to explore new materials based on the most devastating explosives. Various methods of evaluation exist depending on the stimuli, the mass of the studied material and the application. At the small scale of a laboratory, only
three techniques are of interest based on the three main stimuli: impact, friction and electrostatic discharge.

(a) Julius Peters Bundesanstalt für Materialprüfung (BAM) FallHammer for impact test

(b) Julius Peters BAM Machine for friction test

(c) OZM Research Electrostatic Discharge (ESD) 2008 apparatus

Figure 1.8 - Apparatuses for testing the mechanical and electric sensitivity at small scale, in use at NS3E.

Figure 1.9 - Sample holder for BAM Fall-Hammer (Meyer et al. 2008).
Impact The small scale drop-hammer impact sensitivity test is described in the international guidelines of the UNECE (test code 3(a)(ii) (UN Manual of

Tests and Criteria 2016)) and in the French norm NFT 70-500. Historically the fall-hammer method was modified by the German BAM, in order to obtain better reproducible values (Meyer et al. 2008). A cylindrical spoon measures $40 \mathrm{~mm}^{3}$ of energetic material which is placed between two cylindrical pistons maintained by a ring (Figure 1.9 on the left). Those cylinders and rings are constituting the sample holder and are made of steel with controlled hardness, dimensions, surface roughness and flatness; they are renewed for each falling test procedure. If the sample is a powder or a paste, the upper cylinder is slightly pressed into the charged confinement device. The sample holder is set below a vertical rail guiding a free movable weight (Figure 1.8a p. 43). Two masses of 1 and 5 kg are available, falling from a height of 15 cm to 100 cm , allowing the measurements over a range of energy from 1.56 J to 50 J . The energy is simply calculated from the gravitational potential energy $e=m g h$.

Figure 1.10 - Schematic principle of the BAM friction sensitivity test.

Friction The small scale sensitivity BAM test is described in the international guidelines of the UNECE (test code 3(b)(i) (UN Manual of Tests and Criteria 2016)) and in the French norm NF T70-503. Again, a cylindrical spoon measures about $10 \mathrm{~mm}^{3}$ of energetic material which is placed on the surface of a roughened $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 5 \mathrm{~mm}$ porcelain plate. Then, on top of this plate is maintained a cylindrical porcelain peg (10 mm in diameter for a height of 15 mm), having a roughened spherical end (Figure 1.10). This peg is fasten on a rod which can be moved up and down. The pressure applied on the sample by the peg is set by a weight at the end of the lever: the nine different weights and six different mounting positions on the arm allows a measurement range from 5 N to 360 N .

Electrostatic Discharge (ESD) The sensitivity towards electrostatic discharge is a recent technique: for instance, the electrostatic stimuli are not investigated in the Manual of Tests and Criteria on the transport of dangerous goods of the UNECE (UN Manual of Tests and Criteria 2016). OZM Research manufactures the ESD 2008A tester used in several European laboratories. The sample is placed inside a small sacrificial plastic ring on top of the ground electrode; the volume of material is $7 \mathrm{~mm}^{3}$. The electrostatic discharge is delivered from the top
by the main electrode; see Figure 1.11 on the left. The apparatus has several capacitors and also a potentiometer to change the tension; the energy delivered through the sample is simply $E=\frac{1}{2} C U^{2}$, where U is the tension in Volt and C the capacity in Farad.

Figure 1.11 - Schematic principle of the OZM ESD 2008A tester.

Data Interpretation and Evaluation To define the reaction of a small scale sensitivity such as those mentioned above, the operator should carefully watch for any smokes, odour, sparking, popping noises, scorch marks etc. An instrumented version of the BAM fallhammer called BIC records the overpressure and the lightening with four fibre optic detectors (Coffey et al. 1995). For instance, at the friction test, a simple odour is not significant enough to mark the event as a success full ignition, namely a Cio event.

The highest stimulus level at which a predetermined number of No-Go events are observed without any Go occurring is the Threshold Initiation Level (TIL) value. For small scale (several grams) of energetic material, the predetermined number is often 6, although 10 or 20 can be used to increase the accuracy of the TIL level for hundred of grams. However, the TIL value does not refer to a zero probability of reaction. Wild and Von Collani extensively studied the statistical description of the reactivity of energetic materials; they demonstrated that the Bruceton method, which is still in use in other notEuropean laboratories, is lacking of accuracy and is not scientifically justified. In addition, they clearly showed that their Weibull model can discriminate and explain the sensitivity differences between coarse and fine samples (Wild et al. 2002a,b).

1.4 Submicron and nano explosives

In the past years, the outstanding properties of new nano-materials led the research in energetic materials to embrace this trend. The nano-structuring of classical explosives should enhance their properties and safety. Even if the term "nano" strictly refers to an object with at least one dimension under 100 nm , in this work on energetic material, the term "nano" will refer to nano and submicron-sized particles for the sake of readability, just like n-RDX is an abbreviation for nano or submicron particles of RDX. However, mean particle sizes are always given when available.

1.4.1 Properties and Challenges

The development of new energetic materials led to new synthesized molecules such as 1,3,3-trinitroazetidine (TNAZ), CL-20, Octanitrocubane (ONC), 1,1-di-amino-2,2-dinitroethene (FOX-7), Ammonium DiNitramide (ADN) etc. Those newly available materials aim to achieve higher density, increase the processability and attain Insensitive Munitions (IM) characteristics; IM properties actually rely on the whole physic-chemistry of the system. Therefore, the development of powders with controlled particle sizes and morphologies and a well defined surface chemistry, is a whole new facet of the energetic materials largely unexplored at the submicron scale and below. Criteria that are advantageous for new energetic materials include the following:

- high decomposition temperature
- Low sensitivities
- no phase transitions under compression or depression
- no autocatalytic decomposition
- no voids from solvents or gas
- mechanical behaviour independent from temperature
- good ratio availability/cost
- easy processing

Compression of gaseous inclusions, cavities and voids, deformation, frictional heating, inter-crystalline shearing and spark discharges are initiation processes which can cause areas of an energetic material to warm up to several hundred Kelvin: these areas are called hot-spots and are deflagration or detonation origins if they reach a critical temperature. Tarver (Tarver et al. 1996) calculated for HMX the critical temperature of different sized hot-spots. For a $2 \mu \mathrm{~m}$ sized hot-spot he calculated a critical temperature of 985 K , whereas the critical temperature for a $0.2 \mu \mathrm{~m}$ sized hotspot already rises to 1162 K .

Risse (Doctoral Thesis 2012) measured a noticeable desensitization towards initiation by friction and electrostatic discharge for n-RDX crystallised by Spray Flash Evaporation (SFE), compared to the raw material (Table 1.2, p. 47). The noticeably lower sensitivity towards friction can be based on the self-lubricating effect, as small particles will tend to occupy small interstices instead of breaking. Sensitivity measurements were also performed on Hexolite, which showed a clear desensitization of the nano-structured explosive (Table 1.3, p. 47).

RDX	Impact $[J]$	Friction $[\mathrm{N}]$	ESD $[\mathrm{mJ}]$
M5 (raw material)	>3.52	160	120
nano-structured	>3.52	>360	270

Table 1.2 - Sensitivity towards impact, friction and ESD of micron-sized and nanostructured RDX (Doctoral Thesis Risse 2012).

Hexolite	Impact $[J]$	Friction $[\mathrm{N}]$	ESD $[\mathrm{mJ}]$
micro	6	54	353,6
nano	25,06	72	436,6

Table 1.3 - Comparison of the sensitivity levels of micro Hexolite with those of a nano-sized Hexolite (Doctoral Thesis Risse 2012).

Using a sonocrystallisation process, Bayat and Zeynali (Bayat et al. 2011) succeeded in the preparation of $n-C L-20$ which was less sensitive towards friction, impact and electrostatic discharge (Table 1.4, p. 47).

Particle size $[\mu \mathrm{m}]$	Impact $[\mathrm{cm}]$	Friction $[\mathrm{kg}]$	ESD $[\mathrm{J}]$
15	25	6,4	45
0,095	55	No reaction	60

Table 1.4 - Comparison of the sensitivity levels of micro and nano CL-20 (Bayat et al. 2011).

Fathollahi et al. (2007) have studied the particle size effects on thermal decomposition on HMX: as the particle was getting smaller, temperature and the activation energy were decreasing.

However those trends are not always observed. Crystallised from Rapid Expansion of Supercritical Solutions (RESS), several nano RDX lots have been tested by (Stepanov et al. 2011); if both 500 nm and 200 nm RDX are less sensitive toward impact than milled $4 \mu \mathrm{~m}$ RDX, the 200 nm lot is substantially more sensitive than the 500 nm one. As it can be seen in Figure 1.12 p. 48 that minimum of sensitivity to impact is confirmed when coating the powders with a
binder; however that confirmation might reveal that the trend is more due to the intrinsic bulk properties of the particles instead of their surface.

Figure 1.12 - Sensitivities of RDX with various Particle Size Distribution (PSD) (Stepanov et al. 2011).

Beside safety, other improvements can emerge from the nano scale; critical diameter, tunable detonation velocity, delay before the detonation steady state etc. may be improved by the drastic grain size reduction. Energetic nanocomposites are also promising materials improved by a more intimate mixing. Liu Jie et al. (Liu et al. 2014) show that detonation velocities of PBX composition from their milled n-RDX and n-HMX are slightly better while being significantly safer. The burning rates of nitrocellulose was also improved by Zhang et al. (2014) due to the formation of submicron spheres. Recently, Comet et al. (2015) proved that energetic nanocomposites can easily replace the hazardous primary explosives to initiate a secondary explosive: $500 \mathrm{~nm} n-R D X$ from SFE were mixed with a nano thermite to initiate the detonation of PETN. The Flame Propagation Velocity (FPV) of composites made of $\mathrm{n}-\mathrm{WO}_{3} / \mathrm{n}-\mathrm{Al} / \mathrm{n}-\mathrm{RDX}$ can be tuned from $0.2 \mathrm{~km} / \mathrm{s}$ to $3.5 \mathrm{~km} / \mathrm{s}$ through their explosive content; in the same conditions, $\mathrm{n}-\mathrm{WO}_{3} / \mathrm{n}-\mathrm{Al}$ with μ-RDX exhibit unstable regimes from $187 \mathrm{~m} / \mathrm{s}$ to $733 \mathrm{~m} / \mathrm{s}$, whereas the $\mathrm{n}-\mathrm{WO}_{3} / \mathrm{n}-\mathrm{Al} / \mathrm{n}-\mathrm{RDX}$ composite deflagrates at a constant velocity of $2529 \mathrm{~m} / \mathrm{s}$. Those results and other unpublished ones of our laboratory confirm the drastic reduction of the critical diameter with the decrease of particle size.

1.4.2 Challenges of the characterization of energetic materials

Some of the characterization techniques previously described in Section 1.3.1 p. 36 are difficult to apply on nano energetic material, due to their sensitivity toward heat, or toward vacuum, or their organic nature. Molecular solids are by their nature called soft matter, due to the type of bonds involved to create their crystalline structure: the dipole forces holding the molecules together are weaker than the covalent bonds in metals or the ionic bonds in ionic crystals.

XRD Solid organic explosives are molecular crystals: the crystallographic positions are occupied by the molecule and not just a single atom. XRD diffraction of molecular crystals produces much more reflections -up to thousands- for the very complex protein crystals. For instance in Figure 1.13, the XRD pattern of $\mathrm{CL}-20$ exhibits much more diffraction lines than the magnetite $F e_{2} \mathrm{O}_{3}$. Moreover,

(a) CL-20 diffraction pattern from Meents et
al. (Meents et al. 2008).

(b) magnetite diffration pattern from WH. Bragg (Bragg 1915).

Figure 1.13 - Examples of computer generated XRD patterns, both with the same broadening.
at the nano scale, the diffraction peaks are broadened. Line broadening in diffraction stems from instrumental and physical broadening; the latter is due to size effect and internal strain inside the lattice. Young and Desai (Young et al. 1989) described size broadening $\beta_{\text {size }}$ as a Gaussian contribution of the Scherrer's equation:

$$
\begin{equation*}
\beta_{\text {size }}=\frac{\lambda K D_{V}}{\cos (\theta)} \tag{1.2}
\end{equation*}
$$

where K is the shape factor and D_{V} the apparent volume weighted domain size. Stokes and Wilson (Stokes et al. 1944) defined the maximum strain definition as a dependency of the broadening:

$$
\begin{equation*}
\varepsilon=\frac{\beta_{\operatorname{strain}}}{4 \tan (\theta)} \tag{1.3}
\end{equation*}
$$

Therefore, the broadening from the material is simply:

$$
\begin{align*}
\beta_{\text {observed }}-\beta_{\text {instrumental }} & =\beta_{\text {strain }}+\beta_{\text {size }} \\
& =4 \varepsilon \tan (\theta)+\frac{\lambda K D_{V}}{\cos (\theta)} \tag{1.4}\\
\Leftrightarrow \beta_{\text {strain }} \cos (\theta) & =4 \varepsilon \sin (\theta)+\lambda K D_{V}
\end{align*}
$$

Plotting $\beta \cos (\theta)$ as a function of $\sin (\theta)$ should give an affine function where the slope is directly related to the strain: they are known as Williamson-Hall plot. However, it requires to index and fit several reflection peak. Therefore, XRD patterns were also analysed by the Full Pattern Matching (FPM) method using the software Fullprof. The peaks shape was fitted with a Thompson-Cox-Hastings pseudo-Voigt convoluted with axial divergence asymmetry function (Finger et al. 1994). When compared to mathematical fitting features in data analysis software, the FPM technique as implemented in many XRD analysis software has the great advantage to take into account the specificity of XRD patterns, such as complex shape functions and the existence of the $K_{\alpha 2}$ radiation. Indexing many peaks by FPM gives a wider understanding of the material and increase the precision of the strain extracted of the Williamson-Hall plots. However, Williamson-Hall plot were found to be not always linear thus were not used afterwards. The assumptions leading to the Scherrer's equation and the final Equation (1.4) are not satisfied. That's why the accurate and complex Rietveld refinement method with size-broadening refinement for apparent crystallites morphology based on a spherical-harmonics representation (Balzar et al. 2005; Popa 1998; Popa et al. 2008) calibrated with LaB_{6} as implemented in Fullprof was used.

SEM Organic explosives are sensitive towards heat and their submicron-sized emphasizes even more that discrepancy due to a higher surface/volume ratio; under vacuum, that heat from the electron beam can not be transferred to the surrounding of the surface. The gold coating is accordingly increased to approximatively 10 nm to increment the heat transfer from the material to the sample holder. The energy from the beam can also be tuned to reduce the degradation of the sample. However, electrons has to interact with the sample surface in order to have enough contrast and so spatial resolution. Due to the low density of organic molecular crystals, the effective tension required is usually high, around 15 kV at working distances around 5 mm . The stabilization with gold deposit improves the imaging of n-RDX allowing magnifications up to 10.000x. Further magnifications alter the material and do not allow a complete and correct data acquisition.

The damages of the electron beam on sensitive organic samples can be avoided or diminished by working at higher pressures (up to 1 Torr-50 Torr

Figure 1.14 - High vacuum SEM imaging on a n-RDX pressed pellet coated with gold.
instead of 1×10^{-5} Torr to 1×10^{-7} Torr) with adjustable relative humidity up to 100%. An Environmental Scanning Electron Microscopy (ESEM) FEG FEI XL30 was tested at the CLYM laboratory (Lyon, France) showing encouraging results about the increased stabilization at 2 Torr. As it can be seen in Figure 1.15, n-RDX without any coating exhibits at 2 Torr much more contrast compared to classical SEM with gold deposit.

Figure 1.15 - Comparison between high vacuum SEM imaging and at 2 Torr from ESEM on the same n-RDX sample

BET Prior to the measurement by gas injection, adsorbed water or organic gas have to be removed. This can be done by heating under vacuum or under a flow of dry, inert gas. The quality of the degassing influences directly the accuracy of the surface area calculated. As previously depicted, nano energetic materials are sensitive to heat and to vacuum, thus it can be expected to degrade them at the degassing step.

While using Krypton to gain in accuracy and access to smaller pores, BET results in Table 1.5 demonstrate the inaccuracy of BET measurements on n-RDX. At $100^{\circ} \mathrm{C}$ the mass loss is almost one magnitude higher which may indicate a good degassing, but the specific surface area is decreasing leading us to the conclusion that the powder is starting to be affected by sintering.

degassing	mass loss	$S_{B E T}$	extrapolated diameter
$\begin{gathered} \nearrow 2^{\circ} \mathrm{C} / \mathrm{min}- \\ 50^{\circ} \mathrm{C} 10 \mathrm{~min}- \\ \pi 1^{\circ} \mathrm{C} / \mathrm{min}- \\ 80^{\circ} \mathrm{C} 1 \mathrm{~h}- \end{gathered}$	0.1\%	3.28 m/g	$1.0 \mu \mathrm{~m}$
$\begin{gathered} \nearrow 2^{\circ} \mathrm{C} / \mathrm{min}- \\ 50^{\circ} \mathrm{C} 10 \mathrm{~min}- \\ \pi 1^{\circ} \mathrm{C} / \mathrm{min}- \\ 100^{\circ} \mathrm{C} 1 \mathrm{~h}- \end{gathered}$	0.8\%	3.09 m/g	$1.1 \mu \mathrm{~m}$

Table 1.5 - BET measurements on n-RDX with Kr

DLS Depending on the anisotropy and polydispersity of the system, the data interpretation may exhibit an angular dependence. For instance, small spherical particles do not have any anisotropy hence no angular dependence; the ideal case of spherical particles is usually not effective and such samples will exhibit an angular dependence. An optimum angle of detection exists for each particle size distribution and particle morphology. For a polydisperse sample and at certain angles, the scattering intensity of some particles will completely overwhelm the weak scattering signal of other particles, thus making them invisible to the data analysis at this angle. Furthermore, even if most of the organic explosives are not soluble in water, nitro and nitramine groups trend to interact strongly; energetic colloids are not stable in water and aggregates easily with quick sedimentation. Experiments have been done using the Zetasizer from Malvern. Even if the addition of PolyVinylPyrrolidone (PVP) enhances the stabilization, no reproducible measurements could have been performed as it can be seen in Figure 1.16.

DSC When gaseous species are reactive towards the decomposing substance, it leads to the autocatalytic acceleration of the reaction rate. Therefore for energetic materials, the assumed constant pressure is not satisfied for closed crucibles; consistent kinetic analysis can be acquired only by effectively removing

Figure 1.16 - All Dynamic Light Scaterring (DLS) results acquired from n-RDX with $5 w t \%$ of PVP: even if this figure contains data with different experimental conditions such as duration of the ultrasonic bath or the dilution, none of the PSD could have been found reliable.
reactive gaseous products. Long et al. (Long et al. 2000) clearly demonstrated that the competition between liquid and gas phase decomposition decreases over time, the activation energy in both pierced and closed pan DSC experiments from $\sim 200 \mathrm{~kJ} / \mathrm{mol}$ to $\sim 140 \mathrm{~kJ} / \mathrm{mol}$, whereas open pan DSC and TGA experiments showed a constant value of $\sim 100 \mathrm{~kJ} / \mathrm{mol}$.

1.4.3 Specific health and safety hazards

A wide variety of nano materials is now being produced, including nanoparticles as well as nanofibers, nanowires, and nanosheets, and their range and types are continually expanding. The increase of the nanomaterial uses in every day products makes the human exposure inevitable, thus asking the question of nanotoxicology. To prevent the uncontrolled penetration of foreign substances, the human body has several barriers such as epithelial cells and mucus secretion. While the protective mucus of the lung trap micron-sized particles, nanoparticles are small enough to reach the deep lung and even further the air-blood barrier (Fröhlich et al. 2014). Epidemiological studies showed that exposure of humans to ultrafine particles $(<2.5 \mu \mathrm{~m})$ in the air increased pulmonary morbidity and
mortality. Nanoparticles can also be cleared from the bronchial epithelium and then absorbed in the gastrointestinal tract. However, particles morphology, metric-related characteristics and many other physicochemical properties largely influence their toxicity. For organic particles, the solubility of the compound in its environment is a major issue since unitary molecules can directly disturb the proteins activity. The report of Boyer et al. (2007) written for the SERDP and ESTCP -US Department of Defence's environmental research programs- provides a comprehensive overview of the toxicity of RDX and CL-20. The toxicity of CL-20 for soil invertebrate population is quite high with only 0.02 mg CL-20/kg of soil to damage it significantly, whereas 44 mg RDX/kg soil-660 mg RDX/kg soil is harmless. For fish and aquatic invertebrates, CL-20 may be more toxic than RDX; but CL-20 is substantially less toxic than RDX to plants and birds: as little as 5.8 mg RDX/kg soil caused adverse effects for some plant species, while 10 mg CL-20/kg soil had no effect. Unfortunately, no studies on the toxicity of CL-20 in mammalian species -including humans- have been published. In contrast, the US Environmental Protection Agency (EPA) has established a reference dose (RfD) of 0.003 mg RDX/kg body weight/day for oral exposure based on the results of toxicity studies on rats; RDX has also been classified as possible human carcinogen, based on liver tumours in mice exposed for 2 years to 7 mg RDX/kg body weight per day.

About the pyrotechnic safety, the articles from R.4462-1 to R.4462-36 of the Code du Travail (Labour Code) regulates the practices of any work involving the creation, study, experimentation, control, packaging, storage or destruction of energetic compounds or any object containing pyrotechnic parts. In addition to the Document Unique, a legal document listing all actual potential risks, the employer has to redact a safety study for each pyrotechnic activity, with a validity of five years: the content of this pyrotechnic safety study is regulated by the decree from the 7th of November 2013 (modified in July 2014). The accidental potential modes of degradation of the energetic material has to be identified and their effects on human life determined. A probability of accident is estimated and the area of effect is identified then segmented according to the lethality; additional countermeasures are established to reduce the exposure (probability) and the consequences of an accident. At NS3E, each laboratory room has been evaluated to confine the risk inside it. The quantity of energetic material is also limited according to its stability and equivalence to TNT; in many cases only five grams (TNT equivalent) is allowed to be handled per room. The number of simultaneous workers is also limited while studying energetic material, with usually a maximum of two persons. The compounds processed for the first time by SFE are classified in the most restrictive class until the sensitivity has been determined: therefore, only one gram is recovered with a
conductive strap to avoid electrostatic discharge. In France and for the DoD activities, the Inspecteur de l'armement pour les Poudres et Explosifs (IPE) has the authority to control and delegates experts on pyrotechnic safety: the IPE frequently writes open letters (http://www.defense.gouv.fr/dga/liens/ poudres-et-explosifs/lettre-de-l-ipe/lettre-de-l-ipe) to announce legislation changes, remind or dictate the good practices and list all recent pyrotechnic accidents from civilian or military uses.

1.5 Summary of the Chapter

The energetic material is a wide group which includes mixes of metals and oxides (thermites), amorphous materials (propellants) and organic or salt crystals (explosives). The present work focuses on a few organic secondary explosives: 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12hexaazaisowurtzitane (CL-20) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The RDX is a compound of reference still extensively used for applications but also research studies; it has only one crystalline form at ambient pressure and is soluble in acetone, sparingly soluble in ether and ethanol but almost insoluble in water. Several analysis methods where tried because the degradation of the sample is often a source of limitations when dealing with energetic organic crystals. The Dynamic Light Scaterring (DLS) needs a stable suspensions without agglomeration nor Ostwald ripening. Under the electron flow in electronic microscopy, the energetic samples heat up and are decomposed. Environmental Scanning Electron Microscopy (ESEM) is a more suitable technology to investigate the particle size and shape, due to the low vacuum able to dissipate heat.

The measurement of the Particle Size Distribution (PSD) is crucial to anticipate the properties of the material and to understand their creation. In addition to the previously mentioned issues, each characterization method measures an unique size; on DLS a hydraulic diameter is determined where the particles' agglomeration and the layers of solvating are taken into account. Electron microscopy techniques provide a direct visualization of particles and are therefore favoured. Finding a suitable and accurate method to establish the Particle Size Distribution (PSD) was the first challenge of the project and is further described in the Chapter 3.

This trend to easily agglomerate, growth, decompose etc. comes from the intrinsic nature of secondary explosive: organic crystals are also called soft matter. Their crystallisation at a nano scale has been a long-standing issue over several decades, and the result depends on the chemical nature of the compound. Therefore, RDX has been extensively studied and crystallised by
almost all the known techniques from other applications in the field of chemical engineering. The following review on processes which led to reduced size of RDX is necessary to provide a global comprehension on the specificities of RDX crystallisation.

Bibliography

1. Bachmann, W. E. and John C. Sheehan (1949). "A New Method of Preparing the High Explosive RDX". In: Journal of the American Chemical Society 71.5, pp. 1842-1845. Issn: 0002-7863. DoI: 10.1021/ja01173a092.
2. Balzar, DAVOR and NICOLAE C. Popa (2005). "Analyzing microstructure by Rietveld refinement". In: The Rigaku Journal 22.1, p. 16.
3. Bayat, Yadollah and Vida Zeynali (2011). "Preparation and Characterization of Nano-CL-20 Explosive". In: Journal of Energetic Materials 29.4, pp. 281-291. Issn: 0737-0652, 1545-8822. DoI: $10.1080 / 07370652.2010 .527897$.
4. Binnig, Gerd, Calvin F. Quate, and Ch Gerber (1986). "Atomic force microscope". In: Physical review letters 56.9, p. 930.
5. Binnig, Gerd and Heinrich Rohrer (1983). "Scanning tunneling microscopy". In: Surface science 126.1, pp. 236-244.
6. Binnig, Gerd, Heinrich Rohrer, Ch Clerber, and E. Weibel (1982). "Surface studies by scanning tunneling microscopy". In: Physical review letters 49.1, p. 57.
7. Bolton, Onas, Leah R. Simke, Philip F. Pagoria, and Adam J. Matzger (2012). "High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX". In: Crystal Growth \& Design 12.9, pp. 4311-4314. Issn: 1528-7483. Dol: 10.1021/cg3010882.
8. Boyer, Ivan, John K. Miller, Rebecca E. Watson, J. DeSesso II, and C. M. Vogel (2007). Comparison of the Relative Risks of CL-20 and RDX. Falls Church, Virginia: Center for Science and Technology.
9. Bragg, WH (1915). "The structure of magnetite and the spinels". In: Nature 95, p. 561.
10. Ciezak, Jennifer A., Timothy A. Jenkins, Zhenxian Liu, and Russell J. Hemley (2007). "HighPressure Vibrational Spectroscopy of Energetic Materials: Hexahydro-1,3,5-trinitro-1,3,5triazine". In: The Journal of Physical Chemistry A 111.1, pp. 59-63. Dol: 10.1021/jp063150q. pmid: 17201388.
11. Coffey, Charles S. and V. F. De Vost (1995). "Impact testing of explosives and propellants". In: Propellants, explosives, pyrotechnics 20.3, pp. 105-115.
12. Comet, Marc and Eric Lafontaine (2016). Nano-thermites. 1 edition. Wiley-ISTE. ISBN: 978-1-84821-837-6.
13. Comet, Marc, Cédric Martin, Martin Klaumünzer, Fabien Schnell, and Denis Spitzer (2015). "Energetic nanocomposites for detonation initiation in high explosives without primary explosives". In: Applied Physics Letters 107.24, p. 243108. Issn: 0003-6951, 1077-3118. dol: 10.1063/1.4938139.
14. Dinnebier, Robert (2001). "Rietveld Refinement from Powder Diffraction Data". In: Commission for Powder Diffraction Newsletter 26.
15. Dumas, Séverine (2003). "Measuring of polymorphism IRTF spectrometry and chemometric. Application to the form polymorphe of CL20 (HexaazahexaNitrolsoWurtzitane / HNIW)".
16. Fathollahi, M., S. M. Pourmortazavi, and S. G. Hosseini (2007). "Particle Size Effects on Thermal Decomposition of Energetic Material". In: Journal of Energetic Materials 26.1, pp. 52-69. ISsN: 0737-0652, 1545-8822. DoI: 10.1080/07370650701719295.
17. Finger, L. W., D. E. Cox, and A. P. Jephcoat (1994). "A correction for powder diffraction peak asymmetry due to axial divergence". In: Journal of Applied Crystallography 27.6, pp. 892-900. Doו: 10.1107/S0021889894004218.
18. Fleischman, Scott G.., Srinivasan S. Kuduva, Jennifer A. McMahon, Brian Moulton, Rosa D. Bailey Walsh, Naír Rodríguez-Hornedo, and Michael J. Zaworotko (2003). "Crystal Engineering of the Composition of Pharmaceutical Phases: Multiple-Component Crystalline Solids Involving Carbamazepine". In: Crystal Growth \&I Design 3.6, pp. 909-919. Issn: 1528-7483, 1528-7505. Doו: $10.1021 / \mathrm{cg} 034035 x$.
19. Foltz, M. Frances, Clifford L. Coon, Frank Garcia, and Albert L. Nichols (1994). "The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, part II". In: Propellants, Explosives, Pyrotechnics 19.3, pp. 133-144. IssN: 1521-4087. DoI: 10.1002/prep. 19940190305.
20. Fröhlich, Eleonore and Sharareh Salar-Behzadi (2014). "Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies". In: International Journal of Molecular Sciences 15.3, pp. 4795-4822. DoI: 10.3390/ijms15034795.
21. Hakey, Patrick, Wayne Ouellette, Jon Zubieta, and Timothy Korter (2008). "Redetermination of cyclo-trimethylenetrinitramine". In: Acta Crystallographica Section E 64.8, o1428. Doו: 10.1107/S1600536808019727.
22. Höhne, G. W. H., W. F. Hemminger, and H.-J. Flammersheim (2003). Differential Scanning Calorimetry. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN: 978-3-642-05593-5 978-3-662-06710-9.
23. Krause, Horst H. (2005). "New Energetic Materials". In: Energetic Materials. Wiley-VCH Verlag GımbH \&i Co. KGaA, pp. 1-25. Isbn: 978-3-527-60392-3.
24. Limpert, Eckhard, Werner A. Stahel, and Markus Abbt (2001). "Log-normal Distributions across the Sciences: Keys and Clues". In: BioScience 51.5, pp. 341-352. Issn: 0006-3568. DOI: 10.1641/0006-3568(2001) 051 [0341:LNDATS]2.0.CO; 2.
25. Liu, Jie, Wei Jiang, Qing Yang, Jian Song, Ga-zi Hao, and Feng-sheng Li (2014). "Study of nano-nitramine explosives: preparation, sensitivity and application". In: Defence Technology 10.2, pp. 184-189. ISSN: 22149147. Dol: 10.1016/j.dt.2014.04.002.
26. Long, Gregory T., Sergey Vyazovkin, Brittany A. Brems, and Charles A. Wight (2000). "Competitive Vaporization and Decomposition of Liquid RDX". In: The Journal of Physical Chemistry B 104.11, pp. 2570-2574. Issn: 1520-6106, 1520-5207. Doı: 10.1021/jp993334n.
27. Meents, A., B. Dittrich, S. K. J. Johnas, V. Thome, and E. F. Weckert (2008). "Charge-density studies of energetic materials: CL-20 and FOX-7". In: Acta Crystallographica Section B Structural Science 64.1, pp. 42-49. ISSN: 0108-7681. DoI: 10.1107/S0108768107055292.
28. Meyer, Rudolf, Josef Köhler, and Axel Homburg (2008). Explosives. John Wiley \& Sons.
29. Millar, David I. A., Iain D. H. Oswald, Christopher Barry, Duncan J. Francis, William G. Marshall, Colin R. Pulham, and Adam S. Cumming (2010). "Pressure-cooking of explosivesthe crystal structure of $\varepsilon-$ RDX as determined by X-ray and neutron diffraction". In: Chem. Commun. 46.31, pp. 5662-5664. doi: 10.1039/C0CC00368A.
30. Miller, G. R and A. N. Garroway (2001). A Review of the Crystal Structures of Common Explosives. Part I: RDX, HMX, TNT, PETN, and Tetryl. NAVAL RESEARCH LAB WASHINGTON DC.
31. Momma, Koichi and Fujio Izumi (2011). "VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data". In: Journal of Applied Crystallography 44.6, pp. 1272-1276. Dol: 10.1107/S0021889811038970.
32. Nair, U. R., R. Sivabalan, G. M. Gore, M. Geetha, S. N. Asthana, and H. Singh (2005). "Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)". In: Combustion, Explosion and Shock Waves 41.2, pp. 121-132. IssN: 0010-5082, 1573-8345. DoI: 10.1007/s10573-005-0014-2.
33. Nečas, David and Petr Klapetek (2012). "Ciwyddion: an open-source software for SPM data analysis". In: Central European Journal of Physics 10.1, pp. 181-188. Doו: 10.2478/s11534-011-0096-2.
34. Nielsen, A.T. (1997). Caged polynitramine compound. US Patent 5,693,794. Google Patents.
35. PANT, Arti, Amiya Kumar NANDI, Shireeshkumar Pralhad NEWALE, Vandana Prakash GAJBHIYE, Hima PRASANTH, and Raj Kishore PANDEY (2013). "Preparation and Characterization of Ultrafine RDX". In: Central European Journal of Energetic Materials 10.3, pp. 393-407.
36. Popa, N. C. (1998). "The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement". In: Journal of Applied Crystallography 31.2, pp. 176-180. IssN: 00218898. DoI: 10.1107/S0021889897009795.
37. Popa, N. C. and D. Balzar (2008). "Size-broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models". In: Journal of Applied Crystallography 41.3, pp. 615-627. Issn: 0021-8898. DoI: 10.1107/S0021889808012223.
38. Risse, Benedikt (2012). "Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process".
39. Russell, T. P., P. J. Miller, G. J. Piermarini, and S. Block (1993). "Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane". In: The Journal of Physical Chemistry 97.9, pp. 1993-1997. Dol: 10.1021/j100111a043.
40. Sato, Satoru, Hidefumi Nikawa, Shu Seki, Lu Wang, Guangfu Luo, Jing Lu, Masayuki Haranaka, Takahiro Tsuchiya, Shigeru Nagase, and Takeshi Akasaka (2012). "A CoCrystal Composed of the Paramagnetic Endohedral Metallofullerene La@C82 and a Nickel Porphyrin with High Electron Mobility". In: Angewandte Chemie International Edition 51.7, pp. 1589-1591. Issn: 1521-3773. DoI: 10.1002/anie. 201106912.
41. Schultheiss, Nate, Melanie Roe, and Stephan X. M. Boerrigter (2011). "Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: polymorphism and solidstate stability explored in detail using their crystal graphs". In: CrystEngComm 13.2, p. 611. ISSN: 1466-8033. DoI: $10.1039 / \mathrm{c} 0 \mathrm{ce} 00214 \mathrm{c}$.
42. Sitzmann, Michael E., Stephen Foti, and Carroll C. Misener (1973). Solubilities of High Explosives: Removal of High Explosive Fillers from Munitions by Chemical Dissolution. DTIC Document.
43. Stepanov, Victor, Venant Anglade, Wendy A. Balas Hummers, Andrey V. Bezmelnitsyn, and Lev N. Krasnoperov (2011). "Production and Sensitivity Evaluation of Nanocrystalline RDXbased Explosive Compositions". In: Propellants, Explosives, Pyrotechnics 36.3, pp. 240-246. ISSN: 1521-4087. DoI: 10.1002/prep. 201000114.
44. Stokes, AR and AJC Wilson (1944). "The diffraction of X rays by distorted crystal aggregates-I". In: Proceedings of the Physical Society 56.3, p. 174.
45. Sun, Aiwu, Joseph W. Lauher, and Nancy S. Goroff (2006). "Preparation of Poly(diiododiacetylene), an Ordered Conjugated Polymer of Carbon and lodine". In: Science 312.5776, pp. 1030-1034. IssN: 0036-8075, 1095-9203. dol: 10.1126/science. 1124621. pmid: 16709780.
46. Tarver, Craig M., Steven K. Chidester, and Albert L. Nichols (1996). "Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives". In: The Journal of Physical Chemistry 100.14, pp. 5794-5799. Dol: 10.1021/jp953123s.
47. UN Manual of Tests and Criteria (2016). 6th. UNECE.
48. Vishweshwar, Peddy, Jennifer A. McMahon, Joanna A. Bis, and Michael J. Zaworotko (2006). "Pharmaceutical co-crystals". In: Journal of Pharmaceutical Sciences 95.3, pp. 499-516. ISSN: 1520-6017. DoI: 10.1002/jps. 20578.
49. Von Holtz, Erica, Donald Ornellas, M. Frances Foltz, and Jack E. Clarkson (1994). "The Solubility of $\varepsilon-C L-20$ in Selected Materials". In: Propellants, Explosives, Pyrotechnics 19.4, pp. 206-212. IssN: 1521-4087. DoI: 10.1002/prep. 19940190410.
50. Wild, Roland and Elart von Collani (2002a). "Modelling of explosives sensitivity part 1: The Bruceton method". In: Economic Quality Control 17.1, pp. 113-122.
51. - (2002b). "Modelling of explosives sensitivity part 2: The Weibull-Model". In: Economic Quality Control 17.2, pp. 195-220.
52. Yan, Dongpeng, Amit Delori, Gareth O. Lloyd, Tomislav Friščić, Gıraeme M. Day, William Jones, Jun Lu, Min Wei, David G. Evans, and Xue Duan (2011). "A Cocrystal Strategy to Tune the Luminescent Properties of Stilbene-Type Organic Solid-State Materials". In: Angewandte Chemie International Edition 50.52, pp. 12483-12486. IssN: 1521-3773. DoI: 10.1002/anie. 201106391.
53. Young, RA and P Desai (1989). "Crystallite size and microstrain indicators in Rietveld refinement". In: Archiwum Nauki o Materialach 10, pp. 71-90.
54. Zender, Charlie (2008). "Particle size distributions: theory and application to aerosols, clouds, and soils". In: DoI: 10.1.1.210.2680.
55. Zhang, Xin and Brandon L. Weeks (2014). "Preparation of sub-micron nitrocellulose particles for improved combustion behavior". In: Journal of Hazardous Materials 268, pp. 224-228. ISSN: 03043894. DoI: 10.1016/j.jhazmat.2014.01.019.
56. Zhurova, Elizabeth A., Vladimir V. Zhurov, and A. Alan Pinkerton (2007). "Structure and Bonding in β-HMX-Characterization of a Trans-Annular N...N Interaction". In: Journal of the American Chemical Society 129.45, pp. 13887-13893. ISsN: 0002-7863. DoI: 10.1021/ ja073801b.

Chapter 2

Production of Nano Explosives

The crystallisation of a compound or several ones is the phenomenon of transition between the liquid, gaseous or even solid state to the crystalline state where matter posses long range order and symmetry. Crystallisation can be used to adjust the physical properties and the morphology of a substance. Crystallisation involves the formation of nuclei and then their growth; when a solution is supersaturated, its thermodynamic equilibrium is reached through nucleation and growth. To favour smaller particle size, the trend is to increase nucleation rate, for instance through increasing supersaturation, to reduce crystal growth and avoid any aggregation. Most of the crystallisation techniques are based from solution but crystallisation processes from the melt and from the gaseous phase are also known (van der Heijden et al. 2005). Quite a few were tested on energetic materials; the following bibliography is meant to be a comprehensive review of the crystallisation of RDX and of similar energetic compounds at submicron or nano scale.

2.1 Wet production methods

2.1.1 Crystallisation from solution

The most commonly used technique is the crystallisation from solutions. Depending on the creation of supersaturation, distinctions are made between cooling, evaporation, vacuum cooling, drowning-out and reaction crystallisation. The study of the solubility of the compound is the key to determine which crystallisation process can be used: for instance if the solubility is not very temperature dependent, evaporation will be more effective than cooling (Figure 2.1 p. 62).

Fedoroff et al. (1966) indicates that the RDX solubility in acetone is divided by 4 by cooling from $60^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. PANT et al. (2013) used all standard techniques

Figure 2.1 - Solubility curves for different substances (Mersmann 2001).
available to recrystallize RDX into submicrometer crystals "in a beaker": the smallest size was obtained when the anti solvent were added to a highly supersaturated solution cooled down, while applying ultrasonication and stirring. Achieving a high level of supersaturation results in a higher nucleation rate, but aggregation rises at elevated rates; for this solvent/compound system, they produced smaller particles, and reduced the agglomeration by the sonication. Particles are finally obtained by drying. This method may be suitable for industry, however, the minimal size obtained is only 850 nm under tough condition, with a yield of 60% and rod shaped crystals.

Kumar et al. (2014) succeeded to produce finer RDX particles by quickly injecting a very small volume ($100 \mu \mathrm{~L}$) of RDX dissolved in acetone into ultra pure water: the smallest mean particle size was $38 \pm 15 \mathrm{~nm}$ by SEM for the highest temperature $\left(70^{\circ} \mathrm{C}\right)$ and lowest concentration of RDX in acetone (5 mM). It is worth to mention that DLS measurements were found to be not reliable when compared to SEM analysis, which can be explained by the lack of surfactant stabilizing the colloid. This technique was also applied on HMX (Kumar et al. 2015) with a particle size around 30 nm and the same conclusions were drawn out.

Bayat et al. (2015), through an optimization of the micro-emulsion process, crystallised 80 nm plate-like β-CL-20 particles. The severe agglomeration and plate-like morphology might be due to the freeze drying, then washing of the micro-emulsion. Gao et al. (2014b) recrystallized FOX-7 in ethyl alcohol within a submicrometric range: SEM pictures show an irregular plate-like morphology and therefore highlight the inconsistency of the unique mean particle size of 340 nm claimed. Particles exhibit also a certain degree of agglomeration which
can be probably explained again by the lake of a surfactant and the air-drying.
Luo et al. (2015) reached an impressive size of 30 nm of RDX. They used a surprising technique where RDX is dispersed in bacterial cellulose. The lowest particle size was obtained with 71% RDX/gelatine mix; however, increasing the content of RDX leads to an increment of the particle size and the maximum of RDX loading tested was 91% for a particle size of 50 nm . The sensitivity of that composite towards impact and friction is divided by two therefore asking the legitimate question of the reactivity. Nevertheless, further efforts could be done to replace the bacterial cellulose with energetic matrix.

Crystallisation in solution allows the formation of large crystal by growth, thus allowing more parametric studies about the influence of solvents ; for instance (Li et al. 2015c) has studied the importance of temperature and supersaturation for the crystallisation for HMX in γ-butyrolactone, revealing that low temperatures and highly supersaturated solutions trend to increase the defects in HMX crystals.

2.1.2 Solvent substitution using reverse micelles

Dabin et al. (1999) have developed an ingenious method to prepare nanometre RDX using a simple technique: the crystallisation is triggered by a solvent substitution, and the nanometre scale is obtained by restricting the reactor volume to such a scale with reverse micelles. NaAOT (Sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) into isooctane forms reverse micelles, then RDX in DMF is added to one solution containing these micelles, and water to another solution of micelles. Both are finally mixed together to form the nano RDX with a diameter of 70 nm to 100 nm .

2.1.3 Sol-Gel

Energetic materials processed by sol-gel method, are desensitized by embedding in a matrix, usually a silica matrix. Developed by Gash et al. (2000), Tillotson et al. (2001), and Tillotson et al. (1997), the silica-explosive gel is prepared by dissolving the energetic compound, the silica precursor and a catalyst, in a co-solvent. After the gelification, an anti-solvent of the explosive is injected to replace the solvent in the pores and precipitate the explosives in that silica matrix. By drying with heating or at low pressure, a xerogel with higher density is obtained; if supercritical CO_{2} is used to extract the solvent, an aerogel with low density is formed. Therefore, the nanostructuration of the explosive comes from the porous matrix: cavities of mesoporous gels are from 2 to 50 nm large, less than 2 nm for microporous gels. Macroporous materials have pore diameters of greater than 50 nm (Rouquerol et al. 1994).

RDX/Resorcinol-formaldehyde (RF) nano-composite has been synthesized (GUO Qiu-xia 2006): 38 nm large nano-RDX has crystallised in an RF aerogel matrix with a surface area of $551.5 \mathrm{~m}^{2} / \mathrm{g}$ (measure taken without RDX). Wuillaume et al. (2014) trapped AP and RDX in a mesoporous low-density energetic organogel. At the impact test negligible decrease of sensitivity has been measured: $75 \mathrm{wt} \%$ RDX nano gels and macro gels have the same sensitivity and the $90 \mathrm{wt} \%$ nano gels are even more sensitive than the macroscopic counterparts. When compared to pure RDX, the $90 \mathrm{wt} \%$ nano gels are not desensitized. However, SSGT preformed on pressed gels (95% TMD) revealed an improvement of the sensitivity for the $90 \mathrm{wt} \%$ RDX nano-formulation. That nano gel exhibits an uncommon micro-structure of sheets, with micron-sized particles potentially formed by nano primary particles: the lack of desensitization on the loose powder may be explained with the sensitization by the sheet-like shape counteracted by the presence of the gel coating each nanoparticles.

Li et al. (2015a) used a better energetic matrix -Cilycidyl Azide Polymer (GAP) - with a maximum of $40 \mathrm{wt} \%$ of RDX; they noticed a lower sensitivity than the physical mix. However, the claimed nano size is only deduced from porosity without RDX and from XRD patterns which only gives a mean coherence length. They also created NitroCellulose (NC)-RDX-AP nano composites by a technique similar to sol-gel (Jin et al. 2015); the matrix consist of the NC itself solidified by micron-sized AP crystals and cross-linked with Toluene Dilsocyanate (TDI) and Dibutyltin dilaurate (DBTDL), whereas RDX is dissolved in acetone inside that template. The gel and the crystallisation of RDX is triggered by supercritical CO_{2} drying. Even if the sensitivity and the density were not improved, the increase of the heat of explosion measured and the originality of the approach make promising the formation of nano-composite based entirely on energetic materials through chemical binding.

2.1.4 Melting

Many high energetic materials degrade very closely to their melting point. Therefore, only a few such as TNT or TNB can be used in their molten state, since the melting temperature is at least $100^{\circ} \mathrm{C}$ far from the exothermic decomposition. The melt-cast process of TNT-based composition is used for shaping charges or loading them into ammunitions since WW I. Crystallisation from an emulsified molten explosive is an innovative technique used by Anniyappan et al. (2015). 2,4,6-triazido-1,3,5-triazine or cyanuric triazide (CTA) has been processed at $95^{\circ} \mathrm{C}$ to crystallise as micron-sized agglomerates. CTA is a promising primary explosive compliant with the new REACH legislation (Regulation (EC) No 1907/2006 on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and setting up a European Chemicals Agency 2007) forbidding the use of heavy
metal based materials. Further investigation with surfactants might lead to smaller particles by counteracting the high viscosity of molten droplets.

2.1.5 Milling

Redner et al. (2006) developed a batch wet-milling process, producing submicrometer RDX. A mixture of water, isobutanol, a dispersant and RDX is filled into a unspecified mill, resulting in a minimal mean particle size of 310 nm and a crystallite size of about 65 nm . Several milling issues were mentioned such as the yield initially of around 25% and the importance of the residence time and the drying step.

Liu et al. (2014a, 2013) studied the effect of drying nano-RDX and HMX samples under various conditions. They first obtained nano-RDX in solution from a mixture of water, ethanol, isopropanol and RDX. The suspension is put in a bi-directional rotation mill for 6 h . Just as Rednere experienced, the drying is the critical point to get a nano powder. They dried the RDX under different conditions: freeze drying and supercritical drying led to quite impressive results, with medians at 160 nm and 200 nm respectively from a solution containing an average particle size of 64 nm . After RDX and HMX, CL-20 was successfully processed the same way resulting in a median size of 180 nm determined by SEM (Liu et al. 2014b). For the three compounds, nano powders are less sensitize than their micron-size counterparts.

Spray drying is a less energy intensive drying method studied by Patel et al. (2015). RDX and CL-20 have been bead milled from water with addition of isobutanol and Polyvinyl alcohol (PVOH) to stabilize the colloid by dispersion and coating, and then an unknown polymeric binder is added just before drying the slurry by spray drying. Mean particle sizes down to 400 and 200 nm respectively have been measured by DLS for RDX- and CL-20-based composites after milling. However, no PSD curve has been provided nor dispersion of the results indicated. It has been noticed that for particles of CL-20 at 200 nm , the α phase is obtained. From the same team, nanoscale cocrystal of CL-20:HMX 2:1 has been prepared by bead milling an aqueous suspension of $\varepsilon-C L-20$ and $\beta-\mathrm{HMX}$ in a 2:1 stoichiometric ratio (Qiu et al. 2015a). The progressive conversion of raw materials into the cocrystal is achieved after one hour, resulting in a particle size lower than 200 nm . However, not much attention has been paid to the drying effect of large scale batch; SEM and XRD were made on a drop dried at room temperature, and it is likely that the drying of several grams of such molecular crystal will behave differently. Furthermore, the accuracy of the XRD technique does not allow to conclude that a complete conversion into cocrystal has occurred, but rather indicates that the percentage of $\varepsilon-\mathrm{CL}-20$ and $\beta-\mathrm{HMX}$ is
lower by 10% approximatively. Full quantification by Rietveld or Full Pattern Matching methods would have been relevant to follow the conversion with time.

2.2 Dry production methods

2.2.1 Physical Vapor Deposition (PVD)

Frolov and Pivkina have developed together a vacuum condensation process for high energetic material first reported in 2002 (Frolov et al. 2002; Frolov et al. 2010; Pivkina et al. 2004). Vacuum deposition of ammonium nitrate (AN), RDX and a composite AN-RDX was performed on a cooled quartz-glass substrate. The mean particle size was directly measured from AFM: a size of 50 nm was obtained for the three materials, even after processing the nano-powder (removing from the quartz substrate and pressing into tablets).

Mil'chenko et al. (2015) went further in the Physical Vapor Deposition (PVD) process by the deposition of TATB, HMX, RDX, PETN and BTF as thin layers on several substrate such as Plexiglas and copper while changing operative parameters. Critical thickness of the detonating layer is an order of magnitude lower; the sensitivity toward impact and friction is barely mentioned as being similar to the raw materials but the sensitivity to Light Amplification by Stimulated Emission of Radiation (LASER) has been substantially increased.

Therefore, the PVD technique is greatly suitable for "pyrotechnic integrated circuits", whereas mass production of loose powder is not economically viable.

2.2.2 Electrospray

Radacsi et al. (2011) crystallised submicrometer RDX using an electrospray. A solution of RDX-acetone is sprayed through a nozzle electrically charged to a grounded plate: the droplet surface is charged, increasing their surface energy and so triggering their fission into smaller droplets. This Coulomb fission phenomenon and the evaporation of the solvent lead to crystallisation and the deposit of non agglomerated particles. The tweaking of the characteristics of the nozzle and the potential difference resulted in various morphology of RDX particles: for instance, micrometer hollow spheres of agglomerated RDX were produced. The minimal mean size obtained was 400 nm : that submicrometer RDX exhibited a clear insensitivity towards friction, but with the same impact sensitivity as conventional micron-sized RDX (Table 2.1, p. 67).

Reus et al. (2014) then processed bi-component systems: proteins and RDX/TNT. XRD patterns of the final products are mentioned to be different from the ones of the raw material, which seems to indicate either a strong

RDX	Impact [J]	Friction [N]
Conventional	7.5	120
submicrometer	10	>360

Table 2.1 - Comparison of the sensitivity levels of conventional and 400-nm large RDX.
degradation or a cocrystallisation. Infrared definitely demonstrates a critical partial decomposition of both RDX and TNT due to the electrospray and the same phenomenon has likely happened for Radacsi et al. too. Whatever was really obtained, Reus crystallised very small particles, estimated by me to be under or around 100 nm for any initial ratio of TNT/RDX. AFM could have been much more informative about the size and shape of such nanoparticles already well dispersed on a substrate. Sensitivity tests have been performed on those degraded materials, which were found to be as insensitive as TNT.

Electrospray can create a fine spray of micron-sized charged droplets repealing each others, ideal for crystallisation; the high voltage needed is a major handicap for processing sensitive powders such as energetic materials containing nitro groups.

2.2.3 Plasma

During his PhD project (Radacsi 2012), Radacsi used an innovative and advanced technique to crystallise submicrometer RDX: a Collison nebulizer aerosolizes a RDX-acetone solution to a Surface Dielectric Barrier Discharge (SDBD) plate where a cold plasma disrupts the droplet by the Coulomb fission. Like the electrospray, one droplet should crystallise into a unique single-crystal. The minimal mean size obtained was 500 nm , with a range from 200 nm to 900 nm and with prismatic or spherical shapes. Again like the submicrometer powder obtained from electrospray, the 500 nm -sized RDX has been desensitize to friction but not to impact (Table 2.2, p. 67).

.RDX	Impact $[J]$	Friction $[\mathrm{N}]$
Conventional	5	144
submicrometer	5	>360

Table 2.2 - Comparison of the sensitivity levels of conventional and 500-nm large RDX (Radacsi 2012).

2.2.4 Supercritical/Gas Anti-Solvent precipitation

Supercritical Anti-Solvent precipitation (SAS) uses the same principle as liquid crystallisation, substituting the liquid anti-solvent by a supercritical fluid. The very high diffusivity of supercritical fluids leads to a rapid supersaturation and so to a sudden precipitation. Various apparatuses are used in SAS: a specific one is the Gas AntiSolvent (GAS) precipitation, where the liquid solution is first loaded into the vessel, before the addition of the supercritical anti-solvent. For RDX, CO_{2} is a correct supercritical anti-solvent. Gallagher et al. (1992) first investigated GAS process of RDX in 1992. Supercritical CO_{2} was injected into RDX-cyclohexanone solution at various injection times, injection quantities and temperatures: in this first use of GAS for RDX, a lot of different particle size distributions and morphologies were obtained, but none under the micrometer size. Since then, several process derived from the GAS process, and which could be referred as SAS sub-process, have been used to reach the submicrometer and nano scale for energetic materials. But from 1992, no GAS/SAS process has been reported to produce energetic materials to a size lower than the micron (Jung et al. 2001; Lee et al. 2009, 2011b; Teipel et al. 1997), excepted for 5-nitro-1,2,4-triazol-3-one (NTO) by Lim et al. (1998) (Reverchon et al. 2005).

2.2.5 Aerosol Solvent Extraction System (ASES) process

Aerosol Solvent Extraction System (ASES) process involves spraying the solution to precipitate through an atomization nozzle into supercritical CO_{2}. Lee et al. (2011b) used GAS and ASES apparatus to crystallise β-HMX: undesirables shapes (needle-like, irregular and aggregated) were produced by ASES at any operating conditions, whereas GAS led to regular shape and the most desired β phase. Dou et al. (2013) sprayed RDX dissolved in DMF obtaining micronsized particles highly polydispersed. However, submicron-sized polymers and biopolymers produced by ASES have been reported since the nineties by Dixon et al. (1993) and Reverchon (1999). Nevertheless, that technique could be used on NC based composite due to its polymer-like behaviour.

2.2.6 Solution Enhanced Dispersion by Supercritical fluids (SEDS)

Solution Enhanced Dispersion by Supercritical fluids (SEDS) process was developed and patented by the Bradfort University to achieve a smaller droplet size compared to the previously described SAS methods. For SEDS process, a solution with the compound solvated is sprayed into supercritical anti-solvent gas $\left(\mathrm{CO}_{2}\right.$ for RDX$)$ through a nozzle with two coaxial passages: this technique
can be seen as a specific implementation of the ASES process, where CO_{2} is introduced through the nozzle continuously with the solution. Shang et al. (2014) produced by SEDS spherical RDX particles with a mean particle size of 770 nm , therefore finally lowering the particle size under the micron.

2.2.7 Particles from Gas-Saturated Solutions (PGSS)

Both patents "Conditioning of finely divided crude organic pigments" (1984) and "Finely dispersed carotenoid pigments prodn. - by dissolving carotenoid in a supercritical gas, pref. carbon di:oxide, and dispersing the soln. in an aq. colloidal matrix" (1981) first described a procedure that today is called Particles from Gas-Saturated Solutions (PGSS). The PGSS technique consists in dissolving a compressed gas into a solution of the substrate in a solvent, then passing it through a nozzle: the sudden decompression leads to crystallisation thus to the formation of solid particles. Although this method is widely used at large scale with a wide range of products from inorganic powder to pharmaceutical compounds (Pourmortazavi et al. 2005), nothing has been reported (Jung et al. 2001) concerning energetic materials processed by PGSS.

2.2.8 Rapid Expansion of Supercritical Solutions (RESS)

The RESS concept has been first described by Hannay and Hogart more than a century ago (Hannay et al. 1879) but studied by Krukonis (1984) and the Battelle Institute research team (Matson et al. 1987a,b). The RESS process consists in spraying in a lower pressure chamber (60-0 bar) through a nozzle a supercritical (sc) fluid containing the substrate. The sudden drop of pressure leads to rapid nucleation and so small (from micron- to nano-sized) particles which are finally collected. The use of a supercritical fluid like CO_{2} allows the direct production of a dry and pure powder. Teipel et al. $(1997,2001)$ first reported the use of RESS for energetic materials: $10 \mu \mathrm{~m}$ large TNT particle were crystallised in those preliminary experiments. They mentioned parameters which influence strongly the crystallisation from a RESS apparatus: pressures, temperatures, geometry of the nozzle and mass flow. Stepanov in the group of Krasnoperov succeeded in the fine tuning of the RESS process to prepare dried n-RDX (Stepanov 2003, 2008; Stepanov et al. 2006, 2005). The formed RDX particles had a mean particle diameter ranging from 110 nm to 220 nm and an irregular spherical morphology. He performed an up-scaling of the RESS process in order to increase the production capacity of RDX to $6 \mathrm{~g} / \mathrm{h}$ but with a CO_{2} consumption of $35 \mathrm{~kg} / \mathrm{h}$. By RESS, a slight sensitization to impact and shock stimuli of the 200 nm nano-RDX occurred compared to $500 \mathrm{~nm} n-R D X$ (Stepanov et al. 2011).

CL-20 has also been reported to be processed by RESS from trifluoromethane $\left(\mathrm{CHF}_{3}\right)$ (Reverchon et al. 2005): sc- CHF_{3} has similar thermodynamic properties and is a better solvent of $\mathrm{CL}-20$ than sc- CO_{2}. Only micron-sized particles were produced and no article reporting the results could have been found. Changing the solvent is a line of research followed by Lee et al. (2011a) using compressed liquid DiMethyl Ether (DME) for RDX. The parametric study points out the role of inlet pressure and temperature and the nozzle diameter: increasing any of those three parameters increases the particle size. Therefore, the two minimal mean particle sizes of 370 and 360 nm were obtained for the lowest mass flow rate of 0.37 and $0.85 \mathrm{~g} / \mathrm{s}$ of DME.

2.2.9 RESS-AS (or RESOLV)

After the success of the RESS process, Essel et al. developed a new method from that technique, called Rapid Expansion of Supercritical Solutions into an Aqueous Solution (RESS-AS) first reported in 2010 (Essel et al. 2010). Rapid Expansion of Supercritical Solutions into an Aqueous Solution (RESS-AS) uses the versatility of the RESS process, spraying into an aqueous solution containing a dispersant and/or growth inhibitor (Kuo et al. 2011). They reported (Essel et al. 2012) a production of 30 nm sized RDX using a pH 7 -stabilized solution, although a polymer coating (PEI or PVP) was necessary to avoid any agglomeration and so stabilize the colloid from the Ostwald ripening observed when no polymer was added. No sensitivity tests have been reported about any nano-powder which could be obtained from those colloidal suspensions.

2.2.10 Light Amplification by Stimulated Emission of Radiation (LASER) Ablation

Gottfried et al. (2012) successfully produced for the first time nanoparticles of RDX using LASER ablation. Near-infrared, nanosecond pulsed LASER has been focused on military-grade RDX pellets: Scanning Mobility Particle Sizer (SMPS) and SEM analyses showed a particle size distribution around 64 nm for 200 mJ pulse and 75 mJ pulse.

2.2.11 Ultrasonic Spray Pyrolysis

Since the nineties, spray crystallisations and synthesis have been performed using several atomizers, and among them piezoelectric transducers (Messing et al. 1993; Okuyama et al. 2003). As a spray technique, the goal is to produce one particle per droplet, but here the crystallisation is controlled by the drying step, an oven just after the atomization. Kim et al. (2011a), Kim et al. (2011b),
and Spitzer et al. $(2011,2010)$ both developed an apparatus to produce dried submicrometer RDX from an ultrasonic transducer. After the droplet generation, the solvent is evaporated by thermal gradient applied on the flux pulled by a pump. Highly agglomerated particles $200 \mathrm{~nm}-500 \mathrm{~nm}$ were produced. Caoo et al. (2014a,b) used the same experimental setup with the exception of the addition of a thermal gradient in the furnace, in order to produce 78 nm FOX-7 particles, and submicron-sized CL-20:HMX cocrystals.

2.2.12 Spray Drying

The development of spray drying (Broadhead et al. 1992; Stein 1973) has been expanding since many years and has recently became a suitable commercial solution at both R\&D and industry scales to produce dried particles from microns to nanometres. The pyrotechnic community quickly discerned the advantages of this simple technique to process energetic compounds as pure and composite materials.

The process sprays a solution containing a dissolved compound or particles in suspension into a hot gaseous stream (air or nitrogen) thus crystallising into particles and/or drying the granules. van der Heijden et al. (2008) has proven that spray drying is able to crystallise finer RDX particles ("from 400 nm and larger") than their technique of precipitation into anti-solvent ($1 \mu \mathrm{~m}$ to $10 \mu \mathrm{~m}$). Qiu et al. studied the crystallisation of energetic compounds using the spray drying with ultrasonic (Qiu et al. 2011) or pneumatic (Qiu et al. 2012) nozzle or with both type of nozzles (Qiu et al. 2015b). All their experiments were done with the addition of Polyvinyl acetate (PVAc) and resulted in micron or submicronsized hollow spheres made of nano primary particles; the smallest ones were estimated at 20 nm for RDX/PVAc made from a pneumatic nozzle with a mean droplet size of around $7 \mu \mathrm{~m}$. The versatility of the process allows the production of energetic composites (coating of TATB on micron-sizedHMX, RDX or CL-20 by Ma et al. (2015)), energetic/elastomer composites (micron-sized CL-20/EPDM by Ji et al. (2015), micron-sized spheres of agglomerated HMX/Viton by Shi et al. (2015)), and even cocrystals (micron-sized spheres of agglomerated HMX/TNT by Li et al. (2015b)).

2.2.13 Spray Flash Evaporation (SFE)

Risse and Spitzer at the NS3E laboratory developed an innovative process after experimenting the limitations of the Ultrasonic Spray Pyrolysis method: beyond the inherent risk of using a high voltage electrostatic precipitators for energetic powders, the rate of evaporation of droplets is too low to avoid agglomeration and to crystallise submicrometer particles. Risse (Doctoral Thesis 2012) and Risse
et al. (2012) used the flash-evaporation behaviour of droplets to dramatically reduce the life time and the size of droplets. The compound is dissolved in a volatile solvent and that solution is heated just before being sprayed into vacuum, where the crystallisation is triggered by the sudden temperature depression and the solvent evaporation. The process is discussed in more details in Section 2.4.2.

An unconventional application of nanosized explosives used at the NS3E laboratory is the synthesis of nanostructured material by detonation. Pichot et al. (2015) and Pichot et al. (2013) demonstrated that smaller nano diamonds are generated from the detonation of $n-T N T / R D X$ composites produced by SFE than from a physical mixing of micron-sized commercial TNT and RDX.

2.3 Discussion on production methods

The smallest size of RDX is either obtained from wet techniques, or from smallscale approaches which cannot be transferred to industry (PVD and LASER). Even if PVD has been successfully used in the semiconductor sector for our everyday electronic devices since decades, PVD for energetic material will never be able to reach a production of several hundred of grams per hour. However, PVD is perfectly suitable for the current trend to create "pyrotechnic integrated circuits". Femto second LASER ablation is used for nanoparticles synthesis of metal in solution at the laboratory scale; the colloids produced are found to be extremely stable. Used in dried conditions, a deposit of nanoparticles on a substrate could be obtained from a gas flow, or a dried powder could be collected within a cyclonic separator: this LASER technique has been used to cut high energetic material quite safely (Roeske et al. 2003) but nanoparticles production would be severely limited to high-added-value industrial applications due to low production rate and high operation cost. Besides those two aspects, neither methods would process advanced composites - with a binder for instance - or would be able to do concomitant or cocrystallisation.

The production of nanoparticles through wet techniques has became a common industrial chemical process. The Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) European project aims to increase the production rate of a continuous hydrothermal process from 1-10 tons/annum to 100 tons/annum of inorganic nanomaterials (Charitidis et al. 2014). Tsuzuki (2013) statistically studied which method for inorganic nano synthesis are mostly used in industry: vapour (39 \% mainly Chemical Vapor Deposition (CVD)) and liquid (45 \%) phase synthesis are the main type of techniques. Patents or historic skills of the brand can restrain the choice of a technology, so such data should not be taken as indicators of the robustness or versatility of the method. Considering such wide adoption of wet techniques (Sheth et al. 2012) and the knowledge from

Process	working pres- sure(s)	heating $\left({ }^{\circ} \mathrm{C}\right)$	continuous	scale-up	limiting step(s)	smallest size ${ }^{1}$
Sol-Gel	atmo	no	no	-+	matrix, drying	100-150 ${ }^{2}$
Antisolvent	atmo	70	could be	-	injection, drying	38
Milling	atmo	cooling	no	+	drying	160^{3}
PVD	$10^{-4} P a^{*}$	100-200	no	-	vacuum	50
Electrospray	atmo	no	could be	-	mass flow, electric field	400
ASES	12 MPa	yes and cooling	no	-	sCO_{2}	microns
SEDS	$35 \mathrm{MPa*}$	yes	no	-	sCO_{2}	microns
RESS	$\begin{gathered} 35 \mathrm{MPa} \\ \rightarrow 0.1-5 \\ \mathrm{MPa} \end{gathered}$	yes and cooling	could be	-+	sCO_{2}	200
RESS- AS	35 MPa \rightarrow atmo	25	could be	-+	$\begin{aligned} & \mathrm{sCO}_{2} \\ & \text { drying } \end{aligned}$	30^{4}
LASER	atmo	no	no	-	mass flow	64
Ultrasonic	atmo	50-150	could be	-+	transducer	200-500
Spray drying	atmo	50-100	could be	++	evaporation ratio	400
SFE	$\begin{gathered} 5 \mathrm{MPa} \rightarrow \\ 5 \mathrm{mbar} \end{gathered}$	150	yes	++	vacuum	300

Table 2.3 - Comparison . ${ }^{1}$ smallest pure RDX mean size reported in nm $\left.\right|^{2}$ XRD measurement | ${ }^{3}$ freeze dried from a 64 nmRDX slurry | ${ }^{4}$ from DLS, no report about dried state | "Not available in the references, so the value is based on usual operating conditions | sCO SO_{2} : supercritical carbon dioxide
chemical engineering - homogenization in large reactor, processing of liquid flow, versatility, safety ... -, wet crystallisation methods are a logical choice to process organic materials. However, unlike inorganic and metal nanoparticles, organic matter is very sensitive to drying as we previously saw in Section 2.1.5; yet that delicate step is required since the reactivity of high energetic materials fully exhibits at the dried state. Freeze drying and supercritical drying seem to overcome kinetically and partially the crystal growth occurring. Only a complete growth inhibition will lead to the production of smaller nanoparticles under 100 nm from milling or anti-solvent/cooling crystallisation. From an industrial point of view, freeze or supercritical drying are batch-only processes; all current industrial drying process are not designed to tackle down the fast growth of soft-matter. Innovative techniques such as spin freezing (L. De Meyer et al. 2015) or spray drying enhance the processability and potentially the performances, but their reliability need to be tested.

The ball-milling technique raises question about the purity of the product; it is well know that after such an extensive friction process, industrial milled ceramics are not used for hight purity chemical process (Carter et al. 2013). Industry moved to other techniques such as vapour phase ones, to overcome that limitation and others like the lake of control, local heating etc. Even with soft matter, similar issues can be expected; even small quantities of metallic impurities could catalyse the degradation of the explosive and/or sensitize it.

After 25 years of research and 10 years of process engineering, the SuperCritical Fluid (SCF) technology has never convinced the industry and only marginal uses for specific commercial drug products have been reported (Sheth et al. 2012). First, the choice of the gas at industrial scale is falling back to CO_{2} due to safety and affordability criteria. For instance, gases such as nitrous oxide or ethane have low critical values, but explosive mixtures can be generated. Trifluoromethane is inert, non-flammable and is usually a better solvent but is way more expensive than CO_{2} and a potent greenhouse gas. Second, the main limitation -the solubility into sc- $\mathrm{CO}_{2}-$ can be overcome by the addition of organic cosolvent: such modification alters the environmentally safe nature of sc- CO_{2} based SCF and complicates the process by the need to remove any residual organic solvents. The aggregation phenomenon is commonly observed in SCF processes; further investigations on the role of different particle collection environments are needed, but RESS-AS processes greatly avoid the particle aggregation. The use of a liquid anti-solvent with polymeric stabilizers has been found to be very effective. However, it compromises the recovery of a dry pure powder, going back to square one with the drying issues previously discussed.

Spray techniques are commonly used in the industry, such as micro-encapsulation massively used for food (Gibbs et al. 1999; Madene et al. 2006), spray drying in
pulmonary drug delivery for production of uniform and breathable size particles (Bhavesh B. Patel et al. 2014) or even thermal spray deposition of metallic material (Lavernia et al. 2009). Spraying is a method which allows easy implementation of an installation and easy direct control over the injection. However, because of the low technological cost of atomizing nozzles and the low control over the spray itself, details and know-how are much more important than for other processes. Direct spray drying as crystallisation technique for RDX does not produce submicron-sized particles without the help of an additive and the SCF techniques are not suitable for industry: the need for an intermediate method in terms of pressure and temperature leads to the creation of the Spray Flash Evaporation technique, especially tailored for crystallisation. SFE operates from 40 to 100 bars with an RDX solubility in acetone around $5 \mathrm{wt} \%$, whereas sc- CO_{2} is formed from 74 bar to 500 bars for a solubility from null to $0.025 \mathrm{wt} \%$.

2.4 The Spray Flash Evaporation Technique

2.4.1 Theoretical Insights on the SFE technology

Flash Evaporation The flash evaporation is the physical phenomenon occurring when the boiling point of a liquid is lower than its actual temperature, due to a sudden drop of pressure and/or a quick increase of temperature. The excess of heat is instantly converted into latent heat of vaporization, cooling both liquid and vapour down to the saturation temperature. Multi Stage Flash (MSF) evaporators of static water have been used since the middle of the $\mathrm{XX}^{\text {th }}$ century ("Combined flash and vapor compression evaporator" 1956; "Flashtype distillation system" 1959; "Method of and apparatus for flash evaporation treatment" 1957) with yield of around $100 \mathrm{~m}^{3}$ per day, receiving a growing interest mainly from the US West Coast (Resources 1969) and Japan (national research program "seawater desalting and by product recovery" launched in 1969, (Sawa et al. 1976)). Current applications are extended from solution concentration such as in wine industry (Sebastian et al. 2002) to heat dissipation of electronic chips and LASER devices (Cheng et al. 2016).

Flash Evaporation of Superheated Liquid Jet Brown and York (Brown et al. 1962) found a critical temperature above which the liquid jet was burst by rapid bubbling. They injected water up to 13 bar through simple single-hole nozzles with a minimal diameter of $500 \mu \mathrm{~m}$ into ambient pressure. The linear mean droplet sizes were found to follow a linear variation of temperature. Then in 1981, Miyatake et al. were pioneers in the field of flash evaporation and published the

(a) Two different disruptions in flashing water jets enlarged 10X from Brown et al. (1962)

(b) Flashing water jets under various superheating from Miyatake et al. (1981a)

Figure 2.2 - Flashing in water liquid jet
first known articles about spray flash evaporation with superheating (Miyatake et al. 1981a,b), after studying flash evaporation from water pool (Miyatake et al. 1972). Many technical limitations restricted their studies for current issues: only straight-lined liquid jets were studied with basic optical techniques where the smallest drops and bubbles could not be indexed. However, Miyatake et al. (1985) interestingly used electrolysis to generate more bubbles into a flashing water jet. Nowadays, not many laboratories still investigate flashing liquid jets; Günther et al. (2013) characterized with modern techniques flashing liquid jets and noticed the formation of bubbles inside a glass nozzle for high superheating. They also demonstrated that a simple acoustic measurement can be used to monitor the atomization of superheated liquids. The current application of flashing liquid jet is the improvement of MSF desalination processes of sea water (Ikegami et al. 2006; Miyatake et al. 2001); a much higher evaporation rate is obtained in contrast to static flash evaporator where the rate is surface dependent.

Figure 2.3 - Empirical diagram of the evaporation of a water drop (Owen et al. 1991)

Flash Evaporation of Droplets Specific studies on the flashing phenomenon are rare. Owen et al. (1991) investigated that specific form of evaporation on isolated drops. A superheat of $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ triggers only surface evaporation,
then boiling occurs at higher superheat. Flashing is triggered for superheat from $18^{\circ} \mathrm{C}$ to $24^{\circ} \mathrm{C}$ for drop of $1 \mathrm{~mm}-3 \mathrm{~mm}$ and larger drops flash more readily as illustrated in Figure 2.3. Since flash evaporation is closely related to cooling, many theoretical approaches start with a simplified model without superheating: Shin et al. (2000), Satoh et al. (2002) thoroughly described the evaporation behaviour of a water droplet in an abruptly evacuated atmosphere leading to its solidification. Sobac et al. (2015) developed a comprehensive model of the evaporation of a liquid spherical drop but not yet applicable to extremely small droplets as in flashing spray.

Interesting studies close to our SFE process came from Gebauer et al. (2012, 2015a,b, 2016). In their system, a pressurized superheated liquid is atomized through an hollow cone nozzle into a low pressure chamber and micron-size particles are recovered. However, only a partial evaporation occurs and leads to further crystal growth during the flying time and into the sump collected in the bottom of the crystalliser.

2.4.2 Comprehensive description of SFE

Figure 2.4 - SFE installation as patented and used in this present work
Figure 2.4 is a schematic diagram of the process, where the high pressure part is the red zone and the low pressure one in blue. One storage tank (4) is filled with technical grade solvent and is used for pre-heating, cooling and washing. The other tank (1) is filled with the solution containing the compound(s) to recrystallize. Both are closed and pressurized with compressed nitrogen at the pre-expansion pressure. Hydraulic tubes bring the fluid inside the atomization chamber; there, a heating jacket superheats the liquid, with a regulation made of thermocouple plugged to a Proportional-Integral-Derivative (PID) controller.

The superheated fluid is sprayed by a hollow cone nozzle (3) into the atomization chamber under a vacuum below 10 mbar. Details can be seen in Figure 2.5: the tip of the thermocouple (type $K \varnothing 1.5 \mathrm{~mm}$) measures the temperature after the heating jacket and just before the nozzle mounted on a full flow quick coupling.

Figure 2.5 - Schematic insight of the nozzle and its heating system; from left to right, rear view, longitudinal cross-section and front view.

The gaseous flow from the evaporation and the recrystallized product is pumped to a cyclonic separator. The cyclones are made from the description of (Chen et al. 2006) who found a cut-off diameter of $21.7 \mathrm{~nm}-49.8 \mathrm{~nm}$ in their work. A glass flat flange reaction vessel allows to gather the powder easily as it can be seen in Figure 2.6. Each cyclone unit can be isolated from the vacuum to allow the recovery of the product from one unit and the continuous separation inside the other: the two cyclones in parallel ensure the continuous functioning of the process at any flow rate.

At the end, the flow of gaseous solvent passes through a $35 \mathrm{~m}^{3} / \mathrm{h}$ vacuum pump; a condenser after the pump can recover the solvent for industrial installations.

The standard operating conditions are 40 bar of inlet pressure and $160^{\circ} \mathrm{C}$ at the hollow cone nozzle with an orifice diameter of $60 \mu \mathrm{~m}$.

The maintenance and constant improvements of several SFE installations took a significant part of this research project. The reliability, robustness, ergonomic and life-cycle of the process have been extended by replacing hydraulic and vacuum parts, by understanding phenomena, by developing on-line metrology and by stimulating the necessary feedback and cooperation between the various SFE users at NS3E.

2.4.3 Versatility of the SFE

Depending on the solute and the desired particle size range, the SFE can be adapted by changing the following parameters:

Figure 2.6 - System for the product recovery: in orange the cyclonic separator for vacuum and in gray the interchangeable vessel.

Type of solvent The most suitable solvents for SFE are low-boiling solvents with a high molar heat capacity. For easy handling and recovery, the solvents should have a boiling point in the range of $30-70^{\circ} \mathrm{C}$.

Superheating temperature The superheating temperature is proportional to the mass flow and the fluid properties. An increased superheating temperature enables higher evaporation rate.

Pre-expansion pressure The pre-expansion pressure has to be above the vapour pressure of the superheated solvent and compatible with nozzle diameter and type. The droplet size is also known to decrease at higher pressure.

Saturation pressure and temperature Saturation pressure and temperature of the spray cone in the atomization chamber depend mostly on the performance of the vacuum pump.

Nozzle diameter For most nozzles types like hollow cone nozzles, full cone nozzles, or flat jet nozzles, a decreasing orifice diameter decreases the
droplet size, but increases the pre-expansion pressure.

Besides the innovative applications of nano energetic materials such as the synthesis of ultra-fine nano diamonds (Pichot et al. 2015; Pichot et al. 2013) and reactivity enhancement (Comet et al. 2015), the SFE versatility allows the crystallisation at a submicron or nano scale of a wide range of organic compounds. In particular, cocrystals of medical materials are of interest for drug enhancement and were successfully processed through SFE at the nano scale (Spitzer et al. 2014). Inorganic nanoparticles were also produced at the nanoscale through SFE. ZnO was crystallised from the precursor zinc acetate dihydrate dissolved in ethanol with addition of water. From early experiments, nano primary particles of 20 nm were found to be agglomerated in sub-size structures, whereas the slightly larger nanoparticles were found much less agglomerated using the classical wet method. However, the SFE clearly demonstrated the feasibility of faster and quite efficient crystallisation of inorganic particles from precursors. Le Brize et al. (2016) processed energetic composite materials by SFE: a submicron structuration was evidenced from SEM pictures and an higher degree of chemical interaction was also found from Infrared (IR) and Raman spectra.

2.5 Scientific goals of the thesis

2.5.1 Particle Size Reduction

The first main goal of the project is to reduce further the particle size. During his PhD, Risse studied the effects of the superheating temperature, the inlet pressure, the ratio of MTBE/acetone as solvent, the nozzle diameter and the RDX-concentration. At higher superheating temperature and pressure, the droplets are likely smaller which leads to a noticeable decrease of the particle size. However, the role of solvent was not clarified; furthermore, both nozzle diameter and RDX-concentration need to be correlated with the inlet mass flow and the real superheating temperature - which is the difference between the spray and the inlet liquid - should have been monitored and kept constant. To reduce the particle size, the degree of supersaturation has to be controlled in both space and time resolution. Globally, we can distinguish two main approaches, a chemical one and a more physical one. On the chemical route, polymeric additives are studied to control the nucleation and growth steps. On the other side, different conditions of crystallisation are studied by a mixture of an anti-solvent and a solvent, and also by 'in-spray interactions' where two nozzles with overlapping spray patterns are used.

2.5.2 SFE understanding

The crystallisation by SFE results from deep and complex interactions between several physicochemical phenomena. That intricacy is illustrated by the mapping in Figure 2.7. While many parameters are involved, a few bottlenecks emerge: the volume of droplets, the degree of supersaturation and the time of the primary nucleation are keys to achieve a perfect control of the final particle size under flash-evaporation conditions. Therefore, the effort on in situ measurement for SFE technology is focused on those observable variables. In the meantime, other parameters has been changed such as the solvent type to influence the supersaturation and the nucleation time by additives.

2.6 Summary of the Chapter

Many crystallisation processes have been applied on RDX and similar energetic organic crystals. The smallest size of RDX is either obtained from wet techniques, or from small-scale approaches which cannot be transferred to industry (PVD and LASER). Finally, the Spray Flash Evaporation (SFE) process is a well balanced method between spray drying unable to process particles lower that the micrometer, and the expensive batch Rapid Expansion of Supercritical Solutions (RESS) process. The SFE relies on the superheating of a solvent sprayed into vacuum and thus flashing. The pressurization of the liquid before the injection provides the stability for the spray pattern and also for the overheated liquid. The flash evaporation is the physical phenomenon occurring when the boiling point of a liquid is lower than its actual temperature, due to a sudden drop of pressure and/or a quick increase of temperature. The excess of heat is instantly converted into latent heat of vaporization, thus provoking the fragmentation of the droplets called "flash". This allows formation of smaller crystallisation reactors (droplets) with a very high rate of evaporation therefore achieving smallest particle size.

From particle size and shape many properties are resulting such as the surface related ones for catalysis but also more physical one like the apparent density and the critical diameter for explosives. However, the definition of a particle is subject to variation; a real powder may be formed of macroscopic soft agglomerates of micron-sized hard agglomerates of nano primary particles. Therefore each characterization technique measures an unique mean distance depending of the physicochemical phenomena involved and the response of the sample. The following explains the characterizations previously in use at NS3E, their scientific criticism through analytical studies and the new methods applied.

Figure 2.7 - Intricacy of the parameters and phenomena involved in the particle crystallisation by the SFE process.

Bibliography

1. Anniyappan, Marimuthu, Sanjeevani Hemanth Sonawane, Sujeet Kumar Shee, and Arun Kanti Sikder (2015). "Method of Producing Uniformly Shaped and Sized Particles of 2,4,6-Triazido-1,3,5-triazine by Emulsion Crystallization". In: Central European Journal of Energetic Materials.
2. Bayat, Y., M. Zarandi, P. Khadiv-Parsi, and A. Salimi Beni (2015). "Statistical optimization of the preparation of HNIW nanoparticles via oil in water microemulsions". In: Central European Journal of Energetic Materials 12.3, pp. 459-472. Issn: 1733-7178.
3. Bhavesh B. Patel and Jayvadan K. Patel and Subhashis Chakraborty (2014). "Review of Patents and Application of Spray Drying in Pharmaceutical, Food and Flavor Industry". In: Recent Patents on Drug Delivery \& Formulation 8.1, pp. 63-78. Issn: 1872-2113/2212-4039. DoI: $10.2174 / 1872211308666140211122012$.
4. Broadhead, J., S. K. Edmond Rouan, and C. T. Rhodes (1992). "The spray drying of pharmaceuticals". In: Drug Development and Industrial Pharmacy 18.11-12, pp. 11691206. DoI: $10.3109 / 03639049209046327$.
5. Brown, Ralph and J. Louis York (1962). "Sprays formed by flashing liquid jets". In: AIChE Journal 8.2, pp. 149-153. IssN: 1547-5905. DoI: 10.1002/aic. 690080204.
6. Carter, C. Barry and M. Grant Norton (2013). Ceramic Materials. New York, NY: Springer New York. ISBN: 978-1-4614-3522-8 978-1-4614-3523-5.
7. Charitidis, Costas A., Pantelitsa Ceorgiou, Malamatenia A. Koklioti, Aikaterini-Flora Trompeta, and Vasileios Markakis (2014). "Manufacturing nanomaterials: from research to industry". In: Manufacturing Review 1, p. 11. ISsN: 2265-4224. DoI: 10.1051/mfreview/ 2014009.
8. Chen, Sheng-Chieh and Chuen-Jinn Tsai (2006). "An axial flow cyclone to remove nanoparticles at low pressure conditions". In: Journal of Nanoparticle Research 9.1, pp. 71-83. ISSN: 1388-0764, 1572-896X. DoI: 10.1007/s11051-006-9152-z.
9. Cheng, Wen-Long, Wei-Wei Zhang, Hua Chen, and Lei Hu (2016). "Spray cooling and flash evaporation cooling: The current development and application". In: Renewable and Sustainable Energy Reviews 55, pp. 614-628. Issn: 1364-0321. DoI: 10.1016/j.rser . 2015.11.014.
10. "Combined flash and vapor compression evaporator" (1956). W.E. Porter and B.F. Smith. US Patent 2,759,882.
11. Comet, Marc, Cédric Martin, Martin Klaumünzer, Fabien Schnell, and Denis Spitzer (2015). "Energetic nanocomposites for detonation initiation in high explosives without primary explosives". In: Applied Physics Letters 107.24, p. 243108. Issn: 0003-6951, 1077-3118. DOI: 10.1063/1.4938139.
12. "Conditioning of finely divided crude organic pigments" (1984). US4451654 A. F. Graser and G. Wickenhaeuser.
13. Dabin, Liu, Xu Dong, and Zhao Baochang (1999). "Preparation of Nanometer RDX in Situ by Solvent Substitution Effect in Reverse Micelle". In: 26th, International pyrotechnics seminar. PROCEEDINGS OF THE INTERNATIONAL PYROTECHNICS SEMINAR. Nanjing University of Science and Technology, pp. 269-275.
14. Dixon, David J, Keith P Johnston, and Roland A Bodmeier (1993). "Polymeric materials formed by precipitation with a compressed fluid antisolvent". In: AIChE Journal 39.1, pp. 127-139.
15. Dou, Haiyang, Ki-Hoon Kim, Byung-Chul Lee, Jinkyu Choe, Hyoun-Soo Kim, and Seungho Lee (2013). "Preparation and characterization of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) powder: Comparison of microscopy, dynamic light scattering and field-flow fractionation for size characterization". In: Powder Technology 235, pp. 814-822. ISsN: 00325910. Dol: 10.1016/j.powtec.2012.11.042.
16. Essel, Jonathan T., Andrew C. Cortopassi, Kenneth K. Kuo, James H. Adair, Christopher G. Leh, and Thomas M. Klapoetke (2010). Synthesis of Energetic Materials by Rapid Expansion of a Supercritical Solution into Aqueous Solution (RESS-AS) Process. DTIC Document.
17. Essel, Jonathan T., Andrew C. Cortopassi, Kenneth K. Kuo, Christopher Cı. Leh, and James H. Adair (2012). "Formation and Characterization of Nano-sized RDX Particles Produced Using the RESS-AS Process". In: Propellants, Explosives, Pyrotechnics 37.6, pp. 699-706. ISSN: 07213115. DoI: 10.1002/prep. 201100139.
18. Fedoroff, Basil T. and Oliver E. Sheffield (1966). ENCYCLOPEDIA OF EXPLOSIVES AND RELATED ITEMS. VOLUME 3. PA-TR-2700-VOL-3. PICATINNY ARSENAL DOVER NJ, PICATINNY ARSENAL DOVER NJ.
19. "Finely dispersed carotenoid pigments prodn. - by dissolving carotenoid in a supercritical gas, pref. carbon di:oxide, and dispersing the soln. in an aq. colloidal matrix" (1981). DE2943267 A1. W. D. C. D. Best, F. J. D. C. Mueller, K. D. C. D. Schmieder, R. D. C. D. Frank, and J. D. C. D. Paust.
20. "Flash-type distillation system" (1959). B.H. Edwin. US Patent 2,908,618.
21. Frolov, Yu V., A. N. Pivkina, P. A. Ul'yanova, and S. A. Zav'yalov (2002). "Synthesis of Energy-Rich Nanomaterials". In: Combustion, Explosion and Shock Waves 38.6, pp. 709713. DOI: 10.1023/A:1021104714435.
22. Frolov, Yu. V., A. N. Pivkina, S. A. Zav'yalov, N. V. Murav'ev, E. A. Skryleva, and K. A. Monogarov (2010). "Physicochemical characteristics of the components of energetic condensed systems". In: Russian Journal of Physical Chemistry B 4.6, pp. 916-922. Issn: 1990-7931, 1990-7923. DoI: 10.1134/S1990793110060072.
23. Gallagher, Paula M., M. P. Coffey, V. J. Krukonis, and W. W. Hillstrom (1992). "Gas antisolvent recrystallization of RDX: formation of ultra-fine particles of a difficult-to-comminute explosive". In: The Journal of Supercritical Fluids 5.2, pp. 130-142.
24. Gao, Bing, Dunju Wang, Juan Zhang, Yingjie Hu, Jinpeng Shen, Jun Wang, Bing Huang, Zhiqiang Qiao, Hui Huang, Fude Nie, and Guangcheng Yang (2014a). "Facile, continuous and large-scale synthesis of CL-20/HMX nano co-crystals with high-performance by ultrasonic spray-assisted electrostatic adsorption method". In: J. Mater. Chem. A 2.47, pp. 19969-19974. ISSN: 2050-7488, 2050-7496. DoI: 10.1039/C4TA04979A.
25. Gao, Bing, Peng Wu, Bing Huang, Jun Wang, Zhiqiang Qiao, Guangcheng Yang, and Fude Nie (2014b). "Preparation and characterization of nano-1,1-diamino-2,2-dinitroethene (FOX-7) explosive". In: New Journal of Chemistry 38.6, p. 2334. Issn: 1144-0546, 1369-9261. DOI: 10.1039/c3nj01053h.
26. Gash, A E, R L Simpson, T M Tillotson, J H Satcher, and L W Hrubesh (2000). "Making nanostructured pyrotechnics in a beaker". In: Conference: International Pyrotechnics Seminars. Grand Junction, CO (US).
27. Gebauer, Jörn, Raffael Kaiser, and M. Kind (2012). "Flash-Kristallisation - Wirkungsmechanismen im Kristallisator und das Betriebsverhalten des kontinuierlichen Prozesses". In: Chemie Ingenieur Technik 84.11, pp. 1901-1910. Issn: 0009286X. DoI: 10.1002/cite. 201200021.
28. Gebauer, Jörn and Matthias Kind (2015a). "Experimental screening method for flashcrystallization". In: Chemical Engineering Science 133, pp. 75-81. Issn: 00092509. doI: 10.1016/j.ces.2014.12.034.
29. - (2015b). "Profiles of temperature, concentration and supersaturation within atomized droplets during flash-crystallization". In: Chemical Engineering and Processing: Process Intensification 91, pp. 130-140. ISSN: 02552701. DoI: 10.1016/j. cep.2015.03.012.
30. Gebauer, Jörn, Daniel Selzer, and Matthias Kind (2016). "Flash-Kristallisation". In: Chemie Ingenieur Technik 88.7, pp. 881-889. Issn: 1522-2640. Dol: 10.1002/cite. 201500148.
31. Cibbss, Bernard F, Selim Kermasha, Inteaz Alli, and Catherine N Mulligana (1999). "Encapsulation in the food industry: a review". In: International Journal of Food Sciences and Nutrition 50.3, pp. 213-224. Doו: 10.1080/096374899101256.
32. Gottfried, Jennifer L, Frank C De Lucia Jr, and Stephanie M Piraino (2012). Characterization of the Morphology of RDX Particles Formed by Laser Ablation.
33. Günther, A. and K.-E. Wirth (2013). "Evaporation phenomena in superheated atomization and its impact on the generated spray". In: International Journal of Heat and Mass Transfer 64, pp. 952-965. ISSN: 00179310. DOI: 10.1016/j.ijheatmasstransfer. 2013.05.034.
34. GUOO Qiu-xia (2006). "Preparation of RDX/Resorcinol-formaldehyde (RF) Nano-composite Energetic Materials by Sol-Gel Method". In:
35. Hannay, JB and James Hogarth (1879). "On the solubility of solids in gases". In: Proceedings of the royal society of London 30.200-205, pp. 178-188.
36. Ikegami, Yasuyuki, Hiroshi Sasaki, Tomotsugu Gouda, and Haruo Uehara (2006). "Experimental study on a spray flash desalination (influence of the direction of injection)". In: Desalination 194.1-3, pp. 81-89. ISSN: 0011-9164. DoI: 10.1016/j.desal.2005.10.026.
37. Ji, Wei, Xiaodong Li, and Jingyu Wang (2015). "Preparation and Characterization of CL20/EPDM by a Crystal Refinement and Spray Drying Method". In: Central European Journal of Energetic Materials.
38. Jin, Miaomiao, Gang Wang, Jingke Deng, Guoping Li, Muhua Huang, and Yunjun Luo (2015). "Preparation and properties of NC/RDX/AP nano-composite energetic materials by the sol-gel method". In: Journal of Sol-Gel Science and Technology 76.1, pp. 58-65. ISSN: 0928-0707, 1573-4846. DoI: 10.1007/s10971-015-3750-0.
39. Jung, Jennifer and Michel Perrut (2001). "Particle design using supercritical fluids: Literature and patent survey". In: The Journal of Supercritical Fluids 20.3, pp. 179-219. Issn: 0896-8446. Dol: 10.1016/S0896-8446(01)00064-X.
40. Kim, J. W., H. M. Shim, J. K. Kim, M. S. Shin, H. S. Kima, and K. K. Koo (2011a). "Effect Of Polyvinylpyrrolidone On Crystallization Of Rdx By Ultrasonic Spray". In: 18th International Symposium on Industrial Crystallization.
41. Kim, Jun-Woo, Moon-Soo Shin, Jae-Kyeong Kim, Hyoun-Soo Kim, and Kee-Kahb Koo (2011b). "Evaporation Crystallization of RDX by Ultrasonic Spray". In: Industrial E Engineering Chemistry Research 50.21, pp. 12186-12193. Issw: 0888-5885, 1520-5045. Dol: 10.1021/ie201314r.
42. Krukonis, Val (1984). "Supercritical Fluid Nucleation of Difficultto-Comminute Solids". In: Annual Meeting - American Institute of Chemical Engineers. cited By (since 1996)0.
43. Kumar, Raj, Prem F. Siril, and Pramod Soni (2014). "Preparation of Nano-RDX by Evaporation Assisted Solvent/Antisolvent Interaction". In: Propellants, Explosives, Pyrotechnics 39.3, pp. 383-389. IssN: 07213115. DoI: 10.1002/prep. 201300104.
44. Kumar, Raj, Prem Felix Siril, and Pramod Soni (2015). "Optimized Synthesis of HMX Nanoparticles Using Antisolvent Precipitation Method". In: Journal of Energetic Materials 33.4, pp. 277-287. IsSN: 0737-0652. DoI: 10.1080/07370652.2014.988774.
45. Kuo, Kenneth K., Jonathan T. Essel, and James H. Adair (2011). "Processing NanoSized Energetic Materials with Supercritical Fluid Precipitation Techniques". AFOSR Nanoenergetics and Combustion Dynamics Workshop.
46. L. De Meyer, P.-J. Van Bockstal, J. Corver, C. Vervaet, J. P. Remon, and T. De Beer (2015). "Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses". In: International Journal of Pharmaceutics 496.1. Special Issue on, pp. 75-85. IssN: 0378-5173. DoI: http://dx.doi.org/10.1016/j. ijpharm. 2015.05.025.
47. Lavernia, Enrique J. and T. S. Srivatsan (2009). "The rapid solidification processing of materials: science, principles, technology, advances, and applications". In: Journal of Materials Science 45.2, pp. 287-325. Issn: 1573-4803. dol: 10.1007/s10853-009-3995-5.
48. Le Brize, Axel and Denis Spitzer (2016). "Plasticization of Submicron-Structured LOVA Propellants by a Linear Dinitramine". In: Central European Journal of Energetic Materials 13.
49. Lee, Byoung-Min, Jin-Seong Jeong, Young-Ho Lee, Byung-Chul Lee, Hyoun-Soo Kim, Hwayong Kim, and Youn-Woo Lee (2009). "Supercritical Antisolvent Micronization of Cyclotrimethylenetrinitramin: Influence of the Organic Solvent". In: Industrial Eq Engineering Chemistry Research 48.24, pp. 11162-11167. Issn: 0888-5885, 1520-5045. Doו: 10.1021/ie900448w.
50. Lee, Byoung-Min, Dae Sung Kim, Young-Ho Lee, Byung-Chul Lee, Hyoun-Soo Kim, Hwayong Kim, and Youn-Woo Lee (2011a). "Preparation of submicron-sized RDX particles by rapid expansion of solution using compressed liquid dimethyl ether". In: The Journal of Supercritical Fluids 57.3, pp. 251-258. ISSN: 08968446. DoI: 10.1016/j. supflu.2011.03. 008.
51. Lee, Byoung-Min, Soo-Jung Kim, Byung-Chul Lee, Hyoun-Soo Kim, Hwayong Kim, and Youn-Woo Lee (2011b). "Preparation of Micronized β-HMX Using Supercritical Carbon Dioxide as Antisolvent". In: Industrial \& Engineering Chemistry Research 50.15, pp. 91079115. ISSN: 0888-5885, 1520-5045. DOI: 10.1021/ie102593p.
52. Li, Guoping, Menghui Liu, Ran Zhang, Lianhua Shen, Yazhong Liu, and Yunjun Luo (2015a). "Synthesis and properties of RDX/GAP nano-composite energetic materials". In: Colloid and Polymer Science 293.8, pp. 2269-2279. Issn: 0303-402X, 1435-1536. dol: 10.1007/s00396-015-3620-x.
53. Li, Hequn, Chongwei An, Wenjian Guo, Xiaoheng Geng, Jingyu Wang, and Wenzheng Xu (2015b). "Preparation and Performance of Nano HMX/TNT Cocrystals". In: Propellants, Explosives, Pyrotechnics, n/a-n/a. ISsN: 1521-4087. dol: 10.1002/prep. 201400175.
54. Li, Wenpeng, Ning Liao, Xiaohui Duan, Chonghua Pei, and Xiaoqing Zhou (2015c). "Investigation of nucleation kinetics and crystal defects of HMX". In: Crystal Research and Technology 50.7, pp. 505-515. IssN: 1521-4079. dol: 10.1002/crat. 201400425.
55. Lim, G. B., S. Y. Lee, K. K. Koo, B. S. Park, and H. S. Kim (1998). "Gas anti-solvent Recrystallization of Molecular Explosives under Subcritical to Supercritical Conditions". In: Proceedings of the 5th Meeting on Supercritical Fluids. Nice.
56. Liu, Jie, Wei Jiang, Fengsheng Li, Longxiang Wang, Jiangbao Zeng, Qing Li, Yi Wang, and Qing Yang (2014a). "Effect of Drying Conditions on the Particle Size, Dispersion State, and Mechanical Sensitivities of Nano HMX". In: Propellants, Explosives, Pyrotechnics 39.1, pp. 30-39. IssN: 1521-4087. DoI: 10.1002/prep. 201300050.
57. Liu, Jie, Wei Jiang, Qing Yang, Jian Song, Ga-zi Hao, and Feng-sheng Li (2014b). "Study of nano-nitramine explosives: preparation, sensitivity and application". In: Defence Technology 10.2, pp. 184-189. ISSN: 22149147. DoI: 10.1016/j.dt.2014.04.002.
58. Liu, Jie, Wei Jiang, Jiang-bao Zeng, Qing Yang, Yu-jiao Wang, and Feng-sheng Li (2013). "Effect of Drying on Particle Size and Sensitivities of Nano hexahydro-1,3,5-trinitro-1,3,5triazine". In: Defence Technology 10.1, pp. 9-16. Issn: 2214-9147. doו: 10.1016/j.dt. 2013.12.006.
59. Luo, Qingping, Chonghua Pei, Cuixiang Liu, Yongjun Ma, and Zhaoqian Li (2015). "Insensitive High Cyclotrimethylenetrinitramine (RDX) Nanostructured Explosives Derived from Solvent/Nonsolvent Method in a Bacterial Cellulose (BC) Gelatin Matrix". In: Nano 10.03, p. 1550033. IssN: 1793-2920, 1793-7094. DoI: 10.1142/S1793292015500332.
60. Ma, Zhigang, Bing Gao, Peng Wu, Jinchun Shi, Zhiqiang Qiao, Zhijian Yang, Guangcheng Yang, Bing Huang, and Fude Nie (2015). "Facile, continuous and large-scale production of core-shell HMX@TATB composites with superior mechanical properties by a spray-drying process". In: RSC Adv. 5.27, pp. 21042-21049. Issn: 2046-2069. DoI: 10.1039/C4RA16527F.
61. Madene, Atmane, Muriel Jacquot, Joël Scher, and Stéphane Desobry (2006). "Flavour encapsulation and controlled release - a review". In: International Journal of Food Science Technology 41.1, pp. 1-21. IssN: 1365-2621. DoI: $10.1111 / \mathrm{j} .1365-2621.2005 .00980$.x.
62. Matson, D.W., J.L. Fulton, R.C. Petersen, and R.D. Smith (1987a). "Rapid expansion of supercritical fluid solutions: solute formation of powders, thin films, and fibers". In: Industrial and Engineering Chemistry Research 26.11. cited By (since 1996)248, pp. 22982306.
63. Matson, D.W., R.C. Petersen, and R.D. Smith (1987b). "Production of powders and films by the rapid expansion of supercritical solutions". In: Journal of Materials Science 22.6. cited By (since 1996)56, pp. 1919-1928.
64. Mersmann, Alfons (2001). Crystallization technology handbook. CRC Press.
65. Messing, Gary L., Shi-Chang Zhang, and Gopal V. Jayanthi (1993). "Ceramic Powder Synthesis by Spray Pyrolysis". In: Journal of the American Ceramic Society 76.11, pp. 27072726. ISSN: 1551-2916. DOI: 10.1111/j.1151-2916.1993.tb04007.x.
66. "Method of and apparatus for flash evaporation treatment" (1957). E.T. Allen and K.T. Hanson. US Patent 2,803,589.
67. Mil'chenko, D. V., V. A. Gubachev, L. A. Andreevskikh, S. A. Vakhmistrov, A. L. Mikhailov, V. A. Burnashov, E. V. Khaldeev, A. I. Pyatoikina, S. S. Zhuravlev, and V. N. German (2015). "Nanostructured explosives produced by vapor deposition: Structure and explosive properties". In: Combustion, Explosion, and Shock Waves 51.1, pp. 80-85. Issn: 0010-5082, 1573-8345. DoI: 10.1134/S0010508215010086.
68. Miyatake, O., T. Tomimura, and Y. Ide (1985). "Enhancement of Spray Flash Evaporation by Means of the Injection of Bubble Nuclei". In: Journal of Solar Energy Engineering 107.2, pp. 176-182. IssN: 0199-6231. DoI: 10.1115/1.3267673.
69. Miyatake, O., T. Tomimura, Y. Ide, and T. Fujii (1981a). "An experimental study of spray flash evaporation". In: Desalination 36.2, pp. 113-128. Issn: 0011-9164. DoI: 10.1016/S0011-9164(00)88635-X.
70. Miyatake, O., T. Tomimura, Y. Ide, M. Yuda, and T. Fujii (1981b). "Effect of liquid temperature on spray flash evaporation". In: Desalination 37.3, pp. 351-366. Issn: 0011-9164. Doו: 10.1016/S0011-9164(00)88658-0.
71. Miyatake, Osamu, Yasushi Koito, Kotaro Tagawa, and Yasuhiro Maruta (2001). "Transient characteristics and performance of a novel desalination system based on heat storage and spray flashing". In: Desalination 137.1-3, pp. 157-166. ISsN: 0011-9164. DoI: 10.1016/ S0011-9164(01)00214-4.
72. Miyatake, Osamu, Kentaro Murakami, Yoichi Kawata, and Tetsu Fujii (1972). "Fundamental Experiments of Flash Evaporation". In: Bulletin of the Society of Sea Water Science, Japan 26.4, pp. 189-198. Dol: 10.11457/swsj1965.26.189.
73. Okuyama, Kikuo and I. Wuled Lenggoro (2003). "Preparation of nanoparticles via spray route". In: Chemical Engineering Science. 17th International Symposium of Chemical Reaction Engineering (IS CRE 17) 58.3-6, pp. 537-547. ISSN: 0009-2509. DoI: 10.1016/ S0009-2509(02) 00578-X.
74. Owen, I. and J. M. Jalil (1991). "Heterogeneous flashing in water drops". In: International Journal of Multiphase Flow 17.5, pp. 653-660. ISsN: 0301-9322. Doו: 10.1016/0301-9322(91)90030-7.
75. PANT, Arti, Amiya Kumar NANDI, Shireeshkumar Pralhad NEWALE, Vandana Prakash GAJBHIYE, Hima PRASANTH, and Raj Kishore PANDEY (2013). "Preparation and Characterization of Ultrafine RDX". In: Central European Journal of Energetic Materials 10.3, pp. 393-407.
76. Patel, Rajen B., Victor Stepanov, Sean Swaszek, Ashok Surapaneni, and Hongwei Qiu (2015). "Investigation of CL-20 and RDX Nanocomposites". In: Propellants, Explosives, Pyrotechnics, n/a-n/a. IssN: 07213115. dol: 10.1002/prep. 201500130.
77. Pichot, V., M. Comet, B. Risse, and D. Spitzer (2015). "Detonation of nanosized explosive: New mechanistic model for nanodiamond formation". In: Diamond and Related Materials 54, pp. 59-63. Issn: 09259635. Dol: 10.1016/j.diamond.2014.09.013.
78. Pichot, Vincent, Benedikt Risse, Fabien Schnell, Julien Mory, and Denis Spitzer (2013). "Understanding ultrafine nanodiamond formation using nanostructured explosives". In: Scientific Reports 3. Dol: 10.1038/srep02159.
79. Pivkina, Alla, Polina Ulyanova, Yurii Frolov, Sergey Zavyalov, and Joop Schoonman (2004). "Nanomaterials for Heterogeneous Combustion". In: Propellants, Explosives, Pyrotechnics 29.1, pp. 39-48. ISsN: 0721-3115, 1521-4087. doI: 10.1002/prep. 200400025.
80. Pourmortazavi, Seied Mahdi and Seiedeh Somayyeh Hajimirsadeghi (2005). "Application of Supercritical Carbon Dioxide in Energetic Materials Processes: A Review". In: Industrial \& Engineering Chemistry Research 44.17, pp. 6523-6533. Issn: 0888-5885, 1520-5045. Doו: 10.1021/ie0503242.
81. Qiu, Hongwei, Rajen B. Patel, Reddy S. Damavarapu, and Victor Stepanov (2015a). "Nanoscale 2CL-20•HMX high explosive cocrystal synthesized by bead milling". In: CrystEngComm 17.22, pp. 4080-4083. ISSN: 1466-8033. DOI: 10.1039/C5CE00489F.
82. Qiu, Hongwei, Victor Stepanov, Tsengming Chou, Ashok Surapaneni, Anthony R. Di Stasio, and Woo Y. Lee (2012). "Single-step production and formulation of HMX nanocrystals". In: Powder Technology 226, pp. 235-238. Issn: 00325910. dol: 10.1016/j.powtec.2012.04. 053.
83. Qiu, Hongwei, Victor Stepanov, Anthony R. Di Stasio, Tsengming Chou, and Woo Y. Lee (2011). "RDX-based nanocomposite microparticles for significantly reduced shock sensitivity". In: Journal of Hazardous Materials 185.1, pp. 489-493. issn: 03043894. doו: 10.1016/j.jhazmat. 2010.09.058.
84. Qiu, Hongwei, Victor Stepanov, Anthony R. Di Stasio, Ashok Surapaneni, and Woo Y. Lee (2015b). "Investigation of the crystallization of RDX during spray drying". In: Powder Technology 274, pp. 333-337. IssN: 00325910. DoI: 10.1016/j.powtec.2015.01.032.
85. Radacsi, Norbert (2012). "Process Intensification in Crystallization: Submicron Particle Generation Using Alternative Energy Forms". Dissertation. Mechanical, Maritime and Materials Engineering.
86. Radacsi, Norbert, A. I. Stankiewicz, Y. L. M. Creyghton, A. E. D. M. van der Heijden, and J. H. ter Horst (2011). "Electrospray Crystallization for High-Quality Submicron-Sized Crystals". In: Chemical Engineering \& Technology 34.4, pp. 624-630. Issn: 09307516. Doו: 10.1002/ceat. 201000538.
87. Redner, P., D. Kapoor, R. Patel, M. Chung, and D. Martin (2006). Production and Characterization of Nano-RDX. DTIC Document.
88. Regulation (EC) No 1907/2006 on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and setting up a European Chemicals Agency (2007).
89. Resources, California Dept of Water (1969). Desalting - state of the art. Sacramento: Available from Office of Procurement, Documents Section. viii, 56.
90. Reus, M.A., G. Hoetmer, A.E.D.M. van der Heijden, and J.H. ter Horst (2014). "Concomitant crystallization for in situ encapsulation of organic materials". In: Chemical Engineering and Processing: Process Intensification 80, pp. 11-20. ISsN: 02552701. DoI: 10.1016/j. cep.2014.03.016.
91. Reverchon, E., H. Kröber, and U. Teipel (2005). "Crystallization with Compressed Gases". In: Energetic Materials. Wiley-VCH Verlag GımbH \& Co. KGaA, pp. 159-182. ISBN: 978-3-527-60392-3.
92. Reverchon, Ernesto (1999). "Supercritical antisolvent precipitation of micro-and nanoparticles". In: The journal of supercritical fluids 15.1, pp. 1-21.
93. Risse, Benedikt (2012). "Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process".
94. Risse, Benedikt, Denis Spitzer, Dominique Hassler, Fabien Schnell, Marc Comet, Vincent Pichot, and Hervé Muhr (2012). "Continuous formation of submicron energetic particles by the flash-evaporation technique". In: Chemical Engineering Journal 203, pp. 158-165. ISSN: 1385-8947. DoI: 10.1016/j.cej.2012.07.032.
95. Roeske, Frank, Jerry Benterou, Ronald Lee, and Edward Roos (2003). "Cutting and machining energetic materials with a femtosecond laser". In: Propellants, Explosives, Pyrotechnics 28.2, pp. 53-57.
96. Rouquerol, J, D Avnir, CW Fairbridge, DH Everett, JM Haynes, N Pernicone, JDF Ramsay, KSW Sing, and KK Unger (1994). "Recommendations for the characterization of porous solids (Technical Report)". In: Pure and Applied Chemistry 66.8, pp. 1739-1758.
97. Satoh, Isao, Kazuyoshi Fushinobu, and Yu Hashimoto (2002). "Freezing of a water droplet due to evaporation-heat transfer dominating the evaporation-freezing phenomena and the effect of boiling on freezing characteristics". In: International Journal of Refrigeration 25.2, pp. 226-234. Issn: 0140-7007. Doו: 10.1016/S0140-7007 (01) 00083-4.
98. Sawa, Toshio, Kenkichi Izumi, and Sankichi Takahashi (1976). "Decarbonation characteristics of the packed tower and its effects on scale prevention in flash evaporation plants". In: Desalination 19.1, pp. 369-380. ISSN: 0011-9164. DoI: 10.1016/S0011-9164 (00) 88045-5.
99. Sebastian, Patrick and Jean Pierre Nadeau (2002). "Experiments and modeling of falling jet flash evaporators for vintage treatment". In: International Journal of Thermal Sciences 41.3, pp. 269-280. IssN: 1290-0729. DoI: 10.1016/S1290-0729(01)01315-1.
100. Shang, Feifei and Jinglin Zhang (2014). "A Successive and Scalable Process for Preparing Spherical Submicrometer-Sized RDX by the SEDS Process". In: Journal of Energetic Materials 32 (sup1), S71-S82. ISSN: 0737-0652. DoI: 10.1080/07370652.2013.829133.
101. Sheth, Pratik, Harpreet Sandhu, Dharmendra Singhal, Waseem Malick, Navnit Shah, and M. Serpil Kislalioglu (2012). "Nanoparticles in the Pharmaceutical Industry and the Use of Supercritical Fluid Technologies for Nanoparticle Production". In: Current Drug Delivery 9.3, pp. 269-284. Dol: 10.2174/156720112800389052.
102. Shi, Xiaofeng, Cailing Wang, Jingyu Wang, Xiaodong Li, Chongwei AN, Jiang WANG, and Wei JI (2015). "Process Optimization and Characterization of an HMX/Viton Nanocomposite". In: Central European Journal of Energetic Materials 12.3, pp. 487-495.
103. Shin, H. T., Y. P. Lee, and J. Jurng (2000). "Spherical-shaped ice particle production by spraying water in a vacuum chamber". In: Applied Thermal Engineering 20.5, pp. 439-454. ISSN: 1359-4311. DoI: 10.1016/S1359-4311(99)00035-6.
104. Sobac, B., P. Talbot, B. Haut, A. Rednikov, and P. Colinet (2015). "A comprehensive analysis of the evaporation of a liquid spherical drop". In: Journal of Colloid and Interface Science 438, pp. 306-317. ISSN: 00219797. DoI: 10.1016/j.jcis.2014.09.036.
105. Spitzer, D., B. Risse, F. Schnell, V. Pichot, M. Klaumünzer, and M. R. Schaefer (2014). "Continuous engineering of nano-cocrystals for medical and energetic applications". In: Scientific Reports 4. Dol: 10.1038/srep06575.
106. Spitzer, Denis, Christian Baras, Michael Richard Schäfer, Fabrice Ciszek, and Benny Siegert (2011). "Continuous Crystallization of Submicrometer Energetic Compounds". In: Propellants, Explosives, Pyrotechnics 36.1, pp. 65-74. Issn: 07213115. Doו: 10.1002/prep. 200900002.
107. Spitzer, Denis, Marc Comet, Christian Baras, Vincent Pichot, and Nelly Piazzon (2010). "Energetic nano-materials: Opportunities for enhanced performances". In: Journal of Physics and Chemistry of Solids 71.2, pp. 100-108. Issn: 00223697. doI: 10.1016/j.jpcs. 2009. 09.010.
108. Stein, W. A. (1973). "Spray Drying. An Introduction to Principles, Operational Practice and Applications". In: Chemie Ingenieur Technik 45.13, pp. 906-907. IssN: 1522-2640. DoI: 10.1002/cite. 330451311.
109. Stepanov, Victor (2003). "Production of nanocrystalline nitramine energetic materials by ress".
110. - (2008). "Production of nanocrystalline RDX by RESS: Process development and material characterization".
111. Stepanov, Victor, Venant Anglade, Wendy A. Balas Hummers, Andrey V. Bezmelnitsyn, and Lev N. Krasnoperov (2011). "Production and Sensitivity Evaluation of Nanocrystalline RDXbased Explosive Compositions". In: Propellants, Explosives, Pyrotechnics 36.3, pp. 240-246. ISSN: 1521-4087. DoI: 10.1002/prep. 201000114.
112. Stepanov, Victor, Venant Anglade, Andrei Bezmelnitsyn, and Lev N. Krasnoperov (2006). "Production and characterization of nanocrystalline explosive RDX". In: AIChE Annual Meeting, San Francisco, CA.
113. Stepanov, Victor, Lev N. Krasnoperov, Inga B. Elkina, and Xuyean Zhang (2005). "Production of Nanocrystalline RDX by Rapid Expansion of Supercritical Solutions". In: Propellants, Explosives, Pyrotechnics 30.3, pp. 178-183. Issn: 0721-3115, 1521-4087. DoI: 10.1002/ prep. 200500002.
114. Teipel, Ulrich, Ulrich Förter-Barth, Peter Gerber, and Horst H. Krause (1997). "Formation of particles of explosives with supercritical fluids". In: Propellants, explosives, pyrotechnics 22.3, pp. 165-169
115. Teipel, Ulrich, Hartmut Kröber, and Horst H. Krause (2001). "Formation of Energetic Materials Using Supercritical Fluids". In: Propellants, Explosives, Pyrotechnics 26.4, pp. 168-173. ISSN: 1521-4087. DoI: 10.1002/1521-4087(200110)26:4<168::AID-PREP168>3.0.CO;2X .
116. Tillotson, T. M., A. E. Gash, R. L. Simpson, L. W. Hrubesh, J. H. Satcher Jr, and J. F. Poco (2001). "Nanostructured energetic materials using sol-gel methodologies". In: Journal of Non-Crystalline Solids 285.1, pp. 338-345.
117. Tillotson, T.M., G.L. Fox, LB. Hrubesh, RL. Simpson, KW. Lee, KW. Swansiger, and LR. Simpson (1997). "Sol-Gel Processing of Energetic Materials". In: 5th International Symposium on Aerogels. Montpellier, France.
118. Tsuzuki, Takuya, ed. (2013). Nanotechnology commercialisation. Singapore: Pan Stanford Publ. 460 pp. ISBN: 978-981-4303-28-6 978-981-4303-29-3.
119. van der Heijden, Antoine E. D. M., Yves L. M. Creyghton, Emanuela Marino, Richard H. B. Bouma, Gert J. H. G. Scholtes, Willem Duvalois, and Marc C. P. M. Roelands (2008). "Energetic Materials: Crystallization, Characterization and Insensitive Plastic Bonded Explosives". In: Propellants, Explosives, Pyrotechnics 33.1, pp. 25-32. Issn: 07213115, 15214087. DoI: 10.1002/prep. 200800204.
120. Van der Heijden, A., J. ter Horst, J. Kendrick, K.-J. Kim, H. Kröber, F. Simon, and U. Teipel (2005). "Crystallization". In: Energetic Materials. Wiley-VCH Verlag GmbH \& Co. KGaA, pp. 53-157. ISBN: 978-3-527-60392-3.
121. Wuillaume, Anne, Arnaud Beaucamp, Frank David-Quillot, and Charles Eradès (2014). "Formulation and Characterizations of Nanoenergetic Compositions with Improved Safety". In: Propellants, Explosives, Pyrotechnics 39.3, pp. 390-396. Issn: 07213115. DoI: 10.1002/ prep. 201400021.

Chapter 3

Definition of Particle and Determination of the Particle Size Distribution of RDX processed by SFE

3.1 Size Measurement

3.1.1 Sensitivity of nano-organic energetic particles

A particle size distribution can be obtained through many methods: X-Ray Disc Centrifugation (XDC), Photon Correlation Spectroscopy (PCS), Differential Centrifugal Sedimentation (DCS), Laser Scattering (Dynamic or Static), Laser Doppler Electrophoresis, nitrogen adsorption (BET method), Differential Mobility Analysis (Scanning Mobility Particle Sizer), Phase Doppler Particle Analyzer, Electronic Microscopy, Atomic Force Microscopy etc. But only a few are suitable for organic nanoparticles. In molecular crystals, weak forces are holding the molecules together instead of covalent bonds for metals or oxide solids; therefore organic nanoparticles are much more sensitive to solvation issues. Water is commonly misused as an anti-solvent of RDX, whereas the few mg / L of solubility is enough to strengthen the growth of crystals through Ostwald ripening or to model a new crystal habit within a few hours or minutes. The liquid alkanes such as hexane are much more often used to precipitate active pharmaceutical ingredients in industry. Besides the solvation, all characterization methods from a colloid are measuring aggregates and agglomerates; some even measure a bigger diameter, a hydraulic one which includes one or several solvations or ionic layer depending of the technique.

In a dried state, measurements can be performed from an aerosol: LASER techniques such as Phase Doppler Analysis (PDA) suffer from a submicron limit of detection. The first stage of a Differential Mobility Analysis (DMA) technique is the neutralization of the aerosol from a radioactive source then particles are sorted by their mobility and so size, then counted by a Condensation Particle Counter (CPC); to overcome the size limitation, the CPS creates vapour from a working fluid (usually butanol, isopropyl alcohol, or water) which condenses onto the particles helping them grow in size and can be optically counted. It is important to notice that hard aggregates in aerosol can not be distinguished through DMA; surface area and volume can be corrected but the primary particle diameter has to be known already. However, DMA provides statistically significant and real time size distributions.

On static dried powder, particle size can also be extracted from BET theory by adsorption of a known gas. Diverse trials to investigate surface area and derive particle sizes from BET were found to be inefficient on n-RDX: no compromise between an appropriate degassing and a prevention of nanomaterial degradation and sintering could be established, due to high vacuum and heating that have to be applied on the sample (Section 1.4.2).

Direct particle observation should always be performed to verify the validity of the assumptions made from the other characterization techniques. Particle aggregation, particle morphology and degradation can be measured or at least reasonably estimated for particles under 50 nm . To reveal details at the nano scale, Atomic Force Microscopy is well suited for insulator nanoparticles. No energy is brought to the material but only a slight mechanical stress; imaging is performed at ambient temperature and pressure. Nevertheless, the tip is not a single point probe: the curvature radius and cone angle lower the heigh and also cause a "profile broadening" effect. Those side effects can be reduced by scanning in tapping mode and selecting a tip with a smaller radius to improve accuracy. However, a balance has to be found between the accuracy and the differential height that the tip can follow without being damaged. Therefore, when the particle size exceeds the hundreds nanometres, electron microscopy allows data acquisition on bigger areas in a minute.

3.1.2 AFM

3.1.2.1 Methodology

To overcome the difficulties encountered with SEM and to improve the accuracy, Atomic Force Microscopy is a good and obvious choice, especially when a laboratory has both apparatuses. For this reason, a standard procedure has been established prior to my arrival to measure particle size. To minimize the
roughness of the sample surface for an AFM tip, an original technique was introduced. The powder is pressed into pellets then its surface is flatten by the use of a rotary microtome.

A stainless steel tubular mould with an inner diameter of 4 mm is filled with the energetic material then closed with a stainless steel rod; the system is placed under a press where different weights can be hang on the extremity of a lever. The whole apparatus follows the pyrotechnic safety guidelines thanks to a mould with thick walls and a protective transparent screen. In this case, the mass of energetic materials is below 50 mg . The material is maintained under a pressure of 97 MPa for one minute, with transitions slowest as possible to avoid friction heat. Microtomy is done by a succession of cut thinner and thinner on one side of the pellet: five times $20 \mu \mathrm{~m}$, then five times $5 \mu \mathrm{~m}$ and finally five times $1 \mu \mathrm{~m}$ to remove superficial layers and have the smoothest surface. The quality of the surface preparation can be easily seen with the naked eye, by checking its great reflectivity.

The mean apparent density is $1.406 \pm 0.035 \mathrm{~g} / \mathrm{cm}^{3}$ from results reported in Table 3.1 which is in good agreement with densities from Pichot et al. (2015) and shows good reproducibility. The easy shaping of the powder into a cylindrical pellet is only possible thanks to the reduced particle size: pellets of the finer commercial available RDX with a PSD around $6.8 \mu \mathrm{~m}$ break apart (Spitzer et al. 2011). Moreover, pellet of n-RDX exhibits a glassy structure with transparency.

Height (mm)	Mass (mg)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
1.09	19.69	1.395
1.61	28.42	1.377
0.92	17.33	1.462
1.56	28.04	1.395
2.08	38.89	1.451
1.50	26.23	1.357

Table 3.1 - Several apparent densities of pellets pressed at 97 MPa.

The analysis of height fields obtained by AFM is then made through a semi automatic process with the free and open source software Gwyddion (Nečas et al. 2012). Giwyddion is a modular program for SPM (Scanning Probe Microscopy) data visualization and analysis. It has been chosen thanks to its large number of data processing functions, including all the standard statistical characterization, the levelling and data correction, the filtering or grain marking functions. Among them, the watershed algorithm allows the detection of particles by local minima determination then image segmentation. The grain size analysis is made through several steps:

Grain localisation process the surface is inverted - hills become valleys - then virtual water drops are placed on each point. Then drops fall to the closest local minimum, following the steepest descent. The process is repeated and accumulated drops are forming lakes. Those small lakes filling the inverted surface depressions are the position of grains.

Segmentation While the drops are filling the surface, if a lake touches another one, they are merged in the previous step. In the segmentation step, drops are again falling but the growing lakes are not merged and their border is refined. The quality of grain boundary depends on the drop size set but computing time increases when the drop size is smaller.

Visual checking and corrections The software allows manual marking of grains and several contrast improvements to control and correct the results from the watershed method. The phase and amplitude channels can also help to determine the validity of a grain boundary.

PSD and fitting The software allows the direct display for the PSD but also can export the results. The diameter of a grain is computed from the diameter of a disc with the same surface area. A frequency count on the diameters renders the raw PSD; then the curve is fitted with a log-normal distribution function. Gaussian fitting is in poor accordance. Therefore, the PSD is generated by many small random effects that are multiplicative for the log-normal distributions (Limpert et al. 2001)

3.1.2.2 Effect of the concentration on the particle size

During his PhD in our laboratory, Risse studied the RDX concentration from $0.5 \mathrm{wt} \%$ to $2 \mathrm{wt} \%$ in acetone; as the concentration increases, the particle size decreases and so the specific surface increases. This can be linked to the increase of the degree of supersaturation with the concentration, therefore triggering a high nucleation rate. In this context, the first work of my PhD project was to start studying the crystallisation process and so the degree of supersaturation by extending that previous work.

SFE parameters were chosen from the optimized operating conditions: the nozzle temperature is set at $160^{\circ} \mathrm{C}$, the inlet pressure at 40 bar and the nozzle is an hollow cone one with a diameter of $60 \mu \mathrm{~m}$. The walls of the vacuum chamber from the nozzle to the cyclone are heated to $80^{\circ} \mathrm{C}$ to avoid any condensation and to reduce the losses of product by thermophoretic force. The solvent used for all the study is the same lot of acetone CHROMASOLV®, for HPLC, $\geq 99.9 \%$, from Sigma Aldrich. The same lot of RDX provided by Eurenco, labelled as M5, is used all along this study and this PhD project.

Figure 3.1 - Watershed analysis illustrated on simulated 200 nm spheres.

PSDs are determined by the previously mentioned method on pellets. XRD is also performed in order to calculate the apparent volume weighted domain size from the Scherrer equation as described in Section 1.4.2 p. 49. The sensitivity of the energetic powders is also quantified in order to investigate an eventual link with the mean particle size and crystallite size. Also the results are reported in Figure 3.2.

A parabolic trend could be interpreted from Figure 3.2e. However, the statistical significance of the result should be first performed. Thus, statistical analysis are made from the software GraphPad Prism 5 to compare mean particle size obtained from AFM pictures from one concentration to another. Table 3.2 shows that globally these means are not significantly different. Table 3.3 compares mean to each other and still no significance has been found.

The concentration of RDX in solution up to values close to the saturation does not influence the particle size according to the statistical analysis. Moreover, sensitivity remains constant among all samples: to up-scale the SFE process, such constant properties while increasing the RDX content is advantageous to increase the mass flow and so decrease the cost of the process.

The mean crystallite size is also always around 65 nm ; RDX particles are polycrystalline and the nucleation seems to be unchanged while changing concentration.

Figure 3.2 - Parametric study based on the variation of the concentration in solvent.

Figure 3.2 - Parametric study based on the variation of the concentration in solvent.

(e) Particle size against concentration

Figure 3.2 - Parametric study based on the variation of the concentration in solvent.

P value	0.5734
Are means signif. different? $(P<0.05)$	No
Number of groups	4
F	0.7087
R squared	0.2100

Table 3.2 - One-way analysis of variance on the particle size from AFM pictures.

Tukey's Comparison Test	Mean Diff.	q	Significant?	$95 \% \mathrm{Cl}$ of diff
1% vs 2%	-20	1.519	No	-79.64 to 39.64
1% vs 3%	21	1.681	No	-77.58 to 35.58
1% vs 4%	-6	0.4556	No	-65.64 to 53.64
2% vs 3%	-1	0.09076	No	-50.90 to 48.90
2% vs 4%	14	1.189	No	-39.35 to 67.35
3% vs 4%	15	1.361	No	-34.90 to 64.90

Table 3.3 - Tukey's multiple comparison test on the particle size from AFM pictures.

3.1.2.3 Reliability and accuracy

Risse also found that a crystallite size remained constant around 65 nm . However, the concentration had a significant influence on PSD from BET and SEM characterizations: the particle size decreased while the concentration increased. The mean particle size from SEM was $715 \pm 244 \mathrm{~nm}$ at $0.7 \mathrm{wt} \%$ and $408 \pm 175 \mathrm{~nm}$ at $2 \mathrm{wt} \%$: those values were much higher than the mean particle size obtained from the AFM method.

No statistical assessment was performed previously and the repeatability of the previously work is questionable. The difference between SEM and AFM was a scientific question previously discussed. The high vacuum decreases the thermal stability of the energetic compounds which also have a very low vapour pressure (3.30×10^{-9} Torr the vapour pressure of RDX at $25^{\circ} \mathrm{C}$ (Östmark et al. 2012)); it can be assumed that sublimation of the smallest particle leads to that significant difference in mean size. Sintering can also be strongly worsen by the energy brought by the electron beam.

To finally settle those long term doubts and question the reliability and accuracy of the pellet method, a parametric study was performed halfway across this PhD project thanks to the help of the ex-internship, currently PhD student, J-E Berthe. The uncertainty of the Watershed method was estimated and the following two key parameters were studied

- pressure applied
- microtomy

Uncertainty of the Watershed Method As implemented in the current version of Giwyddion (2.45), the Watershed Method suffers from a lack of optimization and synergy between the other correction tools of the software. To study the sole effect of the Watershed method, ideal AFM topographies of a virtual deposit of spherical particles were made through the build-in particle generator. In that way, all instrumental influence (AFM tip geometry, noise etc.) is totally suppressed as it can be seen from the Figure 3.1 p. 99.

Several tests were performed with different particle sizes, picture dimensions and surface sizes: values were taken from the AFM picture usually analysed. An alternative method introduced with the most recent updates was also tried: the threshold algorithm which relies on the height, slope and curvature parameters; those three options can be combined by union or intersection. The result of the algorithm is updated in real time but requires much more attempts. The Table 3.4 shows that the Watershed method is always more accurate than the threshold one due to more rigorous grain boundaries. However, the size is always minimized: this can be easily explained due to the boundary layer of
one pixel to mark grains. So the accuracy decreases with the particle size and the resolution since the missing pixels represent an higher relative area. As rule of thumb the mean particle sizes measured from AFM have to be increased by 10% for $1024 \mathrm{px} \times 1024 \mathrm{px}$ pictures and by 20% for $512 \mathrm{px} \times 512 \mathrm{px}$ pictures. The values reported in the previous study on the effect of the concentration are then corrected by 10%.

	particle radius	resolution	simul. area	method	nbr. of anal- ysed part.	measured radius	deviation from the initial radius
unit	nm	lines	$\mu \mathrm{m}$			nm	
trimmed	50	512×512	5×5	threshold	1445	36.75	27\%
	50	512x512	5×5	threshold	1406	36.75	27\%
	50	512x512	5×5	watershed	1474	40.25	20\%
trimmed	50	1024x1024	5×5	threshold	1477	40.75	19\%
	50	1024×1024	5×5	threshold	1416	40.75	19\%
	50	1024×1024	5×5	watershed	1539	44.25	12\%
trimmed	150	512×512	5×5	threshold	215	129.75	14\%
	150	512×512	5×5	threshold	177	129.75	14\%
	150	512×512	5×5	watershed	248	136.75	9\%
trimmed	150	1024x1024	5×5	threshold	214	133.75	11\%
	150	1024×1024	5×5	threshold	176	133.75	11\%
	150	1024×1024	5×5	watershed	235	137.5	8\%

Table 3.4 - Watershed and threshold method tested on simulated data; the 'trimmed' results mean that the grains at the edge of the picture are removed since they are probably trimmed. The Watershed algorithm add a one pixel boundary at the edges too, so trimmed grains cannot be removed easily.

Effect of the Pressure The press used for the compression of energetic materials consists of a lever supported by an hydraulic piston; at the extremity of the lever an hook allows to put several weights on it (from 5 kg to 97 kg), then the piston is actuated to slowly lower the lever thus forming the pellet. The pressure applied on the sample is calculated according to the weights applied; values are reported in Table 3.5.

In the results reported in Figure 3.3, the same face was always inspected by AFM (the upper one here) and microtomy was not applied. The scan surface is $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ in $1024 \mathrm{px} \times 1024 \mathrm{px}$. In Figure 3.3a clear drop of the mean size begins at 140 kg and then the value fluctuates around 90 nm : that change is

Weight (kg)	Pressure (MPa)
2	12
5	26
10	50
20	97
30	140
45	210
70	330
97	460

Table 3.5 - Weights used and their calculated corresponding pressures: the leverage follows the law $P=6 \cdot \frac{M}{A}+31$ where $A=\frac{\pi}{4} \cdot \varnothing^{2}$ with M the mass of the weight.
also observed in Figure 3.3b with a shift and a major broadening of the particle distribution. On the AFM pictures in Figures 3.3c and 3.3d, particles are hardly identifiable.

The results from samples processed by microtomy in Figure 3.4 also demonstrate that the pressure has a significant influence on particle size. In that case, the particle size is reduced further and further with increasing pressure. Above $97 \mathrm{MPa}(20 \mathrm{~kg})$, the pellets start to be too glassy for microtomy; due to the the great hardness, the pellet breaks apart when the blade hits the sample.

Raw micron-sizedRDX (M5 Eurenco) were also investigated; the pellets are much less cohesive and were not flatten by microtomy. However, at the highest pressure of 97 MPa , a similar breakage appears with a much lower particle size. Therefore the milling of n-RDX processed by SFE is much easier; for industry, it would be interesting to find a balance between optimization of the SFE conditions and an additional rough milling/mixing step. Also this effect would have an huge impact on energetic pressed charges.

Effect of the Microtome From the curves in Figures 3.3a and 3.4a, the microtomy reduces the size. The surfaces from samples pressed at 97 MPa and processed by microtomy (Figure 3.4e) are quite similar to the samples pressed above the critical pressure and not processed by microtomy (Figure 3.3e).

Pressure reduces the inter-granular void which increases compactivity and hardness. Therefore, the blade of the microtome needs more energy to penetrate the pellet and a surface milling occurs reducing further the particle size.

(c) $26 \mathrm{MPa}(5 \mathrm{~kg})$

(d) $97 \mathrm{MPa}(20 \mathrm{~kg})$

(e) $460 \mathrm{MPa}(97 \mathrm{~kg})$

Figure 3.3 - Effect of the weight; same face, no microtomy, $5 \mu m \times 5 \mu \mathrm{~m}$ for $1024 p x \times 1024 p x$, enhanced contrast.

Pressure (MPa)	Raw	With Microtomy
12		280
26	180	
50	170	230
97	235	140
140	100	
210	80	
330	110	
460	90	

Table 3.6 - Mean Diameters (nm) according to the pressure applied and the pre-treatment by microtomy; by SEM, the mean size is 500 nm .

Figure 3.4 - Effect of the weight; same face, processed by microtomy, $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ for $1024 p x \times 1024 p x$, enhanced contrast.

3.1.2.4 Conclusion on the AFM pellet method

The particle size variation when adding PVP or PolyEthylene Cilycol (PEG) studied from SEM in Chapter 5 where initially discovered from the analysis of pellets by AFM. The exact same trend from SEM was also found from AFM picture analysis whose results can be found in Table 3.7. However, instead of a particle size around 160 nm as found by direct imaging in SEM, a mean value around 70 nm is measured. The content of polymer seems to have no influence on how brittle is the energetic material since PEG samples also have an increasing size with the PEG content: those results show that not only the hardness of the material is a major parameter but also the initial size of the particles. This seems to be valid only when the pressure applied is below the critical pressure. Another interpretation would be that this critical pressure changes; for instance it could
have decreased for RDX/PVP samples, thus leading to one of the smallest PSD ever observed on RDX.

Compound(s)	Polymer content (wt\%)	Mean Diameter AFM (nm)
RDX/PVP40K	1	66
RDX/PVP40K	1	73
RDX/PVP40K	1	67
RDX/PVP40K	0,5	165
RDX/PEG400	1	965
RDX/PEG400	0,1	180

Table 3.7 - Particle size from pellet imaging by AFM of some samples at 97MPa with microtomy.

SEM pictures were taken from pellets made from n-RDX by the pressing technique mentioned above, in order to observe at larger scales their surface. After being pressed and imaged by AFM, the sample is cut in half to be analysed by SEM on one piece; the other is used as a reference.

Thanks to the results in Figure 3.5, the surface of pellets appear to have two different areas: linear grooves and holes. The holes let the inside of the pellet to appear from outside; those are rough and bumpy which is a problem for AFM. However, the particles seen from inside are very similar in size and shape to the ones observed from the loose powder. In the Figure 3.7, the particles inside have the same rounded shape as in the loose powder. On the contrary, the grooves are smooth and made from the smaller particles; those areas are perfect for landing an AFM tip and scan. The AFM method suffers so from an additional bias which is the area segregation. To land the tip, to initialize the scan and to have a correct AFM picture, the tip is moved until the scanning area is flat enough: the biggest particles inside the holes of the pellet are never investigated. Surfaces of pellets of energetic materials are not representative of the loose powder of the same material.

The comparison between AFM and SEM of the same sample clearly illustrates the reason behind the particle size difference between those two techniques. The press hardens the pellet, the microtome mills the surface and scanning by AFM selects the flattest area where the smallest particles lies.

Figure 3.5 - SEM imaging of a 97 MPa pellet of RDX processed with $5 w t \%$ of $P V P$ 40000.

Figure 3.6 - SEM and AFM imaging of a 97 MPa pellet of RDX processed with $5 w t \%$ of PVP 40000.

Figure 3.7 - SEM imaging of one hole of a 97 MPa pellet compared to the loose powder of the same sample of RDX processed with $5 w t \%$ of PVP 40000.

3.2 One Technique, One Size

3.2.1 XDR

3.2.1.1 Determination of the apparent volume weighted domain size

From an XRD pattern, many information can be extracted. The mean crystallite size can easily be calculated from the Scherrer equation, the strain inside the crystal is available from more advanced analysis such as Williamson-Hall, and the morphology of the crystallite can even be 3D-modeled from a fine Rietveld refinement.

The Scherrer equation is a quick method to determine the average coherence length, so it is widely used. However, the value is calculated from the broadening which is influenced by many other physical parameters such as the lattice strain. Williamson et al. (1953) defined a alternative method taking into account the strain contribution into the broadening. Explained in the Section 1.4.2 p. 49, the analysis relies on plotting $\beta \cos (\theta)$ as a function of $\sin (\theta)$ and fitting it to an affine function where the slope is directly related to the strain.

Results in Figure 3.8 show the attempt to fit five n-RDX samples crystallised through SFE in the same operative conditions. The sub-figure A, on the left, illustrates different approaches in measuring the Full Width at Half Maximum (FWHM) according to the angle: due to the poor accuracy of the peak per peak measurement (peak fit from Origin or manual peak marking in EVA), data seems to be linear in the range 0.1-0.2. This also explains the large difference with the Full Pattern Matching (FPM) analysis: FPM relies on the whole pattern allowing a large number of peaks to be analysed by an algorithm. The usual mathematical functions to fit XRD peaks are implemented in the code, and the software compares the experimental data to the theoretical hkl planes calculated from the space group. The FPM is therefore more accurate, computes a large dataset and has a real meaning. Our XRD diffractometer does not filter the $K_{\alpha 2}$ ray of the Cu source: so each peak is actually a double-peak. The FPM as implemented in Fullprof can fit the pattern knowing the peak position for each radiation thus deconvoluting each peak in two. The peaks shape was fitted with a Thompson-Cox-Hastings pseudo-Voigt convoluted with axial divergence asymmetry function (Finger et al. 1994).

In Figure 3.8, only two samples could have been fitted into a linear regression. The other three evolve into parabolas. Such diverging results clearly indicates that the Williamson-Hall theory does not describe accurately the peak broadening.

Figure 3.8 - Williamson-Hall of n-RDX processed by SFE at $2 w t \%$ in acetone.

3.2.1.2 Rietveld refinement

The Rietveld refinement allows the fine analysis of the crystals properties (size and strain according to several models, hkl shifts, asymmetry, preferred orientation etc.) but also a complete segregation with instrumental effects on the pattern.

In most implementation of the Rietveld method, to refine crystallite structures, the microstructure (size and strain) of each lattice is modelled by considering only an average crystallite size. Although this technique gives good results, it is important to notice that the real sample has a distribution of the crystallite sizes. Usually such models for the crystallite size approximate the crystallite shape with a sphere. Some even more complicated models consider a specific morphology of the crystallites. But, the best results for the average crystallite size are obtained by modelling its shape in the reciprocal space with an expansion of symmetrized spherical harmonics; then the corresponding crystallite shape obtained in the real space would be the one obtained from direct imaging of the primary particles.

The micro-structural analysis from Rietveld refinement is implemented in several size broadening models into the free software Fullprof. We will be using the Anisotropic Lorentzian size broadening: it considers the size broadening as a linear combination of spherical harmonics (SPH). The anisotropic size is
supposed to contribute to the Lorentzian component of the total Voigt function. After refinement of the coefficients the program calculates the apparent size (in Ångströms) along each reciprocal lattice vectors if the instrumental resolution is provided.

A preliminary calibration of the peak broadening due to the apparatus is performed on LaB_{6} : the resulting refinement can be seen in Figure 3.9. If the peak broadening is too close to the instrumental resolution, the software will not refine the peak. The Table 3.8 contains the values used for all the following Rietveld refinement. U, V and W are parameters used to model the change of the FWHM with the angle from the instrument, by the equation $H^{2}=U \tan (\theta)^{2}+V \tan (\theta)+W$. The peak shape for $L a B_{6}$ is a Pseudo-Voigt; the parameters were adapted from the instrument parameter and input files of the Beamline 11-BM of Argonne National Laboratory. Then, n-RDX patterns are refined using a Thompson-Cox-Hastings pseudo-Voigt convoluted with axial divergence asymmetry function as the peak shape (Finger et al. 1994). Therefore, the FWHM of the Gaussian (H_{G}) and Lorentzian $\left(H_{L}\right)$ components are calculated as:

$$
\begin{gather*}
H_{G}^{2}=\left(U+D_{S T}^{2}\right) \tan ^{2} \theta+V \tan \theta+W+\frac{I_{G}}{\cos ^{2} \theta} \tag{3.1a}\\
H_{L}=X \tan \theta+\frac{\left[Y+F\left(S_{Z}\right)\right]}{\cos \theta} \tag{3.1b}
\end{gather*}
$$

Much more technical details can be found in the manual and help provided with FullProf.

Uins	Vins	Wins	Xins	Yins	Zins
0.001356	-0.005000	0.003910	0.063891	0.000083	0.0
0.001356	-0.005000	0.003910	0.063891	0.000083	0.0

Table 3.8 - Instrumental resolution determined from $L a B_{6}$ pattern refinement.
The Rietveld refinement requires some expertise and patience to analyse with accuracy and avoid any divergence of the parameters toward non physical meanings. The process is made step by step following this sequence:

1. Scale factor
2. Scale factor, zero point of detector, lattice constants. The background is refined if the background subtraction from EVA is not satisfactory.
3. Atomic positions

ALS 11-BM - NIST SRM 660a LaB6

Figure 3.9 - Rietveld refinement performed on $L a B_{6}$.
4. Peak shape and asymmetry parameters
5. Atom occupancies
6. Microstructural parameters: size and strain effects. The model used is the Anisotropic Lorentzian size broadening (Spherical Harmonic) with the Laue class mmm, which allows the crystallite morphology determination.

The experimental pattern, refinement and residual are frequently checked during the refinement process. The final results are found in the Figures 3.10 to 3.14: the curves in black is the refined pattern, in red the experimental data and in blue below the first two is the residual. The small ticks between the residual and the curves are the hkl positions from $K_{\alpha 1}$ and $K_{\alpha 2}$ rays of the Cu source. The refinement takes a dozen minutes, with an increasing computation time when adding parameters to refine. Also the refinement diverges easily, corrupting the input file. Dozens of refinements were saved per samples with reducing χ; attempts increasing χ were not saved but are sometimes used to start from original values leading afterwards to a more accurate solution.

The refinements of the sample of $n-R D X$ processed pure at $3 w t \%$ acetone in Figure 3.11 and the one with a $80 \mu \mathrm{~m}$ nozzle in Figure 3.14 are acceptable but
less accurate than others, with a negative residue on the angles at small angles and a positive residue on angles above 20°. Finding a realistic refinement was the most difficult issue to solve: having a refinement accurate enough with no bias -such as that angular dependency- and an acceptable 3D model at the same time. The results shown here are the best refinement possible with a realistic 3D model. The three other refinements are in very good agreement with the experimental data.

Figure 3.10 - Sample of n-RDX processed pure at $2 w t \%$ in acetone.

Figure 3.11 - Sample of n-RDX processed pure at $3 w t \%$ in acetone.
A global appreciation on the refinement would be a more accurate fitted solution with the smallest particles. Beyond the inherent difficulty of the micro-
structural analysis by the Rietveld theory, the organic crystals exhibit a large number of peak with many overlaps, and a natural broadening due to a lattice crystalline less ordered, which is far from the ideal condition.

Nevertheless, all the models seem to converge on spherical particles slightly flattened on two planes (4 faces/extremity). This oblate geometry is correlated to an almost homogeneous growth with no preferential direction growth. Size and morphology found with those analysis are then compared to the particle size and morphology obtained by AFM on pellets and on the smallest particles imaged on SEM.

Figure 3.12 - Sample of n-RDX processed with $0.1 \mathrm{wt} \%$ of PEG.

Figure 3.13 - Sample of n-RDX processed with 10 wt\% PVP.

Figure 3.14 - Sample of n-RDX processed with 1 wt\% PVP with a $80 \mu m$ nozzle

3.2.2 Smallest observable object

In order to assess the problem of the particle size and definition of a particle, a new deposit technique for SEM was developed recently in our laboratory: it is based on the rubbing of the powder between two glass sheets. Individual and very small particles have been found to be more easily observed on a glass support. The method is still under investigation, especially to explain the influence of the support. However the spreading due to the rubbing allows the distinct imaging of the smallest particles. The particle size and morphology is studied through SEM and compared to the results from Rietveld refinement. The aim of this study is to answer to the questions of the crystallinity and aggregation of n-RDX processed by SFE.

Spray techniques may produce particles made from much smaller primary particle: Qiu et al. (2015) successfully probed the interior of their micrometer spheres (RDX) to found out a gradient of the primary particle size at the submicrometer scale. Focused ion beam (FIB) is the technique used to make the cross-sections: even if a low probe current helps to preserve the sample (Cierak 2009) no attempt has already been reported on energetic materials. An easiest solution is to use the rubbing deposition technique to image the smallest particles. Results reported in Table 3.9 show that the RDX processed with polymers actually exists as single crystals. On the contrary, the smallest pure n-RDX are still polycrystalline. The oblate shape found by Rietveld seems consistent with morphology imaged by SEM, as it can be seen in Table 3.9.

AFM on pellets of those samples were also analysed. As seen in Figure 3.16,

	Average apparent size and standard deviation (anisotropy) (\AA)	Average maximum strain and standard deviation $($ anisotropy $)$ $(\%(\times 10000))$	Smallest Particle Sizes from SEM (nm)
pure at $2 \mathrm{wt} \%$ in	716	5.53	$180-200$
acetone	(28)	(0.0039)	$125-140$
pure at $3 \mathrm{wt} \%$ in	814	3.23	

Table 3.9 - Smallest particle imaged on SEM compared to the computed average apparent size from Rietveld refinement.

Figure 3.15 - One of the smallest particle ($63 \times 58 \mathrm{~nm}$) observed by SEM on RDX processed with $10 w t \%$ PVP.

Figure 3.16 - n-RDX processed with 10 wt\% PVP.
even much smaller particles were measured -after the surface milling- when adding more polymer and reducing the original particle size (the ones imaged by SEM). For pure n-RDX the sizes of the smallest particles stay in the same range as the particle size from AFM below the critical pressure without microtomy: this confirms that due to the segregation by AFM the smallest particles are scanned, thus implying that below the critical pressure the particles may stay unbroken. Those results raise again the question of the hardness of the nanoparticles. Since the smallest particles imaged in SEM are bigger than the one observed by AFM, the rubbing method does not bring an energy (friction work and pressure) as high as in the case of the AFM pellets: that technique seems suitable to spread the particles without breaking the brittle particles.

3.3 Summary of the Chapter

Several sizes have been measured depending on the technique and the conditions. By AFM, pellets are imaged, without or with microtomy to flatten the surface; many samples were analysed by this technique at 97 MPa plus microtomy such as the result reported by Spitzer et al. (2014) or the preliminary study with a range of RDX content. Classical SEM were made on loose powder and pellets, and a rubbing technique has been developed to spread particles on a glass substrate in order to image the smallest particles. The lattice structure and the apparent volume weighted domain size were computed from Rietveld
refinement. All that high amount of data were interpreted and correlations between techniques have been found.
n-RDX can be broken in smaller particles by compression. For pure compounds and below a critical pressure, the particles observed by AFM are about 200 nm with a irregular round shapes; that size and morphology is the same as imaged on the smallest particles, by the rubbing technique by SEM. When using a microtome on n-RDX pellets, the surface is milled and the blade imperfections imprint grooves on the surface or strip off parts which reveal the original particles inside the pellet, as seen by SEM. By AFM a segregation is made by the roughness of the surface: those holes with bigger particles are never scanned on the pellets processed by microtomy, thus only the smallest particles are counted. That bias also explains why size and shapes on AFM can be identical to the smallest particles imaged on SEM.

XRD patterns analysed by Rietveld refinement reveal an average apparent size around 80 nm with an oblate morphology for all samples, meaning that an homogeneous growth occurs in all SFE conditions. The smallest particles imaged by SEM seem to be single crystals in the case of n-RDX processed by polymers.

As the particles sizes after mechanical stress depend on purity and quantity of polymer, the hardness is probably a key property for a deeper comprehension of the phenomenon reported in this chapter. Nano indentation is used to study the mechanical properties of material: Hudson et al. (2012) found that micron-sized crystals with many internal defects have reduced modulus of elasticity, stiffness and prone to greater deformation under applied load, therefore correlate shock sensitivity and stiffness/elasticity. Nano mechanical tests can be done under the direct visualization of an SEM or Transmission Electron Microscopy (TEM). However, due to the already mentioned difficulties to image energetic organic nanoparticles, such experiments would require a dedicated scientific study.

After being able to define an absolute particle size representative of the sample, the reduction of the particle size can be studied without bias; the crystallisation has to be controlled in both space and time resolution. Two main approaches have been established, a chemical one and a more physical one. The next chapter focuses on the physical attempt by the exploration of various supersaturation conditions, just after introducing all the needed concepts for the formation of organic crystal, with a specific focus on the nucleation.

Bibliography

1. Finger, L. W., D. E. Cox, and A. P. Jephcoat (1994). "A correction for powder diffraction peak asymmetry due to axial divergence". In: Journal of Applied Crystallography 27.6, pp. 892-900. DoI: 10.1107/S0021889894004218.
2. Gierak, Jacques (2009). "Focused ion beam technology and ultimate applications". In: Semiconductor Science and Technology 24.4, p. 043001. ISSN: 0268-1242. DoI: 10.1088/ 0268-1242/24/4/043001.
3. Hudson, Robert J., Peter Zioupos, and Philip P. Cill (2012). "Investigating the Mechanical Properties of RDX Crystals Using Nano-Indentation". In: Propellants, Explosives, Pyrotechnics 37.2, pp. 191-197. IssN: 07213115. Dol: 10.1002/prep. 201100063.
4. Limpert, Eckhard, Werner A. Stahel, and Markus Abbt (2001). "Log-normal Distributions across the Sciences: Keys and Clues". In: BioScience 51.5, pp. 341-352. Issn: 0006-3568. DOI: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.
5. Nečas, David and Petr Klapetek (2012). "Ciwyddion: an open-source software for SPM data analysis". In: Central European Journal of Physics 10.1, pp. 181-188. Doו: 10.2478/s11534-011-0096-2.
6. Östmark, Henric, Sara Wallin, and How Ghee Ang (2012). "Vapor Pressure of Explosives: A Critical Review". In: Propellants, Explosives, Pyrotechnics 37.1, pp. 12-23. ISsn: 07213115. DoI: 10.1002/prep. 201100083.
7. Pichot, Vincent, Benedikt Risse, Julien Mory, Christelle Nicollet, Fabien Schnell, Marc Comet, and Denis Spitzer (2015). "Mechanical Behavior of Nanostructured and Microstructured Explosives". In: Propellants, Explosives, Pyrotechnics 40.2, pp. 203-209. ISSN: 07213115. DOI: 10.1002/prep. 201400122.
8. Qiu, Hongwei, Victor Stepanov, Anthony R. Di Stasio, Ashok Surapaneni, and Woo Y. Lee (2015). "Investigation of the crystallization of RDX during spray drying". In: Powder Technology 274, pp. 333-337. Issn: 00325910. DoI: 10.1016/j.powtec.2015.01.032.
9. Spitzer, D., B. Risse, F. Schnell, V. Pichot, M. Klaumünzer, and M. R. Schaefer (2014). "Continuous engineering of nano-cocrystals for medical and energetic applications". In: Scientific Reports 4. DoI: $10.1038 /$ srep06575.
10. Spitzer, Denis, Christian Baras, Michael Richard Schäfer, Fabrice Ciszek, and Benny Siegert (2011). "Continuous Crystallization of Submicrometer Energetic Compounds". In: Propellants, Explosives, Pyrotechnics 36.1, pp. 65-74. Issn: 07213115. doI: 10.1002/prep. 200900002.
11. Williamson, G. K and W. H Hall (1953). "X-ray line broadening from filed aluminium and wolfram". In: Acta Metallurgica 1.1, pp. 22-31. ISsN: 0001-6160. DoI: 10.1016/00016160 (53) 90006-6.

Chapter 4

Crystallisation study and comprehension of the SFE process

4.1 Crystallisation, Nucleation and supersaturation

Crystallisation from solution occurs when the concentration of the compound is higher than its solubility, namely in the supersaturation zone. Various strategies can be used since the solubility depends on the temperature, the solvent(s) and other compound(s): temperature change (cooling in the case of a positive gradient $\frac{d C}{d V}$ of the solubility curve or heating in the case of a negative one), solvent removing (evaporation), addition of a drowning-out agent (an anti-solvent) or reaction partners. But achieving the supersaturation may not be enough; to trigger the crystallisation in that metastable system, an external energy (stirring, mechanical shock, friction or extreme pressures) or a seed (impurity or a crystal of the compound) can be brought to the solution. Others stimuli such as electric and magnetic fields, spark discharges, UV light, X-rays and ultrasonic irradiation have also been studied since decades (Atwood et al. 1969) but no application in large-scale crystallisation has been ever reported.

Three types of nucleation can be distinguished. The secondary nucleation occurs when a crystal already exists: a seed triggers the nucleation of the metastable solution or the compound nucleates on the surface of the growing particles. Primary nucleation can be spontaneous -homogeneous nucleation- or triggered by impurities -secondary nucleation-. Since impurity free solutions are virtually impossible, cases are often reported when a system nucleates at a few degrees lower than predicted or than the previous smaller batches (Mullin 2001). The exact formation of nuclei is still not known (Sosso et al. 2016). The molecules have to coagulate, then to resist to re-dissolution but since the lattice faces are not equivalent, the molecules should have the right orientation. Even

CHAPTER 4. CRYSTALLISATION STUDY AND COMPREHENSION OF THE

 124the mechanisms are not resolved yet, a nucleus has to achieve a critical size to actually grow into a crystalline particle. From the Classical Nucleation Theory, the critical radius corresponds to the one minimizing the overall excess Cibbs energy ΔG :

$$
\begin{align*}
\Delta G_{1} & =\Delta G_{S}+\Delta G_{v} \\
= & 4 \pi r^{2} \gamma+4 / 3 \pi r^{3} \Delta G_{v} \tag{4.1}\\
\Rightarrow>\frac{d \Delta G}{d r} & =8 \pi r \nu+4 \pi r^{2} \Delta G_{v}=0 \tag{4.2a}\\
\Rightarrow r_{c} & =\frac{-2 \gamma}{\delta G_{c}} \tag{4.2b}
\end{align*}
$$

$\Delta G_{I S}$ is the excess Cibbs energy between the surface of the particle and the bulk, and ΔG_{V} is the volume excess Cibbs energy between a large (infinite) particle and the compound dissolved. $\Delta G_{S}>0$ while $\Delta G_{V}<0 . \Delta G_{S}$ relies on the interfacial tension -also called surface energy- γ and ΔG_{v} is the volumetric volume excess Cibbs energy. Therefore, critical overall excess Cibbs energy can be expressed as:

$$
\begin{equation*}
\Delta G_{c}=\frac{16 \pi \gamma^{3}}{3\left(\Delta G_{v}^{2}\right)} \tag{4.3}
\end{equation*}
$$

The supersaturation S is expressed as a ratio between the concentration c and the solubility s at the given temperature: $S=c / s$. With the Cibbs-Thomson relationship, the supersaturation becomes with v the molecular volume:

$$
\begin{equation*}
\ln S=\frac{2 \gamma V}{R T r}=\frac{2 \gamma v}{k_{B} T r} \tag{4.4}
\end{equation*}
$$

So from the Equations (4.3) and (4.4), we can finally express the critical overall excess Cibbs energy with the supersaturation:

$$
\begin{equation*}
\Delta G_{c}=\frac{16 \pi v^{3} v^{2}}{3\left(k_{B} T \ln S\right)^{2}} \tag{4.5}
\end{equation*}
$$

To go further, the rate of nucleation can be written as an Arrhenius velocity equation $J=A \exp \left(-\Delta G_{1} / k T\right)$, which is given from Equation (4.5)

$$
\begin{equation*}
J=A \exp \left(-\frac{16 \pi \nu^{3} v^{2}}{3\left(k_{B} T\right)^{3}(\ln S)^{2}}\right) \tag{4.6}
\end{equation*}
$$

The rate of nucleation finally relies on the temperature, surface energy and the supersaturation, and has been plotted in Figure 4.1a; after a critical value

Figure 4.1 - Rate of nucleation against the supersaturation.
the rate increases rapidly up to an asymptotic rate. The experimental values in Figure 4.1b are in good agreement with a sudden increase followed by a plateau.

However, many efforts have been devoted since 2010 to extend and improve the Classical Nucleation Theory (CNT) (De Yoreo 2013; Gebauer et al. 2014; Vekilov 2010b; Zahn 2015). On the contrary of melts where the liquid is dense enough to neglect concentration gradients and related phenomena, the case of crystal nucleation of molecules in solution is quite different. A significant concentration fluctuation is required to bring the needed number of molecules to construct the nuclei. That's why a two-step mechanism was developed recently where two free energy barriers have to be overcome instead of an unique one expressed in Equation (4.1) from the CNT: as displayed in Figure 4.2, the first one illustrates the density variation to create a primary cluster of molecules, then the second one describes the ordering of those clusters into the crystalline nuclei. Early stages of the nucleation of organic crystals have been investigated using Molecular Dynamics (MD) backed up with experimental data from singlemolecule real-time transmission electron microscopy (SMRT-TEM); Salvalaglio et al. $(2015,2012)$ demonstrated that different solvents can lead to different
nucleation mechanisms such as a single-step nucleation process favoured for urea molecule in methanol and ethanol and a two-step mechanism in acetonitrile and water.

Figure 4.2 - Two possible scenarios from the two-step nucleation mechanism: the first one involves an intermediate state at a higher energy due to an unstable dense liquid existing as mesoscopic clusters, and the second lower curve applies if the dense liquid is stable $\left(\Delta G_{L-L}^{0}<0\right)$

The link between the rate of nucleation and the crystal size is far of being established since several phenomena follow the nucleation: the firstborn nuclei are subject to growth but also aggregation. Thus an optimal value of the supersaturation exists for each system; a supersaturation too high would lead to aggregation and also to secondary nucleation on growing particles.

4.1.1 Increasing Supersaturation in SFE with an Anti-solvent

The key to control crystallisation and so particle size is to determine the supersaturation which is time dependent but also is unique in each droplet. Supersaturation, as a function of time and coordinates, was not available: since we were not able to determine in situ droplet size distribution, extreme variations of the supersaturation are investigated. Therefore, a suitable anti-solvent for RDX and for SFE has been searched in order to increase the supersaturation by reduced solubility. Water is commonly used as drowning out agent for RDX recrystallisation (Essel et al. 2012; Gallagher et al. 1992; Lee et al. 2014), but due
to a high temperature of evaporation and a modest heat capacity ($75.28 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ at $25^{\circ} \mathrm{C}$), such solvent can not be processed by SFE: a flash evaporation can be triggered but a quick condensation will occur thus wetting the particles.

(a) Vapor-Liquid Equilibrium (VLE) diagram

pressure	temperature (K)	x (acetone)
1 bar	323	0.648
7 mbar	228.5	0.621

(b) Azeotropes

Figure 4.3 - VLE of the binary system acetone-hexane at 1 bar (solid lines) and 7 mbar (dashed lines): the data at 1 bar are obtained from the Dortmund Data Bank, and curves at 7 mbar are computed from ProSim.
n-Hexane is a perfect non-polar solvent of RDX (PANT et al. 2013). n-Hexane is miscible with acetone and has a low boiling point of 342 K at atmospheric pressure, a high vaporization enthalpy around $31 \mathrm{~kJ} / \mathrm{mol}$ and a remarkably high heat capacity of $195.8 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ at 298 K . All of those thermodynamic properties are better than any solvent studied by PANT et al. (2013). Moreover, n-hexane forms an azeotrope with acetone: Vapour-Liquid equilibrium data at ambient pressure are plotted in Figure 4.3a. Values at reduced pressure close to the

CHAPTER 4. CRYSTALLISATION STUDY AND COMPREHENSION OF THE

ones in the SFE are computed by ProSim using the Non-Random Two-Liquid (NRTL) model for the activity coefficients. The UNIFAC model was also tested, but lowered the bubble point temperatures by 0.2 K with no change on the azeotrope position. The VLE of an n-hexane/acetone system exhibits significant lower bubble points than both of the boiling temperatures: the azeotrope at atmospheric pressure is 7° lower than the standard boiling point of acetone and 19° lower than the one of n-hexane.

Beside increasing the supersaturation with a binary system solvent/anti-solvent, an original approach was developed: to understand the flash-evaporation mechanisms, especially the life-time of droplets and the time dependant crystallisation, the SFE system has been upgraded with a second nozzle. An entire second channelling for the new nozzle has been added and build on an existing system. Also the nozzles have to be oriented to effectively overlap the hollow spray cone: to achieve that the piping system has been reconsidered. The Figure 4.4 describes the new system. Due to technical limitations, a lateral distance between the inlet pipe has to be kept and the channelling has to remain parallel up to the heating elements. Therefore the distance between the end of an heater and the nozzle has been minimized and the stainless steel pipes insulated to prevent heat loss. From the experiments made in Section 4.2.2, an optimal angle around 70° has been found and used here. For the present study, one system is used to spray RDX dissolved at $2 \mathrm{wt} \%$ in acetone through a $60 \mu \mathrm{~m}$ nozzle; the other one sprays n -hexane trough a $80 \mu \mathrm{~m}$ nozzle in order to permanently have a higher flow of hexane over acetone and so to maximize the overlapping. The system was patented in the international version of the patent ("Method for producing cocrystals by means of flash evaporation" 2016).

Several molar ratio were tried: very near the azeotrope at $x_{\text {acetone }}=0.642$ and two others flanking the azeotrope from far. But due to the specific boiling point curve of the acetone/n-hexane, the three ratio $x_{\text {acetone }} 0.573,0.642$ and 0.817 correspond to the same boiling temperature at atmospheric pressure and below. Therefore the driving force of the SFE, the superheating, is kept constant and only the variation of the saturation over time varies. Then after the flash of droplets, it assumed that the nucleation already occurred and classical evaporation applies. Finally, depending on the ratio the rare remaining drops will either enrich in acetone ($x_{\text {acetone }}=0.817$) or in hexane ($x_{\text {acetone }}=0.573$): that phenomenon could provoke the generation of a secondary PSD. Only a single peak following a log-normal distribution is found from the frequency count of particle size determined by SEM. The classical evaporation is negligible.

The overall mean diameter of RDX particles is quite high; for instance the reference -pure RDX at $2 \mathrm{wt} \%$ in acetone- result in a mean diameter of 790 nm instead of the usual 500 nm (Doctoral Thesis Risse 2012). Such an increase

Figure 4.4 - The dual nozzle system.

Figure 4.5 - PSD for RDX processed in the binary system acetone/n-hexane by SFE through one or two nozzles; the legend shows the molar ratio of acetone and in parenthesis the mean diameter in nm.

CHAPTER 4. CRYSTALLISATION STUDY AND COMPREHENSION OF THE

suggest a deterioration of the flash-evaporation due to a lower superheating: the dual nozzle is less efficient to keep the solvent superheated from the heaters to the nozzles because the distance induces higher heat losses. However, the flash-evaporation characteristics such as broadened spray and a lower vacuum pressure are still observed.

From Figure 4.5, the ratio of hexane clearly decreases the particles size from around 800 nm down to around 550 nm . That lower bound already appears for $x_{\text {acetone }}=0.642$. Increasing the supersaturation up to a certain degree seems to improve the nucleation rate and therefore the particle size with no drawback due to aggregation. The experiment using two nozzles is very informative: droplets have enough life time for an effective overlapping. A possible interpretation would be that acetone droplets are first in a metastable state with no nucleation and no flashing thus allowing them to collide and merge with hexane droplets. The sudden saturation due to a lower solubility in the system acetone-hexane triggers the nucleation in the same conditions as for the one-nozzle at ratio 0.573 and 0.642 . So the overlapping induces a ratio of acetone lower than 0.817 .

The dual nozzle system has many advantages; in order to increase the mass flow rate, the percentage of the compounds in solution can be raised, then crystallisation is triggered by a second solution containing a drowning out solvent or a crystallisation partner. Advanced chemistry could also be explored when the reactive species should not be mixed until a thermal activation. Two points have to be confirmed first: the droplets interpenetrate each others from both sprays and hexane is not already gaseous thus drying acetone droplets. Therefore a reactive specie is added to the second solution: the cocrystallisation of CL-20:HMX 2:1 is chosen and explained in Section 4.2.

4.1.2 Supersaturation Determination

The supersaturation is a key element which will be unveiled by using the latest advances in LASER and phase Doppler analysers. Particle Image Velocimetry (PIV) were first tried at ambient pressure but is not suitable due to the hight density of the spray and limited spatial resolution of the technique. The LASER Doppler technique was first proposed in 1964 by Cummins et al. (1964) but was widely used only in the 70's. The phase Doppler technique exhibited a similar development about 20 years later from Bachdo et al. (1984), Bauckhage et al. (1984), and Saffman et al. (1984). The recent advances in signal filtering and analysis allows now the light-scattering interferometry to simultaneously record in real time object velocities and size distribution. The principle of Phase Doppler Analysis (PDA) is illustrated in Figure 4.6. A measurement volume is defined by the intersection of two focused LASER beams: the light is scattered by the particles passing through this volume. The second refraction order is
specifically used by the three detectors of the PDA probe. Each detector is pre-aligned and converts the optical signal into a Doppler burst with a frequency linearly proportional to the particle velocity. Then the phase shift ϕ between the Doppler signals from different detectors allows the calculation of the particle diameter D :

$$
\begin{equation*}
\Phi=\frac{-2 \pi D}{\lambda} \frac{n \sin \theta \sin \psi}{\sqrt{2(1+\cos \theta \cos \psi \cos \varphi)\left(1+n^{2-n} \sqrt{2(1+\cos \theta \cos \psi \cos \varphi)}\right)}} \tag{4.7}
\end{equation*}
$$

Figure 4.6 - Principle of the Phase Doppler analysis (PDA) in a glance (Dantec Documentation).

Preliminary results from a demonstration apparatus are reported in Figure 4.8. No calibration were performed to assess the accuracy of the apparatus. No optimizations nor quantification of the error were done. However, the droplets are clearly extremely small around the microns or even lower; the closer we are to flash evaporation, the smallest are the drops. The velocity is also very

Figure 4.7 - PDA in situ measurements for SFE.
high with an order of magnitude of $2(100 \mathrm{~m} / \mathrm{s})$: it is one order above the rare velocities reported in flash-evaporation of spray by Gebauer et al. (2015) and Miyatake et al. (1981). Those preliminary data confirm that the SFE process involves high energy and fast crystallisation. It can be estimated than after 1 cm from the nozzle the spray is no more visible, which could implies that after only $0.1 \mu \mathrm{~s}$ the evaporation is complete and the crystallisation performed.

More reliable results were acquired thanks to the work of Mr Lasserre to deliver us an operational PDA apparatus quickly after the purchase. The beams were focused a few millimetre after the nozzle orifice and as closest as possible to the nozzle axe. The PDA were stabilized and operated in coincidence mode (the velocity measured by Laser velocimetry is coupled to the measurement of the diameter by Phase Doppler interferometry, resulting in the exact measure of both for each object in the measurement volume) with a sequence of 10 measurements each with 20k objects measured ; the receiving optics adjusted for the highest rate of coincidence and optimized with the Laser power. About the SFE, the temperature is stabilized for 15 min before each sequence. Each batch from the set of ten is compared to each other: no changes is the PSD has been noticed in a set of measurement for a given temperature so all the 200 k objects measured per temperature are concatenated to render the Figure 4.9.

While the temperature is raised the droplet size clearly decreases close to the detection limit around one micron. Moreover the polydiversity exhibited for each PSD is reduced while increasing the temperature; multi peak fitting reveals three modes centred at 2.1, 2.8 and $3.8 \mu \mathrm{~m}$ at all temperatures. The

Figure 4.8 - Preliminary measurements from a demonstration apparatus inside the SFE under vacuum while spraying acetone. Acquisitions were performed at two different axial distances from the nozzle orifice: at around 4 mm or quite far at around 1 cm

CHAPTER 4. CRYSTALLISATION STUDY AND COMPREHENSION OF THE 134 SFE PROCESS

center of gravity doesn't change with temperature but only the area. Therefore at such temperatures the SFE is under a transition state toward flash evaporation which seems to be the dominant phenomenon at temperatures around $160^{\circ} \mathrm{C}$. To complete this study, the influence of the nozzle type should be study to evidence a potential change in the centre of gravity of the modes.

Figure 4.9 - Particle Size Distribution of droplets of acetone spayed at 100, 140 and $160^{\circ} \mathrm{C}$.

4.2 CL-20:HMX 2:1 Cocrystal as a Tool for Understanding Crystallisation by SFE

4.2.1 Cocrystallisation

A cocrystal consists in the combination of two or more electrically neutral molecules within a single crystal lattice in a stoichiometric ratio. The exact definition is still under debate (Sun 2013) but hydrates and solvates are usually excluded. The constitutive compounds are often called co-formers. While cocrystals are known to potentially combine the drug effect of two Active Pharmaceutical Ingredient (API)s (Vishweshwar et al. 2006), it is interesting to notice that historically the pharmaceutical industry first avoided cocrystal, the racemic ones (Toda et al. 1997).

The formation of an existing cocrystal and the crystals of the co-formers relies on their solubility. A Phase Solubility Diagram (PhSD) shown in Figure 4.11

(a) $100^{\circ} \mathrm{C}$

(b) $140^{\circ} \mathrm{C}$

(c) $160^{\circ} \mathrm{C}$

Figure 4.10 - Peak fitting of the PSD of droplets of acetone spayed at 100, 140 and $160^{\circ} \mathrm{C}$.

Figure 4.11 - Phase Solubility Diagram (PSD) of a 1:1 AB cocrystal from co-formers A and B; in red the solubility curve of the A crystal, in blue the one of B, and in green the cocrystal. Arrows illustrate a possible crystallisation by addition of B to the solution followed by the cocrystallisation.
depicts the co-former concentrations in a solvent at equilibrium at a given temperature with the different domain for each crystals (Nehm et al. 2006). The domain I is saturated in A and under saturated with respect of the cocrystal AB : only polymorphs from A can be crystallised. In the domain II both A_{S} and $A B_{S}$ crystallises; the domain IV is situated above the solubility curve of the cocrystal and thus allows the crystallisation of the $A B_{S}$ alone. In the domain III, the solution is under saturated for all species and no crystallisation can occur.

Unlike the PhSD, the triangular phase diagram (TPD) in Figure 4.12 shows the total composition of the system. Chiarella et al. (2007) explained why the formation of cocrystals could not occur while having the appropriate stoichiometry and underlined the need of covering a wide range of ratio when screening for cocrystals (Chadwick et al. 2009).

Beside those thermodynamic properties at equilibrium, kinetics prevail especially when crystallising from multicomponent systems. Ostwald (1897) speculated that the critical cluster to nucleate from a supercooled liquid may not be

4.2. CL-20:HMX 2:1 COCRYSTAL AS A TOOL FOR UNDERSTANDING CRYSTALLISATION BY SFE

Figure 4.12 - Ternary Diagram of a 1:1 AB cocrystal from co formers A and B; coloured curves are the solubility curves from Figure 4.11.
the most stable polymorph but the polymorph closest in energy to the liquid phase. Since 1897, this behaviour has been observed a number of times (ten Wolde et al. 1999).

4.2.2 CL-20:HMX 2:1 Cocrystallisation from SFE

The SFE has already proved to be a suitable method to cocrystallise from a solution at the dried state (Spitzer et al. 2014). However to ensure a complete comprehension of the cocrystallisation by SFE, PhSD at several temperatures should be established for each compound such as the caffeine and acid glutaric from Yu et al. (2010). Unfortunately no PhSD nor ternary diagram exists for the CL-20:HMX 2:1 cocrystal.

CHAPTER 4. CRYSTALLISATION STUDY AND COMPREHENSION OF THE 138 SFE PROCESS

In order to confirm the existence of metastable droplets in a state where no nucleation nor flash-evaporation occurred, an experiment with the co-formers sprayed separately was designed: the first dual-nozzle system was build for those experiments. Instead of an angle of 70°, the nozzles were oriented at 45° as illustrated in Figure 4.13.

Figure 4.13 - First dual nozzle system with an orientation at 45°.

The solutions of CL-20 and HMX were prepared in the stoichiometric ratio 2:1 of the cocrystal, using acetone (CHROMASOLV $®$, for HPLC, $\geq 99.9 \%$ Sigma Aldrich). The Figure 4.14 shows mean PSD of the samples obtained through that technique; the method used is the AFM on pellets explained in the Section 3.1.2. Therefore, even if the mean size obtained here of 73 nm can not be interpreted as an absolute size, it can be compared to other samples processed by this technique: 73 nm is among the smallest mean sizes counted for $\mathrm{n}-\mathrm{RDX}$-more specifically the RDX processed with PVP- meaning that an absolute size under 300 nm can be excepted.

X-ray Diffraction was performed on samples processed from that dual nozzle setup. The XRD pattern in Figure 4.15 exhibits two crystalline structures: the main crystals present is β-CL-20 but the cocrystal is confirmed to have crystallised from the overlapped sprays. β-CL-20 is the least stable polymorph of CL-20; the crystallisation of β-CL-20 from SFE implies a kinetically controlled crystallisation and an high energy (Ostwald rule previously mentioned). The cocrystal being the minor product could be explained from a thermodynamic point of view from solubilities, but the solubility of CL-20 in acetone is much higher $(100 w t \%)$ than HMX ($2.8 w t \%$). The explanation lies from a more practical issue.

The flow rate is not monitored in real time, but an estimation of the mean flow rate for each nozzle is calculated from the volumes left and the experiment time. It has been found that for all experiments with the dual nozzle at 45°,

4.2. CL-20:HMX 2:1 COCRYSTAL AS A TOOL FOR UNDERSTANDING CRYSTALLISATION BY SFE

Figure 4.14 - Mean Particle Size Distribution of the cocrystal CL-20:HMX 2:1 samples processed by SFE (first batch) and counted from pellets analysed by AFM.
the nozzles have a very strong attendance to clog. Due to the angle and the spray broadening under vacuum, nozzles spray on each other; each nozzle forms a solid deposit on the opposite one and, after a while, one nozzle is clogging and blocking entirely the other one. Another system is build afterwards with an angle around 70° as previously introduced in Section 4.1.1; also to correlate the percentage of each crystal to kinetic or thermodynamic phenomena, the flow rate has to remain constant. Coriolis mass flow meters for high pressure were purchased and installed on the SFE process. To control in real time the flow rate of one inlet based on the variation of the other inlet, a master/slave system was developed: one flow meter read and transmit the flow rate of one nozzle to the second flow meter equipped with a valve and an internal PID controller. A variable resistor allows to set a ratio of flow rate between the inlets, thus allowing to have the compounds in a non stoichiometric ratio -with respect to the cocrystal- in solution but sprayed at the stoichiometric ratio. Those flow meters are currently at the testing stage before performing scientific studies.

An experiment was performed lately by spraying a solution of CL-20 in ethyl acetate and a solution of HMX in acetone at the constant stoichiometric ratio 2:1 by monitoring and controlling both mass flow rate. As it can be seen in Figure 4.16, even introduced with the right proportion with a controlled flow rate, the main product is again $\beta-C L-20$ with the cocrystal as the minor one. The amorphous content has to be calculated from the pattern; several methods

CHAPTER 4. CRYSTALLISATION STUDY AND COMPREHENSION OF THE 140 SFE PROCESS

Figure 4.15 - XRD of a sample processed from dual nozzle system compared to CL20:HMX and to β-CL-20 both from SFE via a single nozzle.

Figure 4.16 - XRD of a sample processed from a solution of CL-20 in ethyl acetate and a solution of HMX in acetone sprayed at the constant stoichiometric ratio 2:1 by monitoring and controlling mass flow rate; the pattern is compared to the sample from the Figure 4.15, CL-20:HMX and to $\beta-C L-20$ both from SFE via a single nozzle.
exists requiring calibration suite or internal/external standards. All of them would require to analyse the sample(s) with silicon or quartz zero-background sample holder: less than 20 mg are used and so the current sample holder has a strong amorphous contribution. If the $H M X$ is found to be amorphous by chemical analysis such as IR or Raman, the system in the overlapping area is a solubility zone were the cocrystal can not be obtained pure. If no HMX is found, the crystallisation of CL-20 and HMX occurs already before the overlap and almost all crystallised HMX is lost due to a flaw in the process itself (cyclone cut-off, crust on the nozzle, affinity with walls etc.). The overlap should also been monitored to quantify the percentage of droplet interpenetration.

4.3 Summary of the Chapter

The crystallisation is a multi-step process not yet fully understood; the critical initial stage -the nucleation- is still under investigation by the crystallisation community with recent advances completing further the Classical Nucleation Theory (CNT). Nevertheless, the supersaturation still plays a major role on the rate and trigger of nucleation. Without a determination of the droplets size and evaporation rate, this present study focused on solvent exchange.

The n-hexane is used as anti-solvent to raise the supersaturation. The system acetone/n-hexane forms an azeotrope with a lower boiling point which increases the superheating. However, while using different ratios at the same boiling point, increasing amounts of n-hexane reduced the final mean particle size: from around 800 nm with pure acetone to a plateau around 550 nm . When spraying the n-hexane from a second nozzle, particle size has been improved with a mean particle size of 580 nm .

To confirm that the droplets interpenetrate each other and hexane is not already gaseous thus drying acetone droplets, the cocrystal CL-20:HMX 2:1 is studied. Two solutions of acetone are prepared and sprayed separately; one with CL-20 and another with HMX. The cocrystallisation occurs confirming the overlap. Another similar experiment where CL-20 is dissolved into ethyl acetate supports that interpretation with again a cocrystallisation.

Phase Doppler Analysis (PDA) has been used for the first time for in situ measurement of a superheated fluid sprayed under vacuum. The SFE technology will be studied and on-line monitored; the data acquired from both PDA and Small-Angle X-ray Scattering (SAXS) will be computed to provide evaporation rate and crystallisation kinetics, introducing a breakthrough for theSFE technology.

Size reduction can also be achieved by controlling the nucleation and growth steps by adding agents which will change the supersaturation conditions locally

CHAPTER 4. CRYSTALLISATION STUDY AND COMPREHENSION OF THE
or will interact with the solute favourably or not. PolyVinylPyrrolidone (PVP) and PolyEthylene Gilycol (PEG) are two very common polymers identified as food additives - E1201 and E1521 respectively - but also as crystallisation agents for many organic compounds. The new chapter explores the chemical approach for controlling crystallisation by SFE, with a focus on those two polymers, resulting in a new wide range of RDX size available.

Bibliography

1. Atwood, G. R., G. W. Becker, Richard C. Bennett, George Burnet, Howard M. Dess, Vladimiro Ern, Hugh M. Hulburt, H. J. Jensen, Stanley Katz, M. A. Larson, L. M. Litz, R. A. Mercuri, M. J. Murtha, A. D. Randolph, S. A. Ring, M. B. Sherwin, Reuel Shinnar, G. J. Sloan, Denis G. Stefango, Paul D. Stone, and Maarten Van Buren (1969). Crystallization from solutions and melts. Ed. by J. A. Palermo and M. A. Larson. Boston, MA: Springer US. ISBN: 978-1-4899-4817-5 978-1-4899-4815-1.
2. Bachdo, WD and MJ Houser (1984). "Development of the Phase/Doppler Spray Analyzer for Liquid Drop Size and Velocity Characterizations". In: Proc. AIAA/SAE/ASME 20th Joint Propulsion Conf. Cincinnaty. Ohio.
3. Bauckhage, Klaus and Hans-Herbert Flögel (1984). "Simultaneaous Measurements of Droplets Size and Velocity in Nozzle Sprays". In: Proc. 2nd Intern. Symp. Appl. Laser Anemometry to Fluid Mechanics. Lisbon.
4. Chadwick, Keith, Roger Davey, Ghazala Sadiq, Wendy Cross, and Robin Pritchard (2009). "The utility of a ternary phase diagram in the discovery of new co-crystal forms". In: CrystEngComm 11.3, pp. 412-414. ISsN: 1466-8033. DoI: 10.1039/B818268J.
5. Chiarella, Renato A., Roger J. Davey, and Matthew L. Peterson (2007). "Making CoCrystalsThe Utility of Ternary Phase Diagrams". In: Crystal Growth \& Design 7.7, pp. 12231226. ISSN: 1528-7483. DoI: $10.1021 / \mathrm{cg} 070218 \mathrm{y}$.
6. Cummins, H. Z., N. Knable, and Y. Yeh (1964). "Observation of diffusion broadening of Rayleigh scattered light". In: Physical Review Letters 12.6, p. 150.
7. De Yoreo, Jim (2013). "Crystal nucleation: More than one pathway". In: Nature Materials 12.4, pp. 284-285. ISSN: 1476-1122. DoI: 10.1038/nmat3604.
8. Essel, Jonathan T., Andrew C. Cortopassi, Kenneth K. Kuo, Christopher G. Leh, and James H. Adair (2012). "Formation and Characterization of Nano-sized RDX Particles Produced Using the RESS-AS Process". In: Propellants, Explosives, Pyrotechnics 37.6, pp. 699-706. ISSN: 07213115. DoI: 10.1002/prep. 201100139.
9. Gallagher, Paula M., M. P. Coffey, V. J. Krukonis, and W. W. Hillstrom (1992). "Gas antisolvent recrystallization of RDX: formation of ultra-fine particles of a difficult-to-comminute explosive". In: The Journal of Supercritical Fluids 5.2, pp. 130-142.
10. Gebauer, Denis, Matthias Kellermeier, Julian D. Gale, Lennart Bergström, and Helmut Cölfen (2014). "Pre-nucleation clusters as solute precursors in crystallisation". In: Chemical Society Reviews 43.7, pp. 2348-2371. Issn: 1460-4744. DoI: 10.1039/C3CS60451A.
11. Gebauer, Jörn and Matthias Kind (2015). "Profiles of temperature, concentration and supersaturation within atomized droplets during flash-crystallization". In: Chemical Engineering and Processing: Process Intensification 91, pp. 130-140. IssN: 02552701. Doו: 10.1016/j. cep.2015.03.012.
12. Lee, Jae-Eun, Jun-Woo Kim, Sang-Keun Han, Joo-Seung Chae, Keun-Deuk Lee, and Kee-Kahb Koo (2014). "Production of Submicrometer-Sized Hexahydro-1,3,5-trinitro-1,3,5-triazine by Drowning-Out". In: Industrial \& Engineering Chemistry Research 53.12, pp. 4739-4747. ISSN: 0888-5885, 1520-5045. DOI: 10.1021/ie500221c.
13. "Method for producing cocrystals by means of flash evaporation" (2016). WO 2016001445. B. Risse and D. Spitzer. WO Patent App. PCT/EP2015/065,335.
14. Miyatake, O., T. Tomimura, Y. Ide, and T. Fujii (1981). "An experimental study of spray flash evaporation". In: Desalination 36.2, pp. 113-128. Issn: 0011-9164. DoI: 10.1016/S0011-9164(00)88635-X.
15. Mullin, J. W. (2001). Crystallization. 4th ed. Oxford ; Boston: Butterworth-Heinemann. 594 pp. ISBN: 978-0-7506-4833-2.
16. Nehm, Sarah J., Barbara Rodríguez-Spong, and Naír Rodríguez-Hornedo (2006). "Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation". In: Crystal Growth \& Design 6.2, pp. 592-600. Issn: 1528-7483, 1528-7505. DOI: $10.1021 / \mathrm{cg} 0503346$.
17. Ostwald, W (1897). "Studien über die Bildung und Umwandlung fester Körper: Übersättigung und Überkaltung". In: Zeitschrift für Physikalische Chemie 22, pp. 289-330.
18. PANT, Arti, Amiya Kumar NANDI, Shireeshkumar Pralhad NEWALE, Vandana Prakash GAJBHIYE, Hima PRASANTH, and Raj Kishore PANDEY (2013). "Preparation and Characterization of Ultrafine RDX". In: Central European Journal of Energetic Materials 10.3, pp. 393-407.
19. Risse, Benedikt (2012). "Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process".
20. Saffman, M., P. Buchhave, and H. Tanger (1984). "Simultaneous measurement of size, concentration and velocity of spherical particles by a laser Doppler method". In: Proc. 2nd Int. Symp. Laser Anemometry Fluid Mech., Lisbon, Portugal. Lisbon: LADOAN.
21. Salvalaglio, Matteo, Marco Mazzotti, and Michele Parrinello (2015). "Urea homogeneous nucleation mechanism is solvent dependent". In: Faraday Discussions 179, pp. 291-307. ISSN: 1364-5498. DOI: 10.1039/C4FD00235K.
22. Salvalaglio, Matteo, Thomas Vetter, Federico Ciberti, Marco Mazzotti, and Michele Parrinello (2012). "Uncovering Molecular Details of Urea Crystal Growth in the Presence of Additives". In: Journal of the American Chemical Society 134.41, pp. 17221-17233. issn: 0002-7863, 1520-5126. DoI: 10.1021/ja307408x.
23. Sosso, Gabriele C., Ji Chen, Stephen J. Cox, Martin Fitzner, Philipp Pedevilla, Andrea Zen, and Angelos Michaelides (2016). "Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations". In: Chemical Reviews 116.12, pp. 7078-7116. ISSN: 0009-2665, 1520-6890. DoI: 10.1021/acs.chemrev.5b00744.
24. Spitzer, D., B. Risse, F. Schnell, V. Pichot, M. Klaumünzer, and M. R. Schaefer (2014). "Continuous engineering of nano-cocrystals for medical and energetic applications". In: Scientific Reports 4. Dol: 10.1038/srep06575.
25. Sun, Changquan Calvin (2013). "Cocrystallization for successful drug delivery". In: Expert Opinion on Drug Delivery 10.2, pp. 201-213. Issn: 1742-5247. DoI: 10.1517/17425247. 2013.747508. pmid: 23256822.
26. Ten Wolde, Pieter Rein and Daan Frenkel (1999). "Homogeneous nucleation and the Ostwald step rule". In: Physical Chemistry Chemical Physics 1.9, pp. 2191-2196.
27. Toda, Fumio, Koichi Tanaka, Hisakazu Miyamoto, Hideko Koshima, Ikuko Miyahara, and Ken Hirotsu (1997). "Formation of racemic compound crystals by mixing of two enantiomericcrystals in the solid state. Liquid transport of molecules from crystalto crystal". In: Journal of the Chemical Society, Perkin Transactions 2 9, pp. 1877-1886.
28. Vekilov, Peter G. (2010a). "Nucleation". In: Crystal Growth \& Design 10.12, pp. 5007-5019. ISSN: 1528-7483, 1528-7505. DoI: 10.1021/cg1011633.
29. - (2010b). "The two-step mechanism of nucleation of crystals in solution". In: Nanoscale 2.11, pp. 2346-2357. ISSN: 2040-3372. DoI: 10.1039/CONR00628A.
30. Vishweshwar, Peddy, Jennifer A. McMahon, Joanna A. Bis, and Michael J. Zaworotko (2006). "Pharmaceutical co-crystals". In: Journal of Pharmaceutical Sciences 95.3, pp. 499-516. ISSN: 1520-6017. DoI: 10.1002/jps. 20578.
31. Yu, Zai Qun, Pui Shan Chow, and Reginald B. H. Tan (2010). "Operating Regions in Cooling Cocrystallization of Caffeine and Cilutaric Acid in Acetonitrile". In: Crystal Growth \& Design 10.5, pp. 2382-2387. ISSN: 1528-7483. Dol: 10.1021/cg100198u.
32. Zahn, Dirk (2015). "Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation". In: ChemPhysChem 16.10, pp. 2069-2075. Issn: 1439-7641. DoI: 10.1002/cphc. 201500231.

Chapter 5

Tunable continuous production of RDX from microns to nanoscale using polymeric additives

The specificity of the SFE process arises from the intracity of many physicochemical phenomena that occur with the spray of superheated and supersaturated solutions. The whole system needs to be resolved in space and time as illustrated in Figure 5.1. Crystallisation itself happens in successive steps, namely primary nucleation, crystal growth and secondary nucleation. The complexity of the flashing behaviour is increased by the lack of both theoretical and empirical bases on flashing droplets. In order to dissociate those dynamic events, one crystallisation step over the others can be promoted by the use of additives; nucleation and growth can be inhibited or favoured selectively by polymers. PolyVinylPyrrolidone (PVP) and PolyEthylene Glycol (PEG) are two very common polymers identified as food additives - E1201 and E1521 respectively - but also as crystallisation tools. Kim et al. $(2013,2011)$ and Lee et al. (2014) clearly identified the PVP as a both growth and nucleation inhibitor of RDX in acetone, although only an alteration of the particles morphology was measured without any reduction of the size under electrospray. McPherson and Cudney (McPherson et al. 2006) proved the great effectiveness of PEG for triggering proteins precipitation, notably by steric exclusion as shown by Bhat and Timasheff (Bhat et al. 1992). By the addition of PVP, a delay of the crystallisation at higher supersaturation degree is expected, thus triggering an homogeneous nucleation with a higher density of nuclei. However in those conditions, aggregation or coalescence of nuclei may occur leading respectively to bigger polycrystalline particles or to bigger single crystals. The PEG would increase the supersaturation too, but with a different mechanism than PVP; PVP trends to adsorb on crystal surfaces thus inhibiting the nucleation and growth,
whereas PEG acts as nucleation promoter due to its steric effect.

Figure 5.1 - Evaporation and crystallisation phenomena throughout the SFE process. The 500 nm limit displayed is roughly the detection limit for Phase Doppler Particle Analyzers, which allows in situ size and velocity measurements on both liquid and solid particles.

5.1 Material Er Methods 2

As mentioned in Chapter 1, the RDX is provided by Eurenco, labelled as M5 and used as is, without further purification; the mean size is $6.8 \mu \mathrm{~m}$. Standard PVP with an average molar weight around $40.000 \mathrm{~mol} / \mathrm{g}$ and PEG $400 \mathrm{~mol} / \mathrm{g}$ (liquid) are purchased from Sigma Aldrich.

RDX and the polymers when needed are dissolved in acetone by stirring one minute and then an ultrasonic bath of ten seconds achieved the dissolution. The concentration of RDX is kept constant at $2 \mathrm{wt} \%$ in acetone and weighted percentages of polymer are per gram of RDX.

The operating conditions of the SFE are 40 bar of inlet pressure and $160^{\circ} \mathrm{C}$ at a hollow cone nozzle with an orifice diameter of $60 \mu \mathrm{~m}$.

5.2 Results \& Discussion

5.2.1 Quantification by NMR Spectroscopy

The quantification of the amount of polymer in the final RDX products is the preliminary step before further characterizations and interpretation. NRM-H were conducted in cooperation with our colleagues from the ISL specialized in analytical chemistry. The robustness and accuracy of the build-in quantification integrated in the software is first tested. A well-known lot of RDX is chosen as a standard sample, then a mass gradation is performed in two different solvents, acetonitrile and DMSO at $35{ }^{\circ} \mathrm{C}$ to ensure complete dissolution. The linear regressions shown in Figure 5.2 are acceptable. DMSO is also the most suitable solvent.

Subsequently, RDX samples processed with polymer are analysed by NRM-H and the RDX peak integrated. The value for $100 \mathrm{wt} \%$ of RDX is taken from a pure SFE-processed RDX sample. The final results are shown in Table 5.1. All values are close to the initial amount of RDX. However, two trends can be clearly highlighted when calculating the difference between theoretical and experimental amounts. For the samples processed with PVP, when the amount of RDX increases, the final product contains more PVP than initially; on the contrary less PEG is found when increasing the RDX content. Due to the NMR accuracy and the percentages involved, those trends should be confirmed, at least some values, by using another analytical method such as HPLC before any interpretation. Nevertheless, final and initial ratio of RDX/polymer are similar.

theoretical wt\% of RDX	90.91	95.24	99.01	99.50
mean calculated value from NMR	90.9	94.5	98.0	96.8
difference	0.0	-0.7	-1.0	-2.7

(a) RDX processed with PVP.

theoretical $w t \%$ of RDX	90.91	99.01	99.90
mean calculated value from NMR	88.6	98.5	99.9
difference	-2.3	-0.5	0.0

(b) RDX processed with PEG.

Table 5.1 - Mass percentage of RDX in the final products compared to the initial loading.

Figure 5.2 - Test of the reliability of quantification byNMR.

Figure 5.3 - NMR-H spectra of various representative samples

5.2.2 RDX processed with PEG 400

5.2.2.1 Particle Size and Morphology

Figure 5.4 - Sizes - using a logarithmic scale - of samples processed with PEG measured from SEM micrographs; solid lines represent the smallest lengths and the dotted lines the largest. Pure RDX processed by SFE and raw M5 RDX added here for comparison.

Originally pure RDX processed by SFE can be obtained with a mean size in the range of $400 \mathrm{~nm}-900 \mathrm{~nm}$ depending on the conditions; with the parameters chosen for that study, the mean size would be around 500 nm (Doctoral Thesis Risse 2012). Starting with only $0.1 \mathrm{wt} \%$ of PEG per gram of RDX, the mean particle size increases to $670(0.356) \mathrm{nm}$. Then the mean size still increases to $750(0.244) \mathrm{nm}$ with $1 \mathrm{wt} \%$ and reaches $4.9(0.482) \mu \mathrm{m}$ with $10 \mathrm{wt} \%$. The elongation of the particles while increasing PEG content can be clearly seen from Figure 5.4 but also when defining a roundness factor or aspect ratio by dividing the smallest length by the largest one. That width-to-length ratio is 0.94 at $0.11 \mathrm{wt} \%, 0.89$ at $1 \mathrm{wt} \%$ and only 0.64 at $10 \mathrm{wt} \%$, indicating a preferential growth in one direction.

Due to a high solubility in acetone, PEG rapidly increases supersaturation in droplets at the very beginning of the atomization and, considering its influence on particle size, the supersaturation is far from the optimal value where the
nucleation rate is maximal. Vekilov (2010) proposed an explanation of why, while the nucleation rate should be increasing exponentially with the degree of supersaturation, experiments at high supersaturations clearly show unpredictable rate of nucleation; according to the two-step mechanism, the crystalline nucleus appears inside metastable clusters of several hundred nanometres. Those clusters of dense liquid which are suspended in the solution can be favoured by the steric effect of PEG and the rapidly increasing saturation due to the flashing behaviour of droplets. Therefore, the induction time of nuclei is reduced and the nucleation rate low thus allowing the formation of bigger particles. Further characterizations involving Phase Doppler Anemometry has to be conducted to kinetically discriminate the role of PEG in the SFE process. As shown in Figure 5.1, the crystallisation of RDX with PEG would allow the particle size to exceed 500 nm ; kinetic growth from the apparatus detection limit to the final particle size could be established.

Although PEG is liquid at ambient temperature, no significant change of aspect between all the final nano powders of RDX processed either pure or with an additive can be noticed. The samples processed with $10 \mathrm{wt} \%$ of PEG are less electrostatic and slightly yellowish.

5.2.2.2 X-Ray Difraction (XRD)

The XRD patterns in Figure 5.6 exhibit a slight different texture when micronsize RDX samples at $10 \mathrm{wt} \%$ of PEG are compared with others. From SEM pictures, morphology and PSD indicates a preferentially oriented growth ; the relative differences of intensity in XRD clearly shows that the face $\{311\}$ is much more prominent whereas others like \{111\}, \{002\}, \{102\}, \{020\} and \{021\} are hindered. Those results are in contradiction with predicted and effective morphologies resulting for RDX growth in acetone; Shim and Koo (Shim et al. 2014) successfully predicted the crystal growth habit of RDX in acetone by the spiral growth model and Chen et al. (2015) went further using molecular dynamic simulations. They explained the increased growth rate of the polar faces \{111\}, $\{200\},\{020\}$ and $\{021\}$ compared to the non-polar face $\{002\}$ in polar solvents like acetone. From our experiment, the use of the chemical affinity of faces toward the solvent does not apply when processed by SFE with PEG; the 311 face illustrated in Figure 5.7 exhibits both methylene and nitro group at the surface, and the non-polar $\{002\}$ peak is also decreased as well as the polar faces while adding PEG, a relatively non polar molecule. A small templating effect involving a preferential organization of PEG at higher concentration could explain those differences.

Figure 5.5 - SEM micrographes of RDX samples processed by SFE in the same operating conditions.

Figure 5.6 - (A) XRD patterns of RDX PEG-processed samples; only isolated peaks of major interest have been indexed for clarity. (B) inset of XRD patterns illustrating the broadening of peaks.

Figure 5.7 - View of the 311 plane (in violet, almost perpendicular to the plane of the drawing) and RDX molecules on the surface: both nitro and methylene group are located at the surface (on the background, the unit cell).

5.2.2.3 Thermal Analysis

The DSC results in Figure 5.8 show that the RDX processed by SFE is thermally less stable than the raw micron-size RDX, due to a higher ratio surface/volume for submicron size particles. Those results are in accordance with the work of Rosa et al. (2014) where micron size organic particles show also a similar slight melting depression. From 200 to $20 \mu \mathrm{~m}$, they noticed a drop of 0.8°; from $7 \mu \mathrm{~m}$ to 500 nm , the melting point of pure RDX decreases of 1.2°. Although that ratio is decreasing while adding PEG, DSC curves in Figure 5.8 show that the content of PEG itself decreases the activation energies for melting and decomposition: the temperatures - merged in Table 5.2 - are all decreasing. The PEG 400 melts at $3^{\circ} \mathrm{C}$ (peak minimum) and starts to decompose after $300^{\circ} \mathrm{C}$ (data not shown). The broadening of peaks and decrease of melting temperature is a well-known trend for impure organic particles: the gain of entropy by the creation of a bi component melt drives the melting. This phenomenon appears also in PBX like formex-bonded explosives where BCHMX/Formex melts $5^{\circ} \mathrm{C}$ lower (Yan et al. 2012).

Figure 5.8 - DSC analysis of RDX samples processed with different wt\% of PEG.

	$T_{\text {e endo }}$	$T_{\text {e exo }}$	$T_{\text {pexo }}$	$T_{\text {cexo }}$	$E(\mathrm{~J} / \mathrm{g})$
M5 RDX	204,0	206,1	230,8	233,6	4550
SFE RDX	202,8	204,6	229,6	232,1	4210
0.1\%PEG	202,1	204,1	230,0	233,2	4710
1\% PEG	200,0	201,4	227,6	230,0	4530
10\% PEG	n / a	193,4	223,8	227,7	4010
0.5% PVP	202,2	204,3	229,3	231,7	4120
1\% PVP	201,7	203,6	228,9	232,4	4190
5\%PVP	197,1	199,1	226,0	229,4	2990
10\% PVP	n/a	n/a	223,5	227,4	3090

Table 5.2 - Melting (endo) and decomposition (exo) temperatures in ${ }^{\circ} \mathrm{C}$ and decomposition energy in J/g for all samples (Te extrapolated peak onset, Tp peak maximum temperature, Tc extrapolated peak offset). See Material \& Methods section for more details.

5.2.2.4 Infrared (IR) Spectroscopy

In Figure 5.9, the mid-infrared spectra both $0.1 \mathrm{wt} \%$ and $10 \mathrm{wt} \%$ samples are compared to the raw PEG 400 used, and to pure RDX. The three main specific vibrations of PEG at $1000 \mathrm{~cm}^{-1}-1200 \mathrm{~cm}^{-1}$, at $2800 \mathrm{~cm}^{-1}-3000 \mathrm{~cm}^{-1}$ and at $3200 \mathrm{~cm}^{-1}-3600 \mathrm{~cm}^{-1}$ are broad absorption bands which can be clearly distinguished from RDX spectra; the $10 \mathrm{wt} \%$ sample exhibit those bands, but samples with lower amount such as the $0.1 \mathrm{wt} \%$ one are almost identical to the RDX one. The RDX characteristic bands at 3065 and $3075 \mathrm{~cm}^{-1}$ correspond to C-H stretching aromatic vibrations while $1590 \mathrm{~cm}-1,1570 \mathrm{~cm}-1$ and $1270 \mathrm{~cm}-1$ are assigned to stretching of NO_{2}. A slight shift of $2 \mathrm{~cm}-1$ to lower wavenumber of all bands from $500 \mathrm{~cm}-1$ to $1650 \mathrm{~cm}-1$ can be noticed only for the sample with the higher amount of $P E G$; since that region regroups both nitroamines and ring vibrations it seems more appropriate to consider that shift as negligible or at least not due to a specific interaction between the polymer and RDX.

5.2.3 RDX processed with PVP 40K

5.2.3.1 Particle Size and Morphology

The processing of RDX with PVP 40K dramatically changes the particles size and morphology as it can be clearly seen when comparing side by side the Figures 5.5a and 5.5d. The PSD of samples processed with PVP in Figure 5.10

Figure 5.9 - FTIR spectra of two relevant RDX samples processed with PEG, compared to raw PEG 400 and pure RDX processed by SFE. (Socrates et al. 2001)
show a stabilized mean size around 160 nm with at least $5 \mathrm{wt} \%$ of PVP. At $1 \mathrm{wt} \%$, the mean particle size is slightly higher at 180 nm and with a little more scattering: the multiplicative standard deviation increases from 0.843 for $5 \mathrm{wt} \%$ to 0.926 can be visualized from the dotted cumulative count curve in Figure 5.10.

It is very interesting to notice that only $0.05 \mathrm{wt} \%$ of PVP decreases the size by 34%, from around 500 nm for pure RDX to 320 nm , and improves the spheric shape in a significant way. No preferential growth has been noticed and XRD (not shown here) confirms by identical intensity ratios within the micron-size raw RDX.

As previously mentioned Kim et al. studied the effect of additives on RDX crystallisation by electrospray and drowning-out and pointed out the role of PVP as nucleation inhibitor and growth inhibitor in acetone. The growth inhibition by PVP was only recently evidenced in their experiments of drowning-out where

Figure 5.10 - Particle size distribution and cumulative counts - using a logarithmic scale - of samples processed with PVP measured from SEM micrographs.
$\mathrm{RDX} /$ acetone is sprayed into water, but not in the case of the electrospray; the difference can lye in longer times of flight in air and life in water of droplets in drowning-out and thus implies a more significant impact of the PVP on crystal growth. In contrast, the SFE process has a much higher mean evaporation rate and a two-step evaporation mechanism. Prior to the flash, the PVP inhibits the crystallisation of RDX until the flash of the droplet or delay the nucleation just before the flash. Then the sudden rise of saturation triggers the nucleation if not already, and implies a high crystal growth rate hindered again by the adsorption of PVP.

The size reaching a minimum at $1 \mathrm{wt} \%$ is certainly due to the mechanism of adsorption of the PVP. PVP possesses hydrophilic polar groups, that will interact preferentially on the crystal by chemical adsorption, thus slowing down crystal growth. The minima is then attained for a maximal surface coverage. Moreover, Patel et al. (2015) found out that the growth inhibition of PVP increased with the supersaturation of indomethacin in water. With the droplet fission, that trend is an additive phenomenon explaining the smaller size of RDX processed by SFE with PVP when compared to Kim's results.

In order to confirm the important role of the PVP, one small set of experiments

Figure 5.11 - Particle size distribution of RDX processed with a $80 \mu \mathrm{~m}$ nozzle at only 20 bar.
was conducted with a $80 \mu \mathrm{~m}$ nozzle at only 20 bar. From an industrial point of view, a higher mass flow at lowest pressure is a significant advantage; instead of a yield between 2 and $3 \mathrm{~g} / \mathrm{h}$ for a $60 \mu \mathrm{~m}$ nozzle at 40 bar, RDX were recovered at a rate of $5-8 \mathrm{~g} / \mathrm{h}$. However, as evidenced by Risse (Doctoral Thesis 2012), bigger particles are produced in those conditions; with only $1 \mathrm{wt} \%$ of PVP , the particle size decreases from 714(0.020) nm to $307(0.027) \mathrm{nm}$ and again improves the sphericity. The increase of the particle size at higher flow rates can be counteracted y the addition of PVP, thus allowing both high production rate and small PSD.

5.2.3.2 Thermal Analysis

Figure 5.12 reveals that onset temperatures and temperatures at maximum decrease when adding PVP, following the same trend as the RDX samples processed with PEG. As we already discussed, a melting point depression for organic crystal can occur thanks to a decreasing particle size even above 500 nm and can be thermodynamically favoured: PVP-processed samples have a volumetric mean size well below 500 nm and the transition from a soluble solid formed by RDX and PVP to a liquid miscible solution is favourable. Moreover

Figure 5.12 - DSC analysis of RDX samples processed with different wt\% of PVP.
since PVP 40K has a glass transition temperature around $150-175^{\circ} \mathrm{C}$, solid PVP inclusion in the crystal lattice of RDX may also increase the internal energy. In case of crystal defects, micro-strain can be identified by XRD from peak broadening. Williamson Hall plotting has been found not to be a suitable model therefore a more reliable and calibrated method was required. details were given in Section 3.2.1.1; the Rietveld refinements then performed revealed an apparent volume weighted domain size always around $85 \pm 10 \mathrm{~nm}$ and an average maximum strain around $10 \pm 510^{-4} \%$ for both pure and PVP processed samples. So it is very likely that only the effect of size and the presence of PVP are driving the melting point depression here.

5.2.3.3 IR Spectroscopy

In Figure 5.13, the mid-infrared spectrum of a $10 \mathrm{wt} \%$ sample is compared to the raw PVP 40K used, and to pure RDX. The two main specific vibrations of PVP around $1660 \mathrm{~cm}^{-1}$ and at $2850 \mathrm{~cm}^{-1}-2950 \mathrm{~cm}^{-1}$ (CH stretching) are broad absorption bands which can be clearly distinguished from RDX spectra. The absorption at $3200 \mathrm{~cm}^{-1}-3600 \mathrm{~cm}^{-1}$ is the vibration of water, the PVP being very hygroscopic. Only the $10 \mathrm{wt} \%$ samples exhibit a small broad peak around $1660 \mathrm{~cm}^{-1}$ from PVP.

Figure 5.13 - FTIR spectra of the RDX samples processed with 10 wt\% of PVP, compared to raw PVP 40K and pure RDX processed by SFE.

5.2.4 Sensitivity

In general, samples of nano-RDX have lower sensitivities with the addition of polymers as shown in the Figure 5.14. Due to the reliability issues raised by the submicrometer scale of the powders tested on macro or micron scale apparatus (Radacsi et al. 2013) and the inherent scattering of the results (Brown et al. 2015), the differences of one level higher or lower has to be moderated.

The threshold at the electrostatic discharge test is increased for all SFE processed RDX, and even further when adding at least $5 \mathrm{wt} \%$ of PVP (+300\% then $+700 \%$ compared to M5 RDX) or $10 \mathrm{wt} \%$ of PEG ($+1160 \%$ compared to M5 RDX).

The addition of at least $1 \mathrm{wt} \%$ of PVP or PEG desensitizes the RDX toward friction, up to $+57.5 \%$. Taking into account the previously mentioned dispersions of sensitivity values, the slight decreased value for friction at $10 \mathrm{wt} \%$ for both polymers can be not significant enough, due to the inability of the apparatus to process more plasticized compositions or due to the lower thermal stability.

The micron size RDX with $10 \mathrm{wt} \%$ of PEG is twice insensitive at the impact

Figure 5.14 - Sensitivities of RDX processed with PVP and PEG compared with pure nano-RDX and the raw micron size RDX.

Sample	Impact test (J)	Friction (N)	ESD (mJ)
M5 RDX	3.52	160	119
SFE RDX	2.05	180	359
$0.1 \mathrm{wt} \%$.	1.56	192	366
$1 \mathrm{wt}. \mathrm{\%}$	3.52	252	366
$10 \mathrm{wt}. \mathrm{\%}$	6.96	216	1.5 J

Table 5.3 - Sensitivities of the RDX processed with PEG, compared with pure nano-RDX and the raw micron size RDX.
test than pure nano or micron size RDX; despite a morphology trending to be needle-like when adding PEG and so being more likely sensitive to impact as Chen et al. (2012) demonstrated, the sensitivity decreases due to the polymeric content and the size range.

With the exception of $10 \mathrm{wt} \%$ PVP samples, no loss of reactivity has been noticed during the sensitivity tests, the material has the same response as the pure nano and the raw micron size RDX. An explosion at the impact or discharge can be clearly heard with no residue left, and the friction produces an audible crackling with matter ejection; only the $10 \mathrm{wt} \mathrm{\%}$ PVP samples exhibit a lower reactivity at impact with more residue left and the threshold value reported for impact corresponds to a partial ignition (at the interstice between the steel ring and the steel cylinder, therefore suggesting an ignition by friction).

5.2.5 Comparison with mechanically mixed samples

Mechanical mixes with $10 \mathrm{wt} \%$ of PVP or PEG and nano or the raw micron-sized M5 RDX were done: DSC results can be seen in Figure 5.15. Figure 5.15a illustrates effect of the size since the decomposition peak of the $10 \mathrm{wt} \%$ sample $(5 \mu \mathrm{~m})$ is between the nano $(500 \mathrm{~nm})$ and micron $(7 \mu \mathrm{~m})$ size pure RDX, while the fusion starts at lower temperature. That's the same phenomenon for the $0.1 \mathrm{wt} \%$ sample comparable to pure nano and micron size pure RDX. For the PVP mixes in Figure 5.15 b , the comparison between the $10 \mathrm{wt} \%$ sample, the n -mix and the $\mu-m i x$ ask the question of the distribution of polymer across the sample. We will focus on the distribution of polymer in another study when theTip Enhanced Raman Spectroscopy (TERS) apparatus will be available.

Sensitivity tests were conducted with those mechanic mixes: the n-mix of 10 $w t \%$ PEG is very insensitive (it did not react at 37 J) while the impact sensitivity of the n-mix of $10 \mathrm{wt} \%$ PVP is higher. So in the first case the humidification and coating by the liquid PEG could totally inhibit RDX, and in the second one, the issue comes from the difficult homogenisation of a micron size solid PVP with submicron RDX. This increases the need of a TERS apparatus to have much more reliable and precise interpretation.

5.3 Summary of the Chapter

The great versatility of the Spray Flash Evaporation allows the processing of solid (PVP 40K) and liquid (PEC 400) polymers to tune the particle size distribution of the final dried nano, submicron or micron-sized powder. PEG triggers the early nucleation of RDX with low nucleation rate leading to bigger particles up to $5 \mu \mathrm{~m}$. PVP acts as a nucleation inhibitor and a growth inhibitor:

(a) RDX processed with PEG

(b) RDX processed with PVP

Figure 5.15 - DSC analysis of RDX samples processed with PVP and PEG: comparison of mechanical mixes with 10 wt \% of PVP or PEG.

RDX nuclei are formed in less volume available due to the fission and flashing of droplets, and then the crystal growth is slowed, thus allowing the formation of much smaller particles at 160 nm with a spherical shape. The addition of PEG could have increased supersaturation to trigger nucleation at a maximal rate but our results show that the contribution of both the evaporation behaviour and the nucleation inhibition is more effective and probably the safest choice to reduce and stabilize the particle size and morphology.

Despite a lower thermal stability, the synthesized RDX composites exhibit reduced sensitivities in electrostatic discharge, friction and impact without loss of reactivity and are less prone to Ostwald ripening. The present work is a great advance in the processability of composite and organic compounds by the SFE technology. The sample synthesized here are also promising for the control of the reactive properties of RDX. Further studies should be performed by TERS to elucidate the question of the distribution of polymer across the sample.

Linking size of droplets, and so supersaturation, to particle size and kinetics of crystallisation is still of interest. In addition to PDA, experiments under the X-Ray beam from a particle accelerator would provide more information of the crystallisation kinetics; our application for beamtime at the ESRF has been recently approved and scheduled for the end of 2016. SAXS will provide information about existing nuclei in droplets as a function of space by scanning the spray and as a function of temperature

Bibliography

1. Bhat, Rajiv and Serge N. Timasheff (1992). "Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols". In: Protein Science 1.9, pp. 1133-1143. ISsN: 1469-896X. Dol: 10.1002/pro. 5560010907.
2. Brown, Geoffrey W., Mary M. Sandstrom, Daniel N. Preston, Colin J. Pollard, Kirstin F. Warner, Daniel N. Sorensen, Daniel L. Remmers, Jason J. Phillips, Timothy J. Shelley, Jose A. Reyes, Peter C. Hsu, and John G. Reynolds (2015). "Statistical Analysis of an InterLaboratory Comparison of Small-Scale Safety and Thermal Testing of RDX". In: Propellants, Explosives, Pyrotechnics 40.2, pp. 221-232. ISsN: 07213115. DoI: 10.1002/prep. 201400191.
3. Chen, Gang, Chunyu Chen, Mingzhu Xia, Wu Lei, Fengyun Wang, and Xuedong Gong (2015). "A study of the solvent effect on the crystal morphology of hexogen by means of molecular dynamics simulations". In: RSC Adv. 5.32, pp. 25581-25589. Issn: 2046-2069. DoI: 10.1039/C4RA07544G.
4. Chen, Huaxiong, Lijie Li, Shaohua Jin, Shusen Chen, and Qingze Jiao (2012). "Effects of Additives on ε-HNIW Crystal Morphology and Impact Sensitivity". In: Propellants, Explosives, Pyrotechnics 37.1, pp. 77-82. ISSN: 07213115. DoI: 10.1002/prep. 201000014.
5. Kim, Jun-Woo, Ji-Hwan Park, Hong-Min Shim, and Kee-Kahb Koo (2013). "Effect of Amphiphilic Additives on Nucleation of Hexahydro-1,3,5-trinitro-1,3,5-triazine". In: Crystal Growth \& Design, p. 130927134832004. Issn: 1528-7483, 1528-7505. Doi: 10.1021/ cg4006423.
6. Kim, Jun-Woo, Moon-Soo Shin, Jae-Kyeong Kim, Hyoun-Soo Kim, and Kee-Kahb Koo (2011). "Evaporation Crystallization of RDX by Ultrasonic Spray". In: Industrial \& Engineering Chemistry Research 50.21, pp. 12186-12193. ISsN: 0888-5885, 1520-5045. DoI: 10.1021/ie201314r.
7. Lee, Jae-Eun, Jun-Woo Kim, Sang-Keun Han, Joo-Seung Chae, Keun-Deuk Lee, and Kee-Kahb Koo (2014). "Production of Submicrometer-Sized Hexahydro-1,3,5-trinitro-1,3,5-triazine by Drowning-Out". In: Industrial \& Engineering Chemistry Research 53.12, pp. 4739-4747. ISsN: 0888-5885, 1520-5045. DOI: $10.1021 / \mathrm{ie500221c}$.
8. McPherson, Alexander and Bob Cudney (2006). "Searching for silver bullets: An alternative strategy for crystallizing macromolecules". In: Journal of Structural Biology 156.3, pp. 387406. ISSN: 1047-8477. DoI: 10.1016/j.jsb.2006.09.006.
9. Patel, Dhaval D. and Bradley D. Anderson (2015). "Adsorption of Polyvinylpyrrolidone and its Impact on Maintenance of Aqueous Supersaturation of Indomethacin via Crystal Girowth Inhibition". In: Journal of Pharmaceutical Sciences 104.9, pp. 2923-2933. ISSN: 1520-6017. Dol: 10.1002/jps. 24493.
10. Radacsi, Norbert, Richard H. B. Bouma, Ellen L. M. Krabbendam-la Haye, Joop H. ter Horst, Andrzej I. Stankiewicz, and Antoine E. D. M. van der Heijden (2013). "On the Reliability of Sensitivity Test Methods for Submicrometer-Sized RDX and HMX Particles". In: Propellants, Explosives, Pyrotechnics 38.6, pp. 761-769. Issn: 1521-4087. DoI: 10.1002/ prep. 201200189.
11. Risse, Benedikt (2012). "Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process".
12. Rosa, Frédéric, Yohann Corvis, René Lai-Kuen, Christine Charrueau, and Philippe Espeau (2014). "Influence of particle size on the melting characteristics of organic compounds". In: Journal of Thermal Analysis and Calorimetry 120.1, pp. 783-787. IssN: 1388-6150, 1588-2926. DoI: 10.1007/s10973-014-4210-8.
13. Shim, Hong-Min and Kee-Kahb Koo (2014). "Crystal Morphology Prediction of Hexahydro-1,3,5-trinitro-1,3,5-triazine by the Spiral Growth Model". In: Crystal Growth \&i Design 14.4, pp. 1802-1810. ISSN: 1528-7483, 1528-7505. DoI: 10.1021/cg401928m.
14. Socrates, G. and G. Socrates (2001). Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. Chichester ; New York: Wiley. 347 pp. ISBN: 978-0-471-85298-8.
15. Vekilov, Peter G. (2010). "Nucleation". In: Crystal Growth \& Design 10.12, pp. 5007-5019. ISSN: 1528-7483, 1528-7505. DoI: 10.1021/cg1011633.
16. Yan, Qi-Long, Svatopluk Zeman, Roman Svoboda, and Ahmed Elbeih (2012). "Thermodynamic properties, decomposition kinetics and reaction models of BCHMX and its Formex bonded explosive". In: Thermochimica Acta 547, pp. 150-160. Issn: 0040-6031. doו: 10.1016/j.tca.2012.08.018.

Related Work

Innovations

Figure 5.16 - New model of SFE with a reduced size.

SFE Apparatuses Several models of SFE were build prior to my arrival. In order to increase the number of SFE available, a new SFE model was designed with enhanced ergonomy and compactness in cooperation with Ing J. Urban from ISL. I designed and bought the hydraulic system and took care of the budget and assembly of those machines. With the PhD student Axel Le Brize, we performed the maintenance of all the SFE apparatuses and I manage the purchases and improvements on all models. To study the physicochemical phenomena, a new vacuum chamber was designed for PDA and a whole second injection system was build on an existing apparatus. I have launched and managed the modernization of a laboratory to change the layout, to make available the use of the PDA mounted on an internally designed micrometer traverse and to enhance the whole ergonomy of the pre existing models of SFE.

SFE in situ measurements Additional equipments have to be purchase in order to quantify and study precisely the phenomena occurring in the SFE. The inherent risk of the use of energetic materials makes almost impossible -or at
least very limited- any scientific collaboration. I instigated this project which started by the challenging selection of an appropriate technology to measure on-line velocities and sizes. Then a sizeable budget was allocated from public funding thus delaying the effective acquisition of the PDA.

In the mean time, experiments under the X-Ray beam from a particle accelerator have been planed as part of my PhD project, in order to provide more information of the crystallisation; SAXS measurement will allows us to link existing nuclei in droplets in space by scanning the spray but also as a function of temperature.Thanks to Dr Spitzer who supported that project, our application for beamtime at the ESRF has been quite recently approved and scheduled for the end of 2016, after a long process of approval by an international committee and a Safety group.

With MCF Dr. Lobry and Dr. Bonnot, a project for in situ Fast Scanning Calorimetry on micro chip has also been started. The study aims to quantify the evaporation kinetics under vacuum of the metastable droplets in SFE, to analyse solid particles at different locations and so to map the crystallization and evaporation in or near an SFE spray. Dr. Bonnot conducted preliminary experiments of standard explosives dissolved in solvents, and the support system with fine controls has been designed.

Analysis Improvements The analysis of data acquired from various characterization techniques was improved. For instance, the use of the software Giwyddion increased the accuracy and the time spend on AFM images; the Rietveld method was introduced to colleagues to get more information from XRD patterns. A database of all experiments made from SFE was set to study reproducibility and perform statistical analysis

Published Work and Communication

Communications

- Europyro 2015, 41st International Pyrotechnic Seminar (Toulouse).
- 4th ISL Budding Science Colloquium (Saint Louis, 2015).
- European Congress and Exhibition on Advanced Materials and Processes EUROMAT 2015, B1.3 Section Nanocrystallisation (Warsaw).
- Material Weekend Warsaw 2015; a PhD student workshop from both E-MRS and FEMS societies.
- exhibitor at the 2016 Eurosatory, Defence and Security International Exhibition (572 exhibitors from 56 countries, 213 official delegations from 94 countries)
- 5th ISL Budding Science Colloquium (Saint Louis, 2016).
- Junior EUROMAT 2016 (Lausanne).
- 6th NANOstructures and nanomaterials SElf-Assembly (NanoSEA) (Ciardini Naxos (ME), Italy 2016).
- 1 poster: 3rd ISL Budding Science Colloquium (2014)

Publications

- Blas, Lucia, Martin Klaumünzer, Florent Pessina, Silke Braun, and Denis Spitzer. "Nanostructuring of Pure and Composite-Based K6 Formulations with Low Sensitivities." Propellants, Explosives, Pyrotechnics 40, no. 6 (2015): 938-44.
- Florent Pessina, Fabien Schnell, and Denis Spitzer. "Tunable Continuous Production of RDX from Microns to Nanoscale Using Polymeric Addlitives." Chemical Engineering Journal 291 (May 1, 2016): 12-19. doi:10.1016/j.cej.2016.01.083.
- Martin Klaumünzer, Florent Pessina, and Denis Spitzer. "Indicating Inconsistency of Desensitizing High Explosives against Impact through Recrystallisation at the Nanoscale." Journal of Energetic Materials, July 1, 2016, 1-10. doi:10.1080/07370652.2016.1199610.
- Denis Spitzer, Vincent Pichot, Florent Pessina, Fabien Schnell, Martin Klaumünzer, and Lucia Blas. "Continuous and Reactive Nanocrystallisation: New Concepts and Processes for Dual-Use Advances." Comptes Rendus Chimie, July 2016. doi:10.1016/j.crci.2016.06.009.
- Florent Pessina and Denis Spitzer. "The longstanding challenge of the nano crystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)" Beilstein Journal of Nanotechnology Under Review.

Patent

- Risse, Benedikt, Florent Pessina, and Denis Spitzer. Method for producing cocrystals by means of flash evaporation. WO 2016001445, issued January 2016.

Scientific courses

- Sensibilisation à la pyrotechnie 3PSC17C, Centre de Formation de la Défense (Bourges 2013)
- Advanced Functional Materials and Characterization, CNRS-EWHA Winter School (Strasbourg 2014)
- Nano-OptoMechanics, School in Physics (Strasbourg 2014)

Conclusion

Due to the difficult micronisation and nano crystallisation of classical organic explosives such as RDX, advances in insensitive munitions came mainly from new compounds such as NTO or optimizations of each step of the production process (Klapötke et al. 2016; Nouguez et al. 2016). The size reduction of energetic crystals is still of interest not only to produce particles under the critical hot-spot size but also to provide easier shaping and homogeneous energetic compositions. The extensive review of the crystallisation technique used on RDX performed in the Chapter 2 suggests that the Spray Flash Evaporation (SFE) is a well balanced method between spray drying unable to process particles lower that the micrometer, and the expensive batch Rapid Expansion of Supercritical Solutions (RESS) process. The crystallisation in solution is a competitive approach but limited by the drying conditions and its inability to process propellants, unlike the SFE technology (Le Brize et al. 2016).

The present research project was initially focused in the size reduction of crystals produced by this unique technique created in our laboratory. Many challenges were addressed starting by the difficult to commit characterizations of energetic materials, and of the spray itself. Then the crystallisation from SFE has been unveiled with supersaturation variations by solvent exchanges and by polymeric agents.

The nano-technology took off with the invention of the two crucial characterization methods, the Scanning Tunneling Microscopy (STM) and the Atomic Force Microscopy (AFM). The energetic materials are organic crystals where molecules are held together by weak forces; therefore energetic compounds exhibit high sensitivity towards characterization techniques providing energy to the sample. As a consequence, the pyrotechnic community experiences many limitation to assess accurately the particle morphology, their size, aggregation state etc. By trying several characterization techniques especially the microscopy ones, the Environmental Scanning Electron Microscopy (ESEM) has been found to be a suitable technique to process energetic material.

An original method where pellets are flatten then analysed by AFM was in
use previously (Spitzer et al. 2014) and also at the beginning of this present project. It was found that the size measured that way was not a function of the concentration in solution but more of the condition of preparation of the pellets. The compression breaks the brittle crystals with a critical pressure above which the particles reach an even smaller size; while using a microtome, the surface is milled and grooves appear. Sizes down to the crystallite size were found in those grooves. That phenomenon is much more pronounced for n-RDX processed by SFE than for raw micron-sized RDX, just as Spitzer et al. (2011) experienced about opacity and mechanical strength. Those properties could benefit to pressed charges to tune the apparent density and greatly improve homogeneity.

For the SFE process, particle size and shape depend on the crystallisation itself governed by the supersaturation. The degree of supersaturation is unique in each droplet and thus is a function of time and space. The restriction for in situ characterization of the droplets for SFE has been overcome by focusing on the chemical route to change the supersaturation and by designing a dual injection system. In that latter system, the persistence of droplet is questioned by using the cocrystal CL-20:HMX. Cocrystallisation occurs in any cases: by using a unique solution and nozzle, by using one solvent but two solutions and nozzles, and also by using two different solvents each one sprayed by one nozzle. Droplets effectively collide from both spray permitting the crystallisation; it is however not clear whether the nucleation occurs before the overlap or the Phase Solubility Diagram (PhSD) of the system does not allow the formation of the sole cocrystal. Further investigations will be performed to quantify the relative crystalline phases and the overlap.

The SFE versatility was again taken a step further within the introduction of solid and viscous polymers in solvent. Those polymers are food additives namely PolyVinylPyrrolidone (PVP) and PolyEthylene Cilycol (PEG) and were successfully used to control crystallisation steps. PEG 400 triggers the early nucleation of RDX with low nucleation rate leading to bigger particles up to $5 \mu \mathrm{~m}$. PVP 40K acts as a nucleation inhibitor and a growth inhibitor: RDX nuclei are formed in less volume available due to the fission and flashing of droplets; then the crystal growth is slowed, thus allowing the formation of much smaller particles at 160 nm with a narrow distribution and a spherical shape. The addition of PEG could have increased supersaturation to trigger nucleation at a maximal rate but results show that the contribution of both the evaporation behaviour and the nucleation inhibition is more effective and probably the surest choice to reduce and stabilize both particle size and morphology. Furthermore, those synthesized energetic composites are less sensitive.

The laboratory acquired very recently a Phase Doppler Analysis (PDA) in order to elucidate the question of supersaturation. Droplets size and velocity will be measured as a function of temperature but also in space within the spray. The dual nozzle system will also benefit from PDA analyses to define the evaporation behaviours while using two solvent or an anti-solvent. Pre-results show droplets of a few microns at high speed more than $100 \mathrm{~m} / \mathrm{s}$, suggesting the possible crystallisation from metastable systems.

To summarize, the submicron and nano scales bring to the pyrotechnic community new challenges for the characterization of nano energetic materials. Furthermore, this research project paved the way to global and deeper understanding of the crystallisation aspect of the SFE technology. New apparatuses and designs were explored and implemented as breakthrough for the SFE technology; they led to the control of particle size and shape, and to versatility and industrial-friendly enhancements of the SFE apparatuses.

Bibliography

1. Klapötke, Thomas M. and Tomasz G. Witkowski (2016). "Covalent and Ionic Insensitive High-Explosives". In: Propellants, Explosives, Pyrotechnics. ISsN: 07213115. DoI: 10.1002/ prep. 201600006.
2. Le Brize, Axel and Denis Spitzer (2016). "Plasticization of Submicron-Structured LOVA Propellants by a Linear Dinitramine". In: Central European Journal of Energetic Materials 13.
3. Nouguez, Bruno and Geneviève Eck (2016). "From Synthesis to Formulation and Final Application". In: Propellants, Explosives, Pyrotechnics 41.3, pp. 548-554. ISsn: 1521-4087. DoI: 10.1002/prep. 201600031.
4. Spitzer, D., B. Risse, F. Schnell, V. Pichot, M. Klaumünzer, and M. R. Schaefer (2014). "Continuous engineering of nano-cocrystals for medical and energetic applications". In: Scientific Reports 4. Dol: 10.1038/srep06575.
5. Spitzer, Denis, Christian Baras, Michael Richard Schäfer, Fabrice Ciszek, and Benny Siegert (2011). "Continuous Crystallization of Submicrometer Energetic Compounds". In: Propellants, Explosives, Pyrotechnics 36.1, pp. 65-74. Issn: 07213115. doו: 10.1002/prep. 200900002.

Appendix A

Rietveld refinement

A. 1 Calibration

```
***************************************************************
** PROGRAM FullProf.2k (Version 5.50 - Dec2014-ILL JRC) **
M U L T I _- P A T T E R N
Rietveld, Profile Matching & Integrated Intensity
Refinement of X-ray and/or Neutron Data
Date: 17/02/2015 Time: 13:47:24.271
=> PCR file code: lab6 - Copie (22) - Copie
=> DAT file code: lab6.dat -> Relative contribution: 1.0000
==> CONDITIONS OF THIS RUN FOR PATTERN No.: 1
```

=> Global Refinement of X-ray powder diffraction data
=> Global Refinement of X-ray powder diffraction data
Flat plate with PSD
\Rightarrow Title: ALS 11-BM - NIST SRM 660a LaB6
=> Number of phases: 1
=> Number of excluded regions:
\Rightarrow Number of scattering factors supplied: 0
\Rightarrow March-Dollase model for preferred orientation
=> Conventional weights: w=1.0/Variance (yobs)
\Rightarrow Asymmetry correction as in J.Appl.Cryst. 26,128(1993)
\Rightarrow Background linearly interpolated between the 7 points given
\Rightarrow The 5 th default profile function was selected
\Rightarrow Pseudo-Voigt function (ETA variable)
X-parameter correspond to: ETA $=E T A 0+X * 2$ theta
$\mathrm{pV}(\mathrm{x})=\mathrm{ETA} * \mathrm{~L}(\mathrm{x})+(1-\mathrm{ETA}) * \mathrm{G}(\mathrm{x})$
==> INPUT/OUTPUT OPTIONS:
\Rightarrow Generate bacground file *.bac
\Rightarrow Generate file *.PRF for plot
=> Output Integrated Intensities
\Rightarrow Output Correlation Matrix
\Rightarrow Generate new input file *.PCR
=> Data supplied in free format for pattern: 1
=> Plot pattern at each cycle
\Rightarrow Wavelengths: 1.540591 .54431
\Rightarrow Alpha2/Alpha1 ratio: 0.5000
$\Rightarrow \operatorname{Cos}($ Monochromator angle) $=1.0000$
\Rightarrow Asymmetry correction for angles lower than 90.000 degrees
\Rightarrow Absorption correction (AC), muR-eff = 0.0000 0.0000
\Rightarrow Base of peaks: 2.0*HW* 20.00
=> Number of cycles:
50
=> Relaxation factors ==>
\Rightarrow for halfwidth/strain/size parameters: 1.00
\Rightarrow for lattice constants and propagation vectors: 1.00
=> EPS-value for convergence: 0.0
=> Background ==>
Position Intensity
$20.00 \quad 22.220 .00$
$30.00 \quad 21.64 \quad 0.00$
$\begin{array}{lll}40.00 & 18.36 & 0.00\end{array}$
$55.00 \quad 12.77 \quad 0.00$
$\begin{array}{lll}60.00 & 9.61 & 0.00\end{array}$

75.00	12.58	0.00

Information on Space Group:

=> Number of Space group: 221
\Rightarrow Hermann-Mauguin Symbol: P m 3 m
$\Rightarrow \quad$ Hall Symbol: \quad - P 4223
\Rightarrow Table Setting Choice:
$\begin{array}{lrl}\Rightarrow & \text { Setting Type: IT (Ge } \\ => & \text { Crystal System: Cubic } \\ = & \text { Laue Class: m-3m }\end{array}$ Point Group: m-3m
Bravais Lattice: P
Lattice Symbol: cP
Reduced Number of S.O.: 24 General multiplicity: 48 Centrosymmetry: Centric (-1 at origin)
Generators (exc. -1\&L): 3
$\Rightarrow \quad$ Asymmetric unit: $0.000<=x<=0.500$
$0.000<=y<=0.500$
$0.000<=z<=0.500$
\Rightarrow List of S.O. without inversion and lattice centring translations

SYMM	1) : x, y, z	=> SYMM (2) :	$x,-y,-z$
> SYMM	3): $-\mathrm{x}, \mathrm{y},-\mathrm{z}$	\Rightarrow SYMM	4) :	-x, - y, z
=> SYMM	5): $\mathrm{y}, \mathrm{z}, \mathrm{x}$	\Rightarrow SYMM (6):	-y, $-\mathrm{z}, \mathrm{x}$
\Rightarrow SYMM	7) : $\mathrm{y},-\mathrm{z},-\mathrm{x}$	\Rightarrow SYMM	8) :	-y, z, -x

\Rightarrow X-ray scattering coeff. (A1, B1, A2,...C, f(0), Z, Dfp,Dfpp)

Symbolic names and initial values of parameters to be varied:
-> Parameter number
-> Parameter number
$->$ Parameter number
-> Parameter number
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
-> Symbolic
-> Syme:
-> Symbolic

Zero_pat1 - 0.21106000
SyCos_pat $1 \quad 0.76700002 \mathrm{E}-01$
SySin_pat1 0.38720001E-01
X_B_ph 10.20319000
Scale_ph1_pat1 0.12534999E-03
U-Cagl_ph1_pat1 0.13560000E-02 V-Cagl_ph1_pat1 -0.49999999E-02 W-Cagl_ph1_pat1 0.39100000E-02 Asym1_ph1_pat1 -0.32439999E-01 X -tan_ph1_pat1 $\quad 0.63895002 \mathrm{E}-01$ $\mathrm{Y}-\mathrm{cos}$ _ph1_pat1 0.0000000 Asym2_ph1_pat1 0.42070001E-01

3 at 2 theta/TOF/E (KeV):
4 at 2 theta/TOF/E (KeV) :
5 at 2 theta/TOF/E (KeV) :
6 at 2 theta/TOF/E (KeV) :
7 at 2 theta/TOF/E (KeV):
8 at 2 theta/TOF/E (KeV):
9 at 2 theta/TOF/E (KeV):
12 at 2 theta/TOF/E (KeV):
13 at 2 theta/TOF/E (KeV): 14 at 2 theta/TOF/E (KeV): 16 at 2 theta/TOF/E (KeV) : 17 at 2 theta/TOF/E (KeV) : 19 at 2 theta/TOF/E (KeV) : 22 at 2 theta/TOF/E (KeV): 24 at 2 theta/TOF/E (KeV): 25 at 2theta/TOF/E (KeV) : 30 at 2 theta/TOF/E (KeV): 31 at 2theta/TOF/E (KeV): 32 at 2 theta/TOF/E (KeV): 33 at 2 theta/TOF/E (KeV): 34 at 2 theta/TOF/E (KeV) : 35 at 2 theta/TOF/E (KeV): 36 at 2 theta/TOF/E (KeV): 37 at 2 theta/TOF/E (KeV): 38 at 2 theta/TOF/E (KeV): 40 at 2 theta/TOF/E (KeV): 43 at 2theta/TOF/E(KeV): 44 at 2theta/TOF/E(KeV): 45 at 2 theta/TOF/E (KeV): 46 at 2 theta/TOF/E (KeV) : 48 at 2theta/TOF/E (KeV) : 49 at 2 theta/TOF/E (KeV): 51 at 2theta/TOF/E(KeV): 52 at 2 theta/TOF/E (KeV): 53 at 2 theta/TOF/E (KeV) : 55 at 2theta/TOF/E (KeV) : 56 at 2 theta/TOF/E (KeV): 57 at 2 theta/TOF/E (KeV): 59 at 2 theta/TOF/E (KeV): 61 at 2 theta/TOF/E (KeV) : 64 at 2 theta/TOF/E (KeV) : 66 at 2theta/TOF/E(KeV): 67 at 2 theta/TOF/E (KeV) : 68 at 2 theta/TOF/E (KeV) : 70 at 2 theta/TOF/E (KeV) : 71 at 2theta/TOF/E(KeV): 73 at 2 theta/TOF/E (KeV): 74 at 2 theta/TOF/E (KeV) : 75 at 2 theta/TOF/E (KeV):
17.5792 17.5985 Intensity fixed to 1.0 and variance to 1 E 6 17.6178 Intensity fixed to 1.0 and variance to 1 E 6 17.6372 Intensity fixed to 1.0 and variance to 1 E 6 17.6565 Intensity fixed to 1.0 and variance to 1 E 6 17.6758 Intensity fixed to 1.0 and variance to 1 E 6 17.6952 Intensity fixed to 1.0 and variance to 1 E 6 17.7532 Intensity fixed to 1.0 and variance to 1 E 6 17.7725 Intensity fixed to 1.0 and variance to 1 E 6 17.7918 Intensity fixed to 1.0 and variance to 1 E 6 17.8305 Intensity fixed to 1.0 and variance to 1 E 6 17.8498 Intensity fixed to 1.0 and variance to 1 E 6 17.8885 Intensity fixed to 1.0 and variance to 1 E6 17.9465 Intensity fixed to 1.0 and variance to 1 E 6 17.9851 Intensity fixed to 1.0 and variance to $1 E 6$ 18.0045 Intensity fixed to 1.0 and variance to 1 E6 18.1011 Intensity fixed to 1.0 and variance to 1 E 6 18.1205 Intensity fixed to 1.0 and variance to 1 E6 18.1398 Intensity fixed to 1.0 and variance to $1 E 6$ 18.1591 Intensity fixed to 1.0 and variance to 1 E6 18.1785 Intensity fixed to 1.0 and variance to 1 E 6 18.1978 Intensity fixed to 1.0 and variance to 1 E 6 18.2171 Intensity fixed to 1.0 and variance to 1 E6 18.2364 Intensity fixed to 1.0 and variance to 1 E6 18.2558 Intensity fixed to 1.0 and variance to 1 E6 18.2944 Intensity fixed to 1.0 and variance to 1 E 6 18.3524 Intensity fixed to 1.0 and variance to 1 E 6 18.3718 Intensity fixed to 1.0 and variance to 1 E6 18.3911 Intensity fixed to 1.0 and variance to 1 E6 18.4104 Intensity fixed to 1.0 and variance to 1 E6 18.4491 Intensity fixed to 1.0 and variance to 1 E 6 18.4684 Intensity fixed to 1.0 and variance to $1 E 6$ 18.5071 Intensity fixed to 1.0 and variance to 1 E6 18.5264 Intensity fixed to 1.0 and variance to $1 E 6$ 18.5458 Intensity fixed to 1.0 and variance to 1 E 6 18.5844 Intensity fixed to 1.0 and variance to 1E6 18.6038 Intensity fixed to 1.0 and variance to $1 E 6$ 18.6231 Intensity fixed to 1.0 and variance to $1 E 6$ 18.6617 Intensity fixed to 1.0 and variance to 1 E6 18.7004 Intensity fixed to 1.0 and variance to 1 E 6 18.7584 Intensity fixed to 1.0 and variance to 1 E 6 18.7971 Intensity fixed to 1.0 and variance to 1 E 6 18.8164 Intensity fixed to 1.0 and variance to $1 E 6$ 18.8357 Intensity fixed to 1.0 and variance to 1 E 6 18.8744 Intensity fixed to 1.0 and variance to 1 E 6 18.8937 Intensity fixed to 1.0 and variance to 1 E 6 18.9324 Intensity fixed to 1.0 and variance to 1 E 6 18.9517 Intensity fixed to 1.0 and variance to $1 E 6$ 18.9711 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

77 at 2theta/TOF/E(KeV) : 78 at 2 theta/TOF/E(KeV): 82 at 2theta/TOF/E(KeV): 84 at 2theta/TOF/E(KeV): 85 at 2 theta/TOF/E(KeV) 90 at 2 theta/TOF/E(KeV) 91 at 2theta/TOF/E(KeV): 93 at 2theta/TOF/E(KeV) : 94 at 2 theta/TOF/E(KeV) 95 at 2 theta/TOF/E(KeV) 97 at 2 theta/TOF/E(KeV): 98 at 2theta/TOF/E(KeV): 99 at 2 theta/TOF/E(KeV): 104 at 2 theta/TOF/E(KeV) : 105 at 2 theta/TOF/E(KeV): 109 at 2theta/TOF/E(KeV): 110 at 2theta/TOF/E(KeV): 111 at 2theta/TOF/E(KeV): 113 at 2theta/TOF/E(KeV): 115 at 2 theta/TOF/E(KeV): 123 at 2theta/TOF/E(KeV): 125 at 2 theta/TOF/E(KeV): 128 at 2theta/TOF/E(KeV): 129 at 2 theta/TOF/E(KeV) 130 at 2theta/TOF/E(KeV): 132 at 2theta/TOF/E(KeV): 135 at 2 theta/TOF/E(KeV): 136 at 2 theta/TOF/E(KeV): 137 at 2 theta/TOF/E(KeV) 138 at 2theta/TOF/E(KeV): 141 at 2theta/TOF/E(KeV): 144 at 2theta/TOF/E(KeV): 145 at 2theta/TOF/E(KeV): 146 at 2 theta/TOF/E(KeV) 148 at 2theta/TOF/E(KeV): 149 at 2theta/TOF/E(KeV): 151 at 2theta/TOF/E(KeV): 154 at 2theta/TOF/E(KeV): 155 at 2 theta/TOF/E(KeV) 159 at 2theta/TOF/E(KeV): 163 at 2theta/TOF/E(KeV): 167 at 2 theta/TOF/E(KeV): 168 at 2 theta/TOF/E(KeV) 169 at 2theta/TOF/E(KeV): 170 at 2theta/TOF/E(KeV): 171 at 2theta/TOF/E(KeV): 173 at 2 theta/TOF/E(KeV): 174 at 2 theta/TOF/E(KeV) 177 at 2theta/TOF/E(KeV): 213 at 2theta/TOF/E(KeV): 219 at 2theta/TOF/E(KeV): 220 at 2 theta/TOF/E(KeV): 222 at 2 theta/TOF/E(KeV): 223 at 2theta/TOF/E(KeV): 225 at 2theta/TOF/E(KeV): 228 at 2 theta/TOF/E(KeV): 229 at 2theta/TOF/E(KeV): 231 at 2 theta/TOF/E(KeV) 232 at 2theta/TOF/E(KeV) 235 at 2theta/TOF/E(KeV) 237 at 2theta/TOF/E(KeV): 238 at 2 theta/TOF/E(KeV) : 241 at 2theta/TOF/E(KeV): 243 at 2theta/TOF/E(KeV): 244 at 2theta/TOF/E(KeV): 245 at 2 theta/TOF/E(KeV) 248 at 2 theta/TOF/E(KeV): 250 at 2theta/TOF/E(KeV): 252 at 2theta/TOF/E(KeV): 253 at 2theta/TOF/E(KeV): 256 at 2 theta/TOF/E(KeV): 258 at 2 theta/TOF/E(KeV) 260 at 2theta/TOF/E(KeV): 271 at 2 theta/TOF/E(KeV): 272 at 2 theta/TOF/E(KeV) 273 at 2theta/TOF/E(KeV): 275 at 2 theta/TOF/E(KeV) 278 at 2theta/TOF/E(KeV): 279 at 2theta/TOF/E(KeV): 280 at 2theta/TOF/E(KeV): 282 at 2 theta/TOF/E(KeV) 284 at 2 theta/TOF/E(KeV): 287 at 2theta/TOF/E(KeV): 297 at 2theta/TOF/E(KeV): 300 at 2 theta/TOF/E(KeV): 306 at 2 theta/TOF/E(KeV) 311 at 2theta/TOF/E(KeV): 313 at 2theta/TOF/E(KeV): 315 at 2 theta/TOF/E(KeV) 316 at 2theta/TOF/E(KeV):
9.0097 19.0291 19.1064 19.1450 19.1644 19.2610 19.2804 19.3190 19.3384 19.3577 19.3964 19.4157 19.4350 19.5317 19.5510 19.6283 19.6477 19.6670 19.7057 19.7443 19.8990 19.9376 19.9956 10.0150 20.0343 20.0730 20.1310 20.1503 20.1696 20.1890 20.2470 20.3050 20.3243 20.3436 20.3823 20.4016 20.4403 20.4983 20.5176 20.5949 20.6723 20.7496 20.7689 20.7882 20.8076 20.8269 20.8656 20.8849 20.9429 21.6388 21.7548 21.7742 21.8128 21.8322 21.8708 21.9288 21.9482 21.9868 22.0062 22.0641 22.1028 22.1221 22.1801 22.2188 22.2381 22.2575 22.3155 22.3541 22.3928 22.4121 22.4701 22.5088 22.5474 22.7601 22.7794 22.7988 22.8374 22.8954 22.9147 22.9341 22.9727 23.0114 23.0694 23.2627 23.3207 23.4367 23.5334 23.5720 23.6107
23.6300

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

317 at 2theta/TOF/E(KeV) 332 at 2theta/TOF/E(KeV) 333 at 2theta/TOF/E(KeV): 336 at 2 theta/TOF/E(KeV): 345 at 2theta/TOF/E(KeV): 347 at 2 theta/TOF/E(KeV): 357 at 2theta/TOF/E(KeV) 358 at 2theta/TOF/E(KeV): 365 at 2 theta/TOF/E(KeV): 382 at 2 theta/TOF/E(KeV) 385 at 2 theta/TOF/E(KeV): 387 at 2theta/TOF/E(KeV): 390 at 2theta/TOF/E(KeV): 394 at 2 theta/TOF/E(KeV): 397 at 2 theta/TOF/E(KeV): 404 at 2theta/TOF/E(KeV): 405 at 2 theta/TOF/E(KeV): 416 at 2 theta/TOF/E(KeV): 421 at 2 theta/TOF/E(KeV): 424 at 2 theta/TOF/E(KeV) 425 at 2theta/TOF/E(KeV): 433 at 2theta/TOF/E(KeV): 436 at 2 theta/TOF/E(KeV): 439 at 2 theta/TOF/E(KeV) 440 at 2 theta/TOF/E(KeV) 441 at 2theta/TOF/E(KeV): 448 at 2theta/TOF/E(KeV): 455 at 2theta/TOF/E(KeV): 460 at 2 theta/TOF/E(KeV): 467 at 2 theta/TOF/E(KeV): 471 at 2theta/TOF/E(KeV): 472 at 2 theta/TOF/E(KeV): 491 at 2 theta/TOF/E (KeV): 498 at 2 theta/TOF/E(KeV) 502 at 2 theta/TOF/E(KeV): 512 at 2theta/TOF/E(KeV): 513 at 2theta/TOF/E(KeV): 515 at 2theta/TOF/E(KeV): 517 at 2 theta/TOF/E(KeV) 522 at 2 theta/TOF/E(KeV): 523 at 2theta/TOF/E(KeV): 533 at 2 theta/TOF/E(KeV): 541 at 2 theta/TOF/E(KeV) 543 at 2 theta/TOF/E(KeV): 544 at 2theta/TOF/E(KeV) 549 at 2 theta/TOF/E(KeV): 550 at 2 theta/TOF/E(KeV): 551 at 2 theta/TOF/E(KeV) : 555 at 2theta/TOF/E(KeV): 557 at 2theta/TOF/E(KeV): 571 at 2 theta/TOF/E(KeV): 578 at 2 theta/TOF/E(KeV): 579 at 2 theta/TOF/E(KeV) 582 at 2 theta/TOF/E(KeV): 583 at 2theta/TOF/E(KeV): 584 at 2 theta/TOF/E(KeV): 585 at 2theta/TOF/E(KeV): 587 at 2 theta/TOF/E(KeV) 592 at 2theta/TOF/E(KeV) 603 at 2theta/TOF/E(KeV): 699 at 2theta/TOF/E(KeV): 707 at 2 theta/TOF/E(KeV) 720 at 2theta/TOF/E(KeV): 724 at 2theta/TOF/E(KeV): 725 at 2theta/TOF/E(KeV): 726 at 2 theta/TOF/E(KeV): 732 at 2 theta/TOF/E(KeV) : 735 at 2 theta/TOF/E(KeV): 737 at 2 theta/TOF/E(KeV): 742 at 2theta/TOF/E(KeV): 751 at 2 theta/TOF/E(KeV): 757 at 2 theta/TOF/E(KeV): 759 at 2 theta/TOF/E(KeV): 760 at 2theta/TOF/E(KeV): 767 at 2 theta/TOF/E(KeV): 768 at 2theta/TOF/E(KeV): 771 at 2 theta/TOF/E(KeV) 777 at 2theta/TOF/E(KeV) 780 at 2theta/TOF/E(KeV): 786 at 2 theta/TOF/E(KeV): 788 at 2 theta/TOF/E(KeV) 796 at 2 theta/TOF/E(KeV): 799 at 2theta/TOF/E(KeV): 800 at 2theta/TOF/E(KeV): 805 at 2 theta/TOF/E(KeV): 811 at 2 theta/TOF/E(KeV) 815 at 2theta/TOF/E(KeV): 835 at 2theta/TOF/E(KeV): 836 at 2theta/TOF/E(KeV): 837 at 2 theta/TOF/E(KeV):
23.6494 23.9393 23.9587 24.0167 24.1907 24.2293 24.4226 24.4420 24.5773 24.9059 24.9639 25.0026 25.0606 25.1379 25.1959 25.3312 25.3506 25.5632 25.6599 25.7179 25.7372 25.8919 25.9498 26.0078 26.0272 26.0465 26.1818 26.3172 26.4138 26.5491 26.6265 26.6458 27.0131 27. 1484 27.2257 27.4191 27.4384 27.4771 27.5157 27.6124 27.6317 27.8250 27.9797 28.0184 28.0377 28.1343 28.1537 28.1730 28.2503 28.2890 28.5596 28.6950 28.7143 28.7723 28.7916 28.8110 28.8303 28.8690 28.9656 29.1783 31.0341 31.1888 31.4401 31.5174 31.5367 31.5561 31.6721 31.7301 31.7687 31.8654 32.0394 32.1554 32.1940 32.2134 32.3487 32.3680 32.4260 32.5420 32.6000 32.7160 32.7547 32.9093 32.9673 32.9866 33.0833 33.1993 33.2766 33.6632
33.6826
33.7019

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

844 at 2 theta/TOF/E(KeV) 858 at 2theta/TOF/E(KeV): 885 at 2theta/TOF/E(KeV): 887 at 2 theta/TOF/E(KeV): 896 at 2 theta/TOF/E(KeV) 902 at 2 theta/TOF/E(KeV) 907 at 2theta/TOF/E(KeV) 927 at 2theta/TOF/E(KeV) : 932 at 2 theta/TOF/E(KeV) 934 at 2 theta/TOF/E(KeV) 937 at 2theta/TOF/E(KeV): 941 at 2theta/TOF/E(KeV): 943 at 2theta/TOF/E(KeV): 944 at 2 theta/TOF/E(KeV): 945 at 2theta/TOF/E(KeV) 953 at 2 theta/TOF/E(KeV): 956 at 2theta/TOF/E(KeV): 957 at 2 theta/TOF/E(KeV): 959 at 2theta/TOF/E(KeV): 963 at 2 theta/TOF/E(KeV) 969 at 2theta/TOF/E(KeV) 970 at 2theta/TOF/E(KeV): 982 at 2 theta/TOF/E(KeV) 992 at 2 theta/TOF/E(KeV) 996 at 2 theta/TOF/E(KeV) : 1005 at 2theta/TOF/E(KeV): 1063 at 2theta/TOF/E(KeV): 1068 at 2 theta/TOF/E(KeV): 1070 at 2 theta/TOF/E(KeV): 1071 at 2 theta/TOF/E(KeV): 1074 at 2theta/TOF/E(KeV): 1081 at 2 theta/TOF/E(KeV): 1085 at 2 theta/TOF/E(KeV): 1090 at 2 theta/TOF/E(KeV): 1093 at 2theta/TOF/E(KeV): 1094 at 2 theta/TOF/E(KeV): 1105 at 2theta/TOF/E(KeV): 1107 at 2 theta/TOF/E(KeV): 108 at 2theta/TOF/E(KeV): 1111 at 2theta/TOF/E(KeV): 1112 at 2theta/TOF/E(KeV): 1125 at 2 theta/TOF/E(KeV): 1155 at 2 theta/TOF/E(KeV) 1188 at 2 theta/TOF/E(KeV): 1189 at 2 theta/TOF/E(KeV): 1192 at 2 theta/TOF/E(KeV): 1195 at 2 theta/TOF/E(KeV): 196 at 2 theta/TOF/E(KeV): 1200 at 2 theta/TOF/E(KeV): 1212 at 2theta/TOF/E(KeV): 1214 at 2theta/TOF/E(KeV): 1215 at 2theta/TOF/E(KeV): 1223 at 2 theta/TOF/E(KeV): 1226 at 2 theta/TOF/E(KeV): 1231 at 2theta/TOF/E(KeV): 1238 at 2theta/TOF/E(KeV): 1242 at 2 theta/TOF/E(KeV): 1249 at 2 theta/TOF/E(KeV): 1267 at 2theta/TOF/E(KeV): 1283 at 2theta/TOF/E(KeV): 1284 at 2 theta/TOF/E(KeV): 1292 at 2 theta/TOF/E (KeV) : 1309 at 2theta/TOF/E(KeV): 1396 at 2 theta/TOF/E(KeV): 1418 at 2 theta/TOF/E(KeV): 1419 at 2theta/TOF/E(KeV): 1428 at 2 theta/TOF/E(KeV): 1444 at 2 theta/TOF/E(KeV): 1453 at 2 theta/TOF/E(KeV): 1457 at 2 theta/TOF/E(KeV): 1461 at 2 theta/TOF/E(KeV): 1476 at 2 theta/TOF/E(KeV) 1479 at 2 theta/TOF/E(KeV): 1491 at 2theta/TOF/E(KeV): 1496 at 2 theta/TOF/E(KeV): 1497 at 2theta/TOF/E(KeV): 1508 at 2 theta/TOF/E(KeV): 1515 at 2theta/TOF/E(KeV): 1520 at 2 theta/TOF/E(KeV): 1521 at 2 theta/TOF/E(KeV): 1524 at 2theta/TOF/E(KeV): 1538 at 2 theta/TOF/E(KeV): 1573 at 2theta/TOF/E(KeV): 1663 at 2theta/TOF/E(KeV) 1689 at 2 theta/TOF/E(KeV): 1691 at 2 theta/TOF/E(KeV): 1693 at 2 theta/TOF/E(KeV): 1694 at 2 theta/TOF/E(KeV): 1696 at 2 theta/TOF/E(KeV): 1708 at 2 theta/TOF/E(KeV):
33.8372 34.1079 34.6298 34.6685 34.8425 34.9585 35.0551 35.4418 35.5384 35.5771
35.6351 35.7124 35.7511 35.7704 35.7897 35.9444 36.0024 36.0217 36.0604 36.1377 36.2537 36.2730 36.5050 36.6983 36.7757 36.9497 38.0709 38.1676 38.2062 38.2256 38.2836 38.4189 38.4962 38.5929 38.6509 38.6702 38.8828 38.9215 38.9408 38.9988 39.0182 39.2695 39.8494 40.4874 40.5067 40.5647 40.6227 40.6420 40.7194 40.9513 40.9900 41.0093 41.1640 41.2220 41.3186 41.4540 41.5313 41.6666 42.0146 42.3239 42.3432 42.4979 42.8265 44.5084 44.9337 44.9530 45.1270 45.4363 45.6103 45.6876 45.7650 46.0549 46.1129 46.3449 46.4416 46.4609 46.6736 46.8089 46.9055 46.9249 46.9829 47.2535 47.9301 49.6700 50.1726 50.2113 50.2500 50.2693 50.3080
50.5399

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

1717 at 2 theta/TOF/E(KeV): 1718 at 2theta/TOF/E(KeV): 1722 at 2 theta/TOF/E(KeV): 1723 at 2theta/TOF/E(KeV): 1731 at 2theta/TOF/E(KeV): 1739 at 2theta/TOF/E(KeV): 1748 at 2 theta/TOF/E(KeV): 1752 at 2 theta/TOF/E(KeV): 1755 at 2 theta/TOF/E(KeV): 1763 at 2 theta/TOF/E(KeV): 1772 at 2 theta/TOF/E(KeV): 1775 at 2 theta/TOF/E(KeV): 1776 at 2 theta/TOF/E(KeV): 1777 at 2 theta/TOF/E(KeV): 1780 at 2 theta/TOF/E(KeV): 1781 at 2 theta/TOF/E(KeV): 1783 at 2 theta/TOF/E(KeV): 1785 at 2 theta/TOF/E(KeV): 1792 at 2 theta/TOF/E(KeV): 1796 at 2 theta/TOF/E(KeV): 1807 at 2theta/TOF/E(KeV): 1809 at 2theta/TOF/E(KeV): 1810 at 2 theta/TOF/E(KeV): 1824 at 2 theta/TOF/E(KeV) 1826 at 2 theta/TOF/E(KeV): 1828 at 2theta/TOF/E(KeV): 1829 at 2 theta/TOF/E(KeV): 1834 at 2theta/TOF/E(KeV): 1930 at 2theta/TOF/E(KeV): 1938 at 2theta/TOF/E(KeV): 1957 at 2theta/TOF/E(KeV): 1958 at 2 theta/TOF/E(KeV): 1960 at 2 theta/TOF/E (KeV): 1962 at 2 theta/TOF/E(KeV): 1963 at 2theta/TOF/E(KeV): 1969 at 2theta/TOF/E(KeV): 1971 at 2 theta/TOF/E(KeV): 1974 at 2theta/TOF/E(KeV): 1975 at 2theta/TOF/E(KeV): 1980 at 2 theta/TOF/E(KeV): 1993 at 2theta/TOF/E(KeV): 1994 at 2 theta/TOF/E(KeV): 1999 at 2 theta/TOF/E(KeV): 2000 at 2 theta/TOF/E(KeV): 2005 at 2theta/TOF/E(KeV): 2008 at 2theta/TOF/E(KeV): 2009 at 2 theta/TOF/E(KeV): 2011 at 2theta/TOF/E(KeV): 2020 at 2theta/TOF/E(KeV): 2022 at 2theta/TOF/E(KeV): 2023 at 2theta/TOF/E(KeV): 2026 at 2 theta/TOF/E(KeV): 2033 at 2 theta/TOF/E(KeV): 2034 at 2theta/TOF/E(KeV): 2048 at 2theta/TOF/E(KeV): 2049 at 2theta/TOF/E(KeV): 2054 at 2theta/TOF/E(KeV): 2056 at 2theta/TOF/E(KeV): 2057 at 2theta/TOF/E(KeV): 2062 at 2theta/TOF/E(KeV): 2075 at 2theta/TOF/E(KeV): 2076 at 2 theta/TOF/E (KeV) : 2078 at 2theta/TOF/E(KeV): 2087 at 2theta/TOF/E(KeV): 2090 at 2 theta/TOF/E(KeV): 2092 at 2theta/TOF/E(KeV): 2104 at 2 theta/TOF/E(KeV) 2107 at 2theta/TOF/E(KeV): 2108 at 2theta/TOF/E(KeV): 2109 at 2theta/TOF/E(KeV): 2110 at 2 theta/TOF/E(KeV): 2126 at 2 theta/TOF/E(KeV) 2136 at 2 theta/TOF/E(KeV) 2143 at 2theta/TOF/E(KeV): 2149 at 2 theta/TOF/E(KeV): 2152 at 2theta/TOF/E(KeV): 2175 at 2 theta/TOF/E(KeV): 2180 at 2theta/TOF/E(KeV) 2186 at 2 theta/TOF/E(KeV): 2191 at 2theta/TOF/E(KeV): 2213 at 2theta/TOF/E(KeV): 2214 at 2 theta/TOF/E(KeV) : 2218 at 2theta/TOF/E(KeV): 2221 at 2theta/TOF/E(KeV): 2227 at 2 theta/TOF/E(KeV): 2228 at 2 theta/TOF/E(KeV) 2233 at 2 theta/TOF/E(KeV) : 2236 at 2theta/TOF/E(KeV) 2237 at 2 theta/TOF/E(KeV): 2240 at 2 theta/TOF/E(KeV):
50.7139 50.7333 50.8106 50.8299 50.9846 51.1392 51. 3132 51.3905 51.4485 51.6032 51.7772 51.8352 51.8545 51.8738 51.9318 51.9512 51.9898 52.0285 52.1638 2.2411 52.4538 52.4924 52.5118 52.7824 52.8211 52.8598 52.8791 52.9757 54.8316 54.9863 55.3536 55.3729 55.4116 5.4502 55.4696 55.5855 55.6242 55.6822 55.7015 55.7982 56.0495 56.0688 56.1655 56.1848 56.2815 56.3395 56.3588 56.3975 56.5715 56.6101 56.6295 56.6875 56.8228 56.8421 57.1128 57.1321 57.2287 57. 2674 57. 2867 57.3834 57.6347 57.6540 57.6927 57.8667 57.9247 57.9634 58.1953 58.2533 58.2727 58.2920 58.3113 58.6206 58.8140 58.9493 59.0653 59.1233 59.5679 59.6646 59.7805 59.8772 60.3025 60.3218 60.3992 60.4572 60.5732 60.5925 60.6891 60.7471 60.7665
60.8245

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

2244 at 2theta/TOF/E(KeV) 2246 at 2 theta/TOF/E(KeV): 2251 at 2 theta/TOF/E(KeV): 2270 at 2theta/TOF/E(KeV): 2273 at 2theta/TOF/E(KeV): 2274 at 2theta/TOF/E(KeV): 2276 at 2 theta/TOF/E(KeV): 2282 at 2 theta/TOF/E(KeV) 2286 at 2 theta/TOF/E(KeV): 2287 at 2 theta/TOF/E(KeV) 2289 at 2 theta/TOF/E(KeV) : 2295 at 2theta/TOF/E(KeV): 2298 at 2 theta/TOF/E(KeV): 2309 at 2theta/TOF/E(KeV): 2310 at 2 theta/TOF/E(KeV): 2317 at 2 theta/TOF/E(KeV): 2328 at 2theta/TOF/E(KeV): 2331 at 2 theta/TOF/E(KeV): 2339 at 2theta/TOF/E(KeV): 2380 at 2 theta/TOF/E(KeV) 2404 at 2theta/TOF/E(KeV): 2419 at 2theta/TOF/E(KeV): 2423 at 2 theta/TOF/E(KeV): 2425 at 2theta/TOF/E(KeV): 2432 at 2theta/TOF/E(KeV): 2436 at 2theta/TOF/E(KeV): 2437 at 2theta/TOF/E(KeV): 2441 at 2 theta/TOF/E(KeV): 2442 at 2 theta/TOF/E(KeV) 2444 at 2 theta/TOF/E(KeV) : 2446 at 2theta/TOF/E(KeV): 2447 at 2theta/TOF/E(KeV): 2451 at 2 theta/TOF/E (KeV): 2456 at 2 theta/TOF/E(KeV) 2463 at 2theta/TOF/E(KeV): 2476 at 2 theta/TOF/E(KeV): 2477 at 2 theta/TOF/E(KeV): 2479 at 2theta/TOF/E(KeV): 2501 at 2 theta/TOF/E(KeV): 2509 at 2theta/TOF/E(KeV): 2537 at 2theta/TOF/E(KeV): 2628 at 2theta/TOF/E(KeV): 2658 at 2 theta/TOF/E(KeV): 2665 at 2 theta/TOF/E(KeV): 2675 at 2theta/TOF/E(KeV): 2683 at 2 theta/TOF/E(KeV) 2685 at 2 theta/TOF/E(KeV): 2690 at 2 theta/TOF/E(KeV) 2703 at 2theta/TOF/E(KeV): 2709 at 2 theta/TOF/E(KeV): 2721 at 2 theta/TOF/E(KeV): 2724 at 2theta/TOF/E(KeV): 2726 at 2 theta/TOF/E(KeV): 2742 at 2 theta/TOF/E(KeV): 2748 at 2 theta/TOF/E(KeV): 2763 at 2theta/TOF/E(KeV): 2843 at 2theta/TOF/E(KeV): 2875 at 2 theta/TOF/E(KeV): 2881 at 2theta/TOF/E(KeV): 2894 at 2theta/TOF/E(KeV): 2896 at 2theta/TOF/E(KeV): 2897 at 2 theta/TOF/E(KeV): 2899 at 2theta/TOF/E(KeV): 2902 at 2theta/TOF/E(KeV): 2908 at 2 theta/TOF/E(KeV): 2941 at 2 theta/TOF/E(KeV): 2942 at 2theta/TOF/E(KeV): 2948 at 2theta/TOF/E(KeV): 2965 at 2theta/TOF/E(KeV): 2980 at 2theta/TOF/E(KeV): 2981 at 2 theta/TOF/E(KeV): 3048 at 2 theta/TOF/E(KeV) 3059 at 2theta/TOF/E(KeV): 3063 at 2theta/TOF/E(KeV): 3074 at 2 theta/TOF/E(KeV) : 3087 at 2 theta/TOF/E(KeV): 3094 at 2theta/TOF/E(KeV): 3096 at 2 theta/TOF/E(KeV) 3097 at 2theta/TOF/E(KeV): 3106 at 2theta/TOF/E(KeV): 3110 at 2 theta/TOF/E(KeV): 3116 at 2 theta/TOF/E(KeV): 3120 at 2theta/TOF/E(KeV): 3123 at 2theta/TOF/E(KeV): 3132 at 2 theta/TOF/E(KeV): 3137 at 2 theta/TOF/E(KeV) 3144 at 2 theta/TOF/E(KeV): 3156 at 2 theta/TOF/E(KeV): 3158 at 2 theta/TOF/E(KeV): 3159 at 2theta/TOF/E(KeV):
60.9018 60.9405 61.0371 61.4044 61.4624 61.4818 61.5204 61.6364 61.7137 61.7331 61.7717 61.8877 61.9457 62.1584 62.1777 62.3130 62.5257 62.5837 62.7383 63.5309 63.9949 64.2849 64.3622 64.4009 64.5362 64.6135 64.6328 64.7102 64.7295 64.7682 64.8068 64.8262 64.9035 65.0001 65.1355 65.3868 65.4061 65.4448 65.8701 66.0247 66.5660 68.3252 68.9052 69.0405 69.2338 69.3885 69.4271 69.5238 69.7751 69.8911 70.1231 70.1811 70.2197 70.5290 70.6450 70.9350 72.4816 73.1002 73.2162 73.4675 73.5061 73.5255 73.5641 73.6221 73.7381 74.3761 74.3954
74.5114 74.8400 75.1300 75.1494 76.4446 76.6572 76.7346 76.9472 77.1985 77.3338 77.3725 77.3918 77.5658 77.6432
78.5904

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.

3166 at 2theta/TOF/E(KeV): 3168 at 2 theta/TOF/E(KeV) 3180 at 2theta/TOF/E(KeV): 3181 at 2theta/TOF/E(KeV): 3186 at 2theta/TOF/E(KeV): 3194 at 2theta/TOF/E(KeV): 3245 at 2 theta/TOF/E(KeV): 3253 at 2 theta/TOF/E(KeV): 3293 at 2theta/TOF/E(KeV): 3313 at 2theta/TOF/E(KeV): 3319 at 2theta/TOF/E(KeV): 3337 at 2theta/TOF/E(KeV): 3343 at 2 theta/TOF/E(KeV): 3358 at 2 theta/TOF/E(KeV): 3366 at 2 theta/TOF/E(KeV) 3379 at 2theta/TOF/E(KeV): 3472 at 2 theta/TOF/E(KeV): 3487 at 2 theta/TOF/E(KeV): 3509 at 2 theta/TOF/E(KeV): 3516 at 2 theta/TOF/E(KeV): 3532 at 2theta/TOF/E(KeV): 3535 at 2theta/TOF/E(KeV): 3564 at 2 theta/TOF/E(KeV) 3565 at 2 theta/TOF/E(KeV): 3583 at 2theta/TOF/E(KeV): 3593 at 2theta/TOF/E(KeV): 3692 at 2 theta/TOF/E(KeV): 3700 at 2 theta/TOF/E(KeV): 3702 at 2 theta/TOF/E(KeV): 3726 at 2 theta/TOF/E(KeV): 3736 at 2theta/TOF/E(KeV): 3737 at 2 theta/TOF/E(KeV): 3739 at 2 theta/TOF/E (KeV): 3764 at 2 theta/TOF/E(KeV) 3780 at 2 theta/TOF/E(KeV): 3784 at 2 theta/TOF/E(KeV): 3785 at 2 theta/TOF/E(KeV) 3800 at 2theta/TOF/E(KeV): 3810 at 2 theta/TOF/E(KeV): 3814 at 2theta/TOF/E(KeV): 3821 at 2 theta/TOF/E(KeV): 3822 at 2 theta/TOF/E(KeV): 3841 at 2 theta/TOF/E(KeV): 3845 at 2 theta/TOF/E(KeV): 3849 at 2theta/TOF/E(KeV): 3851 at 2theta/TOF/E(KeV) 3852 at 2 theta/TOF/E(KeV): 3858 at 2 theta/TOF/E(KeV) 3873 at 2theta/TOF/E(KeV): 3880 at 2 theta/TOF/E(KeV): 3881 at 2theta/TOF/E(KeV): 3886 at 2theta/TOF/E(KeV): 3888 at 2 theta/TOF/E(KeV) : 3889 at 2theta/TOF/E(KeV): 3892 at 2theta/TOF/E(KeV): 3899 at 2theta/TOF/E(KeV): 3900 at 2theta/TOF/E(KeV): 3914 at 2theta/TOF/E(KeV): 3916 at 2 theta/TOF/E(KeV): 3929 at 2theta/TOF/E(KeV): 3932 at 2theta/TOF/E(KeV): 3933 at 2theta/TOF/E(KeV): 3937 at 2 theta/TOF/E(KeV): 3944 at 2theta/TOF/E(KeV): 3946 at 2 theta/TOF/E(KeV) 3951 at 2 theta/TOF/E(KeV): 3971 at 2theta/TOF/E(KeV): 3975 at 2theta/TOF/E(KeV): 3976 at 2theta/TOF/E(KeV): 3977 at 2theta/TOF/E(KeV): 3993 at 2 theta/TOF/E(KeV): 4001 at 2 theta/TOF/E(KeV) 4002 at 2 theta/TOF/E(KeV): 4018 at 2theta/TOF/E(KeV): 4068 at 2 theta/TOF/E(KeV): 4080 at 2theta/TOF/E(KeV): 4081 at 2 theta/TOF/E(KeV): 4103 at 2theta/TOF/E(KeV) 4115 at 2theta/TOF/E(KeV): 4143 at 2theta/TOF/E(KeV): 4147 at 2 theta/TOF/E(KeV): 4149 at 2 theta/TOF/E(KeV): 4152 at 2theta/TOF/E(KeV): 4159 at 2theta/TOF/E(KeV): 4161 at 2 theta/TOF/E(KeV): 4164 at 2 theta/TOF/E(KeV) 4178 at 2 theta/TOF/E(KeV): 4191 at 2theta/TOF/E(KeV): 4285 at 2 theta/TOF/E(KeV): 4298 at 2theta/TOF/E(KeV):
78.7257 78.7644 78.9964 79.0157 79.1124 79.2670 80.2530 80.4076 81.1809 81.5675 81.6835 82.0315 82.1475 82.4375 82.5921 82.8434 84.6413 84.9313 85.3566 85.4919 85.8012 85.8592 86.4198 86.4391 86.7871 86.9804 88.8943 89.0489 89.0876 89.5516 89.7449 89.7642 89.8029 90.2862 90.5955 90.6728 90.6921 90.9821 91.1754 91.2528 91.3881 91.4074 91.7747 91.8521 91.9294 91.9680 91.9874 92.1034 92.3933 92.5287 92.5480 92.6447 92.6833 92.7027 92.7607 92.8960 92.9153 93.1859 93.2246 93.4759 93.5339 93.5533 93.6306 93.7659 93.8046 93.9012 94.2879 94.3652 94.3845 94.4039 94.7132 94.8678 94.8871 95.1965 96.1631 96.3950 96.4144 96.8397 97.0717 97.6129 97.6903 97.7289 97.7869 97.9222 97.9609 98.0189 98.2896 98.5409 100.3581 100.6094

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

4311 at 2 theta/TOF/E(KeV) 4333 at 2theta/TOF/E(KeV): 4357 at 2theta/TOF/E(KeV): 4367 at 2theta/TOF/E(KeV): 4379 at 2theta/TOF/E(KeV): 4387 at 2theta/TOF/E(KeV): 4409 at 2theta/TOF/E(KeV): 4495 at 2theta/TOF/E(KeV): 4500 at 2 theta/TOF/E (KeV): 4511 at 2 theta/TOF/E(KeV): 4518 at 2 theta/TOF/E(KeV): 4530 at 2 theta/TOF/E(KeV): 4544 at 2 theta/TOF/E(KeV): 4545 at 2 theta/TOF/E(KeV): 4548 at 2 theta/TOF/E(KeV): 4552 at 2 theta/TOF/E(KeV): 4554 at 2 theta/TOF/E(KeV): 4555 at 2 theta/TOF/E(KeV): 4557 at 2 theta/TOF/E(KeV): 4570 at 2 theta/TOF/E(KeV): 4596 at 2theta/TOF/E(KeV): 4601 at 2theta/TOF/E(KeV): 4603 at 2 theta/TOF/E(KeV): 4609 at 2 theta/TOF/E (KeV): 4611 at 2 theta/TOF/E(KeV): 4625 at 2 theta/TOF/E(KeV): 4696 at 2theta/TOF/E(KeV): 4700 at 2 theta/TOF/E(KeV): 4703 at 2 theta/TOF/E(KeV): 4711 at 2 theta/TOF/E(KeV): 4718 at 2theta/TOF/E(KeV): 4733 at 2theta/TOF/E(KeV): 4734 at 2 theta/TOF/E (KeV): 4735 at 2 theta/TOF/E(KeV): 4747 at 2 theta/TOF/E(KeV): 4751 at 2 theta/TOF/E(KeV): 4756 at 2 theta/TOF/E(KeV): 4757 at 2 theta/TOF/E(KeV): 4758 at 2 theta/TOF/E(KeV): 4761 at 2 theta/TOF/E(KeV): 4767 at 2 theta/TOF/E(KeV): 4772 at 2 theta/TOF/E(KeV): 4785 at 2 theta/TOF/E(KeV): 4788 at 2 theta/TOF/E (KeV): 4790 at 2 theta/TOF/E(KeV): 4791 at 2 theta/TOF/E(KeV): 4795 at 2 theta/TOF/E(KeV): 4796 at 2 theta/TOF/E(KeV): 4810 at 2 theta/TOF/E(KeV): 4817 at 2theta/TOF/E(KeV): 4822 at 2 theta/TOF/E(KeV): 4827 at 2theta/TOF/E(KeV): 4834 at 2 theta/TOF/E(KeV) 4856 at 2 theta/TOF/E(KeV): 4937 at 2theta/TOF/E(KeV): 4961 at 2theta/TOF/E(KeV): 4968 at 2 theta/TOF/E(KeV): 4976 at 2 theta/TOF/E(KeV): 4997 at 2theta/TOF/E(KeV): 5005 at 2theta/TOF/E(KeV): 5006 at 2theta/TOF/E(KeV): 5010 at 2 theta/TOF/E (KeV): 5016 at 2theta/TOF/E(KeV): 5024 at 2theta/TOF/E(KeV): 5025 at 2theta/TOF/E(KeV): 5034 at 2 theta/TOF/E(KeV): 5036 at 2theta/TOF/E(KeV): 5060 at 2 theta/TOF/E(KeV): 5183 at 2theta/TOF/E(KeV): 5195 at 2 theta/TOF/E(KeV): 5206 at 2 theta/TOF/E(KeV): 5213 at 2theta/TOF/E(KeV): 5214 at 2theta/TOF/E(KeV): 5230 at 2theta/TOF/E(KeV): 5260 at 2 theta/TOF/E(KeV): 5283 at 2theta/TOF/E(KeV): 5379 at 2 theta/TOF/E(KeV): 5407 at 2theta/TOF/E(KeV): 5414 at 2theta/TOF/E(KeV): 5419 at 2 theta/TOF/E(KeV): 5429 at 2theta/TOF/E(KeV): 5435 at 2 theta/TOF/E(KeV): 5440 at 2theta/TOF/E(KeV): 5442 at 2theta/TOF/E(KeV): 5447 at 2 theta/TOF/E(KeV): 5455 at 2 theta/TOF/E(KeV): 5456 at 2 theta/TOF/E(KeV): 5457 at 2 theta/TOF/E(KeV): 5460 at 2 theta/TOF/E(KeV): 5464 at 2theta/TOF/E(KeV):
100.8607 101.2860 101.7500 101.9433 102.1752 102.3299 102.7552 104.4177 104.5144 104.7271 104.8624 105.0944 105.3650 105.3843 105.4423 105.5197 105.5583 105.5777 105.6163 105.8676 106.3703 106.4669 106.5056 106.6216 106.6602 106.9309 108.3034 108.3808 108.4388 108.5934 108.7287 109.0187 109.0381 109.0574 109.2894 109.3667 109.4633 109.4827 109.5020 109.5600 109.6760 109.7727 110.0240 110.0820 110.1206 110.1400 110.2173 110.2366 110.5073 110.6426 110.7393 110.8359 110.9712 111.3965 112.9624 113.4264 113.5617 113.7164 114.1223 114.2770 114.2963 114.3736 114.4896 114.6443 114.6636 114.8376 114.8763 115.3402 117.7180 117.9500 118.1627 118.2980 118.3173 118.6266 119.2066 119.6512 121.5071 122.0484 122.1837 122.2803 122.4737 122.5897 122.6863 122.7250 122.8216 122.9763 122.9956 123.0150 123.0730 123.1503
ntensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

5473 at 2theta/TOF/E(KeV) 5486 at 2theta/TOF/E(KeV) 5487 at 2theta/TOF/E(KeV): 5489 at 2theta/TOF/E(KeV): 5502 at 2theta/TOF/E(KeV): 5511 at 2theta/TOF/E(KeV): 5517 at 2theta/TOF/E(KeV): 5519 at 2theta/TOF/E(KeV): 5522 at 2 theta/TOF/E(KeV): 5530 at 2 theta/TOF/E(KeV): 5534 at 2theta/TOF/E(KeV): 5554 at 2theta/TOF/E(KeV): 5555 at 2theta/TOF/E(KeV): 5564 at 2theta/TOF/E(KeV): 5572 at 2 theta/TOF/E(KeV): 5573 at 2theta/TOF/E(KeV): 5574 at 2 theta/TOF/E(KeV): 5582 at 2 theta/TOF/E(KeV): 5601 at 2 theta/TOF/E(KeV): 5604 at 2 theta/TOF/E(KeV): 5607 at 2 theta/TOF/E(KeV): 5610 at 2 theta/TOF/E(KeV): 5625 at 2 theta/TOF/E(KeV): 5627 at 2 theta/TOF/E(KeV): 5636 at 2 theta/TOF/E(KeV): 5637 at 2theta/TOF/E(KeV): 5647 at 2theta/TOF/E(KeV): 5648 at 2 theta/TOF/E(KeV): 5649 at 2 theta/TOF/E(KeV): 5661 at 2 theta/TOF/E(KeV): 5662 at 2theta/TOF/E(KeV): 5663 at 2theta/TOF/E(KeV): 5666 at 2 theta/TOF/E(KeV): 5685 at 2 theta/TOF/E(KeV) 5692 at 2 theta/TOF/E(KeV): 5704 at 2theta/TOF/E(KeV): 5708 at 2 theta/TOF/E(KeV): 5716 at 2 theta/TOF/E(KeV): 5717 at 2 theta/TOF/E(KeV): 5723 at 2 theta/TOF/E(KeV) 5724 at 2theta/TOF/E(KeV): 5745 at 2 theta/TOF/E(KeV): 5750 at 2 theta/TOF/E(KeV) 5753 at 2 theta/TOF/E(KeV): 5760 at 2theta/TOF/E(KeV): 5762 at 2 theta/TOF/E(KeV): 5768 at 2 theta/TOF/E(KeV): 5774 at 2 theta/TOF/E(KeV) 5775 at 2 theta/TOF/E(KeV): 5784 at 2 theta/TOF/E(KeV): 5788 at 2 theta/TOF/E(KeV): 5891 at 2theta/TOF/E(KeV): 5898 at 2 theta/TOF/E(KeV): 5910 at 2 theta/TOF/E(KeV): 5922 at 2theta/TOF/E(KeV): 5926 at 2 theta/TOF/E(KeV): 5944 at 2theta/TOF/E(KeV): 5948 at 2 theta/TOF/E(KeV): 5963 at 2theta/TOF/E(KeV): 5976 at 2 theta/TOF/E(KeV): 5979 at 2 theta/TOF/E(KeV): 6000 at 2 theta/TOF/E (KeV): 6004 at 2 theta/TOF/E(KeV): 6016 at 2 theta/TOF/E(KeV): 6042 at 2theta/TOF/E(KeV): 6068 at 2 theta/TOF/E(KeV): 6218 at 2theta/TOF/E(KeV): 6240 at 2 theta/TOF/E(KeV): 6245 at 2theta/TOF/E(KeV) : 6258 at 2 theta/TOF/E(KeV): 6279 at 2 theta/TOF/E(KeV): 6281 at 2 theta/TOF/E (KeV) : 6288 at 2 theta/TOF/E(KeV): 6303 at 2theta/TOF/E(KeV): 6315 at 2 theta/TOF/E(KeV): 6318 at 2theta/TOF/E(KeV): 6320 at 2 theta/TOF/E(KeV): 6522 at 2 theta/TOF/E(KeV): 6552 at 2 theta/TOF/E(KeV): 6599 at 2 theta/TOF/E(KeV): 6600 at 2 theta/TOF/E (KeV): 6611 at 2 theta/TOF/E(KeV): 6627 at 2 theta/TOF/E(KeV): 6632 at 2 theta/TOF/E(KeV) : 6639 at 2 theta/TOF/E(KeV): 6641 at 2 theta/TOF/E (KeV): 6649 at 2 theta/TOF/E(KeV): 6656 at 2 theta/TOF/E(KeV): 6662 at 2 theta/TOF/E(KeV): 6719 at 2theta/TOF/E(KeV):
123.3243 123.5756 123.5949 123.6336 123.8849 124.0589 124.1749 124.2135 124.2715 124.4262 124.5035 124.8902 124.9095 125.0835 125.2381 125.2575 125.2768 125.4314 125.7988 125.8567 125.9147 125.9727 126.2627 126.3014 126.4754 126.4947 126.6880 126.7073 126.7267 126.9586 126.9780 126.9973 127.0553 127.4226 127.5579 127.7899 127.8672 128.0219 128.0412 128.1572 128.1766 128.5825 128.6792 128.7372 128.8725 128.9112 129.0272 129.1432 129.1625 129.3365 129.4138 131.4050 131.5403 131.7723 132.0043 132.0816 132.4296 132.5069 132.7969 133.0482 133.1062 133.5121 133.5895 133.8215 134.3241 134.8267 137.7265 138.1518 138.2484 138.4998 138.9057 138.9444 139.0797 139.3697 139.6017 139.6597 139.6983 143.6034 144.1833 145.0919 145.1113 145.3239 145.6332 145.7299 145.8652 145.9038 146.0585 146.1938 146.3098 147.4117

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

6905 at 2theta/TOF/E(KeV) : 6910 at 2theta/TOF/E(KeV): 6917 at 2 theta/TOF/E(KeV): 6928 at 2 theta/TOF/E (KeV) :
151.0074 Intensity fixed to 1.0 and variance to 1 E6 151.1041 Intensity fixed to 1.0 and variance to 1 E 6 151.2394 Intensity fixed to 1.0 and variance to 1 E 6 151.4521 Intensity fixed to 1.0 and variance to 1 E 6
=> Optimizations for routine tasks applied:
\Rightarrow Calculation mode for patter\#: 1 CM_PSEUDO_VOIGT
\Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < O at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
99.705 for phase no 99.705 for phase no 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no 104.081 for phase no 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no 116.329 for phase no 116.776 for phase no. 120.815 for phase no. 121.304 for phase no 130.522 for phase no 131.126 for phase no. 135.929 for phase no 135.929 for phase no 136.618 for phase no 136.618 for phase no. 99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no 103.728 for phase no 103.728 for phase no 104.081 for phase no 104.081 for phase no. 107.821 for phase no 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no 116.776 for phase no. 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no. 100.033 for phase no 100.033 for phase no. 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no 107.821 for phase no. 108.202 for phase no 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no 121.304 for phase no. 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no 136.618 for phase no 136.618 for phase no. 99.705 for phase no 99.705 for phase no 100.033 for phase no. 100.033 for phase no 103.728 for phase no 103.728 for phase no 104.081 for phase no 104.081 for phase no. 107.821 for phase no 108.202 for phase no. 112.011 for phase no 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no.

1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ $1 \rightarrow$ Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$
1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$
1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$
\Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < O at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
130.522 for phase no. 131.126 for phase no 135.929 for phase no 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no 99.705 for phase no. 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no. 107.821 for phase no 108.202 for phase no. 112.011 for phase no 112.422 for phase no. 116.329 for phase no. 116.776 for phase no 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no 112.422 for phase no. 116.329 for phase no 116.776 for phase no. 120.815 for phase no 121.304 for phase no. 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no. 103.728 for phase no. 103.728 for phase no 104.081 for phase no 104.081 for phase no 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no. 130.522 for phase no 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no 99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no. 103.728 for phase no 103.728 for phase no. 104.081 for phase no 104.081 for phase no. 107.821 for phase no 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no.

	-> Fixing to	
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	ixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	HG
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	0
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	10
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	10
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	HG
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	0
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	0
	Fixing	0
	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	HG
	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$H G=1.0 \mathrm{e}-10$
1	-> Fixing	$H G=1.0 \mathrm{e}-10$
1	Fixing to	HG
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1$.
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$H G=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$H G=1.0 e-10$ $H G=1.0 e-10$

\Rightarrow Square of FWHM (G) < 0 at 2 theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of $\operatorname{FWHM}(G)<0$ at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < O at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of $\operatorname{FWHM}(G)<0$ at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
136.618 for phase no. 136.618 for phase no 99.705 for phase no 99.705 for phase no. 100.033 for phase no 100.033 for phase no. 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no 107.821 for phase no. 108.202 for phase no. 112.011 for phase no 112.422 for phase no. 116.329 for phase no 116.776 for phase no. 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no 135.929 for phase no 136.618 for phase no 136.618 for phase no. 99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no. 103.728 for phase no 103.728 for phase no. 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no. 120.815 for phase no 121.304 for phase no. 130.522 for phase no 131.126 for phase no. 135.929 for phase no 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no. 103.728 for phase no. 103.728 for phase no. 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no 136.618 for phase no 136.618 for phase no. 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no. 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no. 130.522 for phase no. 131.126 for phase no 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no.

\Rightarrow Square of FWHM (G) < 0 at 2 theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of $\operatorname{FWHM}(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no. 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no 121.304 for phase no. 130.522 for phase no 131.126 for phase no 135.929 for phase no. 135.929 for phase no 136.618 for phase no. 136.618 for phase no 99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no. 104.081 for phase no 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no. 130.522 for phase no 131.126 for phase no. 135.929 for phase no 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no 99.705 for phase no 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no. 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no 112.422 for phase no. 116.329 for phase no 116.776 for phase no 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no. 120.815 for phase no 121.304 for phase no. 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no.
$1->$ Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$
1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to HG=1.0e-10 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$
1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ \rightarrow Fixing to $\mathrm{HG}=1.0 \mathrm{e}$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$
1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ -> Fixing to $H G=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$ 1 -> Fixing to $\mathrm{HG}=1.0 \mathrm{e}-10$
\Rightarrow Square of FWHM (G) < 0 at 2 theta: \Rightarrow Square of FWHM(G) < 0 at 2theta: => Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < O at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no. 104.081 for phase no 104.081 for phase no 107.821 for phase no. 108.202 for phase no. 112.011 for phase no 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no. 130.522 for phase no 131.126 for phase no. 135.929 for phase no 135.929 for phase no 136.618 for phase no. 136.618 for phase no 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no. 103.728 for phase no. 103.728 for phase no. 104.081 for phase no. 104.081 for phase no. 107.821 for phase no 108.202 for phase no. 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no 120.815 for phase no. 121.304 for phase no. 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no 136.618 for phase no 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no 103.728 for phase no 103.728 for phase no 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no 116.776 for phase no. 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no. 100.033 for phase no 100.033 for phase no 103.728 for phase no. 103.728 for phase no. 104.081 for phase no. 104.081 for phase no 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no. 120.815 for phase no 121.304 for phase no. 130.522 for phase no 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no.

\Rightarrow Square of FWHM (G) < 0 at 2 theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM $(G)<0$ at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of $\operatorname{FWHM}(G)<0$ at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of $\operatorname{FWHM}(G)<0$ at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no 136.618 for phase no. 136.618 for phase no 99.705 for phase no 99.705 for phase no. 100.033 for phase no 100.033 for phase no. 103.728 for phase no 103.728 for phase no. 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no. 130.522 for phase no 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no 99.705 for phase no. 99.705 for phase no. 100.033 for phase no 100.033 for phase no. 103.728 for phase no 103.728 for phase no 104.081 for phase no 104.081 for phase no 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no. 130.522 for phase no. 131.126 for phase no. 135.929 for phase no 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no. 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no. 107.821 for phase no. 108.202 for phase no 112.011 for phase no 112.422 for phase no. 116.329 for phase no 116.776 for phase no. 120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no 99.705 for phase no 99.705 for phase no. 100.033 for phase no 100.033 for phase no. 103.728 for phase no. 103.728 for phase no 104.081 for phase no. 104.081 for phase no 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no.

		$\circ H G=1.0 e-10$
	-> Fixing	HG
	Fi	HG $=$
1	Fi	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	HG
	Fixing	HG
1	Fi	HG
1	Fi	$\mathrm{HG}=1$.
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	HG
	Fixing	HG
1	Fi	HG
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	HG
1	Fixing	- HG=1.0e-10
	Fix	HG
	Fix	HG
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1$.
1	Fixing	HG
1	Fixing	HG
1	ix	HG
1	g	HG
1	Fixing	$\mathrm{HG}=1$.
	Fixing	HG
	Fixing	HG
1	ix	- HG=1.0e-10
	Fixing	HG
	-> Fixing	$\mathrm{HG}=1$.
	-> Fixing	HG
	Fixing	HG
	ixing	HC
	Fixing	HG
	-> Fixing	$\mathrm{HG}=1$.
	-> Fixing	HG
1	Fixing	HG
	ixing	HG
	Fix	$\mathrm{HG}=1$.
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	HG
	Fixing	HG
	Fixing	$\mathrm{HG}=1$.
	-> Fixing	$\mathrm{HG}=1$.
	Fixing	$\mathrm{HG}=1$.
	Fixing	HG
	g	HG
	Fixing	$\mathrm{HG}=1$.
	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	$\mathrm{HG}=1$.
	Fixing	HG
	Fixing	HG
	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	- HG=1.0e-10
	Fixing	- $\mathrm{HG}=1$.
	Fixing	HG
	Fixing	- $\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	$\mathrm{HG}=1$.
	Fixing	$\mathrm{HG}=1$.
	-> Fixing	- $\mathrm{HG}=1$.
	Fixing	HG
	Fixing	HG
	Fixing	$\mathrm{HG}=1$.
	-> Fixing	- $\mathrm{HG}=1$.
	-> Fixing to	- $\mathrm{HG}=1$.
	-> Fixing	HG
	Fixing	HG
	Fixing	HG = 1
	Fixing	- $\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	- $\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1$.
	Fixing	HG
	Fixing	- $\mathrm{HG}=1$.
	-> Fixing to	- $\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	- HG=1.0e-10
	Fixing	- HG=1.0e-10
	-> Fixing	HG
	Fixing	- $\mathrm{HG}=1$.
	-> Fixing to	- HG=1.0e-10
	-> Fixing to	- $\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	- HG=1.0e-10
	-> Fixing	- HG=
	-> Fixing to	- $\mathrm{HG}=1$.
	-> Fixing to	- HG=1.0e-10
	-> Fixing to	- HG=1.0e-10
	-> Fixing	- HG=1.0e-10
	-> Fixing	- $\mathrm{HG}=1$.
	-> Fixing to	- HG=1.0e-10

\Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM (G) < 0 at 2theta: => Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM $(G)<0$ at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: => Square of FWHM(G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta: \Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of $\operatorname{FWHM}(G)<0$ at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) <0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < O at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of $\operatorname{FWHM}(G)<0$ at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM(G) < 0 at 2theta:
=> Square of FWHM (G) < 0 at 2theta:
\Rightarrow Square of FWHM (G) < 0 at 2theta:
120.815 for phase no. 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no 135.929 for phase no 136.618 for phase no. 136.618 for phase no 99.705 for phase no 99.705 for phase no 100.033 for phase no. 100.033 for phase no. 103.728 for phase no 103.728 for phase no. 104.081 for phase no 104.081 for phase no. 107.821 for phase no. 108.202 for phase no 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no 120.815 for phase no 121.304 for phase no 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no. 136.618 for phase no 136.618 for phase no. 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no 103.728 for phase no. 103.728 for phase no. 104.081 for phase no. 104.081 for phase no. 107.821 for phase no 108.202 for phase no. 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no. 120.815 for phase no. 121.304 for phase no. 130.522 for phase no 131.126 for phase no 135.929 for phase no. 135.929 for phase no. 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no. 100.033 for phase no. 100.033 for phase no. 103.728 for phase no 103.728 for phase no 104.081 for phase no. 104.081 for phase no. 107.821 for phase no 108.202 for phase no 112.011 for phase no. 112.422 for phase no. 116.329 for phase no. 116.776 for phase no. 120.815 for phase no 121.304 for phase no. 130.522 for phase no. 131.126 for phase no. 135.929 for phase no. 135.929 for phase no 136.618 for phase no. 136.618 for phase no. 99.705 for phase no. 99.705 for phase no 100.033 for phase no. 100.033 for phase no. 103.728 for phase no 103.728 for phase no. 104.081 for phase no 104.081 for phase no. 107.821 for phase no. 108.202 for phase no. 112.011 for phase no. 112.422 for phase no 116.329 for phase no. 116.776 for phase no 120.815 for phase no. 121.304 for phase no.

	-> Fixing to	
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	ixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	HG
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	0
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	10
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	10
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing	HG
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing	0
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	0
	Fixing	0
	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	HG
	Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
1	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$H G=1.0 \mathrm{e}-10$
1	-> Fixing	$H G=1.0 \mathrm{e}-10$
1	Fixing to	HG
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1$.
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$H G=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$\mathrm{HG}=1.0 \mathrm{e}-10$
	-> Fixing to	$H G=1.0 e-10$ $H G=1.0 e-10$

Standard deviations have to be multiplied by: 2.1538
(correlated residuals) See references:
-J.F.Berar \& P.Lelann, J. Appl. Cryst. 24, 1-5 (1991)
-J.F.Berar, Acc. in Pow. Diff. II,NIST Sp.Pub. 846, 63(1992)

$==>$ PROFILE PARAMETERS FOR PATTERN\# 1
$\begin{array}{lllll}=> & \text { Overall scale factor: } & 0.000125355 & 0.000000003 & 0.000000635\end{array}$
$\Rightarrow E t a(p-V o i g t)$ or $m(P e a r s o n ~ V I I): \quad 0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Overall tem. factor: 0.0000000 .0000000 .000000
\Rightarrow Halfwidth parameters:
$0.001356 \quad 0.000000 \quad 0.000000$
$-0.005000 \quad 0.000000 \quad 0.000000$
$0.003910 \quad 0.000000 \quad 0.000000$
=> Cell parameters:
$\begin{array}{lll}4.154987 & 0.000000 & 0.000000\end{array}$
$4.154987 \quad 0.000000 \quad 0.000000$
$4.154987 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
$\begin{array}{lll}90.000000 & 0.000000 & 0.000000\end{array}$
$90.000000 \quad 0.000000 \quad 0.000000$
=> Preferred orientation:
$1.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Asymmetry parameters:
$-0.032396 \quad 0.000130 \quad 0.031169$
$0.042064 \quad 0.000018 \quad 0.004032$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$\Rightarrow X$ and Y parameters:
0.063891 -0.000003 0.001582
$0.0000830 .000000 \quad 0.000000$
\Rightarrow Strain parameters :
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Size parameters (G,L):
$0.000000 \quad 0.0000000 .000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Further shape parameters (S_L and D_L):
$0.0000000 .000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$

```
==> GLOBAL PARAMETERS FOR PATTERN# 1
\begin{tabular}{llll}
\(=>\) & Zero-point: & -0.2111 & 0.0000
\end{tabular}
\(\Rightarrow \operatorname{Cos}(t h e t a)-s h i f t\) parameter \(: 0.07670 .00000 .0034\)
\(=>\operatorname{Sin}(2 t h e t a)-s h i f t\) parameter \(: 0.03870 .00000 .0025\)
\(==>\) RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1
\(\Rightarrow\) R-Factors: \(20.8 \quad 31.0 \quad\) Chi2: 18.6 DW-Stat.: \(1.2720 \quad\) Patt\#: 1
\(\Rightarrow\) Expected : 7.20 1.9292
\(\Rightarrow\) Deviance : 0.187E+06 Dev*: 26.62
\(\Rightarrow\) GoF-index: \(4.3 \quad\) Sqrt(Residual/N)
\(\Rightarrow \mathrm{N}-\mathrm{P}+\mathrm{C}: 6973\)
\begin{tabular}{lccccr}
\(=>\) & SumYdif & SumYobs & SumYcal & \multicolumn{2}{c}{ SumwYobsSQ } \\
\(0.2802 \mathrm{E}+06\) & \(0.1347 \mathrm{E}+07\) & \(0.1232 \mathrm{E}+07\) & \(0.1347 \mathrm{E}+07\) & \(0.1296 \mathrm{E}+06\) & \(0.5539 \mathrm{E}+19\)
\end{tabular}
\(\Rightarrow\) Conventional Rietveld Rp,Rwp,Re and Chi2: 22.2 \(\quad 32.2 \quad 18.59\)
\(\Rightarrow\) (Values obtained using Ynet, but true sigma(y))
\(\Rightarrow\) SumYnet, Sum (w Ynet**2): 0.1263E+07 0.1250E+07
=> N-sigma of the GoF: 1038.716
```

$==>$ RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1

=>	R-Factors:	18.1	27.0	Chi2:	20.7	DW-Stat.	1.7601	Patt\#:
	Expected		5.94				1.9131	
>	Deviance :	$0.115 \mathrm{E}+06$	De	25.16				
>	GoF-index:	4.5	Sqr	esidual				
$\Rightarrow \mathrm{N}-\mathrm{P}+\mathrm{C}$: 4520								
=>	SumYdif	Sum		SumYcal		YobsSQ	Residual	Con
	$2316 \mathrm{E}+06$	$0.1282 \mathrm{E}+0$		$6 \mathrm{E}+07$	0.12	070.93	$9 \mathrm{E}+05$	0. 5539 E

| \Rightarrow | Conventional Rietveld Rp,Rwp, Re and Chi2: | 18.8 | 27.8 | 6.10 | 20.73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\Rightarrow (Values obtained using Ynet, but true sigma(y))
\Rightarrow SumYnet, Sum(w Ynet**2): 0.1234E+07 0.1214E+07
$\Rightarrow N-s i g m a$ of the GoF: 937.871
=> Global user-weigthed Chi2 (Bragg contrib.): 28.7

\Rightarrow	Parameters with Correlation greater that $50 \%==>$				
$->$ Correlation of parameter:	SyCos_pat1	with:	Asym1_ph1_pat1	$->$	59%
$->$ Correlation of parameter:	U-Cagl_ph1_pat1	with:	W-Cagl_ph1_pat1	$->$	97%
$->$ Correlation of parameter:	Asym1_ph1_pat1	with:	Asym2_ph1_pat1	$->$	78%

Pattern\# 1 Phase No: 1 Phase name: NIST SRM 660a LaB6

BRAGG R-Factors and weight fractions for Pattern \# 1
\Rightarrow Phase: 1 NIST SRM 660a LaB6
\Rightarrow Bragg R-factor: 13.0 Vol: $71.731(0.000)$ Fract (\%): 100.00(0.72)
\Rightarrow Rf-factor $=8.65$ ATZ: 1630.079 Brindley: 1.0000

SYMBOLIC NAMES AND FINAL VALUES AND SIGMA OF REFINED PARAMETERS:

-	Parameter number	1	:	Zero_pat 1	-0.21106540	+/-	0.32565552E-02
-	Parameter number	2	:	SyCos_pat1	0.76720364E-01 (+/-	0.33641579E-02
->	Parameter number	3	:	SySin_pat1	$0.38725469 \mathrm{E}-01$ (+/ -	0.24757127E-02
->	Parameter number	4	:	X_B_ph1	0.20319004	+/-	0.19287585E-02
->	Parameter number	5	:	Scale_ph1_pat1	$0.12535467 \mathrm{E}-03$ (+/-	0.63530314E-06
->	Parameter number	6	.	U-Cagl_ph1_pat1	$0.13559998 \mathrm{E}-02($	+/-	0.38470202E-09
->	Parameter number	7	.	V-Cagl_ph1_pat1	-0.49999999E-02	+/-	0.13145328E-08
->	Parameter number	8	.	W-Cagl_ph1_pat1	$0.39100000 \mathrm{E}-02($	+/ -	0.10740180E-08
->	Parameter number	9	:	Asym1_ph1_pat1	-0.32395910E-01	+/ -	0.31169372E-01
->	Parameter number	10	:	X -tan_ph1_pat1	0.63890785E-01 (+/-	0.15823194E-02
->	Parameter number	11	.	Y-cos_ph1_pat1	0.0000000	+/-	0.0000000
->	Parameter number	12	.	Asym2_ph1_pat1	0.42063739E-01	+/-	0.40319548E-02

=> Number of bytes for floating point variables: 4
\Rightarrow Dimensions of dynamic allocated arrays in this run of FullProf:
\Rightarrow Total approximate array memory (dynamic + static): 107719993 bytes
MaxPOINT= 60000 Max.num. of points (+int. Inten.)/diffraction pattern
MaxREFLT= 20000 Max.num. of reflections/diffraction pattern
MaxPARAM = 300 Max num of refinableparameters
MaxOVERL= 2096 Max.num. of overlapping reflections
=> Number of bytes for floating point arrays: 4
\Rightarrow Dimensions of fixed arrays in this release of FullProf:

| NPATT | $=$ | 80 Max.num. of powder diffraction patterns |
| :--- | :--- | ---: | :--- |
| NATS | $=$ | 830 Max.num. of atoms (all kind) in asymmetric unit |
| MPAR | $=$ | 1800 Max.num. of non atomic parameters/phase |
| IEXCL | $=$ | 30 Max.num. of excluded regions |
| IBACP | $=$ | 277 Max.num. of background points for interpolation |
| NPHT | $=$ | 16 Max.num. of phases |
| NMAGM | $=$ | 8 Max.num. of rotation-matrices sets for magnetic structure |
| NBASIS | $=$ | 12 Max.num. of basis functions associated to a single atom |
| NIREPS | $=$ | 9 Max.num. of irreducible representations to be combined |
| N_EQ | $=$ | 384 Max.num. of user-supplied symmetry operators/propagation vectors |
| NGL | $=$ | 300 Max.num. of global parameters/diffraction pattern |
| N_LINC | $=$ | 30 Max.num. of global linear restraints |
| NAT_P | $=$ | 64 Max.num. of atomic parameters per atom |
| NCONST | $=$ | 500 Max.num. of slack constraints per phase |
| N_SPE | $=$ | 16 Max.num. of different chemical species |
| N_FORM | $=$ | 60 Max.num. of scattering factor values in a table |
| NPR | $=$ | 150 Max.num. of points defining a numerical profile |
| INPR | $=$ | 25 Max.num. of different numerical peak shapes |

```
NPRC = 150 Max.num. of terms in the table for correcting intensities
NSOL = 10 Max.num. of solutions to be stored in Montecarlo searchs
CPU Time: 5.328 seconds
0.089 minutes
=> Run finished at:
Date: 17/02/2015 Time: 13:47:29.606
%\end{Verbatim}
```


A. 2 Sample of n-RDX processed pure at $2 \mathrm{wt} \%$ in acetone

```
** PROGRAM FulProf 2k (Version 5 60 - Jan2015-ILL JRC) **
*****************
M U L T I -- P A T T E R N
Rietveld, Profile Matching & Integrated Intensity
Refinement of X-ray and/or Neutron Data
Date: 15/06/2015 Time: 11:00:34.452
=> PCR file code: v203
=> DAT file code: v203.dat -> Relative contribution: 1.0000
==> CONDITIONS OF THIS RUN FOR PATTERN No.: 1
=> Global Refinement of X-ray powder diffraction data
=> Global Refinement of X-ray powder diffraction data
Flat plate with PSD
=> Title:RDX
=> Number of phases: 1
=> Number of excluded regions: 0
=> Number of scattering factors supplied: 0
=> March-Dollase model for preferred orientation
=> Conventional weights: w=1.0/Variance(yobs)
=> Asymmetry correction as in J.Appl.Cryst. 26,128(1993)
=> Background refined by polynomial function
> The 5th default profile function was selected
> Pseudo-Voigt function (ETA variable)
X-parameter correspond to: ETA=ETAO+X*2theta
pV(x)= ETA*L(x) +(1-ETA)*G(x)
==> INPUT/OUTPUT OPTIONS:
=> Generate file *.PRF for plot
=> Output Integrated Intensities
=> Generate new input file *.PCR
=> Data supplied in free format for pattern: 1
=> Plot pattern at each cycle
=> Wavelengths: 1.54056 1.54439
=> Alpha2/Alpha1 ratio: 0.5000
C Cos(Monochromator angle)= 1.0000
=> Asymmetry correction for angles lower than 90.000 degrees
=> Absorption correction (AC), muR-eff = 0.0000 0.0000
=> Base of peaks: 2.0*HW* 20.00
=> Number of cycles: 50
=> Relaxation factors ==> for coordinates: 1.00
=> for anisotropic temperature factors: 1.00
=> for halfwidth/strain/size parameters: 1.00
> for lattice constants and propagation vectors: 1.00
=> EPS-value for convergence: 0.0
=> Instrumental Resolution read from file: xray-res.irf
=> Title of data: Approximate resolution function of a conventional X-ray diffractometer CuKalpha1,2
> The resolution function is IRESOL: 1 for profile function # 5
Input resolution parameters:
\begin{tabular}{lccccc} 
U-inst & V-inst & W-inst & X-inst & Y-inst & Z-inst \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000 \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000
\end{tabular}
=> Number of Least-Squares parameters varied: 60
=>-----------------------------
=>-------> PATTERN number: 1
=> Global parameters and codes ==>
=> Zero-point: -0.2016 21.0000
=> Background parameters and codes ==>
=> Origin of polynomial at 2theta/TOF/E(KeV): 70.000
0.11847E+06 0.72376E+06 -47087. -0.18536E+07-0.14029E+07 -35943.
0.00 0.00 0.00 0.00 0.00
=> Displacement peak-shift parameter and code: 0.00 0.00
# Transparency peak-shift parameter and code: 
```

```
=> Reading Intensity data =>>
==> Angular range, step and number of points:
2Thmin: 10.000000 2Thmax: 49.998600 Step: 0.003700 No. of points: 10811
# Phase No. 1
rdx
=>------> Pattern# 1
=> Crystal Structure Refinement
=> The 7th profile function was selected for phase no. 1
=> Preferred orientation vector: 0.0000 0.0000 1.0000
=>-------> Data for PHASE: 1
=> Number of atoms: 21
=> Number of distance constraints: 0
=> Number of angle constraints: 0
=> Symmetry information on space group: P b c a
-> The multiplicity of the general position is: 8
-> The space group is Centric (-1 at origin)
-> Lattice type P: { 000 }
-> Reduced set of symmetry operators:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No. IT & Sy & -1 & Rotation part & Assoc & & \\
\hline 1: ( 1) & 1 & --> & ( \(x, y, z\) ) + \{ & 0.0000 & 0.0000 & \(0.0000\}\) \\
\hline 2: ( 4) & 2 ( x, 0, & 0) --> & \((x,-y,-z)+\{\) & 0.5000 & 0.5000 & \(0.0000\}\) \\
\hline ( 3) & 2 ( 0, y, & 0) --> & \((-x, y,-z)+\{\) & 0.0000 & 0.5000 & \(0.5000\}\) \\
\hline : ( 2) & 2 ( 0, 0, & z) --> & (-x,-y, z) + \{ & 0.5000 & 0.0000 & \(0.5000\}\) \\
\hline
\end{tabular}
```


Codes:	$\mathrm{H}^{501.00000}$		511.00000	521.0	000		0.0	0000		0.0				0	0	0	8
H (1A)				. 40289		0.52	2403		0.2	20773		5.13220	1.00000				
Codes:	0.00000		0.00000	0.0	000		0.0	0000		0.0							
H (1B)	H	0.00000		. 29071		0.42	2024		0.2	23991		4.84270	1.00000	0	0	0	8
Codes:			0.00000	0.0	000		0.0	0000		0.0							
H (2A)	H	0.00000		. 44331		0.1	3918		0.1	14950		4.60580	1.00000	0	0	0	8
Codes:			0.00000	0.0	000		0.0	0000		0.0							
H (2B)	H	0.00000		. 31742		0.19	9390		0.2	20730		4.97430	1.00000	0	0	0	8
Codes:			0.00000	0.0	000		0.0	0000		0.0							
H (3A)	H	0.00000		. 20936		0.35	35364		0.0	. 2527		4.50050	1.00000	0	0	0	8
Codes:			0.00000	0.0	000		0.0	0000		0.0							
H (3B)	H			. 17213		0.32	2091		0.1	10070		3.92150	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.0	000		0.0	0000		0.0							

\Rightarrow IT IS ASSUMED THAT THE FIRST GIVEN SITE IS FULLY OCCUPIED
OR THE FIRST AND SECOND ATOMS ARE IN THE SAME SITE WITH TOTAL FULL OCCUPATION
(If this is not the case, change the order of atoms to obtain correct values for the content of the unit cell)
The given occupation factors have been obtained mutiplying m/M by 1.0000
\rightarrow Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: O Atomic Mass: 15.9994
\rightarrow Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
\rightarrow Atom: 0, Chemical element: 0 Atomic Mass: 15.9994
-> Atom: N , Chemical element: N Atomic Mass: 14.0067
-> Atom: N , Chemical element: N Atomic Mass: 14.0067
-> Atom: N , Chemical element: N Atomic Mass: 14.0067
\rightarrow Atom: N , Chemical element: N Atomic Mass: 14.0067
\rightarrow Atom: N , Chemical element: N Atomic Mass: 14.0067
\rightarrow Atom: N , Chemical element: N Atomic Mass: 14.0067
-> Atom: C , Chemical element: C Atomic Mass: 12.0110
\rightarrow Atom: C , Chemical element: C Atomic Mass: 12.0110
\rightarrow Atom: C , Chemical element: C Atomic Mass: 12.0110
-> Atom: H , Chemical element: H Atomic Mass: 1.0080
-> Atom: H , Chemical element: H Atomic Mass: 1.0080
-> Atom: H , Chemical element: H Atomic Mass: 1.0080
-> Atom: H , Chemical element: H Atomic Mass: 1.0080
\rightarrow Atom: H , Chemical element: H Atomic Mass: 1.0080
\rightarrow Atom: H , Chemical element: H Atomic Mass: 1.0080
\Rightarrow The given value of ATZ is 1776.94 the program has calculated: 1776.94
The value of ATZ given in the input PCR file will be used for quantitative analysis
\Rightarrow The chemical content of the unit cell is:
$8.00000+8.00000+8.00000+8.00000+8.00000$ $8.0000 \mathrm{~N}+8.0000 \mathrm{~N}+8.0000 \mathrm{~N}$
$8.0000 \mathrm{~N}+8.0000 \mathrm{~N}+8.0000 \mathrm{C}+$
$+8.0000$
$8.0000 \mathrm{C}+8.0000 \mathrm{C}+8.0000 \mathrm{H}+8.0000 \mathrm{H}+\quad$ 2 $8.0000 \mathrm{H}+8.0000 \mathrm{H}$
$+$ 8.0000 H
\Rightarrow The normalized site occupation numbers in $\%$ are:

100.0000 (1)	:		100.0000 0(2)		100.0000 0(3)	:		100.0000 0(4)	:		100.0000 0(5)	:	
100.0000	O(6)	:	$100.0000 \mathrm{~N}(1)$:	100.0000	N(2)	:	100.0000	N(3)	:	100.0000	N (4)	:
$100.0000 \mathrm{~N}(5)$:		$100.0000 \mathrm{~N}(6)$		100.0000 C (1)	:		100.0000 C(2)	:		100.0000 C (3)	:	
100.0000	H (1 A)	:	$100.0000 \mathrm{H}(1 \mathrm{~B})$:	100.0000	H (2A)	:	100.0000	H (2B)	:	100.0000	H (3A)	:

$100.0000 \mathrm{H}(3 \mathrm{~B})$
\Rightarrow The density (volumic mass) of the compound is: $1.818 \mathrm{~g} / \mathrm{cm} 3$
=>-------> PROFILE PARAMETERS FOR PATTERN: 1
\Rightarrow Overall scale factor: $0.366470 \mathrm{E}-02$
\Rightarrow ETA (p-Voigt) OR M (Pearson VII): 0.0000
\Rightarrow Overall temperature factor: 0.00000
\Rightarrow Halfwidth U,V,W: $\quad-0.01481 \quad 0.00000$
$\Rightarrow X$ and Y parameters: $\quad 0.0000 \quad 0.0000$
$\begin{array}{lllllllllllll}\Rightarrow \text { Direct cell parameters: } & 11.5606 & 10.6800 & 13.1449 & 90.0000 & 90.0000 & 90.0000\end{array}$
\Rightarrow Preferred orientation parameters: 1.00000 .0000
$\begin{array}{lllllll}\Rightarrow \text { Asymmetry parameters } & : & 0.20251 & 0.04985 & 0.00000 & 0.00000\end{array}$
$\begin{array}{lllll}\Rightarrow & \text { Strain parameters } & : & 0.00000 & 0.00000\end{array} 0.00000$
$\begin{array}{llrll}\Rightarrow & \text { Size parameters } & : & 0.01453 & 0.00000 \\ => & \text { Further shape parameters } & \left(S _L\right. & \text { and } \operatorname{D} \text { L) : } & 0.00000\end{array}$
S_L is source width/detector distance
D_L is detector width/detector distance
$=\Rightarrow$ CODEWORDS FOR PROFILE PARAMETERS of PATTERN\# 1
=> Overall scale factor: 31.000
\Rightarrow ETA (p-Voigt) OR M (Pearson VII): 0.000
\Rightarrow Overall temperature factor: 0.000
$\begin{array}{llll}\Rightarrow & H a l f w i d t h ~ U, V, W: & 41.000 & 0.000 \\ 0.000\end{array}$
$\Rightarrow X$ and Y parameters: 0.0000 .000
$\begin{array}{llllllllllll}\Rightarrow \text { Direct cell parameters: } & 51.000 & 61.000 & 71.000 & 0.000 & 0.000 & 0.000\end{array}$
$\begin{array}{llll}\Rightarrow & P r e f e r r e d ~ o r i e n t a t i o n ~ p a r a m e t e r s: ~ & 0.000 & 0.000\end{array}$
$\begin{array}{llllllll}\Rightarrow & \text { Asymmetry parameters } & : & 531.000 & 541.000 & 0.000 & 0.000\end{array}$
\Rightarrow Strain parameters : 0.000 0.000 0.000
=> Size parameters : 11.000551 .000
\Rightarrow The 18 th model for size is used
\Rightarrow Orthorhombic Anisotropic Broadening using Spherical Harmonics up
to 4 -th order (Laue class: mmm, SPG:16-74, only lorentzian comp.)
Ylm's up to 4th order: Y00,Y20,Y22+,Y40,Y42+,Y44+
RJP - Ref: M. Jarvinen, J. Appl. C. (1993), p. 527
\Rightarrow Coefficients of Spherical Harmonics for anisotropic size

SYMBOLIC NAMES AND INITIAL VALUES OF PARAMETERS TO BE VARIED:

->	Parameter number
-	Parameter number
->	Parameter number
->	Parameter number
->	Parameter number
-	Parameter number
->	Parameter number
-	Parameter number
->	Parameter number
-	Parameter number
-	Parameter number
->	Parameter number
-	Parameter number
->	Parameter number
	Parameter number

\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

Symbolic	Name:	Z_0 (6) _ph1	$0.53580001 \mathrm{E}-01$
> Symbolic	Name:	X_N (1) _ph1	0.44586000
-> Symbolic	Name:	Y_N (1) _ph1	0.33585000
> Symbolic	Name:	Z_N (1) _ph1	0.17310999
> Symbolic	Name:	X_N (2) _ph1	0.32971999
Symbolic	Name:	Y_N (2) _ph1	0.23289999
Symbolic	Name:	$\mathrm{Z}_{-} \mathrm{N}$ (2) _ ph 1	$0.54719999 \mathrm{E}-01$
Symbolic	Name:	$\mathrm{X}_{-} \mathrm{N}$ (3) _ ph 1	0.30485001
Symbolic	Name:	Y_N (3) _ph1	0.45556000
Symbolic	Name:	Z_N (3) _ph1	$0.82680002 \mathrm{E}-01$
> Symbolic	Name:	X_N (4) _ph1	0.53974003
-> Symbolic	Name:	Y_N (4) _ph1	0.33263999
-> Symbolic	Name:	Z_N (4) _ph1	0.23717000
-> Symbolic	Name:	X_N (5) _ph1	0.38532999
-> Symbolic	Name:	Y_N (5) _ph1	0.20298000
-> Symbolic	Name:	Z_N (5) _ph1	-0.42270001E-01
> Symbolic	Name:	$\mathrm{X}_{-} \mathrm{N}$ (6) _ ph 1	0.35655001
> Symbolic	Name:	Y_N (6) _ph1	0.54262000
> Symbolic	Name:	Z_N (6) _ph1	$0.10490000 \mathrm{E}-01$
-> Symbolic	Name:	$\mathrm{X}_{-} \mathrm{C}$ (1) _ ph 1	0.34604999
-> Symbolic	Name:	Y_C (1) _ph1	0.43641999
-> Symbolic	Name:	Z_C (1) _ph1	0.19790000
-> Symbolic	Name:	X_C (2) _ph1	0.38722000
-> Symbolic	Name:	Y_C (2) _ph1	0.21280000
-> Symbolic	Name:	Z_C (2) _ph1	0.15753999
-> Symbolic	Name:	X_C (3) _ph1	0.23514999
-> Symbolic	Name:	Y_C (3) _ph1	0.33774999
-> Symbolic	Name:	Z_C (3) _ph1	$0.52490000 \mathrm{E}-01$
-> Symbolic	Name:	Asym1_ph1_pat1	0.20251000
-> Symbolic	Name:	Asym2_ph1_pat1	$0.49849998 \mathrm{E}-01$
-> Symbolic	Name:	L-Size_ph1_pat1	0.0000000
-> Symbolic	Name:	Size2_ph1_pat1	0.0000000
-> Symbolic	Name:	Size3_ph1_pat1	0.0000000
-> Symbolic	Name:	Size4_ph1_pat1	0.0000000
-> Symbolic	Name:	Size5_ph1_pat1	0.0000000
-> Symbolic	Name:	Size6_ph1_pat1	0.0000000

$0.53580001 \mathrm{E}-01$

- 0.44586000
0.33585000
$\mathrm{X}_{-} \mathrm{N}(2)$ _ph1 0.32971999
$Y_{-} N(2)$ _ph1 0.23289999
_N (2) _ph1 0.54719999E-01
0.30485001

Y_N (3) _ph1 0.45556000
02E-01
Y N (4) ph1
Z_N (4) _ph1 0.23717000
$X_{-} N(5)$ _ph1 0.38532999
Z_N(5)_ph1 -0.42270001E-01
X_N (6) _ph1 0.35655001
Y_N (6) _ph1 0.54262000
X_C (1) _ph1 0.34604999
Y_C (1) _ph1 0.43641999
Z_C(1)_ph1 0.19790000
X_C (2) _ph1 0.38722000
$Z_{-} C(2)$ _ph1 0.15753999
X_C (3) _ph1 0.23514999
Y_C (3) _ph1 0.33774999
Asym1_ph1_pat1 0.20251000
Asym2_ph1_pat1 0.49849998E-01
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

1 at 2 theta/TOF/E (KeV):
3 at 2 theta/TOF/E (KeV):
4 at 2 theta/TOF/E (KeV) :
5 at 2 theta/TOF/E (KeV):
8 at 2 theta/TOF/E (KeV):
10 at 2 theta/TOF/E (KeV) :
11 at 2 theta/TOF/E (KeV):
12 at 2 theta/TOF/E (KeV):
14 at 2 theta/TOF/E (KeV): 16 at 2 theta/TOF/E (KeV): 21 at 2 theta/TOF/E (KeV) : 23 at 2 theta/TOF/E (KeV): 24 at 2theta/TOF/E(KeV): 28 at 2 theta/TOF/E (KeV): 31 at 2 theta/TOF/E (KeV) : 36 at 2 theta/TOF/E (KeV): 38 at 2theta/TOF/E (KeV): 41 at 2 theta/TOF/E (KeV): 42 at 2 theta/TOF/E (KeV): 47 at 2 theta/TOF/E (KeV) : 50 at 2 theta/TOF/E (KeV) : 60 at 2 theta/TOF/E (KeV): 61 at 2 theta/TOF/E (KeV): 64 at 2 theta/TOF/E (KeV): 77 at 2 theta/TOF/E (KeV) : 78 at 2theta/TOF/E (KeV) : 84 at 2theta/TOF/E (KeV): 92 at 2theta/TOF/E(KeV): 93 at 2 theta/TOF/E (KeV): 94 at 2 theta/TOF/E (KeV):
97 at 2theta/TOF/E(KeV): 101 at 2theta/TOF/E(KeV): 104 at 2 theta/TOF/E (KeV): 105 at 2 theta/TOF/E (KeV): 107 at 2 theta/TOF/E (KeV): 116 at 2 theta/TOF/E (KeV): 118 at 2 theta/TOF/E (KeV) : 119 at 2theta/TOF/E (KeV): 122 at 2 theta/TOF/E (KeV) : 126 at 2 theta/TOF/E (KeV) : 130 at 2 theta/TOF/E(KeV): 132 at 2 theta/TOF/E (KeV): 144 at 2 theta/TOF/E (KeV): 148 at 2 theta/TOF/E (KeV): 155 at 2 theta/TOF/E (KeV): 168 at 2theta/TOF/E(KeV): 176 at 2 theta/TOF/E (KeV): 180 at 2 theta/TOF/E (KeV): 182 at 2 theta/TOF/E (KeV): 185 at 2 theta/TOF/E (KeV): 198 at 2theta/TOF/E(KeV): 200 at 2 theta/TOF/E (KeV): 204 at 2 theta/TOF/E (KeV) :
. 0.000 10.0074 ntensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 0.0148 Intensity fixed to 1.0 and variance to 1 E 6 10.0259 Intensity fixed to 1.0 and variance to 1 E 6 10.0333 Intensity fixed to 1.0 and variance to 1 E 6 10.0370 Intensity fixed to 1.0 and variance to 1 E 6 10.0407 Intensity fixed to 1.0 and variance to 1E6 10.0481 Intensity fixed to 1.0 and variance to 1 E 6 10.0555 Intensity fixed to 1.0 and variance to $1 E 6$ 10.0740 Intensity fixed to 1.0 and variance to 1 E 6 10.0814 Intensity fixed to 1.0 and variance to 1 E 6 10.0851 Intensity fixed to 1.0 and variance to 1 E 6 10.0999 Intensity fixed to 1.0 and variance to 1 E 6 10.1110 Intensity fixed to 1.0 and variance to 1 E 6 10.1295 Intensity fixed to 1.0 and variance to 1E6 10.1369 Intensity fixed to 1.0 and variance to 1E6 10.1480 Intensity fixed to 1.0 and variance to 1 E 6 10.1517 Intensity fixed to 1.0 and variance to 1 E 6 10.1702 Intensity fixed to 1.0 and variance to 1 E6 10.1813 Intensity fixed to 1.0 and variance to 1 E6 10.2183 Intensity fixed to 1.0 and variance to 1 E6 10.2220 Intensity fixed to 1.0 and variance to 1 E6 10.2331 Intensity fixed to 1.0 and variance to $1 E 6$ 10.2812 Intensity fixed to 1.0 and variance to 1 E 6 10.2849 Intensity fixed to 1.0 and variance to 1 E6 10.3071 Intensity fixed to 1.0 and variance to 1 E 6 10.3367 Intensity fixed to 1.0 and variance to 1 E6 10.3404 Intensity fixed to 1.0 and variance to 1 E 6 10.3441 Intensity fixed to 1.0 and variance to 1 E6 10.3552 Intensity fixed to 1.0 and variance to 1 E6 10.3700 Intensity fixed to 1.0 and variance to 1 E 6 10.3811 Intensity fixed to 1.0 and variance to 1 E 6 10.3848 Intensity fixed to 1.0 and variance to 1 E 6 10.3922 Intensity fixed to 1.0 and variance to 1E6 10.4255 Intensity fixed to 1.0 and variance to $1 E 6$ 10.4329 Intensity fixed to 1.0 and variance to 1 E 6 10.4366 Intensity fixed to 1.0 and variance to 1 E 6 10.4477 Intensity fixed to 1.0 and variance to 1 E 6 10.4625 Intensity fixed to 1.0 and variance to 1 E6 10.4773 Intensity fixed to 1.0 and variance to 1E6 10.4847 Intensity fixed to 1.0 and variance to 1 E6 10.5291 Intensity fixed to 1.0 and variance to 1 E 6 10.5439 Intensity fixed to 1.0 and variance to 1 E 6 10.5698 Intensity fixed to 1.0 and variance to 1E6 10.6179 Intensity fixed to 1.0 and variance to 1E6 10.6475 Intensity fixed to 1.0 and variance to $1 E 6$ 10.6623 Intensity fixed to 1.0 and variance to $1 E 6$ 10.6697 Intensity fixed to 1.0 and variance to 1E6 10.6808 Intensity fixed to 1.0 and variance to 1 E 6 10.7289 Intensity fixed to 1.0 and variance to 1E6 10.7363 Intensity fixed to 1.0 and variance to 1 E 6 10.7511 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. => Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

206 at 2 theta/TOF/E(KeV) 208 at 2theta/TOF/E(KeV): 209 at 2theta/TOF/E(KeV): 212 at 2theta/TOF/E(KeV): 213 at 2 theta/TOF/E(KeV) 218 at 2 theta/TOF/E(KeV): 220 at 2 theta/TOF/E(KeV): 225 at 2theta/TOF/E(KeV): 227 at 2 theta/TOF/E(KeV): 231 at 2 theta/TOF/E (KeV) 232 at 2 theta/TOF/E(KeV): 233 at 2theta/TOF/E(KeV): 236 at 2theta/TOF/E(KeV): 237 at 2 theta/TOF/E(KeV): 242 at 2 theta/TOF/E(KeV) 247 at 2 theta/TOF/E(KeV): 250 at 2theta/TOF/E(KeV): 254 at 2 theta/TOF/E(KeV): 255 at 2theta/TOF/E(KeV): 262 at 2 theta/TOF/E(KeV) 263 at 2theta/TOF/E(KeV): 269 at 2theta/TOF/E(KeV) 271 at 2 theta/TOF/E(KeV): 272 at 2 theta/TOF/E(KeV) 278 at 2 theta/TOF/E(KeV): 282 at 2theta/TOF/E(KeV): 288 at 2theta/TOF/E(KeV): 289 at 2theta/TOF/E(KeV): 290 at 2 theta/TOF/E (KeV) 293 at 2theta/TOF/E(KeV): 295 at 2theta/TOF/E(KeV): 296 at 2theta/TOF/E(KeV): 298 at 2 theta/TOF/E (KeV): 301 at 2 theta/TOF/E(KeV) 302 at 2 theta/TOF/E(KeV): 311 at 2theta/TOF/E(KeV): 319 at 2theta/TOF/E(KeV): 321 at 2 theta/TOF/E(KeV): 325 at 2 theta/TOF/E(KeV) 328 at 2theta/TOF/E(KeV) 336 at 2theta/TOF/E(KeV): 338 at 2 theta/TOF/E(KeV): 339 at 2 theta/TOF/E(KeV) 343 at 2 theta/TOF/E(KeV): 344 at 2theta/TOF/E(KeV): 347 at 2 theta/TOF/E(KeV): 348 at 2 theta/TOF/E(KeV): 355 at 2 theta/TOF/E(KeV): 362 at 2 theta/TOF/E(KeV): 365 at 2theta/TOF/E(KeV): 372 at 2theta/TOF/E(KeV): 375 at 2 theta/TOF/E(KeV): 385 at 2 theta/TOF/E(KeV) 394 at 2theta/TOF/E(KeV): 395 at 2theta/TOF/E(KeV): 400 at 2 theta/TOF/E(KeV): 403 at 2theta/TOF/E(KeV): 406 at 2 theta/TOF/E(KeV) 412 at 2theta/TOF/E(KeV): 413 at 2theta/TOF/E(KeV): 414 at 2theta/TOF/E(KeV): 417 at 2 theta/TOF/E(KeV) 424 at 2theta/TOF/E(KeV): 428 at 2theta/TOF/E(KeV): 457 at 2theta/TOF/E(KeV): 474 at 2 theta/TOF/E(KeV): 492 at 2 theta/TOF/E(KeV) 493 at 2theta/TOF/E(KeV): 496 at 2theta/TOF/E(KeV): 497 at 2theta/TOF/E(KeV): 499 at 2 theta/TOF/E(KeV): 543 at 2 theta/TOF/E(KeV) 544 at 2theta/TOF/E(KeV): 552 at 2theta/TOF/E(KeV) 553 at 2 theta/TOF/E(KeV): 555 at 2theta/TOF/E(KeV): 559 at 2 theta/TOF/E(KeV) 568 at 2theta/TOF/E(KeV): 570 at 2theta/TOF/E(KeV): 576 at 2 theta/TOF/E(KeV): 579 at 2 theta/TOF/E(KeV) 580 at 2 theta/TOF/E(KeV): 582 at 2theta/TOF/E(KeV): 586 at 2theta/TOF/E(KeV): 588 at 2theta/TOF/E(KeV): 591 at 2 theta/TOF/E(KeV) 592 at 2theta/TOF/E(KeV): 594 at 2theta/TOF/E(KeV): 597 at 2theta/TOF/E(KeV): 599 at 2theta/TOF/E(KeV):
10.7585 10.7659 10.7696 10.7807 10.7844 10.8029 10.8103 10.8288 10.8362 10.8510 10.8547 10.8584 10.8695 10.8732 10.8917 10.9102 10.9213 10.9361 10.9398 10.9657 10.9694 10.9916 10.9990 11.0027 11.0249
11.0397
11.0619 11.0656 11.0693
11.0804
11.0878
11.0915
11.0989
1.1100
11.1137
11.1470
11.1766
11.1840
11. 1988
11.2099
11.2395
11.2469
11.2506
11.2654
11.2691
11.2802
11.2839
11.3098
11.3357
11.3468
11.3727
11.3838
11.4208
11.4541
11.4578
11.4763
11.4874
11.4985
11.5207
11.5244
11.5281
11.5392
11.5651
11.5799
11.6872
11.7501
11.8167
11.8204
11.8315
11.8352
11.8426
12.005
12.0091
12.0387
12.0424
12.0498
12.0646
12.0979
12.1053
12.1275
12.1386
12.1423
12.1497
12.1645
12.1719
12.1830
12.1867
12.1941
12.2126 Intensity fixed to 1.0 and variance to 1E6

Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 ntensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.

601 at 2 theta/TOF/E(KeV)
606 at 2 theta/TOF/E(KeV): 607 at 2 theta/TOF/E(KeV): 608 at 2theta/TOF/E(KeV): 610 at 2 theta/TOF/E(KeV) 614 at 2 theta/TOF/E(KeV) : 618 at 2theta/TOF/E(KeV): 619 at 2theta/TOF/E(KeV) 623 at 2 theta/TOF/E(KeV): 624 at 2 theta/TOF/E(KeV) 627 at 2 theta/TOF/E(KeV): 633 at 2theta/TOF/E(KeV): 636 at 2 theta/TOF/E(KeV): 642 at 2 theta/TOF/E (KeV) : 643 at 2 theta/TOF/E(KeV) : 644 at 2 theta/TOF/E(KeV): 645 at 2theta/TOF/E(KeV): 646 at 2 theta/TOF/E(KeV): 648 at 2 theta/TOF/E (KeV) : 650 at 2 theta/TOF/E (KeV) 652 at 2theta/TOF/E(KeV): 656 at 2 theta/TOF/E(KeV): 662 at 2 theta/TOF/E(KeV): 663 at 2 theta/TOF/E(KeV) 932 at 2theta/TOF/E(KeV): 934 at 2theta/TOF/E(KeV): 935 at 2theta/TOF/E(KeV): 944 at 2 theta/TOF/E(KeV): 945 at 2 theta/TOF/E (KeV) : 947 at 2 theta/TOF/E(KeV) 949 at 2theta/TOF/E(KeV): 951 at 2theta/TOF/E(KeV): 952 at 2 theta/TOF/E(KeV): 953 at 2 theta/TOF/E(KeV): 957 at 2 theta/TOF/E(KeV): 959 at 2theta/TOF/E(KeV): 961 at 2 theta/TOF/E(KeV): 962 at 2 theta/TOF/E(KeV): 965 at 2 theta/TOF/E(KeV): 968 at 2 theta/TOF/E(KeV): 969 at 2theta/TOF/E(KeV): 971 at 2 theta/TOF/E(KeV): 972 at 2 theta/TOF/E(KeV) 977 at 2 theta/TOF/E(KeV): 978 at 2theta/TOF/E(KeV) 980 at 2 theta/TOF/E(KeV) 981 at 2 theta/TOF/E(KeV): 984 at 2 theta/TOF/E(KeV) : 988 at 2 theta/TOF/E(KeV): 989 at 2theta/TOF/E(KeV): 992 at 2theta/TOF/E(KeV): 995 at 2theta/TOF/E(KeV): 997 at 2 theta/TOF/E(KeV) 1000 at 2 theta/TOF/E(KeV): 1003 at 2theta/TOF/E(KeV): 1004 at 2theta/TOF/E(KeV): 1006 at 2 theta/TOF/E(KeV): 1009 at 2 theta/TOF/E(KeV): 1010 at 2theta/TOF/E(KeV): 1011 at 2theta/TOF/E(KeV): 1015 at 2theta/TOF/E(KeV): 1017 at 2 theta/TOF/E (KeV) : 1018 at 2theta/TOF/E(KeV): 1022 at 2theta/TOF/E(KeV): 1025 at 2 theta/TOF/E(KeV): 1027 at 2 theta/TOF/E(KeV): 1034 at 2theta/TOF/E(KeV): 1035 at 2 theta/TOF/E(KeV): 1036 at 2 theta/TOF/E(KeV): 1038 at 2 theta/TOF/E(KeV): 1040 at 2 theta/TOF/E(KeV): 1043 at 2 theta/TOF/E(KeV) 1052 at 2 theta/TOF/E(KeV): 1053 at 2theta/TOF/E(KeV): 1059 at 2 theta/TOF/E(KeV): 1063 at 2theta/TOF/E(KeV): 1066 at 2 theta/TOF/E(KeV): 1067 at 2theta/TOF/E(KeV): 1070 at 2 theta/TOF/E(KeV): 1071 at 2 theta/TOF/E(KeV): 1072 at 2 theta/TOF/E(KeV): 1075 at 2 theta/TOF/E(KeV): 1080 at 2theta/TOF/E(KeV): 1081 at 2theta/TOF/E(KeV): 1082 at 2 theta/TOF/E(KeV): 1089 at 2 theta/TOF/E(KeV): 1090 at 2theta/TOF/E(KeV): 1091 at 2theta/TOF/E(KeV): 1092 at 2 theta/TOF/E(KeV): 1093 at 2theta/TOF/E(KeV):
12.2200 12.2385 12.2422 12.2459 12.2533 12.2681 12.2829 12.2866 12.3014 12.3051
12.3162
12.3384 12.3495 12.3717 12.3754 12.3791 12.3828 12.3865 12.3939 12.4013
12.4087
12.4235 12.4457 12.4494
13.4447
13.4521
13.4558
13.4891
13.4928
13.5002
13.5076
13.5150
13.5187
13.5224
13.5372
13.5446
13.5520
13.5557
13.5668
13.5779
13.5816
13.5890
13.5927
13.6112
13.6149
13.6223
13.6260
13.6371
13.6519
13.6556
13.6667
13.6778
13.6852
13.6963
13.7074
13.7111
13.7185
13.7296
13.7333
13.7370
13.7518
13.7592
13.7629
13.7777
13.7888
13.7962
13.8221
13.8258
13.8295
13.8369
13.8443
13.8554
13.8887
13.8924
13.9146
13.9294
13.9405
13.9442
13.9553
13.9590
13.9627
13.9738
3.9923
13.9960
13.9997
14.0256
14.0293
14.0330
14.0367
14.0404

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
$=>$ Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

1096 at 2 theta/TOF/E(KeV): 1098 at 2 theta/TOF/E(KeV) 1104 at 2theta/TOF/E(KeV): 1108 at 2 theta/TOF/E(KeV): 1109 at 2theta/TOF/E(KeV): 1111 at 2 theta/TOF/E(KeV): 1116 at 2 theta/TOF/E(KeV): 1117 at 2theta/TOF/E(KeV): 120 at 2 theta/TOF/E(KeV): 1122 at 2 theta/TOF/E(KeV): 1123 at 2 theta/TOF/E(KeV): 1124 at 2theta/TOF/E(KeV): 1126 at 2 theta/TOF/E(KeV) 1127 at 2 theta/TOF/E(KeV): 130 at 2 theta/TOF/E(KeV): 1132 at 2 theta/TOF/E(KeV): 1134 at 2 theta/TOF/E(KeV): 1135 at 2 theta/TOF/E(KeV): 1137 at 2 theta/TOF/E(KeV): 138 at 2 theta/TOF/E(KeV) : 1145 at 2theta/TOF/E(KeV): 1146 at 2 theta/TOF/E(KeV): 1147 at 2 theta/TOF/E(KeV): 1153 at 2 theta/TOF/E(KeV): 1164 at 2 theta/TOF/E(KeV): 1166 at 2 theta/TOF/E(KeV): 1167 at 2theta/TOF/E(KeV): 1173 at 2theta/TOF/E(KeV): 1174 at 2 theta/TOF/E(KeV): 1183 at 2 theta/TOF/E(KeV): 1186 at 2 theta/TOF/E(KeV): 1187 at 2theta/TOF/E(KeV): 1191 at 2 theta/TOF/E(KeV): 192 at 2 theta/TOF/E(KeV): 1193 at 2theta/TOF/E(KeV): 1195 at 2theta/TOF/E(KeV): 1201 at 2 theta/TOF/E(KeV): 1202 at 2theta/TOF/E(KeV): 1204 at 2theta/TOF/E(KeV): 1210 at 2 theta/TOF/E(KeV): 1213 at 2theta/TOF/E(KeV): 1219 at 2 theta/TOF/E(KeV): 1220 at 2theta/TOF/E(KeV): 1221 at 2 theta/TOF/E(KeV): 1222 at 2theta/TOF/E(KeV): 1224 at 2 theta/TOF/E(KeV): 1228 at 2theta/TOF/E(KeV): 1231 at 2theta/TOF/E(KeV): 1235 at 2theta/TOF/E(KeV): 1236 at 2 theta/TOF/E(KeV): 1237 at 2 theta/TOF/E(KeV): 1239 at 2 theta/TOF/E(KeV): 1241 at 2 theta/TOF/E(KeV): 1243 at 2theta/TOF/E(KeV): 1245 at 2 theta/TOF/E(KeV): 1248 at 2theta/TOF/E(KeV): 1251 at 2 theta/TOF/E(KeV): 1259 at 2 theta/TOF/E(KeV): 1264 at 2theta/TOF/E(KeV): 1266 at 2 theta/TOF/E(KeV): 1267 at 2 theta/TOF/E(KeV): 1271 at 2 theta/TOF/E(KeV): 1275 at 2 theta/TOF/E(KeV): 1276 at 2 theta/TOF/E(KeV): 1277 at 2 theta/TOF/E(KeV) 1278 at 2 theta/TOF/E(KeV): 1281 at 2 theta/TOF/E(KeV): 1282 at 2 theta/TOF/E(KeV): 1284 at 2theta/TOF/E(KeV) : 1285 at 2theta/TOF/E(KeV): 1286 at 2 theta/TOF/E(KeV): 1287 at 2 theta/TOF/E(KeV) 1293 at 2theta/TOF/E(KeV): 1298 at 2theta/TOF/E(KeV): 1300 at 2 theta/TOF/E(KeV): 1304 at 2theta/TOF/E(KeV): 1305 at 2 theta/TOF/E(KeV): 1306 at 2theta/TOF/E(KeV): 1308 at 2theta/TOF/E(KeV): 1309 at 2theta/TOF/E(KeV): 1312 at 2theta/TOF/E(KeV): 1313 at 2 theta/TOF/E(KeV): 1318 at 2theta/TOF/E(KeV): 1319 at 2theta/TOF/E(KeV): 1320 at 2 theta/TOF/E(KeV): 1321 at 2 theta/TOF/E(KeV) 1323 at 2theta/TOF/E(KeV): 1324 at 2 theta/TOF/E(KeV): 1325 at 2 theta/TOF/E(KeV) 1326 at 2theta/TOF/E(KeV):
14.0515 14.0589 14.0811 14.0959 14.0996 14.1070 14.1255 14.1292 14.1403 14.1477 14.1514 14.1551 14.1625 14.1662 14.1773 14.1847 14.1921 14.1958 14.2032 14.2069
14.2328
14.2365 14.2402 14.2624 14.3031
14.3105
14.3142
14.3364
14.3401
14.3734
14.3845
14.3882
14.4030
14.4067
14.4104
14.4178
14.4400
14.4437
14.4511
14.4733
14.4844
14.5066
14.5103
14.5140
14.5177
14.5251
14.5399
14.5510
14.5658
14.5695
14.5732
14.5806
14.5880
14.5954
14.6028
14.6139
14.6250
14.6546
14.6731
14.6805
14.6842
14.6990
14.7138
14.7175
14.7212
14.7249
14.7360
14.7397
14.7471
14.7508
14.7545
14.7582
14.7804
14.7989
14.8063
14.8211
14.8248
14.8285
14.8359
14.8396
14.8507
14.8544
14.8729
14.8766
14.8803
14.8840
14.8914
14.8951
14.8988
14.9025

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

1327 at 2theta/TOF/E(KeV)
1332 at 2 theta/TOF/E(KeV) 1333 at 2theta/TOF/E(KeV) 1335 at 2 theta/TOF/E(KeV): 1492 at 2theta/TOF/E(KeV): 1505 at 2theta/TOF/E(KeV): 1507 at 2 theta/TOF/E(KeV): 1508 at 2theta/TOF/E(KeV): 1510 at 2 theta/TOF/E(KeV): 1516 at 2 theta/TOF/E(KeV): 1517 at 2 theta/TOF/E(KeV): 1518 at 2 theta/TOF/E(KeV): 1519 at 2theta/TOF/E(KeV): 1520 at 2 theta/TOF/E(KeV): 1523 at 2 theta/TOF/E(KeV): 1525 at 2 theta/TOF/E(KeV): 1526 at 2 theta/TOF/E(KeV): 1529 at 2 theta/TOF/E(KeV): 1530 at 2theta/TOF/E(KeV): 1537 at 2theta/TOF/E(KeV): 1541 at 2theta/TOF/E(KeV): 1544 at 2 theta/TOF/E(KeV): 1545 at 2 theta/TOF/E(KeV): 1547 at 2 theta/TOF/E(KeV): 1550 at 2theta/TOF/E(KeV): 1552 at 2theta/TOF/E(KeV): 1554 at 2theta/TOF/E(KeV): 1556 at 2 theta/TOF/E(KeV): 1559 at 2theta/TOF/E(KeV): 1564 at 2 theta/TOF/E(KeV): 1565 at 2theta/TOF/E(KeV): 1574 at 2theta/TOF/E(KeV): 1586 at 2 theta/TOF/E(KeV): 1589 at 2 theta/TOF/E(KeV) 1631 at 2 theta/TOF/E(KeV): 1777 at 2 theta/TOF/E(KeV): 1798 at 2 theta/TOF/E(KeV): 1805 at 2theta/TOF/E(KeV): 1807 at 2 theta/TOF/E(KeV): 1813 at 2theta/TOF/E(KeV): 1814 at 2 theta/TOF/E(KeV) 1816 at 2 theta/TOF/E(KeV): 1817 at 2 theta/TOF/E(KeV) : 1823 at 2 theta/TOF/E(KeV): 1825 at 2theta/TOF/E(KeV): 1828 at 2 theta/TOF/E(KeV): 1829 at 2 theta/TOF/E(KeV): 1830 at 2 theta/TOF/E(KeV): 1831 at 2theta/TOF/E(KeV): 1832 at 2 theta/TOF/E(KeV): 1834 at 2 theta/TOF/E(KeV): 1836 at 2 theta/TOF/E(KeV): 1837 at 2 theta/TOF/E(KeV): 1840 at 2 theta/TOF/E(KeV): 1841 at 2 theta/TOF/E(KeV): 1843 at 2theta/TOF/E(KeV): 1846 at 2theta/TOF/E(KeV): 1848 at 2 theta/TOF/E(KeV): 1849 at 2theta/TOF/E(KeV): 1850 at 2 theta/TOF/E(KeV): 1852 at 2 theta/TOF/E(KeV): 1853 at 2theta/TOF/E(KeV): 1855 at 2theta/TOF/E(KeV): 1858 at 2theta/TOF/E(KeV): 1860 at 2theta/TOF/E(KeV): 1861 at 2theta/TOF/E(KeV): 1863 at 2theta/TOF/E(KeV): 1864 at 2 theta/TOF/E(KeV): 1865 at 2theta/TOF/E(KeV): 1868 at 2 theta/TOF/E(KeV): 1870 at 2 theta/TOF/E(KeV): 1873 at 2 theta/TOF/E(KeV): 1881 at 2 theta/TOF/E(KeV): 2138 at 2theta/TOF/E(KeV): 2139 at 2theta/TOF/E(KeV): 2143 at 2theta/TOF/E(KeV): 2145 at 2theta/TOF/E(KeV): 2146 at 2 theta/TOF/E(KeV): 2147 at 2theta/TOF/E(KeV): 2148 at 2 theta/TOF/E(KeV): 2151 at 2 theta/TOF/E(KeV): 2157 at 2 theta/TOF/E(KeV): 2158 at 2theta/TOF/E(KeV): 2159 at 2theta/TOF/E(KeV) 2160 at 2 theta/TOF/E(KeV): 2161 at 2 theta/TOF/E(KeV) 2162 at 2 theta/TOF/E(KeV): 2163 at 2theta/TOF/E(KeV): 2165 at 2 theta/TOF/E(KeV): 2167 at 2 theta/TOF/E(KeV):
14.9062 4. 9247 14.9284 14.9358 15.5167 15.5648 15.5722 15.5759 15.5833 15.6055 15.6092 15.6129 15.6166 15.6203 15.6314 15.6388 15.6425 15.6536 15.6573 15.6832 15.6980 15.7091 15.7128 15.7202 15.7313 15.7387 15.7461 15.7535 15.7646 15.7831 15.7868 15.8201 15.8645 15.8756 16.0310 16.5712 16.6489 16.6748 16.6822 16.7044 16.7081 16.7155 16.7192
16.7414
16.7488
16.7599 16.7636 16.7673
16.7710 16.7747 16.7821 16.7895 16.7932 16.8043 16.8080 16.8154 16.8265 16.8339
16.8376 16.8413 16.8487 16.8524 16.8598 16.8709 16.8783 16.8820 16.8894
16.8931 16.8968 16.9079 16.9153 16.9264 16.9560 17.9069 17.9106 17.9254 17.9328 17.9365 17.9402 17.9439 17.9550 17.9772 17.9809 17.9846 17.9883 17.9920

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
$=>$ Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

2168 at 2 theta/TOF/E(KeV) 2169 at 2 theta/TOF/E(KeV) : 2171 at 2 theta/TOF/E(KeV): 2172 at 2 theta/TOF/E(KeV): 2173 at 2theta/TOF/E(KeV): 2174 at 2theta/TOF/E(KeV): 2175 at 2theta/TOF/E(KeV): 2176 at 2 theta/TOF/E(KeV) 2177 at 2 theta/TOF/E(KeV): 2178 at 2 theta/TOF/E(KeV): 2180 at 2 theta/TOF/E(KeV): 2181 at 2theta/TOF/E(KeV): 2182 at 2theta/TOF/E(KeV): 2183 at 2 theta/TOF/E(KeV): 2184 at 2 theta/TOF/E(KeV): 2185 at 2 theta/TOF/E(KeV): 2186 at 2 theta/TOF/E(KeV): 2187 at 2 theta/TOF/E(KeV): 2188 at 2theta/TOF/E(KeV): 2189 at 2theta/TOF/E(KeV): 2190 at 2theta/TOF/E(KeV): 2191 at 2theta/TOF/E(KeV): 2192 at 2 theta/TOF/E(KeV): 2194 at 2theta/TOF/E(KeV): 2195 at 2 theta/TOF/E(KeV): 2196 at 2 theta/TOF/E(KeV): 2197 at 2 theta/TOF/E(KeV) 2198 at 2 theta/TOF/E(KeV): 2199 at 2 theta/TOF/E(KeV) : 2201 at 2 theta/TOF/E(KeV): 2202 at 2theta/TOF/E(KeV): 2203 at 2theta/TOF/E(KeV): 2204 at 2theta/TOF/E(KeV): 2205 at 2 theta/TOF/E(KeV): 2206 at 2theta/TOF/E(KeV): 2207 at 2theta/TOF/E(KeV): 2208 at 2 theta/TOF/E(KeV): 2209 at 2theta/TOF/E(KeV): 2210 at 2 theta/TOF/E(KeV): 2212 at 2theta/TOF/E(KeV): 2213 at 2theta/TOF/E(KeV): 2214 at 2theta/TOF/E(KeV): 2215 at 2 theta/TOF/E(KeV): 2216 at 2theta/TOF/E(KeV): 2217 at 2theta/TOF/E(KeV): 2219 at 2theta/TOF/E(KeV) 2222 at 2 theta/TOF/E(KeV): 2223 at 2 theta/TOF/E(KeV): 2224 at 2theta/TOF/E(KeV): 2225 at 2theta/TOF/E(KeV): 2226 at 2 theta/TOF/E(KeV): 2227 at 2 theta/TOF/E(KeV): 2228 at 2 theta/TOF/E(KeV): 2229 at 2theta/TOF/E(KeV): 2230 at 2theta/TOF/E(KeV): 2231 at 2theta/TOF/E(KeV): 2232 at 2theta/TOF/E(KeV): 2234 at 2 theta/TOF/E(KeV): 2235 at 2theta/TOF/E(KeV): 2236 at 2theta/TOF/E(KeV): 2237 at 2theta/TOF/E(KeV): 2238 at 2theta/TOF/E(KeV): 2239 at 2theta/TOF/E(KeV): 2240 at 2 theta/TOF/E(KeV): 2241 at 2theta/TOF/E(KeV): 2242 at 2 theta/TOF/E(KeV): 2243 at 2 theta/TOF/E(KeV) : 2244 at 2theta/TOF/E(KeV): 2245 at 2theta/TOF/E(KeV): 2246 at 2theta/TOF/E(KeV): 2247 at 2 theta/TOF/E(KeV): 2248 at 2 theta/TOF/E(KeV): 2249 at 2theta/TOF/E(KeV): 2252 at 2theta/TOF/E(KeV): 2253 at 2 theta/TOF/E(KeV): 2254 at 2theta/TOF/E(KeV): 2255 at 2theta/TOF/E(KeV): 2256 at 2theta/TOF/E(KeV): 2257 at 2 theta/TOF/E(KeV): 2258 at 2theta/TOF/E(KeV): 2259 at 2theta/TOF/E(KeV): 2260 at 2theta/TOF/E(KeV): 2261 at 2theta/TOF/E(KeV): 2262 at 2theta/TOF/E(KeV): 2263 at 2theta/TOF/E(KeV): 2264 at 2 theta/TOF/E(KeV) 2265 at 2theta/TOF/E(KeV): 2267 at 2 theta/TOF/E(KeV) 2269 at 2 theta/TOF/E(KeV): 2270 at 2 theta/TOF/E(KeV):
18.0179 18.0216 18.0290 18.0327 18.0364 18.0401 18.0438 18.0475 18.0512 18.0549
18.0623
18.0660 18.0697 18.0734 18.0771 18.0808 18.0845 18.0882 18.0919 18.0956 18.0993 18.1030 18.1067 18.1141 18.1178 18.1215 18.1252 18.1289 18.1326 18.1400 18.1437 18.1474 18.1511 18.1548 18.1585 18.1622 18.1659 18.1696 18.1733 18.1807 18.1844 18.1881 18.1918 18.1955 18.1992 18.2066 18.2177 18.2214 18.2251 18.2288 18.2325 18.2362 18.2399 18.2436 18.2473 18.2510 18.2547 18.2621 18.2658 18.2695 18.2732 18.2769 18.2806 18.2843 18.2880 18.2917 18.2954 18.2991 18.3028 18.3065 18.3102 18.3139 18.3176 18.3287 18.3324 18.3361 18.3398 18.3435 18.3472 18.3509 18.3546 18.3583 18.3620 18.3657 18.3694 18.3731 18.3842
18.3916
18.3953

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. => Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

2273 at 2theta/TOF/E(KeV): 2320 at 2theta/TOF/E(KeV): 2324 at 2theta/TOF/E(KeV): 2325 at 2 theta/TOF/E(KeV): 2326 at 2theta/TOF/E(KeV): 2329 at 2 theta/TOF/E(KeV): 2330 at 2 theta/TOF/E(KeV): 2332 at 2 theta/TOF/E(KeV): 2334 at 2theta/TOF/E(KeV): 2336 at 2 theta/TOF/E(KeV): 2337 at 2 theta/TOF/E(KeV) : 2338 at 2theta/TOF/E(KeV): 2339 at 2theta/TOF/E(KeV): 2341 at 2 theta/TOF/E(KeV): 2342 at 2 theta/TOF/E(KeV): 2343 at 2theta/TOF/E(KeV): 2344 at 2theta/TOF/E(KeV): 2345 at 2 theta/TOF/E(KeV): 2346 at 2theta/TOF/E(KeV): 2347 at 2 theta/TOF/E(KeV) 2348 at 2 theta/TOF/E(KeV): 2350 at 2theta/TOF/E(KeV): 2352 at 2 theta/TOF/E(KeV): 2353 at 2 theta/TOF/E(KeV): 2354 at 2theta/TOF/E(KeV): 2355 at 2theta/TOF/E(KeV): 2356 at 2 theta/TOF/E(KeV) 2357 at 2 theta/TOF/E(KeV): 2359 at 2 theta/TOF/E(KeV): 2363 at 2theta/TOF/E(KeV): 2364 at 2theta/TOF/E(KeV): 2365 at 2theta/TOF/E(KeV): 2366 at 2 theta/TOF/E (KeV): 2368 at 2 theta/TOF/E(KeV) 2369 at 2 theta/TOF/E(KeV): 2371 at 2theta/TOF/E(KeV): 2372 at 2 theta/TOF/E(KeV): 2373 at 2theta/TOF/E(KeV): 2374 at 2theta/TOF/E(KeV): 2375 at 2theta/TOF/E(KeV): 2378 at 2theta/TOF/E(KeV): 2379 at 2theta/TOF/E(KeV): 2380 at 2 theta/TOF/E(KeV): 2381 at 2 theta/TOF/E(KeV): 2382 at 2 theta/TOF/E(KeV): 2383 at 2 theta/TOF/E(KeV) : 2384 at 2theta/TOF/E(KeV): 2385 at 2theta/TOF/E(KeV): 2386 at 2theta/TOF/E(KeV): 2387 at 2theta/TOF/E(KeV): 2389 at 2theta/TOF/E(KeV): 2390 at 2theta/TOF/E(KeV): 2392 at 2 theta/TOF/E(KeV): 2393 at 2theta/TOF/E(KeV): 2394 at 2theta/TOF/E(KeV): 2395 at 2theta/TOF/E(KeV): 2396 at 2theta/TOF/E(KeV): 2397 at 2theta/TOF/E(KeV): 2398 at 2 theta/TOF/E(KeV) 2399 at 2theta/TOF/E(KeV): 2400 at 2 theta/TOF/E(KeV): 2401 at 2 theta/TOF/E (KeV): 2402 at 2theta/TOF/E(KeV): 2404 at 2theta/TOF/E(KeV): 2406 at 2theta/TOF/E(KeV): 2408 at 2 theta/TOF/E(KeV): 2409 at 2theta/TOF/E(KeV): 2410 at 2 theta/TOF/E(KeV): 2411 at 2theta/TOF/E(KeV): 2413 at 2theta/TOF/E(KeV): 2414 at 2theta/TOF/E(KeV): 2415 at 2 theta/TOF/E(KeV): 2416 at 2 theta/TOF/E(KeV): 2417 at 2theta/TOF/E(KeV): 2418 at 2 theta/TOF/E(KeV): 2419 at 2theta/TOF/E(KeV): 2420 at 2 theta/TOF/E(KeV): 2421 at 2theta/TOF/E(KeV) 2422 at 2theta/TOF/E(KeV): 2423 at 2theta/TOF/E(KeV): 2424 at 2theta/TOF/E(KeV): 2425 at 2 theta/TOF/E(KeV): 2427 at 2 theta/TOF/E(KeV): 2428 at 2 theta/TOF/E(KeV): 2429 at 2theta/TOF/E(KeV): 2430 at 2 theta/TOF/E(KeV) 2431 at 2theta/TOF/E(KeV): 2434 at 2theta/TOF/E(KeV) : 2435 at 2 theta/TOF/E(KeV): 2437 at 2theta/TOF/E(KeV):
18.4064 18.5803 18.5951 18.5988 18.6025 18.6136 18.6173 18.6247 18.6321 18.6395
18.6432 18.6469 18.6506 18.6580 8.6617 18.6654 18.6691 18.6728 18.6765 18.6802 18.6839 18.6913 18.6987 18.7024 18.7061 18.7098 18.7135 18.7172 18.7246 18.7394 18.7431 18.7468 18.7505 18.7579
18.7616 18.7690 18.7727 18.7764 18.7801 18.7838 18.7949 18.7986 18.8023
18.8060
18.8097
18.8134
18.8171
18.8208
18.8245
18.8282
18.8356
18.8393
8.8467
18.8504
18.8541
18.8578
18.8615
18.8652
18.8689
18.8726
18.8763
18.8800
18.8837
18.8911
18.8985 18.9059
18.9096
18.9133
18.9170
18.9244
18.9281
18.9318
18.9355
18.9392
18.9429
18.9466
18.9503
18.9540
18.9577 18.9614 18.9651
18.9688
18.9762
18.9799
18.9836
18.9873
18.9910
19.0021
19.0058
19.0132

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

2440 at 2 theta/TOF/E(KeV): 2441 at 2theta/TOF/E(KeV): 2442 at 2theta/TOF/E(KeV): 2444 at 2theta/TOF/E(KeV): 2445 at 2theta/TOF/E(KeV): 2446 at 2theta/TOF/E(KeV): 2447 at 2theta/TOF/E(KeV): 2448 at 2theta/TOF/E(KeV): 2449 at 2 theta/TOF/E(KeV): 2450 at 2 theta/TOF/E(KeV): 2451 at 2 theta/TOF/E(KeV): 2453 at 2theta/TOF/E(KeV): 2454 at 2theta/TOF/E(KeV): 2455 at 2 theta/TOF/E(KeV): 2456 at 2 theta/TOF/E(KeV): 2457 at 2 theta/TOF/E(KeV): 2458 at 2 theta/TOF/E(KeV): 2459 at 2theta/TOF/E(KeV): 2461 at 2theta/TOF/E(KeV): 2462 at 2 theta/TOF/E(KeV): 2463 at 2theta/TOF/E(KeV): 2464 at 2theta/TOF/E(KeV): 2465 at 2 theta/TOF/E(KeV): 2467 at 2 theta/TOF/E(KeV): 2468 at 2 theta/TOF/E(KeV): 2469 at 2theta/TOF/E(KeV): 2470 at 2theta/TOF/E(KeV): 2471 at 2 theta/TOF/E(KeV): 2472 at 2 theta/TOF/E(KeV): 2473 at 2 theta/TOF/E(KeV): 2476 at 2 theta/TOF/E(KeV): 2482 at 2theta/TOF/E(KeV): 2483 at 2theta/TOF/E(KeV): 2485 at 2 theta/TOF/E(KeV): 2487 at 2theta/TOF/E(KeV): 2488 at 2theta/TOF/E(KeV): 2489 at 2theta/TOF/E(KeV): 2491 at 2theta/TOF/E(KeV): 2493 at 2theta/TOF/E(KeV): 2494 at 2theta/TOF/E(KeV): 2536 at 2theta/TOF/E(KeV): 2538 at 2theta/TOF/E(KeV): 2539 at 2 theta/TOF/E(KeV): 2542 at 2theta/TOF/E(KeV): 2544 at 2theta/TOF/E(KeV): 2548 at 2theta/TOF/E(KeV): 2549 at 2 theta/TOF/E(KeV): 2551 at 2 theta/TOF/E(KeV): 2552 at 2theta/TOF/E(KeV): 2553 at 2theta/TOF/E(KeV): 2554 at 2theta/TOF/E(KeV): 2555 at 2theta/TOF/E(KeV): 2557 at 2 theta/TOF/E(KeV): 2559 at 2theta/TOF/E(KeV): 2560 at 2 theta/TOF/E(KeV): 2561 at 2theta/TOF/E(KeV): 2562 at 2theta/TOF/E(KeV): 2563 at 2theta/TOF/E(KeV): 2565 at 2theta/TOF/E(KeV): 2566 at 2 theta/TOF/E(KeV): 2567 at 2 theta/TOF/E(KeV): 2568 at 2 theta/TOF/E(KeV): 2569 at 2theta/TOF/E(KeV): 2570 at 2 theta/TOF/E(KeV): 2571 at 2 theta/TOF/E(KeV): 2572 at 2 theta/TOF/E(KeV): 2574 at 2theta/TOF/E(KeV): 2575 at 2 theta/TOF/E(KeV): 2577 at 2 theta/TOF/E(KeV): 2578 at 2theta/TOF/E(KeV): 2579 at 2 theta/TOF/E(KeV): 2582 at 2 theta/TOF/E(KeV): 2583 at 2 theta/TOF/E(KeV): 2584 at 2theta/TOF/E(KeV): 2585 at 2 theta/TOF/E(KeV): 2586 at 2theta/TOF/E(KeV): 2587 at 2 theta/TOF/E(KeV): 2588 at 2theta/TOF/E(KeV): 2589 at 2theta/TOF/E(KeV): 2591 at 2 theta/TOF/E(KeV): 2594 at 2 theta/TOF/E(KeV): 2595 at 2theta/TOF/E(KeV): 2597 at 2theta/TOF/E(KeV): 2598 at 2 theta/TOF/E(KeV) 2600 at 2 theta/TOF/E(KeV): 2601 at 2 theta/TOF/E(KeV) 2602 at 2 theta/TOF/E(KeV): 2603 at 2theta/TOF/E(KeV): 2604 at 2 theta/TOF/E(KeV) 2606 at 2 theta/TOF/E(KeV):
19.0243 19.0280 19.0317 19.0391 19.0428 19.0465 19.0502 19.0539 19.0576 9.0613 19.0650 19.0724 19.0761 19.0798 19.0835 19.0872 19.0909 19.0946 19.1020 19.1057 19.1094 19.1131 19.1168 19.1242 19.1279 19.1316 19.1353 19.1390 19.1427 19.1464 19.1575 19.1797 19.1834 19.1908 19.1982 19.2019 19.2056 19.2130 19.2204
19.2241
19.3795 19.3869 19.3906 19.4017 19.4091 19.4239 19.4276 19.4350 19.4387 19.4424 19.4461 19.4498 9.4572 19.4646 19.4683 19.4720 19.4757 19.4794 19.4868 19.4905 19.4942 19.4979 19.5016 19.5053 19.5090 19.5127 19.5201 19.5238 19.5312 19.5349 19.5386 19.5497 19.5534 19.5571 19.5608 19.5645 19.5682 19.5719 19.5756 19.5830 19.5941 19.5978 19.6052 19.6089 19.6163 19.6200 19.6237 19.6274 19.6311
19.6385

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

2607 at 2 theta/TOF/E(KeV) 2611 at 2theta/TOF/E(KeV): 2613 at 2theta/TOF/E(KeV): 2617 at 2 theta/TOF/E(KeV): 2620 at 2theta/TOF/E(KeV): 2621 at 2theta/TOF/E(KeV): 2622 at 2 theta/TOF/E(KeV): 2623 at 2 theta/TOF/E(KeV) 2624 at 2 theta/TOF/E(KeV): 2625 at 2 theta/TOF/E(KeV): 2627 at 2 theta/TOF/E(KeV): 2628 at 2theta/TOF/E(KeV): 2629 at 2 theta/TOF/E(KeV): 2630 at 2 theta/TOF/E(KeV): 2631 at 2 theta/TOF/E(KeV): 2632 at 2theta/TOF/E(KeV): 2635 at 2 theta/TOF/E(KeV): 2637 at 2 theta/TOF/E(KeV): 2640 at 2 theta/TOF/E(KeV): 2641 at 2 theta/TOF/E(KeV): 2643 at 2theta/TOF/E(KeV): 2645 at 2theta/TOF/E(KeV): 2646 at 2 theta/TOF/E(KeV): 2649 at 2theta/TOF/E(KeV): 2650 at 2 theta/TOF/E(KeV): 2651 at 2theta/TOF/E(KeV): 2652 at 2theta/TOF/E(KeV): 2653 at 2theta/TOF/E(KeV): 2656 at 2 theta/TOF/E(KeV): 2658 at 2 theta/TOF/E(KeV) 2662 at 2 theta/TOF/E(KeV): 2667 at 2theta/TOF/E(KeV): 2668 at 2 theta/TOF/E (KeV): 2670 at 2 theta/TOF/E(KeV) 2672 at 2 theta/TOF/E(KeV): 2673 at 2theta/TOF/E(KeV): 2678 at 2 theta/TOF/E(KeV): 2679 at 2 theta/TOF/E(KeV): 2680 at 2 theta/TOF/E(KeV): 2681 at 2 theta/TOF/E(KeV): 2682 at 2theta/TOF/E(KeV): 2835 at 2theta/TOF/E(KeV): 2837 at 2 theta/TOF/E(KeV): 2839 at 2 theta/TOF/E(KeV) 2840 at 2theta/TOF/E(KeV): 2846 at 2theta/TOF/E(KeV) 2849 at 2 theta/TOF/E(KeV): 2852 at 2 theta/TOF/E(KeV): 2854 at 2 theta/TOF/E(KeV): 2855 at 2theta/TOF/E(KeV): 2856 at 2 theta/TOF/E(KeV): 2858 at 2theta/TOF/E(KeV): 2859 at 2 theta/TOF/E(KeV) 2861 at 2 theta/TOF/E(KeV): 2862 at 2theta/TOF/E(KeV): 2864 at 2theta/TOF/E(KeV): 2865 at 2 theta/TOF/E(KeV) 2867 at 2 theta/TOF/E(KeV): 2868 at 2 theta/TOF/E(KeV) 2870 at 2theta/TOF/E(KeV): 2872 at 2 theta/TOF/E(KeV): 2873 at 2 theta/TOF/E(KeV): 2874 at 2 theta/TOF/E(KeV): 2876 at 2theta/TOF/E(KeV): 2877 at 2theta/TOF/E(KeV): 2879 at 2theta/TOF/E(KeV): 2882 at 2theta/TOF/E(KeV): 2883 at 2theta/TOF/E(KeV): 2884 at 2theta/TOF/E(KeV): 2886 at 2 theta/TOF/E(KeV): 2887 at 2 theta/TOF/E(KeV): 2888 at 2 theta/TOF/E(KeV) 2896 at 2theta/TOF/E(KeV): 2897 at 2theta/TOF/E(KeV): 2901 at 2 theta/TOF/E(KeV): 2902 at 2theta/TOF/E(KeV): 2903 at 2theta/TOF/E(KeV): 2904 at 2theta/TOF/E(KeV) : 2909 at 2theta/TOF/E(KeV): 2911 at 2theta/TOF/E(KeV): 2912 at 2theta/TOF/E(KeV): 2914 at 2 theta/TOF/E(KeV): 2915 at 2theta/TOF/E(KeV): 2918 at 2theta/TOF/E(KeV): 2919 at 2theta/TOF/E(KeV): 2924 at 2 theta/TOF/E(KeV): 2927 at 2 theta/TOF/E(KeV): 2929 at 2 theta/TOF/E(KeV): 2930 at 2 theta/TOF/E(KeV): 2931 at 2theta/TOF/E(KeV):
19.6422 19.6570 19.6644 19.6792 19.6903 19.6940 19.6977 19.7014 19.7051 19.7088 19.7162 19.7199 19.7236 19.7273 19.7310 19.7347 19.7458 19.7532 19.7643 19.7680 19.7754 19.7828 19.7865 19.7976 19.8013 19.8050 19.8087 19.8124 19.8235 19.8309 19.8457 19.8642 19.8679 9.8753 19.8827 19.8864 19.9049 19.9086 19.9123 19.9160 19.9197 20.4858 20.4932 20.5006 20.5043 20.5265 20.5376 20.5487 20.5561 20.5598 20.5635 20.5709 20.5746 20.5820 20.5857 20.5931 20.5968 20.6042 20.6079 20.6153 20.6227 20.6264 20.6301 20.6375 20.6412 20.6486 20.6597 20.6634 20.6671 20.6745 20.6782 20.6819 20.7115 20.7152 20.7300 20.7337 20.7374 20.7411 20.7596 20.7670 20.7707 20.7781 20.7818 20.7929 20.7966 20.8151 20.8262 20.8336 20.8373
20.8410

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. $=>$ Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

2934 at 2 theta/TOF/E(KeV) 2936 at 2theta/TOF/E(KeV): 2938 at 2theta/TOF/E(KeV): 2939 at 2theta/TOF/E(KeV): 2947 at 2theta/TOF/E(KeV): 2951 at 2theta/TOF/E(KeV): 2954 at 2theta/TOF/E(KeV): 2956 at 2theta/TOF/E(KeV): 2957 at 2 theta/TOF/E(KeV): 2960 at 2 theta/TOF/E(KeV): 2962 at 2theta/TOF/E(KeV): 2963 at 2theta/TOF/E(KeV): 2964 at 2theta/TOF/E(KeV): 2965 at 2theta/TOF/E(KeV): 2966 at 2 theta/TOF/E(KeV): 2971 at 2theta/TOF/E(KeV): 2974 at 2theta/TOF/E(KeV): 2975 at 2 theta/TOF/E(KeV): 3070 at 2theta/TOF/E(KeV): 3079 at 2theta/TOF/E(KeV): 3081 at 2theta/TOF/E(KeV): 3086 at 2 theta/TOF/E(KeV): 3089 at 2 theta/TOF/E(KeV): 3091 at 2theta/TOF/E(KeV): 3092 at 2 theta/TOF/E(KeV): 3094 at 2theta/TOF/E(KeV): 3097 at 2theta/TOF/E(KeV): 3099 at 2theta/TOF/E(KeV): 3100 at 2theta/TOF/E(KeV): 3101 at 2 theta/TOF/E(KeV) 3102 at 2theta/TOF/E(KeV): 3105 at 2theta/TOF/E(KeV): 3106 at 2theta/TOF/E(KeV): 3108 at 2 theta/TOF/E(KeV): 3109 at 2theta/TOF/E(KeV): 3113 at 2theta/TOF/E(KeV): 3115 at 2 theta/TOF/E(KeV): 3121 at 2theta/TOF/E(KeV): 3124 at 2theta/TOF/E(KeV): 3273 at 2 theta/TOF/E(KeV): 3276 at 2theta/TOF/E(KeV): 3282 at 2 theta/TOF/E(KeV): 3285 at 2 theta/TOF/E(KeV): 3287 at 2 theta/TOF/E(KeV): 3288 at 2theta/TOF/E(KeV): 3289 at 2theta/TOF/E(KeV): 3293 at 2theta/TOF/E(KeV): 3294 at 2 theta/TOF/E(KeV) 3295 at 2theta/TOF/E(KeV): 3303 at 2theta/TOF/E(KeV): 3305 at 2 theta/TOF/E(KeV): 3310 at 2theta/TOF/E(KeV): 3311 at 2 theta/TOF/E(KeV): 3312 at 2theta/TOF/E(KeV): 3431 at 2theta/TOF/E(KeV): 3432 at 2theta/TOF/E(KeV): 3434 at 2theta/TOF/E(KeV): 3438 at 2 theta/TOF/E(KeV) 3440 at 2theta/TOF/E(KeV): 3441 at 2theta/TOF/E(KeV): 3444 at 2theta/TOF/E(KeV): 3447 at 2 theta/TOF/E(KeV): 3449 at 2theta/TOF/E(KeV): 3450 at 2 theta/TOF/E(KeV): 3452 at 2theta/TOF/E(KeV): 3453 at 2 theta/TOF/E(KeV): 3459 at 2theta/TOF/E(KeV): 3460 at 2 theta/TOF/E(KeV): 3461 at 2 theta/TOF/E(KeV) : 3462 at 2theta/TOF/E(KeV): 3463 at 2theta/TOF/E(KeV): 3464 at 2theta/TOF/E(KeV): 3467 at 2 theta/TOF/E(KeV): 3468 at 2theta/TOF/E(KeV): 3469 at 2 theta/TOF/E(KeV): 3470 at 2 theta/TOF/E(KeV): 3471 at 2 theta/TOF/E(KeV): 3472 at 2theta/TOF/E(KeV): 3474 at 2theta/TOF/E(KeV): 3477 at 2 theta/TOF/E(KeV): 3480 at 2 theta/TOF/E(KeV) 3481 at 2 theta/TOF/E(KeV): 3483 at 2theta/TOF/E(KeV): 3485 at 2theta/TOF/E(KeV): 3486 at 2 theta/TOF/E(KeV): 3555 at 2 theta/TOF/E(KeV) 3561 at 2 theta/TOF/E(KeV): 3563 at 2theta/TOF/E(KeV): 3564 at 2 theta/TOF/E(KeV) 3566 at 2theta/TOF/E(KeV):
20.8521 20.8595 20.8669 20.8706 20.9002 20.9150 20.9261 20.9335 20.9372 20.9483 20.9557 20.9594 20.9631 20.9668 20.9705 20.9890 21.0001 21.0038 21.3553 21.3886 21.3960 21.4145 21.4256 21.4330 21.4367 21.4441 21.4552 21.4626 21.4663 21.4700 21.4737 21.4848 21.4885 21.4959 21.4996 21.5144 21.5218 21.5440 21.5551 22.1064 22.1175 22.1397 22.1508 22.1582 22.1619 22.1656 22.1804 22.1841 22.1878 22.2174 22.2248 22.2433 22.2470 22.2507 22.6910 22.6947 22.7021 22.7169 22.7243 22.7280 22.7391 22.7502 22.7576 22.7613 22.7687 22.7724 22.7946 22.7983 22.8020 22.8057 22.8094 22.8131 22.8242 22.8279 22.8316 22.8353 22.8390 22.8427 22.8501 22.8612 22.8723 22.8760 22.8834 22.8908 22.8945 23.1498 23.1720 23.1794 23.1831
23.1905

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

3567 at 2 theta/TOF/E(KeV) 3569 at 2theta/TOF/E(KeV): 3572 at 2 theta/TOF/E(KeV): 3575 at 2 theta/TOF/E(KeV): 3682 at 2theta/TOF/E(KeV): 3687 at 2theta/TOF/E(KeV): 3693 at 2 theta/TOF/E(KeV): 3694 at 2 theta/TOF/E(KeV): 3695 at 2theta/TOF/E(KeV): 3703 at 2 theta/TOF/E(KeV): 3705 at 2 theta/TOF/E(KeV): 3706 at 2theta/TOF/E(KeV): 3707 at 2theta/TOF/E(KeV): 3710 at 2 theta/TOF/E(KeV): 3712 at 2 theta/TOF/E(KeV): 3718 at 2 theta/TOF/E(KeV): 3719 at 2 theta/TOF/E(KeV): 3722 at 2 theta/TOF/E(KeV): 3727 at 2 theta/TOF/E(KeV): 3734 at 2theta/TOF/E(KeV): 3735 at 2theta/TOF/E(KeV): 3744 at 2theta/TOF/E(KeV): 3745 at 2 theta/TOF/E(KeV): 3746 at 2 theta/TOF/E(KeV): 3751 at 2 theta/TOF/E(KeV): 3766 at 2theta/TOF/E(KeV) : 3768 at 2 theta/TOF/E(KeV) 3775 at 2 theta/TOF/E(KeV): 3778 at 2 theta/TOF/E(KeV): 3781 at 2 theta/TOF/E(KeV) : 3785 at 2theta/TOF/E(KeV): 3786 at 2 theta/TOF/E(KeV): 3787 at 2 theta/TOF/E (KeV): 3790 at 2 theta/TOF/E(KeV) 3793 at 2theta/TOF/E(KeV): 3795 at 2 theta/TOF/E(KeV): 3803 at 2 theta/TOF/E(KeV): 3807 at 2 theta/TOF/E(KeV): 3808 at 2theta/TOF/E(KeV): 3817 at 2 theta/TOF/E(KeV): 3838 at 2theta/TOF/E(KeV): 3844 at 2theta/TOF/E(KeV): 3845 at 2 theta/TOF/E(KeV): 4772 at 2 theta/TOF/E(KeV): 4778 at 2 theta/TOF/E(KeV) : 4799 at 2 theta/TOF/E(KeV) 4806 at 2 theta/TOF/E(KeV): 4816 at 2 theta/TOF/E(KeV): 4818 at 2 theta/TOF/E(KeV): 4819 at 2theta/TOF/E(KeV): 4823 at 2theta/TOF/E(KeV): 4830 at 2 theta/TOF/E(KeV): 4839 at 2 theta/TOF/E(KeV): 4856 at 2 theta/TOF/E(KeV): 4857 at 2theta/TOF/E(KeV): 4862 at 2theta/TOF/E(KeV): 4865 at 2 theta/TOF/E(KeV): 4866 at 2theta/TOF/E(KeV): 4872 at 2 theta/TOF/E(KeV) 4874 at 2theta/TOF/E(KeV): 4876 at 2 theta/TOF/E(KeV): 4879 at 2 theta/TOF/E (KeV): 4884 at 2theta/TOF/E(KeV): 4885 at 2theta/TOF/E(KeV): 4890 at 2theta/TOF/E(KeV): 4891 at 2theta/TOF/E(KeV): 4893 at 2theta/TOF/E(KeV): 4894 at 2theta/TOF/E(KeV): 4900 at 2theta/TOF/E(KeV): 4901 at 2 theta/TOF/E(KeV): 4907 at 2 theta/TOF/E (KeV): 4913 at 2theta/TOF/E(KeV): 4916 at 2 theta/TOF/E(KeV): 5336 at 2theta/TOF/E(KeV): 5355 at 2theta/TOF/E(KeV): 5357 at 2theta/TOF/E(KeV): 5359 at 2theta/TOF/E(KeV): 5362 at 2 theta/TOF/E(KeV) 5373 at 2theta/TOF/E(KeV): 5374 at 2 theta/TOF/E(KeV): 5375 at 2 theta/TOF/E(KeV): 5385 at 2 theta/TOF/E(KeV): 5386 at 2theta/TOF/E(KeV): 5389 at 2 theta/TOF/E(KeV): 5391 at 2 theta/TOF/E(KeV): 5392 at 2 theta/TOF/E(KeV) 5393 at 2theta/TOF/E(KeV): 5394 at 2theta/TOF/E(KeV): 5398 at 2 theta/TOF/E(KeV): 5400 at 2theta/TOF/E(KeV):
3.1942 Intensity fixed to 1.0 and variance to 1 E 6 23.2016 Intensity fixed to 1.0 and variance to 1E6 23.2127 23.2238 23.6197 23.6382 23.6604 23.6641 23.6678 23.6974 23.7048 23.7085 23.7122 23.7233 23.7307 23.7529 23.7566 23.7677 23.7862 23.8121 23.8158 23.8491 23.8528 23.8565 23.8750 23.9305 23.9379 23.9638 23.9749 23.9860 24.0008 24.0045 24.0082 24.0193 24.0304 24.0378 24.0674 24.0822 24.0859 24.1192 24.1969 24.2191 24.2228 27.6527 27.6749 27.7526 27.7785 27.8155 27.8229 27.8266 27.8414 27.8673 27.9006 27.9635 27.9672 27.9857 27.9968 28.0005 28.0227 28.0301 28.0375 28.0486 28.0671 28.0708 28.0893 28.0930 28.1004 28.1041 28.1263 28.1300 28.1522 28.1744 28.1855 29.7395 29.8098 29.8172 29.8246 29.8357 29.8764 29.8801 29.8838 29.9208 29.9245 29.9356 29.9430 29.9467 29.9504 29.9541 29.9689
29.9763

Intensity fixed to 1.0 and Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6
\Rightarrow Zero counts at step no. => Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. => Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.

5402 at 2 theta/TOF/E(KeV): 5403 at 2theta/TOF/E(KeV): 5405 at 2theta/TOF/E(KeV): 5408 at 2theta/TOF/E(KeV): 5409 at 2 theta/TOF/E(KeV): 5410 at 2theta/TOF/E(KeV): 5422 at 2theta/TOF/E(KeV): 6360 at 2 theta/TOF/E(KeV): 6362 at 2 theta/TOF/E(KeV): 6364 at 2 theta/TOF/E(KeV): 6426 at 2 theta/TOF/E(KeV): 6436 at 2 theta/TOF/E(KeV): 6438 at 2theta/TOF/E(KeV): 6442 at 2 theta/TOF/E(KeV): 6443 at 2 theta/TOF/E(KeV): 6445 at 2 theta/TOF/E(KeV): 6446 at 2 theta/TOF/E(KeV): 6447 at 2 theta/TOF/E(KeV): 6550 at 2 theta/TOF/E(KeV): 6554 at 2 theta/TOF/E(KeV): 6556 at 2 theta/TOF/E(KeV): 6558 at 2 theta/TOF/E(KeV): 6560 at 2 theta/TOF/E(KeV): 6561 at 2 theta/TOF/E(KeV): 6562 at 2 theta/TOF/E(KeV): 6565 at 2theta/TOF/E(KeV): 6566 at 2 theta/TOF/E(KeV): 6571 at 2 theta/TOF/E(KeV): 6573 at 2 theta/TOF/E(KeV): 6575 at 2 theta/TOF/E(KeV): 6577 at 2 theta/TOF/E(KeV): 6582 at 2 theta/TOF/E(KeV): 6585 at 2 theta/TOF/E (KeV): 6587 at 2 theta/TOF/E(KeV): 6589 at 2theta/TOF/E(KeV): 6594 at 2 theta/TOF/E(KeV): 6604 at 2 theta/TOF/E(KeV): 6607 at 2 theta/TOF/E(KeV): 6867 at 2 theta/TOF/E(KeV): 6885 at 2 theta/TOF/E(KeV): 7019 at 2 theta/TOF/E(KeV): 7034 at 2theta/TOF/E(KeV): 7036 at 2 theta/TOF/E(KeV): 7040 at 2 theta/TOF/E (KeV): 7045 at 2 theta/TOF/E(KeV): 7046 at 2 theta/TOF/E(KeV): 7047 at 2 theta/TOF/E(KeV): 7050 at 2 theta/TOF/E(KeV): 7051 at 2 theta/TOF/E(KeV): 7055 at 2theta/TOF/E(KeV): 7056 at 2 theta/TOF/E(KeV): 7057 at 2 theta/TOF/E (KeV) : 7059 at 2 theta/TOF/E(KeV): 7060 at 2 theta/TOF/E(KeV): 7068 at 2theta/TOF/E(KeV): 7069 at 2theta/TOF/E(KeV): 7072 at 2 theta/TOF/E(KeV): 7075 at 2 theta/TOF/E(KeV): 7079 at 2theta/TOF/E(KeV): 7080 at 2theta/TOF/E(KeV): 7082 at 2 theta/TOF/E(KeV): 7089 at 2 theta/TOF/E (KeV): 7096 at 2theta/TOF/E(KeV): 7098 at 2 theta/TOF/E(KeV): 7101 at 2 theta/TOF/E(KeV): 7102 at 2theta/TOF/E(KeV): 7103 at 2theta/TOF/E(KeV): 7105 at 2 theta/TOF/E(KeV): 7117 at 2theta/TOF/E(KeV): 7123 at 2theta/TOF/E(KeV): 7126 at 2 theta/TOF/E(KeV): 7129 at 2theta/TOF/E(KeV): 7134 at 2 theta/TOF/E(KeV): 7365 at 2 theta/TOF/E(KeV): 7698 at 2 theta/TOF/E(KeV): 7710 at 2 theta/TOF/E(KeV): 7715 at 2 theta/TOF/E(KeV): 7716 at 2 theta/TOF/E(KeV): 7717 at 2 theta/TOF/E(KeV): 7743 at 2theta/TOF/E(KeV): 7807 at 2theta/TOF/E(KeV): 7840 at 2 theta/TOF/E(KeV): 10685 at 2theta/TOF/E(KeV):
\Rightarrow Optimizations for routine tasks applied:
=> Calculation mode for patter\#: 1 CM_PSEUDO_VOIGT
$=>$ Lorentzian FWHM < 0 at 2theta:
$=>$ Lorentzian FWHM < 0 at 2theta:
=> Lorentzian FWHM < 0 at 2theta:
$=>$ Lorentzian FWHM < 0 at 2theta:
=> Lorentzian FWHM < 0 at 2theta:
17.921 for phase no 17.966 for phase no 17.921 for phase no.
29.9837 29.9874 29.9948 30.0059 30.0096 30.0133 30.0577 33.5283 33.5357 33.5431 33.7725 33.8095 33.8169 33.8317 33.8354 33.8428 33.8465 33.8502 34.2313 34.2461 34.2535 34.2609 34.2683 34.2720 34.2757 34.2868 34.2905 34.3090 34.3164 34.3238 34.3312 34.3497 34.3608 34.3682 34.3756 34.3941 34.4311 34.4422 35.4042 35.4708 35.9666 36.0221 36.0295 36.0443 36.0628 36.0665 36.0702 36.0813 36.0850 36.0998 36.1035 36.1072 36.1146 36.1183 36.1479 36.1516 36.1627 36.1738 36.1886 36.1923 36.1997 36.2256 36.2515 36.2589 36.2700 36.2737 36.2774 36.2848 36.3292 36.3514 36.3625 36.3736 36.3921 37.2468 38.4789 38.5233 38.5418 38.5455 38.5492 38.6454 38.8822
39.0043
49.5308

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
(
1 -> Fixing to $\mathrm{HL}=1.0 \mathrm{e}-10$
1 -> Fixing to $H L=1.0 \mathrm{e}-10$
$1->$ Fixing to $H L=1.0 \mathrm{e}-10$
$1->$ Fixing to $H L=1.0 \mathrm{e}-10$

17.966 for phase no. 17.921 for phase no. 17.965 for phase no. 17.920 for phase no. 17.964 for phase no. 17.920 for phase no. 17.965 for phase no. 17.920 for phase no. 17.964 for phase no. 17.920 for phase no. 17.965 for phase no.
-> Fixing to HL=1.0e-10 $->$ Fixing to HL=1.0e-10 -> Fixing to $\mathrm{HL}=1.0 \mathrm{e}-10$ -> Fixing to HL=1.0e-10 $->$ Fixing to HL=1.0e-10 -> Fixing to $\mathrm{HL}=1.0 \mathrm{e}-10$ -> Fixing to HL=1.0e-10
-> Fixing to HL=1.0e-10

Standard deviations have to be multiplied by:15.9393 (correlated residuals) See references:
-J.F.Berar \& P.Lelann, J. Appl. Cryst. 24, 1-5 (1991)
-J.F.Berar, Acc. in Pow. Diff. II,NIST Sp.Pub. 846, 63(1992)
\Rightarrow CYCLE No.: 50
=> Phase 1 Name: rdx
\Rightarrow New parameters, shifts, and standard deviations

$==>$ PROFILE PARAMETERS FOR PATTERN\# 1
$\begin{array}{llll}=> & \text { Overall scale factor: } 0.003677659 & -0.000000780 \quad 0.000011493\end{array}$
\Rightarrow Eta(p-Voigt) or m(Pearson VII): 0.000000 0.000000 0.000000
\Rightarrow Overall tem. factor: 0.0000000 .0000000 .000000
\Rightarrow Halfwidth parameters:
$0.014150 \quad 0.000261 \quad 0.003446$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Cell parameters:
$\begin{array}{lll}11.557671 & 0.000021 & 0.000273\end{array}$
$10.676690 \quad 0.000017 \quad 0.000281$
$13.141932 \quad 0.000026 \quad 0.000305$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
=> Preferred orientation:
1.0000000 .0000000 .000000
$0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Asymmetry parameters:
$0.165592-0.000072 \quad 0.008782$
$0.053462-0.000027 \quad 0.001781$ $0.000000 \quad 0.000000 \quad 0.000000$ $0.000000 \quad 0.000000 \quad 0.000000$
$\Rightarrow X$ and Y parameters
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Strain parameters:
$0.000000 \quad 0.0000000 .000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Size parameters (G,L):
$0.012007-0.000010 \quad 0.000086$
$-0.025048 \quad 0.000745 \quad 0.004665$
\Rightarrow Further shape parameters (S_L and D_L) :
$0.0000000 .000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Spherical Harmonics coeff. (size) :

-0.025048	0.000745	0.004665	0.019418	-0.001630	0.013391	0.197667	
0.010955	0.000007	0.013803	-0.039622	-0.001868	0.013335	0.019753	
0.210143	0.011426	0.000000	0.000000	0.000000	0.000000	0.0000	0.000

$==>$ GLOBAL PARAMETERS FOR PATTERN\# 1
=> Zero-point: -0.2154 0.0001 0.0022
=> Background Polynomial Parameters ==>
$\begin{array}{lll}0.11847 \mathrm{E}+060.0000 & 0.0000\end{array}$

$0.72376 \mathrm{E}+06$	0.0000	0.0000
-47087.	0.0000	0.0000
$-0.18536 \mathrm{E}+07$	0.0000	0.0000
$-0.14029 \mathrm{E}+07$	0.0000	0.0000
-35943.	0.0000	0.0000

$\Rightarrow \operatorname{Cos}($ theta)-shift parameter $: 0.00000 .00000 .0000$
$\Rightarrow \operatorname{Sin}(2 t h e t a)-s h i f t$ parameter $: 0.00000 .00000 .0000$
$==>$ RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1

$=>$	Conventional Rietveld Rp,Rwp,Re and Chi2:	14.1	23.3	1.44	263.3

\Rightarrow (Values
\Rightarrow SumYnet, Sum (w Ynet**2): $0.5204 \mathrm{E}+08 \quad 0.5204 \mathrm{E}+08$
=> N -sigma of the GoF: $* * * * * * * *$
$==>$ RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1

\Rightarrow (Values obtained using Ynet, but true sigma(y))
\Rightarrow SumYnet, Sum (w Ynet**2): 0.5204E+08 0.5203E+08
=> N-sigma of the GoF: 19232.480
=> Global user-weigthed Chi2 (Bragg contrib.): 264.

$\begin{array}{llcccc}61 & 1 & 2 & 4 & 0 & 4\end{array} 0.139729$

26.295	477.2	468.6	8.507	0.127464	0.008127	0.082439	\checkmark
26.448	155.3	169.9	16.049	0.127506	0.008555	0.086508	\checkmark
26.803	238.4	281.9	51.333	0.127608	0.018097	0.171977	\checkmark
26.847	919.2	1051.8	151.421	0.127620	0.011554	0.114468	\checkmark
27.057	3627.0	3717.6	92.802	0.127682	0.006239	0.063979	\checkmark
27.118	2486.4	2612.2	131.679	0.127700	0.027363	0.245424	\checkmark
27.422	1171.2	1287.3	127.507	0.127790	0.008230	0.083217	\checkmark
28.097	23.2	22.8	4.775	0.127997	0.017384	0.165495	2
28.215	0.1	0.1	0.046	0.128034	0.023806	0.217723	\checkmark
29.362	4563.9	4918.6	381.135	0.128409	0.019979	0.186618	\checkmark
29.451	3494.9	3560.3	66.512	0.128439	0.012778	0.124866	\swarrow
29.451	6978.2	7140.8	165.994	0.128439	0.020550	0.191234	\checkmark
29.548	161.6	159.0	2.566	0.128472	0.005875	0.060035	\checkmark
30.242	3.7	2.0	1.291	0.128713	0.011779	0.115616	\checkmark
30.572	2758.7	2709.9	47.994	0.128831	0.010324	0.102197	\checkmark
30.923	1299.6	1311.4	11.983	0.128958	0.034495	0.294131	\checkmark
31.292	2039.8	1894.2	134.858	0.129095	0.018797	0.176039	\checkmark
31.688	522.2	458.6	55.691	0.129245	0.016572	0.157202	\checkmark
31.959	117.9	99.8	15.267	0.129349	0.015927	0.151586	\checkmark
32.027	431.8	412.0	18.845	0.129375	0.015661	0.149279	2
32.064	1102.2	1112.0	9.881	0.129390	0.032849	0.282068	\checkmark
32.422	3338.3	3440.9	105.543	0.129530	0.017398	0.163870	\checkmark
32.511	3523.3	3602.1	80.514	0.129566	0.010517	0.103425	\checkmark
32.798	425.0	376.3	42.985	0.129681	0.030543	0.265378	\checkmark
32.908	305.6	299.0	6.479	0.129726	0.015334	0.146104	2
33.323	1831.2	1906.9	78.738	0.129896	0.008330	0.082886	\checkmark
33.546	480.4	496.1	16.214	0.129989	0.009777	0.096312	\checkmark
33.862	60.0	46.5	10.628	0.130122	0.026491	0.235129	\checkmark
34.252	507.9	372.5	99.203	0.130290	0.009406	0.092680	\checkmark
34.918	433.3	440.3	7.320	0.130582	0.025893	0.229955	\checkmark
34.967	2357.7	2417.3	61.202	0.130604	0.019059	0.176388	2
35.146	12.1	12.7	0.641	0.130685	0.010799	0.105165	\checkmark
35.257	2207.0	2394.2	202.655	0.130734	0.015524	0.146704	\checkmark
35.292	432.8	477.0	48.558	0.130750	0.029701	0.257600	\downarrow
35.621	11.9	8.5	2.600	0.130900	0.015219	0.143933	\checkmark
35.893	441.0	525.6	100.615	0.131026	0.018461	0.170986	\checkmark
35.967	311.8	328.8	17.971	0.131061	0.028134	0.245796	\checkmark
36.008	13.1	12.4	0.665	0.131080	0.011414	0.110410	\checkmark
36.008	64.0	60.7	3.126	0.131080	0.027048	0.237803	\checkmark
36.297	12.7	5.9	6.289	0.131217	0.009202	0.090185	\checkmark
36.898	49.9	73.2	34.195	0.131505	0.018076	0.167275	\checkmark
36.977	726.8	849.2	142.751	0.131544	0.017201	0.159991	\checkmark

2theta Icalc Iobs Sigma HwG HwL ETA $~$ H

37.149	488.4	455.9	30.297	0.131628	0.010448	0.101293	\swarrow
37.718	417.5	375.2	37.881	0.131911	0.014708	0.138575	\checkmark
37.932	2.0	3.1	1.691	0.132019	0.024890	0.220317	\checkmark
38.048	2.2	2.9	0.929	0.132078	0.013285	0.126126	\checkmark
38.132	403.0	419.6	17.278	0.132121	0.023255	0.207719	\checkmark
38.222	1692.6	1640.2	50.692	0.132167	0.022666	0.203114	\checkmark
38.530	25.4	31.0	6.909	0.132326	0.023891	0.212316	\checkmark
38.949	8.8	20.8	28.151	0.132546	0.022495	0.201292	\checkmark
39.502	139.8	138.8	1.122	0.132842	0.010603	0.101815	\checkmark
39.608	691.6	672.3	18.744	0.132899	0.014028	0.131817	\checkmark
39.783	234.7	278.8	52.341	0.132994	0.017661	0.162214	\checkmark
40.136	92.2	145.1	82.930	0.133189	0.016644	0.153619	\checkmark
40.167	9.4	14.2	7.327	0.133206	0.027673	0.239153	\checkmark
40.296	266.8	410.4	220.572	0.133278	0.011579	0.110176	\checkmark
40.462	15.3	26.6	19.638	0.133370	0.014877	0.138621	\checkmark
40.480	59.6	105.4	80.546	0.133381	0.037264	0.304463	\swarrow
40.773	253.2	366.1	162.566	0.133546	0.026738	0.231839	\checkmark
41.028	78.9	143.1	116.093	0.133691	0.022595	0.200563	\swarrow
41.180	270.2	346.2	96.974	0.133778	0.036414	0.298241	2
41.318	6.5	7.4	0.990	0.133858	0.021430	0.191331	2
41.373	205.2	250.3	54.811	0.133890	0.034177	0.283304	\checkmark
41.589	6.6	20.0	40.716	0.134016	0.022543	0.199743	\checkmark
41.702	9.7	36.5	100.091	0.134083	0.020426	0.183187	\checkmark
41.947	410.9	483.1	84.542	0.134227	0.034800	0.286870	\checkmark
42.267	2.2	10.5	40.534	0.134418	0.033734	0.279447	\checkmark
42.450	14.8	27.2	22.546	0.134528	0.022844	0.201384	\checkmark
42.480	218.1	352.4	216.317	0.134546	0.022498	0.198718	\swarrow
42.550	276.5	416.9	211.109	0.134588	0.024753	0.215702	\checkmark
42.603	119.1	182.5	96.935	0.134621	0.014503	0.134305	\checkmark
42.832	8.6	56.8	317.859	0.134760	0.033085	0.274517	\swarrow
43.164	0.6	12.6	246.240	0.134965	0.035583	0.290752	2
43.448	61.2	262.6	862.094	0.135141	0.019444	0.174196	\swarrow
43.477	1.5	5.6	14.663	0.135159	0.019537	0.174911	2
43.615	78.4	151.3	140.411	0.135247	0.015831	0.144812	\checkmark
43.655	233.7	408.4	304.666	0.135272	0.014041	0.129816	\checkmark
44.183	234.0	461.2	445.975	0.135607	0.031470	0.262177	\checkmark
44.240	28.9	48.7	33.306	0.135644	0.018353	0.164943	\checkmark
44.388	50.9	114.7	143.656	0.135739	0.014707	0.135001	\checkmark
44.683	44.9	139.9	295.294	0.135931	0.030099	0.252217	\checkmark
44.864	116.7	201.2	145.092	0.136050	0.032881	0.271036	\checkmark
45.033	381.8	504.5	161.474	0.136161	0.030379	0.253806	\checkmark
45.038	16.5	21.3	6.253	0.136164	0.022053	0.193276	\checkmark
45.066	284.6	367.8	107.263	0.136183	0.022680	0.198019	\checkmark
45.117	180.2	237.5	75.063	0.136217	0.030455	0.254243	\checkmark
45.234	3.6	5.5	2.959	0.136295	0.019062	0.169870	\checkmark

107	1	1	5		8	0.144726
	2.000154		43.714397			
108	1	4	3	3	8	0.148983
	1.996637		43.527786			
109	1	1	2	6	8	0.152351
	1.995937		43.488667			
110	1	2	3	5	8	0.147379
	1.985559		42.952629			
111	1	2	5	1	8	0.146777
	1.980102		42.675720			
112	1	3	4	3	8	0.147295
	1.961735		41.732731			
113	1	4	4	0	4	0.151994
	1.960631		20.838533			
114	1	2	4	4	8	0.146202
	1.950139		41.143612			
115	1	4	4	1	8	0.152075
	1.939170		40.591351			
116	1	6	0	0	2	0.162899
	1.926275		9.985799			
117	1	5	3	1	8	0.156524
	1.917771		39.521759			
118	1	2	5	2	8	0.147731
	1.915934		39.433163			
119	1	4	1	5	8	0.151386
	1.912836		39.274673			
120	1	2	2	6	8	0.153063
	1.912226		39.244450			
No.	Code		K	$\begin{aligned} & \mathrm{L} \quad \text { Mult } \\ & \text { CORR } \end{aligned}$		Hw
		hkl				
121	1	5	2	3	8	0.154413
	1.909163		39.094662			
122	1	3	0	6	4	0.153864
	1.904096		19.421478			
123	1	6	1	0	4	0.163132
	1.895669		19.215900			
124	1	1	5	3	8	0.146969
	1.893506		38.329342			
125	1	5	0	4	4	0.154006
	1.890512		19.089468			
126	1	4	4	2	8	0.152597
	1.878781		37.612156			
127	1	6	1	1	8	0.162876
	1.876250		37.487667			
128	1	3	1	6	8	0.154167
	1.874519		37.402283			
129	1	0	4	5	4	0.148898
	1.872800		18.661100			
130	1	5	1	4	8	0.154620
	1.861554		36.780247			
131	1	5	3	2	8	0.156642
	1.859300		36.674236			
132	1	3	3	5	8	0.150943
	1.853503		36.396729			
133	1	4	3	4	8	0.151822
	1.852572		36.352833			
134	1	3	5	1	8	0.151793
	1.849062		36.189026			
135	1	1	4	5	8	0.149623
	1.848687		36.168797			
136	1	6	0	2	4	0.162073
	1.848485		18.078987			
13	1	1	3	6	8	0.153527
	1.841518			827		
13	1	4	2	5	8	0.153203
	1.826896			140		
13	1	1	1	7	8	0.161109
	1.825828			089		
14	1	3	4	4	8	0.150733
	1.824592			034		
14	1	2	5	3	8	0.149882
	1.821587			896		
142	1	6	1	2	8	0.162498
	1.821389			884		

45.301
45.385
45.402
45.653 45.786 46.239 46.267
46.530
46.809
47.141
47.363
47.411
47.493
47.509

$$
2 \text { theta }
$$

47.590

13.1	26.9	28.187	0.137926	0.030357	0.250960	\swarrow
28.3	87.7	183.311	0.138023	0.029210	0.242893	

47.950
48.008
48.089
48.408
48.478
48.525
48.573
48.885
48.949
49.112
49.138

$$
49.238
$$

4.0	8.0	7.976	0.136340	0.015646	0.142244
48.2	133.9	237.399	0.136396	0.023351	0.202813
15.6	45.2	85.406	0.136407	0.029381	0.246491
110.4	290.6	472.772	0.136575	0.020099	0.177704
26.0	74.3	137.757	0.136666	0.018829	0.167624
2.5	3.3	0.968	0.136975	0.019213	0.170313
1084.3	1397.4	402.098	0.136994	0.027700	0.233777
7.1	19.9	35.734	0.137177	0.016829	0.151086
423.6	524.9	125.033	0.137371	0.027174	0.229487
3.2	13.1	40.673	0.137605	0.045561	0.347164
324.0	462.4	196.551	0.137763	0.034363	0.278069
87.0	110.0	29.080	0.137798	0.018504	0.163835
4.7	6.7	2.766	0.137856	0.025063	0.213579
1.8	2.7	1.322	0.137868	0.028056	0.235041
Icalc	Iobs	Sigma	HwG	HwL	ETA

$$
49.248
$$

$$
49.254
$$

$$
49.453
$$

$$
49.875
$$

49.907
49.943
50.031
50.037

72.1	175.1	248.695	0.138186	0.044986	0.342748		
14.8	35.8	50.545	0.138229	0.016303	0.145807		
29.1	81.0	144.198	0.138288	0.028994	0.241001	,	

[^0]\Rightarrow Bragg R-factor: $6.97 \quad$ Vol: $1621.684(0.069)$ Fract (\%): 100.00(0.44)
\Rightarrow Rf-factor $=9.79 \quad$ ATZ: $1776.939 \quad$ Brindley: 1.0000

SYMBOLIC NAMES AND FINAL VALUES AND SIGMA OF REFINED PARAMETERS:

-> Parameter number 1 : G-Size_ph1_pat1 0.12007418E-01 (+/- 0.85642365E-04)

->	Parameter number	2	:	Zero_pat1	-0.21540712	+/-	0.21793407E-02
->	Parameter number	3	:	Scale_ph1_pat1	$0.36776587 \mathrm{E}-02($	+/-	0.11493407E-04
->	Parameter number	4	:	U-Cagl_ph1_pat 1	0.14149698E-01(+/ -	0.34455676E-02
->	Parameter number	5	:	Cell_A_ph1_pat 1	11.557671 (+/-	0.27274666E-03
->	Parameter number	6	:	Cell_B_ph1_pat 1	10.676690 (+/-	0.28143937E-03
->	Parameter number	7	:	Cell_C_ph1_pat	13.141932 (+/-	0.30492945E-03
->	Parameter number	8	:	$\mathrm{x}_{\mathrm{O}} \mathrm{O}(1)-\mathrm{ph} 1$	0.57030642	+/-	0.50944550E-03
->	Parameter number	9	:	Y_O(1) _-ph1	0.44054043	+/-	0.58024272E-03
->	Parameter number	10	:	Z_O(1) _-ph1	0.26806968	+/-	0.53565676E-03
->	Parameter number	11	:	$\mathrm{x}_{\text {_ }} \mathrm{O}(2)$ _ ph 1	0.59821874	+/-	0.59325760E-03
->	Parameter number	12	:	Y_O(2) _-ph1	0.23070036 (+/-	0.58002409E-03
->	Parameter number	13	:	Z_O(2) _ph 1	0.22521888	+/-	0.52235578E-03
->	Parameter number	14	:	$\mathrm{X}_{\mathrm{O}} \mathrm{O}$ (3)-ph1	0.47699246	+/-	0.58257120E-03
->	Parameter number	15	:	Y_O (3) _ Ph 1	0.13119514	+/-	0.53428166E-03
->	Parameter number	16	:	Z_O(3)_-ph1	-0.16466578E-01(+/-	0.51274599E-03
->	Parameter number	17	:	X_0 (4) _ ph 1	0.34888738 (+/-	0.59821649E-03
->	Parameter number	18	:	Y_O (4) - ph 1	0.25898808	+/-	$0.66673080 \mathrm{E}-03$
->	Parameter number	19	:	$\mathrm{Z}_{\mathrm{O}} \mathrm{O}(4)$ _ ph 1	-0.11068642	+/-	0.58052666E-03
->	Parameter number	20	:	X_O(5)_ph1	0.30777898	+/-	0.54655079E-03
->	Parameter number	21	:	Y_O (5) _-ph1	0.51705146	+/-	$0.63611532 \mathrm{E}-03$
->	Parameter number	22	:	Z_O(5)_ph1	-0.79056025E-01(+/-	$0.50401402 \mathrm{E}-03$
->	Parameter number	23	:	$\mathrm{X}_{\text {_ }} 0(6)$ _ ph 1	0.42721874	+/-	0.51176769E-03
->	Parameter number	24	:	Y_O(6)_Ph1	0.60060859 (+/-	$0.74724230 \mathrm{E}-03$
->	Parameter number	25	:	$\mathrm{Z}_{-} 0(6)$ _ph 1	$0.52727856 \mathrm{E}-01($	+/-	$0.53174264 \mathrm{E}-03$
->	Parameter number	26	:	$\mathrm{X}_{\text {_ }} \mathrm{N}(1)$ - ph 1	0.44408569	+/-	$0.76306117 \mathrm{E}-03$
->	Parameter number	27	:	Y_N(1) _Ph1	0.33099678	+/-	0.98512415E-03
->	Parameter number	28	:	$\mathrm{Z}_{\text {_ }} \mathrm{N}(1)$ _ ph 1	0.17287177	+/-	0.62338362E-03
->	Parameter number	29	:	$\mathrm{X}_{\mathbf{N}} \mathrm{N}$ (2) _ ph 1	0.32741672 (+/-	$0.94491179 \mathrm{E}-03$
->	Parameter number	30	:	Y_N (2)_Ph1	0.23490509 (0.88645355E-03
->	Parameter number	31	:	$\mathrm{Z}_{\mathrm{N}} \mathrm{N}$ (2) _ ph 1	0.53277619E-01(+/-	$0.72490342 \mathrm{E}-03$
->	Parameter number	32	:	$\mathrm{X}_{-} \mathrm{N}$ (3) _ ph 1	0.30725399 (+/-	$0.85900084 \mathrm{E}-03$
->	Parameter number	33	:	Y_N (3) _- Ph 1	0.45634460	+/-	$0.81957324 \mathrm{E}-03$
->	Parameter number	34	:	$\mathrm{Z}_{\text {- }} \mathrm{N}(3)$ _ ph 1	$0.82887992 \mathrm{E}-01($	+/-	$0.67181664 \mathrm{E}-03$
->	Parameter number	35	:	$\mathrm{X}_{\text {_ }} \mathrm{N}(4)$ _ ph 1	0.53932601 (+/-	$0.68082550 \mathrm{E}-03$
->	Parameter number	36	:	Y_N (4) _Ph1	0.33542445 (+/-	$0.69672387 \mathrm{E}-03$
->	Parameter number	37	:	$\mathrm{Z}_{\text {_ }} \mathrm{N}(4)$ _ ph 1	0.23514608 ($0.67948614 \mathrm{E}-03$
->	Parameter number	38	:	$\mathrm{X}_{\text {_ }} \mathrm{N}(5)$ _ ph 1	0.38598049 ($0.79134514 \mathrm{E}-03$
->	Parameter number	39	:	Y_N (5)_-ph1	0.20331475	+/-	0.91921864E-03
->	Parameter number	40	:	Z_N (5)_ph1	-0.41405533E-01(+/-	$0.79785188 \mathrm{E}-03$
->	Parameter number	41	:	$\mathrm{X}_{\mathbf{N}} \mathrm{N}$ (6) _ ph 1	0.35495391	+/-	$0.68654644 \mathrm{E}-03$
->	Parameter number	42	:	Y_N (6) _ph 1	0.54360700	+/-	$0.92109625 \mathrm{E}-03$
->	Parameter number	43	:	$\mathrm{Z}_{\text {- }} \mathrm{N}(6)$ _ph1	$0.99107744 \mathrm{E}-02($	+/-	$0.78920758 \mathrm{E}-03$
->	Parameter number	44	:	$\mathrm{X}_{-} \mathrm{C}(1)$ _ ph 1	0.34678712 (+/-	0.84853295E-03
->	Parameter number	45	:	Y_C (1) _- Ph 1	0.43853557 (+/-	$0.93395612 \mathrm{E}-03$
->	Parameter number	46	:	$\mathrm{Z}_{\mathrm{C}} \mathrm{C}(1)$ _- ph 1	0.19867958 ($0.73884765 \mathrm{E}-03$
->	Parameter number	47	:	$\mathrm{X}_{\mathrm{C}} \mathrm{C}(2)$ _- ph 1	0.38558781		0.87032176E-03
->	Parameter number	48	:	Y_C (2)_-ph1	0.21305369 (+/-	$0.93864364 \mathrm{E}-03$
->	Parameter number	49	:	$\mathrm{z}_{-} \mathrm{C}(2)$ _ph1	0.15540366 (+/-	0.96520188E-03
->	Parameter number	50	:	$\mathrm{X}_{\text {_ }} \mathrm{C}$ (3) $\mathrm{S}^{\text {Ph } 1}$	0.23576419 (+/-	$0.71329746 \mathrm{E}-03$
->	Parameter number	51	:	Y_C (3) _- Ph 1	0.34061772 (+/-	0.13099160E-02
-	Parameter number	52	:	$\mathrm{Z}_{\text {_ }} \mathrm{C}$ (3) _ ph 1	0.52318119E-01 (+/-	$0.63173153 \mathrm{E}-03$
->	Parameter number	53	:	Asym1_ph1_pat 1	0.16559245 (+/-	$0.87822555 \mathrm{E}-02$
->	Parameter number	54	:	Asym2_ph1_pat1	$0.53462289 \mathrm{E}-01($		0.17806906E-02
->	Parameter number	55	:	L-Size_ph1_pat 1	-0.25047939E-01(0.46645673E-02
->	Parameter number	56	:	Size2_ph1_pat1	0.19417906E-01 (+/-	0.13390562E-01
->	Parameter number	57	:	Size3_ph1_pat 1	0.19766724 (+/-	0.10954754E-01
->	Parameter number	58	:	Size4_ph1_pat1	0.21014285	+/-	$0.13802625 \mathrm{E}-01$
->	Parameter number	59	:	Size5_ph1_pat 1	-0.39622393E-01	+/-	0.13335176E-01
->	Parameter number	60	:	Size6_ph1_pat1	0.19753376E-01(+/-	0.11426117E-01

=> Number of bytes for floating point variables: 4
=> Dimensions of dynamic allocated arrays in this run of FullProf:
\Rightarrow Total approximate array memory (dynamic + static): 107719993 bytes
MaxPOINT= 60000 Max.num. of points(+int. Inten.)/diffraction pattern MaxREFLT $=20000$ Max.num. of reflections/diffraction pattern
Maxparam $=$
MaxOVERL $=2096$ Max.num. of overlapping reflections
\Rightarrow Number of bytes for floating point arrays: 4
\Rightarrow Dimensions of fixed arrays in this release of FullProf:

| NPATT | $=$ | 80 Max.num. of powder diffraction patterns |
| :--- | :--- | ---: | :--- |
| NATS | $=$ | 830 Max.num. of atoms (all kind) in asymmetric unit |
| MPAR | $=$ | 1800 Max.num. of non atomic parameters/phase |
| IEXCL | $=$ | 30 Max.num. of excluded regions |
| IBACP | $=$ | 277 Max.num. of background points for interpolation |
| NPHT | $=$ | 16 Max.num. of phases |
| NMAGM | $=$ | 8 Max.num. of rotation-matrices sets for magnetic structure |
| NBASIS | $=$ | 12 Max.num. of basis functions associated to a single atom |
| NIREPS | $=$ | 9 Max.num. of irreducible representations to be combined |
| N_EQ | $=$ | 384 Max.num. of user-supplied symmetry operators/propagation vectors |
| NGL | $=300$ Max.num. of global parameters/diffraction pattern | |
| N_LINC | $=$ | 30 Max.num. of global linear restraints |
| NAT_P | $=$ | 64 Max.num. of atomic parameters per atom |

A. 3 Sample of n-RDX processed pure at $3 \mathrm{wt} \%$ in acetone

```
**********************************************************
** PROGRAM FullProf.2k (Version 5.50 - Dec2014-ILL JRC) **
***********************************************************
M U L T I -- P A T T E R N
Rietveld, Profile Matching & Integrated Intensity
Refinement of X-ray and/or Neutron Data
Date: 18/02/2015 Time: 13:16:26.953
=> PCR file code: 3b
=> DAT file code: 3b.dat -> Relative contribution: 1.0000
==> CONDITIONS OF THIS RUN FOR PATTERN No.: 1
=> Global Refinement of X-ray powder diffraction data
=> Global Refinement of X-ray powder diffraction data
Flat plate with PSD
=> Title:RDX
=> Number of phases: 1
> Number of excluded regions: 0
=> Number of scattering factors supplied: 0
=> March-Dollase model for preferred orientation
=> Conventional weights: w=1.0/Variance(yobs)
=> Asymmetry correction as in J.Appl.Cryst. 26,128(1993)
=> Background linearly interpolated between the 6 points given
=> The 5th default profile function was selected
> Pseudo-Voigt function (ETA variable)
X-parameter correspond to: ETA=ETAO+X*2theta
pV(x)= ETA*L(x)+(1-ETA)*G(x)
==> INPUT/OUTPUT OPTIONS:
=> Generate file *.PRF for plot
=> Output Integrated Intensities
=> Generate new input file *.PCR
=> Data supplied in free format for pattern: 1
=> Plot pattern at each cycle
=> Wavelengths: 1.54056 1.54439
=> Alpha2/Alpha1 ratio: 0.5000
C Cos(Monochromator angle)= 1.0000
> Asymmetry correction for angles lower than 90.000 degrees
=> Absorption correction (AC), muR-eff = 0.0000 0.0000
=> Base of peaks: 2.0*HW* 20.00
=> Number of cycles: 50
=> Relaxation factors ==> for coordinates: 1.00
=> for anisotropic temperature factors: 1.00
=> for halfwidth/strain/size parameters: 1.00
> for lattice constants and propagation vectors: 1.00
=> EPS-value for convergence: 0.0
=> Background ==>
Position Intensity
\(15.00 \quad 16.91 \quad 0.00\)
\begin{tabular}{lll}
10.00 & -27.69 & 0.00
\end{tabular}
rrrer
30.00 13.02 0.00
35.00 -2.55 0.00
\begin{tabular}{lll}
38.00 & 37.25 & 0.00
\end{tabular}
```

=> Instrumental Resolution read from file: xray-res.irf
\Rightarrow Title of data: Approximate resolution function of a conventional X-ray diffractometer CuKalpha1, 2
\Rightarrow The resolution function is IRESOL: 1 for profile function \# 5
Input resolution parameters:

U-inst	V-inst	W-inst	X-inst	Y-inst	Z-inst
0.00136	-0.00500	0.00391	0.06389	0.00008	0.00000
0.00136	-0.00500	0.00391	0.06389	0.00008	0.00000

```
=> Number of Least-Squares parameters varied: 5
=>-----------------------------
=>-------> PATTERN number: 1
---->
=> Global parameters and codes ==>
=> Zero-point: -0.0410 0.0000
=> Displacement peak-shift parameter and code: -0.10 0.00
=> Transparency peak-shift parameter and code: 0.26 0.00
=> Reading Intensity data =>>
==> Angular range, step and number of points:
2Thmin: 12.113000 2Thmax: 38.910702 Step: 0.024900 No. of points: 1077
=> Phase No. 
rdx
--------------------------------- Pattern# 1
=> Crystal Structure Refinement
=> The 7th profile function was selected for phase no. 1
=> Preferred orientation vector: 0.0000 0.0000 1.0000
=>-------> Data for PHASE: 1
=> Number of atoms: 21
=> Number of distance constraints: 0
=> Number of angle constraints: 0
=> Symmetry information on space group: P b c a
-> The multiplicity of the general position is:
-> The space group is Centric (-1 at origin)
-> Lattice type P: { 000 }
-> Reduced set of symmetry operators:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No. IT & Symmetry & symbol & Ro & \multicolumn{3}{|l|}{Associated Translation} \\
\hline ( 1) & 1 & > & ( \(x, y, z\) ) + \{ & 0.0000 & 0.0000 & \(0.0000\}\) \\
\hline ( 4) & 2 ( \(\mathrm{x}, 0\), & 0) --> & \((x,-y,-z)+\{\) & 0.5000 & 0.5000 & \(0.0000\}\) \\
\hline ( 3) & 2 ( 0, y, & 0) --> & \((-x, y,-z)+\{\) & 0.0000 & 0.5000 & \(0.5000\}\) \\
\hline ( 2) & & z) --> & & 0.5000 & & \\
\hline
\end{tabular}
```

Information on Space Group:
\Rightarrow Number of Space group: 61
\Rightarrow Number of Space group:
\Rightarrow Hermann-Mauguin Symbol: p b c a
$\begin{array}{lrl}\Rightarrow & \text { Hermann-Mauguin Symbol: } P \text { b c } a \\ \Rightarrow & \text { Hall Symbol: }-\mathrm{P} 2 \mathrm{ac} 2 \mathrm{ab}\end{array}$
$\Rightarrow \quad$ Table Setting Choice:
$\Rightarrow \quad$ Setting Type: IT (Generated from Hermann-Mauguin symbol)
$\Rightarrow \quad$ Crystal System: Orthorhombic
$\Rightarrow \quad$ Laue Class: mmm
$\Rightarrow \quad$ Bravais Lattice: \Rightarrow
$\Rightarrow \quad$ Lattice Symbol: oP
\Rightarrow Reduced Number of S.O.: 4
$\Rightarrow \quad$ General multiplicity: $\quad 8$
\Rightarrow Generators (exc. -1\&L): 2
$\Rightarrow \quad$ Asymmetric unit: $0.000<=x<=0.500$
$0.000<=y<=0.500$
$0.000<=\mathrm{z}<=0.500$
\Rightarrow List of S.O. without inversion and lattice centring translations

=> Initial parameters ==>

Codes:		0.00000	0.00000	0.00000	00.0	$00 \quad 0.000$						
N (5)	N			0.38834	0.20759	-0.03308	3.09700	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	00.0	$00 \quad 0.00$						
N (6)	N			0.352990	0.52971	0.01650	3.43200	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0.0	00.0 .00						
C (1)	C			0.357990	0.43950	0.18450	2.89510	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	00.0	00.0 .00						
C (2)	C			$0.38140 \quad 0$	0.21557	0.14950	2.70030	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	00.0	000.000						
C (3)	C			0.24458	0.33936	0.05038	2.55740	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0 0.0	00.0 .000						
H (1A)	H			0.402890	0.52403	0.20773	5.13220	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0.0	00.000						
H (1B)	H			0.29071 0	0.42024	0.23991	4.84270	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0.0	00.000						
H (2A)	H			0.44331	0.13918	0.14950	4.60580	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0.0	00.000						
H (2B)	H			0.31742	0.19390	0.20730	4.97430	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0.0	00.0 .00						
H (3A)	H			0.209360	0.35364	-0.02527	4.50050	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0.0	$00 \quad 0.000$						
H (3B)	H			0.17213	0.32091	0.10070	3.92150	1.00000	0	0	0	8
Codes:		0.00000	0.00000	0.00000	0.0	$00 \quad 0.00$						

\Rightarrow IT IS ASSUMED THAT THE FIRST GIVEN SITE IS FULLY OCCUPIED
OR THE FIRST AND SECOND ATOMS ARE IN THE SAME SITE WITH TOTAL FULL OCCUPATION
(If this is not the case, change the order of atoms to obtain correct values for the content of the unit cell)
The given occupation factors have been obtained mutiplying m/m by 1.0000

\Rightarrow The given value of ATZ is $\quad 1776.94$ the program has calculated: $\quad 1776.94$
The value of ATZ given in the input PCR file will be used for quantitative analysis
\Rightarrow The chemical content of the unit cell is:
 $8.0000 \mathrm{~N}+8.0000 \mathrm{~N}+8.0000 \mathrm{~N}$
$8.0000 \mathrm{~N}+8.0000 \mathrm{~N}+8.0000 \mathrm{C}+$ $8.0000 \mathrm{H}+8.0000 \mathrm{H}+8.0000 \mathrm{H}+$
8.0000 H
\Rightarrow The normalized site occupation numbers in $\%$ are:

100.0000 0(1)	:		100.0000 0(2)	:		100.0000 0(3)	:		100.0000 0(4)	:		100.0000 0(5)	:	
100.0000	O(6)		100.0000	N(1)	:	100.0000	N(2)	.	100.0000	N(3)		100.0000	N (4)	:
$100.0000 \mathrm{~N}(5)$:		$100.0000 \mathrm{~N}(6)$:		$100.0000 \mathrm{C}(1)$:		100.0000 C(2)	:		100.0000 C(3)	:	
100.0000	H (1 A)		100.0000	H (1B)		100.0000	H (2A)		100.0000	H (2B)		100.0000	H (3A)	

$100.0000 \mathrm{H}(3 \mathrm{~B})$
\Rightarrow The density (volumic mass) of the compound is: $1.785 \mathrm{~g} / \mathrm{cm} 3$
=>-------> PROFILE PARAMETERS FOR PATTERN: 1
\Rightarrow Overall scale factor: 0.666440E-03
\Rightarrow ETA (p-Voigt) OR M (Pearson VII): 0.0000
\Rightarrow Overall temperature factor: 0.00000
$\begin{array}{lll}\Rightarrow \text { Halfwidth U,V,W: } & -0.00587 & 0.00000\end{array}$
$\begin{array}{lll}\Rightarrow X & \text { and } Y \text { parameters: } & 0.0000\end{array} 0.0000$
$\begin{array}{lllllllllllll}\Rightarrow> & \text { Direct cell parameters: } & 11.6304 & 10.7431 & 13.2279 & 90.0000 & 90.0000 & 90.0000\end{array}$
\Rightarrow Preferred orientation parameters: 1.0000 0.0000
$\begin{array}{lllllll}\Rightarrow \text { Asymmetry parameters } & : & -0.21721 & 0.00510 & 0.00000 & 0.00000\end{array}$
\Rightarrow Strain parameters $\quad: \quad 0.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{lllll}\Rightarrow & \text { Size parameters } & : & 0.00000 & 0.00000 \\ => & \text { Further shape parameters } & \left(S _L \text { and D_L): }\right. & 0.00000 & 0.00000\end{array}$
S_L is source width/detector distance
D_L is detector width/detector distance
$==>$ CODEWORDS FOR PROFILE PARAMETERS of PATTERN\# 1
\Rightarrow Overall scale factor: 11.000
\Rightarrow ETA (p-Voigt) OR M (Pearson VII): 0.000
\Rightarrow Overall temperature factor: 0.000
$\begin{array}{lllll}\Rightarrow & H a l f w i d t h ~ U, V, W: & 21.000 & 0.000 & 0.000\end{array}$
$\Rightarrow X$ and Y parameters: 0.0000 .000
$\begin{array}{llllllllll}\Rightarrow \text { Direct cell parameters: } 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$
$\begin{array}{llll}\Rightarrow \text { Preferred orientation parameters: } & 0.000 & 0.000\end{array}$

\Rightarrow Asymmetry parameters	$:$	41.000	51.000	0.000	0.000
$=$	Strain parameters	$:$	0.000	0.000	0.000
\Rightarrow Size parameters	$:$	31.000	0.000		
\Rightarrow Cell constraints according to Laue symmetry: mmm					

Metric information:
=> Direct cell parameters:

$\mathrm{a} *=$	0.085981	$\mathrm{~b} *=$	0.093083	$\mathrm{c} *=$	0.075598
$\mathrm{alpha}=$	90.000	beta $*=$	90.000	gamma $*=$	90.000
Reciprocal Cell Volume	$=$	0.00060504			

Reciprocal Cell Volume $=0.00060504$
=> Direct and Reciprocal Metric Tensors:

GD		GR			
135.2666	0.0000	0.0000	0.007393	0.000000	0.000000
0.0000	115.4133	0.0000	0.000000	0.008665	0.000000
0.0000	0.0000	174.9783	0.000000	0.000000	0.005715

\Rightarrow Cartesian frame: $x / / a ; y$ is in the $a b-p l a n e ; ~ z i s ~ x-y$
Crystal_to_Orthonormal_Matrix

Cr_Orth_cel		
11.6304	0.0000	0.0000
0.0000	10.7431	0.0000
0.0000	0.0000	13.2279

Busing-Levy B-matrix: $H c=B . H$
BL_M

BL_M	BL_Minv				
0.085981	0.000000	0.000000	11.6304	0.0000	0.0000
0.000000	0.093083	0.000000	0.0000	10.7431	0.0000
0.000000	0.000000	0.075598	0.0000	0.0000	13.2279

\Rightarrow Laue symmetry mmm will be used to generate HKL for pattern\# 1
\Rightarrow Reflections generated between $S(1 / d) \min : 0.1366$ A-1 and $S(1 / d) \max : \quad 0.4324$ A-1
$\Rightarrow \quad \operatorname{dmax}: \quad 7.3188 \mathrm{~A}$ and $\mathrm{dmin}: \quad 2.3127 \mathrm{~A}$
\Rightarrow The number of reflections generated is: 69
\Rightarrow The max. scatt. variable (gen.ref.) is: 38.9107
\Rightarrow Scattering coefficients from internal table
$\Rightarrow X$-ray scattering coeff. (A1, B1, A2, .. C, f(0), Z, Dfp,Dfpp)

0	3.0485	13.2771	2.2868	5.7011	1.5463	0.3239	0.8670	32.9089	0.2508	7.9994	8.0000	0.0470	\swarrow
	0.0320												
N	12.2126	0.0057	3.1322	9.8933	2.0125	28.9975	1.1663	0.5826	-11.5290	6.9946	7.0000	0.0290	\swarrow
C	$\begin{aligned} & 0.0180 \\ & 2.3100 \end{aligned}$	20.8439	1.0200	10.2075	1.5886	0.5687	0.8650	51.6512	0.2156	5.9992	6.0000	0.0170	\swarrow
	0.0090												
H	0.4930	10.5109	0.3229	26.1257	0.1402	3.1424	0.0408	57.7997	0.0030	1.0000	1.0000	0.0000	\swarrow
	0.0000												

SYMBOLIC NAMES AND INITIAL VALUES OF PARAMETERS TO BE VARIED:

$->$	Parameter number	1	$->$ Symbolic Name:	Scale_ph1_pat1	$0.66644000 \mathrm{E}-03$
$->$ Parameter number	2	$->$ Symbolic Name:	U-Cagl_ph1_pat1	$-0.58700000 \mathrm{E}-02$	
$->$ Parameter number	3	$->$ Symbolic Name:	G-Size_ph1_pat1	0.0000000	
$->$ Parameter number	4	$->$ Symbolic Name:	Asym1_ph1_pat1	-0.21720999	
$->$ Parameter number	5	$->$ Symbolic Name:	Asym2_ph1_pat1	$0.51000002 \mathrm{E}-02$	

\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

3 at 2 theta/TOF/E (KeV) 4 at 2 theta/TOF/E (KeV) 5 at 2 theta/TOF/E (KeV): 6 at 2 theta/TOF/E (KeV): 9 at 2 theta/TOF/E (KeV) 10 at 2 theta/TOF/E (KeV) : 11 at 2 theta/TOF/E(KeV) : 14 at 2 theta/TOF/E (KeV): 15 at 2 theta/TOF/E (KeV) : 22 at 2 theta/TOF/E (KeV) : 61 at 2 theta/TOF/E (KeV) : 62 at 2 theta/TOF/E (KeV) : 69 at 2 theta/TOF/E (KeV): 77 at 2 theta/TOF/E (KeV) : 79 at 2 theta/TOF/E (KeV) : 81 at 2 theta/TOF/E (KeV) : 86 at 2theta/TOF/E(KeV): 87 at 2 theta/TOF/E (KeV) : 93 at 2theta/TOF/E(KeV) :

12.1628	Intensity	fixed	to	1.0	and	variance	to	1 E6
12.1877	Intensity	fixed	to	1.0	and	e	to	1 E6
12.2126	Intensity	fixed	to	1.0	and	va	to	1 E6
12.2375	Intensity	fixed	to	1.0	and	variance	to	1 E6
12.3122	Intensity	fixed	to	1.0	and	variance	to	1E6
12.3371	Intensity	fixed	to	1.0	and	variance	to	1E6
12.3620	Intensity	fixed	to	1.0	and	variance	to	1 E6
12.4367	Intensity	fixed	to	1.0	and	varianc	to	1 E6
12.4616	Intensity	fixed	to	1.0	and	varianc	to	1 E6
12.6359	Intensity	fixed	to	1.0	an	v	to	1 E6
13.6070	Intensity	fixed	to	1.0	and	varianc	to	1 E6
13.6319	Intensity	fixed	to	1.0	and	va	-	1 E6
13.8062	Intensity	fixed	to	1.0	and	variance	to	1 E6
14.0054	Intensity	fixed	to	1.0	and	variance	to	1 E6
14.0552	Intensity	fixed	to	1.0	and	variance	to	1 E6
14.1050	Intensity	fixed	to	1.0	and	variance	to	1 E6
14.2295	Intensity	fixed	to	1.0	and	variance	to	1 E6
14.2544	Intensity	fixed	to	1.0	and	variance	to	1 E6
14.4038	Intensity	fixed	to	1.0	and	variance	O	1 E6

\Rightarrow Zero counts at step no. => Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

98 at 2theta/TOF/E(KeV) 102 at 2 theta/TOF/E(KeV) 106 at 2theta/TOF/E(KeV): 107 at 2theta/TOF/E(KeV): 108 at 2theta/TOF/E(KeV): 110 at 2 theta/TOF/E(KeV) 114 at 2theta/TOF/E(KeV): 116 at 2theta/TOF/E(KeV): 117 at 2theta/TOF/E(KeV): 141 at 2 theta/TOF/E(KeV): 142 at 2theta/TOF/E(KeV): 144 at 2theta/TOF/E(KeV): 145 at 2theta/TOF/E(KeV): 146 at 2 theta/TOF/E(KeV): 148 at 2theta/TOF/E(KeV) : 152 at 2theta/TOF/E(KeV): 163 at 2theta/TOF/E(KeV): 187 at 2 theta/TOF/E(KeV): 188 at 2theta/TOF/E(KeV) : 189 at 2theta/TOF/E(KeV): 191 at 2theta/TOF/E(KeV): 192 at 2theta/TOF/E(KeV): 196 at 2theta/TOF/E(KeV): 197 at 2 theta/TOF/E(KeV): 199 at 2 theta/TOF/E(KeV) 237 at 2theta/TOF/E(KeV): 240 at 2 theta/TOF/E(KeV): 241 at 2 theta/TOF/E(KeV): 243 at 2theta/TOF/E(KeV): 244 at 2 theta/TOF/E(KeV) 245 at 2theta/TOF/E(KeV): 246 at 2theta/TOF/E(KeV): 247 at 2 theta/TOF/E (KeV): 248 at 2 theta/TOF/E(KeV): 249 at 2theta/TOF/E(KeV): 250 at 2 theta/TOF/E(KeV): 251 at 2 theta/TOF/E(KeV): 253 at 2theta/TOF/E(KeV): 254 at 2 theta/TOF/E(KeV) 255 at 2theta/TOF/E(KeV) 256 at 2 theta/TOF/E(KeV): 261 at 2 theta/TOF/E(KeV): 264 at 2theta/TOF/E(KeV): 265 at 2 theta/TOF/E(KeV): 266 at 2theta/TOF/E(KeV): 267 at 2theta/TOF/E(KeV): 268 at 2 theta/TOF/E(KeV): 269 at 2 theta/TOF/E(KeV): 270 at 2 theta/TOF/E(KeV): 271 at 2 theta/TOF/E(KeV): 272 at 2theta/TOF/E(KeV): 273 at 2 theta/TOF/E(KeV): 274 at 2 theta/TOF/E(KeV): 275 at 2 theta/TOF/E(KeV): 276 at 2theta/TOF/E(KeV): 277 at 2 theta/TOF/E(KeV): 278 at 2 theta/TOF/E(KeV): 279 at 2 theta/TOF/E(KeV): 280 at 2theta/TOF/E(KeV) 281 at 2theta/TOF/E(KeV): 283 at 2theta/TOF/E(KeV): 284 at 2 theta/TOF/E(KeV) 285 at 2theta/TOF/E(KeV): 286 at 2theta/TOF/E(KeV): 287 at 2 theta/TOF/E(KeV): 288 at 2theta/TOF/E(KeV): 295 at 2 theta/TOF/E(KeV) 296 at 2 theta/TOF/E(KeV): 297 at 2theta/TOF/E(KeV): 298 at 2theta/TOF/E(KeV): 299 at 2theta/TOF/E(KeV): 300 at 2 theta/TOF/E(KeV) 301 at 2theta/TOF/E(KeV): 302 at 2theta/TOF/E(KeV): 303 at 2theta/TOF/E(KeV): 304 at 2theta/TOF/E(KeV): 305 at 2theta/TOF/E(KeV): 306 at 2theta/TOF/E(KeV) 308 at 2theta/TOF/E(KeV): 310 at 2 theta/TOF/E(KeV): 311 at 2 theta/TOF/E(KeV) 312 at 2 theta/TOF/E(KeV): 313 at 2theta/TOF/E(KeV): 314 at 2theta/TOF/E(KeV): 316 at 2 theta/TOF/E(KeV): 317 at 2 theta/TOF/E(KeV) 319 at 2theta/TOF/E(KeV): 340 at 2theta/TOF/E(KeV): 342 at 2 theta/TOF/E(KeV) 343 at 2theta/TOF/E(KeV):
14.5283 14.6279 14.7275 14.7524 14.7773 14.8271 14.9267 14.9765 15.0014 15.5990 15.6239 15.6737 15.6986 15.7235 15.7733
15.8729
16.1468 16.7444 16.7693
6. 7942
16.8440
16.8689 16.9685 16.9934
17.0432
17.9894
18.0641 18.0890
18.1388
18.1637
18.1886
18.2135
18.2384
18.2633
18.2882
18.3131
18.3380
18.3878
18.4127
18.4376
18.4625
18.5870
18.6617
18.6866
18.7115
18.7364
18.7613
18.7862
18.8111
18.8360
18.8609
18.8858
18.9107
18.9356
18.9605
18.9854
19.0103
19.0352
19.0601
19.0850
19.1348
19.1597
19.1846
19.2095
19.2344
19.2593
19.4336
19.4585
19.4834
19.5083
19.5332
19.5581
19.5830
19.6079
19.6328
19.6577
19.6826
19.7075
19.7573
19.8071
19.8320
19.8569
19.8818
19.9067
19.9565
19.9814
20.0312
20.5541
20.6039
20.6288

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

344 at 2theta/TOF/E(KeV): 346 at 2theta/TOF/E(KeV) 348 at 2 theta/TOF/E(KeV): 349 at 2theta/TOF/E(KeV): 350 at 2 theta/TOF/E(KeV): 352 at 2 theta/TOF/E(KeV): 353 at 2theta/TOF/E(KeV) 354 at 2theta/TOF/E(KeV) 356 at 2 theta/TOF/E(KeV): 357 at 2 theta/TOF/E(KeV) 358 at 2 theta/TOF/E(KeV): 360 at 2theta/TOF/E(KeV): 361 at 2theta/TOF/E(KeV): 362 at 2 theta/TOF/E(KeV): 375 at 2 theta/TOF/E(KeV): 376 at 2 theta/TOF/E(KeV): 379 at 2theta/TOF/E(KeV): 380 at 2 theta/TOF/E(KeV): 381 at 2 theta/TOF/E(KeV): 382 at 2 theta/TOF/E(KeV) 406 at 2theta/TOF/E(KeV): 407 at 2theta/TOF/E(KeV): 408 at 2 theta/TOF/E(KeV): 410 at 2 theta/TOF/E(KeV) 411 at 2theta/TOF/E(KeV): 428 at 2theta/TOF/E(KeV): 430 at 2 theta/TOF/E(KeV): 431 at 2theta/TOF/E(KeV): 433 at 2 theta/TOF/E(KeV): 446 at 2 theta/TOF/E(KeV) 447 at 2theta/TOF/E(KeV): 448 at 2theta/TOF/E(KeV): 450 at 2 theta/TOF/E (KeV): 471 at 2 theta/TOF/E(KeV) 473 at 2 theta/TOF/E(KeV): 476 at 2 theta/TOF/E(KeV): 478 at 2 theta/TOF/E(KeV): 479 at 2 theta/TOF/E(KeV): 480 at 2 theta/TOF/E(KeV) 482 at 2theta/TOF/E(KeV) 484 at 2theta/TOF/E(KeV): 488 at 2 theta/TOF/E(KeV): 491 at 2 theta/TOF/E(KeV) 492 at 2 theta/TOF/E(KeV): 511 at 2theta/TOF/E(KeV): 549 at 2theta/TOF/E(KeV): 620 at 2 theta/TOF/E(KeV): 624 at 2 theta/TOF/E(KeV) 628 at 2 theta/TOF/E(KeV): 630 at 2 theta/TOF/E(KeV): 632 at 2 theta/TOF/E(KeV): 638 at 2 theta/TOF/E(KeV): 639 at 2 theta/TOF/E(KeV): 640 at 2 theta/TOF/E(KeV): 644 at 2 theta/TOF/E(KeV): 647 at 2 theta/TOF/E(KeV): 659 at 2 theta/TOF/E (KeV) : 669 at 2 theta/TOF/E (KeV) 709 at 2 theta/TOF/E(KeV): 712 at 2theta/TOF/E(KeV): 716 at 2 theta/TOF/E(KeV): 720 at 2 theta/TOF/E (KeV) : 721 at 2 theta/TOF/E(KeV): 722 at 2 theta/TOF/E(KeV) 723 at 2theta/TOF/E(KeV): 862 at 2 theta/TOF/E(KeV) 863 at 2 theta/TOF/E (KeV) : 864 at 2 theta/TOF/E(KeV): 871 at 2theta/TOF/E(KeV): 872 at 2 theta/TOF/E(KeV) 875 at 2 theta/TOF/E (KeV): 877 at 2 theta/TOF/E(KeV) 895 at 2theta/TOF/E(KeV): 896 at 2theta/TOF/E(KeV): 899 at 2theta/TOF/E(KeV): 939 at 2theta/TOF/E(KeV): 961 at 2 theta/TOF/E(KeV) 964 at 2 theta/TOF/E(KeV): 967 at 2 theta/TOF/E(KeV): 968 at 2 theta/TOF/E(KeV) 971 at 2 theta/TOF/E(KeV) 972 at 2 theta/TOF/E(KeV): 973 at 2theta/TOF/E(KeV) 976 at 2theta/TOF/E(KeV): 1008 at 2 theta/TOF/E(KeV): 1012 at 2 theta/TOF/E(KeV): 1054 at 2theta/TOF/E(KeV): 1069 at 2theta/TOF/E(KeV): 1070 at 2 theta/TOF/E(KeV) 1072 at 2theta/TOF/E(KeV):
20.6537 20.7035 20.7533 20.7782 20.8031 20.8529 20.8778 20.9027 20.9525 20.9774 21.0023 21.0521 21.0770 21.1019 21.4256 21.4505 21.5252 21.5501 21.5750 21.5999 22 . 1975 22.2224 22.2473 22.2971 22.3220 22.7453 22.7951 22.8200 22.8698 23.1935 23. 2184 23.2433 23.2931 23.8160 23.8658 23.9405 23.9903 24.0152 24.0401 24.0899 24.1397 24.2393 24.3140 24.3389 24.8120 25.7582 27.5261 27.6257 27.7253 27.7751 27.8249 27.9743 27.9992 28.0241 28.1237 28.1984 28.4972 28.7462 29.7422 29.8169 29.9165 30.0161 30.0410 30.0659 30.0908 33.5519 33.5768 33.6017 33.7760 33.8009 33.8756 33.9254 34.3736 34.3985 34.4732 35.4692 36.0170 36.0917 36.1664 36.1913 36.2660 36.2909 36.3158 36.3905 37.1873 37.2869 38.3327 38.7062 38.7311
38.7809

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6

```
=> Optimizations for routine tasks applied:
=> Calculation mode for patter#: 1 CM_PSEUDO_VOIGT
```

Standard deviations have to be multiplied by: 3.5344
(correlated residuals) See references:
-J.F.Berar \& P.Lelann, J. Appl. Cryst. 24, 1-5 (1991)
-J.F.Berar, Acc. in Pow. Diff. II,NIST Sp.Pub. 846, 63(1992)

```
=> CYCLE No.: }1
=> Convergence reached at this CYCLE !!!!
=> Parameter shifts set to zero
```

=> Phase 1 Name: rdx
\Rightarrow New parameters, shifts, and standard deviations

$\begin{array}{lllllllllllllllllll}1.00000 & 0.00000 & 0.43427 & 0.00000 & 0.00000 & 0.26465 & 0.00000 & 0.00000 & 3.70830 & 0.00000 & 0.00000\end{array}$
(2) $\quad 0.59453 \quad 0.00000 \quad 0.0000$
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{lllllllllllllllllllll}0.47340 & 0.00000 & 0.00000 & 0.13880 & 0.00000 & 0.00000 & -0.02250 & 0.00000 & 0.00000 & 4.98480 & 0.00000 & 0.00000\end{array}$
1.000000 .000000 .00000
$\begin{array}{lllllllllllllll}0.35580 & 0.00000 & 0.00000 & 0.24950 & 0.00000 & 0.00000 & -0.11238 & 0.00000 & 0.00000 & 4.76640 & 0.00000 & 0.00000\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{llllllllllllllllllll}0.31810 & 0.00000 & 0.00000 & 0.53030 & 0.00000 & 0.00000 & -0.06806 & 0.00000 & 0.00000 & 5.32170 & 0.00000 & 0.00000\end{array}$
1.000000 .000000 .00000
1.00000 0.000000 .00000
$\begin{array}{llllllllllllll}0.43638 & 0.00000 & 0.00000 & 0.33385 & 0.00000 & 0.00000 & 0.17584 & 0.00000 & 0.00000 & 2.73980 \quad 0.00000 & 0.00000\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{lllllllllllllllllllll}0.32231 & 0.00000 & 0.00000 & 0.23197 & 0.00000 & 0.00000 & 0.05389 & 0.00000 & 0.00000 & 2.40240 & 0.00000 & 0.00000\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{lllllllllllll}0.29900 & 0.00000 & 0.00000 & 0.45348 & 0.00000 & 0.00000 & 0.08838 & 0.00000 & 0.00000 & 2.59240 & 0.00000 & 0.00000\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{llllllllllllllllllllll}0.53777 & 0.00000 & 0.00000 & 0.33516 & 0.00000 & 0.00000 & 0.22628 & 0.00000 & 0.00000 & 2.76530 & 0.00000 & 0.00000\end{array}$
1.000000 .000000 .00000
$\begin{array}{llllllllllllllllllllll}0.38834 & 0.00000 & 0.00000 & 0.20759 & 0.00000 & 0.00000 & -0.03308 & 0.00000 & 0.00000 & 3.09700 & 0.00000 & 0.00000\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{llllllllllllll}0.35299 & 0.00000 & 0.00000 & 0.52971 & 0.00000 & 0.00000 & 0.01650 & 0.00000 & 0.00000 & 3.43200 & 0.00000 & 0.00000\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
00000.357990 .000000 .00
$0.38140 \quad 0.00000 \quad 0.0000$
$1.00000 \quad 0.00000 \quad 0.00000$
$1.00000 \quad 0.00000 \quad 0.00000$
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{lllllllllll}\mathrm{H}(1 \mathrm{~B}) & 0.29071 & 0.00000 & 0.00000 & 0.42024 & 0.00000 & 0.00000 & 0.23991 & 0.00000 & 0.00000 & 4\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
H (2A) $0.44331 \quad 0.00000 \quad 0.00000$
$1.00000 \quad 0.00000 \quad 0.00000$

$1.00000 \quad 0.00000 \quad 0.00000$
H(3A) 0.20936 0.00000 0.00000
$1.00000 \quad 0.00000 \quad 0.00000$
$\begin{array}{lllllllllllllll}\mathrm{H}(3 \mathrm{~B}) & 0.17213 & 0.00000 & 0.00000 & 0.32091 & 0.00000 & 0.00000 & 0.10070 & 0.00000 & 0.00000 & 3.92150 & 0.00000 & 0.00000\end{array}$
$1.00000 \quad 0.00000 \quad 0.00000$
$==>$ PROFILE PARAMETERS FOR PATTERN\# 1

\Rightarrow Overall scale factor:	0.000451821	0.000000000	0.000003839

\Rightarrow Eta(p-Voigt) or m(Pearson VII): $0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Overall tem. factor: 0.000000 0.000000 0.000000
\Rightarrow Halfwidth parameters:
$-0.0048470 .000000 \quad 0.013262$
$\begin{array}{lll}-0.000000 & 0.000000 & 0.000000\end{array}$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Cell parameters:
$11.630419 \quad 0.000000 \quad 0.000000$
$\begin{array}{lll}11.630419 & 0.000000 & 0.000000 \\ 10.743058 & 0.000000 & 0.000000\end{array}$
$\begin{array}{lll}10.743058 & 0.000000 & 0.000000 \\ 13.227938 & 0.000000 & 0.000000\end{array}$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Preferred orientation :
$\begin{array}{lll}\text { 1.000000 } & 0.000000 & 0.000000\end{array}$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Asymmetry parameters:
$0.032918 \quad 0.000000 \quad 0.006054$
$\begin{array}{lll}0.032918 & 0.000000 & 0.006054 \\ 0.042103 & 0.000000 & 0.003202\end{array}$

==> GLOBAL PARAMETERS FOR PATTERN\# 1

$=>$	Zero-point:	-0.0410	0.0000

$=>\operatorname{Cos}($ theta)-shift parameter : -0.1020 0.0000 0.0000
$\Rightarrow \operatorname{Sin}(2 t h e t a)-$ shift parameter $: 0.26300 .00000 .0000$
$==>$ RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1

$==>$ RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1

0.123082	21.291
0.123227	21.952
0.123352	22.515
0.123379	22.635
0.123482	23.087
0.123579	23.509
0.124006	25.314
0.124205	26.125
0.124243	26.278
0.124331	26.630
0.124341	26.672
0.124395	26.886
0.124408	26.939
0.124486	27.244
0.124659	27.916
0.124688	28.028
0.124991	29.175
0.125013	29.257
0.125015	29.265
0.125041	29.359
0.125229	30.050
0.125318	30.374
0.125415	30.724
0.125517	31.085
0.125629	31.483
0.125705	31.749
0.125725	31.818
0.125737	31.859
0.125838	32.208
0.125865	32.302
0.125948	32.587
0.125979	32.691
0.126102	33.107
0.126169	33.333
0.126262	33.643
0.126380	34.034
0.126582	34.692
0.126597	34.742
0.126653	34.922
0.126686	35.027
0.126698	35.064
0.126798	35.386
0.126884	35.655
0.126909	35.735
0.126919	35.767

35.767
68.1 775. 144.3 39.2 27.2 148.2 902.6 37.3
9.1
6.6
146.0
522.6
325.3
146.
3.2
0.1
586.2
889.3

451 ．
3.1

402 ． 2
184.3
253.8
61.1
134.1
431.3
465.1
48.8
36.1
290.6
6.
45.
66.2
306.6
0.
280.9
0.1

$$
\begin{array}{llll}
33.725 & 0.116603 & 0.012094 & 0.129725
\end{array}
$$

$$
\begin{array}{lllll}
843.0 & 85.375 & 0.116543 & 0.012476 & 0.133524
\end{array}
$$

55
43
43.5
$8.932 \quad 0.115843 \quad 0.018825 \quad 0.193840$
312

6.6	5.4	19.513	0.115808	0.019403	0.199051	\swarrow
45.1	56.9	27.961	0.115795	0.019641	0.201187	\checkmark
66.2	78.5	15.767	0.115775	0.020043	0.204774	\checkmark
306.6	360.7	66.180	0.115774	0.020074	0.205047	\checkmark
0.0	0.0	0.002	0.115769	0.020184	0.206025	\swarrow
280.9	388.9	149.247	0.115766	0.020248	0.206597	\swarrow
41.3	57.5	22.622	0.115765	0.020271	0.206800	\checkmark
0.0	0.0	0.038	0.115757	0.020468	0.208545	\checkmark
86.7	101.1	20.860	0.115750	0.020634	0.210009	\checkmark
20.1	23.9	5.495	0.115748	0.020683	0.210440	\checkmark
0.1	0.2	0.035	0.115748	0.020703	0.210613	\swarrow

$\begin{array}{lllllll}86.7 & 101.1 & 20.860 & 0.115750 & 0.020634 & 0.210009\end{array}$
$\begin{array}{llllll}20.1 & 23.9 & 5.495 & 0.115748 & 0.020683 & 0.210440\end{array}$

$$
86
$$135.

$23.581 \quad 0.116493 \quad 0.012802 \quad 0.136755$

34.2	6.470	0.116482	0.012872	0.137447

20.6	9.583	0.116443	0.013134	0.140032
155.7	46.760	0.116408	0.013379	0.142440

$1096.9241 .947 \quad 0.116265 \quad 0.014433 \quad 0.152701$

64.9	47.910	0.116206	0.014909	0.157288	
16.6	13.432	0.116195	0.014999	0.158154	々

	3.570	0.116170	0.015206	0.160138
189.7	56.634	0.116167	0.015231	0.160373

614.0	107.796	0.116153	0.015357	0.161577	
373.2	55.441	0.116149	0.015388	0.161874	々

| 784.3 | 264.693 | 0.116011 | 0.016713 | 0.174392 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$1121.2 \quad 292.295 \quad 0.116006 \quad 0.016762 \quad 0.174849$

| 568.8 | 147.410 | 0.116006 | 0.016767 | 0.174891 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 4.2 | 1.385 | 0.116000 | 0.016823 | 0.175419 |

0.2	4.321	0.115963	0.017235	0.179258	
432.9	37.902	0.115947	0.017429	0.181055	々

$205.123 .261 \quad 0.115929 \quad 0.017639 \quad 0.182997$ 々
$305.4 \quad 61.928 \quad 0.115912 \quad 0.017856 \quad 0.184993 \quad \downarrow$

| 1.4 | 1.141 | 0.115882 | 0.018255 | 0.188655 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 171.3 | 47.391 | 0.115877 | 0.018321 | 0.189260 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 549.7 | 150.424 | 0.115862 | 0.018532 | 0.191184 |
| :--- | :--- | :--- | :--- | :--- | :--- |

0.2
$0.035 \quad 0.115748$
0.02070
0.21061


```
BRAGG R-Factors and weight fractions for Pattern # 1
=> Phase: 1 rdx
> Bragg R-factor: 17.2 Vol: 1652.781( 0.000) Fract(%): 100.00( 1.20)
=> Rf-factor= 9.62 ATZ: 1776.939 Brindley: 1.0000
```

SYMBOLIC NAMES AND FINAL VALUES AND SIGMA OF REFINED PARAMETERS:

->	Parameter number	1		Scale_ph1_pat1	$0.45182102 \mathrm{E}-03($	+/-	0.38391618E-05)
->	Parameter number	2	:	U-Cagl_ph1_pat1	-0.48470786E-02	+/-	$0.13262363 \mathrm{E}-01$)
->	Parameter number	3	:	G-Size_ph1_pat1	0.10384443E-01 (+/ -	0.25276333E-03)
->	Parameter number	4	:	Asym1_ph1_pat1	0.32917723E-01 (+/-	$0.60544414 \mathrm{E}-02$)
->	Parameter number	5	:	Asym2_ph1_pat1	$0.42102702 \mathrm{E}-01$ (+/-	0.32015643E-02	

\Rightarrow Number of bytes for floating point variables: 4
\Rightarrow Dimensions of dynamic allocated arrays in this run of FullProf:
\Rightarrow Total approximate array memory (dynamic + static): 107719993 bytes
MaxPOINT= 60000 Max.num. of points (+int. Inten.)/diffraction pattern
MaxREFLT $=20000$ Max.num. of reflections/diffraction pattern
MaxPARAM= 300 Max.num. of refinable parameters
MaxOVERL $=2096$ Max.num. of overlapping reflections
=> Number of bytes for floating point arrays: 4
=> Dimensions of fixed arrays in this release of FullProf:

NPATT	=	80	Max.num. of	powder diffraction patterns
NATS	=	830	Max.num. of	atoms (all kind) in asymmetric unit
MPAR	=	1800	Max.num. of	non atomic parameters/phase
IEXCL	=	30	Max.num. of	excluded regions
IBACP	=	277	Max.num. of	background points for interpolation
NPHT	=	16	Max.num. of	phases
NMAGM	=	8	Max.num. of	rotation-matrices sets for magnetic structure
NBASIS	=	12	Max.num. of	basis functions associated to a single atom
NIREPS	=	9	Max.num. of	irreducible representations to be combined
N_EQ	=	384	Max.num. of	user-supplied symmetry operators/propagation vectors
NGL	=	300	Max.num. of	global parameters/diffraction pattern
N_LINC	=	30	Max.num. of	global linear restraints
NAT_P	=	64	Max.num. of	atomic parameters per atom
NCONST	=	500	Max.num. of	slack constraints per phase
N_SPE	=	16	Max.num. of	different chemical species
N_FORM	=	60	Max.num. of	scattering factor values in a table
NPR	=	150	Max.num. of	points defining a numerical profile
INPR	=	25	Max.num. of	different numerical peak shapes
NPRC	=	150	Max.num. of	terms in the table for correcting intensities
NSOL	=		Max.num. of	solutions to be stored in Montecarlo searchs
CPU Tim		6.645	seconds	

A. 4 Sample of n-RDX processed with $0.1 \mathrm{wt} \%$ of PEG.

```
** PROGRAM FullProf.2k (Version 5.60 - Jan2015-ILL JRC) **
*************************************************************
M U L T I -- P A T T E R N
Rietveld, Profile Matching & Integrated Intensity
Refinement of X-ray and/or Neutron Data
Date: 06/07/2015 Time: 15:52:37.093
=> PCR file code: rpg4std2e
=> DAT file code: rpg4std2e.dat -> Relative contribution: 1.0000
==> CONDITIONS OF THIS RUN FOR PATTERN No.: 1
=> Global Refinement of X-ray powder diffraction data
=> Global Refinement of X-ray powder diffraction data
Flat plate with PSD
=> Title:RDX
=> Number of phases: 1
=> Number of excluded regions: 1
=> Number of scattering factors supplied: 0
=> March-Dollase model for preferred orientation
=> Conventional weights: w=1.0/Variance(yobs)
=> Asymmetry correction as in J.Appl.Cryst. 26,128(1993)
=> Background refined by polynomial function
=> The 7th default profile function was selected
=> T-C-H Pseudo-Voigt function
This function is convoluted with asymmetry due to axial
divergence as formulated by:
van Laar and Yelon, J. Appl. Cryst. 17, 47(1984).
and using the method of:
Finger, Cox and Jephcoat, J. Appl. Cryst. 27, 892 (1994).
Fortran 90 module adapted from function PROFVAL (in F77) :
L.W. Finger, J. Appl. Cryst. 31, 111 (1998).
==> INPUT/OUTPUT OPTIONS:
=> Generate file *.PRF for plot
=> Output Integrated Intensities
=> Generate new input file *.PCR
=> Data supplied in free format for pattern: 1
=> Plot pattern at each cycle
=> Wavelengths: 1.54056 1.54439
=> Alpha2/Alpha1 ratio: 0.5000
=> Cos(Monochromator angle)= 1.0000
=> Asymmetry correction for angles lower than 90.000 degrees
=> Absorption correction (AC), muR-eff = 0.0000 0.0000
=> Base of peaks: 2.0*HW* 20.00
=> Number of cycles: 50
=> Relaxation factors ==> for coordinates: 1.00
=> for anisotropic temperature factors: 1.00
=> for halfwidth/strain/size parameters: 1.00
=> for lattice constants and propagation vectors: 1.00
=> EPS-value for convergence: 0.0
=> Excluded regions for Pattern# 1
From to
39.0000 50.0000
=> Instrumental Resolution read from file: xray-res.irf
=> Title of data: Approximate resolution function of a conventional X-ray diffractometer CuKalpha1,2
=> The resolution function is IRESOL: 1 for profile function # 7
Input resolution parameters:
\begin{tabular}{llllll} 
U-inst & V-inst & W-inst & X-inst & Y-inst & Z-inst \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000 \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000
\end{tabular}
\(\Rightarrow\) Number of Least-Squares parameters varied: 58
-
\(\Rightarrow\) P---> PATTERN number: 1
=> Global parameters and codes ==>
\(\Rightarrow\) Zero-point: \(\quad-0.3162 \quad 541.0000\)
```


Codes:	431.00000	441.00000451 .00000	0.000	$00 \quad 0.00$						
C (2)	C	0.384790	0.21557	0.14692	2.70030	1.00000	0	0	0	8
Codes:	461.00000	471.00000481 .00000	0.00	$00 \quad 0.00$						
C (3)	C	$0.23190 \quad 0$	0.33513	0.04874	2.55740	1.00000	0	0	0	8
Codes:	491.00000	501.00000511 .00000	0.00	00.0 .00						
H (1A)	H	0.402890	0.52403	0.20773	5.13220	1.00000	0	0	0	8
Codes:	0.00000	0.000000 .00000	0.00	00.000						
H (1B)	H	0.290710	0.42024	0.23991	4.84270	1.00000	0	0	0	8
Codes:	0.00000	0.000000 .00000	0.00	00.000						
H (2A)	H	0.443310	0.13918	0.14950	4.60580	1.00000	0	0	0	8
Codes:	0.00000	0.000000 .00000	0.00	$00 \quad 0.00$						
H (2B)	H	0.317420	0.19390	0.20730	4.97430	1.00000	0	0	0	8
Codes:	0.00000	0.000000 .00000	0.000	$00 \quad 0.00$						
H (3A)	H	0.209360	0.35364	-0.02527	4.50050	1.00000	0	0	0	8
Codes:	0.00000	0.000000 .00000	0.00	00.00	0					
H (3B)	H	0.172130	0.32091	0.10070	3.92150	1.00000	0	0	0	8
Codes:	0.00000	$0.00000 \quad 0.00000$	0.00	$00 \quad 0.00$						

\Rightarrow IT IS ASSUMED THAT THE FIRST GIVEN SITE IS FULLY OCCUPIED
or the first and second atoms are in the same site with total full occupation
(If this is not the case, change the order of atoms to obtain correct values for the content of the unit cell) The given occupation factors have been obtained mutiplying m/M by 1.0000

\Rightarrow The given value of ATZ is $\quad 1776.94$ the program has calculated: 1776.94

The value of ATZ given in the input PCR file will be used for quantitative analysis
\Rightarrow The chemical content of the unit cell is:

8.00000	+	8.00000	+	8.00000	+	8.0000	0	+	8.0000	0		8.0000	0	+	8.0000	N	+	\checkmark
8.0000	N	$+8.0000$	N	$+8.0000$	N	+												
8.0000 N	+	8.0000 N	+	8.0000 C	+	8.0000	C	+	8.0000	C	+	8.0000	H	+	8.0000	H	+	\swarrow
8.0000	H	$+8.0000$	H	+ 8.0000	H	+												

8.0000 H
\Rightarrow The normalized site occupation numbers in $\%$ are:

100.0000 0(1)		100.0000 0(2)		100.0000 0(3)	:		100.0000 0(4)	:		100.0000 0(5)	:	
100.0000 0(6)	:	$100.0000 \mathrm{~N}(1)$:	100.0000	$\mathrm{N}(2)$:	100.0000	N(3)	:	100.0000	N(4)	:
$100.0000 \mathrm{~N}(5)$		$100.0000 \mathrm{~N}(6)$		100.0000 C(1)	:		100.0000 C(2)	:		100.0000 C (3)	:	
$100.0000 \mathrm{H}(1 \mathrm{~A})$:	$100.0000 \mathrm{H}(1 \mathrm{~B})$:	100.0000	H (2A)	:	100.0000	H (2B)	:	100.0000	H (3A)	:

$100.0000 \mathrm{H}(3 \mathrm{~B})$
\Rightarrow The density (volumic mass) of the compound is: $1.826 \mathrm{~g} / \mathrm{cm} 3$
=>-------> PROFILE PARAMETERS FOR PATTERN: 1

S_L is source width/detector distance
D_L is detector width/detector distance
$==>$ CODEWORDS FOR PROFILE PARAMETERS of PATTERN\# 1
=> Overall scale factor: 521.000
\Rightarrow ETA (p-Voigt) OR M (Pearson VII): 0.000
\Rightarrow Overall temperature factor: 0.000
\Rightarrow Halfwidth U,V,W: 551.000 $0.000 \quad 0.000$
$\Rightarrow X$ and Y parameters: 0.0000 .000
$\begin{array}{lllllllllllll}\Rightarrow & \text { Direct cell parameters: } 531.000 & 561.000 & 571.000 & 0.000 & 0.000 & 0.000\end{array}$
$\begin{array}{ll}\Rightarrow \text { Preferred orientation parameters: } 0.000 & 0.000\end{array}$
$\begin{array}{lllllll}\Rightarrow \text { Asymmetry parameters } & : & 0.000 & 0.000 & 0.000 & 0.000\end{array}$
$\begin{array}{llrrr}\Rightarrow \text { Strain parameters } & : & 0.000 & 0.000 & 0.000\end{array}$
\Rightarrow Size parameters : 581.00011 .000
\Rightarrow The 18 th model for size is used
\Rightarrow Orthorhombic Anisotropic Broadening using Spherical Harmonics up

SYMBOLIC NAMES AND INITIAL VALUES OF PARAMETERS TO BE VARIED:

-> Parameter number | Parameter number |
| :--- |
| $->$ Parameter number |
| $->$ Pararamer number |
| $->$ Parameter |
| -> |

21	-> Symbolic Name:
22	-> Symbolic Name:
23	-> Symbolic Name:
24	-> Symbolic Name:
25	-> Symbolic Name:
26	-> Symbolic Name
27	-> Symbolic Name
28	-> Symbolic Name
29	-> Symbolic Name
30	-> Symbolic Name
31	-> Symbolic Name
32	-> Symbolic Name
33	-> Symbolic Name
34	-> Symbolic Name
35	-> Symbolic Name
36	-> Symbolic Name
37	-> Symbolic Name
38	Symbolic Name
39	Symbolic Name
40	Symbolic Name
41	-> Symbolic Name
42	-> Symbolic Name
43	-> Symbolic Name
44	-> Symbolic Name
45	-> Symbolic Name
46	-> Symbolic Name
47	-> Symbolic Name
48	-> Symbolic Name
49	-> Symbolic Name
50	-> Symbolic Name
51	-> Symbolic Name
52	-> Symbolic Name
53	-> Symbolic Name
54	-> Symbolic Name
55	-> Symbolic Name
56	-> Symbolic Name
57	-> Symbolic Name
58	-> Symbolic Name

Z_0 (5) _ph1	-0.79350002E-01
X_0 (6) _ph1	0.42897001
Y_0 (6) _ph1	0.59175998
Z_0 (6) _ph1	$0.52010000 \mathrm{E}-01$
X_N (1) _ph1	0.44549999
Y_N (1) _ph1	0.33186999
Z_N (1) _ph1	0.17883000
X_N (2) _ph1	0.33004999
Y_N (2) _ph1	0.24334000
Z_N (2) _ph1	$0.51729999 \mathrm{E}-01$
X_N (3) _ph1	0.30372000
Y_N (3) _ph1	0.45297000
Z_N (3) _ph1	$0.79810001 \mathrm{E}-01$
X_N (4) _ph1	0.53996998
Y_N (4) _ph1	0.33763999
Z_N (4) _ph1	0.23203000
X_N (5) _ph1	0.38995001
Y_N (5) _ph1	0.20392001
Z_N (5) _ph1	-0.40810000E-01
$\mathrm{X}_{-} \mathrm{N}$ (6) _ ph 1	0.35080001
Y_N (6) _ph1	0.55348003
Z_N (6) _ph1	$0.11820000 \mathrm{E}-01$
X_C (1) _ph1	0.34908000
Y_C (1) _ph1	0.43663001
Z_C (1) _ph1	0.19413000
$\mathrm{X}_{\text {_ }} \mathrm{C}$ (2) _ ph 1	0.38479000
Y_C (2) _ph1	0.21557000
Z_C (2) _ph1	0.14692000
$\mathrm{X}_{-} \mathrm{C}$ (3) _ ph 1	0.23190001
Y_C (3) _ph1	0.33513001
Z_C (3) _ph1	$0.48740000 \mathrm{E}-01$
Scale_ph1_pat1	$0.76621003 \mathrm{E}-03$
Cell_A_ph1_pat1	11.543573
Zero_pat1	-0.31615999
U-Cagl_ph1_pat 1	-0.25444999E-01
Cell_B_ph1_pat 1	10.663886
Cell_C_ph1_pat1	13.126143
G-Size_ph1_pat1	$0.10217000 \mathrm{E}-01$

1 at 2theta/TOF/E(KeV): 3 at 2theta/TOF/E(KeV):
4 at 2theta/TOF/E(KeV):
9 at 2theta/TOF/E(KeV)
10 at 2 theta/TOF/E(KeV)
15 at 2theta/TOF/E(KeV):
20 at 2theta/TOF/E(KeV): 25 at 2 theta/TOF/E(KeV): 29 at 2 theta/TOF/E(KeV)
32 at 2 theta/TOF/E(KeV):
36 at 2theta/TOF/E(KeV):
39 at 2theta/TOF/E(KeV):
41 at 2 theta/TOF/E(KeV):
48 at 2 theta/TOF/E(KeV) :
49 at 2theta/TOF/E(KeV):
52 at 2theta/TOF/E(KeV):
53 at 2theta/TOF/E(KeV):
54 at 2 theta/TOF/E(KeV):
60 at 2 theta/TOF/E(KeV)
67 at 2theta/TOF/E(KeV):
79 at 2theta/TOF/E(KeV):
81 at 2theta/TOF/E(KeV):
182 at 2 theta/TOF/E(KeV): 192 at 2theta/TOF/E(KeV): 193 at 2theta/TOF/E(KeV): 194 at 2theta/TOF/E(KeV): 199 at 2theta/TOF/E(KeV): 203 at 2theta/TOF/E(KeV): 205 at 2 theta/TOF/E(KeV): 208 at 2theta/TOF/E(KeV): 210 at 2theta/TOF/E(KeV): 211 at 2 theta/TOF/E(KeV): 214 at 2theta/TOF/E(KeV): 215 at 2 theta/TOF/E(KeV): 217 at 2 theta/TOF/E(KeV): 219 at 2 theta/TOF/E(KeV): 221 at 2 theta/TOF/E(KeV): 224 at 2 theta/TOF/E(KeV): 226 at 2 theta/TOF/E(KeV): 230 at 2 theta/TOF/E(KeV): 233 at 2theta/TOF/E(KeV): 235 at 2 theta/TOF/E(KeV) : 237 at 2 theta/TOF/E(KeV): 239 at 2theta/TOF/E(KeV): 241 at 2 theta/TOF/E(KeV): 246 at 2 theta/TOF/E(KeV): 247 at 2 theta/TOF/E(KeV): 248 at 2theta/TOF/E(KeV) 250 at 2 theta/TOF/E(KeV): 254 at 2 theta/TOF/E(KeV): 263 at 2theta/TOF/E(KeV):

12.0000	ty	fixed	1.0		to 1E6
12.0148	Intensity	fixed to	1.0 and	iance	to 1E6
12.0222	Intensity	fixed	1.0 and		- 1E6
12.0592	Intensity	fixed	1.0 and		1E6
12.0666	Intensity	fixed	1.0		1 E 6
12.1036	Intensity	fixed	1.0 and	variance	1E6
12.1406	Intensity	fixed	1.0 and	variance	to 1E6
12.1776	Intensity	fixed	1.0 and	ce	to 1E6
12.2072	Intensity	fixed	1.0 and	ce	1E6
12.2294	Intensity	fixed	1.0 and	variance	to 1E6
12.2590	Intensity	fixed	1.0 and	variance	1E6
12.2812	Intensity	fix	0 and	variance	to 1E6
12.2960	Intensity	fixed	0 and		to 1E6
12.3478	Intensity	fixed	0 and		to 1E6
12.3552	Intensity	fixed	1.0 and	variance	to 1E6
12.3774	Intensity	fixed	1.0 and	variance	to 1E6
12.3848	Intensity	fixed	1.0 and	ce	to 1E6
12.3922	Intensity	fixed	1.0 and	c	to 1E6
12.4366	Intensity	fixed	1.0 and	variance	to 1E6
12.4884	Intensity	fix	0	variance	to 1E6
12.5772	Intensity	fixed	0 and	variance	to 1E6
12.5920	Intensity	fixed	1.0 and	variance	to 1E6
13.3394	Intensity	fixed	1.0 and	e	to 1E6
13.4134	Intensity	fixed	1.0 and	variance	to 1E6
13.4208	Intensity	fixed	1.0 and	ance	to 1E6
13.4282	Intensity	fixed	1.0 and	ce	to 1E6
13.4652	Intensity	fixed	1.0	variance	to 1E6
13.4948	Intensity	fixed	1.0	variance	to 1E6
13.5096	Intensity	fixed	0	variance	to 1E6
13.5318	Intensity	fixed	1.0 and	variance	1E6
13.5466	Intensity	fixed	1.0 and	variance	to 1E6
13.5540	Intensity	fixed	1.0 and	ce	to 1E6
13.5762	Intensity	fixed	1.0 and	ce	to 1E6
13.5836	Intensity	fixed	1.0 and	c	to 1E6
13.5984	Intensity	fixed	1.0 and	variance	to 1E6
13.6132	Intensity	fixed	1.0	variance	to 1E6
13.6280	Intensity	fixed	1.0 and	variance	to 1E6
13.6502	Intensity	fixed	1.0 and	variance	to 1E6
13.6650	Intensity	fixed	1.0 and	variance	to 1E6
13.6946	Intensity	fixed to	1.0 and	variance	to 1E6
13.7168	Intensity	fixed	1.0 and	variance	to 1E6
13.7316	Intensity	fixed	1.0 and	ce	to 1E6
13.7464	Intensity	fixed to	1.0 and	ariance	to 1E6
13.7612	Intensity	fixed to	1.0 and	variance	to 1E6
13.7760	Intensity	fixed to	1.0 and	varianc	to 1E6
13.8130	Intensity	fixed to	1.0 and	variance	to 1E6
13.8204	Intensity	fixed to	1.0 and	variance	to 1E6
13.8278	Intensity	fixed to	1.0 and	variance	to 1E6
13.8426	Intensity	fixed to	1.0 and	variance	to 1E6
13.8722	Intensity	fixed to	1.0 and	variance	to 1E6
13.9388	Intensity	fixed	1.0 and	variance	to 1E6

\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

265 at 2theta/TOF/E(KeV) 272 at 2 theta/TOF/E(KeV) 276 at 2 theta/TOF/E(KeV): 280 at 2 theta/TOF/E(KeV): 282 at 2 theta/TOF/E(KeV): 285 at 2 theta/TOF/E(KeV): 287 at 2 theta/TOF/E(KeV): 295 at 2theta/TOF/E(KeV): 301 at 2 theta/TOF/E(KeV): 303 at 2 theta/TOF/E(KeV): 304 at 2 theta/TOF/E(KeV): 311 at 2theta/TOF/E(KeV): 315 at 2theta/TOF/E(KeV): 316 at 2 theta/TOF/E(KeV): 317 at 2 theta/TOF/E(KeV) 320 at 2 theta/TOF/E(KeV): 321 at 2theta/TOF/E(KeV): 322 at 2 theta/TOF/E(KeV): 324 at 2theta/TOF/E(KeV): 339 at 2 theta/TOF/E(KeV) : 342 at 2theta/TOF/E(KeV): 348 at 2theta/TOF/E(KeV) 353 at 2 theta/TOF/E(KeV): 354 at 2 theta/TOF/E(KeV) 355 at 2theta/TOF/E(KeV): 357 at 2theta/TOF/E(KeV): 361 at 2theta/TOF/E(KeV): 362 at 2theta/TOF/E(KeV): 363 at 2 theta/TOF/E (KeV) : 366 at 2 theta/TOF/E(KeV): 369 at 2theta/TOF/E(KeV): 372 at 2theta/TOF/E(KeV): 373 at 2 theta/TOF/E (KeV): 375 at 2 theta/TOF/E(KeV) 376 at 2 theta/TOF/E(KeV): 378 at 2theta/TOF/E(KeV): 381 at 2theta/TOF/E(KeV): 383 at 2theta/TOF/E(KeV): 384 at 2theta/TOF/E(KeV): 386 at 2theta/TOF/E(KeV): 387 at 2theta/TOF/E(KeV) : 388 at 2 theta/TOF/E(KeV): 390 at 2 theta/TOF/E(KeV) 391 at 2theta/TOF/E(KeV): 395 at 2theta/TOF/E(KeV): 396 at 2theta/TOF/E(KeV): 397 at 2 theta/TOF/E(KeV): 460 at 2 theta/TOF/E(KeV) 461 at 2 theta/TOF/E(KeV): 462 at 2theta/TOF/E(KeV): 463 at 2theta/TOF/E(KeV): 465 at 2 theta/TOF/E(KeV): 466 at 2 theta/TOF/E(KeV): 467 at 2 theta/TOF/E(KeV): 468 at 2theta/TOF/E(KeV): 469 at 2 theta/TOF/E(KeV): 470 at 2 theta/TOF/E (KeV) : 471 at 2 theta/TOF/E(KeV) 472 at 2 theta/TOF/E(KeV): 475 at 2theta/TOF/E(KeV): 477 at 2 theta/TOF/E(KeV): 478 at 2 theta/TOF/E(KeV) 480 at 2theta/TOF/E(KeV): 481 at 2theta/TOF/E(KeV): 483 at 2theta/TOF/E(KeV): 484 at 2 theta/TOF/E(KeV) 487 at 2 theta/TOF/E(KeV) 489 at 2 theta/TOF/E(KeV): 490 at 2theta/TOF/E(KeV): 491 at 2theta/TOF/E(KeV): 493 at 2 theta/TOF/E(KeV): 495 at 2theta/TOF/E(KeV) 496 at 2 theta/TOF/E(KeV): 497 at 2theta/TOF/E(KeV): 498 at 2 theta/TOF/E(KeV): 499 at 2theta/TOF/E(KeV): 500 at 2 theta/TOF/E(KeV): 502 at 2 theta/TOF/E(KeV) 511 at 2theta/TOF/E(KeV): 512 at 2theta/TOF/E(KeV): 514 at 2 theta/TOF/E(KeV) 516 at 2theta/TOF/E(KeV): 520 at 2theta/TOF/E(KeV): 523 at 2theta/TOF/E(KeV): 532 at 2 theta/TOF/E(KeV): 535 at 2 theta/TOF/E(KeV): 538 at 2theta/TOF/E(KeV) 547 at 2theta/TOF/E(KeV): 605 at 2theta/TOF/E(KeV): 614 at 2 theta/TOF/E(KeV):
13.9536 4.0054 14.0350 14.0646 14.0794 14.1016 14.1164 14.1756 14.2200 14.2348
14.2422 14.2940 14.3236 14.3310 14.3384
14.3606
14.3680
14.3754
14.3902
14.5012
14.5234
14.5678 14.6048
14.6122
14.6196
14.6344
14.6640 14.6714 14.6788
14.7010
14.7232
14.7454 14.7528 14.7676 14.7750 14.7898 14.8120 14.8268
14.8342
14.8490
14.8564 14.8638
14.8786
14.8860
14.9156
14.9230
14.9304
5. 3966
15.4040
15.4114
15.4188
15.4336
5.4410
15.4484
15.4558
15.4632
15.4706
15.4780
15.4854
15.5076
15.5224
15.5298
15.5446
15.5520
15.5668
15.5742
15.5964
5. 6112
15.6186
15.6260
15.6408
5.6556
15.6630
15.6704
15.6778
15.6852
15.6926
15.7074
15.7740
15.7814
15.7962
15.8110
15.8406
15.8628
15.9294
15.9516
15.9738
16.0404
16.4696
16.5362

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

626 at 2 theta/TOF/E(KeV) 644 at 2 theta/TOF/E(KeV): 646 at 2theta/TOF/E(KeV): 648 at 2 theta/TOF/E(KeV): 657 at 2 theta/TOF/E(KeV) 658 at 2 theta/TOF/E(KeV) : 659 at 2theta/TOF/E(KeV): 660 at 2 theta/TOF/E(KeV): 664 at 2 theta/TOF/E(KeV): 791 at 2 theta/TOF/E(KeV): 792 at 2 theta/TOF/E(KeV): 793 at 2theta/TOF/E(KeV): 796 at 2 theta/TOF/E(KeV): 797 at 2 theta/TOF/E(KeV): 798 at 2 theta/TOF/E(KeV): 799 at 2 theta/TOF/E(KeV): 801 at 2theta/TOF/E(KeV): 802 at 2 theta/TOF/E(KeV): 805 at 2theta/TOF/E(KeV): 806 at 2 theta/TOF/E(KeV) 807 at 2theta/TOF/E(KeV): 810 at 2theta/TOF/E(KeV): 811 at 2 theta/TOF/E(KeV): 812 at 2 theta/TOF/E(KeV) 813 at 2theta/TOF/E(KeV): 814 at 2theta/TOF/E(KeV): 815 at 2theta/TOF/E(KeV): 816 at 2 theta/TOF/E(KeV): 817 at 2 theta/TOF/E(KeV) 818 at 2 theta/TOF/E(KeV): 819 at 2theta/TOF/E(KeV): 820 at 2 theta/TOF/E(KeV): 822 at 2 theta/TOF/E(KeV): 824 at 2 theta/TOF/E(KeV): 826 at 2 theta/TOF/E(KeV): 827 at 2 theta/TOF/E(KeV): 828 at 2 theta/TOF/E(KeV): 829 at 2theta/TOF/E(KeV): 830 at 2 theta/TOF/E(KeV): 831 at 2theta/TOF/E(KeV): 832 at 2theta/TOF/E(KeV): 838 at 2 theta/TOF/E(KeV): 839 at 2 theta/TOF/E(KeV) 841 at 2 theta/TOF/E(KeV): 842 at 2theta/TOF/E(KeV) 843 at 2 theta/TOF/E(KeV): 844 at 2 theta/TOF/E(KeV): 845 at 2 theta/TOF/E(KeV) 848 at 2 theta/TOF/E(KeV): 849 at 2theta/TOF/E(KeV): 851 at 2theta/TOF/E(KeV): 853 at 2 theta/TOF/E(KeV): 854 at 2 theta/TOF/E(KeV) 855 at 2 theta/TOF/E(KeV): 856 at 2theta/TOF/E(KeV): 857 at 2 theta/TOF/E(KeV): 859 at 2theta/TOF/E(KeV): 861 at 2 theta/TOF/E(KeV) 880 at 2 theta/TOF/E(KeV): 884 at 2theta/TOF/E(KeV): 888 at 2 theta/TOF/E(KeV): 889 at 2 theta/TOF/E(KeV) 890 at 2theta/TOF/E(KeV): 891 at 2theta/TOF/E(KeV): 892 at 2theta/TOF/E(KeV): 894 at 2theta/TOF/E(KeV): 895 at 2 theta/TOF/E(KeV) : 896 at 2 theta/TOF/E(KeV): 897 at 2theta/TOF/E(KeV): 898 at 2theta/TOF/E(KeV): 899 at 2 theta/TOF/E(KeV): 900 at 2 theta/TOF/E(KeV): 902 at 2theta/TOF/E(KeV): 903 at 2theta/TOF/E(KeV): 904 at 2 theta/TOF/E(KeV): 907 at 2theta/TOF/E(KeV): 910 at 2 theta/TOF/E(KeV) 911 at 2theta/TOF/E(KeV): 912 at 2theta/TOF/E(KeV): 917 at 2theta/TOF/E(KeV): 918 at 2 theta/TOF/E(KeV) 921 at 2theta/TOF/E(KeV): 922 at 2theta/TOF/E(KeV) 923 at 2theta/TOF/E(KeV): 926 at 2 theta/TOF/E(KeV): 928 at 2 theta/TOF/E(KeV) 929 at 2theta/TOF/E(KeV): 930 at 2theta/TOF/E(KeV): 934 at 2 theta/TOF/E(KeV) 935 at 2theta/TOF/E(KeV):
16.6250 16.7582 16.7730 16.7878 16.8544
16.8618
16.8692
16.8766
16.9062
17.8460
17.8534
17.8608
17.8830
17.8904
17.8978
17.9052
17.9200
17.9274
17.9496
17.9570
17.9644
17.9866
17.9940
18.0014
18.0088
18.0162
18.0236
18.0310
18.0384
18.0458
18.0532
18.0606
18.0754
18.0902
18.1050
18.1124
18.1198
18.1272
18.1346
18.1420
18.1494
18.1938
18.2012
18.2160
18.2234
18.2308
18.2382
18.2456
18.2678
18.2752
18.2900
18.3048
18.3122
18.3196
18.3270
18.3344
18.3492
18.3640
18.5046
18.5342
18.5638
18.5712
18.5786
18.5860
18.5934
18.6082
18.6156
18.6230
18.6304
18.6378
18.6452
18.6526
18.6674
18.6748
18.6822
18.7044
18.7266
18.7340
18.7414
18.7784
18.7858
18.8080
18.8154
18.8228
18.8450
18.8598
18.8672
18.8746
18.9042
18.9116

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.

936 at 2theta/TOF/E(KeV): 941 at 2 theta/TOF/E(KeV) 945 at 2theta/TOF/E(KeV): 946 at 2 theta/TOF/E(KeV): 947 at 2 theta/TOF/E(KeV) 948 at 2 theta/TOF/E(KeV): 950 at 2theta/TOF/E(KeV): 952 at 2theta/TOF/E(KeV) 953 at 2 theta/TOF/E(KeV): 954 at 2 theta/TOF/E(KeV) 956 at 2 theta/TOF/E(KeV): 957 at 2theta/TOF/E(KeV): 959 at 2 theta/TOF/E(KeV): 960 at 2 theta/TOF/E(KeV): 963 at 2theta/TOF/E(KeV) 964 at 2 theta/TOF/E(KeV): 965 at 2theta/TOF/E(KeV): 966 at 2 theta/TOF/E(KeV): 968 at 2theta/TOF/E(KeV): 969 at 2 theta/TOF/E(KeV) 971 at 2theta/TOF/E(KeV): 977 at 2theta/TOF/E(KeV): 986 at 2 theta/TOF/E(KeV): 994 at 2 theta/TOF/E(KeV) 996 at 2 theta/TOF/E(KeV): 997 at 2theta/TOF/E(KeV) 998 at 2theta/TOF/E(KeV): 000 at 2theta/TOF/E(KeV): 1001 at 2 theta/TOF/E (KeV) 1002 at 2 theta/TOF/E(KeV): 1003 at 2theta/TOF/E(KeV): 1004 at 2 theta/TOF/E(KeV): 1006 at 2 theta/TOF/E(KeV): 1008 at 2 theta/TOF/E(KeV): 1009 at 2theta/TOF/E(KeV): 1011 at 2 theta/TOF/E(KeV): 1013 at 2theta/TOF/E(KeV): 1017 at 2theta/TOF/E(KeV): 1018 at 2theta/TOF/E(KeV): 1024 at 2 theta/TOF/E(KeV): 1027 at 2 theta/TOF/E(KeV): 1028 at 2 theta/TOF/E(KeV): 1029 at 2 theta/TOF/E(KeV) 1030 at 2 theta/TOF/E (KeV): 1031 at 2theta/TOF/E(KeV): 1032 at 2 theta/TOF/E(KeV): 1034 at 2theta/TOF/E(KeV): 1035 at 2 theta/TOF/E(KeV): 1036 at 2 theta/TOF/E(KeV): 1038 at 2theta/TOF/E(KeV): 1039 at 2 theta/TOF/E(KeV): 1040 at 2 theta/TOF/E(KeV): 1042 at 2 theta/TOF/E(KeV): 1043 at 2theta/TOF/E(KeV): 1045 at 2theta/TOF/E(KeV): 1046 at 2 theta/TOF/E(KeV): 1048 at 2theta/TOF/E(KeV): 1050 at 2 theta/TOF/E(KeV): 1052 at 2 theta/TOF/E(KeV) 1053 at 2theta/TOF/E(KeV): 1054 at 2 theta/TOF/E(KeV): 1055 at 2 theta/TOF/E (KeV) : 1056 at 2 theta/TOF/E(KeV): 1058 at 2 theta/TOF/E(KeV) : 1062 at 2 theta/TOF/E(KeV): 1063 at 2theta/TOF/E(KeV): 1068 at 2theta/TOF/E(KeV): 1071 at 2 theta/TOF/E(KeV): 1072 at 2theta/TOF/E(KeV): 1076 at 2 theta/TOF/E(KeV): 1134 at 2 theta/TOF/E(KeV): 1135 at 2 theta/TOF/E(KeV): 1142 at 2 theta/TOF/E(KeV): 1143 at 2theta/TOF/E(KeV): 1144 at 2 theta/TOF/E(KeV): 1146 at 2 theta/TOF/E(KeV): 1147 at 2 theta/TOF/E(KeV): 1149 at 2theta/TOF/E(KeV): 1150 at 2 theta/TOF/E(KeV): 1152 at 2 theta/TOF/E(KeV): 1153 at 2 theta/TOF/E(KeV): 1157 at 2 theta/TOF/E(KeV): 1158 at 2 theta/TOF/E(KeV): 1159 at 2theta/TOF/E(KeV): 1161 at 2 theta/TOF/E(KeV): 1164 at 2 theta/TOF/E(KeV) 1171 at 2 theta/TOF/E(KeV): 1172 at 2 theta/TOF/E(KeV): 1174 at 2 theta/TOF/E(KeV): 1175 at 2theta/TOF/E(KeV):
18.9190 18.9560 18.9856 18.9930 19.0004 19.0078 19.0226 19.0374 19.0448 19.0522 19.0670 19.0744 19.0892 19.0966 19.1188 19.1262 19.1336 19.1410 19.1558 19.1632 19.1780 19.2224 19.2890 19.3482 19.3630 19.3704 19.3778 19.3926 19.4000 19.4074 19.4148 19.4222 19.4370 19.4518 19.4592 19.4740 19.4888 19.5184 19.5258 19.5702 19.5924 19.5998 19.6072
19.6146
19.6220
19.6294
19.6442
19.6516
19.6590
19.6738
19.6812
19.6886
19.7034
19.7108
19.7256 19.7330 19.7478 19.7626 19.7774 19.7848 19.7922 19.7996 19.8070 19.8218 19.8514 19.8588 19.8958 19.9180 19.9254 19.9550 20.3842 20.3916 20.4434 20.4508 20.4582 20.4730 20.4804 20.4952 20.5026 20.5174 20.5248 20.5544 20.5618 20.5692 20.5840 20.6062 20.6580 20.6654 20.6802
20.6876

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

176 at 2 theta/TOF/E(KeV) 178 at 2 theta/TOF/E(KeV): 1179 at 2 theta/TOF/E(KeV): 1181 at 2theta/TOF/E(KeV): 1182 at 2theta/TOF/E(KeV): 1185 at 2theta/TOF/E(KeV): 187 at 2 theta/TOF/E(KeV): 1189 at 2theta/TOF/E(KeV): 1190 at 2theta/TOF/E(KeV): 1193 at 2theta/TOF/E(KeV): 1195 at 2 theta/TOF/E(KeV): 1197 at 2theta/TOF/E(KeV): 1202 at 2 theta/TOF/E(KeV): 1203 at 2 theta/TOF/E(KeV): 1206 at 2 theta/TOF/E(KeV): 1208 at 2theta/TOF/E(KeV): 1211 at 2 theta/TOF/E(KeV): 1213 at 2 theta/TOF/E(KeV): 1215 at 2 theta/TOF/E(KeV): 1221 at 2 theta/TOF/E(KeV): 1224 at 2theta/TOF/E(KeV): 1255 at 2 theta/TOF/E(KeV): 1256 at 2 theta/TOF/E(KeV): 1257 at 2 theta/TOF/E(KeV): 1258 at 2theta/TOF/E(KeV): 1259 at 2theta/TOF/E(KeV): 1262 at 2 theta/TOF/E(KeV): 1264 at 2 theta/TOF/E(KeV): 1267 at 2 theta/TOF/E(KeV): 1269 at 2 theta/TOF/E(KeV): 1271 at 2theta/TOF/E(KeV): 1272 at 2 theta/TOF/E(KeV): 1274 at 2 theta/TOF/E(KeV): 1278 at 2 theta/TOF/E(KeV) 1282 at 2 theta/TOF/E(KeV): 1283 at 2theta/TOF/E(KeV): 1284 at 2theta/TOF/E(KeV): 1286 at 2theta/TOF/E(KeV): 1287 at 2 theta/TOF/E(KeV): 1288 at 2 theta/TOF/E(KeV): 1289 at 2theta/TOF/E(KeV): 1294 at 2 theta/TOF/E(KeV): 1297 at 2theta/TOF/E(KeV): 1298 at 2theta/TOF/E(KeV): 1363 at 2theta/TOF/E(KeV): 1364 at 2theta/TOF/E(KeV): 1365 at 2 theta/TOF/E(KeV): 1366 at 2theta/TOF/E(KeV): 1368 at 2 theta/TOF/E(KeV): 1369 at 2 theta/TOF/E(KeV): 1377 at 2 theta/TOF/E(KeV): 1378 at 2 theta/TOF/E(KeV): 1383 at 2 theta/TOF/E(KeV): 1435 at 2theta/TOF/E(KeV): 1437 at 2theta/TOF/E(KeV): 1439 at 2theta/TOF/E(KeV): 1441 at 2 theta/TOF/E(KeV): 1444 at 2theta/TOF/E(KeV): 1447 at 2 theta/TOF/E(KeV): 1449 at 2 theta/TOF/E(KeV): 1451 at 2 theta/TOF/E(KeV): 1452 at 2 theta/TOF/E(KeV): 1454 at 2 theta/TOF/E(KeV): 1456 at 2 theta/TOF/E(KeV): 1457 at 2 theta/TOF/E(KeV): 1463 at 2theta/TOF/E(KeV): 1465 at 2 theta/TOF/E(KeV): 1467 at 2 theta/TOF/E(KeV) : 1498 at 2theta/TOF/E(KeV): 1499 at 2theta/TOF/E(KeV): 1500 at 2 theta/TOF/E(KeV): 1502 at 2 theta/TOF/E(KeV): 1503 at 2 theta/TOF/E(KeV) 1504 at 2theta/TOF/E(KeV): 1505 at 2 theta/TOF/E(KeV): 1507 at 2 theta/TOF/E(KeV): 1510 at 2 theta/TOF/E(KeV): 1511 at 2theta/TOF/E(KeV): 1518 at 2 theta/TOF/E(KeV): 1519 at 2 theta/TOF/E(KeV): 1522 at 2 theta/TOF/E(KeV): 1564 at 2 theta/TOF/E(KeV): 1565 at 2theta/TOF/E(KeV): 1567 at 2theta/TOF/E(KeV): 1569 at 2 theta/TOF/E(KeV): 1571 at 2 theta/TOF/E(KeV) 1572 at 2 theta/TOF/E(KeV): 1577 at 2 theta/TOF/E(KeV): 1579 at 2 theta/TOF/E(KeV) 1581 at 2theta/TOF/E(KeV):
20.6950 20.7098 20.7172 20.7320 20.7394 20.7616 20.7764 20.7912 20.7986 20.8208 20.8356 20.8504 20.8874 20.8948 20.9170 20.9318 20.9540 20.9688 20.9836 21.0280
21.0502
21.2796 21.2870 21.2944 21.3018 21.3092 21.3314 21.3462 21.3684 21.3832 21.3980 21.4054 21.4202 21.4498 21.4794 21.4868 21.4942 21.5090 21.5164 21.5238 21.5312 21.5682 21.5904 21.5978 22.0788 22.0862 22.0936 22.1010 22.1158 22.1232 22.1824 22.1898 22.2268 22.6116 22.6264 22.6412 22.6560 22.6782 22.7004 22.7152 22.7300 22.7374 22.7522 22.7670 22.7744 22.8188 22.8336
22.8484 23.0778 23.0852 23.0926 23.1074 23.1148 23 . 1222 23.1296 23.1444 23.1666 23.1740 23.2258 23.2332 23.2554 23.5662 23.5736 23.5884 23.6032 23.6180 23.6254 23.6624 23.6772
23.6920

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

1583 at 2 theta/TOF/E(KeV): 1584 at 2theta/TOF/E(KeV): 1590 at 2theta/TOF/E(KeV): 1593 at 2theta/TOF/E(KeV): 1599 at 2theta/TOF/E(KeV): 1602 at 2 theta/TOF/E(KeV): 1604 at 2 theta/TOF/E(KeV): 1606 at 2 theta/TOF/E(KeV) : 1609 at 2 theta/TOF/E(KeV): 1610 at 2 theta/TOF/E(KeV): 1613 at 2 theta/TOF/E(KeV): 1620 at 2 theta/TOF/E(KeV): 1624 at 2theta/TOF/E(KeV): 1626 at 2 theta/TOF/E(KeV): 1632 at 2 theta/TOF/E(KeV): 1633 at 2theta/TOF/E(KeV): 1634 at 2 theta/TOF/E(KeV): 1650 at 2 theta/TOF/E(KeV): 1660 at 2theta/TOF/E(KeV): 1664 at 2 theta/TOF/E(KeV): 1665 at 2 theta/TOF/E(KeV): 1684 at 2 theta/TOF/E(KeV): 1691 at 2 theta/TOF/E(KeV): 1708 at 2 theta/TOF/E(KeV): 2098 at 2theta/TOF/E(KeV): 2104 at 2theta/TOF/E(KeV): 2112 at 2theta/TOF/E(KeV): 2115 at 2theta/TOF/E(KeV): 2118 at 2theta/TOF/E(KeV): 2145 at 2 theta/TOF/E(KeV) : 2147 at 2theta/TOF/E(KeV): 2149 at 2theta/TOF/E(KeV): 2153 at 2 theta/TOF/E(KeV): 2155 at 2 theta/TOF/E(KeV): 2157 at 2theta/TOF/E(KeV): 2161 at 2theta/TOF/E(KeV): 2177 at 2 theta/TOF/E(KeV): 2182 at 2theta/TOF/E(KeV): 2184 at 2theta/TOF/E(KeV): 2205 at 2theta/TOF/E(KeV): 2221 at 2theta/TOF/E(KeV): 2235 at 2theta/TOF/E(KeV): 2247 at 2 theta/TOF/E(KeV): 2248 at 2 theta/TOF/E(KeV): 2251 at 2theta/TOF/E(KeV): 2252 at 2 theta/TOF/E(KeV): 2386 at 2 theta/TOF/E(KeV): 2393 at 2theta/TOF/E(KeV): 2399 at 2theta/TOF/E(KeV): 2404 at 2theta/TOF/E(KeV): 2407 at 2theta/TOF/E(KeV): 2408 at 2theta/TOF/E(KeV): 2409 at 2 theta/TOF/E(KeV): 2411 at 2theta/TOF/E(KeV): 2421 at 2theta/TOF/E(KeV): 2423 at 2theta/TOF/E(KeV): 2424 at 2theta/TOF/E(KeV): 2425 at 2 theta/TOF/E(KeV): 2426 at 2theta/TOF/E(KeV): 2427 at 2theta/TOF/E(KeV): 2431 at 2theta/TOF/E(KeV): 2435 at 2 theta/TOF/E(KeV): 2437 at 2theta/TOF/E(KeV): 2438 at 2theta/TOF/E(KeV): 2901 at 2theta/TOF/E(KeV): 2902 at 2theta/TOF/E(KeV): 2906 at 2theta/TOF/E(KeV): 2907 at 2 theta/TOF/E(KeV): 2909 at 2 theta/TOF/E(KeV): 2915 at 2theta/TOF/E(KeV): 2932 at 2theta/TOF/E(KeV): 2937 at 2 theta/TOF/E(KeV) 2939 at 2theta/TOF/E(KeV): 2941 at 2theta/TOF/E(KeV): 2944 at 2theta/TOF/E(KeV): 2950 at 2theta/TOF/E(KeV): 2996 at 2theta/TOF/E(KeV): 2997 at 2 theta/TOF/E(KeV) 2999 at 2theta/TOF/E(KeV): 3001 at 2theta/TOF/E(KeV): 3003 at 2 theta/TOF/E(KeV): 3004 at 2theta/TOF/E(KeV): 3005 at 2theta/TOF/E(KeV): 3007 at 2 theta/TOF/E(KeV) : 3009 at 2 theta/TOF/E(KeV): 3012 at 2 theta/TOF/E(KeV) 3013 at 2 theta/TOF/E(KeV) : 3014 at 2theta/TOF/E(KeV): 3015 at 2 theta/TOF/E(KeV) 3016 at 2theta/TOF/E(KeV):
23.7068 3. 7142 23.7586 23.7808 23.8252 23.8474 23.8622 23.8770 23.8992 23.9066 23.9288 23.9806 24.0102 24.0250 24.0694 24.0768 24.0842 24.2026 24.2766 24.3062 24.3136 24.4542 24.5060 24.6318 27.5178 27.5622 27.6214 27.6436 27.6658 27.8656 27.8804 27.8952 27.9248 27.9396 27.9544 27.9840 28.1024 28.1394 28.1542 28.3096 28.4280 28.5316 28.6204 28.6278 28.6500 28.6574 29.6490 29.7008 29.7452 29.7822 29.8044 29.8118 29.8192 29.8340 29.9080 29.9228 29.9302 29.9376 29.9450 29.9524 29.9820 30.0116 30.0264 30.0338 33.4600 33.4674 33.4970 33.5044 33.5192 33.5636 33.6894 33.7264 33.7412 33.7560 33.7782 33.8226 34.1630 34.1704 34.1852 34.2000 34.2148 34.2222 34.2296 34.2444 34.2592 34.2814 34.2888 34.2962 34.3036
34.3110

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.

3017 at 2 theta/TOF/E(KeV): 3022 at 2theta/TOF/E(KeV): 3026 at 2 theta/TOF/E(KeV): 3147 at 2 theta/TOF/E(KeV): 3154 at 2 theta/TOF/E (KeV) : 3158 at 2 theta/TOF/E (KeV): 3166 at 2 theta/TOF/E (KeV): 3170 at 2 theta/TOF/E (KeV): 3230 at 2 theta/TOF/E (KeV) : 3233 at 2 theta/TOF/E (KeV) 3237 at 2 theta/TOF/E (KeV) : 3238 at 2 theta/TOF/E (KeV): 3244 at 2 theta/TOF/E (KeV): 3246 at 2 theta/TOF/E (KeV): 3247 at 2 theta/TOF/E (KeV): 3252 at 2 theta/TOF/E(KeV): 3254 at 2theta/TOF/E (KeV) : 3258 at 2 theta/TOF/E (KeV): 3261 at 2 theta/TOF/E (KeV): 3262 at 2 theta/TOF/E (KeV): 3263 at 2 theta/TOF/E (KeV): 3272 at 2 theta/TOF/E (KeV) : 3275 at 2 theta/TOF/E(KeV): 3277 at 2 theta/TOF/E (KeV) : 3279 at 2 theta/TOF/E (KeV): 3287 at 2 theta/TOF/E (KeV): 3301 at 2theta/TOF/E(KeV): 3399 at 2 theta/TOF/E(KeV): 3410 at 2 theta/TOF/E (KeV) 3411 at 2 theta/TOF/E(KeV): 3414 at 2theta/TOF/E (KeV): 3416 at 2 theta/TOF/E (KeV) : 3554 at 2 theta/TOF/E (KeV): 3571 at 2 theta/TOF/E (KeV) : 3572 at 2 theta/TOF/E (KeV): 3574 at 2theta/TOF/E(KeV): 3589 at 2 theta/TOF/E(KeV) : 3591 at 2 theta/TOF/E (KeV) : 3594 at 2 theta/TOF/E (KeV) : 3596 at 2 theta/TOF/E(KeV): 3597 at 2 theta/TOF/E(KeV): 3599 at 2 theta/TOF/E(KeV): 3601 at 2 theta/TOF/E (KeV) 3610 at 2 theta/TOF/E (KeV) : 3614 at 2 theta/TOF/E(KeV): 3619 at 2 theta/TOF/E (KeV) : 3622 at 2 theta/TOF/E (KeV): 3632 at 2 theta/TOF/E (KeV) 3635 at 2 theta/TOF/E (KeV): 3637 at 2theta/TOF/E(KeV): 3640 at 2 theta/TOF/E (KeV):
34.3184 34.3554 34.3850 35.2804 35.3322 35.3618 35.4210 35.4506 35.8946 35.9168 35.9464 35.9538 35.9982 36.0130 36.0204 36.0574 36.0722 36.1018 36.1240 36.1314 36.1388 36.2054 36.2276 36.2424 36.2572 36.3164 36.4200 37.1452 37.2266 37.2340 37.2562 37.2710 38.2922 38.4180 38.4254 38.4402 38.5512 38.5660 38.5882 38.6030 38.6104 38.6252 38.6400 38.7066 38.7362 38.7732 38.7954 38.8694 38.8916 38.9064 38.9286

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Optimizations for routine tasks applied:
=> Calculation mode for patter\#: 1 CM_PSEUDO_VOIGT

Standard deviations have to be multiplied by: 2.8680
(correlated residuals) See references:
-J.F.Berar \& P.Lelann, J. Appl. Cryst. 24, 1-5 (1991)
-J.F.Berar, Acc. in Pow. Diff. II,NIST Sp.Pub. 846, 63(1992)
=> CYCLE No.: 50
=> Phase 1 Name: rdx
\Rightarrow New parameters, shifts, and standard deviations

| \Rightarrow Overall scale factor: 0.000769464 | 0.000000243 | 0.000004678 |
| :--- | :--- | :--- | :--- | :--- |

\Rightarrow Eta(p-Voigt) or m(Pearson VII): 0.000000 0.000000 0.000000
\Rightarrow Overall tem. factor: 0.000000 0.000000 0.000000
\Rightarrow Halfwidth parameters:
$\begin{array}{lll}-0.014575 & 0.000012 & 0.004497\end{array}$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Cell parameters:
$\begin{array}{lll}11.545714 & -0.000002 & 0.000240\end{array}$
$\begin{array}{lll}10.665313 & 0.000007 & 0.000249\end{array}$
$13.129634 \quad 0.000005 \quad 0.000308$
$90.000000 \quad 0.000000 \quad 0.000000$
$\begin{array}{lll}90.000000 & 0.000000 & 0.000000\end{array}$
$90.000000 \quad 0.000000 \quad 0.000000$
=> Preferred orientation :
1.0000000 .0000000000
$0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Asymmetry parameters:
$0.034020 \quad 0.0000000 .000000$
$0.049140 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$\Rightarrow X$ and Y parameters :
$\begin{array}{lll}0.000000 & 0.000000 & 0.000000\end{array}$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Strain parameters:
$0.000000 \quad 0.000000 \quad 0.000000$
$\begin{array}{lll}0.000000 & 0.000000 & 0.000000\end{array}$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Size parameters (G,L):
$0.009228 \quad 0.000000 \quad 0.000107$
$0.003242 \quad-0.000001 \quad 0.007229$
\Rightarrow Further shape parameters (S_L and D_L):
$0.000000 \quad 0.0000000 .000000$
$0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Spherical Harmonics coeff.(size):

$\begin{aligned} & 0.003242 \\ & 0.014164 \end{aligned}$	-0.000001	0.007229	-0.004081	0.000619	0.018743	0.077268	-0.000633	\swarrow
$\begin{aligned} & 0.118944 \\ & 0.015851 \end{aligned}$	-0.000412	0.019819	-0.100242	0.000038	0.018840	0.021744	-0.000283	\swarrow
$\begin{aligned} & 0.000000 \\ & 0.000000 \end{aligned}$	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	\checkmark

$==>$ GLOBAL PARAMETERS FOR PATTERN\# 1
$\begin{array}{llll}=> & \text { Zero-point: } & -0.3110 .0000 & 0.0008\end{array}$
\Rightarrow Background Polynomial Parameters ==>
0.00000 .00000 .000
$\begin{array}{lll}0.0000 & 0.0000 & 0.0000\end{array}$
$\begin{array}{lll}0.0000 & 0.0000 & 0.0000\end{array}$
$0.0000 \quad 0.0000 \quad 0.0000$
$\begin{array}{lll}0.0000 & 0.0000 & 0.0000\end{array}$
$\begin{array}{lll}0.0000 & 0.0000 & 0.0000\end{array}$
$\Rightarrow \operatorname{Cos}(t h e t a)-s h i f t$ parameter $: 0.00000 .00000 .0000$
\Rightarrow Sin(2theta)-shift parameter : 0.00000 .00000 .0000
$==>$ RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1

$==>$ RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1

27.144	548.0
27.450	256.7

27.450	256.7
28.126	10.2

$28.242 \quad 0.5$

29.394	1024.5
29.483	791.1

1326.3

$$
509.0
$$

$$
35.330
$$

$$
35.657
$$

$$
35.929
$$

4	0	4	0.114804
34.072071			
4	2	8	0.114771
67.825462			
4	1	8	0.114806
65.588745			
2	2	8	0.117713
64.771576			
3	4	8	0.116825
64.337578			
2	5	4	0.119243
	. 0		

322.5 94.1 76.8

331.5	10.798	0.104923	0.018322	0.206312	\swarrow
88.8	5.271	0.104895	0.018314	0.206276	\swarrow
89.1	14.661	0.104690	0.018745	0.210802	\swarrow
3.6	3.562	0.104613	0.024079	0.260416	\swarrow
5.8	2.527	0.104571	0.022580	0.246999	\swarrow
99.7	15.297	0.104541	0.026889	0.285045	\swarrow

BRAGG R-Factors and weight fractions for Pattern \# 1

$=>$	Phase: 1	rdx			
$=>$	Bragg R-factor:	4.39	Vol:	$1616.766(0.063)$	Fract (\%):
$=>$	Rf-factor $=$	3.29		ATZ:	1776.939
			Brindley:	$1.000(0.86)$	

SYMBOLIC NAMES AND FINAL VALUES AND SIGMA OF REFINED PARAMETERS:

->	Parameter number	1	:	L-Size_ph1_pat1	$0.32420373 \mathrm{E}-02($	+/-	0.72292127E-02)
->	Parameter number	2	:	Size2_ph1_pat1	-0.40812818E-02	+/-	0.18743467E-01)
->	Parameter number	3	:	Size3_ph1_pat1	0.77267610E-01	+/-	0.14163993E-01)
->	Parameter number	4	:	Size4_ph1_pat1	0.11894368	+/-	0.19819405E-01)
->	Parameter number	5	:	Size5_ph1_pat1	-0.10024197	+/-	0.18839633E-01)
-	Parameter number	6	:	Size6_ph1_pat1	0.21744350E-01 (+/-	0.15851058E-01)
->	Parameter number	7	:	X_0 (1) _ph1	0.57541239	+/-	0.11092700E-02)
->	Parameter number	8	:	Y_0 (1) _ph1	0.43966007	+/-	$0.12116111 \mathrm{E}-02$
->	Parameter number	9	:	Z_0 (1) _ph1	0.27099708	+/-	0.11624396E-02
->	Parameter number	10	:	X_0 (2) _ph1	0.59412211	+/-	0.10898095E-02)
->	Parameter number	11	:	Y_0 (2) _ph1	0.22895293	+/-	0.12537022E-02)
->	Parameter number	12	:	Z_0 (2) _ph1	0.22888340	+/-	0.11001484E-02)
->	Parameter number	13	:	$\mathrm{X}_{-} 0$ (3) _ph1	0.47338510	+/-	0.12744585E-02)
->	Parameter number	14	:	Y_0 (3) _ph 1	0.13057353	+/-	0.92790980E-03)
->	Parameter number	15	:	Z_0 (3) _ph 1	-0.19450795E-01	+/-	0.10155203E-02
->	Parameter number	16	:	X_0 (4)_ph1	0.34381583	+/-	0.14120982E-02
->	Parameter number	17	:	Y_0 (4)_ph1	0.25728008	+/-	0.12697025E-02
->	Parameter number	18	:	Z_0 (4) _ph1	-0.11679447	+/-	0.15248761E-02)
->	Parameter number	19	:	$\mathrm{X}_{-} 0$ (5) _ ph 1	0.31070611	+/-	0.94801566E-03)
->	Parameter number	20	:	Y_0 (5) _ph1	0.51081645	+/-	0.12307854E-02)
->	Parameter number	21	:	Z_0 (5) _ph1	-0.79970337E-01	+/-	0.10943528E-02)
->	Parameter number	22	:	X_0 (6) _ph1	0.42943338	+/-	0.13071131E-02)
->	Parameter number	23	:	Y_0 (6) _ph 1	0.59145427	+/-	0.18751499E-02)
->	Parameter number	24	:	Z_0 (6) _ph1	0.52474596E-01 (+/-	0.96871122E-03)
->	Parameter number	25	:	$\mathrm{X}_{-} \mathrm{N}$ (1) _ ph 1	0.44482139	+/-	0.17220172E-02)
->	Parameter number	26	:	Y_N (1) _ph1	0.33536911	+/-	0.43182792E-02)
->	Parameter number	27	:	Z_N (1) _ph1	0.17979442	+/-	0.17772377E-02)
->	Parameter number	28	.	$\mathrm{X}_{-} \mathrm{N}$ (2) _ ph 1	0.33223259	+/-	0.32609324E-02)
->	Parameter number	29	:	Y_N (2) _ph 1	0.24144928	+/-	0.34579535E-02)
->	Parameter number	30	:	Z_N (2)_ph1	0.51606905E-01 (+/-	0.23675738E-02)
->	Parameter number	31	:	X_N (3)_ph1	0.30316588	+/-	0.21229470E-02)
->	Parameter number	32	:	Y_N (3) _ph1	0.45272210	+/-	0.28552911E-02)
->	Parameter number	33	:	Z_N (3)_ph1	$0.78225881 \mathrm{E}-01$ (+/-	0.29536241E-02)
->	Parameter number	34	:	X_N (4)_ph1	0.54015791	+/-	0.11990828E-02)
->	Parameter number	35	:	Y_N (4)_ph1	0.33695599	+/-	0.19951391E-02)
->	Parameter number	36	:	Z_N (4) _ph1	0.23162104	+/-	0.14471047E-02)
->	Parameter number	37	:	X_N (5)_ph1	0.38837519	+/-	0.16739216E-02)
->	Parameter number	38	:	Y_N (5) _ph1	0.20530595	+/-	0.22275527E-02)
->	Parameter number	39	:	Z_N (5) _ph1	-0.39772190E-01	+/-	0.16845398E-02)
->	Parameter number	40	:	X_N (6) _ph1	0.35083801	+/-	0.17355493E-02)
->	Parameter number	41	:	Y_N (6)_ph1	0.55482548	+/-	0.27362476E-02)
->	Parameter number	42	:	Z_N (6) _ph1	0.11853519E-01 (+/-	0.16991830E-02)
->	Parameter number	43	.	$\mathrm{X}_{-} \mathrm{C}$ (1) _ ph 1	0.34745705	+/-	0.27718858E-02)
->	Parameter number	44	:	Y_C (1) _ph1	0.43892241	+/-	0.30111372E-02)
->	Parameter number	45	:	Z_C (1) _ph1	0.19351751	+/-	0.17470347E-02)
->	Parameter number	46	:	X_C (2)_ph1	0.38531837	+/-	0.24003256E-02)
->	Parameter number	47	:	Y_C (2)_ph1	0.21723603	+/-	0.21812750E-02)
->	Parameter number	48	:	Z_C (2)_ph1	0.14879125	+/-	0.24698584E-02)
->	Parameter number	49	:	X_C (3)_ph1	0.23212539	+/-	0.12938807E-02)
->	Parameter number	50	:	Y_C (3)_ph1	0.33450860	+/-	0.39550792E-02)
->	Parameter number	51	:	Z_C (3) _ph1	$0.49307033 \mathrm{E}-01$ (+/-	0.11598649E-02)
->	Parameter number	52	.	Scale_ph1_pat1	$0.76946447 \mathrm{E}-03$ (+/-	0.46780219E-05)
->	Parameter number	53	:	Cell_A_ph1_pat1	11.545714	+/-	0.23961758E-03)
->	Parameter number	54	:	Zero_pat1	-0.31102592	+/-	0.82943856E-03)
->	Parameter number	55	:	U-Cagl_ph1_pat1	-0.14575286E-01	+/-	0.44974512E-02)
->	Parameter number	56	:	Cell_B_ph1_pat1	10.665313	+/-	0.24886982E-03)
->	Parameter number	57		Cell_C_ph1_pat1	13.129634 (+/-	0.30849580E-03)
->	Parameter number	58	:	G-Size_ph1_pat1	$0.92282938 \mathrm{E}-02$ (+/-	0.10682658E-03)

[^1]\Rightarrow Total approximate array memory (dynamic + static): 107719993 bytes

MaxPOINT= 60000 Max.num. of points (+int. Inten.)/diffraction pattern
MaxREFLT= 20000 Max.num. of reflections/diffraction pattern
MaxPARAM= 300 Max.num. of refinable parameters
MaxOVERL $=2096$ Max.num. of overlapping reflections

```
=> Number of bytes for floating point arrays: 4
=> Dimensions of fixed arrays in this release of FullProf:
NPATT = 80 Max.num. of powder diffraction patterns
NATS
MPAR
IEXCL
IEXCL
IBACP
NPHT
NMAGM
NBASIS
NBASIS
NIREPS
N_EQ
NGL
N_LINC=
NAT_P
NCONST
N_SPE
N_FORM
NPR
INPR
NPRC
NSOL=
8 3 0 ~ M a x . n u m . ~ o f ~ a t o m s ~ ( a l l ~ k i n d ) ~ i n ~ a s y m m e t r i c ~ u n i t ~
1800 Max.num. of non atomic parameters/phase
    30 Max.num. of excluded regions
\begin{tabular}{llrl} 
NPATT & \(=\) & 80 Max.num. of powder diffraction patterns \\
NATS & \(=\) & 830 Max.num. of atoms (all kind) in asymmetric unit \\
MPAR & \(=\) & 1800 Max.num. of non atomic parameters/phase \\
IEXCL & \(=\) & 30 Max.num. of excluded regions \\
IBACP & \(=\) & 277 Max.num. of background points for interpolation \\
NPHT & \(=\) & 16 Max.num. of phases \\
NMAGM & \(=\) & 8 Max.num. of rotation-matrices sets for magnetic structure \\
NBASIS & \(=\) & 12 Max.num. of basis functions associated to a single atom \\
NIREPS & \(=\) & 9 Max.num. of irreducible representations to be combined \\
N_EQ & \(=\) & 384 Max.num. of user-supplied symmetry operators/propagation vectors \\
NGL & \(=\) & 300 Max.num. of global parameters/diffraction pattern \\
N_LINC & \(=\) & 30 Max.num. of global linear restraints \\
NAT_P & \(=\) & 64 Max.num. of atomic parameters per atom \\
NCONST & \(=\) & 500 Max.num. of slack constraints per phase \\
N_SPE & \(=\) & 16 Max.num. of different chemical species \\
N_FORM & \(=\) & 60 Max.num. of scattering factor values in a table \\
NPR & \(=\) & 150 Max.num. of points defining a numerical profile \\
INPR & \(=\) & 25 Max.num. of different numerical peak shapes \\
NPRC & \(=\) & 150 Max.num. of terms in the table for correcting intensities \\
NSOL & \(=\) & 10 Max.num. of solutions to be stored in Montecarlo searchs
\end{tabular}
CPU Time: 26.688 seconds
0.445 minutes
=> Run finished at: Date: 06/07/2015 Time: 15:53:03.785
```


A. 5 Sample of n-RDX processed with 10 wt\% of PVP

```
** PROGRAM FullProf.2k (Version 5.60 - Jan2015-ILL JRC) **
**************************************************************
M U L T I -- P A T T E R N
Rietveld, Profile Matching & Integrated Intensity
Refinement of X-ray and/or Neutron Data
Date: 15/06/2015 Time: 14:26:29.403
=> PCR file code: rpvp102a
=> DAT file code: rpvp102a.dat -> Relative contribution: 1.0000
=> CONDITIONS OF THIS RUN FOR PATTERN No.: 1
=> Global Refinement of X-ray powder diffraction data
=> Global Refinement of X-ray powder diffraction data
Flat plate with PSD
=> Title:RDX
=> Number of phases: 1
=> Number of excluded regions: 1
> Number of scattering factors supplied: 0
=> March-Dollase model for preferred orientation
=> Conventional weights: w=1.0/Variance(yobs)
=> Asymmetry correction as in J.Appl.Cryst. 26,128(1993)
=> Background refined by polynomial function
=> The 5th default profile function was selected
=> Pseudo-Voigt function (ETA variable)
X-parameter correspond to: ETA=ETAO+X*2theta
pV(x)= ETA*L(x) +(1-ETA)*G(x)
==> INPUT/OUTPUT OPTIONS:
```

=> Generate file *.PRF for plot
\Rightarrow Output Integrated Intensities
\Rightarrow Generate new input file *.PCR
\Rightarrow Data supplied in free format for pattern: 1
=> Plot pattern at each cycle
\Rightarrow Wavelengths: 1.540561 .54439
\Rightarrow Alpha2/Alpha1 ratio: 0.5000
$\Rightarrow \operatorname{Cos}$ (Monochromator angle)= 1.0000
\Rightarrow Asymmetry correction for angles lower than 90.000 degrees
\Rightarrow Absorption correction (AC), muR-eff $=0.0000$ 0.0000
\Rightarrow Base of peaks: $2.0 * \mathrm{HW}$ * 20.00
\Rightarrow Number of cycles: 10
\Rightarrow Relaxation factors $==>$ for coordinates: 1.00
\Rightarrow for anisotropic temperature factors: 1.00
\Rightarrow for halfwidth/strain/size parameters: 1.00
\Rightarrow for lattice constants and propagation vectors: 1.00

```
=> EPS-value for convergence: 0.0
=> Excluded regions for Pattern# 1
From to
50.0000
=> Instrumental Resolution read from file: xray-res.irf
=> Title of data: Approximate resolution function of a conventional X-ray diffractometer CuKalpha1,2
=> The resolution function is IRESOL: 1 for profile function # 5
Input resolution parameters:
\begin{tabular}{llllll} 
U-inst & V-inst & W-inst & X-inst & Y-inst & Z-inst \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000 \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000
\end{tabular}
=> Number of Least-Squares parameters varied: 10
```



```
=>-------> PATTERN number: 1
=> Global parameters and codes ==>
=> Zero-point: -0.2646 0.0000
=> Background parameters and codes ==>
= Origin of polynomial at 2theta/TOF/E(KeV): 40.000
499.36 17910. 54941. 47295. 0.0000 0.0000
101.00 91.00 81.00 0.0.00
=> Displacement peak-shift parameter and code: 0.00 0.00
# Transparency peak-shift parameter and code: 0.00 0.00
=> Reading Intensity data =>>
==> Angular range, step and number of points:
2Thmin: 12.000000 2Thmax: 43.012600 Step: 0.012900 No. of points: 2405
# Phase No. 1
rdx
--------------------------------
=> Crystal Structure Refinement
> The 7th profile function was selected for phase no. 1
=> Preferred orientation vector: 0.0000 0.0000 1.0000
=>-------> Data for PHASE: 1
> Number of atoms: 21
=> Number of distance constraints: 0
=> Number of angle constraints: 0
=> Symmetry information on space group: P b c a
-> The multiplicity of the general position is: 8
-> The space group is Centric (-1 at origin)
-> Lattice type P: { 000 }
-> Reduced set of symmetry operators:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline N & IT & \multicolumn{2}{|l|}{Symmetry symbol} & Rotation part & \multicolumn{3}{|l|}{Associated Translation} \\
\hline & 1) & 1 & --> & ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ) + \{ & 0.0000 & 0.0000 & \(0.0000\}\) \\
\hline & 4) & 2 ( \(\mathrm{x}, 0\) & 0) & \((x,-y,-z)+\{\) & 0.5000 & 0.5000 & \(0.0000\}\) \\
\hline & 3) & 2 ( 0, y, & 0) & \((-x, y,-z)+\{\) & 0.0000 & 0.5000 & \(0.5000\}\) \\
\hline 4: & 2) & 2 ( 0, 0, & z) & (-x,-y, z) + \{ & 0.5000 & 0.0000 & 0.5000 \\
\hline
\end{tabular}
```

```
Information on Space Group:
```

\Rightarrow Number of Space group: 61
\Rightarrow Hermann-Mauguin Symbol: p b c a
Hall Symbol: -P 2ac 2 ab
$\Rightarrow \quad$ Table Setting Choice:
$\Rightarrow \quad$ Setting Type: IT (Generated from Hermann-Mauguin symbol)
$\Rightarrow \quad$ Crystal System: Orthorhombic
Laue Class: mmm
Point Group: mmm
Bravais Lattice: P
Lattice Symbol: oP
Reduced Number of S.O.: 4
General multiplicity: 8
Centrosymmetry: Centric (-1 at origin)
Generators (exc. -1\&L): 2
$\Rightarrow \quad$ Asymmetric unit: $0.000<=x<=0.500$
$0.000<=\mathrm{y}<=0.500$
$0.000<=z<=0.500$
\Rightarrow List of S.O. without inversion and lattice centring translations
$\Rightarrow \operatorname{SYMM}(1): x, y, z \quad \Rightarrow \operatorname{SYMM}(2): x+1 / 2,-y+1 / 2,-z$

$=>$						
Atomitial parameters	Ntyp		X	Y	Z	B

Atom	Ntyp		X	Y	Z	B	occ.
B11	B22	B33	B12	B13	B23	in	Spc

\Rightarrow IT IS ASSUMED THAT THE FIRST GIVEN SITE IS FULLY OCCUPIED
OR THE FIRST AND SECOND ATOMS ARE IN THE SAME SITE WITH TOTAL FULL OCCUPATION
(If this is not the case, change the order of atoms to obtain correct values for the content of the unit cell)
The given occupation factors have been obtained mutiplying m/M by 1.0000

Atom: 0	Chemical element: 0	Atomic Mass	15.9994
-> Atom: 0	Chemical element: 0	Atomic Mass:	15.9994
-> Atom: 0	Chemical element: 0	Atomic Mass:	15.9994
-> Atom: 0	Chemical element: 0	Atomic Mass:	15.9994
-> Atom: 0	Chemical element: 0	Atomic Mass:	15.9994
-> Atom: 0	Chemical element: 0	Atomic Mass:	15.9994
-> Atom: N	Chemical element: N	Atomic Mass:	14.0067
-> Atom: N	Chemical element: N	Atomic Mass:	14.0067
-> Atom: N	Chemical element: N	Atomic Mass:	14.0067
-> Atom: N	Chemical element: N	Atomic Mass:	14.0067
-> Atom: N	Chemical element: N	Atomic Mass:	14.0067
-> Atom: N	Chemical element: N	Atomic Mass:	14.0067
-> Atom: C	, Chemical element: C	Atomic Mass:	12.0110
-> Atom: C	Chemical element: C	Atomic Mass:	12.0110
-> Atom: C	Chemical element: C	Atomic Mass:	12.0110
-> Atom: H	Chemical element: H	Atomic Mass:	1.0080
-> Atom: H	Chemical element: H	Atomic Mass:	1.0080
-> Atom: H	Chemical element: H	Atomic Mass:	1.0080
-> Atom: H	Chemical element: H	Atomic Mass:	1.0080
-> Atom: H	Chemical element: H	Atomic Mass:	1.0080
\rightarrow Atom: H			1.0080

\Rightarrow The given value of $A T Z$ is $\quad 1776.94$ the program has calculated: 1776.94
The value of $A T Z$ given in the input PCR file will be used for quantitative analysis
\Rightarrow The chemical content of the unit cell is:

8.00000	+	8.00000	+	8.0000	0	+	8.0000	0	+	8.0000	0	+	8.0000	0	+	8.0000	N	+	\swarrow
8.0000	N	$+8.0000$	N	+ 8	. 0000	N	+												
8.0000 N	$+$	8.0000 N	+	8.0000	0 C	+	8.0000	C	+	8.0000	C	+	8.0000	H	+	8.0000	H	+	\checkmark

\Rightarrow The normalized site occupation numbers in $\%$ are:

100.0000 (1)	:		100.0000 0(2)	:		100.0000 0(3)	:		100.0000 0(4)	:		100.0000 0(5)	:	
100.0000	O(6)	:	100.0000	N(1)	:	100.0000	N(2)	:	100.0000	N(3)	:	100.0000	N (4)	:
$100.0000 \mathrm{~N}(5)$:		$100.0000 \mathrm{~N}(6)$:		100.0000 C(1)	:		100.0000 C (2)	:		100.0000 C (3)	:	
100.0000	H (1A)	:	100.0000	H (1B)	:	100.0000	H (2A)	:	100.0000	H (2 B)	:	100.0000	H (3A)	:

$100.0000 \mathrm{H}(3 \mathrm{~B})$
\Rightarrow The density (volumic mass) of the compound is: $1.806 \mathrm{~g} / \mathrm{cm} 3$
=>-------> PROFILE PARAMETERS FOR PATTERN: 1
$=>$ Overall scale factor: $0.380410 E-03$
$=>$ ETA (p-Voigt) OR M (Pearson VII): 0.0000
$=>$ Overall temperature factor: 0.00000
$\begin{array}{lrrr}=> & \text { Halfwidth U,V,W: } & 0.03415 & 0.00000\end{array}$

0	$\begin{aligned} & 3.0485 \\ & 0.0320 \end{aligned}$	13.2771	2.2868	5.7011	1.5463	0.3239	0.8670	32.9089	0.2508	7.9994	8.0000	0.0470	\checkmark
N	$\begin{aligned} & 12.2126 \\ & 0.0180 \end{aligned}$	0.0057	3.1322	9.8933	2.0125	28.9975	1.1663	0.5826	-11.5290	6.9946	7.0000	0.0290	\swarrow
C	$\begin{aligned} & 2.3100 \\ & 0.0090 \end{aligned}$	20.8439	1.0200	10.2075	1.5886	0.5687	0.8650	51.6512	0.2156	5.9992	6.0000	0.0170	\swarrow
H	$\begin{aligned} & 0.4930 \\ & 0.0000 \end{aligned}$	10.5109	0.3229	26.1257	0.1402	3.1424	0.0408	57.7997	0.0030	1.0000	1.0000	0.0000	\checkmark

Symbolic names and initial values of parameters to be varied:
-> Parameter number
$->$ Parameter number
$->$ Parameter number
-> Parameter number
\Rightarrow Zero counts at step no.
$=>$ Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

-> Symbolic Name
-> Symbolic Name:
-> Symbolic Name:
-> Symbolic Name:
-> Symbolic Name
-> Symbolic Name
-> Symbolic Name:
-> Symbolic Name:
-> Symbolic Name:
-> Symbolic Name:

L-Size_ph1_pat1 Size2_ph1_pat1 Size3_ph1_pat1 Size4_ph1_pat1 Size5_ph1_pat1 Size6_ph1_pat1 Bck_3_pat1 Bck_2_pat1 Bck_1_pat1 Bck_0_pat1
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 47294.730 54940.645 17910.160 499.36499

1 at 2theta/TOF/E(KeV): 110 at 2 theta/TOF/E (KeV): 112 at 2 theta/TOF/E (KeV): 113 at 2 theta/TOF/E (KeV) 118 at 2 theta/TOF/E (KeV): 121 at 2 theta/TOF/E(KeV): 123 at 2 theta/TOF/E (KeV): 128 at 2 theta/TOF/E (KeV) 129 at 2 theta/TOF/E (KeV) 136 at 2 theta/TOF/E (KeV): 140 at 2 theta/TOF/E (KeV): 145 at 2 theta/TOF/E (KeV): 146 at 2 theta/TOF/E (KeV) 147 at 2 theta/TOF/E (KeV): 155 at 2 theta/TOF/E (KeV): 157 at 2 theta/TOF/E (KeV): 158 at 2 theta/TOF/E (KeV): 160 at 2 theta/TOF/E (KeV) 165 at 2 theta/TOF/E (KeV): 166 at 2 theta/TOF/E(KeV): 167 at 2 theta/TOF/E (KeV) : 168 at 2 theta/TOF/E (KeV) : 179 at 2 theta/TOF/E (KeV) 203 at 2theta/TOF/E(KeV): 204 at 2 theta/TOF/E (KeV): 206 at 2 theta/TOF/E (KeV) : 216 at 2 theta/TOF/E (KeV) 217 at 2 theta/TOF/E (KeV) : 219 at 2 theta/TOF/E(KeV): 222 at 2 theta/TOF/E(KeV): 266 at 2 theta/TOF/E (KeV) : 267 at 2 theta/TOF/E (KeV) : 268 at 2 theta/TOF/E (KeV) : 272 at 2theta/TOF/E(KeV): 273 at 2 theta/TOF/E(KeV): 275 at 2 theta/TOF/E (KeV) : 277 at 2 theta/TOF/E (KeV) : 279 at 2 theta/TOF/E (KeV): 280 at 2 theta/TOF/E(KeV): 284 at 2theta/TOF/E(KeV): 286 at 2 theta/TOF/E (KeV) : 288 at 2 theta/TOF/E (KeV) : 289 at 2 theta/TOF/E(KeV): 290 at 2 theta/TOF/E (KeV): 292 at 2 theta/TOF/E(KeV): 294 at 2 theta/TOF/E (KeV) 295 at 2 theta/TOF/E (KeV): 301 at 2theta/TOF/E (KeV): 302 at 2 theta/TOF/E (KeV): 303 at 2 theta/TOF/E (KeV) 307 at 2 theta/TOF/E (KeV) : 308 at 2 theta/TOF/E(KeV): 309 at 2theta/TOF/E (KeV): 310 at 2 theta/TOF/E (KeV) 312 at 2 theta/TOF/E (KeV): 314 at 2 theta/TOF/E (KeV) 320 at 2 theta/TOF/E(KeV): 344 at 2 theta/TOF/E(KeV): 354 at 2 theta/TOF/E (KeV) : 355 at 2 theta/TOF/E (KeV): 356 at 2 theta/TOF/E (KeV) 357 at 2theta/TOF/E(KeV) 358 at 2 theta/TOF/E(KeV): 359 at 2 theta/TOF/E (KeV): 362 at 2 theta/TOF/E(KeV) 363 at 2 theta/TOF/E (KeV) 364 at 2theta/TOF/E(KeV): 365 at 2 theta/TOF/E (KeV): 369 at 2 theta/TOF/E (KeV) : 370 at 2 theta/TOF/E (KeV) 371 at 2 theta/TOF/E(KeV) 373 at 2theta/TOF/E (KeV): 374 at 2 theta/TOF/E (KeV): 375 at 2 theta/TOF/E (KeV):
12.0000
13.406
13.4319
3. 444
13.5093
13. 5480
13.5738
13.6383
13.6512
13.7415
13.7931
13.8576
13. 8705
13.8834
13.9866
14.0124
14.0253
4.0511
14.1156
14.1285
14.1414
14.1543
14.2962
14.6058
14.6187
14.6445
14.7735
14.7864
14.8122
14.8509
15.4185
5.4314
15.4443
15.4959
15.5088
15.5346
15.5604
15.5862
15.5991
15.6507
15.6765
15.7023
15.7152
15.7281
15.7539
15.7797
15.7926
15.8700
15.8829
15.8958
15.9474
15.9603
15.9732
15.9861
16.0119
16.0377
16.1151
16.4247
16.5537
16.5666
16.5795
16.5924
16.6053
16.6182
16.6569
16.6698
16.6827
16.6956
16.7472
16.7601
16.7730
16.7988
16.8117
16.8246

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

378 at 2 theta/TOF/E(KeV) : 379 at 2theta/TOF/E(KeV): 380 at 2 theta/TOF/E(KeV): 453 at 2theta/TOF/E(KeV): 455 at 2 theta/TOF/E(KeV) 456 at 2 theta/TOF/E(KeV): 460 at 2 theta/TOF/E(KeV): 463 at 2theta/TOF/E(KeV): 464 at 2 theta/TOF/E(KeV): 465 at 2 theta/TOF/E(KeV): 466 at 2 theta/TOF/E(KeV): 467 at 2theta/TOF/E(KeV): 470 at 2 theta/TOF/E(KeV): 471 at 2 theta/TOF/E(KeV): 476 at 2 theta/TOF/E(KeV) 480 at 2 theta/TOF/E(KeV): 482 at 2theta/TOF/E(KeV): 484 at 2 theta/TOF/E(KeV): 485 at 2theta/TOF/E(KeV): 487 at 2 theta/TOF/E(KeV): 488 at 2theta/TOF/E(KeV) 509 at 2theta/TOF/E(KeV): 513 at 2 theta/TOF/E(KeV): 517 at 2 theta/TOF/E(KeV) 520 at 2 theta/TOF/E(KeV): 526 at 2theta/TOF/E(KeV): 533 at 2theta/TOF/E(KeV): 534 at 2 theta/TOF/E(KeV): 547 at 2 theta/TOF/E(KeV): 609 at 2 theta/TOF/E(KeV): 662 at 2theta/TOF/E(KeV): 663 at 2theta/TOF/E(KeV): 665 at 2 theta/TOF/E (KeV): 668 at 2 theta/TOF/E(KeV) 669 at 2 theta/TOF/E(KeV): 670 at 2 theta/TOF/E(KeV): 674 at 2 theta/TOF/E(KeV): 675 at 2 theta/TOF/E(KeV): 679 at 2 theta/TOF/E (KeV) 680 at 2theta/TOF/E(KeV) 681 at 2theta/TOF/E(KeV): 683 at 2 theta/TOF/E(KeV): 684 at 2 theta/TOF/E(KeV) 686 at 2 theta/TOF/E(KeV): 688 at 2theta/TOF/E(KeV): 694 at 2 theta/TOF/E(KeV): 695 at 2 theta/TOF/E(KeV): 698 at 2 theta/TOF/E(KeV): 717 at 2theta/TOF/E(KeV) 718 at 2theta/TOF/E(KeV): 719 at 2 theta/TOF/E(KeV): 720 at 2 theta/TOF/E(KeV): 721 at 2 theta/TOF/E(KeV) 722 at 2 theta/TOF/E(KeV): 727 at 2theta/TOF/E(KeV): 730 at 2 theta/TOF/E(KeV): 732 at 2 theta/TOF/E(KeV): 735 at 2 theta/TOF/E(KeV): 736 at 2theta/TOF/E(KeV): 737 at 2theta/TOF/E(KeV): 739 at 2 theta/TOF/E(KeV): 742 at 2 theta/TOF/E(KeV) 780 at 2 theta/TOF/E(KeV): 782 at 2theta/TOF/E(KeV): 785 at 2 theta/TOF/E(KeV): 787 at 2 theta/TOF/E(KeV): 788 at 2 theta/TOF/E(KeV) 791 at 2 theta/TOF/E(KeV): 821 at 2theta/TOF/E(KeV): 822 at 2theta/TOF/E(KeV): 828 at 2 theta/TOF/E(KeV): 829 at 2 theta/TOF/E(KeV) 830 at 2 theta/TOF/E(KeV): 831 at 2theta/TOF/E(KeV): 835 at 2theta/TOF/E(KeV): 838 at 2theta/TOF/E(KeV): 839 at 2 theta/TOF/E(KeV) 843 at 2theta/TOF/E(KeV): 845 at 2theta/TOF/E(KeV): 853 at 2theta/TOF/E(KeV): 857 at 2 theta/TOF/E(KeV) 858 at 2theta/TOF/E(KeV): 859 at 2theta/TOF/E(KeV): 862 at 2theta/TOF/E(KeV): 864 at 2 theta/TOF/E(KeV): 870 at 2 theta/TOF/E(KeV) 894 at 2theta/TOF/E(KeV) 896 at 2theta/TOF/E(KeV): 902 at 2 theta/TOF/E(KeV) 905 at 2theta/TOF/E(KeV):
16.8633 16.8762 16.8891 17.8308 17.8566 17.8695 17.9211 17.9598 17.9727 17.9856 17.9985 18.0114 18.0501 18.0630 18.1275 18.1791 18.2049 18.2307 18.2436 18.2694 18.2823 18.5532 18.6048 18.6564 18.6951 18.7725 18.8628 18.8757 19.0434
19.8432 20.5269 20.5398 20.5656 20.6043 20.6172 20.6301 20.6817 20.6946 20.7462 20.7591 20.7720 20.7978 20.8107 20.8365 20.8623 20.9397 20.9526
20.9913
21.2364
21.2493
21.2622
21.2751
21.2880
21.3009
21.3654
21.4041
21.4299
21.4686
21.4815
21.4944 21.5202 21.5589 22.0491 22.0749 22.1136 22.1394 22.1523 22.1910 22.5780 22.5909 22.6683 22.6812 22.6941 22.7070 22.7586 22.7973 22.8102 22.8618 22.8876 22.9908 23.0424 23.0553 23.0682 23.1069 23. 1327 23. 2101 23.5197 23.5455 23.6229
23.6616

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no. \Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.

906 at 2 theta/TOF/E(KeV) 909 at 2theta/TOF/E(KeV) 913 at 2theta/TOF/E(KeV): 918 at 2theta/TOF/E(KeV): 920 at 2 theta/TOF/E(KeV) : 922 at 2 theta/TOF/E(KeV): 926 at 2theta/TOF/E(KeV): 928 at 2theta/TOF/E(KeV): 930 at 2 theta/TOF/E(KeV): 931 at 2 theta/TOF/E(KeV) 932 at 2 theta/TOF/E(KeV): 934 at 2theta/TOF/E(KeV): 938 at 2 theta/TOF/E(KeV): 940 at 2 theta/TOF/E(KeV): 949 at 2theta/TOF/E(KeV): 955 at 2 theta/TOF/E(KeV): 989 at 2theta/TOF/E(KeV): 1047 at 2 theta/TOF/E(KeV): 1051 at 2theta/TOF/E(KeV): 1052 at 2 theta/TOF/E(KeV): 1053 at 2theta/TOF/E(KeV): 1054 at 2theta/TOF/E(KeV): 1055 at 2 theta/TOF/E(KeV): 1057 at 2 theta/TOF/E(KeV) 1058 at 2 theta/TOF/E(KeV): 1061 at 2theta/TOF/E(KeV): 1063 at 2theta/TOF/E(KeV): 1064 at 2theta/TOF/E(KeV): 1065 at 2 theta/TOF/E(KeV): 1068 at 2 theta/TOF/E(KeV): 1069 at 2 theta/TOF/E(KeV): 1070 at 2 theta/TOF/E(KeV): 1072 at 2 theta/TOF/E (KeV): 1077 at 2 theta/TOF/E(KeV): 1096 at 2 theta/TOF/E(KeV): 1102 at 2 theta/TOF/E(KeV): 1104 at 2theta/TOF/E(KeV): 1105 at 2theta/TOF/E(KeV): 1108 at 2theta/TOF/E(KeV): 1109 at 2 theta/TOF/E(KeV): 1111 at 2theta/TOF/E(KeV): 1112 at 2 theta/TOF/E(KeV): 1192 at 2 theta/TOF/E(KeV): 1194 at 2 theta/TOF/E(KeV): 1212 at 2theta/TOF/E(KeV): 1218 at 2theta/TOF/E(KeV): 1221 at 2 theta/TOF/E(KeV): 1226 at 2 theta/TOF/E(KeV): 1228 at 2 theta/TOF/E(KeV): 1229 at 2 theta/TOF/E(KeV): 1240 at 2 theta/TOF/E(KeV): 1241 at 2 theta/TOF/E(KeV): 1242 at 2 theta/TOF/E(KeV): 1248 at 2 theta/TOF/E(KeV): 1252 at 2 theta/TOF/E(KeV): 1255 at 2theta/TOF/E(KeV): 1262 at 2theta/TOF/E(KeV): 1267 at 2 theta/TOF/E(KeV): 1275 at 2 theta/TOF/E(KeV): 1278 at 2 theta/TOF/E(KeV): 1290 at 2 theta/TOF/E(KeV): 1355 at 2 theta/TOF/E(KeV): 1362 at 2 theta/TOF/E(KeV): 1364 at 2theta/TOF/E(KeV): 1365 at 2 theta/TOF/E(KeV): 1366 at 2theta/TOF/E(KeV): 1369 at 2theta/TOF/E(KeV): 1371 at 2 theta/TOF/E(KeV): 1373 at 2theta/TOF/E(KeV): 1374 at 2 theta/TOF/E(KeV): 1377 at 2 theta/TOF/E (KeV): 1378 at 2 theta/TOF/E(KeV): 1380 at 2 theta/TOF/E(KeV): 1384 at 2theta/TOF/E(KeV): 1386 at 2 theta/TOF/E(KeV): 1387 at 2 theta/TOF/E(KeV): 1454 at 2theta/TOF/E(KeV): 1455 at 2theta/TOF/E(KeV): 1484 at 2 theta/TOF/E(KeV): 1487 at 2 theta/TOF/E(KeV): 1490 at 2theta/TOF/E(KeV): 1493 at 2 theta/TOF/E(KeV): 1657 at 2 theta/TOF/E(KeV): 1658 at 2 theta/TOF/E(KeV) 1664 at 2 theta/TOF/E(KeV): 1665 at 2 theta/TOF/E(KeV): 1667 at 2 theta/TOF/E(KeV): 1671 at 2 theta/TOF/E(KeV): 1674 at 2 theta/TOF/E(KeV) 1675 at 2theta/TOF/E(KeV):
23.6745 3.7132 23.7648 23.8293 23.8551 23.8809 23.9325 23.9583 23.9841 23.9970 24.0099 24.0357 24.0873 24.1131 24.2292 24.3066 24.7452 25.4934 25.5450 25.5579 25.5708 25.5837 25.5966 25.6224 25.6353 25.6740 25.6998 25.7127 25.7256 25.7643 25.7772 25.7901 25.8159 25.8804 26.1255 26.2029 26.2287 26.2416 26.2803 26.2932 26.3190 26.3319 27.3639 27.3897 27.6219 27.6993 27.7380 27.8025 27.8283 27.8412 27.9831 27.9960 28.0089 28.0863 28.1379 28.1766 28.2669 28.3314 28.4346 28.4733 28.6281 29.4666 29.5569 29.5827 29.5956 29.6085 29.6472 29.6730 29.6988 29.7117 29.7504 29.7633 29.7891 29.8407 29.8665 29.8794 30.7437 30.7566 31.1307 31.1694 31.2081 31.2468 33.3624 33.3753 33.4527 33.4656 33.4914 33.5430
33.5817
33.5946

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no. => Zero counts at step no. \Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
\Rightarrow Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
\Rightarrow Zero counts at step no.

1679 at 2 theta/TOF/E(KeV): 1682 at 2 theta/TOF/E(KeV): 1683 at 2 theta/TOF/E(KeV) : 1687 at 2 theta/TOF/E (KeV): 1688 at 2 theta/TOF/E (KeV) : 1715 at 2 theta/TOF/E (KeV): 1723 at 2 theta/TOF/E(KeV): 1725 at 2 theta/TOF/E(KeV): 1727 at 2 theta/TOF/E (KeV): 1806 at 2 theta/TOF/E (KeV) : 1809 at 2 theta/TOF/E (KeV): 1855 at 2 theta/TOF/E(KeV): 1857 at 2 theta/TOF/E(KeV): 1858 at 2 theta/TOF/E (KeV): 1859 at 2 theta/TOF/E (KeV) : 1861 at 2 theta/TOF/E(KeV): 1865 at 2 theta/TOF/E(KeV): 1866 at 2 theta/TOF/E (KeV): 1867 at 2 theta/TOF/E (KeV): 1868 at 2 theta/TOF/E (KeV) : 1880 at 2 theta/TOF/E (KeV): 1883 at 2 theta/TOF/E(KeV): 1942 at 2 theta/TOF/E(KeV): 1948 at 2 theta/TOF/E (KeV): 2025 at 2 theta/TOF/E (KeV) : 2031 at 2 theta/TOF/E (KeV): 2055 at 2 theta/TOF/E (KeV): 2060 at 2 theta/TOF/E(KeV): 2061 at 2 theta/TOF/E (KeV) : 2067 at 2 theta/TOF/E(KeV): 2069 at 2theta/TOF/E(KeV): 2071 at 2 theta/TOF/E(KeV): 2072 at 2 theta/TOF/E (KeV): 2086 at 2 theta/TOF/E (KeV) : 2093 at 2 theta/TOF/E (KeV): 2141 at 2 theta/TOF/E(KeV): 2312 at 2 theta/TOF/E(KeV) : 2313 at 2 theta/TOF/E (KeV): 2317 at 2 theta/TOF/E(KeV): 2363 at 2 theta/TOF/E(KeV): 2374 at 2 theta/TOF/E(KeV): 2377 at 2 theta/TOF/E(KeV): 2378 at 2 theta/TOF/E (KeV) 2380 at 2 theta/TOF/E (KeV) : 2382 at 2theta/TOF/E(KeV): 2383 at 2 theta/TOF/E (KeV) : 2386 at 2 theta/TOF/E (KeV): 2394 at 2 theta/TOF/E (KeV) 2395 at 2theta/TOF/E (KeV): 2398 at 2theta/TOF/E(KeV): 2399 at 2 theta/TOF/E (KeV): 2400 at 2 theta/TOF/E (KeV): 2403 at 2theta/TOF/E(KeV): 2404 at 2theta/TOF/E(KeV):
33.6462
33.6849 33.6978 33.7494 33.7623 34.1106 34.2138 34.2396 34.2654 35.2845 35.3232 35.9166 35.9424 35.9553 35.9682 35.9940 36.0456 36.0585 36.0714 36.0843 36.2391 36.2778 37.0389 37.1163 38.1096 38.1870 38.4966 38.5611 38.5740 38.6514 38.6772 38.7030 38.7159 38.8965 38.9868 39.6060 41.8119 41.8248 41.8764 42.4698 42.6117 42.6504 42.6633 42.6891 42.7149 42.7278 42.7665 42.8697 42.8826 42.9213 42.9342 42.9471 42.9858 42.9987

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
\Rightarrow Optimizations for routine tasks applied:
\Rightarrow Calculation mode for patter\#: 1 CM_PSEUDO_VOIGT

Standard deviations have to be multiplied by: 2.6583 (correlated residuals) See references:
-J.F.Berar \& P.Lelann, J. Appl. Cryst. 24, 1-5 (1991)
-J.F.Berar, Acc. in Pow. Diff. II,NIST Sp.Pub. 846, 63(1992)
=> CYCLE No.: 10

$1.00000 \quad 0.00000 \quad 0.00000$

N (2)	0.33383	0.00000	0.00000	0.24622	0.00000	0.00000	0.06392	0.00000	0.00000	2.40240	0.00000	0.00000	\checkmark
$1.00000 \quad 0.00000 \quad 0.00000$													
N (3)	0.30468	0.00000	0.00000	0.46123	0.00000	0.00000	0.06171	0.00000	0.00000	2.59240	0.00000	0.00000	\checkmark
1.000000 .000000 .00000													
N (4)	0.54554	0.00000	0.00000	0.33062	0.00000	0.00000	0.23341	0.00000	0.00000	2.76530	0.00000	0.00000	\checkmark
$1.000000 .00000 \quad 0.00000$													
N (5)	0.38005	0.00000	0.00000	0.19333	0.00000	0.00000	-0.02755	0.00000	0.00000	3.09700	0.00000	0.00000	\swarrow
$1.000000 .00000 \quad 0.00000$													
N (6)	0.35044	0.00000	0.00000	0.55394	0.00000	0.00000	0.00906	0.00000	0.00000	3.43200	0.00000	0.00000	\swarrow
$1.000000 .00000 \quad 0.00000$													
C (1)	0.33877	0.00000	0.00000	0.43604	0.00000	0.00000	0.17023	0.00000	0.00000	2.89510	0.00000	0.00000	\swarrow
$1.00000 \quad 0.00000 \quad 0.00000$													
C (2)	0.38264	0.00000	0.00000	0.20846	0.00000	0.00000	0.14721	0.00000	0.00000	2.70030	0.00000	0.00000	\checkmark
$1.000000 .00000 \quad 0.00000$													
C (3)	0.23896	0.00000	0.00000	0.33552	0.00000	0.00000	0.05796	0.00000	0.00000	2.55740	0.00000	0.00000	\swarrow
$1.000000 .00000 \quad 0.00000$													
H (1A)	0.40289	0.00000	0.00000	0.52403	0.00000	0.00000	0.20773	0.00000	0.00000	5.13220	0.00000	0.00000	\swarrow
$1.00000 \quad 0.00000 \quad 0.00000$													
H (1B)	0.29071	0.00000	0.00000	0.42024	0.00000	0.00000	0.23991	0.00000	0.00000	4.84270	0.00000	0.00000	\imath
1.000000 .000000 .00000													
H (2A)	0.44331	0.00000	0.00000	0.13918	0.00000	0.00000	0.14950	0.00000	0.00000	4.60580	0.00000	0.00000	\checkmark
$1.000000 .00000 \quad 0.00000$													
H (2 B)	0.31742	0.00000	0.00000	0.19390	0.00000	0.00000	0.20730	0.00000	0.00000	4.97430	0.00000	0.00000	\swarrow
$1.000000 .00000 \quad 0.00000$													
H (3A)	0.20936	0.00000	0.00000	0.35364	0.00000	0.00000	-0.02527	0.00000	0.00000	4.50050	0.00000	0.00000	\checkmark
$1.000000 .00000 \quad 0.00000$													
H (3B)	0.17213	0.00000	0.00000	0.32091	0.00000	0.00000	0.10070	0.00000	0.00000	3.92150	0.00000	0.00000	\checkmark
1.000000 .000000 .00000													

==> PROFILE PARAMETERS FOR PATTERN\# 1
\Rightarrow Overall scale factor: $0.000380410 \quad 0.000000000 \quad 0.000000000$
\Rightarrow Eta(p-Voigt) or m(Pearson VII): $0.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Overall tem. factor: 0.0000000 .0000000 .000000
=> Halfwidth parameters:
$0.034153 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Cell parameters:
$11.589819 \quad 0.000000 \quad 0.000000$
$\begin{array}{lll}10.700219 & 0.000000 & 0.000000\end{array}$
$13.173317 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
\Rightarrow Preferred orientation :
$\begin{array}{lll}1.000000 & 0.000000 & 0.000000\end{array}$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Asymmetry parameters:
$0.083780 \quad 0.0000000 .000000$
$0.041530 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> X and Y parameters
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Strain parameters:
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.0000000 .000000 \quad 0.000000$
\Rightarrow Size parameters (G, L) :
$0.010621 \quad 0.000000 \quad 0.000000$
0.047821 -0.000006 0.014780
=> Further shape parameters (S_L and D_L):
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Spherical Harmonics coeff.(size):

$\begin{aligned} & 0.047821 \\ & 0.029142 \end{aligned}$	-0.000006	0.014780	0.072264	-0.000017	0.040111	0.124992	0.000011	\swarrow
$\begin{aligned} & 0.079216 \\ & 0.033870 \end{aligned}$	0.000001	0.041181	0.006204	0.000018	0.040141	0.011800	0.000014	\swarrow
$\begin{aligned} & 0.000000 \\ & 0.000000 \end{aligned}$	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	\swarrow

==> GLOBAL PARAMETERS FOR PATTERN\# 1
\Rightarrow Zero-point: $\quad-0.2646 \quad 0.0000 \quad 0.0000$
=> Background Polynomial Parameters ==>
20303. $236.60 \quad 74.327$
64170. $915.43 \quad 244.22$
$55266 . \quad 790.96 \quad 223.17$
$0.0000 \quad 0.0000 \quad 0.0000$
$\begin{array}{lll}0.0000 & 0.0000 & 0.0000\end{array}$
$\Rightarrow \operatorname{Cos}($ theta)-shift parameter : 0.00000 .00000 .0000
$\Rightarrow \operatorname{Sin}(2 t h e t a)-$ shift parameter : $0.0000 \quad 0.0000 \quad 0.0000$

66	2.368560		. 8										
	10	2	5	4	0.149967	38.039	57.6	58.0	1.712	0.135236	0.027209	0.232800	\checkmark
	2.363609		32.274525										
67	${ }^{1} \quad{ }^{4} .358914$	1	3	8	0.150496	38.118	148.1	151.8	6.447	0.135312	0.028018	0.238495	\checkmark
			64.255211										
68	12	1	5	8	0.151800	38.432	3.0	5.6	7.937	0.135619	0.029797	0.250596	\swarrow
	2.340343	63.099045											
69	11	2	5	8	0.150892	38.853	2.1	4.9	15.308	0.136034	0.027441	0.233313	\checkmark
	2.315939		61.594719										

BRAGG R-Factors and weight fractions for Pattern \# 1
\Rightarrow Phase: 1 rdx
\Rightarrow Bragg R-factor: $7.51 \quad$ Vol: $1633.671(0.000)$ Fract (\%): 100.00(0.00)

SYMBOLIC NAMES AND FINAL VALUES AND SIGMA OF REFINED PARAMETERS:

->	Parameter	number	1	:	L-Size_ph1_pat1	$0.47820579 \mathrm{E}-01($	+/ -	$0.14780403 \mathrm{E}-01$)
->	Parameter	number	2		Size2_ph1_pat1	0.72263569E-01 (+/-	$0.40111270 \mathrm{E}-01$)
->	Parameter	number	3	.	Size3_ph1_pat1	0.12499154	+/-	0.29142125E-01)
->	Parameter	number	4	.	Size4_ph1_pat1	0.79216398E-01	+/-	$0.41180771 \mathrm{E}-01$)
->	Parameter	number	5		Size5_ph1_pat1	$0.62037650 \mathrm{E}-02($	+/ -	$0.40140565 \mathrm{E}-01$)
->	Parameter	number	6	.	Size6_ph1_pat1	0.11800204E-01 (+/-	0.33870187E-01)
->	Parameter	number	7	.	Bck_3_pat1	55265.500 (+/-	223.17101)
->	Parameter	number	8	.	Bck_2_pat1	64169.578	+/-	244.21664)
->	Parameter	number	9	:	Bck_1_pat1	20303.109	+/-	74.326691)
->	Parameter	number	10	.	Bck_0_pat1	564.83319 (+/ -	5.4257102)

\Rightarrow Number of bytes for floating point variables: 4
\Rightarrow Dimensions of dynamic allocated arrays in this run of FullProf:
\Rightarrow Total approximate array memory (dynamic + static): 107719993 bytes

| MaxPOINT $=$ | 60000 Max.num. of points (+int. Inten.)/diffraction pattern |
| :--- | ---: | :--- |
| MaxREFLT $=$ | 20000 Max.num. of reflections/diffraction pattern |
| MaxPARAM $=$ | 300 Max.num. of refinable parameters |
| MaxOVERL $=$ | 2096 Max.num. of overlapping reflections |

\Rightarrow Number of bytes for floating point arrays: 4
\Rightarrow Dimensions of fixed arrays in this release of FullProf:

| NPATT | $=$ | 80 Max.num. of powder diffraction patterns |
| :--- | :--- | ---: | :--- |
| NATS | $=$ | 830 Max.num. of atoms (all kind) in asymmetric unit |
| MPAR | $=$ | 1800 Max.num. of non atomic parameters/phase |
| IEXCL | $=$ | 30 Max.num. of excluded regions |
| IBACP | $=$ | 277 Max.num. of background points for interpolation |
| NPHT | $=$ | 16 Max.num. of phases |
| NMAGM | $=$ | 8 Max.num. of rotation-matrices sets for magnetic structure |
| NBASIS | $=$ | 12 Max.num. of basis functions associated to a single atom |
| NIREPS | $=$ | 9 Max.num. of irreducible representations to be combined |
| N_EQ | $=$ | 384 Max.num. of user-supplied symmetry operators/propagation vectors |
| NGL | $=$ | 300 Max.num. of global parameters/diffraction pattern |
| N_LINC | $=$ | 30 Max.num. of global linear restraints |
| NAT_P | $=$ | 64 Max.num. of atomic parameters per atom |
| NCONST | $=$ | 500 Max.num. of slack constraints per phase |
| N_SPE | $=$ | 16 Max.num. of different chemical species |
| N_FORM | $=$ | 60 Max.num. of scattering factor values in a table |
| NPR | $=$ | 150 Max.num. of points defining a numerical profile |
| INPR | $=$ | 25 Max.num. of different numerical peak shapes |
| NPRC | $=$ | 150 Max.num. of terms in the table for correcting intensities |
| NSOL | $=10$ Max.num. of solutions to be stored in Montecarlo searchs | |

CPU Time: $\quad 6.805$ seconds
0.113 minutes
\Rightarrow Run finished at: Date: 15/06/2015 Time: 14:26:36.221

A. 6 Sample of n-RDX with $1 \mathrm{wt} \%$ of PVP through a 80 micron nozzle

[^2]```
Date: 20/02/2015 Time: 16:02:20.266
=> PCR file code: rpvp1_80_2a_woB_stillKa2_fullprof
=> DAT file code: rpvp1_80_2a_woB_stil -> Relative contribution: 1.0000
==> CONDITIONS OF THIS RUN FOR PATTERN No.: 1
=> Global Refinement of X-ray powder diffraction data
=> Global Refinement of X-ray powder diffraction data
Flat plate with PSD
=> Title:RDX
=> Number of phases: 1
=> Number of excluded regions: 0
=> Number of scattering factors supplied: 0
=> March-Dollase model for preferred orientation
=> Conventional weights: w=1.0/Variance(yobs)
=> Asymmetry correction as in J.Appl.Cryst. 26,128(1993)
=> Background linearly interpolated between the 2 points given
=> The 5th default profile function was selected
=> Pseudo-Voigt function (ETA variable)
X-parameter correspond to: ETA=ETAO +X*2theta
pV}(\textrm{x})=\textrm{ETA}*\textrm{L}(\textrm{x})+(1-\textrm{ETA})*G(x
==> INPUT/OUTPUT OPTIONS:
=> Generate file *.PRF for plot
=> Output Integrated Intensities
=> Generate new input file *.PCR
=> Data supplied in free format for pattern: 1
> Plot pattern at each cycle
=> Wavelengths: 1.54056 1.54439
=> Alpha2/Alpha1 ratio: 0.5000
C Cos(Monochromator angle)= 1.0000
> Asymmetry correction for angles lower than 90.000 degrees
> Absorption correction (AC), muR-eff = 0.0000 0.0000
=> Base of peaks: 2.0*HW* 20.00
> Number of cycles: 50
=> Relaxation factors ==> for coordinates: 1.00
=> for anisotropic temperature factors: 1.00
=> for halfwidth/strain/size parameters: 1.00
> for lattice constants and propagation vectors: 1.00
=> EPS-value for convergence: 0.0
=> Instrumental Resolution read from file: xray-res.irf
=> Title of data: Approximate resolution function of a conventional X-ray diffractometer CuKalpha1,2
=> The resolution function is IRESOL: 1 for profile function # 5
Input resolution parameters:
\begin{tabular}{llllll}
U-inst & V-inst & W-inst & X-inst & Y-inst & Z-inst \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000 \\
0.00136 & -0.00500 & 0.00391 & 0.06389 & 0.00008 & 0.00000
\end{tabular}
=> Number of Least-Squares parameters varied: 6
=>--------------------------->
=>-------> PATTERN number: 1
>>--------------------------------
=> Global parameters and codes ==>
=> Zero-point: -0.0558 0.0000
=> Displacement peak-shift parameter and code: -0.12 11.00
Transparency peak-shift parameter and code:
=> Reading Intensity data =>>
==> Angular range, step and number of points:
2Thmin: 12.000000 2Thmax: 38.784801 Step: 0.012900 No. of points: 2077
=> Phase No. 1
rdx
=>-------> Pattern# 1
=> Crystal Structure Refinement
> The 7th profile function was selected for phase no. 1
=> Preferred orientation vector: 0.0000 0.0000 1.0000
=>-------> Data for PHASE: 1
=> Number of atoms: 21
=> Number of distance constraints: 0
=> Number of angle constraints: 0
=> Symmetry information on space group: P b c a
-> The multiplicity of the general position is: 8
-> The space group is Centric (-1 at origin)
-> Lattice type P: { 000 }
-> Reduced set of symmetry operators:
```

| No. IT | Symmetry symbol |  | Rotation part | Associated Translation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1: ( 1) | 1 | --> | ( x, y, z) + \{ | 0.0000 | 0.0000 | $0.0000\}$ |
| 2: ( 4) | 2 ( $\mathrm{x}, 0$ | , 0) | x,-y,-z) + \{ | 0.5000 | 0.5000 | $0.0000\}$ |
| 3: ( 3) | 2 ( 0, y | , 0) | (-x, y,-z) + \{ | 0.0000 | 0.5000 | $0.5000\}$ |
| 4: ( 2 ) | 2 ( 0, 0 | , z) -- | (-x,-y, z) + \{ | 0.5000 | 0.0000 | $0.5000\}$ |


$\Rightarrow$ IT IS ASSUMED THAT THE FIRST GIVEN SITE IS FULLY OCCUPIED
or the first and second atoms are in the same site with total full occupation
(If this is not the case, change the order of atoms to obtain correct values for the content of the unit cell)
The given occupation factors have been obtained mutiplying m/m by 1.0000
$\rightarrow$ Atom: 0, Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994
-> Atom: 0 , Chemical element: 0 Atomic Mass: 15.9994

=>-------> PROFILE PARAMETERS FOR PATTERN: 1


S_L is source width/detector distance
D_L is detector width/detector distance
$==>$ CODEWORDS FOR PROFILE PARAMETERS of PATTERN\# 1
$\Rightarrow$ Overall scale factor: 0.000
$\Rightarrow$ ETA (p-Voigt) OR M (Pearson VII): 0.000
$\Rightarrow$ Overall temperature factor: 0.000
$\begin{array}{lllll}\Rightarrow H a l f w i d t h ~ U, V, W: & 21.000 & 0.000 & 0.000\end{array}$
$\Rightarrow X$ and Y parameters: 0.0000 .000
$\begin{array}{lllllllll}\Rightarrow & \text { Direct cell parameters: } & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$
$\begin{array}{llll}\Rightarrow & P r e f e r r e d ~ o r i e n t a t i o n ~ p a r a m e t e r s: ~ & 0.000 & 0.000\end{array}$
$\begin{array}{lllllll}\Rightarrow \text { Asymmetry parameters } & : & 41.000 & 61.000 & 0.000 & 0.000\end{array}$
$\begin{array}{lllll}\Rightarrow \text { Strain parameters } & : & 0.000 & 0.000 & 0.000\end{array}$
=> Size parameters : 51.000 0.000
$=>$ The 18 th model for size is used
$\Rightarrow$ Orthorhombic Anisotropic Broadening using Spherical Harmonics up
to 4-th order (Laue class: mmm, SPG:16-74, only lorentzian comp.)
Ylm's up to 4 th order: YOO,Y20, Y22+,Y40, Y42+,Y44+
RJP - Ref: M. Jarvinen, J. Appl. C. (1993), p. 527
$\Rightarrow$ Coefficients of Spherical Harmonics for anisotropic size
broadening for an orthorhombic lattice

| Y00 | Y20 | Y22 | Y40 | Y42+ | Y44+ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.052419 | 0.087274 | 0.142427 | 0.127726 | -0.069125 | -0.017749 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

$=>$ Cell constraints according to Laue symmetry: mmm
Metric information:
=> Direct cell parameters:
$\begin{array}{lllll}\mathrm{a}= & 11.6304 & \mathrm{~b}= & 10.7431 & \mathrm{c}= \\ 13.2279\end{array}$
alpha $=\begin{aligned} & 90.000 \quad \text { beta }= 90.000 \quad \text { gamma }= \\ & 90.000\end{aligned}$
Direct Cell Volume $=1652.7814$
=> Reciprocal cell parameters:
$\mathrm{a} *=0.085981 \quad \mathrm{~b} *=\quad 0.093083 \quad \mathrm{c} *=0.075598$

| $\mathrm{alpha} *=$ | $90.000 \quad$ beta $*=\quad 90.000 \quad$ gamma* $=\quad 90.000$ |
| :--- | :--- |

Reciprocal Cell Volume $=0.00060504$
$\Rightarrow$ Direct and Reciprocal Metric Tensors:

GD

| GD | GR |  |  |  | GR |
| :--- | ---: | ---: | :---: | ---: | :--- |
| 135.2666 | 0.0000 | 0.0000 | 0.007393 | 0.000000 | 0.000000 |
| 0.0000 | 115.4133 | 0.0000 | 0.000000 | 0.008665 | 0.000000 |
| 0.0000 | 0.0000 | 174.9783 | 0.000000 | 0.000000 | 0.005715 |


Crystal_to_Orthonormal_Matrix Cr_Orth_cel

| Cr_Orth_cel |  |  |
| :--- | ---: | ---: |
| 11.6304 | 0.0000 | 0.0000 |
| 0.0000 | 10.7431 | 0.0000 |
| 0.0000 | 0.0000 | 13.2279 |

Busing-Levy $B$-matrix: $H c=B . H$ BL_M

$\Rightarrow X$-ray scattering coeff. (A1, B1, A2, ..C, f(0), Z, Dfp,Dfpp)

| 0 | $\begin{aligned} & 3.0485 \\ & 0.0320 \end{aligned}$ | 13.2771 | 2.2868 | 5.7011 | 1.5463 | 0.3239 | 0.8670 | 32.9089 | 0.2508 | 7.9994 | 8.0000 | 0.0470 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | $\begin{aligned} & 12.2126 \\ & 0.0180 \end{aligned}$ | 0.0057 | 3.1322 | 9.8933 | 2.0125 | 28.9975 | 1.1663 | 0.5826 | -11.5290 | 6.9946 | 7.0000 | 0.0290 |
| C | $\begin{aligned} & 2.3100 \\ & 0.0090 \end{aligned}$ | 20.8439 | 1.0200 | 10.2075 | 1.5886 | 0.5687 | 0.8650 | 51.6512 | 0.2156 | 5.9992 | 6.0000 | 0.0170 |
| H | $\begin{aligned} & 0.4930 \\ & 0.0000 \end{aligned}$ | 10.5109 | 0.3229 | 26.1257 | 0.1402 | 3.1424 | 0.0408 | 57.7997 | 0.0030 | 1.0000 | 1.0000 | 0.0000 |

SYMBOLIC NAMES AND INITIAL VALUES OF PARAMETERS TO BE VARIED:
-> Parameter number
-> Symbolic Name:

| SyCos_pat1 | -0.12224000 |
| ---: | :--- |
| U-Cagl_ph1_pat1 | $-0.32860001 \mathrm{E}-02$ |
| SySin_pat1 | 0.24594000 |
| Asym1_ph1_pat1 | $0.50910000 \mathrm{E}-01$ |
| G-Size_ph1_pat1 | $0.90079997 \mathrm{E}-02$ |
| Asym2_ph1_pat1 | $0.49320001 \mathrm{E}-01$ |

=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.

1 at 2theta/TOF/E(KeV) 2 at 2 theta/TOF/E (KeV): 5 at 2 theta/TOF/E (KeV): 8 at 2 theta/TOF/E (KeV) 12 at 2 theta/TOF/E (KeV): 13 at 2 theta/TOF/E (KeV): 14 at 2 theta/TOF/E (KeV): 15 at 2 theta/TOF/E (KeV) : 16 at 2 theta/TOF/E (KeV) : 19 at 2 theta/TOF/E (KeV): 22 at 2theta/TOF/E(KeV): 28 at 2 theta/TOF/E (KeV) : 35 at 2 theta/TOF/E (KeV) 36 at 2 theta/TOF/E (KeV) : 37 at 2 theta/TOF/E (KeV) : 38 at 2 theta/TOF/E (KeV): 41 at 2 theta/TOF/E (KeV): 119 at 2 theta/TOF/E $(\mathrm{KeV})$ : 125 at 2 theta/TOF/E (KeV): 126 at 2theta/TOF/E(KeV): 127 at 2 theta/TOF/E (KeV): 133 at 2 theta/TOF/E (KeV) : 137 at 2 theta/TOF/E (KeV) 139 at 2 theta/TOF/E(KeV): 144 at 2 theta/TOF/E (KeV): 147 at 2 theta/TOF/E (KeV): 150 at 2 theta/TOF/E (KeV): 157 at 2 theta/TOF/E (KeV) : 159 at 2 theta/TOF/E (KeV): 161 at 2 theta/TOF/E (KeV): 162 at 2 theta/TOF/E (KeV): 164 at 2 theta/TOF/E (KeV) 169 at 2 theta/TOF/E (KeV): 170 at 2theta/TOF/E(KeV): 174 at 2 theta/TOF/E (KeV): 177 at 2 theta/TOF/E (KeV): 179 at 2 theta/TOF/E (KeV) 182 at 2 theta/TOF/E (KeV): 187 at 2 theta/TOF/E (KeV) : 189 at 2 theta/TOF/E (KeV): 194 at 2theta/TOF/E(KeV) :

| 12.0000 | Intensity | fixed | 1.0 and | variance | 1 E 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12.0129 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 12.0516 | Intensity | fixed to | 1.0 and | variance | 1 E6 |
| 12.0903 | Intensity | fixed to | 1.0 and | c | to 1E6 |
| 12.1419 | Intensity | fixed | 1.0 and | variance | - 1E6 |
| 12.1548 | Intensity | fixed | 1.0 and |  | 1 E 6 |
| 12.1677 | Intensity | fixed | 1.0 | variance | 1E6 |
| 12.1806 | Intensity | fixed to | 1.0 and | variance | 1 E 6 |
| 12.1935 | Intensity | fixed to | 1.0 and | variance | 1 E 6 |
| 12.2322 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 12.2709 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 12.3483 | Intensity | fixed to | 1.0 and | ce | - 1E6 |
| 12.4386 | Intensity | fixed | 1.0 an | variance | 1 E 6 |
| 12.4515 | Intensity | fixed | 1.0 and | variance | 1E6 |
| 12.4644 | Intensity | fixed to | 1.0 and | variance | 1 E 6 |
| 12.4773 | Intensity | fixed to | 1.0 and | variance | 1E6 |
| 12.5160 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 13.5222 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 13.5996 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 13.6125 | Intensity | fixed to | 1.0 and | variance | 1 E 6 |
| 13.6254 | Intensity | fixed | 1.0 and | variance | - 1E6 |
| 13.7028 | Intensity | fixed | 1.0 and | variance | 1 E 6 |
| 13.7544 | Intensity | fixed | 1.0 and | variance | 1 E 6 |
| 13.7802 | Intensity | fixed to | 1.0 and | variance | 1 E 6 |
| 13.8447 | Intensity | fixed to | 1.0 an | variance | 1 E 6 |
| 13.8834 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 13.9221 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.0124 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.0382 | Intensity | fixed | 1.0 and | e | 1E6 |
| 14.0640 | Intensity | fixed to | 1.0 and | variance | 1 E 6 |
| 14.0769 | Intensity | fixed to | 1.0 and | variance | 1 E 6 |
| 14.1027 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.1672 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.1801 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.2317 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.2704 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.2962 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.3349 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.3994 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.4252 | Intensity | fixed to | 1.0 and | variance | to 1E6 |
| 14.4897 | Intensity | fixed to | 1.0 and | variance | to 1E6 |

$\Rightarrow$ Zero counts at step no. $\Rightarrow$ Zero counts at step no.
=> Zero counts at step no. $\Rightarrow$ Zero counts at step no. $\Rightarrow$ Zero counts at step no. $\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.

195 at 2theta/TOF/E(KeV)
198 at 2theta/TOF/E(KeV) 199 at 2theta/TOF/E(KeV): 200 at 2 theta/TOF/E(KeV): 207 at 2theta/TOF/E(KeV): 208 at 2 theta/TOF/E(KeV): 210 at 2 theta/TOF/E(KeV): 211 at 2theta/TOF/E(KeV) 213 at 2 theta/TOF/E(KeV): 216 at 2 theta/TOF/E(KeV) 217 at 2 theta/TOF/E(KeV): 218 at 2theta/TOF/E(KeV): 224 at 2theta/TOF/E(KeV): 225 at 2 theta/TOF/E(KeV): 226 at 2 theta/TOF/E(KeV): 228 at 2 theta/TOF/E(KeV): 229 at 2theta/TOF/E(KeV): 232 at 2 theta/TOF/E(KeV): 234 at 2theta/TOF/E(KeV): 235 at 2 theta/TOF/E(KeV): 237 at 2theta/TOF/E(KeV): 274 at 2theta/TOF/E(KeV): 277 at 2 theta/TOF/E(KeV): 280 at 2 theta/TOF/E(KeV) 282 at 2 theta/TOF/E(KeV): 285 at 2theta/TOF/E(KeV): 286 at 2 theta/TOF/E(KeV): 287 at 2 theta/TOF/E(KeV): 288 at 2 theta/TOF/E (KeV) : 289 at 2 theta/TOF/E(KeV): 291 at 2theta/TOF/E(KeV): 292 at 2theta/TOF/E(KeV): 293 at 2 theta/TOF/E (KeV): 294 at 2 theta/TOF/E(KeV): 296 at 2 theta/TOF/E(KeV): 298 at 2theta/TOF/E(KeV): 301 at 2theta/TOF/E(KeV): 302 at 2 theta/TOF/E(KeV): 303 at 2 theta/TOF/E (KeV) 306 at 2theta/TOF/E(KeV): 307 at 2 theta/TOF/E(KeV): 311 at 2 theta/TOF/E(KeV): 318 at 2 theta/TOF/E(KeV) 322 at 2 theta/TOF/E(KeV): 323 at 2theta/TOF/E(KeV): 325 at 2theta/TOF/E(KeV): 326 at 2 theta/TOF/E(KeV): 355 at 2 theta/TOF/E(KeV) 357 at 2 theta/TOF/E(KeV) 358 at 2theta/TOF/E(KeV): 362 at 2theta/TOF/E(KeV): 365 at 2 theta/TOF/E(KeV): 368 at 2 theta/TOF/E(KeV): 369 at 2theta/TOF/E(KeV): 372 at 2theta/TOF/E(KeV): 373 at 2theta/TOF/E(KeV): 375 at 2 theta/TOF/E (KeV): 376 at 2 theta/TOF/E(KeV) 377 at 2theta/TOF/E(KeV) 378 at 2theta/TOF/E(KeV): 379 at 2 theta/TOF/E(KeV): 380 at 2 theta/TOF/E(KeV) 383 at 2theta/TOF/E(KeV): 385 at 2theta/TOF/E(KeV): 386 at 2theta/TOF/E(KeV): 387 at 2 theta/TOF/E(KeV): 461 at 2 theta/TOF/E(KeV) 466 at 2 theta/TOF/E(KeV): 467 at 2theta/TOF/E(KeV): 468 at 2theta/TOF/E(KeV): 472 at 2 theta/TOF/E (KeV): 474 at 2theta/TOF/E(KeV) 475 at 2 theta/TOF/E(KeV): 476 at 2 theta/TOF/E(KeV): 477 at 2 theta/TOF/E(KeV): 478 at 2theta/TOF/E(KeV): 483 at 2theta/TOF/E(KeV): 484 at 2theta/TOF/E(KeV): 489 at 2theta/TOF/E(KeV): 492 at 2 theta/TOF/E(KeV): 493 at 2 theta/TOF/E(KeV) 495 at 2theta/TOF/E(KeV): 498 at 2theta/TOF/E(KeV): 519 at 2theta/TOF/E(KeV): 521 at 2 theta/TOF/E(KeV): 522 at 2 theta/TOF/E(KeV): 538 at 2theta/TOF/E(KeV): 545 at 2theta/TOF/E(KeV): 564 at 2 theta/TOF/E(KeV) 668 at 2 theta/TOF/E(KeV):
14.5026 4.5413 14.5542 14.5671 14.6574 14.6703 14.6961 14.7090 14.7348 14.7735 14.7864 14.7993 14.8767 14.8896 14.9025 14.9283 14.9412 14.9799 15.0057 15.0186
15.0444
15.5217
15.5604
15.5991
15.6249
15.6636 15.6765 15.6894 15.7023
15.7152 15.7410 15.7539 15.7668 15.7797
15.8055
15.8313 15.8700 15.8829 5.8958 15.9345 15.9474 15.9990 16.0893
16.1409
16.1538
16.1796 16.1925 16.5666
16.5924
16.6053 16.6569 16.6956 16.7343 16.7472 16.7859 16.7988 16.8246 16.8375
16.8504 16.8633 16.8762 16.8891
16.9278
16.9536
16.9665 16.9794 17.9340
17.9985
18.0114
18.0243 18.0759
8.1017
18.1146 18.1275 18.1404 18.1533 18.2178 18.2307 18.2952 18.3339 18.3468 18.3726 18.4113 18.6822 18.7080 18.7209 18.9273 19.0176 19.2627
20.6043

Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
$\Rightarrow$ Zero counts at step no. $\Rightarrow$ Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. => Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
$\Rightarrow$ Zero counts at step no.

671 at 2 theta/TOF/E(KeV) 674 at 2theta/TOF/E(KeV): 678 at 2 theta/TOF/E(KeV): 679 at 2 theta/TOF/E(KeV): 682 at 2 theta/TOF/E(KeV): 684 at 2 theta/TOF/E(KeV): 687 at 2 theta/TOF/E(KeV): 688 at 2theta/TOF/E(KeV): 690 at 2 theta/TOF/E(KeV): 694 at 2 theta/TOF/E(KeV) 697 at 2 theta/TOF/E(KeV): 698 at 2theta/TOF/E(KeV): 701 at 2 theta/TOF/E(KeV): 705 at 2 theta/TOF/E(KeV): 728 at 2 theta/TOF/E(KeV) : 732 at 2 theta/TOF/E(KeV): 734 at 2 theta/TOF/E(KeV): 736 at 2 theta/TOF/E(KeV): 737 at 2 theta/TOF/E(KeV): 738 at 2 theta/TOF/E(KeV) 739 at 2theta/TOF/E(KeV): 740 at 2theta/TOF/E(KeV): 741 at 2 theta/TOF/E(KeV): 742 at 2 theta/TOF/E(KeV) 743 at 2 theta/TOF/E(KeV): 744 at 2theta/TOF/E(KeV): 748 at 2theta/TOF/E(KeV): 786 at 2 theta/TOF/E(KeV): 787 at 2 theta/TOF/E (KeV) : 791 at 2 theta/TOF/E(KeV): 793 at 2theta/TOF/E(KeV): 794 at 2theta/TOF/E(KeV): 795 at 2 theta/TOF/E (KeV): 796 at 2 theta/TOF/E(KeV): 798 at 2 theta/TOF/E(KeV): 836 at 2theta/TOF/E(KeV): 839 at 2 theta/TOF/E(KeV): 841 at 2theta/TOF/E(KeV): 842 at 2 theta/TOF/E (KeV) 843 at 2 theta/TOF/E(KeV): 847 at 2 theta/TOF/E(KeV): 867 at 2 theta/TOF/E(KeV): 868 at 2 theta/TOF/E(KeV) 873 at 2 theta/TOF/E(KeV): 904 at 2theta/TOF/E(KeV): 905 at 2 theta/TOF/E(KeV): 906 at 2 theta/TOF/E(KeV): 907 at 2 theta/TOF/E(KeV): 909 at 2theta/TOF/E(KeV): 914 at 2theta/TOF/E(KeV): 920 at 2 theta/TOF/E(KeV): 921 at 2 theta/TOF/E(KeV): 922 at 2 theta/TOF/E(KeV) 931 at 2 theta/TOF/E(KeV): 933 at 2theta/TOF/E(KeV): 934 at 2theta/TOF/E(KeV): 936 at 2theta/TOF/E(KeV): 938 at 2 theta/TOF/E(KeV) 940 at 2 theta/TOF/E(KeV): 941 at 2theta/TOF/E(KeV): 947 at 2 theta/TOF/E(KeV): 950 at 2 theta/TOF/E(KeV) 955 at 2 theta/TOF/E(KeV): 1219 at 2theta/TOF/E(KeV): 1221 at 2 theta/TOF/E(KeV): 1225 at 2theta/TOF/E(KeV): 1232 at 2 theta/TOF/E(KeV) : 1235 at 2 theta/TOF/E(KeV): 1240 at 2 theta/TOF/E(KeV): 1243 at 2theta/TOF/E(KeV): 1249 at 2 theta/TOF/E(KeV): 1251 at 2 theta/TOF/E(KeV): 1262 at 2 theta/TOF/E(KeV): 1263 at 2theta/TOF/E(KeV): 1266 at 2 theta/TOF/E(KeV): 1269 at 2theta/TOF/E(KeV): 1279 at 2 theta/TOF/E(KeV): 1369 at 2theta/TOF/E(KeV): 1374 at 2 theta/TOF/E(KeV): 1380 at 2 theta/TOF/E(KeV): 1381 at 2theta/TOF/E(KeV): 1387 at 2 theta/TOF/E(KeV): 1388 at 2theta/TOF/E(KeV): 1390 at 2 theta/TOF/E(KeV): 1393 at 2theta/TOF/E(KeV): 1396 at 2 theta/TOF/E(KeV): 1397 at 2 theta/TOF/E(KeV): 1400 at 2 theta/TOF/E(KeV): 1401 at 2 theta/TOF/E(KeV): 1496 at 2theta/TOF/E(KeV):
20.6430 20.6817 20.7333 20.7462 20.7849 20.8107 20.8494 20.8623 20.8881 20.9397 20.9784 20.9913 21.0300 21.0816 21.3783 21.4299 21.4557 21.4815 21.4944 21.5073 21.5202 21.5331 21.5460 21.5589 21.5718 21.5847 21.6363 22.1265 22.1394 22.1910 22.2168 22.2297 22.2426 22.2555 22.2813 22.7715 22.8102 22.8360 22.8489 22.8618 22.9134 23.1714 23.1843 23 . 2488 23.6487 23.6616 23.6745 23.6874 23.7132 23.7777 23.8551 23.8680 23.8809 23.9970 24.0228 24.0357 24.0615 24.0873 24.1131 24.1260 24.2034 24.2421 24.3066 27.7122 27.7380 27.7896 27.8799 27.9186 27.9831 28.0218 28.0992 28.1250 28.2669 28.2798 28.3185 28.3572 28.4862 29.6472 29.7117 29.7891 29.8020 29.8794 29.8923 29.9181 29.9568 29.9955 30.0084 30.0471
30.0600
31.2855

Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to $1 E 6$ Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6 Intensity fixed to 1.0 and variance to 1 E 6
$\Rightarrow$ Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. $\Rightarrow$ Zero counts at step no.
=> Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. $\Rightarrow$ Zero counts at step no. => Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. $\Rightarrow$ Zero counts at step no. => Zero counts at step no. $\Rightarrow$ Zero counts at step no. => Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
$\Rightarrow$ Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.
=> Zero counts at step no.

1617 at 2 theta/TOF/E(KeV) 1621 at 2 theta/TOF/E(KeV) : 1667 at 2 theta/TOF/E(KeV): 1669 at 2theta/TOF/E(KeV): 1671 at 2 theta/TOF/E(KeV): 1682 at 2theta/TOF/E(KeV): 1684 at 2 theta/TOF/E(KeV): 1687 at 2 theta/TOF/E(KeV): 1690 at 2 theta/TOF/E(KeV): 1691 at 2 theta/TOF/E(KeV): 1693 at 2 theta/TOF/E(KeV): 1696 at 2 theta/TOF/E(KeV): 1700 at 2 theta/TOF/E(KeV): 1724 at 2 theta/TOF/E(KeV): 1726 at 2 theta/TOF/E(KeV): 1727 at 2 theta/TOF/E(KeV): 1731 at 2 theta/TOF/E(KeV): 1732 at 2 theta/TOF/E(KeV): 1735 at 2theta/TOF/E(KeV): 1738 at 2 theta/TOF/E(KeV): 1739 at 2theta/TOF/E(KeV): 1816 at 2 theta/TOF/E(KeV): 1818 at 2 theta/TOF/E(KeV): 1819 at 2 theta/TOF/E(KeV): 1820 at 2 theta/TOF/E(KeV): 1856 at 2theta/TOF/E(KeV): 1861 at 2theta/TOF/E(KeV): 1862 at 2 theta/TOF/E(KeV): 1870 at 2 theta/TOF/E(KeV): 1873 at 2 theta/TOF/E(KeV): 1875 at 2 theta/TOF/E(KeV): 1878 at 2theta/TOF/E(KeV): 1879 at 2 theta/TOF/E (KeV): 1881 at 2 theta/TOF/E(KeV): 1883 at 2theta/TOF/E(KeV): 1884 at 2 theta/TOF/E(KeV): 1888 at 2 theta/TOF/E(KeV): 1947 at 2 theta/TOF/E(KeV): 1953 at 2theta/TOF/E(KeV): 1959 at 2 theta/TOF/E(KeV): 1962 at 2 theta/TOF/E(KeV): 1963 at 2theta/TOF/E(KeV): 1965 at 2 theta/TOF/E(KeV): 2041 at 2 theta/TOF/E (KeV): 2042 at 2theta/TOF/E(KeV): 2043 at 2theta/TOF/E(KeV): 2045 at 2 theta/TOF/E(KeV): 2047 at 2 theta/TOF/E(KeV): 2050 at 2 theta/TOF/E(KeV): 2057 at 2theta/TOF/E(KeV): 2059 at 2theta/TOF/E(KeV): 2062 at 2 theta/TOF/E (KeV): 2066 at 2 theta/TOF/E(KeV): 2068 at 2theta/TOF/E(KeV): 2071 at 2theta/TOF/E(KeV): 2074 at 2 theta/TOF/E(KeV) : 2075 at 2 theta/TOF/E(KeV): 2076 at 2 theta/TOF/E(KeV):
32.8464 32.8980 33.4914 33.5172 33.5430 33.6849 33.7107 33.7494 33.7881 33.8010 33.8268 33.8655 33.9171 34.2267 34.2525 34.2654 34.3170 34.3299 34.3686 34.4073 34.4202 35.4135 35.4393 35.4522 35.4651 35.9295 35.9940 36.0069 36.1101 36.1488 36.1746 36.2133 36.2262 36.2520 36.2778 36.2907 36.3423 37.1034 37.1808 37.2582 37.2969 37.3098 37.3356 38.3160 38.3289 38.3418 38.3676 38.3934 38.4321 38.5224 38.5482 38.5869 38.6385 38.6643 38.7030 38.7417 38.7546 Intensity fixed to 1.0 and variance to 1 E 6 38.7675 Intensity fixed to 1.0 and variance to 1 E 6
$\Rightarrow$ Optimizations for routine tasks applied:
$\Rightarrow$ Calculation mode for patter\#: 1 CM_PSEUDO_VOIGT

Standard deviations have to be multiplied by: 4.9699 (correlated residuals) See references:
-J.F.Berar \& P.Lelann, J. Appl. Cryst. 24, 1-5 (1991)
-J.F.Berar, Acc. in Pow. Diff. II,NIST Sp.Pub. 846, 63(1992)

```
=> CYCLE No.: 17
```

$\Rightarrow$ Convergence reached at this CYCLE !!!!
$\Rightarrow$ Parameter shifts set to zero
=> Phase 1 Name: rdx
$\Rightarrow$ New parameters, shifts, and standard deviations

| Atom | x | dx | sx | y | dy | sy | z | dz | sz | B | dB | sB | occ. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| docc. socc. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O(1) | 0.56846 | 0.00000 | 0.00000 | 0.43427 | 0.00000 | 0.00000 | 0.26465 | 0.00000 | 0.00000 | 3.70830 | 0.00000 | 0.00000 | $\swarrow$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O(2) | 0.59453 | 0.00000 | 0.00000 | 0.24040 | 0.00000 | 0.00000 | 0.23053 | 0.00000 | 0.00000 | 4.41110 | 0.00000 | 0.00000 | $\swarrow$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O(3) | 0.47340 | 0.00000 | 0.00000 | 0.13880 | 0.00000 | 0.00000 | -0.02250 | 0.00000 | 0.00000 | 4.98480 | 0.00000 | 0.00000 | $\swarrow$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O(4) | 0.35580 | 0.00000 | 0.00000 | 0.24950 | 0.00000 | 0.00000 | -0.11238 | 0.00000 | 0.00000 | 4.76640 | 0.00000 | 0.00000 | $\imath$ |

1.000000 .000000 .00000

| O(5) | 0.31810 | 0.00000 | 0.00000 | 0.53030 | 0.00000 | 0.00000 | -0.06806 | 0.00000 | 0.00000 | 5.32170 | 0.00000 | 0.00000 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O(6) | 0.42860 | 0.00000 | 0.00000 | 0.60110 | 0.00000 | 0.00000 | 0.04920 | 0.00000 | 0.00000 | 5.10850 | 0.00000 | 0.00000 | ? |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N(1) | 0.43638 | 0.00000 | 0.00000 | 0.33385 | 0.00000 | 0.00000 | 0.17584 | 0.00000 | 0.00000 | 2.73980 | 0.00000 | 0.00000 | $\downarrow$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N (2) | 0.32231 | 0.00000 | 0.00000 | 0.23197 | 0.00000 | 0.00000 | 0.05389 | 0.00000 | 0.00000 | 2.40240 | 0.00000 | 0.00000 | $\prec$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N (3) | 0.29900 | 0.00000 | 0.00000 | 0.45348 | 0.00000 | 0.00000 | 0.08838 | 0.00000 | 0.00000 | 2.59240 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N (4) | 0.53777 | 0.00000 | 0.00000 | 0.33516 | 0.00000 | 0.00000 | 0.22628 | 0.00000 | 0.00000 | 2.76530 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N(5) | 0.38834 | 0.00000 | 0.00000 | 0.20759 | 0.00000 | 0.00000 | -0.03308 | 0.00000 | 0.00000 | 3.09700 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N (6) | 0.35299 | 0.00000 | 0.00000 | 0.52971 | 0.00000 | 0.00000 | 0.01650 | 0.00000 | 0.00000 | 3.43200 | 0.00000 | 0.00000 | $\checkmark$ |
| $1.00000 \quad 0.000000 .00000$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C (1) | 0.35799 | 0.00000 | 0.00000 | 0.43950 | 0.00000 | 0.00000 | 0.18450 | 0.00000 | 0.00000 | 2.89510 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C (2) | 0.38140 | 0.00000 | 0.00000 | 0.21557 | 0.00000 | 0.00000 | 0.14950 | 0.00000 | 0.00000 | 2.70030 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C (3) | 0.24458 | 0.00000 | 0.00000 | 0.33936 | 0.00000 | 0.00000 | 0.05038 | 0.00000 | 0.00000 | 2.55740 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H (1A) | 0.40289 | 0.00000 | 0.00000 | 0.52403 | 0.00000 | 0.00000 | 0.20773 | 0.00000 | 0.00000 | 5.13220 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H(1B) | 0.29071 | 0.00000 | 0.00000 | 0.42024 | 0.00000 | 0.00000 | 0.23991 | 0.00000 | 0.00000 | 4.84270 | 0.00000 | 0.00000 | $\swarrow$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H (2A) | 0.44331 | 0.00000 | 0.00000 | 0.13918 | 0.00000 | 0.00000 | 0.14950 | 0.00000 | 0.00000 | 4.60580 | 0.00000 | 0.00000 | $\checkmark$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H (2B) | 0.31742 | 0.00000 | 0.00000 | 0.19390 | 0.00000 | 0.00000 | 0.20730 | 0.00000 | 0.00000 | 4.97430 | 0.00000 | 0.00000 | 2 |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H (3A) | 0.20936 | 0.00000 | 0.00000 | 0.35364 | 0.00000 | 0.00000 | -0.02527 | 0.00000 | 0.00000 | 4.50050 | 0.00000 | 0.00000 | $\imath$ |
| 1.000000 .000000 .00000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H (3B) | 0.17213 | 0.00000 | 0.00000 | 0.32091 | 0.00000 | 0.00000 | 0.10070 | 0.00000 | 0.00000 | 3.92150 | 0.00000 | 0.00000 | $\checkmark$ |
|  | 0000.00 | 0000 | 000 |  |  |  |  |  |  |  |  |  |  |

==> PROFILE PARAMETERS FOR PATTERN\# 1
$\begin{array}{llll}\Rightarrow \text { Overall scale factor: } \quad 0.000484280 & 0.000000000 & 0.000000000\end{array}$
$\Rightarrow$ Eta(p-Voigt) or m(Pearson VII): 0.0000000 .0000000 .000000
=> Overall tem. factor: 0.0000000 .0000000 .000000
=> Halfwidth parameters:
$\begin{array}{lll}-0.021873 & 0.000000 \quad 0.008126\end{array}$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Cell parameters:
$\begin{array}{lll}11.630419 & 0.000000 & 0.000000\end{array}$
$10.743058 \quad 0.000000 \quad 0.000000$
$13.227938 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
$90.000000 \quad 0.000000 \quad 0.000000$
=> Preferred orientation:
$1.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Asymmetry parameters:
$0.016548 \quad 0.000000 \quad 0.022682$
$0.042495 \quad 0.000000 \quad 0.004085$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> X and Y parameters :
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Strain parameters:
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
=> Size parameters (G,L):
$0.009841 \quad 0.000000 \quad 0.000166$
$0.052419 \quad 0.000000 \quad 0.000000$
=> Further shape parameters (S_L and D_L):
$0.000000 \quad 0.000000 \quad 0.000000$
$0.000000 \quad 0.000000 \quad 0.000000$
$\Rightarrow$ Spherical Harmonics coeff.(size):

| $\begin{aligned} & 0.052419 \\ & 0.000000 \end{aligned}$ | 0.000000 | 0.000000 | 0.087274 | 0.000000 | 0.000000 | 0.142427 | 0.000000 | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0.127726 \\ & 0.000000 \end{aligned}$ | 0.000000 | 0.000000 | -0.069125 | 0.000000 | 0.000000 | -0.017749 | 0.000000 | $\checkmark$ |
| $\begin{aligned} & 0.000000 \\ & 0.000000 \end{aligned}$ | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | $\checkmark$ |


| $\Rightarrow$ | Zero-point: $-0.0558 \quad 0.0000$ | 0.0000 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\Rightarrow$ | Cos (theta)-shift parameter | $:$ | -0.1317 | 0.0000 | 0.0059 |
| $\Rightarrow$ | Sin(2theta)-shift parameter | $:$ | 0.2589 | 0.0000 | 0.0079 |



Pattern\# 1 Phase No: 1 Phase name: rdx




BRAGG R-Factors and weight fractions for Pattern \# 1


SYMBOLIC NAMES AND FINAL VALUES AND SIGMA OF REFINED PARAMETERS:
$\left.\begin{array}{lllllll} & & & \\ -> & \text { Parameter number } & 1 & : & \text { SyCos_pat1 } & -0.13173719 & (+/- \\ -> & \text { Parameter number } & 2 & : & \text { U-Cagl_ph1_pat1 } & -0.21872528 \mathrm{E}-01(+/- & 0.88904295 \mathrm{E}-02\end{array}\right)$
=> Number of bytes for floating point variables: 4
$\Rightarrow$ Dimensions of dynamic allocated arrays in this run of FullProf:
$\Rightarrow$ Total approximate array memory (dynamic + static): 107719993 bytes

| MaxPOINT $=$ | 60000 Max.num. of points (+int. Inten.)/diffraction pattern |
| :--- | ---: | :--- |
| MaxREFLT $=$ | 20000 Max.num. of reflections/diffraction pattern |
| MaxPARAM $=$ | 300 Max.num. of refinable parameters |
| MaxOVERL $=$ | 2096 Max.num. of overlapping reflections |

$\Rightarrow$ Number of bytes for floating point arrays: 4
$\Rightarrow$ Dimensions of fixed arrays in this release of FullProf:


## Glossary

ADN Ammonium DiNitramide 46
AFM Atomic Force Microscopy 4, 40, 66, 67, 97, 99, 102-105, 107, 108, 110, 116, 117, 119, 120, 138, 139, 170, 173, 282, 283, 285

AN Ammonium Nitrate 32, 66
AP Ammonium Perchlorate 32, 64
API Active Pharmaceutical Ingredient 134
ASES Aerosol Solvent Extraction System 68, 69, 73
BAM Bundesanstalt für Materialprüfung 43-45, 281
BET Brunauer-Emmett-Teller theory 40, 52, 95, 96, 103, 285
CL-20 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane 32, 35-38, 46, $47,49,54,55,62,65,70,71,138-141,281,283$

CL-20:HMX co-crystal from CL-20 and HMX 36, 38, 65, 71, 130, 137, 139-141, 174, 283

CNT Classical Nucleation Theory 125, 141
CTA 2,4,6-triazido-1,3,5-triazine or cyanuric triazide 64
CVD Chemical Vapor Deposition 72
DBTDL Dibutyltin dilaurate 64
DLS Dynamic Light Scaterring 53, 55, 62, 65, 73, 281, 285
DMA Differential Mobility Analysis 96
DME DiMethyl Ether 70

DMF DiMethylFormamide 33, 34, 63, 68
DMSO dimethylsulfoxide 33, 34, 149
DSC Differential Scanning Calorimetry 4
ESD Electrostatic Discharge 43-45, 47, 163, 281
ESEM Environmental Scanning Electron Microscopy 51, 55, 173, 281
FOX-7 1,1-diamino-2,2-dinitroethene 46, 62, 71
FPM Full Pattern Matching 50, 111
FTIR Fourier Transform Infrared Spectroscopy 42, 158, 162, 284
FWHM Full Width at Half Maximum 111, 113

GAP GIlycidyl Azide Polymer 64
GiAS Gas AntiSolvent 68

HMX octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine 32, 34, 36-38, 46-48, 55, $62,63,65,66,71,138,281$

IM Insensitive Munitions 46
IR Infrared 81

LASER Light Amplification by Stimulated Emission of Radiation 66, 70, 72, 73, 75, 82, 96, 130

MD Molecular Dynamics 125
MSF Multi Stage Flash 75, 77

NC NitroCellulose 64, 68
NMP N-Methyl-2-pyrrolidone 33, 34
NMR Nuclear Magnetic Resonance 9, 42, 149, 150, 283
NRTL Non-Random Two-Liquid 128
NTO 5-nitro-1,2,4-triazol-3-one 68, 173

ONC Octanitrocubane 46

PDA Phase Doppler Analysis 5, 12, 96, 130-132, 141, 166, 169, 170, 175, 283
PEG PolyEthylene Gilycol 5, 12, 107, 116, 118, 142, 147-149, 151-158, 160, 162-166, 174, 282, 284, 286

PGSS Particles from Gas-Saturated Solutions 69
PhSD Phase Solubility Diagram 134, 136, 137, 174
PID Proportional-Integral-Derivative 78, 139
PIV Particle Image Velocimetry 130
PSD Particle Size Distribution 22, 48, 53, 55, 65, 97, 98, 103, 106-108, 128, 129, 132, 133, 138, 153, 157, 160, 281, 283

PVAc Polyvinyl acetate 71
PVD Physical Vapor Deposition 66, 72, 73, 82
PVOH Polyvinyl alcohol 65
PVP PolyVinylPyrrolidone 5, 12, 52, 53, 70, 107-110, 116-119, 138, 142, 147-149, 151, 154, 157-165, 174, 281, 282, 284

RDX 1,3,5-trinitroperhydro-1,3,5-triazine 4, 11, 12, 31-34, 37, 45-48, 50, 51, 54-56, 61-73, 75, 81, 82, 95, 97-99, 103, 105, 108-110, 117-119, 126-129, 138, 147-150, 152-166, 173, 174, 281-286

RESS Rapid Expansion of Supercritical Solutions 47, 69, 70, 73, 82, 173
RESS-AS Rapid Expansion of Supercritical Solutions into an Aqueous Solution 70, 74

RfD reference dose 54

SAS Supercritical Anti-Solvent precipitation 68
SATP Standard Ambient Temperature and Pressure as a temperature of 298.15 K and an absolute pressure of 100 kPa (1 bar) 34, 35

SAXS Small-Angle X-ray Scattering 141, 166, 170
SCF SuperCritical Fluid 74, 75

SDBD Surface Dielectric Barrier Discharge 67
SEDS Solution Enhanced Dispersion by Supercritical fluids 68, 69, 73
SEM Scanning Electron Microscopy 39, 51, 62, 65, 70, 81, 96, 103, 106-110, 116-120, 128, 152-154, 159, 281, 282, 284, 285

SFE Spray Flash Evaporation 4, 46, 48, 72, 73, 75, 78-83, 98, 99, 105, 111, 112, 117, 120, 126-129, 132, 137-141, 147-149, 152-154, 156-159, 162, 163, 166, 173-175, 282-284

SHYMAN Sustainable Hydrothermal Manufacturing of Nanomaterials 72
SMPS Scanning Mobility Particle Sizer 70
SMRT-TEM single-molecule real-time transmission electron microscopy 125
STM Scanning Tunneling Microscopy 4, 173
TDI Toluene Dilsocyanate 64
TEM Transmission Electron Microscopy 120
TERS Tip Enhanced Raman Spectroscopy 164, 166
TIL Threshold Initiation Level 45
TNAZ 1,3,3-trinitroazetidine 46
TNT 2,4,6-trinitrotoluene 4, 11, 13, 64, 67, 69, 72

VLE Vapor-Liquid Equilibrium 127, 128, 283
XRD X-Ray Difraction 36, 39, 40, 49, 50, 64-66, 73, 99, 111, 120, 138, 140, 153, 155, 158, 161, 170, 281, 283-285

## List of Figures

0.1 Schéma du procédé Spray Flash Evaporation (SFE) . . . . . . . . . . . . 15
0.2 Illustration schématique des phénomènes d'évaporation et cristal- lisation en jeu dans le SFE. La limite de 500 nm correspond à la limite actuelle de détection possible par mesure directe en ligne en anémo-granulométrie Phase Doppler ..... 16
0.3 Distribution en taille des gouttes pulvérisées à 100,140 et $160^{\circ} \mathrm{C}$. ..... 17
0.4 Régression des profils de distribution en taille des gouttes pulvérisées à 100,140 et $160^{\circ} \mathrm{C}$. ..... 18
0.5 Analyse Watershed illustrée sur une simulation de sphères de 200 nm . ..... 19
0.6 Effet de la pression, sans micro coupe, $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ pour $1024 \mathrm{px} \times 1024 \mathrm{px}$, contraste amélioré ..... 21
0.7 Effet de la pression, avec une micro coupe, $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ pour $1024 \mathrm{px} \times 1024 \mathrm{px}$ contraste amélioré. ..... 22
0.8 Illustration du principe de cristallisation in situ via multi-buses ..... 24
0.9 Diagramme ternaire d'un cocrystal A : B 1 :1 ..... 25
1.1 RDX visual representations. H atoms have been omitted for clarity. ..... 33
1.2 HMX visual representations. H atoms have been omitted for clarity. ..... 34
1.3 CL-20 visual representations. H atoms have been omitted for clarity. ..... 35
1.4 CL-20 polymorphism ..... 36
1.5 CL-20:HMX 2:1 visual representations ..... 38
1.6 Diagram highlighting the information available from the interpretation of an XRD pattern ..... 39
1.7 DSC peak analysis ..... 41
1.8 Apparatuses for testing the mechanical and electric sensitivity at small scale, in use at NS3E ..... 43
1.9 Sample holder for BAM Fall-Hammer ..... 43
1.10 Schematic principle of the BAM friction sensitivity test. ..... 44
1.11 Schematic principle of the OZM ESD 2008A tester ..... 45
1.12 Sensitivities of RDX with various PSD ..... 48
1.13 Examples of computer generated XRD patterns, both with the same broadening ..... 49
1.14 High vacuum SEM imaging on a n-RDX pressed pellet coated with gold. ..... 51
1.15 Comparison between high vacuum SEM imaging and at 2 Torr from ESEM on the same n-RDX sample ..... 51
1.16 All DLS results acquired from n-RDX with $5 \mathrm{wt} \%$ of PVP: even if this figure contains data with different experimental conditions such as duration of the ultrasonic bath or the dilution, none of the PSD could have been found reliable. ..... 53
2.1 Solubility curves for different substances ..... 62
2.2 Flashing in water liquid jet ..... 76
2.3 Empirical diagram of the evaporation of a water drop ..... 77
2.4 SFE installation as patented and used in this present work ..... 78
2.5 Schematic insight of the nozzle and its heating system; from left to right, rear view, longitudinal cross-section and front view. ..... 79
2.6 System for the product recovery: in orange the cyclonic separator for vacuum and in gray the interchangeable vessel. ..... 80
2.7 Intricacy of the parameters and phenomena involved in the particle crystallisation by the SFE process. ..... 83
3.1 Watershed analysis illustrated on simulated 200 nm spheres. ..... 99
3.2 Parametric study based on the variation of the concentration in solvent. 100
3.2 Parametric study based on the variation of the concentration in solvent ..... 101
3.2 Parametric study based on the variation of the concentration in solvent. 102
3.3 Effect of the weight; same face, no microtomy, $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ for $1024 \mathrm{px} \times 1024 \mathrm{px}$, enhanced contrast. ..... 106
3.4 Effect of the weight; same face, processed by microtomy, $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ for $1024 \mathrm{px} \times 1024 \mathrm{px}$, enhanced contrast. ..... 107
3.5 SEM imaging of a 97 MPa pellet of RDX processed with $5 \mathrm{wt} \%$ of PVP 40000. ..... 109
3.6 SEM and AFM imaging of a 97 MPa pellet of RDX processed with $5 \mathrm{wt} \%$ of PVP 40000. ..... 110
3.7 SEM imaging of one hole of a 97 MPa pellet compared to the loose powder of the same sample of RDX processed with $5 \mathrm{wt} \%$ of PVP 40000.110
3.8 Williamson-Hall of n-RDX processed by SFE at $2 \mathrm{wt} \%$ in acetone. ..... 112
3.9 Rietveld refinement performed on $\mathrm{LaB}_{6}$. ..... 114
3.10 Sample of $n-R D X$ processed pure at $2 w t \%$ in acetone. ..... 115
3.11 Sample of n-RDX processed pure at $3 \mathrm{wt} \%$ in acetone. ..... 115
3.12 Sample of n-RDX processed with $0.1 \mathrm{wt} \%$ of PEG. ..... 116
3.13 Sample of n-RDX processed with $10 \mathrm{wt} \% \mathrm{PVP}$. ..... 116
3.14 Sample of n-RDX processed with $1 \mathrm{wt} \%$ PVP with a $80 \mu \mathrm{~m}$ nozzle ..... 117
3.15 One of the smallest particle ( $63 \times 58 \mathrm{~nm}$ ) observed by SEM on RDX processed with $10 \mathrm{wt} \%$ PVP. ..... 118
3.16 n-RDX processed with $10 \mathrm{wt} \%$ PVP. ..... 119
4.1 Rate of nucleation against the supersaturation ..... 125
4.2 Two possible scenarios from the two-step nucleation mechanism: the first one involves an intermediate state at a higher energy due to an unstable dense liquid existing as mesoscopic clusters, and the second lower curve applies if the dense liquid is stable ( $\Delta G_{L-L}^{0}<0$ ) ..... 126
4.3 VLE of the binary system acetone-hexane at 1 bar (solid lines) and 7 mbar (dashed lines): the data at 1 bar are obtained from the Dort- mund Data Bank, and curves at 7 mbar are computed from ProSim. ..... 127
4.4 The dual nozzle system. ..... 129
4.5 PSD for RDX processed in the binary system acetone/n-hexane by SFE through one or two nozzles; the legend shows the molar ratio of acetone and in parenthesis the mean diameter in nm. ..... 129
4.6 Principle of the Phase Doppler analysis (PDA) in a glance (Dantec Documentation) ..... 131
4.7 PDA in situ measurements for SFE ..... 132
4.8 Preliminary measurements from a demonstration apparatus inside the SFE under vacuum while spraying acetone. Acquisitions were performed at two different axial distances from the nozzle orifice: at around 4 mm or quite far at around 1 cm ..... 133
4.9 Particle Size Distribution of droplets of acetone spayed at 100, 140 and $160^{\circ} \mathrm{C}$. ..... 134
4.10 Peak fitting of the PSD of droplets of acetone spayed at 100, 140 and $160^{\circ} \mathrm{C}$. ..... 135
4.11 Phase Solubility Diagram (PSD) of a 1:1 AB cocrystal from co-formers $A$ and $B$; in red the solubility curve of the $A$ crystal, in blue the one of $B$, and in green the cocrystal. Arrows illustrate a possible crystallisation by addition of $B$ to the solution followed by the cocrystallisation. ..... 136
4.12 Ternary Diagram of a 1:1 AB cocrystal from co formers $A$ and ..... 137
4.13 First dual nozzle system with an orientation at $45^{\circ}$. ..... 138
4.14 Mean Particle Size Distribution of the cocrystal CL-20:HMX 2:1 samples processed by SFE (first batch) and counted from pellets analysed by AFM. ..... 139
4.15 XRD of a sample processed from dual nozzle system compared to CL-20:HMX and to $\beta$-CL-20 both from SFE via a single nozzle ..... 140
4.16 XRD of a sample processed from a solution of CL-20 in ethyl acetate and a solution of HMX in acetone sprayed at the constant stoichio- metric ratio $2: 1$ by monitoring and controlling mass flow rate; the pattern is compared to the sample from the Figure 4.15, CL-20:HMX and to $\beta$-CL-20 both from SFE via a single nozzle. ..... 140
5.1 Evaporation and crystallisation phenomena throughout the SFE pro- cess. The 500 nm limit displayed is roughly the detection limit for Phase Doppler Particle Analyzers, which allows in situ size and velocity measurements on both liquid and solid particles. ..... 148
5.2 Test of the reliability of quantification byNMR. ..... 150
5.3 NMR-H spectra of various representative samples ..... 1515.4 Sizes - using a logarithmic scale - of samples processed with PEGmeasured from SEM micrographs; solid lines represent the smallestlengths and the dotted lines the largest. Pure RDX processed bySFE and raw M5 RDX added here for comparison.152
5.5 SEM micrographes of RDX samples processed by SFE in the same operating conditions ..... 154
5.6 (A) XRD patterns of RDX PEGı-processed samples; only isolated peaks of major interest have been indexed for clarity. (B) inset of XRD patterns illustrating the broadening of peaks. ..... 155
5.7 View of the 311 plane (in violet, almost perpendicular to the plane of the drawing) and RDX molecules on the surface: both nitro and methylene group are located at the surface (on the background, the unit cell). ..... 155
5.8 DSC analysis of RDX samples processed with different $w t \%$ of $P E G$. ..... 156
5.9 FTIR spectra of two relevant RDX samples processed with PEG ..... 158
5.10 Particle size distribution and cumulative counts - using a logarithmic scale - of samples processed with PVP measured from SEM micrographs. 159
5.11 Particle size distribution of RDX processed with a $80 \mu \mathrm{~m}$ nozzle at only 20 bar. ..... 160
5.12 DSC analysis of RDX samples processed with different wt\% of PVP. ..... 161
5.13 FTIR spectra of the RDX samples processed with $10 \mathrm{wt} \%$ of PVP, compared to raw PVP 40K and pure RDX processed by SFE. ..... 162
5.14 Sensitivities of RDX processed with PVP and PEG compared with pure nano-RDX and the raw micron size RDX. ..... 163
5.15 DSC analysis of RDX samples processed with PVP and PEG: com- parison of mechanical mixes with $10 \mathrm{wt} \%$ of PVP or PEG. ..... 165
5.16 New model of SFE with a reduced size ..... 169

## List of Tables

0.1 Poids utilisé et pression correspondante calculée : l'effet de levier suit la loi $P=6 \cdot \frac{M}{A}+31$ où $A=\frac{\pi}{4} \cdot \varnothing^{2}$ avec $M$ la masse du poids. ..... 20
0.2 Diamètre moyen en nm selon la pression appliquée et le pré traitement par microtome ; par MEB, la taille moyenne est de 500 nm . ..... 22
List of Tables ..... 285
1.1 Characteristics of the most common crystalline forms of RDX, HMX, CL-20 ..... 37
1.2 Sensitivity towards impact, friction and ESD of micron-sized and nano-structured RDX ..... 47
1.3 Comparison of the sensitivity levels of micro Hexolite with those of a nano-sized Hexolite ..... 47
1.4 Comparison of the sensitivity levels of micro and nano CL-20 ..... 47
1.5 BET measurements on n-RDX with Kr ..... 52
2.1 Comparison of the sensitivity levels of conventional and 400-nm large RDX. ..... 67
2.2 Comparison of the sensitivity levels of conventional and 500-nm large RDX ..... 67
2.3 Comparison . ${ }^{1}$ smallest pure RDX mean size reported in nm | ${ }^{2}$ XRD measurement $\left.\right|^{3}$ freeze dried from a 64 nmRDX slurry $\left.\right|^{4}$ from DLS, no report about dried state | $N$ Not available in the references, so the value is based on usual operating conditions $\mid \mathrm{sCO}_{2}$ : supercritical carbon dioxide ..... 73
3.1 Several apparent densities of pellets pressed at 97 MPa . ..... 97
3.2 One-way analysis of variance on the particle size from AFM pictures. ..... 102
3.3 Tukey's multiple comparison test on the particle size from AFM pictures. 102
3.4 Watershed and threshold method tested on simulated data; the 'trimmed' results mean that the grains at the edge of the picture are removed since they are probably trimmed. The Watershed algo- rithm add a one pixel boundary at the edges too, so trimmed grains cannot be removed easily. ..... 104
3.5 Weights used and their calculated corresponding pressures: the leverage follows the law $P=6 \cdot \frac{M}{A}+31$ where $A=\frac{\pi}{4} \cdot \varnothing^{2}$ with $M$ the mass of the weight ..... 105
3.6 Mean Diameters (nm) according to the pressure applied and the pre-treatment by microtomy; by SEM, the mean size is 500 nm . ..... 106
3.7 Particle size from pellet imaging by AFM of some samples at 97 MPa with microtomy. ..... 108
3.8 Instrumental resolution determined from $\mathrm{LaB}_{6}$ pattern refinement. ..... 113
3.9 Smallest particle imaged on SEM compared to the computed average apparent size from Rietveld refinement. ..... 118
5.1 Mass percentage of RDX in the final products compared to the initial loading ..... 149
5.2 Melting (endo) and decomposition (exo) temperatures in ${ }^{\circ} \mathrm{C}$ and decomposition energy in J/g for all samples (Te extrapolated peak onset, Tp peak maximum temperature, Tc extrapolated peak offset). See Material \& Methods section for more details.157
5.3 Sensitivities of the RDX processed with PEG, compared with pure nano-RDX and the raw micron size RDX. ..... 163

Florent PESSINA

# Toward Particle Size Reduction by Spray Flash Evaporation the case of organic energetic crystals and cocrystals 

## Résumé

La cristallisation en continu de nanoparticules énergétiques est un défi de longue date. Le Spray Flash Evaporation (SFE) est une technique majeure développée et brevetée en interne, pour la production en continu de matériaux énergétiques submicroniques ou nanométriques; la technologie se base sur la surchauffe d'un solvant pulvérisé dans le vide et s'évaporant alors de manière flash.

Ce présent travail de recherche a pour but de comprendre et contrôler la cristallisation au sein du procédé SFE, ceci afin de réduire encore la taille de particules de cristaux énergétiques. Le RDX est choisi comme matériaux de référence ; le cocristal CL-20:HMX 2:1 a été également étudié pour aller au-delà des limitations de mesures in-situ. La sursaturation gouverne la cristallisation, et concernant le SFE, est une fonction du temps et de l'espace liée aux tailles et vitesses de gouttes. La sursaturation fut variée par un anti-solvant et par l'amélioration du SFE avec un système double buse. Finalement, un Interféromètre Phase Doppler fut utilisé pour résoudre cette question de la sursaturation.

Dans un second temps, PVP 40K et PEG 400 ont été utilisés afin de contrôler les deux étapes de la cristallisation, nommément la nucléation et la croissance. Les particules ont pu être ajustées d'une taille de 160 nm à $5 \mu \mathrm{~m}$, avec des morphologies facettées ou sphériques. De plus, les échantillons de RDX ainsi cristallisés furent aussi moins sensibles, notamment de manière très marquée à la décharge électrostatique.

Mots clés: Spray Flash Evaporation, 1,3,5-trinitroperhydro-1,3,5-triazine, RDX, CL-20, HMX, cristallisation, nanoparticules, particules fines, explosif, cocristal

## Résumé en anglais

The continuous formation of nanosized energetic material is a long-standing challenge. Spray Flash Evaporation (SFE) is a major technique, internally developed and patented, for continuously producing energetic materials at submicron or nano scale; it relies on the superheating of a solvent sprayed into vacuum and thus flashing.

This present research project aims to understand and control the crystallisation occurring in the SFE process, in order to reduce further the particle size of energetic crystals. RDX has been chosen as a reference material; the cocrystal CL-20:HMX 2:1 was studied overcome the limited in situ characterizations also. The supersaturation governs the crystallization and is a function of time and space in SFE, linked to the size distribution and velocity of droplets. Supersaturation was raised with an anti-solvent and by the enhancement of the SFE with a dual nozzle system. Later, a Phase Doppler Interferometer was used to elucidate the question of supersaturation.

Another route to control the crystallisation is the addition of chemical agent. PVP 40K and PEG 400 were successfully used to alter the two steps of the crystallisation, namely the nucleation and the growth. The particle was subsequently tuned from 160 nm spheres to $5 \mu \mathrm{~m}$ grains. Additionally, the synthesized RDX samples were less sensitive, especially toward electrostatic discharge.

Keywords: Spray Flash Evaporation, 1,3,5-trinitroperhydro-1,3,5-triazine, RDX, CL-20, HMX, crystallisation, nanoparticles, fine particles, nanoparticles, explosive, cocrystal


[^0]:    BRAGG R-Factors and weight fractions for Pattern \# 1

[^1]:    => Number of bytes for floating point variables: 4
    $\Rightarrow$ Dimensions of dynamic allocated arrays in this run of Fullprof:

[^2]:    $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
    ** PROGRAM FullProf. 2 k (Version 5.50- Dec2014-ILL JRC) **
    M U L T I - P A T T E R N
    Rietveld, Profile Matching \& Integrated Intensity
    Refinement of $X$-ray and/or Neutron Data

