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Intégrité cérébrovasculaire et inflammation dans des modéles animaux d’athérosclérose : une

approche biomarqueurs

Les accidents vasculaires cérébraux sont la premicre cause mondiale d’handicap et
I’athérosclérose en est le principal facteur. Cette pathologie, liée a une mauvaise prise en charge du
cholestérol pourra avoir des conséquences plus pernicieuses comme la fragilisation des unités
cérébrovasculaires qui, combinée a une inflammation systémique et locale, peut entrainer d’importantes

répercussions cérébrales.

Pour étre au plus proche de I’humain nous avons utilisé¢ des modeles animaux murins et
primate non-humain (PNH) agés sous régime gras. Une approche translationnelle avec suivi longitudinal
de biomarqueurs sanguins et d’imagerie combinée a la caractérisation tissulaire de I’inflammation a été
effectuée pour tenter d’¢lucider les spécificités de la réponse inflammatoire dans la paroi vasculaire des

grosses arteres et le tissu cérébral.

Nous avons montré que chez des souris ApoE™

agées I’exercice physique peut contrecarrer
les effets délétéres d’un régime gras lorsque ’apport calorique est controlé mais plus lorsqu’il ne 1’est
pas. La dégradation de la barriére hémato-encéphalique pourrait expliquer I’inflammation observée in
vivo et confirmée par 1’analyse tissulaire. L’é¢tude des PNH a montré 1’intérét d’associer imagerie
multimodale et dosages sanguins dans la stratification du risque cardiovasculaire ainsi que I’importance

d’associer des marqueurs métaboliques, inflammatoires et anti-inflammatoires.

Nous avons montré I’intérét de contrdler les apports caloriques pour bénéficier des effets
protecteurs de 1’exercice sur 1’athérosclérose et I’importance d’avoir une vue globale du patient pour

une stratification individuelle précise du risque cardio et cérébrovasculaire.

MOTS-CLES

Athérosclérose, imagerie, neuroinflammation, mod¢les animaux, stratification, exercice physique

12



Cerebrovascular integrity maintenance and inflammation in atherosclerosis animal models: a

biomarker approach

Stroke is the leading cause of disabilities worldwide and is mainly caused by
atherosclerosis. But this is not the only risk for patients. Indeed, as this pathology is due to a lack of
circulating cholesterol management and could lead to more pernicious outcomes such as the
disorganization of cerebrovascular units that, when combined with systemic and local inflammation,

can result in serious repercussions in the brain.

Aged murine and non-human primate (NHP) animal models fed high cholesterol diets were
used as they are closest to the human pathology. A translational approach with longitudinal follow-up
of circulating and imaging biomarkers combined with a tissular characterization of inflammation was
performed in order to elucidate the specificities of the inflammatory response in the vascular wall of

large vessels and brain tissue.

We showed that in old ApoE-/- mice exercise can counterbalance the deleterious effects of
a high fat diet when caloric intake is controlled, but not when food is given ad libitum. The leakage of
the blood-brain barrier might explain the neuroinflammation observed in vivo, and confirmed by tissular
analysis. The study on NHP showed the interest of combining multimodal imaging with blood dosage
for cardiovascular risk stratification and the importance of associating metabolic, inflammatory and also

anti-inflammatory markers.

We highlighted the importance of controlling calorie intake in order to benefit from the
protective effects of exercise on atherosclerosis and the relevance of having an overview of the patient’s

status for an accurate individual stratification of cardio and cerebrovascular risk.

KEY WORDS

Atherosclerosis, imaging, neuroinflammation, animal models, stratification, exercise
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24-OHC: 24-hydroxycholesterol

A

ACAT: acyl-CoA cholesterol acyltransferase
ACEi: angiotensin converting enzyme inhibitor
AD: Alzheimer’s disease

AHA: American Heart Association

ANT: adenine nucleotide transporter

AOPP: advanced oxidization protein products
AP-1: activator protein 1

ApoB: apolipoprotein B

ApoE: apolipoprotein E

ARB: angiotensin II type I receptor blocker

Argl: arginase 1

B
B cell: B lymphocyte
BBB: blood-brain barrier

BP: blood pressure

C

CA: contrast agent

CACS: coronary artery calcium score
CAD: coronary artery disease

CCL: chemokine (C-C motif) ligand
CCR2: C-C chemokine receptor

CD: cluster of differentiation

CE: cholesteryl ester

CETP: cholesterol ester transfer protein
CHF: congestive heart failure

CMB: cerebral microbleed

CNS: central nervous system

CSF: cerebrospinal fluid

CT: computer tomodensitometry
CVD: cardiovascular disease
CX3CR: CX3C chemokine receptor

CXCL: chemokine (C-X-C motif) ligand

E

EAT: epicardial adipose tissue
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ECM: extracellular matrix
eNOS: endothelial nitric oxide synthase
ER: endoplasmic reticulum

ESAM: Endothelial cell-selective adhesion

molecule

ESC: European Society of Cardiology

F

FDG: fluorodesoxyglucose

FFA: free fatty acid

FGF: fibroblast growth factor

FH: familial hypercholesterolemia

FLAIR: fluid attenuated inversion recovery

G

Gd: gadolinium

GPx: glutathione peroxidase

H

Hb: hemoglobin

HDL.: high-density lipoprotein

HDL-C: high-density lipoprotein cholesterol
HF: High fat

HMG-CoA: 3-hydroxy-3-methylglutaryl

coenzyme A

hsCRP: high-sensitivity C-reactive protein

ICAM-1: intercellular adhesion molecule-1
IFNy: interferon gamma
IL: interleukin

IMT: intima-media thickness

K

KLF: Kriippel-like factor

L

LDL: low-density lipoprotein

LDL-C: low-density lipoprotein cholesterol
LDLR: low-density lipoprotein receptor
LPS: lipopolysaccharide

LysoPC: lysophosphatidylcholine

M

MCP-1: monocyte chemoattractant protein-1

(also known as CCL2)
MDA: malondialdehyde
MI: myocardial infarction

MIS: mycobacterial infection induces

suppressor macrophage

MMP: matrix metalloproteinase
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MMR: mannose receptor
MPIO: micron particles of iron oxide

MPO: myeloperoxidase

mPTP: mitochondrial permeability transition

pore

MRI: magnetic resonance imaging
mRNA: messenger ribonucleic acid
MTX: methotrexate

MUFA: monounsaturated fatty acid

N

NADPH: reduced Nicotinamide adenine
dinucleotide phosphate

NAFLD: non-alcoholic fatty liver disease
NF-«B: nuclear factor kappa B

NHP: non-human primate

NIRF: near-infrared fluorescence

NIRS: near-infrared spectroscopy

NLRP3: NOD-like receptor family, pyrin

domain containing 3

NMR: nuclear magnetic resonance

NO: nitric oxide

NPCI1L1: Niemann-Pick C1-like-1 protein

NSTEMI: non-ST elevation myocardial

infarction

(0]

oxLDL: oxidized low-density lipoprotein

P
PAT: pericardial adipose tissue
PBR: peripheral benzodiazepine receptor

PCSKO9: pro-protein convertase subtilisin/kexin
type 9

PDGEF: platelet derived growth factor

PECAM-1: Platelet endothelial cell adhesion

molecule
PET: positron emission tomodensitometry
PI3K: phosphoinositide 3-kinase

PUFA: polyunsaturated fatty acid

R

ROS: reactive oxygen species

S

SAA: serum amyloid A

SAT: subcutaneous adipose tissue
SOD: superoxide dismutase

SPECT: Single photon emission computed
tomography

SR-A: scavenger receptor A
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STEMI: ST elevation myocardial infarction
STH: St Thomas’ Hospital

STIR: short time of inversion recovery

T

T cell: T lymphocyte

TC: total cholesterol

TE: echo time

TG: triglycerides

TR: repetition time

TGFp: transforming growth factor beta
Th: T helper

TIA: Transient ischemic attack
TLR: toll-like receptor

TNFa: tumor necrosis factor alpha

TRL: triglyceride-rich lipoprotein

TSPO: translocator protein

U

USPIO: ultrasmall superparamagnetic particle

iron oxide

\%

VAT: visceral adipose tissue

VCAM-1: vascular cell adhesion molecule
VDAC: voltage-dependent anion channel
VLDL: very low-density lipoprotein

VSMC: vascular smooth muscle cell

W

WHHL: Watanabe hereditary

hypercholesterolemic

WHO: World Health Organization
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Table 1: Macrophages markers in mouse and human and the associated plaque characteristics.

Figure 1: Different types of vulnerable plaque as underlying cause of acute coronary events and

sudden cardiac death.

Figure 2: Stary’s classification for atheroma lesion.

Figure 3: Foam cell formation.

Figure 4: Atherosclerotic plaque progression from initial lesion to advanced, complicated plaque.
Figure 5: Determinants of plaque vulnerability.

Figure 6: The key role of the LDL receptor in cholesterol metabolism.

Figure 7: The initial step of inflammation: the leukocyte adhesion cascade.

Figure 8: Macrophages subsets and functions.

Figure 9: Vicious circle between peripheral inflammation and stroke.

Figure 10: Implication of adipose tissues in atherosclerosis and related cardiovascular diseases.
Figure 11: Dietary cholesterol-mediated adipose tissue inflammation can lead to atherosclerosis.
Figure 12: Prevention levels for cardiovascular diseases.

Figure 13: Effect of physical activity / exercise on key factors in the atherosclerotic process.
Figure 14: Main cholesterol-lowering drugs and their target.

Figure 15: Main anti-inflammatory drugs used in atherosclerosis treatment.

Figure 16: Influence of myeloperoxidase (MPO) in the atherosclerotic process.

Figure 17: Downstream pathway of CRP.

Figure 18: Importance of non-invasive imaging in vulnerable patient detection.

Figure 19: PET tracers for atherosclerosis.
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Figure 20: Pathway of uptake and utilization of "*F-FDG versus glucose through the glucose
transporter GLUTT in a cell.

Figure 21: ""'C-PK 11195 and TSPO.

Figure 22: Study design J Physiol, 2016

Figure 23: Study design Frontiers in Physiology, 2016
Figure 24: Study design non-human primate study

Figure 25: General conclusion and perspectives
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L’athérosclérose est la plus importante cause de mortalité¢ dans le monde avec plus de 30%

des morts associées a cette pathologie en 2012 selon 1’Organisation Mondiale pour la Santé (soit environ
17.5 millions de morts). En France, I’athérosclérose est responsable de 150 000 morts par an et est
reconnue comme la principale cause de maladies cardiovasculaires telles que I’infarctus du myocarde
(7.4 millions) et I’accident vasculaire cérébral (AVC, 6.7 millions), ce qui en fait un réel probléme de

santé publique.

L’athérosclérose est une pathologie complexe induite et aggravée par des facteurs
environnementaux tels que I’obésité, le diabéte de type 2, I’hypertension, 1’age et le mode de vie
(tabagisme, consommation d’alcool, sédentarit¢). C’est une pathologie silencieuse qui ne montre pas de
réels symptomes et n’est souvent découverte qu’au moment ou 1’occlusion de I’artere conduit a des
conséquences cliniques telles que I’infarctus du myocarde (120 000 cas par an en France), I’artériopathie
oblitérante des membres inférieurs, I’insuffisance rénale ou encore I’infarctus mésentérique. Au niveau
central, I’athérosclérose peut conduire a un accident ischémique transitoire, un déficit neurologique bref
et sans répercussion qui est considéré comme le signal d’alerte d’un prochain accident vasculaire
cérébral. Cependant, la cascade de réaction menant de I’inflammation cérébrale chronique a 1’accident

aigu reste inconnue.

Lorsqu’une plaque d’athérosclérose rompt, elle pourra former un thrombus au niveau de
la zone de rupture ou envoyer un embole qui ira boucher une artére de faible diamétre. Mais cela ne
représente pas le seul risque pour le patient. En effet, cette pathologie est avant tout liée a une mauvaise
prise en charge du cholestérol circulant, souvent due a une consommation excessive de graisses. Dans
ce contexte, et notamment avec une inflammation chronique qui se développe, 1’athérosclérose pourra
entrainer des effets plus pernicieux que les conséquences cardiovasculaires les plus connues (infarctus
et AVC). L’exces de graisses dans le régime alimentaire peut en effet induire une fragilisation des unités
cérébrovasculaires qui, combinées avec une inflammation systémique et locale, entraineront des

répercussions cérébrales importantes qui sont aujourd’hui encore peu explorées et mal expliquées.

A I’heure actuelle, un patient présentant une hypercholestérolémie est mis sous traitement
générique (aspirine, statines et inhibiteurs de 1’enzyme de conversion de I’angiotensine) et se voit
prescrire une modification de son mode de vie si celui-ci est a risque cardiovasculaire (faire de
I’exercice, arréter le tabac, diminuer sa consommation d’alcool, faire un régime). Une intervention

chirurgicale telle que la pose de stent ou I’endartériectomie sera préconisée sur le seul critére du degré
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de sténose. Ce parametre reste le paramétre de choix pour justifier ou non une chirurgie alors méme
qu’il est maintenant fortement débattu. D’ou la nécessité d’identifier une combinaison de biomarqueurs,
accessibles de facon non invasive, afin d’évaluer plus précisément et de fagon individuelle la prise en

charge optimale pour chaque patient.

La complexité de 1’athérosclérose en fait une maladie difficile a étudier dans sa globalité.
Cela nécessite 1’utilisation de modeles animaux le plus proche possible de la pathologie humaine afin
d’en étudier les paramétres et les cascades de réactions menant a 1’événement clinique. L’age est
notamment un facteur essentiel a prendre en compte lors du choix de son mod¢le animal, un 4ge avancé
permettant d’avoir un contexte cardio-métabolique a risque avec un statut inflammatoire et oxydatif
important. De plus, afin de pouvoir translater les découvertes de 1’animal a la clinique humaine,

I’utilisation de méthodes d’explorations non invasives et translationnelles est nécessaire.

Au cours de ma thése, j’ai donc travaillé sur deux modéles d’athérosclérose impliquant des
animaux Aagés sous régime gras afin d’étre au plus proche des conditions multifactorielles de la
pathologie humaine. Le modé¢le souris nous a permis de caractériser les 1ésions cérébrovasculaires grace
a I’imagerie et aux analyses tissulaires. Concernant notre étude sur les biomarqueurs d’intérét dans la
stratification individuelle du risque cardiovasculaire, nous avons choisi un modele primate non-humain,
physiologiquement et génétiquement beaucoup plus proche de I’Homme, nous permettant une étude

translationnelle.

Le modele souris ApoE” est le modéle murin le plus utilisé pour les études sur
I’athérosclérose du fait de la délétion du gene ApoE qui permet une accumulation de cholestérol
circulant et en fait donc un modéle prédispos¢ a 1’athérosclérose. Lorsqu’elles sont nourries avec un
régime riche en graisses et en cholestérol, les souris ApoE”~ développeront des plaques avancées. Cela,
combiné avec notre choix de prendre des animaux agés, en fait un bon modele de risque cardio-
métabolique avancé. Notre étude sur les souris ApoE™" avait pour but d’utiliser I’imagerie par résonance
magnétique (IRM) et les analyses tissulaires pour caractériser les Iésions cérébrovasculaires induites par
I’athérosclérose et 1’effet d’une activité physique réguliére sur ces lésions. Pour cela nous avons donc
réalisé des tests métaboliques (dosage du cholestérol plasmatique, test de tolérance a I’insuline, dosage
de marqueurs d’inflammation et de stress oxydant dans différents tissus d’intérét) et de I’imagerie IRM
couplée a I’utilisation de deux agents de contraste. Le Gadolinium (Gd-DOTA) nous a permis de
visualiser les lacunes de la barriére hématoencéphalique (BHE) et le P904, qui est constitué de particules

d’oxyde de fer, permet de mettre en avant I’activité phagocytaire des macrophages et donc leur
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accumulation. Nos souris étaient divisées en deux groupes, I’un ayant libre-accés a des roues d’exercice

et le second non et recevaient un régime gras constitué¢ de 21% de graisses et 0.15% de cholestérol.

Notre étude a montré que dans un contexte de consommation régulée de régime gras (les
souris étaient rationnées selon leurs besoins métaboliques), I’exercice physique régulier a un effet
modulateur bénéfique sur I’inflammation et le stress oxydant périphérique, sur la progression de
I’athérosclérose mais aussi sur l’inflammation et le stress oxydant central et les Iésions
cérébrovasculaires observées (lacunes de la BHE et accumulation de macrophages) et localisées au

niveau de I’hippocampe et des zones périventriculaires.

Nous avons ensuite voulu voir si I’exercice conservait sa modulation positive sur les 1ésions
centrales lorsque la consommation de graisses n’était plus régulée. Pour cela, nous avons reproduit la
méme étude que précédemment, a la différence prés que les souris avaient accés a la nourriture grasse a
volonté. Ce régime est apporté aux souris déja agées (uniquement un mois avant le début des tests), ce
qui constitue un stress calorique important. Nous avons également choisi de réaliser deux sessions
d’imagerie et deux tests de tolérance a I’insuline, le premier avant de commencer 1’entrainement et le
second a la fin de I’étude afin d’avoir une vision longitudinale des Iésions cérébrovasculaires. Cette
¢tude a montré que les souris entrainées ont pris du poids de fagon importante et que cette prise de poids
correspond a de la prise de masse grasse. Les effets bénéfiques sur le cholestérol plasmatique,
I’inflammation et le stress oxydant périphérique n’ont pas été retrouvées et nous avons méme observé
une aggravation de la résistance a I’insuline chez les souris entrainées. Au niveau central, aucune
amélioration n’a été observée en termes d’inflammation et de stress oxydant, et surtout, les souris
entrainées ont présenté une aggravation des Iésions cérébrovasculaires plus importante que les

sédentaires.

Mes travaux de thése sur des souris ApoE™

agées ont donc montré que I’exercice physique
régulier permettait de contrecarrer les effets déléteres d’un régime gras aussi bien au niveau périphérique
que central dans le cadre d’un apport alimentaire contr6lé mais que son action protectrice ne suffisait
plus quand le régime gras est donné a volonté. Dans ce mod¢le, la dégradation de la perméabilité de la
barriere hémato-encéphalique (BHE) au niveau de I’hippocampe et des zones péri-ventriculaires est
¢valuée en IRM via I’injection de gadolinium avant et apres 1’intervention. Nos travaux ont permis de

conclure que cette progression de la rupture de la BHE permet d’expliquer 1’activité inflammatoire

importante observée in vivo grace aux USPIO et confirmée par 1’analyse tissulaire.

Dans un second temps, nous nous sommes intéress€s aux marqueurs permettant de
stratifier efficacement le risque cardiovasculaire a I’échelle de I’individu. Dans une optique de
translation vers la clinique, nous avons cette fois opté pour un modele de primate non-humain, présentant
de treés grandes similarités avec I’Homme, aussi bien au niveau physiologique, anatomique et génétique.

Seize macaques Cynomolgus (Macaca fascicularis) agés ont été nourris durant 24 mois avec un régime
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gras riche en cholestérol et acides gras saturés (HC, n=13) ou avec un régime standard (SD, n=3). Le
suivi longitudinal via des biomarqueurs sanguins et d’imagerie, la caractérisation tissulaire de
I’inflammation d’abord par I’imagerie in vivo puis par ’analyse de I’expression génique et protéique ont
été effectués pour tenter d’¢lucider les particularités de la réponse inflammatoire dans différents
microenvironnements, a savoir la paroi vasculaire des grosses artéres comme la carotide ou la crosse
aortique, et le cerveau. Durant ces 24 mois, plusieurs prélévements sanguins ont été effectués afin de
nous fournir un suivi des profils lipidiques et des cytokines inflammatoires. De multiples modalités
d’imagerie ont été utilisées : 1’échographie réalisée a 12 et 18 mois afin de localiser les plaques et
d’observer leur progression, une session TEP/CT avec injection de deux traceurs, le [18F]-FDG afin
d’étudier le métabolisme cellulaire et le [11C]-PK11195 qui est un analogue du TSPO et est utilisé
comme marqueur d’inflammation au niveau cérébral et dans la plaque d’athérosclérose. Enfin, une
session d’imagerie IRM a ¢été réalisée a 24 mois et a permis de mesurer la surface de la plaque et la prise
de contraste apres injection de Gd-DOTA afin d’évaluer la perméabilit¢ vasculaire. Une analyse
génomique translationnelle a également été réalisée sur les carotides des primates non-humains ainsi
que sur des prélévements de carotides humaines provenant d’endartériectomies de patients, centrée sur
le phénotypage des macrophages contenus dans la plaque. Ainsi, 20 génes ont été dosés, associés au
métabolisme cellulaire et mitochondrial, aux différents types de macrophages (totaux, M1 et M2) et aux

lymphocytes.

Une inversion brutale des profils lipidiques a été observée chez les animaux sous régime
gras avec une importante augmentation du taux de cholestérol plasmatique et un écrasement du ratio
HDL/LDL dés le 1°" mois de régime. De plus, le suivi du profil lipoprotéique a montré chez ces animaux
une augmentation du nombre de LDL mais surtout la présence de sous-fractions de LDL connues pour
étre a risque métabolique. Les analyses histologiques des territoires vasculaires ont mis en avant trois
animaux HC présentant des plaques sténosantes au niveau des artéres coronaires et des plaques sévéres
et diffuses dans les carotides. Parmi ces trois animaux, un a montré des signes de fibrose myocardique
et un AVC lacunaire, signe d’événements cliniques antérieurs probablement dus a ces plaques. Le suivi
¢chographique et systémique entre 12 et 18 mois de régime a montré que ces trois animaux ont présenté
une augmentation de leur score échographique et de leur taux d’hsCRP au cours des six mois de suivi,
confirmant leur profil a risque. L’analyse génomique a elle aussi mis en lumicre ces animaux, qui sont
trés distinctement groupés a part des autres animaux de I’étude confirmant notre modele de plaques
vulnérables. Etonnamment, alors que les études sur les macrophages réalisées chez la souris montrent
une tres claire dichotomie M1/M2 avec une importante présence de macrophages M1 ‘inflammatoires’
dans les plaques a risque, nos résultats chez le macaque et chez les patients montrent que les deux types
de marqueurs M1 et M2 sont fortement exprimés chez les sujets a risque et/ou inflammatoires, remettant

en cause le paradigme observé chez la souris.
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Mes travaux ont permis de souligner 1’intérét des biomarqueurs d’imagerie pour observer
de facon non invasive et in vivo la présence et la progression des lésions cérébrovasculaires induites par
I’athérosclérose et son utilité pour évaluer 1’effet de I’intervention utilisée (exercice physique, régime,
...). L’étude sur les primates non-humains sous régime athérogene a montré I’intérét d’associer les
différentes modalités d’imagerie a disposition en clinique humaine (a savoir échographie, IRM,
TEP/CT) et les dosages biologiques dans la stratification du risque cardio et cérébrovasculaire. Cette
stratification a permis d’identifier des animaux dont les plaques d’athérosclérose complexes ont été a
I’origine d’événements ischémiques, caractérisés par des cicatrices myocardiques et cérébrales,
confirmée par I’histologie au niveau cardiaque et I’IRM au niveau cérébral. En parallé¢le, I’'imagerie in
vivo de I’inflammation et les études de biologie moléculaire sur les tissus d’intérét ont permis de
souligner I’importance de 1’association des marqueurs métaboliques, inflammatoires et, plus surprenant,
de marqueurs anti-inflammatoires dans 1’équation de stratification des sujets et de remettre en question

le paradigme de la dichotomie M1/M2.
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Atherosclerosis is the underlying cause of death and morbidity worldwide: 17.5 million of
death in 2012 e.g. 31% of all deaths and the second in France with 150 000 deaths per year (World
Health Organization). 80% of cardiovascular diseases deaths are due to myocardial infarction (MI; 7.4

million) or stroke (6.7 million) making this a public health issue.

Atherosclerosis is a complex pathology, worsened by environmental factors such as
obesity, type 2 diabetes mellitus, dyslipidemia, hypertension, smoking and sedentarity. Atherosclerosis
is a silent disease with no real symptoms which is revealed only when the arterial obstruction lead to
outcomes such as myocardial infarction (120 000 per year in France), stroke (130 000 per year),
peripheral vascular disease, kidney failure or mesenteric infarction. In the brain, it can also lead to
transient ischemic attack (TIA) corresponding to a brief and harmless neurological deficit considered

as an alert signal for upcoming stroke. But the exact reaction cascade leading to outcomes is still elusive.

Indeed, it combines inflammation with a dyslipidemic context and mainly results in
vascular lesions but also in cerebrovascular outcomes still poorly explained. This complexity of
atherosclerosis requires animal models closer to human pathology, notably aged animals, an essential
factor to encounter both peripheral and central alterations of oxidant/antioxidant balance and
inflammation. Translational techniques for atherosclerosis exploration are also needed to assess
circulating biomarkers such as lipidic profile, inflammation, and oxidative stress. The combined use of
imaging biomarkers provides local information on plaque morphology and function, and even if it is

still explorative, in situ inflammation follow-up in arterial vessel wall and in cerebrovascular tissues.

Studies on animal models permit the end-point tissue evaluation of the atherosclerosis
completing the in vivo imaging approach, especially for inflammatory and oxidative stress status. It
enables the validation of the best combination of biomarkers (circulating and imaging) transposable in
human clinic and diagnosis. In this work, we successively tested these biomarkers to evaluate the
modulating effects of exercise in old ApoE”" mice when high fat/high cholesterol diet is given under a
controlled regimen or ad libitum. We then transposed these combinations of biomarkers to study the
modulation of inflammation in a non-human primate (NHP) model of atherosclerosis under high
Jfat/high cholesterol diet. We finally evaluate the clinical relevance of our findings by analysis of gene
expression in endarterectomy samples from symptomatic and asymptomatic patients. The manuscript is
organized in four parts: an introduction of atherosclerosis and the different biomarkers strategies

followed by the experimental studies in mice and in NHP, and a general discussion and conclusion.
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I. ATHEROSCLEROSIS: A COMPLEX PATHOLOGY WITH MULTIPLE OUTCOMES

My thesis, as emphasized in this chapter, focused on cerebrovascular outcomes of

atherosclerosis in humans and animal models.

The first part will illustrate the physiopathology of atherosclerosis, from the plaque
development to the progression of advanced pathology and vulnerability and to the cerebrovascular
outcomes of plaque rupture. This will lead to the second section on the connections between main
metabolic organs (e.g. liver and adipose tissue) andatherosclerosis. And finally, this chapter will focus
on different animal models available for research purpose and well-known interventions such as lifestyle
behavior and drugs (lowering cholesterol drugs, mitochondrial protection, oxidative stress and

inflammation modulation).

A. Atherosclerosis and its cerebrovascular outcomes

Atherosclerosis is a complex and multisite vascular disease leading to a numerous different
phenotypes of vulnerable plaque: rupture-prone, erosion-prone, calcified, hemorrhagic or stenotic
plaques (Naghavi, 2003) (Figure 1). Several features can be found in the same plaque, increasing its
vulnerability. Cerebrovascular outcomes of atherosclerosis, such as transient ischemic attack or stroke
lead to many important sequels such as hemiplegia or facial paralysis, and even to death (Toole JF et

al., 1975).

1. Atherosclerosis: a lipidic and inflammatory chronic disease

Atherosclerosis is the underlying cause of stroke, heart attack and peripheral vascular
disease. Virchow discovered a century ago that atheroma plaque contained fatty element that Windaus
lately identified as cholesterol, suggesting an important role for lipids in the pathogenesis of
atherosclerosis (Mayerl et al., 2006). More recently, the acceptance of atherosclerosis as an
inflammatory disease has led to appealing advances in the understanding of this pathology (Ross, 1999).
In this section, we will rapidly discuss the development of atheroma plaque and then focus more on the
different characteristics of atherosclerosis such as the lipidic side, the role of immune cells and

inflammation and then the participation of oxidative stress.
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Figure 2: Stary’s classification for atheroma lesion. The direction of arrows indicates sequence
in which characteristic morphologies may change. From type I to type 1V, changes in lesion
morphology occur primarily because of increasing accumulation of lipid. The loop between
types V and VI illustrates how lesions increase in thickness when thrombotic deposits form on

their surfaces. Thrombotic deposits may form repeatedly over varied time spans in the same

location and may be the principal mechanism for gradual occlusion of medium-sized arteries.

From Stary et al, Circulation, 1995
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a) Plaque development

In the 50’s, the World Health Organization (WHO) published a classification of the
different plaque progression stages, described more precisely by Stary et al.in 1995(Stary et al., 1995).
The atherosclerotic lesions are divided into six types of plaque; from the initial lesion (type I)
characterized by isolated macrophage foam cells in the intima to the complicated lesion (type VI)
marked by a defect of the plaque’s surface and a thrombus (Figure 2).Atherosclerosis is a progressive
disease, evaluating throughout the life, and in the following paragraphs we will describe the initiation

and evolution of the plaque.

i Atherosclerosis lesion initiation and fatty streak phase

Vascular endothelium reacts to different mechanical (shear stress and blood flow) and
molecular (cytokines, oxidized molecules) stimuli in order to maintain homeostasis, arterial tone and

proper inflammation control(Dahlbéck, 2000; Liischer et al., 1991; Luscinskas and Gimbrone Jr, 1996).

Physiological endothelium, found in normal shear stress regions, has polygonal and
flattened shaped cells with a basal membrane and joined by tight junctions to form an efficient
barrierbetween arterial lumen and vessel wall. In these cells, transcription factors Kriippel-like factor
(KLF) 2 and 4 are activated, enhancing eNOS expression and contributing to cell migration and survival
(Chiplunkar et al., 2013; Topper et al., 1996). There is also increased expression of superoxide dismutase
(SOD) which decreased cellular oxidative stress (Topper et al., 1996), allowing maintenance of an
effective barrier (Lei et al., 2013). Regions with normal shear stress and efficient endothelial function

are resistant to atherosclerosis formation.

In perturbed blood flow and low shear stress regions such as arterial bifurcations or curves
(also called atheroma-prone regions), endothelial cells suffered because of hemodynamics perturbations
(Gimbrone et al., 2000). It leads to a morphological modification, cells become cuboidal, and alignment
is impaired resulting in an increased senescence and apoptosis (Hansson et al., 1985; Nerem et al., 1981).
The lowering of endothelial nitric oxide synthase (eNOS) and SOD expression leads to an increased
oxidative stress which enhances the low-density lipoproteins (LDL), very low-density lipoproteins
(VLDL) and chylomicrons subendothelial retention and oxidation(Ross, 1999). The resulting activation
of nuclear factor-kappa B (NF-kB) signaling pathway promotes the expression of monocytes adhesion
molecules (intercellular adhesion molecule 1, ICAM-1;vascular cell adhesion molecule 1, VCAM-1, P-
selectin), cytokines (macrophage chemoattractant protein 1, MCP-1;interleukine 8, IL-8) and
proinflammatory receptor (toll like receptor, TLR) conducting to an subendothelial monocyte

infiltration (Hamik et al., 2007; Moore and Tabas, 2011; Yurdagul et al.,
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Figure 3: Foam cell formation. Macrophage internalizes LDL and oxLDL via CD36,

SR-A, ApoE receptor, macropinocytosis or phagocytosis. Once in the macrophage,

LDL are degraded by lysosomes and release free cholesterol (FC) in the cell. FC is

then uptaked by endoplasmic reticulum and reconverted in cholesteryl esters (CE) by

ACAT. CE obtained accumulates in the cell into lipidic droplets leading to foam cell

Jormation. ACAT, acetyl-CoA acyltransferase; SR-A, scavenger receptor A.

Initial Fatty Intermediate Atheroma
lesion streak lesion lesion

Fibro-
atheroma

Complicated lesion

Figure 4: Atherosclerotic plaque progression from initial lesion to advanced, complicated plaque.

Adapted from Orbay et al, Theranostics, 2013
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2013). Endothelial dysfunction arises from all these and is characterized by a lacunar, prothrombotic

and proinflammatory barrier (Gimbrone and Garcia-Cardefia, 2013).

Endothelial activation causes monocyte recruitment via a cascade including monocyte
rolling mainly mediated by P-selectin, adhesion via VCAM-1 and ICAM-1 (Galkina and Ley, 2007),
activation and transendothelial migration mediated by cytokines, MCP-1 and IL-8 (Gerszten et al., 1999;
Gu et al., 1998). Though macrophages are the principal infiltrating cells, several other cells supply to
plaque development such as T cells, mast cells and dendritic cells (Paulson et al., 2010; Rocha and
Libby, 2009). T cells modulate the macrophage phenotype: Thl cells produce interferon gamma (IFNy)
which induces proinflammatory macrophage phenotype also called M1; when Treg produce
transforming growth factor beta (TGFp) and IL-10, inducing anti-inflammatory macrophage profile or

M2.

In this first phase of atherosclerosis, monocyte-derived macrophages internalize LDL and
VLDL which are then degraded by lysosomes resulting in the release of excess free cholesterol. It is
then directed to the ER when it will be esterified by acyl-CoA cholesterol acyltransferase (ACAT). The
resulting cholesteryl ester (CE) is then batched into lipidic droplets, a characteristic feature of foam
cells. OxLDL and to a lesser extent glycated LDL are easily uptake via numerous non cholesterol down-
regulated receptor (CD36, SR-A) (Moore and Freeman, 2006), phagocytosis (Torzewski et al., 2004),
via apolipoprotein E (ApoE)receptor(Schwartz and Reaven, 2012) or pinocytosis(Kruth, 2013) (Figure

3). Foam cells leads to fatty streak formation, which is the first hallmark of atherosclerosis (Figure 4).

ii. Progression to advanced lesion

Fatty streak lesions do not induce clinical complications and can regress. But, once vascular
smooth muscle cells (VSMCs) have proliferated in the endothelium, regression is less prone to occur.
There is a small pool of VSMCs in the endothelium and their proliferation is mediated by growth factors
secreted by inflammatory macrophages e.g. Platelet-Derived Growth Factor (PDGF) or Fibroblast
Growth Factor (FGF) (Raines, 2004; Yang et al., 2015) Macrophages also release chemoattractants such
as Matrix Metalloproteinases (MMP) inducing migration of VSMCs from media to intima and
proliferation (Johnson, 2007). Accumulation of these VSMCs builds a complex extracellular matrix
including collagens, proteoglycans and elastin leading to the formation of a fibrous cap above the lipidic
core of foam cells (Libby, 2000). The more the plaque progress, the more lipids accumulates in the core,

mainly due to enriched-CE particles from dead foam cells(Figure 4).

VSMCs also have the ability to load CE but as they express less ABCA1 and have a poor

lysosomal activity and cholesterol trafficking, they contribute to an inefficient cholesterol efflux
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Figure 5: Determinants of plaque vulnerability. Inflammation has a key role in atherogenesis leading to all
features of plaque vulnerability. Adventitial remodeling can lead to stenosis, neoangiogenesis and its resulted
intraplaque hemorrhage, as well as fibrous cap thinning can result in plaque rupture and thrombus formation
leading to clinical outcomes.

Adapted from Shah, Curr Cardiol Rep, 2014
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(Jerome et al., 1991; Li et al., 1993). In this environment, macrophages also show an
impaired lysosomal function resulting in a decrease of free cholesterol and CE uptake and to the
accumulation of lipids in the plaque (Jerome, 2006) suggesting that lysosomal dysfunction is part of the
plaque worsening. While accumulation of cells in the subendothelial space leads to a protrusion in the
artery, the vessel is remodeling in order to keep the lumen in a physiological range. Thus, the lumen
occlusion decrease leads to few clinical symptoms of atherosclerosis during most of the life of the plaque

(Alexander et al., 2012; Heusch et al., 2014).

Likewise, during the life of the plaque, the maintained oxidative stress feeds the low-grade
inflammation in enhancing M1 polarization of macrophages leading to a vicious circle at the origin of

the plaque progression (Dutta et al., 2012).

iii. Vulnerable plaque and rupture

Non resolved inflammation is the cause of advanced plaque, leading to the formation of
vulnerable plaque. Vulnerable plaque is morphologically characterized by several parameters such as a
necrotic core and a thin fibrous cap (Libby, 2013a; Virmani et al., 2002). These features turn the plaque

in a rupture-prone configuration (Virmani et al., 2002) (Figure 5).

The necrotic core contains high quantity of dead macrophages due to an important
oxidative stress or a nutrient deprivation (Tabas, 2010a) and the remaining macrophages present a
defective efferocytosis (Tabas, 2010b). This defect impairs the phagocytosis of apoptosis-dead
macrophages and lead to a necrotic death which release several oxidized intracellular components and
inflammatory molecules. Inflammation, oxidative stress and cell death are increased in this
microenvironment (Thorp and Tabas, 2009). On the other hand, the thinning of the fibrous cap is the
result of the extracellular matrix (ECM) loss, mainly due to the death of the VSMCs of the cap caused
by both macrophages (Geng et al., 1997), inflammatory cytokines (Boyle et al., 2003) and oxidation
products (Fruhwirth et al., 2006).

Besides the inflammation, the lipidic composition of the plaque is also an important
parameter to take into account. Recent studies showed that stable and unstable plaque present differences
in their lipid composition. Stable plaques hold more CE-containing polyunsaturated fatty acids (PUFA)
when unstable plaques present more CE-containing monounsaturated fatty acids (MUFA) and

lysophosphatidylcholine (lysoPC) more prone to oxidation (Stegemann et al., 2011).

When the plaque ruptures, it exposes the necrotic core prothrombotic and procoagulant
factors to the pool of platelets procoagulant factors in the vessel lumen resulting in a thrombus

formation. The thrombus is the main cause of clinical outcomes. Indeed, the lumen occlusion leads to
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myocardial infarction, unstable angina, sudden cardiac death and even stroke when the thrombus

migrates or is formed in the cerebrovascular territory (Libby, 2013a; Virmani et al., 2002).

b) Lipidic physiopathology

Anitsckow evidenced the causal role of cholesterol in the atherosclerosis pathogenesis in
the early 1900s showing that rabbit fed with cholesterol developed atheroma in a similar way than
humans (ANICHKOV, Nikolai Nikolaevich and CHALATOV, Semen Sergeevich, 1913). But several
decades passed before it was confirmed by epidemiological studies as the Framingham study (Kannel
et al., 1961) and the Multiple Risk Factor Intervention Trial (MRFIT) (Stamler et al., 1986)that elevated
blood cholesterol levels were associated with increased risk of cardiovascular outcomes. LDL-C levels
are directly correlated with cardiovascular events (Castelli et al., 1986)while high-density lipoproteins

cholesterol (HDL-C) levels are inversely associated with the cardiovascular risk (Gordon et al., 1977).

The physiological path that cholesterol follows in the body is very complex. Moreover,
cholesterol can be absorbed from diet or synthesized de novo and can pass through various modes of
transport, storage and metabolism. In this paragraph, we will discuss LDL and HDL,the principal

cholesterol-loading particles, and triglycerides.

i. LDL

LDL particles represent a heterogeneous group of lipoproteins from 18 to 25nm of diameter
produced by the liver from VLDL. LDL are composed of 78% of lipids and 22% of proteins including
apolipoprotein B100 (ApoB100), phospholipids, triglycerides and antioxidant liposoluble vitamins (vit
E and carotenoids). Their function is the transport of free or esterified cholesterol to the cells via the
blood. Because of is implication in atherogenesis, LDL are commonly called “bad cholesterol” on

contrary to HDL, called “good cholesterol” because of its atheroprotective effects.

LDL can be separated by gradient polyacrylamide electrophoresis in non-denaturing
condition. Seven LDL subfractions are distinguished, allowing classifying the subjects in two
phenotypes: A phenotype is characterized by large LDL (mean diameter > 255 A) and B phenotype
when LDL mean diameter is lower (Austin et al., 1990). Most of the population (70%) have an A or
intermediate phenotype. Small and dense LDL are prevalent in individuals with cardiovascular disease
(Stampfer et al., 1996). Numerous prospective studies have shown that LDL diameter is a predictive
factor of coronary artery disease (CAD) risk even if this link was not independent from HDL-C or

triglycerides (TG) levels (Arsenault et al., 2007; Lamarche et al., 1998; Stampfer et al., 1996).Even if
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small and dense LDL cannot be considered as an independent risk factor for cardiovascular disease,
these LDL subfractions are highly atherogenic particles mainly due to a lower affinity for LDL-C
receptor (LDLR) (Galeano et al., 1994) which increases the plasmatic residence time (Campos et al.,
1996; Packard et al., 2000)and so favors their oxidization (Chait et al., 1993) and phagocytosis by
macrophages. Moreover, small LDL have an increased affinity for proteoglycans (Anber et al., 1996)
resulting in an intensification of their transfer into the subendothelial space (Bjornheden et al., 1996).
Finally, dense LDL are associated with endothelial dysfunction (Vakkilainen et al., 2000) and increase
of intima-media thickness (IMT) (Liu et al., 2002). Recent study by Grammer et al., showed that both
small and large LDL are associated with a cardiovascular risk in patient referred for coronary

angiography (Grammer et al., 2015).

LDLR was discovered in the 1972 by Goldstein and Brown from studies on familial
hypercholesterolemia (FH) (Goldstein and Brown, 2009). Indeed Ld/r gene mutation is the main cause
of this disease associated with high levels of LDL-C and increased risk for premature cardiovascular
disease. LDLR is a surface receptor mediating the internalization of LDL particles, which are hydrolyzed
by lysosomal enzymes leading to the release of cholesterol in the cell. It follows several regulations such
as the decrease of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase)
activity, the decrease of Ldlr gene transcription leading to a lowering of LDLR on the cell surface and
an increase of ACAT activity. ACAT stimulates the storage of excess cholesterol as cholesteryl ester

droplets in the cytoplasm (Brown and Goldstein, 1979) (Figure 6).

LDL infiltration in the intima through dysfunctional endothelium initiates atherosclerotic
plaque formation in the arteries (Bonetti et al., 2003). LDL are then retained in the subendothelial space
because of their high binding affinity to proteoglycans. The oxidization of LDL lipids in the intima leads
to modification on the ApoB residues, which are then recognized by macrophages scavenger receptors
and internalized, converting the macrophages to cholesterol-loaded foam cells (Brown and Goldstein,
1983; Greaves and Gordon, 2009). The foam cells release numerous cytokines, initiating an
inflammatory response (Hansson and Jonasson, 2009; Libby et al., 2011) inducing the

oxidization/inflammation vicious circle at the origin of plaque progression (Higashi et al., 2009).

More details on LDL oxidization will be given in the following chapter on oxidative stress.
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Adapted from Goldstein and Brown, ATVB, 2009
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ii. HDL

HDL are lipoproteins of high density responsible of cholesterol trafficking to the liver
where it will be eliminated, thereby avoiding cholesterol accumulation in blood vessels and so

atherosclerosis risk. HDL are composed of 48% lipids and 52% proteins (mainly apolipoprotein Al,

ApoAl but also apolipoprotein E, ApoE). They can be divided into 5 subfractions, differing by their
proteic content (Davidson et al., 2009). HDL3 subfraction is the only one correlated with a decreased
cardiovascular risk (Martin et al., 2015). HDL can inhibit endothelial cells apoptosis excepted in subject
with cardiovascular diseases, probably due to a variation of the apolipoprotein content: those containing
only ApoA-I seems to be more cardioprotective than those with ApoA-I and ApoA-II (Genest et al.,
1991; Riwanto et al., 2013). High plasmatic HDL-C level might be correlated with a lowering of CVD
occurrence (Emerging Risk Factors Collaboration et al., 2009)but there is still no evidence of a causal
mechanism: genetic or pharmacological-induced HDL increase does not present a protective effect on
CVD (Haase et al., 2012; Khera et al., 2011; Voight et al., 2012). Moreover, HDL function might be
more important than HDL-C level which is not a reliable biomarker of it (Khera et al., 2011).

iii. Triglycerides-rich lipoproteins (TRLs)

TRLs group very low density lipoproteins (VLDL), chylomicrons and theirs remnants and
are the main transporter of triglycerides in plasma. They form a group of heterogeneouslipoproteins of
different size, density and composition and are differently associated to the cardiovascular risk
(Ginsberg, 2002). TRLs are directly and indirectly contributing to atherosclerosis progression (Hodis,
1999; Rosenson et al., 2014). First, TRLs remnants can penetrate into the intima and be scavenged by
macrophages without oxidative modification, contributing to foam cell formation and plaque
progression (Nordestgaard et al., 1995; Rosenson et al., 2014).They were found to be as atherogenic as
LDL, and even more due to the higher cholesterol volume carried by TRL particle compared to LDL
(Rosenson et al., 2014) and promoteendothelialdysfunction(Aung et al., 2013). Secondarily, TRLs
hydrolysis by lipoprotein lipase (LPL) releases a large amount of lipolytic products such as oxidized
free fatty acids (FFA)in the arterial lumen leading to an increase of inflammatory cytokines resulting
in endothelial inflammation (Aung et al., 2013; Wang et al., 2009). Furthermore, TRL remnants have
been shown to upregulate the expression of ICAM-1 and VCAM-1 on the endothelium (Wang et al.,
2013b), increase the production of reactive oxygen species (ROS)(Wang et al., 2009) and enhance
platelet aggregation and intensify the coagulation cascade (Olufadi and Byrne, 2006). They also inhibit
the protective effect of HDL (Patel et al., 2009). Moderately elevated triglycerides level (1.7 — 5.6
mmol/L) are independently associated with CVD risk even in patients under statins, suggesting that

TRLs are important to take into account for the medical care of patients (Boekholdt et al., 2012).
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Although numerous epidemiological studies have shown the association between triglycerides and CVD
(Assmann and Schulte, 1992; Emerging Risk Factors Collaboration et al., 2009; Faergeman et al., 2009;
Freiberg et al., 2008) the inconsistence of the results of triglycerides-lowering agents on cardiovascular

events leaves the question of a direct causal role of TRLs in CVD (Hegele et al., 2014).

c¢) Low-grade inflammation

Monocytes are peripheral mononuclear blood cells belonging to the innate immunity
originate from a common myeloid progenitor cell in the bone marrow. They will differentiate into
macrophages since they entered into a tissue; at this stage they are called “steady-state” macrophages or
MO (Gordon and Taylor, 2005). Then, according to the tissular microenvironment, i.e. the cytokines and
chemokines expressed in the tissue, they will differentiate and express several cell surface markers and

secrete cytokines, which are used to determine the phenotype of the macrophages.

As macrophages are the more represented immune cells in plaque and can also be
approached by in-vivo imaging, we will focus on them even if other immune cells such as lymphocytes
also play important roles in this pathology. In this section, we will consider the setup of low-grade
inflammation in atherosclerosis context from macrophage recruitment to context-adapted phenotypic
expression. Then we will focus on knowledge about subsets from in vitro to in vivo studies in mice, non-

human primates and humans and finally we will discuss the relevance of the M1/M2 dichotomy.

i.  Low-grade inflammation: from macrophages recruitment to

advanced plaque

Monocytes migrate from the blood through tissues to replace long-lived tissue-specific
macrophages of the bones (osteoclasts), alveoli, connective tissue (histiocytes), gastrointestinal tract,
liver (Kiipffer cells), central nervous system (CNS; microglia), spleen and peritoneum (Gordon and
Taylor, 2005). In the blood, monocytes are not a homogenous population of cells, and the question
whether specific monocytes leads to specific tissue macrophages is still under debate (Nahrendorf et al.,
2007). A theory exists that monocytes are still developing and maturing in the blood and can be recruited
to the tissues at different time point during the maturation continuum (Sunderkoétter et al., 2004),
distinguishing ‘inflammatory’ and ‘resident’ monocytes. In some cases, local proliferation of tissue-
resident macrophages can directly give mature macrophages, such as microglia in the CNS (Ajami et

al., 2007).
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Macrophages have a crucial role in the totality of atherosclerosis stages: from initiation of
the lesion and its expansion to necrosis inducing rupture, and even to resolution and regression of the
plaque (Tabas and Bornfeldt, 2016). There are the principal immune cells in atheroma plaque; risk

factors of CVD as hypercholesterolemia enhance bone marrow production of monocytes (Swirski et

al., 2007) and increase of circulating monocytes is a known independent risk factor for atherogenesis
(Dutta and Nahrendorf, 2014; Schlitt et al., 2004). Monocytes enter in the vessel in regions of abnormal
hemodynamic stress via adhesion to endothelial cell (Gerhardt and Ley, 2015). Once in the intima, they
differentiate to lesional macrophages (Randolph, 2014) depending on lesional microenvironment which
is different according to the area and the stage of lesion development. Thus, systemic factors such as
dyslipidemia, low-grade inflammation induced by diabetes mellitus and infection can affect the
microenvironment. There are three plausible and seriously associated actors of macrophage phenotype:
the cholesterol and lipid loading, the metabolic state and the balance between proinflammatory and

proresolving molecules (Tabas and Bornfeldt, 2016).

Microenvironment is responsible of pro-atherogenic effect of the lipid loading in foam cells
(Spann et al., 2012). The determination of inflammatory status of macrophages depend on the balance
between free cholesterol efflux and CE storage (Lim et al., 2008; Tall and Yvan-Charvet, 2015). Free
cholesterol efflux and in vivo reverse transport are inhibited by inflammation (McGillicuddy et al.,
2009), evidencing that inflammation and lower cholesterol efflux supply this detrimental vicious circle.
The finely settle of the balance between cholesterol uptake, intracellular handling and efflux can be
viewed as a complex apparatus and any perturbation in it can induce macrophage dysfunction,
inflammation, altered activation of nuclear receptor and atherosclerosis (Moore et al., 2013; Spann et

al., 2012).

An inalienable link exists between the metabolic phenotype of a macrophage and its
inflammatory phenotype (Tabas and Bornfeldt, 2016). In vitro studies demonstrate that there are
important differences in M1 and M2 metabolism: M1 phenotype reposes on an increase glycolysis for
energy metabolism while M2 phenotype mainly relies on fatty acid oxidation (Vats et al., 2006). Indeed,
glycolysis is essential for activation of inflammation and survival of M1 (Tannahill and O’Neill, 2011;

Tawakol et al., 2015) and fatty acid oxidation seems to be necessary for M2 (Vats et al., 20006).

Lesional macrophage proatherogenic effect results in a sensitive equilibrium amongst pro

and anti-inflammatory processes (Tabas, 2010b). Main proinflammatory cytokines are interleukin
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Figure 7: The initial step of inflammation: the leukocyte adhesion cascade. Leukocyte adhesion to
endothelial cells and infiltration is a complex process requiring several steps from capture of the
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1; PECAM-1, platelet/endothelial-cell adhesion molecule; PI3K, phosphoinositide 3-kinase; VCAM-
1, vascular cell-adhesion molecule 1

Adapted from Ley et al, Nat Rev Immunol, 2007
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(IL-1, IL-6, IL-12, IL-15, IL-18), TNFa and chemokine ligand (e.g. MCP-1)when major proresolving
and antiatherosclerotic molecules are IL-10, TGFf (Galkina and Ley, 2009). In mice model, IL-13, IL-
27 and CXCLS5 can be added (Cardilo-Reis et al., 2012; Koltsova et al., 2012; Rousselle et al., 2013).

Subendothelial macrophage accumulation is one of the first steps of lesion initiation.
Monocytes enter in the intima attracted by oxLDL in the subendothelium and expression of adhesion
molecules on endothelial cell surface (Williams and Tabas, 1995). The recruitment of monocytes to the
intima occurs due to the leukocyte adhesion cascade: capture and rolling (mediated by E and P-
selectins), activation (via chemokines), arrest (mediated by ICAM-1, VCAM-1 and integrins), adhesion
strengthening and spreading (mediated by SRC kinases and PI3K), intravascular crawling (mediated by
ICAM-1) and then paracellular (mediated by PECAM-1, ESAM) or transcellular transmigration (mainly
mediated by ICAM-1) (Ley et al., 2007) (Figure 7). Adhesion of monocyte on endothelium activates the
transcription factor signal transducers and activators of transcription 1 (STATI) involved in the
monocyte to macrophage maturation process by modulating the expression of functional genes such as
ICAM-1 (Coccia, 1999). The fatty streak expands mainly due to more macrophage accumulation and
by increase of foam cells. Proliferation of resident macrophages can also participate to the accumulation
of cells in this region (Robbins et al., 2013; Rosenfeld, 2014).

In advanced lesions, apoptosis of macrophages is increased, partly due to endoplasmic
reticulum (ER) stress induced by free cholesterol or fatty acids (Thorp et al., 2009). Furthermore,
advanced lesional macrophages present a defective efferocytosis, contributing to plaque necrosis and
increased inflammation due to the release of inflammatory molecules from uncleared post-apoptotic
cells (Ridker et al., 2011; Stoneman et al., 2007). Moreover, macrophages have a defect in autophagy
resulting in inflammasome activation (NLRP3, NF-kB) in response to cholesterol crystals and leading
to larger plaque (Razani et al., 2012). A recent study from Libby suggests that macrophages can
contribute to the thinning of the fibrous cap and therefore to plaque rupture by secreting MMPs (Libby,
2013b). Likewise, macrophages can sometimes be associated to intraplaque hemorrhage in advanced
human lesions (Kolodgie et al., 2003). All of this shows that macrophages are important actors of
development of lesions, especially concerning the necrotic core formation leading to unstable lesion and

promoting acute clinical cardiovascular events.

Regression of plaque in mice is characterized by the reduction of the macrophage content
and an alteration of gene expression in the remaining macrophages (Feig et al., 2011a; Willecke et al.,
2015). In regressing lesion, some studies showed that macrophage phenotype is not completely anti-
inflammatory. Indeed, remaining CD-68" cells display high level of Argl and Cd163 (genes generally
considered as M2 markers) and reduced levels of Tnfa and Cc/2 mRNA but also an upregulation of
Cxcl2 and 1l11b mRNA expression (Feig et al., 2011a). Evenly, CD68+ smooth muscle cells can
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contribute to the observed gene expression variation. Recently, Nagareddy et al. proposed that the
impaired regression of atherosclerotic lesions might be caused by an increase of macrophage recruitment

rather than a reduction of macrophages egress (Nagareddy et al., 2013).

ii. Macrophages subsets in plaque

Two different populations of monocytes can be differentiated in mice based on the
expression of cell-surface markers: inflammatory monocytes are defined as CCR2* (C-C motif

chemokine receptor 2), CX3CR1°" (C-X-C motif chemokine receptor 1) and Ly6" (lymphocyte

antigen 6 complex) and resident monocytes are defined as CCR2-, CX3CR1"¢" Ly6 (Geissmann et al.,
2003). Extrapolate mouse data to humans becomes very delicate because human monocytes seem to
have distinct physiology from that of mouse (Strauss-Ayali et al., 2007). In humans, monocytes are
mainly (90%) CD14"¢"CD16 and referred as “classical” or CD14'CD16" and referred as “non-
classical” (Passlick et al., 1989).

Concerning macrophages, two major macrophages subsets were identified in vitro that are
phenotypically and functionally different: “classically activated” or M1 phenotype considered as pro-
inflammatory and “alternative activated” induced in vitro by IFNy or LPS and M2 considered as anti-
inflammatory and induced by IL-4 or IL-13 (Mills et al., 2000; Nathan et al., 1983; Pace et al., 1983;
Stein et al., 1992).

But the more macrophages are studied, the more the M1/M2 model seems to be inadequate
especially as this model is based on in vitro studies with unknown relevance to in vivo states. (Mantovani
et al., 2002; Tabas and Bornfeldt, 2016). In in vitro studies the stimulation was reduced to 1 or 2 stimuli
(INFy and LPS for M1, IL-4 and IL-13 for M2) while in atherosclerosis, macrophages are exposed to a
profusion of stimuli that will induce different functions and cell-surface markers. For example, in human
endarterectomy lesions, the microenvironment of atherosclerotic plaque has been identified as Thl
dominant with more INFy than IL-4 (Frostegard et al., 1999). But the M1/M2 paradigm is limited
because it does not take account of the source and context of the stimuli and strict M1/M2 stimuli do
not exist alone in the tissues (in contrary of in vitro situation). In contrast with in vitro situation, in vivo
macrophages respond to the tissular microenvironment and interact with T and B cells which will
determine whichever phenotype they will have (Cruz-Leal et al., 2014; Mantovani et al., 2004; Mosser
and Edwards, 2008).
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Macrophages phenotype and functions in atherosclerosis were intensively studied in
atherosclerosis during the last decades and there is still a lot to discover. Studies showed that M2
phenotype can be divided into three subclasses: M2a, M2b and M2c; all having atheroprotective effect
but in different ways (Mantovani et al., 2004). Since the last decade, others populations of macrophages
have been suggested in atherosclerosis plaque. M(Hb) and Mhem induced by exposure to
hemoglobin/haptoglobin complexes in vitro and hemorrhage or neovascularization in vivo and are
resistant to lipid loading (Boyle et al., 2009), Mox induced by exposure to oxidized phospholipids in
vitro in mice (Kadl et al., 2010), M4 induced by CXCL4 and showing protective effects (Chinetti-
Gbaguidi et al., 2015), and a population of macrophages stimulated by IL-17A (Erbel et al., 2014).More

details are presented in the Figure 8.

One cell-surface marker cannot be sufficient to distinguish which phenotype macrophages
are expressing. Indeed, only a few markers are specific for a given phenotype and some are shared by
multiple subclasses resulting in overlapping macrophage phenotypes (Figure 8 and Table 1). One of
the greatest properties of macrophages is that they are remarkably plastic and are able to switch from
one phenotype to another regarding on the microenvironment (Lee et al., 2011; Porcheray et al., 2005).
Atherosclerotic plaque microenvironment is complex and heterogeneous and influences the phenotyping
of macrophages. In the same way, macrophage subtypes influence plaque structure and evolution by
their activities (e.g. phagocytosis, cytokine release) (Tabas and Bornfeldt, 2016). Macrophage plasticity

has also been observed during plaque regression (Feig et al., 2011b).

iii. Relevance of M1/M?2 dichotomy and perspectives

Based on all the discoveries on macrophage phenotype, one only thing remains certain: the M1/M2
dichotomy is no longer applicable. In atherosclerosis as in other diseases involving macrophages,
lesional macrophages can be best viewed as representing a wide continuum of phenotypes and functions.
There is still a lot to discover and lighten concerning subclasses of macrophages and how they are
determined. In mycobacterial infection for example, a new phenotype of macrophage, called
mycobacterial infection induces suppressor macrophage (MIS macrophage), has been highlighted by
Tatano et al.in mycobacterial-infected mice(Tatano et al., 2014). These specific macrophages, down-
regulates both Thl and Th2 cytokine release but increases IL-17A and IL-22 production. This new
subset is functionally completely different from M1 and M2 and presents a unique phenotype mixing
M1 and M2 markers: IL-12%, IL-1p"e" [L-6", TNF*, NOS2*, CCR7"¢" IL-10"e" Argl-, MMR"Y,
Ym1hie" Fizz'% and CD163Meh,
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Markers

Plaque characterisitcs

Phenotype
P Mouse Human
II-1B, TNFaq, IL-6, IL- 11-1B, TNFa, IL-6, IL-
12,1L-23, CXCL9, .
M1 CXCL10. CXCL11 12, 1L-23, CXCL9, Necrotic core
L ? CXCLI10,CXCLI1
Arginase I
. MMR, IL-1ra
Arginase I, Yml, Ym2, . ’
M2a CD163 CD200R, CCL18, Arcas of
CD163 neovascularization or
M2b IL-10Qbigh | -] 2low IL-10Qhigh -] 2%w hemorrhage
M2c Arginase | MMR
M4 MMP-7, MMR
Mox HO-1, NFE2L2 Advanced lesion
M(Hb) CD163 Areas of
hich 1w | Me0vascularization or
Mhem CDI163"", HLA-DR hemorrhage

Table 1: Macrophages markers in mouse and human and the associated plague

characteristics.
CCLI8, C-C motif chemokine ligan 18; CXCL, C-X-C motif chemokine ligand,; HLA,

human leukocyte antigen; HO-1, heme oxygenase; MMP-7, matrix metalloproteinase

7. MMR macrophage mannose receptor; NFE2L2, nuclear factor erthroid-derived 2

like 2; TGFP, transforming growth factor beta, TNFa, tumor necrosis factor alpha
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The phenotype of these macrophages is very interesting and need to be studied also in an atherosclerosis

model.

d) Oxidative stress

ROS are highly reactive molecules either endogenous or exogenous which can damage all
classes of macromolecules (Holmstrdm and Finkel, 2014). In atherosclerosis pathogenesis, oxidative
stress has been established to be an important actor, particularly by promoting oxidation of LDL, one of

the earliest hallmark of atherogenesis (Peluso et al., 2012).

Atherosclerosis has three fundamental features: inflammation, disturbed blood flow and
abnormal shear stress, arterial wall remodeling and immoderate ROS production is involved in all of

these characteristics (Alexander, 2003). Recent studies corroborate the hypothesis of ROS contribution

to the structural remodeling of arterial wall by VSMCs proliferation and inflammation (Park and
Lakatta, 2012; Patel et al., 2011). Thus, ROS are known to increase adhesion on the endothelium, and
to take part tothe signaling pathway forinflammatory cytokines production such as TNFa or IL-1p. ROS
accelerate the atherosclerotic process by increasing the differentiation of monocytes to macrophages,

which produce ROS in return to feed the vicious cycle (Higashi et al., 2009).

Indeed, disturbed blood flow, low or oscillatory shear stress has pro-oxidative and pro-
inflammatory effects on vessels leading to deleterious consequences on endothelial function while
laminar blood flow has protective effects (Cunningham and Gotlieb, 2005). Disturbed blood flow
commonly appears at bifurcations, curvatures and branch points (Hajra et al., 2000). The chronic
exposure to oscillatory shear stress enhances endothelial NADPH oxidase (Nox) generation of O™
resulting in monocytes adhesion (Hwang et al., 2003). The stimulation of adhesion molecules (e.g. P-
selectin, E-selectins, and VCAM-1) induces more inflammation by increasing leukocytes attraction.
This intensifies phagocytosis-induced ROS production leading to the vicious circle mentioned above

(Higashi et al., 2009; Hwang et al., 2003).

Nox is expressed in macrophages, neutrophils, endothelial cells, VSMCs and fibroblasts
(Li and Shah, 2002) and is the main source of ROS production induced by non-laminar shear stress in

vessels (Hwang et al., 2003).

Then, during the inflammatory phase of atherogenesis, others sources of ROS emerged:
infiltrated monocytes/macrophages, dysfunctional endothelial cells, migrated VSMCs (Griendling et al.,
2000; Li and Shah, 2002). Migration of LDL from the artery lumen to the media initiates the injury of
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vessel wall (Navab et al., 1996). Once in the arterial wall, LDL are oxidized by excessive ROS and
phagocytized by macrophages, creating lipid droplets characteristics of foam cells (Steinberg et al.,
1989). In addition, oxidative stress activates matrix metalloproteinases (MMPs) of endothelial cells,
foam cells and VSMCs which degrades the extracellular matrix leading to plaque rupture (Galis and

Khatri, 2002).

Some other tissues are affected by abnormalities in cholesterol trafficking, one of the most
exposed (even if it is not the most classical organ studied in this context) is the brain, which will be the

purpose of the following section.

2. Cerebrovascular outcomes of high fat diet induced atherosclerosis

As seen above, high fat diet and resulting defect in cholesterol handling are the first cause
of atherosclerosis and lead to cardio and cerebrovascular diseases. Indeed, the brain is very sensitive to
reduced blood flow due to stenotic plaques but even more to emboli coming from carotid plaques and
obstructing cerebral arteries leading to stroke. Based on this, this section will focus on cholesterol
metabolism in the brain and outcomes resulting from an excess of cholesterol from the diet such as brain

inflammation and stroke.

a) Cholesterol metabolism in brain

The brain contains 20% of the whole body cholesterol, it is the most cholesterol-rich organ
(15-20 mg/g of tissue) (Bjorkhem and Meaney, 2004). This is mainly unesterified cholesterol. In the
brain, cholesterol is essential for neuronal physiology from development to adulthood due to its
involvement in synapse development and formation, dendrite differentiation, axonal elongation and
long-term potentiation (de Chaves et al., 1997; Fester et al., 2009; Goritz et al., 2005). Cholesterol
depletion in neurons impairs neuronal functions and defects in its metabolism lead to neurodegenerative
diseases such as Niemann-Pick disease, Huntington’s disease, Parkinson’s disease and Alzheimer’s
disease (AD) (Block et al., 2010; Di Paolo and Kim, 2011; Madra and Sturley, 2010; Wang et al., 2011).
Hence, there is a real necessity to closely maintain the cholesterol content in the brain in order to keep

brain functions.

Because of the blood-brain barrier (BBB), cholesterol metabolism in the brain is different
and separated from that in peripheral tissues. Thereby, brain cholesterol in adult is principally supplied
by de novo synthesis (Jeske and Dietschy, 1980). Cholesterol synthesis rate is correlated with
myelinisation processes, thus higher during perinatal stage and adolescence (Saher et al., 2005) and

remains at very low rate during adulthood. Indeed, except during myelinisation processes, the turnover
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Figure 9: Vicious circle between peripheral inflammation and stroke. Complex interactions exists
between peripheral inflammation (which might underlie stroke occurrence or atherosclerosis), stroke —
induced brain inflammation, and responses of the peripheral innate and adaptive immune systems to
stroke (inflammation, immunodepression, autoreactivity or protective immunity).

From Macrez et al, Lancet, 2011
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of cholesterol in the brain is very low because of the minimal losses (Morell and Jurevics, 1996). In the
brain, the half-life of cholesterol is comprised between 6 months and 5 years when its only few days in
the plasma (Bjorkhem et al., 2006; Dietschy and Turley, 2004). Although a minimal availability of
cholesterol is required for neuronal function, this function can be impaired not only because of a lack of
cholesterol but also due to an excess in cholesterol content (Ko et al., 2005; Pooler et al., 2006). Excess
of cholesterol leads to 24-hydroxycholesterol (24-OHC) accumulation which have toxic effects on the
cells (Matsuda et al., 2013).

ApoE is highly expressed in brain (second most ApoE-rich organ after the liver) and is

involved in cholesterol homeostasis (Linton et al., 1991). The major source of ApoE in

brain is astrocytes and in a lower way neuron-supporting cells (Mahley et al., 2006); neurons may
express ApoE after excitotoxic injury acting as modulators of the inflammatory response (Iwata et al.,
2005; Xu et al., 1999). In humans, ApoE isoform &4 is correlated with amyloid plaques in Alzheimer’s
disease (Liu et al., 2013). Likewise, brain cell membranes of AD patients were found to be enriched in
cholesterol (Xiong et al., 2008). LDLR is the main receptor for ApoE-containing lipoprotein uptake in
the brain and is mostly expressed in glial cells (Rebeck et al., 1993). Furthermore, ApoE-containing
lipoproteins have a potent anti-apoptotic effect and protect brain against neurodegeneration(Hayashi et

al., 2009).

Dysregulation of cholesterol handling in the brain lead to chronic disorders such as
neurodegenerative pathologies (e.g. Alzheimer’s, Parkinson’s or Niemann-Pick’s disease) or chronic

inflammation resulting later in transient ischemic attack or stroke.

b) Brain inflammation induced by high fat diet

Brain inflammation and oxidative stress, induced by systemic inflammation, are suspected
of increasing the overall cardio and cerebrovascular risk(Drake et al., 2011; Macrez et al., 2011) (Figure
9). In adult brain, oxidative stress is a well-known factor of neurodegenerative disorders, stroke, seizures
or trauma (Coyle and Puttfarcken, 1993). Furthermore, Yates et al have shown that carotid
atherosclerosis was linked to cognitive impairments and increased brain atrophy suggesting a
relationship between metabolic inflammation and neurodegeneration (Yates et al., 2012). Peripheral
metabolic chronic inflammation is at the origin of a vicious circle involving vascular changes, oxidative
stress and insulin resistance. All together, these pathophysiological phenomena deteriorate the
cerebrovascular function. They are also known to activate transcriptional factors such as activator
protein 1 (AP-1) and NF-xB causing stimulation of inflammatory factors receptors and adhesion

molecules that results in inflammatory markers (TNFa, IL-18, NO) release in brain parenchyma
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(Saavedra, 2012). This inflammatory status in brain may induce abnormalities in BBB, microglia

activation and brain insulin resistance, themselves likely causing cognitive decline.

c) Stroke

There is a complex relationship between lipids and acute stroke. Although in most cohort
studies there is a direct relationship between cholesterol level and ischemic stroke, this relationship
varies by the stroke subtype and the lipid component considered. High total cholesterol (TC) and LDL-

C levels are associated with higher risk of ischemic stroke

(Horenstein et al., 2002; Kurth et al., 2007) while lower levels are associated with higher risk of brain
hemorrhage (Wang et al., 2013a). Concerning HDL-C levels, it exists an inverse association with
cerebrovascular diseases(Sacco et al., 2001; Shahar et al., 2003). But this association is more a function
of HDL-C subfractions rather than of total HDL-C (Bots et al., 2007). HDL3 seems to be
atheroprotective whereas HDL2 does not. Indeed, there is a direct relationship between HDL2 and
carotid plaque thickness and an inverse relationship between HDL3 and plaque area (Tiozzo et al.,

2014).

Atherosclerosis stroke subtypes are highly associated with cholesterol levels as showed in
some studies (Cui et al., 2012; Imamura et al., 2009; Tirschwell et al., 2004). In contrast, association
between dyslipidemia and lacunar stroke is still controversial: case-control studies showed relationship
between LDL-C and TC and lacunar stroke (Amarenco et al., 2006; Tirschwell et al., 2004), whereas
other studies did not (Cui et al., 2012; Imamura et al., 2009). Finally, despite the fact that dyslipidemia
is a known coronary heart disease risk factor, no association between this and embolic stroke were found

(Tirschwell et al., 2004).

Others cerebrovascular diseases as lacunar infarcts and cerebral microbleeds can also be
found in atherosclerotic patients. Lacunar infarct refers to a small subcortical ischemic lesion probably
resulting from an intracerebral arteriole occlusion associated with acute neurological symptoms. It can
be due to microatheroma or fibrinoid necrosis (Arauz et al., 2003; Khan et al., 2007). Internal carotid
artery stenosis and LDL-C are associated with lacunar stroke (Mok and Kim, 2015). Cerebral
microbleeds (CMBs) refers to small perivascular hemosiderin deposits associated with macrophages,
resulting from leakage through cerebral small vessels and characterized by hypointense lesions on T2*-
weighted gradient-recalled echo MRI. Low triglyceride levels are associated with CMBs while HDL or
LDL-C are not (Wieberdink et al., 2011). Moreover, meta-analysis showed that ApoE &4 allele carriers
have higher risks of CMBs (Maxwell et al., 2011).
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B.  Others metabolic organs

Besides cardiovascular organs and brain, other organs are also affected by high fat and high
cholesterol consumption. Here, we will briefly discuss in in which way and the high fat/high cholesterol-

induced consequences in two metabolic organs of reference such as liver and adipose tissue.

1. Liver

The liver is an important metabolic organ involved in glucose and lipid homeostasis. The
link between liver and atherosclerosis was showed by studies on non-alcoholic fatty liver disease
(NAFLD), showing the relationship between dysregulation of lipid metabolism and storage in the liver
and subclinical atherosclerosis (Al Rifai et al., 2015; Santos et al., 2007; Sung et al., 2012). Intrahepatic
lipid depots are closely linked to cardiovascular outcomes (Fabbrini et al., 2009; Speliotes et al., 2010),
NAFLD being an independent predictor of cardiovascular events (Hamaguchi et al., 2007; Targher et
al., 2010).

It also has a key role in inflammatory response as it releases acute phase reactant such as
CRP or serum amyloid A (SAA). These liver-derived inflammatory markers were found to rapidly
increase after consumption of an excessive amount of dietary lipids (Kleemann and Kooistra, 2005;
Tannock et al., 2005).In an interesting transcriptomic and metabolomics study, Kleemann et a/, showed
that pro-atherogenic inflammatory factors originate from the liver. Indeed, mice fed with high
cholesterol diet (1% w/w) showed faster atherogenesis than mice fed with no or low cholesterol (0.25%
w/w). Moreover, genomic analysis showed that a high cholesterol load leads to an extended
reprogramming in the liver, involving not only metabolic adaptations to cholesterol but also
inflammatory stress (cell proliferation and adhesion apoptosis, immune and inflammatory response)
(Kleemann et al., 2007). Furthermore, diet-induced metabolic changes observed in the liver were
different according to the amount of cholesterol intake, demonstrating that the switch to a
proinflammatory gene expression profile in the liver was accompanied by the development of a new
metabolic hepatic state significantly different from the metabolic state at baseline (Kleemann et al.,

2007).

2. Adipose tissue / ectopic fat deposits

Adipose tissue represents 15 to 30% of the body weight in humans. It is dispersed
throughout the body in discreet depots which constitute separate “mini-organs” (Cinti, 2001). The

cardio-metabolic impact of adipose tissue of each individual depends on the size of each depots and
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Figure 10: Implication of adipose tissues in atherosclerosis and related cardiovascular diseases.
Subcutaneous and (mainly) visceral adipose tissues released FFA and adipokines in the systemic
circulation, leading to ectopic depots of fat in the peripheral organs such as liver, skeletal
muscles, vasculature, kidneys and heart. The deleterious resulting effects are systemic
inflammation, insulin resistance, oxidative stress, adipokines secretion and increased blood
pressure leading to the progression of atherosclerosis and increased risk of CVD.

FFA, free fatty acids; CVD, cardiovascular disease
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the balance between them. Indeed, peripheral fat distribution, as in the limbs, is favorable while central
fat, as in the trunk, is detrimental (Lee et al., 2013) and even leading to poorest survival in patients with
CAD (Coutinho et al., 2013). On the contrary, peripheral fat distribution is correlated to a lower BP,
insulin sensitivity and healthy lipid profile, resulting in the metabolically healthy obese phenotype
(Appleton et al., 2013; Manolopoulos et al., 2010).

Adipose tissue exerts endocrine effects on numerous tissues such as the vasculature, liver

and skeletal muscle (Figure 10). In obese condition, various pro-inflammatory cytokines and

molecules are upregulated which will affect all of the stage of atherosclerosis contributing indirectly to

CVD (Berg and Scherer, 2005; Mattu and Randeva, 2013).

The ratio between visceral (VAT) and subcutaneous adipose tissue (SAT) showed close
correlations to cardio-metabolic risk (Preis et al., 2010; Smith et al., 2012) as accumulation of fat in the
visceral compartment and in smaller internal depots (neck, muscle, perivascular) reflects the inability of
the SAT for additional TG storage has detrimental effects on the surrounding tissues, especially the
liver, skeletal muscle and heart (Carobbio et al., 2011). In this context, VAT increases the delivery of
FFA to the liver leading to insulin resistance (lacobellis et al., 2011; Kabir et al., 2005), and release IL-
6 in the portal vein inducing synthesis of CRP by the liver thus contributing to low-grade inflammation

(Shoelson et al., 2006)

Fat depots around heart, epicardial (EAT) and pericardial adipose tissue (PAT), were found
to be associated with higher occurrence of CVD(Gaborit et al., 2015). Volume and expansion of EAT
were related to an increase in coronary calcification (Yerramasu et al., 2012) and PAT to reduced left
ventricular function and increased risk of atrial fibrillation (Kim et al., 2011; Thanassoulis et al., 2010)

suggesting a locally toxic effect of them.

The effect of dietary cholesterol on liver and adipose tissue is summarized in Figure 11.

C. Animal models of atherosclerosis

Pharmacologically or mechanically induced wvulnerable plaque animal models are
commonly used but do not representthe whole destabilization process leading to a vulnerable plaque.
For this reason, we will only address diet-induced or genetically modified models of atherosclerosis

plaque, as they are more systemic models for pre-clinical and translational studies.
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Figure 11: Dietary cholesterol-mediated adipose tissue inflammation can lead to atherosclerosis.
Dietary cholesterol absorbed by the intestine is transported by chylomicrons and their remnants to
adipose tissue and liver. Cholesterol can directly affect the liver and induce an inflammatory
response. In addition, cholesterol could directly cause an inflammatory response in adispoe tissue,
with macrophage accrual and production of cytokines, which could indirectly affect the liver. The
systemic inflammatory response thus induced could in turn influence atherogenesis at the arterial
wall. CM, chylomicrons; CRP, C-reactive protein; SAA, serum amyloid A

Adapted from Subramanian and Chait, Curr Opin Lipid, 2009
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1. Mouse models

Mice models are the most commonly used in atherosclerosis research, especially the
C57BL/6J strain-derived mice. They present some significant advantages such as their easy breeding,
their low cost of maintenance and the fact that their genetic background is well-known. The principal
inconvenients are their small size and their plasmatic lipoprotein profiles that are highly different than

humans. Actually, wild-type mice do not develop atherosclerosis due to their lack of cholesteryl ester

transfer protein (CETP) and to the fact that their plasmatic cholesterol is mainly contained in HDL
compared to LDL for humans (Salmon and Hems, 1973). Furthermore, mice dietary cholesterol
absorption is weak (Carter et al., 1997) while this is around 50% in humans, resulting in a limiting factor
for diet-induced atherogenesis in wild-type C57BL/6J mice. For this reason, numerous genetically
modified mouse models were generated, and we will discuss the two most used: ApoE null and LDLR

null.

a) ApoE null mice

ApoE null mice are the most widely used mouse model for atherosclerosis study due to
their spontaneous development of complex vascular lesions comparable to human ones even under chow

diet and since 8-10 weeks of age in the aortic root. Beyond 20 weeks, fibrous plaques are observable.

High fat high cholesterol diet notably accelerate atherogenesis with a significant increase
of plasmatic cholesterol level (>1000 mg/dL) and lesions enriched in foam cells(Nakashima et al., 1994).
Indeed, advanced lesions contain cholesterol crystals, necrotic core and calcifications. In older ApoE
null mice lesions can present hemorrhage suggesting plaque instability (Rosenfeld et al., 2000). On the

contrary, no significant coronary artery lesions were showed in this model.

Although his widespread use, ApoE null mice had some inconvenients mostly due to the
differences between lipoprotein metabolism in mice compared to human (e.g. plasmatic cholesterol are
mostly carried by remnants while LDL in humans). Furthermore, ApoE has numerous other functions
affecting macrophage and adipose tissue physiology and immune function (Getz and Reardon, 2009)
that impact atherogenesis and plaque progression independently of plasmatic lipid levels (Fazio et al.,

1997; Van Eck et al., 2000).
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b) LDLR null mice

As seen above LDLR is extremely important for lipoprotein homeostasis but do not have
plethora effects as ApoE which is the great advantage of this model. Indeed, the lack of LDLR mainly
influences lipoprotein uptake and clearance, increasing the preponderance of LDL in chow diet fed mice
but presenting only limited lesions in older animals (Barcat et al., 2006; Teupser et al., 2003). A high
fat diet is needed for a significant lesion development. This diet induces an accumulation of VLDL and
remnants and a higher plasmatic cholesterol level and more foam cells than ApoE null under chow diet.

Thus, an LDLR null mouse is a good model for intermediate atherosclerosis.

2. Rabbits

Rabbits are a widely used animal model for atherosclerosis studies due to their high
sensitivity to dietary cholesterol overload (Duff, GL, 1935). Moreover, they share several aspects of
lipoprotein metabolism with humans such as the composition of their ApoB-containing lipoprotein (Fan
et al., 1995), hepatic production of VLDL (Duverger et al., 1996), the presence of plasmatic CETP and
a high absorption rate of cholesterol (Hoeg et al., 1996). The disadvantages of this animal model is that
rabbits lack of hepatic lipase, and when fed with atherogenic diet, rabbits develop atherosclerotic lesions
in aortic arch and thoracic aorta rather than abdominal aorta while this location is almost always affected

in humans (Warren et al., 1991).

Two strains of rabbits are known to be relevant models for human hyperlipidemia:
Watanabe Hereditary Hypercholesterolemic (WHHL) which are defective for LDLR and present
pathology similar to familial hypercholesterolemia (Aliev and Burnstock, 1998; Kondo and Watanabe,
1975) and the St Thomas’ Hospital (STH) which are good models for combined human
hypertriglyceridemia and hyperlipidemia (Beaty et al., 1992; Nordestgaard and Lewis, 1991).
Transgenic animals are also available such as New-Zealand White-human apoB100 that mimic a
hyperlipidemia combined to a reduced HDL-C concentration (Fan et al., 1995) but transgenic rabbits

are not so easy to product and allow less genetic manipulation than mice.

3. Pigs and mini-pigs

Pigs develop atherosclerosis spontaneously when fed with standard diet (Skold et al., 1966)

and this process can be accelerated by an atherogenic diet (Koskinas et al., 2010).

The large size of pigs is an advantage for atherosclerosis studies; it enables the non-invasive

measurement of arteries (Czernuszewicz et al., 2015; Millon et al., 2015) and provides a sufficient
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amount of arterial tissues for biological analysis. Moreover, they are physiologically close to humans
with a similar lipoprotein profile and develop lesions in coronary arteries. The counterpart of their large
size is the quantity of food needed and the technical difficulties of housing and transportation for

imaging as well as the lack of tools available for molecular biology or antibodies.

4. Non-human primates

Non-human primates are the closest to humans so are very useful for translational research.
Although atherogenesis can differ according to the different species of monkeys, all of them present

humanoid lipoprotein metabolism with a predominance of non-HDL, CETP expression and the

same HDL subclasses than humans. Furthermore, non-human primates respond differently to cholesterol
thus they can be divided into “hyper” or “hyporesponders” to cholesterol, resulting in a heterogeneous
repartition of profiles among individuals in the same way as in humans (Bullock et al., 1975; Clarkson
et al., 1971). Another similarity with human is that males develop more atherosclerosis than females

under high fat diet.

The two most used species are Rhesus and Cynomolgus monkeys, which even if they are
evolutionary close, show different responses to atherosclerosis. Rhesus monkeys fed with high fat diet
develop complex coronary lesions with an increase of vasa vasorum density in the media and a thickened
intima (Heistad and Armstrong, 1986). Cynomolgus are more responsive to high fat diet and
atherosclerosis progression is faster than in Rhesus with plasmatic cholesterol levels two-fold higher
and a large density of skin xanthomas and more lipid-rich monocytes in the blood (Davis et al., 1984a,
1984b). Macacas are also widely used to study the impact of social status on atherosclerosis progression

showing that submissive status in the group favor atherogenesis in females (Kaplan et al., 2009).

Others species of monkeys were used for atherosclerosis research such as baboons,
microcebus, squirrel monkeys, spider monkeys but are less close to human than Macaca, which are

nowadays the best available animal model for translational research.

D. Intervention modalities

There are several steps in CVD prevention; they range from seek to maintain health to

drugs and/or surgery in order to minimize the impact of a chronic clinical disease as presented in Figure
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Figure 12: Prevention levels for cardiovascular diseases. Definitions of levels of prevention
vary somewhat depending on the disease context. This illustrates typical definitions in the
context of cardiovascular disease. Primordial prevention is foundational, seeking to maintain
health in individuals and populations free of risk. Typically, interventional strategies used in
lower levels of prevention are also important in the higher levels.

From Claas and Arnett, Curr Cardiol Rep, 2016
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12. This section will firstly discuss lifestyle factors and then briefly overview the range of drugs
available for CVD prevention and/or treatment.

1. Systemic and central modulators

Atherosclerosis is a multifactorial pathology caused by both environmental and genetic
factors, environmental being the most important and furthermore the easiest to control. Numerous
studies showed that lifestyle factors such as dietary intake, physical activity and behavior (smoking,
sleep, stress, etc.) are the first factors of prevention of CVD. Before any treatment, a healthy lifestyle is
the better way to avoid the development of atherosclerosis and thus CVD whence its name of primordial

prevention.

a) Diet

The first step for a healthy lifestyle is a healthy diet. Indeed, except for genetic lipidic
pathologies, the first cause of atherosclerosis and related CVD is an uncontrolled diet. The dietary intake
influences all biological parameters such as blood pressure (BP), cholesterol level, and lipidic
homeostasis. European Society of Cardiology (ESC) and American Heart Association (AHA) went to a
global consensus concerning dietary intake of different nutrients. BP homeostasis is important in the
prevention of atherogenesis, as an increased BP lead to hemodynamic changes and to endothelial
dysfunction. So a reduced consumption of salt and an increased consumption of potassium is beneficial
for maintain BP at normal range (Ekmekcioglu et al., 2016; Stamler, 1993) whence diets rich in fruits
and vegetables are cardioprotective (Aaron and Sanders, 2013). A moderate consumption of alcohol is
recommended and associated with a reduced risk of coronary arterial disease whereas more than two

drinks per day increases the risk of hypertension in men (Klatsky, 2015).

As stated above, diet is a significant factor influencing the risk of dyslipidemias
development. Caloric restriction from saturated fats (especially if replaced with PUFAs) is associated
with a reduction of LDL-C level. An additional benefit is observed when saturated fats are replaced with
PUFAs, resulting in an increase of HDL-C (Berglund et al., 2007; Ginsberg et al., 1998; Obarzanek et
al., 2001). Carbohydrates, specifically refined sugars also have a role in the development of CVD and
its related adverse outcomes. Indeed, a significant association between added dietary sugar and CVD
mortality was showed (Yang et al., 2014). The increase of added sugar consumption was related to
increased BP but also to dyslipidemias by increasing the circulating lipid and lipoprotein level (Jayalath

et al., 2015; Malik et al., 2014; Stanhope et al., 2015).
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In summary, a dietary pattern is highlighted from all this recommendations: high
consumption of fruits, vegetables and whole grains, add poultry and fish and low-fats such as nuts and
limited consumption of red meat and refined sugar (American Heart Association; US Department of

Health and Human Services); offering protective effects on BP and lipid profile.

The diet is obviously an important parameter to take into account for atherosclerosis
prevention but it is also beneficial in each step of CVD prevention, indeed, control of food and dietary

intake is requested in individuals presenting risk factors or clinical events.

a) Physical exercise

As physical inactivity is a well-known risk factor for cardiovascular diseases, its opposite
may have beneficial effects. Moreover, beneficial effect of exercise on health is discussed since
Hippocrate “All parts of the body, if used in moderation and exercised in labours to which each is
acustomised, become thereby healthy and well developed and age slowly”. Numerous epidemiological
studies have shown the preventive and protective effect of exercise on atherosclerosis and cardiovascular
disease (Kramsch et al., 1981; O’Connor et al., 2009; Pedersen and Saltin, 2015; Swift et al., 2013).
Indeed, as primordial prevention requires a healthy lifestyle, physical activity is one of the cardinal
points with diet and non-smoking. Moderate exercise enables maintain of glucose and blood pressure
homeostasis and balance between calories intake and energy expenditure (Colberg et al., 2010;
Cornelissen and Smart, 2013; Millar et al., 2014). Moreover, exercise wad showed to decrease oxidative
stress by upregulating anti-oxidant system (Bloomer and Fisher-Wellman, 2008; Cunha et al., 2012),
decrease the release of inflammatory cytokines and CRP and increase that of anti-inflammatory
(Goldhammer et al., 2005; Lara Fernandes et al., 2011; Schumacher et al., 2006; Sjégren et al., 2010),
to reduces the expression of adhesion molecules such as ICAM and the leukocyte recruitment at the
plaque location (Schumacher et al., 2006; Sjogren et al., 2010). Furthermore, moderate exercise can also
lower the LDL concentration in plasma and protect the remaining LDL against oxidization (Medlow et
al., 2015; Nickel et al., 2011) and limit the plaque progression (Cardinot et al., 2016) (Figure 13). In
patient with clinical symptoms of cardiovascular disease, practice of a regular exercise was shown to

lower the incidence of cardiovascular mortality (O’Connor et al., 2009).

As Paracelsus said “Poison is in everything, and no thing is without poison. The dosage
makes it either a poison or a remedy.” And it is also valid for physical exercise. Indeed, as stated above,
a moderate exercise have notable beneficial effect every step of cardiovascular disease prevention, but
several clinical studies have shown that is practiced at high intensity and/or with a high frequency, and

even more if rare and acute, exercise may have deleterious effects (Eijsvogels et al., 2016). Indeed, an
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Figure 13: Effect of physical activity / exercise on key factors in the atherosclerotic process. The

green arrows show the effect of physical activity and exercise. CRP, C-reactive protein; ROS,
reactive oxygen species; VCAM-1, cascular cell-adhesion molecule 1; ICAM-1, intercellular
adhesion molecule 1; MCP-1, monocyte chemoattractant protein 1; IFNy, interferon gamma; TNFa,
tumor necrosis factor alpha; IL-6, interleukin 6; EPC, endothelial progenitor cell; VEGF, vascular
endothelial growth factor.

Adapted from Palmefors et al, Atherosclerosis, 2014
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advanced coronary artery atherosclerotic plaque can result in a cardiac ischemia and lead to sudden
cardiac death in asymptomatic patient, as well as the increase of catecholamine spill over can lead to
arrhythmia and thus to ventricular fibrillation (Kim et al., 2012). In symptomatic patients, sudden cardiac
death are mostly caused by plaque rupture during exercise or by arrhythmia induced by myocardial scar

or ischemia (Kim et al., 2012; Thompson et al., 2007).

To summarize, physical activity is one of the cornerstone of cardiovascular health but an
excessive practice can lead to opposite deleterious effects. Based on this, the American College of
Cardiology and the European Society of Cardiology advocate a minimal daily physical activity or a
moderate exercise training several days per week in order to maintain a physical health and avert
cardiovascular diseases(Eckel et al., 2014; Piepoli et al., 2016). In the same way, individualization of

exercise training would have a greater effect on CVD risks (Josephson RA).

2. Drugs

Atherosclerosis is a complex process involving the interplay of many actors and numerous
steps. Nowadays, treatments can concern patients with atherosclerosis and CVD risk factors thus called
primary prevention treatment (most of the time hypocholesterolemiant drugs) or patients who already
have outcomes resulting of their plaques, then there are secondary prevention drugs. Treatment for these
patients are mostly focus on decreasing the inflammatory process and oxidative stress in order to

stabilize the progression of the plaque and avoid the occurrence of others deleterious outcomes.

The followingparagraph will sum up in a non-exhaustive way the most used treatment for
primary and secondary prevention such as cholesterol lowering drugs, anti-inflammatory and anti-

oxidant treatments.

a) Cholesterol lowering drugs

Since Anitschkow highlighted the major role of cholesterol in atherogenesis and plaque
progression and afterdecades of research on cholesterol in atherosclerosis, the decrease of LDL-C

seemed to be the best target for patients’ treatment.

The first success was the development of statins which still are the most used medication
for cholesterol lowering and are administered for both first and secondary prevention since late 80s
(Alberts, 1988). Statins are hypolipemiant drugs inhibiting the HMC-CoA reductase, a crucial enzyme
in the cholesterol synthesis pathway. This allows the decrease of plasmatic cholesterol, particularly

LDL-C, which is the main actor of atherogenesis (Figure 14). Besides their hypocholesterolemiant
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Figure 14: Main cholesterol-lowering drugs and their target. Statins inhibit HMG-CoA
reductase, the key enzyme for cholesterol synthesis in the liver; ezetimibe inhibit intestinal
absorption of dietary cholesterol and PCSK9 inhibitors stop the internalization and
endosomal degradation of LDLR. All of them increase the expression of LDLR and reduce
plasmatic LDL-cholesterol levels.

Adapted from Grundy, Nature Rev Cardiol, 2015
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effect, statins decrease the vascular inflammation and the endothelial dysfunction, resulting in a potent
effect on atherosclerosis(Davignon, 2004; Robinson et al., 2005).Numerous clinical studies showed the
beneficial effect of statins on patients with risk factors and/or CVD (Cannon et al., 2004; Downs et al.,
1998; LIPID Study Group, 1998; Sacks et al., 1996; Scandinavian Simvastatin Survival Study Group,
1994) and stroke (Amarenco and Labreuche, 2009; Cholesterol Treatment Trialists’ (CTT)
Collaboration et al., 2010; Heart Protection Study Collaborative Group, 2002). Nevertheless, despite
striking achievements of statins, there is always occurrence of two-third of the expected CVD events in
statins-treated patients. Furthermore, many patients do not tolerate statins or cannot reach adequate

LDL-C levels under treatment whence the need to develop in the future additional therapies.

Ezetimibe is a hypocholesterolemiant molecule decreasing cholesterol absorption in the
small intestine. It acts by binding the Niemann-Pick C1-like-1 protein (NPC1L1) resulting in a moderate
decrease of LDL-C in range of 20% (Cannon et al., 2015) (Figure 14). It is mostly used

when patients do not tolerate others statins but can also be administered in combination with statins
when patients cannot reach the targeted LDL-C level. The efficiency of Ezetimibe was showed by many
clinical studies, confirming its utility in combination of statins for LDL-C and CVD reduction (Baigent
et al., 2011; Kastelein et al., 2005; Rossebg et al., 2008; Villines et al., 2010) and reduction of stroke
occurrence (Cannon et al., 2015; De Caterina et al., 2010).The principal inconvenient of Ezetimibe is

that it can cause adverse side effects like liver disease.

Another available drugsto decrease thecholesterol level is proprotein convertase
subtilisin/kexin type 9 (PCSK9) inhibitors (Figure 14). PCSK9 is a protein playing a critical role in
cholesterol homeostasis by binding the LDLR and inducing its endocytosis and then its lysosomal
degradation(Lopez, 2008). The reduced number of LDLR available at the surface of liver cells lead to a
lower LDL-C internalization by hepatocytes and thus an increase of plasmatic LDL-C levels.
Monoclonal antibodies against PCSK9 were shown to be efficient in decreasing cholesterol, cardiac
event and other CVD (Lambert et al., 2012; Navarese et al., 2015). A vaccine is also available and
exhibit significant reduction in TC, FC, phospholipids and triglycerides concentrations (Crossey et al.,
2015). On the contrary to statins and ezetimibe, PCSK9 inhibitors showed no beneficial effects on stroke
occurrence both at primary and secondary prevention (Milionis et al., 2016), and even exhibited

neurocognitive deficits (Sabatine et al., 2015).

Other classes of drugs are available such as triglycerides lowering therapies or drugs

increasing HDL concentration but these will not be discussed in this chapter.
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b) Inflammation modulators

As a substantial proportion of atherosclerosis-related CVD occurs in individuals without
apparent hyperlipidemia, targeting the inflammatory side of the pathology seemed attractive for

reducing CVD risk mainly for secondary prevention.

As stated above, statins showed, in addition of their lipid-lowering effects, anti-
inflammatory properties resulting in a reduction of plasmatic hs-CRP levels (Bohula et al., 2015; Nissen
et al., 2005; Ridker et al., 2010). A humanized anti-human IL-6 antibody (tocilizumab) is also available
and allows reduction of hs-CRP and troponine T levels resulting in a beneficial attenuation of
inflammatory response in patients with non-ST elevation myocardial infarction (NSTEMI) (Kleveland
et al., 2016). The principal inconvenient of tocilizumab is that it increases LDL-C levels (Ridker and

Liischer, 2014).

As the “master cytokine” in atherosclerosis, IL-1 seems to be a good target for anti-

inflammatory therapies (Dinarello, 2011). Treatment with IL-1ra recombinant, anakinra, blocking IL-

1B significantly decreases the inflammatory state in patients (Dinarello, 2010). Anakinra administration
in ST elevation myocardial infarction (STEMI) patients showed a reduction of the acute inflammatory
response in the three months following the event and a long-term reduction in new-onset heart failure

(Abbate et al., 2015).

Methotrexate (MTX) is a commonly used immune modulator which directly targets the
inflammatory process in atherosclerosis. It effect was firstly showed in rheumatoid arthritis patients
which exhibited a decrease of 21% of cardiovascular and cerebrovascular events when treated with MTX
(Choi et al., 2002; Micha et al., 2011) suggesting a concomitant improvement of atherosclerosis in these

patients (Westlake et al., 2010).

An alternative classic anti-inflammatory drug, colchicine, commonly used to treat gout
appears to be an interesting candidate due to its apparent blocking properties of NLRP3 inflammasome
resulting in a decrease of IL-1f and IL-6 (Martinon et al., 2006). Although frequent gastrointestinal side
effects, colchicine was found to significantly reduce CVD up to 60% (Nidorf et al., 2013; Verma et al.,
2015).

The Figure 15 shows a summary of the mechanism of action of the anti-inflammatory

drugs presented in this paragraph.

70



@

Inflammasome |— Colchicin

< IL-1p : Anakinra

\

Methotrexate
-6 | Statins

CRP

Figure 15: Main anti-inflammatory drugs used in atherosclerosis treatment.
Methotrexate and statins target IL-6, Anakinra is an anti-IL-1f antibody and colchicin
inhibit the inflammasome activation. CRP, C-reactive protein; TNFuo, tumor necrosis

factor alpha; IL-1p, interleukin 1 beta; IL-6, interleukin 6



¢) Oxidative stress modulators

Oxidative stress is another factor of atherosclerosis progression and CVD and can be the
target of some treatment. The first one is, due to their pleiotropic effects, statins. They can act as an
indirect antioxidant by inhibiting HMG-CoA reductase, a limiting enzyme for O, production. They also
have the ability to enhance eNOS expression thus improving the vascular NO bioavailability (Baigent

et al., 2005; Node et al., 2003; Takemoto et al., 2001).

Angiotensin II, when present at high concentration, contribute to the release of O, whence
use of angiotensin converting enzyme inhibitors (ACEi) may have a beneficial effect on oxidative stress
(Schmidt-Ott et al., 2000). Another way to decrease angiotensin II levels in blood is the administration
of angiotensin II type I receptor blocker (ARB), of the sartans family, which enhance NO production
and lower oxidative stress leading to a significantly decrease of the carotid intima-media thickness(Ono

et al., 2008).

Calcium channel blockers (CCBs) have antihypertensive and antioxidant properties thereby
there are widely used in secondary prevention for CVD treatment (Hernandez et al., 2003). CCB
administration reduces the risk of stroke even if it does not further slowdown the progression of

atherosclerosis than usual treatment (i.e. ACEi)(Costanzo et al., 2009; Survase et al., 2005).

A wide variety of food supplements are available to increase the concentration of
antioxidants such as vitamin A, C and E, beta carotene, lycopene, CoQ10 or quercetin as well as regular
consumption of antioxidant-rich nourishments. Although vitamins were associated with a lower
occurrence of peripheral arterial disease (Lane et al., 2008) and vitamin E was specifically found to
reduce the rate of non-fatal MI (Stephens et al., 1996), the effectiveness of antioxidant therapies remains

debated.

In this first part of the introduction, I have presented the atherogenesis and plaque
development cycle, its main cerebrovascular outcome and briefly resume the different animal
models used for research and the different interventions available to counteract plaque
development and progression. In particular the strong link between inflammation and lipids

handling, in vessels as in brain.
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II. Translational exploration of atherosclerosis: circulating, tissular and imaging biomarkers

Translation of knowledge from animal models to human is important for improvement of
patient care. For this purpose, identification of biomarkers and imaging tools enabling the exploration
of atherosclerosis is critical. Therefore, this section will focus on different biomarkers and imaging

modalities used in both animals and humans.

A.  Circulating and tissular biomarkers

Biomarkers are medical signs that can be objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a
therapeutic intervention(Biomarkers Definitions Working Group., 2001). The first characteristic of a
biomarker is that it needs to be easily measured. Thus most of them are present in systemic circulation
or tissues of interest for animal models. My thesis work is focused on inflammation in atherosclerosis,
so we will solely discuss of oxidative stress and inflammatory biomarkers used in human clinic and then

rapidly evoke biomarkers used in preclinical studies.

1. Oxidative stress

All organisms using oxygen for their energetic metabolism produce endogenous ROS. The
presence of effective antioxidant mechanisms maintains homeostasis. When the ROS production
exceeds the capacities of antioxidant system to scavenge and inactivate ROS, oxidative stress appears.
In atherosclerosis, as seen in previous chapter, oxidative stress have an important role as it is involved
in cell adhesion to arterial wall, lipids oxidization, proliferation and migration of VSMCs, endothelial
cell apoptosis, MMP activation and alteration of vasomotricity. Consequently, oxidative stress markers
can serve as biomarkers of cardiovascular and cerebrovascular risk in patient (Khoury et al., 2016;

Ritzenthaler et al., 2013).

a) Advanced oxidization protein products (AOPP)

Elevated plasmatic AOPP levels were found in patients with coronary artery disease
(Kaneda et al., 2002). AOPP was shown to correlate with plasmatic fibrinogen level, which plays an
important role in inflammatory processes and atherogenesis (Selmeci et al., 2006). Thus, AOPP could

represent a biochemical marker of specific importance (Kalousova et al., 2003). Furthermore, in a
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recent review, Klafke et al (Klafke et al., 2016) highlighted the importance of AOPP as biomarker for

CVDs as it provides information on level of proteins modifications and metabolic control.

b) Malondialdehyde (MDA)

MDA has been documented in either chronic and acute diseases associated with high levels
of oxidative stress such as cardiovascular, metabolic or neurodegenerative diseases. Although MDA
levels in plasma of healthy individuals have shown great variability and the detection methods possessed
numerous limitations(Del Rio et al., 2005), MDA is still used as biomarker of oxidative stress. Indeed,
during oxidative modification occurring in atherosclerosis, LDL lipids undergoes peroxidation leading
to generation of different particles including MDA -particles. MDA-modified LDL possesses a potent
chemotactic potential and can be engulfed more easily by macrophages. Recently, Tsiantoulas et al,
(Tsiantoulas et al., 2015)showedthatplasmatic MDA levelfrom the culpritlesion site of patient

withmyocardialinfarction are increasedcompared to levelsfrom the periphery.

¢) Superoxide dismutase (SOD)

Anti-oxidant enzymes serve for prevention of vascular tissue damages (and in other
tissues). In early atherosclerosis, anti-oxidant activity is upregulated for maintenance of homeostasis but
since the oxidative stress gets chronically high, this compensation ceases leading to an oxidative status
(Gupta et al., 2009). A significant decrease of SOD activity was also observed in obese postmenopausal
women compared to normal weight matched women (Uppoor et al., 2015). Consequently, analysis of
SOD activity can be interesting in patientspresenting risk factor for follow-up of atherosclerosis

progression.

d) Glutathion peroxidase (GPx)

Previous study showed the inverse correlation between dietary cholesterol level and GPx
activity, confirming the impact of cholesterol burden on anti-oxidant activity (Shih et al., 2008). An
epidemiologic study on black versus white people showed that GPx activity is lower in black women
than in white women and that its increase is correlated with a high BP(van Zyl et al., 2016). The relation
between GPx and some risk factor of atherosclerosis make its measurement interesting for

atherosclerosis.
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Figure 16: Influence of myeloperoxidase (MPO) in the atherosclerotic

process. MPO induces vasoconstriction by consuming a large amount of
endothelial-derived NO,foam cell formation due to oxidation of lipoproteins
such as LDL and HDL and plaque destabilization.

Adapted from Anatoliotakis et al, Curr Top Med Chem, 2013
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e) Myeloperoxidase (MPO)

MPO is an enzyme contained in immune cells, notably monocytes, involving in pathogen
destruction via ROS production (hypochlorous acid). This enzyme is known to have an important role
in cardiovascular diseases (Schindhelm et al., 2009; Zhang et al., 2001).MPO can be seen both as an

oxidative stress or an inflammation biomarker, because of is implication at both level.

In atherosclerosis, MPO is involved in LDL peroxidation and HDL modification leading
to foam cell formation (Podrez et al., 1999; Zheng et al., 2004), consumption of endothelium-derived
NO leading to depletion of NO(Hazen et al., 1999) and plaque destabilization and rupture through MMP
activation(Anatoliotakis et al., 2013) (Figure 16).Numerous epidemiologic studies showed direct
correlation between plasmatic or serum MPO levels and CVD events independently of all others CVD

risk factors (Anatoliotakis et al., 2013).

2. Key inflammatory circulating biomarkers

There is a complex interplay of cytokines and proteins actors during the time course of chronic
inflammatory process. The following section will discuss the use of some of them as biomarkers based

on their physiopathological role and to epidemiologic studies.

a) High-sensitivity C-reactive protein (hs-CRP)

C-reactive protein (CRP) is a non-glycosylated circulatory pentraxin composed of 5
identical subunits produced by hepatocytes (Tillett and Francis, 1930) and adipose tissue (Ouchi et al.,
2003). CRP is part of the immune system: it binds to immunoglobulin G and activates complement
system. CRP is a well-known marker of inflammatory reaction because of its precocity, sensitivity and
specificity. In atherosclerosis, pentameric CRP is dissociated by platelets and lysoPC in a monomer that

settles on atheroma plaque and enhance inflammation (Eisenhardt et al., 2009).

i.  Incardiovascular diseases

Baseline plasma CRP concentrations were found to be higher among men with myocardial
infarction or ischemic stroke than among men without vascular event. This shows that the baseline
plasma concentration of CRP predicts the risk of future myocardial infarction or stroke but not those of
venous thrombosis (Ridker et al., 1997, 2000a). These findings were later confirmed in more than 50

epidemiological studies worldwide (Emerging Risk Factors Collaboration et al., 2010).
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Figure 17: Downstream pathway of CRP. Activation of the NLRP3
inflammasome by cholesterol crystals, hypoxia, and atheroprone flow result in
production of pro-IL-1f to IL-15 with consequent downstream effects on IL-6
and CRP, as well as increased vascular atheroma.

Adapted from Ridker, Circ Res, 2016
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Global risk algorithms that include hs-CRP, as the Reynolds Risk Scores outperform those
solely using Framingham covariates (Cook et al., 2012). Hs-CRP correlates closely to the risk of plaque
rupture and vascular thrombosis but not really to the underlying atherosclerotic burden (Ridker, 2016a).
Risks of cardiovascular event-free survival with hs-CRP are similar to those with LDL-C and in an

independent manner (Ridker et al., 2002).

Hs-CRP levels are associated with numerous features of metabolic syndrome and their
severity, and predict vascular risk among patients already defined as insulin-resistant. In patients with
unusual or moderate cardiovascular risk profiles, hs-CRP can be measured in order to refined risk
assessment (Vlachopoulos et al., 2015). Thereby, hs-CRP level >3mg/l indicate high vascular risk when
interpreted in the context of other risk factors. A potential limitation of hs-CRP testing lies in that
biological impact of inflammation on vascular risk can be underestimated due to the non-specificity of

hs-CRP.

A strong debate existed on whether hs-CRP is a marker or a mediator in atherothrombosis
(Anand and Yusuf, 2010; Bisoendial et al., 2010; Yousuf et al., 2013). Mendelian randomization studies
suggest that CRP is a predictor of cardiovascular events but improbable to itself be a causal factor in the
pathway of disease expression (Dehghan et al., 2011; Zacho et al., 2008) which was confirmed in recent
epidemiological studies (Lane et al., 2014; Noveck et al., 2014). CRP is thus viewed like animportant
downstream biomarker of cardiovascular disease, suggesting that upstream pathways analysis (IL-1§
and IL-6)can provide more information (Figure 17) (IL6R Genetics Consortium Emerging Risk Factors

Collaboration et al., 2012; Ridker, 2016b).

ii. In cerebrovascular diseases

A recent meta-analysis on stroke and hs-CRP showed that males exhibiting high levels of
hs-CRP had 46% greater risk of ischemic stroke, but no of hemorrhagic stroke (Zhou et al., 2016). The
Framingham study showed that baseline hs-CRP levels predict the risk of stroke (Rost et al., 2001).
Consequently, even if the mechanism underlying high hs-CRP concentration and ischemic stroke risk is

still not clearly understood, hs-CRP can be used as complementary tool to predict ischemic stroke.

CRP and inflammatory cytokines secreted after an acute ischemic stroke are associated
with the brain infarct volume (Beamer et al., 1995). An increase in CRP levels 12-24 hours after
thrombolysis is negatively correlated with neurological outcomes as a reduction of National Institutes
Health Stroke Scale (NIHSS) is observed (Gill et al., 2016). As CRP levels are associated with post-
infarct lesion size, larger area of necrosis and elevated inflammatory response (Di Napoli et al.,
2001),measurement of CRP concentration at 12-24 hours may be considered as an accurate prognostic

biomarker (Gill et al., 2016; VanGilder et al., 2014).
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Acute stroke patients presenting increased levels of inflammatory markers at admission
have poor recurrence, complication and mortality outcomes (Audebert et al., 2004) and elevated baseline
CRP is correlated with adverse long-term functional outcome (VanGilder et al., 2014). In a recently
published prospective study,Freyshov et a/ .showed that stroke-survivors suffered more comorbidity
and higher level of leukocytes, fibrinogen, IL-6 and hs-CRP during the sixteen years follow-up than
stroke-free subjects. However, hs-CRP was not independently associated with mortality in these subjects

in contrary to its upstream cytokine IL-6 (Freyshov et al., 2016).

b) Interleukin-6 (IL-6)

IL-6 is a major cytokine secreted by macrophages and T cells involved in acute and chronic
inflammation regulation and playing the role of secondary messenger in these processes. It is capable of
crossing the BBB and initiating fever. IL-6 can also be secreted by endothelial cells and smooth muscle
cells in blood vessels and can induce the B cells maturation in plasmocytes with efficient antibodies

production.

In addition to controlling immune cells, IL-6 is also important in hepatocytes regulation,
hematopoiesis, skeleton, cardiovascular system, nervous and endocrine systems and placenta

(Kishimoto et al., 1995).

1.  In cardiovascular diseases

IL-6 levels measured in healthy populations predict future vascular risk (Ridker et al.,
2000a, 2000b). Kaptoge et alconfirmed in their prospective studies and meta-analysis of others studies
that each standard deviation increase in log IL-6 correlates with 25% increase in risk of future vascular
events(Kaptoge et al., 2014). Others studies also showed that this cytokine correlates with endothelial
dysfunction, arterial stiffness and subclinical atherosclerosis events (Esteve et al., 2007; Lee et al., 2008;
Mahmud and Feely, 2005). Despite this, no clinical studyhas yet confirmed these findings and the 1L-6

assessment remains difficult because of its short half-life and circadian and post-prandial variations.

Although IL-6 is the main cytokine inducing CRP production by hepatocytes, it also relies
on atherosclerotic plaque initiation and vulnerability (Schieffer et al., 2004; Yudkin et al., 2000),
microvasculardysfunction(Guo et al., 2014) and on deleteriousevents in acute ischemia(Lindmark et al.,

2001). Consequently, IL-6 has a causal role in atherosclerosis. It also can be produced by

cardiomyocytes at the moment of infarcted zones reperfusion, and is involved in reperfusion injuries
(Gwechenberger et al., 1999).
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ii. In cerebrovascular diseases

IL-6 is also a well-known neuropoeitin by its effects on hematopoietic and nervous system.
In the CNS, IL-6 is secreted by astrocytes, oligodendrocytes, microglia and neurons. Endothelial cells
in the brain can also produce IL-6 in abundance, acting on neighboring cells and regulating via an

autocrine way IL-6 synthesis.

In physiological context, IL-6 plays an important role in adult neurogenesis (Bauer et al.,

2007) and long-term memorization processes (Tancredi et al., 2000).

In neuropathological situation like stroke, the detrimental role of inflammation is known
(Ekdahl et al., 2003; Whitney et al., 2009) and upregulation of IL-6 may have a role on neurogenesis.
In vitro studies of IL-6 upregulation in the hippocampus showed that it significantly decreases the
differentiation of neural stem cells into neurons (Monje et al., 2003). A clear increase of serum and
cerebrospinal fluid (CSF) concentration of IL-6 have been observed shortly after ischemic stroke and
correlates with infarct volume (Smith et al., 2004; Tarkowski et al., 1995). Besides these findings,
Acalovschi et al. showed that IL-6 expression after stroke depends on IL-6 haplotype (Acalovschi et al.,
2003). Indeed, in animal models, an upregulation of IL-6 in neurons and in a lower way in glial and

endothelial cells was demonstrated (Suzuki et al., 2009).

IL-6 may be a critical factor coordinating responses in stroke such as control of oxidative
stress (Jung et al., 2011)and angiogenesis (Gertz et al., 2012). Furthermore, IL-6 was found to be an

independent mortality predictor in stroke-survivors patients (Froyshov et al., 2016).

¢) Interleukin-1 beta (IL-1p)

IL-1p is a resulting of the member of the interleukin 1 family. It is produced by macrophage
as a precursor (pre-1L-1p) which is activated when cleaved by cytosolic caspase 1. IL-1p is an important
mediator of the inflammatory response and is involved in numerous cellular activities, including cell
proliferation, differentiation and apoptosis. An increased secretion of IL-1 leads to different

autoinflammatory syndromes.

i.  Incardiovascular diseases

IL-1 is known to play a role in numerous diseases and their maintenance in peripheral

organs andin the central system. It induces the production of fibronectin, resulting in clinical evolution
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of coronary artery diseases and their adverse outcomes such as congestive heart failure (CHF) or angina
(Rabinovitch, 1995). The InCHIANTTI study showed that patients suffering from CHF or angina have
higher levels of IL-1f than controls whereas there was no significant difference between other diseases

and controls (Di Iorio et al., 2003).

IL-1P is a good inflammatory biomarker for research purpose due to its great biological
basis and its implication in the atherosclerosis process (Packard and Libby, 2008) but its short half-life
and large circadian variations makes its use difficult in clinical routine (Biasillo et al., 2010). Since
several years, IL-1 receptor antagonist (IL-1Ra) emerges as a more accurate biomarker for diagnosis of
acute coronary syndrome and stable angina and prognostic of acute myocardial infarction in the same

way than IL-18 (Biasillo et al., 2010).

Consequently, in cardiovascular clinic, IL-1 seems to be rather an indirect marker of a
chronic low-grade inflammation and depict a fraction of the activated monocytes/macrophages

production (Di lorio et al., 2003).

ii. In cerebrovascular diseases

In cerebrovascular context, things are different. Inflammation contribution prior to and
after a stroke is of major importance for outcomes determination after an acute CNS injury. Indeed, pre-
existing inflammation and high levels of IL-1p can affect the susceptibility and the severity of CNS
injury (Denes et al., 2010; McColl et al., 2009). Moreover, a raised inflammatory status, notably due to
IL-1p increase, is the common element of all co-morbidities of stroke. Furthermore, IL-1B was shown

to have a contributing role in plaque rupture and thromboembolism (Packard et al., 2009).

Acute stroke has been showed to induce increased levels of IL-1B in blood and
cerebrospinal fluid (Maas and Furie, 2009). Consequently, measurement of IL-1f3 levels may have an
informative role serving as biomarker for improvement of diagnosis and prognosis (Jickling and Sharp,
2011; Sharp et al., 2011). In experimental animal models, IL-1p was able to modulate infarct evolution
(the higher IL-1P the poorest the outcomes are), thus confirming its strong interest as putative marker

of stroke severity and neurologic outcomes (Emsley et al., 2003; Jickling and Sharp, 2011).

d) Tumor Necrosis Factor alpha (TNFa)

TNFa is a glycoprotein produced mainly by macrophages and also by lymphoid cells, mast
cells, endothelial cells, cardiomyocytes, adipose tissue, neurons and fibroblastes. It is an important

cytokine involved in systemic inflammation and acute phase reaction. TNFa is released in response to
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lipopolysaccharide, others bacterial products and IL-1. Among all its properties, TNFa stimulates the
release of CRP by the liver, is a potent chemoattractant of neutrophils and promotes the expression of

adhesion molecules on endothelial cells.

In atherosclerosis, TNFa was shown to increase proliferation of VSMCs (Rastogi et al.,
2012), endothelial inflammation (Ouchi et al., 2010) and apoptosis (Csiszar et al., 2004) and plasmatic
concentrations are positively correlated with carotid IMT (Skoog et al., 2002), and increased in patients
with premature coronary artery disease (Jovinge et al., 1997). Thus, TNFa can be considered as an

important mediator for CVD development.

The use of TNFa as predictive biomarker of outcomes and infarct size is still debated.
Actually, several studies showed increased seric and CSF levels of TNFa in stroke patients, correlated
with worsening of neurological symptoms, increased infarct size and poor short-term outcomes
(Mazzotta et al., 2004; Zaremba and Losy, 2001) while some others found that TNFa levels were not

correlated with infarct size or outcomes (Intiso et al., 2003; Vila et al., 2000).

e) Monocyte chemoattractant protein 1 (MCP-1)

MCP-1 (also known as CCL2) is the major pro-inflammatory cytokine controlling the
monocyte recruitment in the vessel, mediated through C-C chemokine receptor 2 (CCR2). This
chemokine is expressed in macrophage-rich regions of atherosclerotic plaques (Namiki et al., 2002).
MCP-1 has inflammatory and pro-atherogenic effects such as migration and proliferation of VSMCs,
plaque neovascularization, thrombosis or induction of MMPs (Egashira, 2003)proven by gene deletion
experiments (Inoue et al., 2002). Elevated plasmatic levels of MCP-1 were shown to be associated with
future risk of major adverse events like MI or death (Kervinen et al., 2004; de Lemos et al., 2003) but
its independent value as predictor of cardiovascular risk was not confirmed by the MONICA/KORA
Augsburg study (Herder et al., 2006). Thus, to confirm the potential use of MCP-1 as clinical biomarker

supplemental cohort studies are needed.

In stroke, the key post-ischemic event is leukocytes recruitment relying first on chemokines
(Dirnagl et al., 1999). MCP-1 represents a crucial step for this infiltration and its expression in ischemic
area exacerbates ischemic damages. An overexpression of this chemokine leads to an increased infarct

size and monocytes/macrophages population in the injured area (Chen et al.,

2003). Moreover, an increase of MCP-1 levels has been showed in early stages of ischemic stroke in the

CSF of patients (Garcia-Bonilla et al., 2014; Losy and Zaremba, 2001).
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3. What about anti-inflammatory markers?

Anti-inflammatory markers can also be monitored, in order to refine the examination and
stratification of the plaque stage. For example, IL-10 and IL-1 receptor antagonist (IL-1ra) plasmatic
(and tissular when possible) levels can be measured and provide information on plaque characterization

and status.

IL-10, produced by Th2 lymphocytes and monocytes/macrophages is known to inhibit the
production of Thl-related cytokines (IFNy, TNFa, IL-2) and macrophages-derived interleukins (IL-1,
IL-6, IL-8, TNFa). Although protective effect of IL-10 was showed in different studies on advanced
atherosclerosis plaque (Mallat et al., 1999; Tiret et al., 2005) and acute coronary syndrome (Anguera et
al., 2002; Smith et al., 2001) and even in stroke (Ren et al., 2011) its status is still debated. Indeed, it is
still unclear whether high plasmatic levels are a marker of anti-inflammatory pattern or counter-
regulatory consequence of pro-inflammatory profiles observed in the atherosclerotic plaque. Moreover,
TNFo/IL-10 ratio can be used to define the patient status, as it is increased in CAD patients compared

to healthy ones (Goswami et al., 2009).

IL-1ra, produced by the same cells as IL-1, has the property to bind the IL-1 receptor and
block the signaling cascade of inflammation. Its production is delayed after IL-1 secretion in order to
avoid long-acting inflammation. In atherosclerosis, IL-1ra plasmatic level was found to be higher in
diseased arteries than in normal and in this context IL-1ra behaves as an acute phase reactant (Gabay et
al., 1997). Furthermore, measure of IL-1ra levels in unstable angina were shown to correlate with IL-6

levels, suggesting a prognostic role of IL-1ra (Biasucci et al., 1999).

Consequently, measurement of anti-inflammatory markers can be useful for a better

accuracy of the patient’s stratification.

B.  Imaging biomarkers

The composition of the plaque is a critical factor determining risk of cerebral ischemia
(Fisher et al., 2005). Rupture-prone plaque also called vulnerable plaque, present some characteristic

features such as a large lipid necrotic core (Mono et al., 2012) covered by a thin fibrous cap (Li et al.,

83



Annual heart attacks (ACS and SCD)

Invasive imaging with RX Intravascular ultrasound, Thermography,
OCT, NIRS

Non-invasive molecular imaging for plaque
and myocardium characterization

Non-invasive imaging Non-invasive angiography
Office-based screening CT calcium and

cholesterol imaging

Non-invasive home-based biomarkers
(glucose, cholesterol, CRP)

Home-based screening Self-screening questionnaire

Population over the age of 35

Figure 18: Importance of non-invasive imaging in vulnerable patient detection. The major need
in cardiovascular clinic nowadays is to develop non-invasive, readily available and accurate
screening/diagnostic tools allowing multistep screening of an apparently healthy population and
for those with known atherosclerosis but with uncertain risk for acute event.

Adapted from Naghavi et al, Circulation, 2003
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2006). Non-invasive imaging is a useful tool for atherosclerosis diagnosis, for cardiovascular risk
stratification and vulnerable patient detection (Figure 18).In this chapter we will discuss the different
modalities available for atherosclerosis imaging and then focus more on the most used biomarkers

imaged from these modalities.

1. Clinical-established imaging modalities for atherosclerosis

Numerous imaging modalities are now available for research and clinical purpose. Here we

will briefly present what are those techniques to evaluate plaque morphology and function.

a) Ultrasound investigation of vascular territories

Medical ultrasound (also known as ultrasonography) is a diagnostic imaging based on the
application of ultrasound.

The most used type of image is B-mode image, which displays the acoustic impedance of
a two-dimensional cross-section of tissue. Other types of images can be used to analyses blood flow,
location of blood, the stiffness of a tissue or anatomy of a three-dimensional region.

Ultrasound is a medical imaging modality presenting several advantages: real-time images,
portability of the apparatus allowing the examination at the bedside of patient, low cost, and radiation-
free. On the other hand, this technic can be limited by patient morphology, the difficulty of imaging

structures behind bone or air and the critical dependence on the operator’s skills.

Traditional ultrasound analysis provides information on the vessel wall, particularly on
intima-media thickness (IMT) and on the severity of the stenosis. This technique also enables
quantification of plaque tissue, including fibromuscular tissue, intraplaque hemorrhage, lipids and
calcium (Lal et al., 2002)allowing identifying patients with vulnerable plaque (Salem et al., 2014).
Several studies comparing histologic content of plaques and ultrasound plaque echogenicity showed that
vulnerable and rupture-prone plaques have been characterized by low gray-scale values or echolucent
on B-mode use (Grenholdt et al., 2001). Indeed, echolucent plaques revealed large lipid core, thin
fibrous cap and numerous tissue factors for platelet deposition (Grenholdt et al., 2002; Nordestgaard et
al., 2003). Furthermore, these plaques showed signs of ongoing inflammation and intraplaque
neovascularization (Grenholdt et al., 2001; Partovi et al., 2012). On the contrary, high gray-scale or
echogenic plaques were shown to contain denser fibrous tissues and calcification, being more stable

(Grenholdt et al., 2002).
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During the past years, emergence of computer-aided diagnostic method has improved the
assessment of atherosclerosis plaque and in term of speed and accuracy, allowing the categorization of
patients as symptomatic or asymptomatic and stratify the stroke (Acharya et al., 2012; Pedro et al., 2014;
Steinl and Kaufmann, 2015) and cardiovascular disease events (Baldassarre et al., 2012; Polak et al.,

2011; Weber et al., 2015).

The recent development of contrast agents for ultrasound improved the evaluation of IMT,
irregularities or ulcerations on the plaque. Contrast agents are composed of gas microbubbles (<5um)
covered of substances (e.g. as albumin, lipids or polymers) and strongly reflects acoustic energy,

increasing the return signal and behaving as a true intravascular tracer (Feinstein, 2004).

b) X-Ray imaging and Computed Tomography (CT) Scanner

The coronarography is an invasive imaging technique using X-Rays and iodine injection in
order to visualize coronary arteries. It is the technique of reference for research of CAD such as
atherosclerosis and its consequences (angor, myocardial infarction, and silent myocardial ischemia), and
to treat culprit lesions by endovascular intervention. Modern CT scanner enables fast and non-invasive

X-ray imaging of coronary arteries.

Calcification is an important factor in atherosclerosis burden and provides useful
information regarding to the stage of the plaques. CT scan can be used to measure the amount of calcium
in coronary arteries, it is called coronary artery calcium score (CACS). CACS is acquired with a non-
contrast chest CT scan with a breath hold of 5 seconds and a low-dose radiation (<ImSv, similar as
mammography) (Gerber et al., 2009). This enables to detect the presence of calcium through the whole
epicardial coronary system. Coronary calcification is defined as a lesion observable on 3 or more
adjacent pixels (~1mm?) and X-Ray attenuation superior to the threshold of 130 Hounsfield units
(Agatston et al., 1990). CACS was characterized by a score determined by the product of the calcified
plaque area and the maximal calcium lesion density. Nowadays, standardized categories for CACS are
used from 0 (no calcified plaque) to >400 (severe plaque) (Agatston et al., 1990). In patients with
asymptomatic CAD, CACS is the most robust predictor of coronary events and thus is important for
primary prevention, especially in the intermediate-risk population, even surpassing the Framingham
Risk Score (Hecht and Narula, 2012). CACS is also strongly associated with development of stroke or
heart failure (Gibson et al., 2014; Hermann et al., 2013; Leening et al., 2012).
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c) Optical imaging

Optical imaging includes various imaging techniques using visible, ultraviolet and infrared
light for imaging. Molecular imaging involves inference of the deflection of light emitted from source
to structure, texture or anatomic properties of materials. In the cardiovascular field, it includes near
infrared luminescence (NIRF or spectroscopy (NIRS), optoacoustic imaging and several other imaging

modalities.

Near infrared fluorescence (NIRF) is an optical imaging techniques using near-infrared
fluorescence, mostly used in oncology. It displays high sensitivity and allows the in vivo visualization
of a variety of molecular entities through versatile fluorescent probe design. NIR wavelengths permit
relatively deep photon penetration into tissue, minimal autofluorescence and higher optical contrast. In
vivo fluorescence with NIR possesses a huge potential for a numerous molecular diagnostic and
therapeutic applications in atherosclerosis(Jaffer et al., 2008, 2011; Vinegoni et al., 2011; Yoo et al.,
2011). Near infrared spectroscopy (NIRS) is a technique similar to that of NIRF and used for oxygen
saturation detection and it is associated to Doppler for micro-emboli detection in cerebrovascular

territories and detect high risk plaque (Goldstein et al., 2011; Igarashi et al., 2014; Liebig et al., 2015).

Optoacoustic imaging is a technique relied on absorption of pulsed laser light by an
absorbing object within a tissue to create pressure waves that are detected at the tissue surface. It is used
to visualize structures into a turbid environment combining spectroscopy accuracy and ultrasound

resolution(Dima and Ntziachristos, 2012; Rosenthal et al., 2012).

d) Magnetic Resonance Imaging (MRI)

MRI is a medical imaging technique based on nuclear magnetic resonance (NMR) using
quantic properties of atomic nucleus. Some atomic nuclei can absorb and emit radiofrequency energy
when placed in an external magnetic field. For clinical and research use, hydrogen is the most used atom
to generate radiofrequency signal due to its natural abundance in human and other biological organisms,

especially in water and fat.

MRI acquisition parameters such as echo time (TE) and repetition time (TR) can be
modified according to the feature or tissue analyzed. The setting of theses parameters allow the use of
different ponderations allowing the analysis of the images from different point of view. T1 ponderation
also called « anatomic ponderation » consists in short TR (400-600ms) and TE (10-20ms) in order to
neutralize T2 bias. T1 ponderation makes white matter or fat appearing brighter than grey matter, bone
or water. This sequence is also used with contrast agent injection for abnormalities characterization. On

the contrary, T2 ponderation called “tissular” ponderation consists in long TR
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(>2000ms) and TE (>80ms). Finally, the proton density ponderation is a mix between T1
and T2 ponderation with a short TE (10-20ms) and a long TR (>2000ms) allowing images with proton
density contrast distinguishing liquids, tissues and fat. Other sequences permit the annulation of fat
signal (short time of inversion recovery, STIR), of free water (FLAIR) for cerebral exploration without

the CSF signal, gradient echo for visualization of heterogeneities on nervous system.

MRI is mostly used in diagnostic medicine and biomedical research allowing medical
diagnosis, staging of disease and follow-up without ionizing radiation exposition. This is an imaging
modality of major interest for acute ischemic stroke diagnosis (Nael and Kubal, 2016), measurement of
myocardial infarction size (Rinta-Kiikka et al., 2014) and carotid plaque diagnosis (Brinjikji et al., 2016;
Huibers et al., 2015).Studies even suggest that it is the new gold-standard for plaque composition
assessment (Gupta et al., 2013). In this section, we will focus on the two most used classes of contrast
agents, namely gadolinium chelates and ultrasmall superparamagnetic particles iron oxide (USPIOs)

and their utility in clinical and research atherosclerosis.

i.  Atherosclerosis fibrous cap thickness and neovascularization

characterization with gadolinium-based contrast agents

Gadolinium (Gd) is a chemical component from the lanthanides group which is coupled to
a chelator or a ligand in order to serve as contrast agent for MR imaging. Gd-based contrast agents (Gd-
CAs) are administered intravenously and monitored via T1 MRI sequences, upon which it makes appear
a hyperintense signal. Gd-CAs bind to albumin, forming a complex which extrasavates at sites of
albumin leakage into the extraluminal space resulting in an enhancement of arterial wall. For imaging
of atherosclerotic plaques, it penetrates into the lesions and will induce different signal intensities
according to the tissue. When it enters in the plaque, Gd unbinds the albumin and accumulates in the
extracellular matrix, but not in the lipid-rich necrotic core because of its lipophobic properties resulting
in a preferential enhancement of fibrous tissue (Liu et al., 2012). On the same way, neovascularization
areas, containing extensive microvessels, showed a strong enhancement of T1 signal (Calcagno et al.,
2013; Yuan et al., 2002). The use of Gd-CAs is thus very helpful for further characterize the plaque

constitution in patients candidating for endarterectomy (Sadat et al., 2014).

Likewise, Gd-CAs are well-known in the field of neuro-imaging for BBB leakage
assessments (Runge et al., 1985). Indeed, Gd chelates cannot cross through an integer BBB, but in
context of chronic or acute neuroinflammation such as multiple sclerosis, Alzheimer’s disease or stroke,
BBB presents more or less extended leakage, allowing Gd-CAs to pass through and accumulate in the

brain (Essig et al., 2012; Merino et al., 2013). Gd-CAs can also be used for perfusion MR
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imaging in brain after stroke or in context of brain vascular or inflammatory diseases (Cotton and
Hermier, 2006).

ii. Phagocytosis imaging with Ultrasmall Superparamagnetic
Particle Iron Oxide (USPIOs)

USPIOs consist of a small iron-oxide core embedded in dextran, citrate or polymer shell
for a final size of 10 to 50 nm. These particles had large negative magnetic susceptibilities resulting in
hypointensities (negative contrast) on T2-weighted sequences.

In this work, we will only discuss the use of USPIOs for monocytes/macrophages/microglia
imaging as they are one of the contrast agents used during my thesis research. Indeed, these nanoparticles
are phagocytized by macrophages, thus reflecting inflammation in the plaque. Some studies have shown
that carotid plaque inflammation can be identified using USPIO-enhanced MRI and that these USPIOs
accumulates mainly in macrophages of ruptured or rupture-prone carotid lesion in human (Kooi et al.,
2003; Trivedi et al., 2006) confirming the fact that an important macrophage infiltration is an indicator
of plaque vulnerability. Recent clinical trial also demonstrated the potential use of USPIOs for
assessment of therapeutic response to anti-inflammatory drugs on atherosclerotic patients (Tang et al.,
2009).

On cerebrovascular territories, USPIOs are used to image macrophage/microglia response
to chronic (multiple sclerosis, glioma) (Brochet et al., 2006; Taschner et al., 2005) or acute inflammation
(stroke) (Saleh et al., 2004). Several studies showed that phagocyte imaging was feasible in stroke

patients and that they can provide additional information to infarct size (Nighoghossian et al., 2007).

iii. Other vulnerable plaque features imaged by MRI

Improvement of surface coils enabled accelerated acquisition and improvement of the
signal-to-noise ratio. Moreover, development of multi-contrast sequences (i.e. post-Gd contrast
enhanced black-blood imaging) resulted in an accurate identification of lipid-rich necrotic core (Trivedi
et al., 2004), thrombus (Moody et al., 2003), fibrous cap and its rupture (Fayad and Fuster, 2000), arterial
inflammation (Kerwin et al., 2006), intraplaque hemorrhage (Kampschulte et al., 2004)and
neovascularization (Kerwin et al., 2003). A thin or ruptured fibrous cap, a larger necrotic core and
intraplaque hemorrhage showed increased risk for stroke in clinical studies using MRI as prognostic
tool (Singh et al., 2009; Takaya et al., 2006). Recently, new application was developed for MRI shear
stress assessment (Canton et al., 2013)allowing an even more accurate evaluation of plaque composition

and vulnerability.
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2. Molecular imaging

In this section, we will focus more on the most used molecular imaging techniques and
their tracers available for imaging the different features of atherosclerosis and neuroinflammation. We

will base our discussion on clinically available tracers and probes.

a) Positron Emission tomodensitometry (PET/CT)

Positron Emission Tomography (PET) is a metabolic functional imaging modality used
both in clinic and in research. It needs intravenous injection of a radiopharmaceutical positron emitter
(called radiotracer), manufactured in a cyclotron. This production is divided into two steps: generation
of the radioelement and radiosynthesis of the radiopharmaceutical. The PET imaging is most likely
combined with a computerized tomography (CT) scan, to allow a more precise localization of the uptake

region.

Injected tracer emits a positron, which after few millimeters in the tissue will meet an
electron and result in an annihilation reaction namely the emission at 180° of two 511 keV photons. The

PET camera detects those photons simultaneously, called coincidence detection.

The most used radioactive elements are the '8F (half-life= 110 minutes), the ''C (20
minutes), the ®N (10 minutes) and the '*O (2 minutes). The characteristics of ¥F and ''C will be

discussed in a following section.

Since few years, novel apparatus are available combining both TEP and MRI technique,
enabling time saving and a more accurate registration of TEP images on anatomy due to the higher
contrast of MR images versus CT. Moreover, the fact that both examinations are conducted in the same

time relieves registration problems due to a different position of the patient in the bed.

PET tracers are increasingly used for atherosclerosis diagnosis and follow-up thanks to
their high specificity. In the following section, we will discuss the use of the “gold standard” in
atherosclerosis PET imaging ('*F-FDG), a well-used inflammation-targeting tracer (''C-PK11195) and

a rapid overview of other useful tracers in atherosclerosis field (Figure 19).

i.  SF-Fluorodesoxyglucose ("*F-FDG): the gold standard

BF_FDG is a radionucleotide analog of glucose which accumulates intracellularly in
proportion to cellular demand for glucose (Figure 20). First used for imaging of tumor staging, this was

found to be detected in arterial territories during whole-body scans suggesting its use in
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Figure 20: Pathway of uptake and utilization of 'SF-FDG versus glucose through the
glucose transporter GLUTI in a cell. "SF-FDG can enter the cell via GLUTI in a similar
way than glucose but as the fluorure replace an OH group, it cannot be completely
metabolized and is blocked in the cell at the 'SF-FDG-6-Phosphate state. The fact that 18F-
FDG stay in the cell and cannot be metabolized enables imaging of cell metabolism.

Adapted from Alie et al, Clin Med Insight Cardiol, 2014
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atherosclerosis imaging (Yun et al., 2001). FDG is now the most used radioligand in imaging studies of
atherosclerosis. This tracer is taken up into cells via Glut 1 and 3 which are upregulated in atherogenesis
due to hypoxia in the lipidic core. Once in the cytoplasm, it undergoes phosphorylation by hexokinase
1 but is unable to continue glycolysis cycle because of its conformation. Thus, FDG diffuse very slowly
out of the cell, resulting in intracellular accumulation, which allows quantification. Consequently, it can
be used as a sensitive measure of increased metabolic activity, particularly in tissues without baseline
high metabolic activity such as physiologic vessel wall and blood. In the vulnerable plaque, a high
concentration of pro-inflammatory macrophages induces a high metabolic activity (Davies et al., 2010;

Liu et al., 2016; Tawakol et al., 2006).

FDG PET/CT is a useful technique for non-invasive imaging of plaque due to the variation
of FDG uptake between symptomatic and non-symptomatic carotid plaque in humans (Rudd et al.,
2002). It also allows the discrimination of non-stenotic symptomatic carotid plaque which is not possible
with MRI (Davies et al., 2005). Lipidic-rich plaques are more prone to rupture than fibroatheroma or
calcified plaque and present a higher FDG uptake (Silvera et al., 2009). Both LDL and TC have been
shown to be independently associated with FDG uptake (Chroinin et al., 2014; Kaida et al., 2014).

Furthermore, higher FDG uptake has been shown to be correlated with an increased risk of
cerebrovascular events such as microemboli, whatever the stenosis degree (Marnane et al., 2012;
Moustafa et al., 2010). FDG uptake in aorta is higher in patients with recent myocardial infarction than
those with stable angina and even higher in patient with ST elevation myocardial infarction (STEMI)
versus non-STEMI showing a close correlation between neighboring arterial territories (Joshi et al.,
2015; Rudd et al., 2009). Likewise, epidemiologic study showed that FDG uptake is higher in subjects

with acute coronary syndrome than in those with stable angina (Kim et al., 2015).

In summary, carotid artery FDG uptake is correlated with age, clinical risk factors,
inflammatory biomarkers (Noh et al., 2013; Rudd et al., 2009) and high-risk plaque features on imaging
modalities such as CT, MRI and ultrasonography (Figueroa et al., 2012; Graebe et al., 2010; Silvera et
al., 2009).

ii. TSPO: from a biological target to an imaging agent, ' C-PK11195

Translocator protein (TSPO), formerly called PBR (peripheral benzodiazepine receptor) is
a highly conservative 18kDa transmembrane protein, even found in bacteria. It is located on outer
mitochondria membrane, mostly expressed in steroids-synthesizing tissues (e.g. brain, adrenal gland and

gonads) and mature monocytes and characterized by its ability to bind a variety of
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benzodiazepine-like drugs. It represents 5-10% of all proteins of outer mitochondria membrane in
steroidogenic cells(Anholt et al., 1986). In case of high cholesterol handling, such as high cholesterol
diet, TSPO expression is downregulated in aorta, testis and liver, not in brain (Dimitrova-Shumkovska
et al., 2010). Inversely, in human macrophages, TSPO expression is increased when exposed to oxLDL

as in atherosclerosis (Taylor et al., 2014).

TSPO is complexed with voltage-dependent anion channel (VDAC) and adenine
nucleotide transporter (ANT) (McEnery et al., 1992), proteins involved in mitochondria permeability
transition pore, and allows translocation of cholesterol from outer to inner mitochondria membrane.
TSPO has long been associated with steroidogenesis and mitochondrial permeability transition pore
(mPTP) (Azarashvili et al., 2014; Culty et al., 1999), some even hypothesize that a deletion of TSPO
would lead to a lethal phenotype. TSPO seemed to be critical for mitochondrial processes but, in
physiological situation, morphological adaptation and redundancy of functions in mitochondria could
compensate for the loss of function of TSPO. Indeed, recent studies with TSPO knock-out mice showed
that mice can have a normal phenotype despite of TSPO deletion (Banati et al., 2014; Morohaku et al.,
2014; Sileikyte et al., 2014). We cantherefore think that TSPO may become phenotypically important
when the mitochondria loses its compensation capacity as during aging or in response to metabolic

challenges (Gut et al., 2015).

TSPO also interacts with cytosolic proteins and acts like a mitochondrial anchor allowing

transduction of intracellular signals to mitochondria.

In central nervous system, TSPO is mostly expressed in microglia and reactive astrocytes
and is now used as a biomarker of brain inflammation and reactive gliosis in PET/CT imaging. TSPO
has a low brain expression level in physiological situation and up-regulates in pathological conditions
(Alzheimer disease, Parkinson disease, and multiple sclerosis, brain trauma or stroke) (Batarseh and
Papadopoulos, 2010; Chauveau et al., 2008). TSPO is a sensitive biomarker of neurodegeneration and
brain damage (especially in neuroinflammation and reactive gliosis)(Batarseh and Papadopoulos, 2010;

Janssen et al., 2016).

TSPO chemical ligands, as PK 11195, were thus focused on diagnosis of numerous diseases
such as traumatic brain injury, neuroinflammation and neurodegeneration (Selvaraj and Stocco, 2015).
Although TSPO expression is upregulated in the brain at sites of injury and inflammation, as well
asfollowing a number of neuropathological conditions including stroke, herpes and HIV encephalitis,
and neurodegenerative disorders such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral
sclerosis, Parkinson's disease, and Huntington's disease (Batarseh et al., 2010), the molecular

mechanisms underlying these diseases remain unclear.
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= _ «—TSPO-18 KDa

["C]-TSPO lligand

Mitochondria Activated microglia/macrophage
labeled with ['"C]-TSPO ligand

Figure 21: "'C-PK11195 and TSPO. Translocator protein -18 kDa (TSPO) is located at the outer
mitochondrial membrane and has a putative five transmembrane helical structure. It forms a
hetero-oligomeric complex with the voltage dependent anion channel (VDAC) and the adenine
nucleotide transporter (ANT) constituting the putative mitochondrial permeability transition pore.
[11C]-labeled TSPO ligands (green) bind to TSPO located in activated microglia/macrophages.

The [1C]-radionuclide decays by the emission of a positron enabling TSPO imaging via PET/CT.
Adapted from Venneti et al, Glia, 2013
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However, recent in vivo studies showed that TSPO also had a potential neuroprotective
role. Indeed, upregulation of its expression level can enhance alternative M2 microglial activation,
resulting in more phagocytic activity and upregulation of anti-inflammatory genes to promote recovery

from tissue damages and resolve neuroinflammation (Kim and Yu, 2015).

Similar to what was observed in the brain, TSPO is also overexpressed in cardiac
pathologies (Fairweather et al., 2014). Human clinical trials to diagnose carotid atherosclerosis have
also been completed during the past few years (http://www.clinicaltrials.gov: NCT00547976), showing

its utility in human clinic.

A second isoform of TSPO (TSPO2) exists, is expressed in hematopoietic tissues and is
located on endoplasmic reticulum and nuclear membrane. It is involved in cholesterol redistribution

during erythrocytes maturation. This isoform does not bind drugs (Rupprecht et al., 2010).

PK11195 is an isoquinoline carboxamide which is a potent and selective antagonist ligand
for TSPO with an affinity in nanomolar range (Owen and Matthews, 2011)(Figure 21). After monocyte
activation, TSPO expression increase two to three-fold, resulting in more than 2 million of binding sites
for PK11195 (Zavala and Lenfant, 1987). ""C-PK11195 was showed to enable detection and
quantification of inflammation in aorta of patients with vasculitis, showing a higher uptake of the tracer
in patients compared to controls (Pugliese et al., 2010). Gaemperli et a/ demonstrated that carotid
plaques associated with ipsilateral outcomes such as stroke or TIA had higher uptake of ''C-
PK11195(Gaemperli et al., 2012). Uptake of ''C-PK 11195 was showed to be more focal and localized
than '*F-FDG uptake, reflecting better the plaque composition (Gaemperli et al., 2012; Rudd et al.,
2002).

C-PK 11195 is the tracer of choice for neuroinflammation imaging in vivo as demonstrated
in stroke (Ramsay et al., 1992), neurodegeneration (Banati et al., 2000; Edison et al., 2008; Okello et
al., 2009) and braininjury(Ramlackhansingh et al., 2011). Some studies revealed that binding of ''C-
PK11195 correlated with the number of activated microglia/infiltrated monocytes in models of stroke
(Myers et al., 1991; Raghavendra Rao et al., 2000). In rat model of induced stroke, ''C-PK11195
imaging showed microglia/monocyte infiltration in the infarcted area (Cremer et al., 1992), and this
finding was confirmed in human (Ramsay et al., 1992). Microglia was showed to be activated as early
as day 3 post stroke, first at the external border of the infarct and then spreading to the core (Gerhard et
al., 2005); and ''C-PK 11195 allowed the imaging of microglia activation as far as six months after stroke

(Thiel et al., 2010).
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iii. Others well-known PET tracers that can be used in atherosclerosis
%Ga- and “*Cu-DOTATATE

DOTATATE ([1,4,7,10-tetraazacyclododecane-N,N’,N’’, N’ " -tetraacetic acid]-d-Phel,
Tyr3-octroate) is a radioligand binding somatostatin receptor subtype 2 (SST2) which is upregulated on
macrophage membrane when they are activated (Armani et al., 2007). This radioligand can be labeled

with ®Ga or *Cu.

An uptake of *Ga-DOTATATE was shown in asymptomatic individuals with coronary
calcification and CV risk factors (Mojtahedi et al., 2015; Rominger et al., 2010).

%4Cu-DOTATATE is also used in carotid imaging and its uptake is correlated with CD163
(and in a lower manner with CD68) mRNA expression suggesting the identification of a different
component of the atherosclerotic inflammatory process (Pedersen et al., 2015). Furthermore, a recent
retrospective study reported that a higher **Cu-DOTATATE uptake is associated with cardiovascular
risk factors (Malmberg et al., 2015).

%4Cu has a longer half-life than ®*Ga (12,7h versus 68 min) but ®*Ga is more readily

available due to its production by a generator when *Cu requires a cyclotron.

8F-Sodium Fluoride (**F-NaF)

Microcalcification is one of the features of vulnerable rupture-prone plaque. '®F-NaF is
taken up at mineralization sites allowing the identification of microcalcification areas in vivo (Hawkins
et al., 1992). '8F-NaF was first used in atherosclerosis imaging by Derlin et a/, demonstrating that '*F-
NaF uptake in the plaque reflects the active mineralization process in microcalcification(Derlin et al.,
2010). Carotid '8F-NaF uptake correlates with cardiovascular risk factors in asymptomatic patients

(Derlin et al., 2011) but not with stroke (Quirce et al., 2013).

BF_Fluoromisonidazole (FMISO)

Hypoxia is often associated with atherosclerosis due to the high oxygen demand from foam
cells. ""F-FMISO imaging measures the effect of hypoxia directly within the necrotic core of the plaque.
In a hypoxic environment "*F-FMISO remains bound intracellularly, allowing a quantitative measure of
its accumulation. "8F-FMISO uptake was shown to be higher atheromatous regions rather than in normal

tissue in rabbit (Mateo et al., 2014). In human, "*F-FMISO uptake was found to be
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higher in carotids of symptomatic versus asymptomatic patients and correlated with FDG uptake,

suggesting a contribution of hypoxia to the uptake of FDG (Joshi, FR et al., 2013).

8Ga-NOTA-RGD

Neoangiogenesis is another well-known vulnerable plaque feature due to the risk of
intraplaque hemorrhage leading to plaque rupture. *Ga-1,4,7-triazaclyclononane-1,4,7-triacetic acid
(NOTA)-Arg-Gly-Asp (RGD) (®Ga-NOTA-RGD) target integrin avB3 expressed in angiogenic
endothelial cells and macrophages. An increased uptake of this tracer was related to aortic
atherosclerosis in ApoE null mice compared to atherosclerosis-free control animals and in a few patients

with atherosclerosis (Paeng et al., 2013).

b) Adhesion molecules imaging

Migration of blood-borne leukocytes through the endothelium and/or the BBB if in the
brain is a process consisting of chemoattraction, adhesion and transmigration. Chemoattraction is
mediated via various cytokines and adhesion through the interaction of endothelial cell selectins (e.g. P-
selectin), VCAM-1 or ICAM-1 with leukocytes integrins. Adhesion molecules are upregulated by
inflammation and often represent the first hallmark of the inflammatory process making them interesting

targets for imaging studies.

i.  Vascular adhesion molecule (VCAM-1)

VCAM-1 (also called CD106) is and adhesion protein of the immunoglobulin superfamily
expressed on endothelial cells. It is the most imaged adhesion molecule in atherosclerosis and
neuroinflammation. VCAM-1 can be imaged using various tracers and techniques such as anti-VCAM-
1 antibody conjugated to micron particles of iron oxide (MPIO) also named VCAM1-MPIO (McAteer
et al.,, 2007) or A429 VCAM-1 antibody, which is more sensitive and allows imaging of subtle
neuroinflammation on MRI (Montagne et al., 2012) both showing hypointensities on T2 weighted MRI.
Monoclonal antibody A429 can also be coupled with microbubbles for ultrasound imaging enabling the
visualizationof inflamed endothelium and vasa vasorum(Kaufmann et al., 2007; Wu et al., 2011). In
nuclear imaging, *™Tc-cAbVCAMI-5nanobodies are available for SPECT (Broisat et al., 2012) and an
in vivo phage display (VINP-28) labeled with '*F for TEP/CT imaging of VCAM-1(Nahrendorf et al.,
2009). This latter was for now only tested on mouse models of atherosclerosis and myocardial infarction

but showed interesting properties.
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ii. Intercellular adhesion molecule (ICAM-1)

ICAM-1 (also called CD54) is a member of immunoglobulin superfamily expressed by
endothelial cells involved in leukocyte adhesion to endothelium. ICAM-1 can be imaged in systemic
arteries using mostly anti-ICAM-1-conjugated bubbles for ultrasound (Villanueva et al., 1998). For
neuroinflammation imaging, the MR tracer ICAM-MPIO which specifically bound brain endothelial
cells in vitro after TNF stimulation and showsT2 hypointensities rapidly after induction of tMCAO

stroke model in vivo(Deddens et al., 2013) is the most commonly used.

iii. P-selectin

P-selectin (also named CD62P) is an adhesion molecule expressed by platelets and
activated endothelial cells. Several MRI probes exist for P-selectin imaging but most of them lack
sensitivity. At these days, the most sensitive probe for P-selectin is a glyconanoparticle molecule (GNP-
sLe®) covered of a dextran-coated USPIO (van Kasteren et al., 2009)which is used for subclinical

inflammatory foci imaging (Serres et al., 2009).

c) Myeloperoxidases imaging

As seen above, MPO is an important biomarker in cardiovascular diseases and its non-
invasive detection can be performed by different imaging modalities. Indeed, MPO can be detected
using a contrast agent, the MPO-activatable gadolinium chelate on MRI (Nahrendorf et al., 2008) or
luminol on bioluminescence experiments (Gross et al., 2009). For SPECT modality, !''In-bis-5HT-

DTPA is used to visualize MPO in the arterial wall and plaques of humans and animals (Wu et al., 2012).

d) Matrix metalloproteinases (MMPs) imaging

MMPs are calcium-dependent zinc-containing endopeptidases capable of degrading all
kinds of extracellular matrix proteins but also several bioactive molecules hence their role in the plaque
rupture. They are known to be involved in cell surface receptors cleavage, release of apoptotic ligands
and chemokine/cytokine inactivation (Van Lint and Libert, 2007). MMPs also play a role in cell
behaviors such as proliferation, migration, differentiation, or apoptosis. MMPs can be imaged using
Mn-RP782 or *™T¢-RP05 on SPECT but also via MR imaging (P947) or NIRF (MMPsense) (Osborn
and Jaffer, 2013).
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This review of the literature highlights the importance of assessing in the same time
inflammatory marker (especially hsCRP), lipidic profile (i.e. LDL-C) combined with plaque imaging is
now acknowledged in human clinic as well as the relevance of exploring not one but multiple vascular

territories for a better individual and global CV risk stratification and patient care.

In this second part, I have presented the different available biomarkers. Of note, as
molecular imaging is still in development, we can easily imagine that new techniques and
biomarkers will emerge in the near future. The next part of this manuscript focused on my
research work, ultrasound and MRI were used for in vivo morphologic characterization of the

arterial wall, and USPIO and "'C-PK11195 for inflammation in large arteries and in brain.
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Atherosclerosis is a complex pathology combining a dyslipidemic context and a chronic

low-grade inflammation resulting mainly in vascular lesions but also in cerebrovascular lesions still
poorly explored. Indeed, inflammation combined with a lipotoxic context lead to a vicious circle of
pernicious effects such as cerebrovascular unit disorganization. The high complexity of atherosclerosis
process and outcomes requires the use of more accurate animal models, notably in taking account of the
critical factor of age for cardiovascular risks, and capable of underwent translational explorations with

both circulating and imaging biomarkers.

My PhD work was focused on atherosclerosis and its consecutive cerebrovascular lesions
in term of inflammation and blood-brain barrier leakage. For this, I used different animal models of
atherosclerosis, as aged ApoE”" mice and non-human primates fed an atherogenic diet and focused on

imaging and biological biomarkers to assess plaque-induced cerebrovascular inflammation.

First, we used aged ApoE”" mice as they are a well-known atherosclerosis model and their
predisposition to plaque development combined with a high cholesterol diet and an advanced age offered
a maximal cardio-metabolic risk context. The aim of our first study was to assess the effect of voluntary
regular exercise training on central and peripheral deleterious effects of a high cholesterol diet in aged

ApoE"" mice. For this study, mice were fed according to their metabolic needs (article n°1).

Then in a second time, as the results of the first study showed that when mice were fed with
controlled high cholesterol diet the exercise training reduced the cerebrovascular lesions and the
inflammatory and oxidative status, we wanted to assess whether the same protective effects of training

can be observed when the high cholesterol diet is given ad libitum (article n°2).

The last part of my thesis was based on a non-human primate model of atherosclerosis. We
used aged Cynomolgus monkeys (Macaca fascicularis) under atherogenic diet to assess if a combination
of multi-modalities imaging (ultrasound, MRI and PET/CT) and biological analysis can allow an

accurate stratification of the individual cardio and cerebrovascular risk (article n°3).

In summary, my PhD work focused on a biomarker approach of general inflammation and
cerebrovascular integrity in atherosclerosis animal models to determine was is the most efficient and
relevant combination of biomarkers, using translational imaging techniques, biological and genomic

analysis.

101



102



MRI biomarkers of exercise-induced improvement of oxidative stress and inflammation in the

brain of old high fat fed ApoE”" mice

Erica N Chirico, Vanessa Di Cataldo, Fabien Chauveau, Alain Geloen, David Patsouris, Benoit Theze,

Cyril Martin, Hubert Vidal, Jennifer Rieusset, Vincent Pialoux, and Emmanuelle Canet-Soulas

Journal of Physiology 2016. doi: 10.1113/JP271903
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ARTICLE N°1:

Vascular brain lesions present in advanced atherosclerosis share pathological hallmarks
with peripheral vascular lesions such as inflammation and oxidative stress. Physical activity was shown
to reduce these peripheral risk factors, but few studies were published on its cerebrovascular effects.
The aim of this study was to assess whether the beneficial effect of exercise training on inflammation
and oxidative stress could be used as an intervention option in an aging atherosclerosis mouse model.
The characterization of vascular brain damage in old ApoE” mice fed a high fat diet with dietary

controlled intake was performed using a combination of in vivo imaging and post-mortem analysis.

ApoE” mice and C57Bl/6 (used as control) were divided into five groups: old untrained
and exercise trained ApoE” (respectively O-ApoE-UT and O-ApoE-ExT; 60 weeks-old), young
untrained ApoE” (Y-ApoE-UT; 10 weeks-old), old untrained and exercise trained C57BL/6
(respectively O-C57-UT and O-C57-ExT; 60 weeks-old). ApoE” mice were fed a high fat diet (0.15%
cholesterol, 21% lard fat) since 8 weeks of age with a dietary controlled intake (20g per week per
animal) when C57BL/6 were fed a standard diet. Exercise trained mice were housed separately and
have free access to a running wheel in their cages, while untrained were housed in small groups in
standard cages (see Figure 22 for study design).

At the end of the 12-weeks training, insulin tolerance test was performed to assess the
glucidic status of mice. /n vivo MRI of brain and descending aorta was performed using contrast agents
(Gadolinium and ultrasmall superparamgnetic iron oxide particle, USPIO) to quantify vascular
permeability and macrophage accumulation in these two locations. After mice sacrifice,
immunochemistry was realized on brain to confirm MRI observations (IgG for blood-brain barrier
permeability and F4/80 for macrophages staining). Biological analysis were performed on heart, brain,
aorta and liver to assess inflammation (IL-1B, TNFa) and oxidative stress (AOPP, catalase, FRAP,

GPX, MDA, NOx, nitrotyrosine and SOD). Moreover, plasmatic cholesterol level was measured.

The training was effective as showed by the significantly increased citrate synthase activity
and no weight variation was observed between trained and untrained ApoE” mice. O-ApoE-ExT
showed an improvement of metabolic features (plasmatic cholesterol level and insulin sensitivity), and
a reduced systemic and tissular (aorta, heart and liver) inflammation and oxidative stress, suggesting a
protective effect of exercise on peripheral features. Furthermore, O-ApoE-ExT mice presented less
aortic plaque with less macrophage accumulation and a better survival rate than the untrained
(respectively 77% and 49%). Some hemi- and paraplegia events were observed in old ApoE” mice,

especially in the untrained group. Brain abnormalities such as blood-brain barrier leakage and
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macrophage accumulation were detected by MRI in periventricular areas of old ApoE” mice of both
trained and untrained group. These abnormalities were significantly reduced by exercise training
(observed in 14% of trained mice versus 71% of untrained), as well as inflammation and oxidative

stress, suggesting that training also have a protective central effect.

Highly localized vascular brain damages are frequent in this aging atherosclerosis model
and exercise is able to reduce this outcome and improve lifespan. /n vivo MRI allowed evaluation of

both neurovascular damage and protective effect of exercise.
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Magnetic resonance imaging biomarkers of
exercise-induced improvement of oxidative stress and
inflammation in the brain of old high-fat-fed ApoE~/~ mice
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Key points

* Vascular brain lesions and atherosclerosis are two similar conditions that are characterized by
increased inflammation and oxidative stress.

* Non-invasive imaging in a muarine model of atherosclerosis showed vascular brain damage and
peripheral inflammation.

& In this study, exercise training reduced magnetic resonance imaging-detected abnormalities,
insulin resistance and markers of oxidative stress and inflammation in old ApoE™" mice.

* Our results demonstrate the protective effect of exercise on neurovascular damage in the ageing
brain of ApoE~'~ mice.

Abstract Vascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks
with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical
activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented,
especially by non-invasive imaging. Through a combination of in wive and post-mortem
techniques, we aimed to characterize vascular brain damage in old ApoE™"~ mice fed a
high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the
beneficial effects of exercise training on oxidative stress and inflammation in the brain as a
treatment option in an ageing atherosclerosis mouse model. Using im vivo magnetic resonance
imaging (MRI) and biological markers of oxidative stress and inflammation. we evaluated the
occurrence of vascular abnormalities in the brain of HC-diet fed ApoE "~ mice = 70 weeks old, its
association with local and systemic oxidative stress and inflammation, and whether both can be
modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities
{present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation,
9.1+ 1.4 v5. 5.2 = 0.9 pmol mg—'; P < 0.01) and inflammation (interlenkin-14, 226.8 £ 27.1
vs. 182.5 + 21.5 pg mg—'; P = 0.05) in the brain, and the mortality rate. Exercise also decreased
peripheral insulin resistance, oxidative stress and inflammation, but significant associations were
seen only within brain markers. Highly localized vascular brain damage is a frequent finding in
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O-ApoE-ExT, respectively), young untrained ApoE~'~
mice (Y-ApoE-UT) and old untrained and exercise-
trained C57BL/6 (O-C57-UT and O-C57-ExT, respecti-
vely). Using in vivo MRI, the ascending aorta and
brain were imaged, and contrast agents (iron oxide
nanoparticles, P-904 and gadolinium Gd-DOTA; Guerbet,
Aulnay-sous-Bois, France) were used to quantify
macrophage infiltration and vascular permeability. At the
end of the study, plasma measurements and tissue samples
were taken. Total blood cholesterol, insulin, oxidative
stress markers [advanced oxidation protein products
(AQPP), malondialdehyde (MDA) and nitrotyrosine],
antioxidant markers [catalase, glutathione peroxidase
(GPX), superoxide dismutase (SOD), ferric reducing
antioxidant power (FRAP) and nitric oxide metabolites
(MOx)] and inflaimmatory markers [tumour necrosis
factor-e¢ (TNFa), interleukin-18 (IL-18) and nuclear
factor-xB (NF-xB)/p65] were measured. Brain samples
were stained with standard Haematoxylin and Eosin, F4/80
immunostaining for macrophages and IgG immuno-
staining for BER permeability.

Animals

Male and female ApoE~'~ mice (C57BL/6 background;
Charles-River, France) were fed a HF/HC diet (western
diet; 21% fat, 0.15% cholesterol; UB220 version 153;
SAFE, Augy, France) starting at 8 weeks of age, and
control male and female C57BL/6 mice (Charles-River,
France) were fed a normal diet ( Teklad Global 16% Protein
rodent diet with 12% fat; Harlan, Gannat, France). All
animals were maintained on a 12 h-12 h light—dark cycle
and were supplied with food (limited at 20 g week™!
per animal, equivalent to 955 kcal week ™" for ApoE~""
mice and 688 kcal week™' for CS7BL/6 mice) and
water ad libitum. After careful maintenance of health
conditions for 1 year (Guerbet, Animal Care Unit), at
60 £ 1 weeks old both ApoE~"~ and C57 mice were
randomly divided into two activity groups (untrained, UT;
and exercise trained, ExT). Mice in the exercise-trained
group (O-ApoE-ExT and O-C57-ExT) were individually
housed in cages equipped with a 12.5 cm metal mnning
wheel (HAGEN-61700, Montreal, QC, Canada) and
digital magnetic counter (model BCS06; Sigma Sport,
MNeustadt, Germany), whereas the untrained (O-ApoE-UT
and O-C57-UT) groups had a standard cage. Male and
female young-adult ApoE™"~ mice (Y-ApoE-UT; aged
10 weeks) fed the same high-fat diet (starting at 8 weeks of
age; fed the diet for 14 weeks in total) served as age controls.
During the 12 weeks of training, the distance run and the
general health (i.e. tumours, skin irritations) of the mice
were noted three times a week. The exclusion criterion
was overall poor health of the animal (ie. tumours,
skin irritations). A follow-up was performed daily by the
techmician in the animal facility to evaluate pain on the

£ 2016 The Authors. The laumal of Physiology € 2016 The Physiological Socety

Exerdse improves brain damage in ApoE—'- mice

6971

basis of external physical appearance, weight loss (with
respect to food and water ingestion), assessable clinical
signs (in particular, increase in respiratory frequency),
change in behaviour (in particular, prostration) and
non-response to external stimuli.

Magnetic resonance imaging protocol

Mice were randomly selected to undergo the imaging
protocol. The mice were anaesthetized by inhalation of iso-
flurane (2% for induction and 1% to maintain anaesthesia;
Tem Sega, Lormont, France). Cardiac and respiratory
rates were monitored throughout the session, and body
temperature was maintained using a circulating heated
water blanket at 37 £ 1°C. Magnetic resonance image
acquisition was performed on a 47 T Bruker magnet
(Ettingen, Germany). The total duration of the MRI
protocol was <2 h. The protocol was then repeated 42 b
after the injection of ultrasmall iron oxide nanoparticles
(USPIO; PS04, 1 mmol Fe kg~'; Guerbet) for vessel wall
inflammation assessment, followed by the acquisition of
brain images (Fig. 1).

Magnetic resonance Imaging of the aorta. For imaging
of the ascending aorta, double cardiac and respiratory
gated acquisitions were obtained as previously described
(Sigovan ef al. 2012) with a homemade gating system
developed in Matlab {The MathWorks Inc., Natick, MA.
UsA). Electrocardiographic signals were collected via
three electrodes placed om the paws, and respiratory
signals were collected via a pressure sensor placed on the
abdomen.

The ascending and descending aorta was identified
using reference axial slices. A bright-blood cine-mode
FLASH sequence was used to locate the aortic arch. The
reference slices were acquired with a gradient echo (GE)
sequence with the following parameters: repetition time
(TR) / echo time (TE) = one R-R interval/é.7 ms; field
of view = 3.8 cm = 3.8 cm; matrix = 256 » 256; band-
width, 25 kHz; and slice thickness = 1.1 mm. The oblique

on 2h 48n
Aoiia lF'QMInjecnon Aarta l
MRI Brain MBI grmin
MRI MRI
Figure 1. Magnetic ce imaging (MRI) protocol

A pre-contrast imaging (0 h) protocol was performed on the aorta,
followed immediately by brain imaging with gadolinium injection.
An uttrasmall iron oxide nanopartides (USFI0) contrast agent, P304
[Guerbet, Aulnay-sous-Bois, France), was then injected. Forty-eight
hours later (48 h), an identical post-USMO aortic imaging protocol
was performed for assessment of inflammation. This was followed
immediately by brain inflammation imaging.
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Table 1. Visual lesion characteristics

E. N. Chirico and others

J Pfwsiol 584 23

Score Pre-contrast image Post-contrast image
1 Mo abnormality Mo observable change from pre-comtrast
2 Smiall lesions (= 10 pixek) on =2 slices Change in 5MR and increase in dark region size from pre-contrast
on =2 slices
3 2 slices or medium-sized lesion (10 « pixels = 20) on Medium change in 5NR and increase in dark region size from
=2 slices pre-contrast on =<2 slices
4 Large lesion (=20 pixels) on = 2 dices Major change in 5SNR and increase in dark region size from

pre-contrast on = 2 slices

Abbreviations: SNR, signal-to-noise ratio

slice was placed perpendicular to the ascending aorta,
directly above the sinus to avoid flow artifacts.

A black-blood multigradient echo sequence was used
to image USPIO accumulation using the same slice
number and positioning, spatial resolution, partial echo
acquisition, and the following parameters: minimal
repetition time, 742 ms (achieved by setting the gating
gystem between three and five R-R intervals depending
on the animal’s heart rate); four echoes; bandwidth,
79.3 kHz; and number of averages, 2. The sequence was
performed twice with two different values of TE: 3.1 ms,
followed by 4.0 ms. The eight echo images acquired were
interleaved to allow a better sampling of the T2* decay
curve,

Magnetic resonance Imaging of the brain. For brain
imaging, a birdcage coil of 72 mm id. was used
for radiofrequency transmission and a surface coil
anatomically shaped to the mouse head for reception
(Rapid Biomedical, Wurzburg, Germany).

Brain T2-weighted spin-echo images were acquired
using a Rapid Imaging with Refocused Echoes (RARE)
sequence in both axial and coronal planes. T2 RARE
and T2* multi gradient echo (MGE) sequence positioned
using standard MRI brain anatomical references for careful
pre- and post-contrast registration were acquired. The
RARE sequence was used with the following parameters:
TR/TE = 4000 /69 ms; field of view = 2 cm = 2 cm;
matrix = 256 x 256; slice thickness = 1 mm; RARE
factor = 8 and number of slices = 15. The MGE
sequence was used with the following parameters: TR/first
TE = 1500/2.6 ms; flip angle = 75 deg: field of
view = 2 cm x 2 cm; matrix = 256 x 192; slice
thickness = 1 mm; 12 echoes and echo interval = 3.5 ms;
and number of slices = 15.

In order to characterize the newrovascular lesions, an
extended brain MRI protocol was performed in a separate
set of old untrained ApoE~'~ mice fed the HE/HC diet
(n = 10} and old C57BL/6 mice. Neurovascular lesions
and iron deposits were assessed respectively by baseline
T2 and T2* imaging. T2* quantification was obtained

using a multislice multi-echo gradient echo sequence.
For BBB permeability assessment, a T1-weighted
MGE sequence with identical geometrical parameters
was acquired before and 10 min after inljefr_ion of
gadolinium chelate (Gd-DOTA, 0.1 mmol kg™ ; Guerbet,
Aulnay-sous-Bois, France) with the following parameters:
TR/TE = 124/2.8 ms; field of view = 2 cm = 2 cm;
matrix = 256 = 192; slice thickness = 1 mm; and number
of slices = 15. This was followed by USPIO injection and
the 48 h post-USPIO T2/T2* imaging.

Analysis of MRL. For brain analysis, areas of interest
on pre-USPIO T2/T2* images and post-gadolinium T1
images were first visually categorized based on the size
of abnormal areas and the number of slices affected.
The blinded investigators scored changes in pre- and
post-contrast (48 h post-USPIO) T2/T2* images and
gadolinium leakage on T1-weighted images. Briefly, a
score of 1—4 was given for abnormalities seen on
pre-contrast images and a score of 1—4 was given for
changes seen on post-contrast images (see Table 1 for
scoring assessment).

For analysis of the aortic arch, inner and outer
vessel wall contours were delineated and vessel wall area
calculated. T2* mapping of pre- and post-USPIO series
was performed using Matlab { The MathWorks Inc..) on
interleaved multi-slice-multi-echo (MSME) images. The
vessel wall regions of interest were used for the analysis
of aortic T2* on both pre- and post-contrast images as
described by Sigovan et al. (2010).

Dissactions

After the second imaging session, mice were anaesthetized
by an 1. injection of pentobarbital (50 mg kg~'; Dolethal;
Vétoquinol, Lure, France) and blood was collected by
cardiac puncture. Mice were killed by exsanguination with
a 0.9% MaCl transcardial perfusion for 70 5. The brain,
heart, ascending—descending aorta, liver and soleus were
removed. Sections to be used for biological assays were
stored at —80°C until assessment.
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at 450 nm after excitation at 365 nm. MNitrates are converted
to nitrite by nitrate reductase.

Mitrotyrosine. Concentrations of plasma nitrotyrosine,
as the end-product of protein nitration by ONOO-,
were measured by a competitive enzyme-linked immuno-
sorbent assay as  previously described (Galifianes
& Matata, 2002) using precoated nitrated bovine
serum albumin microplates and subsequent incubations
and washings with anti-nitrotyrosine and anti-rabbit
IpG-HRP conjugate. The concentration of nitrotyrosine
was then calculated wsing nitrated bovin serum albumin
as the standard.

Superoxide dismutase. The quantitative determination
of 30D activity was performed on the plasma, aorta,
heart, liver and brain using the method of Beanchamp
& Fridovich (1971), slightly modified by Oberley &
Spitz (1985). The S0OD activity was determined by the
degree of inhibition of the reaction between super-
oxide radicals, produced by a hypoxanthine-xanthine
oxidase system, and nitroblue tetrazolium. The formazan
blue subsequently formed was read at 560 nm for 5 min.

Cholesterol and metabolic measurements. Total blood
cholesterol was assessed using an Amplex Red Cholesterol
Assay Kit as instructed by Invitrogen (Carlsbad, CA, USA).
One week before MRL, an intraperitoneal insulin tolerance
test was performed on mice fasted for 6 h. Mice were
injected Lr. with 0.75 mU (g body weight)~! of insulin.
Blood was taken by tail puncture immediately before and
at 15, 30, 45 and &0 min time points after injection for
measurement of blood glucose.

All reagents used for biochemical assays were purchased
from Sigma-Aldrich.

Inflammatory markers. Tumour necrosis factor-w (BD
Biosciences, San Jose, CA, USA) and IL-15 (RayBiotech,
Inc., MNorcross, GA, USA) were assessed in plasma,
aorta and brain supernatant, and interleukin-4 (I1L-4;
Abcam, Cambridge, UK) in brain supernatant using a
commercially available mouse enzyme-linked immuno-
sorbent assay kit, according to the manufacturer’s
instructions. The NF-xB/ps5 activity (Imgenex, San
Diego, CA, USA) was assessed in plasma according to the
manufacturer’s instroctions.

Statistics

Statistical analyses were conducted using Statistica
(version 8.0; Statsoft, Talsa, OK. USA). Results are
presented as means + SD. For each parameter, a
minimum of seven mice per group was used. Statistical
comparisons between five groups (O-ApoE-UT, O-ApoE-
ExT, Y-ApoE-UT, O-C57-UT and O-C57-ExT) were

E. M. Chirico and others
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performed by one-way ANOVA followed by Bonferroni
post hoc test. Pearson’s coefficient correlations were used
to determine the associations between plasma markers,
brain markers and distance ran. A logrank test was used
for survival curve analysis. Statistical sipnificance was
determined by a P value of =0.05. All the animals that did
not complete the study were excluded from all the analyses
carried out except for the calculation of the survival
rate.

Results
Animal characteristics and general effects of exercisa

Ninety-one old ApoE~'~, 20 young-adult ApoE—'-
and 16 old C57BLf6 (O-C57) mice were originally
included in the protocol. These animals were vulnerable
to cerebrovascular disease, espedally in the older
cohorts, and a number of animals died prior to any
biological assessment. The majority of these animals
died spontaneously; however, seven mice died after signs
of mono- or hemiplegia (all being old ApoE~'~ mice,
representing 13% of all deaths of this group), a possible
symptom of cerebrovascular disease. Of the mice that
died during the protocol, 29 were in the O-ApoE-UT
group, 10 were in the O-ApoE-ExT group (Fig. 2), one
in the 0-C57-UT and one in the O-C57-ExT group. An
additional six mice died during the insulin resistance
test or MRI, and three mice were excluded at autopsy
because of large tumours. After the induction and training
perind, 43 old ApoE~"~ mice (19 O-ApoE-UT, 72.4 & 2.4
weeks; and 24 O-ApoE-ExT, 71.8 + 1.9 weeks) and 20
voung-adult mice (¥-ApoE-UT, 20 £ 0 weeks) were used
for biological assessment ( Table 2). The O-ApoE-ExT mice
ran 17.8 £ 15.3 km week™", whereas the O-C57-ExT
mice ran 16.2 + 8.8 km week ™. The training effect was
supported by higher CS activity in the soleus of both
O-ApoE-ExT and O-C57-ExT mice compared with the
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Figure 2. Survival rate for old untrained {0-ApoE-UT) and
exercise-trained (0-ApoE-ExT) ApoE—'~ mice (P = 0.03)
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Table 2. Number of mice at indusion, that died spontanecusly, that died during experimental procedures, excluded after dissection

for large tumours and used for biclogical assessments

Y-ApoE-UT O-ApoE-UT O-ApoE-ExT o-057-UT O-C57T-ExT
Mice at inclusion (n) 20 53 E-.} B 8
Mice that died spontanecusly (n) 0 29 10 1 1
Mice that died during ITT and MRI (n) 0 3 3 [i] i}
Mice excluded after dissection for large tumours [n) 0 2 1 0 (1]
Mice used for biological assessments (n) 20 149 24 T 7

Abbreviations: ITT, imsulin tolerance test; MRl magnetic rescnance imaging; O-C57-ExT, old CE7BL%® exerdse trained; O-C57-UT,
old CS7BLE untrained; O-ApoE-ExT, old ApoE "~ exarcise trained; O-ApoE-UT, old ApoE '~ untrained; and ¥-ApoE-UT, young-adult

ApoE—'- untrained.

Table 3. Effect of age and exercise training on body weight, citrate synthase activity, cholestensl and insulin resistance

Parameter ¥-ApoE-UT O-ApoE-UT O-ApoE-ExT O-C57-UT O-C57-ExT
Body weight (a) 327+ 15 402 + 1.5+ 385 + 15 72+ 12 7T+ 11
Citrate synthase activity (nmal min-! mg-") 368 + 0.2 676 + 0.8 B.50 + 0.2% 492 + 0424 B.44 + 035+
Cholesterol (mmol 1) 20 + 4.1 182 + 20 155 + 1.2* 6.2 + 06! 5.0 + 0.4%
Insulin resistance (%) —207+81 -M6+272* -—223+28 249124 —265+ 19

Inzulin resistance was estimated as the percentage change of glycaemia at 30 min (vs basaline) during an insulin tolerance test. Groups
are as in Table 2. *Significantly different (F . 0.05) from young. tSignificantly different (P - 0.05) from comesponding untrained.

{5ignificantly different (P - 0.05) from corresponding ApoE—/—.

corresponding UT mice (see Table 2). Despite higher
plasma cholesterol concentrations in all ApoE~'~ mice
compared with old C57 mice (independently of training),
Y-ApoE-UT mice had higher insulin sensitivity than
O-ApoE-UT mice (Table 3). The training effect was
also evident on both insulin sensitivity and plasma
cholesterol concentrations in the O-ApoE-ExT ws. the
corresponding untrained mice (see Table 2). Importantly,
the O-ApoE-ExT mice had a significantly higher survival
rate compared with the O-ApoE-UT mice (77 v 49%;
P = 0.03% Fig. 2), Exercise training was therefore able to
decrease the mortality rate of the old ApoE™"~ mice. Both
0-C57-UT and O-C57-ExT mice had a survival rate of
87%, which was significantly higher than the old ApoE~'~
mice, confirming the pathological state of our old ApoE ™"~
mice.

Prasence of multiple neurovascular lesions in old
sedentary ApoE-"- mice on the HF/HC diet

As observed by in vivo MRI and histology, there were
significant abnormalities in the brain vasculature of
O-ApoE-UT mice (Fig. 3), whereas O-C57-UT mice did
not show such abnormalities as indicated by significantly
lower scoring between old O-ApoE-UT and O-C57-UT
for both post-USPIO T2 and post-gadoliniom T1 images
(Fig. 3). On pre-contrast images, several dark areas on
T2 imapges and T2* images indicated iron accumulation
in a large number of O-ApoE-UT mice at the same

12 2016 The Authars. The Jowmal of Prysiology & 2016 The Priysiological Sodety

periventricular location (71% of O-ApoE-UT s, 0% for
O-C57-UT). Post-gadolinium T1 images indicated the
presence of periventricular BBB leakage and endothelial
permeability in O-ApoE-UT mice (gadolinium score of
2.7 £ 080 for O-C57-UT mice vs. 142 £ 023 for
O-C57-UT, P = 0.05; Fig. 3). Comparing the pre- and
post-USPIO T2 images (Fig. 3), it was evident that there
was also an accumulation of iron oxide nanoparticles,
Given that circulating iron oxide namoparticles would
have been cleared from the circulation, this supgests the
presence of macrophages and phagocytic activity in the
same area. These signs of neuro-inflammation observed
on both post-USPIO T2* and T2 images were confirmed by
histology (Figs 4 and 6). Disorganized brain parenchyma
was seen in the middle ventral zone, but was not related to
an active apoptotic process ( TUNEL negative on immuno-
histochemistry; data not shown). There was also an
anatomical correspondence between this abnormal area
in both T2/T2* images and post-gadolinium T1 images,
which was histologically confirmed respectively by positive
staining for IgG and F4/80. This would indicate BBB
leakage (endothelial permeability). There was also some
evidence of vesicular apgregates, which could indicate
foam cell development (data not shown).

Brain MRI in trained vs. untrained old ApoE—'"— mice

There were significantly more abnormalities in the brain
vasculature of O-ApoE-UT (n=7;71% of mice) compared
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with O-ApoE-ExT mice (n=7, 149 of mice). Comparing
the pre-USPIO images (respective scores, 1.71 & 0.19 vs.
129 = 0.19% P = 0.12) with post-USPIO images,
there was more USPIO accumulation in O-ApoE-UT
mice (vs. O-ApoE-ExT), suggesting phagocytic activity
and inflammation (Figs 3 and 4) as indicated by the
significantly higher post-USPIO T2* score in O-ApoE-UT
mice compared with O-ApoE-ExT mice (2.92 £ 0.49 vs.
1.69 = 0.44; P < 0.05).

Old ApoE—'- mice expressed higher brain oxidative
stress and inflammation than old C57 and young
ApoE~—'- mice

Malondialdehyde, AOPP, II-1§ and TNFa were
significantly lower and FRAP significantly higher in
O-C57-UT than in O-ApoE-UT mice (P = 0.01),
confirmingthe brain pathological state of our old ApoE~'~
mice (Table 4). Superoxide dismutase and GPX were not
different between O-C57-UT and O-ApoE-UT groups
(Table 4). Brain concentrations of the oxidative stress
marker MDA and the pro-inflammatory markers TNFa

E. N. Chirico and others
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and IL-1p were significantly higher in both O-ApoE-UT
and O-ApoE-ExT compared with Y-ApoE-UT mice
(P < 0.01). On the contrary, SOD and GPX (see
Table 4) and 1L-4 (O-ApoE-UT, 2.34 % 0.83 pg mg™"'
vs. Y-ApoE-UT, 5.04 + 3.26 pg mg™'; P = 0.05) were
decreased with age in ApoE™'~ mice.

Exercise-induced changes in markers of oxidative
stress and inflammation in the brain of old ApoE-'~
mice (Table 4)

In the brain, MDA and AOPP were decreased in
response to exercise training (P < 0.01 and P < 0.05,
respectively). Moreover, there was an increase in brain
catalase (P = 0.05) and a decrease in IlI-18 and
TNFw in O-ApoE-ExT compared with O-ApoE-UT mice
(P < 0.05). Brain concentrations of IL-4 were significantly
higher in O-ApoE-ExT compared with O-ApoE-UT mice
(5.70 £ 3.87 vs. 2.34 + 0.83 pg mg~' for O-ApoE-ExT
and O-ApoE-UT, respectively; P = 0.05). The FRAP, GPX
and SOD were not significantly affected by exercise in old

ApoE~'~ mice.

N 5
c

C O-ApoE-UT  O-ApoE-ExT O-C57-UT O-C57-ExT

T2" Pre-Contrast Score 17102 120+ 02 14402 130:03
T2" Post-Contrast Score 2922053t 169=043" 15002 143102
Gadolinium Score 270+ 08t n.a. 142+03 136x02

Figure 3. Brain magnetic resonance imaging of old untrained C57 and trained and untrained ApoE~'~

A, brain MRI in old untrained ApoE~~ (O-ApoE-UT, keft panel) vs. old untrained C57 mice (O-C57-UT, right
paneks; pre-USPIO T2 MR, a and b; and 48 h post-USPIO T2 MRI, ¢ and d; post-gadolinium T1 MRI, e and f}. In
O-ApokE-UT mice, red arrows indicate a hypointense region, suggesting inflammation, in 3 and ¢, and bright zone
in e, suggesting BBB leakage. B, brain T2 MRI (pre-USP0O, 3 and b; and 48h-post-USPIO, ¢ and d) in untrained
(O-ApoE-UT, left panek) vs. trained okd ApoE '~ mice {O-Apok-Ext, right panels) showing a hypointense region
(red arrow in d) demonstrating inflammation in the left periventricular fornix fimbria in the O-ApoE-UT mouse, and
a normal image in the O-Apok-ExT (d). C, brain pre- and post-USPIO T2* scores and post-gadolinium T1 score for
oid sadentary and trained ApoE - mice {O-ApoE-UT and O-Apok-ExT, respectively) and old sedentary and trained
C57 mice (O-C57-UT and O-CS57-ExT, respectively). *Significantly different (P « 0.05) O-ApoE-ExT vs. O-ApoE-UT
1Significantly different (P < 0.05) O-C57-UT vs. O-ApoE-UT. *Significantly different (P < 0.05) from pra-contrast.
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Magnetic resonance imaging of the aorta and
biological vessel wall response

The O-ApoE-UT mice had a larger vessel wall area than
the Y-ApoE-UT mice (4.02 £ 0.22 vs 2.66 = 0.03
mm?; P < 0.01). In the O-ApoE-ExT mice, vessel wall
area was reduced compared with O-ApoE-UT mice (see
Fig. 5). Concerning T2* measurements, both pre- and
post-USPIO values in O-ApoE-UT mice were lower than
in Y-ApoE-UT mice, confirming more complex plaque
composition and more inflammatory activity, respectively
(Mihai et al. 2011). The O-ApoE-ExT mice had an
increase in pre-USPIO T2* measurement compared with
O-ApoE-UT mice, suggesting a less complex plaque
composition (see Fig. 5). Post-USPIO T2* was lower
than pre-contrast values for all the groups, indicating the

Figure 4. Brain magnetic resonance images
of an old untrained ApoE—'~ mouse

Pre- (A) and post-USPIO (B) T2 images, both
showing hyposignal and heterogeneous
regions around the choroid plexus
representative of vascular sequelae (A, armow)
and inflammation (B, arrow). Pre- (Q) and
post-USPIO (D) T2* maps, with an increase of
the hyposignal region on post-USPIO,
suggesting iron deposits (C, arrow) and
phagocytic activity (D, arrow). Pre- (E) and
post-gadolinium (F) T1 images, the enhancing
bright zone showing BBB leakage in the same
area (F). G, positive FV80 staining, confirming
macrophages in this area. H, positive igG
staining in the same locations, confirming MRI
findings of blood-brain barrier leakage.
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presence of iron particles and phagocytic activity in
the vessel wall. In the aorta, both O-ApoE-ExT and
O-ApoE-UT mice had more TNFg, IL-18 and AOPP than
Y-ApoE-UT mice, whereas only O-ApoE-UT mice had
more SOD than Y-ApoE-UT mice. The O-ApoE-UT mice
had more TNFg, IL-18, AOPP and SOD in the aorta than
O-ApoE-ExtT mice (see Table 5; P < 0.05). The AOPP,
II-18 and TNF« in the aorta were much lower in old
C57 than in old ApoE~"~ mice independent of exercise
training (P < 0.01), which strengthens the atherosclerotic
phenotype seen in the aorta of old ApoE™'~ mice.

Heart markers

Heart concentrations of AOPP were higher in O-ApoE-UT
compared with Y-ApoE-UT mice. The O-ApoE-UT
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Table 4. Effect of age and exercise training on brain markers of inflammation and oxidative stress

Marker ¥-ApoE-UT O-ApoE-UT O-ApoE-ExT O-C57-UT O-C57-ExT
MDA (pmol mg—") I8 £ 06 01+ 14 £2 + 0.9 16+ 1.3 0.7 + 03
THFz (pg mg—") 474 £ 137 1370 + 208 114.1 + B.osf 366 + AW 3.2+ 47T
IL-18 {pg mg~") 127.7 £ 187 2268 + 2714 1825 + 2754 45 + 107 BE.3 4+ 120
ADPP (umol mg™") 145 £ 1.1 161 + 1.4 127 + 1.2 31+ 1M AE + 257
Catalase {mol min-! mg-") 1741 £ 146 ES.E + 6.3 002 + 1158 317 £ 1044 4637 + 2034
GPX {umol min~" mg~"} 168.0 £ 114 743 £ 15 TAT £ 1200 770+ 1394 73.0 + 10.1°
FRAP (umaol mg—") 622 £ 41 S5O+ 532 507 £ 43 0.1 £ 1534 65.4 + 20.4
SO0 (emol min~' mg~") 955 £ 0.8 696 + 1.1° 716+ 09 739 + 320 6.33 + 255

Abbreviations: AOPP, protein oxidation; FRAP ferric reducing antioxidant power; GPX, catalase and 50D, antioxidant emzymes
activities; IL-14, interleukin-15 MDA, lipid peroxidation; and TNFe: tumour necrosis factor-z. Groups are as in Table 2. *Significantly
different (P - 0.0%) from young. f5ignificantly differemt (P . 0.05) from corresponding untrained. {Significantly different (P . 0.05)

from corresponding ApoE—'-.

mice had lower GPX and SOD than Y-ApoE-UT mice.
Advanced oxidation protein products and antioxidant
enzymes (SOD, GPX and catalase) were higher in old
€57 compared with old ApoE~'~ mice (Table 6). The
O-ApoE-ExT mice had higher activities of SOD and lower
AQPP than O-ApoE-UT mice (see Table 6).

Liver markers

Liver concentrations of AOPP and MDA were higher
in O-ApoE-UT compared with both Y-ApoE-UT and
O-C57-UT mice, whereas liver GPX activity was lower
in O-ApoE-UT than in Y-ApoE-UT mice. In addition,
O-ApoE-ExT mice had higher activities of SOD and GPX
and lower AOPP and MDA than O-ApoE-UT mice (see
Table 6).

m

A Pre-P204  Post-P904

Y-ApoE-LIT

O-ApoE-UT

Vessel Wall Area (mne)
T R R T

O-ApoE-ExT

Systemic oxidative stress and inflammation is higher
in old ApoE—"- compared with old C57 mice

Nitrotyrosine and ACPP were higher ( P < 0.05), whereas
NOx (P = 0.05) was lower in old ApoE~'~ compared
with old C57 mice independently of training (Table 7).
Glutathione peroxidase was higher in O-C57-ExT than in
O-ApoE-UT mice (P = 0.01).

Exercise-induced changes in systemic oxidative strass
and inflammation

Plasma MDA decreased in response to exercise training in
the old ApoE™"" mice (23.3+ 1.8 vs 17.9 + L7 pmol I
for O-ApoE-UT and O-ApoE-ExT, respectively; P« 0.05],
whereas AOPP showed a trend to increase (P = 0.09;

old trained ApoE—'~ mice

Figure 5. Aorta magnetic resonance
imaging of old and young untrained and
A, pre- and post-USPI0 T2* maps of the

ascending aorta ina ng unirained
o ] young

.- [¥-Apak-UT), an old untrained (O-ApoE-LUT)

and an old trained (O-Apok-Ext) ApoE—-
mouse. B, sscending aorta vessel wall area
measurements. C, vessel wall pre- and

c ¥-ApoE-UT O-ApoE-UT

post-LUSPID T2* measurements. In O-ApoE-UT
O-ApoE-ExT mice, vessel wall area & significantly langer, and
pre- and post-USPD T2* significantly lower,

T2* Pre-
Confrast

123+0.1 108+ 0.1°

T2" Post-

9.9+ 10.1 B1+ 01"
Caontrast ¢ : ¢

representative of advanced and complex
115 +0.1% athemsclentic lesions with inflammatory
activity. *Significantly different (P - 0.05) from
old ApoE—~~ mice (0-ApaE-UT). TSignificantly
differanit (P « 0.05) from young ApoE—~'- mice
[¥-ApoE-UT). ¥Significantly different (P .- 0.05)
from pre-contrast

BT +0.1%¢
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Table 5. Effect of age and exercise training on aortic TNFe, IL-18, AOPP and SOD

Marker Y-ApoE-UT O-ApoE-UT O-ApoE-ExT 0-C57-UT O-CS7-ExT
TNFz (pgmg-") 67 £17 18 +12¢ 96 £ 154 05+ 03 25+ 13
IL-18 (pgmg—") 167 + 49 478 £ 176* 28.0 + 10.7+ 09 + 02! 1.0 £ 0.2
AOPP (umol mg-") 216+ 14 1595 + 252¢ 122.3 4 20,9+ 84+ 27 9.1+ 29
SOD (umol min~" mg~") 927 +21 262 +17* 6.7 + 20 7.79 £ 1.7 559 = 1.8

mmmwmhmu-ummmn.wmmwmmmfmi
GtwpsaeasilTaﬁez.‘Sigriﬁcamiydiﬁetmt(Pco.OS)mM_'Sigriﬁwn!ydifﬁrmt(l’co.oﬂﬁunmapmdm
untrained. !Significantly different (P « 0.05) from corresponding ApoE -

Table 6. mumnmmumummdmmmm

Marker Y-ApoE-UT O-ApoE-UT O-ApoE-ExT 0-C57-UT O-C57-ExT

AOPP in heart {(umol mg-') 285 + 24 753 £ 58 684 + 56+ 152.7 + 14.41 1389 + 6.1
Catalase in heart (umol min~' mg ') 831 £ 76 2492 + 436 2033 = 400% 4955 + 508° 4266 + 449°
GPX in heart (wmol min—! mg-') 451 £ 11 3227 £ 7* 338 £ 7 834 + 87¢ 781 + 83t
SOD in heart (umol min-! mg-1) 327 +45 241 £ 28 322 24 480 + 66 449 + 79¢
AOPP in liver (umol mg-') 148 +53 414 £ 109* 360 £ 0.1+ 66 + 2.0 93 + 341
MDA in liver (zmol mg-") 0.75 + 0.42 411 £ 208 237 + 1.42% 1.87 + 0.45¢ 237 + 147
SOD in liver gmol min~' mg™") 0.92 + 0.12 071 £ 026 083 £ 0.3 075 + 024 079 + 021
GPX in liver pmol min-' mg-") 148 + 129 60 + 45 274 + 96+ 109 £ 15 227 + 66

activities; and MDA, malondialdehyde. Groups are as in Table 2. *Significantly different (P < 0.05) from young. fSignificantly different
(P « 0.05) from corresponding untrained. *Significantly different (P - 0.05) from corresponding ApoE .

Table 7). The plasma volume collected from for  O-ApoE-ExT than in O-ApoE-UT mice (P < 0.05
O-C57-ExT and O-C57-U mice was insufficient to allow  and P = 0.11, respectively; Table 7). Plasma AOPP
plasma MDA analysis for these two groups of mice.  were higher in O-ApoE-UT compared with Y-ApoE-UT
Antioxidant markers NOx and SOD were higher in  mice (P = 0.01: see Table 7), whereas MDA was

Figure 6. Histological staining of brain of old untrained ApoE—/~ and C7 mice

Negative control {4), positive FA/B0 (8) and positive IgG () for 2n old ApoE—~'~ untrained mouse (left side, at the
level of the fonix fimbriae, original magification x20). Negative control (D), positive FA/80 (£) and pasitive IgG ()
for an old C57 untrained mouse (ieft side, 2t the level of the fornix fimbrize, original magification x20).
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Table 7. Effect of age and exercise training on plasma markers of oxidative stress, antioxidants and inflammation

Marker ¥-ApoE-UT O-ApoE-UT O-ApoE-ExT O-C57-UT 0-C57-ExT
ADPP (umol 1-1) 2026 £ 9.1 1524 + 118 131.0 £ 10.7* 153 + 26 133+27
GPX (umiol 1= min-1) 123.0 £ 17.7 1134 + 145 1024 + 137 1093 + 15.2 2770 £+ G2 8F
Mitrotyrosine (nmaol 1-1) 256 £ 38 506 + 11.0¢ bbd + B9 364 + 4.0° 264 + 5
MOx (pmal I 23413 e+ 10 734+ 1. 283 + 2.4 357 + 3 ¢H
50D (pmol ml—* min-") IF1 10 323+ 14 3T 12 273+ 18 B[ LA
THFz (pg mi~") B231+ 79 423 + BO* 408 £ 6.7 4.3 + 56 724 £ 1641
IL-12 {(pg ml-1) 1576 £ 147 118.2 + 68* 1142 + 8.2+ 1M15 227 1054 £ 128

Abbreviations: AOPE protein cxidation; FRAF, ferric reducing antioxidant power; GPX and 500, antioxidant enzymes activities;
IL-14, imterleukin-14; nitrotyrosine, protein nitration; NOx, nitric cxdde metabolism (nitrites plus nitrates); and TNFz, tumour necrosis
factor-o. Groups are as in Table 2. *Significantly different (P < 0.05) from young. *Significantly different (P - 0.05) from corresponding
untrained. 'Significantly different (P - 0.05) from corresponding ApoE—'-_

lower (233 + 18 v 88 + 06 pmol 7' for
O-ApoE-UT and Y-ApoE-UT, respectively; P = 0.01).
The pro-inflammatory markers TN Fer and IL-1 8 were also
significantly different in old ApoE~'~ mice compared with
young-adult mice (P = 0.001). Interestingly, NOx, 30D
and GPX were improved in the trained old C57 mice (vs
untrained). On the contrary, in ApoE~'~ mice fed the
HF/HC diet, NF-xB was not significantly affected by a
or exercise training (Y-ApoE-ExT, 97.4 + 13.6 pg ml™%;
O-ApoE-UT, 1023 + 15.6 pg ml~"; and O-ApoE-ExT,
841+ 122pgmi™).

Correlations

Inflammation and oxidative stress markers were correlated
within the brain (see Tahle 8). However, none of the brain
markers was correlated with corresponding plasma (see
Table 9], aorta, heart or liver markers.

Discussion

Vascular brain lesions share similar pathological features
with atherosclerosis, such as increased inflammation and
oxidative stress (Dutta ef al. 2012). In the present study,
we found that compared with ape-matched C57 mice
fed a normal diet and with young ApoE~'~ mice, old
ApoE~'~ mice fed a HE/HC diet exhibited increases in
brain abnormalities and BBB permeability in specific peri-
ventricular areas, as confirmed by both MRIand histology.
These results were associated with an increase of both
inflimmation and oxidative stress markers in the brain
in the old ApoE™"~ mice. All these phenotypic changes
are likely to be responsible for the low survival (49%
over 12 weeks) of sedentary ApoE~'~ mice compared
with C57BL6 mice (87%), which confirms the literature
[ Rowlatt ef al. 1976; Blackwell et al. 1995; Moghadasian
et al. 2001). More importantly, we found that in apeing
ApoE~"" mice, exercise training, possibly via its ability
to lower oxidative stress and inflammation, reduced
brain macrophage infiltration, limited inflammation and

oxidative stress in the brain, and improved metabolic
conditions, thereby improving health status and life
expectancy.

Inflammation and oxidative stress in old ApoE—'-
mice fed HFFHC diet

Orxidative stress in the cerebral vasculature plays a crucial
role in the pathogenesis of ischaemic brain injury [such as
a compromised BBB (Hafezi-Moghadam et al. 2007; EIAlI
et al. 2011} and macrophage accumulation|, especially in
the aged ApoE™~ mouse model (Coyle & Puttfarcken,
1993). Disruption of the BBB, as measured here in vivo
by the extent of gadolinium leakage in T1-weighted MRI,
is a sign of endothelial permeability (Gloor ef al. 2001).
During conditions of inflammation, macrophages are able
to cross the BBB and infiltrate the CNS parenchyma,
as sugpgested by iron oxide nanoparticle-enhanced MREI
in stroke patients and models (Nighoghossian er al
2007; Wiart et al. 2007). In our study, the location of
gadolinium leakage corresponded anatomically to the pre-
sence of macrophages detected in vive after injection of
iron nanoparticles by T2/T2*-weighted MRI and post
mortem by histology. The iron accumulation observed on
pre-contrast T2* in some old mice might have resulted
from repeated microhaemorrhage, and could possibly
explain the observed symptoms of hemi- and mono-
plegia. It should be acknowledged that non-invasive MRI
with nanoparticles or gadolinium agents has previously
demonstrated effectiveness in evaluation of endothelial
permeability or in mapping atherosclerotic vascular
territories in ApoE~'" mice fed with a high-fat diet
(Phinikaridou et al. 2012), as well as in other experimental
cerebral models (Wiart et al. 2007; Koffie er al. 2011).
We have shown that combined brain and vascular
inflammation imaging provides biomarkers of central and
vascular metabolic dysfunction and inflammation in this
mouse model. In addition, our study is also the first to
demonstrate that such imaging is sufficiently sensitive to
detect a beneficial effect of exercise training.

@ 2016 The Authars. The Jowmal of Physiology © 2016 The Physiologlcal Sodety
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Table B. Comelations between brain markers of oxidative stress and inflammation in young and old ApoE~"~ mice

Variable Correlated with wariable n Pearson’s correlation FPwalue
MDA in brain IL-1£ in brain 26 0.429 0.0249
AOPP in brain IL-1£ in braim 26 0764 0.000
Catalass in braim FRAF in brain 27 0.453 0.018
500 im braim 27 0573 0.002
GFX in brain 26 0505 0.009
TMFz in brain IL-1# in braim 27 0508 0.007
FRAP in brain 500 im brain 27 0552 0.003
GPX in brain 26 0515 0.007
500 im brain GFX in brain 26 0633 0,000

Abbreviations: A0PPE. protein oxidation; FRAF, ferric reducing antioxidant power; GPX and 50D, antiozidant enzyme activities; IL-14,
imterleukin-18; MDA, malondialdehyde; and TNFe, tumour necroses factor-o.

Table 9. Lack of correlations between brain and plasma markers of oxidative stress and inflammation

Variable Carrelated with wariable n Pearson's correlation Palue
THF in plasma THFw in brain 21 —0.1818 0.430
IL-18 im plasma IL-18 in brain 22 0.1700 0.449
A0OPP in plasma A0PP in brain 42 0.1482 0349
MDA in plasma MDA in brain 27 —0.0811 0688
500 im plasma 500 im brain 27 01836 0.359

Abbreviations: ADPF, protein oxidation; IL-14, interleukin-1 5 MDA, malondialdehyde; SO0, superoxide dismutase; and THFz, tumour

necrosis factor-o.

In this advanced atherosclerosis model, our study
confirms the presence of multi-organ inflammation,
as previously described in cardiovascular disease
(Mahrendorf et al. 2015), as well as oxidative stress.
Elevated marker concentrations were found in the
aortic wall, brain, heart and liver. As they were not
correlated, it cam be hypothesized that local micro-
environments drive specific pathological consequences.
Indeed, brain inflammation was far more pronounced
and was associated with severe functional impairments
in periventricular areas, ie. BBB damage and high
phagocytic activity in the untrained ApoE~'"" mice. Also,
the observation of motor deficiency cases and the increased
mortality rate in the untrained group are likely to be
driven by these brain abnormalities shown by MRIL Local
vicious circles of inflammation may be nourished further
by systemic and distant inflammatory foci.

Effects of exercise training

We also showed that even in an advanced atherosclerotic
mouse model, VWE was able to reduce risk factors for
atherosclerosis and cerebrovascular damage by altering
macrophage accumulation, oxidative stress, inflammation
and metabolic parameters. Our mice ran 17.8 km week ™",
similar to the age-matched C57 mice (16.2 km week ).
These weekly distances are also close to those reported by

(D 2016 The Authors. The laumial of Phigiciogqy & 2016 The Piysiological Socety

Soto et al (2015; 23 km week™'), who used voluntary
wheel running in ApoE~'~ mice receiving a standard
diet. These distances are much greater than a forced
treadmill minning protocol, which is usually between 4
and 6 km week™'. As mice are naturally active, VWR
provides a stress-free way to exercise, as opposed to forced
treadmill training and swimming, which may induce a
stress response (Moraska er al 2000). The total ranning
distance with VWR is often superior to forced exercise, and
it has been shown to produce cardiovascalar adaptations,
such as heart and left ventricular hypertrophy, and an
increase in muscle oxidative capacity ( Aufradet efal. 2012).
Although the distance run by the mice in the present study
was lower than healthy C57 mice (Aufradet et al. 2012), it
was sufficient to increase muscle C5 activity, a commonly
used marker of an adaptation to habitual exercise (Sexton,
1995). Voluntary wheel mnning was also shown to be of
moderate intensity rather than high intensity as can be
seen in treadmill running,

In addition, VWR, regardless of exact distance, was
able to induce a positive effect and reduced owverall
mortality compared with sedentary old animals. This is
consistent with previous reports that physical inactivity
is an independent predictor of mortality in animals
(Laufs et al 2005) and humans (Szostak & Laurant,
2011}, whereas physical fitness is associated with preserved
brain health (Weuve et al. 2004; Podewils et al 2005). A
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previous study found that VWR was sufficient to extend
survival and decrease neuronal damage after a short
episode of forebrain ischaemia (Stummer ef al. 1994). In
treadmill-trained rats, induced brain injury was also less
severe a5 4 consequence of improved brain integrity (Ding
et al. 2006) and BBB function { Davis et al. 2007 ). On brain
MEI, old trained ApoE™"" mice showed a significantly
decreased score of BBB leakage at the locations where this
dysfunction was observed in their untrained counterparts.
Beneficial effects of exercise training on neurovascular
damage to the brain via an increase in the number of
pericytes has been reported recently in ApoE~'~ mice
(Soto et al 2015). These adaptive effects may be the
result of repetitive cerebrovascular shear stress induced by
each bout of running training and a long-term increase
in cerebral blood flow, both leading to a decrease in
oxidative stress and endothelial dysfunction in the brain
( Wiboolvorakul & Patumraj. 2014). In this context, exercise
training was also shown to restore the impaired nitric
oxide synthase-dependent responses of cerebral arterioles
in diabetic rats (Mayhan et al 2011) and the impaired
dilator responses of cerebral arterioles in rats submitted to
chronic exposure to nicotine ( Mayhan et al. 2010). In both
studies, beneficial effects of exercise were associated with
an increase in SOD and subsequent decrease in superoxide
content. In our study, although we did not find any effect
of exercise on the brain 50D and GPX activities, lipid
peroxidation was reduced. suggesting that the content
of reactive oxygen species might be reduced. Given that
antioxidant therapies have been shown to reduce infarct
volume and newrological impairment in different murine
models of ischaemic stroke (Majid, 2014), it could be
hypothesized that the beneficial effect of exercise that
we observed in the brain could be drawn partly from a
decrease in oxidative stress,

In contrast to a recent study by Soto et al (2015),
our mice were fed a HC/HF diet and were indeed more
pathological than those fed a normal chow diet, as
confirmed by the mortality of our old ApoE~'"~ mice
(65% in 12 weeks at 70 weeks) compared with the 18-
to 24-month-old mice used by Soto ef al. (2015), which
suggests a longer life expectancy. The HF/HC diet in
ApoE™" mice was previously shown to induce major
changes at the level of the neurovascular unit { Badaut et al
2012). Interestingly, this change included lipid droplet
accumulation and BBB leakape at the same location as
in our old ApoE™"~ mice.

Additionally, exercise training reduced pro-
inflammatory markers, which could be attributable
to a concomitant increase in anti-inflammatory cascades
(Pedersen, 2006; Szostak & Laurant, 2011), as we found
for brain IL-4. Exercise was also shown to reduce brain
IL-15 in a mouse model of Alzheimer’s disease (Michol
et al. 2008) and brain inflammation in response to
stroke (Ding et al. 2005), possibly through an increase

E. M. Chinco and others
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in anti-inflammatory pathways at the level of the
neurovascular unit.

Better brain health has been shown to be related to
systemic improvement of cardiovascular health, lipid—
cholesterol balance and inflammation (Pedersen, 2006).
Here, beyond its effects on the brain, exercise training
was able to improve the overall effects of atherosclerosis
in the old ApoE~'~ mice. More specifically, O- ApoE-ExT
mice expressed lower oxidative stress and inflammation
in the aorta than their sedentary counterparts. Magnetic
resonance imaging revealed a decrease in vessel wall size
in the mice that ran compared with sedentary mice,
in agreement with others {Shimada et al. 2007; Pellegrin
et al. 2009k Kadoglou et al. 2011). In a study by Pellegrin
et al. (2009h), swimming-trained ApoE~'~ mice showed
a decrease in macrophage accumulation, along with an
increase in smooth muscle cell content, suggesting a
maore stable plaque. Exercise-trained mice had higher T2*
values, suggesting a more stable plaque (Sigovan ef al
2010). Wevertheless, in future studies, measurement of
biological markers of plague stability in aortic tissue,
such as metalloproteinases activity, should confirm this
hypothesis.

In old ApoE ™"~ mice, training decreased oxidative stress
markers in the plasma, heart and liver, in addition to
the brain and aorta, suggesting that exercise may have
a whole-body effect on oxidative stress in this model.

Compared with old ApoE~~ mice, oxidative stress is
very low in the old C57 mice (between five and 10 times
lower than in old ApoE™"" mice in the different organs).
This suggests that C57 mice at the ape of 70 weeks might
have maintained their pro-oxidant-antioxidant balance.
We also think that further reduction of oxidative stress
could be more detrimental than beneficial. Indeed, reactive
oxygen species and lipid peroxidation end-products (such
as MDA also have a role in the regulation and modulation
of antioxidant cell signalling and pene expression, and a
decrease of such products, when they are not in excess,
might limit physiological adaptations {Miki, 2009).

Finally, although we report clear differences between
O-ApoE-ExT and O-ApoE-UT mice regarding brain and
aorta that suggest beneficial effects of exercise training,
a longitudinal follow-up study of aortic and brain
inflammation by MRI might be one of the perspectives
of the present study to confirm our results.

In conclusion, we found that cardiovascular disease
risk factors, which involve chromic systemic oxidative
stress and inflammation, are associated with neuro-
vascular lesions in old ApoE~'"~ mice at specific “at-risk’
locations. All together, our results demonstrate that
12 weeks of moderate-intensity physical activity was
able to improve survival in aged ApoE~'~ mice and
decrease the extent of the neurovascular damage pre-
sent in this dyslipidaemic aged mouse model. The VWE
protocol decreased both brain disorders (BBE leakage

2 2016 The Authars. The kowmal of Physiology £ 2016 The Prysiolglcal Sodety
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and macrophage accumulation) and aortic plague size,
and increased aortic plaque stabilization. The decrease in
oxidative stress and inflammation directly at the brain
level as a result of exercise training could be responsible
for the neuroprotective effect and the reduced prevalence
of lesions. Taken together, these results demonstrate
the benefits of exercise training in a model of athero-
sclerosis. Finally, on the basis of the present study, non-
invasive imaging, such as MRI, appears to be an essential
tool, as follows: (i) to evaluate meurovascular risk in
the brain of atherosclerotic patients; and (ii) to measure
therapentic intervention, such as physical exercise, with
both a site-specific location and combined imaging
biomarkers to evaluate the effect of exercise on BEB
integrity and reduction of newro-inflammation. More
advanced hybrid molecular imaging techniques, such
as positron emission tomography-MRI and tarpeted
nanoparticles (Briley-Saebo et al. 2012}, may provide
longitudinal follow-up and new therapeutic options for
these complex, high-risk cardiovascular profiles.
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» Vascular brain lesions share pathological hallmarks with atherosclerosis, such as increased

inflaimmation and oxidative stress.

* We showed that an ageing model of atherosclerosis (old ApoE™~ mice on a high-fat,
high-cholesterol diet) presented with vascular brain damage and that these newrovascular disorders
were associated with peripheral inflammation. Interestingly, exercise training was able to reduce

these pathological outcomes.

* Our findings suggest that non-invasive imaging could be used to evaluate neurovascular risk in
atherosclerosis and that regular physical activity might reduce these risks.
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ARTICLE N°2:

Advanced atherosclerosis increases systemic and cerebrovascular inflammation and
thereby the risk of stroke. Previous studies of us and others, exercise was shown to improve cardio-
metabolic profiles when associated with caloric restriction but its efficiency in a context of non-restricted
calories intake remains debated. The aim of this study was to determine the peripheral and central effect

of exercise training in a context of unregulated consumption of high cholesterol diet in old ApoE™" mice.

Forty-five weeks-old ApoE” mice (45 weeks-old) were fed a high cholesterol diet (0.15%
cholesterol, 21% lard fat) ad libitum and divided into 2 groups: exercise trained (EX) and sedentary
(SED). Exercise trained mice had free access to a running wheel in their housing while sedentary were
in standard cages (see Figure 23 for study design). In order to have a longitudinal follow-up, insulin
tolerance test and brain MR imaging were performed before and after the twelve-weeks training. Brain
MR imaging was realized with contrast agents for blood-brain barrier permeability assessment
(Gadolinium) and macrophage accumulation (ultrasmall superparamagnetic iron oxide particles,
USPIOs). After sacrifice, muscular insulin resistance was measured and oxidative stress and
inflammation were assessed in plasma, aorta and brain. Histological analysis was also performed on

brain to confirm MRI-detected lesions with macrophage and vascular permeability staining.

Aged ApoE trained mice fed with ad libitum diet showed a significant weight gain (+18%,
p=0.027) despite an effective training (citrate synthase activity p<0.05) compared to untrained mice.
Exercise training showed no improvement on peripheral features such as plasmatic cholesterol level,
systemic and aorta inflammation and oxidative stress. A worsening of insulin resistance was even
observed in the trained mice after the twelve-weeks training. Brain imaging highlighted a worsening of
blood-brain barrier leakage as showed by the longitudinal MRI follow-up (increase of AT1 score,
r’=0.87, p=0.049) and higher USPIOs accumulation in periventricular areas in exercised mice compared
to the sedentary, suggesting a worsening of central lesions in trained ApoE”" mice under ad libitum high

cholesterol diet.

In a context of high cardio-metabolic risk and of uncontrolled fat consumption exercise
does not provide any protective effect in old ApoE-/- mice. No benefits of exercise training was observed

on both peripheral (insulin sensitivity, oxidative stress and inflammation) and central features (vascular
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permeability and inflammation). Furthermore, there was a fast induction of irreversible brain lesions in

exercised-trained old ApoE-/- mice.
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INTRODUCTION

MNumerous studies have shown that regular physical activity had
protective effects against chronic diseases, like in atherosclerosis
(Szostak and Laurant, 197% Laufs et al, 2005) by decreasing
oxidative stress and inflammation. Through these protective
effects, it is suggested that regular exercise training could decrease
the risks of developing cardio and cerebrovascular complications
(Pialoux et al. 2009). Owerall, exercise training may create
a favorable anti-inflammatory and antioxidant environment,
counter-acting both local inflammatory burst, and systemic
metabolic low-grade inflammation (Pialoux et al., 2009; Gleeson
et al., 2011).

Central effects of exercise are less explored in the context
of atherosclerosis. Advanced atherosclerosis increases the rsk
of stroke, inflammation, and oxidative stress in the cerebral
vasculature. Aged ApoE~/~ mice have a compromised blood-
brain barrier (BBE}, with an increased susceptibility to ischemic
damage which is further altered by the high fat/high cholesterol
diet (Hafezi-Moghadam et al, 2006; EIAL et al, 2011; Badaut
et al, 2012). In addition to the vascular risk per-se, an
increasing number of studies are reporting various locations of
BBB permeability and hippocampal inflammation as a direct
consequences of obesity and high fat consumption {Badaut et al,,
2012; Thaler et al, 2012; Lee et al, 2013; Erion et al., 2014; Van
der Donckt et al., 2015). In an atherosclerasts mowse model under
high fat diet, we and others have recently shown that exercise can
limit brain inflammation (Y1 et al., 2012; Auer et al., 2015; Chirico
et al., 2018).

On the other hand, whereas systemic benefits of physical
activity on the cardio-metabolic profile are commonly
recognized, there is a significant proportion of non-responders,
showing no or even adverse exercise effect on glucose
homeostasis in large clinical studies (Béhm et al, 2016). In
some studies, it was found to be highly dependent on food intake
and its effect on body weight (Bergouignan et al, 1985). Indeed,
in obese subjects who had the same physical activity level, it was
observed that those under food restriction presented reduced
oxidative stress, inflammation, and insulin resistance compared
to those with no food restriction and increased body weight
{Bergouignan et al, 1985). This interplay between food intake
and the peripheral response to physical training may also impact
the central effects of training (Hicks et al., 2016), but has not
been tested yet in a context of high cardiovascular risk.

Imaging biomarkers are increasingly used to evaluate
progression of brain abnormalities. BBB damage 1s currently
measured in vive by the extent of gadolinium leakage in T1-
weighted magnetic resonance imaging (MRI; MNighoghossian
et al, 2007). Under conditions of acute or chronic inflammation,
macrophages infiltrate the cerebral parenchyma, and exhibit an
important phagooytic activity, that can be seen by ultrasmall
superparamagnetic particles of iron oxide (USPIOs) enhanced

Abbreviations: BBE, Blood-brain bamier EX, Exercise-traimed: HC, High
cholesternk: MEE Magmetic rescmance imaging SED, Sedentary: USPID,
Ultrasmall superparamagnefic particle of iron oxide; WT, Aged-matched C57BLE
Wild Type mice.

MRI in stroke patients (Mighoghossian et al, 2007). In the
cerebral parenchyma, several publications have reported that
microbleeds {Akoudad et al, 2014) and brain sccumulation of
erythrocytes and iron {Schreiber et al., 2012) can also be detected
in vive using T2 and T2* MRI (Wardlaw et al., 2013).

Using imaging and insulin tolerance test for follow-up, the aim
of the present study was to determine both the peripheral and
central effects of exercise training in 45 weeks-old ApoE~/~ mice
fed ad libiterm with a high fat/ high cholesterol (HC) diet.

MATERIALS AND METHODS

Animals and Training
All procedures were in conformity with the European regulation
for anmimal use and this study was approved by the local ethics
committee of the institution (Comité d'éthique de I'IN3A de
Lyon Cetil n*102). ApoE~/~ mice (C57Bl/6 background, Charles
River, France m = 14) were fed a high cholesterol (HC) diet
(Safe UB220 v.153: A + 21% fat, 0.15% cholesterol, SAFE,
Augy, France) starting 1 month before the training and until
the end of the study. Animals were males and females equally
assigned in both groups and maintained on a 12 h hght-dark
cycle and were supplied with food and water ad libitum. After
careful maintenance of health conditions during 1 year {Guerbet,
Animal Care Unit, France), 45 weeks-old mice were randomly
divided into 2 activity groups. Mice in the exercse-trained (EX)
group individually housed in cages equipped with a 125 cm
metal running wheel (HAGEN-61700, Montreal, Canada; Goh
and Ladiges, 2015) and digital magnetic counter {model BC906
Sigma Sport, Neustadt, Germany), while the sedentary (SEDY)
group had a standard cage (Figure 1). Sedentary mice were caged
by 3-4 in order to avoid excessive stress due to loneliness (and
not compensated by the possibility to exercise contrary to trained
mice). During the 12 weeks of training, the distance ran and
the general health of the mice were recorded one time a week.
A regular check-up of mice was performed (twice a week) and
the exclusion criterion was overall bad health of the animal (ie.,
tumors, hemiparesis, large skin irritations). Before sacrifice for
blood and tissue assessment, both exercise and sedentary mice
were caged by 3-4, with no wheel access, and fasted for 12h.
Wild type (WT) C57Blfé mice of matched age fed with a
standard diet {12% fat, Teklad Global 16% protein, HARLAN,
Gannat, France) and divided into EX and SED groups were
also studied to provide reference values of metabolic and
inflammatory markers in normal animals not at risk of vascular
lestons.

Intraperitoneal Insulin Tolerance Test (ITT)

Glycaemia was measured over 45 min in 6 h-fasted mice
using a glocometer (AccuCheck, Roche, Germany) after an
initial tail puncture, corresponding to baseline glycaemia.
Immediately after, all mice were sequentially injected by insulin
{intraperitoneal injection, 0.75mU.g~ ! of body weight). Fifteen
minutes after insulin injection, ghycaemia was assessed following
the same sequence, and measurements were repeated at 30 and
45min. [TT were performed before and after training, prior to
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MRI sessions. Insulin response was determined by area under
curve (AUC)

Brain MRI

For the imaging protocol, mice were anesthetized by isoflurane
{4% for induction, 1-2% for maintenance; TEM SEGA, Pessac,
France). The scanning support bed used for the experiment
was equipped with a warm water recirculation system and
a respiratory sensor, which monitored the respiration rate
throughout the scan. MRI acquisitions were performed on a
Bruker BioSpec 7T system ( Bruker Biospin, Ettlingen, Germany).

For brain imaging, a Bruker birdcage volume coil (outer
diameter = 112 mm and inner diameter = 72 mm) was used
for the signal transmission, and a Bruker single loop surface
coil (15 mm diameter) positioned over the head was used
for signal reception. Brain T2-weighted spin-echo images were
acquired using a rapid acquisition with relaxation enhancement
(RARE) sequence on axial plane. To further characterize
the neurovascular lesions, an extended brain MRI protocol
was performed (see supplemental methods in Supplementary
Material). Vascular lesions and hemorrhage/erythrocytes/iron
accumulation were assessed ively by baseline T2 and
T2* imaging (5chreiber et al., 2012; Akoudad et al., 2014). T2*
mapping was obtained using a multi-slice multi-echo gradient
echo sequence. Gadolinium chelate (Gd-DOTA, 0.1 mmol
Gcl.lq;'j. Guerbet, Aulnay-sous-Bois, France) was then retro-
orbitally injected to observe possible BBE leakage. Macrophage
imagin]g was performed using USPIO injection (P904, Immol
Fekg™", Guerbet, Aulnay-sous-Bois, France) and the 48 h
post-contrast T2T2* for inflammation imaging, as previously
described (Sigovan et al., 2012). The total duration of the MRI
protoco] was less than 2 h.

In addition, to assess body compaosition in both groups, whole
body fat evaluation was performed in representative individuals
of each group using 2D water/fat gradient echo acquisition and
whole body nucear magnetic resonance (NMR) spectrum at
the end of the after-training MRI session (Maville et al., 2015).
Results are presented as relative fat over water after analysis of
corresponding peaks in the MR spectrum.

MRI Analysis

For brain analysis, pre-contrast T2/T2* images and post-
gadolinium images were categorized based on the size of
abnormal areas and the number of slices affected. Two observers
scored anonymirzed data obtained before and after training,
i.e., pre- and post- contrast (48 h post-P904, after-training MRI
session) on T2/T2* images and gadolinium leakage on post-
gadolinium T1-weighted images. Briefly. a score of 1-4 was given
for abnormalities seen on pre-contrast images and a score of
1-4 was given for changes seen between pre and post-contrast
images. A score of 1 is given when no abnormality was observed,
2 when small lesions (=10 pixels) appeared on one to two slices,
3 for medium size lesion (10-<pixels=20) on one to two slices
and finally a score of 4 represents a large lesion (=20 pixels)
on at least two slices. In order to evaluate the evolution of BER
leakage, the delta of T1 (AT1) score was calculated by subtracting
post-training to pre-training score.

Dissection

Following the second imaging session, mice were anesthetized
by intraperitoneal injection of pentobarbital (50 mgkg'l,
Duolethal®, Vétoguinol, Lure, France) and blood was collected
by cardiac puncture. The heart was transcardially perfused for
70z with 9% NaCl. The brain, ascending and abdominal aorta,
gastrocnemius, soleus, and visceral and subcutaneous adipose
tissue were removed. Sections to be used for biological assays
were stored at —80”C until assessment.

Ex vivo Insulin Signalization Test

As previously described (Rieusset et al.. 2012}, immediately after
sampling, gastrocnemius muscles were finely cut and incubated
for 15 min at 37°C in 3 ml of low glucose Dulbecco’s Modified
Eagles Medium {DMEM Eg.L_j}l for the sample (—) and low
glucose DMEM + 5% insulin 10~ mol for the sample {4) and
then quickly wiped and stored in liguid nitrogen. Samples (—)
were used to study the expression of basal protein kinase B (PEKEB)
and phosphorylated PEKB (pPKB), while samples (+) to measure
the quality of insulin signaling. Samples were kept at —80°C.
Proteins of these muscles were then extracted by grinding with
a Polytron in RIPA+ and centrifuged for 10 min at 3750 rpm
at 4°C. The supernatant were recovered and diluted 1:5 in water
in order to be assayed by the Bradford method. Then proteins
(30 pg) were loaded on a precast gel (CRITERION TGX Stain-
Free 10% acrylamide, BioRad, Hercoles, CA, USA) to study
muscle pPKE (#4060, Cell signaling, Danvers, MA, USA) and
PER (#9272, Cell signaling, Danvers, MA, USA} expression by
Western Blot, and its response to insulin stimulation. Membranes
are PV DF from BioRad Company (BioRad, Hercules, CA, USA).

Sample Preparation in Liquid Nitrogen
Tissue samples were stored at —80°C. Each one was weighed
then put in a mortar placed in a polystyrene box filled with
liquid nitrogen to be grounded into a powder. The powders
obtained are divided into three equal parts of 80-120 mg,
distributed separately to study ribonucleic acid (RNA), proteins
and oxidative stress, and stored at —80°C.
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Biological Analysis:
All tissues were kept frozen and homogenized with a 10% viw
buffer (PBS + 0.5mM EDTA). Homogenates were centrifuged at
4°C. for 4 min at 1500 g for protein content and malondialdehyde
(MD4) analysis, and again at 4°C for 10 min at 12,000 for
the remaiming analyses. Supernatants were frozen at —80°C.
Protein concentrations were determined spectrophotometrically
{Biophotometer, Eppendorf, Germany) using a bicinchoninic
acid (BCA) kat according to instructions (Sigma, 5t Lowis, USA).

Citrate Synthase
Muscle adaptation to physical activity was determined by skeletal
muscle citrate synthase activity measuring using soleus muscle
homogenate according to the Shepherd and Garland method
({Shepherd and Garland, 1969).

Cholesterol Assay
Total blood cholesterol was assessed using Amplex Red
Cholesternl Assay Kit (Invitrogen, Carlsbad, CA) following
manufacturer instructions.

Oxidative Stress

Cradative stress markers { Advanced Omxidation Protein Products,
AOPP and Malondialdehyde, MDA} and antioxidants markers
(Superoade dismutase, 30D and Glutathione peroxidase, GPx)
were measured in plasma and brain as previously described
{Chirico et al.. 2012) using the method of Witko-Sarsat et al
for AOPP (Witko-Sarsat et al, 1996), Ohkawa et al for MDA
(Ohkawa et al, 1979), Oberley and Spitz for SOD (Oberley
and Spitz, 1984), and Pagha and Valentine for GPx {Pagla
and Valentine, 1967). All reagents used for biochemical assays
were purchased from Sigma Aldrich. AOPP and 50D were also
measured in descending aorta of ApoE™ /= mice.

Inflammatory Markers

Inflammation status was assessed in plasma, brain, and
descending aorta supernatant using a commercially available
mouse enzyme-linked immunosorbent assay kit (IL-1p: ELM-
[L1A-001, Raybiotech; TNFo: Mouse THNF ED OptEIA Kit, BD
Biosciences) according to manufacturers instructions.

Immunochemistry

Brain samples were harvested and fixed in a 4%
paraformaldehyde solution during 1 h followed by sucrose
for 24 h and preserved at —80°C until processing Three

successive 15 pm-thick sections for 3 MRI locations were
assessed with DeadFnd™ Fluorometric TUNEL System kit
(PROMEGA, San Luis Obispo, CA, USA) to detect DNA
fragmentation (apoptosis), rat anti F4/80 antibody (MF48000,
11200, CALTAG MEDSYSTEMS, Buckingham, UK} to detect
macrophages and AlexaFluor 584 nm (AF594) goat anti-mouse
IgGG (411032, Life Technologies, USA) for blood brain barrier
(BBB) permeability. AF594 goat anti rat IgG (A11007, 1/1000,
Life Technologies, USA)} was used as secondary antibody for
F4/80 labeling. Slides were mounted with Prolong gold anti-fade
reagent {P36935, Life Technologies, USA)} supplemented with
DAPI for nuclear counterstain. Image acquisition was performed
with an Axio Observer £1 Zeiss microscope.

Statistics

Analyses were conducted using Statistica (version B.0, Statsoft,
Tulsa, OK, USA). As our study is based on longitudinal imaging
features, in-house power analysis for assessing the brain effect
of HC diet in ApoE~/~ mice has shown that 6-7 mice per
group are sufficient to reach the statistical potency with 30-
9% power. Results are presented as mean + standard error
of the mean (SEM). A normality test (Kolgomorov-Smirnov
test) has been applied and the distribution of our data is non-
parametric. Statistical comparisons between AP-UE_;_SED VE.
EX were performed by Mann-Whitney U test and comparisons
between before and after-training were performed by Wilcoxon
test. Linear regression was used for MR scores comparison
and Spearman correlation coefficient was measured. Statistical
significance was determined by a p = 0.05.

RESULTS

Three .hpoE_-"_ mice on HC diet (1 5ED and 2 EX) died during
the training period. For the 11 animals (5 EX and 6 SED) that
completed the entire protocol, weekly running distance and hody
weight before and after training are detailed in Table 1. Oxidative
enzyme citrate synthase level in the soleus were higher in EX
than in SED A.PGE_-"_mioe {p = 0.042; Figure 2A). A similar
EX to SED differences is observed in the aged-matched WT
mice (Figure 2B), supporting the physiological eficiency of the
exercise training.

Despite 2 substantial running distance, EX ApoE~/~
significantly increased their body weight (+18%, p = 0.027)
during the 12-weeks training (Table1). Moreover, both EX

TABLE 1 | Tralning effect: running distances and welght of ApoE—/~ {SED = & EX = 5) and WT mice {for reference valuas; SED = 7; EX = §).

Group ApoE—/- WT
SED EX SED EX
Baniara training Wigkght (g M7 LES 406425 273408 974 4 0B
Adtar fraining Wiglght (g M3+63 45 4 3.1° 72405 277404
KaanAwaight () 1% 16% =1% =1%
RALNning dIStEnces (kmAwees) M 125454 MAA 1624 38

“p = 0.06 Signifcanty difiorant from balore training.
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FIGURE 2 | In EX [0 = 5)ApoE—/— mice, citrate synihase activity In the soleus muscle Increased significantly comparad to SED mice |m = &) (&)
whareas plasmatic cholesterol level was similar (C); systemic Insulin resistance (comparison of befors and after-training Insulln tolerance test, ITT,
showesd a significant degradation in EX ApoE—/— mice (E} (p = 0021 on before vs. after-training ITT In EX ApoE—/—}. nsuln signalz=ton in gastroenamizs
Miscie wee Impalred I both SED and X mice, &5 Shown by pPKE/PKE Western Biot (G and ratia (). WT mice velues are given 1or [EeMence [SED — T; B - & for
ciirate syTihese actvity In the sokeus MLSCk (B) Signinzanity Ncressed In Bx comparsd o SE0 mics), pasmatic choasien level [D), T (F). pPRE/PKE Wastem Biot
(H), andl retio [J). Signikcently diterent n £X compared ba SED: "p -« 0.05; sgnilcantty ditersnt before ve. atter: $p - 0.05.
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and SED ApoE ™/~ mice were already obese at the beginning
of the study (Tablel. Figure 51).The fat index measured
using MR spectroscopy showed no difference of fat content,
and 3D fat MRI, no apparent difference of fat distribution in
ApoE~/~EX mice compared to their sedentary counterparis
(Figure 51). Furthermore, visceral and subcutaneous adipose
tissues had similar weight in both EX and SED ApoE~/~ mice
{Table 51).

Metabolic Parameters

Plasma cholesterol was high in ApoE~/~ mice and was not
modified by exercise training (ie., no difference between EX and
SED ApoE~/~, Figure 2C). It was normal in both EX and SED
WT mice, and not modified by exercise training {Fignre 2D).
Insulin tolerance test showed low insulin tolerance in ApoE~/~
mice independently of training paradigm and time of the study
as demonstrated by the large Area Under Curve of glucose
concentration over time [AUC, Figure 2E). WT values are given
in Figure 2F. It should also be pointed that ApoE~/~ EX mice
significantly further lowered their insulin tolerance after the
training (p = 0.027) (Figures 2C and Figure 52).

Western blots of pPKB/PER in gastrocnemins confirmed that
both EX and SED ApoE~{~ mice had muscle insulin resistance
(Figures 2G,I). Values of aged-matched EX and SEDY WT mice
are presented in Figores 2H,J. There was no beneficial effect of
physical activity on muscle insulin sensitivity in ApoE~(~ mice
{Figure 21).

Brain Imaging and Immunochemistry
Brain MRI performed at the beginning of the study showed that
ApoE~/~ mice brain have fical areas (periventricular area) of
BBB leakage on post-gadolinium T1 images (Figure 3).

Analysis of longitudinal data showed that these features,
present in old ApoE =/~ mice (Chirico et al, 2018), evolved
during the 12-weeks training in EX ApoE~/~ mice, as confirmed
by the significant increase in post-gadolinium T1 score (p =
002, Figure 3A-B), when there was no significant change in
SED ApoE~'~ mice. After-training, focal periventricular areas
of signal loss were observed on T2* maps in both EX and SED
ApoE~/~ mice (Figure 53), but there were no significant T2
and T2* scores changes after the follow-up period. After-training
post-USPI0s score showed more extended inflammation areas
in EX ApoE™/~ mice compared to SED (p = 0.015, Table2
and Figure 53). Inflammation areas co-localized with the
periventricular BBB leakage and abnormalities on T2/T2* images
(Figure 3 and Figure 53). Post-USPI0s T2 score was significantly
associated with the increased BBB leakage (AT1 score) in EX
ApoE~/~ mice (p = 0.049, Figure 3C).

There were no such features and no changes during follow-
up in both EX and SED) WT mice (data not shown, mean score
of one for T1, T2, and T2* before and after training), and no
periventricular post-USPI0s abnormalities on T2* maps (Figure
3).

To characterize brain lesions in ApoE~/~ mice, WT mice
served as negative control for the immunchistochemistry
staining. In ApoE~/~ mice disorganized brain parenchyma was
seen in the middle ventral zone, but was not related to an active

apoptotic process { TUNEL negative on immunohistochemistry;
data not shown). F4/80 and IglG immunostaining indicated
BEBR leakage (endothelial permeability), and macrophage
accumulation in the periventricular region and the fornix
fimbria of the hippocampus (Figure 4). Visually, there was also
some evidence of vesicular aggregates which could indicate foam
cell development and cholesterol crystals, as already described
{Walker et al., 1997).

Oxidative Stress/Inflammation in Brain
Imaging data were confirmed by assays that showed that
ApoE™/" mice have high brain inflammation (IL-1# and TNFx;
Figures 5A-B) and oocidative stress (MDA and AOPP were high,
GPx had low activity; Figures SC-E for ApoE~/~) regarding to
reference values of WT mice (Figures 5G-L). No beneficial effect
of exercise was noted in ApoE~/~ EX group.

Oxidative Stress/Inflammation in Plasma

and Aorta

In aorta, ApoE ™/~ mice showed high concentration of the pro-
inflammatory cytokines [L-1f and TNFz (Table 52). Oxidative
stress was also present in ApoE~/~ mice as shown by the high
AOPP level (protein oxidization; Table 52).

Plasmatic IL-1f was high in both EX and SED ApoE~/~ mice
as well as oxidative stress { AODPP; Table 52). Reference values for
WT mice are given in Table 52.

In these two tissues of interest, no beneficial effect of training
was ohserved.

DISCUSSION

The aim of the present study was to determine both the peripheral
and central effects of exercise training in 45 weeks-old ApoE =/~
mice fed ad likitum with a high fat’ high cholesterol (HC) diet
using imaging and insulin tolerance test for follow-up. This
diet given ad libitum was initially used to describe for the
first time in the ApoE~/~ mouse the presence of vulnerable
plaques, associated with a high mortality rate (Johnson and
Jackson, 2001). We found that peripheral (insulin sensitivity and
oxidative/inflammatory status) but also central features (BEB
preservation and protection against inflammation) did not show
any benefits of exercise. Indeed, there was a fast induction of
irreversible brain damage that was more pronounced in exercise-
trained ApoE ™/~ mice.

While it is already known from large clinical studies that
exercise training may encounter non or even adverse response
for glucose homeostasis (Bohm et al, 2016), this study is the
first to show that the combination of physical training and ad
libifum HC diet also impairs central mechanisms in a mouse
model of advanced atherosclerosis. Indeed, mature ApoE~/~
mice, i.e., with subsequent abnormal cholesterol handling, over-
responded to the HC diet given ad [libitum. In wvive MRI
demonstrated the evolutive hippocampal consequences with an
extremely fast induction of BBE leakiness that is correlated
with an inflammatory burst with macrophage recruitment and
high phagocytic activity (Figure3). A parallel degradation
of the systemic insulin response was measured (Figure 2).
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The observed consequences were neurological symptoms and  infiltration, limited inflammation, and oxidative stress in the
mortality within the 12 weeks of follow-up (25 and 16% in EX  brain, and also improved insulin sensitivity. In a recent study,
and SED ApoE™/", respectively). This clinical aggravation was  50-weeks old C57Bl/6 mice on ad libitum high fat diet presented
observed despite a regular physical activity, which was supposed  peripheral and central metabolic consequences, but as these mice
to induce protection and counteract neuroinflammation and  were not in & high cardiovascular risk, there was no pathological
oxidative stress, as previously described when the food quantity  damage (Gotthardt et al, 2016). Therefore, this amplification
was limited to 20 g/week in both sedentary and exercise mice  in ApoE ™/~ mice happened in a window where susceptibility
(Chirico et al, 2016). In this context of limited access to the  to oxidative stress and hippocampal damage was high and was
HC diet, exercise training, possibly via its oxidative stress and  further aggravated by the abrupt HC diet exposure (HC diet
inflammation lowering capabilities, reduced brain macrophage  starting | month before training), similar to what can be observed

-
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TABLE 2 | After—training comparison of brain MR Imaging scores of
ApoE—{—: vascular leshons [T2" score), USPI0's assessment of
Inflammation (post-USPIOS T2" score) and post-Gd BEBB leakage

{post-gadolinium Ti1-welghted sequence).

ApoE-I— SED ApoE—I— EX
T2" score 144032 12401 (4}
Prest-USPIOE T2° score 164032 28 £ 1.055"
Prest-0 Tt soom 24 +05(4) 234045

Inbradkats, numbar of mica with soom = 1. o = 006 Signiicantly diferant fom ApoE 1~
SH miioe fmasn £ SE)L

in the human transition phases such as retirement, where
eating, and physical habits are particularly evolving whereas
there iz a parallel decrease of insulin sensitivity with age. A
previous paper with diet-induced obese mice proposed a model
where a high fat diet rich in saturated fat given ad libiturm
induced an excessive consumption food behavior associated with
hippocampal dysfunction (Kanoski and Davidson, 20011). Here,
the diet contained 21% lard and 0.15% cholesterol and was given
without restriction, with more weight gain in EX ApoE ™/~ mice
compared to SED. Compared to other high cholesterol diets, this
one is also richer in saturated fat (pork lard), which may have
contributed to the insulin sensitivity degradation. In the early
study of Johnson and Jackson, the high mortality rate was also
attributed to this diet composition {Johnson and Jackson, 2001).

We also found that oxidative stress and inflammation were not
decreased by exercise training in three tissues of interest (plasma,
abdominal aorta, and brain). The measured markers presented
similar (AOQOPE SOD, and IL-15) values in EX compared with
SED ApoE/~ mice. Insulin response and cholesterol level were
also not different between these 2 groups although EX mice
showed a significant higher citrate synthase activity in their soleus
muscle, supporting the muscular ensymatic effect of physical
training. In term of metabolism, there was no benefical effect of
training on eitherinsulin resistance (as shown both in plasma and
muscle, with even an aggravation of systemic insulin resistance in
EX ApuE'l"' mice; Figure 2), or body composition (as assessed
by the fat content measured by MRI) in old APDE'I"' mice.
The weight gain was even more pronounced in EX A.puE'-"'
mice, and brain MRI clearly showed that A.an'-"' EX mice
were more affected both in terms of focal BBE leakage and
of microglia’macrophage accumulation. All these features (lack
of changes, even worsening of the pathological parameters) of
the EX group, which are contradictory with the usual beneficial
impact of exercise training (Xu et al., 2011; Rao et al, 2013),
have been possibly driven by the weight gain observed in
the EX APDE_I"_ mice when fed ad libitum with high HC
diet.

In the present study, the ApoE '~ mice under HC diet
can be considered obese with regards to their weight at the
beginning of the study (1.5-fold higher than age-matched WT
mice). Furthermore, EX .I!LPGE_"I_ mice also had a decreased
response to insulin during the 12 weeks of training, suggesting
that their insulin resistance state was worsened instead of being
improved as commonly assumed from an endurance training

protocol (Roberts et al, 20013). It is also interesting to note that
abdominal fat was primary subcutaneous and visceral (Figure
51), as typically observed in metabolic syndrome patients or
animal model (Patel and Abate, 2013). In obese subjects, it was
observed that for the same physical activity level, those under
food restriction presented reduced oxidative stress, inflammation
and insulin resistance while those without food restriction
experienced increased body weight and no improvement of
fat distribution (Bergouignan et al, 1985). Similarly, in animal
maodel, both inflammation and insulin sensitivity worsened in
trained obese mice with ad likitum diet whereas it was fully
improved when the diet was controlled (Ringseis et al, 2015).

Previous studies have shown that there are also specific
locations for the positive effect of exercise on brain inflammation
(Yi et al, 2012). However, in rodents, there seems to be major
differences depending on the nature of the exercise {forced versus
voluntary) in response to both the food intake control and
the central effect of exercise (Leasure and Jones, 2008; Copes
et al, 2015). Nevertheless, MR studies on diet interventions have
shown that diet-induced inflammation and gliosis are mainly
located in the hypothalamic region (Thaler et al., 2012; Berkseth
et al, 2014). Recently, in the context of obesity, the central
effect of exercise to decrease neuroinflammation was described
in the hippocampus region (Erion et al., 2014; Koga et al,, 2014;
Spiclman et al., 2014; Auer et al_, 2015).

An emerging field of research focuses on the new major
roles of inflammation in brain diseases, where both its balanced
deleterious and beneficial effects are stll under debate {Mon
et al., 2014). The complex interactions between the nervous
system and the immune system are now thought to occour
at specific interfaces such as the chormd plexus. Indeed, the
brain anomalies that we observed in the old ApoE~/~ mice
under HC diet are originally located in these areas and further
extended from these periventricular areas (Leasure and Jones,
2008; Berkseth et al., 2014; Koga et al., 2014; Van der Donckt et al.,
2015).

[ue to the small number of animals, further studies would
be needed to determine if there is any relationship between the
activity level and brain inflammation. It would also be important
to evaluate whether there is a difference of mortality rate between
exercise and sedentary mice, or between male and female. Similar
to the earlier study from Johnson and Jackson (2001}, we did not
observed any gender effect, but a larger animal group would be
needed to further evaluate these possible differences.

Among the MRI biomarkers used in this study, the post-
gadolinium T1 follow-up showed the unrevealed fast evolution
of BRR leakiness in the ApuE_l"_ mice after HC diet exposure.
The T2 and T2+ scores were however unable to show a parallel
evolution of tissue damage, which can be due to the small sample
size. Yet, the change of T1 was strongly associated with the post-
USPIO T2 score, and the two areas co-localized (Figure 4 and
Figure 52). The evaluation of inflammation was done on T2
images (post-USPIO T2 score) rather than on T2* maps because
of technical issues. T2* images are very sensitive to slight changes
of MR signal homogeneities, such as those observed when surface
coils are used for signal reception or after retro-orbital injection
of USPIO. Yet, it is noticeable that periventricular inflammation
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developed around small existing focal T2* lesions, as can be seen
from T2* maps (baseline and post-USPIO, Figure 52). These
lesions can either be vascular microbleeds or brain accumulation

of erythrocytes and iron deposit (Yi et al, 2012; Erion et al
2014; Van der Donckt et 2015), as previously shown in
this model (Chirico et al, 2016). Using a high magnetic field

and a high-sensitivity transmit/receive volume radio-frequency
coil, it was recently shown that higher spatial resolution
mapping can detect very small quantity of iron or USPIO (N

al., 2014). In this specific study where neuro-inflammation
was induced by a LPS challenge, there was no link between
BBB leakage and inflammation. The new finding of rapid BEB
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leakage evolution can be compared to previous mechanistic
studies where abnormalities of both aguaporin 4 and tight
junction proteins expression were found in the same mouse
maodel (Thaler et al, 201Z). In apparent contrediction with
the present result in this ApoE '~ model, the destabilization
of the neurovascular unit was partially modulated by exercise
(Soto et al, 2015; Chirico et al, 2016). Yet, in our specific
conditions of brutal HC diet exposure with no food consumption
control, the imaging follow-up demonstrated aggravated BRE
leakage that correlated with inflaimmation imaging, with high
systemic, and brain inflammation and oxidative stress, and the
brain status even worsened in exercse-trained mice. Future
studies with higher spatial resolution MRI may provide deeper
explanations of focal dynamic processes. An additional control
group of ApoE '~ mice under chow diet could also be included
to follow the effect of exercise without diet intervention. As
previously shown in ApoE~/~ mice under controlled diet intake
(Chirico et al., 201&), they are likely to show a similar positive
evolution if they have initial BEB lesion, or no evolution if they
have normal BBBE as our control group of age-matched WT
mice.

In summary, we showed for the first time in this study
that abrupt transition to HC diet with non-restricted

consumption in old A.]:»DE'-"' mice impairs the expected
central beneficial effect of exerdse, leading to enhanced
inflammation and BEB leakage in the areas involved in immune
cells recruitments. Therefore, this work emphasizes the need
for further longitudinal studies in order to evaluate the neuro-
immune interactions and eluocdate the central effect of the
interventions.
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SUPPLEMENTAL DATA

Material and Methods:
Brain imaging:

Using standard MRI brain coronal localizers and anatomical references for careful pre and post-contrast
registration, T2 RARE and T2* multi-slice multi-echo gradient echo (MGE) sequence positioned were
acquired in the axial plane. The RARE sequence was used with the following parameters: TR/TE =4000
/ 69 ms; field of view = 2 x 2 cm; matrix = 256 x 256; slice thickness = 1 mm; RARE factor= 8, number
of slices = 15. The MGE sequence was used with the following parameters: TR / first TE = 1500 / 3.2
ms; flip angle = 75°; field of view = 2 x 2 cm; matrix = 192 x 192; slice thickness = 1 mm; 12 echoes

and echo interval = 7.2 ms; number of slices = 15.

Neurovascular lesions and iron deposits were assessed respectively by baseline T2 and T2* imaging.
T2* quantification was obtained using a MGE sequence. For BBB permeability assessment, the T1-
weighted MGE sequence with identical geometrical parameters was acquired. The parameters are the
following: TR/TE = 124 / 2.8 ms; field of view = 2 x 2 cm; matrix =256 x 192; slice thickness = 1 mm;

number of slices = 15.
Statistics:

Comparison between before and after-training glucose levels per each time point were performed using

One-way ANOVA. Statistical significance was determined by a p value of less than 0.05.
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FIGURES LEGENDS:

Table S1: Weight measurement of visceral and subcutaneous adipose tissues in sedentary (SED) and

exercise trained (EX) ApoE” mice. SED and EX WT mice values are given for reference.

Table S2: Increased pro-inflammatory cytokines (IL-1p and TNFa) and oxidative stress markers (AOPP
and SOD) concentration in aorta and plasma of both SED and EX ApoE” mice. SED and EX WT mice

values are given for reference.

Figure S1: Abdominal MRI of fat mass of a SED (A) and an EX ApoE" mouse (B) and fat mass index
(C) of ApoE” mice after the 12-weeks training. EX mice showed no apparent differences of fat
distribution compared to SED mice (C). In both EX and SED ApoE™" mice, localization of the fat depots
was typical of the metabolic syndrome (A-B). Of note, the liver signal on the fat image was also higher

than normal in both cases (A-B).

Figure S2: Impaired glucose time-course during insulin tolerance test of both SED and EX ApoE™”" mice
before and after the twelve-weeks training (A). SED and EX WT mice values are given for reference,
before and after the training (B). $ Significantly different from corresponding mice pre-training

condition p<0.05; $$ p<0.005.

Figure S3: T2* map of SED and EX ApoE” mice before the twelve-weeks training (A for SED, D for
EX) and after training (B for SED and E for EX), and after training post-USPIOs T2* in SED (C) and
EX (F) ApoE”" mice showing phagocytosis activity in periventricular areas. WT mice T2* maps under
the same conditions are given for reference, before (G, J) and after training (H-I, K-L; I and L are after
training post-USPIOs T2* maps). Display parameters (window width and contrast level) are identically
set for all maps (respectively 5500 and 2500). After training, focal low T2* areas are visible in both
SED and EX ApoE” (arrow, B and E). Inflammation is present around these areas, as shown by post-

USPIOs maps (arrow, C and F).
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TABLE S1:

ApoE” WT
- - SED EX SED EX
Visceral AT (g) 14+05 1.5+04 0.2+ 0.0 0.1:+0.0
Subcutaneous AT (g) 1.9+0.9  1.4+04 0.4+ 0.0 0.3 0.0
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TABLE S2:

-
Apok_ o kEx BWTSED  WTEX
SED
IL-1B (pg/mg of 543.3 +
0+ 940, 00,
ot 610.0 + 400 216.0 0.9 +0.5 1.0+ 0.4
TNFa (pg/mg of 607.4 + 600.6 +
540, S5+3.
prot) 132.6 216.6 0.5£0.3 2.5+3.2
AORTA
AQOPP (umol/mg of
8+17. 3+17. 5+6. d+7.
ot 76.8+17.3 74.3+17.3 8.5+ 6.8 91+7.2
SOD (umol/mg of
2+0. J+1. 61, 8+1.
rot/min 5.2+0.2 4.7+ 1.5 5.6 +1.8 7.8 +1.7
376.7 + 476.7 £
; .6+ 55, 5431,
I1L-1 /mL 208.2 378.6 111.6 = 55.7 105.5+31.5
PLASMA
S TNFa /mL 10.1 £13.6 6.5 = 8.0 46.3 £5.6 72.4+16.4
AQOPP (umol/mL) 241.2 +31.8 210.3 + 66.3 15.3 +2.6 13.4+2.8
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FIGURE S1:
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FIGURE S2:
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FIGURE S3:
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ARTICLE N°3:

Atherosclerosis is a complex pathology combining dyslipidemia and low-grade
inflammation, leading to cardiovascular outcomes. Individual risk stratification is a real need in clinic
as the efficiency of the clinical care depends on taking into account all individuals features of the
patients. The aim of this study is to test the validity of multi-modal imaging focused on macrophage
metabolism and phenotype associated with a biological analysis (lipidic profile, inflammatory cytokines

and genomic analysis) in a non-human primate model (NHP) under atherogenic diet.

Sixteen Cynomolgus monkeys (13.1+4 years-old) were fed a high cholesterol diet (23%
fat, 11.3% saturated fatty acids, 0.5% cholesterol, n=13 animals) or standard diet (11% fat, <1%
saturated fatty acids, n=3 animals) during 24 months (see Figure 24 for study design). Food ration was
adapted to each animal according to their body weight. Longitudinal blood sampling was realized at 0,
1,7, 12, 18 and 24 months for inflammatory cytokines, hsCRP and cholesterol/lipoprotein assessment.
Ultrasound imaging of vascular territories was performed at T+12 and T+18 months to localize plaque
and observe their potential progression within the 6-months interval. PET/CT imaging sessions were
performed using dual tracers for measurement of metabolic and inflammatory cellular activity using
[18F]-FDG and [11C]-PK11195 respectively. MR imaging was realized on carotids to assess the vessel
wall thickness and on brain to visualize potential brain lesions. Inflammation and oxidative stress was
assessed in carotids, aortic arch and abdominal aorta. Furthermore, tissular genomic analysis was
performed on carotids, aortic arch, abdominal aorta, brain and adipose tissues, focused on metabolic,

mitochondria , pan-macrophages, M1, M2 and lymphocytes markers.

NHPs fed atherogenic diet presented dyslipidemia (low HDL, high LDL and presence of
at-risk LDL subfractions). Six-months ultrasound follow-up showed that most animals presented
plaques in multiple location, with progressive lesions for some of them and at similar location than
humans. Three animals showed downstream events (myocardial fibrosis, severe coronary or carotid
plaque, lacunar stroke) confirming the relevance of this model and were the same than those presenting
plaque progression on ultrasound follow-up. [18F]-FDG and [11C]-PK 11195 presented similar uptake
in high cholesterol animals (1?=0.799, p=0.028) but an inverse in control diet animals (r>=0.607).
Analysis of gene expression of metabolic, inflammatory and anti-inflammatory markers in the carotids
enabled the stratification of animals in three groups: low, medium and high cardiovascular risk. Of note,

in high cardiovascular risk group, both M1 and M2 markers were highly expressed. Furthermore, the

144



three animals showing high CV risk in the carotids mRNA analysis are those that were highlighted by

ultrasound and presence of downstream events.

Ultrasound follow-up as well as genomic analysis enabled the discrimination of animals
with high cardiovascular risk. These animals being those presenting downstream events confirm the
presence of vulnerable lesions in this model and the relevance of combination of inflammatory,
metabolic and anti-inflammatory markers for individual stratification. This new biomarker combination
offered possibilities for a better understanding of complex metabolic/inflammation interplay in the
carotid plaque and adapted treatment in the clinical setting. The relevance of this association of gene
expression was further evaluated in endarterectomy carotid samples of symptomatic and asymptomatic

patients.
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ABSTRACT:

Atherosclerosis is a complex pathology, inducing cardiovascular events. Individual risk stratification
remains difficult. The aim of the present study aim was to test the validity of multimodal imaging
focused on macrophages combined with biological analysis in a non-human primate (NHP) model under

atherogenic diet.

Sixteen Cynomolgus monkeys (mean age, 13.1+4 years) were fed high cholesterol (HC: 23% fat, 0.5%
cholesterol) or standard diet for 24 months. Longitudinal blood sampling was performed for cholesterol
and cytokine assessment. 6-month ultrasound follow-up of plaque progression and ['*F]-FDG, ['!C]-
PK11195 PET/CT and MRI imaging were performed. Genomic analysis, focusing on metabolism,
macrophage subsets and lymphocytes, was performed on NHP carotid, aorta and metabolic tissues and

human endarterectomy samples from patients with symptomatic or asymptomatic carotid stenosis.

High-risk lipid profiles were noted at T+1 month. Ultrasound showed that most HC animals displayed
lesions similar to humans. Three presented downstream events (myocardial fibrosis, small lacunar
stroke), vessel wall inflammation and plaques, confirmed by PET/CT and MRI. Gene analysis further
validated correlations between metabolic activity, inflammation and lymphocytes in carotids.
Interestingly, anti-inflammatory M2 markers correlated with metabolic and M1 markers in both NHP

and human carotids.

Animals graded high-risk on gene analysis presented downstream events, confirming our vulnerable
plaque model and the validity of combining inflammatory, metabolic and anti-inflammatory markers
for stratification. These results were confirmed in patients, and open the way for new combinations of
biomarkers for better understanding of complex metabolism/inflammation interplay in carotid plaque

and adapted treatment in the clinical setting.
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INTRODUCTION:

Atherosclerosis is a complex inflammatory lipid pathology, leading to plaque development. The
paradigm for atherosclerosis diagnosis has evolved from the detection of lesion-induced artery stenosis
to the subtler notions of vulnerable plaque and vulnerable patient (Naghavi et al, 2006). However, as
these concepts were originally defined from anatomopathology analysis, it remains challenging to
stratify the cardiologic and cerebrovascular risk associated with atherosclerotic plaques in vivo in
patients. Morphologic imaging (e.g.,. magnetic resonance imaging of carotids or ultrasound imaging of
coronaries) demonstrated that plaque status may evolve in either direction, toward stability or
vulnerability, depending on various local and systemic factors. In this dynamic situation, new
biomarkers are therefore required, to enable the most appropriate treatment to be offered to each
individual. More than a decade ago, ['*F]-fluorodeoxyglucose (['*F]-FDG) PET/CT was first applied in
patients to prospectively evaluate atherosclerosis inflammation and subsequent cerebrovascular risk
(Rudd et al, 2002). Recently developed medical imaging methods have led to controversial results in
various patient populations (Figueroa et al, 2013; Subramanian et al, 2012; Knudsen et al, 2015). Most
novel imaging biomarkers target inflammation and macrophages, evaluating either macrophage
phagocytic activity, glycolytic metabolism, macrophage mitochondrial proteins or M1/M2 receptors
(Tarkin et al, 2014; Evans et al, 2016). But the debate is still open on the most useful association of
circulating and imaging biomarkers to predict vulnerable plaque and future cardiovascular events, and
to propose the best treatment in each specific situation (Duiveenvorden et al, 2013; Tarkin et al, 2016).
For example, it is not known whether [''C]-PK 11195, a ligand targeting the mitochondrial translocator
(18kDa) protein (TSPO) that is overexpressed in activated innate immune cells and was used for carotid

imaging in patients (Gaemperli et al, 2012), enables better diagnosis of at-risk plaque than ['*F]-FDG.

There is no consensually accepted small-animal model of vulnerable plaque, and existing models are
not fully relevant to establishing imaging biomarkers for translational purposes (Millon at al, 2012). The
Cynomolgus macaque under atherogenic diet has been found to be invaluable in establishing the
protective effect of estrogen against coronary plaque development (Adams et al, 1990). In this model,
atherosclerosis develops with a lipidic blood profile and multi-site progression as in humans, and the
carotid lesions reproduce the plaque morphology observed in clinical studies, as vessel geometry is very
close to that found in humans (Shively et al, 1990). Moreover, the innate immune system is a key player
in vulnerable plaque, and this non-human primate (NHP) atherosclerosis model is the only one to display
the same chemokine and cytokine armamentarium as in human atherosclerosis. Vascular lesions and
peripheral inflammation status in this NHP atherosclerosis model were characterized by
immunohistochemistry and blood biomarkers (Register, 2009). Yet the model has never been explored

using translational multimodal imaging techniques and inflammation imaging biomarkers.
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The aim of the present study is to show the added value of inflammation imaging markers and blood
biomarkers for stratifying cardiovascular risk in an NHP atherosclerosis model. To develop a tool for
stratification of vulnerable profiles in NHPs, we used blood sampling (lipid profile, and inflammatory
circulating biomarkers), PET/CT and MRI inflammation imaging using dual PET tracer imaging in
NHPs under atherogenic diet. We then evaluated the gene expression risk profile from three vascular
territories and compared this with the in-vivo biomarker risk assessment. The carotid gene expression
pattern was also evaluated in human endarterectomy samples from symptomatic and asymptomatic
carotid artery stenoses. The study hypothesis was that discrimination of cerebrovascular risk requires a

combination of metabolic, inflammatory and anti-inflammatory biomarkers.

MATERIAL AND METHODS:

Animals:

All animal studies and experiments were approved by the French Ministry of Agriculture and carried
out in accordance with its official regulations, after approval by the local institutional review board (n®
1367 & 1239). Every effort was made to minimize animal suffering and reduce the number of animals
used in the experiments. Animals were acclimated for at least 10 days prior to the first day of study, and
were housed collectively with the following ambient parameters: aeration with > 10 air changes/hour
and no air recirculation, 12-hour light/12-hour dark photoperiod, room temperature 22 + 3°C, and
humidity 55 £ 20%. The animal room and cages were cleaned daily. Sixteen Cynomolgus monkeys
(Macaca fascicularis, Mauritius; mean age,13.1+4 years; 3 males, 13 ovariectomized females) received
high cholesterol diet (HC: 23% fat (w/w), 0.5% cholesterol (w/w), 11.3% saturated fatty acids (w/w);
E39126-34, Ssniff, Germany) (n=13) or standard diet (SD: 11% fat (w/w), saturated fatty acids < 1%j;
Pri V3944-000, Ssniff, Germany) (n=3: 2 female, 1 male) for 24 months. Food rations were adapted to
each individual according to body weight (100g per day per animal under 5 kg; 200g per day per animal
over 5 kg). One fruit was provided daily for each animal. Delicacies were also occasionally given to the
animals at the end of the day as part of the test facility's environmental enrichment program. Study

duration was 24 months.

Blood sampling:

For SD animals, 1 blood sample was taken at end of study. For lipid and cytokine plasma markers
monitoring in HC animals, 6 blood samples were taken by venipuncture from the femoral vessel under

anesthesia by ketamine (Imalgene® 1000, Merial, France) at 0, 1, 7, 12, 18 and 24 months (see
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supplemental Figure S1 for study design). The animals were fasted prior to blood collection. Blood
was collected in EDTA tubes for plasma harvesting and inflammatory cytokine assay, and in citrate
tubes for cholesterol/lipoprotein assay. The EDTA and citrate tubes were centrifuged at 1,500 g for 10

minutes; then supernatant was removed and stored at -80°C until further assays.

At the last time point, serum was used for high-sensitivity C-reactive protein (hs-CRP) measurement.

Cholesterol/lipoprotein and triglyceride assay:

Total plasma cholesterol was measured using the Accutrend Plus kit (Roche, France), and lipoprotein
fractions in plasma were assessed using the Lipoprint® LDL subfractions kit (Quantimetrix, California,

USA) according to the manufacturer's instructions.

Peripheral inflammation:

Hs-CRP was assessed in serum using a commercial kit (CSB-E10035Mo, CUSABIO, Baltimore, MD,
USA).

Multimodal imaging in NHP
Ultrasonography:

Ultrasonography of vascular territories was performed jointly by a veterinarian and a cardiologist, both
experts in ultrasound imaging, using a Philips CX 50 apparatus with a C8-5 microconvex probe
according to a standardized imaging protocol: aorta, iliac bifurcation and carotid arteries. Results were
expressed as presence or absence of lesion, and vessel wall thickness, and intima-media thickness
(=IMT, when possible) (otherwise, in patients, IMT>0.7 mm can be assumed). For longitudinal
assessment of disease progression, a score was given at each ultrasound session: 1 for small lesion in a

single location, 2 for multi-site small lesions, and 3 for multi-site lesions with at least 1 large plaque.

PET/CT Scan:

Images were acquired on a 64-multidetector PET/CT scanner Biograph mCT (Siemens, Erlangen,
Germany) with an axial field of view of 22 cm. The scanner is checked every day using established

calibration procedures.
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FDG imaging was performed in all animals 60 minutes after intravenous ['*F]-FDG injection of a target
dose of 5 MBq/kg (mean dose, 86.24 + 22.72 MBq). Animals were placed in a supine position. 60
minutes after injection of the radiotracer, a whole-body low-dose CT scan (80kV, 20mAs, 1 mm slice
thickness and 0.5 sec pitch) was acquired for attenuation correction. The CT scan dose was adjusted
using the Care Dose 4D software (Siemens), with the animal body centered in the scanner to enable the

whole-body coverage.

Three bed positions were used: the first one centered on the carotids encompassing the aortic arch and
its branches, and the others 2 distally to cover the upper and lower part of the abdomen. Prior to FDG
PET, fasting blood glucose concentration was recorded to check for a level less than 200 mg/dL. For

each bed position, acquisition duration was 5 minutes.

After the PET examination, a CT angiography was acquired with the same field of view (FOV). A bolus
of 20ml Iomeron 400 (Guerbet, Aulnay-sous-Bois, France) was injected at a rate of 3.5ml/sec in the
antecubital vein, followed by saline flush at the same rate. Acquisition parameters were: 80kV, 20mAs,

FOV 500 mm, 30 sec B filter, slice thickness 1 mm, and pitch 0.5 sec.

A subgroup of 8 animals was also explored using the [''C]-PK11195 PET tracer (mean dose, 123.70 +
30.96 MBq) targeting TSPO of activated macrophages. This [''C]-PK 11195 examination was performed
before the FDG examination. PET emission data of [11C]-PK11195 centered on the carotids were
acquired over 60 min in list-mode format and rebinned into 18 temporal frames (background 56.42 +

11.16 s, 6x10s, 4x60s, 6x300s and 2x600s).

MRI:

MRI was performed on a 3-Testla MR scanner (MAGNETOM Prisma, Siemens). Animals were
installed in supine position, with the head in the center of the posterior part of the 64-channels

Head/Neck coil.

For carotid imaging, a 4-channel phased array receiver coil was combined with head coil to optimize
the signal-to-noise ratio and with cardiac triggering and breathing monitoring. The carotid was located
with time of flight (TOF) sequences. MRI images were centered on the bifurcation and acquired using
turbo spin echo (TSE). Proton density weighted (PDW) and T1-weighted (T1W) images were used.
Imaging parameters were: 9 slices thickness of 2 mm, Field of View (FOV) = 205 mm, Echo Train
Length (ETL) = 29, Repetition Time (TR) =262 ms / 260 ms (PDW/ T1W), Echo Time (TE) = 23.0
ms/ 5.8 ms (PDW/ T1W), Echo Spacing (ES) = 5.79 ms and Receiver Bandwidth (BW) = 868 Hz/Px.

Dynamic images were acquired with the TWIST (Time resolved angiography With Interleaved

Stochastic Trajectories) pulse sequences and using all channels of MR coils. TWIST sequences were
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applied in the coronal orientation and acquired with a separation of 5 seconds between frames,
interpolated to 2.46 ms. A 10 ml bolus of DOTAREM® (Guerbet, Aulnay-sous-Bois, France) was
administered intravenously at 0.1 mL/s. Imaging parameters were: voxel size 0.8x0.8x1 mm, FOV =

280x228x88 mm, TR/TE =3.0/1.12 ms and FA = 25°.
Brain imaging was performed with the following sequences:

3D T1W MPRAGE used in pre- and post-injection: voxel size = 0.6x0.6x0.8 mm, FOV 180x180x102
mm, TR/TITE =2100/1000/ 2.77 ms, FA = 8°, ES = 8 ms, BW =210 Hz/Px

2D T2*W multi-gradient echo: 20 slices, voxel size = 0.7x0.7x2 mm, FOV 180x146x42 mm, ,TR
1200, 12 echos times from 3.04 ms upto 49.68 ms (ATE = 4.24 ms), FA = 70°, bandwidth 270 Hz/Px.

3D T2W-FLAIR (Fluid Attenuation Inversion Recovery) voxel size = 0.6x0.6x0.8 mm, FOV =
180x180x102 mm, TR/TI/TE = 5000/1800/346 ms, ETL = 314, Echo Train Duration (ETD) = 926 ms,
ES =3.81 ms, BW = 744 Hz/Px.

Tissue analysis
NHP vascular and non-vascular tissus preparations.

At end of study, the animals were deeply anesthetized before lethal injection of pentobarbital. Carotids,
aortic arch, abdominal aorta, and non vascular tissues (heart, pericardial and pericoronary, visceral and
subcutaneous fat, brain) were collected and prepared for further analysis (i.e. pathological examination,

gene expression or biochemistry measurements).

Human carotid endarterectomy samples:

Human carotid samples (n=19) were obtained from asymptomatic and symptomatic patients undergoing
carotid endarterectomy in vascular surgery department of Edouard Herriot Hospital (Lyon, France).
Written informed consent for analysis of blood and tissue samples was obtained from all patients before
surgery. Patients were considered symptomatic when an ipsilateral carotid-related neurological event
was reported in the previous 6 months. Samples were prepared and gene expression was performed with

the same methods as NHP samples.
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Inflammation and oxidative stress:

Vascular samples from the imaging location (carotids, aortic arch, and abdominal aorta) were kept
frozen at -80°C and ground into powder using a mortar. Proteins were extracted from the powder using
a PBS/EDTA (5mM) solution. Protein extracts were then used to assess inflammatory cytokines and

oxidative stress markers (IL-1 B, IL-6, TNFo and MDA), in the same way than in plasma.

Gene expression study:

mRNA were extracted from NHP carotids, aortic arch, abdominal aorta, adipose tissues (visceral,
pericardial and periarterial) and frontal brain and from human carotid samples using the TRIZOL reagent
procedure. Expression was assessed for 20 genes corresponding to glycolytic metabolism (Hkl),
mitochondria metabolism (Ppif, Tspo), pan-macrophages (Cdi4, Cd68), M1 (Il-1p, Tir4, Ccl2, 1i-6,
Tnfo, Cxcl9, 1l-17ra, IL-22ra) and M2 (ll-1ra, Ccr2, 1I-10, Clec7a, Irf4, Cdl163) markers and
lymphocyte infiltration (Cd3e) (list of primers on demand: vdicataldo@hotmail.fr), using the gPCR

method. Actine B was used as the reference gene.

Histopathology of vessel wall and heart

The left carotid and parts of aortic arch and heart (apical area) were removed and stored in a 4%
paraformaldehyde solution for 24 hours and then in 15% sucrose for 48h, and placed in a histology

cassette and frozen in liquid nitrogen, except for heart samples which were embedded in paraffin.

These samples were cut in 10um slices by cryostat (LEICA CM3050S), then stained with
Hematoxilin/Eosin (MHS32-1L & HT110232-1L, Sigma-Aldrich), Oil Red O (841K04010169, MERK)
and Masson’s trichoma (ab150686, AbCam) in order to visualize respectively section morphology,

lipids and fibrosis. Photographs were acquired using the ZEISS Scope A1 microscope (ZEISS).

A researcher experienced in vascular pathology and blind to the imaging results examined all histology
sections of each specimen. The following features were graded on a simple semi-quantitative scale
previously published by Lovett et al (Lovett et al, 2004): thrombus area, thick, thin (<200 pm) or
ruptured fibrous cap, intraplaque hemorrhage, neovascularization, and macrophage infiltration. Loose
fibrosis, defined as fibrous tissue rich in non-fibrillar extracellular matrix with thin and non-condensed

collagen fibers, was graded as <30% or >30% of total fibrous tissue.
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Plaques were classified according to the American Heart Association classification of coronary
atherosclerosis and according to the Lovett and Redgrave classification (Lovett et al, 2004; Stary et al,

1995).

Data analysis:
Blood kinetics:

To estimate overall risk in the plasma profile over time for each animal, lipid and hs-CRP levels were

summarized by the maximal, median and final (at imaging time point) values.

Image analysis:

MRI: vessel wall area was measured (in mm?) in the right and left carotids (3 slices / per artery) by
manual delineation of the inner and outer contours. MR angiography and CT angiography acquisitions

then registered the region of interest (ROI) on the PET/CT data (supplemental Figure S2).

['®F]-FDG image post-processing: All emission images were normalized using an inhomogeneity
detector and corrected for dead time, random coincidences, diffusion and attenuation. Image
reconstruction was performed with iterative Ordered-Subset Expectation Maximization (iterative OSEM
method, TrueX + TOF UltraHD-PET) with 12 iterations and 21 subsets (effective number of iterations,
ENI of 252), non-filtered in line with recent recommendations for FDG analysis in atherosclerosis (Huet

etal, 2015).

Spatial resolution at reconstruction was: voxel size 0.82 x 0.91 x 0.4mm. Standardized Uptake Value
(SUVmean and max, Bq/mL) and Target-to-background ratio (TBR: SUVmax normalized by SUVmean
of the superior vena cavae) were measured at 3 vascular locations (right and left carotids, aortic arch
and abdominal aorta at the level of renal bifurcations) and in visceral adipose tissue in ROIs at the
various location. MR angiography and PDW images (for the carotids) were used to generate regions-of-
interest at the different locations. For brain images, SUVmax was evaluated for the ROIs defined using

the NHP atlas (Ballanger et al, 2013) (see below).

[''C]-PK11195 analysis: Levels of translocator protein (18 KDa) expressed in active macrophages were
assessed using [''C]-PK 11195 kinetic analysis with an image arterial input function (descending aorta)

and a 2-compartment reversible model (2TC-rev) or an equivalent graphical analysis (Logan).

2TC-rev allows identification of the following kinetic rate constants: K1, k2 between vascular volume
and non-specific tissue, and association (k3) and dissociation rate constants (k4) for receptor-specific
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(Kropholler et al, 2005). Rate constants depend on local concentration in the region of interest (ROI), in
arterial plasma and in tissue. The relationship between micro-parameters (K1, k2, k3 and k4) enabled

estimation of a macro-parameter: volume distribution (Vt).

Logan plot is a linear method, enabling estimation of Vt regardless of the number of compartments
(Logan et al, 1990). This graphical method is based on observation of the portion of the reversible model,
which approaches a steady state after a certain time following, a linear trend the slope of which can be
related to Vt. As performed in Gaemperli’s clinical carotid study (Gaemperli et al, 2012), a simplified

TBR (PK) was also calculated using a static image reconstructed from the 20-35 minutes frames.

Vt, SUVmax (PK) and TBR (PK) (calculated using a static image reconstructed from the 20-35 minutes
frames) were then compared to FDG uptake levels (SUVmax ["*F]-FDG) and TBR ['*F]-FDG) at the

same locations (right and left carotids).

Brain PET/CT analysis

Based on anatomical-MRI and a maximum probability atlas (Ballanger et al., 2013), 88 ROIs were
defined and used to measure [!'C]-PK 11195 binding potential (BP, with the Simplified Reference Tissue
Model, SRTM), using the caudate nucleus as reference region with minimal uptake on PET-scans for

these regions; here we focused on the frontal cortex (7 ROIs) and limbic system (6 ROIs).

Statistical analysis

All values are expressed as mean + standard deviation or median with percentile ranges. Differences
were tested on t test. Regression analysis was used for comparison between MR and PET parameters. A
p level <0.05 was considered significant. Heat-maps for genomic risk profile were generated by
hierarchical clustering of samples, using the ward.2 algorithm. Statistical analysis for longitudinal
follow-up and for comparison between HC and SD measurements was performed with p<0.05

considered as significant. All statistical analyses were performed using R software.

RESULTS:

During the 24 months of the study, 5 HC animals died: 2 early and abruptly after diet onset, 2 euthanized
because of acute kidney failure, and 1 prematurely from acute pancreatitis (severe pancreas autolysis
found on necropsy). In these animals, large atherosclerotic lesions were also observed in various

vascular beds (data not shown).
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High-risk lipid profiles

Plasma cholesterol levels were normal in all HC animals at the beginning of the study and showed a
brutal increase after the first month of diet (1 month on HC diet, compared to baseline: p=4.5.10"*) and
stayed at high levels throughout the 24 months (Figure 1A). The HDL/LDL ratio showed a parallel
sudden decrease during the first month and remained low thereafter (1-month compared to baseline

ratio; p=1.2.10; Figure 1B).

Lipoprotein profiles further exhibited the differences between HC and SD animals: a lower HDL
concentration and “at-risk” LDL subfractions (dense LDL subfractions are associated with coronary
artery disease and risk of myocardial infarction; Austin et al., 1988; Campos et al., 1992) in HC animals,
corroborating lipid dysregulation (Figure 1C-D). Triglyceride levels did not significantly differ between

HC and SD animals, although individual differences were observed (data not shown).

Multi-site active lesions on multimodal imaging in HC animals

Numerous atherosclerotic plaques in HC animals were visible on ultrasound imaging; at T+18 months'
diet, 9 of the 10 HC monkeys showed atherosclerotic lesions at locations similar to those found in
humans (common carotid and bulb, aortic arch, iliac arteries), confirmed by vessel histology. Plaque
burden in the carotid was also shown by MRI measurements (Figure 2A-C). PET/CT imaging showed
both ["*F]-FDG (Figure 2D-E) and [''C]-PK 11195 (Figure 2F-G) uptake in carotids in HC animals,’
suggesting low-grade inflammation. Carotid MRI showed vessel wall thickening in the carotids (median
wall area, 0.11 cm? (interquartile 0.09 — 0.12) in HC versus 0.04 ¢m? in SD animals; p<0.001; Figure
2A, and Supplemental Figure S3) and gadolinium enhancement characteristic of advanced carotid

plaques (Figure 2B-C and Figure S3), confirming pathological status.

Longitudinal follow-up of inflammatory biomarkers and ultrasound for diagnosis of high-risk

animals

Longitudinal ultrasound study showed lesions at various locations at 12 months (score of 2 in 4 animals;
Figures 3 and S4) with progression of atherosclerosis in 3 out of 8 animals at 18 months (Figure S4).
Hs-CRP levels confirmed chronic low-grade inflammation persisting over time (Figure 3B and S4).
LDL-C levels were also high in the same time interval, but with no significant increase (Figure 3C).
The animals with increasing ultrasound scores also showed increased hs-CRP or maintained a high level

during follow-up (Figure S4).
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Animals that did not complete the study showed a burst of circulating inflammation biomarkers in the
blood sample prior to death (data not shown). Finally, downstream consequences found in the heart
(fibrosis on histology) and brain (lacunar stroke on FLAIR MRI) in animals with advanced lesions
(Figure 4) confirmed overall vulnerable status with high-risk HC animals. Interestingly, the 3 animals
exhibiting myocardial fibrosis on histology were those with increased ultrasound score at T+18 months,

and either elevated hs-CRP at baseline or stronger increase at T+18 months (Figures S4 and 4).

For HC animals, PET and MR inflammation marker levels did not correlate with MR plaque burden
(data not shown; p=0.3 plaque with Gd, p=0.9 plaque with ['*F]-FDG, p=0.18 plaque with [!!C]-
PK11195), or between each other except for Gd and ['*F]-FDG (p=0.03). Of note, in HC animals with
dual tracer injection, [''C]-PK11195 imaging correlated positively with ['®F]-FDG findings
(y=0.65x+0.15, 1=0.89; p=<0.001) in HC animals, and negatively in SD animals (y=0.29x+2.26, r=-
0.78, p=0.036), and there was a trend between Gd and [''C]-PK 11195 in HC animals (p=0.07). Left/right
uptake difference was similar between MR and PET inflammation markers in HC and not in SD animals

(Figure S3).

SD animals presented relatively elevated hs-CRP levels (18 and 35 ug/ml respectively) and their
corresponding inflammation imaging was also above normal values for both gadolinium signal intensity
enhancement, ['F]-FDG SUV and [''C]-PK11195 TBR (Figure 2B, D, F). On histology, myocarditis
with diffuse myocardial fibrosis was discovered in 1 animal (SD#2), confirming the in-vivo

inflammation findings.

Carotid high-risk profiles combine overexpression of metabolic, inflammatory and anti-

inflammatory genes

Genomic analysis of carotid arteries showed strong correlations between genes related to imaging
biomarkers (Hk! for ['"*F]-FDG and Tspo for [''C]-PK11195) in carotid arteries and vulnerable plaque
markers such as Cc/2 (p=0.009 and 0.001 respectively), //-1f (p=0.001 and 0.006 respectively) and /-6
(p=0.044 for HkI) (Table 1). These three markers were also intercorrelated and correlated with other
inflammatory markers such as 7/r4 (p=0.001 with Ccl2; p=0.002 with [[-15), Clec7a (p<0.001 with
Ccl2; p<0.001 with /[-15), with Cd3e (marker of lymphocyte infiltration: p=0.003 with Cc/2; p=0.044
with //-1f and p=0.007 with //-6). Interestingly, markers of vulnerable plaque were also associated with
expression of anti-inflammatory markers such as //-7/ra (p=0.003 with Ccl2, p=0.001 with //-1f and
p=0.009 with 1/-6), 1I-10 (p=0.027 with 1I-6), Irf4 (p=0.001 with Cc/2) and Cd163 (p=0.001 with Cc/2)
(Table 1). Heat-maps of gene expression in carotids highlighted 3 distinct groups of NHP according to
level expression (Figure SA). Of note, the 3 NHPs presenting downstream events (HC#1, 9 and 13)
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were all grouped as high-risk by this analysis, confirming the stratification using ultrasound and

circulating biomarkers such as LDL-C and hs-CRP (Figure 5A-B and supplemental S4).

Analysis of patients' carotid endarterectomy samples showed that this high-risk profile was more
frequent in symptomatic than asymptomatic patients, with the same macrophage pattern with both
inflammatory and anti-inflammatory markers expressed (Figure 6). These results confirmed the pattern
already observed in NHPs, and strengthened the concept of a combination of metabolic, M1 and M2

markers in high-risk subjects (Tables 2 and 3).

Other vascular trees, brain, and adipose and immune tissues

HC animals with carotid ['*F]-FDG uptake also showed increased signal in the aortic arch, and in
hematopoietic organs (spleen and bone marrow) (Figure S5). Tissue analysis of 3 arterial walls (carotid,
aortic arch and abdominal aorta) confirmed the high-risk status of the NHPs, as they were the only cases
presenting higher values for more than 1 inflammatory/oxidative marker (out of the 4 selected) (data not
shown). Gene expression in the 2 aortic locations did not provide a completely similar stratification.
However, the association between inflammatory/metabolic and anti-inflammatory gene expression was

maintained (Figure S6).

Interestingly, brown fat activity was significantly decreased in HC compared to SD animals, whereas
the increased activity of visceral and subcutaneous fat did not reach significance (Figure S7). In both
perivascular and visceral adipose tissue, the association between inflammatory and anti-inflammatory

gene expression was also strong (Figure S7).

Finally, brain image analysis with the dedicated NHP atlas segmentation showed higher [''C]-PK 11195
uptake in regions of the limbic system and frontal cortex in HD than SD animals, and a correspondingly
lower ['®F]-FDG uptake (Figure S8). Gene expression in the frontal brain showed correlation between
TSPO and HK1 genes (related to imaging biomarkers) and inflammatory genes CCL2, CD3¢ and IL-6,
and strikingly a negative correlation between IL-1f and IL-1ra (Figure S9).

DISCUSSION:

Severe diffuse plaques with large lipid core were observed in NHPs, and were associated with
myocardial fibrosis and lacunar stroke in the corresponding territories, validating our NHP model of
vulnerable plaque. Both metabolic and mitochondrial macrophage activity imaging markers were
closely associated, as demonstrated by the correlation between ['®F]-FDG and [''C]-PK 11195 carotid

measurements. Carotid gene analysis confirmed this finding, but also found a strong association with

159



anti-inflammatory markers in both the NHP model and the endarterectomy samples. This relationship
was further used to stratify the high-risk profiles, and diagnosed the same NHPs presenting progressive
lesions at follow-up and pathological downstream consequences of plaque rupture. The two aortic
locations (arch and abdomen) confirmed the association of inflammatory/anti-inflammatory gene
expression. As in patients, ['*F]-FDG whole-body inflammation imaging in the NHP model of advanced
atherosclerosis confirmed abnormal uptake in hematopoietic organs and white adipose tissue, and a
decrease in the metabolic activity of brown fat. Finally, metabolic activity (['*F]-FDG uptake) was lower
in the limbic system in HC than in SD animals,, in parallel with increased TSPO mitochondrial activity

in the same regions (i.e., increased ['!C]-PK 11195 binding).

In the last year or two, the classical dichotomy of M1 (inflammatory) and M2 (anti-inflammatory/repair)
macrophages has been seriously reconsidered (Tabas et al, 2016). A more comprehensive vision is
emerging in the immunology community. Innate immune cell priming has been shown to be essential
for future monocyte/macrophage response in cardiovascular diseases, and has also recently been
postulated in resident macrophages, even in the brain (Holtmann et al, 2015). This priming promotes
very different phenotypes that combine a delicate mixture of conventional M1 and M2 markers. For
clinical translation to atherosclerosis, this was very recently demonstrated by pathological analysis of
abdominal aorta from a tissue bank (van Dijk et al, 2016), showing macrophages of both phenotypes
intricately associated in lesions with vulnerable features. Analysis of carotid endarterectomy specimens
has so far led to somewhat controversial results (de Gaetano et al, 2016; Jager et al, 2016), perhaps
because the external part of the media and the adventitia, which is missing in endarterectomy samples,

is an important supplier of macrophages in atherosclerosis (van Dijk, 2016).

M2 markers for atherosclerosis imaging have also already been evaluated. The mannose receptor CD206
was imaged by direct targeting (Blykers et al, 2015, Cope et al, 2016) or using its carboxylate ligand by
FDM PET imaging (Tahara et al, 2014), and indirect CD163 imaging was performed by targeting the
somatostatin receptor with its ligand [**Cu]-DOTATATE, which correlated with CD163 macrophages
and symptomatic plaques (Pedersen et al, 2015). The present gene analysis confirmed that M2 markers
(IL-10, CD163, IRF4, IL-1ra) were closely associated with both metabolic and inflammatory markers
(IL6, IL1B, CCL2) in the 3 vascular beds studied; IL-1ra was the anti-inflammatory marker more
frequently associated with inflammatory markers in vascular tissues (with CCL2 and IL-1p in carotid

and aortic arch and with IL-6 in carotid).

In-vivo imaging in the carotids showed that [''C]-PK11195 and ["®F]-FDG were correlated in HC
animals. Therefore, these two tracers appeared equivalent in carotid and aortic arch atheroma, but were
negatively correlated in the vessel wall and perivascular tissues of SD animals. Genomic analysis of

metabolic and mitochondrial gene expression confirmed this association in the carotids and in the two
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aortic sites, but only in pericardial adipose tissue and not in the other depots. Yet, in all adipose tissues,
inflammatory and anti-inflammatory gene expressions were still closely associated, confirming the
strength of this association in different microenvironments in this context of chronic low-grade chronic

inflammation.

Conversely, ['"*F]-FDG and [''C]-PK11195 gave contrasting results in the brain: in the limbic system
and frontal cortex. Lower ['®F]-FDG uptake in the limbic system may be related to lower neuronal
activity, as observed in Alzheimer’s disease (Kato et al, 2016), and increased [''C]-PK11195 uptake
may represent neuroinflammation induced by HC diet, as previously demonstrated in mice (Mao et al,

2015).

In hypercholesterolemia, the central role of TSPO in mitochondrial cholesterol trafficking may be
disturbed, and could be a therapeutic target (Lecanu et al, 2013). It plays a major role in cholesterol
trafficking and astrocyte homeostasis (Da Pozzo et al, 2016). In the brain, increased TSPO expression
is also linked to astrocyte and microglial activation and/or macrophage recruitment in acute and chronic

inflammation (stroke, epilepsy) (Chauveau et al, 2011; Yankam Njiwa et al, 2016).

Further studies in this advanced atherosclerosis model would be necessary to confirm these TSPO/FDG
imaging findings in the brain, combining inflammation and neuron damage, particularly in the limbic
system. These mechanisms have already been explored in the ApoE” mouse model (Fullerton et al,
2001; Schwartz et al, 2013). In primates, TSPO imaging was recently performed in the context of acute
neuro-inflammation progressing to neurodegeneration (Lavisse et al, 2015), further confirming the

relevance of the NHP model for translational neuro-inflammation imaging studies.

Compared to mouse models, the present NHP model is unique, as vulnerable plaque phenotypes were
observed in both the carotid and coronary arteries, with pathological downstream events. Longitudinal
follow-up using imaging of plaque progression in multiple sites and inflammation biomarkers provided
a first read-out of at-risk profiles, very similar to the clinical pattern. In terms of translation, the at-risk
signature in the vessel wall combined metabolic, inflammatory and anti-inflammatory gene expression,
which was further confirmed in endarterectomy samples. Moreover, this gene association in the carotids
was able to stratify higher-risk animals. This finding is very relevant for patient care after

endarterectomy, but needs to be confirmed.

Another limitation of the present study was the single inflammation imaging session. ['*F]-FDG imaging
has been successfully performed in phase II and III clinical trial, where changes in carotid and aorta
['®F]-FDG uptake were essential to showing inflammation modulation with treatment and the globally

more stable phenotype in the treatment group (Tawakol et al, 2013; Tarkin et al, 2014).
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In conclusion, the present NHP vulnerable plaque model demonstrated that the 2 imaging markers of
inflammation used for carotid examination in patients, ['*F]-FDG and ['!C]-PK 11195, are closely linked
in the context of atherosclerosis. In the brain, they may provide additional information about locally
impaired brain activity in the case of ['®F]-FDG and abnormal glial and/or macrophage mitochondria

activity in the case of [!'C]-PK11195.

More importantly, we demonstrated for the first time in a translational model that vulnerable plaque
shows increased expression of metabolic, inflammatory and anti-inflammatory genes and that, in carotid
plaque, this association enables high-risk subjects to be stratified. Further studies in NHPs and patients

are needed to evaluate how this can impact care and future treatments.
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TABLES:

Table 1: Correlations between RNA vulnerable markers in carotid artery.* genes related to imaging

(HkI for ["*F]-FDG and Tspo for [''C]-PK11195), ** anti-inflammatory markers

Correlated with r p
Ccl2 1-15 0.9 0.001
Tir4 0.9 0.001
1l-1ra ** 0.9 0.003
Tspo * 0.89 0.001
Cdi63 ** 0.88 0.001
Clec7a ** 0.87 <0.001
Cd3e 0.86 0.003
Cd6s 0.86 0.002
Cdl4 0.85 0.001
Ppif (CyD) 0.81 0.006
Hkl * 0.79 0.009
11-6 0.71 0.027
Irf4 ** 0.7 0.001
1-1p Cdl4 0.95 <0.001
Clec7a ** 0.95 <0.001
Ccl2 0.9 0.001
1l-1ra ** 0.9 0.001
Hkl * 0.89 0.001
Tir4 0.86 0.002
Tspo * 0.82 0.006
Ppif (CyD) 0.8 0.009
1-6 0.69 0.031
Cd3e 0.66 0.044
1-6 Cd3e 0,81 0,007
1l-1ra ** 0.75 0.009
Ccl2 0,71 0,027
Cdl4 0.71 0.01
1l-1p 0,69 0,031
1-10 ** 0.69 0.027
Hkl * 0,66 0,044
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Table 2: Correlations between RNA vulnerable markers in carotid endarterectomy of symptomatic

patients (n=9).* genes related to imaging (Hk! for ['®*F]-FDG and Tspo for [''C]-PK11195), ** anti-

inflammatory markers

Correlated with r p
IL-18 Irf4 ** 0.91 0.001
Ccl2 Hk1 * 0.9 0.001
Tspo * 0.97 <0.001
Ppif 0.93 <0.001
Cdi4 0.96 <0.001
Cd68 0.82 0.007
Tir4 0.98 <0.001
-6 0.92 <0.001
Tnfo 0.88 0.002
Cxcl9 0.71 0.032
I11-7ra 0.81 0.009
Ccr2 0.87 0.003
I-10 ** 0.88 0.002
Clec7a ** 0.93 <0.001
Cdi63 ** 0.91 0.001
-6 Hk1 * 0.87 0.002
Tspo * 0.83 0.005
Ppif 0.92 <0.001
Cdi4 0.86 0.003
Tir4 0.97 <0.001
Ccl2 0.92 0.000
Tnfo 0.75 0.019
Cxcl9 0.72 0.029
Ccr2 0.77 0.014
I-10 ** 0.84 0.005
Clec7a ** 0.80 0.011
Cdi63 ** 0.81 0.008
Cd3e 0.78 0.014
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Table 3: Correlations between RNA vulnerable markers in carotid endarterectomy of asymptomatic

patients (n=10).* genes related to imaging (Hk! for ["*F]-FDG and Tspo for [''C]-PK11195), ** anti-

inflammatory markers

Correlated with r p
1-18 Tspo * 0.72 0.020
Cd14 0.80 0.006
Cd68 0.86 0.001
Tir4 0.76 0.011
Ccl2 0.82 0.004
-6 0.83 0.003
Tnfa 0.72 0.014
Cxcl9 0.78 0.008
I11-7ra 0.85 0.002
Ccr2 0.83 0.003
Clec7a ** 0.84 0.002
Cd163 ** 0.84 0.002
Ccl2 Tspo * 0.66 0.036
Cdi14 0.71 0.008
Cd68 0.90 0.000
118 0.82 0.004
Tir4 0.67 0.034
-6 0.97 <0.001
Tnfa 0.97 <0.001
Cxcl9 0.76 0.011
I11-7ra 0.98 <0.001
Cer2 0.99 <0.001
Clec7a ** 0.98 <0.001
Cd163 ** 0.90 <0.001
-6 Tspo * 0.76 0.011
Cdi4 0.86 0.002
Cd68 0.94 <0.001
-1 0.83 0.003
Tir4 0.75 0.013
Ccl2 0.97 <0.001
Tnfa 0.96 <0.001
Cxcl9 0.84 0.003
I11-7ra 0.98 <0.001
Ccr2 0.99 <0.001
Clec7a ** 0.97 <0.001
Cd163 ** 0.95 <0.001
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FIGURES LEGENDS:

Figure 1: Lipid profiles. Plasmatic cholesterol level (A) and HDL/LDL ratio (B) in HC diet animals at
0, 1,7, 12, 18 and 24 months after start of diet. Lipoprotein profile of 1 HC (C) and 1 control (D) NHP
at T+24 months.

*#% Significantly different from TO p<0.001; HC and SD: high cholesterol and standard diet

Figure2: MRI carotid plaque area (A) and gadolinium signal intensity (SI) enhancement (B) of HC and
SD animals. MRI carotid plaque measurement showed thicker vessel wall in HC than SD animals (A,
p<0.001), but no difference in gadolinium SI measurement. Differential right/left enhancement was
observed in HC NHPs (C, arrow for the right enhanced carotid). ['*F]-FDG SUV of right and left carotid
of HC NHPs (D) showed no difference between HC and SD animals. For the same HC NHP as in C,
['®F]-FDG uptake was also observed in the right carotid (E, arrow). There was also no difference
between HC and SD animals for [''C]-PK 1195 TBR of carotid arteries (F), but right/left asymmetry was

also observed for the same HD animal as in C and E (G, arrow).

**%* Significantly different from SD p<0.001; HC and SD: high cholesterol and standard diet; TBR:

target-to-background ratio

Figure 3: Longitudinal ultrasound and systemic biomarkers. Ultrasound score in the carotid arteries

(A), hs-CRP (B) and plasma LDL-C level (C) at T+12 and T+18 months.

Figure 4: At-risk NHPs with downstream events. Histological evidences of coronary stenosis (A, C),
myocardial fibrosis (B) and severe and diffuse plaque (D) in 3 NHPs. These animals also presented
severe and diffuse plaque visible in the left carotid (E,H, J). MRI (F) showed a lacunar stroke in 1 of
these 2 animals, and PET/CT imaging showed high binding potential for [!!C]-PK11195 in the left
carotid (G). The left carotid of this NHP showed multifocal plaque on histology (I).

Figure 5: RNA expression of gene of vulnerable plaque markers in the carotid arteries enabled NHPs
to be divided into 3 groups according to cardiovascular risk (A). To be noted: the three animals with
downstream events were classified in the high cardiovascular risk group on the RNA expression analysis

alone. PCA analysis confirmed the 3 groups of animals (B).
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Figure 6: RNA expression of gene of vulnerable plaque markers in the carotid arteries confirmed the
pattern of significant co-expression of inflammatory and anti-inflammatory macrophages in both

symptomatic (A) and asymptomatic (B) inflammatory patients.

171



FIGURE 1

800+ = e P

700 T T —|— e

600 T

T 0.8-

—_
o
s
>
3
=
=
‘3 500 2
° ®
s 400 “ 0.6
-
5 T | a [
b o
T 300+ = N ax
° - 04 e
S a o
E 200 = I ==
8 10| EE=3 s
= 100
o —I
0 T T T T T T 0.0 T T T T T T
S N 43 3 J S S N 4 | a9 o
x x x N N ) BN x x N S
x x X!
& & < < & & BN A KX KX
'0; ;"zou | SAMPLE:  4-108 Quantimetrix LIPOPRINT “SY ST EM| 'o: 4.'39.4 SAMPLE: 4« U sSyYsTem
vioL D oL HDL vioL D oL HDL
c | e Jalrpzapegs]e 7 c | e Jalrpzagas]e 7
D e 256 “2 106 86 127 127 106 52 .7 e 72 94 90 112 8 »3
ohol (morar) 194 24 e @ 77 T1 W 2 B3 chot. [moran) 7 ° e n s =2
"-'-,-':- Ez=_= 7525 s7_ 30 © 0 1 =) "-,'_-';« W F=3 S 25 57 30 C =] W
Particle-Size (A) 277 201 245 230 Totel LOLC [mola]): 368 HI (¢ 130) Particle-Size (A) 277 260 Toted LOL < (ol @) 43 (< 130)
Meen LOL-Particle Size: 258 4A (TVFE B¢ 205) Totel Chol [sgidl): S62 MI (< 200) Mean LOL-Particle Size: 2703 A (TYPE A, 3268.0) Toted Chol_[mpial): 100 (< 200)

172



NS

Gd-enhanced T1 MRI

P

e w o w
- - o

ok ok

P<0.001

-

o 0
e o
o

0.201
0.15

0 .
wo) eate anbe|q

FIGURE 2

0.00

o S
('N’v) 3uo wesueyue |g anbejd

NS

H |

.|,|.|.|.|
© o v o ®w o
o o

& & ¢ &
n'y) seLiig[o,,] ¥aL

NS

e < &« o
(n'v) 9a4[4,) xewans

[**C]-PK11195 TEP

Y

[#F]-FDG TEP

Y

173



FIGURE 3

NS

T
N
800+

NS

n < © o~ - o
('n’v) a109s ppjoles punoseyin

NS

<

s o
& 9
(WpBw) 9-7a7

2001

sl

_\

1001

& 8 § ®

(wnaes jwibr) dyosy

o

174



FIGURE 4

175



FIGURE 5§

Metabolism/
imaging

Mo

Inflammatory
Mo

Anti-
inflammatory Mg

T celis

Color Key

HK1
TSPO
PPIF
cD14
coes
IL1b
TLR4
ccLz

Clec7a
IRF4
| cpie3

CD3e

&
S

o T

- o & 2
L) & & el
§ & & &

L7
Ca;

> (e
¥ ¥
£ ¢

'VC.,,Q

~
)
<

&
s

Low risk

Medium risk

High risk

176



FIGURE 6
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SUPPLEMENTAL DATA

Figure S1: Experimental study design over the 24 months.

Figure S2: MR and CT angiographies used for MR and PET/CT images registration for an accurate

placing of ROI for carotid wall measurement.

Figure S3: Right and left carotid individual values for MRI plaque surface (A, B), for gadolinium
plaque SI enhancement (C, D), for SUVmax ['*F]-FDG (E, F), [''C]-PK11195 (G, H) in HC and SD
animals, respectively. Though PET inflammation biomarkers and gadolinium MRI permeability
marker levels are not directly correlated, there is a corresponding left/right difference in HC animals
with the three imaging markers. In old SD animals, there was also elevated inflammation at the
measurement time-point, illustrating the importance of longitudinal inflammation evaluation to

discriminate between chronic atherosclerosis inflammation and acute unrelated inflammatory status.

Figure S4: Individual values for ultrasound carotid scores (A), hsCRP (B) and LDL-C levels (C) at
T+12 and T+18 months in HC animals. At-risk cholesterol profile (low HDL, high LDL-C), chronic
inflammation (hsCRP high or increasing) and lesion progression by US were found in 3 NHP (#1,
#9, #13).

Figure S5: Multi-site inflammation showing corresponding higher uptake in aortic arch and
hematopoietic organs (bone marrow and spleenin in an at-risk HC animal compared to a lower risk

SD subject.

Figure S6: RNA expression of genes of vulnerable plaque markers and correlation between them

in aortic arch (left) and abdominal aorta (right).

Figure S7: Adipose tissue imaging of white subcutaneuous (SAT) and visceral fat (VAT) (A-B),
and brown fat (BAT) (C-D). HC animals presented a higher ['*F]-FDG uptaje in visceral adipose
tissue and a lower in brown adipose tissue compared to SD. Correlations from gene analysis in
pericardic (E), periarterial (F) and visceral (G) adipose tissues showed positive correlations between

pro and anti-inflammatory markers.

Figure S8: Brain PET/CT imaging. Higher uptake of ['!C]-PK 11195 in the frontal cortex (A) and
limbic system (B) in HC animals. Lower metabolic activity (lower ['*F]-FDG uptake) in the limbic

system in HC animals (C).

Figure S9: RNA expression of genes of vulnerable plaque markers in the brain.
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FIGURE S3
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FIGURE S5

Carotids

Aorta

Bone marrow

Spleen

183



FIGURE S6
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FIGURE S7
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FIGURE S8
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FIGURE S9
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DISCUSSION

Atherosclerosis is a complex multifactorial pathology characterized by dyslipidemia and
low-grade inflammation leading to plaque formation. Over time, the plaques develop and can lead to
vessel lumen stenosis or rupture and form thrombus or emboli resulting in clinical outcomes such as
angina, myocardial infarction or stroke. Although atherosclerosis has been well studied during the last
decades using different animal models and clinical studies, the cerebrovascular impacts of this pathology
are still poorly investigated. Another issue is the lack of accurate biomarkers or combination of

biomarkers available for accurate individual risk stratification.

I demonstrated that regular exercise training was able to counteract peripheral and central
damaging effects of a HC diet in old ApoE” mice when food rations were controlled, and that MRI
enabled visualization of the cerebral damages (article n°1). My second study with longitudinal follow-
up based on insulin resistance and brain MR imaging showed that exercise training was no longer
beneficial in old ApoE-/- mice when fed with ad libitum HC diet (article n°2). HC consumption, when
unregulated or not counterbalanced by physical exercise, leads to cerebrovascular unit disorganization
characterized by BBB permeability and increased inflammatory activity in periventricular areas and in
the hippocampus (article n°1 and 2). Lastly, my work on non-human primates fed an atherogenic diet
emphasized the usefulness of multimodal imaging and a combination of biomarkers including not only
metabolic and inflammatory markers but also anti-inflammatory markers for individual stratification of
cardiovascular risk (article n°3). Overall, my work highlights the relevance of controlling calories
intakes to benefit the protective effects of exercise on the progression of atherosclerosis and its outcomes
as well as the significance of having a global view of the individual for an accurate stratification of CV

risk.

In the following section, I will discuss more precisely the results obtained during my PhD

on the lights of the literature and the perspectives opened by this work.

A. Protective effect of exercise depends on the control of HC diet consumption

The beneficial effects of exercise training are well-known and regular moderate intensity
exercise is recommended for patients with chronic cardiovascular or metabolic diseases, as well as in
all populations, for health preservation. Although some studies show improvement of patients’ health
status with exercise only (Hambrecht et al., 2000), others studies show that a controlled food intake

and/or a careful diet is necessary to obtain these beneficial effects (Bergouignan et al., 2013). Others
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publications have even shown that regular exercise can lead to plaque regression or to a reduction of

necrotic core area in at-risk patients (Kurose et al., 2016; Madssen et al., 2015).

1. Peripheral effects

In article n°1 we showed that exercise training had positive effects on systemic and
peripheral organs (aorta, heart and liver) in old ApoE” mice under controlled calorie intake. First,
exercise decreased cholesterol level and improved insulin sensitivity in old ApoE” mice. A decrease of
oxidative stress characterized by a decrease of oxidative products (lower AOPP in the heart, aorta and
liver and lower MDA in plasma), and an increase of antioxidant enzymes (increase of SOD in aorta,
heart, plasma and liver and of GPx in liver) was observed in mice that underwent regular voluntary
exercise training compared to sedentary ones. Similarly, a lower level of inflammatory cytokines (IL-
1B and TNFa) in aorta confirmed a decrease in inflammation in the exercised mice. Of note, although
old ApoE"" mice were obese at the beginning of the study due to their exposure to a HC diet beginning
at 8 weeks of age, no significant weight gain was observed in either trained or sedentary mice due to

the controlled calories intake.

In the context of ad libitum access to HC diet (article n°2), no beneficial effect of exercise
was observed. Indeed, plasmatic cholesterol levels were similarly high in exercised and sedentary mice,
as were oxidative stress and inflammation in the plasma and the aorta. A significant weight gain and a

worsening of insulin resistance were even noted in trained mice at the end of the study.

The only difference between these two studies is the free/controlled HC diet access. This
suggests that the differences observed on the impact of exercise in these two studies are related to
fat/cholesterol consumption. Indeed, although our HC diet was not the maximally-enriched in
cholesterol (0.5% when diet with 1.25% are available), it contained 21% fat mainly from pork lard
(saturated fatty acid) which is known to play a role in the development of insulin resistance (Putti et al.,
2015). Another suggestion is that, as mentioned in article n°2 and presented in several publications,
some individuals were recognized as “non-responders” to exercise (Bohm et al., 2016). However, other
recent studies highlighted the fact that maybe “non-responders” are just individuals who need more
exercise (i.e. larger amount of exercise and especially high intensity exercise) than the majority of people
to present the same beneficial effects of training (Ross et al., 2015). Indeed, they showed that after 24
weeks of high-amount + high-intensity resistance training, there were no non-responders, while there
was still 38% in the low-amount + low-intensity group. In a similar way, Bourdier et a/ showed that
high-intensity exercise reduced size of myocardial infarction (Bourdier et al., 2016). These are really
interesting findings, but I do not think that they can explain the more severe lesions found in our ApoE-

" mice under ad libitum HC diet compared to those of under controlled caloric intake. Indeed, ApoE™
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mice of both articles 1 and 2 ran similar distances per week, but showed completely opposite metabolic
effects. Furthermore, it would be a huge coincidence if all of the 7 trained mice of article n°2 were non-
responders. In my opinion, the main difference is that ad libitum-fed mice consumed a lot more
“lipotoxic” food than controlled ones, and this food behavior can be due to their regular exercising.
Indeed, if the mice in both articles exercised in a similar manner, the fact that those in article n°2 had

ad libitum access to high fat diet resulted in a blunting of positive metabolic effects of exercise.

2. Central effects

Exercise impacted the brain differently in our two studies. While exercise presented a
beneficial impact on cerebrovascular lesion with maintenance of BBB integrity and a low macrophage
accumulation in periventricular areas in old ApoE” mice fed a controlled ration of HC diet, in a context
of unregulated consumption of HC diet, exercise exhibited effects that are more deleterious. In article
n°2, we observed a significant increase of BBB leakage and macrophage accumulation in the brain in
exercised mice compared to sedentary mice. This discovery is strengthened by the longitudinal imaging
follow-up which enabled us to observe the changes between pre and post-training images on both

gadolinium-enhanced and T2/T2* sequences.

As shown recently, a daily ingestion of large amounts of high fat or HC diet in mice could
lead to a chronic increase of LPS concentration in the gut by the microbiota, which can then be
transferred to plasma, and to metabolic organs as well as to the brain (Mao et al., 2015). Therefore, this
nutritional condition could lead to both chronic low-grade metabolic inflammation and
neuroinflammation as showed in our old ApoE” mice under HC diet. In the brain, LPS is also known

to affect permeability of the BBB through the release of cytokines (Xaio et al., 2001).

In old ApoE”" mice consuming an atherogenic diet, inflammation and BBB leakage are
located in first-line responding regions in terms of BBB influx and immune cell recruitment, such as the
hippocampus and circumventricular organs (Fullerton et al., 2001; Schwartz and Baruch, 2014). These
specific areas have also been found to respond after a simple intraperitoneal LPS challenge (Mori et al.,
2014). The fact that these locations are impacted supports the hypothesis that the continuous ingestion
of HC diet by our obese mice increased LPS influx. These areas are also functionally involved in the
regulation of food intake and central response to specific endocrine signals, such as leptin and others
linked to obesity and metabolic diseases (Erion et al., 2014; Hsu and Kanoski, 2014; Kanoski et al.,
2015; Wang et al., 2015).

In old animals with advanced metabolic diseases, such as our ApoE”" mice, the central
beneficial effects of exercise appear to be impeded by the combined deleterious effects of the HC diet

and age. This would lead to a vicious circle of central inflammation, promoted by overfeeding of
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atherogenic diet and eventually a constant influx of LPS, in turn worsening the central endocrine

dysregulation of food intake.

It is now acknowledged that unhealthy diets can cause dysbiosis leading to gut
inflammation (Chistiakov et al., 2015) and numerous studies have shown that chronically inflamed gut
may upregulate barrier breakdown, LPS permeability, generation of proinflammatory cytokines,
systemic inflammation and neuroinflammation (Denes et al., 2010; Macrez et al., 2011). Indeed, a wide
range of inflammation-related proteins (LPS, CRP, and inflammatory cytokines) were found to be
increased in Alzheimer’s disease (AD) patients, promoting systemic and neuroinflammation (Zhang et
al., 2009). Numerous recent studies have pointed out the link between peripheral inflammation and
neuroinflammation and/or cognitive defects such as in AD, Parkinson’s disease (PD), and Crohn’s
disease (CD) (Denes et al., 2010; Herrera et al., 2015; van Langenberg, 2016). Atherosclerosis has a
significant impact on AD progression, and although the mechanisms are still unclear (Takeda et al.,
2008) we can hypothesize that circulating proinflammatory cytokines are part of the link between these
two pathologies. Interestingly, the hippocampus is the most cited brain region impacted by systemic

inflammation (Hall et al., 2013; Rodriguez et al., 2013).

These studies highlighted the different routes by which systemic inflammation can access
the brain, such as the vagus nerve, leaked BBB or by circumventricular organs (CVOs) (Daulatzai, 2014;
Roth et al., 2004). CVOs border the hippocampus and the cerebellum possibly explaining why these
regions are the first affected by the neuroinflammation induced by systemic inflammation. In our ApoE"
" mice, we can hypothesize that BBB leakage observed by MRI might be the result of the release of LPS
from HC diet absorption. Interestingly, the regions affected in our study are the hippocampus and the

periventricular areas (CVOs) giving evidence that the gut-brain axis plays a role in the lesions observed.

B. What imaging modality or combination of imaging modalities is the most relevant for CV

risk assessment?

In our non-human primate study, we used multimodal imaging to determine the
cardiovascular risk of each animal (article n°3). We demonstrated that ultrasound follow-up of multiple
vascular territories was useful and allowed the detection of plaque progression and the more accurate
stratification of animals according to the number of territories impacted and the progression or

regression of the plaque during the follow-up. This single observation, combined with LDL-C and
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hsCRP level variations during the same period was sufficient to distinguish the three animals exhibiting
evident downstream events at the time of sacrifice. As said above, ultrasound imaging was performed
on multiple arteries in order to evaluate the most relevant localizations for further examinations. Then,
MRI and molecular imaging was focused on the carotids as the most frequently lesioned territory in our
animals and also the most studied in human clinical studies. MRI provided morphologic information of
vessel wall volume and plaque area while PET/CT imaging with ['*F]-FDG and [''C]-PK11195 was
used to detect high metabolic activity and inflammation in the plaque, respectively. These two features
are important to take into account because they indicate plaque activity and enable the differentiation of
active and vulnerable plaques from silent plaques, which are less dangerous, even if they can be more

stenotic than others.

Ultrasound and especially carotid intima-media thickness (cIMT) and X-ray tomography
coronary calcium scores (CCS) have been considered to be standard measurements for CV risk
assessment in asymptomatic patient for decades (Beere et al., 1992; Naqvi and Lee, 2014; Spence, 2006)
and are even part of the AHA/ACC guidelines (Greenland et al., 2010). However, their usefulness is
still debated as some studies showed that it might not be accurate (Finn et al., 2010; Meershoek et al.,
2016). Indeed, cIMT and CCS are relevant measurements for early stage plaques, but showed no longer
correlation with advanced plaques, showing that cIMT and CCS do not provide any supplemental benefit
to prediction algorithms such as the Framingham Risk Score (Polak et al., 2011). Interestingly, if cIMT
was not correlated to the plaque severity as observed post-mortem in the study of the Johnsen’s team, it
was demonstrated that the location where the measure is performed is of major importance. Indeed,
cIMT of the common carotid showed no association with cardiovascular event (CVE) occurrence while

cIMT of the carotid bulb showed a positive association (Johnsen et al., 2007).

It is worth noting that the fact that plaques extend faster in length along the carotid than in
thickness (Barnett et al., 1997) might explain the non-accuracy of cIMT measurements. Moreover, it is
now known that the real danger in the plaque is its constitution (mainly lipidic, fibrotic, calcified,
vascularized, etc) more than its thickness (Naghavi, 2003). Thus ultrasound using microbubbles also is
an interesting modality especially for treatment follow-up as some agents are very sensitive and able to
detect changes in endothelial phenotype as increase of adhesion molecules in endothelial cell surface

(Khanicheh et al., 2013).

More importantly, we found that ['"*F]-FDG and [''C]-PK11195 uptake were positively
correlated in high cholesterol animals but negatively in the standard diet animals, suggesting that
atherosclerosis pathology induced the uptake of these two markers in similar ways (article n°3). On the

contrary, standard diet animals showed high uptake of ['®F]-FDG and low uptake of [!!C]-PK 11195 or
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the inverse thus demonstrating the relevance of the dual tracer imaging for cardiovascular risk

assessment.

As interesting as our imaging finding in this NHP study are, one important limitation is the
fact that PET/CT and MRI imaging were only performed once, respectively at T+18 and T+24 months,
thus providing incomplete information regarding lesion evolutivity. Indeed gene analysis is
representative of the physiopathologic state of the animals at the end time point. Thus, ["*F]-FDG and
[''C]-PK11195 uptake at T+24 months would have enabled a direct comparison to gene expression and
MRI findings. In the same way, a combined PET/ MRI examination would have been useful to analyze
the progression of the inflammation in the studied vessels and to better situate the onset of the lacunar

stroke observed in HC#9.

C. CV risk stratification: are M2 markers signals of healing or alarm?

In our article n°3, we analyzed M2 markers expression in the carotid and aortic arch in
non-human primates under atherogenic diet or standard diet. We showed that M1 markers were more
highly expressed in animals presenting large and severe plaques as well as downstream events (i.e.
myocardial fibrosis or stroke), confirming the literature. Strikingly, we demonstrated that M2 markers
(IL-1ra, CCR2, IL-10, Dectin-1 (CLec7a), IRF4 and CD163) were also highly expressed in these same
animals. Indeed, in our study, mRNA expression analysis in the carotids grouped together animals
presenting the most expressed M1 and M2 markers and these three NHPs are the ones that exhibited
myocardial fibrosis and lacunar stroke at the autopsy, confirming the classification based on mRNA
expression. These results are challenging the M1/M2 dichotomy paradigm that is largely accepted with
M1 being predominant in vulnerable plaque and/or in symptomatic patients and M2 mostly in
asymptomatic patients/stable plaque (de Gaetano et al., 2016; Mosser and Edwards, 2008). Thus it
confirms the observations of several studies exhibiting that human macrophages subtype are extremely
plastic and dynamic and are largely more complex than the M1/M2 dichotomy (Chinetti-Gbaguidi et
al., 2015; van Dijk et al., 2016).

In their study, van Dijk et al, demonstrated in an abdominal aorta tissue bank that multiplex
staining for M1/M2 macrophages failed to show a significant predominance of M1 macrophages in the
foam cell-rich areas in humans’ abdominal aorta plaques. Moreover, in this study, ~20 to 30% of
macrophages from plaque at early to advanced stages are double positive for both M1 and M2 markers,
challenging even more the paradigm of a clear M1 to M2 dichotomy. This is consistent with our results
in article n°3 showing that animals with high M2 markers expression also have high expression of M1

markers. Furthermore, in our NHP study, animals for which M1 and M2 macrophage marker were most
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expressed were those presenting downstream events, suggesting that in late advanced stages of
atherosclerosis or rupture-prone plaque, M2 markers are more likely a signal of danger than a sign of

healing in progress as we used to see them.

Although macrophages’ plasticity has been well documented in vitro as in vivo strongly
suggesting a functional adaptivity of these cells (Shnyra et al., 1998; Stout et al., 2005), this might not
be systematic and may depend not only of the microenvironment but also of the state of differentiation
of the macrophage (Bouhlel et al., 2007; Gleissner et al., 2010). Nonetheless, if M2 macrophages may
exhibit mostly anti-atherogenic functions, they still have some properties that may promote plaque
progression such as increased sensitivity to oxLDL, which may lead to enlargement of the lipidic core.
Furthermore, this plasticity can even lead to undesired functions and switch healing-prone macrophages

to deleterious-prone ones without completely changing their phenotype.

D. Is combination of inflammatory with anti-inflammatory biomarker the answer for accurate

individual stratification in atherosclerosis-induced CV risk?

As stated above, in our non-human primate study (article n°3), we observed an interesting
correlation in the carotids between the mRNA expression of M1 (mainly TLR4, MCP-1, IL-6, IL-1p)
and M2 (CD163, IRF4, IL-1ra, CLec7a) markers, with an increased expression in the most affected
animals. It is worth noting that these markers were also positively correlated to metabolic (HK1),
macrophage activation (TSPO) (both of them being related to the PET/CT imaging tracers used in this
study) and lymphocyte (CD3¢) markers. Indeed, metabolic and inflammatory activity of cells contained
in, or in the neighborhood of the plaque are essential features to take into account, not to mention
lymphocyte infiltration into the plaque, which is a known marker of vulnerable/rupture-prone plaque in

humans (van Dijk et al., 2015; Sakakura et al., 2013).

Based on these markers, gene analysis enabled to divide animals in three groups, the ones
presenting the higher expression of these markers being the same as those exhibiting severe plaques,
myocardial fibrosis, and for one of them even a lacunar stroke, suggesting that this combination of
tissular markers is relevant for an individual stratification of cardiovascular risk. Furthermore, these
three animals (called “at-risk”) highlighted by the genomic analysis are those presenting an increase of
their ultrasound score, i.e. presenting an aggravation and/or a development of their plaques during the 6
months between the two ultrasound sessions confirming the recent highlightening of the high value of
combining molecular tools (transcriptomics, proteomics and lipidomics) with imaging techniques to

improve the individual CV risk stratification (Calcagno et al., 2016).

195



Interestingly, in the aortic arch, the classification of the animals is slightly different, but in
fine, all animals grouped in the “medium” and “high-risk” groups showed up. The NHP HC#9 went
from the high-risk group in the carotids to medium risk group in the aortic arch, confirming that not all

plaques represent the same CV risk in one subject.

In at-risk animals, a high TSPO expression was observed in the carotids, which seems to
be correlated with TLR4 and with macrophages (CD68). In the brain, it appears to be different, it is not
correlated with macrophages (CD68 is negatively correlated to IL1p, and positively to M2 markers) but
still with TLR4 and CD3e. However, in this study, only the frontal part of the brain was used for gene
expression analysis while on images we can see that the area presenting a lacunar stroke is close to the
ventricles and more in a ventrotemporal localization, which might be part of the differences in gene

expression between the carotid and the brain (article n°3).

Nonetheless, we had to notice that in our NHPs, as well as in our ApoE”" mice, the brain regions
exhibiting a high [''C]-PK11195 uptake are periventricular areas, related to limbic system
(hippocampus, amygdala, etc) and circumventricular organs (articles n°1, 2 and 3). Indeed, in our
ApoE™”" mice studies, USPIOs MR imaging showed the same most affected regions, confirming the
deleterious impact of high cholesterol diet on cerebrovascular units and circumventricular organs. Mice
are a well-used animal model for atherosclerosis research thanks to their technical advantages (small
size, easy breeding) and mostly because of the abundance of genetic modifications available enabling
mechanistic studies and so importance advances in comprehension of atherosclerosis physiopathology
(Badaut et al., 2012; Millon et al., 2014). However, translation from mice to humans is really difficult
as showed by an abundant literature displaying large amounts of evidences of negative results obtained
in clinical studies on neuroprotection despite a large body of evidence in mouse models of stroke (Cho
et al., 2013; Kohler et al., 2013; Nighoghossian et al., 2015). On the other hand, although non-human
primates’ studies are performed on a small animal number and do not enable such genetic modifications
as mice, they present such physiological and even pathophysiological similarities with humans.
Moreover, their large size allows the use of the same imaging methods that they can be considered as
an accurate and relevant animal model for phase II and III trial in such complex context as

atherosclerosis and its outcomes.
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CONCLUSION AND PERSPECTIVES

We showed in our article n°1 that low-intensity exercise effectively protects the brain from
high fat diet-induced cerebrovascular lesions and for the first time in our second study on ApoE-/- mice
(article n°2) that the non-restricted consumption of an atherogenic diet in old ApoE”" mice blunts these
central beneficial effects, leading to inflammation and BBB leakage in areas that are both involved in
food intake regulation and immune cell recruitment. This work suggest that exercise-induced
modulation depends on the amount of food intake. Indeed, when food intake was regulated, exercise
showed a positive modulation of atherosclerosis (decrease of inflammation, oxidative stress, and plaque
progression), while exercise induced deleterious effects when associated with unregulated food intake.
These results emphasizes the need for further gut-brain axis studies, including diet and exercise
combined with neuroimaging biomarkers of inflammation and BBB permeability in order to evaluate

the neuro-immune interactions and elucidate the central effect of the interventions.

The first thing to note on our article n°3 is that non-human primates under atherogenic diet
is a relevant model of vulnerable plaque. Our results suggest that for an accurate stratification of the
individual cardiovascular risk, it would be useful to perform an ultrasound follow-up of multiple arterial
territories to observe global plaque progression, and of systemic inflammation marker such as hsCRP
combined with imaging evaluation of M1 and M2 markers expression in the plaque. To note that in non-
human primates as well as in humans, increased expression of both M1 and M2 markers in the plaque
of at-risk subjects, challenges the M1/M2 paradigm. Thus, further studies on the macrophage phenotype

in vulnerable atherosclerotic plaque are needed.

To summarize, atherosclerosis risk factors induce a local vascular inflammation, promoting
the development of the plaque, which results in an increase of the local inflammation. This spreads into
the systemic circulation leading to a systemic inflammation, which induces chronic cerebrovascular
inflammation in the periventricular areas and favors the occurrence of ischemic accidents such as TIA
and stroke that contribute to the systemic inflammation leading to plaque progression. This vicious circle
between local, systemic and cerebrovascular inflammation and their component is still unexplained.
Imaging modalities enable the visualization and the study of both systemic circulation and brain and
specific imaging markers can be used to characterize the plaques (e.g. morphology, activity, and
metabolism) (Figure 25). Further studies are needed to reveal the role of each actors of the vicious

circle.

To go further, analysis of peripheral blood mononuclear cells (PBMCs) is in progress in

our NHP model, focused on their function and metabolic pathways involved in it (glycolytic, oxidative,
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mitochondrial markers) and their translational potential for CV risk stratification in atherosclerosis

animals and in NHP acute stroke model.

Human’s analysis of differences in M1/M2 and metabolic markers expression in
symptomatic and asymptomatic human carotids is ongoing, with the objective to make the link with the

impact of oxidative stress and sedentary (and even ultra-sedentary) behavior on these markers.

In parallel, a NHP study between a phase II and phase Il trial of neuroprotective strategies
targeting mitochondria with PET/MRI and PBMC longitudinal evaluation is in progress, as well as
clinical studies using PET/MRI in stroke. A better selection of inclusion and exclusion criteria can be
performed using translational imaging biomarkers (PET/MRI) and translational results from NHPs

models (TSPO expression via PET imaging and BBB functional PET/MR in the cerebro-vasculature).
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ADDITIONAL MATERIAL AND METHODS

Primers design and validation for Non-Human Primates tissues genomic analysis:

Primers design:

Collect sequence of c¢DNA of the gene of interest on NCBI gene
(http://www.ncbi.nlm.nih.gov/gene) for the studied species (here, Macaca fascicularis). Find the NM
(or XM sequence when the gene sequence is only predicted) sequence in the section “mRNA and
protein” and collect the FASTA sequence for all variants. Then, using Clustal Omega software, align

the FASTA sequences.

In NCBI gene, search again the gene of interest and collect the FASTA sequence in the section
“Genomic regions, transcripts and products” to obtain the genome sequence. Then go to Blast
(http://blast.ncbi.nlm.nih.gov/Blast.cgi): Nucleotide blast > tick the case “align two (or more)
sequences” > past the cDNA sequence in the top box and the genome sequence in the bottom box >
click on “Blast” > in the result file, choose “query start position” to obtain the intron position. Then,

mark the intron position on the aligned sequences.
The primer had to:

- Be composed for about 20 nucleotides

- Have an amplicon size comprises between 100 and 200 nucleotides
- Have forward and reverse primers located in separate exons

- Have a 3’ sequence finishing witha C ora G

- Do not count more than 3 G/C in the 5 last nucleotides

- Avoid repetition of 3 same nucleotides

- Contain minimum 9G/C and maximum 12 in their whole sequence.

Once, primer sequence was chosen, test it using Amplifix software. If primers match with the gene of

interest sequence, go to Blast again for test their species and gene specificity.

Validation of primers:

Perform a qPCR at 60°C on one sample of each tissue of interest using the primers designed
for each gene. Check on the melt curve of the qPCR, if only one peak is appearent, keep the qPCR

samples for further validation of amplicon size. If the melt present a second peak, perform a qPCR at
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62°C and see if the melt is ok. If the melt is still not neat or if it presents several peaks, new primers had

to be designed.

Once primers were validated by qPCR assay, test the size of the amplicon obtained by the
gPCR. There are two ways to do it: perform migration of amplicon on an agarose gel or use
QIAxcel®(QIAGEN). For validate the primers, the test had to present one single peak and the amplicon

size had to be similar of the expected size £+ 10pb.
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Main results:

No trend related to dose, sex or evaluation day was observed for both clearance, volume of
distribution or T, values of Gd-nanoparticles (Gd-NPs) and no evidence of an intravenous toxicity

was noted.

The highest administered dose — 450mg/kg — could thus be considered as the non-observed effect level

(NOEL) dose.

Control animals: Gd-NPs exhibited an excellent angiographic T1-enhancement at first pass and bolus

injected was well tolerated.

Atherosclerotic animals: Gd-NPs contrast enhancement was similar to what was observed in the
control animals excepted for the liver which showed a highest enhancement. Bolus injected was well

tolerated.

Carotid plaque imaging: both Gd-chelates and Gd-NPs allowed good carotid wall delineation on
condition that there were advanced plaques and Gd-NPs exhibits similar imaging properties than
Gd-chelates.

In a context of well-established atherosclerosis, Gd-NPs enable a better identification of vulnerable

plaques than Gd-chelates.

Furthermore, atherosclerotic animals showed a significant retention of Gd-NPs compared to control

animals that might be proportional with the degree of advancement of the pathology.
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In this article, we report the safety evaluation of gadolinium-based nanoparticles in nonhuman primates
. [NHP)in the context of magnetic resonance imaging (MRI) studies in atherosclerosis bearing animals

- and healthy controls. In healthy NHF, the pharmacokinetics and toxicity profiles demonstrated the

. absence of dose, time, and sex-effects, as well as a suitable tolerance of intravenous administration of

: the nanoparticles. We investigated their imaging properties for arterial plaque imaging in a standard

. dietor a high cholesterol diet MHF, and compared their characteristics with clinically applied Gd-

! chelate_This preliminary investigation reports the efficient and safe imaging of atherosderotic plagues.

: Atherosclerosis is one of the main cardiovascular disorders resulting from an indtial lipid accumulation in the
¢ artery wall with im situ lesion development as well as an unresolved chronic and complex inflammatory process'.
: This chronic and evolutive injury of the arterial wall may abruptly lead to the obstruction of the vessel itself by
: diot formation, or may lead to acute stroke following plaque rupture with cerebral emboli, which often leads to
. disastrous consequences®. Early imaging and monitoring of atherosclerosis and high-risk plague is challeng-
: ing as the lesion is non-obstructive and a precise non-invasive diagnosis might require the gathering of several
: parameters. As recent novel strategies are being developed for accurate detection, plague burden can be measured
\ using ultrasound exams or computed tomography (CT) for calcium scoring whereas macrophage infiltration and
: microcalcification can be monitored using & PET/CT or PET/MRI combination®*. In parallel, high-resolution
. MRI allows for the depiction of angiogenesis, intraplague hemorrhage, observation of necrotic core, or positive
¢ remodeling™*. MRI can also be considered as the reference technigue for vessel wall imaging and plague char-
. acterization, especially for the carotid and peripheral arteries imaging®. A standard examination combines dif-
. ferent high-resolution carotid T1-weighted and proton density-weighted, and a post-contrast agent T1-weighted
¢ acquisition®®_ For a better characterization of plaque microvasculature, dynamic contrast-enhanced (DCE) MRI
* is considered very helpful to identify leaky neovessels, a hallmark of plague destahilization™.

: Different contrast agents containing gadolinium in the chelated E-rm are used for T1-weighted acquisitions.
. Commercially available gadoliniem (Gd) chelates are molecular compounds containing one single Gd atom.
: Mewvertheless, clustering several Gd chelates will enhance the relaxivity of the probe and thus, the related contrast
. imaging properties''2. In this context, we used Gd-based nanoparticles for MRI purposes. Nanoparticles might
¢ allow the detection of atherosdlernsis plagues®™ or macrophages in inflammatory atherosderosis™*. We previously
: reported the efficient renal elimination (= 50% of the injected dose at 74min post injection)' and the safety of
Gg?rbased nanopartides in rodents™ ¥, especially regarding the clearance mechanism'®. Herein, we evaluated the
: gafety and pharmacokinetics of Gd-based nanopartides in healthy non-human primates (NHP). To further inves-
. tigate the contrast potential, we reported their imaging properties in healthy and high cholesterol (HC) diet NHP
: and compared their characteristics to the vessel wall imaging with commercially available molecular Gd-chelate.

: *Univ Lyon, Institut Lumnigre Matiere, UMRS306, Universite Claude Bernard Lyon 1, CHRS, Institut Lumisre Matiare,
: F-69622 Villeurbanne, France. ‘Univ Lyon, CARMEN Laboratory, INSERM IMSA, INRA, Universite Claude Bernard
! Lyon 1, Lyon, France. *CERMEP, Imagerie du vivant, Bron 69677, France. *Cynbiose SAS, Marcy-L'Etoile, France.
¢ "These authors contributed equally to this work. Comespondence and requests for materalks should be addressed to
5 L. {email- hucie_sancey@univ-grenoble-alpes fr)
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Lol tolerance Respiratory rate Serum dinical chemistry
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Food comsumption Terminal parameters
Ophtalmology KecropsyHistnPathalogy

Table 1. List of the investigations performed after 2-repeated I'V injection of Gd-NPs in cynomolgus
monkey. "Includes heart rate, QRS complex duration, PR intervals, QT intervals. "Includes diastole and systole.
No differences were reported at any dose. Details can be found in the Supplementary information Table 51.

Results

Manoparticles characteristics.  Gd-NPs were produced using reported methods, in laboratory and GMP
environment'*™. This nanoparticle regroups gadnlh:ljmn{ﬁd,}-d}alaling DOTAGA (1,4,7,10-tetra-azacyclodode-
cane- | -glutaric anhydride-4,7,10-triacetic acid) coupled to a polysiloxane network. The hydrodynamic diameter
of Gd-MPs is 3.5 4+ | nm for 3 mass of = 10kDa. Du.elulheprmmenfﬁd,lhemnupamdepmdesposlme
enhancement on T1-weighted MR images and radiosensitizing properties. Its imaging properties are investigated
in addition to its safety profile in WNHP under normal or high cholesterol (HC) diet.

Toxicity and pharmacokinetic profile in nonhuman primates. Regulatory toxicity and pharmacoki-
netics were conducted in compliance with good laboratory practices (GLP), and were evaluated in nonhuman
cynomolgus monkey primates at 3 different Gd-NP doses (Jow;, 150mg /g body weight (bow.); moderate, 300 mgikg
bow; andh:gh-lﬂ]mg.fkgb w.), during two- ted injections protocol, ie. once a week during two weeks.
Dunrg;:]uspermd.nucu.rd:mrasculu or clinical signs were observed, neither in males nor females, at any dose
(Table 1

Two weeks after the last injection, all vital organs and injection sites were sampled for histological investi-
gation. In all the tissues, no microscopic changes were evidenced after two administrations of Gd-MPs at a kigh
dnse of 450 mg/kg, compared to the control group (Fig. 1). In particular, the kidneys, which are the main organs
of elimination, were similar to control kidneys, without any sign of vacuolation.

Plasma kinetics of Gd-NPs were evaluated for the treated s after each administration, from 3 animals/
sex/group, and are reported in Table 2. El.ouds.muple-smremﬂgrﬁ at 5 and 30 minutes, and 1, 2, &, and 24 hours
post-administration to determine the ticles' pharmacokinetics. Following the intravenous administration
of Gd-NPs, the exposure in male and female cynomolgus monkeys increased in a dose-proportional manner for
both sexes on evaluation days. The exposure on day 7 was similar to that on day 0. The accumulation ratios
ranged from 0.848 to 1.04 at all dose levels. On day 0, mean clearance as well as the distribution volume were bow
and ranged from 0.111 and 0.187 L/h/kg and 0.176 and 0314 L/kg, respectively. The mean blood half-life (T ;)
ranged from 2.09 to 3.57 hours. In general, there were no trends observed related to dose, sex, or evaluation days
for clearance, volume of distribution, or T, values. Under these study conditions, two intravenous sdministra-
tioms at one-week interval of Gd-NPs at doses of 150, 300, and 450 mg/'kg to the cynomolgus monkey were not
associated with any overt evidence of intravenous toxicity. Consequently, the high dose (450 mg/kg/ sdministra-
tion) could be considered to be the WOEL (non observed effect level). This dose corresponds to 2 mean ares under
the curve determined between O to 24h (AUC, ;4,) normalized to 2 unit dose (1 mg/kg bow) of 9.00/7 60 mg.h/ml
(Day 0¥Day 7) in males and of 6 4246 32 mg h/ml. (Day ¥ Day 7) in females.

Imaging properties of the Gd-MFs in control (Cont) healthy monkeys. The T1-MRI properties
of Gd-MPs were first studied in healthy monkeys to observe the general biodistribution of the particles. After
the intravenous injection of Gd-MNPs, the main vascular network was clearly identified, and the main organs, i.e.
heart, liver, and kidneys. One should note that there was a marked enhancement of blood vessels at first-pass
(Fig. 2, see also Figure 51) and the bolus injection was very well tolerated without any changes in hemodynamic,
cardiac, or ventilation parameters. Within the first 30 minutes, most of the nanoparticles were eliminated by the
kidney route, as observed in Fig. 2A (last panel). Low T1 contrast was persistent in the muscles, liver, and kid-
neys. The contrast enhancement indicated a rapid renal washout of the nanoparticles: the T1 contrast enhance-
ment strongly increased in the ureters within the first 150 seconds, before it was drastically reduced during the
next minute (Fig. 2B). Moreover, at 35min post-administration, the T1 contrast of the ureters was once more
very intense, indicating a continuous washout of Gd-MNPs. The main MRI findings were in accordance with the
pharmacokinetics’ profiles, which indicated a Gd-MNFs blood half-life of =2 hours at the administrated dose (i.e
200 mg/kg for MRI investigations).

Im agmg properties of Gd-NPs in old animals under a high cholesterol (HC) diet for 24 months.

arly to the investigation, MRI was performed on old monkeys under a 24-months HC diet (referred
a.sHC“ ammaﬁ“g_u;i} The contrast enhancements were similar to healthy animals except for the liver, which

indicated a highest enhancement (Fig. 3B). Similar to healthy animals, the Gd-MPs were well tolerated without
amy changes in hemodynamic, cardiac or ventilation parameters.

Contrast properties for vulnerable carotid plague.  The contrast properties of Gd-WNPs were evaluated
for vulnerable carotid plaques and compared to the ones of Gd-DOTA. In this pathology, unspecific acoumulation
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Figure 1. Examples of histological sections of vital organs and injection site of the control and the high-
dose group. Hematoxylin and eosin staining revealed similar microscopic profiles when comparing control and
hxd'n donegmupsunples. in both males and females.
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Table2. Mean pharmacokinetic parameters in male and female

monkeys following two
Mmmudmhhhlﬂmsd’Gd—NPl.M_Mde;FFamk;AUCAmmdedwmn&;DN Dose-Normalized;
Cpe: Maximum plasma concentration; T%: blood half-life; Cl: Clearance; V.: Volume of distribution at the steady
state. Units for DN AUC, 4, is (mg*h/mL)/{mg/kg) and units for DN C_,,, is (mg/mL)/{mg/kg). Acc. Ratio =
Accumulation Ratio. The values were determined at 5 and 30 minutes, 1, 2.6.andz4hmmpost-admnumnon.

of contrast agent may occur due to the leaky wall’s endothelial layer and the inflammation, which recruits
highly active macrophages®’. In our condition, the 24-months HC diet induced moderate and more advanced
atherosclerosis, as indicated by the ultrasound and biochemical parameters recorded from the treated animals
(Sq)plemmtu'ylnformabon'l‘dalesz) As indicated by pre-contrast T1 MRI (Fig. 4), the carotid walls were not
observable before the administration of any contrast agent. In absence of vulnerable plague, both Gd-DOTA and
Gd-NPs allowed very minimal carotid wall delineation. In presence of vulnerable plaque, both Gd-DOTA and
Gd-NPs delineated the carotid wall with similar contrast ies. Gd-NPs appeared to have similar imaging
properties as compared to Gd-DOTA. In the case of a well-established pathology (Fig. 4, HC*+), the vulnerable
plaques were better identified by Gd-NPs, in comparison to Gd-DOTA. The T1-contrast obtained after Gd-NPs
was measured with time and the elimination kinetics of Gd-NPs were determined (Fig. 5). In healthy animals,
Gd-NPs were rapidly washed out, whereas a significant retention was observed in HC animals. Gd-NPs retention
m:ghtbepropomonalmththemgoﬁl!paﬂmlogy as the highest retention was observed for the most devel-

oped pathology (right carotid of HC*~ animal).

Discussion —Condusion

The use of nanoparticles as a contrast imaging agent requires their specific distribution in the body after intra-
venous injection, a rapid clearance from the body without undesired accumulation, a safe profile, and good
contrast properties. Gd-NPs present the above mentioned properties with a fine distribution within the entire
body starting at the first heartbeats following the intravenous administration, as well as a fast renal clearance as
demonstrated with healthy NHP. After high-dose repeated IV administration, the particles were well tolerated,
without modification of the antemortem and post-mortem parameters as compared to untreated animals. In
particular, H&S staining indicated a safe renal elimination of Gd-NPs. Transient and minimal vacuolations of the
proximal convoluted tubules was observed in rodents as previously reported’®'?, but the NHP did not present
such transient alteration for similar equivalent doses, indicating a strong tolerance and safe elimination in NHP.
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Figure 2. MRI first-pass kinetics of Gd-NPs in different tissues (liver, kidneys’ cortex and medulla, skin,
and lungs) in a male control subject with a slow injection. (A) During the first minutes of the acquisition,
Gd-NPs were administrated intravenously, allowing a clear observation of the blood network and main organs,
such as the heart, liver, and kidneys, i.e. an excellent T1 enhancement for angiographic studies and fast renal
excretion. Then, at 35 minutes, the kidneys and ureters were mainly observed, demonstrating the washout of
the nanoparticles. (B) The contrast enhancement was determined on the main organs. The highest contrast
enhancements were observed for the kidneys, liver, and ureters.
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Figure 3. MRI first-pass kinetics of Gd-NPs in different tissues (liver, kidneys’ cortex and medulla, lungs)
in a female HC subject with a slow injection. (A) Similar to healthy animals, Gd-NPs were distributed in the
vascular network and the main organs, and rapidly reached the kidneys. (B) The contrast enhancements were

determined for the kidneys, livers, and lungs.
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HC* PreGd

Figure 4. High-resolution vessel wall carotid MR1 in control (upper panel) and HC animals (middle and
lower panel). Enlarged views of the carotids (right panels) with pre-contrast T1 images (A}, post-Gd-DOTA (B)
and post-Gd-NPs (C) respectively. In HC animals, post-contrast enhancement of the vessel wall is characteristic
of atherosclerotic lesions with inflammation and increased vessel wall permeability. Arrows: vessel wall.
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Figure 5. MRI characteristics of the left and right carotids after intravenous administrations of Gd-NPs.
The uptake of Gd-NPs in the vulnerable carotid plague was followed as function of time for signal intensity
(A}, and contrast enhancement (B). The calculated slopes of the washout were determined for Gd-DOTA (C)
and Gd-NPs (). They were significantly different for vulnerable carotid plaques versus healthy carotids. L: left.
R-right. HC: High cholesterol. For HC+ animal, Gd-DMOTA values were not determined due to movements
during the acquisition_ * P 0,05, **P< (.01 HC versus healthy MHP %p < 0.05 for HC* left versus right carotid.

Mean blood half-life measured in NHP was very similar to the one measured in rats for equivalent doses, with
2.35 hours versus 2.31 hours, respectively®. Altogether, the safety profile indicated a NOEL of 450 mg/kg/admin-
istration, which corresponds to 145 mp/kg/administration for Humans™".

In contrast to intravascular ultrasound which accurately image the vessel wall at high resolution™, MRI is
noninvasive. Combined to a T1-weighted contrast agent, MRI also allows to assess the morphological plague
characteristics. In particular, the local lesion and its evolution could be momitored using a carotid MRI protocol,
considering the vessel wall permeability on gadolinium-enhanced MR, Under high cholesterol diet, old NHP
had at-risk plasmatic profile (high LDL/HIL. ratio, high triglycerides (see Table 53) and high hsCRP levels) and

atherosclerosis lesions similar to human plaques at the same vascular sites®. As shown by MRI, our
animals had carotid plaques with the same advanced and vulnerable characteristics as in patients.

For similar contrast properties's®, Gd-DOTA is a cyclic ionic chelate, and Gd-NPs possess DOTA-derivatives.
Both compounds possess very strong complexation for Gd (logg, ;= 25.58 for Gd-DOTA, and logyy,= 25.58
for Gd-MPs), preventing the release of free Gd®. Safe administration was observed for old atherosclerosis NHE
Imaging of the vessel’s wall in this pathologic animal was demonstrated using both chelates and chelates bound to
MPs. The signal measured in the vessel wall was correlated to the plague development for Gd-NPs investigations;
the former agent 2 longer circulation time as compared to Gd-DMOTA that is rapidly cleared from the
bﬂd}'nﬁdumﬁfnmred its retention in the plague (132 min vs. 6.8 min in mice, respectively)'”. Therefore,
this agent has more suitable properties to quantify neovessels leakiness using DCE-MRL, another important fumnc-
tional parameters to define vulnerable plaques'™. Thanks to the high safety of Gd-NPs, this could be studied
longitudinally in the near future using kinetic modeling in order to assess the vessel's wall permeability over time
and correlate it with the plague’s evolution and downstream clinical events.
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MRI data treatment.  MRI data analysis was performed using the Inveon® Research Workplace £.1 software
(Siemens, Erlangen, Germany). The regions of interest were drawn in the carotid vessel wall and in the arterys
lumen to obtain the dynamic contrast infermation during the contrast agent first-pass, and in the different organs
of interest for the contrast distribution at a steady state.

Statistical analysis. Statistical analysis was performed using unpaired T-Test (Excel software] for the vul-
nerable plague contrast.
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SUPPLEMENTAL DATA

Table 51 In vive safery pharmacelogy smdies in Cynomelzus Monkeys: detailed data on
Blood Pressure, Heart Rare, and ECG before and after meament of Gd-NPs

Before reatment (Dav -9)

Elecoocardiogram Blood pressure Respiratory

ate
Group Heart Rate QRS complex PR interval QT intervals Diastolic Swsrolic

(beats/min)  duration (ms) (ms) {ms) (mmHg)  (mm Hg)

/min)

M-0 2467x133 T6.T7x33 60358 1723x40 89x122 1637204 49036
M-150 2367=133 T8T7=x51 343223 1743196 102x835 1793 +9 4E0x26
M-300 2333208 T7.7x40 38017 172017 933zx61 1363=133 413129
M-430 2667=133 T66=x63 51351 1653x68 B8BT7x31 147226 483:19
F0 2433208 TEO=17 56735 17537x51 9472102 1593=136 560x352
F-150 2233321 737=x51 61017 1777x136 99714 168327 32035
F-300 230=10 T43=51 390335 17T77x68 100325 1707=136 553+67

F-430 240=10 810=35 35775 1923x68 97x101 11145 497+47

Before reatment (Dav -9)

Elecoocardiogram Blood pressure Respiratory
Group Heart Rate (RG complez PR imterval QT miervals  Diastolic | Systolic e
(beats/min)  duration (ms) (ms) {ms) (mmHg)  (mmHg)  (breaths
/o)

MO 2267=513 84375 620=115 1900288 100=3.3 1773=64 467116
M-150 25010 T1.7=50 370=00 1757180 102.7x234 1857=36.1 53078
M-300 230173 T90=zx17 643=75 1857x=51 903121 158256 47052
M-430 260173 Tl3z35l 353=40 1800=x=130 97x135 1803=11 44010
F-0 263358 T30=00 510=85 1677108 96103 1633204 47755
F-150 2233=252 T90=z17 633=58 18l3x51 10l=121 172x13 4871235
F-300 2633=153 T5.7=23 MT=40 1747137 97781 1747=133 46342

F450 2467252 To00=17 587=98 1890185 102757 1827=7 T4
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Example of MR imaging in NHP:

Figure S1. Example of MR Imaging of Gd-NPs in healthy NHP. 1: Main vascular network; 2: Heart;

3: Liver; 4: Kidneys; 5: Lungs; 6: Ureters.

Atherosclerosis characteristics:

The two old HC NHP included in this study (respectively 16 and 17 years cld) had increased total

cholesterol (respectively, 402 and 386 mg/dL compared to 100 mg/dL in normal NHP), and high LDL
220 and 258 mg/dL compared to 50 mg/dL in normal NHP). The two uloasonography exams showed

evolving atherosclerosis as at least two vascular beds (iliac arteries and carotids) showed lesion

progression between 12 and 18 months. At the last tme peint, the inflammatory plasma profiles (high
TWFalpha, respectively 125 and 1537 pg/ml versus 38 pp/ml in normal NHP) were in agreement with

increased cytokines in the heart, aortic arch, and carotids (increased IL1-beta and IL6 producton, >0.2
pemg and =1 ppmg of proteins respectively), further assessed by increased inflammatory

macrophage gene expressions in the same fssues.
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Table 52 Main arherosclerosis characreristics of the NHP {HC+ wirth moderare carond plague

evolution berween the wo ulmasound exams, HC more advanced lesions)

Total hsCEP
Ape High LDL TMFalpha IL production
NHP cholesterol (ug/mlL of
(yo) (ma/dL) (pg/ml)  (pg/mg of proteins)
(mg/dL) s2rumi)
Control & 100 50 18 38 Low
HC* 16 402 2 3E 125 =02
HC— 17 386 258 35 157 =1
Table 53 Serum clinical chemisiry parameters. Liver and Kidney enfymes were measured ar

I12-monchs of dier. ALT: Alanine Amino-Transferase, AST: Aspartate Amino-Transferase, CREAT:

creatinine, GGT. Gamma Glutamyl-Transferase, ALP: alkaline phosphatase, Trigs: Triglyvcerides,

*elevated values.
ALT AST CREAT GGT Glucose ALP Trdgs
o (UL) (UL} (moll) (UL) (mmolL) (WL) meMdL
Conmol 68 30 ! 150 22 a0 34

HC 48 93* 105* 115 i4 g 128*

HC™ 36 61* a3* 142 iz 48 262+
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