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Résumé en Français de la thèse

Dans cette thèse, on s’intéresse à la modélisation théorique et à la simulation numérique

de la dynamique de charges et de spins dans des nano-structures métalliques. Ces

dernières années, la physique des nano-structures métalliques a connu un intérêt

scientifique croissant, aussi bien d’un point de la physique fondamentale que d’un

point de vue des applications technologiques. Des nano-structures métalliques sont

utilisées aujourd’hui dans le domaine de la nano-photonique, de la chime et même

de la biologie et de la médecine. Il est donc essentiel d’avoir des modèles théoriques

nous permettant de décrire correctement de tels objets. Cette thèse comporte deux

études distinctes. La première, constituée des chapitres 1 à 4, porte sur la dynamique

ultra-rapide de spins dans des films ferromagnétiques de Nickel. Ces derniers sont

en interaction avec un champ laser intense sur des échelles de temps très courtes

de l’ordre de la dizaine - centaine de femtosecondes. De telles études ont déjà été

réalisées auparavant sur des films de Sodium, mais en considérant uniquement les

interactions électrostatiques. Dans ces travaux, on souhaiterait également inclure les

aspects magnétiques en tenant compte du spin et des couplages qu’il induit sur la

dynamique électronique. Un exemple bien connu d’un tel couplage est le couplage

spin-orbite. La seconde partie, constituée du chapitre 5, porte sur sur la dynamique

de charge (sans spin) d’électrons confinés dans des nano-particules d’Or ou bien

encore par des potentiels anisotropes. On s’intéresse particulièrement à la réponse

dipolaire induite par une excitation laser auto-résonante.

Chapitre 1

Le premier chapitre de ma thèse est constitué de cinq parties et constitue une intro-

duction aux différents modèles physiques permettant d’étudier la dynamique quan-

tique non-linéaire d’un système d’électrons en interaction. Ce chapitre ne concerne

que la dynamique de charge, le spin est volontairement mis de coté et sera traité

dans le second chapitre.

Dans la première partie, je décris les différentes grandeurs physiques qui car-

actérisent les électrons de conduction dans les métaux. Ces dernières sont: La

fréquence plasma ωp =
√

e2n/mǫ0 dont l’inverse correspond au temps typique de

mouvement des électrons, la densité de charge n qui est directement relié au rayon

de Wigner-Seitz rs et la longueur d’onde de DeBroglie λDB = ~/p qui est relié à

l’extension spatiale des fonctions d’ondes électroniques. Dans la table 1, on donne
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rs 0.16 nm

n 5.9× 1028 m−3

T 300K

ω−1
p 0.5 fs

TF 64000K

vF 1.4× 106 m/s
λF 0.11 nm
γq 5.5

TABLE 1: Paramètres physiques pour les électrons de conduction de
l’Or (T = 300K)

une application numérique pour les électrons de conduction de l’Or. La conclusion

principale de cette partie est que les électrons dans les métaux doivent être traité

comme un plasma quantique confiné par le potentiel des ions. Les ions n’ont pas de

dynamique orbitale car on travaille sur des échelles de temps de l’ordre de la fem-

toseconde (10−15 s) alors que le temps typique de mouvement des ions est de l’ordre

de la picoseconde (10−12 s).

Dans la seconde partie du chapitre, je présente le formalisme de Schrödinger de

la mécanique quantique et je discute de l’approximation du champ moyen. Cette

dernière étant utilisée dans la suite de la thèse. Je présente notamment les équations

de Hatree et les équations de Hartre-Fock. Une discussion sur le traitement de

l’échange et des corrélations ainsi que sur des modèles plus sophistiqués du type

DFT/TDDFT figure également dans cette partie.

La troisième partie de la thèse est une introduction à la formulation de Wigner de

la mécanique quantique ou encore appelé formulation de la mécanique quantique

dans l’espace des phases. Dans cette partie j’introduis la transformation de Weyl

qui permet d’associer à chaque opérateur de la mécanique quantique une fonction

des variables r (position) et p (impulsion) définit dans l’espace des phase. Dans ce

formalisme la fonction de Wigner, notée f , est la transformée de Weyl de l’opérateur

densité. Elle s’exprime de la manière suivante:

f (r,p, t) =
1

(2π~)3

N∑

α=1

pα

∫
dλ exp

(
ip · λ
~

)
Ψ∗

α

(
r +

λ

2
, t

)
Ψα

(
r − λ

2
, t

)
, (1)

où les quantités Ψα (r, t) correspondent aux différentes fonctions d’ondes du système

d’électrons en interaction et traités dans l’approximation du champ moyen. La fonc-

tion de Wigner obéit à l’équation d’évolution suivante:

i~
∂f

∂t
= {H, f}⋆ , (2)

où H est la fonction dans l’espace des phases associée à l’opérateur Hamiltonien
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du système. L’équation (2) est appelée équation de Wigner. L’équation de Wigner

est l’analogue de l’équation d’évolution de la matrice densité: i~∂tρ̂ =
[
Ĥ, ρ̂

]
et

également appelée équation de Von Neumann. Le terme de droite de l’équation

précédente correspond au crochet de Moyal. Ce dernier a l’avantage de pouvoir

s’écrire en une série de termes en puissance de ~. En particulier, le terme d’ordre

zero correspond au crochet de Poisson qui est utilisé en mécanique classique. On

montre dans cette partie que dans la limite classique (~ → 0), l’équation de Wigner

(2) se réduit à l’équation de Vlasov:

∂f

∂t
+ v ·∇f +

e

m
∇VH ·∇pf = 0, (3)

où VH est le potentiel d’Hartree qui est solution de l’équation de Poisson. Cette par-

tie comporte également une discussion sur l’incorporation d’un champ magnétique

dans l’équation de Wigner et du problème de l’invariance de jauge. En particulier,

on montre qu’il faut redéfinir le crochet de Moyal et la fonction de Wigner afin

d’avoir une équation de Wigner qui soit indépendante de la jauge électromagnétique.

FIGURE 1: Schéma des différents modèles physiques décrivant la dy-
namique d’un gaz d’électrons en interaction, ainsi que les limites de
validité des différents modèles. Les paramètres gC et gQ représentent,
respectivement, les paramètres de couplage classiques et quantiques

d’un plasma.

La quatrième partie du chapitre 1 porte sur la construction de modèles fluides
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classiques et quantiques à partir des équations de Vlasov et de Wigner. Les équations

fluides décrivent l’évolution de variables hydrodynamiques tels que la densité de

charge: n =
∫
fdv, la vitesse moyenne des électrons: j =

∫
vfdv/n ou encore le

tenseur de pression: pij =
∫
wiwjfdv (w = v − u). D’un point de vue théorique, les

équations cinétiques de Wigner/Vlasov sont équivalentes à une infinité d’équations

fluides. Afin de construire un modèle fluide raisonnable, il nous faut donc trouver

un moyen de fermer ces équations. Dans cette partie, on montre que sous certaines

conditions spécifiques les équations fluides peuvent être fermées et s’écrivent de la

manière suivante:





∂n

∂t
+∇ · (nu) = 0,

∂ui

∂t
+ uj(∂jui) =

~
2

2m2
∂i

[
∇2

√
n√

n

]
− 1

nm
∂j (PC)ij +

1

m
∂iVH.

(4)

Dans le modèle fluide ci-dessus, le terme PC correspond à la pression classique des

électrons. Cette dernière peut s’exprimer de la manière suivante:

(PC)ij =
(3π2)

2/3
~
2

5m
n
5/3
0 δij, (5)

dans le cas d’un système d’électrons complètement dégénérés.

La dernière partie du premier chapitre est une analyse des conditions de validité

des modèles fluides à travers l’étude des relations de dispersion. En particulier,

on compare la relation de dispersion de l’équation de Wigner à celle provenant du

modèle fluide (4). La conclusion principale de ce chapitre est que les modèles fluides

sont valides dans la limite des grandes longueurs d’onde. De manière plus précise,

il faut que la condition suivante: λk << 1 soit valide, où k est le vecteur d’onde de

l’excitation et λ représente la longueur d’écrantage de l’interaction électromagnétique.

La figure 1 résume les différents modèles présentés dans le chapitre 1 ainsi que leurs

domaines de validité.

Chapitre 2

Dans le second chapitre de ma thèse, je présente les méthodes théoriques que j’ai

développé au cours de ma thèse sur la dynamique de spin dans l’espace des phases.

Ce chapitre est constitué de trois parties distinctes.

Dans la première partie, je décrit de manière générale comment traiter le spin

en mécanique quantique. En partant de l’équation de Dirac je montre comment

on peut, grâce à la transformation de Foldy–Wouthuysen, inclure les effets de spin

dans le Hamiltonien de Pauli. Je prend en compte deux effets de spin qui sont
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l’interaction Zeeman et le couplage spin-orbite.

La seconde partie du deuxième chapitre concerne la généralisation des équations

de Wigner en présence du spin. Dans un premier temps je propose d’étendre la

fonction de Wigner à une matrice à deux dimensions, notée F , afin d’inclure les

différentes composantes du spin de l’électron. Ainsi la fonction de Wigner avec spin

s’écrit:

F (r,v, t) =

(
1

2π~

)3 ∫
dλ exp

[
iλ

~
·
(
mv − e

∫ 1/2

−1/2

dτA (r + τλ)

)]
ρ(r − λ/2, r + λ/2, t)

(6)

où F est une matrice 2× 2 et ρ est la matrice densité du système:

F =

(
f ↑↑ f ↑↓

f ↓↑ f ↓↓

)
et ρ =

(
ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

)
. (7)

Les composantes de la matrices densité ρηη
′

(r, r′, t), où η = {↑, ↓} désignent respec-

tivement les composantes de spin ”up” et de spin ”down”, sont données par la

relation suivante:

ρηη
′

(r, r′) =
∑

µ

Ψη
µ(r, t)Ψ

η′∗
µ (r′, t). (8)

Afin d’étudier les propriétés macroscopiques du système, je définit quatre nouvelles

fonctions de distribution f0, fi (i = {x, y, z}) de la manière suivante:

f0 = Tr {F} = f ↑↑ + f ↓↓, f = Tr (Fσ) . (9)

D’après ces définitions, la densité de particule ainsi que la densité de moment magnétique

de spin du système d’électrons en interaction s’expriment de la manière suivante:

n(r, t) =

∫
f0(r,v, t)dv, S(r, t) =

~

2

∫
f(r,v, t)dv. (10)

Dans cette représentation, les quatre fonctions de Wigner ont une signification physique

précise: f0 représente la densité d’électrons dans l’espace des phases, tandis que fi
(i = x, y, z) représente la densité de spins polarisés dans la direction i dans l’espace

des phases. Ensuite, on dérive les équations d’évolution de ces quatre fonctions

de distribution. Après des calculs complexes, détaillés en Annexe, on obtient les

équations d’évolution suivantes pour un système d’électrons en interaction avec
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spin:

∂f0
∂t

+
1

m
(π +∆π̃) ·∇f0 −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

f0

− µB∇

(
B̃ − 1

2mc2
π × Ẽ

)

i

·∇πfi +
µB

4mc2
[(E+ +E−)×∇] · f

− µBe

2mc2

[
Ẽ ×

[
B̃ ×∇π

]]
· f − µB

2mc2
i

~
[∆π̃ × (E+ −E−)] · f = 0, (11)

∂fk
∂t

+
1

m
(π +∆π̃) ·∇fk −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

fk

− µB∇

(
B̃ − 1

2mc2
π × Ẽ

)

k

·∇πf0 +
µB

4mc2
[(E+ +E−)×∇]k f0

− µBe

2mc2

[
Ẽ ×

[
B̃ ×∇π

]]
k
f0 −

µB

2mc2
i

~
[∆π̃ × (E+ −E−)]k f0

− e

2m

[(
B+ +B− − 1

2mc2
(π +∆π̃)× (E+ +E−)

)
× f

]

k

+
µB

2mc2
i

2

[(
(E+ −E−)×

(
∇− eB̃ ×∇π

))
× f

]
k
= 0. (12)

Où ∆π̃ dépend du champ magnétique et correspond à une correction quantique sur

la variable vitesse:

∆π̃ = −i~e∇π ×
[∫ 1/2

−1/2

dττB (r + i~τ∇π)

]
, (13)

Ẽ et B̃ sont des corrections quantiques et s’écrivent en fonction des champs électromagnétiques

classiques:

Ẽ =

∫ 1/2

−1/2

dτE (r + i~τ∇π) , B̃ =

∫ 1/2

−1/2

dτB (r + i~τ∇π) . (14)

Les indices ± signifient que les quantités concernées sont évaluées en r ± i~∇π/2.

Les equations (11)-(12) sont une généralisation de l’équation de Wigner (2) en ten-

ant compte du spin de l’électron à travers l’effet Zeeman et le couplage spin-orbite.

Les champs électriques et magnétiques apparaissant dans les équations de Wigner

(11)-(12) ont différentes origines. Une partie de ces champs représente l’interaction

entre le système d’éléctrons et un champ laser externe. Mais ils peuvent également

représenter les champs électromagnétiques créés par les particules elles mêmes.

Dans ce cas les champs électriques et magnétiques sont solutions des équations de
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Maxwell suivantes:





∇ ·E =
ρ

ǫ0
− ∇ · P

ǫ0
,

∇ ·B = 0,

∇×E = −∂B

∂t
,

∇×B = µ0j + µ0ǫ0
∂E

∂t
+ µ0

∂P

∂t
+ µ0∇×M .

(15)

Où, les termes sources sont reliés aux fonctions de distribution de Wigner de la

manière suivante:

ρ = −e

∫
f0dv, (16)

j = −e

[∫
vf0dv +

E ×M

2mc2

]
, (17)

M = −µB

∫
fdv, (18)

P = − µB

2c2

∫
v × fdv. (19)

Dans les équations précédentes on a introduit de nouveaux termes sources telles

que la magnétisation de spin M , la ”polarisation de spin” P ainsi qu’une contri-

bution au courant de charge provenant du spin-orbite. Ces modifications doivent

être apportées pour des raisons d’auto-consistance. En effet les équations de Wigner

ont été obtenues en effectuant un développement semi-relativiste de l’équation de

Dirac. Il nous faut donc également effectuer le même développement sur les termes

sources apparaissant dans les équations de Maxwell-Dirac.

Les équations de Wigner (11)-(12) couplées aux équations de Maxwell forment un

modèle auto-consistant pour étudier la dynamique quantique de charges et de spins

d’un système d’électrons en interaction dans l’approximation du champ moyen.

On montre également dans cette section comment inclure les effets d’échange et de

corrélations à travers des champs électriques et magnétiques dans les équations de

Wigner. Ceci nous permet d’apporter des corrections à l’approximation du champ

moyen. Un traitement de l’échange et des corrélations pour décrire le magnétisme

non colinéaire est également décrit.

On présente ensuite la limite semi-classique des équations de Wigner avec spin. En

prenant en compte uniquement les termes d’ordre 0 et 1 en ~, on montre ainsi que
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les équations de Wigner avec spin se réduisent aux équations suivantes:

∂f0
∂t

+ v ·∇f0 −
e

m
(E + v ×B) ·∇vf0 +

µB

2mc2
(E ×∇)i fi

− µB

m
∇

[
Bi −

1

2c2
(v ×E)i

]
·∇vfi −

µBe

2m2c2
[E × (B ×∇v)]i fi = 0, (20)

∂fi
∂t

+ v ·∇fi −
e

m
(E + v ×B) ·∇vfi +

µB

2mc2
(E ×∇)i f0

− µB

m
∇

[
Bi −

1

2c2
(v ×E)i

]
·∇vf0 −

µBe

2m2c2
[E × (B ×∇v)]i f0

− 2µB

~

{[
B − 1

2c2
(v ×E)

]
× f

}

i

= 0, (21)

où le facteur ~ est caché dans la défintion du magnéton de Bohr µB = e~/(2m).

Les équations ci-dessus sont des équations de Vlasov avec spin. On remarque que

les différentes fonctions de distribution sont couplées entre elles à travers des effets

semi-relativistes liés au spin (Zeeman + spin-orbite). De plus, il n’y a pas de correc-

tions quantiques sur la dynamique orbitale des électrons, ces dernières sont au min-

imum des corrections de second ordre en ~. On en conclut donc que les équations

de Vlasov avec spin (20)-(21), couplées aux équations de Maxwell (15) forment un

modèle semi-classique qui décrit la dynamique d’un système d’électrons en inter-

action où le spin est pris en compte mais où la dynamique orbitale des électrons

est classique. On démontre que les quantités suivantes sont conservées au cours du

temps:

Mtot = m

∫
f0dvdr, (22)

Ptot = m

∫
vf0dvdr +

∫
D ×Bdr, (23)

Etot =
m

2

∫
v2f0dvdr + µB

∫
f ·Bdvdr +

ǫ0
2

∫
E2dr +

1

2µ0

∫
B2dr, (24)

Jtot = m

∫
(r × v) f0drdv +

~

2

∫
fdrdv +

∫
r × (D ×B) dr. (25)

Où l’on a introduit les champs électriques et magnétiques dans la matière: D =

ǫ0E+P et H = B−µ0M . Le premier terme correspond à la masse total du système.

Le second terme représente l’impulsion totale du système, une partie de l’impulsion

provient des particules tandis que l’autre partie correspond à l’impulsion du champ

électromagnétique. Le troisième terme est l’énergie total du système, elle s’écrit

comme une somme de l’énergie cinétique des particules, l’énergie Zeeman et l’énergie

du champ électromagnétique. Enfin, le dernier terme représente le moment cinétique

total du système. Il s’écrit comme une somme de trois termes, le moment orbital des

particules, le moment cinétique de spin et le moment cinétique du champ.
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En terme de simulations numériques, les équations de Vlasov sont plus simple à

traiter que les équations de Wigner. Ceci s’explique par le fait que les équations

de Wigner sont non-local dans l’espace des phases. Les équations de Vlasov sont

valides lorsque la condition suivante est satisfaite: L >> λDB, où L est la taille typ-

ique du système (distance typique de variation des gradients de densité) et λDB =

~/mv est la longueur d’onde de DeBroglie.

La dernière partie du second chapitre concerne la dérivation de modèles flu-

ides avec spin. En partant des équation de Vlasov avec spin (20)-(21), on construit

différents modèles fluides. Les variables fluides apparaissant dans ces équations hy-

drodynamiques, en plus de la densité n et de la magnétisation m définit précédemment

(10), sont:

u =
1

n

∫
vf0dv, (26)

JS
iα =

~

2

∫
vifαdv, (27)

Pij = m

∫
wiwjf0dv, (28)

Πijα =
~

2
m

∫
vivjfαdv, (29)

Qijk = m

∫
wiwjwkf0dv, (30)

où l’on a séparé la vitesse moyenne des électrons u de ses fluctuations w ≡ v −
u. Dans les équations précédentes Pij and Qijk sont respectivement le tenseur de

pression et de flux d’énergie. Le courant de spin JS
iα représente la vitesse moyenne

fluide le long de la direction i d’électrons polarisés en spin dans la direction α. La

quantité Πijα représente un terme de pression de spin. Les équations d’évolution

des quantités fluides précédentes s’obtiennent en considérant différents moments

de l’équation de Wigner. Ainsi, on obtient les équations fluides suivantes:

∂n

∂t
+∇ · (nu) = 0, (31)

∂Sα

∂t
+ ∂iJ

S
iα +

e

m
(S ×B)α = 0, (32)

∂ui

∂t
+ uj(∂jui) +

1

nm
∂jPij +

e

m
[Ei + (u×B)i] +

e

nm2
Sα (∂iBα) = 0, (33)

∂JS
iα

∂t
+ ∂jΠijα +

eEi

m
Sα +

e

m
ǫjkiBkJ

S
jα +

e

m
ǫjkαBkJ

S
ij +

µB~

2m
(∂iBα)n = 0, (34)

∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk +

e

m

[
ǫlkiBkPjl

+ ǫlkjBkPil

]
+

e

m2

∑

α

[
∂iBα

(
JS
jα − Sαuj

)
+ ∂jBα

(
JS
iα − Sαui

)]
= 0. (35)

Comme pour tous système d’équations fluides, il convient de choisir une relation de
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fermeture adaptée. Dans cette partie du chapitre, nous allons utiliser une méthode

général basée sur le principe de maximisation de l’entropie (MEP). Cette dernière

repose sur le faite que la fonction distribution d’équilibre correspond à la config-

uration microscopique la plus probable, c’est à dire celle qui maximise l’entropie

tout en étant assujetti à certaines contraintes. Ces contraintes sont généralement ex-

primées sous forme de moments de la fonction de distribution. D’un point de vue

mathématique cette procédure se réduit à un problème de maximisation d’une fonc-

tionnelle. Afin d’illustrer la MEP, on écrit le Hamiltonien du système de la manière

suivante:

H = h0(r,v)σ0 + h(r,v) · σ, (36)

où h0 et h sont des fonctions de la position r et de la vitesse v ≡ (p + eA)/m. Dans

notre cas (sans spin-orbite), on a

h0 =m
|v|2
2

+ V, h = µBB. (37)

Dans le but de simplifier les notations, on écrit les moments fluides de la manière

suivante:

mi(r) = Tr

∫
χiFdv, (38)

où F est définit par l’équation (7) et χi est associée à la ieme quantité fluide:

m =




n

S

u

JS
iα

...




; χ =




1
~

2
σ

v
~

2
viσα

...




. (39)

La densité d’entropie est définit de la manière suivante:

s(F) =





kB Tr {F logF − F} (M–B)

kB Tr {F logF + (1−F) log(1−F)} (F–D),
(40)

où l’on fait la distinction entre une statistique de Maxwell-Boltzmann (M–B) et de

Fermi-Dirac (F–D). Le principe de maximisation de l’entropie suppose qu’à l’ équilibre

la fonction de distribution F est un extremum de l’énergie libre:

E = Tr

∫
[Ts(F) +H′F ] dvdr −

∫
λi(r)mi(r)dr, (41)

où H′ = H+λi(r)χi, T est la température et les fonctions λi sont des multiplicateurs

de Lagrange. Ces derniers forment un ensemble de paramètres indépendants qui

vont servir à paramétriser la fonction de distribution à l’équilibre. Une des diffi-

cultés majeur de la MEP est d’exprimer les fonctions λi en fonction des différents
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moments fluides m. La variation total de l’énergie libre s’écrit:

δE = δλi
δ

δλi

E + δF δ

δF E , (42)

où la distribution d’équilibre F eq correspond à l’extremum de l’énergie libre δE(F eq) =

0. À partir des équations (40) et (41)-(42), on en déduit que la fonction d’équilibre

s’écrit de la manière suivante:

F eq =

{
a exp (−βH′) (M–B)

a [exp (βH′) + 1]−1 (F–D),
(43)

où a est une constante et β = 1/(kBT ). Les équations (43) constituent un résultat très

général qui est valide pour n’importe quel nombre de contraintes sur les moments.

Différentes applications de la MEP sont faites dans cette partie. Par exemple dans

le cas d’une fermeture du type Fermi-Dirac avec des contraintes sur la densité de

charge et de spin ainsi que sur la vitesse moyenne des charges. Dans ce cas on

trouve le modèle fluide suivant:

∂n

∂t
+∇ · (nu) = 0, (44)

∂Sα

∂t
+ ∂iJ

S
iα +

e

m
(S ×B)α = 0, (45)

∂ui

∂t
+ uj(∂jui) +

1

nm
∂jPij +

e

m
[Ei + (u×B)i] +

e

nm2
Sα (∂iBα) = 0, (46)

où le courant de spin se factorise de la manière suivante: JS
iα = uiSα. Cela signifie

que l’on néglige certaines corrélations entre la vitesse des électrons et leurs spins.

Pour la pression on obtient la forme suivante:

P =
~
2

5m

(6π2)
2/3

25/3

[(
n− 2

~
|S|
)5/3

+

(
n+

2

~
|S|
)5/3

]
, (47)

où l’on voit clairement apparaı̂tre l’effet des deux populations de spin (spin ”up” et

spin ”down”).

Dans les équations fluides présentées ci-dessus on a négligé le couplage spin-orbite.

Dans cette même partie, on présente un système d’équations fluides fermées avec

des corrections dues aux effets de couplage spin-orbite.

Chapitre 3

Dans le troisième chapitre de la thèse, on effectue une analyse linéaire du modèle

de Vlasov avec spin. Le but de cette analyse est d’identifier une dépendance en spin

dans la relation de dispersion du mode plasmon. Pour cela on étudie la propaga-

tion d’une faible perturbation sur un système infini d’électrons polarisés en spin.
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La perturbation correspond à une excitation sinusoı̈dale, elle s’écrit de la manière

suivante:

δf0,i = δ0,i cos(k · r). (48)

La perturbation ci-dessus représente une fluctuation periodique, avec un vecteur

d’onde k, de la densité de charges et de spins. Dans ce cas la réponse linéaire est

caractérisée par une fonction diélectrique ǫ(ω,k). De plus, les zéros de cette fonc-

tion correspondent aux différents modes propres du système. La réponse linéaire

sans spin, associée au système Vlasov-Poisson, a été décrite pour la première fois

en 1938. Le principale mode d’oscillation est le mode plasmon. Ce dernier oscille

à la fréquence plasma ωp = e2n0/mǫ0 et correspond à une oscillation collective des

électrons par rapport au fond ionique fixe, voir Fig. 2. Dans le cas général, il peut

s’avérer être compliqué de trouver la relation de dispersion du système. Dans notre

cas, nous avons simplifié le problème en supposant un état d’équilibre homogène

à une dimension (x) et en considérant une polarisation de spin uniquement selon

l’axe z (approximation du magnétisme colinéaire). Dans ce cas les fonctions de dis-

tribution à l’équilibre s’écrivent:

f
(0)
0 = f

(0)
0 (v) = G

(
mv2/2 + µBB

)
+ G

(
T,mv2/2− µBB

)
, (49)

f (0)
z = f (0)

z (v) = G
(
mv2/2 + µBB

)
− G

(
T,mv2/2− µBB

)
. (50)

où G est soit une distribution de Maxwell-Boltzmann, soit une distribution de Fermi-

Dirac. Sous couvert des approximations précédentes, on cherche à linéariser le

FIGURE 2: Schéma d’une excitation électrique longitudinale dans la di-
rection x ainsi que les densités d’électrons et d’ions associées. Les spins

sont polarisés dans la direction z.
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système d’équations suivant:

∂f0
∂t

+ v ∂xf0 −
1

m
∂x (−eφ+ VXC) ∂vf0 −

µB

m
∂x (BXC +Bz) ∂vfz = 0, (51)

∂fz
∂t

+ v ∂xfz −
1

m
∂x (−eφ+ VXC) ∂vfz −

µB

m
∂x (BXC +Bz) ∂vf0 = 0, (52)

∂2φ

∂x2
=

e

ǫ0

(∫
f0dv − n0

)
,

∂Bz

∂x
= −µBµ0

∂

∂x

(∫
fzdv

)
, (53)

où la variable vitesse v ≡ vx désigne la composante x du vecteur vitesse.

Dans la première partie de ce chapitre, on utilise la transformée de Fourrier-

Laplace pour déterminer la réponse linéaire du système d’équations précèdent (51)-

(53). On trouve la fonction diélectrique suivante:

ǫ (p, k) = 1 +
ω2
p

kn0

I0 −
kµ2

Bµ0

m
I0 +

k

m
[(∂nVXC + µB∂mBXC) I0 + (∂mVXC + µB∂nBXC) Iz]

+
µBk

2

m2
[(∂nVXC) (∂mBXC)− (∂nBXC) (∂mVXC)]

[
I2
0 − I2

z

]

+

[
−
ω2
pµ

2
Bµ0

n0m
+

µBω
2
p

n0m
∂mBXC − k2µ2

Bµ0

m2
∂nVXC

] (
I2
0 − I2

z

)
, (54)

où, les intégrales I0 et Iz sont définit par les relations suivantes:

I0,z = −i

∫
∂vf

(0)
0,z

p+ ikv
dv. (55)

La fonction diélectrique du système (54) dépend uniquement de l’état d’équilibre

du système (49)-(50) à travers les intégrales I0 et Iz.

Dans la seconde partie de ce chapitre, on cherche à trouver les zéros de la fonc-

tion diélectrique ω(k) pour un état d’équilibre polarisé en spin et décrit par une

statistique de Fermi-Dirac. Malheureusement, il s’avère que cette étude n’a pas

aboutit en raison d’un problème mathématique complexe. En effet d’un point de

vue générale, la variable ω étant une quantité complexe, il faut évaluer les intégrales

I0 et Iz par une intégrale dans le plan complexe. Cette intégrale se fait sans trop de

difficultés grâce à la méthode des contours de Landau. Cependant une condition

nécessaire pour utiliser cette méthode est que les fonctions suivantes: ∂f
(0)
0,z (v)/∂v

soient des fonctions analytiques de la variable complexe v. Or dans le cas d’une dis-

tribution d’équilibre du type Fermi-Dirac ceci n’est pas le cas, on ne peut donc pas

utiliser la méthode des contours de Landau.

Dans la troisième partie du chapitre, on étudie la relation de dispersion du plas-

mon avec spin en considérant une distribution d’équilibre du type Maxwell-Boltzmann.

Dans ce cas on peut appliquer la méthode des contours de Landau et on obtient la
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fonction diélectrique suivante:

ǫ (ω, k) = 1− 1

v2T

[
ω2
p

k2
− µ2

Bµ0n0

m
+ 2

n0

m
(∂nVX + α∂mVX)

]
Z ′
(

ω

kvT

)

+

(
n0

mv2T

)2 [
(∂nVX)

2 − (∂mVX)
2] [1− α2

]
Z ′
(

ω

kvT

)2

+

(
n0

kv2T

)2 [µBω
2
p

n0m
∂nVX −

ω2
pµ

2
Bµ0

n0m
− k2µ2

Bµ0

m2
∂nVX

] [
1− α2

]
Z ′
(

ω

kvT

)2

, (56)
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FIGURE 3: Relation de dispersion du plasmon ω(k) pour deux
différents systèmes physiques. Les lignes du haut correspondent à la
partie réelle de la fréquence tandis que les lignes du bas correspon-
dent à la partie imaginaire de la fréquence. Les lignes noires cor-
respondent aux cas sans interaction d’échange tandis que les lignes
colorées correspondent aux cas avec interaction d’échange. Les lignes
bleus représentent un système complètement polarisé en spin et les
lignes rouges à un système non polarisé en spin. Dans la figure (a),
on considère des électrons avec une densité: n0 = 1022m−3 et une
température T = 300K. Dans la figure (b), on considère des électrons
avec la densité suivante: n0 = 5.9×1028m−3 et à T = 64000K (vT = vF).

Dans les deux cas, on a: m = 1a.u et ǫ0 = 1/4π a.u.
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où Z ′ (̺) = −2̺Z (̺) − 2 est reliée à la fonction de dispersion plasma Z (̺). Ce

résultat est une généralisation de la fonction diélectrique du plasmon en tenant

compte des effets de spin. Afin de trouver les zéros de cette fonction diélectrique,

nous utilisons le programme ZEAL. Ce dernier permet de trouver tous les zéros

d’une fonction analytique dans une certaine région du plan complexe. Les zéros de

la fonction diélectrique forment la relation de dispersion du système. Ces derniers

dépendent de la densité, de la température et de la magnétisation du système à

l’équilibre. On a étudié deux cas différents dans cette partie. Dans un premier

temps on a considéré une densité d’électrons métalliques: n0 = 5.9 × 1028 m−3 (Or).

La température du système doit être artificiellement élevés car on considère une

statistique de Maxwell-Boltzmann et non une statistique de Fermi-Dirac. On prend

donc T = 65000 K afin d’avoir des électrons à la vitesse de Fermi. Dans la fig-

ure 3 (b), on représente la relation de dispersion dans le cas de l’Or. On remarque

que les effets de spin n’influent presque pas sur la relation de dispersion du plas-

mon (différence entre la courbe noir et les courbes colorées). Dans le second cas

(idéaliste), on considère une densité électronique égale à n0 = 1022 m−3. Pour un tel

système, l’approximation de Maxwell-Boltzmann est justifié car la température de

Fermi est de l’ordre de 2K. Dans ce cas, on observe une forte influence des effets de

spin. En effet le fréquence plasmon décroit pour des faibles valeurs de k au lieu de

croı̂tre dans le cas sans spin. Néanmoins cette situation correspond à un cas idéaliste

que l’on ne trouve pas dans des régimes de la physique du solide. On en conclut

donc que les effets de spin sur la relation de dispersion plasmon existent, cependant

ils n’apparaissent pas dans les régimes habituels de température et de densité que

l’on rencontre en matière condensée.

Chapitre 4

Le quatrième chapitre de ma thèse est une application des équations de Vlasov sur

l’étude de la dynamique de charges et de spins dans des films ferromagnétiques de

Nickel. En particulier on s’intéresse à l’interaction entre un pulse laser femtoseconde

et les électrons dans le film. Le résultat principale de ce chapitre est la création d’un

courant de spin oscillant dans la direction normal du film. On considère un film in-

finiment fin (L ∼ 5 nm) dans la direction x, de telle sorte que l’on a un problème uni-

dimensionnel à résoudre selon l’axe x (voir Fig. 4). Pour modéliser la distribution

des ions, on utilise un modèle du type jellium avec une densité ionique continue:

ni(x) = n0 [1 + exp [(|x| − L/2) σ]]−1, où L est l’épaisseur du film, σ un paramètre

modélisant la surface du film ( σ ∼ 0.5 − 1 Å) et n0 = (4πrs/3)
−1 est la densité du

Nickel dans l’état solide (rs = 2.6 u.a).

La structure électronique du Nickel est la suivante: [Ni] = [Ar] 3d8 4s2. Dans mon

modèle, je considère que les électrons de la couche 4s sont délocalisés et sont re-

sponsables du magnétisme itinérant. Tandis que les électrons de la couche 3d restent

localisés autour de l’atome de Nickel et forment un spin ionique.
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Le moment magnétique total du Nickel M tot = M i + M e est égal à 0.606 µB par

atome. On doit donc spécifier la proportion de moments magnétiques portés par les

différent types d’électrons. Le moment magnétique des électrons de la couche 3d,

définit par M i = −gµBS
i, est égale à 0.54 µB par atome à zero kelvin. On en déduit

donc que le moment magnétique porté par les électrons 4s, définit par M e, est égale

à 0.066 µB par atome.

En plus des différentes interactions électrostatiques entre les ions et les électrons, on

considère également une interaction d’échange entre le spin des ions avec un con-

stante de couplage J et une interaction d’échange entre le spin localisé des ions et le

spin délocalisé des électrons avec une constante de couplage K (voir figure 5).

La dynamique de spin et de charge des électrons itinérant est modélisé avec le

modèle semi-classique des équations de Vlasov avec spin. Pour des raisons numériques,

on considère uniquement l’interaction Zeeman. Ceci nous permet de réduire l’espace

des phases à un espace à deux dimensions (x, vx = v). Cependant, avec cette approx-

imation on ne peut pas traiter le couplage spin-orbite. Les électrons sont donc décrit

par les fonctions de distribution f0 et fi qui évoluent de la manière suivante:

∂f0
∂t

+ v · ∂xf0 −
1

m

∂V

∂x

∂f0
∂v

− µB

m

∂Bi

∂x

∂fi
∂v

= 0, (57)

∂fi
∂t

+ v · ∂xfi −
1

m

∂V

∂x

∂fi
∂v

− µB

m

∂Bi

∂x

∂f0
∂v

− e

m
[B × f ]i = 0. (58)

Ces fonctions de distribution nous permettent de reconstruire des quantités macro-

scopiques telles que la densité d’électron ne =
∫
f0dv ou de magnétisation Me =

−µB

∫
fdv/n0. Le potentiel électrique V = −eVH+Vxc+Vext et le champ magnétique

FIGURE 4: Géométrie
d’un film de Nickel.

FIGURE 5: Schéma des
différentes intéractions
d’échange entre les ions
(3d8) et les électrons
(4s2), K et J sont des

constantes d’échange.
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B = Bsd+Bxc+Bext présents dans les equations (57)-(58). Ces derniers ont plusieurs

origines. VH est le potentiel d’Hartree, il obéit à l’équation de Poisson:

∂2
xVH =

e

ǫ0

[∫
f0dv − ni

]
. (59)

Bsd = −KniSi/2µB désigne un champ magnétique local qui représente l’interaction

d’échange entre le spin des ions et le spin des électrons. Les quantités Vxc et Bxc

représentent les effets d’échange-corrélation et Vext et Bext représentent les champs

externes (lasers pulsés).

Les spins des ions ont un mouvement de précession qui est décrit par une équation

de Landau-Lifchitz continue:

∂Si

∂t
=

a2J

~
Si × ∂2Si

∂x2
− γSi ×Beff , (60)

où γ = gµB/~ est le facteur de Landé de l’électron, a = 2rs est la distance inter-

particule et Beff = Bext+KM e/2gµ2
B est un champ magnétique effectif. En résumé,

les équations (57)-(58) et (60) constituent un modèle auto-consistant permettant de

décrire la dynamique électronique de charges et de spins dans un film ferromagnétique

de Nickel.

Dans la seconde partie du chapitre, on cherche à caractériser l’état stationnaire

du système (f
(0)
0 et f

(0)
z ) pour lequel les spins sont orientés dans la direction trans-

verse du film (z). En ce qui concerne les électrons, les solutions stationnaires des

équations de Vlasov avec spin (57)-(58) s’écrivent:

f
(0)
0 = FD(H

+) + FD(H
−), f (0)

z = FD(H
+)−FD(H

−), (61)

où FD est une fonction de distribution de Fermi-Dirac longitudinale:

FD(H) =
2πkBT

m

( m

2π~

)3
ln [1 + exp [(µ−H) /kBT ]] .

Les quantités µ et H± = m
2
v2 + V ± µBBz représentent respectivement le potentiel

chimique et le Hamiltonien des spins ”up” et ”down”.

En ce qui concerne les ions, l’état stationnaire de l’équation (60) est obtenu en prenant

une moyenne statistique dans l’ensemble canonique:

〈Si
z〉 = SBS

[
S

kBT

(
2J〈Si

z〉 −
K

2µB
M e

z

)]
, (62)

où S = 0.54/2 est la valeur du spin ionique à zero kelvin et BS est la fonction de

Brillouin .

Les états stationnaires précédents sont obtenus en résolvant un problème auto-consistant.
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FIGURE 6: État fondamental d’un film de Nickel (L = 100 LF et σ =
1 LF). Figure principale: Magnétisation des ions (bleu) et des électrons
(noir) en fonction de la température. Figure secondaire: Potentiel de
confinement des spins ”up” V+ (rouge) et des spins ”down” V− (vert).

En effet pour déterminer f
(0)
0 , f

(0)
z et 〈Si

z〉, on doit d’abord calculer les champs in-

ternes VH et Bsd qui dépendent eux mêmes de f
(0)
0 et 〈Si

z〉. On choisit donc des

fonctions de distribution initiales f
(0)
0 et f

(0)
z , ensuite on calcule les champs auto-

consistants puis on recalcule les nouvelles fonctions de distribution. On recom-

mence ce processus jusqu’à avoir convergence des résultats. Cette procédure dépend

de deux paramètres d’échange (K et J). Afin de trouver ces paramètres, on se place

à température nulle, puis on choisit K pour obtenir la bonne valeur pour le mo-

ment magnétique des électrons. Ensuite on règle J pour avoir la bonne température

de Curie. Dans la figure 6, on représente l’évolution du moment magnétique des

électrons et des ions en fonction de la température. On retrouve un bon comporte-

ment pour la magnétisation du Nickel en prenant les valeurs suivantes: J = 0.022 eV

et K = 0.014 eV.nm3 pour les constantes d’échange. On remarque également que

les spins ”up” sont plus confinés que les spins ”down”. Ceci est dû au champ

magnétique d’échange entre les ions et les électrons. Ce dernier peut atteindre des

valeurs très importantes de l’ordre de 6.103 Tesla.

Dans la troisième partie du chapitre 4, on réalise des simulations numériques des

équations de Vlasov avec spin (57)-(58). On excite la dynamique électronique en in-

troduisant un déplacement en vitesse ∆v des fonctions de distribution électroniques

f0 et fz. Dans la figure 7, on représente une simulation réalisée avec une excitation

∆v = 0.05 vF. Comme on s’y attendait, on observe la création d’un dipôle électrique:

〈X〉e =
∫
xf0dxdv. On observe également la création d’un dipôle magnétique (équivalent

à un courant de spin): 〈X〉m ≡
∫
xfzdxdv. Ceci est plus surprenant car on a unique-

ment excité la dynamique de charges et non la dynamique de spins. Ce courant

de spin est progressivement créé au cours des premières oscillations du plasmon et

oscille à une fréquence beaucoup plus basse que celle du plasmon ( 0.043 ωp). Cette

fréquence est très proche de la fréquence balistique ωb = (2L/vF)
−1 qui est l’inverse
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FIGURE 7: Simulations réalisées sur des films de Nickel (L = 50 LF

et σ = 1 LF). Figure principale: Évolution temporelle des dipôles
électriques (noir) et magnétiques (bleu). Figure (a): Spectre de Four-
rier des dipôles électriques et magnétiques. Figures (b)-(c): Évolution

temporelle des dipôles ”up” (rouge) et ”down” (vert).

du temps de vol des électrons parcourant le film d’une surface à l’autre à la vitesse

de Fermi. Dans le cas d’un film de taille L = 50 LF, la fréquence balistique vaut

ωb = 0.063 ωp. On propose l’explication suivante pour comprendre l’origine de la

création de ce courant de spin. A l’équilibre, les spins ”up” sont plus confinés que

les spins ”down”. Lorsque l’on va exciter les électrons, les spins ”down” vont at-

teindre en moyenne la surface du film avant les spins ”up”. À la surface du film le

champ électrique est le plus fort en raison des forts gradients de densité. La présence

des spins ”down” à la surface du film va modifier le champ électrique à la surface.

Si bien que les électrons de spin ”up”, arrivant un peu pus tard, vont ressentir un

champ électrique différent que celui ressentit par les spins ”down”. La conséquence

de cette effet est que les spins ”up” vont être repoussés plus rapidement que les

spins ”down” vers l’intérieur du film. De l’autre coté du film c’est la situation op-

posée qui se produit, à savoir que ce sont les électrons de spin ”up” qui modifient

le champ à la surface et que ce sont les électrons de spin ”down” qui sont repoussés

vers l’intérieur du film plus rapidement. Cette effet s’amplifie après chaque oscil-

lations du plasmon jusqu’à arriver à la situation où les deux populations de spin

oscillent en opposition de phase. Ceci explique l’origine de la création du dipôle

magnétique ou du courant de spin.

Dans la dernière partie du chapitre 4, on modélise une situation plus réaliste

dans laquelle les électrons sont excités par un champ laser femtoseconde. Ce dernier

est modélisé par le champ électrique suivant: E(x) = E0 exp
[
− [(t− t0) /∆t]2

]
cos (ωlt) êx,

où E0 est l’amplitude du laser, ∆t la durée du pulse et ωl la fréquence centrale du

pulse. Dans la figure 8, on excite les électrons avec un pulse laser dans le régime du

visible λl = 2πc/ωl = 800 nm, ∆t = 5 fs et E0 = 1010 V/m. Dans la partie (a) de

la figure, on représente l’évolution temporelle sur 100 fs des dipôles électriques et
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magnétiques. On remarque que le dipôle électrique est créé par le pulse laser sur des

temps très courts (t < 25 fs), tandis que le dipôle magnétique est créé plus ”lente-

ment”. Après que le pulse laser ait disparu les deux dipôles continuent à osciller

avec des amplitudes similaires. On observe donc toujours la création d’un courant

de spin même avec une excitation laser réaliste et dans le régime non linéaire.

Chapitre 5

Dans le chapitre 5, on s’intéresse à la dynamique de charges des électrons dans

des nano-structures métalliques. Ce sont de petits objets métalliques de l’ordre du

nanomètre contenant entre plusieurs dizaine et plusieurs milliers d’électrons. De

tels objets sont intéressant à étudier car ils mettent en jeu des effets électroniques col-

lectifs qui permettent d’exalter certaines propriétés telle que la génération d’harmoniques.

Ils sont utilisés dans de nombreux domaines de la science telle que la nano-photonique,

la biologie et également la médecine.

FIGURE 9: Illustration de l’oscillation d’un plasmon.
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Dans la première partie du chapitre 5, on étudie la dynamique des électrons con-

finés dans des nano-particules d’Or. On considère des nano-particules ayant un

rayon de 1 à 2 nanomètre. On s’intéresse en particulier à deux modes d’oscillations

du nuage électronique. Le premier mode est le mode plasmon, ce dernier corre-

spond à une oscillation collective des électrons autour du fond ionique fixe (voir

figure 9). C’est un mode de surface car les charges sont localisées à la surface de

la nano-particule. La fréquence typique de l’oscillation du plasmon est donnée

par la fréquence plasma: ωp =
√
e2n0/mǫ0, où n0 = 5.9 × 1028 m−3 est la den-

sité électronique de l’Or. Le second mode est un mode de respiration de la densité

électronique. Ce dernier correspond à une oscillation isotrope du nuage électronique.

C’est un mode de volume car une différence de charge apparaı̂t également à l’intérieur

de la nano-particule.

On modélise la dynamique électronique grâce à des équations d’hydrodynamiques

quantiques:





∂n

∂t
+∇nu = 0

∂u

∂t
+ u∇u = ∇VH −∇VX − ∇P

n
+

1

2
∇
[∇2

√
n√

n

]

∇2VH = 4π(n− ni)

(63)

La première équation est une équation de continuité qui traduit la conservation

du nombre d’électrons dans le système. La seconde équation est une équation

d’Euler qui donne l’évolution de la vitesse moyenne des électrons en fonction des

différentes forces agissant sur le système. Ces différentes forces sont représentées

par le potentiel d’Hartree VH qui obéit à l’équation de Poisson, la pression de Fermi

P = (3π2)
2/3

n5/3/5 et le potentiel d’échange-corrélation:

VX =
δEx[n]

δn
EX [n] = −3(3π2)1/3

4π

∫
n4/3dr − β

∫
(∇n)2

n4/3
dr. (64)

Enfin le dernier terme de l’équation d’Euler est un terme d’origine quantique qui est

relié au potentiel de Bohm.

La résolution numérique des équations hydrodynamiques précédentes s’avère être

difficile à réaliser numériquement. On choisit donc d’utiliser une approche vari-

ationnel pour résoudre ces équations hydrodynamiques. Dans un premier temps,

on montre que le système d’équations fluides ci-dessus est équivalent à la densité
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Lagrangienne suivante:

L = n

(
∂S

∂t
+

(∇S)2

2

)
+

(∇n)2

8n
+

3

10

(
3π2
)2/3

n5/3

− 3

4π

(
3π2
)1/3

n4/3 − β
(∇n)2

n4/3
− (∇VH)

2

8π
− (n− ni)VH . (65)

Cette densité Lagrangienne dépend de trois champs scalaires: la densité électronique

n(r, t), le champ S(r, t) qui est relié à la vitesse moyenne des électrons (u = ∇S) et

le potentiel d’Hartree VH. Ensuite le principe de la méthode variationnel est de faire

un ”Ansatz” sur le profil spatial de la densité électronique. Dans notre cas, on choisit

la densité suivante:

n(r, t) =
A

1 + exp

([
s(r,t)
σ(t)

]3
−
[
rc
σ0

]3) , (66)

où s =
√
x2 + y2 + (z − d(t))2 est une variable de coordonnées déplacées. On a

introduit dans la densité électronique deux variables dynamiques d(t) et σ(t). La

première représente le centre de masse du nuage d’électrons et nous permet de

décrire le mode dipolaire. Tandis que la seconde représente le débordement de

la densité électronique aux bords de la nano-particule (”spill-out effect”) et nous

permet de décrire le mode de respiration. A partir de ”l’Ansatz” sur la densité

électronique, il est possible en utilisant respectivement l’équation de continuité et

l’équation de Poisson de trouver un profile spatial pour la vitesse moyenne des
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FIGURE 10: Excitation auto-résonante d’une nano-particule d’Or (N =
200) pour deux valeurs d’intensité du champ laser: I = 4.5 1010 W/cm2

(courbe rouge) et I = 5.4 1010 W/cm2 (courbe bleu). Les figures du haut
montrent l’évolution temporelles du dipôle électrique d(t) en-dessous
du seuil (a) et au-dessus du seuil (b). (c): Fréquence laser (noir) et
fréquences instantanées des dipôles. (d): Énergies absorbées par les

électrons au cours du temps.
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FIGURE 11: Spectre en fréquence du rayonnement électromagnétique
généré par le dipôle électrique en-dessous du seuil d’auto-résonance

(a) et au-dessus du seuil (b).

électrons et le potentiel d’Hartree. On peut ensuite calculer le Lagrangien du système,

ce dernier s’obtient en intégrant la densité Lagrangienne sur tout l’espace: L
(
d, σ, ḋ, σ̇

)
=

−1
N

∫
L (d, σ, r) dr. Puis en utilisant les équations d’Euler-Lagrange, on obtient un

système d’équations différentielles décrivant la dynamique du plasmon et du mode

de respiration: {
M(a)σ̈ = −dU(σ)

dσ
+ F (σ) d2 −G (σ) d4

d̈ = −Ω2
dσ)d+ 4K(σ)d3

(67)

Sans rentrer dans les détails des différents termes, on remarque que l’on a un système

de deux équations non-linéaires couplées. A partir de ces équations, on peut ex-

traire les fréquences de résonance des modes d’oscillations. Pour le mode dipolaire

on trouve Ωd et pour le mode de respiration on trouve Ωσ =
√

dU(σ0)/dσ/M(a).

On montre également que ces deux modes dépendent correctement du nombre

d’électrons dans le système. Ceci nous permet de valider notre approche variation-

nel. Ensuite nous allons exciter le système avec un champ électrique auto-résonant,

ce dernier s’écrit de la manière suivante:

E(t) = E0 cos

([
Ωd +

1

2
α(t− t0)

]
(t− t0)

)
êz (68)

La particularité d’une excitation auto-résonante est d’avoir une fréquence qui varie

dans le temps. Dans notre cas la fréquence décroit linéairement avec un taux α. Ce

type d’excitation peut être réalisé expérimentalement à l’aide d’un laser ”chirpé”.

Le principe de l’auto-résonance est d’avoir un blocage de phase entre le système et

l’excitation. Autrement dit la condition de résonance est toujours satisfaite même

dans le régime non-linéaire. Ceci n’est évidement pas la cas si on excite le système

à une fréquence constante car lorsque le système entre dans le régime non-linéaire

sa fréquence instantanée est modifiée et la condition de résonance est perdu. Afin
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que l’auto-résonance fonctionne il faut que la condition suivante soit satisfaite: E0 >

ξc (ξc ∝ |α|3/4). C’est à dire qu’il faut que la variation de la fréquence soit suffisam-

ment lente pour que le système ait le temps de s’adapter et de se mettre en phase

avec l’excitation. Dans la figure 10, on représente l’évolution temporelle du mode

dipolaire dans un cas où l’auto-résonance ne fonctionne pas (Fig.10(a)) puis dans

un cas où l’auto-résonance fonctionne (Fig.10(b)). Dans le cas ou l’auto-résonance

fonctionne, on remarque que l’on arrive à exciter fortement le dipôle électrique en

utilisant une intensité laser à peine plus élevée que dans le cas (Fig.10(a)). En effet

dans la figure 10(a) l’intensité laser vaut I = 4.5 1010 W/cm2 alors que dans la fig-

ure 10(b) elle vaut I = 5.4 1010 W/cm2. Cette dynamique, au cours de laquelle les

électrons sont excités de manière cohérente par le champ laser, conduit à la création

d’un dipôle électrique dans le régime non-linéaire. Or un dipôle électrique qui os-

cille émet un rayonnement électromagnétique. Dans la figure 11, on représente le

spectre en puissance de ce rayonnement. On montre que dans le cas d’une excita-

tion auto-résonante, le spectre est riche en harmoniques de la fréquence dipolaire

linéaire. En principe une excitation auto-résonante pourrait donc être utilisé pour

faire de la génération d’harmoniques sur des nano-particules métalliques.

Dans la seconde partie du chapitre 5, j’étudie par une approche variationnel

la dynamique d’un gaz d’électrons confiné dans un potentiel anisotrope et anhar-

monique. Je met en évidence un lien entre la dynamique non-linéaire des électrons,

étudié à travers les sections de Poincaré, et la génération d’harmoniques.
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“Life is like riding a bicycle. To keep your balance, you must keep moving.”

Albert Einstein
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Introduction

The physics of metallic nano-structures has stimulated a huge amount of scien-

tific interest in the last two decades, both for fundamental research and for po-

tential technological applications that range from the recent fields of nanophoton-

ics [1,2], physical chemistry [3] and even biology and medicine [4,5]. Metallic nano-

structures are mesoscopic systems composed of a relatively small numbers of metal-

lic atoms, typically between a few tens and several millions. The typical size of those

systems are of few nanometres with properties that are intermediate between those

of molecules and bulk solids. They can have different geometries, ranging from

spherical nanoparticles, thin films or nanorods, see Fig. 12. Moreover metallic nano-

structures present an intrinsic fundamental interest as large objects that still display

quantum features [6–9]. Quantum effects arise because of the large density, which

means that electrons are closely packed together. The typical size at which quantum

effects dominate is given by the de Broglie wavelength λB = ~/mv, where m and v

are, respectively, the mass and velocity of the electrons. In recent years, there has

been tremendous progress in the manipulation of those objects. Many experimen-

tal studies focused on the charge dynamics of an electron gas confined in metallic

nano-structures such as thin films [11, 12], nanotubes [13], metal clusters [14, 15]

and nanoparticles [6,7,16]. On one hand, metallic nano-structures are small enough

so that their magnetic and electric properties are strongly dependent on their ge-

ometries. On the other hand, they are large enough to exhibit collective effects.

The latter are mediated by the conduction electrons and can be viewed as a mo-

bile plasma neutralized by the ionic background. Collective effects are interesting

because they can be measured experimentally and used for applications (nanoplas-

monics). Experimentally, the electron dynamics in a metallic nano-structures can be

FIGURE 12: From [10], Sketch of different nano-structure geometries.
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probed with great precision using ultrafast spectroscopy techniques in the femtosec-

ond regime [12, 16]. For instance plasmon resonances, i.e. electron oscillations near

the plasma frequency ωp =
√

n0e2/mǫ0, are routinely observed in metallic nanopar-

ticles and their properties (resonance frequency, damping, ...) are studied experi-

mentally and used for instance for medical applications [17, 18] or high harmonic

generations [19, 20].

In this kind of experiment the electron dynamics is excited thanks to a femtosec-

ond laser pulse and displays a broad range of physical regimes associated with

various time scales. The following typical scenario is generally assumed, see Fig.

13. In the first tens of femtoseconds the interaction between the electrons (charges

and spins) and the laser field (photons) is coherent, meaning that the electron dy-

namics is mainly driven by the laser and the self-consistent fields. This early stage

leads to many physical effects. From the point of view of the charge dynamics it

leads to the creation of a collective charge oscillation, the so-called surface plasmon.

From the point of view of the spin dynamics, the laser pulse induced a demagne-

tization of the system. The latter was observed experimentally in many magnetic

systems [21, 22]. In the coherent regime, there is no general agreement about the

underlying mechanism of the ultrafast demagnetization. Some recent works [23,24]

pointed out that the spin-orbit interaction is responsible of the ultrafast demagneti-

zation. Other works [25] attribute the ultrafast demagnetization to a superdiffusive

FIGURE 13: From [21], diagram of the different physical processes and
the associated time scales induced by the interaction between a fem-

tosecond laser pulse and a magnetic nano-structure.
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transport of electrons induced by the laser field . During these fast processes, the

ionic background remains frozen and the electron distribution is nonthermal. As a

result, the electron temperature cannot be properly defined at this stage of the relax-

ation process. A few times after the coherent regime (t > 50 − 100 fs in Fig. 13), the

laser energy injected in the system is redistributed between the electrons through

electron–electron collisions and spin-flip processes, leading to the thermalization of

the electron’s charges and spins. Finally, in the picosecond regime, electron-phonon

scattering lead to the relaxation of the electron’s energy and to the thermalization of

the full system.

From a theoretical point of view, the description of the electronic dynamics in

metallic nano-structures is a very complex challenge. Exact approaches based on

the N body Schrödinger equation are necessarily limited to a very small number

of particles. Although such few- or even single-electron systems can nowadays be

realized in laboratory, in most practical situations a great many electrons are in-

volved [26,27]. In that case, self-consistent effects arising from the Coulomb interac-

tions (between all the electrons) play a crucial role on the dynamics. Several theoret-

ical and computational studies, which treat the many-body dynamics in an approx-

imate way, focused on the linear and nonlinear electron response. Earlier works

were based on phenomenological models [28–30] that employed Boltzmann-type

equations within the framework of the Fermi-liquid theory [31]. Studies based on

microscopic models (either classical or quantum) are more recent and limited to rel-

atively small systems, due to their considerable computational cost. In the quantum

regime, ultrafast electron dynamics in metallic clusters was studied by Calvayrac et

al. [32] and more recently by Teperik et al. [33] using the time-dependent density

functional theory (DFT). The many-particle quantum dynamics of the electron gas

in a thin metal film was studied by Schwengelbeck et al. [34] within the framework

of time-dependent Hartree-Fock (HF) approximation. Even the above-cited meth-

ods can be computationally too costly for very large systems.

A possible alternative relies on a semiclassical description of the electron dynam-

ics. The semiclassical limit of the above quantum models (DFT and HF) is the self-

consistent Vlasov-Poisson system. The Vlasov-Poisson model was used by many

authors to model the electron dynamics in metal clusters [32, 35, 36] and in thin

metallic films [37, 38]. For instance in Ref. [38], Manfredi and Hervieux identi-

fied, in addition to the the plasmon mode, a ballistic electron mode generated by

bunches of electrons bouncing back and forth on the film surfaces. These works

were later extended to the quantum regime using the Wigner phase-space descrip-

tion [39]. As it is based on the classical phase space, the Wigner formulation is often

a more intuitive approach than the more standard Schrödinger approach, especially

for problems where semiclassical considerations are important. For these reasons,

it is used in many areas of quantum physics, including quantum optics [40], semi-

classical analysis [41,42], electronic transport [43], nonlinear electron dynamics [39],
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and quantum plasma theory [44]. It is also the starting point for the construction

of quantum hydrodynamic equations, which are approximate models obtained by

taking velocity moments of the Wigner function. Such models were used in the

past to study the electron dynamics in molecular systems [45], metal clusters and

nanoparticles [46–48], thin metal films [49], quantum plasmas [50,51], and semicon-

ductors [52].

The above studies included the electron’s charge, but not the electron’s spin de-

grees of freedom. However, it is well known that spin effects (particularly the Zee-

man interaction and the spin-orbit coupling) can play a decisive role in nanometric

systems such as for instance semiconductor quantum dots [53, 54] or diluted mag-

netic semiconductors [55, 56]. The coupling between the spin degrees of freedom

and the electron’s orbital motion is of the utmost importance in many experimen-

tal studies involving magnetized nano-objects. A particularly interesting example

is the ultrafast demagnetization induced by a femtosecond laser pulse in ferromag-

netic thin films [21], an effect that is not yet completely elucidated from the theoret-

ical viewpoint. Recent time-dependent density functional theory (TDDFT) simula-

tions suggest that the spin-orbit coupling plays a central role in the demagnetization

process [23].

Phase-space models based on the Boltzmann equation [57], and the corresponding

fluid models [58], were derived in the past to describe the dynamics of a gas where

the constituents possess internal degrees of freedom (internal angular momentum).

However, in these models the spin is not treated ab-initio as a fundamental quantity,

but is rather incorporated into the transport equations to ensure the correct conser-

vation properties. More recently, a few theoretical models that include the spin in

the Wigner formalism were also developed. One approach [59] consists in defining

a scalar probability distribution that evolves in an extended phase space, where the

spin is treated as a classical two-component variable (related to the two angles on a

unit-radius sphere) on the same footing as the position or the momentum. This ap-

proach was used to derive a Wigner equation that incorporates spin effects through

the Zeeman interaction [59]. Semiclassical [60] and hydrodynamic [61] spin equa-

tions were also derived from those models, including other relativistic effects such

as the spin-orbit coupling, the Darwin term, and the relativistic mass correction.

An alternative approach keeps the 2 × 2 matrix character of the distribution func-

tion [62], so that the orbital and spin dynamics are represented by different Wigner

functions. Using this approach, the corresponding Wigner equations were derived

from the full Dirac theory [63]. However, their complexity makes them unsuitable

for applications to condensed matter and nanophysics. Both approaches (extended

phase space and matrix Wigner function) are equivalent from the mathematical

point of view. However, the extended phase space approach leads to cumbersome

hydrodynamic equations that are in practice very hard to solve, either analytically

or numerically, even in the non-relativistic limit. The matrix technique separates

clearly the orbital motion from the spin dynamics and leads to simpler and more
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transparent hydrodynamic models. In this thesis we shall use the matrix technique

to investigate the spin dynamics in metallic nano-structures.

This thesis is divided into two main parts. The first part is composed of the

first four chapters and concerns the development of theoretical models and numer-

ical simulations on the spin dynamics in ferromagnetic thin films (nickel). We shall

derive a more tractable Wigner equation from the Pauli (instead of Dirac) theory,

including both Zeeman and spin-orbit interactions. Then, from the Wigner formu-

lation, we shall construct a four component Vlasov equation for a system composed

of spin-1/2 electrons. The orbital part of the motion will be classical, whereas the

spin degrees of freedom will be treated quantum-mechanically. This model will be

applied to study the spin dynamics in ferromagnetic thin films of nickel. The second

part corresponds to the chapter 5 and concerns the nonlinear charge dynamics of

electrons (without spin) confined in metallic nanoparticles (Gold) or in anisotropic

and nonparabolic wells. We shall use a variational approach based on the quantum

hydrodynamic models to describe the electron dynamics.

The first chapter summarizes the different methods commonly used to describe

the charge dynamics of an ensemble of interacting electrons. We first discuss the

general many body problem in quantum mechanics. Then we present the general

phase-space formulation of quantum mechanics as well as the way to perform semi-

classical developments. Finally we discuss also the possibility to construct hydro-

dynamic models based on the Wigner phase-space distribution.

The second chapter concerns the extension of the phase-space methods to the

spin. We will first use a gauge invariant formulation of the Weyl transformation to

derive a set of Wigner equations for a system of spin-1/2 fermions. A self-consistent

mean-field model will be further obtained by coupling these Wigner equations to the

set of Maxwell equations for the electromagnetic fields, where the sources (charges

and current densities) are related to velocity moments of the Wigner function. A

related mean-field model was obtained recently by Dixit et al. [64] in the framework

of the Schrödinger-Pauli equation. Subsequently, we will derive the corresponding

semiclassical limit and obtain the Vlasov equations describing the evolution of an

electron gas with spin and semi-relativistic effects. In this model, the orbital dynam-

ics is treated classically, whereas the spin is represented as a fully quantum variable.

Finally, the Vlasov equations will be used to derive a hierarchy of hydrodynamic

equations by taking velocity moments of the probability distribution functions. This

is an infinite hierarchy that needs to be closed using some additional physical hy-

potheses. Although this is relatively easy for spinless systems (where the closure

can be obtained by a assuming a suitable equation of state), things are more subtle

when the spin degrees of freedom are included. Here, we shall use a general method

based on the maximization of the entropy (MEP) [65] to obtain a closed set of fluid

equations with spin effects.
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The third chapter deals with the linear analysis of the semiclassical phase-space

models (with spin effects) developed in chapter 2. We essentially present the disper-

sion relation of a spin polarized electron gas and study the influence of spin effects

on the plasma frequency.

The fourth chapter concerns the application of the phase-space methods devel-

oped in this thesis. We shall study the coherent spin dynamics in ferromagnetic thin

film of nickel. The model is based on a distinction between local and itinerant mag-

netism, both interacting together through an Heisenberg exchange interaction. In

the first part of the chapter, we will define a procedure to construct a self-consistent

ground state which correctly describes the magnetic properties of nickel. Then we

will present the numerical methods that we used to solve the phase-space equations.

Finally the non linear electron dynamics will be investigated by means of numeri-

cal simulations, we will namely discover the possibility to create a spin current in a

thin film of nickel with electric excitations (femtosecond laser pulses). We will anal-

yse in details this process and propose a physical explanation for the underlying

mechanisms.

Finally, in the last chapter we focus on the charge dynamics of electrons con-

fined in metallic nanoparticles (Gold) and anisotropic and nonparabolic wells. The

electron dynamics is investigated using a variational approach. The latter is based

on the Lagrangian formulation of the quantum hydrodynamic equation. By pos-

tulating a reasonable ansatz for the electron density, it is possible to obtain a set of

ordinary differential equations for some macroscopic quantities, such as the center

of mass and the radial extension of the electron gas. Using this approach, we study

the dynamics of collective modes (surface plasmons) excited with laser pulses in the

visible range. One observes that using chirped pulses with a slowly varying fre-

quency (so-called autoresonance phenomenon), it is possible to drive the plasmon

mode far into the nonlinear regime, leading to the emission of an electromagnetic ra-

diation with a power spectrum rich in high-order harmonics. This process is called

autoresonance [66], meaning that the frequency of the system and the frequency

of the excitation are phase locked. The autoresonant technique is very flexible and

efficient, the required laser intensities are modest (1010 W/cm2) and no feedback

mechanism is needed to match the driving frequency with the oscillator frequency.
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Chapter 1

Theoretical methods to describe the

electron dynamics in metallic

nano-structures

In this chapter, we present the theoretical framework to describe the electronic dy-

namics in metallic nano-structures. In particular, we give a brief overview of the dif-

ferent existing methods to treat the case of spinless electrons. In the first part of this

chapter, we shall highlight the physical quantities which characterize our system, as

well as the different physical regimes (classical/quantum, collisionless/collisional).

Then, in the second part, starting from the full Schrödinger formulation of the prob-

lem, we shall move into the phase-space representation of quantum mechanics, the

so-called Wigner representation. Finally, we shall see how this formalism is helpful

to construct reduced models, such as semiclassical and fluid models.

1.1 Basic concepts about electrons in metals

In this thesis, we focus on the theoretical description of electrons in metallic nano-

structures. Metals are condensed matter systems with the specificity to have a half

filled conduction band. The electrons that belong to the conduction band are not

attached to a particle nucleus but are rather delocalized in the materials, leading to

high transport properties. The latter could be understood by considering the con-

duction electrons as a non interacting system. Such model was used by Drude [67]

in the beginning of the twentieth century to give approximative estimations of the

electric and the thermal conductivity of metals. A more accurate understanding

could be achieved by treating electrons as a plasma, globally neutralized by the sur-

rounding ions. As it was pointed out in many papers [68, 69], conduction electrons

in metals can be modelled as a quantum plasma. Quantum plasma systems were

recently studied by several authors [44, 68, 70]. Before studying the general proper-

ties of a quantum plasma, we shall briefly remind basic elements of classical plasma

physics.
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nano-structures

1.1.1 Classical plasmas

A plasma is a state of the matter where all its constituents, atoms or molecules, has

been partially or completely ionized. It is characterized by the fact that the average

kinetic energy is larger than the interaction energy of next-nearest neighbors. This

property is characterized by a small coupling parameter γ ≪ 1. For a classical

system of charged particles with density n, mass m, electric charge e and interacting

via Coulomb forces (with an electric permittivity ǫ0), the coupling parameter writes:

γ =
Epot

Ekin
=

e2n1/3

ǫ0kBT
, (1.1)

where T is the temperature of the system that is related to the velocity of the particles

vT =

(
2
kBT

m

)1/2

. (1.2)

In the case where the coupling parameter of the system is small, thermal effects are

dominating, this regime is also known as the collisionless regime. In this regime the

mean-field description of the system is feasible. This appears in a clearest way by

introducing the Debye length:

λD =

√
ǫ0kBT

ne2
. (1.3)

The Debye length represents the typical length on which the Coulomb interactions

are screened by the charged medium. Using this quantity, the coupling parameter

is rewritten as

γ =

(
1

n1/3λD

)2

. (1.4)

Therefore, the plasma condition, γ ≪ 1, implies that the Debye screening length

is much larger than the interparticle distances, i.e. λD ≫ n−1/3, which is required

to treat the system with a mean-field model. The latter condition implies also that

collective effects would be dominant in the system compared to individual effects.

In the opposite situation, i.e. γ ≥ 1, the plasma is mainly governed by binary colli-

sions. This regime is called the collisional or strongly coupled regime.

Moreover, the typical time scale for plasma particles is given by the inverse of the

plasma frequency:

ωp =

√
e2n

mǫ0
. (1.5)

If we consider the case of electrons in nano-structures, it corresponds to the typical

oscillation frequency of the electrons with respect to the fixed ionic background.
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1.1.2 Quantum plasmas

FIGURE 1.1: From Ref. [68], phase diagram of the different plasma
regimes depending on the density and the temperature of the plasma.
The blue line represents the transition between classical and quantum
plasmas. The dot lines, inside both regions, represents the limit be-
tween collisional and collisionless plasmas. Finally, the dashed line
represents the transition between relativistic and non-relativistic plas-
mas. Different physical systems are also represented in this diagram,

such as electrons in metals (red circle).

Quantum effects can be measured with the thermal de Broglie wavelength of the

particles composing the plasma:

λDB =
h

p
, (1.6)

where p is the typical impulsion of the particles and h the Planck constant.

The de Broglie wavelength roughly represents the spread of the particle’s wave
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nano-structures

function. For classical plasma this length is so small compare to the interparticle dis-

tances, such that the particles can be considered as pointlike and no overlaps of the

wave function or quantum interferences happen. Therefore it is reasonable to say

that quantum effects become important when the interparticle distance is smaller

than the de Broglie wavelength, i.e n1/3λDB ≥ 1. This condition can be expressed in

another way. In the case of an electrons gas the Pauli exclusion principle, which is

a purely quantum effect, imposes that all electrons should be in different quantum

states. The consequence is that the statistical distribution of electrons follows the

so-called Fermi-Dirac distribution. In this case, the characteristic temperature of the

system is the Fermi temperature TF = ~/(2mkB) (3π
2n)

2/3
. Indeed the Fermi-Dirac

distribution deviates drastically from the classical Maxwell-Boltzmann distribution

for temperatures much lower than the Fermi temperature. In the case where T ≪ TF,

the electron gas is said to be fully degenerate. Using the above expressions, one can

write the ratio TF/T as follows:

TF

T
=

(3π2)2/3

(2π)2
(
n1/3λDB

)2
. (1.7)

Therefore quantum effects are also important when TF/T ≥ 1.

All the quantities that characterize classical plasmas should be redefined for quan-

tum plasmas. For a quantum plasma of electrons, the kinetic energy of the particles

is not determined by thermal effects but rather by statistical effects. Indeed, as it is

mentioned above, the Pauli exclusion principle implies that even at zero tempera-

ture the highest particle’s velocity is not zero but is equal to the Fermi velocity:

vF =

√
2EF

m
=

~

m

(
3π2n

)1/3
. (1.8)

In this case, the quantum coupling parameter writes:

γq =
Epot

Ekin
=

e2n1/3

ǫ0mv2F
=

(
1

n1/3λF

)2

, (1.9)

where λF = vF/ωp is the quantum analogue of the Debye length, also called the

Thomas-Fermi screening length. Therefore in the quantum regime, the plasma con-

dition is verified when the ratio between the interparticle distance and the the Thomas-

Fermi screening length is much smaller than one : n1/3 ≪ λF.

Quantum plasma systems can be found in nature. For instance in the interior of

neutrons stars and giant planets, white dwarfs and also (as we shall see below) elec-

trons in metals.

Finally, if we consider an ensemble of interacting electrons, we notice from the dis-

cussion above that the different plasma regimes are characterized by the density and

the temperature of the system. A phase diagram of the different plasma regimes is

given in the Fig. 1.1.



1.1. Basic concepts about electrons in metals 11

rs 0.16 nm

n 5.9× 1028 m−3

T 300K

ω−1
p 0.5 fs

TF 64000K

vF 1.4× 106 m/s
λF 0.11 nm
γq 5.5

TABLE 1.1: Typical parameters for electrons in Gold at room tempera-
ture (T = 300K)

1.1.3 Electrons in metals

In this section, we are going to evaluate the preceding plasma parameters in the case

of electrons in metals. The typical electron density can be found using the Wigner-

Seitz radius: n = 3/(4πr3s). For numerical applications, we consider the case of Gold

(rs = 3 a0, a0 being the Bohr radius), which corresponds to an electron density of

n = 6.0 × 1028 m−3. The typical time scale associated to this density is given by the

inverse of the plasma frequency Tp = 2π/ωp = 0.5 fs. Using Eq. (1.8), one obtains the

following Fermi velocity vF = 1.4 × 106 m/s, which corresponds to a Fermi temper-

ature of TF = 65000K. Therefore at room temperature the ratio TF/T is much larger

than one, and hence the electrons should be treated as a quantum system. This is

illustrated on the Fig. 1.1, where one clearly sees that electrons in metals are located

in the quantum part of the phase diagram.

According to the formula (1.9), we found a quantum coupling parameter that is a

bit larger than one: γq ≃ 5.5. That means that electron-electron collisions are as

much important as collective effects and therefore the mean-field approximation is

not valid any more and one should in principle go back to N body methods. How-

ever, and fortunately, collisions are decreased because of the Pauli blocking. This

effect originates from the Pauli exclusion principle which forbids a large numbers

of transitions at low temperature [71] and thus reduces the electron-electron colli-

sion rate νee. A rough estimation of this reduction is given in Ref. [68]. It is found

that, for temperature lower than TF, the electron-electron collision rate reads:

νee
ωp

≃ EF

~ωp

(
T

TF

)2

. (1.10)

In the case of gold at room temperature (T = 300K), one obtains the following value

ν−1
ee = 10−10 s. This collision time is valid for the equilibrium configuration. How-

ever during the dynamics, the electronic temperature increase leading to a smaller
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nano-structures

collision time. However, for electronic temperatures lower than the Fermi temper-

ature (64000K for Gold), the latter is estimated to be over a hundred of femtosec-

onds [72]. This is good news, since in this thesis, we want to study coherent elec-

tronic dynamics induced by femtosecond laser pulses and which typically occurs in

the first hundred femtoseconds. Therefore, in a first approximation, we shall neglect

the electron-electron collisions. In Tab. 1.1, we give the numerical values of several

physical quantities that characterize the conduction electrons of Gold at room tem-

perature.

1.2 The Schrödinger description of quantum mechan-

ics

The N body quantum problem is a fascinating problem in physics. In quantum me-

chanics, particles are indistinguishable, this makes the problem more complicated

to solve than in classical mechanics. Indeed, in classical mechanics particles are

evolving separately, each of them obey a Newton equation, whereas in quantum

mechanics they are described with the same object, the N body wave function

ΨN = Ψ(r1, r2, · · · , rn, t) , (1.11)

where ri is the position of the i-th particle. The non separability of the particles

creates quantum correlations between them which have no classical counterpart.

Therefore even solving a two-particle problem is quite challenging because of the

high dimensionality of the wave function. Up to now exact methods are limitated

to a small numbers of particles (N < 10), to treat larger systems one needs to make

some approximations.

1.2.1 The mean-field approach

Let us consider a system of N interacting electrons, the most fundamental equation

we have to describe such a system is the N body Schrödinger equation

i~
∂ΨN

∂t
= − ~

2

2m

N∑

i=1

[
∇

2
iΨ

N +
N∑

k=1,k 6=i

1

2
V (|ri − rk|)ΨN

]
, (1.12)

where V(r) = e2

4πǫ0
1
|r| is the Coulomb potential.

This equation is supposed to be exact in non relativistic quantum mechanics. The

usual approximation, which is often made, consists to factorize the N body wave

function (1.11) into single-particle wave functions

ΨN = Ψ1 (r1, t)Ψ2 (r2, t) · · ·ΨN (rN , t) . (1.13)
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This approximation consists to suppress all two-particle correlations (and hence

higher-order particle correlations). Using Eqs. (1.12)-(1.13), the N body linear Schrödinger

equation becomes the Hartree equations

i~
∂Ψα(r, t)

∂t
= − ~

2

2m
∇

2Ψα(r, t) +
e2

4πǫ0

[
N∑

α′=1

∫ |Ψα′(r′, t)|2
|r − r′| dr′

]

︸ ︷︷ ︸
VH

Ψα(r, t)

− e2

4πǫ0

∫ |Ψα(r
′, t)|2

|r − r′| dr′

︸ ︷︷ ︸
Vsic

Ψα(r, t). (1.14)

where the quantum states of each particle are labelled by the wave functions

{Ψα (r, t) , α = 1, · · · , N}. The term VH, generally called the Hartree potential, can

also be expressed in the form of the Poisson equation

∇
2VH(r, t) =

e

ǫ0

N∑

α=1

|Ψα(r, t)|2 . (1.15)

The potential Vsic is the self-interaction correction of the Hartree potential. It takes

into account that an electron in orbital Ψα shall not interact with itself, but only with

the N − 1 remaining electrons of the system. The self interaction correction (SIC) is

often neglected but in some case it has to be taken into account. For instance, the

SIC correction is often important to describe long-range phenomena. Indeed in Ref.

[73] the authors found that, in the case of Sodium clusters, the exchange-correlation

potential did not have the correct asymptotic behaviour without considering the SIC

correction (it decreases exponentially rather than 1/r). In the rest of the thesis we

shall neglect the SIC correction, in this case Eq. (1.14) can be rewritten in terms of

the so-called Schrödinger-Poisson equation:





i~
∂Ψα(r, t)

∂t
= − ~

2

2m
∇

2Ψα(r, t)− eVH(r, t)Ψα(r, t),

∇
2VH(r, t) =

e

ǫ0

N∑

α=1

|Ψα(r, t)|2 .

(1.16)

We end up with a self-consistent set of N coupled single-particle Schrödinger equa-

tions. This type of model was first considered by Hartree in 1927 [74] in the context

of atomic physics, to describe the self-consistent effect of atomic electrons on the

Coulomb potential of the nucleus. The problem is considerably simplified because

we passed from a 3N dimensional problem to N coupled three dimensional prob-

lems. This approximation in which correlations between particles are suppressed

is called the mean-field approximation. In practice, it is impossible to solve the N

body Schrödinger equation for more than few electrons. Therefore the factorization,
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Eq. (1.13), seems to be the easiest way to treat many-particle systems.

However, the Hartree equations suffer from two problems. Firstly, they violate the

Pauli exclusion principle which stipulates that two fermions can not be in the same

quantum state. Therefore the total wave function has to be antisymmetric with re-

spect to particles exchange. This kind of interaction creates some special correlations

between particles known under the name of exchange interactions. In 1930 Slater

and Fock proposed an exact method to describe the exchange interactions. They

introduce the Slater determinant [75] to factorize the N body wave function as fol-

lows:

ΨN =
1√
N !

∣∣∣∣∣∣∣∣∣∣

Ψ1 (r1, t) Ψ2 (r1, t) · · · ΨN (r1, t)

Ψ1 (r2, t) Ψ2 (r2, t) · · · ΨN (r2, t)
...

...

Ψ1 (rN , t) Ψ2 (rN , t) · · · ΨN (rN , t)

∣∣∣∣∣∣∣∣∣∣

, (1.17)

where
∣∣∣. . .
∣∣∣ is the matrix determinant. In this case the Hartree equations become the

Hartree-Fock equations [76]:

i~
∂Ψα(r, t)

∂t
= − ~

2

2m
∇

2Ψα(r, t) +
e2

4πǫ0

[
N∑

α′=1

∫ |Ψα′(r′, t)|2
|r − r′| dr′

]
Ψα(r, t)

− e2

4πǫ0

[
N∑

α′=1

∫
Ψ∗

α′(r′, t)Ψα(r
′, t)

|r − r′| dr′

]
Ψα′(r, t). (1.18)

The Hartree-Fock equations differ from the Hartree equations by the last term in Eq.

(1.18) that is related to the exchange interactions. Because of this term the Hartree-

Fock equations belong to the class of non-local differential equations. This is why

they are much complicated to solve numerically than the Hartree equations. For

practical applications the Hartree-Fock equations are used for systems where ex-

change effects are important such as in nuclear physics [77] or in quantum chem-

istry [78]. Secondly, the other problem inherent to the the Hatree or Hartree-Fock

methods comes from the fact that we do not take into account two-particle correla-

tions. Indeed, in both models they are suppressed with the factorization of the N

body wave function.

Another approach, based on the electron density, was developed in 1964 by Kohn

and Sham [79] to treat many-body quantum systems. In this method, called density

functional theory (DFT), the factorization of the total wave function is not needed

anymore and the exchange-correlation effects are approximated by effective poten-

tials. DFT is based on the two Hohenberg–Kohn theorems [80]. The first theorem

states that the ground state properties of a many-electron system are uniquely de-

termined by the electron density. Therefore the complicated N-body problem (3N

spatial coordinates) is reduced to find the correct electronic ground state density (3
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spatial coordinates). The second theorem defines an energy functional for the sys-

tem and proves that the correct ground state electron density minimizes this energy

functional. However this functional cannot be formally written since the kinetic

energy of an interacting electron gas is unknown. This problem is solved with the

Kohn-Sham ansatz which states that the electron density of an interacting particle

system can be written as the electron density of a non-interacting particle system.

Therefore, the intractable many-body quantum problem of interacting electrons is

reduced to a tractable problem of non-interacting electrons evolving in an effective

potential. The effective potential includes the external potential, the Coulomb in-

teractions between the electrons and the exchange and correlation interactions. The

two latter are not known exactly and the art of DFT is to find the best way to approx-

imate them. The simplest approximation is the so-called local density approxima-

tion [79], where the exchange and the correlation functionals depend locally on the

electron density. DFT methods are very powerful and lead to considerable applica-

tions in materials science, chemistry, etc. [81]. A time dependent version of DFT, the

time dependent density functional theory (TDDFT) [82] was also developed to treat

dynamical systems.

Here, we are going to work in the spirit of density functional theories. It means that

we will stay in the Hartree approximation and exchange-correlation effects will be

taken into account by adding some suitable functionals of the density in our model.

The Schrödinger approach was successfully used to treat a large numbers of quan-

tum systems starting from the hydrogen atom to more complex structures such as

bulk materials or molecules. The recent progress of computational science allows us

to treat more and more complex systems. However all these studies are generally

applied to determine the electronic ground state properties or in the framework of

the linear response. To solve the nonlinear dynamics of many-body quantum sys-

tems is still an open problem.

The Schrödinger approach of quantum mechanics is not unavoidable, there exist

other ways to deal with quantum mechanics. In this thesis we will work with the

Wigner formulation of quantum mechanics. As we shall see, the advantage to use

this formalism rather than the Schrödinger one, is that one can construct reduced

models, either semiclassical or fluid, for which numerical simulations are easier to

perform.

1.3 Quantum mechanics in phase space

In this section, we introduce the Wigner formulation of quantum mechanics. It is

a formulation of quantum mechanics in the phase-space, it was first introduced by

Eugene Wigner in 1932 to study quantum corrections to classical statistical mechan-

ics [83]. The goal was to link the wave function that appears in the Schrödinger
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equation to a pseudo-probability distribution function defined in the classical phase-

space. This pseudo-probability distribution changes in time according to an evolu-

tion equation (Wigner equation) which is somewhat similar to the classical Liouville

equation. Mathematically speaking, the Wigner formulation is based on the Weyl

transformation [84,85], which is a general method to transform operators defined in

the Hilbert space into phase-space functions.

In the first part of this section, we shall present a fast overview on the Weyl trans-

formation, then we shall use this tool to derive the Wigner equation for spinless

particles and its classical counterpart, the Vlasov equation. Finally we shall discuss

the problem of gauge invariance when we consider particles evolving in magnetic

fields.

1.3.1 The Weyl transformation

The basic idea of the phase-space formulation of quantum mechanics is to associate

at each operator Ô
(
R̂, P̂

)
, depending on the position and momentum operators

R̂ and P̂ , a function O(r,p) of the classical phase-space variables r and p. This

correspondence is provided by the Weyl transformation [84, 85], and is given by:

Ô
(
R̂, P̂

)
≡
∫

dr dp O (r,p) F̂ (r,p) , (1.19)

where F̂ (r,p) is the Wigner operator defined as

F̂ (r,p) ≡ 1

(2π~)6

∫
du dv exp

[
i

~

(
u ·
(
P̂ − p

)
+ v ·

(
R̂− r

))]
. (1.20)

The inverse of the Weyl transformation can be deduced1 from the above definition:

O (r,p) = (2π~)3 Tr
[
F̂ (r,p) Ô

(
R̂, P̂

)]
, (1.21)

where Tr denotes the trace.

The Wigner phase-space distribution F (r,p), or simply called the Wigner function,

is related to the mean value of any arbitrary operator

〈Ô
(
R̂, P̂

)
〉 ≡

∫
dr dp O (r,p)F (r,p) . (1.22)

The Wigner function plays a central role in the Wigner formulation because it is re-

lated to physical quantities which are always given in terms of operator’s expected

values.

1For the demonstration, we use the following properties of the Wigner operator:

Tr
[
F̂ (r,p) F̂ (r′,p′)

]
= 1

(2π~)3
δ (p− p′) δ (r − r′) .
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Considering a system in a statistical distribution of quantum state {pi; |φi〉}, we in-

troduce the density operator ρ̂ =
∑

i pi|φi〉〈φi| and we use Eq. (1.19) to determine

the mean value of an arbitrary operator

〈Ô
(
R̂, P̂

)
〉 = Tr

[
Ô
(
R̂, P̂

)
ρ̂
]
=

∫
dr dp O (r,p)Tr

[
F̂ (r,p) ρ̂

]
. (1.23)

The Wigner function is then defined as the phase-space function associated to the

density operator

f (r,p) = Tr
[
F̂ (r,p) ρ̂

]
=

1

(2π~)3

∫
dλ exp

(
i

~
λ · p

)〈
r − 1

2
λ|ρ̂|r +

1

2
λ

〉
. (1.24)

The Wigner function obeys to the following equation of motion (Wigner equation):

i~
∂f

∂t
= {H, f}⋆ , (1.25)

where the last term is referred to as the Moyal bracket [86] (here and in the following,

we use Einstein’s summation convention):

{A(r,p), B(r,p)}⋆ = A(r,p) ⋆ B(r,p)− B(r,p) ⋆ A(r,p),

= 2i sin

[
~

2

(
L∂i

R∂pi − L∂pj
R∂j
)]

(A(r,p), B(r,p)) . (1.26)

The indices L and R mean that the derivative acts only on the left or on the right

term in the parenthesis2.

The Wigner equation is the analogue of the density matrix evolution equation in the

operator’s representation of quantum mechanics: i~∂tρ̂ =
[
Ĥ, ρ̂

]
, sometimes called

the Von Neumann equation. The Moyal brackets can be easily developed as a power

series of ~, which makes the Wigner formulation particularly interesting to study the

semiclassical limit. The lowest order term leads to the standard Poisson bracket and

to the equations of classical mechanics. In Eq. (1.25), H is the phase-space func-

tion associated to the Hamiltonian operator Ĥ of the system, both are related by

Eq. (1.19). In order to determine the phase-space function of any arbitrary opera-

tor Ô
(
R̂, P̂

)
, one should apply the Weyl correspondence rules [85, 87], defined as

follows: (i) first symmetrize the operator Ô
(
R̂, P̂

)
with respect to the position and

the momentum operators R̂ and P̂ ; (ii) then replace Ô
(
R̂, P̂

)
by their associated

classical variables. For instance, for the operator P̂xX̂ one finds

P̂xX̂ =
1

2

(
P̂xX̂ + X̂P̂x

)
− i~

2
→ xpx −

i~

2
, (1.27)

2For instance: L∂i
R∂pj

(A(r,p), B(r,p)) = (∂iA)
(
∂pj

B
)
.
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where use has been made of the commutator [P̂x, X̂] = ~/i. We note that the Weyl

correspondence defined above is not unique, and one could have defined other rules

leading to different phase-space functions, such as the the Husimi representation

[88]. This issue is discussed in more details in Ref. [85].

1.3.2 The Wigner-Poisson equation

The preceding methodology can be used to derive the Wigner equation for a system

of N interacting electrons treated in a mean-field approach. The density matrix of

such a system is given by:

ρ̂ =
N∑

α=1

pα |Ψα〉〈Ψα| , (1.28)

where pα is the probability for one particle to be in the sate Ψα. Since we are in a

mean-field approach, the state Ψα obeys to a Schrödinger-Poisson equation (1.16).

Then using Eqs. (1.24) and (1.28), we obtain the following Wigner function of the

system:

f (r,p, t) =
1

(2π~)3

N∑

α=1

pα

∫
dλ exp

(
ip · λ
~

)
Ψ∗

α

(
r +

λ

2
, t

)
Ψα

(
r − λ

2
, t

)
. (1.29)

The evolution equation for the Wigner function can be derived3 using Eq. (1.25). We

obtain the Wigner-Poisson equation for an interacting electron gas:





∂f

∂t
+

1

m
p ·∇f =

ie

~

1

(2π~)3

∫
dλdp′ exp

[
i (p− p′) · λ

~

]
[VH (r+)− VH (r−)] f(r,p

′, t),

∇
2VH =

e

ǫ0

∫
f(r,p, t)dp.

(1.30)

where the indices ± design shifted positions r+ = r ± λ/2.

This equation is completely equivalent to the Schrödinger-Poisson equations (1.16).

It is on the basis of all the different models that we shall develop in this work. It gives

the evolution in time of the phase-space distribution function f(r,p, t). We notice

that the equation is non local in both position and velocity space. This property

is clearly due to quantum effects. A numerical integration of such equation is not

trivial, it as been done in Ref. [89] for a one dimensional system (film of sodium) to

study the electron thermalization and the quantum decoherence. As it is mentioned

in the previous section, the Wigner equation is useful to perform semiclassical anal-

ysis, this shall be illustrated in the next section.

3The derivation is given in details in the appendix A.
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1.3.3 Classical limit and Vlasov equation

The Wigner formulation of quantum mechanics is really convenient to study the

classical limit, i.e. ~ → 0. Indeed the Moyal product given by Eq. (1.26) can be

expend as a power series of ~

{A(r,p), B(r,p)}⋆ = {A(r,p), B(r,p)}

+2i
∞∑

n=1

(
~

2

)2n+1
(−1)n

(2n+ 1)!

(
L∂i

R∂pi − L∂pj
R∂j
)2n+1

(A(r,p), B(r,p)) , (1.31)

where the zero order term is the Poisson bracket

{A(r,p), B(r,p)} = (∂iA) (∂piB)−
(
∂pjA

)
(∂jB) , (1.32)

which is often used in classical mechanics. If we set ~ = 0 in the Eq. (1.31), then we

recover the Liouville equation:

∂tf(r,p, t) = {H, f(r,p, t)} . (1.33)

The Liouville equation is the classical equivalence of the density operator evolution

equation in quantum mechanics:

i~∂tρ̂(r, t) =
[
Ĥ, ρ̂(r, t)

]
. (1.34)

It is well known that if we consider a system of N interacting particles in a mean-

field approach, we found that the Liouville equation is equivalent to the Vlasov

equation [90]

∂f

∂t
+

p

m
·∇f + e∇VH ·∇pf = 0 (1.35)

Therefore, the classical limit of the Wigner-Poisson equation (1.30) is the Vlasov-

Poisson equation





∂f

∂t
+

p

m
·∇f + e∇VH ·∇pf = 0,

∇
2VH =

e

ǫ0

∫
f(r,p, t)dp.

(1.36)

For simulation purposes, the Vlasov-Poisson system of equations (1.36) is much

easier to solve numerically than the corresponding Wigner-Poisson equation (1.30),

mainly because the former are local in space while the latter are not. The Vlasov ap-

proximation is valid when quantum effects in the orbital dynamics are small. From

Eq. (1.26), it appears that the semiclassical expansion is valid when ~/(mL0v0) ≪ 1,

where L0 and v0 are typical length and velocity scales. For a degenerate electron
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gas with density n, the typical velocity is the Fermi speed vF = ~(3π2n)1/3/m. In-

serting into the previous inequality, we obtain the validity condition L0n
1/3 ≫ 1,

which means that the typical length scale must be larger than the interparticle dis-

tance d = n−1/3. For this reason, the semiclassical limit is also referred to as the long

wavelength approximation. All in all, the above Vlasov equations constitute a valu-

able tool to simulate the charge dynamics in condensed matter systems, particularly

semiconductor and metallic nano-objects.

1.3.4 Magnetic field and gauge invariance

For the moment we didn’t include any magnetic effects. This approximation can be

justified in some case, for instance if we are only interested in the plasmon excita-

tions. However, magnetic interactions can not be avoid if we want to include spin

degrees of freedom in our models. As we will see the introduction of magnetic field

in the Wigner formalism is not trivial. It is well known that in presence of magnetic

fields one should use the kinetic momentum operator Π̂ = P̂ − qÂ instead of P̂

(with q = −e for an electron). This situation cannot be addressed by simply replac-

ing P̂ with Π̂ in the Weyl transformation. Indeed it can be easily proved that with

such substitution the Wigner function, Eq. (1.24), is not gauge invariant. As spin

effects, such as the Zemann interaction or the spin-orbit coupling, strongly depend

on the magnetic field, it is of paramount importance to work with a gauge invari-

ant formulation of the Weyl transformation. A gauge independent definition of the

Wigner function was first introduced by Stratonovich [91]:

f (r,v, t) =
( m

2π~

)3 ∫
dλ exp

[
iλ

~
·
(
mv − e

∫ 1/2

−1/2

dτA (r + τλ)

)]〈
r − λ

2
ρ̂ r +

λ

2

〉
,

(1.37)

where the impulsion p was replaced by mv − e
∫ 1/2

−1/2
dτA (r + τλ).

To be consistent with this new definition of the Wigner function, one should also

modify the Weyl correspondence rules [87]. The procedure is almost identical to

the no magnetic field case, except that one should use Π̂ instead of P̂ . The only

difference is that one must also symmetrize operators with respect to the different

components of Π̂, because they do not commute, i.e.
[
Π̂i, Π̂j

]
= −i~eǫijkBk(R̂),

where ǫijk is the Levi-Civita symbol. The classical phase-space variables associated

to the kinetic momentum operator is the linear momentum Π̂ → π = mv.

The Moyal product defined in Eq. (1.26) is also modified in the presence of magnetic

fields. A gauge invariant Moyal product was derived by Müller [92], and reads

A(r,π) ⋆ C(r,π) = exp

[
i~L+ ie

∞∑

n=1

~
nLn

]
(A(r,π), C(r,π)) , (1.38)
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where L is the operator corresponding to the free magnetic field case:

L (A(r,π), C(r,π)) =
1

2

(
L∂i

R∂πi
− R∂j

L∂πj

)
(A(r,π), C(r,π)) , (1.39)

and Ln is a new operator that depends on the magnetic field:

Ln (A(r,π), C(r,π)) =

(
i

2

)n+1
ǫjlr

(n+ 1)2 n!

3∑

i1...in−1=1

(
∂n−1

∂ri1 ...∂rin−1

Br

)
L∂πj

R∂πl

n∑

p=1(
n+ 1

p

)
g(n, p)

∂p−1

∂πi1 ...∂πip−1

∂n−p

∂πip ...∂πin−1

(A(r,π), C(r,π)) . (1.40)

with g(n, p) =
[
(1− (−1)p) (n+ 1)−

(
1− (−1)n+1) p

]
, (r1, r2, r3) = (x, y, z) and

(π1, π2, π3) = (πx, πy, πz). This new definition of the Moyal product makes the calcu-

lation of the evolution equation much more cumbersome than in the unmagnetized

case. Its great advantage is that it ensures that the final equations of motion are

gauge invariant.

A very complete description on the inclusion of electromagnetic fields in the Wigner

formalism can be also found in Ref. [87]. In this reference, the author discuss also

the case where the electromagnetic fields are quantized.

Using Eqs. (1.38) - (1.40) and Eq. (1.25), one is able to write the Wigner equation for

a spinless particle interacting with electromagnetic fields as follows4:

∂f

∂t
+

1

m
(π +∆π̃) ·∇f − e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

f = 0, (1.41)

where ∆π̃ depends on the magnetic field and corresponds to a quantum shift of the

velocity

∆π̃ = −i~e∂π ×
[∫ 1/2

−1/2

dτ τB (r + i~τ∂π)

]
(1.42)

and Ẽ, B̃ are written in terms of the electric and magnetic fields

Ẽ =

∫ 1/2

−1/2

dτE (r + i~τ∂π) , B̃ =

∫ 1/2

−1/2

dτB (r + i~τ∂π) . (1.43)

This illuminating form of the Wigner equation was first proposed by Serimaa et

al. [87]. In the classical limit, i.e. ~ = 0, it is straightforward to notice that we simply

have Ẽ = E, B̃ = B and ∆π̃ = 0. Thus, the Wigner equations writes :

∂f

∂t
+ v ·∇f − e

m
(E + v ×B) ·∇vf = 0 (1.44)

4The demonstration is given in the appendix A.
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We simply recover the Vlasov equation where the force term is just the Lorentz force

according to classical mechanics.

1.4 Fluid models

Wigner and Vlasov equations belong to the class of kinetic models because they

make evolve objects defined in the phase-space, namely the distribution function.

These type of models contain the same amount of informations as the Newton equa-

tions (for the Vlasov equations) or the Schrödinger equations (for the Wigner equa-

tions). We have seen before that the Wigner approach is really useful to study semi-

classical limits of the full quantum problem.

These approaches are also often used to construct fluid models (or hydrodynamic

models). The construction of such models is based on the following consideration.

First, we notice that by taking different velocity moments of the Wigner function,

one is able to construct average quantities such as the electron density, the charge

current, the pressure tensor, etc. Indeed, if we integrate the usual Wigner distri-

bution function (1.29) over the impulsion space, then after some straightforward

algebra, one obtains the zero order moment of the Wigner function

∫
fdp =

N∑

α=1

Ψ∗
α (r, t)Ψα (r, t) ≡ n (r, t) , (1.45)

which is the electronic density. With the same kind of calculation, one can prove

that the first order moment gives the electronic current:

∫
pfdp =

i~

2

N∑

α=1

[Ψα (r, t)∇Ψ∗
α (r, t)−Ψ∗

α (r, t)∇Ψα (r, t)] ≡ j (r, t) , (1.46)

Fluid models are constructed by taking different moments of the Wigner equation.

For instance, if we integrate the Wigner equation (1.30) over the impulsion, we ob-

tain the well known continuity equation:

∂n

∂t
+∇ (nu) = 0, (1.47)

which originates from the local conservation of the mass in the system.

We notice that in Eq. (1.47), we have used the average velocity u(r, t) ≡ j(r, t)/n(r, t)

instead of the the current density. The continuity equation gives formally the time

evolution of the electronic density as a function of the charge current. To obtain, the

time evolution of the charge current, one simply has to multiply the Wigner equa-

tion by p and then integrate it over the impulsion. In this case one obtains an Euler
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type of equation:

∂ui

∂t
+ uj(∂jui) = − 1

nm
∂jPij +

1

m
∂iV, (1.48)

where V is an arbitrary potential.

The Euler equation gives the evolution of the mean velocity of the particles with

respect to the force acting on them. One part of the forces is due to the potential V

whereas the other part is related to a new fluid quantity Pij . This new term corre-

sponds to the pressure tensor of the system and is a second order moment of the

distribution function defined as follows:

Pij =

∫
wiwjfdp, (1.49)

where we separated the mean fluid velocity u from the velocity fluctuations w ≡
v − u.

To obtain the evolution equation of the pressure term Pij present in the fluid equa-

tion (1.48), one should take the second order moment of the Wigner equations. How-

ever this procedure has no end, each time that we derive an evolution equation for

a certain fluid quantity then we will introduce a higher order moment of the Wigner

function in the fluid equations. Such that the Wigner equation is equivalent to an

infinite set of fluid equations. For practical use they need to be closed using some

additional physical hypotheses.

A simple closure can be achieved by writing the pressure term as a function of the

electronic density. This can be shown by writing the pressure tensor in terms of the

electronic wave functions. For instance, using Eqs. (1.29) and (1.49) and after some

algebra, one is able to write the pressure tensor as follows:

Pij =
~
2

4m

∑

α

pα [(∂iΨ
∗
α) (∂jΨα) + (∂jΨ

∗
α) (∂iΨα)−Ψ∗

α [∂i (∂jΨα)]−Ψα [∂i (∂jΨ
∗
α)]]

+
~
2

4mn

[∑

α

pα [Ψ
∗
α (∂iΨα)−Ψα (∂iΨ

∗
α)] [Ψ

∗
α (∂jΨα)−Ψα (∂jΨ

∗
α)]

]2
. (1.50)

In order to interpret this pressure tensor, we shall use the Madelung decomposition

of the wave function [93]:

Ψα(r, t) = Aα(r, t) exp

(
iSα(r, t)

~

)
, (1.51)

where Aα(r, t) is the amplitude of the wave function and Sα(r, t) its phase, both are

real functions.

This transformation of the wave function is at the origin of the Bohm formulation of

quantum mechanics [94], in which the Schrödinger equation writes as a fluid equa-

tion. The individual particle density and velocity of the quantum flow are defined
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as follows:

nα(r, t) = A2
α(r, t), uα(r, t) =

1

m
∇Sα(r, t). (1.52)

The connection with the fluid models, derived from the Wigner approach, are made

by taking statistical average of Eq. (1.52) to construct the total electronic density and

the mean velocity

n =
N∑

α=1

pαnα and 〈u〉 ≡ u =
1

n

N∑

α=1

pαnαuα. (1.53)

Then using, Eqs. (1.51)-(1.53), one obtains a simple form for the pressure tensor, Eq.

(1.50):

Pij = mn (〈uiuj〉 − 〈ui〉〈uj〉) +
~
2

2m

∑

α

pα [(∂i
√
nα) (∂j

√
nα)−

√
nα (∂i (∂j

√
nα)]] .

(1.54)

The first term of the right side is related to the dispersion of the velocity and thus

corresponds to a classical pressure. For instance, in the case of a completely degen-

erated electron gas, the classical pressure writes as function of the density [71]:

PC =
(3π2)

2/3
~
2

5m
n
5/3
0 . (1.55)

Here, n0 design the equilibrium electronic density.

The second term of the right side is proportional to ~. Therefore, it is a quantum

pressure PQ, with no classical counterpart. The latter depends on the individual

electronic density. Under the assumption that the amplitude of all wave functions

are equal, i.e. Aα(r, t) = A(r, t), Manfredi proposed in the Ref. [68] to rewrite simply

the quantum pressure as follows:

(PQ)ij =
~
2

2m

[(
∂i
√
n
) (

∂j
√
n
)
−
√
n
[
∂i
(
∂j
√
n
)]]

. (1.56)

Then using the equations for the classical pressure (1.55) and the quantum pressure

(1.56), one is able to rewrite the fluid equations (1.47) and (1.48) in a closed form:





∂n

∂t
+∇ · (nu) = 0,

∂ui

∂t
+ uj(∂jui) = +

~
2

2m2
∂i

[
∇2

√
n√

n

]
− 1

nm
∂j (PC)ij +

1

m
∂iV.

(1.57)
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In this fluid model, the quantum pressure appears as a force term ∇UB, where we

have introduced the Bohm potential [94]:

UB = − ~
2

2m

∇2√nα√
nα

. (1.58)

This type of closure was not obtained rigorously. In the section 2.3, we shall employ

a general procedure based on the maximization of entropy to close the fluid equa-

tions. The above fluid model was constructed from the Wigner equation, the same

work can be also done with the Vlasov equation. In this case, one should mention

that the two first fluid equations (contnuity and Euler) are the same for the classical

and the quantum case. The differences appear only for the evolution equation of the

pressure tensor [95].

From the numerical point of view, the fluid equations are much simpler to solve than

the full Wigner equations. They were recently used to study the electrons dynamics

in metallic films [49]. The set of fluid equations (1.57) will be used in the chapter 5,

to study the non linear electron dynamic in metallic nano-structures.

1.5 Dispersion relation and model comparisons

In this section, we shall analyse the domain of validity of the fluid models trough the

calculation of the dispersion relation. The latter would be obtained by linearising the

Wigner-Poisson equation (1.30) around a homogeneous equilibrium background. In

this case, one obtains the longitudinal dielectric function [97, 98]

ǫ(ω,k) = 1 +
ω2
pm

~k2n0

∫
dv

f (0) (v + ~k/2m) + f (0) (v − ~k/2m)

ω − k · v , (1.59)

where f (0) and n0 are respectively the equilibrium distribution function and the as-

sociated density. To simplify the analysis we consider a one dimensional system, i.e.

f(x, vx = v) and kx = k.

The dispersion relation ω(k) is obtained by setting ǫ(ω, k) = 0, where ω and k are,

respectively, the complex frequency and the wave vector of the excitation modes.

Finding the complete dispersion relation is in general a challenging problem. The

origin of the problem comes from the singularity at the denominator in Eq. (1.59).

To avoid the singularity we have to apply the Landau contour method. This latter

will be explained in more details in the chapter 3.

Here, we shall find the dispersion relation using different approximations. First

we suppose that quantum effects are small. That means, according to the formula

(1.6), that ~k/(2m) << v. In this case, we can perform a Taylor development on
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FIGURE 1.2: From Ref. [96], we represent the different models to de-
scribe the dynamic of an interacting system of electrons as well as the
limit of validity of each model. The left part of the figure deals with
quantum models whereas the right part deals with their classical coun-
terpart. The parameters gC and gQ represent, respectively, the classical
and the quantum coupling parameters γ and γq defined in Eqs. (1.1)

and (1.9).

.

f (0) (v ± ~k/2m):

f (0)

(
v ± ~k

2m

)
= f (0) (v)± f (0)′ (v)

~k

2m
+

1

2!
f (0)′′ (v)

(
~k

2m

)2

+ · · · . (1.60)

Then, using this development, the dielectric function can be rewritten as follows:

ǫ(ω, k) = 1 +
ω2
p

kn0

∫
dv

f (0)′ (v)

ω − kv
+

ω2
p~

2k

24m2n0

∫
dv

f (0)′′′ (v)

ω − kv
+ · · · . (1.61)

As expected, if we set ~ = 0 in the previous equation, we recover the dielectric

function corresponding to the Vlasov equation [99]. The problem of the singularity

in the denominator is still present, even in the classical case.

If we search real solutions in the long-wave length limit, i.e. k << ω/v then we do

not have any singularities at the denominator. Moreover, the latter can be expand
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as follows:

1

ω − kv
=

1

ω
+

kv

ω2
+

k2v2

ω3
+ · · · . (1.62)

Then up to the third order in kv/ω, the dielectric function writes:

ǫ(ω, k) = 1−
ω2
p

kn0

[
k

ω2

∫
dvf (0) (v) + 3

k3

ω4

∫
dv v2f (0) (v)

]

−
ω2
p~

2k

24m2n0

12k3

ω4

∫
dv f (0) (v) + · · · . (1.63)

In the case of a 1D Fermi-Dirac distribution function at zero temperature, i.e. f (0) (v) =

n0/(2vF ) for v < vF and f (0) (v) = 0 otherwise, one obtains the following dispersion

relation:

ω2 = ω2
p + k2v2F +

~
2k4

4m2
+ · · · . (1.64)

This dispersion relation shows that in the long wavelength limit the resonant fre-

quency of the system is mainly given by the plasma frequency. The second term in

Eq. (1.64) (proportional to k2) is a correction due to thermal effects. Whereas the

third term (proportional to k4) is a quantum correction that is related to the Bohm

potential (1.58).

This dispersion relation was found by many authors [68,100]. Moreover we recover

this dispersion relation if we consider the fluid model (1.57) with taking the pressure

of a 1D degenerate electron gas [101]: PC = mv2Fn0/3. Therefore the fluid equation

and the Wigner equation give the same dispersion relation in the long wavelength

limit, i.e. λk << 1, where λ represents the characteristic length of the system (λF for

a quantum system and λD for a classical system). In Fig. 1.2, we summarize all the

models that were developed in this chapter, starting from the N body Schrödinger

equation to the fluid models, as well as the domain of validity of each model.
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Chapter 2

Phase-space description of the spin

dynamics in metallic nano-structures

In this chapter, we are going to generalise the results presented in the previous chap-

ter by including the spin degree of freedom in our models. The equations derived

here constitute some of the original results that I obtained during my PhD work.

First, we will use the gauge invariant formulation of the Weyl transformation and

the Moyal product (see Sec. 1.3.4) to derive a set of Wigner equations describing

a system of spin-1/2 fermions. A self-consistent mean-field model will be further

obtained by coupling these Wigner equations to the set of Maxwell equations for

the electromagnetic fields, where the sources (charges and current densities) are re-

lated to velocity moments of the Wigner function. Subsequently, we will derive the

corresponding semiclassical limit and obtain the Vlasov equations describing the

evolution of an electron gas with spin and semi-relativistic effects. In this model,

the orbital dynamics is treated classically, whereas the spin is represented as a fully

quantum variable. Finally, the Vlasov equations will be used to derive a hierarchy of

hydrodynamic equations by taking velocity moments of the probability distribution

function. This is an infinite hierarchy that needs to be closed using some additional

physical hypotheses. Although this is relatively easy for spinless systems (where the

closure can be obtained by assuming a suitable equation of state), things are subtler

when the spin degrees of freedom are included. Here, we shall use an intuitive

closure to obtain a closed set of fluid equations with spin effects.

2.1 The spin in quantum mechanics

In the previous chapter, we omit to discuss about the spin of the electrons. The spin

is an intrinsic quantity of a particle as much as the mass or the charge. On the exper-

imental point of view , the spin was first discovered in 1922 with the experiment of

Stern and Gerlach [102] and it was interpreted as an internal kinetic moment of the

electrons. On the theoretical point of view, the spin appears in the Dirac equation,

which is the relativistic expansion of the Schrödinger equation for spin 1/2 particles.

For an electron interacting with an external electromagnetic field, the Dirac equation
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writes

i~
∂ΨD (r, t)

∂t
=
[
cα · (p+ eA (r, t)) + βmc2 − eφ (r, t)

]
ΨD (r, t) , (2.1)

where φ (r, t) and A (r, t) are, respectively, the scalar and vector potentials associ-

ated to the electromagnetic field. The operators α and β that appear in the Dirac

equation (2.1) are 4× 4 matrices

α =

(
0 σ

σ 0

)
, β =

(
σ0 0

0 −σ0

)
, (2.2)

where σ is the vector of the 2 × 2 Pauli matrices and σ0 is the 2 × 2 identity matrix.

Therefore the wave functions ΨD (r, t) that obey to the Dirac equation (2.1) are four-

component objects called bispinors.

The Dirac equation contains much more informations than just the spin, it describes

at the same time the dynamics of particles and antiparticles. In the case of electrons

the associated antiparticles are positrons. Basically the former are described by the

two first components of the Dirac wave functions whereas the latter are described

by the two last components. The Dirac equation can be used to describe phenomena

such as particle pair creation or annihilation, which appear in high energy physics.

In our case, since we want to describe electrons in metallic nano-structures (which

are in the domain of low energy physics), these effects will be out of our interest.

There exists a unitary transformation, called the Foldy-Wouthuysen transformation

[103], which allows us to separate the electron and the positron dynamics in the

Dirac equation. This transformation is exact in the free particle case but in the case

of a particle interacting with an external electromagnetic field, it leads to a semi-

relativistic development in 1
c
. A very clear description of this transformation is given

in the book of Paul Strange [104]. Up to the second order in 1
c
, the Dirac equation

transforms into the extended Pauli equation

i~
∂Ψ(r, t)

∂t
=

{[−~
2

2m
∇2 − i~e

m
A (r, t) · ∇+

e2

2m
A2 (r, t)− eφ (r, t)

]
σ0

+ µBσ ·B (r, t) +
µB

4mc2
σ · [E × (p+ eA)− (p+ eA)×E]

}
Ψ(r, t) .

(2.3)

The wave functions Ψ =
(
t Ψ↑,Ψ↓) are spinors, the upper components Ψ↑ describe

the spin up electrons whereas the lower components Ψ↓ describe the spin down

electrons. High order expansions of the Foldy-Wouthuysen transformation can be

found in Ref. [105]. It is shown that the spin couples to the orbital motion through

time and space derivatives of the electric and the magnetic fields.

In the Eq. (2.3), only two relativistic terms are retained, the Zeeman interaction

which is proportional to µB and the spin-orbit interaction which is proportional to
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µB/(4mc2). We decide to take only these two terms into account since they are of

fundamental importance to describe the magnetic properties of the system. The

Zeeman interaction describes the alignment of the spin along the local magnetic

field whereas the spin-orbit interaction describes the exchange of magnetic moments

between the orbital and the spin angular momentums. The spin-orbit interaction

plays a fundamental role in many experiments were the magnetisation is strongly

excited with optical pulses. For instance, it was suggest in recent TDDFT simula-

tions [23] that the spin-orbit coupling is responsible of the ultrafast demagnetiza-

tion processes [22]. There are also other terms appearing at the same order of the

Foldy-Wouthuysen expansion, the mass correction and the Darwin term. The first

is related to the gamma factor in special relativity and the second is related to the

Zitterbewegung phenomena [64]. Since they affect directly the orbital motion of the

electrons and do not directly act on the magnetic properties1, they will be neglected

in a first approximation. However, with the methodology that shall be developed

below, they can be incorporated in the model without too much difficulties.

The electromagnetic fields entering in the Pauli equation (2.3) have different origins:

E = Eint +Eext +EXC , B = Bint +Bext +BXC . (2.4)

An internal part Eint and Bint, reflecting the interactions between the particles. In

this case the electric and magnetic fields are self-consistent solutions of the Maxwell

equations. An external part Eext and Bext, which represents for instance the in-

teraction with a laser field. And an other part EXC and BXC to model exchange-

correlation effects that are not present in our model (more details are given in sec-

tion 2.2.4).

In the extended Pauli equation (2.3), there are two types of magnetic fields which are

fundamentally different. The magnetic field in the Maxwell equations that is related

to a vector potential A through the following relation: B = ∇ × A. This mag-

netic field couples both to the orbital and to the spin dynamics and is created by the

source terms in the Maxwell equations. The other magnetic field is the exchange-

correlation magnetic field BXC that only acts on the spin part and does not directly

couple to the orbital part. Moreover it cannot be included as a vector potential in

the Schrödinger equation. Contrary to the Maxwell’s magnetic field, the exchange

magnetic field does not have a zero divergence. In this work the exchange magnetic

field is not included ab-initio but rather ad-hoc to have a local approximation of

exchange-correlation effects and is only present in the Zeeman interaction. Recent

papers [106, 107] propose to include other terms in the extended Pauli Hamiltonian

that are proportional to 1/c2 and which depend on this exchange magnetic field. The

latter provide corrections to the spin-orbit coupling or to the orbital dynamics. In

this work, we will not take them into account.

1They will have indirect effects on the magnetic properties because they will contribute to the
self-consistent electromagnetic fields generated by the particles and acting on them.
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2.2 Phase-space spin dynamics

2.2.1 Introduction of the spin in the Wigner formalism

In the absence of the spin, the Wigner function is a scalar function related to the

density matrix by the formula (1.37). This definition can be generalized to take into

account spin degrees of freedom, then the Wigner function writes :

F (r,v, t) =

(
1

2π~

)3 ∫
dλ exp

[
iλ

~
·
(
mv − e

∫ 1/2

−1/2

dτA (r + τλ)

)]
ρ(r − λ/2, r + λ/2, t)

(2.5)

where, for particles with spin 1/2, F is a 2× 2 matrix and ρ is the density matrix of

the system

F =

(
f ↑↑ f ↑↓

f ↓↑ f ↓↓

)
and ρ =

(
ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

)
. (2.6)

The matrix components of the density matrix ρηη
′

(r, r′, t), where η =↑, ↓ design re-

spectively the spin up and down components, are given by

ρηη
′

(r, r′) =
∑

µ

Ψη
µ(r, t)Ψ

η′∗
µ (r′, t). (2.7)

In order to study the macroscopic properties of the system, it is convenient to project

F onto the Pauli basis set [108, 109]

F =
1

2
σ0f0 +

1

2
f · σ, (2.8)

where

f0 = Tr {F} = f ↑↑ + f ↓↓, f = Tr (Fσ) . (2.9)

Here, Tr denotes the trace, σ is the vector of the 2×2 Pauli matrices and σ0 is the 2×2

identity matrix. With this definition, the particle density n and the spin polarization

S of the electron gas are easily expressed by the moments of the pseudo-distribution

functions f0 and f :

n(r, t) =
∑

µ

∣∣Ψ†
µ(r, t)

∣∣2 =
∫

f0(r,v, t)dv, (2.10)

S(r, t) =
~

2

∑

µ

Ψ†
µ(r, t)σΨµ(r, t) =

~

2

∫
f(r,v, t)dv. (2.11)

In this representation, the Wigner functions have a clear physical interpretation: f0
is related to the total electron density (in phase space), whereas fi (i = x, y, z) is

related to the spin polarization in the direction i. In other words, f0 represents the

probability to find an electron at one point of the phase space at a given time, while
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fi represents the probability to have a spin-polarization probability in the direction

i for this electron.

According to Eq. (2.10), the scalar distribution f0 provides the particle density,

whereas the vector distribution f yields the spin polarization as defined in Eq.

(2.11). One can prove the following bound:

|S(r, t)| ≤ n(r, t)
~

2
. (2.12)

Equation (2.12) is a direct consequence of the following property of the density ma-

trix: Tr (ρ2) ≤ 1. The equality holds true for a pure state or for a fluid where all the

spins are aligned along the same direction (fully spin-polarized state).

There exist other way to include the spin in the Wigner formalism as the one de-

scribed above. The solution, developed by Brodin et al. [59, 110], consists to de-

fined an extended phase space depending on the position r, the impulsion p and

a unitary vector s, which corresponds to the spin direction. Thus, the distribution

function evolves in an extended phase space (r,v, s). This is in contrast with our

approach, where the spin is treated as a fully quantum variable (evolving in a two-

dimensional Hilbert space). The correspondence relations between our distribution

functions f0(r,v, t) and fi(r,v, t) and the scalar distribution used by Zamanian et

al. f(r,v, s, t) write:

f0 =

∫
fd2s, f = 3

∫
sfd2s. (2.13)

Both approach are equivalent on the mathematical point of view. On the physi-

cal point of view our approach clearly separates the orbital motion from the spin

dynamics. As we shall see below, this separation leads to simpler and more trans-

parent hydrodynamic models, where the meaning of each term in the equations

will be more intuitive. On the numerical point of view, in our approach, we have to

work with four distribution functions and a six dimensional phase space whereas in

the other approaches, one should work only with one distribution function but in a

nine dimensional phase space. Therefore, it seems that our approach is more conve-

nient for numerical applications. This is even more true if one think about parallel

computing techniques.

2.2.2 The Wigner equation with the spin

In this section, we search the Wigner equation for an ensemble of spin-1/2 particles

(electrons) in the presence of an electromagnetic field, E and B. We denote the

Schrödinger wave function of the µ−th particle state by

Ψµ(r, t) = Ψ↑
µ(r, t) |↑〉+Ψ↓

µ(r, t) |↓〉 , (2.14)



34
Chapter 2. Phase-space description of the spin dynamics in metallic

nano-structures

where Ψ↑
µ(r, t) and Ψ↓

µ(r, t) are respectively the spin-up and spin-down components

of the wave function. As we have seen in section 2.1, the evolution of the system is

governed by the Pauli-Schrödinger equation

i~
∂Ψµ (r, t)

∂t
= ĤΨµ (r, t) , Ĥ =

[
Π̂

2

2m
+ V

]
σ0 +

[
µBB̂ +

µB

4mc2

(
Ê × Π̂− Π̂× Ê

)]
· σ.

(2.15)

Here, µB = e~/2m is the Bohr magneton, V , E and B are, respectively, the electric

potential, the electric field and the magnetic field. The operator Π corresponds to

the generalized impulsion operator defined in section 1.3.4.

The equation (2.15) can be split in two coupled Schrödinger equations:

i~
∂Ψ↑

∂t
= Ĥ↑↑Ψ↑ + Ĥ↑↓Ψ↓ i~

∂Ψ↓

∂t
= Ĥ↓↓Ψ↓ + Ĥ↓↑Ψ↑. (2.16)

with

Ĥ↑↑ =
Π̂

2

2m
+ V (R̂) + µBBz(R̂) +

µB

4mc2

[
E(R̂)× Π̂− Π̂× E(R̂)

]
z
, (2.17)

Ĥ↑↓ =
µB

4mc2

{[
E(R̂)× π̂ − Π̂× E(R̂)

]
x
− i
[
E(R̂)× Π̂− Π̂× E(R̂)

]
y

}
, (2.18)

Ĥ↓↑ =
µB

4mc2

{[
E(R̂)× Π̂− Π̂× E(R̂)

]
x
+ i
[
E(R̂)× Π̂− Π̂× E(R̂)

]
y

}
, (2.19)

Ĥ↓↓ =
Π̂

2

2m
+ V (R̂)− µBBz(R̂)− µB

4mc2

[
E(R̂)× Π̂− Π̂× E(R̂)

]
z
. (2.20)

In order to derive the Wigner equation, we have to apply the procedure describe in

section 1.3.4, namely finding the phase-space functions associated to each compo-

nents of the Hamiltonian, Eqs. (2.17) - (2.20). Then the Wigner equation formally

writes

i~
∂F
∂t

= [H,F ]⋆ , (2.21)

where one has to use the Moyal product, Eq. (1.38) to describe magnetic interactions.

After some tedious calculations, developed in appendix A, Eq. (2.21) leads to the
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following quantum evolution equations for the Wigner functions

∂f0
∂t

+
1

m
(π +∆π̃) ·∇f0 −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

f0

− µB∇

(
B̃ − 1

2mc2
π × Ẽ

)

i

·∇πfi +
µB

4mc2
[(E+ +E−)×∇] · f

− µBe

2mc2

[
Ẽ ×

[
B̃ ×∇π

]]
· f − µB

2mc2
i

~
[∆π̃ × (E+ −E−)] · f = 0, (2.22)

∂fk
∂t

+
1

m
(π +∆π̃) ·∇fk −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

fk

− µB∇

(
B̃ − 1

2mc2
π × Ẽ

)

k

·∇πf0 +
µB

4mc2
[(E+ +E−)×∇]k f0

− µBe

2mc2

[
Ẽ ×

[
B̃ ×∇π

]]
k
f0 −

µB

2mc2
i

~
[∆π̃ × (E+ −E−)]k f0

− e

2m

[(
B+ +B− − 1

2mc2
(π +∆π̃)× (E+ +E−)

)
× f

]

k

+
µB

2mc2
i

2

[(
(E+ −E−)×

(
∇− eB̃ ×∇π

))
× f

]
k
= 0. (2.23)

Where ∆π̃ depends of the magnetic field and corresponds to a quantum shift of the

velocity

∆π̃ = −i~e∇π ×
[∫ 1/2

−1/2

dττB (r + i~τ∇π)

]
, (2.24)

Ẽ and B̃ are written in terms of the electric and the magnetic fields

Ẽ =

∫ 1/2

−1/2

dτE (r + i~τ∇π) , B̃ =

∫ 1/2

−1/2

dτB (r + i~τ∇π) . (2.25)

The index ± means that the associated quantity is evaluated at a shifted position

r ± i~∇π/2.

This particularly illuminating form was proposed by Serimaa et al. [87] in the case of

a charged particle without spin evolving in an external electromagnetic field. These

equations can be view as a generalization of those obtained in Ref. [111], were the

authors only included the Zeeman interaction. In this case the Wigner equations

writes:

∂f0
∂t

+
1

m
(π +∆π̃) ·∇f0 −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

f0

− µB∇B̃i ·∇πfi = 0, (2.26)



36
Chapter 2. Phase-space description of the spin dynamics in metallic

nano-structures

∂fk
∂t

+
1

m
(π +∆π̃) ·∇fk −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

fk

− µB∇B̃k ·∇πf0 −
e

2m
[(B+ +B−)× f ]k = 0. (2.27)

The zeman interaction has two effects, the first is to couple the spin to the orbital

dynamics through the gradient of the magnetic field µB∇B̃k ·∇π. The other makes

the spin precess around an effective magnetic field B+ +B−.

In Eqs. (2.22) - (2.23), plenty of new terms appear due to the spin-orbit interaction,

they can be easily identified because they are proportional to 1/c2. Basically, as it is

the case for the Zeeman interaction, some of them couple the spin to the orbital dy-

namics, whereas the other provide corrections to the spin precession. The physical

origin of all of these terms will appear in a clearest fashion in the session 2.2.5, from

the semiclassical expansion of the Wigner equations.

2.2.3 Self-consistent model

Eqs. (2.22) - (2.23) can be used, in a mean-field approach, to described the self-

consistent spin dynamics of an ensemble of interacting charged particles. In this

case the electric and the magnetic field present in these equations are solutions of

the following Maxwell equations:





∇ ·E =
ρ

ǫ0
− ∇ · P

ǫ0
,

∇ ·B = 0,

∇×E = −∂B

∂t
,

∇×B = µ0j + µ0ǫ0
∂E

∂t
+ µ0

∂P

∂t
+ µ0∇×M .

(2.28)

Where, we introduce new sources terms, namely a spin magnetization M , a ”spin”

polarization P and a new contribution to the current density, Eq. (2.30). These

modifications should be done because our Hamiltonian, Eq. (2.15), is obtained from

a semi-relativistic development of the Dirac Hamiltonian. Therefore one should use

the appropriate limit of the source term appearing in the Dirac theory. Such analysis

was clearly made in [64, 112], where the authors used a Lagrangian approach to

obtain a consistent expression of the source terms in the Schrödinger picture. Using

Eq. (1.37), we can transpose their results to our formulation, in this case the source
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terms write :

ρ = −e

∫
f0dv, (2.29)

j = −e

[∫
vf0dv +

E ×M

2mc2

]
, (2.30)

M = −µB

∫
fdv, (2.31)

P = − µB

2c2

∫
v × fdv. (2.32)

The mean-field approach can also be extended, in the spirit of density functional the-

ory (DFT), to include exchange and correlation effects by adding suitable potentials

and fields that are functionals of the electron density [96]. The resulting equations

are potentially equivalent to the exact N-body treatment, although the exchange-

correlations functionals are not known and need to be somehow approximated.

The Wigner equations (2.22) - (2.23) coupled to the Maxwell equations (2.28) consti-

tute a self-consistent set of equations to describe the spin dynamics of an interact-

ing electron gas. Up to our knowledge those equations were never solved numeri-

cally, even in the spinless case. The reason is that one has to solve numerically the

propagation of the electromagnetic fields in matter as well as the particles dynam-

ics. However in metallic nano-structures those two time scales are rather decoupled

from each other. Indeed for such systems, the shortest particle time scale is given by

the inverse plasma frequency, which is on the order of the femtosecond (see section

1.1.3). Whereas the propagation time of the electromagnetic waves is much lower, it

takes approximatively 1/300 fs to travel through 1 nm of distance. Therefore we shall

consider the electromagnetic interactions as instantaneous. In the Lorenz gauge, the

Maxwell equations (2.28) writes:





1

c2
∂2φ

∂t2
−∇

2φ =
ρ

ǫ0
− ∇ · P

ǫ0
,

1

c2
∂2A

∂t2
−∇

2A = µ0j + µ0
∂P

∂t
+ µ0∇×M ,

(2.33)

where the scalar and the vector potential φ and A are, respectively, related to the

electromagnetic fields by the following relations:

E = −∇φ− ∂tA and B = ∇×A. (2.34)

If we now suppose that the electromagnetic fields propagate instantaneously, then

we have to suppress the time derivatives of the potentials that appear in the Maxwell

equations (2.33). In this case, the Maxwell equations reduce to the Poisson and the
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Ampere equations:





∇
2φ = − ρ

ǫ0
+

∇ · P
ǫ0

∇
2A = −µ0j − µ0

∂P

∂t
− µ0∇×M .

(2.35)

The above approximation is called the quasi-static limit of the Maxwell equations.

A more complete discussion about the validity of the static limits of the Maxwell

equations can be found in Ref. [112].

In the rest of this work, one shall use the spin-Wigner equations (2.22) - (2.23) cou-

pled to the Poisson and the Ampere equations (2.35) to describe the self-consistent

dynamics of an interacting electron gas.

2.2.4 Exchange and correlation effects

Exchange and correlation effects are not present in our model because of the fac-

toring of the N body wave function, Eq. (1.13). More precisely, correlation effects

are not described in our model because we suppressed the two-particle correlations.

Exchange effects are not present either because we do not take into account the an-

tisymmetric character of the N body wave function.

Here, we present a way to include exchange-correlation effects for an ensemble of

spin polarized electrons in the local spin density approximation (LSDA). In collinear

magnetism, we have to deal with two spin-dependent electron densities n↑ (spin up)

and n↓ (spin down), such that the electron density is given by n = n↑ + n↓ and the

magnetization by m = n↑ − n↓.

In LSDA, the exchange-correlation energy is:

ELSDA
XC

[
n↑, n↓] ≡ EXC

[
n↑, n↓] =

∫
n(r)ǫXC

[
n↑(r), n↓(r)

]
dr, (2.36)

where n↑ and n↓ are respectively the spin up and the spin down densities and ǫXC is

the exchange correlation potential2. In general this functional does not only depend

on the local density. For instance one can add gradient density corrections in the

exchange-correlation functional (2.36) to better describe the nonlocal character of

the exchange-correlation interactions. For our purposes we shall stay in LSDA.

From the Eq. (2.36), one can obtain the exchange-correlation potential acting on the

spin up and spin down components according to the following formulas:

V ↑
XC =

δEXC

δn↑(r)
, V ↓

XC =
δEXC

δn↓(r)
. (2.37)

2DFT assumes the existence of an exact form of this functional. However in practice such a func-
tional is not known and all the art of DFT is to find the best form of this exchange-correlation func-
tional.
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A usual approximation consists to separate the exchange from the correlation con-

tributions as follows: ǫXC = ǫX + ǫC , were the exchange part ǫX is derived from the

Hartree-Fock theory and is exact in the case of a homogeneous spin density

ǫX
[
n↑, n↓] = −3

2

(
3

4π

)1/3
(n↑)4/3 + (n↓)4/3

n
. (2.38)

For the correlation part ǫC , we use the expression derived in Ref. [113]

ǫC
[
n↑, n↓] = ǫUC (rs) +

[
ǫPC (rs)− ǫUC (rs)

]
f (ξ) , (2.39)

with

ǫUC (rs) =
−0.1423

1 + 1.0529
√
rs + 0.3334rs

, (2.40)

ǫPC (rs) =
−0.0843

1 + 1.3981
√
rs + 0.2611rs

, (2.41)

f (ξ) =
(1 + ξ)4/3 + (1− ξ)4/3 − 2

24/3 − 2
, (2.42)

where rs = (4πn/3)1/3 is the Wigner-Seitz radius and ξ is the local spin polarization

ξ =
(
n↑ − n↓) /n.

However in our case, we need to describe exchange-correlation effects for non-

collinear magnetism. In this case the spin projection on a single axis is not a good

quantum number. The wave function and the electronic density are 2 × 2 matrices,

see Eq. (2.6), where n↑↓(r) and n↓↑(r) are responsible for the non-collinear mag-

netism. Therefore, we have four independent electronic quantities, the electronic

density n and the magnetization m :

n = n↑↑ + n↓↓, mx = n↑↓ + n↓↑, my = −i
(
n↑↓ − n↓↑) , mz = n↑↑ − n↓↓. (2.43)

In order to calculate the exchange-correlation energy in the non-collinear case, we

will use a method describe in Ref. [114]. First we have to align the spin moment

along the quantization axis (here it is the z axis) at each point in space. Then, we

define a rotation matrix U(r)(θ, φ) ∈ SU(2) depending on the position r

U(r)(θ, φ) = Rz(θ)Ry(φ) = ei
θ
2
σyei

φ
2
σz =

(
eiφ/2 cos (θ/2) e−iφ/2 sin (θ/2)

−e+iφ/2 sin (θ/2) e−iφ/2 cos (θ/2)

)
,

(2.44)
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where θ(r) and φ(r) are the usual Euler angles, defined as follows:

cos (θ) =
mz

|m| , cos (φ) =
mx√

m2
x +m2

y

and sin (φ) =
my√

m2
x +m2

y

. (2.45)

Then according to the previous transformation, the density matrix in the rotated

frame is diagonal

(
n↑
Loc 0

0 n↓
Loc

)
= U(r)

(
n↑↑(r) n↑↓(r)

n↓↑(r) n↓↓(r)

)
U †(r). (2.46)

Then using Eqs. (2.44) - (2.46), we obtain n↑
Loc = (n+ |m|) /2 and n↓

Loc = (n− |m|) /2.

Using Eq. (2.37), the local exchange-correlation potential can be expressed as fol-

lows:

(VXC)Loc =

(
V ↑
XC(r) 0

0 V ↓
XC(r)

)
, (2.47)

with

V ↑
XC = ǫXC +

(
n↑
loc + n↓

loc

) ∂ǫXC

∂n↑
loc

, V ↓
XC = ǫXC +

(
n↑
loc + n↓

loc

) ∂ǫXC

∂n↓
loc

. (2.48)

Finally, we go back to the initial frame to obtain the general expression of the ex-

change correlation potential acting on our system

VXC(r) =

(
V ↑↑
XC(r) V ↑↓

XC(r)

V ↓↑
XC(r) V ↓↓

XC(r)

)
= U †(r)

(
V ↑
XC 0

0 V ↓
XC

)
U(r). (2.49)

Using the Pauli matrix basis, it is possible to write the exchange-correlation interac-

tions as a scalar potential and a magnetic field : VXC(r) = VXCσ0 + σ ·BXC , where

VXC =
V ↑↑
XC + V ↓↓

XC

2
, (BXC)x =

V ↑↓
XC + V ↓↑

XC

2
, (BXC)y =

V ↓↑
XC − V ↑↓

XC

2i
and

(BXC)z =
V ↑↑
XC − V ↓↓

XC

2
. (2.50)

Exchange-correlation effects will thus simply enter in the phase-space equations by

making the following substitution : V → V + VXC and µBσ ·B → µBσ · (B +BXC).

We insist on the fact that this procedure should be done for each point in the posi-

tion space.

In this section we presented an approximate way to include exchange and correla-

tion effects in our model. In the region where the physical quantities such as the den-

sity or the magnetization are homogeneous this approximation seems to be rather

valid. At the border of the film, the situation is different since the electronic den-

sity is rapidly vanishing. There are different way to address this problem. A first
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solution would be to add gradient corrections to the exchange-correlation potential

but in this case the previous method should be modified, particularly because the

rotation matrix (2.44) is not necessarily the same for the nearby space points. In

Ref. [115] the author address this problem and propose a solution to add gradient

correction terms in the exchange-correlation functionals for non-collinear spins. A

second solution consists to use local density functionals adapted to the geometry

of the systems; for instance in Ref. [116], the authors proposed to use an exchange-

correlation functional that are designed for slab systems. Finally, one should also

mentioned that the spin-Wigner equation could also be formulated within the an-

tisymmetrization principle of the wave function. In this case the Wigner equations

are equivalent to the Hartee-Fock equations. This work was also done with the

spin degrees of freedom but in the framework of the extended phase space formula-

tion [117]. The resulting equations are more complex to solve because of the nonlo-

cal character of the exchange interactions. For our purposes, we shall stay with the

local exchange-correlation functionals given by the Eqs. (2.38)-(2.39).

2.2.5 Semiclassical limit and spin-Vlasov model

The form of the equations (2.22)-(2.23) is particularly interesting to study the semi-

classcial limit of the model. Indeed we can easy expand Ẽ, B̃ and ∆π̃ as a power

series of ~

Ẽ =
∞∑

n=0

(
~

2m

)2n
(−1)n

(2n+ 1)!

3∑

i1...i2n=1

(
∂2n

∂ri1 ...∂ri2n
E

)
∂2n

∂vi1 ...∂vi2n

= E − ~
2

12m2

3∑

i1,i2=1

∂2E

∂ri1∂ri2

∂2

∂vi1∂vi2
+O

(
~
4
)
, (2.51)

B̃ =
∞∑

n=0

(
~

2m

)2n
(−1)n

(2n+ 1)!

3∑

i1...i2n=1

(
∂2n

∂ri1 ...∂ri2n
B

)
∂2n

∂vi1 ...∂vi2n

= B − ~
2

12m2

3∑

i1,i2=1

∂2B

∂ri1∂ri2

∂2

∂vi1∂vi2
+O

(
~
4
)
, (2.52)

∆π̃ = mµB

∞∑

n=0

(
~

2m

)2n+1
(−1)n(2n+ 2)

(2n+ 3)!

3∑

i1...i2n=1

(
∂2n+1

∂ri1 ...∂ri2n+1

B

)
∂2n+1

∂vi1 ...∂vi2n+1

=
3∑

i=1

µB~

6

∂B

∂ri

∂

∂vi
+ µBO

(
~
3
)
. (2.53)

From these semiclassical expansions, we notice that the velocity shift ∆π̃ has a

purely quantum origin because the first term in the development is already in or-

der one in ~. Therefore it has no classical counterpart. In the case of Ẽ and B̃, the

first term in the development corresponds just to the classical electric and magnetic

fields.
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At zero order, the equations for f0 and fi decouple, so that one can study the particle

motion irrespectively from the spin degrees of freedom. The latter is simply trans-

port by the particles. Keeping the first order term in ~ in the Eqs. (2.22) - (2.23), one

obtains

∂f0
∂t

+ v ·∇f0 −
e

m
(E + v ×B) ·∇vf0 +

µB

2mc2
(E ×∇)i fi

− µB

m
∇

[
Bi −

1

2c2
(v ×E)i

]
·∇vfi −

µBe

2m2c2
[E × (B ×∇v)]i fi = 0. (2.54)

∂fi
∂t

+ v ·∇fi −
e

m
(E + v ×B) ·∇vfi +

µB

2mc2
(E ×∇)i f0

− µB

m
∇

[
Bi −

1

2c2
(v ×E)i

]
·∇vf0 −

µBe

2m2c2
[E × (B ×∇v)]i f0

− 2µB

~

{[
B − 1

2c2
(v ×E)

]
× f

}

i

= 0. (2.55)

where the factor ~ is hidden in the definition of the Bohr magneton µB = e~/(2m).

All the quantum corrections in Eqs (2.54)- (2.55), couple the orbital and the spin

components together trough the Zeeman and the spin-orbit interactions. There is no

quantum corrections to the orbital electronic dynamics because they appears only

at the second order in ~. For instance the Darwin term would not appears in these

equations because it would correspond to a ~
2 correction in the orbital motion of the

electron. This is why, the Eqs. (2.54) and (2.55) have the same structure as classical

Vlasov equations.

In Eqs (2.54) and (2.55), the Zeeman interaction gives two contributions. The term

µB∇Bi · ∇v, which reflects the force exerted on a magnetic dipole by an inhomo-

geneous magnetic field, and which is at the basis of Stern-Gerlach-type experi-

ments [102]. And the term f×B which represents the precession of the spin around

the magnetic field. The latter corresponds to the classical precession of a magnetic

dipole in a magnetic field described by the Landau-Lifshitz equation.

The spin-orbit interaction provides a correction to the magnetic field B → B −
(v ×E) /2c2 which corresponds to the first order term in the non relativistic limit

of the Thomas precession [118, 119]. The other terms are related to the spin-orbit

correction of the velocity operator. Indeed in the Heisenberg pictures the velocity

operators V̂ is determined by the evolution equation of the position operator.

V̂ =
1

i~

[
R̂, Ĥ

]
=

Π̂

m
− µB

2mc2
Ê × σ, (2.56)

where we used the Hamiltonian defined in Eq. (2.15). The associated phase-space

function is determined with the Weyl correspondence principle

V = v − µB

2mc2
E × σ. (2.57)
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This is the phase-space function which can be used to calculate the average velocity

or the charge current. Therefore the particles are transport with a modified veloc-

ity. The term (E ×∇)i fi in Eqs. (2.54)-(2.55) is a direct consequence of this effect.

Whereas the term [E × (B ×∇v)]i fi corresponds to the velocity correction in the

Lorentz force v ×B.

One should also remains that the spin-Vlasov equations, Eqs. (2.54) and (2.55), are

on the second order in 1/c. An alternative form of these equations was obtained by

Asenjo et al. [61] in the extended phase-space formalism.

The Maxwell equations, Eq. (2.28), combined with the spin-Vlasov equations, Eqs.

(2.54)-(2.55), form a self-consistent model to study the charges and the spins dynam-

ics of a system of interacting particles. Where the spin is treated on full a quantum

fashion (two dimensional Hilbert space), whereas the orbital motion is treated classi-

cally, i.e. the particles follow classical phase-space trajectories. One can demonstrate

that the following quantities are conserved during the time evolution

Mtot = m

∫
f0dvdr, (2.58)

Ptot = m

∫
vf0dvdr +

∫
D ×Bdr, (2.59)

Etot =
m

2

∫
v2f0dvdr + µB

∫
f ·Bdvdr +

ǫ0
2

∫
E2dr +

1

2µ0

∫
B2dr, (2.60)

Jtot = m

∫
(r × v) f0drdv +

~

2

∫
fdrdv +

∫
r × (D ×B) dr, (2.61)

where we have introduced the electric and the magnetic field in the matter D =

ǫ0E + P and H = B − µ0M . The first term is the total mass of the system. The

second terms is the total impulsion of the system, it writes as a sum of the particle

impulsion and the field impulsion. The third term is the total energy of the system,

it writes as a sum of the kinetic energy, the Zeeman energy and the electromagnetic

field energy. The last term is the total angular momentum, it writes as a sum of the

orbital momentum, the spin momentum and the electromagnetic field momentum.

In terms of numerical simulations the spin-Vlasov equations are more tractable than

the full Wigner-spin model, namely because the Vlasov equation are local in phase

space in contrast with the Wigner equations. For instance, they can be used to sim-

ulate the charge and the spin dynamics in metallic nano-structures. From Eq. (1.26),

we notice that the quantity which should be small is ~/(mL0v0), where L0 and v0
are, respectively, typical length and velocity scales. Introducing the DeBroglie wave-

length λDB = ~

mv
, the spin-Vlasov equations may be considered as valid when the

characteristic lengths of the system are much more larger than the DeBroglie wave-

length : L >> λDB. This is the reason why the semiclassical limit is also called the

long wavelength approximation.
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2.3 Fluid model with spin effects

The Wigner equation and the Vlasov equation belong to the class of kinetic equa-

tions because they give the evolution in time of the position and the velocity of

the particles. In this section, we will derive fluid models (sometimes called also

hydrodynamic models) with spin effects. Hydrodynamic equations including the

spin degrees of freedom were derived by Brodin and Marklund [120] using the

Madelung transformation of the wave function [93]. More recently, a relativistic

hydrodynamic model was obtained by Asenjo et al. [121] from the Dirac equation.

These approaches based on the Madelung transformation usually lead to cumber-

some equations that are in practice very hard to solve, either analytically or numer-

ically, even in the nonrelativistic limit.

Our technique, which separates clearly the (classical) orbital motion from the (quan-

tum) spin dynamics, leads to a simpler and more transparent fluid model, where

the meaning of each term in the equations is more intuitive. Starting from the spin-

Vlasov Eqs. (2.54) - (2.55), we derive the hydrodynamic evolution equations for a

spin system by taking velocity moments of the phase-space distribution functions.

The fluid equations derived from the Vlasov model constitute an infinite hierarchy

of equations that need to be closed using some additional physical hypotheses. Al-

though this is relatively easy for spinless systems3, things are far subtler when the

spin degrees of freedom are included.

In a first time we will only consider the Zeeman interaction. we shall employ a

general procedure based on the maximization of entropy. Using this approach, we

obtain a closed set of fluid equations for both Maxwell-Boltzmann and the Fermi-

Dirac statistics, keeping up to four fluid moments of the Vlasov distribution func-

tion. Fluid models with spin-orbit effects will be discussed in a second time.

2.3.1 Hydrodynamic model with the Zeeman interaction

In addition to the particle density and spin polarization, Eqs. (2.10) - (2.11), we

define the following macroscopic quantities

u =
1

n

∫
vf0dv, (2.62)

JS
iα =

~

2

∫
vifαdv, (2.63)

Pij = m

∫
wiwjf0dv, (2.64)

Πijα =
~

2
m

∫
vivjfαdv, (2.65)

Qijk = m

∫
wiwjwkf0dv, (2.66)

3Fluid models for spinless systems were introduced in section 1.4.
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where we separated the mean fluid velocity u from the velocity fluctuations w ≡
v − u. Here, Pij and Qijk are respectively the pressure and the generalized en-

ergy flux tensors. They coincide with the analogous definitions for spinless fluids

with probability distribution function f0. The spin-velocity tensor JS
iα represents

the mean fluid velocity along the i−th direction of the α−th spin polarization vec-

tor, while Πijα represents the corresponding spin-pressure tensor4. The evolution

equations for the above fluid quantities are easily obtained by the straightforward

integration of Eqs. (2.54) - (2.55) with respect to the velocity variable. We obtain :

∂n

∂t
+∇ · (nu) = 0, (2.67)

∂Sα

∂t
+ ∂iJ

S
iα +

e

m
(S ×B)α = 0, (2.68)

∂ui

∂t
+ uj(∂jui) +

1

nm
∂jPij +

e

m
[Ei + (u×B)i] +

e

nm2
Sα (∂iBα) = 0, (2.69)

∂JS
iα

∂t
+ ∂jΠijα +

eEi

m
Sα +

e

m
ǫjkiBkJ

S
jα +

e

m
ǫjkαBkJ

S
ij +

µB~

2m
(∂iBα)n = 0, (2.70)

∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk +

e

m

[
ǫlkiBkPjl

+ ǫlkjBkPil

]
+

e

m2

∑

α

[
∂iBα

(
JS
jα − Sαuj

)
+ ∂jBα

(
JS
iα − Sαui

)]
= 0. (2.71)

Other sets of hydrodynamic equations for spin-1/2 particles were derived by Brodin

and Marklund [120] using a Madelung transformation on the Pauli wave function.

The resulting model is much more cumbersome than the above system (2.67)-(2.71),

and it is hard to identify the physical meaning of each term in their equations. A

different hydrodynamic theory was derived by Zamanian et al. [60] from a Vlasov

equation that includes the spin as an independent variable [59]. Their equations are

very similar to ours. The main difference is that, in the equations of Ref. [60], each

quantity (including the spin polarization) is transported by a fluid element travel-

ling with the mean fluid velocity u. In other words, the convective derivative is

always Dt = ∂t + u ·∇. In contrast, in our equations (2.67)-(2.71), only the spinless

quantities (velocity, pressure) are transported by the fluid velocity, whereas the spin

quantities (Sα, JS
iα) are not. However, it can be shown that our fluid equations (2.67)-

(2.71) are equivalent to those of Ref. [60]. The apparent discrepancy in the two sets of

fluid equations arises mainly from the different definitions of the velocity moments

in the two approaches.

As it is always the case for hydrodynamic models, some further hypothesis are

needed to close the above set of equations (2.67)-(2.71). In the next Section, we

will deal with the closure problem by resorting to a maximum entropy principle

(MEP) – an approach that has been developed for spinless systems and that can be

4Strictly speaking a pressure tensor should be defined in terms of the velocity fluctuations wiwj ,
but this would unduly complicate the notation. Thus, we stick to the above definition of Πijα while
still using the term “pressure” for this quantity.
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straightforwardly generalized to our case of a fluid with spin. In order to fix the

ideas before addressing the general framework of the MEP, we discuss an intuitive

closure relation that arises naturally from the equations. In Sec. 2.3.3 , this intuitive

approach will be justified rigorously on the basis of the MEP, and then overcome in

Sec. 2.3.4. We first note that, by definition, the following equation is always satis-

fied:
∫
wif0dv = 0. The same is not true, however, for the expression obtained by

replacing f0 with fα in the preceding integral. If we assume that such a quantity

indeed vanishes, i.e.
∫
wifαdv = 0, we immediately obtain that

JS
iα = uiSα. (2.72)

The physical interpretation of the above equation is that the spin of a particle is

simply transported along the mean fluid velocity. This is of course an approximation

that amounts to neglecting some spin-velocity correlations [60].

With this assumption, Eq. (2.70) and the definition of the spin-pressure Πijα are no

longer necessary. The system of fluid equations simplifies to

∂n

∂t
+∇ · (un) = 0, (2.73)

∂Sα

∂t
+ ∂i (uiSα) +

e

m
(S ×B)α = 0, (2.74)

∂ui

∂t
+ uj(∂jui) +

1

nm
∂jPij +

e

m
[Ei + (u×B)i] +

e

nm2
Sα (∂iBα) = 0, (2.75)

∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk

+
e

m

[
ǫlkiBkPjl + ǫlkjBkPil

]
= 0. (2.76)

Interestingly, in Eq. (2.74) the spin polarization is now transported by the fluid ve-

locity u, as in the model of Zamanian et al. [60].

We note that in Eqs. (2.73)–(2.76) we have already closed [thanks to Eq. (2.72)] the

spin-dependent part of the equations. In order to complete the closure procedure,

one can proceed in the same way as is usually done for spinless fluids, see sec-

tion 1.4, for instance by supposing that the system is isotropic and adiabatic. The

isotropy condition imposes that Pij = (P/3)δij where δij is the Kronecker delta,

while the adiabatic condition requires that the heat flux Qth
i = m

∫
w2wif0dv vanish.

In this case, one can prove that the pressure takes the usual form for the equation of

state of an adiabatic system, i.e. P = const. × n
D+2
D (D is the dimensionality of the

system), which replaces Eq. (2.76). In summary, Eqs. (2.73)-(2.75), together with the

preceding expression for the pressure, constitute a closed system of hydrodynamic

equations with spin.
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2.3.2 Fluid closure: Maximum entropy principle

The maximum entropy principle is a well-developed theory that has been success-

fully applied to various areas of gas, fluid, and solid-state physics [65,122–124]. The

underlying assumption of the MEP is that, at equilibrium, the probability distribu-

tion function is given by the most probable microscopic distribution (i.e., the one

that maximizes the entropy) compatible with some macroscopic constraints. The

constraints are generally given by the various velocity moments, i.e., the local den-

sity, mean velocity, and temperature. From a mathematical point of view, this pro-

cedure leads to a constrained maximization problem.

In order to illustrate the application of the MEP theory to a spin system, we write

the Hamiltonian in a more general way

H = h0(r,v)σ0 + h(r,v) · σ, (2.77)

where h0 and h are functions of the particle position r and velocity v ≡ (p+ eA)/m.

In our case

h0 =m
|v|2
2

+ V, (2.78)

h =µBB. (2.79)

In order to simplify the notation, we denote the fluid moments by

mi(r) = Tr

∫
χiFdv, (2.80)

where F is the 2 × 2 distribution functions defined in Eq. (2.6) and χi is the func-

tion associated with the i−th fluid moment. Thus, the definitions (2.10)–(2.11) and

(2.62)–(2.66) correspond to

m =




n

S

u

JS
iα

...




; χ =




1
~

2
σ

v
~

2
viσα

...




. (2.81)

The relevant entropy density is

s(F) =





kB Tr {F logF − F} (M–B)

kB Tr {F logF + (1−F) log(1−F)} (F–D),
(2.82)

where we distinguished between Maxwell-Boltzmann (M–B) and Fermi-Dirac (F–D)

statistics. The MEP assumes that the equilibrium phase-space distribution function
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F is the extrema of the free-energy functional

E = Tr

∫
[Ts(F) +H′F ] dvdr −

∫
λi(r)mi(r)dr, (2.83)

where we defined H′ = H + λi(r)χi, T is the temperature and the functions λi are

the Lagrange multipliers. The λi constitute a set of independent functions that are

used to parameterize the equilibrium distribution F eq. A major technical difficulty

of the MEP method is to express the λi set in terms of m in a closed form. This point

will be illustrated in details in the following paragraphs. The total variation (Lie

derivative) of E gives

δE = δλi
δ

δλi

E + δF δ

δF E . (2.84)

The local equilibrium distribution F eq corresponds to the extremum δE(F eq) = 0.

It is easy to verify that the variation with respect the Lagrange multipliers [the first

term of the right hand side of Eq. (2.84)] gives Eq. (2.80).

The equilibrium distribution is formally obtained by taking the variation of E
with respect to F

δF δE
δF = Tr

∫ [
T
δs

δF +H′
]
δFdvdr. (2.85)

Setting δE/δF = 0, yields

F eq =

{
a exp (−βH′) (M–B)

a [exp (βH′) + 1]−1 (F–D),
(2.86)

where a is a constant and β = 1/(kBT ). Equation (2.86) is a very general result that

holds irrespectively of the number and the type of moments that are being consid-

ered. For every specific choice of the moments to be preserved, the explicit form

of the local equilibrium function F eq can be constructed from Eq. (2.86). In order

to illustrate the results for a fluid with spin, in the next sections we shall consider

various models characterized by a different number of fluid moments (three or four)

and by the use of the M–B or F–D statistics.

2.3.3 Three-moment closure

To begin with, we consider a simplified situation where only three fluid moments

(density n, mean velocity u, and spin polarization S) are kept, that is:

m =




n

S

u


 . (2.87)
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It is convenient to write the hamiltonian H′ in the following way

H′ = h′
0 + h′ · σ =

m

2
(v − v0)

2 + λ0 + λS · σ, (2.88)

where the Lagrange multipliers λ0, λS and v0 (seven scalar quantities in total) are

associated respectively to the density, the spin polarization vector, and the mean ve-

locity. We then evaluate the equilibrium distribution for the M–B and F–D statistics.

A. Maxwell-Boltzmann statistics

We fix the normalization constant a0 =
(

m
2π~

)3
. Equation (2.86) (for M–B statistics)

gives

F eq = a0 σ0e
−βh′

0 exp (−βh′ · σ)

= a0

[
σ0 cosh (−β|h′|) + h′ · σ

|h′| sinh (−β|h′|)
]
e−βh′

0 . (2.89)

By calculating the moments of F eq, we can express the fluid moments in terms of

the Lagrangian multipliers. We find

n = 2a0Γ(T ) exp (−βλ0) cosh (−β|λS|) ,

S = ~ a0
λS

|λS|
Γ(T ) exp (−βλ0) sinh (−β|λS|) ,

u = v0,

where Γ(T ) = (2πkBT/m)3/2. The previous equations can be inverted:

exp (−βλ0) =a0
1

2Γ(T )

√(
n2 − 4|S|2

~2

)
, (2.90)

λS =
S

|S|
kBT

2
ln

(
n− 2|S|

~

n+ 2|S|
~

)
. (2.91)

Note that the quantities on the right-hand side of the above expressions are real,

thanks to Eq. (2.12). Finally, the equilibrium distribution can be expressed in terms

of the fluid moments in a simple form

F eq = (σ0n+ σ · S) 1

Γ(T )
exp

(
−β

m (v − u)2

2

)
. (2.92)

The pressure and the spin current at equilibrium are thus given by

Pij = m Tr

(∫
vivjF eqdv

)
−mnu2 = nkBTδij (2.93)

JS
iα = Sαui. (2.94)
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Thus, considering three fluid moments and M–B statistics, leads to the standard

expression for the isotropic pressure of an ideal gas, together with the “intuitive”

closure condition (2.72) for the spin current tensor.

B. Fermi-Dirac statistics

We now consider the F–D case. After some tedious but straightforward calculations

(details can be found in Appendix B.1), Eq. (2.86) gives

F eq =
a0
2

(
cosh (β|h′|) + exp−βh′

0

)
σ0 − sinh (βh′

0)
h′·σ
|h′|

[cosh (βh′
0) + cosh (β|h′|)] . (2.95)

In the case of the F–D statistics, it is no longer possible to obtain a closed expres-

sion of F eq when T > 0. However, for many applications of the hydrodynamic

model, the assumption that the particle have zero temperature is not too restric-

tive. Indeed, for solid-state metallic densities, the Fermi temperature is of the order

TF ≈ 5 × 104 K, so that in the vast majority of conceivable situations T ≪ TF , and

the zero-temperature approximation is sufficiently accurate. We have evaluated the

macroscopic moment of F eq in the case T = 0. We obtain (details of the calculations

are given in Appendix B.1):

n =
4π

3
a0

([
2

m
(|λS|+ |λ0|)

]3/2
+

[
2

m
(|λ0| − |λS|)

]3/2)
, (2.96)

S = −~

2
a0

λS

|λs|
4π

3

([
2

m

(
|λS|+ |λ0|

)]3/2
−
[
2

m

(
|λ0| − |λS|

)]3/2
)
, (2.97)

u = v0. (2.98)

Note that, in the above expressions, the quantities under square root are nonnega-

tive for all physically admissible states, as is shown in Appendix B.1.

As in the case of M–B statistics, we find that JS
iα = uiSα. For the pressure, we obtain

P =
~
2

5m

(6π2)
2/3

25/3

[(
n− 2

~
|S|
)5/3

+

(
n+

2

~
|S|
)5/3

]
. (2.99)

When the spin polarization vanishes, Eq. (2.99) reduces to the usual expression

of the zero-temperature pressure of a spinless Fermi gas: P = ~
2

5m
(3π2)

2/3
n5/3. The

modification of the spin pressure induced by the spin has a simple physical interpre-

tation. Equation (2.99) can be interpreted as the total pressure of a plasma composed

by two populations, the spin-up and the spin-down particles. Due to the Zeeman

splitting, the density of the particles whose spin is parallel to the magnetic field is

lower than the energy of the particles whose spin is antiparallel. Equation (2.99)

shows that the two populations provide a separate contribution to the total fluid

pressure.
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2.3.4 Four-moment closure

As a final example, we consider the complete four-moment model:

m =




n

S

u

JS
iα


 and χ =




λ0

λS

v0

λJ
iα


 . (2.100)

In this case, the hamiltonian H′ becomes

H′ =
m (v − v0)

2

2
+ λ0 +

(
λS
α + λJ

iαvi
)
σα. (2.101)

Here, we consider a particular situation where the evaluation of the closure ex-

pressions can be obtained analytically, namely the collinear case with Maxwell-

Boltzmann statistics. With the term “collinear” we denote a fluid whose spin po-

larization is parallel to a fixed direction (here, the z direction). In the collinear case,

the Hamiltonian reduces to Hcol =
m
2
v2 + µBBzσz. The equilibrium distribution F eq

is given by Eq. (2.89) with

h′
0 =m (v − v0)

2 /2 + λ0 (2.102)

h′
z =λS

z + λJ
xzvx + λJ

yzvy + λJ
zzvz (2.103)

h′
x =h′

y = 0. (2.104)

Proceeding as before, we obtain the relations between the moments and the La-

grange multipliers. The details of the calculations are given in Appendix B.2. We

obtain

γ =
2n~m

~2n2 + 4S2
z

(
Szu− JS

)
, (2.105)

v0 =
1

~2n2 + 4S2
z

(
~
2n2u+ 4SzJ

S
)
, (2.106)

e−βλ0 =
eβγ

2/2m

Γ(T )

√
(n
2

)2
−
(
Sz

~

)2

, (2.107)

λS
z =

kBT

2
ln

(
n− 2|S|

~

n+ 2|S|
~

)
− γ · v0. (2.108)
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In order to simplify the notation, we defined γi = λJ
iz and JS

iz = JS
i . We can now

calculate the equilibrium distribution function:

F eq =
eβγ

2/2m

Γ(T )
e−βm(v−v0)

2/2

{
σ0

[
n cosh (βγ · (v − v0))−

2Sz

~
sinh (βγ · (v − v0))

]

+ σz

[
~

2
n sinh (−βγ · (v − v0)) + Sz cosh (βγ · (v − v0))

]}
.

(2.109)

Finally, we calculate the pressure tensor Pij and the spin pressure tensor Πijz (details

are given in the Appendix B.2). We obtain

Pij = eβγ
2/m

{
nkBTδi,j +mn

(
~
2n2uiuj + 4Js

i J
s
j

~2n2 + 4S2
z

)

+8mnSz

[(
JS
i − Szui

) (
~
2n2uj + 4SzJ

s
j

)
+
(
JS
j − Szuj

)
(~2n2ui + 4SzJ

s
i )

(~2n2 + 4S2
z )

2

]}

−mnuiuj, (2.110)

Πijz = eβγ
2/m

{
SzkBTδi,j +mSz

(
~
2n2uiuj + 4Js

i J
s
j

~2n2 + 4S2
z

)

+2mn2
~
2

[(
JS
i − Szui

) (
~
2n2uj + 4SzJ

s
j

)
+
(
JS
j − Szuj

)
(~2n2ui + 4SzJ

s
i )

(~2n2 + 4S2
z )

2

]}
.

(2.111)

It is easy to verify that Eq. (2.110) is consistent with Eq. (2.94) in the limit γ →
0. Finally, we can write a four-moment model with collinear spin and Maxwell-

Boltzmannn statistics at zero temperature:

∂n

∂t
+ ∇ · (nu) = 0,

∂Sz

∂t
+ ∂iJ

S
iz = 0,

∂ui

∂t
+ uj∂jui +

1

nm
∂jPij +

e

m
(Ei + ǫjkiujBk) +

e

nm2
Sz (∂iBz) = 0,

∂JS
iz

∂t
+ ∂jΠijz +

eEi

m
Sz +

e~2

4m2
(∂iBz)n = 0. (2.112)

The above fluid equations, together with Eqs. (2.110) and (2.111), constitute a closed

system.

2.3.5 Fluid models with spin-orbit effects

In the latter calculations, we constructed fluids models with spin effects by only

considering the zeeman interaction. The same work can be done by adding also

the spin-orbit interaction. A straightforward integration of Eqs. (2.54) - (2.55), with
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respect to the velocity variable, leads to the following fluid equations :

∂n

∂t
+∇ · (nu) = 0, (2.113)

∂Sα

∂t
+ ∂iJ

S

iα +
e

m
(S ×B)α +

e

2mc2
ǫjkαǫrljElJ

S
rk = 0, (2.114)

∂ui

∂t
+ uj(∂jui) +

1

nm
∂jPij +

e

m
[Ei + (ũ×B)i] +

e

nm2
Sα (∂iBα)

+
µB

2mc2n
ǫjkl
[
ui∂j (EkSl) + Ej

(
∂kJ

S
il

)
− (∂iEk) J

S
jl − (∂jEk) J

S
il

]
= 0, (2.115)

∂JS
iα

∂t
+ ∂jΠijα +

eEi

m
Sα +

e

m
ǫjkiBkJ̃

S
jα +

e

m
ǫjkαBkJ

S
ij +

µB~

2m
(∂iBα)n

+
µB

2mc2
ǫklα∂l (Eknui)−

µB

2mc2
ǫklα (∂iEl)nuk +

µB

~c2
ǫklαǫrskEsΠ

S
irl = 0, (2.116)

∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk +

e

m
[ǫkliPjk + ǫkljPik]Bl

+
µB

m

[
∂iBk

(
JS
jk − ujSk

)
+ ∂jBk

(
JS
ik − UiSk

)]
+

µB

2mc2
ǫrsl∂s

[
Er

(
ΠS

ijl − uiujSl

)]

+
µB

2mc2
ǫrkpEr

[
ǫkli
(
JS
jp − ujSp

)
+ ǫklj

(
JS
ip − uiSp

)]
Bl

− µB

2mc2
ǫrsl
[
∂iEs

(
ΠS

jrl − ujJ
S
rl

)
+ ∂jEs

(
ΠS

irl − uiJ
S
rl

)]

− µB

2mc2
uiǫrsl∂s

[
Er

(
JS
jl − ujSl

)]
− µB

2mc2
ujǫrsl∂s

[
Er

(
JS
il − uiSl

)]
= 0, (2.117)

where we introduced a new average velocity and a new spin current

u = u− µB

2mc2n
E × S, J

S

ij = JS
ij +

µB

2mc2
ǫijkEkn. (2.118)

The above corrections reflect the modification of the velocity due to the spin-orbit

coupling. Indeed the average velocity can be immediately obtained from the veloc-

ity phase-space function, Eq. (2.57), yielding

u =
1

nm
Tr

[∫
V (r,π)Fdπ

]
= u− µB

2mc2n
E × S, (2.119)

where F is the 2 × 2 distribution function defined in Eq. (2.8). The same holds for

the spin current operator, which is defined as follows:

ĴS
ij =

~

2
v̂iσj =

~

2

Π̂i

m
σj −

~µB

8mc2

[(
Ê × σ

)
i
σj + σj

(
Ê × σ

)
i

]
, (2.120)

where we symmetrized the operator so that it is Hermitian. Then the associated

phase-space function

JS
ij (r,π) =

~

2

πi

m
σj −

~µB

8mc2
[(E × σ)i σj + σj (E × σ)i] (2.121)
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can be used to determine the spin current

J
S

ij =
1

m
Tr

[∫
Js
ij(r,π)Fdπ

]
= JS

ij +
µB

2mc2
ǫijkEkn. (2.122)

As is always the case for hydrodynamic models, some further hypotheses are needed

to close the above set of equations (2.113)-(2.117). Unfortunately the MEP does not

provide any conclusive analytical results when one adds the spin-orbit interaction.

The difficulty arises from the fact that the spin-orbit interaction couples all the com-

ponents of the velocity. However an intuitive closure can be found by inspecting

the evolution equation (2.117) for the pressure tensor. There, most spin-dependent

terms cancel if we set

JS
iα = uiSα and ΠS

ijα = uiJ
S
jα. (2.123)

The physical interpretation of the above equations is that the spin of a particle is

simply transported along the mean fluid velocity. This is the same kind of approxi-

mation as used in the Sec. 2.3.3, which neglects spin-velocity correlations. With this

assumption, Eq. (2.116) and the definition of the spin-pressure Πijα are no longer

necessary. The system of fluid equations simplifies to

∂n

∂t
+∇ · (nu) = 0, (2.124)

∂Sα

∂t
+ ∂i (uiSα)−

µB

2mc2
(∇× nE)α +

e

m

[
S ×

(
B − 1

2c2
u×E

)]

α

= 0, (2.125)

∂ui

∂t
+ uj(∂jui) +

1

nm
∂jPij +

e

m
[Ei + (u×B)i] +

e

nm2
Sα (∂iBα)

+
µB

2mc2n
ǫjkl [Ej (∂kui)− uk (∂iEj)]Sl = 0, (2.126)

∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk +

e

m
[ǫkliPjk + ǫkljPik]Bl = 0.

(2.127)

Then by supposing that the system is isotropic and adiabatic, i.e. Pij = n
D+2
D δij

(where D is the dimensionality of the system) and Qijk = 0, one is able to close the

system of fluid equation. In summary, Eqs. (2.124)-(2.126), together with an adapted

expression of the pressure, constitute a closed system of hydrodynamic equations

including spin-orbit effects.

2.4 Conclusions and perspectives

In this chapter we developed new phase-space models to study the spin and charge

dynamics for an ensemble of interacting electrons. Phase-space methods can be ap-

plied in nanophysics to model the quantum or the classical dynamics of electrons.
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Spinless studies have been done in the past to study the electron dynamics in metal-

lic nano-structures [32, 89, 96] both with the Wigner and the Vlasov equations. Here

we addressed the situation, where the spin of the electrons cannot be neglected. We

focused particularly one two spin effects, the Zeeman interaction and the spin-orbit

coupling which are of most importance in many areas of physics. For instance in

ultrafast spectroscopy the electron spin is strongly involved in the dynamics of the

system, as it interacts with the incident laser field and with the self-consistent field

generated by the electrons themselves. The methodology used to derive the differ-

ent models can be easily generalized to describe other relativistic effects such as the

Darwin term or the relativistic mass correction.

We first derived a four-component Wigner equation to describe the quantum dy-

namics of a system of spin-1/2 fermions including the Zeeman and the spin-orbit

interaction. These equations coupled with the appropriate Maxwell equations form

a self-consistent model to study the spin and the charge dynamics in the mean-field

approximation. Exchange and correlation effects can be easily add to our model,

as they can be expressed, by means of some approximations, as an electric poten-

tial and a magnetic field. Further, this model should not be limited to the linear

response, as nonlinear effects are often important, especially for large incident laser

powers. From a semiclassical expansion at the order one in ~, we obtained a four-

component Vlasov equation. The orbital part of the motion is classical, i.e. the parti-

cles follow classical phase-space trajectories. Whereas the spin degree of freedom is

treated in a fully quantum fashion (two dimensional Hilbert space). On the numer-

ical point of view, these spin-Vlasov equations are more tractable than the Wigner

equations. Namely because they are local in phase space in contrast to the Wigner

equations which are typically non local. They constitute a relatively good approxi-

mation of the quantum version when the characteristic lengths are much larger than

the de Broglie wavelength.

The corresponding hydrodynamic equations were derived by taking velocity mo-

ments of the phase-space distribution functions. The spin-orbit interaction intro-

duce some considerable changes in the hydrodynamic equation, we have namely

seen that the charge and the spin current are modified in the presence of the spin-

orbit coupling. As always the hydrodynamic equations need to be closed on the

basis of some physical hypothesis. A set of closed hydrodynamic equations with

spin effects is proposed and can be used for applications. For instance to study the

electron dynamics in metallic nanoparticles excited with intense laser pulses, where

spin and charge effects are closely intertwined.

All the phase-space methods were developed to study coherent effects and are

valid to describe the early stages of the electronic dynamics. As it was demonstrated

in the Sec. 2.2.5, the resulting equations conserve several physical quantities as the

mass, the impulsion, the total angular momentum and the energy. However for
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longer time scales the electrodynamic dynamics start to be dissipative namely be-

cause phenomena such as spin flips, electron-electron collisions or electron-phonon

scattering take place. The latter are not included in our models. The modelling of

dissipation in quantum mechanic is rather difficult and there is not yet a general

consensus on how to deal with many body dissipative quantum systems. In the re-

cent years some author [30, 89] proposed methods based on the Boltzman equation

to include such dissipation effects. The latter study has been done for spinless elec-

trons. Those approaches could be used to add dissipation effects in our spin-Wigner

or spin-Vlasov equations.

All the fluid models developed in this chapter were constructed from the spin-

Vlasov equations. Therefore only the first order quantum effects (proportional to

~) are taken into account. The latter couple the spin dynamics to the orbital dynam-

ics. As it is explained in section 1.4, quantum effects on the orbital dynamics appear

only at the second order in ~ in the semiclassical developments. The consequences

of such quantum effects is the presence of the quantum Bohm potential in the Euler

equation (1.58). Therefore, a simple way to include quantum effects in the above

fluid models would be to add the Bohm potential in the spin-fluid models. How-

ever this procedure is not consistent, one of the correct way to derive quantum fluid

models with spin effects is to start from the spin-Wigner equations and then use the

MEP to close the set of hydrodynamic equations. An extension of this work should

use this procedure to construct quantum fluid models with spin effects. However

this issue is complex and even the definition of the entropy from the Wigner function

(2.82) should be modified in the quantum case [125]. Some complex developments

on quantum fluids models using the MEP can be found in Ref. [126] in the case of

spinless particles. Alternative methods using the Madelung transformation, gener-

alized to spinors, were also developed to construct quantum fluid models with spin

effects [127, 128]. The resulting fluid equations exhibit the complexity of the prob-

lem. Namely new terms with a purely quantum origin and that couple the spin to

the charge dynamics appear.
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Spin effects on the plasmon

oscillations - Linear response

This chapter is devoted to the linear analysis of the spin-Vlasov model. This method

is used to study the propagation of a small perturbation around the equilibrium

state, i.e. f0 = f
(0)
0 + δf0 and fi = f

(0)
i + δfi , where the perturbed distribution func-

tions δf0 and δfi are supposed to be small compare to the equilibrium distribution

functions f
(0)
0 and f

(0)
i . We consider that the perturbation is applied at t = 0 and is

periodic in space:

δfµ = δµ cos(k · r). (3.1)

Here the index µ = {0, x, y, z} corresponds to the different distribution functions.

The above perturbation represents a periodic fluctuation, with a wave vector k, of

the electron density and magnetization. In that case the linear response is character-

ized by the dielectric function ǫ(ω,k) [129]. The zeros of this function correspond to

the different eigenmodes of the system. Moreover the excitation amplitudes of each

mode depends on the initial perturbation.

The spinless linear response, corresponding to the Vlasov-Poisson equation (1.36),

has been discovered long-time ago [130]. The principal oscillation mode is the plas-

mon, the latter oscillates at the plasma frequency ωp = e2n0/mǫ0. Physically, the

plasma frequency corresponds to a collective oscillation of the electrons immersed

in a neutralizing background of positive ions, which are supposed to be fixed be-

cause of the huge difference of mass between the electrons and the ions. The plas-

mon oscillations originate from a displacement of the electron gas that creates a net

Coulomb force between ions and electrons. Then the electrons are pulled back in-

side the system but due to their inertia, they will travel further away, thus recreating

a new Coulomb force in the opposite direction. After few cycles, the plasma oscilla-

tions are usually damped through the well known Landau damping [131] process.

The latter is not a dissipative process, in the sense that the total energy of the system

is conserved, but is rather due to self-consistent effects. Plasmons were observed in

several systems, for instance in gold nano-particles [132]. An illustration of plasmon

oscillations is given in Fig. 3.1.

The principal aim of this chapter is to answer the following question : Is there a
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FIGURE 3.1: From [133], illustration of a surface plasmon resonance
resulting from the collective oscillations of delocalized electrons in re-

sponse to an external electric field.

visible trace of the spin polarization on the plasma frequency?

To answer that question, we shall derive the dielectric function of the spin-Vlasov

model and then find the associated dispersion relation. In general, this is a compli-

cated task to solve. Here, we simplify the problem by considering that the equilib-

rium ground state is homogeneous and isotropic leading to an electronic and ionic

spin dynamics that is along the z direction (collinear approximation). Therefore the

equilibrium distribution functions read:

f
(0)
0 = f

(0)
0 (|v|) = G

(
mv2/2 + µBB

)
+ G

(
T,mv2/2− µBB

)
,

f (0)
z = f (0)

z (|v|) = G
(
mv2/2 + µBB

)
− G

(
T,mv2/2− µBB

)
.

where G is either a Maxwell-Boltzmann or a Fermi-Dirac function. The magnetic

field B ≡ Bz is a homogeneous magnetic field in the z direction that allows us to

have a spin polarized ground state. The distribution functions verify also the fol-

lowing properties :
∫
f0dv = n0 and

∫
fzdv = m0, where n0 and m0 are, respectively,

the equilibrium density and magnetization.

The initial perturbation (3.1) is chosen in order to excite an electrostatic mode, in that

case we must have δ0 = δz
1. Moreover we also consider that the magnetic field has

no effect on the orbital electronic dynamics. In other words, it means that there is no

magnetic Lorentz force in the Vlasov equation. In this case the electrostatic waves

created in the electron gas must be purely longitudinal, i.e. along the direction of

the wave vector k. Here we choose the x direction for the wave vector: k = kux.

Therefore the electric field, created by the initial perturbation (3.1), writes:

E = −∇φ(x) = −∂xφ(x)ux = E(x)ux (3.2)

and all the physical quantities shall only depend on the position variable x, in par-

ticular the distribution functions. This situation is sketched in the Fig. 3.2 , where

we represent a longitudinal electrostatic wave that propagates in a spin polarized

electron gas. The spin is polarized in the z direction and the electrostatic wave oscil-

lates in the x direction with a wave vector k. We represent also the electron and the

1We could also excite a magnetic mode, in this case we have δ0 = −δz . This case corresponds to
the situation where the spin up and down are excited in an opposite way.
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FIGURE 3.2: Picture of a longitudinal electrostatic wave in the x di-
rection and the associated electron and ion densities. The spins are

polarized in the z direction.

ion densities associated to this longitudinal electrostatic wave. Using the approxi-

mations mentioned above, the spin-Vlasov model (2.54) - (2.55) reads:

∂f0
∂t

+ v ∂xf0 −
1

m
∂x (−eφ+ VXC) ∂vf0 −

µB

m
∂x (BXC +Bz) ∂vfz = 0, (3.3)

∂fz
∂t

+ v ∂xfz −
1

m
∂x (−eφ+ VXC) ∂vfz −

µB

m
∂x (BXC +Bz) ∂vf0 = 0, (3.4)

∂2φ

∂x2
=

e

ǫ0

(∫
f0dv − n0

)
,

∂Bz

∂x
= −µBµ0

∂

∂x

(∫
fzdv

)
, (3.5)

where the velocity variable v ≡ vx stands for the x-component of the velocity vec-

tor. We use the tools of the Fourier-Laplace transforms to determine the linear re-

sponse of the above spin-Vlasov model (3.3)-(3.5). Such methods are well adapted

for homogeneous systems and were successfully used to determine the collective

response for systems described by the Vlasov-Poisson model [134]. In the first sec-

tion, we apply the Fourier Laplace method to determine the linear response of the

spin-Vlasov model (3.3)-(3.5). The second and third sections concern the use of the

linear response associated to different ground state distribution functions (Maxwell-

Boltzmann and Fermi-Dirac).

3.1 General theory about the linear analysis of the spin-

Vlasov model

In order to perform a linear analysis, we study the propagation of a weak perturba-

tion around the equilibrium configuration

f0(x, v, t) = f
(0)
0 (v2) + δf0(x, v, t) and fz(x, v, t) = f (0)

z (v2) + δfz(x, v, t). (3.6)
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Then using the spin-Vlasov model (3.3)-(3.5) and the previous expressions (3.6), one

obtains the following equations:

∂δf0
∂t

+ v ∂xδf0 −
1

m
∂x (−eδφ+ δVXC) ∂vf

(0)
0 − µB

m
∂x (δBXC + δBz) ∂vf

(0)
z = 0, (3.7)

∂δfz
∂t

+ v ∂xδfz −
1

m
∂x (−eδφ+ δVXC) ∂vf

(0)
z − µB

m
∂x (δBXC + δBz) ∂vf

(0)
0 = 0, (3.8)

∂2δφ

∂x2
=

e

ǫ0

∫
δf0dv,

∂Bz

∂x
= −µBµ0

∂

∂x

∫
δfzdv, (3.9)

where all the second order terms have been suppressed and where the exchange-

correlation potentials have been developed as follows:

VXC = V
(0)
XC + ∂nVXC(n0,m0)

∫
δf0dv + ∂mVXC(n0,m0)

∫
δfzdv = V

(0)
XC + δVXC ,

(3.10)

BXC = B
(0)
XC + ∂nBXC(n0,m0)

∫
δf0dv + ∂mBXC(n0,m0)

∫
δfzdv = B

(0)
XC + δBXC .

(3.11)

We use the Fourier-Laplace transformations to solve the linearized spin-Vlasov model.

The Fourier transform and its inverse are defined as follows:

F (A (x, t)) = A(k, t) =
1

2π

∫ ∞

−∞
exp (−ikx)A (x, t) dx, (3.12)

F−1
(
A (k, t)

)
= A(x, t) =

∫ ∞

−∞
exp (ikx)A (k, t) dk. (3.13)

Similarly, the Laplace transform and its inverse are defined as follows:

L
(
A (k, t)

)
= Ã(k, p) =

∫ ∞

0

exp (−pt)A (k, t) dt, (3.14)

L−1
(
Ã(k, p)

)
= A (k, t) =

1

2πi

∫ p0+i∞

p0−i∞
exp (pt) Ã (k, t) dp. (3.15)

We remind that the Laplace transform is only valid in the upper complex plane

bounded by the following relation : ℜ(p) > p0, where p0 is chosen such that

exp (−p0t)A (k, t) → 0 when t → ∞.

After some straightforward algebra, one obtains the following set of equations for
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the Fourier-Laplace components of the perturbed self-consistent fields:

−eδ̃φ+ ˜δVXC =
1

ǫ (p, k)

{(
e2

ǫ0k2
+ ∂nVXC

)
J0 + ∂mVXC Jz

+
µBk

m

[(
e2

ǫ0k2
+ ∂nVXC

)
(∂mBXC − µBµ0)− ∂mVXC ∂nBXC

]
(J0I0 − JzIz)

}
,

(3.16)

˜δBz + ˜δBXC =
1

ǫ (p, k)

{
∂nBXC J0 + (∂mBXC − µBµ0) Jz

+
µBk

m

[(
e2

ǫ0k2
+ ∂nVXC

)
(∂mBXC − µBµ0)− ∂mVXC ∂nBXC

]
(JzI0 − J0Iz)

}
,

(3.17)

where, the integral quantities J0, Jz, I0 and Iz are defined as follows:

J0,z =

∫
δf0,z(t = 0)

p+ ikv
dv and I0,z = −i

∫
∂vf

(0)
0,z

p+ ikv
dv. (3.18)

The quantity δf0,z(t = 0) represents the Fourier transform of the initial perturbation

(3.1) that is applied at t = 0. The quantity ǫ (p, k) is the so-called dielectric function

of the system

ǫ (p, k) = 1 +
ω2
p

kn0

I0 −
kµ2

Bµ0

m
I0 +

k

m
[(∂nVXC + µB∂mBXC) I0 + (∂mVXC + µB∂nBXC) Iz]

+
µBk

2

m2
[(∂nVXC) (∂mBXC)− (∂nBXC) (∂mVXC)]

[
I2
0 − I2

z

]

+

[
−
ω2
pµ

2
Bµ0

n0m
+

µBω
2
p

n0m
∂mBXC − k2µ2

Bµ0

m2
∂nVXC

] (
I2
0 − I2

z

)
. (3.19)

The integral quantities I0, Iz depend only on the ground state properties, whereas

the integral quantities J0, Jz depend on the initial perturbation.

The dielectric function is an important object in linear analysis, since its zeros give

the linear excitation modes of the system. It can be divided in two parts, the first

part is linear in I0 or Iz and the second part is quadratic in those quantities. Each

term in Eq. (3.19) corresponds to a special kind of interaction or to a mixing between

two different interactions. All the terms that contained the plasma frequency ωp are

related to electrostatic interactions (Poisson equation), the terms proportional to µ0

are related to magnetostatic interactions (Ampère equation) and the terms that de-

pend on VXC or BXC are related to exchange-correlation interactions.

Usually the dielectric function has several zeros, each of them corresponds to a dif-

ferent mode of oscillations. Moreover the zeros are complex numbers with a real

part and an imaginary part that correspond, respectively, to the oscillation frequency
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and the damping or the expansion of the modes. The dielectric function, Eq. (3.19),

depends only on the initial equilibrium state, through the quantities I0 and Iz. How-

ever, as we shall see below, each mode is weighted by a factor that depends on the

initial perturbation.

Let us perform an inverse Laplace transform on the expressions (3.16) - (3.17), in

order to find the temporal profile of the Fourrier components of the self-consistent

potentials. Using Eq. (3.15), one obtains:

−eδφ+ δVXC =

∫ p0+i∞

p0−i∞

[
−eδ̃φ+ ˜δVXC

]
exp (pt) dp, (3.20)

−eδBz + δBXC =

∫ p0+i∞

p0−i∞

[
−e ˜δBz + ˜δBXC

]
exp (pt) dp. (3.21)

The expressions above contain some integrals of the following type:

χ (k, t) =

∫ p0+i∞

p0−i∞
χ̃ (p, k) exp (pt) dp =

∫ p0+i∞

p0−i∞

[
exp (pt)

ǫ(p, k)

∫ ∞

−∞

g(v)

p+ ikv
dv

]
dp. (3.22)

To calculate the integral over the variable p, we shall deform the integration path

from p0− i∞...p0+ i∞ to −∞− i∞...−∞+ i∞, in such a way that the factor exp (pt)

makes the integrand vanishing, see Fig. 3.3 (a and b). However the function χ̃ (p, k)

is not an holomorphic function, it has some poles at points pj where the dielectric

function cancels: ǫ(pj, k) = 0. Therefore one has to circumvent those poles when we

deform the integration path. This is sketched in Fig. 3.3, where we draw the initial

integration path on the left part (a) and the new integration path on the right part

(b). Then using the residue theorem, one obtains:

χ (k, t) =

✘
✘

✘
✘
✘

✘
✘
✘
✘
✘
✘
✘
✘

✘
✘
✘

✘
✘
✘✘✿

0
∫ ∞+i∞

∞−i∞

[
exp (pt)

ǫ(p, k)

∫ ∞

−∞

g(v)

p+ ikv
dv

]
dp+

∑

j

Resp=pj (χ̃(p, k)) exp(pjt),

=
∑

j

Resp=pj (χ̃(p, k)) exp(pjt). (3.23)

where pj are the zeros of the dielectric function and Resp=pj (χ̃(p, k)) are the residues

of χ̃ (p, k) in its poles.

However, one should be careful when we carry out this deformation. Indeed, the

function χ̃ (p, k) contains some integrals over the velocity space of the following type

(see Eq. (3.22)):

I(p, k) =
∫ ∞

−∞

g(v)

v − ip/k
dv. (3.24)

The latter are always well defined once one integrates over the initial path because

in this case ℜ(p) = p0 and the poles of the integrand are above the real axis of v.
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FIGURE 3.3: (a), initial integration path (green line) in the p-plane. The
red cross are the zeros of the dielectric function and the red dots are
some complex numbers (z1, z2, z3). (b), integration path in the p-plane
after the deformation. (c), initial integration path in the v-plane. (d),
integration path in the v-plane after having applied the Landau pre-

scription.

However, since we deform the integration path in the p-plane, a singularity will ap-

pear in the integrand of Eq. (3.24) each time that we cross the imaginary axis. In the

literature [99, 134], this problem is solved by using a method developped by Lan-

dau. The latter consists to deform the integration path in the v-plane by by-passing

the poles from below when they cross the real axis. This situation is sketched on the

Fig. 3.3 (c and d). The Landau prescription ensures the analytical prolongation of
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the integral (3.24) in the lower part of the complex plane. It is defined as follows:

I(p, k) =
∫

L

g(v)

v − ip/k
dv =





∫ ∞

−∞

g(v)

v − ip/k
dv, if ℜ (p) > 0

VP

∫ ∞

−∞

g(v)

v − ip/k
dv + πig(ip/k), if ℜ (p) = 0

∫ ∞

−∞

g(v)

v − ip/k
dv + 2πig(ip/k), if ℜ (p) < 0

(3.25)

where VP denotes the Cauchy principal value and
∫
L the Landau contour, see Fig.

3.3 (d). It is more convenient to work with the complex variable ω = ip instead of p.

In this case, Eq. (3.23) becomes:

χ (k, t) =
∑

j

Resω=ωj
(χ̃(ω, k)) exp(−iωjt) (3.26)

and one obtains the following expression for the integral (3.25)

I(ω, k) =
∫

L

g(v)

v − ω/k
dv =





∫ ∞

−∞

g(v)

v − ω/k
dv, if ℑ (ω) > 0

VP

∫ ∞

−∞

g(v)

v − ω/k
dv + πig(ω/k), if ℑ (ω) = 0

∫ ∞

−∞

g(v)

v − ω/k
dv + 2πig(ω/k), if ℑ (ω) < 0

(3.27)

According to the expression (3.26), the zeros of the dielectric function ({ωj}) govern

the linear response of the system. In particular, one notices that if ℑ(w) > 0, than

the modes are unstable (they grow exponentially) whereas if ℑ(w) < 0 the modes

are stable (they are exponentially damped).

The above reasoning is only valid if g(v) is a entire function of the complex variable

v. We shall see in the next section that it is not always the case, specially if one

considers Fermi-Dirac equilibrium distribution functions.

In all the cases that we shall study χ̃(ω, k) can always be written as follows:

χ̃(ω, k) =
N (ω, k)

ǫ (ω, k)
. (3.28)
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Then, one can perform a Taylor development of the denominator around the zeros

of the dielectric function:

ǫ (ω, k) = ǫ (ωj, k) + (ω − ωj)

(
∂ǫ (ω, k)

∂ω

)

ω=ωj

+O
(
(ω − ωj)

2) , (3.29)

where the zero order terms cancel by definition of ωj . Then if one supposes that

all the zeros of the dielectric function have a multiplicity of one, then the following

relation holds:

χ (k, t) =
∑

j

Resω=ωj
(χ̃(ω, k)) exp(−iωjt) =

∑

j

lim
ω→ωj

[
(ω − ωj)

N (ω, k)

ǫ (ω, k)

]
exp(−iωjt),

=
∑

j

[
N (ω, k)
∂ǫ(ω,k)

∂ω

]

ω=ωj

exp(−iωjt). (3.30)

The physical quantities capable to be compared with the simulations are the Fourier

transform of the self-consistent fields. The latter can be written as follows:

eE +∇VXC = ik
(
−eδφ+ δVXC

)
=
∑

j

[
N1 (ω, k)

∂ǫ(ω,k)
∂ω

]

ω=ωj

exp(−iωjt), (3.31)

∇Bz +∇BXC = ik
(
Bz + δBXC

)
=
∑

j

[
N2 (ω, k)

∂ǫ(ω,k)
∂ω

]

ω=ωj

exp(−iωjt), (3.32)

where, using Eqs. (3.16) and (3.17), the functions N1 and N2 are defined as follows:

N1 (ω, k) =

(
e2

ǫ0k2
+ ∂nVXC

)
ikJ0 + ∂mVXC ikJz

+
µBk

m

[(
e2

ǫ0k2
+ ∂nVXC

)
(∂mBXC − µBµ0)− ∂mVXC ∂nBXC

]
ik (J0I0 − JzIz) ,

(3.33)

N2 (ω, k) =
1

ǫ (p, k)
∂nBXC ikJ0 + (∂mBXC − µBµ0) ikJz

+
µBk

m

[(
e2

ǫ0k2
+ ∂nVXC

)
(∂mBXC − µBµ0)− ∂mVXC ∂nBXC

]
ik (JzI0 − J0Iz) .

(3.34)

According to the Eqs. (3.31) and (3.32), the functions N1 and N2 are weighting the

different modes of the system. They depend not only on the ground state properties

but also on the form of the initial excitation through the integrals J0 and Jz. The ex-

pressions (3.31)-(3.34) constitute a general result of the spin-Vlasov’s linear theory.

To go further, one has to specify the ground state distribution functions. This issue

will be treated in the two next sections.
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3.2 The dispersion relation with a Fermi-Dirac ground

state
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FIGURE 3.4: Chemical potential (red line) and electron magnetization
(blue line) as a function of the external magnetic field in the case of a
Fermi-Dirac equilibrium state. These calculations were performed with
a density n0 = 5.9 × 1028m−3 (Gold) and for a temperature of 300K.

The dashed lines represent analytical solutions for µ < |µBB|.

The dispersion relation ω(k) is obtained by finding the roots of the dielectric

function ǫ(ω, k), see Eq. (3.19). As it was mentioned previously, the dielectric func-

tion depends on the equilibrium state trough the integral terms I0 or Iz. Therefore

we have to specify the equilibrium distribution functions f
(0)
0 and f

(0)
z . In the case of

metallic electrons, the spin up and spin down electrons follow a Fermi-Dirac distri-

bution2

f ↑(0)(v) =
2πkbT

m

( m

2π~

)3
ln

[
1 + exp

(
− 1

kbT

(m
2
v2 + µBB − µ

))]
, (3.35)

f ↓(0)(v) =
2πkbT

m

( m

2π~

)3
ln

[
1 + exp

(
− 1

kbT

(m
2
v2 − µBB + µ

))]
, (3.36)

2Here it is the Fermi-Dirac in one dimension obtained after integrating the three dimensional
Fermi-Dirac function over the transversal velocities (vy , vz) : f1d =

∫
f3ddv⊥.
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FIGURE 3.5: In this figure, we represent the different quantities that
appear in the dispersion relation (3.44) as a function of the electronic
density. The black curve represents vF (thermal effects) , the red curve
represents vX (exchange effects) and the blue curve represents vms

(magnetostatic effects). We took the following parameters: m = 1a.u,
ǫ0 = 1/(4π) a.u and α = 1/2 (Spin polarization).

where the magnetic field B is present to have a spin polarized ground state. The

chemical potential is then obtained to ensure that we have the correct number of

electrons, i.e.
∫ (

f ↑(0) + f ↓(0)
)
dx dv =

∫
n0dx = N0.

In the Fig. 3.4, we plot the chemical potential as a function of the applied magnetic

field in the case of Fermi-Dirac distribution functions, the temperature is set to 300K

and the density to metallic densities. In the case of a zero magnetic field we correctly

found that the chemical potential is equal to the Fermi energy. In the same figure

we draw also the magnetization as a function of the magnetic field, for a magnetic

field larger than the Fermi magnetic field BF = EF/µB, we found that electron gas is

completely spin-polarized.

In order to find the dispersion relation, one should also specify the form of the

exchange-correlation functionals. The minimal requirement is to take an exchange

functional which is local and spin dependent [135]

VXC = VX = − e2

4πǫ0

(
3

4π

) 1
3

[(
n0 +m0

2

) 1
3

+

(
n0 −m0

2

) 1
3

]
, (3.37)

µBBXC = µBBX = − e2

4πǫ0

(
3

4π

) 1
3

[(
n0 +m0

2

) 1
3

−
(
n0 −m0

2

) 1
3

]
, (3.38)
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where n0 and m0 are the local density and magnetization of the ground state. The

functionals (3.37) and (3.38) are the exact solutions of the Hartree-Fock equations in

the case of homogeneous electronic densities. In our case, we are not so far from

this situation, since we study perturbations around homogeneous ground states.

The first order derivative of those exchange functionals write:

∂nVX = µB∂mBX = − e2

4πǫ0

1

6

(
3

4π

)1/3
[(

n0 +m0

2

)−2/3

+

(
n0 −m0

2

)−2/3
]
, (3.39)

∂mVX = µB∂nBX = − e2

4πǫ0

1

6

(
3

4π

)1/3
[(

n0 +m0

2

)−2/3

−
(
n0 −m0

2

)−2/3
]
. (3.40)

Before addressing the complete determination of the dispersion relation, we are go-

ing to study the zero temperature case. In this regime the distribution functions can

be written as follows:

f
(0)
0 (T = 0) =

n0

2VF
[1−Θ(|v − vF|)] , f (0)

z (T = 0) = αf
(0)
0 (T = 0), (3.41)

where α ∈ [−1; 1] represents the spin polarization of the system and Θ is the Heavi-

side function. In this case the integrals I0 and Iz write:

I0 =
n0

2vF

∫
∂v [1−Θ(|v − vF|)]

w − kv
dv, Iz = αI0. (3.42)

Let us consider the case of long wavelength solutions, i.e. ω ≫ kv, in this case one

can use the development (1.62) to by pass the singularity problem, one obtains:

I0 = −n0k

[
1

ω2
− 6k2

ω4

]
, Iz = αI0. (3.43)

In this particular limit, the dispersion relation associated to the dielectric function,

Eq. (3.19), can be easily solved

ω2 = ω2
p + k2


v

2
F −

1

6m

e2

4πǫ0

(
3n0

π

)1/3 [
(1 + α)4/3 + (1− α)4/3

]

︸ ︷︷ ︸
vX

− n0µ
2
Bµ0α

2

m︸ ︷︷ ︸
vms


 .

(3.44)

From this result, we see that the effect of the exchange and the magnetostatic in-

teractions are proportional to k2 such as temperature effects represented by vF =

~(3π2n0)
2/3/m, except that they appears with an opposite size. Therefore tempera-

ture effects tend to increase the plasmon frequency whereas exchange and magne-

tostatic interactions tend to decrease the plamson frequency. All the three terms in

the parenthesis, on the right side of Eq. (3.44), depend only on the electron density
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n0 and the spin polarization α. In Fig. 3.5, we analyse the absolute value (in velocity

units) of each of these terms as a function of the electron density. We clearly notice

that there is a critical density for which the temperature effects are smaller than the

exchange effects, i.e.

v2F <
1

6m

e2

4πǫ0

(
3n0

π

)1/3 [
(1 + α)4/3 + (1− α)4/3

]
. (3.45)

A simple calculation shows that this conditions is full-field when n0 < n⋆
0 = 2.7 ×

1026 m−3. We also notice that the magnetostatic interactions have a week influence

on the dispersion relation. Therefore there are two different regimes, one for small

densities (n0 < n⋆
0) where the system is mainly dominated by exchange interactions

and and other one for large densities (n0 > n⋆
0) where thermal effects dominates.

Electrons in metallic nano-structure have a density around 1028 − 1029 m−3. There-

fore in this kind of systems one should not observe a strong influence of exchange

interaction on the plasmon mode. However for electrons in semi-conductor the den-

sity are even lower than n⋆
0, then the influence of the exchange interaction would be

much stronger.

These results should not be considered as exact but rather as a basis for the future

discussions. They are several approximations behind these results. First they are

derived from the local density approximation of the exchange interaction and hence

are correct only in the case of homogeneous densities. Secondly, this analysis is only

valid for a system of electrons with a temperature much smaller than the Fermi tem-

perature and for plasmon modes which are not damped (ω ≫ kv). Moreover, as it

is showed in Fig. 1.1, for small electronic densities and temperatures the electron-

electron correlation should start to play a significant role. This is particularly true in

the regime dominated by the exchange effects.

One should also mentioned that the dispersion relation, Eq. (3.44) can be also ob-

tained from a fluid model with spin effects. Indeed if one took the fluid model (2.73)-

(2.75) and (2.99), closed with the maximum entropy method and with a Fermi-Dirac

distribution function (see Sec. 2.3.3), then one obtains exactly the same dispersion

relation.

Exchange interactions have two effects, one which is similar to an electric field and

an other one which acts as a magnetic field. The latter acts differently on the spin

up and spin down populations and could be in principle responsible of a trace of

the spin polarization in the plasmon frequency. In the dispersion relation (3.44), it

appears with the parameter α. However the difference between a full and a none

polarized electron gas is small. Indeed in the first case, one has a corrective factor

of 2 whereas in the other case it is equal to 24/3. Of course this difference increases

with the value of k, but in the same time one expects that the oscillation modes with

a large value of k are rapidly damped. This could be verified by solving the full

dispersion relation where ω is a complex quantity. This issue is in practice not easy

to realize, particularly when one consider a Fermi-Dirac distribution function [70].
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Indeed, in this case, it is more convenient to work with I+ and I− instead of I0 and

Iz, which are defined as follows:

I+ =

∫
∂vf ↑(0)

ω − kv
dv = −2π

( m

2π~

)3 vF

k

∫ ∞

−∞

v
vp
vF

− v

dv

1 + exp
(

EF

kbT

(
v2 − µ̃−

EF

)) , (3.46)

I− =

∫
∂vf ↓(0)

ω − kv
dv = −2π

( m

2π~

)3 vF

k

∫ ∞

−∞

v
vp
vF

− v

dv

1 + exp
(

EF

kbT

(
v2 − µ̃+

EF

)) , (3.47)

where we have introduced a renormalized chemical potential : µ̃± = µ + µBB and

the velocity vp = ω/k.

Comparing the expression (3.46) - (3.47) with the integral (3.24) , we found that in

the case of Fermi-Dirac distribution functions, the function g(v) is equal to

g(v) =
v

1 + exp
(

EF

kbT

(
v2 − µ̃±

EF

)) . (3.48)

However, the Landau method, developed in the previous section, is valid only if

g(v) is an analytical function of v. This is obviously not the case for a Fermi-Dirac

distribution function because the denominator of Eq. (3.48) cancels for several par-

ticular values of v, i.e. when the following identity holds: EF/(kbT ) (v
2 − µ̃±/EF) =

π + 2nπ, n ∈ ZZZ.
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FIGURE 3.6: Poles of the function g(v), Eq. (3.48), in the case of a
metallic density n0 = 5.9 × 1028m−3 and for different temperatures:

T = 0.01 TF (a) and T = TF (b).
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In the Fig. 3.6, we represent the poles of the function g(v) for different temperatures

T = 0.01 TF, T = TF and in the case of metallic densities (Gold). We notice that one

has a infinite numbers of poles and that for low temperatures they are more and

more close from each other. In the limit T = 0, one can show that they are continu-

ously connected. For practical applications in metallic nano-structures, one should

consider temperatures close to T = 0.01 TF which correspond more or less to the

room temperature.

Therefore the fact that the function g(v) is not analytical make the analytical prolon-

gation of the integrals I± difficult to realize. One can not simply use the Landau

method without considering those new singularities. We didn’t find a method to

solve this problem. In the next section we shall use a Maxwell-Boltzmann distribu-

tion function, for which the function g(v) is analytical, to be able to find a plamson

dispersion relation with spin effects.

3.3 The dispersion relation with a Maxwell-Boltzmann

ground state
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FIGURE 3.7: Zeros of the dielectric function, Eq. (3.56). The differ-
ent symbols correspond to different type of modes: plasmon modes
(blue circles), paramagnon mode (red square) and other modes that are
strongly damped (black crosses). The following parameters are used :

n0 = 5.9× 1028m−3, T = 64000K and k = 0.4 kD.

The plasma dispersion relation for spinless systems, corresponding to a Vlasov-

Poisson model with a Maxwell-Boltzmann equilibrium distribution function, was
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intensively studied in the literature [134]. In that case the dispersion relation can be

fully evaluated even in the strong damping regime. As we will see, for a Maxwell-

Boltzmann distribution, the problem of the analytical prolongation of the function

g(v) is solved by introducing the plasma dispersion function.

For a system of electrons, the Maxwell-Boltzmann distribution functions read:

f
(0)
0 (v) =

n0

vT
√
π
exp

[
− m

2kBT
v2
]
, (3.49)

f (0)
z (v) =

n0

vT
√
π
tanh

(
µBB

kBT

)
exp

[
− m

2kBT
v2
]
, (3.50)

where vT =
√
2kBT/m represents the thermal speed of the electrons.

In this case the integrals I0 and Iz write:

I0 = − 2n0

v3T
√
π

∫ v exp
(
− m

2kbT
v2
)

ω − kv
, Iz = αI0. (3.51)

To use the Landau method (3.27) we introduce the plasma dispersion function,

which is defined as follows:

Z (̺) =
1√
π

∫

γ

exp (−z2)

z − ̺
dz, (3.52)

where γ is a contour in the complex plane following the real axis at infinity and

passing under the singularities z = ̺. This function was originally introduced by

Fried et Conte [136], it is well defined for ℑ (ω) > 0 and it is analytically prolonged

in the lower part of the complex plane, i.e. for ℑ (ω) < 0. The plasma dispersion

function can be written in terms of the complementary error function erfi(z) =

2/
√
π
∫ z

0
exp (z2) dz:

Z (̺) =
√
π exp

(
−̺2

)
[i− erfi (̺)] . (3.53)

The latter is a standard function and hence can be easily computed using a numeri-

cal library. Then, one can express the integrals I0 and Iz as a function of the plasma

dispersion function. We have

I0 =
2n0

kv2T

[
1 +

ω

kvT
Z

(
ω

kvT

)]
= − n0

kv2T
Z ′
(

ω

kvT

)
, Iz = αI0, (3.54)

where the following property has been used:

Z ′ (̺) = −2̺Z (̺)− 2. (3.55)
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According to the expressions (3.54) for I0 and Iz and to the equation (3.19), one

obtains the following dielectric function for a Maxwell-Boltzmann distribution

ǫ (ω, k) = 1− 1

v2T

[
ω2
p

k2
− µ2

Bµ0n0

m
+ 2

n0

m
(∂nVX + α∂mVX)

]
Z ′
(

ω

kvT

)

+

(
n0

mv2T

)2 [
(∂nVX)

2 − (∂mVX)
2] [1− α2

]
Z ′
(

ω

kvT

)2

+

(
n0

kv2T

)2 [µBω
2
p

n0m
∂nVX −

ω2
pµ

2
Bµ0

n0m
− k2µ2

Bµ0

m2
∂nVX

] [
1− α2

]
Z ′
(

ω

kvT

)2

.

(3.56)

In order to find the zeros of this complex function, we use ZEAL [137], which is a

mathematical software package for computing zeros of analytic complex functions.

This algorithm is based on the following idea. We first define a rectangle region in

the complex plane and instead of considering the function f , for which we want to

determine the zeros, we consider the inverse of this function g = 1/f . Then using

the residue theorem the program ZEAL is able to find the poles of g corresponding

to the zeros of the function f .

The dispersion relation depends on the electron density (n0) and the temperature

(T ). We first consider an electron gas having a metallic density n0 = 5.9 × 1028 m−3

(Gold). A first complication arrives when one wants to define the temperature of

the system. Indeed, we use a Maxwell-Boltzmann distribution function instead of

a Fermi-Dirac and therefore the temperature that we use should not be necessarily

related to the physical temperature of the system. The Temperature has to be set in

order to have electrons at the Fermi energy. Therefore we choose a thermal velocity

equal to the Fermi velocity : vT = vF. In the case of Gold this leads to a temperature

of T = 64000K.

In Fig. 3.7, we represent the zeros of the dielectric function (Eq. (3.56)) using the

previous values of density and temperature. We first notice that the zeros are sym-

metrically located with respect to the vertical axis. This is due to the symmetric

properties of the plasma dispersion function. We also note the presence of an in-

finite number of zeros (black crosses), but several of them have no impact on the

dynamical response. Indeed they have a large imaginary part compared to the real

part and are therefore rapidly damped. Then, there are also three other zeros which

have different origins. Two of them represented by the blue circles are responsible

of the plasma frequency. For small value of k they have a real part larger than the

imaginary part. Therefore they govern the dynamics of the system. The last zero

represented by a red square has the specificity to have a zero real part. This means

that the associated mode is not present in the dynamics. By removing the exchange

interactions, we notice that this zero disappears. The latter corresponds to the para-

magnon that is an oscillation in phase opposition of two spin populations (up and

down). The paramagnon modes are purely magnetic modes in the sense that there
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FIGURE 3.8: Plasmon dispersion relation ω(k) (nomalized to ωp) for
two different physical systems. The upper lines correspond to the real
part of ω whereas the lower lines correspond to the imaginary part. The
black lines and the color ones correspond, respectively, to the abscence
and presence of exchange interactions. The blue lines correspond to a
full polarized system, i.e. m0 = n0, whereas the red lines correspond
to a non polarized system, i.e. m0 = 0. In (a), we consider electrons
with a density of: n0 = 1022m−3 and T = 300K. In (b), we consider
electrons in Gold with the following parameters: n0 = 5.9 × 1028m−3

and T = 64000K (vT = vF). In both case: m = 1a.u, ǫ0 = 1/4π a.u.

is no charge excitations but only spin excitations. In order to have paramagnon os-

cillations we need to have a magnetic coupling in the system. In our system, it is the

exchange interaction that is responsible of the paramagnon oscillations. In the liter-

ature [138] it is found that the paramagnon has a zero real part for infinite system.

This result was demonstrated in the quantum regime and that explains why the

paramagnon have a zero real part in our semi-classical model. Paramagnon have

been also studied in Ref. [139], The authors found that the real part of the param-

agnon mode is non zero for finite-size systems. The exchange interaction does not

only appear through this zero but it also modifies the zeros corresponding to the

plasma frequency. This will be discussed below.
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In Fig. 3.8, the plasma dispersion relation is depicted for two different physical sys-

tems. The first system corresponds to the case of electrons in metal with the density

of Gold n0 = 5.9× 1028 m−3 and a temperature T = 64000K. As already mentioned,

the temperature has to be set very high, because one uses a Maxwell-Boltzmann dis-

tribution instead of a Fermi-Dirac. The second system corresponds to an ideal case,

where the electron density is about n0 = 1022 m−3. For such a system, the Fermi tem-

perature is close to 2K (vT = vF). Therefore, at room temperature (T = 300K), it is

justified to use a Maxwell-Boltzmann distribution function instead of a Fermi-Dirac.

Indeed, for temperatures much larger than the Fermi temperature, the Fermi-Dirac

distribution converges towards a Maxwell-Boltzmann distribution.

In the metallic case (Fig. 3.8 (b)), we note that the plasma frequency is dominated by

the electrostatic interactions. Indeed the exchange interactions do not change sig-

nificantly the dispersion relation, they may decrease a bit the value of the plasma

frequency. This difference increase with the value of k but in the same times the

plasma oscillations are more and more damped. These results are not so surprising

because they are in agreement with the qualitative analysis that we made in the Sec.

3.2 in the long wavelength limit, see Eq. (3.44).

The same equation showed us that for smaller densities the effect of exchange in-

teractions could be more important even for low value of k. In the Fig. 3.8 (a), we

plot the plasma dispersion relation with an electronic density n0 = 1022 m−3. With

this kind of density, we are in a regime where the exchange interactions dominate

over the electrostatic interactions (see Fig. 3.5). Indeed the effect of exchange inter-

actions are clearly visible. For small value of k the plasma frequency first decrease

instead of growing. Then for a special value of k it reaches a minimum before grow-

ing for larger value of k. The trace of the spin polarization is more visible in that

system, we specially notice a shift in k for the minimum of the plasma frequency.

However, it is difficult to find such systems in the nature. On can think about semi-

conductors, indeed the typical electronic densities are around 1022 m−3. However

in such systems, we should also take into account the effective mass and dielectric

constant m⋆ = 0.07m and ǫ⋆0 = 12ǫ0 [96]. Such that the dimensionless physical quan-

tities are similar for electrons in metallic nano-structures and electrons (or holes)

in semi-conductors [140]. Therefore, if we compute the dispersion relation with the

semi-conductors parameters, we would obtain the same behaviour as in the metallic

case (Fig. 3.8 (b)).

3.4 Conclusions and perspectives

In this chapter we used the Fourier and the Laplace transforms to study the linear

response of a spin polarized electron gas that is subject to a weak periodic perturba-

tion. We have seen that the linear regime is characterized by the dielectric function

ǫ (ω, k) and that the zeros of this function give the eigenmodes of the system. The lat-

ter constitute the dispersion relation of the system ω(k) and depend on the ground
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state distribution functions. In the first part we have seen how to include the spin

in the dielectric function, through the Zeeman interaction, the exchange potential

(LDA) and self-consistent effects. Then we studied the plasma dispersion relation

for an electron gas with a Fermi-Dirac ground state. We encountered some mathe-

matical difficulties that we have not been able to solve. We thus solved the problem

with a Maxwell-Boltzmann ground state, for which we obtained the full dispersion

relation. We have seen that the main influence of the spin on the plasma frequency

originates from the spin dependent exchange interaction. However, at the usual

electron density and temperature of metallic nano-structures, exchange effects are

not enough strong to have an appreciable change of the plasma frequency.

The study that we have done here is not complete and should be extended to the

following cases:

• The electrons in metallic nano-structures should be modelled using a Fermi-

Dirac distribution instead of a Maxwell-Boltzmann. However to do so one has

to deal with the natural singularities of the Fermi-Dirac distribution function.

Such analysis was recently performed in Ref. [141], the author obtained the full

semi-classical dispersion relation with a Fermi-Dirac ground state. However

they did not include the spin in their analysis. It should be interesting to use

their method to evaluate the dispersion relation with spin effects and with a

Fermi-Dirac ground state.

• Quantum corrections to the plasma dispersion relation were recently study by

several authors [141–143], in the case of spinless electrons. In those works, the

authors studied the dispersion relation of the Wigner equation (1.30) for spin-

less particles. They solved numerically the plasma dispersion relation with a

Fermi-Dirac ground state. In the quantum regime the dispersion relation of an

electron gas is given by the so-called Lindhard function. In that case the ana-

lytical prolongation works well, but one has to deal with complex logarithms

and with branch cuts in the complex plane. A possible extension of our work

consists to include quantum effects in the dielectric function (3.19). In this case,

one has to perform the linear analysis on the spin-Wigner model instead of the

spin-Vlasov model. We should then obtain a generalized Lindhard dielectric

function with spin effects.

• The spin-orbit interaction should be also included in the linear analysis. To

correctly describe it, one has to consider also the electron dynamics in the

transversal directions of the perturbation. In that case, the dielectric function

becomes a tensor and the problem is more complicated to solve. It should be

particularly interesting to see, how the plasmon modes are modified due to

the spin-orbit interaction and also if there are some unstable magnetic modes

that appears. One might even want to consider the possibility to study, in the

linear regime, transfers between spin and orbital angular momentums.
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Chapter 4

Nonlinear electron and spin dynamics

in Nickel thin films

In the chapter 2, we derived a self-consistent semiclassical model, based on the

spin-Vlasov equations (2.54)-(2.55), to study the spin dynamics in metallic nano-

structures. In this chapter we shall apply this model to study the spin dynamics in

nickel thin films. This type of system was chosen for the following reasons. Firstly,

we restrict the problem to a four dimensional problem in the phase space instead of

a six dimensional problem. Indeed, the longitudinal direction of the film, which will

be denoted x in the rest of the chapter, is much smaller than the two other directions,

see Fig. 4.1. Therefore we consider that the distribution functions are invariant in

the transverse directions y-z, i.e. fµ = fµ (x, vx, vy, vz), with µ = {0, x, y, z}. Secondly,

there exist experimental results on the magnetization dynamics in nickel thin films.

FIGURE 4.1: nickel thin film excited by a laser pulse.
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For instance an ultrafast demagnetization induced by femtosecond laser pulses was

first observed in 1996 in such systems [22]. Finally, the electron dynamics was re-

cently investigated using a Vlasov-Poisson model [38, 144] and a Wigner-Poisson

model [39, 89]. In those papers, the authors modelled the classical and quantum

electron dynamics in thin films of Sodium without considering the spin degrees of

freedom. This chapter concerns the extension of their analysis by including spin ef-

fects. However only the Zeeman interaction will be considered here. We shall not

include the spin-orbit interaction in our simulations, essentially because of compu-

tational reasons.

4.1 Description of the system

nickel films are characterized by the following parameters: (L, σ, ni
0, T ). L is the

thickness of the film and σ is a diffuseness parameter. The latter represents the

typical length scale on which the density falls to zero on the border of the film. T is

the temperature of the system and ni
0 is the ion density of the bulk metal. The ions

are supposed to be fixed during the electron motion. This assumption is justified

by the fact that there is a time scale separation between the ions and the electrons

motion, which is given by the plasma frequency ωp (1.5). We assume the following

shape for the ion film density:

ni(x) =
ni
0

1 + exp
(

|x|−L/2
σ

) . (4.1)

This assumption holds if the film size in the directions parallel to its surfaces is large

compared to L. In this case, it is appropriate to use a 1D model, where only the nor-

mal coordinate x plays a role. We have chosen the form (4.1) in reference to [144],

basically σ will be around 0.5−1 Å. However this is an assumption, one could imag-

ine other functions, the point is that the ion density must be steep on the border of

the film and practical to use for numerical applications. The density profile corre-

sponding to the Eq. (4.1) is sketched in Fig. 4.2.

Afterwards, we are going to use adapted units to our system. Energies will be

normalized to the Fermi energy EF, time to the inverse of the plasma frequency

ωp =
√

e2ni
0/(mǫ0), velocities to the Fermi velocity vF =

√
2EF/m and lengths to

LF = vF/ωp. Electron and ion densities will be normalized to ni
0 = 3/(4πr3s), where

rs is the Wigner-Seitz radius. In the case of nickel films one has : (rs = 2.6 a.u.),

ni
0 = 0.0136 a.u. = 91.8 nm−3, Tp = 2πω−1

p = 15.32 a.u. = 0.37 fs, vF = 0.93 a.u. =

1.12 106 m.s−1, LF = 2.27 a.u. = 0.120 nm and EF = 0.43 a.u. = 11.76 eV. The electron

structure of nickel is Ni = [Ar] 3d8 4s2. So, there are ten valence electrons of which

eight are in the 3d shell and the others two are in the 4s shell. The question being

asked is actually, first of all, should we treat all the ten valence electrons with our

spin-Vlasov model (2.54)-(2.55)?
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FIGURE 4.2: Ionic den-
sity defined by the Eq.

(4.1).

FIGURE 4.3: Exchange
interactions between the
different spin moments
(K and J are exchange

constants).

The answer is that we should, because the magnetic properties are carried by the va-

lence electrons [145]. However, it is well known [146], that the 3d electrons in nickel

are more localized around the ions than the 4s electrons. This effect is a purely

quantum effect due the electron structure of nickel and cannot be obtained with our

semi-classical model. For instance, it can be obtained with ab-initio techniques such

as DFT calculations, where quantum effects are taken into consideration. So, we

have to make a distinction between the two electron populations. The 4s2 electrons

will be described with our set of Vlasov equations, thus they will have an orbital

and a spin dynamics. Whereas the 3d8 electrons will be described with the Landau-

Lifshitz equations [147], so they will form a localized ion spin which will not move

in the position space but only precess in the spin space. In such a model, we make a

distinction between two different types of magnetism, an itinerant magnetism car-

ried by the 4s electrons and a localized magnetism carried by the spin of the ions

(including the 3d electrons).

The total magnetic moment of nickel is 0.606 µB per atom [148]. This magnetic mo-

ment comes from all the valence electrons, so one has to specify the proportion of

magnetic moment carried by each type of electrons. In the book of Kittel [145], we

found that the magnetic moment of the 3d electrons at 0 Kelvin is about 0.54 µB per

atom. Then we deduce that the magnetic moment of the 4s electrons is equal to

0.066 µB per atom.

In our phase-space models, the spin magnetic moment of the electrons is defined as

follows:

M (x) = −µB

∫
f (x,v) dv, (4.2)
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and the spin magnetic moment of the ions as follows:

M i = −gµBS
i, (4.3)

where g = 2 is the Landé g-factor for an electron and Si denotes the ion spins. The

absolute value of the ion spins is equal to |Si| ≡ Si
0 = 0.54/g = 0.270 (No units), in

such a way that one has |M i| = 0.54 µB.

From the point of view of the magnetic interactions, we shall consider all the pos-

sible exchange interactions between the different spins. The exchange interaction

between ion spins will be modelled using a Heisenberg exchange interaction [149]

with a coupling constant J . Between the electron and ion spins, we will also use an

Heisenberg exchange interaction but with a coupling constant K. The latter inter-

action, between local and itinerant magnets, is known as the RKKY (Rundermann-

Kittel-Kasuya-Yosida) interaction [150]. This type of interaction was originally de-

veloped in the Zener model [151] to describe the magnetism of transition metals.

It was also used in more recent works, for instance in Ref. [55] the authors studied

the ultrafast magnetization dynamics in diluted magnetic semiconductors using an

exchange interaction between localized and itinerant spins. Finally, exchange in-

teractions between electron spins will be treated with exchange functionals of the

electron density as in ab-initio calculations. All the different exchange interactions

mentioned above are sketched in Fig. 4.3.

In this model, the ion spin is a discrete quantity (defined per atom) whereas the elec-

tron spin moment is a continuous quantity (defined per unit of volume). However

the ion density (4.1) is a continuous function. Therefore to be consistent, the ion

spins should be also treated in a continuous fashion. Moreover the exchange inter-

action between ions and electrons should be added in the model in a self-consistent

way. This will be the issue of the two next sections.

4.1.1 Electron spin dynamics

To describe the exchange interaction between the ion and the electron spins we need

to add a new term in the spin-Vlasov equations (2.54)-(2.55). So, we introduce the

following exchange interaction in the Hamiltonian of the electrons:

Hel = H0 +Hsd, (4.4)

where H0 is defined in Eq. (2.15) and Hsd corresponds to the Heisenberg exchange

Hamiltonian between electron and ion spins

Hsd = −
∑

j

K (|x−Xj|)Si
j · s, (4.5)
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where Xj and x refers, respectively, to the ion and the electron position along the

transversal direction of the film. The variable s = σ
2

refers to the spin of the elec-

trons. This exchange interaction describes the interaction between localized ion

spins on a lattice and delocalized electron spins in the material. This is the rea-

son why the coupling constant K depends on the distance |x −Xj|. Moreover, one

requires that K takes positive values to align the electron and the ion spins. In order

to simplify the model, we will describe the ion spins in a continuous fashion. Ac-

cording to the following relations Xj → X and
∑

j →
∫
ni (X) dX , where ni (X) is

the ion density, the Hamiltonian (4.5) becomes:

Hsd = −σ

2
·
∫

K (|x−X|)ni(X)Si(X)dX, (4.6)

where the exchange constant K is not any more given in eV/link1 but rather in

eV/nm3. We also suppose that the exchange interaction is localized in space, i.e.

K (|x−X|) = Kδ (x−X). So the Hamiltonian (4.6) reads:

Hsd = −K

2
ni(x)σ · Si(x). (4.7)

We notice that the exchange interaction between ions and electrons can be written

as a magnetic field Bsd = − K
2µB

ni(x)S
i(x). Therefore we simply have to substitute

the magnetic field entering in the Zeeman interaction by: B → B +Bsd.

As it was mentioned at the beginning of the chapter, the spin-orbit interaction will

not be taken into account. The reason is that, in order to describe the spin-orbit

interaction we would need the three components of the velocity (vx, vy, vz). Indeed

the spin-orbit interaction couples all the velocity components of the distribution

functions together as well as the spin and the orbital dynamics. In terms of numeri-

cal applications, the distribution functions, will evolve in a four dimensional phase

space (x, vx, vy, vz). Such numerical problems cannot be solved without using paral-

lelization techniques2. This is the reason why we neglect the spin-orbit coupling. In

this case, we can restrict our problem to a reduced phase space (x, vx ≡ v), where the

electrons are only allowed to move in the direction normal to the surfaces of the film

(x), see Fig. 4.1. Therefore, in the absence of the spin-orbit interaction, one obtains

a new set of spin-Vlasov equations to describe the electron dynamics in nickel thin

1Usually the exchange constants are defined between two atoms, that is why we express them in
eV/link.

2To give an idea of the size of the problem, let us assume that we need 100 points per dimension to
correctly characterize the distribution functions (as we shall see later, we need more than 100 points
per dimension to obtain accurate results). We thus need 108 numbers, which roughly represent 1
Giga-bytes of memory (in double precision).
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films:

∂f0
∂t

+ v · ∂xf0 −
e

m
[E + v ×B]x ∂vf0 −

µB

m
(∂xBi) (∂vfi) +

Kni (x)

2m

[(
∂xS

i
i

)
(∂vfi)

]
= 0,

(4.8)

∂fk
∂t

+ v · ∂xfk −
e

m
[E + v ×B]x ∂vfk −

µB

m
(∂xBk) (∂vf0) +

Kni (x)

2m

[(
∂xS

i
k

)
(∂vf0)

]

− e

m
[B × f ]k −

Kni (x)

~

(
f × Si

)
k
= 0. (4.9)

4.1.2 Ion spin dynamics

The next step is to find the evolution equation for the ion spins Si(r). The latter are

described by a classical Heisenberg Hamiltonian

Hions = −
∑

i

∑

j∈v(i)

Jij
2
Si

i · Si
j −

K

2

∑

i

Si
i ·
∫

fdv + gµB

∑

i

Si
i ·Bext, (4.10)

where Si
i refers to the ions spin at the position x = Xi and vi denotes the nearest

neighbours of the i − th ion. The first term represents the exchange interaction be-

tween the ion spins. Because we only have one type of atom, we set Jij = J . nickel

is a ferromagnetic material, so the exchange constant J should only takes positive

values, i.e. J > 0. The second term corresponds to the exchange interaction be-

tween ion and electron spins. The last term corresponds to the Zeeman interaction

between ion spins and an external magnetic field.

The Hamiltonian (4.10) is equivalent to the Hamiltonian of an ensemble of N inter-

acting spins evolving in an effective magnetic field

Hions = −J

2

∑

i

∑

j∈v(i)
Si

i · Si
j + gµB

∑

i

Si
i ·Beff , (4.11)

where Beff is an effective magnetic field

Beff =
K

2gµ2
B

M (x) +Bext. (4.12)

and M is the electron magnetic moment defined in Eq. (4.2). According to classical

mechanics, the time-derivative of an angular moment is equal to the torque which

acts on it

~
dSi

i

dt
= −Si

i ×
∂Hions

∂Si
i

. (4.13)
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Equations (4.11) - (4.13) lead to the so-called Landau-Lifshitz equation for the ion

spins :

dSi
i

dt
=

J

~
Si

i ×
∑

j∈v(i)
Si

j − γgS
i
i ×Beff , (4.14)

where γg = gµB/~ is the gyromagnetic ratio of an electron.

Since the ion spin is a continuous quantity in the spin-Vlasov equation (4.8)-(4.9),

it should also be the case in the Eq. (4.14). In the paper of Lakshmanan [152], a

continuous version of the equation (4.14) is derived. In this case, Si
i becomes a

function of the position variable, i.e. Si
i = Si(xi).

In order to go from the discrete to the continuous case one should perform a Taylor

development of the spin Si(x) around the small parameter a, which represents the

distance between nearest neighbours:

Si(xi+1) = Si(xi) + a
∂

∂xi

Si(xi) +
a2

2

∂2

∂x2
i

Si(xi). (4.15)

Injecting the expression (4.15) in (4.14), one obtains the continuous Landau-Lifshitz

equation:

∂Si(x)

∂t
=

a2NvJ

2~

[
Si(x)× ∂2

∂x2
Si(x)

]
− γgS

i(x)×Beff . (4.16)

This continuous spin description is only valid if the variation of the spin field Si(x)

is much larger than the inter-particle distance a. This can be easily shown by con-

sidering the linear response of both the discrete and continuous models.

In the continuous case, one obtains:

∂Si
x

∂t
= −a2J

~
Si
0

∂2

∂x2
Si
y,

∂Si
y

∂t
=

a2J

~
Si
0

∂2

∂x2
Si
x and

∂Si
z

∂t
= 0, (4.17)

where we have linearised the equation (4.16) around an homogeneous equilibrium

state Si(x) = Si
0 êz. Then, we write the solutions as plane waves

Si
x(x, t) = δSi

x exp [i (kx− ωt)] and Si
y(x, t) = δSi

y exp [i (kx− ωt)] . (4.18)

We thus obtain the following system of algebraic equations

−iωδSi
x =

a2J

~
Si
0k

2δSi
y, −iωδSi

y = −a2J

~
Si
0k

2δSi
x. (4.19)

The latter have solutions only if the determinant is zero, i.e.

ω =
Si
0J

~
(ak)2 . (4.20)
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In the case of a discrete system of spins, the dispersion relation is [145]:

ω =
2Si

0J

~
[1− cos (ka)] . (4.21)

According to the equations (4.20 - 4.21), we clearly see that the continuous spin

model is only valid if the typical excitation length k−1 is much larger than the inter-

particle distance, i.e. ka ≪ 1 such that 1− cos (ka) ≃ (ak)2.

Finally by normalizing the continuous Landau-Lifshitz equation (4.16) to the abso-

lute value of the spin Si
0 , one obtains

∂Si(x)

∂t
=

a2JSi
0

~

[
Si(x)× ∂2

∂x2
Si(x)

]
− γgS

i(x)×Beff , (4.22)

where Si(x) is a unitary vector, J is the exchange constant (the number of nearest

neighbours nv is absorbed in the definition of J), a is the inter-particle distance (a =

2rs) and Si
0 = 0.270 is the absolute value of the ion spins per atom. In the rest of this

work, we shall use the Eq. (4.22) to model the ion spin dynamics.

4.1.3 Coupled electron and ion spin dynamics

In summary, Eqs. (4.8)-(4.9) and (4.22) constitute a self-consistent model that we will

be used to describe the magnetization dynamics in ferromagnetic nickel films





∂f0
∂t

+ v · ∂xf0 −
e

m
[E + v ×B]x ∂vf0 −

µB

m
(∂xBi) (∂vfi) +

KSi
0ni (x)

2m

[(
∂xS

i
i

)
(∂vfi)

]
= 0,

∂fk
∂t

+ v · ∂xfk −
e

m
[E + v ×B]x ∂vfk −

µB

m
(∂xBk) (∂vf0) +

KSi
0ni (x)

2m

[(
∂xS

i
k

)
(∂vf0)

]

− e

m
[B × f ]k −

KSi
0ni (x)

~

(
f × Si

)
k
= 0,

∂Si(x)

∂t
=

a2JSi
0

~

[
Si(x)× ∂2

∂x2
Si(x)

]
− γgK

2gµ2
B

Si(x)×M ,

E = −∇φ ; ∇
2φ =

e

ǫ0

(∫
f0(x, v)dv − ni

)
,

B = ∇×A ; ∇
2A =

e

ǫ0c2

(∫
f0(x, v)vdv −

~

2m
∇×

∫
f(x, v)dv

)
.

(4.23)

Here we did not include exchange-correlation effects and external fields. The lat-

ter can be easily incorporated by adding additional potentials and magnetic fields.

The conservation properties of the Vlasov equation were discussed in the Sec. 2.2.5
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but without being coupled to ion spins. The introduction of an exchange interac-

tion between the electron and ion spins leads to an exchange of energy and angular

momentum between the two spin populations. Therefore, the expression of the to-

tal energy and angular momentum, in the case of the fully coupled system (4.23),

should be modified.

First, one has to define the ion energy. In the case of a one dimensional discrete sys-

tem of spins, the ion energy is simply given by the Hamiltonian (4.11). However, in

our case we consider a continuous system of spins. It is shown in Ref. [153] that in

this case the energy is:

E =
a2J(Si

0)
2

2

∫
ni(x)

∂Si

∂x
· ∂S

i

∂x
dx+

KSi
0

2µB

∫
ni(x)S

i ·Mdx+ gµB

∫
ni(x)S

i ·Bdx,

(4.24)

where B is either an external or internal (created by the particles) magnetic field.

The first term corresponds to the exchange energy between the ion spins

Ei−i =
a2J(Si

0)
2

2

∫
ni(x)

∂Si

∂x
· ∂S

i

∂x
dx. (4.25)

The second term corresponds to the exchange energy between the electron spins

and the ion spins

Ei−e =
KSi

0

2µB

∫
ni(x)S

i ·Mdx. (4.26)

Finally the last term corresponds to the Zeeman interaction between the ion spins

and an external magnetic field.

Thus, the total energy of the system (ions + electrons) is given by the sum of the

electron energy (2.60) and the ion energy (4.24):

Etot =
m

2

∫
v2f0dvdr + µB

∫
f ·Bdvdr +

ǫ0
2

∫
E2dr +

1

2µ0

∫
B2dr

+
a2J(Si

0)
2

2

∫
ni(x)

∂Si

∂x
· ∂S

i

∂x
dx+

KSi
0

2µB

∫
ni(x)S

i ·Mdx+ gµB

∫
ni(x)S

i ·Bdx.

(4.27)

It can be proven, using the Eqs. (4.23), that the total energy (4.27) is a conserved

quantity, i.e. dEtot/dt = 0.

The conservation law for the angular momentum should also be redefined. Let us

write the total angular momentum as a sum of the ion and the electron angular

momenta:

M tot
i = −gµB

[
Si
0

∫
ni(x)S

i
i(x)dx+

1

g

∫
fidxdv

]
. (4.28)
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Electron time scales Ion time scales

Electrostatic interaction ωp = e2ne/ (mǫ0) -
Plasmon frequency Tp = 0.25 fs
Zeeman Interaction ωL = gµBB/~ ωL = gµBB/~

Precession frequency ω−1
L = 35.4 ps (B = 1 Tesla ) ω−1

L = 35.4 ps (B = 1 Tesla )

Exchange interaction ωx=
e
m
(3/8π)1/3[(n0+m0)

1/3−(n0−m0)
1/3] ωJ = a2k2JSi

0/~

between the same particles ω−1
x = 92 fs ω−1

J = 3.8 ps

Exchange interaction ωe−K = Kni
0S

i
0/~ ωi−K = K|M |/(2µB~)

between different particles ω−1
e−K = 22.2 fs ω−1

i−K = 89.9 fs

TABLE 4.1: Different time scales present in the system (nickel film of
thickness L = 10 nm).

It can be proven that the latter quantity is conserved, i.e. dMtot
i /dt = 0. However

this relation is not true if we consider the spin-orbit interaction. Indeed, the latter

can transfer orbital angular momentum into spin angular momentum and vice versa,

see Eq. (2.61). Moreover, our model conserves separately the total amount of ion and

electron spins3. For the ions, the form of the Landau-Lifshitz equation provides a

local conservation of the norm of the spin

d

dt

[
Si (x) · Si (x)

]
= 0. (4.29)

For the electrons, since they are moving in the system, we do not have such a local

conservation of the norm. We only have a global conservation

d

dt

∣∣∣∣
(∫

fdvdx

)∣∣∣∣
2

= 0. (4.30)

All those conservation properties will be used to validate our Vlasov simulations.

Before going further, let us analyse the different time scales that are present in our

model (4.23), see Table (4.1). The shortest time scale is given by the inverse of the

plasma frequency (∼ 1 fs). It corresponds to the electron motion due to electro-

static forces. For the ions such time scale does not exist, since they are supposed

to be fixed during the motion of the electrons. The other time scales originate from

magnetic interactions, such as the Zeeman interaction the exchange interactions.

The ion and electron spin precession times are the same when one considers the

action of an external magnetic field and are given by: ωL = eB/m. For reason-

able magnetic fields (1 Tesla), this time is of few picoseconds. As we shall see in

the next section, exchange interactions between the different spins can be viewed

as a strong internal magnetic field (103 − 104 Tesla). Therefore one expects to have

smaller time scales compare to the interaction with an external magnetic field. For

the ions, the time scale corresponding to the exchange interaction between ions

(with a coupling constant J) is given by ωJ = a2k2JSi
0/~. Whereas the time scale

3This problem is intrinsically related to the fact that we work with a semiclassical approach.
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corresponding to the exchange interaction between ions and electrons (with a cou-

pling constant K) is given by ωi−K = K|M |/(2µB~). For the electrons, a first time

scale corresponds to the exchange interactions between electron spins and is given

by ωx = e
m
(3/8π)1/3

[
(ne +me)

1/3 − (ne −me)
1/3
]
. A second time scale corresponds

to the interaction of the electron spins with the local magnetic field created by the

ion spins and is given by ωe−K = Kni
0S

i
0/~.

Of course, all the previous time scales depend on the value of the exchange con-

stants K and J . The latter will be determined in the next section. In the Tab. 4.1,

we give the corresponding values of the different frequencies. We notice that the

electron spin precession time that is due to the exchange interaction between the

electron and the local ion spins is relatively small (∼ 10 fs). Hence, it can have an

influence on the ultra-fast magnetization dynamics. The other time scales are much

larger, especially the ion time scales.

4.2 Ground state properties

In this section, we develop a method to construct the ground state of nickel thin

films. In the first part we shall describe the self-consistent procedure to obtain the

ground state of the spin-Vlasov model. Such methods were used in the past to

obtain the electron ground state of non-magnetic metallic films [38, 144] and were

compared to DFT results [49]. In a second part, we shall apply this method to find

the electron and ion ground states of our films of nickel. Finally, this self-consistent

method will be also applied to find the ground state of DMS (diluted magnetic semi-

conductors) in order to compare our results with Schrödinger-Poisson simulations

[154].

4.2.1 Stationary state of the spin-Vlasov model

In the spinless case, the classical evolution equation for the electron distribution

function f is given by:

∂f

∂t
+ v ·∇f − e

m
(E + v ×B) ·∇vf = 0, (4.31)

which can be written as follows:

∂f

∂t
= {H, f}+ e

m
ǫijkviBj

∂f

∂vk
, with H =

m

2
v2 − eφ, (4.32)

where ǫijk is the Levi-civita tensor and where we introduced the Poisson bracket:

{A(r,p), B(r,p)} =
∂A

∂xi

∂B

∂pi
− ∂A

∂pi

∂B

∂xi

. (4.33)
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By definition a stationary state is characterized by the following identity: ∂tf
stat = 0.

The first term on the right part of the Eq. (4.32) is zero if f stat is a function of H .

Indeed, one has:

{H, g(H)} =
∑

i

∂H

∂xi

∂g(H)

∂pi
− ∂H

∂pi

∂g(H)

∂xi

=
∑

i

∂H

∂xi

∂H

∂pi

∂g(H)

∂H
− ∂H

∂pi

∂H

∂xi

∂g(H)

∂H
= 0

(4.34)

The second term in Eq. (4.32) is zero if f stat is isotropic in the velocity space, i.e.

f stat(x, vx, vy, vz) = f stat(x, |v|). The second condition is automatically satisfied if the

first condition holds. Thus we conclude that f stat = f stat(H) is a stationary state.

To satisfied the Pauli exclusion principle we write statf as a Fermi-Dirac distribution

function:

f stat = ni
0FD (H) = ni

0FD

(m
2
v2 − eφ

)
, (4.35)

where the electrostatic potential φ is derived self consistently from the Poisson equa-

tion:

∇
2φ =

e

ǫ0

(∫
f statdv − ni

)
(4.36)

and FD is the Fermi-Dirac distribution function

FD(x) =

[
1 + exp

(
x− µ

kBT

)]−1

, (4.37)

with µ the chemical potential.

In presence of the spin, the situation is a bit different and we have to find the ground

state of the spin-Vlasov equations:

∂f0
∂t

+ v ·∇rf0 −
e

m
(E + v ×B) ·∇vf0 −

µB

m

∑

i

∇rBi ·∇vfi = 0, (4.38)

∂fi
∂t

+ v ·∇rfi −
e

m
[(E + v ×B) ·∇vfi − (f ×B)i]−

µB

m
∇rBi ·∇vf0 = 0, (4.39)

where the electric and the magnetic fields are, respectively, given by the Poisson and

the Ampere equations

E = −∇φ ; ∇
2φ =

e

ǫ0

(∫
f0dv − ni

)
, (4.40)

B = ∇×A ; ∇
2A =

e

ǫ0c2

(∫
f0vdv − ~

2m
∇×

∫
fdv

)
. (4.41)

On the basis of the Eq. (4.32), it is straightforward to see that if we search stationary

states for which the spins are polarized in the same direction (here and in the fol-

lowing it will be the z direction) and which are isotropic in the velocity space, then
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the above spin-Vlasov equations can be written

∂f0
∂t

=
{
H↑↑, f ↑↑}+

{
H↓↓, f ↓↓} and

∂fz
∂t

=
{
H↑↑, f ↑↑}−

{
H↓↓, f ↓↓} , (4.42)

with H↑↑ and H↓↓ are defined as follows:

H↑↑ =
m

2
v2 − eφ+ µBBz, H↓↓ =

m

2
v2 − eφ− µBBz. (4.43)

Eq. (4.42) implies that f ↑↑ should be a function of H↑↑ and f ↓↓ a function of H↓↓.

Therefore the stationary solutions are given by

f stat
0 = α↑ [FD(H

↑↑) + FD(H
↓↓)
]

and f stat
z = α↓ [FD(H

↑↑)−FD(H
↓↓)
]
. (4.44)

The coefficients α↑ and α↓ are determined by imposing the good normalization at

T = 0 and in the case of a non interacting system. The free electron gas model

predicts the following value for the spin-up and spin-down densities in presence of

an external and constant magnetic field [155]:

n↑(T = 0) =
1

6π2
(EF − µBB)3/2 , n↓(T = 0) =

1

6π2
(EF + µBB)3/2 . (4.45)

with EF the Fermi energy of the system, EF = ~
2(3πni

0)
2/3/(2m).

In our case, the spin-up and the spin-down densities are:

n↑ = α↑
∫

FD

(m
2
v2 + µBB

)
dv = 4πα↑

∫ ∞

0

v2dv

1 + exp
[(

m
2
v2 + µBB − µ

)
/kBT

] ,

(4.46)

n↓ = α↓
∫

FD

(m
2
v2 − µBB

)
dv = 4πα↓

∫ ∞

0

v2dv

1 + exp
[(

m
2
v2 − µBB − µ

)
/kBT

] .

(4.47)

In the limit T → 0, one obtains

n↑(T = 0) =
4π

3

(
2

3

)3/2

α↑ (EF − µBB)3/2 , n↓(T = 0) =
4π

3

(
2

3

)3/2

α↑ (EF + µBB)3/2 .

(4.48)

Comparing Eqs. (4.45) and (4.48), we deduce that

α↑ = α↓ =
( m

2π~

)3
. (4.49)

We can also include exchange and correlations in the stationary state. For a collinear

system (in the z direction) we have to make the following transformation (see Sec.
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FIGURE 4.4: Description of the procedure to find the self consistent sta-
tionary states of the spin-Vlasov equations (2.54)-(2.55) combined with
the Poisson and Ampere equations (4.40)-(4.41). The index (n) refers to
the quantities at the n− th step. The parameter α is a mixing parameter

and the parameter ǫ is a convergence parameter.

2.2.4 with U = 11) :

V 7→ V + VXC and Bz 7→ Bz +
(BXC)z

µB
, (4.50)
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where the expression of VXC and BXC are given in Eq. (2.50).

Finally, the stationary states f stat
0 and f stat

z read as:

f stat
0 =

( m

2π~

)3 [
FD

(m
2
v2 − eφ+ VXC + µB (B +BXC)z

)

+ FD

(m
2
v2 − eφ+ VXC − µB (B +BXC)z

) ]
, (4.51)

f stat
z =

( m

2π~

)3 [
FD

(m
2
v2 − eφ+ VXC + µB (B +BXC)z

)

−FD

(m
2
v2 − eφ+ VXC − µB (B +BXC)z

) ]
. (4.52)

This is the general form of the electron ground states. In practice, since in the dy-

namics we will only work with a 2D distribution function, the Fermi-Dirac function

reads:

FD
± =

2πkBT

m

( m

2π~

)3
ln

[
1 + exp

(
− 1

kBT

(m
2
v2 − eφ+ VXC ± µB (B +BXC)z − µ(T )

))]
,

(4.53)

where v ≡ vx is the longitudinal velocity. Eq. (4.53) was obtained by integrating the

3D Fermi-Dirac function (4.37) over the transversal velocities (vy, vz). To find the

ground state of the spin-Vlasov model is a self-consistent problem that we need to

solve iteratively. Indeed in order to determine f0 and fz, we need to find the Hartree

potential φ and the magnetic field B which both depend on f0 and fz via the source

terms in the Poisson (4.40) an Ampere (4.41) equations. The same situation holds

with the exchange-correlation functions VXC and BXC which both depend on the

electron density and magnetization, see Eqs. (2.38)-(2.39).

Then, to determine the electron ground state of the system we will use the follow-

ing strategy. First we start with an initial guess of the distribution functions f0 and

fz. We chose to start with constant distribution functions which correspond homo-

geneous ion densities. Then we calculate the self-consistent fields with the Poisson

equation, the Ampere equation and the exchange-correlation potentials. The Pois-

son and the Ampere equations are solved with Dirichlet boundary conditions by

imposing that φ and A vanish at the border of the simulation box. The algorithm is

based on a finite difference scheme and can be found in Ref. [156]. Then, in order to

provide the convergence of the procedure, we have to use a mixing algorithm. We

have to mix the old self-consistent field with the new one as follows:

V (n+1)
sc = V (n)

sc + α
(
V (n+1)
sc − V (n)

sc

)
, (4.54)

where V
(n)
sc = V

(n)
H +V

(n)
XC ±µB

(
B(n) +B

(n)
XC

)
and α = 0.01−0.001 is a mixing param-

eter. This procedure does not conserve the total number of particles. Therefore, at

each step, one has to fix the chemical potential in such a way that the total number

of electrons in our system is preserved. This problem is implicit because µ is the
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fixed point of the following equation:
∫
f0 (µ) dxdv = Nelec. Then we obtain our new

distribution functions. At this step we defined a global criterion of convergence for

the self-consistent potentials

∫
V

(n+1)
sc dx−

∫
V

(n)
sc dx

∫
V

(n)
sc dx

< ǫ, (4.55)

where ǫ is the convergence parameter (usually we took ǫ = 10−10). If the identity

(4.55) is not satisfied, we repeat the procedure again until it is satisfied. All the pro-

cedure described above is summarized in Fig. 4.4.
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FIGURE 4.5: Ground state of an electron gas (4s2) confined in a metallic
films (nickel), with L = 100 LF, σ = 1 LF, and T = 300 K. In figure
(a), we plot the Hartree potential (black curve), the effective potential
acting on spin-up and spin-down (red curve). In figure (b), we plot
the electron density (green curve), the ion density and the spin-up and

spin-down electron densities (black curve).

Before studying the case of nickel films, for which one should introduce ion spins,

let us study the self-consistent ground state of a confined electron gas. For the ion

density, we took the density of nickel, i.e. rs = 2.6 a.u., and for the electron density

we took the double of the ion density. This corresponds to the situation where we

only treat the 4s2 electrons and consider the 3d electrons as core electrons. We apply

the procedure defined above, with one exception, we start with an initial spin po-

larized state. This allows us to see if exchange-correlation effects are strong enough

to create a spin-polarized ground state.

In Fig. 4.5, we plot the ground state obtained with the following parameters: L =

100 LF, σ = 1 LF and a temperature of T = 300 K. We notice that the ground state
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FIGURE 4.6: Magnetic properties of the ground state of a confined elec-
tron gas (4s2) in metallic film (nickel) with L = 100 LF and σ = 1 LF.
In figure (a), we plot the normalized spin magnetization at T = 300 K
as a function of the applied magnetic field. We sketch three cases, the
Pauli paramgnetism theory (black curve), the case without exchange-
correlation effects (red cross) and the case with exchange-correlation
effects (blue cross). In the right part, the same three cases are sketched
but with a fixed magnetic field (B = 0.1 EF/µB) and as a function of the

temperature.

of the system is not magnetized because the density of spin-up and spin-down elec-

trons are equal. They are actually not exactly equal but the difference is too small

to create an appreciable magnetic state. We also notice that the Hartree potential

is much smaller than the exchange-correlation potential, this was also observed for

Sodium films [49]. Therefore we conclude that in these conditions of density and

temperature, the only presence of the exchange-correlation effects is too weak to

create a spin polarized ground state. However, if we apply a sufficiently strong ex-

ternal magnetic field , it is possible to create a magnetic ground state. This situation

is sketched in Fig. 4.6, where we plot the magnetization (normalized to the maxi-

mum magnetization Mtot = −µBNel) as a function of the external magnetic field with

and without exchange-correlation effects and at constant temperature T = 300 K.

We notice that at this temperature, we need an extremely strong magnetic field (of

the order of 103 − 104 Tesla) to have a complete spin polarized electron gas. These

results are well known, since in the Pauli theory of paramagnetism [155] the spin
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magnetization can be written as follows:

Mz = −µB

(
n↑ − n↓) ,

= − µB

2π2

(
2m

~2

)3/2 [∫
dǫ

√
ǫ− µBB

1 + exp [(ǫ− µ) /kBT ]
−
∫

dǫ

√
ǫ+ µBB

1 + exp [(ǫ− µ) /kBT ]

]
.

(4.56)

The Pauli theory holds for an homogeneous ensemble of non-interacting electrons

subjected to an external constant magnetic field. The formula (4.56) is plotted on the

figure 4.6. Electrostatic and magneto-static interactions or finite size effects do not

modify the magnetic properties of the free electron gas. However, we notice that the

exchange-correlation has an effect. This can be explained by the fact that a part of the

exchange-correlation interactions can be written as a magnetic field, see Eq. (2.50).

The latter is added to the external magnetic field to increase the spin polarization. In

the right panel of the figure 4.6, we plot the normalized magnetization as a function

of the temperature and with a constant external magnetic field Bext = 0.1 EF. Again,

the case without exchange-correlation effects is in perfect agreement with the Pauli

theory of paramagnetism and the effects of exchange and correlations are to increase

the spin polarization of the system.

Thus we conclude that in the absence of strong external magnetic fields, we can-

not have a significant magnetization of the nickel films. We clearly see that it is

impossible with our Vlasov model to treat all the electrons on the same footing.

Of course, nickel is a ferromagnetic material, so it possesses a magnetic moment at

room temperature. There is only one type of interaction which is capable of pro-

ducing such a large internal magnetic field, it is the exchange interaction [149]. This

answer clearly the question that we asked at the beginning of this chapter, namely

if we should make a distinction between the 4s and the 3d electrons. The answer

is that we should, because in order to have an initial magnetic state, one needs to

introduce ion spins and also exchange interactions between ion and electron spins.

The corresponding ground state will be constructed in the next section.

4.2.2 Ferromagnetic nickel films

As it was explained in the previous sections, we should use the set of Eqs. (4.23) to

study the magnetization dynamics in nickel films. The way to determine the ground

state of the Vlasov model was detailed in Sec. 4.2.1. Now we are going to explain

how to determine the magnetic ground state of the ions. We expect that this ground

state depends on the temperature because, since nickel is a ferromagnetic material,

the total magnetization should vanish at the Curie temperature (Tc = 631 K for
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nickel). The Hamiltonian for the ions is given by Eq. (4.11):

Hions = −
∑

i

Si
i ·


J
2

∑

j∈v(i)
Si

j − gµBBeff


 . (4.57)

We will use the tools of statistical physics to find the ground state of the above

Hamiltonian. For interacting systems the problem is generally difficult to solve, but

in our case we will work in the mean field approximation. The usual way to perform

a mean field calculation is to rewrite the spin vector as follows:

Si
i ≡ 〈Si

i〉+
(
Si

i − 〈Si
i〉
)
, (4.58)

where the last term represents the deviation from the equilibrium, that is supposed

to be small.

Neglecting second order terms we obtain:

Hions = −J

2

∑

i

∑

j∈v(i)

(
− 〈Si

i〉 · 〈Si
j〉+ 2Si

i · 〈Si
j〉
)
+
∑

i

gµBS
i
i ·Beff ,

=
J

2

∑

i

∑

j∈v(i)
〈Si

i〉 · 〈Si
j〉 −

∑

i

Si
i ·
(
J
∑

j∈v(i)
〈Si

j〉 − gµBBeff

)
, (4.59)

where the second term in (4.59) (inside the parenthesis) is the molecular field. A

second approximation consists to neglect the fluctuations of the molecular field, i.e.

if j is near i then 〈Si
j〉 = 〈Si

i〉. Within the framework of this approximation, the

Hamiltonian of the ions becomes :

Hions =
JNv

2

∑

i

〈Si
i〉2 −

∑

i

Si
i ·
(
JNv〈Si

i〉 − gµBBeff

)
, (4.60)

where we took the sum only between the Nv nearest neighbours. Then we can use

the tools of statistical physics to determine 〈Si
i〉 ≡ 〈Si〉. Since the stationary state

is collinear, we adopt a collinear approach for which the spins are only along the z

direction, i.e. Si = Si
0 êz. Here the spins are not interacting directly together but

rather with an effective magnetic field. Then the partition function factors out as a

product on N single partition functions:

Z = zN =


exp

(
− NvJ

2kBT
〈Si

z〉2
) Si

0∑

Si
z=−Si

0

exp

(
Si
z

kBT

(
JNv〈Si

z〉 − gµBBeff

))


N

. (4.61)

Using geometrical sums, we are able to demonstrate the following identity:
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FIGURE 4.7: Magnetization of nickel films with L = 100 LF and
σ = 1 LF as a function of the temperature. We used J = 0.022 eV/link
and K = 0.014 eV.nm3 for the exchange constants. We plot the mag-
netic moment of ions (blue curve), the magnetic moment of electrons
without (black curve) and with (red curve) exchange-correlation effects

as a function of the temperature.

S∑

Sz=−S

exp (ASz) =
sinh (A(S + 1/2))

sinh (A/2)
. (4.62)

Therefore, the one particle partition function writes:

z = exp

(
− NvJ

2kBT
〈Si

z〉2
) sinh

(
2Si

0+1

2kBT
(JNv〈Si

z〉 − gµBBeff )
)

sinh
(

1
2kBT

(JNv〈Si
z〉 − gµBBeff )

) (4.63)

and the associated free energy is simply given by:

F = −kBT ln z =
NvJ

2
〈Si

z〉2 − kBT ln



sinh

(
2Si

0+1

2kBT
(JNv〈Si

z〉 − gµBBeff )
)

sinh
(

1
2kBT

(JNv〈Si
z〉 − gµBBeff )

)


 . (4.64)

At equilibrium the value of 〈Si
z〉 should minimize the free energy, i.e. ∂F

∂〈Si
z〉

= 0. After

some calculations, the solutions is given by:

〈Si
z〉 = Si

0BS (βSheff ) . (4.65)
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FIGURE 4.8: Self-consistent potentials and magnetic fields of nickel
films with L = 100 LF, σ = 1 LF and T = 300 K. In figure (a), we plot
the Hartree potential (black curve), the exchange potential (red curve)
and the correlation potential (blue curve). In figure (b), we plot the ion
magnetic field (black curve), the exchange magnetic field (red curve),
the correlation magnetic field (blue curve) and the Ampere magnetic

field (green curve).

where BS is the S − th Brillouin function and heff = − K
2µB

Mz (x) + JNv〈Si
z〉.

Eq. (4.65) will be used to determine the magnetic ground state of the ions. One

notices that this ground state depends on the electron spin polarization through

the quantity Mz(x). The inverse is also true since both spins are interacting together

with an exchange interaction. Therefore the electron and the ion ground state should

be found together in a self-consistent fashion. Moreover we should also find a way

to adjust the two exchange constants K and J . The latter are the two external pa-

rameters of our model. We will use the following procedure. First we set the spin of

the ions to Si
0 = 0.270 then for low temperatures (compared to Tc) and for reasonable

values of J the localized magnetization is always maximal, i.e. 〈Si
z〉 = Si

0 êz. So the

magnetization of the electron gas can be adjust to Mz/n
i
0 = 0.066 µB by playing with

the coupling constant K. When this is done, we can increase the temperature and

adapt the parameter J to obtain the correct Curie temperature.

In Fig. 4.7, we sketch the magnetization of the ions and the electrons in nickel films

as a function of temperature. We used the following parameters: L = 100 LF and

σ = 1 LF and we noticed by performing several simulations with different L and σ,

that the results do not depend on the size of the film. This is expected since the mag-

netic properties of nickel originate from the bulk. We took the following values for

the exchange constants: J ≡ Jref = 0.022 eV and K ≡ Kref = 0.014 eV.nm3
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FIGURE 4.9: In figure (a), we plot the effective potentials for the spin-
up (blue curve) and for the spin-down (red curve) corresponding to the
self consistent fields given in Fig. 4.8. In figure (b), we plot the associ-
ated densities, the ion density (black curve), the electron density (green
curve) the spin-up density (blue curve) and spin-down (red curve) den-

sities.

to recover the correct spin magnetic moments at zero temperature, i.e. M i
z = 0.54 µB

and Mz/n
i
0 = 0.066 µB, and the correct Curie temperature Tc = 631 K. Those values

of J and K will be set up as our reference values for both exchange constants in the

rest of this work.

In Figs. 4.8 and 4.9, we plot the details of the electron ground states at 300 K. As in

the previous section we notice that the exchange potential is the strongest one. The

strongest magnetic field is also the magnetic field corresponding to the exchange

interaction between ions and electrons, it is about 6 × 103 Tesla. The exchange and

the correlation magnetic fields are slightly smaller but still strong. We notice that

the correlation magnetic field is positive compared to the two other magnetic fields,

which means that the correlations act as anti-ferromagnetic interactions between the

electron spins compare to the exchange which act as a ferromagnetic interaction.

In the presence of ion spins, the exchange-correlation potentials are much larger

than without ion spins. This is due to the local magnetic field created by the ex-

change interaction between ions and electrons. Its impact is to enhance the spin po-

larization of the electrons and thus the self-consistent exchange-correlation fields.
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The ground state can also be analysed with the distribution functions f↑ and f↓ in-

stead of f0 and fz. They are defined as follows:

f stat
↑ =

( m

2π~

)3
FD(H

↑↑) and f stat
↓ =

( m

2π~

)3
FD(H

↓↓). (4.66)

Therefore the the spin-up and spin-down electron evolves, respectively, in the effec-

tive potentials V eff
up and V eff

down. Both of them are sketched in Fig. 4.9, where we notice

a difference of 0.05 eV between them. This difference is exactly due to the Zeeman

effect and the magnetic exchange interactions, which act with a positive sign on the

spin ”up” and with a negative sign on the spin ”down”. In the same figure, we have

also plotted the corresponding spin densities. The latter exhibit clearly the magnetic

properties of the electron ground state.

4.2.3 DMS and RKKY model
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FIGURE 4.10: Spin polarization as a function of temperature for ZMnO.
Different parameters are used, x is the proportion of impurities (x =
2.5% or 5%) and K is the exchange constant between impurities and

holes (K = 0.09 eV.nm3, K = 0.12 eV.nm3 or K = 0.15 eV.nm3).

Before studying the magnetization dynamics in nickel films, we will apply the

previous methodology on a case studied in the literature: ZnMnO. The latter be-

longs to the class of diluted magnetic semi-conductors (DMS) and its magnetic

properties were studied in the paper of Kim [154], using a fully quantum approach.

In this paper, the authors used a Schrödinger-Poisson equation to characterize the

ground state properties of charge careers, which are here holes positively charged.
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The latter are confined in a quantum well and are subjected to electrostatic inter-

actions between each other and negative acceptors. The holes have a spin 1/2 and

interact with the magnetic impurities of Manganese of spin Si
0 = 3/2 with an ex-

change constant K. Therefore an analogy can be made between their system and

our nickel films, where the electrons become holes and the ion spins become Man-

ganese impurities. The only difference is that there are no exchange interactions

between the Manganese impurities because they are far enough from each other.

The authors solved a self consistent problem, first finding the eigenvalues ǫσn and

the eigenvectors φσ
n of the following Hamiltonian

HDMS =
P 2
‖

2m
+

P 2
⊥

2m
+ Vconf (x) + VH(x) + V σ

XC(x)−Hpd, (4.67)

where the index σ = {↑; ↓} denotes the spin-up or the spin-down populations. Vconf

is a confinement potential equal to zero if |x| < L/2 and infinite everywhere else, so

it is a infinite well. V σ
XC is an exchange correlation potential different for the spin-up

and the spin-down. VH is the Hartree potential, which obeys the following Poisson

equation

∇2VH =
e2

ǫ0

[
N −

(
n↑(x) + n↓(x)

)]
, (4.68)

where N = 1/L
∫ L/2

−L/2

(
n↑(x) + n↓(x)

)
dx satisfies the charge neutrality condition.

Finally Hpd is the exchange Hamiltonian between holes and Manganese impurities

Hpd = −KxN0〈S〉σz

2
, (4.69)

where xN0 indicates the average Mn concentration. The mean value of the Man-

ganese’s spin 〈S〉 is given by a thermal average

〈S〉 = SBS

(
KSme

2kBT

)
, (4.70)

where me = n↑ − n↓ is the magnetization of holes. Then the spin densities are ob-

tained with the following formula

nσ =
m‖kBT

π~2

∑

n

|φσ
n| ln

[
1 + exp

(
µ− ǫσn
kBT

)]
. (4.71)

In our case we do not solve any Schrödinger equation, but we compute directly the

spin-up and spin-down densities with the one dimensional Fermi-Dirac distribution
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(4.53)

n↑ =
2πkBT

m‖

m2
‖m⊥

(2π~)3

∫ ∞

−∞
ln

[
1 + exp

(
− 1

kBT

(m⊥
2

v2 + VH + V ↑
XC + µBBpd − µ(T )

))]
dv,

(4.72)

n↓ =
2πkBT

m‖

m2
‖m⊥

(2π~)3

∫ ∞

−∞
ln

[
1 + exp

(
− 1

kBT

(m⊥
2

v2 + VH + V ↓
XC − µBBpd − µ(T )

))]
dv,

(4.73)

where Bpd = KxN0〈S〉/2 is the magnetic field associated to the exchange Hamilto-

nian Hpd (4.69). The parameters m‖ and m⊥ are, respectively, the effective electron

masses in the y − z plane and along the x direction.

The authors have simulated the spin polarization of the charge careers as a func-

tion of the temperature for different values of the exchange constant K and of the

percentage of magnetic impurities x. In their simulations, the hole density is set to

n = n↑ + n↓ = 3 1020 cm−3 and the density of cation sites ( Manganese ) is set to

N0 = 41.99 nm−3.

We have performed simulations with our semi-classical model, (Eq. 4.72 - 4.73 ),

using the same conditions as those used by the authors. The results are given

in Fig. 4.10, where we sketch the spin polarization of charge careers (holes) ξ =∫
medx/

∫
ndx as a function of temperature for different values of K and x. Our

simulations shows the correct behaviour, indeed we have a magnetization which is

maximal at low temperature and which decreases exponentially to zero at the Curie

temperatures. Moreover the Curie temperature, for different values of K and x,

appear in the right order with respect to the results obtained in the reference pa-

per [154]. However the Curie temperatures are systematically 20% - 30% lower than

those obtained with the full quantum model.

Therefore we conclude that it is possible to create a self-consistent ground state

which is spin polarized with our semi-classical model. Moreover the results for

global quantities, such as the total magnetization are a bit different from those pre-

dicted with the quantum model. However, it is always possible to correct this dif-

ference by changing the coupling constant K. In this case the general behaviour of

the magnetization will be the same and the Curie temperature will be exactly the

one predicted by the quantum simulations.

4.3 Spin-wave dispersion relation

In this section, we study the linear response of the self-consistent model, Eqs. (4.23).

The study of the linear regime is interesting because one can solve the problem ana-

lytically under some specific conditions. This allows us to have a better understand-

ing of the physics contained in our model. It can be also useful to have analytical

results to verify if the code we developed provides correct results. Here, we will
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focus on non-collinear spin effects by considering the following problem. We know

that for localized spins, described with the Landau-Lifshitz equation (4.22), there is

no spin-wave damping. Then we may ask the following question: Is it possible to

have a damping of the spin waves, if one considers an exchange interaction between

itinerant magnets and localized spins?

In order to answer this question we will use the tools of the linear analysis, more

details are given in Sec. 3.1. Then we will use the analytical results to validate our

numerical spin-Vlasov simulations.

We start from an homogeneous and collinear stationary state, i.e. f
(0)
x = f

(0)
y =

(Si)
(0)
x = (Si)

(0)
y = 0, (Si)

(0)
z = Si

0, f
(0)
0 = f

(0)
0 (vx ≡ v) and f

(0)
z = f

(0)
z (vx ≡ v). Then

we will perturb the system with the following type of excitations : δSi
x = δ cos (kx)

and δSi
y = δ sin (kx). The model that we are going to use is a reduction of the full

self-consistent model (4.23). Indeed, in the electron dynamics, we only keep the

exchange interaction between the electron and the ion spins.

∂f0
∂t

+ v · ∂xf0 +
Kni

0

2m

[(
∂xS

i
i

)
(∂vfi)

]
= 0, (4.74)

∂fk
∂t

+ v · ∂xfk +
Kni

0

2m

[(
∂xS

i
k

)
(∂vf0)

]
− Kni

0

~

(
f × Si

)
k
= 0, (4.75)

∂Si(x)

∂t
=

a2JSi
0

~

[
Si(x)× ∂2

∂x2
Si(x)

]
− K

2~
Si(x)× f . (4.76)

We do not take into account the Hartree potential because we are not going to excite

the electrostatic modes but only the magnetic ones. We suppress also the exchange-

correlation effects as well as the self-consistent magnetic interaction (Ampere). The

reason is that they are much smaller than the ion magnetic field. This was shown in

Fig. 4.8 and is supposed to be valid in the linear regime.

As we have seen in the Sec. 4.1.2, the above excitation of the ion spins creates spin

waves. If we do not consider any exchange interactions between the ion and the

electron spins, i.e. K = 0, then the spin waves are not modulated in amplitude and

oscillate at the following frequencies ω =
Si
0J

~
(ak)2, see Eq. (4.20). When K is differ-

ent from zero the situation is more complicated and one has to find the dispersion

relation of the Eqs (4.74)-(4.76). So, we will study the propagation of a perturbation

around the following ground state: fµ = f
(0)
µ + δfµ and Si = (Si)

(0)
z + δSi

z, where the

δ quantities are weak compared to those of the ground state. Up to first order, the
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linear model reads:

∂δf0
∂t

+ v∂xδf0 +
Kni

0S
i
0

2m

[(
∂xδS

i
z

) (
∂vf

0
z

)]
= 0, (4.77)

∂δfx
∂t

+ v∂xδfx −
Kni

0S
i
0

~

[
δfy − f (0)

z δSi
y

]
+

Kni
0S

i
0

2m

[(
∂xδS

i
x

) (
∂vf

(0)
0

)]
= 0, (4.78)

∂δfy
∂t

+ v∂xδfy +
Kni

0S
i
0

~

[
δfx − f (0)

z δSi
x

]
+

Kni
0S

i
0

2m

[(
∂xδS

i
y

) (
∂vf

(0)
0

)]
= 0, (4.79)

∂δfz
∂t

+ v∂xδfz +
Kni

0S
i
0

2m

[(
∂xδS

i
z

) (
∂vf

(0)
0

)]
= 0, (4.80)

∂δSi
x

∂t
= −a2JSi

0

~

∂2

∂x2
δSi

y +
K

2~

[
δSi

y

∫
f 0
z dv −

∫
δfydv

]
, (4.81)

∂δSi
y

∂t
=

a2JSi
0

~

∂2

∂x2
δSi

x −
K

2~

[
δSi

x

∫
f 0
z dv −

∫
δfxdv

]
, (4.82)

∂δSi
z

∂t
= 0. (4.83)

Next step consists by performing a Fourier and a Laplace transform of the previous

equations in order to obtain a set of algebraic equations that are easier to solve.

According to Eqs. (3.12) and (3.14) and after some tedious calculations4, one obtains

the Fourier-Laplace transform of the ion spins in the x− y directions:

˜δSi
x(p, k) =

1

ǫ(p, k)

1

(kvT )
2

[(
δSi

x + E

∫
Ay

Ze

dv

)(
p+ E

∫
C

Ze

dv

)

−
(
δSi

y − E

∫
Ax

Ze

dv

)(
D + E

∫
B

Ze

dv

)]
,

(4.84)

˜δSi
y(p, k) =

1

ǫ(p, k)

1

(kvT )
2

[(
δSi

x + E

∫
Ay

Ze

dv

)(
D + E

∫
B

Ze

dv

)

+

(
δSi

y − E

∫
Ax

Ze

dv

)(
p+ E

∫
C

Ze

dv

)]
, (4.85)

where Ax and Ay depend only on the initial excitations

Ax =
1

p+ ikv

[
δfx +

Kni
0S

i
0

~

δfy
p+ ikv

]
, Ay =

1

p+ ikv

[
δfy −

Kni
0S

i
0

~

δfx
p+ ikv

]
(4.86)

and ǫ(p, k) is the dielectric function of the system

ǫ(p, k) =
1

(kvT )
2

[(
p+ E

∫
C

Ze

dv

)2

+

(
D + E

∫
B

Ze

dv

)2 ]
, (4.87)

4The calculations are similar to those performed in Sec. 3.1.
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with the following definitions:

E = −K

2~
, (4.88)

D =
k2a2J

~
Si
0 −

K

2~µB
m0, (4.89)

Ze = 1 +

(
Kni

0S
i
0

~

)2
1

(p+ ikv)2
, (4.90)

B =

(
Kni

0S
i
0

~

)2
f
(0)
z

(p+ ikv)2
− ik

Kni
0S

i
0

2m

(
∂vf

(0)
0

)

p+ ikv
, (4.91)

C = −Kni
0S

i
0

~

f
(0)
z

p+ ikv
− ik

2m~

(
Kni

0S
i
0

)2
(
∂vf

(0)
0

)

(p+ ikv)2
. (4.92)

The latter quantities depend only on the ground state properties of the system and

do not depend on the form of the initial excitation. As it is explained in Sec. 3.1,

the zeros of the dielectric function give the eigenmodes of the system. For the sake

of simplification, we shall use a Maxwell-Boltzmann function for the equilibrium

distributions. This assumption is not correct since the physical distribution func-

tions should be Fermi-Dirac’s ones. Unfortunately, the dispersion relation is more

complicated to obtain for a Fermi-Dirac distribution than for a Maxwell-Boltzmann

distribution (for more details see Sec. 3.2). Therefore the electron ground state dis-

tribution functions read:

f
(0)
↑ (v) =

ni
0

2vT
√
π
cosh

(
µBBsd

kBT

)−1

exp

[
− 1

kBT

(m
2
v2 + µBBsd

)]
, (4.93)

f
(0)
↓ (v) =

ni
0

2vT
√
π
cosh

(
µBBsd

kBT

)−1

exp

[
− 1

kBT

(m
2
v2 − µBBsd

)]
. (4.94)

The magnetic field Bsd corresponds to the local exchange magnetic field created by

the ions, Bsd = − K
2µB

ni
0S

i
0. In terms of f0 and fz, the previous equations read:

f
(0)
0 (v) =

ni
0

vT
√
π
exp

[
− v2

v2T

]
= F0 exp

[
− v2

v2T

]
, (4.95)

f (0)
z (v) =

ni
0

vT
√
π
tanh

(
µBBsd

kBT

)
exp

[
− v2

v2T

]
= Fz exp

[
− v2

v2T

]
. (4.96)
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Using Eqs. (4.95)-(4.96) and the plasma dispersion function (3.52), the dielectric

function (4.87) may be written as:

ǫ(ω, k) = − 1

(kvT )
2

[
ω +

Kni
0S

i
0E

√
π

2~k

(
− Fz [Z (ωk + ωK) + Z (ωk − ωK)]

+
~k

2mvT
F0 [Z

′ (ωk − ωK)− Z ′ (ωk + ωK)]

)]2

+
1

(kvT )
2

[
D − Kni

0S
i
0E

√
π

2~k

(
Fz [Z (ωk + ωK)− Z (ωk − ωK)]

+
~k

2mvT
F0 [Z

′ (ωk − ωK) + Z ′ (ωk + ωK)]

)]2
, (4.97)

with the following definitions:

ω = ip, ωk =
ω

kvT
and ωK =

Kni
0S

i
0

~kvT
. (4.98)

The temporal response of the Fourier components of the ion spins can be obtained

by taking the inverse Laplace transform of Eqs. (4.84) and (4.85)

δSi
x(t, k) =

∑

j

[
Nx (ω, k)

∂ǫ(ω,k)
∂ω

]

ω=ωj

exp(−iωjt), δSi
y(t, k) =

∑

j

[
Ny (ω, k)

∂ǫ(ω,k)
∂ω

]

ω=ωj

exp(−iωjt).

(4.99)

where wj are the zeros of the dielectric function (4.97) and Nx and Ny are defined as:

Nx =
1

(kvT )
2

[(
δSi

x + E

∫
Ay

Ze
dv

)(
ω

i
+ E

∫
C

Ze
dv

)
−
(
δSi

y − E

∫
Ax

Ze
dv

)(
D + E

∫
B

Ze
dv

)]
,

Ny =
1

(kvT )
2

[(
δSi

x + E

∫
Ay

Ze
dv

)(
D + E

∫
B

Ze
dv

)
+

(
δSi

y − E

∫
Ax

Ze
dv

)(
ω

i
+ E

∫
C

Ze
dv

)]
.

(4.100)

The quantities δSi
x(t) and δSi

y(t) are the Fourier components of the ion spin com-

ponents. They can be directly compared to the ion spin components obtained by

numerical simulations, using the following relations:

(
Si
)k
x
(t) ≡ ℜ

(
Si
x(t)
)
=

∫
Si
x(x, t) cos (kx) dx, (4.101)

(
Si
)k
y
(t) ≡ ℜ

(
Si
y(t)
)
=

∫
Si
y(x, t) sin (kx) dx, (4.102)

which are meaningful only in the linear regime. Thus they can be used to have a di-

rect comparison between the Vlasov simulations and the analytical solutions given



106 Chapter 4. Nonlinear electron and spin dynamics in Nickel thin films

by the linear analysis. We are going to use them later to validate the Vlasov simula-

tions.

To compute δSi
x(t) and δSi

y(t), we need to find the roots of the dielectric function

(4.97). Mathematically speaking, one has to find the zeros of a complex function, this

can be achieved using the program ZEAL [137]. It is a mathematical software pack-

age for computing zeros of analytic functions. The fact that we chose a Maxwell-

Boltzmann function for the ground-state strongly simplify the problem, because the

dispersion relation may be written in terms of the plasma dispersion function Z .

The exchange constants K and J were defined in the Sec. for nickel to obtain
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FIGURE 4.11: (a), dispersion relation corresponding to the dielectric
function (4.97) as a function of the coupling constant K (normalized to
Kref = 0.014 eV.nm3). The equilibrium state is given by a Maxwell-
Boltzmann distribution with a temperature T = 65000 K. The ex-
citation length is given by k = 2π/10 nm−1. (b), typical electron
(ωe−K = Kni

0S
i
0/~) and ion (ωi−K = Kme/(2gµB~)) time scales cor-

responding to the spin precession induced by the exchange interaction
between both spins (K).

the correct proportion of localized/itinerant magnetic moments. Those values were

founded using a Fermi-Dirac distribution function at 300 K for the electrons (itiner-

ant magnetism). However if one takes a Maxwell-Boltzmann distribution function

at a given temperature instead of a Fermi-Dirac, the proportion of localized/itinerant

magnetic moments is going to change. To recover the correct proportion, i.e. M i
z =

0.54 µB/atom and Mz/n
i
0 = 0.066 µB/atom, one has to set the temperature of the

Maxwell-Boltzmann function to 65000 K. This temperature has no physical mean-

ing, since the ground state distribution functions of the electrons should be given by

a Fermi-Dirac function at 300 K and not a Maxwell-Boltzmann function. The main

difference between both distribution functions is that the Fermi-Dirac function is
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steeper near the Fermi velocity than the Maxwell-Boltzmann. However, we expect

to have a better understanding on the effects of the exchange interaction between

electron and ion spins on the spin waves.

In order to study the influence of the electrons on the ion spin waves, we calculate

the dispersion relation for different values of the exchange constant K. If we set

K = 0, then the spin wave propagates without gaining or loosing any energy. In

this case there is no coupling between the electron spins and the ion spins and the

frequency of the spin wave is simply given by ωJ = k2a2JSi
0/~. This result can be

easily demonstrated using the Landau-Lifshitz equation (4.76), see Sec. 4.1.2. The

situation is more complex if there is an exchange interaction between the ion and

the electron spins. In this case the frequency of the spin wave is determined by

founding the zeros of the dielectric function (4.97). This complex function posses a

infinite numbers of zeros, but most of them have a strong negative imaginary part

and then are directly damped on short time scales. The zeros that are dominating

the dynamics on long time scales are those with an imaginary part much smaller

than the real part or with a positive imaginary part5. There are two zeros of this

kind, which are complex conjugated. We call them the principal zeros. The latter

form the spin-wave dispersion relation. In Fig. 4.11(a), the spin-wave frequency

(real and imaginary part) is depicted as a function of the exchange constant K. For

K = 0, we recover the correct spin-wave frequency, i.e. ω = ωJ , as expected. Then,

when the value of K increases, the imaginary part of the spin-wave frequency is

negative and progressively decreases meaning that the spin waves are more and

more damped, until reaching a minimum around K = 4Kref ). For this value of K,

the spin-wave frequency is strongly affected by the presence of the electrons. This

behaviour can be understood by investigating the typical exchange interaction time

scales for the ion (ωi−K = Kme/2gµB~) and the electron (ωe−K = Kni
0Si/~) spins.

The latter are represented in Fig. 4.11(b) as a function of the exchange constant K.

We notice that the two time scales are equal near K = 4Kref . It seems that we have

a maximum of energy exchanged between the two spin populations for this special

value of K. For larger values of K the imaginary part increases and becomes even

positive, meaning that the spin wave undergoes an unstable dynamics. One should

understand that when the value of K is changing the proportion of ion and electron

spins is also modified in such a way that the total magnetic moment is preserved.

For large value of K, the magnetism is essentially carried by the electrons and not

by the ions. So the unstable case corresponds to a case for which the magnetism is

essentially itinerant. This is not the case in our system (nickel thin films).



108 Chapter 4. Nonlinear electron and spin dynamics in Nickel thin films

FIGURE 4.12: Description of the procedure applied to solve the spin-
vlasov model, Eqs. (4.23). The subscript µ = {0, x, y, z} refers to distri-
bution function components whereas the subscript i = {x, y, z} refers

to space coordinates.

4.4 Numerical methods and Vlasov simulations

In this section we will present the numerical methods to solve the full spin-Vlasov

equations coupled to the Landau-Lifshitz equations, Eqs. (4.23). The Vlasov equa-

tion is used for long time in physics, many different numerical algorithms were

developed to solve the Vlasov equation. However the form of the spin-Vlasov equa-

tions are a bit different from the usual Vlasov equations. Indeed they are composed

of a transport part and a spin part (new part). A general form of the spin-Vlasov

5A positive imaginary part means that the associated mode is unstable.
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equations reads as:

∂tfµ + v∂xfµ −
e

m
Ex∂vxfµ = F (fν) . (4.103)

The terms on the left-hand side of the equation (4.103) correspond to the transport

part whereas the term on the right couples the different distribution functions. The

usual strategy to solve numerically the Vlasov equation is to use a splitting algo-

rithm [157]. That means instead of solving Eq.(4.103) on one time step, we decom-

pose the problem in several steps. Let us introduce the splitting methods on the

following differential problem:

dU

dt
= (A+B)U(t), (4.104)

where A and B are constant differential operators. Then the formal solution writes :

U(t+∆t) = exp [(A+B)∆t]U(t). (4.105)

The splitting algorithm is based on the following decomposition

U(t+∆t) = exp (A∆t) exp (B∆t)U(t). (4.106)

That is equivalent to solve successively the two following differential problems

dU

dt
= BU(t), then

dU

dt
= AU(t). (4.107)

We notice that if the operators A and B commute then the splitting method is exact,

but in general this is not the case. Indeed if we consider the basic case of particles

accelerated in an electric field, then A = v ·∇ and B = −e/mE ·∇v do not commute.

Different orders (in time) of the splitting scheme can be constructed by splitting

the complete differential problem (4.104) on sub-time steps. The first order method

corresponds to the Eq. (4.106); a second order method would be written as follows:

U(t+∆t) = exp

(
∆t

2
A

)
exp (∆tB) exp

(
∆t

2
A

)
U(t). (4.108)

In our case we have to do three different splitting. One advection in the position

space ∂tf+v∂xf = 0, one advection in velocity space ∂tf−e/mE∂vf = 0 and the spin

part ∂tf = F (fν). Several complex splitting scheme could be proposed to solve this

problem, however in this work we choose a simple first order method. We first per-

form an advection in x with a time step ∆t, then we do an advection in vx with a time

step ∆t and finally we solve the spin part with a time step ∆t. Between each split-

ting, we have to calculate the self consistent fields (Hartree, exchange-correlation

and Ampere) that are involved in the next equation. This methodology is used to

evolve in time the electron distribution functions f0, fi. But at the same time we also
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have to evolve the spin of the ions with the Landau Lifshitz equation (4.22). Both

are coupled together by an exchange interaction. Again, we use a simple algorithm,

we first solve the ion spin dynamics with a time step ∆t. The method used is a

mixed point method combined with a Runge-Kutta integration scheme developed

in Ref. [158]. This method ensure automatically the conservation of the norm of the

magnetic moment. Then we solve the electron dynamics with the method described

above. A summary of the algorithm used to solve the complete spin dynamics is

presented in Fig. 4.12. More technical details will be given below. In the first and

second part of this section we will, respectively, focus on the numerical method to

solve the transport and the spin part of the spin-Vlasov equations.

4.4.1 The transport part

Here we focus on the numerical methods to solve the transport part of the spin-

Vlasov equations. The latter reads:

∂tfµ + v∂xfµ −
e

m
Ex (∂vxfµ) = 0. (4.109)

where the electric field Ex is given by the Poisson equation.

Basically, there are two different strategies to address the problem. One can either

use particle in cell method (PIC) or a phase-space-grid based method.

The idea of the first method is to represent the distribution function as a sum of delta

functions:

f(x, v, t) =
∑

i

wiδ (x− xi(t)) δ (v − vi(t)) (4.110)

where the wi are constant weights, and the positions xi and velocities vi of the N

test-particles obey the following equations of motion (characteristics of the Vlasov

equation) : ẋi = vi and v̇i = −eE(xi)/m. The electric field is computed by projecting

the particle density on a spatial mesh and then solving Poisson’s equation. With

this method we never work with the distribution function, we use directly the par-

ticles position and velocity to construct fluid quantities and then calculate the self

consistent fields. This method was for instance used to study the electron dynamics

in metallic clusters [35]. However, it suffers from two problems. First, to construct

the initial state particles are lunched randomly in the phase space. Therefore we

introduce a statistical noise which can pollute our simulations, mainly in the region

with low electron density. Secondly, the PIC simulations violate the Pauli exclusion

principle. Therefore, after some times, the Fermi Dirac distribution relaxes naturally

to a Maxwell Boltzmann distribution.

The other methods are called Eulerian methods, they are based on the resolution of

the Vlasov equation on a regular mesh covering the entire phase-space (both posi-

tion and velocity coordinates), which makes them somewhat more costly than PIC
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FIGURE 4.13: Energy densities of the electrons for the equilibrium
distribution function of nickel films with L = 100LF and σ = 1LF

(LF ≃ 0.1 nm). The equilibrium case correspond to the black squares.
The other cases correspond to the energy densities after 100 Tp (with-

out exciting the system) with different phase space grids.

codes in terms of memory storage and computing time. Eulerian methods were

developed in the recent years [159,160] and used to describe the electron charge dy-

namics in thin films [38]. The advantages of these methods is that good accuracy

is guaranteed even in regions of feeble electron density, where the statistical noise

of a PIC code would be most prominent. Moreover, the Fermi Dirac statistic is pre-

served during the simulations. However, the conservation properties can be lost. As

we have seen in Sec. 2.2.3, the Vlasov equation has strong conservation properties,

for instance for the mass, the momentum , the energy and the angular momentum.

One should check during the simulations that all the previous quantities are con-

served.

To solve our spin-Vlasov equations, we choose to use Eulerian methods. In particu-

lar we choose the so-called ”flux balance method”. The latter was first proposed by

Fijalkow [159] and is based on the conservation of the flux of particles. This method

has the advantage to conserve automatically the mass of the system, but it allows

spurious oscillations of the distribution functions. In ref [160], the authors proposed

a different technique to control these oscillations and to preserve the positivity of

the distribution function. We use in our simulations the so called ”PFC3” method.

More technical details of this method can be found in Ref. [160].

In the simulations, we work with a numerical box of the following size : −2L < x <

2L and −2vF < v < 2vF, where L is the thickness of the film and vF is the Fermi veloc-

ity. At equilibrium, the electron gas is completely degenerate, therefore the maximal

speed of the particles is very closed to the Fermi velocity. Nx and Nv represent the
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number of points we used to sample the phase space (x, vx). The smallest physical

time scale is given by the inverse plasma frequency Tp = ω−1
p , therefore we chose a

time step δt = Tp/50. We shall see later which numerical effects bound this choice.

The first step is to verify that the ground state distribution functions, constructed

with the self-consistent procedure described in Sec. 4.2.1, does not change if we do

not apply any perturbation. In Fig. 4.13 , we plot the energy densities at equilibrium

(black curve) and after one hundred plasmon frequency (coloured curves). The lat-

ter are obtained by taking different values for Nx and Nv. We insist on the fact that

in these simulations the initial distribution functions correspond to stationary so-

lutions and are not excited at all. Therefore the distribution functions should not

evolve in time. We notice that a large number of points Nx = 5000 and Nv = 500

are required to preserve the stationary solution on long time scales (100 Tp ≃ 36 fs).

These are numerical errors which come from the fact that the numerical method is

sensitive to abrupt variation of the distribution function6. This occurs at the border

of the film, where the electron density falls rapidly down to zero. In the velocity

space the same situation holds since we deal with a quasi degenerate electron gas.

Unless indicated otherwise we are going to use Nx = 5000 and Nv = 500 in the rest

of this work. In order to validate the code, we shall compare our Vlasov simulations

with previous works done on Sodium thin films without spin [38, 144]. The authors

have used a Vlasov-Poisson model to study the plasmon created in a thin film of

Sodium after exciting the electrons. They identified low frequency oscillations in

the kinetic and potential energy of the electrons corresponding to a ballistic motion.

We performed numerical simulations on Sodium films (rs = 4.0 a0) with a thick-

ness of L = 100LF. In order to excite the electrons, we proceed in the same way as

in [38, 144], i.e. we introduce an initial velocity shift ∆v = 0.1 vF in the distribution

functions. Such an excitation would correspond to the application of an instanta-

neous electric field.

In Fig. 4.14, we sketch the time evolution of the center of mass of the electrons. The

latter is defined as follows : 〈X〉 =
∫
xf0dxdv. Such quantity represents the elec-

tric dipole created in the system. As one can see, the electric dipole oscillates at a

frequency close to the plasmon frequency (ωp) and is exponentially damped after

several oscillations because of the Landau damping. The fact that the electric dipole

oscillates at a lower frequency than ωp is due to the finite size of the system. This

property was also observed in Ref. [38].

In Fig. 4.15, we plot the time evolution of different electron energies. The kinetic en-

ergy Ek, the potential energy Ep, the center of mass energy Ecm and the total energy

6The exact reason is that, at some step in the algorithm (PFC3), we have to reconstruct the distribu-
tion function at points in the phase space which are not on the grid. So we perform an interpolation
using the nearest neighbour values of the distribution function. This interpolation is not exact and is
at the origin of numerical errors. The latter can be reduced by increasing the sampling of the phase
space.
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FIGURE 4.14: Simulations done on a film of Sodium of size L = 100 LF

and σ = 1 LF with the following numerical parameters : Nx = 5000,
Nv = 500, δt = Tp/50. The initial velocity kick is about ∆v = 0.1 vF. In
the plot (a), we sketeched the electric dipole (〈X〉e) as a function of time
(normalized to the inverse plasmon frequency : Tp). In the plot (b), we

sketch the Fourier transform of the electric dipole.

Etot = Ek + Ep. The latter are defined as follows:

Ek =

∫
m

2
f0dxdv, Ep =

∫
E2dx, Ecm =

∫ (∫
vf0dv

)2

dx/n. (4.111)

At the beginning of the simulations, the electrons are driven out of equilibrium. This

leads to a net increase of the kinetic energy and a net decrease of the potential en-

ergy until t = 30 − 40 Tp. At the same time the total energy is not well conserved,

due to numerical errors, but its net variation is 10 − 100 times lower than the other

energy variations. After 50 Tp the electrons have relaxed to a new quasi-stationary

state characterized by a larger thermal energy (and therefore a larger temperature).

At this time the plasmon is completely damped, this is confirmed by the fact that the

center of mass energy is close to zero. In this new state the total energy is well con-

served but there are still some periodic effects which occur in the electron dynam-

ics and which lead to oscillations in the kinetic and potential energies. In [38], the

author suggest that these oscillations are due to non-equilibrium electrons bounc-

ing back and forth against the surfaces of the film. Indeed the oscillation period is
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FIGURE 4.15: Simulations done on a film of Sodium of size L = 100 LF

and σ = 1 LF with the following numerical parameters : Nx = 5000,
Nv = 500, δt = Tp/50. The initial velocity kick is about ∆v = 0.1 vF. We
sketch the time evolution of the different electron energies, the kinetic
energy (plot a), the potential energy (plot b), the center of mass energy

(plot c) and the total energy (plot d).

roughly equal to the time of flight of electrons travelling through the film at a ve-

locity close to the Fermi velocity of the metal Tb = 2L/vF ≃ 32 Tp. This is also in

agreement with our numerical simulations.

All these simulations were done without taking the spin distribution functions into

account. Therefore we were able to validate only the transport part of the spin-

Vlasov code and not the spin part.

4.4.2 The spin part

The spin part of the Vlasov equation do not has the form of an advection because it

couples different distribution functions

∂tfµ = F (fν) . (4.112)

Therefore we cannot use the method developed in Sec. 4.4.1. To solve numerically

the differential equation (4.112), we simply propose to use a Runge-Kutta method

of the second order.

The method will be validated by comparing analytical solutions obtained in the pre-

vious section (on the spin-wave dynamics) with numerical simulations done with
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FIGURE 4.16: Simulations done on a film of nickel of size L = 100 LF

and σ = 1 LF with the following numerical parameters : Nx = 5000,
Nv = 500, δt = Tp/10. The initial perturbation on the ion spins
reads: Si

x(t) = ǫ cos(kx) and Si
y(t) = ǫ cos(kx) with ǫ = 0.001 and

k = 2π/10 nm−1 . The black curve corresponds to the analytical so-
lution given by Eq. (4.99), the red crosses correspond to the Fourier

component of Si
x(t) (4.102) obtained with the Vlasov simulations.

the Spin-Vlasov code. Indeed, as it is shown by the Eq. (4.99), it is possible to have

access (in the linear regime) to the exact time evolution of the Fourier components of

the ion spins. The spin waves are excited by introducing the following perturbation

with respect to the equilibrium state: Si
x(t) = ǫ cos(kx) and Si

y(t) = ǫ cos(kx) with

ǫ = 0.001 and k = 2π/10 nm−1. ǫ is chosen to be small to ensure that we are in the

linear regime. With such an excitation the electrons will not be transported in space.

Indeed we can check that the electric field is always zero. However the electron

spins will start to precess and interact with the ion spins. Therefore only the spin

part of the Vlasov equation will play a part in the spin dynamics. One should also

remember that one has to start with a ground state which is given by a Maxwell-

Boltzmann distribution in order to compare our result with analytical solutions.

In Fig. 4.16, we compare the time evolution of the ion spins predicted by the lin-

ear theory and the results obtained with the numerical simulations. We found an

excellent agreement between both curves, meaning that the numerical methods we

used to integrate the spin part is correct at least in the linear regime. In Fig. 4.17,

we represent numerical simulations done with our Vlasov code. As in the previous

case, we do not excite the charge degrees of freedom but only the spins. In the left

part, we plot the time evolution of the x − y components of the ion spins. In the
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FIGURE 4.17: Simulations done on a film of nickel of size L = 100 LF

and σ = 1 LF with the following numerical parameters : Nx = 5000,
Nv = 500, δt = Tp/10. The initial perturbation is applied on the ion
spins Sx(t) = ǫ cos(kx) and Sy(t) = ǫ cos(kx) with ǫ = 0.001 and k =
2π/10 nm−1. On the left part (a), we draw the time evolution of the
Fourier component of the ion spins defined in Eq. (4.102). On the right
part (b), we plot the associated energies: Ek is the kinetic energy of
the electrons, see Eq. (2.60), Ei−i and Ei−e are respectively exchange
energies due the interactions between ion spins Eq. (4.25) and between
electron and ion spins Eq. (4.26). The total energy Etot is the sum of the

three energies.

right part, we plot the time evolution of different energies: the kinetic energy of the

electrons and the exchange energies between the ion spins and between the ion and

the electron spins.

We notice that the spin waves are damped, this is not so surprising since it was pre-

dicted by the linear analysis, see Sec. 4.3. According to the Eq. (4.25), the energy

associated to the spin waves should decrease. This is also observed in Fig. 4.17(b)

where we clearly see a net diminution of the spin-wave energy (Ei−i). Moreover we

notice that the spin-wave energy is convert into electron kinetic energy. Physically

speaking, that means that the ion spin waves are losing energy during their preces-

sion and that this energy is transferred to the electrons. Thus, we prove that our

model is able to convert magnetic exchange energy into kinetic electron energy. As

it is expected the total energy is constant. Of course there are weak variations due

to numerical errors, but compared to the other energy variations it is completely

negligible. The situation, we described above is ideal, a realistic excitation would

excite the charge and spin dynamics and thus creates variations of the potential en-

ergy. This will be analysed in the next section, when we will consider laser pulse
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excitations.

There is also another point to discuss before addressing the nonlinear dynamics.

The fact that we use a Runge-Kutta method to solve one part of the Vlasov equa-

tion gives rise to the so-called CFL (Courant–Friedrichs–Lewy) condition [161]. The

latter stipulates that the spatial and time mesh should be bounded by the following

relation vmax∆t ≤ ∆x in order to not propagate errors (this condition is necessary

but not sufficient). Here vmax is the maximal speed of the particles (vmax ≃ vF). This

was not observed for the transport part because the flux balance method is not re-

stricted by the CFL condition [160]. However, the spin part is subjected to the CFL

condition. In Practice, we always have to verify that the CFL condition are satisfied.7

4.5 Spin current generation with an electrical excitation

0 20 40 60 80

Time : t / ω
p

-1

-0,04

-0,02

0

0,02

<X>
e
 / L

F

<X> 
↑
 /  L

F

<X> 
↓
 / L

F

0 20 40 60 80

Time : t / ω
p

-1

-0,006

-0,004

-0,002

0

0,002

0,004

E
k
 / E

F

E
p
 / E

F

E
cm

 / E
F

E
tot

  / E
F

(a) (b)

FIGURE 4.18: Simulations done on nickel films of size L = 50 LF and
σ = 1 LF with the following numerical parameters : Nx = 5000, Nv =
500, δt = Tp/20. The electrons are excited with a velocity shift ∆v =
0.05 vF on f0. In th the plot (a), we draw the electric dipole (black curve),
the spin-up dipole (red curve) and the spin-down dipole (blue curve) as
a function of time. In the plot (b), we draw the corresponding energies,
the kinetic energy (black curve), the potential energy (red curve), the
center of mass energy (blue curve) and the total energy (green curve).

The different energies are shifted by their initial values at t = 0.

7In most of the case, since we have to integrate the spin-Vlasov equation on a time step lower than
the plasma period, the CFL conditions will be automatically satisfied.
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FIGURE 4.19: Zoom of the Fig.4.18 (a) during the first 20 plasmon os-
cillations.

In the above simulations, we have either excited a plasmon in a non magnetic

medium or excited a spin wave but without the creation of a plasmon. In this sec-

tion, we are going to study plasmon excitations in a magnetic and finite system. Our

study shall consist to solve numerically the spin-Vlasov equations (4.23) in nickel

thin films. We shall use the algorithm described in the previous section 4.4. These

equations deal with the distribution functions f0 and fi, but to calculate average

quantities or to analyse the data, we are also going to work with the spin-up and

spin-down distribution functions f ↑ and f ↓. Both are related by linear combinations

(2.8).

Starting from the electron ground state, calculated in the Sec. 4.2.2 we introduce a

velocity shift ∆v in the spin-up and spin-down distribution functions, f ↑ and f ↓,

in order to excite a plasmon in the system8. With such an excitation we stay in the

collinear magnetism regime, meaning that all the spins stay parallel to the z direc-

tion. Moreover the ion spins are not excited. This is due to the simple fact that no

internal magnetic fields are created in the x− y directions. Therefore all the dynam-

ics is contained in the distribution functions f0 and fz ( or equivalently in f ↑ and f ↓).

For the moment, we also do not include exchange and correlation effects to simplify

the study.

In Fig. 4.18, we represent a simulation done on films of nickel of size L = 50LF

with an initial excitation ∆v = 0.05 vF. In the plot (a), we represent the following

macroscopic observables, the electric dipole: 〈X〉e =
∫
xf0 dxdv, the spin-up dipole:

8This is equivalent to introduce a velocity shift in the distribution functions f0 and fz
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〈X〉↑ =
∫
xf ↑ dxdv and the spin-down dipole: 〈X〉↓ =

∫
xf ↓ dxdv. All of them are

equal to zero in the ground state because the ground state distribution functions are

symmetric with respect to x = 0. In the plot (b), we represent the corresponding time

evolution of different energies: the kinetic energy, the potential energy, the center of

mass energy and the total energy, which are defined in Eq. (4.111). Just after the ex-

citation all the dipoles are excited with the same amplitude. This amplitude is about

1/1000 of the size of the film, such that we surely are in the linear regime. For the

electric dipole, during the first twenty plasmon oscillations the same situation holds

as in the case of a non magnetic system, see Fig. 4.14. Indeed the system undergoes

fast oscillations at the plasmon frequency, leading progressively to a heating of the

electrons by a conversion of potential energy into kinetic energy. At the same time

the Landau damping occurs and the electric dipole is exponentially damped. For the

spin-up and spin-down dipoles, the situation is different. First, they are less damped

than the electric dipole. Moreover, we notice that their centers of mass are well sep-

arated. This separation starts at the very beginning of the electron dynamics. This

is confirmed in Fig. 4.19, where we represent a zoom of the different dipoles dur-

ing the first twenty plasmon oscillations. We clearly see a progressive shift between

both spin-up and spin-down mass centers. At longer time scale (t > 40Tp), when the

electric dipole is relatively week, the spin-up and spin-down dipole are oscillating at

lower frequency and in phase opposition. This situation was not expected. We were

rather expecting that with such a simple excitation, both spin-up and spin-down

dipoles would stay in phase and decay as the electric dipole. Physically, it means

that we have created a magnetic dipole 〈X〉m ≡
∫
xfz dxdv or equivalently a spin

current in the system, according to the following identity:

d

dt
〈X〉m =

∫
vxfz dxdv ≡ JS

xz. (4.113)

The above relation above can be demonstrated by using the time evolution equation

of the electron distribution functions, Eqs. (4.23).

This magnetic dipole or spin current is oscillating at a much lower frequency than

the plasmon (about 0.043 ωp). This is sketched in Fig. 4.20, where we plot the differ-

ent dipoles and their corresponding Fourier spectrums. Low frequency oscillations

were also observed in non magnetic systems, such as in Sodium films, after exiting

the plasmon mode [38]. However they appear only in the energy curves, see Fig.

4.15, and never in the electric dipole moment. These oscillations were interpreted as

ballistic oscillations due to electrons travelling back and forth in the film. Therefore

the frequency of these oscillations were directly related to the size of the film accord-

ing to the following formula: ωb = (2L/vF)
−1, where ωb is the ballistic frequency. For

nickel films (vF = 0.93 a.u. and L = 50 LF), it is about ωb = 0.063 ωp. Ballistic oscilla-

tions are also present in our energies curves, see Fig. 4.18(b), but they appear with

twice the ballistic frequency. The reason is that energies are second order moments

of the distribution functions. The new features of the spin-Vlasov simulations are
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FIGURE 4.20: Simulations done on nickel films of size L = 50 LF and
σ = 1 LF with the following numerical parameters : Nx = 5000, Nv =
500, δt = Tp/20. The electrons are excited with a velocity shift ∆v =
0.05 vF on f↑ and f↓. In the plot (a), we draw the time evolution of
both spin-up (red curve) and spin-down (green curve) dipoles . In the
plot (c), we draw the time evolution of both electric (black curve) and
magnetic (blue curve) dipoles. And in the plots (b) and (d), we draw

the Fourier transform of each dipole.

the ballistic oscillations present in the magnetic dipole. Indeed in Fig. 4.20(d), we

clearly see that the magnetic dipole is mainly oscillating at the ballistic frequency

and there is no trace of any plasmon oscillations. On the same plot, we notice also

that the situation is completely different for the electric dipole. The latter oscillates

only at the plasma frequency and there is no trace of the ballistic frequency, as is

the case for spinless electrons. Consequently, as the spin-up and spin-down distri-

bution functions are linear combinations of f0 and fz, we observe both frequencies

(plasma and ballistic) in the spin-up and spin-down dipoles, see Fig. 4.20(b). To be

more precise, the magnetic dipole is not exactly oscillating at the ballistic frequency

but at lower frequency. The reason is that the ballistic frequency does not take into

account surface effects related to the parameter σ. More details about the formation

of these ballistic oscillations will be given in this section, but before we will analyse

the influence of finite size effects on the ballistic frequency. Such an analysis is done

in Fig. 4.21, were we sketch the evolution of the low frequency component of the

spin-up and spin-down dipoles as a function of the size of the film and we compare

it to the theoretical values for the ballistic frequency. We study different film sizes:
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FIGURE 4.21: In this figure, we sketch the ballistic frequency obtained
by numerical simulations (black cross) with nickel films of different
sizes : L = 50, 100, 150, 200 LF. The border of the film is always char-
acterized by the same value of σ = 1 LF. The blue line represents the

theoretical value of the ballistic frequency : ωb = (2L/vF)
−1.

L = 50, 100, 150, 200 LF and σ = 1 LF. Surface effects are mainly proportional to the

ratio between σ and L. We notice that the difference between the spin current fre-

quency and the ballistic frequency increases with the increase of size effects, see Fig.

4.21 (until 50% for σ/L = 1/50). Therefore the finite size of the system, modelled

by parameter σ, seems to play an important role in the formation of the magnetic

dipole. This is also analysed in Fig. 4.22, where we plot the numerical ballistic fre-

quencies obtained for two different cases. The first case (blue cross) corresponds to

the previous one, i.e. thin films of different sizes and with fix values of σ. The second

case (red cross) corresponds to a fix ratio between L and σ, i.e.: L = 50 LF, σ = 1 LF ;

L = 100 LF, σ = 2 LF ; L = 150 LF, σ = 3 LF and L = 200 LF, σ = 4 LF. For the second

case, we notice that the ballistic frequency is a linear function of the size of the film.

This kind of behaviour is a typical characteristic of ballistic phenomena.

Before going further we shall give a physical explanation for the creation of the mag-

netic dipole with an electric type of excitation. Let us consider the simplest kinetic

model to describe the dynamics of an interacting spin polarized (in the z direction)

electron gas. It is a reduction of the full spin-Vlasov model (4.23):

∂f0
∂t

+ vx (∂xf0)−
e

m
Ex (∂vxf0) = 0, (4.114)

∂fz
∂t

+ vx (∂xf0)−
e

m
Ex (∂vxfz) = 0, (4.115)
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FIGURE 4.22: In this figure, we sketch the ballistic frequencies ob-
tained by numerical simulations with nickel films of different sizes :
L = 50, 100, 150, 200 LF. For the blue crosses, the border of the film is
always characterized by the same value of σ = 1 LF. For the red crosses
the value of σ is always equal to two per cent of the size of the film. The

dashed lines are linear fits of the points.

where the electric field Ex is given by the Poisson equation (4.40).

With such a simple model, we still observe the creation of a magnetic dipole oscil-

lating at the ballistic frequency. In Eqs. (4.114) and (4.115), we completely neglect

the Zeeman interaction as well as exchange-correlation effects. The latter are thus

not responsible of the magnetic dipole oscillations. We only keep the electrostatic

interactions between the particles through the Poisson equation. Moreover we also

suppressed the ion spin dynamics, but their influence is still visible in the electron

ground state (spin polarized ground state). In this model, the charge distribution

function of the electrons f0 evolves independently of the magnetic distribution func-

tion fz. The opposite is not true since the electric field Ex, present in both equations,

is related to f0 through the electron density n =
∫
f0 dv in the Poisson equation.

Therefore the electrons are moving in a self consistent way with respect to the Eq.

(4.114) whereas the spin is simply transported with the electrons, Eq. (4.115), with-

out having their own dynamics. This is the reason why the plasma frequency ap-

pears only in the electric dipole and not in the magnetic dipole.

For the ballistic oscillations the situation is more complex to understand. First we

have seen that the oscillations of the magnetic dipole are due to ballistic electrons

travelling back and forth in the film near the Fermi velocity. They are also strongly

related to the properties of the density at the border of the film, characterized by

the parameter σ, and to the magnetic properties of the ground state, since they were
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not observed in non magnetic materials. We propose the following explanation to

understand this phenomenon. In the ground state, the confinement potential felt

by the spin-up and spin-down electrons is a bit different. This is illustrated in Fig.

4.9, where we clearly see that the confinement potential is deeper for the spin-up

electrons than for the spin-down electrons. This is namely due to the exchange in-

teraction between the electron and the ion spins which acts as a local magnetic field.

Then, after the initial excitation (with an electric field) both spin-up and spin-down

electrons are accelerated in the longitudinal direction (x) of the film, see Fig. 4.1.

But due to the different confinement potentials, the spin-down electrons which are

less confined will arrive on average at the border of the film before the spin-up elec-

trons. At the border of the film the spin-down electrons are going to feel an electric

field which will bring them back to the film. However, at the same time, the spin-up

electrons reach the border of the film. They will feel an electric field different from

that felt by the spin-down electrons, precisely because some of the latter are already

present at the border. Thus because of electron-electron repulsion, the spin-up elec-

trons will return to the center of the film more rapidly than the spin-down electrons.

On the other side of the film, the opposite situation occurs. This explanation is illus-

trated in Fig. 4.18 and Fig. 4.19, where we clearly see that the centers of mass of the

spin-up and spin-down electrons are more and more separated in space. This effect

is amplified after each plasmon oscillation, until arriving at the situation where the

two densities oscillate in phase opposition. All of these effects are electrostatic ef-

fects and are taken into account through the Poisson equation.

To summarize, to create an oscillating magnetic dipole at the ballistic frequency

with an electric excitation, we need the three following ingredients. First a mag-

netic ground state for which the spin-up and the spin-down electrons are differently

confined. Second, we need a finite system to create the spatial separation of the

spin-up and spin-down dipoles. And finally, we need also to take into account the

self-consistent electric field created by the electrons. If we suppress one of these in-

gredients, then the magnetic dipole disappears.

Now that we have a better understanding on the origin of this magnetic dipole,

we shall perform complete simulations by solving the full spin-Vlasov model, Eqs.

(4.23), with exchange correlation effects and with the Zeeman interaction. In all the

previous simulations, we have excited the system with an initial velocity shift in the

distribution functions. This kind of excitation is not realistic since it corresponds to

the action of an instantaneous electric field at time t = 0. Such an excitation can be

represented by a delta function in time and thus in the frequency domain as a con-

stant function, meaning that we excite all the frequencies in the same way. We shall

now consider more realistic excitations. With the recent development of ultra-fast

optical techniques, one is able to produce laser pulses with a time duration of a few
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FIGURE 4.23: In this figure, we sketch in the upper part (a) the temporal
profile of two laser pulses (4.116). We used the following parameters
to characterized the electric field: ∆t = 1 fs ≃ 4 Tp, ωl = ωp for the red
curve and ∆t = 5 fs ≃ 20 Tp, ωl = ωb for the blue curve. In both cases,
the amplitude of the electric field is E0 ≃ 108 V/m and t0 = 3 ∆t. In
the lower part (b), we sketch the Fourier spectrum of the two pulses.

femtosecond. Such laser pulses can be modelled by the following electric field:

E(x) = E0(x) exp

[
−
(
t− t0
∆t

)2
]
cos (ωlt) , (4.116)

where E0 is the amplitude of the laser, ∆t is the time width of the pulse and ωl is

the central frequency of the pulse. The parameter t0 corresponds to the time when

the pulse reach its maximal amplitude. Here and in the following, we shall con-

sider that the electric field is linearly polarized (in the x direction) and space in-

dependent, which is true if the wave length of the laser is much larger than the

size of the film, i.e. kL ≪ 1. Let us consider two different laser pulses. One with

a central frequency equal to the plasma frequency and another one with a central

frequency equal to the ballistic frequency. The time width of the pulses are respec-

tively: ∆t = 1 fs ≃ 4 Tp and ∆t = 5 fs ≃ 20 Tp. The temporal and frequency profiles

of both pulses are sketched in Fig. 4.23. We clearly notice that the two pulses are

well separated in the Fourier domain. Moreover the amplitude of the laser is rel-

atively small (E0 ≃ 108V/m) in such a way that the system will be excited in the

linear regime. Therefore we shall either excite the plasmon mode or the ballistic
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FIGURE 4.24: In this figure, we plot the electric (red curve) and the
magnetic (blue curve) dipoles, normalized to the Fermi wave length),
in the case of nickel films of size L = 50 LF, σ = 1 LF. In the upper
part (a), the electrons are excited with a laser pulse with the following
parameters: ∆t = 5 fs ≃ 20 Tp, ωl = ωb, E0 ≃ 108 V/m and t0 = 3 ∆t.
In the lower part, the laser parameters are: ∆t = 1 fs ≃ 4 Tp, ωl = ωp,

E0 ≃ 108 V/m and t0 = 3 ∆t.

mode. This type of excitation is completely different from the previous one (veloc-

ity kick), for which all modes where excited with the same amplitude.

In Fig. 4.24, we show the electric and the magnetic dipoles created by the above laser

excitations. In the case where the laser frequency is equal to the ballistic frequency,

we notice that a magnetic dipole is created and oscillates at the ballistic frequency.

After the laser pulse disappeared (approximatively 100 fs, see Fig. 4.23) the mag-

netic dipole continues to oscillate at the ballistic frequency. An electric dipole is also

created by the action of the pulse but rapidly decreases in amplitude. The electric

dipole oscillates at the frequency of the laser pulse. In this picture, it is not so clear if

the electric dipole oscillates at the laser frequency or at the ballistic frequency since

they are equal. However, one can perform another simulation, where the two fre-

quencies are a bit different. In that case, one would notice that the electric dipole

oscillates at the laser frequency. That is probably the reason why it is drastically

reduced after the laser pulse disappeared. In the case where the laser frequency is

equal to the plasmon frequency, a different situation occurs. The electric dipole is

excited by the laser pulse (which disappears after 20 fs) and then is damped in few

plasma frequency trough the Landau damping. The magnetic dipole is not excited
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state distribution functions,
f0(x, v) (upper part) and
fz(x, v) (lower part) for a
nickel film of size L = 50 LF
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the blue colors represent,
respectively, regions with

high and low densities.

at all by the laser pulse.

Moreover we also notice that the ballistic modes have a much longer life time com-

pared to the plasmon modes. This is illustrated in Fig. 4.20 (c) and in Fig. 4.24 (a)

where we clearly see that the magnetic dipole persists on longer time scales than

the electric dipole. Of course after sometimes, one should take into account dis-

sipation effects such as spin flip processes, which would certainly affect the mag-

netic dipole. Nevertheless during the coherent dynamics, which occurs in the first

hundred femtoseconds, the magnetic dipole is created and keeps oscillating. To ex-

plain this longer life time, we shall use an argument from plasma physics. It is well

known in plasma physics that some special kind of distribution functions, called

”water-bag”, posses the property to be unaffected by the Landau damping [162]. A

water-bag distribution function is a function which is constant in a given region of

the phase space and zero everywhere else. By extension we expect that a function

which is constant in a certain region of the phase phase space and which decreases

rapidly to zero at the border of this region will have a week Landau damping. In

Figs. 4.25 and 4.26, we sketch the ground state distribution functions f ↑, f ↓, f 0 and

f z defined by the Eqs. (4.51)-(4.52). The distribution functions are plotted in the two

dimensional phase space x and vx. The spin-up and spin-down distribution func-

tions appear to be the same (in reality they are slightly different). If we now look
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FIGURE 4.27: (a), electric (red curve) and the magnetic (blue curve)
dipole (normalized to the Thomas-Fermi screening length) in the case
of a film of nickel of size L = 50 LF, σ = 1 LF. The electrons are
excited with a laser pulse with the following carcteristics: ∆t = 5 fs,
λL = 800 nm, E0 ≃ 1010 V/m and t0 = 3 ∆t. (b), Fourier transform of

both dipoles.

the distribution functions of the electron’s charges f0 and of the electron’s spins fz,

we notice that they are very different. Indeed the distribution function f0 (obtained

by: f0 = f ↑ + f ↓) is similar to the spin-up and spin-down distributions, whereas

the distribution fz (obtained by: fz = f ↑ − f ↓) is similar to a water-bag distribution

function. This can explain why the magnetic dipole, which is only related to the

distribution function fz, is not subjected to the Landau damping.

So far we have seen that we are able to create an oscillating magnetic dipole or spin

current in ferromagnetic films using an electric excitation (laser pulse). The oscil-

lations occurs at the ballistic frequency and are thus directly related to the size of

the film. Moreover these oscillations have a life time longer than the plasmon os-

cillations because they are not subjected to the Landau damping. We also proposed

an explanation of the physical mechanisms at the origin of these oscillations. To

our knowledge, such phenomena was not discussed before in the literature. All the

simulations were done with a weak laser power. We shall now check that this effect

stays valid with larger incident laser powers.

In Fig. 4.27, we excite the system (nickel films of size L = 50 LF, σ = 1 LF) with

a laser pulse in the visible domain at 800 nm, with a time width of 5 fs and with
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FIGURE 4.28: Time evolution of different electronic energies (normal-
ized to the Fermi energy) corresponding to the simulation in Fig. 4.27.

an amplitude E0 ≃ 1010 V/m. The laser’s amplitude is one hundred times stronger

than those used in the linear regime, see Fig. 4.24. Roughly speaking that means

we give ten thousand times more energy to the system. In the frequency domain

this type of pulse cover a small region in the visible domain: 0.175 − 0.575 PHz

(Peta-Hertz) near the ballistic frequency ωb ≃ 0.173 PHz but far from the plasmon

frequency ωp ≃ 2.71 PHz. In Fig. 4.27(a), we draw the time evolution of the electric

and the magnetic dipole during one hundred femtoseconds. During the action of

the pulse (t < 25 fs), we observe the creation of an electric dipole which oscillates

at the laser frequency as it was the case in the linear regime. At the same time the

magnetic dipole is created. Then after the laser pulse has disappeared, the magnetic

and the electric dipoles continue to oscillates with similar amplitudes.

In Fig. 4.27(b), we give the Fourier transform of both dipoles. The magnetic dipole

mainly oscillates at the ballistic frequency (after the pulse) and at the pulse fre-

quency (during the pulse). The electric dipole oscillates at the laser frequency dur-

ing the pulse, then after the pulse it oscillates at the ballistic and at the plasmon

frequency. This can be seen in Fig. 4.27(a) where between 25 − 100 fs, we see rapid

oscillations (plasmon) superposed on large oscillations (ballistic). The fact that the

frequency spectrum of the electric dipole contains the plasmon frequency is a signa-

ture of nonlinear effects. Indeed we do not excite the system at the plasma frequency,

the latter is thus excited by nonlinear effects. We thus conclude that in the nonlin-

ear regime the magnetic dipole (or the spin current) is still oscillating at the ballistic

frequency. Moreover, after the laser pulse has disappeared, the electric dipole is
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driven by nonlinear effects and oscillates in a combination of plasmon and ballistic

frequencies.

We have also sketched in Fig. 4.28 the time evolution of the different energies (ki-

netic, potential, exchange-correlation and total) corresponding to the above nonlin-

ear simulations. During the laser pulse 0 − 25 fs all the energies are globally in-

creasing which means that the laser pulse transfers some amount of energy to the

system (approximatively 0.025 EF). After the pulse the energy is periodically con-

vert from electron kinetic energy to electron potential energy. So, we again recover

ballistic oscillations in the energy curves as it was the case for spinless simulations,

see Fig. 4.15. The other energies do not vary significantly. We notice also that the

total energy is not exactly constant after the pulse, this is probably due to numerical

errors.

4.6 Conclusions and perspectives

In this chapter, we applied the spin-Vlasov equations to model the spin and charge

dynamics in nickel thin films. We have seen that in order to construct a ferromag-

netic ground state, one should make a distinction between localized and itinerant

magnetism. In the case of nickel, we assumed that the itinerant magnetism is car-

ried by the 4s electrons whereas the 3d electrons stay localized around the nucleus

to form an ion spin. In our model (4.23), the itinerant electrons are described with

the spin-Vlasov equations and the ion spins are described with a Landau-Lifshitz

equation. Both magnetic moments (itinerant and localized) are coupled together

with a Heisenberg exchange interaction with a coupling constant K. Moreover the

ion spins are interacting together with an exchange constant J . K and J are the two

main parameters of our model. the parameter J was determined by imposing that

the magnetization goes to zero at the experimental Curie temperature. The param-

eter K was chosen to have the correct proportion of localized/itinerant magnetic

moments at T = 0 K, according to DFT calculations. We have also seen, thanks to

the linear analysis, that our model is able to convert spin-wave magnetic energy into

kinetic energy of the itinerant electrons. This transfer of energy leads to a damping

of the ion spin waves.

The main issue of this chapter was to study, with the spin-Vlasov model (4.23) cou-

pled to a Landau-Lifshitz equation, the electron spin and the charge dynamics in-

duced by a femtosecond laser pulse. Several studies [38, 39, 144] were done before

but the authors studied only the charge dynamics. Taking into account the Zee-

man interaction and spin dependent exchange-correlation effects, we were able to

perform numerical simulations on the charge and the spin dynamics in thin films

of nickel. Our main discovery was that, with an electric excitation, we are able to

create an oscillating spin current (or an oscillating magnetic dipole) in addition to

the usual electric dipole. While the latter oscillates at the plasma frequency, the spin
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current oscillates at the ballistic frequency ωb = (2L/vF)
−1 which is inversely propor-

tional to the size of the film. For nickel films of size L = 50 LF, the ballistic frequency

ωb = 0.173 PHz is close to the Peta-Hertz regime. Therefore this ballistic mode can

be excited with laser pulse in the visible range. Up to our knowledge this is some-

thing which was never before discussed in the literature. Moreover, we have seen

that the spin current is not subjected to the Landau damping as it is the case for the

electric dipole and thus has a much longer life time. We also proposed a physical

explanation for the creation of this oscillating spin current. It relies on three ingre-

dients: the finite size of the system, the self consistent electron-electron interactions

and the magnetic properties of the electron ground state.

The present study could be extended in several ways:

• In this study, the x − y components of the electron and ion spins remained

weak. The magnetism was thus essentially collinear. Moreover we have al-

ways excited the system with electric excitations, we have never used external

magnetic fields. A possibility for exploring non-collinear magnetism would be

to prepare the system in a non-collinear stationary state. This could be done by

launching a spin wave in the system, for instance with an oscillating magnetic

field, before the arrival of the laser pulse. Then it would be interesting to see if

the spin wave have an influence of the spin current generation or vice versa.

• It would also be interesting to study the electron charge and spin dynamics

in more complex structures. For instance in bilayer systems, where a ferro-

magnetic film (nickel) is sticked on a non magnetic film (Gold). So, depending

of the relative thickness of both film, it would be interesting to see if the spin

current generation persists or not and how the latter is modified.

• In the present work, we only did numerical simulations in a 2 dimensional

phase space (x, vx). Indeed the electrons were only able to move in the transver-

sal direction (x) of the film. It would be very interesting to extend the simu-

lations to 4 dimensions (x, vx, vy, vz). Then, it would be possible to correctly

describe the spin-orbit interaction in a dynamical fashion. Even if the corre-

sponding evolution equations would be classical (at least for the orbital dy-

namics), we would be able to see if it is possible to induce an ultra-fast de-

magnetization of the system with optical pulses, especially in the nonlinear

regime. This would give us a better understanding of the physics contained in

the spin-Vlasov equations (2.54)-(2.55). In particular, how the self-consistent

electric and magnetic fields are able to enhance the spin-orbit interaction. The

difficulties are mainly numerical, as the 2 dimensional simulations (x, vx) re-

quire long simulation times, we have to parallelize our code. Otherwise it

would be impossible to perform more than 2 dimensional simulations.

Another solution could be to combined both kinetic and fluid models. For in-

stance, the dynamics in the (x, vx) phase space would be treated with kinetic
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models such as the spin-Vlasov model (2.54)-(2.55). Whereas the dynamics in

the (vx, vy) phase space would be described with a set of fluid equations. Such

methods were recently used in plasma physics to model particle transport in

a tokamak scrape-off layer [163].
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Chapter 5

Variational approach to the quantum

hydrodynamic models

This last chapter concerns the study of reduced models to describe the nonlinear

charge dynamics of an ensemble of interacting electrons. In the previous chapters,

we have seen how to include the spin in the electron dynamics. However the nu-

merical simulations were done in the semiclassical limit, using a spin-Vlasov model.

Thus the quantum effects on the orbital dynamic were completely neglected. The

extension of these simulations in the quantum regime using the Wigner evolution

equation is still a big challenge. Another alternative is to use quantum hydrody-

namic models, that are an approximation of the Wigner equation and are valid in

the long wavelength limit. Here we shall focus on the inclusion of quantum ef-

fects in the electronic dynamics but we will omit the spin dynamics. Hydrodynamic

methods have been successfully used in the past to model the electron dynamics in

molecular systems [45], metal clusters and nano-particles [46–48, 164], thin metallic

films [49] and semiconductor quantum wells [52].

We shall use the quantum fluid model proposed by Manfredi in Ref. [68]1 :

∂n

∂t
+∇· (nu) = 0, (5.1)

∂u

∂t
+ u ·∇u = ∇VH −∇VX −∇Vext −

∇P

n
+

1

2
∇

(
∇2

√
n√

n

)
, (5.2)

∇
2VH = 4πn, (5.3)

where n(r, t) is the electron density, u(r, t) the mean electron velocity, and VH(r, t)

the Hartree potential. Here, and in all the chapter, the equations are written in

atomic units. The first equation (5.1) is the continuity equation and represents the

conservation of the mass. The second equation (5.2) is an Euler type of equation, it

gives the evolution of the current density with respect to the force acting on the sys-

tem. The third equation (5.3) is the Poisson equation for the self-consistent Hartree

potential VH. In Eq. (5.2), Vext(r, t) is an external potential due to, for instance, the

interaction with an external field or to a confinement potential. The latter can have

different forms, in the Sec. 5.2 the confinement potential will be created by the ionic

1For more details about the derivation of this model, see Sec. 1.4
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background, it will thus be taken into account in the Hartree potential. Whereas

in the Sec. 5.3 it will be given by a non-parabolic and anisotropic well. P (r, t) is a

pressure term that close the set of the quantum hydrodynamic equations (5.1)-(5.3)

one has to express the pressure as a function of the electronic density and the mean

velocity2. In the next sections, we shall use the Fermi pressure of a 3D degenerated

electron gas

P =
(3π2)

2/3

5
n5/3. (5.4)

This is true if the temperature of the system is always much lower than the Fermi

temperature. Finally, the last term in Eq. (5.2) is the so-called Bohm potential [94],

which incorporates quantum effects to the lowest order. The Bohm potential is re-

lated to the so-called von Weizsäcker term in Thomas-Fermi theory and orbital-free

DFT [165]. As in DFT, exchange effects can be modelled by a density-dependent

effective potential

VX [n(r, t)] = − 1

π

(
3π2n

)1/3
+ β

[
2
∇2n

n4/3
− 4

3

(
∇n
)2

n7/3

]
, (5.5)

where the first term is the local density approximation (LDA) and the other two

terms are gradient corrections. The pre-factor β is a free parameter that we set

equal to β = 0.005, which is a best-fit frequently used in atomic-structure calcu-

lations [166].

Although the quantum hydrodynamic equations are easier to solve numerically

then the associated kinetic equations, it is still a considerable computational work to

solve them. In this chapter, we will use a variational approach to simplify the quan-

tum hydrodynamic equations. In the first section, we shall give a general overview

of the variational approach applied to the quantum fluid model (5.1)-(5.3). The lat-

ter is based on a Lagrangian formulation and trial functions that characterize the

matter density profile. Then, using this approach, we shall study in the Sec. 5.2

the nonlinear electron dynamics in metallic (Gold) nano-particles. We shall see that

by irradiating a metallic nano-particle with an autoresonant chirped laser pulse, it

is possible to drive the collective electron modes (surface plasmons) far into the

nonlinear regime. This technique shall lead to a higher energy absorption and to a

complete ionization of the nano-particle on short time scales (∼ 100 fs). In Sec. 5.3

we shall study, using the same approach, anharmonic and anisotropic effects in the

nonlinear electronic dynamics.

2In general, the expression of the pressure can be a complicated function of the other fluid quan-
tities, such examples are given in Sec. 1.4
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5.1 Principle of the method

The quantum hydrodynamic equations (5.1)-(5.3) can be represented, without fur-

ther approximations3, by a Lagrangian density LD(n, θ, VH), where the function

θ(r, t) is related to the average velocity, u = ∇θ. The expression for the Lagrangian

density is as follows :

LD = n

[
1

2
(∇θ)2 +

∂θ

∂t

]
+

1

8n
(∇n)2 +

3

10

(
3π2
)2/3

n5/3

− 3

4π

(
3π2
)1/3

n4/3 − β
(∇n)2

n4/3
+ nVext − nVH − 1

8π
(∇VH)

2 . (5.6)

By taking the standard Euler-Lagrange equations with respect to the three fields n,

θ, and VH, one recovers exactly the quantum hydrodynamic equations (5.1)-(5.3).

The development done thus far did not simplify the problem. In order to derive

the tractable system of equations, one needs to specify a particular ansatz for the

electron density. In other words, one has to find a mathematical function F that

reproduce the correct electron density. In general the density has to be written as a

function of N dynamical variables

n(r, t) = F [r, d1(t), d2(t), · · · , dN(t)] . (5.7)

With such an assumption the time dependence of the electronic density is embedded

in the dynamical variables d1(t), · · · , dN(t). The shape of the function F depends on

the geometry of the problem and the dynamical variables correspond to the eigen-

modes of the system. At this point, ab-inito calculations can be used to guide us in

the research of the most realistic electronic density. For instance, the shape of the

electronic density can be tuned to match electronic ground states founded by DFT

methods. However nothing states that the assumption (5.7) holds when the system

is driven far from its equilibrium state.

Such methods were first used to describe the many electron dynamics of semicon-

ductor quantum wells [52]. The author modelled the confinement potential as an

harmonic potential. In this case, they assume a Gaussian profile for the electron

density. Moreover they introduced two time-dependent variables in the electron

density d(t) and σ(t), that represent the center-of-mass (dipole motion) and the spa-

tial dispersion of the electron gas (breathing motion), respectively. With such an

assumption, the authors constraint the solution of the fluid models to be Gaussian

functions. Nevertheless they were able to describe the dipole and the breathing dy-

namics of the electron gas through the variables d(t) and σ(t). In principle, one can

imagine to construct more complicated density profiles to study for instance multi-

polar dynamics. However, as it will be showed below, the choice of the density is a

3This assertion is not completely true, indeed to construct the Lagrangian density we wrote the
average velocity as deriving from a scalar potential u = ∇θ. This necessary implies that the average
velocity field has a zero rotational.
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critical requirement to operate the variational approach.

As we have seen, the heart of the method is to assume a mathematical expression

of the electron density to write the Lagrangian density. Then, one is able to find the

Lagrangian L of the system by integrating the Lagrangian density over the all space

L
(
d1(t), · · · , dN(t), ḋ1(t), · · · , ˙dN(t)

)
=

∫
LD

(
r, d1(t), · · · , dN(t), ḋ1(t), · · · , ˙dN(t)

)
dr.

(5.8)

Having the Lagrangian of the system, one can use the Euler-Lagrange equation with

respect to the different dynamical variables to obtain a set of N coupled differential

equations (one for each dynamical variable)





d̈1(t) = f1 (d1(t), · · · , dN(t)) ,
d̈2(t) = f2 (d1(t), · · · , dN(t)) ,

...

d̈N(t) = fN (d1(t), · · · , dN(t)) .

(5.9)

Using the Variational approach, the very complicated N body electron dynamics is

embedded into a set of differential equations. The latter could be easily solved with

standard numerical methods (Runge-Kutta).

For practical applications, the variational method can be difficult to use. Indeed, to

find the Lagrangian (5.8) one has to specify, in addition to the electron density, an

analytical expression of the fields θ(r, t) and VH(r, t) as functions of the dynamical

variables. The field θ(r, t) is related to the mean velocity and should satisfy the

continuity equation (5.1) and the field VH should satisfy the Poisson equation (5.3).

One insists on the fact that we have to find analytical expressions of θ and VH so that

the variational approach is beneficial to use. However this can be in practice difficult

to perform and depends mostly on the mathematical expression we assumed for

the electronic density, i.e. on the function F in Eq. (5.7). Nevertheless it is a useful

and relatively safe procedure to obtain a mathematically treatable set of equations

that can be solved either exactly or with minimal numerical effort. For instance,

it was noted in [52] that, even for an approximative density profile, the resonant

frequencies computed with the variational techniques are still very close to the exact

ones.

5.2 High harmonic generation in Gold nano-particles

In this section, we shall apply the variational approach based on quantum hydrody-

namic equations to study the electron dynamics in Gold nano-particles. The latter

are metal clusters composed of a few numbers of metallic atoms, between 2 and 107.

Large metal clusters represent a bridge between molecules and solids. As such, they

often exhibit properties belonging to both of these classical disciplines and therefore
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are of immense scientific and practical interest. For instance some properties of

metal clusters are size dependent. A relatively complete set of results about metal

clusters are given in Ref. [132].

On a fundamental point of view, small clusters are very interesting to study be-

cause we are able to perform numerical simulations using a relatively complete

quantum treatment, for instance using the time-dependent density functional the-

ory (TDDFT) [32, 33] or Wigner function methods [39, 56]. Moreover many body

quantum effect have a big influence of the behaviour of such systems. Therefore it

is interesting to compare the exact theory to the experience, in order to understand

better this type of effect. However such theories are much difficult to simulate for

large clusters. An other alternative is to use reduced models such as the quantum

hydrodynamic models presented above Eqs. (5.1)-(5.3).

In a first part, using this approach, we shall derive a set of equations of motion to

describe the electrons dynamics. In particular, we will focus on the two electronic

modes the dipole modes and the breathing modes. Our results will be compared to

general results about metal clusters theory [132, 167, 168]. In a second part, we shall

study the dynamics of collective electron modes (surface plasmons) excited with

laser pulses in the visible range. To drive the plasmon mode far into the nonlinear

regime, we will namely use chirped pulses with slowly varying frequency. This is

based on the process of autoresonance, which is a theory applicable to any oscillat-

ing systems. The purpose is to use a time dependent driving frequency to lock the

instantaneous oscillator frequency to the instantaneous excitation frequency. Then

on is able to strongly excite the system without using a strong external driving

force. Autoresonant effects were observed in many different physical fields, for

instance in atomic physics [169, 170], fluid dynamics [171], plasmas [172], nonlin-

ear waves [173, 174] and planetary dynamics [175, 176]. Autoresonant excitations

has been also successfully applied on several systems, such as charged antiparti-

cles [177], the quantum pendulum [178], semiconductor quantum dots [179] and

electron-positron clusters [48]. This method will allow us to excite the plasmon

modes far into the nonlinear regime, leading to the emission of electromagnetic ra-

diation with a power spectrum rich in high-order harmonics.

5.2.1 Application of the Variational approach

We consider spherical metal clusters composed of N ions and of N electrons (ions

are assumed singly ionized). Typically N shall be on the order of the hundred of

atoms. We describe the clusters in the Jellium approximation, i.e. we consider that

ions are fixed and homogeneously distributed. Therefore we have

ni =

{
n0, r < R

0, r > R
, (5.10)
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where the ions density in the cluster is given by n0 = N/
(
4
3
πR3

)
. The parameter R

represents the radius of such clusters which is related to the number of ions and to

the Wigner-Seitz radius rs by R = rsN
1/3. The ions are supposed to be fixed during

the electron motion. This assumption is justified by the fact that there is a time scale

separation between the ions and the electrons motion, which is given by the plasma

frequency ωp (1.5). Indeed considering a Gold cluster with a density of 1028 atoms

per cubic meter, we obtain a typical time on the order of 1 femtosecond for electrons

and 0.3 picosecond for ions. Therefore electrons move a hundred times faster than

ions.

The model we shall use is the based on the quantum hydrodynamic equations (5.1)-

(5.3) except that the electrons are not confined by a confinement potential Vconf(r, t)

but by the ionic background (5.10). Therefore the quantum hydrodynamic model

writes:

∂n

∂t
+∇· (nu) = 0, (5.11)

∂u

∂t
+ u ·∇u = ∇VH −∇Vx −

∇P

n
+

1

2
∇

(
∇2

√
n√

n

)
, (5.12)

∇
2VH = 4π (n− ni) , (5.13)

where Vx and P are respectively the exchange potential (5.5) and the pressure term

(5.4). The QHD model (5.11)-(5.13) can be can be derived from the following La-

grangian density (5.6)

LD = n

[
∂S

∂t
+

(∇S)2

2

]
+

(∇n)2

8n
+

3

10

(
3π2
)2/3

n5/3

− 3

4π

(
3π2
)1/3

n4/3 − β
(∇n)2

n4/3
− (∇VH)

2

8π
(ni − n)VH.

(5.14)

Our purpose now is to derive, using the variational approach described in Sec. 5.1, a

set of evolution equations for a small number of macroscopic quantities that charac-

terize the electron density profiles. In metal clusters the density of electrons presents

two important characteristics. The first is a decay of the electron density near the

border of the cluster, it is a classical effect known as the spill-out. The second are os-

cillations of the electron density in the center of the cluster. The latter have a purely

quantum origin and can be interpreted as Friedrich oscillations due to screening ef-

fects [180]. Keeping in mind that our hydrodynamic model is semi-classic, we will

just include the spill-out effect in our model. Therefore we assume that the electron

density has the following shape :

n (r, t) =
A

1 + exp

[(
s(r,t)
σ(t)

)3
−
(

R
σ0

)3] , (5.15)
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where A is chosen in order to normalize the density

A =
3N

4πσ3

[
ln

(
1 + exp

(
R

σ0

)3
)]−1

(5.16)

and s is a displaced radial coordinate s (r, t) =
√

x2 + y2 + (z − d(t))2. We intro-

duced two macroscopic dynamical variables in the density profile, namely the cen-

ter of mass of the electron gas called d(t) and the thickness of the spill-out effect

called σ(t). The first represents a dipole motion of the electron gas along the ion

bulk. The second represents a breathing motion because it corresponds to oscilla-

tions of the electron gas size through the spill-out effect. We introduced the variable

d to allow the electron gas to oscillate in the z direction in order to describe collective

electron oscillations (surface plasmons). The restriction along one axis is permitted

because the system is isotropic. The equilibrium case corresponds to d = 0 and

 !   !"#  !#  !$# %!  %!"# %!# 

 ! 

 !"

 !&

 !'

 !(

%! 

 
!
"
#
$
%
&
'
(
'
"
)
"

*

 !"

#$%&'

#

%

!"(#)*+,

#

%

!"#(#)*,-

#

%

!"#(#)*-.

FIGURE 5.1: In this figure, we plot different electron densities in the
case of a Gold clusters with 200 ions, the corresponding radius is R =
17.60 a.u. (0.93 nm). The black curve and the color curves correspond,
respectively, to the ions (5.10) and the electrons (5.15) densities. The
latter are given in the equilibrium case, i.e. for σ = σ0 and d = 0, for

different values of σ0.

σ = σ0. In Fig. 5.1, we sketched the electron and the ion equilibrium densities for

different values of the parameter σ0. Obviously for a given cluster, there is only one

possible value of σ0, we will see later how to determine it.

Of course, such an ansatz is not exact and may even differ significantly for small

nano-particles from the electron density obtained, for instance, from DFT calcula-

tions, see Ref. [180]. Nevertheless, we shall have access to the electron dynamics

thanks to the variables d(t) and σ(t).
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To derive the equation of motion, we have to find the two other fields θ and VH as a

function of the dynamical variables d(t) and σ(t). Finding θ consist to search the av-

erage velocity of the electron gas u which is solution of the continuity equation. The

Hartree potential corresponds to the solution of the Poisson equation, so it is fully

determined by the two densities n and ni and by the boundary conditions. One

of the great advantages of the expression (5.15) is that we are able to find a simple

expression for such quantities. Indeed, the continuity equation is solved with

u =
σ̇

σ
(xx̂+ yŷ) +

[
σ̇

σ
(z − d) + ḋ

]
ẑ, (5.17)

which gives

θ =
σ̇

2σ

[
x2 + y2 + (z − d)2

]
+ ḋ (z − d) . (5.18)

The Hartree potential is more complicated to find because we have to solve a Laplace

equation. However, in our case we have just to find the gradient of VH. Indeed the

Lagrangian part containing the Hartree potential can be rewritten, using the Poisson

equation, as

− (∇VH)
2

8π
+ (ni − n)VH =

(∇VH)
2

8π
− ∇.(VH∇VH)

4π
. (5.19)

The last surface term will be irrelevant at least for decaying boundary conditions. So

we need just to know ∇VH, which can be easily found using the following decom-

position VH = Vi + Ve, where Vi and Ve are, respectively, the contribution due to the

ions (∇2Vi = −4πni) and the electrons (∇2Ve = 4πn). They can be solved separately,

using the spherical coordinates one obtains :

∂Vi(r)

∂r
=





−N

r3c
r, r ≤ rc

−N

r2
, r > rc

, (5.20)

and

s2
∂Ve(s, t)

∂s
=

N

ln(1 + 1/a)

[
s3

σ3
− ln

[
1 + a exp(s3/σ3)

]
+ ln(1 + a)

]
, (5.21)

where we introduce the small parameter a = exp (−r3c/σ
3
0). The last equation is

physically relevant for s → 0 and for s → ∞.

The next step is to integrate this Lagrangian density with respect to space in order

to obtain the Lagrangian function L, see Eq. (5.22). In general it is a straightforward

problem to integrate the Lagrangian density. However here many expressions can

not be integrated easily and have to be evaluated numerically. The most difficult

problem comes from the cross term
∫
∇Ve.∇Vidr, which apparently can only be
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found in terms of a power series on the variables d/R. So the Lagrangian (5.22) will

be not exact but it will be calculated up to O(d5/R5). Skipping the details, which are

given in appendix C, the result is

L =
−1

N

∫
LDdr =

M(a)σ̇2

2
− U(σ) +

ḋ2

2
− Ω2

d(σ)d
2

2
+K(σ)d4, (5.22)

where the fictitious mass

M(a) = −Γ(5/3)Li5/3(−1/a)

ln(1 + 1/a)
, (5.23)

is given in terms of a Gamma function Γ(5/3) ≃ 0.90 and a Polylogarithm function

Li5/3(−1/a). The other terms in equation (5.22) are the pseudo-potential

U(σ) =
fB(a)

σ2
+

N2/3fF (a)

σ2
− N1/3fX(a)

σ
− βfX′(a)

N1/3σ
+

Nfee(a)

σ
− Nfei(σ)

rc
(5.24)

and the functions

Ω2
d(σ) =

N

r3c ln(1 + 1/a)

[
r3c
σ3

+ ln(1 + a)− ln
[
1 + a exp(r3c/σ

3)
]]

, (5.25)

K(σ) =
9Nrca

40 ln(1 + 1/a)σ6

exp(r3c/σ
3)

[1 + a exp(r3c/σ
3)]2

, (5.26)

which are both positive definite. The quantities fB, fF , fX , fX′ , fee and fei, present
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FIGURE 5.2: Plot of the pseudo-potential U(σ) (5.24) for different nano-
particle sizes.
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in the pseudo-potential (5.24), are given explicitly in appendix C by (C.16), (C.18),

(C.20), (C.22), (C.25) and (C.28). They are related respectively to the Bohm potential,

Fermi pressure, exchange energy (LDA), gradient correction to the exchange energy

(GGA), electron-electron interactions and the zero order electron-ion interactions,

i.e for d = 0. All these functions are positive, as well as the fictitious mass M(a),

in accordance with the role played by the Bohm, Fermi and electron-electron terms

which are repulsive, and by the exchange energy and the electron-ion terms which

are attractive. The quantity Ω2
d(σ) corresponds to the second order term in the devel-

opment of the electron-ion interacting energy and K(σ) to the fourth order. The first

and the third terms in the Lagrangian (5.22) correspond to kinetic energies, while the

second and the two last terms correspond to potential terms. The exact Lagrangian

corresponding to (5.22) should include an infinite power series of the dynamical

variable d. Only even terms must be present because the problem is symmetric ac-

cording to the x, y plane. In (5.22) we only have the three first terms, we shall see

that it is sufficient to describe non linear effects.

Using the Euler-Lagrange equation on (5.22), we obtain the following equations of

motion :

σ̈ =
1

M(a)

{
− dU(σ)

dσ
+

3Nd2

2σ4 ln(1 + 1/a)

1

1 + a exp(r3c/σ
3)

− 27Nrca exp(r
3
c/σ

3)d4

40 ln(1 + 1/a)σ10

× [1− a exp(r3c/σ
3)] r3c + 2 [1 + a exp(r3c/σ

3)] σ3

[1 + a exp(r3c/σ
3)]3

}
, (5.27)

d̈ = −Ω2
d(σ)d+ 4K(σ)d3. (5.28)

We end up with a set of two differential equations which are coupled to each other.

As expected they describe two modes of oscillations, the dipole mode which is gov-

erned by (5.28) and related to the variable d. And the breather mode which is gov-

erned by (5.27) and related to σ. These two modes of oscillation were also found in

Ref. [52].

The approximation made on the Lagrangian (5.22) has an impact only on the evolu-

tion equation for d. Therefore the evolution equation for σ is valid for all values of

d and σ. Normally the equation governing the dipole motion should be composed

of an infinite number of odd terms of the variable d. However we shall see in the

Sec. 5.2.3 that it is sufficient to describe large dipole oscillations. The reason why we

chose to developed the Lagrangian up to O(d5/r5c ) appears clearly here, it is to have

at least a non linear contribution for the dipole motion. Solutions of these differ-

ential equations are easily accessible numerically using for instance a Runge-Kutta

algorithm.

In summary, we have reduced the formidable problem of the quantum electron dy-

namics in a metallic nano-particle to a simple set of two coupled differential equa-

tions, which can be easily solved even for large systems containing many electrons,

where DFT methods are too costly. No assumptions of linearity were made so far,
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so that Eqs. (5.27)-(5.28) can be used to study the nonlinear response (as long as

d is not too large). Further, compared to simple “rigid sphere models” [181], our

approach incorporates many more effects, including quantum nonlocality, spill-out,

exchange, and (as shown later) correlations [182].

5.2.2 Steady state and linear response

N r0 (a.u.) σ0 (a.u.)
Ωd(σ0)
(a.u.)

Ωb(σ0)
(a.u.)

50 11.09 6.24 0.1793 0.2988

100 13.97 7.21 0.1821 0.3059

150 15.99 7.86 0.1835 0.3093

200 17.60 8.36 0.1843 0.3114

250 18.96 8.77 0.1848 0.3129

300 20.15 9.12 0.1852 0.3141

350 21.21 9.43 0.1856 0.3150

400 22.18 9.70 0.1859 0.3158

450 23.07 9.95 0.1861 0.3164

TABLE 5.1: The values calculated here correspond to Gold clusters. We
give the equilibrium values of the dynamical variable σ for different

clusters size and the associated resonant frequencies.

In order to validate the above model, we first present an analysis of the ground

state and linear response of the system, for which well-established results, both the-

oretical and experimental, already exist. The ground state of the system is obtained

by setting the time derivatives equal to zero in Eqs. (5.27)-(5.28). Equation (5.28) is

satisfied automatically for d = 0 (i.e., the center of mass of the ions and the electrons

should coincide). Setting d = 0 in Eq. (5.27), the stable equilibrium is the value σ0

that minimizes the pseudopotential U(σ), i.e. U ′(σ0) = 0 and U ′′(σ0) > 0. In this case

the probelm is a bit more complicated because the pseudo-potential U depends itself

on the equilibrium value σ0. Therefore, an iterative process can be applied to find

σ0, starting from a trial value of σ0. Results for Gold clusters are given in Tab.5.1.

We plot also the pseudo-potential as a function of σ for different clusters size in Fig.

5.2. As expected they have a minimum in σ = σ0

In the linear response regime, one can identify two electronic modes, corresponding

to oscillations of σ(t) (breathing mode) and oscillations of d(t) (dipole, or surface

plasmon, mode). We first consider the breathing mode. Setting d = 0 in Eq. (5.27)
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and expanding U(σ) around σ0 up to first order, we obtain σ̈ =≃ 1
M(a)

d2U
dσ2 (σ0) (σ − σ0).

The linear breathing frequency is therefore

Ωb(σ0) =

[
1

M(a)

d2U

dσ2
(σ0)

]1/2
. (5.29)

which can be easily evaluated numerically. For the dipole mode, assuming that

σ = σ0 and d ≪ R, Eq. (5.28) yields immediately the linear dipole frequency

Ωd(σ0) =

√
N

r3c ln(1 + 1/a)

[
r30
σ3
0

+ ln(1 + a)

]
. (5.30)

For large nano-particles, the latter tends to the bulk Mie frequency [132,183] : ωMie =
ωp√
3

(where ωp is the plasmon frequency (1.5)), as can be checked directly by taking

the limit R/σ → ∞.

In general, both the dipole and breather frequencies should depend on the size of

the nano-particle in the following fashion [167, 168, 184]:

Ωd,b(N) = Ω∞
(
1− kd,bN

−1/3
)
, (5.31)

where kd,b are positive constants, and Ω∞ is equal to ωMie for the dipole mode and

to ωp for the breathing mode. Our model reproduces very well these scaling, as

can be seen from Fig5.3. The extrapolation at N → ∞ gives the correct Mie or

plasmon frequency for the bulk. As it was mentioned above electron correlations
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FIGURE 5.3: Linear dipole (a) and breathing (b) frequencies for gold
nano-particles as a function of N−1/3. Blue circles and red squares
represent respectively the results with and without correlations. The

straight lines are linear fits.
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can be introduced through an appropriate functional of the density. Here, we use

the functional proposed by Brey et al. [185], which yields the following correlation

potential: VC = −γ ln
[
1 + δn1/3

]
, with γ = 0.03349 and δ = 18.376. This potential

can be included in our Lagrangian formalism (details are given in appendix C). For

all the cases we studied, the effect of the correlations was almost negligible, as can

be seen from Fig. 5.3. Indeed, a quick estimate shows that the ratio between the

exchange (LDA) and the correlation potentials is very small, VC/VX,LDA ≈ 0.084.

This is also in agreement with early results obtained with DFT and Hartree-Fock

methods [186].

Now, we propose to do some numerical simulations in the linear regime in order to

verify that we recover the corresponding frequencies for the dipole mode and the

breather mode. We start with a configuration close to the equilibrium case, i.e. d ≃ 0

and σ ≃ σ0, and we leave the system oscillating. We observe periodic oscillations for

both modes, so we plot theirs frequencies spectrum in Fig.5.4. We find a intensity

peak at 0.1841 a.u. for the dipole mode and a intensity peak at 0.3116 a.u. for the

breather mode. This is very close to what was predicted in Tab.5.1 and thus validates

our numerical simulations.
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FIGURE 5.4: We plot the Fourier transform of the dipole (a) and
breathing (b) modes obtained by numerical simulations on Gold nano-
particles with N = 200. The electron density was exited by a small
space shift of the electronic center of mass in order to stay in the linear

regime.

5.2.3 Nonlinear response and autoresonant excitation

In this section we will present the autoresonance phenomena [66], we will see how

it allows us to create large amplitude oscillations with a weak driving force. In
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FIGURE 5.5: Numerical simulations done on Gold nano-particles with
N = 200. The electrons are exited with a sinusoidal electric field (5.34)
at the dipole frequency and with an excitation strength ξ =. In Fig. (a),
we plot the time evolution of the breathing mode (σ(t)) and in Fig. (b)

the time evolution of the dipole mode d(t).

our case the driving force is a laser field, which create an oscillating electric field

in the z direction : E = Ezuz. Large amplitudes means that the electron gas will

explore the nonlinear regime. However the equation for the dipole motion (5.28) is

not necessarily valid in the nonlinear regime. The reason is that we developed the

Lagrangian in terms of a power series on the variable d/R (up to the order five).

Therefore we must first discuss the limits of this approximation. More precisely the

equation of the dipole motion (5.28) can be rewritten as

d̈ = −∂V (d, σ)

∂d
, (5.32)

where V (d, σ) is the potential in which evolves the center of mass of the electron gas

V (d, σ) =
Ω2

d(σ)

2
d2 −K(σ)d4. (5.33)

Since K(σ) is always positive, this potential is attractive for values of d smaller than

a certain critical length dc, then it becomes repulsive. The latter behaviour is not a

physical behaviour because fore large values of d the potential should behave like

an attractive Colombian potential. Therefore we can estimate that our approxima-

tion is correct until the potential remains attractive, i.e. d ≪ dc. The critical length

cannot be determined in advance because it depends on the values of σ(t) and thus



5.2. High harmonic generation in Gold nano-particles 147

changes in time. A mathematical analysis of the potential (5.33) shows us this criti-

cal length is at minimum equal to 65% of the cluster’s size. Moreover this result does

not change a lot with the number of particles. Therefore the model is considered as

valid only if the center of mass of the electron gas is displaced on lengths below 65%

of R, i.e. d/R ≪ 0.65. In the simulations, the fact that σ oscillates a lot allows us to

excite the electron gas on lengths close to 80% of the cluster size. This is sufficient to

study the nonlinear regime.

In order to create large oscillations, we have to excite the system at the its resonant

frequencies. Therefore to create dipole oscillations we shall apply a sinusoidal elec-

tric field Ez at the dipole frequency

Ez = ξ cos (Ωd(σ0)t) , (5.34)

where Ωd(σ0) is the frequency of the laser and ξ its amplitude.

The action of the laser field can be incorporated easily in the equation of motion.

The interacting energy between the laser and the electron gas is equal to
∫
nV dr,

where V is the electric potential which corresponds to the electric field (5.34), thus

V = −zEz. Then, the new Lagrangian is obtained by adding this interacting energy

to the previous Lagrangian

L = Lold −
1

N

∫
−nzEzdz = Lold + dEz, (5.35)

where Lold is the previous Lagrangian (5.22). This correction shall only change the

equation of motion for d, we obtain

d̈+ Ω2
d(σ)d = 4K(σ)d3 − Ez. (5.36)

Nonlinear simulations of the dipole and the breathing motions are showed in Fig.5.5.

As expected the dipole oscillations grow rapidly and then decrease after some times.

The physical reason is that, when the dipole frequency of the electron gas approaches

the resonant frequency then the amplitudes of the oscillations become more and

more important. The system thus enters in the nonlinear regime where the resonant

frequencies become dependent of the oscillation’s amplitudes. The consequence is

that the instantaneous frequency of the system goes out of phase with its drive and

we are not able to excite the system any more. For the breathing oscillations the

same kind of physics happens. Consequently it seems impossible, with a simple

sinusoidal excitation of the type (5.34), to create very large dipole oscillations with-

out using a strong driving force. However we will see that it is possible using an

autoresonant excitation.

The principle of an autoresonant excitation is to reduce slowly the frequency of the

driving force such that the frequency of the system stays always in phase with its

drive, see Ref. [66]. The variation of the frequency is supposed to be linear in time
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FIGURE 5.6: . Autoresonant excitation of a gold nano-particle with N =
200, for two values of the laser intensity, I0 = 4.5× 1010W/cm2 (below
threshold, red curves) and I0 = 5.4 × 1010W/cm2 (above threshold,
blue curves). The top panels show the time evolution of the dipole d(t)
(a) below threshold and (b) above threshold. (c) Laser frequency (red
straight line) and instantaneous dipole frequency of the electron gas for
the below threshold (red) and above threshold (blue) cases. (d) Energy

absorbed by the electron gas, for both cases.

with a rate α < 04. The linearity dependence of the frequency is assumed because,

as we will see below, the phase locking process should be done in an adiabatic way.

The autoresonant excitation can be thus written as

Ez = ξ cos

[
Ωd(σ0) (t− t0) +

1

2
α (t− t0)

2

]
, (5.37)

where the time dependent frequency is

ω(t) = Ωd(σ0) + α (t− t0) . (5.38)

We introduce the parameter t0 such that at the time t = t0 the instantaneous fre-

quency of the laser field is equal to the resonant frequency of the dipole mode. This

process is called autoresonant because, at any time, the nonlinear instantaneous fre-

quency of the system should matches the frequency of its drive. The two fundamen-

tal parameters are the strength of the driving force ξ and the rate of variation of the

laser frequency. α. Both can not be chosen arbitrarily, they have to satisfy a resonant

condition. For α ≪ Ω2
d and ξ above a certain threshold ξth, the instantaneous oscil-

lator frequency becomes “locked” to the instantaneous excitation frequency, so that

4In principle the frequency chirp can also be positive, it depends on the local form of the confine-
ment potential



5.2. High harmonic generation in Gold nano-particles 149

the resonance condition is always satisfied. In that case, the amplitude of the oscil-

lations grows indefinitely and without saturation, until of course some other effect

kicks in. In Ref. [66], the authors found that in the case of a duffing equation, there

is a critical threshold proportional to α3/4 : ξc ∼ |α|3/4 below which autoresonance

no longer works. Therefore the amplitude can be arbitrarily small provided that the

external frequency varies slowly enough. It is also mentioned that this relation stays

valid for other type of systems which are not governed by a duffing equation, it thus

seems to be a universal property of autoresonance processes.

In Fig. 5.6, we display the results of an autoresonant excitation of the electron

gas, for two realistic (but still very modest) [187] values of the laser intensity I0 =
1
2
cε0|E0|2 that are either below or above the autoresonant threshold. For an intensity

I0 = 4.5 × 1010W/cm2 (below threshold, Fig. 5.6a), the dipole oscillations grow ini-

tially and then saturate at a rather low level. Figure 5.6c shows the instantaneous

laser frequency and the dipole frequency of the electron gas. The instantaneous

frequency of the dipole motion is determined by using an Hilbert transform [188].

The two frequencies stay close together initially, but then diverge for the below-

threshold case. In contrast, when I0 = 5.7 × 1010W/cm2 (just above threshold), the

amplitude of the dipole oscillations increases virtually without limits, reaching 80%

of the size of the nano-particle (Fig. 5.6b). Thus, in practice, all the electrons have

been ejected from the nano-particle (although they are still accounted for by our dy-

namical model) on a time scale of the order of a few hundred femtoseconds. The

laser and the electron gas frequencies are locked in resonance during the entire du-

ration of the simulation (Fig. 5.6c, blue line), which is the hallmark of the autores-

onant excitation. This leads to strongly enhanced absorption of the laser energy by

the nano-particle, as is evident from the plot of the total absorbed energy in Fig. 5.6d.

It must be noted that, since we expanded the Lagrangian in d/R, the force act-

ing on the dipole in Eq. (5.28) becomes repulsive for d exceeding a certain value

dmax (which depends on σ), thus making the model invalid for d > dmax.This value

reaches its minimum for σ ≈ σ0, where dmax ≃ 0.65R. We notice also that the system

is driven far from its equilibrium state in a ultra shirt time scale, on the order of of

a few picoseconds (0.3 ps). Here we reach an other limit of our model which is the

Born-Oppenheimer approximation, i.e. that the ions are friezed during the electron

motion. Indeed the ionic time scale is close to 0.3 ps. Even with these limitations,

our simulations constitute a clear proof of principle that strongly nonlinear plasmon

modes can be excited using an autoresonant laser pulse of relatively low intensity.

We have also done simulations to verify the threshold power law (ξc ∼ |α|3/4). We

first fix the frequency chirp α to a given value and then we wary the laser intensity

from until reaching the threshold value. Results are given in Fig.5.7, we correctly

found that ξ scales as α3/4. Again this is a hallmark of an autoresonant process.

Here the simulation were done over two orders of magnitude of the parameter α.

We can not check for higher values of α because the corresponding critical electric

field is too big, so the system does not remain confined in the attractive part of the
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FIGURE 5.7: Critical threshold as a function of the frequency chirp
(black square). The simulations were done on gold clusters with two

hundred ions (N = 200). The red line is a linear fit.

potential before autoresonance occurs.

It is also interesting to compute the total power radiated by the electron gas, for

cases above and below the critical threshold. Far from the nano-particle, the elec-

tron gas can be viewed as an electric dipole of charge −Ne and displacement d(t)

oscillating along the z axis. In this case we can apply the Larmor formula [189] for

the total radiated power :

P =
e2

6πǫ0c3
d̈(t). (5.39)

Below threshold, the total power spectrum P (ω) is localized around the surface plas-

mon frequency (Fig. 5.8a). In contrast, the spectrum is rich in high-order harmonics

in the above-threshold regime (Fig. 5.8b), for which the electron gas explores the

nonlinear part of the confining potential [190]. Such difference in the observed spec-

trum could be used as an experimental signature to assess the effectiveness of the

autoresonant excitation. High-harmonic generation is also a crucial issue for the

production and shaping of attosecond laser pulses [191]. We showed that by irradi-

ating a metallic nano-particle with an autoresonant chirped laser pulse, it is possi-

ble to drive the collective electron modes (surface plasmons) far into the nonlinear

regime, leading to enhanced energy absorption and complete ionization of the nano-

particle on a time scale of the order of 100 fs. Thanks to the autoresonant technique,

the required laser intensity is rather modest (∼ 1010 W/cm2). Such enhanced ab-

sorbtion may be used, for instance, to improve the efficiency of nanoparticle-based

radiotherapy [4].

The autoresonant mechanism is extremely flexible, since it requires no feedback as in
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FIGURE 5.8: Frequency spectrum of the total radiated power (5.39) in
a gold nano-particle with N = 200, for two cases, below the autores-
onance threshold (a) and above the threshold (b). We used the same

laser parameters as in Fig. 5.6.

usual control theory. Further, the laser does not need to be perfectly matched to the

linear frequency (the only requirement is that the linear frequency be crossed dur-

ing the excitation). This feature means that a whole assembly of nano-particles [192]

could be excited autoresonantly, even if the they have different sizes and thus dif-

ferent plasmon resonances.

5.3 Non-linear electronic dynamics in a non-parabolic

and anisotropic well

In the previous section, we study the nonlinear dynamics of an electron gas con-

fined in an isotropic well (created by spherical nano-particles). We have seen that

such systems can be used to generate high harmonics. This section deals with the

nonlinear dynamics of a confined electron gas in a non-parabolic and anisotropic

well.

Current technology allows the manipulation and control of the electron dynam-

ics in small devices of nanometric size, such as semiconductor quantum dots and

quantum wells. These devices have attracted considerable attention in the last few

decades, among other reasons because of their potential use for quantum comput-

ing [193]. When the confining potential is perfectly parabolic, the electron response

is dominated by the Kohn mode [194, 195], i.e., a rigid oscillation of the electron

density at the characteristic frequency of the parabolic well. For nonparabolic con-

finement the situation is much more complex. When the excitation is small (linear
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response), the Kohn mode may still be dominating. However, for larger excitation

energies, the electrons may explore the anharmonic regions of the confining poten-

tial; in that case, the frequency spectrum of such nonlinear response becomes much

more intricate, with the appearance of second- and higher-order harmonics. In addi-

tion to the effect of the anharmonicity of the confinement, the interparticle Coulomb

interactions also contribute to the complexity of the spectral response.

At a mathematical level, this complexity arises because the center-of-mass and inter-

nal degrees of freedom can no longer be separated, as was shown in several studies

that use powerful exact methods to model the quantum electron dynamics [196,197].

However, exact approaches are necessarily limited to a very small number of elec-

trons. Although such few- or even single-electron systems can nowadays be real-

ized in practice, in most practical situations a charged gas containing a great many

electrons is involved. For quantum devices that contain with many electrons [27],

self-consistent effects – arising from the Coulomb interactions between all the elec-

trons – play a crucial role on the dynamics. Several theoretical and computational

studies have investigated the linear and nonlinear electron response.

Here we shall use quantum hydrodynamic models to study the nonlinear electron

dynamics. The QHD model can be further simplified by means of a variational

approach [48] that expresses the QHD equations in terms of a Lagrangian density.

With this method, it is possible to obtain a system of ordinary differential equations

for a set of macroscopic quantities, such as the center of mass and the size of the

electron gas. Although simple, the final equation still capture some of the most

prominent features of the electron dynamics: (i) the self-consistent Coulomb inter-

action, (ii) quantum effects to lowest order, (iii) exchange and correlation effects in

a DFT fashion, and (iv) the geometry of the confining well. Our main focus will be

on the effect of the anharmonicity and the anisotropy of the potential well on the

electron response.

5.3.1 Lagrangian of the system

The model we shall use is based on the quantum hydrodynamic equations (5.1)-(5.3)

where the electrons are confined in an external potential. The latter is given by the

sum of a harmonic and an anharmonic (but isotropic) part, whose relative strength

is measured by the parameter ζ ≥ 0:

Vconf =
1

2

(
k1x

2 + k2y
2 + k3z

2
)
+ ζ

(
x2 + y2 + z2

)2
. (5.40)

We chose this specific form for the anharmonic part of the confinement, so that it

can be captured by a single parameter. In this section we shall use, unless oth-

erwise specified, ”semiconductor” atomic units (au). These are formally identical

to standard au, but the electron mass me is replaced by the effective mass m∗ =

0.067me and the vacuum dielectric constant ǫ0 by its effective counterpart ǫ∗ = 13ǫ0.
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In this system of units, length are normalized to an effective Bohr radius a∗ =

4πǫ∗~2/(m∗e2) = 10.3 nm, energy to an effective Hartree energy E∗
H = ~

2/(m∗a∗2) =
10.8meV, frequency to ω∗ = E∗

H/~ = 16.5THz, and time to τ∗ = 1/ω∗ = 0.606 ps.

The elastic constants ki of the harmonic potential in Eq. (5.40) are normalized to

k∗ = 1.64× 10−5J/m2.

As before, we took the Pressure of a degenerated electron gas (5.4) and the exchange

potential defined in Eq. (5.5). Then the QHD equations (5.1)-(5.3) can be represented

by the following Lagrangian density:

LD =n

[
1

2

(
∇θ
)2
+

∂θ

∂t

]
+

1

8n

(
∇n
)2

+
3

10

(
3π2
)2/3

n5/3

(5.41)

− 3

4π

(
3π2
)1/3

n4/3 − β

(
∇n
)2

n4/3
+ nVconf − nVH − 1

8π

(
∇VH

)2
.

In order to derive the tractable system of equations, one needs to specify a particular

Ansatz for the electron density. Here, we take a Gaussian shape, which is a reason-

able choice, as it is it the exact ground state solution when one neglects Coulomb

interactions and the anharmonic part of the confinement. Thus we write:

n(r, t) =
A

σ1σ2σ3

exp
(
− 1

2
ρ2
)
, (5.42)

where the prefactor A = N/ (2π)3/2 is obtained by fixing the total number of particles

N =
∫
ndr, and ρ is a displaced position variable

ρ(x, y, z, t) =

√
1

σ2
1

(
x− d1

)2
+

1

σ2
2

(
y − d2

)2
+

1

σ2
3

(
z − d3

)2
. (5.43)

Here, di(t) and σi(t) are time-dependent variables that represent respectively the

center of mass and the size of the electron gas in each Cartesian direction.

We now need to express the other variables (θ and VH) in terms of the electron den-

sity. The mean velocity u can be obtained exactly from the continuity equation (5.1).

Its Cartesian components are:

ui =
σ̇i

σi

(
ri − di

)
+ ḋi, (5.44)

where ri = (x, y, z). From the above expression we obtain

θ =
3∑

i=1

(
σ̇i

2σi

(ri − di)
2 + ḋi(ri − di)

)
. (5.45)
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For the self-consistent Hartree potential, we take the expression

VH = −4π

√
π

2

A

(σ1σ2σ3)
1/3

erf
(
ρ/
√
2
)

ρ
, (5.46)

where erf is the error function. This expression constitutes an approximate solu-

tion of Poisson’s equation (5.3), which becomes exact in the radially symmetric case

(σ1 = σ2 = σ3). Substituting the above expression for n, θ, and VH into the La-

grangian density (5.41) and integrating over the entire space, we obtain the follow-

ing Lagrangian function:

L[di, σi, ḋi, σ̇i] =
1

N

∫
LDdr =

1

2

3∑

i=1

(
σ̇i

2 + ḋi
2
)
− U(di, σi), (5.47)

where a dot stands for differentiation with respect to time and U(di, σi) = Ud(di) +

Uσ(σi) + Udσ(di, σi). The different potential terms read as:

Ud =
1

2

3∑

i=1

kid
2
i , (5.48)

Uσ =
1

2

3∑

i=1

kiσ
2
i +

(
3∑

i=1

1

σ2
i

)(
1

8
+ α1N

[
σ1σ2σ3

]1/3− α2 β

[
σ1σ2σ3

N

]1/3)

+ α3

[
N

σ1σ2σ3

]2/3
− α4

[
N

σ1σ2σ3

]1/3
, (5.49)

Udσ =ζ

[
3∑

i=1

(
3σ4

i + 6d2iσ
2
i + d4i

)
+ 2

3∑

i>k=1

(
σ2
i + d2i

)(
σ2
k + d2k

)]
, (5.50)

and represent respectively the dipole motion (Ud), the breathing motion (Uσ), and

the coupling between the dipole and breathing dynamics (Udσ). Note that such cou-

pling disappears for purely harmonic confinement (ζ = 0). The various coefficient

appearing in Eqs. (5.48)-(5.50) are given by:

α1 =
2π

3
√
2

(
2π
)−3/2 ≈ 0.0940,

α2 =
9

4

√
3π ≈ 6.9075,

α3 =
9

50

√
3

5

(
3π2
)2/3 1

2π
≈ 0.2124,

α4 =
9
√
3

32π

(
3π2
)1/3

√
2π

≈ 0.1914.
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Finally, the equations of motion of the system can be obtained from the Euler-Lagrange

equations for L, and read as:

d̈i = −∂Ud

∂di
− ∂Udσ

∂di
, σ̈i = −∂Uσ

∂σi

− ∂Udσ

∂σi

. (5.51)

As expected, in the case of harmonic confinement (ζ = 0) the dipole and breathing

modes are completely decoupled (Kohn’s theorem [194, 195]).

We have thus reduced the complex problem of the dynamics of a multi-electron sys-

tem to a relatively simple system of six coupled differential equations for the center

of mass and size of the electron gas, which can be solved on a desktop computer

using standard methods (e.g., Runge-Kutta). As noted in the introduction, this ap-

proximate system still incorporates such important effects as Coulomb interactions,

quantum and exchange effects, as well as the effects of the geometry of the confining

trap (anharmonicity and anisotropy). Also, no assumptions of linearity were made,

so that Eqs. (5.51) can be used to study the nonlinear response of the electron gas.

5.3.2 Ground state and linear regime

Stationary states are obtained by setting d̈i = σ̈i = 0. For the dipole mode, the solu-

tions are clearly di = 0. For the breathing mode, the equations of motions are those

of a fictitious particle evolving in the external potential Uσ + Udσ. The equilibrium

solution σ(0) corresponds to the minimum of such potential and can be found by

setting its first derivative to zero:

∂ (Uσ + Udσ)

∂σi

∣∣∣∣
di=0

= kiσi −
2

σ3
i

[
1

8
+ γ2V

1/3

]
+ q

γ2
3

[
V 1/3

σi

]
− 2γ1

3

[
V −2/3

σi

]
+

γ3
3

[
V −1/3

σi

]

+ ζ

[
12σ3

i + 4σi

(∑

j 6=i

σ2
j

)]
= 0, (5.52)

where V (t) = σxσyσz is the electron gas volume, q =
∑

i σ
−2
i , and the following addi-

tional parameters were defined γ1 = α3N
2/3, γ2 = α1N −α2βN

−1/3 and γ3 = α4N
1/3.

In the most general case, it is not possible to obtain analytical solutions for the

ground state and one has to resort to numerical methods. However, an analyti-

cal solution can be found in the case of isotropic confinement (kx = ky = kz ≡ k)

and in the limit of a large number of particles (N ≫ 1). We found that the size

of the electron gas scales as a power of the number of electrons N . The exponent

varies according to whether the anharmonic part of the potential is included or not:

σ(0) =
(
α1

k
N
)1/3

for ζ = 0 (harmonic) and σ(0) =
(

α1

20J
N
)1/5

for ζ 6= 0 (anharmonic).

For harmonic confinement, the volume increases, as expected, as the total number

of particles. For the anharmonic case, the increase with N is slower, reflecting the

fact that the anharmonic term tends to further confine the electrons. Note that in this

case the exponent is always 1/5, irrespective of the value of ζ . These results were
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confirmed by numerical simulations of the isotropic case obtained without making

the large-N approximation (Fig. 5.9). Having found the ground state, it is possi-

FIGURE 5.9: Volume of the electron gas as a function of the number
of electrons N for an isotropic confinement and different values of the
anharmonicity parameter ζ. The solid lines are solutions of Eq. (5.52),
whereas the dashed lines are analytical solutions obtained in the N →

∞ limit.

ble to compute the linear response frequencies of the system. In the most general

case, there are six such frequencies, three of which correspond to the dipole (center-

of-mass) modes Ωd and three corresponding to the breathing modes Ωσ. These fre-

quencies are obtained by finding the eigenvalues of the Hessian matrix constructed

out of the second derivatives of the potential

H =

(
Hσ 0

0 Hd

)
, (5.53)

where

Hσ =
∂2U

∂σiσj di=0, σi=σ
(0)
i

,

Hd =
∂2U)

∂didj di=0, σi=σ
(0)
i

are symmetric (Hσ) and diagonal (Hd) 3× 3 matrices.
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FIGURE 5.10: Simulations of the two breathing modes in the linear
regime (small perturbations) for an isotropic case kx = ky = kz = 1
with N = 50 and ζ = 0.1. Top panel (a): degenerate mode at constant
volume V (t) and varying aspect ratio σx/σz ; Bottom panel (b): non-
degenerate mode at constant aspect ratio and oscillating volume. The
insets show the Fourier transforms of the oscillating quantities, which

peak at the expected degenerate (Ω
(d)
σ ) and non-degenerate (Ω

(nd)
σ ) fre-

quencies.

The case of purely harmonic confinement is trivial, therefore we concentrate on

the effect of anharmonicity. As an example, we focus on the case ζ = 0.05. The

numerically computed linear frequencies are given in Tab. 5.2 for different con-

finements (isotropic and anisotropic) and different numbers of particles. For an

isotropic case (k1 = k2 = k3 = 1) we obtain, as expected, a single value for the dipole

frequency that is three times degenerate, but two values for the breathing frequen-

cies, one of which is twice degenerate. These two breathing frequencies correspond

to two distinguished modes. In the non-degenerate mode the volume V (t) of the

electron gas oscillates, whereas the aspect ratios σi/σj remain constant. This mode

preserves the spherical symmetry of the equilibrium state and can be excited by per-

turbing the three σi in the same way. In contrast, for the twice-degenerate mode the

volume stays constant whereas the ratios σi/σj oscillate at the corresponding fre-

quency.

These modes are shown in Fig. 5.10. In the figure, we show numerical simulations

of the full system obtained by perturbing the stationary ground state of a very small
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N k1 k2 k3 Ωσ/ω
∗ Ωd/ω

∗

20
1 3 2 3.21 3.69 4.19 1.43 1.73 1.99

1 1 2 3.17 3.32 3.76 1.46 (×2) 1.75
1 1 1 3.14 3.34 (×2) 1.46 (×3)

50
1 3 2 3.63 4.15 4.64 1.60 2.10 1.87

1 1 2 3.55 3.88 4.25 1.63 (×2) 1.89

1 1 1 3.51 3.90 (×2) 1.65 (×3)

100
1 3 2 4.00 4.61 5.07 1.76 2.00 2.23

1 1 2 3.92 4.38 4.70 1.79 (×2) 2.03

1 1 1 3.89 4.40 (×2) 1.81 (×3)

TABLE 5.2: Dipole and breathing frequencies for various numbers of
particles N and different geometries of the confinement. The anhar-

monicity constant is ζ = 0.05 everywhere.

quantity: σi(t = 0) = σ
(0)
i + δi. In all cases, the dipole mode is not excited, i.e.,

di(t = 0) = 0. In the top panel, we only excited the twice-degenerate mode by

choosing the perturbations δi such that the volume is invariant: as expected, the

volume stays constant during the linear evolution, while the various σi oscillate. In

the bottom panel, we only excited the non-degenerate mode by taking δx = δy = δz:

here, the volume oscillate while the ratio σx(t)/σz(t) remain constant.

In the case of isotropic confinement (k1 = k2 = k3 ≡ k), analytical expressions for the

dipole frequency Ωd and for the degenerate (Ω
(d)
σ ) and non-degenerate (Ω

(nd)
σ ) breath-

ing frequencies can be found in the large N limit. For harmonic confinement (ζ = 0),

one obtains the following expressions (which are actually exact for all values of N ):

Ωd =
√
k, Ω(nd)

σ =
√
3k, Ω(d)

σ =
√
6k, (5.54)

whereas for anharmonic confinement (ζ > 0) in the large N limit:

Ωd =
[
(20ζ)3/2 α1N

]1/5
, Ω(nd)

σ = 5
[
(20ζ)3/2 α1N

]1/5
, Ω(d)

σ =
34

5

[
(20ζ)3/2 α1N

]1/5
.

(5.55)

Note that the presence of an anharmonic part in the confining potential introduces

a dependence on the number of particle in the dipole frequency.

In Fig. 5.11, we show the dependence of the dipole frequency with the geometry

of the trap (characterized by the parameter k⊥/kz, where k⊥ ≡ kx = ky) and the

number of electrons. Note that when k⊥/kz ≪ 1 the trap is “pancake shaped”, while

in the opposite case k⊥/kz ≫ 1 it is “cigar shaped”; k⊥/kz = 1 denotes an isotropic

trap. For isotropic confinement (Fig. 5.11, middle panel) the analytical expressions

match closely the numerical results for N → ∞. The anharmonicity introduces a
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dependence of the dipole frequency with the number of electrons, with higher fre-

quencies corresponding to larger N . The same trend is observed for a cigar-shaped

trap (left panel) and a pancake-shaped trap (right panel). In these anisotropic traps,

the longitudinal (parallel to z) and transverse (⊥) dipole frequencies of course do

not coincide, but both still grow with N .

FIGURE 5.11: Dipole frequencies Ωdz (solid lines) and Ωd⊥ (dashed
lines) as a function of the number of electrons N for two values of the
anharmonicity parameter, ζ = 0.1 (blue) and ζ = 1 (red). The left panel
(a) corresponds to a cigar-shaped trap with k⊥ > kz ; the middle panel
(b) to an isotropic trap (k⊥ > kz); and the right panel (c) to a pancake
shaped trap (k⊥ < kz). In the isotropic case (b) the longitudinal and
transverse dipoles coincide, and the dotted lines represent the analyti-

cal expressions of Eq. (5.55).

5.3.3 Nonlinear regime and harmonic generation

In the previous sections, we characterized the linear response of the electron dynam-

ics by studying the eigenvalues of the linearized system of equations. Physically, the

linear response corresponds to a weak excitation of the system and results in one or

a few lines in the frequency spectrum. In order to trigger high harmonic generation

(HHG), it is often necessary to probe the nonlinear response regime, typically by

increasing the excitation.
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HHG and Poincaré sections

In a first set of simulations in the nonlinear regime, we show that HHG is accom-

panied by some typical signatures of deterministic chaos in the dynamics. Here, we

use Poincaré sections as evidence of chaotic behavior. We also point out that this

type of study is feasible because our reduced mathematical model is a system of

ordinary differential equations, which can be analyzed with the usual methods of

classical Hamiltonian mechanics.

The method of Poincaré sections consists in choosing a two-dimensional cross-section

(i.e., a plane) of the entire phase space (which, in our case, is six-dimensional) and

recording the position on such plane each time that the representative point of the

system crosses it. If the system is chaotic, then there is no correlations between the

various points on the Poincaré section, and some finite 2D regions of the plane will

be covered uniformly. In contrast, if the system is regular, i.e. periodic, the repre-

sentative point of the system will pass through the same point after some time, and

the Poincaré section will consist of isolated points or 1D lines on the plane.

In our case, we choose the (dx, dy) plane for the Poincaré section. Such plane divides

the electron trap in two identical regions. In the forthcoming simulations we take

N = 50 electrons and an anisotropic trap characterized by k⊥ = 5 and kz = 1. We

perturb the stationary ground state by suddenly changing the velocity of the dipole

variable, i.e., by setting the initial conditions at t = 0: ḋx = −ḋy = di = δ, with the

perturbation amplitude δ varying between 0.01 and 3. The corresponding Poincaré

sections are shown in Fig. 5.12. For δ = 0.01 the system is clearly regular, as the

Poincaré sections is basically an ellipse (this is due to the choice of the initial condi-

tion). By increasing δ, the central phase-space region starts filling up, first partially

and in a regular way (Figs. 5.12)b-c) and then completely for δ = 3 (Figs. 5.12)d).

The homogeneous coverage of a finite phase-space area is a signature of chaotic be-

haviour.

It is interesting to check how the onset of chaos with increasing perturbation is

reflected in the quantity |d̈z(ω)|2, where d̈z(ω) is the Fourier transform of the sec-

ond derivative of the dipole coordinate dz(t). This quantity is related to the total

power radiated by an electric dipole of charge −Ne and displacement dz(t) oscillat-

ing along the z axis, given by the Larmor formula [189]: P (t) = e2/(6πǫ0c
3)|d̈(t)|2.

The dipole power spectrum is shown in Fig. 5.13 for the same cases as in Fig. 5.12.

As expected, the spectrum displays a single line at the dipole frequency when the

excitation is weak (δ = 0.01). Higher order harmonics start appearing at larger

values of δ, which are at the origin of the multiperiodic motion observed in the cor-

responding Poincaré sections. Finally, for δ = 3 the spectrum is nearly continuous,

in agreement with the chaotic dynamics observed in Fig. 5.12.

The same transition to chaos accompanied by HHG was observed for a case where

we keep the excitation constant (ḋx(0) = −ḋy(0) = di(0) = δ, with δ = 1) and in-

crease the anharmonicity parameter from ζ = 0 to ζ = 0.1 (Figs. 5.14-5.15). In
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FIGURE 5.12: Poincaré sections in the plane (dx, dy) for different values
of the initial excitation, ḋx = −ḋy = di = δ, with δ = 0.01 (a), 0.1 (b), 1
(c), and 3 (d). The simulations were performed for an anisotropic trap

with k⊥ = 5 and kz = 1, N = 50, and ζ = 0.01.

order to observe some chaotic dynamics, an anharmonic term in the confinement

is necessary – a purely harmonic oscillator is always integrable. A finite value of

ζ introduces some coupling between the dipole and the breathing motions, which

enlarges the available phase space and allows chaotic behavior. This chaotic be-

havior is displayed only when the system explores the nonparabolic regions of the

confining trap. This can be achieved by either increasing the initial excitation (Figs.

5.12-5.13) or increasing the anharmonicty of the trap (Figs. 5.14-5.15). Finally, we

note that a certain degree of anisotropy (k⊥ = 5kz in our case) was also required to

observed such irregular motion.

HHG and resonant excitation

So far, we used a simple excitation for our nonlinear system, namely an initial ve-

locity imparted on the dipole variables ḋi(t = 0). In reality, the electron dynamics is

usually triggered by electromagnetic (laser) pulses. We assume that the confined

electron gas xis excited via an oscillating electric field directed along the z axis,

E = Ez(t)ez. The effect of the laser can be included by adding a term Ezdz to the

lagrangian L. We consider three cases: (i) excitation at a nonresonant frequency, (ii)

excitation at a resonant frequency, and (iii) excitation with chirp (autoresonance).
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FIGURE 5.13: Power spectrum of the dipole P (ω) for different initial
excitations δ, for the same case as in Fig. 5.12.

Note that the dipole linear resonant frequency is in the Tera-Hertz domain.

The results are shown in Fig. 5.16. For the first two cases, the excitation has the form

Ez(t) = E0 cos(ω0t), where E0 is the electric field amplitude of the electromagnetic

wave. In all cases shown here, we took the same amplitude E0 = 0.01 au, corre-

sponding to E0 = 104 V/m in SI units. In the first case (green curves on the figure),

ω0 differs from the linear response frequency Ωdz . Being out of resonance, the sys-

tem stays close to the linear regime: the oscillation amplitude remains small (Fig.

5.16a), small amount of energy is absorbed by the electron gas (Fig. 5.16b), and the

power spectrum displays a single line at the dipole frequency (Fig. 5.16c). For reso-

nant excitation ω0 = Ωdz (black curves), the oscillation amplitude and the absorbed

energy initially increase, but then decrease again after some time. This is because

the effective force acting on the dipole is not harmonic and the resonant frequency

actually depends on the amplitude of the oscillations. When the amplitude grows

and the system reaches the nonlinear regime, the fixed external frequency does no

longer match the instantaneous resonant frequency (which differs from Ωdz in the

nonlinear regime). The resulting power spectrum displays two lines corresponding

to the linear frequency and the first harmonic.

Finally, we use an oscillating field with a chirped frequency: Ez(t) = E0 cos
(
ω0t+

α
2
t2
)
,

where α is the rate of variation of the laser frequency. This type of forcing is known
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FIGURE 5.14: Color online. Poincaré sections in the plane (dx, dy) for
different values of the anharmonicity parameter ζ = 0 (a), 0.001 (b),
0.01 (c), and 0.1 (d). The simulations were performed for an anisotropic

trap with k⊥ = 5 and kz = 1, N = 50, and initial excitation δ = 1.0.

as ‘autoresonance’ [66] and was applied in the past to many physical systems. Au-

toresonance occurs when a classical nonlinear oscillator is externally excited by an

oscillating field with slowly varying frequency. For |α| ≪ Ω2
d (adiabatic process)

and E0 above a certain threshold, the instantaneous oscillator frequency becomes

“locked” to the instantaneous excitation frequency, so that the resonance condition

is always satisfied. In that case, the amplitude of the oscillations grows indefinitely

and without saturation, until of course some other effect becomes dominant. Usu-

ally the threshold behaves as Eth
0 ∼ |α|3/4, so that the amplitude can be arbitrar-

ily small provided that the external frequency varies slowly enough [66]. In or-

der for autoresonance to work, the excitation frequency, which varies linearly in

time as ω(t) = ω0 + αt, must cross at some point the resonant dipole frequency

Ωdz = 20.07THz. Therefore, for this simulation we chose ω0 = 18.45THz and a chirp

rate α = 3.03THz/ns. The resonant frequency is crossed around t ≈ 0.55 ns, after

which the autoresonant process starts being effective, as can be seen in Fig. 5.16. It

is clear from Fig. 5.16 that the autoresonant excitation allows one to increase phe-

nomenally the amplitude of the dipole oscillations and consequently the absorbed

energy, which is roughly three times as large compared to the non chirped case. We

stress that the excitation amplitude is the same for all cases. The power spectrum
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FIGURE 5.15: Power spectrum of the dipole |dz(ω)|2 for different values
of the anharmonicity parameter ζ, for the same case as in Fig. 5.14.

(Fig. 5.16c) displays several peaks for higher order harmonics (up to the third har-

monic), with the first harmonic being roughly a factor of ten smaller that the linear

mode. We also note that these spectral lines are unusually broad. This is proba-

bly due to the chirped excitation, which sweeps several frequencies around each

harmonic. The important point is that, using a relatively weak excitation (which

could be made even weaker by reducing the chirp rate α), one can induce signif-

icant energy absorption by the electron gas, accompanied by HHG at remarkably

high levels.

Finally, in Fig. 5.17 we show the Poincaré sections for the three cases of nonreso-

nant, resonant, and chirped excitation. Note that the relevant section here is not the

(dx, dy) plane as before, because the dynamics now takes place essentially in the z

direction (due to the fact that the forcing is along z). Instead, the relevant phase-

space section is the plane (dz, ḋz), which is shown in Fig. 5.17. We note that the

phase-space portraits become increasingly complex going from the nonresonant (a)

to the chirped case (c). Nevertheless, even in the resonant and chirped excitation

regimes, some regularities remain compared to the previous Poincaré sections. This

is due to the fundamental difference between an autonomous system endowed with

an initial condition (Figs. 5.12-5.15)and a time-dependent driven system (Figs. 5.16-

5.17). The response of a driven system is generally dominated by the drive, which is

what we see in Fig. 5.16, where the amplitude of the response changes dramatically
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FIGURE 5.16: Laser excitation of the dipole response, for a trap with
parameters: k⊥ = 5, kz = 1, N = 50, ζ = 0.01. The amplitude of the
excitation is E = 104V/m. We show the dipole ampitude dz(t) (a), the
absorbed energy (b), and the power spectrum |d̈(ω)|2 (c), for three cases:
nonresonant excitation at constant frequency (green curves), resonant
excitation at constant frequency (black), and chirped excitation (red).

for the three cases. All in all, although the driven (resonant and chirped) systems

explore uniformly a large fraction of the phase space [see Figs. 5.17(b) and 5.17(c)],

they are less chaotic. This can also be seen from the difference between the power

spectra, for instance comparing Fig. 5.13(d) with Fig. 5.16(c)(red line). In the latter

case, although many harmonics are present, the spectrum is more regular than in

the former.

In this work, our aim was to explore the possibility of high harmonic generation us-

ing nanometric system containing many electrons, such as semiconductor quantum

dots and wells. With this purpose in mind, we constructed an effective model in

the form of a dynamical system made of six coupled differential equations for the

center of mass and the size of the electron gas. This effective model results from the

application of a variational method to the equations of quantum hydrodynamics.

The model was later applied to the dynamics of an electron gas in a nonparabolic

and anisotropic well. Two main results were obtained. First, we showed that har-

monic generation is accompanied by dynamical chaos in the equations of motion.

The onset of chaos was quantified by the appearance of ergodic regions in some

Poincaré sections. Second, we demonstrated that HHG can be efficiently achieved
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based

FIGURE 5.17: Poincaré sections in the (dz, ḋz) plane for the three cases
of Fig. 5.16: nonresonant (a), resonant (b) and chirped excitation (c).

by exciting the system with a chirped laser pulse. This process, known as classical

autoresonance, is capable of bringing the electrons into a strongly nonlinear regime,

leading to the generation of high harmonics. Crucially, the autoresonance technique

works well for relatively modest driving fields and does not require any fine tuning

of the laser pulse.

5.4 Conclusions and perspectives

In this chapter we have used a variational approach, based on a Lagrangian formula-

tion of quantum hydrodynamic equations, to model the nonlinear charge dynamics

in metallic nano-structures. We have seen that the variational approach consists to

restrict the solutions of the fluid equations by assuming a mathematical shape for

the electronic density that depends on time dependent parameters. The latter rep-

resent the different dynamical modes of the system that we want to study (dipole
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mode, breathing mode, etc.). This method has a great benefit, it provides a rapid ac-

cess to the nonlinear electron dynamics including quantum effects (Bohm potential).

The complicated many body quantum dynamics is embedded in a set of differential

equations, where each equation holds for a particular mode of the system. However

this method suffers from the following difficulties. First, we are generally limited to

study systems with a simple geometry (spherical symmetry) for which it is possible

to design a correct density shape. The latter can be inspired by ab-initio calculations

(DFT). Secondly, to obtain the full Lagrangian density of the system one has also to

specify a mathematical expression for the average velocity of the particles as well as

for the Hartree potential. It is not always possible to perform the maths exactly and

hence the variational approach cannot be used. In most of the case one has to work

with few numbers of modes in order to perform the calculations.

In this chapter, we applied the variational approach on two different systems. The

first systems are Gold nano-particles, we studied two well known oscillation modes

the dipole and the breathing modes. We first validated the variational approach

by comparing our results on the linear regime with the literature. Then we simu-

lated the nonlinear dipole and breathing dynamics induced by optical excitations.

To drive the plasmon mode far into the nonlinear regime we have used an autores-

onant excitation. The latter is a chirped pulse with a slowly varying frequency. We

have seen that under a specific condition, between the amplitude of the excitation

and the variation rate of the laser frequency, it is possible to lock the instantaneous

frequency of the system to the excitation frequency of the laser. Hence the system

is driven far from its equilibrium configuration. The main advantage of using the

autoresonance technique is that it works well for relatively modest driving fields

and does not require any feed back on the laser pulse. We have thus created a non-

linear oscillating electric dipole and we have seen that the power spectrum radiated

by this dipole is very rich in harmonics of the fundamental frequency (plasma fre-

quency).

The second system is an electron gas trapped in an anharmonic and anisotropic well.

In this study, we have seen that the electron dynamics becomes more and more com-

plex and eventually fully chaotic when we increase the anharmonic component of

the confining potential. This has been showed using the Poincaré sections. We have

also showed that the appearance of chaotic behaviour is accompanied by the pres-

ence of higher-order harmonics in the electronic dipolar response. We have finally

proved that using an autoresonant excitation the different harmonics as well as the

phase-space trajectories present a clear signature of the chirped excitation. For in-

stance the harmonics appearing in the spectrum are unusually broad.

The work done in this chapter is mainly a ”proof-of-concept” that the autoresonant

technique can be used to strongly excite a quantum electron gas and hence gen-

erate an electric field rich in high-order harmonics. The results obtained with our

variational approach should be confirmed with more accurate calculations such as

quantum hydrodynamic or TDDFT calculations. Moreover the studies performed
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in this chapter can be extended to the following case:

• Firstly, it should be interesting to apply the variational approach on a system

of two (or more) nano-particles. If they are far enough, the latter interact to-

gether with dipolar interactions. In this case, we shall obtain several sets of

differential equations (one set for one nano-particle) coupled together through

the dipolar interactions. Then, it shall be interesting to see the influence of this

long-range interaction on the high-order harmonic generation. In the oppo-

site case, where the two nano-particles are too close from each other, it is more

complicated to use the variational approach. Namely because we completely

lost the spherical symmetry of the system (even in the ground state). More-

over we have to find a density shape that allows overlaps of the two single

nano-particle densities.

• Secondly, one should study in more details the formation of the different har-

monics and namely the influence of the chirped excitation. The fact that the

electrons are continuously in phase with the excitation field should give rise

to a more coherent dynamics. For instance, it shall be interesting to see if we

can modulate the shape of the different harmonics that appear in the radiated

power spectrum, see Fig. 5.16.

• The variational approach should be also extended to the spin. In this case we

first have to find a Lagrangian density that is equivalent to the fluid models

constructed in Sec. 2.3. In Ref. [64,198], the authors used a Lagrangian formu-

lation of the Pauli equation. Those papers are a good starting point to think

about a Lagrangian formulation of the fluid equations including the spin-orbit

interaction. Such method should allows us to have access to the nonlinear

charge and spin dynamics provided that we used a designing shape of the

electron density and magnetization. Then it would be possible, using simple

numerical methods, to study the nonlinear magnetization dynamics in an sys-

tem of interacting electrons including self-consistent effects. We should also

be able to study the influence of the external excitation (laser pulse) and the

confinement potential on the spin dynamics.
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Chapter 6

General conclusions and perspectives

In the first part of the thesis, composed by the first four chapters, we developed new

phase-space models to study the spin and charge dynamics for an ensemble of inter-

acting electrons. Phase-space methods can be applied in nanophysics to model the

quantum or the classical dynamics of electrons confined in nano-structures. Spin-

less studies have been done in the past to study the electron dynamics in metallic

nano-structures [32,89,96] both with the Wigner and the Vlasov equations. Here we

addressed the situation, where the spin of the electrons cannot be neglected. We fo-

cused particularly on two spin effects, namely the Zeeman interaction and the spin-

orbit coupling which are of most importance in many areas of physics. For instance

in ultrafast spectroscopy the electron spin is strongly involved in the dynamics of

the system, as it interacts with the incident laser field and with the self-consistent

field generated by the electrons themselves. The methodology used to derive the

different models can be easily generalized to describe other relativistic effects such

as the Darwin term or the relativistic mass correction.

The first chapter is a general overview of different existing methods to treat

a quantum system of interacting spineless electrons. Starting from the N -body

Schrödinger equation, we have performed a mean field approximation to obtain the

Hartree equation. Then we moved into the phase-space representation of quantum

mechanics, the so-called Wigner representation. After having presented the Wigner

formulation of quantum mechanics, we developed a gauge independent Wigner

equation in order to describe magnetic interactions. Finally, we studied the semi-

classical limit (Vlasov equation) as well as the fluid limit of the Wigner equations.

In the second chapter, we derived a four-component Wigner equation to describe

the quantum dynamics of a system of spin-1/2 fermions including the Zeeman and

the spin-orbit interaction. These equations coupled with the appropriate Maxwell

equations form a self-consistent model to study the spin and the charge dynamics

within the framework of the mean-field approximation. Exchange and correlation

effects were added to our model, by means of some approximations, through an

electric potential and a magnetic field that depend on the local electron density and
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magnetization. Further, this model should not be limited to the linear response,

as nonlinear effects are often important, especially for large incident laser powers.

Then, from a semiclassical expansion at the order one in power of ~, we obtained a

four-component Vlasov equation. The orbital part of the motion is classical, i.e. the

particles follow classical phase-space trajectories, whereas the spin degrees of free-

dom are treated in a fully quantum fashion (two dimensional Hilbert space). From

the numerical point of view, the spin-Vlasov equations are more tractable than the

Wigner equations. Mainly because they are local in phase space in contrast to the

Wigner equations which are typically non local. They constitute a relatively good

approximation of the quantum version when the characteristic lengths are much

larger than the de Broglie wavelength. Finally, the corresponding hydrodynamic

equations were derived by taking velocity moments of the phase-space distribution

functions. The spin-orbit interaction introduce some considerable changes in the hy-

drodynamic equation, we have namely seen that the charge and the spin current are

modified in the presence of the spin-orbit coupling. As always the hydrodynamic

equations need to be closed on the basis of some physical hypothesis. Several set of

closed hydrodynamic equations with spin effects are proposed and can be used for

applications.

In the third chapter, we used the Fourier and Laplace transforms to study the

linear response of a spin polarized electron gas that is perturbed by a weak peri-

odic excitation. We derived the dielectric function of a spin polarized electron gas

with spin effects (Zeeman interaction and LSDA) and self-consistent effects (Hartree

and Ampère). Then, using Maxwell-Boltzmann distribution functions, we found the

plasma dispersion relation including spin effects. We have seen that the main spin

effects on the plasma frequency originates from the spin dependent exchange inter-

action (LSDA). However, at the usual electron density and temperature of metallic

nano-structures, these exchange effects are too weak to create appreciable changes

of the plasma frequency.

In the fourth chapter, we applied the semiclassical spin-Vlasov model to sim-

ulate the electron spin and charge dynamics in nickel thin films. Our model is

based on the distinction between localized and itinerant magnetism. In the case

of nickel, we assumed that the itinerant magnetism is carried by the 4s electrons

whereas the 3d electrons stay localized around the nucleus to form an ion spin. The

itinerant electrons are described with the spin-Vlasov equations whereas the ion

spins are modelled using a Landau-Lifshitz equation, see Eqs. (4.23). Both mag-

netic moments (itinerant and localized) are coupled together through an exchange

interaction of Heisenberg type characterized by a coupling constant K. Moreover,

the ion spins are interacting together with an exchange constant J . K and J are

the two main parameters of our model. The latter were determined to obtain the

experimental Curie temperature and the correct proportion of localized/itinerant
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magnetic moments at T = 0 K. Then, we used this model to perform numerical

simulations of the nonlinear charge and spin dynamics in nickel thin films. Sev-

eral studies on the spinless electron dynamics in thin metallic films were done in

previous works [38, 39, 144]. In our work, we take into account the Zeeman inter-

action and spin dependent exchange-correlation effects. Our main discovery was

that, with an electric excitation, we are able to create an oscillating spin current (or

an oscillating magnetic dipole) in addition to the usual electrical dipole. The electric

excitation was modelled with a femtosecond laser pulse but without considering

the magnetic field. While the electrical dipole oscillates at the plasma frequency,

the spin current oscillates at a ballistic frequency ωb = (2L/vF)
−1 which is inversely

proportional to the size of the film. For nickel films of size L = 50 LF, the ballistic

frequency ωb = 0.173 PHz is in the visible range. To our knowledge this is something

which was never before discussed in the literature. Moreover, we have seen that the

spin current is not subjected to the Landau damping as it is the case for the electric

dipole and thus has a much longer life time. We also proposed a physical expla-

nation for the creation of this oscillating spin current. It relies on three ingredients:

the finite size of the system, the self consistent electron-electron interactions and the

magnetic properties of the electron ground state.

In the second part of the thesis (chapter five) we have used a variational ap-

proach, based on a Lagrangian formulation of quantum hydrodynamic equations,

to model the nonlinear charge dynamics in metallic nano-structures. We have seen

that the variational approach consists to restrict the solutions of the fluid equations

by assuming a mathematical shape for the electron density that is a function of time

dependent parameters. The latter represent the different dynamical modes of the

system that we want to study (dipole mode, breathing mode, etc.). This method

has the advantage of providing a rapid access to the nonlinear electron dynamics

including quantum effects (Bohm potential). The complicated many body quan-

tum dynamics is embedded in a set of differential equations, where each equation

holds for a particular mode of the system. However this method suffers from the

following difficulties. First, we are generally limited to study systems with a simple

geometry (spherical symmetry) for which it is possible to design a correct density

shape. The latter can be inspired by ab-initio calculations (DFT). Secondly, to obtain

the full Lagrangian density of the system one has also to specify a mathematical ex-

pression for the average velocity of the particles as well as for the Hartree potential.

It is not always possible to perform the maths exactly and hence the variational ap-

proach cannot be used. In most cases one has to work with few numbers of modes

in order to perform the calculations.

We applied the variational approach to two different systems. The first systems are

Gold nano-particles, we studied two well known oscillation modes the dipole and

the breathing modes. We first validated the variational approach by comparing our
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results on the linear regime with the existing literature. Then we simulated the non-

linear dipole and breathing dynamics induced by optical excitations. To drive the

plasmon mode far into the nonlinear regime we have used an autoresonant excita-

tion. The latter is a chirped pulse with a slowly varying frequency. We have seen

that under a specific condition, between the amplitude of the excitation and the vari-

ation rate of the laser frequency, it is possible to lock the instantaneous frequency of

the system to the excitation frequency of the laser. Hence the system is driven far

from its equilibrium configuration. The main advantage of using the autoresonance

technique is that it works well for relatively modest driving fields and does not re-

quire any feed back on the laser pulse. We have thus created a nonlinear oscillating

electric dipole and we have seen that the power spectrum radiated by this dipole

is very rich in harmonics of the fundamental frequency (plasma frequency). The

second system is an electron gas trapped in an anharmonic and anisotropic well. In

this study, we have seen that the electron dynamics becomes more and more com-

plex and eventually fully chaotic when we increase the anharmonic component of

the confining potential. This has been showed using the Poincaré sections. We have

also showed that the appearance of chaotic behaviour is accompanied by the pres-

ence of higher-order harmonics in the electronic dipolar response. We have finally

proved that using an autoresonant excitation the different harmonics as well as the

phase-space trajectories present a clear signature of the chirped excitation. For in-

stance the harmonics appearing in the spectrum are unusually broad.

Currently the spin-Vlasov solver that we developed is only capable to simulate

the electron charge and spin dynamics in a reduced phase space (x, vx). Here x is the

direction of the applied electric field. Therefore, it is impossible to correctly describe

the interaction between a magnetic field (internal or external) and the electrons. In-

deed, a magnetic field applied in a given direction will necessarily create, according

to the Lorentz force, an electron orbital motion in the perpendicular plane. However,

the Zeeman interaction between a magnetic field and the electron spin is fully taken

into account by our spin-Vlasov solver. Thus, we are able to perform non-collinear

spin dynamics. It is also not possible to describe the spin-orbit interaction, since we

need the three components of the velocity. An interesting perspective would be to

extend our simulations to the entire velocity space, i.e. (x, vx, vy, vz). Then, it would

be possible to correctly describe the spin-orbit interaction in a dynamical fashion .

It would be particularly interesting to study the nonlinear magnetization dynamics

of a system of interacting electrons with spin effect (Zeeman and spin-orbit). This

would give us a better understanding of the physics contained in the spin-Vlasov

equations (2.54)-(2.55). In particular, how the self-consistent electric and magnetic

fields are able to enhance the spin-orbit interaction. The difficulties are mainly nu-

merical, as the 2 dimensional simulations (x, vx) already require long simulation

times, we have to parallelize our code. Otherwise it would be impossible to per-

form more than 2 dimensional simulations.
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Another solution could be to combine both kinetic and fluid models. For instance,

the dynamics in the (x, vx) phase space would be treated with kinetic models such

as the spin-Vlasov model (2.54)-(2.55). Whereas the dynamics in the (vx, vy) phase

space would be described with a set of fluid equations. Such methods were re-

cently used in plasma physics to model particle transport in a tokamak scrape-off

layer [163].

An other perspectives would be to perform numerical simulations with the fluid

models that we developed in the section 2.3. The main advantage of the fluid mod-

els is that they are less difficult to implement than the phase-space models. Indeed,

since the fluid models are obtained by integrating the Wigner/Vlasov equations

over the velocity space, the electron dynamics in nickel thin films would be a one

dimensional problem (in the x direction). However as the fluid models are always

approximations of the full phase-space models, it is not guaranteed that the solu-

tions obtained are correct. Moreover, we have seen that the phase-space models

conserve several physical quantities such as the mass, the total momentum, the total

energy and the total angular momentum. It is not guaranteed that the fluid equa-

tions have the same conservation laws.

The variational approach should also be extended to incorporate the spin de-

grees of freedom. In this case, we first have to find a Lagrangian density that is

equivalent to the fluid models constructed in Sec. 2.3. In Ref. [64, 198], the authors

used a Lagrangian formulation of the extended Pauli equation (with the spin-orbit

interaction). Those papers are a good starting point to think about a Lagrangian

formulation of the fluid equations including the spin-orbit interaction. Then it may

be possible to use a variational approach, such as in the chapter five, including spin

effects (Zeeman and spin-orbit). Such method should allows us to have access to

the nonlinear charge and spin dynamics provided that we used a designing shape

of the electron density and magnetization. Then it would be possible, using simple

numerical methods, to study the nonlinear magnetization dynamics in an system

of interacting electrons including self-consistent effects. We should also be able to

study the influence of the external excitation (laser pulse) and the confinement po-

tential on the spin dynamics.
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Appendix A

Derivation of the spin-Wigner

equations in the presence of

electromagnetic fields

The evolution equation of the density matrix in the case of an electron interacting

with an electromagnetic field reads as

i~
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
, with ρ̂ =

(
ρ̂↑↑ ρ̂↑↓

ρ̂↓↑ ρ̂↓↓

)
and Ĥ =

(
Ĥ↑↑ Ĥ↑↓

Ĥ↓↑ Ĥ↓↓

)
. (A.1)

In the forthcoming derivation, we shall include the Zeeman and the spin-orbit in-

teraction. The four components of the Hamiltonian are as follows

Ĥ↑↑ =
Π̂

2

2m
+ V (R̂) + µBBz(R̂) +

µB

4mc2

[
E(R̂)× Π̂− Π̂× E(R̂)

]
z
, (A.2)

Ĥ↑↓ =
µB

4mc2

{[
E(R̂)× Π̂− Π̂× E(R̂)

]
x
− i
[
E(R̂)× Π̂− Π̂× E(R̂)

]
y

}
, (A.3)

Ĥ↓↑ =
µB

4mc2

{[
E(R̂)× Π̂− Π̂× E(R̂)

]
x
+ i
[
E(R̂)× Π̂− Π̂× E(R̂)

]
y

}
, (A.4)

Ĥ↓↓ =
Π̂

2

2m
+ V (R̂)− µBBz(R̂)− µB

4mc2

[
E(R̂)× Π̂− Π̂× E(R̂)

]
z
. (A.5)

In order to compute the phase-space functions corresponding to the above Hamil-

tonians, we apply the Weyl transformation described in Sec. 1.3 of the main paper.

Here, we shall give the details of the Weyl transformation for the first term Ĥ↑↑.
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First, we have to write the Hamiltonian (A.2) in a symmetric form

Ĥ↑↑ =
Π̂

2

2m
+ V (R̂) + µBBz(R̂) +

µB

4mc2
ǫijz

(
Ei(R̂)Π̂j

2
+

Π̂jEi(R̂)

2
+

i~

2
∂jEi

)

− µB

4mc2
ǫijz

(
Π̂iEj(R̂)

2
+

Ej(R̂)Π̂i

2
− i~

2
∂iEj

)

=
Π̂

2

2m
+ V (R̂) + µBBz(R̂) +

µB

4mc2
ǫijz

(
Ei(R̂)Π̂j

2
+

Π̂jEi(R̂)

2
− Π̂iEj(R̂)

2
− Ej(R̂)Π̂i

2

)
,

(A.6)

where we used the following commutation relation:
[
Π̂i, F (R̂)

]
= −i~∂iF (r). Then

we replace all operators with their associated phase-space variables. By doing so,

we obtain the phase-space functions associated to Ĥ↑↑:

H↑↑ =
π2

2m
+ V + µBBz +

µB

2mc2
[E × π]z . (A.7)

The phase-space functions for the other components of the Hamiltonian can be ob-

tained through similar calculations:

H↑↓ = µB (Bx − iBy) +
µB

2mc2

(
[E × π]x − i [E × π]y

)
, (A.8)

H↓↑ = µB (Bx + iBy) +
µB

2mc2

(
[E × π]x + i [E × π]y

)
, (A.9)

H↓↓ =
π2

2m
+ V − µBBz −

µB

2mc2
[E × π]z . (A.10)

The equations of motion for the four Wigner functions are determined by Eq. (2.21)

in the main text. Using this equation with the previous Hamiltonians (A.7)-(A.10),

one obtains:

i~∂tf0 =

[
π2

2m
+ V, f0

]c

⋆

+ µB [Bi, fi]
c
⋆ +

µB

2mc2
ǫijk [Eiπj, fk]

c
⋆ , (A.11)

i~∂tfk =

[
π2

2m
+ V, fk

]c

⋆

+ µB [Bk, f0]
c
⋆ +

µB

2mc2
ǫijk [Eiπj, f0]

c
⋆ + iµBǫijk {Bi, fj}A⋆

+ i
µB

2mc2
ǫlriǫijk {Elπr, fj}A⋆ , (A.12)

where {A,B}c⋆ = A⋆B−B⋆A and {A,B}A⋆ = A⋆B+B⋆A denotes, respectively, the

commutator and the anti-commutator. From the Eqs. (1.39)-(1.40) in the main text,

we notice that the operators L and Ln commute with each other, so we can rewrite

the Moyal product [Eq. (1.38) in the main text] in a more convenient way for the
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calculations:

A(r,π) ⋆ C(r,π) =
∞∏

n=1

exp

(
ie

∞∑

n=1

~
nLn

)
exp (i~L) (A(r,π), C(r,π)) . (A.13)

We will also use the following symmetry properties for the operators L and Ln

Ln (A,B) = (−1)n Ln (B,A) , Lm
n (A,B) = (−1)nm Lm

n (B,A) . (A.14)

In order to develop Eqs. (A.11) and (A.12), we calculate separately the following

five terms
[
π2

2m
, f0

]c
⋆
, [V, f0]

c
⋆, [Eiπj, fk]

c
⋆, {Bi, fj}A⋆ and {Eiπj, fk}A⋆ .

1. Term:
[
π2

2m
, f0

]c
⋆
.

From Eq. (1.38) in the main text, the above commutator reads as

[
π2

2m
, f0

]c

⋆

= exp

[
i~L+ ie

∞∑

n=1

~
nLn

] [(
π2

2m
, f0

)
−
(
f0,

π2

2m

)]
. (A.15)

Let us develop the following quantity:

exp (i~L)
(
f(r,π),

π2

2m

)
=

∞∑

n=0

(
i~

2

)n
1

n!

(
L∂i

R∂πi
− R∂j

L∂πj

)n
(
f,

π2

2m

)

=
∞∑

n=0

n∑

p=0

(
i~

2

)p
(−1)p

n!

(
n

p

)(
∂n−p
i1···in−p

∂p
πj1

···πjp
f
)(

∂n−p
πi1

···πin−p
∂p
j1···jp

π2

2m

)
,

(A.16)

where we used the following notation:

∂n
i1···in∂

p
πj1

···πjp
=

3∑

i1···in=1

3∑

j1···jp=1

∂n

∂ri1 · · · ∂rin
∂n

∂πj1 · · · ∂πjp

, (A.17)

with (r1, r2, r3) = (x, y, z) and (π1, π2, π3) = (πx, πy, πz).

Eq. (A.16) differs from zero only if p = 0, so one obtains:

exp (i~L)
(
f(r,π),

π2

2m

)
=

∞∑

n=0

(
i~

2

)n
1

n!

(
∂n
πi1

···πin

π2

2m

)
∂n
i1···inf

=
π2

2m
f +

i~

2m
πi (∂if)−

~
2

8m

3∑

i=1

(
∂2
i f
)
. (A.18)

Using the symmetry properties (A.14) for the operator L, one obtains:

exp (i~L)
(
π2

2m
, f(r,π)

)
=

π2

2m
f − i~

2m
πi (∂xi

f)− ~
2

8m

3∑

i=1

(
∂2
xi
f
)
. (A.19)
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Injecting Eqs. (A.18) and (A.19) in Eq. (A.15) gives

[
π2

2m
, f0

]c

⋆

=
1

2m

∞∏

n=1

exp

(
ie

∞∑

n=1

~
nLn

)
(
π2
k, f
)
− 1

2m

∞∏

n=1

exp

(
ie

∞∑

n=1

~
nLn

)
(
f, π2

k

)

− i~

2m

∞∏

n=1

exp

(
ie

∞∑

n=1

~
nLn

)
(πi, ∂if)−

i~

2m

∞∏

n=1

exp

(
ie

∞∑

n=1

~
nLn

)
(∂if, πi) .

(A.20)

From Eq. (1.40) in the main text, the Ln operator contains at least one deriva-

tive in π. Then, by developing the exponentials in power series of the opera-

tors Ln in Eq. (A.20), all the operators of order higher than n = 2 will give no

contributions. Then Eq. (A.20) reduces to

[
π2

2m
, f0

]c

⋆

= − i~

m
(πi∂xi

f) +
1

2m


ie

∞∑

n=1

~
nLn −

e2

2

( ∞∑

n=1

~
nLn

)2

 [(π2

k, f
)
−
(
f, π2

k

)]

+
e~

2m

[ ∞∑

n=1

~
nLn

]
[(πi, ∂if) + (∂if, πi)] . (A.21)

Using the symmetry properties (A.14) of the operator Ln, one obtains:

[
π2

2m
, f0

]c

⋆

= − i~

m
(πi∂xi

f) +
e~

m

∞∑

n=0

~
2n+2L2n+2 (πi, ∂xi

f) +
ie

m

∞∑

n=0

~
2n+1L2n+1

(
π2
k, f
)

− e2

m

∞∑

n=0

∞∑

p=0

~
2n+1

~
2p+2L2n+1L2p+2

(
π2
k, f
)
, (A.22)

where the second term on the right-hand side reads as

∞∑

n=0

~
2n+2L2n+2 (πi, ∂if) =

1

~

∞∑

n=0

(
i~

2

)2n+3
ǫjlr

(2n+ 3)2 (2n+ 2)!

(
∂2n+1
xi1...xi2n+1

Br

)
L∂πj

R∂πl

2n+1∑

p=1

(
2n+ 3

p

)
g(n, p) L∂πi1

· · · L∂πip−1

R∂πip
· · · R∂πi2n+1

(πi, ∂if) ,

with g(n, p) =
[
(1− (−1)p) (2n+ 3)−

(
1− (−1)2n+3) p

]
.

Only the term corresponding to p = 1 gives a nonzero contribution

∞∑

n=0

~
2n+2L2n+2 (πi, ∂if) = − i~

2

∞∑

n=0

(
~

2

)2n+1
(−1)n(2n+ 2)

(2n+ 3)!
ǫjlr

(
∂2n+1
i1...i2n+1

Br

)

∂2n+1
πi1

···πi2n+1
∂πl

(∂jf) . (A.23)
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By similar developments, the third and the fourth terms of Eq. (A.22) become

∞∑

n=0

~
2n+1L2n+1

(
π2
k, f
)
= −~πjǫjlr

∞∑

n=0

(
~

2

)2n
(−1)n

(2n+ 1)!

(
∂2n
i1...i2n

Br

)
∂2n
πi1

···πi2n
(∂πl

f) ,

(A.24)

∞∑

n,p=0

~
2n+1

~
2p+2L2n+1L2p+2

(
π2
k, f
)
=

i~2

2
ǫijkǫilr

∞∑

n,p=0

(
~

2

)2n+2p+1
(−1)n

(2n+ 1)!

(−1)p(2p+ 2)

(2p+ 3)!

(
∂2n
i1...i2n

Br

) (
∂2p+1
j1...j2p+1

Bk

)
∂2n
πi1

···πi2n
∂2p+1
πj1

···πj2p+1
∂πj

(∂πl
f) . (A.25)

Injecting Eqs. (A.23), (A.24) and (A.25) into Eq. (A.22), one obtains:

[
π2

2m
, f0

]c

⋆

= − i~

m

[(
π + ∆̃π

)
·∇f (r,π, t)− e

[(
π + ∆̃π

)
× B̃

]
i
∂πi

f (r,π, t)
]
,

(A.26)

where we use the notation introduced by Serimaa et al. [87]:

∆π̃ = −i~e∇π ×
[∫ 1/2

−1/2

dττB (r + i~τ∇π)

]
, B̃ =

∫ 1/2

−1/2

dτB (r + i~τ∇π) .

(A.27)

2. Term: [V, f0]
c
⋆.

This term is the same as in the unmagnetized case. Indeed, the Ln operators do

not act on V since they contain at least one derivative in π. Thus, one obtains:

[V, f0]
c
⋆ = exp (i~L) [(V, f0(r,π))− (f0(r,π), V )]

= 2i
∞∑

n=0

(
~

2

)2n+1
(−1)n

(2n+ 1)!

(
L∂i

R∂πi
− R∂j

L∂πj

)2n+1
(V, f0(r,π))

= 2i
∞∑

n=0

2n+1∑

p=0

(
~

2

)2n+1
(−1)n+p

(2n+ 1)!

(
2n+ 1

p

)(
∂2n+1−p
i1···i2n+1−p

∂p
πj1

···πjp
V
)(

∂2n+1−p
πi1

···πi2n+1−p
∂p
j1···jpf0

)
.

(A.28)

Only the contribution corresponding to p = 0 survives, because V does not

depend on π. Thus:

[V, f0]
c
⋆ = −i~eẼ ·∇πf0, (A.29)
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where we have introduced the following quantity:

Ẽ =

∫ 1/2

−1/2

dτE (r + i~τ∇π) . (A.30)

3. Term: ǫijk [Eiπj, fk]
c
⋆.

We start by developing the following expression

exp (ı~L) (Eiπj, fk) =
∞∑

n=0

(
i~

2

)n
1

n!

(
L∂k

R∂πk
− R∂l

L∂πl

)n
(Eiπj, fk)

=
∞∑

n=0

n∑

p=0

(
i~

2

)n
(−1)p

n!

(
n

p

)(
∂n−p
i1···in−p

∂p
πj1

···πjp
πjEi

)(
∂n−p
πi1

···πin−p
∂p
j1···jpfk

)
.

(A.31)

Only the terms with p = 0 or p = 1 survive, so that

exp (ı~L) (Eiπj, fk) = πj

∞∑

n=0

(
i~

2

)n
1

n!

(
∂n
πj1

···πjn
fk

) (
∂n
j1···jnEi

)

−
∞∑

n=1

(
i~

2

)n
1

(n− 1)!

(
∂n−1
πj1

···πjn−1
∂jfk

)(
∂n−1
j1···jn−1

Ei

)
.

(A.32)

Then the Moyal product between Eiπj and fk can be written as:

(Eiπj) ⋆ fk =
∞∏

p=1

exp (ie~pLp) exp (ı~L) (Eiπj, fk) =

[
1 + ie

∞∑

p=1

~
pLp

]
exp (ı~L) (Eiπj, fk) .

(A.33)

The last equality holds because the operator Lp acts one a phase-space func-

tion that is at most linear in π. Then we only have to evaluate the following
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quantity:

ie
∞∑

p=1

~
pLp [exp (ı~L) (Eiπj, fk)]

= ie

∞∑

n=0

∞∑

p=1

~
p

(
i~

2

)n
1

n!
Lp

(
πj

(
∂n
j1···jnEi

)
,
(
∂n
πj1

···πjn
fk

))

= ie

∞∑

n=0

∞∑

p=1

~
p

(
i~

2

)n
1

n!

(
i

2

)p+1
ǫslr

(p+ 1)2p!

(
∂p−1
i1···ip−1

Br

) (
∂n
j1···jnEi

) p∑

m=1

(
p+ 1

m

)
g(p,m)

(
∂m−1
πi1

···πim−1
∂πsπj

)(
∂p−m
πim ···πip−1

∂n
πj1

···πjn
∂πl

fk

)

=
ie

~
ǫjlr

∞∑

n=0

∞∑

p=1

(
i~

2

)n
1

n!

(
i~

2

)p+1
1

(p+ 1)!

(
∂p−1
i1···ip−1

Br

) (
∂n
j1···jnEi

)

g(p, 1)
(
∂p−1
πi1

···πip−1
∂n
πj1

···πjn
∂πl

fk

)
,

with g(p, 1) = 2p if p is even and g(p, 1) = 2(p + 1) if p is odd. Hence one

obtains:

(Eiπj) ⋆ fk =
∞∑

n=0

πj

n!

(
i~

2

)n (
∂n
πj1

···πjn
fk

) (
∂n
j1···jnEi

)

−
∞∑

n=1

(
i~

2

)n
1

(n− 1)!

(
∂n−1
πj1

···πjn−1
∂jfk

)(
∂n−1
j1···jn−1

Ei

)

+
ie

~
ǫjlr

∞∑

n=0

∞∑

p=1

(
i~

2

)n
1

n!

(
i~

2

)p+1
1

(p+ 1)!

(
∂p−1
i1···ip−1

Br

) (
∂n
j1···jnEi

)
g(p, 1)

(
∂p−1
πi1

···πip−1
∂n
πj1

···πjn
∂πl

fk

)
, (A.34)

Using the symmetry identities (A.14), one obtains:

fk ⋆ (Eiπj) =
∞∑

n=0

πj

n!

(−i~

2

)n (
∂n
πj1

···πjn
fk

) (
∂n
j1···jnEi

)
−

∞∑

n=1

(−i~

2

)n
1

(n− 1)!

(
∂n−1
πj1

···πjn−1
∂jfk

)(
∂n−1
j1···jn−1

Ei

)
+

ie

~
ǫjlr

∞∑

n=0

∞∑

p=1

(
i~

2

)n
(−1)n

n!

(
i~

2

)p+1
(−1)p

(p+ 1)!
(
∂p−1
i1···ip−1

Br

) (
∂n
j1···jnEi

)
g(p, 1)

(
∂p−1
πi1

···πip−1
∂n
πj1

···πjn
∂πl

f
)
, (A.35)

Using Eqs. (A.34) and (A.35), one finally obtains:

ǫijk
i~

[Eiπj, fk]
c
⋆ = −1

2
[(E+ +E−)×∇] · f −∇

[
π × Ẽ

]
k
·∇πfk

+ e
[
Ẽ ×

[
B̃ ×∇π

]]
· f − 1

i~
[∆π̃ × (E+ −E−)] · f . (A.36)
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The index ± means that the associated quantity is evaluated at a shifted posi-

tion r ± i~∇π/2.

4. Term: iǫlriǫijk {Elπr, fj}A⋆
Using equation (A.34) and (A.35), one directly obtains:

iǫlriǫijk {Elπr, fj}A⋆ = −i {[(π +∆π̃)× (E+ +E−)]× f}k
+

~

2

{[
(E+ −E−)×

(
∇− eB̃ ×∇π

)]
× f

}
k
. (A.37)

5. Term: iǫijk {Bi, fj}A⋆
The calculation is very similar to that of the second item, i.e. for {V, f0}A⋆ . The

only difference is that we keep the even terms in Eq. (A.28) instead of the odd

terms. Then one simply obtains :

iǫijk {Bi, fj}A⋆ = iǫijk (B+ +B−)i fj. (A.38)

Using the Eqs. (A.26), (A.29), (A.36), (A.37), (A.38), as well as the Eqs. (A.11),

(A.12), we finally obtain the Wigner equation for an electron interacting with an

electromagnetic field, including the Zeeman interaction and the spin-orbit coupling:

∂f0
∂t

+
1

m
(π +∆π̃) ·∇f0 −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

f0

− µB∇

(
B̃ − 1

2mc2
π × Ẽ

)

i

·∇πfi +
µB

4mc2
[(E+ +E−)×∇] · f

− µBe

2mc2

[
Ẽ ×

[
B̃ ×∇π

]]
· f − µB

2mc2
i

~
[∆π̃ × (E+ −E−)] · f = 0, (A.39)

∂fk
∂t

+
1

m
(π +∆π̃) ·∇fk −

e

m

[
mẼ + (π +∆π̃)× B̃

]
i
∂πi

fk

− µB∇

(
B̃ − 1

2mc2
π × Ẽ

)

k

·∇πf0 +
µB

4mc2
[(E+ +E−)×∇]k f0

− µBe

2mc2

[
Ẽ ×

[
B̃ ×∇π

]]
k
f0 −

µB

2mc2
i

~
[∆π̃ × (E+ −E−)]k f0

− e

2m

[(
B+ +B− − 1

2mc2
(π +∆π̃)× (E+ +E−)

)
× f

]

k

+
µB

2mc2
i

2

[(
(E+ −E−)×

(
∇− eB̃ ×∇π

))
× f

]
k
= 0. (A.40)
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Details on derivation of the fluid

models using the MEP

B.1 Three-moment Fermi-Dirac closure

We begin by demonstrating the relation (2.95) between the equilibrium distribu-

tion F eq and the component of the Hamiltonian H′ = h′
0σ0 + h′ · σ′, where h′

0 =

m (v − v0)
2 /2 + λ0 and h′ = λS . Developing the exponential as a power series in

Eq. (2.86) (F–D) and inverting the associated matrix, we obtain

F eq = a0 [exp (βH′) + 1]
−1

,

=
( m

2π~

)3
exp (βh′

0)

[
cosh (βh′

0) σ0 + cosh (β|h′|) h
′ · σ
|h′|

]−1

,

=
a0
2

(
cosh (β|h′|) + exp−βh′

0

)
σ0 − sinh (βh′

0) (h
′ · σ) /|h′|

[cosh (βh′
0) + cosh (β|h′|)] .

In this case, we obtain the following expression for f
eq
0 and f

eq
i :

f
eq
0 = a0

cosh (β|h′|) + exp−βh′
0

cosh (βh′
0) + cosh (β|h′|) and f

eq
i = −a0 ~

2

sinh (β|h′|)h′
i/|h′|

cosh (βh′
0) + cosh (β|h′|) .

These expressions cannot be integrated analytically over the velocity space. To ob-

tain a treatable model, we assume that the electron gas is at zero temperature, i.e.

β → ∞. We start by calculating the density

n = lim
β→∞

∫
f eq
0 dv = a0 lim

β→∞

∫
eβ|h

′| + 2e−βh′
0

eβh
′
0 + e−βh′

0 + eβ|h′|dv

= a0 lim
β→∞

[∫
1

1 + eβ(h
′
0−|h′|) + e−β(h′

0+|h′|)
dv + 2

∫
1

1 + e2βh
′
0 + eβ(h

′
0+|h′|)

dv

]
.
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We call n1 and n2 respectively the limit for β → ∞ of the first and the second integral

in the above expression, such that n = n1 + n2. One can show that

n1 = 4πa0 lim
β→∞

∫ +∞

0

v2

1 + exp[β
(
m
2
v2 + λ0 − |λS|

)
] + exp[−β

(
m
2
v2 + λ0 − |λS|

)
]
dv

=





4π
3
a0
[
2
m

(
|λS| − |λ0|

)]3/2
if 0 < λ0 < |λS|

0 if λ0 > |λS|
4π
3
a0
[
2
m

(
|λS|+ |λ0|

)]3/2
if −|λS| < λ0 < 0

4π
3
a0

([
2
m

(
|λS|+ |λ0|

)]3/2 −
[
2
m

(
|λ0| − |λS|

)]3/2)
if λ0 < −|λS|

n2 = 8πa0 lim
β→∞

∫ +∞

0

v2

1 + exp2β(m
2
v2+λ0) + expβ(m

2
v2+λ0+|λS |)

dv

=

{
0 if λ0 > −|λS|
8π
3
a0
[
2
m

(
|λ0| − |λS|

)]3/2
if λ0 < −|λS|

For S we obtain

Si = lim
β→∞

∫
fidv = −~

2
a0

λS
i

|λS| lim
β→∞

∫
eβ|h

′|

eβh
′
0 + e−βh′

0 + eβ|h′|dv = −~

2
a0

λS
i

|λS|n1.

In the case where λ0 > −|λS|, we have the following relation between S and

n: |S| = ~

2
n. Comparing with Eq. (2.12), we notice that we are in the limit of pure

states. If we consider the case where λ0 < −|λS|, we obtain

n =
4π

3
a0

([
2

m

(
|λS|+ |λ0|

)]3/2
+

[
2

m

(
|λ0| − |λS|

)]3/2
)
,

S = −~

2
a0

λS

|λs|
4π

3

([
2

m

(
|λS|+ |λ0|

)]3/2
−
[
2

m

(
|λ0| − |λS|

)]3/2
)
,

u = v0.

It is obvious that in this case we have |S| ≤ ~

2
n, which is in agreement with Eq. (2.12)

and corresponds to admissible physical solutions (quantum mixed states). We are

now able to extract the following relation between the Lagrange multipliers and the

fluid moments:

|λ0| ± |λS| =
(
2π~

m

)2
m

2

(
3

8π

)2/3(
n∓ 2

~
|S|
)2/3

.
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The next step is to calculate the pressure Pij = m
∫
vivjf

eq
0 dv −mnuiuj . By using

parity arguments, we deduce that the pressure must be isotropic. Thus, we obtain

P =
m

3

∫
v2f eq

0 dv −mnu2

=
4πm

3
a0

[
lim
β→∞

∫ +∞

0

v4

1 + exp[β
(
m
2
v2 + λ0 − |λS|

)
] + exp[−β

(
m
2
v2 + λ0 − |λS|

)
]
dv

+2 lim
β→∞

∫ +∞

0

v2

1 + exp[2β
(
m
2
v2 + λ0

)
] + exp[β

(
m
2
v2 + λ0 + |λS|

)
]
dv

]

=
4πm

3

a0
5

([
2

m

(
|λS|+ |λ0|

)]5/2
+

[
2

m

(
|λ0| − |λS|

)]5/2
)

=
~
2

5m

(3π2)
2/3

2

[(
n− 2

~
|S|
)5/3

+

(
n+

2

~
|S|
)5/3

]
.

As to the spin current JS
iα =

∫
vifαdv, we notice directly, again by parity arguments,

that it factorizes as JS
iα = uiSα.

B.2 Four-moments Maxwell-Boltzmann collinear closure

In this Appendix, we provide a proof of the relations (2.105)-(2.108) between the

fluid moments and the Lagrange multipliers in the case of a Maxwell-Boltzmann

distributions with four constraints of the moments, in the collinear approximation.

The equilibrium distribution function is given by Eqs. (2.86) and (2.101). We

have

F eq = exp (−βH′) = exp (−βh′
0) [cosh (−βh′

z) σ0 + σz sinh (−βh′
z)] , (B.1)

where h′
0 and h′

z are given by Eqs. (2.102)-(2.103). In order to simplify the notation,

we introduce the following definitions: γi = λJ
iz and JS

iz = JS
i . We first compute the

density

n = 2

∫
exp (−βh′

0) cosh (−βh′) dv

= e−β(λ0+λS
z )
∫

e−
βm
2

(v−v0)
2

e−βγ·vdv + e−β(λ0−λS
z )
∫

e−
βm
2

(v−v0)
2

eβγ·vdv.

Let us first define with I the following integral

I0±(v0i , γi) =

∫
e−

βm
2 (vi−v0i)

2

e±βγividvi = Γ1/3(T )e±βγiv0ie−βγ2
i /2m.
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Therefore, we have

n = e−β(λ0+λS
z )I0−(v0x , γx)I

0
−(v0y , γy)I

0
−(v0z , γz) + e−β(λ0−λS

z )I0+(v0x , γx)I
0
+(v0y , γy)I

0
+(v0z , γz)

= 2Γ(T ) exp (−βλ0) exp

(
−βγ2

2m

)
cosh

[
β
(
λS
z + γ · v0

)]
. (B.2)

The calculation for Sz is quite similar, and we obtain

Sz = ~Γ(T ) exp (−βλ0) exp

(
−βγ2

2m

)
sinh

[
−β
(
λS
z + γ · v0

)]
. (B.3)

The calculation of u is slightly different. Let us compute explicitly the compo-

nent ux (the generalization to the other components is then straightforward):

ux =
2

n

∫
vxe (−βh′

0) cosh (−β|h′|) dv

=
1

n

[
e−β(λ0+λS

z )
∫

vxe
−βm

2
(v−v0)

2

e−βγ·vdv + e−β(λ0−λS
z )
∫

vxe
−βm

2
(v−v0)

2

e+βγ·vdv

]
.

Defining the following integral

I1±(v0i , γi) =

∫
vie

−βm
2 (vi−v0i)

2

e±βγividvi = Γ1/3(T )e±βγiv0ie−βγ2
i /2m

(
v0i ±

γi
m

)
,

we obtain

ux =
e−β(λ0+λS

z )

n

[
I1−(v0x , γx)I

0
−(v0y , γy)I

0
−(v0z , γz) + e2βλ

S
z I1+(v0x , γx)I

0
+(v0y , γy)I

0
+(v0z , γz)

]

= v0x −
2Sz

n~m
γx.

The generalisation to the other components gives

u = v0 +
2Sz

n~m
γ. (B.4)

We finally compute the spin current, again starting from its x component:

JS
x = ~

∫
vi

h′
α

|h′| exp (−βh′
0) sinh (−β|h′|) dv

=
~

2
e−β(λ0+λS

z )I1−(v0x , λ
J
xz)I

0
−(v0y , λ

J
yz)I

0
−(v0z , λ

J
zz)

−~

2
e−β(λ0−λS

z )I1+(v0x , λ
J
xz)I

0
+(v0y , λ

J
yz)I

0
+(v0z , λ

J
zz)

= v0xSz −
~γx
2m

n.
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The generalisation to the other components gives

JS
i = v0iSz −

~n

2m
γi. (B.5)

Inverting the relations (B.2)-(B.5), we obtain





γi =
2n~m

~2n2 + 4S2
z

(
Szui − JS

i

)
,

v0i =
1

~2n2 + 4S2
z

(
~
2n2ui + 4SzJ

S
i

)
,

e−βλ0 =
eβγ

2/2m

Γ(T )

√
(n
2

)2
−
(
Sz

~

)2

,

λS
z =

kBT

2
ln

(
n− 2|S|

~

n+ 2|S|
~

)
− γ · v0.

(B.6)
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Appendix C

Details about the derivation of the

variational approach applied to gold

nano-particles

C.1 Derivation of the Lagrangian

The hydrodynamic equations

∂n

∂t
+ ∇ · (nu) = 0, (C.1)

∂u

∂t
+ u · ∇u = ∇VH −∇VX − ∇P

n
+

1

2
∇
(∇2

√
n√

n

)
, (C.2)

can be derived from the following Lagrangian density

L = n

[
∂S

∂t
+

(∇S)2

2

]
+

(∇n)2

8n
+

3

10

(
3π2
)2/3

n5/3

− 3

4π

(
3π2
)1/3

n4/3 − β
(∇n)2

n4/3
− (∇VH)

2

8π
+ (ni − n)VH .

(C.3)

We assume that the electron density has the following form:

n(r, t) =
A

1 + exp

[(
s

σ(t)

)3
−
(

R
σ0

)3] , (C.4)

where A = 3N/(4πσ3)
[
ln
(
1 + exp (R/σ0)

3)]−1
is chosen to satisfy the normalization

condition
∫
ndr = N , and s(t) =

√
x2 + y2 + [z − d(t)]2.

We first need to obtain an expression for the two other fields, S and VH , as a

function of the dynamical variables d(t) and σ(t). In order to determine S(r, t), or
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equivalently the mean velocity u(r, t), we insert Eq. (C.4) into the continuity equa-

tion (C.1). This yields the exact solution

u =
σ̇

σ
(xx̂+ yŷ) +

[
σ̇

σ
(z − d) + ḋ

]
ẑ, (C.5)

which gives

S =
σ̇

2σ

[
x2 + y2 + (z − d)2

]
+ ḋ (z − d) , (C.6)

where the dot stands for differentiation with respect to time.

In order to obtain the Hartree potential, we rewrite the last two terms in Eq. (C.3)

as

− (∇VH)
2

8π
+ (ni − n)VH =

(∇VH)
2

8π
− ∇ · (VH∇VH)

4π
. (C.7)

The last (divergence) term disappears upon integration over space for reasonable

boundary conditions, so that only the gradient of VH is required. We decompose

the Hartree potential as VH = Vi + Ve, where Vi,e are the contributions due to the

ions and the electrons respectively, which satisfy the equations: ∇2Vi = −4πni and

∇2Ve = 4πn. Assuming spherical symmetry and integrating once in the radial co-

ordinate, we find

∂Vi(r)

∂r
=





−N

R3
r , r ≤ R

−N

r2
, r > R

(C.8)

and

s2
∂Ve(s, t)

∂s
=

N

ln(1 + 1/a)

{
s3

σ3
− ln

[
1 + a exp(s3/σ3)

]

+ ln(1 + a)

}
, (C.9)

where we introduced the small parameter a = exp (−R3/σ3
0). Note that Eq. (C.9) is

well-behaved both for s → 0 and s → ∞.

Having obtained the expressions for the fields n, S, and ∇VH – given by Eqs.

(C.4), (C.6), (C.8) and (C.9) – we may proceed to integrate the Lagrangian density

(C.3) with respect to the radial variable in order to obtain the Lagrangian function
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L(d, σ, ḋ, σ̇):

L =
−1

N

∫
Ldr,

= − 1

N

[ ∫
n
∂S

∂t
dr

︸ ︷︷ ︸
A

+
1

2

∫
n (∇S)2 dr

︸ ︷︷ ︸
B

+
1

8

∫
(∇n)2

n
dr

︸ ︷︷ ︸
C

+
3

10

(
3π2
)2/3

∫
n5/3dr

︸ ︷︷ ︸
D

− 3

4π

(
3π2
)1/3

∫
n4/3dr

︸ ︷︷ ︸
E

− β

∫
(∇n)2

n4/3
dr

︸ ︷︷ ︸
F

+
1

8π

∫
(∇VH)

2dr
︸ ︷︷ ︸

G

− 1

4π

∫
∇ · (VH∇VH)dr

︸ ︷︷ ︸
H

]
. (C.10)

The last integral (term H) is a surface term which is equal to zero if the Hartree

electric field vanishes at infinity.

The first step is to express the quantities ∂S/∂t, (∇S)2 and (∇n)2 as functions of

the dynamical variables d(t), σ(t) and of the shifted radial coordinate s. The fields n

and S are defined respectively by Eqs. (C.4) and (C.6). We obtain

∂S

∂t
=

σ̈σ − σ̇2

2σ2
s2 − σ̇

σ
ḋ (z − d) + d̈ (z − d)− ḋ2,

(∇S)2 =

[
σ̇

σ

]2
s2 + 2

σ̇

σ
(z − d) ḋ+ ḋ2,

(∇n)2 =
9a2s4

A2σ6
exp

[
2s3

σ3

]
n4.

Now, we are in a position to compute the integrals in the Lagrangian (C.10). We

evaluate each term separately:

• Term A:

∫
n
∂S

∂t
dr =

[
σ̈

2σ
− σ̇2

2σ2

] ∫
ns2dr+

[
d̈− σ̇

σ
ḋ

]

×
∫

n (z − d) dr− ḋ2
∫

ndr,

=

[
σ̈

2σ
− σ̇2

2σ2

] ∫
ns2dr−Nḋ2. (C.11)
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We used the symmetry properties of the electron density to obtain the above

expression. We further compute

∫
ns2dr = A

∫
s2

1 + a exp (s3/σ3)
dr,

= 4πA

∫ ∞

0

X4

1 + a exp (X3/σ3)
dX,

= Nσ2M(a), (C.12)

where M(a) is definesd as

M(a) = −Γ(5/3)Li5/3(−1/a)

ln(1 + 1/a)
.

Li is a polylogarithm function defined by

Lip(−1/a) = − 1

Γ(p)

∫ ∞

0

Xp−1

1 + a exp (X)
dX,

where Re(p) > 0, Im(a) = 0, and 1/a > −1

Now we can inject Eq. (C.12) into Eq. (C.11) to obtain

∫
n
∂S

∂t
dr =

N

2
M(a)

(
σ̈σ − σ̇2

)
−Nḋ2,

=
N

2
M(a)

[
d

dt
(σσ̇)− 2σ̇2

]
−Nḋ2,

= −NM(a)σ̇2 −Nḋ2, (C.13)

where we suppressed the total time derivative as it does not modify the equa-

tions of motion.

• Term B:

1

2

∫
n (∇S)2 dr =

1

2

[
σ̇

σ

]2 ∫
ns2dr+

σ̇

σ
ḋ

×
∫

(z − d)ndr+
ḋ2

2

∫
ndr,

=
N

2
M(a)σ̇2 +

N

2
ḋ2. (C.14)

• Term C:

1

8

∫
(∇n)2

n
dr =

9πa2A

2σ6

∫ ∞

0

X6 exp (2X3/σ3)

[1 + a exp (X3/σ3)]3
dX,

=
NfB(a)

σ2
, (C.15)
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where fB is defined as

fB(a) =
27a2

8 ln(1 + 1/a)

∫ ∞

0

X6 exp (2X3)

[1 + a exp (X3)]3
dX. (C.16)

• Term D:

3 (3π2)
2/3

10

∫
n5/3dr =

6π (3π2)
2/3

5
A5/3

×
∫ ∞

0

X2

[1 + a exp (X3/σ3)]5/3
dX,

=
N5/3fF (a)

σ2
, (C.17)

where fF is defined as

fF (a) =
6

5
(3π)2/3

[
3

4 ln(1 + 1/a)

]5/3

×
∫ ∞

0

X2

[1 + a exp (X3)]5/3
dX. (C.18)

• Term E:

3 (3π2)
1/3

4π

∫
n4/3dr =

(
81π2

)1/3
A4/3

×
∫ ∞

0

X2

[1 + a exp (X3/σ3)]4/3
dX,

=
N4/3fX(a)

σ
, (C.19)

where fX is defined as

fX(a) =

[
9

4
√
π ln(1 + 1/a)

]4/3

×
∫ ∞

0

X2

[1 + a exp (X3)]4/3
dX. (C.20)

• Term F:

β

∫
(∇n)2

n4/3
dr =

36πa2A2/3β

σ6

×
∫ ∞

0

X6 exp (2X3/σ3)

[1 + a exp (X3/σ3)]8/3
dX,

=
βN2/3

σ
fX′(a), (C.21)
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where fX′(a) is defined as

fX′(a) =

(
4π

3

)1/3
27a2

[ln(1 + 1/a)]2/3

×
∫ ∞

0

X6 exp (2X3)

[1 + a exp (X3)]8/3
dX. (C.22)

• Term G:

1

8π

∫
(∇VH)

2dr =
1

8π

[ ∫
(∇Vi)

2dr+

∫
(∇Ve)

2dr

+2

∫
∇Vi · ∇Vedr

]
. (C.23)

The first integral in Eq. (C.23) does not contribute to the equations of motion

because it does not depend on the dynamical variables d or σ. Let us evaluate

the other two integrals separately:

∫
(∇Ve)

2dr =

∫ [
∂Ve

∂s

]2
dr =

8πN

σ
fee(a), (C.24)

where fee(a) is defined as

fee(a) =
1

2 [ln(1 + 1/a)]2

∫
dX

X2

{
X3 + ln(1 + a)

− ln
[
1 + a exp(X3)

]}
. (C.25)

Let us call I(d) the third integral in Eq. (C.23):

I(d) ≡
∫

∇Ve · ∇Vi (C.26)

=

∫
∂Vi

∂r

∂Ve

∂s

1

sr
(r2 − zd)dr

=
2πN

ln(1 + 1/a)

∫
∂Vi

∂r

r2 sin θ

s3
(r − d cos θ)

×
{
s3

σ3
− ln

[
1 + a exp(s3/σ3)

]
+ ln(1 + a)

}
drdθ,

where we used the expressions (C.8) and (C.9), and the angle θ is defined so

that z = r cos θ. We cannot simplify the integral I because it does not possess

spherical symmetry. The only way to proceed is to develop the variable s =√
x2 + y2 + (z − d)2 as a power series of d:

s = r − d cos θ +
d2 sin2 θ

2r
+O(d3).
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We find that I can be written in terms of a power series of d

I =
4πN2fei(σ)

R
− 2πNΩ2

d(σ)d
2 + 4πNK(σ)d4 + · · · , (C.27)

where fei(σ), Ω
2
d(σ) and K(σ) are given by

fei(σ) =
1

ln(1 + 1/a)

{
σ2

R2

∫ R/σ

0

X
[
X3 + ln(1 + a)

− ln
(
1 + a exp

(
X3
)) ]

dX +
R

σ

∫ ∞

R/σ

dX

X2

[
X3

+ ln(1 + a)− ln
(
1 + a exp

(
X3
)) ]}

, (C.28)

Ω2
d(σ) =

N

R3 ln(1 + 1/a)

{
R3

σ3
+ ln(1 + 1/a)

− ln
[
1 + a exp(R3/σ3)

]}
, (C.29)

K(σ) =
9NRa

40 ln(1 + 1/a)σ6

exp(R3/σ3)

[1 + a exp(R3/σ3)]2
. (C.30)

The odd powers of d disappears, as expected, because the problem is symmet-

ric with respect to the (x, y) plane, so that the equations should be unchanged

if we change d with −d.

Injecting the results for the terms A–G into Eq. (C.10), we obtain the Lagrangian

of the system up to fifth order in d:

L =
−1

N

∫
Ldr = M(a)σ̇2

2
− U(σ) +

ḋ2

2
− Ω2

d(σ)d
2

2
+K(σ)d4, (C.31)

where the multiplicative factor −(1/N) is introduced for convenience of notation

and the pseudo-potential U(σ) is defined as

U(σ) =
fB(a)

σ2
+

N2/3fF (a)

σ2
− N1/3fX(a)

σ
− βfX′(a)

N1/3σ

+
Nfee(a)

σ
− Nfei(σ)

R
.

(C.32)

The pseudo-potential U(σ) is represented in Fig. 5.2.

The quantities fB, fF , fX , fX′ , fee and fei, which appear in the pseudo-potential

(C.32), are related respectively to the Bohm potential, Fermi pressure, exchange

energy (LDA), gradient correction to the exchange energy, electron-electron and

electron-ion Hartree interaction terms. All these functions are positive, in accor-

dance with the role played by the Bohm, Fermi and electron-electron terms, which

are repulsive, and by the exchange and the electron-ion terms, which are attractive.
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The quantity Ω2
d(σ) corresponds to the second order term in the development of the

electron-ion interacting energy, whereas K(σ) corresponds to the fourth order.

C.2 Correlation effects

So far, our model included exchange effects but no other type of correlations. In

the framework of DFT, correlations can be introduced through an appropriate func-

tional of the electron density. Here, we use the functional proposed by Brey et

al. [185], which yields the following correlation potential

VC = −γ ln
[
1 + αn1/3

]
, (C.33)

with γ = 0.03349 and α = 18.376. With this potential, the Euler equation becomes

∂u

∂t
+ u · ∇u = ∇VH −∇VX −∇VC − 1

mn
∇P

+
~
2

2m2
∇
[∇2

√
n√

n

]
. (C.34)

In order to include this correlation potential, the following term needs to be added

to the Lagrangian density

LC = − γ

6α3

[
−6αn1/3 + 3α2n2/3 − 2α3n

+6
(
1 + α3n

)
ln
(
1 + αn1/3

)]
. (C.35)

This yields a new term in the integrated Lagrangian of the system:

LC = − 1

N

∫
LC dr

=
2πγ

3α3N

[
− 6αĀ1/3I1σ

2 + 3α2Ā2/3I2σ

−2α3N + 6I3(σ)σ
3
]
, (C.36)

where

Ā = Aσ3 =
3N

4π

[
ln

(
1 + exp

(
R

σ0

)3
)]−1

,

I1 =

∫ ∞

0

X2

[1 + a exp(X3)]1/3
dX,

I2 =

∫ ∞

0

X2

[1 + a exp(X3)]2/3
dX,

I3(σ) =

∫ ∞

0

X2

[
1 +

B(X)3

σ3

]
ln

[
1 +

B(X)

σ

]
dX,
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and

B(X) =
αĀ1/3

[1 + a exp (X3)]1/3
.

The resulting corrections can be incorporated in the pseudo-potential function U(σ).

The new terms are as follows

UC(σ) = fcσ
2 − fc′σ − fc′′I3(σ)σ

3, (C.37)

where

fc =
4πγ

α2N
Ā1/3I1,

fc′ =
2πγ

αN
Ā2/3I2,

fc′′ =
4πγ

α3N
.

Notice that the correlation effects only affect the equation for σ, but not the

dipole. The properties of the ground state will also be modified, in particular the

equilibrium value of the spill-out thickness σ0.

C.3 Additional results

The following tables summarize the ground-state and linear-response results for

gold nano-particles without correlations (Table C.1) and with correlations (Table

C.2). Fig. 5.3 in the main text uses the data from these tables.

N R σ0 Ωd Ωb

50 11.09 6.24 0.1793 0.2988

100 13.97 7.21 0.1821 0.3059

150 15.99 7.86 0.1835 0.3093

200 17.60 8.36 0.1843 0.3114

250 18.96 8.77 0.1848 0.3129

300 20.15 9.12 0.1852 0.3141

350 21.21 9.43 0.1856 0.3150

400 22.18 9.70 0.1859 0.3158

450 23.07 9.95 0.1861 0.3164

TABLE C.1: Ground-state and linear-response parameters for gold
nanoparticles of different sizes. All quantities are expressed in atomic

units.
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N R σ0 Ωd Ωb

50 11.09 6.07 0.1803 0.3026

100 13.97 7.0 0.1830 0.3089

150 15.99 7.61 0.1843 0.3118

200 17.60 8.09 0.1850 0.3138

250 18.96 8.48 0.1855 0.3154

300 20.15 8.81 0.1859 0.3162

350 21.21 9.1 0.1862 0.3170

400 22.18 9.37 0.1864 0.3175

450 23.07 9.6 0.1866 0.3182

TABLE C.2: Ground-state and linear-response parameters for gold
nanoparticles of different sizes, including correlations. All quantities

are expressed in atomic units.
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[129] Lev Landau and Evguéni. Lifchitz. Physique statistique. Éd. Mir, 1994.

[130] A. A. Vlasov. On the oscillation properties of an electron gas. Zh. Eksp. Teor.

Fiz., 8:291–318, 1938.

[131] Lev Davidovich Landau. On the vibrations of the electronic plasma. Zh. Eksp.

Teor. Fiz., 10:25, 1946.

[132] Uwe Kreibig and Michael Vollmer. Optical properties of metal clusters. Springer,

1995.

[133] Yoochan Hong, Yong-Min Huh, Dae Sung Yoon, and Jaemoon Yang.

Nanobiosensors Based on Localized Surface Plasmon Resonance for

Biomarker Detection. Journal of Nanomaterials, 2012:1–13, 2012.

[134] Peter A. (Peter Andrew) Sturrock and Peter Andrew. Plasma physics : an in-

troduction to the theory of astrophysical, geophysical, and laboratory plasmas. Cam-

bridge University Press, 1994.

[135] O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms,

molecules, and solids by the spin-density-functional formalism. Physical Re-

view B, 13(10):4274–4298, may 1976.

[136] Burton D. Fried and Samuel Daniel Conte. The plasma dispersion function : the

Hilbert transform of the Gaussian. Academic Press, 1961.

[137] P Kravanja, M Van Barel, O Ragos, M N Vrahatis, and F A Zafiropoulos. ZEAL:

A mathematical software package for computing zeros of analytic functions.

Computer Physics Communications, 124(124):212–232, 2000.

[138] William Jones and Norman H. (Norman Henry) March. Theoretical solid state

physics. Dover Publications, 1985.

[139] Yue Yin, Paul-Antoine Hervieux, Rodolfo A. Jalabert, Giovanni Manfredi, Em-

manuel Maurat, and Dietmar Weinmann. Spin-dependent dipole excitation in

alkali-metal nanoparticles. Physical Review B, 80(11):115416, sep 2009.

[140] John F. Dobson. Electron gas boundary properties in non-neutral jellium (wide

parabolic quantum well) systems. Physical Review B, 46(16):10163–10172, oct

1992.
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