
HAL Id: tel-01611046
https://theses.hal.science/tel-01611046

Submitted on 5 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The multi-terminal vertex separator problem :
Complexity, Polyhedra and Algorithms

Youcef Magnouche

To cite this version:
Youcef Magnouche. The multi-terminal vertex separator problem : Complexity, Polyhedra and Algo-
rithms. Operations Research [math.OC]. Université Paris sciences et lettres, 2017. English. �NNT :
2017PSLED020�. �tel-01611046�

https://theses.hal.science/tel-01611046
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University

Préparée à l’Université Paris-Dauphine

COMPOSITION DU JURY :

Soutenue le
par

École Doctorale de Dauphine — ED 543
Spécialité

Dirigée par

The multi-terminal vertex separator problem : Complexity,
Polyhedra and Algorithms

26.06.2017
Youcef MAGNOUCHE

A. Ridha MAHJOUB

Université Paris-Dauphine
M. A. Ridha MAHJOUB

Université Paris-Dauphine
M. Denis CORNAZ

M. Mohamed DIDI BIHA
Université de Caen Basse-Normandie

M. Nelson MACULAN
Université fédérale de Rio de Janeiro

Mme Ivana LJUBIC
ESSEC Business School de Paris

M. Sébastien MARTIN
Université de Lorraine

M. Frédéric SEMET
École Centrale de Lille

Informatique

Directeur de thèse

Membre du jury

Rapporteur

Rapporteur

Membre du jury

Membre du jury

Président du jury

Remerciements

Je voudrais en premier lieu remercier Messieurs A. Ridha Mahjoub et Denis Cornaz
de m’avoir permis d’effectuer cette thèse.

Je remercie tout particulièrement Monsieur A. Ridha Mahjoub, Professeur à l’Université
Paris-Dauphine, de m’avoir apporté son soutien, scientifique et moral, tout au long de
ce travail. Il a su me transmettre les connaissances, la rigueur, la motivation et la
passion pour la recherche en général et l’optimisation combinatoire en particulier. Il
m’a également permis de surmonter les moments difficiles grâce à son très grand intérêt
pour mon travail et sa constante disponibilité.

Je tiens aussi à remercier très sincèrement Monsieur Denis Cornaz, maître de con-
férences à l’Université Paris-Dauphine, pour ses idées et sa détermination qui m’ont
permis d’élargir mon domaine de connaissances et le travail réalisé durant cette thèse.
Il m’a également appris, grâce à sa haute exigence scientifique et à sa très grande estime
de mes capacités, à ne jamais renoncer et à donner le meilleur de moi-même.

Je remercie également vivement Monsieur Sébastien Martin, maître de conférences
à l’université de Lorraine, pour toute l’aide qu’il m’a apportée durant cette thèse.
Cette aide se situe bien sûr au niveau scientifique, grâce à nos collaborations et aux
nombreuses discussions que nous avons eues sur mon travail et à ses conseils et idées.

J’ai été très honoré que Monsieur Mohamed Didi Biha, Professeur des universités à
l’Université de Caen Basse-Normandie, ait accepté de rapporter ma thèse. Je remercie
également Monsieur Nelson Maculan, Professeur Émérite à l’Université fédérale de Rio
de Janeiro, pour l’intérêt qu’il a bien voulu porter à ce travail et pour m’avoir fait
l’honneur d’accepter la charge de rapporteur.

Mes remerciements vont également à Madame Ivana Ljubic, Professeur à l’école

ii Remerciements

supérieure des sciences économiques et commerciales, pour avoir accepté d’examiner
mes travaux. Ma gratitude va ensuite à Monsieur Frédéric Semet, Professeur à l’école
Centrale de Lille, d’avoir accepté d’examiner ma thèse.

Je tiens également à remercier très chaleureusement mes différents collègues et amis
du LAMSADE qui ont partagé avec moi ces dernières années. Les discussions ani-
mées et les moments de détente partagés, leur bonne humeur, leurs encouragements
et leur amitié, mais aussi les échanges scientifiques et les travaux effectués ensemble,
ont grandement contribué à mon épanouissement scientifique et personnel lors de ces
années de thèse.

Je tiens à remercier tout particulièrement Khalil, Myriam, Pedro, Thomas, Ian-
Christopher, Ioannis et Linda avec qui j’ai partagé mon bureau C605 de Paris-Dauphine.
Enfin, mes remerciements ne seraient pas complets si je ne remerciais pas ma famille
et mes amis, qui m’ont supporté et appuyé toutes ces années et se sont réellement
intéressés à mon travail et au domaine hautement incompréhensible de l’optimisation
combinatoire en général.

Abstract

This thesis deals with the multi-terminal vertex separator problem. Given a graph
G = (V ∪T,E) with V ∪T the set of vertices, where T is a set of terminals, and a weight
function w : V → Z, associated with nonterminal nodes, the multi-terminal vertex
separator problem consists in partitioning V ∪T into k+1 subsets {S, V1, . . . , Vk} such
that there is no edge between two different subsets Vi and Vj, each Vi contains exactly
one terminal and the weight of S is minimum. In this thesis, we consider the problem
from a polyhedral point of view. We give two integer programming formulations for
the problem, for one of them, we investigate the related polyhedron and discuss its
polyhedral structure. We describe some valid inequalities and characterize when these
inequalities define facets. We also derive separation algorithms for these inequalities.
Using these results, we develop a Branch-and-Cut algorithm for the problem, along
with an extensive computational study is presented.

We also study the multi-terminal vertex separator polytope in the graphs decompos-
able by one node cutsets. If G is a graph that decomposes into G1 and G2, we show
that the multi-terminal vertex separator polytope in G can be described from two lin-
ear systems related to G1 and G2. This gives rise to a technique for characterizing the
multi-terminal vertex separator polytope in the graphs that are recursively decompos-
able. We also obtain a procedure to describe facets for this polytope and show that
the multi-terminal vertex separator problem can also be decomposed. Applications of
this technique are also discussed.

Moreover, we propose three extended formulations for the problem and derive Branch-
and-Price and Branch-and-Cut-and-Price algorithms. For each formulation we present
a column generation scheme to solve the linear relaxation, the way to compute the dual
bound and the branching scheme. We present computational results and discuss the
performance of each algorithm.

Further, we discuss four variants of the multi-terminal vertex separator problem. We

iv Abstract

show that all these variants are NP-hard, we give an integer programming formulation
and present some valid inequalities.

Key words : Combinatorial optimization, Polytope, Facet, Branch-and-Cut algo-
rithm, Branch-and-Price algorithm, Composition of polyhedra.

Résumé

Dans ce manuscrit nous considérons le problème du séparateur de poids minimum.
Étant donné un graphe G = (V ∪ T,E), tel que V ∪ T représente l’ensemble des
sommets où T est un ensemble de terminaux, et une fonction de poids w : V → Z,
associée aux sommets non terminaux, le problème du séparateur de poids minimum
consiste à partitionner V ∪ T en k + 1 sous-ensembles {S, V1, . . . , Vk} tel qu’il n’y a
aucune arête entre deux sous-ensembles Vi et Vj, chaque Vi contient exactement un
terminal et le poids de S est minimum. Dans cette thèse, nous étudions le problème
d’un point de vue polyédral. Nous donnons deux formulations en nombres entiers pour
le problème, et pour une de ces formulations, nous étudions le polyèdre associé. Nous
présentons plusieurs inégalités valides, et décrivons leurs conditions de facette. Nous
présentons également des algorithmes de séparation pour ces inégalités. En utilisant
ces résultats, nous développons un algorithme de génération de coupes et branchement
pour le problème, et présentons une analyse approfondie des résultats numériques.

Nous étudions également le polytope des séparateurs dans les graphes décomposables
par sommets d’articulation. Si G est un graphe qui se décompose en G1 et G2, alors
nous montrons que le polytope des séparateurs dans G peut être décrit à partir des
deux systèmes linéaires liés à G1 et G2. Ceci donne lieu à une technique permettant
de caractériser le polytope des séparateurs dans les classes de graphes qui sont récur-
sivement décomposables. Nous obtenons également une procédure de composition de
facettes dans ce type de graphes et nous montrons que le problème du séparateur peut
être aussi décomposé. Des applications de cette technique sont discutées.

Ensuite, nous étudions des formulations étendues pour le problème et proposons
des algorithmes de génération de colonnes et branchements ainsi que des algorithmes
de génération de colonnes, de coupes et branchement. Pour chaque formulation, nous
présentons un algorithme de génération de colonnes pour résoudre la relaxation linéaire,
une procédure pour le calcul de la borne duale ainsi qu’une règle de branchement. Nous

vi Résumé

comparons ensuite la performance des algorithmes sur un ensemble d’instances à travers
une étude expérimentale extensive.

De plus, nous présentons quatre variantes du problème du séparateur. Nous montrons
que les quatre variantes sont NP-difficiles, nous donnons une formulation en nombres
entiers et présentons certaines inégalités valides.

Mots clés : Optimisation combinatoire, Polytope, Facette, Algorithme de coupes
et branchements, Algorithme de génération de colonnes et branchements, Composition
de polyèdres.

Résumé long

Introduction

L’optimisation combinatoire, et en particulier l’approche polyédral, sont très effi-
caces pour traiter les problèmes combinatoires difficiles. Cette technique, initiée par
Edmonds pour le problème de couplage, consiste à réduire le problème à un programme
linéaire (ou une séquence de programmes linéaires) en donnant une description com-
plète ou partielle du polytope associé par un système d’inégalités linéaires. L’approche
polyédral a été appliquée à de nombreux problèmes d’optimisation combinatoire tels
que le problème du voyageur de commerce, le problème de conception de réseau et le
problème de la coupe maximum.

Dans cette thèse, nous considérons le problème du séparateur de poids minimum
PSPM. Étant donné un graphe G = (V ∪ T,E) avec V ∪ T l’ensemble des sommets,
où T est un ensemble de terminaux, et une fonction de poids w : V → Z, associée aux
nœuds non terminaux, le problème du séparateur de poids minimum consiste à parti-
tionner V ∪ T en k + 1 sous-ensembles {S, V1, . . . , Vk} tel qu’il n’y a pas d’arêtes entre
deux sous-ensembles Vi et Vj, chaque Vi contient exactement un terminal et le poids
de S est minimum. Ce problème a des applications dans différents domaines comme
la conception VLSI, l’algèbre linéaire, les problèmes de connectivité et les algorithmes
parallèles. Il a également des applications dans la sécurité des réseaux. Supposons, par
exemple, que G représente un réseau de télécommunication où V représente un ensem-
ble de routeurs, T un ensemble de clients, et une arête entre deux sommets exprime
la possibilité de transférer des données entre eux. Supposons qu’avec chaque sommet
il soit associé un coût, et nous voulons configurer un système de surveillance sur les
routeurs afin de surveiller toutes les données échangées entre les clients. L’ensemble

viii Résumé long

des routeurs sur lequel le système de surveillance est configuré est un séparateur.

Le problème du séparateur de poids minimum est une variante du problème de k-
separator qui consiste, étant donné un graphe G = (V,E), à partitionner V en k + 1

sous-ensembles {S, V1, . . . , Vk} de telle sorte que |S| soit minimum et qu’il n’y ait au-
cune arête entre deux sous-ensembles Vi et Vj. De nombreuses variantes de ce problème
ont été considérées dans la littérature [14, 25, 26, 32, 42, 48, 95]. Dans cette thèse,
nous traitons le PSPM d’un point de vue polyédral. Nous donnons deux formulations
en nombres entiers pour le problème, pour une de ces formulations, nous étudions le
polyèdre associé et discutons de sa structure polyédral. Nous décrivons certaines in-
égalités valides et étudions les conditions pour lesquelles ces inégalités définissent des
facettes. Nous présentons également des algorithmes de séparation pour ces inégalités.
Nous développons ainsi un algorithme de Branch-and-Cut pour le problème et présen-
tons une étude expérimentale approfondie.

Nous étudions également le polytope des séparateurs dans les graphes décomposables
par des noeuds d’articulation. Si G est un graphe qui se décompose en G1 et G2, nous
montrons que le polytope des séparateurs pour G peut être décrit à partir des deux
systèmes linéaires liés à G1 et G2. Cela donne lieu à une technique de caractérisation
du polytope des séparateurs dans les classes de graphes qui sont récursivement décom-
posables.
Les techniques de composition de polyèdres ont été étudiées dans la littérature pour
plusieurs problèmes d’optimisation combinatoire [17], [18], [19], [15], [71], [89]. Dans
[15], Barahona, Fonlupt et Mahjoub décrivent une technique de composition pour le
polyèdre des sous-graphes acycliques. À l’aide de cette technique, ils donnent une
description complète de ce polyèdre pour les graphes sans mineur K3,3. Dans [17],
Barahona et Mahjoub étudient des compositions similaires pour les polyèdres des sous-
graphes induits équilibrés. Dans [18] et [19], ils considèrent le polyèdre des stables et
donnent une description complète de ce polytope dans les graphes non contractibles à
W4 (la roue sur 5 sommets). Margot [89] étudie une approche générale de la composi-
tion des polyèdres basée sur les techniques de projection.

De plus, nous proposons des formulations étendues pour le problème et développons
des algorithmes de Branch-and-Price et Branch-and-Cut-and-Price. Pour chaque for-
mulation, nous présentons un algorithme de génération de colonnes pour résoudre la
relaxation linéaire, une procédure pour calculer la borne duale et la règle de branche-
ment. Nous présentons des résultats expérimentaux afin d’analyser la performance de

Résumé long ix

chaque algorithme.

Nous présentons également quatre variantes du problème du séparateur de poids
minimum. Nous montrons que toutes ces variantes sont NP-difficiles, nous donnons
une formulation en nombres entiers et présentons certaines inégalités valides.

Ce manuscrit est organisé comme suit. Dans le chapitre 1, nous présentons des no-
tions de base concernant l’optimisation combinatoire. Ce chapitre comprend également
un état de l’art du problème du séparateur de poids minimum. Dans le chapitre 2, nous
présentons un algorithme de Branch-and-Cut. Ceci est basé sur une étude approfondie
du polytope associé. Le chapitre 3 traite la composition des polyèdres pour les graphes
obtenus par la 1-somme. Dans le chapitre 4, nous présentons les algorithmes de Branch-
and-Price et Branch-and-Cut-and-Price. Le chapitre 5 est consacré à l’étude des quatre
variantes du problème du séparateur de poids minimum.

Notions préliminaires et état de l’art

Le premier chapitre est consacré à l’introduction de quelques notions préliminaires
concernant l’optimisation combinatoire, les méthodes exactes en général et l’approche
polyédral en particulier. Nous donnons notamment un aperçu des méthodes des plans
coupants et de génération de colonnes, ainsi que des algorithmes de coupes et branche-
ments, et de génération de colonnes et branchements. Nous donnons alors quelques
définitions basiques sur la théorie des graphes et introduisons la terminologie et les
notations utilisées dans ce manuscrit. Enfin, nous présentons un état de l’art sur le
problème du séparateur de poids minimum.

Le problème du séparateur de poids minimum : Anal-
yse polyédral

Dans ce chapitre, nous considérons le problème du séparateur de poids minimum.
Nous montrons d’abord que le problème est NP-difficile, puis nous donnons deux for-

x Résumé long

mulations en nombres entiers pour le problème. Pour une de ces formulations, nous
étudions le polyèdre associé et discutons sa structure polyédral. Nous décrivons en-
suite plusieurs inégalités valides, comme les inégalités de star tree, terminal tree, clique
star et de terminal cycle. Nous présentons les conditions pour lesquelles ces inégalités
définissent des facettes et nous proposons également des algorithmes de séparation.
Toutes les contraintes valides identifiées dans ce chapitre sont intégrées dans un algo-
rithme de coupes et branchements. Nous avons également proposé deux heuristiques
pour le problème et analysé leur garantie de performance. L’amélioration d’une heuris-
tique s’est avérée très efficace en résolvant plusieurs instances à l’optimum. De plus
nous avons étudié certaines opérations de pré-traitement de graphes, afin de réduire sa
taille et ainsi améliorer le temps de résolution. Par ailleurs, une étude expérimentale
est également proposée dans ce chapitre, permettant d’avoir un aperçu sur l’efficacité,
en pratique, de notre approche.

Le problème du séparateur de poids minimum : Com-
position de polyèdres

Dans ce chapitre, nous nous sommes intéressés à caractériser le polytope des sé-
parateurs dans les graphes qui sont décomposables par des sommets d’articulation.
Lorsque G se décompose en G1 et G2, nous proposons une procédure pour composer
des polyèdre, des facettes et des algorithmes pour le problème du séparateur de poids
minimum. Nous présentons également le problème de couverture de cycles enracinés
de poids minimum qui généralise le problème du séparateur de poids minimum. Nous
utilisons le théorème de Menger pour fournir une caractérisation de tous les graphes
enracinés pour lesquels le nombre maximum de cycles enracinés disjoints est égal à la
taille minimum d’un sous-ensemble de sommets intersectant tous les cycles enracinés.

Ce chapitre est organisé comme suit. Dans la section 1, nous donnons deux systèmes
linéaires décrivant le polytope des séparateurs pour les star trees et les clique stars.
Ensuite, nous montrons que ces deux systèmes linéaires sont totalement duales inté-
grales. Dans la section 2, nous étudions une technique de composition (décomposition)
du polytope des séparateurs, pour les graphes qui sont décomposables par des sommets
d’articulation. Ensuite, nous proposons une procédure de composition de facettes et
d’algorithmes. Dans la section 3, nous proposons une autre procédure de composi-

Résumé long xi

tion pour le polytope des séparateurs, par la fusion des terminaux. La section 4 est
consacrée au problème de couverture de cycles enracinés de poids minimum.

Le problème du séparateur de poids minimum : Branch-
and-Cut-and-Price

Dans ce chapitre nous présentons trois formulations étendues pour le problème du
séparateur de poids minimum. La première formulation est basée sur les ensembles
terminaux (un ensemble de sommets qui déconnecte un terminal de tous les autres
terminaux). En effet, toute solution du problème du séparateur de poids minimum
peut être vue comme une partition de l’ensemble des sommets en k+1 sous-ensembles,
de sorte que k d’entre eux sont des ensembles terminaux disjoints. Ainsi, les variables de
cette formulation sont sur les ensembles terminaux. Donc le problème du séparateur
de poids minimum se réduit à trouver k ensembles terminaux disjoints tels que la
cardinalité de ces sous ensembles soit maximum.

Nous présentons ensuite une formulation à base de séparateurs isolants (un ensemble
de sommets déconnectant un terminal de tous les autres terminaux). En effet, toute
solution du problème du séparateur de poids minimum peut être vue comme une union
de plusieurs séparateurs isolants, chacun intersecte tous les chemins entre un terminal
spécifique et tous les autres terminaux. Donc le problème du séparateur de poids
minimum se réduit à trouver un ensemble de séparateurs isolants tels que la cardinalité
de leur union soit minimum. Pour cette formulation, nous considérons deux familles
de variables, une associée aux séparateurs isolants et l’autre aux sommets.

La troisième formulation est basée sur les séparateurs de paires de terminaux. En
effet, tout séparateur de G est l’union de plusieurs séparateurs de paires de terminaux
et le problème du séparateur de poids minimum se réduit à trouver un ensemble de
séparateurs de paires de terminaux tels que la cardinalité de leur union soit minimum.
Pour cette formulation, nous considérons deux familles de variables, une associée aux
séparateurs de paires de terminaux et l’autre aux sommets.

Pour chacune de ces formulations, nous développons un algorithme de Branch-and-
Price et nous présentons le sous problème associé, la règle de branchement et une
méthode pour calculer la borne duale durant la phase de génération de colonnes. De

xii Résumé long

plus, pour les deux dernières formulations nous développons un algorithme de Branch-
and-Cut-and-Price en utilisant quelques inégalités valides introduites dans le Chapitre
2. Des résultats expérimentaux sont présentés sur un ensemble d’instances afin de
comparer les différents algorithmes.

Les variantes du problème du séparateur de poids min-
imum

Dans ce chapitre nous considérons quatre variantes du problème du séparateur de
poids minimum. Dans la première section, nous considérons le problème du séparateur
des composantes connexes. Étant donné un graphe G = (V ∪ T,E) et une fonction
de poids w : V → Z, le problème du séparateur des composantes connexes consiste à
trouver un sous-ensemble de sommets S ⊆ V de poids minimum tel que G \ S a |T |
composantes connexes, chacune contenant exactement un terminal.

Dans la seconde section nous considérons le problème du séparateur connexe de ter-
minaux. Étant donné un graphe G = (V ∪ T,E) et une fonction de poids w : V → Z,
le problème consiste à trouver un sous-ensemble de sommets S ⊆ V de poids minimum
tel que G \ S a |T | composantes (pas nécessairement connexes), chacune contient ex-
actement un terminal et le graphe induit par S est connexe.

La troisième section est consacrée au problème du k-séparateur de poids minimum.
Étant donné un graphe G = (V ∪ T,E), un nombre entier k et une fonction de poids
w : V → Z, le problème consiste à trouver un sous-ensemble de sommets S ⊆ V de
poids minimum tel que le graphe G \ S a k sous-ensembles disjoints avec au plus un
terminal, si k > |T | et au moins un terminal, si k < |T |.

Pour chaque variante, nous montrons que le problème est NP-difficile, puis nous le
modélisons par un programme linéaire en nombres entiers et nous décrivons plusieurs
inégalités valides.

Résumé long xiii

Conclusion

Dans cette dissertation, nous avons étudié le problème du séparateur de poids min-
imum d’un point de vue polyédral. Dans la première partie de la thèse, nous avons
proposé deux formulations en nombres entiers pour le problème, nous avons étudié
le polyèdre associé et discuté de sa structure polyédral. Nous avons ensuite présenté
plusieurs classes d’inégalités valides et décrit les conditions nécessaires et suffisantes
pour que ces inégalités définissent des facettes. À partir de ces résultats nous avons
développé un algorithme de Branch-and-Cut pour le problème. Ce dernier a été utilisé
afin de résoudre les instances de DIMACS ainsi que des instances aléatoires. Les ex-
périmentations numériques montrent l’efficacité des inégalités valides et les procédures
de séparation utilisées dans cet algorithme.

Ensuite, nous avons étudié la caractérisation du polytope des séparateurs. Nous avons
donné une description complète du polytope pour les terminal paths, les star trees et
les clique stars. En outre, nous avons montré que le système linéaire donné par les iné-
galités des star trees (resp. cliques stars) et les inégalités triviales est totalement duale
intégrale pour les star trees (resp. clique stars). Ensuite, nous avons étudié le polytope
des séparateurs dans les graphes décomposables par des sommets d’articulation. Nous
avons montré que, si G est un graphe qui se décompose en G1 et G2, le polytope des
séparateurs pour G peut être décrit à partir des deux systèmes linéaires liés à G1 et G2.

Nous avons également proposé trois formulations étendues pour le problème du sé-
parateur de poids minimum. Nous avons développé des algorithmes de Branch-and-
Price pour toutes les formulations et des algorithmes de Branch-and-Cut-and-Price
pour deux d’entre elles. Pour chaque formulation, nous avons présenté un algorithme
de génération de colonnes pour résoudre la relaxation linéaire, une procédure pour le
calcul de la borne duale ainsi qu’une règle de branchement. Nous avons présenté des
résultats expérimentaux et discuté la performance de chaque algorithme.

Dans la dernière partie de la thèse, nous avons considéré quatre variantes du prob-
lème du séparateur de poids minimum. Nous avons montré que chaque problème était
NP-difficile, proposé une formulation en nombres entiers et présenté plusieurs inégalités
valides.

xiv Résumé long

Il existe de nombreuses directions de recherche pour poursuivre les travaux de cette
thèse. Nous pourrons proposer plusieurs amélioration pour l’algorithme de Branch-and-
Cut. Des heuristiques de séparation plus efficaces et des méthodes de pré-traitement
plus sophistiquées peuvent être développées afin de faciliter la résolution du problème.
Par ailleurs, mettre en œuvre des stratégies de branchements plus élaborées pourrait
être une piste intéréssante.

En outre, par rapport à la description du polytope des séparateurs, il serait intéres-
sant de caractériser les graphes pour lesquels les inégalités de terminal tree, clique
star et de terminal cycle suffisent pour décrire le polytope des séparateurs. En effet,
comme il ressort des résultats numériques dans le Chapitre 2, en utilisant ces inégal-
ités, de nombreuses instances ont été résolues dans la racine de l’arbre de branchement
dans l’algorithme de Branch-and-Cut. De plus, dans [95], les auteurs caractérisent la
classe de graphes pour lesquels le système linéaire donné par les inégalités de terminal
path et les inégalités triviales est TDI. Étant donné que les inégalités de terminal tree,
clique star et terminal cycle généralisent les inégalités de terminal path, il serait égale-
ment intéressant de décrire les graphes pour lesquels le système, donné par ces classes
d’inégalités et les inégalités triviales, est TDI.

En ce qui concerne les algorithmes de Branch-and-Price et Branch-and-Cut-and-
Price, plusieurs améliorations pourraient être réalisées. À partir des tests numériques,
nous avons constaté que la borne lagrangienne n’était pas stable. Il serait intéressant
d’essayer certaines méthodes de stabilisation de l’algorithme de génération de colonnes
afin de réduire le temps de convergence. Il est également intéressant de comparer dif-
férentes stratégies de génération de colonnes et différentes heuristiques pour résoudre les
sous-problèmes. Pour l’algorithme de Branch-and-Cut-and-Price, il serait intéressant
d’ajouter d’autres inégalités valides et d’améliorer les algorithmes de séparation.

Contents

Introduction 1

1 Preliminaries and State-of-the-art 3
1.1 Combinatorial optimization . 4
1.2 Computational complexity . 4
1.3 Preliminaries and State-of-the-Art . 6

1.3.1 Elements of polyhedral theory 6
1.3.2 Cutting plane method . 9
1.3.3 Branch-and-Cut algorithm . 12

1.4 Column generation and Branch-and-Price 13
1.4.1 Column generation procedure 13
1.4.2 Branch-and-Price algorithm . 14

1.5 Graph theory . 15
1.5.1 Undirected graphs . 15
1.5.2 Directed graphs . 17

1.6 State-of-the-art on the vertex separator problem 18
1.6.1 Deletion of vertices . 18

1.6.1.1 The k-way vertex cut problem 18
1.6.1.2 The k-separator problem 19
1.6.1.3 The vertex separator problem 19
1.6.1.4 The multi-terminal vertex separator problem 20
1.6.1.5 Vertex multicut problem 21
1.6.1.6 Critical nodes problem 21

1.6.2 Deletion of edges . 22
1.6.2.1 The k-way edge cut 22
1.6.2.2 The multi-way cut problem 23

xvi CONTENTS

1.6.2.3 The balanced graph partitioning problem 24

2 The multi-terminal vertex separator problem : Polyhedral analysis 25
2.1 Complexity analysis . 27
2.2 Formulations . 30

2.2.1 Double indices formulation . 30
2.2.2 Natural formulation . 31
2.2.3 Comparing the LP-Relaxations 31

2.3 Polyhedral analysis . 33
2.3.1 Dimension . 33
2.3.2 Path inequalities . 35
2.3.3 Star tree inequalities . 37
2.3.4 Clique star inequalities . 42
2.3.5 Lifting procedure for star tree inequalities 43
2.3.6 Terminal tree inequalities . 44
2.3.7 Lifted terminal tree inequalities 46
2.3.8 Terminal cycle inequalities . 46
2.3.9 Extended terminal cycle inequalities 49

2.4 Reduction operations . 50
2.4.1 Deletion of a subgraph connected to two terminals 50
2.4.2 Contraction of a subgraph connected to two vertices 51
2.4.3 Deletion of useless components 52

2.5 Branch-and-Cut Algorithm . 53
2.5.1 Heuristics and performance guarantee 62

2.5.1.1 Disconnecting terminal pairs heuristic 62
2.5.1.2 Isolating terminal heuristic 63
2.5.1.3 Improved isolating terminal heuristic 65

2.6 Computational Results . 66
2.7 Conclusion . 76

3 The multi-terminal vertex separator problem : Composition of Poly-
hedra 77
3.1 Star trees and Clique stars . 79

3.1.1 Polytope characterization . 80
3.1.1.1 MTVS polytope for star trees 80
3.1.1.2 MTVS polytope for clique stars 84

CONTENTS xvii

3.1.2 TDI-ness . 87
3.1.2.1 TDI system for star trees 87
3.1.2.2 TDI system for clique stars 93

3.2 Composition of polyhedra by 1-sum 96
3.2.1 Structure properties . 98
3.2.2 Composition of polyhedra . 99
3.2.3 Facet composition . 113

3.2.3.0.1 General clique star inequality 115
3.2.3.0.2 General terminal cycle inequality 115

3.2.4 Algorithmic aspect . 116
3.3 Composition of polyhedra by terminal-sum 119
3.4 The minimum rooted-cycle cover problem 121

3.4.1 Packing and covering rooted cycles 122
3.4.2 Pseudo-bipartite rooted graphs 125

3.5 Conclusion . 128

4 The multi-terminal vertex separator problem : Branch-and-Cut-and-
Price 129
4.1 The terminal-set formulation . 130

4.1.1 Pricing problem . 133
4.1.2 Heuristic algorithm for the pricer 136
4.1.3 Basic columns . 137
4.1.4 Column generation strategy . 138
4.1.5 Branching scheme . 138
4.1.6 Lagrangian bound . 139

4.2 The isolating-separator formulation . 141
4.2.1 Pricing problem . 144
4.2.2 Basic columns . 145
4.2.3 Column generation strategy . 145
4.2.4 Branching scheme . 145
4.2.5 Lagrangian bound . 146

4.3 The terminal-pair-separator formulation 146
4.3.1 Pricing problem . 149
4.3.2 Basic columns . 150
4.3.3 Column generation strategy . 150

xviii CONTENTS

4.3.4 Branching scheme . 150
4.3.5 The Lagrangian bound . 150

4.4 Branch-and-Cut-and-Price . 151
4.4.1 Star tree inequalities . 152
4.4.2 Terminal cycle inequalities . 153
4.4.3 Terminal tree inequalities . 153

4.5 Computational Results . 153
4.6 Conclusion . 169

5 The variants of the multi-terminal vertex separator problem 171
5.1 The connected components separator problem 172

5.1.1 Formulation . 173
5.1.2 Polyhedral analysis . 175

5.2 The multi-terminal connected separator problem 180
5.2.1 Formulation . 182
5.2.2 Polyhedral analysis . 184

5.3 The multi-terminal k-separator problem 187
5.3.1 The multi-terminal k-separator problem, when k > |T | 187

5.3.1.1 Formulation . 189
5.3.1.2 Valid inequalities . 190
5.3.1.2.1 Path inequalities . 190
5.3.1.2.2 Star tree inequalities 191
5.3.1.2.3 Extended terminal cycle inequalities 192
5.3.1.2.4 Clique inequalities . 193
5.3.1.2.5 Clique star inequalities 193
5.3.1.2.6 Terminal tree inequalities 194
5.3.1.2.7 Odd cycle inequalities 195

5.3.2 The multi-terminal k-separator problem, when k < |T | 195
5.3.2.1 Formulation . 195
5.3.2.2 Valid inequalities . 196
5.3.2.2.1 Star tree inequalities 196
5.3.2.2.2 Clique star inequalities 197
5.3.2.2.3 Terminal cycle inequalities 198

5.4 Conclusion . 198

CONTENTS xix

Conclusion 1

Bibliography 11

Introduction

Combinatorial optimization, and in particular the polyhedral approach are very pow-
erful for treating hard combinatorial problems. This technique, initiated by Edmonds
for the matching problem, consists in reducing the problem to a linear program (or a
sequence of linear programs) by giving a complete or partial description of the asso-
ciated polytope by a system of linear inequalities. The polyhedral approach has been
applied to many combinatorial optimization problems such as the Travelling Salesman
Problem, the Network Design Problem and the Max-Cut Problem.

In this thesis we consider the multi-terminal vertex separator problem (MTVSP).
Given a graph G = (V ∪ T,E) with V ∪ T the set of vertices, where T is a set of
terminals, and a weight function w : V → Z, associated with nonterminal nodes, the
multi-terminal vertex separator problem consists in partitioning V ∪T into k+1 subsets
{S, V1, . . . , Vk} such that there is no edge between two different subsets Vi and Vj,
each Vi contains exactly one terminal and the weight of S is minimum. The MTVSP
has applications in different areas like VLSI conception, linear algebra, connectivity
problems and parallel algorithms. It has also applications in network security. Suppose,
for instance, thatG represents a telecommunication network where V represents a set of
routers, T a set of customers, and an edge between two vertices expresses the possibility
of transferring data between each other. Suppose that with each vertex it is associated
a cost, and we want to set up a monitoring system on the routers in order to monitor
all data exchanged between customers. The set of routers on which the monitoring
system is set up is a multi-terminal vertex separator.

The MTVSP is a variant of the k-separator problem which consists, given a graph
G = (V,E), in partitioning V into k + 1 subsets {S, V1, . . . , Vk} in such a way that
|S| is minimum and there is no edge between two subsets Vi and Vj. Many variants
of this problem have been considered in the literature [14, 25, 26, 32, 42, 48, 95]. In
this thesis, we deal with the MTVSP from a polyhedral point of view. We give two
integer programming formulations for the problem, for one of these formulations, we
investigate the related polyhedron and discuss its polyhedral structure. We describe

2 Introduction

some valid inequalities and characterize when these inequalities define facets. We also
derive separation algorithms for these inequalities. Using these results, we develop
a Branch-and-Cut algorithm for the problem, along with an extensive computational
study is presented.

We also study the multi-terminal vertex separator polytope in the graphs decompos-
able by one node cutsets. If G is a graph that decomposes into G1 and G2, we show
that the multi-terminal vertex separator polytope in G can be described from the two
linear systems related to G1 and G2. This gives rise to a technique for characterizing
the multi-terminal vertex separator polytope in graph classes that are recursively de-
composable. Composition techniques have been studied in the litterature for several
combinatorial optimization problems [17], [18], [19], [15], [71], [89]. In [15], Barahona,
Fonlupt and Mahjoub describe a composition technique for the acyclic spanning sub-
graphs polyhedron. Using this technique, they give a complete description of this
polyhedron for the graphs with no K3,3 minor. In [17], Barahona and Mahjoub study
similar compositions for the balanced induced subgraphs polyhedron. In [18] and [19],
they consider the stable set polyhedron and give a complete description of this polytope
in the graphs not contractible to W4 (the wheel on 5 vertices). Margot [89] studies a
general approach of composition of polyhedra based on projection techniques.

Moreover, we propose extended formulations for the problem and derive Branch-
and-Price and Branch-and-Cut-and-Price algorithms. For each formulation we present
a column generation scheme to solve the linear relaxation, the way to compute the
dual bound and the branching scheme. We present computational results are discuss
the performance of each algorithm. We also present four variants of the multi-terminal
vertex separator problem. We show that all the variants are NP-hard. For each variant
we give an integer programming formulation and present some valid inequalities.

This manuscript is organized as follows. In Chapter 1 we present basic notions of com-
binatorial optimization. This chapter also includes a state-of-the-art on multi-terminal
vertex separator problem. In Chapter 2 we present a Branch-and-Cut algorithm. This
is based on a deep investigation on the associated polytope. Chapter 3 deals with the
composition of polyhedra on graphs obtained by 1-sums. In Chapter 4, we present
Branch-and-Price and Branch-and-Cut-and-Price algorithms. Chapter 5 is devoted to
the study of the four variants of the multi-terminal vertex separator problem.

Chapter 1

Preliminaries and State-of-the-art

Contents
1.1 Combinatorial optimization 4

1.2 Computational complexity 4

1.3 Preliminaries and State-of-the-Art 6

1.3.1 Elements of polyhedral theory 6

1.3.2 Cutting plane method . 9

1.3.3 Branch-and-Cut algorithm . 12

1.4 Column generation and Branch-and-Price 13

1.4.1 Column generation procedure 13

1.4.2 Branch-and-Price algorithm 14

1.5 Graph theory . 15

1.5.1 Undirected graphs . 15

1.5.2 Directed graphs . 17

1.6 State-of-the-art on the vertex separator problem 18

1.6.1 Deletion of vertices . 18

1.6.2 Deletion of edges . 22

In this chapter we give some basic notions on combinatorial polyhedra, graph the-
ory and the theory of complexity. We then perform a brief summary of cutting planes
and column generation methods as well as Branch-and-Cut and Branch-and-Price al-
gorithms. We finish this chapter with notations and definitions that will be used all
along this manuscript and the state-of-the-art on the multi-terminal vertex separator
problem.

4 Preliminaries and State-of-the-art

1.1 Combinatorial optimization

Combinatorial optimization is a branch of computer science and applied mathematics.
It concerns the problems that can be formulated as follows: Let E = {e1, . . . , en} a
finite set called basic set, where each element ei has a weight c(ei). Let S a family of
subsets of E. If S ∈ S, then c(S) =

∑
ei∈S

c(ei) is the weight of S. The problem is to

determine an element of S, with the smaller (or larger) weights. Such a problem is
called a combinatorial optimization problem. The set S is called the set of solutions of
the problem. In other words,

min(or max){c(S) : S ∈ S}.

The term combinatorial refers to the discrete structure of S. In general, this structure
is represented by a graph. The term optimization signifies that we are looking for the
best element in the set of feasible solutions. This set generally contains an exponential
number of solutions, therefore, one can not expect to solve a combinatorial optimization
problem by exhaustively enumerate all its solutions. Such a problem is then considered
as a hard problem.

Various effective approaches have been developed to tackle combinatorial optimiza-
tion problems. Some of these approaches are based on graph theory, while others use
linear and non-linear programming, integer programming and polyhedral approach.
Besides, several practical problems arising in real life, can be formulated as combina-
torial optimization problems. Their applications are in fields as diverse as telecommu-
nications, transport, industrial production planing or staffing and scheduling in airline
companies. Over the years, the discipline got thus enriched by the structural results
related to these problems. And, conversely, the progress made in computed science
have made combinatorial optimization approaches even more efficient on real-world
problems.

In fact, combinatorial optimization is closely related to algorithm theory and compu-
tational complexity theory as well. The next section introduces computational issues
of combinatorial optimization.

1.2 Computational complexity

Computational complexity theory is a branch of theoretical computer science and math-
ematics, whose study started with works of Cook [41], Edmonds [54] and Karp [78].

1.2 5

Its objective is to classify a given problem depending on its difficulty. A plentiful lit-
erature can be find on this topic, see for instance [60] for a detailed presentation of
NP-completeness theory.

A problem is a question having some input parameters, and to which we aim to find
an answer. A problem is defined by giving a general description of its parameters,
and by listing the properties that must be satisfied by a solution. An instance of
the problem is obtained by giving a specific value to all its input parameters. An
algorithm is a sequence of elementary operations that allows to solve the problem for
a given instance. The number of input parameters necessary to describe an instance
of a problem is the size of that problem.

An algorithm is said to be polynomial if the number of elementary operations nec-
essary to solve an instance of size n is bounded by a polynomial function in n. We
define the class P as the class gathering all the problems for which there exists some
polynomial algorithm for each problem instance. A problem that belongs to the class
P is said to be "easy" or "tractable".

A decision problem is a problem with a yes or no answer. Let P be a decision
problem and I the set of instances such that their answer is yes. P belongs to the class
NP (Non-deterministic Polynomial) if there exists a polynomial algorithm allowing to
check if the answer is yes for all the instances of I. It is clear that a problem belonging
to the class P is also in the class NP . Although the difference between P and NP has
not been shown, it is a highly probable conjecture.

In the class NP , we distinguish some problems that may be harder to solve than
others. This particular set of problems is called NP-complete. To determine whether
a problem is NP-complete, we need the notion of polynomial reducibility. A decision
problem P1 can be polynomially reduced (or transformed) into another decision prob-
lem P2, if there exists a polynomial function f such that for every instance I of P1,
the answer is "yes" if and only if the answer of f(I) for P2 is "yes". A problem P in
NP is also NP-complete if every other problem in NP can be reduced into P in poly-
nomial time. The Satisfiability Problem (SAT) is the first problem that was shown to
be NP-complete (see [41]).

With every combinatorial optimization problem is associated a decision problem.
Furthermore, each optimization problem whose decision problem is NP-complete is
said to be NP-hard. Note that most of combinatorial optimization problems are NP-
hard. One of the most efficient approaches developed to solve those problems is the
so-called polyhedral approach.

6 Preliminaries and State-of-the-art

1.3 Preliminaries and State-of-the-Art

1.3.1 Elements of polyhedral theory

The polyhedral method was initiated by Edmonds in 1965 [55] for a matching problem.
It consists in describing the convex hull of problem solutions by a system of linear
inequalities. The problem reduces then to the resolution of a linear program. In
most of the cases, it is not straightforward to obtain a complete characterization of
the convex hull of the solutions for a combinatorial optimization problem. However,
having a system of linear inequalities that partially describes the solutions polyhedron
may often lead to solve the problem in polynomial time. This approach has been
successfully applied to several combinatorial optimization problems. In this Section,
we present the basic notions of polyhedral theory. The reader is referred to works of
Schrijver [108] and [88].

We shall first recall some definitions and properties related to polyhedral theory.

Let n be a positive integer and x ∈ Rn. Let say that x is a linear combination of
x1, x2, . . ., xm ∈ Rn if there exist m scalar λ1, λ2, . . ., λm such that x =

∑m
i∈1 λixi. If∑m

i=1 λi = 1, then x is said to be an affine combination of x1, x2, . . ., xm. Moreover, if
λi ≥ 0, for all i ∈ {1, . . . ,m}, we say that x is a convex combination of x1, x2, . . ., xm.

Given a set S = {x1, . . . , xm} ∈ Rn×m, the convex hull of S is the set of points x ∈ Rn

which are convex combination of x1, . . ., xm (see Figure 1.1), that is

conv(S) = {x ∈ Rn|x is a convex combination of x1, . . . , xm}.

1.3 7

Figure 1.1: A convex hull

The points x1, . . ., xm ∈ Rn are linearly independents if the unique solution of the
system

m∑
i=1

λixi = 0,

is λi = 0, for all i ∈ {1, . . . ,m}. They are affinely independent if the unique solution
of the system

m∑
i=1

λixi = 0,

m∑
i=1

λi = 1,

is λi = 0, i = 1, . . ., m.

A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P =
{x ∈ Rn|Ax ≤ b}, where A is a m-row n-columns matrix and b ∈ Rm. A polytope is a
bounded polyhedron. A point x of P will be also called a solution of P .

A polyhedron P is said to be of dimension p if it has at most p+1 affinely independent
solutions. We denote it by dim(P) = p. We also have that dim(P) = n − rank(A=),
where A= is the submatrix of A of inequalities that are satisfied with equality by all
solutions of P (implicit equalities). The polyhedron P is full dimensional if dim(P) =
n.

8 Preliminaries and State-of-the-art

An inequality ax ≤ α is valid for a polyhedron P ⊆ Rn if for every solution x ∈ P ,
ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The
inequality ax ≤ α is violated by x ∈ P if ax > α. Let ax ≤ α be a valid inequality for
the polyhedron P . F = {x ∈ P |ax = α} is called a face of P . We also say that F is a
face induced by ax ≤ α. If F 6= ∅ and F 6= P , we say that F is a proper face of P . If
F is a proper face and dim(F) = dim(P)− 1 , then F is called a facet of P . We also
say that ax ≤ α induces a facet of P or is a facet defining inequality.

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β and a scalar ρ 6= 0 such that
F ⊆ {x ∈ P |bx = β} and b = ρa.

If P is not full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β, a scalar ρ 6= 0 and λ ∈ Rq×n

(where q is the number of lines of matrix A=) such that F ⊆ {x ∈ P |bx = β} and
b = ρa+ λA=.

An inequality ax ≤ α is essential if it defines a facet of P . It is redundant if the
system A′x ≤ b′} obtained by removing this inequality from Ax ≤ b defines the same
polyhedron P . This is the case when ax ≤ α can be written as a linear combination
of inequalities of the system A′x ≤ b′. A complete minimal linear description of a
polyhedron consists of the system given by its facet defining inequalities and its implicit
equalities.

A solution is an extreme point of a polyhedron P if and only if it cannot be written
as the convex combination of two different solutions of P . It is equivalent to say that x
induces a face of dimension 0. The polyhedron P can also be described by its extreme
points. In fact, every solution of P can be written as a convex combination of some
extreme points of P .

Figure 1.2 illustrates the main definitions given is this Section.

1.3 9

Figure 1.2: Valid inequality, facet and extreme points

Let Ax ≤ b be a linear system. The system Ax ≤ b is said to be Totally Dual Integral
(TDI) if for all integer c ∈ Zn, the linear program min{b>y : A>y ≥ c; y ≥ 0} has an
integer optimal solution, if such solution exists.

If Ax ≤ b is TDI and b is integral, then the polytope given by Ax ≤ b is integral.

1.3.2 Cutting plane method

Now let P be a combinatorial optimization problem, E its basic set, c(.) the weight
function associated with the variables of P and S the set of feasible solutions. Suppose
that P consists in finding an element of S whose weight is maximum. If F ⊆ E, then
the 0-1 vector xF ∈ RE such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called
the incidence vector of F . The polyhedron P (S) = conv{xS|S ∈ S} is the polyhedron
of the solutions of P or polyhedron associated with P. P is thus, equivalent to the linear
program max{cx|x ∈ P (S)}. Notice that the polyhedron P (S) can be described by a

10 Preliminaries and State-of-the-art

set of a facet defining inequalities. And when all the inequalities of this set are known,
then solving P is equivalent to solve a linear program.

Recall that the objective of the polyhedral approach for combinatorial optimization
problems is to reduce the resolution of P to that of a linear program. This reduction
induces a deep investigation of the polyhedron associated with P. It is generally not
easy to characterize the polyhedron of a combinatorial optimization problem by a
system of linear inequalities. In particular, when the problem is NP-hard there is a
very little hope to find such a characterization. Moreover, the number of inequalities
describing this polyhedron is, most of the time, exponential. Therefore, even if we
know the complete description of that polyhedron, its resolution remains in practice a
hard task because of the large number of inequalities.

Fortunately, a technique called the cutting plane method can be used to overcome
this difficulty. This method is described in what follows.

The cutting plane method is based on the so-called separation problem. This consists,
given a polyhedron P of Rn and a point x∗ ∈ Rn, in verifying whether if x∗ belongs
to P , and if this is not the case, to identify an inequality aTx ≤ b, valid for P and
violated by x∗. In the later case, we say that the hyperplane aTx = b separates P and
x∗ (see Figure 1.3).

Figure 1.3: A hyperplane separating x∗ and P

1.3 11

Grötschel, Lovász and Schrijver [68] have established the close relationship between
separation and optimization. In fact, they prove that optimizing a problem over a
polyhedron P can be performed in polynomial time if and only if the separation problem
associated with P can be solved in polynomial time. This equivalence has permitted
an important development of the polyhedral methods in general and the cutting plane
method in particular. More precisely, the cutting plane method consists in solving
successive linear programs, with possibly a large number of inequalities, by using the
following steps. Let LP = max{cx,Ax ≤ b} be a linear program and LP ′ a linear
program obtained by considering a small number of inequalities among Ax ≤ b. Let
x∗ be the optimal solution of the latter system. We solve the separation problem
associated with Ax ≤ b and x∗. This phase is called the separation phase. If every
inequality of Ax ≤ b is satisfied by x∗, then x∗ is also optimal for LP . If not, let ax ≤ α

be an inequality violated by x∗. Then, we add ax ≤ α to LP ′ and repeat this process
until an optimal solution is found. Algorithm 1 summarizes the different cutting plane
steps.

Algorithm 1: A cutting plane algorithm
Data: A linear program LP and its system of inequalities Ax ≤ b

Result: Optimal solution x∗ of LP
Consider a linear program LP ′ with a small number of inequalities of LP ;
Solve LP ′ and let x∗ be an optimal solution;
Solve the separation problem associated with Ax ≤ b and x∗;
if an inequality ax ≤ α of LP is violated by x∗ then

Add ax ≤ α to LP ′;
Repeat step 2 ;

end
else

x∗ is optimal for LP ;
return x∗;

end

Note that at the end, a cutting-plane algorithm may not succeed in providing an
optimal solution for the underlying combinatorial optimization problem. In this case
a Branch-and-Bound algorithm can be used to achieve the resolution of the problem,
yielding to the so-called Branch-and-Cut algorithm.

12 Preliminaries and State-of-the-art

1.3.3 Branch-and-Cut algorithm

Consider again a combinatorial optimization problem P and suppose that P is equiv-
alent to max{cx|Ax ≤ b, x ∈ {0, 1}n}, where Ax ≤ b has a large number of inequali-
ties. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree whose
root node corresponds to a linear program LP0 = max{cx|A0x ≤ b0, x ∈ Rn}, where
A0x ≤ b0 is a subsystem of Ax ≤ b having a small number of inequalities. Then,
we solve the linear relaxation of P that is LP = {cx|Ax ≤ b, x ∈ Rn} using a cut-
ting plane algorithm whose starting from LP0. Let x∗0 denote its optimal solution and
A′0x ≤ b′0 the set of inequalities added to LP0 at the end of the cutting plane phase.
If x∗0 is integral, then it is optimal. If x∗0 is fractional, then we perform a branching
phase. This step consists in choosing a variable, say x1, with a fractional value and
adding two nodes P1 and P2 in the Branch-and-Cut tree. The node P1 corresponds to
the linear program LP1 = max{cx|A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 0, x ∈ Rn} and LP2 =
max{cx|A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 1, x ∈ Rn}. We then solve the linear program LP 1

= max{cx|Ax ≤ b, x1 = 0, x ∈ Rn} (resp. LP 2 = max{cx|Ax ≤ b, x1 = 1, x ∈ Rn}) by
a cutting plane method, starting from LP1 (resp. LP2). If the optimal solution of LP 1

(resp. LP 2) is integral then, it is feasible for P. Its value is then a lower bound of the
optimal solution of P, and the node P1 (resp. P2) becomes a leaf of the Branch-and-Cut
tree. If the solution is fractional, then we select a variable with a fractional value and
add two children to the node P1 (resp. P2), and so on.

Note that sequentially adding constraints of type xi = 0 and xi = 1, where xi is a
fractional variable, may lead to an infeasible linear program at a given node of the
Branch-and-Cut tree. Or, if it is feasible, its optimal solution may be worse than the
best known lower bound of the problem. In both cases, that node is pruned from the
Branch-and-Cut tree. The algorithm ends when all nodes have been explored and the
optimal solution of P is the best feasible solution given by the Branch-and-Bound tree.

This algorithm can be improved by computing a good lower bound of the optimal
solution of the problem before it starts. The lower bound can be used by the algorithm
to prune the node which will not allow an improvement of this lower bound. This
would permit to reduce the number of nodes generated in the Branch-and-Cut tree,
and hence, reduce the time used by the algorithm. Furthermore, this lower bound
may be improved by comparing at each node of the Branch-and-Cut tree a feasible
solution when the solution obtained at the root node is fractional. Such a procedure is
referred to as a primal heuristic. It aims to produce a feasible solution for P from the
solution obtained at a given node of the Branch-and-Cut tree, when this later solution
is fractional (and hence infeasible for P). Moreover, the weight of this solution must be
as good as possible. When the solution computed is better than the best known lower

1.4 13

bound, it may significantly reduce the number of generated nodes, as well as the CPU
time. Moreover, this guarantees to have an approximation of the optimal solution of
P before visiting all the nodes of Branch-and-Cut tree, for instance when a CPU time
limit has been reached.

The Branch-and-Cut approach has shown a great efficiency to solve various problems
of combinatorial optimization that are considered difficult to solve, such as the Travel-
ling Salesman Problem [10]. Note a good knowledge of the polyhedron associated with
the problem, together with efficient separation algorithms (exacts as well as heuristics),
might help to improve the effectiveness of this approach. Besides, the cutting plane
method is efficient when the number of variables is polynomial. However, when the
number of variables is large (for instance exponential), further methods, as column
generation are more likely to be used. In what follows, we briefly introduce the outline
of this method.

1.4 Column generation and Branch-and-Price

Compact formulations of combinatorial optimization problems often provide a weak
linear relaxation. Those problems require then further formulations, whose linear re-
laxation is closer to the convex hull of feasible solutions. Those reformulations may
have a huge number of variables, so that one can not consider them explicitly in the
model. We describe a method that suits well to such reformulation, that is the so-called
column generation method.

1.4.1 Column generation procedure

The column generation method is used to solve linear programs with a huge number
of variables only by considering a few number among these variables. This method
was pioneered by Dantzig and Wolfe in 1960 [47] in order to solve problems that could
not be handled efficiently because of their size (CPU time and memory consumption).
Column generation is generally used either for problems whose structure is suitable for a
Dantzig-Wolfe decomposition, or for problems with a large number of variables. Gilmore
and Gomory [64, 65] used this method to solve a cutting stock problem belonging to
the later class.

The overall idea of column generation is to solve a sequence of linear programs with
a restricted number of variables (also referred to as columns). The algorithm starts by

14 Preliminaries and State-of-the-art

solving a linear program having a small number of variables, and such that a feasible
solution for the original problem may be identified using this basis. At each iteration
of the algorithm, we solve the so-called pricing problem whose objective is to identify
the variables which must enter the current basis. These variables are characterized by
a negative reduced cost. The reduced cost associated with a variable is computed using
the dual variables associated with the constraints of the problem. We then solve the
linear program obtained by adding the generated variables, and repeat the procedure
until no variable with reduced cost can be identified by the pricing problem. In this
case, the solution obtained from the last restricted program is optimal for the original
model. The main step of column generation procedure is summarized in Algorithm 2.

Algorithm 2: A column generation algorithm

Data : A linear program MP (Master Problem) with a huge number of variables
Output : optimal solution x∗ of MP

1: Consider a linear program RMP (Restricted Master Problem) including only a
small subset of variables of the MP;
2: Solve RMP and let x∗ be an optimal solution;
3: Solve the pricing problem associated with the dual variables obtained by the
resolution of the RMP;
4: If there exists a variable x with a negative reduced cost then;
5: add x to RMP.
6: go to 2.
7: else
8: x∗ is optimal for MP.
9: return x∗.

The column generation method can be seen as the dual of the cutting plane method
since it adds columns (variables) instead of rows (inequalities) in the linear program.
Furthermore, the pricing problem may be NP-hard. One can then use heuristic pro-
cedures to solve it. For more details on column generation algorithms, the reader is
referred to [110, 50, 85]. We denote by LMP the linear relaxation of the master problem
and by DLMP the dual of the LMP.

1.4.2 Branch-and-Price algorithm

The solution obtained by a column generation procedure may not be integer. There-
fore, to solve an integer programming problem, the column generation method has to

1.5 15

be integrated within a Branch-and-Bound framework. This is known a Branch-and-
Price algorithm. Branch-and-Price is similar to Branch-and-Cut approach, except that
procedure focuses on column generation rather than row generation. In fact, gener-
ating variables (pricing) and adding inequalities (cutting plane) are complementary
operations to strengthen the linear relaxation of an integer programming formulation.

The Branch-and-Price procedure works as follows. Each node of the Branch-and-
Bound tree is solved by column generation, so that variables may be added to improve
the linear relaxation of the current LP. The branching phase occurs when no columns
price out to enter the basis and the solution of the linear program is not integer.

Branch-and-Price approaches have been widely used in the literature to solve large
scale integer programming problems. The applications are in various fields, and even
real life problems such as Cutting stock problem [8], Generalized Assignment Problem
(GAP) [106], Airline Crew Scheduling [21], Multi-commodity Flow Problems [22], etc.

Note that, at each node of the Branch-and-Price tree, column generation may be
combined with cutting plane approach, to tighten the LP relaxation of the problem. In
this case, the algorithm is called Branch-and-Cut-and-Price algorithm. Such a method
can be difficult to handle, since adding valid inequalities to the initial model may
change the structure and complexity of the pricing problem. However, some successful
applications of this algorithm can be found in the literature (see [102], [22] for instance).

1.5 Graph theory

In this section we will introduce some basic definitions and notations of graph theory
that will be used throughout the Chapters of this dissertation. For more details, we
refer the reader to [108].

1.5.1 Undirected graphs

An undirected graph is denoted G = (V,E) where V is the set of vertices or nodes and
E is the set of edges. If e is an edge between two vertices u and v, then u and v are
called the ends of e, and we write e = uv or e = {u, v}. If u is an extremity of e, then
u (resp. e) is said to be incident to e (resp. u). Similarly, two vertices u and v forming
an edge are said to be adjacent. Since the graph G may have multiple edges, it may
be that e = uv and f = uv but e 6= f .

16 Preliminaries and State-of-the-art

If F ⊆ E is a subset of edges, then V (F) represents the node set of edges of F . If
W ⊆ V is a subset of vertices, then E(W) denotes the set of edges having their two
ends in W . Let V (H) and E(H) be the sets U and F , respectively.

A subgraph H = (U, F) of G is a graph such that U ⊆ V and F ⊂ E. A subgraph
H = (U, F) of G is called covering or spanning if U = V . LetW ⊆ V , H = (W,E(W))

is said to be subgraph of G induced by W and will be denoted by G[W].

If F ⊂ E (resp. W ⊂ V), it is noted in G \F (resp. G \W) the graph obtained from
G by removing the edges of F (resp. nodes of W and the edges incident to W). If F
(resp. W) is reduced to a single edge e (resp. a single vertex v), we write G \ e (resp.
G\ v). Let W ⊆ V , ∅ 6= W 6= V , a subset of vertices of V . The set of edges having one
end inW and the other in V \W is called cut and noted δ(W). By settingW = V \W ,
we have that δ(W) = δ(W). If W is reduced to a single vertex v, we write δ(v). The
cardinality of the cut δ(W) of a subset W is called the degree of W and noted d(W).
Given W and W ′ two disjoint subsets of V , then [W,W ′] represents the set of edges of
G which have one end in W and the other in W ′. We denote by N(W) ⊆ (V \W) the
set of vertices adjacent to at least one vertex in W . If W is reduced to a single vertex
v, we write N(v).

An edge e = v1v2 ∈ E is called a cut edge if G is connected and G\e is not connected,
with v1, v2 ∈ V .

If {V1, . . . , Vp}, p ≥ 2, is a partition of V , then δ(V1, . . . , Vp) is the set of edges having
one end in Vi and the other one in Vj and i 6= j.

The support graph of an inequality is the graph induced by the vertices of variables
having a non-zero coefficient in the inequality.

Let G = (V ∪ T,E) be a graph defined by a set of vertices V ∪ T where T is a set
of distinguished nodes and E is a set of edges. We denote by V (H), T (H) and E(H)

its sets of nodes, terminals and edges, respectively. We denote by t(G) the number of
terminal in G, i.e., |T (G)| = t(G). In all Figures of this manuscript, the terminals are
represented by triangles.

A path P is a set of p distinct vertices v1, v2, . . . , vp such that for all i ∈ {1, . . . , p−1},
vivi+1 is an edge. P is called elementary if it passes more than once by the same node
(except for v0 and vk if they represent the same vertex in G). A basic chain is totally
identified with its set of edges.

Two paths between two nodes u and v are called edge-disjoint (resp. node-disjoint)
if there is no edge (resp. no node different from of u and v) appearing in both chains.

1.5 17

Vertices v2, . . . , vp−1 are called the internal vertices of P . Given a path P between
two terminals t, t′ ∈ T such that P ∩ T = {t, t′}, the set of internal vertices of P will
be called a terminal path and denoted by Ptt′ . A terminal path is minimal if it does
not strictly contain a terminal path.

Given a graph G = (V ∪ T,E) and two subgraphs G1 = (V1 ∪ T1, E1) and G2 =

(V2 ∪ T2, E2) of G. Graph G1 is included in G2, if V1 ∪ T1 ⊆ V2 ∪ T2.

1.5.2 Directed graphs

A directed graph is denoted D = (V,A) where V is the set of nodes and A the set of
arcs.

If a ∈ A is an arc connecting a vertex u to vertex v, then u will be called initial end
and v final end and we write a = (u, v). We say that a is an outgoing arc of u and v of
an incoming arc. The vertices u and v are called ends of a. Vertex v (resp. a) is said
to be incident to a (resp. v) if v is an end (initial or final) of a.

If B ⊆ A is a subset of arcs, then V (B) represents the node set of arcs of B. If
W ⊆ V is a subset of vertices, A(W) is the set of arcs having their ends in W .

A subgraph H = (U, F) of D is a graph such that U ⊆ V and F ⊂ A. A subgraph
H = (U, F) of D is said covering if U = V .

If F ⊂ A (resp. W ⊂ V), we denote by D \F (resp. D \W) the graph obtained from
D by removing the F arcs (resp. node of W and edges incident to W). If F (resp. W)
is reduced to a single arc a (resp. a single vertex v), we write D \ a (resp. D \ v).

Let W ⊆ V , ∅ 6= W 6= V , a subset of vertices V . The set of arcs having their initial
end in W and their final nodes in V \W is called outgoing cut and denoted δ+(W).
The cardinality of the outgoing cut δ+(W) of a subset W is called outgoing degree of
W and denoted d+(W). If u ∈ W and v ∈ V \W , then the outgoing cut is also called
uv-outgoing cut. If W is reduced to a single vertex v, we write respectively δ+(v) and
d+(v) instead of δ+({v}) and d+({v}). The set of arcs having the final end in W and
the initial end in V \W is called incoming cut and denoted δ−(W). The cardinality
of the incoming cut δ−(W) of a subset W is called incoming degree of W and denoted
d−(W). If u ∈ W and v ∈ V \W , then the incoming cut is also known as uv-incoming
cut. If W is reduced to a single vertex v, we write respectively δ−(v) and d−(v) instead
of δ−({v}) and d−({v}).

18 Preliminaries and State-of-the-art

The cut of a set W ⊆ V, ∅ 6= W 6= V , is denoted δ(W) and is the union of the arcs
of the incoming cut and outgoing cut, i.e., δ(W) = δ+(W) ∪ δ−(W). The cardinality
of the cut is called the degree of W and denoted d(W). If u ∈ W and v ∈ V \W , then
the cut is also called uv-cut. If W is reduced to a single vertex v, we write respectively
δ(v) and d(v) instead of δ({v}) and d({v}). If all W associated with the outgoing cut
δ+(W) contains the vertex u but not the vertex v, then we call it uv-outgoing cut.

Given disjoint subsets W1,W2, . . . ,Wk of V , then [W1,W2, . . . ,Wk] represents the set
of arcs of D having one end in Wi and the other in Wj, i 6= j.

A directed graph D = (V,A) is said to be k-connected graph if d−(W) ≥ k for all
W ⊆ V, ∅ 6= W 6= V . A vertex v ∈ V is called cut vertex of D if the number of
connected components of the graph D \ v is strictly greater than the number of related
components of D.

If a graph D = (V,A) does not contain circuit, then D is said acyclic.

1.6 State-of-the-art on the vertex separator problem

Graph partitioning has become a flourishing area and many optimization problems have
been considered in the literature. In this section we discuss two important families of
graph partitioning problems, the first one is based on deletion of vertices and the second
one on deletion of edges.

1.6.1 Deletion of vertices

The following classes of problems are based on deletion of vertices in order to obtain
several disjoint components with some specific properties.

1.6.1.1 The k-way vertex cut problem

Given a graph G = (V,E) and a positive integer k, the k-way vertex cut problem
consists in finding a subset S ⊆ V of minimum size such that (V \ S,E) has at least
k disjoint components. In [91], Marx investigates the fixed-parameter (in)tractability
of k-way vertex cut. He showed that k-way vertex cut is W[1]-hard with parameter
k. In [28], André Berger et al. study the complexity of the k-way vertex cut problem

1.6 19

and its approximation. They show that it is polynomial for bounded tree-width graphs
and they present an efficient polynomial-time approximation scheme (EPTAS) for the
problem on planar graphs.

In [42], Cornaz et al., consider the balanced version of the k-way vertex cut prob-
lem, called the balanced vertex k-separator problem defined as follows. Given a graph
G = (V,E) and two positive integers k and q, the problem consists in finding a subset
S ⊆ V of minimum size, such that the graph (V \S,E) has at least k disjoint subsets
W1, . . . ,Wk and |Wi|−|Wj| ≤ q for all i, j ∈ {1, . . . , k}. This problem is NP-hard. The
authors present a compact formulation for the problem, investigate it from a polyhe-
dral point of view and present an extended formulation with a polynomial number of
constraints. They propose a column generation scheme to solve the linear relaxation.
They show that the sub-problem can be solved in a polynomial time and compare the
numerical results given by the Branch-and-Cut and the Branch-and-Price algorithms.

1.6.1.2 The k-separator problem

Given a vertex-weighted undirected graph G = (V,E,w) and a positive integer k, the
k-separator problem consists in finding a minimum-weight subset of vertices whose
removal leads to a graph where the size of each connected component is less than or
equal to k. When k = 1, the problem is equivalent to the vertex cover problem, and for
k = 2 and unit weight the problem is equivalent to computing the dissociation number
of a graph [112]. Thus, the problem is NP-hard even if the graph is bipartite. For
any value of k, the problem was considered in [98]. Oosten et al. propose an extended
formulation for the problem, they investigate the related polytope and present several
valid inequalities and facets. In [26], Ben-Ameur et al. study the complexity of the
problem and show that it is polynomial for several classes of graphs, for instance,
bounded treewidth, mK2-free, (G1, G2, G3, P6)-free, interval-filament, etc. They also
present some approximation algorithms and polyhedral results related to the associated
polytope.

1.6.1.3 The vertex separator problem

The vertex separator problem VSP is very similar to the k-separator problem. Given
a simple graph G = (V,E) and a positive integer β(|V |), the problem consists in
partitioning V into three sets A,B and C such that |C| is minimum, there is no edge
between A and B and max{|A|, |B|} ≤ β(|V |). The VSP is NP-hard [60, 35], even if
G is a planar graph [59]. The VSP has been the subject of extensive research and the

20 Preliminaries and State-of-the-art

first polyhedral approach was done in 2005 by Balas and De Souza [14, 48]. Indeed,
they show that the problem is polynomially solvable when β(n) ≥ n − 1 and when
β(n) = n − k for some positive constant k, and the problem is trivial for β(n) = 1.
In [14], Balas and de Souza, present a formulation for the problem and study it from
a polyhedral point of view. They give a mixed integer programming formulation of
the VSP and a partial characterization of the the VS polytope. In particular, they
present a class of valid inequalities based on the minimal connected dominator. They
also develop a Branch-and-Cut algorithm. In [32], Didi Biha and Meurs study the
vertex separator problem from a polyhedral point of view. They introduce new classes
of valid inequalities for the associated polyhedron, a new natural lower bound αmin for
the optimal solution and present some computational experiments.

1.6.1.4 The multi-terminal vertex separator problem

The multi-terminal vertex separator problem MTVSP, also called vertex multi-terminal
cut problem, or node multi-way cuts problem in the literature, is a variant of the k-way
vertex cut problem. Indeed, if the original graph G has k specific vertices, called ter-
minals, the problem consists in finding a subset of non-terminal vertices S of minimum
weight such that G\S has k components, each one contains exactly one terminal. The
problem can be seen in another way. Given a graph G = (V,E) and subset T ⊂ V of
k terminals, the problem consists in finding a subset of vertex S ⊆ V \ T of minimum
size such that each path between two terminals intersects S.

In [63], Garg et al., consider the two versions of the problem (vertex and edge) in
directed and undirected graphs. The authors show that the node version is at least as
hard as the edge version. Since the edge version is NP-hard by [46], the node version
is also NP-hard, even if all weights are 1. They obtained a polynomial-time (2− 2/k)-
approximation algorithm. In [91], Marx obtained a 4l

3
nO(1)-time algorithm for the

problem in general graphs. Recently, Chen et al. [37] and Guillemot [69] improved
Marx’s result to 4lnO(1). In [111], Xiao et al., consider the node and edge version of
the problem. They show that the two problems are NP-hard for k ≥ 3 and polynomial
when k = 2. They also show that the decision problem of the vertex multi-terminal
cut problem can be solved in O(klT (n,m)) such that T (n,m) = O(min(n2/3,m1/2)m)

is the time for finding a cut in the underweighted graph, where n = |V |, m = |E| and
l is an upper bound on S. In [37], Chen et al., define the edge version of the problem
and propose a polynomial algorithm for the problem when the separator is bounded by
O(logn). In [45], the authors consider also the vertex version of the problem. In [95],
the authors give a linear system for the MTVSP and characterize the class of graphs
for which it is total dual integral for any independent set T .

1.6 21

A similar version of this problem of the MTVSP, consists in finding a multi-terminal
vertex separator S in G, such that the weight of δ(S) is minimum. When the graph
has two terminals, this problem is called the minimum cut separator problem MCSP.
In [24], the authors consider the MCSP and show that the associated polytope Q is
difficult to characterize, since when the weights are negatives, the problem can be
reduced to a max-cut problem. Thus, they study the dominant D of Q and give a
complete description of D. They also develop a polynomial algorithm to solve the
problem based on the maximum flow problem. In [25], the authors present six different
formulations for the problem.

1.6.1.5 Vertex multicut problem

Consider a graph G = (V,E), a collection node pairs L ⊆ V × V , called terminals,
and an integer k ≥ 0. The restricted vertex multi-cut problem (RVMCP), consists in
finding a subset of non-terminal vertices V0 ⊆ V with |V0| ≤ k such that all pairs
of terminals in L are disconnected in (V \ V0, E). The unrestricted vertex multi-cut
problem (UVMCP) consists in finding a subset of vertices V0 ⊆ V with |V0| ≤ k such
that all pairs of terminals in L are disconnected in (V \ V0, E).

In [101], Papadopoulos show that the RVMCP is NP-hard even for splits graphs (com-
posed of a clique and a stable set). The authors also show that the UVMCP is poly-
nomial for trees, but NP-hard for complete graphs. They show that the RVMCP can
be solved in O(|E|

√
|V | + |H||V |) for co-bipartie graphs and propose a polynomial

algorithm for permutation graphs. In [70], Guo et al., give some complexity results for
interval and bounded treewidth graphs.

1.6.1.6 Critical nodes problem

Given a graph G = (V,E) and a positive integer k, the critical nodes problem consists
in finding a subset of vertices S ⊆ V of size less or equal to k minimizing the number
of pairs of nodes connected by a path in (V \S,E). This problem has important appli-
cations in telecommunication as evaluating the robustness of a network. Arulselvan et
al. [12] considered the problem and show that it is NP-hard for general graphs. They
propose an integer linear formulation for the problem and developed an efficient heuris-
tic. They presented several real applications for the problem, like strategic military
planning and immunity network (Find the exact number of individuals to vaccinate,
to reduce the transfer of the virus into a network). Boginski and Commander [33]

22 Preliminaries and State-of-the-art

present applications of CNPs in biology, in order to achieve maximum fragmentation
of protein–protein interaction graphs through node deletions. A robust optimization
model is considered in [56], when the edges have uncertain weights. In [51], Di summa
propose a formulation with a polynomial number of vertices and an exponential num-
ber of constraints, and devise a Branch-and-Cut algorithm for solving the problem.
They propose some valid inequalities and study the problem from a polyhedral point
of view. They compute the relaxation of the problem based on the quadratic reformu-
lation of the problem. Dinh et al. [52] propose algorithms for detecting, in a directed
graph, what they call node-disruptors and arc-disruptors, i.e., sets of nodes and arcs
to be deleted in order to minimize the number of directed connections surviving in the
residual graph.

1.6.2 Deletion of edges

The following classes of problems are based on the deletion of edges in order to obtain
several disjoint components with some specific properties.

1.6.2.1 The k-way edge cut

The k-way edge cut, also referred as k-cut or minimum k-cut. This problem can be
regarded as the “edge-version” of k-way vertex cut: given a graph G = (V,E) and
integers k and s, remove at most s edges so as to split the graph into at least k
components. Goldschmidt and Hochbaum [66] have shown that k-way edge cut is NP-
hard and admits an nO(k2)-time algorithm. Later, Karger and Stein [77] developed a
randomized nO(k)-time algorithm for this problem. Kami-dori, et al. [76] presented a
deterministic O(n4+o(1)k)-time algorithm which was further improved by Thorup [109].
Saran and Vazirani [105] gave a polynomial time approximation algorithm that finds
at most 2s edges which deletion splits the graph into at least k components. For dense
graphs with Ω(n2) edges, Arora et al. [11] developed a polynomial time approximation
scheme for k-way edge cut. Recently, Kawarabayashi and Thorup [80] have shown
that k-way edge cut is fixed parameter tractable with respect to parameter s, whereas
parameterized by k the problem is W[1]-hard [53]. Therefore, this problem, when
considered with parameter s, is one of the few problems known where the vertex version
is W[1]-hard, but the edge version is FTP. There are several papers that studied k-
way edge cut on planar graphs. For k = 3, Hochbaum and Shmoys [73] constructed
a quadratic time algorithm for k-way edge cut on planar graphs. He [72] gave an
improved algorithm for this special case with running time O(nlogn). Kawarabayashi

1.6 23

and Thorup [80] presented an 2O(s2g2)n-time algorithm for graphs of genus g. Their
results were recently improved by Chtinis et al. [38].

1.6.2.2 The multi-way cut problem

The multi-way cut problem, consists, given a graph G = (V,E), a set of terminal A ⊂ V

and a weight function c : E → Z, in finding a separator S ⊆ E of minimum weight
such that all terminals of A are disconnected in (V,E \ S).

The problem was first proposed in T.C. Hu’s 1969 book [74]. Many applications
proposed for multiway cut include image processing, chip design and parallel and dis-
tributed computing. In the literature the problem has several names the A-cut problem
and the multi-terminal cuts problem. When the set of terminals has cardinality k, it
is sometimes called the k-terminal cut problem or the k-way cut problem.

The problem of computing a minimum weight multiway cut was shown to be NP-
hard and MAX SNP-hard even if k is fixed and k ≥ 3 [46]. The authors show that for
trees and 2-trees the problem can be solved in polynomial time. They also describe an
approximation algorithm. For planar graphs, the problem can be solved in polynomial
time for fixed k but is NP-hard when k is unbounded. For general graphs, there is
a simple 2-approximation algorithm disconnecting each terminal from the others by
a min-cut, but for any fixed k ≥ 3, the problem is APX-hard (also in [23]). In [40],
Chopra and Rao present a formulation for the problem and investigate the associated
polyhedron. They present some graph deletion and contraction operations, and sev-
eral valid inequalities. They give some cases for which the problem is polynomial and
develop a Branch-and-Cut algorithm. In [39], Chopra et al., give an extended formu-
lation for the problem and show that the linear relaxation can be solved in polynomial
time. They show that the solution of the linear relaxation is always integer for trees.
They present some valid inequalities for cyclic graphs and develop a Branch-and-Cut
algorithm. In [44], Cunningham et al., propose an approximation algorithm based on
a linear relaxation of a given formulation, using path inequalities. In [36], the authors
present a new integer linear formulation for the problem and a new approximation
algorithm. For trees and 2-trees graphs, there exists a linear algorithm to solve the
problem. In [30], Didi biha consider the linear relaxation LP (G,A) of the 3-terminal
cuts polyhedron P (G,A). He characterizes the pairs (G,A) for which LP (G,A) is
integer. This result was conjectured by Cunningham. In [23], the authors show that
there exists a 2-approximation algorithm for the problem.

24 Preliminaries and State-of-the-art

1.6.2.3 The balanced graph partitioning problem

In [9], Andreev et al., study the balanced graph partitioning problem, it consists,
given a graph G = (V,E) with a weight on each edge and two positive integers v, k,
in partitioning V into k subsets, such that each subset contains at most

v.n

k
nodes,

minimizing the weight of edges between subsets. For k = 2 and v = 1 this problem is
equivalent to the well-known Minimum Bisection problem for which an approximation
algorithm with a polylogarithmic approximation guarantee has been presented in [83].
The first heuristics for Minimum Bisection were given by Kernighan and Lin [81] and
subsequently improved in terms of running time by Fiduccia and Mattheyses [57]. If
the balance requirement of the Minimum Bisection problem is relaxed, one gets the
well-known graph separator problem. For a comprehensive survey of major results
in the area the reader is referred to the book Graph Separators with Applications by
Rosenberg and Heath [103]. The first non-trivial approximation algorithm for Minimum
Bisection is due to Saran and Vazirani [104] who obtained an approximation ratio of
n/2.

When v = 1, the problem is called the k-way partitioning problem in [79], the authors
study the problem and propose an algorithm for solving the problem based on reducing
the graph using matching. Recently, multilevel recursive bisection algorithm, gave a
good method to solve the k-way partitioning problem of a graph.

Chapter 2

The multi-terminal vertex separator
problem : Polyhedral analysis

Contents
2.1 Complexity analysis . 27

2.2 Formulations . 30

2.2.1 Double indices formulation 30

2.2.2 Natural formulation . 31

2.2.3 Comparing the LP-Relaxations 31

2.3 Polyhedral analysis . 33

2.3.1 Dimension . 33

2.3.2 Path inequalities . 35

2.3.3 Star tree inequalities . 37

2.3.4 Clique star inequalities . 42

2.3.5 Lifting procedure for star tree inequalities 43

2.3.6 Terminal tree inequalities . 44

2.3.7 Lifted terminal tree inequalities 46

2.3.8 Terminal cycle inequalities . 46

2.3.9 Extended terminal cycle inequalities 49

2.4 Reduction operations . 50

2.4.1 Deletion of a subgraph connected to two terminals 50

2.4.2 Contraction of a subgraph connected to two vertices 51

26 The multi-terminal vertex separator problem : Polyhedral analysis

2.4.3 Deletion of useless components 52

2.5 Branch-and-Cut Algorithm 53

2.5.1 Heuristics and performance guarantee 62

2.6 Computational Results . 66

2.7 Conclusion . 76

In this chapter we consider the multi-terminal vertex separator problem. We first
show that the problem is NP-hard, then we give two integer programming formulations
for the problem. For one of these formulations, we investigate the related polyhedron
and discuss its polyhedral structure. We describe some valid inequalities and charac-
terize when these inequalities define facets. We also derive separation algorithms for
these inequalities. Using these results, we develop a Branch-and-Cut algorithm for the
problem, along with an extensive computational study is presented.

Let G = (V ∪T,E) be a simple graph with V ∪T the set of vertices, where T is a set
of k distinguished vertices called terminals, and E the set of edges. A multi-terminal
vertex separator in G is a subset of vertices such that the graph induced by (V ∪T)\S
consists of k disjoint components, each with exactly one terminal. Given a weight
function w : V → Z, the multi-terminal vertex separator problem (MTVSP for short),
consists in finding a multi-terminal vertex separator in G of minimum weight. The
MTVSP can also be seen as the problem of finding a vertex subset S ⊆ V of minimum
weight such that each path between each pair of terminals intersects S. Indeed, if S
intersects all paths between each pair of terminals then the graph induced by (V ∪T)\S
would have k components. Moreover, each component contains exactly one terminal.
In the case where k = 2, the MTVSP can be solved in polynomial time [25].

The chapter is organized as follows, In Section 1 we discuss the complexity aspect
of the MTVSP. In Section 2 we give the integer programming formulations for the
problem and analyze their linear relaxations. Section 3 is devoted to the polyhedral
analysis of the MTVSP and description of some valid inequalities. In Section 4 we
discuss some graph reduction operations. In Section 5 we describe separation routines
for the inequalities described in Section 3 and develop a Branch-and-Cut algorithm for
the MTVSP. Our computational results are presented in Section 6, and finally some
concluding remarks are given in Section 7. The rest of this Section is devoted to more
definitions and notations.

In what follows we consider the following Hypotheses.

2.1 27

2.1- There is no edge between two terminals, otherwise the problem has no solution.

2.2- For every two different terminals t, t′ ∈ T , we have that N(t) ∩ N(t′) = ∅. Oth-
erwise, all vertices in N(t) ∩N(t′) must belong to the separator. In this case we
can remove these vertices from the graph.

2.3- For each vertex v ∈ V, there is at least one terminal path containing v. Otherwise,
v cannot belong to a minimal separator. In this case we can delete it from the
graph. Checking if a node v belongs to a terminal path can be done in polynomial
time.

2.4- Graph G is connected. Otherwise, we consider the MTVSP on each component
of the graph.

2.5- The weight of each vertex is 1, i.e., w(v) = 1 for each vertex v ∈ V . Otherwise,
if there exists a vertex v with w(v) = 0, then we can add v in the separator and
delete it from the graph. If w(v) ≥ 1 then we can replace v by a clique Kw(v) of
size w(v) such that each vertex of Kw(v) is adjacent to each vertex of N(v).

2.1 Complexity analysis

In [62], Garg et al. show that the MTVSP is NP-hard. In this section we give a simpler
proof of this result using a polynomial reduction from the vertex cover problem (VCP).
Given a graph H = (U,E ′), the VCP consists in finding a minimum cardinality subset
of vertices R ⊆ U such that each edge of E ′ is incident to at least one vertex of R. The
VCP is a well-known NP-hard problem [60].

Theorem 2.1 The MTV SP is NP-hard.

Proof. Consider the VCP on a graph H = (U,E ′). Let G = (V1 ∪ V2 ∪ V3 ∪ T,E) be
the graph obtained from H as follows

• add three vertices t1, t2 and t3 in T .

• for each vertex u ∈ U , add

– three vertices vu1 in V1, vu2 in V2 and vu3 in V3.

– three edges t1vu1 , t2vu2 and t3vu3 in E.

28 The multi-terminal vertex separator problem : Polyhedral analysis

– two edges vu1vu3 and vu2vu3 in E.

• for each edge uw ∈ E ′, add two edges vu1vw2 and vw1 vu2 in E.

Figure 2.1: Graph transformation from the graph H to the graph G.

Figure 2.1 illustrates the above graph transformation.

Proposition 2.2 Given a separator S of G and a vertex u ∈ U , either |{vu1 , vu2 , vu3} ∩
S| ≥ 2, vu3 ∈ S or both.

Proof. Let us assume the contrary. Suppose vu3 /∈ S and, say, {vu1 , vu2} ∩ S = {vu1}.
Then, {vu2 , vu3} is a terminal path, between t2 and t3, not intersecting S, contradicting
the fact that S is a separator.

Let R be a vertex cover in H and S a separator in G. Let RS ⊆ U be the set of
vertices such that for all u ∈ RS, |S ∩ {vu1 , vu2 , vu3}| ≥ 2 and let SR ⊆ V1 ∪ V2 ∪ V3 be
defined as follows. For each vertex u ∈ U , if u ∈ R then we add the two vertices vu1 , vu2
in SR, otherwise we add vu3 in SR.

Proposition 2.3 The set RS is a vertex cover in H and SR is a separator in G.

Proof. Suppose that RS is not a vertex cover in H. Then, there exists uw ∈ E ′ such
that RS ∩ {u,w} = ∅. From the construction of RS and Proposition 2.2 it follows that

2.1 29

{vu1 , vu2 , vw1 , vw2 }∩S = ∅ and {vu3 , vw3 } ⊆ S. As consequence, {vu1 , vw2 } is a terminal path,
between t1 and t2, not intersecting S, and thus, S is not a separator, a contradiction.
Now, suppose that SR is not a separator of G. Then, there is a terminal path not
intersecting SR in G. We distinguish two cases.

• There exists an edge uw ∈ E ′ such that the terminal path {vu1 , vw2 } or {vw1 , vu2},
between t1 and t2, does not intersect SR. From the definition of SR, it follows
that {u,w} ∩R = ∅, a contradiction with the fact that R is a vertex cover of H.

• There exists a vertex u ∈ U such that the terminal path {vu1 , vu3}, between t1 and
t3, or {vu2 , vu3}, between t2 and t3, does not intersect SR. This implies that either
{vu1 , vu3} ∩ SR 6= ∅ or {vu2 , vu3} ∩ SR 6= ∅, which is impossible.

Proposition 2.4 If S ′ is a separator in G with a minimum size, then S ′ is of size
q + |U | where q is the size of the vertex cover RS′ in H.

Proof. First note that, two nodes among {vu1 , vu2 , vu3} suffice to cut all the terminal
paths going through these nodes. Hence, as S ′ is a separator with a minimum size in
G, for all u ∈ U , 1 ≤ |S ′ ∩ {vu1 , vu2 , vu3}| ≤ 2. By Proposition 2.3, RS′ is a vertex cover
in H of size q and SRS

′
is a separator in G. Moreover, SRS

′
has the same size as S ′.

From its construction, the size of SRS
′
is 2q + (|U | − q) = q + |U |. Hence, that of S ′ is

q + |U |.

Proposition 2.5 If R is a vertex cover in H of minimum size, then SR is a separator
in G of minimum size. And if S is a separator in G of minimum size, then RS is a
vertex cover in H of minimum size.

Proof. Suppose that R is a vertex cover of minimum size q in H but SR is not of
minimum size in G. Note that from the construction of SR, SR is of size q + |U |.
Let S ′ ⊆ V1 ∪ V2 ∪ V3 be a separator in G of minimum size. From proposition 2.4,
|S ′| = q′+ |U | where q′ is the size of RS′ . Since |U |+ q′ < q+ |U |, it follows that q′ < q

and hence R is not of minimum size in H, a contradiction.
Now, suppose that, S is a separator in G of minimum size q + |U | but RS, which is of
size q, is not of minimum size in H. Let R′ ⊆ U be a vertex cover in H of minimum
size q′. Then, SR′ is a separator in G of size q′ + |U |. Since q′ < q, it follows that S is
not of minimum size in G, a contradiction.

30 The multi-terminal vertex separator problem : Polyhedral analysis

From Proposition 2.5, finding a vertex cover in H of minimum size is equivalent to
finding a minimum size three terminal vertex separator in G. Since the vertex cover
problem is a NP-hard, the 3−TV SP so is. And consequently the MTVSP is NP-hard.

2.2 Formulations

In this section we propose two 0−1 linear formulations for the MTVSP. The first one is
a compact formulation with a polynomial number of variables and constraints, and uses
double indices. The second has a polynomial number of variables but an exponential
number of inequalities.

2.2.1 Double indices formulation

Let x ∈ {0, 1}(V ∪T)×T such that

xvt =

{
1 if vertex v belongs to subset Vt, ∀v ∈ V ∪ T,∀t ∈ T,
0 otherwise.

The MTVSP is equivalent to the following integer linear program F 1,

min |V | −
∑
v∈V

∑
t∈T

xvt

xut +
∑

t′∈T\{t}

xvt′ ≤ 1 ∀uv ∈ E,∀t ∈ T, (2.1)

∑
t∈T

xvt ≤ 1 ∀v ∈ V ∪ T, (2.2)

xtt = 1 ∀t ∈ T, (2.3)

xvt ∈ {0, 1} ∀v ∈ V ∪ T,∀t ∈ T. (2.4)

For each pair of terminals {t, t′} ⊆ T , inequalities (2.1) ensure that there is no edge
connecting Vt and Vt′ . Inequalities (2.2) guarantee that each vertex of V ∪ T belongs
to at most one subset of vertices. Inequalities (2.3) ensure that each terminal belongs
to exactly one subset of vertices.

2.2 31

2.2.2 Natural formulation

Let Γ be the set of all terminal paths between the terminals in G. Let x ∈ {0, 1}V such
that

x(v) =

{
1 if vertex v belongs to the separator, ∀v ∈ V,
0 otherwise.

The MTVSP is equivalent to the following integer linear program F 2,

min
∑
v∈V

w(v)x(v) (2.5)∑
v∈Ptt′

x(v) ≥ 1 ∀Ptt′ ∈ Γ, (2.6)

x(v) ≤ 1 ∀v ∈ V, (2.7)

x(v) ≥ 0 ∀v ∈ V, (2.8)

x(v) ∈ {0, 1} ∀v ∈ V. (2.9)

Inequalities (2.6) guarantee that at least one vertex of each terminal path belongs to
the separator.

2.2.3 Comparing the LP-Relaxations

We first present a numerical comparison of the LP-Relaxation values of the two above
formulations with the optimal value, for some DIMACS instances [1]. The columns
in Table 2.1 represent the name of the instance, the value of the LP-Relaxation of
formulation F 1, the value of the LP-Relaxation of formulation F 2 and the value of the
optimal separator, respectively.

32 The multi-terminal vertex separator problem : Polyhedral analysis

Instances k (2.1)− (2.3) (2.6)− (2.8) OPT

DSJR500 10 32 18.5 32
Games120 10 30.34 18.5 31
Miles250 15 32.18 27.5 35
Myciel6 11 38.34 22.5 40
Myciel7 17 57 31 57
Queen8_ 12 11 38 21.5 38
Queen14_ 14 18 65 35 65
Queen16_ 16 16 59 32 59

Table 2.1: Comparing LP-Relaxations value of F 1 and F 2 with the optimal one.

It appears from Table 2.1 that the LP-Relaxation of the first formulation is better
than the second one. This is shown below.

Proposition 2.6 ZF 2 ≤ ZF 1, where ZF 1(ZF 2) is the optimal value of F 1(F 2).

Proof. Let assume the contrary, ZF 1 < ZF 2 . Let x ∈ [0, 1]V×T (resp. y ∈ [0, 1]V) be
the optimal solution of F 1(resp. F 2) associated with ZF 1(resp. ZF 2). For v ∈ V , let
y ∈ [0, 1]V such that y(v) = 1 −

∑
t∈T

xvt. Clearly, by inequalities (2.2), y(v) ∈ [0, 1].

Consider a terminal path Ptt′ between two terminals t and t′ of l edges. By summing
inequalities (2.1) associated with the edges of Ptt′ and t, (by respecting the order of
nodes in Ptt′) we obtain the following inequality

xtt +
∑
v∈Ptt′

∑
t′′∈T

xvt′′ +
∑

t′′∈T\{t}

xt′t′′ ≤ l

As xtt = 1 and
∑

t′′∈T\{t}
xt′t′′ = 1, it follows that

∑
v∈Ptt′

y(v) ≥ 1,

and thus, inequalities (2.6) is satisfied for y. The objective value of y is Z ′ =
∑
v∈V

y(v) =∑
v∈V

(1−
∑
t∈T

xvt) = ZF 1 . Thus, Z ′ < ZF 2 , which contradicts the fact that y is the optimal

solution of F 2.

2.3 33

Note that the first formulation has (n + k)k variables and the second one has only n
variables. Also, note that inequalities (2.6), which are in an exponential number, can
be separated in polynomial time. Since the second formulation has fewer variables and
may use less number of inequalities of type (2.6) in the Branch-and-Cut algorithm, we
will consider it for our analysis. (For the instance R_1300 in Table 2.3, F 1 has 13100

variables and 3329920 non-trivial inequalities, whereas F 2 has only 1300 variables and
uses 122 non-trivial inequalities in the Branch-and-Cut algorithm).

2.3 Polyhedral analysis

Let P (G, T) be the convex hull of the solutions of formulation F 2, that is,

P (G, T) = conv{x ∈ {0, 1}V | x satisfies (2.6)}.

In this Section, we will discuss P (G, T), we will give its dimension, identify several
classes of valid inequalities and describe necessary and sufficient Conditions for these
inequalities to be facet defining.

2.3.1 Dimension

We first establish the dimension of P (G, T).

Theorem 2.7 P (G, T) is full dimensional.

Proof.

34 The multi-terminal vertex separator problem : Polyhedral analysis

Figure 2.2: Two separators S0 and Sv.

We need to exhibit n + 1 separators such that their incidence vectors are affinely
independent. Let S0 = V . Clearly, S0 is a separator of G. For each v ∈ V , let
Sv = V \{v}. By Hypothesis 2.2, v is not adjacent to two terminals. It then follows that
Sv is a separator. (Figure 2.2 illustrates the two above separators.) This constitutes a
set of n+1 separators of G. Moreover, their incidence vectors are affinely independent.

Now we characterize when inequalities (2.6),(2.7) and (2.8) define facet of P (G, T).

Theorem 2.8 For v ∈ V , inequality x(v) ≤ 1 defines a facet of P (G, T).

Proof. We need to exhibit n separators containing v such that their incidence vectors
are affinely independent. Let S0 = V , and for each vertex u ∈ V \{v}, let Su = V \{u}.
Clearly, these sets are separators in G. Moreover, their incidence vectors are affinely
independent.

Theorem 2.9 For v ∈ V , inequality x(v) ≥ 0 defines facet of P (G, T) if and only if
v does not belong to a terminal path Ptt′ containing exactly two internal vertices.

Proof. (⇒) Suppose there exists a terminal path Ptt′ containing exactly two internal
vertices u and v. Then, we have the valid inequalities x(u) + x(v) ≥ 1 and x(u) ≤ 1.
Inequality x(v) ≥ 0 can then be obtained as a linear combination of these inequalities,
and cannot then define a facet.
(⇐)

2.3 35

Let S0 = V \ {v} and Su = S0 \ {u} for all u ∈ V \ {v}. Since v does not belong to a
terminal path of two vertices, these sets are separators of G. Moreover, their incidence
vectors are affinely independent.

2.3.2 Path inequalities

Theorem 2.10 Inequality (2.6), associated with a terminal path Ptt′, defines a facet
of P (G, T) if and only if

(a) Ptt′ is minimal.

(b) No vertex v ∈ V \ Ptt′ is adjacent to a terminal t′′ ∈ T \ {t, t′} and to two vertices
of Ptt′.

Proof. (⇒)

(a) If Ptt′ is not minimal, then there exists a non-terminal vertex v ∈ Ptt′ adjacent
to a terminal t′′ ∈ T \ {t, t′}. Inequality (2.6) can then be obtained by summing
inequality (2.6) associated with Pt′′t′ and inequalities (2.8) associated with the
vertices of Ptt′ \ Pt′′t′ . Hence, inequalities (2.6) cannot define a facet.

(b) Suppose there exists v ∈ V \ Ptt′ which is adjacent to t′′ ∈ T \ {t, t′} and to
two vertices of Ptt′ . Thus, we have the following valid inequalities, x(Ptt′) ≥ 1,
x(Ptt′′) ≥ 1, x(Pt′t′′) ≥ 1 and x(u) ≥ 0 for all u ∈ Ptt′ \ (Ptt′′ ∪ Pt′t′′). By summing
these inequalities, devising by 2 and rounding up the right hand side, we obtain the
valid inequality x(Ptt′) + x(v) ≥ 2. Inequality (2.6) associated with terminal path
Ptt′ can then be obtained from the above inequality and inequality (2.7) associated
with v, and it cannot therefore be facet defining.

(⇐) Denote by ax ≥ α inequality (2.6). Let bx ≥ β be an inequality that defines a
facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}.
We will show that there exists ρ such that b = ρa.

36 The multi-terminal vertex separator problem : Polyhedral analysis

Figure 2.3: Two separators Sv and Suw.

For v ∈ Ptt′ , let Sv = (V \ Ptt′) ∪ {v}. Figure 2.3.(a) represents the set Sv. By
Condition (a), each terminal path contains v or a vertex from V \ Ptt′ . Thus, Sv is
a separator of G. Moreover, axSv = α. Hence, bxSu = bxSv for every u, v ∈ Ptt′ .
Therefore,

b(u) = b(v) = ρ for all u, v ∈ Ptt′ and some scalar ρ ∈ R.

For w ∈ V \ Ptt′ , let u ∈ Ptt′ be a vertex adjacent to w. If there is no vertex in
Ptt′ adjacent to w, then u is arbitrarily chosen in Ptt′ . Set Suw = Su \ {w}. From
Condition (b) we have that Suw is a separator of G. (Figure 2.3.(b) represents the
set Suw.) Moreover, the incidence vector of Suw satisfies inequality (2.6) with equality.
Hence, bxSu = bxS

u
w , and thus, b(w) = 0. We then obtain that

b(w) = 0 for all w ∈ V \ Ptt′ .

Therefore, we have that b = ρa, which ends the proof.

In what follows we describe further classes of valid inequalities of P (G, T) and discuss
their facial structure.

2.3 37

2.3.3 Star tree inequalities

Figure 2.4: A Star tree.

A star tree H = (V (H) ∪ T (H), E(H)) of G is a tree where the pending nodes are
the terminal nodes of the tree, and all the other (non-terminal) nodes, different from
the root node, are of degree two. The star tree H with q terminals t1, . . . , tq, can
also be seen as the concatenation of q paths Pti , i = 1, . . . , q between the root vr
and ti, i = 1, . . . , q. The paths Pt1 , . . . , Ptq will be called branches. A star tree with
2 terminals is nothing but a terminal path. Figure 2.4 displays a star tree with 11
branches.

Theorem 2.11 If H = (V (H) ∪ T (H), E(H)) is a star tree of G with root vr, then
the inequality

x(V (H) \ {vr}) + (q − 1)x(vr) ≥ q − 1 (2.10)

is valid for P (G, T).

Proof. Given a separator S of G. if vr belongs to S, then x(vr) = 1 and the inequality
is satisfied by xS. If vr is not in S, then S must contain at least q−1 nodes of V (H)\{vr}
in order to cut all the terminal paths of H.

Lemma 2.12 If there is a vertex w ∈ V \ V (H) adjacent to a terminal t′ ∈ T \ T (H)

and to an internal vertex in each branch of H, then the following inequality

x(V (H) \ {vr}) + (q − 1)x(vr) + x(w) ≥ q (2.11)

is valid for P (G, T).

38 The multi-terminal vertex separator problem : Polyhedral analysis

Proof. Consider a separator S. If w ∈ S, then either vr ∈ S or q − 1 vertices of
V (H) \ {vr} belong to S. In both cases, inequality (2.11) is satisfied by xS. If w /∈ S,
then suppose that S contains vr or q − 1 vertices of V (H) \ {vr}. In both cases, there
exists a terminal path between t′ and at least one terminal of T (H) not intersecting
S. Thus, S contains another vertex from V (H). And hence inequality (2.11) is again
satisfied.

Lemma 2.13 If there is a vertex w ∈ V \ V (H) adjacent to a terminal t′ ∈ T \ T (H),
and to two different vertices u1, u2 ∈ Pt, for some t ∈ T (H), the following inequality

x(V (H) \ {vr}) + (q′ − 2)x(vr) + x(w) ≥ q′ − 1 (2.12)

is valid for P (G, T), where q′ = q + 1.

Proof. We can suppose that u1 6= vr. Given a separator S of G, if vr belongs to S,
then S must contains another vertex v ∈ Ptt′ ⊆ Pt ∪ {w}, where Ptt′ is the terminal
path between t and t′ not containing vr. Then, the inequality (2.12) is satisfied by xS.
If vr is not in S, then S contains q−1 vertices from V (H)\{vr}. Since w is adjacent to
t′ and to two vertices of Pt, S must contain another vertex from (V (H) ∪ {w}) \ {vr}.
And hence the inequality (2.12) is satisfied by xS.

Theorem 2.14 Given a star tree H = (V (H) ∪ T (H), E(H)) of G, inequality (2.10)

defines a facet of P (G, T) if and only if the following hold

(a) There is no vertex of V (H) adjacent to a terminal of T \ T (H).

(b) The subgraph induced by V (H) in G contains no cycle.

(c) There is no vertex of V \ V (H) adjacent to a terminal of T \ T (H), and to two
vertices of the same branch.

(d) There is no vertex of V \ V (H) adjacent to a terminal of T \ T (H) and to an
internal vertex of each branch of H.

(e) vr is not adjacent to a terminal of T (H).

Proof. (⇒)

2.3 39

(a) If a vertex u ∈ Pt\{vr}, for some t ∈ T (H), is adjacent to a terminal t′ ∈ T \T (H),
then consider star tree H ′ in H with leaf set T (H ′) = T (H) \ {t}. Inequality
(2.10) associated with H can be obtained from the star tree inequality associated
with H ′, the inequality associated with the terminal path Ptt′ between t and t′

and the trivial inequalities x(w) ≥ 0 for all w of Pt \ Ptt′ . If vr is adjacent to a
terminal t′ ∈ T \T (H), then consider the star tree H ′′ where T (H ′′) = T (H)∪{t′}.
Inequality (2.10), associated with H, can then be obtained by summing the star
tree inequality induced by H ′′ and the trivial inequality −x(vr) ≥ −1. So in
both cases, inequality (2.10) can be obtained as a linear combination from valid
inequalities and they cannot be facet defining.

(b) Suppose that the subgraph induced by V (H) in G contains a cycle. It follows that
there exist two vertices u, v ∈ V (H) such that uv ∈ E \E(H). We distinguish two
cases

Case 1. u ∈ Pt and v ∈ Pt′ for two different terminals t, t′ ∈ T (H). Then, the
following inequality

x(V (H) \ {vr}) + (q − 2)x(vr) ≥ q − 1 (2.13)

is valid for P (G, T) and dominates inequality (2.10) associated with H.
Indeed, given a separator S of G, if vr belongs to S, then S must contains
another vertex w ∈ Ptt′ , where Ptt′ is the terminal path between t and t′

not containing vr. Then, the inequality is satisfied by xS. If vr is not in
S, then S must contain at least q− 1 nodes of V (H) \ {vr} in order to cut
all the terminal paths of H. And the inequality is again satisfied. Thus,
inequality (2.10) cannot be facet defining. It will be shown later in Section
2.3.5 that inequality (2.13) can be obtained as a lifted inequality from the
star tree inequality (2.10).

Case 2. u, v ∈ Pt for some t ∈ T (H). Let Puv ⊂ Pt be the set of the internal
vertices of the path between u and v, in the branch Pt. Then, ((V (H) \
Puv) ∪ T (H), E(H)) is also a star tree. Then, the following inequality

x(V (H) \ (Puv ∪ {vr})) + (q − 1)x(vr) ≥ q − 1

is a star tree inequality that is valid for P (G, T). However, this inequal-
ity dominates inequality (2.10) associated with H. Therefore, the latter
cannot be facet defining.

(c) Suppose there is a vertex w ∈ V \ V (H) adjacent to a terminal t′ ∈ T \ T (H), and
to two different vertices u1, u2 ∈ Pt, for some t ∈ T (H). From Lemma 2.13, the

40 The multi-terminal vertex separator problem : Polyhedral analysis

following inequality

x(V (H) \ {vr}) + (q′ − 2)x(vr) + x(w) ≥ q′ − 1 (2.14)

is valid for P (G, T), where q′ = q + 1. Hence, inequality (2.10) can be obtained
by summing inequality (2.14) and −x(w) ≥ −1 and replacing q′ by q + 1. Thus,
inequality (2.10) cannot be facet defining.

(d) Suppose there is a vertex w ∈ V \V (H) adjacent to a terminal t′ ∈ T \T (H) and to
an internal vertex in each branch of H. From Lemma 2.12 the following inequality

x(V (H) \ {vr}) + (q − 1)x(vr) + x(w) ≥ q (2.15)

is valid for P (G, T). Inequality (2.10) can be obtained by summing inequality
(2.15) and x(w) ≤ 1. Therefore, inequality (2.10) cannot be facet defining.

(e) If there exists a branch Pt with no internal vertices, (that is to say, vr is adjacent
to a terminal of T (H)), then let H ′ be the star tree obtained from H by deleting
a branch Pt′ with at least one internal vertex. Inequality (2.10) can be obtained
by summing the star tree inequality associated with H ′ together with the terminal
path inequality associated with Pt ∪ Pt′ .

(⇐) Suppose that Conditions (a)-(e) hold. Denote by ax ≥ α inequality (2.10). Let
bx ≥ β be an inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) :

ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will prove that there exists ρ such that b = ρa.

Figure 2.5: A ring Qt and two separators S1 and S2.

2.3 41

By Condition (e), it follows that each branch Pt, t ∈ T (H), contains at least one
internal node. For a terminal t ∈ T (H), a ring of V (H)\Pt is a subset of q−1 vertices
containing exactly one vertex from each branch different from Pt. Hence, if Qt is a ring
of V (H) \ Pt then for all t′ ∈ T (H) \ {t}, |(Pt′ \ {vr, t′}) ∩ Qt| = 1, see Figure 2.5.(a).
Consider two vertices u1, u2 ∈ V (H) \ {vr} that belong to different branches Pt1 , Pt2 of
H. Let Qt1

1 , Q
t2
2 be two rings such that u1 ∈ Qt1

1 , u2 ∈ Qt2
2 and Qt1

1 \ {u1} = Qt2
2 \ {u2}.

Let S1 = (V \ V (H)) ∪Qt1
1 and S2 = (V \ V (H)) ∪Qt2

2 . See Figure 2.5.(b) and Figure
2.5.(c). Sets S1 and S2 are separators in G. Indeed, by Conditions (a) and (b) each
terminal path between a terminal in T (H) and a terminal in T , contains a vertex of Qti

i

with i = 1, 2 or it contains a vertex of V \ V (H). Hence, S1 and S2 are two separators
of G. Moreover, incidence vectors xS1 and xS2 satisfy inequality (2.10) with equality.
Hence, bxS1 = bxS2 , implying that b(u1) = b(u2). As t, u1 and u2 are arbitrarily chosen,
we have that

b(u) = b(v) = ρ for all u, v ∈ V (H) \ {vr} and a scalar ρ ∈ R.

Figure 2.6: Two separators S0 and Sw.

Set S0 = (V \V (H))∪{vr}. By Conditions (a) and (b) each terminal path between a
terminal in T (H) and a terminal in T , contains vr or a vertex from V \V (H). Thus, S0

is a separator of G. See Figure 2.6.(a) for an illustration. Also, we have that axS0 = α.
Hence, bxS1 = bxS0 , yielding

b(vr) =
∑
v∈Qt1

b(v) = (q − 1)ρ.

Now consider a vertex w ∈ V \ V (H). We distinguish two cases.

42 The multi-terminal vertex separator problem : Polyhedral analysis

Case 1. If w is not adjacent to the root vertex vr, then by Condition (c), w is adjacent
to at most one vertex of each branch and by Condition (d), there exists at least
one branch Pt such that no internal vertex of Pt is adjacent to w. Consider the
ringQ ofH such thatN(w)∩V (H) ⊆ Q and each vertex ofQ\(N(w)∩V (H)) is
adjacent to a terminal of T (H)\{t}. Let S ′ = (V \V (H))∪Q and Sw = S ′\{w}.
Since Q is a ring, S ′ is a separator of G, as defined before. Set Sw is also a
separator of G. Otherwise, since S ′ is a separator, w is adjacent to a terminal
in T \ T (H) and to a vertex in Pt. Contradiction with Condition (d).

Case 2. If w is adjacent to the root vertex vr then, let Sw = S0 \ {w}. Set Sw is a
separator of G. Indeed, by Condition (c), since w is adjacent to vr, w cannot
be adjacent to vertices of V (H)\{vr}. Therefore, every terminal path between
a terminal of T \ T (H) and a terminal of T intersects Sw

In both cases, Sw is a separator in G. (See Figure 2.6.(b) for an illustration). And its
incidence vector satisfies inequality (2.10) with equality. Hence, axSw = axS0 , therefore
bxSw = bxS0 . This implies that b(w) = 0. Hence, we have that

b(u) = 0 for all u ∈ V \ V (H).

In consequence we have that b = ρa, and the proof is complete.

2.3.4 Clique star inequalities

Figure 2.7: Clique star of 7 terminals.

A graph Q = (V (Q)∪T (Q), E(Q)) is called a clique star if Q consists of a clique Kq on
q vertices of V (Q), q terminals t1, . . . , tq (that is T (Q) = {t1, . . . , tq}) and q disjoints

2.3 43

paths Pt1 , . . . Ptq such that each path Pti is between a different vertex of Kq and ti.
The paths Pt are called branches. Figure 2.7 shows a clique star with 7 branches. In
what follows we will suppose that q ≥ 3, otherwise the clique star is either a terminal
path or a branch.

Theorem 2.15 Given a clique star Q = (V (Q) ∪ T (Q), E(Q)) of G, the following
inequality is valid for P (G, T)

x(V (Q)) ≥ q − 1. (2.16)

Proof. If S ∩Kq = ∅, then clearly, S must contain at least q − 1 vertices of V (Q) to
cut all the terminal paths of Q. So suppose that S ∩Kq = {v1, . . . , vl}, l ≤ q − 2. (If
l ≥ q − 1, then inequality (2.16) is satisfied by xS). Note that each vertex vi ∈ Kq is
an extremity of branch Pti . Hence, q− l terminals remain to separate. For this at least
q− l− 1 vertices from V (Q) \Kq are needed to cut all the terminal paths between the
remaining terminals.

2.3.5 Lifting procedure for star tree inequalities

In what follows we are going to describe a lifting procedure for the star tree inequalities.
This will permit to extend these inequalities to a more general class of valid inequalities.
Let G = (V ∪ T,E) be a simple graph. Consider a star tree H, of G. Let a branch
clique W ⊆ (V (H) \ {vr}) be a clique such that for each pair of vertices u, v ∈ W ,
u and v belong to different branches of H. Observe that each branch clique yields a
clique star in the graph. (See Figure 2.8 for illustration where three branch cliques are
displayed).

44 The multi-terminal vertex separator problem : Polyhedral analysis

Figure 2.8: Star tree with clique branches.

Theorem 2.16 Let Π = {W1, . . . ,Ws} be a set of vertex disjoint branch cliques in H.

Let αΠ =
s∑
i=1

(|Wi| − 1). Then, the inequality

x(V (H) \ {vr}) + (q − 1− αΠ)x(vr) ≥ q − 1 (2.17)

is valid for P (G, T).

Proof. Given a separator S of G, we distinguish two cases. If vr ∈ S, then for each
clique star QWi associated with the branch clique Wi, xS(V (QWi)) ≥ |Wi| − 1 by the
clique star inequality (2.7). By adding these inequalities we obtain that xS(

⋃p
i=1Q

Wi) ≥
αΠ. As

⋃p
i=1Q

Wi ⊂ V (H) \ {vr}, it follows that xS(V (H) \ {vr}) ≥ αΠ. As vr ∈ S, we
have that xS satisfies inequality (2.17). If vr /∈ S, then xS(V (H)) ≥ q − 1 by the star
tree inequality. Thus, xS satisfies also inequality (2.17).

2.3.6 Terminal tree inequalities

A terminal tree H = (V (H) ∪ T (H), E(H)), is a tree such that the terminals of T (H)

are the leaves of H. (See Figure 2.3.6 for illustration). A leaf branch Pt of a terminal
tree H is a path between a terminal t and a vertex of V (H) of degree greater or equal
to 3, and where all internal vertices are of degree 2. For v ∈ V (H), let dH(v) be the
degree of v in H. If |T (H)| ≤ 3, the terminal tree is either a star tree or a terminal
path.

2.3 45

Figure 2.9: Terminal tree of 10 terminals.

Theorem 2.17 Let G = (V ∪ T,E) be a graph and H a terminal tree of G. Let
q = |T (H)|. Then, the following inequality is valid for P (G, T),∑

v∈V (H)

(dH(v)− 1)x(v) ≥ q − 1. (2.18)

Proof. The proof is by induction on q. If q ≤ 3, inequality (2.18) is nothing but a
star tree inequality (2.10) associated with H and then it is valid. Let us suppose q ≥ 3,
and that for each terminal tree with less than q−1 terminals, the associated inequality
(2.18) is valid for P (G, T). Since q ≥ 3, there must exist a vertex u belonging to two
leaf branches Pt and Pt′ . Let us consider the terminal tree H1 (resp. H2) obtained
from H by removing the vertices of Pt \ {u} (resp. Pt′ \ {u}). Thus, H1 and H2 have
each one q − 1 leaves and hence q − 1 terminals. By the induction Hypothesis, the
terminal tree inequalities (2.18) associated with H1 and H2∑
v∈V (H)\(Pt∪Pt′)

(dH(v)− 1)x(v) +
∑

v∈Pt′\{u}

(dH(v)− 1)x(v) + (dH(u)− 2)x(u) ≥ q − 2,

∑
v∈V (H)\(Pt∪Pt′)

(dH(v)− 1)x(v) +
∑

v∈Pt\{u}

(dH(v)− 1)x(v) + (dH(u)− 2)x(u) ≥ q − 2.

are valid for P (G, T). By summing these inequalities together with the inequality
x(Pt ∪ Pt′) ≥ 1 induced by the terminal path Pt ∪ Pt′ , and inequality x(u) ≥ 0, we
obtain the inequality∑

v∈V (H)\(Pt∪Pt′)

2(dH(v)− 1)x(v) +
∑

v∈Pt∪Pt′

(2(dH(v)− 1))x(v) ≥ 2q − 3. (2.19)

46 The multi-terminal vertex separator problem : Polyhedral analysis

is valid for P (G, T). By dividing by 2 and rounding up the right hand side, we obtain
inequality (2.19).

Remark 2.18 If the terminal tree contains some terminals that are not leaves, then
the associated inequality (2.18) remains valid.

2.3.7 Lifted terminal tree inequalities

Let R be a terminal tree of G. For a vertex v, let Fv be the union of leaf branches
incident to v. Clearly, Fv is a star tree in R. Let ΠFv be a set of vertex disjoint branch
cliques in Fv (see, lifted star tree inequalities, subsection 2.3.5).

Theorem 2.19 The following inequality∑
v∈V (R)

(dR(v)− 1− αΠFv
)x(v) ≥ q − 1

if valid for P (G, T).

Proof. The proof is similar to the one of Theorem 2.16.

2.3.8 Terminal cycle inequalities

A terminal cycle J = (V (J)∪T (J), E(J)), where T (J) is a set of q terminals is a graph
given by a cycle C of q vertices and q disjoint edges between the vertices of C and the
terminals of T (J). (See Figure 2.10 displaying a terminal cycle where q = 5).

Figure 2.10: Terminal cycle of 5 terminals.

2.3 47

Theorem 2.20 If J = (V (J)∪T (J), E(J)) is a terminal cycle of G, then the following
inequality is valid for P (G, T),

x(C) ≥ dq
2
e. (2.20)

Proof. Let S be a separator in G. Suppose that there exists an edge uv ∈ C such
that S ∩ {u, v} = ∅. Since u and v are connected to two different terminals, there is
a terminal path not intersecting S, a contradiction. So, for each edge e ∈ C, at least
one vertex of e belongs to S. Thus, the result follows.

Theorem 2.21 Given a terminal cycle J = (V (J)∪T (J), E(J)) of G, with |T (J)| = q,
inequality (2.20) defines a facet of P (G, T) if and only if the following hold.

(a) q is odd.

(b) C is chordless.

(c) For w ∈ V \ C not adjacent to a terminal, there exists a vertex cover of C of size
d q

2
e containing at least |C ′| − 1 vertices of C ′, where C ′ = N(w) ∩ C.

(d) For w ∈ V \ C adjacent to a terminal, there exists a vertex cover in C of size d q
2
e

containing C ′, where C ′ = N(w) ∩ C.

Proof. Let t1, . . . , tq be the terminals of T (J), v1, . . . , vq the nodes of C and ei = viti,
for i = 1, . . . , q. For i = 1, . . . , q − 1, we will let P ti denote the terminal path
(ti, vi, vi+1, ti+1).
(⇒)

(a) If q is even, the terminal cycle inequality associated with J can be obtained by
summing the terminal path inequalities associated with
{P t1 , P t3 , . . . , P tq−1}. Thus, inequality (2.20) cannot be facet defining.

(b) If G[C] contains a chord uv, then, J can be decomposed into two terminal cy-
cles J1 and J2 with a common edge uv, with q1 and q2 terminals, respectively.
Suppose, without loss of generality, that J1 has an odd number of terminals and
J2 has an even one. Also, we may suppose that v = v1 and v1, . . . , vq2 are the
non-terminal nodes of J2. Let P be the set of the q2

2
− 1 disjoint terminal paths

{v2, v3}, {v4, v5}, . . . , {vq2−2, vq2−1}. The terminal cycle inequality associated with
J can then be obtained by summing the terminal cycle inequality related to J1 and
the terminal path inequalities related to the terminal paths of P.

48 The multi-terminal vertex separator problem : Polyhedral analysis

(c) Suppose there exists a vertex w ∈ V \ C not adjacent to a terminal, and adjacent
to vertices of C ′ ⊆ C, such that each vertex cover of C of size d q

2
e contains at most

|C ′| − 2 vertices of C ′. Observe that for every two nodes u, u′ of C ′, (t, u, w, u′, t′)

is a terminal path, where t (t’) is the terminal adjacent to u (u’). As a separator
of G must contain a vertex cover of C, it follows that any separator of G contains
at least d q

2
e+ 1 vertices of C ∪ {w}. Hence, the following inequality

x(C) + x(w) ≥ dq
2
e+ 1, (2.21)

is valid for P (G, T). However, inequality (2.20) can be obtained by summing the
above inequality and −x(w) ≥ −1, and hence cannot define a facet.

(d) Suppose there exists a vertex w ∈ V \ C adjacent to a terminal t′ such that each
vertex cover of C of size d q

2
e contains at most |C ′| − 1 vertices of C ′. Then,

each vertex cover of C of size d q
2
e, does not intersect at least one terminal path

(t, u, w, t′), where u ∈ C ′ and t is the terminal adjacent to u. Thus, the inequality
(2.21) is valid for P (G, T), but this implies, as before, that inequality (2.20) can
be obtained from the above inequality and −x(w) ≥ −1.

(⇐) Suppose that all the Conditions (a)−(d) are satisfied. Denote by ax ≥ α inequality
(2.20) and let bx ≥ β be an inequality that defines a facet of P (G, T) such that
{x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. Since P (G, T) is full dimensional,
we need to prove that there exists ρ such that b = ρa.

Let S1 = (V \ C) ∪ {v1, v3, . . . , vq} and S2 = (S1 \ {v1}) ∪ {v2}. As C is chordless
and q is odd, we have that S1 and S2 are separators of G, and their incidence vectors
satisfy (2.20) with equality. Hence, bxS1 = bxS2 = β, which implies that b(v1) = b(v2).
By symmetry, we obtain that

b(u) = b(v) = ρ for all u, v ∈ C, for some ρ ∈ R.

Now let w ∈ V \C. Let C ′ = N(w)∩C. If w is not adjacent to a terminal, by Condition
(c), there exists a vertex cover U of C of size d q

2
e containing at least |C ′|− 1 vertices of

C ′. Let Sw = ((V \ C) ∪ U) \ {w}. By Condition (b), for all ui, vj ∈ C \ C ′, uivj /∈ E,
thus, the path ti, ui, vj, tj does not exist. By Condition (c), for all u, v ∈ N(w), u or v
belongs to U or V \C, thus, each terminal path containing w, intersects Sw. Therefore,
Sw is a separator of G. The incidence vectors of Sw ∪ {w} and Sw satisfy inequality
(2.20) with equality. Therefore, bxSw∪{w} = bxSw and thus, b(w) = 0. If w is adjacent
to a terminal, we can show along the same lines that b(w) = 0. Therefore,

b(v) = 0 for all v ∈ V \ C.

Consequently, we have that b = ρa and the proof is complete.

2.3 49

2.3.9 Extended terminal cycle inequalities

An extended terminal cycle J = (V (J) ∪ T (J), E(J)) is a general form of a terminal
cycle configuration such that each vertex of the cycle C is connected to zero, one or
several terminals by means paths, which will be called branches. (See Figure 2.11 for
illustration). Let V 1 ⊆ V (J) be the set of vertices of degree greater or equal to 3 and
V 2 ⊆ V (J) the set of vertices of degree equal to 2. For each vertex v ∈ V (J), let dJ(v)

be the degree of v in J . Let β(J) =
∑
v∈V 1

(dJ(v)− 3).

Figure 2.11: Extended terminal cycle with β(J) = 2.

Then, we have the following theorem

Theorem 2.22 The inequality∑
v∈V 2

x(v) +
∑
v∈V 1

(dJ(v)− 2)x(v) ≥ d|V
1|

2
e+ β(J) (2.22)

is valid for P (G, T).

Proof. The proof is by induction on β(J). If β(J) = 0, then the proof is similar to
that of Theorem 2.20. So suppose that β(J) ≥ 1, and that inequality (2.22) is valid
for every extended terminal cycle with β(J) ≤ s. We will show that it remains valid
when β(J) = s + 1. So suppose that β(J) = s + 1. Since β(J) ≥ 1, there must

50 The multi-terminal vertex separator problem : Polyhedral analysis

exist two branches Pt and Pt′ with a common vertex u ∈ C. Let J1 (resp. J2) be the
extended terminal cycle obtained from J by removing the vertices of Pt \ {u} (resp.
Pt′ \ {u}). Remark that β(J1) = β(J2) = s. From the induction Hypothesis, the
following inequalities are valid for P (G, T).∑

v∈V 2\Pt′

x(v) +
∑
v∈V 1

(dJ(v)− 2)x(v)− x(u) ≥ d|V
1|

2
e+ β(J)− 1

∑
v∈V 2\Pt

x(v) +
∑
v∈V 1

(dJ(v)− 2)x(v)− x(u) ≥ d|V
1|

2
e+ β(J)− 1

By summing these inequalities together with x(Pt ∪ Pt′) ≥ 1 and x(u) ≥ 0, dividing
the resulting inequality by 2 and rounding up the right hand side, we obtain inequality
(2.22).

2.4 Reduction operations

In this Section, we are going to describe some graph reduction operations. These can
be used in a preprocessing phase in order to reduce the graph and then accelerate the
resolution of the problem.

2.4.1 Deletion of a subgraph connected to two terminals

Let H be a subgraph of G such that there exist two terminals t, t′ ∈ T adjacent to
V (H), and no vertex in V (H) is adjacent to vertices of (V ∪ T) \ (V (H)∪ {t, t′}). See
Figure 2.12 for illustration.

2.4 51

Figure 2.12: Deleting a subgraph connected to two terminals.

Lemma 2.23 Let S1 (S2) be a separator of minimum size in graph G[V (H) ∪ {t, t′}]
(G[(V ∪ T) \ V (H)]). Then, S1 ∪ S2 is a minimum separator in G.

Proof. Suppose that S1 ∪ S2 is not a separator in G. It follows that there exists a
terminal path P between two terminals not intersecting S1 ∪ S2. Then, P is either in
G[V (H)∪{t, t′}] or in G[(V ∪T)\V (H)]. If P is in G[V (H)∪{t, t′}] (G[(V ∪T)\V (H)]),
then P does not intersect S1 (S2). Thus, S1 (S2) is not a separator in G[V (H)∪{t, t′}]
(G[(V ∪ T) \ V (H)]), a contradiction. Consequently, S1 ∪ S2 is a separator in G.

Now suppose that S1 ∪ S2 is not minimum. Let S ⊂ V be a minimum separator
in G. Let S1 and S

2 be the restriction of S in G[V (H) ∪ {t, t′}] and G[(V ∪ T) \
V (H)], respectively. Since S is a separator in G, it follows that S1 (S2) intersects all
terminal paths in G[V (H)∪{t, t′}] (G[(V ∪T) \V (H)]). Since w(S) = w(S

1
) +w(S

2
),

w(S1 ∪S2) = w(S1) +w(S2) and w(S) < w(S1 ∪S2), it follows that w(S1) < w(S
1
) or

w(S2) < w(S
2
), a contradiction.

As a consequence of Lemma 2.23, graph G can be decomposed into H and G \ H,
and the minimum separator in H can be computed from those of H and G \H.

2.4.2 Contraction of a subgraph connected to two vertices

Let H be a subgraph of G such that there exist two vertices u, v ∈ V \ V (H) adjacent
to V (H), and no vertex in V (H) is adjacent to vertices of (V ∪ T) \ (V (H) ∪ {u, v}).
Let G′ be the graph obtained from G by deleting the vertices of H and adding an edge

52 The multi-terminal vertex separator problem : Polyhedral analysis

between u and v. See Figure 2.13 for illustration. We recall that, from Hypothesis 2.5,
each vertex of G has a weight 1.

Figure 2.13: Contraction of a subgraph connected to two vertices.
.

Lemma 2.24 A minimum separator in G′ is also a minimum separator in G.

Proof. Let S be a minimum separator in G′. We first show that S is a separator in
G. Suppose that S is not a separator in G. It follows that there exists a terminal path
P in G not intersecting S. Since S is a separator in G′, it follows that P contains a
path P u

v ⊆ V (H) ∪ {u, v}, between u and v. Let P ′ = P \ (P u
v \ {u, v}). Thus, S does

not intersect the terminal path P ′ in G′, a contradiction.

Now suppose that S is not minimum in G. Let S ′ be a minimum separator in G. If
S ′∩V (H) = ∅, then it follows that S ′ is also a separator in G′, a contradiction with the
fact that S is a minimum separator in G′. If S ′∩V (H) 6= ∅, let S ′′ = (S ′ \V (H))∪{u}.
Clearly, S ′′ is a separator in G and G′. Since w(S ′) ≤ w(S) and w(S ′′) = w(S ′), it
follows that w(S ′′) ≤ w(S), but this contradicts the fact that S is minimum in G′.

2.4.3 Deletion of useless components

Consider two subgraphs H1 and H2 of G such that V = V (H1) ∪ V (H2), V (H1) ∩
V (H2) = {v} and T (H2) = ∅. See Figure 2.14 for illustration.

2.5 53

Figure 2.14: Deletion of useless components.
.

Lemma 2.25 A minimum separator in H1 is also a minimum separator in G.

Proof. Remark that there is no terminal path intersecting V (H2) \ {v}. Thus, no
minimal separator intersects V (H2) \ {v}.

It is easily seen that the three operations given by Lemma 2.23, 2.24 and 2.25 can be
performed in polynomial time. These operations are used within our Branch-and-Cut
algorithm that we present in the next Section.

2.5 Branch-and-Cut Algorithm

In this Section, we describe a Branch-and-Cut algorithm for the MTVSP. Our aim is to
address the algorithmic applications of the theoretical results presented in the previous
Sections and describe some strategic choices made in order to solve that problem. So,
let us assume that we are given a graph G = (V ∪ T,E). We assume that all the op-
erations 2.4.1,2.4.2 and 2.4.3 have been performed in a preprocessing phase, and thus,
no operation among 2.4.1,2.4.2 and 2.4.3 can be applied for G.

We now describe the framework of our algorithm. To start the optimization, we
consider the linear program given by the terminal path inequalities associated with the
terminal paths P ∗tt′ , of minimum length (in terms of number of edges), between each
pair of terminals t, t′ ∈ T of graph G together with the trivial inequalities, that is

min
∑
v∈V

x(v)

x(P ∗tt′) ≥ 1 ∀t, t′ ∈ T,
x(v) ≤ 1 ∀v ∈ V,
x(v) ≥ 0 ∀v ∈ V.

54 The multi-terminal vertex separator problem : Polyhedral analysis

The optimal solution x∗ ∈ RV of this relaxation of the MTVSP is feasible for the
problem if x∗ is an integer vector that satisfies all the terminal path inequalities. Usu-
ally, the solution x∗ is not feasible for the MTVSP, and thus, in each iteration of the
Branch-and-Cut algorithm, it is necessary to generate further inequalities that are valid
for the MTVSP but violated by the current solution x∗. For this, one has to solve the
so-called separation problem. This consists, given a class of inequalities, in deciding
whether the current solution x∗ satisfies all the inequalities of this class, and if not, in
finding an inequality that is violated by x∗. An algorithm solving this problem is called
a separation algorithm. The Branch-and-Cut algorithm uses the inequalities previously
described.

We remark that all inequalities are global (i.e. valid for all the Branch-and-Cut tree)
and several inequalities may be added at each iteration. Our strategy is to try to detect
violated inequalities at each node of the Branch-and-Cut tree in order to obtain the
best possible lower bound and thus, limit the generated nodes.

Now, we describe the separation procedures used in our Branch-and-Cut algorithm.
We first show that the separation the terminal path inequalities and the star tree
inequalities can be done in polynomial time.

Theorem 2.26 Inequalities (2.6) can be separated in polynomial time.

Proof. Let x∗ ∈ [0, 1]V . For a terminal t ∈ T , add a super terminal ts to T adjacent
to all terminals of T \ {t}. Let x∗T ∈ RT such that x∗T (ti) = 0 for all ti ∈ T . Let
y∗ ∈ [0, 1]E be the vector such that y∗(uv) = x∗(u)+x∗(v)

2
for all uv ∈ E and u, v ∈ V ,

and y∗(uti) =
x∗(u)+x∗T (ti)

2
for all uti ∈ E, u ∈ V and ti ∈ T . Finding a shortest path,

between t and any terminal of T \ {t}, in graph G w.r.t y∗ is equivalent to finding a
shortest path Pt in graph G w.r.t x∗ between t and ts. Consider the path P̂ among the
paths Pt for all t ∈ T \{t}, of a minimum weight, say ẑ. If ẑ < 1, then inequality (2.6),
associated with P̂ , is violated. Otherwise, all inequalities (2.6) are satisfied.

2.5 55

Algorithm 3: Separating algorithm for inequalities (2.6)
Data: Graph G = (V ∪ T,E) and x∗ ∈ [0, 1]V

Result: An inequality (2.6) violated by x∗

begin
for (t ∈ T) do

Add a terminal ts to T adjacent to all terminals of T \ {t};
Construct y∗ ∈ RE from x∗ ;
Find a shortest path Ptts , between t and ts, in G w.r.t y∗ ;
Return inequality (2.6) associated with Ptts if it is violated by x∗;
Delete ts from T ;

end
end

The above algorithm discussed for separating inequalities (2.6) runs inO(k(n+m)log(n))-
time.

Theorem 2.27 The star tree inequalities (2.10) can be separated in polynomial time.

Proof. We will show that the separation problem for the star tree inequalities can
be reduced to a minimum cost flow problem. Let x∗ ∈ [0, 1]V . For a vertex v ∈ V , let
Dv = (V ′ ∪ T ′, A′) be the graph obtained from G as follows

1- T ′ = T ∪ {ts}.

2- add a vertex v′ in V ′.

3- for each vertex u ∈ V \ {v}, add two vertices u1 and u2 in V ′, and the arc (u1, u2)

in A′.

4- for each edge uw ∈ E such that u 6= v and w 6= v, add two arcs (u2, w1) and (w2, u1)

in A′.

5- for all u ∈ N(v) \ T , add an arc (v′, u1) to A′, and for all t ∈ N(v) ∩ T , add an arc
(v′, t) in A′.

6- for all t ∈ T , and u ∈ N(t) \ {v}, add an arc (u2, t) to A′.

7- for all t ∈ T \ ts, add an arc (t, ts) in A′.

56 The multi-terminal vertex separator problem : Polyhedral analysis

Figure 2.15 illustrates the graph transformation. All arcs are given a capacity 1. For
all u ∈ V \ {v}, arc (u1, u2) has a weight x∗u and all other arcs have weight 0.

Figure 2.15: Transformation graph from G to Dv

For an integer value q ∈ [3, . . . , |T |], we look for a flow of value q of minimum cost,
between v′ and ts in Dv. Let A be the set of arcs used by this flow and z′ the cost of
this flow. We let W ⊆ V be the set of vertices u of V such (u1, u2) ∈ A. It can easily
seen that z′ + (q − 1)x∗v′ < q − 1, then the star tree inequality associated with the star
tree given by W is violated.

The separation of the star tree inequalities runs in O(kn4mlog(n))-time.

The polynomial algorithm for separating the star tree inequalities discussed above
may be time-consuming. In what follows we devise a heuristic to speed up the sepa-
ration. The idea of the heuristic is to construct a start tree using the shortest paths
between a root node and terminals. The heuristic works as follows. We construct a
graph G′ obtained from G by adding a super terminal ts adjacent to all terminals of T .
Then, for each integer q ∈ [3, . . . , k] and each vertex v ∈ V , we perform the following
procedure
We set S = {v} and the weight of each vertex u ∈ V \{u} to x∗u and those of {ts, v}∪T
to 0. Then, we look for the shortest path P v between ts and v. If P v does not exist, then
we stop. Otherwise, we update S, V and T as S = S ∪ (P v \ {ts}), V = V \ (P v \ {v})
and T = T \ (P v \ {ts}). If the star tree associated with S has q branches, then we

2.5 57

stop. Otherwise, we look for a new shortest path between ts and v, and so on.
If set S represents a star tree of G of root vertex v and q branches, and if x∗(S \ (T ∪
{v})) + (q − 1)x∗v < q − 1, then the star tree inequality associated with S is violated.
This heuristic is given in Algorithm 4.

Algorithm 4: Separation heuristic for the star tree inequalities.
Data: G = (V ∪ T,E), v ∈ V , q ∈ {3, . . . , k} and a vector x∗ ∈ [0, 1]V

Result: Star tree inequality violated by x∗

begin
S = {v};
for u ∈ V do

cu = x∗u;
end
for t ∈ T ∪ {ts} do

ct = 0;
end
for i = {1, . . . , q} do

Pi ← the shortest path in (V ∪ T ∪ {ts}, E) w.r.t c, between v and ts;
if Pi = ∅ then

Stop algorithm.
end
else

S ← S ∪ (Pi \ {ts});
V ← V \ (Pi \ {v});
T ← T \ (Pi \ {ts});

end
end
If S is a star tree of root v and q branches then check if the associated star
tree inequality is violated by x∗ ;

end

The heuristic runs in O(k2n(n+m)log(n))-time.

Now we turn our attention to the separation of the clique star inequalities. This is
also performed using a heuristic algorithm. The idea of the heuristic is to generate a
set L(G) of cliques in graph G, and for all clique Kq of q vertices, we construct a clique
star using the shortest paths between each vertex of Kq and terminals.

58 The multi-terminal vertex separator problem : Polyhedral analysis

The heuristic works as follows. We initialize the list L(G) with all cliques in G of
size 3. Then, for a fixed number of iterations l ∈ {1, . . . , k}, for each clique K ∈ L(G)

and for all v ∈ N(K), we check if K ∪ {v} and we put it in L(G). Let G′ be the graph
obtained from G by adding a super terminal ts adjacent to all terminals of T . During
the separation procedure, for each clique Kq ∈ L(G) of q vertices, we perform the fol-
lowing procedure in G′. We set S = Kq and the weight of each vertex v ∈ V to x∗v and
those of {ts}∪T to 0. Then, for a vertex v ∈ Kq, find the shortest path P v between ts
and v in G′ \ (Kq \ {v}). If P v does not exist, then we stop. Otherwise, we update S,
V and T as S = S ∪ (P v \ {ts}), V = V \ (P v \ {ts, v}) and T = T \ (P v \ {ts}). If the
clique star associated with S has q branches, then we stop. Otherwise, we look for a
new shortest path between ts and another vertex of Kq, and so on. If set S represents
a clique star of G of clique Kq and q branches, and if x∗(S) < q − 1, then the clique
star inequality associated with S is violated. This heuristic is given in Algorithm 5.

2.5 59

Algorithm 5: Separation heuristic for the clique star inequalities.
Data: G = (V ∪ T,E), a clique Kq ∈ L(G) of q vertices and a vector x∗ ∈ [0, 1]V

Result: Clique star inequality violated by x∗

begin
S = Kq;
for v ∈ V do

cv = x∗v;
end
for t ∈ T ∪ {ts} do

ct = 0;
end
for v ∈ Kq do

P v ← the shortest path in graph ((V \Kq) ∪ {v} ∪ T ∪ {ts}, E) w.r.t c,
between v and ts;
if P v = ∅ then

Stop.
end
else

S ← S ∪ (P v \ {ts});
V ← V \ (P v \ {v});
T ← T \ (P v \ {ts});

end
end
return S;
If S is a clique star of clique Kq and q branches then check if the associated
clique star inequality is violated by x∗ ;

end

The heuristic runs in O(|L(G)|k(n+m)log(n))-time.

Now we discuss the separation of the terminal tree inequalities. For this we devised
the following heuristic. We look for a spanning tree R of minimum weight in the graph
G w.r.t x∗ where the terminals have weight 0. Let R be the tree obtained from R by
deleting the leaf vertices that are not terminals. R may have terminals of degree greater
than or equal to 2. This means that R is not minimal, but the associated terminal
tree inequality remains valid for P (G, T). Then, we check whether the corresponding
terminal tree inequality is violated. For determining the minimum spanning tree we use

60 The multi-terminal vertex separator problem : Polyhedral analysis

Kruskal’s algorithm. Thus, our algorithm can be implemented in O(mlog(m))-time.
The graph in Figure 2.16, illustrates the deletion of all non-terminal leaves.

Figure 2.16: Deletion of non-terminal leaves.

These steps are detailed in Algorithm 6.

Algorithm 6: Separation heuristic for the terminal tree inequalities.
Data: G = (V ∪ T,E), x∗ ∈ [0, 1]V

Result: Terminal tree inequality violated by x∗

begin
S ← spanning tree of minimum weight in G w.r.t x∗;
while S has a non-terminal vertex of degree 1 do

v ← a non-terminal vertex of degree 1 in S;
S ← S \ {v};

end
return S;
Check if the terminal tree inequality induced by S is violated by x∗;

end

We also devised a heuristic for separating the extended terminal cycle inequalities.
The idea of the heuristic is to generate a cycle, and construct an extended terminal
cycle using the shortest paths between each vertex of the cycle and terminals. The
heuristic works as follows. First, we look for a cycle C of minimum weight in the graph
G[V] w.r.t x∗. This can be done in a polynomial time. We then construct a graph G′

from G by adding a super terminal ts adjacent to all terminals of T . We set S = C, the

2.5 61

weight of each vertex v ∈ V to x∗v and those of {ts} ∪ T to 0. For each vertex v ∈ C,
we look for the shortest path P v between ts and v in the graph G′ \ (C \ {v}). If P v

does not exist, then we stop. Otherwise, we update S, V and T as S = S ∪ (P v \{ts}),
V = V \ (P v \{ts, v}) and T = T \ (P v \{ts}). If set S represents an extended terminal
cycle of G of q branches, and if x∗(S \ T) < d q

2
e, then the extended terminal cycle

inequality associated with the extended terminal cycle induced by S, is violated. This
procedure is given in Algorithm 7.

Algorithm 7: Separation heuristic for the extended terminal cycle inequalities.
Data: G = (V ∪ T,E), and a vector x∗ ∈ [0, 1]V

Result: Extended terminal cycle inequality violated by x∗

begin
C ← Cycle of minimum weight in the graph G[V] w.r.t x∗;
S ← C;
for v ∈ V do

cv = x∗v;
end
for t ∈ T ∪ {ts} do

ct = 0;
end
for v ∈ C do

P v ← the shortest path in G′ \ (C \ {v}) w.r.t c, between v and ts;
if P v = ∅ then

Stop algorithm.
end
else

S ← S ∪ (P v \ {ts});
V ← V \ (P v \ {v});
T ← T \ (P v \ {ts});

end
end
return S;
If S is the extended terminal cycle of cycle C and has |C| branches then
check if the associated extended terminal cycle inequality is violated by x∗ ;

end

Thus, our algorithm can be implemented in O(kn2(m+ n)log(m))-time.

62 The multi-terminal vertex separator problem : Polyhedral analysis

2.5.1 Heuristics and performance guarantee

In [25], the authors show that the multi-terminal vertex separator problem can be
solved in polynomial time when the graph has two terminals. In what follows, we will
use this result to develop two different heuristics with performance guarantee for the
problem.

2.5.1.1 Disconnecting terminal pairs heuristic

The idea of the heuristic is to construct a separator of G from the union of minimum
separators of G disconnecting each pair of terminals in T . The heuristic permits to
compute for each pair of terminals t, t′ ∈ T , a separator Stt′ of minimum weight ω(Stt′),
intersecting all terminal paths between t and t′, and then to return S =

⋃
t,t′∈T

Stt′ . This

heuristic is given in Algorithm 8.

Algorithm 8: Disconnecting terminal pairs heuristic.
Data: Graph G = (V ∪ T,E)

Result: Vertex separator
begin

S = ∅;
for t, t′ ∈ T do

Stt′ ← The minimum vertex separator of (V ∪ {t, t′}, E);
S ← S ∪ Stt′ ;

end
return S;

end

Theorem 2.28 The disconnecting terminal pairs heuristic constructs a multi-terminal
vertex separator whose weight ω∗ is no more than k(k−1)

2
times the optimal weight.

Proof. Let S be the solution given by the disconnecting terminal pairs heuristic of
weight ω∗. Let S be a separator of minimum weight ω in G. For two different terminals
t, t′ ∈ T , let Stt′ ⊆ S be a set of vertices having a minimum weight ωtt′ , intersecting
all terminal paths between t and t′. Clearly, ω(Stt′) ≤ ωtt′ . Moreover, each vertex in
S can belong to a separator Stt′ for some pair of terminals t, t′ ∈ T . So, each vertex

2.5 63

of S belongs to at most
(
k
2

)
different separators Stt′ disconnecting pairs of terminals.

Therefore,

ω∗ ≤
∑
t,t′∈T

ω(Stt′) ≤
∑
t,t′∈T

ωtt′ ≤
(
k

2

)
ω

And the result follows.

Corollary 2.29 When k = 3, the disconnecting terminal pairs heuristic is a 3-approximation
algorithm for the MTVSP.

Remark 2.30 If the graph is a star tree, the disconnecting terminal pairs heuristic
gives a solution of weight equal to k(k−1)

2
times the optimal weight.

Thus, the bound given above is tight.

2.5.1.2 Isolating terminal heuristic

In [46], the authors propose a heuristic for the multi-terminal cut problem (the edge
version of the MTVSP). They show that the solution given by the heuristic is of a
weight guaranteed to be no more than 2(k−1)

k
times the optimal weight. This heuristic

can be adapted for the MTVSP. For a terminal t ∈ T , an isolating terminal St ⊆ V is a
set of vertices intersecting all terminal paths between t and all terminals of T \{t}. The
idea of the heuristic is to construct a separator of G, from the union of all minimum
isolating terminal sets of G. It works as follows. For each terminal t ∈ T , we compute
the separator St of minimum weight ω(St), intersecting all terminal paths between t
and all terminals of T \ {t}. Let St∗ be the separator, computed before, of maximum

64 The multi-terminal vertex separator problem : Polyhedral analysis

weight. Then, we return S =
⋃

t∈T\{t∗}
St. This heuristic is given in Algorithm 9.

Algorithm 9: Isolating terminal heuristic.
Data: Graph G = (V ∪ T,E)

Result: Vertex separator
begin

S = ∅;
for t ∈ T do

Merge all terminals of T \ {t} into a new terminal ts;
St ← The minimum vertex separator of (V ∪ {t, ts}, E);

end
t∗ ← argmax

t∈T
{ω(St)};

S =
⋃

t∈T\{t∗}
St;

return S \ St∗ ;
end

Set S is a separator in G since for all t ∈ T , S contains a subset of vertices in V

intersecting all terminal paths between t and all terminals of T \ {t}.

Theorem 2.31 The isolating terminal heuristic constructs a multi-terminal vertex
separator whose weight ω∗ is guaranteed to be no more than (k − 1) times the opti-
mal weight.

Proof. Let S be the separator given by the isolating terminal heuristic and St ⊆ S

be the set of vertices of minimum weight ω(St), intersecting all terminal paths between
t and all terminals of T \ {t}. Let S be a separator of minimum weight ω in G. For a
terminal t ∈ T , let St ⊆ S be a set of vertices having a minimum weight ωt, intersecting
all terminal paths between t and all terminals in T \{t}. Clearly, ω(St) ≤ ωt. Moreover,
each vertex of S can belong to each separator St for each terminal t ∈ T . Thus,∑
t∈T

ωt ≤ kω. Therefore,

ω∗ ≤ (k − 1)

∑
t∈T

ω(St)

k
≤ k − 1

k

∑
t∈T

ωt ≤ k
k − 1

k
ω ≤ (k − 1)ω

Thus, our theorem holds.

2.5 65

Corollary 2.32 When k = 3, the isolating terminal heuristic is a 2-approximation
algorithm for the MTVSP.

Remark 2.33 The star tree is an example on which the isolating terminal heuristic
can give a solution of weight equal to (k−1) times the optimal weight.

Thus, the bound given above is tight.

2.5.1.3 Improved isolating terminal heuristic

This heuristic consists in looking for a separator S by applying the isolating terminal
heuristic, and try to pull off one by one each vertex from S, and check if the remaining
set is a separator. If not, we put it back in S. It would be more interesting to start by
removing the vertices of small degrees. This heuristic is given in Algorithm 10.

Algorithm 10: Improved isolating terminal heuristic.
Data: Graph G = (V ∪ T,E)

Result: Vertex separator S ⊆ V

begin
S = ∅;
for t, t′ ∈ T do

Stt′ ← The minimum vertex separator of (V ∪ {t, t′}, E);
S ← S ∪ Stt′ ;

end
Sort S = {v0, v1, . . . , v|S|} from the vertex of the smallest degree to the
vertex of the largest degree;
for (i ∈ {0, . . . , |S|}) do

if S \ {vi} is a separator then
S ← S \ {vi};

end
end
return S;

end

66 The multi-terminal vertex separator problem : Polyhedral analysis

2.6 Computational Results

The Branch-and-Cut algorithm described in the previous section has been implemented
in C++, using Cplex to manage the Branch-and-Cut tree and also as a lp-solver, and
all flow problems are solved using Lemon library [2]. It was tested on an Intel Xeon
E312xx machine at 2.39 GHz ×1 with 48GB RAM, running under Linux 64 bits. The
maximum CPU run time has been fixed to 4 hours. We use two kinds of instances,
the DIMACS graph coloring instances [1] and random graphs, generated using boost
graph library [3] in C++. The terminals are new nodes added to the graphs. Each
terminal is randomly connected to at least 2 vertices and at most a given deg_T ∈ N
vertices of V . The edges incident to the terminals are added respecting the Hypotheses
2.3-2.4, given in Chapter 2. In the Tables below, the maximum degree of the terminals
is fixed in relation with the size of the graph, i.e., the higher the size of graph is,
the higher the maximum degree of terminals is. In all our experiments, we have used
the reduction operations described in the previous section to reduce the graph. As,
the separation algorithms generate less than 10 inequalities per family of inequalities
and per iteration, then we perform all of them for each separation phase. Moreover,
we tested different separation orders, and we noticed that separating all inequalities,
at each separation phase, gives the best results. Each instance is given by its name
followed by an extension representing the number of nodes of the graph.

2.6 67

In the following Tables, we have the following entries

n : the number of vertices in V .
m : the number of edges in E.
k : the number of terminal in T .
d % : the density of graphs without terminals.
Tp : the number of terminal path inequalities separated.
St : the number of star tree inequalities separated.
Cs : the number of clique star inequalities separated.
Tt : the number of terminal tree inequalities separated.
Etc : the number of extended terminal cycle inequalities separated.
Nodes : the number of node in the branching tree.
Gap % : the relative error between the best upper and lower bound

obtained at the root node of the branching tree.
CPU1 : the CPU time given by the Branch-and-Cut algorithm

in second, on the natural formulation.
CPU2 : the CPU time given by Cplex in second, on the double

indices formulation.
deg_T : the maximum degree of each terminal.
Heur_val : the objective value of the solution given

by the improved isolating terminal heuristic.
Opt_val : the optimal objective value.
CPU_Heur : the CPU time of the Heuristic, in second.
Heur_Gap % : the value of Heur_val−Opt_val

Opt_val .

In the first Tables 2.2 and 2.3, we compare the Branch-and-Cut algorithm with Cplex
for the compact double indices formulation.

68 The multi-terminal vertex separator problem : Polyhedral analysis

Instances n m k Tp St Cs Tt Etc Nodes Gap % CPU1 CPU2

Myciel5 47 258 6 48 189 0 28 0 7 35.20 7.96 0.50
Queen8_8 64 1477 6 30 22 21 2 9 1 0.00 0.99 0.32
Huck 74 624 6 64 51 3 5 1 23 19.20 3.39 1.51
Jean 80 533 6 69 100 7 1 0 47 28.10 6.94 1.66
David 87 835 6 31 147 25 26 3 26 28.50 8.58 4.24
Myciel6 95 778 6 35 38 0 26 15 1 0.00 1.26 0.31
Queen8_12 96 2762 6 33 36 35 1 18 1 0.00 1.45 1.41
Queen10_10 100 2967 8 56 31 32 4 6 1 0.00 1.55 2.38
Games120 120 1307 8 64 377 138 8 18 9 35.40 16.50 23.95
DSJC125 125 764 8 105 70 12 64 12 1 0.00 2.33 3.87
Miles250 128 804 8 103 127 16 4 2 29 28.10 5.75 0.42
Miles500 128 2370 8 97 386 62 9 9 6 31.80 16.44 2.41
Miles750 128 4256 8 63 60 49 13 15 1 0.00 3.62 2.87
Miles1000 128 6462 8 53 30 24 10 12 1 0.00 2.03 6.38
Anna 138 1022 8 92 344 55 0 1 74 16.60 17.99 0.72
Queen12_12 144 5224 8 85 20 18 9 9 1 0.00 1.44 8.18
Mulsol.i.2 188 3920 8 116 63 34 2 13 1 0.00 2.69 6.32
Myciel7 191 2387 8 58 27 0 13 13 1 0.00 1.34 17.09
Queen14_14 196 8399 8 56 19 15 12 11 1 0.00 1.24 22.52
Mulsol.i.1 197 3952 8 71 11 5 10 3 1 0.00 0.58 5.61
Zeroin.i.3 206 3576 8 28 47 48 1 2 1 0.00 2.03 5.49
Queen16_16 256 12674 8 88 27 19 5 11 1 0.00 2.10 41.55
School1 385 19129 8 109 16 15 12 5 1 0.00 1.08 103.00
DSJR500 500 7140 8 29 374 331 3 141 4 40.00 32.35 19.80

Table 2.2: Results from DIMACS instances.

Table 2.2 presents the results obtained for DIMACS instances associated to graphs
having up to 500 nodes. The number of terminals is fixed to 6 for graphs with less
than 99 nodes and 8 for the others. As we can remark in the table, all instances were
solved by the Branch-and-Cut algorithm in less than 33 seconds. The bold values
in the CPU1 column represent the instances for which the Branch-and-Cut algorithm
solves the instance faster than the Cplex with the double indices formulation. We
notice that in 50% of the instances the Branch-and-Cut algorithm beats the Cplex.
The valid inequalities (2.4),(2.7),(2.18) and (2.20) have been efficient for strengthen-
ing the formulation. Indeed 62% of the instances were solved by the Branch-and-Cut
algorithm in the first node of the branching tree. We also notice that all the valid in-
equalities appear in the instances Queen8_8, Queen8_12, Queen10_10, Queen12_12,
Queen14_14, Queen15_15, since underlying graphs are without holes. However, no
clique star inequality appears for instances Myciel5, Myciel6 and Myciel7 since they
are induced by triangle free graphs. Moreover, we can remark that the Branch-and-

2.6 69

Cut algorithm generates a few number of valid inequalities. Only 4 instances over 24

were solved by the Branch-and-Cut algorithm in more than 10 seconds. For these four
instances, the number of star tree inequalities is greater than 340, in contrast with the
other instances, where the number of star tree inequalities is less than 200.

Instances n m k Tp St Cs Tt Etc Nodes Gap % CPU1 CPU2

R_50 50 511 7 48 33 22 31 6 1 0.00 1.24 0.44
R_70 70 993 7 44 18 14 19 4 1 0.00 0.64 0.78
R_100 100 1985 7 45 13 13 12 5 1 0.00 1.02 3.07
R_300 300 17792 7 67 8 7 8 2 1 0.00 2.31 55.67
R_600 600 70673 7 23 10 9 9 5 1 0.00 4.04 298.02
R_700 700 96432 7 48 7 6 5 1 1 0.00 3.96 360.79
R_800 800 125978 10 95 26 23 0 13 1 0.00 20.98 1323.90
R_900 900 159331 10 96 39 36 1 15 1 0.00 31.31 1959.60
R_1000 1000 196771 10 86 35 34 0 16 1 0.00 34.35 2395.20
R_1200 1200 283386 10 92 26 24 0 9 1 0.00 41.01 4595.10
R_1300 1300 332861 10 47 30 30 0 15 1 0.00 56.91 5142.00
R_1500 1500 442444 10 99 33 32 0 16 1 0.00 92.64 11735.00
R_1800 1800 637307 15 110 44 40 40 17 1 0.00 379.95 -
R_2000 2000 786639 15 108 37 32 35 16 1 0.00 468.78 -
R_2100 2100 867430 15 214 34 31 28 15 1 0.00 641.02 -
R_2300 2300 1041158 15 217 29 28 25 16 1 0.00 851.49 -
R_3000 3000 1770773 15 215 33 30 19 12 1 0.00 1698.90 -
R_3300 3300 2142370 15 112 38 37 11 18 1 0.00 2129.60 -
R_3800 3800 2841805 15 217 28 27 26 13 1 0.00 2363.80 -
R_4200 4200 3472117 15 222 37 35 30 22 1 0.00 3856.30 -
R_4500 4500 3987339 15 217 41 40 31 15 1 0.00 5248.10 -
R_4800 4800 4537794 15 218 31 22 31 10 1 0.00 4611.80 -
R_5000 5000 4922710 15 110 27 26 27 16 1 0.00 4291.40 -

Table 2.3: Results from random instances.

Table 2.3 presents the results obtained for random instances on graphs having up to
5000 nodes. The maximum degree of terminals is fixed to 7 for instances with less than
700 nodes, 10 for instances with the number of nodes between 800 and 1500 and to
15 for instances with 1800 nodes and more. As it appears, in 95.6% of instances, the
Branch-and-Cut algorithm beats Cplex. Indeed, Cplex was faster than the Branch-and-
Cut in only 1 instance (R1) with a difference of 0.8 seconds. In the other instances,
the slack between the CPU_times increases exponentially. For instance, for R_100
the difference is 2.05 seconds and for R_1300 it is 5085.09 seconds. Also note that
all instances were solved in the root of the branching tree by the Branch-and-Cut
algorithm. Indeed, for random instances our valid inequalities are enough for finding

70 The multi-terminal vertex separator problem : Polyhedral analysis

the optimal solution without branching. Cplex with the Double indices formulation
could not solve the instances with 1800 vertices and more. This can be explained by
the out of memory due to the number of constraints in the double indices formulation
when the number of edges is high. Also random graphs have no specific structure and
this let the instance harder to solve. For example, for instance R_1800, the formulation
has more than 9.5 millions of constraints. For both DIMACS and random graphs, the
number of star tree inequalities, clique star inequalities and terminal tree inequalities
is roughly the same.

In Tables 2.4, 2.5 and 2.6, we vary the density of the graph, the number of terminals
and the maximum degree of the terminals.

Instances n m k d % Nodes Gap % CPU1

R_1000 1000 90682 10 18 1 0.00 15.18
196771 39 1 0.00 34.35
275346 55 1 0.00 84.88

R_2000 2000 362335 15 18 1 0.00 172.00
786639 39 1 0.00 468.70
1100921 55 1 0.00 1183.00

R_3000 3000 815760 15 18 1 0.00 622.30
1770773 39 1 0.00 1698.00
2478823 55 1 0.00 1650.00

R_4000 4000 1450789 15 18 1 0.00 1010.15
3150332 39 1 0.00 2502.08
4410131 55 1 0.00 3198.85

R_5000 5000 2267316 15 18 1 0.00 1904.00
4922710 39 1 0.00 4291.00
6890000 55 1 0.00 5802.00

Table 2.4: Results from random instances with different density.

Tables 2.4 represents the results for random graphs, with different densities, 18%, 39%

and 55%. We notice that in almost all the instances, the higher the density is, the higher
CPU time is.

2.6 71

Instances n m k Nodes Gap % CPU1

R_1000 1000 196756 7 1 0.00 14.35
196771 10 1 0.00 34.35
196787 13 1 0.00 103.00

R_2000 2000 786625 12 1 0.00 499.90
786639 15 1 0.00 468.70
786652 18 1 0.00 990.70

R_3000 3000 1770758 12 1 0.00 1222.21
1770773 15 1 0.00 1698.00
1770787 18 1 0.00 2472.00

R_4000 4000 3150315 12 1 0.00 2274.11
3150332 15 1 0.00 2502.08
3150347 18 1 0.00 4360.06

R_5000 5000 4922700 12 1 0.00 3367.00
4922710 15 1 0.00 4291.00
4922728 18 1 0.00 7919.00

Table 2.5: Results from random instances with different number of terminals.

Tables 2.5 represents the results for random graphs with different number of termi-
nals. In almost all the instances, the higher number of terminals is, the higher the
CPU time is. All instances are solved in the root node of the branching tree.

72 The multi-terminal vertex separator problem : Polyhedral analysis

Instances n m k deg_T Nodes Gap % CPU1

R_1000 1000 196751 10 5 1 0.00 26.93
196771 10 1 0.00 34.35
196769 15 1 0.00 43.07

R_2000 2000 786617 15 5 1 0.00 408.50
786639 10 1 0.00 468.70
786638 15 1 0.00 715.70

R_3000 3000 1770741 15 5 1 0 1446.00
1770773 10 1 0.00 1698.00
1770766 15 1 0.00 2650.00

R_4000 4015 3150301 15 5 1 0.00 1676.69
3150332 10 1 0.00 2502.08

4015 3150322 15 1 0.00 3007.54
R_5000 5000 4922695 15 5 1 0.00 4015.00

4922710 10 1 0.00 4291.00
4922714 15 1 0.00 5027.00

Table 2.6: Results from random instances with different degree of terminals.

Tables 2.6 represents the results for random graphs with different values of deg_T
(We recall that the terminals are randomly connected to at least 2 vertices and at most
deg_T vertices of V). We notice that the higher deg_T is, the higher CPU time is.
Also, the Branch-and-Cut algorithm could solve all instances in the root node of the
branching tree.

2.6 73

Instances n m k Tp Nodes Gap % CPU1

Myciel5 47 258 6 161 44 35.2 0.06
Queen8_8 64 1477 6 129 30 15.6 0.04
Huck 74 624 6 86 16 19.2 0.01
Jean 80 533 6 139 43 28.1 0.03
David 87 835 6 154 45 28.5 0.04
Myciel6 95 778 6 206 80 36.1 0.08
Queen8_12 96 2762 6 176 56 38.0 0.08
Queen10_10 100 2967 8 235 67 38.6 0.11
Games120 120 1307 8 304 338 35.4 0.57
DSJC125 125 764 8 311 204 39.1 0.31
Miles250 128 804 8 148 57 28.1 0.05
Miles500 128 2370 8 365 124 31.8 0.22
Miles750 128 4256 8 372 148 37.5 0.30
Miles1000 128 6462 8 327 86 37.5 0.21
Anna 138 1022 8 354 91 16.6 0.13
Queen12_12 144 5224 8 282 90 36.0 0.18
Mulsol.i.2 188 3920 8 341 164 37.5 0.26
Myciel7 191 2387 8 284 121 38.6 0.21
Queen14_14 196 8399 8 279 89 41.3 0.24
Mulsol.i.1 197 3952 8 183 56 38.8 0.11
Zeroin.i.3 206 3576 8 257 65 35.7 0.12
Queen16_16 256 12674 8 364 142 39.2 0.42
School1 385 19129 8 359 198 38.8 0.53
DSJR500 500 7140 8 697 2735 40.0 26.52

Table 2.7: Results from DIMACS instances without the valid inequalities.

74 The multi-terminal vertex separator problem : Polyhedral analysis

Instances n m k Tp Nodes Gap % CPU1

R_50 50 511 7 179 48 38.8 0.05
R_70 70 993 7 178 42 39.4 0.05
R_100 100 1985 7 172 47 38.8 0.06
R_300 300 17792 7 163 53 39.4 0.43
R_600 600 70673 7 150 53 39.4 1.16
R_700 700 96432 7 150 35 38.8 1.31
R_800 800 125978 10 677 406 42.0 10.55
R_900 900 159331 10 821 813 43.1 23.00
R_1000 1000 196771 10 604 463 40.0 17.36
R_1200 1200 283386 10 670 461 42.0 35.34
R_1300 1300 332861 10 646 374 42.0 54.95
R_1500 1500 442444 10 689 657 42.5 90.38
R_1800 1800 637307 15 1922 3168 44.8 716.00
R_2000 2000 786639 15 1326 2504 42.6 653.90
R_2100 2100 867430 15 2172 3716 45.1 1441.00
R_2300 2300 1041158 15 1593 2190 44.2 1390.00
R_3000 3000 1770773 15 1583 3856 43.3 3570.00
R_3300 3300 2142370 15 2055 3498 45.5 5751.00
R_3800 3800 2841805 15 1651 2444 44.4 6035.00
R_4200 4200 3472117 15 1969 3494 45.0 9521.00
R_4500 4500 3987339 15 2049 3753 45.0 1230.000
R_4800 4800 4537794 15 1743 2525 44.5 9282.00
R_5000 5000 4922710 15 1451 1839 44.7 10037.00

Table 2.8: Results from random instances without the valid inequalities.

Tables 2.7 and 2.8 represent the results for random graphs using the Branch-and-Cut
algorithm without the additional valid inequalities, i.e., with only the terminal path
inequalities. Observe that when the number of vertices is less than 1800, the CPU
time is shorter than the one in Tables 2.2 and 2.3. This is explained by the good
performance of Cplex. However, the number of nodes in the branching tree and the
gap are higher. Indeed, the linear relaxation of the Natural formulation is week. For
the instances with at least 1800 vertices, we notice that the CPU time, gap and number
of nodes in the branching tree in Table 2.8 are higher than the CPU time in Table 2.3.
Our inequalities have a great impact for large instances. The size of the branching tree
has also been reduced.

2.6 75

Instances n m k Heur_val Opt_val CPU_Heur Heur_Gap %

Myciel5 47 258 6 17 17 0.00 0.00
Queen8_8 64 1477 6 16 16 0.01 0.00
Huck 74 624 6 14 13 0.00 7.14
Jean 80 533 6 16 16 0.00 0.00
David 87 835 6 14 14 0.00 0.00
Myciel6 95 778 6 18 18 0.00 0.00
Queen8_12 96 2762 6 21 21 0.02 0.00
Queen10_10 100 2967 8 22 22 0.03 0.00
Games120 120 1307 8 24 24 0.01 0.00
DSJC125 125 764 8 23 23 0.01 0.00
Miles250 128 804 8 16 16 0.01 0.00
Miles500 128 2370 8 24 22 0.03 8.33
Miles750 128 4256 8 24 24 0.05 0.00
Miles1000 128 6462 8 24 24 0.07 0.00
Anna 138 1022 8 26 21 0.02 19.20
Queen12_12 144 5224 8 25 25 0.06 0.00
Mulsol.i.2 188 3920 8 28 28 0.04 0.00
Myciel7 191 2387 8 22 22 0.03 0.00
Queen14_14 196 8399 8 23 23 0.10 0.00
Mulsol.i.1 197 3952 8 18 18 0.04 0.00
Zeroin.i.3 206 3576 8 21 21 0.04 0.00
Queen16_16 256 12674 8 28 28 0.15 0.00
School1 385 19129 8 27 27 0.20 0.00
DSJR500 500 7140 8 25 25 0.10 0.00

Table 2.9: Results given by the improved isolated terminal heuristic.

Table 2.9 presents the results given by the improved isolated terminal heuristic for
DIMACS instances. We can remark that the heuristic gives very good results in short
time. In 93.6% of the instances, the solution given by the heuristic is optimal. For
the other instances, the gap is very small. On the other hand, when the number of
terminals is high, the CPU time of the heuristic becomes high. All instances were
solved in 0.2 seconds or less.

76 The multi-terminal vertex separator problem : Polyhedral analysis

2.7 Conclusion

In this chapter we have considered the multi-terminal vertex separator problem. We
have first shown that the problem is NP-hard. Then, we have proposed two integer
programming formulations for the problem. For one of these formulations we have
identified some valid inequalities and discussed their facial structure. Using this, we
have developed a Branch-and-Cut algorithm for the problem and presented extensive
computational results. These show the effectiveness of the valid inequalities used in
the algorithm. The computational results have also permitted to measure the impor-
tance of our separation heuristics. In particular the heuristic for separating star tree
inequalities appeared more efficient than the exact polynomial algorithm. We have also
proposed two heuristics for the problem, and analyzed their performance guarantee.
The improved isolating terminal heuristic has appeared to be very efficient since it
could find the optimal solution for most of the instances.

Chapter 3

The multi-terminal vertex separator
problem : Composition of Polyhedra

Contents
3.1 Star trees and Clique stars 79

3.1.1 Polytope characterization . 80

3.1.2 TDI-ness . 87

3.2 Composition of polyhedra by 1-sum 96

3.2.1 Structure properties . 98

3.2.2 Composition of polyhedra . 99

3.2.3 Facet composition . 113

3.2.4 Algorithmic aspect . 116

3.3 Composition of polyhedra by terminal-sum 119

3.4 The minimum rooted-cycle cover problem 121

3.4.1 Packing and covering rooted cycles 122

3.4.2 Pseudo-bipartite rooted graphs 125

3.5 Conclusion . 128

In this chapter we are interested in characterizing the multi-terminal vertex separa-
tor polytope in graphs that are decomposable by one-node cutsets and terminal cutsets.
When G decomposes into G1 and G2, we derive a procedure for composing facets and
algorithms for the MTVSP. We also introduce the minimum rooted cycle cover problem

78 The multi-terminal vertex separator problem : Composition of Polyhedra

for which the MTVSP is a special case. We use Menger’s theorem to provide a charac-
terization of all rooted graphs in which the maximum number of vertex-disjoint rooted
cycles equals the minimum size of a subset of non-root vertices intersecting all rooted
cycles, for all subgraphs.

This chapter is organized as follows. In Section 1, we give two linear systems de-
scribing the multi-terminal vertex separator polytope for the star trees and the clique
stars. Then, we show that these two linear systems are totally dual integral. In Sec-
tion 2, we study a composition (decomposition) technique of the multi-terminal vertex
separator polytope, for graphs that are decomposable by one-node cutsets. Then, we
derive a composition procedure for facets and algorithms. In Section 3, we present
a further composition procedure for the multi-terminal vertex separator polytope, by
merging terminals. Section 4 is devoted to the more general minimum rooted cycle
cover problem.

Preliminaries

In this chapter we suppose that Hypotheses 2.1-2.5, given in Chapter 2, are satisfied.
Consider a graph G = (V ∪ T,E). Let P (G, T) = conv(x ∈ [0, 1]V | x satisfies (2.6))

be the polytope given by inequalities (2.6)− (2.8).

Menger’s theorem [93] : Let G be a graph and let s and t be two nonadjacent vertices of
G. The minimum size of a st-vertex cut is equal to the maximum number of internally
vertex-disjoint st-paths.

Lemma 3.1 When |T | = 2, the linear system (2.6)-(2.8) is totally dual integral.

Proof. Given a graph G = (V ∪ T,E). From Hypothesis 2.5, for any weight vector
ω : V → Z, we can transform graph G in order to obtain all weights equal to 1.
We notice that the dual D, of the linear program (2.5)-(2.8), consists in finding the
maximum number of internally vertex disjoints terminal paths between two terminals
in G. From Menger’s theorem, we have that the value of the optimal integer solution
of D is equal to the value of the optimal integer solution of (2.5)-(2.8). It follows that
D has an integer solution for any weight vector ω. Consequently, the linear system
(2.6)-(2.8) is totally dual integral.

3.1 79

3.1 Star trees and Clique stars

In this section we focus on two classes of graphs, the star trees and the clique stars,
presented in Chapter 2. We give two linear systems describing the associated multi-
terminal vertex separator polytopes and we show that these systems are totally dual
integral.

Figure 3.1: Star tree and clique star

Figure 3.1.(a) displays a star tree H = (V (H) ∪ T (H), E(H)) with 4 branches and
Figure 3.1.(b) shows a clique star Q = (V (Q) ∪ T (Q), E(Q)) with 4 branches.

Figure 3.2: Star trees and clique stars

Consider a graph G = (V ∪T,E) that is a star tree (resp. clique star) of k terminals.
If k = 1, G is reduced to a single branch, see Figure 3.2.(a). If k = 2, G is reduced to
a terminal path, see Figure 3.2.(b). If k ≥ 3, G contains

(
k
k′

)
star trees (resp. clique

stars) as subgraphs with k′ ∈ {1, . . . , k} terminals. Let Π (resp. Θ) be the set of all

80 The multi-terminal vertex separator problem : Composition of Polyhedra

star trees (resp. clique stars) subgraphs of G. Note that Π (resp. Θ) contains the star
tree G (resp. the clique star G). For v ∈ V , let Πv be the set of star trees of Π (resp.
Θv the set of clique stars of Θ) containing v. For all l ∈ {1, . . . , k}, let Πl be the set of
star trees of Π (resp. Θl the set of clique stars of Θ) with l branches.

In this Section, we assume that all star trees and clique stars satisfy the following
Hypotheses

3.1- the number of terminals is at least three.

3.2- each branch of the star tree contains at least one internal vertex.

Otherwise, linear system (2.6), (2.8) is TDI, [95].

3.1.1 Polytope characterization

In what follows, we give the complete description of the MTVS polytope for the star
trees and clique stars.

3.1.1.1 MTVS polytope for star trees

Proposition 3.2 In star trees, the polytope given by (2.6) and the trivial inequalities
is not integral.

Proof. Consider a star tree H = (V (H) ∪ T (H), E(H)) with at least one vertex in
each branch. Let x ∈ [0, 1]V (H) be defined as follows

• x(v) = 0.5 ∀v ∈ N(vr),

• x(v) = 0 ∀v ∈ V (H) \N(vr).

Vector x is a fractional extreme point of P (H,T (H)), since there are t(H) terminal
path inequalities and |V (H)| − t(H) trivial inequalities, that are linearly independent
and tight for x.

3.1 81

Consider the following valid inequalities,

x(V (H) \ {vr}) + (t(H)− 1)x(vr) ≥ t(H)− 1 ∀H ∈ Π (3.1)

presented in Section 2.3. We recall that the terminal paths are star trees of two termi-
nals. Thus, inequalities (2.6) are included in (3.1). Let us remark that all inequalities
(3.1) associated with the star trees having one terminal are dominated by the trivial
inequalities.

Theorem 3.3 For star trees, the MTVS polytope is given by inequalities (3.1) and the
trivial inequalities.

Proof. Let us assume the contrary, and let x∗ be a fractional extreme point of poly-
tope P (G, T) associated with star tree G = (V ∪T,E), where |V | is minimum (i.e., for
all star trees of n′ vertices with n′ < |V |, the associated polytope is integral). Thus,
x∗ satisfies a unique system of linear independent equalities A

x(V (H) \ {vr}) + (t(H)− 1)x(vr) = t(H)− 1 ∀H ∈ Π1, (3.2)

x∗(v) = 1 ∀v ∈ V1, (3.3)

x∗(v) = 0 ∀v ∈ V2 (3.4)

such that |Π1|+ |V1|+ |V2| = |V |, Π1 ⊆ Π, V1 ⊆ V and V2 ⊆ V .

Claim 1. For all v ∈ V \ {vr}, x∗(v) > 0.

Proof. Let us assume the contrary, and suppose there exists a vertex v ∈ V \ {vr}
such that x∗(v) = 0. It is clear that v has exactly two neighbors, v1, v2 ∈ V . Let H be
the star tree obtained from G by deleting v and adding an edge v1v2. Let x ∈ [0, 1]V (H)

be the restriction of x∗ on V (H) and A′ the system of equalities obtained from A by
deleting equality x∗(v) = 0 and variable x∗(v) from all the other equalities. Solution x
satisfies all equalities of A′. We suppose there are two solutions x1, x2 ∈ [0, 1]V (H) such
that x = 1

2
(x1 + x2). Let x∗1, x∗2 ∈ [0, 1]V be two solutions defined as follows

• x∗1(u) = x1(u) ∀u ∈ V (H).

• x∗2(u) = x2(u) ∀u ∈ V (H).

• x∗1(v) = x∗2(v) = 0.

82 The multi-terminal vertex separator problem : Composition of Polyhedra

Hence, x∗ = 1
2
(x∗1 + x∗2), which is a contradiction with the extremality of x∗. Thus, x

is a fractional extreme point of P (H,T (H)). But this yields a contradiction with the
fact that |V | is minimum. ut

Claim 2. For each branch Pt of G, x∗(Pt) ≤ 1.

Proof. Let us assume the contrary, and let Pt be a branch of G such that x∗(Pt) > 1.
Thus, the variables associated with internal vertices of Pt must only belong to (3.3).
Otherwise, there would exist a vertex v ∈ Pt \ {vr} such that x∗(v) belongs either to
(3.2) or (3.4). From Claim 1, x∗(v) cannot belong to (3.4). Suppose that x∗(v) belongs
to an equality ax∗ = b, of type (3.2). Let H be the star tree obtained from G by
deleting the vertices of Pt \ {vr}. Hence, the star tree inequality ax − x(Pt) ≥ b − 1

associated with H is violated by x∗, a contradiction. Therefore, the variable of each
vertex of Pt belongs to a unique equality, namely (3.3). Let x ∈ [0, 1]V (H) be the re-
striction of x∗ on V (H) and A the system of equalities obtained from A′, by deleting
equality x∗(v) = 1 for all v ∈ Pt \{vr}. Solution x satisfies all equalities of A′ and then
it is a fractional extreme point of P (H,T (H)). However, this contradicts the fact that
|V | is minimum. ut

Claim 3. For root vertex vr, x∗(vr) < 1.

Proof. Let us assume the contrary, x∗(vr) = 1. Since x∗ is fractional, there must
exist v ∈ V \ {vr} such that x∗(v) is fractional. Thus x∗(v) must belong to equalities
(3.2). As x∗(vr) = 1, this yields x∗(v) = 0, which contradicts the fact that x∗ is frac-
tional. ut

Claim 4. Each branch Pt of G contains at most one internal vertex.

Proof. Suppose there exists a branch Pt of G that contains at least two vertices u
and v. From Claims 1 and 2, the variables associated with the internal vertices of
Pt are fractional and cannot appear separately in (3.2) (i.e., if a variable of a vertex
vi ∈ Pt appears in an equality (3.2), all the variables associated with the vertices of Pt
appear in the same equality). There must exist a constant ε > 0 such that solution
x ∈ [0, 1]V , obtained from x∗ by subtracting ε from x∗(u) and adding ε to x∗(v), is
feasible and satisfies system A. This contradicts the extremality of x∗. ut

3.1 83

Claim 5. If there exists a branch Pt such that x∗(Pt) < 1, then all support graphs of
equalities (3.2), contain branch Pt.

Proof. Let ax∗ = b be an equality (3.2) not containing the variables associated with
the vertices of Pt \ {vr}. Thus, the star tree inequality x(Pt) + ax ≥ b + 1 is violated
by x∗, which contradicts the fact that x∗ is feasible. ut

Claim 6. For root vertex vr, x∗(vr) > 0.

Proof. Suppose x∗(vr) = 0. Since x∗ is fractional, there must exist a vertex v ∈ V \{vr}
such that x∗(v) is fractional. Let us assume that v ∈ Pt \ {vr}. Variable x∗(v) has a
coefficient 1 in all inequalities. As x∗(v) must belong to equalities (3.2), there must
exist another vertex u ∈ V \ {v, vr} such that x∗(u) is fractional, and u ∈ Pt′ with
t′ ∈ T \{t}. From Claims 4 and 5, it follows that Pt and Pt′ must belong to all support
graphs of equalities (3.2). There must exist a constant ε > 0 such that the solution
x ∈ [0, 1]V obtained from x∗ by subtracting ε from x∗(v) and adding ε to x∗(u), is
feasible and satisfies system of equalities A. This contradicts the extremality of x∗. ut

From Claims 1, 2, 3 and 6 we obtain that for all v ∈ V , 0 < x∗(v) < 1. Now, we
distinguish two cases.

a. There exists a branch Pt such that x∗(Pt) < 1.
Hence there exists ε > 0 such that the vector x ∈ RV defined as follows

- x(v) = x∗(v) for v ∈ Pt \ {vr},
- x(vr) = x∗(vr) + ε,

- x(v) = x∗(v)− ε, for all v ∈ V \ (Pt ∪ {vr})

satisfies all equalities of A. This contradicts the fact that x∗ is a fractional extreme
point.

b. For each branch Pt, x∗(Pt) = 1.
We notice that x∗(v) = 1 − x∗(vr) for all v ∈ V \ {vr}. Since all variables are
fractional, there exists at least one equality (3.2) satisfied with equality by x∗,

x∗(V \ {vr}) + (t(G)− 1)x∗(vr) =t(G)− 1.

By replacing x∗(v) by 1− x∗(vr), for all v ∈ V \ {vr}, we obtain

|V (G) \ {vr}| − |V (G) \ {vr}|x∗(vr) + (t(G)− 1)x∗(vr) =t(G)− 1.

84 The multi-terminal vertex separator problem : Composition of Polyhedra

By Claim 4, since |V \ {vr}| = t(G), we have

t(G)− t(G)x∗(vr) + (t(G)− 1)x∗(vr) =t(G)− 1.

It follows that x∗(vr) = 1, and, consequently, x∗ is integer, which yields again a
contradiction with the fact that x∗ is fractional.

3.1.1.2 MTVS polytope for clique stars

Proposition 3.4 For clique stars, the polytope given by (2.6) and the trivial inequal-
ities is not integral.

Proof. Consider a clique star Q = (V (Q) ∪ T (Q,E(Q)) defined by q branches and a
clique Kq. Let x be the solution defined as follows

• x(v) = 0.5 ∀v ∈ Kq,

• x(v) = 0 ∀v ∈ V (Q) \Kq.

Vector x represents a fractional extreme point of P (Q, T (Q)), since there is t(Q) termi-
nal path inequalities and |V (Q)|−t(Q) trivial inequalities, that are linearly independent
and tight for x.

Consider the following valid inequalities,

x(Q) ≥ t(Q)− 1 ∀Q ∈ Θ. (3.5)

We recall that the terminal paths are clique stars of two terminals. Thus, inequalities
(2.6) are included in (3.5). Let us remark that all inequalities (3.5) associated with the
clique stars having one terminal are dominated by trivial inequalities.

Theorem 3.5 For clique stars, the MTVS polytope is given by inequalities (3.5) and
the trivial inequalities.

Proof. Let us assume the contrary, let x∗ be a fractional extreme point of the polytope
associated with G = (V ∪ T,E), where |V | is minimum (i.e., for all clique stars of

3.1 85

n′ < |V | vertices, the associated polytope is integer). Thus, x∗ satisfies a unique
system of linear independent equalities A

x(V (Q)) = t(Q)− 1 ∀Q ∈ Θ1, (3.6)

x∗(v) = 1 ∀v ∈ V1, (3.7)

x∗(v) = 0 ∀v ∈ V2, (3.8)

(3.9)

such that |Θ1|+ |V1|+ |V2| = |V |, Θ1 ⊆ Θ, V1 ⊆ V and V2 ⊆ V .

Claim 1. For all v ∈ V \Kq, x∗(v) > 0.

Proof. We assume that there exists a vertex v ∈ V \ Kq such that x∗(v) = 0. It
is clear that v has exactly two neighbors, v1, v2 ∈ V . Let Q be the star tree obtained
from G by deleting v and adding edge v1v2. Let x ∈ [0, 1]V (Q) be the restriction of x∗ on
V (Q) and A′ the system of equalities obtained from A, by deleting equality x∗(v) = 0

and variable x∗(v) from all other equalities. Solution x satisfies all equalities of A′ and
this implies that it is a fractional extreme point of P (Q, T (Q)). Otherwise, there would
exist two solutions x1, x2 ∈ [0, 1]V (Q) such that x = 1

2
(x1 + x2). Let x∗1, x∗2 ∈ [0, 1]V be

the solutions defined as follows

• x∗1(u) = x1(u) ∀u ∈ V (Q).

• x∗2(u) = x2(u) ∀u ∈ V (Q).

• x∗1(v) = x∗2(v) = 0.

As x∗ = 1
2
(x∗1 + x∗2), this contradicts the extremality of x∗. Thus, x is a fractional

extreme point of P (Q, T (Q)). This yields a contradiction with the fact that |V | is
minimum. ut

Claim 2. For all branch Pt, x∗(Pt) ≤ 1.

Proof. Let us assume the contrary, and let Pt be a branch such that x∗(Pt) > 1.
Thus, the variables associated with the internal vertices of Pt must only belong to
(3.7). Otherwise, there would exist a vertex v ∈ Pt \Kq such that x∗(v) belongs either
to (3.6) or (3.8). From Claim 1, x∗(v) cannot belong to (3.8). Suppose that x∗(v)

belongs to an equality ax∗ = b, of type (3.6). Hence, inequality ax − x(Pt) ≥ b − 1

86 The multi-terminal vertex separator problem : Composition of Polyhedra

associated with clique star Q obtained from G by deleting the branch Pt, is violated
by x∗. Contradiction. Therefore, the variable of each vertex of Pt belongs to a unique
equality, that is (3.7). Let x ∈ [0, 1]V (Q) be the restriction of x∗ on V (Q) and A the
system of equalities obtained from A′ by deleting equality x∗(v) = 1 for all v ∈ Pt\{vr}.
Solution x satisfies all equalities of A′ and then it is a fractional extreme point. This
is a contradiction with the minimality of |V |. ut

Claim 3. For all v ∈ Kq not adjacent to a terminal, x∗(v) > 0.

Proof. Assume that on the contrary, there exists a vertex v ∈ Kq adjacent to a vertex
u ∈ Pt such that x∗(v) = 0. Let Q be the clique star obtained from G by deleting vertex
v and adding all edges between u and all the neighbors of v. Let x ∈ [0, 1]V (Q) be the
restriction of x∗ on V (Q) and A′ the system of equalities obtained from A, by deleting
equality x∗(v) = 0 and variable x∗(v) from all other equalities. Solution x satisfies
all equalities of A′ which implies that it is a fractional extreme point of P (Q, T (Q)),
contradicting the minimality of |V |. ut

Claim 4. Each vertex of Kq is adjacent to a terminal.

Proof. Let us assume that there exists a branch Pt containing v ∈ Kq and an internal
vertex u. From Claims 1, 2 and 3, we have that 0 < x∗(u) < 1 and 0 < x∗(v) < 1.
There must exist ε > 0 such that solution x ∈ [0, 1]V , obtained from x∗ by adding
ε to x∗(v) and subtracting ε from x∗(u), satisfies all equalities of A. Which yields a
contradiction with the extremality of x∗. ut

As x∗ is fractional there must exist one vertex u ∈ Kq such that 0 < x∗(u) < 1. Since
all coefficients of the variables in A are 0 or 1, it follows that, there exists another
vertex v ∈ Kq such that 0 < x∗(v) < 1. We will prove that x(u) and x(v) belong
together to the same equalities in A. Suppose there exists an equality (3.6), associated
with a clique star Q ∈ Θ1, containing u but not v. This yields

x∗(Q) = t(Q)− 1.

Let Q′ be the clique star obtained from Q by adding the branch Pt containing v. As
x∗(Pt) < 1, the clique star inequality induced by Q′ is violated by x∗. Thus, u and v
belong together to the same equalities. Let y∗ ∈ RV defined as follows

- y∗(w) = x∗(w) for all w ∈ V \ {u, v},

3.1 87

- y∗(u) = x∗(u) + ε,

- y∗(v) = x∗(v)− ε.

Solution y∗ is a solution for A. As x∗ 6= y∗, this yields a contradiction with the
extremality of x∗.

3.1.2 TDI-ness

In what follows, we give TDI descriptions for the multi-terminal vertex separator prob-
lem in the star trees and the clique stars.

3.1.2.1 TDI system for star trees

Consider a graph G = (V ∪T,E) that is a star tree. We first introduce some notations.
Consider two star trees Hi and Hj subgraphs of G. We denote by H∩i,j the star tree
subgraph of G whose branches are all those in common with Hi and Hj and by H∪i,j a
star tree subgraph of G with t(Hi) + t(Hj)− t(H∩i,j) terminals, whose branches belong
either to Hi or to Hj. If t(H∩i,j) = 0, H∪i,j is any star tree of t(Hi) + t(Hj)− 1 branches.

Figure 3.3: Star trees, subgraphs of the star tree in Figure 3.1.(a)

To illustrates these notations, if Hi is the graph in Figure 3.3.(c) and Hj the graph
in Figure 3.3.(e), then H∪i,j is the graph in Figure 3.3.(a) or the graph in Figure 3.3.(b)
and H∩i,j does not exist. If Hi is the graph in Figure 3.3.(a) and Hj the graph in Figure
3.3.(b), then H∪i,j the graph in Figure 3.4 and H∩i,j is the graph in Figure 3.3.(c).

88 The multi-terminal vertex separator problem : Composition of Polyhedra

Figure 3.4: Star tree

Let PG be the linear program defined by variable vector x, objective function (2.5),
inequalities (3.1) and trivial inequalities (2.8), as follows

min
∑
v∈V

w(v)x(v)

x(V (H) \ {vr}) + (t(H)− 1)x(vr) ≥ t(H)− 1 ∀H ∈ Π, (3.10)

x(v) ≤ 1 ∀v ∈ V,
x(v) ≥ 0 ∀v ∈ V.

The dual DG of PG, is given by

max
∑
H∈Π

(t(H)− 1)yH∑
H∈Πv

yH ≤ w(v) ∀v ∈ V \ {vr}, (3.11)∑
H∈Π

(t(H)− 1)yH ≤ w(vr), (3.12)

yH ≥ 0 ∀H ∈ Π. (3.13)

where yH is the dual variable associated with (3.10).

We notice that DG consists in packing star trees of Π in G satisfying vertex capacity
ω. Let y∗ ∈ RΠ

+ be an optimal solution of DG.

Solution y∗ is called maximal optimal if for each other optimal solution y ∈ RΠ
+ there

exists s ∈ {1, . . . , k} satisfying the following.

1)
∑
H∈Πl

yH =
∑
H∈Πl

y∗H , for all l ∈ {s+ 1, . . . , k},

3.1 89

2)
∑
H∈Πs

yH <
∑
H∈Πs

y∗H .

Let y∗ be a maximal optimal solution of DG, such a solution exists.

Lemma 3.6 For each pair of star trees Hi, Hj ∈ Π, such that y∗Hi > 0 and y∗Hj > 0,
either Hi ⊆ Hj or Hj ⊆ Hi.

Proof. Suppose that Hi and Hj are such that y∗Hj ≥ y∗Hi > 0 and no one is included
in the other. Let β = t(H∪i,j) and α = max{t(H∩i,j), 1}. We will show that y∗ cannot be
maximal optimal by constructing an optimal solution y ∈ RΠ

+ of DG such that

1)
∑
H∈Πl

yH =
∑
H∈Πl

y∗H , for all l ∈ {β + 1, . . . , k},

2)
∑

H∈Πβ

yH >
∑

H∈Πβ

y∗H ,

which will contradict the maximal optimality of y∗. Let y be defined as follows

- yH∪i,j = y∗H∪i,j
+ y∗Hi ,

- yHi = 0,

- yHj = y∗Hj − y
∗
Hi
,

- yH∩i,j = y∗H∩i,j
+ y∗Hi ,

- yH = y∗H ∀H ∈ Π \ {Hl, Hs, H
∩
i,j, H

∪
i,j}.

First, we show that all inequalities (3.11)-(3.13) remain satisfied by y.

Each vertex v ∈ V (H∩i,j) \ {vr} belongs to V (Hi), V (Hj), V (H∩i,j) and V (H∪i,j). Since
the coefficient of each vertex of V (H∩i,j) \ {vr} is 1 in all inequalities, by adding y∗Hi to
the variable of H∪i,j and to the one of H∩i,j and by subtracting y∗Hi from the variable of
Hi and from the one of H∩i,j, it follows that all inequalities associated with the vertices
of V (H∩i,j) \ {vr} remain satisfied by y.

Each vertex v of V (Hi) \ V (H∩i,j) (resp. V (Hj) \ V (H∩i,j)) only belongs to V (Hi)

and V (H∪i,j) (resp. V (Hj) and V (H∪i,j)). Thus, since the coefficient of each vertex of

90 The multi-terminal vertex separator problem : Composition of Polyhedra

V (Hi) \ V (H∩i,j) (resp. V (Hj) \ V (H∩i,j) is 1, by adding y∗Hi to the variable of H∪i,j and
by subtracting y∗Hi from the variable of Hi (resp. Hj), it follows that all inequalities
associated with the vertices of V (Hi)\V (H i∩j) (resp. V (Hj)\V (H∩i,j)) remain satisfied
by y.

It remains to show that inequality (3.12) associated with vr is also satisfied by y. Let
us remark that the left hand side of inequality (3.12) associated with vr is precisely the
function that we want to maximize. Consequently, proving the optimality of y reduces
to proving its feasibility.

As yH = y∗H for all H ∈ Π \ {Hi, Hj, H
∩
i,j, H

∪
i,j}, to prove the optimality of y we just

need to prove that

(t(Hi)− 1)yHi + (t(Hj)− 1)yHj + (β − 1)yH∪i,j + (α− 1)yH∩i,j =

(t(Hi)− 1)y∗Hi + (t(Hj)− 1)y∗Hj + (β − 1)y∗Hi∪j + (α− 1)y∗H∩i,j

Since β = t(Hi) + t(Hj)− α, by replacing the values of y we obtain that

(l − 1)yHi + (s− 1)yHj + (β − 1)yH∪i,j + (α− 1)yH∩i,j =

0 + (t(Hj)− 1)(y∗Hj − y
∗
Hi

) + (t(Hi) + t(Hj)− α− 1)(y∗H∪i,j + y∗Hi) + (α− 1)(y∗H∩i,j + y∗Hi)

= (t(Hj)− 1)y∗Hj + (t(Hi)− 1)y∗Hi + (β − 1)y∗H∪i,j + (α− 1)y∗H∩i,j .

Consequently, y is a feasible optimal solution. This contradicts the fact that y∗ is
maximal optimal.

Corollary 3.7 For l ∈ {1, . . . , k}, there is at most one star tree H over all star trees
of Πl, with y∗H > 0.

Figure 3.5: A maximal optimal solution structure

Figure 3.5 illustrates the structure of the maximal optimal solution y∗ (each star tree
is included in another, except G).

3.1 91

Theorem 3.8 For star tree G = (V ∪ T,E), linear system of PG is TDI.

Proof. We should prove that DG has an integer optimal solution. For this, we need
to show the claims below.

Claim 1. If there exists a star tree H ∈ Π, such that y∗H > 0, and
k∑

l=t(H)

∑
H∈Πl

y∗H < wv,

for all v ∈ V (H), then y∗H′ = 0 for each star tree H ′ ∈ Π with t(H ′) < t(H).

Proof. Let us assume the contrary. Suppose there exists a star tree H ∈ Π, such

that y∗H > 0, and
k∑

l=t(H)

∑
H∈Πl

y∗H < wv, for all v ∈ V (H), and that there exists a star

tree H ′ ∈ Π with t(H ′) < t(H), such that y∗H′ > 0. Assume that t(H ′) is maximum
(for all H ′′ ∈ Π with t(H ′′) ∈ {t(H ′) + 1, . . . , t(H)− 1}, y∗H′′ = 0).

To prove the claim, we will show that y∗ cannot be maximal optimal by constructing
another solution y ∈ RΠ

+ from y∗. Let y be obtained from y∗ by adding α > 0 to y∗H
and subtracting β > 0 from y∗H′ . Indeed, proving that y is feasible and optimal, will
contradict the fact that y∗ is maximal optimal. To guarantee the optimality of y, we
need to satisfy the following equality

α.(t(H)− 1) = β.(t(H ′)− 1)

Thus, if α = min{y
∗
H′ (t(H

′)−1)

(t(H)−1)
, min
v∈V (H)\{vr}

{ω(v) −
k∑

l=t(H)

∑
H∈Πl

y∗H}}, then α > 0 and β =

α(t(H)−1)
t(H′)−1

.

As t(H ′) is maximum, from Lemma 3.6 y must be feasible optimal solution for DG.
This contradicts the fact that y∗ is maximal optimal. ut

Claim 2. If y∗ is fractional, then there exists exactly one star tree H ∈ Π such that y∗H
is fractional.

Proof. Assume that there exist two different star trees Hi, Hj ∈ Π, such that y∗Hi
and y∗Hj are fractional. Suppose that t(Hj) is maximum (that is for all H ∈ Π with
t(H) ≥ t(Hj), y∗Hj is integer). From Corollary 3.7, t(Hj) > t(Hi). We distinguish two
cases.

1. There exists a vertex v ∈ V (Hj) \ {vr} such that
k∑

l=t(Hj)

∑
H∈Πl

y∗H = ω(v). As t(Hj)

is maximum, y∗H is integer for any star tree H with t(H) ∈ {t(Hj) + 1, . . . , k}.

92 The multi-terminal vertex separator problem : Composition of Polyhedra

Moreover, since ω(v) is integer, it follows that y∗Hj is integer, contradicting that fact
that y∗Hj fractional.

2. For all vertex v ∈ V (Hj \ {vr}, we have
k∑

l=t(Hj)

∑
H∈Πl

y∗H < ω(v).

From Claim 1, y∗H = 0 for any star treeH ∈ Π with t(H) ≤ t(Hj)−1, a contradiction
with y∗Hi fractional.

Thus, there exists at most one star tree Hj ∈ Π such that y∗Hj is fractional. ut

Claim 3. If y∗ is fractional then there exists another optimal solution y that is integer.

Proof. From Claim 2, since y∗ is fractional, there exists exactly one star tree H ∈ Π

such that y∗H is fractional. We distinguish two cases

- If t(H) = 1, then let y ∈ RΠ
+ be the solution obtained from y∗ by setting y∗H = 0.

Vector y represents an integer feasible optimal solution for DG.

- If t(H) ≥ 2, then by Claim 2 and from the fact that y∗ is optimal and ω(vr) is integer,
we have that (t(H)−1)y∗H is integer. Let ε = y∗H−by∗Hc. Thus, (t(H)−1)ε is integer.
Let y ∈ RΠ

+ be another solution obtained from y∗ by subtracting ε from y∗H and by
adding 1 to y∗H′ for an arbitrary star tree H ′ ∈ Πε.(t(H)−1)+1. Consequently, y is an
integer optimal solution for DG. ut

Which ends the proof of the theorem.

As consequence, we obtain the following min-max relation:

Corollary 3.9 In star trees, the minimum number of vertices covering all terminal
paths is equal to the maximum packing of star trees.

Then, we deduce the following polynomial algorithm to solve DG. It is based on
the fact that the maximal optimal solution y of DG is integer and any star tree of y
is included in another star tree of y, except the maximal one. The algorithm starts
by packing several copies of the maximal star tree of G until the capacity of at least
one vertex of G is exhausted. We delete then all branches of G containing at least one

3.1 93

vertex with an exhausted capacity. The above operations are repeated until G becomes
a branch.

Therefore, we deduce the following algorithm (Algorithm 11) for solving DG.

Algorithm 11: An exact algorithm for solving DG

Data: A star tree G = (V ∪ T,E), a vertex capacities vector ω
Result: Maximal optimal solution y∗

begin
for (t ∈ T) do

ω′(Pt) = min
u∈Pt\{vr}

{ω(u)} ;

if (ω′(Pt) = 0) then
Delete branch Pt from G;

end
end
while (t(G) > 1 and ω(vr) > 0) do

y∗G = min{b ω(vr)
t(G)−1

c,min
t∈T
{ω′(Pt)}};

for (t ∈ T) do
ω′(Pt) = ω′(Pt)− y∗G;

end
ω(vr) = ω(vr)− y∗G.(t(G)− 1);
for (t ∈ T) do

if (ω′(Pt) = 0) then
Delete branch Pt from G;

end
end

end
end

Corollary 3.10 For the star trees, the multi-terminal vertex separator problem is poly-
nomial.

3.1.2.2 TDI system for clique stars

Consider a graph G = (V ∪ T,E) that is a clique star. Given Qi and Qj two clique
stars of G, we denote by Q∩i,j the clique star of G, whose branches are those in common

94 The multi-terminal vertex separator problem : Composition of Polyhedra

with Qi and Qj. We denote by Q∪i,j a clique star of G whose branches belong either to
Qi or to Qj.

Figure 3.6: Clique star

Let PG be the linear program whose objective function is (2.5), and the system of
inequalities given by (2.8) and (3.5). Let DG be the dual of PG. Let us remark that
DG consists in a packing of clique stars of Θ in G satisfying the vertex capacities ω.
Let y ∈ RΘ

+ be vector of the dual variables associated with inequalities (3.5) and y∗

an optimal solution of DG. Solution y∗ is called maximal optimal if for each optimal
solution y ∈ RΘ

+ there exists s ∈ {1, . . . , k} satisfying the following conditions.

1)
∑
Q∈Θl

yQ =
∑
Q∈Θl

y∗Q, for all l ∈ {s+ 1, . . . , k},

2)
∑
Q∈Θs

yQ <
∑
Q∈Θs

y∗Q.

In the following we assume that y∗ is maximal optimal.

Lemma 3.11 For two different clique stars Qi, Qj ∈ Θ of G, such that y∗Qi > 0 and
y∗Qj > 0, either Qi ⊆ Qj or Qj ⊆ Qi.

Proof. Assume that there exist two clique stars Qi, Qj ∈ Θ of G, such that y∗Qi > 0

and y∗Qj > 0 and no one of them is included in the other. Then there exists ε > 0 such
that the solution y ∈ RΘ

+, obtained from y∗ by subtracting ε from y∗Qi and y
∗
Qj

and by
adding ε to y∗Q∪i,j and to y∗Q∩i,j , is feasible and optimal for D∗. This contradicts the fact
that y∗ is maximal optimal.

Corollary 3.12 For s ∈ {1, . . . , k}, there exists at most one clique star Q over all
clique stars of Θs with y∗Q > 0.

3.1 95

Lemma 3.13 For all Qj ∈ Θ, there exists a vertex v ∈ V (Qj) such that
k∑

l=t(Qj)

∑
Q∈Θl

y∗Q =

w(v).

Proof. Assume that there exists Qj ∈ Θ, such that for all v ∈ V (Qj),
k∑

l=t(Qj)

∑
Q∈Θl

y∗Q <

w(v). Then, there must exist Q′ ∈ Θ such that t(Q′) < t(Qj) and y∗Q′ > 0, otherwise
the solution would not be optimal. Assume that t(Q′) is maximum, that is, for all
clique star Q′′ ∈ Θ with t(Q′) < t(Q′′) < t(Qj), y∗Q′′ = 0. Then there exists 0 < ε ≤ y∗Q′

such that y ∈ RΘ
+, obtained from y∗ by subtracting ε from y∗Q′ and adding ε to y∗Qj , is

feasible and optimal for D∗. This contradicts the fact that y∗ is maximal optimal.

Theorem 3.14 For clique star G = (V ∪ T,E), the linear system of PG is TDI.

Proof. Using Corollary 3.12 and Lemma3.13, the maximal optimal solution ofDG can
be obtained by packing several copies of the clique star with the highest number of ter-
minals, until the capacity of one vertex is saturated. Then, we delete branches with at
least one saturated vertex. We repeat the operations until the graph becomes a branch.

Therefore, we deduce the following algorithm (Algorithm 12) for solving DG.

96 The multi-terminal vertex separator problem : Composition of Polyhedra

Algorithm 12: An exact algorithm for solving DG

Data: Graph G = (V ∪ T,E) that is a clique star, a weight vector ω
Result: A maximal optimal solution y∗

begin
for (t ∈ T) do

ω′(Pt) = min
u∈Pt
{ω(u)} ;

if (ω′(Pt) = 0) then
Delete branch Pt from G;

end
end
while (t(G) > 1) do

y∗G = min
∀t∈T
{ω′(Pt)};

for (t ∈ T) do
ω′(Pt) = ω′(Pt)− y∗G;

end
for (t ∈ T) do

if (ω′(Pt) = 0) then
Delete branch Pt from G;

end
end

end
end

From Lemmas 3.11 and 3.13, Algorithm 12 gives an integer optimal solution y∗ for
D∗. Which ends the proof of the theorem.

As consequence, we obtain the following min-max relation:

Corollary 3.15 In clique stars, the minimum number of vertices covering all terminal
paths is equal to the maximum packing of clique stars.

3.2 Composition of polyhedra by 1-sum

In what follows we study a composition (decomposition) technique for the multi-
terminal vertex separator polytope in graphs that are decomposable by one-node cut-
sets (1-sum). If G decomposes into G1 and G2, we show that the multi-terminal vertex

3.2 97

polytope of G can be described from two linear systems related to G1 and G2. As
a consequence, we obtain a procedure to construct this polytope in graphs that are
recursively decomposed.

Given a graph G = (V ∪ T,E) and two subgraphs of G, say G1 = (V1 ∪ T1, E1) and
G2 = (V2∪T2, E2), graph G is called a k−sum of G1 and G2 if V = V1∪V2, T = T1∪T2,
|T1 ∩ T2| = 0, |V1 ∩ V2| = k and subgraph (V1 ∩ V2, E1 ∩E2) is complete. Set V1 ∩ V2 is
called a k-node cutset of G.

In what follows we investigate the polytope composition procedure for graphs that
are 1-sums. Let G = (V ∪T,E) be a 1-sum of G1 = (V1∪T1, E1) and G2 = (V2∪T2, E2).
Let V1 ∩ V2 = {u}, such that u is not adjacent to a terminal. Let G̃i = (Ṽi ∪ T̃i, Ẽi) be
the graph obtained from Gi, for i = 1, 2, by adding a node wi, a terminal qi and edges
qiwi, wiu. Figure 3.7 illustrates graphs G, G̃1 and G̃2.

Figure 3.7: Composition (decomposition) of graphs

In G̃i, the multi-terminal vertex separator polytope P (G̃i, T̃i) is completely described
by a linear inequality system of the form∑

v∈Ṽi

ail(v)x(v) ≥ αil ∀l ∈ Li, (3.14)

x(v) ≤ 1 ∀v ∈ Ṽ i,

x(v) ≥ 0 ∀v ∈ Ṽ i.

98 The multi-terminal vertex separator problem : Composition of Polyhedra

3.2.1 Structure properties

In what follows, we shall study some structural properties of the facets of P (G̃i, T̃i).
These properties will be used later for the composition of polyhedra.

Lemma 3.16 For any inequality (3.14), ail(v) ≥ 0 for any vertex v ∈ Ṽi.

Proof. Let us assume the contrary, then there exists a vertex v0 ∈ Ṽi such that
ail(v0) < 0. As (3.14) is different from a bound inequality, there must exist a vertex
separator Si that does not contain v0 and such that

∑
v∈Ṽi\{v0}

ail(v)xS
i
(v) = αil. Let

Sv0 = Si∪{v0}. Set Sv0 is a separator for G̃i. It then follows that
∑

v∈Ṽi\{v0}
ail(v)xS

v
(v)+

ail(v0) < αil, a contradiction.

Lemma 3.17 For any inequality (3.14), ail(u) ≥ ail(wi).

Proof. Since (3.14) defines a facet of P (G̃i, T̃i) different from a non-negativity inequal-
ity and polytope P (G̃i, T̃i) is full dimensional, there must exist a separator Si such that
xS

i satisfies (3.14) with equality and wi ∈ Si. If u ∈ Si, then Si \ {wi} is a separator
for G̃i, and this yields ail(wi) = 0 ≤ ail(u). If u /∈ Si, then let Si = (Si \ {wi}) ∪ {u}.
As Si is a separator for G̃i, it follows that ail(u) ≥ ail(wi).

Lemma 3.18 Consider a separator Si for graph G̃i. If xS
isatisfies an inequality (3.14)

with equality, then |Si ∩ {wi, u}| ≤ 1.

Proof. Let us assume the contrary, that is {wi, u} ⊆ Si and xSi satisfies an inequality
(3.14) with equality. Let Si = Si \ {wi}. It is clear that Si is a separator for G̃i. It
then follows that inequality (3.14) is violated by Si.

From Lemmas 3.16, 3.17, 3.18, the linear inequality system describing P (G̃i, T̃i) can

3.2 99

be given as follows ∑
v∈Vi\{u}

aij(v)x(v) ≥ αij ∀j ∈ I i, (3.15)

∑
v∈Vi\{u}

a′ij (v)x(v) + x(u) ≥ α′ij ∀j ∈ I ′i, (3.16)

∑
v∈Vi

bij(v)x(v) + x(wi) ≥ βij ∀j ∈ J i, (3.17)

x(v) ≤ 1 ∀v ∈ Ṽ i, (3.18)

x(v) ≥ 0 ∀v ∈ Ṽ i. (3.19)

Where I i is the set of inequalities whose support does not intersect {wi, u}, I ′i the set
of inequalities whose support does not intersect wi but contains u and J i the set of
inequalities whose support contains u and wi.

3.2.2 Composition of polyhedra

In what follows we derive a system of inequalities that describes P (G, T). To this end,
we first give the following lemmas.

Lemma 3.19 For j ∈ J i, inequality∑
v∈Vi

bij(v)x(v)− x(u) ≥ βij − 1

is valid for P (G, T).

Proof. Consider a separator S for graph G. We distinguish two cases

• u ∈ S : let Si = (S ∩ Vi). It is clear that Si is a separator of G̃i. It follows that∑
v∈Vi

bij(v)xSi(v) ≥ βij, and since −xSi(u) ≥ −1, it follows that
∑
v∈Vi

bij(v)xSi(v) −

xSi(u) ≥ βij − 1.

• u /∈ S : then either (S ∩ V1) is a separator for G̃1 or (S ∩ V2) is a separator
for G̃2. Suppose for instance, that (S ∩ V2) is a separator for G̃2, and let S1 =

(S ∩V1)∪{w1} and S2 = (S ∩V2). Clearly, S1 and S2 are both separators for G̃1

and G̃2 respectively. Thus,

100 The multi-terminal vertex separator problem : Composition of Polyhedra

– for G̃2, we have
∑
v∈V2

b2
j(v)xS2(v) ≥ β2

j and since −xS2(u) ≥ −1, this yields∑
v∈V2

b2
j(v)xS2(v)− xS2(u) ≥ β2

j − 1.

– for G̃1, we have
∑
v∈V1

b1
j(v)xS1(v) + xS1(w1) ≥ β1

j and xS1(w1) = 1. Then,∑
v∈V1

b1
j(v)xS1(v) ≥ β1

j−1, and as xS1(u) = 0, we obtain that
∑
v∈V1

b1
j(v)xS1(v)−

xS1(u) ≥ β1
j − 1.

Therefore we obtain that ∑
v∈V1

b1
j(v)xS(v)− xS(u) ≥ β1

j − 1∑
v∈V2

b2
j(v)xS(v)− xS(u) ≥ β2

j − 1

and the lemma follows.

Lemma 3.20 For j ∈ J i, inequality∑
v∈Vi

bij(v)x(v)− x(u) ≥ βij − 1

is valid for P (G̃i, T̃i).

Proof. We assume w.l.o.g, that i = 1. The proof for i = 2 is similar. Let S1 be a
separator of G̃1. We distinguish two cases.

1- u ∈ S1 or (u /∈ S1 and w1 /∈ S1)

It can be easily seen that S ′ = S1 ∪ (V2 \ {u}) is a separator for G. Therefore, xS′

belongs to P (G, T). From Lemma (3.19), xS′ satisfies the following inequality∑
v∈V1

b1
j(v)xS

′
(v)− xS′(u) ≥ β1

j − 1.

Since S1 = S ′ ∩ (V1 ∪ {w1}), we get∑
v∈V1

b1
j(v)xS

1

(v)− xS1

(u) ≥ β1
j − 1.

3.2 101

2- u /∈ S1 and w1 ∈ S1

This implies, xS1
(u) = 0 and xS1

(w1) = 1. As∑
v∈V1

b1
j(v)xS

1

(v) + xS
1

(w1) ≥ β1
j ,

We obtain that ∑
v∈V1

b1
j(v)xS

1

(v)− xS1

(u) ≥ β1
j − 1.

And the lemma follows.

Theorem 3.21 If ax ≥ α is a valid inequality for P (G̃i, T̃i) with a(wi) = 0, then there
exists an inequality ax ≥ α valid for P (G̃i, T̃i) that dominates ax ≥ α and that is a
linear combination of inequalities (3.15), (3.16) and inequalities (3.18) associated with
the vertices of Vi.

Proof. Let A′ be the system given by inequalities (3.15)− (3.17), (3.19) and inequal-
ities (3.18) associated with the vertices of Vi. Let

P ′ = min{ ax | xis a solution of A′},

and

P ′′ = min{ ax | x ∈ P (G̃i, T̃i)}.

An optimal solution, say x0, of P ′′ is a feasible solution of P ′. Since a(wi) = 0, we can
assume that x0(wi) = 1.

Let r ∈ RIi , z ∈ RI′i , θ ∈ RJi , µ ∈ RṼi , λ ∈ RVi associated with inequalities (3.15),
(3.16), (3.17),(3.19) and x(v) ≤ 1, ∀v ∈ Vi, respectively. Let D′ be the dual of P ′,

102 The multi-terminal vertex separator problem : Composition of Polyhedra

given by

max
∑
j∈Ii

αijrj +
∑
j∈I′i

α′ij zj +
∑
j∈Ji

βijθj −
∑
v∈Vi

λ(v)

∑
j∈Ii

aij(v)rj +
∑
j∈I′i

a′ij (v)zj +
∑
j∈Ji

bij(v)θj + µ(v)− λ(v) ≤ a(v) ∀v ∈ Ṽi \ {u,wi} (3.20)

∑
j∈I′i

zj +
∑
j∈Ji

bij(u)θj + µ(u)− λ(u) ≤ a(u) (3.21)

∑
j∈Ji

bij(wi)θj + µ(wi) ≤ a(wi) (3.22)

rij ≥ 0 ∀j ∈ Ii (3.23)

zij ≥ 0 ∀j ∈ I ′i (3.24)

θij ≥ 0 ∀j ∈ J i (3.25)

µ(v) ≥ 0 ∀v ∈ Ṽi (3.26)

λ(v) ≥ 0 ∀v ∈ Vi (3.27)

As for each vertex v ∈ Ṽi, µ(v) is non-negative, the coefficient of µ(v) is 0 in the
objective function and positive in all inequalities of D′, we can set µ(v) = 0 for all
vertex v ∈ Ṽi. As x0 is a feasible solution of P ′, D′ admits an optimal solution
(r∗, z∗, θ∗, 0, λ∗). From Lemma 3.16, all coefficients in inequality (3.22) are positives.
As a(wi) = 0, we deduce that θ∗j = 0 for all j ∈ J i. Let

• a(v) =
∑
j∈Ii

aij(v)r∗j +
∑
j∈I′i

a′ij (v)z∗j − λ∗(v) for all v ∈ Ṽi \ {u,wi},

• a(u) =
∑
j∈I′i

z∗j − λ∗(u),

• a(wi) = 0,

• α =
∑
j∈Ii

αijr
∗
j +

∑
j∈I′i

α′ij z
∗
j −

∑
v∈Vi

λ∗(v).

We can see that ax ≥ α is a combination of inequalities (3.15), (3.16) and inequalities
(3.18) using coefficients (r∗, z∗, λ∗). Then, ax ≥ α is valid for P (G̃i, T̃i).
From the inequalities of D′, we notice that a(v) ≤ a(v) for all vertex v ∈ Ṽi. Since
ax ≥ α and α = min{ ax | x solution of A′}, it follows that α ≥ α. Consequently,
inequality ax ≥ α dominates ax ≥ α.

3.2 103

Consider the following system of inequalities∑
v∈Vi\{u}

aij(v)x(v) ≥ αij ∀i = 1, 2, ∀j ∈ I i (3.28)

∑
v∈V1\{u}

a′ij (v)x(v) + x(u) ≥ α′ij ∀i = 1, 2, ∀j ∈ I ′i (3.29)

2∑
p=1

∑
v∈Vi

bijp(v)x(v)− x(u) ≥
2∑
p=1

βijp − 1 ∀j1 ∈ J1,∀j2 ∈ J2 (3.30)

x(v) ≤ 1 ∀v ∈ V (3.31)

x(v) ≥ 0 ∀v ∈ V (3.32)

Inequalities (3.30) are called mixed inequalities. Let Q(G, T) be the polytope given
by inequalities (3.28)− (3.32).

In what follows will first show that P (G, T) = Q(G, T).

Lemma 3.22 The mixed inequalities are valid for P (G, T).

Proof. Consider a mixed inequality associated with j1 ∈ J1 and j2 ∈ J2. Consider a
separator S for graph G. We distinguish two cases.

• u ∈ S: define S1 = (S ∩ V1) and S2 = (S ∩ V2). It is clear that S1 and S2 are two
separators for G̃1 and G̃2 respectively. Thus, by (3.17) we have that∑

v∈V1

b1
j1

(v)xS1(v) ≥ β1
j1
,∑

v∈V2

b2
j2

(v)xS2(v) ≥ β2
j2
.

Thus
∑
v∈V1

b1
j1

(v)xS1(v) +
∑
v∈V2

b2
j2

(v)xS2(v) − xS1(u) ≥ β1
j1

+ β2
j2
− 1, and hence

inequality (3.30) is satisfied for S.

• u /∈ S: then either (S ∩ V1) is a separator of G̃1 or (S ∩ V2) is a separator of G̃2.
Assume that (S ∩ V2) is a separator of G̃2, and let S1 = (S ∩ V1) ∪ {w1} and
S2 = (S ∩V2). As, S1 and S2 are separators for G̃1 and G̃2 respectively, by (3.17)

it follows that ∑
v∈V1

b1
i (v)xS1(v) + xS1(w1) ≥ β1

j1
,∑

v∈V2

b2
i (v)xS2(v) ≥ β2

j2
.

104 The multi-terminal vertex separator problem : Composition of Polyhedra

Since −xS1(w1) ≥ −1 and x(u) = 0, this implies that∑
v∈V1

b1
i (v)xS1(v) +

∑
v∈V2

b2
i (v)xS2(v) ≥ β1

j1
+ β2

j2
− 1

Lemma 3.23 All integer points of Q(G, T) belong to P (G, T).

Proof. We need to prove that all integer points of Q(G, T) satisfy all terminal path
inequalities induced by the terminal paths of G. Let us assume that, on the contrary,
there exists an integer point xS ∈ Q(G, T) that does not belong to P (G, T). Clearly,
xS satisfies all terminal path inequalities of P (G̃i, T̃i) in which x(wi) is not involved.
As xS does not belong to P (G, T) there must exist a terminal path Pt1t2 in G with one
end t1 ∈ T1 and the other t2 ∈ T2 not intersecting S. Let Ptiqi = (Pt1t2 ∩ Vi) ∪ {wi, qi}
be the terminal path in G̃i between ti and qi. From the mixed inequality associated
with the terminal path inequalities associated with Pt1q1 and Pt2q2 we have that∑

v∈Pt1q1\{w1}

x(v) +
∑

v∈Pt2q2\{w2}

x(v)− x(u) ≥ 1

which is violated by xS. This contradicts the fact that xS ∈ Q(G, T).

Lemma 3.24 Inequality ∑
v∈Vi

bij(v)x(v)− x(u) ≥ βij − 1

is valid for the polytope given by inequalities (3.28) − (3.32) and it is dominated by
inequality ax ≥ α that is obtained as a linear combination of inequalities (3.28)−(3.29)

and inequalities (3.31) associated with vertices of Vi.

Proof. From Lemma 3.20, inequality∑
v∈Vi

bij(v)x(v)− x(u) ≥ βij − 1

is valid for P (G̃i, T̃i). As the coefficient of wi is 0, from Theorem 3.21, this inequality
is dominated by an inequality ax ≥ α that is a combination of inequalities (3.15),
(3.16) and inequalities (3.18) associated with vertices of Vi. These inequalities are
in (3.28) − (3.32). Then, ax ≥ α is also valid for the polytope given by inequalities
(3.28)− (3.32).

3.2 105

Theorem 3.25 For a graph G = (V ∪T,E), polytope P (G, T) is completely described
by inequalities (3.28)− (3.32).

Proof. Let us assume that on the contrary, Q(G, T) has a fractional extreme point
x. We will distinguish two cases.
Case 1: x(u) = 1. Let x1 ∈ [0, 1]Ṽ1 and x2 ∈ [0, 1]Ṽ2 be the two solutions defined as
follows.

• xi(v) = x(v) for all v ∈ Vi,

• xi(wi) = 0.

As x(u) = 1, from Lemma 3.19, x1 ∈ P (G̃1, T̃1) and x2 ∈ P (G̃2, T̃2). Thus, there exist
λ ∈ [0, 1]s, µ ∈ [0, 1]p, extreme points yi of P (G̃1, T̃1) and zj of P (G̃2, T̃2) such that

• x1 =
s∑
i=0

λiyi,

• x2 =
p∑
j=0

µjzj,

• λi ≥ 0, for all i ∈ {1, . . . , s} and
s∑
i=1

λi = 1,

• µj ≥ 0, for all j ∈ {1, . . . , p} and
p∑
j=1

µj = 1.

As x1 6= 0 6= x2, there must exist i0 ∈ {1, . . . , s} and j0 ∈ {1, . . . , p} such that, λi0 > 0

and µj0 > 0. Also note that each non mixed inequality tight for x is tight for either x1

or x2. Since yi0 and zj0 are extreme points, each facet of P (G̃1, T̃1) (resp. P (G̃2, T̃2))
that contains x1 (resp. x2) also contains yi0 (resp. zj0). Then, it follows that each
inequality tight for x1 (x2) is also tight for yi0 (zj0). As x(u) = 1, for all yi and zj,
x(u) = yi(u) = zj(u). Let x∗ ∈ [0, 1]V be the solution defined as follows

x∗(v) =

{
yi0(v), for all v ∈ V1,

zj0(v), for all v ∈ V2 \ {u}.

Thus, each non mixed inequality tight for x is tight for x∗. Now, we need to prove that
each mixed inequality tight for x is also tight for x∗.

106 The multi-terminal vertex separator problem : Composition of Polyhedra

For two inequalities corresponding to j1 ∈ J1 and j2 ∈ J2, consider the following
mixed equality tight for x.∑

v∈V1

b1
j1

(v)x(v) +
∑
v∈V2

b2
j2

(v)x(v)− x(u) = β1
j1

+ β2
j2
− 1 (3.33)

As xi ∈ P (G̃i, T̃i), we have that∑
v∈V1

b1
j1

(v)x1(v) + x1(w1) ≥ β1
j1
,∑

v∈V2

b1
j2

(v)x2(v) + x2(w2) ≥ β2
j2
.

Thus, from Lemma 3.20, inequalities∑
v∈V1

b1
j1

(v)x(v)− x(u) ≥ β1
j1
− 1,∑

v∈V2

b1
j2

(v)x(v)− x(u) ≥ β2
j2
− 1.

are valid for P (G, T). Since x(u) = 1, it follows that∑
v∈V1

b1
j1

(v)x(v) ≥ β1
j1
,∑

v∈V2

b1
j2

(v)x(v) ≥ β2
j2
.

By (3.33), we obtain that these inequalities are tight for x, that is∑
v∈V1

b1
j1

(v)x(v) =
∑
v∈V1

b1
j1

(v)x1(v) = β1
j1
,∑

v∈V2

b2
j2

(v)x(v) =
∑
v∈V2

b2
j2

(v)x2(v) = β2
j2
.

Therefore ∑
v∈V1

b1
j1

(v)yi0(v) = β1
j1
,∑

v∈V2

b2
j2

(v)zj0(v) = β2
j2
,

Implying that ∑
v∈V1

b1
j1

(v)yi0(v) +
∑
v∈V2

b2
j2

(v)zj0(v) = β1
j1

+ β2
j2
.

3.2 107

Hence ∑
v∈V1

b1
j1

(v)x∗(v) +
∑
v∈V2

b2
j2

(v)x∗(v)− x∗(u) = β1
j1

+ β2
j2
− 1.

Consequently, each inequality tight for x is also tight for x∗. Since x 6= x∗, this contra-
dicts the extremality of x.

Case 2: x(u) < 1.
We distinguish two cases, when there is no mixed inequality tight for x and when there
is at least one mixed inequality tight for x.

Case 2.1: There is no mixed inequality tight for x.
Let x1 ∈ [0, 1]Ṽ1 and x2 ∈ [0, 1]Ṽ2 be two vectors defined as follows.

xi(v) =

{
x(v), for all v ∈ Vi,
1, for v = wi.

All terminal path inequalities associated with terminal paths between two terminals
of Ti, are satisfied by x. Thus, they are satisfied by xi. As xi(wi) = 1, all terminal
path inequalities associated with terminal paths between qi and terminals of Ti are also
satisfied by xi. Thus, x1 ∈ P (G̃1, T̃1) and x2 ∈ P (G̃2, T̃2). Consequently, there exist
ν ∈ [0, 1]s, µ ∈ [0, 1]p and extreme points yj ∈ P (G̃1, T̃1) and zj ∈ P (G̃2, T̃2) such that

• x1 =
s∑
j

νjyj,

• x2 =
p∑
j

µjzj,

• νj ≥ 0, for all j ∈ {1, . . . , s} and
s∑
j=1

νj = 1,

• µj ≥ 0, for all ∀j ∈ {1, . . . , p} and
p∑
j=1

µj = 1.

Since x(u) < 1, there must exist i0 ∈ {1, . . . , s} and j0 ∈ {1, . . . , p} such that, yi0(u) =

zj0(u) = 0 and νi0 > 0 and µj0 > 0. Each non-mixed inequality tight for x is tight for
x1 or x2. As yi0 and zj0 are extreme points of P (G̃1, T̃1) and P (G̃2, T̃2), respectively,
this implies that each facet of P (G̃1, T̃1) (resp. P (G̃2, T̃2)) that contains x1 (resp. x2)
also contains y1 (resp. z1). Let x∗ ∈ [0, 1]V be the solution given by

108 The multi-terminal vertex separator problem : Composition of Polyhedra

x∗(v) =

{
yi0(v), for all v ∈ V1,

zj0(v), for all v ∈ V2 \ {u}.

It follows that each inequality tight for x1 and x2 is also tight for yi0 and zj0 . Thus,
each non-mixed inequality tight for x is tight for x∗. As x 6= x∗, we have a contra-
diction with the fact that x is an extreme point of the polytope given by (3.28)−(3.32).

Case 2.2: There is at least one mixed inequality tight for x.
Consider a mixed inequality for some j1 ∈ J1 and j2 ∈ J2, tight for x,∑

v∈V1

b1
j1

(v)x(v) +
∑
v∈V2

b2
j2

(v)x(v)− x(u) = β1
j1

+ β2
j2
− 1. (3.34)

Lemma 3.26 There exist 0 ≤ λ ≤ 1 and 0 < ε ≤ 1 such that∑
v∈V1

b1
j1

(v)x(v) = β1
j1
− 1 + λ, (3.35)∑

v∈V2

b2
j2

(v)x(v) = β2
j2
− λ+ ε. (3.36)

Proof. From Lemma 3.24 the following inequality∑
v∈V1

b1
j1

(v)x(v)− x(u) ≥ β1
j1
− 1

is satisfied by x. Then by (3.34) we obtain∑
v∈V2

b2
j2

(v)x(v) ≤ β2
j2
.

From Lemma 3.24, we also have

β2
j2
− 1 ≤

∑
v∈V2

b2
j2

(v)x(v)− x(u) ≤ β2
j2
.

Therefore, there exists 1 ≥ λ ≥ 0 such that∑
v∈V2

b2
j2

(v)x(v)− x(u) + λ = β2
j2
.

Let ε = x(u), thus ∑
v∈V2

b2
j2

(v)x(v) = β2
j2
− λ+ ε.

3.2 109

From equality (3.34) we then obtain∑
v∈V1

b1
j1

(v)x(v) = β1
j1
− 1 + λ,

and the lemma follows.

Now consider solutions x1 ∈ [0, 1]Ṽ1 and x2 ∈ [0, 1]Ṽ2 such that

x1(v) =

{
x(v), for all v ∈ V1,

1− λ, for v = w1.

and

x2(v) =

{
x(v), for all v ∈ V2,

λ− ε, for v = w2.

we have the following lemma.

Lemma 3.27 xi ∈ P (G̃i, T̃i), for i = 1, 2.

Proof. We consider two cases

• x1 ∈ P (G̃1, T̃1).
It is clear that x1 satisfies inequalities (3.15)-(3.16). We will prove that it also
satisfies inequalities (3.17). Assume, on the contrary, that for some j ∈ J1,∑

v∈V1

b1
j3

(v)x1(v) + x1(w1) < β1
j3
.

From Lemma 3.26, it then follows that∑
v∈V1

b1
j3

(v)x1(v) + x1(w1) +
∑
v∈V2

b2
j2

(v)x(v) < β1
j3

+ β2
j2
− λ+ ε.

Since x1(w1) = 1− λ and x(u) = ε, this yields∑
v∈V1

b1
j3

(v)x(v) +
∑
v∈V2

b2
j2

(v)x(v)− x(u) < β1
j3

+ β2
j2
− 1,

a contradiction with x ∈ Q(G, T).

110 The multi-terminal vertex separator problem : Composition of Polyhedra

• x2 ∈ P (G̃2, T̃2).
It is clear that x2 satisfies inequalities (3.15)-(3.16). We will prove that it also
satisfies inequalities (3.17). To this end we will show that all inequalities of J2

are satisfied by x2. Consider an inequality j4 ∈ J2∑
v∈V2

b2
j4

(v)x2(v) + x2(w2) ≥ β2
j4
.

And let us assume that it is violated by x2, that is∑
v∈V2

b2
j4

(v)x2(v) + x2(w2) < β2
j4
.

From Lemma (3.26)∑
v∈V2

b2
j4

(v)x2(v) + x2(w2) +
∑
v∈V1

b1
j1

(v)x(v) < β1
j4

+ β1
j1
− 1 + λ.

As x2(w2) = λ− ε, this yields∑
v∈V2

b2
j4

(v)x(v) +
∑
v∈V1

b1
j1

(v)x(v)− ε < β1
j4

+ β1
j1
− 1.

Therefore, the mixed inequality associated with j4 and j1 is violated by x, a
contradiction.

Thus, our lemma holds.

Since x1 ∈ P (G̃1, T̃1) and x2 ∈ P (G̃2, T̃2), there exist λ ∈ [0, 1]s, µ ∈ [0, 1]p and extreme
points yj ∈ P (G̃1, T̃1) and zj ∈ P (G̃2, T̃2) such that

• x1 =
s∑
j

λjyj

• x2 =
p∑
j

µjzj

• λj > 0, for all i ∈ {1, . . . , s}

• µj > 0, for all ∀j ∈ {1, . . . , p}

3.2 111

Since x1(u) < 1 and x2(u) < 1, there must exist yi0 and zj0 such that yi0(u) = zj0(u) =

0.
Let x∗ ∈ [0, 1]V defined as

x∗(v) =

{
yi0(v), for all v ∈ V1,

zj0(v), for all v ∈ V2 \ {u}.

Each non mixed inequality tight for x is tight for xi. Also each tight inequality tight
for xi is tight for x∗. It then follows that each non-mixed inequality tight for x is tight
for x∗.

Lemma 3.28 Each mixed inequality tight for x is tight for x∗.

Proof. Consider a mixed inequality tight for x, corresponding to some j′ ∈ J1 and
j′′ ∈ J2, ∑

v∈V1

b1
j′(v)x(v) +

∑
v∈V2

b2
j′′(v)x(v)− x(u) = β1

j′ + β2
j′′ − 1. (3.37)

By Lemma (3.26) we have that∑
v∈V1

b1
j′(v)x(v) = β1

j′ − 1 + λ′′, (3.38)∑
v∈V2

b2
j′′(v)x(v) = β2

j′′ − λ′′ + ε. (3.39)

It is easy to see that λ′′ ≥ λ. Otherwise, by summing inequality(3.38) and (3.36) we
obtain an inequality violated by x. In the following claim we will prove that indeed
λ′′ = λ.

Claim 1. ∑
v∈V1

b1
j′(v)x(v) = β1

j′ − 1 + λ,∑
v∈V2

b2
j′′(v)x(v) = β2

j′′ − λ+ ε.

112 The multi-terminal vertex separator problem : Composition of Polyhedra

Proof. If j′ = j1 and j′′ = j2, then the claim holds. Therefore, let us assume that
j′ 6= j1 or j′′ 6= j2 and λ′′ > λ. From equality (3.38), it then follows that

−
∑
v∈V1

b1
j′(v)x(v) < −β1

j′ + 1− λ.

By summing the above inequality together with equality (3.37), we get∑
v∈V2

b2
j′′(v)x(v) < β2

j′′ + ε− λ.

And by summing the above inequality together with (3.35), we obtain∑
v∈V1

b1
j1

(v)x(v) +
∑
v∈V2

b2
j′′(v)x(v)− x(u) < β1

j1
+ β2

j′′ − 1.

a contradiction. It then follows that λ′′ = λ. ut

Claim 2. Inequalities j′ and j′′ are tight for x1 and x2, respectively.

Proof. We have that∑
v∈V1

b1
j′(v)x(v) =

∑
v∈V1

b1
j′(v)x1(v) = β1

j′ + λ− 1,∑
v∈V2

b2
j′′(v)x(v) =

∑
v∈V2

b2
j′′(v)x2(v) = β2

j′′ − λ+ ε.

As x1(w1) = 1− λ and x2(w2) = λ− ε, it then follows that∑
v∈V1

b1
j′(v)x1(v) + x1(w1) = β1

j′ (3.40)∑
v∈V2

b2
j′′(v)x2(v) + x2(w2) = β2

j′′ (3.41)

Therefore, the statement holds. ut

Now summing equalities (3.40) and (3.41), yields∑
v∈V1

b1
j′(v)x1(v) +

∑
v∈V2

b2
j′′(v)x2(v) + x2(w2) + x1(w1) = β1

j′ + β2
j′′ .

Since x1(w1) = 1− λ and x2(w2) = λ− ε, we obtain∑
v∈V1

b1
j′(v)x∗(v) +

∑
v∈V2

b2
j′′(v)x∗(v)− x∗(u) = β1

j′ + β2
j′′ − 1.

Hence, any inequality tight for x is also tight for x∗. This ends the proof of the lemma.

3.2 113

From Lemma 3.28, any inequality tight for x is also tight for x∗. This contradicts the
fact that x an extreme point of Q(G, T), and the proof of our theorem is complete.

Corollary 3.29 For terminal trees, the multi-terminal vertex separator polytope is
given by terminal tree inequalities (2.18) and the trivial inequalities.

Proof. Each vertex in a terminal tree is a vertex cut. It follows that a terminal tree
G can be decomposed into G̃1 and G̃2. Moreover, G̃1 and G̃2 are also terminal trees
and can then be decomposed. Thus a terminal tree can be decomposed into several
star trees. Moreover, a star tree is a terminal tree with at most one vertex of degree
greater or equal to 3 and the terminal tree inequality is the general form of the star tree
inequality. Thus the mixed inequality associated with two terminal tree inequalities, is
a terminal tree inequality. By Theorem 3.3 for star trees, the MTVS polytope is given
by inequalities (3.1) and the trivial inequalities. Consequently, by Theorem 3.25, for
terminal trees the multi-terminal vertex separator polytope is given by terminal tree
inequalities (2.18) and the trivial inequalities.

3.2.3 Facet composition

In this section we will discuss composition of facets for the multi-terminal vertex sep-
arator polytope. In particular we will show that a mixed inequalities (3.30) defines
a facet of P (G, T) if the two inequalities to which it is related define facets in the
corresponding graphs.

Let G = (V ∪ T,E) be a graph, and H a subgraph of G.

Lemma 3.30 If ax ≥ α is valid for P (H,T (H)), then it is valid for P (G, T).

Proof. Let us assume the contrary. Suppose that ax ≥ α is valid for P (H,T (H))

and that there exists a graph G with a subgraph H such that ax ≥ α is not valid for
P (G, T). It follows that there exists a solution x0 ∈ P (G, T) that violates ax ≥ α. Let
x be the restriction of x0 on V (H). Clearly, x ∈ P (H,T (H)) and x violates ax ≥ α.
This is a contradiction with the fact that ax ≥ α is valid for P (H,T (H)).

Theorem 3.31 If an inequality (3.17) defines a facet for P (G̃1, T̃1) and an inequality
(3.17) defines a facet for P (G̃2, T̃2), then the associated mixed inequality (3.30) defines
a facet for P (G, T).

114 The multi-terminal vertex separator problem : Composition of Polyhedra

Proof. Since inequality (3.17) defines a facet for P (G̃i, T̃i), let Si a set of |Ṽi| affinely
independent solutions satisfying inequality (3.14) with equality, i = 1, 2. From Lemma
3.18, there is no solution in Si containing wi and u together, for i = 1, 2. Let ni1, ni2, ni3 ∈
N defined as follows

• ni1 : the number of solutions in Si containing u.

• ni2 : the number of solutions in Si containing wi.

• ni3 : the number of solutions in Si not containing neither u nor wi.

Clearly, ni1 + ni2 + ni3 = |Ṽi|, for i = 1, 2.

We need to construct |V | solutions affinely independent satisfying (3.30) with equal-
ity. Since w1 and w2 do no appear in G and u appears once, we only need |Ṽ1|+ |Ṽ2|−3

such solutions. Consider a solution S1 ∈ S1 containing u. For each solution S2 ∈ S2

containing u, we construct a new solution (S1 ∪ S2). Let A1 be the set of all these
solutions. Now consider a solution S2 ∈ S2 containing u. For each solution S1 ∈ S1

containing u, we construct a new solution (S1 ∪ S2). Let A2 be the set of all these
solutions. It can be easily seen that there is one solution in A1 that is also in A2.
Thus, A = A1 ∪ A2 contains n1

1 + n2
1 − 1 affinely independent solutions. Consider a

solution Ŝ1 ∈ S1 not neither u, nor w1. For each solution S2 ∈ S2 containing w2, we
construct a new solution (Ŝ1 ∪S2). Let B1 be the set of all these solutions. Consider a
solution Ŝ2 ∈ S2 not containing neither u, nor w1. For each solution S1 ∈ S1 containing
w1, we construct a new solution (S1 ∪ Ŝ2). Let B2 be the set of all these solutions.
Thus, B = B1∪B2 contains n1

2 +n2
2 affinely independent solutions. Consider a solution

S1 ∈ S1 containing w1. For each solution S2 ∈ S2 not containing neither u, nor w2, we
construct a new solution (S1 ∪ S2). Let C1 be the set of all these solutions. Consider
a solution S2 ∈ S2 containing w2. For each solution S1 ∈ S1 not containing neither u,
nor w1, we construct a new solution (S1 ∪ S2). Let C2 be the set of all these solutions.
Clearly, there is one solution in C2 that is also in B1 and one solution in C2 that is in
B2. Thus, C = (C1∪C2)\(B1∪B2) contains n1

3 +n2
3−2 affinely independent solutions.

Therefore, A∪B ∪C represents a set of |Ṽ1|+ |Ṽ2| − 3 affinely independent solutions
satisfying inequality (3.30) with equality.

Now we present two valid inequalities, that are the generalization of the clique star
and the terminal cycle inequalities (see Section 2.3).

3.2 115

3.2.3.0.1 General clique star inequality

A general clique star H = (V ′ ∪ T ′, E) is obtained by the composition of one clique
star and several star trees. Thus, H contains a clique Kf ⊆ V ′ on f vertices and has
q terminals. Figure 3.8 displays a general clique star of 14 terminals.

Figure 3.8: General clique star

Proposition 3.32 For a general clique star H = (V ′ ∪ T ′, E) subgraph of G = (V ∪
T,E), the following inequality∑

v∈Kf

(dH(v)− (f − 1))x(v) +
∑

v∈V ′\Kf

(dH(v)− 1)x(v) ≥ q − 1

is valid for P (G, T), where dH(v) is the degree of v in H.

3.2.3.0.2 General terminal cycle inequality

A general terminal cycle H = (V ′ ∪ T ′, E) is obtained by the composition of one
terminal cycle and several star trees. Thus H contains one cycle Cf ⊆ V ′ on f vertices
and has q terminals. Let C ′ ⊂ Cf be the subset of vertices in Cf of degree greater than
or equal to 3 in H. Figure 3.9 shows a general terminal cycle of 14 terminals.

116 The multi-terminal vertex separator problem : Composition of Polyhedra

Figure 3.9: General terminal cycle

Proposition 3.33 For a general terminal cycle H = (V ′ ∪ T ′, E) subgraph of G =

(V ∪ T,E), the following inequality∑
v∈C′

(dH(v)− 2)x(v) +
∑

v∈V ′\C′
(dH(v)− 1)x(v) ≥ q − b|C

′|
2
c

is valid for P (G, T), where dH(v) is the degree of v in H.

3.2.4 Algorithmic aspect

The polyhedral and the algorithmic aspects for combinatorial optimization problems
are very related. In this section we will analyze algorithmic consequences of the de-
composition studied before. We will show that if G is the 1-sum of two graphs G1

and G2, then solving the multi-terminal vertex separator problem in G can reduce to
solving it in graph G̃2 with an appropriate weight system.

3.2 117

Figure 3.10: Illustration of separators Si, S ′i, Si and Si.

Given a weight vector c : V → R and let ci ∈ RVi be the restriction of c on Vi, for
i = 1, 2. Let c′i ∈ RṼi be a weight vector obtained from ci by setting c′i(wi) = 0.

Let Si, S ′i, Si and Si be four subsets of vertices, such that

• Si is the MTVS separator of G̃i containing u but not wi.

• S ′i is the MTVS separator of G̃i containing wi but not u.

• Si is the MTVS separator of G̃i not containing neither u nor wi.

• Si is the MTVS separator of Gi not containing u.

Let si, s′i, si, si ∈ N (resp. ωi, ω′i, ωi, ωi ∈ N) be the size (resp. the weight) of Si, S ′i, Si, Si,
respectively.

These separators are illustrated in Figure 3.10. It is important to precise that the
same separators computed before are used later. To force a vertex to be in the separator
we can delete the vertex from the graph. To force a vertex v to be out of the separator
we set its weight to +∞.

Let c2 ∈ RṼ2 be a vector associated with Ṽ2 such that

118 The multi-terminal vertex separator problem : Composition of Polyhedra

• c2(u) = ω1 − s2
ω1

s2
,

• c2(w2) = ω1 − s′2 ω1

s2
,

• c2(v) = c(v) + ω1

s2
∀v ∈ Ṽ2 \ {u,wi},

In G̃2 w.r.t c2, let S∗2 ∈ {S2, S
′
2, S2}, already computed, having a minimum weight

ω∗2. Clearly, since we add the same value ω1

s2
to the weight of each vertex v ∈ V2 \ {u},

then the minimum separator in G̃2 under vertex weight vector c2 is either S2, S
′
2 or S2.

Let S∗ ⊆ V be the set giving by

S∗ =

S1 ∪ S∗2 If u ∈ S∗2 and w2 /∈ S∗2 i.e., S∗2 = S2

(S1 ∪ S∗2) \ w2 If w2 ∈ S∗2 and u /∈ S∗2 i.e., S∗2 = S ′2

S1 ∪ S∗2 If u,w2 /∈ S∗2 i.e., S∗2 = S2

Theorem 3.34 S∗ is the minimum multi-terminal vertex separator in G, its weight is
ω∗ = ω∗2.

Proof. We distinguish three cases for the state of separator S∗

• S∗ contains u. Thus (S∗ ∩ Vi) is a separator in G̃i, for i = 1, 2.

• S∗ does not contain u and (S∗ ∩ V1) intersects all terminal paths between q1 and
all terminal of T1 in graph G̃1.

• S∗ does not contain u and it may exist a terminal path between q1 and a terminal
of T1 in graph G̃1 that does not intersect (S∗ ∩ V1).

Thus, the weight of S∗ is

ω∗ =min(ω1 + ω2 − c(u), ω1 + ω′2 − c(w2), ω1 + ω2).

As

ω∗ =min((c2(u) + s2
ω1

s2

) + ω2 − c(u), (c2(w2) + s′2
ω1

s2

) + ω′2 − c(w2), ω1 + ω2).

We know that

3.3 119

• s2
ω1

s2
+ ω2 − c(u) = ω∗2 − c2(u)

• s′2 ω1

s2
+ ω′2 − c(w2) = ω∗2 − c2(w2)

• c2(S2) = w∗2 = s2
ω1

s2
+ c(S2) = ω1 + c(S2) = ω1 + ω2

this implies that ω∗ = ω∗2.

Let us remark that if we can solve the MTVSP in polynomial time in G̃1 and G̃2, then
we can solve the MTVSP in polynomial time in G. Indeed, as we can solve the MTVSP
in polynomial time in G̃1, then we can compute all parameters si, s′i, si, si, ωi, ω′i, ωi, ωi
and we can obtain sets Si, S ′i, Si, Si in polynomial time.

3.3 Composition of polyhedra by terminal-sum

Consider two graphs G1 = (V1 ∪ T1, E1) and G2 = (V2 ∪ T2, E2) and let T ′1 ⊆ T1

and T ′1 ⊆ T2 be two subsets of q terminals T ′1 = {t11, . . . , t1q} and T ′2 = {t21, . . . , t2q}.
G = (V ∪ T,E) is called a terminal-sum of G1 = (V1 ∪ T1, E1) and G2 = (V2 ∪ T2, E2)

if it is obtained by merging each terminal t1i ∈ T1 with a terminal t2i ∈ T2, for all
i ∈ {1, . . . , q}. Figure 3.11 illustrates the graphs G, G1 and G2.

120 The multi-terminal vertex separator problem : Composition of Polyhedra

Figure 3.11: Terminal-sum where q = 3.

The multi-terminal vertex separator polytope for graph Gi can be expressed by the
a system of inequalities Ai of the form∑

v∈Vi

ail(v)x(v) ≥ αil ∀l ∈ Li, (3.42)

x(v) ≤ 1 ∀v ∈ Ṽi,
x(v) ≥ 0 ∀v ∈ Ṽi,

where Li is a set of inequalities, for i = 1, 2.

Theorem 3.35 The multi-terminal vertex separator polytope for G is completely de-
scribed by system of inequalities A obtained by the juxtaposition of systems A1 and
A2.

Proof. Let us assume the contrary, and let x∗ be a fractional extreme point of the
polytope given by the inequalities of A. Note that vector x∗ satisfies a subset of
inequalities A∗ ⊆ A with equality, where |A∗| = |V1| + |V2|. There is no equality in
A∗ containing two variables associated with two vertices, one in G1 and the other in
G2. Therefore A∗ can be partitioned into 2 subsets A∗1 and A∗2, one associated with
G1 and the other one associated with G2. Since A∗ is linearly independent, it follows

3.4 121

that |A∗1| = |V1| and |A∗2| = |V2|. Let x∗i be the restriction of x∗ on Vi. Hen x∗ is an
extreme point of P (Gi, Ti). Moreover, since x∗ is fractional, it follows that either x∗1 is
a fractional or x∗2 is fractional, which is impossible.

Theorem 3.36 If two linear systems A1 and A2 with no variable in common, are TDI,
then the linear system given by the juxtaposition of A1 and A2 is also TDI.

Proof. Let y∗i be the integer optimal solution of the dual problem associated with Ai.
Since the dual problem associated with Gi is TDI, y∗i should exist. Thus, y∗ = [y∗1, y

∗
2]

represents a feasible integer solution for the dual problem of the juxtaposition of A1

and A2. Moreover, it should be optimal. Otherwise, let y be the optimal solution of
the dual problem of the juxtaposition of A1 and A2. Let yi be the restriction of y on
Vi. Clearly, yi is a feasible solution for the dual problem of Ai. Thus, y∗1 or y∗2 is not
optimal. Contradiction.

Let S∗i be the optimal solution in Gi, for i = 1, 2. Then, we have the following
corollary

Corollary 3.37 Vertex separator S∗ = S∗1 ∪ S∗2 is a minimum multi-terminal vertex
separator in G.

3.4 The minimum rooted-cycle cover problem

In this section, we introduce the minimum rooted cycle cover problem (MRCCP) which
is a generalization of the multi-terminal vertex separator problem. This problem con-
sists in, given a simple undirected graph G = (V,E) and a root vertex r of G, deleting
a node subset of V \ {r} of a minimum weight so that root r is not contained in any
cycle. In the case where r is adjacent to all vertices of V \ {r}, the minimum rooted
cycle cover problem is equivalent to the minimum vertex-cover problem. Moreover, the
minimum multi-terminal vertex separator problem is a particular case of the MRCC
problem. Indeed, if for each vertex v ∈ N(r) we add a terminal t adjacent to v, and by
deleting r from G, then we obtain an instance of the minimum multi-terminal vertex
separator problem. Any MTV separator in the new graph, intersects all cycles of G
containing r.

Our main motivation to introduce the minimum rooted cycle cover problem is that it
allows us to give short proofs for some min-max theorems, such results are fundamental

122 The multi-terminal vertex separator problem : Composition of Polyhedra

in combinatorial optimization and linear programming [107]. Jost and Naves gave such
results for the minimum multi-terminal vertex separator problem in [95] (actually we
independently obtained one result, namely Corollary 3.43, that is a consequence of one
of their results).

Take a graph G and fix distinct vertices s, t. A st-path of G is a subset P ⊆ V of
vertices of G which can be ordered into a sequence s = v0, v1, . . . , vk = t where vivi+1

is an edge of G. The vertices v0, vk are the extremities of P , the other vertices are the
internal vertices of P . Two st-paths P,Q are internally vertex-disjoint if P∩Q = {s, t}.
A subset D of vertices of G is a st-vertex cut if neither s nor t belongs to D, and D
intersects every st-path. Let r be a vertex of G. A subset C ⊆ V containing r and
such that C \ {r} is a path the extremities of which are adjacent with r is called a
rooted cycle of (G, r). Two rooted cycles are internally vertex-disjoint if r is their only
common vertex. A rooted-cycle cover of (G, r) is a subset of V ′ ⊆ V \ {r} of non-root
vertices so that C ∩ V ′ 6= ∅ for all rooted cycle C. A rooted-cycle cover is minimum if
|V ′| is minimum. A rooted-cycle packing of (G, r) is a collection C1, . . . , Ck of rooted
cycles so that Ci ∩ Cj = {r} for all distinct i, j = 1, . . . , k. A rooted-cycle packing is
maximum if k is maximum. Clearly the minimum of the cover is at least the maximum
of the packing.

Let us recall two fundamental min-max theorems.

Given a graph, a matching is a subset of pairwise vertex-disjoint edges.

Kőnig’s theorem. ([82]) Let G be a bipartite graph. The minimum size of a vertex-
cover of G is equal to the maximum size of a matching of G.

Menger’s theorem. ([93]) Let G be a graph and let s and t be two terminals of G.
A st-vertex cut of minimum size in G is equal to the maximum number of internally
vertex-disjoint paths between s and t.

3.4.1 Packing and covering rooted cycles

The following consequence of Menger’s theorem is useful to characterize rooted graphs
for which the minimum size of a subset of non-root vertices intersecting all rooted
cycles is equal to the maximum number of internally vertex-disjoint rooted cycles.

3.4 123

Corollary 3.38 Let G be a graph with a vertex t and a subset S, of at least k vertices,
not containing t. If there are k internally vertex-disjoint vt-paths for every v ∈ S, then
there are k distinct vertices s1, . . . , sk of S, with sit-paths Pi for each i = 1, . . . , k, so
that t is the only vertex belonging to all paths P1, . . . , Pk.

Proof. Add a new vertex s to G and link it to every vertex in S, See Figure 3.12.

Figure 3.12: k disjoint st-paths

We only need to prove that there are k internally vertex-disjoint st-paths. If this is
not the case, then, by Menger’s theorem, there is a st-vertex cut D of size |D| < k.
Let v ∈ S \ D. Clearly v is not adjacent to t. Thus D is a vt-vertex cut. But this
is impossible since (again by Menger’s theorem) there are k internally vertex-disjoint
vt-paths.

Figure 3.13: Rooted graph (K4, r) and a subdivision of (K4, r)

124 The multi-terminal vertex separator problem : Composition of Polyhedra

Let K4 be the complete graph on four vertices and r one of its vertices. A rooted
graph (Ĝ, r) is a subdivision of (K4, r) if it is obtained from (K4, r) by inserting vertices
on the edges. Note that in any such subdivision, the vertex r has degree three. A rooted
partial subgraph of (G, r) is a rooted graph (G′, r) where G′ is a partial subgraph of G.
Figure 3.13.(a) displays a rooted graph (K4, r) and Figure 3.13.(a) shows a subdivision
of (K4, r).

Theorem 3.39 The minimum size of a subset of non-root vertices intersecting all
rooted cycles is equal to the maximum number of internally vertex-disjoint rooted cy-
cles, for all partial rooted subgraphs of (G, r), if and only if no partial rooted subgraph
of (G, r) is a subdivision of (K4, r).

Proof. (⇒) It suffices to see that, for any subdivision of (K4, r), any two rooted
cycles must have a non-root vertex in common while any rooted cycle cover needs at
least two non-root vertices.
(⇐) Let (G, r) be a minimum graph, that is, a graph with a minimum number of
edges, such that the minimum rooted cycle cover is strictly greater than the maximum
packing of rooted cycles. Minimality implies that G has no vertices of degree < 3.
It then follows that the graph G \ {r} obtained from G by removing r has a cycle C
with at least three distinct vertices s1, s2, s3 (since G is a simple graph). Hence, by
Corollary 3.38, it suffices to prove Claim 1 below, since this implies that there are three
internally vertex-disjoint sir-paths which form with C a subdivision of (K4, r).

Claim 1. There are three internally vertex-disjoint vr-paths for every vertex v ∈ V \{r}.

Proof. Assume that the claim is not true, and let v be a vertex for which there
is no three internally vertex-disjoint vr-paths. Remark that, for any vertex s nonadja-
cent to r, the minimality of G implies that no sr-vertex cut is a clique. In particular,
any sr-vertex cut has at least two vertices (indeed otherwise v belongs to no rooted
cycle). Furthermore, no vertex-cut has only one vertex. We build a graph Ĝ from G

as follows:

(a): If v is nonadjacent with r, then (by Menger’s theorem) there is a vr-vertex cut
with size 2, say D = {u,w}. Let V ′ 3 v be the subset of vertices in the component,
containing v, of the graph obtained from G by removing D. We let Ĝ be the graph
obtained by removing V ′ and adding the edge e = uw.

(b): If v is adjacent with r, then, in the graph G \ vr (obtained from G by removing
the edge vr), there is a vr-vertex cut D = {u}. Let V ′ 3 v be the subset of vertices in

3.4 125

the component, containing v, of the graph obtained by removing u from G \ vr . We
let Ĝ be the graph obtained by removing V ′ and adding the edge e = ur.

Now observe, that if there are ν vertex-disjoint rooted cycles in Ĝ, then there are
also ν vertex-disjoint rooted cycles in G. Indeed, if some rooted cycle of Ĝ contains the
additional edge e, then e can be replaced by a path of G with all internal vertices in
V ′. Moreover, if there are τ vertices intersecting every rooted cycles of Ĝ, then these
τ vertices intersect also every rooted cycles of G. We have a contradiction, since the
minimality of G implies τ = ν. ut

And the proof of the theorem is ended.

Finally, since series-parallel graphs are those with no minor K4, one has:

Remark 3.40 Given a graph G, the minimum rooted cycle cover equals the maximum
rooted cycle packing, for every choice of a root r, if and only if G is series-parallel.

3.4.2 Pseudo-bipartite rooted graphs

Given a graph G = (V,E) and a node r, the closed neighborhood of r is the set
N [r] = N(r) ∪ {r}.

Figure 3.14: Pseudo-bipartite rooted graph

126 The multi-terminal vertex separator problem : Composition of Polyhedra

A rooted graph is pseudo-bipartite if it is obtained from a bipartite graph (V1, V2;E)

by creating a root vertex linked to every vertex of V1∪V2, and then, by replacing some
original edges uv ∈ E by any graph Guv (on new vertices) with edges between u, or
v, and some vertices of Guv. Figure 3.14 illustrates a pseudo-bipartite rooted graph.
More precisely:

Definition 1 A rooted graph (G, r) is pseudo-bipartite if

(a) The subgraph G[N(r)] induced by the neighbors of r is a bipartite graph GB,

(b) There is a bipartition of GB, so that every component of the graph G \N [r], that
we obtain if we remove the closed neighborhood of r, has at most one neighbor in
each side of GB.

Contracting a vertex v is to delete v, and to add edges so that its neighborhood N(v)

forms a clique. A rooted minor of (G, r) is a rooted graph (Ĝ, r) obtained from (G, r)

by deleting vertices different from r, or by contracting vertices v ∈ V \N [r] outside the
closed neighborhood of the root.

An odd wheel is a graph composed of an odd cycle together with one vertex, called
the center of the wheel, to which all the vertices of the odd cycle are linked. A rooted
odd wheel is a rooted graph (G, r) so that G is an odd wheel, the center of which is the
root r.

Theorem 3.41 A rooted graph (G, r) is pseudo-bipartite if and only if it has no rooted
minor which is a rooted odd wheel.

Proof. Necessity holds since G[N(r)] = GB has no odd cycle and since every edge
which appears in G[N(r)] by contracting some vertex outside N [r] necessarily links
two vertices in different side of the bipartition of GB.

To see sufficiency, suppose that no rooted-minor of (G, r) is a rooted odd-wheel.
Condition (a) of Definition 1 is indeed satisfied since deleting all vertices but those of
an odd cycle in the neighborhood of r leaves a rooted odd wheel. Assume that condition
(b) is not satisfied. Let U1, . . . , Up be the components of the graph obtained by removing
r and all its neighbors. If Ui has at least three neighbors x, y, z (inGB), then contracting
all the vertices in Ui and deleting all vertices but x, y, z (and r) leaves (K4, r) which is
a rooted odd wheel. It follows that Ui has at most two neighbors. Chose a bipartition

3.4 127

V1, V2 of GB so that the number of components U1, . . . , Up having two neighbors in the
same side is minimum. There is a component Ui with two neighbors x, y in the same
side, say x, y ∈ V1 (otherwise we are done). Let V x

1 (resp. V x
2) be the set of vertices in

V1 (resp. in V2) reachable, from x, by a path of GB. Similarly, define V y
1 and V y

2 . If
either V x

1 ∩V
y

1 6= ∅ or V x
2 ∩V

y
2 6= ∅, then there exists a xy-path P in GB. Yet contracting

Ui and deleting all vertices but those of P (and r) leaves a rooted odd wheel. It follows
that V x

1 , V
x

2 , V
y

1 , V
y

2 are pairwise disjoint, and hence (V1 \ V x
1) ∪ V x

2 , (V2 \ V x
2) ∪ V x

1 is
a possible bipartition for GB. The way the bipartition V1, V2 was chosen implies that
there is another component, say Uj, with either one neighbor in V x

1 and the other in
V y

2 , or one neighbor in V y
1 and the other in V x

2 . Anyway, contracting both Ui and Uj
creates an odd cycle in the neighborhood of r. Now deleting the vertices outside this
odd cycle leaves a rooted odd wheel; contradiction.

Given a pseudo-bipartite rooted graph (G, r) with bipartite graph GB = G[N(v)], we
let Ĝ be the graph obtained by removing r from (G, r), and then by creating two new
vertices s and t, so that s is linked to every vertex of one side of GB, and t is linked
similarly to every vertex in the other side of GB.

Remark 3.42 A subset P ⊆ V is a st-path of Ĝ if and only if P \ {s, t} ∪ {r} is a
rooted cycle of (G, r).

Since Remark 3.42 holds, Menger’s theorem implies that, for pseudo-bipartite rooted
graphs, the minimum rooted cycle cover equals the maximum rooted cycle packing.

Observe, moreover, that for any rooted odd wheel with an odd cycle having 2k + 1

vertices, the minimum size of a cover is k + 1 while the maximum packing is k. It
follows that Theorem 3.41 implies Corollary 3.43 below, which is also a consequence of
a result in [95] (namely Lemma 9).

Corollary 3.43 ([95]) The minimum size of a subset of non-root vertices intersecting
all rooted cycles is equal to the maximum number of internally vertex-disjoint rooted
cycles, for all rooted minor of (G, r), if and only if no rooted minor of (G, r) is a rooted
odd wheel.

Observe that, if every vertex is linked to r, then (G, r) is pseudo-bipartite if and only
if the graph induced by V \ {r} is bipartite. Hence by Theorem 3.41:

Remark 3.44 Corollary 3.43 contains Kőnig’s theorem as particular case.

128 The multi-terminal vertex separator problem : Composition of Polyhedra

Note also that for recognizing if (G, r) is pseudo-bipartite or not, it suffices to contract
all vertices outside the closed neighborhood of r, to remove r, and to check if the
remaining graph is bipartite or not. So one has:

Remark 3.45 It can be checked in polynomial time if (G, r) is pseudo-bipartite or not.

3.5 Conclusion

In this chapter we have considered the multi-terminal vertex separator problem. We
have characterized the MTVS polytope for two classes of graphs the star trees and
the clique stars. We have given a linear system for each class of graphs, that is to-
tal dual integral. We have studied a composition (decomposition) technique for the
multi-terminal vertex separator polytope in graphs that are decomposable by one-node
cutsets. As a consequence, we have obtained a procedure to construct this polytope in
graphs that are recursively decomposed. We have also studied polytope compositions
by merging terminals, and have presented the algorithmic aspect resulting of these
compositions. Finally we have introduced the minimum rooted cycle cover problem
that is a generalization of the MTVSP. We have used Menger’s theorem to provide a
characterization of all rooted graphs such that the maximum number of vertex-disjoint
rooted cycles equals the minimum size of a subset of non-root vertices intersecting all
rooted cycles, for all subgraphs.

Chapter 4

The multi-terminal vertex separator
problem : Branch-and-Cut-and-Price

Contents
4.1 The terminal-set formulation 130

4.1.1 Pricing problem . 133

4.1.2 Heuristic algorithm for the pricer 136

4.1.3 Basic columns . 137

4.1.4 Column generation strategy 138

4.1.5 Branching scheme . 138

4.1.6 Lagrangian bound . 139

4.2 The isolating-separator formulation 141

4.2.1 Pricing problem . 144

4.2.2 Basic columns . 145

4.2.3 Column generation strategy 145

4.2.4 Branching scheme . 145

4.2.5 Lagrangian bound . 146

4.3 The terminal-pair-separator formulation 146

4.3.1 Pricing problem . 149

4.3.2 Basic columns . 150

4.3.3 Column generation strategy 150

4.3.4 Branching scheme . 150

130 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

4.3.5 The Lagrangian bound . 150

4.4 Branch-and-Cut-and-Price 151

4.4.1 Star tree inequalities . 152

4.4.2 Terminal cycle inequalities 153

4.4.3 Terminal tree inequalities . 153

4.5 Computational Results . 153

4.6 Conclusion . 169

In this chapter we present three extended linear integer programming formulations
for the multi-terminal vertex separator problem. We develop Branch-and-Price algo-
rithms for all these formulations and Branch-and-Cut-and-Price algorithms for two of
them. For each formulation we present the pricing problem, the branching scheme and
the computation of the dual bound used during the column generation phase. Compu-
tational results are reported comparing the performance of the formulations on a set of
instances.

This chapter is organized as follows. In Sections 1,2 and 3, we present the three
extended linear integer programming formulations for the MTVSP. We give a column
generation scheme to solve the linear relaxation, the way to compute the lagrangian
bound. We then present the branching scheme used in the Branch-and-Price algo-
rithms. Section 4, is devoted to the Branch-and-Cut-and-Price algorithms and Section
5 to the numerical results obtained from the above algorithms.

Throughout this chapter, we suppose that Hypotheses 2.1-2.5, defined in Chapter 2,
are satisfied.

4.1 The terminal-set formulation

A terminal-set W ⊆ V ∪T is a set of vertices containing exactly one terminal and such
that the neighbors ofW do not contain terminals, i.e.,|W ∩T | = 1 and N(W)∩T = ∅.
Let W be the set of all terminal-sets of G.

4.1 131

Figure 4.1: Three different subsets

Figure 4.1 shows three graphs with different configurations. The terminals are rep-
resented by triangles. The subset of vertices in Figure 4.1.(a) is not a terminal-set,
since there is one terminal adjacent to at least one vertex of this subset. The subset
of vertices in Figure 4.1.(b) is not a terminal-set since it contains no terminal. The
subset of vertices in Figure 4.1.(c) represents a terminal-set.

In this subsection we will introduce a formulation for the MTVSP based on the
terminal-sets. Indeed, any solution of the MTVSP can be seen as a partition of the
vertex set into k + 1 subsets such that k of them are disjoint terminal-sets. Thus, the
variables of this formulation are on the terminal-sets. Then, the multi-terminal vertex
separator problem reduces to finding k disjoint terminal-sets such that the total of their
cardinality is maximum. For W ∈W, let xW be a 0− 1 variable which takes 1 if W is
selected and 0 if not. We notice that these variables are exponential in number.

Given a terminal-set W ∈ W, let aW ∈ {0, 1}E and bW ∈ {0, 1}V ∪T be the vectors
defined as follows

aWuv =

{
1 if {u, v} ∩W 6= ∅,
0 otherwise.

for all uv ∈ E,

bWv =

{
1 if vertex v ∈ W,
0 otherwise.

for all v ∈ V ∪ T.

132 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

The MTVSP is equivalent to the following integer linear formulation

max
∑
W∈W

|W |xW (4.1)∑
W∈W

aWe x
W ≤ 1 ∀e ∈ E, (4.2)∑

W∈W

bWv x
W ≤ 1 ∀v ∈ V ∪ T, (4.3)∑

W∈W

−bWt xW ≤−1 ∀t ∈ T, (4.4)

xW ∈ {0, 1} ∀ W ∈W. (4.5)

Inequalities (4.2) permit to select disjoint terminal-sets in the solution, inequalities (4.3)

bound the number of terminal-sets to which each vertex belongs. Finally, inequalities
(4.4) guarantee that each terminal belongs to a terminal-set.

Figure 4.2: Example of terminal-sets

Figure 4.2 displays a multi-terminal vertex separator and seven terminal-sets.

Model (4.1)-(4.5) is called the master problem. It has an exponential size, thus we
need a column generation procedure to solve its continuous relaxation.

4.1 133

Let u ∈ RE
+, η ∈ RV ∪T

+ and λ ∈ RT
+ be the dual variables associated with inequalities

(4.2) − (4.4). The dual of the linear relaxation of (4.1)-(4.5), denoted by DLMP, is
defined as follows

min
∑
e∈E

ue +
∑

v∈V ∪T

ηv −
∑
t∈T

λt∑
e∈E

aWe u
e +

∑
v∈V ∪T

ηvb
W
v −

∑
t∈T

λtb
W
t ≥ |W | ∀ W ∈W, (4.6)

ue ≥ 0 ∀e ∈ E,
ηv ≥ 0 ∀v ∈ V ∪ T,
λt ≥ 0 ∀t ∈ T.

The master problem is initialized with a subset of variables, and then the additional
variables necessary to solve its linear relaxation, are generated by separating the asso-
ciated dual constraints (4.6) given below. This constitutes the pricing problem. DLMP
will be used for defining the pricing problem and computing the lagrangian bound.

4.1.1 Pricing problem

Given a dual solution π = (u, η, λ), the pricing problem is equivalent to the separation
of the dual constraints (4.6), i.e., it consists in finding a subset W ∈W such that∑

e∈E

aWe u
e +

∑
v∈V ∪T

ηvb
W
v −

∑
t∈T

λtb
W
t < |W |.

This can be tackled as an optimization problem. It can be modeled as a Binary Linear
Program using variable y(v) which models coefficient bWv , i.e., the fact that vertex v
belongs or not toW , and variables z(e), which models coefficient aWe , i.e., the fact that
at least one vertices of e is in subset W or not, that is

y(v) =

{
1 if vertex v ∈ W,
0 otherwise.

for all v ∈ V ∪ T,

z(uv) =

{
1 if {u, v} ∩W 6= ∅,
0 otherwise.

for all uv ∈ E.

134 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

We notice that y represents a terminal-set W . Thus, |W | =
∑

v∈V ∪T
y(v) and then

inequality (4.6) associated with W is equivalent to the following∑
e∈E

z(e)ue +
∑

v∈V ∪T

ηvy(v)−
∑
t∈T

λty(t) ≥
∑

v∈V ∪T

y(v),

which can be written as∑
e∈E

z(e)ue +
∑
v∈V

ηvy(v)−
∑
t∈T

(λt − ηt)y(t) ≥
∑

v∈V ∪T

y(v),

then ∑
e∈E

−z(e)ue +
∑
v∈V

(1− ηv)y(v) +
∑
t∈T

(1− ηt + λt)y(t) ≤ 0.

Therefore, the pricing problem is equivalent to the following mixed integer linear
program P ′,

max
∑
e∈E
−uez(e) +

∑
v∈V

(1− ηv)y(v) +
∑
t∈T

(1− ηt + λt)y(t)

z(uv) ≥ y(u) ∀uv ∈ E, (4.7)

z(uv) ≥ y(v) ∀uv ∈ E, (4.8)

z(uv) ≤ y(u) + y(v) ∀uv ∈ E, (4.9)

z(ut′) ≤ 1− y(t) ∀t ∈ T,∀t′ ∈ T \ {t},∀ut′ ∈ E, (4.10)∑
t∈T

y(t) ≥ 1, (4.11)

z(e) ≥ 0 ∀e ∈ E, (4.12)

y(v) ≥ 0 ∀v ∈ V, (4.13)

y(v) ≤ 1 ∀v ∈ V, (4.14)

y(v) ∈ {0, 1} ∀v ∈ V ∪ T, (4.15)

z(e) ∈ {0, 1} ∀e ∈ E. (4.16)

Inequalities (4.7)− (4.9) link variables z and y. If a terminal t ∈ T is in the solution,
inequalities (4.10) ensure that all nodes adjacent to the terminals of T \ {t} are not
selected in the solution. Finally, inequalities (4.11) guarantee that at least one terminal
is selected.

If the optimal objective value of P ′ is greater than 0, then we add the column corre-
sponding to W , the optimal solution of P ′, to the restricted master problem (RMP).

4.1 135

Otherwise, the current solution of the RMP is optimal.

Lemma 4.1 Inequalities (4.9) can be deleted.

Proof. Let P ′′ be the linear program obtained from P ′ by deleting inequalities (4.9).
Consider an optimal solution (y, z) of P ′′. Let (y′, z′) be the solution obtained from
(y, z) by setting z′uv = 0 for all uv ∈ E, with y(u) = y(v) = 0. Clearly, (y′, z′) satisfies
the inequalities of P ′. Moreover, since the weight of z is less or equal to 0, (y′, z′) is an
optimal solution of P ′.

Lemma 4.2 Constraints (4.16) can be deleted.

Proof. Let P ′′ be the linear program obtained from P ′ by deleting constraints (4.16).
Let (y, z) be an optimal fractional solution of P ′′. Hence, there exists e ∈ E such that
z(e) is fractional. As a consequence, inequalities (4.7) − (4.10) associated with e are
not tight for (y, z). Let (y′, z′) be the solution obtained from (y, z) by setting z′e = 0 for
all fractional variable z(e). Clearly, (y′, z′) satisfies the inequalities of P ′. Moreover,
since the weight of z is less or equal to 0, (y′, z′) is an optimal solution of P ′.

In the following, let P ′′ be the linear program obtained from P ′ by deleting inequal-
ities (4.9) and constraints (4.16).

Corollary 4.3 Solving the pricing problem reduces to solving P ′′.

A matrix A is totally unimodular if each sub-determinant of A is 0,+1, or −1. Ob-
viously, each entry of an unimodular matrix is 0, +1, or −1. If A is totally unimodular
then for an integer vector b, the polytope given by Ax ≤ b is integral.

Hence, the following holds.

Theorem 4.4 The pricing problem can be solved in polynomial time.

Proof. As a terminal-set contains exactly one terminal, looking for a terminal-set
can be decomposed as a sequence of subproblems, each subproblem consists in finding

136 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

a terminal-set with a specific terminal t. From Corollary 4.3, this is equivalent to
solve P ′′ by fixing one variable y(t) to 1 and all other variables y(t′), t′ ∈ T \ {t} to
0. Consider the linear relaxation of P ′′. By fixing the values of y, inequality (4.11)

becomes redundant and can then be deleted. Now it is easy to see that the matrix of
the remaining linear system is totally unimodular. It follows that the polyhedron given
by (4.7) and (4.8) together with (4.10) and (4.12) − (4.14) is integer. Consequently,
the pricing problem reduces to solving k linear programs with polynomial size. Which
can be done in a polynomial time.

4.1.2 Heuristic algorithm for the pricer

Since P ′ is a mixed integer linear program, its resolution may take time. It would be
then interesting to use a heuristic in order to speed up the resolution. In this subsection
we propose a heuristic for the pricing problem. The first step of the algorithm consists
in selecting a terminal which may be an appropriate terminal for a terminal-set vio-
lating (4.6). We have remarked from the numerical tests that terminal t∗ maximizing
(1− ηt + λt) +

∑
tv∈E
−utv gives good results. The second step consists in adding one by

one each vertex of V , not adjacent to terminals of T \{t∗}, to W and to check whether
the value of W increases or not. If it decreases, we do not add it to W . This heuristic
is given in Algorithm 13

4.1 137

Algorithm 13: Heuristic for the pricing problem
Data: Graph G = (V ∪ T,E) and π = (u, η, λ)

Result: Inequality (4.6) violated by π
begin

t∗ ← argmax
t∈T

(1− ηt + λt +
∑
tv∈E
−utv);

W ← W ∪ {t∗};
ZW ← 1− ηt∗ + λt∗ +

∑
(t∗v)∈E

−ut∗v;

for (v ∈ V \N(T \ {t∗})) do
tmp← ZW + (1− ηv);
for (vu ∈ E) do

if (u /∈ W) then
tmp← tmp− uvu;

end
end
if (tmp > ZW) then

ZW = tmp ;
W ← W ∪ {v};

end
end
Check if inequality (4.6) associated with W is violated by π ;

end

The above algorithm runs in O(nm)-time.

4.1.3 Basic columns

The first restricted master problem is associated to a collection of terminal-sets W1 ⊂
W. It is important to have a good collection W1, this can improve the resolution
time of the problem. For our algorithm, W1 contains k terminal-sets of cardinality
1, each consists of only one terminal, See Figure 4.3.(a). Set W1 also contains k
maximal terminal-sets Wt1 , . . . ,Wtk , with terminals t1, . . . , tk of T , respectively. i.e.,
Wti = {ti} ∪ (V \N(T \ {ti})), See Figure 4.3.(b).

138 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Figure 4.3: Basic Columns

4.1.4 Column generation strategy

The strategy for finding new columns is to use the heuristic, presented in Algorithm
13, in the beginning of the column generation process. Once the heuristic generates a
terminal-set W with non-positive value (that is the value of the objective function is
nonpositive), we start using the exact method by solving P ′ to generate columns.

4.1.5 Branching scheme

Consider a restricted master problem associated with W′ ⊂ W. For two vertices
u, v ∈ V ∪T , letW′u,v ⊆W′ be the set of all terminal-sets inW′ containing u and v. The
branching scheme that we will use is as follows. If for u, v ∈ V ∪T , 0 <

∑
W∈W′u,v

xW < 1,

then the branching generates two nodes by imposing either∑
W∈W′u,v

xW = 1,

or ∑
W∈W′u,v

xW = 0.

Lemma 4.5 For any fractional solution, there exists a pair of terminals u, v ∈ V ∪ T
such that 0 <

∑
W∈W′u,v

xW < 1.

4.1 139

Proof. Consider a restricted master problem (RMP) associated with a set of terminal-
sets W′ ⊆ W. Suppose that the solution, x, of this RMP is fractional. Consider a
terminal-set W ∈ W such that 0 < xW < 1 and |W | is maximum. Since W 6= ∅, let
v ∈ W . We distinguish two cases.

• Case 1: |W | = 1. It then follows that v is a terminal and by (4.3)− (4.4), there
exists another terminal-set W ′ ∈ W such that v ∈ W ′ and 0 < xW

′
< 1. As

W 6= W ′ and v ∈ W ∩W ′, it follows that |W ′| > |W |. This is a contradiction
with the fact that |W | is maximum.

• Case 2: |W | ≥ 2. By (4.3),
∑

W∈W′
bWv x

W ≤ 1.

If
∑

W∈W′
bWv x

W < 1, then it is clear that for all u ∈ W\{v}, 0 <
∑

W∈W′u,v
xW < 1

and the lemma follows.

If
∑

W∈W′
bWv x

W = 1, then again the results follows. For otherwise, for all

vertex u ∈ W \ {v},
∑

W∈W′u,v
xW = 1 and hence there would exist a column

corresponding to a terminal-set W ′ that contains W . This contradicts the
fact that |W | is maximum.

A branching scheme is said to be complete, if it can generate any feasible solution.

Corollary 4.6 The branching scheme is complete.

4.1.6 Lagrangian bound

The lagrangian bound is a value that represents the dual bound of the linear relaxation
of the master problem (LMP). It is the value of the objective function of DLMP (dual
of the LMP).

To compute the lagrangian bound, we need a feasible solution of DLMP. In what
follows we will show how to construct a feasible solution of DLMP during the column
generation phase and then how to compute the lagrangian bound for our problem. Let
π = (u, η, λ) be a dual vector obtained from a restricted master problem. And let Z

140 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

be the optimal value of the pricer with respect to π.

Remark that for all W ∈W,

|W | ≤ (
∑
e∈E

aWe u
e +

∑
v∈V ∪T

ηvb
W
v −

∑
t∈T

λtb
W
t) + Z.

Each terminal-set W ∈ W′ contains exactly one terminal. It follows that
∑
t∈T

bWt = 1.

Moreover, for all terminal t ∈ T , bWt is integer. Let η ∈ RV ∪T
+ be the vector defined as

follows

• ηv = ηv for all vertex v ∈ V ,

• ηt = ηt + Z for all terminal t ∈ T .

It follows that for all W ∈W

|W | ≤
∑
e∈E

aSe u
e +

∑
v∈V ∪T

ηvb
W
v −

∑
t∈T

λtb
W
t .

Thus, (u, η, λ) is a feasible solution for DLMP and LB =
∑
e∈E

ue +
∑

v∈V ∪T
ηv −

∑
t∈T

λt is

a lower bound for LMP.

Figure 4.4: Example of the lagrangian bound during column generation solving

4.2 141

Figure 4.4 displays the state of the lagrangian bound and the primal bound during
the column generation phase. We notice that the lagrangian bound decreases until it
equals the primal bound.

4.2 The isolating-separator formulation

For a terminal t ∈ T , an isolating-separator St ⊆ V is a set of vertices that intersects
all paths between t and the terminals of T \ {t}. For a terminal t ∈ T , let St be the
set of all isolating-separators in G associated with t. Let S =

⋃
t∈T

St be the set of all

isolating-separators in G.

Figure 4.5: Example of an isolating-separator

In Figure 4.5, set St represents an isolating-separator since it intersects all paths
(represented by dashed lines) between t and all other terminals.

Lemma 4.7 A MTV separator is an isolating-separator that can be associated to any
terminal.

Proof. For all t ∈ T , a MTV separator intersects all terminal paths between t and
all terminals of T \ {s}, thus it is an isolating-separator of t.

Lemma 4.8 A set S ⊆ V is a MTV separator, if and only if, each terminal of T can
be associated to an isolating-separator included in S.

Proof. (⇒) Suppose that there is at least one terminal t ∈ T that cannot be asso-
ciated to any isolating-separator included in S. It follows that S is not an isolating-
separator for t. Thus there exists a terminal path between t and another terminal that
does not intersect S. Therefore S is not a MTV separator.

142 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

(⇐) Suppose that S is not a MTV separator. It follows that there exists a terminal
path Ptt′ between t and t′ that does not intersect S. Thus, no subset of S intersects
Ptt′ . Therefore, no subset of S is an isolating-separator of t.

Lemma 4.9 An isolating-separator may be related to several terminals of T .

Proof. Let S ⊂ V be a subset of vertices that intersects all terminal paths between a
terminal t0 ∈ T and all terminals t ∈ T \{t0} and intersects all terminal paths between
t1 ∈ T \ {t0} and all terminals of T \ {t1}. Clearly, S is an isolating-separator of t0 and
t1.

In this subsection we will introduce a formulation for the MTVSP based on the
isolating-separators. Indeed, any solution of the MTVSP can be seen as a union of
several isolating-separators, each one intersects all terminal paths between one specific
terminal and all the other terminals. Then, the multi-terminal vertex separator prob-
lem reduces to finding a set of isolating-separators such that the cardinality of their
union is minimum. Thus, two families of variables are needed for this formulation,
one family is on the isolating-separator and the other one is on the vertices. Given
an isolating-separator S ∈ S, let xS be a variable which takes 1 if S is chosen and 0

if not. And for v ∈ V , let yv be a variable such that y(v) takes 1 if v belongs to at
least one selected isolating-separator and 0 if not. We notice that the variables x are
exponential in number.

Given a isolating-separator S ∈ S, let aS ∈ {0, 1}V×T , aS ∈ {0, 1}V and bS ∈ {0, 1}T
be the vectors defined as follows

aSv,t =

{
1 if v belongs to S and S ∈ St,

0 otherwise.
for all v ∈ V, t ∈ T,

aSv =

{
1 if v belongs to S,
0 otherwise.

for all v ∈ V,

bSt =

{
1 if S ∈ St,

0 otherwise.
for all t ∈ T.

4.2 143

The MTVSP is equivalent to the following integer linear program

min y(V) (4.17)

y(v)−
∑
S∈S

aSv,tx
S ≥ 0 ∀t ∈ T, ∀v ∈ V, (4.18)

−y(v) +
∑
S∈S

aSvx
S ≥ 0 ∀v ∈ V, (4.19)∑

S∈St
bSt x

S = 1 ∀t ∈ T, (4.20)

xS ≥ 0 ∀ S ∈ S, (4.21)

y(v) ∈ {0, 1} ∀ v ∈ V. (4.22)

Inequalities (4.18) ensure that a vertex belonging to a selected isolating-separator,
belongs also to the separator. Inequalities (4.19) ensure that a vertex belonging to
the separator, belongs to at least one isolating-separator. Inequalities (4.20) guarantee
that at least one isolating-separator, associated with each terminal, is selected.

Figure 4.6: Example of a solution of the isolating-separator formulation

Figure 4.6 illustrates a solution of the MTVSP. The three subsets in the Figure
represent selected isolating-separators. The union of the three isolating-separators rep-
resents a multi-terminal vertex separator for G. We note that one isolating-separator
can be associated to several terminals.

144 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Model (4.17)-(4.22) is the master problem. It has an exponential size, thus we need
a column generation procedure to solve its continuous relaxation.

Let u ∈ RT×V
+ , λ ∈ RV

+ and η ∈ RT
+ be the dual variables associated with inequalities

(4.18)− (4.20). The dual of the linear relaxation of the integer linear program (4.17)-
(4.22), denoted by DLMP, is given by the following program

max
∑
t∈T

ηt∑
t∈T

utv − λv ≤ 1 ∀v ∈ V,∑
v∈V

∑
t∈T

−aSv,tutv +
∑
v∈V

aSvλv +
∑
t∈T

bSt ηt ≤ 0 ∀S ∈ S, (4.23)

utv ≥ 0 ∀t ∈ T, v ∈ V,
λv ≥ 0 ∀v ∈ V,

ηt ∈ R ∀t ∈ T.

The master problem is initialized with a subset of variables, and the additional vari-
ables necessary to solve its linear relaxation are generated by separating the associated
dual constraints (4.23). This constitutes the pricing problem.

4.2.1 Pricing problem

Given a dual solution π = (u, λ, η), the pricing problem is equivalent to the separation
of the dual constraints (4.23), i.e., it consists in finding a subset S ∈ S such that∑

v∈V

∑
t∈T

−aSv,tutv +
∑
v∈V

aSvλv +
∑
t∈T

bSt ηt > 0.

Then the pricing problem reduces to generating an isolating-separator St such that
−
∑
v∈V

utva
S
vt +

∑
v∈V

λva
S
v + ηtbt is maximum. If this value is greater than 0, then we add

the corresponding column to the RMP. Otherwise, the current solution of the RMP is
optimal.

Theorem 4.10 The pricing problem can be solved in polynomial time.

4.2 145

Proof. For a terminal t ∈ T , let Gt = (V ∪ {t, ts}, E) be the graph obtained from
G by merging all terminals of T \ {t} into one terminal ts. Let c ∈ RV such that
c(v) = utv−λv for all v ∈ V . To solve the pricing problem, we need to iterate over each
terminal t ∈ T and to solve the minimum two-terminal vertex separator problem in
graph Gt. The latter problem can be solved in polynomial time. Let Z∗t be the value
of the optimal two-terminal vertex separator in graph Gt. The optimal solution for the
pricer is the two-terminal separator with maximum value Z∗t − ηt. It follows that the
pricer problem can be solved in polynomial time.

4.2.2 Basic columns

Let us remark that set V represents an isolating-separator for any terminal of T . Thus,
V ∈ St for all t ∈ T . So, for the basic columns we can add a variable associated with
set V for each terminal of T . Moreover, any multi-terminal vertex separator is also
an isolating-separator for any terminal of T . Thus, for each terminal t ∈ T , we add
a variable associated with an isolating-separator St that is a multi-terminal vertex
separator. This is obtained using the improved isolating terminal heuristic (Algorithm
10 presented in Chapter 2).

4.2.3 Column generation strategy

The column generation strategy aims at generating several columns at each iteration
of the column generation phase. This may speed up the resolution time. It is based on
the fact that an isolating-separator may be related to several terminals of T . Therefore,
each time we generate a new column, we check if the associated isolating-separator can
also correspond to other terminals. Then, we add several columns by iteration.

4.2.4 Branching scheme

The branching scheme is reduced to the classical branching on y. Then, the branching
generates two nodes by imposing either y(v) = 1 or y(v) = 0 for some fractional
variable y(v).

146 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

4.2.5 Lagrangian bound

Let π = (u, λ, η) be a dual vector obtained from the linear relaxation of a restricted
master problem. Let Z be the optimal value of the pricer. Remark that∑

v∈V

∑
t∈T

−aSv,tutv +
∑
v∈V

aSvλv +
∑
t∈T

bSt ηt ≤ Z ∀S ∈ S.

We know that Let η ∈ RT
+ be a vector defines as follows

• ηt = ηt − Z for all terminal t ∈ T .

Since
∑
t∈T

bSt = 1, it follows that

∑
v∈V

∑
t∈T

−aSv,tutv +
∑
v∈V

aSvλv +
∑
t∈T

bSt ηt ≤ 0 ∀S ∈ S

Consequently, π = (u, λ, η) is a feasible solution for the DLMP and LB =
∑
t,t′∈T

ηt is a

lower bound for LMP.

4.3 The terminal-pair-separator formulation

A terminal-pair-separator S is a set of vertices whose removal disconnects a pair of
terminals. We say that S separates this pair of terminals. For t, t′ ∈ T , let Stt′ ⊆ S be
the set of all terminal-pair-separators of G that separate t and t′. Let S =

⋃
t,t′∈T

Stt′ be

the set of all terminal-pair-separators of G.

Figure 4.7: Example of a terminal-pair-separator

4.3 147

Figure 4.7 gives an example of a terminal-pair-separator. We can see that S is a
terminal-pair-separator for terminals t1 and t3 but not a terminal-pair-separator for
terminals t1 and t2.

Lemma 4.11 A MTV separator is a terminal-pair-separator that can be associated to
any terminal.

Proof. For all t, t′ ∈ T , a MTV separator intersects all terminal paths between t and
t′, thus it is a terminal-pair-separator for t and t′.

Lemma 4.12 A set S ⊆ V is a MTV separator, if and only if, each pair of terminals
in T can be associated to a terminal-pair-separator included in S.

Proof. (⇒) Suppose that there is at least one pair of terminals t, t′ ∈ T that cannot
be associated to any terminal-pair-separator included in S. It follows that S is not a
terminal-pair-separator for t and t′. Thus there exists a terminal path between t and
t′ that does not intersect S. Therefore S is not a MTV separator.

(⇐) Suppose that S is not a MTV separator. It follows that there exists a terminal
path Ptt′ between t and t′ that does not intersect S. Thus, no subset of S intersects
Ptt′ . Therefore, no subset of S is a terminal-pair-separator for t and t′.

Lemma 4.13 A terminal-pair-separator may be related to several terminals of T .

Proof. Let S ⊂ V be a subset of vertices that intersects all terminal paths between
a terminal t0 ∈ T and t1 ∈ T \ {t0} and intersects all terminal paths between t2 ∈
T \ {t0, t1} and t3 ∈ T \ {t2}. Clearly, S is a terminal-pair-separator for t0 and t1 and
also for t2 and t3.

In this subsection we will introduce a formulation for the MTVSP based on the
terminal-pair-separators. Indeed, any MTV separator of G can be seen as a union of
several terminal-pair-separators. Then, the multi-terminal vertex separator problem
reduces to finding a set of terminal-pair-separators such that the cardinality of their
union is minimum. For this formulation we consider two families of variables, one is
associated to the terminal-pair-separators and the other is related to the vertices. For

148 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

S ∈ S, let xS be a variable which takes 1 if S is chosen and 0 if not. And for v ∈ V ,
let yv be a variable which takes 1 if v is chosen and 0, if not. Note that the variables
x are exponential in number.

Given a terminal-pair-separator S ∈ S, let aS ∈ {0, 1}V×T×T and bS ∈ {0, 1}T×T be
the vectors defined as follows

aStt′v =

{
1 if v ∈ S and S ∈ Stt′ ,

0 otherwise.
for all t, t′ ∈ T and v ∈ V,

bStt′ =

{
1 if S separates t and t′,
0 otherwise.

for all t, t′ ∈ T,

The MTVSP is equivalent to the following integer linear formulation

min y(V) (4.24)

−
∑
S∈S

aStt′vx
S + y(v) ≥ 0 ∀v ∈ V, ∀t, t′ ∈ T, (4.25)

−
∑
S∈S

bStt′x
S ≥ −1 ∀t, t′ ∈ T, (4.26)∑

S∈S

bStt′x
S ≥ 1 ∀t, t′ ∈ T, (4.27)

y(v) ∈ {0, 1} ∀v ∈ V, (4.28)

xS ≥ 0 ∀S ∈ S. (4.29)

Inequalities (4.25) ensure that each vertex belonging to at least one selected terminal-
pair-separator, also belongs to the separator. Inequalities (4.25)−(4.26) allow to select
exactly one terminal-pair-separator per pair of terminals.

Theorem 4.14 For each feasible solution (x, y) of (4.25) − (4.29), y is an incidence
vector of a multi-terminal vertex separator.

Proof. By (4.26) − (4.27), for each pair of terminals t, t′ ∈ T , there is at least one
S ∈ Stt′ such that xS > 0. Denote this separator by Stt′ . It is clear that Ŝ =

⋃
t,t′
Stt′ is a

multi-terminal vertex separator of G. As y is integer, by (4.25), it follows that for all
t, t′ ∈ T and v ∈ Stt′ , yv = 1.

4.3 149

Model (4.24)-(4.29) is the master problem. It has an exponential size, thus we need
a column generation procedure to solve its continuous relaxation.

Let u ∈ RV×T×T
+ , η ∈ RT∪T

+ and µ ∈ RT∪T
+ be the dual variables associated with

inequalities (4.25)− (4.27). The dual of the linear relaxation of (4.24)-(4.29), denoted
by DLMP, is given by

max
∑
t,t′∈T

µtt′ − ηtt′∑
t,t′∈T

(
∑
v∈V

−aStt′vuvtt′ + (µtt′ − ηtt′)bStt′) ≤ 0 ∀S ∈ S (4.30)∑
t,t′∈T

uvtt′ ≤ 1 ∀v ∈ V (4.31)

uvtt′ ≥ 0 ∀v ∈ V, ∀t, t′ ∈ T (4.32)

ηtt′ ≥ 0 ∀t, t′ ∈ T (4.33)

µtt′ ≥ 0 ∀t, t′ ∈ T (4.34)

The master problem is initialized with a subset of variables, and then the additional
variables necessary to solve its linear relaxation are generated by separating the asso-
ciated dual constraints (4.30). This constitutes the pricing problem.

4.3.1 Pricing problem

Given a dual solution π = (u, η, µ), the pricing problem consists in finding a subset
S ∈ S such that ∑

t,t′∈T

(
∑
v∈V

−aStt′vuvtt′ + (µtt′ − ηtt′)bStt′) > 0.

The pricing problem reduces to generating a terminal-pair-separator S associated with
two terminals t, t′ ∈ T such that

∑
t,t′∈T

∑
v∈V
−uvtt′aStt′v + (µtt′ − ηtt′)bStt′ is maximum.

Theorem 4.15 The pricing problem can be solved in polynomial time.

Proof. For all t, t′ ∈ T , let ctt′ : V ∪ (T \ {t, t′}) → R such that for all v ∈ V ,
ctt′(v) = uvtt′ and for all t′′ ∈ T \ {t, t′}, ctt′(t′′) = +∞. Solving the pricing problem
consists in iterating over each pair of terminals t, t′ ∈ T , and finding a terminal-pair-
separator S of minimum weight in G w.r.t ctt′ . This is equivalent to finding a minimum
cut between t and t′. It follows that the pricing problem reduces to solving a polynomial
number of maximum flow problems.

150 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

4.3.2 Basic columns

It is clear that any multi-terminal vertex separator is also a terminal-pair-separator.
Thus, for each pair of terminals t, t′ ∈ T , we add a variable associated with a multi-
terminal vertex separator obtained using the improved isolating terminal heuristic (Al-
gorithm 10 presented in Chapter 2). We also use this heuristic to obtain a good primal
bound.

4.3.3 Column generation strategy

This column generation strategy is based on the fact that the minimum two-terminal
vertex separator problem can be solved in a polynomial time. The idea of this strategy
is to iterate over all pairs of terminals t, t′ ∈ T and to look for the minimum two-
terminal vertex separator intersecting all paths between t and t′ in G w.r.t utt′ . We
stop when a two-terminal vertex separator S is found with a positive reduced cost, i.e.,∑
t,t′∈T

∑
v∈V
−uvtt′aStt′v + (µtt′ − ηtt′)bStt′ > 0. We then add the associated column.

We remarked from the numerical tests, that when we iterate over all pairs of termi-
nals, it would be more interesting to start with a pair of terminals t, t′ ∈ T having a
maximum value µtt′ − ηtt′ . Each time we add a new column to the restricted master
problem, we check if the associated terminal-pair-separator separates other terminals.
As a consequence, we may add several columns in the same iteration.

4.3.4 Branching scheme

The branching scheme is reduced to the classical branching on y. Then, the branching
generates two nodes by imposing either y(v) = 1 or y(v) = 0 for some fractional
variable y(v).

4.3.5 The Lagrangian bound

Let π = (u, η, µ) be a dual vector obtained from the linear relaxation of a restricted
master problem. Let Z be the optimal value of the pricer. Hence, w.r.t π∑

t,t′∈T

(
∑
v∈V

−aStt′vuvtt′ + (µtt′ − ηtt′)bStt′) ≤ Z ∀S ∈ S.

4.4 151

Let η ∈ RT×T
+ be vector such that ηtt′ = ηtt′ + Z for all terminal t, t′ ∈ T . It follows

that ∑
t,t′∈T

(
∑
v∈V

−aStt′vuvtt′ + (µtt′ − ηtt′)bStt′) ≤ 0 ∀S ∈ S

Consequently, since
∑
t,t′∈T

bStt′ = 1, (u, η, µ) is a feasible solution for the DLMP, and

LB =
∑
t,t′∈T

µtt′ − ηtt′ is a lower bound for LMP.

Figure 4.8: Example of lagrangian bound during column generation solving

Figure 4.8 displays the state of the lagrangian bound and the primal bound during
the column generation phase. we notice that the lagrangian bound increases until it
equals the primal bound.

4.4 Branch-and-Cut-and-Price

The isolating-separator and the terminal-pair-separator formulations use variable vec-
tor y ∈ {0, 1}V such that y(v) = 1 if v belongs to the MTV separator and 0 if not. This
vector is not used in the terminal-set formulation. It follows that the valid inequalities
presented in Chapter 2 can be added to the isolating-separator and the terminal-pair-
separator formulations but not to the terminal-set formulation.

152 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

In this section we present the valid inequalities that we add to the isolating-separator
and the terminal-pair-separator formulations in order to cut the non feasible solutions
and to strengthen the linear relaxation. We add three classes of valid inequalities
(2.10), (2.20) and (2.18), introduced in Chapter 2. This permits to derive a Branch-
and-Cut-and-Price algorithm. We note that adding valid inequalities on y variables
will not affect the pricing problems.

Figure 4.9: Examples of star tree, terminal cycle and terminal tree graphs

Figure 4.9 displays a star tree, a terminal cycle and a terminal tree.

The valid inequalities used in the Branch-and-Cut-and-Price algorithms are presented
below.

4.4.1 Star tree inequalities

A star tree H = (V (H) ∪ T (H), E(H)) of G is a tree such that the terminals of T (H)

are the leaves of H and all the other (non-terminal) nodes, different from the root node,
are of degree two. Figure 4.9.(a) displays a star tree with 4 terminals.

Proposition 4.16 If H = (V (H)∪T (H), E(H)) is a star tree subgraph of G with root
vr, then the following star tree inequality

y(V (H) \ {vr}) + (q − 1)yvr ≥ q − 1

is valid for the polytopes associated with the isolating-separator and the terminal-pair-
separator formulations.

4.5 153

4.4.2 Terminal cycle inequalities

A terminal cycle J = (V (J) ∪ T (J), E(J)) is given by a cycle C and q disjoint paths
between a vertex in C and a terminal in T . Figure 4.9.(b) displays a terminal cycle
with three terminals.

Proposition 4.17 If J = (V (J)∪T (J), E(J)) is a terminal cycle subgraph of G, then
the following terminal cycle inequality

y(V (J)) ≥ d|q|
2
e

is valid for the polytopes associated with the isolating-separator and the terminal-pair-
separator formulations.

4.4.3 Terminal tree inequalities

A terminal tree H = (V (H) ∪ T (H), E(H)), is a tree such that the terminals of T (H)

are the leaves of H. Let dH(v) be the degree of v in H. Figure 4.9.(c) displays a
terminal tree with four terminals.

Proposition 4.18 If H = (V (H) ∪ T (H), E(H)) is a terminal tree subgraph of G,
then the following terminal tree inequality∑

v∈V (H)

(dH(v)− 1)yv ≥ q − 1.

is valid for the polytopes associated with the isolating-separator and the terminal-pair-
separator formulations.

The separation of the above inequalities is discussed in Section 2.5 of Chapter 2.

4.5 Computational Results

Based upon the previous theoretical results, we have developed a Branch-and-Price
algorithm for each extended formulation presented in Sections 1, 2 and 3. Since the

154 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

isolating-separator and the terminal-pair-separator formulations use y variables, several
valid inequalities presented in Chapter 2 can then be added. Thus, Branch-and-Cut-
and-Price algorithms is developed for these formulations to solve efficiently the multi-
terminal vertex separator problem. We use two kinds of instances, the DIMACS graph
coloring instances [1] and random graphs generated using boost graph library [3]. The
terminals are new nodes added to the graphs. Each terminal is randomly connected
to at least 2 vertices and to at most a given deg_T ∈ N vertices. In the Tables below,
deg_T is fixed in relation with the size of the graph, i.e., the higher the size of graph is,
the higher deg_T is. The edges incident to the terminals are added in such a way that
they respect Hypotheses 2.3-2.4. The primal bound is the value associated with any
separator of G. We use the improved isolating terminal heuristic to solve the MTVSP
for generating a good primal bound. This heuristic is presented in Chapter 2.
In the column generation phases, we stop generating variables, either when there is no
column to add, or when the lagrangian bound is equal to the objective value.

For the Branch-and-Cut-and-Price algorithms, we add valid inequalities (2.10), (2.20)
and (2.18) at the end of each column generation phase, if the linear relaxation value,
in a specific node of the branching tree, is not equal to the best primal bound. We
perform the separation of all cuts at each iteration. We use the separation algorithms
presented in Chapter 2. The Branching tree is managed by our algorithms using a
depth first search. All flow problems are solved using Lemon library [2] and the linear
programs are solved using Cplex. The numerical experiments were done on an Intel
Xeon E312xx machine at 2.39 GHz ×1 with 48GB RAM, running under Linux 64 bits.
The maximum CPU run time has been fixed to 4 hours.

In the following Tables, we have the following entries.

4.5 155

n : the number of vertices in V .
m : the number of edges in E.
k : the number of terminal in T .
Cols : the number of columns added during the Branch-and-Price or

the Branch-and-Cut-and-Price algorithms.
ST : the number of the star tree inequalities generated.
TC : the number of the terminal cycle inequalities generated.
TT : the number of the terminal tree inequalities generated.
Gap % : the relative error between the best upper and lower bound

obtained at the root node of the branching tree.
No : the number of node in the branching tree.
Opt : the optimal objective value.
Heur : the cardinality of the MTV separator given by the improved

isolating terminal heuristic presented in Chapter 2.
CPU : the CPU time in seconds, given by the Branch-and-Price or

the Branch-and-Cut-and-Price algorithm.

156 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Instances n m k Cols Opt Heur No Gap % CPU

DIMACS 47 258 6 1156 36 36 1 0.00 4.85
DIMACS 64 1477 6 1148 54 54 1 0.00 109.85
DIMACS 74 624 6 40059 - 63 1 - -
DIMACS 80 533 6 290279 - 70 1 - -
DIMACS 87 835 6 500703 - 79 1 - -
DIMACS 95 778 6 13900 83 83 1 0.00 11326.50
DIMACS 96 2762 6 3159 81 81 1 0.00 11327.50
DIMACS 100 2967 8 3783 - 86 1 - -
DIMACS 120 1307 8 14484 - 104 1 - -
DIMACS 125 764 8 11176 - 110 1 - -
DIMACS 128 804 8 208015 - 118 1 - -
DIMACS 128 2370 8 4637 - 112 1 - -
DIMACS 128 4256 8 3928 - 112 1 - -
DIMACS 128 6462 8 2682 - 112 1 - -
DIMACS 128 10426 8 2090 - 112 1 - -
DIMACS 138 1022 8 242749 - 114 1 - -
DIMACS 144 5224 8 2427 - 127 1 - -
DIMACS 188 3920 8 2682 - 168 1 - -
DIMACS 191 2387 8 3115 - 177 1 - -
DIMACS 196 8399 8 1780 - 181 1 - -
DIMACS 197 3952 8 3093 - 187 1 - -
DIMACS 206 3576 8 3954 - 193 1 - -
DIMACS 211 3573 8 2547 - 199 1 - -
DIMACS 211 4132 8 2566 - 201 1 - -
DIMACS 256 12674 8 1590 - 236 1 - -
DIMACS 385 19129 8 1302 - 360 1 - -
DIMACS 500 7140 8 1525 - 483 1 - -

Table 4.1: Results with the Branch-and-Price algorithm of the terminal-subset formu-
lation on DIMACS instances.

4.5 157

Instances n m k Cols Opt Heur No Gap % CPU

Random 50 511 7 1774 39 39 1 0.00 31.17
Random 70 993 7 3548 58 58 1 0.00 3629.78
Random 100 1985 7 4159 - 89 1 - -
Random 300 17792 7 1408 - 288 1 - -
Random 600 70673 7 782 - 588 1 - -
Random 700 96432 7 782 - 689 1 - -
Random 800 125978 10 763 - 766 1 - -
Random 900 159331 10 677 - 859 1 - -
Random 1000 196771 10 600 - 965 1 - -
Random 1200 283386 10 484 - 1166 1 - -
Random 1300 332861 10 444 - 1266 1 - -
Random 1500 442444 10 - - 1463 - - -
Random 1800 637307 15 - - 1737 - - -
Random 2000 786639 15 - - 1947 - - -
Random 2100 867411 15 - - 2033 - - -
Random 2300 1041144 15 - - 2245 - - -
Random 3000 1770773 15 - - 2940 - - -
Random 3300 2142370 15 - - 3235 - - -
Random 3800 2841805 15 - - 3743 - - -
Random 4200 3472117 15 - - 4135 - - -
Random 4500 3987339 15 - - 4434 - - -
Random 4800 4537794 15 - - 4748 - - -
Random 5000 4922710 15 - - 4945 - - -

Table 4.2: Results with the Branch-and-Price algorithm of the terminal-subset formu-
lation on random instances.

158 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Instances n m k Cols Opt Heur No Gap % CPU

DIMACS 47 258 6 442 17 17 23 0.55 0.24
DIMACS 64 1477 6 258 16 16 21 0.52 0.15
DIMACS 74 624 6 308 13 14 34 0.24 0.22
DIMACS 80 533 6 1596 16 16 97 0.39 2.25
DIMACS 87 835 6 419 14 14 31 0.40 0.31
DIMACS 95 778 6 475 18 18 25 0.57 0.24
DIMACS 96 2762 6 622 21 21 31 0.62 0.53
DIMACS 100 2967 8 871 22 22 33 0.63 1.00
DIMACS 120 1307 8 16775 - 24 60 - -
DIMACS 125 764 8 14887 23 23 117 0.64 13396.50
DIMACS 128 804 8 4791 16 16 63 0.39 23.24
DIMACS 128 2370 8 11337 22 24 245 0.47 1386.72
DIMACS 128 4256 8 7865 24 24 131 0.60 342.64
DIMACS 128 6462 8 1327 24 24 45 0.60 4.27
DIMACS 128 10426 8 863 24 24 35 0.60 3.38
DIMACS 138 1022 8 44835 - 26 1891 - -
DIMACS 144 5224 8 3995 25 25 35 0.56 25.41
DIMACS 188 3920 8 904 28 28 41 0.60 1.53
DIMACS 191 2387 8 2069 22 22 33 0.63 5.19
DIMACS 196 8399 8 1801 23 23 37 0.70 5.39
DIMACS 197 3952 8 606 18 18 27 0.64 0.72
DIMACS 206 3576 8 961 21 21 29 0.56 1.39
DIMACS 211 3573 8 927 20 20 31 0.67 1.10
DIMACS 211 4132 8 765 18 18 27 0.64 1.36
DIMACS 256 12674 8 4888 28 28 43 0.65 43.69
DIMACS 385 19129 8 15810 - 27 94 - -
DIMACS 500 7140 8 15074 - 25 1 - -

Table 4.3: Results with the Branch-and-Price algorithm of the isolating-separator for-
mulation on DIMACS instances.

4.5 159

Instances n m k Cols Opt Heur No Gap % CPU

Random 50 511 7 552 18 18 27 0.64 0.46
Random 70 993 7 678 19 19 29 0.65 0.80
Random 100 1985 7 561 18 18 27 0.64 0.61
Random 300 17792 7 816 19 19 29 0.65 4.42
Random 600 70673 7 6624 19 19 29 0.65 285.23
Random 700 96432 7 1381 18 18 27 0.64 48.41
Random 800 125978 10 31073 - 44 41 - -
Random 900 159331 10 28127 - 51 45 - -
Random 1000 196771 10 24214 - 45 42 - -
Random 1200 283386 10 15536 - 44 38 - -
Random 1300 332861 10 18995 - 44 38 - -
Random 1500 442444 10 9814 - 47 50 - -
Random 1800 637307 15 7879 - 78 71 - -
Random 2000 786639 15 7030 - 68 59 - -
Random 2100 867411 15 6116 - 82 76 - -
Random 2300 1041144 15 6720 - 70 65 - -
Random 3000 1770773 15 4162 - 75 66 - -
Random 3300 2142370 15 5828 - 80 73 - -
Random 3800 2841805 15 4455 - 72 65 - -
Random 4200 3472117 15 5045 - 81 74 - -
Random 4500 3987339 15 5123 - 81 74 - -
Random 4800 4537794 15 5237 - 74 67 - -
Random 5000 4922710 15 5406 - 67 70 - -

Table 4.4: Results with the Branch-and-Price algorithm of the isolating-separator for-
mulation on random instances.

160 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Instances n m k Cols ST TC TT Opt Heur No Gap % CPU

DIMACS 47 258 6 527 0 0 19 17 17 21 0.44 0.33
DIMACS 64 1477 6 288 0 0 18 16 16 1 0.06 0.22
DIMACS 74 624 6 257 49 0 49 13 14 6 0.06 0.23
DIMACS 80 533 6 708 99 0 118 16 16 13 0.10 1.47
DIMACS 87 835 6 417 0 0 52 14 14 5 0.13 0.41
DIMACS 95 778 6 733 0 2 34 18 18 1 0.05 1.56
DIMACS 96 2762 6 484 0 0 26 21 21 1 0.04 0.84
DIMACS 100 2967 8 387 0 0 14 22 22 1 0.04 0.53
DIMACS 120 1307 8 2687 0 5 43 24 24 1 0.04 48.29
DIMACS 125 764 8 1754 0 0 20 23 23 1 0.04 6.97
DIMACS 128 804 8 784 8 0 14 16 16 1 0.06 1.12
DIMACS 128 2370 8 934 0 0 85 22 24 2 0.00 3.21
DIMACS 128 4256 8 1240 0 2 25 24 24 1 0.03 3.96
DIMACS 128 6462 8 634 0 1 16 24 24 1 0.04 1.69
DIMACS 128 10426 8 568 0 0 21 24 24 1 0.04 1.60
DIMACS 138 1022 8 5665 360 0 381 21 26 147 0.05 125.09
DIMACS 144 5224 8 723 0 1 24 25 25 1 0.02 1.56
DIMACS 188 3920 8 653 0 2 39 28 28 1 0.03 1.86
DIMACS 191 2387 8 848 0 0 29 22 22 1 0.03 1.20
DIMACS 196 8399 8 362 0 10 19 23 23 1 0.04 0.84
DIMACS 197 3952 8 626 0 0 16 18 18 1 0.05 1.28
DIMACS 206 3576 8 749 0 0 19 21 21 1 0.04 2.28
DIMACS 211 3573 8 1423 0 0 15 20 20 3 0.09 5.19
DIMACS 211 4132 8 668 0 0 10 18 18 1 0.04 1.09
DIMACS 256 12674 8 1647 0 11 37 28 28 1 0.03 8.11
DIMACS 385 19129 8 910 0 4 20 27 27 1 0.03 5.13
DIMACS 500 7140 8 9102 0 4 13 - 25 1 - -

Table 4.5: Results with the Branch-and-Cut-and-Price algorithm of the isolating-
separator formulation on DIMACS instances.

4.5 161

Instances n m k Cols ST TC TT Opt Heur No Gap % CPU

Random 50 511 7 210 0 0 25 18 18 1 0.05 0.28
Random 70 993 7 510 0 2 18 19 19 1 0.04 0.93
Random 100 1985 7 341 0 3 13 18 18 1 0.05 0.44
Random 300 17792 7 695 0 10 16 19 19 3 0.08 3.74
Random 600 70673 7 1047 0 4 18 19 19 1 0.05 26.58
Random 700 96432 7 1580 0 8 20 18 18 1 0.04 23.71
Random 800 125978 10 1812 0 9 36 44 44 1 0.01 110.99
Random 900 159331 10 3106 0 11 83 51 51 1 0.01 382.08
Random 1000 196771 10 2856 0 9 40 45 45 1 0.02 417.03
Random 1200 283386 10 2314 0 10 36 44 44 1 0.01 395.60
Random 1300 332861 10 2207 0 12 46 44 44 1 0.02 494.92
Random 1500 442444 10 1916 0 18 68 47 47 1 0.01 535.64
Random 1800 637307 15 2211 0 20 73 78 78 1 0.01 1083.80
Random 2000 786639 15 2283 0 7 57 68 68 1 0.01 1105.77
Random 2100 867411 15 2423 0 12 75 82 82 1 0.01 1470.35
Random 2300 1041144 15 2681 0 27 81 70 70 1 0.01 1949.58
Random 3000 1770773 15 3393 0 29 76 75 75 1 0.01 3445.06
Random 3300 2142370 15 3775 0 26 90 80 80 1 0.01 4962.08
Random 3800 2841805 15 4074 0 27 71 72 72 1 0.01 5556.17
Random 4200 3472117 15 4640 0 12 121 81 81 1 0.01 11047.50
Random 4500 3987339 15 4928 0 26 90 81 81 1 0.01 10305.40
Random 4800 4537794 15 5007 0 17 66 74 74 1 0.01 8110.66
Random 5000 4922710 15 5268 0 18 69 67 67 1 0.01 9372.34

Table 4.6: Results with the Branch-and-Cut-and-Price algorithm of the isolating-
separator formulation on random instances.

162 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Instances n m k Cols Opt Heur No Gap % CPU

DIMACS 47 258 6 291 17 17 23 0.55 0.49
DIMACS 64 1477 6 213 16 16 21 0.52 0.22
DIMACS 74 624 6 334 13 14 39 0.24 0.26
DIMACS 80 533 6 1014 16 16 91 0.39 1.32
DIMACS 87 835 6 459 14 14 27 0.40 0.47
DIMACS 95 778 6 332 18 18 25 0.57 0.23
DIMACS 96 2762 6 292 21 21 31 0.62 0.37
DIMACS 100 2967 8 500 22 22 33 0.63 1.18
DIMACS 120 1307 8 27991 24 24 125 0.55 8382.35
DIMACS 125 764 8 13013 23 23 117 0.64 161.05
DIMACS 128 804 8 3023 16 16 63 0.39 8.04
DIMACS 128 2370 8 3414 22 24 211 0.47 15.81
DIMACS 128 4256 8 1674 24 24 133 0.60 10.22
DIMACS 128 6462 8 702 24 24 45 0.60 5.01
DIMACS 128 10426 8 390 24 24 35 0.60 4.08
DIMACS 138 1022 8 32571 21 26 2077 0.20 937.50
DIMACS 144 5224 8 565 25 25 35 0.56 2.65
DIMACS 188 3920 8 550 28 28 41 0.60 2.10
DIMACS 191 2387 8 660 22 22 33 0.63 2.14
DIMACS 196 8399 8 719 23 23 37 0.70 5.78
DIMACS 197 3952 8 408 18 18 27 0.64 0.93
DIMACS 206 3576 8 457 21 21 29 0.56 1.08
DIMACS 211 3573 8 417 20 20 31 0.67 0.90
DIMACS 211 4132 8 368 18 18 27 0.64 0.89
DIMACS 256 12674 8 883 28 28 43 0.65 10.47
DIMACS 385 19129 8 1301 27 27 75 0.64 34.35
DIMACS 500 7140 8 22501 - 25 33 - -

Table 4.7: Results with the Branch-and-Price algorithm of the Terminal-pair-separator
formulation on DIMACS instances.

4.5 163

Instances n m k Cols Opt Heur No Gap % CPU

Random 50 511 7 290 18 18 27 0.64 0.30
Random 70 993 7 296 19 19 29 0.65 0.34
Random 100 1985 7 319 18 18 27 0.64 0.55
Random 300 17792 7 530 19 19 29 0.65 7.08
Random 600 70673 7 792 19 19 29 0.65 25.46
Random 700 96432 7 879 18 18 27 0.64 44.17
Random 800 125978 10 1399 44 44 73 0.73 553.85
Random 900 159331 10 1696 51 51 87 0.76 2221.57
Random 1000 196771 10 1560 45 45 71 0.67 1623.42
Random 1200 283386 10 1916 44 44 73 0.73 2617.03
Random 1300 332861 10 1922 44 44 73 0.73 3625.82
Random 1500 442444 10 2133 47 47 79 0.74 5983.95
Random 1800 637307 15 2335 - 78 73 - -
Random 2000 786639 15 2494 - 68 50 - -
Random 2100 867411 15 2573 - 82 47 - -
Random 2300 1041144 15 2754 - 70 13 - -
Random 3000 1770773 15 3392 - 75 1 - -
Random 3300 2142370 15 3654 - 80 1 - -
Random 3800 2841805 15 4125 - 72 1 - -
Random 4200 3472117 15 4510 - 81 1 - -
Random 4500 3987339 15 4801 - 81 1 - -
Random 4800 4537794 15 5074 - 74 1 - -
Random 5000 4922710 15 5253 - 67 1 - -

Table 4.8: Results with the Branch-and-Price algorithm of the Terminal-pair-separator
formulation on random instances.

164 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Instances n m k Cols ST TC TT Opt Heur No Gap % CPU

DIMACS 47 258 6 778 389 0 7 17 17 13 0.18 0.76
DIMACS 64 1477 6 279 12 0 12 16 16 1 0.00 0.16
DIMACS 74 624 6 229 65 0 55 13 14 7 0.04 0.27
DIMACS 80 533 6 295 80 0 59 16 16 3 0.09 0.45
DIMACS 87 835 6 280 63 0 33 14 14 1 0.04 0.27
DIMACS 95 778 6 306 30 0 30 18 18 1 0.00 0.22
DIMACS 96 2762 6 200 24 0 24 21 21 1 0.00 0.25
DIMACS 100 2967 8 320 19 0 22 22 22 1 0.00 0.53
DIMACS 120 1307 8 935 555 0 336 24 24 1 0.01 7.29
DIMACS 125 764 8 1259 174 0 66 23 23 1 0.00 3.40
DIMACS 128 804 8 342 54 0 47 22 24 1 0.00 0.98
DIMACS 128 2370 8 358 26 0 26 24 24 1 0.00 1.50
DIMACS 128 4256 8 311 17 0 17 24 24 1 0.00 1.48
DIMACS 128 6462 8 269 11 0 11 24 24 1 0.00 1.71
DIMACS 128 10426 8 234 11 0 11 24 24 1 0.00 1.21
DIMACS 138 1022 8 4897 1129 0 255 22 26 336 0.10 29.95
DIMACS 144 5224 8 420 12 0 12 25 25 1 0.00 1.23
DIMACS 188 3920 8 324 30 0 30 28 28 1 0.00 0.88
DIMACS 191 2387 8 388 17 1 17 22 22 1 0.00 0.73
DIMACS 196 8399 8 343 17 0 17 23 23 1 0.00 1.56
DIMACS 197 3952 8 303 16 0 16 18 18 1 0.00 0.54
DIMACS 206 3576 8 316 19 0 19 21 21 1 0.00 0.65
DIMACS 211 3573 8 508 12 0 12 20 20 1 0.00 0.75
DIMACS 211 4132 8 297 8 0 8 18 18 1 0.00 0.35
DIMACS 256 12674 8 520 15 0 15 28 28 1 0.00 2.98
DIMACS 385 19129 8 595 13 0 13 27 27 1 0.00 5.74
DIMACS 500 7140 8 976 69 1 69 25 25 1 0.00 8.80

Table 4.9: Results with the Branch-and-Cut-and-Price algorithm of the Terminal-pair-
separator formulation on DIMACS instances.

4.5 165

Instances n m k Cols ST TC TT Opt Heur No Gap % CPU

Random 50 511 7 275 26 0 26 18 18 1 0.00 0.23
Random 70 993 7 214 17 0 17 19 19 1 0.00 0.22
Random 100 1985 7 224 10 0 10 18 18 1 0.00 0.21
Random 300 17792 7 445 9 0 9 19 19 1 0.00 2.74
Random 600 70673 7 786 8 0 8 19 19 1 0.00 13.08
Random 700 96432 7 805 8 0 8 18 18 1 0.00 18.22
Random 800 125978 10 1041 21 0 21 44 44 1 0.00 130.12
Random 900 159331 10 1153 29 0 29 51 51 1 0.00 334.00
Random 1000 196771 10 1273 22 0 22 45 45 1 0.00 336.67
Random 1200 283386 10 1465 18 0 18 44 44 1 0.00 709.12
Random 1300 332861 10 1544 19 0 19 44 44 1 0.00 882.31
Random 1500 442444 10 1731 30 0 31 47 47 1 0.00 1282.20
Random 1800 637307 15 2335 41 0 41 78 78 1 0.00 8719.97
Random 2000 786639 15 2585 27 0 27 68 68 1 0.00 11107.50
Random 2100 867411 15 2663 40 0 40 82 82 1 0.00 11693.40
Random 2300 1041144 15 2718 0 0 0 - 70 1 - -
Random 3000 1770773 15 3335 0 0 0 - 75 1 - -
Random 3300 2142370 15 3555 0 0 0 - 80 1 - -
Random 3800 2841805 15 4034 0 0 0 - 72 1 - -
Random 4200 3472117 15 4421 0 0 0 - 81 1 - -
Random 4500 3987339 15 4713 0 0 0 - 81 1 - -
Random 4800 4537794 15 5005 0 0 0 - 74 1 - -
Random 5000 4922710 15 5195 0 0 0 - 67 1 - -

Table 4.10: Results with the Branch-and-Cut-and-Price algorithm of the Terminal-
pair-separator formulation on random instances.

166 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Natural formulation Isolating-separator Terminal-pair-separator
Instances n m k No Gap % CPU No Gap % CPU No Gap % CPU

DIMACS 47 258 6 7 35.20 7.96 21 0.44 0.33 13 0.18 0.76
DIMACS 64 1477 6 1 0.00 0.99 1 0.06 0.22 1 0.00 0.16
DIMACS 74 624 6 23 19.20 3.39 6 0.06 0.23 7 0.04 0.27
DIMACS 80 533 6 47 28.10 6.94 13 0.10 1.47 3 0.09 0.45
DIMACS 87 835 6 26 28.50 8.58 5 0.13 0.41 1 0.04 0.27
DIMACS 95 778 6 1 0.00 1.26 1 0.05 1.56 1 0.00 0.22
DIMACS 96 2762 6 1 0.00 1.45 1 0.04 0.84 1 0.00 0.25
DIMACS 100 2967 8 1 0.00 1.55 1 0.04 0.53 1 0.00 0.53
DIMACS 120 1307 8 9 35.40 16.50 1 0.04 48.29 1 0.01 7.29
DIMACS 125 764 8 1 0.00 2.33 1 0.04 6.97 1 0.00 3.40
DIMACS 128 804 8 29 28.10 5.75 1 0.06 1.12 1 0.00 0.98
DIMACS 128 2370 8 6 31.80 16.44 2 0.00 3.21 1 0.00 1.50
DIMACS 128 4256 8 1 0.00 3.62 1 0.03 3.96 1 0.00 1.48
DIMACS 128 6462 8 1 0.00 2.03 1 0.04 1.69 1 0.00 1.71
DIMACS 138 1022 8 74 16.60 17.99 147 0.05 125.09 336 0.10 29.95
DIMACS 144 5224 8 1 0.00 1.44 1 0.02 1.56 1 0.00 1.23
DIMACS 188 3920 8 1 0.00 2.69 1 0.03 1.86 1 0.00 0.88
DIMACS 191 2387 8 1 0.00 1.34 1 0.03 1.20 1 0.00 0.73
DIMACS 196 8399 8 1 0.00 1.24 1 0.04 0.84 1 0.00 1.56
DIMACS 197 3952 8 1 0.00 0.58 1 0.05 1.28 1 0.00 0.54
DIMACS 206 3576 8 1 0.00 2.03 1 0.04 2.28 1 0.00 0.65
DIMACS 256 12674 8 1 0.00 2.10 1 0.03 8.11 1 0.00 2.98
DIMACS 385 19129 8 1 0.00 1.08 1 0.03 5.13 1 0.00 5.74
DIMACS 500 7140 8 4 40.00 32.35 - - - 1 0.00 8.80
Random 50 511 7 1 0.00 1.24 1 0.05 0.28 1 0.00 0.23
Random 70 993 7 1 0.00 0.64 1 0.04 0.93 1 0.00 0.22
Random 100 1985 7 1 0.00 1.02 1 0.05 0.44 1 0.00 0.21
Random 300 17792 7 1 0.00 2.31 3 0.08 3.74 1 0.00 2.74
Random 600 70673 7 1 0.00 4.04 1 0.05 26.58 1 0.00 13.08
Random 700 96432 7 1 0.00 3.96 1 0.04 23.71 1 0.00 18.22
Random 800 125978 10 1 0.00 20.98 1 0.01 110.99 1 0.00 130.12
Random 900 159331 10 1 0.00 31.31 1 0.01 382.08 1 0.00 334.00
Random 1000 196771 10 1 0.00 34.35 1 0.02 417.03 1 0.00 336.67
Random 1200 283386 10 1 0.00 41.01 1 0.01 395.60 1 0.00 709.12
Random 1300 332861 10 1 0.00 56.91 1 0.02 494.92 1 0.00 882.31
Random 1500 442444 10 1 0.00 92.64 1 0.01 535.64 1 0.00 1282.20
Random 1800 637307 15 1 0.00 379.95 1 0.01 1083.80 1 0.00 8719.97
Random 2000 786639 15 1 0.00 468.78 1 0.01 1105.77 1 0.00 11107.50
Random 2100 867430 15 1 0.00 641.02 1 0.01 1470.35 1 0.00 11693.40
Random 2300 1041158 15 1 0.00 851.49 1 0.01 1949.58 - - -
Random 3000 1770773 15 1 0.00 1698.90 1 0.01 3445.06 - - -
Random 3300 2142370 15 1 0.00 2129.60 1 0.01 4962.08 - - -
Random 3800 2841805 15 1 0.00 2363.80 1 0.01 5556.17 - - -
Random 4200 3472117 15 1 0.00 3856.30 1 0.01 11047.50 - - -
Random 4500 3987339 15 1 0.00 5248.10 1 0.01 10305.40 - - -
Random 4800 4537794 15 1 0.00 4611.80 1 0.01 8110.66 - - -
Random 5000 4922710 15 1 0.00 4291.40 1 0.01 9372.34 - - -

Table 4.11: Comparison table of the Branch-and-Cut algorithm with the Branch-and-
Cut-and-Price algorithms.

Tables 4.3, 4.5, 4.7 and 4.9 present results obtained for DIMACS instances. These

4.5 167

instances are induced by graphs associated with graphs having up to 500 nodes, and
whose the number of terminals is fixed to 6 for graphs with less than 99 nodes and 8

for the others. However, Tables 4.4, 4.6, 4.8 and 4.10 concern the random instances
which are induced by graphs having up to 5000 nodes, and whose the number of
terminals is fixed to 7, 10 and 15 for graphs with less than 700 nodes, between 800 and
1500 nodes and between 1800 and 5000 nodes, respectively. The values given in bold,
represent the instances for which the CPU time is better than the one of the Branch-
and-Cut algorithm presented in Chapter 2. The symbol "-" in the tables means that
the corresponding instance has not been solved in the time limit. We can remark that
in some instances, the Gap is different from 0.00 whereas the instance is solved in the
root node of the branching tree. This can be explained by the fact that the difference
between the value of the linear relaxation and the value given by the heuristic is strictly
lower than 1. In this case, the solution given by the heuristic is optimal.

Tables 4.1 and 4.2 give some numerical results obtained by the Branch-and-Price
algorithm of the terminal-set formulation. As it appears from the tables, the algorithm
could not solve most of the instances in the time limit of 4 hours. Only instances of
less than 100 nodes, could be solved and the CPU time is high. We also notice that
the number of generated columns is high, more than 1500 in most of the instances
and for the instance of 87 nodes it reached 500703. Moreover, we can note that the
Branch-and-Price algorithm does not start solving the instances with more than 1500

nodes. This is due to the high number of constraints which is related to the number
of edges (more than 442444 edges for the instances with more than 1500 nodes).

Results obtained by the Branch-and-Price algorithm of the isolating-separator for-
mulation are shown in Tables 4.3 and 4.4. Here the algorithm could solve 85% of the
DIMACS instances in the time limit and 77% of the instances in less than 6 minutes.
Moreover, the algorithm could not solve the instances with more than 800 nodes and
10 terminals. The Gap is around 60% in most of instances. This is may be explained
by the fact that the linear relaxation is weak. This can be also seen from the number
of nodes in the branching tree which is not less than 21 and which increases with the
size of the instance. Despite this, the algorithm could solve 11 instances over 50, in
shorter time, comparing with the Branch-and-Cut algorithm presented in Chapter 2.

Tables 4.5 and 4.6 concern results obtained by the Branch-and-Cut-and-Price algo-
rithm based on the isolating-separator formulation. As it appears the algorithm could
solve 96% of the DIMACS instances in less than 2 minutes and all the random instances
in less than 3 hours. The Gap is less than 6% in most of instances, which implies that
here the linear relaxation is quite strong. This is also clear from the fact that instances
are solved in the root node of the branching tree. Moreover, we note that the algo-

168 The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

rithm solved 14 instances over 50, in shorter time, comparing with the Branch-and-Cut
algorithm presented in Chapter 2. Concerning the additional valid inequalities used in
the algorithm, as it can be seen, the algorithm has not generated star tree inequalities
for most of the instances. However, the terminal tree inequalities, which are present in
all the instances, appear useful in the resolution of the problem. Comparing with the
Branch-and-Price algorithm of the isolating-separator formulation, we can notice that
the added inequalities, in particular the terminal tree inequalities, have much improved
the linear relaxation. This also permitted to decrease the number of generated columns
which does not exceed 9102 for all the instances. Moreover, the Branch-and-Cut-and-
Price algorithm was more efficient than the Branch-and-Price algorithm. Indeed, we
can notice that the Branch-and-Price algorithm could not solve neither the DIMACS
instances with 120, 138 and 385 nodes nor the random instances with more than 800

nodes, within the limit time. Whereas, the Branch-and-Cut-and-Price algorithm solved
all of them.

In Tables 4.7 and 4.8 we give the results obtained by the Branch-and-Price algorithm
based on the terminal-pair-separator formulation. Here the algorithm was able to
solve around 96% of DIMACS instances within the time limit of 4 hours, and around
88% in less than 3 minutes. However, the Gap is high, around 60% for most of the
instances. Thus it also appears that the linear relaxation of the terminal-pair-separator
formulation is not sufficiently strong. Comparing the algorithm with the Branch-and-
Cut algorithm presented in Chapter 2, we can remark that 14 instances over 50 have
been solved in shorter time.

Tables 4.9 and 4.10 are related to the Branch-and-Cut-and-Price algorithm based on
the terminal-pair-separator formulation. As it appears from the tables the algorithm
could solve all the DIMACS instances in less than 30 seconds. However, it could not
solve the random instances with more than 2300 nodes and 15 terminals, within the
time limit. Most of the instances have been solved in the root node, which means that
the linear relaxation here is sufficiently strong. It also appears from the tables that
the cycle inequalities have not almost played any role in resolution of the problem.
Comparing with the terminal tree and the star tree inequalities which have been gen-
erated and used for all the instances. Comparing with the Branch-and-Cut algorithm
of Chapter 2, we notices that 20 instances over 50 have been solved in less time. And
comparing with the Branch-and-Price algorithm of the terminal-pair-separator formu-
lation, it clearly appears that the added inequalities have been efficient and permitted
to reduce a lot both the CPU time and the number of generated columns. Indeed, the
Branch-and-Price algorithm could not solve neither the DIMACS instances with 500

nodes nor the random instances with 1800, 2000 and 2100 nodes, within the limit time.
Whereas, the Branch-and-Cut-and-Price algorithm solved all of them.

4.6 169

The largest DIMACS instance solved by the Branch-and-Price algorithm of the
terminal-set, the isolating-separator and the terminal-pair-separator formulations has
96, 256 and 385 nodes, respectively. Moreover, the Branch-and-Price algorithm of the
isolating-separator formulation solved a random instance of 700 nodes in 48.41 sec-
onds while the one of the terminal-set formulation solved a random instance of 70

nodes in 3629.78 seconds. We notice that the Branch-and-Cut-and-Price algorithm
of the isolating-separator formulation could not solve one DIMACS instance of 500

nodes while it solved all random instances. On the other hand, the Branch-and-Cut-
and-Price algorithm of the terminal-pair-separator formulation, solved all DIMACS
instances while it could not solve the random instances with more than 2300 nodes.

In Table 4.11 we summarize the numerical results of the Branch-and-Cut algorithm
related to the natural formulation, presented in Chapter 3, and the Branch-and-Cut-
and-Price algorithms of the isolating-separator and the terminal-pair-separator formu-
lations. For each instance, the underlined value represents the shortest CPU time
among the three algorithms. As it appears from the table, the Branch-and-Cut al-
gorithm solved all instances while the Branch-and-Cut-and-Price algorithm of the
terminal-pair-separator formulation could not solve the instances with more than 2300

nodes. Moreover, among the three algorithms, the Branch-and-Cut algorithm was the
fastest for solving the problem on 48% of the instances. Whereas, the Branch-and-
Cut-and-Price algorithm of the terminal-pair-separator formulation was the fastest on
only 39% of them.

4.6 Conclusion

In this chapter we have proposed three extended integer programming formulations
for the MTVSP. For each of the formulations, we have developed a Branch-and-Price
algorithm and presented extensive computational results. And for two of them, we
added three families of valid inequalities presented in Chapter 2, to develop Branch-
and-Cut-and-Price algorithms. For all the formulations, we have shown how to compute
the dual bound during the column generation phase and analyzed the complexity of the
pricing problem, the branching scheme and the strategy of the column generation. The
computational results have permitted to measure the importance of our approaches.

Chapter 5

The variants of the multi-terminal
vertex separator problem

Contents
5.1 The connected components separator problem 172

5.1.1 Formulation . 173

5.1.2 Polyhedral analysis . 175

5.2 The multi-terminal connected separator problem 180

5.2.1 Formulation . 182

5.2.2 Polyhedral analysis . 184

5.3 The multi-terminal k-separator problem 187

5.3.1 The multi-terminal k-separator problem, when k > |T | . . . 187

5.3.2 The multi-terminal k-separator problem, when k < |T | . . . 195

5.4 Conclusion . 198

In this chapter we discuss four variants of the MTVS problem. For each variant, we
show that the problem is NP-hard, then we give an integer programming formulation
for the problem and describe several valid inequalities.

In this chapter, we suppose that Hypotheses 2.1-2.5, given in Chapter 2, are satisfied.

172 The variants of the multi-terminal vertex separator problem

5.1 The connected components separator problem

In this section we discuss a variant of the MTVSP, called the connected components
separator problem (CCSP). Given a graph G = (V ∪ T,E) and a weight function
w : V → Z, the CCS problem consists in finding a subset of vertices S ⊆ V of
minimum weight such that G \ S has |T | connected components, each one contains
exactly one terminal. Set S is called a connected components separator.

Theorem 5.1 The CCSP is NP-hard.

Proof. This proof is based on a polynomial reduction from the vertex cover problem
(VCP). Given a graph H = (U,E ′), the VCP consists in finding a minimum cardinality
subset of vertices R ⊆ U such that each edge of E ′ is incident to at least one vertex of
R. The VCP is a well-known NP-hard problem [60].

Consider the vertex cover problem on a graph H = (U,E ′). Let G = (V1 ∪ V2 ∪ V3 ∪
T,E) be the graph obtained from H as follows

• Add three vertices t1, t2 and t3 in T .

• For each vertex u ∈ U , add

– three vertices vu1 in V1, vu2 in V2 and vu3 in V3,

– three edges t1vu1 , t2vu2 and t3vu3 in E,

– two edges vu1vu3 and vu2vu3 in E.

• For each edge uw ∈ E ′, add two edges vu1vw2 and vw1 vu2 in E.

5.1 173

Figure 5.1: Graph transformation from the graph H to the graph G.

Figure 5.1 illustrates the above graph transformation.

Let R be a vertex cover in H and S a separator in G. Let RS ⊆ U be the set of
vertices such that for all u ∈ RS, |S ∩ {vu1 , vu2 , vu3}| ≥ 2 and let SR ⊆ V1 ∪ V2 ∪ V3 be
the set of vertices defined as follows. For each vertex u ∈ U , if u ∈ R then we add
the two vertices vu1 , vu2 in SR, otherwise we add vu3 in SR. In Section 2.1 of Chapter
2, we showed that if R is a vertex cover in H of minimum size, then SR is a multi-
terminal vertex separator in G of minimum size. And, if S is a multi-terminal vertex
separator in G of minimum size, then RS is a vertex cover in H of minimum size. Since
each non-terminal vertex in G is connected to a terminal, any multi-terminal vertex
separator in G is a connected components separator. Consequently, since the vertex
cover is NP-hard, the connected components separator problem is also NP-hard.

5.1.1 Formulation

A free connected component W ⊆ V is a subset of vertices such that G[W] is connected
and W contains no terminal. For a vertex v ∈ V , a set Sv ⊂ V is called an isolating
separator of v, if the graph (V \ Sv, E) is not connected, and v belongs to a free
connected component. Let Sv be the set of all minimal isolating separators of v. An
isolating separator Sv is minimal if it contains no isolating separator of v.

174 The variants of the multi-terminal vertex separator problem

Consider the following system

x(Ptt′) ≥ 1, ∀Ptt′ ∈ Γ, (5.1)

x(Su) ≤ |Su| − 1 + x(u), ∀u ∈ V ,∀Su ∈ Su, (5.2)

x(v) ≤ 1, ∀v ∈ V, (5.3)

x(v) ≥ 0, ∀v ∈ V, (5.4)

x(v) integer. ∀v ∈ V (5.5)

where V = V \N(T) and Γ is the set of all terminal paths of G .(Recall that a terminal
path is a path between two terminals).

Inequalities (5.1) ensure that all terminal paths intersect the vertices of the solution.
Inequalities (5.2) guarantee that each component of G, after deleting the vertices of
the solution, contains a terminal.

Theorem 5.2 Every connected components separator satisfies inequalities (5.2).

Proof. Let us assume the contrary, that is there exists a connected components sep-
arator S, a vertex u ∈ V and an isolating separator Su ∈ Su such that

xS(Su) > |Su| − 1 + xS(u).

It follows that xS(u) = 0 and xS(Su) = |Su|. Therefore, u /∈ S and Su ⊆ S. Since
Su is an isolating set of u, it follows that u belongs to a free connected component of
G \ Su. As Su ⊆ S, then u belongs to a free connected component of G \ S. But this
contradicts the fact that S is a connected components separator.

From inequalities (5.1), all solutions of (5.1) − (5.5) are MTV separators. The fol-
lowing theorem shows that these MTV separators are also connected components sep-
arators.

Theorem 5.3 Every multi-terminal vertex separator of G satisfying inequalities (5.2)
is a connected components separator.

Proof. Suppose there exists a multi-terminal vertex separator S of G satisfying in-
equalities (5.2) such that S is not a connected components separator of G. It then
follows that there exists a vertex u that belongs to a free connected component of

5.1 175

G \ S. Thus S is an isolating separator of u. However, as xS(u) = 0, the following
inequality (5.2)

x(S) ≤ |S| − 1 + x(u),

is violated by xS, contradicting the fact that xS satisfies all inequalities (5.2).

From Theorems 5.2 and 5.3, we have the following corollary

Corollary 5.4 The connected components separator problem is equivalent to the fol-
lowing integer linear program

min{
∑
v∈V

w(v)x(v) | x satisfies (5.1)− (5.5)}.

5.1.2 Polyhedral analysis

Let P (G, T) be the convex hull of the solutions of (5.1)− (5.5), that is,

P (G, T) = conv{x ∈ {0, 1}V | x satisfies (5.1)− (5.2)}.

In this subsection, we will discuss P (G, T), we will give its dimension, and describe
necessary and sufficient conditions for inequalities (5.2) to be facet defining.

We first establish the dimension of P (G, T).

Theorem 5.5 P (G, T) is full dimensional.

Proof. We need to exhibit n + 1 connected components separators such that their
incidence vectors are affinely independent. Let S0 = V . Clearly, G \ S0 has k compo-
nents, each one contains one terminal. Thus S0 is a connected components separator
of G. Given a vertex v ∈ V , let P v be the shortest path (in terms of number of
edges) between v and T (the shortest path among all shortest paths between v and
each terminal of T). Let Sv = V \ P v.

Claim 1. Set Sv is a multi-terminal vertex separator of G.

176 The variants of the multi-terminal vertex separator problem

Proof. Suppose that Sv is not a multi-terminal vertex separator of G. It follows
that G \ Sv has a terminal path Ptt′ between t and t′, not intersecting Sv. From the
definition of Sv, all internal vertices of Ptt′ are included in P v. From Hypothesis 2.2
given in Chapter 2, each vertex of V is adjacent to at most one terminal. It follows
that P v has an internal vertex adjacent to a terminal, and this contradicts the fact
that P v is the shortest path between v and T . ut

Claim 2. Set Sv is a connected components separator of G.

Proof. From Claim 1 set Sv is a multi-terminal vertex separator of G. Clearly
G \ Sv has k − 1 components with exactly one terminal and one components with the
path P v. It follows that Sv is a connected components separator of G. ut

From Claim 2 for all v ∈ V , Sv is a connected components separator of G. This
constitutes a set of n + 1 connected components separators of G. Moreover, their
incidence vectors are clearly affinely independent.

Consider a graph G = (V ∪ T,E) and an isolating separator Su of vertex u in G.
A free dominating set D ⊆ Su associated with Su is a subset of vertices such that
there is edges between D and all free connected components of G \ Su, and an edge
between D and a connected component of G \ Su containing a terminal. Let rSu be
the size of the minimum free dominating set associated with Su. rSu is called the
power of Su. Let WSu be the set of all vertices belonging to free connected components
in G\Su. For all v ∈ V , letWv be the free connected component of G\Su containing v.

Consider a vertex u ∈ V and an isolating separator Su ⊆ V of u.

Lemma 5.6 If Su has a power greater than or equal to 2 than for all s ∈ Su, there
exists a free connected component W of G \ Su different from Wu such that s is not
adjacent either to W or to Wu.

Proof. Assume the contrary, there exists s ∈ Su such that for all free connected
componentW of G\Su, s is adjacent toWu and toW . Clearly {s} is a free dominating
set of Su. It follows that the power of Su is 1 which contradicts the fact that rSu ≥ 2.

5.1 177

Lemma 5.7 If rSu ≥ 2 then the following inequality

x(Su) ≤|Su| − 2 + x(u) + x(v)

is valid for P (G, T), where u and v ∈ V belong to two disjoint free connected compo-
nents of G \ Su.

Proof. Let us assume the contrary that there exists a connected components separa-
tor S of G and an isolating separator Su with rSu ≥ 2 such that

xS(Su) ≥|Su| − 1 + xS(u) + xS(v)

• If xS(Su) = |Su|, then Su ⊆ S and either u /∈ S or v /∈ S. Clearly G \ S has at
least one free connected component, contradicting the fact that S is a connected
components separator of G.

• If xS(Su) = |Su| − 1, then Su \ S = {s} and u, v /∈ S. Since rSu ≥ 2, by Lemma
5.6 s is not adjacent either to Wu or to Wv. Hence G \ Su has at least one free
connected component, contradicting the fact that S is a connected components
separator of G.

Theorem 5.8 Given a vertex u ∈ V and an isolating separator Su of u, inequality
(5.2) associated with Su and u defines a facet for P (G, T) if and only if

1- the power of Su is 1,

2- the isolating separator Su is minimal, and

3- no vertex of V \ Su is an isolating separator of u.

Proof.
(⇒)

1- If the power of Su is at least 2, then G \ Su has at least two free connected com-
ponents, say Wu and Ww containing vertices u and w, respectively. By Lemma 5.7,
the following inequality

x(Su) ≤|Su| − 2 + x(u) + x(w)

is valid for P (G, T). Inequality (5.2) associated with Su and vertex u can then be
obtained by summing the above inequality and x(w) ≤ 1. Hence (5.2) cannot define
a facet.

178 The variants of the multi-terminal vertex separator problem

2- If Su is not minimal, then there exists a vertex s ∈ Su such that S ′ = Su \ {s} is
an isolating separator of u. Thus, inequality

x(S ′) ≤|S ′| − 1 + x(u)

is valid for P (G, T). Inequality (5.2) associated with Su and vertex u can be obtained
from the above inequality and x(s) ≤ 1.

3- If there exists a vertex w ∈ V \ Su that is an isolating separator of u, then we have
the following inequality (5.2) associated with w

x(w) ≤x(u).

Moreover, we notice that Su must be an isolating separator of w. Thus, we have
the following inequality (5.2) associated with Su and vertex w,

x(Su) ≤|Su| − 1 + x(w).

Inequality (5.2) associated with Su and vertex u can be obtained by summing the
two above inequalities.

(⇐)

Denote by ax ≥ α inequality (5.2) associated with Su and vertex u. Let bx ≥ β be an
inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆
{x ∈ P (G, T) : bx = β}. We will show that there exists ρ such that b = ρa.

For v ∈ V \ (Su ∪WSu), let Pv be the shortest path (in terms of number of edges) in
G \ (Su ∪WSu) between v and a terminal in T . This path exists, otherwise v ∈ WSu .
Let SPv = V \ Pv. Since Pv is the shortest path and no vertex is adjacent to two
terminals, it follows that SPv is a connected components separator of G. Moreover,
axS

Pv
= α. Hence, bxSPv = bxS

Pw
= bxV for every w ∈ Pv. Therefore,

bw = 0, ∀w ∈ Pv,

Since v is arbitrary chosen in V \ (Su ∪WSu), if follows that

bw = 0 ∀w ∈ V \ (Su ∪WSu),

Let D be the minimum free dominating set associated with Su. From Condition 1,
D = {s}. Let P s

v be the shortest path (in terms of number of edges) from v ∈ WSu

and s, in G[Wv ∪{s}]. For w ∈ Su, let P̃w be the path between w ∈ Su and a terminal

5.1 179

in G \ (WSu ∪ (Su \ {w})). From Condition 2, this path exists. For all v ∈WSu \Wu,
let Sv = V \ (P s

v ∪ P s
u ∪ P̃ s) and Su = V \ (P s

u ∪ P̃ s). It is clear that sets Sv and Su
are two separators of G. Moreover, axSv = axSu = α. Hence, bxSv = bxSu for every
v ∈WSu \Wu. Consequently,

bv = 0 ∀v ∈WSu \Wu.

For v ∈ Wu \ {u}, let P s

v be the shortest path between v and s containing u in
G[Wu ∪ {s}]. By Condition 3, such a path exists. Let S1 = V \ (P

s

v ∪ P̃ s) and
S2 = V \ (P s

u ∪ P̃ s). Sets S1 and S2 are two connected components separators of G.
Moreover, axS1

= axS
2

= α. Hence, bxS1
= bxS

2 for every v ∈ Wu \ {u}. Therefore,

bv = 0 ∀v ∈ Wu \ {u}.

For v ∈ Su, let S ′v = V \ (P̃ v ∪Wu). Set S ′v is a connected components separator of
G. Moreover, axS′v = α. Hence, bxS′v = bxV , yielding

bv = −bu = ρ ∀v ∈ Su,

which ends the proof.

Theorem 5.9 Inequalities (5.2) can be separated in polynomial time.

Proof.
Let y ∈ {0, 1}V such that yv = 1− x(v) for all v ∈ V . Inequalities (5.2) are equivalent
to ∑

v∈S

yv ≥ yu S ∈ Su,∀u ∈ V . (5.6)

Consider a vertex v ∈ V and let x∗ ∈ [0, 1]V . Let y∗ ∈ [0, 1]V such that y∗u = 1 − x∗u
for all u ∈ V . Let Gv be the graph obtained from G by merging all terminals into
a super terminal ts and considering v as a terminal. Now, we look for a minimum
multi-terminal vertex separator Sv between ts and v in Gv w.r.t y∗. Note that this can
be done in polynomial time. If inequality (5.6) associated with Sv is violated by y∗,
then we add the inequality. By iterating over all vertices in V , the separation of the
isolating separator inequality can be performed in polynomial time.

180 The variants of the multi-terminal vertex separator problem

5.2 The multi-terminal connected separator problem

In this section we discuss a variant of the MTVSP, called the multi-terminal connected
separator problem (MTCSP). Given a graph G = (V ∪ T,E) and a weight function
ω : V → Z, the MTCS problem consists in finding a subset of vertices S ⊆ V of
minimum weight such that G\S has |T | components (not necessarily connected), each
one contains exactly one terminal and G[S] is connected. Set S is called a connected
separator.

Theorem 5.10 The MTCSP is NP-hard.

Proof. This proof is based on a polynomial reduction from the node-weighted steiner
tree problem, which is known to be NP-hard [49]. This problem consists, given a graph
G = (V ∪ T,E) and a weight function ω : V → Z, in finding a subset of vertices
S ⊆ (V ∪ T) of a minimum weight such that T ⊆ S and G[S] is connected. S is called
a node-weighted steiner tree.

Consider a graph H = (V ′ ∪ T ′, E ′) and let G = (V ∪ T,E) be the graph obtained
from H as follows

• For each terminal u ∈ V ′, add a vertex vu to V of weight w(u).

• For each terminal t ∈ T ′, add a vertex vt to V of weight 0.

• E = E ′.

• For t ∈ T ′, add two terminals t1 and t2 to T adjacent to vt.

Figure 5.2 illustrates the above graph transformation, such that the graph Figure 5.2.(a)
represents the graph H and Figure 5.2.(b) the graph G.

5.2 181

Figure 5.2: Graph transformation

Claim 1. Any multi-terminal connected separator of G is a node-weighted steiner tree
in H.

Proof. We note that each vertex in G associated with a terminal of H is adja-
cent to two terminals. It follows that these vertices belong to all connected separators
of G. Consider a connected separator S ⊆ V of G and let S ′ ⊆ (V ′ ∪ T ′) be the set of
the vertices in H associated with the vertices of S. Set S ′ contains all terminals of T ′.
Moreover, since G[S] is connected, it follows that H[S ′] is also connected and contains
all terminals of T ′. Consequently, S ′ is a node-weighted steiner tree in H. ut

Claim 2. Any node-weighted steiner tree in H is a connected separator of G.

Proof. Let S ′ ⊆ (V ′ ∪ T ′) be a node-weighted steiner tree in H. Let S ⊆ V be
the set of the vertices in G associated with the vertices of S ′. Since H[S ′] is con-
nected, it follows that G[S] is connected. Moreover, since S ′ contains all terminals of
T ′, N(T) ⊆ S. Consequently, S is a connected separator of G. ut

By Claims 1 and 2 looking for a node-weighted steiner tree of minimum weight in
H is equivalent to looking for a connected separator of minimum weight of G. Since
the node-weighted steiner tree is NP-hard, it follows that the multi-terminal connected
separator problem is also NP-hard.

Consider a graph G = (V ∪ T,E). For two vertices u, v ∈ V , a subset Suv ⊆ V is

182 The variants of the multi-terminal vertex separator problem

called a disconnecting subset of u and v if there is no path between u and v in G \ Suv .
For two non-adjacent vertices u, v ∈ V , let Suv be the set of all disconnecting subsets of
u and v.

In the rest of this section we consider the following Hypotheses

5.5.1- For all v ∈ V ∪ T , each component of G \ {v} contains a terminal. Otherwise,
the component without terminals can be deleted from the graph.

5.5.2- Graph (V,E) (without terminals) is connected.

5.5.3- For all vertex cut v ∈ V , G \ {v} has exactly two connected components. Oth-
erwise, by Hypothesis 5.5.1, v must belong to the connected separator.

5.5.4- For all vertex cut v ∈ V of G, at least one connected component of G \ {v}, has
at most one terminal. Otherwise, by Hypotheses 5.5.1 and 5.5.3, v must belong
to the connected separator.

5.2.1 Formulation

In what follows we give a formulation for the MTCS problem. For v ∈ V , let x(v) be
a variable which takes 1 if v belongs to the connected separator and 0 if not.

The multi-terminal connected separator problem is equivalent to the following integer
linear program

min
∑
v∈V

ω(v)x(v)

x(Ptt′) ≥ 1 ∀Ptt′ ∈ Γ, (5.7)

x(S) ≥ x(u) + x(v)− 1 ∀S ∈ Suv , uv /∈ E, (5.8)

x(v) ≤ 1 ∀v ∈ V, (5.9)

x(v) ≥ 0 ∀v ∈ V, (5.10)

x(v) integer ∀v ∈ V (5.11)

where Γ is the set of all terminal paths of G (a path between two terminals).

Inequalities (5.7) ensure that all terminal paths are disconnected. Inequalities (5.8)
guarantee that the separator is connected.

5.2 183

Theorem 5.11 Inequalities (5.8) can be separated in polynomial time.

Proof. Consider a graph G = (V ∪ T,E), vector x∗ ∈ [0, 1]V and two non-adjacent
vertices u, v ∈ V . Let αuv = x∗(u) + x∗(v)− 1. Inequalities (5.8) associated with u and
v can then be written as

x∗(S) ≥ αuv ∀S ∈ Suv .

Let Gv
u = (V ′ ∪ T ′, E ′) be the graph obtained from G as follows.

• For all w ∈ V \ {u, v}, add a vertex w′ to V ′ of weight ω(a).

• For all w ∈ T , add a vertex w′ to V ′ of weight |V |.

• For the two vertices u and v, add two terminals u′ and v′ to T ′.

• For all edge wz ∈ E, add an edge w′z′ to E ′.

Figure 5.3: Graph transformation (triangles represent the terminals)

Figure 5.3 illustrates the above graph transformation. Thus, for u and v, separating
inequalities (5.8) is equivalent to finding a minimum multi-terminal vertex separator in
the graph Gv

u, where u and v are the terminals. Since Gv
u has only two terminals, solving

the MTVS problem can be done in a polynomial time. By iterating over each pair of
vertices u and v of V , we obtain a polynomial algorithm for separating inequalities
(5.8).

184 The variants of the multi-terminal vertex separator problem

5.2.2 Polyhedral analysis

Let P (G, T) be the convex hull of all solutions of the above integer program, that is,

P (G, T) = conv{x ∈ {0, 1}V | x satisfies (5.7)− (5.8)}.

In this subsection, we will discuss P (G, T), we will give its dimension and describe
necessary and sufficient conditions for inequalities (5.8) to be facet defining.

We first establish the dimension of P (G, T).

Theorem 5.12 P (G, T) is full dimensional.

Proof. We need to exhibit n+1 connected separators such that their incidence vectors
are affinely independent. Let S0 = V . From Hypothesis 5.5.2, S0 is a connected
separator of G. For each v ∈ V , let {W v

1 , . . . ,W
v
q } be the set of all components

of G \ {v}. From Hypothesis 5.5.1, each component contains at least one terminal.
Moreover, from Hypotheses 5.5.3 and 5.5.4, q ≤ 2, and at most one component has two
terminals. If q = 1, then let Sv = V \ {v}. If q = 2, then we suppose that W v

1 contains
exactly one terminal and let Sv = V \ ({v}∪W v

1). Since no vertex of V is connected to
two terminals, set Sv is a connected separator of G. The sets S0 and Sv for all v ∈ V
constitute a set of n + 1 connected separators of G. Moreover, their incidence vectors
are clearly affinely independent.

Consider a graph G = (V ∪ T,E), two non-adjacent vertices u, v ∈ V and a discon-
necting subset Suv . Let Wv ⊂ V be the component containing v ∈ V in G \ Suv .

Theorem 5.13 Inequality (5.8) associated with Suv defines a facet for P (G, T) if and
only if

1- Suv does not contain a terminal path (internal vertices of the path between two ter-
minals).

2- Suv is minimal, i.e., for all w ∈ Suv , (Suv \ {w}) is not a disconnecting subset of u
and v.

5.2 185

3- No vertex of V \ (Suv ∪ {u, v}) is connected to a terminal t ∈ T and to two vertices
of Suv , such that these two vertices are connected to the same terminal t′ ∈ T \ {t}.

4- For every two connected components Wu and Wv of G \ Suv , |T (V \Wu)| ≤ 1 and
|T (V \Wv)| ≤ 1. Which implies that |T (Wu)| = 1 and |T (Wv)| = 1.

Proof.
(⇒)

1- If Suv contains a terminal path, then inequality (5.8) associated with Suv is dominated
by the terminal path inequality (5.7) and hence cannot define a facet.

2- If Suv is not minimal, then there exists a vertex w ∈ Suv such that (Suv \ {w}) is a
disconnecting subset of u and v. Thus,

x(Suv \ {w}) ≥ x(u) + x(v)− 1,

is valid for P (G, T). Inequality (5.8), associated with Suv , can be obtained by sum-
ming the above inequality and x(w) ≥ 0.

3- If there exists a vertex z ∈ V \ (Suv ∪ {u, v}) that is adjacent to a terminal t ∈ T
and to two vertices a, b ∈ Suv , such that these two vertices are also adjacent to the
same terminal t′ ∈ T \ {t}, then the following inequality

x(Suv) ≥ x(u) + x(v)− x(z) (5.12)

is valid for P (G, T). Indeed, if x(z) = 1, then the inequality is nothing but (5.8).
If x(z) = 0, it follows that z does not belong to the connected separator. Since
(t, z, a, t′) and (t, z, b, t′) are two terminal paths, it follows from the terminal path
inequalities that x(a) = x(b) = 1. Thus, (5.12) is valid for P (G, T). Inequality (5.8)
associated with Suv can be obtained by summing (5.12) greater with 1 ≥ x(z).

4- Suppose that |T (Wv)| ≥ 2. Thus for all connected separator of G, at least one
vertex of Wv must belong to it. Since Suv is a disconnected subset of Wu and Wv, it
follows that if u belongs to the connected separator, then at least one vertex of Suv
also belongs to the connected separator. Thus, the following inequality

x(Suv) ≥ x(u)

is valid for P (G, T). Inequality (5.8) associated with Suv can be obtained by summing
the above inequality and 1 ≥ x(v).

186 The variants of the multi-terminal vertex separator problem

(⇐)

Assume that all conditions of the theorem are satisfied. From Condition 4, graph G

has only two terminals, one in Wu and the other in Wv.

Denote by ax ≥ α inequality (5.8). Let bx ≥ β be an inequality that defines a facet
of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will
show that there exists ρ such that b = ρa.

For all w ∈ Suv , let Sw = Wu∪Wv∪{w}. From Condition 2, w is adjacent to a vertex
of Wu and to a vertex of Wv. So, G[Sw] is connected. From Condition 1, Suv does
not contain any terminal path. Thus, Sw is a connected separator of G. Moreover,
axSw = α. Hence, bxSw = bxSw′ for every w,w′ ∈ Suv . Therefore,

b(w) = ρ for all w ∈ Suv and some scalar ρ ∈ R.

From Condition 3, each vertex ofWu\{u} adjacent to a terminal ofWu, is adjacent to
at most one vertex of Suv that is adjacent to a terminal ofWv. Thus, for all z ∈ Wu\{u},
let Szw = Sw \ {z}, such that if z is connected to the terminal of Wu, w is the vertex
of Suv that is adjacent to z and to the terminal of Wv, if it exists. Otherwise, w is any
vertex from Suv . Since Sw is a connected separator, by Condition 3 it follows that Szw
is also a connected separator of G. Moreover, axSzw = α. Hence, bxSw = bxS

z
w for every

z ∈ Wu \ {u}. Therefore,

b(z) = 0 for all z ∈ Wu \ {u}.

Along the same line, we can also show that

b(z) = 0 for all z ∈ Wv \ {v}.

Now consider a component W of G \Suv , different from Wu and Wv. From Condition
4, W has no terminals. From Hypothesis 2.3, each vertex of W belongs to a terminal
path. Thus, there must exist at least two vertices w1, w2 ∈ Suv adjacent to two different
vertices z1, z2 ∈ W . Assume that z1 (z2) is adjacent to w1 (w2). For z ∈ W \ {z1}, let
Sz1 = (Sw1 ∪W) and Sz1 = (Sw1 ∪W) \ {z}. Since Sw1 is a connected separator of G,
it follows that Sz1 and Sz1 are also two connected separators of G. Moreover, axSz1 = α.
Hence, bxSz1 = bxS

z
1 for every z ∈ W \ {z1}. Therefore,

b(z) = 0 for all z ∈ W \ {z1}.

Along the same line we can also prove that

b(z1) = 0.

5.3 187

Let S ′u = Wu. From Condition 3, it follows that S ′u is a connected separator of G.
Moreover, axS′u = α. Hence bxS′u = bxSw , and consequently,

b(v) = −b(w) = −ρ.

By symmetry, it follows that

b(u) = −b(w) = −ρ,

This completes the proof.

5.3 The multi-terminal k-separator problem

In this section we discuss a variant of the MTVSP, called the multi-terminal k-separator
problem (MTkSP). Given a graph G = (V ∪ T,E), an integer k and a weight function
ω : V → Z, the problem consists in finding a subset of vertices S ⊆ V of minimum
weight such that graph G \ S has k disjoint subsets with

• at most one terminal, if k > |T |,

• exactly one terminal, if k = |T |,

• at least one terminal, if k < |T |.

Set S is called k-separator. We notice that if k = |T |, the multi-terminal k-separator
problem is nothing but the multi-terminal vertex separator problem. In the two fol-
lowing subsections, we will discuss the two remaining cases of the multi-terminal k-
separator problem, namely when k > |T | and k < |T |.

5.3.1 The multi-terminal k-separator problem, when k > |T |

In this section we discuss the multi-terminal k-separator problem when k > |T |. We
first define some notation used in the rest of the subsection. A vertex v ∈ V is called a
possible terminal if there exists an independent subset T ′ ⊂ V ∪ T of size k such that
T ⊆ T ′ and v ∈ T ′. Clearly, each vertex of N(T) cannot be a possible terminal. The
set of internal vertices of a path between a terminal of T and a possible terminal a ∈ V
is called a one-terminal path and denoted by Pa. The set of internal vertices of a path

188 The variants of the multi-terminal vertex separator problem

between two possible terminals a, b ∈ V is called a possible-terminal path and denoted
by Pab.

Consider the following Hypotheses

5.1.1- For all v ∈ V , at least one of the following items is satisfied

a- v is a possible terminal.

b- There exists a minimal terminal path containing v.

c- There exists a minimal one-terminal path, containing v.

d- If k − |T | ≥ 2, there is a minimal possible-terminal path containing v.

Otherwise, v cannot belong to a minimal k-separator. So we can delete it.

5.2.2- There exists an independent set of size k containing T , otherwise there is no
solution for the problem.

Theorem 5.14 The multi-terminal k-separator problem, when k > |T |, is NP-hard.

Proof. We will show that the multi-terminal k-separator problem, when k = |T |+ 1

is NP-hard using a polynomial reduction from the multi-terminal vertex separator
problem. Given a graph G = (V ∪T,E), let G′ be a graph obtained from G by adding
one vertex w of degree 0, having a weight |V |max

v∈V
{ω(v)}. Then we have the following

claim.

Claim 1. A multi-terminal vertex separator in G is minimum if and only if it is a
k-separator of minimum weight in G′.

Proof. (⇒)

Given a MTV separator S in G, let W = {W1, . . . ,Wk} be the set of components of
G \ S. Let W′ = W ∪ {w}. It can be easily seen that S is a k-separator of G′ and it is
optimal.
(⇐)

Since the weight of w is |V |max
v∈V
{ω(v)}, w cannot belong to the k-separator of mini-

mum weight in G′. Let S be the k-separator of minimum weight in G′. It can easily
seen that it is a multi-terminal vertex separator in G. ut

Since the multi-terminal vertex separator problem is NP-hard, it follows, by Claim
1, that the multi-terminal k-separator problem so is.

5.3 189

5.3.1.1 Formulation

We will introduce here a formulation for the MTkS problem when k > |T |. The
following ILP formulation permits to select an independent subset T ′ ⊆ V ∪T of size k
containing T , such that the minimum vertex separator S intersecting all paths between
each pair of vertices in T ′ has a minimum weight. The vertices of T ′ \ T are called
artificial terminals. We need two vectors of variables x ∈ {0, 1}V and y ∈ {0, 1}V such
that for all v ∈ V , x(v) = 1 if vertex v belongs to the k-separator, and 0 otherwise and
y(v) = 1 if vertex v is an artificial terminal, and 0 otherwise.

The multi-terminal k-separator is equivalent to the following integer linear program

min
∑
v∈V

w(v)x(v)

y(V) = k − |T | (5.13)

y(V) = 0 ∀v ∈ N(T), (5.14)

y(a) + y(b) ≤ 1 ∀{a, b} ⊆ V \N(T),∀ab ∈ E, (5.15)

y(a) + x(a) ≤ 1 ∀a ∈ V \N(T), (5.16)

x(Pab) ≥ y(a) + y(b)− 1 ∀ possible-terminal path Pab, (5.17)

x(Pa) ≥ y(a) ∀ one-terminal path Pa, (5.18)

x(P) ≥ 1 ∀ terminal path P, (5.19)

x(v) ∈ {0, 1} ∀v ∈ V, (5.20)

y(v) ∈ {0, 1} ∀v ∈ V \N(T). (5.21)

Inequalities (5.13) and (5.14) ensure that exactly k − |T | possible vertices are selected
as artificial terminals. Inequalities (5.15)-(5.16) guarantee that two artificial terminals
are not adjacent and no artificial terminal belongs to the k-separator. Inequalities
(5.17)-(5.19) ensure that all paths between each pair of vertices in T ′ intersect the
multi-terminal k-separator.

Remark 5.15 When k = |T |, inequalities (5.17) and (5.18) are redundant.

Remark 5.16 When |T | = 0, inequalities (5.18) and (5.19) do not exist.

Theorem 5.17 Inequalities (5.17) can be separated in polynomial time.

190 The variants of the multi-terminal vertex separator problem

Proof. Consider a solution (x, y) such that x ∈ [0, 1]V and y ∈ [0, 1]V . The separation
problem consists in finding a possible-terminal path Pab such that x(Pab) < y(a)+y(b)−
1. This is equivalent to find, for every non-adjacent vertices a, b ∈ V \N(T), a shortest
path between a and b in G w.r.t x.

Theorem 5.18 Inequalities (5.18) and (5.19) can be separated in polynomial time.

Proof. The separation problem is reduced to a shortest path problem.

5.3.1.2 Valid inequalities

Consider a graph G = (V ∪ T,E). Let P (G, T) be the convex hull of all solutions
of the integer linear system (5.13) − (5.21). In what follows, we present some valid
inequalities for P (G, T).

5.3.1.2.1 Path inequalities

Theorem 5.19 Given a terminal path Ptt′ of G between two terminals t, t′ ∈ T , the
following inequality

x(Ptt′) ≥ 1 + y(Ptt′) (5.22)

is valid for P (G, T).

Proof. Consider a solution (x, y). We distinguish the following cases.

• If y(Ptt′) = 0, then inequality (5.22) is valid by (5.19).

• If y(Ptt′) = 1, then let u ∈ Ptt′ such that y(u) = 1. Thus, u is an artificial
terminal. Let Pt (resp. Pt′) be the path in Ptt′ between u and t (resp. t′). Hence
at least one vertex of Pt (resp. Pt′) belongs to the k-separator. It follows that
inequality (5.22) is valid.

• If y(Ptt′) ≥ 2, then there exist y(Ptt′) − 1 internal vertices of Ptt′ that are artifi-
cial terminals. It follows that Ptt′ contains exactly two one-terminal paths and
y(Ptt′)− 1 possible-terminal paths, with no internal vertex in common. Each of
these paths must intersect the k-separator. Thus, one should have y(Ptt′) + 1

vertices from Ptt′ in the k-separator.

5.3 191

Theorem 5.20 Inequalities (5.22) can be separated in polynomial time.

Proof. Consider a solution (x, y) such that x ∈ [0, 1]V and y ∈ [0, 1]V . Let z ∈ [0, 1]V

be a vector such that for all v ∈ V \T , z(v) = x(v)−y(v). For all t, t′ ∈ T , consider the
shortest path between t and t′ in G w.r.t z. And consider the path having the minimum
length among these paths. If these length is less than 1, then the corresponding path
induces an inequality of type (5.22) violated by (x, y). As the shortest path problem
is polynomial, the separation of (5.22) is polynomial.

5.3.1.2.2 Star tree inequalities

Let H = (V (H) ∪ T (H), E(H)) be a star tree defined in Chapter 2.

Theorem 5.21 If H is a subgraph of G, the following inequality

x(V (H) \ {vr}) + (q − 1)x(vr) ≥ q − 1 + y(V (H)) (5.23)

is valid for P (G, T).

Proof. Given a solution (x, y). If y(V (H)) = 0, then (x, y) satisfies inequality (5.23).
Indeed, x satisfies the star tree inequality (2.10).

Let us assume that y(V (H)) ≥ 1 and let G′ = (V ′ ∪ T ′, E ′) be the graph obtained
from G, by replacing each vertex v ∈ V with y(v) = 1 by a terminal. Clearly, if x
satisfy the following inequality

x(V ′(H) \ {vr}) + (q′ − 1)x(vr) ≥ q′ − 1 (5.24)

then (x, y) satisfies inequality (5.23), where q′ = q + y(V (H)).

• If y(vr) = 0, then G′ has one star tree of q terminals, and y(V (H)) terminal paths
with no internal vertex in common. Thus from the star tree inequalities (2.10)
and the terminal path inequalities (2.6), x satisfies inequality (5.24).

• If y(vr) = 1, it follows that G′ has q′ terminal paths, with no internal vertex
in common. Consequently, from the terminal path (2.6), x satisfies inequality
(5.24).

192 The variants of the multi-terminal vertex separator problem

It follows that (x, y) satisfies inequality (5.23). Since (x, y) is arbitrarily chosen, it
follows that inequality (5.23) is valid for P (G, T).

Theorem 5.22 Inequalities (5.23) can be separated in polynomial time.

Proof. Consider a solution (x, y) such that x ∈ [0, 1]V and y ∈ [0, 1]V . Let z ∈ [0, 1]V

be a vector such that for all v ∈ V ∪ {vr}, z(v) = x(v) − y(v) and z(vr) = x(vr) −
1
q−1

y(vr). Thus, separating inequalities (5.23) is equivalent to separating the following
inequalities

z(V (H) \ {vr}) + (q − 1)z(vr) ≥ q − 1.

The algorithm to separate the above inequalities is exactly the one of separating the
star tree inequality (2.10), that can be done in a polynomial time (Theorem 2.27 in
Chapter 2).

5.3.1.2.3 Extended terminal cycle inequalities

Let J = (V (J)∪T (J), E(J)) be an extended terminal cycle defined in Chapter 2, such
that each vertex of the cycle is of degree 3.

Theorem 5.23 If J is a subgraph of G, the following inequality

x(V (J)) ≥ dq
2
e+ y(V (J)) (5.25)

is valid for P (G, T).

Proof. The proof is by induction on the value of y(V (J)). It is clear that if y(V (J)) =

0, by Theorem 2.22, inequality (5.25) is valid for P (G, T) . We assume that inequality
(5.25) is valid for any value of y(V (J)) < s, and we prove that the inequality is also
valid for y(V (J)) = s. Consider a feasible solution (x∗, y∗) such that y∗(V (J)) = s. Let
(x, y) be a solution obtained from (x∗, y∗) by setting y(v) = 0 for a vertex v ∈ V (J)

such that y∗(v) = 1. Solution (x, y) remains feasible. Since J is a terminal cycle, there
must exist a path Pv between v and a terminal or an artificial terminal u, such that all
the internal vertices are of degree 2 and y∗(Pv \ {u, v}) = 0. Clearly, x∗(Pv) ≥ 1. Let
(x′, y′) be a new vector obtained from (x, y) by setting x′(Pv) = 0. Solution (x′, y′) is
also feasible. Thus by the induction hypothesis,

x′(V (J)) ≥ dq
2
e+ y′(V (J)).

5.3 193

Since x(V (J)) ≥ x′(V (J)) + 1, it follows that

x(V (J)) ≥ x′(V (J)) + 1 ≥ dq
2
e+ y′(V (J)) + 1.

As y(V (J)) = y′(V (J) \N(T (J))) = y∗(V (J))− 1 and x = x∗, then

x∗(V (J)) ≥ dq
2
e+ y∗(V (J)).

Which ends the proof of the theorem.

5.3.1.2.4 Clique inequalities

Theorem 5.24 For all clique K subgraph of G, the following inequality

y(K) ≤ 1 (5.26)

is valid for P (G, T).

Proof. Since the artificial terminals cannot be adjacent, it follows that in a clique
only one vertex can be an artificial terminal.

5.3.1.2.5 Clique star inequalities

Let Q = (V (Q) ∪ T (Q), E(Q)) be a clique star defined in Chapter 2.

Theorem 5.25 If Q is subgraph of G, the following inequality

x(V (Q)) ≥ q − 1 + y(V (Q)) (5.27)

is valid for P (G, T).

Proof. Similar to the proof of Theorem 5.21.

194 The variants of the multi-terminal vertex separator problem

5.3.1.2.6 Terminal tree inequalities

Let R = (V (R) ∪ T (R), E(R)) be a terminal tree defined in Chapter 2.

Theorem 5.26 If R is a subgraph of G, the following inequality∑
v∈V (R)

(dR(v)− 1)x(v) ≥ q − 1 + y(V (R)) (5.28)

is valid for P (G, T).

Proof. The proof is by induction on q. If q ≤ 3, inequality (5.28) is nothing but a star
tree inequality (5.23) associated with R, and then it is valid. Let us suppose that q ≥ 3,
and that for each terminal tree with less than q−1 terminals, the associated inequality
(5.28) is valid for P (G, T). Since q ≥ 3, there must exist a vertex u belonging to two
leaf branches Pt and Pt′ . Let us consider the terminal tree R1 (resp. R2) obtained from
R by removing the vertices of Pt \ {u} (resp. Pt′ \ {u}). Thus, R1 and R2 have each
one q− 1 leaves and hence q− 1 terminals. By the induction Hypothesis, the terminal
tree inequalities (5.28) associated with R1 and R2∑

v∈V (R)\(Pt∪Pt′)

(dR(v)− 1)x(v) +
∑

v∈Pt′\{u}

(dR(v)− 1)x(v) + (dR(u)− 2)x(u) ≥

q − 2 + y(V (R) \ (Pt \ {u})),

∑
v∈V (R)\(Pt∪Pt′)

(dR(v)− 1)x(v) +
∑

v∈Pt\{u}

(dR(v)− 1)x(v) + (dR(u)− 2)x(u) ≥

q − 2 + y(V (R) \ (Pt′ \ {u})),

are valid for P (G, T). By summing these inequalities together with the inequality
x(Pt ∪Pt′) ≥ 1 + y(Pt ∪Pt′) induced by the terminal path Pt ∪Pt′ , inequality x(u) ≥ 0

and inequality y(u) ≥ 0, we obtain the inequality∑
v∈V (R)\(Pt∪Pt′)

2(dR(v)− 1)x(v) +
∑

v∈Pt∪Pt′

(2(dR(v)− 1))x(v) ≥

2q − 3 + 2y(V (R)).

By dividing by 2 and rounding up the right hand side, we obtain (5.28).

5.3 195

5.3.1.2.7 Odd cycle inequalities

Theorem 5.27 For an odd cycle C ⊆ V ∪ T , the following inequality

y(C) ≤ b|C|
2
c − |C ∩ T | (5.29)

is valid for P (G, T).

Proof. Clearly, the sum of the number of artificial terminals and the number of
terminals in C, should be less than or equal to b |C|

2
c.

5.3.2 The multi-terminal k-separator problem, when k < |T |

In this section we discuss the multi-terminal k-separator problem when k < |T |.

Theorem 5.28 The multi-terminal k-separator problem, when k < |T |, is NP-hard.

Proof. Using a polynomial reduction from the MTVSP, the proof is similar to the
one of Theorem 5.14.

5.3.2.1 Formulation

The following ILP formulation permits to identify k subsets of terminals and then to
find the k-separator intersecting all paths between these subsets. For this formulation
we need two vectors of variables x ∈ {0, 1}V and y ∈ {0, 1}T×K such that for all v ∈ V ,
x(v) is equal to 1 if vertex v belongs to the k-separator, and 0 otherwise, and for all
t ∈ T , yti is equal to 1 if terminal t belongs to subset Vi, and 0 otherwise.

The multi-terminal k-separator problem, when k < |T | is equivalent to the following
integer linear program

196 The variants of the multi-terminal vertex separator problem

min
∑
v∈V

w(v)x(v)∑
t∈T

yti ≥ 1, ∀i ∈ {1, . . . , k}, (5.30)∑
i∈{1,...,k}

yti = 1, ∀t ∈ T, (5.31)

x(Ptt′) ≥ yti +
∑

j∈{1,...,k}\{i}

yt′j − 1, ∀Ptt′ , ∀i ∈ {1, . . . , k}, (5.32)

x(v) ∈ {0, 1}, ∀v ∈ V, (5.33)

yti ∈ {0, 1} ∀t ∈ T, i ∈ {1, . . . , k}. (5.34)

Inequalities (5.30) ensure that each subset contains at least one terminal. Inequalities
(5.31) guarantee that each terminal belongs to exactly one subset. Inequalities (5.32)
disconnect each pair of terminals that belong to different subsets.

5.3.2.2 Valid inequalities

Let P (G, T) be the convex hull of all solutions of (5.30)-(5.34). In what follows, we
present some valid inequalities for P (G, T).

5.3.2.2.1 Star tree inequalities

Theorem 5.29 For a star tree H subgraph of G = (V ∪ T,E), with a root vertex
vr ∈ V and q terminals, the following inequality

x(V (H) \ {vr}) + (k − 1− (|T | − q))x(vr) ≥ k − 1− (|T | − q) (5.35)

is valid for P (G, T)

Proof.

5.3 197

Figure 5.4: Two examples of solutions, when |T | = 7, |T | = 6 and k = 4

It is clear that each k-separator of G containing vr satisfies inequality (5.35). In
what follows we show that all k-separators of G not containing vr satisfy also inequality
(5.35). Assume that inequality 5.35 is not valid for P (G, T). It follows that there exists
a k-separator S ⊂ V \ {vr} of G such that

xS(V (H) \ {vr}) + (k − 1− (|T | − q))xS(vr) < k − 1− (|T | − q),

Since xS(vr) = 0, it follows that

xS(V (H) \ {vr}) ≤ k − 2− (|T | − q).

Hence |S| ≤ k − 2 − (|T | − q). It is easy to see that deleting p ∈ N of V (H) \ {vr}
from H, induces a graph with at most p + 1 components with at least one terminal.
Thus H \ S has at most (k− 2− (|T | − q)) + 1 components with at least one terminal.
Since the number of terminals in T \ T (H) is |T | − q, it follows that G \ S has at most
(k − 1 − (|T | − q)) + |T | − q = k − 1 components with at least one terminal, which
contradicts the fact that S is a k-separator.

5.3.2.2.2 Clique star inequalities

Theorem 5.30 For a clique star Q subgraph of G, the following inequality

x(V (Q)) ≥ k − 1− (|T | − q) (5.36)

is valid for P (G, T).

Proof. Similar to the proof of Theorem 5.29.

198 The variants of the multi-terminal vertex separator problem

5.3.2.2.3 Terminal cycle inequalities

Theorem 5.31 For a terminal cycle J subgraph of G, the following inequality

x(J) ≥ dk + q − |T | − 1

2
e (5.37)

is valid for P (G, T).

Proof. Similar to the proof of Theorem 5.29.

5.4 Conclusion

In this chapter we have considered four variants of the multi-terminal vertex separator
problem. We have shown that each problem is NP-hard, and for each one, we have
proposed an integer programming formulation. For the connected components sepa-
rator and the multi-terminal connected separator problems, we have discussed some
facet defining inequalities and for the multi-terminal vertex k-separator problems, we
have adapted several inequalities introduced in Chapter 2 and Section 2.3 and proved
their validity for the associated polytopes.

Conclusion

In this dissertation, we have studied the multi-terminal vertex separator problem within
a polyhedral context. In the first part of the thesis we have proposed two integer
programming formulations for the problem, investigated the basic properties of the
associated polytope, and derived new classes of valid inequalities. Moreover, we have
described necessary and sufficient conditions for these inequalities to define facets.
The have thereafter been used to devise a Branch-and-Cut algorithm for the MTVS
problem. This has been implemented to solve DIMACS and random instances. The
experiment results show in particular the efficiency of the valid inequalities and the
separation procedure used in the algorithm.

Afterwards, we have studied the structure of the multi-terminal vertex separator
polytope. We have given a complete description of the MTVS polytope for terminal
paths, star trees and clique stars. Moreover, we have shown that the two linear systems
given by the star tree and clique star inequalities together with the trivial inequalities
are totally dual integral for the star trees and the clique stars, respectively. Then, we
have examined the polytope in the graphs decomposable by one node cutsets. We have
shown that, if G is a graph that decomposes into G1 and G2, the multi-terminal vertex
separator polytope in G can be obtained from two linear systems related to G1 and
G2.

Moreover, we have proposed three extended formulations for the MTVSP. We have
developed Branch-and-Price algorithms for all the formulations and Branch-and-Cut-
and-Price algorithms for two of them. For each formulation we presented a column
generation scheme to solve the linear relaxation, the way to compute the dual bound
and the branching scheme. We have also presented extensive computational results,
and discussed the performance of each algorithm.

In the last part of the dissertation, we have considered four variants of the multi-
terminal vertex separator problem. We have shown that each variant is NP-hard, and
for each variant we have proposed an integer programming formulation along with some

2 Conclusion

valid inequalities.

As perspectives, there are different directions in which our future research related to
the MTVSP can be conducted.

First, more efficient separation heuristics and more sophisticated preprocessing meth-
ods can be developed in order to improve the resolution of the problem. Moreover, it
would be interesting to characterize the graphs for which the terminal tree, clique star
and terminal cycle inequalities suffice to describe the multi-terminal vertex separator
polytope. Indeed, as it appears from the computational results in Chapter 2, using
these inequalities, many instances have been solved in the root of the Branch-and-Cut
tree. In [95], the authors characterize the class of graph for which the system given by
the terminal path inequalities and the trivial inequalities is TDI. Since the terminal
tree, clique star and terminal cycle inequalities generalize the terminal path inequal-
ities, it would be also interesting to describe graphs for which the system, given by
these classes of inequalities, is TDI.

Finally, it would be interesting to investigate some stabilization methods in column
generation in order to improve the convergence of our Branch-and-Price and Branch-
and-Cut-and-Price algorithms. Also comparing different column generation strategies
and heuristics to solve the pricing problems would be of interest.

Bibliography

[1] http://www.info.univ-angers.fr/pub/porumbel/graphs/.

[2] https://lemon.cs.elte.hu/trac/lemon.

[3] http://www.boost.org/doc/libs/1_60_0/libs/graph/.

[4] http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

[5] https://gephi.org/.

[6] http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

[7] https://www.yworks.com/products/yed.

[8] C. Alves and J. V. de Carvalho. A stabilized branch-and-price-and-cut algorithm
for the multiple length cutting stock problem. Computers & Operations Research,
35(4):1315 – 1328, 2008.

[9] K. Andreev and H. Räcke. Balanced graph partitioning. In Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and architectures,
pages 120–124. ACM, 2004.

[10] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the dantzig-
fulkerson-johnson algorithm for large traveling salesman problems, 2003.

[11] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes
for dense instances of np-hard problems. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, pages 284–293. ACM, 1995.

[12] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos. Detecting
critical nodes in sparse graphs. Computers & Operations Research, 36(7):2193–
2200, 2009.

http://www.info.univ-angers.fr/pub/porumbel/graphs/
https://lemon.cs.elte.hu/trac/lemon
http://www.boost.org/doc/libs/1_60_0/libs/graph/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
https://gephi.org/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://www.yworks.com/products/yed

4 BIBLIOGRAPHY

[13] M. Baïou, F. Barahona, and A. R. Mahjoub. Separation of partition inequalities.
Mathematics of Operations Research, 25(2):243–254, 2000.

[14] E. Balas and C. C. de Souza. The vertex separator problem: a polyhedral inves-
tigation. Mathematical Programming, 103(3):583–608, 2005.

[15] F. Barahona, J. Fonlupt, and A. R. Mahjoub. Compositions of graphs and poly-
hedra iv: Acyclic spanning subgraphs. SIAM Journal on Discrete Mathematics,
7(3):390–402, 1994.

[16] F. Barahona and A. R. Mahjoub. Facets of the balanced (acyclic) induced sub-
graph polytope. Mathematical Programming, 45(1-3):21–33, 1989.

[17] F. Barahona and A. R. Mahjoub. Compositions of graphs and polyhedra i:
Balanced induced subgraphs and acyclic subgraphs. SIAM Journal on Discrete
Mathematics, 7(3):344–358, 1994.

[18] F. Barahona and A. R. Mahjoub. Compositions of graphs and polyhedra ii:.
SIAM Journal on Discrete Mathematics, 7(3):359–371, 1994.

[19] F. Barahona and A. R. Mahjoub. Compositions of graphs and polyhedra iii:
Graphs with no w_4 minor. SIAM Journal on Discrete Mathematics, 7(3):372–
389, 1994.

[20] F. Barahona and A. R. Mahjoub. On two-connected subgraph polytopes. Discrete
Mathematics, 147(1):19–34, 1995.

[21] C. Barnhart, A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, and
P. H. Vance. Airline crew scheduling. In Handbook of Transportation Science,
volume 56 of International Series in Operations Research & Management Science,
pages 517–560. 2003.

[22] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut
to solve origin-destination integer multicommodity flow problems. Oper. Res.,
48(2):318–326, 2000.

[23] M. Bateni, M. Hajiaghayi, P. N. Klein, and C. Mathieu. A polynomial-time
approximation scheme for planar multiway cut. In Proceedings of the twenty-third
annual ACM-SIAM symposium on Discrete Algorithms, pages 639–655. Society
for Industrial and Applied Mathematics, 2012.

[24] W. Ben-Ameur and M. D. Biha. Algorithms and formulations for the minimum
cut separator problem. Electronic Notes in Discrete Mathematics, 36:977–983,
2010.

BIBLIOGRAPHY 5

[25] W. Ben-Ameur and M. Didi Biha. On the minimum cut separator problem.
Networks, 59(1):30–36, 2012.

[26] W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto. The k-separator problem. In
Computing and Combinatorics, pages 337–348. Springer, 2013.

[27] W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto. The k-separator problem:
polyhedra, complexity and approximation results. Journal of Combinatorial Op-
timization, 29(1):276–307, 2015.

[28] A. Berger, A. Grigoriev, and R. Zwaan. Complexity and approximability of the
k-way vertex cut. Networks, 63(2):170–178, 2014.

[29] M. D. Biha. Personal communication. page 2014.

[30] M. D. Biha. On the 3-terminal cut polyhedron. SIAM Journal on Discrete
Mathematics, 19(3):575–587, 2005.

[31] M. D. Biha and A. R. Mahjoub. k-edge connected polyhedra on series-parallel
graphs. Operations research letters, 19(2):71–78, 1996.

[32] M. D. Biha and M.-J. Meurs. An exact algorithm for solving the vertex separator
problem. Journal of Global Optimization, 49(3):425–434, 2011.

[33] V. Boginski and C. W. Commander. Identifying critical nodes in protein-protein
interaction networks. Clustering challenges in biological networks, pages 153–167,
2009.

[34] M. Bouchakour. Composition de graphes et le polytope des absorbants. Un algo-
rithme de coupes pour le problème du flot à coûts fixes. PhD thesis, Université
de Rennes 1, 1996.

[35] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is
np-hard. Information Processing Letters, 42(3):153–159, 1992.

[36] G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm
for multiway cut. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 48–52. ACM, 1998.

[37] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the mini-
mum node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

6 BIBLIOGRAPHY

[38] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk. Designing
fpt algorithms for cut problems using randomized contractions. In Foundations
of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages
460–469. IEEE, 2012.

[39] S. Chopra and J. H. Owen. Extended formulations for the a-cut problem. Math-
ematical programming, 73(1):7–30, 1996.

[40] S. Chopra and M. R. Rao. On the multiway cut polyhedron. Networks, 21(1):51–
89, 1991.

[41] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158, 1971.

[42] D. Cornaz, F. Furini, M. Lacroix, E. Malaguti, A. R. Mahjoub, and S. Mar-
tin. Mathematical formulations for the balanced vertex k-separator problem.
In Control, Decision and Information Technologies (CoDIT), 2014 International
Conference on, pages 176–181. IEEE, 2014.

[43] D. Cornaz, Y. Magnouche, A. R. Mahjoub, and S. Martin. The multi-terminal
vertex separator problem: Polyhedral analysis and branch-and-cut. In Interna-
tional Conference on Computers & Industrial Engineering (CIE45), 2015.

[44] W. H. Cunningham and L. Tang. Optimal 3-terminal cuts and linear program-
ming. In International Conference on Integer Programming and Combinatorial
Optimization, pages 114–125. Springer, 1999.

[45] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. On multiway cut
parameterized above lower bounds. In Parameterized and Exact Computation,
pages 1–12. Springer, 2011.

[46] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23(4):864–894, 1994.

[47] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper-
ations Research, 8(1):pp. 101–111, 1960.

[48] C. de Souza and E. Balas. The vertex separator problem: algorithms and com-
putations. Mathematical Programming, 103(3):609–631, 2005.

[49] E. D. Demaine, M. Hajiaghayi, and P. N. Klein. Node-weighted steiner tree and
group steiner tree in planar graphs. In International Colloquium on Automata,
Languages, and Programming, pages 328–340. Springer, 2009.

BIBLIOGRAPHY 7

[50] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation. volume 5.
Springer-Verlag New York Incorporated, 2005.

[51] M. Di Summa, A. Grosso, and M. Locatelli. Branch and cut algorithms for
detecting critical nodes in undirected graphs. Computational Optimization and
Applications, 53(3):649–680, 2012.

[52] T. N. Dinh, Y. Xuan, M. T. Thai, E. Park, and T. Znati. On approximation
of new optimization methods for assessing network vulnerability. In INFOCOM,
2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[53] R. G. Downey, V. Estivill-Castro, M. R. Fellows, E. Prieto, F. A. Rosamond,
et al. Cutting up is hard to do: the parameterized complexity of k-cut and
related probelms| nova. the university of newcastle’s digital repository. 2003.

[54] J. Edmonds. Covers and packings in a family of sets. Bulletin of the American
Mathematical Society, 68(5):494–499, 1962.

[55] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of
Research of the National Bureau of Standards (B) 69, 69:9–14, 1965.

[56] N. Fan and P. M. Pardalos. Robust optimization of graph partitioning and
critical node detection in analyzing networks. In International Conference on
Combinatorial Optimization and Applications, pages 170–183. Springer, 2010.

[57] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving net-
work partitions. In Papers on Twenty-five years of electronic design automation,
pages 241–247. ACM, 1988.

[58] J. Fonlupt and A. R. Mahjoub. Critical extreme points of the 2-edge connected
spannning subgraph polytope. In Integer Programming and Combinatorial Op-
timization, pages 166–182. Springer, 1999.

[59] J. Fukuyama. Np-completeness of the planar separator problems. J. Graph
Algorithms Appl., 10(2):317–328, 2006.

[60] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Francisco, 1979.

[61] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete
graph problems. Theoretical computer science, 1(3):237–267, 1976.

[62] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in directed and
node weighted graphs. In Automata, Languages and Programming, pages 487–
498. Springer, 1994.

8 BIBLIOGRAPHY

[63] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted
graphs. Journal of Algorithms, 50(1):49–61, 2004.

[64] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-
stock problem. Operations Research, 9(6):849–859, 1961.

[65] P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the
Cutting Stock Problem-Part II. Operations Research, 11(6):863–888, 1963.

[66] O. Goldschmidt and D. S. Hochbaum. A polynomial algorithm for the k-cut
problem for fixed k. Mathematics of operations research, 19(1):24–37, 1994.

[67] M. Grötschel and C. L. Monma. Integer polyhedra arising from certain net-
work design problems with connectivity constraints. SIAM Journal on Discrete
Mathematics, 3(4):502–523, 1990.

[68] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[69] S. Guillemot. Fpt algorithms for path-transversals and cycle-transversals prob-
lems in graphs. In International Workshop on Parameterized and Exact Compu-
tation, pages 129–140. Springer, 2008.

[70] J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and
exact algorithms for vertex multicut in interval and bounded treewidth graphs.
European Journal of Operational Research, 186(2):542–553, 2008.

[71] A. Hadjar. Composition de polyèdres associés aux problèmes d’optimisation com-
binatoire. PhD thesis, Institut National Polytechnique de Grenoble-INPG, 1996.

[72] X. He. An improved algorithm for the planar 3-cut problem. Journal of Algo-
rithms, 12(1):23–37, 1991.

[73] D. S. Hochbaum and D. B. Shmoys. An o(|v|ˆ2) algorithm for the planar 3-cut
problem. SIAM Journal on Algebraic Discrete Methods, 6(4):707–712, 1985.

[74] T. C. Hu. Integer programming and network flows. Addison-Wesley Publ., 1970.

[75] X. Ji and J. E. Mitchell. Branch-and-price-and-cut on the clique partitioning
problem with minimum clique size requirement. Discrete Optimization, 4(1):87–
102, 2007.

[76] Y. Kamidoi, N. Yoshida, and H. Nagamochi. A deterministic algorithm for finding
all minimum k-way cuts. SIAM Journal on Computing, 36(5):1329–1341, 2006.

BIBLIOGRAPHY 9

[77] D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal
of the ACM (JACM), 43(4):601–640, 1996.

[78] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
1972.

[79] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed computing, 48(1):96–129, 1998.

[80] K.-i. Kawarabayashi and M. Thorup. The minimum k-way cut of bounded size
is fixed-parameter tractable. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 160–169. IEEE, 2011.

[81] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(2):291–307, 1970.

[82] D. König. Graphok és alkalmazásuk a determinánsok és a halmazok elméletére.
Mathematikai és Természettudományi Ertesito, 34:104–119, 1916.

[83] R. Krauthgamer and U. Feige. A polylogarithmic approximation of the minimum
bisection. SIAM review, 48(1):99–130, 2006.

[84] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

[85] M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation. Op-
erations Research, 53(6):1007–1023, 2005.

[86] A. R. Mahjoub. Two-edge connected spanning subgraphs and polyhedra. Math-
ematical Programming, 64(1-3):199–208, 1994.

[87] A. R. Mahjoub. On perfectly two-edge connected graphs. Discrete Mathematics,
170(1):153–172, 1997.

[88] A. R. Mahjoub. Polyhedral Approaches, pages 261–324. Wiley Online Library,
2013.

[89] F. Margot. Composition de polytopes combinatoires: une approche par projection,
volume 4. PPUR presses polytechniques, 1995.

[90] S. Martin. Analyse structurelle des systèmes algébro-différentiels conditionnels :
compléxité, modèles et polyèdres. PhD thesis, Université Paris-Dauphine, 2011.

10 BIBLIOGRAPHY

[91] D. Marx. Parameterized graph separation problems. Theoretical Computer Sci-
ence, 351(3):394–406, 2006.

[92] T. C. Matisziw and A. T. Murray. Modeling s–t path availability to support disas-
ter vulnerability assessment of network infrastructure. Computers & Operations
Research, 36(1):16–26, 2009.

[93] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–
115, 1927.

[94] Y.-S. Myung and H.-j. Kim. A cutting plane algorithm for computing k-edge sur-
vivability of a network. European Journal of Operational Research, 156(3):579–
589, 2004.

[95] G. Naves and V. Jost. The graphs with the max-mader-flow-min-multiway-cut
property. arXiv preprint arXiv:1101.2061, 2011.

[96] G. L. Nemhauser and G. Sigismondi. A Strong Cutting Plane/Branch-and-Bound
Algorithm for Node Packing. The Journal of the Operational Research Society,
43(5):443–457, 1992.

[97] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization.
Wiley-Interscience, New York, 1988.

[98] M. Oosten, J. H. Rutten, and F. C. Spieksma. Disconnecting graphs by removing
vertices: a polyhedral approach. Statistica Neerlandica, 61(1):35–60, 2007.

[99] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical
Programming, 5(1):199–215, 1973.

[100] M. W. Padberg. A note on 0-1 programming. Operations Research, 23:833–837,
1979.

[101] C. Papadopoulos. Restricted vertex multicut on permutation graphs. Discrete
Applied Mathematics, 160(12):1791–1797, 2012.

[102] S. Ropke and J. F. Cordeau. Branch and Cut and Price for the Pickup and
Delivery Problem with Time Windows. Transportation Science, 43(3):267–286,
2009.

[103] A. L. Rosenberg and L. S. Heath. Graph separators, with applications. Springer
Science & Business Media, 2001.

BIBLIOGRAPHY 11

[104] H. Saran and V. V. Vazirani. Finding k-cuts within twice the optimal. In Foun-
dations of Computer Science, 1991. Proceedings., 32nd Annual Symposium on,
pages 743–751. IEEE, 1991.

[105] H. Saran and V. V. Vazirani. Finding k cuts within twice the optimal. SIAM
Journal on Computing, 24(1):101–108, 1995.

[106] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment
problem. Operations Research, 45(6):pp. 831–841, 1997.

[107] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

[108] A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency. Algorithms
and Combinatorics, volume 24. Springer, 2003.

[109] M. Thorup. Minimum k-way cuts via deterministic greedy tree packing. In
Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 159–166. ACM, 2008.

[110] F. Vanderbeck. Decomposition and column generation for integer programming.
PhD thesis, Université Catholique de Louvain, Belgium, 1994.

[111] M. Xiao. Simple and improved parameterized algorithms for multiterminal cuts.
Theory of Computing Systems, 46(4):723–736, 2010.

[112] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on
Computing, 10(2):310–327, 1981.

12 BIBLIOGRAPHY

Résumé

Mots Clés

Abstract

Keywords
Optimisation combinatoire, Polytope, Facette,
Algorithme de coupes et branchements,
Algorithme de génération de colonnes et
branchements, Composition de polyèdres.

Combinatorial optimization, Polytope, Facet,
Branch-and-Cut algorithm, Branch-and-Price
algorithm, Composition of polyhedra.

Étant donné un graphe G = (V U T, E), tel que V
U T représente l'ensemble des sommets où T est
un ensemble de terminaux, et une fonction poids
w associée aux sommets non terminaux, le
problème du séparateur de poids minimum
consiste à partitionner V U T en k + 1 sous-
ensembles {S, V1,..., Vk} tel qu'il n'y a aucune
arête entre deux sous-ensembles différents Vi et
Vj, chaque Vi contient exactement un terminal et
le poids de S est minimum. Dans cette thèse, nous
étudions le problème d'un point de vue polyèdral.
Nous donnons deux formulations en nombres
entiers pour le problème, et pour une de ces
formulations, nous étudions le polyèdre associé.
Nous présentons plusieurs inégalités valides, et
décrivons des conditions de facette. En utilisant
ces résultats, nous développons un algorithme de
coupes et branchement pour le problème. Nous
étudions également le polytope des séparateurs
dans les graphes décomposables par sommets
d'articulation. Si G est un graphe qui se
décompose en G1 et G2, alors nous montrons que
le polytope des séparateurs dans G peut être
décrit à partir de deux systèmes linéaires liés à G1
et G2. Ceci donne lieu à une technique permettant
de caractériser le polytope des séparateurs dans
les graphes qui sont récursivement
décomposables. Ensuite, nous étudions des
formulations étendues pour le problème et
proposons des algorithmes de génération de
colonnes et branchement ainsi que des
algorithmes de génération de colonnes, de coupes
et branchement. Pour chaque formulation, nous
présentons un algorithme de génération de
colonnes, une procedure pour le calcul de la
borne duale ainsi qu'une règle de branchement.
De plus, nous présentons quatre variantes du
problème du séparateur. Nous montrons que
celles-ci sont NP-difficiles, et pour chacune
d'elles nous donnons une formulation en nombres
entiers et présentons certaines classes d'inégalités
valides.

Given a graph G = (V U T, E) with V U T the set
of vertices, where T is a set of terminals, and a
weight function w, associated with the
nonterminal nodes, the multi-terminal vertex
separator problem consists in partitioning V U T
into k + 1 subsets {S, V1,..., Vk} such that there
is no edge between two different subsets Vi and
Vj, each Vi contains exactly one terminal and the
weight of S is minimum. In this thesis, we
consider the problem from a polyhedral point of
view. We give two integer programming
formulations for the problem, for one of them, we
investigate the related polyhedron. We describe
some valid inequalities and characterize when
these inequalities define facets. Using these
results, we develop a Branch-and-Cut algorithm
for the problem. We also study the multi-terminal
vertex separator polytope in the graphs
decomposable by one node cutsets. If G is a
graph that decomposes into G1 and G2, we show
that the multi-terminal vertex separator polytope
in G can be described from two linear systems
related to G1 and G2. This gives rise to a
technique for characterizing the multi-terminal
vertex separator polytope in the graphs that are
recursively decomposable. Moreover, we propose
three extended formulations for the problem and
derive Branch-and-Price and Branch-and-Cut-
and-Price algorithms. For each formulation we
present a column generation scheme, the way to
compute the dual bound, and the branching
scheme. Finally, we discuss four variants of the
multi-terminal vertex separator problem. We
show that all these variants are NP-hard and for
each one we give an integer programming
formulation and present some class of valid
inequalities.

	Introduction
	Preliminaries and State-of-the-art
	Combinatorial optimization
	Computational complexity
	Preliminaries and State-of-the-Art
	Elements of polyhedral theory
	Cutting plane method
	Branch-and-Cut algorithm

	Column generation and Branch-and-Price
	Column generation procedure
	Branch-and-Price algorithm

	Graph theory
	Undirected graphs
	Directed graphs

	State-of-the-art on the vertex separator problem
	Deletion of vertices
	The k-way vertex cut problem
	The k-separator problem
	The vertex separator problem
	The multi-terminal vertex separator problem
	Vertex multicut problem
	Critical nodes problem

	Deletion of edges
	The k-way edge cut
	The multi-way cut problem
	The balanced graph partitioning problem

	The multi-terminal vertex separator problem : Polyhedral analysis
	Complexity analysis
	Formulations
	Double indices formulation
	Natural formulation
	Comparing the LP-Relaxations

	Polyhedral analysis
	Dimension
	Path inequalities
	Star tree inequalities
	Clique star inequalities
	Lifting procedure for star tree inequalities
	Terminal tree inequalities
	Lifted terminal tree inequalities
	Terminal cycle inequalities
	Extended terminal cycle inequalities

	Reduction operations
	Deletion of a subgraph connected to two terminals
	Contraction of a subgraph connected to two vertices
	Deletion of useless components

	Branch-and-Cut Algorithm
	Heuristics and performance guarantee
	Disconnecting terminal pairs heuristic
	Isolating terminal heuristic
	Improved isolating terminal heuristic

	Computational Results
	Conclusion

	The multi-terminal vertex separator problem : Composition of Polyhedra
	Star trees and Clique stars
	Polytope characterization
	MTVS polytope for star trees
	MTVS polytope for clique stars

	TDI-ness
	TDI system for star trees
	TDI system for clique stars

	Composition of polyhedra by 1-sum
	Structure properties
	Composition of polyhedra
	Facet composition
	General clique star inequality
	General terminal cycle inequality

	Algorithmic aspect

	Composition of polyhedra by terminal-sum
	The minimum rooted-cycle cover problem
	Packing and covering rooted cycles
	Pseudo-bipartite rooted graphs

	Conclusion

	The multi-terminal vertex separator problem : Branch-and-Cut-and-Price
	The terminal-set formulation
	Pricing problem
	Heuristic algorithm for the pricer
	Basic columns
	Column generation strategy
	Branching scheme
	Lagrangian bound

	The isolating-separator formulation
	Pricing problem
	Basic columns
	Column generation strategy
	Branching scheme
	Lagrangian bound

	The terminal-pair-separator formulation
	Pricing problem
	Basic columns
	Column generation strategy
	Branching scheme
	The Lagrangian bound

	Branch-and-Cut-and-Price
	Star tree inequalities
	Terminal cycle inequalities
	Terminal tree inequalities

	Computational Results
	Conclusion

	The variants of the multi-terminal vertex separator problem
	The connected components separator problem
	Formulation
	Polyhedral analysis

	The multi-terminal connected separator problem
	Formulation
	Polyhedral analysis

	The multi-terminal k-separator problem
	The multi-terminal k-separator problem, when k>|T|
	Formulation
	Valid inequalities
	Path inequalities
	Star tree inequalities
	Extended terminal cycle inequalities
	Clique inequalities
	Clique star inequalities
	Terminal tree inequalities
	Odd cycle inequalities

	The multi-terminal k-separator problem, when k < |T|
	Formulation
	Valid inequalities
	Star tree inequalities
	Clique star inequalities
	Terminal cycle inequalities

	Conclusion

	Conclusion
	Bibliography

