Monsieur A Ridha Mahjoub

Myriam Pedro Khalil

Ioannis Ian- Christopher Thomas

Keywords: Combinatorial optimization, Polytope, Facet, Branch-and-Cut algorithm, Branch-and-Price algorithm, Composition of polyhedra. vi Optimisation combinatoire, Polytope, Facette, Algorithme de coupes et branchements, Algorithme de génération de colonnes et branchements, Composition Optimisation combinatoire, Polytope, Facette, Algorithme de coupes et branchements, Algorithme de génération de colonnes et branchements, Composition de polyèdres. Combinatorial optimization, Polytope, Facet, Branch-and-Cut algorithm, Branch-and-Price algorithm, Composition of polyhedra

Je voudrais en premier lieu remercier Messieurs A. Ridha Mahjoub et Denis Cornaz de m'avoir permis d'effectuer cette thèse.

Je remercie tout particulièrement

Résumé

Dans ce manuscrit nous considérons le problème du séparateur de poids minimum. Étant donné un graphe G = (V ∪ T, E), tel que V ∪ T représente l'ensemble des sommets où T est un ensemble de terminaux, et une fonction de poids w : V → Z, associée aux sommets non terminaux, le problème du séparateur de poids minimum consiste à partitionner V ∪ T en k + 1 sous-ensembles {S, V 1 , . . . , V k } tel qu'il n'y a aucune arête entre deux sous-ensembles V i et V j , chaque V i contient exactement un terminal et le poids de S est minimum. Dans cette thèse, nous étudions le problème d'un point de vue polyédral. Nous donnons deux formulations en nombres entiers pour le problème, et pour une de ces formulations, nous étudions le polyèdre associé. Nous présentons plusieurs inégalités valides, et décrivons leurs conditions de facette. Nous présentons également des algorithmes de séparation pour ces inégalités. En utilisant ces résultats, nous développons un algorithme de génération de coupes et branchement pour le problème, et présentons une analyse approfondie des résultats numériques.

Nous étudions également le polytope des séparateurs dans les graphes décomposables par sommets d'articulation. Si G est un graphe qui se décompose en G 1 et G 2 , alors nous montrons que le polytope des séparateurs dans G peut être décrit à partir des deux systèmes linéaires liés à G 1 et G 2 . Ceci donne lieu à une technique permettant de caractériser le polytope des séparateurs dans les classes de graphes qui sont récursivement décomposables. Nous obtenons également une procédure de composition de facettes dans ce type de graphes et nous montrons que le problème du séparateur peut être aussi décomposé. Des applications de cette technique sont discutées.

Ensuite, nous étudions des formulations étendues pour le problème et proposons des algorithmes de génération de colonnes et branchements ainsi que des algorithmes de génération de colonnes, de coupes et branchement. Pour chaque formulation, nous présentons un algorithme de génération de colonnes pour résoudre la relaxation linéaire, une procédure pour le calcul de la borne duale ainsi qu'une règle de branchement. Nous

Résumé long

Introduction L'optimisation combinatoire, et en particulier l'approche polyédral, sont très efficaces pour traiter les problèmes combinatoires difficiles. Cette technique, initiée par Edmonds pour le problème de couplage, consiste à réduire le problème à un programme linéaire (ou une séquence de programmes linéaires) en donnant une description complète ou partielle du polytope associé par un système d'inégalités linéaires. L'approche polyédral a été appliquée à de nombreux problèmes d'optimisation combinatoire tels que le problème du voyageur de commerce, le problème de conception de réseau et le problème de la coupe maximum.

Dans cette thèse, nous considérons le problème du séparateur de poids minimum PSPM. Étant donné un graphe G = (V ∪ T, E) avec V ∪ T l'ensemble des sommets, où T est un ensemble de terminaux, et une fonction de poids w : V → Z, associée aux noeuds non terminaux, le problème du séparateur de poids minimum consiste à partitionner V ∪ T en k + 1 sous-ensembles {S, V 1 , . . . , V k } tel qu'il n'y a pas d'arêtes entre deux sous-ensembles V i et V j , chaque V i contient exactement un terminal et le poids de S est minimum. Ce problème a des applications dans différents domaines comme la conception VLSI, l'algèbre linéaire, les problèmes de connectivité et les algorithmes parallèles. Il a également des applications dans la sécurité des réseaux. Supposons, par exemple, que G représente un réseau de télécommunication où V représente un ensemble de routeurs, T un ensemble de clients, et une arête entre deux sommets exprime la possibilité de transférer des données entre eux. Supposons qu'avec chaque sommet il soit associé un coût, et nous voulons configurer un système de surveillance sur les routeurs afin de surveiller toutes les données échangées entre les clients. L'ensemble viii Résumé long des routeurs sur lequel le système de surveillance est configuré est un séparateur.

Le problème du séparateur de poids minimum est une variante du problème de kseparator qui consiste, étant donné un graphe G = (V, E), à partitionner V en k + 1 sous-ensembles {S, V 1 , . . . , V k } de telle sorte que |S| soit minimum et qu'il n'y ait aucune arête entre deux sous-ensembles V i et V j . De nombreuses variantes de ce problème ont été considérées dans la littérature [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF][START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF][START_REF] Ben-Ameur | The k-separator problem[END_REF][START_REF] Biha | An exact algorithm for solving the vertex separator problem[END_REF][START_REF] Cornaz | Mathematical formulations for the balanced vertex k-separator problem[END_REF][START_REF] Souza | The vertex separator problem: algorithms and computations[END_REF][START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF]. Dans cette thèse, nous traitons le PSPM d'un point de vue polyédral. Nous donnons deux formulations en nombres entiers pour le problème, pour une de ces formulations, nous étudions le polyèdre associé et discutons de sa structure polyédral. Nous décrivons certaines inégalités valides et étudions les conditions pour lesquelles ces inégalités définissent des facettes. Nous présentons également des algorithmes de séparation pour ces inégalités. Nous développons ainsi un algorithme de Branch-and-Cut pour le problème et présentons une étude expérimentale approfondie.

Nous étudions également le polytope des séparateurs dans les graphes décomposables par des noeuds d'articulation. Si G est un graphe qui se décompose en G 1 et G 2 , nous montrons que le polytope des séparateurs pour G peut être décrit à partir des deux systèmes linéaires liés à G 1 et G 2 . Cela donne lieu à une technique de caractérisation du polytope des séparateurs dans les classes de graphes qui sont récursivement décomposables. Les techniques de composition de polyèdres ont été étudiées dans la littérature pour plusieurs problèmes d'optimisation combinatoire [START_REF] Barahona | Compositions of graphs and polyhedra i: Balanced induced subgraphs and acyclic subgraphs[END_REF], [START_REF] Barahona | Compositions of graphs and polyhedra ii[END_REF], [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF], [START_REF] Barahona | Compositions of graphs and polyhedra iv: Acyclic spanning subgraphs[END_REF], [START_REF] Hadjar | Composition de polyèdres associés aux problèmes d'optimisation combinatoire[END_REF], [START_REF] Margot | Composition de polytopes combinatoires: une approche par projection[END_REF]. Dans [START_REF] Barahona | Compositions of graphs and polyhedra iv: Acyclic spanning subgraphs[END_REF], Barahona, Fonlupt et Mahjoub décrivent une technique de composition pour le polyèdre des sous-graphes acycliques. À l'aide de cette technique, ils donnent une description complète de ce polyèdre pour les graphes sans mineur K 3,3 . Dans [START_REF] Barahona | Compositions of graphs and polyhedra i: Balanced induced subgraphs and acyclic subgraphs[END_REF], Barahona et Mahjoub étudient des compositions similaires pour les polyèdres des sousgraphes induits équilibrés. Dans [START_REF] Barahona | Compositions of graphs and polyhedra ii[END_REF] et [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF], ils considèrent le polyèdre des stables et donnent une description complète de ce polytope dans les graphes non contractibles à W 4 (la roue sur 5 sommets). Margot [START_REF] Margot | Composition de polytopes combinatoires: une approche par projection[END_REF] étudie une approche générale de la composition des polyèdres basée sur les techniques de projection.

De plus, nous proposons des formulations étendues pour le problème et développons des algorithmes de Branch-and-Price et Branch-and-Cut-and-Price. Pour chaque formulation, nous présentons un algorithme de génération de colonnes pour résoudre la relaxation linéaire, une procédure pour calculer la borne duale et la règle de branchement. Nous présentons des résultats expérimentaux afin d'analyser la performance de

Notions préliminaires et état de l'art

Le premier chapitre est consacré à l'introduction de quelques notions préliminaires concernant l'optimisation combinatoire, les méthodes exactes en général et l'approche polyédral en particulier. Nous donnons notamment un aperçu des méthodes des plans coupants et de génération de colonnes, ainsi que des algorithmes de coupes et branchements, et de génération de colonnes et branchements. Nous donnons alors quelques définitions basiques sur la théorie des graphes et introduisons la terminologie et les notations utilisées dans ce manuscrit. Enfin, nous présentons un état de l'art sur le problème du séparateur de poids minimum.

Le problème du séparateur de poids minimum : Analyse polyédral

Dans ce chapitre, nous considérons le problème du séparateur de poids minimum. Nous montrons d'abord que le problème est NP-difficile, puis nous donnons deux for-x Résumé long mulations en nombres entiers pour le problème. Pour une de ces formulations, nous étudions le polyèdre associé et discutons sa structure polyédral. Nous décrivons ensuite plusieurs inégalités valides, comme les inégalités de star tree, terminal tree, clique star et de terminal cycle. Nous présentons les conditions pour lesquelles ces inégalités définissent des facettes et nous proposons également des algorithmes de séparation. Toutes les contraintes valides identifiées dans ce chapitre sont intégrées dans un algorithme de coupes et branchements. Nous avons également proposé deux heuristiques pour le problème et analysé leur garantie de performance. L'amélioration d'une heuristique s'est avérée très efficace en résolvant plusieurs instances à l'optimum. De plus nous avons étudié certaines opérations de pré-traitement de graphes, afin de réduire sa taille et ainsi améliorer le temps de résolution. Par ailleurs, une étude expérimentale est également proposée dans ce chapitre, permettant d'avoir un aperçu sur l'efficacité, en pratique, de notre approche.

Le problème du séparateur de poids minimum : Composition de polyèdres Dans ce chapitre, nous nous sommes intéressés à caractériser le polytope des séparateurs dans les graphes qui sont décomposables par des sommets d'articulation. Lorsque G se décompose en G 1 et G 2 , nous proposons une procédure pour composer des polyèdre, des facettes et des algorithmes pour le problème du séparateur de poids minimum. Nous présentons également le problème de couverture de cycles enracinés de poids minimum qui généralise le problème du séparateur de poids minimum. Nous utilisons le théorème de Menger pour fournir une caractérisation de tous les graphes enracinés pour lesquels le nombre maximum de cycles enracinés disjoints est égal à la taille minimum d'un sous-ensemble de sommets intersectant tous les cycles enracinés.

Ce chapitre est organisé comme suit. Dans la section 1, nous donnons deux systèmes linéaires décrivant le polytope des séparateurs pour les star trees et les clique stars. Ensuite, nous montrons que ces deux systèmes linéaires sont totalement duales intégrales. Dans la section 2, nous étudions une technique de composition (décomposition) du polytope des séparateurs, pour les graphes qui sont décomposables par des sommets d'articulation. Ensuite, nous proposons une procédure de composition de facettes et d'algorithmes. Dans la section 3, nous proposons une autre procédure de composi-Résumé long xi tion pour le polytope des séparateurs, par la fusion des terminaux. La section 4 est consacrée au problème de couverture de cycles enracinés de poids minimum.

Le problème du séparateur de poids minimum : Branchand-Cut-and-Price Dans ce chapitre nous présentons trois formulations étendues pour le problème du séparateur de poids minimum. La première formulation est basée sur les ensembles terminaux (un ensemble de sommets qui déconnecte un terminal de tous les autres terminaux). En effet, toute solution du problème du séparateur de poids minimum peut être vue comme une partition de l'ensemble des sommets en k + 1 sous-ensembles, de sorte que k d'entre eux sont des ensembles terminaux disjoints. Ainsi, les variables de cette formulation sont sur les ensembles terminaux. Donc le problème du séparateur de poids minimum se réduit à trouver k ensembles terminaux disjoints tels que la cardinalité de ces sous ensembles soit maximum.

Résumé long xiii

Conclusion

Dans cette dissertation, nous avons étudié le problème du séparateur de poids minimum d'un point de vue polyédral. Dans la première partie de la thèse, nous avons proposé deux formulations en nombres entiers pour le problème, nous avons étudié le polyèdre associé et discuté de sa structure polyédral. Nous avons ensuite présenté plusieurs classes d'inégalités valides et décrit les conditions nécessaires et suffisantes pour que ces inégalités définissent des facettes. À partir de ces résultats nous avons développé un algorithme de Branch-and-Cut pour le problème. Ce dernier a été utilisé afin de résoudre les instances de DIMACS ainsi que des instances aléatoires. Les expérimentations numériques montrent l'efficacité des inégalités valides et les procédures de séparation utilisées dans cet algorithme.

Ensuite, nous avons étudié la caractérisation du polytope des séparateurs. Nous avons donné une description complète du polytope pour les terminal paths, les star trees et les clique stars. En outre, nous avons montré que le système linéaire donné par les inégalités des star trees (resp. cliques stars) et les inégalités triviales est totalement duale intégrale pour les star trees (resp. clique stars). Ensuite, nous avons étudié le polytope des séparateurs dans les graphes décomposables par des sommets d'articulation. Nous avons montré que, si G est un graphe qui se décompose en G 1 et G 2 , le polytope des séparateurs pour G peut être décrit à partir des deux systèmes linéaires liés à G 1 et G 2 .

Nous avons également proposé trois formulations étendues pour le problème du séparateur de poids minimum. Nous avons développé des algorithmes de Branch-and-Price pour toutes les formulations et des algorithmes de Branch-and-Cut-and-Price pour deux d'entre elles. Pour chaque formulation, nous avons présenté un algorithme de génération de colonnes pour résoudre la relaxation linéaire, une procédure pour le calcul de la borne duale ainsi qu'une règle de branchement. Nous avons présenté des résultats expérimentaux et discuté la performance de chaque algorithme.

Dans la dernière partie de la thèse, nous avons considéré quatre variantes du problème du séparateur de poids minimum. Nous avons montré que chaque problème était NP-difficile, proposé une formulation en nombres entiers et présenté plusieurs inégalités valides.

Contents Introduction

Combinatorial optimization, and in particular the polyhedral approach are very powerful for treating hard combinatorial problems. This technique, initiated by Edmonds for the matching problem, consists in reducing the problem to a linear program (or a sequence of linear programs) by giving a complete or partial description of the associated polytope by a system of linear inequalities. The polyhedral approach has been applied to many combinatorial optimization problems such as the Travelling Salesman Problem, the Network Design Problem and the Max-Cut Problem.

In this thesis we consider the multi-terminal vertex separator problem (MTVSP). Given a graph G = (V ∪ T, E) with V ∪ T the set of vertices, where T is a set of terminals, and a weight function w : V → Z, associated with nonterminal nodes, the multi-terminal vertex separator problem consists in partitioning V ∪T into k+1 subsets {S, V 1 , . . . , V k } such that there is no edge between two different subsets V i and V j , each V i contains exactly one terminal and the weight of S is minimum. The MTVSP has applications in different areas like VLSI conception, linear algebra, connectivity problems and parallel algorithms. It has also applications in network security. Suppose, for instance, that G represents a telecommunication network where V represents a set of routers, T a set of customers, and an edge between two vertices expresses the possibility of transferring data between each other. Suppose that with each vertex it is associated a cost, and we want to set up a monitoring system on the routers in order to monitor all data exchanged between customers. The set of routers on which the monitoring system is set up is a multi-terminal vertex separator.

The MTVSP is a variant of the k-separator problem which consists, given a graph G = (V, E), in partitioning V into k + 1 subsets {S, V 1 , . . . , V k } in such a way that |S| is minimum and there is no edge between two subsets V i and V j . Many variants of this problem have been considered in the literature [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF][START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF][START_REF] Ben-Ameur | The k-separator problem[END_REF][START_REF] Biha | An exact algorithm for solving the vertex separator problem[END_REF][START_REF] Cornaz | Mathematical formulations for the balanced vertex k-separator problem[END_REF][START_REF] Souza | The vertex separator problem: algorithms and computations[END_REF][START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF]. In this thesis, we deal with the MTVSP from a polyhedral point of view. We give two integer programming formulations for the problem, for one of these formulations, we investigate the related polyhedron and discuss its polyhedral structure. We describe some valid inequalities and characterize when these inequalities define facets. We also derive separation algorithms for these inequalities. Using these results, we develop a Branch-and-Cut algorithm for the problem, along with an extensive computational study is presented.

We also study the multi-terminal vertex separator polytope in the graphs decomposable by one node cutsets. If G is a graph that decomposes into G 1 and G 2 , we show that the multi-terminal vertex separator polytope in G can be described from the two linear systems related to G 1 and G 2 . This gives rise to a technique for characterizing the multi-terminal vertex separator polytope in graph classes that are recursively decomposable. Composition techniques have been studied in the litterature for several combinatorial optimization problems [START_REF] Barahona | Compositions of graphs and polyhedra i: Balanced induced subgraphs and acyclic subgraphs[END_REF], [START_REF] Barahona | Compositions of graphs and polyhedra ii[END_REF], [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF], [START_REF] Barahona | Compositions of graphs and polyhedra iv: Acyclic spanning subgraphs[END_REF], [START_REF] Hadjar | Composition de polyèdres associés aux problèmes d'optimisation combinatoire[END_REF], [START_REF] Margot | Composition de polytopes combinatoires: une approche par projection[END_REF]. In [START_REF] Barahona | Compositions of graphs and polyhedra iv: Acyclic spanning subgraphs[END_REF], Barahona, Fonlupt and Mahjoub describe a composition technique for the acyclic spanning subgraphs polyhedron. Using this technique, they give a complete description of this polyhedron for the graphs with no K 3,3 minor. In [START_REF] Barahona | Compositions of graphs and polyhedra i: Balanced induced subgraphs and acyclic subgraphs[END_REF], Barahona and Mahjoub study similar compositions for the balanced induced subgraphs polyhedron. In [START_REF] Barahona | Compositions of graphs and polyhedra ii[END_REF] and [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF], they consider the stable set polyhedron and give a complete description of this polytope in the graphs not contractible to W 4 (the wheel on 5 vertices). Margot [START_REF] Margot | Composition de polytopes combinatoires: une approche par projection[END_REF] studies a general approach of composition of polyhedra based on projection techniques. Moreover, we propose extended formulations for the problem and derive Branchand-Price and Branch-and-Cut-and-Price algorithms. For each formulation we present a column generation scheme to solve the linear relaxation, the way to compute the dual bound and the branching scheme. We present computational results are discuss the performance of each algorithm. We also present four variants of the multi-terminal vertex separator problem. We show that all the variants are NP-hard. For each variant we give an integer programming formulation and present some valid inequalities. This manuscript is organized as follows. In Chapter 1 we present basic notions of combinatorial optimization. This chapter also includes a state-of-the-art on multi-terminal vertex separator problem. In Chapter 2 we present a Branch-and-Cut algorithm. This is based on a deep investigation on the associated polytope. Chapter 3 deals with the composition of polyhedra on graphs obtained by 1-sums. In Chapter 4, we present Branch-and-Price and Branch-and-Cut-and-Price algorithms. Chapter 5 is devoted to the study of the four variants of the multi-terminal vertex separator problem.

Chapter 1

Preliminaries and State-of-the-art In this chapter we give some basic notions on combinatorial polyhedra, graph theory and the theory of complexity. We then perform a brief summary of cutting planes and column generation methods as well as Branch-and-Cut and Branch-and-Price algorithms. We finish this chapter with notations and definitions that will be used all along this manuscript and the state-of-the-art on the multi-terminal vertex separator problem.

Combinatorial optimization

Combinatorial optimization is a branch of computer science and applied mathematics. It concerns the problems that can be formulated as follows: Let E = {e 1 , . . . , e n } a finite set called basic set, where each element e i has a weight c(e i). Let S a family of subsets of E. If S ∈ S, then c(S) = e i ∈S c(e i) is the weight of S. The problem is to determine an element of S, with the smaller (or larger) weights. Such a problem is called a combinatorial optimization problem. The set S is called the set of solutions of the problem. In other words, min(or max){c(S) : S ∈ S}.

The term combinatorial refers to the discrete structure of S. In general, this structure is represented by a graph. The term optimization signifies that we are looking for the best element in the set of feasible solutions. This set generally contains an exponential number of solutions, therefore, one can not expect to solve a combinatorial optimization problem by exhaustively enumerate all its solutions. Such a problem is then considered as a hard problem.

Various effective approaches have been developed to tackle combinatorial optimization problems. Some of these approaches are based on graph theory, while others use linear and non-linear programming, integer programming and polyhedral approach. Besides, several practical problems arising in real life, can be formulated as combinatorial optimization problems. Their applications are in fields as diverse as telecommunications, transport, industrial production planing or staffing and scheduling in airline companies. Over the years, the discipline got thus enriched by the structural results related to these problems. And, conversely, the progress made in computed science have made combinatorial optimization approaches even more efficient on real-world problems.

In fact, combinatorial optimization is closely related to algorithm theory and computational complexity theory as well. The next section introduces computational issues of combinatorial optimization.

Computational complexity

Computational complexity theory is a branch of theoretical computer science and mathematics, whose study started with works of Cook [START_REF] Cook | The complexity of theorem-proving procedures[END_REF], Edmonds [START_REF] Edmonds | Covers and packings in a family of sets[END_REF] and Karp [START_REF] Karp | Reducibility Among Combinatorial Problems[END_REF].

Its objective is to classify a given problem depending on its difficulty. A plentiful literature can be find on this topic, see for instance [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] for a detailed presentation of NP-completeness theory.

A problem is a question having some input parameters, and to which we aim to find an answer. A problem is defined by giving a general description of its parameters, and by listing the properties that must be satisfied by a solution. An instance of the problem is obtained by giving a specific value to all its input parameters. An algorithm is a sequence of elementary operations that allows to solve the problem for a given instance. The number of input parameters necessary to describe an instance of a problem is the size of that problem.

An algorithm is said to be polynomial if the number of elementary operations necessary to solve an instance of size n is bounded by a polynomial function in n. We define the class P as the class gathering all the problems for which there exists some polynomial algorithm for each problem instance. A problem that belongs to the class P is said to be "easy" or "tractable".

A decision problem is a problem with a yes or no answer. Let P be a decision problem and I the set of instances such that their answer is yes. P belongs to the class NP (Non-deterministic Polynomial) if there exists a polynomial algorithm allowing to check if the answer is yes for all the instances of I. It is clear that a problem belonging to the class P is also in the class N P . Although the difference between P and N P has not been shown, it is a highly probable conjecture.

In the class N P , we distinguish some problems that may be harder to solve than others. This particular set of problems is called NP-complete. To determine whether a problem is NP-complete, we need the notion of polynomial reducibility. A decision problem P 1 can be polynomially reduced (or transformed) into another decision problem P 2 , if there exists a polynomial function f such that for every instance I of P 1 , the answer is "yes" if and only if the answer of f (I) for P 2 is "yes". A problem P in NP is also NP-complete if every other problem in NP can be reduced into P in polynomial time. The Satisfiability Problem (SAT) is the first problem that was shown to be NP-complete (see [START_REF] Cook | The complexity of theorem-proving procedures[END_REF]).

With every combinatorial optimization problem is associated a decision problem. Furthermore, each optimization problem whose decision problem is NP-complete is said to be NP-hard. Note that most of combinatorial optimization problems are NPhard. One of the most efficient approaches developed to solve those problems is the so-called polyhedral approach.

Preliminaries and State-of-the-Art

Elements of polyhedral theory

The polyhedral method was initiated by Edmonds in 1965 [START_REF] Edmonds | Maximum matching and a polyhedron with 0,1-vertices[END_REF] for a matching problem. It consists in describing the convex hull of problem solutions by a system of linear inequalities. The problem reduces then to the resolution of a linear program. In most of the cases, it is not straightforward to obtain a complete characterization of the convex hull of the solutions for a combinatorial optimization problem. However, having a system of linear inequalities that partially describes the solutions polyhedron may often lead to solve the problem in polynomial time. This approach has been successfully applied to several combinatorial optimization problems. In this Section, we present the basic notions of polyhedral theory. The reader is referred to works of Schrijver [START_REF] Schrijver | Combinatorial Optimization : Polyhedra and Efficiency[END_REF] and [START_REF] Mahjoub | Polyhedral Approaches[END_REF].

We shall first recall some definitions and properties related to polyhedral theory.

Let n be a positive integer and x ∈ R n . Let say that x is a linear combination of x 1 , x 2 , . . ., x m ∈ R n if there exist m scalar λ 1 , λ 2 , . . ., λ m such that x = m i∈1 λ i x i . If m i=1 λ i = 1, then x is said to be an affine combination of x 1 , x 2 , . . ., x m . Moreover, if λ i ≥ 0, for all i ∈ {1, . . . , m}, we say that x is a convex combination of x 1 , x 2 , . . ., x m . Given a set S = {x 1 , . . . , x m } ∈ R n×m , the convex hull of S is the set of points x ∈ R n which are convex combination of x 1 , . . ., x m (see Figure 1.1), that is

conv(S) = {x ∈ R n |x is a convex combination of x 1 , . . . , x m }. 1.3 Figure 1.1: A convex hull
The points x 1 , . . ., x m ∈ R n are linearly independents if the unique solution of the system m i=1 λ i x i = 0, is λ i = 0, for all i ∈ {1, . . . , m}. They are affinely independent if the unique solution of the system

m i=1 λ i x i = 0, m i=1 λ i = 1, is λ i = 0, i = 1, . . ., m.
A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P = {x ∈ R n |Ax ≤ b}, where A is a m-row n-columns matrix and b ∈ R m . A polytope is a bounded polyhedron. A point x of P will be also called a solution of P .

A polyhedron P is said to be of dimension p if it has at most p+1 affinely independent solutions. We denote it by dim(P) = p. We also have that dim(P) = n -rank(A =), where A = is the submatrix of A of inequalities that are satisfied with equality by all solutions of P (implicit equalities). The polyhedron P is full dimensional if dim(P) = n.

An inequality ax ≤ α is valid for a polyhedron P ⊆ R n if for every solution x ∈ P , ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The inequality ax ≤ α is violated by x ∈ P if ax > α. Let ax ≤ α be a valid inequality for the polyhedron P . F = {x ∈ P |ax = α} is called a face of P . We also say that F is a face induced by ax ≤ α. If F = ∅ and F = P , we say that F is a proper face of P . If F is a proper face and dim(F) = dim(P) -1 , then F is called a facet of P . We also say that ax ≤ α induces a facet of P or is a facet defining inequality.

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper face and there exists a facet of P induced by bx ≤ β and a scalar ρ = 0 such that F ⊆ {x ∈ P |bx = β} and b = ρa.

If P is not full dimensional, then ax ≤ α is a facet of P if and only if F is a proper face and there exists a facet of P induced by bx ≤ β, a scalar ρ = 0 and λ ∈ R q×n (where q is the number of lines of matrix A =) such that F ⊆ {x ∈ P |bx = β} and b = ρa + λA = .

An inequality ax ≤ α is essential if it defines a facet of P . It is redundant if the system A x ≤ b } obtained by removing this inequality from Ax ≤ b defines the same polyhedron P . This is the case when ax ≤ α can be written as a linear combination of inequalities of the system A x ≤ b . A complete minimal linear description of a polyhedron consists of the system given by its facet defining inequalities and its implicit equalities.

A solution is an extreme point of a polyhedron P if and only if it cannot be written as the convex combination of two different solutions of P . It is equivalent to say that x induces a face of dimension 0. The polyhedron P can also be described by its extreme points. In fact, every solution of P can be written as a convex combination of some extreme points of P .

Cutting plane method

Now let P be a combinatorial optimization problem, E its basic set, c(.) the weight function associated with the variables of P and S the set of feasible solutions. Suppose that P consists in finding an element of S whose weight is maximum. If F ⊆ E, then the 0-1 vector x F ∈ R E such that x F (e) = 1 if e ∈ F and x F (e) = 0 otherwise, is called the incidence vector of F . The polyhedron P (S) = conv{x S |S ∈ S} is the polyhedron of the solutions of P or polyhedron associated with P. P is thus, equivalent to the linear program max{cx|x ∈ P (S)}. Notice that the polyhedron P (S) can be described by a set of a facet defining inequalities. And when all the inequalities of this set are known, then solving P is equivalent to solve a linear program.

Recall that the objective of the polyhedral approach for combinatorial optimization problems is to reduce the resolution of P to that of a linear program. This reduction induces a deep investigation of the polyhedron associated with P. It is generally not easy to characterize the polyhedron of a combinatorial optimization problem by a system of linear inequalities. In particular, when the problem is NP-hard there is a very little hope to find such a characterization. Moreover, the number of inequalities describing this polyhedron is, most of the time, exponential. Therefore, even if we know the complete description of that polyhedron, its resolution remains in practice a hard task because of the large number of inequalities.

Fortunately, a technique called the cutting plane method can be used to overcome this difficulty. This method is described in what follows.

The cutting plane method is based on the so-called separation problem. This consists, given a polyhedron P of R n and a point x * ∈ R n , in verifying whether if x * belongs to P , and if this is not the case, to identify an inequality a T x ≤ b, valid for P and violated by x * . In the later case, we say that the hyperplane a T x = b separates P and x * (see Figure 1.3). Grötschel, Lovász and Schrijver [START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF] have established the close relationship between separation and optimization. In fact, they prove that optimizing a problem over a polyhedron P can be performed in polynomial time if and only if the separation problem associated with P can be solved in polynomial time. This equivalence has permitted an important development of the polyhedral methods in general and the cutting plane method in particular. More precisely, the cutting plane method consists in solving successive linear programs, with possibly a large number of inequalities, by using the following steps. Let LP = max{cx, Ax ≤ b} be a linear program and LP a linear program obtained by considering a small number of inequalities among Ax ≤ b. Let x * be the optimal solution of the latter system. We solve the separation problem associated with Ax ≤ b and x * . This phase is called the separation phase. If every inequality of Ax ≤ b is satisfied by x * , then x * is also optimal for LP . If not, let ax ≤ α be an inequality violated by x * . Then, we add ax ≤ α to LP and repeat this process until an optimal solution is found. Algorithm 1 summarizes the different cutting plane steps.

Algorithm 1: A cutting plane algorithm

Data: A linear program LP and its system of inequalities Ax ≤ b Result: Optimal solution x * of LP Consider a linear program LP with a small number of inequalities of LP ; Solve LP and let x * be an optimal solution; Solve the separation problem associated with Ax ≤ b and x * ; if an inequality ax ≤ α of LP is violated by x * then Add ax ≤ α to LP ; Repeat step 2 ; end else

x * is optimal for LP ; return x * ; end Note that at the end, a cutting-plane algorithm may not succeed in providing an optimal solution for the underlying combinatorial optimization problem. In this case a Branch-and-Bound algorithm can be used to achieve the resolution of the problem, yielding to the so-called Branch-and-Cut algorithm.

Branch-and-Cut algorithm

Consider again a combinatorial optimization problem P and suppose that P is equivalent to max{cx|Ax ≤ b, x ∈ {0, 1} n }, where Ax ≤ b has a large number of inequalities. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree whose root node corresponds to a linear program LP 0 = max{cx|A 0 x ≤ b 0 , x ∈ R n }, where A 0 x ≤ b 0 is a subsystem of Ax ≤ b having a small number of inequalities. Then, we solve the linear relaxation of P that is LP = {cx|Ax ≤ b, x ∈ R n } using a cutting plane algorithm whose starting from LP 0 . Let x * 0 denote its optimal solution and A 0 x ≤ b 0 the set of inequalities added to LP 0 at the end of the cutting plane phase. If x * 0 is integral, then it is optimal. If x * 0 is fractional, then we perform a branching phase. This step consists in choosing a variable, say x 1 , with a fractional value and adding two nodes P 1 and P 2 in the Branch-and-Cut tree. The node P 1 corresponds to the linear program

LP 1 = max{cx|A 0 x ≤ b 0 , A 0 x ≤ b 0 , x 1 = 0, x ∈ R n } and LP 2 = max{cx|A 0 x ≤ b 0 , A 0 x ≤ b 0 , x 1 = 1, x ∈ R n }. We then solve the linear program LP 1 = max{cx|Ax ≤ b, x 1 = 0, x ∈ R n } (resp. LP 2 = max{cx|Ax ≤ b, x 1 = 1, x ∈ R n }
) by a cutting plane method, starting from LP 1 (resp. LP 2). If the optimal solution of LP 1 (resp. LP 2) is integral then, it is feasible for P. Its value is then a lower bound of the optimal solution of P, and the node P 1 (resp. P 2) becomes a leaf of the Branch-and-Cut tree. If the solution is fractional, then we select a variable with a fractional value and add two children to the node P 1 (resp. P 2), and so on.

Note that sequentially adding constraints of type x i = 0 and x i = 1, where x i is a fractional variable, may lead to an infeasible linear program at a given node of the Branch-and-Cut tree. Or, if it is feasible, its optimal solution may be worse than the best known lower bound of the problem. In both cases, that node is pruned from the Branch-and-Cut tree. The algorithm ends when all nodes have been explored and the optimal solution of P is the best feasible solution given by the Branch-and-Bound tree. This algorithm can be improved by computing a good lower bound of the optimal solution of the problem before it starts. The lower bound can be used by the algorithm to prune the node which will not allow an improvement of this lower bound. This would permit to reduce the number of nodes generated in the Branch-and-Cut tree, and hence, reduce the time used by the algorithm. Furthermore, this lower bound may be improved by comparing at each node of the Branch-and-Cut tree a feasible solution when the solution obtained at the root node is fractional. Such a procedure is referred to as a primal heuristic. It aims to produce a feasible solution for P from the solution obtained at a given node of the Branch-and-Cut tree, when this later solution is fractional (and hence infeasible for P). Moreover, the weight of this solution must be as good as possible. When the solution computed is better than the best known lower bound, it may significantly reduce the number of generated nodes, as well as the CPU time. Moreover, this guarantees to have an approximation of the optimal solution of P before visiting all the nodes of Branch-and-Cut tree, for instance when a CPU time limit has been reached.

The Branch-and-Cut approach has shown a great efficiency to solve various problems of combinatorial optimization that are considered difficult to solve, such as the Travelling Salesman Problem [START_REF] Applegate | Implementing the dantzigfulkerson-johnson algorithm for large traveling salesman problems[END_REF]. Note a good knowledge of the polyhedron associated with the problem, together with efficient separation algorithms (exacts as well as heuristics), might help to improve the effectiveness of this approach. Besides, the cutting plane method is efficient when the number of variables is polynomial. However, when the number of variables is large (for instance exponential), further methods, as column generation are more likely to be used. In what follows, we briefly introduce the outline of this method.

Column generation and Branch-and-Price

Compact formulations of combinatorial optimization problems often provide a weak linear relaxation. Those problems require then further formulations, whose linear relaxation is closer to the convex hull of feasible solutions. Those reformulations may have a huge number of variables, so that one can not consider them explicitly in the model. We describe a method that suits well to such reformulation, that is the so-called column generation method.

Column generation procedure

The column generation method is used to solve linear programs with a huge number of variables only by considering a few number among these variables. This method was pioneered by Dantzig and Wolfe in 1960 [START_REF] Dantzig | Decomposition principle for linear programs[END_REF] in order to solve problems that could not be handled efficiently because of their size (CPU time and memory consumption). Column generation is generally used either for problems whose structure is suitable for a Dantzig-Wolfe decomposition, or for problems with a large number of variables. Gilmore and Gomory [START_REF] Gilmore | A linear programming approach to the cuttingstock problem[END_REF][START_REF] Gilmore | A Linear Programming Approach to the Cutting Stock Problem-Part II[END_REF] used this method to solve a cutting stock problem belonging to the later class.

The overall idea of column generation is to solve a sequence of linear programs with a restricted number of variables (also referred to as columns). The algorithm starts by solving a linear program having a small number of variables, and such that a feasible solution for the original problem may be identified using this basis. At each iteration of the algorithm, we solve the so-called pricing problem whose objective is to identify the variables which must enter the current basis. These variables are characterized by a negative reduced cost. The reduced cost associated with a variable is computed using the dual variables associated with the constraints of the problem. We then solve the linear program obtained by adding the generated variables, and repeat the procedure until no variable with reduced cost can be identified by the pricing problem. In this case, the solution obtained from the last restricted program is optimal for the original model. The main step of column generation procedure is summarized in Algorithm 2.

Algorithm 2: A column generation algorithm

Data : A linear program MP (Master Problem) with a huge number of variables Output : optimal solution x * of MP 1: Consider a linear program RMP (Restricted Master Problem) including only a small subset of variables of the MP; 2: Solve RMP and let x * be an optimal solution; 3: Solve the pricing problem associated with the dual variables obtained by the resolution of the RMP; 4: If there exists a variable x with a negative reduced cost then; 5: add x to RMP. 6: go to 2. 7: else 8:

x * is optimal for MP. 9: return x * .

The column generation method can be seen as the dual of the cutting plane method since it adds columns (variables) instead of rows (inequalities) in the linear program. Furthermore, the pricing problem may be NP-hard. One can then use heuristic procedures to solve it. For more details on column generation algorithms, the reader is referred to [START_REF] Vanderbeck | Decomposition and column generation for integer programming[END_REF][START_REF] Desaulniers | Column generation[END_REF][START_REF] Lübbecke | Selected Topics in Column Generation[END_REF]. We denote by LMP the linear relaxation of the master problem and by DLMP the dual of the LMP.

Branch-and-Price algorithm

The solution obtained by a column generation procedure may not be integer. Therefore, to solve an integer programming problem, the column generation method has to 1.5 be integrated within a Branch-and-Bound framework. This is known a Branch-and-Price algorithm. Branch-and-Price is similar to Branch-and-Cut approach, except that procedure focuses on column generation rather than row generation. In fact, generating variables (pricing) and adding inequalities (cutting plane) are complementary operations to strengthen the linear relaxation of an integer programming formulation.

The Branch-and-Price procedure works as follows. Each node of the Branch-and-Bound tree is solved by column generation, so that variables may be added to improve the linear relaxation of the current LP. The branching phase occurs when no columns price out to enter the basis and the solution of the linear program is not integer.

Branch-and-Price approaches have been widely used in the literature to solve large scale integer programming problems. The applications are in various fields, and even real life problems such as Cutting stock problem [START_REF] Alves | A stabilized branch-and-price-and-cut algorithm for the multiple length cutting stock problem[END_REF], Generalized Assignment Problem (GAP) [START_REF] Savelsbergh | A branch-and-price algorithm for the generalized assignment problem[END_REF], Airline Crew Scheduling [START_REF] Barnhart | Airline crew scheduling[END_REF], Multi-commodity Flow Problems [START_REF] Barnhart | Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems[END_REF], etc.

Note that, at each node of the Branch-and-Price tree, column generation may be combined with cutting plane approach, to tighten the LP relaxation of the problem. In this case, the algorithm is called Branch-and-Cut-and-Price algorithm. Such a method can be difficult to handle, since adding valid inequalities to the initial model may change the structure and complexity of the pricing problem. However, some successful applications of this algorithm can be found in the literature (see [START_REF] Ropke | Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows[END_REF], [START_REF] Barnhart | Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems[END_REF] for instance).

Graph theory

In this section we will introduce some basic definitions and notations of graph theory that will be used throughout the Chapters of this dissertation. For more details, we refer the reader to [START_REF] Schrijver | Combinatorial Optimization : Polyhedra and Efficiency[END_REF].

Undirected graphs

An undirected graph is denoted G = (V, E) where V is the set of vertices or nodes and E is the set of edges. If e is an edge between two vertices u and v, then u and v are called the ends of e, and we write e = uv or e = {u, v}. If u is an extremity of e, then u (resp. e) is said to be incident to e (resp. u). Similarly, two vertices u and v forming an edge are said to be adjacent. Since the graph G may have multiple edges, it may be that e = uv and f = uv but e = f . If F ⊆ E is a subset of edges, then V (F) represents the node set of edges of F . If W ⊆ V is a subset of vertices, then E(W) denotes the set of edges having their two ends in W . Let V (H) and E(H) be the sets U and F , respectively.

A subgraph H = (U, F) of G is a graph such that U ⊆ V and F ⊂ E. A subgraph H = (U, F) of G is called covering or spanning if U = V . Let W ⊆ V , H = (W, E(W))
is said to be subgraph of G induced by W and will be denoted by G[W].

If F ⊂ E (resp. W ⊂ V), it is noted in G \ F (resp. G \ W) the graph obtained from
G by removing the edges of F (resp. nodes of W and the edges incident to W). If F (resp. W) is reduced to a single edge e (resp. a single vertex v), we write G \ e (resp.

G \ v). Let W ⊆ V , ∅ = W = V ,
a subset of vertices of V . The set of edges having one end in W and the other in V \ W is called cut and noted δ(W). By setting W = V \ W , we have that δ(W) = δ(W). If W is reduced to a single vertex v, we write δ(v). The cardinality of the cut δ(W) of a subset W is called the degree of W and noted d(W). Given W and W two disjoint subsets of V , then [W, W] represents the set of edges of G which have one end in W and the other in W . We denote by N (W) ⊆ (V \ W) the set of vertices adjacent to at least one vertex in W . If W is reduced to a single vertex v, we write N (v).

An edge e = v 1 v 2 ∈ E is called a cut edge if G is connected and G\e is not connected, with v 1 , v 2 ∈ V . If {V 1 , . . . , V p }, p ≥ 2, is a partition of V , then δ(V 1 , . . . , V p)
is the set of edges having one end in V i and the other one in V j and i = j.

The support graph of an inequality is the graph induced by the vertices of variables having a non-zero coefficient in the inequality.

Let G = (V ∪ T, E) be a graph defined by a set of vertices V ∪ T where T is a set of distinguished nodes and E is a set of edges. We denote by V (H), T (H) and E(H) its sets of nodes, terminals and edges, respectively. We denote by t(G) the number of terminal in G, i.e., |T (G)| = t(G). In all Figures of this manuscript, the terminals are represented by triangles.

A path P is a set of p distinct vertices v 1 , v 2 , . . . , v p such that for all i ∈ {1, . . . , p-1}, v i v i+1 is an edge. P is called elementary if it passes more than once by the same node (except for v 0 and v k if they represent the same vertex in G). A basic chain is totally identified with its set of edges.

Two paths between two nodes u and v are called edge-disjoint (resp. node-disjoint) if there is no edge (resp. no node different from of u and v) appearing in both chains.

1.5

Vertices v 2 , . . . , v p-1 are called the internal vertices of P . Given a path P between two terminals t, t ∈ T such that P ∩ T = {t, t }, the set of internal vertices of P will be called a terminal path and denoted by P tt . A terminal path is minimal if it does not strictly contain a terminal path.

Given a graph G = (V ∪ T, E) and two subgraphs

G 1 = (V 1 ∪ T 1 , E 1) and G 2 = (V 2 ∪ T 2 , E 2) of G. Graph G 1 is included in G 2 , if V 1 ∪ T 1 ⊆ V 2 ∪ T 2 .

Directed graphs

A directed graph is denoted D = (V, A) where V is the set of nodes and A the set of arcs.

If a ∈ A is an arc connecting a vertex u to vertex v, then u will be called initial end and v final end and we write a = (u, v). We say that a is an outgoing arc of u and v of an incoming arc. The vertices u and v are called ends of a. Vertex v (resp. a) is said to be incident to a (resp. v) if v is an end (initial or final) of a. The cut of a set W ⊆ V, ∅ = W = V , is denoted δ(W) and is the union of the arcs of the incoming cut and outgoing cut, i.e., δ(W) = δ + (W) ∪ δ -(W). The cardinality of the cut is called the degree of W and denoted d(W). If u ∈ W and v ∈ V \ W , then the cut is also called uv-cut. If W is reduced to a single vertex v, we write respectively δ(v) and d(v) instead of δ({v}) and d({v}). If all W associated with the outgoing cut δ + (W) contains the vertex u but not the vertex v, then we call it uv-outgoing cut.

If B ⊆ A is a subset of arcs, then V (B) represents the node set of arcs of B. If W ⊆ V is a subset of vertices, A(W) is the set of arcs having their ends in W . A subgraph H = (U, F) of D is a graph such that U ⊆ V and F ⊂ A. A subgraph H = (U, F) of D is said covering if U = V . If F ⊂ A (resp. W ⊂ V),
Given disjoint subsets W 1 , W 2 , . . . , W k of V , then [W 1 , W 2 , . . . , W k] represents the set of arcs of D having one end in W i and the other in W j , i = j.

A directed graph D = (V, A) is said to be k-connected graph if d -(W) ≥ k for all W ⊆ V, ∅ = W = V . A vertex v ∈ V is called cut vertex of D if the
number of connected components of the graph D \ v is strictly greater than the number of related components of D.

If a graph D = (V, A) does not contain circuit, then D is said acyclic.

State-of-the-art on the vertex separator problem

Graph partitioning has become a flourishing area and many optimization problems have been considered in the literature. In this section we discuss two important families of graph partitioning problems, the first one is based on deletion of vertices and the second one on deletion of edges.

Deletion of vertices

The following classes of problems are based on deletion of vertices in order to obtain several disjoint components with some specific properties.

The k-way vertex cut problem

Given a graph G = (V, E) and a positive integer k, the k-way vertex cut problem consists in finding a subset S ⊆ V of minimum size such that (V \ S, E) has at least k disjoint components. In [START_REF] Marx | Parameterized graph separation problems[END_REF], Marx investigates the fixed-parameter (in)tractability of k-way vertex cut. He showed that k-way vertex cut is W[1]-hard with parameter k. In [START_REF] Berger | Complexity and approximability of the k-way vertex cut[END_REF], André Berger et al. study the complexity of the k-way vertex cut problem and its approximation. They show that it is polynomial for bounded tree-width graphs and they present an efficient polynomial-time approximation scheme (EPTAS) for the problem on planar graphs.

In [START_REF] Cornaz | Mathematical formulations for the balanced vertex k-separator problem[END_REF], Cornaz et al., consider the balanced version of the k-way vertex cut problem, called the balanced vertex k-separator problem defined as follows. Given a graph G = (V, E) and two positive integers k and q, the problem consists in finding a subset S ⊆ V of minimum size, such that the graph (V \S, E) has at least k disjoint subsets W 1 , . . . , W k and |W i | -|W j | ≤ q for all i, j ∈ {1, . . . , k}. This problem is NP-hard. The authors present a compact formulation for the problem, investigate it from a polyhedral point of view and present an extended formulation with a polynomial number of constraints. They propose a column generation scheme to solve the linear relaxation. They show that the sub-problem can be solved in a polynomial time and compare the numerical results given by the Branch-and-Cut and the Branch-and-Price algorithms.

The k-separator problem

Given a vertex-weighted undirected graph G = (V, E, w) and a positive integer k, the k-separator problem consists in finding a minimum-weight subset of vertices whose removal leads to a graph where the size of each connected component is less than or equal to k. When k = 1, the problem is equivalent to the vertex cover problem, and for k = 2 and unit weight the problem is equivalent to computing the dissociation number of a graph [START_REF] Yannakakis | Node-deletion problems on bipartite graphs[END_REF]. Thus, the problem is NP-hard even if the graph is bipartite. For any value of k, the problem was considered in [START_REF] Oosten | Disconnecting graphs by removing vertices: a polyhedral approach[END_REF]. Oosten et al. propose an extended formulation for the problem, they investigate the related polytope and present several valid inequalities and facets. In [START_REF] Ben-Ameur | The k-separator problem[END_REF], Ben-Ameur et al. study the complexity of the problem and show that it is polynomial for several classes of graphs, for instance, bounded treewidth, mK 2 -free, (G 1 , G 2 , G 3 , P 6)-free, interval-filament, etc. They also present some approximation algorithms and polyhedral results related to the associated polytope.

The vertex separator problem

The vertex separator problem VSP is very similar to the k-separator problem. Given a simple graph G = (V, E) and a positive integer β(|V |), the problem consists in partitioning V into three sets A,B and C such that |C| is minimum, there is no edge between A and B and max{|A|, |B|} ≤ β(|V |). The VSP is NP-hard [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF][START_REF] Bui | Finding good approximate vertex and edge partitions is np-hard[END_REF], even if G is a planar graph [START_REF] Fukuyama | Np-completeness of the planar separator problems[END_REF]. The VSP has been the subject of extensive research and the first polyhedral approach was done in 2005 by Balas and De Souza [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF][START_REF] Souza | The vertex separator problem: algorithms and computations[END_REF]. Indeed, they show that the problem is polynomially solvable when β(n) ≥ n -1 and when β(n) = n -k for some positive constant k, and the problem is trivial for β(n) = 1. In [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF], Balas and de Souza, present a formulation for the problem and study it from a polyhedral point of view. They give a mixed integer programming formulation of the VSP and a partial characterization of the the VS polytope. In particular, they present a class of valid inequalities based on the minimal connected dominator. They also develop a Branch-and-Cut algorithm. In [START_REF] Biha | An exact algorithm for solving the vertex separator problem[END_REF], Didi Biha and Meurs study the vertex separator problem from a polyhedral point of view. They introduce new classes of valid inequalities for the associated polyhedron, a new natural lower bound α min for the optimal solution and present some computational experiments.

The multi-terminal vertex separator problem

The multi-terminal vertex separator problem MTVSP, also called vertex multi-terminal cut problem, or node multi-way cuts problem in the literature, is a variant of the k-way vertex cut problem. Indeed, if the original graph G has k specific vertices, called terminals, the problem consists in finding a subset of non-terminal vertices S of minimum weight such that G \ S has k components, each one contains exactly one terminal. The problem can be seen in another way. Given a graph G = (V, E) and subset T ⊂ V of k terminals, the problem consists in finding a subset of vertex S ⊆ V \ T of minimum size such that each path between two terminals intersects S.

In [START_REF] Garg | Multiway cuts in node weighted graphs[END_REF], Garg et al., consider the two versions of the problem (vertex and edge) in directed and undirected graphs. The authors show that the node version is at least as hard as the edge version. Since the edge version is NP-hard by [START_REF] Dahlhaus | The complexity of multiterminal cuts[END_REF], the node version is also NP-hard, even if all weights are 1. They obtained a polynomial-time (2 -2/k)approximation algorithm. In [START_REF] Marx | Parameterized graph separation problems[END_REF], Marx obtained a 4 l 3 n O(1) -time algorithm for the problem in general graphs. Recently, Chen et al. [START_REF] Chen | An improved parameterized algorithm for the minimum node multiway cut problem[END_REF] and Guillemot [START_REF] Guillemot | Fpt algorithms for path-transversals and cycle-transversals problems in graphs[END_REF] improved Marx's result to 4 l n O(1) . In [START_REF] Xiao | Simple and improved parameterized algorithms for multiterminal cuts[END_REF], Xiao et al., consider the node and edge version of the problem. They show that the two problems are NP-hard for k ≥ 3 and polynomial when k = 2. They also show that the decision problem of the vertex multi-terminal cut problem can be solved in O(k l T (n, m)) such that T (n, m) = O(min(n 2/3 , m 1/2)m) is the time for finding a cut in the underweighted graph, where n = |V |, m = |E| and l is an upper bound on S. In [START_REF] Chen | An improved parameterized algorithm for the minimum node multiway cut problem[END_REF], Chen et al., define the edge version of the problem and propose a polynomial algorithm for the problem when the separator is bounded by O(logn). In [START_REF] Cygan | On multiway cut parameterized above lower bounds[END_REF], the authors consider also the vertex version of the problem. In [START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF], the authors give a linear system for the MTVSP and characterize the class of graphs for which it is total dual integral for any independent set T .

A similar version of this problem of the MTVSP, consists in finding a multi-terminal vertex separator S in G, such that the weight of δ(S) is minimum. When the graph has two terminals, this problem is called the minimum cut separator problem MCSP. In [START_REF] Ben-Ameur | Algorithms and formulations for the minimum cut separator problem[END_REF], the authors consider the MCSP and show that the associated polytope Q is difficult to characterize, since when the weights are negatives, the problem can be reduced to a max-cut problem. Thus, they study the dominant D of Q and give a complete description of D. They also develop a polynomial algorithm to solve the problem based on the maximum flow problem. In [START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF], the authors present six different formulations for the problem.

Vertex multicut problem

Consider a graph G = (V, E), a collection node pairs L ⊆ V × V , called terminals, and an integer k ≥ 0. The restricted vertex multi-cut problem (RVMCP), consists in finding a subset of non-terminal vertices

V 0 ⊆ V with |V 0 | ≤ k such that all pairs of terminals in L are disconnected in (V \ V 0 , E). The unrestricted vertex multi-cut problem (UVMCP) consists in finding a subset of vertices V 0 ⊆ V with |V 0 | ≤ k such that all pairs of terminals in L are disconnected in (V \ V 0 , E).
In [START_REF] Papadopoulos | Restricted vertex multicut on permutation graphs[END_REF], Papadopoulos show that the RVMCP is NP-hard even for splits graphs (composed of a clique and a stable set). The authors also show that the UVMCP is polynomial for trees, but NP-hard for complete graphs. They show that the RVMCP can be solved in O(|E| |V | + |H||V |) for co-bipartie graphs and propose a polynomial algorithm for permutation graphs. In [START_REF] Guo | Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs[END_REF], Guo et al., give some complexity results for interval and bounded treewidth graphs.

Critical nodes problem

Given a graph G = (V, E) and a positive integer k, the critical nodes problem consists in finding a subset of vertices S ⊆ V of size less or equal to k minimizing the number of pairs of nodes connected by a path in (V \ S, E). This problem has important applications in telecommunication as evaluating the robustness of a network. Arulselvan et al. [START_REF] Arulselvan | Detecting critical nodes in sparse graphs[END_REF] considered the problem and show that it is NP-hard for general graphs. They propose an integer linear formulation for the problem and developed an efficient heuristic. They presented several real applications for the problem, like strategic military planning and immunity network (Find the exact number of individuals to vaccinate, to reduce the transfer of the virus into a network). Boginski and Commander [START_REF] Boginski | Identifying critical nodes in protein-protein interaction networks. Clustering challenges in biological networks[END_REF] present applications of CNPs in biology, in order to achieve maximum fragmentation of protein-protein interaction graphs through node deletions. A robust optimization model is considered in [START_REF] Fan | Robust optimization of graph partitioning and critical node detection in analyzing networks[END_REF], when the edges have uncertain weights. In [START_REF] Di Summa | Branch and cut algorithms for detecting critical nodes in undirected graphs[END_REF], Di summa propose a formulation with a polynomial number of vertices and an exponential number of constraints, and devise a Branch-and-Cut algorithm for solving the problem. They propose some valid inequalities and study the problem from a polyhedral point of view. They compute the relaxation of the problem based on the quadratic reformulation of the problem. Dinh et al. [START_REF] Dinh | On approximation of new optimization methods for assessing network vulnerability[END_REF] propose algorithms for detecting, in a directed graph, what they call node-disruptors and arc-disruptors, i.e., sets of nodes and arcs to be deleted in order to minimize the number of directed connections surviving in the residual graph.

Deletion of edges

The following classes of problems are based on the deletion of edges in order to obtain several disjoint components with some specific properties.

The k-way edge cut

The k-way edge cut, also referred as k-cut or minimum k-cut. This problem can be regarded as the "edge-version" of k-way vertex cut: given a graph G = (V, E) and integers k and s, remove at most s edges so as to split the graph into at least k components. Goldschmidt and Hochbaum [START_REF] Goldschmidt | A polynomial algorithm for the k-cut problem for fixed k[END_REF] have shown that k-way edge cut is NPhard and admits an n O(k 2) -time algorithm. Later, Karger and Stein [START_REF] Karger | A new approach to the minimum cut problem[END_REF] developed a randomized n O(k) -time algorithm for this problem. Kami-dori, et al. [START_REF] Kamidoi | A deterministic algorithm for finding all minimum k-way cuts[END_REF] presented a deterministic O(n 4+o(1)k)-time algorithm which was further improved by Thorup [START_REF] Thorup | Minimum k-way cuts via deterministic greedy tree packing[END_REF]. Saran and Vazirani [START_REF] Saran | Finding k cuts within twice the optimal[END_REF] gave a polynomial time approximation algorithm that finds at most 2s edges which deletion splits the graph into at least k components. For dense graphs with Ω(n 2) edges, Arora et al. [START_REF] Arora | Polynomial time approximation schemes for dense instances of np-hard problems[END_REF] developed a polynomial time approximation scheme for k-way edge cut. Recently, Kawarabayashi and Thorup [START_REF] Kawarabayashi | The minimum k-way cut of bounded size is fixed-parameter tractable[END_REF] have shown that k-way edge cut is fixed parameter tractable with respect to parameter s, whereas parameterized by k the problem is W[1]-hard [START_REF] Downey | Cutting up is hard to do: the parameterized complexity of k-cut and related probelms| nova. the university of newcastle's digital repository[END_REF]. Therefore, this problem, when considered with parameter s, is one of the few problems known where the vertex version is W[1]-hard, but the edge version is FTP. There are several papers that studied kway edge cut on planar graphs. For k = 3, Hochbaum and Shmoys [START_REF] Hochbaum | An o(|v|ˆ2) algorithm for the planar 3-cut problem[END_REF] constructed a quadratic time algorithm for k-way edge cut on planar graphs. He [START_REF] He | An improved algorithm for the planar 3-cut problem[END_REF] gave an improved algorithm for this special case with running time O(nlogn). Kawarabayashi and Thorup [START_REF] Kawarabayashi | The minimum k-way cut of bounded size is fixed-parameter tractable[END_REF] presented an 2 O(s 2 g 2) n-time algorithm for graphs of genus g. Their results were recently improved by Chtinis et al. [START_REF] Chitnis | Designing fpt algorithms for cut problems using randomized contractions[END_REF].

The multi-way cut problem

The multi-way cut problem, consists, given a graph G = (V, E), a set of terminal A ⊂ V and a weight function c : E → Z, in finding a separator S ⊆ E of minimum weight such that all terminals of A are disconnected in (V, E \ S).

The problem was first proposed in T.C. Hu's 1969 book [START_REF] Hu | Integer programming and network flows[END_REF]. Many applications proposed for multiway cut include image processing, chip design and parallel and distributed computing. In the literature the problem has several names the A-cut problem and the multi-terminal cuts problem. When the set of terminals has cardinality k, it is sometimes called the k-terminal cut problem or the k-way cut problem.

The problem of computing a minimum weight multiway cut was shown to be NPhard and MAX SNP-hard even if k is fixed and k ≥ 3 [START_REF] Dahlhaus | The complexity of multiterminal cuts[END_REF]. The authors show that for trees and 2-trees the problem can be solved in polynomial time. They also describe an approximation algorithm. For planar graphs, the problem can be solved in polynomial time for fixed k but is NP-hard when k is unbounded. For general graphs, there is a simple 2-approximation algorithm disconnecting each terminal from the others by a min-cut, but for any fixed k ≥ 3, the problem is APX-hard (also in [START_REF] Bateni | A polynomial-time approximation scheme for planar multiway cut[END_REF]). In [START_REF] Chopra | On the multiway cut polyhedron[END_REF], Chopra and Rao present a formulation for the problem and investigate the associated polyhedron. They present some graph deletion and contraction operations, and several valid inequalities. They give some cases for which the problem is polynomial and develop a Branch-and-Cut algorithm. In [START_REF] Chopra | Extended formulations for the a-cut problem[END_REF], Chopra et al., give an extended formulation for the problem and show that the linear relaxation can be solved in polynomial time. They show that the solution of the linear relaxation is always integer for trees. They present some valid inequalities for cyclic graphs and develop a Branch-and-Cut algorithm. In [START_REF] Cunningham | Optimal 3-terminal cuts and linear programming[END_REF], Cunningham et al., propose an approximation algorithm based on a linear relaxation of a given formulation, using path inequalities. In [START_REF] Călinescu | An improved approximation algorithm for multiway cut[END_REF], the authors present a new integer linear formulation for the problem and a new approximation algorithm. For trees and 2-trees graphs, there exists a linear algorithm to solve the problem. In [START_REF] Biha | On the 3-terminal cut polyhedron[END_REF], Didi biha consider the linear relaxation LP (G, A) of the 3-terminal cuts polyhedron P (G, A). He characterizes the pairs (G, A) for which LP (G, A) is integer. This result was conjectured by Cunningham. In [START_REF] Bateni | A polynomial-time approximation scheme for planar multiway cut[END_REF], the authors show that there exists a 2-approximation algorithm for the problem.

The balanced graph partitioning problem

In [START_REF] Andreev | Balanced graph partitioning[END_REF], Andreev et al., study the balanced graph partitioning problem, it consists, given a graph G = (V, E) with a weight on each edge and two positive integers v, k, in partitioning V into k subsets, such that each subset contains at most v.n k nodes, minimizing the weight of edges between subsets. For k = 2 and v = 1 this problem is equivalent to the well-known Minimum Bisection problem for which an approximation algorithm with a polylogarithmic approximation guarantee has been presented in [START_REF] Krauthgamer | A polylogarithmic approximation of the minimum bisection[END_REF]. The first heuristics for Minimum Bisection were given by Kernighan and Lin [START_REF] Kernighan | An efficient heuristic procedure for partitioning graphs[END_REF] and subsequently improved in terms of running time by Fiduccia and Mattheyses [START_REF] Fiduccia | A linear-time heuristic for improving network partitions[END_REF]. If the balance requirement of the Minimum Bisection problem is relaxed, one gets the well-known graph separator problem. For a comprehensive survey of major results in the area the reader is referred to the book Graph Separators with Applications by Rosenberg and Heath [START_REF] Rosenberg | Graph separators, with applications[END_REF]. The first non-trivial approximation algorithm for Minimum Bisection is due to Saran and Vazirani [START_REF] Saran | Finding k-cuts within twice the optimal[END_REF] who obtained an approximation ratio of n/2. When v = 1, the problem is called the k-way partitioning problem in [START_REF] Karypis | Multilevelk-way partitioning scheme for irregular graphs[END_REF], the authors study the problem and propose an algorithm for solving the problem based on reducing the graph using matching. Recently, multilevel recursive bisection algorithm, gave a good method to solve the k-way partitioning problem of a graph.

Chapter 2

The multi-terminal vertex separator problem : Polyhedral analysis In this chapter we consider the multi-terminal vertex separator problem. We first show that the problem is NP-hard, then we give two integer programming formulations for the problem. For one of these formulations, we investigate the related polyhedron and discuss its polyhedral structure. We describe some valid inequalities and characterize when these inequalities define facets. We also derive separation algorithms for these inequalities. Using these results, we develop a Branch-and-Cut algorithm for the problem, along with an extensive computational study is presented.

Let G = (V ∪ T, E) be a simple graph with V ∪ T the set of vertices, where T is a set of k distinguished vertices called terminals, and E the set of edges. A multi-terminal vertex separator in G is a subset of vertices such that the graph induced by (V ∪ T) \ S consists of k disjoint components, each with exactly one terminal. Given a weight function w : V → Z, the multi-terminal vertex separator problem (MTVSP for short), consists in finding a multi-terminal vertex separator in G of minimum weight. The MTVSP can also be seen as the problem of finding a vertex subset S ⊆ V of minimum weight such that each path between each pair of terminals intersects S. Indeed, if S intersects all paths between each pair of terminals then the graph induced by (V ∪T)\S would have k components. Moreover, each component contains exactly one terminal. In the case where k = 2, the MTVSP can be solved in polynomial time [START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF].

The chapter is organized as follows, In Section 1 we discuss the complexity aspect of the MTVSP. In Section 2 we give the integer programming formulations for the problem and analyze their linear relaxations. Section 3 is devoted to the polyhedral analysis of the MTVSP and description of some valid inequalities. In Section 4 we discuss some graph reduction operations. In Section 5 we describe separation routines for the inequalities described in Section 3 and develop a Branch-and-Cut algorithm for the MTVSP. Our computational results are presented in Section 6, and finally some concluding remarks are given in Section 7. The rest of this Section is devoted to more definitions and notations.

In what follows we consider the following Hypotheses.

2.1

2.1-There is no edge between two terminals, otherwise the problem has no solution.

2.2-For every two different terminals t, t ∈ T , we have that N (t) ∩ N (t) = ∅. Otherwise, all vertices in N (t) ∩ N (t) must belong to the separator. In this case we can remove these vertices from the graph.

2.3-For each vertex v ∈ V, there is at least one terminal path containing v. Otherwise, v cannot belong to a minimal separator. In this case we can delete it from the graph. Checking if a node v belongs to a terminal path can be done in polynomial time.

2.4-Graph G is connected. Otherwise, we consider the MTVSP on each component of the graph.

2.5-The weight of each vertex is 1, i.e., w(v) = 1 for each vertex v ∈ V . Otherwise, if there exists a vertex v with w(v) = 0, then we can add v in the separator and delete it from the graph. If w(v) ≥ 1 then we can replace v by a clique K w(v) of size w(v) such that each vertex of K w(v) is adjacent to each vertex of N (v).

Complexity analysis

In [START_REF] Garg | Multiway cuts in directed and node weighted graphs[END_REF], Garg et al. show that the MTVSP is NP-hard. In this section we give a simpler proof of this result using a polynomial reduction from the vertex cover problem (VCP). Given a graph H = (U, E), the VCP consists in finding a minimum cardinality subset of vertices R ⊆ U such that each edge of E is incident to at least one vertex of R. The VCP is a well-known NP-hard problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

Theorem 2.1 The M T V SP is NP-hard.

Proof. Consider the VCP on a graph E) be the graph obtained from H as follows

H = (U, E). Let G = (V 1 ∪ V 2 ∪ V 3 ∪ T,
• add three vertices t 1 , t 2 and t 3 in T .

• for each vertex u ∈ U , add

-three vertices v u 1 in V 1 , v u 2 in V 2 and v u 3 in V 3 . -three edges t 1 v u 1 , t 2 v u 2 and t 3 v u 3 in E.
The multi-terminal vertex separator problem : Polyhedral analysis

-two edges v u 1 v u 3 and v u 2 v u 3 in E.
• for each edge uw ∈ E , add two edges v u 1 v w 2 and v w 1 v u 2 in E. Proposition 2.2 Given a separator S of G and a vertex u ∈ U , either

|{v u 1 , v u 2 , v u 3 } ∩ S| ≥ 2, v u 3 ∈ S or both.
Proof. Let us assume the contrary. Suppose v u 3 / ∈ S and, say, {v u 1 , v u 2 } ∩ S = {v u 1 }. Then, {v u 2 , v u 3 } is a terminal path, between t 2 and t 3 , not intersecting S, contradicting the fact that S is a separator.

Let R be a vertex cover in H and S a separator in G. Let R S ⊆ U be the set of vertices such that for all

u ∈ R S , |S ∩ {v u 1 , v u 2 , v u 3 }| ≥ 2 and let S R ⊆ V 1 ∪ V 2 ∪ V 3 be defined as follows. For each vertex u ∈ U , if u ∈ R then we add the two vertices v u 1 , v u 2 in S R , otherwise we add v u 3 in S R .
Proposition 2.3 The set R S is a vertex cover in H and S R is a separator in G.

Proof. Suppose that R S is not a vertex cover in H. Then, there exists uw ∈ E such that R S ∩ {u, w} = ∅. From the construction of R S and Proposition 2.2 it follows that

{v u 1 , v u 2 , v w 1 , v w 2 } ∩ S = ∅ and {v u 3 , v w 3 } ⊆ S.
As consequence, {v u 1 , v w 2 } is a terminal path, between t 1 and t 2 , not intersecting S, and thus, S is not a separator, a contradiction. Now, suppose that S R is not a separator of G. Then, there is a terminal path not intersecting S R in G. We distinguish two cases.

• There exists an edge uw ∈ E such that the terminal path {v u 1 , v w 2 } or {v w 1 , v u 2 }, between t 1 and t 2 , does not intersect S R . From the definition of S R , it follows that {u, w} ∩ R = ∅, a contradiction with the fact that R is a vertex cover of H.

• There exists a vertex u ∈ U such that the terminal path {v u 1 , v u 3 }, between t 1 and t 3 , or {v u 2 , v u 3 }, between t 2 and t 3 , does not intersect S R . This implies that either

{v u 1 , v u 3 } ∩ S R = ∅ or {v u 2 , v u 3 } ∩ S R = ∅, which is impossible. Proposition 2.4
If S is a separator in G with a minimum size, then S is of size q + |U | where q is the size of the vertex cover R S in H.

Proof. First note that, two nodes among {v u 1 , v u 2 , v u 3 } suffice to cut all the terminal paths going through these nodes. Hence, as S is a separator with a minimum size in G, for all u ∈ U , 1 ≤ |S ∩ {v u 1 , v u 2 , v u 3 }| ≤ 2. By Proposition 2.3, R S is a vertex cover in H of size q and S R S is a separator in G. Moreover, S R S has the same size as S . From its construction, the size of S R S is 2q + (|U | -q) = q + |U |. Hence, that of S is q + |U |.

Proposition 2.5 If R is a vertex cover in H of minimum size, then S R is a separator in G of minimum size. And if S is a separator in G of minimum size, then R S is a vertex cover in H of minimum size.

Proof. Suppose that R is a vertex cover of minimum size q in H but S R is not of minimum size in G. Note that from the construction of S R , S R is of size q

+ |U |. Let S ⊆ V 1 ∪ V 2 ∪ V 3 be a separator in G of minimum size. From proposition 2.4, |S | = q + |U
| where q is the size of R S . Since |U | + q < q + |U |, it follows that q < q and hence R is not of minimum size in H, a contradiction. Now, suppose that, S is a separator in G of minimum size q + |U | but R S , which is of size q, is not of minimum size in H. Let R ⊆ U be a vertex cover in H of minimum size q . Then, S R is a separator in G of size q + |U |. Since q < q, it follows that S is not of minimum size in G, a contradiction. From Proposition 2.5, finding a vertex cover in H of minimum size is equivalent to finding a minimum size three terminal vertex separator in G. Since the vertex cover problem is a NP-hard, the 3 -T V SP so is. And consequently the MTVSP is NP-hard.

Formulations

In this section we propose two 0-1 linear formulations for the MTVSP. The first one is a compact formulation with a polynomial number of variables and constraints, and uses double indices. The second has a polynomial number of variables but an exponential number of inequalities.

Double indices formulation

Let x ∈ {0, 1} (V ∪T)×T such that x vt = 1 if vertex v belongs to subset V t , ∀v ∈ V ∪ T, ∀t ∈ T, 0 otherwise.
The MTVSP is equivalent to the following integer linear program F 1 ,

min |V | - v∈V t∈T x vt x ut + t ∈T \{t} x vt ≤ 1 ∀uv ∈ E, ∀t ∈ T, (2.1) t∈T x vt ≤ 1 ∀v ∈ V ∪ T, (2.2)
x tt = 1 ∀t ∈ T, (2.3) x vt ∈ {0, 1} ∀v ∈ V ∪ T, ∀t ∈ T. (2.4)
For each pair of terminals {t, t } ⊆ T , inequalities (2.1) ensure that there is no edge connecting V t and V t . Inequalities (2.2) guarantee that each vertex of V ∪ T belongs to at most one subset of vertices. Inequalities (2.3) ensure that each terminal belongs to exactly one subset of vertices.

Natural formulation

Let Γ be the set of all terminal paths between the terminals in G. Let x ∈ {0, 1} V such that

x(v) = 1 if vertex v belongs to the separator, ∀v ∈ V, 0 otherwise.
The MTVSP is equivalent to the following integer linear program F 2 ,

min v∈V w(v)x(v) (2.5) v∈P tt x(v) ≥ 1 ∀P tt ∈ Γ, (2.6) x(v) ≤ 1 ∀v ∈ V, (2.7) x(v) ≥ 0 ∀v ∈ V, (2.8)
x(v) ∈ {0, 1} ∀v ∈ V.
(2.9)

Inequalities (2.6) guarantee that at least one vertex of each terminal path belongs to the separator.

Comparing the LP-Relaxations

We first present a numerical comparison of the LP-Relaxation values of the two above formulations with the optimal value, for some DIMACS instances [1]. The columns in Table 2.1 represent the name of the instance, the value of the LP-Relaxation of formulation F 1 , the value of the LP-Relaxation of formulation F 2 and the value of the optimal separator, respectively. It appears from Table 2.1 that the LP-Relaxation of the first formulation is better than the second one. This is shown below.

Proposition 2.6 Z F 2 ≤ Z F 1 , where Z F 1 (Z F 2) is the optimal value of F 1 (F 2). Proof. Let assume the contrary, Z F 1 < Z F 2 . Let x ∈ [0, 1] V ×T (resp. y ∈ [0, 1] V) be the optimal solution of F 1 (resp. F 2) associated with Z F 1 (resp. Z F 2). For v ∈ V , let y ∈ [0, 1] V such that y(v) = 1 - t∈T x vt . Clearly, by inequalities (2.2), y(v) ∈ [0, 1].
Consider a terminal path P tt between two terminals t and t of l edges. By summing inequalities (2.1) associated with the edges of P tt and t, (by respecting the order of nodes in P tt) we obtain the following inequality

x tt + v∈P tt t ∈T x vt + t ∈T \{t} x t t ≤ l As x tt = 1 and t ∈T \{t} x t t = 1, it follows that v∈P tt y(v) ≥ 1,
and thus, inequalities (2.6) is satisfied for y. The objective value of

y is Z = v∈V y(v) = v∈V (1- t∈T x vt) = Z F 1 . Thus, Z < Z F 2 ,
which contradicts the fact that y is the optimal solution of F 2 .

2.3

Note that the first formulation has (n + k)k variables and the second one has only n variables. Also, note that inequalities (2.6), which are in an exponential number, can be separated in polynomial time. Since the second formulation has fewer variables and may use less number of inequalities of type (2.6) in the Branch-and-Cut algorithm, we will consider it for our analysis. (For the instance R_1300 in Table 2.3, F 1 has 13100 variables and 3329920 non-trivial inequalities, whereas F 2 has only 1300 variables and uses 122 non-trivial inequalities in the Branch-and-Cut algorithm).

Polyhedral analysis

Let P (G, T) be the convex hull of the solutions of formulation F 2 , that is,

P (G, T) = conv{x ∈ {0, 1} V | x satisfies (2.6)}.
In this Section, we will discuss P (G, T), we will give its dimension, identify several classes of valid inequalities and describe necessary and sufficient Conditions for these inequalities to be facet defining.

Dimension

We first establish the dimension of P (G, T). We need to exhibit n + 1 separators such that their incidence vectors are affinely independent. Let S 0 = V . Clearly, S 0 is a separator of G. For each v ∈ V , let S v = V \{v}. By Hypothesis 2.2, v is not adjacent to two terminals. It then follows that S v is a separator. (Figure 2.2 illustrates the two above separators.) This constitutes a set of n + 1 separators of G. Moreover, their incidence vectors are affinely independent. Now we characterize when inequalities (2.6),(2.7) and (2.8) define facet of P (G, T).

Theorem 2.7 P (G, T) is full dimensional. Proof.
Theorem 2.8 For v ∈ V , inequality x(v) ≤ 1 defines a facet of P (G, T).

Proof. We need to exhibit n separators containing v such that their incidence vectors are affinely independent. Let S 0 = V , and for each vertex u ∈ V \{v}, let S u = V \{u}. Clearly, these sets are separators in G. Moreover, their incidence vectors are affinely independent.

Theorem 2.9 For v ∈ V , inequality x(v) ≥ 0 defines facet of P (G, T) if and only if v does not belong to a terminal path P tt containing exactly two internal vertices.

Proof. (⇒) Suppose there exists a terminal path P tt containing exactly two internal vertices u and v. Then, we have the valid inequalities x(u) + x(v) ≥ 1 and x(u) ≤ 1. Inequality x(v) ≥ 0 can then be obtained as a linear combination of these inequalities, and cannot then define a facet. (⇐)

2.3

Let S 0 = V \ {v} and S u = S 0 \ {u} for all u ∈ V \ {v}. Since v does not belong to a terminal path of two vertices, these sets are separators of G. Moreover, their incidence vectors are affinely independent.

Path inequalities

Theorem 2.10 Inequality (2.6), associated with a terminal path P tt , defines a facet of P (G, T) if and only if (a) P tt is minimal. (b) Suppose there exists v ∈ V \ P tt which is adjacent to t ∈ T \ {t, t } and to two vertices of P tt . Thus, we have the following valid inequalities, x(P tt) ≥ 1, x(P tt) ≥ 1, x(P t t) ≥ 1 and x(u) ≥ 0 for all u ∈ P tt \ (P tt ∪ P t t). By summing these inequalities, devising by 2 and rounding up the right hand side, we obtain the valid inequality x(P tt) + x(v) ≥ 2. Inequality (2.6) associated with terminal path P tt can then be obtained from the above inequality and inequality (2.7) associated with v, and it cannot therefore be facet defining.

(b) No vertex v ∈ V \ P tt is adjacent to a terminal t ∈ T \ {t, t }
(⇐) Denote by ax ≥ α inequality (2.6). Let bx ≥ β be an inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will show that there exists ρ such that b = ρa. For In what follows we describe further classes of valid inequalities of P (G, T) and discuss their facial structure. A star tree H = (V (H) ∪ T (H), E(H)) of G is a tree where the pending nodes are the terminal nodes of the tree, and all the other (non-terminal) nodes, different from the root node, are of degree two. The star tree H with q terminals t 1 , . . . , t q , can also be seen as the concatenation of q paths P t i , i = 1, . . . , q between the root v r and t i , i = 1, . . . , q. The paths P t 1 , . . . , P tq will be called branches. A star tree with 2 terminals is nothing but a terminal path. Figure 2.4 displays a star tree with 11 branches.

v ∈ P tt , let S v = (V \ P tt) ∪ {v}.

Star tree inequalities

Theorem 2.11 If H = (V (H) ∪ T (H), E(H)) is a star tree of G with root v r , then the inequality x(V (H) \ {v r }) + (q -1)x(v r) ≥ q -1 (2.10) is valid for P (G, T).
Proof. Given a separator S of G. if v r belongs to S, then x(v r) = 1 and the inequality is satisfied by x S . If v r is not in S, then S must contain at least q-1 nodes of V (H)\{v r } in order to cut all the terminal paths of H.

Lemma 2.12 If there is a vertex w ∈ V \ V (H) adjacent to a terminal t ∈ T \ T (H) and to an internal vertex in each branch of H, then the following inequality

x(V (H) \ {v r }) + (q -1)x(v r) + x(w) ≥ q (2.11)
is valid for P (G, T).

Proof. Consider a separator S. If w ∈ S, then either v r ∈ S or q -1 vertices of V (H) \ {v r } belong to S. In both cases, inequality (2.11) is satisfied by x S . If w / ∈ S, then suppose that S contains v r or q -1 vertices of V (H) \ {v r }. In both cases, there exists a terminal path between t and at least one terminal of T (H) not intersecting S. Thus, S contains another vertex from V (H). And hence inequality (2.11) is again satisfied.

Lemma 2. [START_REF] Baïou | Separation of partition inequalities[END_REF] If there is a vertex w ∈ V \ V (H) adjacent to a terminal t ∈ T \ T (H), and to two different vertices u 1 , u 2 ∈ P t , for some t ∈ T (H), the following inequality

x(V (H) \ {v r }) + (q -2)x(v r) + x(w) ≥ q -1 (2.12)
is valid for P (G, T), where q = q + 1.

Proof. We can suppose that u 1 = v r . Given a separator S of G, if v r belongs to S, then S must contains another vertex v ∈ P tt ⊆ P t ∪ {w}, where P tt is the terminal path between t and t not containing v r . Then, the inequality (2.12) is satisfied by x S . If v r is not in S, then S contains q -1 vertices from V (H) \ {v r }. Since w is adjacent to t and to two vertices of P t , S must contain another vertex from (V (H) ∪ {w}) \ {v r }.

And hence the inequality (2.12) is satisfied by x S .

Theorem 2.14 Given a star tree H = (V (H) ∪ T (H), E(H)) of G, inequality (2.10) defines a facet of P (G, T) if and only if the following hold (a) There is no vertex of V (H) adjacent to a terminal of T \ T (H).

(b) The subgraph induced by V (H) in G contains no cycle.

(c) There is no vertex of V \ V (H) adjacent to a terminal of T \ T (H), and to two vertices of the same branch.

(d) There is no vertex of V \ V (H) adjacent to a terminal of T \ T (H) and to an internal vertex of each branch of H.

(e) v r is not adjacent to a terminal of T (H).

Proof. (⇒)

(a) If a vertex u ∈ P t \{v r }, for some t ∈ T (H), is adjacent to a terminal t ∈ T \T (H), then consider star tree H in H with leaf set T (H) = T (H) \ {t}. Inequality (2.10) associated with H can be obtained from the star tree inequality associated with H , the inequality associated with the terminal path P tt between t and t and the trivial inequalities x(w) ≥ 0 for all w of P t \ P tt . If v r is adjacent to a terminal t ∈ T \ T (H), then consider the star tree H where T (H) = T (H) ∪ {t }. Inequality (2.10), associated with H, can then be obtained by summing the star tree inequality induced by H and the trivial inequality -x(v r) ≥ -1. So in both cases, inequality (2.10) can be obtained as a linear combination from valid inequalities and they cannot be facet defining.

(b) Suppose that the subgraph induced by V (H) in G contains a cycle. It follows that there exist two vertices u, v ∈ V (H) such that uv ∈ E \ E(H). We distinguish two cases Case 1. u ∈ P t and v ∈ P t for two different terminals t, t ∈ T (H). Then, the following inequality

x(V (H) \ {v r }) + (q -2)x(v r) ≥ q -1 (2.13)
is valid for P (G, T) and dominates inequality (2.10) associated with H. Indeed, given a separator S of G, if v r belongs to S, then S must contains another vertex w ∈ P tt , where P tt is the terminal path between t and t not containing v r . Then, the inequality is satisfied by x S . If v r is not in S, then S must contain at least q -1 nodes of V (H) \ {v r } in order to cut all the terminal paths of H. And the inequality is again satisfied. Thus, inequality (2.10) cannot be facet defining. It will be shown later in Section 2.3.5 that inequality (2.13) can be obtained as a lifted inequality from the star tree inequality (2.10).

Case 2. u, v ∈ P t for some t ∈ T (H). Let P uv ⊂ P t be the set of the internal vertices of the path between u and v, in the branch P t . Then,

((V (H) \ P uv) ∪ T (H), E(H)
) is also a star tree. Then, the following inequality

x(V (H) \ (P uv ∪ {v r })) + (q -1)x(v r) ≥ q -1
is a star tree inequality that is valid for P (G, T). However, this inequality dominates inequality (2.10) associated with H. Therefore, the latter cannot be facet defining.

(c) Suppose there is a vertex w ∈ V \ V (H) adjacent to a terminal t ∈ T \ T (H), and to two different vertices u 1 , u 2 ∈ P t , for some t ∈ T (H). From Lemma 2.13, the following inequality

x(V (H) \ {v r }) + (q -2)x(v r) + x(w) ≥ q -1 (2.14)
is valid for P (G, T), where q = q + 1. Hence, inequality (2.10) can be obtained by summing inequality (2.14) and -x(w) ≥ -1 and replacing q by q + 1. Thus, inequality (2.10) cannot be facet defining.

(d) Suppose there is a vertex w ∈ V \V (H) adjacent to a terminal t ∈ T \T (H) and to an internal vertex in each branch of H. From Lemma 2.12 the following inequality

x(V (H) \ {v r }) + (q -1)x(v r) + x(w) ≥ q (2.15)
is valid for P (G, T). Inequality (2.10) can be obtained by summing inequality (2.15) and x(w) ≤ 1. Therefore, inequality (2.10) cannot be facet defining.

(e) If there exists a branch P t with no internal vertices, (that is to say, v r is adjacent to a terminal of T (H)), then let H be the star tree obtained from H by deleting a branch P t with at least one internal vertex. Inequality (2.10) can be obtained by summing the star tree inequality associated with H together with the terminal path inequality associated with P t ∪ P t .

(⇐) Suppose that Conditions (a)-(e) hold. Denote by ax ≥ α inequality (2.10). Let bx ≥ β be an inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will prove that there exists ρ such that b = ρa. By Condition (e), it follows that each branch P t , t ∈ T (H), contains at least one internal node. For a terminal t ∈ T (H), a ring of V (H) \ P t is a subset of q -1 vertices containing exactly one vertex from each branch different from

P t . Hence, if Q t is a ring of V (H) \ P t then for all t ∈ T (H) \ {t}, |(P t \ {v r , t }) ∩ Q t | = 1, see Figure 2.5.(a). Consider two vertices u 1 , u 2 ∈ V (H) \ {v r } that belong to different branches P t 1 , P t 2 of H. Let Q t 1 1 , Q t 2 2 be two rings such that u 1 ∈ Q t 1 1 , u 2 ∈ Q t 2 2 and Q t 1 1 \ {u 1 } = Q t 2 2 \ {u 2 }. Let S 1 = (V \ V (H)) ∪ Q t 1 1 and S 2 = (V \ V (H)) ∪ Q t 2 2 . See
Q t i i with i = 1, 2 or it contains a vertex of V \ V (H).
Hence, S 1 and S 2 are two separators of G. Moreover, incidence vectors x S 1 and x S 2 satisfy inequality (2.10) with equality. Hence, bx S 1 = bx S 2 , implying that b(u 1) = b(u 2). As t, u 1 and u 2 are arbitrarily chosen, we have that Set

b(u) = b(v) = ρ for all u, v ∈ V (H) \ {v r } and a scalar ρ ∈ R.
S 0 = (V \ V (H)) ∪ {v r }.
By Conditions (a) and (b) each terminal path between a terminal in T (H) and a terminal in T , contains v r or a vertex from V \ V (H). Thus, S 0 is a separator of G. See Figure 2.6.(a) for an illustration. Also, we have that ax S 0 = α.

Hence, bx S 1 = bx S 0 , yielding b(v r) = v∈Q t 1 b(v) = (q -1)ρ.
Now consider a vertex w ∈ V \ V (H). We distinguish two cases.

Case 1. If w is not adjacent to the root vertex v r , then by Condition (c), w is adjacent to at most one vertex of each branch and by Condition (d), there exists at least one branch P t such that no internal vertex of P t is adjacent to w. Consider the ring Q of H such that N (w)∩V (H) ⊆ Q and each vertex of Q\(N (w)∩V (H)) is adjacent to a terminal of T (H)\{t}. Let S = (V \V (H))∪Q and S w = S \{w}.

Since Q is a ring, S is a separator of G, as defined before. Set S w is also a separator of G. Otherwise, since S is a separator, w is adjacent to a terminal in T \ T (H) and to a vertex in P t . Contradiction with Condition (d).

Case 2. If w is adjacent to the root vertex v r then, let S w = S 0 \ {w}. Set S w is a separator of G. Indeed, by Condition (c), since w is adjacent to v r , w cannot be adjacent to vertices of V (H)\{v r }. Therefore, every terminal path between a terminal of T \ T (H) and a terminal of T intersects S w

In both cases, S w is a separator in G. (See Figure 2.6.(b) for an illustration). And its incidence vector satisfies inequality (2.10) with equality. Hence, ax Sw = ax S 0 , therefore bx Sw = bx S 0 . This implies that b(w) = 0. Hence, we have that

b(u) = 0 for all u ∈ V \ V (H).
In consequence we have that b = ρa, and the proof is complete. A graph

Clique star inequalities

Q = (V (Q) ∪ T (Q), E(Q)) is called a clique star if Q consists of a clique K q on
q vertices of V (Q), q terminals t 1 , . . . , t q (that is T (Q) = {t 1 , . . . , t q }) and q disjoints paths P t 1 , . . . P tq such that each path P t i is between a different vertex of K q and t i .

The paths P t are called branches. Figure 2.7 shows a clique star with 7 branches. In what follows we will suppose that q ≥ 3, otherwise the clique star is either a terminal path or a branch.

Theorem 2.15 Given a clique star Q = (V (Q) ∪ T (Q), E(Q)) of G, the following inequality is valid for P (G, T) x(V (Q)) ≥ q -1.
(2.16)

Proof. If S ∩ K q = ∅, then clearly, S must contain at least q -1 vertices of V (Q) to cut all the terminal paths of Q. So suppose that S ∩ K q = {v 1 , . . . , v l }, l ≤ q -2. (If l ≥ q -1, then inequality (2.16
) is satisfied by x S). Note that each vertex v i ∈ K q is an extremity of branch P t i . Hence, q -l terminals remain to separate. For this at least q -l -1 vertices from V (Q) \ K q are needed to cut all the terminal paths between the remaining terminals.

Lifting procedure for star tree inequalities

In what follows we are going to describe a lifting procedure for the star tree inequalities. This will permit to extend these inequalities to a more general class of valid inequalities. Let G = (V ∪ T, E) be a simple graph. Consider a star tree H, of G. Let a branch clique W ⊆ (V (H) \ {v r }) be a clique such that for each pair of vertices u, v ∈ W , u and v belong to different branches of H. Observe that each branch clique yields a clique star in the graph. (See Figure 2.8 for illustration where three branch cliques are displayed).

Let α Π = s i=1 (|W i | -1).
Then, the inequality

x(V (H) \ {v r }) + (q -1 -α Π)x(v r) ≥ q -1 (2.17)
is valid for P (G, T).

Proof. Given a separator S of G, we distinguish two cases. If v r ∈ S, then for each clique star

Q W i associated with the branch clique W i , x S (V (Q W i)) ≥ |W i | -1 by the clique star inequality (2.7).
By adding these inequalities we obtain that

x S (p i=1 Q W i) ≥ α Π . As p i=1 Q W i ⊂ V (H) \ {v r }, it follows that x S (V (H) \ {v r }) ≥ α Π .
As v r ∈ S, we have that x S satisfies inequality (2.17). If v r / ∈ S, then x S (V (H)) ≥ q -1 by the star tree inequality. Thus, x S satisfies also inequality (2.17).

Terminal tree inequalities

A terminal tree H = (V (H) ∪ T (H), E(H))
, is a tree such that the terminals of T (H) are the leaves of H. (See Figure 2.3.6 for illustration). A leaf branch P t of a terminal tree H is a path between a terminal t and a vertex of V (H) of degree greater or equal to 3, and where all internal vertices are of degree 2. For v ∈ V (H), let d H (v) be the degree of v in H. If |T (H)| ≤ 3, the terminal tree is either a star tree or a terminal path. Theorem 2.17 Let G = (V ∪ T, E) be a graph and H a terminal tree of G. Let q = |T (H)|. Then, the following inequality is valid for P (G, T),

v∈V (H) (d H (v) -1)x(v) ≥ q -1.
(2.18)

Proof. The proof is by induction on q. If q ≤ 3, inequality (2.18) is nothing but a star tree inequality (2.10) associated with H and then it is valid. Let us suppose q ≥ 3, and that for each terminal tree with less than q -1 terminals, the associated inequality (2.18) is valid for P (G, T). Since q ≥ 3, there must exist a vertex u belonging to two leaf branches P t and P t . Let us consider the terminal tree H 1 (resp. H 2) obtained from H by removing the vertices of P t \ {u} (resp. P t \ {u}). Thus, H 1 and H 2 have each one q -1 leaves and hence q -1 terminals. By the induction Hypothesis, the terminal tree inequalities (2.18) associated with

H 1 and H 2 v∈V (H)\(Pt∪P t) (d H (v) -1)x(v) + v∈P t \{u} (d H (v) -1)x(v) + (d H (u) -2)x(u) ≥ q -2, v∈V (H)\(Pt∪P t) (d H (v) -1)x(v) + v∈Pt\{u} (d H (v) -1)x(v) + (d H (u) -2)x(u) ≥ q -2.
are valid for P (G, T). By summing these inequalities together with the inequality x(P t ∪ P t) ≥ 1 induced by the terminal path P t ∪ P t , and inequality x(u) ≥ 0, we obtain the inequality

v∈V (H)\(Pt∪P t) 2(d H (v) -1)x(v) + v∈Pt∪P t (2(d H (v) -1))x(v) ≥ 2q -3. (2.19)
is valid for P (G, T). By dividing by 2 and rounding up the right hand side, we obtain inequality (2.19).

Remark 2.18 If the terminal tree contains some terminals that are not leaves, then the associated inequality (2.18) remains valid.

Lifted terminal tree inequalities

Let R be a terminal tree of G. For a vertex v, let F v be the union of leaf branches incident to v. Clearly, F v is a star tree in R. Let Π Fv be a set of vertex disjoint branch cliques in F v (see, lifted star tree inequalities, subsection 2.3.5).

Theorem 2. [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF] The following inequality

v∈V (R) (d R (v) -1 -α Π Fv)x(v) ≥ q -1 if valid for P (G, T).
Proof. The proof is similar to the one of Theorem 2.16.

Terminal cycle inequalities

A terminal cycle J = (V (J)∪T (J), E(J)), where T (J) is a set of q terminals is a graph given by a cycle C of q vertices and q disjoint edges between the vertices of C and the terminals of T (J). (See Figure 2.10 displaying a terminal cycle where q = 5).

Figure 2.10: Terminal cycle of 5 terminals.

47

Theorem 2.20 If J = (V (J)∪T (J), E(J)) is a terminal cycle of G, then the following inequality is valid for P (G, T),

x(C) ≥ q 2 .
(2.20)

Proof. Let S be a separator in G. Suppose that there exists an edge uv ∈ C such that S ∩ {u, v} = ∅. Since u and v are connected to two different terminals, there is a terminal path not intersecting S, a contradiction. So, for each edge e ∈ C, at least one vertex of e belongs to S. Thus, the result follows.

Theorem 2.21 Given a terminal cycle J = (V (J)∪T (J), E(J)) of G, with |T (J)| = q, inequality (2.20) defines a facet of P (G, T) if and only if the following hold.

(a) q is odd.

(b) C is chordless.

(c) For w ∈ V \ C not adjacent to a terminal, there exists a vertex cover of C of size

q 2 containing at least |C | -1 vertices of C , where C = N (w) ∩ C. (d) For w ∈ V \ C adjacent to a terminal, there exists a vertex cover in C of size q 2 containing C , where C = N (w) ∩ C.
Proof. Let t 1 , . . . , t q be the terminals of T (J), v 1 , . . . , v q the nodes of C and e i = v i t i , for i = 1, . . . , q. For i = 1, . . . , q -1, we will let P t i denote the terminal path

(t i , v i , v i+1 , t i+1). (⇒) (a)
If q is even, the terminal cycle inequality associated with J can be obtained by summing the terminal path inequalities associated with {P t 1 , P t 3 , . . . , P t q-1 }. Thus, inequality (2.20) cannot be facet defining.

(b) If G[C] contains a chord uv, then, J can be decomposed into two terminal cycles J 1 and J 2 with a common edge uv, with q 1 and q 2 terminals, respectively. Suppose, without loss of generality, that J 1 has an odd number of terminals and J 2 has an even one. Also, we may suppose that v = v 1 and v 1 , . . . , v q 2 are the non-terminal nodes of J 2 . Let P be the set of the q 2 2 -1 disjoint terminal paths {v 2 , v 3 }, {v 4 , v 5 }, . . . , {v q 2 -2 , v q 2 -1 }. The terminal cycle inequality associated with J can then be obtained by summing the terminal cycle inequality related to J 1 and the terminal path inequalities related to the terminal paths of P.

(c) Suppose there exists a vertex w ∈ V \ C not adjacent to a terminal, and adjacent to vertices of C ⊆ C, such that each vertex cover of C of size q 2 contains at most |C | -2 vertices of C . Observe that for every two nodes u, u of C , (t, u, w, u , t) is a terminal path, where t (t') is the terminal adjacent to u (u'). As a separator of G must contain a vertex cover of C, it follows that any separator of G contains at least q 2 + 1 vertices of C ∪ {w}. Hence, the following inequality

x(C) + x(w) ≥ q 2 + 1, (2.21)
is valid for P (G, T). However, inequality (2.20) can be obtained by summing the above inequality and -x(w) ≥ -1, and hence cannot define a facet.

(d) Suppose there exists a vertex w ∈ V \ C adjacent to a terminal t such that each vertex cover of C of size q 2 contains at most |C | -1 vertices of C . Then, each vertex cover of C of size q 2 , does not intersect at least one terminal path (t, u, w, t), where u ∈ C and t is the terminal adjacent to u. Thus, the inequality (2.21) is valid for P (G, T), but this implies, as before, that inequality (2.20) can be obtained from the above inequality and -x(w) ≥ -1.

(⇐) Suppose that all the Conditions (a)-(d) are satisfied. Denote by ax ≥ α inequality (2.20) and let bx ≥ β be an inequality that defines a facet of P (G, T) such that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. Since P (G, T) is full dimensional, we need to prove that there exists ρ such that b = ρa.

Let S 1 = (V \ C) ∪ {v 1 , v 3 , . . . , v q } and S 2 = (S 1 \ {v 1 }) ∪ {v 2 }. As C is chordless and q is odd, we have that S 1 and S 2 are separators of G, and their incidence vectors satisfy (2.20) with equality. Hence, bx S 1 = bx S 2 = β, which implies that b(v 1) = b(v 2). By symmetry, we obtain that

b(u) = b(v) = ρ for all u, v ∈ C, for some ρ ∈ R. Now let w ∈ V \C. Let C = N (w)∩C. If w is not adjacent to a terminal, by Condition (c), there exists a vertex cover U of C of size q 2 containing at least |C | -1 vertices of C . Let S w = ((V \ C) ∪ U) \ {w}. By Condition (b), for all u i , v j ∈ C \ C , u i v j /
∈ E, thus, the path t i , u i , v j , t j does not exist. By Condition (c), for all u, v ∈ N (w), u or v belongs to U or V \ C, thus, each terminal path containing w, intersects S w . Therefore, S w is a separator of G. The incidence vectors of S w ∪ {w} and S w satisfy inequality (2.20) with equality. Therefore, bx Sw∪{w} = bx Sw and thus, b(w) = 0. If w is adjacent to a terminal, we can show along the same lines that b(w) = 0. Therefore,

b(v) = 0 for all v ∈ V \ C.
Consequently, we have that b = ρa and the proof is complete.

49

Extended terminal cycle inequalities

An extended terminal cycle J = (V (J) ∪ T (J), E(J)) is a general form of a terminal cycle configuration such that each vertex of the cycle C is connected to zero, one or several terminals by means paths, which will be called branches. (See Figure 2.11 for illustration). Let V 1 ⊆ V (J) be the set of vertices of degree greater or equal to 3 and V 2 ⊆ V (J) the set of vertices of degree equal to 2. Then, we have the following theorem Theorem 2. [START_REF] Barnhart | Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems[END_REF] The inequality

For each vertex v ∈ V (J), let d J (v) be the degree of v in J. Let β(J) = v∈V 1 (d J (v) -3).
v∈V 2 x(v) + v∈V 1 (d J (v) -2)x(v) ≥ |V 1 | 2 + β(J) (2.22)
is valid for P (G, T).

Proof. The proof is by induction on β(J). If β(J) = 0, then the proof is similar to that of Theorem 2.20. So suppose that β(J) ≥ 1, and that inequality (2.22) is valid for every extended terminal cycle with β(J) ≤ s. We will show that it remains valid when β(J) = s + 1. So suppose that β(J) = s + 1. Since β(J) ≥ 1, there must exist two branches P t and P t with a common vertex u ∈ C. Let J 1 (resp. J 2) be the extended terminal cycle obtained from J by removing the vertices of P t \ {u} (resp. P t \ {u}). Remark that β(J 1) = β(J 2) = s. From the induction Hypothesis, the following inequalities are valid for P (G, T).

v∈V 2 \P t x(v) + v∈V 1 (d J (v) -2)x(v) -x(u) ≥ |V 1 | 2 + β(J) -1 v∈V 2 \Pt x(v) + v∈V 1 (d J (v) -2)x(v) -x(u) ≥ |V 1 | 2 + β(J) -1
By summing these inequalities together with x(P t ∪ P t) ≥ 1 and x(u) ≥ 0, dividing the resulting inequality by 2 and rounding up the right hand side, we obtain inequality (2.22).

Reduction operations

In this Section, we are going to describe some graph reduction operations. These can be used in a preprocessing phase in order to reduce the graph and then accelerate the resolution of the problem.

Deletion of a subgraph connected to two terminals

Let H be a subgraph of G such that there exist two terminals t, t ∈ T adjacent to V (H), and no vertex in V (H) is adjacent to vertices of (V ∪ T) \ (V (H) ∪ {t, t }). See Figure 2.12 for illustration.

Figure 2.12: Deleting a subgraph connected to two terminals.

Lemma 2.23 Let S 1 (S 2) be a separator of minimum size in graph G[V (H) ∪ {t, t }] (G[(V ∪ T) \ V (H)]). Then, S 1 ∪ S 2 is a minimum separator in G.
Proof. Suppose that S 1 ∪ S 2 is not a separator in G. It follows that there exists a terminal path P between two terminals not intersecting S 1 ∪ S 2 . Then, P is either in

G[V (H)∪{t, t }] or in G[(V ∪T)\V (H)]. If P is in G[V (H)∪{t, t }] (G[(V ∪T)\V (H)]), then P does not intersect S 1 (S 2). Thus, S 1 (S 2) is not a separator in G[V (H) ∪ {t, t }] (G[(V ∪ T) \ V (H)]), a contradiction. Consequently, S 1 ∪ S 2 is a separator in G. Now suppose that S 1 ∪ S 2 is not minimum. Let S ⊂ V be a minimum separator in G. Let S 1 and S 2 be the restriction of S in G[V (H) ∪ {t, t }] and G[(V ∪ T) \ V (H)], respectively. Since S is a separator in G, it follows that S 1 (S 2) intersects all terminal paths in G[V (H) ∪ {t, t }] (G[(V ∪ T) \ V (H)]). Since w(S) = w(S 1) + w(S 2), w(S 1 ∪ S 2) = w(S 1) + w(S 2
) and w(S) < w(S 1 ∪ S 2), it follows that w(S 1) < w(S 1) or

w(S 2) < w(S 2), a contradiction.
As a consequence of Lemma 2.23, graph G can be decomposed into H and G \ H, and the minimum separator in H can be computed from those of H and G \ H.

Contraction of a subgraph connected to two vertices

Let H be a subgraph of G such that there exist two vertices u, v ∈ V \ V (H) adjacent to V (H), and no vertex in V (H) is adjacent to vertices of (V ∪ T) \ (V (H) ∪ {u, v}). Let G be the graph obtained from G by deleting the vertices of H and adding an edge Proof. Remark that there is no terminal path intersecting V (H 2) \ {v}. Thus, no minimal separator intersects V (H 2) \ {v}.

It is easily seen that the three operations given by Lemma 2.23, 2.24 and 2.25 can be performed in polynomial time. These operations are used within our Branch-and-Cut algorithm that we present in the next Section.

Branch-and-Cut Algorithm

In this Section, we describe a Branch-and-Cut algorithm for the MTVSP. Our aim is to address the algorithmic applications of the theoretical results presented in the previous Sections and describe some strategic choices made in order to solve that problem. So, let us assume that we are given a graph G = (V ∪ T, E). We assume that all the operations 2.4.1,2.4.2 and 2.4.3 have been performed in a preprocessing phase, and thus, no operation among 2.4.1,2.4.2 and 2.4.3 can be applied for G.

We now describe the framework of our algorithm. To start the optimization, we consider the linear program given by the terminal path inequalities associated with the terminal paths P * tt , of minimum length (in terms of number of edges), between each pair of terminals t, t ∈ T of graph G together with the trivial inequalities, that is

min v∈V x(v) x(P * tt) ≥ 1 ∀t, t ∈ T, x(v) ≤ 1 ∀v ∈ V, x(v) ≥ 0 ∀v ∈ V.
The optimal solution x * ∈ R V of this relaxation of the MTVSP is feasible for the problem if x * is an integer vector that satisfies all the terminal path inequalities. Usually, the solution x * is not feasible for the MTVSP, and thus, in each iteration of the Branch-and-Cut algorithm, it is necessary to generate further inequalities that are valid for the MTVSP but violated by the current solution x * . For this, one has to solve the so-called separation problem. This consists, given a class of inequalities, in deciding whether the current solution x * satisfies all the inequalities of this class, and if not, in finding an inequality that is violated by x * . An algorithm solving this problem is called a separation algorithm. The Branch-and-Cut algorithm uses the inequalities previously described.

We remark that all inequalities are global (i.e. valid for all the Branch-and-Cut tree) and several inequalities may be added at each iteration. Our strategy is to try to detect violated inequalities at each node of the Branch-and-Cut tree in order to obtain the best possible lower bound and thus, limit the generated nodes. Now, we describe the separation procedures used in our Branch-and-Cut algorithm. We first show that the separation the terminal path inequalities and the star tree inequalities can be done in polynomial time.

Theorem 2.26 Inequalities (2.6) can be separated in polynomial time.

Proof. Let x * ∈ [0, 1] V . For a terminal t ∈ T , add a super terminal t s to T adjacent to all terminals of T \ {t}. Let x * T ∈ R T such that x * T (t i) = 0 for all t i ∈ T . Let y * ∈ [0, 1] E be the vector such that y * (uv) = x * (u)+x * (v) 2 for all uv ∈ E and u, v ∈ V , and y * (ut i) = x * (u)+x * T (t i) 2
for all ut i ∈ E, u ∈ V and t i ∈ T . Finding a shortest path, between t and any terminal of T \ {t}, in graph G w.r.t y * is equivalent to finding a shortest path P t in graph G w.r.t x * between t and t s . Consider the path P among the paths P t for all t ∈ T \ {t}, of a minimum weight, say z. If z < 1, then inequality (2.6), associated with P , is violated. Otherwise, all inequalities (2.6) are satisfied.

Algorithm 3: Separating algorithm for inequalities (2.6) Theorem 2. [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF] The star tree inequalities (2.10) can be separated in polynomial time.

Data: Graph G = (V ∪ T, E) and x * ∈ [0, 1] V Result:
Proof. We will show that the separation problem for the star tree inequalities can be reduced to a minimum cost flow problem. Let

x * ∈ [0, 1] V . For a vertex v ∈ V , let D v = (V ∪ T , A) be the graph obtained from G as follows 1-T = T ∪ {t s }. 2-add a vertex v in V .
3-for each vertex u ∈ V \ {v}, add two vertices u 1 and u 2 in V , and the arc (u 1 , u 2) in A .

4-for each edge uw ∈ E such that u = v and w = v, add two arcs (u 2 , w 1) and (w 2 , u 1) in A .

5-for all u ∈ N (v) \ T , add an arc (v , u 1) to A , and for all t ∈ N (v) ∩ T , add an arc (v , t) in A .

6-for all t ∈ T , and u ∈ N (t) \ {v}, add an arc (u 2 , t) to A .

7-for all t ∈ T \ t s , add an arc (t, t s) in A . For an integer value q ∈ [3, . . . , |T |], we look for a flow of value q of minimum cost, between v and t s in D v . Let A be the set of arcs used by this flow and z the cost of this flow. We let W ⊆ V be the set of vertices u of V such (u 1 , u 2) ∈ A. It can easily seen that z + (q -1)x * v < q -1, then the star tree inequality associated with the star tree given by W is violated.

The separation of the star tree inequalities runs in O(kn 4 mlog(n))-time.

The polynomial algorithm for separating the star tree inequalities discussed above may be time-consuming. In what follows we devise a heuristic to speed up the separation. The idea of the heuristic is to construct a start tree using the shortest paths between a root node and terminals. The heuristic works as follows. We construct a graph G obtained from G by adding a super terminal t s adjacent to all terminals of T . Then, for each integer q ∈ [3, . . . , k] and each vertex v ∈ V , we perform the following procedure We set S = {v} and the weight of each vertex u ∈ V \ {u} to x * u and those of {t s , v} ∪ T to 0. Then, we look for the shortest path P v between t s and v. If P v does not exist, then we stop. Otherwise, we update S, V and T as S = S ∪ (P v \ {t s }), V = V \ (P v \ {v}) and T = T \ (P v \ {t s }). If the star tree associated with S has q branches, then we stop. Otherwise, we look for a new shortest path between t s and v, and so on. If set S represents a star tree of G of root vertex v and q branches, and if x * (S \ (T ∪ {v})) + (q -1)x * v < q -1, then the star tree inequality associated with S is violated. This heuristic is given in Algorithm 4.

Algorithm 4: Separation heuristic for the star tree inequalities.

Data:

G = (V ∪ T, E), v ∈ V , q ∈ {3, . . . , k} and a vector x * ∈ [0, 1] V Result: Star tree inequality violated by x * begin S = {v}; for u ∈ V do c u = x * u ; end for t ∈ T ∪ {t s } do c t = 0; end for i = {1, . . . , q} do P i ← the shortest path in (V ∪ T ∪ {t s }, E) w.r.t c, between v and t s ; if P i = ∅ then Stop algorithm. end else S ← S ∪ (P i \ {t s }); V ← V \ (P i \ {v}); T ← T \ (P i \ {t s }); end end
If S is a star tree of root v and q branches then check if the associated star tree inequality is violated by x * ; end The heuristic runs in O(k 2 n(n + m)log(n))-time. Now we turn our attention to the separation of the clique star inequalities. This is also performed using a heuristic algorithm. The idea of the heuristic is to generate a set L(G) of cliques in graph G, and for all clique K q of q vertices, we construct a clique star using the shortest paths between each vertex of K q and terminals.

The heuristic works as follows. We initialize the list L(G) with all cliques in G of size 3. Then, for a fixed number of iterations l ∈ {1, . . . , k}, for each clique K ∈ L(G) and for all v ∈ N (K), we check if K ∪ {v} and we put it in L(G). Let G be the graph obtained from G by adding a super terminal t s adjacent to all terminals of T . During the separation procedure, for each clique K q ∈ L(G) of q vertices, we perform the following procedure in G . We set S = K q and the weight of each vertex v ∈ V to x * v and those of {t s } ∪ T to 0. Then, for a vertex v ∈ K q , find the shortest path P v between t s and v in G \ (K q \ {v}). If P v does not exist, then we stop. Otherwise, we update S, V and T as S = S ∪ (P v \ {t s }), V = V \ (P v \ {t s , v}) and T = T \ (P v \ {t s }). If the clique star associated with S has q branches, then we stop. Otherwise, we look for a new shortest path between t s and another vertex of K q , and so on. If set S represents a clique star of G of clique K q and q branches, and if x * (S) < q -1, then the clique star inequality associated with S is violated. This heuristic is given in Algorithm 5.

Algorithm 5: Separation heuristic for the clique star inequalities.

Data: G = (V ∪ T, E), a clique K q ∈ L(G) of q vertices and a vector x * ∈ [0, 1] V Result: Clique star inequality violated by

x * begin S = K q ; for v ∈ V do c v = x * v ; end for t ∈ T ∪ {t s } do c t = 0; end for v ∈ K q do P v ← the shortest path in graph ((V \ K q) ∪ {v} ∪ T ∪ {t s }, E) w.r.t c, between v and t s ; if P v = ∅ then Stop. end else S ← S ∪ (P v \ {t s }); V ← V \ (P v \ {v}); T ← T \ (P v \ {t s }); end end return S;
If S is a clique star of clique K q and q branches then check if the associated clique star inequality is violated by x * ; end

The heuristic runs in O(|L(G)|k(n + m)log(n))-time.
Now we discuss the separation of the terminal tree inequalities. For this we devised the following heuristic. We look for a spanning tree R of minimum weight in the graph G w.r.t x * where the terminals have weight 0. Let R be the tree obtained from R by deleting the leaf vertices that are not terminals. R may have terminals of degree greater than or equal to 2. This means that R is not minimal, but the associated terminal tree inequality remains valid for P (G, T). Then, we check whether the corresponding terminal tree inequality is violated. For determining the minimum spanning tree we use We also devised a heuristic for separating the extended terminal cycle inequalities. The idea of the heuristic is to generate a cycle, and construct an extended terminal cycle using the shortest paths between each vertex of the cycle and terminals. The heuristic works as follows. First, we look for a cycle C of minimum weight in the graph G[V] w.r.t x * . This can be done in a polynomial time. We then construct a graph G from G by adding a super terminal t s adjacent to all terminals of T . We set S = C, the weight of each vertex v ∈ V to x * v and those of {t s } ∪ T to 0. For each vertex v ∈ C, we look for the shortest path P v between t s and v in the graph G \ (C \ {v}). If P v does not exist, then we stop. Otherwise, we update S, V and T as S = S ∪ (P v \ {t s }), V = V \ (P v \ {t s , v}) and T = T \ (P v \ {t s }). If set S represents an extended terminal cycle of G of q branches, and if x * (S \ T) < q 2 , then the extended terminal cycle inequality associated with the extended terminal cycle induced by S, is violated. This procedure is given in Algorithm 7.

Algorithm 7: Separation heuristic for the extended terminal cycle inequalities.

Data: G = (V ∪ T, E), and a vector

x * ∈ [0, 1] V Result: Extended terminal cycle inequality violated by x * begin C ← Cycle of minimum weight in the graph G[V] w.r.t x * ; S ← C; for v ∈ V do c v = x * v ; end for t ∈ T ∪ {t s } do c t = 0; end for v ∈ C do P v ← the shortest path in G \ (C \ {v}) w.r.t c, between v and t s ; if P v = ∅ then Stop algorithm. end else S ← S ∪ (P v \ {t s }); V ← V \ (P v \ {v}); T ← T \ (P v \ {t s }); end end return S;
If S is the extended terminal cycle of cycle C and has |C| branches then check if the associated extended terminal cycle inequality is violated by x * ; end Thus, our algorithm can be implemented in O(kn 2 (m + n)log(m))-time.

Heuristics and performance guarantee

In [START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF], the authors show that the multi-terminal vertex separator problem can be solved in polynomial time when the graph has two terminals. In what follows, we will use this result to develop two different heuristics with performance guarantee for the problem.

Disconnecting terminal pairs heuristic

The idea of the heuristic is to construct a separator of G from the union of minimum separators of G disconnecting each pair of terminals in T . The heuristic permits to compute for each pair of terminals t, t ∈ T , a separator S t t of minimum weight ω(S t t), intersecting all terminal paths between t and t , and then to return S = And the result follows.

Corollary 2.29 When k = 3, the disconnecting terminal pairs heuristic is a 3-approximation algorithm for the MTVSP.

Remark 2.30 If the graph is a star tree, the disconnecting terminal pairs heuristic gives a solution of weight equal to k(k-1) 2 times the optimal weight.

Thus, the bound given above is tight.

Isolating terminal heuristic

In [START_REF] Dahlhaus | The complexity of multiterminal cuts[END_REF], the authors propose a heuristic for the multi-terminal cut problem (the edge version of the MTVSP). They show that the solution given by the heuristic is of a weight guaranteed to be no more than 2(k-1) k times the optimal weight. This heuristic can be adapted for the MTVSP. For a terminal t ∈ T , an isolating terminal S t ⊆ V is a set of vertices intersecting all terminal paths between t and all terminals of T \{t}. The idea of the heuristic is to construct a separator of G, from the union of all minimum isolating terminal sets of G. It works as follows. For each terminal t ∈ T , we compute the separator S t of minimum weight ω(S t), intersecting all terminal paths between t and all terminals of T \ {t}. Let S t * be the separator, computed before, of maximum weight. Then, we return S = t∈T \{t * } S t . This heuristic is given in Algorithm 9.

Algorithm 9: Isolating terminal heuristic.

Data: Set S is a separator in G since for all t ∈ T , S contains a subset of vertices in V intersecting all terminal paths between t and all terminals of T \ {t}.

Graph G = (V ∪ T,
Theorem 2. [START_REF] Biha | k-edge connected polyhedra on series-parallel graphs[END_REF] The isolating terminal heuristic constructs a multi-terminal vertex separator whose weight ω * is guaranteed to be no more than (k -1) times the optimal weight.

Proof. Let S be the separator given by the isolating terminal heuristic and S t ⊆ S be the set of vertices of minimum weight ω(S t), intersecting all terminal paths between t and all terminals of T \ {t}. Let S be a separator of minimum weight ω in G. For a terminal t ∈ T , let S t ⊆ S be a set of vertices having a minimum weight ω t , intersecting all terminal paths between t and all terminals in T \{t}. Clearly, ω(S t) ≤ ω t . Moreover, each vertex of S can belong to each separator S t for each terminal t ∈ T . Thus,

t∈T ω t ≤ kω. Therefore, ω * ≤ (k -1) t∈T ω(S t) k ≤ k -1 k t∈T ω t ≤ k k -1 k ω ≤ (k -1)ω
Thus, our theorem holds.

2.5

Corollary 2.32 When k = 3, the isolating terminal heuristic is a 2-approximation algorithm for the MTVSP.

Remark 2. [START_REF] Boginski | Identifying critical nodes in protein-protein interaction networks. Clustering challenges in biological networks[END_REF] The star tree is an example on which the isolating terminal heuristic can give a solution of weight equal to (k-1) times the optimal weight.

Thus, the bound given above is tight.

Improved isolating terminal heuristic

This heuristic consists in looking for a separator S by applying the isolating terminal heuristic, and try to pull off one by one each vertex from S, and check if the remaining set is a separator. If not, we put it back in S. It would be more interesting to start by removing the vertices of small degrees. This heuristic is given in Algorithm 10.

Algorithm 10: Improved isolating terminal heuristic.

Data: Graph G = (V ∪ T,

Computational Results

The Branch-and-Cut algorithm described in the previous section has been implemented in C++, using Cplex to manage the Branch-and-Cut tree and also as a lp-solver, and all flow problems are solved using Lemon library [2]. It was tested on an Intel Xeon E312xx machine at 2.39 GHz ×1 with 48GB RAM, running under Linux 64 bits. The maximum CPU run time has been fixed to 4 hours. We use two kinds of instances, the DIMACS graph coloring instances [1] and random graphs, generated using boost graph library [3] in C++. The terminals are new nodes added to the graphs. Each terminal is randomly connected to at least 2 vertices and at most a given deg_T ∈ N vertices of V . The edges incident to the terminals are added respecting the Hypotheses 2.3-2.4, given in Chapter 2. In the Tables below, the maximum degree of the terminals is fixed in relation with the size of the graph, i.e., the higher the size of graph is, the higher the maximum degree of terminals is. In all our experiments, we have used the reduction operations described in the previous section to reduce the graph. As, the separation algorithms generate less than 10 inequalities per family of inequalities and per iteration, then we perform all of them for each separation phase. Moreover, we tested different separation orders, and we noticed that separating all inequalities, at each separation phase, gives the best results. Each instance is given by its name followed by an extension representing the number of nodes of the graph. Table 2.2 presents the results obtained for DIMACS instances associated to graphs having up to nodes. The number of terminals is fixed to 6 for graphs with less than 99 nodes and 8 for the others. As we can remark in the table, all instances were solved by the Branch-and-Cut algorithm in less than 33 seconds. The bold values in the CPU 1 column represent the instances for which the Branch-and-Cut algorithm solves the instance faster than the Cplex with the double indices formulation. We notice that in 50% of the instances the Branch-and-Cut algorithm beats the Cplex. The valid inequalities (2.4),(2.7),(2.18) and (2.20) have been efficient for strengthening the formulation. Indeed 62% of the instances were solved by the Branch-and-Cut algorithm in the first node of the branching tree. We also notice that all the valid inequalities appear in the instances Queen8_8, Queen8_12, Queen10_10, Queen12_12, Queen14_14, Queen15_15, since underlying graphs are without holes. However, no clique star inequality appears for instances Myciel5, Myciel6 and Myciel7 since they are induced by triangle free graphs. Moreover, we can remark that the Branch-and-Cut algorithm generates a few number of valid inequalities. Only 4 instances over 24 were solved by the Branch-and-Cut algorithm in more than 10 seconds. For these four instances, the number of star tree inequalities is greater than 340, in contrast with the other instances, where the number of star tree inequalities is less than 200. Table 2.3 presents the results obtained for random instances on graphs having up to 5000 nodes. The maximum degree of terminals is fixed to 7 for instances with less than 700 nodes, 10 for instances with the number of nodes between 800 and 1500 and to 15 for instances with 1800 nodes and more. As it appears, in 95.6% of instances, the Branch-and-Cut algorithm beats Cplex. Indeed, Cplex was faster than the Branch-and-Cut in only 1 instance (R 1) with a difference of 0.8 seconds. In the other instances, the slack between the CPU_times increases exponentially. For instance, for R_100 the difference is 2.05 seconds and for R_1300 it is 5085.09 seconds. Also note that all instances were solved in the root of the branching tree by the Branch-and-Cut algorithm. Indeed, for random instances our valid inequalities are enough for finding the optimal solution without branching. Cplex with the Double indices formulation could not solve the instances with 1800 vertices and more. This can be explained by the out of memory due to the number of constraints in the double indices formulation when the number of edges is high. Also random graphs have no specific structure and this let the instance harder to solve. For example, for instance R_1800, the formulation has more than 9.5 millions of constraints. For both DIMACS and random graphs, the number of star tree inequalities, clique star inequalities and terminal tree inequalities is roughly the same.

In Tables 2. 4, 2.5 and 2.6, we vary the density of the graph, the number of terminals and the maximum degree of the terminals. Tables 2. 4 represents the results for random graphs, with different densities, 18%, 39% and 55%. We notice that in almost all the instances, the higher the density is, the higher CPU time is. Tables 2.5 represents the results for random graphs with different number of terminals. In almost all the instances, the higher number of terminals is, the higher the CPU time is. All instances are solved in the root node of the branching tree. Tables 2.6 represents the results for random graphs with different values of deg_T (We recall that the terminals are randomly connected to at least 2 vertices and at most deg_T vertices of V). We notice that the higher deg_T is, the higher CPU time is. Also, the Branch-and-Cut algorithm could solve all instances in the root node of the branching tree. Tables 2.7 and 2.8 represent the results for random graphs using the Branch-and-Cut algorithm without the additional valid inequalities, i.e., with only the terminal path inequalities. Observe that when the number of vertices is less than 1800, the CPU time is shorter than the one in Tables 2.2 and 2.3. This is explained by the good performance of Cplex. However, the number of nodes in the branching tree and the gap are higher. Indeed, the linear relaxation of the Natural formulation is week. For the instances with at least 1800 vertices, we notice that the CPU time, gap and number of nodes in the branching tree in Table 2 2.9: Results given by the improved isolated terminal heuristic.

Instances

Instances

Instances

Instances

Table 2.9 presents the results given by the improved isolated terminal heuristic for DIMACS instances. We can remark that the heuristic gives very good results in short time. In 93.6% of the instances, the solution given by the heuristic is optimal. For the other instances, the gap is very small. On the other hand, when the number of terminals is high, the CPU time of the heuristic becomes high. All instances were solved in 0.2 seconds or less.

The multi-terminal vertex separator problem : Polyhedral analysis

Conclusion

In this chapter we have considered the multi-terminal vertex separator problem. We have first shown that the problem is NP-hard. Then, we have proposed two integer programming formulations for the problem. For one of these formulations we have identified some valid inequalities and discussed their facial structure. Using this, we have developed a Branch-and-Cut algorithm for the problem and presented extensive computational results. These show the effectiveness of the valid inequalities used in the algorithm. The computational results have also permitted to measure the importance of our separation heuristics. In particular the heuristic for separating star tree inequalities appeared more efficient than the exact polynomial algorithm. We have also proposed two heuristics for the problem, and analyzed their performance guarantee. The improved isolating terminal heuristic has appeared to be very efficient since it could find the optimal solution for most of the instances.

Chapter 3

The multi-terminal vertex separator problem : Composition of Polyhedra In this chapter we are interested in characterizing the multi-terminal vertex separator polytope in graphs that are decomposable by one-node cutsets and terminal cutsets. When G decomposes into G 1 and G 2 , we derive a procedure for composing facets and algorithms for the MTVSP. We also introduce the minimum rooted cycle cover problem for which the MTVSP is a special case. We use Menger's theorem to provide a characterization of all rooted graphs in which the maximum number of vertex-disjoint rooted cycles equals the minimum size of a subset of non-root vertices intersecting all rooted cycles, for all subgraphs.

This chapter is organized as follows. In Section 1, we give two linear systems describing the multi-terminal vertex separator polytope for the star trees and the clique stars. Then, we show that these two linear systems are totally dual integral. In Section 2, we study a composition (decomposition) technique of the multi-terminal vertex separator polytope, for graphs that are decomposable by one-node cutsets. Then, we derive a composition procedure for facets and algorithms. In Section 3, we present a further composition procedure for the multi-terminal vertex separator polytope, by merging terminals. Section 4 is devoted to the more general minimum rooted cycle cover problem.

Preliminaries

In this chapter we suppose that Hypotheses 2.1-2.5, given in Chapter 2, are satisfied. Consider a graph G = (V ∪ T, E). Let P (G, T) = conv(x ∈ [0, 1] V | x satisfies (2.6)) be the polytope given by inequalities (2.6) -(2.8).

Menger's theorem [START_REF] Menger | Zur allgemeinen kurventheorie[END_REF] : Let G be a graph and let s and t be two nonadjacent vertices of G. The minimum size of a st-vertex cut is equal to the maximum number of internally vertex-disjoint st-paths.

Lemma 3.1 When |T | = 2, the linear system (2.6)-(2.8) is totally dual integral.

Proof. Given a graph G = (V ∪ T, E). From Hypothesis 2.5, for any weight vector ω : V → Z, we can transform graph G in order to obtain all weights equal to 1. We notice that the dual D, of the linear program (2.5)-(2.8), consists in finding the maximum number of internally vertex disjoints terminal paths between two terminals in G. From Menger's theorem, we have that the value of the optimal integer solution of D is equal to the value of the optimal integer solution of (2.5)-(2.8). It follows that D has an integer solution for any weight vector ω. Consequently, the linear system (2.6)-(2.8) is totally dual integral.

79

Star trees and Clique stars

In this section we focus on two classes of graphs, the star trees and the clique stars, presented in Chapter 2. We give two linear systems describing the associated multiterminal vertex separator polytopes and we show that these systems are totally dual integral. In this Section, we assume that all star trees and clique stars satisfy the following Hypotheses 3.1-the number of terminals is at least three.

3.2-each branch of the star tree contains at least one internal vertex. Otherwise, linear system (2.6), (2.8) is TDI, [START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF].

Polytope characterization

In what follows, we give the complete description of the MTVS polytope for the star trees and clique stars.

MTVS polytope for star trees

Proposition 3.2 In star trees, the polytope given by (2.6) and the trivial inequalities is not integral.

Proof. Consider a star tree H = (V (H) ∪ T (H), E(H)) with at least one vertex in each branch. Let x ∈ [0, 1] V (H) be defined as follows

• x(v) = 0.5 ∀v ∈ N (v r), • x(v) = 0 ∀v ∈ V (H) \ N (v r).
Vector x is a fractional extreme point of P (H, T (H)), since there are t(H) terminal path inequalities and |V (H)| -t(H) trivial inequalities, that are linearly independent and tight for x.

81

Consider the following valid inequalities,

x(V (H) \ {v r }) + (t(H) -1)x(v r) ≥ t(H) -1 ∀H ∈ Π (3.1)
presented in Section 2.3. We recall that the terminal paths are star trees of two terminals. Thus, inequalities (2.6) are included in (3.1). Let us remark that all inequalities (3.1) associated with the star trees having one terminal are dominated by the trivial inequalities.

Theorem 3.3 For star trees, the MTVS polytope is given by inequalities (3.1) and the trivial inequalities.

Proof. Let us assume the contrary, and let x * be a fractional extreme point of polytope P (G, T) associated with star tree G = (V ∪ T, E), where |V | is minimum (i.e., for all star trees of n vertices with n < |V |, the associated polytope is integral). Thus, x * satisfies a unique system of linear independent equalities A

x(V (H) \ {v r }) + (t(H) -1)x(v r) = t(H) -1 ∀H ∈ Π 1 , (3.2)
x

* (v) = 1 ∀v ∈ V 1 , (3.3)
x * (v) = 0 ∀v ∈ V 2 (3.4) such that |Π 1 | + |V 1 | + |V 2 | = |V |, Π 1 ⊆ Π, V 1 ⊆ V and V 2 ⊆ V . Claim 1. For all v ∈ V \ {v r }, x * (v) > 0.
Proof. Let us assume the contrary, and suppose there exists a vertex v ∈ V \ {v r } such that x * (v) = 0. It is clear that v has exactly two neighbors, v 1 , v 2 ∈ V . Let H be the star tree obtained from G by deleting v and adding an edge

v 1 v 2 . Let x ∈ [0, 1] V (H)
be the restriction of x * on V (H) and A the system of equalities obtained from A by deleting equality x * (v) = 0 and variable x * (v) from all the other equalities. Solution x satisfies all equalities of A . We suppose there are two solutions

x 1 , x 2 ∈ [0, 1] V (H) such that x = 1 2 (x 1 + x 2). Let x * 1 , x * 2 ∈ [0, 1]
V be two solutions defined as follows

• x * 1 (u) = x 1 (u) ∀u ∈ V (H). • x * 2 (u) = x 2 (u) ∀u ∈ V (H). • x * 1 (v) = x * 2 (v) = 0. Hence, x * = 1 2 (x * 1 + x * 2)
, which is a contradiction with the extremality of x * . Thus, x is a fractional extreme point of P (H, T (H)). But this yields a contradiction with the fact that |V | is minimum.

Claim 2. For each branch P t of G, x * (P t) ≤ 1.

Proof. Let us assume the contrary, and let P t be a branch of G such that x * (P t) > 1. Thus, the variables associated with internal vertices of P t must only belong to (3.3). Otherwise, there would exist a vertex v ∈ P t \ {v r } such that x * (v) belongs either to (3.2) or (3.4). From Claim 1, x * (v) cannot belong to (3.4). Suppose that x * (v) belongs to an equality ax * = b, of type (3.2). Let H be the star tree obtained from G by deleting the vertices of P t \ {v r }. Hence, the star tree inequality ax -x(P t) ≥ b -1 associated with H is violated by x * , a contradiction. Therefore, the variable of each vertex of P t belongs to a unique equality, namely (3.3). Let x ∈ [0, 1] V (H) be the restriction of x * on V (H) and A the system of equalities obtained from A , by deleting equality x * (v) = 1 for all v ∈ P t \ {v r }. Solution x satisfies all equalities of A and then it is a fractional extreme point of P (H, T (H)). However, this contradicts the fact that |V | is minimum.

Claim 3. For root vertex v r , x * (v r) < 1.

Proof. Let us assume the contrary, x * (v r) = 1. Since x * is fractional, there must exist v ∈ V \ {v r } such that x * (v) is fractional. Thus x * (v) must belong to equalities (3.2). As x * (v r) = 1, this yields x * (v) = 0, which contradicts the fact that x * is fractional. Claim 4. Each branch P t of G contains at most one internal vertex.

Proof. Suppose there exists a branch P t of G that contains at least two vertices u and v. From Claims 1 and 2, the variables associated with the internal vertices of P t are fractional and cannot appear separately in (3.2) (i.e., if a variable of a vertex v i ∈ P t appears in an equality (3.2), all the variables associated with the vertices of P t appear in the same equality). There must exist a constant > 0 such that solution x ∈ [0, 1] V , obtained from x * by subtracting from x * (u) and adding to x * (v), is feasible and satisfies system A. This contradicts the extremality of x * . Claim 5. If there exists a branch P t such that x * (P t) < 1, then all support graphs of equalities (3.2), contain branch P t .

Proof. Let ax * = b be an equality (3.2) not containing the variables associated with the vertices of P t \ {v r }. Thus, the star tree inequality x(P t) + ax ≥ b + 1 is violated by x * , which contradicts the fact that x * is feasible. Claim 6. For root vertex v r , x * (v r) > 0.

Proof. Suppose x * (v r) = 0. Since x * is fractional, there must exist a vertex v ∈ V \{v r } such that x * (v) is fractional. Let us assume that v ∈ P t \ {v r }. Variable x * (v) has a coefficient 1 in all inequalities. As x * (v) must belong to equalities (3.2), there must exist another vertex u ∈ V \ {v, v r } such that x * (u) is fractional, and u ∈ P t with t ∈ T \ {t}. From Claims 4 and 5, it follows that P t and P t must belong to all support graphs of equalities (3.2). There must exist a constant > 0 such that the solution x ∈ [0, 1] V obtained from x * by subtracting from x * (v) and adding to x * (u), is feasible and satisfies system of equalities A. This contradicts the extremality of x * .

From Claims 1, 2, 3 and 6 we obtain that for all v ∈ V , 0 < x * (v) < 1. Now, we distinguish two cases.

a. There exists a branch P t such that x * (P t) < 1.

Hence there exists > 0 such that the vector x ∈ R V defined as follows

-x(v) = x * (v) for v ∈ P t \ {v r }, -x(v r) = x * (v r) + , -x(v) = x * (v) -, for all v ∈ V \ (P t ∪ {v r })
satisfies all equalities of A. This contradicts the fact that x * is a fractional extreme point.

b. For each branch P t , x * (P t) = 1. We notice that x * (v) = 1 -x * (v r) for all v ∈ V \ {v r }. Since all variables are fractional, there exists at least one equality (3.2) satisfied with equality by x * ,

x * (V \ {v r }) + (t(G) -1)x * (v r) =t(G) -1.
By replacing x * (v) by 1 -x * (v r), for all v ∈ V \ {v r }, we obtain

|V (G) \ {v r }| -|V (G) \ {v r }|x * (v r) + (t(G) -1)x * (v r) =t(G) -1.
By Claim 4, since |V \ {v r }| = t(G), we have

t(G) -t(G)x * (v r) + (t(G) -1)x * (v r) =t(G) -1.
It follows that x * (v r) = 1, and, consequently, x * is integer, which yields again a contradiction with the fact that x * is fractional.

MTVS polytope for clique stars

Proposition 3.4 For clique stars, the polytope given by (2.6) and the trivial inequalities is not integral.

Proof. Consider a clique star Q = (V (Q) ∪ T (Q, E(Q)) defined by q branches and a clique K q . Let x be the solution defined as follows

• x(v) = 0.5 ∀v ∈ K q , • x(v) = 0 ∀v ∈ V (Q) \ K q .
Vector x represents a fractional extreme point of P (Q, T (Q)), since there is t(Q) terminal path inequalities and |V (Q)|-t(Q) trivial inequalities, that are linearly independent and tight for x.

Consider the following valid inequalities,

x(Q) ≥ t(Q) -1 ∀Q ∈ Θ. (3.5)
We recall that the terminal paths are clique stars of two terminals. Thus, inequalities (2.6) are included in (3.5). Let us remark that all inequalities (3.5) associated with the clique stars having one terminal are dominated by trivial inequalities.

Theorem 3.5 For clique stars, the MTVS polytope is given by inequalities (3.5) and the trivial inequalities.

Proof. Let us assume the contrary, let x * be a fractional extreme point of the polytope associated with G = (V ∪ T, E), where |V | is minimum (i.e., for all clique stars of n < |V | vertices, the associated polytope is integer). Thus, x * satisfies a unique system of linear independent equalities A

x(V (Q)) = t(Q) -1 ∀Q ∈ Θ 1 , (3.6) x * (v) = 1 ∀v ∈ V 1 , (3.7) x * (v) = 0 ∀v ∈ V 2 , (3.8)
(3.9)

such that |Θ 1 | + |V 1 | + |V 2 | = |V |, Θ 1 ⊆ Θ, V 1 ⊆ V and V 2 ⊆ V . Claim 1. For all v ∈ V \ K q , x * (v) > 0.
Proof. We assume that there exists a vertex v ∈ V \ K q such that x * (v) = 0. It is clear that v has exactly two neighbors, v 1 , v 2 ∈ V . Let Q be the star tree obtained from G by deleting v and adding edge v 1 v 2 . Let x ∈ [0, 1] V (Q) be the restriction of x * on V (Q) and A the system of equalities obtained from A, by deleting equality x * (v) = 0 and variable x * (v) from all other equalities. Solution x satisfies all equalities of A and this implies that it is a fractional extreme point of P (Q, T (Q)). Otherwise, there would exist two solutions

x 1 , x 2 ∈ [0, 1] V (Q) such that x = 1 2 (x 1 + x 2). Let x * 1 , x * 2 ∈ [0, 1]
V be the solutions defined as follows

• x * 1 (u) = x 1 (u) ∀u ∈ V (Q). • x * 2 (u) = x 2 (u) ∀u ∈ V (Q). • x * 1 (v) = x * 2 (v) = 0. As x * = 1 2 (x * 1 + x * 2)
, this contradicts the extremality of x * . Thus, x is a fractional extreme point of P (Q, T (Q)). This yields a contradiction with the fact that |V | is minimum.

Claim 2. For all branch P t , x * (P t) ≤ 1.

Proof. Let us assume the contrary, and let P t be a branch such that x * (P t) > 1. Thus, the variables associated with the internal vertices of P t must only belong to (3.7). Otherwise, there would exist a vertex v ∈ P t \ K q such that x * (v) belongs either to (3.6) or (3.8). From Claim 1, x * (v) cannot belong to (3.8). Suppose that x * (v) belongs to an equality ax * = b, of type (3.6). Hence, inequality ax -x(P t) ≥ b -1 associated with clique star Q obtained from G by deleting the branch P t , is violated by x * . Contradiction. Therefore, the variable of each vertex of P t belongs to a unique equality, that is (3.7). Let x ∈ [0, 1] V (Q) be the restriction of x * on V (Q) and A the system of equalities obtained from A by deleting equality x * (v) = 1 for all v ∈ P t \{v r }. Solution x satisfies all equalities of A and then it is a fractional extreme point. This is a contradiction with the minimality of |V |.

Claim 3. For all v ∈ K q not adjacent to a terminal, x * (v) > 0.

Proof. Assume that on the contrary, there exists a vertex v ∈ K q adjacent to a vertex u ∈ P t such that x * (v) = 0. Let Q be the clique star obtained from G by deleting vertex v and adding all edges between u and all the neighbors of v. Let x ∈ [0, 1] V (Q) be the restriction of x * on V (Q) and A the system of equalities obtained from A, by deleting equality x * (v) = 0 and variable x * (v) from all other equalities. Solution x satisfies all equalities of A which implies that it is a fractional extreme point of P (Q, T (Q)), contradicting the minimality of |V |. Claim 4. Each vertex of K q is adjacent to a terminal.

Proof. Let us assume that there exists a branch P t containing v ∈ K q and an internal vertex u. From Claims 1, 2 and 3, we have that 0 < x * (u) < 1 and 0 < x * (v) < 1. There must exist > 0 such that solution x ∈ [0, 1] V , obtained from x * by adding to x * (v) and subtracting from x * (u), satisfies all equalities of A. Which yields a contradiction with the extremality of x * . As x * is fractional there must exist one vertex u ∈ K q such that 0 < x * (u) < 1. Since all coefficients of the variables in A are 0 or 1, it follows that, there exists another vertex v ∈ K q such that 0 < x * (v) < 1. We will prove that x(u) and x(v) belong together to the same equalities in A. Suppose there exists an equality (3.6), associated with a clique star Q ∈ Θ 1 , containing u but not v. This yields

x * (Q) = t(Q) -1.
Let Q be the clique star obtained from Q by adding the branch P t containing v. As x * (P t) < 1, the clique star inequality induced by Q is violated by x * . Thus, u and v belong together to the same equalities. Let y * ∈ R V defined as follows y * (w) = x * (w) for all w ∈ V \ {u, v},

-y * (u) = x * (u) + , -y * (v) = x * (v) -.
Solution y * is a solution for A. As x * = y * , this yields a contradiction with the extremality of x * .

TDI-ness

In what follows, we give TDI descriptions for the multi-terminal vertex separator problem in the star trees and the clique stars.

TDI system for star trees

Consider a graph G = (V ∪ T, E) that is a star tree. We first introduce some notations. Consider two star trees H i and H j subgraphs of G. We denote by H ∩ i,j the star tree subgraph of G whose branches are all those in common with H i and H j and by H ∪ i,j a star tree subgraph of G with t(H i) + t(H j) -t(H ∩ i,j) terminals, whose branches belong either to H i or to H j . If t(H ∩ i,j) = 0, H ∪ i,j is any star tree of t(H i) + t(H j) -1 branches. Let P G be the linear program defined by variable vector x, objective function (2.5), inequalities (3.1) and trivial inequalities (2.8), as follows

min v∈V w(v)x(v) x(V (H) \ {v r }) + (t(H) -1)x(v r) ≥ t(H) -1 ∀H ∈ Π, (3.10)
x(v) ≤ 1 ∀v ∈ V, x(v) ≥ 0 ∀v ∈ V.
The dual D G of P G , is given by max

H∈Π (t(H) -1)y H H∈Π v y H ≤ w(v) ∀v ∈ V \ {v r }, (3.11)
H∈Π (t(H) -1)y H ≤ w(v r), (3.12
)

y H ≥ 0 ∀H ∈ Π. (3.13)
where y H is the dual variable associated with (3.10).

We notice that D G consists in packing star trees of Π in G satisfying vertex capacity ω. Let y * ∈ R Π + be an optimal solution of D G . Solution y * is called maximal optimal if for each other optimal solution y ∈ R Π + there exists s ∈ {1, . . . , k} satisfying the following.

1)

H∈Π l y H = H∈Π l y * H ,
for all l ∈ {s + 1, . . . , k},) and α = max{t(H ∩ i,j), 1}. We will show that y * cannot be maximal optimal by constructing an optimal solution y ∈ R Π + of D G such that 1)

H∈Π l y H = H∈Π l y * H , for all l ∈ {β + 1, . . . , k},
2)

H∈Π β y H > H∈Π β y * H ,
which will contradict the maximal optimality of y * . Let y be defined as follows

-y H ∪ i,j = y * H ∪ i,j + y * H i , -y H i = 0, -y H j = y * H j -y * H i , -y H ∩ i,j = y * H ∩ i,j + y * H i , -y H = y * H ∀H ∈ Π \ {H l , H s , H ∩ i,j , H ∪ i,j }.
First, we show that all inequalities (3.11)-(3.13) remain satisfied by y.

Each vertex v ∈ V (H ∩ i,j) \ {v r } belongs to V (H i), V (H j), V (H ∩ i,j
) and V (H ∪ i,j). Since the coefficient of each vertex of V (H ∩ i,j) \ {v r } is 1 in all inequalities, by adding y * H i to the variable of H ∪ i,j and to the one of H ∩ i,j and by subtracting y * H i from the variable of H i and from the one of H ∩ i,j , it follows that all inequalities associated with the vertices of V (H ∩ i,j) \ {v r } remain satisfied by y.

Each vertex v of V (H i) \ V (H ∩ i,j) (resp. V (H j) \ V (H ∩ i,j
)) only belongs to V (H i) and V (H ∪ i,j) (resp. V (H j) and V (H ∪ i,j)). Thus, since the coefficient of each vertex of

V (H i) \ V (H ∩ i,j) (resp. V (H j) \ V (H ∩ i,j
) is 1, by adding y * H i to the variable of H ∪ i,j and by subtracting y * H i from the variable of H i (resp. H j), it follows that all inequalities associated with the vertices of V (H i)\V (H i∩j) (resp. V (H j)\V (H ∩ i,j)) remain satisfied by y.

It remains to show that inequality (3.12) associated with v r is also satisfied by y. Let us remark that the left hand side of inequality (3.12) associated with v r is precisely the function that we want to maximize. Consequently, proving the optimality of y reduces to proving its feasibility.

As y H = y * H for all H ∈ Π \ {H i , H j , H ∩ i,j , H ∪ i,j }, to prove the optimality of y we just need to prove that

(t(H i) -1)y H i + (t(H j) -1)y H j + (β -1)y H ∪ i,j + (α -1)y H ∩ i,j = (t(H i) -1)y * H i + (t(H j) -1)y * H j + (β -1)y * H i∪j + (α -1)y * H ∩ i,j
Since β = t(H i) + t(H j) -α, by replacing the values of y we obtain that

(l -1)y H i + (s -1)y H j + (β -1)y H ∪ i,j + (α -1)y H ∩ i,j = 0 + (t(H j) -1)(y * H j -y * H i) + (t(H i) + t(H j) -α -1)(y * H ∪ i,j + y * H i) + (α -1)(y * H ∩ i,j + y * H i) = (t(H j) -1)y * H j + (t(H i) -1)y * H i + (β -1)y * H ∪ i,j + (α -1)y * H ∩ i,j
. Consequently, y is a feasible optimal solution. This contradicts the fact that y * is maximal optimal.

Corollary 3.7 For l ∈ {1, . . . , k}, there is at most one star tree H over all star trees of Π l , with y * H > 0. Theorem 3.8 For star tree G = (V ∪ T, E), linear system of P G is TDI.

Proof. We should prove that D G has an integer optimal solution. For this, we need to show the claims below. To prove the claim, we will show that y * cannot be maximal optimal by constructing another solution y ∈ R Π + from y * . Let y be obtained from y * by adding α > 0 to y * H and subtracting β > 0 from y * H . Indeed, proving that y is feasible and optimal, will contradict the fact that y * is maximal optimal. To guarantee the optimality of y, we need to satisfy the following equality As t(H) is maximum, from Lemma 3.6 y must be feasible optimal solution for D G . This contradicts the fact that y * is maximal optimal.

Claim 2. If y * is fractional, then there exists exactly one star tree H ∈ Π such that y * H is fractional.

Proof. Assume that there exist two different star trees H i , H j ∈ Π, such that y * H i and y * H j are fractional. Suppose that t(H j) is maximum (that is for all H ∈ Π with t(H) ≥ t(H j), y * H j is integer). From Corollary 3.7, t(H j) > t(H i). We distinguish two cases.

There exists a vertex

v ∈ V (H j) \ {v r } such that k l=t(H j) H∈Π l y * H = ω(v). As t(H j) is maximum, y *
H is integer for any star tree H with t(H) ∈ {t(H j) + 1, . . . , k}.

Moreover, since ω(v) is integer, it follows that y * H j is integer, contradicting that fact that y * H j fractional.

2. For all vertex v ∈ V (H j \ {v r }, we have

k l=t(H j) H∈Π l y * H < ω(v).
From Claim 1, y * H = 0 for any star tree H ∈ Π with t(H) ≤ t(H j)-1, a contradiction with y * H i fractional.

Thus, there exists at most one star tree H j ∈ Π such that y * H j is fractional.

Claim 3. If y * is fractional then there exists another optimal solution y that is integer.

Proof. From Claim 2, since y * is fractional, there exists exactly one star tree H ∈ Π such that y * H is fractional. We distinguish two cases -If t(H) = 1, then let y ∈ R Π + be the solution obtained from y * by setting y * H = 0. Vector y represents an integer feasible optimal solution for D G .

-If t(H) ≥ 2, then by Claim 2 and from the fact that y * is optimal and ω(v r) is integer, we have that (t(H) -1)y * H is integer. Let = y * H -y * H . Thus, (t(H) -1) is integer. Let y ∈ R Π + be another solution obtained from y * by subtracting from y * H and by adding 1 to y * H for an arbitrary star tree H ∈ Π .(t(H)-1)+1 . Consequently, y is an integer optimal solution for D G .

Which ends the proof of the theorem.

As consequence, we obtain the following min-max relation: Corollary 3.9 In star trees, the minimum number of vertices covering all terminal paths is equal to the maximum packing of star trees.

Then, we deduce the following polynomial algorithm to solve D G . It is based on the fact that the maximal optimal solution y of D G is integer and any star tree of y is included in another star tree of y, except the maximal one. The algorithm starts by packing several copies of the maximal star tree of G until the capacity of at least one vertex of G is exhausted. We delete then all branches of G containing at least one if (ω (P t) = 0) then Delete branch

P t from G; end end while (t(G) > 1 and ω(v r) > 0) do y * G = min{ ω(vr) t(G)-1 , min t∈T {ω (P t)}}; for (t ∈ T) do ω (P t) = ω (P t) -y * G ; end ω(v r) = ω(v r) -y * G .
(t(G) -1); for (t ∈ T) do if (ω (P t) = 0) then Delete branch P t from G; end end end end Corollary 3.10 For the star trees, the multi-terminal vertex separator problem is polynomial.

TDI system for clique stars

Consider a graph G = (V ∪ T, E) that is a clique star. Given Q i and Q j two clique stars of G, we denote by Q ∩ i,j the clique star of G, whose branches are those in common with Q i and Q j . We denote by Q ∪ i,j a clique star of G whose branches belong either to Q i or to Q j . Figure 3.6: Clique star Let P G be the linear program whose objective function is (2.5), and the system of inequalities given by (2.8) and (3.5). Let D G be the dual of P G . Let us remark that D G consists in a packing of clique stars of Θ in G satisfying the vertex capacities ω. Let y ∈ R Θ + be vector of the dual variables associated with inequalities (3.5) and y * an optimal solution of D G . Solution y * is called maximal optimal if for each optimal solution y ∈ R Θ + there exists s ∈ {1, . . . , k} satisfying the following conditions.

1)

Q∈Θ l y Q = Q∈Θ l y * Q ,
for all l ∈ {s + 1, . . . , k},

2)

Q∈Θs

y Q < Q∈Θs y * Q .
In the following we assume that y * is maximal optimal.

Lemma 3.11 For two different clique stars

Q i , Q j ∈ Θ of G, such that y * Q i > 0 and y * Q j > 0, either Q i ⊆ Q j or Q j ⊆ Q i .
Proof. Assume that there exist two clique stars Q i , Q j ∈ Θ of G, such that y * Q i > 0 and y * Q j > 0 and no one of them is included in the other. Then there exists > 0 such that the solution y ∈ R Θ + , obtained from y * by subtracting from y * Q i and y * Q j and by adding to y *

Q ∪ i,j
and to y *

Q ∩ i,j
, is feasible and optimal for D * . This contradicts the fact that y * is maximal optimal.

Corollary 3.12 For s ∈ {1, . . . , k}, there exists at most one clique star Q over all clique stars of Θ s with y * Q > 0.

3.1 95 Lemma 3.13 For all Q j ∈ Θ, there exists a vertex v ∈

V (Q j) such that k l=t(Q j) Q∈Θ l y * Q = w(v).
Proof. Assume that there exists

Q j ∈ Θ, such that for all v ∈ V (Q j), k l=t(Q j) Q∈Θ l y * Q < w(v).
Then, there must exist Q ∈ Θ such that t(Q) < t(Q j) and y * Q > 0, otherwise the solution would not be optimal. Assume that t(Q) is maximum, that is, for all clique star Q ∈ Θ with t(Q

) < t(Q) < t(Q j), y * Q = 0.
Then there exists 0 < ≤ y * Q such that y ∈ R Θ + , obtained from y * by subtracting from y * Q and adding to y * Q j , is feasible and optimal for D * . This contradicts the fact that y * is maximal optimal.

Theorem 3.14 For clique star G = (V ∪ T, E), the linear system of P G is TDI.

Proof. Using Corollary 3.12 and Lemma3.13, the maximal optimal solution of D G can be obtained by packing several copies of the clique star with the highest number of terminals, until the capacity of one vertex is saturated. Then, we delete branches with at least one saturated vertex. We repeat the operations until the graph becomes a branch. Therefore, we deduce the following algorithm (Algorithm 12) for solving D G . Algorithm 12: An exact algorithm for solving D G Data: From Lemmas 3.11 and 3.13, Algorithm 12 gives an integer optimal solution y * for D * . Which ends the proof of the theorem.

Graph G = (V ∪ T, E) that
As consequence, we obtain the following min-max relation: Corollary 3.15 In clique stars, the minimum number of vertices covering all terminal paths is equal to the maximum packing of clique stars.

Composition of polyhedra by 1-sum

In what follows we study a composition (decomposition) technique for the multiterminal vertex separator polytope in graphs that are decomposable by one-node cutsets (1-sum). If G decomposes into G 1 and G 2 , we show that the multi-terminal vertex polytope of G can be described from two linear systems related to G 1 and G 2 . As a consequence, we obtain a procedure to construct this polytope in graphs that are recursively decomposed.

Given a graph G = (V ∪ T, E) and two subgraphs of G, say

G 1 = (V 1 ∪ T 1 , E 1) and G 2 = (V 2 ∪T 2 , E 2), graph G is called a k -sum of G 1 and G 2 if V = V 1 ∪V 2 , T = T 1 ∪T 2 , |T 1 ∩ T 2 | = 0, |V 1 ∩ V 2 | = k and subgraph (V 1 ∩ V 2 , E 1 ∩ E 2) is complete. Set V 1 ∩ V 2 is called a k-node cutset of G.
In what follows we investigate the polytope composition procedure for graphs that are 1-sums.

Let G = (V ∪T, E) be a 1-sum of G 1 = (V 1 ∪T 1 , E 1) and G 2 = (V 2 ∪T 2 , E 2). Let V 1 ∩ V 2 = {u}, such that u is not adjacent to a terminal. Let G i = (V i ∪ T i , E i) be the graph obtained from G i , for i = 1, 2
, by adding a node w i , a terminal q i and edges q i w i , w i u. In G i , the multi-terminal vertex separator polytope P (G i , T i) is completely described by a linear inequality system of the form

v∈ V i a i l (v)x(v) ≥ α i l ∀l ∈ L i , (3.14) x(v) ≤ 1 ∀v ∈ V i , x(v) ≥ 0 ∀v ∈ V i .

Structure properties

In what follows, we shall study some structural properties of the facets of P (G i , T i). These properties will be used later for the composition of polyhedra.

Lemma 3.16 For any inequality (3.14), a i l (v) ≥ 0 for any vertex v ∈ V i .

Proof. Let us assume the contrary, then there exists a vertex v 0 ∈ V i such that a i l (v 0) < 0. As (3.14) is different from a bound inequality, there must exist a vertex separator S i that does not contain v 0 and such that

v∈ V i \{v 0 } a i l (v)x S i (v) = α i l . Let S v 0 = S i ∪{v 0 }. Set S v 0 is a separator for G i . It then follows that v∈ V i \{v 0 } a i l (v)x S v (v)+ a i l (v 0) < α i l , a contradiction.
Lemma 3.17 For any inequality (3.14), a i l (u) ≥ a i l (w i).

Proof. Since (3.14) defines a facet of P (G i , T i) different from a non-negativity inequality and polytope P (G i , T i) is full dimensional, there must exist a separator S i such that x S i satisfies (3.14) with equality and w i ∈ S i . If u ∈ S i , then S i \ {w i } is a separator for G i , and this yields

a i l (w i) = 0 ≤ a i l (u). If u / ∈ S i , then let S i = (S i \ {w i }) ∪ {u}.
As S i is a separator for G i , it follows that a i l (u) ≥ a i l (w i).

Lemma 3. From Lemmas 3.16, 3.17, 3.18, the linear inequality system describing P (G i , T i) can be given as follows

v∈V i \{u} a i j (v)x(v) ≥ α i j ∀j ∈ I i , (3.15) v∈V i \{u} a i j (v)x(v) + x(u) ≥ α i j ∀j ∈ I i , (3.16
)

v∈V i b i j (v)x(v) + x(w i) ≥ β i j ∀j ∈ J i , (3.17) x(v) ≤ 1 ∀v ∈ V i , (3.18) x(v) ≥ 0 ∀v ∈ V i . (3.19)
Where I i is the set of inequalities whose support does not intersect {w i , u}, I i the set of inequalities whose support does not intersect w i but contains u and J i the set of inequalities whose support contains u and w i .

Composition of polyhedra

In what follows we derive a system of inequalities that describes P (G, T). To this end, we first give the following lemmas.

Lemma 3.19 For j ∈ J i , inequality

v∈V i b i j (v)x(v) -x(u) ≥ β i j -1 is valid for P (G, T).
Proof. Consider a separator S for graph G. We distinguish two cases

• u ∈ S : let S i = (S ∩ V i). It is clear that S i is a separator of G i . It follows that v∈V i b i j (v)x S i (v) ≥ β i j , and since -x S i (u) ≥ -1, it follows that v∈V i b i j (v)x S i (v) - x S i (u) ≥ β i j -1. • u / ∈ S : then either (S ∩ V 1) is a separator for G 1 or (S ∩ V 2
) is a separator for G 2 . Suppose for instance, that (S ∩ V 2) is a separator for G 2 , and let S 1 = (S ∩ V 1) ∪ {w 1 } and S 2 = (S ∩ V 2). Clearly, S 1 and S 2 are both separators for G 1 and G 2 respectively. Thus, for G 2 , we have

v∈V 2 b 2 j (v)x S 2 (v) ≥ β 2 j and since -x S 2 (u) ≥ -1, this yields v∈V 2 b 2 j (v)x S 2 (v) -x S 2 (u) ≥ β 2 j -1.
for G 1 , we have

v∈V 1 b 1 j (v)x S 1 (v) + x S 1 (w 1) ≥ β 1 j and x S 1 (w 1) = 1. Then, v∈V 1 b 1 j (v)x S 1 (v) ≥ β 1 j -1
, and as x S 1 (u) = 0, we obtain that

v∈V 1 b 1 j (v)x S 1 (v)- x S 1 (u) ≥ β 1 j -1.
Therefore we obtain that

v∈V 1 b 1 j (v)x S (v) -x S (u) ≥ β 1 j -1 v∈V 2 b 2 j (v)x S (v) -x S (u) ≥ β 2 j -1
and the lemma follows.

Lemma 3.20 For j ∈ J i , inequality

v∈V i b i j (v)x(v) -x(u) ≥ β i j -1 is valid for P (G i , T i).
Proof. We assume w.l.o.g, that i = 1. The proof for i = 2 is similar. Let S 1 be a separator of G 1 . We distinguish two cases.

1u ∈ S 1 or (u / ∈ S 1 and w 1 / ∈ S 1) It can be easily seen that S = S 1 ∪ (V 2 \ {u}) is a separator for G. Therefore, x S belongs to P (G, T). From Lemma (3.19), x S satisfies the following inequality

v∈V 1 b 1 j (v)x S (v) -x S (u) ≥ β 1 j -1. Since S 1 = S ∩ (V 1 ∪ {w 1 }), we get v∈V 1 b 1 j (v)x S 1 (v) -x S 1 (u) ≥ β 1 j -1.

101

2u / ∈ S 1 and w 1 ∈ S 1 This implies, x S 1 (u) = 0 and x S 1 (w 1) = 1. As

v∈V 1 b 1 j (v)x S 1 (v) + x S 1 (w 1) ≥ β 1 j ,
We obtain that

v∈V 1 b 1 j (v)x S 1 (v) -x S 1 (u) ≥ β 1 j -1.
And the lemma follows.

Theorem 3.21 If ax ≥ α is a valid inequality for P (G i , T i) with a(w i) = 0, then there exists an inequality ax ≥ α valid for P (G i , T i) that dominates ax ≥ α and that is a linear combination of inequalities (3.15), (3.16) and inequalities (3.18) associated with the vertices of V i .

Proof. Let A be the system given by inequalities (3.15) -(3.17

P = min{ ax | x ∈ P (G i , T i)}.
An optimal solution, say x 0 , of P is a feasible solution of P . Since a(w i) = 0, we can assume that x 0 (w i) = 1.

Let r ∈ R I i , z ∈ R I i , θ ∈ R J i , µ ∈ R V i , λ ∈ R V i associated
max j∈I i α i j r j + j∈I i α i j z j + j∈J i β i j θ j - v∈V i λ(v) j∈I i a i j (v)r j + j∈I i a i j (v)z j + j∈J i b i j (v)θ j + µ(v) -λ(v) ≤ a(v) ∀v ∈ V i \ {u, w i } (3.20) j∈I i z j + j∈J i b i j (u)θ j + µ(u) -λ(u) ≤ a(u) (3.21) j∈J i b i j (w i)θ j + µ(w i) ≤ a(w i) (3.22) r i j ≥ 0 ∀j ∈ I i (3.23) z i j ≥ 0 ∀j ∈ I i (3.24) θ i j ≥ 0 ∀j ∈ J i (3.25) µ(v) ≥ 0 ∀v ∈ V i (3.26) λ(v) ≥ 0 ∀v ∈ V i (3.27)
As for each vertex v ∈ V i , µ(v) is non-negative, the coefficient of µ(v) is 0 in the objective function and positive in all inequalities of D , we can set µ(v) = 0 for all vertex v ∈ V i . As x 0 is a feasible solution of P , D admits an optimal solution (r * , z * , θ * , 0, λ *). From Lemma 3.16, all coefficients in inequality (3.22) are positives. As a(w i) = 0, we deduce that θ * j = 0 for all j ∈ J i . Let

• a(v) = j∈I i a i j (v)r * j + j∈I i a i j (v)z * j -λ * (v) for all v ∈ V i \ {u, w i }, • a(u) = j∈I i z * j -λ * (u),
• a(w i) = 0,

• α = j∈I i α i j r * j + j∈I i α i j z * j - v∈V i λ * (v).
We can see that ax ≥ α is a combination of inequalities (3.15), (3.16) and inequalities (3.18) using coefficients (r * , z * , λ *). Then, ax ≥ α is valid for P (G i , T i).

From the inequalities of D , we notice that a(v) ≤ a(v) for all vertex v ∈ V i . Since ax ≥ α and α = min{ ax | x solution of A }, it follows that α ≥ α. Consequently, inequality ax ≥ α dominates ax ≥ α.

Consider the following system of inequalities

v∈V i \{u} a i j (v)x(v) ≥ α i j ∀i = 1, 2, ∀j ∈ I i (3.28) v∈V 1 \{u} a i j (v)x(v) + x(u) ≥ α i j ∀i = 1, 2, ∀j ∈ I i (3.29) 2 p=1 v∈V i b i jp (v)x(v) -x(u) ≥ 2 p=1 β i jp -1 ∀j 1 ∈ J 1 , ∀j 2 ∈ J 2 (3.30) x(v) ≤ 1 ∀v ∈ V (3.31) x(v) ≥ 0 ∀v ∈ V (3.32)
Inequalities (3.30) are called mixed inequalities. Let Q(G, T) be the polytope given by inequalities (3.28)

-(3.32).
In what follows will first show that P (G, T) = Q(G, T).

Lemma 3. [START_REF] Barnhart | Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems[END_REF] The mixed inequalities are valid for P (G, T).

Proof. Consider a mixed inequality associated with j 1 ∈ J 1 and j 2 ∈ J 2 . Consider a separator S for graph G. We distinguish two cases.

• u ∈ S: define S 1 = (S ∩ V 1) and S 2 = (S ∩ V 2). It is clear that S 1 and S 2 are two separators for G 1 and G 2 respectively. Thus, by (3.17) we have that

v∈V 1 b 1 j 1 (v)x S 1 (v) ≥ β 1 j 1 , v∈V 2 b 2 j 2 (v)x S 2 (v) ≥ β 2 j 2 .
Thus

v∈V 1 b 1 j 1 (v)x S 1 (v) + v∈V 2 b 2 j 2 (v)x S 2 (v) -x S 1 (u) ≥ β 1 j 1 + β 2 j 2 -1
, and hence inequality (3.30) is satisfied for S.

• u / ∈ S: then either (S ∩ V 1) is a separator of G 1 or (S ∩ V 2) is a separator of G 2 . Assume that (S ∩ V 2) is a separator of G 2 , and let S 1 = (S ∩ V 1) ∪ {w 1 } and S 2 = (S ∩ V 2).
As, S 1 and S 2 are separators for G 1 and G 2 respectively, by (3.17) it follows that

v∈V 1 b 1 i (v)x S 1 (v) + x S 1 (w 1) ≥ β 1 j 1 , v∈V 2 b 2 i (v)x S 2 (v) ≥ β 2 j 2 .
Since -x S 1 (w 1) ≥ -1 and x(u) = 0, this implies that

v∈V 1 b 1 i (v)x S 1 (v) + v∈V 2 b 2 i (v)x S 2 (v) ≥ β 1 j 1 + β 2 j 2 -1 Lemma 3.23 All integer points of Q(G, T) belong to P (G, T).
Proof. We need to prove that all integer points of Q(G, T) satisfy all terminal path inequalities induced by the terminal paths of G. Let us assume that, on the contrary, there exists an integer point x S ∈ Q(G, T) that does not belong to P (G, T). Clearly,

x S satisfies all terminal path inequalities of P (G i , T i) in which x(w i) is not involved. As x S does not belong to P (G, T) there must exist a terminal path P t 1 t 2 in G with one end t 1 ∈ T 1 and the other t 2 ∈ T 2 not intersecting S. Let P t i q i = (P t 1 t 2 ∩ V i) ∪ {w i , q i } be the terminal path in G i between t i and q i . From the mixed inequality associated with the terminal path inequalities associated with P t 1 q 1 and P t 2 q 2 we have that

v∈Pt 1 q 1 \{w 1 } x(v) + v∈Pt 2 q 2 \{w 2 } x(v) -x(u) ≥ 1
which is violated by x S . This contradicts the fact that x S ∈ Q(G, T).

Lemma 3.24 Inequality

v∈V i b i j (v)x(v) -x(u) ≥ β i j -1
is valid for the polytope given by inequalities (3.28) -(3.32) and it is dominated by inequality ax ≥ α that is obtained as a linear combination of inequalities (3.28) -(3.29) and inequalities (3.31) associated with vertices of V i .

Proof. From Lemma 3.20, inequality

v∈V i b i j (v)x(v) -x(u) ≥ β i j -1 is valid for P (G i , T i).
As the coefficient of w i is 0, from Theorem 3.21, this inequality is dominated by an inequality ax ≥ α that is a combination of inequalities (3.15), (3.16) and inequalities (3.18) associated with vertices of V i . These inequalities are in (3.28) -(3.32). Then, ax ≥ α is also valid for the polytope given by inequalities (3.28) -(3.32).

Theorem 3.25 For a graph G = (V ∪ T, E), polytope P (G, T) is completely described by inequalities (3.28) -(3.32).

Proof. Let us assume that on the contrary, Q(G, T) has a fractional extreme point x. We will distinguish two cases. Case 1:

x(u) = 1. Let x 1 ∈ [0, 1] V 1 and x 2 ∈ [0, 1]
V 2 be the two solutions defined as follows.

• x i (v) = x(v) for all v ∈ V i , • x i (w i) = 0.
As x(u) = 1, from Lemma 3.19, x 1 ∈ P (G 1 , T 1) and x 2 ∈ P (G 2 , T 2). Thus, there exist λ ∈ [0, 1] s , µ ∈ [0, 1] p , extreme points y i of P (G 1 , T 1) and z j of P (G 2 , T 2) such that

• x 1 = s i=0 λ i y i , • x 2 = p j=0 µ j z j ,
• λ i ≥ 0, for all i ∈ {1, . . . , s} and

s i=1 λ i = 1,
• µ j ≥ 0, for all j ∈ {1, . . . , p} and p j=1 µ j = 1.

As x 1 = 0 = x 2 , there must exist i 0 ∈ {1, . . . , s} and j 0 ∈ {1, . . . , p} such that, λ i 0 > 0 and µ j 0 > 0. Also note that each non mixed inequality tight for x is tight for either x 1 or x 2 . Since y i 0 and z j 0 are extreme points, each facet of P (G 1 , T 1) (resp. P (G 2 , T 2)) that contains x 1 (resp. x 2) also contains y i 0 (resp. z j 0). Then, it follows that each inequality tight for x 1 (x 2) is also tight for y i 0 (z j 0). As x(u) = 1, for all y i and z j , x(u) = y i (u) = z j (u). Let x * ∈ [0, 1] V be the solution defined as follows

x * (v) = y i 0 (v), for all v ∈ V 1 , z j 0 (v), for all v ∈ V 2 \ {u}.
Thus, each non mixed inequality tight for x is tight for x * . Now, we need to prove that each mixed inequality tight for x is also tight for x * .

For two inequalities corresponding to j 1 ∈ J 1 and j 2 ∈ J 2 , consider the following mixed equality tight for x.

v∈V 1 b 1 j 1 (v)x(v) + v∈V 2 b 2 j 2 (v)x(v) -x(u) = β 1 j 1 + β 2 j 2 -1 (3.33)
As x i ∈ P (G i , T i), we have that

v∈V 1 b 1 j 1 (v)x 1 (v) + x 1 (w 1) ≥ β 1 j 1 , v∈V 2 b 1 j 2 (v)x 2 (v) + x 2 (w 2) ≥ β 2 j 2 .
Thus, from Lemma 3.20, inequalities

v∈V 1 b 1 j 1 (v)x(v) -x(u) ≥ β 1 j 1 -1, v∈V 2 b 1 j 2 (v)x(v) -x(u) ≥ β 2 j 2 -1.
are valid for P (G, T). Since x(u) = 1, it follows that

v∈V 1 b 1 j 1 (v)x(v) ≥ β 1 j 1 , v∈V 2 b 1 j 2 (v)x(v) ≥ β 2 j 2 .
By (3.33), we obtain that these inequalities are tight for x, that is

v∈V 1 b 1 j 1 (v)x(v) = v∈V 1 b 1 j 1 (v)x 1 (v) = β 1 j 1 , v∈V 2 b 2 j 2 (v)x(v) = v∈V 2 b 2 j 2 (v)x 2 (v) = β 2 j 2 .
Therefore

v∈V 1 b 1 j 1 (v)y i 0 (v) = β 1 j 1 , v∈V 2 b 2 j 2 (v)z j 0 (v) = β 2 j 2 ,
Implying that

v∈V 1 b 1 j 1 (v)y i 0 (v) + v∈V 2 b 2 j 2 (v)z j 0 (v) = β 1 j 1 + β 2 j 2 .

107

Hence

v∈V 1 b 1 j 1 (v)x * (v) + v∈V 2 b 2 j 2 (v)x * (v) -x * (u) = β 1 j 1 + β 2 j 2 -1.
Consequently, each inequality tight for x is also tight for x * . Since x = x * , this contradicts the extremality of x.

Case 2: x(u) < 1.

We distinguish two cases, when there is no mixed inequality tight for x and when there is at least one mixed inequality tight for x.

Case 2.1: There is no mixed inequality tight for x.

Let x 1 ∈ [0, 1] V 1 and x 2 ∈ [0, 1] V 2
be two vectors defined as follows.

x i (v) = x(v), for all v ∈ V i , 1, for v = w i .
All terminal path inequalities associated with terminal paths between two terminals of T i , are satisfied by x. Thus, they are satisfied by x i . As x i (w i) = 1, all terminal path inequalities associated with terminal paths between q i and terminals of T i are also satisfied by x i . Thus, x 1 ∈ P (G 1 , T 1) and x 2 ∈ P (G 2 , T 2). Consequently, there exist ν ∈ [0, 1] s , µ ∈ [0, 1] p and extreme points y j ∈ P (G 1 , T 1) and z j ∈ P (G 2 , T 2) such that

• x 1 = s j ν j y j , • x 2 = p j µ j z j ,
• ν j ≥ 0, for all j ∈ {1, . . . , s} and

s j=1 ν j = 1,
• µ j ≥ 0, for all ∀j ∈ {1, . . . , p} and p j=1 µ j = 1.

Since x(u) < 1, there must exist i 0 ∈ {1, . . . , s} and j 0 ∈ {1, . . . , p} such that, y i 0 (u) = z j 0 (u) = 0 and ν i 0 > 0 and µ j 0 > 0. Each non-mixed inequality tight for x is tight for x 1 or x 2 . As y i 0 and z j 0 are extreme points of P (G 1 , T 1) and P (G 2 , T 2), respectively, this implies that each facet of P (G 1 , T 1) (resp. P (G 2 , T 2)) that contains x 1 (resp. x 2) also contains y 1 (resp. z 1). Let x * ∈ [0, 1] V be the solution given by

x * (v) = y i 0 (v), for all v ∈ V 1 , z j 0 (v), for all v ∈ V 2 \ {u}.
It follows that each inequality tight for x 1 and x 2 is also tight for y i 0 and z j 0 . Thus, each non-mixed inequality tight for x is tight for x * . As x = x * , we have a contradiction with the fact that x is an extreme point of the polytope given by (3.28)-(3.32).

Case 2.2:

There is at least one mixed inequality tight for x. Consider a mixed inequality for some j 1 ∈ J 1 and j 2 ∈ J 2 , tight for x,

v∈V 1 b 1 j 1 (v)x(v) + v∈V 2 b 2 j 2 (v)x(v) -x(u) = β 1 j 1 + β 2 j 2 -1. (3.34)
Lemma 3.26 There exist 0 ≤ λ ≤ 1 and 0 < ≤ 1 such that

v∈V 1 b 1 j 1 (v)x(v) = β 1 j 1 -1 + λ, (3.35) v∈V 2 b 2 j 2 (v)x(v) = β 2 j 2 -λ + . (3.36)
Proof. From Lemma 3.24 the following inequality

v∈V 1 b 1 j 1 (v)x(v) -x(u) ≥ β 1 j 1 -1
is satisfied by x. Then by (3.34) we obtain

v∈V 2 b 2 j 2 (v)x(v) ≤ β 2 j 2 .
From Lemma 3.24, we also have

β 2 j 2 -1 ≤ v∈V 2 b 2 j 2 (v)x(v) -x(u) ≤ β 2 j 2 .
Therefore, there exists

1 ≥ λ ≥ 0 such that v∈V 2 b 2 j 2 (v)x(v) -x(u) + λ = β 2 j 2 . Let = x(u), thus v∈V 2 b 2 j 2 (v)x(v) = β 2 j 2 -λ + .
From equality (3.34) we then obtain

v∈V 1 b 1 j 1 (v)x(v) = β 1 j 1 -1 + λ,
and the lemma follows.

Now consider solutions x

1 ∈ [0, 1] V 1 and x 2 ∈ [0, 1] V 2 such that x 1 (v) = x(v), for all v ∈ V 1 , 1 -λ, for v = w 1 . and x 2 (v) = x(v), for all v ∈ V 2 , λ -, for v = w 2 .
we have the following lemma. Lemma 3.27

x i ∈ P (G i , T i), for i = 1, 2.
Proof. We consider two cases

• x 1 ∈ P (G 1 , T 1).
It is clear that x 1 satisfies inequalities (3.15)-(3.16). We will prove that it also satisfies inequalities (3.17). Assume, on the contrary, that for some j ∈ J 1 ,

v∈V 1 b 1 j 3 (v)x 1 (v) + x 1 (w 1) < β 1 j 3 .
From Lemma 3.26, it then follows that

v∈V 1 b 1 j 3 (v)x 1 (v) + x 1 (w 1) + v∈V 2 b 2 j 2 (v)x(v) < β 1 j 3 + β 2 j 2 -λ + .
Since x 1 (w 1) = 1 -λ and x(u) = , this yields

v∈V 1 b 1 j 3 (v)x(v) + v∈V 2 b 2 j 2 (v)x(v) -x(u) < β 1 j 3 + β 2 j 2 -1, a contradiction with x ∈ Q(G, T). • x 2 ∈ P (G 2 , T 2).
It is clear that x 2 satisfies inequalities (3.15)-(3.16). We will prove that it also satisfies inequalities (3.17). To this end we will show that all inequalities of J 2 are satisfied by x 2 . Consider an inequality

j 4 ∈ J 2 v∈V 2 b 2 j 4 (v)x 2 (v) + x 2 (w 2) ≥ β 2 j 4 .
And let us assume that it is violated by x 2 , that is

v∈V 2 b 2 j 4 (v)x 2 (v) + x 2 (w 2) < β 2 j 4 .
From Lemma (3.26)

v∈V 2 b 2 j 4 (v)x 2 (v) + x 2 (w 2) + v∈V 1 b 1 j 1 (v)x(v) < β 1 j 4 + β 1 j 1 -1 + λ. As x 2 (w 2) = λ -, this yields v∈V 2 b 2 j 4 (v)x(v) + v∈V 1 b 1 j 1 (v)x(v) -< β 1 j 4 + β 1 j 1 -1.
Therefore, the mixed inequality associated with j 4 and j 1 is violated by x, a contradiction.

Thus, our lemma holds.

Since x 1 ∈ P (G 1 , T 1) and x 2 ∈ P (G 2 , T 2), there exist λ ∈ [0, 1] s , µ ∈ [0, 1] p and extreme points y j ∈ P (G 1 , T 1) and z j ∈ P (G 2 , T 2) such that

• x 1 = s j λ j y j • x 2 = p j µ j z j
• λ j > 0, for all i ∈ {1, . . . , s}

• µ j > 0, for all ∀j ∈ {1, . . . , p}

3.2

Since x 1 (u) < 1 and x 2 (u) < 1, there must exist y i 0 and z j 0 such that

y i 0 (u) = z j 0 (u) = 0. Let x * ∈ [0, 1] V defined as x * (v) = y i 0 (v), for all v ∈ V 1 , z j 0 (v), for all v ∈ V 2 \ {u}.
Each non mixed inequality tight for x is tight for x i . Also each tight inequality tight for x i is tight for x * . It then follows that each non-mixed inequality tight for x is tight for x * . Lemma 3.28 Each mixed inequality tight for x is tight for x * .

Proof. Consider a mixed inequality tight for x, corresponding to some j ∈ J 1 and j ∈ J 2 ,

v∈V 1 b 1 j (v)x(v) + v∈V 2 b 2 j (v)x(v) -x(u) = β 1 j + β 2 j -1. (3.37)
By Lemma (3.26) we have that

v∈V 1 b 1 j (v)x(v) = β 1 j -1 + λ , (3.38) v∈V 2 b 2 j (v)x(v) = β 2 j -λ + . (3.39)
It is easy to see that λ ≥ λ. Otherwise, by summing inequality(3.38) and (3.36) we obtain an inequality violated by x. In the following claim we will prove that indeed λ = λ.

Claim 1.

v∈V 1 b 1 j (v)x(v) = β 1 j -1 + λ, v∈V 2 b 2 j (v)x(v) = β 2 j -λ + .
Proof. If j = j 1 and j = j 2 , then the claim holds. Therefore, let us assume that j = j 1 or j = j 2 and λ > λ. From equality (3.38), it then follows that

- v∈V 1 b 1 j (v)x(v) < -β 1 j + 1 -λ.
By summing the above inequality together with equality (3.37), we get

v∈V 2 b 2 j (v)x(v) < β 2 j + -λ.
And by summing the above inequality together with (3.35), we obtain

v∈V 1 b 1 j 1 (v)x(v) + v∈V 2 b 2 j (v)x(v) -x(u) < β 1 j 1 + β 2 j -1.
a contradiction. It then follows that λ = λ.

Claim 2. Inequalities j and j are tight for x 1 and x 2 , respectively.

Proof. We have that

v∈V 1 b 1 j (v)x(v) = v∈V 1 b 1 j (v)x 1 (v) = β 1 j + λ -1, v∈V 2 b 2 j (v)x(v) = v∈V 2 b 2 j (v)x 2 (v) = β 2 j -λ + .
As x 1 (w 1) = 1 -λ and x 2 (w 2) = λ -, it then follows that

v∈V 1 b 1 j (v)x 1 (v) + x 1 (w 1) = β 1 j (3.40) v∈V 2 b 2 j (v)x 2 (v) + x 2 (w 2) = β 2 j (3.41)
Therefore, the statement holds. Now summing equalities (3.40) and (3.41), yields

v∈V 1 b 1 j (v)x 1 (v) + v∈V 2 b 2 j (v)x 2 (v) + x 2 (w 2) + x 1 (w 1) = β 1 j + β 2 j .
Since x 1 (w 1) = 1 -λ and x 2 (w 2) = λ -, we obtain

v∈V 1 b 1 j (v)x * (v) + v∈V 2 b 2 j (v)x * (v) -x * (u) = β 1 j + β 2 j -1.
Hence, any inequality tight for x is also tight for x * . This ends the proof of the lemma.

3.2

From Lemma 3.28, any inequality tight for x is also tight for x * . This contradicts the fact that x an extreme point of Q(G, T), and the proof of our theorem is complete.

Corollary 3.29 For terminal trees, the multi-terminal vertex separator polytope is given by terminal tree inequalities (2.18) and the trivial inequalities.

Proof. Each vertex in a terminal tree is a vertex cut. It follows that a terminal tree G can be decomposed into G 1 and G 2 . Moreover, G 1 and G 2 are also terminal trees and can then be decomposed. Thus a terminal tree can be decomposed into several star trees. Moreover, a star tree is a terminal tree with at most one vertex of degree greater or equal to 3 and the terminal tree inequality is the general form of the star tree inequality. Thus the mixed inequality associated with two terminal tree inequalities, is a terminal tree inequality. By Theorem 3.3 for star trees, the MTVS polytope is given by inequalities (3.1) and the trivial inequalities. Consequently, by Theorem 3.25, for terminal trees the multi-terminal vertex separator polytope is given by terminal tree inequalities (2.18) and the trivial inequalities.

Facet composition

In this section we will discuss composition of facets for the multi-terminal vertex separator polytope. In particular we will show that a mixed inequalities (3.30) defines a facet of P (G, T) if the two inequalities to which it is related define facets in the corresponding graphs.

Let G = (V ∪ T, E) be a graph, and H a subgraph of G.

Lemma 3.30 If ax ≥ α is valid for P (H, T (H)), then it is valid for P (G, T).

Proof. Let us assume the contrary. Suppose that ax ≥ α is valid for P (H, T (H)) and that there exists a graph G with a subgraph H such that ax ≥ α is not valid for P (G, T). It follows that there exists a solution x 0 ∈ P (G, T) that violates ax ≥ α. Let x be the restriction of x 0 on V (H). Clearly, x ∈ P (H, T (H)) and x violates ax ≥ α. This is a contradiction with the fact that ax ≥ α is valid for P (H, T (H)).

Theorem 3.31 If an inequality (3.17) defines a facet for P (G 1 , T 1) and an inequality (3.17) defines a facet for P (G 2 , T 2), then the associated mixed inequality (3.30) defines a facet for P (G, T).

Proof. Since inequality (3.17) defines a facet for P (G i , T i), let S i a set of | V i | affinely independent solutions satisfying inequality (3.14) with equality, i = 1, 2. From Lemma 3.18, there is no solution in S i containing w i and u together, for i = 1, 2. Let n i 1 , n i 2 , n i 3 ∈ N defined as follows

• n i 1 : the number of solutions in S i containing u.

• n i 2 : the number of solutions in S i containing w i .

• n i 3 : the number of solutions in S i not containing neither u nor w i .

Clearly,

n i 1 + n i 2 + n i 3 = | V i |, for i = 1, 2.
We need to construct |V | solutions affinely independent satisfying (3.30) with equality. Since w 1 and w 2 do no appear in G and u appears once, we only need

| V 1 | + | V 2 | -3 such solutions. Consider a solution S 1 ∈ S 1 containing u.
For each solution S 2 ∈ S 2 containing u, we construct a new solution (S 1 ∪ S 2). Let A 1 be the set of all these solutions. Now consider a solution S 2 ∈ S 2 containing u. For each solution S 1 ∈ S 1 containing u, we construct a new solution (S 1 ∪ S 2). Let A 2 be the set of all these solutions. It can be easily seen that there is one solution in A 1 that is also in A 2 . Thus, A = A 1 ∪ A 2 contains n 1 1 + n 2 1 -1 affinely independent solutions. Consider a solution S 1 ∈ S 1 not neither u, nor w 1 . For each solution S 2 ∈ S 2 containing w 2 , we construct a new solution (S 1 ∪ S 2). Let B 1 be the set of all these solutions. Consider a solution S 2 ∈ S 2 not containing neither u, nor w 1 . For each solution S 1 ∈ S 1 containing w 1 , we construct a new solution (S 1 ∪ S 2). Let B 2 be the set of all these solutions. Thus, B = B 1 ∪ B 2 contains n 1 2 + n 2 2 affinely independent solutions. Consider a solution S 1 ∈ S 1 containing w 1 . For each solution S 2 ∈ S 2 not containing neither u, nor w 2 , we construct a new solution (S 1 ∪ S 2). Let C 1 be the set of all these solutions. Consider a solution S 2 ∈ S 2 containing w 2 . For each solution S 1 ∈ S 1 not containing neither u, nor w 1 , we construct a new solution (S 1 ∪ S 2). Let C 2 be the set of all these solutions. Clearly, there is one solution in C 2 that is also in B 1 and one solution in

C 2 that is in B 2 . Thus, C = (C 1 ∪ C 2) \ (B 1 ∪ B 2) contains n 1 3 + n 2 3 -2 affinely independent solutions. Therefore, A ∪ B ∪ C represents a set of | V 1 | + | V 2 |
-3 affinely independent solutions satisfying inequality (3.30) with equality. Now we present two valid inequalities, that are the generalization of the clique star and the terminal cycle inequalities (see Section 2.3).

115

General clique star inequality

A general clique star H = (V ∪ T , E) is obtained by the composition of one clique star and several star trees. Thus, H contains a clique K f ⊆ V on f vertices and has q terminals. Figure 3.8 displays a general clique star of 14 terminals.

v∈K f (d H (v) -(f -1))x(v) + v∈V \K f (d H (v) -1)x(v) ≥ q -1 is valid for P (G, T), where d H (v) is the degree of v in H.

General terminal cycle inequality

A general terminal cycle H = (V ∪ T , E) is obtained by the composition of one terminal cycle and several star trees. Thus H contains one cycle C f ⊆ V on f vertices and has q terminals. Let C ⊂ C f be the subset of vertices in C f of degree greater than or equal to 3 in H. Figure 3.9 shows a general terminal cycle of 14 terminals.

= (V ∪ T , E) subgraph of G = (V ∪ T, E), the following inequality v∈C (d H (v) -2)x(v) + v∈V \C (d H (v) -1)x(v) ≥ q - |C | 2
is valid for P (G, T), where d H (v) is the degree of v in H.

Algorithmic aspect

The polyhedral and the algorithmic aspects for combinatorial optimization problems are very related. In this section we will analyze algorithmic consequences of the decomposition studied before. We will show that if G is the 1-sum of two graphs G 1 and G 2 , then solving the multi-terminal vertex separator problem in G can reduce to solving it in graph G 2 with an appropriate weight system.

Figure 3.10: Illustration of separators S i , S i , S i and S i .

Given a weight vector c : V → R and let c i ∈ R V i be the restriction of c on V i , for i = 1, 2. Let c i ∈ R V i be a weight vector obtained from c i by setting c i (w i) = 0. Let S i , S i , S i and S i be four subsets of vertices, such that

• S i is the MTVS separator of G i containing u but not w i .
• S i is the MTVS separator of G i containing w i but not u.

• S i is the MTVS separator of G i not containing neither u nor w i .

• S i is the MTVS separator of G i not containing u. Let s i , s i , s i , s i ∈ N (resp. ω i , ω i , ω i , ω i ∈ N) be the size (resp. the weight) of S i , S i , S i , S i , respectively.
These separators are illustrated in Figure 3.10. It is important to precise that the same separators computed before are used later. To force a vertex to be in the separator we can delete the vertex from the graph. To force a vertex v to be out of the separator we set its weight to +∞.

Let c 2 ∈ R V 2 be a vector associated with V 2 such that

• c 2 (u) = ω 1 -s 2 ω 1 s 2 , • c 2 (w 2) = ω 1 -s 2 ω 1 s 2 , • c 2 (v) = c(v) + ω 1 s 2 ∀v ∈ V 2 \ {u, w i }, In G 2 w.r.t c 2 , let S * 2 ∈ {S 2 , S 2 , S 2 }, already computed, having a minimum weight ω * 2 .
Clearly, since we add the same value ω 1 s 2 to the weight of each vertex v ∈ V 2 \ {u}, then the minimum separator in G 2 under vertex weight vector c 2 is either S 2 , S 2 or S 2 .

Let S * ⊆ V be the set giving by

S * =        S 1 ∪ S * 2 If u ∈ S * 2 and w 2 / ∈ S * 2 i.e., S * 2 = S 2 (S 1 ∪ S * 2) \ w 2 If w 2 ∈ S * 2 and u / ∈ S * 2 i.e., S * 2 = S 2 S 1 ∪ S * 2 If u, w 2 / ∈ S * 2 i.e., S * 2 = S 2 Theorem 3.34 S * is the minimum multi-terminal vertex separator in G, its weight is ω * = ω * 2 .
Proof. We distinguish three cases for the state of separator S *

• S * contains u. Thus (S * ∩ V i) is a separator in G i , for i = 1, 2.

• S * does not contain u and (S * ∩ V 1) intersects all terminal paths between q 1 and all terminal of T 1 in graph G 1 .

• S * does not contain u and it may exist a terminal path between q 1 and a terminal of

T 1 in graph G 1 that does not intersect (S * ∩ V 1).
Thus, the weight of S * is

ω * =min(ω 1 + ω 2 -c(u), ω 1 + ω 2 -c(w 2), ω 1 + ω 2).
As

ω * =min((c 2 (u) + s 2 ω 1 s 2) + ω 2 -c(u), (c 2 (w 2) + s 2 ω 1 s 2) + ω 2 -c(w 2), ω 1 + ω 2).
We know that

3.3 119 • s 2 ω 1 s 2 + ω 2 -c(u) = ω * 2 -c 2 (u) • s 2 ω 1 s 2 + ω 2 -c(w 2) = ω * 2 -c 2 (w 2) • c 2 (S 2) = w * 2 = s 2 ω 1 s 2 + c(S 2) = ω 1 + c(S 2) = ω 1 + ω 2 this implies that ω * = ω * 2 .
Let us remark that if we can solve the MTVSP in polynomial time in G 1 and G 2 , then we can solve the MTVSP in polynomial time in G. Indeed, as we can solve the MTVSP in polynomial time in G 1 , then we can compute all parameters s i , s i , s i , s i , ω i , ω i , ω i , ω i and we can obtain sets S i , S i , S i , S i in polynomial time.

Composition of polyhedra by terminal-sum

Consider two graphs G 1 = (V 1 ∪ T 1 , E 1) and G 2 = (V 2 ∪ T 2 , E 2) and let T 1 ⊆ T 1 and T 1 ⊆ T 2 be two subsets of q terminals T 1 = {t 1 1 , . . . , t 1 q } and T 2 = {t 2 1 , . . . , t 2 q }. G = (V ∪ T, E) is called a terminal-sum of G 1 = (V 1 ∪ T 1 , E 1) and G 2 = (V 2 ∪ T 2 , E 2)
if it is obtained by merging each terminal t 1 i ∈ T 1 with a terminal t 2 i ∈ T 2 , for all i ∈ {1, . . . , q}. The multi-terminal vertex separator polytope for graph G i can be expressed by the a system of inequalities A i of the form

v∈V i a i l (v)x(v) ≥ α i l ∀l ∈ L i , (3.42)
x(v) ≤ 1 ∀v ∈ V i , x(v) ≥ 0 ∀v ∈ V i ,
where L i is a set of inequalities, for i = 1, 2.

Theorem 3. [START_REF] Bui | Finding good approximate vertex and edge partitions is np-hard[END_REF] The multi-terminal vertex separator polytope for G is completely described by system of inequalities A obtained by the juxtaposition of systems A 1 and A 2 .

Proof. Let us assume the contrary, and let x * be a fractional extreme point of the polytope given by the inequalities of A. Note that vector x * satisfies a subset of inequalities A * ⊆ A with equality, where

|A * | = |V 1 | + |V 2 |.
There is no equality in A * containing two variables associated with two vertices, one in G 1 and the other in G 2 . Therefore A * can be partitioned into 2 subsets A * 1 and A * 2 , one associated with G 1 and the other one associated with G 2 . Since A * is linearly independent, it follows

3.4 121 that |A * 1 | = |V 1 | and |A * 2 | = |V 2 |. Let x *
i be the restriction of x * on V i . Hen x * is an extreme point of P (G i , T i). Moreover, since x * is fractional, it follows that either x * 1 is a fractional or x * 2 is fractional, which is impossible.

Theorem 3.36 If two linear systems A 1 and A 2 with no variable in common, are TDI, then the linear system given by the juxtaposition of A 1 and A 2 is also TDI.

Proof. Let y * i be the integer optimal solution of the dual problem associated with A i . Since the dual problem associated with G i is TDI, y * i should exist. Thus, y * = [y * 1 , y * 2] represents a feasible integer solution for the dual problem of the juxtaposition of A 1 and A 2 . Moreover, it should be optimal. Otherwise, let y be the optimal solution of the dual problem of the juxtaposition of A 1 and A 2 . Let y i be the restriction of y on V i . Clearly, y i is a feasible solution for the dual problem of A i . Thus, y * 1 or y * 2 is not optimal. Contradiction.

Let S * i be the optimal solution in G i , for i = 1, 2. Then, we have the following corollary Corollary 3.37 Vertex separator S * = S * 1 ∪ S * 2 is a minimum multi-terminal vertex separator in G.

The minimum rooted-cycle cover problem

In this section, we introduce the minimum rooted cycle cover problem (MRCCP) which is a generalization of the multi-terminal vertex separator problem. This problem consists in, given a simple undirected graph G = (V, E) and a root vertex r of G, deleting a node subset of V \ {r} of a minimum weight so that root r is not contained in any cycle. In the case where r is adjacent to all vertices of V \ {r}, the minimum rooted cycle cover problem is equivalent to the minimum vertex-cover problem. Moreover, the minimum multi-terminal vertex separator problem is a particular case of the MRCC problem. Indeed, if for each vertex v ∈ N (r) we add a terminal t adjacent to v, and by deleting r from G, then we obtain an instance of the minimum multi-terminal vertex separator problem. Any MTV separator in the new graph, intersects all cycles of G containing r.

Our main motivation to introduce the minimum rooted cycle cover problem is that it allows us to give short proofs for some min-max theorems, such results are fundamental in combinatorial optimization and linear programming [START_REF] Schrijver | Theory of linear and integer programming[END_REF]. Jost and Naves gave such results for the minimum multi-terminal vertex separator problem in [START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF] (actually we independently obtained one result, namely Corollary 3.43, that is a consequence of one of their results). Take a graph G and fix distinct vertices s, t. A st-path of G is a subset P ⊆ V of vertices of G which can be ordered into a sequence s = v 0 , v 1 , . . . , v k = t where v i v i+1 is an edge of G. The vertices v 0 , v k are the extremities of P , the other vertices are the internal vertices of P . Two st-paths P, Q are internally vertex-disjoint if P ∩Q = {s, t}. A subset D of vertices of G is a st-vertex cut if neither s nor t belongs to D, and D intersects every st-path. Let r be a vertex of G. A subset C ⊆ V containing r and such that C \ {r} is a path the extremities of which are adjacent with r is called a rooted cycle of (G, r). Two rooted cycles are internally vertex-disjoint if r is their only common

vertex. A rooted-cycle cover of (G, r) is a subset of V ⊆ V \ {r} of non-root vertices so that C ∩ V = ∅ for all rooted cycle C. A rooted-cycle cover is minimum if |V | is minimum. A rooted-cycle packing of (G, r) is a collection C 1 , . . . , C k of rooted cycles so that C i ∩ C j = {r} for all distinct i, j = 1, . . . , k. A rooted-cycle packing is maximum if k is maximum.
Clearly the minimum of the cover is at least the maximum of the packing.

Let us recall two fundamental min-max theorems.

Given a graph, a matching is a subset of pairwise vertex-disjoint edges.

Kőnig's theorem. ([START_REF] König | Graphok és alkalmazásuk a determinánsok és a halmazok elméletére[END_REF]) Let G be a bipartite graph. The minimum size of a vertexcover of G is equal to the maximum size of a matching of G.

Menger's theorem. ([START_REF] Menger | Zur allgemeinen kurventheorie[END_REF]) Let G be a graph and let s and t be two terminals of G. A st-vertex cut of minimum size in G is equal to the maximum number of internally vertex-disjoint paths between s and t.

Packing and covering rooted cycles

The following consequence of Menger's theorem is useful to characterize rooted graphs for which the minimum size of a subset of non-root vertices intersecting all rooted cycles is equal to the maximum number of internally vertex-disjoint rooted cycles.

123

Corollary 3.38 Let G be a graph with a vertex t and a subset S, of at least k vertices, not containing t. If there are k internally vertex-disjoint vt-paths for every v ∈ S, then there are k distinct vertices s 1 , . . . , s k of S, with s i t-paths P i for each i = 1, . . . , k, so that t is the only vertex belonging to all paths P 1 , . . . , P k .

Proof. Add a new vertex s to G and link it to every vertex in S, See Figure 3.12.

Figure 3.12: k disjoint st-paths

We only need to prove that there are k internally vertex-disjoint st-paths. If this is not the case, then, by Menger's theorem, there is a st-vertex cut D of size |D| < k. Let v ∈ S \ D. Clearly v is not adjacent to t. Thus D is a vt-vertex cut. But this is impossible since (again by Menger's theorem) there are k internally vertex-disjoint vt-paths. Let K 4 be the complete graph on four vertices and r one of its vertices. A rooted graph (Ĝ, r) is a subdivision of (K 4 , r) if it is obtained from (K 4 , r) by inserting vertices on the edges. Note that in any such subdivision, the vertex r has degree three. A rooted partial subgraph of (G, r) is a rooted graph (G , r) where G is a partial subgraph of G. Theorem 3. [START_REF] Chopra | Extended formulations for the a-cut problem[END_REF] The minimum size of a subset of non-root vertices intersecting all rooted cycles is equal to the maximum number of internally vertex-disjoint rooted cycles, for all partial rooted subgraphs of (G, r), if and only if no partial rooted subgraph of (G, r) is a subdivision of (K 4 , r).

Proof. (⇒) It suffices to see that, for any subdivision of (K 4 , r), any two rooted cycles must have a non-root vertex in common while any rooted cycle cover needs at least two non-root vertices. (⇐) Let (G, r) be a minimum graph, that is, a graph with a minimum number of edges, such that the minimum rooted cycle cover is strictly greater than the maximum packing of rooted cycles. Minimality implies that G has no vertices of degree < 3. It then follows that the graph G \ {r} obtained from G by removing r has a cycle C with at least three distinct vertices s 1 , s 2 , s 3 (since G is a simple graph). Hence, by Corollary 3.38, it suffices to prove Claim 1 below, since this implies that there are three internally vertex-disjoint s i r-paths which form with C a subdivision of (K 4 , r).

Claim 1. There are three internally vertex-disjoint vr-paths for every vertex v ∈ V \{r}.

Proof.

Assume that the claim is not true, and let v be a vertex for which there is no three internally vertex-disjoint vr-paths. Remark that, for any vertex s nonadjacent to r, the minimality of G implies that no sr-vertex cut is a clique. In particular, any sr-vertex cut has at least two vertices (indeed otherwise v belongs to no rooted cycle). Furthermore, no vertex-cut has only one vertex. We build a graph Ĝ from G as follows:

(a): If v is nonadjacent with r, then (by Menger's theorem) there is a vr-vertex cut with size 2, say D = {u, w}. Let V v be the subset of vertices in the component, containing v, of the graph obtained from G by removing D. We let Ĝ be the graph obtained by removing V and adding the edge e = uw.

(b): If v is adjacent with r, then, in the graph G \ vr (obtained from G by removing the edge vr), there is a vr-vertex cut D = {u}. Let V v be the subset of vertices in the component, containing v, of the graph obtained by removing u from G \ vr . We let Ĝ be the graph obtained by removing V and adding the edge e = ur. Now observe, that if there are ν vertex-disjoint rooted cycles in Ĝ, then there are also ν vertex-disjoint rooted cycles in G. Indeed, if some rooted cycle of Ĝ contains the additional edge e, then e can be replaced by a path of G with all internal vertices in V . Moreover, if there are τ vertices intersecting every rooted cycles of Ĝ, then these τ vertices intersect also every rooted cycles of G. We have a contradiction, since the minimality of G implies τ = ν.

And the proof of the theorem is ended.

Finally, since series-parallel graphs are those with no minor K 4 , one has: Remark 3.40 Given a graph G, the minimum rooted cycle cover equals the maximum rooted cycle packing, for every choice of a root r, if and only if G is series-parallel.

Pseudo-bipartite rooted graphs

Given a graph G = (V, E) and a node r, the closed neighborhood of r is the set N [r] = N (r) ∪ {r}.

Figure 3.14: Pseudo-bipartite rooted graph

A rooted graph is pseudo-bipartite if it is obtained from a bipartite graph (V 1 , V 2 ; E) by creating a root vertex linked to every vertex of V 1 ∪ V 2 , and then, by replacing some original edges uv ∈ E by any graph G uv (on new vertices) with edges between u, or v, and some vertices of G uv . Figure 3.14 illustrates a pseudo-bipartite rooted graph. More precisely:

Definition 1 A rooted graph (G, r) is pseudo-bipartite if (a) The subgraph G[N (r)] induced by the neighbors of r is a bipartite graph G B , (b) There is a bipartition of G B , so that every component of the graph G \ N [r], that
we obtain if we remove the closed neighborhood of r, has at most one neighbor in each side of G B .

Contracting a vertex v is to delete v, and to add edges so that its neighborhood N (v) forms a clique. A rooted minor of (G, r) is a rooted graph (Ĝ, r) obtained from (G, r) by deleting vertices different from r, or by contracting vertices v ∈ V \ N [r] outside the closed neighborhood of the root.

An odd wheel is a graph composed of an odd cycle together with one vertex, called the center of the wheel, to which all the vertices of the odd cycle are linked. A rooted odd wheel is a rooted graph (G, r) so that G is an odd wheel, the center of which is the root r.

Theorem 3.41 A rooted graph (G, r) is pseudo-bipartite if and only if it has no rooted minor which is a rooted odd wheel. To see sufficiency, suppose that no rooted-minor of (G, r) is a rooted odd-wheel. Condition (a) of Definition 1 is indeed satisfied since deleting all vertices but those of an odd cycle in the neighborhood of r leaves a rooted odd wheel. Assume that condition (b) is not satisfied. Let U 1 , . . . , U p be the components of the graph obtained by removing r and all its neighbors. If U i has at least three neighbors x, y, z (in G B), then contracting all the vertices in U i and deleting all vertices but x, y, z (and r) leaves (K 4 , r) which is a rooted odd wheel. It follows that U i has at most two neighbors. Chose a bipartition V 1 , V 2 of G B so that the number of components U 1 , . . . , U p having two neighbors in the same side is minimum. There is a component U i with two neighbors x, y in the same side, say x, y ∈ V 1 (otherwise we are done). Let V x 1 (resp. V x 2) be the set of vertices in V 1 (resp. in V 2) reachable, from x, by a path of G B . Similarly, define V y 1 and V y 2 . If either V x 1 ∩V y 1 = ∅ or V x 2 ∩V y 2 = ∅, then there exists a xy-path P in G B . Yet contracting U i and deleting all vertices but those of P (and r) leaves a rooted odd wheel. It follows that V x 1 , V x 2 , V y 1 , V y 2 are pairwise disjoint, and hence

(V 1 \ V x 1) ∪ V x 2 , (V 2 \ V x 2) ∪ V x 1 is a possible bipartition for G B .
The way the bipartition V 1 , V 2 was chosen implies that there is another component, say U j , with either one neighbor in V x 1 and the other in V y 2 , or one neighbor in V y 1 and the other in V x 2 . Anyway, contracting both U i and U j creates an odd cycle in the neighborhood of r. Now deleting the vertices outside this odd cycle leaves a rooted odd wheel; contradiction.

Given a pseudo-bipartite rooted graph (G, r) with bipartite graph G B = G[N (v)], we let Ĝ be the graph obtained by removing r from (G, r), and then by creating two new vertices s and t, so that s is linked to every vertex of one side of G B , and t is linked similarly to every vertex in the other side of G B .

Remark 3.42 A subset P ⊆ V is a st-path of Ĝ if and only if P \ {s, t} ∪ {r} is a rooted cycle of (G, r).

Since Remark 3.42 holds, Menger's theorem implies that, for pseudo-bipartite rooted graphs, the minimum rooted cycle cover equals the maximum rooted cycle packing.

Observe, moreover, that for any rooted odd wheel with an odd cycle having 2k + 1 vertices, the minimum size of a cover is k + 1 while the maximum packing is k. It follows that Theorem 3.41 implies Corollary 3.43 below, which is also a consequence of a result in [START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF] (namely Lemma 9).

Corollary 3.43 ([95])

The minimum size of a subset of non-root vertices intersecting all rooted cycles is equal to the maximum number of internally vertex-disjoint rooted cycles, for all rooted minor of (G, r), if and only if no rooted minor of (G, r) is a rooted odd wheel.

Observe that, if every vertex is linked to r, then (G, r) is pseudo-bipartite if and only if the graph induced by V \ {r} is bipartite. Hence by Theorem 3.41:

Remark 3.44 Corollary 3.43 contains Kőnig's theorem as particular case.

Note also that for recognizing if (G, r) is pseudo-bipartite or not, it suffices to contract all vertices outside the closed neighborhood of r, to remove r, and to check if the remaining graph is bipartite or not. So one has: Remark 3.45 It can be checked in polynomial time if (G, r) is pseudo-bipartite or not.

Conclusion

In this chapter we have considered the multi-terminal vertex separator problem. We have characterized the MTVS polytope for two classes of graphs the star trees and the clique stars. We have given a linear system for each class of graphs, that is total dual integral. We have studied a composition (decomposition) technique for the multi-terminal vertex separator polytope in graphs that are decomposable by one-node cutsets. As a consequence, we have obtained a procedure to construct this polytope in graphs that are recursively decomposed. We have also studied polytope compositions by merging terminals, and have presented the algorithmic aspect resulting of these compositions. Finally we have introduced the minimum rooted cycle cover problem that is a generalization of the MTVSP. We have used Menger's theorem to provide a characterization of all rooted graphs such that the maximum number of vertex-disjoint rooted cycles equals the minimum size of a subset of non-root vertices intersecting all rooted cycles, for all subgraphs. In this chapter we present three extended linear integer programming formulations for the multi-terminal vertex separator problem. We develop Branch-and-Price algorithms for all these formulations and Branch-and-Cut-and-Price algorithms for two of them. For each formulation we present the pricing problem, the branching scheme and the computation of the dual bound used during the column generation phase. Computational results are reported comparing the performance of the formulations on a set of instances.

This chapter is organized as follows. In Sections 1,2 and 3, we present the three extended linear integer programming formulations for the MTVSP. We give a column generation scheme to solve the linear relaxation, the way to compute the lagrangian bound. We then present the branching scheme used in the Branch-and-Price algorithms. Section 4, is devoted to the Branch-and-Cut-and-Price algorithms and Section 5 to the numerical results obtained from the above algorithms.

Throughout this chapter, we suppose that Hypotheses 2.1-2.5, defined in Chapter 2, are satisfied.

The terminal-set formulation

A terminal-set W ⊆ V ∪ T is a set of vertices containing exactly one terminal and such that the neighbors of W do not contain terminals, i.e.,|W ∩ T | = 1 and N (W) ∩ T = ∅. Let W be the set of all terminal-sets of G. In this subsection we will introduce a formulation for the MTVSP based on the terminal-sets. Indeed, any solution of the MTVSP can be seen as a partition of the vertex set into k + 1 subsets such that k of them are disjoint terminal-sets. Thus, the variables of this formulation are on the terminal-sets. Then, the multi-terminal vertex separator problem reduces to finding k disjoint terminal-sets such that the total of their cardinality is maximum. For W ∈ W, let x W be a 0 -1 variable which takes 1 if W is selected and 0 if not. We notice that these variables are exponential in number. Given a terminal-set W ∈ W, let a W ∈ {0, 1} E and b W ∈ {0, 1} V ∪T be the vectors defined as follows

a W uv = 1 if {u, v} ∩ W = ∅, 0 otherwise. for all uv ∈ E, b W v = 1 if vertex v ∈ W, 0 otherwise. for all v ∈ V ∪ T.
The MTVSP is equivalent to the following integer linear formulation

max W ∈W |W |x W (4.1) W ∈W a W e x W ≤ 1 ∀e ∈ E, (4.2)
W ∈W b W v x W ≤ 1 ∀v ∈ V ∪ T, (4.3)
W ∈W -b W t x W ≤-1 ∀t ∈ T, (4.4)
x W ∈ {0, 1} ∀ W ∈ W.

Let u ∈ R E + , η ∈ R V ∪T +
and λ ∈ R T + be the dual variables associated with inequalities (4.2) -(4.4). The dual of the linear relaxation of (4.1)-(4.5), denoted by DLMP, is defined as follows

min e∈E u e + v∈V ∪T η v - t∈T λ t e∈E a W e u e + v∈V ∪T η v b W v - t∈T λ t b W t ≥ |W | ∀ W ∈ W, (4.6
)

u e ≥ 0 ∀e ∈ E, η v ≥ 0 ∀v ∈ V ∪ T, λ t ≥ 0 ∀t ∈ T.
The master problem is initialized with a subset of variables, and then the additional variables necessary to solve its linear relaxation, are generated by separating the associated dual constraints (4.6) given below. This constitutes the pricing problem. DLMP will be used for defining the pricing problem and computing the lagrangian bound.

Pricing problem

Given a dual solution π = (u, η, λ), the pricing problem is equivalent to the separation of the dual constraints (4.6), i.e., it consists in finding a subset W ∈ W such that

e∈E a W e u e + v∈V ∪T η v b W v - t∈T λ t b W t < |W |.
This can be tackled as an optimization problem. It can be modeled as a Binary Linear Program using variable y(v) which models coefficient b W v , i.e., the fact that vertex v belongs or not to W , and variables z(e), which models coefficient a W e , i.e., the fact that at least one vertices of e is in subset W or not, that is Therefore, the pricing problem is equivalent to the following mixed integer linear program P ,

y(v) = 1 if vertex v ∈ W, 0 otherwise. for all v ∈ V ∪ T, z(uv) = 1 if {u, v} ∩ W = ∅, 0
max e∈E -u e z(e) + v∈V (1 -η v)y(v) + t∈T (1 -η t + λ t)y(t) z(uv) ≥ y(u) ∀uv ∈ E, (4.7)
z(uv) ≥ y(v) ∀uv ∈ E, (4.8)
z(uv) ≤ y(u) + y(v) ∀uv ∈ E, (4.9)

z(ut) ≤ 1 -y(t) ∀t ∈ T, ∀t ∈ T \ {t}, ∀ut ∈ E, (4.10)
t∈T

y(t) ≥ 1, (4.11)
z(e) ≥ 0 ∀e ∈ E, (4.12)

y(v) ≥ 0 ∀v ∈ V, (4.13)
y(v) ≤ 1 ∀v ∈ V, (4.14)
y(v) ∈ {0, 1} ∀v ∈ V ∪ T, (4.15)
z(e) ∈ {0, 1} ∀e ∈ E. (4.16)

Inequalities (4.7) -(4.9) link variables z and y. If a terminal t ∈ T is in the solution, inequalities (4.10) ensure that all nodes adjacent to the terminals of T \ {t} are not selected in the solution. Finally, inequalities (4.11) guarantee that at least one terminal is selected.

If the optimal objective value of P is greater than 0, then we add the column corresponding to W , the optimal solution of P , to the restricted master problem (RMP). a terminal-set with a specific terminal t. From Corollary 4.3, this is equivalent to solve P by fixing one variable y(t) to 1 and all other variables y(t), t ∈ T \ {t} to 0. Consider the linear relaxation of P . By fixing the values of y, inequality (4.11) becomes redundant and can then be deleted. Now it is easy to see that the matrix of the remaining linear system is totally unimodular. It follows that the polyhedron given by (4.7) and (4.8) together with (4.10) and (4.12) -(4.14) is integer. Consequently, the pricing problem reduces to solving k linear programs with polynomial size. Which can be done in a polynomial time.

Heuristic algorithm for the pricer

Since P is a mixed integer linear program, its resolution may take time. It would be then interesting to use a heuristic in order to speed up the resolution. In this subsection we propose a heuristic for the pricing problem. The first step of the algorithm consists in selecting a terminal which may be an appropriate terminal for a terminal-set violating (4.6). We have remarked from the numerical tests that terminal t * maximizing (1 -η t + λ t) + tv∈E -u tv gives good results. The second step consists in adding one by one each vertex of V , not adjacent to terminals of T \ {t * }, to W and to check whether the value of W increases or not. If it decreases, we do not add it to W . This heuristic is given in Algorithm 13

-η t + λ t + tv∈E -u tv); W ← W ∪ {t * }; Z W ← 1 -η t * + λ t * + (t * v)∈E -u t * v ; for (v ∈ V \ N (T \ {t * })) do tmp ← Z W + (1 -η v); for (vu ∈ E) do if (u / ∈ W) then tmp ← tmp -u vu ; end end if (tmp > Z W) then Z W = tmp ; W ← W ∪ {v}; end end
Check if inequality (4.6) associated with W is violated by π ; end

The above algorithm runs in O(nm)-time.

Basic columns

The first restricted master problem is associated to a collection of terminal-sets W 1 ⊂ W. It is important to have a good collection W 1 , this can improve the resolution time of the problem. For our algorithm, W 1 contains k terminal-sets of cardinality 1, each consists of only one terminal, See Figure 4.3.(a). Set W 1 also contains k maximal terminal-sets W t 1 , . . . , W t k , with terminals t 1 , . . . , t k of T , respectively. i.e.,

W t i = {t i } ∪ (V \ N (T \ {t i })), See

Column generation strategy

The strategy for finding new columns is to use the heuristic, presented in Algorithm 13, in the beginning of the column generation process. Once the heuristic generates a terminal-set W with non-positive value (that is the value of the objective function is nonpositive), we start using the exact method by solving P to generate columns.

Branching scheme

Consider a restricted master problem associated with W ⊂ W. For two vertices u, v ∈ V ∪T , let W u,v ⊆ W be the set of all terminal-sets in W containing u and v. The branching scheme that we will use is as follows. If for u, v ∈ V ∪ T , 0 < W ∈W u,v

x W < 1, then the branching generates two nodes by imposing either

W ∈W u,v x W = 1, or W ∈W u,v
x W = 0. Lemma 4.5 For any fractional solution, there exists a pair of terminals u, v ∈ V ∪ T such that 0 < W ∈W u,v

x W < 1.

139

Proof. Consider a restricted master problem (RMP) associated with a set of terminalsets W ⊆ W. Suppose that the solution, x, of this RMP is fractional. Consider a terminal-set W ∈ W such that 0 < x W < 1 and |W | is maximum. Since W = ∅, let v ∈ W . We distinguish two cases.

• Case 1: |W | = 1. It then follows that v is a terminal and by (4.3) -(4.4), there exists another terminal-set W ∈ W such that v ∈ W and 0

< x W < 1. As W = W and v ∈ W ∩ W , it follows that |W | > |W |
. This is a contradiction with the fact that |W | is maximum.

• Case 2: |W | ≥ 2. By (4.3), W ∈W b W v x W ≤ 1. If W ∈W b W v x W < 1, then it is clear that for all u ∈ W \{v}, 0 < W ∈W u,v
x W < 1 and the lemma follows.

If

W ∈W b W v x W = 1
, then again the results follows. For otherwise, for all vertex u ∈ W \ {v},

W ∈W u,v
x W = 1 and hence there would exist a column corresponding to a terminal-set W that contains W . This contradicts the fact that |W | is maximum.

A branching scheme is said to be complete, if it can generate any feasible solution.

Corollary 4.6 The branching scheme is complete.

Lagrangian bound

The lagrangian bound is a value that represents the dual bound of the linear relaxation of the master problem (LMP). It is the value of the objective function of DLMP (dual of the LMP).

To compute the lagrangian bound, we need a feasible solution of DLMP. In what follows we will show how to construct a feasible solution of DLMP during the column generation phase and then how to compute the lagrangian bound for our problem. Let π = (u, η, λ) be a dual vector obtained from a restricted master problem. And let Z

The multi-terminal vertex separator problem : Branch-and-Cut-and-Price be the optimal value of the pricer with respect to π.

Remark that for all W ∈ W,

|W | ≤ (e∈E a W e u e + v∈V ∪T η v b W v - t∈T λ t b W t) + Z.
Each terminal-set W ∈ W contains exactly one terminal. It follows that

t∈T b W t = 1. Moreover, for all terminal t ∈ T , b W t is integer. Let η ∈ R V ∪T +
be the vector defined as follows

• η v = η v for all vertex v ∈ V , • η t = η t + Z

The isolating-separator formulation

For a terminal t ∈ T , an isolating-separator S t ⊆ V is a set of vertices that intersects all paths between t and the terminals of T \ {t}. For a terminal t ∈ T , let S t be the set of all isolating-separators in G associated with t. Let S = t∈T S t be the set of all isolating-separators in G. In Figure 4.5, set S t represents an isolating-separator since it intersects all paths (represented by dashed lines) between t and all other terminals. Lemma 4.7 A MTV separator is an isolating-separator that can be associated to any terminal.

Proof. For all t ∈ T , a MTV separator intersects all terminal paths between t and all terminals of T \ {s}, thus it is an isolating-separator of t. Lemma 4.8 A set S ⊆ V is a MTV separator, if and only if, each terminal of T can be associated to an isolating-separator included in S.

Proof. (⇒) Suppose that there is at least one terminal t ∈ T that cannot be associated to any isolating-separator included in S. It follows that S is not an isolatingseparator for t. Thus there exists a terminal path between t and another terminal that does not intersect S. Therefore S is not a MTV separator.

(⇐) Suppose that S is not a MTV separator. It follows that there exists a terminal path P tt between t and t that does not intersect S. Thus, no subset of S intersects P tt . Therefore, no subset of S is an isolating-separator of t. Lemma 4.9 An isolating-separator may be related to several terminals of T .

Proof. Let S ⊂ V be a subset of vertices that intersects all terminal paths between a terminal t 0 ∈ T and all terminals t ∈ T \ {t 0 } and intersects all terminal paths between t 1 ∈ T \ {t 0 } and all terminals of T \ {t 1 }. Clearly, S is an isolating-separator of t 0 and t 1 .

In this subsection we will introduce a formulation for the MTVSP based on the isolating-separators. Indeed, any solution of the MTVSP can be seen as a union of several isolating-separators, each one intersects all terminal paths between one specific terminal and all the other terminals. Then, the multi-terminal vertex separator problem reduces to finding a set of isolating-separators such that the cardinality of their union is minimum. Thus, two families of variables are needed for this formulation, one family is on the isolating-separator and the other one is on the vertices. Given an isolating-separator S ∈ S, let x S be a variable which takes 1 if S is chosen and 0 if not. And for v ∈ V , let y v be a variable such that y(v) takes 1 if v belongs to at least one selected isolating-separator and 0 if not. We notice that the variables x are exponential in number.

Given a isolating-separator S ∈ S, let a S ∈ {0, 1} V ×T , a S ∈ {0, 1} V and b S ∈ {0, 1} T be the vectors defined as follows

a S v,t = 1 if v belongs to S and S ∈ S t , 0 otherwise. for all v ∈ V, t ∈ T, a S v = 1 if v belongs to S, 0 otherwise. for all v ∈ V, b S t = 1 if S ∈ S t , 0 otherwise. for all t ∈ T.
The MTVSP is equivalent to the following integer linear program min y(V) (4.17)

y(v) - S∈S a S v,t x S ≥ 0 ∀t ∈ T, ∀v ∈ V, (4.18)
-y(v)

+ S∈S a S v x S ≥ 0 ∀v ∈ V, (4.19)
S∈S t b S t x S = 1 ∀t ∈ T, (4.20)
x S ≥ 0 ∀ S ∈ S, (4.21)

y(v) ∈ {0, 1} ∀ v ∈ V. (4.22)
Inequalities (4.18) ensure that a vertex belonging to a selected isolating-separator, belongs also to the separator. Inequalities (4.19) ensure that a vertex belonging to the separator, belongs to at least one isolating-separator. Inequalities (4.20) guarantee that at least one isolating-separator, associated with each terminal, is selected.

u t v -λ v ≤ 1 ∀v ∈ V, v∈V t∈T -a S v,t u t v + v∈V a S v λ v + t∈T b S t η t ≤ 0 ∀S ∈ S, (4.23)
u t v ≥ 0 ∀t ∈ T, v ∈ V, λ v ≥ 0 ∀v ∈ V, η t ∈ R ∀t ∈ T.
The master problem is initialized with a subset of variables, and the additional variables necessary to solve its linear relaxation are generated by separating the associated dual constraints (4.23). This constitutes the pricing problem.

Pricing problem

Given a dual solution π = (u, λ, η), the pricing problem is equivalent to the separation of the dual constraints (4.23), i.e., it consists in finding a subset S ∈ S such that

v∈V t∈T -a S v,t u t v + v∈V a S v λ v + t∈T b S t η t > 0.
Then the pricing problem reduces to generating an isolating-separator S t such that -

v∈V u t v a S vt + v∈V λ v a S v + η t b t is maximum.
If this value is greater than 0, then we add the corresponding column to the RMP. Otherwise, the current solution of the RMP is optimal.

Theorem 4.10 The pricing problem can be solved in polynomial time.

Proof. For a terminal t ∈ T , let G t = (V ∪ {t, t s }, E) be the graph obtained from G by merging all terminals of T \ {t} into one terminal t s . Let c ∈ R V such that c(v) = u t v -λ v for all v ∈ V . To solve the pricing problem, we need to iterate over each terminal t ∈ T and to solve the minimum two-terminal vertex separator problem in graph G t . The latter problem can be solved in polynomial time. Let Z * t be the value of the optimal two-terminal vertex separator in graph G t . The optimal solution for the pricer is the two-terminal separator with maximum value Z * t -η t . It follows that the pricer problem can be solved in polynomial time.

Basic columns

Let us remark that set V represents an isolating-separator for any terminal of T . Thus, V ∈ S t for all t ∈ T . So, for the basic columns we can add a variable associated with set V for each terminal of T . Moreover, any multi-terminal vertex separator is also an isolating-separator for any terminal of T . Thus, for each terminal t ∈ T , we add a variable associated with an isolating-separator S t that is a multi-terminal vertex separator. This is obtained using the improved isolating terminal heuristic (Algorithm 10 presented in Chapter 2).

Column generation strategy

The column generation strategy aims at generating several columns at each iteration of the column generation phase. This may speed up the resolution time. It is based on the fact that an isolating-separator may be related to several terminals of T . Therefore, each time we generate a new column, we check if the associated isolating-separator can also correspond to other terminals. Then, we add several columns by iteration.

Branching scheme

The branching scheme is reduced to the classical branching on y. Then, the branching generates two nodes by imposing either y(v) = 1 or y(v) = 0 for some fractional variable y(v).

Lagrangian bound

Let π = (u, λ, η) be a dual vector obtained from the linear relaxation of a restricted master problem. Let Z be the optimal value of the pricer. Remark that

v∈V t∈T -a S v,t u t v + v∈V a S v λ v + t∈T b S t η t ≤ Z ∀S ∈ S.
We know that Let η ∈ R T + be a vector defines as follows

• η t = η t -Z for all terminal t ∈ T . Since t∈T b S t = 1, it follows that v∈V t∈T -a S v,t u t v + v∈V a S v λ v + t∈T b S t η t ≤ 0 ∀S ∈ S
Consequently, π = (u, λ, η) is a feasible solution for the DLMP and LB = t,t ∈T η t is a lower bound for LMP.

The terminal-pair-separator formulation

A terminal-pair-separator S is a set of vertices whose removal disconnects a pair of terminals. We say that S separates this pair of terminals. For t, t ∈ T , let S t t ⊆ S be the set of all terminal-pair-separators of G that separate t and t . Let S = t,t ∈T S t t be the set of all terminal-pair-separators of G. We can see that S is a terminal-pair-separator for terminals t 1 and t 3 but not a terminal-pair-separator for terminals t 1 and t 2 . Lemma 4.11 A MTV separator is a terminal-pair-separator that can be associated to any terminal.

Proof. For all t, t ∈ T , a MTV separator intersects all terminal paths between t and t , thus it is a terminal-pair-separator for t and t . Lemma 4.12 A set S ⊆ V is a MTV separator, if and only if, each pair of terminals in T can be associated to a terminal-pair-separator included in S.

Proof. (⇒) Suppose that there is at least one pair of terminals t, t ∈ T that cannot be associated to any terminal-pair-separator included in S. It follows that S is not a terminal-pair-separator for t and t . Thus there exists a terminal path between t and t that does not intersect S. Therefore S is not a MTV separator.

(⇐) Suppose that S is not a MTV separator. It follows that there exists a terminal path P tt between t and t that does not intersect S. Thus, no subset of S intersects P tt . Therefore, no subset of S is a terminal-pair-separator for t and t . Lemma 4.13 A terminal-pair-separator may be related to several terminals of T .

Proof. Let S ⊂ V be a subset of vertices that intersects all terminal paths between a terminal t 0 ∈ T and t 1 ∈ T \ {t 0 } and intersects all terminal paths between t 2 ∈ T \ {t 0 , t 1 } and t 3 ∈ T \ {t 2 }. Clearly, S is a terminal-pair-separator for t 0 and t 1 and also for t 2 and t 3 .

In this subsection we will introduce a formulation for the MTVSP based on the terminal-pair-separators. Indeed, any MTV separator of G can be seen as a union of several terminal-pair-separators. Then, the multi-terminal vertex separator problem reduces to finding a set of terminal-pair-separators such that the cardinality of their union is minimum. For this formulation we consider two families of variables, one is associated to the terminal-pair-separators and the other is related to the vertices. For S ∈ S, let x S be a variable which takes 1 if S is chosen and 0 if not. And for v ∈ V , let y v be a variable which takes 1 if v is chosen and 0, if not. Note that the variables x are exponential in number.

Given a terminal-pair-separator S ∈ S, let a S ∈ {0, 1} V ×T ×T and b S ∈ {0, 1} T ×T be the vectors defined as follows

a S tt v = 1 if v ∈ S
- S∈S a S tt v x S + y(v) ≥ 0 ∀v ∈ V, ∀t, t ∈ T, (4.25)
µ tt ≥ 0 ∀t, t ∈ T (4.34)
The master problem is initialized with a subset of variables, and then the additional variables necessary to solve its linear relaxation are generated by separating the associated dual constraints (4.30). This constitutes the pricing problem.

Pricing problem

Given a dual solution π = (u, η, µ), the pricing problem consists in finding a subset S ∈ S such that

t,t ∈T (v∈V -a S tt v u v tt + (µ tt -η tt)b S tt) > 0.
The pricing problem reduces to generating a terminal-pair-separator S associated with two terminals t, t ∈ T such that

t,t ∈T v∈V -u v tt a S tt v + (µ tt -η tt)b S tt is maximum.
Theorem 4. [START_REF] Barahona | Compositions of graphs and polyhedra iv: Acyclic spanning subgraphs[END_REF] The pricing problem can be solved in polynomial time.

Proof. For all t, t ∈ T , let c t t : V ∪ (T \ {t, t }) → R such that for all v ∈ V , c t t (v) = u v tt and for all t ∈ T \ {t, t }, c t t (t) = +∞. Solving the pricing problem consists in iterating over each pair of terminals t, t ∈ T , and finding a terminal-pairseparator S of minimum weight in G w.r.t c t t . This is equivalent to finding a minimum cut between t and t . It follows that the pricing problem reduces to solving a polynomial number of maximum flow problems.

Basic columns

It is clear that any multi-terminal vertex separator is also a terminal-pair-separator. Thus, for each pair of terminals t, t ∈ T , we add a variable associated with a multiterminal vertex separator obtained using the improved isolating terminal heuristic (Algorithm 10 presented in Chapter 2). We also use this heuristic to obtain a good primal bound.

Column generation strategy

This column generation strategy is based on the fact that the minimum two-terminal vertex separator problem can be solved in a polynomial time. The idea of this strategy is to iterate over all pairs of terminals t, t ∈ T and to look for the minimum twoterminal vertex separator intersecting all paths between t and t in G w.r.t u tt . We stop when a two-terminal vertex separator S is found with a positive reduced cost, i.e.,

t,t ∈T v∈V -u v tt a S tt v + (µ tt -η tt)b S tt > 0.
We then add the associated column.

We remarked from the numerical tests, that when we iterate over all pairs of terminals, it would be more interesting to start with a pair of terminals t, t ∈ T having a maximum value µ tt -η tt . Each time we add a new column to the restricted master problem, we check if the associated terminal-pair-separator separates other terminals. As a consequence, we may add several columns in the same iteration.

Branching scheme

The branching scheme is reduced to the classical branching on y. Then, the branching generates two nodes by imposing either y(v) = 1 or y(v) = 0 for some fractional variable y(v).

The Lagrangian bound

Let π = (u, η, µ) be a dual vector obtained from the linear relaxation of a restricted master problem. Let Z be the optimal value of the pricer. Hence, w.r.t π

t,t ∈T (v∈V -a S tt v u v tt + (µ tt -η tt)b S tt) ≤ Z ∀S ∈ S.
Let η ∈ R T ×T + be vector such that η tt = η tt + Z for all terminal t, t ∈ T . It follows that

Branch-and-Cut-and-Price

The isolating-separator and the terminal-pair-separator formulations use variable vector y ∈ {0, 1} V such that y(v) = 1 if v belongs to the MTV separator and 0 if not. This vector is not used in the terminal-set formulation. It follows that the valid inequalities presented in Chapter 2 can be added to the isolating-separator and the terminal-pairseparator formulations but not to the terminal-set formulation.

isolating-separator and the terminal-pair-separator formulations use y variables, several valid inequalities presented in Chapter 2 can then be added. Thus, Branch-and-Cutand-Price algorithms is developed for these formulations to solve efficiently the multiterminal vertex separator problem. We use two kinds of instances, the DIMACS graph coloring instances [1] and random graphs generated using boost graph library [3]. The terminals are new nodes added to the graphs. Each terminal is randomly connected to at least 2 vertices and to at most a given deg_T ∈ N vertices. In the Tables below, deg_T is fixed in relation with the size of the graph, i.e., the higher the size of graph is, the higher deg_T is. The edges incident to the terminals are added in such a way that they respect Hypotheses 2.3-2.4. The primal bound is the value associated with any separator of G. We use the improved isolating terminal heuristic to solve the MTVSP for generating a good primal bound. This heuristic is presented in Chapter 2. In the column generation phases, we stop generating variables, either when there is no column to add, or when the lagrangian bound is equal to the objective value.

For the Branch-and-Cut-and-Price algorithms, we add valid inequalities (2.10), (2.20) and (2.18) at the end of each column generation phase, if the linear relaxation value, in a specific node of the branching tree, is not equal to the best primal bound. We perform the separation of all cuts at each iteration. We use the separation algorithms presented in Chapter 2. The Branching tree is managed by our algorithms using a depth first search. All flow problems are solved using Lemon library [2] and the linear programs are solved using Cplex. The numerical experiments were done on an Intel Xeon E312xx machine at 2.39 GHz ×1 with 48GB RAM, running under Linux 64 bits. The maximum CPU run time has been fixed to 4 hours.

In the following Tables, we have the following entries. instances are induced by graphs associated with graphs having up to 500 nodes, and whose the number of terminals is fixed to 6 for graphs with less than 99 nodes and 8 for the others. However, Tables 4.4, 4.6, 4.8 and 4.10 concern the random instances which are induced by graphs having up to 5000 nodes, and whose the number of terminals is fixed to 7, 10 and 15 for graphs with less than 700 nodes, between 800 and 1500 nodes and between 1800 and 5000 nodes, respectively. The values given in bold, represent the instances for which the CPU time is better than the one of the Branchand-Cut algorithm presented in Chapter 2. The symbol "-" in the tables means that the corresponding instance has not been solved in the time limit. We can remark that in some instances, the Gap is different from 0.00 whereas the instance is solved in the root node of the branching tree. This can be explained by the fact that the difference between the value of the linear relaxation and the value given by the heuristic is strictly lower than 1. In this case, the solution given by the heuristic is optimal.

Tables 4.1 and 4.2 give some numerical results obtained by the Branch-and-Price algorithm of the terminal-set formulation. As it appears from the tables, the algorithm could not solve most of the instances in the time limit of 4 hours. Only instances of less than 100 nodes, could be solved and the CPU time is high. We also notice that the number of generated columns is high, more than 1500 in most of the instances and for the instance of 87 nodes it reached 500703. Moreover, we can note that the Branch-and-Price algorithm does not start solving the instances with more than 1500 nodes. This is due to the high number of constraints which is related to the number of edges (more than 442444 edges for the instances with more than 1500 nodes).

Results obtained by the Branch-and-Price algorithm of the isolating-separator formulation are shown in Tables 4.3 and 4.4. Here the algorithm could solve 85% of the DIMACS instances in the time limit and 77% of the instances in less than 6 minutes. Moreover, the algorithm could not solve the instances with more than 800 nodes and 10 terminals. The Gap is around 60% in most of instances. This is may be explained by the fact that the linear relaxation is weak. This can be also seen from the number of nodes in the branching tree which is not less than 21 and which increases with the size of the instance. Despite this, the algorithm could solve 11 instances over 50, in shorter time, comparing with the Branch-and-Cut algorithm presented in Chapter 2. Tables 4.5 and 4.6 concern results obtained by the Branch-and-Cut-and-Price algorithm based on the isolating-separator formulation. As it appears the algorithm could solve 96% of the DIMACS instances in less than 2 minutes and all the random instances in less than 3 hours. The Gap is less than 6% in most of instances, which implies that here the linear relaxation is quite strong. This is also clear from the fact that instances are solved in the root node of the branching tree. Moreover, we note that the algo-rithm solved 14 instances over 50, in shorter time, comparing with the Branch-and-Cut algorithm presented in Chapter 2. Concerning the additional valid inequalities used in the algorithm, as it can be seen, the algorithm has not generated star tree inequalities for most of the instances. However, the terminal tree inequalities, which are present in all the instances, appear useful in the resolution of the problem. Comparing with the Branch-and-Price algorithm of the isolating-separator formulation, we can notice that the added inequalities, in particular the terminal tree inequalities, have much improved the linear relaxation. This also permitted to decrease the number of generated columns which does not exceed 9102 for all the instances. Moreover, the Branch-and-Cut-and-Price algorithm was more efficient than the Branch-and-Price algorithm. Indeed, we can notice that the Branch-and-Price algorithm could not solve neither the DIMACS instances with 120, 138 and 385 nodes nor the random instances with more than 800 nodes, within the limit time. Whereas, the Branch-and-Cut-and-Price algorithm solved all of them. In Tables 4.7 and 4.8 we give the results obtained by the Branch-and-Price algorithm based on the terminal-pair-separator formulation. Here the algorithm was able to solve around 96% of DIMACS instances within the time limit of 4 hours, and around 88% in less than 3 minutes. However, the Gap is high, around 60% for most of the instances. Thus it also appears that the linear relaxation of the terminal-pair-separator formulation is not sufficiently strong. Comparing the algorithm with the Branch-and-Cut algorithm presented in Chapter 2, we can remark that 14 instances over 50 have been solved in shorter time. Tables 4.9 and 4.10 are related to the Branch-and-Cut-and-Price algorithm based on the terminal-pair-separator formulation. As it appears from the tables the algorithm could solve all the DIMACS instances in less than 30 seconds. However, it could not solve the random instances with more than 2300 nodes and 15 terminals, within the time limit. Most of the instances have been solved in the root node, which means that the linear relaxation here is sufficiently strong. It also appears from the tables that the cycle inequalities have not almost played any role in resolution of the problem. Comparing with the terminal tree and the star tree inequalities which have been generated and used for all the instances. Comparing with the Branch-and-Cut algorithm of Chapter 2, we notices that 20 instances over 50 have been solved in less time. And comparing with the Branch-and-Price algorithm of the terminal-pair-separator formulation, it clearly appears that the added inequalities have been efficient and permitted to reduce a lot both the CPU time and the number of generated columns. Indeed, the Branch-and-Price algorithm could not solve neither the DIMACS instances with 500 nodes nor the random instances with 1800, 2000 and 2100 nodes, within the limit time. Whereas, the Branch-and-Cut-and-Price algorithm solved all of them.

The largest DIMACS instance solved by the Branch-and-Price algorithm of the terminal-set, the isolating-separator and the terminal-pair-separator formulations has 96, 256 and 385 nodes, respectively. Moreover, the Branch-and-Price algorithm of the isolating-separator formulation solved a random instance of 700 nodes in 48.41 seconds while the one of the terminal-set formulation solved a random instance of 70 nodes in 3629.78 seconds. We notice that the Branch-and-Cut-and-Price algorithm of the isolating-separator formulation could not solve one DIMACS instance of 500 nodes while it solved all random instances. On the other hand, the Branch-and-Cutand-Price algorithm of the terminal-pair-separator formulation, solved all DIMACS instances while it could not solve the random instances with more than 2300 nodes.

In Table 4.11 we summarize the numerical results of the Branch-and-Cut algorithm related to the natural formulation, presented in Chapter 3, and the Branch-and-Cutand-Price algorithms of the isolating-separator and the terminal-pair-separator formulations. For each instance, the underlined value represents the shortest CPU time among the three algorithms. As it appears from the table, the Branch-and-Cut algorithm solved all instances while the Branch-and-Cut-and-Price algorithm of the terminal-pair-separator formulation could not solve the instances with more than 2300 nodes. Moreover, among the three algorithms, the Branch-and-Cut algorithm was the fastest for solving the problem on 48% of the instances. Whereas, the Branch-and-Cut-and-Price algorithm of the terminal-pair-separator formulation was the fastest on only 39% of them.

Conclusion

In this chapter we have proposed three extended integer programming formulations for the MTVSP. For each of the formulations, we have developed a Branch-and-Price algorithm and presented extensive computational results. And for two of them, we added three families of valid inequalities presented in Chapter 2, to develop Branchand-Cut-and-Price algorithms. For all the formulations, we have shown how to compute the dual bound during the column generation phase and analyzed the complexity of the pricing problem, the branching scheme and the strategy of the column generation. The computational results have permitted to measure the importance of our approaches.

Chapter 5

The variants of the multi-terminal vertex separator problem In this chapter we discuss four variants of the MTVS problem. For each variant, we show that the problem is NP-hard, then we give an integer programming formulation for the problem and describe several valid inequalities.

In this chapter, we suppose that Hypotheses 2.1-2.5, given in Chapter 2, are satisfied. Let R be a vertex cover in H and S a separator in G. Let R S ⊆ U be the set of vertices such that for all u

∈ R S , |S ∩ {v u 1 , v u 2 , v u 3 }| ≥ 2 and let S R ⊆ V 1 ∪ V 2 ∪ V 3
be the set of vertices defined as follows. For each vertex u ∈ U , if u ∈ R then we add the two vertices v u 1 , v u 2 in S R , otherwise we add v u 3 in S R . In Section 2.1 of Chapter 2, we showed that if R is a vertex cover in H of minimum size, then S R is a multiterminal vertex separator in G of minimum size. And, if S is a multi-terminal vertex separator in G of minimum size, then R S is a vertex cover in H of minimum size. Since each non-terminal vertex in G is connected to a terminal, any multi-terminal vertex separator in G is a connected components separator. Consequently, since the vertex cover is NP-hard, the connected components separator problem is also NP-hard.

Formulation

A free connected component W ⊆ V is a subset of vertices such that G[W] is connected and W contains no terminal. For a vertex v ∈ V , a set S v ⊂ V is called an isolating separator of v, if the graph (V \ S v , E) is not connected, and v belongs to a free connected component. Let S v be the set of all minimal isolating separators of v. An isolating separator S v is minimal if it contains no isolating separator of v.

Consider the following system

x(P tt) ≥ 1, ∀P tt ∈ Γ, (5.1)

x(S u) ≤ |S u | -1 + x(u), ∀u ∈ V , ∀S u ∈ S u , (5.2)

x(v) ≤ 1, ∀v ∈ V, (5.3)

x(v) ≥ 0, ∀v ∈ V, (5.4)

x(v) integer. ∀v ∈ V (5.5)

where V = V \ N (T) and Γ is the set of all terminal paths of G .(Recall that a terminal path is a path between two terminals).

Inequalities (5.1) ensure that all terminal paths intersect the vertices of the solution. Inequalities (5.2) guarantee that each component of G, after deleting the vertices of the solution, contains a terminal.

Theorem 5.2 Every connected components separator satisfies inequalities (5.2).

Proof. Let us assume the contrary, that is there exists a connected components separator S, a vertex u ∈ V and an isolating separator S u ∈ S u such that x S (S u) > |S u | -1 + x S (u).

It follows that x S (u) = 0 and x S (S u) = |S u |. Therefore, u / ∈ S and S u ⊆ S. Since S u is an isolating set of u, it follows that u belongs to a free connected component of G \ S u . As S u ⊆ S, then u belongs to a free connected component of G \ S. But this contradicts the fact that S is a connected components separator.

From inequalities (5.1), all solutions of (5.1) -(5.5) are MTV separators. The following theorem shows that these MTV separators are also connected components separators.

Theorem 5.3 Every multi-terminal vertex separator of G satisfying inequalities (5.2) is a connected components separator.

Proof. Suppose there exists a multi-terminal vertex separator S of G satisfying inequalities (5.2) such that S is not a connected components separator of G. It then follows that there exists a vertex u that belongs to a free connected component of

Proof.

Suppose that S v is not a multi-terminal vertex separator of G. It follows that G \ S v has a terminal path P tt between t and t , not intersecting S v . From the definition of S v , all internal vertices of P tt are included in P v . From Hypothesis 2.2 given in Chapter 2, each vertex of V is adjacent to at most one terminal. It follows that P v has an internal vertex adjacent to a terminal, and this contradicts the fact that P v is the shortest path between v and T .

Claim 2. Set S v is a connected components separator of G.

Proof.

From Claim 1 set S v is a multi-terminal vertex separator of G. Clearly G \ S v has k -1 components with exactly one terminal and one components with the path P v . It follows that S v is a connected components separator of G.

From Claim 2 for all v ∈ V , S v is a connected components separator of G. This constitutes a set of n + 1 connected components separators of G. Moreover, their incidence vectors are clearly affinely independent.

Consider a graph G = (V ∪ T, E) and an isolating separator S u of vertex u in G. A free dominating set D ⊆ S u associated with S u is a subset of vertices such that there is edges between D and all free connected components of G \ S u , and an edge between D and a connected component of G \ S u containing a terminal. Let r S u be the size of the minimum free dominating set associated with S u . r S u is called the power of S u . Let W S u be the set of all vertices belonging to free connected components in G\S u . For all v ∈ V , let W v be the free connected component of G\S u containing v.

Consider a vertex u ∈ V and an isolating separator S u ⊆ V of u.

Lemma 5.6 If S u has a power greater than or equal to 2 than for all s ∈ S u , there exists a free connected component W of G \ S u different from W u such that s is not adjacent either to W or to W u .

Proof. Assume the contrary, there exists s ∈ S u such that for all free connected component W of G\S u , s is adjacent to W u and to W . Clearly {s} is a free dominating set of S u . It follows that the power of S u is 1 which contradicts the fact that r S u ≥ 2. Lemma 5.7 If r S u ≥ 2 then the following inequality x(S u) ≤|S u | -2 + x(u) + x(v) is valid for P (G, T), where u and v ∈ V belong to two disjoint free connected components of G \ S u .

Proof. Let us assume the contrary that there exists a connected components separator S of G and an isolating separator S u with r S u ≥ 2 such that x S (S u) ≥|S u | -1 + x S (u) + x S (v)

• If x S (S u) = |S u |, then S u ⊆ S and either u / ∈ S or v / ∈ S. Clearly G \ S has at least one free connected component, contradicting the fact that S is a connected components separator of G.

• If x S (S u) = |S u | -1, then S u \ S = {s} and u, v / ∈ S. Since r S u ≥ 2, by Lemma 5.6 s is not adjacent either to W u or to W v . Hence G \ S u has at least one free connected component, contradicting the fact that S is a connected components separator of G.

Theorem 5.8 Given a vertex u ∈ V and an isolating separator S u of u, inequality (5.2) associated with S u and u defines a facet for P (G, T) if and only if 1-the power of S u is 1, 2-the isolating separator S u is minimal, and 3-no vertex of V \ S u is an isolating separator of u.

Proof. (⇒)

1-If the power of S u is at least 2, then G \ S u has at least two free connected components, say W u and W w containing vertices u and w, respectively. By Lemma 5.7, the following inequality

x(S u) ≤|S u | -2 + x(u) + x(w) is valid for P (G, T). Inequality (5.2) associated with S u and vertex u can then be obtained by summing the above inequality and x(w) ≤ 1. Hence (5.2) cannot define a facet.

The variants of the multi-terminal vertex separator problem 2-If S u is not minimal, then there exists a vertex s ∈ S u such that S = S u \ {s} is an isolating separator of u. Thus, inequality

x(S) ≤|S | -1 + x(u) is valid for P (G, T). Inequality (5.2) associated with S u and vertex u can be obtained from the above inequality and x(s) ≤ 1.

3-If there exists a vertex w ∈ V \ S u that is an isolating separator of u, then we have the following inequality (5.2) associated with w

x(w) ≤x(u).

Moreover, we notice that S u must be an isolating separator of w. Thus, we have the following inequality (5.2) associated with S u and vertex w,

x(S u) ≤|S u | -1 + x(w).

Inequality (5.2) associated with S u and vertex u can be obtained by summing the two above inequalities.

(⇐)

Denote by ax ≥ α inequality (5.2) associated with S u and vertex u. Let bx ≥ β be an inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will show that there exists ρ such that b = ρa.

For v ∈ V \ (S u ∪ W S u), let P v be the shortest path (in terms of number of edges) in G \ (S u ∪ W S u) between v and a terminal in T . This path exists, otherwise v ∈ W S u . Let S Pv = V \ P v . Since P v is the shortest path and no vertex is adjacent to two terminals, it follows that S Pv is a connected components separator of G. Moreover, ax S Pv = α. Hence, bx S Pv = bx S Pw = bx V for every w ∈ P v . Therefore, b w = 0, ∀w ∈ P v , Since v is arbitrary chosen in V \ (S u ∪ W S u), if follows that b w = 0 ∀w ∈ V \ (S u ∪ W S u), Let D be the minimum free dominating set associated with S u . From Condition 1, D = {s}. Let P s v be the shortest path (in terms of number of edges) from v ∈ W S u and s, in G[W v ∪ {s}]. For w ∈ S u , let P w be the path between w ∈ S u and a terminal

The multi-terminal connected separator problem

In this section we discuss a variant of the MTVSP, called the multi-terminal connected separator problem (MTCSP). Given a graph G = (V ∪ T, E) and a weight function ω : V → Z, the MTCS problem consists in finding a subset of vertices S ⊆ V of minimum weight such that G \ S has |T | components (not necessarily connected), each one contains exactly one terminal and G[S] is connected. Set S is called a connected separator.

Theorem 5.10 The MTCSP is NP-hard.

Proof. This proof is based on a polynomial reduction from the node-weighted steiner tree problem, which is known to be NP-hard [START_REF] Demaine | Node-weighted steiner tree and group steiner tree in planar graphs[END_REF]. This problem consists, given a graph G = (V ∪ T, E) and a weight function ω : V → Z, in finding a subset of vertices S ⊆ (V ∪ T) of a minimum weight such that T ⊆ S and G[S] is connected. S is called a node-weighted steiner tree.

Consider a graph H = (V ∪ T , E) and let G = (V ∪ T, E) be the graph obtained from H as follows • For each terminal u ∈ V , add a vertex v u to V of weight w(u).

• For each terminal t ∈ T , add a vertex v t to V of weight 0.

• E = E .

• For t ∈ T , add two terminals t 1 and t 2 to T adjacent to v t .

Proof.

We note that each vertex in G associated with a terminal of H is adjacent to two terminals. It follows that these vertices belong to all connected separators of G. Consider a connected separator S ⊆ V of G and let S ⊆ (V ∪ T) be the set of the vertices in H associated with the vertices of S. Set S contains all terminals of T . Moreover, since G[S] is connected, it follows that H[S] is also connected and contains all terminals of T . Consequently, S is a node-weighted steiner tree in H. Claim 2. Any node-weighted steiner tree in H is a connected separator of G.

Proof. Let S ⊆ (V ∪ T) be a node-weighted steiner tree in H. Let S ⊆ V be the set of the vertices in G associated with the vertices of S . Since H[S] is connected, it follows that G[S] is connected. Moreover, since S contains all terminals of T , N (T) ⊆ S. Consequently, S is a connected separator of G.

By Claims 1 and 2 looking for a node-weighted steiner tree of minimum weight in H is equivalent to looking for a connected separator of minimum weight of G. Since the node-weighted steiner tree is NP-hard, it follows that the multi-terminal connected separator problem is also NP-hard.

Consider a graph G = (V ∪ T, E). For two vertices u, v ∈ V , a subset S u v ⊆ V is called a disconnecting subset of u and v if there is no path between u and v in G \ S u v . For two non-adjacent vertices u, v ∈ V , let S u v be the set of all disconnecting subsets of u and v.

In the rest of this section we consider the following Hypotheses 5.5.1-For all v ∈ V ∪ T , each component of G \ {v} contains a terminal. Otherwise, the component without terminals can be deleted from the graph.

5.5.2-Graph (V, E) (without terminals) is connected.

5.5.3-For all vertex cut v ∈ V , G \ {v} has exactly two connected components. Otherwise, by Hypothesis 5.5.1, v must belong to the connected separator.

5.5.4-For all vertex cut v ∈ V of G, at least one connected component of G \ {v}, has at most one terminal. Otherwise, by Hypotheses 5.5.1 and 5.5.3, v must belong to the connected separator.

Formulation

In what follows we give a formulation for the MTCS problem. For v ∈ V , let x(v) be a variable which takes 1 if v belongs to the connected separator and 0 if not.

The multi-terminal connected separator problem is equivalent to the following integer linear program min v∈V ω(v)x(v)

x(P tt) ≥ 1 ∀P tt ∈ Γ, (5.7)

x(S) ≥ x(u) + x(v) -1 ∀S ∈ S u v , uv / ∈ E, (5.8)

x(v) ≤ 1 ∀v ∈ V, (5.9)

x(v) ≥ 0 ∀v ∈ V, (5.10)

x(v) integer ∀v ∈ V (5.11)

where Γ is the set of all terminal paths of G (a path between two terminals).

Inequalities (5.7) ensure that all terminal paths are disconnected. Inequalities (5.8) guarantee that the separator is connected.

Theorem 5.11 Inequalities (5.8) can be separated in polynomial time.

Proof. Consider a graph G = (V ∪ T, E), vector x * ∈ [0, 1] V and two non-adjacent vertices u, v ∈ V . Let α u v = x * (u) + x * (v) -1. Inequalities (5.8) associated with u and v can then be written as

x * (S) ≥ α u v ∀S ∈ S u v . Let G v u = (V ∪ T , E) be the graph obtained from G as follows.

• For all w ∈ V \ {u, v}, add a vertex w to V of weight ω(a).

• For all w ∈ T , add a vertex w to V of weight |V |.

• For the two vertices u and v, add two terminals u and v to T .

• For all edge wz ∈ E, add an edge w z to E . Otherwise, v cannot belong to a minimal k-separator. So we can delete it. 5.2.2-There exists an independent set of size k containing T , otherwise there is no solution for the problem. Since the multi-terminal vertex separator problem is NP-hard, it follows, by Claim 1, that the multi-terminal k-separator problem so is.

Formulation

We will introduce here a formulation for the MTkS problem when k > |T |. The following ILP formulation permits to select an independent subset T ⊆ V ∪ T of size k containing T , such that the minimum vertex separator S intersecting all paths between each pair of vertices in T has a minimum weight. The vertices of T \ T are called artificial terminals. We need two vectors of variables x ∈ {0, 1} V and y ∈ {0, 1} V such that for all v ∈ V , x(v) = 1 if vertex v belongs to the k-separator, and 0 otherwise and y(v) = 1 if vertex v is an artificial terminal, and 0 otherwise.

x(P ab) ≥ y(a) + y(b) -1 ∀ possible-terminal path P ab , (5.17)

x(P a) ≥ y(a) ∀ one-terminal path P a , (5.18)

x(P) ≥ 1 ∀ terminal path P, (5. [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF] x(v) ∈ {0, 1} ∀v ∈ V, (5.20) y(v) ∈ {0, 1} ∀v ∈ V \ N (T).

(5.21)

Inequalities (5.13) and (5.14) ensure that exactly k -|T | possible vertices are selected as artificial terminals. Inequalities (5.15)-(5.16) guarantee that two artificial terminals are not adjacent and no artificial terminal belongs to the k-separator. Inequalities (5.17)-(5. [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF] ensure that all paths between each pair of vertices in T intersect the multi-terminal k-separator.

Remark 5.15 When k = |T |, inequalities (5.17) and (5.18) are redundant.

Remark 5. [START_REF] Barahona | Facets of the balanced (acyclic) induced subgraph polytope[END_REF] When |T | = 0, inequalities (5.18) and (5.19) do not exist.

Theorem 5.17 Inequalities (5.17) can be separated in polynomial time. It is clear that each k-separator of G containing v r satisfies inequality (5. [START_REF] Bui | Finding good approximate vertex and edge partitions is np-hard[END_REF]. In what follows we show that all k-separators of G not containing v r satisfy also inequality (5.35). Assume that inequality 5.35 is not valid for P (G, T). It follows that there exists a k-separator S ⊂ V \ {v r } of G such that Hence |S| ≤ k -2 -(|T | -q). It is easy to see that deleting p ∈ N of V (H) \ {v r } from H, induces a graph with at most p + 1 components with at least one terminal. Thus H \ S has at most (k -2 -(|T | -q)) + 1 components with at least one terminal. Since the number of terminals in T \ T (H) is |T | -q, it follows that G \ S has at most (k -1 -(|T | -q)) + |T | -q = k -1 components with at least one terminal, which contradicts the fact that S is a k-separator.

Clique star inequalities

Theorem 5.30 For a clique star Q subgraph of G, the following inequality

x(V (Q)) ≥ k -1 -(|T | -q)
(5.36)

is valid for P (G, T).

Proof. Similar to the proof of Theorem 5.29.

198

The variants of the multi-terminal vertex separator problem

Terminal cycle inequalities

Theorem 5.31 For a terminal cycle J subgraph of G, the following inequality x(J) ≥ k + q -|T | -1 2 (5.37)

is valid for P (G, T).

Proof. Similar to the proof of Theorem 5.29.

Conclusion

In this chapter we have considered four variants of the multi-terminal vertex separator problem. We have shown that each problem is NP-hard, and for each one, we have proposed an integer programming formulation. For the connected components separator and the multi-terminal connected separator problems, we have discussed some facet defining inequalities and for the multi-terminal vertex k-separator problems, we have adapted several inequalities introduced in Chapter 2 and Section 2.3 and proved their validity for the associated polytopes.

Conclusion

In this dissertation, we have studied the multi-terminal vertex separator problem within a polyhedral context. In the first part of the thesis we have proposed two integer programming formulations for the problem, investigated the basic properties of the associated polytope, and derived new classes of valid inequalities. Moreover, we have described necessary and sufficient conditions for these inequalities to define facets.

The have thereafter been used to devise a Branch-and-Cut algorithm for the MTVS problem. This has been implemented to solve DIMACS and random instances. The experiment results show in particular the efficiency of the valid inequalities and the separation procedure used in the algorithm.

Afterwards, we have studied the structure of the multi-terminal vertex separator polytope. We have given a complete description of the MTVS polytope for terminal paths, star trees and clique stars. Moreover, we have shown that the two linear systems given by the star tree and clique star inequalities together with the trivial inequalities are totally dual integral for the star trees and the clique stars, respectively. Then, we have examined the polytope in the graphs decomposable by one node cutsets. We have shown that, if G is a graph that decomposes into G 1 and G 2 , the multi-terminal vertex separator polytope in G can be obtained from two linear systems related to G 1 and G 2 . Moreover, we have proposed three extended formulations for the MTVSP. We have developed Branch-and-Price algorithms for all the formulations and Branch-and-Cutand-Price algorithms for two of them. For each formulation we presented a column generation scheme to solve the linear relaxation, the way to compute the dual bound and the branching scheme. We have also presented extensive computational results, and discussed the performance of each algorithm.

In the last part of the dissertation, we have considered four variants of the multiterminal vertex separator problem. We have shown that each variant is NP-hard, and for each variant we have proposed an integer programming formulation along with some As perspectives, there are different directions in which our future research related to the MTVSP can be conducted.

First, more efficient separation heuristics and more sophisticated preprocessing methods can be developed in order to improve the resolution of the problem. Moreover, it would be interesting to characterize the graphs for which the terminal tree, clique star and terminal cycle inequalities suffice to describe the multi-terminal vertex separator polytope. Indeed, as it appears from the computational results in Chapter 2, using these inequalities, many instances have been solved in the root of the Branch-and-Cut tree. In [START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF], the authors characterize the class of graph for which the system given by the terminal path inequalities and the trivial inequalities is TDI. Since the terminal tree, clique star and terminal cycle inequalities generalize the terminal path inequalities, it would be also interesting to describe graphs for which the system, given by these classes of inequalities, is TDI.

Finally, it would be interesting to investigate some stabilization methods in column generation in order to improve the convergence of our Branch-and-Price and Branchand-Cut-and-Price algorithms. Also comparing different column generation strategies and heuristics to solve the pricing problems would be of interest.

Étant donné un graphe G = (V U T, E), tel que V U T représente l'ensemble des sommets où T est un ensemble de terminaux, et une fonction poids w associée aux sommets non terminaux, le problème du séparateur de poids minimum consiste à partitionner V U T en k + 1 sousensembles {S, V1,..., Vk} tel qu'il n'y a aucune arête entre deux sous-ensembles différents Vi et Vj, chaque Vi contient exactement un terminal et le poids de S est minimum. Dans cette thèse, nous étudions le problème d'un point de vue polyèdral. Nous donnons deux formulations en nombres entiers pour le problème, et pour une de ces formulations, nous étudions le polyèdre associé. Nous présentons plusieurs inégalités valides, et décrivons des conditions de facette. En utilisant ces résultats, nous développons un algorithme de coupes et branchement pour le problème. Nous étudions également le polytope des séparateurs dans les graphes décomposables par sommets d'articulation. Si G est un graphe qui se décompose en G1 et G2, alors nous montrons que le polytope des séparateurs dans G peut être décrit à partir de deux systèmes linéaires liés à G1 et G2. Ceci donne lieu à une technique permettant de caractériser le polytope des séparateurs dans les graphes qui sont récursivement décomposables. Ensuite, nous étudions des formulations étendues pour le problème et proposons des algorithmes de génération de colonnes et branchement ainsi que des algorithmes de génération de colonnes, de coupes et branchement. Pour chaque formulation, nous présentons un algorithme de génération de colonnes, une procedure pour le calcul de la borne duale ainsi qu'une règle de branchement. De plus, nous présentons quatre variantes du problème du séparateur. Nous montrons que celles-ci sont NP-difficiles, et pour chacune d'elles nous donnons une formulation en nombres entiers et présentons certaines classes d'inégalités valides.

Given a graph G = (V U T, E) with V U T the set of vertices, where T is a set of terminals, and a weight function w, associated with the nonterminal nodes, the multi-terminal vertex separator problem consists in partitioning V U T into k + 1 subsets {S, V1,..., Vk} such that there is no edge between two different subsets Vi and Vj, each Vi contains exactly one terminal and the weight of S is minimum. In this thesis, we consider the problem from a polyhedral point of view. We give two integer programming formulations for the problem, for one of them, we investigate the related polyhedron. We describe some valid inequalities and characterize when these inequalities define facets. Using these results, we develop a Branch-and-Cut algorithm for the problem. We also study the multi-terminal vertex separator polytope in the graphs decomposable by one node cutsets. If G is a graph that decomposes into G1 and G2, we show that the multi-terminal vertex separator polytope in G can be described from two linear systems related to G1 and G2. This gives rise to a technique for characterizing the multi-terminal vertex separator polytope in the graphs that are recursively decomposable. Moreover, we propose three extended formulations for the problem and derive Branch-and-Price and Branch-and-Cutand-Price algorithms. For each formulation we present a column generation scheme, the way to compute the dual bound, and the branching scheme. Finally, we discuss four variants of the multi-terminal vertex separator problem. We show that all these variants are NP-hard and for each one we give an integer programming formulation and present some class of valid inequalities.

Contents 1 . 1

 11 Combinatorial optimization 1.2 Computational complexity 1.3 Preliminaries and State-of-the-Art 1.3.1 Elements of polyhedral theory 1.3.2 Cutting plane method . 1.3.3 Branch-and-Cut algorithm . 1.4 Column generation and Branch-and-Price 1.4.1 Column generation procedure 1.4.2 Branch-and-Price algorithm 1.5 Graph theory . 1.5.1 Undirected graphs . 1.5.2 Directed graphs . 1.6 State-of-the-art on the vertex separator problem 1.6.1 Deletion of vertices . 1.6.2 Deletion of edges .

Figure 1 .

 1 Figure 1.2 illustrates the main definitions given is this Section.

Figure 1

 1 Figure 1.2: Valid inequality, facet and extreme points

Figure 1

 1 Figure 1.3: A hyperplane separating x * and P

 we denote by D \ F (resp. D \ W) the graph obtained from D by removing the F arcs (resp. node of W and edges incident to W). If F (resp. W) is reduced to a single arc a (resp. a single vertex v), we write D \ a (resp. D \ v).Let W ⊆ V , ∅ = W = V ,a subset of vertices V . The set of arcs having their initial end in W and their final nodes in V \ W is called outgoing cut and denoted δ + (W). The cardinality of the outgoing cut δ + (W) of a subset W is called outgoing degree of W and denoted d + (W). If u ∈ W and v ∈ V \ W , then the outgoing cut is also called uv-outgoing cut. If W is reduced to a single vertex v, we write respectively δ + (v) and d + (v) instead of δ + ({v}) and d + ({v}). The set of arcs having the final end in W and the initial end in V \ W is called incoming cut and denoted δ -(W). The cardinality of the incoming cut δ -(W) of a subset W is called incoming degree of W and denoted d -(W). If u ∈ W and v ∈ V \ W , then the incoming cut is also known as uv-incoming cut. If W is reduced to a single vertex v, we write respectively δ -(v) and d -(v) instead of δ -({v}) and d -({v}).

Figure 2 . 1 :

 21 Figure 2.1: Graph transformation from the graph H to the graph G.

Figure 2 .

 2 Figure 2.1 illustrates the above graph transformation.

Figure 2 . 2 :

 22 Figure 2.2: Two separators S 0 and S v .

Figure 2 . 3 :

 23 Figure 2.3: Two separators S v and S u w .

 Figure 2.3.(a) represents the set S v . By Condition (a), each terminal path contains v or a vertex from V \ P tt . Thus, S v is a separator of G. Moreover, ax Sv = α. Hence, bx Su = bx Sv for every u, v ∈ P tt . Therefore, b(u) = b(v) = ρ for all u, v ∈ P tt and some scalar ρ ∈ R. For w ∈ V \ P tt , let u ∈ P tt be a vertex adjacent to w. If there is no vertex in P tt adjacent to w, then u is arbitrarily chosen in P tt . Set S u w = S u \ {w}. From Condition (b) we have that S u w is a separator of G. (Figure 2.3.(b) represents the set S uw .) Moreover, the incidence vector of S u w satisfies inequality (2.6) with equality. Hence, bx Su = bx S u w , and thus, b(w) = 0. We then obtain that b(w) = 0 for all w ∈ V \ P tt .Therefore, we have that b = ρa, which ends the proof.

Figure 2

 2 Figure 2.4: A Star tree.

Figure 2

 2 Figure 2.5: A ring Q t and two separators S 1 and S 2 .

 Figure 2.5.(b) and Figure 2.5.(c). Sets S 1 and S 2 are separators in G. Indeed, by Conditions (a) and (b) each terminal path between a terminal in T (H) and a terminal in T , contains a vertex of

Figure 2 . 6 :

 26 Figure 2.6: Two separators S 0 and S w .

Figure 2 . 7 :

 27 Figure 2.7: Clique star of 7 terminals.

Figure 2 . 8 :

 28 Figure 2.8: Star tree with clique branches.

Figure 2 . 9 :

 29 Figure 2.9: Terminal tree of 10 terminals.

Figure 2 . 11 :

 211 Figure 2.11: Extended terminal cycle with β(J) = 2.

Figure 2 . 14 :

 214 Figure 2.14: Deletion of useless components..

Figure 2 .

 2 Figure 2.15 illustrates the graph transformation. All arcs are given a capacity 1. For all u ∈ V \ {v}, arc (u 1 , u 2) has a weight x * u and all other arcs have weight 0.

Figure 2 . 15 :

 215 Figure 2.15: Transformation graph from G to D v

 The multi-terminal vertex separator problem : Polyhedral analysis Kruskal's algorithm. Thus, our algorithm can be implemented in O(mlog(m))-time. The graph in Figure2.16, illustrates the deletion of all non-terminal leaves.

Figure 2 . 16 :

 216 Figure 2.16: Deletion of non-terminal leaves.

Contents 3 . 1

 31 Star trees and Clique stars 79 3.1.1 Polytope characterization . 80 3.1.2 TDI-ness . 87 3.2 Composition of polyhedra by 1-sum 96 3.2.1 Structure properties . 98 3.2.2 Composition of polyhedra . 99 3.2.3 Facet composition . 3.2.4 Algorithmic aspect . 3.3 Composition of polyhedra by terminal-sum 119 3.4 The minimum rooted-cycle cover problem 121 3.4.1 Packing and covering rooted cycles 3.4.2 Pseudo-bipartite rooted graphs 3.5 Conclusion . 128

Figure 3 . 1 :

 31 Figure 3.1: Star tree and clique star

Figure 3 . 2 :

 32 Figure 3.2: Star trees and clique stars

Figure 3 . 3 :

 33 Figure 3.3: Star trees, subgraphs of the star tree in Figure 3.1.(a)

Figure 3 . 4 :

 34 Figure 3.4: Star tree

Figure 3 .

 3 Figure 3.5: A maximal optimal solution structure

 α.(t(H)-1) = β.(t(H) -1)Thus, if α = min{ then α > 0 and β = α(t(H)-1) t(H)-1 .

Algorithm 11 :

 11 exhausted capacity. The above operations are repeated until G becomes a branch. Therefore, we deduce the following algorithm (Algorithm 11) for solving D G . An exact algorithm for solving D G Data: A star tree G = (V ∪ T, E), a vertex capacities vector ω Result: Maximal optimal solution y * begin for (t ∈ T) do ω (P t) = min u∈Pt\{vr} {ω(u)} ;

 Figure 3.7 illustrates graphs G, G 1 and G 2 .

Figure 3

 3 Figure 3.7: Composition (decomposition) of graphs

), (3.19) and inequalities (3.18) associated with the vertices of V i . Let P = min{ ax | xis a solution of A }, and

Figure 3 . 8 :

 38 Figure 3.8: General clique star

Figure 3 . 9 :

 39 Figure 3.9: General terminal cycle

 Figure 3.11: Terminal-sum where q = 3.

Figure 3 . 13 :

 313 Figure 3.13: Rooted graph (K 4 , r) and a subdivision of (K 4 , r)

Figure 3 .

 3 13.(a) displays a rooted graph (K 4 , r) and Figure 3.13.(a) shows a subdivision of (K 4 , r).

Proof.

 Necessity holds since G[N (r)] = G B has no odd cycle and since every edge which appears in G[N (r)] by contracting some vertex outside N [r] necessarily links two vertices in different side of the bipartition of G B .

 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price 4.3.5 The Lagrangian bound . 150 4.4 Branch-and-Cut-and-Price 151 4.4.1 Star tree inequalities . 152 4.4.2 Terminal cycle inequalities 153 4.4.3 Terminal tree inequalities . 153 4.5 Computational Results . 153 4.6 Conclusion . 169

Figure 4 . 1 :

 41 Figure 4.1: Three different subsets

Figure 4 .

 4 Figure 4.1 shows three graphs with different configurations. The terminals are represented by triangles. The subset of vertices in Figure 4.1.(a) is not a terminal-set, since there is one terminal adjacent to at least one vertex of this subset. The subset of vertices in Figure 4.1.(b) is not a terminal-set since it contains no terminal. The subset of vertices in Figure 4.1.(c) represents a terminal-set.

 Inequalities (4.2) permit to select disjoint terminal-sets in the solution, inequalities (4.3) bound the number of terminal-sets to which each vertex belongs. Finally, inequalities (4.4) guarantee that each terminal belongs to a terminal-set.

Figure 4 . 2 :

 42 Figure 4.2: Example of terminal-sets

Figure 4 .

 4 Figure 4.2 displays a multi-terminal vertex separator and seven terminal-sets.

Algorithm 13 :

 13 Heuristic for the pricing problem Data: Graph G = (V ∪ T, E) and π = (u, η, λ) Result: Inequality (4.6) violated by π begin t * ← argmax t∈T (1

Figure 4 .

 4 3.(b).

138

 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Figure 4 .

 4 Figure 4.3: Basic Columns

 for all terminal t ∈ T . It follows that for all W ∈ W |W | ≤ e∈E a S e u e + v∈V ∪T η v b W v -t∈T λ t b W t . Thus, (u, η, λ) is a feasible solution for DLMP and LB = e∈E u e + v∈V ∪T η v -t∈T λ t is a lower bound for LMP.

Figure 4 . 4 : 2 Figure 4 . 4

 44244 Figure 4.4: Example of the lagrangian bound during column generation solving

Figure 4 . 5 :

 45 Figure 4.5: Example of an isolating-separator

Figure 4 . 6 :

 46 Figure 4.6: Example of a solution of the isolating-separator formulation

Figure 4 .

 4 Figure 4.6 illustrates a solution of the MTVSP. The three subsets in the Figure represent selected isolating-separators. The union of the three isolating-separators represents a multi-terminal vertex separator for G. We note that one isolating-separator can be associated to several terminals.

Figure 4 .

 4 Figure 4.7: Example of a terminal-pair-separator

Figure 4 .

 4 Figure 4.7 gives an example of a terminal-pair-separator. We can see that S is a terminal-pair-separator for terminals t 1 and t 3 but not a terminal-pair-separator for terminals t 1 and t 2 .

 tt v u v tt + (µ tt -η tt)b S tt) ≤ 0 ∀S ∈ S Consequently, since t,t ∈T b S tt = 1, (u, η, µ) is a feasible solution for the DLMP, and LB = t,t ∈T µ tt -η tt is a lower bound for LMP.

Figure 4 . 8 :

 48 Figure 4.8: Example of lagrangian bound during column generation solving

Contents 5 . 1

 51 The connected components separator problem 5.1.1 Formulation . 5.1.2 Polyhedral analysis . 5.2 The multi-terminal connected separator problem 5.2.1 Formulation . 5.2.2 Polyhedral analysis . 5.3 The multi-terminal k-separator problem 5.3.1 The multi-terminal k-separator problem, when k > |T | . . . 5.3.2 The multi-terminal k-separator problem, when k < |T | . . . 5.4 Conclusion .

Figure 5

 5 Figure 5.1: Graph transformation from the graph H to the graph G.

Figure 5 .

 5 Figure 5.1 illustrates the above graph transformation.

Figure 5 .

 5 Figure 5.2 illustrates the above graph transformation, such that the graph Figure 5.2.(a) represents the graph H and Figure 5.2.(b) the graph G.

Figure 5

 5 Figure 5.2: Graph transformation

Figure 5 . 3 :

 53 Figure 5.3: Graph transformation (triangles represent the terminals)

Theorem 5. 14

 14 The multi-terminal k-separator problem, when k > |T |, is NP-hard. Proof. We will show that the multi-terminal k-separator problem, when k = |T | + 1 is NP-hard using a polynomial reduction from the multi-terminal vertex separator problem. Given a graph G = (V ∪ T, E), let G be a graph obtained from G by adding one vertex w of degree 0, having a weight |V | max v∈V {ω(v)}. Then we have the following claim. Claim 1. A multi-terminal vertex separator in G is minimum if and only if it is a k-separator of minimum weight in G . Proof. (⇒) Given a MTV separator S in G, let W = {W 1 , . . . , W k } be the set of components of G \ S. Let W = W ∪ {w}. It can be easily seen that S is a k-separator of G and it is optimal. (⇐) Since the weight of w is |V | max v∈V {ω(v)}, w cannot belong to the k-separator of minimum weight in G . Let S be the k-separator of minimum weight in G . It can easily seen that it is a multi-terminal vertex separator in G.

 The multi-terminal k-separator is equivalent to the following integer linear programmin v∈V w(v)x(v) y(V) = k -|T | (5.13) y(V) = 0 ∀v ∈ N (T),(5.14)y(a) + y(b) ≤ 1 ∀{a, b} ⊆ V \ N (T), ∀ab ∈ E,(5.15)y(a) + x(a) ≤ 1 ∀a ∈ V \ N (T),

Figure 5 . 4 :

 54 Figure 5.4: Two examples of solutions, when |T | = 7, |T | = 6 and k = 4

x

 S (V (H) \ {v r }) + (k -1 -(|T | -q))x S (v r) < k -1 -(|T | -q), Since x S (v r) = 0, it follows that x S (V (H) \ {v r }) ≤ k -2 -(|T | -q).

 Contents 2.1 Complexity analysis . 2.2 Formulations .

	2.4.3 Deletion of useless components 52
	2.5 Branch-and-Cut Algorithm 53
	2.5.1 Heuristics and performance guarantee 62
	2.6 Computational Results . 66
	2.7 Conclusion . 76
	2.2.1 Double indices formulation
	2.2.2 Natural formulation .
	2.2.3 Comparing the LP-Relaxations
	2.3 Polyhedral analysis .
	2.3.1 Dimension .
	2.3.2 Path inequalities .
	2.3.3 Star tree inequalities .
	2.3.4 Clique star inequalities .
	2.3.5 Lifting procedure for star tree inequalities
	2.3.6 Terminal tree inequalities .
	2.3.7 Lifted terminal tree inequalities
	2.3.8 Terminal cycle inequalities .
	2.3.9 Extended terminal cycle inequalities
	2.4 Reduction operations .
	2.4.1 Deletion of a subgraph connected to two terminals
	2.4.2 Contraction of a subgraph connected to two vertices

Table 2

 2

	Instances	k (2.1) -(2.3) (2.6) -(2.8) OPT
	DSJR500	10	32	18.5	32
	Games120	10	30.34	18.5	31
	Miles250	15	32.18	27.5	35
	Myciel6	11	38.34	22.5	40
	Myciel7	17	57	31	57
	Queen8_ 12 11	38	21.5	38
	Queen14_ 14 18	65	35	65
	Queen16_ 16 16	59	32	59

.1: Comparing LP-Relaxations value of F 1 and F 2 with the optimal one.

 An inequality (2.6) violated by x * begin for (t ∈ T) do Add a terminal t s to T adjacent to all terminals of T \ {t}; Construct y * ∈ R E from x * ; Find a shortest path P tts , between t and t s , in G w.r.t y * ; Return inequality (2.6) associated with P tts if it is violated by x * ; Delete t s from T ; end end

	The above algorithm discussed for separating inequalities (2.6) runs in O(k(n+m)log(n))-
	time.

 Proof. Let S be the solution given by the disconnecting terminal pairs heuristic of weight ω * . Let S be a separator of minimum weight ω in G. For two different terminals t, t ∈ T , let S

	2.5							63
	of S belongs to at most k 2 different separators S	t t disconnecting pairs of terminals.
	Therefore,						
	ω * ≤	t,t ∈T	ω(S t t) ≤	t,t ∈T	ω t t ≤	k 2	ω
								S t t . This
								t,t ∈T
	heuristic is given in Algorithm 8.						
	t t ;						
	end						
	return S;						
	end						
	Theorem 2.28 The disconnecting terminal pairs heuristic constructs a multi-terminal
	vertex separator whose weight ω * is no more than k(k-1) 2	times the optimal weight.
	t t ⊆ S be a set of vertices having a minimum weight ω t t , intersecting
	all terminal paths between t and t . Clearly, ω(S t t) ≤ ω t t . Moreover, each vertex in
	S can belong to a separator S						

Algorithm 8: Disconnecting terminal pairs heuristic.

Data:

Graph G = (V ∪ T,

E) Result: Vertex separator begin S = ∅; for t, t ∈ T do S t t ← The minimum vertex separator of (V ∪ {t, t }, E); S ← S ∪ S t t for some pair of terminals t, t ∈ T . So, each vertex

 Merge all terminals of T \ {t} into a new terminal t s ; S t ← The minimum vertex separator of (V ∪ {t, t s }, E); end t

	E)
	Result: Vertex separator
	begin
	S = ∅;
	for t ∈ T do

* ← argmax t∈T {ω(S t)}; S = t∈T \{t * } S t ; return S \ S t * ; end

 = {v 0 , v 1 , . . . , v |S| } from the vertex of the smallest degree to the vertex of the largest degree; for (i ∈ {0, . . . , |S|}) do if S \ {v i } is a separator then S ← S \ {v i };

	end
	end
	return S;
	end

E) Result: Vertex separator S ⊆ V begin S = ∅; for t, t ∈ T do S t t ← The minimum vertex separator of (V ∪ {t, t }, E); S ← S ∪ S t t ; end Sort S

Table 2

 2

.2: Results from DIMACS instances.

Table 2

 2

	Instances	n	m	k	Tp St Cs Tt Etc Nodes Gap %	CPU 1	CPU 2
	R_50	50	511	7	48 33 22 31	6	1	0.00	1.24	0.44
	R_70	70	993	7	44 18 14 19	4	1	0.00	0.64	0.78
	R_100	100	1985	7	45 13 13 12	5	1	0.00	1.02	3.07
	R_300	300	17792	7	67	8	7	8	2	1	0.00	2.31	55.67
	R_600	600	70673	7	23 10	9	9	5	1	0.00	4.04	298.02
	R_700	700	96432	7	48	7	6	5	1	1	0.00	3.96	360.79
	R_800	800	125978 10	95 26 23	0	13	1	0.00	20.98	1323.90
	R_900	900	159331 10	96 39 36	1	15	1	0.00	31.31	1959.60
	R_1000	1000	196771 10	86 35 34	0	16	1	0.00	34.35	2395.20
	R_1200	1200	283386 10	92 26 24	0	9	1	0.00	41.01	4595.10
	R_1300	1300	332861 10	47 30 30	0	15	1	0.00	56.91	5142.00
	R_1500	1500	442444 10	99 33 32	0	16	1	0.00	92.64 11735.00
	R_1800	1800	637307 15 110 44 40 40	17	1	0.00	379.95	-
	R_2000	2000	786639 15 108 37 32 35	16	1	0.00	468.78	-
	R_2100	2100	867430 15 214 34 31 28	15	1	0.00	641.02	-
	R_2300	2300 1041158 15 217 29 28 25	16	1	0.00	851.49	-
	R_3000	3000 1770773 15 215 33 30 19	12	1	0.00	1698.90	-
	R_3300	3300 2142370 15 112 38 37 11	18	1	0.00	2129.60	-
	R_3800	3800 2841805 15 217 28 27 26	13	1	0.00	2363.80	-
	R_4200	4200 3472117 15 222 37 35 30	22	1	0.00	3856.30	-
	R_4500	4500 3987339 15 217 41 40 31	15	1	0.00	5248.10	-
	R_4800	4800 4537794 15 218 31 22 31	10	1	0.00	4611.80	-
	R_5000	5000 4922710 15 110 27 26 27	16	1	0.00	4291.40	-

.3: Results from random instances.

Table 2 .

 2 4: Results from random instances with different density.

		n	m k d % Nodes Gap %	CPU 1
	R_1000	1000	90682 10	18	1	0.00	15.18
			196771	39	1	0.00	34.35
			275346	55	1	0.00	84.88
	R_2000	2000 362335 15	18	1	0.00 172.00
			786639	39	1	0.00 468.70
			1100921	55	1	0.00 1183.00
	R_3000	3000 815760 15	18	1	0.00 622.30
			1770773	39	1	0.00 1698.00
			2478823	55	1	0.00 1650.00
	R_4000	4000 1450789 15	18	1	0.00 1010.15
			3150332	39	1	0.00 2502.08
			4410131	55	1	0.00 3198.85
	R_5000	5000 2267316 15	18	1	0.00 1904.00
			4922710	39	1	0.00 4291.00
			6890000	55	1	0.00 5802.00

Table 2

 2

		n	m k Nodes Gap %	CPU 1
	R_1000	1000 196756 7	1	0.00	14.35
			196771 10	1	0.00	34.35
			196787 13	1	0.00 103.00
	R_2000	2000 786625 12	1	0.00 499.90
			786639 15	1	0.00 468.70
			786652 18	1	0.00 990.70
	R_3000	3000 1770758 12	1	0.00 1222.21
			1770773 15	1	0.00 1698.00
			1770787 18	1	0.00 2472.00
	R_4000	4000 3150315 12	1	0.00 2274.11
			3150332 15	1	0.00 2502.08
			3150347 18	1	0.00 4360.06
	R_5000	5000 4922700 12	1	0.00 3367.00
			4922710 15	1	0.00 4291.00
			4922728 18	1	0.00 7919.00

.5: Results from random instances with different number of terminals.

Table 2

 2

		n	m k deg_T Nodes Gap %	CPU 1
	R_1000	1000 196751 10	5	1	0.00	26.93
			196771	10	1	0.00	34.35
			196769	15	1	0.00	43.07
	R_2000	2000 786617 15	5	1	0.00 408.50
			786639	10	1	0.00 468.70
			786638	15	1	0.00 715.70
	R_3000	3000 1770741 15	5	1	0 1446.00
			1770773	10	1	0.00 1698.00
			1770766	15	1	0.00 2650.00
	R_4000	4015 3150301 15	5	1	0.00 1676.69
			3150332	10	1	0.00 2502.08
		4015 3150322	15	1	0.00 3007.54
	R_5000	5000 4922695 15	5	1	0.00 4015.00
			4922710	10	1	0.00 4291.00
			4922714	15	1	0.00 5027.00

.6: Results from random instances with different degree of terminals.

Table 2 .

 2 n m k Tp Nodes Gap % CPU 1

	Myciel5	47	258 6 161	44	35.2	0.06
	Queen8_8	64 1477 6 129	30	15.6	0.04
	Huck	74	624 6 86	16	19.2	0.01
	Jean	80	533 6 139	43	28.1	0.03
	David	87	835 6 154	45	28.5	0.04
	Myciel6	95	778 6 206	80	36.1	0.08
	Queen8_12	96 2762 6 176	56	38.0	0.08
	Queen10_10 100 2967 8 235	67	38.6	0.11
	Games120	120 1307 8 304	338	35.4	0.57
	DSJC125	125	764 8 311	204	39.1	0.31
	Miles250	128	804 8 148	57	28.1	0.05
	Miles500	128 2370 8 365	124	31.8	0.22
	Miles750	128 4256 8 372	148	37.5	0.30
	Miles1000	128 6462 8 327	86	37.5	0.21
	Anna	138 1022 8 354	91	16.6	0.13
	Queen12_12 144 5224 8 282	90	36.0	0.18
	Mulsol.i.2	188 3920 8 341	164	37.5	0.26
	Myciel7	191 2387 8 284	121	38.6	0.21
	Queen14_14 196 8399 8 279	89	41.3	0.24
	Mulsol.i.1	197 3952 8 183	56	38.8	0.11
	Zeroin.i.3	206 3576 8 257	65	35.7	0.12
	Queen16_16 256 12674 8 364	142	39.2	0.42
	School1	385 19129 8 359	198	38.8	0.53
	DSJR500	500 7140 8 697	2735	40.0 26.52
	Table 2.7: Results from DIMACS instances without the valid inequalities.

8: Results from random instances without the valid inequalities.

 .8 are higher than the CPU time in Table2.3. Our inequalities have a great impact for large instances. The size of the branching tree has also been reduced.

	Instances	n	m k Heur_val Opt_val CPU_Heur Heur_Gap %
	Myciel5	47	258 6	17	17	0.00	0.00
	Queen8_8	64 1477 6	16	16	0.01	0.00
	Huck	74	624 6	14	13	0.00	7.14
	Jean	80	533 6	16	16	0.00	0.00
	David	87	835 6	14	14	0.00	0.00
	Myciel6	95	778 6	18	18	0.00	0.00
	Queen8_12	96 2762 6	21	21	0.02	0.00
	Queen10_10 100 2967 8	22	22	0.03	0.00
	Games120	120 1307 8	24	24	0.01	0.00
	DSJC125	125	764 8	23	23	0.01	0.00
	Miles250	128	804 8	16	16	0.01	0.00
	Miles500	128 2370 8	24	22	0.03	8.33
	Miles750	128 4256 8	24	24	0.05	0.00
	Miles1000	128 6462 8	24	24	0.07	0.00
	Anna	138 1022 8	26	21	0.02	19.20
	Queen12_12 144 5224 8	25	25	0.06	0.00
	Mulsol.i.2	188 3920 8	28	28	0.04	0.00
	Myciel7	191 2387 8	22	22	0.03	0.00
	Queen14_14 196 8399 8	23	23	0.10	0.00
	Mulsol.i.1	197 3952 8	18	18	0.04	0.00
	Zeroin.i.3	206 3576 8	21	21	0.04	0.00
	Queen16_16 256 12674 8	28	28	0.15	0.00
	School1	385 19129 8	27	27	0.20	0.00
	DSJR500	500 7140 8	25	25	0.10	0.00
	Table						

 Let y * be a maximal optimal solution of D G , such a solution exists. For each pair of star treesH i , H j ∈ Π, such that y * H i > 0 and y * H j > 0, either H i ⊆ H j or H j ⊆ H i .Proof. Suppose that H i and H j are such that y * H j ≥ y * H i > 0 and no one is included in the other. Let β = t(H ∪ i,j

	3.1		89
	2)	y H <	y * H .
	H∈Πs	H∈Πs	
	Lemma 3.6	

 Claim 1. If there exists a star tree H ∈ Π, such that y * H > 0, and

		k
		y * H < w v ,
		l=t(H) H∈Π l
	for all v ∈ V (H), then y * H = 0 for each star tree H ∈ Π with t(H) < t(H).
	Proof. Let us assume the contrary. Suppose there exists a star tree H ∈ Π, such
	k	
	that y * H > 0, and	y
	l=t(H) H∈Π l	

* H < w v , for all v ∈ V (H), and that there exists a star tree H ∈ Π with t(H) < t(H), such that y * H > 0. Assume that t(H) is maximum (for all H ∈ Π with t(H) ∈ {t(H) + 1, . . . , t(H) -1}, y * H = 0).

 Let us assume the contrary, that is {w i , u} ⊆ S i and x S i satisfies an inequality (3.14) with equality. Let S

[START_REF] Barahona | Compositions of graphs and polyhedra ii[END_REF]

Consider a separator S i for graph G i . If x S i satisfies an inequality (3.14) with equality, then |S i ∩ {w i , u}| ≤ 1.

Proof. i = S i \ {w i }. It is clear that S i is a separator for G i . It

then follows that inequality (3.14) is violated by S i .

 with inequalities (3.15), (3.16), (3.17),(3.[START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF]) and x(v) ≤ 1, ∀v ∈ V i , respectively. Let D be the dual of P ,

	102	The multi-terminal vertex separator problem : Composition of Polyhedra
	given by	

 otherwise. for all uv ∈ E.We notice that y represents a terminal-set W . Thus, |W | =

					y(v) and then
					v∈V ∪T
	inequality (4.6) associated with W is equivalent to the following
	z(e)u e +	η v y(v) -	λ t y(t) ≥	y(v),
	e∈E	v∈V ∪T	t∈T	v∈V ∪T
	which can be written as			
	z(e)u e +		η v y(v) -	(λ t -η t)y(t) ≥	y(v),
	e∈E	v∈V	t∈T		v∈V ∪T
	then			
	-z(e)u e +	(1 -η v)y(v) +	(1 -η t + λ t)y(t) ≤ 0.
	e∈E	v∈V		t∈T

 As y is integer, by(4.25), it follows that for all t, t ∈ T and v ∈ S t t , y v = 1.Model (4.24)-(4.29) is the master problem. It has an exponential size, thus we need a column generation procedure to solve its continuous relaxation.

	-y(v) ∈ {0, 1} S∈S b S tt x S ≥ -1 S∈S b S tt x S ≥ 1 x S ≥ 0 ∀S ∈ S. Inequalities (4.25) ensure that each vertex belonging to at least one selected terminal-∀t, t ∈ T, (4.26) ∀t, t ∈ T, (4.27) ∀v ∈ V, (4.28) (4.29) pair-separator, also belongs to the separator. Inequalities (4.25) -(4.26) allow to select exactly one terminal-pair-separator per pair of terminals. Theorem 4.14 For each feasible solution (x, y) of (4.25) -(4.29), y is an incidence vector of a multi-terminal vertex separator. Proof. By (4.26) -(4.27), for each pair of terminals t, t ∈ T , there is at least one S ∈ S t t such that x S > 0. Denote this separator by S t t . It is clear that S = t,t S t t is a + , η ∈ R T ∪T + and µ ∈ R T ∪T + be the dual variables associated with inequalities (4.25) -(4.27). The dual of the linear relaxation of (4.24)-(4.29), denoted by DLMP, is given by max t,t ∈T µ tt -η tt t,t ∈T (v∈V -a S tt v u v tt + (µ tt -η tt)b S tt) ≤ 0 ∀S ∈ S (4.30) t,t ∈T u v tt ≤ 1 ∀v ∈ V (4.31) u v tt ≥ 0 ∀v ∈ V, ∀t, t ∈ T (4.32) multi-terminal vertex separator of G. Let u ∈ R V ×T ×T η tt ≥ 0 ∀t, t ∈ T (4.33)

Table 4 .

 4 3: Results with the Branch-and-Price algorithm of the isolating-separator formulation on DIMACS instances.

	4.5

Table 4 . 4 :

 44 Results with the Branch-and-Price algorithm of the isolating-separator formulation on random instances.

		The multi-terminal vertex separator problem : Branch-and-Cut-and-Price
	Instances	n	m k Cols ST TC TT Opt Heur No Gap %	CPU
	DIMACS	47	258 6	527	0	0	19	17	17	0.44	0.33
	DIMACS	64	1477 6	288	0	0	18	16	16	0.06	0.22
	DIMACS	74	624 6	257	49	0	49	13	14	0.06	0.23
	DIMACS	80	533 6	708	99	0 118	16	16	0.10	1.47
	DIMACS	87	835 6	417	0	0	52	14	14	0.13	0.41
	DIMACS	95	778 6	733	0	2	34	18	18	0.05	1.56
	DIMACS	96	2762 6	484	0	0	26	21	21	0.04	0.84
	DIMACS 100	2967 8	387	0	0	14	22	22	0.04	0.53
	DIMACS 120	1307 8 2687	0	5	43	24	24	0.04	48.29
	DIMACS 125	764 8 1754	0	0	20	23	23	0.04	6.97
	DIMACS 128	804 8	784	8	0	14	16	16	0.06	1.12
	DIMACS 128	2370 8	934	0	0	85	22	24	0.00	3.21
	DIMACS 128	4256 8 1240	0	2	25	24	24	0.03	3.96
	DIMACS 128	6462 8	634	0	1	16	24	24	0.04	1.69
	DIMACS 128 10426 8	568	0	0	21	24	24	0.04	1.60
	DIMACS 138	1022 8 5665 360	0 381	21	26	0.05 125.09
	DIMACS 144	5224 8	723	0	1	24	25	25	0.02	1.56
	DIMACS 188	3920 8	653	0	2	39	28	28	0.03	1.86
	DIMACS 191	2387 8	848	0	0	29	22	22	0.03	1.20
	DIMACS 196	8399 8	362	0	10	19	23	23	0.04	0.84
	DIMACS 197	3952 8	626	0	0	16	18	18	0.05	1.28
	DIMACS 206	3576 8	749	0	0	19	21	21	0.04	2.28
	DIMACS 211	3573 8 1423	0	0	15	20	20	0.09	5.19
	DIMACS 211	4132 8	668	0	0	10	18	18	0.04	1.09
	DIMACS 256 12674 8 1647	0	11	37	28	28	0.03	8.11
	DIMACS 385 19129 8	910	0	4	20	27	27	0.03	5.13
	DIMACS 500	7140 8 9102	0	4	13	-	25	-	-

Table 4 .

 4 5: Results with the Branch-and-Cut-and-Price algorithm of the isolatingseparator formulation on DIMACS instances.

	4.5

Table 4

 4

	.6: Results with the Branch-and-Cut-and-Price algorithm of the isolating-
	separator formulation on random instances.

Table 4 .

 4 7: Results with the Branch-and-Price algorithm of the Terminal-pair-separator formulation on DIMACS instances.

	Instances	n	m k Cols Opt Heur No Gap %	CPU
	Random	50	511 7 290	18	18 27	0.64	0.30
	Random	70	993 7 296	19	19 29	0.65	0.34
	Random	100	1985 7 319	18	18 27	0.64	0.55
	Random	300	17792 7 530	19	19 29	0.65	7.08
	Random	600	70673 7 792	19	19 29	0.65	25.46
	Random	700	96432 7 879	18	18 27	0.64	44.17
	Random	800 125978 10 1399	44	44 73	0.73 553.85
	Random	900 159331 10 1696	51	51 87	0.76 2221.57
	Random 1000 196771 10 1560	45	45 71	0.67 1623.42
	Random 1200 283386 10 1916	44	44 73	0.73 2617.03
	Random 1300 332861 10 1922	44	44 73	0.73 3625.82
	Random 1500 442444 10 2133	47	47 79	0.74 5983.95
	Random 1800 637307 15 2335	-	78 73	-	-
	Random 2000 786639 15 2494	-	68 50	-	-
	Random 2100 867411 15 2573	-	82 47	-	-
	Random 2300 1041144 15 2754	-	70 13	-	-
	Random 3000 1770773 15 3392	-	75	1	-	-
	Random 3300 2142370 15 3654	-	80	1	-	-
	Random 3800 2841805 15 4125	-	72	1	-	-
	Random 4200 3472117 15 4510	-	81	1	-	-
	Random 4500 3987339 15 4801	-	81	1	-	-
	Random 4800 4537794 15 5074	-	74	1	-	-
	Random 5000 4922710 15 5253	-	67	1	-	-

Table 4 . 8 :

 48 Results with the Branch-and-Price algorithm of the Terminal-pair-separator formulation on random instances.

		The multi-terminal vertex separator problem : Branch-and-Cut-and-Price
	Instances	n	m k Cols	ST TC TT Opt Heur No Gap % CPU
	DIMACS	47	258 6	778	389	0	7	17	17	0.18 0.76
	DIMACS	64	1477 6	279	12	0	12	16	16	0.00 0.16
	DIMACS	74	624 6	229	65	0	55	13	14	0.04 0.27
	DIMACS	80	533 6	295	80	0	59	16	16	0.09	0.45
	DIMACS	87	835 6	280	63	0	33	14	14	0.04 0.27
	DIMACS	95	778 6	306	30	0	30	18	18	0.00 0.22
	DIMACS	96	2762 6	200	24	0	24	21	21	0.00 0.25
	DIMACS 100	2967 8	320	19	0	22	22	22	0.00 0.53
	DIMACS 120	1307 8	935	555	0 336	24	24	0.01 7.29
	DIMACS 125	764 8 1259	174	0	66	23	23	0.00	3.40
	DIMACS 128	804 8	342	54	0	47	22	24	0.00 0.98
	DIMACS 128	2370 8	358	26	0	26	24	24	0.00 1.50
	DIMACS 128	4256 8	311	17	0	17	24	24	0.00 1.48
	DIMACS 128	6462 8	269	11	0	11	24	24	0.00 1.71
	DIMACS 128 10426 8	234	11	0	11	24	24	0.00	1.21
	DIMACS 138	1022 8 4897 1129	0 255	22	26	0.10 29.95
	DIMACS 144	5224 8	420	12	0	12	25	25	0.00 1.23
	DIMACS 188	3920 8	324	30	0	30	28	28	0.00 0.88
	DIMACS 191	2387 8	388	17	1	17	22	22	0.00 0.73
	DIMACS 196	8399 8	343	17	0	17	23	23	0.00	1.56
	DIMACS 197	3952 8	303	16	0	16	18	18	0.00 0.54
	DIMACS 206	3576 8	316	19	0	19	21	21	0.00	0.65
	DIMACS 211	3573 8	508	12	0	12	20	20	0.00	0.75
	DIMACS 211	4132 8	297	8	0	8	18	18	0.00	0.35
	DIMACS 256 12674 8	520	15	0	15	28	28	0.00	2.98
	DIMACS 385 19129 8	595	13	0	13	27	27	0.00	5.74
	DIMACS 500	7140 8	976	69	1	69	25	25	0.00 8.80

Table 4 . 9 :

 49 Results with the Branch-and-Cut-and-Price algorithm of the Terminal-pairseparator formulation on DIMACS instances.

	4.5

Table 4 .

 4

10: Results with the Branch-and-Cut-and-Price algorithm of the Terminalpair-separator formulation on random instances.

Nous présentons ensuite une formulation à base de séparateurs isolants (un ensemble de sommets déconnectant un terminal de tous les autres terminaux). En effet, toute solution du problème du séparateur de poids minimum peut être vue comme une union de plusieurs séparateurs isolants, chacun intersecte tous les chemins entre un terminal spécifique et tous les autres terminaux. Donc le problème du séparateur de poids minimum se réduit à trouver un ensemble de séparateurs isolants tels que la cardinalité de leur union soit minimum. Pour cette formulation, nous considérons deux familles de variables, une associée aux séparateurs isolants et l'autre aux sommets.La troisième formulation est basée sur les séparateurs de paires de terminaux. En effet, tout séparateur de G est l'union de plusieurs séparateurs de paires de terminaux et le problème du séparateur de poids minimum se réduit à trouver un ensemble de séparateurs de paires de terminaux tels que la cardinalité de leur union soit minimum. Pour cette formulation, nous considérons deux familles de variables, une associée aux séparateurs de paires de terminaux et l'autre aux sommets.Pour chacune de ces formulations, nous développons un algorithme de Branch-and-Price et nous présentons le sous problème associé, la règle de branchement et une méthode pour calculer la borne duale durant la phase de génération de colonnes. De

En outre, par rapport à la description du polytope des séparateurs, il serait intéressant de caractériser les graphes pour lesquels les inégalités de terminal tree, clique star et de terminal cycle suffisent pour décrire le polytope des séparateurs. En effet, comme il ressort des résultats numériques dans le Chapitre 2, en utilisant ces inégalités, de nombreuses instances ont été résolues dans la racine de l'arbre de branchement dans l'algorithme de Branch-and-Cut. De plus, dans[START_REF] Naves | The graphs with the max-mader-flow-min-multiway-cut property[END_REF], les auteurs caractérisent la classe de graphes pour lesquels le système linéaire donné par les inégalités de terminal path et les inégalités triviales est TDI. Étant donné que les inégalités de terminal tree, clique star et terminal cycle généralisent les inégalités de terminal path, il serait également intéressant de décrire les graphes pour lesquels le système, donné par ces classes d'inégalités et les inégalités triviales, est TDI.

Preliminaries and State-of-the-art

The multi-terminal vertex separator problem : Composition of Polyhedra

The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Remerciements

1.6

The multi-terminal vertex separator problem : Polyhedral analysis between u and v. See Figure 2.13 for illustration. We recall that, from Hypothesis 2.5, each vertex of G has a weight 1. . Lemma 2.24 A minimum separator in G is also a minimum separator in G.

Proof. Let S be a minimum separator in G . We first show that S is a separator in G. Suppose that S is not a separator in G. It follows that there exists a terminal path P in G not intersecting S. Since S is a separator in G , it follows that P contains a path P u v ⊆ V (H) ∪ {u, v}, between u and v. Let P = P \ (P u v \ {u, v}). Thus, S does not intersect the terminal path P in G , a contradiction. Now suppose that S is not minimum in G. Let S be a minimum separator in G. If S ∩ V (H) = ∅, then it follows that S is also a separator in G , a contradiction with the fact that S is a minimum separator in G . If S ∩ V (H) = ∅, let S = (S \ V (H)) ∪ {u}. Clearly, S is a separator in G and G . Since w(S) ≤ w(S) and w(S) = w(S), it follows that w(S) ≤ w(S), but this contradicts the fact that S is minimum in G .

Deletion of useless components

Consider two subgraphs H 1 and H 2 of G such that V = V (H 1) ∪ V (H 2), V (H 1) ∩ V (H 2) = {v} and T (H 2) = ∅. See Figure 2.14 for illustration.

2.5

In the following Tables, we have the following entries n : the number of vertices in V . m : the number of edges in E. k

: the number of terminal in T . d % : the density of graphs without terminals. Tp : the number of terminal path inequalities separated.

St

: the number of star tree inequalities separated. Cs : the number of clique star inequalities separated. Tt : the number of terminal tree inequalities separated. Etc : the number of extended terminal cycle inequalities separated.

Nodes

: the number of node in the branching tree. Gap % : the relative error between the best upper and lower bound obtained at the root node of the branching tree. CPU 1

: the CPU time given by the Branch-and-Cut algorithm in second, on the natural formulation. CPU 2

: the CPU time given by Cplex in second, on the double indices formulation. deg_T : the maximum degree of each terminal.

Heur_val

: the objective value of the solution given by the improved isolating terminal heuristic. Opt_val : the optimal objective value. CPU_Heur : the CPU time of the Heuristic, in second. Heur_Gap % : the value of Heur_val-Opt_val Opt_val .

In the first Tables 2.2 and 2.3, we compare the Branch-and-Cut algorithm with Cplex for the compact double indices formulation.

Chapter 4

The multi-terminal vertex separator problem : Branch-and-Cut-and-Price Contents Otherwise, the current solution of the RMP is optimal. Lemma 4.1 Inequalities (4.9) can be deleted.

Proof. Let P be the linear program obtained from P by deleting inequalities (4.9). Consider an optimal solution (y, z) of P . Let (y , z) be the solution obtained from (y, z) by setting z uv = 0 for all uv ∈ E, with y(u) = y(v) = 0. Clearly, (y , z) satisfies the inequalities of P . Moreover, since the weight of z is less or equal to 0, (y , z) is an optimal solution of P . Lemma 4.2 Constraints (4.16) can be deleted.

Proof. Let P be the linear program obtained from P by deleting constraints (4.16). Let (y, z) be an optimal fractional solution of P . Hence, there exists e ∈ E such that z(e) is fractional. As a consequence, inequalities (4.7) -(4.10) associated with e are not tight for (y, z). Let (y , z) be the solution obtained from (y, z) by setting z e = 0 for all fractional variable z(e). Clearly, (y , z) satisfies the inequalities of P . Moreover, since the weight of z is less or equal to 0, (y , z) is an optimal solution of P .

In the following, let P be the linear program obtained from P by deleting inequalities (4.9) and constraints (4.16).

Corollary 4.3 Solving the pricing problem reduces to solving P .

A matrix A is totally unimodular if each sub-determinant of A is 0, +1, or -1. Obviously, each entry of an unimodular matrix is 0, +1, or -1. If A is totally unimodular then for an integer vector b, the polytope given by Ax ≤ b is integral.

Hence, the following holds.

Theorem 4.4

The pricing problem can be solved in polynomial time.

Proof. As a terminal-set contains exactly one terminal, looking for a terminal-set can be decomposed as a sequence of subproblems, each subproblem consists in finding

The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

In this section we present the valid inequalities that we add to the isolating-separator and the terminal-pair-separator formulations in order to cut the non feasible solutions and to strengthen the linear relaxation. We add three classes of valid inequalities (2.10), (2.20) and (2.18), introduced in Chapter 2. This permits to derive a Branchand-Cut-and-Price algorithm. We note that adding valid inequalities on y variables will not affect the pricing problems. The valid inequalities used in the Branch-and-Cut-and-Price algorithms are presented below.

Star tree inequalities

A star tree H = (V (H) ∪ T (H), E(H)) of G is a tree such that the terminals of T (H) are the leaves of H and all the other (non-terminal) nodes, different from the root node, are of degree two. Figure 4.9.(a) displays a star tree with 4 terminals.

) is a star tree subgraph of G with root v r , then the following star tree inequality y(V (H) \ {v r }) + (q -1)y vr ≥ q -1 is valid for the polytopes associated with the isolating-separator and the terminal-pairseparator formulations.

Terminal cycle inequalities

A terminal cycle J = (V (J) ∪ T (J), E(J)) is given by a cycle C and q disjoint paths between a vertex in C and a terminal in T . Figure 4.9.(b) displays a terminal cycle with three terminals. Proposition 4.17 If J = (V (J) ∪ T (J), E(J)) is a terminal cycle subgraph of G, then the following terminal cycle inequality

is valid for the polytopes associated with the isolating-separator and the terminal-pairseparator formulations.

Terminal tree inequalities

is valid for the polytopes associated with the isolating-separator and the terminal-pairseparator formulations.

The separation of the above inequalities is discussed in Section 2.5 of Chapter 2.

Computational Results

Based upon the previous theoretical results, we have developed a Branch-and-Price algorithm for each extended formulation presented in Sections 1, 2 and 3. The variants of the multi-terminal vertex separator problem

The connected components separator problem

In this section we discuss a variant of the MTVSP, called the connected components separator problem (CCSP). Given a graph G = (V ∪ T, E) and a weight function w : V → Z, the CCS problem consists in finding a subset of vertices S ⊆ V of minimum weight such that G \ S has |T | connected components, each one contains exactly one terminal. Set S is called a connected components separator.

Theorem 5.1 The CCSP is NP-hard.

Proof. This proof is based on a polynomial reduction from the vertex cover problem (VCP). Given a graph H = (U, E), the VCP consists in finding a minimum cardinality subset of vertices R ⊆ U such that each edge of E is incident to at least one vertex of R. The VCP is a well-known NP-hard problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

Consider the vertex cover problem on a graph

Thus S is an isolating separator of u. However, as x S (u) = 0, the following inequality (5.2)

x(S) ≤ |S| -1 + x(u), is violated by x S , contradicting the fact that x S satisfies all inequalities (5.2).

From Theorems 5.2 and 5.3, we have the following corollary

Polyhedral analysis

Let P (G, T) be the convex hull of the solutions of (5.1) -(5.5), that is,

In this subsection, we will discuss P (G, T), we will give its dimension, and describe necessary and sufficient conditions for inequalities (5.2) to be facet defining.

We first establish the dimension of P (G, T).

Theorem 5.5 P (G, T) is full dimensional.

Proof. We need to exhibit n + 1 connected components separators such that their incidence vectors are affinely independent. Let S 0 = V . Clearly, G \ S 0 has k components, each one contains one terminal. Thus S 0 is a connected components separator of G. Given a vertex v ∈ V , let P v be the shortest path (in terms of number of edges) between v and T (the shortest path among all shortest paths between v and each terminal of T). Let

It is clear that sets S v and S u are two separators of G. Moreover, ax Sv = ax Su = α. Hence, bx Sv = bx Su for every

For v ∈ W u \ {u}, let P s v be the shortest path between v and s containing u in G[W u ∪ {s}]. By Condition 3, such a path exists. Let S 1 = V \ (P s v ∪ P s) and S 2 = V \ (P s u ∪ P s). Sets S 1 and S 2 are two connected components separators of G.

which ends the proof.

Theorem 5.9 Inequalities (5.2) can be separated in polynomial time.

Proof.

for all u ∈ V . Let G v be the graph obtained from G by merging all terminals into a super terminal t s and considering v as a terminal. Now, we look for a minimum multi-terminal vertex separator S v between t s and v in G v w.r.t y * . Note that this can be done in polynomial time. If inequality (5.6) associated with S v is violated by y * , then we add the inequality. By iterating over all vertices in V , the separation of the isolating separator inequality can be performed in polynomial time.

The variants of the multi-terminal vertex separator problem

Polyhedral analysis

Let P (G, T) be the convex hull of all solutions of the above integer program, that is,

In this subsection, we will discuss P (G, T), we will give its dimension and describe necessary and sufficient conditions for inequalities (5.8) to be facet defining.

We first establish the dimension of P (G, T).

Theorem 5.12 P (G, T) is full dimensional.

Proof. We need to exhibit n+1 connected separators such that their incidence vectors are affinely independent. Let S 0 = V . From Hypothesis 5.5.2, S 0 is a connected separator of G. For each v ∈ V , let {W v 1 , . . . , W v q } be the set of all components of G \ {v}. From Hypothesis 5.5.1, each component contains at least one terminal. Moreover, from Hypotheses 5.5.3 and 5.5.4, q ≤ 2, and at most one component has two terminals. If q = 1, then let S v = V \ {v}. If q = 2, then we suppose that W v 1 contains exactly one terminal and let S v = V \ ({v} ∪ W v 1). Since no vertex of V is connected to two terminals, set S v is a connected separator of G. The sets S 0 and S v for all v ∈ V constitute a set of n + 1 connected separators of G. Moreover, their incidence vectors are clearly affinely independent.

Consider a graph G = (V ∪ T, E), two non-adjacent vertices u, v ∈ V and a disconnecting subset

Theorem 5.13 Inequality (5.8) associated with S u v defines a facet for P (G, T) if and only if 1-S u v does not contain a terminal path (internal vertices of the path between two terminals).

2-S u

v is minimal, i.e., for all w ∈ S u v , (S u v \ {w}) is not a disconnecting subset of u and v.

185

3-No vertex of V \ (S u v ∪ {u, v}) is connected to a terminal t ∈ T and to two vertices of S u v , such that these two vertices are connected to the same terminal t ∈ T \ {t}.

4-For every two connected components W u and

v contains a terminal path, then inequality (5.8) associated with S u v is dominated by the terminal path inequality (5.7) and hence cannot define a facet.

2-If S u

v is not minimal, then there exists a vertex w ∈ S u v such that (S u v \ {w}) is a disconnecting subset of u and v. Thus,

is valid for P (G, T). Inequality (5.8), associated with S u v , can be obtained by summing the above inequality and x(w) ≥ 0.

3-If there exists a vertex z ∈ V \ (S u v ∪ {u, v}) that is adjacent to a terminal t ∈ T and to two vertices a, b ∈ S u v , such that these two vertices are also adjacent to the same terminal t ∈ T \ {t}, then the following inequality

is valid for P (G, T). Indeed, if x(z) = 1, then the inequality is nothing but (5.8). If x(z) = 0, it follows that z does not belong to the connected separator. Since (t, z, a, t) and (t, z, b, t) are two terminal paths, it follows from the terminal path inequalities that x(a) = x(b) = 1. Thus, (5.12) is valid for P (G, T). Inequality (5.8) associated with S u v can be obtained by summing (5.12) greater with 1 ≥ x(z).

Thus for all connected separator of G, at least one vertex of W v must belong to it. Since S u v is a disconnected subset of W u and W v , it follows that if u belongs to the connected separator, then at least one vertex of S u v also belongs to the connected separator. Thus, the following inequality

is valid for P (G, T). Inequality (5.8) associated with S u v can be obtained by summing the above inequality and 1 ≥ x(v).

The variants of the multi-terminal vertex separator problem (⇐)

Assume that all conditions of the theorem are satisfied. From Condition 4, graph G has only two terminals, one in W u and the other in W v .

Denote by ax ≥ α inequality (5.8). Let bx ≥ β be an inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will show that there exists ρ such that b = ρa.

v does not contain any terminal path. Thus, S w is a connected separator of G. Moreover, ax Sw = α. Hence, bx Sw = bx S w for every w, w ∈ S u v . Therefore, b(w) = ρ for all w ∈ S u v and some scalar ρ ∈ R.

From Condition 3, each vertex of W u \{u} adjacent to a terminal of W u , is adjacent to at most one vertex of S u v that is adjacent to a terminal of W v . Thus, for all z ∈ W u \{u}, let S z w = S w \ {z}, such that if z is connected to the terminal of W u , w is the vertex of S u v that is adjacent to z and to the terminal of W v , if it exists. Otherwise, w is any vertex from S u v . Since S w is a connected separator, by Condition 3 it follows that S z w is also a connected separator of G. Moreover, ax S z w = α. Hence, bx Sw = bx S z w for every z ∈ W u \ {u}. Therefore, b(z) = 0 for all z ∈ W u \ {u}.

Along the same line, we can also show that

From Condition 4, W has no terminals. From Hypothesis 2.3, each vertex of W belongs to a terminal path. Thus, there must exist at least two vertices

Along the same line we can also prove that b(z 1) = 0.

5.3

Let S u = W u . From Condition 3, it follows that S u is a connected separator of G. Moreover, ax S u = α. Hence bx S u = bx Sw , and consequently,

This completes the proof.

The multi-terminal k-separator problem

In this section we discuss a variant of the MTVSP, called the multi-terminal k-separator problem (MTkSP). Given a graph G = (V ∪ T, E), an integer k and a weight function ω : V → Z, the problem consists in finding a subset of vertices S ⊆ V of minimum weight such that graph G \ S has k disjoint subsets with

Set S is called k-separator. We notice that if k = |T |, the multi-terminal k-separator problem is nothing but the multi-terminal vertex separator problem. In the two following subsections, we will discuss the two remaining cases of the multi-terminal kseparator problem, namely when k > |T | and k < |T |.

The multi-terminal k-separator problem, when k > |T |

In this section we discuss the multi-terminal k-separator problem when k > |T |. We first define some notation used in the rest of the subsection. A vertex v ∈ V is called a possible terminal if there exists an independent subset T ⊂ V ∪ T of size k such that T ⊆ T and v ∈ T . Clearly, each vertex of N (T) cannot be a possible terminal. The set of internal vertices of a path between a terminal of T and a possible terminal a ∈ V is called a one-terminal path and denoted by P a . The set of internal vertices of a path

The variants of the multi-terminal vertex separator problem Proof. Consider a solution (x, y) such that x ∈ [0, 1] V and y ∈ [0, 1] V . The separation problem consists in finding a possible-terminal path P ab such that x(P ab) < y(a)+y(b)-1. This is equivalent to find, for every non-adjacent vertices a, b ∈ V \ N (T), a shortest path between a and b in G w.r.t x.

Theorem 5.18 Inequalities (5.18) and (5. [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF]) can be separated in polynomial time.

Proof. The separation problem is reduced to a shortest path problem.

Valid inequalities

Consider a graph G = (V ∪ T, E). Let P (G, T) be the convex hull of all solutions of the integer linear system (5.13) -(5. [START_REF] Barnhart | Airline crew scheduling[END_REF]. In what follows, we present some valid inequalities for P (G, T).

Path inequalities

Theorem 5.19 Given a terminal path P tt of G between two terminals t, t ∈ T , the following inequality

is valid for P (G, T).

Proof. Consider a solution (x, y). We distinguish the following cases.

• If y(P tt) = 0, then inequality (5.22) is valid by (5. [START_REF] Barahona | Compositions of graphs and polyhedra iii: Graphs with no w_4 minor[END_REF]).

• If y(P tt) = 1, then let u ∈ P tt such that y(u) = 1. Thus, u is an artificial terminal. Let P t (resp. P t) be the path in P tt between u and t (resp. t). Hence at least one vertex of P t (resp. P t) belongs to the k-separator. It follows that inequality (5.22) is valid.

• If y(P tt) ≥ 2, then there exist y(P tt) -1 internal vertices of P tt that are artificial terminals. It follows that P tt contains exactly two one-terminal paths and y(P tt) -1 possible-terminal paths, with no internal vertex in common. Each of these paths must intersect the k-separator. Thus, one should have y(P tt) + 1 vertices from P tt in the k-separator. Proof. Consider a solution (x, y) such that x ∈ [0, 1] V and y ∈ [0, 1] V . Let z ∈ [0, 1] V be a vector such that for all v ∈ V \ T , z(v) = x(v) -y(v). For all t, t ∈ T , consider the shortest path between t and t in G w.r.t z. And consider the path having the minimum length among these paths. If these length is less than 1, then the corresponding path induces an inequality of type (5.22) violated by (x, y). As the shortest path problem is polynomial, the separation of (5.22) is polynomial.

Star tree inequalities

Let H = (V (H) ∪ T (H), E(H)) be a star tree defined in Chapter 2.

Theorem 5.21 If H is a subgraph of G, the following inequality

is valid for P (G, T).

Proof. Given a solution (x, y). If y(V (H)) = 0, then (x, y) satisfies inequality (5.23). Indeed, x satisfies the star tree inequality (2.10).

Let us assume that y(V (H)) ≥ 1 and let G = (V ∪ T , E) be the graph obtained from G, by replacing each vertex v ∈ V with y(v) = 1 by a terminal. Clearly, if x satisfy the following inequality

then (x, y) satisfies inequality (5. [START_REF] Bateni | A polynomial-time approximation scheme for planar multiway cut[END_REF], where q = q + y(V (H)).

• If y(v r) = 0, then G has one star tree of q terminals, and y(V (H)) terminal paths with no internal vertex in common. Thus from the star tree inequalities (2.10) and the terminal path inequalities (2.6), x satisfies inequality (5.24).

• If y(v r) = 1, it follows that G has q terminal paths, with no internal vertex in common. Consequently, from the terminal path (2.6), x satisfies inequality (5.24).

192

The variants of the multi-terminal vertex separator problem It follows that (x, y) satisfies inequality (5.23). Since (x, y) is arbitrarily chosen, it follows that inequality (5.23) is valid for P (G, T).

Theorem 5.22 Inequalities (5.23) can be separated in polynomial time.

Proof. Consider a solution (x, y) such that x ∈ [0, 1] V and y ∈ [0, 1] V . Let z ∈ [0, 1] V be a vector such that for all v ∈ V ∪ {v r }, z(v) = x(v) -y(v) and z(v r) = x(v r) -1 q-1 y(v r). Thus, separating inequalities (5.23) is equivalent to separating the following inequalities

The algorithm to separate the above inequalities is exactly the one of separating the star tree inequality (2.10), that can be done in a polynomial time (Theorem 2.27 in Chapter 2).

Extended terminal cycle inequalities

Let J = (V (J) ∪ T (J), E(J)) be an extended terminal cycle defined in Chapter 2, such that each vertex of the cycle is of degree 3.

Theorem 5.23 If J is a subgraph of G, the following inequality

is valid for P (G, T).

Proof. The proof is by induction on the value of y(V (J)). It is clear that if y(V (J)) = 0, by Theorem 2.22, inequality (5.25) is valid for P (G, T) . We assume that inequality (5.25) is valid for any value of y(V (J)) < s, and we prove that the inequality is also valid for y(V (J)) = s. Consider a feasible solution (x * , y *) such that y * (V (J)) = s. Let (x, y) be a solution obtained from (x * , y *) by setting y(v) = 0 for a vertex v ∈ V (J) such that y * (v) = 1. Solution (x, y) remains feasible. Since J is a terminal cycle, there must exist a path P v between v and a terminal or an artificial terminal u, such that all the internal vertices are of degree 2 and y * (P v \ {u, v}) = 0. Clearly, x * (P v) ≥ 1. Let (x , y) be a new vector obtained from (x, y) by setting x (P v) = 0. Solution (x , y) is also feasible. Thus by the induction hypothesis,

x (V (J)) ≥ q 2 + y (V (J)).

193

Since x(V (J)) ≥ x (V (J)) + 1, it follows that

As y(V (J)) = y (V (J) \ N (T (J))) = y * (V (J)) -1 and x = x * , then

x * (V (J)) ≥ q 2 + y * (V (J)).

Which ends the proof of the theorem.

Clique inequalities

Theorem 5.24 For all clique K subgraph of G, the following inequality

is valid for P (G, T).

Proof. Since the artificial terminals cannot be adjacent, it follows that in a clique only one vertex can be an artificial terminal.

Clique star inequalities

is valid for P (G, T).

Proof. Similar to the proof of Theorem 5.21.

194

The variants of the multi-terminal vertex separator problem

Terminal tree inequalities

Let R = (V (R) ∪ T (R), E(R)) be a terminal tree defined in Chapter 2.

Theorem 5.26 If R is a subgraph of G, the following inequality

is valid for P (G, T).

Proof. The proof is by induction on q. If q ≤ 3, inequality (5.28) is nothing but a star tree inequality (5.23) associated with R, and then it is valid. Let us suppose that q ≥ 3, and that for each terminal tree with less than q -1 terminals, the associated inequality (5.28) is valid for P (G, T). Since q ≥ 3, there must exist a vertex u belonging to two leaf branches P t and P t . Let us consider the terminal tree R 1 (resp. R 2) obtained from R by removing the vertices of P t \ {u} (resp. P t \ {u}). Thus, R 1 and R 2 have each one q -1 leaves and hence q -1 terminals. By the induction Hypothesis, the terminal tree inequalities (5. q -2 + y(V (R) \ (P t \ {u})), are valid for P (G, T). By summing these inequalities together with the inequality x(P t ∪ P t) ≥ 1 + y(P t ∪ P t) induced by the terminal path P t ∪ P t , inequality x(u) ≥ 0 and inequality y(u) ≥ 0, we obtain the inequality By dividing by 2 and rounding up the right hand side, we obtain (5.28). Proof. Clearly, the sum of the number of artificial terminals and the number of terminals in C, should be less than or equal to |C| 2 .

The multi-terminal k-separator problem, when k < |T |

In this section we discuss the multi-terminal k-separator problem when k < |T |.

Theorem 5. [START_REF] Berger | Complexity and approximability of the k-way vertex cut[END_REF] The multi-terminal k-separator problem, when k < |T |, is NP-hard.

Proof. Using a polynomial reduction from the MTVSP, the proof is similar to the one of Theorem 5.14.

Formulation

The following ILP formulation permits to identify k subsets of terminals and then to find the k-separator intersecting all paths between these subsets. For this formulation we need two vectors of variables x ∈ {0, 1} V and y ∈ {0, 1} T ×K such that for all v ∈ V , x(v) is equal to 1 if vertex v belongs to the k-separator, and 0 otherwise, and for all t ∈ T , y ti is equal to 1 if terminal t belongs to subset V i , and 0 otherwise. x(P tt) ≥ y ti + j∈{1,...,k}\{i} y t j -1, ∀P tt , ∀i ∈ {1, . . . , k}, (5.32)

x(v) ∈ {0, 1}, ∀v ∈ V, (5.33) y ti ∈ {0, 1} ∀t ∈ T, i ∈ {1, . . . , k}.

(5.34)

Inequalities (5.30) ensure that each subset contains at least one terminal. Inequalities (5.31) guarantee that each terminal belongs to exactly one subset. Inequalities (5.32) disconnect each pair of terminals that belong to different subsets.

Valid inequalities

Let P (G, T) be the convex hull of all solutions of (5.30)-(5. [START_REF] Bouchakour | Composition de graphes et le polytope des absorbants. Un algorithme de coupes pour le problème du flot à coûts fixes[END_REF]. In what follows, we present some valid inequalities for P (G, T).

Star tree inequalities

Theorem 5.29 For a star tree H subgraph of G = (V ∪ T, E), with a root vertex v r ∈ V and q terminals, the following inequality

is valid for P (G, T) Proof.

5.3