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Chapter 1 Introduction

The work presented in this thesis is in the field of quantum information, a domain at the intersection of quantum physics and computer science. One of its major goals is the construction of quantum processors connected through a network: the famous "quantum internet". Theoretically, any material governed by the laws of quantum mechanics could be used to build such quantum processors but the current physical realizations do not yet fulfill this promise. Physicists have proposed different physical supports for such processing (Rydberg atoms, cold atoms, trapped ions, photons, superconducting circuits, liquid and solid nuclear magnetic resonance, etc.) and each of them has its advantages and drawbacks depending on the purpose (communication task, gates required for the computation, etc.). However, the practical implementation of any of these candidates involves a lot of issues due to the fragility of quantum correlations and in particular to the phenomena of decoherence.

The collective behavior of Rydberg gases is at the heart of many proposals for quantum information [START_REF] Lukin | Dipole blockade and quantum information processing in mesoscopic atomic ensembles[END_REF][START_REF] Brion | Error correction in ensemble registers for quantum repeaters and quantum computers[END_REF][START_REF] Saffman | Quantum information with Rydberg atoms[END_REF][START_REF] Mølmer | Efficient grover search with Rydberg blockade[END_REF][START_REF] Brion | Quantum repeater with Rydberg-blocked atomic ensembles in fiber-coupled cavities[END_REF][START_REF] Petrosyan | Grover search algorithm with Rydberg-blockaded atoms: quantum monte carlo simulations[END_REF][START_REF] I I Beterov | Simulated quantum process tomography of quantum gates with Rydberg superatoms[END_REF][START_REF] Das | Photonic controlledphase gates through Rydberg blockade in optical cavities[END_REF]. In the first part of this thesis, we choose to focus on a simple system involving Rydberg atoms: a 1-dimensional Rydberg gas coupled to a laser resonant with the Rydberg transition. Rydberg atoms interact together through the dipole-dipole interaction. This particular feature is used for quantum information purposes, like applying multi-qubits gates for example. This interaction is strong enough so that the dynamic of such system in the regime of few excitations in the gas ensemble is already intractable without any assumptions. One of them is the hardcore Rydberg sphere assumption: we approximate this interaction by a sphere around each excitation inhibiting any second excitation within it.

Another one is to suppose that the system thermalizes in such regime [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF][START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF]; a statistical treatment could then be applied. The first part of my thesis, we studied the validity of the use of microcanonical ensemble to describe the dynamic of such system under the hardcore Rydberg sphere assumption.

The distance between the parties forms a limitation to quantum communication protocols, limited to a few hundred kilometers. To overcome this distance limitation, quantum repeaters have been proposed. In particular, in 2012 in laboratoire Aimé Cotton, Etienne Brion et al. have proposed and analyzed a quantum repeater architecture based on Rydberg blocked atomic ensembles in fiber-coupled cavities [START_REF] Brion | Quantum repeater with Rydberg-blocked atomic ensembles in fiber-coupled cavities[END_REF]. In this paper, Brion et al. study a linear arrangement of such repeaters, as in most of the literature. In principle, it can be extended to a more sophisticated network. In the second part of this thesis, we have studied the distribution of entanglement across such generic quantum network. We have mapped these quantum networks to undirected graphs and studied two different routing scenarios:

• the classical routing of quantum entanglement corresponding to the scenario of multiple clients with strongly limited small "quantum devices" trying to share entangled pairs;

• true quantum routing problem (using network coding) corresponding to the situation where the quantum network is composed by small quantum processors that could apply local gates.

For the first routing problem, we studied the trade-off between the entanglement resources (quantum links) used to generate the network and the number of pairs of clients that could simultaneously communicate through this network. Secondly, we focused on a particular communication problem namely the butterfly network where classical routing is impossible. Reducing the client limitations, by supposing they have a quantum processor, allow network coding to be use to solve this communication issue.

Part I

Rydberg gas

Chapter 2

Statistical mechanics of classical and quantum systems

In this chapter, we provide a brief review of the thermalization phenomena of a classical and a quantum system.

Statistical mechanics of classical systems

In this section, we present an overview of classical statistical ensembles.

We discuss the role played by the concepts of ergodicity and mixing as the main ingredients to understand equilibration and thermalization in classical physics. I follow here the approach of [START_REF] Patrascioiu | The ergodic-hypothesis -a complicated problem in mathematics and physics[END_REF][START_REF] V I Yukalov | Equilibration and thermalization in finite quantum systems[END_REF][START_REF] Gogolin | Equilibration and thermalization in quantum systems[END_REF]].

An isolated system is, by definition, a system with no interaction with the rest of the universe. Obviously, this means in practice that the interactions between the system and the environment are negligible. We consider a classical isolated system described by a Hamiltonian H(x) with x being the d-dimensional vector which uniquely represents the state of the system. Taking the example of a gas composed by N particles (with N being of the order of the Avogadro's number) distributed in 3D-space, x is a 6N -dimensional vector describing the positions and momenta of the N particles. Time evolution changes the state of the system and, to predict the evolved state x(t), one needs to solve the 6N Hamilton's equations associated to H(x). This is not reasonable for macroscopic values of N . Because of this impossibility, one should switch from the "dynamical approach" to a "statistical approach" involving much less parameters.

Instead of dealing with a single system and its time evolution in the phase space, one can consider an infinite number of identical copies of the system distributed continuously over the phase space according to the probability density ρ(x). This set of systems is called an "ensemble". In this approach, the mean values of an observable O(x) is computed over the ensemble O ≡ Γ dxρ(x)O(x) where Γ is the volume of all possible configurations of the system in the phase space. This is an ensemble average. This statistical approach involves a probability density ρ(x) which depends usually on a few macroscopic quantities associated to the system. To select the correct probability density ρ(x), one needs to look at the symmetries of our system and the conserved quantities. For an isolated system, the total energy E = H(x) is constant over time and the usual choice of ρ(x) is the micro-canonical ensemble: ρ(x) = 1 Zmc over the constant energy surface S E and 0 elsewhere. The micro-canonical ensemble average of O(x) is

O mc ≡ 1 Z mc S E dxO(x)
where Z mc is the micro-canonical partition function: Z mc = S E dx. In the case of a system coupled to the environment, if the energy can change but the temperature is fixed, the usual ensemble is the canonical ensemble. If neither the energy nor the number of particles is fixed, then the corresponding ensemble is the grand-canonical ensemble. Since we are here mainly interested by isolated systems, from now on, we focus on the microcanonical ensemble. Consider an observable O(x), its infinite time average is

O ≡ lim t→∞ 1 t t 0 dt O(x(t ))
The ergodic hypothesis introduced by Boltzmann in 1871 [START_REF] Boltzmann | Einige allgemenine sätze über das wärmegleichgewicht[END_REF] links between the time average of an observable O(x) with its micro-canonical ensemble average: an isolated is ergodic if for any observable O(x) and for "most" initial states x 0

O ≡ lim t→∞ 1 t t 0 dt O(x(t )) = 1 Z mc S E dxO(x) ≡ O mc .
Maxwell formulated the ergodic hypothesis as follows: "... (it) is that the system, if left to itself in its actual state of motion, will, sooner or later, pass through every phase which is consistent with the equation of energy." This formulation of the ergodic hypothesis was proven to be false, when dim(S E ) > 1, by Rosenthal and Plancherel in 1913 [START_REF] Rosenthal | Proof of the impossibility of ergodic gas systems[END_REF][START_REF] Plancherel | Proof of the impossibility of ergodic mechanical systems[END_REF]. Other formulations of the ergodic hypothesis are equivalent: over long periods of time, the time spent by a system in some region of the microstate phase-space with same energy is proportional to the volume of this region, i.e. that all accessible microstates are equiprobable over a long period of time. An equivalent definition of the ergodicity condition is the following: a system is ergodic when the trajectory x(t) passes close to nearly all the states compatible with the conservation of energy.

The ergodicity of a dynamical system ensures its equilibrium properties can be evaluated by its energy alone and can be computed according to the microcanonical ensemble. However, the ergodicity condition doesn't ensure that the expectation of values of dynamical function computed over a statistical ensemble will approach their equilibrium values after time evolution. A stronger condition is required: the mixing condition, introduced by Von Neumann in 1932 [START_REF] Neumann | On the operator methods of classical mechanics[END_REF] it can be formulated as follows: let suppose that at t = 0, the ensemble density is ρ 0 (x) on the phase space S. At later time t, the ensemble density evolve to ρ 0 [φ -t (x)] where φ is a measure-preserving transformation. Then, for every pair of functions f and g whose squares are integrable on S E , lim t→∞ S E f (x)g(φ -t (x))dx = S E f (x)dx S E g(x)dx S E dx Taking the case where f is an observable and g is ρ 0 , the mixing condition assures that:

lim t→∞ S E f (x)ρ 0 [φ -t (x)]dx = S E f (x)dx S E ρ 0 (x)dx S E dx = S E f (x)dx Z mc = f mc .
In a mixing system, the mean value at time t of an observable f (x) approches for large times the microcanonical average. Mixing is a stronger condition than ergodicity: it implies ergodicity but is not implied by it. Futhermore, there exists different strenght of mixing conditions: strong/weak mixing conditions. The mixing condition is related to the instability of the trajectories in phase space and some sort of irreversibility of time evolution [START_REF] Lebowitz | Modern ergodic theory[END_REF]. Ergodicity and mixing are often assumed but, only for a few physical systems, those conditions have been proven to be fulfilled. For example, the ergodicity and mixing of the hard sphere gas has only been pared in 1962, by Sinai [START_REF] Ya | On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics[END_REF].

Thermalization in quantum system

In last section, we described the thermalization of a classical system. But, a quantum system can also exhibit the same features. In this section, we will focus on the thermalization of a quantum system.

Quantum dephasing

In this section, we are interested in the relaxation of a quantum system towards an equilibrium state. In particular, a quantum system does not require to be connected to a large heat bath to equilibrate and thermalize, time evolution may be enough to assure thermalization [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF].

The first paper about the relaxation towards an equilibrium state of a quantum system was published by Von Neumann in 1929 [START_REF] John Von Neumann | Proof of the Ergodic Theorem and the H-Theorem in Quantum Mechanics[END_REF], who discussed the emergence of statistical mechanics in a quantum system. He proved the so-called quantum ergodic theorem which, states: "for a typical finite family of commuting macroscopic observables, every initial wave function from a micro-canonical energy shell evolves so that for most times in the long run, the joint probability distribution of these observables obtained from the unitarily time-evolved wavefunction is close to their micro-canonical distribution [START_REF] Goldstein | Long-time behavior of macroscopic quantum systems[END_REF]". This theorem has been the first cornerstone in the study of thermalization in quantum system, and lead to the development of the Eigenstate Thermalization Hypothesis (ETH) independently by both Deutsch in 1991 [START_REF] Deutsch | Quantum statistical mechanics in a closed system[END_REF] and Srednicki in 1994 [START_REF] Srednicki | Chaos and quantum thermalization[END_REF].

To define thermalization, we first need to introduce the notion of equilibration on average [START_REF] Gogolin | Equilibration and thermalization in quantum systems[END_REF]. A time dependent property equilibrates on average, if for most times during the evolution its value is close to some equilibrium stationary value. Now, let's give an informal definition of thermalization by explaining its different aspects:

Equilibration: After some time, "most" macroscopic observables equilibrate on average. Their equilibrium values can be computed according to a time independant virtual state called the equilibrium state. The equilibrium state may depend on the initial state.

Statistical treatment: Even if the state of the system is pure, the average expectation of "most" macroscopic observables can be computed via an equilibrium state described by a statistical ensemble. The fluctuations of the expectation value must be small at "most" later times.

Independence of the initial state: "most" initial states (all the states which do not belong to a closed curve in the phase space) will evolve and converge toward the same equilibrium state.

Let consider an isolated quantum system prepared in a initial state |Ψ i at t = 0 under a time independent Hamiltonian. Quantum mecanics states that the time evolution of a quantum system is linear and described by the Schrödinger equation:

i ∂ |Ψ(t) ∂t = H |Ψ(t)
The initial state being pure and the evolution unitary, the system will never become a mixed state but nevertheless, "most" observables converge to stationary values that can be computed from a virtual mixed thermal state. The time evolved state can be written as:

|Ψ(t) = e -iHt |Ψ i = α C α e -iEαt |α
The time evolution of a general quantum observable O is given by:

O(t) = Ψ(t)|O|Ψ(t) = α,β C * α C β e i(Eα-E β )t O αβ (2.1) = α |C α | 2 O αα + α,β =α C * α C β e i(Eα-E β )t O αβ (2.2)
where O αβ = E α |O|E β . By averaging over a large time, we have:

O T = lim T →∞ 1 T T 0 dt O(t) = α |C α | 2 O αα
Few comments can be done about this equation:

• At the limit of large times, the second term in equation (2.2) tends to 0 in average and only the first term remains. This means the dephasing between the different components destroys the coherence between all energy eigenstates and the expected value is time independent. Time evolution is responsible for the equilibration.

• For a statistical treatment, O T should converge to a value which can be computed via the equilibrium state. We can note that O T is the same expectation value as if the system was described by the density matrix ρ diag = α |C α | 2 |α α|:

O T = Tr(Oρ diag )
This is the so-called diagonal ensemble.

• O T and the diagonal ensemble depend explicitly on C α which are the expansion coefficients of the initial state.

In contrast, we would like this expected value to coincide with the one predicted directly by a statistical ensemble. Because the system is isolated, the energy is conserved and so the corresponding statistical ensemble is the micro-canonical ensemble. These two predictions seem to disagree but as we will see below, the ETH will merge the two approaches.

Eigenstate thermalization hypothesis

Considering the same system as in the above section, the ETH can be formally define as an ansatz for the matrix elements [START_REF] Srednicki | Chaos and quantum thermalization[END_REF][START_REF] Srednicki | Quantum chaos and statistical mechanics[END_REF][START_REF] Luca D'alessio | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[END_REF]: the diagonal elements O αα are constant with sufficiently small fluctuations and the offdiagonal elements O αβ decrease exponentially with the size of the system:

O αβ = O(E)δ αβ + e -S(E)/2 f O (E, ω)R αβ
where E ≡ (E α + E β )/2, ω ≡ E α -E β , and S(E) is the thermodynamic entropy at energy E. O(E) and f O (E, ω) are smooth functions of their arguments, the value O(E) is the expectation value of the micro-canonical ensemble at energy E and R αβ is a real or complex random variable with zero mean (R αβ = 0) and unit variance (|R αβ | 2 = 1).

Supposing that the diagonal elements O αα are constant and equal to O, the diagonal ensemble predicts

O diag = α |C α | 2 O αα O α |C α | 2 = O
Similarly, the micro-canonical ensemble predicts the expectation of O, O mc , is an equally weighted average over all energy eigenstates within an appropriate energy window around the mean energy of the system:

O mc = 1 N N α =1 O α α 1 N N α =1 O = O
with N being the number of states in the appropriate energy window. O diag = O mc and so the diagonal and micro-canonical ensemble agree. α|O|α = O Eα,mc , the expectation of O in a single energy eigenstate is equal to the value predicted by the micro-canonical ensemble at this particular energy. Thermalization happens at the level of individual eigenstates: every eigenstate of the Hamiltonian always implicitly contains a thermal state [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF]. The time evolution destroys the coherence between all the eigenstates by dephasing and the correlations between all the state expansion coefficients are lost. Time evolution reveals the thermal distribution encoded in each of the eigenstates.

Is ETH actually valid ?

Considering a general interacting quantum system, there are no rigorous proof of the ETH. ETH fails to describe systems that are integrable but nevertheless, Deutsch proved that ETH is true in the case of an integrable Hamiltonian weakly perturbed by a single Gaussian random matrix [START_REF] Deutsch | Quantum statistical mechanics in a closed system[END_REF]. Horoi showed [START_REF] Horoi | Chaos vs thermalization in the nuclear shell model[END_REF] that nuclear shell model wavefunctions reproduce thermodynamic predictions. Rigol et al. [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF] showed ETH holds in small interacting boson systems. ETH has been verified numerically in a wide variety of quantum many-body systems that are sufficiently far from points of integrability [START_REF] Rigol | Quantum chaos and thermalization in gapped systems[END_REF][START_REF] Santos | Onset of quantum chaos in onedimensional bosonic and fermionic systems and its relation to thermalization[END_REF][START_REF] Santos | Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems[END_REF]. As the ergodic hypothesis in the classical case, the validity of the ETH is not proven in general, only observed in several cases and often conjectured to be true.

Chapter 3

Why study Rydberg gas ?

Progress in preparing and manipulating a quantum system allow to study the relaxation of a closed quantum system. Indeed, quantum ultracold gases are extremely well isolated from the "thermal" environment and have a large coherence time [START_REF] Bloch | Many-body physics with ultracold gases[END_REF]; therefore they provide an ideal candidate to study the dynamic of closed quantum systems. These experiments can be used as test-beds to check the validity of the statistical treatment discussed in the previous chapter. In particular, theoretical and experimental efforts have been carried out in the study of atoms excited in Rydberg states [START_REF] Gallagher | Rydberg Atoms[END_REF][START_REF] Saffman | Quantum information with Rydberg atoms[END_REF][START_REF] Browaeys | Experimental investigations of dipole-dipole interactions between a few Rydberg atoms[END_REF]. This interest is mainly due to their properties while excited: Rydberg atoms experience a long range interaction via van der Waals force or dipole-dipole interaction. The interaction strength is about several tens of MHz at distance of several micrometers [START_REF] Marinescu | Long-range potentials, including retardation, for the interaction of two alkali-metal atoms[END_REF]. The time scale associated to this dynamic is of the order of the microsecond which is several orders of magnitude faster than the atomic external dynamic; those systems are refered as "frozen gas" [START_REF] Mourachko | Many-body effects in a frozen Rydberg gas[END_REF][START_REF] Anderson | Resonant dipoledipole energy transfer in a nearly frozen Rydberg gas[END_REF]. The dynamic occurs in the internal atomic degree of freedom (the electrons) while the atoms are assumed to be fixed in space. Due to the high quality of isolation in experiments involving Rydberg atoms, the dynamic is assumed to be fully coherent [START_REF] Raitzsch | Echo experiments in a strongly interacting Rydberg gas[END_REF]. To study the dynamic of trapped Rydberg atoms, they are often mapped to strongly interacting quantum spin model [START_REF] Sun | Numerical study of two-body correlation in a 1d lattice with perfect blockade[END_REF][START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF] or quantum hard rods [START_REF] Ji | Equilibration of quantum hard rods in one dimension[END_REF]. Reciprocally, Rydberg atoms can be used in order to study spin systems at criticality [START_REF] Weimer | Quantum critical behavior in strongly interacting Rydberg gases[END_REF].

A consequence of the Rydberg dipole-dipole interactions is the so-called Rydberg blockade phenomenon: in a mesoscopic ensemble, dipole-dipole interactions are able to inhibit transitions into collective states that contain more than one Rydberg excitation. This phenomenon was first predicted in [START_REF] Lukin | Dipole blockade and quantum information processing in mesoscopic atomic ensembles[END_REF]. Experimentally, the Rydberg dipole-dipole interaction was first observed in [START_REF] Singer | Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms[END_REF][START_REF] Tong | Local blockade of Rydberg excitation in an ultracold gas[END_REF] where the number of atoms in the Rydberg state did not scale linearly with the laser power and atomic density. In [START_REF] Heidemann | Evidence for coherent collective Rydberg excitation in the strong blockade regime[END_REF][START_REF] Heidemann | Rydberg excitation of Bose-Einstein condensates[END_REF], the Rydberg blockade was shown to lead to the formation of coherent collective excitations called "superatoms". In this "superatom regime", the Rydberg ensemble can produce an efficient single photon source [START_REF] Dudin | Strongly interacting Rydberg excitations of a cold atomic gas[END_REF]. The Rydberg blockade has been pushed forward as a key ingredient of different promising atomic quantum processing scenarios in [START_REF] Lukin | Dipole blockade and quantum information processing in mesoscopic atomic ensembles[END_REF][START_REF] Jaksch | Fast quantum gates for neutral atoms[END_REF][START_REF] Brion | Error correction in ensemble registers for quantum repeaters and quantum computers[END_REF]. Experiments presented in [START_REF] Urban | Observation of Rydberg blockade between two atoms[END_REF][START_REF] Gaëtan | Observation of collective excitation of two individual atoms in the Rydberg blockade regime[END_REF][START_REF] Isenhower | Demonstration of a neutral atom controlled-not quantum gate[END_REF][START_REF] Wilk | Entanglement of two individual neutral atoms using Rydberg blockade[END_REF] and many others demonstrate that Rydberg interaction between single atoms are well controlled. In [START_REF] Müller | Mesoscopic Rydberg gate based on electromagnetically induced transparency[END_REF], the Rydberg blockade was used to manipulate an atomic ensemble using a controlled single atom. In [START_REF] Weimer | Digital Coherent and Dissipative Quantum Simulations with Rydberg Atoms[END_REF], Weimer et al. present a quantum simulator based on Rydberg atoms. A review of quantum information based on Rydberg atoms can be found in [START_REF] Saffman | Quantum information with Rydberg atoms[END_REF] and a review of the experiments involving Rydberg atoms can be found in [START_REF] Browaeys | Experimental investigations of dipole-dipole interactions between a few Rydberg atoms[END_REF]. Some implementations of quantum algorithms involving Rydberg atoms have been proposed: [START_REF] Petrosyan | Grover search algorithm with Rydberg-blockaded atoms: quantum monte carlo simulations[END_REF] present a simple and original use of the Rydberg blockade to efficiently implement a Grover search algorithm. In [START_REF] I I Beterov | Simulated quantum process tomography of quantum gates with Rydberg superatoms[END_REF], Beterov et al. confirms, using numerical simulations, the validity and high fidelity of single qubit and 2 qubit gates with Rydberg superatom. Rydberg atoms are also good candidates for quantum communication tasks: more specifically, proposals of quantum repeaters based on Rydberg atoms have been published in [START_REF] Duan | Long-distance quantum communication with atomic ensembles and linear optics[END_REF][START_REF] Brion | Quantum repeater with Rydberg-blocked atomic ensembles in fiber-coupled cavities[END_REF]. All those papers prove the vastness of the field of Rydberg atoms.

The work presented here concerns the dynamic of an isolated 1D Rydberg gas of a few Rydberg blockade radius long. To begin, I will summarize briefly several results concerning a system close to the one studied here. The dynamic of isolated Rydberg atoms photo-excited was investigated by the Nottingham group in [START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF][START_REF] Olmos | Thermalization of a strongly interacting 1d Rydberg lattice gas[END_REF] where the atoms are trapped on a 1D-chain or a 1D-ring lattice. In the regime of strong and nearest neighbors interaction, the system was shown to thermalize according to the microcanonical ensemble.

Chapter 4 Basic properties of Rydberg atoms

We present in this chapter a quick introduction to Rydberg atoms and a review some of their properties. In particular, the strong interaction between two distant Rydberg atoms will be addressed. For this chapter, I mainly followed the approach of [START_REF] Gallagher | Rydberg Atoms[END_REF][START_REF] Sanchez | Collective Rydberg excitations of an atomic gas confined in a ring lattice[END_REF]. The 1D Rydberg gas we consider in this work is made of identical atoms, each having two internal states, the ground and the highly excited Rydberg state, coupled by a resonant laser.

Rydberg atoms

By definition, Rydberg atoms are alkali atoms: they have their outermost electron in an s orbital. Because of this valence electron in a large and loosely bound orbit, a mapping from an alkali Rydberg atom to an hydrogen atom can be done. Rydberg atoms correspond to the situation where on average an electron, called the valence electron, "sees" the rest of the atom as a simple positive charge. This allows to treat Rydberg atoms as Hydrogenlike atoms and semi-classical approximations are valid. To introduce the Rydberg atoms, we present a brief review of Bohr theory applied to the Hydrogen atom. The Bohr model [START_REF] Bohr | On the constitutation of atoms and molecules, part i[END_REF][START_REF] Bohr | On the constitutation of atoms and molecules, part ii systems containing only a single nucleus[END_REF] allows to determine, with good approximation, several mean values like the distance between the atomic core and a valence electron, their relative impulsion, etc. In this picture, the hydrogen atom is constituted of an infinitely heavy proton and an electron in a circular orbit around it. The allowed orbits of the electron are given by multiple of the orbital momentum l = n with n an integer called the principal quantum number and the reduced Planck constant. Let us define m the electron mass, e its charge, v its velocity and r the radius of its orbit. The orbit of the electron being circular, the centripetal force is equal to the Coulomb force:

mv 2 r = e 2 4π 0 r 2 (4.1) v = e 1 4π 0 rm (4.2)
Using this last expression of v and the definition of the orbital momentum l = mrv, this model allows to compute the radius of the orbits:

l = n = mrv (4.3) r = n 2 2 4π 0 e 2 m = n 2 a 0 (4.4) 
with a 0 = 2 4π 0 e 2 m = 5.29 nm the Bohr radius. The radius of the orbits is proportional to n 2 . Using equations (4.2) and (4.4), the total energy of the electron is given by:

W = mv 2 2 - e 2 4π 0 r (4.5) W = - e 4 m 32π 2 2 0 2 n 2 = - R y n 2 (4.6)
This model predicts that the binding energy of the electron is given by W = -Ry n 2 where R y = e 4 m 32π 2 2 0 2 = 13.6 eV is the Rydberg constant. These calculations for Rydberg atoms become accurate when the atom can be treated as an Hydrogen atom with an outermost electron very far from the core: this is true when the Rydberg atom is in a state of high principal quantum number n > 50. Finally, because the electron binding energy is proportional to n -2 , a weak electric field can be applied to extract this electron and measure whether the atom is in a Rydberg state or not.

As a first approximation, this electron is not influenced by the structure of the core charge which is composed by the nucleus of the atom and its other electrons. But, in low angular momentum states as it is the case for the s, p or d states, the valence electron polarizes and penetrates the inner core and the above assumption become wrong: the valence electron is sensitive to the inner structure of the core. Due to theses deviations from the hydrogen model, the low angular momentum states have energies slightly changed compared to the hydrogen ones:

W = -R y (n -δ l ) 2 = -R y n * 2
with δ l an empirically observed quantum defect which depends on the orbital angular momentum l; n * = n -δ l is the effective quantum number. From now, for sake of simplicity, all mention to n will refer directly to n * . This description of Rydberg atoms is intuitive but not complete. To have a complete description of Rydberg atom, quantum mechanics is required. Such quantum description of Rydberg atom wavefunction can be found in [START_REF] Gallagher | Rydberg Atoms[END_REF]. Using this description, several property scalings in the effective principal quantum number can be deduced and are presented below (extracted from [START_REF] Gallagher | Rydberg Atoms[END_REF]). In [START_REF] Gounand | Calculation of radial matrix elements and radiative lifetimes for highly excited states of alkali atoms using the coulomb approximation[END_REF], the Gounand has computed the lifetime parameters for several alkali atoms. The lifetimes of the Rydberg atoms τ at temperature T = 0K can be computed according to the equation τ = τ 0 (n * ) α where the values τ 0 and α depends on the alkali atom considered and on the orbital quantum number l of the highly excited state considered. The lifetime of those highly excited states is rapidly increasing with the effective quantum number, this is the origin of the "frozen gas" approximation. For example, considering a Rb atom and an electron in an s orbital, τ 0 = 1.43 ns and α = 2.94 [START_REF] Gounand | Calculation of radial matrix elements and radiative lifetimes for highly excited states of alkali atoms using the coulomb approximation[END_REF], its lifetime in the state 60S 1/2 is approximately τ = 240 µs [START_REF] Saffman | Quantum information with Rydberg atoms[END_REF][START_REF] Gallagher | Rydberg Atoms[END_REF]. Another property of Rydberg atoms is their high polarizability: it is proportional to the sum of squares of electric dipole matrix elements which scales as n 2 , divided by the corresponding energy difference scaling as n -3 . So, the polarizability of Rydberg atoms roughly scales as n 7 . This scaling of polarizability leads to the strong Rydberg-Rydberg interaction we are interested in. 

Property

Interacting Rydberg atoms

In this section, we investigate the interaction between two Rydberg atoms separated by a large distance (R a 0 n 2 ) and present a simple model to evaluate the scaling in the principal quantum number n of the strength of this interaction. Then, we will discuss about the so-called blockade effect rising from the dipole-dipole interaction.

Simple model

We consider a system constituted of two atoms presented in figure 4.2. Each atom have an energy spectrum depicted in figure 4.3. Initially, the two atoms are both in a highly excited s state: |S = |s 1 ⊗ |s 2 . These two atoms are coupled by the dipole-dipole interaction:

V dd (R) = e 2 4π 0 R 3 [r 1 • r 2 -3(r 1 • û)(r 2 • û)]
where R 12 = R 12 û is the distance between two separated Rydberg atoms and r i the vector linking the core of the atom i to its valence electron.

Due to the symmetries of the s orbital wavefunction, the initial state is coupled by the dipole-dipole interaction to states where both of the atoms are in p states. We will consider only the states 

H = 0 A R 3 12 A R 3 12 ∆E p + ∆E p = 0 V V δ (4.7)
where

A = e 2 4Π 0 S|r 1 • r 2 -3(r 1 • û)(r 2 • û)|P P . The eigenenergies of H are E ± = δ 2 1 ± 1 + ( 2V δ ) 2 .
For large interatomic distance, the coupling between the atoms is much less than the energy defect R A δ 1/3 ⇒ V δ and so the energies can be approximated to

E ± ≈ δ 2 ± δ 2 ± V 2 δ
The eigenenergies are shifted by V 2 δ . In the case of large R, the two atoms interact via the van der Waals potential:

V vdW = V 2 δ ≡ - C 6 R 6 (4.8)
where C 6 = -A 2 δ is the van der Waals coefficient. This simple model allows to determine the coefficient C 6 = -A 2 δ . Indeed, in the absence of an electric field, the atoms do not exhibit a permanent dipole moment and the van der Waals interaction can be described as a second order effect in perturbation theory of the dipole-dipole interaction (∝ R -3 ) and thus scales as R -6 .

According to the scaling of properties shown in section 4.0.1, the energy level spacing decreases as n -3 . By not taking the angular configuration of the atoms into account, one can compute the scaling of A ∝ S|r 1 r 2 |P P ∝ n 4 . Finally, we have obtained C 6 ∝ n 11 and the total scaling of the energy shift is n 11 R 6 . Considering Rydberg states, meaning that the principal quantum number is large n > 50, the corresponding energy shift is huge.

Rydberg blockade

As seen above, two Rydberg atoms separated by a large distance R in the same Rydberg state |r interact via the very strong dipole-dipole interaction. Considering two rubidium atoms in the 43s state with the van der Waals coefficient is C 6 = -2.45 • 10 -27 MHz • m 6 [START_REF] Singer | Long-range interactions between alkali Rydberg atom pairs correlated to the ns-ns, np-np and nd-nd asymptotes[END_REF], if they are separated by a distance R = 3 µm, the strength of the dipole-dipole interaction is 3.35 MHz [START_REF] Sanchez | Collective Rydberg excitations of an atomic gas confined in a ring lattice[END_REF]. The dipole-dipole interaction is completely negligible unless both atoms are in a highly excited Rydberg state because their dipole moment would be too small. This interaction gives rise to the so-called Rydberg blockade phenomenon.

The laser couples the ground state |gg to the symmetric state |S ; due to destructive interferences, the antisymmetric state will never be populated. figure 4.5 represents the coupling between the different states. 

The superatom

Now, we will extend the previous 2 atoms case to a small gas composed by N identical atoms. We will see that in this case, the N atoms behave like a single superatom. We consider here a small cloud of Rydberg gas, confined in a ball of radius much smaller than the Rydberg radius. The dipole-dipole interaction forbids completely the simultaneous excitation of more than one atom in a ball of radius R b sometimes called "Rydberg bubble". Each atom is a two level system composed by the ground state |g and the Rydberg state |r . This gas is shined by a laser resonant with the |g ↔ |r transition described in the rotating wave approximation by the Hamiltonian:

H L = Ω laser N k=1 σ k + + σ k - (4.9)
where Ω laser denotes the laser induced Rabi frequency, σ k + ≡ |r g| and σ k -≡ σ k † + the raising and lowering operators acting on atom k, for a two level atom, on atom k. Let the "vacuum" be the state with no Rydberg excitation |∅ ≡ |gg...gg . The states with the i-th atom excited and all the other atoms in the ground state can be written as |g..grg..g ≡ |i ≡ σ i + |∅ . In the superatom regime, only single excitation states are populated. But, we can still define in the same way, the doubly excited state with two Rydberg excitations at position i and j to be written as |i, j ≡ σ i + σ j + |∅ . More generally, any arbitrary multiply excited state will be |i, j, k, . 

Ω Rabi ≡ S|H L |∅ = Ω laser √ N (4.10) 
Considering the N atoms case, the system behave as a superatom whose corresponding induced Rabi frequency have been increased by a factor of √ N .

Chapter 5

Numerical simulation of Rydberg blockade

In this chapter, I present a numerical simulation I programmed in Python to study the Rydberg blockade phenomenon and its first checks in the wellknown superatom regime. It will be useful to investigate other regimes in section 7.2.

The system is composed by N atoms equally spaced along a line. They are modeled by two level systems with ground state |g and Rydberg state |r . These two states are coupled by a resonant laser described by the Hamiltonian H L given by equation (4.9).

Following equation (4.8), the term given by the Rydberg interaction is given by 6 (5.1)

V dd = -C 6 k =m n k n m d(m, k)
where n k ≡ σ k + σ k -is the projector on the Rydberg state for the k-th atom and d(m, k) is the geometric distance between the m-th and the k-th atom. The total Hamiltonian is

H = H L + V dd .
The time evolution of a quantum system is given by the Schrödinger equation

H |Ψ(t) = i ∂ |Ψ(t)
∂t Since the Hamiltonian H is time independent, the time evolved state of this system |Ψ(t) is given by

|Ψ(t) = U (t) |Ψ(t = 0) where U (t) = e -iHt (5.2)
In order to study the build-up of excitations, we choose |Ψ(t = 0) = |∅ as initial state following the natural starting point for an experiment. In the simulation, the total Hamiltonian H have been written in the canonical basis H = H L + V dd , V dd is diagonal in the canonical basis. To compute |Ψ(t) , we need to compute the exponential in the operator U (t). However this computation is very long because of the huge dimension of the Hilbert space. In order to increase the speed of the numerical simulation, we have effectively reduced the Hilbert space dimension by setting a threshold energy parameter ∆ cut in all our simulations. This parameter is used to neglect to far detuned states as explained in the next subsection. In the subsection 5.2, we describe the procedure used to generate the relevant states of the Hilbert space. In subsection 5.3, we test different values of ∆ cut and choose the threshold value that will be kept for all the numerical simulation. In subsection 5.4, we present a numerical simulation in the superatom regime and found qualitative agreement with the theoretical prediction of subsection 4.1.3. Finally, in subsection 5.5 we run our simulation in two different regimes and observe an equilibration of the number of excitations.

Threshold energy

Because the dimension of the Hilbert space grows exponentially with N (dim(H) = 2 N ), we restrict our simulation to a small number of atoms. Yet, with N = 20 atoms, the Hilbert space dimension is dim(H) = 2 20 ≈ 10 6 . The simulation will process over 2 20 × 2 20 matrices. This computation is hard but doable. Taking N = 100 atoms, dim(H) = 2 100 ≈ 10 30 ! Such a simulation is simply impossible.

Of course, we are interested in system larger than 20 atoms but we have to pay attention to the complexity of this simulation. To explore systems involving N = 100 atoms, we have to reduce the dimension of the Hilbert space by taking into account only the "relevant" states, i.e. states populated with a non-negligible probability. Indeed, due to the Rydberg interaction, states with several excitations have an energy shift of at least V dd . In the case where the excitations are close enough, V dd Ω laser 1, the interaction drives those states too far off-resonance from the laser transition and thus, they cannot be populated. The system will never evolve in the space spanned by these states and, as a conclusion, these states do not have to be taken into account for the numerical simulation. This allows us to truncate the basis of the Hilbert space.

As said above, states with a very high interaction energy will be sparsely populated. To define properly which state should be considered in the simulation, we introduce a threshold parameter ∆ cut ∝ Ω laser . States with an energy E > ∆ cut will be considered unpopulated. The remaining states span the effective Hilbert space. If ∆ cut → ∞, all the states will be taken into account in the simulation and the dimension of the effective Hilbert space goes back to 2 N . As explained in section 5.3, we choose for all the simulations ∆ cut = 20Ω.

Generation of the "relevant states"

Now that we know how to discriminate states that will be involved in the time evolution of the state of the system, we simply need to generate them. We should pay attention to the way we generate those states. Indeed, if in the simulation, we simply enumerate all the configurations before assigning them their energy to evaluate their relevance, the number of states would be exponential so the complexity of the generation would therefore be exponential. To avoid this exponential complexity, we used an iterative procedure to generate the set of relevant states. This procedure can be decomposed into two iterated steps: the generation and the assignment.

generation : Starting from a state with ν excitation(s) in the so-called "set of parent states", we generate the n-ν states with one more excitation. All the generated states forms the "set of children states". For example, suppose the "set of parent states" is {|3 }. The corresponding "set of children states" will be {|1, 3

, |2, 3 , |3, 4 ..., |3, N -1 , |3, N }.
Once all the children states of all states in the "set of parent states" are generated, the assignment step is performed on all the states in the "set of children".

assignment This assignment step selects the relevant states in the "set of children states". We evaluate the energy of the all the generated states {|Φ } by computing E Φ = Φ|V dd |Φ . We compare the computed energy to ∆ cut and keep only the states {|Φ } whose energy E Φ < ∆ cut .

We repeat the generation step with these remaining states {|Φ } in the "parents set". This two step procedure is repeated until no generated state passes the assignment test. The "parent states" span the space in which the dynamic of the system happens.

The advantage of this method is that not all the states needs to be computed before selecting which ones will be significant. We used different techniques to enhance the speed of the simulation. One of them is the use of the set types in Python, for the children generation step in order to avoid the computation of states that have already been taken into account in previous generation steps.

Complexity of generation of the "relevant states"

Let us now upper-bound the complexity of the ν-th step of the procedure corresponding to the generation of states with ν excitations: starting with d eff valid states i.e. with an interaction energy E < ∆ cut , the generation step will generate at most N -ν ≤ N states by adding an extra excitation. d eff grows polynomially with the size of the system N : d eff ≤ N ν . The procedure is iterated until all the "relevant states" are generated: all the states with ν ≤ ν max where ν max is the maximum number of excitations for a given threshold energy ∆ cut . This ν max can be evaluated as follows:

Consider the ν excitations state |x 1 , x 2 , ..., x ν where x i is the position of the i-th excited atoms (the x i are arranged in increasing order x i < x i+1 ). We can lower bound the energy of this state E(x 1 , x 2 , ..., x ν ) by considering only the interaction between nearest excitations, neglecting the positive terms coming from the other interactions:

E(x 1 , x 2 , ..., x ν ) ≥ ν-1 i=1 E(x i , x i + 1)
The energy considering only the contribution of nearest pairs of excitations ν-1 i=1 E(x i , x i +1) is lower bounded by the energy of the state where the excitations are regularly spaced. This state is |reg = |x 1 , x 2 , ..., x ν where

x i = i L ν-1 . The distance between 2 nearest excitations is L ν-1 . The corre- sponding energy of this state is E(reg) = C 6 ( L ν-1 ) 6 (ν -1) = Ω( R b L ) 6 (ν -1) 7
where L is the length of the line where the atoms are distributed. Finally, we have :

E(x 1 , x 2 , ..., x ν ) ≥ E(reg) = Ω R b L
ν max is the largest number of excitations given the threshold energy ∆ cut :

Ω R b L 6 (ν max -1) 7 ≤ ∆ cut (5.3) ⇒ ν max ≤ ∆ cut Ω 1 7 L R b 6 7 + 1 (5.4)
As shown above, fixing a value of the threshold energy ∆ cut defines a maximum number of excitations ν max ; for the generation of all the "relevant states" corresponding to the ν max -th step, the procedure would have generated at most N = νmax ν=1 N (ν) ≤ 1 + N + N 2 + ... + N νmax states. Therefore, N scales polynomially with N and so the complexity of the procedure generating the "relevant states" is polynomial for a fixed value ∆ cut . In the regime of low ∆ cut , this upper bound for the complexity is overestimated and not tight.

The Python code implementing this algorithm is given in the Appendix A.

In the next subsection, we test different values of ∆ cut in two different regimes: the superatom regime and short range interaction regime.

Choice of ∆ cut

Now, we have to choose the value of ∆ cut for the simulation. If ∆ cut → ∞, the complexity of the simulation will still be exponential. So, we test different ∆ cut and see if there exist a value ∆ efficient such that all the quantities computed by the simulation will not change drastically. For later runs of the simulation, we will use ∆ cut = 20Ω ≤ ∆ efficient .

Taking N = 10, we have run the simulation in two different regime of the dipole-dipole interaction: the superatom regime R b = L + 2 and the short range regime R b = 2 corresponding respectively to C 6 = ΩR 6 b and C 6 = ΩR 6 b . Figure 5.1 shows the probabilities of occupation at a long time Ωt = 100 versus the normalized interaction energy in the two regimes.

We can observe that the energies are regrouped as bands centered around Ω and multiples of C 6 according to their number of excitations. For the two different regimes C 6 and C 6 , the highest probability of each bands seems to align and follow a Boltzmann distribution P ∝ e -βE . Furthermore, looking at figure 5.2, for an interaction energy larger than E > 20Ω = ∆ cut , the highest 
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for the two regimes R b = L + 2 in green and R b = 2 in blue.
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V dd /Ω 10 -15 10 -14 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 associate probability for the two plots is smaller than 10 -4 which is 4 order of magnitude smaller than probability to be in a state with an energy of order Ω. From these two plots, we can conclude that we can define a threshold ∆ cut independent of the strength of the interaction but only depends on the laser frequency. This value of ∆ cut will be kept for all the other simulations. Using this cut in energy allows us to reduce the size of the Hilbert space. For N = 10 atoms, R b = L + 2 and ∆ cut = 20Ω, the dimension is reduced from 2 10 = 1024 to 14. Keeping N = 10 atoms and ∆ cut = 20Ω but changing the Rydberg radius R b = L 5 , the Hilbert space dimension reduced from 1024 to 144.

Probability

Simulation of superatom

We have tested our simulation with N = 20 atoms in the regime R b = L + 5 where L is the length of the 1D-line of atoms. As stated in subsection 4.1.3, we should be in the superatom regime: starting from the state |Ψ(t = 0) = |∅ , the system is supposed to undergo Rabi oscillation between |∅ and |S with a Rabi frequency Ω = Ω laser √ N according to equation (4.10). numerically computed oscillates at a frequency slightly larger than the expected Rabi frequency Ω √ N . The height doesn't go to exactly to unity because R b is not too large compared to L so we are in a regime where the interaction does not completely forbids the simultaneous excitation of 2 atoms. Figure 5.4 indeed shows a non-zero probability for the system to have more than two Rydberg excitations; we can also notice that for various times, the average number of excitations is slightly above unity. From these two figures, we can conclude that our simulation qualitatively reproduces the superatom predictions.

Observation of Equilibration

Up to now, we have defined an energy threshold to reduce the dimension of the Hilbert space and we have check that our simulation reproduces the superatom behavior. Here, we present the simulation of a 1D-chain of N = 20 atoms involving the Hamiltonian 5.1 in the regime R b = L 5 . This regime corresponds to the situation where having more than 5 excitations is very improbable. The initial state is the state with no Rydberg excitation: |Ψ(t = 0) = |∅ . We investigate the observable total number of excitations in the chain n tot = k n k versus time where n k the Rydberg number operator of site k. To do so, we have computed its average

Ψ(t)|n tot |Ψ(t) = k Ψ(t)|n k |Ψ(t)
Figure 5.5 shows the number of excitations in the chain as function of its probability and time. In red is plotted the mean value of the number of excitations. Figure 5.5 illustrates the equilibration of an observable around a stationary value in the long time. Indeed, there is a transient period of several Ω -1 followed by the period where the observable equilibrates toward its time averaged value (see figure 5.6). For large time T > t transient , n tot (T ) → n tot t . This feature describes an equilibration of the observable number of excitation and, as seen in section 2.2, is typical of a thermalization process.

This equilibration was already observed numerically in [START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF], where Lesanosvky, Olmos and Garrahan study a system of interacting Rydberg atoms described by the Hamiltonian

H = H L + V dd -µ N k=1 n k
where µ is the chemical potential (the chemical potential acts like a laserdetuning). Figure 5.5, extracted from [START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF] show the existence of a thermal We are only interested in the blue and red curve here. In blue, the expectation value of the number of excited particles N (t) and in red, its fluctuations ∆N studied over a time interval 47 < Ωt < 50, as a function of the interaction strength. For very large V Ω , there is a relaxation of the N into a steady value. This is referred as the thermal regime. Here V corresponds to |C 6 | a where a is the periodicity of the chain of length L = (N -1)a. regime in the strong interacting regime, i.e. |C 6 | Ω. In this regime, observables of the system thermalizes (according to the definition given in section ): observables, like the mean number of excitations, equilibrate and tend to stationary values that can be computed according to a thermal state. In particular, they show that the probability to measure n excited particles is given by p n = p n ∝ exp(S(n, ))exp(-β ) where β is an inverse temperature and S(n, ) is an entropy function obtained from the number of states with n particles located in a given interval of interaction energy . In figure 5.1, the occupation probability of states computed by our simulation also seems to align according to a Boltzmann distribution.

Our simulation reproduces the equilibration of the number of excitations observed in [START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF]. The authors consider this equilibration as a manifestation of a thermalization process. Our goal is to test the statistical approach of such a system by simulating a larger system (for our simulation, the system is composed by N = 100 atoms). We will compare these statistical predictions to some analytical computation. But an analytical treatment involving the Hamiltonian 5.1 is hard, so we need to simplify the Hamiltonian by making a supplementary approximation: the hardcore Rydberg sphere assumption, described in the following section.

Chapter 6

Perfect blockade regime 6.1 Hardcore Rydberg sphere assumption

The dipole-dipole interaction described by equation (5.1) leads to complex many-body dynamic. The full diagonalization of the total Hamiltonian involving this dipole-dipole interaction is intractable when N the number of atoms composing the system increases. In [START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF], Bettelli et al. try to compute the thermal state reproducing the behavior of the system by making an approximation to the dipole-dipole interaction (5.1) namely the hardcore Rydberg sphere assumption. In the strong interacting regime, the van der Waals interaction between Rydberg atoms is so strong that it completely forbids the simultaneous excitation of two Rydberg atoms closer than the Rydberg radius R b . We should approximate the interaction Hamiltonian in order to discard all these atomic configurations while keeping all the others. Moreover, all the allowed states have an interaction equal to V dd (R ≥ R b ) = 0. This is the key idea behind the hardcore Rydberg sphere assumption. This assumption approximates the 1 R 6 dependency of the potential by a step function:

V sharp dd = V k =l |k-l|<R b n k n l (6.1)
where V → +∞. Figure 6.1 shows the potential energy: in blue is plotted V dd and in green is plotted V sharp 

H L + V dd into H = Ω N k=1 (σ k + + σk -) (6.2)
where σk ± = (σ k ∓ ) † is the raising operator of the k-th atom restricted to the allowed configuration subspace, i.e. the operator which excites the k-th atom into the Rydberg state provided that no other Rydberg atom is in the range R b . Figure 6.2 illustrates the blockade phenomenon captured by the Hardcore Rydberg sphere assumption: each excited atom creates an exclusion sphere in which no excitation can be found and has no effect out of this sphere.

Equilibration of N

A simulation involving the Hamiltonian H L +V dd defined by equation (5.1) in the strongly interacting regime |C 6 | Ω → ∞ with N = 100 atoms equally spaced along a line of length L in the regime R b = L 5 , as been run by Lesanosvky, Olmos and Garrahan [START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF]. As seen in subsection 5.5, the simulation reveals that the number of excitations equilibrates toward a stationary value in the thermal regime V Ω 1 (see figure 5.5). In our later simulations, we replace the Hamiltonian H L + V dd in the thermal regime by the hardcore Rydberg sphere assumption leading to an equilibration process.

Chapter 7 Thermalization of 1D Rydberg gas

In this chapter, we use the concepts introduced previously to capture the physics of a Rydberg gas along a line of length L. In a large system, features like an equilibration of observables can be observed. This equilibration may witness for a thermalization process. If thermalization has indeed happened, a statistical treatment of the system should be valid. We will present several results predicted by the microcanonical ensemble in section 7.1.

To validate the statistical approach, we numerically simulate the system in section 7.2. Then, we provide an analytical treatment in section 7.3 and finally compare the numerical results to both the statistical and the analytical predictions in section 7.4. Because of the time required to run the numerical simulation, we will restrict our numerical study of the system to the regime of at most 2 excitations, i.e. 1 ≤ L R b ≤ 2.

Statistical approach

Considering the Hamiltonian described by equation (6.2) acting on a 1D-Rydberg gas of N = 100 atoms equally spaced over a line of length L, we have observed an equilibration of an observable. In the regime of strong nearest neighbors interaction [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF][START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF], observables such as the number of excitations have been shown to thermalize and the corresponding steady values are assumed to be computable via a statistical approach. In [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF], the authors used the ETH briefly presented in section 2.2.2 to compute the equilibrium values. As shown in section 2.2.2, the expectation of observables predicted by the diagonal ensemble in the ETH on one side and by the microcanonical ensemble on the other side agree together. In this section, we investigate analytically the microcanonical ensemble for a 1D-Rydberg gas and compare our results to the ones obtained by the numerical Monte-Carlo analysis of Bettelli et al. [START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF] under the same hypothesis.

Hilbert space connectivity

As seen in section 5.5, considering a 1D-Rydberg gas, observables, like the number of Rydberg excitations, are assumed to equilibrate around a stationary value. This equilibration witnesses for a thermalization process. Considering our system, the ETH presented in section 2.2.2 is used to capture this thermalization process. Intuitively, the thermalization results from the complexity of the Hilbert space and the high connectivity of the basis states.

The degrees of freedom of the system act like a thermal bath and the system equilibrates with it.

The connectivity of the basis states can be illustrated using a graph 7.1.1. Each vertex corresponds to a state in the canonical basis. Starting from an initial state, the system will evolve to connected states according to the total Hamiltonian H tot = H L + H int . Each edge connecting 2 vertices |a and |b corresponds to the transfer rate a|H tot |b .

The laser part of the Hamiltonian H L couples states with ν excitations to states with ν ± 1 excitations. States that are connected by H L have a distribution of excitations that differs only by one. If the laser is resonant with the atomic transition, for any |Φ i in the canonical basis:

Φ i |H L |Φ i = 0 Consider the state |Ψ = |1, 7, 9 , H L connects |Ψ to:
• all the states that have one more excitation corresponding to the "set of children" of |Ψ described in subsection 5.2:

{|1, 2, 7, 9 , |1, 3, 7, 9 , |1, 4, 7, 9 , ..., |1, 7, 9, N }.

• all the states that have |Ψ in their "set of children" i.e. states with the same distribution of excitations with one excitation removed: {|1, 7 , |1, 9 , |7, 9 } Supposing the interaction described by equation (5.1), the coupling are non-trivial and all the states of the Hilbert space are highly connected to each other: no state is strictly forbidden because of the interaction. It is suggestive of ergodicity.

Supposing the hardcore Rydberg sphere assumption described by equation (6.1), figure 7.1.1 illustrates the coupling described by Hamiltonian (6.2) between states in the Hilbert space as a graph. States in the same column have the same number of excitations. The number of states in each column will be given in section 7.1.3 by equation (7.2). The hardcore Rydberg sphere assumption defines a maximum number of excitations ν max = L R b + 1. The total number of vertices will given by N (ν max ) from equation (7.4).

The use of the hardcore Rydberg sphere assumption leads to two observations:

1. all the transfer rates between any pair of states connected by To compute the connectivity of ν excitations states, the 2D grey triangle becomes a ν-simplex. For ν = 3, the volume representing all the accessible triply excited configurations is a tetrahedron.

H L are equal ( x 1 , ..., x ν |H L |x 1 , ..., x ν+1 = Ω).
Combining these two properties together allows the use of the ETH to describe the system thermalization. The system is supposed to tends to a stationary distribution corresponding to the thermalized state. In the graph picture, this state corresponds to an equally weighted superposition of all the vertices. This recovers the predictions coming from the microcanonical approach. This conclusion is consistent with the approach involving the ETH because as seen in section 2.2.2 averaging an observable over the diagonal ensemble give the same results as averaging over the microcanonical ensemble.

Microcanonical ensemble

In our case, considering the hardcore Rydberg sphere assumption from subsection 6.1, we can compute the corresponding thermal state using the microcanonical ensemble. The corresponding microstates {|Φ } are the zero energy eigenstates of the interaction Hamiltonian given by equation 6.1. All those states have the same interaction energy E = 0 and so the same occupation probability. All the dynamic of the system lay in the subspace spanned by those microstates. In the microcanonical ensemble, the steady state of the system is an equiprobable mixture of all microstates. The use of the microcanonical ensemble cannot be justified without taking into account the laser even if all the microstates have the same interaction energy. In abscence of the laser, the system will remain in its initial state |∅ . The laser is initially switched off and all the atoms are assumed to be in the ground state. At time t = 0, the laser is switched on: this situation corresponds to a quantum quench [START_REF] Rigol | Quantum quenches and thermalization in one-dimensional fermionic systems[END_REF]. The microstates will no longer be eigenstates of the Hamiltonian and will be strongly mixed by the laser. These states will not have a zero-energy but will rather be distributed over an energy window centered around 0 with a width of at most ν max Ω with ν max = L R b + 1 being the maximum number of excitations. The laser broaden the energy window of those microstates but has to be taken into account to justify the thermalization of the system and the equiprobability of the microstates.

The steady state ρ th = 1 N allowed states |Φ Φ| predicted by the microcanonical ensemble can be easily computed if we can have access to the number of allowed states N .

As we will see in the next subsection, this number of allowed states can be determined by summing over all N (ν) possible configurations having ν excitations:

N = ν N (ν)
where N (ν) can be computed analytically by mapping our system to a standard "Stars and bars" combinatorial problem.

Counting the number of allowed states

The goal of this subsection is to compute the number of allowed states in the case where atoms are located on a regular 1D lattice or distributed on a line according to a constant linear density probability.

Regular 1D lattice

We assume that the atoms are located at the nodes of a regular 1D lattice of period a. The distance between the i th and j th atoms is therefore d(i, j) = a |i -j| while the total length of the line is given by L = (N -1) a. The quantity n b ≡ R b a , where • denotes the lower integer part, represents the minimal number of ground-state atoms which must lie between two Rydberg excitations in an allowed atomic configuration according to the hardcore Rydberg sphere assumption. Finally, we introduce the real parameter Λ ≡ L R b . Adding one to its integer part gives the maximum number of Rydberg excitations the sample can accommodate for: ν max = Λ + 1.

To begin with, we compute the number of allowed states which comprise a given number of excitations ν. In such a state, the ν Rydberg excitations split the sample into (ν + 1) groups of n k=0,...,ν ground-state atoms (see Fig. 7.3), with the convention that the zeroth and ν th groups are on the left and the right of the leftmost and rightmost excited atoms, respectively, and allowing n 0 and n ν to be zero. The state indeed corresponds to an allowed configuration if it satisfies the hardcore Rydberg sphere condition, i.e. n k ≥ n b for 1 ≤ k ≤ (ν -1), under the prescription ν k=0 n k = N -ν: finding the number of allowed states with ν excitations is therefore equivalent to computing the number of sets of integers {n k=0,...,ν } which satisfy the two previous conditions. A slight modification in the formulation of this problem turns it into a standard combinatorial calculation as we shall now show. We 
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L = 16, N = 17, 2a ≤ R b < 3a, n b = 2, {n k } k = {3, 2, 6, 3}, {n k } k = {3, 0, 4, 3}.
first note that an allowed atomic configuration can be uniquely determined by the alternative set of numbers {n k } defined by

n 0 ≡ n 0 n k ≡ n k -n b for 1 ≤ k ≤ ν -1 n ν ≡ n ν which satisfy the conditions n k ≥ 0 and ν k=0 n k = N -1 -(ν -1)(n b + 1
). This change of variables suggests to associate the original atomic arrangement with an abstract linear distribution of [N -1 -(ν -1)(n b + 1)] "stars" split by ν "bars" into (ν + 1) groups labelled by k = 0, . . . , ν and respectively comprising n k elements. As shown in Fig. 7.3, the first (ν -1) bars symbolize the first (ν -1) Rydberg excited atoms with their first n b (ground-state) right neighbors, while the last bar represents the last Rydberg excited atom only; stars then simply stand for the remaining ground state atoms. Calculating the number N (ν) of such configurations is a standard combinatorial problem whose solution is given by the binomial coefficient Note that

N (ν) = N -(ν -1)n b ν = N ν ν! ν-1 i=0 1 - (ν -1)n b + i N (7.
N (ν) = 0 when ν -1 ≥ N R b +1 = L+1 R b .
In the limit of large N and R b , this essentially means that we only have to consider configurations with a number of excitations smaller than ν Λ. In this limit, when Λ R b , N , we can approximate equation (7.1) by

N (ν) = N ν ν! 1 - ν -1 Λ ν + + O(N ν-1 ), (7.2) 
where 

[x] ν + = 0 iff x ≤ 0 and [x] ν + = x ν iff x ≥ 0. From N (ν),

Constant linear density

Here, we try to recover the number of allowed states N presented in subsection 7.1.3.1 in the limit of a homogeneous and continuous atomic distribution, of constant linear density δ ≡ 1 a which is a good approximation of our model when R b , L a. Let us denote by N (ν, l) the number of configurations with ν excitations on a line of length l with the density δ. We have ∀l ≥ 0, N (0, l) = 1 ∀l < 0, ∀ν, N (ν, l) = 0 With these notations, N (ν) = N (ν, L) and if ν > 0, the number of configurations with the leftmost excited atom at position x is given by N (ν -1, L -R b -x). Integrating over x, we get the recurrence relation

N (ν + 1, L) = L 0 dx δ N (ν, L -R b -x), (7.3) 
and

N (ν, L) = δ ν ν! [l -(ν -1)R b ] ν + = N ν ν! 1 - ν -1 Λ ν + (7.4)
The number of configurations with ν excitations in the linear density case is consistent with Eq. (7.2) in the regular lattice case. 

Spatial distribution of Rydberg excitations

Using the results from subsection 7.1.3.2, we can go further in our analysis and compute the average number of Rydberg excitations observed in the thermalized state according to the microcanonical ensemble.

Here, we compute how Rydberg excitations are distributed along the line in average. From equation 7.4, we can compute how Rydberg excitations are distributed along the line in average.

First, the probability density to have the n th excited atom out of ν at the position x is:

p(ν, n, x) =δ N (n -1, x -R b ) × N (ν -n, L -R b -x) N (ν) = ν! ξ -n-1 Λ n-1 + 1 -ξ -ν-n Λ ν-n + (n -1)! (ν -n)! 1 -ν-1 Λ ν + (7.5)
where we introduced the normalized dimensionless position ξ ≡ x L . Note that it does not depend on N ; as seen above, however, N plays a role in the global probability for having ν excitations.

Using the number of states calculated in the 1D-lattice case (see subsection 7.1.3.1) This probability density allows us to compute observable as the spatial distribution of excitations P (x) = ν n≤ν p (ν, n, x), as in Fig. 7.7 

Comparison with previous work

We can compare our analytical results with the numerical Monte-Carlo simulation published by Bettelli et al. in [START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF]. As we will see, both results show perfect quantitative agreement.

On their Fig. 2, Bettelli et al. give the average number of excitation ν and its standard deviation ∆ν 2 for Λ ∈ {2.1, 2.45, 3.15}. These data points correspond to the crosses on Fig. 7.5 and fall on the corresponding curves computed according to our analytical treatment. For 5 of these 6 values, our results are indeed identical to the two published decimals. The 6th value is the standard deviation for Λ = 3.15, where we obtain ∆ν 2 = 0.41, to be compared to 0.38. This deviation is small, and we therefore consider the results to be effectively identical.

We compared the spatial distribution of excitations of Fig. 7.7 to the data [61] kindly provided by Bettelli et al., the authors of [START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF]. This dataset was obtained with a Monte-Carlo simulation with N = 10 4 atoms and N rep. = 5 × 10 4 repetitions, using N bin = 100 bins and a normalization to an average excitation density of 1.

We plotted the Monte-Carlo simulation and our data, computed from Figure 7.9: Difference between the Monte-Carlo result of [START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF] and the analytical result Eq. (7.5). On the dotted lines, either ξ or 1 -ξ is an integer multiple of 1 Λ .

Eq. (7.5), using the same normalization and we were unable to visually see any difference by blinking between the two plots on our computer screen. More quantitatively, we plotted the root-mean-square difference between the two sets of data for each value of Λ on Fig. 7.8, as well as the pixel by pixel difference on Fig. 7.9. When Λ < 1, the probability to have one excitation in any given bin is 1 N bin ; the expected value of this root-mean-square difference as well as the standard deviation of the difference should then be

N bin Nrep = 1 500
0.045. When Λ ≥ 1, no strong localization is expected, and this calculation should therefore give a correct order of magnitude, both for the root-meansquare difference for a given Λ and for the pixel by pixel fluctuations. This is quantitatively consistent with the results.

Furthermore, the main deviations in both graphs can be explained by the different approximations in plotting each pixel : for the Monte-Carlo simulation [61], the value of a pixel of coordinates (Λ, ξ) corresponds do an average over the segment ξ, ξ + 1 N bin , while, for the analytical formula (7.5), we computed its value at the center of the pixel, i.e. for ξ + 1 2N bin . The latter approximation, taken for the sake of simplicity, is only justified when Eq. (7.5) is reasonably flat. The main deviations seem indeed to be localized where the latter approximation is not justified, i.e. when the excitations are concentrated in a few narrow peaks, or where either ξ or 1 -ξ is an integer multiple of 1 Λ . Our analytical treatment of the microcanonical ensemble assumption is therefore quantitatively consistent with the Monte-Carlo simulation in [START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF]61].

Numerical simulation

In this section, the numerical simulation presented in section 5 is used to simulate a 1D-Rydberg gas located at the nodes of a regular lattice: the lattice here is the same as the one introduced in subsection 7.1.3.1. As stated in section 5, we will restrict our numerical study to the regime Λ < 2, i.e. the chain is shorter than two Rydberg radii (L ≤ 2R b ). Assuming the hardcore Rydberg sphere assumption from subsection 6.1, the maximum number of Rydberg excitations distributed along the chain is 2. In the regime Λ < 2, the simulation will take into account only states allowed by the Rydberg blockade whose number is given by equation 7.

2: ν≤2 N (ν) N (ν = 2) = N 2 2 1 -1 Λ 2 + .
In this subspace, we numerically diagonalize the Hamiltonian of equation (6.2) , yielding the (possibly degenerate) eigenenergies E n and the associated eigenvectors |ψ , arranged in increasing order of their eigenenergy; the blue curve represents the energy difference between two successive eigenvectors and therefore allows to check degeneracy. We take as a numerical criterion that two energies coincide when their difference is less than 10 -13 Ω, consistent with the precision of IEEE 754 floating-point arithmetics. One first observes a wide central area corresponding to the highly degenerate eigenenergy E ≈ 0; in addition, on both sides of the spectrum, there exist two pairs of eigenstates with degenerate energies.

If We have used the time average e -i Em-En t = δ mn to simplify the double sum. The probability distribution P k is represented on Fig. 7.10 as a function of Λ. For Λ 1.2, two one-atom-wide black lines appear, revealing a strong localization of Rydberg excitations. In the next subsection, we account for this phenomenon through the approximate diagonalization of the Hamiltonian in a conveniently truncated basis.

Analytical treatment

In the above section 7.2, the numerical simulation of the system displays an unexpected localization effect: the excitations are located at particular positions. This one atom wide localization can be interpreted as a numerical artefact. We present an analytical treatment to account for the results obtained by the numerical simulation and thus validate it. First of all, we shall look carefully at the Hamiltonian H from equation (6.2) and deduce some of its properties. These properties will be used to build an analytical treatment.

Decomposition even/odd

Our analytical model has been built according to an observation on the structure of H: the even/odd splitting. The Hilbert space H can be decomposed into 2 orthogonal subspaces containing an even/odd number of excitations: H = H even ⊕ H odd . Since H either removes or adds an excitation, its effect on a state containing an even (resp. odd) number of excitations will change the parity of its number of excitations to an odd (resp. even) value.

The eigenstates of H follow this even/odd decomposition and can be written as

|Ψ = |Ψ even + |Ψ odd (7.7)
where Ψ even/odd = Π even/odd |Ψ with Π even/odd being the projector on H even/odd .

Using the orthogonality of |Ψ even and |Ψ odd , we deduce that:

H |Ψ even = E |Ψ odd (7.8) H |Ψ odd = E |Ψ even (7.9) H 2 |Ψ even = E 2 |Ψ even (7.10) H 2 |Ψ odd = E 2 |Ψ odd (7.11)
These last two equations are eigenvalues equations. From this, we can deduce that the subspaces H even and H odd are stable under the application of H 2 . H 2 is therefore in the form:

H 2 = H 2 even 0 0 H 2 odd (7.12)
To compute the eigenstates of H, we will first diagonalize H 2 even and H 2 odd to compute |Ψ even and |Ψ odd . Then, according to equation 7.7, we can deduce the eigenvector of H if we know the respective weight of each component: Ψ even |Ψ even and Ψ odd |Ψ odd = 1 -Ψ even |Ψ even 2 . In the next subsection, we present the parity balance property that allows us to obtain those coefficients if the corresponding eigenstate has a non zero eigenvalue.

Parity balance property

From the equations (7.8) to (7.11), we can conclude that:

E 2 |Ψ odd 2 = H |Ψ even 2 (7.13) = Ψ even |H 2 |Ψ even (7.14) = E 2 Ψ even |Ψ even (7.15) Thus, for E = 0, |Ψ even 2 = |Ψ odd 2 . Furthermore, |Ψ is normalized, so: |Ψ even 2 + |Ψ odd 2 = 1, therefore |Ψ even = 1 √ 2 .
Finally, we have:

|Ψ = |Ψ even + |Ψ odd with |Ψ odd = |Ψ even = 1 √ 2 .
All non zero energy eigenstates have equally weighted even and odd components.

Eigenstates with E = 0

Now that we know the form of eigenstates with non zero eigenvalue, we can investigate zero energy eigenstates. We restrict ourselves to the regime where at most two excitations are allowed: Λ ≤ 2.

As stated in section 7.3.1, the Hilbert space can be decomposed into two orthogonal subspaces as follows: H = H even ⊕ H odd . Let |Ψ be an eigenstate of H with eigenvalue 0:

H |Ψ = 0 (7.16)
The state |Ψ can be decomposed into |Ψ = |Ψ even +|Ψ odd . The restriction to the case Λ ≤ 2 imposes |Ψ even ∈ H 0 exc ⊕ H 2 exc and |Ψ odd ∈ H 1 exc , with obvious notations.

The equation (7.16) can be projected onto the even/ odd subspaces leading to:

H |Ψ odd = H |Ψ 1 exc = 0 (7.17) H |Ψ even = H(α |Ψ 0 exc + β |Ψ 2 exc ) = 0 (7.18)
where

α 2 + β 2 = 1
In the next subsections, we compute the zero energy eigenstates |Ψ even = and |Ψ odd of equation 7.17 and 7.18. We will then evaluate the dimensionality of the kernel of H spanned by ν excitations with ν = 0, ..., ν max . Finally, from those results, we can deduce from it the dimension of the kernel of H: dim(ker(H)) = dim(ker(H)) 0 exc + dim(ker(H)) Taking equation (7.20) again with l = N , we now obtain:

∀k ≤ N -R b , α k + α N = 0 (7.22) α k = α 1 (7.23)
Finally, the only state that have single excitation components located in between [

1, N -R b ] and in [R b , N ] is: α( N -R b k=1 |k -N l=R b |l ) with α = 1 √ 2(N -R)
. This completes our basis of ker(H) 1 exc and we can conclude that dim(ker(H)) 1exc = 2R b -N .

Evaluation of dim(ker(H)) even spanned by evenly excited states

Let us now evaluate dim(ker(H)) even in the Λ ≤ 2 regime. These zero energy eigenstates of H can be written as follows:

|Ψ even = α |∅ + β |Ψ 2 exc
The eigenvector equation (7.17) leads to: The coefficients c k,l can be obtained as followed: There is a graphical way to show these zero energy eigenstates of H. In subsection 7.1.1, figure 7.2 presents all the possible configuration of two excitations state in the regime Λ < 2. On this figure, the zero energy eigenstates can be represented as eigenfrequencies of the two-excitation-triangle. The coefficients c k,l , corresponding to these states, shall have both the sum of over the abscissa and the ordinate axes equal to zero.

H(α |∅ + β |Ψ 2exc ) = 0 (7.24) αH |∅ = -βH |Ψ 2exc (7.
H |Ψ 2exc = 0 H |Ψ 2exc = k,l c k,l |k + k,l

Mapping to eggbox problem and intuitive estimation of dim(ker(H)) 2 exc

Using this, we can map the research of these states to what I will call the "eggbox" problem. In this picture, the eggboxes are defined by their size n × m and by their frequencies k and l. Each eggbox can be defined as:

|egg n,m k, l = k,l e i2Πk k n e i2Πl l
m |k, l and corresponds to a rectangle filled with oscillations in both directions, hence its name.

Intuitively to express the zero energy eigenstates, we will fill the triangle representing these states by those rectangle eggboxes. Indeed, eggboxes described here follows the requirements of equation (7.28) corresponding to the condition H |Ψ 2exc = 0. The rectangle of shape (n × m) can be filled by any eggbox described by |egg n,m k, l with k, l ∈ N\{0}. Now that we have defined properly the eggboxes, we can fill the space covered by the triangle describing all possible two-excitation-states with eggboxes. Using this eggbox mapping, in the next subsection we have estimate approximately the dimension of zero energy eigenstates. Now, we can determine a lower bound on the dimension of the kernel of H using the expression (7.19). Each eggbox has a dimension approximately equal to its area, because we pave the triangle representing allowed two excitations states. Given the size of the triangle, we can then estimate its dimension as an approximate area computation. Here, the triangle is discrete in the sense that the total number of atoms is fixed. So, for a given width n, there is a maximum frequency in the Fourier space:

k n max = N -R-n 2
. For a given n, the allowed frequencies are non zero integer frequencies between -kn max and + kn max . To conjecture a lower bound the dimension of ker(H), we will suppose that given the horizontal frequencies k n , the vertical frequencies l m are fixed. Of course, this is false but it will help us to compute a lower bound. For a given n, there are N -R -n different frequencies. By integrating over n, we can conclude that dim(ker(H))

≥ (N -R b ) 2 2 = O(N ν 2 ).
In the next subsection, we will map the determination of dim(ker(H)) to a covering problem: we try to pave a triangle for the case Λ < 2 (or a ν max -simplex in the general case) using rectangles (or hyper-parallelograms); the dimension of the kernel of H will closely corresponds to the total area (or volume). The dimension of the total Hilbert space is O(N νmax ) and dim(ker(H)) = O(N νmax ). We can conclude from this that the Hilbert space is mostly spanned by zero energy state. This intuitive explanation is confirmed by the rigorous mathematical proof given in the next subsection.

Rigorous computation of dim(ker(H))

According to subsection 7.3.3.1, the kernel of H is mostly spanned by doubly excited states: the dimension of the kernel of H spanned by single excita-tion states is O(N ) compared to the dimension of the subspace spanned by zero energy doubly excitation states which is O(N 2 ). Thus, the zero energy eigenstates subspace mostly spanned by two-excitation-states.

To compute the dim(ker(H)) we count the number of free parameters in the sets of coefficients c k,l solving (7.28). All the c k,l are defined for

k + l ≤ N -R b . There are (N -R b )(N -R b +1) 2
coefficients. To compute the dimension dim(ker(H)), we evaluate the number of c k,l parameters staying free while the equation (7.28) is solved. A solution is to set free the c k,l for k, l > 1. To solve (7.28), we impose c 1,l = -k≥2 c k,l and c k,1 = -k≥2 c k,l . These two conditions lead to c 1,1 = k,l≥2 c k,l . Finally, we shall simply add the normalization condition:

k,l c 2 k,l = 1. Now, we have (N -R-1)(N -R)
2 free parameters because of the normalization condition. So, we can conclude that the subspace spanned by doubly excited states in the kernel of H has dimension (N -R-1)(N -R)

2

. Yet, the states we have obtained forms an independent family but there are not orthogonal. To find a basis of ker(H), we need to set orthogonal this linearly independent family of states. The Gram-Schmidt algorithm gives us such an orthonormal basis, whose dimension is given by the number of independent parameters. To compute the dimension of dim(ker(H)), we must take into account dim(ker(H)) spanned by single excitation states:

dim(ker(H)) = (N -R -1)(N -R) 2 + 2R -N
Finally, we can observe that both the intuitive and the rigorous approaches can be generalize to other regimes, i.e. other values of Λ. Indeed, the intuitive approaches can be extend to obtain dim(ker(H)) ≥ O(N νmax ). The rigorous approach can be extended while considering a simplex of dimension ν max instead of a triangle. This leads to a lower bound of the form: dim(ker(H) ≥ (N -R) νmax νmax . We have shown that the kernel of H is spanned by O(N νmax ) vectors. From Eq. (7.4), the number of states containing at most ν max -1 excitations is ∝ N νmax-1 and the dimension of the generated subspace H ν≤νmax-1 is a small fraction O( 1 N ) of the dimension of the total Hilbert space H. As N increases, the Hilbert space is therefore essentially composed by states containing ν max excitations. Futhermore, since all eigenvectors of H with ∼ 2dim (H ν=νmax-1 )

∼ O N νmax-1
As a consequence, the Hilbert space is mainly spanned by the states in ker (H) with ν max excitations. Here, the Rydberg blockade prevents the simultaneous excitation of two Rydberg atoms closer than R b = 7a. In this example, we are in the regime 1 < Λ = 10 7 ≈ 1.43 < 2. This system is depicted figure 7.12. We will express exactly the zero energy eigenstates of this small system under the effect of the Hamiltonian H from equation (6.2).

The kernel of H can be decomposed into ker(H) = ker(H) central 1exc +ker(H) lateral 1exc )+ ker(H) 2exc with:

• ker(H) central 1exc
states contain a single excitation located in the center, that is between position 5 and 7. Following 7.3.3.1, the plane waves |Ψ k forms a basis of ker(H) central 1exc . For sake of simplicity, we define the parameter ω = e i 2π 3 to express easily this plane wave basis (ω 3 = 1). as given by equations (7.29) to (7.32). 2 . The abscissa and the ordinate axis corresponds to single excitation states. The coefficients c k,l must obey to the conditions ∀k, k c k,l = 0 and ∀l, l c k,l = 0. We set the grey area to be all the predefined coefficients and the rest to be all the coefficients imposed by these conditions. This plane wave basis is constituted by the 3 states (see figure 7.13):

Amplitude

|Ψ k=0 = ω 0 √ 3 (|5 + |6 + |7 ) = 1 √ 3 (|5 + |6 + |7 ) (7.29) |Ψ k=1 = 1 √ 3 (ω 5 |5 + ω 6 |6 + ω 7 |7 ) (7.30) = 1 √ 3 (ω 2 |5 + |6 + ω |7 ) (7.31) |Ψ k=2 = ω |5 + |6 + ω 2 |7 (7.32)
Because ∅|H|Ψ k=0 = 0, we must remove |Ψ k=0 to our familly of states to form a basis of ker(H) central 1exc . Now, we can conclude that ker(H) central 1exc = span(|Ψ k=1 , |Ψ k=2 ).

• ker(H) lateral 1exc states contain a single excitation located on the side, that is either between position 1 and 4 or between position 8 and 11. From subsection 7.3.3.1, ker(H) lateral 1exc is reduced to the single state In our N = 11/R b = 7 example, the triangle representing these states involve 10 coefficients for the 10 components. As explained above, the c k,l coefficients obey to the conditions ∀k, k c k,l = 0 and ∀l, l c k,l = 0. There are 8 conditions but only 7 of them are independent. So, we have to fix 3 initial coefficients, in our example we fix c 2,2 ,c 2,3 and c 3,2 . One can easily see that these conditions imply thatc 1,4 = 0 and c 4,1 = 0 leading to c 3,1 = -c 3,2 and c 1,3 . Combined with the condition 

|Ψ lateral = 1 2 √ 2 ( 4 k=1 |k -11 l=8 |l ).
c 2,1 + c 2,2 + c 2,3 = 0(c 1,2 + c 2,2 + c 3,2 = 0 respectively), we can conclude that c 2,1 = -c 2,2 -c 2,3 and c 1,2 = -c 2,2 -c 3,2 . Finally, the last coefficient is then imposed to be equal to c 1,1 = c 2,2 + c 2,3 + c 3,2 .

Diagonalization of H 2

The results obtained by the numerical simulation in section 7.2 show several features that are not captured by the statistical approach of section 7.1 such as the localization of the excitations. In order to understand the results coming from the numerical simulation, we now build an analytical model to see if these features are numerical artifacts or if they can recovered analytically. Such an analytical model would be used as a witness to valid either our numerical simulation or the statistical approach and would allow us to compare all these approaches. Finally, an analytical model would allow us to deduce the dynamic of the system in the thermodynamic regime: very large system N → ∞ in the same interaction regime R N and Λ are both constant. According to section 7.1.3 and equation (7.2), the dimension of the Hilbert space is ν≤νmax N (ν) N (ν max ) ≈ O(N νmax ). Even in the regime of at most 2 excitations (ν max = 2), the dimension is too large to build a meaningful analytical model: figure 7.11 of section 7.3 has been obtained for N = 100 atoms in the regime Λ = 1.5, we can see that the Hilbert space dimension is greater that 650. Such analytical model involving (650 × 650) matrices is simply not reasonable. But in the previous subsection, we have shown that the Hilbert space is mostly spanned by states in the kernel of H. From this, we can conclude that the dimension of the space involving the dynamic of the system is small. We try to restrict our analytical model to the smallest possible subspace. First, in subsection 7.3.5.1, we use a 2 dimensional model, but this model is not elaborated enough. So in subsection 7.3.5.3, we have extend our previous 2 dimensional model to a 4 dimensional one to recover some of the numerical results. As you will see in subsection 7.3.8, this 4 dimensional model do not capture the localization effects observed in 7.2 and so we have extend again our basis to finally have a 6 dimensional Hilbert space for our final analytical model.

To build an analytical model, we shall try and restrict the basis of the whole Hilbert space to only the relevant states, i.e. these which get significantly populated during the evolution.

Starting in the state |∅ , the system evolves according to the Hamilto-nian (6.2). The corresponding time evolved state is given by equation (5.2):

|Ψ(t) = e iHt |∅ = +∞ n=0 ( iHt ) n 1 n! |∅ .
In term of entire series, the above expression involve infinitely many applications of the Hamiltonian H onto |∅ . To build our d dimensional analytical model, we will use the d states |∅ , H |∅ , ..., H d-1 |∅ . In the next subsection, we build the simplest analytical model: the d = 2 analytical model.

A too simple approximation

To find a basis to perform analytical computations, we have computed terms of the form H d |∅ and see when the first d = 2 terms are sufficient to capture features obtained by the numerical simulation.

To explicit the 2-dimensional model, we must define the following objects. First, we denote Π ν as the projector onto the subspace of states with exactly ν Rydberg excitations. Then, we introduce a new normalized parameter

ρ = N -R N = 1 -1
Λ . This parameter tells us information about the ratio between the Rydberg blockade radius and the total length L = N -1. In the full blockade regime, i.e.

R b ≥ N ↔ 0 < Λ ≤ 1, ρ ≤ 0; in the regime 1 < Λ ≤ 2, 0 < ρ ≤ 1 2 .
Furthermore, ρ appears in many expressions we will use later such as S|H 2 |∅ .

In section 4.1.3, a two dimensional model is presented to describe the superatom regime Λ < 1. Here, we derive the same model but we add an extra third dimension to evaluate the accuracy of the superatom model. Now, we define the states |S and |Ψ 2 0 as follows:

H |∅ = Ω N k=1 |k = Ω √ N |S (7.33) 
where

|S ≡ H |∅ H |∅ = 1 √ N N -R k=1 |k (7.34) H |S = Ω √ N (|∅ + N -R k=1 N l=k+R |k, l ) = Ω √ N (|∅ + √ 2ρ |Ψ 0 2 ) (7.35)
and

|Ψ 0 2 = Π 2 H 2 |∅ Π 2 H 2 |∅ (7.36) = Z 0 2 N -R k=1 N l=k+R |k, l (7.37) 
with (as shown in appendix B equation B.14)

Z 0 2 ≈ 1 √ 2(N -R) (7.38)
Because of the parity balance property seen in the subsection 7.3.2, let us suppose that an eigenstate of H can be written in the form:

|Ψ = |∅ + |S √ 2 (7.39)
Its relative energy variance is given by

∆E 2 E 2 = ( Ψ|H|Ψ ) 2 -Ψ|H 2 |Ψ Ψ|H 2 |Ψ
. This will help us to check if our initial guess for the eigenstate |Ψ is correct: since the variance of such an eigenstate is supposed to be 0. We remind the definition of the parameter ρ = N -R N , in the regime studied here 1 < Λ ≤ 2 assures ρ > 0. We have then:

H |∅ = Ω √ N |S (7.40) H |S ≈ Ω √ N (|∅ + √ 2ρ |Ψ 0 2 ) (7.41) H |Ψ ≈ Ω √ N (|Ψ + ρ |Ψ 0 2 ) (7.42) H |Ψ 2 ≈ Ω 2 N (1 + ρ 2 ) (7.43) Ψ|H|Ψ 2 ≈ Ω 2 N (7.44) ∆E 2 E 2 ≈ Ω 2 N ρ 2 Ω 2 N = ρ 2 (7.45)
Figure 7.16 shows ∆E 2 E 2 versus Λ. We can see that the state |Ψ from equation 7.39 tends to an eigenstate in the fully blockade regime, i.e. when ρ → 0. The results obtained here corroborates the ones obtained by the superatom model presented in section 4.1.3. For non-negligible ρ, the 2dimensional model is insufficient. We therefore move onto a 4-dimensional model. 

Definition of the 4-dimensional model

We introduce some useful states that will be used in our 4-dimensional analytical model. In the same way as in 7.3.5.1, the states we will used are defined by the first d -1 = 3 iterative applications of H onto |∅ in the regime Λ < 2. We define the state

|Ψ 1 1 = H|Ψ 0 2 H|Ψ 0 2 = HΠ 2 H 2 |∅ HΠ 2 H 2 |∅
as follows:

H |Ψ 0 2 = Ω2Z 0 2 N -R b k=1 N l=k+R b (N -R -k) |k + (l -R b ) |l = Ω 2Z 0 2 Z 1 1 |Ψ 1 1 (7.46)
We could go further by defining

|Ψ 2 2 = Π 2 H|Ψ 1 1 Π 2 H|Ψ 1 1
but as we will see just below, a 4-dimensional model will be sufficient to capture the results from the numerical simulation.

As shown in Appendix B equations B.2, the normalization factor Z 1 1 of the state |Ψ 1 1 is given by:

Z 1 1 ≈ √ 12 √ 11(N -R) 2 (7.47)
Finally, one can note that the states |S and |Ψ 1 1 are not orthogonal:

S|Ψ 1 1 = 1 √ N Z 1 1 N -R k=0 (N -R -k) k|k + N l=R (l -R) l|l = 3ρ 2 
Figure 7.17: Graph representing the 4-dimensional model: the vertices refers to quantum states and the edges to their couplings.

We define the state

|Ψ ⊥ 1 = Z ⊥ 1 (|Ψ 1 1 -S|Ψ 1 1 |S )} with Z ⊥ 1 = 1 √ 1-3ρ 2 so
that, S|Ψ ⊥ 1 = 0. The states |Ψ 0 2 and |Ψ 1 2 are not orthogonal either:

Ψ 0 2 |Ψ 1 2 = 2Z 1 2 Z 0 2 N -R k=0 (N -R -k) + N l=k+R (l -R) (7.48) 
The passage from discrete sums to integrals is described in Appendix B. 

≈ 2Z 1 2 Z 0 2 N -R 0 (N -R -k)dk N R+k dl + N -R 0 dk N k+R (l -R)dl (7.49) = 2Z 1 2 Z 0 2 (N -R) 3 3 + (N -R) 3 2 - (N -R) 3 6 = 32 33 (7.50) Ψ 0 2 |Ψ 1 2 ≈ 32 33 = 1 - 1 33 ≈ 1 - 1 
H |S = Ω √ N (|∅ + √ 2ρ |Ψ 0 2 ) (7.55) H |Ψ 1 1 = Ω √ N 3ρ 2 |∅ + 11ρ 8 |Ψ 1 2 (7.56) Ω √ N 3ρ 2 |∅ + 2 ρ 3 |Ψ 0 2 (7.57) H |Ψ 0 2 = Ω √ N 2 ρ 3 |Ψ 1 1 (7.58)
Let us write the matrix H 2 even in the basis {|∅ , |Ψ 0 2 }:

H 2 even = Ω 2 N 1 ρ √ 2 ρ √ 2 4 3 ρ Its eigenvalues are E 2 even,1 = Ω 2 N 4ρ + 3 + 88ρ 2 -24ρ + 9 6 (7.59) E 2 even,2 = Ω 2 N 4ρ + 3 -88ρ 2 -24ρ + 9 6 (7.60)
and correspond to the eigenstates

|E 2 even,1 = X 1 |∅ + Y 1 |Ψ 0 2 (7.61) |E 2 even,2 = X 2 |∅ + Y 2 |Ψ 0 2 (7.62) with X 1 = 1 1 + E 2 even,1 Ω 2 N -1 ρ 2 and X 2 = 1 1 + E 2 even,2 Ω 2 N -1 ρ 2 (7.63) with Y 1 = 1 1 + ρ 2 E 2 even,1 Ω 2 N -1
and

Y 2 = 1 1 + ρ 2 E 2 even,2 Ω 2 N -1 (7.64) 
The eigenvalue E 2 even,2 = 0 for ρ = 0 and increases with ρ. So, for ρ > 0, E 2 even,2 is well defined and positive. The same diagonalization in the odd subspace can be done. Here H 2 odd is given in the basis {|S , |Ψ ⊥ 1 }.

H 2 odd = Ω 2 N   1 + 2ρ 2 2ρ 3/2 2 3 -ρ 2ρ 3/2 2 3 -ρ 4 3 ρ -2ρ 2  
Its eigenvalues are:

E 2 odd,1 = Ω 2 N 4ρ + 3 + 88ρ 2 -24ρ + 9 6 = E 2 even,1 = E 2 1 (7.65) E 2 odd,2 = Ω 2 N 4ρ + 3 -88ρ 2 -24ρ + 9 6 = E 2 even,2 = E 2 2 (7.66)
The set of states {|E even,i=1,2 , |E odd,i=1,2 } forms an orthonormal basis of H 2 and all the eigenenergies are compatible: |E even,i | = |E odd,i |. We do not have any direct information about the eigenstates of H yet but we will deduce them in the next subsection.

Diagonalization of H

Combining the results obtained from the diagonalization of H . Let us fix the arbitrary relative phase φ to 0 by the equation:

H E 2 even,i = E 2 i E 2 odd,i .
Combining it with

H 2 E 2 even,i = E 2 i E 2 even,i gives H E 2 odd,i = E 2 i E 2 even,i .
We trivially define the 4 eigenvalues of H by 

E s=± i=1,2 = s × E i = s × E 2 i of
|c s i | 2 |ψ s i ψ s i | (7.67)
will not exhibit the observed strong localization effect observed in the numerical simulations 7.2. Note that the four eigenstates ψ s=± i=1,2 contribute to the statistical mixture ρ with the respective weights

|c s i | 2 ≡ | ψ s i | Ψ(0) | 2
determined by the initial state vector |Ψ(0) = |∅ . In terms of X i , we can rewrite

|c s i | 2 as |c s i | 2 = (1 + s) 2 X 2 i 2
where the X i are expressed in equation (7.63). 

Comparison between 2 and 4-dimensional models

This subsection is dedicated to the comparison of the 2 and 4-dimensional model. Figure 7.18 shows their respective predicted distribution of excitations along the chain.

To compare them, we choose to fix Λ = 1.5 but in this regime, ρ = 0 and so the state |∅ +|S √ 2

is absolutely not an eigenstate of H. Therefore, the 2dimensional model is clearly insufficient and will provide wrong predictions. The 4-dimensional model takes into account the possibility of having doubly excited states with the excitations located at the border of the chain. This increases considerably the probability to have an excitation at the border (see Fig. 7.18). In this 4-dimensional model, the time-averaged density matrix is given by equation (7.67). We could conclude that the d = 4 model seems to give qualitatively good predictions. But, as we will see in the next subsection, the numerical simulation reveal some localization effects of the excitations that is not captured by the d = 4-dimensional model.

Localization of excitations

In subsection 7.2, figure 7.10 presents a localization effect of the excitations shown by the numerical computation which is totally missed by the previous model. Indeed, the localization of excitations is peaked around a given value and is very narrow: 1 atom-wide. The states {|∅ , |S , |Ψ ⊥ 1 , |Ψ 0 2 } presented in subsection 7.3.5.2 are delocalized states (in the sense that the excitations are not localized at a particular positions). So, the eigenstates {|ψ s i } are also delocalized. To correctly account for the observed localization phenomenon, we must therefore slightly extend the basis. To this end, we consider the family of states |ϕ s=± k=1,...,N -n b -1 defined by

ϕ ± k=1,...,N -R b -1 ≡ |Φ (1) k ± |Φ (2) k √ 2 (7.68) with Φ (1) k ≡ |k + |N -k √ 2 Φ (2) k ≡ N -n b -k-1 l=0 |k, N -l + |N -k, l 2 (N -n b -k)
Note that |Φ , we must check that the added family of states contains vectors that are linearly independent.

First, we can notice that they are independent one from the other: |ϕ s k / ∈ span(|ϕ s k =k ). Now, we can check that the states |ϕ s k are approximately orthogonal to

|ψ s i , i.e. ϕ s k ψ s i = O 1 √ N .
This is not surprising because each of them encodes a localization at a particular position, so they cannot be obtained by linear combination of the previous non-localized states {|ψ s i }. They are, moreover, only very weakly coupled to |ψ s k by the Hamiltonian, i.e. If the system starts in a superposition of |ψ s i , i.e. |ψ (0) = i,s c s i |ψ s i , one could be tempted, due to Eq. (7.69), to assume that none of the states |ϕ s k ever gets substantially populated. And so, we should discard the whole family {|ϕ s k } from our description. In the numerical simulation, we have chosen |ψ (0) = |∅ as initial state. This initial state can be written in a form involving only the original basis terms (the |ψ s i ). So, we could think that on the numerical simulation, no localization effect should appear because the states {|ϕ s k } responsible for the localization effects will never be populated. This would actually be incorrect: it may indeed happen that, for a given k = K, |ϕ s K becomes resonant with |ψ s 1 , i.e. ε K = E 1 . Checking on Fig. 7.19, such a resonance exists only for Λ ≥ 7 6 . On Fig. 7.20, the lo-calization effects appear only for Λ ≥ 7 6 . Now, we will try to derive an analytical treatment to capture their appearance. Now, we present the analytical treatment of the resonance between the state |ϕ s K and |ψ s 1 . As seen in the subsection above, for a particular value K, the state ϕ s=± K has the same energy as the collective excitation state |ψ s 1 . This resonance can only exist if

ϕ s k H ψ s i = O 1 √ N . ( 7 
× ε k = s × Ω √ N -n b -k: H ϕ s=± k = s × Ω N -n b -k ϕ s=± k + O 1 √ N . ( 7 
E 1 ≤ ε 0 ⇔ Ω N 4ρ + 3 -88ρ 2 -24ρ + 9 6 ≤ Ω N ρ (7.71)
This inequality holds when Λ ≥ 7 6 . In that case, though very weak, the coupling term ϕ s K |H| ψ s 1 strongly mixes the states |ϕ s K and |ψ s 1 and the two vectors ϕ s=± K must be adjoined to the previous set ψ s=± i=1,2

. The small coupling between |ϕ s K and |ψ s 1 lifts this degeneracy by adding an energy shift ±δ to the new eigenvectors

χ s=± ± = |ϕ s K ±|ψ s 1 √ 2
of energy s × E 1 ± δ. In this subspace, the six eigenvectors of the Hamiltonian now reads

χ s=± ± ≡ |ψ s 1 ± |ϕ s K √ 2 , χ s=± 0 ≡ |ψ s 2
and the energy degeneracy is lifted. After time averaging, this absence of degeneracy allows us to keep only the diagonal terms in the density matrix: all the non diagonal terms have a factor e i∆Et , with ∆E beeing an energy difference, that will vanish after time averaging. Furthermore, when |Ψ(0) do not have any particular localization of excitations , like e.g. |∅ , we have

χ s ± Ψ(0) = ψ s 1 | Ψ(0) √ 2 + O( 1 √ N )
. After time averaging, the density matrix contains only diagonal terms and one can deduce the density matrix: The average state ρ of the system is therefore a statistical mixture involving ψ + 2 and ψ - 2 weighted by ψ + 2 Ψ(0) 2 and the four states

ρ = ψ + 2 Ψ(0) 2 ψ + 2 ψ + 2 + ψ - 2 ψ - 2 (7.72) + | ψ - 1 Ψ(0) | 2 2 ψ - 1 ψ - 1 + ψ + 1 ψ + 1 + ϕ + K ϕ + K + ϕ - K ϕ - K (7.
ψ - 1 , ψ + 1 , ϕ - K and ϕ + K weighted by 1 2 ψ - 1 Ψ(0) 2 .
The time-averaged state ρ now contains a highly localized component, on the atom at position K or (N -K). Accordingly, the probability distribution P k exhibits a strongly peaked behavior at k = K, (N -K).

The exact position of the excitation peak can be analytically derived. The resonance between |ϕ s K and |ψ s 1 induces a localization effect at position K. To compute this K, we can solve:

ε K = E 1 ⇔ K = N -n b - E 2 1 Ω 2 (7.74)
The predicted position of the excitation peak is plotted in blue in Fig. 7.20. This localization phenomenon is in good qualitative agreement with what we observe with the full simulation: in particular, the appearance of the localization lines indeed happens when Λ ≈ 7 6 (see Fig. 7.20). This validates the simplified analytical treatment we have just carried out which indeed seems to retain the main physical ingredients of the system and its evolution. 

Comparison between the 4 and 6-dimensional models

This subsection is dedicated to the comparison of the d = 4 and 6-dimensional model. In the 4-dimensional model, the time-averaged density matrix is given by equation (7.67). The 6-dimensional model corresponds to the 4dimensional model combined with the 2 more dimensions (the states |φ s=± K ) coming from the treatment of the localization. We have compared these two models in the same regime (Λ = 1.5) as in subsection 7.3.7. Figure 7.21 shows their respective predicted distribution of excitations along the chain.

The 6-dimensional model involving the very localized states |φ s K shows a similar distribution of the excitations except for the positions K and N -K where the probability of exciting the atoms at these positions is very high (due to the resonance between |ψ s 1 and |φ s K ). For the 6-dimensional model, the time-averaged density matrix is given by equation 7.72. The two timeaveraged matrices returns similar distribution of excitations for all atoms located in-between [N -R b , R b ]. Having a look on the wings without taking into account the positions K and N -K, we can see that the two distributions are really close. The 4-and 6-dimensional model provides similar results for all positions but not K and N -K. The major deviation between these two predictions is simply due to the presence of the |Φ s K in the expression of the 6-dimensional ρ.

Comparison of the different approaches

This section is devoted to the discussion of the results obtained from the statistical approach, the numerical simulation and the analytical treatment. Fig. 7.22 displays plots of the probability P (ν) of having ν = 0, 1, 2 Rydberg excitations in the sample, as a function of Λ (for 0.9 ≤ Λ ≤ 2), calculated according to : i) the microcanonical hypothesis (Sec. 7.1), ii) the full simulation of the system (Sec. 7.2), iii) the approximate diagonalization of H in a reduced 6-dimensional Hilbert space (Sec. 7.3). While the schemes ii) and iii) yield very similar results (as expected), assumption i) induces quite different behaviors. The same comparison can be performed on the spatial probability distribution P k which is displayed on Fig. 7.23. Again, the shapes obtained via schemes ii) and iii) are in very good qualitative agreement: in both cases, one observes two localization peaks on a "background curve", which coincide satisfactorily. (Note that, according to our calculations, excitations are more likely to be localized at the borders). The spatial probability distribution obtained according to assumption i) differs strongly: no excitation localization effect is observed and the background curve is far from what is observed in the full simulation. The discrepancies observed above can be partly explained by the following "parity balance property" established in the Appendix A: for any eigenstate |ψ of the Hamiltonian H, the projections |ψ odd and |ψ even onto the orthogonal and supplementary subspaces H odd and H even , respectively spanned by the states with an odd and even number of Rydberg excitations, have the same norm, i.e. |ψ = |ψ odd +|ψ even with |ψ odd = |ψ even = 1 2 . This property conflicts directly with the microcanonical predictions according to which the probability of having ν < ν max excitations is negligible compared to the probability of having the maximum number of excitations. For example, suppose ν max = 1, the microcanonical ensemble implies that P (ν = 0) = 1 1+N and P (ν = 1) = N 1+N . By contrast, the parity balance property implies P (ν = 0) = P (ν = 1) = 0.5. Furthermore, one can see that in Fig. 7.4, each time one of the probability curve is above 1 2 , the parity balance condition is therefore impossible to fulfill. In almost all cases, the even/odd parity balance property and the simple microcanonical approach presented in section 7.1 disagree.

The inaccuracy of the predictions deduced from the microcanonical assumption can also be explained by the choice of |∅ as the initial state: the low connectivity of this state to the rest of the Hilbert space constitutes indeed a strongly limiting factor to the thermalization process [START_REF] Olmos | Thermalization of a strongly interacting 1d Rydberg lattice gas[END_REF]. In particular, the vaccum state being symmetric as well as the Hamiltonian, the system remains in a symmetric state during its evolution. The direct appli-cation of the microcanonical assumption, taking into account all the states which are allowed by the Rydberg blockade, is therefore incorrect : for a proper use of the microcanonical hypothesis, one should actually take this extra symmetry selection rule into consideration and count only the accessible, i.e. symmetric, states. Note that the vacuum state is the natural starting point from an experimental perspective to study the build-up of excitations and is therefore widely used [START_REF] Ji | Equilibration of quantum hard rods in one dimension[END_REF][START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF].

Another choice of initial state can actually be considered. Starting with a random initial state, Ates et al. [START_REF] Ji | Equilibration of quantum hard rods in one dimension[END_REF] showed that in the regime of strong nearest neighbor interaction (Λ > N

2 ), the dynamics of the system is well described by the microcanonical ensemble. In the regime studied in this article, Λ N , a similar random choice of initial state leads to an essentially "frozen evolution" as seen in by the dimensionality arguments showed in section 7.3.3.4. The Hilbert space is mainly spanned by the states in ker (H) with ν max excitations. Therefore the projector on ker(H) is a "gentle" operator [START_REF] Winter | Coding theorem and strong converse for quantum channels[END_REF] for the ensemble of states picked uniformly at random: with high probability, a state from this ensemble will have a large component on ker(H) and its evolution will essentially be "frozen", which contradicts the microcanonical predictions. Conversely, if one chooses the initial state in the H ν≤νmax-1 subspace, the system will not explore ker(H): the dimensionality of the actual microcanonical ensemble is therefore again much less than the number of states allowed by the Rydberg blockade.

We studied the dynamics of a 1D-Rydberg ensemble in the regime of at most 2 excitations. In the same conditions as in [START_REF] Ji | Equilibration of quantum hard rods in one dimension[END_REF][START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF], we tested the validity of the microcanonical predictions and found it cannot be used straightforwardly to account for the thermalization process which occurs in this particular regime. Though the observed discrepancies can be related to our specific choice of initial state and its particular symmetry properties, we also proved, by an argument involving the dimension of the kernel of the Hamiltonian, that the same restriction holds for a randomly chosen initial state.

Further investigations are needed to better understand when and how to apply the (micro)canonical predictions in 1-dimensional Rydberg gases. In particular, the results presented here all rely on the hardcore sphere assumption. Refining the model and considering the full Rydberg-Rydberg interaction Hamiltonian Eq.(5.1) might actually change our conclusions and make the microcanonical assumption more adapted, as shown in [START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF]. Indeed, in that case, all states become, strictly speaking, allowed, though more or less accessible, and the connectivity accordingly increases between states of the Hilbert space. Moreover, as suggested by our discussion, the systematic study of symmetry properties of the system at stake, as well as the selection rules they impose, appear to be a crucial point in the proper application of microcanonical assumption.

Chapter 8 Introduction

Quantum physics can be used to perform some communication tasks. In 1984, Bennett and Brassard have published their famous BB84 protocol [START_REF] Bennett | Quantum cryptography: Public key distribution and coin tossing[END_REF]: the first quantum key distribution protocol (QKD). A key distribution protocols allows two parties to share an secret key; no eavesdropper can have access to this secret key encrypting a message allowing the parties to communicate secretly. Compared to classical key distribution protocols, here the security of the communication do not rely on the hardness of a mathematical problem but rather on the laws of quantum mechanics. After the publication of the BB84 paper, many QKD protocols have been proposed leading to many experiments. Those protocols have a major limitation factor: the distance between the 2 parties. The team of Zbinden achieved the record of QKD distribution over a 307km of optical fiber [START_REF] Korzh | Provably secure and practical quantum key distribution over 307 km of optical fibre[END_REF]. Many quantum protocols, and some QKD protocols among them, require the parties to share an entangled quantum state. This entangled state can be generated by either one the parties or by a dealer located between them. Photonic qubits are the most pratical to send far away and take the role of flying qubits [START_REF] Divincenzo | The physical implementation of quantum computation[END_REF]. The information is stored in some degrees of freedom of the quantum state of light like the polarization or the phase. The photons can be sent through optical fiber of free-space but despite their qualities, these channels are still noisy. Passing through those noisy channels, the flying qubits will be deteriorated by some decoherence phenomenon coming from the environment. To overcome the practical distance limit of quantum communication between two parties, quantum repeaters localized at regular intervals along the 2 parties have been proposed (see figure 8.1 section 8.1). Beyond this theoretical answer to the distance limitation in a two party scheme, we study here quantum protocols over a more generic quantum network. Each node of the quantum network corresponds to a user. Quantum network involving quantum repeaters would allow, in principle, many users to communicate simultaneously even if they are far apart. Several projects aiming the construction of quantum networks have been completed: the DARPA quantum network in 2004 [START_REF] Elliott | Current status of the DARPA quantum network[END_REF], SECOQC QKD network in Vienna in 2008 [START_REF] Alléaume | Using quantum key distribution for cryptographic purposes: A survey[END_REF], etc. In China, the construction of a quantum network connecting Beijing and Shanghai has begun [START_REF] Wang | Field and long-term demonstration of a wide area quantum key distribution network[END_REF]. But yet, all these projects suppose that the relays are trusted: each node trust all the other nodes. Recently, China has launched the Quantum Science Satellite to extend their quantum network [START_REF] Wang | Direct and full-scale experimental verifications towards ground-satellite quantum key distribution[END_REF][START_REF] Jianwei | Quantum science satellite[END_REF]: the satellite is supposed to act as a trusted dealer to transmit quantum keys in China. Overcoming this trust assumption would require quantum repeaters but it is beyond current possibilities.

These technological progresses show the need of a theoretical study of quantum networks. Quantum networks are also useful for distributed quantum computing, where the nodes of the network corresponds to small quantum processors acting some quantum logic gates to perform a given computation. Those networks are usually based on hybrid technologies: they involves both flying qubits (photons) and static qubits. The static qubits are usually encoded in the degrees of freedom of a cold atoms or ions based system because they are isolated enough from the environment to be more resilient to decoherence than flying qubits. Quantum gates have been proven to be generated by a set containing few quantum gates. An example of such universal set contains the Clifford and completed by another gate like the Toffoli gate:

• the Clifford set over an arbitrary number of qubits (defined in subsection 10.2) is generated by:

for the single qubits operations: the Pauli-X and Pauli-Y gate, the Hadamard gate a 2 qubit operations the CNOT gate

• the Toffoli gate is also known as the "controlled-controlled-NOT" gate. Without this gate, the set obtain would be limited to the Clifford operations only.

If the quantum processors present at the nodes of the network can perform this set of gates, then any operation can be run over the quantum network. One way to interface such quantum processors is the use of optical quantum cavities. These optical cavities play the role of interface between the flying and the static qubits. By tuning light-matter interactions, the information transfers from the optical to matter qubits and many qubits gates operations are possible.

Quantum repeaters

Quantum repeater allow two clients to share an EPR pair (pair of qubits which are in a maximally entangled Bell state) so that they can communicate quantum information using a teleportation protocol. In the case of a peerto-peer network where clients can act as a quantum repeater, if the two peers can connect via a common set of clients, these in-between clients can be used as in the standard case to allow the two peers to share an EPR pair and therefore to communicate. On such a network, in a single time step, several pairs of clients can transmit quantum information by consuming entanglement though entanglement swapping. Before reaching the next time step, entanglement must be shared again between several clients across the network.

To construct such a quantum network, we have to consider two types of resources. The first one is basically all the quantum devices of the client. To be practical, we have supposed each client can only use a single quantum memory and a single Bell measurement. These limitations imply a simple rule in our model (see figure 8. are the sender or the receiver of a two parties quantum communication; or perform a single Bell measurement if they are in-between clients. This Bell measurement combined with classical communication forms the entanglement swapping operation. The second resource will be the entanglement shared between separated clients, i.e. the number of quantum link (EPR pairs) used to build the network. Classical communications are considered to be free in this model. Here, we investigate the distribution of entanglement across a quantum network in order to maximize the trade-off between the number E tot of quantum links in the network (each corresponds to an EPR pair shared between two clients) and the number P of pairs of clients that can communicate simultaneously in a single time step. We have studied two figures of merit: P w the maximum number of EPR pairs that can be shared simultaneously in the worst case, where peers are chosen by an adversary; P a the average number of EPR pairs that can be shared simultaneously across the network when the peers are chosen at random. 

Mapping entanglement distribution across a network to a graph problem

A quantum network build on the quantum repeater scheme, regardless of the support of information used for the implementation (photon, ions, atoms...) can be represented as a graph. Each vertex of this graph corresponds to a customer, and each edge represents an entangled pair shared between the connected vertices. In a time step, it is possible to share entanglement along any continuous path in the graph, if the vertices along the path cooperate by performing a Bell measurement and classically communicate the result.

Several EPR pairs can be shared simultaneously if the corresponding paths are vertex disjoint (see Fig. 8.4 and Fig. 8.5).

The size of the graph is defined by the number N of vertices and the resources that will be required to shared EPR pairs between vertices is the total number of edges E tot shared between the N vertices. The problem of finding the number of EPR pairs that can be shared simultaneously across a network can be translated into finding the number of vertex disjoint paths on the corresponding graph.

In this section, we go beyond this linear scheme of two parties and explore the possibilities offered by an arbitrary network of such quantum repeaters connecting many clients.

The vertex disjoint path problem

Our entanglement distribution problem corresponds to the vertex disjoint paths problem. This problem is related to a well-known problem in graph theory, namely the disjoint paths problem. This problem has already been studied in many papers and to introduce it, I will present a result obtained by Kawarabayashi et al. in [START_REF] Reed | The disjoint paths problem in quadratic time[END_REF].

Formally, the vertex disjoint paths problem can be stated as follows: Given a graph G N of N vertices and a set of k pairs of vertices called the terminals in G N , the problem is to decide if there exist or not k vertex disjoint paths connecting the k pairs of terminals (A i , B i ) for i = 1, ..., k. Several important results are known: if k is a part of the input, then the problem is NP-complete. A planar graph is a graph that can be drawn on a plane with no crossing edges. In the case of a planar graph, with k fixed, an algorithm linear in N exists to solve the disjoint path problem. But, even in the case of planar graphs, it has been shown that the vertex disjoint paths problem remains NP-complete. From now on, we will consider that k is fixed. For a fixed k, Kawarabayashi et al. give an algorithm to solve the vertex disjoint paths problem in O(N 2 ) [START_REF] Reed | The disjoint paths problem in quadratic time[END_REF]. In other words, the O(N 2 ) term contains a hidden exponential term in k.

The problem we are interested in is slightly different from the one solved by Kawarabayashi et al. We are not interested only in knowing if a given set of k terminals can be connected by disjoint paths but rather in finding the largest number of terminals that can always be connected by vertex disjoint paths. In our case, we do not set the k pairs of terminals but we want to assure that for any k pairs of terminals, there exist at least k vertex disjoint paths connecting those k pairs. More formally, given a graph G N containing N vertices, we define P w (G) the largest number such that for all possible P w (G) pairs of terminals in G N , there exist vertex disjoint paths connecting them. To give an example, we consider here a complete graph K N . By definition of a complete graph, each vertex is connected to all the other vertices via a single edge. We can conclude that P w (K N ) = N 2 . The complete graph has the highest P w : indeed, a graph with P w contains 2P w terminals and so N ≥ 2P w .

P w = N 2 means that there are N terminals so the graph should contain at least N vertices. But, a complete graph contains many edges: in K N , there are E tot = N (N -1) 2 edges. Figure 8.6 illustrates the K 5 complete graph. Separated clients can share an EPR pair if there is a continuous path of quantum repeaters between them. During a round of the protocol, several EPR pairs will be share simultaneously across the graph. Entangled EPR pairs can be shared even over long distance thank to the use of quantum repeaters. But, the entanglement shared between clients will be consumed at each end of the round of the protocol because of the quantum state teleportation. To perform quantum communication again would require to start an other round of the protocol and so to share again the entangled pairs across the network. To capture this, we chose to define the entanglement shared between clients as a resource (i.e. the number of quantum repeaters used to build the network). In terms of graph, this means that the number of edges is a cost. The number of edges is an important parameter of the problem. In this chapter, we ask the question: given k (the size of the sets of terminals = number of sender-receiver pairs) and N (the number of clients), what is the smallest graph G in terms of total number of edges such that P w (G) ≥ k. 

Chapter 9 Classical routing of quantum entanglement

In this chapter, we study two vertex disjoints path problems using classical routing of quantum entanglement. The problem is to allow several pairs of peers to simultaneously share EPR pairs across the network. We consider two figures of merit: when the peers are chosen by an adversary; and when the peers are chosen at random.

Worst case on regular graphs

Let P w be the maximum guaranteed number of EPR pairs that can be shared simultaneously. Considering this worst case scenario, where the peers are chosen by an adversary, is useful because it assures that one can always connect at least P pairs with P ≤ P w . P w is the lower bound on the maximum number of pairs that can be connected whatever the configuration of theses pairs. P w is also the maximum number of achievable pairs without disconnecting a single vertex from the remaining ones. On a graph, P w can also be seen as the maximum number of cuttings along non-intersecting path without disconnecting a single vertex from the remaining ones. This alternative definition of P w allows to observe 2 types of topological limitations of P w due to:

1. the minimum degree of the graph; 2. its non-orientable genus. Figure 9.2: Same graph in 9.2 but the minimum degree of the graph is odd.

Here δ = 3, P w = 2 and so P w ≤ δ+1 2 .

Limitation of P w due to minimum degree

The degree δ V of a vertex V is the number of edges connected to this vertex. The minimum degree δ of a graph is the minimum degree of all its vertices. In the general case, by saturating the neighborhood of a node, one easily sees that 2(P w -1) < δ. More specifically, 1. if δ is odd, 2(P w -1) < δ and so P w ≤ δ+1 2 (fig. 2). 2. if δ is even, 2P w ≤ δ and so P w ≤ δ 2 (fig. 1). The minimum degree inequality is:

P w ≤ δ 2 (9.1)
This minimum degree inequality can be translated in terms of total number of edges by considering a regular graph composed by N vertices of constant connectivity C = δ. The total number of edges is E = N C 2 and so: • if C is odd : E ≥ N P w and so

Pw E ≤ 1 N • if C is even : E ≥ N (P w - 1 
2 ) and so Pw E ≤ 1 N (1 + 1 C ) The same inequalities apply to arbitrary graph of mean connectivity C, replacing C by C ≥ δ. Now that we have expressed the inequality between the minimum degree and P w , we present in the next subsection, the second limitation on P w due to some topological properties.

Limitation of P w due to topological genus

The non-orientable genus of a graph is a topological property.

The impossibility of using the same vertex to connect 2 different pairs is a strong assumption. To connect an EPR pair is equivalent to cut the graph following the path connecting two elements of a pair. Suppose a planar graph, in the worst case, P w can be seen as the maximum number of cuttings along non-intersecting path without disconnecting a single vertex from the remaining ones. The property is linked to the non-orientable genus g of the graph considered. Depending on g, we have P w ≤ g + 1.

Now that we have a relation between the P w pairs and the amount of resources required, we can conclude that in the purpose of building a network connecting many clients simultaneously, the graph representing this network should have a large non-orientable genus g. By taking graphs with a large non-orientable genus g, the only remaining limitation is the minimum degree inequality (9.1).

Saturating the minimum degree inequality

In order to saturate the worst case minimum degree inequality, we propose two explicit network architectures. The complete joint of a clique and an independent set almost saturates the minimum degree inequality (9.1). The Cartesian product of a complete graph and a cycle completely saturates this inequality but has a less flexible structure.

Complete joint of a clique and an independent set

Consider a graph G N composed by N vertices defined as a complete joint of a clique of order 2q and an independent set of order N -2q, as detailed just below. The network represented by this graph have a given maximum number of EPR pairs P w that can be connected simultaneously in the worst case scenario, i.e. when clients are chosen by an adversary. We claim that for this graph, any q pairs of terminals can be connected simultaneously using disjoint-paths. We will refer to this graph as G N,q .

The graph G N,q is illustrated in Fig. 9.8. A clique of a non-oriented graph is a subset of vertices such that every two distinct vertices in the clique are connected by an edge. The subgraph induced by the clique is a complete graph (introduced in subsection 8.3). The independent set is a set of vertices in a graph such that for any pair of vertices, there exist no edge connecting them. Finally, the complete joint is graph operation that produces a new graph where each vertex from the first graph is connected to all the vertices of the second graph. This new graph is a complete bipartite graph.

We define P w (G) as the largest number such that for any P w (G) pairs of vertices in G, there exist disjoint-paths connecting these vertices. Considering the graph G N,q , we show by induction on q that ∀N, q < N 2 , P w (G(N, q)) ≥ q.

Figure 9.8: Complete joint of a clique of order 2q and an independent set of order N -2q with q = 2 and N = 9. The clique is colored in red and the independent set is in blue. Between the clique and the independent set, there is a complete bipartite graph. The total number of edges is E tot = 2qN -q(2q + 1).

Since G(N, 0) is stable, ∀N, P w (G(N, 0)) = 0. Suppose now, for q > 0 pairs of terminals, we have ∀N , P w (G(N, q -1)) ≥ q -1 There are three possibilities for the first pair:

• the pair is composed by two terminals in the clique. By construction, these two terminals are connected by an edge. We can now remove these two terminals. The remaining graph is G N -2,q-1 . By hypothesis P w (G(N -2, q -1)) ≥ q -1, so all the others q -1 pairs can be connected.

• the pair is composed by two terminals in the independent set. This means that there are at least two vertices in the clique that do not belong to any pair. We will use one of them to connect the the two terminals. Removing those three vertices, we have the graph G N -3,q-1 with P w (G(N -3, q -1)) ≥ q -1.

• the pair is composed by one terminal in the clique and the other in the independent set. By construction, there is an edge connecting these two terminals. To follow the same construction as in the case where the pair is composed by two terminals in the independent set, we can remove these terminals and an extra vertex (that does not belong to any pair) in the clique. We are now with the graph G N -3,q-1 with P w (G(N -3, q -1)) ≥ q -1.

Starting from P w (G(N, 0)) = 0, we have shown by induction that for 0 ≤ q ≤ N 2 , P w (G(N, q)) ≥ q. Considering the graph G N,q , any set of q pairs of terminals can be connected simultaneously using vertex disjoint paths: P w ≥ q. But P w < q + 1 because all the 2q vertices of the clique are already saturated. So, we can finally conclude that P w = q. To compute the total number of edges of this graph, we can note that vertices in the independent set are of degree 2q, so there are (N -2q)2q edges between the clique and the independent set. In the clique, there are q(2q -1) edges. The total number of edges is E tot = q(2q -1) + 2q(N -2q) = P w (2N -2P w -1). The graph almost saturates the minimum degree inequality Etot N ≤ P :

E tot N = 2P w -P w 2P w -1 N < 2P w
We are at most a factor 2 away from the optimal graph (see figure 9.12). The strategy used to obtain the worst case is the following:

1. Let (A i , B i ) be the two clients who wants to share the i-th EPR pair. We index each K n -complete subgraph by 1 ≤ l ≤ k. Considering that all the vertices in this graph are equivalent, being in the worst case scenario is to "block" one client A 1 using (A i , B i ) for 2 ≤ i ≤ P w .

2. Set A 1 in the l-th complete graph. Set the two vertices connected to A 1 in the (l -1)-th and (l + 1)-th subgraph be any nodes in the remaining (A i , B i ) with 2 ≤ i ≤ P w . We set B 1 to be any other vertex not in the lth-complete subgraph. 3. Distribute all the remaining 2P w -4 nodes in the l-th complete subgraph.

A 1 is fully blocked if there are no more "free" vertices present in the l-th subgraph. So, if n < 2P w -4 + 1 ⇐⇒ P w > n+3 2 = C+1 2 . The case P = P w -1 is easily solved using the extra vertices left in the complete subgraph.

For low values of k, this inequality becomes too large and P w is lower than expected: n = 4, if k = 3, figure 9.10 shows an example where P = C+1 2 = 3 is impossible and so the connectivity inequality is not saturated. But, for k = 4, we can saturate the connectivity inequality and have P w = 3 (see figure 9.11).

In the worst case scenario, for large k, P ≤ P w = C 2 and the bound is saturated. We have shown that one can saturate the bound P w if the graph considered is a Cartesian product of a n-complete graph and a k-cycle with k large. 12: E tot versus P w for 60 peers. The blue curve corresponds to the minimum degree lower bound. Red points correspond to the cartesian product of a complete graph and a cycle as presented in 9.9. Green points corresponds to the complete join of a clique and a stable as shown in figure 9.8. The graph for which P w = N 2 is the N -complete graph.

Comparison between the two architectures

The two network architectures that we propose use few edges. We compare the ratio Pw Etot for these two graphs and the inequality Pw Etot ≤ 1 N obtained in subsection 9.1.1. Figure 9.12 shows that the Cartesian product architecture is exactly saturating the inequality Pw Etot ≤ 1 N . But, we can notice that this graph is not defined for all values of N : N must be divisible by both n and k. So, when it is possible, this architecture is the best in term of trade-off between P w and the number of edges E tot . Otherwise, we can build the network according to the clique-independent and we have: E tot = P w (2N -2P w + 1). This graph is defined for all N and we can notice that in this architecture, it is easy to extend the network by adding extra clients. For example, given the network described in subsection 9.1.3.1, to add an extra client and keep the same P w , we simply need to add the vertex representing the new client in the independent set. If we wish to add an extra client and increase P w to P w + 1, we need to add two vertices (one representing the new client and the other one because the size of the clique shall be 2P w + 2) in the clique.

Considering the worst case scenario, we have expressed two bounds on P w and propose two architectures which (almost) saturates the degree bound. In the next subsection, we investigate the average case when the peers are chosen at random.

Average number of EPR pairs on specific graph

In this section, we consider a graph lying in a region of diameter D on a d-dimensional manifold. The N vertices of the graph are approximately uniformly distributed. We will suppose that this graph have no edges linking two vertices separated by a distance on the variety larger than l. We denote ν the mean number of vertices in a volume l d :

N ∼ ν D l d
The distance between 2 vertices randomly chosen according to a uniform distribution is ∼ D. The minimum number of edges required to form an EPR pair separated by ∼ D is D l . So, the mean number of edges used to form an EPR pair is ẼEPR D l . We denote C the mean connectivity of the graph. E tot = N C is the total number of edges, which is in our case the resources used to build this graph.

Upper bound on number of EPR pairs

Here, we are interested only in the scaling of the quantities. Considering the generic d dimensional graph described above, we can easily bound the number of edges required to form simultaneously P EPR pairs by the total number of edges in the graph: The regime for which it's not obvious to know if it's possible to share P EPR pairs simultaneously is:

N 2 l 2D d ≈ P min ≤ P ≤ N 2 l D d+1
Fixing l and D, the lower bound P min grows linearly with N compared to the N 2 dependency of the upper bound.

Chapter 10

Truly quantum routing

In the previous chapter, we used classical routing to share maximally entangled pairs between several clients across a quantum network. But, for some network architectures, classical routing is not sufficient to solve some communication problems. In this chapter, we will study one example of such a network with a quantum routing solution: the quantum butterfly network.

Butterfly network

All the results we have presented yet hold for a model with strong technical limitations: clients can only either perform a Bell measurement or keep a single qubit. This essentially limits us to classical routing strategies. We can go further by changing the limitations of the model. Nowadays, a lot of experiments involving small quantum processors are aiming at performing a few operations on few qubits. For our new model, we will now assume that each client has a small quantum processor that allows to perform local operations like the Pauli operators for example. Performing these localized gates on several nodes of the network changes drastically the way clients are connected. Allowing to perform some local operations at nodes turns the routing problem into a network coding problem. The butterfly network coding [START_REF] Shuo-Yen | Network information flow[END_REF][START_REF] Yeung | Linear network coding[END_REF] is a classical communication problem that is solved by network coding. This problem shows that linear network coding can outperform routing. This classical solution involve the copying of data which is impossible in the quantum version of the problem due to the non-cloning theorem. But as we will see below, allowing clients to per- The classical communication problem I was referring is the following: suppose a classical network composed by 4 clients connected as depicted figure 10.1. Each client can perform small operations on the information they receive (like addition for example). The two upper clients Alice and Charlie have respectively the classical information A and C. Here, we can see these classical A and C as classical bits. They want to communicate their respective information to respectively Bob and David. The terminals are (Alice, Bob) and (Charlie, David). Each channel/edge can carry only a single bit of information. As we will see, routing alone does not solve this problem. Restricting ourselves to only routing, to transmit A from Alice to Bob requires to send A to the middle node Middle 1. But then, Charlie can no longer transmit C from to David because the middle channel is already by Alice and Bob communication. So using only routing techniques, the simultaneous communication of both (Alice, Bob) and (Charlie, David) is impossible. Routing is insufficient and we need to add some linear local operations like the addition to break this impossibility. The strategy is the following: Considering this classical problem, it is clear that we can enhance the results obtained using only routing techniques by allowing some linear local operations of each node. In the next subsection, we define the quantum version of this problem by reducing the network of quantum processors to a graph state shared by all the clients. We can then try to solve the previous communication problem with the corresponding butterfly graph state.

Quantum processors network

We consider the same communication problem as in section 10.1 but Alice, Bob, Charlie and David are connected by the quantum network illustrated by figure 10.2 sharing one EPR pair through each link. Depending on the type of operations that clients can perform on their qubits, this communication problem can be defined differently:

• assuming each client can perform only a single Bell measurement ( 1Bell measurement/node) allows to solve the communication problem using vertex disjoint paths (same model as previously) as in chapter 9;

• assuming each client can perform m Bell measurements and each vertex can used m times for routing.

• in the previous case, we get back to the edge disjoint paths once m is larger than the graph connectivity;

• assuming each client can perform any local measurements and onequbit Clifford operations (that will be defined just below), we could use network coding.

In the quantum version of the butterfly problem, the two client pairs (Alice-Bob)/(Charlie-David) aim to share an EPR pair each. So, A and C will be qubits. Unfortunately, the non-cloning theorem does not allow to perform the copy operation in step 2. So the butterfly quantum network problem is not solved by a direct adaptation of classical network coding.

However, if each client has access to a quantum processor capable of performing operations on their local qubits, we will see that as in the classical case, a more elaborate adaptation of linear coding can solve the problem. For this solution, we first reduce our quantum network involving quantum processors to a graph state shared by all the clients.

We consider the case where each quantum processors can perform any of these operations and so can apply any Clifford operations. These Clifford operations do not allow to do universal quantum computation but are enough to perform non trivial quantum operations such as quantum error correction [START_REF] Nielsen | Quantum computation and quantum information[END_REF]. For quantum processors involving k qubits, the Clifford operations maps the whole Pauli group G k to himself. The Clifford set is defined as follows [START_REF] Hein | Entanglement in graph states and its applications[END_REF]:

C = {U |∀P ∈ G k , U P U † ∈ G k }
This set C of such unitaries forms a group. This group can be generated by a small set of unitaries, for example the set constituted by all the single qubit Clifford operations and a CNOT. An interesting observation is that up to a global phase factor, any one-qubit Clifford operation U ∈ C can be decomposed in terms of Pauli operators and π 4 -rotations (see [START_REF] Hein | Entanglement in graph states and its applications[END_REF])

√ ±iO = e ±i π 4 O (10.1) 
where O = X, Y, Z. In [START_REF] Hein | Entanglement in graph states and its applications[END_REF], the authors give all 24 single-qubit Clifford unitaries and their decomposition into such elementary operators. Now that we have defined more precisely the quantum network involving small quantum processors, we can try to solve the communication presented in section 10.1. To do so, we need to define the notion of stabilizer states and graph state corresponding to a reduction of the quantum network.

Graph state corresponding to a quantum network

To reduce a quantum network of small quantum processors into a graph state shared by all the clients, we will use results coming stabilizer formalism. In appendix C, we give an introduction to this formalism (for more see [START_REF] Nielsen | Quantum computation and quantum information[END_REF][START_REF] Hein | Entanglement in graph states and its applications[END_REF]). Using this stabilizer formalism, we can define the notion of graph state following [START_REF] Hein | Entanglement in graph states and its applications[END_REF]. Let G = (V, E) be a graph. The graph state |G corresponding to the graph G is the pure state with state vector

|G = Π a∈E,b∈Na U ab v ∈ V |+ v
where N a is the set of vertices in the neighborhood of a and

CZ ab =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1     Given that the controlled-Z gate (CZ gate) CZ ab |+ a |+ b = 1 √ 2 (|0 a |+ b + |1 a |-b
), a pair of clients connected by an edge and unconnected to any other vertex share a maximally entangled state. In our graph representation of section 8.2, each edge linking two vertices represents a maximally entangled pairs shared between the two clients. Furthermore, CZ 2 ab = 1 ab . We can conclude that the CZ gate creates as well as deletes the edge {a, b} in the graph G depending on whether this edge is already present or not. So, to prepare a graph state corresponding to a graph, we prepare all the qubits in the |+ state by measuring them in the X basis. Depending on the result of this measurement, the qubit will be projected in either |+ or |-. If the obtained state is |-, we can recover |+ by applying the local operation Z |-= |+ . Then, we apply all the CZ gates to all pairs of adjacent ver-where + is the addition modulo 2 of the edges. The obtained graph is corresponds to the state

|τ a (G) = U τ a (G) |G (10.2) 
where (10.3)

U τ a (G) = e ±i π 4 Xa e ±i π 4 Z Na ∝ K a (10.4)
The operation U is a local Clifford unitary. We define two graphs states |G and |G to be LC-equivalent iff these two graphs can be obtained one from the other by a sequence of local complementations G = τ a 1 • ... • τ an for some a 1 , ..., a n ∈ V . The demonstration of this proposition is given in D. Fig. 10.5 illustrates the effect of successive application of LC over a simple graph. These graph states are LC-equivalent and are related by the diagram 10.6.

We have a graphical interpretation of the action of local Clifford operations, we can now investigate the graphical translation of single qubit Pauli measurement.

Single qubit Pauli measurements

The quantum processors introduced in section 10.2 can also perform single qubit Pauli measurements. As we will see in the next subsection, this will help us to reduce the quantum processor network into a graph state.

Here, we consider a graph state |G . We are interested in the graph state |G of the remaining vertices after a projective measurement of a Pauli operator (X, Y or Z) over a vertex a. Depending on the Pauli operator measured, the new graph state |G = P a i,± |G for i = X, Y, Z is: for any choice of b 0 ∈ N a when the measurement is not on an isolated qubit. If so, the outcome of the X measurement is for sure +1 and the other vertices remain unchanged.

P a Z,± |G = 1 √ 2 |Z, ± a ⊗ U a Z,± |G -a (10.5) P a Y,± |G = 1 √ 2 |Y, ± a ⊗ U a Y,± |τ a (G) -a (10.6) P a X,± |G = 1 √ 2 |X, ± a ⊗ U a X,± |τ b 0 (τ a • τ b 0 (G) -a) ( 10 
(10.8)

The corresponding local unitaries U a i,± are:

U a Z,+ = 1 U a Z,-= Z Na U a Y,+ = -iZ Na U a Y,-= +iZ Na U a X,+ = +iY b 0 Z Na / ∈(N b 0 ∪b 0 ) U a X,-= -iY b 0 Z N b 0 / ∈(Na∪a)
First, we can notice that for the X measurement, the local unitary U X,± depends on the choice of b 0 . But, different choice of b 0 will lead to a graph LC-equivalent to the original one. The corresponding LC-unitary would be U b 0 U bo . The proof of this statement is given in [START_REF] Hein | Entanglement in graph states and its applications[END_REF]. Now, we can interpret graphically the equations (10.5),(10.6) and (10.7). The graph state |G obtained after the projective measurement can be computed using only deletion and local complementation (seen in the above subsection 10.2.2).

Depending on the Pauli operator measured, the new graph states can be obtained by: Here, I am interested in quantum routing problems. Coming from all the measurements and the local operations, the remaining graph should indeed have a global factor coming from each individual local unitaries U a i,± (depending on the measurement results). I do not take into account this factor since it can be corrected locally once all the computation has ended.

In the next subsection, we will use the LC rules to help us solving the quantum equivalent of the communication problem presented in section 10.1. We will reduce the quantum Butterfly network illustrated figure 10.2 to its corresponding graph state using local complementations and measurements. qubit Pauli measurements, we can try to see its impact on the distribution of entanglement on a simple example: the Greenberger-Horne-Zeilinger (GHZ) state. We will see that for this particular example, LC can be used to reduce the amount of resources to build an LC-equivalent state.

Simple example: GHZ state

The local complementation presented is section 10.2.2 can be used in order to change drastically the distribution of entanglement across a graph state. Given the N-qubit Greenberger-Horne-Zeilinger state |GHZ = 1 √ 2 (|0 ⊗N + |1 ⊗N ), one graph representation looks like a star and so will be called here the star graph (see figure 10.15). This state is a well-known multiparty entangled state used in many quantum communication tasks (like the Bell inequality violation or secret sharing protocols for example) [START_REF] Hillery | Quantum secret sharing[END_REF].

This star graph is LC-equivalent to the complete graph. Indeed, the application of a local complementation over the qubit a will lead to the complete graph up to the unitary operator U τ a . So, the multiparty entangled GHZ state corresponds to both the star and the n-complete graph. In order to build the GHZ state from the complete graph, we need to set individually all the vertices to the state |+ and then apply a controlled-Z gate to each pair of qubits linked by an edge. This means that we have to apply n(n-1)

2

CZ gates to build the star graph state. To build the GHZ state from the star graph would require only n CZ gates. So, we can use LC to find the graph state with the smallest number of edges corresponding to the smallest amount of CZ gates we have to run to set the state.

Given a graph state shared between several parties, these LC rules can be used to find the LC-equivalent graph state with the lowest amount of edges corresponding to the simplest state to prepare in terms of number of gates we have to run. These LC rules can be used to simplify the graph state preparation.

In section 10.2, we have presented the quantum version of the classical communication problem solved by the butterfly network (figure 10.2). Starting from the graph state (figure 10.10) corresponding to this quantum Butterfly network, we are now interested in solving this quantum communication problem, i.e. finding the operations needed for Alice and Bob/Charlie and David to share an EPR pair.

Quantum butterfly network

We have mapped the quantum version of the butterfly network to its corresponding butterfly graph state (see figure 10.16). Given this butterfly graph state, we will see that Alice and Bob/Charlie and David can share an EPR pair using only single qubit Pauli measurements.

Indeed, according to the rules given in section 10. 

Part III Conclusion and appendix

Chapter 11

Conclusion

The first part of this thesis is a contribution to cold atoms physics and in particular the applicability of statistical treatment in one of its model systems. We have investigated a simple system constituted by a 1D-Rydberg gas coupled to a resonant laser to the Rydberg transition in the regime of few excitations in the ensemble. Due to their strong interaction, such systems have a complex dynamic and two assumptions are often made: the hardcore Rydberg sphere assumption: the dipole-dipole interaction is modeled by a sphere around each excitation preventing any second excitation within it;

the thermalization hypothesis: the system is assumed to thermalize and a statistical treatment is sufficient to describe the system.

We have investigated the thermalization of a 1D-Rydberg gas and evaluated the accuracy of the microcanonical ensemble predictions under the first assumption. To do so, we have numerically simulated the dynamic of such system constituted by N = 100 atoms, in the regime of at most two excitations in the chain (Λ < 2), in the initial excitation-less state |∅ . Furthermore, we constructed a 6-dimensional analytical model. Comparing the three approaches together, we have concluded that the numerical simulation and the analytical model both agree together but contradicts the microcanonical treatment. In this regime (Λ < 2), the microcanonical ensemble is unadapted. One possible extension to this work is to check if the inaccuracy of the microcanonical predictions remains when we change or remove the hardcore Rydberg sphere assumption. Indeed, it would be interesting to see if our conclusion is an artifact of the first assumption.

In the second part of this thesis, we have studied the distribution of entanglement across a generic quantum network. First, we have mapped such an abstract network connecting many clients to an undirected graph. We consider the number of quantum links used to generate this network as a resource. We have studied two figures of merit corresponding to two limitations for the clients:

• each client of the network can perform only a single Bell measurement or keep a single qubit. This scenario corresponds to the usual model of quantum repeaters. On these networks, peer-to-peer communication problems are equivalent to the vertex disjoint path problem. When the peers are chosen by an adversary, we have found two limitations due to the topological genus and the minimum degree of the graph.

We have found two network architectures (almost) saturating the most constraining one, the minimum degree inequality. For the case where the peers are chosen at random, we have studied a specific graph lying in a d-dimensional manifold and investigated the trade-off between the quantum links and the number of peers that can communicate simultaneously through the network.

• each client has a quantum processor capable of performing single Bell measurement, single qubit local operations or keep a single qubit. In this case, peer-to-peer communication problems can thus be solved using quantum network coding. We focused on a particular communication problem namely the butterfly network that is not solvable using classical routing of entanglement. But using network coding, we solve this communication issue.

One possible future work would be to find explicit routing algorithms. An other extension could be to consider each quantum link being set with a probability p = 1. Indeed, depending on the building of the network, the distribution of an EPR pair shared between two peers is not always heralded. We could also add extra non-clients vertices to the graph to help for the routing, these extra nodes could increase the number of pairs that could communicate simultaneously across the network.

Appendix A

Python code for "relevant state" generation

Here is the Python code we used for the generation of the "relevant states" from section 5.2. The main function generating this set is: genererSet. To normalize |Ψ α 2 , we compute the two sums in the previous equation. To do so, we make the continuous approximation: The computation of the second sum is:

N -R k=0 N l=k+R (N -R -k) α (l -R) α ≈ N -R 0 kα d k N -R N -R- k lα d l (B.7) = N -R 0 kα d k (N -R) α+1 -(N -R -k) α+1 ) α + 1 (B.8) = (N -R) 2α+2 (α + 1) 2 - N -R 0 kα (N -R -k) α+1 α + 1 d k (B.9)
We have then: From this, we can obtain:

Z 0 2 ≈ 1 √ 2(N -R) (B.14) Z 1 2 ≈ √ 12 √ 11(N -R) 2 (B.15) Z 2 2 ≈ 3 √ 10 √ 47(N -R) 3 (B.16)
the set of stabilizers of V S . V S is the intersection of all the subspaces spanned by the element of S. Furthermore, one can describe the group S only by its generators. From now on, we will simply specify the complete generator of the group S to define completely V S . The stabilizers of a state |ψ must satisfies some properties:

• they must commute together because otherwise -I ∈ S

• they must be elements of G n Let S = g 1 , ..., g n-k be generated by n -k independent and commuting elements from G n (and such that -I ∈ S). Then, the subspace V S is a 2 k dimensional vector space. From this we can conclude that if we have a state of n qubits, it requires n independent stabilizers to define this state in a unique way in the stabilizer formalism.

The weight | P | of a Pauli operator P = P 1 ...P n ∈ P n is the number of non-identity single-qubit operators P i .

Of course this formalism is limited: it does not describe all states. For single qubits, these stabilized states are the Pauli states, the vertices of the octahedron inscribed in the Bloch sphere (|0 ,|1 ,

|0 +|1 √ 2 , |0 -|1 √ 2 , |0 +i|1 √ 2 , |0 -i|1 √ 2 ).
The Clifford group contains all the unitary transformations which let this octahedron unchanged.

Classical states can be either |0 , |1 or a statistical mixture of |0 and |1 . So, in the Bloch sphere, any classical states can be represented using the vertical axis only. For any quantum state, all the quantum states are represented in the Bloch sphere. Here, we do not deal with arbitrary states of the Bloch sphere but only with the stabilized states because they allow easy quantum computation with operators in the Clifford group only. So, we gain in the complexity of the computation. But, we cannot extend this results to all the quantum states because the octahedron is a bad approximation of the sphere. To describe an arbitrary quantum state, one needs a superposition of stabilized states and so we will have to increase the number of stabilizer list to define our state which implies the complete computation of all those states to be exponential. c'est-à-dire un mélange statistique équiprobable de tous les états autorisés.

Cette thèse présente une étude de la thermalisation d'un ensemble unidimensionnel d'atomes de Rydberg et, plus particulièrement, de l'acuité des prédictions de l'ensemble microcanonique en supposant l'hypothèse des sphères dures. Pour ce faire, nous avons simulé numériquement la dynamique d'un tel système composé de N = 100 atomes, dans le régime contenant au plus deux excitations dans l'ensemble (Λ < 2), dans l'état initial ne contenant aucune excitations |∅ . De plus, un modèle analytique à 6 dimensions est présenté. Comparant les trois approches, nous montrons que le modèle analytique corrobore la simulation numérique, tandis que simulation et modèle mis ensemble contredisent les prédictions microcanoniques. Dans ce régime, l'utilisation de l'ensemble microcanonique est donc inadaptée.

La seconde partie de cette thèse porte sur la distribution d'intrication dans un réseau de répéteurs quantiques. Ces derniers devraient permettre la communication quantique de deux parties distantes. Dans la littérature, ces répéteurs quantiques sont presque toujours connectés en un réseau linéaire. Dans cette thèse, nous sommes allé au-delà de ces schémas linéaires pour explorer les possibilités offertes par des réseaux arbitraires constitués de ces répéteurs connectant une multitude de clients. Nous avons représenté ces réseaux à l'aide de graphes non orientés où chaque sommet correspond à un client et chaque arrête à un répéteur quantique qui partage une paire maximalement intriquée entre les deux clients connectés.

Nous avons étudié deux scénarios de routage:

• le routage classique d'intrication qui corresponds au cas où des clients, très limités par leurs dispositifs quantiques, souhaitent partager des paires intriqués. Sur ces réseaux, les problèmes de communication entre clients sont équivalents à des problèmes de chemins disjoints. Lorsque les clients souhaitant communiquer ensemble (les terminaux) sont choisis par un adversaire, nous avons obtenu deux bornes: l'une proportionnelle au genre topologique, et l'autre au degré minimal du graphe. Nous proposons deux architectures de réseau saturant la plus contraignante, celle due degré minimal. D'autres part, lorsque les clients sont réparties dans un espace à 2 ou 3 dimensions, nous avons montré une limitation géométrique sur la fraction de clients pouvant communiquer simultanément entre le nombre de liens quantiques utilisés pour générer le réseau et le nombre de terminaux.

• le routage quantique utilisant le codage de réseau, qui correspond à la situation où le réseau quantique est composé de petits processeurs quantiques capable d'effectuer des opérations locales. Nous avons étudié un problème de communication, le réseau papillon, où le routage classique de l'intrication entre deux paires de clients est impossible. Grâce au codage de réseau, nous avons résolu ce problème de communication.

  Hamiltonian has eigenvectors |α and eigenvalues E α : H |α = E α |α . Let us assume a finite size Hilbert space and a non-degenerate Hamiltonian: E α = E β for α = β. The initial state can be decomposed in the orthonormal eigenbasis of H: |Ψ i = α C α |α with the expansion coefficient C α = E α |Ψ i . The normalization of the state leads to α |C α | 2 = 1.
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 41 Figure 4.1: Model of (a) an Hydrogen atom and (b) a Rydberg atom. (a) the electron orbits around the point of charge of the proton. (b) the electron orbits around the Z protons and the Z -1 other electrons, which it "sees" from a large distance as a point charge.
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 42 Figure 4.2: Two interacting Rydberg atoms
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 43 Figure 4.3: Energy spectra of two Rydberg atoms in s states.
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 44 Figure 4.4: Illustration of Rydberg blockade mechanism and its blockade radius R b . Dipole-dipole potential prevents the simultaneous excitations of two Rydberg atoms when R ≤ R b .
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 45 Figure 4.5: Rydberg blockade mechanism, (a) Coupling between states of 0,1 or 2 excitations. (b) decomposition symmetric/antisymmetric states and their couplings
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 5253 Figure 5.2: P i = | Φ i |Ψ(t) | 2 at a long time Ωt = 100 with {Φ i } the canonical basis versus its interaction energy E = Φ i |V dd |Φ i for the two regimes R b = L + 2 in green and R b = 2 in blue.
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 554 Figure 5.4: In red, average number of excitation versus time. The probability of having zero, one or two excitations versus time is denoted by the white (p = 0) to black (p = 1).
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 55 Figure 5.5: Time evolution of the number of excitation, it tends to a stationary value for long times.
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 5657 Figure 5.6: Same plot as figure 5.5 zoomed over the first tens Ωt: time evolution of the number of excitation. We can denote a transient time t transient for which T > t transient n tot (T ) → n tot t

  to both enhance the speed of the computation and derive some analytical models. It turns the total Hamiltonian H =
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 6162 Figure 6.1: Interaction energy of V dd in blue and V sharp dd with a finite height V in green
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 71 Figure 7.1: Graph representing the Hilbert space connectivity in the regime of at most 2 excitations (ν max = 2).

2 .

 2 Some states are highly connected, like |∅ which is connected to the N single excitation states |i for 0 ≤ i ≤ N . Now, we look at a more elaborate example by computing the connectivity of single excitation states. Restricting ourselves to the regime ν max = 2, figure 7.2 represents states with two excitations, one at position k and the other at l. Here, we restrict k on the first left half k ≤ N 2 and l on the other half l ≥ N 2 . The abscissa and the ordinate corresponds to single excitation states. The hardcore Rydberg sphere assumption completely forbids the excitation of two atoms closer than R b . The grey triangle represents all the allowed doubly excited configurations. Starting from an initial state |x 1 in the horizontal axis represented in red on figure 7.2, this state is connected by the Hamiltonian to all the state having the same abscissa x 1 in the grey triangle represented in the figure in orange. For |x 1 and |N -x 1 (in purple) with 0 ≤ x 1 ≤ N -R b are connected to N -R b -x 1 states with one more excitation: the overlap between the dashed triangles and the line k = x 1 . All the other states |x 1 with N -R b ≤ x 1 ≤ R b are not connected to any doubly excited states. From a doubly excited state |x 2 , x 3 represented as a green point, the corresponding connected single excitation states |x 2 and |x 3 are the blue points corresponding to the projection of this state along the vertical and horizontal axis.
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 72 Figure 7.2: Representation of all the doubly excited configurations |k, l with k ≤ N 2 and l ≥ N 2 in the regime of at most 2 excitations. The grey triangle represents all the allowed configurations with two excitations. The abscissa and the ordinate corresponds to single excitation states.
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 73 Figure 7.3: : Description of a configuration of the excitations and mapping to the "Stars and bars" problem. An excited atom with all the atoms on its right closer than R b correspond to a bar, except for the last bar constituted only by the last excited atom. Each remaining atom represent a star. The depicted configuration corresponds to L = 16, N = 17, 2a ≤ R b < 3a, n b = 2, {n k } k = {3, 2, 6, 3}, {n k } k = {3, 0, 4, 3}.
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 74 Figure 7.4: Probability to have ν excitation considering the microcanonical ensemble as a function of Λ for N = 10 4 . The successive peaks correspond to increasing value of ν. For example, P (ν = 2) is close to 1 when Λ is between 1 and 2.
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 75 Figure 7.5: Average ν and its standard deviation σ ν in the microcanonical predictions as a function of Λ for N = 10 4 . The crosses correspond to the Monte-Carlo results from [38, fig 2c].
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 76 Figure 7.6:Probability to have ν excitations as a function of Λ, with N = 100, according to the microcanonical predictions.
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 77 Figure 7.7: Probability distribution of Rydberg excitations along the chain as a function of Λ and the position for N = 10 4 atoms. This figure quantitatively reproduces the Monte-Carlo simulation of [38, fig 2a], as detailed in subsection 7.1.5.
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 78 Figure 7.8: Root-mean-square difference between the Monte-Carlo result of Bettelli et al.[START_REF] Bettelli | Exciton dynamics in emergent Rydberg lattices[END_REF] and the analytical Eq. (7.5) as a function of Λ.

  (αn) n where α n = 1 . . . d n , d n are the degeneracy index of the eigenenergy E n . Fig. 7.11 presents the numerical results of the diagonalization of H: more explicitly, the red curve shows the absolute value |E n | versus the rank of the corresponding eigenvectors |ψ (αn) n

Figure 7 . 10 :

 710 Figure 7.10: Numerically computed probability distribution P k of Rydberg excitations along the chain, as a fonction of Λ for N = 100 atoms.
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 711 Figure 7.11: In red: |E n | versus (n, α n ) with Λ = 1.5 (eigenstates are arranged in increasing order of their eigenenergy). In blue: difference between two successive eigenvalues, i.e. |E n+1 -E n |. The dashed line shows the degeneracy limit: below this line, any values can be assumed to be zero, up to numerical artifacts (see text).

  [N -R b , R b ]. So, states in H 1exc having only single excitation components will behave differently whether the excitation is located either between position [N -R b , R b ] for the "central" states or in between [1, N -R b ] ∪ [R b , N ] for the "lateral". We evaluate the dimension of H 1exc by first looking at the decomposition of these "central" |Ψ 1exc into the 2R b -N singles excitations components |N -R b , |N -R b + 1 , ..., |R b . The plane waves involving the 2R b -N states |Ψ k = k e i2π kk 2R b -N |k for k ∈ [1, 2R b -N ] solve H |Ψ 1exc = 0. Of course, we do not consider the zero frequency state |Ψ k=0 because it does couples to |∅ and therefore does not satisfy the eigenvector equation (7.17). So, dim(ker(H 1exc )) ≥ 2R b -N -1. We now consider the states with a "lateral" excitation: |Ψ 1exc can have single excitation components located either in [1, N -R b ] or in [R b , N ]. We can then write |Ψ 1exc = N -R b k=1 α k |k + N l=R b α l |l . Now, let us compute the α k and α l coefficients. k, l|H|Ψ 1exc = 0 therefore α k + α l = 0 (7.20) This last equation is true for any k ∈ [1, N -R b ] and any l ∈ [R b , N ]. Now, we will take particular values of k or l to find the coefficients α k and α l for k ∈ [1, N -R b ] and l ∈ [R b , N ]. So, taking (7.20) and choosing k = 1 leads to: ∀l ≥ R b , α l = -α 1 (7.21)

25 )H 27 )

 2527 |∅ = |S is a uniform superposition of single excitation states. Because of the hardcore Rydberg sphere assumption, 2-excitations states are only composed by states containing excitations located in [0, N -R b ] ∪ [R b , N ]. They do not involve any components with one excitation in between position N -R b and R b . Thus H |Ψ 2 exc is never the uniform superposition |S of single excitation states. Thus, If at most 2 excitations are allowed, eigenstates with E = 0 are composed only by two excitations states: H |Ψ = H |Ψ 2 exc = 0. The 2 excitations state |Ψ can be written as |Ψ = |Ψ 2 exc = k,l c k,l |k, l . The values k and l do not overlap (this is true in our regime of study Λ < 2).

  c k,l |l Projecting this last equation onto k| and l|, we can conclude that for any k and l, k c k,l = 0 and l c k,l = 0 (7.28)
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 712 Figure 7.12: 1D-chain of N = 11 Rydberg atoms equally spaced in the regime R b = 7.

7. 3 . 4

 34 Example on a small system: N = 11 atoms, R b = 7 Let us consider the example of a system constituted by a 1D-chain of N = 11 atoms equally spaced over a line of length L = 10a and a Rydberg blockade radius R b = 7a (from now on, we consider a = 1).
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 713 Figure 7.13: Illustration in the complex plane of the 3 plane waves basis states involving k = 0, 1, 2 spanning the ker(H) central 1exc
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 714 Figure 7.14: Illustration of the state |Ψ lateral = 1 2 √ 2 ( 4 k=1 |k -11 l=8 |l ) in ker(H) lateral 1exc .
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 715 Figure 7.15: Representation of doubly excited states (with one excitation at position k and the other at l) |Ψ k,l = 4 k=1

Figure 7 . 4 k=1 11 l=k+7

 7411 [START_REF] Boltzmann | Einige allgemenine sätze über das wärmegleichgewicht[END_REF] show the single excitation state |Ψ lateral .• ker(H) 2exc containing 2 excitations. Figure 7.15 represents the doubly excitations states |Ψ k,l = c k,l |k, l spanning ker(H) 2exc .

2 ! ( 1 -7 11 )(1 - 8 11 ) = 18 .

 2111818 Considering the example of N = 11 andR b = 7, dim(ker(H) = dim(ker(H) central 1exc ) + dim(ker(H) lateral 1exc ) + dim(ker(H) 2exc ) = 2 + 1 + 3 = 6Using equation (7.1), we can determine the total Hilbert space dimension dim(H) = dim(H) 0exc + dim(H) 1exc + dim(H) 2exc = 1 + 11 + 11 2 In our example, even without taking large values for N and R b , a third of the Hilbert space is already spanned by the kernel of H.
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 7 Figure 7.16: ∆E 2 E 2 versus Λ for the 2-dimensional model.
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 718 Figure 7.18: Spatial distribution of excitations at Λ = 1.5, with N = 100, according to the 2-dimensional model (see section 7.3.5.1) in red, the 4dimensional model (see section 7.3.5.3) in green.

  with exactly one Rydberg excited atom, localized either at position k or (N -k); |Φ (2) k describes a configuration with two Rydberg excitations, one being localized in k or (N -k) while the other is fully delocalized along the chain. The states |ϕ s k are therefore coherent superpositions of states with either one or two excitations, one being localized with certainty either at position k or (N -k).To complete the four states basis {|ψ ± i=1,2 } with the family |ϕ s=± k=1,...,N -n b -1

Finally, for any k = 1 ,

 1 . . . , (N -R b -1) and s = ±, the |ϕ s=± k=1,...,N -n b -1are approximate eigenstates of H ,when N is large, with eigenvalues s

. 70 )Fig. 7 .

 707 Fig.7.[START_REF] Ya | On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics[END_REF] shows the quasi-continuum formed by the different ε k 's plotted as functions of Λ.If the system starts in a superposition of |ψ s i , i.e. |ψ (0) = i,s c s i |ψ s i , one could be tempted, due to Eq. (7.69), to assume that none of the states |ϕ s k ever gets substantially populated. And so, we should discard the whole family {|ϕ s k } from our description. In the numerical simulation, we have chosen |ψ (0) = |∅ as initial state. This initial state can be written in a form involving only the original basis terms (the |ψ s i ). So, we could think that on the numerical simulation, no localization effect should appear because the states {|ϕ s k } responsible for the localization effects will never be populated. This would actually be incorrect: it may indeed happen that, for a given k = K, |ϕ s K becomes resonant with |ψ s 1 , i.e. ε K = E 1 . Checking on Fig.7.19, such a resonance exists only for Λ ≥7 6 . On Fig.7.20, the lo-
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 381 Resonance between |ϕ s K and |ψ s 1

73 )Figure 7 . 20 :

 73720 Figure 7.20: Numerically computed probability distribution P k of Rydberg excitations along the chain, as a function of Λ and the position for N = 100 atoms. The blue curve is the predicted position of the excitation peak by our simplified analytical treatment.
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 721 Figure 7.21: Spatial distribution of excitations at Λ = 1.5, with N = 100, according to the 2-dimensional model (see section 7.3.5.1) in red, the 4dimensional model (see section 7.3.5.3) in green and the 6-dimensional model (see section 7.3.8) in blue.
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 722 Figure 7.22: Probability of having ν excitations as a function of Λ, with N = 100, according to the microcanonical predictions (red), our numerical simulation (green) and the analytical treatment (blue).
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 723 Figure 7.23: Spatial distribution of excitations at Λ = 1.5, with N = 100, according to the microcanonical predictions (red), our numerical simulation (green) and the analytical model (blue).
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 81 Figure 8.1: (a) Scheme of a quantum repeater connecting two distant parties Alice and Bob using relay 1 and 2. (b) its corresponding graph.

Figure 8 . 2 :

 82 Figure 8.2: (a) Scheme of an arbitrary 4 parties network and (b) its corresponding graph.
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 83 Figure 8.3: Scheme representing a client connected to three others clients. Here, this client choose to act as a quantum repeater connecting the other two clients. Clients can either keep one qubit if they are the sender or the receiver of a 2 parties quantum communication; or perform a Bell measurement if they are in-between clients. This Bell measurement combined with classical communication forms the entanglement swapping operation.

Figure 8 . 4 :

 84 Figure 8.4: Alice and David are communicating through the teleportation protocol over an arbitrary 4 parties network (same as presented in figure 8.2). Alice and David will share entanglement after entanglement swapping operations between both Alice and Charlie, and Charlie and David.

Figure 8 . 5 :

 85 Figure 8.5: Graph representing the quantum network of figure 8.4).
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 86 Figure 8.6: Complete K 5 complete graph. This graph contains E tot = 10 edges.

Figure 9 . 1 :

 91 Figure 9.1: Graph representing a quantum network with δ = δ red = 6. Each pairs of sender/receiver has the same color. Only edges connecting red vertices to others are drawn. Red vertices are saturated by all the others vertices. The other pairs of sender/receiver are connected using edges and vertices not apparent here. The particular choice of the position of sender/ receiver pairs over the graph prevents the communication between the red clients. For δ = 6, P w = 3 and so P w ≤ δ 2 .
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 93 Figure 9.3: Example of a regular C = 5 graph lying on a 2D-plane. The spatial repartition of the sender/ receiver pairs has been chosen to highlight the topological limitations. Here, the non-orientable genus g = 0 and P w = 1.
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 94 Figure 9.4: Image of a Möbius strip. Its topological genus is g = 1.

Figure 9 . 5 :

 95 Figure 9.5: Image of a torus. Its topological genus is g = 2.

Figure 9 . 6 :

 96 Figure 9.6: Example of a regular C = 5 graph lying on a Möbius stip. The spatial repartition of the sender/ receiver pairs has been chosen to highlight the topological limitations. The arrows mean that the upper left/right vertices of the graph are connected to the lower right/left side. Here, the non-orientable genus g = 1 and P w = 2.
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 97 Figure 9.7: Example of a regular C = 5 graph lying on a torus. The spatial repartition of the sender/ receiver pairs has been chosen to highligh the topological limitations. The arrows mean that the upper/left vertices of the graph are connected to the lower/right vertices. Here, the non-orientable genus g = 2 and P w = 3.
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 99 Figure 9.9: Cartesian product of a K n -complete graph and a k-cycle. The connectivity of this graph is C = n -1 + 2 = n + 1 and the total number of vertices is N = nk. All the vertices V i,j are connected to V i±1,j and to all the vertices V i,j for j ∈ [1, ..., n]. The (A i , B i ) are pairs of clients who wants to share the i-th EPR pair.
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 910 Figure 9.10: Cartesian product of a 4-complete graph and a 3-cycle. The connectivity of the graph is C = 5. Each pair of terminals has the same color. With this particular distribution of the terminals, the red terminals cannot be connected. The small size effect of k sets P w = 2.

Figure 9 . 11 :

 911 Figure 9.11: Cartesian product of a 4-complete graph and a 4-cycle. The connectivity of the graph is C = 5. Each pair of terminals has the same color. Compared to figure 9.10, we have P w = 3: taking k = 4 unlock the blocking of the red terminals.

  vs P w for N =60 peers degree bound core clique + stable cycle x complete

Figure 9 .

 9 Figure9.12: E tot versus P w for 60 peers. The blue curve corresponds to the minimum degree lower bound. Red points correspond to the cartesian product of a complete graph and a cycle as presented in 9.9. Green points corresponds to the complete join of a clique and a stable as shown in figure9.8. The graph for which P w = N 2 is the N -complete graph.

Figure 9 .

 9 Figure 9.13: l-range connected graph lying in a region of diameter D on a d = 2-dimensional manifold. The two red vertices are terminals separated by D. Each dark ball of diameter l around a vertex represents all its connexions to the other vertices in this ball. The path used to connect the two red terminals is in black and passes through several clients nodes.
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 101 Figure 10.1: The butterfly network.

Figure 10 . 3 :

 103 Figure 10.3: Preparation procedure of ring graph state composed by 5 qubits.

. 7 )Figure 10 . 5 :

 7105 Figure 10.5: This picture as been extracted from [75]. Example of successive applications of local complementation to the vertex colored in red. The graph states are related according to the diagram 10.6. All these graph states are thus LC-equivalent.

Figure 10 . 6 :

 106 Figure 10.6: This picture as been extracted from [75]. Diagram representing the relation between the graph states of figure 10.5. They are obtained after local complementation over the vertex appearing above the arrow.

•

  Z: deleting the vertex a from G • Y: inverting G[N a ] and deleting a • X: choosing any b 0 ∈ N a , inverting G[N b 0 ], applying the rule for the Y-measurement on a and finally inverting G[N b 0 ] again.

Figures 10 .

 10 Figures 10.7 to 10.9 shows the three steps composing the X-measurement of qubit 1 over the 5 qubits ring graph state.Here, I am interested in quantum routing problems. Coming from all the measurements and the local operations, the remaining graph should indeed have a global factor coming from each individual local unitaries U a i,± (depending on the measurement results). I do not take into account this factor since it can be corrected locally once all the computation has ended.In the next subsection, we will use the LC rules to help us solving the quantum equivalent of the communication problem presented in section 10.1. We will reduce the quantum Butterfly network illustrated figure10.2 to its corresponding graph state using local complementations and measurements.

Figure 10 . 7 :

 107 Figure 10.7: Example of a X-measurement of qubit 1 (red vertex) over the 5 qubits ring graph state. We decompose the X-measurement in a 3 step procedure: a) the choice of b 0 (green vertex) and the inversion of N b 0 ; b) inversion of G[N a ] and deleting a (fig. 10.8); c) invert again G[N b 0 ].

Figure 10 . 8 :

 108 Figure 10.8: This figure illustrate the first step where we choose vertex 5 to be b 0 and perform the inversion of N 5 .

Figure 10 . 9 :

 109 Figure 10.9: Second step of the X-measurement of qubit 1. We have inverted G[N a ] and delete a. The graph shown is the obtained graph up to the unitary operation U 1 X,± = √ +iY 5 . The last step does not change the graph and so is not showed here. Note that the four connected vertices are in the state No. 8 of figure 10.6, and is LC equivalent to the other states of this figure, like the state No. 6 we would have obtained by choosing vertex 2 be b 0 .
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 1010 Figure 10.10: Reduce graph state corresponding to the quantum network depicted figure 10.2.

1 2 3 Figure 10 . 11 :Figure 10 . 12 :

 1310111012 Figure 10.11: Single node of the quantum network depicted figure 10.2 composed by three qubits.

Figure 10 . 13 :

 1013 Figure 10.13: Starting from 10.12, we measure qubits 1 and 3 in the Pauli Y basis.

Figure 10 . 14 :

 1014 Figure 10.14: Equivalent of figure 10.13 in terms of graph states.

Figure 10 . 15 :

 1015 Figure 10.15: The GHZ state can be represented as both (a) the complete graph or (b) the star graph.

2 . 3 ,Figure 10 . 16 :Figure 10 . 17 :Figure 10 . 18 :

 23101610171018 Figure 10.16: Butterfly graph state. Alice Charlie

  def C a l c u l e E n e r g i e ( s ) : E=0. f o r k i n range ( NAtomes -1 ) : i f s [ k ]& s [ k +1] : E+=V return E def E n e r g i e I n t e r a c t i o n ( s , i , V ) : E=0. f o r j i n range ( NAtomes ) : i f i != j and s [ j ] : E+= V/ ( abs ( i -j ) * * 6 ) return E def symDico ( d i c o ) : f o r s i n d i c o : f o r k i n d i c o [ s ] : i f k i n d i c o : d i c o [ k ] . add ( s ) return d i c o def g e n e r e r S e t ( NAtomes ,ENERGIEMAX, V ) : a s s e r t NAtomes >1 , " Not enough atoms " E n e r g i e ={} E n e r g i e [ tuple ( 0 f o r k i n range ( NAtomes ) ) ] = 0 NbreExc={} l i s t e D e s c e n d a n c e ={} setNOK=s e t ( ) setOK=s e t ( ) setToLook={tuple ( 0 f o r x i n range ( NAtomes ) ) } NbreExc [ tuple ( 0 f o r x i n range ( NAtomes ) ) ] = 0 while l e n ( setToLook ) >0: s e t N e x t=s e t ( ) f o r s i n setToLook : setNOK . add ( s ) i f E n e r g i e [ s ]<ENERGIEMAX : setOK . add ( s ) l i s t e D e s c e n d a n c e [ s ] = s e t ( ) f o r i i n range ( NAtomes ) : D e s c e n d a n t= tuple ( 1 i f k==i e l s e s [ k ] f o r k i n range ( NAtomes ) ) i f D e s c e n d a n t not i n setNOK :

  

  

  |P = |p 1 ⊗|p 2 ,|P = |p 1 ⊗|p 2 and |P P = |p 1 ⊗|p 2 +|p 1 ⊗|p 2 √ 2. Let ∆E p > 0 (respectively ∆E p < 0) be the energy difference between the states |p and |s (respectively |s and |p ).

	E p
	0
	E p'
	Energy conservation forbids simultaneous transitions of both atoms to lower
	21

  the system is initially prepared in |Ψ (0) ≡ n,αn c αn n |ψ

		100							0.032
	Atom position in the chain k	20 40 60 80							0.008 0.012 0.016 0.020 0.024 0.028
		0.8 0	1.0	1.2	1.4 Λ	1.6	1.8	2.0	0.004
									(αn) n	, its state
	at time t is given by |Ψ (t) = n,αn c αn n e -i En t |ψ n (αn)	. The time-averaged
	probability P k to have a Rydberg excitation in site k is therefore given by

  1 exc + dim(ker(H)) 2 exc (7.19) 7.3.3.1 Evaluation of dim(ker(H)) 1 exc spanned by single excitation states Now, we investigate the form of |Ψ 1exc if H |Ψ 1exc = 0. Those |Ψ 1exc states cannot be excited to doubly excited states. Indeed, the hardcore Rydberg sphere assumption allow the simultaneous excitation of 2 atoms if they are separated by at least R b . This means that this assumption prevents any doubly excitations state with one excitation located in

  Diagonalization of H 2 in the 4-dimensional model We are still in the regime of at most 2 excitations. Because of its block diagonal form, finding the eigenstates of H 2 is easier than finding the ones of H: we can simultaneously diagonalize H 2 in the even/odd subspace. The conjecture |Ψ = |∅ +|S √ 2 we made above, had been obtained in the following way: starting from the state |∅ , we compute H |∅ ∝ |S . So, the state |S ) is a first order approximation of an eigenstate. But, as we have seen above, when ρ > 0, this state is no longer a good approximation of eigenstate. So, we go further by going at the next order: the states involved in our model will be: {|∅ , H |∅ ∝ |S , Π ν=2 H 2 |∅ ∝ |Ψ 0 2 , HΠ ν=2 H 2 |∅ ∝ |Ψ 1 To solve the eigenvalues equations H 2 |Ψ even = E 2 |Ψ even and H 2 |Ψ odd = E 2 |Ψ odd , we need to compute H |∅ , H |S , H |Ψ 1

	represents these 4 orthogonal states as vertices in a graph as in figure 7.1.1
	in subsection 7.1.1. Each edge connecting 2 vertices |a and |b corresponds
	to the normalized transfer coefficient a|Htot|b Ω √ N . These 4 states is suppose to
	form a closed circuit because Ψ 0 2 |Ψ 1 2 ≈ 1 and so the leaking Ψ ⊥ 1 |H|Ψ ⊥ 2 is
	negligible. Now, we have all the tools to build the 4-dimensional analytical
	model.		
	7.3.5.3 1 √ 2 (|∅ + 1 1 + δ |Ψ 0 2	(7.52)
	= |Ψ even + |Ψ odd	(7.53)
			1 , H |Ψ 0 2 , as
	done in the subsection 7.3.5.2.	
	√		
	H |∅ = Ω	N |S	(7.54)
		66	(7.51)
	We can notice that Ψ 0 2 |Ψ 1 2 ≈ 1. If we suppose them to be equal, any fur-
	ther iteration d > 4 of H d |∅ will not add any dimension to the Hilbert space.
	A 5 dimensional model involving the states {|∅ , |S , |Ψ ⊥ 1 , |Ψ 0 2 , |Ψ 1 2 } may
	not be required to describe the dynamics of the system. This is why we stop
	at a d = 4-dimensional model by assuming Ψ 0 2 |Ψ 1 2 = 1. The 4 dimensional
	model involving only the states {|∅ , |S , |Ψ ⊥ 1 , |Ψ 0 2 } may therefore be suffi-
	cient to describe qualitatively the dynamic of our system. Indeed, figure 7.17

1 }. Our new hypothesis for an eigenstate is: |Ψ = α |∅ + β |S + γ |Ψ with |Ψ even = α |∅ + δ |Ψ 0 2 and |Ψ odd = β |S + γ |Ψ 1 1 .

  and eigenenergies ±E i=1,2 , such that H |ψ s i = s×E i |ψ s i . We conventionally choose E 2 ≥ E 1 ≥ 0. The eigenenergies E i are plotted as functions of Λ on Fig.7.19. Note that for Λ > 1, all four eigenenergies ±E i=1,2 take different values, there is hence no degeneracy. In the regime fully blockade Λ ≤ 1 regime, the 2 eigenstates of H are 1

	the 4 eigenvectors |ψ s=± i=1,2 =	|E 2 even,i +s×|E 2 odd,i √ 2	.
	The diagonalization of H in this subspace yields four eigenstates ψ s=± i=1,2
	eigenenergies ±Ω √	N .	√	2 (|∅ ± |S ) with the corresponding
	Since the eigenstates |ψ s i describe configurations where excitations are
	delocalized, the probability P k computed from the time-averaged state Eq. (7.6)
		ρ =		
		i=1,2 s=±	

  .69) Figure 7.19: E 1 , E 2 and ε k as functions of Λ, computed by our simplified analytical treatment for N = 100. The values of ε k form a quasi-continuum.
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As discussed in the text, localization peaks arise when a resonance takes place,i.e. when there exists a value k = K such that ε K = E 1 . This happens for Λ ≥

7 6 

as can be shown analytically and graphically checked on the present Figure.

  1. step 1: Alice sends A to both Middle 1 and David. Charlie send C to both Middle 1 and Bob. 2. step 2: Middle 1 performs a local addition of A and C. The results A + C is copied and send to both Bob and David. 3. step 3: Combining the information A received from step 1 and A + C from step 2, David can subtract the two values (perform an addition modulo 2 if we are dealing with classical bits) to recover C. In the same way, Bob can perform a local subtraction and recover A.

  10.2.4 Reducing a quantum processor network to its corresponding graph stateSuppose a quantum processor network as shown in figure10.2. The quantum processor present at each node allows to perform local complementation and local Pauli measurement over all the nodes. LC allow to displace the entanglement across the graph. Given such a quantum network, the LC can be used as a new tool to perform true quantum routing. Given a quantum network involving processors that can perform any local measurements and one-qubit Clifford operations (as described in section 10.2), we would like to reduce this network to its corresponding graph state using measurements (or local complementations) and CZ gates. The butterfly network (figure10.2) can be reduce to the graph state shown figure10.10. We will only describe precisely the two step transformation for a single node of the network but applying the same type of operations to the other nodes, we can surely reduce the entire network to its corresponding graph state. Suppose a network node composed by three qubits as depicted figure10.11. First, we shall apply CZ 1,2 and CZ 2,3 gates between qubits 1 and 2, and respectively qubits 2 and 3 (see figure10.12). Then, according to the rules given in subsection 10.2.3, measuring the qubits 1 and 3 in the Pauli Y basis would change the graph from figure10.12 to 10.13. The node originally composed by three qubits has been transformed into a single qubit node sharing entanglement with the neighbors nodes (see 10.14). Repeating the same type of operation for all the nodes, we can manage to turn any of such networks into their corresponding graph state. Now that we have defined graph states, local complementations and single

(ν -1)

Part II

Entanglement distribution across a quantum peer-to-peer network

Now, we consider the generic d dimensional graph above but with an extra assumption: all the vertices closer that the euclidian distance l are connected. So, any ball B with diameter l is a complete graph of size l/2. This graph will be called the "l-range connected graph" and is illustrated by Fig. 9. [START_REF] Gogolin | Equilibration and thermalization in quantum systems[END_REF].

For this graph, C ∼ C ∼ ν -1 ∼ N ( l D ) d . So, we can upper bound the ratio

2)

If such architectures are built one day, we may be interested to study regimes where quantities like D, d and l will remain fixed but the mean number of clients per volume l d may change (if more clients wish to connect to this network). If we suppose that the ratio P N and ν are both constant, we can notice that there is a maximum distance D max ≈ νl N P separating the two terminals. Fixing l and D, we can notice that increasing ν would increase the ratio P N of EPR pairs shared compared to the number of user. The network would allow a larger portion of clients to communicate simultaneously.

Lower bound on number of EPR pairs

The routing adopted here is to take the shortest path passing through the minimum number of complete graphs. So, to connect a pair, the shortest path is the one which passes through D l vertices (passing through the D l complete graphs). A problem appears once all the vertices in a given complete subgraph are already used by other EPR pair creation. Supposing that we can use only the shortest path gives us a lower bound on P > P min . There is always a way to connect P min EPR pairs simultaneously if P min

) d the mean number of vertices in a complete graph with distance l/2. So, there is always a way to connect P EPR pairs simultaneously if: tices. Figure 10.3 illustrates the preparation procedure to obtain the 5 qubit ring graph state. We can also define graph states using the stabilizer formalism introduced in appendix C. Given a graph G = (V, E), the corresponding graph state vector |G is the unique state stabilized by the set of independent commuting

Now that we have defined graph states, we can now go forward to see how does local operations translate in this graphical picture.

Local complementations

The advantage of using graph state is their simple graph transformation under our allowed operations. Indeed, the action of local Clifford operations on graph states is equivalent to a graph transformation rule named local complementation (LC) [START_REF] Bouchet | An efficient algorithm to recognize locally equivalent graphs[END_REF]. To define the local complementation, we must first define the complementation of a graph. Complementing a graph is to fill all the missing edges required to form a complete graph and remove all the edges that were previously there. In [START_REF] Hein | Entanglement in graph states and its applications[END_REF], the authors define the local complementation as follows. Given a graph G = (V, E) corresponding to the graph state |G , let a a vertex a ∈ V , the local complement τ a (G) of G at a is obtained by complementing the subgraph of G induced by the neighborhood N a of a and leaving the rest of the graph unchanged:

I present here the computation of the normalization factors

The expression of the normalized state is

Appendix C

Stabilizer formalism

In this appendix, we introduce the stabilizer formalism used in section 10.1.

Let us consider the state |ψ = |00 +|11 √ 2

. One can easily check that X 1 X 2 |ψ = |ψ and Z 1 Z 2 |ψ = |ψ . We say that the state |ψ is stabilized by the operators X 1 X 2 and Z 1 Z 2 . Something less obvious is that |ψ is the unique quantum state (up to a global dephasing factor) which is stabilized by both of these operators. The main concept of the stabilizer formalism is that we don't use the ket expression to describe a quantum state but we use the ensemble of operators which stabilize this state. In fact, for many quantum state, it's easier if we use the operators that stabilize the state than using directly the ket expression of the state. Many quantum codes such as quantum error correcting codes are compactly described using stabilizers than the kets.

The power of the stabilizer formalism lies on properties of the Pauli group. The Pauli group on 1 qubit G 1 is defined by:

G n is the Pauli group on n qubits, it's defined to be the n tensor product of elements of G 1 . The group is closed under operator multiplication. Let S be a subgroup of G n , we define V S to be the set of n qubits state such that the elements of S stabilize all the elements of V S .

Any linear combination of any element in V S is also in V S . Therefore, V S is a vector space. V S is the vector space stabilized by S, and S is said to be Appendix D

Local complementation rule

In this section, we give a proof of the local complementation rule defined in section 10.2.1. This proof can be found in [START_REF] Hein | Entanglement in graph states and its applications[END_REF].

Given a graph G = (V, E) corresponding to the graph state |G stabilized by the K b operators. Let a be a vertex a ∈ V , the local complement τ a (G) of G at a is obtained by complementing the subgraph of G induced by the neighborhood N a of a and leaving the rest of the graph unchanged:

The obtained graph corresponding to the graph state |τ a (G) = U τ a (G) |G is stabilized by the K b . The local Clifford unitary U is defined as U τ a (G) = e ±i π 4 Xa e ±i π 4 Z Na ∝ √ K a . To express these K b operators in terms of K b and U τ a (G), we need to consider two possibilities:

. This means that the stabilizers that have a unitary effect on N a do not change under a local complementation at vertex a.

• for b ∈ N a , the updated stabilizers are

Using the group structure of stabilizers, we can multiply the generators K a K b by K a since a ∈ V / ∈ N a and so we can add K a to the new set of generators of U τ a (G)S(U τ a (G)) † .

Appendix E Résumé

Le comportement collectif des atomes de Rydberg est au coeur de nombreux protocoles d'information quantique, notamment de répéteurs quantiques. Cette thèse traite de deux sujets distincts: la dynamique collective de nuages d'atomes de Rydberg et de l'utilisation de répéteurs quantiques dans des réseaux complexes. Dans la première partie, nous étudions un système simple composé d'une chaîne unidimensionnelle d'atomes de Rydberg couplée à un laser résonnant sur la transition vers un niveau de Rydberg dans le régime contenant quelques excitations. Les atomes de Rydberg sont soumis à une forte interaction dipolaire. Cette interaction tend à empêcher l'excitation simultanée de deux atomes proches l'un de l'autre. C'est précisément ce phénomène de blocage de Rydberg qui fait des atomes de Rydberg d'éminents candidats pour des protocoles d'information quantique.

Ce blocage induit une distribution spatiale particulière des excitations le long de la chaîne d'atomes. Le calcul exact de cette distribution est souvent impossible en pratique même numériquement, et des approximations sont a priori nécessaires: approximation des sphères de Rydberg dures: l'interaction dipôle-dipôle est modélisée par une sphère centrée autour de chaque excitation, à l'intérieur de laquelle toute autre excitation est impossible; hypothèse de thermalisation: le système est supposé thermaliser, c'està-dire qu'après suffisamment de temps, même sans effets dissipatifs, le système tendra vers un état quasi-thermique qui peut être décrit par la physique statistique (et plus précisément l'ensemble microcanonique), In the first part of this thesis, we choose to focus on a simple system involving Rydberg atoms: a 1-dimensional Rydberg gas coupled to a laser resonant with the Rydberg transition. Rydberg atoms interact together through the dipole-dipole interaction. This particular feature is used for quantum information purposes, like applying multi-qubits gates for example. This interaction is strong enough so that the dynamic of such system in the regime of few excitations in the gas ensemble is already intractable without any assumptions. One of them is the hardcore Rydberg sphere assumption: we approximate this interaction by a sphere around each excitation inhibiting any second excitation within it. Another one is to suppose that the system thermalizes in such regime; a statistical treatment could then be applied. We have investigated the thermalization of a 1D-Rydberg gas and evaluated the accuracy of the microcanonical ensemble predictions under the first assumption. To do so, we have numerically simulated the dynamic of such system constituted by 100 atoms, in the regime of at most two excitations in the chain, in the initial excitation-less state. Furthermore, we constructed a 6-dimensional analytical model. Comparing the three approaches together, we have concluded that the numerical simulation and the analytical model both agree together but contradicts the microcanonical treatment. In this regime, the microcanonical ensemble is unadapted.

In the second part of this thesis, we have studied the distribution of entanglement across a generic quantum network. We have mapped these quantum networks to undirected graphs and studied two different routing scenarios:

-the classical routing of quantum entanglement corresponding to the scenario where clients of the network can perform only a single Bell measurement or keep a single qubit. This is the usual model of quantum repeaters. On these networks, peer-to-peer communication problems are equivalent to the vertex disjoint path problem. When the peers are chosen by an adversary, we have found two limitations due to the topological genus and the minimum degree of the graph. We have found two network architectures (almost) saturating the most constraining one, the minimum degree inequality. For the case where the peers are chosen at random, we have studied a specific graph lying in a 2-or 3-dimensional manifold and investigated the trade-off between the quantum links and the number of peers that can communicate simultaneously through the network.

-true quantum routing problem (using network coding) corresponding to the situation where the quantum network is composed by small quantum processors that could apply local gates. We focus on a particular communication problem, namely the butterfly network, where classical routing is impossible. Using network coding, this communication is solved.