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Résumé
Pour effectuer une tâche, le cerveau doit représenter et manipuler les stim-

uli. Par exemple, lorsqu’on saisit un objet, le cerveau doit représenter la scène
visuelle, identifier l’objet et produire des commandes motrices appropriées qui
auront comme conséquence le mouvement correct du bras. Ce processus requiert
la représentation de variables continues, comme l’image et la position du bras,
par les circuits neuraux qui communiquent à l’aide de potentiels d’action dis-
crets. Comment le cerveau représente ces quantités continues avec les potentiels
d’action qui sont de nature discrète? Comment ces représentations sont-elles dis-
tribuées dans les populations de neurones? Depuis les enregistrements d’Adrian,
on suppose communément que les neurones représentent l’information continue à
l’aide de leur fréquence de décharge. En outre, beaucoup de modèles théoriques
supposent que les neurones représentent l’information indépendamment les uns
des autres. Cependant, un tel codage indépendant semble très inefficace puisqu’il
exige la génération d’un très grand nombre de potentiels action afin d’atteindre
un certain niveau de précision. Dans ces travaux, on montre que les neurones
d’un réseau récurrent peuvent apprendre - à l’aide d’une règle de plasticité locale -
à coordonner leurs potentiels d’actions afin de représenter l’information avec une
très haute précision tout en déchargeant de façon minimale. Le nombre de po-
tentiels d’action émis est très inférieur à celui requis par un codage indépendant.
La dérivation de la règle de plasticité se fonde sur l’équivalence entre le codage
efficace et l’équilibre précis entre l’excitation et l’inhibition dans chaque neurone.
Ainsi, La règle n’est pas conçue afin d’optimiser directement la sortie du réseau,
mais pour imposer un équilibre entre excitation et inhibition. Un tel objectif -
atteindre l’équilibre entre l’excitation et l’inhibition - permet d’obtenir une règle
d’apprentissage locale et biologiquement plausible. La règle d’apprentissage agit
uniquement sur les connexions récurrentes dans le réseau. Si l’apprentissage des
connexions récurrentes est combiné avec une règle d’apprentissage pour les con-
nexions d’entrée du réseau, les neurones s’adapteront également aux statistiques
des signaux d’entrée. En effet, la règle d’apprentissage pousse graduellement
le vecteur de poids d’entrée de chaque neurone vers la direction du stimulus
moyen qui cause son déchargement. Ce faisant, elle garantie que les directions
et caractéristiques importantes des entrées soient représentées. Ceci augmente
l’exactitude de la représentation. Finalement, nous montrons que si un réseau
récurrent a des connexions latérales avec deux échelles de temps différentes -
qu’on appelle rapide et lente - il peut apprendre à effectuer des transformations
dynamiques et complexes sur ses entrées. Plus précisément, il apprend à pro-
duire des sorties qui ont une dynamique temporelle linéaire spécifique, la relation
d’entrée-sortie du réseau étant spécifiée par une équation différentielle linéaire.
Pour pouvoir apprendre, le réseau doit recevoir un signal d’erreur fort et spéci-
fique. Les connexions rapides dans le réseau sont modifiées à l’aide de la règle qui
équilibre l’excitation et inhibition décrite précédemment. Cette règle engendre
une coordination serrée entre les neurones et distribue l’information concernant



la sortie globale du réseau avec précision. Une telle représentation distribuée
et précise permet la dérivation d’une règle d’apprentissage locale pour les con-
nexions lentes. Les connexions lentes sont responsables de la génération de la
dynamique temporelle de la sortie du réseau. La règle d’apprentissage pour ces
connections est simple, elle est proportionnelle au taux de décharge du neurone
présynaptique et au signal d’erreur reçue sous la forme d’un courant par le neu-
rone postsynaptic. Dans tous ces réseaux, le stochasticité du temps de décharge
d’un neurone n’est pas une signature d’un bruit mais de la dégénérescence de
la représentation. Puisque plusieurs neurones représentent la même caractéris-
tique, beaucoup de combinaisons différentes de potentiels d’actions produisent
le même signal en sortie. Par conséquence, même avec un bruit très petit dans
le réseau les trains de potentiels d’action sembleront complètement aléatoires et
seront non reproductible d’un essai à l’autre. Ces travaux donnent ainsi une
interprétation radicalement différente de l’irrégularité trouvée dans des trains de
potentiels d’actions dans le cerveau. Ici, le caractère aléatoire n’est pas une sig-
nature d’un bruit mais au contraire de précision et d’efficacité. En raison de
leur encodage efficace, ces réseaux n’ont pas besoin de beaucoup de neurones
pour réaliser une certaine fonction par opposition à d’autres approches comme
le “Liquid Computing”.



Abstract
To perform a task, the brain has to represent stimuli and act on them. For

example, while reaching for an object, the brain has to represent the visual
scene, recognize the object and generate the appropriate motor commands that
will result in the correct arm movement. Performing this task requires the rep-
resentation of continuous quantities by the neural circuits which use discrete
action potentials to communicate. Indeed, the image and the arm position all
evolve in a continuous space. The first question that comes up is how the brain
represents these continuous quantities with discrete spikes and how these repre-
sentations are shared among neurons? Since the recordings by Adrian, neurons
were thought to represent quantities through their firing rates and individual
spikes being considered as noisy. In addition, many theoretical models assume
that neurons represent information independently from one another. However,
such an independent rate coding seems very inefficient since it requires a very
large number of spikes to achieve a certain level of precision. In this work, we
show that leaky integrate-and-fire neurons in a recurrent network can learn, us-
ing a plasticity rule, to coordinate their spikes and represent information very
precisely while firing a small amount of spikes. The number of spikes fired is
much lower than what an independent rate code requires. The derivation of the
plasticity rule relies on the equivalence between efficient coding and a tight bal-
ance between excitation and inhibition in each neuron. The learning rule is thus
not designed to directly optimize the network’s output, but to enforce precise
balance on the level of a single neuron. Such an objective - reaching the bal-
ance between excitation and inhibition - results in a local biologically plausible
learning rule. The learning rule acts on the recurrent connections in the network.
If the learning of the recurrent connections is combined with a learning rule for
the feedforward connections, the neurons will also adapt to the input statistics.
The feedforward learning rule gradually pushes the feedforward weight vector of
each neuron towards the direction of its spike triggered average. By doing so, it
ensures that all the relevant directions and features of the inputs are represented.
Indeed, this increases the accuracy of the representation. Finally, we show that
if a recurrent network has lateral connections with two different time scales,
fast and slow, it can learn to operate interesting transformations on its inputs.
More precisely, it learns to generate outputs that have specific linear temporal
dynamics, the input/output relationship being specified by a linear differential
equation. To be able to learn, the network must receive a strong and specific
error feedback. The fast connections in the network undergo the same balancing
learning rule described previously. This rule enforces a tight coordination be-
tween neurons and precisely distributes the information concerning the output of
the network across neurons. Such distributed and precise representation enables
the derivation of a local learning rule for the slow connections. The slow connec-
tions are responsible for the generation of the temporal dynamics of the output.
The learning rule for these connections is simple. It is proportional to the firing



rate of the presynaptic neuron and to the error feedback received as a current
by the postsynaptic neuron. In all these networks, the stochasticity in spiking is
not a signature of noise but of the degeneracy of the representation. Since many
neurons encode for the same feature, many spike patterns will result in the same
output and precision. Therefore, even with a very small noise in the network,
the spike trains will appear completely random and will be irreproducible form
a trial to trial. Indeed, this work gives a radically different interpretation of the
irregularity found in spike trains. Here, the randomness is not a signature of
noise but on the contrary of precision and efficiency. Moreover, because of their
efficient encoding, these networks do not need to be high dimensional to achieve
a certain function as opposed to other approaches such as reservoir computing.
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Chapter 1

Introduction

How does the brain learn to represent and process information? This ques-
tion naturally unfolds into two fundamental problems: representation and
learning. Investigating representations consists in understanding the neural
code and how information is represented across neurons. The apparently
noisy and unreliable nature of the neurons’ output, in addition to the highly
distributed nature of the neural code, makes it difficult to extract the exact
nature of these representations. Neural representations are not, however,
hard-wired but are learned from the stimuli we experience. Indeed, the
brain undergoes constant learning to optimize our behavior and our rep-
resentations of the world. Thus, understanding the ongoing learning that
takes place in neural circuits is crucial to understanding the neural code.
Synaptic plasticity is believed to be at the basis of these adaptation mech-
anisms. However, a large variety of plasticity rules is found in the brain,
and understanding how these plasticity rules interplay to contribute to neu-
ral functions is very difficult. Here we present a novel theory that bridges
together aspects of learning, synaptic plasticity and neural representations.

To introduce our problem we start by reviewing the common issues
related to neural coding. We then present the balance between excitation,
a phenomenon that is central to our theory and believed to play a major
role in neural processing and coding. Next, we present recurrent neural
networks that are used to model the computations in the brain. We finally
review aspects of synaptic plasticity that are relevant to our subject.

1.1 Neural Coding

In many cortical areas, spike times are irregular and unreliable, with neu-
rons responding to the same stimulus by spiking at different times on each
trial (Tolhurst et al., 1983; Buracas et al., 1998). Following this observation,
many assume that in these areas, information is conveyed through firing
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2 CHAPTER 1. INTRODUCTION

rates, spikes being only noisy samples from the underlying rate. In this
framework, spiking is usually modeled using a non-homogeneous Poisson
process. Accordingly, the spikes of a single neuron are fired independently
form one another. Experimental results show that taking into account
the correlation between spikes does not increase the amount of informa-
tion about the stimulus. However, in other areas, spike timing appears to
be critical for coding (Theunissen and Miller, 1995; Gollisch and Meister,
2008; Bair and Koch, 1996; Buracas et al., 1998; Richmond et al., 1990,
1987; McClurkin et al., 1991). The term rate coding is commonly used
when spike times are not critical to convey information about the stimu-
lus. When the opposite occurs, the coding strategy is qualified as temporal.

Whether the coding strategy is temporal or rate-based, information is
likely to be encoded by a large number of neurons (Deadwyler and Hamp-
son, 1997; deCharms, 1998; Georgopoulos et al., 1986; Knudsen et al., 1987;
Zohary et al., 1994). Thus, it is crucial to determine how neurons collabo-
rate to represent relevant information. A common approach is to consider
that neurons encode information independently from one another (Geor-
gopoulos, 1990; Schwartz, 1994). This does not however exclude the pooling
of activity of many independent neurons to obtain more accurate estimates
of variables. It only means that neurons “ignore” each other when they rep-
resent information. For example, a population that combines independence
across neurons, together with Poisson firing statistics, is said to employ an
independent Poisson code. Since information is carried by the rate of the
neurons, determining this rate is crucial to extract the encoded variables.
Indeed, rate estimates determined from the activity of one neuron in a short
time bin are noisy and unreliable. However, if all the neurons in the popu-
lation fire at the same rate, averaging the activity of many neurons at once
will result in precise estimates. Specifically, the error on the rate estimate
in such a scenario scales 1/

√
N where N is the number of neurons (Shadlen

and Newsome, 1998, 1994). Many decoding schemes were developed using
the assumption of independent coding (Brunel and Nadal, 1998). For ex-
ample, in the population vector approach, neurons have widely distributed
tuning curves that depend on the stimulus value, with each peaking at a
different location. One can infer a stimulus value by combining the activ-
ity of the different neurons in a Bayesian optimal way (Pouget et al., 1998;
Zemel et al., 1998; Deneve et al., 1999).

Indeed, the independent coding hypothesis is suitable for theoretical
analysis. However, in some areas neurons have been found to coordinate
their activity, and information may be contained in the relative timing be-
tween spikes of different neurons (Gray and McCormick, 1996; Abeles et al.,
1993). For example, hippocampal place cells signal the animal location by
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firing at particular times relative to the ongoing oscillation phase in the
population (O’Keefe and Recce, 1993). Other studies have found that in
the auditory cortex, neurons synchronize their spiking following the onset
of a stimulus while keeping their individual firing rates constant (deCharms
and Merzenich, 1996). On a more speculative level, the lower bound to the
error induced by discretizing a continuous signal using N spikes is 1/N ,
which is considerably lower than the 1/

√
N of an independent Poisson

code. Thus, to achieve a certain level of precision, a population employing
an independent code needs a large number of spikes, which can be seen as
a lack of efficiency (Deneve and Machens, 2016).

How can a code with apparent spike randomness be efficient and achieve
high accuracy while using few spikes? What type of coordination between
neurons does such a code require?

1.2 E-I Balance

1.2.1 Theoretical Foundation

What are the mechanisms that underlie the randomness in spike trains?
(Mainen and Sejnowski, 1995) shows that when a constant current is in-
jected into a neuron, it responds by spiking at regular intervals. This means
that the stochasticity in spiking does not arise solely form internal sources
of noise in the neuron. In an attempt to understand the origins of the
irregularity in spiking, two ideas were proposed.

The first idea assumes that because spike trains are irregular, neurons
must act as coincidence detectors that convey precise temporal patterns of
spike arrivals (Softky and Koch, 1993). In this scheme, presynaptic spikes
arriving from different neurons must occur simultaneously in order to bring
the membrane potential of the post-synaptic neuron to the spiking thresh-
old. Otherwise the membrane leak will inevitably bring the voltage to rest.
However, because of the overwhelming number of synaptic inputs a neu-
ron receives in the neocortex, detecting these events requires a very short
membrane time constant. The required time constant is much shorter than
the membrane time constant observed in biological neurons. However, de-
tecting such coincidences with time constants comparable to the one found
in the brain is possible if spiking events are rare, as observed in some sub-
cortical areas.
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Figure 1.1 – Balance between excitation and inhibition produces irregular spike trains.
A: upper panel: the neuron receives an excitatory input (green curve) stronger than
the inhibitory input (orange curve). The total current is represented by the black line
and has a positive mean. Bottom panel: the voltage of the neuron systematically drifts
towards the threshold resulting in a regular spike train. B: When the excitatory and
inhibitory currents cancel each other on average, the membrane potential undergoes a
random walk towards the threshold resulting in irregular spikes.

As seen previously, many assume that the variable Interspike Interval
(ISI) that is observed in the spike train of a neuron does not reflect the
transmission of precisely timed coincidence events, but on the contrary,
of a noisy rate code. How can such a noisy code arise from the integra-
tion of thousands of synaptic inputs that are mainly excitatory? Normally,
such a high conductance regime would make the neuron fire very regu-
larly, transmitting regular spike trains to next layers (fig. 1.1A). Inspired
by a random walk model initially proposed by (Gerstein and Mandelbrot,
1964),(Shadlen and Newsome, 1994) explains this randomness by a balance
between the excitation and the inhibition received by the neuron. The idea
behind the model is simple: the membrane potential performs a random
walk to the spiking threshold under the action of excitatory and inhibitory
inputs. Excitatory inputs push the voltage towards the spiking thresh-
old, and the inhibitory inputs drive it away from such threshold. If the
neuron receives equal amounts of excitation and inhibition, the times at
which the neuron reaches the spiking thresholds are random (fig. 1.1B).
Using a model where an integrate-and-fire neuron receives a big number
of excitatory and inhibitory irregular spike trains, (Shadlen and Newsome,
1998) showed that the output spikes of the neurons were highly irregular
and conserved the same statistics as the input spike trains. Moreover, such
a mechanism works with the realistic membrane time constants that are
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found in the brain. However, the initial studies were conducted on a single
neuron receiving excitatory and inhibitory input. Later studies show that
this balance of excitation and inhibition emerges also in recurrent networks
undergoing few constraints.

1.2.2 Balanced Recurrent Networks

What are the conditions to have a balance between excitation and inhi-
bition in a network? Counterintuitively, such a balanced state does not
necessarily require a fine-tuning of the connections. For example, it is
an emergent property in sparsely and randomly connected recurrent net-
works(van Vreeswijk and Sompolinsky, 1996, 1998; Amit and Brunel, 1997;
Brunel, 2000). In this context, sparse means that the number of connec-
tions a neuron receives K << N , the number of neurons in the network. In
these networks, excitation and inhibition cancel each other dynamically: if
excitation increases, it will lead to an increase in the inhibitory firing rate,
thus balancing the excitatory input to the neurons. As described in the pre-
vious section, the membrane potential undergoes a random walk resulting
in irregular firing. The fluctuations of the membrane potential are propor-
tional to the mean input, resulting in firing rates that are proportional to
the input. The neurons in the network thus follow a rate-coding strategy.
Moreover, owing to the sparse connectivity, two neurons are unlikely to
receive inputs from the same group of neurons, resulting in uncorrelated
membranes potential and activity between them. Such a network typically
uses an independent Poisson-like code.

1.2.3 Experimental Evidence of Balance

At this point, the idea of Balance between excitation and inhibition is very
appealing from a theoretical point of view but lacked substantial experimen-
tal evidence. However, this was not in contradiction with some experimen-
tal observations (Shadlen and Newsome, 1994). (Borg-Graham et al., 1996;
Anderson et al., 2000; Monier et al., 2008) developed a method to measure
the excitatory and inhibitory conductance in vivo. This method consists of
clamping the membrane potential at different values and injecting a cur-
rent into the neuron. They then fit the following simple conductance-based
equation to the values of V and Iinj

C
dV

dt
= −Gleak(V − Vleak)−Gext(V − Vext)−Ginh(V − Vinh) + Iinj (1.1)

where C is the capacitance of the membrane, V is the membrane po-
tential of the neuron, Gleak, Gext and Gin are respectively the leak, the
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excitatory and the inhibitory conductances. Vleak is the resting potential
of the neurons and Vext and Vlinh are respectively the excitatory and in-
hibitory reversal potentials. Iinj is the injected current. Specifically, the
global conductance is inferred at first and is then decomposed as excitatory
and inhibitory depending on the value of the membrane potential and the
reversal potentials (Monier et al., 2008). A balance exists if the relationship
between both conductances is linear across conditions, that is, excitatory
and inhibitory conductance are proportional. Indeed, such proportionality
was found in slices of ferrets’ prefrontal cortex during spontaneous activ-
ity (Shu et al., 2003). The ratio between the conductances is stable for
many neurons and tends to cluster around 1. This relationship was also
confirmed in vivo in anesthetized ferrets (Haider et al., 2006). Balance was
also found during stimulus-evoked activity. For example, in auditory cortex
of anesthetized rats, excitation and inhibition were co-tuned and peaked for
the same value (Wehr and Zador, 2003). However, such a co-tuning is not
universal. In other areas, inhibition was found to be more broadly tuned
(Wu et al., 2008; Cardin et al., 2007; Kerlin et al., 2010), but the strongest
response for excitation and inhibition to a neuron was always evoked by
the same stimulus.

The method described previously only allows the measurement of ei-
ther excitation or inhibition at one time in a single neuron. For example,
in voltage clamp experiments, the type of conductance that is measured
depends on the value of the clamped membrane potential. It is thus im-
possible to measure both conductances in a single trial. However, such a
measurement is critical in order to determine the temporal structure of bal-
ance, e.g. whether excitation and inhibition are tightly correlated or simply
compensate on average. (Okun and Lampl, 2008) bypasses this problem by
measuring excitatory and inhibitory drives in nearby neurons. In fact, and
as shown by the study, such neurons receive extremely correlated inputs.
Measuring excitation received by a neuron is therefore similar to measur-
ing it in a nearby neuron. It was found that excitation and inhibition are
highly correlated during spontaneous activity and stimulus-evoked activity
(whisker deflection). (Xue et al., 2014) also confirmed a tight balance on a
1ms level.

Balance between excitation and inhibition was first hypothesized to
explain the irregular ISI in cortical spike trains (Shadlen and Newsome,
1994, 1998). Such an irregularity seems to only require a balance on av-
erage, the excitatory and inhibitory inputs being uncorrelated on a finer
time-scale. The experimental findings presented previously indicate, how-
ever, that cortical balance is regulated on finer time scales. What could be
the computational role of such a tight balance beyond irregular spiking?
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1.3 Computations

The brain is able to perform very complex information processing. Even
very simple tasks require a multitude of operations such as storage, recog-
nition and extraction of relevant information, decision-making and genera-
tion of motor commands. Indeed, these computations are supported by the
dynamics of neural circuits. To understand and model how the neurons col-
lectively perform these computations, one usually first describes the task in
terms of input/output transformation. For example, in a decision-making
task, the input is the stimulus and the output is the choice performed by
the subject. The relationship between the input (stimulus) and output
(response) is commonly described using dynamical systems or differential
equations. A network is then constructed to implement this relationship.

c
x1

x2

x3

DWE1 E2

I
E1

E1E2

E2

A B

Figure 1.2 – specific v. generic networks. A: a decision making network has two
excitatory populations competing through inhibitory interneurons. The population that
has the highest rate indicates the choice of the monkey regarding the motion of the dots.
The two bottom panels represent the only two attractor states in this network. B: A
generic recurrent network. The network receives a command c and produces dynamic
outputs x1, x2 and x3. To optimize the output of the network, one should learn the
recurrent and/or the readout weights W and D respectively.

1.3.1 Handcrafted v. Generic Networks

To implement a particular task, one can construct a specific network that
qualitatively fits the behavior of neural circuits. In a motion discrimination
task, for example, a monkey should decide in which direction a group of
points are moving (Britten et al., 1992). The amount of noise added to the
stimulus in the form of randomly moving points can make the task easier or
harder. Single unit neural recordings in the prefrontal cortex show that the
firing of certain neurons is highly correlated with the choice of the monkey.
This task is modeled using two excitatory populations competing via an
inhibitory population (Wang, 2002). The network exhibits only two stable
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patterns of activity with every time only one population firing at high rate
(fig. 1.2A). The choice made by the network is determined dependent on
which population is more active. Such a network is called an attractor
network because, under the influence of the stimulus, it exhibits particular
patterns of activity where the dynamics of the network gets trapped. The
attractor network framework is successful in modeling a variety of behav-
iors and reproduces aspects of the neural data. However, these networks
are usually handcrafted and the connections have to be set by hand in order
to reproduce the desired behavior.

The previous approach is mainly used to fit relatively simple neural be-
havior. It is, however, much more difficult to use it to construct networks
that preform complex and dynamic computations like those involved in
sensorimotor control. A solution to this problem is to use a generic recur-
rent neural network (RNN) that learns the relevant behavior, using some
optimization or learning procedure. The information is extracted from the
network with readout neurons that decode the activity of neurons (fig.
1.2B). One typically optimizes the readout and/or the recurrent weight in
order to produce the desired output. Since we are interested in dynamic
and highly precise computations we will only focus on this approach. Next
we will present several models that use this approach.

1.3.2 Optimizing the Readout Weights

In the early 2000s, a new approach known as liquid or “reservoir” comput-
ing, which is radically different from the attractor approach was proposed
(Maass et al., 2002; Jaeger, 2001). It is more suitable for real-time com-
puting and dealing with rapidly varying and dynamic inputs.

Instead of using a specific architecture dedicated to a particular task,
this method uses a generic randomly connected recurrent network com-
monly called the reservoir. The network acts as a non-linear projection
of the input in the high dimensional space. At a certain point in time,
the activities in this network are not only a momentary projection of the
actual input, but also reflect the history of the past inputs due to the re-
verberation in the network mediated by the recurrent connectivity. Such
memory facilitates any further temporal processing that can eventually be
performed by the next layer. Indeed, a readout layer will then combine
linearly the activity of the neurons in the reservoir and thus perform any
wanted discrimination, categorization, transformation based on the input.

To learn a particular discrimination task or an input/output transfor-
mation, only the readout weights, i.e., the ones from the RNN to the read
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out neurons, are modified. Because the learning only takes place at the
output layer, a single reservoir can be used to learn different tasks simul-
taneously. In fact, it only serves as a general prepossessing tool projecting
signals into a high dimensional non-orthogonal basis. To learn an addi-
tional task, one only needs to add a new set of readout neurons.

This approach is also fundamentally different from the attractor frame-
work because it does not rely on any stable states to perform computations.
On the contrary, it relies on the transient dynamics and on the near chaotic
behavior of the RNN. In fact, the reservoir must be sensitive to changes
in the input, so that small changes can induce different trajectories in the
reservoir. This is called the separation property and it is a necessary con-
dition for the functioning of the model.

Even though this method is efficient at learning complex and highly
non-linear input/output relationship, it is mainly criticized for being a
black-box approach. If it allows the reproduction or implementation of
complex functions, it does not, however, permit an understanding of how
a neuron precisely computes and the type of representation they bare. In
addition, to obtain the separation and the approximation properties that
are required, the reservoir must contain many neurons. This generates
more activity than needed, which can be seen as inefficient. Learning the
recurrent weights may be a solution to increase efficiency. Optimizing the
recurrent weights may make a better use of the resources and thus require
networks with lower dimensions.

1.3.3 Optimizing the Recurrent Weights

Learning recurrent weights is very challenging because of the long temporal
dependencies that may be induced by recurrence. This is believed to be
the main reason why first order methods such as back-propagation through
time (BPTT) (Rumelhart et al., 1986) fail in many scenarios. Briefly,
BBTT consists of unfolding the temporal dynamics of the network and
translating it into a multi-layered perceptron where each layer is an instant
in time. One then applies the regular backpropagation algorithm. However,
in recurrent networks, the error signal may decay or grow exponentially.
Thus the error signal can be overwhelmed by reverberation, which makes
the dependence of the error on the weights hard to assess as soon as the tar-
get is separated from the input by several time steps (Bengio et al., 1994).
A new method called Hessian-free optimization (Martens, 2010; Martens
and Sutskever, 2011) brings a solution to this problem. However, the ef-
ficiency of this method highly depends on the initialization. Some initial
configuration may lead overwhelmingly exponential growth in errors, thus
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destabilizing the algorithm. This is particularly problematic for recurrent
networks that produce cortex-like irregular spiking. These networks are
chaotic and are highly sensitive to small changes in the inputs.

Force Learning

FORCE Learning (Sussillo and Abbott, 2009), inspired by reservoir com-
puting bypasses these stability issues by using a feedback loop that sup-
presses chaos in the network. The suppression of chaos relies on a learning
rule that performs strong and fast modification of the weights. The network
succeeds in learning to generate complex output patterns in the presence
or absence of an input to the network. This method does not only apply to
readout weights, it also applies to recurrent weights. The scheme initially
developed for rate network seems to be problematic when applied as is to
spiking models. However, (Thalmeier et al., 2015) succeeded in translating
force learning to spiking recurrent networks using a predictive coding ap-
proach. The success of this method resides in the inherent rate description
that underlies the spiking dynamics. This approach is particularly relevant
to our work and will be explained in more detail at the end of chapter 4.

Learning by Copying an Auto-Encoder

(DePasquale et al., 2016) propose an alternative approach to train the
recurrent weights in a spiking network. A notable difficulty in training re-
current weights is the absence of a specific target to guide the optimization.
Optimizing the readout weight is straightforward because there is a direct
relation between the weights and the desired output. For example, if the
decoding is linear, the output of the network is x̂(t) =

∑
nDnan(t) where

an(t) is the activity of neuron n. Since the decoded output should be equal
to the desired output, one can directly optimize those weights using a least
squares procedure. Such an optimization is however not straightforward
for the recurrent weights because there no direct link between the weights
and the desired output.

Indeed the recurrent weights have a direct influence on the activity of
the neurons. What pattern of activity in the network can produce the tar-
get output? Once this target activity is determined the recurrent weights
are optimized to produce it. To determine the desired target activity, the
approach uses an auxiliary auto-encoder of rate units. In fact, the desired
output is fed as an input to this randomly connected auxiliary network.
The activity generated by this auto-encoder can be combined by the de-
coder to approximate the target output. It is this activity that serves as
a target for the spiking units in the original network. In these networks
the precision of the code is still proportional to 1/

√
N as opposed to the
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approach used by Thalmeier et al. (2015) which employs a 1/N precise code.

The previous methods are efficient in constructing networks that per-
form useful computations. However the learning techniques used to op-
timize them are non-local. For example, force learning requires inverting
correlation matrices of the rate in the network in order to assign a learn-
ing rate to each neuron. In the case of spiking rate-based networks, the
optimization requires the use of an external teaching signal (the activities
of the rate network) in an unnatural way. Indeed, the brain only relies on
local plasticity rules to learn from and adapt to its environment. How can
functional recurrent networks learn using only local plasticity rules such as
those exhibited by the neural circuits?

1.4 Plasticity

The brain is capable of adapting to a world that evolves continuously. This
ability is ensured by the plasticity of cortical circuits that change to op-
timize their output based on external inputs, their own activity or other
modulation signals. For example, on a sensory processing level, the sharp-
ening of neural responses during development or the emergence of recep-
tive fields is a learning process influenced by the stimuli the brain receives
(Freedman et al., 2006). Beyond sensory representation, learning is also in-
volved in more dynamic computations. For example, sensorimotor control
uses internal models to predict the temporal trajectory of effectors. The
features of the effectors may change over time. Internal models represent-
ing the dynamics of these effectors become erroneous and should therefore
be updated (Kording et al., 2007). A neural network that implements such
internal models should be able to update its implementation in order to
perform accurate predictions.

It is widely believed that learning in the brain is supported by the
modification of synaptic efficacy between neurons. Indeed, from a mod-
eling point of view, changing the connection weights in a network highly
influences the neurons’ dynamics and responses. More or less direct ex-
perimental evidence have corroborated this point of view (Mehta et al.,
1997; Zhang et al., 1998; Engert et al., 2002; Feldman and Brecht, 2005).
In addition, on a cellular level, experimentalists can directly observe and
induce synapse weakening and strengthening known as long term depres-
sion (LTD) and potentiation (LTP), respectively (Bliss and Lomo, 1973).
These forms of plasticity can be induced by jointly monitoring the activ-
ity of the pre- and postsynaptic cells. The resulting change in synaptic
strength can last from minutes to hours. For example, presynaptic stim-
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ulation in conjunction with strong or weak depolarization induces LTP
or LTD respectively (Artola et al., 1990). Here we are mostly interested
in functional implications of plasticity. In other words, we want to know
how the rules that govern LTD and LTP relate to coding and computations.

In this section we will first consider Hebbian learning, a hypothesis
that had great conceptual influence on the study of plasticity both from a
theoretical and experimental point of view. We will then present the factors
that influence LTD and LTP in biological neurons. Finally, we will review
theoretical work that investigates the functional role and the computation
principles that underlie synaptic plasticity.

1.4.1 Hebbian Learning

Hebb’s Hypothesis

(Hebb, 1949) proposed the following hypothesis:

“When an axon of cell A is near enough to excite B and takes repeatedly
hand in firing it, some growth process or metabolic changes take in one or
both cells that such A’s efficiency, as one of cells firing B, is increased”

This idea was confirmed later by several experimental findings where
LTP and LTD were found to depend on the joint activities of the pre- and
post-synaptic neuron. According to Hebb’s idea, changing the efficiency
of the connection between the neurons depends on the correlation of the
activities of both neurons. It is obvious how this idea relates to stimulus
conditioning experiments. If a stimulus A is Followed by stimulus B re-
peatedly, the respectively selective neurons, say NA and NB, will also fire
in this order, resulting in strengthening of connections from NA to NB.
Thus, if A is presenting alone, the firing of NA will result in the firing NB

even in the absence of stimulus B.

Most importantly, the interest of this rule relies on its locality. It only
relies on local information to modify the synapse, which is a crucial property
in modeling synaptic plasticity. In fact, a synapse has a priori only access
to local information.

Rate-Based Hebbian Learning

Mathematically the previous idea was translated into:

∆wij ∝ rirj (1.2)
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Where wij is the weight of the connection between i and j and ri and
rj are the activities/output of neuron i and j respectively. This model usu-
ally assumes that activities are akin to firing rates and are thus continuous.

However, pure Hebbian learning has two main problems: instability
and absence of competition. First, if the activities between neurons are
correlated it will induce a strengthening of their connection, which will in
turn increase their correlations. This causes unbounded growth of their
synapses. Second, since the Hebbian learning rule updates a weight inde-
pendently from all the others, this results in a lack of competition between
synapses. Competition between synapse is a desirable feature in plasticity
because it can lead to the emergence of selectivity in neurons.

Synaptic normalization is a possible alternative to limit the uncontrolled
growth of the weights. It forces the weight vector of a neuron to have a
constant norm. We illustrate this idea using a single postsynaptic neuron
that receives J inputs xj with weights wj and produces an output y. For
each synapse the pre-synaptic activity is xj and the post-synaptic activity
is y. Thus the normalized weight after update is:

wi(t+ 1) ∝ wi(t) + xiy

(
∑N

k wj(t) + εxjy)2
(1.3)

The regular Hebbian update is devised by the norm of the weight vec-
tor after the update. However, such a rule requires for each synapse the
knowledge of all the other synaptic weights of this neuron, which violates
the locality constraint. Using a Taylor expansion and some approxima-
tions, the previous rule can be turned to a local learning rule known as
Oja’s rule (Oja, 1982) :

dwi(t)

dt
∝ εy(xi − wi(t)y) (1.4)

One can show that the final weight vector w is aligned with the first
principle component of x. This is an example of a representational learning
based on the statistical properties of the input. Because the final weight
vector is in the direction for x that is the most variable, it thus extracts
the most informative component of the signal. This constitutes an efficient
representation and compression of the signal. Other types of normalization
exist such as subtractive normalization, which fixes the total sum of the
weights to a certain value. The exact nature of these constraints influences
considerably the behavior of the system.

The BCM rule (Bienenstock et al., 1982) provides a different solution
to control weight growth and induces competition between synapses. It
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uses a variable threshold, Θ, to induce potentiation or depression. If the
postsynaptic activity y is above the threshold the weight is potentiated and
when the opposite occurs it is depressed. Thus, the weight dynamics are:

dwi(t)

dt
∝ εxi(y −Θ(t)) (1.5)

The threshold dynamics should be super linear in the postsynaptic ac-
tivity y to stabilize weight growth. For example a quadratic dependence on
the average postsynaptic activity translates dΘ(t)

dt
= 〈y2〉. The super linear

dependence is necessary to ensure that any high postsynaptic activity is
quickly taken into account by increasing the threshold and thus depressing
the synapses preventing uncontrolled growth loop. This also induces com-
petition because the synapses compete to control the postsynaptic activity.
This rule was successful in modeling the emergence of visual receptive field
(Blais et al., 1998).

The learning rules presented here are mainly expressed in terms of firing
rates. But as we will see next, synaptic plasticity has been also found to
highly depend on spike times and many other factors.

1.4.2 Timing and the Variety of Factors that Influence
Plasticity

Indeed, the first studies on LTP and LTD have primarily proved their de-
pendence on the firing rates (Bliss and Lomo, 1973). However, a series of
influential experiments conducted in the last two decades have consistently
found a high dependence of plasticity on spike timing (Bi and Poo, 1998;
Markram et al., 1997; Bell et al., 1997). Such mode is called Spike Tim-
ing Dependent Plasticity (STDP). An extensively studied form of STDP
is when synapses are potentiated if a presynaptic spike precedes a postsy-
naptic spike immediately and is depressed in the opposite case (fig. 1.3A)
(Bi and Poo, 1998; Celikel et al., 2004; Markram et al., 1997). This form
is consistent with the Hebbian hypothesis. In fact, a pre-post order can be
seen as a causality link, implying that the synapse should be strengthened,
while the post-pre order translates as an absence of such a link and thus
the synapse should be weakened. For this reason this form of STDP is
called Hebbian. Hebbian-STDP has been originally predicted by (Gerstner
et al., 1996) in an attempt to model the emergence of selectivity to sound
location in barn owl.
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Figure 1.3 – STDP shapes. This figure shows three different STDP shapes found in slice
experiments. It shows the weight change ∆w as a function of the difference between the
times of the presynaptic and postsynaptics spikes, ∆t = tpre− tpost. A: classical STDP.
if the pre spike precedes the post spike there is potentiation and if the opposite occurs
there is depression. B: Anti-hebbian STDP has an inverse profile of the classical STDP.
C: Anti-Hebbian LTD where both orders result in depression.

Other shapes of STDP are also exhibited at other synapses. for exam-
ple, some rules exhibit an inversed profile of the Hebbian type, where the
pre-post order results in weakening and post-pre order leads to the oppo-
site (fig. 1.3B). Consequently, it is called anti-Hebbian STDP (Fino et al.,
2005, 2008). In most cases the LTP branch is completely absent and both
spiking orders result in weakening (fig. 1.3C) (Han et al., 2000; Requarth
and Sawtell, 2011; Lu et al., 2007). In all cases the amplitude of change is
the highest when the two spikes are contiguous (10 ms) (Sjostrom et al.,
2001; Markram et al., 1997). The change decreases with the time distance
and becomes nonexistent above a certain lag. Most of these experiments
are realized on slices where the background activity can be tightly con-
trolled.

If first thought to be a universal and fundamental kernel for plasticity,
basic STDP seem to depend on many factors. For example, in vivo, the
presynaptic and postsynaptic activities do not consist of regularly repeated
pairs of pre-post spikes, but rather of irregular spike trains. In this case
the total change in the synaptic weight cannot be inferred by linearly sum-
ming the weight changes induced by each pre-post pair (Wang et al., 2005;
Wittenberg and Wang, 2006). In fact, experiments show non-linear interac-
tions between triplets and quadruplets of spikes (Froemke and Dan, 2002).
STDP is also influenced by rate. For example, to induce LTP, the pairing
should be repeated at a certain frequency. In addition, above a certain fre-
quency LTP does not depend anymore on the temporal order of pre/post
spikes (Sjostrom et al., 2001). Moreover STDP is sensitive to the sub-
threshold depolarization just after pre/postsynaptic spike(Sjostrom et al.,
2001). Furthermore, STDP seems to be subject to modulation. For ex-
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ample, in some synapses, Anti-Hebbian LTD can be modified into Hebbian
STDP by manipulating depolarization on dendrites (Sjöström and Häusser,
2006).

Moreover, spike timing seems to be a factor among others for plasticity.
In some experiments LTP/LTD is induced without a postsynaptic action
potential. A strong postsynaptic sub-threshold depolarization potentiates
the synapse, and a weak depolarization depresses it (Artola et al., 1990;
Ngezahayo et al., 2000). This led to a debate whether STDP is less funda-
mental than voltage-based plasticity (Lisman and Spruston, 2005). In fact,
since spikes are particular events where the voltage peaks briefly, some ar-
gue that STDP can be inferred form voltage based plasticity(Clopath et al.,
2010). In any case, depolarization, with or without a spike, seems to be a
key factor for LTP/LTD. Depolarization at dendrites controls the opening
of NMDA receptors and thus the influx of calcium into the neuron. High
calcium concentration is thought to trigger processes that lead to LTP and
low calcium concentration leads to LTD (Yang et al., 1999).

All these studies imply that LTD and LTP are highly malleable and are
influenced by a multitude of factors such as spike timing, firing rate, and
depolarization. How does these dependencies relate to function? More pre-
cisely what are the computational principles that shape the dependencies
of long term plasticity.

1.4.3 Plasticity and Functions

Bottom up Approaches

To understand the functional underpinnings of plasticity, modelers usually
apply rules that are abstracted from experience and study their effects in
neural networks. (Song et al., 2000) simulated a Hebbian-STDP in a neuron
that receives 1000 synapses (Inhibitory and Excitatory). The kernel used
to model LTP and LTP is constituted of two exponentials with amplitude
A+ , A− and time constants τ+ and τ− for LTP and LTD respectively.
Thus, the plasticity kernel is:

∆w =

{
A+e

∆t
τ+ if ∆t < 0

A−e
−∆t
τ− if ∆t > 0

(1.6)

The weight change is driven by ∆t = tpre − tpost, the time difference
between the presynaptic and the postsynaptic spikes. They found that this
rule leads to a stable configuration of weights and rates without the addi-
tion of any ad-hoc stabilization term like in rate-based Hebbian learning.
This effect was also studied in (Van Rossum et al., 2000; Kempter et al.,
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Figure 1.4 – STDP in theory. A: Classical STDP where LTD dominates. The total
area under the curves is negative. B: speculated STDP that leads to detailed excitatory
and inhibitory balance. The weight update does not depend on spike order but on the
absolute value of the difference between the spike times. If the spikes are contiguous the
weight is increased and when they are distant the weight is decreased.

2001). Nevertheless, a condition for this stability is that the integral of the
kernel should be negative, meaning that there is a partial bias towards LTD
(fig. 1.4A). Some experimentally found STDP’s exhibited this asymmetry
(Celikel et al., 2004; Froemke et al., 2005). Moreover, they found that
STDP also enforces a balance between excitation and inhibition rendering
the postsynaptic spike train irregular. The ability of inhibitory STDP to
regulate E/I balance has been particularly studied in (Vogels et al., 2011).
Instead of Hebbian-STDP, they speculated a kernel that does not depend
on spiking order but on the time difference between pre and post spikes
(fig. 1.4B). For short lags it induces LTP and for longer lags it induces
LTD. It acts on inhibitory synapses only, excitatory synapses being fixed
and random. The rule is first studied in the case of a single neuron re-
ceiving excitatory and inhibitory inputs and is then applied in a recurrent
network. They show how by enforcing balance, the plasticity rule improves
the coding properties in the single neuron model and drives the recurrent
network into the asynchronous irregular regime.

As discussed previously, plasticity does not solely depend on spike times,
but is the result of complex interactions between rates, spike times, and
depolarization. Models that only depend on spike pairs and their timing
fail to capture many experimental findings. A number of models tried to
capture and integrate this multitude of factors into a single model. While
(Shouval et al., 2002) uses a mechanistic model, (Clopath et al., 2010)
proposes a phenomenological approach that uses a simpler model more
suitable for analysis in networks. In the latter, weight changes depend on
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the filtered presynaptic spikes and the filtered postsynaptic membrane po-
tential, with two different thresholds for LTD and LTP. LTP or LTD is
induced depending on the value of the filtered postsynaptic depolarization
relatively to these thresholds. The model succeeds in reproducing a number
of phenomena such as the spike timing dependence of Hebbian STDP or
the non-linear interaction between triplets. When tested in small recurrent
networks, it allowed the formation of bidirectional connectivity in some ex-
perimental setups as opposed to classical STDP, which only enforces asym-
metric motifs. However, when neurons in the network are stimulated in
fixed temporal order, the rule captures the temporal structure of the input
like in common STDP (Rao and Sejnowski, 2001; Gerstner et al., 1996).
Finally, It also allows the emergence of realistic receptive fields when the
network is exposed to patches from natural images.

The majority of these studies focus on the effect of plasticity on the
weight distribution and network dynamics. It is, however, difficult to relate
these rules to computationally complex functions. For this reason, some
use another approach where they start from functions and infer biologically
plausible plasticity rules.

Normative Approaches

Normative approaches to plasticity use objective functions as a starting
point rather than empirical plasticity rules. After defining an appropriate
objective for the task, the learning rules are derived by optimizing this ob-
jective. Indeed, these methods are canonical in artificial intelligence. For
example, the perceptron (Minsky and Papert, 1969), the multi-layered per-
ceptron (Rumelhart et al., 1986) and support vector machines (Cortes and
Vapnik, 1995) all employ rules that are derived using a gradient descent on
some cleverly chosen objective function.

If these learning rules straightforwardly relate to functions, they may be
however poorly grounded experimentally (Rumelhart et al., 1986). For ex-
ample, they could suffer from biological implausibility, requiring processes
that do not exist or are yet unknown in neurons. A way to remedy this
is to approximate the derived rules with rules that are closer to biological
reality but still satisfy the objectives. (Pfister et al., 2006) derives an op-
timal STDP kernel that teaches a neuron to generate a desired spike train
in response to presynaptic spike patterns. (Gutig and Sompolinsky, 2006)
derives a voltage dependent learning rule that enables a neuron to classify
incoming spike train patterns from several neurons. More precisely, the
neuron learns to decide whether to spike or not in response to incoming
spike trains. (Toyoizumi et al., 2004) derive STDP window by maximizing
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mutual information between presynaptic and postsynaptic neuron. Using
the same technique, the authors also infer a spiking equivalent of the BCM
rule (Toyoizumi et al., 2005). (Habenschuss et al., 2013; Kappel et al.,
2014), derived optimal STDP that yields optimal decoding weights in a
Bayesian inference framework (Jazayeri and Movshon, 2006). They then
test a classical STDP and show that the learned weights had a similar
structure to the one learned using the optimal rules.

Most of these studies consider mainly feedforward networks or a sin-
gle neuron receiving multiple presynaptic inputs. The brain is, however,
recurrently connected. Indeed, recurrence changes highly the dynamical
properties of learning rules because it induces very long temporal correla-
tions. Thus, what is guaranteed to work in a feedforward architecture may
fail in recurrent networks.

1.4.4 Local learning in Recurrent Networks

One of the main obstacles for local learning in recurrent networks is the
difficulty of inferring local learning rules from global objectives. Here we
briefly present two studies where recurrent networks succeed in learning
complex tasks using only local learning rules.

Using a bottom-up approach, (Lazar et al., 2009) is one of the few
studies that successfully uses STDP to perform complex tasks. In a re-
current network of excitatory and inhibitory threshold units, the E to E
connections undergoes STDP in addition to synaptic scaling and thresh-
old adaptation. The network with plasticity is shown to be significantly
more efficient than randomly connected reservoirs in performing complex
counting tasks. However, such a bottom-up approach does not allow a deep
understanding of why STDP enables such learning.

(Zylberberg et al., 2011) uses a top-down approach to learn a generative
model of images with a recurrent network. The learning rules are derived
from a single objective that contains an error measure, an Lo constraint on
average firing rates (sparsity constraint), and a term that enforces low pair-
wise correlation of spike count between neurons (decorrelation constraint).
The network undergoing these learning rules develops receptive fields like
the ones in (Olshausen and Field, 1996).

1.5 Objectives and Organization
Three challenging neuroscience questions arise from this introduction:
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1. Why do single neurons in large networks seem to fire at random?

2. What is the computational role of the tight balance between excita-
tion and inhibition observed in the cortex?

3. How can a recurrent neural network learn to carry out a given func-
tion using local plasticity rules?

The first challenge concerns the random firing of individual neurons.
This randomness is usually assumed to reflect noise, accumulated in the
nervous system over many processing stages. Here we show that as a net-
work learns to efficiently represent information, its neurons will eventually
generate spike trains that appear to be completely random, even though
the representation is essentially noise-free at the population level. More-
over, based on the highly redundant representations found in cortex, and
the seemingly random firing of neurons, function is generally only assigned
at the population level, e.g. (Pouget et al., 2000), single neurons being
considered noisy and unreliable. Here we bring a radically different answer
and show that if a network learns to represent information as precisely and
parsimoniously as possible, specific functional meaning (in the form of cod-
ing errors) can be assigned at all levels, from the currents and voltages of
single neurons to the whole population.

The second challenge concerns the balance between excitation and inhi-
bition. This principle has been hypothesized to explain the variable spiking
in the brain. The balance that is required to reproduce such variability is
much looser than the balance found in some cortical areas. What could
be the role of a tight balance? We show that tight balance is a signature
of a highly coordinated spiking in the network which results in an efficient
spike-based population code.

The third challenge is theoretical and concerns learning in recurrent neu-
ral networks. Most approaches to learning in neural networks assume so-
called feedforward architectures. Indeed, all deep-learning approaches and
their recent successes are built on such architectures (Hinton and Salakhut-
dinov, 2006; Silver et al., 2016). The main reason is that it has been ex-
tremely difficult to learn anything in recurrent neural architectures, and
much less so if they consist of spiking neurons. To date, most approaches
rely on specifying learning rules for single neurons, and then studying their
effect on recurrent networks post-hoc, e.g. (Vogels et al., 2011; Gutig, 2016)
or optimize the networks using non-local procedures (Sussillo and Abbott,
2009). Here we derive biologically realistic learning rules for a spiking
recurrent neural network from first principles - efficient representation of
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information - and provide an exact solution to the learning problem. In
other words, learning in our network can be completely understood across
all levels, from the single synapse and neuron to the emerging network
function.

Indeed, it was previously shown that one can design spiking neural net-
works that generate efficient spiking codes (Boerlin et al., 2013). However
this work has failed to answer the question of how biological networks could
ever achieve the required, highly specific architecture. Here we propose a
solution to this problem through learning and plasticity.

This thesis is based on articles. In the first two articles (Chapters two
and three) we mainly study neural coding. More precisely, we study how
a recurrent network of spiking neurons learns to efficiently represent its
input using local and biologically plausible plasticity rules (Bourdoukan
et al., 2012; Brendel et al., 2016). In chapter four we present a third
article that studies more complex computations. We show how a network
learns to implement a specific linear dynamical system (Bourdoukan and
Denève, 2015). All the studies are based on the predictive coding framework
developed in Sophie Deneve’s Lab in collaboration with Christian Machens
’ Lab.
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Abstract

How can neural networks learn to represent information optimally? We answer
this question by deriving spiking dynamics and learning dynamics directly from
a measure of network performance. We find that a network of integrate-and-fire
neurons undergoing Hebbian plasticity can learn an optimal spike-based repre-
sentation for a linear decoder. The learning rule acts to minimise the membrane
potential magnitude, which can be interpreted as a representation error after learn-
ing. In this way, learning reduces the representation error and drives the network
into a robust, balanced regime. The network becomes balanced because small rep-
resentation errors correspond to small membrane potentials, which in turn results
from a balance of excitation and inhibition. The representation is robust because
neurons become self-correcting, only spiking if the representation error exceeds a
threshold. Altogether, these results suggest that several observed features of cor-
tical dynamics, such as excitatory-inhibitory balance, integrate-and-fire dynamics
and Hebbian plasticity, are signatures of a robust, optimal spike-based code.

A central question in neuroscience is to understand how populations of neurons represent informa-
tion and how they learn to do so. Usually, learning and information representation are treated as two
different functions. From the outset, this separation seems like a good idea, as it reduces the prob-
lem into two smaller, more manageable chunks. Our approach, however, is to study these together.
This allows us to treat learning and information representation as two sides of a single mechanism,
operating at two different timescales.

Experimental work has given us several clues about the regime in which real networks operate in
the brain. Some of the most prominent observations are: (a) high trial-to-trial variability—a neu-
ron responds differently to repeated, identical inputs [1, 2]; (b) asynchronous firing at the network
level—spike trains of different neurons are at most very weakly correlated [3, 4, 5]; (c) tight balance
of excitation and inhibition—every excitatory input is met by an inhibitory input of equal or greater
size [6, 7, 8] and (4) spike-timing-dependent plasticity (STDP)—the strength of synapses change as
a function of presynaptic and postsynaptic spike times [9].

Previously, it has been shown that observations (a)–(c) can be understood as signatures of an optimal,
spike-based code [10, 11]. The essential idea is to derive spiking dynamics from the assumption that
neurons only fire if their spike improves information representation. Information in a network may
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originate from several possible sources: external sensory input, external neural network input, or
alternatively, it may originate within the network itself as a memory, or as a computation. Whatever
the source, this initial assumption leads directly to the conclusion that a network of integrate-and-fire
neurons can optimally represent a signal while exhibiting properties (a)–(c).

A major problem with this framework is that network connectivity must be completely specified a
priori, and requires the tuning of N2 parameters, where N is the number of neurons in the network.
Although this is feasible mathematically, it is unclear how a real network could tune itself into this
optimal regime. In this work, we solve this problem using a simple synaptic learning rule. The key
insight is that the plasticity rule can be derived from the same basic principle as the spiking rule in
the earlier work—namely, that any change should improve information representation.

Surprisingly, this can be achieved with a local, Hebbian learning rule, where synaptic plasticity
is proportional to the product of presynaptic firing rates with post-synaptic membrane potentials.
Spiking and synaptic plasticity then work hand in hand towards the same goal: the spiking of a
neuron decreases the representation error on a fast time scale, thereby giving rise to the actual
population representation; synaptic plasticity decreases the representation error on a slower time
scale, thereby improving or maintaining the population representation. For a large set of initial
connectivities and spiking dynamics, neural networks are driven into a balanced regime, where
excitation and inhibition cancel each other and where spike trains are asynchronous and irregular.
Furthermore, the learning rule that we derive reproduces the main features of STDP (property (d)
above). In this way, a network can learn to represent information optimally, with synaptic, neural
and network dynamics consistent with those observed experimentally.

1 Derivation of the learning rule for a single neuron

We begin by deriving a learning rule for a single neuron with an autapse (a self-connection) (Fig.
1A). Our approach is to derive synaptic dynamics for the autapse and spiking dynamics for the
neuron such that the neuron learns to optimally represent a time-varying input signal. We will derive
a learning rule for networks of neurons later, after we have developed the fundamental concepts for
the single neuron case.

Our first step is to derive optimal spiking dynamics for the neuron, so that we have a target for our
learning rule. We do this by making two simple assumptions [11]. First, we assume that the neuron
can provide an estimate or read-out x̂(t) of a time-dependent signal x(t) by filtering its spike train
o(t) as follows:

˙̂x(t) = −x̂(t) + Γo(t), (1)

where Γ is a fixed read-out weight, which we will refer to as the neuron’s “output kernel” and the
spike train can be written as o(t) =

∑
i δ(t− ti), where {ti} are the spike times. Next, we assume

that the neuron only produces a spike if that spike improves the read-out, where we measure the
read-out performance through a simple squared-error loss function:

L(t) =
(
x(t)− x̂(t)

)2
. (2)

With these two assumptions, we can now derive optimal spiking dynamics. First, we observe that if
the neuron produces an additional spike at time t, the read-out increases by Γ, and the loss function
becomes L(t|spike) = (x(t) − (x̂(t) + Γ))2. This allows us to restate our spiking rule as follows:
the neuron should only produce a spike if L(t|no spike) > L(t|spike), or (x(t)− x̂(t))2 > (x(t)−
(x̂(t) + Γ))2. Now, squaring both sides of this inequality, defining V (t) ≡ Γ(x(t) − x̂(t)) and
defining T ≡ Γ2/2 we find that the neuron should only spike if:

V (t) > T. (3)

We interpret V (t) to be the membrane potential of the neuron, and we interpret T as the spike
threshold. This interpretation allows us to understand the membrane potential functionally: the
voltage is proportional to a prediction error—the difference between the read-out x̂(t) and the actual
signal x(t). A spike is an error reduction mechanism—the neuron only spikes if the error exceeds
the spike threshold. This is a greedy minimisation, in that the neuron fires a spike whenever that
action decreases L(t) without considering the future impact of that spike. Importantly, the neuron
does not require direct access to the loss function L(t).
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To determine the membrane potential dynamics, we take the derivative of the voltage, which gives
us V̇ = Γ(ẋ − ˙̂x). (Here, and in the following, we will drop the time index for notational brevity.)
Now, using Eqn. (1) we obtain V̇ = Γẋ− Γ(−x̂ + Γo) = −Γ(x− x̂) + Γ(ẋ+ x)− Γ2o, so that:

V̇ = −V + Γc− Γ2o, (4)

where c = ẋ+ x is the neural input. This corresponds exactly to the dynamics of a leaky integrate-
and-fire neuron with an inhibitory autapse1 of strength Γ2, and a feedforward connection strength Γ.

The dynamics and connectivity guarantee that a neuron spikes at just the right times to optimise the
loss function (Fig. 1B). In addition, it is especially robust to noise of different forms, because of
its error-correcting nature. If x is constant in time, the voltage will rise up to the threshold T at
which point a spike is fired, adding a delta function to the spike train o at time t, thereby producing
a read-out x̂ that is closer to x and causing an instantaneous drop in the voltage through the autapse,
by an amount Γ2 = 2T , effectively resetting the voltage to V = −T .

We now have a target for learning—we know the connection strength that a neuron must have at the
end of learning if it is to represent information optimally, for a linear read-out. We can use this target
to derive synaptic dynamics that can learn an optimal representation from experience. Specifically,
we consider an integrate-and-fire neuron with some arbitrary autapse strength ω. The dynamics of
this neuron are given by

V̇ = −V + Γc− ωo. (5)
This neuron will not produce the correct spike train for representing x through a linear read-out
(Eqn. (1)) unless ω = Γ2.

Our goal is to derive a dynamical equation for the synapse ω so that the spike train becomes optimal.
We do this by quantifying the loss that we are incurring by using the suboptimal strength, and then
deriving a learning rule that minimises this loss with respect to ω. The loss function underlying
the spiking dynamics determined by Eqn. (5) can be found by reversing the previous membrane
potential analysis. First, we integrate the differential equation for V , assuming that ω changes on
time scales much slower than the membrane potential. We obtain the following (formal) solution:

V = Γx− ωō, (6)

where ō is determined by ˙̄o = −ō+ o. The solution to this latter equation is ō = h∗ o, a convolution
of the spike train with the exponential kernel h(τ) = θ(τ) exp(−τ). As such, it is analogous to the
instantaneous firing rate of the neuron.

Now, using Eqn. (6), and rewriting the read-out as x̂ = Γō, we obtain the loss incurred by the
sub-optimal neuron,

L = (x− x̂)2 =
1

Γ2

(
V 2 + 2(ω − Γ2)ō+ (ω − Γ2)2ō2

)
. (7)

We observe that the last two terms of Eqn. (7) will vanish whenever ω = Γ2, i.e., when the optimal
reset has been found. We can therefore simplify the problem by defining an alternative loss function,

LV =
1

2
V 2, (8)

which has the same minimum as the original loss (V = 0 or x = x̂, compare Eqn. (2)), but yields a
simpler learning algorithm. We can now calculate how changes to ω affect LV :

∂LV

∂ω
= V

∂V

∂ω
= −V ō− V ω ∂ō

∂ω
. (9)

We can ignore the last term in this equation (as we will show below). Finally, using simple gradient
descent, we obtain a simple Hebbian-like synaptic plasticity rule:

τ ω̇ = −∂LV

∂ω
= V ō, (10)

where τ is the learning time constant.
1This contribution of the autapse can also be interpreted as the reset of an integrate-and-fire neuron. Later,

when we generalise to networks of neurons, we shall employ this interpretation.
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This synaptic learning rule is capable of learning the synaptic weight ω that minimises the difference
between x and x̂ (Fig. 1B). During learning, the synaptic weight changes in proportion to the post-
synaptic voltage V and the pre-synaptic firing rate ō (Fig. 1C). As such, this is a Hebbian learning
rule. Of course, in this single neuron case, the pre-synaptic neuron and post-synaptic neuron are the
same neuron. The synaptic weight gradually approaches its optimal value Γ2. However, it never
completely stabilises, because learning never stops as long as neurons are spiking. Instead, the
synapse oscillates closely about the optimal value (Fig. 1D).

This is also a “greedy” learning rule, similar to the spiking rule, in that it seeks to minimise the error
at each instant in time, without regard for the future impact of those changes. To demonstrate that the
second term in Eqn. (5) can be neglected we note that the equations for V , ō, and ω define a system
of coupled differential equations that can be solved analytically by integrating between spikes. This
results in a simple recurrence relation for changes in ω from the ith to the (i+ 1)th spike,

ωi+1 = ωi +
ωi(ωi − 2T )

τ(T − Γc− ωi)
. (11)

This iterative equation has a single stable fixed point at ω = 2T = Γ2, proving that the neuron’s
autaptic weight or reset will approach the optimal solution.

2 Learning in a homogeneous network

We now generalise our learning rule derivation to a network of N identical, homogeneously con-
nected neurons. This generalisation is reasonably straightforward because many characteristics of
the single neuron case are shared by a network of identical neurons. We will return to the more
general case of heterogeneously connected neurons in the next section.

We begin by deriving optimal spiking dynamics, as in the single neuron case. This provides a target
for learning, which we can then use to derive synaptic dynamics. As before, we want our network
to produce spikes that optimally represent a variable x for a linear read-out. We assume that the
read-out x̂ is provided by summing and filtering the spike trains of all the neurons in the network:

˙̂x = −x̂+ Γo, (12)

where the row vector Γ = (Γ, . . . ,Γ) contains the read-out weights2 of the neurons and the column
vector o = (o1, . . . , oN ) their spike trains. Here, we have used identical read-out weights for each
neuron, because this indirectly leads to homogeneous connectivity, as we will demonstrate.

Next, we assume that a neuron only spikes if that spike reduces a loss-function. This spiking rule is
similar to the single neuron spiking rule except that this time there is some ambiguity about which
neuron should spike to represent a signal. Indeed, there are many different spike patterns that provide
exactly the same estimate x̂. For example, one neuron could fire regularly at a high rate (exactly like
our previous single neuron example) while all others are silent. To avoid this firing rate ambiguity,
we use a modified loss function, that selects amongst all equivalent solutions, those with the smallest
neural firing rates. We do this by adding a ‘metabolic cost’ term to our loss function, so that high
firing rates are penalised:

L = (x− x̂)2 + µ‖ō‖2, (13)
where µ is a small positive constant that controls the cost-accuracy trade-off, akin to a regularisation
parameter.

Each neuron in the optimal network will seek to reduce this loss function by firing a spike. Specifi-
cally, the ith neuron will spike whenever L(no spike in i) > L(spike in i). This leads to the follow-
ing spiking rule for the ith neuron:

Vi > Ti (14)
where Vi ≡ Γ(x− x̂)− µoi and Ti ≡ Γ2/2 + µ/2. We can naturally interpret Vi as the membrane
potential of the ith neuron and Ti as the spiking threshold of that neuron. As before, we can now
derive membrane potential dynamics:

V̇ = −V + ΓT c− (ΓTΓ + µI)o, (15)
2The read-out weights must scale as Γ ∼ 1/N so that firing rates are not unrealistically small in large

networks. We can see this by calculating the average firing rate
∑N

i=1 ōi/N ≈ x/(ΓN) ∼ O(N/N) ∼ O(1).
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where I is the identity matrix and ΓTΓ + µI is the network connectivity. We can interpret the self-
connection terms {Γ2+µ} as voltage resets that decrease the voltage of any neuron that spikes. This
optimal network is equivalent to a network of identical integrate-and-fire neurons with homogeneous
inhibitory connectivity.

The network has some interesting dynamical properties. The voltages of all the neurons are largely
synchronous, all increasing to the spiking threshold at about the same time3 (Fig. 1F). Nonetheless,
neural spiking is asynchronous. The first neuron to spike will reset itself by Γ2 + µ, and it will
inhibit all the other neurons in the network by Γ2. This mechanism prevents neurons from spik-

3The first neuron to spike will be random if there is some membrane potential noise.
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Figure 1: Learning in a single neuron and a homogeneous network. (A) A single neuron represents
an input signal x by producing an output x̂. (B) During learning, the single neuron output x̂ (solid red
line, top panel) converges towards the input x (blue). Similarly, for a homogeneous network the out-
put x̂ (dashed red line, top panel) converges towards x. Connectivity also converges towards optimal
connectivity in both the single neuron case (solid black line, middle panel) and the homogeneous net-
work case (dashed black line, middle panel), as quantified by D = maxi,j(

∣∣Ωij − Ωopt
ij

∣∣2 /
∣∣Ωopt

ij

∣∣2)
at each point in time. Consequently, the membrane potential reset (bottom panel) converges towards
the optimal reset (green line, bottom panel). Spikes are indicated by blue vertical marks, and are
produced when the membrane potential reaches threshold (bottom panel). Here, we have rescaled
time, as indicated, for clarity. (C) Our learning rule dictates that the autapse ω in our single neuron
(bottom panel) changes in proportion to the membrane potential (top panel) and the firing rate (mid-
dle panel). (D) At the end of learning, the reset ω fluctuates weakly about the optimal value. (E) For
a homogeneous network, neurons spike regularly at the start of learning, as shown in this raster plot.
Membrane potentials of different neurons are weakly correlated. (F) At the end of learning, spiking
is very irregular and membrane potentials become more synchronous.
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ing synchronously. The population as a whole acts similarly to the single neuron in our previous
example. Each neuron fires regularly, even if a different neuron fires in every integration cycle.

The design of this optimal network requires the tuning of N(N − 1) synaptic parameters. How can
an arbitrary network of integrate-and-fire neurons learn this optimum? As before, we address this
question by using the optimal network as a target for learning. We start with an arbitrarily connected
network of integrate-and-fire neurons:

V̇ = −V + ΓT c−Ωo, (16)

where Ω is a matrix of connectivity weights, which includes the resets of the individual neurons.
Assuming that learning occurs on a slow time scale, we can rewrite this equation as

V = ΓTx−Ωō. (17)

Now, repeating the arguments from the single neuron derivation, we modify the loss function to
obtain an online learning rule. Specifically, we set LV = ‖V‖2/2, and calculate the gradient:

∂LV

∂Ωij
=
∑

k

Vk
∂Vk
∂Ωij

= −
∑

k

Vkδkiōj −
∑

kl

VkΩkl
∂ōl
∂Ωij

. (18)

We can simplify this equation considerably by observing that the contribution of the second sum-
mation is largely averaged out under a wide variety of realistic conditions4. Therefore, it can be
neglected, and we obtain the following local learning rule:

τ Ω̇ij = −∂LV

∂Ωij
= Viōj . (19)

This is a Hebbian plasticity rule, whereby connectivity changes in proportion to the presynaptic
firing rate ōj and post-synaptic membrane potential Vi. We assume that the neural thresholds are set
to a constant T and that the neural resets are set to their optimal values −T . In the previous section
we demonstrated that these resets can be obtained by a Hebbian plasticity rule (Eqn. (10)).

This learning rule minimises the difference between the read-out and the signal, by approaching
the optimal recurrent connection strengths for the network (Fig. 1B). As in the single neuron case,
learning does not stop, so the connection strengths fluctuate close to their optimal value. During
learning, network activity becomes progressively more asynchronous as it progresses towards opti-
mal connectivity (Fig. 1E, F).

3 Learning in the general case

Now that we have developed the fundamental concepts underlying our learning rule, we can derive
a learning rule for the more general case of a network of N arbitrarily connected leaky integrate-
and-fire neurons. Our goal is to understand how such networks can learn to optimally represent a
J-dimensional signal x = (x1, . . . , xJ), using the read-out equation ẋ = −x + Γo.

We consider a network with the following membrane potential dynamics:

V̇ = −V + ΓT c−Ωo, (20)

where c is a J-dimensional input. We assume that this input is related to the signal according to
c = ẋ + x. This assumption can be relaxed by treating the input as the control for an arbitrary
linear dynamical system, in which case the signal represented by the network is the output of such a
computation [11]. However, this further generalisation is beyond the scope of this work.

As before, we need to identify the optimal recurrent connectivity so that we have a target for learning.
Most generally, the optimal recurrent connectivity is Ωopt ≡ ΓTΓ + µI . The output kernels of the
individual neurons, Γi, are given by the rows of Γ, and their spiking thresholds by Ti ≡ ‖Γi‖2/2 +

4From the definition of the membrane potential we can see that Vk ∼ O(1/N) because Γ ∼ 1/N . There-
fore, the size of the first term in Eqn. (18) is

∑
k Vkδkiōj = Viōj ∼ O(1/N). Therefore, the second term can

be ignored if
∑

kl VkΩkl∂ōl/∂Ωij � O(1/N). This happens if Ωkl � O(1/N2) as at the start of learning.
It also happens towards the end of learning if the terms {Ωkl∂ōl/∂Ωij} are weakly correlated with zero mean,
or if the membrane potentials {Vi} are weakly correlated with zero mean.
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µ/2. With these connections and thresholds, we find that a network of integrate-and-fire neurons
will produce spike trains in such a way that the loss function L = ‖x− x̂‖2 + µ‖ō‖2 is minimised,
where the read-out is given by x̂ = Γō. We can show this by prescribing a greedy5 spike rule:
a spike is fired by neuron i whenever L(no spike in i) > L(spike in i) [11]. The resulting spike
generation rule is

Vi > Ti, (21)

where Vi ≡ ΓT
i (x− x̂)− µōi is interpreted as the membrane potential.

5Despite being greedy, this spiking rule can generate firing rates that are practically identical to the optimal
solutions: we checked this numerically in a large ensemble of networks with randomly chosen kernels.
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Figure 2: Learning in a heterogeneous network. (A) A network of neurons represents an input
signal x by producing an output x̂. (B) During learning, the loss L decreases (top panel). The differ-
ence between the connection strengths and the optimal strengths also decreases (middle panel), as
quantified by the mean difference (solid line), given by D =

∥∥Ω−Ωopt∥∥2 /
∥∥Ωopt∥∥2 and the maxi-

mum difference (dashed line), given by maxi,j(
∣∣Ωij − Ωopt

ij

∣∣2 /
∣∣Ωopt

ij

∣∣2). The mean population firing
rate (solid line, bottom panel) also converges towards the optimal firing rate (dashed line, bottom
panel). (C, E) Before learning, a raster plot of population spiking shows that neurons produce bursts
of spikes (upper panel). The network output x̂ (red line, middle panel) fails to represent x (blue
line, middle panel). The excitatory input (red, bottom left panel) and inhibitory input (green, bottom
left panel) to a randomly selected neuron is not tightly balanced. Furthermore, a histogram of inter-
spike intervals shows that spiking activity is not Poisson, as indicated by the red line that represents
a best-fit exponential distribution. (D, F) At the end of learning, spiking activity is irregular and
Poisson-like, excitatory and inhibitory input is tightly balanced and x̂ matches x.
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How can we learn this optimal connection matrix? As before, we can derive a learning rule by
minimising the cost function LV = ‖V‖2/2. This leads to a Hebbian learning rule with the same
form as before:

τ Ω̇ij = Viōj . (22)
Again, we assume that the neural resets are given by−Ti. Furthermore, in order for this learning rule
to work, we must assume that the network input explores all possible directions in the J-dimensional
input space (since the kernels Γi can point in any of these directions). The learning performance
does not critically depend on how the input variable space is sampled as long as the exploration
is extensive. In our simulations, we randomly sample the input c from a Gaussian white noise
distribution at every time step for the entire duration of the learning.

We find that this learning rule decreases the loss function L, thereby approaching optimal network
connectivity and producing optimal firing rates for our linear decoder (Fig. 2B). In this example, we
have chosen connectivity that is initially much too weak at the start of learning. Consequently, the
initial network behaviour is similar to a collection of unconnected single neurons that ignore each
other. Spike trains are not Poisson-like, firing rates are excessively large, excitatory and inhibitory
input is unbalanced and the decoded variable x̂ is highly unreliable (Fig. 2C, E). As a result of
learning, the network becomes tightly balanced and the spike trains become asynchronous, irregular
and Poisson-like with much lower rates (Fig. 2D, F). However, despite this apparent variability, the
population representation is extremely precise, only limited by the the metabolic cost and the discrete
nature of a spike. This learnt representation is far more precise than a rate code with independent
Poisson spike trains [11]. In particular, shuffling the spike trains in response to identical inputs
drastically degrades this precision.

4 Conclusions and Discussion

In population coding, large trial-to-trial spike train variability is usually interpreted as noise [2]. We
show here that a deterministic network of leaky integrate-and-fire neurons with a simple Hebbian
plasticity rule can self-organise into a regime where information is represented far more precisely
than in noisy rate codes, while appearing to have noisy Poisson-like spiking dynamics.

Our learning rule (Eqn. (22)) has the basic properties of STDP. Specifically, a presynaptic spike
occurring immediately before a post-synaptic spike will potentiate a synapse, because membrane
potentials are positive immediately before a postsynaptic spike. Furthermore, a presynaptic spike
occurring immediately after a post-synaptic spike will depress a synapse, because membrane po-
tentials are always negative immediately after a postsynaptic spike. This is similar in spirit to the
STDP rule proposed in [12], but different to classical STDP, which depends on post-synaptic spike
times [9].

This learning rule can also be understood as a mechanism for generating a tight balance between
excitatory and inhibitory input. We can see this by observing that membrane potentials after learning
can be interpreted as representation errors (projected onto the read-out kernels). Therefore, learning
acts to minimise the magnitude of membrane potentials. Excitatory and inhibitory input must be
balanced if membrane potentials are small, so we can equate balance with optimal information
representation.

Previous work has shown that the balanced regime produces (quasi-)chaotic network dynamics,
thereby accounting for much observed cortical spike train variability [13, 14, 4]. Moreover, the
STDP rule has been known to produce a balanced regime [16, 17]. Additionally, recent theoretical
studies have suggested that the balanced regime plays an integral role in network computation [15,
13]. In this work, we have connected these mechanisms and functions, to conclude that learning this
balance is equivalent to the development of an optimal spike-based population code, and that this
learning can be achieved using a simple Hebbian learning rule.
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Chapter 3

Learning an Auto-Encoder

In the previous article, we study how neurons in a population learn to
communicate in order to efficiently and collectively represent the inputs
they receive. The model consists of a recurrent network of leaky integrate-
and-fire neurons that receive common inputs through random feedforward
weights. The latter are fixed while the recurrent weights are trained to min-
imize the voltage fluctuations with a local plasticity rule. We show through
simulations that the network converges to the optimal state as defined in
(Boerlin and Denève, 2011; Boerlin et al., 2013). Such state is character-
ized by a tight balance between recurrent and feedforward inputs. Indeed,
at the end of learning (the optimal state), the voltage is proportional to
the error between the output and the input of the network. Thus if the
two tightly match, the voltage fluctuations must also be small.

The Importance of Learning the Feedforward Weights

The previous study mainly focuses on recurrent weights. However, the
distribution of the feedforward weight is also important to the quality of
the representation. In this framework, the feedforward weight vector of
each neuron defines the dimension along which the neuron represents the
signals in the global output space. Indeed, badly distributed feedforward
weight vectors may lead to the dismissal of important features in the input.
To ensure that all the relevant dimensions are well represented, one can use
large networks with a number of neurons much higher than the number of
dimensions in the input. In this case, even randomly chosen feedforward
weights will result in an even covering of the input space. In the previous
study, we adopted this solution. Because the inputs we considered are
low-dimensional (2 dimensions in figure 3), relatively small networks (50
neurons) will result in a dense coverage of the input space. However, the
stimuli received by the brain such as images are very high-dimensional. In
order to densely cover the space with random receptive fields, the use of a
huge number of neurons is required. An alternative approach is to use few
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neurons, but to choose their feedforward weights in an optimal way so as
to capture the essential features in the input. The weights do not need to
be set by hand, but can result from a learning procedure. More precisely,
one can use a plasticity rule that adapts the feedforward weights to the
input the neurons receive. In the following article we propose a solution to
this problem and we derive a learning rule for the feedforward weights that
enables the network to optimally represent its inputs.

Learning to Balance Should be Fast

The feedforward and recurrent weights are not learned separately and the
respective learning rules work hand in hand. Assume that the network is
already in a tightly balanced state thanks to the learning of the recurrent
connections. Any change in the feedforward weights will likely cause an im-
balance in the membrane potentials. In fact, the recurrent weights are no
longer adapted to the new encoding weights and the recurrent input does
not cancel the feedforward input as precisely as before. However, in order
to converge, the learning of the feedforward weights requires the network
to always be in the balanced state. For this reason, after each update of
the encoding weights, recurrent connectivity should be relearned to always
insure a tightly balanced state and thus an efficient encoding. The restora-
tion of the balance should be very quick to ensure that the learning will
converge in a reasonable time.

The learning rule that we derived in the previous work is indeed able to
drive the network into the balanced state. However, it does not have the
rapidity required to enable the learning of the feedforward weights simulta-
neously. A possible reason for this slow convergence is the presence of the
firing rate term in the learning rule. This changes the weights continuously
and on a timescale defined by the time constant of the decoder. However,
and as shown in the supplementary information of the next article, the im-
pact of the fast weights on balance and coding is defined on a much shorter
timescale which is that of a single population’s ISI. Thus, the presence of
the rate term may introduce noisy and irrelevant updates that take time
to be averaged out. We remedy this problem by deriving an equally local
learning rule. However, this rule results from minimizing the membrane
potential fluctuations only at spike times rather than continuously. The
new learning rule is two orders of magnitude faster in converging to the
balanced state (Figure 1E, Chapter 4). The network undergoing the feed-
forward and the recurrent learning rules indeed converges to the optimal
state.
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Towards More Biological Realism

In the examples considered so far, a neuron can be simultaneously excita-
tory and inhibitory. However, in biological networks, this is usually not the
case. A neuron exclusively projects inhibitory or excitatory synapses. This
principle is known as Dale’s law. For this reason, we extend our approach
to networks undergoing this constraint. In such networks, excitatory neu-
rons inhibit each other with disynaptic inhibition. The Dale’s and the
non-Dale’s network share the same learning rules.

We also extend the framework to the learning of non-whitened input.
In all the previously considered examples, the input channels are indepen-
dent. However, the signals received by the brain may be highly correlated
such as nearby pixels in an image. Using a slight modification, we derived
a feedfoward learning rule that is sensitive to the second-order statistics
in the inputs. Indeed, the learning rule enables the network to optimally
represent signals that contain correlations.

The paper is organized in two parts. The main manuscript explains the
approach and the results without entering into the mathematical details.
The Supplementary Information is devoted to the rigorous derivation of
the network dynamics and the learning rules. We also present convergence
proofs as well as the details and parameters of the simulations.



Learning to represent signals spike by spike

Wieland Brendel,1,2,3,∗ Ralph Bourdoukan,2,∗ Pietro Vertechi,1,2,∗

Christian K. Machens,1,†, Sophie Denève2,†
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A key question in neuroscience is at which level functional meaning can be as-

signed to biophysical phenomena. The variability and redundancy of neural

responses have often led to a dismissal of single neurons in favor of large pop-

ulations. Here we show that many single neuron properties, such as variability

of spiking, tuning to inputs, or balance of excitation and inhibition, emerge

whenever a network learns to transmit information parsimoniously and pre-

cisely to the next layer. Using coding efficiency as an objective, we derive spike-

timing-dependent learning rules for a recurrent neural network, and we pro-

vide exact solutions for the networks’ convergence to an optimal state. As a re-

sult, we deduce an entire network from its input distribution and a firing cost.

After learning, basic biophysical quantities such as voltages, firing thresholds,

excitation, inhibition, or spikes acquire precise functional interpretations.
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Many neural systems encode information by distributing it across the activities of large pop-

ulations of spiking neurons. A lot of work has provided pivotal insights into the nature of the

resulting population codes [1, 2, 3, 4, 5] and their generation through the internal dynamics of

neural networks [6, 7, 8, 9]. However, we understand surprisingly little about the precise role of

each individual spike in distributing information and in mediating learning.

We revisit this problem by studying a population of excitatory (E) neurons that are intercon-

nected with inhibitory (I) interneurons (Fig. 1Ai). The excitatory neurons receive many input

signals from other neurons within the brain. To encode these signals efficiently, each spike fired

by an excitatory neuron should ideally contribute new and unique information to the population

code. If each neuron receives a different input signal, this is easy. However, if two excitatory

neurons receive similar inputs, they need to communicate with each other so as to not fire spikes

for the same type of information. One possibility is that the inhibitory interneurons arbitrate

such conflicts by creating competitive interactions between excitatory neurons [10]. How can

neurons learn this from experience?

To formalize the problem, we will define a measure for the coding efficiency of a neural

population (see Supplementary Information for mathematical details). First, we impose that

any downstream area should be able to decode the input signals, xj(t), from a weighted sum

of the neural responses, x̂j(t) =
∑N

k=1Djkrk(t), where Djk is a decoding weight, and rk(t)

is the postsynaptically filtered spike train of the k-th excitatory neuron. Second, we assume

that the neurons fire as few spikes as possible, or, more generally, that they minimize a cost

associated with firing, which we denote by C(r). In other words, we measure the efficiency of

the population code through an objective function that trades off accuracy for cost; this objective

function is simply the sum of the coding error and the cost, E =
∑

j(xj − x̂j)2 + C(r).

A single excitatory neuron has no access to this global objective function. Rather, it has

access to the input signals, xj(t), that arrive via feedforward synapses, Fij , and to the fil-
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tered spike trains of other neurons, rk(t), that arrive via recurrent synapses, Ωik. For sim-

plicity, we assume that neurons can be modeled as leaky integrate-and-fire neurons, and we

will treat the inhibitory interneurons as simple relays for now (Fig. 1Aii). A neuron’s mem-

brane voltage is then the sum over all its integrated input currents, which here evaluates to

Vi(t) =
∑J

j=1 Fijxj(t) +
∑N

k=1 Ωikrk(t) (see Supplementary Information).

A crucial insight comes from studying a scenario in which the global coding error is quite

small, so that xj(t)− x̂j(t) ≈ 0. If the recurrent connections are set to Ωik = −∑j FijDjk (see

Fig. 1Aii,iii), then the membrane potential of each neuron becomes Vi(t) =
∑

j Fij

(
xj(t) −

x̂j(t)
)
≈ 0. Accordingly, the membrane potential now reflects a part of the global coding er-

ror, despite being computed from only feedforward and recurrent inputs. Each time this error

becomes too large, the membrane potential reaches threshold. The neuron fires, updates the de-

coded input signal, and thereby decreases the error, as reflected in the voltage reset after a spike.

Furthermore, through the recurrent synapses, the neuron will communicate the change in the

global coding error to all neurons with similar feedforward inputs. In turn, any excitatory feed-

forward input into a neuron will immediately be counterbalanced by a recurrent inhibitory input

(and vice versa). This latter reasoning links the precision of each neuron’s code to the known

condition of excitatory and inhibitory balance (EI balance) [11, 12, 13, 14, 15]. Indeed, balanc-

ing excitatory and inhibitory inputs optimally would minimize the variance of the membrane

potential, and thus, the error projected in the direction of each neuron’s feedforward weights

[10, 16].

[Figure 1 about here]

How can a network of neurons learn to move into this very specific regime? Several learn-

ing rules for EI balance have been successfully proposed before [17, 18], and spike-timing-

dependent plasticity (STDP) can even balance EI currents on a short time scale [18]. However,
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here we both need to balance EI currents as precisely as possible, and we need to ensure con-

vergence onto the right type of recurrent connectivity (Fig. 1Aii,iii). We will first examine the

problem of EI balance more carefully by studying a neuron’s membrane potential directly after

it receives an inhibitory spike from one of its recurrent connections (Fig. 1Bi; black trace). After

the inhibitory spike (Fig. 1Bi, red), the neuron integrates its feedforward input currents, leading

to a transfer of electric charges across the membrane. The arrival of the second spike (Fig. 1Bi,

blue) then causes a transfer of charges in the opposite direction, which ideally should cancel the

total charge accumulated through the feedforward inputs. When the inhibitory spike overshoots

(undershoots) its target, then the respective synapse needs to be weakened (strenghtened), see

Fig 1Bii,iii. This scheme keeps the neuron’s voltage (and thereby the coding error) perfectly

in check. The regime can be reached by a simple voltage-based learning rule for the recurrent

weights of neuron i, applied each time a presynaptic neuron k spikes,

∆Ωik ∝ −β(Vi + µri)− Ωik − µδik. (1)

Here Vi is the postsynaptic membrane potential before the arrival of the presynaptic spike, while

β and µ are positive terms that implement a possible cost factor C(r) (see Supplementary Infor-

mation). In the absence of such costs (β = 2 and µ = 0) the inhibitory weights will converge to

the average postsynaptic membrane depolarization at the time of the presynaptic spike, scaled

by a factor of two. As a result, the inhibitory spikes will systematically confine the membrane

potential around its resting value.

Fig. 2 illustrates the effect of this learning rule in a network with 20 neurons receiving

two random, time-varying inputs. Here the network was initialized with lopsided feed-forward

weights and with recurrent weights equal to zero (Fig. 2Bi). While the network receives the ran-

dom inputs, the recurrent synapses change according to the learning rule, Eq. 1, and each neuron

thereby learns to balance its inputs. Once learnt, the recurrent connectivity reaches the desired
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structure, Ωik = −∑j FijDjk for some Djk, and the voltages of the neurons become propor-

tional to part of the coding error (see Supplementary Information for convergence proof). As a

result of the EI balance, the voltages fluctuations of individual neurons are much better bounded

around the resting potential (Fig. 2Eii), the global coding error decreases (Fig. 2Aii,Cii), and

the network experiences a large drop in the overall firing rates (Fig. 2Aii,Dii).

Despite these overall improvements, however, the network still fails to represent part of

the input, even after the recurrent connections have been learnt (Fig. 2Cii, arrow). Indeed, in

the example provided, this part of the input signal cannot be properly represented because the

feedforward connections do not cover the full two-dimensional signal space (Fig. 2Bii), which

becomes particularly evident in the tuning curves of the individual neurons (Fig. 2Gii).

Consequently, the feedforward connections need to change as well, so that all parts of the

input space are properly covered. We can again obtain a crucial insight by considering the fi-

nal, ‘learnt’ state, in which case the feedforward connections are directly related to the optimal

decoding weights, i.e., Fik = Dki (see Supplementary Information). In Fig. 1C, we examine

the decoding problem from the point of view of five neurons that seek to represent two input

signals. If an input signal lies approximately in the direction of the vector of one of the neurons’

decoding weights, then a few spikes suffice to represent it accurately (Fig. 1Ci). If the input sig-

nal lies elsewhere, many more spikes are required to achieve the same accuracy (Fig. 1Cii). For

random input signals with zero mean and equal variance, as in Fig. 1Ci, the best representation

is achieved when the decoding vectors are evenly distributed. (See Fig. 1D and Supplementary

Information for correlated input signals.)

The feedforward weights of neuron j can learn to optimally cover the input space if they

change each time neuron j fires a spike,

∆Fij ∝ αxi − Fij, (2)
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where xi is the feed-forward input signal, and α > 0 is a scaling factor. In the case of correlated

inputs, the term “Fij” is replaced by the correlation of pre- and post-synaptic input currents (see

Supplementary Information for details and convergence proofs).

From the perspective of standard frequency-modulated plasticity, the learning rule is Heb-

bian in that connections are reinforced for co-occurring high pre- and postsynaptic activity.

Because of the competition introduced by the recurrent connections, a post-synaptic spike oc-

curs only if no other neuron fired first in response to the same signal. This introduces repulsion

between the feedforward weights of different neurons and eventually leads to an even coverage

of the input space.

[Figure 2 about here]

The effect of the feedforward plasticity rule is shown in Fig. 2Aiii–Giii. The feedforward

weights change until the input space is spanned more uniformly (Fig. 2Biii). While these

changes are occuring, the recurrent weights remain plastic and keep the system in a balanced

state. At the end of learning, the neuron’s tuning curves are uniformally distributed (Fig. 2Giii),

and the quality of the representation becomes optimal for all input signals (Fig. 2Aiii,Ciii).

Importantly, the final population code represents the input signals spike by spike. Initially,

the neurons are unconnected (Fig. 2Bi), and their voltages reflect the smooth, time-varying input

(Fig. 2Ei,Fi). Even with a bit of noise in the input currents, neurons fire the spikes at roughly the

same time from trial to trial. After learning, the membrane potentials are correlated, reflecting

their shared inputs, yet the individual spikes are far more susceptible to random fluctuations

(Fig. 2Eiii,Fiii). Indeed, whichever neuron happens to fire first immediately inhibits (resets) the

others, so that a small initial difference in the membrane potentials is sufficient to change the

firing order completely. The random nature of spike timing is therefore a direct consequence of
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a mechanism that prevents any redundant (or synchronous) firing. More generally, any source

of noise or dependency on previous spike history will change the firing order, but without a

significant impact on the precision of the code. Thus, variable spike trains co-exist with a highly

reproducible and precise population code.

Fortunately, the same results can be obtained in networks with separate excitatory (E) and

inhibitory (I) populations (Fig. 1Ai). In this more realistic case, the inhibitory population must

simply learn to represent the population response of the excitatory population, after which it can

balance the excitatory population in turn. This can be achieved if we train the EI connections

using the feedforward rule (Eq. 2) while the II, EE, and IE connections are trained using the

recurrent rule (Eq. 1; see Supplementary Information for details).

[Figure 3 about here]

Fig. 3 illustrates how the key results obtained in Fig. 2 hold in the the full EI network. The

network converges to the optimal balanced state (Fig. 3B), and the precision of the represen-

tation improves substantially (Fig. 3Bi, Cii), despite the overall decrease in output firing rates

(Fig. 3Bii, Cii). Initially regular and reproducible spike trains (Fig. 3Biii) become asynchronous,

irregular, and comparable to independent Poisson processes (Fig. 3Biii, pairwise correlations are

smaller than 0.001). Finally, we observe that the neuron’s tuning curves, when measured along

the first two signal directions, are bell-shaped just as in the previous example (Fig. 3Dii). Note

that the inhibitory neurons fire more and have broader tuning than the excitatory neurons. This

result holds independent of the chosen initial state of the network, and is simply owed to their

smaller number.

[Figure 4 about here]
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We have so far considered uncorrelated inputs. The case of correlated input signals is illus-

trated in Fig. 4 (see also supplementary Fig. S1). Here we trained a network to represent speech

signals, filtered through 25 frequency channels, in its spiking output (Fig. 4A). Despite consist-

ing of 100 neurons that fire at only ∼ 4Hz the network learns to represent the signals with high

precision (Fig. 4B,C). By learning the statistics of speech sounds (supplementary Fig. S2), the

network becomes specialized for this type of signal. A new “non-speech” stimulus therefore

results in poor EI balance, high firing rates, and poor coding (Fig. 4D,E). After experiencing the

new sound several times, however, the network represents the “non-speech” sound as precisely

and parsimoniously as the previously experienced speech sounds (Fig. 4F).

The accommodation of the network to the new stimulus is largely mediated by plasticity

at the recurrent synapses, whereas the feedforward synapses are less essential. Indeed, turning

off feedforward plasticity (but not recurrent plasticity) lets the network reach almost the same

performance for the new stimulus, whereas turning off recurrent plasticity (but not feedforward

plasticity) can even worsen the coding performance instead of improving it (supplementary

Fig. S2).

Since learning the new stimulus relies on the recurrent connections re-balancing the feed-

forward inputs, EI balance should directly reflect behavioral performance, a prediction compat-

ible with recent observations in the auditory cortex [19]. As a consequence, blocking inhibitory

plasticity during perceptual learning should result in a worsening of EI balance and behavioral

performance, while blocking excitatory plasticity should have more moderate effects.

In summary, we have shown how populations of excitatory and inhibitory neurons can learn

to efficiently represent a signal spike by spike. This type of unsupervised learning, which in-

cludes both principal and independent component analysis as special cases [20], has previously

been studied largely in rate networks [21, 22, 23, 24]. Implementations that seek to mimic biol-

ogy by assuming spiking neurons, recurrent network architectures, or local learning rules have
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been largely limited to heuristic or approximative approaches [25, 26, 27, 28]. Using a rigorous

top-down approach, we have here derived biologically plausible rules that are guarantueed to

converge to a specific connectivity and achieve a maximally efficient code. Besides solving the

problem of unsupervised learning in spiking networks, our framework may provide a solid start-

ing point to move to other types of computations. Thus, a second set of slower connections can

implement arbitrary linear dynamics in our learnt networks [10], and the framework presented

here may provide crucial intuitions for the learning of these connections as well.

Apart from these theoretical advances, many of the critical features that are hallmarks of cor-

tical dynamics follow naturally from our framework, even though they were not included in the

original objective. We list four of the most important features. First, the predicted spike trains

are highly irregular and variable, which has indeed been widely reported in cortical neurons

[29, 5]. However, this variability is a signature of the network’s coding efficiency, rather than

detrimental [14] or purposeful noise [30, 31]. Second, despite this spike train variability, the

membrane potentials of similarly tuned neurons are strongly correlated (due to shared inputs),

as has indeed been found in various sensory areas [32, 33]. Third, local and recurrent inhibition

in our network serves to balance the excitatory feedforward inputs on a very fast time scale.

Such EI balance, in which inhibitory currents track excitatory currents on a millisecond time

scale has been found in various systems and under various conditions [34, 35]. Fourth, we have

derived learning rules whose polarity depends on the relative timing of pre-and post-synaptic

spikes (see insets in Fig. 3A). In fact, the respective sign switches simply reflect the immediate

sign reversal of the coding error (and thus of the membrane potential) after each new spike. As

a result, most connections display some features of the classic STDP rules, e.g. LTP for pre-

post pairing, and LTD for post-pre pairing [36, 37]. The only exception are E-E connections

that exhibit “reverse STDP”, i.e. potentiation for post-pre pairing (Fig. 3A). Despite their sim-

plicity, these rules are not only spike-time dependent but also weight and voltage-dependent, as
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observed experimentally [26].

Our framework thereby bridges from the essential biophysical quantities, such as the mem-

brane voltages of the neurons, to the resulting population code, while providing crucial new

insights on learning and coding in spiking neural networks.
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Figure 1: Networks learning to represent analog signals efficiently with spikes. A. (i) Recurrent neural network
with input signal x (purple) and signal estimate x̂ (green), as read out from the spike trains of the excitatory pop-
ulation. (ii) Simplified network without separate excitatory and inhibitory populations. (F=feedforward weights,
D=decoding weights, Ω=recurrent weights) (iii) Same as (ii), but unfolded to illustrate the effect of the recurrent
connections. B. A single neuron’s EI balance as a target of learning for recurrent connections. (i) Ideal case with
EI balance. (ii) One inhibitory synapse too weak. (iii) One inhibitory synapse too strong. Shown are the neuron’s
membrane voltage (black), spikes from three inhibitory neurons (vertical lines, color-coded by connection), sig-
nal (purple), and signal estimate (green). C. Influence of feedforward weights on signal encoding and decoding,
shown for a five-neuron network encoding two signals with zero mean and equal variance (gray area). (i) Optimal
scenario. (ii) Sub-optimal scenario. D. Similar to C, but for correlated input signals.
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population firing rate (orange) over learning. B. Feedforward and recurrent connectivity at three stages of learning.
In each column, the left panel shows the two-dimensional feedforward weights, and the right panel the matrix of
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varying input signals (purple) and signal estimates (green). Signal estimates in the naive network are constructed
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after learning of the recurrent weights. D. Spike rasters from the network. E. Voltages and spike times of three
exemplary neurons. Dashed lines illustrate the resting potential. F. As in E, but for a different trial. G. Tuning
curves (firing rates as a function of an input with variable angle and constant radius in polar coordinates) of all
neurons in the network.
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Supplementary Material

Learning to represent signals spike by spike

Wieland Brendel∗, Ralph Bourdoukan∗, Pietro Vertechi∗,
Christian K. Machens, and Sophie Denève

The supplementary material is structured as follows: In section 1 we describe
the spiking recurrent neural networks that we are using throughout the paper,
and we review the connectivity patterns of the networks that optimally encode
the input signals in their spike trains. We then discuss the problem of learning
the connectivity of the respective optimal networks in section 2 and provide the
core intutions on learning in section 3, namely, that the tight balance between
excitatory and inhibitory currents is the key signature of the optimal networks
that needs to be learnt. In section 4 we then derive the voltage-based synaptic
plasticity rules for the feedforward and recurrent connections that are used in
the main paper, and we discuss their mathematical properties. In section 5 we
apply these learning rules to the full EI network. All simulation parameters as
well as pseudo-code are provided in Section 6, and additional simulations and
details on the learning of the speech signals are presented in Section 7.
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1 Spiking recurrent neural networks

In this section, we describe the network of integrate-and-fire neurons whose
synaptic weights we will learn. We furthermore introduce an optimality criterion
that we will use to define an ‘optimal’ spiking neural network, whose specific
connectivity structure will provide the target of learning. We largely follow the
derivations of [1, 2].

1.1 Inputs and outputs

We consider a recurrent neural network with NE excitatory and NI inhibitory
neurons (compare Figure 1Ai in the main paper). The network receives a set
of time-varying inputs c(t) =

(
c1(t), c2(t), . . . , cI(t)

)
and produces a set of spike

train outputs from the excitatory population, oE(t) =
(
oE1 (t), oE2 (t), . . . , oENE

(t)
)
.1

Each spike train is as a sum of Dirac delta functions, o(t) =
∑
tk
δ(t−tk), where

tk are the spike times.

1In general, we will use bold-faced letters to indicate vectors or matrices, and italic letters
to indicate scalar variables.

2



We furthermore define filtered versions of the input and output signals. First,
the filtered input signal, x(t), is given by

ẋ(t) = −λx(t) + c(t), (S.1)

and the filtered spike trains of the excitatory neurons are given by

ṙE(t) = −λrE(t) + oE(t). (S.2)

Here, the parameter λ sets the decay rate of the respective variables. We note
that for slowly changing signals, x(t) and c(t) are just scaled versions of each
other. This is the scenario most applicable to our work, and we therefore refer to
both variables as ‘input signals’. Indeed, in the main text we did not distinguish
between c(t) and x(t), but will do so here to be mathematically exact. We
assume that these input signals are distributed according to some distribution
q(x). Throughout the first part of the supplementary information (SI), we will
assume that this distribution is ‘white’, i.e., that its covariance matrix is the
identity.

Each filtered spike trains can be viewed as a sum over postsynaptic poten-
tials. We will sometimes refer to these filtered spike trains as ‘instantaneous
firing rates’ or simply ‘firing rates’, even though, strictly speaking, the variables
rEi (t) have units of firing rates scaled by a factor 1/λ. We note that this defi-
nition slightly deviates from [1]. The spike trains of the inhibitory interneurons
are not considered to be part of the output. We will simply write oI(t) for the
vector of these spike trains, and rI(t) for the respective filtered versions. Since
there are NI inhibitory neurons, both vectors are NI -dimensional.

1.2 Voltage dynamics

We assume that the membrane voltages of both the excitatory and inhibitory
neurons follow the dynamics of current-based, leaky integrate-and-fire neurons.
Specifically, the voltage V En of the n-th excitatory neuron is given by

V̇ En (t) ≡ ∂V En
∂t

= −λV En (t)+FEn ·c(t)+ΩEE
n ·oE(t)+ΩEI

n ·oI(t)+ση(t), (S.3)

where FEn are the feedforward weights of neuron n, ΩEE
n are the weights of

the recurrent excitatory inputs, ΩEI
n are the weights of the recurrent inhibitory

inputs, and ση(t) is a noise term. The multiplication sign ‘·’ denotes the inner
product or dot product. We generally assume that the feedforward weights can
be either excitatory or inhibitory, meaning that individual elements of FEn can
be either positive or negative. The elements of ΩEI

n are assumed to be negative
and the elements of ΩEE

n are assumed to be positive, with one exception: the
self-connection weight ΩEEnn is assumed to be negative, as it determines the
neuron’s reset potential after a spike. Whenever the neuron hits a threshold,
TEn , it fires a spike and resets its own voltage. In other words, we have included
the reset of the integrate-and-fire neuron in its self-connection for mathematical
convenience. After each spike, the voltage is therefore reset to V En → TEn +ΩEEnn ,
where ΩEEnn is a negative number.

Similarly, the membrane voltage V In of the n-th inhibitory neuron follows
the dynamics

V̇ In (t) ≡ ∂V In
∂t

= −λV In (t) + ΩIE
n · oE(t) + ΩII

n · oI(t) + ση(t), (S.4)
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where ΩIE
n are the recurrent weights from the excitatory population and ΩII

n are
the recurrent weights from the inhibitory population. The thresholds are given
by T In and the reset is contained in the element ΩIInn of the recurrent inhibitory
input.

1.3 Voltage dynamics without interneurons

To develop the learning rules for this network, it will prove quite useful to start
with a simpler network in which we ignore the constraints imposed on biological
networks due to Dale’s law, i.e., due to the split of excitation and inhibition into
separate pools of neurons. To this end, we will defer the treatment of the full
EI network to section 5 and omit the inhibitory interneurons from now on by
allowing direct inhibition between the excitatory neurons. We can then drop all
EI subscripts and simplify the dynamics of the membrane voltage,

V̇n(t) = −λVn(t) + F>n c(t) + Ω>n o(t) (S.5)

where the neuron index n runs from 1 . . . N (with N = NE) and the recurrent
weights Ωn ∈ RN can be both excitatory or inhibitory. We also left out the noise
term, since it will essentially be irrelevant for the derivation of the learning rules.
The treatment of the full EI network can be found in section 5. For notational
convenience, we will furthermore write all inner products as matrix products,
so that Fn · c(t) = F>n c(t) etc.

The synaptic weights of the individual neurons can be combined to yield
the connectivity matrices of the network. Throughout the SI, we define the
N × I matrix of feedforward weights as F = [F1,F2, . . . ,FN ]> and the N ×N
matrix of recurrent weights as Ω = [Ω1, . . . ,ΩN ]>. This allows us to write the
dynamics of the whole network in the compact form

V̇(t) = −λV(t) + Fc(t) + Ωo(t),

where V is simply the N -dimensional vector of all voltages. Finally, we can
formally integrate the differential equation, using (S.1) and (S.2), to obtain

V(t) = Fx(t) + Ωr(t). (S.6)

Note that this integration does not constitute an explicit solution to the differ-
ential equation, since the instantaneous firing rates, r(t), appear on the r.h.s.
However, the integration highlights the particular relation between the voltages
and the filtered spike trains, which will become useful further below.

1.4 Readouts and objectives

The network receives the time-varying input signals, x(t), and generates a set
of output spike trains, o(t). We will assume that a downstream area will seek
to construct an estimate x̂(t) of the input signal from a weighted sum of the
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filtered output spike trains, 2

x̂ = Dr (S.7)

=

NE∑

n=1

Dnrn

where D is an I × NE matrix of decoder weights, and Dn are the columns of
this matrix. The vector Dn summarizes the contribution of neuron n to the
reconstruction of the signal.3 For future reference, we note that we can use
(S.2) to obtain a differential equation for this readout,

˙̂x = −λx̂ + Do.

We can measure the quality of any readout by averaging its performance over a
time interval T . To denote time averages of a quantity z(t), we will use angular

brackets so that 〈z(t)〉t = 1
T

∫ T
0
z(t). With this in mind, we define the following

loss function,

L = 〈`(t)〉t
≡
〈
‖x(t)− x̂(t)‖2 + C

(
r(t)

)〉
t

where the first term inside the brackets is a quadratic measure of the recon-
struction error, the second term is a cost term on the firing rates. If the time
interval T over which this loss is averaged is large compared to the time-scale
of the input, then the distribution of inputs c during this interval is approx-
imately the same as the true input distribution q(c). Hence, for large T we
essentially sample the loss evenly over the distribution q(c) of all possible in-
puts c (and hence over the distribution of input signals q(x), since the signals
x are filtered versions of c). To denote expectation values of a quantity z(x)
with respect to the distribution q(x), we will again use angular brackets, writing
〈z(x)〉q(x) =

∫
dxq(x)z(x). Accordingly, we can rewrite (S.8) as an estimate of

the expected loss over the inputs,4

L = 〈`(x)〉q(x)

=
〈
‖x− x̂‖2 + C(r)

〉
q(x)

. (S.8)

For ease of notation we will typically suppress the difference between these two
formulations and simply use angular brackets, 〈z〉, to denote averaging of the
variable z over either time or input signals. Similarly, we will write

` = ‖x− x̂‖2 + C(r) (S.9)

2Please note that we will generally drop the explicit notion of time-dependence to stream-
line the presentation, and so we here write x̂ instead of x̂(t) and r instead of r(t).

3Please note that Dn denotes a column of the decoder matrix D whereas Fn, for instance,
denotes a row of the matrix of excitatory feedforward weights. Nonetheless, all vectors, in-
cluding these two, are assumed to be column vectors.

4We previously assumed that the distribution q(x) is white, i.e., its covariance matrix is
the identity. For non-white signals, it is advantageous to modify the definition of the loss, and
we will discuss this more general case in section 4.8.
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to refer either to the time-dependent loss `(t) or the signal-dependent loss `(x).
The cost term, C(r), allows us to assign a ‘cost’ to the representation (in

terms of filtered spike trains) chosen by a particular network. Typical choices
for the cost-term are C(r) =

∑
i r

2
i = ‖r‖2 or C(r) =

∑
i |ri| = ‖r‖1. (We will

discuss the rationale for these choices in section 1.8.) For concreteness, we adopt
a linear sum of the two, but many results and intuitions directly generalize to
other cost functions. The objective (S.9) then reads

` = ‖x− x̂‖2 + µ ‖r‖2 + ν ‖r‖1 . (S.10)

1.5 The optimal decoder

The cost function not only allows us to define the quality of a particular recon-
struction, x̂ = Dr, but it also allows us to determine the best possible decoder
D for a given network. The corresponding optimization problem is identical to
linear regression. Taking the derivative of (S.8) with respect to D, we have

∂L

∂D
= −2

〈
(x− x̂)r>

〉
,

which we can set to zero to obtain the well-known linear regression solution,

D =
〈
xr>

〉 〈
rr>

〉−1
. (S.11)

For each particular network architecture with feedforward weights F and re-
current weights Ω, we can employ this formula to find the respective optimal
decoder. Indeed, we used this formula in Figures 2–4 in the main text, when-
ever we reconstruct the input signal from the spike trains of a naive, unlearnt
network.

1.6 The optimal decoder under length constraints

The (optimal) decoder will be an important conceptual quantity for the learning
rules of the spiking network. In that context, however, the optimal decoder will
be constrained to be of a particular length. While the necessity of this constraint
will only become clear below, we here describe the corresponding optimization
problem for future reference. (This subsection can also be skipped on first
reading.)

Specifically, we will constrain the neurons’ individual contributions to the
readout, Dn, to be of a certain length. Using a set of Lagrangian multipliers
λn, we simply add these length constraints to the mean square error of the
reconstruction error, (S.8), to obtain the modified loss function 5

L =
〈
‖x− x̂‖2

〉
+

NE∑

n=1

λn
(
‖Dn‖2 − an

)
,

where an specifies the length of the n-th decoder Dn. Taking the derivative of
the loss with respect to Dn (and remembering that x̂ =

∑
n Dnrn) yields

∂L

∂Dn
= −2 〈(x− x̂)rn〉+ 2λnDn.

5Note that we leave out the cost term C(r) for simplicity, since it does not depend on the
decoder.
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In turn, we can set the derivative to zero to find the minimum of the loss
function. An insightful implicit solution is found by writing

Dn =
1

λn
〈(x− x̂)rn〉 , (S.12)

and illustrates that the decoder will generally align with the direction of the
largest reconstruction errors whenever the neuron fires strongly. An explicit
solution can be found as well, corresponding to a penalized least square solution,
and is given by

D =
〈
xr>

〉 〈
rr> + Λ

〉−1
.

where Λ is a diagonal matrix whose entries are the Lagrangian constraints, λn.
This equation can then be compared with the unconstrained solution, (S.11).

1.7 The connectivity and thresholds of the optimal net-
work

The optimal decoder allows us to find the best possible reconstruction for a given
network. We emphasize that the ‘best possible reconstruction’ is not necessarily
a good one; depending on the network connectivity, the reconstruction may not
work at all. To counter this problem, we will study how to choose the free
internal parameters of the network—the synaptic weights and the thresholds—
such that the loss function is minimized. In other words, instead of assuming
that the network is given, and then optimizing the decoder D, we will now
assume that the decoder is given, and then optimize the network. We will do
so following the derivations layed out in [1].

First, we assume that we have a given and fixed decoder, D. We can then
consider the effect of a spike of neuron n on the loss ` (S.10). The spike will
increase the filtered spike train, rn → rn+1, and thus update the signal estimate
according to x̂→ x̂ + Dn, where Dn is the n-th column of the decoder matrix
D. We can therefore rewrite the objective (S.10) after the firing of the spike as

`(neuron n spiked) = ‖x− x̂−Dn‖2 + µ ‖r + en‖2 + ν ‖r + en‖1 ,

where [en]j = δnj . We adopt a greedy optimization scheme in which a neuron
fires as soon as its spike decreases the loss. Mathematically, this condition yields
the expression `(n spiked) < `(n did not spike), from which we can immediately
derive the spiking condition [2, 1],

D>nx−D>nDr− µrn >
1

2
(‖Dn‖22 + µ+ ν).

Notice that all terms on the l.h.s. are time-dependent while all terms on the
r.h.s. are constant. We will now show that we can identify the l.h.s. of this
inequality with the (time-varying) voltages of our neurons, and the r.h.s. with
the (constant) thresholds,

Vn(t) = D>nx−D>nDr− µrn, (S.13)

Tn =
1

2
(‖Dn‖2 + µ+ ν). (S.14)
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To see why we can make this equivalence, the reader can either compare the
voltage in the above equation with (S.6), or we can take the temporal derivative
of Vn to obtain

V̇n = D>n ẋ−D>nDṙ− µṙn,
= D>n (−λx + c)−D>nD(−λr + o)− µ(−λrn + on),

= −λVn + D>n c− (D>Dn + µen)>o,

where we used (S.1) and (S.2) in the second line, and (S.13) in the third line.
This differential equation for the membrane voltage can now be compared

with the equation for the general network of integrate-and-fire neurons, (S.5).
To be optimal, a network should therefore have the following connectivity,

F = D>,

Ω = −D>D− µI

= −FF> − µI,

where IN is the N × N identity matrix.6 These connectivities are similar to
those of optimal rate networks that are designed to minimize the loss function
(S.10) [3, 4, 5, 6]. They are quite specific in that the recurrent weights are sym-
metric and, as shown in the last equation, are directly related to the feedforward
weights. Furthermore, the thresholds are similarly related to the recurrent (and
thereby the feedforward connectivities) via (S.14) so that

T =
1

2

(
diag(D>D) + µ+ ν

)

=
1

2
(−diag(Ω) + ν) ,

where T is simply the N -dimensional vector of all thresholds.
An important observation is that the spiking condition of a single neuron

relies on local information only and does not require the evaluation or knowledge
of the full objective function. Indeed, rewriting (S.13) by using the definition of
x̂, we obtain

Vn(t) = D>n (x− x̂)− µrn, (S.15)

so that the voltage reflects both the part of the reconstruction error, x − x̂,
that is projected onto the decoder weights Dn, as well as the quadratic cost
term. Accordingly, the voltage acquires a precise functional interpretation in
the optimal network. Furthermore, a spike fired by a neuron is designed to
decrease this projected error, and in turn decreases the objective [1].

1.8 The cost-term revisited

With the structure of the optimal network in mind, we can reconsider the im-
portance of the cost term, C(r). To do so, we imagine that there are (many)

6Note that, since we are now ignoring Dale’s law, all synaptic weights can be both excitatory
and inhibitory. For pedagogical purposes, however, it is often useful to consider the case in
which all feedforward weights are excitatory, and hence all lateral weights are inhibitory (in
the optimal network). We made use of this scenario in Figure 1 of the main paper, and will
use it in the SI, as well
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more neurons than independent inputs, i.e., N > I. Ignoring spikes for a mo-
ment, and assuming graded firing rates r and constant inputs x, we observe that
the solution space of (S.8) is degenerate in that many possible combinations of
firing rates can minimize the objective. Possible solutions are those in which
only a few neurons fire with high rates (sparse regime), and those in which many
neurons fire with fairly low firing rates (dense regime).

The cost term allows us to control which solution the network converges to.
The typical choice to enforce sparse population responses is a so-called L1-cost,
C(r) = ‖r‖1 =

∑
n |rn|, and the typical choice to enforce a dense population

code is a so-called L2-cost C(r) = ‖r‖22 =
∑
n r

2
n. Many other costs such

as slowness, group sparsity and others have been extensively discussed in the
literature, especially in the context of regularization. We here adopt a linear
sum of L1- and L2-cost for the rest of this manuscript, but the generalisation
to other cost functions is possible with typically few modifications (see also [1]
for a more detailed discussion).

2 The learning problem

Learning in recurrent neural networks can have different connotations. To clarify
why we consider it a difficult problem, we will first review classical approaches
and then describe exactly which problem we are trying to tackle.

2.1 Classical approaches to learning in recurrent neural
networks

In ‘top-down’ approaches, one first specifies an objective that quantifies a net-
work’s performance in a particular task, and then derives learning rules that
modify the connectivity of the network to improve task performance. While
this approach has mostly been used in feedforward neural networks, several ap-
proaches exist for recurrent neural networks [8]. Famous examples include the
Hebbian rules for Hopfield networks [7], ‘backpropagation in time’ [9], or the
more recent ’FORCE’ learning algorithm [10].

The key problem with top-down approaches is that they often achieve their
functionality at the cost of biological plausibility. First, almost all top-down
approaches are based on ‘firing rate’ networks, i.e., networks in which neurons
communicate with continuous rates rather than spikes. Second, most top-down
approaches lead to ‘learning rules’ that are non-local, i.e., that depend on non-
local information, such as the activity or synaptic weights of other neurons in
the network.7

In ‘bottom-up’ approaches, the word ‘learning’ refers to networks whose
synapses undergo specific, biologically plausible plasticity rules. In contrast
to top-down approaches, the bottom-up perspective has allowed researchers to
explicitly investigate the effect of spike-timing-dependent plasticity on the dy-
namics of spiking networks. For instance, such rules may allow a network to
learn how to properly balance itself on a specified time scale [11, 14].

The key problem with bottom-up approaches is that the generation of a
particular dynamical regime does not necessarily imply any specific functional-
ity. Indeed, bottom-up approaches usually run into problems when trying to

7The Hebbian rule for Hopfield networks is a famous exception to this case.
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tie synaptic plasticity to computational goals. While several studies have delin-
eated rules of thumb for how plausible learning rules may give rise to certain
functions, e.g. [15], they lack the insight or the mathematical guarantees that
come with top-down approaches.

The difficulty of learning in recurrent neural networks is manifest in the gap
between these two approaches: top-down approaches achieve functionality by
sacrificing biological realism, and bottom-up approaches achieve biological real-
ism by sacrificing functionality. A crucial challenge in bridging this gap turns
out to be the locality constraint: biological synapses can only rely on local
information in order to modify their strength. Indeed, deriving learning rules
from an objective function under this locality constraint is often analytically
intractable, and a large literature is devoted to this problem (distributed op-
timization; game theory; etc.). Most attempts at deriving local learning rules
from functional principles have tried to circumvent this issue by approximating
derived learning rules with local ones (e.g. [2, 5]). However, these approaches
tend to work only under certain conditions and carry few mathematical guar-
antees in terms of optimality or convergence [16].

2.2 The efficient coding objective

Here our goal will be to bridge the gap and derive biologically realistic, local
learning rules for a spiking network, that are guarantueed to converge to a
specific global optimum. We will do this for the ‘autoencoder’, an unsupervised
learning system that receives a set of time-varying input signals, and then learns
to generate an efficient spike code in order to represent these signals. Given
that our work is based on minimizing quadratic loss functions with linear and
quadratic costs, algorithms such as principal component analysis (PCA) and
independent component analysis (ICA) are special cases of this class of learning
problems [17].

We will start by defining the objective of our network. In Section 1.7, we
assumed a given and fixed decoder D, and then derived a network whose spike
times o(t) minimize the objective 8

L∗ = min
o

〈
‖x−Dr‖2 + µ ‖r‖2 + ν ‖r‖1

〉
.

Unfortunately, this objective cannot be used for learning a network, since the
pre-defined decoder D is not part of the network structure, and there is a priori
no way the network can guess it.9 Indeed, learning has to start in a network
with random initial feedforward weights F and recurrent weights Ω.

We therefore need to make a small change in perspective: instead of fixing a
decoder upfront we require the network to perform a double-minimization with
respect to both the spike times o as well as with respect to the decoder D,

L∗ = min
o,D

〈
‖x−Dr‖2 + µ ‖r‖2 + ν ‖r‖1

〉
s.t. ‖Dn‖22 = 2Tn − µ− ν, (S.16)

8Strictly speaking, the spike trains o are obtained through a greedy minimization of the
time-dependent loss `(t). In practice, however, this approximation works quite well [1]

9Note that this decoder might even be chosen very badly and result in pathological cases
such as one neuron firing with extremely high rates.
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where the constraint on the decoder length arises from (S.14). This minimiza-
tion defines an optimal decoder, D∗, whose precise form will depend on the
distribution of input signals q(x).

2.3 The problem of learning the synaptic weights

The objective function (S.16) seems to pose a baffling problem to solve with
a neural network for multiple reasons: first, at the beginning of learning the
decoder is not explicitly represented in the network connectivity, so how could
the network ‘learn’ a decoder? Second, neither the feedforward nor the recurrent
weights are explicitly part of the objective, (S.16). Rather, the instantaneous
firing rates, r(t), depend implicitly on the connectivity. Hence, even a simple
gradient descent with respect to the synaptic weights is not possible. Third,
even if the feedforward weights are initially set to the correct values, i.e., to
the values of the optimal decoder D∗, i.e. F = D∗>, we could still not learn
the desired recurrent connectivity Ω = −FF> − µI. The key problem is that
neurons have no direct access to their respective feedforward weights. More
precisely, the input to the network is given by Fx, but from the perspective of
the network F and x are only defined up to a linear orthogonal transformation
A, Fx = (FA>)(Ax). Before showing how we can address these problems, we
will briefly discuss a fourth issue, concerning the thresholds Tn of the neurons
and their relation to the length of the decoder, as well as the feedforward and
recurrent connectivities.

2.4 The problem of the appropriate decoder scale

Section 1.7 showed that the thresholds, Tn are intimately linked to the length of
the decoder weights. To address this problem, we introduced a constraint on the
length of the decoders in the double-minimization (S.16). In practice, we will
therefore assume that the thresholds, Tn, are constant throughout learning and
then re-interpret (S.14) as imposing a constraint on the length of the decoder
weights,

‖Dn‖22 = 2Tn − µ− ν.
In turn, this ‘scaling constraint’ will effect the scaling of both the feedforward
and recurrent weights. Using our knowledge of the optimal architecture, F> =
D and Ω = −D>D−µI, we can directly interpret the constraint on the decoder
as constraints on the feedforward and recurrent connectivity, namely

‖Fn‖22 = 2Tn − µ− ν,
−Ωnn = ‖Dn‖22 + µ = 2Tn − ν.

These scaling constraints need to be taken into account when learning the synap-
tic connectivity. However, it is important to note that the constraints only
change the scale but not the structure of the network connectivity. For this
reason, and in order to concentrate on the core intuitions behind the learning
rule, we will delay the treatment of the scaling problem until section 4.7.
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3 The core intuitions behind learning

The last section showed that we need to exploit some other property of the
network in order to be able to learn the desired connectivity. In this section,
we will explain the core intuitions behind our learning rules and show why the
balance between excitation and inhibition is tied to the quality of the output
code and to the desired network architecture. In order to simplify things, we
will neglect the linear cost terms. Hence, while this section does not consider
the most general scenario (with both L1 and L2 costs and correct scaling), we
will revisit this issue in section 4, where the actual learning rules used in the
main paper are derived.

3.1 Error-driven coding

The ‘locality of information’ constraint suggests that the learning problem should
be attacked from the point of view of the single neuron. The membrane voltage
of one of our neurons will initially obey (S.6), which we here re-express for the
n-th neuron,

Vn = F>nx + Ω>n r,

where the first term is the feedforward input and the second term the recurrent
input.

To understand what our neuron should do with its synapses, we will first
consider what happens at the level of this neuron, once the input signal can
be properly reconstructed from the network output with some decoder D. We
emphasize that we do not assume that we know the shape of D or that we
are already in the optimal architecture (Section 1.7). Rather, we will simply
assume that the network is in some state in which some decoder D will properly
do the job, in which case the reconstruction error should be very small, so that
x− x̂ ≈ 0.

From the point of view of the n-th neuron, this reconstruction error is in-
accessible. Indeed, our neuron only receives a small part of the input signal,
namely the input signal as seen through the lense of its feedforward weights,
F>nx. However, the reconstruction error εn for this part of the input signal
should, of course, likewise be close to zero so that

εn = F>nx− F>n x̂

= F>nx− F>nDr

≈ 0.

Our key insight is now that this latter equation will be identical to the voltage
equation if we assume that Ω>n = −F>nD and εn = Vn ≈ 0. Hence, we have
obtained two sufficient conditions for the network to properly represent the
input signals. If we can furthermore ensure that the feedforward weights align
with the decoder, and that D = D∗, then we have learnt the optimal architecture
from Section 1.7, and found the minimum of the loss function (S.16).

3.2 The four conditions of learning

These insights lead us to the following four conditions of learning:
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1. The membrane voltage of each neuron should remain close to zero, i.e.,
its resting potential. We can interpret this to mean that the membrane
voltage fluctuations should be minimized or bounded as tightly as possible.
Accordingly, any deviation from rest caused by the feedforward inputs
must be immediately eliminated by the recurrent inputs. In other words,
the feedforward and recurrent inputs into each cell need to balance each
other on short time-scales. As a consequence, any excitatory input into
the cells must be quickly canceled by an inhibitory input of equal size, a
condition known as tight EI balance.

2. The recurrent connectivity should be of the form Ω = −FD where D is
an a priori unknown decoder matrix. As a consequence, the membrane
voltage of each neuron can be interpreted as a projection of the recon-
struction error, εn, which we will refer to as ‘error-driven coding.’ Indeed,
the recovery of the reconstruction error in the membrane voltages is a
key ingredient of the optimal network, see equation (S.15). We emphasize
that the decoder matrix, D, is unspecified at this point, and that not all
matrices D will allow a network to fulfill condition (1), as well. As a con-
sequence, the target Ω = −FD consists of a large, if unspecified, set of
possible matrices, and ‘error-driven coding’ can be achieved by a large set
of networks.

3. The network architecture that we have derived so far deviates from the
optimal architecture, since F and D> are not necessarily the same ma-
trices. Accordingly, we need to somehow make sure that the feedforward
weights F align with the (unknown) decoder D>.

4. All of these conditions take the point of view of the single neuron. To make
sure that the network as a whole represents the input signals properly, the
feedforward weights need to properly span the space of input signals. If,
for instance, the feedforward weights of all neurons were identical, the
network could at most represent the one-dimensional space spanned by
these feedforward weights—a pathological and uninteresting solution. We
can make sure that the signal space is properly covered if both D and F
converge to the global optimum D∗ of (S.16).

These conditions suggest a specific program for learning the synaptic weights.
First, starting from random feedforward and recurrent weights, we need to learn
a balanced system in which the recurrent weights converge to a low-rank solu-
tion, Ω → −FD. In a second step, we can then aim to tighten the balance
between excitatory and inhibitory currents by aligning D and F such that both
converge to the global optimum, D∗.10

In the following two subsections we derive a local learning rule for the re-
current synapses for which the fixed points obey properties (1) and (2). For an
even tighter balance, we then introduce a learning mechanism for the feedfor-
ward synapses that will make the network structure converge to the solution
(S.13) of the quadratic optimization problem (S.16).

10We re-emphasize that the decoder D is not a biophysical quantity of the network. However,
it does serve as an important conceptual tool that is central to the development of the learning
rules.
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3.3 Condition 1: Recurrent weights learn to balance feed-
forward inputs spike by spike

The shortest possible time-scale at which a single spiking neuron can be balanced
is limited by the interval between any two consecutive spikes of the population.
We will refer to this interval as a population interspike interval (pISI), in contrast
to the standard interspike interval (ISI) that is defined for two consecutive spikes
of the same neuron.

We illustrate this idea in Fig. 1B in the main text. Here a cell receives excita-
tory feedforward inputs and inhibitory spikes from three pre-synaptic neurons.
Between the second and the third spike (gray area) the cell integrates its feed-
forward input currents and depolarizes its membrane voltage. The arrival of the
second inhibitory spike (red) then causes a hyperpolarization of the membrane
potential (see voltage trace in middle panels). In the balanced case (left column)
the hyperpolarization due to the inhibitory spike from the red neuron perfectly
cancels the depolarization through the excitatory feedforward connections (gray
area).

To understand how to balance a single cell on such a short time-scale, we
rewrite the membrane potential as a sum over spikes. We index the spikes in
the network by the time of their occurrence, writing t1, t2, . . . for the successive
spike times of the population. We then introduce a second index in order to
identify which neuron fired a particular spike, writing k(i) to indicate that the
i-th spike, ti, was fired by the k-th neuron. With this notation in mind, let
us define the integral over the input signal c(t) in the interval between two
consecutive population spikes at time ti−1 and ti:

g(ti) :=

ti∫

ti−1

dτ c(τ)e−λ(ti−τ).

We can then write the membrane voltage Vn at time ti (i.e., at the time of the
i-th spike) as (confer (S.6))

Vn(ti) = F>nx(ti) + Ω>n r(ti)

= F>n

∞∫

0

dτ c(τ)e−λ(ti−τ) + Ω>n

∞∫

0

dτ o(τ)e−λ(ti−τ)

=
∑

j≤i
F>n g(tj)e

−λ(ti−tj) +
∑

j≤i
Ωnk(j)e

−λ(ti−tj)

=
∑

i≤j
(F>n g(tj) + Ωnk(j))e

−λ(ti−tj),

where k(j) denotes the index of the neuron spiking at time tj , as explained
above. Here Fng(tj) corresponds to the accumulated excitatory current during
the pISI before the j-th spike, i.e., the total charge transfer. In turn, Ωnk(j)

corresponds to the immediate inhibitory charge transfer caused by the j-th
spike itself. The network is perfectly balanced on the shortest time scale if
these two opposing charge transfers cancel exactly. In more practical terms,
the network is balanced on the shortest time scale if the (squared) net charge

transfer,
(
F>n g(tj) + Ωnk(j)

)2
, is as small as possible.
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We hence concentrate on minimizing the objective

L =
∑

n,i

(
F>n g(ti) + Ωnk(i)

)2

,

where the sum runs over both neurons, n, and spike times, i. We can minimize
this objective by updating the recurrent synaptic weights after each spike in a
greedy manner,

∆Ωnk(t) ∝
{
−F>n g(t)− Ωnk(t) when neuron k spikes,

0 otherwise.
(S.21)

This rule has a rather intuitive meaning, as explained in the main paper and
illustrated in Fig 1B: if the excitation a neuron receives in the last pISI is
higher than the subsequent lateral inhibition, inhibition is strengthened, and
vice versa11. Importantly, the learning rule relies only on local information, i.e.
on quantities that are available to the neuron under investigation.

3.4 Condition 2: Spike-by-spike balance results in error-
driven coding

By using the above learning rule for the recurrent weights, we can establish
spike-by-spike balance—condition (1) in Section 3.1—for every single neuron
n = 1 . . . N . We will now show that error-driven coding—condition (2)—comes
out as a by-product of this learning rule.

The proof is straightforward. We simply investigate the fixed points of the
learning rule (S.21), i.e. all points for which the mean update is zero, 〈∆Ω〉 = 0.
We obtain

Ωnk = −
〈
F>n g

〉
k spikes

= −F>n 〈g〉k spikes ,

where the brackets denote an average taken over all the spike-times of neuron
k. This formula has two interesting consequences. First, the strength of the
inhibitory synapse from neuron k to neuron n equals the average excitatory
feedforward current that neuron n receives in the pISI before a spike of neuron
k. Thus, all neurons in the population cooperate to keep the voltage of the post-
synaptic cell as constant as possible. Second, the fixed points for the recurrent
weights can be written as Ωnk = −F>nDk where12

Dk = 〈g〉k spikes . (S.22)

We note that this is the desired low-rank factorization for “error-driven coding”,
i.e., Ω → −FD. In this regime the membrane voltage of each cell tracks a
projection of the error, and so the network fulfills condition (2) in section 3.1.

To summarize, we derived a simple learning rule for the recurrent connec-
tions from the principle that each recurrently fired spike should balance the

11Note once more that, for illustrative purposes, we here suppose that the recurrent weights
are inhibitory and all feedforward weights are excitatory. We use this simplified picture for the
rest of the SI. In the case described here, in which the network violates Dale’s law, feedforward
and recurrent weights can have both positive as well as negative signs.

12Please note that Fk corresponds to the k-th row of matrix F while Dk corresponds to the
k-th column of matrix D. Nonetheless, all vectors in the SI, including these two, are assumed
to be column vectors.
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feedforward input of its respective postsynaptic cells. This rule seeks to bal-
ance the network on the shortest possible time scale and thereby yields the
desired low-rank factorization of the recurrent weights which is important for
error-driven coding. Furthermore, we have derived an explicit formula for the
decoder. Hence, even though the decoder was initially unknown, and even
though the decoder does not have a direct biophysical manifestation, it can be
computed through biophysical quantities, namely, the input signal sampled at
the spikes of the different neurons.

3.5 Interlude: The importance of quadratic costs

The ‘error-driven coding’ architecture, Ω = −FD, achieves the primary ob-
jective, i.e. representing the signal x(t), which can now be read out via the
decoder D. Moreover, the voltages of the neurons now represent part of the
global coding error, or, more generally, the loss function.

However, even thought the loss function is now represented within the net-
work, it is not yet minimized. More specifically, the efficiency of the representa-
tion depends strongly on the exact choice of the feedforward weights. There are
two problems. First, if the feedforward weights do not cover some part of the
input space (as in Figure 2, central column), then the reconstruction cost can
still be high in that part of the space. Second, even if the feedforward weights
cover the whole space, so that x̂ ≈ x everywhere, the particular spiking code
chosen by the system can still be wildly inefficient: since we have not consid-
ered any cost terms, neurons could fire at very high rates in order to properly
represent the signal. To find a better distribution of the feedforward weights,
we therefore need to first re-introduce the L2 cost term, i.e., the cost term that
severely punishes high firing of individual neurons.

In the presence of an L2 cost, we know the form of the optimal recurrent
connectivity from section 1.7. Adapted to the error-driven coding architecture,
the recurrent weights should therefore converge to Ω = −FD − µI. We can
achieve this new fixed point of the recurrent learning rule (S.21) by introducing
a small regularization term, µδij , so that

∆Ωnk(t) ∝
{
−F>n g(t)− Ωnk(t)− µδnk when neuron k spikes,

0 otherwise.
(S.23)

Importantly, the learning rule will still seek to balance the system as tightly as
possible given the extra constraints. Following the logic of the previous section,
one can see that Ω will converge to the desired fixed point. After convergence
of the recurrent weights to Ω = −FD − µI, the membrane potential of each
neuron can be written as

V = F(x−Dr)− µr.

As a side note, we point out that the introduction of the cost term does not
alter the definition of the decoder (S.22).

3.6 Condition 3: Feedforward weights learn to mimic the
decoder

The derivation of the optimal network, section 1.7, suggests that F should even-
tually align with D>, as explained in condition (3) in section 3.1. Ideally, one
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would therefore want an update rule of the form ∆F ∝ D> − F, which would
move the feedforward weights towards the decoder D>. Unfortunately, this
learning rule is not biophysically realistic since D is not an explicit quantity in
the network. However, using the fixed-point equation for the decoder, (S.22),
we can replace D to obtain a local, biophysical rule

∆Fn(t) ∝
{

g(t)− Fn(t) when neuron k spikes,

0 otherwise.

If the learning of the feedforward connectivity occurs more slowly than the
learning of the recurrent connectivity, then all fixed points of the feedforward
network connectivity will fulfill Fn = 〈g〉n spikes = Dn and hence F → D>

as desired. From a biophysical perspective the first term in the learning rule,
〈g〉n spikes, corresponds to the average input signal integrated before a spike
of neuron n. Such a signal could be computed in the presynaptic terminal,
for instance, which, given the complex machinery of synaptic plasticity is well
within the realm of possibilities.

We make two observations about the feedforward rule. First, the rule will
only change the feedforward weights if a postsynaptic spike (of neuron n) coin-
cides with a previous presynaptic input (the integrated input signal up to the
time of the postsynaptic spike). In other words, this learning rule corresponds
to the causal part of the standard STDP-rule (see Fig 3Ai in the main text).
Second, a neuron that never spikes will not change its feedforward weight. This
latter scenario is problematic since the neuron is then essentially lost to the
network. However, it can be avoided either by introducing a noise term in the
learning rule, or by lowering the neuron’s threshold. We used this latter solution
to overcome this problem in the initial stages of learning for Figure 4, see also
Section 6.5.

3.7 Condition 4: Learning rules minimize loss function

While the feedforward learning rule shapes the connectivity into the desired
form (section 1.7), it is not a priori clear whether these changes also help to
minimize the loss function, (S.16), which was our fourth condition on learning.
We will now show that the learning rule derived in the previous section achieves
exactly that. To do so, we will investigate how the learning rules affect the
(average) voltages, since the voltages are directly linked to the reconstruction
errors and thereby the loss function. To keep things simple, we will assume that
the recurrent connectivity is already learnt, and we will write ∆F ∝ D> − F
for the feedforward update. The resulting change in the voltage will then—on
average—be proportional to

∆V =
〈
∆F(x−Dr)

〉
,

∝
〈
(D> − F)(x−Dr)

〉
,

=
〈
D>(x−Dr)− µr

〉
−
〈
F(x−Dr)− µr

〉

=
〈
D>(x−Dr)− µr

〉
−
〈
V〉.

Since the learning of F happens on a much slower time-scale than the learning
of the recurrent weights, the second term on the r.h.s., i.e., the average volt-
age, will be close to zero, as the network remains in a tightly balanced state
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throughout the learning of the feedforward weights. Accordingly, the first term
will dominate changes in the voltage so that

∆V ∝
〈
D>(x−Dr)− µr

〉
,

∝ −∂L
∂r

where L is the averaged loss function (S.8) in the absence of the linear cost
term. In other words, the change in voltage will push the instantaneous firing
rate of the network in the direction of the antigradient of the loss function, thus
minimising it.

3.8 Conclusions and biological realism reconsidered

To summarize, in this section we illustrated how an STDP-like learning rule for
the feedforward connections in conjunction with a recurrent learning rule that
seeks to tightly balance excitatory and inhibitory inputs, leads to a network
architecture that optimizes the average loss, (S.8), and thereby produces an
efficient spike code of the input signals. The derived learning rules are local, in
that they only require knowledge of quantities that are available to the neurons.

There are several issues that we did not consider so far. First, we did not
study linear costs or non-whitenend input distributions. Second, even though
the learning rules are local, their biological plausibility may still be questioned,
since the rules require the integration of input currents between successive spikes
of the population. While it cannot be ruled out that actual neurons (or synapses)
do keep track of these quantities, it has not been observed, either. Third, we
ignored the scaling relations between the thresholds and the synaptic connec-
tivities, derived in Section 2.4. In the next section, we address these concerns
and derive learning rules based on the voltages of the neurons. We furthermore
consider the extension to the full EI network.

4 The Voltage-based learning rules

In this section, we will derive the learning rules described in the main text.
The derivations follow the spirit of the last section. To recapitulate, in order
to improve the ability of our network to properly encode the input signals, we
need to satisfy four conditions. First, the recurrent weights of each neuron need
to learn to balance the feedforward inputs spike by spike. Second, the recurrent
connectivity needs to converge to Ω → −FD − µI for a suitable decoder D.
Third, the membrane fluctuations need to be further tightened by moving the
feedforward weights to F→ D>, and the recurrent weights to Ω→ −D>D−µI.
Fourth, we need to make sure that the joint interaction of the learning rules
minimizes our global loss function.

4.1 Recurrent weights: Learning in the absence of cost
terms

As in section 3.4, we start by considering the learning of the recurrent synapses
without costs. The target of learning is then a balanced network with recurrent
weights Ω = −FD. We showed above that it is enough to seek a balanced state
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in order to reach both properties. In the same spirit, we first establish a suitable
and practical measure of membrane voltage fluctuations, derive learning rules
for the recurrent weights that minimize those fluctuations and then show that
the network will converge to a low-rank configuration Ω→ −FD.

A particularly straightforward way of measuring voltage fluctuations is the
temporal average of the squared voltage deviations from rest V0 = 0, i.e.,

L =
〈
‖V(t)‖2

〉
t
.

However, evaluating the exact voltage deviations requires a precise tracking of
the membrane voltage at all times, and may thus be infeasible for real neurons.
Inspired by the insights from the previous section, we start with the presumption
that learning occurs only during the presence of a presynaptic spike. We can
then reduce the problem to minimizing the deviations of the membrane voltages
around the time of a presynaptic spike. In the optimal network, the membrane
voltage of a spiking neuron jumps from the threshold, T , before the spike to the
reset, −T , after the spike. Similarly, to achieve tight balance the membrane
voltage of all other neurons should ideally jump from +V before a presynaptic
spike to −V after the spike. This motivates the following spike-based measure
of the membrane voltage fluctations,

L =

〈∥∥∥∥
1

2

(
Vbefore(tj) + Vafter(tj)

)∥∥∥∥
2
〉

spikes

(S.24)

where tj is the time of the j-th spike in the population and 〈·〉spikes denotes the
expectation value over those spikes13. The superscripts “before” and “after”
refer to the voltage values immediately before and after a spike. The recurrent
weights enter (S.24) through their effect on the post-spike membrane potential,

Vafter(tj) = Vbefore(tj) + Ωek(j),

where k(j) is again the index of the neuron that spikes at time tj and ek(j)

is a unit vector with zero entries except at position k(j). The introduction of
ek(j) is a bit cumbersome but useful: it allows, for example, to write the relation
between the instantaneous rates of the whole population before and after a spike
of neuron k at time tj as a simple vector equation,

rafter(tj) = rbefore(tj) + ek(j).

The deviation at time tj is thus

Lj =

∥∥∥∥
1

2

(
Vbefore(tj) + Vafter(tj)

)∥∥∥∥
2

=
∥∥∥Vbefore(tj) + 1

2Ωek(j)

∥∥∥
2

.

13Note that in practice, i.e., in numerical simulations, we replace this expectation value with
a moving sum over a sufficiently large number of spikes. More precisely, we set 〈x〉spikes =
1
J

∑J
j=1 x(tj) where tj is the spike-time of the j-th spike in the past (relative to the current

time t).
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To minimize the voltage deviations, we perform a greedy optimization every
time a spike was fired by one of the neurons in the network,

∆Ω(tj) ∝ −
∂Lj
∂Ω
∝ −

(
2Vbefore(tj) + Ωek(j)

)
e>k(j). (S.25)

More explicitely, the weight Ωnk is updated at every spike of the presynaptic
neuron k = k(j) such that the deviation of the postsynaptic membrane voltage
from rest is minimized,

∆Ωnk(tj) ∝
{
−2V before

n (tj)− Ωnk if k spiked,

0 otherwise.
(S.26)

This learning rule differs from the one in the last section mainly in the first term
on the r.h.s.: instead of compensating for the integrated feedforward current
during the last pISI, the synapses here learn to compensate for the deviation of
the membrane voltage from rest.

4.2 Recurrent weights: Fixed point analysis

In this section we show that the fixed-points (i.e. the points at which the mean
change in the recurrent weights is zero) of the learning rule (S.26) are of the
desired low-rank configuration Ω → −FD. In the next section we will then
prove that the system will globally converge to one of these fixed-points under
mild assumptions.

Mathematically, the fixed-points are defined as those recurrent weights for
which 〈∆Ω〉spikes = 0. All quantities below, such as V(tj), x(tj), etc., are to be
understood as immediately before a spike, and we hence drop the superscript
“before” for the rest of the SI, as well as the explicit reference to the spike time,
tj , for ease of notation14. The learning rule, (S.25), can then be rewritten as

∆Ω ∝ −2Ve>k(j) −Ωek(j)e
>
k(j)

(S.6)
= −2(Fx + Ωr)e>k(j) −Ωek(j)e

>
k(j)

= −2Fxe>k(j) −Ω
(
2r + ek(j)

)
e>k(j). (S.27)

To investigate the fixed points, we need to study the effect of applying this
learning rule repeatedly, i.e., over many spike times tj . From (S.27) and the
fixed-point condition 〈∆Ω〉spikes = 0 we obtain the defining property of the
fixed points of the recurrent weights,

2F
〈
xe>k(j)

〉
spikes

= −Ω
〈(

2r + ek(j)

)
e>k(j)

〉
spikes

.

Under the mild condition that the sum on the r.h.s. has full rank we can directly
infer that any fixed point of Ω is of the form−FD where D is (implicitly) defined
by

2
〈
xe>k(j)

〉
spikes

= D
〈(

2r + ek(j)

)
e>k(j)

〉
spikes

. (S.28)

14We note that the input signal x(tj) does not jump at the time tj of the presynaptic spike,
hence the distinction between before and after is irrelevant for this quantity.
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While the matrix D can be interpreted as a linear decoder, which one could
use to reconstruct the input signal from the spike trains, it is not explicitly
realized within the network, since it is merged into the recurrent weights and
arises dynamically through learning. In other words, the decoder is not defined
upfront but the recurrent connectivity converges to a low-rank factorization
from which an external observer can read off the linear decoder.

Note that (S.28) is a matrix equation with dimensions I×N . To understand
the exact nature of the arising decoder, D, it is instructive to look at each
element i, n individually,

2
〈
xiδn,k(j)

〉
spikes

= D>i
〈(

2r + ek(j)

)
δn,k(j)

〉
spikes

,

⇔ 2 〈xi〉n spikes = D>i 〈2r + en〉n spikes ,

where 〈·〉n spikes is simply an average over all the spikes of neuron n. Using the
definition for the readout, (S.7), we obtain

⇔ 2 〈xi〉n spikes = 2 〈x̂i〉n spikes +Din,

⇔ Din = 2 〈xi − x̂i〉n spikes . (S.29)

Accordingly, the elements of the decoder are aligned with the reconstruction
errors at the time of a spike. During learning, the optimal decoder will therefore
move in directions with the largest error and hence will aim to cover as best as
possible the signal space.15

The resulting relation for the decoder is essentially equivalent to the con-
straint optimal decoder derived in section 1.6, up to a scaling parameter, which
we will consider further down. The minimum of the constraint loss function was
found as (S.12)

D∗in ∝ 〈(xi − x̂i)rn〉t .
Accordingly, the weighting of the error by the instantaneous firing rate mirrors
the weighting of the error by the spikes in (S.29).

4.3 Recurrent weights: Convergence proof

In the last subsection we derived that all fixed points of the recurrent weights
are of the form −FD, but these fixed points might be unstable. We here prove
their stability by showing that any spiking network with bounded membrane
voltages will converge to the desired low-rank factorization.

To this end we split the recurrent weights Ω into a part that can be described
by a low-rank factorization, ΩF = −FD for some D, and a residual part,
Ω⊥ = Ω−ΩF . In order to show that the recurrent weights Ω converge to ΩF ,
we need to prove that the average update of Ω will always decrease the norm
of the residual, Ω⊥.

More precisely, ΩF can be described as the projection of Ω onto the image
of F, i.e. ΩF = FF+Ω where the superscript ”+” denotes the Moore-Penrose
pseudo-inverse. Vice versa, the residual is given by Ω⊥ = (I− FF+)Ω and so

Ω = FF+Ω + (I− FF+)Ω,

≡ ΩF + Ω⊥.

15Note that (S.29) is a self-consistency relation since D is also part of x̂i.
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The update of Ω⊥ is the corresponding projection of the total update of the
recurrent weights (S.27),

∆Ω⊥ = (I− FF+)∆Ω,

= (I− FF+)
(
−2Fxe>k(j) −Ω

(
2r + ek(j)

)
e>k(j)

)
,

= −Ω⊥
(
2r + ek(j)

)
e>k(j). (S.30)

where the last step follows from the relation FF+F = F. In order to con-
firm convergence, we need to prove that the mean update 〈∆Ω⊥〉spikes always

decreases the norm of ‖Ω⊥‖2, i.e. we need to show that

‖Ω⊥‖2 ≥
∥∥∥Ω⊥ + ε 〈∆Ω⊥〉spikes

∥∥∥
2

,

= ‖Ω⊥‖2 + 2ε tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
+O(ε2),

which results in the inequality

0 ≥ tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
. (S.31)

Plugging in (S.30) we find

tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
= − tr

[
Ω>⊥

〈
Ω⊥

(
2r + ek(j)

)
e>k(j)

〉
spikes

]
,

= − tr

[
Ω⊥

〈(
2r + ek(j)

)
e>k(j)

〉
spikes

Ω>⊥

]
,

≈ − tr

[
Ω⊥

〈
2rr>/ |r|+ ek(j)e

>
k(j)

〉
spikes

Ω>⊥

]
, (S.32)

where we used that for a given stimulus the rates are (to first order) fairly
constant16 over time and the average of the spike counts will be equivalent to

the rates, so
〈
re>k(j)

〉
spikes

≈
〈
rr>/ |r|

〉
spikes

. Finally, observe that the inner

bracket of (S.32) is semi-positive definite and so we proved the desired relation

tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
≤ 0. Consequently, any stable network will converge to a

low-rank factorization under mild assumptions.

4.4 Recurrent weights: Learning with L2 costs

As explained in section 3.5, we need to introduce quadratic costs before consid-
ering the learning of the feedforward weights. The quadratic (L2) costs change
the target connectivity to Ω→ −FD−µI. This target can be obtained through
the following learning rule, modified from (S.25),

∆Ω ∝ −2
(
V + µr

)
e>k(j) − (Ω + µI)ek(j)e

>
k(j),

16Strictly speaking, this assumption is only valid in the limit of high instantaneous firing
rates. In the regime of low firing rates, however, the (positive) diagonals in the inner bracket
of (S.32) dominate and so the expectation value is still likely to be semi-positive definite as
required to prove relation (S.31)
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or, without the burden of seeing through the matrix-vector notation,

∆Ωnk ∝
{
−2 (Vn + µrn)− Ωnk − µδnk if k spiked,

0 otherwise.

We remind the reader that quantities such as the voltage or the instantaneous
rate are here assumed to be evaluated directly before a spike of neuron k, i.e.,
Vn = V before

n (tk) and rn = rbefore
n (tk). To show the fixed points of this modified

learning rule, we follow the exact same analysis as in section 4.2, see (S.27),

∆Ω ∝ −2(V + µr)e>k(j) − (Ω + µI)ek(j)e
>
k(j)

(S.6)
= −2(Fx + (Ω + µI)r)e>k(j) − (Ω + µI)ek(j)e

>
k(j)

= −2Fxe>k(j) − (Ω + µI)
(
2r + ek(j)

)
e>k(j).

Compared to (S.27) we only replaced Ω by Ω+µI. Consequently, all arguments
concerning the fixed points −FD and convergence in section 4.2 and 4.3 now
hold for Ω+µI, and so we proved Ω→ −FD−µI. Following the same argument,
the fixed points (S.29) of the decoder do not change.

4.5 Feedforward weights: Learning rule

In order to solve the full quadratic optimization problem (S.8) we need to ensure
that the feedforward weights F align with the decoder D>. To this end, we
remind the reader that the decoder will converge to (S.29),

Dn = 2 〈x− x̂〉n spikes .

In principle we would like to use this quantity to guide learning of the feedfor-
ward weights F, just as we did in section 3.6. From a biophysical point of view,
however, we cannot assume that the feedforward weights have access to the er-
ror x− x̂ (only to projections of the error). Fortunately the difference between
x− x̂ will be proportional to the input signal x, on average, since we assumed
that the quadratic costs are non-negligible (see previous section). These costs
will prohibit x̂ to fully match the size of x, an effect that increases linearly with
the size of x. Accordingly, input signal and error are, on average, proportional
to each other, i.e., x− x̂ ∝ x. The learning rule for the feedforward connections
can therefore be approximated by:

∆Fn(tj) ∝
{

x(tj)− Fn if n spiked,

0 otherwise.
(S.33)

Importantly, we note that, if the current c is changing slowly compared to
the dynamics of the network, any sufficiently leaky integration of c is a good
approximation of x − x̂. This observation becomes particularly important in
the case of faster inputs: here the error x − x̂ can become dominated by the
inability of the network to follow the inputs, so that a stable equilibrium is never
reached. In such cases we often find numerically that a less leaky integration
of the current leads to more efficient networks and better reconstruction errors.
For the sake of mathematical precision, we will here make the assumption that
c is changing slowly, as also stated at the very beginning, section 1.1, and we
will proceed with (S.33).
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4.6 Feedforward weights: Fixed-point analysis

Analysing the stable fixed points from the interacting feedforward and recurrent
synaptic plasticity rules is daunting since the membrane voltage of each cell
depends on the exact sequence and timing of the spikes. Under these conditions
there is little we can do beyond the numerical simulations (see main text). For
large networks, however, even small noise sources will considerably randomise
the timings and sequences of spikes [1], and so in this limit it makes sense
to analyse the fixed points under the assumption that spikes are distributed
according to an inhomogeneous Poisson process with mean firing rates r̄k(x).
In this case the fixed point of the feedforward learning rule, (S.33), is simply
given by computing the expectation value over stimuli,

F∗ =
〈
r̄x>

〉
.

Since the feedforward weights align with the decoder by design, the latter has
the same fixed point (up to a transpose), so that

D∗ =
〈
xr̄>

〉
.

By multiplying with D∗>D∗ from the right we can identify a simple condition
on the fixed point,

D∗D∗>D∗ =
〈
xr̄>

〉
D∗>D∗

=
〈
x(D∗r̄)>

〉
D∗

= 〈xx̂〉D∗.

As observed above, the reconstruction x̂ will closely follow the input signal x,
only slightly scaled down due to the quadratic costs. Since the input signal was
assumed to be white, 〈xx>〉 = I, we can conclude that 〈xx̂>〉 ∝∼ I. Hence,

D∗D∗>D∗ ∝∼ D∗.

This condition is only fulfilled if the transpose of D∗ is its own pseudo-inverse,
and so D∗ is a unitary matrix. (Or, more precisely, a slightly scaled down
version of a unitary matrix.) In other words, in its fixed points the network
represents the independent axes of a white stimulus on orthogonal directions
of the population response r, which is optimal. We discuss the non-whitened
inputs in the section 4.8.

4.7 L1 cost and the scaling problem

We have shown that under mild assumptions the combination of both learning
rules will make the network converge to a F → D> and Ω → −D>D − µI,
similar to the optimal connectivity structure that we derived in section 1. So
far, however, we have ignored the scaling of the synaptic connectivity, i.e. the
relationship between the threshold Tn and the scale of the feedforward weights
Fn and the autapse Ωnn, see section 2.4,

−Ωnn = ‖Dn‖22 + µ = 2Tn − ν, (S.34)

‖Fn‖22 = 2Tn − µ− ν. (S.35)
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Whereas the L2 cost modifies the recurrent connectivity, so that Ω→ −D>D−
µI, the L1 cost only enters the learning through these two equations. Since we
assume that the thresholds of the neurons are given some initial value and are
then never changed, our learning rules need to be modified in order to account
for the appropriate scale of the synaptic weights. To guarantee the relation
−Ωnn = 2Tn − ν, we introduce a scaling factor βn for every neuron n in the
learning rule of the recurrent synapses,

∆Ωnk ∝
{
−βn(Vn + µrn)− Ωnk − µδnk if k spiked,

0 otherwise.
(S.36)

Following again section 4.2 and the appropriate correction for the L2 costs in
section 4.4, it is straight-forward to see that Ω will converge to −FD−µI, where
the decoder D is now modified by the scaling factor βn so that

Din → βn 〈xi − x̂i〉n spikes .

Hence, in order to obey (S.34), the scaling factors βn should evolve according
to,

−Ωnn = 2Tn − ν
⇔ F>nDn + µ = 2Tn − ν,

⇔ F>n βn〈x− x̂〉n spikes + µ = 2Tn − ν,

⇔ βn =
2Tn − µ− ν

F>n 〈x− x̂〉n spikes

,

⇔ βn =
2Tn − µ− ν

Tn + µ〈rn〉n spikes
(S.37)

where in the last step we have used the relation F>n 〈x−x̂〉n spikes = 〈Vn〉n spikes+
µ〈rn〉n spikes and Vn = V before

n = Tn, since the voltage directly before the spike
of the firing neuron is, by definition, the neuron’s threshold. Note that in the
absence of costs, µ = ν = 0, we recover βn = 2, i.e., the unscaled learning rule
(S.23).

Similarly, to guarantee the scaling ‖Fn‖22 = 2Tn − µ− ν of the feedforward
weights, we introduce appropriate scaling factors αn into the learning rule (S.33),

∆Fn ∝
{
αnx− Fn if n spiked,

0 otherwise.
(S.38)

which will consequently lead to a scaling of the fixed point,

Fn → αn 〈x〉n spikes .

Hence, in order to fulfill (S.35) it should hold that

‖Fn‖2 = F>nFn

= F>nαn 〈x〉n spikes

= 2Tn − µ− ν
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from which we read off an expression for the scaling factors,

αn =
2Tn − µ− ν
F>n 〈x〉n spikes

. (S.39)

The learning rules (S.36) and (S.38) in conjunction with the definition of the
scaling factors (S.37) and (S.39) are thus the set of rules that take into account
all costs and will make the network converge to the optimal network configura-
tion with the optimal decoding weights.

4.8 Non-whitened inputs
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Figure S1: Example of a 12-neuron network that learns to encode two correlated
input signals (with a distribution similar to Fig. 1D). (Left) The two-dimensional
feedforward weights of the 12 neurons after learning. (Right) Tuning curves of all
neurons in the network after training, i.e., their firing rates as a function of the angle
of a two-dimensional input with constant radius in polar coordinates.

So far we have assumed that the input stimulus is zero-mean and whitened.
To cover more general scenarios, we first revisit the optimal spiking neural net-
work from section 1.7, following the approach outlined in [6] for rate networks.
First, we note that a self-organized network is incapable of determining the true
covariance of the signal (which could always be “arbitrarily” distorted by the
feedforward weights) while the mean of the signal should be filtered out to in-
crease efficiency (otherwise spikes are constantly emitted just to support a fixed
offset). To take both aspects into account, we modify the loss function (S.10),

` = (xc −Dr)
>

C−1 (xc −Dr) + µ ‖r‖2 + ν ‖r‖1
where xc = x− x̄ is the mean signal and C =

〈
xcx

>
c

〉
is the signal covariance.

In complete analogy to section 1.7, one can derive the voltages and thresholds
of simple integrate-and-fire neurons,

V = D>C−1xc −D>C−1Dr− µr,

Tn =
1

2

(
‖Dn‖2 + µ+ ν

)
.

Accordingly, the network is now characterized by feedforward weights F =
D>C−1 and recurrent weights Ω = −D>C−1D − µI = −FD − µI. These
equations show that we only need to revisit the feedforward weights, whose re-
lation to the decoder has changed, but not the recurrent weights, whose relation
to the feedforward and decoder weights remains the same. Indeed, we did not
make any (implicit or explicit) assumptions on the statistics of the input in the
derivation of the recurrent learning rules, and so the same learning rule (S.36)
applies in this case.
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To make the feedforward weights converge to F = D>C−1, we ignore the
correct scaling for now (see next section) and modify the learning rule (S.33) as

∆Fn ∝
{

xc − F>nxcxc when neuron n spikes,

−F>nxcxc otherwise.
(S.40)

We emphasize that this learning rule is still local. We can highlight this feature
by stating the learning rule for the i-th element of Fn,

∆Fin ∝
{

[xc]i − (F>nxc)[xc]i when neuron n spikes,

−(F>nxc)[xc]i otherwise.

Here, F>nxc is simply the total feedforward current that the postsynaptic neuron
received. Accordingly, the modified learning rule requires a multiplicative, yet
local interaction between the presynaptic signal, [xc]i, and the postsynaptic
current. In Fig. S1 we simulate this modified learning rule in a network of
12 neurons that receive a correlated input signal. Interestingly, the network
learns tuning curves that are narrower and denser around the most frequently
presented signal directions. This is reminiscent of the tuning curves derived
from efficient coding principles in a population of Poisson-firing neurons [20].

Following the derivation of section 4.6, and assuming once more Poisson-
distributed spike trains, the fixed points, F∗, of the feedforward rule become

〈
r̄x>c − F∗xcx

>
c

〉
= 0,

⇔ F∗
〈
xcx

>
c

〉
=
〈
r̄x>c

〉
,

⇒ F∗ = D∗>C−1.

where the fixed point of the decoder, D∗ remains untouched, and becomes

D∗ ∝
〈
xcr̄
>〉 .

Using this relation once more, and multiplying it with D∗>C−1D∗ from the
right, we find the following relation for the decoder

D∗D∗>C−1D∗ ∝
〈
xcr̄
>〉D∗>C−1D∗,

=
〈
xc(D

∗r̄)>
〉

C−1D∗,

= 〈xcx̂c〉C−1D∗,

∝∼ D∗,

which is fulfilled if D∗ = C1/2U, where U is a unitary matrix. Then F∗ =
D∗>C−1 = U>C−1/2. This last equation exposes the solution that the network
finds: it whitens the input through its feedforward filters before encoding it
along orthogonal axis in the population response.

4.9 Simplifying assumptions for the main paper

The scaling factors αn and βn for the feedforward and recurrent weights guar-
antee the convergence of the network to the properly scaled weights. It is
important to remember that the scaling factors only set the right scale of the
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weights, they do not affect the overall structure of the optimal connectivities,
F ∝ D> and Ω ∝ −D>D − µI. In practice, we set all thresholds to the same
values Tn = T . In addition, we note that fixing the scaling factors αn and βn
merely fixes a set of fixed points with a particular L1 cost ν and scaling of D. To
ease simulation we fix two scaling factors α = αn and β = βn by hand such that
the fixed points exhibit reasonable cost values and scales. This approximation
worked quite well. The recurrent learning rule, (S.36), then becomes

∆Ωnk ∝
{
−β(Vn + µrn)− Ωnk − µδnk if k spiked,

0 otherwise.
(S.41)

which is the equation shown in the main paper. The feedforward rule, (S.38),
becomes

∆Fin ∝
{
αxi − Fin if n spiked,

0 otherwise.
(S.42)

In both rules, α and β are simply treated as free parameters.

5 Learning in the EI network

So far we have neglected Dale’s law, i.e., the distinction between excitatory and
inhibitory neurons. We are now going to use the intuition developed in the last
three sections to explain how learning in an EI network should proceed.

Consider a population of excitatory neurons that receives feedforward inputs.
Its recurrent connections are constrained to be excitatory, and so neurons with
overlapping inputs cannot inhibit and thereby balance each other. If, however,
a population of inhibitory neurons has learnt to represent the signal encoded by
the excitatory population, then its output could in turn be used to provide the
necessary balance.

We can formalize this intuition as follows. First, we consider the optimal
networks from the previous sections, but without costs, so that Ω = −DD>. We
then split the decoder weights into one part with all positive entries, D+, and one
part with the absolute value of all negative entries, D−, so that D = D+−D−.
The recurrent input into the network can then be rewritten as

Ωr = −(D+ −D−)>(D+ −D−)r,

= (D>−D+ + D>+D−)r− (D>+D+ + D>−D−)r.

We can identify the first term as the recurrent excitation and the second term as
the recurrent inhibition. If we assume that all the neurons we have considered
so far were, in fact, excitatory, and if we want these neurons to obey Dale’s law,
then we need to approximate the second term by means of a separate, inhibitory
population. To this end, let us assume that this population of inhibitory neurons
‘represents’ the activity of the excitatory neurons, or, more formally, that we
can retrieve an estimate of the activity of the excitatory neurons, r̂, from the
activity of the inhibitory neurons, s, via a suitable linear readout, D̃, so that
r̂ = D̃s, In this case, we can rewrite the recurrent input into the excitatory
neurons as

Ωr ≈ (D>−D+ + D>+D−)r− (D>+D+ + D>−D−)D̃s,
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so that the second term now derives from the inhibitory population, as desired.
To achieve this condition, we will assume that the inhibitory population

minimizes the objective

LI =

〈∥∥∥r− D̃s
∥∥∥

2
〉
,

which is identical to the problem we have tackled in all previous sections, if we
identify r with x and s with r. At first, it may seem that we have simply shifted
the problem of Dale’s law onto the inhibitory sub-population, so that we are
back where we started. However, the input into the inhibitory sub-network is
now purely positive, since r ≥ 0 at all times. In turn, the (optimal) decoder
D̃ has all positive entries as well. Since the optimal subnetwork’s recurrent
weights are given by ΩII = −D̃D̃>, all its recurrent weights are negative, and
the inhibitory subpopulation therefore obeys Dale’s law, as well.

In summary, the structure of the optimal EI network is given by the following
set of feedforward and recurrent weights for the excitatory population, compare
with (S.3),

FE = D>

ΩEE = D>−D+ + D>+D−

ΩEI = −(D>+D+ + D>−D−)D̃

and the following set of feedforward and recurrent weights for the inhibitory
population, compare (S.4),

FI = ΩIE = D̃>

ΩII = −D̃D̃>.

From the derivation, we see that the excitatory population response serves as
a feedforward input to the inhibitory population. Accordingly, the weights ΩIE

are effectively feedforward and need to be trained by the standard feedforward
rule, just as the feedforward weights of the excitatory population, FE . All
other weights, i.e. ΩEE ,ΩEI and ΩII , serve to balance either the excitatory
or inhibitory populations. Accordingly, these weights must be trained using the
recurrent learning rule. The training then proceeds as in the non-Dale’s case
except for the sign constraints on the synaptic weights.

6 Numerical Simulations

6.1 Network Dynamics

The membrane voltage Vn of each cell is simulated according to a discrete-time
(Euler) approximation of the differential equations, either (S.3) and (S.4) for
the EI networks, or (S.5) for the non-Dalian networks,

Vn(t+ ∆t) = Vn(t) + ∆tV̇n(t).

In Figure 2 and 3, the target signal x(t) is set as follows: we first draw a random
vector y(t) ∈ RI from a zero-mean Gaussian distribution y(t) ∼ N (0, σ2I) for
every time-step t and then convolve y(t) with a Gaussian kernel of size η over
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time to get x(t). For Figure 4, the target signal was the speech spectrogram,
sampled at 100Hz and interpolated to reach a temporal resolution of 0.05 ms.
The input current c(t) is subsequently computed following (S.1), i.e.,

ci(t) = ẋi(t) + λxi(t).

To randomize the spikes, gaussian noise terms ξV and ξT with very small vari-
ances and zero means are added respectively to the voltage equation and to the
thresholds of the neurons.

In all simulations, the recurrent (and I to E) weights are trained by means of
the recurrent learning rule (S.41). The feedforward weights F and the E−I con-
nections follow (S.42) (whitened inputs, Figure 2 and 3) or (S.40) (non-whitened
input, Figure 4). However, in Figure 3 and 4, we simulated the feedforward
learning rules (FF rules) using a slightly smoother version of the input signal
x. More specifically, we replaced x in equations (S.42) and (S.40) by the input
currents integrated with a larger leak term λF > λ. The learning rule of the
feedforward connection (for whitened signals) then becomes

∆Fn(tj) ∝
{

c̄(tj)− Fn if n spiked,

0 otherwise.

where c̄ obeys ˙̄c = −λF c̄ + c.
The constant scaling term α is chosen so as to achieve mean firing rates of

around 5 to 10 Hz after training. The learning rates εF and εΩ of the feedfor-
ward and recurrent weights are either kept constant throughout the simulation
(Figures 2 and 3), or progressively decreased (Figure 4). Importantly, there is
a separation of time-scales such that εΩ = 10εF ; this ensures that the network
is always kept in a balanced (and thus stable) regime throughout learning.

The full pseudo-code for the non-Dales case can be found in algorithm 1.

6.2 Initialization

To initialize the feedforward weights F ∈ RN×I , we first draw all elements from
a zero-mean normal distribution, Fni ∼ N (0, 1), and then normalize each row
to be of length γ, i.e.

Fni → γ
Fni√∑
i F

2
ni

.

In Figure 2 and 4, the initial recurrent weights Ω ∈ RN×N are proportional
to the unit matrix IN with proportionality ω, i.e. Ω0 = ωIN . This simplified
initialization is chosen for illustrative purposes; the learning also works for more
general, random initializations of the recurrent connections. The recurrent con-
nectivity in the EI network (Figure 3) is similarly initialized as ΩEE = ωEEINE

and ΩII = ωIIINI
. In all simulations there are four times more excitatory than

inhibitory neurons, NE = 4 ·NI , and so we initialize the E-I and I-E connections
according to ΩEI = ωEI [INI

, INI
, INI

, INI
] and ΩIE = ωIE [INI

, INI
, INI

, INI
]>

where the squared brackets denote a stacking of the elements along the rows.
The thresholds Tn = T are kept constant (except for Figure 4, see below) over
the course of the simulation (including learning) and are homogeneous across
cells.
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Algorithm 1 Pseudo-code for simulation of non-Dales network (Fig. 2 & 4)

1: procedure simulation
2: N, I ← number of cells and input dimensions
3: λ← membrane leak
4: F(0)← initial feedforward weights
5: Ω(0)← initial recurrent weights
6: S ← total simulation time
7: dt← time-step
8: εF , εΩ ← learning rates
9: α, β ← scaling factors in learning equations

10: µ← L2 cost
11: T ← threshold
12: σ, η ← standard deviation of signal, time-scale of smoothing kernel
13: top:
14: V(0)← 0 (initial voltage)
15: o(0)← 0 (initial spikes)
16: r(0)← 0 (initial filtered spikes)
17: Γ← closest integer to S/dt (number of simulation steps)
18: x(τ)← drawn from N (0, σ2II) for all τ = 1 . . .Γ
19: x(τ)← x(τ) filtered with Gaussian kernel of width η over time
20: ξV (τ)← drawn from N (0, σ2

ξV
IN ) for all τ = 1 . . .Γ

21: ξT (τ)← drawn from N (0, σ2
ξT

IN ) for all τ = 1 . . .Γ
22: loop:
23: for τ = 1 to Γ do
24: c(τ − 1) = x(τ)− x(τ − 1) + λ dt x(τ − 1)
25: V(τ) = (1 − λ dt)V(τ − 1) + dt F(τ − 1)>c(τ − 1) + Ω(τ − 1)o(τ −

1) + ξV (τ)
26:

27: o(τ) = 0
28: n← arg max (V−T)− ξT (τ))
29: if Vn > Tn then
30: on(τ) = 1
31: Fn(τ) = Fn(τ − 1) + εF (αx(τ − 1)− Fn(τ − 1))
32: Ωn(τ) = Ωn(τ − 1)− εΩ(β(V(τ − 1) + µr(τ − 1)) + Ωn(τ − 1))
33: Ωnn(τ) = Ωnn(τ − 1)− εΩµ
34:

35: r(τ) = (1− λ dt)r(τ − 1) + o(τ − 1)
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Algorithm 2 Pseudo-code for simulation of Dales network (Fig. 3)

1: procedure simulation
2: NE , NI , I ← number of cells in E and I populations and input dimensions
3: λ, λF , λEI ← membrane leak and integration time constants for FF rule
4: F(0)← initial feedforward weights
5: ΩEE(0),ΩEI(0),ΩII(0),ΩIE(0)← initial recurrent weights
6: S ← total simulation time
7: dt← time-step
8: εF , εΩ ← learning rates
9: α, β ← scaling factors in learning equations

10: µ← L2 cost
11: TE , T I ← threshold
12: σ, η ← standard deviation of signal, time-scale of smoothing kernel
13: RE , RI ← refractory periods of the excitatory and inhibitory neurons
14: top:
15: VE(0),VI(0)← 0 (initial voltage)
16: oE(0),oI(0)← 0 (initial spikes)
17: rE(0), rI(0)← 0 (initial filtered spikes)
18: RE(0),RI(0)← 0 (initial refractory periods spikes)
19: Γ← closest integer to S/dt (number of simulation steps)
20: x(τ)← drawn from N (0, σ2II) for all τ = 1 . . .Γ
21: x(τ)← x(τ) filtered with Gaussian kernel of width η over time
22: ξVE (τ), ξVI (τ)← drawn from N (0, σ2

ξV
IN ) for all τ = 1 . . .Γ

23: ξTE(τ), ξTI (τ)← drawn from N (0, σ2
ξT

IN ) for all τ = 1 . . .Γ
24: loop:
25: for τ = 1 to Γ do
26: c(τ − 1) = x(τ)− x(τ − 1) + λ dt x(τ − 1)
27: cE(τ) = (1− λFdt)cE(τ − 1) + c(τ − 1)
28: cI(τ) = (1− λEIdt)cE(τ − 1) + oE(τ − 1)
29: VE(τ) = (1 − λ dt)VE(τ − 1) + dt F(τ − 1)>c(τ − 1) + ΩEE(τ −

1)oE(τ − 1) + ΩIE(τ − 1)oI(τ − 1) + ξVE (τ)
30:

31: oE(τ) = 0

32: nE ← arg max
(
VE −TE

)
− ξTE(τ))

33: if V EnE
> TEnE

& REnE
(τ − 1) < 0 then

34: oEnE
(τ) = 1

35: REnE
(τ − 1) = REmax

36: FnE
(τ) = FnE

(τ − 1) + εF (αcE(τ − 1)− FnE
(τ − 1))

37: ΩEE
nE

(τ) = ΩEE
nE

(τ−1)−εΩ(β(VE(τ−1)+µrE(τ−1))+ΩEE
nE

(τ−
1))

38: ΩEEnEnE
(τ) = ΩnEnE

EE(τ − 1)− εΩµ
39: ΩEI

nE
(τ) = ΩEI

nE
(τ−1)−εΩ(β(VI(τ−1)+µrI(τ−1))+ΩEI

nE
(τ−1))

40:

41: RE(τ) = RE(τ − 1)− 1
42: rE(τ) = (1− λ dt)rE(τ − 1) + oE(τ − 1)
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43: VI(τ) = (1−λ dt)VI(τ − 1) + ΩEI(τ)oE(τ) + ΩII(τ − 1)oI(τ − 1) +
ξVI (τ)

44:

45: oI(τ) = 0

46: nI ← arg max
(
VI −TI

)
− ξTI (τ))

47: if V InI
> T InI

& RInI
(τ − 1) < 0 then

48: oInI
(τ) = 1

49: RInI
(τ − 1) = RImax

50: ΩEI
nI

(τ) = ΩEI
nI

(τ − 1) + εF (αcI(τ − 1)−ΩEI
nI

(τ − 1))

51: ΩII
nI

(τ) = ΩII
nI

(τ−1)−εΩ(β(VI(τ−1)+µrI(τ−1))+ΩII
nI

(τ−1))
52: ΩIInInI

(τ) = ΩnInI
II(τ − 1)− εΩµ

53: ΩIE
nI

(τ) = ΩIE
nI

(τ−1)−εΩ(β(VE(τ−1)+µrE(τ−1))+ΩIE
nI

(τ−1))

54:

55: RI(τ) = RI(τ − 1)− 1
56: rI(τ) = (1− λ dt)rI(τ − 1) + oI(τ − 1)

Parameters Figure 2 Figure 3 Figure 4

Number of neurons N 20 NE = 300/60 (BC/D) 64
NI = 75/15 (BC/D)

Dimension of input I 2 3 25
Time step dt 10−3s 10−4s 6.25 · 10−5s
Membrane leak λ 50 s−1 50 s−1 8 s−1

Integration time constant, FF rule λF = λ λF = 6λ λF = 125λ
λE−I = λ

Standard deviation of input σ 2 · 103 2 · 103 -
Time scale of input kernel η 6 ms 6 ms -
Threshold T 0.5 0.5 dynamic
standard dev. of voltage noise σξV 10−3 10−3 0
standard dev. of threshold noise σξT 2 · 10−2 2 · 10−2 5 · 10−3

Learning rate εΩ 10−4 10−4 variable
Learning rate εF 10−5 10−5 variable
Scaling factor α 0.21 0.21 1
Scaling factor β 1.25 1 1
L2 cost µ 0.02 µE = 0.02, µI = 0 0.1
Initial scale γ 0.8 1 -
Initial scale ω −0.5 ωEE = −0.02 -

ωII = −0.5
ωEI = 0.5
ωIE = −0.3

Table 1: Simulation parameters for all simulations.
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6.3 Tuning Curves

To compute the tuning curves (Figures 2 and 3), we define a circle in a 2D
plane and then sample inputs uniformly on this circle. For each trial a constant
input (‘orientation’) is sampled from this circle and presented to the network
(running without plasticity). At the end of the trial, the average firing rate of
each neuron is computed over all the duration of the presentation of the input
except for the initial transient period.

6.4 Fano Factor and Coefficient of Variation

The Fano factor and the coefficient of variation are computed as follows. A
random direction is chosen in the input space and presented multiple times to
the network (running without plasticity). For each trial the spike count c of
the neurons is computed. then we compute the the Fano factor for each neuron
using the formula :

Fn =
σ2
c(n)

µc(n)

σ2
c(n) and µc(n) are respectively the standard deviation and the mean of the

the spike count of neuron n. This procedure is repeated using different random
input directions. The final Fano factor is an average over the input directions
and the neurons in the population.
The Coefficient of variation (CV) is computed using the same inputs. For each
trial, instead of the spike count, we pool the interspike intervals (ISI) of all
neurons. The formula used to compute the CV is

CV =
σISI
µISI

As for the Fano factor, the final CV is an average over the different input
directions.

6.5 Simulation of speech signal learning

To learn the speech signals (Figure 4), slight modifications were added to the
previous simulation scheme. In a non-whitened scenario, partial learning of the
inhibitory recurrent connections can result in a large proportion of completely
silent neurons. Since plasticity requires both pre- and post-synaptic spiking,
these neuron never ‘recover’ or participate in the representation. To avoid this
issue, we used a dynamic threshold that decreases for unresponsive neurons and
increases for neurons that are too active. The threshold decreased by −εF for a
neuron that did not fire any spike in a sliding window of 2.5s, and increased by εF
if its firing rate exceeded 20Hz in the last 2.5s. After about 1000 iterations, the
firing rates are always maintained between these two bounds and the thresholds
remain constant for the rest of the learning.

In Figure 4, the initial recurrent and feedforward weights are drawn from a
normal distribution with standard deviations of 0.1 and 0.02 for the feedforward
and the recurrent weights respectively; These initial weights are not normalized.
The diagonal elements of the recurrent connectivity matrix (the resets) are equal
to -0.8. Such strong inhibitory autapses insure the stability of the network in
the initial state. In order to speed up learning, we used initially large learning
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rates (εΩ = 10−2, εF = 10−3) that were progressively decreased to εΩ = 10−4

and εF = 10−5. For re-training to the new non-speech stimulus, we used the
learning rates εΩ = 10εF = 10−2). For re-training the feed-forward connections
without the lateral connections, we used εF = 0.2510−2).

7 Learning a Speech signal, Supplementary re-
sults

This section provides a figure with additional results for the network trained
with speech signals (Figure 4 in the main paper). Here, we report the initial,
learnt, and re-trained input and decoding weights. We also show the result of
re-learning a new sound when training the feed-forward, but not the recurrent
connections.
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Figure S2: Supplementary result for learning speech sounds. A. (i) Feed-forward
weights (similar to “receptive fields”) of the neurons. The initial weights are ran-
dom. The diagonal appears because these were sorted according to maximal frequency.
Bluish colors correspond to negative values, reddish colors to positive values. (ii) After
learning, the receptive fields have an excitatory sub-field (reddish colors), and most
neurons also exhibit one or two strong inhibitory subfields (bluish colors). These obser-
vations are broadly compatible with receptive fields observed in the mammalian audi-
tory pathway, and notably in the representation of speech signals in A1 [13]. Note that
the weights have been re-sorted according to maximal frequency. (iii) After re-training
with the new stimulus (see panel C(i)) the receptive fields change selectively (positively
and negatively) at the position of the trained frequencies. The panel represents the dif-
ference between the weights after and before the retraining. These frequency-selective
changes in receptive field structure is in line with fast plastic changes of receptive fields
observed following behavioral training [12]. There is also a small decrease in gain at
other frequencies, due to the competition with the new stimulus. (iv) When blocking
the learning of the lateral connections prior to the introduction of the new stimulus,
so that only the feed-forward connections can be learnt, the receptive fields change
in a similar fashion for the trained frequencies (without change in gain). B. Same
as in A, but for the decoding weights. (i) Decoding weights before learning appear
random. Note that they are sorted as in A(i) to allow comparison of feedforward
and decoding weights for each neuron. (ii) After learning, the decoding weights are
more structured and broader than the feedforward weights. This is compatible to the
decoding filter of speech measured in auditory cortex [13]. They have been sorted
as in A(ii). (iii) After re-training to the new stimulus, a small number of decoding
filters (neurons) “specialize” for the new stimulus, while the other decoding weights
change only mildly. This allows the network to minimize its firing rate response to the
new stimulus, while still providing an accurate representation of it. (iv) After training
only the feed-forward connections, the changes in the decoder are massive and disor-
ganized. This reflects a severe degradation in coding performance. C. Response of the
network after re-training with the new stimulus, but only the feedforward weights, not
the recurrent weights. (i) The new stimulus. (ii) The estimate of the stimulus after
re-training is poorer than it was before (see Figure 4 in main text). (iii) The firing
rates have massively increased. (iv) The balance between excitation and inhibition
has worsened. Thus, we predict that specifically blocking inhibitory plasticity during
exposure to a new stimulus would actually degrade learning performance at the same
time that it degrades the EI balance. Note that to avoid a total failure of the network
(whose firing rates eventually explodes without training the lateral connections), we
divided the learning rate of the feed-forward connections by 4.
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90 CHAPTER 3. LEARNING AN AUTO-ENCODER



Chapter 4

Learning a Linear Dynamical
System

We have previously considered the problem of coding or how recurrent
networks of integrate-and-fire neurons can learn to optimally represent their
inputs. In the following paper, we extend the framework to the learning of
more complex computations. Here networks do not learn to solely represent
their inputs but operate transformations on them. In the auto-encoder,
the desired output is fed as an input to the network. Here the input of the
network c and the desired output x are related through a linear differential
equation:

ẋ(t) = Ax(t) + c(t) (4.1)

where A is the state matrix of the system.

(Boerlin et al., 2013) derived a recurrent network of spiking neurons
that implements such a dynamical system. Here we briefly expose their
derivation. This derivation is also illustrated in less detail in the second
section of the following paper (Bourdoukan and Denève, 2015).

Decoding Scheme

The decoding scheme is the same as the one used in the auto-encoder. The
spike trains are modeled as a sum of Dirac functions oi(t) =

∑
k δ(t − tki )

where oi is the spike train of neuron i and tkj are the times of its spikes. We
assume that the variables can be decoded linearly by a leaky integration of
the spike trains as follows:

˙̂xj(t) = −λx̂j(t) +
N∑

n=1

Djnon(t) (4.2)

where x̂j is the jth decoded variable, λ is the leak of the decoder and Djn

is the decoding weight from neuron n to the jth component of the decoded
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variable. This decoding scheme is akin to a synaptic integration of spikes
in a postsynaptic neuron. In fact, every spike emitted by neuron i adds
an exponential kernel of amplitude Dnj to the jth output unit x̂j, similar
to a postsynaptic potential (PSP) provoked by a spike in a postsynaptic
neuron. This means that the variables can be decoded by any downstream
neuron if it has the right set of synaptic weights. If we define the filtered
spike trains rn:

ṙn(t) = −λrn(t) + on(t) (4.3)

Alternatively, we can write the estimate as a function of the these quanti-
ties:

x̂j(t) =
N∑

n=1

Djnrn(t) (4.4)

or in matrix form
x̂(t) = Dr(t) (4.5)

where D = (Djn)16j6J, 16n6N is the decoding weight matrix and r =
(rn)16n6N is the population vector of the filtered spike trains. The fil-
tered spike train rn can be interpreted as an estimate of the rate of the
neuron n up to the factor λ.

Spiking Dynamics

The objective is to minimize the error between the desired output x and
the decoded output from the network x̂. To derive the spiking policy that
minimizes the error, we use the same loss function as for the auto-encoder.
This loss function contains three terms. One measuring the loss between x
and x̂, a quadratic cost term and a linear cost term that regularize spiking
activity:

L(t) =
J∑

j=1

(xj(t)− x̂j(t))2 + ν

N∑

l=1

rl(t) + µ

N∑

l=1

r2
l (t) (4.6)

To optimize the spike times in the network, the neurons fire according
to a greedy rule that minimizes the previous loss function. Thus, a spike
is emitted only if it immediately decreases the loss function L:

L(t | if neuron n spikes) < L(t | if neuron n does not spike) (4.7)

Then, following the same steps as for the auto-encoder (Chapter 3,
supplementary information), one gets the following spiking condition:

DT
n (x− x̂)− µrn >

‖ Dn ‖2 +µ+ ν

2
(4.8)
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The left side of the inequality is defined as the voltage of neuron n and
the right side as its spiking threshold:

Vn = DT
n (x− x̂)− µrn

Tn =
‖ Dn ‖2 +µ+ ν

2

The spiking rule we obtain is very simple: a neuron’s spike decreases
the error only if the projection of the global error between the target and
the estimate onto the neuron’s decoding weight vector is larger than half
the length of this decoding weight and the cost terms.

Leaky integrate-and-fire Dynamics

by deriving the voltage equation above with respect to time we obtain:

V̇n = DT
n (ẋ− ˙̂x)− µṙn (4.9)

Until now the derivation is exactly the same as for an auto-encoder.
However, since x now has specific linear dynamics, when we replace ẋ, ˙̂x
and ṙn by their expression following 4.1, 4.2 and 4.3, we obtain :

V̇n = DT
n (Ax + c + λx̂−Do) + µλrn − µon (4.10)

.
Then, by adding and subtracting the term λx to the previous equation

V̇n = DT
n (Ax + c + λx− λx + λx̂−Do) + µλrn − µon

= DT
n (Ax + c + λx− λ(x− x̂)−Do) + µλrn − µon

= λDT
n (x− x̂)− µλrn + DT

n (Ax + c + λx−Do) + µλrn − µon
= −λ(DT

n (x− x̂)− µrn) + DT
n (Ax + c + λx−Do)− µon

= −λVn + DT
n (Ax + c + λx−Do)− µon

We assume that the network output is tracking x accurately at a time
t such that x̂ ≈ x and using this auto-consistency argument we replace x
by x̂ in the previous equation and obtain:

V̇n = −λVn + DT
n (Ax̂ + c + λx̂ + Do)− µon

= −λVn + DT
nc + DT

n (A + λI)x̂−DT
nDo− µon

In the last equation, we replace x̂ according to equation 4.5

V̇n = −λVn + DT
nc + DT

n (A + λI)Dr−DT
nDo− µon (4.11)
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Which we rewrite in a full Matrix form :

V̇ = −λV + DTc + DT (A + λI)Dr− (DTD + µI)o (4.12)

where V is the vector of the membrane potentials of all the neurons.
Indeed, these are the dynamic of a recurrently connected network of leaky
integrate-and-fire neurons. In addition to the feedforward command c,
the neurons receive two different recurrent inputs. A fast input consisting
of raw spikes with weights Wf = (DTD + µI) identical to the recurrent
weights of the auto-encoder. We refer to these weights as fast. The fast
recurrent input has the same function as in the auto-encoder, as it insures
that the representation of the output is shared among neurons. In addition
to this fast input, the neurons receive a slower recurrent input consisting
of the filtered spike trains r, which are transmitted with what we define as
the slow weights Ws = DT (A + λI)D. These inputs are responsible for
the generation of the right temporal dynamics of the output. They directly
depend on the underlying linear dynamical system through the matrix A.

Learning the recurrent connectivities

In the previous chapter, we have derived a rule for learning fast connec-
tivity. The novelty of this work consists in deriving a learning rule for
the slow connectivity. The learning of such connectivity uses a supervis-
ing error signal that is fed back into the neurons. Indeed, the fast and
slow weights learn simultaneously with these local plasticity rules. In this
framework, the encoding weights are not subject to learning but are fixed
to their optimal values.

The paper is organized as follows: in the first section we briefly describe,
as a reminder, the learning of the fast connections. Then we show schemat-
ically how, starting from an auto-encoder, the network is able to implement
a linear dynamical system if slow connections are added. Finally, we derive
the learning rule of the slow weights and show its effectiveness through
simulations.
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Abstract

To predict sensory inputs or control motor trajectories, the brain must con-
stantly learn temporal dynamics based on error feedback. However, it remains
unclear how such supervised learning is implemented in biological neural net-
works. Learning in recurrent spiking networks is notoriously difficult because lo-
cal changes in connectivity may have an unpredictable effect on the global dynam-
ics. The most commonly used learning rules, such as temporal back-propagation,
are not local and thus not biologically plausible. Furthermore, reproducing the
Poisson-like statistics of neural responses requires the use of networks with bal-
anced excitation and inhibition. Such balance is easily destroyed during learning.
Using a top-down approach, we show how networks of integrate-and-fire neu-
rons can learn arbitrary linear dynamical systems by feeding back their error as
a feed-forward input. The network uses two types of recurrent connections: fast
and slow. The fast connections learn to balance excitation and inhibition using a
voltage-based plasticity rule. The slow connections are trained to minimize the
error feedback using a current-based Hebbian learning rule. Importantly, the bal-
ance maintained by fast connections is crucial to ensure that global error signals
are available locally in each neuron, in turn resulting in a local learning rule for
the slow connections. This demonstrates that spiking networks can learn complex
dynamics using purely local learning rules, using E/I balance as the key rather
than an additional constraint. The resulting network implements a given function
within the predictive coding scheme, with minimal dimensions and activity.

The brain constantly predicts relevant sensory inputs or motor trajectories. For example, there is
evidence that neural circuits mimic the dynamics of motor effectors using internal models [1]. If the
dynamics of the predicted sensory and motor variables change in time, these models may become
false [2] and therefore need to be readjusted through learning based on error feedback.

From a modeling perspective, supervised learning in recurrent networks faces many challenges.
Earlier models have succeeded in learning useful functions at the cost of non local learning rules
that are biologically implausible [3, 4]. More recent models based on reservoir computing [5–7]
transfer the learning from the recurrent network (with now “random”, fixed weights) to the readout
weights. Using this simple scheme, the network can learn to generate complex patterns. However,
the majority of these models use abstract rate units and are yet to be translated into more realistic
spiking networks. Moreover, to provide a sufficiently large reservoir, the recurrent network needs
to be large, balanced and have a rich and high dimensional dynamics. This typically generates far
more activity than strictly required, a redundancy that can be seen as inefficient.

On the other hand, supervised learning models involving spiking neurons have essentially concen-
trated on the learning of precise spike sequences [8–10]. With some exceptions [10,11] these models
use feed-forward architectures [12]. In a balanced recurrent network with asynchronous, irregular
and highly variable spike trains, such as those found in cortex, the activity has been shown to be
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chaotic [13, 14]. This leads to spike timing being intrinsically unreliable, rendering a representation
of the trajectory by precise spike sequences problematic. Moreover, many configurations of spike
times may achieve the same goal [15].

Here we derive two local learning rules that drive a network of leaky integrate-and-fire (LIF) neu-
rons into implementing a desired linear dynamical system. The network is trained to minimize the
objective ‖x(t)− x̂(t)‖2 +H(r), Where x̂(t) is the output of the network decoded from the spikes,
x(t) is the desired output, and H(r) is a cost associated with firing (penalizing unnecessary activ-
ity, and thus enforcing efficiency). The dynamical system is linear, ẋ = Ax + c, with A being
a constant matrix and c a time varying command signal. We first study the learning of an autoen-
coder, i.e., a network where the desired output is fed to the network as a feedforward input. The
autoencoder learns to represent its inputs as precisely as possible in an unsupervised fashion. After
learning, each unit represents the encoding error made by the entire network. We then show that
the network can learn more complex computations if slower recurrent connections are added to the
autoencoder. Thus, it receives the command c along with an error signal and learns to generate the
output x̂ with the desired temporal dynamics. Despite the spike-based nature of the representation
and of the plasticity rules, the learning does not enforce precise spike timing trajectories but, on the
contrary, enforces irregular and highly variable spike trains.

1 Learning a balance : global becomes local

Using a predictive coding strategy [15–17], we build a network that learns to accurately represent its
inputs while expending the least amount of spikes. To introduce the learning rules and explain how
they work, we start by describing the optimized network (after learning).

Let us first consider a set of unconnected integrate-and-fire neurons receiving shared input signals
x = (xi) through feedforward connections F = (Fji). We assume that the network performs predic-
tive coding, i.e. it subtracts from each of these input signals an estimate x̂ obtained by decoding the
output spike trains (fig 1A). Specifically, x̂i =

∑
Dijrj , where D = (Dij) are the decoding weights

and r = (rj) are the filtered spike trains which obey ṙj = −λrj + oj with oj(t) =
∑

k δ(t − tkj )
being the spike train of neuron j and tkj are the times of its spikes. Note that such an autoencoder
automatically maintains an accurate representation, because it responds to any encoding error larger
than the firing threshold by increasing its response and in turn decreasing the error. It is also effi-
cient, because neurons respond only when input and decoded signals differ. The autoencoder can be
equivalently implemented by lateral connections, rather than feedback targeting the inputs (Fig 1A).
These lateral connections combine the feedforward connections and the decoding weights and they
subtract from the feedforward inputs received by each neuron. The membrane potential dynamics
in this recurrent network are described by:

V̇ = −λV + Fs+Wo (1)

where V is the vector of the membrane potentials of the population, s = ẋ + λx is the effective
input to the population, W = −FD is the connectivity matrix, and o is the population vector of the
spikes. Neuron i has threshold Ti = ‖Fi‖2/2 [15]. When input channels are independent and the
feed-forward weights are distributed uniformly on a sphere then the optimal decoding weights D are
equal to the encoding weights F and hence the optimal recurrent connectivity W = −FFT [17].
In the following we assume that this is always the case and we choose the feedforward weights
accordingly.

In this auto-encoding scheme having a precise representation of the inputs is equivalent to main-
taining a precise balance between excitation and inhibition. In fact, the membrane potential of a
neuron is the projection of the global error of the network on the neurons’s feedforward weight
(Vi = Fi(x − x̂) [15]). If the output of the network matches the input, the recurrent term in the
membrane potential, Fix̂, should precisely cancel the feedforward term Fix. Therefore, in order to
learn the connectivity matrix W, we tackle the problem through balance, which is its physiological
characterization. The learning rule that we derive achieves efficient coding by enforcing a precise
balance at a single neuron level. It makes the network converge to a state where each presynaptic
spike cancels the recent charge that was accumulated by the postsynaptic neuron (Fig 1B). This
accumulation of charge is naturally represented by the postsynaptic membrane potential Vi, which
jumps upon the arrival of a presynaptic spike by a magnitude given by the recurrent weight Wij due
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Figure 1: A: a network preforming predictive coding. Top panel: a set of unconnected leaky
integrate-and-fire neurons receiving the error between a signal and their own decoded spike trains.
Bottom panel: the previous architecture is equivalent to the recurrent network with lateral connec-
tions equal to the product of the encoding and the decoding weights. B: illustration of the learning
of an inhibitory weight. The trace of the membrane potential of a postsynaptic neuron is shown in
blue and red. The blue lines correspond to changes due to the integration of the feedforward input,
and the red to changes caused by the integration of spikes from neurons in the population. The black
line represents the resting potential of the neuron. In the left panel the presynaptic spike perfectly
cancels the accumulated feedforward current during a cycle and therefore there is no learning. In the
right panel the inhibitory weight is too strong and thus creates imbalance in the membrane potential.
Therefore, it is depressed by learning. C: learning in a 20-neuron network. Top panels: the two
dimensions of the input (blue lines) and the output (red lines) before (left) and after (right) learning.
Bottom panels: raster plots of the spikes in the population. D, left panel: after learning each neuron
receives a local estimate of the output of the network through lateral connections (red arrows). Right
panel: scatter plot of the output of the network projected on the feedforward weights of the neurons
versus the recurrent input they receive. E: the evolution of the mean error between the recurrent
weights of the network and the optimal recurrent weights −FFT using the rule defined by equation
2 (black line) and the rule in [16] (gray line). Note that our rule is different from [16] because it
operates on a finer time-scale and reaches the optimal balanced state with more than one order of
magnitude faster. This speed-up is important because, as we will see below, some computations
require a very fast restoration of this balance.

to the instantaneous nature of recurrent synapses. Because the two charges should cancel each other,
the greedy learning rule is proportional to the sum of both quantities:

δWij ∝ −(Vi + βWij) (2)

where Vi is the membrane potential of the postsynaptic neuron, Wij is the recurrent weight from
neuron j to neuron i, and the factor β controls the overall magnitude of lateral weights. More
importantly, β regularizes the cost penalizing the total spike count in the population (i.e. H(r) =
µ
∑

i ri where µ is the effective linear cost [15]). The example of an inhibitory synapse Wij < 0
is illustrated in figure 1B. If neuron i is too hyperpolarized upon the arrival of a presynaptic spike
from neuron j, i.e., if the inhibitory weight Wij is smaller than −Vi/β, the absolute weight of
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the synapse (the amplitude of the IPSP) is decreased. The opposite occurs if the membrane is too
depolarized. The synaptic weights thus converge when the two quantities balance each other on
average Wij = −〈Vi〉tj/β, where tj are the spike times of the presynaptic neuron j.

Fig 1C shows the learning in a 20-neuron network receiving random input signals. For illustration
purposes the weights are initialized with very small values. Before learning, the lack of lateral
connectivity causes neurons to fire synchronously and regularly. After learning, spike trains are
sparse, irregular and asynchronous, despite the quasi absence of noise in the network. Even though
the firing rates decrease globally, the quality of the input representation drastically improves over
the course of learning. Moreover, the convergence of recurrent weights to their optimal values is
typically quick and monotonic (Fig 1E).

By enforcing balance, the learning rule establishes an efficient and reliable communication between
neurons. Because V = Fx − FFT r = F(x − x̂), every neuron has access - through its recurrent
input - to the network’s global coding error projected on its feedforward weight (Fig 1D). This local
representation of the network’s global performance is crucial in the supervised learning scheme we
describe in the following sections.

2 Generating temporal dynamics within the network

While in the previous section we presented a novel rule that drives a spiking network into efficiently
representing its inputs, we are generally interested in networks that perform more complex compu-
tations. It has been shown already that a network having two synaptic time scales can implement an
arbitrary linear dynamical system [15]. We briefly summarize this approach in this section.

ẋ + �x

(A + �I)x̂

x̂ x̂x̂
Ax + �x Ax̂ + �x̂

+c +c

c c x̂
F FT F FT

Wf

Ws

D E

CBA

Figure 2: The construction of a recurrent network that implements a linear dynamical system.

In the autoencoder presented above, the effective input to the network is s = ẋ + λx (Fig 2A). We
assume that x follows linear dynamics ẋ = Ax+ c, where A is a constant matrix and c(t) is a time
varying command. Thus, the input can be expanded to s = Ax + c + λx = (A + λI)x + c (Fig
2B). Because the output of the network x̂ approximates x very precisely, they can be interchanged.
According to this self-consistency argument, the external input term (A + λI)x is replaced by
(A + λI)x̂ which only depends on the activity of the network (Fig 2C). This replacement amounts
to including a global loop that adds the term (A + λI)x̂ to the source input (Fig 2D). As in the
autoencoder, this can be achieved using recurrent connections in the form of F(A + λI)FT (Fig
2E). Note that this recurrent input is the filtered spike train r, not the raw spikes o. As a result, these
new connections have slower dynamics than the connections presented in the first section. This
motivates us to characterize connections as fast and slow depending on their underlying dynamics.
The dynamics of the membrane potentials are now described by:

V̇ = −λV V + Fc+Wsr+Wfo (3)
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where λV is the leak in the membrane potential, which is different from the leak in the decoder λ. It
is clear from the previous construction that the slow connectivity Ws = F(A+ λI)FT , is involved
in generating the temporal dynamics of x. Owing to the slow connections, the network is able to
generate autonomously the temporal dynamics of the output and thus, only needs the command
c as an external input. For example, if A = 0 (i.e. the network implements a pure integrator),
Ws = λFFT compensates for the leak in the decoder by generating a positive feedback term that
prevents the activity form decaying. On the other hand, the fast connectivity matrix Wf = −FFT ,
trained with the unsupervised, voltage-based rule presented previously, plays the same role as in the
autoencoder; It insures that the global output and the global coding error of the network are available
locally to each neuron.

3 Teaching the network to implement a desired dynamical system

Our aim is to develop a supervised learning scheme where a network learns to generate a desired
output with an error feedback as well as a local learning rule. The learning rule targets the slow
recurrent connections responsible for the generation of the temporal dynamics in the output, as seen
in the previous section. Instead of deriving directly the learning rule for the recurrent connections,
we first derive a learning rule for the matrix A of the linear dynamical system using simple results
from control theory, and then we translate the learning to the recurrent network.

3.1 learning a linear dynamical system online

Consider the linear dynamical system ˙̂x = Mx̂ + c where M is a matrix. We derive an online
learning rule for the coefficients of the matrix M, such that the output x̂ becomes after learning
equal to the desired output x. The latter undergoes the dynamics ẋ = Ax+ c. Therefore, we define
e = x − x̂ as the error vector between the actual and the desired output. This error is fed to the
mistuned system in order to correct and “guide” its behavior (Fig 3A). Thus, the dynamics of the
system with this feedback are ˙̂x = Mx̂+ c+K(x− x̂), where K is a scalar implementing the gain
of the loop. The previous equation can be rewritten in the following form:

˙̂x = (M−KI)x̂+ c+Kx (4)

where I is the identity matrix. If we assume that the spectra of the signals are bounded, it is straight-
forward to show, via a Laplace transform, that x̂ → x when K → +∞. The larger the gain of the
feedback, the smaller the error. Intuitively, if K is large, very small errors are immediately detected
and therefore, corrected by the system. Nevertheless our aim is not to correct the dynamical system
forever, but to teach it to generate the desired output itself without the error feedback. Thus, the
matrix M needs to be modified over time. To derive the learning rule for the matrix M, we operate
a gradient descent on the loss function L = eTe = ‖x− x̂‖2 with respect to the components of the
matrix. The component Mij is updated proportionally to the gradient of L,

δMij ∝ −
∂L

∂Mij
∝ (

∂x̂

∂Mij
)Te (5)

To evaluate the term ∂x̂/∂Mij , we solve the equation 4 for the simple case were inputs c are con-
stant. If we assume that K is much larger than the eigenvalues of M, the gradient ∂x̂/∂Mij is
approximated by Eijx̂, where Eij is a matrix of zeros except for component ij which is one. This
leads to the very simple learning rule δMij ≈ x̂jei, which we can write in matrix form as:

δM ∝ ex̂T (6)

The learning rule is simply the outer product of the output and the error. To derive the learning rule
we assume constant or slowly varying input. In practice, however, learning can be achieved also
using fast varying inputs (Fig 3).

3.2 Learning rule for the slow connections

In the previous section we derived a simple learning rule for the state matrix M of a linear dynamical
system. We translate this learning scheme into the recurrent network described in section 2. To this
end, we need to determine two things. First, we have to define the form of the error feedback in the
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recurrent network case. Second, we need to adapt the learning rule of the matrix of the underlying
dynamical system to the slow weights of the recurrent neural network.

In the previous learning scheme the error is fed into the dynamical system as an additional input.
Since the input weight vector of a neuron Fi defines the direction that is relevant for its “action”
space, the neuron should only receive the errors in that direction. Thus, the error vector is projected
on the feedforward weights vector of a neuron before being fed to it. Accordingly, equation 3
becomes:

V̇ = −λV V + Fc+Wsr+Wfo+KFe (7)

In the autoencoder, the membrane potential of a neuron represents the error between the input and
the output of the entire network along the neuron’s feedforward weight. With the addition of the
dynamic error feedback and the slow connections, the membrane potentials now represent the error
between the actual and the desired network output trajectories.

To translate the learning rule of the dynamical system into a rule for the recurrent network, we as-
sume that any modification of the recurrent weights directly reflects a modification in the underlying
dynamical system. This is achieved if the updates δWs of the slow connectivity matrix are in the
form of F(δM)FT . This ensures that the network always implements a linear dynamical system and
guarantees that the analysis is consistent. The learning rule of the slow connections Ws is obtained
by replacing δM by its expression according to equation 6 in F(δM)FT :

δWs ∝ (Fe)(Fx̂)T (8)

According to this learning rule, the weight update between two neurons, δW s
ij , is proportional to

the error feedback Fie received as a current by the postsynaptic neuron i and to Fjx̂, the output of
the network projected on the feedforward weight of the presynaptic neuron j. The latter quantity is
available to the presynaptic neuron through its inward fast recurrent connections, as shown for the
autoencoder in Fig 1D.

One might object that the previous learning rule is not biologically plausible because it involves
currents present separately in the pre- and post-synaptic neurons. Indeed, the presynaptic term may
not be available to the synapse. However, as shown in the supplementary information of [15], the
filtered spike train rj of the presynaptic neuron is approximately proportional to bFjx̂c+, a rectified
version of the presynaptic term in the previous learning rule. By replacing Fjx̂ by rj in the equation
8 we obtain the following biologically plausible learning rule:

δW s
ij = Eirj (9)

Where Ei = Fie is the total error current received by the postsynaptic neuron.

3.3 Learning the underlying dynamical system while maintaining balance

For the previous analysis to hold, the fast connectivity Wf should be learned simultaneously with
the slow connections using the learning rule defined by equation 2. As shown in the first section,
the learning of the fast connections establishes a detailed balance on the level of the neuron and
guarantees that the output of the network is available to each neuron through the term Fjx̂. The
latter is the presynaptic term in the learning rule of equation 8. Despite not being involved in the
dynamics per se, these fast connections are crucial in order to learn any temporal dynamics. In other
words, learning a detailed balance is a pre-requirement to learn dynamics with local plasticity rules
in a spiking network. The plasticity of the fast connections remediate very quickly any perturbation
to the balance caused by the learning of the slow connections.

3.4 Simulation

As a toy example, we simulated a 20-neuron network learning a 2D-damped oscillator using a feed-
back gain K = 100. The network is initialized with weak fast connections and weak slow con-
nections. The learning is driven by smoothed gaussian noise as the command c. Note that in the
initial state there are no fast recurrent connection and the output of the network does not depend
linearly on the input because membrane potentials are too hyperpolarized (Fig 3B). The network’s
output is quickly linearized through the learning of the fast connections (equation 2) by enforcing a
balance on the membrane potential (Fig 3B): initial membrane potentials exhibit large fluctuations
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Figure 3: Learning temporal dynamics in a recurrent network. A, top panel: the linear dynamical
system characterized by the state matrix M receives feedback signaling the difference between its
actual output and a desired output. Bottom panel: a recurrent network displaying slow and fast
connections is equivalent to the top architecture if the error feedback is fed into the network through
the feedforward matrix F. B: a 20 neuron network learns using equations 9 and 2. Left panel: the
evolution of the error between the desired and the actual output during learning. The black and
grey arrows represent instances where the time course of the membrane potential is shown in the
next plot. Right panel: the time course of the membrane potential of one neuron at two different
instances during learning. The gray line corresponds to the initial state while the black line is a few
iterations after. C: scatter plots of the learned versus the predicted weights at the end of learning for
fast (top panel) and slow (bottom panel) connections. D, top panels: the output of the network (red)
and the desired output (blue), before (left) and after (right) learning. The black solid line on the top
shows the impulse command that drives the network. Bottom panels: raster plots before and after
learning. In the left raster plot there is no spiking activity after the first 50 ms.

that wane drastically after a few iterations (Fig 3B). On a slower time scale the slow connections
learn to minimize the prediction error using the learning rule of equation 9. The error between the
output of the network and the desired output decreases drastically (Fig 3B). To compute this error,
different instances of the connectivity matrices were sampled during learning. The network was
then re-simulated using the same instances while fixing K=0 to mesure the performance in the ab-
sence of feedback. At the end of learning, both slow and fast connections converge to their predicted
values Ws = F(A + λI)FT and Wf = −FFT (Fig 3C). The presence of feedback is no longer
required for the network to have the right dynamics (i.e. if we set K = 0 we still obtain the desired
output, see Figs. 3D and 3B). The output of the network is very accurate (representing the state x
with a precision of the order of the contribution of a single spike), parsimonious (no unnecessary
spikes are emitted to represent the dynamical state at this level of accuracy) and the spike trains are
asynchronous and irregular. Note that because the slow connections are weak at the initial state,
spiking activity decays quickly once the command impulse is turned off, due to the absence of slow
recurrent excitation (Fig 3D).

Simulation parameters Figure 1 : λ = 0.05, β = 0.51, learning rate: 0.01. Figure 3 : λ = 50,
λV = 1, β = 0.52, K = 100, learning rate of the fast connections: 0.03, learning rate of the slow
connections: 0.15.
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4 Discussion

Using a top-down approach we derived a pair of spike-based and current-based plasticity rules that
enable precise supervised learning in a recurrent network of LIF neurons. The essence of this ap-
proach is that every neuron is a precise computational unit that represents the network error in a
subspace of dimension 1 in the output space. The precise and distributed nature of this code allows
the derivation of local learning rules from global objectives.

To compute collectively, the neurons need to communicate to each other about their contributions to
the output of the network. The fast connections are trained in an unsupervised fashion using a spike-
based rule to optimize this communication. It establishes this efficient communication by enforcing
a detailed balance between excitation and inhibition. The slow connections however are trained to
minimize the error between the actual output of the network and a target dynamical system. They
produce currents with long temporal correlations implementing the temporal dynamics of the under-
lying linear dynamical system. The plasticity rule for the slow connections is simply proportional
to an error feedback injected as a current in the postsynaptic neuron, and to a quantity akin to the
firing rate of the presynaptic neuron. To guide the behavior of the network during learning, the error
feedback must be strong and specific. Such strength and specialization is in agreement with data
on climbing fibers in the cerebellum [18–20], which are believed to bring information about errors
during motor learning [21]. However, in this model, the specificity of the error signals are defined
by a weight matrix through which the errors are fed to the neurons. Learning these weights is still
under investigation. We believe that they could be learned using a covariance-based rule.

Our approach is substantially different from usual supervised learning paradigms in spiking net-
works since it does not target the spike times explicitly. However, observing spike times may be
misleading since there are many combinations that can produce the same output [15, 16]. Thus, in
this framework, variability in spiking is not a lack of precision, but is the consequence of the redun-
dancy in the representation. Neurons having similar decoding weights may have their spike times
interchanged while the global representation is conserved. What is important, is the cooperation
between the neurons and the precise spike timing relative to the population. For example, using in-
dependent Poisson neurons with instantaneous firing rates identical to the predictive coding network
drastically degrades the quality of the representaion [15].

Our approach is also different from liquid computing in the sense that the network is small, struc-
tured, and fires only when needed. In addition, in these studies the feedback error used in the
learning rule has no clear physiological correlate, while here it is concretely injected as a current in
the neurons. This current is used simultaneously to drive the learning rule and to guide the dynamics
of the neuron in the short term. However, it is still unclear what the mechanisms are that could
implement such a current dependent learning rule in biological neurons.

An obvious limitation of our framework is that it is currently restricted to linear dynamical systems.
One possibility to overcome this limitation would be to introduce non-linearities in the decoder,
which would translate into specific non-linearities and structures in the dendrites. A similar strategy
has been employed recently to combine the approach of predictive coding and FORCE learning [7]
using two compartment LIF neurons [22]. We are currently exploring less constraining forms of
synaptic non-linearities, with the ultimate goal of being able to learn arbitrary dynamics in spiking
networks using purely local plasticity rules.
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Universal Computations and Spike-Coding

The major limitation of the previous approach is that it only considers
linear dynamical systems. Indeed, to implement interesting and complex
tasks, the framework has to be extended to non-linear dynamical systems.
A recent study (Thalmeier et al., 2015) succeeded in constructing such net-
works using the same spike-coding scheme used here. This success is due
to the addition of non-linear dendrites to the network we presented. Next,
we briefly present their approach.

If one assumes that instead of linear dynamics, x has general non-linear
dynamics, ẋ = f(x) + c then, by accordingly replacing ẋ in the equation,
4.9 one obtains:

V̇n = DT
n (f(x) + c + λx̂−Do) + µλrn − µon

= DT
n f(x) + DT

nc−DT
nD

To + λDnx̂ + µλrn − µon
By approximating x ≈ x̂ = Dr and replacing in the previous equation,

they obtain:

Vn = DT
n f(Dr) + DT

nc−DT
nD

To + λDnDr + µλrn − µon (4.13)

The authors then assume that the function f has the form:

f(x) = −λxx + Atanh(x) (4.14)

where A is a matrix. Such form of non-linear functions is able to per-
form universal computation. In fact, the tanh function serves as a basis
to approximate non-linear functions. By replacing f by its expression in
equation 4.13 and rearranging the terms, they obtain:

Vn = DT
nAtanh(Dr)− (DT

nD + µI)o + (aDT
nD + µλsI) + DT

nc (4.15)

where a = λ−λx. According to the previous equation, a neuron receives
three types of recurrent inputs. The first term DT

nAtanh(Dr) is akin to
a non-linear dendrite that receives the postsynaptic currents r which are
summed with weights D. The sum is then subject to the non-linearity
tanh. The dendritic output are conveyed to the soma with weights DT

nA.
The learning procedure concerns these dendro-somatic weights. To learn
these weights the authors use the recursive least squares algorithm.

This network has proved to be capable of learning complex computa-
tions, such as periodic pattern generation, context dependent switching,
non-linear control, etc. It is thus the first spiking recurrent network that
is able to learn generic complex computations with this level of precision.



Chapter 5

Discussion

Throughout the three articles, we develop a theory of local learning in re-
current spiking networks. In the first two articles (Bourdoukan et al., 2012;
Brendel et al., 2016), we study how a spiking recurrent network learns to
efficiently represent its input using only local plasticity rules. The network
has feedforward weights in addition to instantaneous recurrent connections.
Both connections are plastic, so as to insure that the inputs are represented
optimally. The learning in this auto-encoder solely depends on the input
statistics and does not require the use of any supervising signal. In the
third article (Bourdoukan and Denève, 2015), the network learns to imple-
ment a specific linear dynamical system. Its computational capabilities are
enhanced by the addition of a slow recurrent connectivity and a supervising
error signal.

5.1 Representing InformationWithin a Highly
Cooperative Code

At the center of the learning scheme is the fact that global signals are
represented locally and precisely in each neuron. Neurons are precise com-
putational units that represent the signals in a subspace of dimension 1 in
the global output space. This subspace, which can be called “feature”, is de-
fined by the encoding/decoding weight vector of the neuron (Boerlin et al.,
2013). Because there are more neurons than input dimensions, decoding
weights are generally non-orthogonal, resulting in an overlap between the
features encoded by the different neurons. If two neurons have overlap-
ping features and spike independently from one another (i.e, ignoring their
mutual contribution to the output) they would contribute redundantly to
represent the signal, which is a lack of efficiency. Thus, in the presence
of overlapping features, an efficient representation requires a tight coordi-
nation of the spiking between neurons to avoid redundancy (Deneve and
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Machens, 2016).

5.2 Fast Connections Enforce Efficiency by Learn-
ing to Balance Excitation and Inhibition

Fast recurrent connections enforce the efficiency of the representation by
learning to balance the feedforward and recurrent inputs. At the end of
learning, the recurrent input precisely cancels the feedforward charge ac-
cumulated by a neuron at the time scale of a single population’s ISI. This
results in a tightly balanced membrane potential over time. Because of
this recurrent suppression, fast connections induce competition between
the neurons that receive similar inputs. Such neurons encode for similar
features. By suppressing each other’s feedforward inputs, they compete to
represent these features and thus avoid redundancy. Through learning, the
gain in efficiency is such that coding accuracy strongly increases while fir-
ing rates are drastically reduced. Note that in the case of an over-complete
representation, many neurons will represent similar features. Many spike
sequences can encode a same signal at a comparable level of accuracy. Thus,
the variability in spiking does not reflect a noisy representation but rather
the degeneracy in spike patterns. The tight balance predicted in our model
is in agreement with recent experimental evidence. (Okun and Lampl, 2008;
Graupner and Reyes, 2013), showed that excitatory and inhibitory current
received by nearby neurons are highly correlated over time. Inhibition ap-
pears to follow excitation with a lag a few milliseconds. Using a different
method, such lag was also found in the auditory cortex. This delay opens
a brief opportunity for the neurons to spike, resulting in a precise spike
timing (Wehr and Zador, 2003; Marlin et al., 2015). Finally, strong corre-
lations between excitation and inhibition are also observed during gamma
oscillations in the hippocampus (Atallah and Scanziani, 2009).

Comparison to balanced networks Note that these networks, which
were called spike-coding networks (Boerlin et al., 2013; Abbott et al., 2016;
Thalmeier et al., 2015), are fundamentally different from earlier balanced
recurrent networks (van Vreeswijk and Sompolinsky, 1996, 1998; Amit and
Brunel, 1997; Brunel, 2000) for four main reasons. First, connectivity is not
random and sparse but highly structured and dense. The weight between
two neurons is equal to minus the product of their feedforward weight
vectors. Indeed, the more the inputs received by two neurons are similar
the more the suppression between them should be stronger. Second, the
connection strength in these networks is much stronger and their strength
is independent of connection density. In common balanced networks, the
connection strength scales with 1/

√
K, where K is the number of synapses
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a neuron receives. Third, the balance in spike-coding networks is tighter.
In earlier models, the balance exists only on average and excitation and
inhibition are uncorrelated on a finer time scale. Fourth, the irregular
spiking here is a signature of an efficient and highly coordinated spike-
based code rather than a noisy independent Poisson code. Recent studies
show that a tight balance can be achieved in both densely (Renart et al.,
2010) and sparsely (Vogels et al., 2011) randomly connected networks. The
latter uses an STDP kernel to drive the network into the detailed balance
regime. However, none of these models could give such a straightforward
and functional interpretation of tight balance in terms of coding.

Biophysical quantities have precise computational meaning The
clear relationship between balance and coding is a consequence of the pre-
cise functional meaning that is borne by the biophysical quantities in this
network. In fact, membrane potentials represent encoding errors, i.e. errors
between the represented variable and the output of the network. Each neu-
ron represents this multidimensional error along the direction specified by
its encoding weight. Thus, low encoding errors are reflected by small and
balanced membrane potentials. This means that recurrent activity, akin to
the output, closely tracks the feedforward activity, akin to the input. Such
a tight relationship between balance and coding allows the derivation of a
local learning rule that enforces precise coding. Indeed, experiments have
found that a tight balance between excitation and inhibition is a result of
plasticity and is acquired through experience (Marlin et al., 2015; Dorrn
et al., 2010; D’amour and Froemke, 2015; Froemke, 2015).

Local voltage based learning rules The learning rule for the fast con-
nections is derived by minimizing the membrane potential fluctuations.
This is equivalent to enforcing a balance, since high voltage fluctuations
are the signature of imbalanced inputs. In a first attempt (Bourdoukan
et al., 2012), we derived such a rule by minimizing in a greedy fashion the
squared membrane potential at all times. This resulted in a rule propor-
tional to the firing rate of the presynaptic neuron and to the voltage of
the postsynaptic neuron. The network undergoing the learning rule indeed
converges to the optimum. However the convergence is slow (Bourdoukan
and Denève, 2015), Fig 1E. This slowness renders the learning of feedfor-
ward connections simultaneously, impossible. In fact, balance has to be
restored quickly after the imbalance induced by the update of the feedfor-
ward weights. In the following paper (Brendel et al., 2016), we remedy this
by minimizing the squared membrane potential only around spike times.
The resulting rule depends on the postsynaptic membrane potential and
on the synaptic weight. The voltage dependence of plasticity has been re-
ported experimentally. Moreover, in an STDP-like experiment, the learning
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rules reproduce the classical STDP windows. The shape of the widow (Heb-
bian or anti-Hebbian STDP) depends on whether the synapse is inhibitory
of excitatory and on the target neuron. Indeed, the sub-threshold volt-
age dependence of plasticity has been established experimentally (Artola
et al., 1990; Ngezahayo et al., 2000). In addition, other phenomenological
voltage-based plasticity models were also able to reproduction STDP win-
dows Clopath et al. (2010). Indeed, there is an intense debate on whether
the spike timing dependence of plasticity is simply a consequence of the
voltage dependence of plasticity (Lisman and Spruston, 2005).

We have previously discussed how fast connections enforced efficient
encoding in the recurrent network by learning to balance excitation and in-
hibition (or alternatively feedforward and recurrent inputs). In fact, learn-
ing such a balance appears to be crucial in two different learning schemes:
unsupervised learning of an auto-encoder (Brendel et al., 2016) and su-
pervised learning of a linear dynamical system (Bourdoukan and Denève,
2015).

5.3 Learning an Autoencoder

Combining the previous rule with a Hebbian spike time-depenent rule
for the encoding weights, allows the self-organization of an efficient auto-
encoder. The learning rule implicitly pushes the feedforward weights to be
aligned with the implicit decoder that is employed by the network. Indeed,
for a fixed set of encoding weights, the plasticity of the fast connections sets
the recurrent weights such that the neurons decode each other’s activity
using the same decoder D. In a mathematical sense, this means that this
decoder matrix is a factor of the recurrent connectivity matrix W = FD.
More concretely, the implicit decoder enforced by fast plasticity is equal,
for each neuron, to its spike-triggered average. Thus, the encoding weights
are gradually pushed towards the spike-triggered average of each neuron,
while the fast connections adapt quickly to this change. In the case of
Gaussian inputs, the learning leads to optimal encoding/decoding weights.
Such weights whiten the input and project it into orthogonal directions in
the neural response space (Simoncelli and Olshausen, 2001).

Efficient coding, population coding and tuning curves After learn-
ing, the measured bell-shaped tuning curves reflect the input distribution.
In the areas where the input is most probable, the tuning curves are dense
and have low amplitude as opposed to the areas where inputs are less likely.
(Ganguli and Simoncelli, 2014) shows that such a distribution of tuning
curves results from maximizing the fisher information between the stimu-



5.4. SUPERVISED LEARNING 109

lus and the responses. This work is founded on the classical population
coding framework (Pouget et al., 2000) where the encoding model consists
of fixed tuning curves that are dependent on the stimulus value. The neu-
rons encode a stimulus value by firing spikes according to a Poisson process
with a rate indicated by the tuning curve. However, in such a model, the
neurons are assumed to fire independently from one another. This highly
contrasts with the encoding scheme used by the tightly balanced auto-
encoder. In the latter, neurons are highly competitive and coordinate their
firing to represent the stimulus efficiently. The bell-shaped tuning curves
are a result of the competition enforced by the learning of recurrent connec-
tions ((Brendel et al., 2016), Fig 2-3-S1). In this sense, the coding scheme
is close to traditional efficient coding where neurons coordinate their re-
sponses to represent the stimulus by minimizing an objective (Olshausen
and Field, 1996; Zylberberg et al., 2011). These models usually consider
representations where neurons represent independent features. However,
this does not account for the redundancy found in the brain. In contrast,
here, similar features can be encoded by many neurons, resulting in the ir-
regular spike trains. Thus this coding scheme is called efficient population
coding (Deneve and Machens, 2016). A recent model succeeded in learn-
ing such an efficient sparse coding model using local learning rules derived
form a single objective (Zylberberg et al., 2011). However, their interpre-
tation of the optimization parameters in terms of biophysical quantities is
less systematic and seems more of a heuristic approach. In our model, the
functional meaning of biophysical quantities is better motivated and can
thus be generalized to other types of computations.

5.4 Supervised learning

When the auto-encoder is endowed with an additional slower recurrent
connectivity and a global error feedback, it is able to learn specific linear
input-output transformation. The slow connections are trained to mini-
mize the error between the actual and the desired output of the network.
To guide the network’s dynamics in the short term, this error is fed back
and injected as a current in the neurons. The local plasticity rule for the
slow weights is proportional to the firing rate of the presynaptic neuron
and to the error current received by the postsynaptic neuron. The error
feedback is not fed to the network with random weights, but along the en-
coding/decoding weight of each neuron. Indeed, a neuron should only be
informed about errors that are relevant to its coding space. The strength
and specificity of the error feedback are in agreement with data from the
climbing fibers in the cerebellum. The learning of the slow and fast con-
nections occurs simultaneously while the feedforward, the decoding and
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the feedback connections are kept fix. The efficient coding scheme which is
quickly enforced by the fast plasticity is crucial for the supervised learning
of the slow connectivity. The learning of the fast connections precisely dis-
tributes the information concerning the output across neurons, rendering
the use of local optimizing strategies possible for the slow weights.

Many studies that consider supervised learning in spiking neurons focus
on reproducing precisely timed spike sequences(Memmesheimer et al., 2014;
Ponulak and Kasiaski, 2010; Pfister et al., 2006; Gutig and Sompolinsky,
2006). Indeed, such a paradigm is irrelevant in our case where spike times
are highly variable from trial to trial. This variability results from the
degeneracy of the representation where many spike patterns lead to the
same output. What is crucial is not the absolute timing of spikes but its
coordination relatively to the population output. Instead of spike timing,
the derivation of the learning rule relies on the underlying rate description
of the network. In other words, it relies on its ability to relate discrete
spikes to continuous representation (rates and dynamical variables). A
recent study also makes the use of a rate description to define targets for
the learning in spiking networks (DePasquale et al., 2016). This study
succeeds in learning more complex tasks than we present here. However,
it suffers from the use of non-local methods to train the network. For
example, it uses an external auto-encoder of rate units to specify the target
activity of the spiking network. In addition, the precision of these networks
is considerably lower than the one achieved by the spike-coding scheme
presented here. Another recent study (Thalmeier et al., 2015) succeeded
to develop a network able to also learn highly complex functions using a
similar coding strategy to the one presented here. The learning of non-
linear computation is enabled by the use of •non-linear dendrites. The
connections are trained using the FORCE Learning (Sussillo and Abbott,
2009) algorithm that was initially developed for networks of units with
continuous activity. This is the first study that successfully applies the
FORCE Learning method to spiking networks. This success is due to the
natural rate description that underlies the dynamics of the network.

5.5 Open Questions

The efficient coding strategy employed by the network relies highly on the
instantaneous nature of the fast connections. Any contribution to the out-
put by a particular neuron is instantaneously transmitted to other neurons.
Indeed, in biological networks, such instantaneous communication does not
exist. In fact, the propagation of the action potential along the axon and
the time course of PSP’s result in delays of several milliseconds. A re-
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cent study (Chalk et al., 2016) addressed this problem within the spike
coding-scheme, and found that adding noise can remedy the synchroniza-
tion induced by delays. From a different perspective, a possible solution
would be to consider networks with sparser connectivity, thus limiting but
indeed not suppressing the correlations between the membrane potentials.
In this context, the spike coding and the tight balance hypothesis have
to be revisited and adapted to these networks. For example the balance
between excitation and inhibition in such network could be less tight but
still be considerably tighter than in sparse randomly connected networks.
On a learning level, this could imply that the rules should be derived by
minimizing the membrane potential fluctuation on short horizon around
spike rather sharply around spike times.

It is also interesting to extend the current auto-encoder in order to
optimally learn inputs with non-Gaussian statistics. Indeed, the network
proved to be efficient when trained on naturalistic signals. For instance,
it learns to accurately represent speech signals, but the learning quality is
less optimal than for Gaussian inputs.

In the current supervised learning scheme, the encoding, decoding and
feedback weights are equal and are fixed throughout learning. This is a
highly restrictive setup. It is thus crucial to understand how such an ar-
chitecture can develop through learning. Moreover, the leaning that we
consider is limited to linear dynamical systems. This considerably restricts
the type of tasks that can be performed using this approach. Indeed, the
actual framework should be extended to be able to perform non-linear func-
tions. A possible solution is to adapt the learning scheme used here to spike
coding networks with non-linear dendrites. These network were proved to
be suitable for non-linear processing (Thalmeier et al., 2015).
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