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Introduction

In the last decades, a cosmological model that fits observations through a vast range of scales emerged. It goes under the name of ΛCDM. At the current state of the art, the six free parameters of ΛCDM are known [1], but there are challenging problems still open, in particular the cause of the observed accelerated expansion of the universe. The simplest explanation is a cosmological constant Λ, but this is not technically natural in quantum field theory, from the point of view of the stability under radiative corrections. Many alternative models have been proposed, where the accelerated expansion is induced by a dynamical field or by a modification of General Relativity (GR). They are generally referred to as "Dark Energy". Independently on any theoretical prejudice, the crucial point is that these alternatives to ΛCDM are testable and it is thus worthwhile to study them. A very promising way to perform these tests is to consider cosmological perturbations. In ΛCDM, the growth of perturbations is fixed by the value of the cosmological constant. Alternatives to it instead generally come with extra degrees of freedom that give different dynamics. Hence, here is where any deviation from ΛCDM can become manifest. Crucially, our knowledge about the growth of inhomogeneities that generate the large scale structure we observe today can still be improved. This is the goal of a number of missions planned for the next decade (such as EUCLID [2] and LSST [3]), that will be able to push current constraints on the growth of structures down by one or two orders of magnitude. This will enable us to actually falsify many models and to shed light on the nature of the acceleration of the universe. This effort in constraining deviations from ΛCDM should be supported by an appropriate theoretical insight. On the one hand, one should look for a simple, general and effective way to bridge theory and observations. On the other, we would like to keep control on the viability of the theory and on its agreement with basic principles of physics (such as causality and locality) when exploring the parameter space to fit data. These thesis presents an approach that relies on these two cornerstones. It is called Effective Theory of Dark Energy [4][5][6][7][8][9][10], and amounts to the description of linear cosmological perturbations through all the operators compatible with symmetries in theories where a single scalar degree of freedom is added on top of the usual two helicity-two modes of GR, referred to as "scalar-tensor theories".

In Chapter 1 I will summarise what is currently the most general class of viable scalartensor theories. One of the sufficient conditions for a theory to be stable is that the equations of motion (EOM) contain at most two derivatives of the fields. What has been for a long time considered the most general viable class of scalar-tensor theories, known as Horndeski theories [11], relies on this condition. I will explain that however this is not a necessary condition, and Horndeski theories can be extended to more general classes introducing the notion of degeneracy, i.e. requiring the existence of constraints in the equations of motion. An example is the case of theories known as "beyond-Horndeski" [12,13], that I will discuss. These paved the way for the discovery of larger classes of theories, known as Degenerate Higher Order Scalar-Tensor (DHOST) [14], or Extended Scalar-Tensor (EST) [15] theories. In the rest of the thesis, I will develop an effective description of linear cosmological perturbations in this class of theories.

In Chapter 2 I will introduce the the Effective Theory of Dark Energy. I will first resume the formalism and show how to construct a very general action for linear cosmological perturbations. Although so far I only mentioned scalar-tensor theories, when dealing with the late universe the presence of matter is of course relevant. This opens the possibility to envisage different interactions between the matter fields and the other sectors. Part of my work has been devoted to include in the effective treatment very general couplings between matter, the metric and the scalar field, which I will illustrate in Chapter 3. These include also the possibility that different species couple differently to gravity.

A key advantage of the formulation through an action is that we can thoroughly analyse the stability conditions of the theory. I will discuss this aspect in detail in Chapter 4, focussing on the dispersion relations for the propagating scalar modes, underlying the impact that the presence of matter can have and some subtleties arising in the case of DHOST theories. I will show that the formulation in terms of the effective description and the stability analysis allow to substantially reduce the very large number of independent DHOST theories to a few classes that are observationally viable, and that such classes are equivalent to Horndeski and "beyond-Horndeski" theories, up to non trivial couplings between matter and the gravitational sector.

Besides developing a solid theoretical understanding of the effective description, a goal of this thesis is also to start investigating the signatures of deviations from ΛCDM on observables. This is the subject of the last two Chapters. In Chapter 5 I will consider the possibility of an interaction in the "dark sector", i.e. between dark matter and the dark energy. I will provide an analytical understanding of the effects and analyse the constraining power that future experiments will have on the free parameters of the effective description. To solve the equations, I will resort to the so-called "quasi-static limit" valid for Fourier modes that are well inside the sound horizon of dark energy, These are the relevant modes for Large Scale Structure experiments. In Chapter 6 I will go beyond this assumption and use a Boltzmann code which implements scalar-tensor theories in the effective theory formalism. I will focus on the peculiar observational effects that arise in theories "beyond-Horndeski", showing that in this case a frameindependent kinetic mixing between matter and the scalar field arises. I will illustrate and quantify its peculiar effect, namely the weakening of gravity at scales relevant for redshift surveys.

I chose not to include too lengthy calculations in the main text. I rather recall the formulae I need for the discussion, and what I think are the most interesting results, focusing on their physical meaning and their potential impact. The papers I published on the topics I present in the thesis contain the technical details and are included as appendices. I indicate in the text where to find the calculations the reader might be interested in.

Chapter 1

A general formulation of scalar-tensor theories

Scalar fields and higher derivatives in cosmology

This thesis focuses on scalar-tensor theories, i.e. theories where a single scalar degree of freedom is added to GR. These represent the simplest way to try to explain the observed acceleration of the universe with a dynamical field. For this reason, they are widely studied in the context of late time cosmology.

In the last years, an intense activity has been devoted to find more and more general extensions of scalar-tensor theories. In particular, a way to go beyond the most studied ones is to allow derivatives higher than second in the Lagrangian. However, special care must be taken when considering this possibility. Indeed, in presence of more than two derivatives, the fact that one introduces only one scalar field in the Lagrangian is not enough to ensure that the theory will contain a single propagating mode. One degree of freedom is characterised by two initial conditions needed to solve the equations of motion. On the other hand, in the presence of derivatives higher than second, extra initial conditions should be provided. This means that additional propagating degrees of freedom appear. Moreover, these modes are usually associated with instabilities in the system, and the presence of higher derivatives is severely restricted by a powerful theorem that dates back to the work by Ostrogradsky [16]. Due to this theorem, for a long time the requirement of having second order equations of motion was not questioned. Only recently it was realised that stability can be achieved even in theories with equations of motion of order higher than second by considering "degenerate" theories, i.e. theories where constraints among the canonical variables are present so that the number of propagating degrees of freedom is reduced and the dangerous modes eliminated.

In this work I will discuss the most general class of theories obtained in this way. This encompasses all the most studied theories such as quintessence [17,18], k-essence [19,20], f (R) [21,22], Horndeski [11]-Generalised Galileons [23] and their extensions known as "beyond Horndeski" [12].

Horndeski theories

To begin with, I recall the most general theories with second-order dynamics both for the scalar field and the metric, and generalise them later. The most general scalar-tensor theory that obeys this requirement dates back to Horndeski's work [11]. The key idea is that one can admit higher derivatives in the Lagrangian, provided that its variation gives only second order EOM both for the scalar field and for the metric. The most general Lagrangian satisfying the above property amounts to the four terms

L H 2 ≡ G 2 (φ, X) , L H 3 ≡ G 3 (φ, X) φ , L H 4 ≡ G 4 (φ, X) (4) R -2G 4,X (φ, X)( φ 2 -φ µν φ µν ) ,
L H 5 ≡ G 5 (φ, X) (4) G µν φ µν + 1 3 G 5,X (φ, X)( φ 3 -3 φ φ µν φ µν + 2 φ µν φ µσ φ ν σ ) .

(1.1)

In the above action, I introduced the notations

φ µ ≡ ∇ µ φ , X ≡ g µν φ µ φ ν , φ µν ≡ ∇ ν ∇ µ φ , φ ≡ g µν ∇ µ ∇ ν φ . (1.
2)

The idea at the base of the Horndeski Lagrangians is to find an antisymmetric structure of the coefficients such that the terms with more than two derivatives cancel from the EOM.

This is clear if one considers first the case of flat space. This was studied in Ref. [24]. On Minkowski space, the only dynamical degree of freedom is the scalar. Its action is assumed to have the symmetry

φ µ → φ µ + c µ , c µ = const. , (1.3) 
which can be seen as a generalisation of the Galilean invariance. Hence the theory is called Galileon theory. The most general theory with the above symmetry that gives second-order equations of motion has been shown to consist of the Lagrangians

L gal 2 = - 1 2 (∂φ) 2 , L gal 3 = - 1 2 (∂φ) 2 φ, L gal 4 = - 1 2 (∂φ) 2 ( φ) 2 -(∂ µ ∂ ν φ) 2 , L gal 5 = - 1 4 (∂φ) 2 ( φ) 3 -3 φ(∂ µ ∂ ν φ) 2 + 2(∂ µ ∂ ν φ) 3 , (1.4) 
where I did not use the notation (1.2) to stress that in the above action a flat metric η µν is used, and all derivatives are partial derivatives. In particular, φ = η µν ∂ µ ∂ ν φ. One can easily prove that the variation of each component contains only second derivatives.

The theory above is very instructive to identify the correct structure of the Lagrangian, and one can already notice that this structure reflects the one of the terms of the Horndeski Lagrangians. To go further, one can try to formulate the Galileon theory in a fully covariant form. If we "covariantise" the Galileon Lagrangians by replacing the partial derivatives with covariant derivatives associated to the metric g µν , however, the EOM contain derivatives of the metric of order higher than second [23,25,26]. To avoid this, it is necessary to introduce some "gravitational counterterms", or non-minimal gravitational couplings to φ, in the covariant completion of L 4 and L 5 . One can show that the couterterms are

L 4 ∈ 1 8 X 2 (4) R , L 5 ∈ - 3 8 X 2 (4) G µν φ µν . (1.5)
As a final generalisation, one can promote the coefficients (∂φ) 2 of the Galileon Lagrangians (1.4) (which become X in the covariant version) to functions of φ and X, provided that the tuning of the gravitational counterterms is preserved. The Lagrangian obtained this way is exactly the Horndeski Lagrangian (1.1) [25]. In particular, the "rediscovery" of Horndeski's result that I just sketched gives an idea of why the structure of the quartic and quintic part should be as in (1.1). It also explains the origin of the tuning between the coefficient of the Ricci scalar and the higher derivative terms for φ in L H 4 , and the same for L H 5 . Any other Lagrangian satisfying the requirement of giving second-order EOM both for the metric and the scalar can be reduced to (1.1) by integration by parts.

Theories "beyond Horndeski"

The condition of second-order equations of motion is indeed a sufficient condition, but one can ask whether it is necessary. In other words, one can wonder whether higher order derivatives can be introduced in the equations of motion maintaining at the same time the correct number of initial conditions needed to solve the system. We can have an intuition of why this could be the case by considering an example where a healthy higher-order theory is built from a second-order one [10,27,28]. Suppose we start with a simple theory belonging to the Horndeski class (1.1), i.e. the Einstein-Hilbert action plus an action S φ for the scalar field which I assume to yield second-order equations of motion. I denote with gµν the metric that describes the gravitational and scalar field sector. I then add to that a matter Lagrangian constructed with a metric that depends also on the scalar field gradient, which I call g µν :

S = M 2 Pl 2 d 4
x -g (4) R + S φ [g µν , φ] + S m [g µν , Ψ] , g µν = C(X)g µν . (1.6) where Ψ denotes the matter fields. One can rewrite the action in terms of the metric g µν to which matter couples:

S = M 2 Pl 2 d 4 x √ -g C -1(4) R + 3 2C 3 ∂ µ C ∂ µ C + S φ C -1 g µν , φ + S m [g µν , Ψ] = M 2 Pl 2 d 4 x √ -g C -1(4) R + 6 C 2 X φ µ φ µρ φ ρν φ ν + S φ C -1 g µν , φ + S m [g µν , Ψ] . (1.7) 
The above Lagrangian does not belong to the Horndeski class (1.1). The EOM obtained by the variation of the action with respect to the scalar field contain derivatives of the latter up to fourth order [27,29]. They read

∇ µ φ µ C -3/2 C X C -1/2(4) R -6 C -1/2 = δL φ δφ . (1.8) 
However, it was shown in [27] that the higher derivative terms can be eliminated by taking the trace of the metric equations:

C -1/2(4) R -6 C -1/2 C -1/2 + XC -3/2 C X = 2 M 2 Pl T, (1.9) 
where T = g µν T φ µν + T m µν . The above equation allows to eliminate the higher-derivative terms from (1.8) by introducing a "mixing term" with the energy-momentum tensor [30]. Explicitly, (1.8) becomes

∇ µ (φ µ T K ) = - 1 2 δL φ δφ , T K ≡ - C -3/2 C X M 2 Pl C -1/2 + XC -3/2 C X T (1.10)
This way, it is evident that the scalar field equations actually require only two initial conditions to be solved (provided that δL/δφ and ∇ µ T do, which I assume is the case). This is an example of a theory that has only one propagating scalar degree of freedom even if formally it does not fit into the Horndeski Lagrangians (1.1). The reason relies on the fact that a hidden constraint equation is present in the system due to the form of the transformation (1.6).

Along this line of reasoning, it was realised that the Horndeski class of theories (1.1) can be extended including the two Lagrangians [12,13]

L bH 4 ≡ F 4 (φ, X) µνρ σ µ ν ρ σ φ µ φ µ φ νν φ ρρ , (1.11) 
L bH 5 ≡ F 5 (φ, X) µνρσ µ ν ρ σ φ µ φ µ φ νν φ ρρ φ σσ ,

Remarkably, if we "naively" covariantise the quartic and quintic Galileon Lagrangians promoting partial derivatives to covariant derivatives, the resulting Lagrangians belong to the "beyond Horndeski" class, i.e. they are of the form (1.11)-(1.12). In curved space, the EOM for the metric contain third order derivatives of the scalar field while the EOM for the scalar field contain third order derivatives of the metric. In flat space, the scalar field dynamics reduces to second order. In curved space it can be shown that the number of propagating scalar degrees of freedom is also one. To do so, an argument similar to the simple example I discussed above applies to the beyond-Horndeski theories. One can start from a theory containing only L bH 4 and find a transformation of the form gµν = g µν + D(φ, X)φ µ φ ν (1.13) such that in the final frame the system can be reduced to a second order one. The same can be done starting from L bH 5 alone, even though when both L bH 4 and L bH 5 are present such a transformation cannot be found. Nevertheless, the counting of the propagating degrees of freedom in these theories have been confirmed basing on a hamiltonian analysis.

In the rest of the thesis, I will refer to the theories introduced in this section as beyond Horndeski theories. This choice simply adapts to the name most used in the literature (other names are GLPV or G 3 ).

Degenerate Higher-Order Scalar-Tensor theories

One can ask if theories even more general than the extensions presented above exist. The use of transformations to different frames to find "hidden constraints" suggests that one can allow for higher derivatives provided that there exists a way to reduce the number of initial conditions of the system to only two in the scalar sector. To do so in a systematic way, one should recall Ostrogradsky's theorem for higher-derivative Lagrangians.

Ostrogradsky's theorem

Ostrogradsky's result can be formulated in a very simple statement: the Hamiltonian constructed from non-degenerate Lagrangians that depend upon more than one time derivative necessarily develops an instability. Let me show this, and clarify the notion of degeneracy, considering a higher-order Lagrangian for the classical canonical variable φ(t) [31,32],

L = a 2 φ2 + m 2 φ2 - mω 2 2 φ 2 . (1.14)
It is easy to show that the Hamiltonian is linear in the conjugate momentum P φ ≡ ∂L/∂ φ. We can just promote the "velocity" φ to a new canonical variable Q = φ. With the aid of a Lagrange multiplier, we have the equivalent Lagrangian

L = 1 2 a Q2 + 1 2 mQ 2 - mω 2 2 φ 2 -λ Q -φ . (1.15) 
The conjugate momenta are

P φ = ∂L ∂ φ = λ , P = ∂L ∂ Q = a Q , (1.16) 
and, inverting the above relations, we can write the Hamiltonian

H = P φ Q + 1 2a P 2 - m 2 Q 2 + mω 2 2 φ 2 .
(1.17)

Already at the classical level, this Hamiltonian reveals instabilities in the system. Indeed, the presence of the term linear in P φ makes it unbounded from below, so there exists an open direction in the phase space leading to states with negative energies. In the case of the system (1.14), this can be seen explicitly. Following [32], we can write the Euler-Lagrange equations obtained from 1.14 and their solution in the form:

a m .... φ + φ + ω 2 φ = 0 , φ(t) = C + cos(k + t) + S + sin(k + t) + C -cos(k -t) + S -sin(k -t) , (1.18) 
where

k ± = ω 1 ± √ 1 + 4 2 1/2 , ≡ ω 2 a m , C + = k 2 -φ 0 + φ0 k 2 --k 2 + , S + = k 2 -φ0 + ... φ 0 k + (k 2 --k 2 + ) , C -= k 2 + φ 0 + φ0 k 2 + -k 2 - , S -= k 2 + φ0 + ... φ 0 k -(k 2 + -k 2 -) , (1.19) 
and φ 0 , φ0 , φ0 , ... φ 0 are the initial data. One can recast the Hamiltonian (1.17) in terms of the above constants, and gets .20) In this form, one can see explicitly that the mode k -has negative energy. Moreover, the fact that the positive and negative energy modes originate from the same higher derivative dynamical variable implies they are necessarily coupled. The presence of such a mode allows states with arbitrarily high energies to be excited. To conserve the total energy, it is sufficient to excite other states with the same amplitude and opposite sign.

H = m 2 √ 1+4 k 2 + (C 2 + +S 2 + ) - m 2 √ 1+4 k 2 -(C 2 -+S 2 -) . ( 1 
The propagating mode with negative energy that is present in the system is called the Ostrogradsky ghost.

The only crucial assumption to arrive at these results is that we could invert the second equation (1.16), i.e. we were able to express the highest time derivatives in terms of canonical variables. This is the meaning of non-degeneracy. In this case, this amounts to require that ∂L ∂ φ = 0 , (1.21) which is to say that the higher-order term cannot be eliminated through integration by parts. For the case of a single variable, it is clear that the above argument is actually a no-go theorem for higher derivatives, since assuming a degenerate theory amounts to reduce to the standard case a = 0.

Eliminating the Ostrogradsky instability

In order to avoid the presence of the Ostrogradsky ghost in a non-trivial way, one must relax the assumptions of the theorem. In particular, this means to consider a degenerate theory with multiple fields. In modified gravity, we can have a situation where a higherderivative Lagrangian for the additional scalar field is coupled to the scalar degrees of freedom of the metric. In the toy-model above, we can couple the higher derivative Lagrangian to n regular canonical variables q i (t) [14], (i = 1, ..., n). Keeping only the terms with two or more derivatives, we can write

L = 1 2 a φ2 + m 2 φ2 + 1 2 k ij qi qj + b i φ qi . (1.22)
Note that the "interaction" term proportional to b i generates third order equations of motions while the term proportional to a gives fourth order equations. Reducing again to a second order system with the canonical variable Q = φ, we can reformulate the theory as

L = 1 2 a Q2 + 1 2 k ij qi qj + b i Q qi + m 2 Q 2 -λ(Q -φ) , (1.23) 
The inversion of the relation between the canonical variables and their conjugate momenta amounts to the inversion of the kinetic matrix, i.e. the symmetric matrix M describing the part of the Lagrangian quadratic in time derivatives:

M = a b j b i k ij . (1.24)
To avoid the presence of the Ostrogradsky ghost we require that this matrix is noninvertible. This is called the degeneracy condition, and can be formulated as: .25) where I assumed det(k) = 0. Imposing the above condition, one can find a null eigenmode that satisfies a constraint equation and reduce the system to a second order one. Three cases are possible:

det(M ) = det(k) a -b i b j (k -1 ) ij = 0 ⇒ a -b i b j (k -1 ) ij = 0 . ( 1 
1. A trivial degeneracy is present: the kinetic matrix has a row and column of zeros. This corresponds to have a = b i = 0, i.e. a canonical case with second order equations of motion.

2. The degeneracy comes only from the coupling term: this corresponds to a = 0 but b i = 0. The corresponding theory has third order equations of motion.

3. Both a and b i are non vanishing and the degeneracy comes from an interplay between the coupling terms, the higher derivative term and the healthy sector.

Noticeably, we will see that when generalised to the scalar-tensor theories, the first two cases are analogous to the Horndeski and beyond-Horndeski theories introduced above.

The example presented above and introduced in [14] can be made rigorous by a hamiltonian analysis that actually shows how the degeneracy is associated to the presence of a primary constraint in the theory, that eliminates the Ostrogradsky ghost [14,15,[33][34][35]. In the next section I will introduce the Lagrangians obtained by this method in the context of scalar-tensor theories of gravity.

DHOST theories

In this section I will show how the ideas presented in the toy models above have been applied to the case of scalar-tensor theories of gravity. I will follow the discussion of Ref. [14].

The first step is to write a general action that includes higher-order derivatives for the scalar field. I will consider the case where the Lagrangian can depend quadratically on second order derivatives of the scalar field, φ µν (the discussion of the case with Lagrangians cubic in φ µν is considerably more involved but conceptually equivalent. It can be found in [36]). The most general action can be written as S[g, φ] = d 4 x √ -g P (X, φ) + Q(X, φ) φ + f 2 (X, φ) (4) R + C µνρσ (2) φ µν φ ρσ . (1.26) The tensor C (2) is the most general tensor constructed from the metric g µν and the first derivative of the scalar field φ µ . I included for completeness the terms in P (X, φ) and Q(X, φ), even if these do not contribute to the degeneracy of the Lagrangian1 . The quadratic terms can be decomposed into the sum of five elementary Lagrangians,

C µνρσ (2) φ µν φ ρσ = 5 A=1 a A (X, φ) L (2) 
A ,

(2)

1 = φ µν φ µν , L (2) 
2 = ( φ) 2 , L

3 = ( φ)φ µ φ µν φ ν , L

(2) 4 = φ µ φ µρ φ ρν φ ν , L

5 = (φ µ φ µν φ ν ) 2 .

(1.28)

The Ostrogradsky ghost is eliminated choosing the functions a A in the expression (1.27) so that the corresponding theory is degenerate. As for the toy model of Sec. 1.4.2, this is done writing the kinetic matrix for the system and imposing that its determinant vanishes. This requires to separate space and time derivatives in the action. To do so in a very general way, it is convenient to use a 3+1 decomposition of spacetime, that I am going to introduce in the next subsection.

3+1 decomposition

Consider a scalar function t such that t =const. defines a family of non-intersecting spacelike hypersurfaces Σ t . This is called a foliation of spacetime. So far, t is completely arbitrary. We can define the following quantities [37]:

• The unit vector n µ normal to the hypersurfaces, which is timelike and normalised so that n µ n µ = -1.

• The three-dimensional metric induced on the hypersurface Σ t :

h µν = g µν + n µ n ν .
(1.29)

• The time flow vector t µ = ∂/∂t associated to the coordinate t. This generates the diffeomorphism which maps Σ t in Σ t+∆t . It can be decomposed as

t µ = N n µ + N µ .
(1.30)

The above equation defines the lapse function N ( x, t) and the shift vector N µ ( x, t) orthogonal to n µ . These, together with other quantities, are illustrated in Fig. 1.1.

• The extrinsic curvature of the hypersurface, which quantifies the properties of the embedding of the 3-surface in a 4-D spacetime through the variation of the normal vector:

K µν ≡ h ρ µ ∇ ρ n ν , (1.31) 
Let me also introduce the normal projection of the vector A µ ,

A ≡ A µ n µ , (1.32) 
which plays an important role for the degeneracy, and the spatial projection µ ≡ h ν µ A ν .

(1.33) Time derivatives are defined as the projection of Lie derivatives with respect to t µ . I will denote them with a "dot". In particular,

Ȧ ≡ t µ ∇ µ A . (1.34) 
Finally, we can construct 3-dimensional covariant derivatives associated to the metric h µν on the 3-dimesional hypersurface, that I denote with D i .

Degeneracy conditions

With the use of a 3+1 decomposition, one has the tools to separate space and time derivatives and write the kinetic matrix for the action (1.26). The procedure is completely analogous to the one followed for the toy model.

As a first step, one introduces a new variable to reduce the system to a second-order one. So, I define A µ = φ µ and enforce this property in the action through a Lagrange multiplier λ µ . Omitting the terms in P (X, φ) and Q(X, φ) that are not relevant for the degeneracy, (1.26) becomes:

S[g, φ, A µ , λ µ ] = d 4 x √ -g f 2 (X, φ) (4) R + C µνρσ (2) ∇ µ A ν ∇ ρ A σ + λ µ (φ µ -A µ ) .
(1.35) Then, one can rewrite (1.35) in terms of the quantities introduced in 1.4.3.1. After some manipulations, the kinetic part of the Lagrangian in a 3+1 decomposition can be written in the form [14] L kin = A(φ, X, A) Ȧ2 + 2B µν (φ, X, A) ȦK µν + K µνρσ (φ, X, A)K µν K ρσ , (1.36) where A is the normal projection defined in (1.32), and K µν is the extrinsic curvature (1.31). The coefficients are given by

A = 1 N 2 a 1 + a 2 -(a 3 + a 4 )A 2 + a 5 A 4 , (1.37) 
B µν = A 2N 2a 2 -a 3 A 2 + 4f 2,X h µν - A 2N a 3 + 2a 4 -2a 5 A 2 µ Âν , (1.38) 
K µνρσ = (a 1 A 2 + f 2 )h µ(ρ h ν)σ + (a 2 A 2 -f 2 )h µν h ρσ + Kµνρσ . (1.39)
The tensor Kµνρσ is given by Kµνρσ = 4f 2,Xa 3 A 2 2 µ Âν h ρσ + Âρ Âσ h µνa 1 µ Â(ρ h σ)ν + Âν Â(ρ h σ)µ + (a 5 A 2a 4 ) µ Âν Âρ Âσ .

(1.40)

Note that the structure of the Lagrangian (1.36) is the same as the one of the toymodel (1.23) with the correspondence (up to a factor of 2)

A → Q , K µν → qi , A(φ, X, A) → a , B µν (φ, X, A) → b i , K µνρσ (φ, X, A) → k ij . (1.41)
So, in this case the role of the "healthy" canonical degrees of freedom in the toymodel (1.22) is played by the degrees of freedom of the metric, contained in the extrinsic curvature K µν (recall from (1.31) that K µν ḣµν where h µν is the spatial part of the metric).

It is possible to cast the determinant of the system (1.36) in the form of a polynomial in A 2 : D(φ, X, A 2 ) ≡ A -K -1 µνρσ B µν B ρσ = D 0 (φ, X) + A 2 D 1 (φ, X) + A 4 D 2 (φ, X) = 0 , (1.42) where D 0 (φ, X) ≡ -4(a 2 + a 1 ) Xf (2a

1 + Xa 4 + 4f X ) -2f 2 -8X 2 f 2 X , D 1 (φ, X) ≡ 4 X 2 a 1 (a 1 + 3a 2 ) -2f 2 -4Xf a 2 a 4 + 4X 2 f (a 1 + a 2 )a 5 + 8Xa 3 1 -4(f + 4Xf X -6Xa 2 )a 2 1 -16(f + 5Xf X )a 1 a 2 + 4X(3f -4Xf X )a 1 a 3 -X 2 f a 2 3 + 32f X (f + 2Xf X )a 2 -16f f X a 1 -8f (f -Xf X )a 3 + 48f f 2 X , D 2 (φ, X) ≡ 4 2f 2 + 4Xf a 2 -X 2 a 1 (a 1 + 3a 2 ) a 5 + 4a 3 1 + 4(2a 2 -Xa 3 -4f X )a 2 1 + 3X 2 a 1 a 2 3 -4Xf a 2 3 + 8(f + Xf X )a 1 a 3 -32f X a 1 a 2 + 16f 2 X a 1 + 32f 2 X a 2 -16f f X a 3 . (1.43)
The theory is degenerate when the expression (1.42) vanishes for any value of A. This gives the three independent relations

D 0 (φ, X) = 0 , D 1 (φ, X) = 0 , D 2 (φ, X) = 0 , (1.44) 
One should solve simultaneously the three equations above to fix three among the functions f 2 and a A . The theories obtained by imposing the corresponding conditions have been called "Degenerate Higher-Order Scalar-Tensor" (DHOST) theories in [14], and "Extended Scalar-Tensor" (EST) in [15]. In the rest of this work, I will use the acronym DHOST. These theories have first been identified at quadratic order in φ µν in [14] and further studied in [15,33,38,39] (see also [40] for an approach to scalar-tensor theories based on differential forms). The identification of DHOST/EST theories has recently been extended up to cubic order in [36] where a full classification can be found.

In summary, there exist seven classes of purely quadratic theories and nine classes of purely cubic theories. These quadratic and cubic classes can be combined to yield hybrid theories, involving both quadratic and cubic terms, but all combinations are not possible: only 25 combinations (out of 63) lead to degenerate theories, often with extra conditions on the free functions in the Lagrangian (see [36] for details). I will however show that at the level of linear perturbations the analysis is greatly simplified, as all the degeneracy conditions of the above classes reduce to only two sets of conditions.

In order not to complicate the discussion, in the main text I will discuss the quadratic case. Let me thus summarise the classes of quadratic DHOST theories:

• Minimally coupled theories. They correspond to the case f 2 = 0. In this case, the curvature (4) R disappears from the action. They contain three classes: 2 M-I/IIIa, 2 M-II/IIIb, 2 M-I/IIIc.

• Non-minimally coupled theories. In this case f 2 = 0. There are four classes:

2 N-I/Ia, 2 N-II/Ib, 2 N-III/IIa, 2 N-IV/IIb.

In each of the above classes, three different functions among f 2 and a A are fixed in terms of the others. The explicit expressions are not relevant for the present discussion and can be found in [36].

Let me finally underline some relevant aspects of the degeneracy and its relation to Horndeski theories and their extension introduced in Sec. 1.3. Basing on the correspondence (1.41) between the toy model and scalar-tensor theories, the three cases discussed in Sec. 1.4.2 correspond to:

1. Horndeski theories. The quartic Horndeski Lagrangian corresponds to the case

f 2 = G 4 , a 1 = -a 2 = 2G 4,X , a 3 = a 4 = a 5 = 0 . (1.45) 
As can be seen explicitly from (1.32) and (1.38), this leads to a trivial degeneracy with A = B µν = 0 and second order equations of motion.

2. Theories "beyond-Horndeski". The degeneracy comes from the interaction terms, B µν = 0 but A = 0. The theory has third order equations of motion, like the quartic beyond Horndeski Lagrangian (1.11). This Lagrangian corresponds to the case a 1 = -a 2 = XF 4 a 3 = -a 4 = 2F 4 , a 5 = 0 .

(1.46)

3. More general DHOST/EST theories. New classes with A = 0, B µν = 0.

In particular, in Horndeski and beyond Horndeski theories we can see from (1.43) that the condition D 0 = 0 is always satisfied (since a 1 = -a 2 ). Then, one can use the other two conditions to express a 4 and a 5 in terms of a 2 and a 3 . The requirement to have also A = 0 gives a 5 = 0, a 3 + a 4 = 0, leaving only two arbitrary functions. This corresponds to the sum of Horndeski and beyond Horndeski quartic Lagrangians. These are contained in the class 2 N-I/Ia.

In the following, I will explore the phenomenological properties of the DHOST theories summarised above basing on an effective description.

Chapter 2

Effective Theory of Dark Energy

An effective description of dark energy

In Chapter 1 I introduced a general class of scalar-tensor theories formulated in terms of covariant Lagrangians. The "top-down" procedure to test these theories amounts to solve the equations for the propagating degrees of freedom, compute the effects on the observables, and try to constrain the free parameters with observations. Ultimately, we would like to compare the performance of alternative models with ΛCDM. The idea of developing an effective description is to find a "bottom-up" approach to test linear perturbations in scalar-tensor theories against ΛCDM, in such a way that we can be agnostic about the underlying fundamental theory. This can be achieved by writing directly a general action for the fluctuations around a time-dependent FLRW background solution in the case where a single scalar degree of freedom is added to GR. Let me point out two reasons why an action is important. First, it allows a link with basic principles of physics. In particular, any deviation from ΛCDM described this way will be automatically consistent with locality, causality and unitarity [41,42]. Second, an action allows a systematic study of the stability of the theory.

The basic idea of the effective description is the following. ΛCDM is based on GR and thus has an invariance under coordinate transformations, x µ → xµ = xµ (x ν ). In the alternatives to ΛCDM I am considering, the acceleration is caused by an additional scalar field φ( x, t). In cosmology, due to homogeneity and isotropy this field acquires a timedependent background value φ(t). This spontaneously breaks the time reparametrisation invariance. So, it makes sense to describe deviations from ΛCDM assuming spontaneous breaking of the time diffeomorphisms. Analogy with spontaneously broken gauge theories suggests that there will be massless excitations (Goldstone modes) describing the low-energy dynamics. These are the fluctuations of the additional scalar degree of freedom, δφ( x, t) = φ( x, t) -φ(t). They have to transform linearly under the unbroken symmetries, i.e. space translations and rotations. We can thus construct the most general action compatible with this residual symmetry, allowing operators that break time diffeomorphism invariance. The coefficients of these operators will be functions of time and can be constrained by observations. I will present a formulation where these parameters are chosen to represent deviations from ΛCDM. Remarkably, the large classes of theories introduced in Chapter 1 reduce to a limited number of free functions in the effective description, as I will discuss. For any covariant theory, one can compute its free functions in the effective description and then compute the observables. On the other hand, it is also possible to assume a parametrisation for these functions and constrain them directly. This is the true advantage of the effective description. In both cases, the computation of the observable deviations from ΛCDM, or the implementation of the equations in numerical codes, can be done once and for all. I will show how to make the connection between covariant theories and the effective description in Sec. 2.4, after reviewing how to write the action in Sec. 2.2.

Generalities. Building the action

Let me now show how to write an action based on the above ideas. We are looking for an action invariant under spatial diffeomorphisms but not under time ones. Thus, we need to separate space and time components and to identify the allowed operators. The natural framework to do so is the 3+1 decomposition, introduced in Sec 1.4.3.1 exactly for the same purpose. In addition to this, there are two additional steps that one can make.

• Unitary gauge. The fact that the scalar field has a background value φ(t) defines a preferred foliation of spacetime, given by the hypersurfaces of constant φ. In a cosmological context, the usual assumption is that the scalar field gradient is spacelike, φ µ φ µ < 0, so these hypersurfaces are spacelike. To adapt to this preferred foliation, we can choose the background value of the scalar field as a "clock", such that constant time hypersurfaces correspond to constant φ ones. This choice of the time coordinate is called the unitary gauge. We have: φ(t, x) = φ(t) + δφ(t, x) , φ(t, x) = φ(t) ⇔ δφ(t, x) = 0 (Unitary gauge) .

(2.1)

After the gauge fixing, we are left with the symmetry x i → xi = xi (x ν ), which is exactly the unbroken part of the general coordinate invariance of GR. The scalar degree of freedom appears now in the metric: for example, the kinetic term X = g µν φ µ φ ν becomes just g 00 φ2 = -φ2 /N 2 . At linear level, its contribution will be encoded in the expansion of the metric element g 00 , or equivalently of the lapse function N . The geometrical quantities on the hypersurfaces on constant φ/constant time are those introduced in Sec 1.4.3.1. These geometrical quantities will now be related to φ. In particular, the normal to the hypersurface is proportional to the gradient of the scalar field:

n µ = - ∂ µ φ √ -X , X ≡ g µν ∂ µ φ∂ ν φ . (2.2) 
• ADM coordinates. In Sec 1.4.3.1 I introduced the geometrical quantities in the 3+1 decomposition without referring to a specific coordinate system. To further simplify the problem, one can choose a coordinate system that adapts to the preferred foliation. A priori, the coordinate t is completely arbitrary, but it is possible to construct a coordinate system that uses it as the time coordinate. This coordinates are (t, x i ), i = 1, 2, 3, where x i are the spatial coordinates on the hypersurface Σ t . This is called the ADM [43] coordinate system. The line element can be written as1 :

ds2 = -N 2 dt 2 + h ij (dx i + N i dt)(dx j + N j dt) .

(2.3)

In the above equation, I used the lapse function N ( x, t), the shift vector N i ( x, t), and the spatial metric h ij introduced in Sec 1.4.3.1. In particular, the latter measures distances between points on every hypersurface, d 2 = h ij dx i dx j . In the ADM coordinate system, the relevant geometrical quantities have the following form [37]:

-Normal unit vector:

n µ = 1 N , N i N
, n µ = (-N, 0, 0, 0) .

(2.4)

-Extrinsic curvature:

K ij = 1 2N ḣij -D i N j -D j N i , (2.5) 
where D i denotes the covariant derivative associated to the metric h ij , and a dot a derivative with respect to the time t.

Le me introduce two other quantities that are useful to characterise the 3-dimensional surfaces:

-Tangent to the hypersurface:

a µ = n ν ∇ ν n µ = 0, ∂ i N N . (2.6) 
-The intrinsic curvature on the hypersurface. It is quantified by the threedimendional Ricci tensor on the hypersurface, R ij . In 3-D, this contains as much information as the Riemann tensor.

We now have all the elements to write down a very general action. In particular, we can include any time-dependent operator, tensors with free zero indexes, namely g 00 = -1/N 2 , 2 and diff-invariant combinations of tensors with spatial indexes such as the extrinsic curvature K ij and the intrinsic curvature R ij . Spatial indices are lowered and raised with the spatial metric h ij or its inverse h ij , respectively. We can take covariant derivatives D i associated with the three-dimensional spatial metric and time derivatives ∂ 0 that I will denote by a dot. The building blocks of the action are constructed with the geometrical elements that characterise the hypersurfaces written in unitary gauge and in ADM coordinates [44,45]. The gravitational action is generically of the form3 

S g = d 4 x √ -g L(N, K ij , R ij , D i , ∂ 0 ; t) . (2.7)
The above form is very general. To have an intuition, let me consider the Einstein-Hilbert action

S GR = d 4 x √ -g M 2 Pl 2 (4) 
R .

(2.8)

One can use the Gauss-Codazzi relation

(4) R = K µν K µν -K 2 + R + 2∇ µ (Kn µ -n ρ ∇ ρ n µ ) , (2.9) 
to rewrite it in 3+1. The Lagrangian reads

L GR = M 2 Pl 2 K ij K ij -K 2 + R , (2.10) 
and is of the form (2.7).

Another example worth to mention is a quintessence field added to GR [17,18],

S = d 4 x √ -g L GR + 1 2 φ φ -V (φ) , (2.11) 
where L GR is the Einstein-Hilbert Langrangian density. In 3+1 we have the Lagrangian

L(t, N ) = L GR + φ2 (t) 2N 2 -V φ(t) .
(2.12)

So, we added to the GR Lagrangian (2.10) a dependence on the lapse function N . More general actions would introduce more complicated terms but can be always reduced to the form (2.7). A complete discussion on how to write general covariant Lagrangians in the 3+1 form has been provided in [6] for the Horndeski case. In Appendix A of Article D one can find the full DHOST Lagrangians (up to cubic order) in 3+1. I will discuss in the main text the details at the level of linear perturbations.

Even if I included them in the most general case, special care must be taken with time derivatives. In the following discussion, I concentrate on the scalar sector. In the effective description, the tensor K ij contains one time derivative of the metric, so any operator quadratic in it will already yield two time derivatives, which correspond to the presence of one propagating degree of freedom. Hence, not taking time derivatives of the three-dimensional tensors listed above is enough to ensure the presence of a single propagating degree of freedom; additional conditions should then be imposed on its action in order to avoid that it is itself a ghost and that it contains gradient instabilities. I will describe the physical meaning of these requirements in the following 4 . This however does not represent the most general case; indeed, we saw in Chapter 1 that suitable degeneracy conditions can be imposed on an action to eliminate unwanted degrees of freedom 5 . This can be done also in the effective description: in particular, we can allow for time derivatives of the lapse function N , but find degeneracy conditions to ensure that only one DOF propagates. In particular, the presence of Ṅ is the unitary gauge analogue of introducing a kinetic term for the "velocity" A µ = φ µ introduced in Sec. 1.4.3, and the degeneracy conditions needed in the effective description are the analogue of those obtained in the covariant formulation of DHOST theories. I will explain in detail the relation between the degeneracy conditions obtained at the covariant and linear level. The case of spatial derivatives is different. Some of the operators built with the above tensors alone can lead to higher order spatial derivatives unless their relative coefficients are appropriately tuned. In the following, I will consider the most general action for cosmological perturbations that contains operators with at most two derivatives in the effective description. After solving the constraints, this action can contain higher order spatial derivatives. However, I will show that when imposing the appropriate degeneracy conditions obtained at the covariant level, the theory will be free of higher spatial derivatives as well 6 .

Background evolution

As far as the effective description is concerned, the background evolution is fully encoded in one free function of time H(t) that can be obtained solving the equations of motion in a specific model. In a model independent approach, one can just fix it so to reproduce the observed background expansion history. Note that to completely characterise the gravity and dark energy sector we shall also provide a constant, i.e. the fractional matter density today Ω m,0 , since we could trade some dark matter with a suitable amount of time-dependent dark energy keeping the measurements of the background unchanged [50].

Here I will just recall how to obtain the background equations in the effective formalism. On a spatially flat FLRW spacetime, the line element takes the form

ds 2 = -N 2 (t)dt 2 + a 2 (t)δ ij dx i dx j .
(2.13)

Among the tensors that enter in the action (2.7), the intrinsic curvature tensor of the constant time hypersurfaces vanishes, i.e. R ij = 0, and the components of the extrinsic curvature tensor are given by K i j = Hδ i j , where H ≡ ȧ/(a N ) is the Hubble parameter.

K i j = Hδ i j , H ≡ ȧ N a , (2.14) 
where H is the Hubble parameter. Note that we must retain the background value of the lapse, N (t), since the variation of the action with respect to it gives the first Friedmann equation. The homogeneous Lagrangian in (2.7), is a function of N (t), a(t) and of time only. L(a, ȧ, N ) ≡ L K i j = ȧ N a δ i j , N (t), Ṅ (t) .

(2.15)

6 Differently from time derivatives, higher spatial derivatives are not necessarily suppressed and may dominate the dispersion relation, such as in the Ghost Condensate theory [46]. In this case, higher spatial gradients become relevant, even if they begin operating at very short distances [47,48], typically shorter than the cosmological ones. Another case where higher order spatial derivatives are present are models that explicitly break Lorentz invariance, such as Horava gravity and its extensions [49]. Often, these models are formulated directly in the unitary gauge, but their generalisation to arbitrary gauges could contain additional propagating degrees of freedom. I will show how the effective description encompasses such models.

Adding matter minimally coupled to the metric g µν7 , the variation of the total homogeneous action S = Sg + Sm with respect to N and a yields, respectively, the first and second Friedmann equations [6,10]- [Gleyzes:2015pma]:

L + N L N -3HF - 1 N a 3 d dt N a 3 L Ṅ =ρ m , L -3HF -Ḟ N = -p m , (2.18) 
where

∂L ∂K ij bg ≡ Fa -2 δ ij , L N = ∂L ∂N bg , L Ṅ = ∂L ∂ Ṅ bg . (2.19)
Again, the above equations are very general but one can recover the well-known cases by doing the calculation. For example, in GR we have:

∂L GR ∂K i j = M 2 Pl K j i -Kδ j i , (2.20) 
which, after substituting K i j = Hδ i j , yields,

F GR = -2M 2 Pl H , (2.21) 
whereas LGR = -3M 2 Pl H 2 and L N = L Ṅ = 0. With these expressions, one recovers the usual Friedmann equations.

Linear perturbations

To study linear perturbations, one needs to expand the action at second order around the homogeneous background. Fixing the background gauge N = 1, these are

δN = N -1 , δK ij = K ij -Hh ij , R ij , (2.22) 
where R ij is already a perturbation since its background value vanishes. Let me resume the idea of the procedure, without entering into too lengthy calculations. The expansion of the Lagrangian L up to quadratic order is of the form

L(N, K i j , R i j , . . . ) = L + L N δN + ∂L ∂K i j δK i j + ∂L ∂R i j δR i j + L (2) + . . . . (2.23) δSm = 1 2 d 4 x √ -g T µν δgµν . (2.16)
In a FLRW spacetime, this reduces to

δ Sm = d 4 x N a 3 -ρm δN N + 3pm δa a .
(2.17)

The first order part cancels upon use of the background equations (2.18). The quadratic part is given by

L (2) = 1 2 L N N δN 2 + 1 2 ∂ 2 L ∂K i j ∂K k l δK i j δK k l + 1 2 ∂ 2 L ∂R i j ∂R k l δR i j δR k l + + ∂ 2 L ∂K i j ∂R k l δK i j δR k l + ∂ 2 L ∂N ∂K i j δN δK i j + ∂ 2 L ∂N ∂R i j δN δR i j + . . . , (2.24) 
where the dots indicate all the other possible terms. The partial derivatives are evaluated on the background and the notation L N N indicates the second derivative with respect to the lapse. One can further simplify the second order action by integration by parts and using the background equations of motion. The details can be found in [10]. So far, I have not imposed yet any constraint on the form of the action. In particular, the final expression can in principle contain higher spatial derivatives and time derivatives of the lapse function that signal the presence of an additional scalar degree of freedom, as I pointed out previously. In this work, I will study systematically Lagrangians including at most two time or space derivatives in perturbations8 . Imposing this requirement, it is possible to find combinations of the coefficients of the expansion (2.24) such that the quadratic action can be written in the form

S (2) = d 3 x dt a 3 M 2 2 δK ij δK ij -1 + 2 3 α L δK 2 + (1 + α T ) R δ √ h a 3 + δ 2 R + H 2 α K δN 2 + 4Hα B δKδN + (1 + α H )RδN + 4β 1 δKδ Ṅ + β 2 δ Ṅ 2 + β 3 a 2 (∂ i δN ) 2 , (2.25) 
where δ 2 denotes taking the expansion at second order in perturbations. I will show that the action (2.25) describes the linear perturbations of all the DHOST theories and show the connection between their covariant formulation and the above expression for the action. The coefficients appearing in the action (2.25) correspond to distinct physical effects. They are functions of time, since the scalar field has a nontrivial background evolution and the action has been built to respect space diffeomorphisms only. The definition of these functions is such that they parametrise deviations from ΛCDM, which corresponds to set them to zero 9 . In this case, the scalar sector does not contain propagating degrees of freedom and the above action reduces to the description of the two degrees of freedom in the tensorial sector. The functions α K , α B , α T [53], together with the variation of the effective Planck mass squared M 2 ,

α M ≡ d ln M 2 d ln a , (2.26) 
are sufficient to cover linear perturbations in Horndeski theories, α H [10] corresponds to their extension "beyond Horndeski" [12,13], while α L , β 1 , β 2 , β 3 [Langlois:2017mxy] appear in the DHOST theories, or in Lorentz breaking theories.

α K α B α M α T α H α L β 1 β 2 β 3

ΛCDM

Quintessence [17,18], k -essence [19,20] Kinetic Gravity Braiding-Cubic Galileon [57][58][59] Galileon Cosmology [60], Brans-Dicke [61], f(R) [21,22] Horndeski [11]-Generalized Galileons [23] Beyond Horndeski [12] Ia DHOST [14] IIa DHOST [14] Horava gravity [62] Healthy extensions of Horava gravity [49] Chronometric theories [49,63] Table 2.1: Free functions of the effective description and their appearance in different modified gravity and dark energy theories. Theories marked by require degeneracy conditions to be imposed on the coefficients in order to avoid the propagation of extra degrees of freedom. Theories marked by are formulated directly in the unitary gauge and their covariantization either introduces a ghost or requires to restrict the space of solutions.

The time dependent functions are defined so to be independent of the background expansion history [10,53]. Any of the models introduced in Chapter 1 can be cast in the above form using the ADM decomposition in unitary gauge. The most general "dictionary" can be found in [Langlois:2017mxy]. The fact that the action can be organised in powers of the perturbations and allows a clear separation from the background is one of the most powerful features of the effective description in the ADM formalism in unitary gauge with respect to a covariant effective approach à la Weinberg [54][55][56]. In the latter case, adding a new operator would correspond to a change in the background as well and would lead to study the model again from the beginning. A second point is that the relative importance of different operators in the covariant language can be studied only around a specific background.

Effects on linear perturbations

As I said, the functions α A , β A correspond to distinct physical effects that I shall briefly recall in this section. Table 2.1 summarises their presence in different scalar-tensor theories.

• General Relativity. As a preliminary example, consider the Einstein-Hilbert action in 3+1 given in Eqn. (2.10) It easy to show that, when expanded at quadratic order in perturbations, it has the structure of (2.25) with M = M Pl = const. and all the α i , β i set to zero.

• Kineticity α K . This function arises directly from the most standard kinetic term for the scalar field and it is the typical contribution of the scalar field in basic models where dark energy has a perfect fluid energy-momentum tensor. It encodes the kinetic energy of the scalar field which in unitary gauge remains hidden in the metric. Lagrangians that depend only on the scalar field and its gradient, L(φ, φ µ ), lead only to this term. This is the cas of quintessence, written in 3+1 in Eqn. (2.12). The potential V (φ(t)) doesn't depend on any of the tensors appearing in the action for linear perturbations; indeed, in unitary gauge it is a background quantity, V = V (t), and it's fully fixed by the Friedmann equation once H(t) and Ω m,0 are given. This shows the effectiveness of this parametrisation in splitting background and perturbations. Differently from GR, as we saw, the Lagrangian (2.12) has a dependence on the lapse function. This gives the non-vanishing function

α K = φ2 H 2 M 2 Pl (2.27)
• Kinetic braiding α B . In the Lagrangian 2.11 the operator φ has the coefficient φ, which amounts to a standard kinetic term. Let's now promote φ to a function G 3 (φ, X) [57][58][59]:

S = d 4 x √ -g M 2 Pl 2 (4) R + G 3 (φ, X) φ , (2.28) 
Since the operator contains covariant derivatives, the dependence of G 3 on X will lead to the presence of terms of the type ∂g ∂φ, i.e. a kinetic coupling between the scalar and the metric. Hence the name of kinetic braiding. In unitary gauge, these are encoded in the operator δN δK and lead to a non vanishing α B and α K . In particular,

α B = - G 3X HM 2 
Pl .

(2.29)

• Planck mass running rate α M . The time evolution of the Planck mass can be seen as a time-dependend conformal rescaling of the metric. In the absence of matter, it would be re-absorbed by a conformal transformation; when matter is present, however, this comes at the price of introducing a non-minimal coupling with the matter fields, as I will discuss in Chapter 3. The simplest example is given by Brans-Dicke theories [61], where the action can be written in the form:

S BD = d 4 x √ -g φ (4) R - ω BD φ φ µ φ µ + V (φ) . (2.30)
This leads to the following non-vanishing functions in the effective action:

α M = d ln φ d ln a , α K = ω BD α 2 M , α B = α M 2 .
(2.31)

• Tensor speed excess α T . When constructing Lagrangians for the additional scalar degree of freedom, the allowed terms can lead also to modifications of the tensorial part of the action 10 . The time kinetic term for the gravitons comes form the extrinsic curvature K ij , while the spatial part is encoded in the intrinsic curvature R. Detuning the two from the GR relation can lead to a propagation speed for the gravitons different from that of light. The simplest example where this happens is the quartic Galileon [23], given by the Lagrangian L 4 in Eqn. (1.1). Assuming for simplicity that G 4 is a function of X only, it is useful to write explicitly the corresponding expression in unitary gauge to explicitly see the detuning:

L 4 = G 4 R + (2XG 4,X -G 4 )(K 2 -K ij K ij ) . (2.32)
This gives non-vanishing functions α K , α B , α M and

α T = -2 G 4,X G 4 + 2G 4,X . (2.33) 
• Kinetic mixing with matter α H . Besides a mixing between the gravitational scalar degree of freedom and φ, when dealing with the late universe we should also take into account the presence of matter. The presence of the function α H leads to a situation where the propagating scalar modes in the presence of matter are mixed states of the latter and φ. 11 This effect arises in the theories "beyond Horndeski".

An explicit example is given by the Lagrangian L bH 4 in Eqn. (1.11). This generates non vanishing α K , α B , α T , α M , as well as

α H = α T = F 4 1 -F 4 .
(2.34)

The above five free functions and the corresponding operators do not explicitly introduce time derivatives of the lapse function in the action (2.25) nor spatial derivatives of order higher than two. For the remaining functions, both of these two cases are in general realised and we need to impose degeneracy conditions to avoid instabilities. The additional free functions are the following:

• Lorentz breaking α L . It corresponds to a detuning of the extrinsic curvature terms. Its presence is reminiscent of the fact that the two terms K ij K ij and K 2 are separately invariant under space diffs, while a full time and space diff invariance would require α L = 0. As such, this function is typical of theories that already in their original formulation assume a preferred time slicing, such as Horava gravity [62] and its extensions [49] 12 . For example, Horava's model in the low energy limit has the Lagrangian:

13 L = M 2 Pl 2 R + K ij K ij -λK 2 , (2.35) 
which gives α L = 3(λ-1)/2. In Lorentz-breaking theories, it gives rise to nonlinear dispertion relations of the form ω 2 = Ak 2 + Bk 4 . In covariant theories, I will show that the conditions to ensure the absence of additional degrees of freedom at the covariant level prevents to obtain a dispertion relation of this form.

• Acceleration β 3 . This coefficient comes from the operator that can be built with the acceleration vector a i = ∂ i N/N at the nonlinear level. It also provides extra spatial derivatives to the action and it appears, for example, in healthy extensions of Horava gravity [64]. For example, the healthy extension of Horava's "nonprojectable" model has the Lagrangian

L = M 2 Pl 2 R + K ij K ij -λK 2 -α D i N D i N N 2 , (2.36) 
which simply gives

α L = 3(λ -1)/2 , β 3 = α .
(2.37)

• Phantom kineticity β 2 . This function parametrises the pure kinetic term for the additional degree of freedom that appears allowing for time derivatives of the lapse function. As such, it is the analogue of the kineticity α K .

• Phantom kinetic mixing β 1 . When this function is non vanishing, the propagating scalar mode is a mixing of the metric perturbations and the lapse perturbations. Thus, it represents a generalisation of the kinetic braiding to the additional degree of freedom in higher-order theories.

When allowing the functions β 1 , β 2 to be nonzero, we are adding a propagating mode already at the level of the linear action in unitary gauge, while adding α L and β 3 induces higher spatial derivatives. To eliminate higher derivatives and/or the additional propagating degree of freedom, the four former functions should obey degeneracy conditions. In particular, there are no viable theories where β 1 and β 2 can enter separately (see discussion in Sec. 4.6).

Chapter 3

Field redefinitions and coupling to matter

In the late universe, the action (2.25) should be supplemented by an action describing the matter sector. This is relevant for the effective description: in general, there can be some arbitrariness in the choice of the metric used to describe the gravitational sector. Indeed, we are always allowed to perform "field redefinitions" such that the structure of the action remains unchanged. In the presence of matter, we have to take into account that the coupling between the matter fields and gravity changes as well. Suppose we start with a minimal coupling of the matter fields to the metric, which simply amounts to choose the same metric g µν to describe the matter and the gravitational sector. In this case, test particles follow by definition the geodesics of the "gravitational" metric. After a field redefinition in the gravitational sector gµν = gµν (g µν ), however, these geodesics will be those of a metric (g µν ) different than the one used to describe the gravitational sector (g µν ). Our description of the physics in the two frames would therefore be different. In this Chapter, I will discuss how to include the coupling to matter in the effective theory introduced in the previous Chapter.

Physics in different frames

As an illustrative example, let me consider the simple case of Brans-Dicke theories (2.30) with matter minimally coupled to the metric g µν ,

S = S BD [g µν , φ] + S m [g µν , Ψ] . (3.1)
Here, Ψ denotes the matter fields. In the frame defined by g µν there is no direct interaction between the scalar field and the matter fields. This is usually called the Jordan frame. By construction, in this frame the matter energy-momentum tensor is conserved, ∇ µ T µν = 0. On the other hand, the dynamical equations for the metric has a form different form the usual Einstein equations. Schematically, we can write

G µν + ∆G µν = 8πGT (m) µν , (3.2) 
where ∆G µν encodes the modification to the Einstein equations due to the presence of the scalar field. It is well known that one can make a conformal transformation that depends on φ, gµν = φg µν ,

such that the new metric gµν obeys the usual Einstein equations. Indeed, making a field redefinition φ → ψ(φ) to canonically normalise φ, we can re-cast the action in the form [65] 

S BD = d 4 x -g (4) R - 1 2 ∇µ ψ ∇µ ψ + Ṽ (ψ) + S m φ -1 gµν , Ψ . (3.4) 
By comparison with the gravitational action (2.30), we see that its structure has been preserved by the transformation 3.3. With this I mean that no operators different from those present in the original action are generated (in this case (4) R, ∂ µ φ∂ µ φ and V (φ)), but only their coefficients changed.

In the frame defined by gµν , the contribution of the scalar field is encoded in the energymomentum tensor, as if ψ was an ordinary matter field:

Gµν = 8πG T (m) µν + T φ µν . (3.5) 
Clearly, if it wasn't for the presence of matter, by inspection of the actions (2.30) and (3.4) we would conclude that Brans-Dicke theories are equivalent to General Relativity with a scalar field in a potential. However, since the metric that couples to the matter fields also transforms, this is not the case. Note that in the second frame the covariant conservation of the energy-momentum tensor with respect to the new metric will not hold separately for the contributions of matter and of the scalar field1 . We will rather find an interaction of the form ∇µ T µν (m) ∝ ∇ν φ . (3.6) This second frame is known as the Einstein frame. It is clear that due to the arbitrariness of the transformation (3.3) we can find infinite reference frames among which the description of the physics can change. The two above stand out for the clean different interpretation: either we have matter following geodesics of the gravitational metric, which however is not descrided by the Einstein-Hilbert Lagrangian, or we have a gravitational sector described by the same equations as General Relativity but with matter interacting in a non trivial way with the metric. In this second case, the scalar mediates an additional force ("fifth force"). The advantage of using the Jordan frame to derive predictions is that only the gravitational sector is non-standard; thus, one does not need to care about modifications of non-gravitational forces, which would otherwise greatly complicate the analysis. In the following, I will adopt this strategy.

Disformally related frames and non-minimal couplings

More general actions would of course require more general transformations to play the role of conformal transformations in Brans-Dicke actions. Remarkably, transformations that preserve the structure of the action exist for all the classes of theories that I shall consider in this work. These are the so-called disformal transformations [66], that generalise (3.3) and can be written in their most general form as [66] gµν = C(φ, X)g µν + D(φ, X)∂ µ φ∂ ν φ .

(3.7)

There are two main differences with respect to a φ-dependent conformal transformation. First, the new metric gµν is now allowed to depend on the gradient of the scalar field, thus changing the lightcones2 . Second, the functions C and D themselves can depend not only on the value of the field but also on the metric through the kinetic term X. Due to this second property, a dependence on X of the functions C and D can lead to the introduction of higher order derivatives. In unitary gauge, in particular, the dependence of C on X (thus on N ) corresponds to the introduction of time derivatives of the lapse function in the theory. I will proceed by increasing complexity and consider three cases:

1. Horndeski +φ-dependent conformal/disformal transformation [67]. Horndeski theories are defined by the requirement that the equations of motion are at most second order. The transformation that preserves their structure should therefore not generate higher derivatives. This kind of transformation is given by a conformal/disformal transformation of the form (3.7) where the functions C and D depend on φ only:

gµν = C(φ)g µν + D(φ)∂ µ φ∂ ν φ . (3.8)
2. Beyond Horndeski +φ-dependent conformal +φ and X-dependent disformal transformation [13]. In the case of theories "beyond Horndeski", the covariant action can allow for higher order derivatives. This reflects into the fact that this class of theories is invariant under a more general class of transformations, where the disformal factor depends on X, while the conformal one -C -does not:

gµν = C(φ)g µν + D(φ, X)∂ µ φ∂ ν φ . (3.9) 
In unitary gauge, this corresponds to avoid the introduction of time derivatives of the lapse in the theory.

3. DHOST +φ and X-dependent conformal/disformal transformation [38]. The case of the most general healthy class of theories correspond to the transformation (3.7), where both the functions are allowed to depend on φ and X. The presence of time derivatives of the lapse in unitary gauge is not a problem, since they are already present in the original action. Crucially, the degeneracy conditions that have to be imposed to get rid of the extra degree of freedom are preserved by the transformation [38]- [Langlois:2017mxy]. This means that all the classes of quadratic DHOST theories introduced in Sec. 1.4.3 are preserved by conformal and disformal transformations 3 . In particular, this means that every theory in class Ia is completely equivalent to a Horndeski+beyond Horndeski theory in vacuum. In the presence of matter, it is equivalent to a Horndeski+beyond Horndeski theory with matter exhibiting a coupling of the form (3.7).

Let me observe that for the theories above and their corresponding transformations, we can always define a Jordan frame while due to the complexity of the gravitational sector in general we are not able to find an Einstein frame where the gravitational Lagrangian reduces to the Einstein-Hilbert one as in scalar-tensor theories.

So far, I considered matter minimally coupled to the metric. In this case I showed that the description of the physics in two conformally-disformally related frames is not the same due to the presence of matter. To establish a correspondence between two frames that are equivalent, one must allow for a non-minimal coupling of matter to the metric.

For each of the above classes, we have the freedom to couple matter to the most general metric of the form (3.7) that preserves the structure of the class.

Violations of equivalence principle and interacting dark energy

A coupling of the form (3.7) preserves the Weak Equivalence Principle (WEP) if we assume that the functions C(φ, X), D(φ, X) are the same for all matter species. Indeed, to be even more general, we can relax this assumption and allow different species to have different conformal and disformal couplings. Of course, the universality of couplings is very well tested on Solar System scales for standard matter such as baryons and photons, as well as the weakness of fifth force effects on these species [68,69]. On the contrary, on cosmological scales and for other species such as Cold Dark Matter or neutrinos the constraints are far less stringent [70] and it is interesting to consider this possibility which can be included in the effective description. This allows in particular to include all models where dark energy and dark matter can interact, known as "Interacting dark energy". These are usually restricted to the case where the scalar field has a quintessence-like action, while in Chapter 5 I will consider theories belonging to the Horndeski class [Gleyzes:2015pma] and a conformal-disformal coupling that violates the WEP.

Counting parameters

Taking into account the redundancy associated to field redefinitions and the possibility that different species have distinct conformal/disformal couplings of the form (3.7) to the gravitational metric, let me summarise the kind of couplings allowed in different theories and the number of free functions needed to fully characterise the dynamics of linear perturbations in the gravitational and matter sectors. I assume that N S species are present, labelled by an index I, I = 1, ..., N S . For each species I, I denote the corresponding metric by ǧ(I) µν and I call this the Jordan frame metric associated with this species. For each species I also introduce the conformal-disformal coupling

ǧ(I) µν =C (φ) I (φ, X)g µν + D (φ) I (φ, X)∂ µ φ ∂ ν φ . (3.10) (C (φ) I
> 0 in order to preserve the Lorentzian signature of the Jordan-frame metric of the species I.). In unitary gauge, the metric in eq. (3.10) reads

ǧ(I) µν = C I (t, N )g µν + D I (t, N )δ 0 µ δ 0 ν , C I (t, N ) = C (φ) I φ(t), -φ(t) 2 /N 2 , D I (t, N ) = φ2 (t)D (φ) I φ(t), -φ(t) 2 /N 2 . (3.11)
To be concrete, I will assume an action to describe the matter sector. For simplicity, I assume that each matter species can be described by a perfect fluid with vanishing vorticity. One can write an action in terms of derivatively coupled scalar fields σ I with Lagrangians [20,71,72]:

L I ǧ(I) µν , σ I ≡ P I (Y I ) , Y I ≡ ǧµν (I) ∂ µ σ I ∂ ν σ I . (3.12)
The total action is given by As I explained before, one is always allowed to perform field redefinitions in both the gravitational and matter sectors. Both the scalar-tensor parameters in the action (2.25) and the four matter parameters (3.14) transform under a general conformaldisformal transformation of the form (3.7). Analogously to the matter case (3.11), this transformation can be written in unitary gauge and parametrised by four functions of time [Gleyzes:2015pma, DAmico:2016ntq, Langlois:2017mxy]

S m = N S I S I , S I = d 4 x -ǧ (I) L I ǧ(I) µν , σ I . ( 3 
α C ≡ φ 2HC ∂C ∂φ , α Y ≡ - X C ∂C ∂X , α D ≡ - D D + C/X , α X ≡ - X 2 C ∂D ∂X . (3.15)
This freedom to can be used to reduce the total number of the free functions of the theory. For example, in the most general case of DHOST theories, the above transformation has four free functions that can be chosen so to eliminate four among the functions (3.14) in the matter sector and the α and β functions in the gravitational sector. Let me consider again cases 1, 2, 3 separately. 

α K , α M = 2α B α K , α B , α M , α T α K , α B , α M , α T , α H α K , α B , α M , α T , α H , one among {α L , β 2 , β 1 , β 3 } Coupling gµν = C(φ)g µν gµν = C(φ)g µν +D(φ)∂ µ φ∂ ν φ gµν = C(φ)g µν +D(φ, X)∂ µ φ∂ ν φ gµν = C(φ, X)g µν +D(φ, X)∂ µ φ∂ ν φ
Free functions, matter sector

α C,I α C,I , α D,I α C,I , α D,I , α X,I α C,I , α D,I , α X,I , α Y,I # of free parameters 1 + 2N S 2(N S + 1) 2 + 3N S 2(1 + 2N S )
Table 3.1: Transformations that preserve the structure of different classes of theories, the corresponding possible non-minimal couplings with matter and the number of physically relevant free functions.

summary, 4 + 2N S -2 = 2(N S + 1) free functions fully describe this case. The explicit transformations of these functions under a change of frame can be found in Article A.

2. Beyond Horndeski +φ-dependent conformal +φ and X-dependent disformal transformation [DAmico:2016ntq]. In this case, we need five free functions to describe the gravitational sector -α K , α B , α M , α T , α H -supplemented by three functions for each matter species (3N S ) in the matter sector -α C,I , α D,I , α X,I . The structure of the action is invariant under a transformation with non vanishing α C , α D , α X . We thus have a total of 5 + 3N S -3 free functions. The explicit transformations of these functions under a change of frame can be found in Article C.

3.

DHOST +φ and X-dependent conformal/disformal transformation [Langlois:2017mxy].

In the most general case, we have nine free functions in the gravitational sector. Among these, α K , α B , α M , α T , α H are arbitrary. On the contrary, the remaining four, α L , β 1 , β 2 , β 3 , are subject to three degeneracy constraints, as explained in Sec. 1.4.3. As for matter, we have four free functions for each matter species (4N S ), α C,I , α D,I , α X,I , α Y,I . The structure of the action is invariant under a transformation with non vanishing α C , α D , α X , α Y . In total, 9 -3 + 4N S -4 = 2(1 + 2N S ) functions are free. The explicit transformations of these functions under a change of frame can be found in Article D.

In particular, one can use the arbitrariness in the choice of the gravitational metric g µν to choose one particular matter species, say I * , to be minimally coupled to it, in which case we have C I * = 0. This defines the gravitational metric as its Jordan metric. Observables and physically relevant combinations of the parameters such as the degeneracy conditions are left invariant under the transformations above.

Chapter 4

Propagating degrees of freedom and stability So far, I showed how to describe within the effective formalism the gravitational sector of scalar-tensor theories and how to add very general couplings to the matter fields. Let me now proceed to analyse the behaviour of the propagating degrees of freedom. This analysis reveals one of the main advantages of an effective description based on an action. Indeed, even if a theory contains the expected number of dynamical fields, one should check that the propagating degrees of freedom comply with some basic physical principles. In particular, one should require that the theory is stable. In this Chapter, I recall first the stability conditions to impose on the action of the propagating degrees of freedom, and then proceed to discuss perturbations in scalar-tensor theories.

I will concentrate on the scalar sector, but it is relevant to show the effect of modifications of gravity also on the tensorial sector, which I will recall first. In particular, this will lead to put stringent constraints on DHOST theories.

Ghosts and gradient instabilities

Here I recall the conditions to be imposed to have a healthy theory and give a physical intuition. In Sec. 1.4.1 I described the pathology associated to the presence of higher derivatives in the Lagrangian. Here I discuss the case of second-order theories. Consider a scalar field described by the Lagrangian density

1 L = 1 2 A φ2 -B(∂ i ϕ) 2 . (4.1)
In terms of the conjugate momentum

π = ∂L ∂ φ = A φ , (4.2) 
the Hamiltonian density is

H = 1 2 A -1 π 2 + B(∂ i ϕ) 2 . (4.3) This is bounded from below if sign(A) = sign(B) = 1 , bounded from above if sign(A) = sign(B) = -1 and indefinite if sign(A) = sign(B). A Fourier mode obeys the equation of motion φ = -c 2 s k 2 ϕ , c 2 s ≡ B A . (4.4)
So, in the latter case where the Hamiltonian is indefinite, c2 s ≤ 0, this mode admits an exponentially growing solution, ϕ ∝ e |cs|kt , so this case must be discarded. This case is called a gradient instability. At the classical level, the other two cases are equivalent, since they lead to the same equations of motion (4.4) with a stable oscillatory solution with c 2 s ≥ 0 2 .

However, it can be shown that a field with A ≤ 0 is pathological at the classical level. This require to consider interactions with other fields. In gravity, this will always be the case, since the fluctuations of the scalar φ are coupled to the metric sector and to matter. This is also the main difference with an Ostrogradsky ghost, whose typical signature is a linear dependence of the Hamiltonian on one of the conjugate momenta and an instability will necessarily show up. Let's couple the field ϕ to another healthy scalar χ [75],

L = 1 2 A φ2 -B(∂ i ϕ) 2 + χ2 -c 2 χ (∂ i χ) 2 + λϕ 2 χ 2 . (4.5) 
When A > 0, since the total energy E = E ϕ + E χ is conserved and E ϕ ≥ 0, E χ ≥ 0, the classical phase space for each of the two oscillators is bounded. On the contrary, if A ≤ 0 the classical phase space is not bounded by the requirement that the total energy is conserved: if E ϕ ≤ 0, similarly to the case of the Ostrogradsky ghost, a configuration can exist where ϕ is arbitrarily excited towards negative energies as far as χ compensates this with an equal excitement towards positive energies. If λ = 0, the energy is separately conserved and this state can't be reached. As soon as we switch on interactions we can however reach the configuration with arbitrarily large excitations and constant total energy.

To summarise, if A ≤ 0, the field ϕ is called a ghost field and such an arbitrarily excited state can appear in the spectrum leading to instabilities. In the following, I will impose the requirement of not having a ghost in the theory. Then the exponentially growing solution of (4.4) is avoided imposing also B ≥ 0. If this condition is not realised, one has a gradient instability in the theory.

Tensor modes

Tensor modes correspond to perturbations of the spatial metric, defined as (focussing only on the tensorial part)

h ij = a 2 (t) (δ ij + γ ij ) , (4.6) 
with γ ij traceless and divergence-free, γ ii = 0 = ∂ i γ ij . Using these properties and the expansion (4.6), one has

δK i j = 1 2 N γi j , δ 2 R = 1 a 2 γ ij ∂ 2 γ ij + 3 4 ∂ k γ ij ∂ k γ ij - 1 2 ∂ k γ ij ∂ j γ ik . (4.7) 
The quadratic action for tensor perturbations is

S (2) γ = d 3 xdt a 3 M 2 8 γ2 ij - c 2 T a 2 (∂ k γ ij ) 2 , c 2 T ≡ 1 + α T . (4.8) 
Absence of ghosts and gradient instabilities gives the two conditions

M 2 ≥ 0 , c 2 T ≡ 1 + α T ≥ 0 . (4.9) 
As I anticipated in Sec. 2.4, the action (4.8) shows that the function α T parametrises deviations of the speed of propagation of gravitons from the speed of light. Note also that the presence of the time-dependent Planck mass M (t) provides an extra friction term in the equations of motion, given by α M . Explicitly,

γij + H(3 + α M ) γij -(1 + α T ) ∇ 2 a 2 γ ij = 2 M 2 T ij - 1 3 T δ ij T T , (4.10) 
where (T ij -T δ ij /3) T T is the transverse-traceless projection of the anisotropic matter stress tensor.

Scalar modes

From now on I shall discuss the scalar sector. I will proceed by considering each of the three cases introduced in the previous Chapter separately. Le me consider the action (2.25). In unitary gauge the scalar modes can be described by the metric perturbations [76]

N = 1 + δN, N i = δ ij ∂ j ψ , h ij = a 2 (t)e 2ζ δ ij . (4.11) 
This gives:

δ √ h = 3a 3 ζ , δK i j = ζ -HδN δ i j - 1 a 2 δ ik ∂ k ∂ j ψ , δ 1 R ij = -δ ij ∂ 2 ζ -∂ i ∂ j ζ , δ 2 R = - 2 a 2 (∂ζ) 2 -4ζ∂ 2 ζ .
(4.12)

In this case, the situation is more involved than for tensors. Using the above expressions, one obtains a lengthy Lagrangian in terms of three scalar fields δN , ψ and ζ. Eventually, since I'm discussing theories with a single scalar degree of freedom, only one of those fields will be dynamical. This means that the other two satisfy constraint equations that can be used to eliminate them from the action.

Let me start from the case of Horndeski and beyond Horndeski theories. Here, the Lagrangian does not depend on the time derivatives of the lapse and of the shift. The only dynamical variable is the perturbation ζ which is contained into the spatial metric h ij . Hence, variation of the action with respect to the two fields δN and ψ yields constraint equations that correspond to the Hamiltonian constraint and to the scalar part of the momentum constraint. In particular, the latter can be used to replace δN in terms of ζ and the matter fields. The detailed calculation can be found in the Appendices for different cases; later in the text I will point to the references in more detail. As an example, let me recall the constraint equation in absence of matter. This reads

δN = ζ H (1 + α B ) . (4.13) 
When α B = 0, one has the standard GR expression. When α B = 0, upon use of the constraint the term δN δK in the action (2.25) gives a contribution proportional to ζ2 , as can be seen using the explicit expression (4.12). So, the mixing between the gravitational and scalar fluctuations contributes in this case to the kinetic energy of the scalar degree of freedom, whence the name kinetic braiding. Once the constraint is used, one ends with an action for the scalar degree of freedom ζ and the matter fields only. It is on this action that the stability conditions must be imposed.

In the case of DHOST theories, the situation is more subtle. Time derivatives of the lapse function are present, which means that in principle two degrees of freedom could propagate in the scalar sector and that only one constraint is present in the action.

On the other hand, we know that one of the two propagating degrees of freedom is reminiscent of an Ostrogradsky ghost, and that we can impose degeneracy conditions to avoid its presence. Once we do so, I will show that one can find another constraint equation and find again an action for a single degree of freedom.

Horndeski theories

In this case, α H = α L = β 1 = β 2 = β 3 = 0. As I explained, we can use the scalar part of the momentum constraint, Eqn. (4.13), to eliminate δN in favour of ζ. In absence of matter, we get3 

S (2) = d 3 x dt a 3 M 2 2 α K + 6α 2 B (1 + α B ) 2 ζ2 -c 2 s,0 (∂ i ζ) 2 a 2 . (4.14)
where

4 c 2 s,0 = (1 + α B ) 2 α K + 6α 2 B 2(1 + α T ) - 2 aM 2 d dt aM 2 H(1 + α B ) . (4.15)
Absence of ghost and gradient instabilities require respectively

α K + 6α 2 B ≥ 0 , c 2 s,0 ≥ 0 . (4.16)
The above action illustrates how the operators in the action (2.25) contribute to the scalar dynamics. In particular, it is clear that the kineticity α K and the kinetic braiding α B give a kinetic energy to this degree of freedom. Let me generalise the previous case adding a coupling to the matter fields as described in 3. The matter sector is described by the N S funtions α C,I , α D,I , I = 1, ..., N S introduced in (3.14). Combining the quadratic action for matter with eq. (4.40), one can extract a quadratic action that governs the dynamics of the gravitational scalar degree of freedom and the matter ones. One has to solve the constraint that will now depend on the matter fields as well. The explicit calculation can be found in Appendix B of Article A. The absence of ghosts is guaranteed by the positivity of the matrix in front of the kinetic terms. This condition is given by

α ≡ α K + 6α 2 B + 3 I α D,I Ω I ≥ 0 , ρ I + (1 + α D,I )p I ≥ 0 , (4.17) 
where ρ I and p I are the energy density and pressure respectively, and

Ω I ≡ ρ I /(3M 2 H 2 )
is the density contrast. The first condition generalises the first inequality in (4. 16). We see that a disformal coupling to the matter fields, parametrised by α D,I , affects the kinetic energy of the gravitational degree of freedom and the no-ghost condition (see also [77,78]). For the matter sector, the second condition in (4.17) corresponds to the Null Energy Condition [79] in the frame of g µν : in the Jordan frame of each species I, this can be expressed in terms of the energy density and pressure by ρI + pI ≥ 0 (the symbol ˇdenotes Jordan-frame quantities). The explicit transformations between the two frames can be found in Appendix A of Article A.

The propagating degrees of freedom are the matter ones, with sound speeds squared c 2 s,I , and the gravitational one, with sound speed

c 2 s = α K + 6α 2 B α c 2 s,0 - 3 α I 1 + (1 + α D,I )w I Ω I , (4.18) 
where w I ≡ p I /ρ I is the equation of state. Absence of gradient instabilities requires

c 2 s ≥ 0 , č2 s,I = c 2 s,I (1 + α D,I ) ≥ 0 . (4.19)
To summarise, in the case of Horndeski theories with a conformal-disformal coupling that depends on φ only, the propagating degrees of freedom of the scalar/gravitational sector remain decoupled from matter, but the presence of matter fields alters the kinetic energy of the former one and its sound speed. For matter, stability conditions and fluid quantities take their standard form in the Jordan frame.

Beyond Horndeski and Kinetic Matter Mixing

In theories beyond Horndeski the operator α H is added on top of the four others characterising the Horndeski class. The analysis of the propagating mode proceeds exactly as in the Horndeski case. In absence of matter, the physics is not qualitatively different from the Horndeski case; the no-ghost conditions are not affected by α H while the expression of the sound speed is slightly modified5 ,

c 2 s,0 = (1 + α B ) 2 α K + 6α 2 B 2(1 + α T ) - 2 aM 2 d dt aM 2 (1 + α H ) H(1 + α B ) . ( 4 

.20)

A genuinely new physical effect emerges in this case when matter is added. In this case, the transformation preserving the structure of the action includes a dependence of the disformal factor D on the gradient of the field, so we can extend the coupling to matter to include this case [DAmico:2016ntq]. This adds one function α X,I (see eqn. (3.14)) for each matter species; here, I will restrict to the case where only one species is present, and a subscript m will denote the matter quantities. A generalisation to the case where multiple matter species are present is discussed in Appendix A of Article C. The no-ghost conditions are affected by the dependence of the disformal factor on X: we get

α ≡ α K + 6α 2 B + 3α eff D,m Ω m ≥ 0 , (4.21) 
α eff D,m ≡ α D,m (1 + α X,m ) 2 + α X,m (2 + α X,m ) + 1 2C m ∂ 2 D m ∂N 2 . (4.22)
The qualitatively new phenomenon emerges when considering the propagating degrees of freedom. Requiring that the determinant of the kinetic matrix vanishes, we get a dispersion relation of the form

(ω 2 -c 2 s k 2 )(ω 2 -c 2 m k 2 ) = λ 2 c 2 s ω 2 k 2 , (4.23) 
where

c 2 s ≡ α K + 6α 2 B α c 2 s,0 - 3 1 + w m (1 + α D,m ) Ω m α 1 + α H 2 , (4.24) 
and the parameter λ 2 on the right-hand side is defined as

λ 2 ≡ 3 αc 2 s 1 + (1 + α D,m )w m Ω m (α H -α X,m ) 2 . (4.25) 
When λ = 0, the two non-trivial solutions of the system are not given by the scalar and matter degrees of freedom, ω 2 = k 2 c 2 s and ω 2 = k 2 c 2 m . They are rather mixed states of matter and the scalar propagating at speeds c 2 ± that can be found solving (4.23). These two must satisfy the stability conditions

c 2 ± ≥ 0 . (4.26)
Thus, in this case the scalar affects also the sound speed of matter. Since the latter is defined as δp m = c m δρ m , we can think of it as an additional source of pressure. This feature is particularly surprising if one thinks that in general we are able to decouple the gravitational sector from matter by going at sufficiently short distances -this is the Jeans phenomenon. As can be seen from the dispersion relation (4.23), the amount of mixing is quantified by the parameter λ, given by a combination of the beyond-Horndeski function α H and the X-dependent part of the disformal coupling α X,m . This feature is physically very interesting for the interpretation of the effect. Let me recall explicitly the transformation of the relevant parameters under a change of the metric of the form (3.9) (the complete transformation of the other functions can be found in Sec.

(2.3) of Article C):

αT = (1 + α T )(1 + α D ) -1 , αH = α H -α X 1 + α X , αD,m = α D,m -α D 1 + α D , αX,m = α X,m -α X 1 + α X . (4.27) 
Remarkably, one can start with a theory where matter is disformally coupled and the beyond Horndesky parameter α H is absent, and find a transformation that sets α X,m to zero and at the same time generates a non vanishing α H without changing the propagation speed of the gravitons. The inverse is also true: a non vanishing beyond Horndeski parameter can be eliminated generating an X-dependent disformal coupling. As an example, consider the disformal coupling of matter D m = -(X + φ2 (t))/ φ2 (t). In the absence of a conformal coupling, this yields α D,m = 0 and α X,m = 1, since X = -φ2 (t). Thus, the transformation to Jordan frame leaves α T (and hence the speed of gravitons) unchanged.

Using the remaining transformation between the two frames, moreover, the parameter λ can be shown to be frame-independent , thus probing that the kinetic mixing between matter and the scalar is a truly physical effect. I will call this Kinetic Matter Mixing (KMM) and show that it has rather unique observational effects in Chapter 6. In the Jordan frame, where the coupling is minimal, KMM is encoded in the beyond Horndeski parameter α H . As we saw, we can also find a frame where α H is vanishing and matter has a disformal coupling to the metric that depends on the derivative of the field.

Higher-order theories

Theories that further generalise the previous cases require a more thorough investigation. As we saw, the action with β 1 = β 2 = β 3 = 0 does not explicitly include derivatives of the lapse perturbation δN , while setting also α L to zero prevents to have higher spatial derivatives of ζ in the final action. If we want to cover linear perturbations of DHOST theories, we have to introduce the four above operators altogether. In fact, one could start from the covariant formulation of DHOST, Eqn. (1.26), and work out the action for linear perturbations in unitary gauge. This is given by an expression of the form (2.25), and the explicit calculation can be found in Sec. 2.2 of Article D. The functions α and β appearing in (1.26) are given by combinations of the functions a A , f 2 and f 2,X evaluated on the FLRW background. Explicitly, for quadratic DHOST we have (the cubic case is discussed in Appendix A of Article D):

M 2 2 = f 2 -a 1 X , M 2 2 (1 + α T ) = f 2 , M 2 2 (1 + α H ) = f 2 -2Xf 2X , M 2 2 1 + 2 3 α L = f 2 + a 2 X , M 2 2 β 2 = -X a 1 + a 2 + (a 3 + a 4 )X + a 5 X 2 , 2M 2 β 1 = X(4f 2X + 2a 2 + a 3 X) , M 2 2 β 3 = -X(4f 2X -2a 1 -a 4 X) .
(4.28)

The expressions above already allow to draw some conclusions about the viability of some classes of quadratic DHOST theories.

• No propagating gravitons. If a 1 = f 2 /X, one sees immediately that M = 0. This time-dependent Planck mass is defined as the normalisation of the action for the gravitons, i.e. the coefficient of their kinetic term, as can be seen from (2.25) and (4.8). Thus the theory does not contain tensorial degrees of freedom and should be discarded. There are three classes of theories with this feature: Ib, IIb and IIIc.

• No spatial gradient for the gravitons. This is the case if f 2 = 0, since the spatial curvature R disappears [39] (see the action (1.26)), and so does the gradient term for γ ij , as can be seen from Eqn. (4.7). This means that the propagation speed for gravitational waves is zero, or equivalently, α T = -1. This happens in classes IIIa and IIIb. Note that these also verify the property α H = -1.

Therefore from a phenomenological point of view, the remaining classes, Ia and IIa, appear to be the most interesting. In Sec. 3.3 I pointed out that theories in class Ia are equivalent to Horndeski+beyond Horndeski with matter conformally and disformally coupled. Theories in class IIa are instead a genuinely new class.

Let me now discuss the degeneracy conditions found in Sec. 1.4.3 at the covariant level.

These are translated into conditions on the functions α and β through Eqn. (4.28). We found that the fully nonlinear degeneracy conditions boil down to two sets of very simple conditions for the free functions α and β appearing in the quadratic perturbative action. Depending on the DHOST theory under consideration, these satisfy either

C I : α L = 0 , β 2 = -6β 2 1 , β 3 = -2β 1 [2(1 + α H ) + β 1 (1 + α T )] , (4.29) 
or the set of conditions

C II : β 1 = -(1 + α L ) 1 + α H 1 + α T , β 2 = -6(1 + α L ) (1 + α H ) 2 (1 + α T ) 2 , β 3 = 2 (1 + α H ) 2 1 + α T , (4.30 
) where I assumed that α T = -1 in the latter case (otherwise6 one should use a regular version of the conditions obtained by multiplying both sides of the equalities by the denominator of the right hand side). In particular, theories in class Ia satisfy C I while theories in class IIa satisfy C II . It is immediate to see that both sets of conditions share the common condition

C U : (1 + α L )β 2 = -6β 2 1 , (4.31) 
which plays a special role in the unitary gauge, as we will see later. I summarise the situation for the quadratic DHOST theories in Table 4.1.

One can also recover directly the conditions C I and C II by rewriting the three degeneracy conditions (1.43) in terms of the seven parameters M 2 , α L , α H , α T and β A inverting the equations (4.28), as we show in Appendix B of Article D. We also generalised the discussion presented in this section to DHOST theories up to cubic order. It can be found in Appendix A of Article D.

Subclass (see [36]) # free functions Degeneracy Remarks

2 N-I/Ia 3 I H, bH & conf-disf transf 2 N-II/Ib 3 0 2 N-III/IIa 3 II 2 N-IV/IIb 3 0 2 M-I/IIIa 3 II α T = α H = -1 2 M-II/IIIb 3 II α L = α T = α H = -1 2 M-III/IIIc 4 0
Table 4.1: Subclasses of DHOST theories, using the classification of Ref. [36]. Second column: number of free functions among f 2 , a A . In the degeneracy column, 0 stands for M 2 = 0, i.e. there are no tensor modes.

Propagating degrees of freedom on Minkowski space

It is instructive to consider the Minkowski limit first, as it encodes all the relevant physical information that can be later generalised. In a cosmological context, this is equivalent to consider modes with frequencies and wave numbers much higher than the cosmological ones. In this case, all the functions α's and β's, as well as M 2 , are constants, while we can redefine the functions α K and α B by M 2 K = H 2 α K , M B = Hα B and then take the limit a = 1, H = 0. As in this case plane waves are eigenfunctions of the system, we can find a dispersion relation simply considering perturbations of the form (N (t, x), ζ(t, x), ψ(t, x)) † = e -iωt+ik•x (N (ω, k), ζ(ω, k), ψ(ω, k)) † , and requiring that the determinant of the resulting quadratic Lagrangian vanishes. This yields

E 1 ω 4 + E 2 k 2 + E 3 ω 2 + E 4 k 4 + E 5 k 2 = 0 , (4.32) 
with the coefficients

E 1 = 3 (1 + α L )β 2 + 6β 2 1 , E 2 = 6 2(1 + α H ) + (1 + α T )β 1 β 1 + α L (1 + α T )β 2 + 3(1 + α L )β 3 , E 3 = 3 (1 + α L )M 2 K + 6M 2 B , E 4 = -α L 2(1 + α H ) 2 -(1 + α T )β 3 , E 5 = (1 + α T ) α L M 2 K + 6M 2 B . (4.33) 
In the general case, the dispersion relation is a quartic polynomial in ω with only even powers, which means that there are two solutions for ω 2 , corresponding to the presence of two scalar modes, as expected. In particular, the two parameters β 1 and β 2 contribute to the highest order coefficient in ω, which is consistent with their interpretation of a "kinetic" and "braiding" contribution I gave in Sec. 2.4. Interestingly, the structure of the coefficient E 1 is the same as that of E 3 with β 1 and β 2 playing the role of α B and α K , respectively (reminding that M B ≡ Hα B and M 2 K ≡ H 2 α K ). Note also that the highest term in spatial derivatives disappears when α L = 0. If the condition E 1 = 0 is satisfied, then only a single scalar mode remains. This amounts to impose the condition C U in Eqn. (4.31). It is also instructive to look for cases where 4.32 can be reduced to a standard linear dispersion relation of the form ω 2 = c 2 s k 2 . This can be achieved by setting E 2 = 0 and E 4 = 0. Solving the above conditions, we obtain that they are equivalent to impose either C I (4.29) or C II (4.30). In both cases, the dispersion relation takes the very simple form

ω 2 -c 2 s k 2 = 0, c 2 s ≡ - 1 3 (1 + α T )(6M 2 B + α L M 2 K ) M 2 K (1 + α L ) + 6M 2 B . (4.34) 
To summarise, we found that requiring to have a standard dispersion relation for one propagating mode in unitary gauge leads to impose the same degeneracy conditions found at the covariant level appropriately expressed in terms of the free functions of the effective description. However, the fact that a single scalar mode remains when C U is imposed is valid only for linear perturbations in unitary gauge; if this is not the case, one should expect the presence of an additional propagating mode that doesn't show up here. To ensure the the extra mode is absent at any level, one has to impose the full degeneracy conditions C I or C II .

Unitary gauge analysis in cosmology and gradient instablilities

Here I generalise the discussion to the cosmological case. The details of the calculations are in Sec. 4 and Appendix D of Article D. Differently from the Horndeski and beyond Horndeski cases, when α L = 0, the action contains terms quadratic in ∂ψ, 7 where ψ has been defined in Eqn. (4.11),

N i = δ ij ∂ j ψ.
The scalar component of the momentum constraint becomes then a linear equation in ∂ψ and we should use it to solve for ψ (rather than δN as in the case α L = 0). The remaining action in general describes two propagating degrees of freedom, with a kinetic part in the variables ( ζ, δ N ) described by the matrix

M =   6(1 + α L ) -6β 1 -6β 1 6β 2 1 + α L β 2   . (4.35) 
If the above matrix has vanishing determinant, we can find a null eigenmode that is not a propagating degree of freedom. This amounts to impose the condition

0 = det[M] = 36β 2 1 + 6β 2 (1 + α L ) ⇒ β 2 = - 6β 2 1 1 + α L (C U ) , (4.36) 
which, not surprisingly, is the same found from the dispersion relation on Minkowski (4.31). The action is diagonalised by the transformation

ζ = ζ - β 1 1 + α L δN , (4.37) 
which represents the propagating degree of freedom in this case. Varying the action with respect to δN yields now another constraint,

δN = ζ H(1 + α B ) -β1 , (4.38) 
which generalises equation (4.13) and can be used to integrate out δN . After a spatial Fourier transform, the final action has the form ( k ≡ k/a):

S = 1 2(2π) 3 dt d 3 k a 3 M 2 M 22 + k2 S 22 c 1,0 + c 1,2 k2 ζk ζ-k + c 2,2 k2 + c 2,4 k4 + c 2,6 k6 
M 22 + k2 S 22 ζk ζ-k . (4.39)
The explicit expression for the coefficients is not important for the present discussion and can be found (including also the matter contributions) in Appendix D of Article D.

The above action describes a scalar field with a dispersion relation ω 2 = ω 2 (k 2 ) that is in general a rational function of k 2 . This generalises the case of flat space analysed in the previous section to the cosmological context. Again, we can look for cases where the dispersion relation has the standard form ω 2 = c 2 s k 2 . As in the case of Minkowski, using the explicit form of the coefficients c i,j , one finds two solutions corresponding to the cases C I (4.29) and C II (4.30). In this case the action takes the usual form, 

S = d 3 x dt a 3 M 2 2 A ζ ζ2 + B ζ (∂ i ζ) 2 a 2 . ( 4 
A ζ ≥ 0 , B ζ ≤ 0 . (4.41) 
A very important result follows from the above conditions for theories C II (4.30). The explicit expression of B ζ reads

B ζ = 2(1 + α T ) (C II ) . (4.42)
According to the stability condition (4.41) for the scalar mode, the above expression should be negative. On the other hand, (1 + α T ) corresponds to the square of the propagation speed of gravitons c 2 T , defined in Eqn. (4.8). This quantity should therefore be positive to guarantee stability in the tensorial sector. It follows that theories satisfying the condition C II necessarily develop a linear gradient instability either in the scalar or in the tensor sector. We can thus conclude that these theories are unviable. As for theories satisfying the conditions C II , the gradient instability found in Sec. 4.6.2 is not cured by the presence of matter.

Another very interesting result follows from the computation of the Poisson equation in the Newtonian limit. This is obtained proceeding as in Sec. 4.6.1 and further taking the limit ω = 0. For completeness, one can add a test particle of mass m which is minimally coupled to the metric. The 3 × 3 kinetic matrix for the variables δN , ζ and ψ yields three equations that can be combined to get a generalised Poisson equation. In terms of the gravitational potential Φ, this reads (for details, see Sec. 3.2 of Article D):

M 2 2 (1 + α H ) 2 1 + α T -β 3 ∇ 2 Φ + M 2 M 2 K + 6 M 2 B α L Φ = m δ (3) (x) , (4.44) 
where ∇ 2 ≡ δ ij ∂ i ∂ j denotes the Laplacian and δ (3) (x) is the three dimensional delta function. The coefficient in front of ∇ 2 Φ in the above equation corresponds to (4πG N ) -1 , where G N is the effective Newton constant. For DHOST theories with α L = 0 (such as those satisfying C II ), we see immediately that the coefficient in front of the Laplacian in the Poisson equation vanishes, because of (4.30), which means that the effective Newton constant in the linear regime is infinite. Hence, besides developing gradient instabilities, theories satisfying C II seem also to fail in recovering a viable Newtonian limit (even if this result should be checked in the nonlinear regime and around a non trivial background.) If instead α L = 0, one obtains the generalized Poisson equation

M 2 2 (1 + α H ) 2 1 + α T -β 3 ∇ 2 Φ + M 2 M 2 K Φ = m δ (3) (x) . (4.45) 
For DHOST theories that satisfy the conditions C I but not C II , one thus gets a finite Newton constant G N in the linear regime

8πG N = 1 M 2 (1 + α H ) 2 1 + α T - β 3 2 -1 . (4.46)
In conclusion, we found that among the very large number of DHOST theories, only those satisfying the conditions C I (that are related to Horndeski and beyond Horndeski via conformal or disformal transformations) are phenomenologically viable.

Chapter 5

Phenomenology of Interacting Dark Energy

In this Chapter, I consider a model belonging to the first case analysed in Chapter 3, i.e. a gravitational sector described by a Horndeski theory with CDM having a conformaldisformal coupling that depends on the scalar field only, Eqn. 3.8. I introduce the relevant equations to be solved, the minimal set of parameters needed to fully describe linear perturbations in the quasi-static approximation, and present Fisher matrix forecasts for the constraining power of future surveys for those [Gleyzes:2015rua].

To discuss the phenomenology, it is convenient to use a gauge where a more direct connection to the physics can be made. One can leave the unitary gauge description introduced previously, by "covariantizing" the action. This can be done explicitly by performing a time reparametrization of the form

t → φ = t + π(t, x) , (5.1) 
where the unitary time t becomes a four-dimensional scalar field φ. I denote by π the fluctuation of φ. By substituting the above transformation into the total action S = S g + S m , one obtains an action that depends on the scalar field φ and an arbitrary metric g µν .

To study cosmological perturbations, I then fix the Newtonian gauge with only scalar perturbations, i.e.,

ds 2 = -(1 + 2Φ)dt 2 + a 2 (t)(1 -2Ψ)δ ij dx i dx j . (5.2)
As for matter, in this gauge the scalar part of the stress-energy tensor for each species, at linear order, is

T (I) 0 0 ≡ -(ρ I + δρ I ) , (5.3) 
T (I) 0 i ≡ ρ I (1 + w I )∂ i v I = -a 2 T (I) i 0 , (5.4) 
T (I) i j ≡ (ρ I w I + δp I )δ i j + ∂ i ∂ j - 1 3 δ i j ∂ 2 σ I , (5.5) 
where δρ I and δp I are the energy density and pressure perturbations, v I is the 3-velocity potential and σ I is the anisotropic stress potential for the species I. In the following, I use the density contrast δ I ≡ δρ I /ρ I and consider species with vanishing anisotropic stress.

In principle, the gravitational action contains five non-independent scalar equations: the (0, 0), (0, i), (ii) and traceless components of the Einstein equations and the equation for the scalar field φ. These can be combined to yield two independent equations for the metric potentials Φ and Ψ, sourced by the matter perturbations. The first one is a second order differential equation for Ψ, while the second is a constraint equation relating Φ and Ψ. The corresponding full equations have been derived first in [53] and then in [10] for Horndeski theories and extended to the case of α H in [82]. Their expression in the case of the model treated in this Chapter can be found in Sec. 4.1 of Article A. To close the system, one needs to specify the evolution equations for the matter perturbations. These are derived from the invariance of the matter action under arbitrary diffeomorphisms; if matter is minimally coupled, this yields the usual conservation equation for the energy-momentum tensor, while if a non minimal coupling is present there can be an exchange of energy between matter and the scalar field. I will study a concrete case in the rest of this Chapter. Using the decomposition (5.3)-(5.5) and assuming vanishing anisotropic stress, the equations of matter are two first order equations for the density contrast δ I (continuity equation) and for the velocity potential v I (Euler equation).

Model and main equations

In the late universe, the only relevant matter species are CDM and baryons. Here, I consider the case where CDM admits a non trivial coupling to the metric while the baryons are minimally coupled, and assume without loss of generality that the metric g µν corresponds to this frame1 . The gravitational sector is described by an action belonging to the Horndeski class, i.e. Eqn. (2.25) with α H = α L = β 1 = β 2 = β 3 = 0. The coupling of CDM to gravity and dark energy is characterised by the effective metric

ǧ(c) µν ≡ C c (φ)g µν + D c (φ)∂ µ φ∂ ν φ , (5.6) 
from which we have the conformal and disformal parameters introduced in (3.14):

α C,c ≡ Ċc 2HC c , α D,c ≡ D c C c -D c .
(5.7)

In the following, I will also call the coupling (5.6) "non minimal coupling" to distinguish it from that of the baryons. In summary, linear perturbations are characterised by the six free functions α K , α B , α M , α T , α C,c , α D,c .

(5.8)

The equations of motion for the metric are obtained by varying the total action (after having applied the time reparametrisation (5.1)) with respect to g µν , δS δg µν = 0 , (5.9) which provides the generalised Einstein equations. Their explicit form in Newtonian gauge can be found in Appendix C of Article A. Since baryons are minimally coupled, their evolution is just given by the standard conservation equation

∇ µ T (b) µ ν = 0 . (5.10)
To write the equations of motion for CDM, one can use the invariance of the matter action S c under arbitrary diffeomorphisms, x µ → x µ + ξ µ . This gives an expression of the form 2

∇ µ T (c) µ ν + Q c ∂ ν φ = 0 , (5.12 
)

Q c ≡ - 1 √ -g δS c δφ = - C c 2C c T (c) - D c 2C c T µν (c) ∂ µ φ∂ ν φ + ∇ µ T µν (c) ∂ ν φ D c C c , (5.13) 
where a prime denotes a derivative with respect to φ. The explicit form of these equations for baryons and CDM in Newtonian gauge can be found in Eqns. (4.8)-(4.9) of Article A, while those for a generic fluid in Eqns. (3.16)-(3.17) of the same Article. Finally, the evolution equation for φ can be obtained by variation of the total action with respect to φ, δS/δφ = 0. One obtains

1 √ -g δS g δφ -Q c = 0 . (5.14)
The explicit form of the above equation is in Eqn. (C.7) of Article A.

Background evolution

On the background, the evolution equations (5.10)-(5.12) written in terms of the baryons and CDM energy fractions Ω b,c ≡ ρ b,c /(3H 2 M 2 ), are

Ωb = -H 3 + 2 Ḣ H 2 + α M Ω b , (5.15) 
Ωc = -H 3 + 2 Ḣ H 2 -3γ c + α M Ω c . (5.16) 
All the information about the non minimal coupling is encoded in the parameter γ c3 ,

γ c = 1 3 α C,c + αD,c 6H(1 + α D,c ) .
(5.17)

The presence of the coefficient α M is due to the fact that the mass M can be timedependent. As already mentioned, at the background level the dark energy can be defined by giving a specific time evolution for the Hubble parameter. I assume that the expansion history corresponds to that of wCDM, so that H is given by

H 2 (a) = H 2 0 Ω m,0 a -3 + (1 -Ω m,0 )a -3(1+w) , (5.18) 
where w is a constant parameter. 4 In the absence of modifications of gravity and non minimal couplings, i.e. for α M = γ c = 0, w coincides with the equation of state of dark energy. With this parametrisation and for w ∼ -1, the background expansion remains close to ΛCDM, even when α M or γ c are switched on and matter does not scale as a -3 (see eqs. (5.15) and (5.16)).

Perturbations in the quasi static regime

In this section, I discuss the phenomenology of perturbations on scales where the socalled "quasi-static approximation" holds. Roughly speaking, this corresponds to considering scales where the time derivatives in the Einstein equations can be neglected with respect to the spatial ones. This argument can be made rigorous and it can be shown that it is justified for spatial scales smaller than the sound horizon of dark energy, i.e. k aH/c s [82,83]. In this regime, all the scalar perturbations Φ, Ψ, π obey Poisson-like equations. One obtains a system of equations for six independent variables: the two metric potentials Φ and Ψ, and the density contrasts (δ b , δ c ) and velocities (v b , v c ) for baryons and CDM.

Let me define the total matter density contrast δ m = ω c δ c + ω b δ b , where ω b,c ≡ Ω b,c /Ω m . An analogous definition holds for the velocity potential:

v m = ω c v c +ω b v b .
The equations for the scalar field and the metric potentials can be written as:

∇ 2 a 2 Φ = 3 2 H 2 Ω m µ Φ δ m , (5.19) 
∇ 2 a 2 Ψ = 3 2 H 2 Ω m µ Ψ δ m , (5.20) 
∇ 2 a 2 π = 3HΩ m β ξ ω b δ b + (β ξ + β γ )ω c δ c √ 2c s α 1/2 , (5.21) 
while the continuity and Euler equations take the form:

δb = - ∇ 2 a 2 v b , (5.22) δc = - ∇ 2 a 2 v c , (5.23 
) vb = -Φ , (5.24) 
vc + 3Hγ c v c = -Φ -3Hγ c π .

(5.25)

The relations between these quantities are summarised in Figure 5.1. The functions µ Φ and µ Ψ introduced in Eqns. (5.19)-(5.20) have the explicit expressions

µ Φ = 1 + α T + β ξ β ξ + β γ ω c b c , (5.26) 
µ Ψ = 1 + β B β ξ + β γ ω c b c .
(5.27) I introduced the parameters5 

β γ ≡ 3 √ 2 c s α 1/2 γ c , β ξ ≡ √ 2 c s α 1/2 ξ ≡ √ 2 c s α 1/2 [α B (1 + α T ) + α T -α M ] , β B ≡ √ 2α B c s α 1/2 ,
(5.28) α and c s were introduced in equations (4.17) and (4.18), and b c ≡ δ c /δ m is a timedependent bias between the CDM and the total matter density contrast 6 . As one can see, modified gravity and a non minimal coupling affect the equations for the two potentials in the following way:

• The coupling between the potentials and the metric is altered with respect to GR.

The modification is encoded in the function µ Ψ in Eqn. (5.20), defined so that in GR µ Ψ = 1. An analogous quantity µ Φ can be defined for the Poisson equation for Φ, Eqn. (5.19). In the absence of nonminimal coupling of CDM, the gravitational coupling µ Φ is given by µ Φ = 1 + α T + β 2 ξ . If α T ≥ 0 , this quantity is always larger than one, which tends to enhance the growth of structure.

• The relation between the two metric potentials is non trivial. In GR, one simply has Φ = Ψ (and µ Ψ = µ Φ = 1). In general, one can combine Eqns (5. 19) and (5.20) to get another Poisson-like equation for the sum of the two potentials:

∇ 2 a 2 (Φ + Ψ) = 3 2 H 2 Ω m (µ Φ + µ Ψ ) δ m .
(5.29)

• The non minimal coupling introduces extra friction and an additional "fifth-force" term in the Euler equation for CDM, Eqn (5.25). This is the result obtained in the context of coupled dark energy (see e.g. [84]). If there is a non trivial coupling of CDM but gravity itself is not modified, than the Newton constant is not modified, µ Φ = µ Ψ = 1, and Φ and Ψ are the same as in GR, even if CDM is nonminimally coupled. Note that in the equations for matter, all the modifications are encoded in the single parameter γ c . Therefore, it is not possible to disentangle the conformal and disformal effects. This is due to the fact that the non minimally coupled species is pressureless and that we are in the quasi-static regime.

One can combine Eqns. (5.19)-(5.25) to obtain two coupled second-order differential equations for the two density contrasts:

δb + 2H δb = 3 2 H 2 Ω m (1 + α T + β 2 ξ )ω b δ b + [1 + α T + β ξ (β ξ + β γ )] ω c δ c , (5.30) δc + (2 -3γ c )H δc = 3 2 H 2 Ω m [1 + α T + β ξ (β ξ + β γ )] ω b δ b + 1 + α T + (β ξ + β γ ) 2 ω c δ c .
(5.31)

Since equations (5.30)-(5.31) are independent of the wavenumber k, one can factorize the time dependence from the k dependence of the initial conditions and write the solutions in the form

δ c (t, k) = G c (t) δ c,0 ( k) , δ b (t, k) = G b (t) δ b,0 ( k) , (5.32) 
where δ c,0 and δ b,0 represent the initial density contrasts for CDM and baryons respectively, defined at some earlier time in the matter dominated era (the choice of initial conditions is described in the next section). The two functions of time G c (t) and G b (t) are the growth factors for CDM and baryons, respectively.

I will solve equations (5.30)-(5.31) to analyse linear perturbations in the quasi static regime. Let me conclude with some remarks. Modifications of gravity exchanged by π are parametrized by β ξ and the nonminimal coupling of CDM is parametrized by β γ . This separation of effects is not physical and depends on the choice of frame.

The modification of gravity associated with the parameter α T does not depend on the exchange of π [85] (see also [86] for a discussion on local constraints of this effect), and does not mix with the other two effects under change of frame. Finally, note that the parameter α always appears multiplied by c 2 s . From the definition of the sound speed, eq. (4.18), c 2 s α is independent of α K . This is a consequence of dropping time derivatives in the fluctuations of π to reach the quasi-static regime, so α K cannot be constrained by observations in this regime ( [87], [Gleyzes:2015rua]). In summary, the phenomenology in the quasi-static limit for baryons and nonminimally coupled CDM is captured by the reduced set of parameters:

α K , α B , α M , α T , α C,c , α D,c → α B , α M , α T , γ c .
(5.33)

Solving the equations: parametrization and initial conditions

In the effective descriptions, the free functions are time dependent, so one has to choose a parametrisation in order to solve Eqns. (5.30)-(5.31). I will assume that the functions α B , α M and α T share the same time dependence :

α A = α A,0 1 -Ω m (t) 1 -Ω m,0 (5.34) 
A = B, M, T and α A,0 denote the current values of these parameters. These are the free parameters of the effective description which I will constrain. The time dependence of γ c is chosen by assuming that the parameter β γ , defined in eq. (5.28), is time-independent, so that

γ c (t) = β γ 3 √ 2 c s (t)α 1/2 (t) . (5.35) 
This choice of parametrisation allows to include coupled quintessence [88] as a special case, or more generally other cases where the nonminimal coupling of CDM remains active also when the dark energy density becomes negligibly small, since one can have c s α 1/2 = 0 while β γ = 0. Moreover, c s α 1/2 vanishes in matter domination. Therefore, when Ω m → 1, then α A → 0 and γ c → 0, which corresponds to the standard matter dominated phase for the background evolution. However, while modifications of gravity switch off in this limit (i.e. α B , α M , α T → 0), the nonminimal coupling parametrised by β γ remains active. The details of the parametrisation and of the time-dependence are discussed in Section 4 and App. A of Article B.

In particular, let me briefly discuss the time dependence of c 2 s α. Its expression is given in general by Eqn. (4.18), where one should sum over baryons and CDM. Explicitly, we can write it as

c 2 s α = (1 + α B )(3 -3η -2ξ) -3Ω m -2 αB H , (5.36) 
where

ξ = α B (1 + α T ) + α T -α M , and 
η ≡ 1 3 3 + 2 Ḣ H 2 = -w (1 -Ω m,0 )a -3w Ω m,0 + (1 -Ω m,0 )a -3w , (5.37) 
By using Eqn. (5.34) and the background evolution equations (5.15) and (5.16) to evaluate αB in (5.36), this can be written as

c 2 s α = 3(1 -Ω m -η)+α B 1 -3η 1 + 2 Ω m 1 -Ω m -2(α M -3γ c ω c ) Ω m 1 -Ω m -2α 2 B -2α T 1 + α B 2 + 2α M (1 + α B ) , (5.38) 
Finally, one can replace γ c by its expression (5.35) given in terms of c s α 1/2 . The equation (5.38) is thus a quadratic equation for X ≡ c s α 1/2 . One can extract the relevant solution. This is done explicitly in App. A of Article B.

The background evolution has been discussed in Sec. 5.1.1 and it is given by equation (5.18).

Let me also comment on the initial conditions needed to solve Eqns. (5.30)-(5.31). I start the evolution during matter domination, where Ω m 1 and α A 0 (A = B, M, T ). This also implies that γ c 0 and β ξ 0. Thus, at the background level there are no deviations from ΛCDM, while the perturbations equations (5.30)- (5.31) 

in this limit are δb + 2H δb 3 2 H 2 [ω b δ b + ω c δ c ] , (5.39) δc + 2H δc 3 2 H 2 ω b δ b + 1 + β 2 γ ω c δ c , (5.40) 
where ω b,c are constant. The solutions of the above system can written as

δ b = b b,in δ m , δ c = b c,in δ m , (5.41) 
with constant and scale-independent bias parameters given by

b b,in = 1 + β 2 γ ω c -4β 2 γ ω 2 c + (1 -β 2 γ ω c ) 2 2β 2 γ ω c ω b , b c,in = -1 + β 2 γ ω c + 4β 2 γ ω 2 c + (1 -β 2 γ ω c ) 2 2β 2 γ ω 2 c .
(5.42) The respective growth functions G c and G b are identical, solutions of the equation

G + 2H Ġ - 3 2 H 2 1 + β 2 γ ω 2 c b c,in G = 0 . (5.43) 
I set initial conditions on the growing mode, G + . This analysis also shows that baryons and CDM possess spectra that are initially proportional and then grow similarly.

Observables

In the next section, I will present constraints based on a Fisher matrix analysis applied to three observables that are targets of future surveys: the galaxy and weak lensing power spectra [89,90] and the correlation between the ISW effect in the CMB and the galaxy distribution [91]. Here, I give an analytical understanding of the effects of modifications of gravity on these observables and the expression for their Fisher matrices.

Galaxy clustering

The observed number density of galaxies in redshift space can be related to the one in real space by a term that depends on the line-of-sight component of the galaxy's peculiar velocity, v g,z (see e.g. [92]),

δ g,s = δ g - 1 aH ∇ z v g,z . (5.44) 
To compute the above quantity, we need to obtain an expression for the peculiar velocity of the galaxy, v g . Let me show how to do so. The idea is to relate the peculiar velocity v g to the CDM and baryon fluid velocities v b , v c that satisfy the Euler equations (5.24)-(5.25).

1. I shall effectively treat galaxies as test particles moving in the Hubble flow (see e.g. [93]). They are composed by baryon and CDM mass fractions 7 . A representation of this toy model is given in figure 5.2. Newton's law for the galaxy, including the fifth force on the CDM component, can be written as ( v g = ∇v g ):

x b ≡ M b /M g and x c ≡ M c /M g (M g ≡ M b + M c ), respectively
d dt (M g v g ) = M g ˙ v g + 3Hγ c M c v g = F g = -M g ∇Φ + 3Hγ c M c ∇π.
(5.45) In the first equality, I used the fact that in absence of screening the mass of the CDM component in the galaxy is not conserved and obeys Ṁc = 3Hγ c M c . The last term on the right hand side can be rewritten in terms of the baryon and CDM velocities using the Euler equations (5.24)-(5.25) with v b,c = ∇v b,c . Doing so, one obtains that the above equation is solved by

v g = x c v c + x b v b . (5.46)
2. Then, one can use the continuity equations (5.22)- (5.23) in Fourier space to define a growth rate for the CDM and baryons. This gives:

v b,c = a 2 H k 2 f b,c δ b,c , f b,c ≡ 1 δ b,c dδ b,c d ln a , (5.47) 
In such a way, one can finally express the peculiar velocity of the galaxy given by Eqn. (5.46) as a function of the density contrasts of the baryons and CDM given by the solutions of the system (5.30)-(5.31):

v g = a 2 H k 2 (x c f c δ c + x b f b δ b ) . (5.48) 
One can then proceed as in the standard calculation and compute the galaxy power spectrum in redshift space from the galaxy number density in real space, Eqn. (5.44). This is given by

P g,s (z, k) = b g (z) 2 + µ 2 f eff (z) 2 P m (z, k) , (5.49) 
where µ ≡ k z /k, and I have introduced the effective growth rate of the galaxy distribution as

f eff ≡ x c f c b c + x b f b b b , (5.50) 
and the galaxy bias b g , defined as δ g = b g δ m . The matter power spectrum P m (z, k) can be written in terms of the growth functions of CDM and baryons using Eqn. (5.32).

Since

δ m = ω c δ c + ω b δ b , we have P m (z, k) = T 2 m (z)P 0 (k) , (5.51) 
where

T m (z) ≡ ω b (z) b b,in G b (z) + ω c (z) b c,in G c (z) (5.52)
is the matter transfer function, P 0 (k) is the initial power spectrum of matter fluctuations, δ m,0 , during matter domination and b b,in , b c,in are defined in eq. (5.42). As the effects of dark energy and modified gravity intervene at late times, the initial spectrum is independent on modifications of gravity.

Finally, I include the corrections due to the Alcock-Paczynski effect. The observed power spectrum reads [95] 

P obs (z; k, µ) = N (z) b g (z) + f eff (z)µ 2 2 P m (z, k) , (5.53) 
where the normalization factor N (z) is given by

N (z) ≡ H(z) D2 A (z) Ĥ(z)D 2 A (z) , D A (z) ≡ 1 1 + z z 0 dz H(z) , (5.54) 
D A is the angular diameter distance, and a hat denotes that the corresponding quantity is evaluated on the background.

I assume a spectroscopic redshift survey with Euclid-like characteristics [2]. I particular, I assume a 15 000 squared degrees sky coverage, sliced in eight equally-populated redshift bins 8 between z = 0.5 and z = 2.1.

The corresponding Fisher matrix for a set of parameters θ reads

F LSS ab (z) = bins V 2(2π) 3 kmax k min 2πk 2 dk 1 -1 dµ ∂ ln P obs (z; k, µ) ∂θ a ∂ ln P obs (z; k, µ) ∂θ b , (5.55) 
where V , k min and k max are, respectively, the comoving volume and the minimum and maximum wavenumbers of the bin. In this formula I neglected the intrinsic statistical error associated with the white shot noise from the Poisson sampling of the density field [97]. However, to be conservative, I choose the maximum wavenumber k max such that the galaxy power spectrum dominates over the shot noise and we are well within the linear regime 9 . For the minimum wavenumber, I assume k min = 10 -3 h Mpc -1 .

Weak Lensing

A powerful cosmological probe for dark energy is weak lensing, which depends on the so-called scalar Weyl potential, i.e. the sum of the two gravitational potentials Φ and Ψ. In particular, I consider lensing tomography [98].

I assume a photometric survey of 15 000 squared degrees in the redshift range 0 < z < 2.5, with a redshift uncertainty σ z (z) = 0.05(1 + z), and a galaxy distribution [99] n

(z) ∝ z 2 exp - z z 0 1.5 , (5.56) 
8 the galaxy distribution is taken as the one given by [96] with a limiting flux placed at 4 × 10 -16 erg s -1 cm -2 9 More specifically, for each redshift bin I take kmax as the minimum between π/(2R), where R is chosen such that the r.m.s. linear density fluctuation of the matter field in a sphere with radius R is 0.5, and the value of k such that niPg(k) = 1, where ni is the number density of galaxies inside the bin. These values of kmax are always smaller than H/(σg(1 + z)), with σg = 400 km s -1 , i.e. the scale where the peculiar velocity of galaxies due to their virialized motion becomes important.

where z 0 = z m /1.412 and z m is the median redshift, assumed to be z m = 0.9 [100,101]. I divide the galaxy distribution in 8 equally populated redshift bins. For each bin i, I define the distribution n i (z) by convolving n(z) with a Gaussian whose dispersion is equal to the photometric redshift uncertainty σ z (z i ), z i being the center of the ith bin (see also [88,102]

). Each distribution n i (z) is normalised to unity, ∞ 0 dz n i (z) = 1.
The angular cross-correlation spectra of the lensing cosmic shear is given by

C WL ij ( ) = 4 ∞ 0 dz H(z) W i (z)W j (z) χ 3 (z) k 3 (z)P Φ+Ψ [z, k (z)] , (5.57) 
where χ(z) ≡ z 0 dz/H(z) is the comoving distance and k (z) ≡ /χ(z) is the wavenumber which projects into the angular scale . I also used the lensing efficiency in each bin, defined as

W i (z) ≡ χ(z) ∞ z dz n i (z) χ(z) -χ(z) χ(z) . (5.58) 
P Φ+Ψ in Eqn. (5.57) is the power spectrum of Φ + Ψ. Using Eqn. (5.29) in Fourier space, we can relate it to the matter power spectrum P m :

P Φ+Ψ (z, k) = - 3a 2 H 2 2k 2 Ω m (µ Ψ + µ Φ ) 2 P m (z, k) .
(5.59)

Similarly to the matter case, we can define a transfer function for Φ + Ψ,

P Φ+Ψ (k) = T 2 Φ+Ψ (z, k)P 0 (k) , (5.60) 
where

T Φ+Ψ (z, k) ≡ - 3a 2 H 2 2k 2 Ω m (µ Ψ + µ Φ ) T m (z) .
(5.61)

From the above equation, we see that the lensing is sensitive to the combination

µ Ψ + µ Φ = 2 + α T + (β B + β ξ ) β ξ + β γ ω c b c . (5.62)
Neglecting the shot noise error due to the intrinsic ellipticity of galaxies, the Fisher matrix for the cross-correlation spectra in eq. (5.57) is given by [103,104]

F WL ab = f sky max = min 2 + 1 2 Tr ∂C WL ij ( ) ∂θ a C WL jk ( ) -1 ∂C WL km ( ) ∂θ b C WL mi ( ) -1 , (5.63) 
where I choose min = 10 and max = 300. Assuming Euclid-like characteristics [2] for the galaxy density and intrinsic ellipticity noise, the chosen max corresponds to scales where the shot noise is negligible and perturbations are only mildly beyond the linear regime at small redshift.

ISW-Galaxy correlation

As a third probe, I consider the cross-correlation between the ISW effect of the CMB photons and the galaxy distribution, which is a valuable probe of dark energy and of its clustering properties in the late-time universe (see e.g. [START_REF] Hu | Measuring dark energy clustering with CMB-galaxy correlations[END_REF][START_REF] Corasaniti | Constraining dark energy with cross-correlated CMB and large scale structure data[END_REF]). The galaxy distribution is assumed to come from the same photometric survey as for weak lensing, described in the previous section.

The angular power spectra of the ISW effect and the cross-correlation spectrum depend on the time evolution of the gravitational potentials. The ISW term is

∆T T ISW (n) = - ∞ 0 dz ∂ ∂z Φ + Ψ [z, nχ(z)] .
(5.64)

As for galaxies, the projected galaxy overdensity in the bin i is given by [START_REF] Ho | Correlation of CMB with large-scale structure: I. ISW Tomography and Cosmological Implications[END_REF] 

g i (n) = ∞ 0 dz n i (z)b g (z)δ m [z, nχ(z)] , (5.65) 
With these definitions, the angular power spectra of the projected galaxy overdensity and of the ISW effect are respectively given by

C gal ij ( ) = ∞ 0 dz H(z) χ 2 (z) n i (z)n j (z)b 2 g (z) P m [z, k (z)] , (5.66) 
C ISW ( ) = ∞ 0 dz H(z) χ 2 (z) ∂T Φ+Ψ ∂z (z, k) 2 P 0 (k) k=k (z)
.

(5.67)

Analogously, the angular cross-correlation spectrum between the ISW effect and galaxies reads

C ISW-gal i ( ) = - ∞ 0 dz H(z) χ 2 (z) n i (z)b g (z)T m (z) ∂T Φ+Ψ ∂z (z, k)P 0 (k) k=k (z) 
.

(

The Fisher matrix for the ISW-galaxy correlation is given by (see e.g. [START_REF] Douspis | Optimising large galaxy surveys for ISW detection[END_REF][START_REF] Majerotto | Combined constraints on deviations of dark energy from an ideal fluid from Euclid and Planck[END_REF])

F ISW-gal ab = f sky max = min (2 + 1) ∂C ISW-gal j ( ) ∂θ a Cov jk ( ) -1 ∂C ISW-gal k ( ) ∂θ b , (5.69) 
where I use min = 10 and max = 300 and the covariance matrix is given by

Cov jk ( ) = C ISW-gal j ( )C ISW-gal k ( ) + C CMB ( )C gal jk ( ) , (5.70) 
where C CMB ( ) is the full CMB angular power spectrum.

Forecasts

To concentrate on the effects of modifications of gravity and to simplify the analysis I fix the background cosmological parameters to their Planck estimated values. For w = -1 these are given by [1] h = 0.6731, h 2 Ω b,0 = 0.0222 and h 2 Ω c,0 = 0.1197, while for w = -1 I choose the values of Ω b,0 and Ω c,0 so to maintain the same angular diameter distance as in the w = -1 case [1]. The details are in the App. A.1 of Article B. In summary, the parameters I am going to constrain are:

10 θ ≡ {w , α B,0 , α M,0 , α T,0 , β 2 γ } . (5.71)
For the background, I take as fiducial evolution of the Hubble parameter the function

Ĥ(a) = H 0 Ω m,0 a -3 + 1 -Ω m,0 , (Fiducial) (5.72) 
which corresponds to the ΛCDM evolution, i.e. w = -1 in eq. ( 5.18) and a quantity evaluated on the fiducial model is denoted by a hat. The fiducial value for two of the parameters is zero, αM,0 = αT,0 = 0 , (Fiducial) (5.73) but I consider several options for the parameters β γ and α B,0 : In particular, I will distinguish three fiducial models: The unmarginalized errors on the parameters are summarized in Tab. 5.2 while in Tab. 5.1 I report, for each Fisher matrix, the eigenvector associated to the maximal eigenvalue (called here maximal eigenvector), which provides the direction maximally constrained in parameter space, i.e. the one that minimizes the degeneracy between parameters. The two-dimensional contours are presented in Fig. 5.5, 5.5 and 5.7 for the three fiducials 11 . The shaded blue regions in the plots correspond to instability regions, where c 2 s α < 0 12 . Let me now comment on the results for the three fiducials.

I

Fiducial I: ΛCDM

This fiducial gives the usual ΛCDM for the perturbations. In this case the generalised Einstein equations and the modified continuity and Euler equations reduce to the standard ones. The two-dimensional contours are presented in Fig. 5.5. Let me comment on the effects of the different functions:

11 For each observable, the Fisher matrix including all the parameters is ill-conditioned and cannot be inverted. This means that the observables do not have the constraining power to resolve the degeneracies (see e.g. [START_REF] Vallisneri | Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects[END_REF]). Thus, when plotting the two-dimensional contours I do not marginalise over the other parameters but I fix them to their fiducial values.

12 Here I conservatively exclude the instability region from the allowed parameter space. A more refined treatment would require multiplying the likelihood function by a theoretical prior that excludes the forbidden region, which is impossible to achieve with a Fisher matrix analysis (our priors cannot be represented with an invertible matrix). From top to bottom, relative variation of the effective growth factor f eff , eq. (5.50), the matter transfer function T m , eq. (5.52), the Weyl potential transfer function T Φ+Ψ , eq. (5.61) and its derivative with respect to redshift, ∂ z T Φ+Ψ , for the three different fiducial models (respectively I, II and III, from left to right). As ∂ z T Φ+Ψ vanishes in matter domination, we have normalized it to its value at z = 0 instead of its value as a function of the redshift. • The parameter w mainly affects the background. In particular, it changes the function H(z), thus also the evolution of the baryons and CDM energy densities, ρ b and ρ c (thus also Ω b and Ω c ). Since on this fiducial β γ vanishes, the changes in Ω b and Ω c are the same. This can be seen in the upper panels of Fig. 5.3.

• The parameter α T,0 is unconstrained in this fiducial model, as when we vary it fixing all the other on the fiducial it disappears from the equations. Indeed, when w = -1 and β γ = 0, one finds that

µ Φ = 1 + α T + β 2 ξ , µ Ψ + µ Φ = 2 + α T + β 2 ξ . Moreover, we have c 2 s α = -2ξ.
From the definition in Eqn. (5.28) it follows that β 2 ξ = -α T , and any dependence on α T disappears.

• Switching on α B gives µ Φ = 1 + 2α 2 B /(c 2 s α), µ Φ + µ Ψ = 2 + 4α 2 B /(c 2 s α), with c 2 s α = -(2 + 3Ω m )α B -2α 2 B .
For small α B , this can be approximated as

µ Φ 1 - 2 2 + 3Ω m α B , µ Φ + µ Ψ 2 - 4 2 + 3Ω m α B . (5.74)
This shows that the effect of α B is larger when Ω m decreases, in agreement with the plots in Fig. 5.4.

• The parameter α M affects both the background and the perturbations. At the background level, it does not change the evolution of ρ b and ρ c , but it changes Ω b and Ω c , according to equations (5.15)- (5.16). This can be seen in Fig. 5.3. As in the case of w, Ω b and Ω c are affected the same way since on the fiducial β γ = 0.

For perturbations, changing only α M from the fiducial gives µ

Φ = 1 + α M and µ Φ + µ Ψ = 2 + α M .
Note that the effect of α M is approximately equal in magnitude and opposite in sign to the one of α B , Eqn. (5.74), as it can also be seen in Fig. 5.4. In the α B,0 -α M,0 panel of Fig. 5.5 for galaxy clustering, one can see a degeneracy that is qualitatively explained by this result. A similar argument does not hold for weak lensing. In this case, a non vanishing α M also changes the background, and this effects has a non negligible impact on the transfer function T Φ+Ψ .

Finally, a large region of the observationally constrained parameter space is forbidden by the stability requirements. This shows the importance of the analysis of stability conditions presented in Chapter 4. This fiducial corresponds to a mixing between the dark energy and gravity kinetic terms at the level of the perturbations. The two-dimensional contours are presented in Fig. 5.6.

Fiducial II: Braiding

The allowed parameter space is larger than in the previous fiducial because for α B,0 = 0 the null energy condition can be violated without instabilities [44]. Let me again comment on some effects and degeneracies.

• The effect of w and α M on the background is the same as for ΛCDM.

• α T,0 has how to be included in the analysis. In particular, the plane α B,0 -α T,0 in Fig. 5.7 has the same background evolution as ΛCDM. Therefore, all the effects are controlled by µ Φ and µ Φ + µ Ψ . This allows to explain some degeneracies analytically. For small α B,0 and α T,0 one finds

µ Φ 1+ 3α B,0 (Ω m -1) (2α B,0 + (2 -3Ω m ) α T,0 ) α B,0 (6Ω m + 4) + 4α T,0 (1-Ω m ) (0.54α T,0 -0.6∆α B,0 ) ,
(5.75) where in the last equality I expanded at linear order for small 1 -Ω m and used α B,0 = -0.01 + ∆α B,0 . This explains the degeneracy between ∆α B,0 and α T,0 observed in the growth. By the same procedure one finds

µ Φ + µ Ψ (1 - Ω m ) (0.18α T,0 -1.2∆α B,0
), which explains why ∆α B,0 is more constrained than α T,0 by lensing observations.

• For the α B,0 -α M,0 plane, the situation is similar to the one of ΛCDM. The two functions have effects opposite in sign and of the same magnitude. This explains the degeneracy in the growth of structures, while for weak lensing background effects are more relevant.

Fiducial III: Interacting

In this fiducial, a non vanishing interaction between dark energy and CDM is present, which is active for perturbations but does not affect the background because c s α 1/2 = 0, and thus γ c = 0. The two-dimensional contours are presented in Fig. 5.7. The constraints for this fiducial model are generally stronger than those for models I and II. This is due to the enhancement of the effects on the observables, caused by the nonminimal coupling. In this case, the term β ξ β γ in eqs. (5.30) and (5.31) encodes the new effects that arise when both modifications of gravity and nonminimal couplings are considered. These effects explain the qualitative difference, in the size and shape, between the contours of fiducial III and those of the other two fiducial models. Not only are the constraints tighter by an order of magnitude in this case, but also the maximal eigenvectors of the Fisher matrices point in different directions, see Tab. 5.1.

An analytical understanding of the degeneracies is complicated by the fact that the background evolution of the CDM density contrast Ω c is changed by a change in any of the parameters. For w and α M , the effect is amplified with respect to the other fiducials. Moreover, in this case, a non vanishing coupling γ c is present even when α T or α B are nonzero, since since both β γ = 0 and c 2 s α = 0.

One can try to partially understand analytically some noticeable degeneracies: • When α T,0 and α M,0 are switched on, we have

µ Φ = α M - √ α M -α T β γ ω c b c , µ Φ + µ Ψ = 2 + α M - √ α M -α T β γ b c ω c . (5.76)
Still, this does not completely explain the degeneracy since in this case the background is changed also for a non vanishing α T .

• Another strong degeneracy is present between w and the parameters -α T,0 or α M,0 . This can be partially understood from the fact that w appears in the combination

c 2 s α 3(1 + w)(1 -Ω m ) -2(α M -α T ) 3(1 -Ω m ) (1 + w -α M,0 + α T,0 ) , (5.77) 
where I used η -w(1 -Ω m ) in eq. ( 5.36) for the first equality and Ω m,0 1/3 in the last one. First eigenvector of the Fisher matrices, for the basis {w, α B,0 , α M,0 , α T,0 , β 2 γ }, with the maximum eigenvalue, corresponding to the combinations of parameters that are maximally constrained by experiments. The coefficients are normalized by the maximum component and rounded to three significant digits.

Fid. Obs. Table 5.2: 68% confidence level (CL) errors on each individual parameter, assuming that the others take their fiducial values, for each fiducial model and observable: galaxy clustering (GC), weak lensing (WL), ISW-galaxy correlation (ISW-g) and the combination of the three (Comb).

10 3 × σ(1 + w) 10 3 × σ(α B,0 ) 10 3 × σ(α M,0 ) 10 3 × σ(α T,0 ) 10 4 × σ(β 2 

Comments

For the current values of α B , α M and α T , the errors are of the order of 10 -2 -10 -3 for fiducial models I and II and an order of magnitude better for the fiducial model III, while the error on β 2 γ is of the order of 10 -4 for all fiducial models. For all the models, strong degeneracies are present. While some of them can be understood analytically, other result from a non-trivial combination of background and perturbations effects. In general, a combination of different probes such as the three considered can help substantially in breaking these degeneracies. One should recall also that the background cosmological parameters should be included in the analysis as nuisance parameters. In this case, it is important to take as well into account other cosmological data such as the CMB, the baryon acoustic oscillations and the supernovae Type Ia 13 . One can hope to reduce degeneracies going beyond the quasi-static approximation, even if in this case, at least one more parameter, α K , must be considered in the analysis. For the case of Horndeski theories without a nonminimal coupling, the forecasts above have been recently extended [START_REF] Alonso | Observational future of cosmological scalar-tensor theories[END_REF] and the parameters of the effective description constrained [START_REF] Bellini | Constraints on deviations from CDM within Horndeski gravity[END_REF].

Chapter 6

Kinetic Matter Mixing

In this chapter, I analyse the second case introduced in Chapter 3, i.e. a gravitational sector described by a "beyond-Horndeski" theory and matter having a conformal coupling that depends on the scalar field only and a disformal one that depends on the gradient of the field as well, see Eqn. (3.9). I also assume that the WEP holds. In this case, only one function C m (φ) and one function D m (φ, X) are sufficient to characterise the matter coupling. At the linear level, according to the discussion in Chapter 3, we then have three functions of time α C,m , α D,m and α X,m characterising the matter sector for linear perturbations.

I also explained how the new physical effect present in these theories, Kinetic Matter Mixing, can be interpreted either as a modification of gravity (in the Jordan frame where α H = 0 and α X,m = 0), or as a particular type of disformal coupling (in a frame where α H = 0 and α X,m = 0). I work in the frame where all matter species are minimally coupled, hence I consider the former case where α X,m = 0 and all the effects of KMM are encoded in the function α H . I consider the late universe in presence of CDM, i.e. a non-relativistic fluid with vanishing pressure and speed of sound. On the other hand, I generalise the study of the phenomenology in two ways with respect to Chapter 5, i.e. showing the peculiar effects of the function α H associated to linear perturbations in this class of theories, and using results obtained with a Boltzmann code without resorting to the quasi-static approximation.

Analytical results

In this subsection I derive some analytical results that are useful to interpret the numerical ones and the mixing of the propagating degrees of freedom. In particular, one can consider two regimes.

• Oscillatory regime. On short scales, the gradients of the scalar field φ support an oscillatory regime, and in presence of KMM the oscillations are also shared by matter, even when it is made of nonrelativistic species with no pressure gradients.

To study the oscillations it is useful to consider the kinetic limit, i.e. the limit where the spatial and time derivatives are larger than the expansion rate H. In this case, it is possible to find a redefinition of the metric perturbations that demixes the new metric variables from the scalar field π and removes the higher derivative term from the gravitational action [13] (see equation 3.5 of Article C).

In the kinetic limit, the dynamics of the relevant dynamical variables, i.e. the scalar field π and the matter velocity potential v m is decoupled from that of the metric potentials in the new frame and we can study them separately. Allowing for the moment for a non-vanishing speed of sound and pressure for matter, c 2 m and p m respectively, the normalised fields

π c ≡ HM α 1/2 1 + α H π , v c ≡ ρ m + p m c 2 m 1/2 v m , (6.1) 
have dynamics described by the Lagrangian

L = 1 2 1 + c 2 s c 2 m λ 2 π2 c -c 2 s (∇π c ) 2 + v2 c -c 2 m (∇v c ) 2 + 2 c s c m λ vc πc , (6.2) 
where λ, defined in Eqn. (4.25), is the frame-independent parameter quantifying KMM, and c s is the sound speed given in Eqn. (4.24). So, in presence of KMM, λ = 0, it can be seen from the Lagrangian (6.2) that there is a kinetic coupling between π c and v c . One can find the normal modes of the system,

  c 3 s λ/c m c 2 --c 2 s -c 3 s λ/c m c 2 s -c 2 +     π c v c   , (6.3) 
where c 2 ± are the eigenvalues of the system, given by the two solutions of eq. (4.23). As I anticipated in the introduction to this Chapter, I am interested in studying the late universe in presence of a pressureless CDM component. So, I now take the c 2 m = 0 limit. Going back to standard normalisation, the eigenmodes and respective eigenvalues of the system are

X -= v m + π α H 1 + α H , c 2 -= c 2 m = 0 , (6.4 
)

X + = π -v m λ 2 1 + α H α H , c 2 + = c 2 s (1 + λ 2 ) , (6.5) 
with λ 2 = 3α 2 H Ω m /(αc 2 s ). While X + displays oscillations with frequency ω = ±ic + k, the speed of the fluctuations of X -vanishes as that of matter.

• Quasi-static regime. When including the Hubble expansion, we expect the oscillations of X + to get damped [83]. In the absence of the oscillatory mode X + , the time evolution is dominated by the Hubble friction and time derivatives are of the order of the Hubble rate H. In this case, we can consider the short-scale limit k k + , where k + denotes the sound horizon scale of the oscillating mode,

k + ≡ aH c + = aH c s √ 1 + λ 2 . (6.6)
This is the quasi-static regime (in Appendix C of Article C one can find a discussion of how this regime is reached in the cosmological evolution.). Analogously to the case treated in the previous chapter, this time we have a system of only four variables Φ, Ψ, δ m , v m :

∇ 2 Ψ a 2 = 3 2 H 2 Ω m µ Ψ δ m + λ 2 α B α H -1 H ∇ 2 v m a 2 , (6.7) ∇ 2 Φ a 2 = 3 2 H 2 Ω m µ Φ δ m + γH ∇ 2 v m a 2 , (6.8) δm = - ∇ 2 v m a 2 , (6.9) 
vm = -Φ . (

The above equations are summarised in Figure 6.1. Being matter minimally coupled, the energy-momentum conservation equations take the standard form, while in the gravitational sector we see peculiar modifications in the equations that are characterised by the presence of the laplacian of the matter velocity potential ∇ 2 v m . The functions µ Ψ and µ Φ in (6.7)-(6.8), analogously to Eqs. (5.26)-(5.27), are defined as

µ Ψ ≡ 1 1 + α H 1 + 2(α B -α H ) c 2 s α ξ - αH H , (6.11) 
µ Φ ≡ 1 (1 + λ 2 )(1 + α H ) 2 c 2 T + 2ξ c 2 s α ξ - αH H + aM 2 α H (1 + α H ) 2 aHM 2 c 2 s α ξ - αH H • , (6.12) 
and in Eqn. (6.8) I introduced the parameter

γ ≡ d ln 1 + λ 2 d ln a . (6.13)
Again, these equations can be combined in a single second-order differential equation for the density contrast:

δm + (2 + γ)H δm = 3 2 H 2 Ω m µ Φ δ m . (6.14) 
Finally, summing eqs. (6.7) and (6.8), one can obtain an equation for the Weyl potential,

1 a 2 H 2 ∇ 2 (Φ + Ψ) = 3 2 Ω m (µ Ψ + µ Φ )δ m + 1 - α B α H λ 2 -γ δm H , (6.15) 
where I used the continuity equation to replace the velocity v m by δm .

Let me summarise the most important features of the equations in presence of KMM comparing them to the case studied in the previous chapter:

-In absence of KMM, we recover the result of Eqn. (5.27), µ Φ = 1+α T +β 2 ξ . As already noticed in Sec. 5.1.2, this means that the exchange of the fifth force tends to enhance gravity on small scales [Gleyzes:2015pma, Gleyzes:2015rua]- [87,[START_REF] Pogosian | What can Cosmology tell us about Gravity? Constraining Horndeski with Sigma and Mu[END_REF]. On the contrary, in the presence of KMM µ Φ -(1 + α T ) can be negative, corresponding to a repulsive scalar fifth-force, thus weakening gravity.

-The modifications of the Poisson equations for Ψ and Φ are qualitatively different in presence of KMM, and they include contributions depending on the laplacian of the matter velocity. In particular, the last term on the righthand side of the Poisson equation for Φ gives extra friction γ in Eqn. (6.14).

Observational effects

As I showed in the previous section, KMM can lead to a repulsive scalar fifth force. This can leave peculiar signatures on structure formation with respect to the other effective theory operators. In this Section I will show these signatures on the matter power spectrum and on the CMB.

To go beyond the quasi-static limit, one should solve the full equations for linear perturbations. The minimal non-redundand set of equations is given by a second-order differential equation for one of the gravitational potentials, e.g. Ψ, another second-order differential equation for the scalar fluctuation π, and the equations for matter perturbations. In presence of α H , the full equations can be found in Ref. [10]. Moreover, in order to fully capture the properties of matter, CDM and baryons can be treated as collisionless and collisional fluids respectively. To treat properly photons and neutrinos, on the other hand, one has to resort to a phase-space description and solve the Boltzmann transport equations. The distribution functions are expanded in Legendre polynomials P , where is the multipole. The expansion up to order depends on terms of order + 1, so one obtains an infinite hierarchy of moment equations and can truncate the expansion at some given order max depending on the accuracy needed.

The system of coupled differential equations can then be solved numerically to compute observables. Two main Einstein-Boltzmann solvers exist for perturbations in ΛCDM. These are CAMB [START_REF] Lewis | Efficient computation of CMB anisotropies in closed FRW models[END_REF][START_REF] Lewis | Cosmological parameters from CMB and other data: A Monte Carlo approach[END_REF] and CLASS [START_REF] Lesgourgues | The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview[END_REF]. Recently, the interest in testing alternatives to ΛCDM motivated to implement Boltzmann codes for scalar-tensor models. Noticeably, these are based on an effective description of dark energy. This is another point that shows the importance of this topic.

In particular, MGCAMB [START_REF] Zhao | Searching for modified growth patterns with tomographic surveys[END_REF][START_REF] Hojjati | Testing gravity with CAMB and CosmoMC[END_REF] and EFTCAMB [START_REF] Hu | Effective Field Theory of Cosmic Acceleration: an implementation in CAMB[END_REF][START_REF] Raveri | Effective Field Theory of Cosmic Acceleration: constraining dark energy with CMB data[END_REF] are two codes based on CAMB, while hi class is an extension of CLASS [START_REF] Bellini | Constraints on deviations from CDM within Horndeski gravity[END_REF][START_REF] Zumalacárregui | hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System[END_REF]. The latter uses the parameters of the effective description described in this thesis (in particular, the equations are taken from Ref. [53]). These codes implement models within the Horndeski class. Finally, the code COOP [START_REF] Huang | Observational effects of a running Planck mass[END_REF][START_REF] Huang | COOP: first release; EFTDE/XFASTER/CPLDE[END_REF] (see also http://www.cita.utoronto.ca/ ~zqhuang/ for documentation) includes also the beyond Horndeski function α H and uses the equations given in Ref. [10].

In the rest of this Chapter, I will show results using the Boltzmann solver COOP. At the beginning of Sec. 4 of Article C more details are given on the procedure used in the code to solve the equations. The detailed algorithm can be found in Ref. [START_REF] Huang | A Cosmology Forecast Toolkit -CosmoLib[END_REF].

I assume the same parametrisation as in Chapter 5, Eqn. (5.34), but focussing on the effects of KMM only, i.e. with α B = α M = α T = 0, and

α K = α K,0 1 -Ω m (t) 1 -Ω m,0 , α H = α H,0 1 -Ω m (t) 1 -Ω m,0 . (6.16)
The background expansion history is fixed to ΛCDM, Eqn. (5.18) with w = -1, which is the simplest assumption that one can make to focus on the effects of KMM at the level of linear perturbations. In the following I set the current value of α K to unity, α K,0 = 1 and I plot the effect of α H in terms of four different values of this parameter today, i.e. α H,0 = 0.06, 0.12, 0.24 and 0.48. These values have been chosen in order to comply with the stability conditions (4.21) and (4.26), that in this case read 1 :

α K ≥ 0 , 0 ≤ α H ≤ 1 + 2 3Ω m . (6.18) 

Matter power spectrum

The matter power spectrum is shown as a function of k in Fig. 6.2 for z = 0 (left panel) and z = 1 (right panel). From this plot we see that increasing α H,0 suppresses the growth of structures. On small scales we can understand the power suppression applying the quasi-static approximation, i.e. eq. (6.14). Two effects contribute to this result: the presence of γ, which is positive in matter domination and provides extra friction, and µ Ψ which is smaller than unity, which means that the scalar force exchanged by π in the presence of KMM is always repulsive. Indeed, with only nonvanishing α K and α H and for the time parametrisation chosen, γ and µ Ψ are related by µ Ψ = 1γ. γ as a function of redshift is plotted in Fig. 6.3. It starts positive and changes sign only recently. In particular, during matter domination (i.e. Ω m ≈ 1) it behaves as

γ = 9 5 α H + O(1 -Ω m ) 2 . (6.19)
Given that µ Ψ = 1γ, this also means that µ Φ starts smaller than unity decreasing 1 To avoid that scalar fluctuations become superluminal in the past we must also require αH ≤ 1 5 αK . (6.17)

Just for the purpose of illustration, in the next two subsections I ignore constraints from superluminality, as using large values of αH allows to better visualise the effects on the observables. the strength of gravity, and gets larger than one only when γ changes sign. This has the cumulative effect of suppressing the power spectrum with respect to the ΛCDM case.

Note that the sign of α H is fixed by the stability condition, and so is the one of γ according to Eqn. (6.19). This means that the weakening of gravity is a well defined prediction for stable theories under the assumptions made in this section. Finally, a comment on the quasi-static approximation is in order. On the right panel of Fig. 6.2, I show the comparison between the quasi-static solution (dotted) and the full solution.

On the scales where the former is valid, the agreement is excellent.

On the other hand, as expected, the quasi-static approximation fails on scales that become comparable to the sound horizon scale k + defined in eq. (6.6). Corrections are expected to be of the order O(k 2 + /k 2 ). Interestingly, one can still find an integral solution for the matter density perturbation that agrees with the numerical one. This is done by solving the Einstein and scalar field equations perturbatively in α H (while keeping the exact dependence on α K to avoid inconsistencies [START_REF] Iglesias | How (Not) to Palatini[END_REF]). In particular, deviations from ΛCDM arise at second-order in α H , as the backreaction effect of π on gravity. The detailed calculation can be found in Sec. 4.1 of Article C. At the end, one obtains a solution for the comoving matter density contrast ∆ m ≡ δ m -3Hv m : 4 1 -H a adt

∆ m = ∆ (0) m 1 -2aH 2 α 2 H α K k 2 a 2 dt aH 3 -H dt aH
-1 + O(α 3 H ) .
(6.20) Notice that this solution breaks down on small scales because the quasi-static limit assumes α H = 0. On very large scales, i.e. for

k k * ≡ √ α K √ 2 α H a H 1 - H a adt 1/2 a dt aH 3 -Ha dt aH 4 -1/2 √ α K,0 α H,0 × 5.4 × 10 -4 h/Mpc , (6.21) 
the power spectrum is unmodified by KMM, although this restricts only to the case where the background expansion is that of ΛCDM. On intermediate scales, k * k k + , the power spectrum drops as k 2 due to the second term on the right-hand side of eq. ( 6.20). The perturbative solution (6.20) is shown in the left panel of Fig. 6.2.

Cosmic Microwave Background

The effects on the CMB lensing potential are shown in the left panels of Fig. 6.4, while those on the angular power spectrum of the CMB anisotropies in the right panels.

In presence of KMM, the CMB lensing potential is suppressed. In the previous Chapter, I showed that lensing effects are sensitive to the combination µ Φ + µ Ψ . In particular, the CMB lensing potential is defined as [START_REF] Lewis | Weak gravitational lensing of the cmb[END_REF] φ

(n) = - z * 0 dz H(z) χ(z * ) -χ(z) χ(z * )χ(z) Φ(χn, z) + Ψ(χn, z) , (6.22) 
where χ ≡ z 0 dz/H(z) is the comoving distance and z * denotes the redshift of last scattering. As I discussed in the previous Chapter, lensing effect are thus sensitive to the Weyl potential Φ+Ψ. We can understand the effect in the quasi-static approximation. Indeed, the bulk of the CMB lensing kernel is at 0.5 z 6 [START_REF] Lewis | Weak gravitational lensing of the cmb[END_REF], where deviations from this approximation are below ∼ 5% for the values of α H,0 that I considered. When KMM is present, we see from Eqn. (6.15) that the combination µ Φ + µ Ψ does not fully encode deviations from GR, because of the presence of the terms proportional to δm on the right-hand side of this equation. One can define the quantity [Gleyzes:2015pma] 

µ WL ≡ 2∇ 2 (Φ + Ψ) 3a 2 H 2 Ω m δ m , (6.23) 
that can be used in general to characterise the deviations in weak lensing observables from the ΛCDM case. When KMM is absent, µ WL = µ Φ + µ Ψ . In presence of KMM, this definition cannot be directly applied to eq. ( 6.15), because of the presence of the terms proportional to δm on the right-hand side of this equation. We can still simplify the discussion replacing δm by its expression in matter domination, δm Hδ m . Setting α B = α M = α T = 0 and employing the approximation above in eq. (6.15), the effect of α H in weak lensing observables can be rewritten as

µ WL -2 = α H 8 -9Ω m (1 + Ω m ) 2 + 3(1 -α H )Ω m . (6.24)
One can verify that this quantity is negative for z 0.5, i.e. inside the bulk of the CMB lensing kernel. Therefore, the lensing potential is suppressed by the modification of gravity induced by α H . For small Ω DE , in matter domination this suppression is roughly proportional to α H .

As for the CMB anisotropies, at large , we don't see any signature because they are generated at recombination,2 when α H vanishes. The only visible effect is an oscillating pattern observed at high l, due to the change in the CMB lensing. Indeed, lensing smears the CMB acoustic peaks; for larger values of α H,0 the smearing is suppressed and CMB peaks enhanced. At low l, the deviations from the ΛCDM case are dominated by the ISW effect, which is enhanced by KMM. For these multipoles, the deviations from the ΛCDM case are dominated by the ISW effect, introduced in Eqn. (5.64). Again, we can understand the effect by using the quasi static limit. Taking the derivative of eq. (6.24) with respect to the e-foldings, one obtains the following relation:

d ln(Φ + Ψ) d ln a QS = f QS -1 + d ln µ WL d ln a , (6.25) 
where

f QS ≡ d ln δ m d ln a QS , (6.26) 
is the growth rate computed using the quasi-static approximation. In ΛCDM, µ WL = 2 and the time variation of Φ + Ψ is given by the first two terms on the right-hand side, i.e. the deviation of the matter growth rate from unity, which is negative. When gravity is modified, the last term on the right-hand side does not vanish. In the case of KMM, it contributes with the same sign as the first term, enhancing the ISW effect. For example, assuming matter domination and expanding in α H one finds

d ln µ WL d ln a = -3α H + O(Ω 2 DE ) , (6.27) 
which explains the enhancement in the ISW effect observed in the right panel of Fig. (6.4), roughly proportional to α H .

Growth rate of matter

In order to illustrate the effect of KMM on the growth rate, in the left panel of Fig. 6.5 I plot the combination f σ 8 -where f ≡ d ln δ m /d ln a is the growth factor and σ 8 is defined as the rms of the fractional density fluctuation in a sphere of 8h where A s is the amplitude of scalar primordial fluctuations as measured by Planck.

The figure shows that there is some tension between weak lensing and cluster counts measurements and the Planck best-fit ΛCDM model, which corresponds to the α H,0 =0 line, and it seems to suggest that a value α H,0 ∼ few × 0.1 would provide the suppression needed to alleviate this tension.

Let me make some remarks about the above results, in particular concerning the suppression of power in presence of KMM. Recently, some tension has been found between the value of σ 8 inferred from the CMB anisotropies [1,[START_REF] Ade | Planck 2013 results. XVI. Cosmological parameters[END_REF], and the one measured with the large scale structures at low redshift (in weak lensing [136-138, 141, 142] and cluster counts [START_REF] Ade | Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts[END_REF][START_REF] De Haan | Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey[END_REF][START_REF] Ade | Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts[END_REF]). A similar tension is reflected in redshift space distortion measurements [START_REF] Macaulay | Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck[END_REF] for the combination of f σ 8 (see the left panel of Fig. 6.5) which seem to be lower than the one predicted by the Planck best-fit model. In light of these tensions, it is indeed interesting that the effect of KMM points in the direction of weakening gravity. Of course, one cannot claim those tensions to be highly significative at the current state of the art, and it must be kept in mind that the amount of tension can depend on aspects related to data analysis, such as the modelling of non-linear scales and of the galaxy bias or other systematic effects.

As for the effects of KMM presented here, notice that the constraints on σ 8 reported from the respective articles have been extracted from data assuming standard gravity, . The plot also shows the measurements of f σ 8 and their respective 1-σ errors from several redshift surveys: 6dF GRS [START_REF] Beutler | The 6dF Galaxy Survey: z ≈ 0 measurement of the growth rate and σ 8[END_REF], SDSS DR7 MGS [START_REF] Howlett | The clustering of the SDSS main galaxy sample ? II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15[END_REF], GAMA [START_REF] Blake | Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure[END_REF], SDSS DR12 LRG [START_REF] Alam | The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample[END_REF], WiggleZ [START_REF] Blake | The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1[END_REF] and VIPERS [START_REF] De La Torre | The VIMOS Public Extragalactic Redshift Survey (VIPERS). Galaxy clustering and redshift-space distortions at z=0.8 in the first data release[END_REF]. 3 Right: relation between α H,0 and the corresponding σ 8 at redshift z = 0, respectively in the top and bottom x-axes. The α H,0 = 0 line corresponds to ΛCDM and the region α H,0 < 0 is shaded because it is out of the stability window. The plot also shows the measurements of σ 8 and their respective 1-σ errors from several collaborations. In particular, the constraints based on cluster counts (red dashed lines) are from Planck 2013 [START_REF] Ade | Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts[END_REF] and SPT 2016 [START_REF] De Haan | Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey[END_REF]. The constraints based on weak lensing observations (blue solid lines) are from several analysis of the CFHTLens, by Kilbinger et al. 2013 [START_REF] Kilbinger | CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing[END_REF], Köhlinger et al. 2015 [START_REF] Köhlinger | A direct measurement of tomographic lensing power spectra from CFHTLenS[END_REF] and Hildebrandt et al. 2016 [START_REF] Hildebrandt | KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing[END_REF], and from the cosmic shear study of DES 2015 [START_REF] Abbott | Cosmology from cosmic shear with Dark Energy Survey Science Verification data[END_REF].

hence we cannot infer from Fig. 6.5 a "best-fit value" for α H,0 . Moreover, as pointed out above, a large α H,0 could lead to a too large ISW effect, even if this could be compensated by a variation in other parameters. The message is that one can draw conclusions only after a global fit to data. One should also keep in mind that possibilities different from modification of gravity of the scalar-tensor type can be put forward, see Sec. For what concerns the class of theories considered in this thesis, there are anyway some interesting remarks to make. For theories within the Horndeski class with the same expansion history as ΛCDM, one can obtain a suppression of the growth rate around redshift 0.5 z 1 in self-accelerating models [85,[START_REF] Tsujikawa | Possibility of realizing weak gravity in redshift space distortion measurements[END_REF]. This is due to the fact that Ω m on the right-hand side of Eqn. (6.14), contains the time-dependent effective Planck mass M 2 at the denominator. The enhancement of the latter due to self-acceleration lowers Ω m with respect to the standard ΛCDM case at intermediate redshifts. The scalar fifth-force on the other hand remains attractive, µ Φ > 1, but this effect can be subdominant with respect to the suppression due to self-acceleration.

On the contrary, the effect of KMM stands out as the unique leading to a repulsive force mediated by π: in this case, Ω m remains the standard one, but µ Φ < 1, which can be considered the distinct signature of KMM for this class of models.

Conclusions

This thesis contains results of my work on the so-called "Effective Theory of Dark Energy". As I explained, this approach allows to describe linear perturbations around a flat FLRW background in scalar-tensor theories of gravity. Deviations from the cosmological standard model, ΛCDM, are encoded in a few functions of time only. This approach is based on the symmetries of a homogeneous and isotropic FLRW universe and for this reason it is very general. One can map any model formulated in terms of a covariant Lagrangian to this description. However, the most useful feature of an effective approach is that it can be used independently of any fundamental theory to gain information about deviations from ΛCDM. I adopted this second strategy in the second part of the thesis, Chapters 5-6, where I studied some phenomenological aspects resorting to a parametrisation of the free functions of the effective theory.

Adopting this strategy, in principle one could start directly from the effective theory for linear perturbations. Of course, a fully nonlinear formulation of modifications of GR is important for different reasons in phenomenology. The most important one is that it allows to describe physics also at scales where the linear approximation breaks down. In this work I did not study nonlinear aspects, but I showed that there is at least a second reason why having a fully nonlinear understanding of the theory can be very important even for the phenomenology at the linear level. This reason is related to degeneracy, introduced in Chapter 1. The full degeneracy conditions C I (4.29)-C II (4.30) that one has to impose on DHOST Lagrangians at the linear level to get a healthy theory are obtained from a covariant, nonlinear analysis. If we restricted to linear perturbations in unitary gauge, we would conclude that the condition C U (4.31) is enough to avoid the presence of an additional degree of freedom. This results into a complicated dispertion relation for the propagating mode, where ω(k) is a ratio of polynomials in k 2 . Even if imposing that this dispertion relation takes its standard form ω = c s k we recover the full degeneracy conditions, in principle one has no reason to do so. Thus, if we had to constrain the free functions basing on a linear analysis in unitary gauge, imposing only the condition C U , we could in principle explore regions of the parameter space that are actually excluded by the full set of degeneracy conditions. So, to give a more complete understanding I chose to dedicate the first chapter to the nonlinear, covariant formulation of the most general class of scalar-tensor theories currently known, called DHOST or EST theories. First of all their study addresses a very interesting field theoretical question: is it possible, and under which conditions, to introduce higher-order derivatives in a Lagrangian without introducing also additional propagating modes? As I explained, the answer is not trivial and for long time having second order dynamics was considered a necessary condition to get a healthy theory. Besides this aspect, DHOST/EST theories can prove very interesting candidates to test against ΛCDM. This is the main reason why I studied them. Indeed, when they were discovered, we realised that the introduction of operators built with time derivatives of the lapse function in the Effective Theory of Dark Energy naturally describes all DHOST theories. This leads to extend the effective description with respect to its original formulation that covers Horndeski models, and its earlier extension to "beyond Horndeski" theories.

In Chapter 2 I gave an introduction to the Effective Theory of Dark Energy. I chose to include directly the results of my work rather than proceeding in chronological order. In particular, the effective description was originally developed for Horndeski theories (1.1) with minimally and universally coupled matter fields. In this case, four functions of time (α M , α T , α B , α K ) are enough to describe linear perturbations. One additional function α H has to be introduced for the theories "beyond Horndeski"(1.11)-(1.12). The study of DHOST theories is part of my contribution. In this case, four additional functions have to be introduced. We called them α L , β 1 , β 2 , β 3 . However, these are not independent but subject to three degeneracy conditions that leave only one of them free. All the functions of the effective description can be given a physical interpretation that I summarised in Sec. 2.4. A second aspect I studied in detail in my work is the coupling to matter. This was the object of Chapter 3. When a minimal coupling is adopted, our description of the physics in different frames can be very different. One can be more general and couple matter to a metric which is conformally and disformally related to the gravitational one. This gives equivalent frames and the fact that the structure of the theory is preserved by the aforementioned transformations reduces the number of free functions. The effective description can be further generalised to include the possibility that different species couple differently to the gravitational sector. This allows to study violations of the Weak Equivalence Principle. In the most general case, the conformal/disformal coupling is characterised, at linear level, by four functions of time for each species, α C,I , α D,I , α X,I , α Y,I , introduced in Eqn. (3.14). The coupling to matter is also relevant for the viability of the theory and for the possible mixing between matter and the scalar perturbations. In Horndeski theories, the two are decoupled and propagate with their respective speeds of sound, as I discussed in Sec. 4.4. In theories beyond Horndeski, the propagating modes are on the contrary mixed states of matter and the scalar, see Sec. 4.5. I showed that the mixing can be quantified in a frame-independend way. For theories beyond Horndeski, it can be seen either as a modification of gravity due to the operator α H or as an X-dependent disformal coupling to matter quantified by the function α X,m . Similar considerations can be made for DHOST theories satisfying the degeneracy conditions C I . Theories satisfying the degeneracy conditions C II can be instead ruled out from an analysis of linear stability in both the tensorial and scalar sector. In this case, I showed in Sec. 4.6.2 that a gradient instability necessarily arises in one of the two sectors, which makes these theories phenomenologically unviable. Moreover, these theories fail in recovering a Poisson equation on a Minkowski background at linear level, as I showed in Sec. 4.6.3. Let me point out here that the above results are an example of the "effectiveness" of the effective description. Among DHOST theories, there exist seven classes of purely quadratic theories, nine of purely cubic, and 25 combinations of quadratic and cubic. These all reduce to just two classes at linear level, among which one could be ruled out by stability, and the other is equivalent to Horndeski+beyond Horndeski theories with matter conformally and disformally coupled. These results thus remarkably reduce the class of allowed theories and simplify the study of their phenomenology. Phenomenological aspects were the subject of the second part of the thesis. I believe this is the side where most progress has been made by the community since the beginning of my PhD, and where many questions are still open. Given the expectations that we have to get constraints on cosmological perturbations from next generation surveys, a general and natural question to ask is what their constraining power will be on the effective description. First, this requires to solve the evolution equations. To this extent, an intense activity led to the development of three Boltzmann codes that use the effective description introduced in this work [START_REF] Bellini | Constraints on deviations from CDM within Horndeski gravity[END_REF][START_REF] Hu | Effective Field Theory of Cosmic Acceleration: an implementation in CAMB[END_REF][START_REF] Raveri | Effective Field Theory of Cosmic Acceleration: constraining dark energy with CMB data[END_REF][START_REF] Zumalacárregui | hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System[END_REF][START_REF] Huang | Observational effects of a running Planck mass[END_REF][START_REF] Huang | COOP: first release; EFTDE/XFASTER/CPLDE[END_REF]. Their exploitation is only at the beginning and even some cases treated in this thesis are not yet included. One example is interacting dark energy treated in Chapter 5. The forecasts presented there were obtained resorting to the quasi-static limit, where a full Boltzmann code is not needed to solve the equations. Even this way, we were able to get interesting results. In general, we could be able to get constraints on deviations from ΛCDM at the 10 -2 -10 -3 level. The combination of different probes can constrain different combinations of the parameters and it is thus very important in order to achieve this precision. In Chapter 6 I studied a case where the equations are solved employing the Boltzmann code COOP. This captures the effects of modifications of gravity at all linear scales. It also allows to verify numerically the consistency of the quasi static approximation. Besides this, this code is the only one publicly available that includes effects of the operator α H characterising theories beyond Horndeski. In its presence, differently from the Horndeski case, the extra force mediated by the scalar field can be repulsive when stability conditions are imposed. It is also interesting that this effect goes in the direction of alleviating the tensions between different measurements of the amplitude of fluctuations, σ 8 .

The message is that the Effective Theory of Dark Energy presented in this thesis is a very useful and flexible tool to constrain deviations from ΛCDM for different reasons, and it opens different directions to follow. Not only it is very general and covers the most studied scalar-tensor theories, from the oldest ones to their most recent generalisations. Different couplings with matter can also be included in the description. It also provides a general insight on the phenomenological aspects of entire classes of theories, capturing their common features at the level of linear perturbations. I already recalled the dramatic reduction that happens in DHOST theories. Another example is the result that all Horndeski theories give an attractive fifth force in contrast to their extensions beyond Horndeski. This last case is also an example of a potentially phenomenologically relevant aspect discovered via the effective description. Finally, the equations can be implemented once and for all in numerical codes. Let me spend a few more word on this point. As I underlined several times, the price to pay to have a model-independent effective description is that the free functions have to be given a time dependence in order to solve the equations. This means that we have to parametrise them if we don't want to commit to any specific model. In this work, I used a parametrisation where the free functions are proportional to the fractional energy density of dark energy Ω DE (t). This derives from the assumption of associating the onset of deviations from ΛCDM at the level of perturbations with the beginning of the dark energy dominated phase on the background. Indeed, our initial goal was to get general indications on the possibility to constrain the free functions and to understand degeneracies, and this simple parametrisation allows to do that. On the other hand, one can wonder if this approach actually captures accurately enough the time evolution of the α and β in all the theories under consideration [START_REF] Linder | Challenges in connecting modified gravity theory and observations[END_REF]. Put at the level of comparison with data, we should ask how much the constraints would change under a change in the time evolution of these functions. Some recent studies indicate that the impact can be non negligible [START_REF] Alonso | Observational future of cosmological scalar-tensor theories[END_REF]. This remains a very interesting direction to follow.

Let me conclude by saying that constraining deviations from ΛCDM with the Effective Theory of Dark Energy is a program to which the community has started to dedicate increasing attention. The Planck collaboration included in the analysis the parametrisation described in this thesis [70]. Besides the results presented here, a considerable amount of work has been spent to investigate the constraining power of future surveys using different parameterisations [85,[START_REF] Leung | Marginalized Fisher Forecast for Horndeski Dark Energy Models[END_REF][START_REF] Alonso | Observational future of cosmological scalar-tensor theories[END_REF][START_REF] Perenon | Diagnostic of Horndeski Theories[END_REF]. Constraints in the case of Horndeski theories using complementary datasets were studied in [START_REF] Bellini | Constraints on deviations from CDM within Horndeski gravity[END_REF] and extended to include neutrinos [START_REF] Bellomo | Hiding neutrino mass in modified gravity cosmologies[END_REF]. Another open direction is the impact of stability conditions. I showed that they can reduce substantially the parameter space allowed. Several works have started to address this issue at the level of comparison with data [START_REF] Peirone | The importance of being stable: the role of stability conditions in single field Quintessence[END_REF][START_REF] Salvatelli | Constraints on modified gravity from Planck 2015: when the health of your theory makes the difference[END_REF][START_REF] Raveri | Priors on the effective Dark Energy equation of state in scalar-tensor theories[END_REF]. The fact that complementary observations are needed to break degeneracies led also to look for other ways to constrain the parameters. The most interesting one is the tensor speed excess α T . Cosmic rays observations put a very stringent (10 -15 ) lower bound on the propagation speed of gravitons [START_REF] Moore | Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation[END_REF]. At lower energies, an order ∼ 1% constraint come from binary pulsar orbital periods [86], while the arrival timing of GW150914 [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] between the two LIGO detectors set an upper bound, c T < 1.7c [START_REF] Blas | On constraining the speed of gravitational waves following GW150914[END_REF]. Ref. [START_REF] Bettoni | Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity[END_REF] discusses current and future bounds.

The above discussion indicates that several interesting directions are open. In particular, I believe that the impact of the parametrisation of the free functions on constraints is a question that should be answered. The available codes allow to study modifications of gravity numerically, and several operators introduced in this work can still be added to them, such as the beyond Horndeski function α H and the conformal and disformal couplings to matter. With the advent of next generation surveys, our forecasts will be translated in actual constraints that will improve those we already have. This will enable us to test General Relativity on cosmological scales at unprecedented precision, and I believe that the Effective Theory of Dark Energy presented in this work provides a very promising tool to do so. The nature of dark energy, responsible for the present cosmological acceleration, is a central topic in theoretical and observational cosmology. One of the main goals of current and future cosmic surveys is to constrain or possibly detect deviations from the standard ΛCDM scenario, induced by the presence of dark energy or modifications of General Relativity (GR) (see e.g. [1]). This is particularly relevant on scales above ∼ 10 Mpc, where deviations from GR are not yet well tested. Fortunately, on these scales cosmological perturbations are still in the linear regime today and linear perturbation theory around a FLRW background is thus a valid description.

Other publications not related to this thesis

Given the plethora of existing dark energy and modified gravity models (see for instance [2,3]), it is worth resorting to an effective approach that tries to describe all possible deviations from ΛCDM in a simple and systematic way, relying on a minimal number of parameters. In the linear regime for perturbations, this task has been sucessfully undertaken for single scalar field models in [4,5]. Initially inspired by the so-called Effective Field Theory of inflation [6,7] and minimally coupled dark energy [8], this approach relies on the construction of an effective action for linear perturbations. In order to do so, we start from a generic Lagrangian written in terms of Arnowitt-Deser-Misner (ADM) [9] quantities defined with respect to the uniform scalar field hypersurfaces (see also [10,11] for an analogous approach, [12][13][14] for recent reviews and e.g. [15][16][17] for applications). After having been implemented in a public numerical code named EFTCAMB [18], most recently, it has been applied to constrain deviations from the standard cosmological constant scenario by the Planck collaboration [19].

The action developed in [5] contains five free functions of time that parametrize any deviation from ΛCDM. Four of these functions describe cosmological perturbations in Horndeski theories [20][21][22]. The fifth parameter describes deviations from GR encompassing Horndeski theories. Indeed, the same formalism was also instrumental to uncover the theories beyond Horndeski of [23,24], which lead to equations of motion higher than second order but are free from Ostrogradski instabilities (see e.g. [25] for an earlier example of theories beyond Horndeski).

The developments described above assume that matter is minimally coupled to a unique metric, which will be called Jordan frame metric for convenience. However, although the universality of couplings is very well tested on Solar System scales [26], on cosmological scales constraints are much weaker. In particular, the scalar field responsible for the current accelerated expansion is known to mediate a fifth force [27], which may lead to violations of the equivalence principle (EP) on large scales [28] (see also [29] for a test of the EP on large scales). Moreover, while fifth force effects on standard matter such as baryons and photons are severely restricted, those on cold dark matter (CDM) or neutrinos could be much larger. This leaves the freedom to consider the case where different matter species 1 couple differently to the scalar field [30,31].

The goal of the present work is to extend the approach developed in Refs. [4,5] by relaxing the assumption that all matter species are minimally coupled to the same metric. 1 By matter species we intend the different components in the Universe (baryons, photons, CDM and neutrinos) but the results derived here could be straightforwardly extended to different types of objects, such as e.g. galaxies of different sizes, behaving differently under the effect of the fifth force.

2 Another general parametrisation of theories of single-field dark energy that is explicitly coupled to dark 3 For simplicity, in the following we restrict our study to effective theories of dark energy or modified gravity that remain within the Horndeski class. This means that we assume that the function α H introduced in [24] to describe theories beyond Horndeski at the level of linear perturbations vanishes here, leaving only four out of the five free independent functions of [5]. We reserve a treatment of theories beyond Horndeski for future work. As shown in [35], the structure of the Horndeski Lagrangians is preserved under a disformal transformation [36] of the metric with coefficients that depend only on the scalar field (not on its gradient), i.e. of the form

gµν = C(φ)g µν + D(φ)∂ µ φ ∂ ν φ . (1.1)
Thus, in the following we assume that each matter species is minimally coupled to a distinct Jordan metric of this form. 3 While conformal couplings (i.e. with D = 0) have been extensively studied in the literature (see e.g. [1] and references therein), disformal couplings have been investigated only recently (see also e.g. [39][40][41][42][43][44][45][46][47][48]). Moreover, the dynamics of the gravitational metric g µν is usually assumed to be governed by the standard Einstein-Hilbert action. Here, we allow a much more general gravitational sector, based on the effective description given in [5]. In Sec. 2 we review our formalism within the ADM effective approach and the gravitational action in the uniform scalar-field gauge. Apart from the four time-dependent parameters mentioned above, we introduce two extra functions of time for each species, describing the nonminimal coupling to dark energy via an effective metric of the form (1.1). The structure of this action is preserved under transformations of the reference metric of the form (1.1) and the stability conditions for the matter and the gravitational sector are shown to be invariant under these transformations. More details on the frame dependence and on the derivation of the stability conditions of gravitational and matter quantities are respectively given in Appendix A and Appendix B.

In Sec. 3 we derive the evolution equations describing the matter sector, which now include the effect of the nonminimal couplings, and in Appendix E we provide the definitions of several parameters introduced in this section. These equations must be supplemented with the Einstein equations describing the gravitational sector, reported in Appendix C. We provide and discuss the perturbation equations using Newtonian gauge but these are also given in synchronous gauge in Appendix D.

The parameters of our effective description can be constrained by observations. As a direct application of our approach, in Sec. 4 we consider the cosmological consequences, for the background evolution and for linear perturbations, of a Universe where the coupling of CDM differs from that of the other species (see e.g. [49][50][51][52][53][54][55][56][57][58][59]). Our analysis extends previous results as we allow gravity itself to be modified, not only the couplings to matter. In Sec. 5 we consider the case where the coupled species is a relativistic fluid. This will allow us to highlight the dependence of conformal and disformal couplings on the equation of state. Finally, we conclude in Sec. 6.

matter has been given in [32], in the framework of the Parameterized Post-Friedmann approach [33,34].

3 Other types of couplings can be found in the literature. For instance, Ref. [37] considers a CDM action that depends on the contraction of the CDM 4-velocity with the normalized space-time gradient of the scalar field, in the context of Lorentz-violating theories. Ref. [38] directly modifies the action for a general perfect fluid.

Unifying description of dark energy with non universal couplings

In this section we introduce the gravitational and matter actions within the ADM framework introduced in [5] and recently summarized in [14]. After giving the background equations of motion, we study linear fluctuations and derive the conditions for the linear theory to be healthy, i.e. ghost-free and without gradient instabilities.

Gravitational and matter actions

In the present work, we assume that the gravitational sector is described by a fourdimensional metric g µν and a scalar field φ. Let us start by choosing a coordinate system such that the constant time hypersurfaces coincide with the uniform scalar field hypersurfaces. In this gauge, referred to as unitary gauge, the metric can be written in the ADM form, which reads

ds 2 = -N 2 dt 2 + h ij dx i + N i dt dx j + N j dt , (2.1) 
where N is the lapse and N i the shift. In the following, a dot will stand for a time derivative with respect to t, and D i will denote the covariant derivative associated with the three-dimensional spatial metric h ij . Spatial indices will be lowered and raised with the spatial metric h ij or its inverse h ij , respectively. In the unitary gauge, a generic gravitational action can be written in terms of geometric quantities that are invariant under spatial diffeomorphisms [6,7]. Expressed in ADM coordinates introduced above, these geometric quantities are the lapse N , the extrinsic curvature K ij of the constant time hypersurfaces, whose components are given by

K ij = 1 2N ḣij -D i N j -D j N i , (2.2) 
as well as the 3d Ricci tensor R ij of the constant time hypersurfaces and, possibly, spatial derivatives of all these quantities. Thus, the action is generically of the form

S g = d 4 x √ -g L(N, K ij , R ij , h ij , D i ; t) . (2.3) 
The gravitational action must be supplemented by a matter action S m . In order to describe dark energy and modified gravity scenarios with EP violations, we assume that beside the gravitational sector introduced above, the Universe is filled by N S matter species labelled by an index I, with I = 1, . . . , N S , each minimally coupled to a different metric. For each species I, we denote the corresponding metric by ǧ(I) µν and we call this the Jordan frame metric associated with this species. The total matter action is thus given by

S m = N S I S I , S I = d 4 x -ǧ (I) L I ǧ(I) µν , ψ I , (2.4) 
with ǧ(I) µν = C (φ)

I (φ)g µν + D (φ) I (φ)∂ µ φ ∂ ν φ . (2.5) 
In order to preserve the Lorentzian signature of the Jordan-frame metric of the species I, it is necessary to have C

(φ) I

> 0. There is some arbitrariness in the choice of the gravitational metric g µν since we work in the context of modified gravity, where the gravitational dynamics cannot be expressed in terms of a standard Einstein-Hilbert term, in general. It is often convenient to choose one particular matter species, say I * , and define its Jordan metric as the gravitational metric, in which case we have C 

Homogeneous equations

Let us discuss briefly the evolution of the background metric described by a FLRW metric assumed to be spatially flat. In this case the lapse is a function of time only, which we denote N (t), the shift vanishes, N i = 0, and the spatial metric reads g ij = h ij = a 2 (t)δ ij where a represents the scale factor. Thus, the metric reads

ds 2 = -N 2 (t)dt 2 + a 2 (t)dx 2 .
(2.6)

The homogeneous dynamics depends on the gravitational Lagrangian L in eq. ( 2.3), which can be seen as a function L(N, a, ȧ) when the arguments are restricted to their background values, i.e. N = N , h ij = a 2 (t)δ ij , R ij = 0, and

K ij = Kij ≡ a ȧ N δ ij = Hh ij , (2.7) 
where H ≡ ȧ/(a N ) denotes the Hubble rate. Here and in the following, barred quantities are evaluated on the background. The variation of the matter action S m with respect to the metric g µν defines the energy-momentum tensor, according to the standard expression

T µν ≡ 2 √ -g δS m δg µν . (2.8) 
This definition applies even if the matter is minimally coupled with respect to a metric ǧµν that differs from g µν , as discussed in Appendix A. In the homogenous case, the energymomentum tensor depends only on the energy density ρ m ≡ -T 0 0 and the pressure p m ≡ T i i /3. If there are several matter components, the previous quantities simply correspond, respectively, to the sums of the energy densities and pressures associated to each individual species, i.e. ρ m = I ρ I and p m = I p I .

The background evolution equations are then obtained by taking the variation of the total homogeneous action S g + S m with the respect to N and a. As shown in [5], this leads to the equations

L + N L N -3HF = ρ m (2.9) and L -3HF -Ḟ N = -p m , (2.10) 
where the coefficient F is defined by

∂L ∂K ij bgd ≡ F h ij . (2.11)
Equations (2.9) and (2.10) generalize the usual Friedmann equations. For GR, where the Lagrangian is given by

L = M 2 P (K ij K ij -K 2 + R)/2
, one can check that the standard equations are recovered, since L = -3M 2 P H 2 , L N = 0 and F = -2M 2 P H. The Friedmann equations eqs. (2.9)-(2.10) can always be written as

H 2 = 1 3M 2 (ρ m + ρ DE ) , (2.12) 
Ḣ + 3 2

H 2 = - 1 2M 2 (p m + p DE ) , (2.13) 
where M denotes the effective Planck mass, which can be in general time-dependent (it will be defined below from the second derivative of L with respect to the intrinsic curvature).

The above equations can be interpreted as definitions of the homogeneous energy density and pressure of dark energy, respectively given by

ρ DE ≡ 3M 2 H 2 -ρ m , p DE ≡ -M 2 (2 Ḣ + 3H 2 ) -p m . (2.14) 
These equations can also be shown to be equivalent to the Friedmann equations derived from the Lagrangian [4, 5]

L = M 2 2 (4) R + c N 2 -Λ , (2.15) 
where (4) R is the 4d Ricci scalar and c = c(t) and Λ = Λ(t) are time-dependent functions, respectively given by

2c = ρ DE + p DE + H(M 2 ) • -(M 2 ) •• , (2.16 
)

2Λ = ρ DE -p DE + 5H(M 2 ) • + (M 2 ) •• .
(2.17)

Linear perturbations

We now expand the gravitational action up to second order in perturbations, in terms of the perturbative quantities

δN = N -N (t) , δK ij = K ij -Hh ij , (2.18) 
as well as R ij , which is already a perturbation since its background value vanishes.

The second-order expansion of the gravitational Lagrangian involves first and second derivatives of L with respect to its arguments K ij , R ij and N . It is convenient to introduce the time-dependent coefficients G, B R , B, ÂK , A K , Ĉ, C, ÂR and A R respectively as

∂L ∂R i j = G δ j i , ∂ 2 L ∂N ∂R i j = B R δ j i , ∂ 2 L ∂N ∂K i j = B δ j i , (2.19) 
∂ 2 L ∂K j i ∂K l k = ÂK δ i j δ k l + A K δ i l δ k j + δ ik δ jl , (2.20) 
∂ 2 L ∂R j i ∂R l k = ÂR δ i j δ k l + A R δ i l δ k j + δ ik δ jl , (2.21) 
∂ 2 L ∂K j i ∂R l k = Ĉ δ i j δ k l + C δ i l δ k j + δ ik δ jl , (2.22) 
where all partial derivatives on the left hand sides are evaluated on the background. The form of the right hand side of these expressions is merely determined by the FLRW symmetries. The first and second derivatives of L with respect to the scalar N are simply denoted as L N and L N N , respectively. In the following, for simplicity, we restrict our considerations to Lagrangians that lead to dynamical equations with at most two space derivatives. This is automatically ensured if we impose the conditions [5,14] 4 

ÂK + 2A K = 0 , Ĉ + C = 0 , 4 ÂR + 3A R = 0 . (2.23)
We also impose the further condition

B R = 1 N (A K -G -HC) , (2.24) 
which is equivalent to restricting the range of application of the expanded action to Horndeski theories [5]. 5The second-order gravitational action can then be explicitly written in terms of all the coefficients introduced above. In fact, the quadratic action involves only a few combinations of these coefficients, which are represented by the following dimensionless parameters [14,17] 

α K ≡ 2 N L N + N 2 L N N 2H 2 A K , α B ≡ B N 4HA K , α T ≡ G + Ċ/(2 N ) + HC A K -1 . (2.25)
The effective Planck mass squared is defined by M 2 ≡ 2A K . With this definition, M coincides with the time-dependent Planck mass introduced in eqs. (2.9) and (2.10) and in the action (2.15). Its possible time variation is characterized by

α M ≡ 1 N H d ln M 2 dt . (2.26) 
In terms of these parameters, one finds that the second-order gravitational action is given by6 

S (2) g = d 3 xdt a 3 N M 2 2 δK i j δK j i -δK 2 + R δN N + (1 + α T ) δ 2 √ hR/a 3 + α K H 2 δN N 2 + 4α B HδK δN N , (2.27) 
where δ 2 denotes taking the expansion at second order in the perturbations. Moreover, we have omitted irrelevant terms that vanish when adding the matter action and imposing the background equations of motion.

To verify that M plays the role of the Planck mass which canonically normalizes the graviton, let us write this action in terms of the tensor fluctuations, defined as the traceless and divergence-free fluctuations of the spatial metric, i.e.

h ij = a 2 (t) (δ ij + γ ij ) , γ ii = 0 = ∂ i γ ij .
(2.28)

The above action then yields

S (2) γ = dx 3 dt a 3 M 2 8 N γ2 ij -c 2 T N 2 a 2 (∂ k γ ij ) 2 , (2.29) 
where the tensor sound speed squared is given by c 2 T ≡ 1 + α T . Absence of ghosts and gradient instabilities respectively require that the kinetic and spatial gradient terms are positive, i.e. that

M 2 ≥ 0 , α T ≥ -1 , (2.30) 
which will be assumed in the following.

Matter couplings and stability conditions

To discuss the stability and determine the propagation speed of dark energy perturbations, one must also include quadratic terms that come from the matter action, because the latter depends on the gravitational degrees of freedom. In order to do so, we need to to take into account the fact that each matter species I is minimally coupled to a metric ǧ(I) µν defined in eq. (2.5). For later convenience, we define, for each matter species, the time-dependent quantity

α C,I ≡ φ 2HN d ln C (φ) I dφ , (2.31) 
which parameterizes how the conformal coupling affects physical observables; the impact of the disformal coupling is parameterized by the quantity7 

α D,I ≡ ( φ/N ) 2 D (φ) I C (φ) I -( φ/N ) 2 D (φ) I , (2.32) 
and the right-hand side of these equations are to be evaluated on the background. Requiring that the Jordan frame metric is Lorentzian implies α D,I > -1 [35].

In unitary gauge, eq. (2.5) reads

ǧ(I) µν = C I (t)g µν + D I (t)δ 0 µ δ 0 ν , (2.33) 
with

C I (t) = C (φ) I φ(t) , D I (t) = φ2 (t)D (φ) I φ(t) .
(2.34)

Then the parameters α C,I and α D,I introduced above take the form

α C,I = 1 2H N d ln C I dt , α D,I = D I N 2 C I -D I . ( 2 

.35)

Combining the quadratic action for matter with eq. ( 2.27), one can extract a quadratic action that governs the dynamics of the gravitational scalar degree of freedom and the matter ones. The explicit calculation in the case of perfect fluids is presented in Appendix B. The absence of ghosts is guaranteed by the positivity of the matrix in front of the kinetic terms. For the gravitational scalar degree of freedom, this condition is given by

α ≡ α K + 6α 2 B + 3 I α D,I Ω I ≥ 0 , (2.36) 
where we have introduced the (time-dependent) dimensionless density parameter

Ω I ≡ ρ I 3M 2 H 2 , (2.37) 
where we recall that M 2 is in general time dependent. As pointed out already in [43,60], the presence of a disformal coupling affects the ghost-free condition.

For the matter sector, the analogous condition usually corresponds to the Null Energy Condition [61]. In the Jordan frame of each species I, this can be expressed in terms of the energy density and pressure by ρI + pI ≥ 0 (we use the symbol ˇto denote Jordan-frame quantities). In the frame of g µν , this inequality becomes

ρ I + (1 + α D,I )p I ≥ 0 , (2.38) 
where we have used that wI = (1 + α D,I )w I (see Appendix A for various relations between quantities defined in distinct frames). The speed of sound for scalar perturbations can be read off from the quadratic action derived in Appendix B. One finds

c 2 s = - 2 α (1+α B ) Ḣ H 2 -α M +α T +α B (1+α T ) + αB H + 3 2 I 1+(1+α D,I )w I Ω I , (2.39) 
where matter appears in the last term in the bracket, proportional to I (ρ I + pI ). Absence of gradient instabilities is guaranteed provided that

c 2 s ≥ 0 . (2.40) 
We also require that the propagation speed for each matter species, in its Jordan frame, is positive, č2 s,I ≥ 0.

Disformal transformations

As mentioned earlier, there is some arbitrariness in the choice of the metric g µν that describes the gravitational sector. Let us thus see how the description is modified when the reference metric undergoes a disformal transformation, of the form

g µν → gµν = C (φ) (φ)g µν + D (φ) (φ)∂ µ φ∂ ν φ . (2.41)
In unitary gauge, this corresponds to the transformation

g µν → gµν = C(t)g µν + D(t)δ 0 µ δ 0 ν , (2.42) 
with C(t) = C (φ) φ(t) and D(t) = D (φ) φ(t) φ2 (t). The effect of this transformation on the ADM quantities, on the background quantities and on the linear perturbations is described in detail in Appendix A. Here, we just present the main consequences on the parametrization of the couplings and of the linear perturbations.

In analogy with (2.35), it is convenient to introduce the dimensionless time-dependent parameters

α C ≡ Ċ 2H N C , α D ≡ D N 2 C -D , (2.43) 
which characterize, respectively, the conformal and disformal parts of the above metric transformation. 8Let us first see how the gravitational action (2.27) changes under the transformation (2.42). As shown in Ref. [35], the structure of Horndeski Lagrangians is preserved under a disformal transformation. Indeed, using eqs. (A.2) and (A.3), one can check that (2.27) maintains the same structure with the time-dependent coefficients in the action transforming as

M 2 = M 2 C √ 1 + α D (2.44) and αK = α K + 12α B [α C + (1 + α D )α D ] -6[α C + (1 + α D )α D ] 2 + 3Ω m α D (1 + α C ) 2 (1 + α D ) 2 , αB = 1 + α B (1 + α C )(1 + α D ) -1 , αM = α M -2α C 1 + α C - αD 2H N (1 + α D )(1 + α C ) , αT = (1 + α T )(1 + α D ) -1 .
(2.45)

We can use these transformations, which depend on the two arbitrary functions α C and α D , to set to zero any two of the parameters αa above. Finally, the conformal and disformal coefficients associated with the respective matter Jordan frame metrics are modified according to

αD,I = α D,I -α D 1 + α D , αC,I = α C,I -α C 1 + α C .
(2.46)

Alternatively to setting two αa to zero, it is always possible to choose as the new reference metric gµν one of the matter Jordan metrics, say g

(I * )
µν , which then implies αC,I * = αD,I * = 0.

One can verify that all the stability conditions are frame independent. In particular, the quantities that appear in the no-ghost conditions, eqs. (2.36) and (2.38), transform as

α = α (1 + α C ) 2 (1 + α D ) 2 , ρI + (1 + αD,I )p I = ρ I + (1 + α D,I )p I C 2 (1 + α D ) 1/2 , (2.47) 
and since 1 + α D > 0 (see discussion in Sec. 2.4), their sign is indeed frame independent.

It is also straightforward to check that all the propagation speeds, i.e. of tensor, scalar and matter fluctuations, transform in the same way and that their signs remain unchanged,

c2 T = (1 + α D )c 2 T , c2 s = (1 + α D )c 2 s , c2 s,I = (1 + α D )c 2 s,I . (2.48) 
In summary, at the level of linear perturbations our gravitational sector is characterized by four time-dependent parameters α K , α B , α M and α T . Each species is characterized by two time-dependent parameters, associated with their conformal and disformal couplings respectively. A priori, for a system of N S species coupled to different metrics, this gives a total of 2N S + 4 parameters. However, the general invariance of the system under an arbitrary change of frame, characterized by two parameters, reduces the number of independent parameters to 2(N S + 1).

In particular, action (2.27) can also be used to describe inflationary perturbations. In this case, matter can be ignored, i.e. N S = 0, and one can always use eq. (2.44) to find a frame where the Planck mass is time-independent and c T = 1, without loss of generality [62]. Thus, inflationary fluctuations can be generically described in the frame where α M = 0 = α T by only two operators, those proportional to α K and α B , as in Refs. [6,7]. 9

Matter equations of motion

In this section, we leave the unitary gauge description introduced in the previous section, by "covariantizing" the action. This can be done explicitly by performing a time reparametrization of the form

t → φ = t + π(t, x) , (3.1) 
where the unitary time t becomes a four-dimensional scalar field φ. For convenience, we denote by π the fluctuation of φ. By substituting the above transformation into the total action S = S g + S m , we then obtain an action that depends on the scalar field φ and an arbitrary metric g µν . We will use this more general form for the action to derive the evolution equations for the gravitational and matter sectors.

The equations of motion for the metric are obtained by varying the total action with respect to g µν , δS δg µν = 0 .

(3.2)
which provides the generalized Einstein equations. At linear order, they are explicitly given in Appendix C.

To write the equations of motion for matter, we use the invariance of the matter action S I under arbitrary diffeomorphisms, x µ → x µ + ξ µ . This implies

∇ µ T (I) µ ν + Q I ∂ ν φ = 0 , (3.3) 
where the function Q I , which characterizes the coupling between the matter species I and the scalar field, is defined by

Q I ≡ - 1 √ -g δS I δφ = - C ′ I 2C I T (I) - D ′ I 2C I T µν (I) ∂ µ φ∂ ν φ + ∇ µ T µν (I) ∂ ν φ D I C I , (3.4) 
where a prime denotes a derivative with respect to φ. The expression on the right hand side is obtained by using the property that the matter action S I depends on the scalar field only through the Jordan metric eq. (2.5).

Finally, the evolution equation for φ can be obtained by variation of the total action with respect to φ, δS/δφ = 0. Thus, from eq. (3.4) we obtain 1 √ -g δS g δφ -

I Q I = 0 . (3.5)
In the following, we will study the above equations, first in the homogeneous limit and then restricting ourselves to their linearized version.

Homogenous equations

Let us first consider the homogeneous case, with the flat FLRW metric (2.6) where we set N = 1. The associated Friedmann equations are given in eqs. (2.9) and (2.10), or (2.12) and ( 2 where we recall that the conformal and disformal parameters α C,I and α D,I are respectively defined in eq. (2.35). Substituting the above expression into eq. ( 3.3), one finds that the homogeneous matter evolution equation can be written in the form

ρI + 3H(1 + w I -γ I )ρ I = 0 , (3.7) 
where the dimensionless parameter γ I is given by Given the Friedmann equations (2.12) and (2.13) as well as the continuity equation for matter, eq. (3.7), the homogenous energy density of dark energy satisfies

γ I ≡ 1 3 α C,I [1 -3w I (1 + α D,I )] -w I α D,I + αD,I 6H(1 + α D,I ) . ( 3 
ρDE + [3(1 + w DE ) -α M ] Hρ DE = H I (α M -3γ I )ρ I , (3.9) 
where we have introduced the equation of state parameter for the dark energy component

w DE ≡ p DE /ρ DE .

Perturbation equations in Newtonian gauge

We now consider a linearly perturbed FLRW metric in Newtonian gauge with only scalar perturbations, i.e.,

ds 2 = -(1 + 2Φ)dt 2 + a 2 (t)(1 -2Ψ)δ ij dx i dx j . (3.10) 
In this gauge, we decompose the scalar part of the stress-energy tensor for each species, at linear order, as

T (I) 0 0 ≡ -(ρ I + δρ I ) , (3.11) 
T (I) 0 i ≡ ρ I (1 + w I )∂ i v I = -a 2 T (I) i 0 , (3.12 
)

T (I) i j ≡ (ρ I w I + δp I )δ i j + ∂ i ∂ j - 1 3 δ i j ∂ 2 σ I , (3.13) 
where δρ I and δp I are the energy density and pressure perturbations, v I is the 3-velocity potential and σ I is the anisotropic stress potential for the species I. As usual, we define the total matter quantities as

δρ m = I δρ I , δp m = I δp I , v m = I (ρ I + p I )v I /(ρ m + p m ) and σ m = I σ I .
The continuity equation, for each species, can be derived from the time component of eq. (3.3). In Fourier space, at linear order, this reads

δ ρI + 3H(δρ I + δp I ) -3ρ I (1 + w I ) Ψ -ρ I (1 + w I ) k 2 a 2 v I = QI π + δQ I , (3.14) 
where QI and δQ I are given respectively by eqs. (3.15) We can rewrite the equations above in terms of the density contrast δ I ≡ δρ I /ρ I and using the explicit expression for δQ I given in eq. (C.6). This yields

δI + 3H(1 + α C,I )(1 + α D,I ) δp I ρ I -w I δ I -(1 + w I ) k 2 a 2 v I = 3 [1 + (1 + α D,I )w I ] Ψ + 2(1 + α D,I ) [α C,I (1 -3w I ) -3γ I ] HΦ -α D,I Φ -π + w I k 2 a 2 π -[2(1 + α D,I )α C,I (1 -3w I ) -3w I α D,I -3γ I (3 + 2α D,I )] H π + 3 (γ I H) • + w I α D,I Ḣ + (α C,I + α D,I (1 + α C,I )) ẇI H π , (3.16) 
and

vI -3H w I -γ I - ẇI 3H(1 + w I ) v I + δp I (1 + w I )ρ I +Φ- 2 3(1 + w I )ρ I k 2 a 2 σ I = -3H γ I 1 + w I π .
(3.17)

As mentioned before, the equation of state parameter in the matter Jordan frame, wI , is different from the one in a generic frame, w I . This means that the relation between pressure and energy density perturbations depends on the frame. Indeed, because of the coupling to the scalar field, there is a non-adiabatic pressure perturbation [63] which appears in frames that are disformally distinct from the Jordan one (see also [64] for a similar remark). For an isentropic perfect fluid with č2 s,I = wI = constant, this reads (see Appendix A.2)

δp nad,I ≡ δp I - ṗI ρI δρ I = p I 2α D (Φ -π) + αD 1 + α D δρ I ρI -π . (3.18)
Let us comment on the initial conditions of the above equations. In the simplest case, one can assume that perturbations start in the adiabatic growing solution, which is justified if they have originated from single-field inflation (see e.g. [65]). In this case, their amplitude can be given in terms of the time-independent quantity R in , defined as the long-wavelength limit (k ≪ aH) of the total comoving curvature perturbation [66] 

R ≡ -Ψ + H Ψ + HΦ Ḣ . (3.19) 
In Ref. [14] it was shown that, in the absence of nonminimal couplings, the generalized Einstein equations and the evolution equations for the matter and field fluctuations admit the adiabatic solution

Φ = -(1 + α T )R in + (1 + α M )Hǫ - σ m M 2 , Ψ = -R in + Hǫ , δρ I = -ρI ǫ , δp I = -ṗI ǫ , v I = ǫ , π = -ǫ , (3.20) 
where

ǫ ≡ 1 M 2 a a M 2 (1 + α T )R in + σ m dt . (3.21) 
One can check that these expressions are frame invariant and remain a solution even in the presence of nonminimal couplings, with the same R in . Note that, for adiabatic initial conditions, the right hand side of (3.18) automatically vanishes and that the matter perturbations are in effect adiabatic in all frames. The nonadiabatic pressure term due to the change of frame manifests itself only for nonadiabatic initial conditions. Let us point out that the equations written in this section include as a special case (corresponding to α M = α T = α B = 0 and α D,I = 0) the equations of motion for linear perturbations derived in standard models of dark energy (k-essence) conformally coupled with matter (see e.g. [51]). Our results also include the more recent investigations of disformal couplings between matter, usually CDM, and some standard dark energy (i.e. with α M = α T = α B = 0) [41-43, 47, 64].

In the general case, eqs. (3.16)-(3.17) can be directly applied to the usual matter species, i.e. CDM, baryons, photons and neutrinos and implemented in a numerical code. If one wants to study the CMB fluctuations, the fluid approximation is not sufficient for photons and neutrinos and must be replaced by a Boltzmann description. Whereas a nonminimal coupling of photons is constrained to remain tiny [67], one could envisage a nonminimal coupling of neutrinos (see e.g. [68][69][70]). To deal with this modification, the simplest method would consist in writing the Boltzmann equation in the Jordan frame of the neutrinos, where it keeps its usual form. The neutrino-frame gravitational potentials appearing in this equation could then be expressed in terms of the gravitational potentials Φ and Ψ associated with the baryon-photon frame, by using explicitly the disformal transformation between the two frames, as given in Appendix A.

Baryons and coupled CDM

In this section, we apply the general formalism developed in the previous sections to the cosmological era where the dominant matter species are baryons (denoted by the subscript b) and CDM (subscript c). Whereas there exist very stringent constraints on EP violation for baryons [26,45], the dark matter sector is much less constrained [19]. For this reason, we now assume that the baryons are minimally coupled, i.e.

α C,b = 0 , α D,b = 0 ⇒ γ b = 0 , (4.1) 
while dark matter is coupled to dark energy via a general metric of the form (2.33).

For both baryons and CDM, one neglects the pressure and anisotropic stress, so that w b = w c = 0 for the background and δp b = δp c = σ b = σ c = 0 for the perturbations 10 .

The background equations (3.7) and (3.9) take the form

ρb + 3Hρ b = 0 , (4.2) 
ρc + 3H(1 -γ c )ρ c = 0 , (4.3) ρDE + [3(1 + w DE ) -α M ] Hρ DE = -3Hγ c ρ c + Hα M ρ m . (4.4) 
According to (3.8), the coupling parameter γ c is related to the CDM conformal and disformal parameters via

γ c = 1 3 α C,c + αD,c 6H(1 + α D,c ) . (4.5)

Linear perturbations

Let us now consider the linear perturbations. The continuity and Euler equations, (3.16) and (3.17), reduce to δb - It is possible to use a combination of the Einstein equations and of (C.7) to eliminate the dependence on π and π in the above equations in favour of the gravitational potentials.

k 2 a 2 v b = 3 Ψ , (4.6) vb = -Φ , (4.7) δc - k 2 a 2 v c = 3(Ψ + γ c Hπ) • + 2(1 + α D,c )(α C,c -3γ c )H(Φ -π) -α D,c ( Φ -π) , (4.8) vc + 3Hγ c v c = -Φ -3Hγ c π . ( 4 
The same procedure has been used in the case of minimally coupled matter in Refs. [17] and [14]. In our baryon and coupled CDM system we find a dynamical equation for Ψ of the form:

Ψ + β 1 β 2 + β 3 α 2 B k 2 H β 1 + α 2 B k 2 H H Ψ + β 1 β 4 + β 1 β 5 k 2 H + c 2 s α 2 B k 4 H β 1 + α 2 B k 2 H H 2 Ψ = - I 3 2 H 2 Ω I β 1 β 6,I + β 7,I α 2 B k 2 H β 1 + α 2 B k 2 H δ I + β 1 β 8,I + β 9,I α 2 B k 2 H β 1 + α 2 B k 2 H Hv I , (4.10) 
where k H ≡ k/(aH) and the time-dependent coefficients β a are explicitly given in Appendix E. They generally differ from those given in Refs. [17] and [14] because the disformal coupling to dark matter modifies the evolution equation for π, see eq. (C.7). The relation between Φ and Ψ is given by

α 2 B k 2 H Φ -Ψ ξ α B + β 1 Φ -Ψ(1 + α T ) 1 + α α T -α M 2β 1 = α T -α M 2 α Ψ H + 3 I Ω I α B δ I + α K -6α B 2 Hv I , (4.11) 
where α ≡ α K + 6α 2 B and we have introduced the time-dependent combination

ξ ≡ α B (1 + α T ) + α T -α M . (4.12) 
For α T = α M = 0, this reduces to the familiar relation Φ = Ψ. We can also eliminate the dependence on π from the continuity and Euler equations for CDM, eqs. (4.8) and (4.9). For simplicity, we give here the explicit expressions only in the case α M = α T = 0, for which Φ = Ψ, the generalization being straightforward. In this case, the continuity and Euler equations (4.8) and (4.9) become δc -

k 2 a 2 v c = β 1 ξ 2 + ξ 3 k 2 H β 1 + α 2 B k 2 H Ψ + β 1 ξ 4 + β 1 ξ 5 k 2 H + c 2 s α B α D,c 1+α D,c k 4 H β 1 + α 2 B k 2 H HΨ + I 3 2 Ω I H β 1 ξ 6,I + ξ 7,I k2 
β 1 + α 2 B k 2 H δ I + β 1 ξ 8,I + ξ 9,I k 2 H β 1 + α 2 B k 2 H Hv I , (4.13 
) vc + 3Hγ c v c = -Ψ - 3γ c β 1 + α 2 B k 2 H α Ψ + HΨ 2H + k 2 H α B Ψ + I 3 2 Ω I H α B δ I + α K -6α B γ I 2 Hv I , (4.14) 
where the time-dependent coefficients ξ a are given in Appendix E. In this case, where Φ = Ψ, eqs. (4.6), (4.7), (4.10), (4.13) and (4.14) form a closed system of equations.

Quasi-static approximation

To investigate late-time cosmology, it is convenient to resort, on sufficiently short scales, to the quasi-static limit. This is justified as long as we remain on scales smaller than the sound horizon of dark energy, i.e. k ≫ aH/c s [71]. In this limit, the conservation and Euler equations for baryons and CDM (eqs. (4.6)-(4.9)) simplify to δb -

k 2 a 2 v b = 0 , (4.15) vb = -Φ , (4.16) δc - k 2 a 2 v c = 0 , (4.17) vc + 3Hγ c v c = -Φ -3Hγ c π . (4.18) 
In these equations, all the modifications are encoded in the single parameter γ c . Therefore, it is not possible to disentangle the conformal and disformal effects. Note that this is due to the fact that the nonminimally coupled species is pressureless and that we restrict to the quasi-static regime.

We can then use the generalized Einstein equations to derive the Poisson equation for Φ. Combining eqs. (C.2) and (C.4) one finds

- k 2 a 2 Φ = 3 2 H 2 Ω m 1 + α T + β 2 ξ ω b δ b + [1 + α T + β ξ (β ξ + β γ )] ω c δ c , ω I ≡ Ω I Ω m , (4.19 
) where we have defined the dimensionless parameter

β γ ≡ 3 √ 2γ c c s α 1/2 , (4.20) 
which characterizes the strength of the nonminimal coupling of CDM, as well as the analogous parameter

β ξ ≡ √ 2ξ c s α 1/2 , (4.21) 
associated with the modified gravity coefficient ξ defined in (4.12). Note that the denominator in the definitions of β γ and β ξ is real, since stability requires that c 2 s α ≥ 0. Moreover, in the quasi-static limit the evolution equation (C.7) for π reduces to a constraint equation, which reads 

- k 2 a 2 π = 3HΩ m β ξ ω b δ b + (β ξ + β γ )ω c δ c √ 2c s α 1/2 . ( 4 
δb + 2H δb = 3 2 H 2 Ω m (1 + α T + β 2 ξ )ω b δ b + [1 + α T + β ξ (β ξ + β γ )] ω c δ c , (4.23) δc + (2 -3γ c )H δc = 3 2 H 2 Ω m [1 + α T + β ξ (β ξ + β γ )] ω b δ b + 1 + α T + (β ξ + β γ ) 2 ω c δ c . (4.24)
In the absence of nonminimal coupling of CDM (β γ = 0), the gravitational coupling of both species is modified by the same factor 1 + α T + β 2 ξ . In the absence of modified gravity (β ξ = 0 and α T = 0), one finds that the nonminimal coupling of CDM (β γ = 0) modifies the friction term for δ c , as well as increases the coefficient in front of δ c in the second equation, whereas all other three coefficients on the right hand sides are unchanged. This is the result obtained in the context of coupled dark energy (see e.g. [51]). By contrast, if one combines modified gravity (β ξ = 0) with a nonminimal coupling of CDM, all four coefficients on the right hand sides are modified. We leave for the future the detailed study of how these new coefficients parametrize the influence of modified gravity on structure formation.

Let us now turn to the two gravitational potentials Φ and Ψ. When considering the impact of dark energy on observations, it is often convenient to express the new relations between the two potentials Ψ and Φ and the total matter density fluctuations in terms of modifications of the Newton constant. We thus introduce the parameters

µ Φ ≡ - 2M 2 k 2 Φ a 2 ρ m δ m , µ Ψ ≡ - 2M 2 k 2 Ψ a 2 ρ m δ m , (4.25) 
which are equal to one in the standard case. From eq. ( 4. 19) and an analogous Poisson-like equation for Ψ, obtained by combining the Einstein equations, one finds that the above parameters are given by

µ Φ = 1 + α T + β ξ β ξ + β γ ω c b c , (4.26) 
µ Ψ = 1 + β B β ξ + β γ ω c b c , (4.27) 
where we have defined

β B ≡ √ 2α B c s α 1/2 .
(4.28)

We have also introduced a time-dependent bias parameter, b c ≡ δ c /δ m . 11As the gravitational lensing effect depends on the sum of the two potentials, the relevant quantity parametrizing deviations in weak lensing observables (and equal to two in the standard case) is

µ WL = µ Ψ + µ Φ = 2 + α T + (β B + β ξ ) β ξ + β γ ω c b c . (4.29)
Thus, the impact of modifications of gravity due to non-vanishing α B , α M and α T affects observable quantities in the perturbations through α T and the combinations β B , β ξ . Analogously, the effect of nonminimal couplings on observations is parameterized by β γ only (see the next section for the case of a coupled relativistc fluid, where another quantity is needed to parameterize the nonminimal coupling). Note that as a consequence of dropping time derivatives in the fluctuations of π, the parameter α always appears multiplied by c 2 s . From the definition of the sound speed, eq. (2.39), c 2 s α is independent of α K , so that the latter cannot be constrained by observations in the quasi-static limit [16].

When β γ = 0, i.e. if CDM is minimally coupled and there are no EP violations, the last term inside the parenthesis of eqs. (4.26) and (4.27) drops and these relations simplify to

µ Ψ = 1 + β ξ β B , µ Φ = 1 + α T + β 2 ξ . (4.30) 
In this case, the so-called slip parameter becomes (see for instance [14])

Ψ Φ = 1 + β ξ β B 1 + α T + β 2 ξ . (4.31) 
By contrast, if there is a non trivial coupling of CDM but gravity itself is not modified, in which case we have α B = 0, α M = 0 and α T = 0 (thus ξ = 0), we recover that the Newton constant is not modified, µ Φ = µ Ψ = 1, and that Φ and Ψ are the same as in GR, even if CDM is nonminimally coupled, as is the case in usual scenarios of coupled dark energy. In general, we find that the situation is much richer when both gravity and matter couplings are modified.

Matter and coupled relativistic fluid

In this section, as another example we consider nonminimally coupled relativistic particles, in the fluid approximation. They could represent neutrinos, radiation or warm dark matter in the relativistic regime. Baryons and CDM are taken to be minimally coupled, α D,m = α C,m = 0. In the Jordan frame of the relativistic fluid, its equation of state parameter is given by wr = 1/3 (and č2 s,r = 1/3). Thus, in the frame where baryons and CDM are minimally coupled, the background and perturbed equations of state are

w r = 1 3(1 + α D,r ) , δp r = ρ r 3(1 + α D,r ) δ r + 2α D,r (Φ -π) - αD,r 1 + α D,r π . (5.1) 
The second relation has been obtained from eq. (3.18), using eq. (2.48) for the sound speed. To simplify the treatment, we ignore the anisotropic stress, i.e. σ r = 0.

We are now going to assume that baryons and CDM dominate the gravitational perturbations, thus neglecting the backreaction of the relativistic fluid. On small scales, we can then resort to the quasi-static approximation. Under these conditions, the evolution equations for matter are δm -

k 2 a 2 v m = 0 , vm = -Φ . (5.2) 
For the relativistic fluid, we use eqs. (3.16) and (3.17 

- 4 + 3α D,r 3(1 + α D,r ) k 2 a 2 v r = - α D,r 3(1 + α D,r ) k 2 a 2 π , (5.3) 
vr -

H 1 -3 2 + 3α D,r 1 + 3α D,r (g D,r -f D,r ) v r + δ r 4 + 3α D,r = -(1 + 2f D,r )Φ + 2f D,r π -3Hg D,r π , (5.4) 
where we have defined

f D,r ≡ - α D,r 4 + 3α D,r , g D,r ≡ f D,r 1 - (1 + 3α D,r ) αD,r 6(1 + α D,r )Hα D,r . (5.5) 
As expected, for α D,r = 0 the effects due to the nonminimal coupling vanish. Note that, even if we are in the quasi-static limit, the term in π should be kept in the Euler equation, as it is expected to be of the order of Hπ and therefore comparable to the other terms.

Our assumption that the relativistic fluid does not contribute to the gravitational perturbations means that Φ and π are only sourced by CDM and baryons, i.e.

- k 2 a 2 Φ = 3 2 H 2 Ω m 1 + α T + β 2 ξ δ m , - k 2 a 2 π = 3HΩ m β ξ √ 2c s α 1/2 δ m , (5.6) 
which correspond to eqs. (4. 19) and (4.22) specialized to the case β γ = 0. Therefore, even when the extra scalar field is not sourced by matter perturbation (e.g. when β ξ = 0) and π = 0, the relativistic particles still feel a force F r different from that felt by matter, F m , the relative difference being given by (F r -F m )/F m = 2f D,r . This extra force is due to the non-adiabatic pressure perturbation δp nad,I in eq. (3.18), induced by the disformal coupling out of the Jordan frame of the fluid (see eq. ( 5.1)).

To highlight this effect, the Euler and continuity equations can be combined to form a second-order differential equation for the density contrast δ r , sourced by the matter perturbations according to eq. (5.6). In the simple case where gravity is not modified, i.e. β ξ = α T = 0, we get

δr + H δr 1 + 3α D,r 1 -g D,r /f D,r 1 + 3α D,r + k 2 3a 2 (1 + α D,r ) δ r = 2H 2 Ω m 1 + α D,r /4 1 + α D,r δ m . (5.7)
Unlike in the case of the bayons-CDM fluid, the signature of the disformal coupling here is present at the linear level in α D,r , while in eqs. (4.23)-(4.24) it appears at the quadratic level through the terms β ξ β γ and β 2 γ . The main message of this section is that one must define the usual fluid properties (such as the equation of state and the speed of sound) in the Jordan frame, where the species is minimally coupled to gravity.

Conclusions

In this work, we have presented an effective description of dark energy and modified gravity, which extends the approach developed in [5] by relaxing the assumption of universal coupling of all matter species. Namely, we have allowed each matter species to be associated with a specific Jordan frame (or metric), conformally and disformally related to the gravitational metric. In this way, we have made connection with a vast sector of the literature devoted to the so-called coupled dark energy, with either a conformal coupling in most works or a disformal coupling for more recent works. However, in contrast with this previous literature, we have considered here a very general description of the gravitational sector, which includes Horndeski's theories (although not their extensions such as G 3 ) instead of general relativity with a quintessence-like scalar field as usually assumed.

At the level of linear perturbations, the gravitational sector is described by the quadratic action given in eq. (2.27), which depends on four time-dependent parameters α K , α B , α M and α T . As for matter, each species is characterized by two time-dependent parameters, α C,I and α D,I , associated with their conformal and disformal couplings to the gravitational metric. This implies that the whole system depends on a total of 2N S + 4 time-dependent parameters, if N S species are present. However, there is some arbitrariness in the choice of the gravitational metric that is used to define the gravitational and matter sectors. By considering a conformal-disformal transformation (2.42) of this metric, the same physical system is characterized by 2N S + 4 new parameters, which transform according to (2.45) and (2.46). Taking into account this "gauge" redundance, which depends on two arbitrary parameters, one thus finds that the number of physically relevant parameters is reduced to 2(N S + 1).

A very useful result of the present work is the derivation of the linear stability conditions in this very general framework. As the presence of disformal couplings contributes to the kinetic energy of the scalar fluctuations, the condition for the absence of ghosts is modified. This now requires that α defined in eq. (2.36) is positive. We have checked that the stability conditions are invariant under the "gauge transformations" of the parameters discussed above.

We have also written the equations of motion for the linear perturbations and emphasized how the usual equations are modified in the presence of modified gravity and nonmininal (conformal or disformal) couplings. Special care must be taken when the chosen frame does not coincide with the matter Jordan frame as the relations between matter quantities are frame-dependent. For instance, the equation of state parameter, whose natural value (e.g. 1/3 for radiation) is defined in the Jordan frame associated with the matter species, will be in general different in another frame.

We have illustrated our formalism by considering two types of scenarios, motivated by the already stringent constraints on the nonminimal coupling of ordinary species (baryons and photons) to a scalar field. In the first case, we have focused our attention to the situation where only CDM is nonminimally coupled to the scalar field. For late cosmology, in the quasi-static approximation, we have computed the evolution equations of CDM and baryon density contrasts. In the second case, we have assumed that both baryons and CDM are minimally coupled but allowing for a relativistic fluid (e.g. neutrinos) with nonminimal couplings. These two simple examples illustrate what kind of new effects can be produced by the combination of modified gravity and nonminimal couplings.

It would be interesting to investigate how future observations will be able to constrain simultaneously the parameters describing the deviations from GR and those characterizing the coupling of matter to this generalized gravitational sector. gµν in unitary gauge are given by

Ñ 2 = CN 2 -D , Ñ i = N i , hij = Ch ij , (A.2)
while the intrinsic Ricci scalar and the extrinsic curvature respectively transform as

R = C -1 R , Ki j = N Ñ K i j + Ċ 2N C δ i j . (A.3)
For the matter sector, the stress-energy tensor in the new frame is

T µν (I) ≡ 2 √ -g δS I δg µν , (A.4) so that T µν (I) = √ -g √ -g δg αβ δg µν T αβ (I) = N C 5/2 √ CN 2 -D T µν (I) . (A.5)

A.1 Background

Let us now set N = 1 and assume a flat FLRW background, ds 2 = -dt 2 + a 2 (t)dx 2 . From eq. (A.2), the background metric in the new frame remains flat FLRW, with line element ds 2 = -d t2 + ã2 ( t)dx 2 , where we have defined

t ≡ C 1 + α D dt , ã ≡ √ Ca . (A.6)
From this equation, the Hubble rate in the new frame is given by

H ≡ 1 ã dã d t = (1 + α C ) 1 + α D C H . (A.7)
From eq. (A.5), the background energy density and pressure in the two frames are respectively related by

ρI = 1 C 2 √ 1 + α D ρ I , pI = √ 1 + α D C 2 p I , (A.8)
where ρ ≡ -T 0 0 and p ≡ T i i /3. This implies wI = w I (1 + α D ). In terms of these quantities the Friedmann equations (2.12) and (2.13) become

H2 = 1 3 M 2 (ρ m + ρDE ) , (A.9) d H d t + 3 2 H2 = - 1 2 M 2 (p m + pDE ) , (A.10)
where M 2 is given by eq. (2.44). Using the expressions above, one can compute the relations between the background energy density and pressure of dark energy in the two frames. One finds, respectively,

ρDE = 1 C 2 √ 1 + α D ρ DE + 3M 2 H 2 √ 1 + α D C 2 α C (2 + α C ) + α D 1 + α D , (A.11) pDE = √ 1 + α D C 2 p DE + M 2 H 2 √ 1 + α D C 2 α C (4 + α C ) + 2α C Ḣ H 2 + 2 αC H + αD (1 + α C ) H(1 + α D ) , (A.12)
where as usual a dot denotes a derivative with respect to t.

One can then use eqs. (A.20)-(A.22) to rewrite this equation in a generic frame. This yields

δp I = c 2 s,I δρ I -ρ I 3H(c 2 s,I -wI )(1 + α C ) + ẇI 1 + wI (1 + w I )v I + α D 1 + α D π -4Hρ I (c 2 s,I -w I )α C π + ρ I (c 2 s,I + w I ) 2α D (Φ -π) - αD 1 + α D π , (A.25)
where we recall that, from eqs. (A.8) and (2.48), the equation of state parameters and sound speeds defined in the two frames are respectively related by wI = (1 + α D )w I and c2 s,I = (1 + α D )c 2 s,I .

B Explicit quadratic action B.1 Matter action

For simplicity, we assume that each matter species can be described by a perfect fluid with vanishing vorticity (this restriction does not affect the analysis of scalar linear modes).

It is then easy to write an action in terms of a derivatively coupled scalar field with Lagrangian12 

S m = N I S I , S I = d 4 x -ǧ (I) P I (Y I ) , Y I ≡ ǧµν (I) ∂ µ σ I ∂ ν σ I . (B.1)
The second-order expansion of the action S I reads

S

(2)

I = d 3 x dt N a 3 c 2 s,I 1 + α D,I c 2 s,I + (1 + α D,I )w I 2 ρ I δN N 2 - 1 + (1 + α D,I )w I (1 + α D,I ) 2 ρ I σI δ σI δN N -c 2 s,I δ √ h + c 2 s,I N i ∂ i δσ I + 1 + (1 + α D,I )w I (1 + α D,I ) 2 ρ I 2 σ2 I δ σ2 I -N 2 c 2 s,I (∂ i δσ) 2 a 2 , (B.2)
where we have split the scalar field σ I into a background value and its perturbations, where a prime denotes a derivative with respect to the variable Y I . We have omitted in the action irrelevant terms that vanish when imposing the background equations of motion.

For C I = 1 and α D,I = 0 we recover the usual expressions for a k-essence fluid [73,74,76].

B.2 Stability and sound speed of dark energy

In order to investigate linear stability issues, we need to extract the quadratic action for the propagating degrees of freedom. We concentrate on scalar modes as the stability conditions of tensors are not modified by the nonminimal coupling of matter. To this end, we will expand the total action up to quadratic order in linear scalar fluctuations around a FLRW solution and solve the constraints, generalizing the procedure of Refs. [77] and [24].

The second-order action

S (2) = S (2) g + S (2) m , (B.4)
where the gravitational part S

(2) g is given in eq. (2.27), governs the dynamics of linear scalar fluctuations. Assuming N = 1 without loss of generality, the scalar modes can be described in unitary gauge by the metric perturbations [78] 

N = 1 + δN, N i = δ ij ∂ j ψ, h ij = a 2 (t)e 2ζ δ ij . (B.5)
As a consequence, we get

δ √ h = 3a 3 ζ , δK i j = ζ -HδN δ i j -δ ik ∂ k ∂ j ψ , (B.6) 
and Substituting these expressions into (B.4), we obtain the second-order action in terms of the three scalar quantities δN , ψ and ζ. Variation with respect to ψ yields the momentum constraint, whose solution reads

δ 1 R ij = -δ ij ∂ 2 ζ -∂ i ∂ j ζ , δ 2 R = - 2 a 2 (∂ζ) 2 -4ζ∂ 2 ζ . (B.
δN = 1 1 + α B ζ H + 3 2 H I 1 + (1 + α D,I )w I 1 + α D,I Ω I δσ I σI , (B.8)
with Ω I = ρ I /(3M 2 H 2 ). We do not need the solution of the Hamiltonian constraint, as the longitudinal part of the shift ψ only contributes to a boundary term in the action. Replacing the above solution into the second-order action and re-expressing the scalar fields perturbations δσ I in terms of the gauge invariant variables

Q I ≡ δσ - σI H ζ , (B.9)
the total second-order action reads, focusing only on the kinetic and spatial gradient parts,

S (2) = d 3 x dt a 3 M 2 2 g ζ ζ ζ2 + g ∂ζ∂ζ (∂ i ζ) 2 a 2 + I κ I H 2 σ2 I c 2 s,I Q2 I -c 2 s,I (∂ i Q I ) 2 a 2 + 2 I g int,I H σI QI ζ - c 2 s,I a 2 ∂ i Q I ∂ i ζ , (B.10)
with

g ζ ζ ≡ 1 (1 + α B ) 2 α + I κ I c 2 s,I (α D,I -α B ) 2 , (B.11) g int,I ≡ 1 1 + α B I κ I c 2 s,I (α D,I -α B ) ,
(B.12)

g ∂ζ∂ζ ≡ 2 1 + α B Ḣ H 2 + αB 1 + α B + α B (1 + α T ) + α T -α M + I κ I 2 (1 + 2α D,I -α B ) , (B.13)
where we have defined the dimensionless coefficients

α ≡ α K + 6α 2 B + 3 I α D,I Ω I , κ I ≡ 3 1 + (1 + α D,I )w I (1 + α D,I ) 2 Ω I . (B.14)
Absence of ghosts is ensured by requiring that the matrix of the kinetic coefficients is positive definite, which yields the conditions α ≥ 0 and κ I ≥ 0. The second condition reads ρ I +(1+α D,I )p I ≥ 0, which is the usual Null Energy Condition written in a disformed frame. Diagonalization of the kinetic-spatial gradient matrix yields the following speed of propagation for dark energy,

c 2 s = - 2 α (1 + α B ) Ḣ H 2 -α M + α T + α B (1 + α T ) + αB H + 3 2 I 1 + (1 + α D,I )w I Ω I .
(B.15) Absence of gradient instabilities requires c 2 s ≥ 0 and c 2 s,I ≥ 0.

C Perturbation equations

Here we provide the generalized Einstein equations in the presence of dark energy and modifications of gravity. These have been first given in Ref. [5] in terms of the parameters of the Effective Field Theory of dark energy [4] and in Refs. [17] (see also [14]) in terms of the parameters α a .

C.1 Einstein equations

Let us defined

w m ≡ I ρ I ρ m w I , γ m ≡ I ρ I ρ m γ I , (C.1)
where γ I parametrizes the nonminimal coupling of the species I, see definition in eq. (3.8). The Hamiltonian constraint ((00) component of the Einstein equation) is

6(1 + α B )H Ψ + (6 -α K + 12α B )H 2 Φ + 2 k 2 a 2 Ψ + (α K -6α B ) H 2 π + 6 (1 + α B ) Ḣ + 3 2 H 2 Ω m (1 + w m -γ m ) - 1 3 k 2 a 2 α B Hπ = -3Ω m H 2 δ m , (C.2)
while the momentum constraint ((0i) components of the Einstein equation) reads

2 Ψ + 2(1 + α B )HΦ -2Hα B π + 2 Ḣ + 3H 2 Ω m (1 + w m ) π = -3H 2 Ω m (1 + w m )v m . (C.3)
The traceless part of the ij components of the Einstein equation gives

Φ -(1 + α T )Ψ + (α M -α T )Hπ = - σ m M 2 , (C.4)
while the trace of the same components gives, using the equation above,

2 Ψ + 2(3 + α M )H Ψ + 2(1 + α B )H Φ + 2 Ḣ - 3 2 H 2 Ω m (1 + w m ) + (α B H) • + (3 + α M )(1 + α B )H 2 Φ -2Hα B π + 2 Ḣ + 3 2 H 2 Ω m (1 + w m ) -(α B H) • -(3 + α M )α B H 2 π + 2 (3 + α M )H Ḣ + 3 2 H 2 Ω m [ ẇm -3H(1 + w m -γ m )] + Ḧ π = 1 M 2 δp m - 2 3 k 2 a 2 σ m . (C.5)

C.2 Scalar field equation

The charge Q I is defined in eq. (3.4). Its perturbation reads

δQ I ≡ 3H γ I δ I -α C,I δp I ρ I -w I δ I ρ I -α D,I 1 + w I 1 + α D,I k 2 a 2 ρ I v I + 2H α C,I (1 -3w I ) -3γ I ρ I Φ - α D,I 1 + α D,I Φ + 3 Ψ -δI -π + w I k 2 a 2 π ρ I + H 1 + α D,I -2α C,I (1 -3w I )(1 + α D,I ) + 3w I α D,I + 3γ I (2 + α D,I ) ρ I π + 3 1 + α D,I w I α D,I + γ I Ḣ + (α D,I + α C,I (1 + α D,I )) ẇI + γI H ρ I π . (C.6)
We have checked that this expression agrees with those in the literature (see e.g. [41-43, 47, 64]) in the relevant limits. 13The evolution equation for π in the absence of EP violations is given in [5] and can be found in [14] in terms of the parameters used in this article. Including the contribution of I δQ I using the above equation, and using the continuity equation, eq. (3.16), this becomes

α K + 3 I α D,I Ω I H 2 π + H 2 (3 + α M ) + Ḣ α K + (Hα K ) • -3H 2 I Ω I 2α C,I (1 -3w I )(1 + α D,I ) -3w I α D,I -6γ I (1 + α D,I ) H π + 3 2 Ḣ2 + 3 ḢH 2 Ω m (1 + w m ) + I w I α D,I Ω I + 2 Ḣα B H 2 (3 + α M ) + Ḣ + 2H( Ḣα B ) • +3H 3 I ẇI (α D,I + α C,I (1 + α D,I )) + 3Hγ I (1 + w I -γ I ) Ω I π - k 2 a 2 2 Ḣ + 3H 2 Ω m (1 + w m ) + 2H 2 α B (1 + α M ) + α T -α M + 2 (Hα B ) • + 3H 2 I w I α D,I Ω I π + 6Hα B Ψ + H 2 (6α B -α K ) -3H 2 I α D,I Ω I Φ + 3 2 Ḣ + 3H 2 Ω m (1 + w m ) + 2H 2 α B (3 + α M ) + 2(α B H) • + 3H 2 I w I α D,I Ω I Ψ + 6 Ḣ + 9H 2 Ω m (1 + w m ) + H 2 (6α B -α K )(3 + α M ) + 2(9α B -α K ) Ḣ + H(6 αB -αK ) -6H 2 I 3γ I -α C,I (1 -3w I ) (1 + α D,I )Ω I HΦ + 2 k 2 a 2 {[H(α M -α T )] Ψ -α B HΦ} + 9H 3 I γ I δ I -[α C,I (1 + α D,I ) + α D,I ] δp I ρ I -w I δ I Ω I = 0 . (C.7)

D Synchronous gauge

Here we provide the perturbation equations in synchronous gauge, often employed in numerical codes, where the perturbed FLRW metric has the form

ds 2 = -dt 2 + 1 + 1 3 h δ ij + k i k j k 2 - 1 3 δ ij (h + 6η) dx i dx j . (D.1)
Defining ǫ ≡ a 2 ḣ + 6 η /k 2 , one can write Newtonian gauge quantities in terms of synchronous gauge ones using the following relations (see for instance [79]), 

Φ = ǫ , Ψ = η -Hǫ , π (N ) = π (S) + ǫ , δρ ( 
2k 2 η -H(1 + α B )h ′ -H 2 (6α B -α K )π ′ + 9H 2 Ω m (1 + w m -γ m ) -H 2 (6 -α K + 12α B ) + 6H ′ (1 + α B ) -2k 2 α B Hπ = - a 2 M 2 ρ m δ m , (D.3) ((0i) component) 2η ′ -2Hα B π ′ + 2H ′ -2(1 + α B )H 2 + 3H 2 Ω m (1 + w m ) π = a 2 M 2 (ρ m + p m ) θ m k 2 , (D.4) ((ij)-traceless) h ′′ + 6η ′′ + H(2 + α M )(h ′ + 6η ′ ) -2k 2 (1 + α T )η -2k 2 H (α T -α M ) π = 2k 2 M 2 σ m , (D.5)
and ((ij)-trace)

h ′′ + H(2 + α M )h ′ -2k 2 (1 + α T )η + 6α B Hπ ′′ + 6H 2 α B (3 + α M ) + 6(α B H) ′ -9H 2 Ω m (1 + w m ) -6(H ′ -H 2 ) π ′ + 6H 2 [2 + α M + α B (2 + α M )] + 6(α B -α M )H ′ + 6(α B H) ′ -2k 2 (α T -α M ) -9H 2 Ω m (1 -3w m )(1 + w m ) + 3w m γ m + w ′ m /H -6H ′′ Hπ = -3 a 2 M 2 δp m . (D.6)
In synchronous gauge, the evolution equation for the scalar fluctuation, eq. (C.7), reads

H 2 α K + 3 I α D,I Ω I π ′′ + H 2 α K (2 + α M ) + H ′ α K + (α K H) ′ + -3H 2 I Ω I 2α C,I (1 -3w I )(1 + α D,I ) -α D,I (1 + 3w I ) -6γ I (1 + α D,I ) Hπ ′ -2k 2 H 2 α B α M + α T -α M -1 + (α B H) ′ + H ′ + 3 2 I H 2 1 + w I (1 + α D,I ) Ω I π + H 4 [6 -6α B α M + α K (1 + α M )] + 3H 2 H ′ [-4 + α K -2α B (3 -α M )] + 6(1 + α B )H ′2 -H 3 (6α ′ B -α ′ K ) + 6H(α B H ′ ) ′ + 3H 2 I Ω I -2H 2 α C,I (1 -3w I )(1 + α D,I ) + H ′ 3 + α D,I + 3w I (1 + α D,I ) + 3H 2 γ I (1 + 2α D,I ) -(1 -3γ I )(1 + w I -γ I ) + 3Hw ′ I α D,I + α C,I (1 + α D,I ) π -Hα B h ′′ -H ′ + H 2 α B (1 + α M ) -1 + (α B H) ′ + 3 2 I H 2 1 + w I (1 + α D,I ) Ω I h ′ + 2k 2 H(α M -α T )η = 0 . (D.7)
The continuity and Euler equations for matter become, respectively,

δ ′ I + 3H(1 + α C,I )(1 + α D,I ) δp I ρ I -w I δ I + (1 + w I )θ I -α D,I π ′′ -H -2α C,I (1 -3w I )(1 + α D,I ) + α D,I (1 + 3w I + 6γ I ) + 9γ I π ′ + -2H 2 (1 + α D,I ) 3γ I -α C,I (1 -3w I ) + w I α D,I k 2 -H ′ 3γ I + α D,I (1 + 3w I ) -3H w ′ I α D,I + α C,I (1 + α D,I ) + γ ′ I π + 1 2 1 + w I (1 + α D,I ) h ′ = 0 , (D.8)
and

θ ′ I + H 1 -3w I + 3γ I + w ′ I H(1 + w I ) θ I - k 2 δp I ρ I (1 + w I ) + 2k 4 3a 2 ρ I (1 + w I ) σ I = 3Hγ I (1 + w I ) k 2 π .
(D.9)

E Definitions of the parameters

The coefficients β a appearing in eqs. (4.10) and (4.11) are defined as

β 1 ≡ - 3 4 Ω m α K - 1 2 α Ḣ H 2 + α T -α M - 9 2 α B γ c Ω c , (E.1)
β 1 β 2 α ≡ 9 2 Ω m α B α B α β 3 - 4 + α M + α T 6α B + ξ α - 9 4 γ c Ω c c 2 s - 2α B β 3 α -2α B 3 -3γ c -ξ α + 1 2 (1 + α M ) (α M -α T ) - Ḣ H 2 - 1 2 α M -αT H + 2 Ḣ(α M -α T ) H 2 - Ḧ H 3 , (E.
2)

β 3 ≡ 3 + α M α α -6 (α C,c -3γ c )(1 + α D,c ) + α D,c α Ω c + α 2 B Hα α K α 2 B • + 3Ω c α D,c α B α Ḣ H 2 -α M + (1 + α B )α T - (α B H) • H 2 + 3 2 Ω m , (E.3) β 4 ≡ (1 + α T ) β 2 -1 -α M + 2 Ḣ/H 2 + αT /H , (E.4)
β 5 ≡ c 2 s - 2α B (β 3 -β 2 ) α + α 2 B β 1 (1 + α T )(β 3 -β 2 ) + α 2 B β 4 β 1 , (E.5) β 6,I ≡ β 7,I + 2 α B (β 2 -β 3 ) α , (E.6) β 7,I ≡ c 2 s + 2 α B ξ α , (E.7) β 8,I ≡ β 9,I -(6α B -α K ) β 2 -β 3 α , (E.8) β 9,I ≡ -(4 + 3c 2 s + α M + α T ) + β 3 , (E.9)
where we remind that ξ ≡ α B (1

+ α T ) + α T -α M , α = α K + 6α 2 B + 3α D,c Ω c and we have defined α ≡ α K + 6α 2 B = α -3α D,c Ω c . Setting α D,c = α C,c
= γ c = 0 in these equations, one recovers the expressions of [17] and [14].

For α M = α T = 0, the coefficients ξ a appearing in eqs. (4.13) and (4.14) are defined as

ξ 2 ≡ 3 2 α β 1 α α (Hγ) • H 2 - Ḣ H 2 + 9 2 Ω m β 1 α B Ξ - 1 2 α -α D,c α α α B + α K 2 c 2 s - 9α D,c Ω c 2H 2 β 1 (Hγ) • + 9γ c Ω c 2β 1 3α B α D,c c 2 s + Ξ + α B + 3γ c -3 α α α D,c
, (E.10)

ξ 3 ≡ α B Ξ - α K α D,c 2 c 2 s , (E.11) ξ 4 ≡ ξ 2 -3(1 -γ c ) , (E.12) ξ 5 ≡ α B β 1 Ξ + 2 α B ξ 2 -Ξ α -3 α 2 B β 1 (1 -γ c ) - α K 2β 1 + 6 α B α α D,c c 2 s , (E.13) ξ 6,I ≡ -2α B α D,c 3 c 2 s α + 1 α + 2 α B ξ 2 -Ξ α -6 α D,c α γ I , (E.14) ξ 7,I ≡ -α B α D,c c 2 s + 2 α 2 B α -6α 2 B α D,c α γ I , (E.15) ξ 8,I ≡ -3 + 6α B -α K α 3α D,c c 2 s -ξ 2 + 6 1 + α B α Ξ , (E.16) ξ 9,I ≡ -3α 2 B + 6α B -α K 2 α D,c c 2 s + α B Ξ , (E.17) with Ξ ≡ 3α B + 3γ c - 2α α α D,c + α C,c (1 + α D,c ) -3γ c (1 + α D,c ) + α D,c Ḣ/(2H 2 ) - α D,c αH 2 (1 + α B )α K H 2 + (αH) • -6α B [(1 + α B )H] • -9α B Ω m H 2 . (E.18)
Article B

Effective Theory of Dark Energy at Redshift Survey Scales 1 Introduction

The recent measurements of the cosmic microwave background (CMB) anisotropies, performed by the WMAP and Planck satellites, have significantly improved our knowledge on the content of the universe and on the initial conditions of cosmological perturbations. A similar progress is expected from the next generation of galaxy surveys concerning the properties of dark energy or, possibly, modifications of general relativity on cosmological scales. Indeed, even if the CMB is useful to constrain dark energy through the integrated Sachs-Wolfe (ISW) effect and gravitational lensing, these effects are ultimately related to the impact of dark energy on the late-time evolution of structures. Probing directly these large scale structures is thus thought to be the most promising source of information on the origin of the current acceleration. Since no compelling model of dark energy has emerged from theoretical investigations, it is appropriate to resort to a description that encodes a wide range of physical effects with a limited number of theoretically motivated parameters, in order to compare deviations from the standard ΛCDM scenario with cosmological observations on linear scales. For single-field dark energy models in the presence of universally coupled matter fields, this research program has been initiated by the effective theory of dark energy recently proposed in Refs. [1][2][3], inspired by the so-called effective field theory of inflation [4,5] and of minimally coupled dark energy [6]. Another model-independent framework that has been developed with the same motivations is the Parameterized Post-Friedmann approach [7,8]. In the effective theory of dark energy, the quadratic action describing linear perturbations of single-field models belonging to Horndeski theories is characterized by four free functions of time [3,[9][10][11], while a fifth function must be introduced to describe theories beyond Horndeski [12,13]. The power and efficiency of this formalism has just started to be exploited. For instance, it has been applied to explore and forecast the phenomenology of dark energy and modified gravity in [14][15][16][17] (see also [18,19] for some nonlinear aspects).

Recently, in Ref. [20], we extended this unifying treatment to allow for distinct conformal and disformal couplings of matter species to the gravitational sector. 1 We focused on Horndeski-like models, i.e. those whose quadratic action has the same structure as Horndeski theories, 2 although the full action can be different. This is a rather natural extension given that a modification of the gravitational sector can often be interpreted as a direct coupling of matter to a fifth force exchanged by the scalar, in the frame where the scalar and the gravitational fluctuations are demixed-the so-called Einstein frame. Together with the four functions describing the gravitational quadratic action, each matter species is now characterized by two new functions parametrizing their conformal and disformal couplings to the gravitational metric. However, as reviewed in Sec. 2, the structure of the full action remains invariant under conformal and disformal transformations of the gravitational metric itself. Taking into account this freedom, which allows for instance to choose a frame where one of the species is minimally coupled, one eventually finds that the whole system depends on a total of 2(N S + 1) independent functions of time, where N S is the number of matter species. In this context, the conditions for stability (i.e. the absence of ghostlike and gradient instabilities) can be generalized to any frame (see Sec. 2).

In this article we go one step further and explore the constraining power of future large scale structure surveys on the deviations from the standard ΛCDM scenario, expressed in terms of the parameters of the effective theory of dark energy proposed in [20]. Specifically, we will consider a simple scenario where the gravitational sector is described by Horndeskilike models while, in the matter sector, cold dark matter (CDM) is nonminimally coupled to gravity. This extends to a much broader spectrum of gravitational theories previous studies of coupled dark energy, with conformal [25,26] (see also [27] and references therein) and disformal (see e.g. [28][29][30][31][32][33][34][35][36][37]) couplings.

The equations of motion for the linear perturbations in the presence of modified gravity and nonmininally coupled CDM, derived in [20], are reviewed in Sec. 3, where we assume the quasi-static approximation. As shown in [38], this approximation should be reliable for surveys such as Euclid as long as the sound speed exceeds 10% of the speed of light, i.e. c s 0.1. In particular, we will consider the extreme quasi-static limit, i.e. the limit k → ∞, of the dynamics. In such a regime the linear growth of matter (both for baryons and CDM) remains scale-independent as in ΛCDM. Modifications of gravity and the nonminimal coupling to CDM are encoded in the time dependence of the gravitational couplings in the "Poisson" equations for the metric potentials, which are different for baryons and CDM. As explained in Sec. 3, this time dependence modifies the growth rate of structures and the lensing potential, which in turn affect, respectively, the redshift-space distortions and the weak-lensing cosmic shear.

In Sec. 4 we introduce the details of our parametrization, in particular concerning the time dependence of the parameters characterizing the modifications of gravity. We consider three fiducial models: a minimal ΛCDM model, a braiding model and a model with an active nonminimal coupling of CDM. In Sec. 5 we perform a Fisher matrix analysis based on future photometric and spectroscopic data with configuration parameters close to those of the Euclid mission [27,39] as an example. We focus on the two-point statistics and consider the galaxy power spectrum in redshift space for the spectroscopic data, the projected weak-lensing shear power spectrum for the photometric data as well as the correlation between the ISW effect in the CMB temperature and the photometric galaxy distribution. The derived constraints are discussed in Sec. 6, together with the involved degeneracies. It should be mentioned that other approaches have been developed to study in a general and model-independent way the impact of modified gravity on cosmological observables, together with the involved degeneracies, e.g. on the growth rate of fluctuations [40] (see also [41,42]) or on the weak lensing [43].

In Sec. 7 we summarize our results and draw conclusions. Details on the parametrization and the choice of background cosmological parameters are given in the App. A, while in App. B, we discuss the frame dependence of the evolution equations of matter.

Model and main equations

In this section, we introduce our general formalism and then focus on the specific model at the core of the present work. The first subsection, which is mainly a review of our recent paper [20] and previous works, can be skipped by the reader mostly interested in our phenomenological model and forecasts for the parameter constraints. The model that we are specifically studying in the rest of this paper is described in the second subsection.

Effective description of the gravitational and matter sectors

We start by summarizing the effective approach of dark energy introduced and developed in Refs. [1,3,20] (see e.g. [11,44] for reviews). The gravitational sector is assumed to consist of a four-dimensional metric g µν and of a scalar field φ. In order to treat simultaneously a wide range of models, it is very convenient to "hide" the scalar field in the metric, by choosing the constant-time hypersurfaces to coincide with the uniform scalar field hypersurfaces. In this gauge, referred to as unitary gauge, the metric can be written in the ADM form [45],

ds 2 = -N 2 dt 2 + h ij dx i + N i dt dx j + N j dt , (2.1) 
where N is the lapse function, N i the shift vector and h ij the three-dimensional spatial metric.

In unitary gauge, a generic gravitational action can be written in terms of geometric quantities that are invariant under spatial diffeomorphisms, namely in terms of the lapse N , the 3d Ricci tensor R ij of the constant time hypersurfaces, as well as their extrinsic curvature K ij , with components

K ij = 1 2N ḣij -D i N j -D j N i , (2.2) 
where a dot stands for a time derivative with respect to t, and D i denotes the covariant derivative associated with the spatial metric h ij (spatial indices are lowered or raised via the metric h ij ).

The generalized Friedmann equations are then obtained by varying the specialization of the action to a homogeneous FLRW (Friedmann-Lemaître-Robertson-Walker) spacetime, endowed with the metric ds 2 = -dt 2 +a 2 (t)d x 2 . The dynamics of the linear perturbations is governed by the quadratic action, obtained by a perturbative expansion of the original action.

In this paper, we will consider a very large class of models, which includes all Horndeski theories, for which the quadratic action can be written in the form [3,[9][10][11] 3

S (2) g = d 3 xdt a 3 M 2 2 δK i j δK j i -δK 2 + RδN + (1 + α T ) δ 2 √ hR/a 3 + α K H 2 δN 2 + 4α B HδKδN , (2.3) 
where M , α T , α B and α K are four time-dependent functions and δ 2 denotes the second order term in a perturbative expansion. H ≡ ȧ/a is the Hubble parameter. We have not included irrelevant terms that vanish when adding the matter action and imposing the background equations of motion. Note that (2.3) does not include the models beyond Horndeski [12] for which the coefficient of the term R δN differs from 1, the difference defining a new parameter α H [11]. General relativity corresponds to the particular case where α T = α B = α K = 0 and M = M Pl . In general, the above quadratic action contains not only two tensor modes, as in general relativity, but a scalar mode as well. The coefficient in front of the tensor kinetic term is M 2 and, by analogy with general relativity, M can be identified with an effective Planck mass. If M depends on time, it is convenient to introduce the related parameter

α M ≡ 1 H d ln M 2 dt . (2.4) 
The parameter α T appears in the gradient term of the tensor modes and is thus directly related to the tensor propagation speed, namely

c 2 T ≡ 1 + α T . (2.5)
The stability of the tensor modes is ensured by requiring M 2 > 0 (absence of ghosts) and α T > -1 (absence of gradient instabilities). 4 Keeping in mind that the lapse perturbation is analogous, in the ADM language, to the time derivative of the scalar perturbation, one observes that the parameter α K is related to the coefficient of the kinetic scalar term. It is thus present for simple quintessence models. Finally, the coefficient α B characterizes the mixing between the scalar and tensor kinetic terms, sometimes called "braiding". In contrast with the tensor modes, the full 3 Together with the operator αHδN R, this is the most general quadratic action for linear perturbations about a homogeneous and isotropic spacetime that does not induce higher derivatives in the equation of motion of the linearly propagating scalar degree of freedom. In consistent effective theories, higher time derivatives are not forbidden but are suppressed by positive powers of the ratio between the energy and the cutoff scale (see e.g. [46,47]). Thus, at energies much smaller than the cutoff their effect can be neglected without loss of generality. Higher spatial derivatives are not necessarily suppressed and may dominate the dispersion relation, such as in the Ghost Condensate theory [48]. In this case, higher spatial gradients become relevant, and can easily be included in our formalism, but begin operating at very short distances [6,49], typically shorter than the cosmological ones. 4 As shown in [20,50] and reviewed below, the propagation speed for gravitons can be set to unity by a convenient disformal transformation (only ratios between sound speeds are invariant and thus meaningful physical quantities). It is thus not a priori pathological to have c 2 T > 1 in a generic frame and we will not impose any upper bound on cT as a condition for the viability of the theory. A propagation speed for gravitons smaller than that of the other particles is instead very tightly constrained at high energy by cosmic rays observations [51]. We have not taken this bound into account in our analysis, since it concerns the speed of gravitational waves at wavelengths much shorter than the cosmological ones.

dynamics of the scalar mode depends on the matter action as well, and the discussion on the scalar stability conditions thus needs to be postponed until after the introduction of the matter action below.

The remarkably simple form of the quadratic action (2.3) holds only in the unitary gauge. However, it is straightforward to derive the quadratic action in an arbitrary gauge, by simply performing a time reparametrization of the form

t → φ = t + π(t, x) , (2.6) 
where the unitary time becomes a four-dimensional scalar field. The scalar degree of freedom of the gravitational sector thus reappears explicitly in the form of the scalar perturbation π.

A matter species can be either minimally or nonminimally coupled to the gravitational metric g µν . In the latter case, it is often assumed that matter is minimally coupled to some effective metric gµν , which depends on g µν and on the scalar field φ. We will adopt this type of nonminimal coupling in the following and consider a matter action of the form

S m = S m [ψ m , gµν ] , (2.7 
)

with gµν = C(φ)g µν + D(φ)∂ µ φ∂ ν φ . (2.8) 
The initial gravitational metric g µν being somewhat arbitrary in general, one has the freedom to choose the metric gµν as the new gravitational metric. Remarkably, the quadratic action (2.3) remains of the same form [20,52], 5 with new parameters defined as

M 2 = M 2 C √ 1 + α D (2.9)
and

6 αK = α K + 12α B [α D + (1 + α D )α C ] -6[α D + (1 + α D )α C ] 2 + 3Ω m α D (1 + α C ) 2 (1 + α D ) 2 , αB = 1 + α B (1 + α C )(1 + α D ) -1 , αM = α M -2α C 1 + α C - αD 2H(1 + α D )(1 + α C ) , αT = (1 + α T )(1 + α D ) -1 , (2.10) 
where

α C ≡ Ċ 2HC , α D ≡ D C -D . (2.11)
Given a single species of matter, one can thus always work in the frame where this species is minimally coupled. If there are several matter species, this is possible only in the case of universal coupling, i.e. if all species are coupled to gravity via the same effective metric. By contrast, for species with different couplings, one cannot find a frame where all of them are minimally coupled. It remains however possible to choose a frame where one of the species is minimally coupled, even if the others are not. 7The sum of the gravitational and matter actions at quadratic order yields the dynamics of the scalar mode, as mentioned earlier. As shown in [20], the kinetic term of the scalar mode is proportional to the combination

α ≡ α K + 6α 2 B + 3 I α D,I Ω I , (2.12) 
where

Ω I ≡ ρ I 3H 2 M 2 , (2.13) 
while its propagation speed is given by

c 2 s = - 2 α (1+α B ) Ḣ H 2 -α M +α T +α B (1+α T ) + αB H + 3 2 I 1+(1+α D,I )w I Ω I . (2.14)
The stability conditions for the scalar mode,

α ≥ 0 , c 2 s ≥ 0 , (2.15) 
involve all the modified gravity parameters, as well as the matter disformal couplings.

Baryon-CDM model

In our model, the coupling of CDM to the gravitational sector is different from that of the other species (baryons, photons and neutrinos). In the following, for simplicity, we choose to work in the frame where the other species are minimally coupled and assume that the original metric g µν corresponds to this frame (if not, one just needs to apply the above metric transformation). We then assume that the coupling of CDM to gravity and dark energy is characterized by an effective metric of the form

ǧ(c) µν ≡ C c (φ)g µν + D c (φ)∂ µ φ∂ ν φ , (2.16) 
from which one can define, in analogy with (2.11), the conformal and disformal parameters

α C,c ≡ Ċc 2HC c , α D,c ≡ D c C c -D c .
(2.17)

We ignore the photon and neutrino cosmological fluids, as we are interested in late-time cosmology where their effects are negligible. The equations of motion for the matter species follow from the conservation, or nonconservation, of their respective energy-momentum tensor. Since baryons are minimally coupled, their energy-momentum tensor is conserved as usual, i.e.

∇ µ T (b) µ ν = 0 .
(2.18)

By contrast, the CDM energy-momentum tensor is not conserved, but instead satisfies the equation

∇ µ T (c) µ ν + Q c ∂ ν φ = 0 (2.19)
with

Q c ≡ - C c 2C c T (c) - D c 2C c T µν (c) ∂ µ φ∂ ν φ + ∇ µ T µν (c) ∂ ν φ D c C c , (2.20) 
where a prime denotes a derivative with respect to φ. Like the usual conservation equation, this equation can be derived by simply using the invariance of the matter action under arbitrary diffeomorphisms.

The background evolution equations for the baryon and CDM fluids follow directly from (2.18) and (2.19). On a FLRW background, the definition of Q c , eq. (2.20), reduces to Qc =

Hρ c 1 + α D,c α C,c + α D,c 3 + ρc Hρ c + αD,c 2H(1 + α D,c ) . ( 2 

.21)

Substituting the above expression into eq. ( 2.19), one finds that the homogeneous fluid equations can be written in the form

ρb + 3Hρ b = 0 , (2.22) 
ρc + 3H(1 -γ c )ρ c = 0 , (2.23) 
where the coupling parameter γ c is given by 8

γ c = 1 3 α C,c + αD,c 6H(1 + α D,c ) . (2.24)
Expressed in terms of the energy density fractions defined in (2.13), the evolution equations for the baryon and CDM energy densities, (2.22) and (2.23), become

Ωb = -H 3 + 2 Ḣ H 2 + α M Ω b , (2.25) 
Ωc = -H 3 + 2 Ḣ H 2 -3γ c + α M Ω c . (2.26)
The presence of the coefficient α M is due to the fact that the mass M , which appears in the definition (2.13), can be time-dependent. The evolution of the Hubble parameter is usually determined by the Friedmann equations. In the present work where dark energy remains unspecified at the background level, one can alternatively assume some specific evolution H = H(t) and infer from it the dark energy background components. This means that the Friedmann equations, written in the form

H 2 = 1 3M 2 (ρ m + ρ DE ) , Ḣ = - 1 2M 2 [ρ m + (1 + w DE )ρ DE ] , ρ m ≡ ρ b + ρ c , (2.27) 
8 Taking into account eq. (2.23) one finds that Qc = 3Hρcγc.

are treated as definitions of the energy density for dark energy, ρ DE , and of its equation of state parameter, w DE , namely

ρ DE ≡ 3M 2 H 2 -ρ m , w DE ≡ -2 3 Ḣ H 2 -1 1 -Ω m , (2.28) 
where

Ω m ≡ Ω b + Ω c . (2.29)
Given some prescription for the time-dependent functions H = H(t), α M (t) and γ c (t), the evolution of Ω b and Ω c can be determined in terms of their present values Ω b,0 and Ω c,0 . This will be done explicitly in Sec. 4.1.

Linear perturbations

In this section, we present the equations governing the linear perturbations. For convenience, we work in the Newtonian gauge, where the scalarly perturbed FLRW metric reads

ds 2 = -(1 + 2Φ)dt 2 + a 2 (t)(1 -2Ψ)d x 2 . ( 3.1) 
For each species, the continuity and Euler equations can be derived from, respectively, the time component and the space components of eqs. (2.18)- (2.19). As obtained in [20], they read in Fourier space δb -

k 2 a 2 v b = 3 Ψ , (3.2) vb = -Φ , (3.3) δc - k 2 a 2 v c = 3(Ψ + γ c Hπ) • + 2(1 + α D,c )(α C,c -3γ c )H(Φ -π) -α D,c ( Φ -π) , (3.4) vc + 3Hγ c v c = -Φ -3Hγ c π . (3.5) 
These equations must be supplemented by the generalized Einstein equations and by the scalar fluctuation equation. We will not write them explicitly here but they can be found in [20].

Quasi-static approximation

The evolution of perturbations well inside the horizon is most conveniently studied within the quasi-static approximation. This is justified for spatial scales that are smaller than the sound horizon of dark energy, or equivalently for wavenumbers k aH/c s (see [38] for a detailed discussion and [54] for a recent analytical extension of this approximation). In this regime, one can neglect time derivatives with respect to space derivatives and the continuity and Euler equations (3.2)-(3.5) for the baryon and CDM fluids simplify into δb -

k 2 a 2 v b = 0 , (3.6) vb = -Φ , (3.7) δc - k 2 a 2 v c = 0 , (3.8) 
vc + 3Hγ c v c = -Φ -3Hγ c π .

(3.9)

The equations for the gravitational potentials Φ and Ψ and for the scalar fluctuation π also simplify and become constraint equations. The gravitational potentials satisfy two Poisson-like equations, given by [20]

- k 2 a 2 Φ = 3 2 H 2 Ω m 1 + α T + β 2 ξ ω b δ b + [1 + α T + β ξ (β ξ + β γ )] ω c δ c , (3.10) 
- k 2 a 2 Ψ = 3 2 H 2 Ω m {(1 + β B β ξ ) ω b δ b + [1 + β B (β ξ + β γ )] ω c δ c } , (3.11) 
where we have introduced the parameters ω I ≡ Ω I /Ω m ,

β B ≡ √ 2 c s α 1/2 α B , β ξ ≡ √ 2 c s α 1/2 ξ ≡ √ 2 c s α 1/2 [α B (1 + α T ) + α T -α M ] , (3.12) 
as well as9 

β γ ≡ 3 √ 2 c s α 1/2 γ c . (3.13)
The scalar fluctuation also satisfies a Poisson-like equation, which reads 

- k 2 a 2 π = 3HΩ m β ξ ω b δ b + (β ξ + β γ )ω c δ c √ 2c s α 1/2 . ( 3 
δb + 2H δb = 3 2 H 2 Ω m (1 + α T + β 2 ξ )ω b δ b + [1 + α T + β ξ (β ξ + β γ )] ω c δ c , (3.15) δc + (2 + 3γ c )H δc = 3 2 H 2 Ω m [1 + α T + β ξ (β ξ + β γ )] ω b δ b + 1 + α T + (β ξ + β γ ) 2 ω c δ c . (3.16)
Introducing the bias b c (b b ) between CDM (baryons) and the total matter density contrast

δ m ≡ ω b δ b + ω c δ c , as δ c = b c δ m (δ b = b b δ m ) , (3.17) 
the influence of modified gravity and nonminimal coupling onto the growth of perturbations enters through the combinations

Υ b ≡ α T + β ξ (β ξ + β γ ω c b c ) , Υ c ≡ α T + (β ξ + β γ )(β ξ + β γ ω c b c ) , (3.18) 
which vanish for standard gravity (the friction term γ c on the left hand side of eq. (3.16) is essentially a background effect and does not affect directly the energy density perturbations δρ b,c ). Modifications of gravity exchanged by π are parametrized by β ξ and the nonminimal coupling of dark matter is parametrized by β γ [20]. This separation of effects is not physical and depends on the choice of frame. Indeed, under a generic change of frame (2.8), one finds, using (2.9)-(2.10) as well as the relations

αD,I = α D,I -α D 1 + α D , αC,I = α C,I -α C 1 + α C , (3.19) 
that these two parameters transform as

βξ = (β ξ + β γ * )(1 + α D ) 1/2 , βγ = (β γ -β γ * )(1 + α D ) 1/2 , (3.20) 
where The modification of gravity associated with the parameter α T does not depend on the exchange of π, see eq. (3.14) and Refs. [20,55] (see also [56] for a recent discussion on local constraints of this effect), and does not mix with the other two effects under change of frame. We note that if α T ≥ 0 (which corresponds to a speed of graviton fluctuations c T ≥ 1) in the absence of nonminimal coupling, i.e. β γ = 0, the combinations (3.18) are always positive, which tends to enhance the growth of structure. More generally, for a positive α T the combinations Υ b and Υ c can be negative only if β ξ has the opposite sign of β γ .

β γ * = 3 √ 2 c s α 1/2 γ * = √ 2 c s α 1/2 α C + αD 2H(1 + α D ) . ( 3 
Since equations (3.15)-(3.16) are independent of the wavenumber k, one can factorize the time dependence from the k dependence of the initial conditions and write the solutions in the form

δ c (t, k) = G c (t) δ c,0 ( k) , δ b (t, k) = G b (t) δ b,0 ( k) , (3.22) 
where δ c,0 and δ b,0 represent the initial density contrasts for CDM and baryons respectively, defined at some earlier time in the matter dominated era. The two functions of time G c (t) and G b (t) are the growth factors for CDM and baryons, respectively, assumed to be equal at the initial time,

G c (0) = G b (0) = 1.
The continuity equation (3.8) then implies that the velocity potential v c for CDM is given by

v c (t, k) = a 2 k 2 Ġc (t) δ c,0 ( k) = a 2 H k 2 f c (t) δ c (t, k) , (3.23) 
where, in the second equality, we have introduced the CDM growth rate

f c ≡ d ln G c d ln a . (3.24)
Similarly, using the continuity equation (3.6), one finds that the velocity potential v b for baryons is given by

v b = a 2 H k 2 f (t) δ b (t, k) , f b ≡ d ln G b d ln a . (3.25)

Link with observations

We now examine how the quantities introduced above can be probed by cosmological observations. A powerful cosmological probe for dark energy is weak lensing, which depends on the so-called scalar Weyl potential, i.e. the sum of the two gravitational potentials Φ and Ψ. Combining the Poisson-like equations (3.10) and (3.11), one gets the expression

Φ + Ψ = - 3a 2 H 2 2k 2 Ω m [2 + α T + (β ξ + β B ) (β ξ + β γ ω c b c )] δ m . (3.26) 
In analogy with the combinations (3.18), it is convenient to define

Υ lens ≡ α T + (β ξ + β B ) (β ξ + β γ ω c b c ) , (3.27) 
which vanishes when gravity is standard. Another way to probe dark energy is via the observation of galaxy clustering. In particular, redshift-space distortions are sensitive to the growth rate of fluctuations, which is affected by deviations from standard gravity. Here we extend previous studies and include also the effect of a nonminimal coupling of CDM.

When observing galaxies, one must take into account the fact that what is directly measured is the redshift, and not the distance of the galaxy. In the parallel plane approximation, the correspondence between the so-called redshift space and real space is described by the change of coordinates (see e.g. [57])

s = x + ẑ v g,z aH , (3.28) 
where s and x denote the spatial coordinates in redshift and real space respectively and v g,z is the line-of-sight component of the galaxy's peculiar velocity. At linear order, the invariance of the number of galaxies yields the expression for the number density in redshift space in terms of the number density in real space,

δ g,s = δ g - 1 aH ∇ z v g,z . (3.29)
On large scales, the galaxy peculiar velocity v g can be related to the CDM and baryon fluid velocities, respectively v b and v c , by effectively treating galaxies as test particles (see e.g. [58]) of baryon and CDM mass fractions x b ≡ M b /M g and x c ≡ M c /M g (M g ≡ M b + M c ), respectively. By considering that the large-scale galaxy momentum coincides with the sum of the baryon and CDM fluids momenta in the linear regime, the galaxy peculiar velocity is given as

v g = x c v c + x b v b , (3.30) 
where v c = ∇v c and v b = ∇v b are the linear velocities satisfying the Euler equations (3.7) and (3.9). Indeed, in the absence of screening the mass of the CDM component in the galaxy is not conserved and obeys

Ṁc = 3Hγ c M c , (3.31) 
in agreement with the background evolution (since M c scales as ρ c a 3 ). Then, the combination of the Euler equations yields

d dt (M g v g ) = d dt (M c v c ) + d dt (M b v b ) = F g , (3.32) 
where

F g = -M g ∇Φ + 3Hγ c M c ∇π (3.33)
is the neat force exerted on each galaxy. The last term is due to the fifth force on the CDM component. Using the expression (3.23) and (3.25) for the velocity potentials, one thus finds

v g = a 2 H k 2 (x c f c δ c + x b f b δ b ) . (3.34)
Substituting the above expression into (3.29), and proceeding as in the standard calculation, one finally obtains, in Fourier space,

δ g,s = δ g + µ 2 (x c f c δ c + x b f b δ b ) , µ ≡ k z k , (3.35) 
or

δ g,s = δ g + µ 2 b g (x c f c b c + x b f b b b )δ g , (3.36) 
after introducing the galaxy bias b g , defined by

δ g = b g δ m .
(3.37)

The galaxy power spectrum in redshift space is thus given by

P g,s ( k) = b 2 g + µ 2 f eff 2 P m (k) , (3.38) 
where we have introduced the effective growth rate of the galaxy distribution as

f eff ≡ x c f c b c + x b f b b b . (3.39)
In the absence of nonminimal coupling of CDM (i.e. for universally coupled baryons and CDM) the species have the same velocities, i.e.

f b b b = f c b c = f ≡ d ln δ m /d ln a.
In the following we will assume the same baryon-to-CDM ratio for each galaxy and we will set this to be the background value, i.e. x c = ω c and x b = ω b . However, one could also consider different populations of galaxies with different baryon-to-CDM ratios and study the effects of equivalence principle violations on large scales between these different populations (see e.g. [59]).

Parametrization

Time dependence

As already mentioned, at the background level the dark energy can be defined by simply giving a specific time evolution for the Hubble parameter. For simplicity, we assume that the expansion history corresponds to that of wCDM, so that H is given by

H 2 (a) = H 2 0 Ω m,0 a -3 + (1 -Ω m,0 )a -3(1+w) , (4.1) 
where Ω m,0 is the fraction of matter energy density today, w is a constant parameter and the scale factor a is normalized to unity today. This choice of parametrization for the background is motivated by the fact that observations suggest that the recent cosmology is very close to ΛCDM, which corresponds to w = -1, and deviations from ΛCDM in the expansion history are usually parametrized in terms of w = -1. In the absence of modifications of gravity and nonminimal couplings, i.e. for α M = γ c = 0, w coincides with the equation of state of dark energy, i.e. w DE in eq. (2.28). Another advantage of this parametrization is that the background expansion remains close to the observed one, even when α M or γ c are switched on and matter does not scale as a -3 (see eqs. In the framework of our effective description, gravitational modifications are encoded in the functions α B , α M and α T , and the non-minimal coupling of CDM is parametrized by γ c . 10 The time dependence of these parameters is undetermined in general. In order to obtain some quantitative estimates about how much future observations will be able to constrain these parameters, we will focus in the following on a specific functional form for their time dependence.

For simplicity, we will assume that the functions α B , α M and α T share the same time dependence Γ(t),

α B (t) = α B,0 Γ(t) , α M (t) = α M,0 Γ(t) , α T (t) = α T,0 Γ(t) , (4.2)
where Γ is normalized to unity today, i.e. Γ(t 0 ) = 1, and α B,0 , α M,0 and α T,0 denote the current values of these parameters, which we wish to constrain. To be more specific, we will consider the following time evolution, 11

Γ(t) ≡ 1 -Ω m (t) 1 -Ω m,0 , (4.4) 
where Ω m is the total nonrelativistic matter fraction introduced in (2.29) and Ω m,0 its present value. Thus, Γ vanishes when the unperturbed energy density of dark energy is negligible, such as at high redshift, and one recovers general relativity. The above parametrization is analogous to the one proposed in [10,14], up to a normalization factor. We parametrize the time dependence of γ c by assuming that the parameter β γ , defined in eq. (3.13), is time-independent, so that

γ c (t) = β γ 3 √ 2 c s (t)α 1/2 (t) , (4.5) 
and the time dependence on the right-hand side can be computed from eq. (2.14). This choice of parametrisation allows to include coupled quintessence [60] as a special case, or more generally other cases where the nonminimal coupling of CDM remains active also when φ/(HM ) becomes negligibly small, since one can have c s α 1/2 = 0 while β γ = 0. Moreover, c s (t)α 1/2 vanishes in matter domination, see App. A.2 for details. Therefore, when Ω m → 1, then Γ → 0 and γ c → 0, which corresponds to the standard matter dominated phase for the background evolution. However, while modifications of gravity switch off in this limit (i.e. α B , α M , α T → 0), the nonminimal coupling parametrized by β γ remains active (see eq. (4.8) and discussion in the next subsection). Let us briefly discuss the theoretical constraints coming from the stability conditions [1,3,20]. As discussed in Sec. 2, the absence of ghost-like and gradient instabilities in the tensor fluctuations respectively requires M 2 > 0-which will be always assumed here and in the following-and c 2 T > 0. Requiring that the second condition is satisfied at all times, eq. (2.5) implies α T,0 > -1 . (4.6)

For scalar fluctuations, these two conditions become α ≥ 0 and c 2 s ≥ 0, where the expressions for α and c 2 s are respectively given in eqs. (2.12) and (2.14). In the following we assume that α ≥ 0 is satisfied by an appropriate choice of the parameters α K , α B and α D,c and we will exclude parameters for which the combination c 2 s α (see eq. (A.5)) becomes negative before z = 0 (see again App. A.2 for details).

Initial conditions for the perturbations

We set the initial conditions during matter domination, i.e. when Ω m 1, and thus Γ 0. In this limit α M 0 and γ c 0, so that, according to eqs. (2.22)-(2.23), both CDM and baryons behave as conserved species at the background level. Moreover, α T 0 and 11 Another possible choice would be

Γ(a) ≡ 1 Ωm,0a 3w + (1 -Ωm,0) , (4.3) 
which has the advantage to be directly related to the scale factor a. We have checked that this choice leads to constraints similar to those obtained with the choice (4.4).

eqs. (3.12)-(3.13) respectively imply that β B 0 and β ξ 0. Therefore, deep in matter domination eqs. (3.15) and (3.16) 

simplify to δb + 2H δb 3 2 H 2 [ω b δ b + ω c δ c ] , (4.7) δc + 2H δc 3 2 H 2 ω b δ b + 1 + β 2 γ ω c δ c , (4.8) 
where ω b,c are constant. This linear system can easily be solved by diagonalizing it. One can find solutions written as

δ b = b b,in δ m , δ c = b c,in δ m , (4.9) 
with constant and scale-independent bias parameters given by 

b b,in = 1 + β 2 γ ω c -4β 2 γ ω 2 c + (1 -β 2 γ ω c ) 2 2β 2 γ ω c ω b , b c,in = -1 + β 2 γ ω c + 4β 2 γ ω 2 c + (1 -β 2 γ ω c ) 2 2β 2 γ ω 2 c . ( 4 
G + 2H Ġ - 3 2 H 2 1 + β 2 γ ω 2 c b c,in G = 0 . (4.11)
As usual, we will consider only the growing mode solution of this equation, G + . In conclusion, we find that baryons and CDM possess spectra that are initially proportional and then grow similarly.

Although we use the full expressions from (4.10) and (4.11) in our numerical analysis, it is instructive to consider approximate expressions for small values of β γ . For small β γ eq. (4.10) yields

b b,in = 1 -ω 2 c β 2 γ + O(β 4 γ ) , b c,in = 1 + ω c ω b β 2 γ + O(β 4 γ ) , (4.12) 
while the growing solution of eq. (4.11) is of the form

G + (a) = a 1+ 3 5 ω 2 c β 2 γ + O(β 4 γ ) . (4.13)
Thus, for small β γ the initial conditions in matter domination are simply given by

δ b (a, k) (1 -ω 2 c β 2 γ ) a 1+ 3 5 ω 2 c β 2 γ δ 0 ( k) , δ c (a, k) (1 + ω c ω b β 2 γ ) a 1+ 3 5 ω 2 c β 2 γ δ 0 ( k) . (4.14)

Fiducial models

For our analysis, we take as fiducial evolution of the Hubble parameter the function

Ĥ(a) = H 0 Ω m,0 a -3 + 1 -Ω m,0 , (Fiducial) (4.15)
which corresponds to the ΛCDM evolution, i.e. w = -1 in eq. ( 4.1) and a quantity evaluated on the fiducial model is denoted by a hat. The fiducial value for two of the parameters that appear in our analysis is taken to be zero, αM,0 = αT,0 = 0 , (Fiducial) (4.16) but we consider several options for the parameters β γ and α B,0 . In addition to the simplest case where these parameters are zero, it is also instructive to consider fiducial models where either of these parameters is nonzero. We will distinguish three fiducial models, characterized respectively by the parameters I) ΛCDM: αB,0 = βγ = 0, II) Braiding: βγ = 0, αB,0 = -0.01, III) Interacting: αB,0 = 0, βγ = -0.03, while the other parameters take the common values prescribed in (4.15) and (4.16). Case (I) gives the usual ΛCDM for the perturbations. In this case the generalized Einstein equations and the modified continuity and Euler equations reduce to the standard ones. Case (II) corresponds to a mixing between the dark energy and gravity kinetic terms at the level of the perturbations. Finally, in case (III) we allow for a non vanishing interaction between dark energy and CDM, which is active for perturbations but does not affect the background because c s α 1/2 = 0, and thus γ c = 0. Let us stress that the background evolution is exactly the same for all three fiducial models.

Fisher matrix forecasts

Our constraints will be based on a Fisher matrix analysis applied to the galaxy and weak lensing power spectra [61,62] and to the correlation between the ISW effect in the CMB and the galaxy distribution [63]. In general, the Fisher matrix is defined as

F ab ≡ - ∂ 2 ln L(θ) ∂θ a ∂θ b θ , (5.1)
where L is the likelihood function, θ is a set of parameters. The expectation values are over realizations. In the fiducial models I and III γ c vanishes when varying along β γ (since c s α 1/2 = 0) and thus, since β ξ = 0 (see eqs. (3.15) and (3.16)), β γ only appears quadratically in the perturbation equations. We have checked that observables depend only mildly on γ c for the fiducial II. Thus, we choose β 2 γ rather than β γ as the independent variable in the analysis. In summary, we have the parameters

θ ≡ {w , α B,0 , α M,0 , α T,0 , β 2 γ } . (5.2)
Our goal here is to estimate the precision on the above parameters that will be reached by forthcoming spectroscopic and photometric redshift surveys with Euclid-like characteristics [39] (see e.g. [60,64,65] for analogous studies). In particular, we are interested in identifying the degeneracies affecting these parameters and their origin. To simplify this analysis we will fix the other background cosmological parameters to their Planck estimated values: For w = -1 these are given by [66] h = 0.6731, h 2 Ω b,0 = 0.0222 and h 2 Ω c,0 = 0.1197, while for w = -1 we choose the values of Ω b,0 and Ω c,0 such as to maintain the same angular diameter distance as in the w = -1 case [66]. See details in the App. A.1.

Galaxy clustering

The galaxy power spectrum in redshift space is given by eq. (3.38). Including the corrections due to the Alcock-Paczynski effect, the observed power spectrum reads [67] 

P obs (z; k, µ) = N (z) b g (z) + f eff (z)µ 2 2 P m (z, k) , (5.3) 
where the normalization factor N (z) is given by

N (z) ≡ H(z) D2 A (z) Ĥ(z)D 2 A (z) , D A (z) ≡ 1 1 + z z 0 dz H(z) , (5.4) 
and D A is the angular diameter distance. Moreover, we assume the bias between galaxies and the total matter distribution, b g = δ g /δ m , to be scale independent. Its fiducial value has little effects on the constraints; in the following we will assume it to be bg = √ 1 + z [68]. It can be taken as a nuisance parameter but we will fix it to its fiducial value, as a consequence of the discussion at the beginning of Sec. 6. Finally, f eff is given in eq. (3.39) and P m (z, k) is the total matter power spectrum, given by

P m (z, k) = T 2 m (z)P 0 (k) , (5.5) 
where

T m (z) ≡ ω b (z) b b,in G b (z) + ω c (z) b c,in G c (z) (5.6)
is the matter transfer function, P 0 (k) is the initial power spectrum of matter fluctuations, δ m,0 , during matter domination and b b,in , b c,in are defined in eq. (4.10). As the effects of dark energy and modified gravity intervene at late times, the initial spectrum is independent of the parameters θ. 12 We have neglected corrections due to the shot noise in the number of galaxies and the radial smearing due to the redshift uncertainty of the spectroscopic galaxy samples and Doppler shift due to the virialized motion of galaxies (see e.g. [27,69]), which become relevant on small scales. We assume a spectroscopic redshift survey of 15 000 squared degrees, sliced in eight equally-populated redshift bins (we take the galaxy distribution as given by [70] with a limiting flux placed at 4 × 10 -16 erg s -1 cm -2 ) between z = 0.5 and z = 2.1. The corresponding Fisher matrix is given by [62]

F LSS ab (z) = bins V 2(2π) 3 kmax k min 2πk 2 dk 1 -1 dµ ∂ ln P obs (z; k, µ) ∂θ a ∂ ln P obs (z; k, µ) ∂θ b , (5.7) 
where V , k min and k max are, respectively, the comoving volume and the minimum and maximum wavenumbers of the bin. In this formula we have neglected the intrinsic statistical error associated with the white shot noise from the Poisson sampling of the density field [71]. However, to be conservative, we choose the maximum wavenumber k max such that the galaxy power spectrum dominates over the shot noise and we are well within the linear regime. More specifically, for each redshift bin we take k max as the minimum between π/(2R), where R is chosen such that the r.m.s. linear density fluctuation of the matter field in a sphere with radius R is 0.5, and the value of k such that ni P g (k) = 1, where ni is the number density of galaxies inside the bin. We have checked that these values of k max are always smaller than H/(σ g (1 + z)), with σ g = 400 km s -1 , i.e. the scale where the peculiar velocity of galaxies due to their virialized motion becomes important.

For the minimum wavenumber, we assume k min = 10 -3 h Mpc -1 . Since we work in the quasi-static limit and P 0 (k) is unaffected by the parameters θ, the effects of modifications of gravity and nonminimal couplings are scale-independent. Thus, the integration over k in eq. (5.7) simply gives an overall normalisation to the Fisher matrix.

Weak lensing

For weak lensing, we consider lensing tomography [72]. The angular cross-correlation spectra of the lensing cosmic shear for a set of galaxy redshift distributions n i (z) is given by

C WL ij ( ) = 4 ∞ 0 dz H(z) W i (z)W j (z) χ 3 (z) k 3 (z)P Φ+Ψ [z, k (z)] , (5.8) 
where χ(z) ≡ z 0 dz/H(z) is the comoving distance and the lensing efficiency in each bin is given by

W i (z) ≡ χ(z) ∞ z dz n i (z) χ(z) -χ(z) χ(z) , (5.9) 
with each galaxy distribution normalized to unity, ∞ 0 dz n i (z) = 1. Moreover, P Φ+Ψ (k) is the power spectrum of Φ + Ψ. Using eq. (3.26), it is related to the matter power spectrum by

P Φ+Ψ (k) = T 2 Φ+Ψ (z, k)P 0 (k) , (5.10) 
where

T Φ+Ψ (z, k) ≡ - 3a 2 H 2 2k 2 Ω m [2 + α T + (β ξ + β B ) (β ξ + β γ ω c b c )] T m (z) (5.11)
is the transfer function for Ψ + Φ. Finally, we define k (z) ≡ /χ(z) as the wavenumber which projects into the angular scale .

We assume a photometric survey of 15 000 squared degrees in the redshift range 0 < z < 2.5, with a redshift uncertainty σ z (z) = 0.05(1 + z), and a galaxy distribution [73] 

n(z) ∝ z 2 exp - z z 0 1.5 , (5.12) 
where z 0 = z m /1.412 and z m is the median redshift, assumed to be z m = 0.9 [27,74]. Then, we divide the survey into 8 equally populated redshift bins. For each bin i, we define the distribution n i (z) by convolving n(z) with a Gaussian whose dispersion is equal to the photometric redshift uncertainty σ z (z i ), z i being the center of the ith bin (see also [60,65]).

Neglecting the shot noise error due to the intrinsic ellipticity of galaxies, the Fisher matrix for the cross-correlation spectra in eq. (5.8) is given by [75,76] 

F WL ab = f sky max = min 2 + 1 2 Tr ∂C WL ij ( ) ∂θ a C WL jk ( ) -1 ∂C WL km ( ) ∂θ b C WL mi ( ) -1 , (5.13) 
where we choose min = 10 and max = 300. Assuming Euclid-like characteristics [39] for the galaxy density and intrinsic ellipticity noise, we have checked that the chosen max corresponds to scales where the shot noise is negligible and perturbations are only mildly beyond the linear regime at small redshift. 13

ISW-Galaxy correlation

As a third probe, we consider the cross-correlation between the ISW effect of the CMB photons and the galaxy distribution in the photometric survey, which is a valuable probe of dark energy and of its clustering properties in the late-time universe (see e.g. [77,78]).

We treat the galaxy survey as for the weak lensing analysis of the previous section, i.e. we divide it into 8 bins and, for each bin, we consider the same galaxy distribution. Following [79], the projected galaxy overdensity in the bin i is given by

g i (n) = ∞ 0 dz n i (z)b g (z)δ m [z, nχ(z)] , (5.14) 
while the ISW effect is given by

∆T T ISW (n) = - ∞ 0 dz ∂ ∂z Φ + Ψ [z, nχ(z)] . (5.15)
With these definitions, the angular power spectra of the projected galaxy overdensity and of the ISW effect are respectively given by

C gal ij ( ) = ∞ 0 dz H(z) χ 2 (z) n i (z)n j (z)b 2 g (z) P m [z, k (z)] , (5.16 
)

C ISW ( ) = ∞ 0 dz H(z) χ 2 (z) ∂T Φ+Ψ ∂z (z, k) 2 P 0 (k) k=k (z)
.

(5.17)

Analogously, the angular cross-correlation spectrum between the ISW effect and galaxies reads

C ISW-gal i ( ) = - ∞ 0 dz H(z) χ 2 (z) n i (z)b g (z)T m (z) ∂T Φ+Ψ ∂z (z, k)P 0 (k) k=k (z)
.

(5.18)

The Fisher matrix for the ISW-galaxy correlation is given by (see e.g. [80,81])

F ISW-gal ab = f sky max = min (2 + 1) ∂C ISW-gal j ( ) ∂θ a Cov jk ( ) -1 ∂C ISW-gal k ( ) ∂θ b , (5.19) 
Fid. Obs. -g) and the combination of the three (Comb). 14 The parameter α T,0 is unconstrained in fiducial model I, see explanation in Sec. 6.2.1.
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and thus Ω b , is modified because H is changed. In the latter case, the evolution of ρ b does not change but that of Ω b does. These changes are independent of the other parameters and one does not need to distinguish between the three fiducial models.

For Ω c , the situation is exactly the same as Ω b when w or α M are changed, provided there is no coupling between dark energy and CDM, i.e. γ c = 0. This is apparent in the boxes corresponding to the fiducial models I and II, for which β γ = 0. By contrast, if we start from the fiducial model III, where β γ = 0, and modify either w or α M , then the deviation of Ω c with respect to its fiducial value is amplified due to the coupling γ c generated by a nonzero c s α 1/2 combined with a nonzero β γ . For the same reason, i.e. γ c = 0, we observe a deviation of Ω c when α T,0 or α B,0 are switched on, in contrast with the other fiducial models. This also explains why one sees a deviation from the fiducial model II when β γ is switched on.

The modifications of the background quantities discussed above affect the observables both indirectly, through their effect on the evolution of perturbations, and directly, because the observables explicitly depend on H and Ω m (see for instance eq. (5.11)). Therefore, a qualitative analysis of the effect of the parameters θ on the observables is rather complex and must take into account both the background evolution and the quantities Υ b,c and Υ lens . This is why we resort to a Fisher matrix analysis, which allows us to quantify the combined effects on the observables. 5.11) and its derivative with respect to redshift, ∂ z T Φ+Ψ , for the three different fiducial models (respectively I, II and III, from left to right). As ∂ z T Φ+Ψ vanishes in matter domination, we have normalized it to its value at z = 0 instead of its value as a function of the redshift.

Forecasts

Let us now discuss the results of the Fisher matrix analysis. The unmarginalized errors on the parameters are summarized in Tab. 1 while the two-dimensional contours are presented in Figs. 3, 4 and5. Red dotted, green dashed and yellow solid lines respectively correspond to galaxy clustering, weak lensing and ISW-galaxy observables. The combination of the three observables, given by summing the three Fisher matrices, is plotted in thick solid black line. The shaded blue regions in the plots correspond to instability regions, where c 2 s α < 0. 15For each observable, the Fisher matrix including all the parameters is ill-conditioned and cannot be inverted. This means that the observables do not have the constraining power to resolve the degeneracies (see e.g. [82]). Thus, when plotting the two-dimensional contours we do not marginalise over the other parameters but we fix them to their fiducial values.

As shown in Tab. 1, the forecasted constraints from the three probes for the same fiducial model are comparable, within an order of magnitude. This reflects the comparable effects on the observables, shown in Fig. 2, given our choice of k max and max for the spectroscopic and photometric surveys, respectively, which translates into a comparable number of modes for the three probes. More precisely, the effects of gravity modifications and nonminimal couplings is slightly larger on the lensing potential and ISW effect but this is compensated by a larger number of modes in the spectroscopic survey.

Specifically, for this survey the number of modes is roughly given by N modes ∼ N bins × V × (4π/3)(k max /2π) 3 , where N bins = 8 is the number of bins and V is the (average) comoving volume of the bins. Assuming k max = 0.1 hMpc -1 , this yields N modes ∼ 10 6 . For the photometric survey we have N modes ∼ N bins × f sky × 2 max ∼ 3 × 10 5 . As a rule of thumb, the relative effects of α B,0 , α M,0 and α T,0 on the three observables are typically of the order of O(0.1) at redshift z ∼ 1, see Fig. 2. Thus, one expects to be able to constrain these parameters at the level of O(0.1) -1 × N -1/2 modes , i.e. few percents (which is improved by one order of magnitude for fiducial III, where the effects on the observables are larger), if all the other parameters are fixed. The ISW-galaxy correlation is limited by cosmic variance but due to the larger sensitivity of ∂ z T Φ+Ψ to the modifications of gravity, it sometimes provides constraints comparable to those from the other probes. 16The effect of β 2 γ is typically of the order of a few at redshift z ∼ 1 and this parameter can be constrained at a level of a few × 10 -4 for galaxy clustering and weak lensing. Given the smaller effect on the ISW and the smaller number of modes for the photometric survey, the ISW-galaxy correlation provides the weakest constraints on this parameter. We also notice that the degeneracy of this parameter with the others is rather small.

Fiducial I: ΛCDM

Let us study the constraining power of the observables around a ΛCDM model. The errors are reported in Tab. 1 and the 68% CL contours are shown in Fig. 3. In Tab. 2 we report, for each Fisher matrix, the eigenvector associated to the maximal eigenvalue (called here maximal eigenvector), which provides the direction maximally constrained in parameter space, i.e. the one that minimizes the degeneracy between parameters.

At first view, the parameter α T,0 seems to contribute to the growth of perturbations through the combinations Υ b and Υ c , defined in (3.18), and to the lensing potential through the combination Υ lens , given in (3.27). However, it turns out that these combinations in fact do not depend on α T for this choice of fiducial model. Table 2: First eigenvector of the Fisher matrices, for the basis {w, α B,0 , α M,0 , α T,0 , β 2 γ }, with the maximum eigenvalue, corresponding to the combinations of parameters that are maximally constrained by experiments. The coefficients are normalized by the maximum component and rounded to three significant digits.

More precisely, when w = -1 and β γ = 0, one finds that

Υ b,c = α T + β 2 ξ = α T + 2ξ 2 c 2 s α , c 2 s α = -2(1 + α B )ξ + 3Ω m α B -3 αB H . (6.1)
When one goes away from the fiducial model by switching on the parameter α T , while all the other parameters keep their fiducial value, one gets β 2 ξ = -α T so that the dependence on α T vanishes in Υ b,c . It is immediate to check that α T disappears in Υ lens for the same reason. Thus, the parameter α T,0 cannot be constrained by a Fisher matrix analysis for this choice of fiducial and will be dropped from the analysis in this subsection. Correspondingly, the component in the α T,0 direction of the maximal eigenvectors vanishes, see Tab. 2.

Let us now examine the situation when α B is switched on while all the other parameters take their fiducial value. The Υ combinations are then given by

Υ b,c = 2α 2 B c 2 s α , Υ lens = 4α 2 B c 2 s α , (6.2) with c 2 s α = -(2 + 3Ω m )α B -2α 2 B . (6.3)
For small values of α B , we thus find

Υ b,c - 2 2 + 3Ω m α B , Υ lens - 4 2 + 3Ω m α B . (6.4)
Thus, one expects the impact of α B to increase as Ω m diminishes, which is in agreement with the results plotted in Fig. 2. When one changes α M from its fiducial value (the other parameters keeping their fiducial value), one finds Υ b,c = Υ lens = α M . (6.5)

As seen in Fig. 2, the effect of α M and α B on the growth of structures (i.e. on f eff and T m ) is roughly the same in magnitude but opposite in sign, which is in agreement with the relations found in (6.4) and (6.5). This qualitatively explains the degeneracy observed in the α B,0 -α M,0 panel of Fig. 3 for galaxy clustering and the corresponding components of the maximal eigenvectors in Tab. 2. By contrast, the degeneracy between α B and α M observed for weak lensing does not seem to agree with the values of Υ lens in (6.4) and (6.5). The reason for this discrepancy is that the background is also modified when α M = 0, as discussed earlier, whereas the background for α B = 0 is the same as the fiducial one. Since the transfer function T Φ+Ψ depends not only on the coefficient Υ lens but also on the background, the degeneracy is more complex. In fact, the background modification also affects the matter growth but more modestly than for weak lensing.

To conclude, let us note that a large region of the observationally constrained parameter space is forbidden by the stability requirements, i.e. c 2 s α > 0. 

Fiducial II: Braiding

For this fiducial model, we have the value αB,0 = -0.01, where the negative sign is to satisfy the stability conditions. This corresponds to dark energy models where the kinetic term of π comes from a mixing with gravity [4,6], which are sometimes called braiding models [83,84]. The unmarginalized errors are reported in Tab. 1 and the 68% CL contours are shown in Fig. 4. Note that the allowed parameter space is much larger than in the previous fiducial because for α B,0 = 0 the null energy condition can be violated without instabilities [4].

In this case, Υ b,c and Υ lens depend on α T : their partial derivatives with respect to α T on the fiducial model are given by

∂Υ b,c ∂α T = 9Ω 2 m (3Ω m + 2 + 2α B ) 2 , ∂Υ lens ∂α T = 3Ω m (3Ω m -2 -2α B ) (3Ω m + 2 + 2α B ) 2 , (6.6) 
which confirms that this parameter must be included in the analysis. For this fiducial, the plane α B,0 -α T,0 in Fig. 4 has the same background evolution as ΛCDM. Therefore, all the effects are controlled by Υ b,c and Υ lens , so that the degeneracies can in principle be understood analytically from their expressions in terms of α B,0 and α T,0 . For instance, for small α B,0 and α T,0 one finds

Υ b,c 3α B,0 (Ω m -1) (2α B,0 + (2 -3Ω m ) α T,0 ) α B,0 (6Ω m + 4) + 4α T,0 (1-Ω m ) (0.54α T,0 -0.6∆α B,0 ) , (6.7)
where in the last equality we have expanded at linear order for small 1 -Ω m and used α B,0 = -0.01 + ∆α B,0 . This explains the degeneracy between ∆α B,0 and α T,0 observed in the growth. By the same procedure we find Υ lens (1 -Ω m ) (0.18α T,0 -1.2∆α B,0 ), which explains why ∆α B,0 is more constrained than α T,0 by lensing observations.

Similarly to fiducial I, the effect of changing α B,0 and α M,0 on the growth of structures is roughly the same in magnitude and opposite in sign. This effect can be qualitatively understood by expanding Υ b,c for small ∆α B,0 and α M,0 , analogously to what was done in Sec. 6.2.1. This degeneracy cannot be seen for the lensing, because the modifications of the background also play a role.

Fiducial III: Interacting

In this model we have a nonzero fiducial value for the parameter β γ ( βγ = -0.03), which implies an active coupling between CDM and dark energy. The unmarginalized errors are reported in Tab. 1 and the 68% CL contours are shown in Fig. 5. Notice that the constraints for this fiducial model are generally stronger than those for models I and II (see below). As one can verify in Fig. 2, this is due to the enhancement of the effects on the observables, caused by the nonminimal coupling.

In this case, α T,0 must be included in the analysis, because Υ b,c and Υ lens depend on α T,0 through the term β ξ β γ . Indeed, let us examine the case when α T,0 and α M,0 are switched on while w = -1 and α B,0 = 0. Using c s α

1/2 = 2(α M -α T ) = - √ 2β ξ (we assume α M > α T to satisfy the stability condition) one finds Υ b = α M - √ α M -α T β γ ω c b c , Υ c = α M - √ α M -α T β γ (1 + ω c b c ) + β 2 γ (6.8) and Υ lens = α M - √ α M -α T β γ b c ω c . (6.9) 
However, the degeneracies observed in Fig. 5, for example in the plane α M,0 -α T,0 , cannot be understood directly from the above expressions because, as we saw in Fig. 1, the background is modified, not only when α M (or w) is changed but also when α T is changed. Another notable degeneracy appearing in Fig. 5 is between w and the parameters -α T,0 or α M,0 . This can be partially understood from the fact that w appears in the combination where we have used η -w(1 -Ω m ) in eq. (A.4) for the first equality and Ω m,0 1/3 in the last one. However, background effects play an important role as well.

c 2 s α 3(1 + w)(1 -Ω m ) -2(α M -α T ) = 3(1 -Ω m ) (1 + w -α M,0 + α T,0 ) , (6.10) 
The term β ξ β γ in eqs. (3.18) and (3.27) translates here as -√ α Mα T β γ , see eq. (6.8).

This term encodes the new effects that arise when both modifications of gravity and nonminimal couplings are considered, as emphasized in [20]. These effects explain the qualitative difference, in the size and shape, between the contours of fiducial III (Fig. 5) and those of the other two fiducial models. Not only are the constraints tighter by an order of magnitude in this case, but also the maximal eigenvectors of the Fisher matrices point in different directions, see Tab. 2.

Summary and conclusions

In this paper, we have investigated the consequences of both modifying gravity and allowing a coupling between CDM and dark energy. If the propagation speed of dark energy is not too small, one can rely on the quasi-static approximation because the small scale fluctuations of dark energy have the time to relax to the quasi-static regime [38]. In this case, the parameters describing deviations from ΛCDM, which are usually four for Horndeski-like theories [3,9,10], reduce to three: α B , α M and α T [20]. Moreover, the coupling of a fluid of CDM particles conformally and disformally coupled to dark energy, can be described by a single parameter γ c , see eq. (2.24). The dynamics of matter perturbations also simplifies. In particular, as discussed in Sec. 3, it is described by a system of two coupled equations, eqs. (3.15) and (3.16), respectively for baryons and CDM. In these equations, the four parameters above enter in three combinations (see eq. (3.18)): α T , β ξ (a combination of α B , α M and α T ) and β γ , the latter describing the nonminimal coupling of CDM perturbations. As explained in more details in Sec. 3, these distinctions are frame-dependent, as one can verify using the relations (2.10) (see also [20] for more details).

The growth of fluctuations is usually described in terms of the growth rate, which modulates the galaxy power spectrum in redshift space and can thus be measured with redshift space distortions. We have computed the effective growth rate for galaxies made of baryons and nonminimally coupled CDM, in the presence of modifications of gravity. This is the first general treatment of this kind, to our knowledge.

Deviations from the ΛCDM model can also affect the propagation of light through their effect on the scalar Weyl potential, i.e. the sum of the two metric potentials in Newtonian gauge. A fourth parameter, β B (proportional to α B ), together with the three parameters above, is necessary to fully describe this effect, which can be measured in the weak lensing and ISW effect (see eq. (3.27)).

As discussed in Sec. 4, the evolution of perturbations depends on the time dependence of the Hubble rate and of the parameters described above. In the present work we have taken the Hubble rate to be the same as in wCDM. Moreover, the parameters α B , α M and α T grow as 1 -Ω m , so that modifications of gravity disappear in matter domination, while the nonminimal coupling remains active at all times, i.e. β γ = constant. We have studied the constraining power of a future redshift survey with Euclid specifications on the parameters w, α B,0 , α M,0 and α T,0 .

More specifically, in Sec. 5 we computed the Fisher matrix of the galaxy power spectrum, the weak lensing power spectrum as well as the correlation spectrum between the ISW effect and the galaxy distribution. We have considered five parameters, namely w (describing the background evolution), the current values of α B , α M and α T , and the constant nonminimal coupling parameter β 2 γ , and assumed three fiducial models: (I) ΛCDM, (II) a braiding model with α B,0 = -0.01 and (III) an interacting model with β γ = -0.03.

The unmarginalized 68% CL errors on these parameters are reported in Tab. 1 in Sec. 6. For the current values of α B , α M and α T , the errors are of the order of 10 -2 -10 -3 for fiducial models I and II and an order of magnitude better for the fiducial model III. The error on β 2 γ is of the order of 10 -4 for all fiducial models. Given the large number of free parameters and the degeneracies among them, the Fisher matrices cannot be inverted to compute the marginalized contours. Therefore, we have shown the two-dimensional 68% CL contours in Figs. 3, 4 and5-together with the excluded parameter space from stability conditions-by setting all the other free parameters to their fiducial values. Moreover, we have provided a discussion on the origin of the degeneracies and the constrained directions in parameter space in Tab. 2. As shown by the contour plots, all the three observational probes are complementary in breaking degeneracies in parameter space.

This analysis can be generalized in several directions. First, the background cosmological parameters should be included in the analysis as nuisance parameters. In this case, it is important to take as well into account other cosmological data such as the CMB, the baryon acoustic oscillations and the supernovae Type Ia. Another direction is exploring alternative parametrizations of the background evolution and/or of the time dependence of the parameters α B , α M , α T and β γ . For instance, assuming that the α's vanish at early times, as we did, considerably limits the effect of dark energy on certain observables such as the CMB or the matter power spectrum. On the other hand, one could assume other equally motivated time dependencies (even different for different parameters), which are expected to lead to larger effects in the observables. The final goal is to extend this analysis beyond the quasi-static approximation to include larger scales and other species, such as neutrinos and photons. Such a program has been initiated with the development of the publicly available Boltzmann codes EFTCAMB [85] (see [86] for a recent application to Horava gravity) and COOP [87]. In this case, at least one more parameter, α K , must be considered in the analysis. On the other hand, one may expect that some of the degeneracies found in this paper can be resolved by the scale dependence appearing once the full dark energy dynamics is taken into account. We leave this for future work.

observation. Let us discuss how these are determined. When w = -1, these are chosen as the base ΛCDM best fit values of the Planck TT+lowP parameters [66]. When w = -1, we determine the initial conditions for the background matter components by requiring the comoving distance17 

χ(z in ; Ω m,0 , w) = z in 0 dzH -1 (z; Ω m,0 , w) (A.1)
to be the same as the one of the ΛCDM model. More precisely, for each value of w, we associate the parameter Ω m,0 (w) defined by the relation

χ(z in ; Ω m,0 (w), w) = χ(z in ; Ω Planck m,0 , w = -1) (A.2)
where we have on the right hand side the standard ΛCDM value, evaluated by using the value Ω Planck m,0

= Ω Planck b,0

+ Ω Planck c,0 = 0.02222h -2 + 0.1197h -2
, with h = 0.6731, which corresponds to the estimate deduced from the measurements by the Planck satellite [66]. We take z in = 100, deep in the matter dominated era, when the effects of dark energy are negligible.

A.2 The combination c

s α 1/2
Here we provide details on the calculation of c s α 1/2 . For convenience we define the parameter

η ≡ 1 3 3 + 2 Ḣ H 2 = -w (1 -Ω m,0 )a -3w Ω m,0 + (1 -Ω m,0 )a -3w , (A.3) 
which enters naturally in eqs. (2.25) and (2.26). For α M = γ c = 0, the fraction that appears on the right hand side reduces to the energy density fraction of dark energy, 1 -Ω m , but this is not the case in general. From eq. (2.14), the combination c 2 s α reads

c 2 s α = (1 + α B )(3 -3η -2ξ) -3Ω m -2 αB H , (A.4) 
where η and ξ are defined above, respectively in eqs. (A.3) and (3.12). By using eqs. (4.2) and (4.4) and the background evolution equations (2.25) and (2.26) to evaluate αB in this expression, this can be written as

c 2 s α = 3(1 -Ω m -η)+α B 1 -3η 1 + 2 Ω m 1 -Ω m -2(α M -3γ c ω c ) Ω m 1 -Ω m -2α 2 B -2α T 1 + α B 2 + 2α M (1 + α B ) . (A.5)
Finally, one can replace γ c by its expression (4.5) given in terms of c s α 1/2 . The equation (A.5) is thus a quadratic equation for X ≡ c s α 1/2 , of the form

X 2 -BX -C = 0, (A.6) where B = √ 2 ω c Ω m 1 -Ω m β γ α B (A.7) and (3.16) read δb + (2 + 3γ b )H δb = 3 2 H 2 Ω m (1 + Υ b )δ m , (B.1) δc + (2 + 3γ c )H δc = 3 2 H 2 Ω m (1 + Υ c )δ m , (B.2) 
with

Υ b = α T + β 2 ξ + (β 2 γ b + 2β γ b β ξ )ω b b b + [β γ b β γc + β ξ (β γ b + β γc )] ω c b c , (B.3) Υ c = α T + β 2 ξ + [β γ b β γc + β ξ (β γ b + β γc )] ω b b b + (β 2 γc + 2β γc β ξ )ω c b c . (B.4)
For the case discussed in the main text of minimally coupled baryons, i.e. β γ b = 0, one recovers the expressions in eq. (3.18). Under a frame transformation (2.8), ω I = Ω I /Ω m does not change. Moreover, in the quasi-static limit the density contrasts δ I does not change either (the explicit transformations are discussed in [20]). In particular, this implies that bI = b I . Therefore, by using the transformations of the α's given in eq. (2.10), γ I given in eq. (3.19) and those of the β's given in eq. (3.20), one finds the expressions for Υ b,c in the frame gµν , 

Υb = (1 + Υ b )(1 + α D ) -1 , Υc = (1 + Υ c )(1 + α D ) -1 . (B.

Introduction

A key goal of current and future cosmic surveys is to constrain or possibly detect deviations from the standard ΛCDM model, which are expected if the origin of the present accelerated expansion is not a cosmological constant, but a dynamical field or a modification of General Relativity (see e.g. [1,2]). To deal with the fact that there are many dark energy and modified gravity models (see for instance [3,4]), effective approaches that describe these deviations for a large number of models in terms of a few time-dependent parameters have been proposed in the literature [5][6][7][8][9][10][11][12][13][14][15][16]. In most cases, these approaches are limited to a description of cosmological perturbations around a Friedmann-Lemaître-Robertson-Walker (FLRW) background in the linear regime (see however [17,18] for some nonlinear aspects), applicable to scales above ∼ 10Mpc, where deviations from General Relativity are not yet well tested.

This work focuses on the so-called Effective Theory of Dark Energy. Formulated for single scalar field models-i.e. models where the time diffeomorphisms are broken while leaving the spatial ones preserved-in this approach the unitary (or uniform field) gauge action is given as the sum of all possible geometrical elements constructed from the metric and its derivatives that are invariant under the preserved diffs, i.e. the spatial ones [19,20]. It has been derived and studied for minimally and nonminimally coupled dark energy models, respectively, in [5] and [6,8] (see [10,21,22] for reviews). When restricting to the lowest order in derivatives, the final second-order action contains five free functions of time that parametrize any deviation from ΛCDM. As shown in [8], four of these functions describe cosmological perturbations of effective theories of dark energy or modified gravity within the Horndeski class, i.e. those with quadratic gravitational action with the same structure as Horndeski theories [23][24][25]. This description has been reformulated in [26] in terms of dimensionless functions that clearly parametrize deviations from General Relativity. The fifth function, denoted as α H , describes scalar field models extending the Horndeski class, such as, e.g., the theories "beyond Horndeski" proposed in [27,28] (see [29] for an earlier proposal of theories beyond Horndeski). The Effective Theory formulation has been used to explore the observational consequences of deviations from ΛCDM (see for instance [30][31][32][33][34][35][36][37][38][39][40][41]). In this direction, a few Einstein-Boltzmann solvers have been recently developed and employed [42][43][44][45][46][47].

References [6,8] assumed that all matter species are minimally coupled to the same metric, which we call Jordan frame metric for convenience. In general, however, there is no reason to impose this restriction. The universality of couplings is very well tested on Solar System scales [48] but on cosmological scales constraints are much weaker and different species could have distinct couplings to the gravitational sector. If matter is universally but nonminimally coupled to the gravitational sector, in most cases it is convenient to perform a field redefinition of the metric that brings the system into the Jordan frame, where matter is minimally coupled. In general, this frame transformation depends on the scalar field and its derivatives and, as long as it is regular and invertible, it cannot change the physics (see e.g. [49]). The advantage of using the Jordan frame to derive predictions is that only the gravitational sector is non-standard; thus, one does not need to care about modifications of non-gravitational forces, which would otherwise greatly complicate the analysis.

Along this line of thought, recently Ref. [50] extended the effective approach of [6,8] to allow for distinct conformal and disformal couplings of matter species to the gravitational sector. The treatment was restricted to effective theories within the Horndeski class and to conformal and disformal factors that depend only on the scalar field (not on its gradients). In this case, the full quadratic action depends on the four functions describing the gravitational sector and on two extra functions per species, describing the coupling to the scalar. However, two of these functions are redundant, because the structure of the action is preserved under transformations of the reference metric. This is expected, as it was shown that the structure of the Horndeski Lagrangians is preserved under disformal transformations with both conformal and disformal coefficients independent of the scalar field gradient [51].

The phenomenological aspects of general modifications of gravity described by Ref. [50] was studied in Ref. [35], where constraints on the effective descriptions were derived from three observables: the galaxy and weak-lensing power spectra and the correlation between the Integrated Sachs-Wolfe (ISW) effect and the galaxy distribution. However, the study was restricted to the quasi-static limit, which is reliable on short enough scales and at late times, once the oscillations of the scalar fluctuations have been damped by the expansion of the universe. While this approximation is fairly good for current and future galaxy and weak lensing surveys,1 it fails on large scales or high redshifts.

In this article we go one step forward, in two directions. First, in Sec. 2 we extend the treatment of Ref. [50] and include in the gravitational action the fifth time-dependent function, α H , describing models extending the Horndeski class. As shown in [27,28], the structure of the Lagrangian of theories beyond Horndeski is preserved under a disformal transformation of the metric with disformal coefficient that depends as well on the gradient of the scalar field, i.e. of the form gµν = C(φ)

g µν + D(φ, X)∂ µ φ∂ ν φ , X ≡ g µν ∂ µ φ∂ ν φ . (1.1) 
Thus, in the following we consider the possibility that matter couples to a Jordan frame metric of this form. 2 In particular, we denote the conformal and disformal coefficients of the nonminimal coupling of matter respectively as C m (φ) and D m (φ, X) (which can be distinct for different species).

As shown in Sec. 2, the dependence of the disformal coupling on the derivative of the field introduces a kinetic mixing between the scalar and matter, which hereafter we call Kinetic Matter Mixing (KMM), that has rather unique observational effects, as discussed below. To parametrize this direct kinetic coupling we introduce an additional function of time,

α X,m = X 2 C m ∂D m ∂X , (1.2) 
where the right-hand side is evaluated on the background. Thus, the full quadratic action depends now on five functions describing the gravitational sector and three functions per species, describing the matter couplings. The structure of this action is preserved under transformations of the reference metric of the form (1.1). Remarkably, α X,m is transformed into the beyond Horndeski parameter α H under a transformation which sets to zero the disformal coupling. Since KMM is a truely physical effect, it is possible to define a combination of these two parameters, proportional to (α Hα X,m ) 2 (c.f. eq. (2.17) below), that encodes in a frame-independent way the degree of kinetic mixing between matter and the scalar. While in Sec. 2 we assume for simplicity that matter couples universally to the same Jordan frame metric, in App. A we extend this treatment to multiple species with distinct couplings. Taking into account the invariance under the disformal transformation (1.1), which reduces the number of independent functions of time by three, the whole system depends on a total of 2 + 3N S independent functions of time, where N S is the number of matter species.

In the rest of the paper we assume that matter is universally coupled to the gravitational sector and work in the Jordan frame, where the coupling is minimal. In this frame, KMM is encoded in the beyond Horndeski parameter α H . We then extend the treatment of Ref. [35] and explore the phenomenological consequences of general late-time modifications of gravity including beyond Horndeski theories (see also [58,59] and [60][61][62][63] for an earlier study of the observational consequences of beyond Horndeski theories, respectively in cosmology and astrophysics). In Sec. 3, we focus on short scales. In particular, we derive the eigenmodes of propagation of the scalar field and matter, which in the presence of a nonvanishing α H are mixed by their kinetic coupling. Moreover, we obtain the evolution equations in the quasi-static regime, which govern the dynamics once the oscillating modes have been damped by the expansion. Appendix B contains the full action of perturbations in Newtonian gauge, derived for completeness, while the transition between the oscillating regime and the quasi-static limit is discussed in App. C.

In Sec. 4 we go beyond the quasi-static approximation and explore the full range of cosmological scales using the linear Einstein-Boltzmann solver of Cosmology Object Oriented Package (COOP) [47], 3 which solves cosmological perturbations including very general deviations from ΛCDM in terms of the Effective Theory of Dark Energy description [10]. In particular, assuming the background expansion history of ΛCDM, we compute the matter power spectrum, the Cosmic Microwave Background (CMB) anisotropies angular power spectrum, and the CMB lensing potential angular spectrum in the presence of KMM, for a non vanishing α H parameter. As we will see, on "short" scales, i.e. for k 10 -3 h Mpc -1 , the quasi-static approximation provides the correct amplitude for the linear growth factor, which is scale independent and suppressed with respect to the ΛCDM case. On larger scales, we compute the linear matter growth analytically using a perturbative expansion in α H that confirms the numerical results. To contrast with the effects of α H , in App. D we compute the same observables in the case of a kinetic mixing between the scalar field and gravity, the so called kinetic braiding [64,65] (see [5,19] for an earlier study), and we find agreement with the results of Ref. [45]. We compare these results with the quasi-static approximation and a perturbative expansion in the braiding parameter. In contrast to kinetic braiding or other modifications of gravity within the Horndeski class, the exchange of fifth force in KMM suppresses the power of matter perturbations on redshift-survey scales. In Sec. 4.3, we study the possibility that the lack of power measured in the large scale structures and in tension with that inferred from the CMB anisotropies observed by Planck [66,67] can be explained by the KMM special signature. Finally, we conclude in Sec. 5.

Effective Theory of Dark Energy with Kinetic Matter Mixing

In this section we extend the treatment of [50], limited to Horndeski theories, and develop the unifying framework for dark energy and modified gravity that allows distinct conformal-disformal couplings of matter species to the gravitational sector, including beyond Horndeski theories. We show that the quadratic beyond Horndeski operator arises when transforming to the Jordan frame a disformal coupling of matter species which depends on the kinetic energy of the scalar field. In this setup, we derive the conditions to avoid ghost and gradient instabilities and discuss the disformal/conformal transformations of the gravitational and matter action. The reader only interested in the phenomenological aspects of KMM is invited to skip this section and go directly to Sec. 3, not before having retained eq. (2.5) as the second order action describing the gravitational sector.

Gravitational and matter actions

In the present work, following [6,8] we assume that the gravitational sector is described by a four-dimensional metric g µν and a scalar field φ. As usual, we choose a coordinate system such that the constant time hypersurfaces coincide with the uniform scalar field hypersurfaces. In this gauge, referred to as unitary gauge, the metric can be written in the ADM form,

ds 2 = -N 2 dt 2 + h ij dx i + N i dt dx j + N j dt , (2.1) 
where N is the lapse and N i the shift. In the following, a dot stands for a time derivative with respect to t, and D i denotes the covariant derivative associated with the three-dimensional spatial metric h ij . Spatial indices are lowered and raised with the spatial metric h ij or its inverse h ij , respectively.

In the unitary gauge, a generic gravitational action can be written in terms of geometric quantities that are invariant under spatial diffeomorphisms [19,20]. Expressed in the ADM coordinates introduced above, these geometric quantities are the lapse N , the extrinsic curvature of the constant time hypersurfaces K ij , whose components are given by

K ij = 1 2N ḣij -D i N j -D j N i , (2.2) 
as well as the 3d Ricci tensor of the constant time hypersurfaces R ij and, possibly, spatial derivatives of all these quantities. Thus, the gravitational action is generically of the form

S g = d 4 x √ -g L(N, K ij , R ij , h ij , D i ; t) . (2.3) 
To study linear perturbations, one needs to expand the action at second order around a homogeneous background. For the background geometry, we assume a spatially flat FLRW metric, ds 2 = -dt 2 + a 2 (t)d x 2 . Its dynamics is governed by the background evolution equations and we refer the reader to Refs. [8,10,50] for details on their derivation. We can now expand the gravitational action up to second order in perturbations. Fixing the background gauge N = 1, these are

δN = N -1 , δK ij = K ij -Hh ij , (2.4) 
as well as R ij , which is already a perturbation since its background value vanishes. It is convenient to introduce the time-dependent parameters α K , α B , α T [26] and α H [28] in terms of which the second-order gravitational action reads

S (2) g = d 3 xdt a 3 M 2 2 δK i j δK j i -δK 2 + (1 + α H )RδN + (1 + α T ) δ 2 √ hR/a 3 + α K H 2 δN 2 + 4α B HδKδN , (2.5) 
where δ 2 denotes taking the expansion at second order in perturbations. Another useful parameter is the variation of the effective Planck mass squared M 2 ,

α M ≡ d ln M 2 d ln a . (2.6) 
For the details on the derivation of the above action and the explicit definitions of the parameters α K , α B , α M , α T and α H in terms of first and second derivatives of L with respect to its arguments, we refer again the reader to Refs. [8,10,50].

The gravitational action must be supplemented by a matter action S m ,

S m = d 4 x -ǧ L I ǧµν , ψ , (2.7) 
where ǧµν is the Jordan-frame metric. In order to describe dark energy and modified gravity scenarios where the scalar and matter can be kinetically mixed, we assume that this metric is conformally and disformally related to the gravitational metric g µν by

ǧµν = C (φ) m (φ)g µν + D (φ) m (φ, X)∂ µ φ ∂ ν φ . (2.8) 
Contrarily to the disformal coupling presented in [50], here D

m can also depend on X, to allow for a kinetic mixing. In Appendix A we generalize to the case where matter is made of several species, each of which is coupled to a different metric.

To conclude, we notice that the variation of the matter action S m with respect to the metric g µν defines the energy-momentum tensor, according to the standard expression

T µν ≡ 2 √ -g δS m δg µν . (2.9) 
This definition applies even if matter is minimally coupled to a metric ǧµν that differs from g µν . In the homogeneous case, the energy-momentum tensor depends only on the energy density ρ m ≡ -T 0 0 and the pressure p m ≡ T i i /3.

Matter couplings and stability conditions

To discuss the stability and determine the propagation speed of dark energy perturbations, one must also include quadratic terms that come from the matter action, because the latter depends on the gravitational degrees of freedom. In order to do so, we need to take into account that matter is minimally coupled to a metric ǧµν defined in eq. (2.8).

In unitary gauge, this definition reads

ǧµν = C m (t)g µν + D m (t, N )δ 0 µ δ 0 ν , (2.10) 
with

C m (t) = C (φ) m φ(t) , D m (t, N ) = φ2 (t)D (φ) m φ(t), -φ(t) 2 /N 2 . (2.11) 
Then, we introduce the parameters

α C,m ≡ Ċm 2HC m , α D,m ≡ D m C m -D m , α X,m ≡ - 1 2C m ∂D m ∂N , (2.12) 
where the right-hand sides are evaluated on the background. The first two parameters in the above equations, α C,m and α D,m , were introduced in Ref. [50].

Combining the quadratic action for matter with eq. (2.5), one can extract the dynamics of the gravitational scalar degree of freedom and the matter ones. The explicit calculation in the case of perfect fluids is presented in Appendix A. The absence of ghosts is guaranteed by the positivity of the matrix in front of the kinetic terms. For the gravitational scalar degree of freedom, this condition is given by

α ≡ α K + 6α 2 B + 3α eff D,m Ω m ≥ 0 , (2.13) 
where Ω m is the standard (time-dependent) dimensionless density parameter,

Ω m ≡ ρ m 3M 2 H 2 , (2.14) 
and we define the combination

α eff D,m ≡ α D,m (1 + α X,m ) 2 + α X,m (2 + α X,m ) + 1 2C m ∂ 2 D m ∂N 2 .
(2.15)

Thus, the dependence on X in the disformal coupling affects the ghost-free condition.

Diagonalization of the kinetic matrix yields the following dispersion relation (see Appendix A for a generalization to multiple species)

(ω 2 -c 2 s k 2 )(ω 2 -c 2 m k 2 ) = λ 2 c 2 s ω 2 k 2 , (2.16) 
where the parameter λ 2 on the right-hand side is defined as

λ 2 ≡ 3 αc 2 s 1 + (1 + α D,m )w m Ω m (α H -α X,m ) 2 .
(2.17) This is the physically relevant parameter measuring the degree of KMM (as expected it is frame independent, see below). The c 2 s appearing above is the sound speed of dark energy for λ = 0, given by

c 2 s = - 1 α 2(1 + α B ) ξ + (1 + α H ) Ḣ H 2 - αH H + 2 αB H + 3(1 + α H ) 2 [1 + (1 + α D,m )w m ] Ω m , (2.18) 
where for convenience we have defined

ξ ≡ α B (1 + α T ) + α T -α M -α H (1 + α M ) . (2.19) 
For α H = 0, this coincides with the parameter ξ first defined in [50]. The above dispersion relation yields the two speeds of propagation

c 2 ± = 1 2 c 2 m + c 2 s (1 + λ 2 ) ± c 2 m + c 2 s (1 + λ 2 ) 2 -4c 2 m c 2 s . (2.20) 
Equations (2.16) and (2.20) generalize the dispersion relations and speeds of propagation derived in [27,59,68] for α X,m = 0. The effect of KMM appears in the presence of the coupling λ 2 = 0 and the propagation modes are mixed states of matter and scalar. In general, absence of gradient instabilities is guaranteed by the usual conditions c 2 ± ≥ 0. Finally, when α X,m = α H we recover the usual results, i.e. c 2 + = c 2 s and c 2 -= c 2 m for c 2 s > c 2 m .

(∂φ) 2 -dependent disformal transformations

As mentioned earlier, there is some arbitrariness in the choice of the metric g µν that describes the gravitational sector. Let us thus see how the description is modified when the reference metric undergoes a disformal transformation, of the form

g µν → gµν = C (φ) (φ)g µν + D (φ) (φ, X)∂ µ φ∂ ν φ , (2.21) 
which in unitary gauge corresponds to

g µν → gµν = C(t)g µν + D(t, N )δ 0 µ δ 0 ν . (2.22) 
The effect of this transformation on the ADM variables, on the background quantities and on the linear perturbations has been studied in detail in [28,50]. Here, we present the main consequences on the parametrization of the gravitational sector.

In analogy with (2.12), it is convenient to introduce the dimensionless time-dependent parameters

α C ≡ Ċ 2HC , α D ≡ D C -D , α X ≡ - 1 2C ∂D ∂N , (2.23) 
which characterize the conformal and disformal parts of the above metric transformation. 4Let us first see how the gravitational action (2.5) changes under the transformation (2.22). As shown in Ref. [28], the structure of the combination of the Horndeski and beyond Horndeski Lagrangians is preserved under a disformal transformation with an X-dependent disformal function D. Indeed, one can check that (2.5) maintains the same structure with the time-dependent coefficients in the action transforming as

M 2 = M 2 C √ 1 + α D (2.24) and αK 
= α K + 12α B α CDX -6α 2 CDX + 3Ω m (1 + α X,m )α eff D (1 + α CDX ) 2 , αB = 1 + α B 1 + α CDX -1 , αM = α M -2α C 1 + α C - αD 2H(1 + α D )(1 + α C ) , αT = (1 + α T )(1 + α D ) -1 , αH = α H -α X 1 + α X , (2.25) 
where

α CDX ≡ (1 + α C )(1 + α D )(1 + α X ) - 1 
and, in analogy with the definition (2.15), we have introduced

α eff D ≡ α D (1 + α X ) 2 + α X (2 + α X ) + 1 2C ∂ 2 D ∂N 2 . (2.26) 
We can use these transformations, which depend on the three arbitrary functions α C , α D and α X , to set to zero any three of the parameters αa above. Finally, the conformal and disformal coefficients associated with the respective matter Jordan frame metrics are modified according to

αD,m = α D,m -α D 1 + α D , αC,m = α C,m -α C 1 + α C , αX,m = α X,m -α X 1 + α X . (2.27) 
These transformations can be straightforwardly extended to the case of different couplings to different species, for instance by simply replacing αD,m by αD,I and α D,m by α D,I . One can verify that the stability condition (2.13) is frame independent. In particular, α transforms as α

= α (1 + α CDX ) 2 .
(2.28)

It is also straightforward to check that all the propagation speeds, i.e. of tensor, scalar and matter fluctuations, transform in the same way and that their signs remain unchanged,

c2 T = (1 + α D )c 2 T , c2 s = (1 + α D )c 2 s , c2 m = (1 + α D )c 2 m . (2.29) 
Finally, using these expressions and those in [50] it is possible to show that the parameter λ 2 defined in eq. (2.17), which measures the degree of KMM, is frame independent as expected.

Short-scale dynamics

In this section we discuss the short-scale dynamics of cosmological perturbations. We assume universal coupling of matter species and, without loss of generality, minimal coupling. Thus, the action describing perturbations is given by (2.5), where the gravitational metric g µν is the Jordan frame metric. We focus on the scalar fluctuations and we employ the usual Stueckelberg procedure [20], t → t + π(t, x), to move from the unitary gauge to the Newtonian gauge, whose metric for a flat FLRW universe reads

ds 2 = -(1 + 2Φ)dt 2 + a 2 (1 -2Ψ)d x 2 . ( 3.1) 
On short scales, the gradients of the scalar field φ support an oscillatory regime. In the presence of KMM, i.e. λ 2 = 0, the oscillations are also shared by matter, even when matter is made of nonrelativistic species with no pressure gradients. We first describe these oscillations and their normal modes in the next subsection, while in Sec. 3.2 we discuss the late-time quasi-static regime occurring after the oscillations decay.

Oscillatory regime and normal modes

In this subsection, to describe matter we use a derivatively coupled scalar field σ, with action

S m = d 4 x √ -g P (Y ), Y ≡ g µν ∂ µ σ∂ ν σ , (3.2) 
and we define the background energy density and pressure and the matter sound speed respectively as

ρ m = -2 σ2 0 P Y (Y ) -P (Y ), p m = P (Y ) , c 2 m ≡ P Y P Y -2 σ2 0 P Y Y . (3.3) 
We also introduce the energy density contrast and the velocity potential respectively as

δ m ≡ δρ m ρ m , v m ≡ - δσ σ0 . (3.4) 
For completeness, the full second-order actions describing the gravitational and matter sectors in Newtonian gauge in this case are given in Appendix B, eqs. (B.1) and (B.2).

To study the normal modes of oscillations we consider the kinetic limit, i.e. the limit where the spatial and time derivatives are larger than the expansion rate H. In this case, it is possible to find a redefinition of the metric perturbations that de-mixes the new metric variables from the scalar field π and removes the higher derivative term from the gravitational action. This is explicitly given by [28] 

Φ E ≡ 1 + α H 1 + α T Φ + 1 + α M 1 + α T - 1 + α B 1 + α H Hπ - α H 1 + α T π , Ψ E ≡ Ψ + α H -α B 1 + α H Hπ . (3.5) 
Using these metric variables in the quadratic action and the definition (3.4) for v m , and writing explicitly only the terms that are quadratic in derivatives, neglecting those that are irrelevant in the kinetic limit, one finds the following action,

S kinetic = d 4 xa 3 M 2 -3 Ψ2 E + 1 + α T a 2 (∇Ψ E ) 2 -2∇Φ E ∇Ψ E + α H 2 2(1 + α H ) 2 1 + c 2 s c 2 m λ 2 π2 -c 2 s (∇π) 2 a 2 + ρ m + p m 2c 2 m M 2 v2 m -c 2 m (∇v m ) 2 a 2 + 2α H 1 + α H vm π , (3.6) 
where λ 2 is the parameter encoding KMM, defined in eq. (2.17). Since here we are using the Jordan frame metric, where α D,m = α X,m = 0, its definition reads

λ 2 = 3 αc 2 s α 2 H (1 + w m )Ω m , (3.7) 
so that λ is proportional to α H . Notice in the third line the presence of a kinetic coupling between the scalar and matter fields, vm π, proportional to α H . Moreover, at this order in derivatives the dynamics of π and v m is decoupled from that of Φ E and Ψ E and we can study them separately. To simplify the analysis, we introduce the canonically normalized fields

π c ≡ HM α 1/2 1 + α H π , v c ≡ ρ m + p m c 2 m 1/2 v m , (3.8) 
and we neglect the expansion of the universe, which is irrelevant in the kinetic limit. Then the dynamics is described by the Lagrangian

L = 1 2 1 + c 2 s c 2 m λ 2 π2 c -c 2 s (∇π c ) 2 + v2 c -c 2 m (∇v c ) 2 + 2 c s c m λ vc πc . (3.9) 
In Fourier space, this gives the coupled system of equations

d 2 dt 2 π c v c + k 2 c 2 s -λ c s c m -λ c 3 s /c m c 2 m + λ 2 c 2 s π c v c = 0 , (3.10) 
with normal modes

c 3 s λ/c m c 2 --c 2 s -c 3 s λ/c m c 2 s -c 2 + π c v c , (3.11) 
where c 2 ± are the eigenvalues of the system, given by eq. (2.20).

As an example relevant for late-time cosmology, we consider the case where matter is described by a non-relativistic fluid (for instance CDM) with w m = 0 and c 2 m = 0. Going back to standard normalization before setting c 2 m = 0, the eigenmodes and respective eigenvalues of the system are

X -= v m + π α H 1 + α H , c 2 -= c 2 m = 0 , (3.12) 
X + = π -v m λ 2 1 + α H α H , c 2 + = c 2 s (1 + λ 2 ) , (3.13) 
with λ 2 = 3α 2 H Ω m /(αc 2 s ). While X + displays oscillations with frequency ω = ±ic + k, the speed of the fluctuations of X -vanishes as that of matter.

Quasi-static regime

Here we stick to the case where matter is non-relativistic, i.e. p m = c m = 0, which applies to matter in late-time cosmology. When including the Hubble expansion, we expect the oscillations of X + to get damped [52]. In the absence of the oscillatory mode X + , the time evolution is dominated by the Hubble friction and time derivatives are of the order of the Hubble rate H. This is the quasi-static regime. We leave for the App. C the discussion of how this regime is reached in the cosmological evolution.

In this case, focussing on the short-scale limit k k + , where k + denotes the sound horizon scale of the oscillating mode,

k + ≡ aH c + = aH c s √ 1 + λ 2 , (3.14) 
and neglecting oscillations, the second-order action in Newtonian gauge becomes 5

S = d 4 xa 3 M 2 1 + α T a 2 (∇Ψ E ) 2 -2∇Φ E ∇Ψ E - αH 2 c 2 s 2(1 + α H ) 2 (∇π) 2 a 2 -Φ δρ m M 2 . (3.16)
Variation of the above action with respect to Φ E yields a Poisson-like equation for Ψ E ,

∇ 2 Ψ E a 2 = 3 2 H 2 Ω m δ m 1 + α H . ( 3 
.17)

In the above limit, also the scalar field fluctuations π satisfy a Poisson-like equation. To derive it, one can vary the action (3.16) with respect to π, taking into account that Φ E and Ψ E depend on π through the expressions (3.5). Using eq. (3.17), Φ E = Ψ E , the definition of δ m , eq. (3.4), and the continuity equation for matter,

δm = - ∇ 2 v m a 2 , (3.18) 
one obtains where we remind the reader that ξ ≡ α B (1

∇ 2 π a 2 = 3HΩ m c 2 s α ξ - αH H δ m + α H (1 + α H ) H ∇ 2 v m a 2 , (3.19 
+ α T ) + α T -α M -α H (1 + α M ) (see eq. (2.19))
. Notice the presence of the last term on the right-hand side, proportional to the matter velocity, which stems from the KMM. Indeed, by using the definition of the "+" eigenmode X + , eq. (3.13), this equation can be rewritten as

∇ 2 X + a 2 = 3HΩ m c 2 s α ξ - αH H δ m , (3.20) 
which shows that after the oscillating regime ends, X + (and not π) satisfies a Poisson-like constraint equation.

Let us now derive the constraint equations for Ψ and Φ. We can rewrite equation (3.17) in terms of Ψ using the definition of Ψ E , eq. (3.5), and eq. (3.19). We can then use Φ E = Ψ E and solve eqs. (3.17), (3.19) and its derivative to find an equation for Φ. This yields

∇ 2 Ψ a 2 = 3 2 H 2 Ω m µ Ψ δ m + λ 2 α B α H -1 H ∇ 2 v m a 2 , (3.21) 
∇ 2 Φ a 2 = 3 2 H 2 Ω m µ Φ δ m + γH ∇ 2 v m a 2 , (3.22) 
where µ Ψ and µ Φ are defined as

µ Ψ ≡ 1 1 + α H 1 + 2(α B -α H ) c 2 s α ξ - αH H , (3.23) 
µ Φ ≡ 1 (1 + λ 2 )(1 + α H ) 2 c 2 T + 2ξ c 2 s α ξ - αH H + aα H (1 + α H ) 2 aHc 2 s α ξ - αH H • , (3.24) 
and γ is defined as 

γ ≡ d ln 1 + λ 2 d ln a . ( 3 
can be used to derive a closed second-order equation for the matter density contrast in the quasistatic limit. Indeed, taking the time derivative of the continuity equation, and plugging in the latter the Euler equation and eq. (3.22), one obtains [58],

δm + (2 + γ)H δm = 3 2 H 2 Ω m µ Φ δ m . (3.27) 
A comment on this equation is in order here. For α H = 0, the friction term vanishes, γ = 0, and the strength of gravitational clustering is modified by [35] 

µ Φ = c 2 T + 2ξ 2 c 2 s α , (α H = 0) , (3.28) 
which, for c 2 T ≥ 1,6 is always larger than one. Thus, the exchange of the fifth force tends to enhance gravity on small scales [30,35,41,50]. On the contrary, in the presence of KMM µ Φc 2 T can be negative, corresponding to a repulsive scalar fifth-force, thus weakening gravity. Moreover, the last term on the right-hand side of (3.22) can act as a friction term for structure formation. This results in a suppression of clustering, even for a ΛCDM background evolution. We will see an explicit example below.

For completeness and comparison with observations, we provide here also the expression of the Weyl potential, obtained by summing eqs. (3.21) and (3.22),

1 a 2 H 2 ∇ 2 (Φ + Ψ) = 3 2 Ω m (µ Ψ + µ Φ )δ m + 1 - α B α H λ 2 -γ δm H , (3.29) 
where we have used the continuity equation to replace the velocity v m by δm . Note that for α H = 0, the equations in this section reduce to their analogous expressions derived for instance in [35].

Observational signatures of Kinetic Matter Mixing

In this section we discuss the effects of KMM on the power spectrum of the matter density contrast and on the CMB. In particular, we compute the comoving matter density contrast, defined as

∆ m ≡ δ m -3Hv m , (4.1) 
where δ m and v m are in Newtonian gauge. For the CMB we focus on the lensing potential and the temperature fluctuations. The observables are computed using COOP [47], which solves linear perturbations in Newtonian gauge and in the Jordan frame, assuming minimal coupling of all matter species. In the ΛCDM case, COOP evolves Ψ, Ψ Ne ≡ dΨ/dN e and matter perturbations, where N e ≡ ln a is the program time variable. The detailed algorithm and equations can be found in Ref. [71]. To describe deviations from ΛCDM using the Effective Theory of Dark Energy, COOP evolves two additional variables, µ ≡ Hπ and µ Ne ≡ dµ/dN e . In the Jordan frame, only the metric perturbations are coupled to µ and µ Ne . The evolution equations of Ψ Ne and µ Ne are obtained by eliminating Φ from eqs. ( 111)- [START_REF] Bellini | Constraints on deviations from CDM within Horndeski gravity[END_REF] in Ref. [10]. For numeric stability, COOP combines the energy conservation equation and the pressure equation, respectively eqs. ( 109) and (112) of Ref. [10], such that the evolution equation of Ψ Ne has a traceless source, i.e. it is of the form dΨ Ne /dN e = . . . + (δp m -1 3 δρ m )/(2M 2 ). See Ref. [71] for more details on this technique. Once the linear perturbations are solved, COOP computes CMB power spectra using a line-of-sight integral [72,73]. Matter power spectra are computed via a gauge transformation from the Newtonian to the CDM rest-frame synchronous gauge.

For the cosmological parameters we use the Planck TT+lowP parameters [67]. In particular, we assume a physical density of baryons and CDM respectively given by Ω b,0 h 2 = 0.02222 and Ω c,0 h 2 = 0.1197, we fix the acoustic scale at recombination as θ = 1.04085 × 10 -2 , the amplitude of scalar primordial fluctuations A s = 2.2 × 10 -9 , the scalar spectral tilt n s = 0.9655 and the reionization optical depth τ = 0.078. We assume that the background expansion history is the same as in ΛCDM. This implies that h = 67.31 and Ω m,0 = 0.315. Initial conditions are taken to be adiabatic (see e.g. [10]).

To focus on the effects of KMM, we set

α B = α M = α T = 0 . (4.2)
Moreover, we parametrize the time dependence of α K and α H as

α K = α K,0 Ω DE (t) Ω DE,0 , α H = α H,0 Ω DE (t) Ω DE,0 , (4.3) 
where Ω DE is the fractional energy density of dark energy, defined as Ω DE ≡ 1 -I Ω I , where the sum is over all matter species (baryons, photons, neutrinos and CDM).

For the sake of clarity, in the following discussion we will simplify the above parametrization and consider only baryons and CDM in the matter sector. This is justified by the fact that according to this parametrization, the effects of dark energy become relevant only at late time. However, we stress that the numerical calculation performed with COOP contains the full matter sector, including (massless) neutrinos. Under these simplifying assumptions the background expansion history becomes

H 2 = H 2 0 Ω m0 a -3 + 1 -Ω m0 . (4.4) 
Moreover, in this case the speed of scalar fluctuations (see eq. (2.18)) simplifies to

c 2 s = α H 2 + 3Ω m (1 -α H ) α K . (4.5) 
Requiring the absence of ghosts (α > 0, see definition in eq. (2.13)) and gradient instabilities, respectively implies that

α K ≥ 0 , 0 ≤ α H ≤ 1 + 2 3Ω m . (4.6) 
In the following we set the current value of α K to unity, α K,0 = 1 and we plot the effect of α H in terms of four different values of this parameter today, i.e. α H,0 = 0.06, 0.12, 0.24 and 0.48, which are always in the stability window (4.6). Note that to avoid that scalar fluctuations become superluminal in the past we must require

α H ≤ 1 5 α K . (4.7) 
Just for the purpose of illustration, in the next two subsections we ignore constraints from superluminality, as we need large values of α H to better visualise the effects on the observables.

Matter power spectrum

On short scales, increasing α H,0 suppresses the power spectrum of matter fluctuations, shown as a function of k in Fig. 1. On these scales we can neglect the velocity potential in the definition of the comoving matter density contrast, eq. (4.1), which reduces to δ m in the Newtonian gauge, ∆ m ≈ δ m . Moreover, to understand the power suppression we can apply the quasi-static approximation, i.e. eq. (3.27). Specializing to the case with only nonvanishing α K and α H and using the time parametrization above, µ Φ and γ in eq. (3.27), defined in eqs. (3.24) and (3.25), become

µ Φ = 1 -γ , γ = -Ω m 9α H (2 -4Ω m -3Ω 2 m ) (2 + 3Ω m ) 2 + 3(1 -α H )Ω m . (4.8) 
Figure 1: Effect of KMM on the matter power spectrum for four different values of α H today, i.e. α H,0 = 0.06, 0.12, 0.24 and 0.48, at redshift z = 0 (left panel) and z = 1 (right panel). The lower plots display the ratio of these power spectra with the respective spectra for α H = 0. For comparison, the dashed and dotted lines in the left lower panel respectively show the quasi-static approximation and the perturbative solution of eq. (4.20).

The friction term γ as a function of redshift is plotted in Fig. 2. It starts positive and changes sign only recently, when Ω m = ( √ 10 -2)/3 0.39. In particular, during matter domination it behaves as

γ = 9 5 α H + O(Ω 2 DE ) , (4.9) 
where we have expanded in Ω DE . Thus, γ suppresses the power spectrum with respect to the ΛCDM case and the effect is linear in α H . The modification of the Poisson equation has an analogous effect: µ Φ starts smaller than unity decreasing the strength of gravity, and gets larger than one only when γ changes sign. This has again the cumulative effect of suppressing the power spectrum with respect to the ΛCDM case. We have checked that eq. (3.27), with γ and µ Φ given above, reproduces the suppression observed in Fig. 1.

Corrections to the quasi-static approximation are expected to be of the order O(k 2 + /k 2 ), where k + is the sound horizon scale defined in eq. (3.14). 7 Thus, on larger scales this approximation fails to reproduce the correct spectrum, as shown in the figure. However, we can find an integral solution for the density perturbation on the largest scales by solving the Einstein and scalar field equations perturbatively in α H (while keeping the exact dependence on α K to avoid inconsistencies [74]). For the parametrization chosen in this section, these equations read

- k 2 a 2 Ψ + Ḣ(∆ m + ∆ DE ) = 0 , (4.10) 
Φ -Ψ = α H ( π -Φ) , (4.11) 
Ψ + H(3 Ψ + Φ) + (2 Ḣ + 3H 2 )Φ = 0 , (4.12) 
∆DE = -α H k 2 a 2 H Ḣ ( π -Φ) , (4.13) 
where we have used the background Friedmann equations and the comoving energy density contrast associated to dark energy, ∆ DE , is defined as

∆ DE ≡ - α K 2 H 2 ( π -Φ) -α H k 2 a 2 (Ψ + Hπ) . (4.14) 
Equation (4.10) has been obtained from combining the "00" and "0i" scalar components of the Einstein equations, eqs. (4.11) and (4.12) are respectively the traceless and trace part of the "ij" scalar components of the Einstein equations and eq. (4.13) is the evolution equation of π. 8(The evolution equations for the matter density contrast ∆ m is automatically satisfied by these equations.)

In the absence of KMM, i.e. for α H = 0, eqs. (4.10)-(4.13) are solved by the standard ΛCDM solution with adiabatic initial conditions [10], i.e.

Φ = -˙ , Ψ = H -ζ 0 , ∆ m = ∆ (0) m ≡ k 2 a 2 H -ζ 0 Ḣ , ∆ DE = 0 , (α H = 0) (4.15)
where ζ 0 is the (conserved) comoving curvature perturbation on super-Hubble scales and is defined as

≡ ζ 0 a adt . (4.16) 
Notice that, for α H = 0, π =and thus the combination π -Φ vanishes. Hence, the right-hand sides of eqs. (4.11) and (4.13) vanish also at first order in α H and eq. (4.15) keeps being a solution of the above equations.

The combination π -Φ does not vanish at first order in α H . Using in eq. (4.14) that ∆ DE = 0 at this order, one obtains

π -Φ = 2ζ 0 k 2 a 2 H 2 α H α K + O(α 2 H ) . (4.17) 
Thus, deviations from ΛCDM arise at second-order in α H , as the backreaction effect of π on gravity. This is similar to what happens in the context of the Ghost Condensate, where the mixing of the scalar fluctuations with gravity gives rise to a Jeans-like instability also on a ΛCDM background [5,75]. It is now straightforward to find the solution for ∆ m at this order in α H , by replacing the second-order solution for Ψ and ∆ DE in eq. (4.10). The former can be derived by solving eq. (4.12) after replacing Φ from eq. (4.11). This yields

Ψ = H -ζ 0 + 2ζ 0 α 2 H α K k 2 a 2 H 2 1 -aH 5 dt aH 4 + O(α 3 H ) . (4.18) 
The latter can be derived from eq. (4.13), which yields

∆ DE = -2ζ 0 α 2 H α K k 4 a 4 aH 2 Ḣ dt aH 3 + O(α 3 H ) . (4.19) 
Thus, one obtains

∆ m = ∆ (0) m 1 -2aH 2 α 2 H α K k 2 a 2 dt aH 3 -H dt aH 4 1 - H a adt -1 + O(α 3 H ) . (4.20) 
Notice that this solution breaks down on small scales because the quasi-static limit assumes α H = 0. On very large scales, i.e. for

k k * ≡ √ α K √ 2 α H a H 1 - H a adt 1/2 a dt aH 3 -Ha dt aH 4 -1/2 √ α K,0 α H,0 × 5.4 × 10 -4 h/Mpc , (4.21) 
the power spectrum is unmodified by KMM, although this restricts only to the case where the background expansion is that of ΛCDM. On intermediate scales, k * k k + , the power spectrum drops as k 2 due to the second term on the right-hand side of eq. (4.20).

Cosmic Microwave Background

In Fig. 3, on the left panel we plot the angular power spectrum of the CMB lensing potential, defined as [76] 9 

φ(n) = - z * 0 dz H(z) χ(z * ) -χ(z) χ(z * )χ(z) Φ(χn, z) + Ψ(χn, z) , (4.22) 
where χ ≡ z 0 dz/H(z) is the conformal distance and z * denotes the redshift of last scattering. On the right panel, we plot the angular power spectrum of the CMB anisotropies as a function of the Figure 3: Effect of KMM (α H ) on the CMB lensing potential (left panel) and on the CMB anisotropies (right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the respective spectra for α H = 0. multipole l. As a rough approximation, we can understand the CMB lensing potential by looking at the Weyl potential (Φ + Ψ)/2 in the quasi-static regime, i.e. using eq. (3.29). Indeed, the bulk of the CMB lensing kernel is at 0.5 z 6 [76], where deviations from this approximation are below ∼ 5% for the values of α H,0 that we considered.

Let us define the quantity [50] 

µ WL ≡ 2∇ 2 (Φ + Ψ) 3a 2 H 2 Ω m δ m . (4.23) 
For ΛCDM, µ WL = 2; in general, this quantity characterizes the deviations in weak lensing observables from the ΛCDM case. This definition cannot be directly applied to eq. (3.29), because of the presence of the terms proportional to δm on the right-hand side of this equation. In the presence of KMM, α H = 0, these terms equally contribute to the modifications of the Weyl potential as those proportional to δ m and cannot be neglected. However, a fair approximation to simplify the discussion is to replace δm by its expression in matter domination, δm Hδ m . Setting α B = α M = α T = 0 and employing the approximation above in eq. (3.29), the effect of α H in weak lensing observables can be rewritten as

µ WL -2 = α H 8 -9Ω m (1 + Ω m ) 2 + 3(1 -α H )Ω m . (4.24) 
One can verify that this quantity is negative for z 0.5, i.e. inside the bulk of the CMB lensing kernel. Therefore, the lensing potential is suppressed by the modification of gravity induced by α H . For small Ω DE , in matter domination this suppression is roughly proportional to α H , as observed in Fig. 3. Expanding at linear order in Ω DE , the above relation simplifies to µ WL -2 = -2α H + O(Ω 2 DE ). Let us now turn to the CMB anisotropies, right panel of Fig. 3. At large l, the anisotropies are completely unaffected by the KMM because they are generated at recombination, 10 when α H vanishes. The only visible effect is an oscillating pattern observed at high l (noticeable in the lower right panel of Fig. 3.), due to the change in the CMB lensing discussed above. Indeed, lensing smears the CMB acoustic peaks; for larger values of α H,0 the smearing is suppressed and CMB peaks enhanced.

At low l, the deviations from the ΛCDM case are dominated by the ISW effect, which depends on the time variation of the Weyl potential, i.e. ∆T T

ISW (n) = - z * 0 dz ∂ z Φ(χn, z) + ∂ z Ψ(χn, z) . (4.25)
Taking the derivative of eq. ( 4.23) with respect to the e-foldings, one obtains the following relation, which only holds in the quasi-static limit:

d ln(Φ + Ψ) d ln a QS = f QS -1 + d ln µ WL d ln a , (4.26) 
where

f QS ≡ d ln δ m d ln a QS , (4.27) 
is the growth rate computed using the quasi-static approximation. In ΛCDM, µ WL = 2 and the time variation of Φ + Ψ is given by the first two terms on the right-hand side, i.e. the deviation of the matter growth rate from unity, which is negative. When gravity is modified, the last term on the right-hand side does not vanish. In the case of KMM, it contributes with the same sign as the first term, enhancing the ISW effect. For example, assuming matter domination and expanding in α H one finds

d ln µ WL d ln a = -3α H + O(Ω 2 DE ) , (4.28) 
which explains the enhancement in the ISW effect observed in the right panel of Fig. (3), roughly proportional to α H .

Short-scale tension

An intriguing issue that recently came up is the tension between the overall normalization of density fluctuations on large scales, inferred from the CMB anisotropies, and the amplitude of density fluctuations on small scales, measured with the large scale structures at low redshift. In particular, the value of σ 8 -defined as the rms of the fractional density fluctuation in a sphere of 8h -1 Mpc-computed from the weak lensing measurements of the Canada-France Hawaii Telescope Lensing Survey (CFHTLens) [77][78][79][80] and from cluster counts [81][82][83] appears to be lower than the one inferred from CMB measurements by Planck [66,67]. This tension has been recently confirmed by the tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KiDS) [84], 4: Relation between α H,0 and the corresponding σ 8 at redshift z = 0, calculated using eq. (4.29), respectively in the top and bottom x-axes. The α H,0 = 0 line corresponds to ΛCDM and the region α H,0 < 0 is shaded because it is out of the stability window (4.6). The plot also shows the measurements of σ 8 and their respective 1-σ errors from several collaborations. 11 In particular, the constraints based on cluster counts (red dashed lines) are from Planck 2013 [81] and SPT 2016 [83]. The constraints based on weak lensing observations (blue solid lines) are from several analysis of the CFHTLens, by Kilbinger et al. 2013 [77], Köhlinger et al. 2015 [80] and Hildebrandt et al. 2016 [84], and from the cosmic shear study of DES 2015 [87].
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while it has been alleviated by the analysis of the latest data of the SDSS-III Baryon Oscillation Spectroscopic Survey [85]. Another aspect of this tension is reflected in redshift space distortion measurements [86], which indicate that the combination of f σ 8 -where f ≡ d ln δ m /d ln a is the growth factor-is lower with respect to the value inferred from the Planck results.

Even though the tension is not extremely significant and depends on the uncertainties of the modeling of the non-linear scales and, for the redshift-space distortion measurements, of the galaxy bias, it might indicate a deviation from the concordance model. For instance, some attempts have been made to solve this tension using massive (active and sterile) neutrinos [89,90]. However, the most recent Planck analysis seems to disfavour this solution [67].

Given that little is known of the clustering properties of dark energy, it is natural to try to explain this tension by considering a model where deviations from the concordance one are restricted only on short scales. A recent proposal in this direction has been undertaken in [91] by exploiting the so-called "dark degeneracy" between dark matter and dark energy [92] and replacing part of the dark matter by a perfect-fluid clustering dark energy with sound speed of fluctuations smaller than unity (see for instance [93,94] for a phenomenological study of clustering dark energy . The plot also shows the measurements of f σ 8 and their respective 1-σ errors from several redshift surveys: 6dF GRS [96], SDSS DR7 MGS [97], GAMA [98], SDSS DR12 LRG [85], WiggleZ [99] and VIPERS [100]. When possible, we plotted conditional constraints assuming a ΛCDM background cosmology with Planck 2015 parameters. In particular, the WiggleZ constraints were taken from Fig. 16 of [67].

in the zero sound-speed limit). More generally, one could try to leave untouched the dark matter sector and employ less specific scalar-tensor theories. For instance, it has been noted in [34] (see also [95]) that self-accelerating models within the Horndeski class with the same expansion history as ΛCDM generally supress the linear growth rate around redshift 0.5 z 1, despite the scalar fifth-force being attractive (see eq. (3.28)). Looking at eq. (3.27), this can be understood by the fact that Ω m on the righthand side, defined in eq. (2.14), contains the time-dependent effective Planck mass M 2 at the denominator. The enhancement of the latter due to self-acceleration lowers Ω m with respect to the standard ΛCDM case at intermediate redshifts, overcompensating µ Φ > 1.

As we have seen above, when the stability condition (4.6) is imposed the scalar force exchanged by π in the presence of KMM is repulsive and small-scale structures are damped by a friction stronger than that provided by the Hubble expansion, see eq. (4.8), even in the absence of selfacceleration and for a ΛCDM background expansion. In light of these facts, we consider the possibility of solving the aforementioned tension with KMM.

To illustrate this, we compute σ 8 at redshift z = 0 as a function of α H,0 using COOP for the cosmological parameters given at the beginning of the section. As expected from our discussion above, this yields a linear relation with α H,0 , i.e. In Fig. 4 we show this relation together with a set of large scale structure (weak lensing and cluster counts) measurements constraining σ 8 . Two remarks are in order. First, it would be misleading to compute the value of α H,0 that best fits the data. Indeed, the constraints on σ 8 reported from the respective articles have been extracted from data assuming standard gravity. Second, as explained above large values of α H,0 yields superluminal scalar propagation. However, it is straightforward to choose a value of α K,0 such that the subluminality constraint (4.7) is satisfied, without affecting the redshift-survey scale evolution (as long as c s > 0.1, see footnote 1). Moreover, to illustrate the effect of KMM on the growth rate, in Fig. 5 we plot the combination f σ 8 as a function of redshift for different values of α H,0 . Although in the presence of KMM the growth rate f is scale dependent, we can confidently use its scale-independent value computed in the quasi-static regime, f QS , see eq. (4.27), because this approximation holds on redshift-survey scales. As discussed above, we do not try to consistently fit the value of α H,0 to these observations but we note that α H,0 ∼ few × 0.1 would provide the hinted small-scale suppression. A too large value of α H,0 may give an unreasonably large ISW effect, see Fig. 3. However, this could be compensated by a small change in another parameter, such as the dark energy equation of state. We postpone for a future publication a more consistent analysis of the CMB and large scale structure measurements that takes into account the effects of modified gravity on the observables.

Summary and conclusions

Using the framework of the Effective Theory of Dark Energy, in this paper we studied the observational effects of Kinetic Matter Mixing, i.e. a kinetic coupling between matter and the cosmological scalar field, which is present if matter is disformally coupled to the gravitational sector with a disformal coupling that depends on the first derivative of the scalar field or in theories beyond Horndeski.

In Sec. 2, we started by discussing the most generic quadratic action for cosmological perturbations in the presence of conformal and disformal couplings of matter to the gravitational sector, under the assumption that the disformal factor depends as well on the first derivative of the scalar field, other than its value. Moreover, we showed that a change of frame does not change the structure of the action but redefines the coefficients of the various operators. In particular, the coefficient of the operator that characterizes theories beyond the Horndeski class is redefined only by the dependence of the disformal coupling on the field derivative. This is explicitly shown by the frame-independent parameter λ 2 , defined in eq. (2.17), which measures the degree of Kinetic Matter Mixing. By diagonalizing the kinetic action, we derived the conditions that one must require for the perturbations to be free of ghosts and of gradient instabilities (the generalization to multiple matter species is given in App. A).

After this general frame-independent description, in Sec. 3 we assumed that matter is universally coupled and, without loss of generality, we considered the case where it is also minimally coupled, i.e. the Jordan frame description, where observational predictions are more easily derived. We then discussed the short-scale regime and derived the eigenmodes of the acoustic oscillations, which are mixed states of matter and the scalar field waves. Focussing on the case where matter is made of nonrelativistic particles (such as cold dark matter or baryons) we derived the equations in the quasi-static approximation and discussed (see App. C) how the quasi-static regime is reached during the cosmological evolution. These equations allow for a clear analytical understanding of the effects of modifications of gravity due to Kinetic Matter Mixing. In particular, while models in the Horndeski class only modify the Poisson equation with an effective Newton constant, Kinetic Matter Mixing also induces an additional friction term. Remarkably, requiring the stability conditions implies that gravity is weakened on short scales, an effect which is hard to reproduce in models within the Horndeski class. Finally, by comparing the quasi-static solution to the full numerical one, we showed that the quasi-static limit approximates very well the dynamics on scales shorter than the sound horizon.

In Sec. 4 we focussed on the cosmological effects of the beyond Horndeski operator, obtaining the full numerical solutions using the publicly available Einstein-Boltzmann solver of COOP [47]. Using these solutions, we derived the matter power spectrum at two different redshifts, and the angular spectra of the CMB lensing potential and of the CMB anisotropies. On small scales, i.e. for k few × 10 -3 Mpc, the solution matches the quasi-static regime and the matter power spectrum is suppressed independently of k. An analytical study of the large scales is complicated by the complexity of the full system of equations. However, we obtained analytical solutions on these scales by perturbing around the ΛCDM solutions for small Kinetic Matter Mixing. The agreement with the numerical solution is excellent. Moreover, its simplicity allows an immediate understanding of the behavior of the perturbations and their observables. Similarly to the matter power spectrum, also the angular spectrum of the CMB lensing potential is suppressed. The CMB anisotropy is affected at very low multipoles through the ISW effect, which is enhanced, and on very high multipoles because of the suppression of the lensing potential.

In App. D, we compared this case with the one of kinetic braiding, which displays qualitatively opposite effects. Also in this case we studied analytically the large-scale behavior and derived the value of the crossing scale, i.e. the scale at which the power spectrum displays the transition between the short-scale enhancement and large-scale suppression.

As mentioned above, Kinetic Matter Mixing appears as the only modification of gravity in the context of single-field models that weakens the strength of gravity on small scales. Therefore, in Sec. 4.3 we entertained the possibility that the tension between the Planck data and smallscale observations can be explained by this effect. In particular, as shown in Figs. 4 and5, KMM predicts a lower value of σ 8 and f σ 8 , which could be made compatible with those measured by weak lensing and redshift-space distortion observations. We postpone to future work a more consistent dedicated analysis that marginalizes over the other cosmological parameters.

In summary, we presented a robust theoretical understanding of the effects of Kinetic Matter Mixing across different observables and scales. These effects may be a smoking gun of modified gravity for the next observational missions and a complete forecast, taking into account the characteristics of the next missions, is an obvious next step. functions D I . When not explicitly given, the details of the calculation can be found in this reference.

To describe the matter sector, we extend the treatment of the main text and assume that the universe is filled by N S matter species labelled by an index I, with I = 1, . . . , N S , each minimally coupled to a different metric. For each species I, we denote the corresponding metric by ǧ(I) µν and we call this the Jordan frame metric associated with this species. The total matter action is thus given by > 0 in order to preserve the Lorentzian signature of the Jordan-frame metric of the species I.) As usual, one can use the arbitrariness in the choice of the gravitational metric g µν to choose one particular matter species, say I * , to be minimally coupled to it, in which case we have C Let us start by expanding the matter action. For simplicity, we assume that each matter species can be described by a perfect fluid with vanishing vorticity. It is then easy to write an action in terms of derivatively coupled scalar fields with Lagrangians of the form [101][102][103] 

L I ǧ(I) µν , ψ I ≡ P I (Y I ) , Y I ≡ ǧµν (I) ∂ µ σ I ∂ ν σ I . (A.7)
Splitting each scalar field σ I into a background value and its perturbations, σ I = σI (t) + δσ I (t, x), the second-order expansion S I reads

S

(2)

I = d 3 x dt a 3 ρ I c 2 s,I g δN 2 ,I δN 2 + 1 + (1 + α D,I )w I (1 + α D,I ) 2 1 2 σ2 I δ σ2 I -c 2 s,I (∂ i δσ) 2 a 2 - 1 + (1 + α D,I )w I (1 + α D,I ) 2 1 σI δ σI δN -c 2 s,I δ √ h + c 2 s,I N i ∂ i δσ I , (A.8)
where we have defined (A.11)

g
Here a prime denotes a derivative with respect to the variable Y I . We have omitted in the action irrelevant terms that vanish when imposing the background equations of motion.

We can now investigate the stability of scalar perturbations. The full second-order action

S (2) = S (2) g + S (2) m , (A.12)
where the gravitational part S

g is given in eq. (2.5), governs the dynamics of linear scalar fluctuations. The scalar modes can be described in unitary gauge by defining ψ ≡ ∂ -2 ∂ i N i and writing the spatial metric as h ij = a 2 (t)e 2ζ δ ij [104]. Variation with respect to ψ yields the (scalar part of) the momentum constraint, and its solution can be used to replace δN in terms of ζ and δσ I into the second-order action (see details in Ref. [50]). Re-expressing the scalar field perturbations δσ I in terms of the gauge invariant variables Q I ≡ δσ -( σI /H)ζ, the total second-order action reads, focusing only on the kinetic and spatial gradient parts,

S (2) = d 3 x dt a 3 M 2 2 g ζ ζ ζ2 -g ∂ζ∂ζ (∂ i ζ) 2 a 2 + I κ I H 2 σ2 I c 2 s,I Q2 I -c 2 s,I (∂ i Q I ) 2 a 2 + 2 I H c 2 s,I σI g Q ζ,I QI ζ -g ∂Q∂ζ,I c 2 s,I a 2 ∂ i Q I ∂ i ζ , (A.13)
with

g ζ ζ ≡ 1 (1 + α B ) 2 α + I κ I c 2 s,I 1 + α B -(1 + α X,I )(1 + α D,I )
2 , (A.14)

g ∂ζ∂ζ ≡ c 2 s,0 (α K + 6α 2 B ) (1 + α B ) 2 + I κ I 1 + α B 1 + α B -2(1 + α H )(1 + α D,I ) , (A.15) g Q ζ,I ≡ κ I 1 + α B 1 + α B -(1 + α X,I )(1 + α D,I ) , (A.16) g ∂Q∂ζ,I ≡ κ I 1 + α B 1 + α B -(1 + α H )(1 + α D,I ) , (A.17)
where we defined the dimensionless coefficient

α ≡ α K + 6α 2 B + 3 I α eff D,I Ω I ≥ 0 , (A.18
)

κ I ≡ 3 1 + (1 + α D,I )w I (1 + α D,I ) 2 Ω I , (A.19) c 2 s,0 ≡ (1 + α B ) 2 α K + 6α 2 B 2(1 + α T ) - 2 aM 2 d dt aM 2 (1 + α H ) H(1 + α B ) . (A.20)
Absence of ghosts is ensured by requiring that the matrix of the kinetic coefficients is positive definite, which yields the conditions α ≥ 0 and κ I ≥ 0. The second condition reads ρ I + (1 + α D,I )p I ≥ 0, which is the usual Null Energy Condition written in a disformally related frame.

Requiring that the determinant of the kinetic matrix vanishes yields the dispersion relation

(ω 2 -c 2 s k 2 ) N S I (ω 2 -c 2 s,I k 2 ) = 3 α ω 2 k 2 I 1+(1+α D,I )w I Ω I (α H -α X,I ) 2 N S J =I (ω 2 -c 2 s,J k 2 ) , (A.21)
where the scalar sound speed squared c 2 s is given by

c 2 s ≡ c 2 s,0 α K + 6α 2 B α - (1 + α H ) 2 α I κ I (1 + α D,I ) 2 . (A.22)
For a single matter fluid this yields eq. (2.16). In the absence of a disformal coupling, α D,I = α X,I = 0, we recover the results of [27,28]. If the disformal coupling does not depend on X, α X,I = 0, and we restrict to Horndeski theories, α H = 0, we recover the results of [50].

B Quadratic action in Newtonian gauge

The second-order action (2.5) can be written in Newtonian gauge, eq. (3.1), after a time diffeomorphism t → t + π(t, x). This reads

S (2) grav = d 4 xa 3 M 2 1 2 H 2 α K π2 + Ḣ + 1 2M 2 ρ m + p m + 2(M 2 H(α B -α H )) • + H 2 (α B -α M + α T -α H ) (∇π) 2 a 2 -3 Ψ2 + (1 + α T ) (∇Ψ) 2 a 2 -2(1 + α H ) ∇Φ∇Ψ a 2 + 2α H ∇ π∇Ψ a 2 + 2H(α B -α H )∇Φ∇π -2H(α M -α T ) ∇Ψ∇π a 2 + 6Hα B π Ψ + H 2 (6α B -α K )Φ π -6H(1 + α B ) ΨΦ -6 ρ m + p m 2M 2 + Ḣ Ψπ + H 2 1 2 α K -3(1 + 2α B ) + ρ m 2M 2 Φ 2 - 9p m 2M 2 Ψ 2 - 3ρ m M 2 ΦΨ -3H ρ m + p m 2M 2 + Ḣ(1 + α B ) Φπ -3 Ḣ ρ m + p m 2M 2 + Ḣ + H(α B Ḣ) • + H 2 Ḣα B (3 + α M ) + α B Ḣ2 π 2 . (B.1)
In Newtonian gauge, the matter action (3.2) expanded at second-order reads

S (2) m = d 4 x a 3 9 2 p m Ψ 2 + 1 2 p m + (1 -c 2 m )ρ m c 2 m Φ 2 + 3ρ m ΦΨ + ρ m + p m 2c 2 m σ2 0 δ σ 2 -c 2 m (∇δσ) 2 a 2 - ρ m + p m c 2 m σ0 (Φ + 3c 2 m Ψ) δ σ . (B.2)
C From the oscillating to the quasi-static regime

We can discuss the transition from the oscillating to the quasi-static regime starting from the linearized equations of motion for Ψ in the presence of matter, once the π field has been integrated out [10,26,33]. On short scales, in Fourier space the variation of the action with respect to Ψ and the relation Φ E = Ψ E read, respectively,

Ψ + (3 + b 1 )H Ψ + c 2 s k 2 a 2 Ψ = - 3 2 Ω m H 2 c 2 s µ Ψ δ m - 2α H (α B -α H ) α k 2 a 2 H 2 Hv m , (C.1) α H α B -α H Ψ H + b 2 Ψ -Φ = - 3 2 Ω m a 2 H 2 k 2 b 3 δ m + 3 2 α H α B -α H Ω m Hv m , (C.2)
where the specific form of the coefficients b 1 , b 2 and b 3 are explicitly given by

b 1 ≡ 3 + α M + α 2 B Hα α K α 2 B • + α H 2 α H -α B αB Hα B - αH Hα H + 3 4 Ω m , (C.3) b 2 ≡ 1 (α B -α H ) 2 α B ξ + α H (1 + α H ) Ḣ H 2 + 3 2 Ω m , (C.4) b 3 ≡ 1 (α B -α H ) 2 α B (α T -α M ) + α H Ḣ H 2 + 3 2 Ω m . (C.5)
In the standard quintessence case, for α H = α T = α M = α B = 0, we have b 1 = 0, b 2 = 1 and b 3 = 0. Matter is described by the usual continuity and Euler equations, eqs. (3.18) and (3.26).

One cannot find an analytical solution to eqs. (C.1) and (C.2) but we can assume that the full solution can be separated into an oscillating part, with characteristic frequency ω ∼ c + k/a = c s √ 1 + λ 2 k/a, and a "quasi-static" part, slowly evolving at a rate given by ∼ H [52]. For instance, for Ψ one can write

Ψ = Ψ osc + Ψ QS . (C.6)
We also assume that Ψ osc has a slowly decaying envelop due to the expansion of the universe, such that

Ψ = ḟ Ψ osc + iωΨ osc + ΨQS , ḟ ∼ O(H) , (ln Ψ QS ) • ∼ O(H) . (C.7)
To count the importance of each term in the above equations, we consider the limit ω H and we define the following two expansion parameters,

k ≡ aH k 1 , ω ≡ H ω = aH c + k 1 . (C.8)
Starting by defining Ψ ∼ O(1), and using eq. (C.1) and the continuity and Euler equations, one can find

Hv QS ∼ O(1) , Φ QS ∼ O(1) , δ QS ∼ O( -2 k ) , Hv osc ∼ O(1) , Φ osc ∼ O( -1 ω ) , δ osc ∼ O( -2 k ω ) .
(C.9)

At this point, we can expand the above equations in these expansion parameters. At the lowest order in k , the quasi-static solutions satisfy the relations discussed in Sec. 3.2, not surprisingly. For the oscillating piece, eqs. (C.1) and (C.2) become, retaining only the lowest order in ω and k ,

-ω 2 Ψ osc + c 2 s k 2 a 2 Ψ osc 3Ω m α H (α B -α H ) α k 2 a 2 Hv osc , (C.10) α H α B -α H i ω H Ψ osc -Φ osc 0 , (C.11)
where we have used ḟ /H -(3 + b 1 ) + O( ω ). For b 1 > -3, this implies that the oscillating part decays in time. For instance, for a constant b 1 the oscillating solution decays as a -(3+b 1 ) . Combining the Euler equation iωv osc = -Φ osc with eq. (C.11) we get a simple relation between the velocity and the curvature, i.e. Hv osc -α H /(α Bα H )Ψ osc . Replacing this expression in the first equation, we find the expected dispersion relation for the oscillating normal mode,

ω 2 = c 2 s k 2 a 2 + 3Ω m α 2 H α k 2 a 2 = c 2 + k 2 a 2 .
(C.12)

D Observational signatures of Kinetic Braiding

It is interesting to compare the results of Sec. 4 with the case of kinetic braiding. Indeed, this modification of gravity is expected to lead to similar effects as KMM on the power spectrum and CMB anisotropies. We assume the same background expansion history as in eq. (4.4) and set, this time,

α H = α M = α T = 0 . (D.1)
Moreover, we parametrize the time dependence of α K and α B as

α K = α K,0 Ω DE (t) Ω DE,0 , α B = α B,0 Ω DE (t) Ω DE,0 . (D.2)
Recently, in Ref. [45] an analogous parametrization has been used to discuss the effect of α B -as well as of other parameters-on the power spectrum and the CMB anisotropies (see also [39,50]). We agree with the results of Fig. 2 of this reference, for the corresponding values of α B,0 and α K,0 .12 From the above assumptions it follows that the speed of scalar fluctuations is

c 2 s = - α B 2(1 + α B ) + 3Ω m α K + 6α 2 B . (D.3)
Absence of ghosts and gradient instabilities therefore imply respectively that α K + 6α 2 B ≥ 0 and -1 -(3/2)Ω m ≤ α B ≤ 0. As in Sec. 4, we set α K,0 = 1; then we study the effect of α B for four negative values of α B,0 to avoid instabilities: α B,0 = -0.06, -0.12, -0.24 and -0.48.

Einstein equations perturbatively in α B . In this case, the relevant equations are

Φ + HΦ -Ḣv m = α B H( π -Φ) , (D.5) - k 2 a 2 Φ + Ḣ∆ m - α K 2 H 2 ( π -Φ) = α B H 3 Φ + 3HΦ + 3 Ḣπ - k 2 a 2 Hπ , (D.6) Φ + 4H Φ + (2 Ḣ + 3H 2 )Φ = α B π -Φ + (3H 2 -Ḣ)( π -Φ) , (D.7) 1 2 (α K + 6α 2 B )H 2 a -3 d dt a 3 ( π -Φ) = α B k 2 a 2 HΦ + (H 2 -Ḣ)π + 3 Ḣ 2 Φ + 2HΦ + Ḣ(π -v m ) . (D.8)
Equation (D.5) is the "0i" scalar component of the Einstein equations, eq. (D.6) follows from combining the "00" component with eq. (D.5), eq. (D.7) is the trace of the "ij" components and we have used Ψ = Φ, which follows from the traceless part of the "ij" components. Finally, eq. (D.8) is the evolution equation for π.

For α B = 0, these equations have the solution given in eqs. (4.15) and π = -. As in the case of α H , α B does not affect the metric and matter perturbations at first order: eq. (4.15) remains a solution with

π = --2 α B α K k 2 dt a 2 H + O(α 2 B ) . (D.9)
In order to see the effects of braiding we need to go at second order in α B [5]. The matter density contrast ∆ m can be computed from eq. (D.6), similarly to what discussed in Sec. 4.1. We can solve for Φ at second order from eq. (D.7), where we use the first-order solution on the righthand side. To derive π -Φ, we can solve eq. (D.8) after replacing v m using (D.6). In conclusion, the density constrast reads

∆ m = ∆ m,ΛCDM 1 -2 α 2 B α K F 1 - k 2 a 2 H 2 F 2 1 - H a adt -1 + O(α 4 B ) , (D.10)
where

F 1 ≡ 3H 2 a 1 H adt - adt H , F 2 ≡ aH 4 H 1 a 2 H 2 2 H adt - adt H - dt a 2 H 2 adt . (D.11)
Equation (D.10) explains the large scale suppression in the power spectrum and why the crossover scale, which can be derive from the above equation as

k c = aH F 1 /F 2 , (D.12)
is independent of α B . However, in Fig. (6) we observe a large discrepancy between eq. (D.10) and the output of COOP. It can be checked that the difference grows as α 4 B and it is thus due to the neglected corrections to eq. (D.10). 

D.2 Cosmic microwave background

In Fig. 7 we plot the angular power spectrum of the lensing potential (left panel) and of the CMB anisotropies (right panel). A negative braiding parameter α B induces an enhancement in the lensing potential. Similarly to what done in the previous section, we can understand this effect as a modification of the Weyl potential, expressed in terms of the parameter µ WL in eq. (4.23). Setting α M = α T = α H = 0, this reads (see also [35] for an analysis using the quasi-static approximation)

µ WL -2 = - 2α B 1 + α B + 3Ω m /2 . (D.13)
This relation shows that for negative values of α B , the Weyl potential is enhanced for all redshifts.

Comparing with the effect of α H shown in Fig. 3, we notice that here the effect is larger at smaller l; this is due to the fact that, contrarily to the α H case, here µ WL -2 does not change sign at low redshift, and contributes also to low multipoles. Let us turn now to the CMB angular power spectrum, right panel of Fig. 7. Increasing -α B enhances the lensing potential, thus increasing the smearing effect on the CMB acoustic peaks, as shown on the right lower panel. The suppression of the ISW effect can be understood again by looking at eq. (4.26). Now 

d ln µ WL d ln a = - 15α B Ω m (2 + 3Ω m )(1 + α B + 3Ω m /2) , ( 

Article D Effective Description of Higher-Order Scalar-Tensor Theories 1 Introduction

The observation of the present cosmological acceleration has spurred the study of a wide range of theories of dark energy and modified gravity. The number of existing models is now so large that an effective approach encompassing as many models as possible is an efficient way to synthesize the various predictions and to confront theoretical models with present and forthcoming data. Since many models of dark energy and modified gravity, although not all of them, involve a scalar field in an explicit or implicit way, an effective description based on ADM treatment in the so-called unitary gauge where the scalar field is spatially uniform, is particularly useful and has been actively developed in the last few years.

Often called Effective Theory of Dark Energy [1][2][3][4][5][6][7], this approach (see also [8][9][10][11][12] for other effective approaches to scalar-tensor theories) is inspired by the Effective Field Theory of Inflation [13,14] and is based on an action whose building blocks are the lapse N , the shift N i and the spatial metric h ij , which all appear in the ADM metric,

ds 2 = -N 2 dt 2 + h ij (dx i + N i dt)(dx j + N j dt) .
(1.1)
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The shift N i and the spatial metric h ij appear in the Lagrangian in combinations that behave as three-dimensional tensors under time-dependent spatial diffeomorphisms. One such combination is the "velocity" of the spatial metric, expressed by the extrinsic curvature tensor K ij . Another one is the 3-dimensional Ricci scalar R.

The time derivative of the lapse is usually not included in the initial action because the presence of Ṅ generically leads to an additional propagating degree of freedom. However, there are special cases where the action depends on Ṅ without leading to an extra degree of freedom. 1 For instance, starting from an action whose ADM form in the unitary gauge does not contain any Ṅ and making a conformal transformation of the metric that depends on the scalar field gradient leads to an action with an Ṅ dependence. In that case, the presence of Ṅ terms is not problematic because there is a degeneracy in the kinetic terms, which prevents the existence of a ghost-like degree of freedom (see [7] and [15]).

In the present work, we consider systematically Lagrangians quadratic in linear perturbations that contain time (and space) derivatives of δN , such as to include all possible terms containing at most two (space or time) derivatives. 2 The corresponding quadratic action, in an expansion around the flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric ds 2 = -dt 2 + a 2 (t)dx 2 , can be written in the form

S quad = d 3 x dt a 3 M 2 2 δK ij δK ij -1 + 2 3 α L δK 2 + (1 + α T ) R δ √ h a 3 + δ 2 R + H 2 α K δN 2 + 4Hα B δKδN + (1 + α H )RδN + 4β 1 δKδ Ṅ + β 2 δ Ṅ 2 + β 3 a 2 (∂ i δN ) 2 , (1.2) 
where H ≡ ȧ/a is the Hubble rate and δ 2 R stands for the second order term in the perturbative expansion of R. Although the spatially diff-invariant combination denoting the "velocity" of the lapse is Ṅ -N i ∂ i N , the action above contains only δ Ṅ , to which the full combination reduces at linear order. The above quadratic action extends the one derived in [4] and written in terms of the dimensionless time-dependent functions α A (introduced in [16] and [17]) in [7], with the addition of four new functions of time: the parameter α L , and the three parameters β A that characterize the terms containing (time or space) derivatives of δN . These parameters can be given the following interpretation:

• α L corresponds to a detuning of the extrinsic curvature terms. When α L = 0 one recovers the combination K ij K ij -K 2 , which is part of the four dimensional Ricci scalar (via the Gauss-Codazzi identity). This detuning appears in theories that already in their original formulation assume a preferred time slicing, such as Horava gravity [18] and its extensions [19][20][21][22].

• β 1 is analogous to the kinetic braiding α B for the additional degree of freedom present in higher-order theories.

• β 2 , similarly, is the analogue of the kineticity α K .

• β 3 is associated to the gradient energy of the additional degree of freedom. This comes from the acceleration of the unit vector normal to the uniform scalar field hypersurfaces, which in unitary gauge is given by a i = ∂ i N/N .

As will be shown explicitly in Sec. 2, one can obtain an action of the form (1.2) by starting from a covariant scalar-tensor action and choosing a slicing where the scalar field φ depends only on time. Whereas usual scalar-tensor Lagrangians, which depend only on φ and its first order gradient ∇ µ φ, lead to effective perturbative actions where only α K can be nonzero, scalar-tensor Lagrangians that depend as well on second-order derivatives ∇ µ ∇ ν φ, lead to a much richer phenomenology. Allowing for higher-order derivatives in the Lagrangian is potentially dangerous as, in general, this yields higher-order equations of motion requiring extra initial conditions, thus signalling the presence of an extra scalar degree of freedom associated with instabilities.

However, it is possible to find higher-order scalar-tensor theories that contain a single scalar degree of freedom (in addition to the tensor modes associated with gravity) by imposing some appropriate restrictions on the initial Lagrangian. For instance, requiring that the associated Euler-Lagrange equations are second order leads to Horndeski theories [23], associated with nonzero α K , α B and α T (while α L , α H and the β A vanish). Overcoming the prejudice that second order equations of motion were necessary to get only one propagating scalar mode, the introduction of a larger class of models, often called "beyond Horndeski" theories, showed that the absence of an extra scalar mode is compatible with third order Euler-Lagrange equations [17,24]. 3 These "beyond Horndeski" theories give a nonzero α H , but α L and the β A are still vanishing.

In [26,27], it was realized that all higher-order scalar-tensor theories that contain a single scalar mode can be understood as degenerate theories, dubbed Degenerate Higher-Order Scalar-Tensor (DHOST) theories. 4 Here, degenerate means that the Hessian matrix obtained by taking the second derivatives of the Lagrangian with respect to velocities5 is a degenerate matrix (see [30][31][32] for recent considerations on the notion of degeneracy). All DHOST theories up to quadratic order, i.e. whose Lagrangian depends quadratically on ∇ µ ∇ ν φ, were identified in [26]. The systematic classification of DHOST theories up to cubic order was recently completed in [33].

Horndeski and "beyond Horndeski" theories are included in the class of DHOST theories. In fact, they belong to the same subclass of DHOST theories and can be related to each other via disformal transformations [17,28,29,34,35]. But, along this special subclass that contains Horndeski and "beyond Horndeski" theories, DHOST theories include many other subclasses of theories: six other subclasses in the purely quadratic case, eight in the purely cubic case and 24 other subclasses for theories with both quadratic and cubic terms.

The effective description of dark energy models is a powerful tool to confront models with present and future observations, see for instance [36][37][38][39][40][41][42][43][44][45][46][47][48][49]. It is also an efficient way to classify the phenomenology of various theories [50,51]. So far, the effective approach has mainly been used for Horndeski and beyond Horndeski theories, although it has also been extended to include models such as Horava gravity [39,52,53]. The purpose of this work is to generalize this effective approach in order to include DHOST theories.

The layout of this paper and our main results can be summarized as follows. In the next section, we briefly present the DHOST theories (up to cubic order) and derive their Lagrangian in the unitary gauge. The degeneracy of DHOST theories implies that the parameters in action (1.2) cannot be arbitrary but must satisfy some consistency relations. We find that there are two such sets of degeneracy conditions, given in Sec. 2.3, which we name C I and C II : they relate the parameters β 1 , β 2 , β 3 , with α L , α H and α T . The first set of conditions is characterized by α L = 0, while β 1 remains arbitrary. By contrast, in the second set, α L is arbitrary while all β's are fully determined in terms of α H , α T and α L . This implies that all the DHOST theories we investigate can be regrouped into three main families: those satisfying only C I , those verifying only C II , and finally the theories for which both sets of conditions C I and C II are valid.

In Sec. 2.4, we also study how the action (1.2) transforms under the most general conformaldisformal transformation, allowing the conformal and disformal factors to depend on the scalar field, as well as on X ≡ ∇ µ φ∇ µ φ. After the transformation, the action takes the same form as (1.2), with its parameters related to those of eq. (1.2) by the transformations given in eq. (2.22). In general, all the parameters, except α L , are modified but we show that both sets of conditions C I and C II are preserved under these transformations. The two sets of conditions C I and C II share a common condition, which implies that only one scalar mode appears in the unitary gauge, but this condition is not enough to guarantee that this remains true in an arbitrary gauge.

The family of DHOST theories that satisfy C I but not C II coincides with theories that are related to Horndeski via (conformal-) disformal transformations. For all the other theories, i.e. those satisfying C II , we find that the effective Newton constant in the analog of the Poisson equation becomes infinite, as a direct consequence of one of the conditions in C II . Therefore, one cannot recover a Poisson-like equation in the static linear regime for these theories, in contrast with theories verifying only C I , where β 1 is unconstrained. If this peculiar behaviour persists at the nonlinear level, this would indicate that only theories that are related to Horndeski via conformal or disformal transformations are phenomenologically viable.

We examine the dispersion relation for scalar modes around Minkowski in Sec. 3 and in a cosmological background in Sec. 4. In both cases, we observe that the dispersion relation ω 2 = ω 2 (k 2 ) is in general a rational function of k 2 . This drastically simplifies to a linear dispersion relation ω 2 = c 2 s k 2 when the degeneracy conditions C I or C II are satisfied. In the cosmological context, we also derive the quadratic action for the curvature perturbation on uniform field hypersurfaces ζ and show that it is conserved on super-Hubble scales. Then, in Sec. 5 we discuss two classes of Lorentz-breaking theories that have been introduced in the literature. Finally, we present some conclusions in the final section. We have also added several appendices, where more technical details are provided.

DHOST theories

In this section, we present a large class of scalar-tensor theories whose action, which depends on a metric g µν and a scalar field φ, leads to a quadratic action of the form (1.2) when written in the unitary gauge. More precisely, we assume that the Lagrangian depends not only on φ and its gradient φ µ ≡ ∇ µ φ as usual, but also on its second derivatives φ µν ≡ ∇ µ ∇ ν φ.

Covariant action

Allowing for a dependence on φ µν up to cubic order, we consider an action of the form

S[g, φ] = d 4 x √ -g P (X, φ) + Q(X, φ)2φ + f 2 (X, φ) (4) R + C µνρσ (2) φ µν φ ρσ +f 3 (X, φ) (4) G µν φ µν + C µνρσαβ (3) 
φ µν φ ρσ φ αβ , (2.1) 
where the functions f 2 and f 3 depend only on the scalars φ and X ≡ φ µ φ µ ; (4) R and (4) G µν denote, respectively, the usual Ricci scalar and Einstein tensor associated with the metric g µν .

(

In general, theories with an action of the form (2.1), which depends on second-order derivatives of φ, contain two tensor modes and two scalar modes, one of which is associated with a so-called Ostrogradsky instability [54,55]. However, it is possible to choose special functions a A and b A in the terms of the Lagrangian (2.2) and (2.4) so that the corresponding theory is degenerate and contains at most one propagating scalar mode. This class of theories, also known as DHOST theories, has originally been identified at quadratic order in φ µν (i.e. with the functions f 2 and a A only) in [26] and further studied in [27][28][29]56] (see also [57] for an approach to scalar-tensor theories based on differential forms).

The identification of DHOST theories has recently been extended up to cubic order, i.e. by including the second line of (2.1), in [33] and the interested reader will find the full classification there (see Table 1 for a short summary). The DHOST theories include all Horndeski theories but also new theories that lead to higher-order Euler-Lagrange equations even if no extra scalar mode propagates. In summary, there exist seven classes of purely quadratic theories (four classes with f 2 = 0 and three classes with f 2 = 0) and nine classes of purely cubic theories (two with f 3 = 0 and seven with f 3 = 0). These quadratic and cubic classes can be combined to yield hybrid theories, involving both quadratic and cubic terms, but all combinations are not possible: only 25 combinations (out of 63) lead to degenerate theories, often with extra conditions on the functions a A and b A in the Lagrangian (see [33] for details).

(3+1) decomposition in the unitary gauge

We now wish to reexpress the action (2.1) in ADM form in the unitary gauge. For simplicity, we discuss here only the quadratic case. More details about the calculations and their extension to cubic theories are given in App. A.

In order to write the (3 + 1) decomposition of the action (2.1), it is convenient to use the notation of [26,27] and introduce the auxilary variables

6 A ≡ 1 N D t φ ≡ 1 N ( φ -N i ∂ i φ) , V ≡ 1 N D t A . (2.6)
The action (2.1) can then be expressed in terms of V , corresponding to the velocity of A, and of the extrinsic curvature tensor,

K ij ≡ 1 2N ḣij -D i N j -D j N i , (2.7) 
where D i denotes the covariant derivative associated with the spatial metric h ij . The full expression for the action in an arbitrary gauge can be found in [27].

Here, we restrict our derivation to the so-called unitary gauge, where the scalar field is uniform, i.e. such that ∂ i φ = 0 (unitary gauge) .

(2.8)

In the unitary gauge, the quantities A and V defined above reduce to

A = φ N , V ≡ 1 N Ȧ + A N i ∂ i N N (unitary gauge) .
(2.9)

Ignoring the P and Q terms of the Lagrangian, which do not play any role for the degeneracy, we can compute the ADM form of the elementary quadratic and cubic Lagrangians (2.3) and (2.5) in the unitary gauge. Their expressions are given in App. A. One can also obtain the analogous expression for the terms f 2 (4) R and f 3 (4) G µν φ µν by using the Horndeski Lagrangians, as explained in the appendix.

In the quadratic case, we find that the total ADM action in the unitary gauge is given by

S = d 3 x dt N √ h L , (2.10) 
with

L = f 2 R -2f 2φ A K + (f 2 + a 1 A 2 )K ij K ij -(f 2 -a 2 A 2 )K 2 + a 1 + a 2 -(a 3 + a 4 )A 2 + a 5 A 4 V 2 + A(4f 2X + 2a 2 -a 3 A 2 )KV + 4f 2X A 2 -(2a 1 -a 4 A 2 )A 2 ∂ i N ∂ i N N 2 .
(2.11)

The full expression including the cubic terms is much more involved and is given in (A.13) of App. A. We can further simplify the above expressions by assuming that the scalar field is proportional to the time coordinate t, φ = µ 2 t , (2.12)

where µ is some mass scale, so that .13) In this case, the dynamical quantities are the lapse N and the spatial metric.

A = µ 2 N , V = - µ 2 N 3 D t N . ( 2 
Upon expanding the above action (2.10) around a cosmological background up to quadratic order in perturbations, one obtains an expression of the form (1.2), with

M 2 2 = f 2 -a 1 X , M 2 2 (1 + α T ) = f 2 , M 2 2 (1 + α H ) = f 2 -2Xf 2X , M 2 2 1 + 2 3 α L = f 2 + a 2 X , M 2 2 β 2 = -X a 1 + a 2 + (a 3 + a 4 )X + a 5 X 2 , 2M 2 β 1 = X(4f 2X + 2a 2 + a 3 X) , M 2 2 β 3 = -X(4f 2X -2a 1 -a 4 X) , (2.14) 
where the right-hand side quantities are evaluated on the homogeneous and isotropic background (so that X = -µ 4 ). Let us stress that the coefficients β 1 and β 2 correspond to the terms in front of KV and V 2 , respectively, in the unitary action. This means that all the Ṅ terms disappear when

β 1 = β 2 = 0.
The first two relations of (2.14) can be used to express M 2 and α T in terms of f 2 and a 1 . Substituting into the other relations, one easily gets the other parameters, α H , α L , β 1 , β 2 and β 3 , in terms of f 2 , f 2X and a A evaluated on the background. In App. A, we also give the full expressions of the effective parameters when the action also contains the cubic terms, thus in terms of f 3 and the b A .

Let us briefly discuss the values of these parameters for the quadratic DHOST theories. The classes Ib, IIb and IIIc are pathological, as noted in [27], because they do not contain propagating gravitons. Indeed, one sees immediately that if a 1 = f 2 /X, which is the case for these three classes, the coefficient of the kinetic term for the gravitons K ij K ij disappears (since X = -A 2 in the unitary gauge), i.e. M = 0 and the theory does not contain tensor degrees of freedom.

The remaining theories, IIIa and IIIb, are also problematic, as pointed out in [56]. Indeed, f = 0 implies that there is no gradient term for the gravitons since the spatial curvature R disappears. This means that the propagation speed for gravitational waves is zero, or equivalently, α T = -1. Note that the classes IIIa and IIIb also verify the property α H = -1.

From a phenomenological point of view, the classes Ia and IIa therefore appear to be the most interesting.

Degeneracy conditions for the effective parameters

Among theories of the form (2.1), DHOST theories play a very special role as their Lagrangian is degenerate, which implies that they contain at most three propagating degrees of freedom, i.e. two tensor modes and one scalar degree of freedom.

Interestingly, the fully nonlinear degeneracy conditions boil down to two sets of very simple conditions for the effective parameters appearing in the quadratic perturbative action. Depending on the DHOST theory under consideration, we find that the effective parameters satisfy either

C I : α L = 0 , β 2 = -6β 2 1 , β 3 = -2β 1 [2(1 + α H ) + β 1 (1 + α T )] , (2.15) 
or the set of conditions

C II : β 1 = -(1 + α L ) 1 + α H 1 + α T , β 2 = -6(1 + α L ) (1 + α H ) 2 (1 + α T ) 2 , β 3 = 2 (1 + α H ) 2 1 + α T , (2.16) 
where we have assumed that α T = -1 in the latter case (otherwise 7 one should use a regular version of the conditions obtained by multiplying both sides of the equalities by the denominator of the right hand side). It is immediate to see that both sets of conditions share the common condition

C U : (1 + α L )β 2 = -6β 2 1 , (2.17) 
which plays a special role in the unitary gauge, as we will see later. In the second set of conditions, C II , the three parameters β A are completely determined by the parameters α L , α H and α T . By contrast, in the set of conditions C I , β 1 remains independent of the α A . Note that a theory that satisfies α L = 0 and the conditions C II automatically verifies C I . One can also recover directly the conditions C I and C II by rewriting the three degeneracy conditions involving f 2 , f 2X and the five functions a A , derived in [26], in terms of the seven parameters M 2 , α L , α H , α T and β A , as we show in App. B. The degeneracy conditions satisfied by each DHOST subclass are indicated in Table 1. Among purely quadratic theories, the subclass8 Ia satisfies the conditions C I , while the subclass IIa satisfies the conditions C II . As mentioned earlier, the effective coefficients cannot be defined for the theories Ib, IIb and IIIc for which M 2 = 0. Theories IIIa and IIIb satisfy α T = α H = -1 and verify the regular version of conditions C II .

The situation with cubic DHOST theories is subtler. The reason is that there are more than three degeneracy conditions for the 11 functions that parametrize the space of cubic scalar-tensor theories, as shown in [33]. However, for linear perturbations about a cosmological background, these degeneracy conditions simply "project" onto C I or C II . If we pushed the effective description of a cubic DHOST theory up to higher order, we would expect the emergence of new degeneracy conditions, which would be reminiscent of the full degeneracy conditions obtained in the complete theory.

For the purely cubic theories, one can discard six subclasses out of nine, because they lead to M 2 = 0. Among the remaining three subclasses, the subclass 3 N-I, which includes the quintic Horndeski Lagrangian, satisfies the conditions C I , while the other two, 3 M-I and 3 M-II, obey the conditions C II (see Table 1).

Finally, let us discuss the combinations of quadratic and cubic theories. As shown in [33], there exist 25 subclasses of degenerate theories. Only one subclass, Ia & 3 N-I, satisfies the conditions C I only: this subclass contains the full Horndeski theory as well as the beyond-Horndeski extensions. Leaving aside seven subclasses for which M 2 = 0, we are left with 17 subclasses that satisfy the conditions C II . Among these, one subclass also satisfies α L = 0 (and therefore the conditions C I too): Ia & 3 M-III. The other subclasses satisfy only the conditions C II .

It was shown in [29] that all subclasses of quadratic DHOST theories are stable with respect to conformal-disformal transformations, by which we mean that any theory is mapped into another theory belonging to the same subclass. One can conjecture that this should remain true for the cubic DHOST theories, although it has been checked only for the subclass 3 N-I containing Horndeski. Given these considerations, it is instructive to explore how the effective coefficients are transformed under conformal-disformal transformations.

Disformal transformations

Let us consider general (conformal-)disformal transformations, which define a new metric by using the scalar field, according to the expression [58] gµν = C(φ, X)g µν + D(φ, X)φ µ φ ν .

(2.18)

As shown explicitly in [29] for quadratic theories, any DHOST theory can be mapped into another DHOST theory via this transformation. More precisely, if we start from a theory defined by the action S[g, φ], one can define a new theory as

S[g µν , φ] := S[g µν = Cg µν + Dφ µ φ ν , φ] . (2.19) 
The explicit transformation of the functions f 2 and a A can be found in [33], where it is also shown that all subclasses of quadratic DHOST theories are stable under disformal transformations. If the disformal transformation is invertible, i.e. it satisfies the condition [58] C

-XC X -X 2 D X = 0 , (2.20) 
then two disformally related theories are equivalent, provided matter is ignored. However, including matter and assuming that it is minimally coupled to the metric that appears in the two disformally related DHOST actions, one gets two physically distinct theories.

In order to compute the transformation of the effective parameters of the quadratic action, it is convenient to introduce the dimensionless time-dependent parameters

α C ≡ φ 2HC ∂C ∂φ , α Y ≡ - X C ∂C ∂X , α D ≡ - D D + C/X , α X ≡ - X 2 C ∂D ∂X , (2.21) 
where the right-hand sides are evaluated on the background. These four dimensionless functions characterize how the quadratic action (1.2) transforms under the transformation (2.18). The functions α C and α D were introduced in [40,59] to characterize conformal and disformal transformations that depend only on the scalar field value. Indeed, the structure of the action restricted to α H = α L = β A = 0 is invariant under this subset of transformations [59,60]. The function α X was introduced in [47] to describe the transformation of the action restricted only to α L = β A = 0. The relations between the effective parameters α K , α B , α T , α M and α H in different frames were given in these references.

Here we extend these results to the general action (1.2). In particular, as explicitly shown in App. C, the effective parameters in the quadratic action derived from S are related to those associated with S via the transformations:

M 2 = M 2 C √ 1 + α D , αL = α L , αT = (1 + α T )(1 + α D ) -1 , αH = Ξ (1 + α D ) 1 + α H -α Y (1 + α T ) -1 , β1 = Ξ α Y (1 + α L ) + β 1 , β2 = Ξ 2 β 2 -6α Y (α Y (1 + α L ) + 2β 1 ) , β3 = Ξ 2 (1 + α D ) β 3 + 2α 2 Y (1 + α T ) -4α Y (1 + α H ) , (2.22) 
where we have introduced Ξ

≡ 1 (1 + α D )(1 + α X + α Y ) . ( 2 

.23)

This function is always finite for an invertible transformation (2.18). Indeed, in terms of the parameters (2.21), the condition (2.20) implies 1 + α X + α Y = 0, while one must impose 1 + α D > 0 in order to conserve the metric signature. Here we focus our attention on the parameters that are directly involved in the degeneracy constraints and do not show the analogous transformations for the other parameters α K and α B , whose explicit expressions are given in App. C. One can check that the two sets of degeneracy conditions (2.15) and (2.16), as well as the common condition (2.17), are all invariant under the above disformal transformations. Interestingly, for degenerate theories satisfying either (2.15) or (2.16), it is possible to cancel simultaneously all three β A via a conformal transformation verifying

α Y = - β 1 1 + α L , (2.24) 
provided α L = -1. One can also cancel α H via a disformal transformation such that

α X = α H -(2 + α T )α Y . (2.25) 
As a consequence, it is possible to cancel both β A and α H via a disformal transformation characterized by

α Y = - β 1 1 + α L , α X = α H + 2 + α T 1 + α L β 1 . (2.26)
Such a transformation is well defined for theories satisfying the conditions (2.15) but not theories verifying (2.16) for which the quantity 1 + α X + α Y vanishes. In the first case, one simply recovers the property that theories belonging to the same subclass as Horndeski can be related to Horndeski via a disformal transformation.

Dispersion relation for a Minkowski background

For simplicity, we first study the linear perturbations about a Minkowski background for theories of the form (2.1). We thus specialize the quadratic action (1.2) to the limit a = 1 and H = 0: this is equivalent to assuming that the typical frequencies and wave numbers are much higher than the cosmological ones. For convenience, we redefine the coefficients of the δN 2 and δKδN terms as

M 2 K = H 2 α K , M B = Hα B , (3.1) 
and we assume that the mass parameters M K and M B can take any finite value in the Minkowski limit.

The scalar type perturbations in the unitary gauge can be expressed in terms of the quantities ψ and ζ, defined by

N i = δ ij ∂ j ψ , h ij = e 2ζ δ ij . (3.2) 
Substituting into the quadratic action, we thus obtain an action that depends on the three perturbations ζ, δN , ψ and their derivatives. All the coefficients are constant since we are now in a Minkowski background.

Dispersion relation and degeneracy

In order to derive the dispersion relation, one considers perturbations of the form 

 δN (t, x) ζ(t, x) ψ(t, x)   = e -iωt+ik•x   δN (ω, k) ζ(ω, k) ψ(ω, k)   ≡ e -iωt+ik•x U , (3.3) 
where U denotes the column vector of the three perturbations in Fourier space. The resulting quadratic Lagrangian is of the form

L (2) = U † K U U , (3.4) 
where K U is the 3 × 3 kinetic matrix with components

K U = M 2   M 2 K + β 2 ω 2 + β 3 k 2 2(1 + α H )k 2 + 6β 1 ω 2 + 6iM B ω 2(M B -iβ 1 ω)k 2 2(1 + α H )k 2 + 6β 1 ω 2 -6iM B ω -6(1 + α L )ω 2 + 2(1 + α T )k 2 2i(1 + α L )ωk 2 2(M B + iβ 1 ω)k 2 -2i(1 + α L )ωk 2 -2 3 α L k 4   .
(3.5) One finds the dispersion relation by imposing

detK U = 0 , (3.6) 
which yields

E 1 ω 4 + E 2 k 2 + E 3 ω 2 + E 4 k 4 + E 5 k 2 = 0 , (3.7) 
with the coefficients

E 1 = 3 (1 + α L )β 2 + 6β 2 1 , E 2 = 6 2(1 + α H ) + (1 + α T )β 1 β 1 + α L (1 + α T )β 2 + 3(1 + α L )β 3 , E 3 = 3 (1 + α L )M 2 K + 6M 2 B , E 4 = -α L 2(1 + α H ) 2 -(1 + α T )β 3 , E 5 = (1 + α T ) α L M 2 K + 6M 2 B . (3.8) 
In the general case, the dispersion relation is a quartic polynomial in ω with only even powers, which means that there are two solutions for ω 2 , corresponding to the presence of two scalar modes, as expected. In particular, we note that the two parameters β 1 and β 2 contribute to the highest order coefficient in ω, which is consistent with their interpretation given in the introduction. Interestingly, the structure of the coefficient E 1 is the same as that of E 3 with β 1 and β 2 playing the role of α B and α K , respectively (reminding that M B ≡ Hα B and M 2 K ≡ H 2 α K ). Note also that the highest term in spatial derivatives disappears when α L = 0.

If the condition E 1 = 0 is satisfied, which is equivalent to the condition C U identified in (2.17), then only a single scalar mode remains. However, the above statement is valid in the unitary gauge for linear perturbations. In an arbitrary gauge, unless the theory is fully degenerate, i.e. it satisfies the other conditions in (2.15) or (2.16), there still exists an extra scalar mode that simply does not show up at the linear level (see discussion in App. B.2). In order to ensure the absence of this extra scalar mode, it is sufficient to require either of the degeneracy conditions (2.15) and (2.16), which implies E 2 = 0 and E 4 = 0. In this case, the dispersion relation takes the very simple form

ω 2 -c 2 s k 2 = 0, c 2 s ≡ - 1 3 (1 + α T )(6M 2 B + α L M 2 K ) M 2 K (1 + α L ) + 6M 2 B (degenerate) .
(3.9)

Newtonian limit

One can also use the quadratic action to explore how the usual Poisson equation is modified. To do so, we consider the static limit (i.e. ω = 0) of the quadratic action and we introduce a point mass m which is minimally coupled to the metric. If we work in the unitary gauge, we find that the kinetic matrix (3.5) for the variables δN , ζ and ψ reads, in the limit ω = 0,

K V = M 2   β 3 k 2 + M 2 K 2(1 + α H )k 2 2M B k 2 2(1 + α H )k 2 2(1 + α T )k 2 0 2M B k 2 0 -2 3 α L k 4   . (3.10)
The second line implies

ζ = - 1 + α H 1 + α T δN , (3.11) 
which is equivalent to the relation

Ψ = 1 + α H 1 + α T Φ , (3.12) 
between the gravitational potential Φ (which in general is related to the unitary gauge variables by Φ = δN + ψ) and the spatial gravitational potential Ψ = -ζ.

We now distinguish the two cases α L = 0 and α L = 0. If α L = 0, the last line of the kinetic matrix yields

k 2 ψ = 3 M B α L δN . (3.13) 
Substituting into the first line and going back into real space, one finds the generalized Poisson equation

M 2 2 (1 + α H ) 2 1 + α T -β 3 ∆Φ + M 2 M 2 K + 6 M 2 B α L Φ = m δ (3) (x) , (3.14) 
where ∆ ≡ δ ij ∂ i ∂ j denotes the Laplacian. The coefficient in front of ∆Φ in the generalized Poisson equation (3.14) corresponds to (4πG N ) -1 , where G N is the effective Newton constant. For DHOST theories with α L = 0, we see immediately that the coefficient in front of the Laplacian in the Poisson equation vanishes, because of (2.16), which means that the effective Newton constant in the linear regime is infinite for these theories.

If α L = 0, one obtains the generalized Poisson equation

M 2 2 (1 + α H ) 2 1 + α T -β 3 ∆Φ + M 2 M 2 K Φ = m δ (3) (x) . (3.15) 
For DHOST theories that satisfy the conditions (2.15) but not (2.16), one thus gets a finite Newton constant G N in the linear regime

8πG N = 1 M 2 (1 + α H ) 2 1 + α T - β 3 2 -1 . (3.16) 
These results seem to indicate that only theories that are related to Horndeski via conformal or disformal transformations are phenomenologically viable. One should however investigate whether this peculiar behaviour persists at the nonlinear level. We can check that for β 3 = 0 this effective Newton constant agrees with the one found for Horndeksi and beyond Horndeski theories in the quasi-static regime. In our notation, the full expression is given by eq. (3.24) of [47] (see also [61]). In the absence of background matter and for a, M and α H = constants, this reads

8πG N = 1 2M 2 (1 + α H ) 2 1 + α T + 2ξ 2 c 2 s (α K + 6α 2 B ) , (3.17) with ξ ≡ α B (1 + α T ) + α T -α M -α H (1 + α M ).
It is easy to check that, in the Minkowski limit, the last term in the brackets becomes 1 + α T and eq. (3.16) with β 3 = 0 is recovered.

Quadratic action in a cosmological background

In this section, we study the quadratic action for the propagating degrees of freedom in a cosmological background. Since none of the additional operators studied here contributes to tensor modes, we restrict our analysis to scalar perturbations. A derivation of the quadratic action for tensor perturbations, which depends only on the parameters M 2 and α T , can be found for instance in [4,7]. Using the usual expressions for the scalar perturbations in unitary gauge,

N i = δ ij ∂ j ψ , h ij = a 2 (t) e 2ζ δ ij , (4.1) 
we can express the action (1.2) as a functional of ζ, δN and ψ and their derivatives. It is convenient to distinguish the two cases α L = 0 and α L = 0. The kinetic Lagrangian is given by the first three terms on the right-hand side,

L quad kin = a 3 M 2 2 (-6 ζ2 + 12β 1 ζδ Ṅ + β 2 δ Ṅ 2 ) . (4.3) 
Thus, without any assumption on the time dependent functions β A , the action above describes in general two propagating scalar modes, ζ and δN , while ψ, which appears without time derivatives, can be treated as a Lagrange multiplier. In this general case, the full analysis, including matter, extends our analysis of the previous section and is discussed in App. D. The expression (4.3) is degenerate if the determinant of the kinetic matrix vanishes, i.e. if

β 2 = -6β 2 1 , (4.4) 
where one recognizes the second condition in eq. (2.15), or the condition (2.17) with α L = 0. In this case the kinetic Lagrangian can be written as Substituting this expression for δN into the action and performing some integration by parts, we finally find the quadratic action for the propagating degree of freedom ζ, as in the more standard case of Horndeski and beyond Horndeski theories [7].

L quad kin = -6a 3 M 2 2 ( ζ -β 1 δ Ṅ ) 2 , ( 4 
S quad = d 3 x dt a 3 M 2 2 A ζ ζ2 + B ζ (∂ i ζ) 2 a 2 + C ζ (∂ i ζ)
Up to now we have imposed only the first two conditions in eq. In particular, the first condition is equivalent to

α ≡ α K + 6α 2 B - 6 a 3 H 2 M 2 d dt a 3 HM 2 α B β 1 ≥ 0 . (4.15)
The dispersion relation is standard, ω 2 = c 2 s k 2 /a 2 , with a sound speed given by

c 2 s = -B ζ /A ζ . (4.16)
It is straightforward to check that for β 1 = 0 one recovers the sound speed derived for theories belonging to the Horndeski and beyond Horndeski classes in [4,7,17]. Moreover, in the Minkowski limit, we recover eq. (3.9) in the case α L = 0. One can also verify that under a general transformation (2.18), the above expression for the sound speed transforms like the lightcone, i.e. c2 s = (1 + α D )c 2 s , as expected.

Case α L = 0

We now consider the case α L = 0. Varying the action with respect to ψ yields the scalar component of the momentum constraint, which reads Using this expression to eliminate ψ from the action, one obtains

S quad = d 3 x dt a 3 M 2 2 1 α L 6(1 + α L ) ζ2 -12β 1 δ Ṅ ζ + (6β 2 1 + α L β 2 )δ Ṅ 2 + 12H β 1 (1 + α B ) δ Ṅ -(1 + α B + α L ) ζ δN + H 2 6α 2 B + 12α B + α L α K + 6(1 + α L ) δN 2 + 1 a 2 2 (1 + α T ) (∂ i ζ) 2 + 4 (1 + α H ) ∂ i ζ ∂ i δN + β 3 (∂ i δN ) 2 .
(4.18)

Once again, in the absence of any assumption on the β A , this action describes in general two propagating scalar modes, ζ and δN . The kinetic matrix is degenerate for

β 2 = -6 β 2 1 1 + α L , (4.19) 
which corresponds to the condition of eq. (2.17). It can be diagonalized by introducing the variable

ζ = ζ - β 1 1 + α L δN , (4.20) 
which represents the propagating degree of freedom in this case. Using these two relations in action (4.18) and performing some integrations by parts, the action takes the form and V is some potential term which is not relevant for us and will be ignored below. As one can see, the action contains an explicit dependence on Ṅ . In [21], different cases are considered, depending on the values of the parameters in the Lagrangian. The case λ 2 = 0 and λ 3 = 0 corresponds to Horava's projectable model in the limit λ 0 → ∞. The healthy extension of Horava's non projectable model [19] corresponds to λ 0 = λ 2 = 0. Finally, [21] also considers an extension with λ 0 and λ 2 non zero.

S quad = d 3 x
It is always possible to rewrite the unitary action (5.1) as a covariant action by using the Stueckelberg formalism, where the time coordinate of the unitary gauge is replaced by a scalar field φ. This leads to the covariant action [21] 

S cov = d 4 x √ -g M 2 2 (4) R + λ -1 X φ - 1 X φ µ φ µν φ ν 2 + λ 2 µ 4 X 2 (φ µ φ µν φ ν ) 2 + λ 3 X 2 φ µ φ µν φ νλ φ λ - 1 X (φ µ φ µν φ ν ) 2 + λ 0 4µ 4 (X + µ 4 ) 2 .
(5.2)

One immediately sees that this action is of the form (2.1) with no cubic terms and

a 1 = 0 , a 2 = (λ -1)M 2 2X , a 3 = (1 -λ)M 2 X 2 , a 4 = λ 3 M 2 2X 2 , a 5 = M 2 λ -λ 3 -1 2X 3 + λ 2 2µ 2 X 2 ,
(5.3) P (X) = λ 0 (X + µ 4 ) 2 /(4µ 4 ) and Q(X) = 0. This corresponds to the following effective parameters α T = α H = 0, α L = 3(λ -1)/2 , β 1 = 0 , β 2 = λ 2 , β 3 = λ 3 .

(5.4) and α K = λ 0 µ 4 /(2H 2 M 2 ). When λ 2 = 0, one has β 1 = β 2 = 0 and the condition (2.17) is verified. This means that one finds a single propagating scalar mode in the unitary gauge. However, even if λ 2 = 0, the parameters do not satisfy the full degeneracy conditions, unless λ 3 = 2. The covariant theory (5.2) (with λ 2 = 0) is not a DHOST theory and thus contains an extra degree of freedom, although it is not directly visible in the unitary gauge (see discussion in App. B.2). This is an example of theory that looks degenerate in the unitary gauge but is not degenerate. In order to get rid of this dangerous extra degree of freedom, one can either define the theory directly in the unitary gauge or consider the covariant action but only for a restricted range of solutions, as discussed in [21].

Khronometric theories

In khronometric theories [21], the scalar field Lagrangian is invariant under the field redefinition φ → φ(φ). At lowest order in derivatives, the action can be written in terms of the unit vector field u µ ≡ ∂ µ φ/ √ -X as

S = M 2 * 2 d 4 x √ -g (4) R + K µν ρσ ∇ µ u ρ ∇ ν u σ , (5.5) 
with K µν ρσ ≡ c 1 g µν g ρσ + c 2 δ µ ρ δ ν σ + c 3 δ µ σ δ ν ρ + c 4 u µ u ν g ρσ , (

where M * is a constant with mass dimension and the c i are dimensionless constants. Without loss of generality, we can set c 1 = 0 in the action [62]. Moreover, by using the Gauss-Codazzi relation and that ∇ µ u ν = K µνu µ u ρ ∇ ρ u ν , the above Lagrangian can be rewritten as

S unitary = M 2 * 2 d 3 x dt √ h N R + (c 2 -1)K 2 + (c 3 + 1)K ij K ij + c 4 ∂ i N ∂ i N N 2 .
(5.7)

In the following we will assume that c 3 > -1, which ensures that

M 2 = M 2 * (1 + c 3 ) > 0 , (5.8) 
i.e. that gravitons have a strictly positive kinetic term. Expanding at second order and comparing with eq. (1.2), one finds

α T = α H = - c 3 1 + c 3 , α L = - 3 2 c 2 + c 3 1 + c 3 , β 1 = β 2 = 0 , β 3 = c 4 1 + c 3 .
(5.9)

To compute the action for the propagating scalar degree of freedom, we can use action (4.18) with α H = α T and β 1 = β 2 = 0. Using the Hamiltonian constraint to replace δN , and performing an integration by parts, the quadratic action for ζ can be written in Fourier space as

S quad = d 3 k (2π) 3 dt a 3 M 2 2 k 2 H 6(1 + α L ) + α L β 3 k 2 H 6(1 + α L )β 3 ζk ζ-k + 2a 2 H 2 (1 + α T ) 6(1 + α L ) + α L β 3 k 2 H c ζ2 + c ζ4 k 2 H + c ζ6 k 4 H ζ k ζ -k , (5.10) 
where

c ζ2 = 36(1 + α L ) 2 Ḣ , c ζ4 = -6α L (1 + α L ) β 3 1 + Ḣ H 2 + 2(1 + α T ) , c ζ6 = α 2 L β 3 [β 3 -2(1 + α T )] , (5.11) 
and k H ≡ k/(aH). This action can be also derived from (D.11) in App. D.

If we now restrict our discussion to degenerate khronometric theories, the degeneracy conditions (2.15) and (2.16) impose constraints on the parameters of actions (5.10) and (5.5). We find, respectively, α L = 0 , β 3 = 0 , ⇔ c 2 + c 3 = 0 , c 4 = 0 , (C I ) , (5.12)

for conditions (2.15), and

α L = -1 , β 3 = 2(1 + α T ) , ⇔ 3c 2 = 2 -c 3 , c 4 = 2 , (C II ) , (5.13) 
for conditions (2.16). These two families of degenerate khronometric theories were already identified in [29], together with two other families that lead to M 2 = 0 and are thus not relevant here.

As shown in [29], the first family (5.12) is conformally-disformally related to general relativity, which means that there is no dynamical scalar degree of freedom in the absence of matter. The second family (5.13) is conformally-disformally related to the theory (in units where M 2 * /2 = 1)

f 2 = 1, a 1 = - 2 X
, a 2 = a 3 = 0, a 4 = 6 X 2 , a 5 = -4 X 3 .

(5.14)

Substituting into the unitary gauge expression (2.11), one finds

L = R + 3K ij K ij -K 2 + 2 ∂ i N ∂ i N N 2 , ( 5.15) 
and the trace part of K ij automatically cancels, which means that there is no propagating scalar mode. Note that theories of this family possess the peculiar property that β 1 = β 2 = 0 while β 3 = 0. This is not in contradiction with our discussion in Sec. 2.4 as α L = -1 here.

Conclusions

In this work, we have studied the effective description of quadratic and cubic Higher-Order Scalar-Tensor theories, focusing in particular on the degenerate ones, i.e. DHOST theories. We considered the quadratic action of linear perturbations about a homogeneous and isotropic background, written in the unitary gauge where the scalar field is spatially uniform. In general, the quadratic action contains time and spatial derivatives of the lapse perturbation, which requires the introduction of three new (time-dependent) parameters which we denote β 1 , β 2 and β 3 . We also need another parameter, α L , in front of the trace of the extrinsic curvature (squared), in order to cover all DHOST theories. The presence of time derivatives of the lapse is not in contradiction with the property that DHOST theories contain a single scalar degree of freedom, because of the existence of degeneracy conditions that ensure that the effective parameters β 1 , β 2 and β 3 in the quadratic action are not arbitrary but instead must be linked via three relations. One of these relations, (2.17), can easily be inferred from the requirement that the unitary gauge action is manifestly degenerate, but the other two relations cannot be immediately guessed within the unitary gauge, because they come from the degeneracy imposed at the level of the covariant action. However, as we have shown, they can be deduced from the requirement that the dispersion relation is linear.

Remarkably, all cases can be summarized by only two different sets of degeneracy conditions at the level of the linear perturbations in the unitary gauge. The first set, (2.15), is characterized by the condition α L = 0, while β 1 is left arbitrary and the other two coefficients β 2 and β 3 are constrained in terms of β 1 , α T and α H . By contrast, with the alternative set of degenerate conditions (2.16), the parameter α L remains arbitrary while the three coefficients β 1 , β 2 and β 3 are determined in terms of α L , α T and α H . Among all quadratic and cubic DHOST theories, the subclass containing Horndeski, beyond-Horndeski and the theories conformally-disformally related to them stands out as satifying (2.15) only. By contrast, all the other subclasses verify the conditions (2.16), including one that satisfies α L = 0 as well, i.e. both C I and C II (see Table 1).

Let us turn to phenomenology. Our analysis shows that all DHOST subclasses, except the one containing Horndeski and beyond-Horndeski, suffer from the problem that the effective Newton's constant becomes infinite in the linear regime. This analysis, which is restricted to linear perturbations, thus seems to indicate that one cannot recover standard gravity in these theories, although a fully nonlinear treatment would be necessary for a definite conclusion. Even if they cannot account for gravity as we know it, such theories could still be interesting for other contexts, such as in the early Universe.

In cosmology, we derived the quadratic action governing the dynamics of the linear scalar mode. By imposing only the condition C U , defined in (2.17), we obtained an action with a nonlinear dispersion relation and we checked that the curvature perturbation ζ is conserved on large scales. When the full degeneracy conditions are imposed, the dispersion relation simplifies and becomes linear.

We have also studied the impact of a fully general conformal-disformal transformation, with both functions depending on X and φ, on the quadratic perturbative action, thus extending previous results on the transformation of the effective parameters. This expresses, at the level of linear perturbations, the underlying structure of transformations within DHOST theories, which enlarges those for Horndeski theories, where C and D are restricted to be independent of X, and those for beyond Horndeski, where D can depend on X but not C.

In the main body of this paper, we have implicitly assumed that matter is minimally coupled to the metric. In this case, two conformally-disformally related theories are not physically equivalent. It is also possible to relax the assumption of minimal coupling and attribute to each matter species four parameters that characterize, at the linear level, the non-minimal coupling to the metric. These four parameters transform under a general conformal-disformal transformation, similarly to the parameters of the scalar-tensor action. In App. D, we derived the dispersion relation for the scalar mode in the presence of matter, which enables to verify that the dispersion relation remains the same in all frames. Moreover, the mixing between matter and scalar perturbations can be quantified with a frame-invariant parameter. If we consider N S matter species, their coupling to the metric is described by 4N S parameters, which add to the 6 independent parameters for the gravitational sector (9 parameters minus three degeneracy constraints). Taking into account frame transformations, characterized by 4 parameters, we end up with 2(2N S +1) physically independent parameters.

Note that one can use the disformal transformations to simplify the scalar-tensor action, although at the price of complicating the coupling between matter and the metric. For example, for DHOST theories in the first subclass, one can use a conformal-disformal transformation to rewrite the scalar-tensor sector as a Horndeski theory, i.e. with α L = 0, α H = 0 and β 1 = β 2 = β 3 = 0, while matter has a complicated coupling to the metric and scalar field. This choice between the Jordan frame (where matter is minimally coupled) and the Horndeski frame is analogous to the choice between the Jordan frame and the Einstein frame for ordinary scalar-tensor theories.

Finally, we have also discussed Lorentz-breaking theories inspired by Horava's gravity, as well as khronons. In particular, for the former, we have shown that the covariant formulations of these models lead to nondegenerate theories. Therefore, they contain an extra degree of freedom even if it is not visible at the linear level in the unitary gauge; see discussion in App. B.2.

B Degeneracy conditions

In this appendix, we concentrate on the full nonlinear action of quadratic DHOST theories. Their kinetic Lagrangian can be written in the form [26] L kin = A(φ, X, A) Ȧ2 + 2B ij (φ, X, A) ȦK ij + K ijkl (φ, X, A)K ij K kl , (B.1)

where A(φ, X, A) is a polynomial in the variable A and

B ij (φ, X, A) = B 1 h ij + B 2 D i φ D j φ , K ijkl (φ, X, A) = κ 1 h i(k h j)l + κ 2 h ij h kl + Kijkl . (B.2)
Here B 1 , B 2 , κ 1 , κ 2 are polynomials in A, and the tensor Kijkl vanishes when ∂ i φ = 0. The Lagrangian is degenerate when the determinant of the kinetic matrix,

D(φ, X, A 2 ) ≡ A -K -1 ijkl B ij B kl = D 0 (φ, X) + A 2 D 1 (φ, X) + A 4 D 2 (φ, X) , (B.3)
vanishes for any value of A. This gives the three independent relations D 0 (φ, X) = 0 , D 1 (φ, X) = 0 , D 2 (φ, X) = 0 , (B.4)

The expressions for D 0 , D 1 and D 2 depend on the functions f 2 and a A , (A = 1, ..., 5) and on X, and can be found in eqs. (4.30)-(4.32) of [26].

B.1 Degeneracy conditions in terms of the effective parameters

For quadratic theories, one can express f 2 and a i in terms of α T , α H , α L , β 1 , β 2 and β 3 : This condition is obviously satisfied if the three conditions of (B.4) are verified, but the converse is not true: there exist theories that look degenerate in the unitary gauge but are in fact not degenerate.

f 2 = M 2 2 (1 + α T ) , f 2X = M 2 4X (α T -α H ) , a 1 = M 2 2X α T , a 2 = - M 2 6X (3α T -2α L ) , a 3 = - M 2 3X 2 (2α L -3α H -6β 2 ) , a 4 = - M 2 2X 2 (
An important consequence of the above discussion is that for a nondegenerate theory that satisfies (B.11), the extra scalar degree of freedom, which is known to be present because the theory is nondegenerate, does not show up in the linear perturbations about a homogeneous background. Indeed, in this case the kinetic Lagrangian quadratic in perturbations is given by In that case, it means that only one scalar degree of freedom shows up at the level of linear perturbations, independently of the gauge choice. However, the extra degree of freedom remains present and would show up at the nonlinear level or in an inhomogeneous background.

C Disformal transformations

Here we study how action (1.2) transforms under a conformal and disformal redefinition of the metric, eq. (2.18). For simplicity, following [17] we work in the unitary gauge and set φ = t (i.e. µ = 1 in eq. (2.12)), so that X = -1/N 2 . In the unitary gauge, the disformal transformation (2.18) is of the form gµν = C(t, N )g µν + D(t, N )δ 0 µ δ 0 ν .

(C.1)

The ADM components of the metric gµν are related to those of g µν by

Ñ i = N i , hij = Ch ij , Ñ 2 = CN 2 -D . (C.2)
Moreover, the other relevant geometrical quantities in the action transform as

-g = √ -g C 3/2 C -D/N 2 , (C.3) R = C -1 R -2D i D i log C - 1 2 (∂ i log C) 2 , (C.4) Ki j = N Ñ K i j + 1 2N C Ċ + C N ( Ṅ -N i ∂ i N ) δ i j . (C.5)
The dimensionless time-dependent parameters defined in eq. and

Υ ≡ Ξ α X + α Y + α D (1 + α X + α Y ) + α C [(1 + α D )(1 + α X ) + α Y (3 + α D )] - 1 2HC ∂ 2 C ∂t∂N -α Y Ξ ΞH + Ṅ0 HN 0 α X α Y + 3α 2 Y + α D α Y (1 + α X + α Y ) - N 2 0 2C ∂ 2 C ∂N 2 .
(C.11)

The last ingredient is the transformation of the second-order perturbation of R, i.e.

δ 2 R = Cδ 2 R + 2Cα Y Ξ R δ Ñ Ñ -4Ξα Y δ h ã3 ∆δ Ñ a 2 Ñ + 2 C ∂ 2 C ∂N 2 -18Ξ 2 α 2 Y (∂ i δ Ñ ) 2 a 2 Ñ 2 + δ Ñ ∆δ Ñ a 2 Ñ 2 2 C ∂ 2 C ∂N 2 -8α 2 Y .
(C.12)

Replacing all the geometrical terms in action (1.2) by their transformed quantities using eqs. (C.9) and (C.12) and making use of eqs. (C.7) and (C.8) for the homogeneous quantities, one obtains an action in terms of the metric gµν . The last step is to make a time redefinition,

t → t = C 1 + α D dt , (C.13)
which sets the homogeneous "00" component of the metric to unity, i.e. Ñ0 = 1. The obtained action S has the same form as the original one, eq. (1.2), with the transformed αK and αB given by

αK = α K Ξ 2 + 12ΞΥα B -6Υ 2 (1 + α L ) (1 + α C ) 2 + 12Υβ 1 Ξ H(1 + α C ) 2 + β 2 Ξ2 H 2 (1 + α C ) 2 - 1 2 M 2 ã3 H2 d dt M 2 ã3 12ΞH Ñ0 Υ(α Y (1 + α L ) + β 1 ) -Ξα B α Y + Ξ 6H β 2 -6α Y β 1 , αB = α B Ξ -(1 + α L )Υ 1 + α C + β 1 Ξ H(1 + α C ) .
(C.14)

The remaining time-dependent functions αA and βA are given by eq. (2.22).

D Quadratic Lagrangian and dispersion relation in the presence of matter

We describe matter using a scalar field σ with a k-essence type action [63], where the right-hand sides are evaluated on the background. The first two parameters in the above equations, α C,m and α D,m , were introduced in Ref. [59], while the third in [47]. The total action is the sum of the gravitational action, eq. (1.2), and the matter action above. We will first discuss the case α L = 0; the case α L = 0 can be obtained by taking the smooth limit α L → 0, as we will discuss below.

S
Variation of the total action with respect to ψ yields the scalar component of the momentum constraint, which reads where σ 0 = σ 0 (t) and δσ = δσ(t, x) respectively denote the homogeneous component of the scalar field and its perturbation. We also introduced the matter equation of state and sound speed squared including a lightcone-changing factor (1 + α D,m ) for later convenience, Substituting ψ into the total action using equation D.6 yields Let us now impose the unitary degeneracy condition, eq. (4.19). As discussed in Sec. 4, it is convenient to introduce ζ defined in eq. (4.20). Replacing ζ in terms of this variable in action (D.9) eliminates time derivatives of the lapse δN . In particular, the quadratic action takes the form

S = d 3 x dt a 3 M 2 2 1 α L 6(1 + α L ) ζ2 -12β 1 δ Ṅ ζ + (6β 2 1 + α L β 2 )δ Ṅ 2 + 12H β 1 (1 + α B ) δ Ṅ -(1 + α B + α L ) ζ δN + H 2 6α 2 B + 12α B + α L α K + 6(1 + α L ) + α L M (m) 22 
H 2 δN 2 + 1 a 2 4 (1 + α H ) ∂ i ζ∂ i δN + 2 (1 + α T ) (∂ i ζ) 2 + β 3 (∂ i δN ) 2 + A m δ σ2 - c 2 
S = d 3 x dt a 3 M 2 2 6(1 + α L ) α L ζ2 + A m δ σ 2 + 2 ẊT VX + 1 a 2 ∂ i X T S ∂ i X + X T M X , (D.11)
where X T ≡ ( ζ, δN, δσ) and V denotes the matrix of elements and Let us focus on theories satisfying the degeneracy conditions C I . By imposing the remaining degeneracy conditions, the limit α L → 0 is finite and for the kinetic part of the action we find where α was defined in equation (4.15). Requiring that the determinant of the kinetic matrix vanishes gives the dispertion relation

V 12 = - 6 α L H(1 + α B + α L ) -β1 + β 1 αL 1 + α L , V 13 
M 22 = α L V 12 1 + α L V 12 6 -Hα B + H 2 α K -6α B 1 + 3 + α M 1 + α L β 1 -6 (α B H) • 1 + α L β 1 + M (m)
S = d 3 x dt a 3 M 2 2 A (m) ζ ζ2 + B ζ a 2 (∂ i ζ) 2 + A m δ σ2 -
(ω 2 -ĉ2 s k 2 )(ω 2 -c 2 m k 2 ) = λ 2 ĉ2 s ω 2 k 2 , (D.23)
where

λ 2 ≡ 3 1 + w m (1 + α D,m ) Ωm H 2 α + 3 Ωm α eff D,m α H -α X,m -α Y,m + 3c 2 m (α Y,m + β 1 ) + β 1 (1 + α T ) 2 (D.24)
is a frame-independent parameter giving the amount of kinetic mixing between matter and the scalar field, which generalizes the one introduced in [47] (and to which it reduces in the limit α Y,m = β 1 = 0). Moreover, in equation (D.24), ĉ2 s is defined as 
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 11 Figure 1.1: Basic geometrical quantities in a 3+1 decomposition.

. 13 )

 13 One can split each scalar field σ I into a background value and its perturbations, σ I = σI (t) + δσ I (t, x), and expand to second-order the action S m . The explicit calculation can be found in the case of Horndeski theories in Appendix B of Article A, in the case of beyond Horndeski in Appendix A of article C, and in the case of DHOST in class Ia in Appendix D of Article D (in the latter case, for a single matter species only).What we found is that, for each species, in the most general case we can fully characterise the coupling of the matter sector at the level of linear perturbations by four functions. Two of them characterise the dependence on D and C on the scalar field and were introduced in[Gleyzes:2015pma]. The remaining two characterise the dependence of D and C on the gradient of the scalar field and were introduced in [DAmico:2016ntq] and[Langlois:2017mxy] respectively. Their explicit definitions are:
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 51 Figure 5.1: Relation between the matter and gravitational perturbations in the interacting CDM model.
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 52 Figure 5.2: Toy-model of a galaxy made by baryons and CDM. The centres of mass of the two components feel different forces due to the non minimal coupling of CDM particles, and this result in an additional force felt by the galaxy.

  ) ΛCDM: αB,0 = βγ = 0, II) Braiding: βγ = 0, αB,0 = -0.01, III) Interacting: αB,0 = 0, βγ = -0.03, In Fig. 5.3 and 5.4 I show the effects of the different operators on the background and on perturbations, for the three different fiducials. These are useful to understand the results of the Fisher analysis. For the background, in Fig. 5.3 I show the relative difference between Ω b,c and their respective fiducial values. For the perturbations, I plot the quantities that are relevant for the three observables introduced in Sec. 5.3: the effective growth rate f eff (see Eqn. (5.50)), the matter transfer function, defined in Eqn. (5.52), the transfer function for Φ + Ψ, Eqn. (5.61), and its derivative with respect to the redshift z.
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 53 Figure 5.3: Relative change of the baryon and CDM density fractions, with respect to their fiducial values, as a function of the redshift z, depending on the values of the parameters w, α B,0 , α M,0 , α T,0 and β γ .
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 54 Figure 5.4: Modifications of the evolution of perturbations from their fiducial values, as a function of redshift, for the different parameters w, α B,0 , α M,0 , α T,0 and β γ .From top to bottom, relative variation of the effective growth factor f eff , eq. (5.50), the matter transfer function T m , eq. (5.52), the Weyl potential transfer function T Φ+Ψ , eq. (5.61) and its derivative with respect to redshift, ∂ z T Φ+Ψ , for the three different fiducial models (respectively I, II and III, from left to right). As ∂ z T Φ+Ψ vanishes in matter domination, we have normalized it to its value at z = 0 instead of its value as a function of the redshift.
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 55 Figure 5.5: Two-dimensional 68% CL contours for the fiducial model I (ΛCDM model), obtained by fixing all the other parameters to their fiducial values. The parameter α T,0 is absent for ΛCDM, as it is unconstrained on this fiducial model. Shaded blue regions correspond to theoretically forbidden parameter space where c 2 s α < 0. Note that the axis range is different for different parameter planes.
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 56 Figure 5.6: Two-dimensional 68% CL contours for the fiducial model II (braiding model with α B,0 = -0.01), obtained by fixing all the other parameters to their fiducial values. Shaded blue regions correspond to theoretically forbidden parameter space where c 2 s α < 0. Note that the axis range is different for different parameter planes.
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 57 Figure 5.7: Two-dimensional 68% CL contours for the fiducial model III (interacting model with βγ = -0.03), obtained by fixing all the other parameters to their fiducial values. Shaded blue regions correspond to theoretically forbidden parameter space where c 2 s α < 0. Note that the axis range is different for different parameter planes.
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 61 Figure 6.1: Relation between the matter and gravitational perturbations in presence of KMM.
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 62 Figure 6.2: Effect of KMM on the matter power spectrum for four different values of α H today, i.e. α H,0 = 0.06, 0.12, 0.24 and 0.48, at redshift z = 0 (left panel) and z = 1 (right panel). The lower plots display the ratio of these power spectra with the respective spectra for α H = 0. For comparison, the dashed and dotted lines in the left lower panel respectively show the quasi-static approximation and the perturbative solution (6.20).
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 63 Figure 6.3: Friction term γ given in Eqn. (6.13), as a function of redshift.
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 64 Figure 6.4: Effect of KMM (α H ) on the CMB lensing potential (left panel) and on the CMB anisotropies (right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the respective spectra for α H = 0.
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 65 Figure 6.5: Left: the quantity f σ 8 as a function of redshift for different values of α H,0. The plot also shows the measurements of f σ 8 and their respective 1-σ errors from several redshift surveys: 6dF GRS[START_REF] Beutler | The 6dF Galaxy Survey: z ≈ 0 measurement of the growth rate and σ 8[END_REF], SDSS DR7 MGS[START_REF] Howlett | The clustering of the SDSS main galaxy sample ? II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15[END_REF], GAMA[START_REF] Blake | Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure[END_REF], SDSS DR12 LRG[START_REF] Alam | The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample[END_REF], WiggleZ[START_REF] Blake | The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1[END_REF] and VIPERS[START_REF] De La Torre | The VIMOS Public Extragalactic Redshift Survey (VIPERS). Galaxy clustering and redshift-space distortions at z=0.8 in the first data release[END_REF]. 3 Right: relation between α H,0 and the corresponding σ 8 at redshift z = 0, respectively in the top and bottom x-axes. The α H,0 = 0 line corresponds to ΛCDM and the region α H,0 < 0 is shaded because it is out of the stability window. The plot also shows the measurements of σ 8 and their respective 1-σ errors from several collaborations. In particular, the constraints based on cluster counts (red dashed lines) are from Planck 2013[START_REF] Ade | Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts[END_REF] and SPT 2016[START_REF] De Haan | Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey[END_REF]. The constraints based on weak lensing observations (blue solid lines) are from several analysis of the CFHTLens, by Kilbinger et al. 2013[START_REF] Kilbinger | CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing[END_REF], Köhlinger et al. 2015[START_REF] Köhlinger | A direct measurement of tomographic lensing power spectra from CFHTLenS[END_REF] and Hildebrandt et al. 2016[START_REF] Hildebrandt | KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing[END_REF], and from the cosmic shear study of DES 2015[START_REF] Abbott | Cosmology from cosmic shear with Dark Energy Survey Science Verification data[END_REF].
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  .13), with ρ m = I ρ I and p m = I p I . For a FLRW background, the definition of Q I , eq. (3.4), reduces to QI = Hρ I 1 + α D,I α C,I [1 -3w I (1 + α D,I )] + α D,I 3 + ρI Hρ I + αD,I 2H(1 + α D,I ) , (3.6)

. 8 )

 8 Taking into account(3.7), one can also check that QI = 3Hρ I γ I . Note that the equation of state in the Jordan frame of the fluid I corresponds to wI = w I (1 + α D,I ) (see Appendix A.1). Using this relation, one can check that for a relativistic fluid, i.e. wI = 1/3, the conformal term in (3.8) disappears, as expected from the tracelessness of its stress energy tensor.

3 k 2 a 2 σ

 322 (3.6) and (C.6). The space components of eq. (3.3) gives the Euler equation, which at linear order reads ρ I (1+w I ) vI +ρ I [ ẇI -3Hw I (1 + w I )] v I +δp I +ρ I (1+w I )Φ-2 I = -QI π+v I (1+w I ) .

. 9 )

 9 These equations must be supplemented by the Einstein equations, eqs. (C.2)-(C.5) and by the scalar fluctuation equation (C.7).

  ) and replace γ r with the expression γ r = ( αD,r -2Hα D,r )/[6H(1 + α D,r )]. The evolution equations then read δr

2 I 1 + 2 I 1 +

 2121 σ I = σI (t) + δσ I (t, x). The fluid quantities are related to the function P I (Y I ) through p I ≡ C α D,I P I , ρ I ≡ C α D,I 2Y I P ′ I -

7 )(

 7 The metric perturbations δN and ζ and the scalar fluctuation ψ are related to the metric perturbations in Newtonian gauge by δN = Φπ, ζ = -Ψ -Hπ and ψ = a -2 π.)

  introduced the divergence of the velocity, θ I ≡ -k 2 v I /a. (The anisotropic stress is gauge invariant.) We can then use the above relations to rewrite eqs. (C.2)-(C.5) in synchronous gauge. To do this, we use conformal time, τ ≡ dt/a, and denote by a prime the derivative with respect to it. Rescaling the scalar fluctuation π by the conformal factor, π → π/a, and defining the conformal Hubble rate as H ≡ a ′ /a, one obtains ((00) component)

. 14 )

 14 Combining eqs. (3.6)-(3.9) with eqs. (3.10)-(3.11) and (3.14) leads to a system of two second-order equations for the density contrasts,

. 21 )

 21 See also App. B for a discussion on the frame dependence of eqs. (3.15) and (3.16) and of the combinations Υ b,c .

  (2.25) and(2.26)). In this way we can assume that the background cosmological parameters are those fitted by a simple ΛCDM model. See discussion at the beginning of Sec. 5 and in App. A.1.

. 10 )

 10 The respective growth functions G c and G b are identical, solutions of the equation
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 2 Figure2: Modifications of the evolution of perturbations from their fiducial values, as a function of redshift, for the different parameters w, α B,0 , α M,0 , α T,0 and β γ . From top to bottom, relative variation of the effective growth factor f eff , eq. (3.39), the matter transfer function T m , eq. (5.6), the Weyl potential transfer function T Φ+Ψ , eq. (5.11) and its derivative with respect to redshift, ∂ z T Φ+Ψ , for the three different fiducial models (respectively I, II and III, from left to right). As ∂ z T Φ+Ψ vanishes in matter domination, we have normalized it to its value at z = 0 instead of its value as a function of the redshift.
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 3 Figure3: Two-dimensional 68% CL contours for the fiducial model I (ΛCDM model), obtained by fixing all the other parameters to their fiducial values. The parameter α T,0 is absent, as it is unconstrained on this fiducial model. Shaded blue regions correspond to theoretically forbidden parameter space where c 2 s α < 0. Note that the axis range is different for different parameter planes.
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 2714 Figure 4: Two-dimensional 68% CL contours for the fiducial model II (braiding model with α B,0 = -0.01), obtained by fixing all the other parameters to their fiducial values. Shaded blue regions correspond to c 2 s α < 0. The axis range is different for different parameter planes.
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 5 Figure 5: Two-dimensional 68% CL contours for the fiducial model III (interacting model with βγ = -0.03), obtained by fixing all the other parameters to their fiducial values. Shaded blue regions correspond to c 2 s α < 0. The axis range is different for different parameter planes.
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  )

5

  To get the last term one can replace in eq. (B.2) the time derivative of the field fluctuation δ σ by its density fluctuation δρm, using the expression δρm = for finite c 2 m , and subsequently set c 2 m = 0.

. 25 )

 25 The parameters µ Ψ and µ Φ represent modifications of the Poisson law, respectively for Ψ and Φ, and are equal to one in the standard case. The last term on the right-hand side of eqs. (3.21) and(3.22) proportional to the Laplacian of the matter velocity potential vanishes in the absence of KMM.Equation(3.22), together with the continuity equation (3.18) and the Euler equation, vm = -Φ ,
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 2 Figure 2: Friction term γ given in eq. (4.8), as a function of redshift.

Figure

  Figure 4: Relation between α H,0 and the corresponding σ 8 at redshift z = 0, calculated using eq. (4.29), respectively in the top and bottom x-axes. The α H,0 = 0 line corresponds to ΛCDM and the region α H,0 < 0 is shaded because it is out of the stability window (4.6). The plot also shows the measurements of σ 8 and their respective 1-σ errors from several collaborations.11 In particular, the constraints based on cluster counts (red dashed lines) are from Planck 2013[81] and SPT 2016[83]. The constraints based on weak lensing observations (blue solid lines) are from several analysis of the CFHTLens, byKilbinger et al. 2013 [77], Köhlinger et al. 2015[80] and Hildebrandt et al. 2016[84], and from the cosmic shear study of DES 2015[87].

Figure 5 :

 5 Figure5: The quantity f σ 8 as a function of redshift for different values of α H,0 . The plot also shows the measurements of f σ 8 and their respective 1-σ errors from several redshift surveys: 6dF GRS[96], SDSS DR7 MGS[97], GAMA[98], SDSS DR12 LRG[85], WiggleZ[99] and VIPERS[100]. When possible, we plotted conditional constraints assuming a ΛCDM background cosmology with Planck 2015 parameters. In particular, the WiggleZ constraints were taken from Fig.16of[67].

σ 8

 8 (0.84 -0.18 α H,0 ) • A s 2.2 × 10 -9 .(4.29)

I

  S I = d 4 x -ǧ (I) L I ǧ(I) µν , ψ I , (φ, X)∂ µ φ ∂ ν φ .

  I * = 0. This defines its Jordan metric as the gravitational metric. It is convenient to introduce the parameters α C-hand side is evaluated on the background. (Requiring a Lorentzian Jordan frame metric implies α D,I > -1 [51].) In unitary gauge, eq. (A.2) reads ǧ(I) µν = C I (t)g µν + D I (t, N )δ 0

C 2 I 1 + 2 I 1 +

 2121 δN 2 ,I ≡ c 2 s,I α eff D,I + (1 + α X,I ) 2 1 + w I (1 + α D,I ) (A.9) with the combination α eff D,I ≡ α D,I (1 + α X,I ) 2 + α X,I (2 + α X,I α D,I P I , ρ I ≡ C α D,I 2Y I P I -P I , c 2 s,I ≡ P I P I + 2Y I P I (1 + α D,I ) -1 .

Figure 7 :

 7 Figure 7: Effect of braiding (α B ) on the CMB lensing potential (left panel) and on the CMB anisotropies (right panel) angular power spectra. The lower plots display the ratio of these angular spectra with the respective spectra for α B = 0.

. 5 )

 5 which suggests that the time derivatives of δ Ṅ can be eliminated by replacing the variable ζ with the new variableζ ≡ ζβ 1 δN . (4.6)This variable describes the propagating scalar degree of freedom in the degenerate case.To find the associated quadratic action, we can proceed similarly to what was done in[4, 6]. Varying the action with respect to ψ yields the scalar component of the momentum constraint. In terms of the new variable, it reads δN = ζ H(1 + α B ) -β1 . (4.7)

2 . ( 4 . 13 )

 2413 (2.15). Since only β 1 enters in the above expressions for A ζ and B ζ , these definitions remain unchanged when the full degeneracy conditions C I are imposed, while the function C ζ vanishes. In this case the action takes the usual form,S quad = d 3 x dt a 3 M 2 2 A ζ ζ2 + B ζ (∂ i ζ) 2 aAbsence of instabilities requires that the coefficients in the action satisfyA ζ ≥ 0 , B ζ ≤ 0 . (4.14) 

α L 3 ∆ψ a 2 +

 32 (1 + α B + α L )HδN + β 1 δ Ṅ -(1 + α L ) ζ = 0 . (4.17

  )

(4. 22 )

 22 The explicit expressions of V 12 and M 22 above are not relevant for this discussion and can be found in App. D. Variation of action (4.21) with respect to δN gives then the Hamiltonian constraint equation,V 12 ζ + M 22 δN = 1 a 2 S 12 ∆ ζ + S 22 ∆δN . (4.23) The constraint equation (4.23) can be solved for δN as a function of ζ and ζ and plugged back into eq. (4.21), which yields the quadratic action for the propagating degree of freedom ζ. If S 12

3 - 4 ( 1 + 1 + β 3 , 3 -β 2 + 4 ( 1 +

 341133241 2α Hβ 3 ) , a 5 = -M 2 6X 3 (-2α L + 3β 1 + 12β 2 + 3β 3 ) . α H ) 2 -(1 + α T )β 3 , α H ) 2 -(1 + α T )β 2 -(5 + 2α T )β α H )β 1 + 2(1 + α T )β 2 α H ) 2 -(4 + α T )β 2 -(4 + α T )β α H )β 1 + 2(4 + α T )β 2 1 + β 3 . (B.8)One can distinguish two cases, which yield the conditions C I and C II , given respectively in (2.15) and (2.16).• α L = 0: The condition (B.6) is automatically satisfied. From (B.7) and (B.8) we obtainβ 3 = -4β 1 (1 + α H ) -2β 2 1 (1 + α T ) , β 2 = -6β 2 1 .(B.9)• α L = 0: The three conditions can be solved for β 1 , β 2 and β 3 , obtaining(1 + α T )β 1 = -(1 + α L )(1 + α H ) , (1 + α T ) 2 β 2 = -6(1 + α L ) (1 + α H ) 2 , (1 + α T )β 3 = 2(1 + α H ) 2 . (B.10)B.2 Unitary gauge and extra degree of freedomIn the unitary gauge, we have ∂ i φ = 0 and therefore X = -A 2 so that the vanishing of the determinant (B.3) is guaranteed by the single condition D(φ, X, -X) = 0 . (B.11)

L

  quad kin = Ā δ Ȧ2 + 2 Bij δ ȦδK ij + Kijkl δK ij δK kl , (B.12)where all quantities are decomposed into a background component, denoted by a bar, and a perturbative component: φ = φ + δφ, X = X + δX and A = A + δA. Note that δX and δA involve δ φ and ∂ i δφ. Since X = -Ā2 , we see that the degeneracy of the above quadratic Lagrangian is automatically guaranteed when the condition (B.11) is verified, even if the conditions (B.4) are not. The condition can be written as

  quantities on the right-hand side are evaluated on the background. Using these definitions, from eq. (C.2) the homogeneous components of the metric and the lapse transform asã = √ Ca , Ñ0 = C 1 + α D N 0 . (C.7)Moreover, the Hubble rate changes accordingly, i.e.,H ≡ 1 Ñ0 ã dã dt = H(1 + α C ) 1 + α D C . (C.8) Furthermore, to compute how the action transforms we are interested in the following relations, derived from linearizing eqs. (C.2)-(C.5) and valid at linear order, α D )(1 + α X + α Y ) , (C.10)

  m = d 4 x √ -gP (Y ) , Y ≡ ǧµν ∂ µ σ∂ ν σ , (D.1)where matter is coupled to a metric of the formǧµν = C (φ) m (φ, X)g µν + D (φ) m (φ, X)∂ µ φ ∂ ν φ . (D.2)In unitary gauge, this readsǧµν = C m (t, N )g µν + D m (t, N )δ 0 µ δ 0 ν , (D.3) with C m (t, N ) = C (φ) m φ(t), -φ(t) 2 /N 2 , D m (t, N ) = φ2 (t)D (φ) m φ(t), -φ(t) 2 /N 2 . (D.4)Then, in analogy with equation (2.21), we introduce the parameters α

2α L ∆ψ a 2

 2 + 6HδN (1 + α B + α L ) + 6β 1 δ Ṅ -6(1 + α L ) ζ = 3(1 + α D,m )c 2 m σ0 A m δσ (D.6)

w m = P ( 1 +

 1 α D,m ) (2Y P Y -P ) α D,m ) (P Y + 2Y P Y Y ) , (D.7)as well as the combinationA m ≡ -2C m 1 + α D,m M 2 (P Y + 2Y P Y Y ) . (D.8)

m a 2 ( 22 = 3 2 + 1 + 2 +

 2223212 ∂ i δσ) 2 + 6 σ0 c 2 m (1 + α D,m ) ζ δ σ + 1 + α L α L ζ δσ -2 σ0 (1 + α D,m ) δN δ σ 1 + α X,m + α Y,m (1α B + α L ) σ0 c 2 m (1 + α D,m ) α L δN δσ + 3 c 4 m σ2 0 (1 + α D,m ) 2 2α L A m δσ 2 , Ωm H 2 α eff D,m + σ2 0 (1 + α D,m ) 2 A m (1 + α X,m + α Y,m ) -3c 2 m (β 1 + α Y,m ) α D,m (2Y P Y -P ) 3M 2 H 2 , α eff D,m ≡ α D,m (1 + α X,m + α Y,m ) 2 + 2(α X,mα Y,m ) + (α X,m + α Y,m ) 2 + 1 2C m ∂ 2 (D m -C m ) ∂N w m (1 + α D,m ) 6β 1 (1 + α X,m + α Y,m ) -9c 2 m (β 1 + α Y,m ) 3w m 2α Y,m (1 + α D,m )(1 + α X,m ) + α 2 Y,m (3 + 2α D,m ) + 2β 1 (1 + α D,m )(1 + α X,m + α Y,m ) + 1 2C m ∂ 2 C m ∂N 2 .(D.10)

= 3 ( 1 + 1 ( 1 +

 3111 α L ) α L σ0 (1 + α D,m )c 2 m A m , V 32 = -σ0 (1 + α D,m )A m 1 + α X,m + α Y,m -3c 2 m β 1 1 + α L + α Y,m , V 11 = V 21 = V 22 = V 23 = V 31 = V 33 = 0 . (D.12)Moreover, M and S are symmetric matrices with elements given byS 11 = 2(1 + α T ) , S 12 = 2 1 + α H + (1 + α T )β 1 1 + α L , S 13 = S 23 = 0 , S 22 = 4 (1 + α H )β 1 1 + α L + 2 (1 + α T )β 2 α L ) 2 + β 3 , S 33 = -c 2 m A m , (D.13)

M 11 =

 11 M 12 = M 13 = 0 . (D.14) Variation of (D.11) with respect to δN gives the Hamiltonian constraint, V 12 ζ + V 23 δ σ -S 21 ∆ ζ -S 22 ∆δN + M 22 δN + M 23 δσ = 0 . (D.15)This can be solved for δN and plugged back into action (D.11). After a spatial Fourier transform we get, denoting k = k/a:

c 2 m a 2 ( 2 , (D. 20 ) 2 ,

 222202 ∂ i δσ) 2 + A ζm δ σ ζ + B ζm a 2 ∂ i ζ ∂ i δσ , α D,m )A m 1 + α X,m + α Y,m -3c 2 m (β 1 + α Y,m ) H(1 + α B ) -β1 B ζm = -2 σ0 (1 + α D,m )c 2 m A m 1 + α H + β 1 (1 + α T ) H(1 + α B ) -β1 (D.21) and A ζ , B ζ are respectively defined in eqs. (4.9) and (4.10). Requiring that the time kinetic matrix is positive definite gives the no-ghost conditions A m ≥ 0 , α + 3 Ωm α eff D,m ≥ 0 , (D.22)

3 1 +

 1 w m (1 + α D,m ) Ωm α + 3 Ωm α eff D,m 1 + α H + β 1 (1 + α T )2 , (D.25) where c 2 s is the sound speed in the absence of matter, defined in eq.(4.16).le modèle ΛCDM peuvent devenir manifestes. De manière cruciale, nos connaissances de la croissance des inhomogénéitées qui génèrent les structures à larges échelles que nous observons aujourd'hui peuvent encore tre améliorées. C'est l'objectif de plusieurs missions planifiées pour les prochaines décennies, tel que EUCLID et LSST, qui seront capables de réduire les contraintes actuelles d'un ou deux ordres de grandeur. Cela va permettre de falsifier de nombreux modèles et d'éclaircir la nature de l'accélération de l'Univers.Ces efforts pour contraindre les alternatives au modèle ΛCDM doivent tre supportés par un travail théorique adéquat. D'une part, il est nécessaire de construire une méthode simple, générale et efficace pour connecter théorie et observations. D'autre part, nous voudrions conserver le contrle sur la viabilité de la théorie et son adéquation avec les principes de base de la physique, tels que la causalité et la localité, en explorant l'espace des paramètres pour analyser les données. Cette thèse traite d'une approche basée sur ces deux principes. Cette approche, dénommée "Effective Theory of Dark Energy", s'appuie sur la description des perturbations cosmologiques linéaires au moyen de tous les opérateurs compatibles avec les symétries du problème. Elle s'applique à toutes les théories o un seul degré de liberté scalaire est ajouté aux deux degrés de liberté de la Relativité Générale. Ces théories sont appelées "théories tenseur-scalaire". Le chapitre 1 résume la plus générale classe de théories tenseur-scalaire viables actuellement connue. Une des conditions suffisantes pour obtenir une théorie stable est que les équations du mouvement contiennent au plus deux dérivées par champs. La théorie d'Horndeski est définie par cette condition et elle a longtemps été considérée comme la classe plus générale de théories tenseur-scalaire viables. Cependant, l'absence de dérivées supérieures n'est pas une condition nécessaire et la théorie d'Horndeski peut tre étendue à des classes plus générales en introduisant la notion de dégénérescence, c'est à dire l'existence de contraintes dans les équations du mouvement. Un premier exemple sont les théories connues sous le nom de "beyond Horndeski", que je vais résumer. Elles ont pavé la voie vers la découverte d'une classe plus générale de théories, dénommées "Degenerate Higher Order Scalar-Tensor" (DHOST), ou "Extended Scalar-Tensor" (EST) theories. Dans la suite de cette thèse, je vais développer une théorie efficace des perturbations cosmologiques linéaires qui décrit cette classe de théories. Le chapitre 2 introduit la théorie efficace de l'énergie noire. D'abord, il résume le formalisme en montrant comment construire une action générale des perturbations cosmologiques linéaires. En autre, une partie de mon travail a été dédié à l'inclusion dans la théorie efficace des couplages généraux entre le secteur gravitationnelle (métrique et champ scalaire) et la matière, décrit dans le chapitre 3. Ceci inclut aussi la possibilité que différentes espèces interagissent de faon différente avec la gravité. Un avantage clé de la formulation par une action est la possibilité d'analyser en détail la stabilité de la théorie. Cet aspect est explicité dans le chapitre 4, qui focalise sur la relation de dispersion du mode scalaire, en soulignant l'impact de la présence de la matière et des complications liées aux théories DHOST. En parallèle du développement d'une compréhension théorique solide de la description efficace, un objectif de cette thèse est aussi l'investigation des effets observables des déviations du modèle LCDM. C'est le sujet des deux derniers chapitres. Le chapitre 5 considère la possibilité d'une interaction entre la matière noire et l'énergie noire. Ce chapitre étudie les effets d'une telle interaction et, plus généralement, analyse la capacité des observations futures à imposer des contraintes sur les paramètres libres de la théorie efficace. Pour résoudre la dynamique on fait d'abord appelle à la limite "quasistatique", qui s'applique aux modes de Fourier qui sont à l'intérieur de l'horizon du son de l'énergie noire. Le chapitre 6 va au-delà de cette approximation au moyen d'un code Boltzmann. En particulier, ce chapitre se concentre sur les effets observationnels de la théorie "beyond-Horndeski", en démontrant que dans ce théorie il existe un melange cinétique entre la matière et le champ scalaire. Ce melange donne lieu à un effets particuliers: l'affaiblissement de la gravité aux échelles des grands structures.Titre : Tests de cohérence de l'Univers et reliques cosmiques Mots clefs : Cosmologie, Energie Noire, Gravitation Résumé : Dans les dernières décennies, un modèle cosmologique, dénommé "modèle ⇤CDM" , a émergé et plusieurs observations ont montré qu'il est consistant avec les données. Toutefois, ils existent des problèmes encore ouverts; en particulier nous ne connaissons pas la cause de l'accélération observée de l'expansion de l'Univers. De nombreux modèles alternatifs ont été proposés. Cette thèse traite d'une approche pour contraindre les alternatives au modèle ⇤CDM dénommée "Effective Theory of Dark Energy". Elle s'applique à toutes les théories où un seul degré de liberté scalaire est ajouté aux deux degrés de liberté de la Relativité Générale. Ces théories sont appelées "théories tenseur-scalaire". Le chapitre 1 résume la plus générale classe de théories tenseur-scalaire viables actuellement connue. Le chapitre 2 introduit la théorie efficace de l'énergie noire. L'inclusion dans la théorie efficace des couplages généraux entre le secteur gravitationnelle (métrique et champ scalaire) et la matière est décrit dans le chapitre 3. Ceci inclut aussi la possibilité que différentes espèces interagissent de façon différente avec la gravité. La possibilité d'analyser en détail la stabilité de la théorie est explicité dans le chapitre 4. Un objectif de cette thèse est aussi l'investigation des effets observables des déviations du modèle LCDM. Le chapitre 5 considère la possibilité d'une interaction entre la matière noire et l'énergie noire. Ce chapitre étudie les effets d'une telle interaction et, plus généralement, analyse la capacité des observations futures à imposer des contraintes sur les paramètres libres de la théorie efficace. Le chapitre 6 se concentre sur les effets observationnels de la théorie " beyond-Horndeski" , en démontrant que dans ce théorie il existe un melange cinétique entre la matière et le champ scalaire. Ce melange donne lieu à un effets particuliers: l'affaiblissement de la gravité aux échelles des grands structures. Title : Consistency tests of the universe and cosmic relics Keywords : Cosmology, Dark Energy, Gravitation Abstract : In the last decades, a cosmological model that fits observations through a vast range of scales emerged. It goes under the name of ⇤CDM. However, there are still challenging questions that remain unanswered by this model, such as what causes the observed accelerated expansion of the universe. Hence, many alternative models have been proposed. This thesis concerns an approach to test such models known as "Effective Theory of Dark Energy" . It applies to all models where general relativity is modified by adding a single scalar degree of freedom, called " scalar-tensor theories". In Chapter 1 I introduce the most general class of such theories currently known. In Chapter 2, I resume the Effective theory of dark energy. The in-clusion of a general coupling between matter and the gravitational sector is the subject of Chapter 3. Chapter 4 analyses in details the stability of different classes of theories. Another goal of the thesis is to study the observable effects of deviations from ⇤CDM. In Chapter 5, I consider the possibility of an interaction between dark matter and dark energy and I analyse the constraining power of future surveys on the free parameters of the theory. Chapter 6 focuses on the observational effects of theories where a kinetic mixing between matter and the scalar field exists. This gives a peculiar effect, namely the weakening of gravity at large scale structure scales. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Table 3

 3 

	Theory	Brans-Dicke	Horndeski	Beyond Horndeski	DHOST
	Free functions,				
	gravitational sector				

.1 summarises the different possibilities. 1. Horndeski +φ-dependent conformal/disformal transformation [Gleyzes:2015pma].

Horndeski theories are characterised by four free functions in the gravitational sector, α K , α B , α M , α T . The coupling to matter adds two functions for each matter species (2N S ) in the matter sector, α C,I and α D,I . The structure of the action is invariant under a transformation with non vanishing α C and α D . In

  .40) The explicit form of the coefficients A ζ , B ζ can be found in Eqns. (4.9)-(4.10) of Article D for theories C I , and in Eqn. (4.26) for theories C II . Absence of instabilities requires that the coefficients in the action satisfy

  C,m , α D,m , α X,m , α Y,m . The calculation in this case proceeds exactly as in the case without matter that I summarised in Sec. 4.6.2, but this time one has to take into account the matter fields as well. The explicit calculation can be found in Appendix D of Article D. At the end, one gets an action analogous to (4.39) (equation D.16 of Article D) with coefficients that are in general ratios of polynomials in k 2 , and only imposing the "full" degeneracy conditions C I and C II a local form of the coefficients is recovered.

	sector is characterised by all the four functions (3.14), α Let me comment on theories satisfying the conditions C I . One gets a dispersion relation of the form (4.23), where the sound speed in presence and absence of matter appropri-
	ately generalise the ones introduced in Eqns. (4.20)-(4.24) (see equations D.23-D.25 of
	Article D). Hence we don't have qualitatively new physical phenomena; we find again
	a mixing between the scalar and matter propagating modes, with a frame-invariant pa-
	rameter λ quantifying such mixing, introduced in Eqn. D.24 of Article D. This result is in
	agreement with the fact that we can re-map theories satisfying C I into theories belonging to the Horndeski and beyond-Horndeski class with a conformal-disformal transforma-
	tion.			
	ζ aH. The constraint Let me finally point out another important result. The action 4.39 implies that is conserved in the long wavelength limit, i.e. ζ ≈ 0 for k equation (4.38) implies that δN vanishes in the same limit. It follows from the defini-
	tion (4.37) that ζ is conserved on large scales,		
	ζ ≈ 0	(k	aH) .	(4.43)
	4.6.3 Including matter			
	DHOST theories have their structure preserved by a conformal-disformal transformation
	of the form (3.7), where both the conformal and disformal factors depend on the scalar
	field and its gradient. This is the third case considered in Sec. 3.3. We can thus couple
	matter to a metric of the form (3.7). Assuming no violations of the WEP, the matter
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	4 × σ(β 2 γ )

68% confidence level (CL) errors on each individual parameter, assuming that the others take their fiducial values, for each fiducial model and observable: galaxy clustering (GC), weak lensing (WL), ISW-galaxy correlation (ISW

  D.14) which for negative values of α B is positive, i.e. has opposite sign as the standard ΛCDM contribution coming from the first two terms in the right-hand side of eq.(4.26). For small values of -α B,0 , d ln µ WL /d ln a is smaller than 1d ln δ m /d ln a: the time derivative of the Weyl potential remains negative and the net ISW effect is suppressed by kinetic braiding. For large values of -α B,0 , i.e. -α B,0 0.3, the right-hand side of eq. (4.26) changes sign and increasing α B enhances the ISW effect.

  Let us assume α L = 0, i.e. the first condition of eq. (2.15). Using eq. (4.1) and noticing that the terms quadratic in ∆ψ cancel up to a total derivative, action (1.2) becomesS quad = d 3 x dt a 3 M 2 2 -6 ζ2 + 12β 1 ζδ Ṅ + β 2 δ Ṅ 2 + 12H (1 + α B ) ζβ 1 δ Ṅ δN + H 2 (α K -6 -12α B )δN 2 + 4 ζβ 1 δ Ṅ -H(1 + α B )δN ∆ψ + 1 a 2 2(1 + α T )(∂ i ζ) 2 + 4(1 + α H )∂ i ζ∂ i δN + β 3 (∂ i δN ) 2 .

	4.1 Case α L = 0
	(4.2)

  Here A ζ , B ζ and C ζ are background-dependent functions whose explicit expressions areH )β 1 + 2(1 + α T )β 2 1 + β 3 (1 + α B -β1 /H) 2 . (4.11)As the above action implies that ζ is conserved in the long wavelength limit, i.e. ζ ≈ 0 for k aH, and eq. (4.7) implies that δN vanishes in the same limit, it follows that ζ is conserved on large scales,

	2		
	a 2	.	(4.8)
	A ζ = B ζ = 2(1 + α T ) -1 (1 + α B -β1 /H) 2 2 aM 2 dt α K + 6α 2 B -d aM 2 1 + α H + β 1 (1 + α T ) 6 a 3 H 2 M 2 d dt a 3 HM 2 α B β 1 , , H(1 + α B ) -β1 C ζ = 4(1 + α ζ ≈ 0 (k aH) ,	(4.9) (4.10) (4.12)

  V 12 ζδN + M 22 δN 2 + 1 a 2 2(1 + α T )(∂ i ζ) 2 + 2S 12 ∂ i ζ ∂ i δN + S 22 (∂ i δN ) 2 , T (1 + α L ) 2 + β 3 .

	dt a 3 M 2 2	6	1 + α L α L	ζ2 + 2 (4.21)
	with			
	S 12 = 2 1 + α H + β 1	1 + α T 1 + α L	,
	S 22 = 4β 1	1 + α H 1 + α L	1 + 2β 2	1 + α

  3 dtd 3 k a 3 M 2 M 22 + k2 S 22 c 1,0 + c 1,2 = S 11 M 2 22 + HS 12 M 22 V 12 (3 + α M ) + M 22 V 12 Ṡ12 -V 12 S 12 Ṁ22 + S 12 M 22 V12 , c 2,4 = -S 2 12 M 22 + S 22 2S 12 M 22 + V 12 Ṡ12 + S 12 HS 22 V 12 (3 + α M ) -V 12 Ṡ22 + S 22 V12 , c 2,6 = S 22 S 11 S 22 -S 2 12 , c 3,0 = A m M 22 -V 2 32 , c 3,2 = A m S 22 , c 4,0 = -M 22 M 2 23 + M 33 M 22 + V 32 Ṁ23 + M 23 HM 22 V 32 3 + α M -V 32 Ṁ22 + M 22 V32 , c4,2 = S 33 M 2 22 -M 23 V 32 Ṡ22 + S 22 2M 33 M 22 -M 2 23 + V 32 Ṁ23 + M 23 HV 32 (3 + α M ) + V32 , c 4,4 = S 22 2S 33 M 22 + S 22 M 33 , c 4,6 = S 2 22 S 33 , c 5,0 = -V 12 V 32 , c 6,2 = -V 32 S 12 , c 7,0 = V 13 M 22 -V 12 M 23 , c 7,2 = V 13 S 22 , c 8,2 = -S 12 M 23 . (D.17)

	where					
	c 1,0 =	6(1 + α L ) α L	M 22 -V 2 12 ,	c 1,2 =	6(1 + α L ) α L	S 22 ,
	c 2,2					
		k2 k2 + c 4,4 ζk ζ-k + k4 + c 4,6 c 2,2 k6 k2 + c 2,4 M 22 + k2 S 22 k4 + c 2,6 ζk δ σ -k + 2 c 7,0 + c 7,2 k2 δ σ k δ σ -k + c 4,0 + c 4,2 + 2c 5,0 ζk δ σ -k + 2c 6,2 + c 3,0 + c 3,2 k2 k2 δσ k ζ-k + 2c 8,2 k2 ζk δσ -k , k6 ζk ζ-k M 22 + k2 S 22 δσ k δσ -k	(D.16)
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One could add another term of the form f1(X, φ)φ µν(4) Rµν , but this can be reabsorbed by integration by parts[36].

I use latin indeces (i, j, ...) for the spatial parts.

This actually exhausts the possibilities, since the shift vector and the extrinsic curvature do not have by definition components with 0 indexes.

The "acceleration" vector ai is not included explicitly since it can be obtained by taking spatial derivatives of the lapse. The shift vector N i should enter in the diff-invariant combination Ṅ -N i ∂iN , but this term reduces to δ N at linear order.

Note that we must impose conditions on the action for the propagating degree of freedom after solving the constraints of the theory. Imposing conditions on the initial action can lead to too restrictive conditions.

In effective theories, higher time derivatives are indeed allowed provided that they are suppressed below the cutoff scale, so that the ghosts are out of the domain of validity of the theory. Here I shall consider them on the same footing as the other operators.

The variation of the corresponding action with respect to the metric defines the energy-momentum tensor,

This means that I will not include operators such as δKR, R 2 , R j i R i j , R δ N that contain three derivatives. Derivatives of the extrinsic curvature are not allowed for the same reason. Note that this procedure doesn't imply that the action for the propagating degree of freedom won't contain higher order space derivatives. For example, the operators δKijδK ij and δK 2 indeed generate higher order gradients without a tuning of their relative coefficient.

An exception to this is given by the cuscuton[51, 52], where the cosmological background evolution is modified but no new degrees of freedom appear in perturbations.

Note that the tensor sector is affected also from αM through additional friction.

This can be interpreted also as a particular type of disformal coupling to matter in the frame where the matter fields are non minimally coupled. The mixing is however a physical effect independent of the frame. I will analyse this in detail in Sec. 4.5

In the context of covariant theories, it can appear only together with other operators that would ensure full diff invariance to the action.

This model however includes a scalar mode that features instability and strong coupling problems[63].

In the case of a purely conformal coupling, radiation fields are an exception, since their action is conformally invariant. For these we shall need a more general version of the transformation that I will discuss later.

For this reason, also radiation fields are affected by a disformal transformation, contrarily to the case of a purely conformal one.

In general, we could add a mass term and consider the case of negative mass, often called a tachyonic instability. In gravity, however, under very general conditions the scalar perturbation is massless[73], and so will be in the present work, as I will show.

At the quantum level the situation is different. It can be shown that in the case A ≤ 0, during the quantisation procedure we are forced to choose between violation of unitarity or propagation of negative energies forward in time[74]. Since the first picture is unviable, we have to admit particles with negative energies in the spectrum, destabilising the vacuum that can quickly decay in states of positive and negative energy.

As anticipated in footnote 1, the action for ζ doesn't have a mass term.

A subscript 0 will always denote a quantity defined in absence of matter.

It has been recently argued that even in vacuum, this can have relevant effects in the context of spatially flat FRW solutions which are geodesically complete without facing gradient instabilities[80, 81].

As I already pointed out, a model for which αT = -1 is very peculiar since the speed of gravitational waves vanishes.

I will discuss here this more general case; the case αL = 0 can be obtained at the end taking the smooth limit αL → 0.

If not, one just needs to apply a metric transformation to reach this frame. The transformations of all the relevant quantities can be found in Sec. (2.5) of Article A.

Defined as Qc = 3Hρcγc.

This choice of parametrisation for the background is motivated by the fact that observations suggest that the recent cosmology is very close to ΛCDM, which corresponds to w = -1, and deviations from ΛCDM in the expansion history are usually parametrised in terms of w = -1.

The parameter βγ generalizes the parameter β defined for coupled quintessence in Sec. 5.3.4 of[70]. In this case, the relation between the two parameters is βγ = -√ 2β.

 6 In the quasi-static limit, the evolution equations are scale independent so that the ratios δ b /δm and δc/δm do not depend on scales. Note also that the bias parameter introduced here is different from the bias between the total matter density and the galaxy density, that I am going to introduced later.

In the following I assume the same baryon-to-CDM ratio for each galaxy and I set this to be the background value, i.e. xc = ωc and x b = ω b . However, one could also consider different populations of galaxies with different baryon-to-CDM ratios and study the effects of equivalence principle violations on large scales between these different populations (see e.g.[94]).

In the fiducial models I and III γc vanishes when varying along βγ (since csα 1/2 = 0) and thus, since β ξ = 0 (see eqs. (5.30) and (5.31)), βγ only appears quadratically in the perturbation equations. For the fiducial II, observables depend only mildly on γc. Thus, we chose β 2 γ rather than βγ as the independent variable in the analysis.

An analysis similar to the one presented here has been extended to include these probes[START_REF] Leung | Marginalized Fisher Forecast for Horndeski Dark Energy Models[END_REF]; in this case, the authors were also able to marginalise over the nuisance parameters. Where comparable, their results agree with those discussed here.

Because of this, polarisation is also unaffected.

When possible, I plotted conditional constraints assuming a ΛCDM background cosmology with Planck 2015 parameters. In particular, the WiggleZ constraints were taken from Fig.16of[1].

Here we have corrected a typo in Ref.[14]. The coefficient in front of δKδR inside the bracket in eq. (55) (see v2 of the arXiv version) should be Ĉ/2, so that the condition in the second line of eq. (60) should read Ĉ * = Ĉ + C. With this correction, eq. (76) of Ref.[14] is equivalent to eq. (2.23) in this article.

To parametrize deviations from Horndeski theories at the linear level, Ref.[24] introduced the parameter αH ≡ (G + HC + N BR)/AK -1. Here we will assume αH = 0.

 6 To write this action, we have not assumed N = 1 as done in previous references[4, 5, 14]. In such a way the action remains explicitly invariant under a time reparameterization t → t(t), which is convenient when changing frame.

This parameter coincides with 1/γ 2 , where γ is the so-called disformal scalar in the notation of Ref.[47].

We require C > 0 and αD > -1, see discussions respectively in Secs. 2.1 and 2.4.

The sound speed of fluctuations in this case is c 2 s = -(2/α) (1 + αB)( Ḣ/H 2 + αB) + αB/H ; see eq. (2.39). Thus, for a constant αB, the usual gradient instability associated with the violation of the Null Energy Condition for Ḣ ≥ 0 can be cured by requiring -1 ≤ αB ≤ -Ḣ/H 2[6].

As shown in Appendix A.2, this statement holds in any frame.

In the quasi-static limit, the evolution equations (4.23) and (4.24) are scale independent so that the ratios δ b /δm and δc/δm do not depend on scales.

The more general k-essence type Lagrangian of Refs.[73,74] explicitly depends also on the scalar field. Since here we are interested only in the derivative terms, we assume for simplicity that PI depends only on YI and not on σI . This description implies that each of the fluids is also barotropic[75], i.e. that its pressure is a function of its energy density, pI = pI (ρI ).

The expressions for the charge QI given in eqs.(3.6) and (C.6) are in unitary gauge. To compare to those in the literature, one must rescale by a factor φ, i.e. QI → QI φ and δQI → δQI φ + QI ( φ/ φ)π.

A treatment of single-field dark energy coupled to CDM in the context of the Parameterized Post-Friedmann framework can be found in[21].

 2 Note that although Horndeski theories are generically unstable under quantum corrections[22], an example of a radiatively stable subclass of Horndeski theories where all the operators of action (2.3) can be relevant has been proposed in[23], based on weakly broken galileon invariance, and applied to inflation in[24].

In the presence of the operator proportional to αH[3, 11] describing linear perturbations in the theories beyond Horndeski proposed in[12, 13], the structure of the Lagrangian remains invariant under the transformation (2.8) even if the disformal function D depends on (∂φ) 2 as well[12] (see also[53] for a recent study).

Here we correct a typo in the expression for αK in eq. (2.45) of the arXiv version of Ref.[20].

The situation simplifies during inflation, when the couplings to matter can be ignored. In this case, without loss of generality one can always go to a frame where αM = αT = 0, corresponding to the standard time-independent Planck mass and unity speed of propagation for gravitons. In this frame one then recovers the standard inflationary predictions[50].

The parameter βγ generalizes the parameter β defined for coupled quintessence in Sec. 5.3.4 of[15]. In this case, the relation between the two parameters is βγ = -√ 2β. We thank Valeria Pettorino for a discussion on this issue.

In the quasi-static approximation, the parameter αK does not appear in any equation (note that the combination c 2 s α does not depend on αK), while αC,c and αD,c only enter through the combination γc (the combination c 2 s α does not depend on αD,c, since wc = 0), so that their individual values remain unconstrained in the analysis.

Since modifications of gravity affecting the background evolution take place only at late time, we are insensitive to the the shift in the matter-radiation equality and to the change in scale of the power spectrum turnaround described in[60].

Notice that the value of max chosen here is smaller than what is usually assumed in comparable analyses (see e.g.[27] and references therein).

γ are in qualitative agreement with those obtained for coupled quintessence in[60], taking into account that the parameter β 2 defined in this reference is related to ours by β 2 γ = 2β 2 .

Here we conservatively exclude the instability region from the allowed parameter space. A more refined treatment would require multiplying the likelihood function by a theoretical prior that excludes the forbidden region, which is impossible to achieve with a Fisher matrix analysis (our priors cannot be represented with an invertible matrix).

We thank Alessandro Manzotti and Scott Dodelson for pointing out a numerical underestimation of the noise in the ISW-galaxy correlation in an earlier version of this paper, corrected here.

The comoving distance is related to the luminosity distance DL and the angular-diameter distance DA by the relations DL(z) = (1 + z)χ(z) and DA(z) = χ(z)/(1 + z).

The quasi-static approximation typically fails on scales k aH/cs, where cs is the sound speed of fluctuations of the scalar. As shown in[52], this approximation should be reliable for surveys such as Euclid as long as the sound speed exceeds 10% of the speed of light, i.e. cs 0.1.

Disformal transformations with C = C(φ, X) have been studied in the context of beyond Horndeski theories in[29, 53] and in the context of degenerate higher-order theories in[54][55][56][57].

See http://www.cita.utoronto.ca/ ~zqhuang/ for documentation.

As for the transformations in Secs. 2.1 and 2.2, we require C > 0 and αD > -1.

Cosmic rays observations put tight constraints on a propagation speed c 2 T < 1[69]. Another lower bound can be put from binary pulsar orbital periods[70].

The sound horizon scale is k+

8.1, 5.8, 4.2 and 3.1 × 10 -4 h/Mpc at redshift z = 0 and k+ 5.9, 4.2, 3.0 and 2.2 × 10 -4 h/Mpc at redshift z = 1, respectively for αH,0 = 0.06, 0.12, 0.24 and 0.48.

The complete Einstein equations can be found in[10].

This is not to be confused with the scalar field φ introduced in Sec. 2.

Because of this, polarization is also unaffected. For this reason we only show the temperature spectrum.

An analysis of the effects of systematics on the CFHTLenS data, not shown in Fig.4, has been carried out by Joudaki et al. in[88]. Moreover, we show the Planck 2013 cluster-based constraint because the more recent analysis by the Planck collaboration[82] did not release numerical values. However, the Planck 2015 results were found in agreement with the previous ones[83].

We can compare with Ref.[45] by the following correspondence between our parameters αB,0 and αK,0 and their parameters αB and αK: αB,0 = -αBΩDE,0/2 and αK,0 = αKΩDE,0.

When higher time derivative terms can be treated perturbatively below some energy scale, the extra degree of freedom is not excited. Here we consider higher time derivatives at the same level as the other terms.

For instance, since R contains two spatial derivatives, we do not include a term such as R δ Ṅ , which depends on three derivatives.

See also[25] for an earlier example based on the disformal transformation of the Einstein-Hilbert Lagrangian.

The theories discovered in[26] were also named Extended Scalar-Tensor (EST) theories in[28]. We prefer to use the more specific terminology of DHOST theories, introduced in[29].

More precisely, as explained in detail in[26], one first introduces an auxiliary variable that includes the time derivative of the scalar field φ, as well as the lapse and the shift, so that all second-order time derivatives φ are absorbed by the velocity of this auxiliary variable and there are no longer time derivatives of the lapse and of the shift. Thus, the kinetic part of the resulting Lagrangian does not depend anymore on an acceleration but just on velocities.

We have slightly changed the notation by using A and V instead of A * and V * .

A model for which αT = -1 is very peculiar since the speed of gravitational waves vanishes.

For quadratic theories, several names have been introduced in previous works. Here we use the names introduced in[29] for quadratic theories. Other names have been used in[33] and are reported in Table1.
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Abbreviations

GR

Article A

Effective Theory of Interacting Dark Energy A Changing frame

We consider a general disformal transformation of the metric (2.41), which in unitary gauge reads g µν → gµν = C(t)g µν + D(t)δ 0 µ δ 0 ν , (A. 1) and study how metric and matter quantities change under this transformation. In terms of the two time-dependent parameters C and D, the ADM components of the new metric

A.2 Perturbations

Let us now study how perturbations transform under disformal transformations. Due to the invariance of the gravitational action under disformal transformations, the perturbation equations have the same form in both frames. Thus, we just need to derive the relation between perturbation quantities in different frames.

Introducing π in eq. (A.1) via the time reparametrization (3.1), one finds, up to linear order in π,

Thus, if we start from a perturbed FLRW metric in Newtonian gauge with g 0i = 0 we end up with g0i = 0 after this transformation. To maintain the Newtonian gauge condition g0i = 0, we need to supplement the time redefinition (A.6) with a space-dependent shift (see Appendix C of [24]), i.e. For the matter quantities, using eq. (A.5), one finds

One can relate the pressure and density perturbations via the speed of sound, which is defined as the ratio between these two quantities in a coordinate system where the fluid is at rest. In the Jordan frame of the fluid, this gives [72] δ pI = c2 

B Matter evolution equations in a generic frame

where we use min = 10 and max = 300 and the covariance matrix is given by

where C CMB ( ) is the full CMB angular power spectrum. We have omitted from this expression the CMB noise, which is negligible for CMB experiments such as WMAP and Planck, and the galaxy shot noise. We have checked that the latter is small up to the chosen max .

Results

In this section we present the results of the Fisher matrix analysis and the associated degeneracies between parameters. We start by discussing the effects of nonstandard gravity on the evolution of homogeneous quantities. As shown below, they are important to understand the effects on perturbations. Before presenting the results of the Fisher matrix analysis, we discuss how the background evolution is modified when one goes slightly away from any of the fiducial models by modifying one of the parameters. The results are summarized in Fig. 1, where we have plotted the evolution of the difference between Ω b,c and their respective fiducial value.

Background

As is clear from (2.25), the parameter Ω b is only affected by a change of the background history embodied by H(z) or by a variation of the effective Planck mass M . It is thus only sensitive to a change of the parameters w or α M . In the former case, the evolution of ρ b ,

A Details on the parametrization

In this appendix we provide some details about the determination of the background parameters in our numerical calculations and about the value of the effective functions in our parametrization.

A.1 Background quantities

Assuming that gravity is standard at recombination, dark energy can only affect the best fit value of the cosmological parameters inferred through the measurement of the comoving distance to last scattering with the CMB spectrum. Thus, we assume that the comoving distance to last scattering is fixed and given by its best fit measurement [66] and we compute the values of the background cosmological parameters inferred from this and

(A.8) Let us extract from this quadratic equation the relevant solution.

Let us start with the case α B,0 = 0, which implies

in (A.6), and the solution is therefore

Both signs of this solution can be chosen and lead to the same phenomenology as long as the sign of β γ is chosen to obtain the same γ c . In the matter dominated era, corresponding to Ω m → 1 and η → 0, the stability condition thus imposes

Let us now consider the case α B,0 = 0. In the past limit Ω m → 1, one finds that

behaves like a constant, while C → 0. Consequently, the two solutions of the quadratic equation in this limit are X = 0 and X = √ 2β γ ω c α B,0 /(1 -Ω m,0 ). In order to recover a standard matter dominated regime with γ → 0 in the past limit Ω m → 1, one needs to pick up the X = 0 solution in the past. This determines the choice of the sign among the two solutions

which yield X = (B ± |B|)/2 in the limit Ω m → 1. One thus concludes that, depending on the sign of α B,0 β γ , the solution is

As above, both signs on the right hand side of eq. (A.15) can be chosen. The stability condition c 2 s α > 0 is obtained by requiring that the above solutions are real.

B Matter evolution equations in a generic frame

For completeness, we provide here the evolution equations for matter in a generic frame. In a generic frame g µν where both baryons and CDM are nonminimally coupled, eqs. (3.15) Article C

Weakening Gravity on Redshift-Survey Scales with Kinetic Matter Mixing

A Quadratic action and stability for multiple species

Here we study the linear stability of the gravitational and matter action, extracting the propagating degrees of freedom and their speed of propagation. To this end, we will expand the total action up to quadratic order in linear scalar fluctuations around a FLRW solution and solve the constraints, generalizing the treatment of [50] by including α H and the dependence on X of the disformal 

D.1 Matter power spectrum

We plot the matter power spectrum in Fig. 6. The effect of α B is to enhance the power on short scales, due to strengthening of gravity. Indeed, the modification of the Poisson equation (3.24)

and one can use this relation in eq. (3.27) (with γ = 0) to predict the corresponding enhancement.

On large scales we observe the opposite effect, i.e. a suppression of power, and a crossover scale between these two regimes independent of α B,0 .

To study the large scale regime we proceed analogously to what done in Sec. 4.1 and solve the

The tensors C (2) and C (3) are the most general tensors constructed from the metric g µν and the first derivative of the scalar field φ µ . It is easy to see that the quadratic terms can be written as

with

2 = (2φ) 2 , L

5 = (φ µ φ µν φ ν ) 2 .

(2.3)

Similarly, the cubic terms can be written as

where

10 = (φ µ φ µν φ ν ) 3 . and S 22 do not vanish, this action contains higher spatial derivatives and Laplacian operators in the denominator, resulting in a nonstandard dispersion relation for ζ. We have written its explicit expression in App. D, including also matter perturbations for completeness. Analogously to what happens in the previous section, there is no mass term in the action and thus ζ and ζ are conserved in the long wavelength limit.

We now derive the action for ζ when the full set of degeneracy conditions (2.16) is imposed. In this case, S 12 = 0 = S 22 and the constraint equation (4.23) simplifies,

while the expressions for V 12 and M 22 take the following form

Replacing δN into action (4.21) using the above constraint, one obtains a quadratic action of the form of eq. (4.13), with

In the limit α L = 0 these expressions reduce to those in eqs. (4.9) and (4.10), with the function β 1 given by eq. (2.16), i.e.

Lorentz-breaking theories

In this section, we show how our analysis can also be applied to theories already proposed in the literature, such as Lorentz-breaking theories inspired by Horava's gravity and khronometric theories.

Lorentz-breaking theories

In our analysis of DHOST theories, we have started from a covariant formulation of the action and then derived the Lagrangian in the unitary gauge. Several models that explicitly break Lorentz invariance have been proposed in the literature and their action is often given directly in the unitary gauge. An illustrative example is Horava gravity [18], with several of its extensions. A general presentation of these models can be found in [21], which we will follow in our discussion below. The actions studied in [21] are of the form 9

(5.1) 9 The notation for the coefficients in the action differs from the one of [21].

A (3 + 1) decomposition of scalar-tensor Lagrangians in the unitary gauge

In the unitary gauge, specified by eq. (2.8), each of the elementary Lagrangians defined in eqs. (2.3) and (2.5) can be expressed in terms of the velocities V and K ij . For the quadratic Lagrangians, eq. ( 2.3), one finds

Moreover, the cubic Lagrangians in eq. (2.5) read

The terms that depend on the Ricci tensor can also be expressed in the unitary gauge. The simplest way to do this is to rewrite them in terms of the quartic and quintic Horndeski Lagrangians, respectively defined as

In our terminology, they correspond to a quadratic and a cubic Lagrangian, respectively. Indeed, they are of the form (2.1), with

Therefore, the full action (2.1) can be rewritten as

where the tensors Cµνρσ

and Cµνρσαβ

are defined with the new functions

while all the other functions remain unchanged.

For the ADM decomposition of the Horndeski Lagrangians we make use of the results of Ref. [4]. In particular, L H 4 and L H 5 can be rewritten, respectively, as

and

In the unitary gauge, we can use the relations

Combining all previous results, the ADM decomposition of the full Lagrangian in the unitary gauge leads to the following expression:

One can then expand this Lagrangian at quadratic order around a FLRW background and obtain an expression of the form (1.2). One finds that the effective coefficients of the quadratic action are given by

When the cubic terms are absent, these relations are equivalent to the expressions (2.14).

Using the terminology of [29] and [33], all the subclasses of DHOST theories are summarized in Table 1. For each subclass, we indicate the number of free functions and the degeneracy conditions verified by the effective parameters. Subclass (see [33]) # free functions Degeneracy Remarks

Table 1: Subclasses of DHOST theories, using the classification of Ref. [33]. Second column: number of free functions among f 2 , a A , f 3 and b A . In the degeneracy column, 0 stands for M 2 = 0, i.e. there are no tensor modes. If f 3φ = 0, only