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Abstract: Demand of wireless communication systems for high throughputs continues to increase,

and there are no signs this trend is slowing down. Three of the most prominent techniques that

have emerged to meet such demands are OFDMA, cooperative relaying and MIMO. To fully utilize

the capabilities of systems applying such techniques, it is essential to develop efficient scheduling

algorithms and, more generally, efficient resource allocation algorithms. Classical studies on this

subject investigate in much detail settings where the data requests of the users are not taken into

consideration or where the perfect and full CSI is assumed to be available for the scheduling mechanism.

In practice, however, different limitations may result in not having perfect or full CSI knowledge, such

as limited feedback resources, probing cost and delay in the feedback process.

Accordingly, in this thesis we examine the problems of scheduling and feedback allocations under

realistic considerations concerning the CSI knowledge. Analysis is performed at the packet level and

considers the queueing dynamics in the systems with arbitrary arrival processes, where the main

performance metric we adopt is the stability of the queues. The first part of the thesis considers a

multi-point to multi-point MIMO system with TDD mode under limited backhaul capacity and taking

into account the feedback probing cost. Regarding the interference management technique, we apply

interference alignment (IA) if more than one pair are active and SVD if only one pair is active. The

second part of the thesis considers a multiuser multichannel OFDMA-like system where delayed and

limited feedback is accounted for. Two scenarios are investigated, namely the system without relaying

and the system with relaying. For the latter one, an additional imperfection we account for is that

the users have incomplete knowledge of the fading coefficients between the base-station and the relay.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless and cellular systems currently experience an exponential growth in the demand for network

traffic as more and more consumers want to have constant wireless connectivity and access to streaming

services; global mobile data traffic grew 63% percent in 2016, and this traffic is expected to increase

sevenfold between 2016 and 2021 [1]. Next generation networks are expected to provide significantly

higher data rates, spectral efficiency, and reliability than the current systems. In order to meet the

increasing demand in data rates (that are currently being supported by high speed wired networks),

and more generally to provide performance improvement, it is essential to fully exploit the capacity

available in wireless and cellular systems, as well as to develop robust strategies for integrating these

systems into a large scale, heterogeneous data network.

To this end, a vital step is to better understand and exploit the physical layer capabilities and to

consider the effects that different physical layer characteristics have upon network design and control.

In this regard, multiple physical-layer strategies have emerged and are shown to provide substantial

performance improvement, where four of the most prominent ones are detailed next.

Multiple Antennas

The use of multiple antennas offers many benefits in practical wireless communication systems [2, 3].

For example, single user multiple-input multiple-output (MIMO) systems exploit multiple transmit

and receive antennas to improve capacity, reliability, and resistance to interference. Such benefits can

also be offered in a multiuser MIMO (MU-MIMO) system, where a base station (BS) communicates

with multiple users or where there are multiple transmitters each of which communicates with its

respective receiver. MU-MIMO on the downlink is especially interesting because the MIMO sum

capacity can scale with the minimum of the number of BS antennas and the sum of the number

of users times the number of antennas per user. This means that MU-MIMO can achieve MIMO

capacity gains with a multiple antenna BS and a bunch of single antenna users. To fully exploit the

1



1.1. Background and Motivation

benefits offered by using multiple antennas, accurate knowledge of the channel state information (CSI)

of the users is necessary at the BS. For systems employing time-division duplex (TDD) mode, one

prominent technique, which exploits the uplink-downlink reciprocity of radio propagation, is to let the

users send orthogonal training sequences to the BS so that it can estimate their CSIs. This technique

has the important advantage that the length of the training sequences is independent of the number

of antennas. This advantage has led to the concept of massive MIMO (also called large-scale MIMO),

which is a special case of MU-MIMO where the BS is equipped with a large number of antennas (on

the order of hundreds to thousands) [4, 5]. On the other hand, the length of the training sequences

depends on the number of active users in the system and it scales proportionally with this number.

Recalling that systems are slotted and that the period of a slot is limited (since the coherence time is

limited), one can notice the trade-off that arises here: the more users are scheduled (i.e. more active

users) in a slot, the less time is reserved for transmission. Thus, it is of great importance to design an

efficient scheduling policy to select the subset of active pairs at each time-slot, where obviously one of

the things this policy should exploit efficiently is the trade-off outlined before.

Interference Management Techniques for MIMO Systems

The use of multiple antennas allows transmissions in the same time-frequency block. However, in-

terference is a major issue in this case, which can substantially decrease the system performance

unless treated properly. In this regard, several interference management techniques (i.e. transmission

schemes) have been proposed and investigated. For instance, for a single user MIMO system, singular

value decomposition (SVD) technique was shown to provide the best performance among other tech-

niques such as zero forcing (ZF) and matched filtering (MF) [6]. In the context of a multi-user MIMO

system, especially the one that considers multiple transmitters each of which communicating with its

respective receiver, interference alignment (IA) was shown to be an efficient interference management

technique [7]. IA uses the spatial dimension offered by multiple antennas for alignment. The key

idea is to design the transmission scheme in such a way as to ensure that the interference signal lies

in a reduced dimensional subspace at each receiver. Other efficient transmission schemes exist and

can be considered in the multi-user MIMO context, such as ZF and regularized zero-forcing (RZF)

(which is also sometimes called minimum mean square error (MMSE) precoding) [8]. Obviously, the

interference management technique affects the scheduling decisions. This observation results from the

facts that (i) the achievable service rates depends on the transmission scheme that is adopted, and

(ii) any good user-scheduling policy should take these rates into consideration.

Parallel Channels

In the frequency domain, creating parallel channels can be achieved by using orthogonal frequencies.

Such a technique can be found in the latest standards for cellular communication and is known

under the name of orthogonal frequency-division multiplexing access (OFDMA) [9]. In the space

domain, for a MIMO system we can create parallel channels by using orthonormal beamforming. This

technique can also be found in the latest cellular communication standards [9]. Under both cases,

namely OFDMA and MIMO with orthonormal beamforming, acquiring the CSI can be done under

2



1.1. Background and Motivation

the TDD mode, where more time resources are necessary if more CSIs are decided to be reported. This

acquisition can be also done under the frequency-division duplex (FDD) mode, where more frequency

resources are necessary if more CSIs need to be fed back. Note that under the latter mode there is no

channel reciprocity, so to acquire CSI, at the first stage the BS sends training sequences that permit

the users to estimate their channel states, then the users (that are selected for the feedback) can

then report their states to the BS. Since reporting more feedback requires more resources (i.e. more

overhead in the system), which leaves less resources for transmissions, an important trade-off arises

here. Clearly, efficient user scheduling and feedback reporting policies should exploit this trade-off.

Cooperative Relaying

Cooperative communication techniques have emerged as a means of improving the performance of

wireless networks. These techniques take advantage of the broadcast nature of wireless communica-

tions and spatial diversity to improve the system performance. In particular, cooperative relaying was

introduced as a very promising approach to provide throughput gains as well as coverage extension

[10, 11]; relaying is one of the features being proposed for the 4G LTE Advanced system [12]. In this

approach, relay nodes are used to forward the replica of packets from the source node, and the desti-

nation node can combine multiple copies of the signal to better decode the original message. Several

cooperative relaying protocols are proposed in the literature, among which the most prominent are:

(i) Amplify-and-Forward, under which the relay acts as an analog repeater, (ii) Decode-and-Forward,

where the relay decodes, encodes and retransmits the received message, and (iii) Decode-and-Reencode,

for which the main idea is that the relay decodes the received message, but constructs a codeword

differing from the source codeword. Combining cooperative relaying and OFDMA was shown to de-

liver high data rates requirements [13,14], particularly for users at the cell edge, however the feedback

process would result in a prohibitive overhead in such systems. In this regard, it is important to

investigate the performance of cooperative relaying under incomplete feedback information conditions

and to develop scheduling and resource allocation algorithms that adapt to these conditions.

Interaction between the physical layer and the MAC layer

As alluded earlier, another important step towards providing better system performance is a careful

cross-layer design. The importance of such a design can be seen, for example, in multi-node wire-

less communication systems with interference properties. In such systems, the communication links

between pairs of nodes cannot be viewed independently but rather as interacting entities where the

service rate of one pair is a function of choices and decisions for the access and physical layer parame-

ters of the others. Another complexity of wireless communication systems is the fact that the channel

might be changing in time, where this variation might be happening at the scale of milliseconds in

the case of fast fading. Designs of different layers need to take this variability into account in such a

way as to make sure that the system optimally compensates it.

In this thesis, the interaction between the physical layer and media access control (MAC) layer is

of particular interest.
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The MAC layer is responsible for controlling how devices in a network gain access to medium

and permission to transmit, that is to say, it determines the scheduling decision at each time-slot;

such a decision is part of the network control mechanism which determines the access control vector

and the traffic forwarding decisions. As alluded earlier, for a scheduling policy to be efficient, it is

essential that it takes into consideration physical layer parameters and properties. Typical physical

layer functions include power control, precoding, and selection of the modulation constellation.

Motivated by the above observations, in this thesis we develop policies for dynamic scheduling and

resource allocation for wireless systems. Analysis is done at the packet level and considers the complete

dynamics of stochastic arrivals, i.e. the traffic patterns are taken into consideration. Arrivals for each

user are stored in a respective queue (i.e. buffer) at the controller (e.g. base-station). Dynamics of

queue lengths (also sometimes called queue backlogs) are also considered in the analysis. Indeed, it

is shown that queue length information is important in the design of robust scheduling policies, or

more generally robust network algorithms, which yield high data rates and low packet delays in the

presence of time varying channels and changing user demands.

The primarily goal of the scheduling mechanism in this thesis is to stabilize the system and thereby

achieve maximum throughput and maintain low packet delay. In broad terms, a system is called stable

if all the queue lengths are finite (in the mean) [15, 16]. Stability performance of a scheduling policy

can be characterized by the stability region it can achieve. This region is defined as the collection of

all traffic load matrices that are sustainable by the policy, i.e. set of mean arrival rate matrices for

which the system stays stable under the policy. The stability region of a specific policy should be

distinguished from the system stability region (also called network capacity region). The latter being

(i) sometimes defined as the union of all the individual policy stability regions, taken over all possible

control policies, such as scheduling and power allocation, and (ii) other times defined as the union of

all the individual policy stability regions, taken (only) over all possible scheduling allocation policies.

It is worth mentioning that the stability region of a system is distinct from the information theoretic

capacity of this same system, where the latter includes mainly, but not only, optimization over all

possible coding schemes [17]. Furthermore, a policy is called throughput optimal (or just optimal) if

its stability region coincides with the system stability region.

To fully exploit a wireless network, we need to investigate its fundamental performance and develop

efficient and low-complexity control policies. The key challenge is to accommodate time variations of

channels (due to mobility, multi-path fading, etc.) and to adapt to other constraints such as channel

interference or limited feedback resources. It is well known that opportunistic scheduling [18] is an

efficient approach to improve the network performance, where, under this scheduling, service priority

is given to users with favorable channel conditions. One example is the Max-Weight policy, which is,

under some assumptions, known to be throughput optimal [19–22]. This policy uses instantaneous

queueing information and channel state information to schedule data transmissions, and is shown to

support any achievable network throughput without the knowledge of data arrival statistics. Many

previous contributions on opportunistic scheduling make some idealistic assumptions; for example, in

a time-slotted wireless network, channel states are assumed to be fully and instantaneously available at

the controller (e.g. BS) with negligible overheads. These assumptions, however, may not be realistic.

Moreover, Max-Weight policies may not be throughput optimal without these assumptions.

Motivated by the above considerations and observations, in this thesis we adopt more realistic assump-
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tions and study their impact on the design and performance of the scheduling policy. Assumptions

regarding the feedback process and the overhead this process may incur are of particular interest. Un-

der such assumptions, one can see the importance of designing efficient feedback allocation algorithms.

Indeed, such algorithms directly impact the scheduling mechanism since generally a user cannot be

scheduled for transmission unless its channel state was reported to the BS. Therefore, in this thesis

we are also interested in developing feedback allocation algorithms and to investigate their impacts

on the scheduling mechanism.

The first system we consider in this thesis is a multi-point to multi-point MIMO system with TDD

mode, where each transmitter communicates with its corresponding receiver. Two realistic limitations

we account for are: (i) the backhaul that connects the transmitters to each other is of limited capacity,

and (ii) probing a channel consumes a fraction of the time-slot. From the set of transmitter-receiver

pairs present in the system, at each time-slot only a subset of these pairs will be scheduled (i.e. active),

and this subset is the result of a certain scheduling policy. If more than one pairs are scheduled, we

use IA as an interference management technique, while we use SVD technique if only one pair is sched-

uled. In the former case, applying IA requires that the transmitters share their local CSI knowledge

with each other over the backhaul. Since the backhaul is of limited capacity, each transmitter should

quantize its local CSI to be able to send it to other transmitters, and this leads to imperfect global

CSI knowledge at each transmitter. Note that all these considerations make the physical layer of the

system a very complex entity.

For the above system, designing an efficient scheduling policy that, in addition to taking into con-

sideration the traffic patterns, exploits and accounts for the physical layer properties is significantly

important (but very challenging). Specifically, the trade-off between having more scheduled pairs,

which implies higher probing cost (thus less time dedicated for transmission), and less scheduled

pairs, which implies lower probing cost (hence more time for transmission), should be exploited by

this policy in an optimal manner. Furthermore, characterizing the conditions under which applying

IA can deliver performance improvements with respect to using SVD is also very important.

The second system we consider is a multichannel multiuser OFDMA-like system where delayed

and limited feedback is accounted for. Two scenarios are considered, namely one without relaying and

the other with relaying. For the latter scenario, an additional limitation we account for is that the

fading coefficients between the BS and the relay are not perfectly known at the users. It should be

noted that the delay in the feedback process depends on the amount of feedback resources.

An important trade-off arises in this system between having more reported feedback but which is less

accurate (since there is more delay in the feedback process) and having less reported feedback but

which is more accurate (since there is less delay in the feedback process). When selecting the amount

of feedback resources, this trade-off should be exploited efficiently. Note that the feedback reporting

decisions directly impact the scheduling mechanism. Thus, designing efficient joint feedback reporting

and scheduling schemes that, in addition to the traffic patterns, account for the different limitations

in the system is of particular interest. Additionally, because of these limitations, any such schemes

cannot be optimal, so it is important to characterize the performance that the scheme can guarantee.
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Related Work

In this thesis, scheduling and resource allocation decisions are made in the presence of time varying

channel conditions and stochastic packet arrivals. The main objective of the scheduling policy design

is to achieve a maximum stability region. A scheduling policy that achieves the entire system stability

region is called throughput optimal (or simply optimal). The concept of stability-optimal operation

comes originally from the control and automation theory [23–26]. It was applied to the wireless

communication systems first in [19,20], where the authors have proposed the opportunistic Max-Weight

scheduling strategy and have shown that it can guarantee stability of the user buffers (whenever this

is possible). This scheme was then extended by some bounds and generalized to adapt to various

network scenarios in [27–29]. Since then, this concept has been the subject of extensive research in

the wireless communication framework under various network and traffic scenarios.

For wireless systems where complete and perfect channel state information is available at the sched-

uler and where traffic patterns are taken into consideration, there has been much work in developing

scheduling policies for various performance metrics that include stability, packet-delay guarantees and

utility maximization [20,27,30–36]. In practice, however, several limitations may result in not having

complete or perfect CSI knowledge at the scheduler, such as limited feedback resources, delay in the

feedback process and estimation error. Because of such limitations, it may not be possible to develop

optimal scheduling policies, hence the importance of characterizing the stability region the proposed

policy guarantees to achieve with respect to the system stability region [15,16].

In the context of limited feedback resources, in addition to the design of an efficient scheduling

policy, the feedback algorithm needs to be carefully designed since it directly impacts the scheduling

mechanism. For single-channel networks where at most one user can be scheduled on the channel,

joint feedback and scheduling policies have been proposed and analyzed (from a queueing stability

point of view) in [37–42]. Applying the feedback-scheduling algorithms for single-channel networks

directly to a multichannel network by treating the multichannel network as multiple single-channel

networks is not a good approach in general, especially under the context of limited feedback resources.

There is a paucity of literature addressing the design of feedback-scheduling algorithms and studying

their stability performance for multichannel networks with such a feedback limitation [43–45]. We

note that, however, many studies have addressed the problem of scheduling policies for multichannel

systems under the assumption of full (and perfect) feedback knowledge [46–50]. It is worth noting that

for multichannel systems where the impact of bursty traffic is not accounted for, resource allocation

problems have been the subject of extensive research [51–55].

On the other hand, taking into consideration another kind of feedback limitation, [56–58] study

scheduling problems under delayed channel state information.

Analogous to wireless systems where there is only one transmission over a channel (e.g. OFDMA-

based systems), queue length-based policies stabilizing the buffers can be designed for MIMO systems

where multiple transmissions are allowed in the same time-frequency block [59–68]. In the latter

systems, we note that the bit-rate of each active user depends on the channel states of all other active

users, thus this user cannot simply estimate its bit rate using its current channel state; this makes the

stability analysis highly complicated for these systems.
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Further, identifying scheduling strategies for multi-hop systems have been addressed in [69–74].

Such studies are usually made under the assumption that full and perfect CSI is available for the

scheduling mechanism, since considering any kind of feedback limitation would add a considerable

complexity to the stability analysis for these systems.

Finally, decentralized scheduling algorithms have been investigated in [75–79]. Most of these stud-

ies adopt a simple physical layer so as to keep the stability analysis tractable. Analysis considering a

decentralized scheduling with a relatively more involved physical layer can be found in [64,68].

1.2 Thesis Outline and Contributions

The main contributions and the outline of the thesis are as follows.

In Chapter 2, we introduce the notion of queue stability and develop the theoretic tools necessary

to analyze wireless networks with time varying rates and bursty traffic.

In Chapter 3, we characterize the performance in terms of queueing stability of a network

composed of multiple MIMO transmitter-receiver pairs taking into account the dynamic traffic pattern

and the probing/feedback cost. We adopt a centralized scheduling scheme that selects a number of

active pairs in each time-slot. We consider that the system applies IA technique if two or more pairs

are active, whereas SVD is used in the special case where only one pair is active. A TDD mode is

adopted where transmitters acquire their CSI by decoding the pilot sequences sent by the receivers.

Since global CSI knowledge is required for IA, the transmitters have also to exchange their estimated

CSIs over a backhaul of limited capacity (i.e. imperfect case). Under this setting, we characterize

the stability region of the system under both the imperfect and perfect (i.e. unlimited backhaul)

cases, then we examine the gap between these two resulting regions. Further, under each case we

provide a centralized probing policy that achieves the max stability region. These stability regions

and scheduling policies are given for the symmetric system, where all the path loss coefficients are

equal to each other, as well as for the general system. For the symmetric system, we provide the

conditions under which IA yields a queueing stability gain compared to SVD. Under the general

system, the adopted scheduling policy is of a high computational complexity for moderate numbers

of pairs, consequently we propose an approximate policy that has a reduced complexity and that

guarantees to achieve a fraction of the system stability region. A characterization of this fraction

is also provided. Finally, in the same vein as the symmetric case with single rate level, a stability

analysis for the symmetric case under a multiple rate levels scheme is given.

In Chapter 4, we address the problem of feedback allocation and scheduling for multiuser mul-

tichannel downlink cellular network under limited and delayed feedback. We consider two scenarios:

(i) system without relaying, and (ii) system with relaying. For the latter system, an additional im-

perfection is taken into consideration: the users have incomplete knowledge of the fading coefficients

between the BS and the relay. More specifically, we assume that the only information a user knows

about any of these fading coefficients is if its corresponding signal-to-noise ratio (SNR) is higher than

or equal to a certain threshold. For each system, we propose an efficient joint feedback allocation
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and scheduling algorithm, in which the decisions are made at the users side and where the required

amount of feedback resources is exactly equal to the number of channels in the system. This algorithm

is shown to achieve good stability performance with respect to the ideal system, however it is suitable

for a continuous-time contention scheme. We thus propose a second algorithm that is adapted for a

discrete-time contention scheme, which adopts a threshold-based concept and is designed in such way

as to imitate the first one as much as possible. Under the second algorithm, the feedback decision is

done at the users side, and the BS uses this feedback to perform scheduling. Regarding the choice of

the amount of feedback resources for this algorithm, we find the best trade-off between having more

feedback resources (thus, more knowledge at the scheduler) but longer delay (hence, less accurate CSI)

and having less feedback resources but low delay; these results are given for various system setups, i.e.

different values of users velocity. For the system with relaying, we further investigate the special case

where the delay in the feedback process is not accounted for. Specifically, we develop a joint feedback

and scheduling algorithm, we analyze its performance and we characterize the fraction this algorithm

guarantees to achieve with respect to the stability region of the ideal system.

In Chapter 5, we conclude the thesis and present possible extensions of the results and future

research directions.

1.3 Publications

The following publications were produced during the course of this thesis.

Journal Articles

[80] M. Deghel, M. Assaad, M. Debbah, and A. Ephremides, ”Queueing Stability and CSI Probing

of a TDD wireless Network with Interference Alignment”, IEEE Transactions on Information

Theory, 2017.

[81] M. Deghel, M. Assaad, M. Debbah, and A. Ephremides, ”Traffic-Aware Scheduling and Feed-

back Allocation in Multichannel Wireless Networks”, (submitted to) IEEE Transactions on

Wireless Communications, 2017.

[82] M. Deghel, M. Assaad, M. Debbah, and A. Ephremides, ”Traffic-Aware Scheduling and Feed-

back Reporting in Multichannel Wireless Networks with Relaying”, (submitted to) IEEE Trans-

actions on Information Theory, 2017.

Conference Papers

[83] M. Deghel, M. Assaad, and M. Debbah, ”Opportunistic Feedback Reporting and Scheduling

Scheme for Multichannel Wireless Networks”, 2016 IEEE Global Communications Conference

(GLOBECOM), Washington, DC, USA, 2016, pp. 1-7.
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Network with Interference Alignment”, 2015 IEEE International Symposium on Information

Theory (ISIT), Hong Kong, 2015, pp. 794-798.

[85] M. Deghel, M. Assaad, and M. Debbah, ”System Performance of Interference Alignment un-

der TDD Mode with Limited Backhaul Capacity”, 2015 IEEE International Conference on

Communications (ICC), London, 2015, pp. 1673-1678.
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MIMO Interference Alignment”, 2015 IEEE 16th International Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), Stockholm, 2015, pp. 655-659.
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Chapter 2

Mathematical Tools for Queueing

Analysis

In this chapter we provide the queueing theoretic tools used throughout the thesis.

To begin with, we define a system with one scheduler and N users, where the incoming data for each

user is stored in a respective queue (at the scheduler) until transmission. Let qk(t) denote the queue

length of user k, which can be seen as a real valued stochastic process that evolves in discrete time over

time-slots t ∈ {0, 1, 2, . . .}; qk(t) can also be called the backlog of user k at time-slot t, as it represents

an amount of work that needs to be done. Let Ak(t) denote the arrival rate for user k at time-slot t,

and let ak = E{Ak(t)} be the corresponding mean arrival rate. We assume that the arrival process is

finite, i.e. Ak(t) < Amax where Amax is a finite positive constant. In addition, we define Dk(t) to be

the amount of data that is decided to be transmitted to user k at time-slot t; in other words, Dk(t) is

the service rate of user k at time-slot t.

Note that in the context of wireless communications, Dk(t) depends on the state of the wireless

channels, the scheduling policy, and the resource allocation algorithms employed. We also note that

the units of qk(t), Ak(t), and Dk(t) depend on the context of the system under consideration. For

example, these quantities might be integers with units of packets. Alternatively, they might be real

numbers with units of bits, kilobits, or some other unit of unfinished work relevant to the system. In

this thesis, we assume that the queue lengths are measured in bits and arrival and service processes

in bits per slot, unless specified otherwise.

Under the above definitions, the queue lengths evolve according to the following dynamic equation:

qk(t+ 1) = max {qk(t)−Dk(t), 0}+Ak(t), ∀k ∈ {1, . . . , N},∀t ∈ {0, 1, . . .}. (2.1)

From the above equation, it can be noticed that for user k the actual work processed on slot t is

defined as min{qk(t), Dk(t)}, which may be less than the offered amount Dk(t); this happens if there

is little or no backlog for user k on time-slot t. We point out that here we assume that the arrivals

occur at the end of time-slot t, so that they cannot be transmitted during that slot.

An alternative way to express the dynamic equation is by considering the case where the arrivals of
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time-slot t can be transmitted during the same slot, hence we have

qk(t+ 1) = max {qk(t)−Dk(t) +Ak(t), 0} , ∀k ∈ {1, . . . , N},∀t ∈ {0, 1, . . .}. (2.2)

We point out that the stability analysis is the same under either of the dynamic equations given above.

2.1 Different Forms of Queueing Stability

The different forms of stability of queueing systems are as follows.

Definition 1 (Rate Stability). The system is rate stable if

lim
T→∞

qk(T )

T
= 0 with probability 1,∀k ∈ {1, ..., N}. (2.3)

Definition 2 (Mean Rate Stability). The system is mean rate stable if

lim
T→∞

E {|qk(T )|}
T

= 0 with probability 1,∀k ∈ {1, ..., N}. (2.4)

Definition 3 (Steady State Stability). The system is called steady state stable if

lim
η→∞

lim sup
T→∞

1

T

T−1∑
t=0

P {|qk(t)| ≥ η} = 0, for η ≥ 0,∀k ∈ {1, ..., N}. (2.5)

Definition 4 (Strong Stability). The condition for strong stability of the system can be expressed as

lim sup
T→∞

1

T

T−1∑
t=0

E {qk(t)} <∞, ∀k ∈ {1, ..., N}. (2.6)

In this thesis, the focus will be mainly on strong stability. From its definition, strong stability

implies that the mean queue length of every queue in the system is finite and (by Little’s theorem)

it also implies finite average delays. It should be noted that under some mild assumptions strong

stability implies all of the other three forms of stability [16].

2.2 Stability Region and Optimal Scheduling Policy

In this section, we present the definitions of the concepts of stability region and optimal scheduling

policy.

Definition 5 (Stability Region of a Scheduling Policy). The stability region of a scheduling policy is

defined as the set of mean arrival rate vectors for which the system stays stable under this policy.

The stability region of a specific scheduling policy should be distinguished from the system stability

region. For the definition of this latter region, we assume that each channel has M possible states.
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Under state m, we define ck,m to be the amount of data that can be transmitted to user k at time-

slot t. Note that Dk(t) = ck,m if the channel of user k is at state m and this user is scheduled for

transmission. Let pk,m be the probability that user k is scheduled under state m and πm be the

probability that state m occurs.

Definition 6 (Stability Region of a System). The system stability region consists of all the mean

arrival rate vectors a = (a1, . . . , aN ) such that there exists a set of probabilities {pk,m} yielding

ak ≤
M∑
m=1

pk,mck,mπm, ∀k, (2.7)

with ∑
k

pk,m ≤ 1, ∀m. (2.8)

The concept of stability region leads us to the definition of optimal scheduling policy.

Definition 7 (Optimal Scheduling Policy). A scheduling policy that achieves the entire system stability

region is called throughput optimal.

It is noteworthy to mention that when describing and characterizing stability regions, we implicitly

mean that the system is strongly stable in the interior of the characterized region. For the points on

the boundary of the region, the system is known to have at least a weaker form of stability [16]. Note

that throughout this manuscript we shall often use the term “stability” to refer to “strong stability”,

unless specified otherwise. We finally point out that a common feature for stability regions is that

they all are convex, i.e. any point inside a stability region can be written as a convex combination of

the vertices (i.e. corner points) of this region.

Example of the construction of the system stability region

To provide some insight on how to characterize the stability region of a system, consider the following

example. Consider a system with a single base-station (i.e. central scheduler) and two mobile users,

and where each user has two possible channel states {ON,OFF}. We suppose that Dk(t) = 1 if at

time-slot t the channel state of user k is ON and this user gets scheduled for transmission; otherwise,

Dk(t) = 0. Let states ON and OFF be denoted by indexes m = 1 and m = 2, respectively. We assume

that the probability of the channel state to be ON is the same for both users and given by 1/2. We

also assume that the base-station has full knowledge of the channel states at each time-slot. If only

one user’s channel state is ON, the base-station schedules the user with ON channel state; otherwise,

the base-station schedules user k with probability pk,1. We note that p1,1 + p2,1 ≤ 1.
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Based on the above, the rate allocated to user k (k = 1, 2) is

P {the channel state of user k is ON, the channel state of the other user is OFF}+

pk,1 P {the channel states of both users are ON}

=
1

4
+ pk,1

1

4
. (2.9)

Hence, the stability region of the system is characterized by the following set of equations

a1 ≤
1

4
+ p1,1

1

4
, a2 ≤

1

4
+ p2,1

1

4
, and p1,1 + p2,1 ≤ 1. (2.10)

Based on the above equations, and by varying p1,1 and p2,1, we can plot the system stability region,

as shown in Figure 2.1.
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Figure 2.1: The convex hull of the set of points {(0, 0), (0, 0.5), (0.5, 0), (0.25, 0.5), (0.5, 0.25)} repre-
sents the system stability region of the example.

2.3 Stability Optimal Scheduling Algorithms

In this section, we first present a stability optimal algorithm (i.e. policy) for stabilizing networks

without requiring knowledge of the statistics of the arrival processes, where we note that such statistics

are not available in general. Then, for the special case where the arrival rates are known, we discuss

and present a scheduling policy the system can adopt in order to stabilize the network.

We consider a general transmission scheme where multiple users can be scheduled for transmission

at the same time. In addition, we assume a single-hop system. We define L(t) to be the subset of

scheduled users at time-slot t. Let Λ denote the system stability region. We next provide an optimal

scheduling policy that selects the subset of users to schedule at each time-slot based on the queue

lengths and the available channel state information at the scheduler.
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2.3.1 Max-Weight Policy

Here, we present the Max-Weight scheduling policy and we show that, under some conditions, this

policy is throughput optimal. To this end, we define Ck(t) to be the amount of data that can be

transmitted to user k at time-slot t. It is worth pointing out that Dk(t) = Ck(t) if user k is scheduled

for transmission at time-slot t; otherwise, Dk(t) = 0. Recall that the scheduler has instantaneous

knowledge of all the queue lenghts. Based on the above, the Max-Weight scheduling policy can be

defined as follows.

Definition 8 (Max-Weight Policy). In every time-slot, e.g. t, the Max-Weight algorithm schedules a

subset of users, L(t), according to the following

L(t) ∈ arg max
Li

E

{ ∑
k∈Li

qk(t)Ck(t)

}
, (2.11)

where (i) the expectation is over the randomness of the channel state, (ii) Li represents any possible

subset of users, and (iii) breaking ties at random. In the special case where the scheduler also has

complete knowledge of the Ck(t), the definition of the Max-Weight policy reduces to

L(t) ∈ arg max
Li

{ ∑
k∈Li

qk(t)Ck(t)

}
. (2.12)

It is worth mentioning that for systems where at most one user can be scheduled per channel,

e.g. OFDMA system, and where complete knowledge of the Ck(t) is available at the scheduler, the

definition of Max-Weight reduces to find the user that yields maxk {qk(t)Ck(t)}. Note that the Max-

Weight (which is sometimes also called Min-Drift) is a special case of a more general scheduling rule

called Back-Pressure algorithm [15], which is used in multi-hop systems and which schedules packets

by looking at the differential backlogs (i.e. queue-length differences from a one-hop downstream node).

In the following, we provide the basic tools for proving stability via Lyapunov function techniques,

which we then use for proving the stability of the Max-Weight policy. To this end, denote q(t) =

(q1(t), . . . , qN (t)). The idea is to define a non-negative function, called Lyapunov function, as a scalar

measure of the aggregate congestion of all queues in the system. Scheduling algorithms are then

evaluated in terms of how they affect the change in the Lyapunov function from one slot to the next.

Definition 9 (Lyapunov Function). A function Ly : RN → R is called Lyapunov function if it satisfies

the following properties: (i) Ly(.) is non-negative, i.e. Ly(x) ≥ 0 for all x ∈ RN , (ii) Ly(x) → +∞
as x→ +∞, (iii) non-decreasing in any of its arguments, and (iv) differentiable.

Theorem 1 (Foster-Lyapunov Theorem). Let {q(t)} be an irreducible discrete time Markov chain

with a countable state space. Suppose that there exists a Lyapunov function Ly(.) and a finite set

X ∈ RN+ satisfying the following conditions:

• E {Ly(q(t+ 1))− Ly(q(t)) | q(t) = x} < +∞ if x ∈ X

• E {Ly(q(t+ 1))− Ly(q(t)) | q(t) = x} < 0 if x ∈ X c
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then the Markov chain {q(t)} is positive recurrent.

It is worth mentioning that the expression E {Ly(q(t+ 1))− Ly(q(t)) | q(t) = x} is called the

(one step) Lyapunov drift, representing the expected change in the Lyapunov function from one slot

to the next. To make the link between the Foster-Lyapunov theorem and the stability of the adopted

system, we consider the quadratic Lyapunov function defined as the following

Ly(q(t)) ,
1

2
(q(t) · q(t)) =

1

2

N∑
k=1

(qk(t))2. (2.13)

Based on the above Lyapunov function, we next present an extension of the Foster-Lyapunov Theorem,

which represents a sufficient condition for stability.

Theorem 2 (Extension of Foster-Lyapunov Theorem). Under the quadratic Lyapunov function de-

fined as Ly(q(t)) = 1
2

∑N
k=1(qk(t))2, if there exist constants E < ∞ and ε > 0, such that for all

time-slots the following inequality holds

E {Ly(q(t+ 1))− Ly(q(t)) | q(t)} ≤ E − ε
∑
k

qk(t), (2.14)

then the Markov chain {q(t)} is positive recurrent. Furthermore, the system q(t) is strongly stable,

meaning that

lim sup
T→∞

1

T

T−1∑
t=0

E {qk(t)} <∞, ∀k ∈ {1, ..., N}. (2.15)

2.3.2 Strong Stability Proof for the Max-Weight Policy

Using the tools given in the previous subsection, we now provide a detailed proof of the stability of

the Max-Weight policy. Specifically, we want to prove that the following statement holds.

Theorem 3. The Max-Weight policy is throughput optimal. In other words, it can stabilize the system

for every mean arrival rate vector that is inside the system stability region.

Proof. Let us use ∆* to denote the Max-Weight policy. Define the quadratic Lyapunov function

Ly(q(t)) , 1
2 (q(t) · q(t)) = 1

2

∑N
k=1 qk(t)2. Note that qk(t)2 is nothing but qk((t))2; the same re-

mark holds for Ak(t) and Dk(t), i.e. Ak(t)2 and Dk(t)2 are used to denote (Ak(t))2 and (Dk(t))2,

respectively. To describe the evolution of the queue lengths, we use the following dynamic equation

qk(t+ 1) = max {qk(t)−Dk(t), 0}+Ak(t), ∀k ∈ {1, . . . , N},∀t ∈ {0, 1, . . .}. (2.16)
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From the evolution equation given above we have

Ly(q(t+ 1))− Ly(q(t)) =
1

2

N∑
k=1

[
qk(t+ 1)2 − qk(t)2

]
=

1

2

N∑
k=1

[
(max {qk(t)−Dk(t), 0}+Ak(t))2 − qk(t)2

]
≤

N∑
k=1

[
Ak(t)2 +Dk(t)2

]
2

+

N∑
k=1

qk(t) [Ak(t)−Dk(t)] , (2.17)

where in the final inequality we have used the fact that for any q ≥ 0, A ≥ 0, D ≥ 0, we have

(max {q −D, 0}+A)2 ≤ q2 +A2 +D2 + 2q(A−D).

Now define Dr(q(t)) as the conditional Lyapunov drift for time-slot t

Dr(q(t)) , E {Ly(q(t+ 1))− Ly(q(t)) | q(t)} . (2.18)

From (2.17), we have that Dr(q(t)) for a general scheduling policy satisfies

Dr(q(t)) ≤ E

{
N∑
k=1

Ak(t)2 +Dk(t)2

2
| q(t)

}
+

N∑
k=1

qk(t)ak − E

{
N∑
k=1

qk(t)Dk(t) | q(t)

}
, (2.19)

where we have used the fact that arrivals are independent and identically distributed (i.i.d.) over slots

and hence independent of current queue backlogs, so that E {Ak(t) | q(t)} = E {Ak(t)} = ak. Now

define E as a finite positive constant that bounds the first term on the right-hand-side of the above

drift inequality, so that for all t, all possible qk(t), and all possible control decisions that can be taken,

we have

E

{
N∑
k=1

Ak(t)2 +Dk(t)2

2
| q(t)

}
≤ E. (2.20)

Note that E exists since Ak(t) < Amax and the amount of data that can be transmitted Dk(t) is

bounded, i.e. there exists a finite positive constant Dmax such that Dk(t) < Dmax.

Using the expression in (2.19) yields

Dr(q(t)) ≤ E +

N∑
k=1

qk(t)ak − E

{
N∑
k=1

qk(t)Dk(t) | q(t)

}
. (2.21)

The conditional expectation at the right-hand-side of the above inequality is with respect to the

randomly observed channel states. To emphasize how the right-hand-side of the above inequality

depends on the scheduling decision, for example ∆*, we use the identity Dk(t) = D
(∆*)
k (t). Thus,
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under ∆* the drift can be expressed as

Dr(∆*)(q(t)) ≤ E +

N∑
k=1

qk(t)ak − E

{
N∑
k=1

qk(t)D
(∆*)
k (t) | q(t)

}
. (2.22)

Let us define ∆ as any alternative (possibly randomized) scheduling policy that can be made on

time-slot t. Using the definition of ∆*, that is, selecting Li that maximizes
∑
k∈Li qk(t)Dk(t), we have

E

{
N∑
k=1

qk(t)D
(∆*)
k (t) | q(t)

}
≥ E

{
N∑
k=1

qk(t)D
(∆)
k (t) | q(t)

}
. (2.23)

Plugging the above directly into (2.22) yields

Dr(∆*)(q(t)) ≤ E −
N∑
k=1

qk(t)
[
E
{
D

(∆)
k (t) | q(t)

}
− ak

]
. (2.24)

Now, suppose the arrival rate vector a is interior to the stability region Λ, and consider a particu-

lar policy ∆ that depends only on the channels states and that can stabilize the system. Because

these states are assumed to be i.i.d. over slots, the resulting service rates, D
(∆)
1 (t), . . . , D

(∆)
N (t), are

independent of the current queue length vector, q(t). Using the above, we can write

E
{
D

(∆)
k (t) | q(t)

}
= E

{
D

(∆)
k (t)

}
≥ ak + εmax(a), ∀k ∈ {1, . . . , N} , (2.25)

where εmax(a) is a positive constant that depends on the mean arrival rate vector, and consequently

Dr(∆*)(q(t)) ≤ E − εmax(a)

N∑
k=1

qk(t). (2.26)

Based on the above expression and using the statement of Theorem 2, we have that the Markov

chain {q(t)} is positive recurrent, and the system q(t) is strongly stable. We next show why this

latter strong-stability statement holds. Taking an expectation of the expression in (2.26) over the

randomness of the queue lengths yields the following

E
{
Dr(∆*)(q(t))

}
≤ E − εmax(a)

N∑
k=1

E {qk(t)} . (2.27)

Using the definition of Dr(∆*)(q(t)) with the law of iterated expectations gives

E
{
Dr(∆*)(q(t))

}
= E {E {Ly(q(t+ 1))− Ly(q(t)) | q(t)}}

= E {Ly(q(t+ 1))} − E {Ly(q(t))} . (2.28)

The above holds for all t ∈ {0, 1, 2, . . .}. Summing over t ∈ {0, 1, . . . , T − 1} for some integer T > 0
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yields (by telescoping sums)

E {Ly(q(T ))} − E {Ly(q(0))} ≤ ET − εmax(a)

T−1∑
t=0

N∑
k=1

E {qk(t)} . (2.29)

Rearranging terms, dividing by εmax(a)T , and using the fact that Ly(q(0)) ≥ 0 yields

1

T

T−1∑
t=0

N∑
k=1

E {qk(t)} ≤ E

εmax(a)
+

E {Ly(q(0))}
εmax(a)T

. (2.30)

Assuming E {Ly(q(0))} <∞ and taking a lim sup we eventually get

lim sup
T→∞

1

T

T−1∑
t=0

N∑
k=1

E {qk(t)} ≤ E

εmax(a)
. (2.31)

Hence, all the queues are strongly stable, and the total average queue length (summed over all the

queues in the system) is less than or equal to the bound E
εmax(a) . Therefore, the Max-Weight algorithm

ensures that the system is strongly stable whenever the mean arrival rate vector a is interior to the

stability region Λ. From equation (2.31), it can be seen that the average queue congestion bound is

inversely proportional to the distance the rate vector is away from the stability region boundary.

2.3.3 Scheduling with Known Mean Arrival Rates

We first point out that the scheduling approach we present in this case is based on a sufficient condition

for rate stability, where this condition consists in having the mean service rate greater than or equal

to the mean arrival rate [16]. If we have a system where the mean arrival rates are known, the rate

stability of the system can be achieved by a predefined time-sharing strategy. Indeed, a mean arrival

rate vector a ∈ Λ can be expressed as a convex combination of the points in V, where V denotes the

set that contains the corner points (i.e. vertices) of Λ. More in detail, we have a =
∑
n pnrn, where

rn represents the n-th element of V, pn ≥ 0 and
∑
n pn = 1; it should be noted that each point rn

represents a specific scheduling decision. Then, we can find at least one point λ on the boundary of

Λ such that a � λ. Since λ ∈ Λ, we can write λ =
∑
n δnrn, with δn ≥ 0 and

∑
n δn = 1. Then, to

achieve queues stability, each point (i.e. decision) rn should be selected with probability δn.

2.4 Suboptimal or Approximate Scheduling

We here provide and discuss the definition of an approximate policy [15, 16]. We keep adopting the

same scheme defined in the previous section. Let ∆* and ∆ denote the optimal and approximate

scheduling policies, respectively. Recall that ∆* is a throughput optimal policy, i.e. it achieves the

system stability region Λ. As mentioned earlier, the amount of data that can be transmitted to each

user, e.g. Dk(t), depends on the scheduling policy. To represent this dependency, we use the identities

Dk(t) = D
(∆*)
k (t) and Dk(t) = D

(∆)
k (t) under ∆* and ∆, respectively. We note that when e.g. user k
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is not selected by the scheduling policy for transmission, we have Dk(t) = 0.

Definition 10. If for some constants β and Ea, such that 0 ≤ β ≤ 1 and 0 ≤ Ea <∞, we have∑
k

E
{
qk(t)D

(∆)
k (t) | qk(t)

}
≥ β

∑
k

E
{
qk(t)D

(∆*)
k (t) | qk(t)

}
− Ea, (2.32)

then ∆ is called (β,Ea)-approximate policy with respect to the optimal policy ∆*.

Under this definition, we have that policy ∆ can provide stability whenever the arrival rates are

interior to βΛ, which is a β-scaled version of the stability region Λ. Hence, if the scheduling policy

is off from the optimum by no more than an additive constant Ea (i.e. β = 1), then the (stability)

throughput optimality is still possible; but, in this case, the average queue length increases by an

additive constant proportional to Ea. However, if the scheduling policy deviates from optimality by a

multiplicative constant, the achievable stability region may be a subset of the capacity region.

From the above observations, one can conclude that if the maximum per-time-slot length change in

any queue is bounded, full system stability can still be achieved even by using out of date queue

lengths information. In other words, queue updates can be arbitrarily infrequent without affecting

stability of the system, although the average queue length may increase in proportion to the duration

between updates, which means greater average delay because Little’s Theorem tells us that average

queue length is proportional to average delay [16].
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Chapter 3

Queueing Stability and CSI Probing

of a TDD Wireless Network with

Interference Alignment

3.1 Overview

In this chapter, we study the queueing stability of a MIMO interference channel under TDD mode

with limited backhaul capacity and taking into account the probing cost. The interference channel is

an information theoretic concept that models wireless networks in which several transmitters simul-

taneously communicate data to their paired receivers. One of the key issues in such systems is the

interference that is caused by multiple transmitter-receiver pairs communicating on the same channel,

resulting into severe performance degradations unless treated properly. The traditional approach for

communication in such channels was orthogonalization, where resources are split among the various

pairs. The use of multiple antennas [2] has emerged as one of the enabling technologies to increase the

performance of wireless systems. Under such an approach, two important decisions need to be taken:

(i) which interference management technique we should adopt, i.e. how to precode and decode the

signals in such a way as to efficiently manage the interference problem, and (ii) at every slot, which

pairs should be scheduled.

Regarding the choice of the interference management technique, IA was introduced [7] as an effi-

cient technique and is shown to result in higher throughputs compared to conventional interference-

agnostic methods. Indeed, IA is a linear precoding technique that attempts to align interfering signals

in time, frequency, or space. In MIMO networks, IA utilizes the spatial dimension offered by mul-

tiple antennas for alignment. By aligning interference at all receivers, IA reduces the dimension of

interference, allowing receivers to suppress interference via linear techniques and decode their desired

signals interference free. Allowing some coordination between the transmitters and receivers enables

interference alignment. In this way, it is possible to design the transmit strategies in such a way as to
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ensure that the interference aligns at each receiver. From a sum rate perspective, with N transmitter-

receiver pairs, an ideal IA strategy achieves a sum throughput on the order of N/2 interference free

links [7]. Basically each pair can effectively get half the system capacity. Thus, unlike the conventional

interference channel, using IA there is a net sum capacity increase with the number of (active) pairs.

A major challenge of the IA scheme lies in the fact that the global CSI must be available at each trans-

mitter. Such a challenge was the subject of extensive research over the last few years. For instance,

in scenarios where the receivers quantize and send the CSI back to the transmitters, the IA scheme

is explored over frequency selective channels for single-antenna users in [87] and for multiple-antenna

users in [88]. Both references provide degree-of-freedom (DoF)-achieving quantization schemes and

establish the required scaling of the number of feedback bits. For alignment using spatial dimensions,

[89] provides the scaling of feedback bits to achieve IA in MIMO interference channel (IC). To overcome

the problem of scaling codebook size, and relax the reliance on frequency selectivity for quantization,

[90] proposed an analog feedback strategy for constant MIMO interference channels. From another

point of view, [91] provides an analysis of the effect of imperfect CSI on the mutual information of the

interference alignment scheme. On the other side, for TDD systems, every transmitter can estimate

its downlink channels from the uplink transmission phase thanks to reciprocity. However, for the

IA scheme, this local knowledge is not sufficient, and the transmitters need to share their channel

estimates that can be carried out through backhaul links between transmitters. These links generally

have a limited capacity, which should be exploited efficiently. In [92] a compression scheme for the

cloud radio access networks is proposed. In [93] the Grassmannian Manifold quantization technique

was adopted to reduce the information exchange over the backhaul. It is noteworthy to mention that

the above cited works do not account for the dynamic traffic processes of the users, meaning that they

assume users with infinite back-logged data.

We draw the attention to the fact that IA technique can be used with a number of transmitter-

receiver pairs greater than or equal to two. On the other side, for the special case where we have a

point-to-point MIMO system, i.e. only one pair, SVD technique can be applied and was shown to

provide very good performance [6,94]; note that in this case other techniques can be used such as Zero

Forcing (ZF) and Matched Filtering (MF) [95].

It is of great interest to investigate the impact of MIMO in the higher layers [96], more specifically

in the media access control (MAC) layer. The cross-layer design goal here is the achievement of the

entire stability region of the system. In broad terms, the stability region of a network is the set of

arrival rate vectors such that the entire network load can be served by some service policy without

an infinite blow up of any queue. The special scheduling policy achieving the entire stability region,

called the optimal policy, is hereby of particular interest. The concept of stability-optimal operation

concept has been extensively investigated in the wireless framework under various traffic and network

scenarios. For instance, in [97] the authors have presented a precoding strategy that achieves the

system stability region, under the assumptions of perfect CSI and use of Gaussian codebooks. This

strategy is based on Lyapunov drift minimization given the queue lengths and channel states every

time-slot. In [43], the authors have considered the broadcast channel (BC) and proposed a technique

based on ZF precoding, with a heuristic user scheduling scheme that selects users whose channel states

are nearly orthogonal vectors and illustrate the stability region this policy achieves via simulations.

In [98], it has been noticed that the policy resulting from the minimization of the drift of a quadratic
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Lyapunov function is to solve a weighted sum rate maximization problem (with weights being the

queue lengths) each time-slot, and an iterative water-filling algorithm has been proposed for this

purpose. In addition, taking into account the probing cost, the authors in [68] have examined three

different scheduling policies (centralized, decentralized and mixed policies) for MISO wireless downlink

systems under ZF precoding technique.

In this chapter, we consider a MIMO network where multiple transmitter-receiver pairs operate in

TDD mode under backhaul links of limited capacity. Each transmitter acquires its local CSI from its

corresponding receiver by exploiting the channel reciprocity. We use (pre-assigned) orthogonal pilot

sequences among the users, so the length of each one of these sequences should be proportional to the

number of active users in the system; orthogonal sequences are produced e.g. by Walsh-Hadamard on

pseudonoise sequences. It means that after acquiring the CSI of, for example, L users, the throughput

is multiplied by 1−Lθ, where θ is the fraction of time that takes the CSI acquisition of one user [99].

Depending on the number of scheduled pairs at a time-slot, we distinguish two cases: (i) if the number

of scheduled pairs is greater than or equal to two, IA technique is applied, and each transmitter needs

to send a quantized version of its local CSI to other transmitters using a fixed number of bits B per

channel matrix, and (ii) if only one pair is scheduled, we apply SVD technique. It is important to

focus on the trade-off between having a large number of active transmitter-receiver pairs (so having a

high probing cost but many pairs can communicate simultaneously) and having much time of the slot

dedicated to data transmission (which means getting a low probing cost but few pairs can communicate

simultaneously) [68]. In order to choose the subset of active pairs at each slot, we adopt a centralized

scheme where the decision of which pairs to schedule is made at a central scheduler (CS) based only

on the statistics of the channels of the users and the state of their queue lengths at each slot [63].

Note that the centralized approach is used in current standards (e.g. LTE [9]), where the base-station

explicitly requests some users for their CSI.

Contributions

The main contributions and the organization of this chapter are summarized as follows.

• Section 3.2 presents the adopted system model and the interaction between the physical layer and

the queueing performance.

• The average rate expressions for both the perfect (i.e. unlimited backhaul capacity) and imperfect

(i.e. limited backhaul capacity) cases are derived in Section 3.3.

• In Section 3.4, we present a stability analysis for the symmetric system where all the path loss

coefficients are equal to each other. Specifically, for this system:

? We provide a precise characterization of the system stability region and we propose an optimal

scheduling policy to achieve this region in both the perfect and imperfect cases.

? Under both cases, we investigate the conditions under which the use of IA (i.e. applied if the

number of active pairs ≥ 2) can yield a queueing stability gain compared to SVD (i.e. applied if

there is only 1 active pair).

? We examine the maximum gap between the stability region under the imperfect case and the
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stability region under the perfect case. We also investigate the impact of changing the number of

bits on the system stability region.

• In Section 3.5, we present a stability analysis for the general system where the path loss coefficients

are not necessarily equal to each other. In detail, for this system:

? We investigate the stability performance by characterizing the system stability region and pro-

viding an optimal scheduling policy under both the imperfect and perfect cases.

? Since the scheduling policy is of a high computational complexity, under the imperfect case we

propose an approximate policy that has a reduced complexity but that achieves only a fraction of

the stability region of the imperfect case; we point out that this policy relies on an average rate

approximation (for the imperfect case) that we first calculate. A characterization of the fraction

this policy achieves is also provided.

? Using the average rate approximation mentioned above, we examine the gap between the stability

region under the imperfect case and the stability region under the perfect case.

• In Section 3.6, we provide a stability analysis for the symmetric case with multiple rate levels. The

investigated points are similar to those in the symmetric case with single rate level.

• Section 3.7 is dedicated to numerical results and relevant discussions.

• Finally, Section 3.8 concludes the chapter.

3.2 System Model

We consider the MIMO interference channel with N transmitter-receiver pairs shown in Figure 3.1.

For simplicity of exposition, we consider a homogeneous network where all transmitters are equipped

with Nt antennas and all receivers (i.e. users) with Nr antennas. We assume that time is slotted. As

will be explained later, only a subset L(t), of cardinality L(t), of pairs is active at time-slot t, with

L(t) ≤ N . Transmitter k has dk ≤ min (Nt, Nr) independent data streams to transmit to its intended

user k. For the cases where L(t) ≥ 2, while each transmitter communicates with its intended receiver,

it also creates interference to other L(t)− 1 unintended receivers.

Given this channel model, the received signal at active user k (∈ L(t)) can be expressed as

yk =
∑
i∈L(t)

√
ζkiP

di
Hki

di∑
j=1

v
(j)
i x

(j)
i + zk, (3.1)

where yk is the Nr × 1 received signal vector, zk is the additive white complex Gaussian noise with

zero mean and covariance matrix σ2INr
, Hki is the Nr×Nt channel matrix between transmitter i and

receiver k with independent and identically distributed (i.i.d.) zero mean and unit variance complex

Gaussian entries, ζki represents the path loss of channel Hki, x
(j)
i represents the j-th data stream

from transmitter i, P is the total power at each transmitting node, which is equally allocated among

its data streams, and v
(j)
i is the corresponding Nt × 1 precoding vector of unit norm. For the rest of

the chapter we denote by αki the fraction ζkiP
di

, i.e. αki = ζkiP
di

.
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Figure 3.1: A sketch of an N -user MIMO interference channel with limited backhaul.

The scheduling rule to select the subset of active pairs at each time-slot will be discussed later in

the chapter. Depending on the number of scheduled pairs L(t), two cases are to consider:

• If L(t) = 1, i.e. only one pair is active at time-slot t: in this case we use singular value

decomposition (SVD) technique, which was shown to provide very good performance for point-

to-point MIMO systems [94]. Note that other techniques can be considered, such as Zero

Forcing (ZF) and Matched Filtering (MF).

• If L(t) ≥ 2, i.e. at least two pairs are active at time-slot t: in this case we perform Interference

Alignment (IA) technique, which was shown to provide good performance for multipoint-to-

multipoint MIMO systems [7].

For clarity of exposition, in this section we present the IA scheme and in the next Section (Section

3.3, in which we also derive the average rates) we present the SVD scheme.

3.2.1 Interference Alignment Technique

IA is an efficient linear precoding technique that often achieves the full DoF supported by MIMO

interference channels. In cases where the full DoF cannot be guaranteed, IA has been shown to provide

significant gains in high SNR sum-rate. To investigate IA in our model, we start by examining the

effective channels created after precoding and combining. For tractability, we restrict ourselves to
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a per-stream zero-forcing receiver. Recall that in the high (but finite) SNR regime, in which IA is

most useful, gains from more involved receiver designs are limited [100]. Under the adopted scheme,

receiver k uses the Nr × 1 combining vector umk (of unit norm) to detect its m-th stream, such as

x̂
(m)
k =

(
u

(m)
k

)H
yk

=

desired signal︷ ︸︸ ︷
√
αkk

(
u

(m)
k

)H
Hkkv

(m)
k x

(m)
k +

inter-stream interference (ISI)︷ ︸︸ ︷
√
αkk

dk∑
j=1,j 6=m

(
u

(m)
k

)H
Hkkv

(j)
k x

(j)
k

+

inter-user interference (IUI)︷ ︸︸ ︷∑
i∈L(t),i6=k

√
αki

di∑
j=1

(
u

(m)
k

)H
Hkiv

(j)
i x

(j)
i +

noise︷ ︸︸ ︷(
u

(m)
k

)H
zk, (3.2)

where the first term at the right-hand-side of this expression is the desired signal, the second one is

the inter-stream interference (ISI) caused by the same transmitter, and the third one is the inter-user

interference (IUI) resulting from the other transmitters. In order to mitigate these interferences and

improve the system performance, IA is performed accordingly, that is designing the set of combining

and precoding vectors such that(
u

(m)
k

)H
Hkiv

(j)
i = 0, ∀(i, j) 6= (k,m), with i, k ∈ L(t). (3.3)

In the following we state some additional assumptions on the design of these vectors [90]:

• Vector v
(j)
i is a function of all the cross channels Hkl ∀k, l, k 6= l only.

• Vector u
(m)
k is a function of vectors Hkiv

(j)
i ∀i 6= k, ∀j and Hkkv

(j)
k , ∀j 6= m.

• Matrix Vk =
[
v

(1)
k , . . . ,v

(dk)
k

]
is unitary.

From the above properties/assumptions we can deduce that u
(m)
k is independent of Hkkv

(m)
k . Note

that the conditions in (3.3) are those of a perfect interference alignment. In other words, suppose

that all the transmitting nodes have perfect global CSI and each receiver obtains a perfect version of

its corresponding combining vectors, ISI and IUI can be suppressed completely. However, obtaining

perfect global CSI at the transmitters is not always practical due to the fact that backhaul links, which

connect transmitters to each other, are of limited capacity. The CSI sharing mechanism is detailed in

the next subsection.

Finally, some remarks are in order. We note that the approach to design the IA vectors is not a

figure of interest in our contribution, however our analysis holds for every approach that produces IA

vectors with simultaneously all the properties given before [90]; such an approach was the subject of

investigation in several works, as for instance [7,101]. In addition, we assume that each active receiver

obtains a perfect version of its corresponding combining vectors. The cost of this latter process is not

considered in our analysis. Moreover, we do not perform power control for our system. This is done

to further simplify the transmission scheme.
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3.2.2 CSIT Sharing Over Limited Capacity Backhaul Links

The process of CSI sharing is restricted to the scheduled pairs (represented by subset L(t)). Thus,

here, even if we did not mention it, when we write “transmitter” (resp., “user”) we mean “active

transmitter” (resp., “active user”). Three different scenarios regarding the CSI sharing problem can

be considered:

1. Each transmitter receives all the required CSI and independently computes the IA vectors,

2. The IA processing node is a separate central node that computes and distributes the IA vectors

to other transmitters,

3. One transmitter acts as the IA processing node.

For the last two scenarios, one node performs the computations and then distributes the IA vectors

among transmitters. So, since the backhaul is limited in capacity, in addition to the quantization

required for the CSI sharing process, another quantization is needed to distribute the IA vectors over

the backhaul. This is not the case for the first scenario where only the first quantization process is

needed. Thus, for simplicity of exposition and calculation, we focus on the first scenario, which we

detail in the following paragraph.

We adopt a scenario where each transmitter receives all the required CSI and independently

computes the IA vectors. As alluded earlier, global CSI is required at each transmitting node in order

to design the IA vectors that satisfy (3.3). As shown in Figure 3.1, we suppose that all the transmitters

are connected to a CS via their limited backhaul links, i.e. this CS serves as a way for connecting the

transmitters to each other; as we will see later on, this scheduler decides which pairs to schedule at

each time-slot. We assume a TDD transmission strategy, which enables the transmitters to estimate

their channels toward different users by exploiting the reciprocity of the wireless channel. We consider

throughout this chapter that there are no errors in the channel estimation.

Under the adopted strategy, the users send their training sequences in the uplink phase, allowing each

transmitter to estimate (perfectly) its local CSI, meaning that the k-th transmitter estimates perfectly

the channels Hik, ∀i ∈ L(t). However, the local CSI of other transmitters, excluding the direct channels

(i.e. for the k-th transmitter the direct channel is given by matrix Hkk), are obtained via backhaul

links of limited capacity. In such limited backhaul conditions, a codebook-based quantization technique

needs to be adopted to reduce the huge amount of information exchange used for CSI sharing, which

we detail as follows. Let hik denote the vectorization of the channel matrix Hik. Then, for each

i 6= k, transmitter k selects the index no that corresponds to the optimal codeword in a predetermined

codebook CB =
[
ĥ

(1)
ik , ..., ĥ

(2B)
ik

]
according to

no = arg max
1≤n≤ 2B

∣∣∣∣(h̃ik

)H
ĥ

(n)
ik

∣∣∣∣2 , (3.4)

in which B is the number of bits used to quantize Hik and h̃ik = hik ‖hik‖−1 is the channel direction

vector. After quantizing all the matrices of its local CSI, we assume that transmitter k sends the cor-

responding optimal indexes to all other active transmitters, which share the same codebook, allowing

these transmitters to reconstruct the quantized local knowledge of transmitter k.

We point out that each transmitter quantizes its local CSI excluding the direct channel since, as
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Figure 3.2: Global CSI knowledge at transmitter k under the imperfect case.

noted earlier, it is not required when computing the IA vectors of other transmitters. The global CSI

knowledge at transmitter k is summarized in Figure 3.2. Let us now define the quantization error as

eik = 1−
(
| ĥHik hik|2(‖hki‖2)−1

)
, (3.5)

where ĥik is the quantization of hik, and adopt a similar model to the one used in [102, Lemma 6],

[63], which relies on the theory of quantization cell approximation. Let Q = NtNr−1. The cumulative

distribution function (CDF) of eik is then given by the following

P {eik ≤ ε} =

 2BεQ, for 0 ≤ ε ≤ 2−
B
Q

1, for ε > 2−
B
Q

(3.6)

As a final remark, we note that we assume that the number of bits B is fixed and does not change

with the number of scheduled pairs L(t). This assumption is made to simplify the analysis, because

otherwise we should consider the relation between these two numbers, which would add a considerable

amount of complexity to the analysis.

3.2.3 Rate Model and Impact of Training

Before proceeding with the description, we define the perfect case as the case where the backhaul has an

infinite capacity, which leads to perfect global CSI knowledge at the transmitters; so no quantization

is needed. Further, we call imperfect case the model described previously, where a quantization is

performed over the backhaul of limited capacity and a fixed number of bits B is used to quantize each

channel matrix.

As explained in the previous subsection, for the perfect case the IA constraints null the ISI and

the IUI, and no residual interference exists. On the other hand, for the imperfect case we recall that

each (active) transmitter quantizes its local CSI, excluding the direct channel, and sends it to all other

(active) transmitters. At the same time, this transmitter receives the quantized local CSI (except the

direct channel) of each other transmitter. Let us denote Ĥki as the quantization version of Hki, which
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3.2. System Model

can be formed by reshaping vector ĥki. Then, e.g., transmitter k designs its IA vectors based on:

? Hkk, i.e. perfect direct channel.

? Ĥik ∀i 6= k, i.e. quantized version of the channels of its local CSI (without the direct channel).

? Ĥli ∀i, l, i 6= l, i 6= k, i.e. the imperfect knowledge it receives from other transmitters.

It can be noticed that although transmitter k has a perfect version of the Hik ∀i 6= k, this transmitter

uses the quantized version of these channels in the design of its IA vectors. This is considered so that

each transmitter can compute the (same) precoding vectors of other transmitters, where we recall that

these vectors are used in the computation of the combining vector of this transmitter. Based on the

above, under the imperfect case the IA technique is able to completely cancel the ISI but not the IUI.

In other words, under this case we have(
û

(m)
k

)H
Ĥkiv̂

(j)
i = 0,

(
û

(m)
k

)H
Hkiv̂

(j)
i 6= 0, ∀i 6= k,∀m,∀j, and k, i ∈ L(t),(

û
(m)
k

)H
Hkkv̂

(j)
k = 0, ∀j 6= m,∀k, and k ∈ L(t),

(3.7)

where v̂
(m)
k and û

(m)
k , ∀k,m, are the precoding and combining vectors, respectively, designed under

the imperfect case. Similarly to the perfect case, it can be shown that for the imperfect case the

following properties hold [90]:

? Vector v̂
(j)
i is a function of all the cross channels Ĥkl ∀k, l, k 6= l only.

? Vector û
(m)
k is a function of vectors Ĥkiv̂

(j)
i ∀i 6= k, ∀j and Hkkv̂

(j)
k , ∀j 6= m.

? Matrix V̂k =
[
v̂

(1)
k , . . . , v̂

(dk)
k

]
is unitary.

Thus, we can deduce that û
(m)
k is independent of Hkkv̂

(m)
k . Using the above, the SINR/SNR for

stream m at active receiver k can be written as

γ
(m)
k =



αkk

∣∣∣∣(û(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2
σ2 +

∑
i∈L(t),i6=k

αki
di∑
j=1

∣∣∣∣(û(m)
k

)H
Hkiv̂

(j)
i

∣∣∣∣2
, imperfect case

αkk

∣∣∣∣(u
(m)
k

)H
Hkkv

(m)
k

∣∣∣∣2
σ2

, perfect case

(3.8)

where we recall that v
(m)
k and u

(m)
k , ∀k,m, are designed under the perfect case (i.e. using perfect

global CSI). As alluded earlier, only a subset L(t) of pairs is scheduled at a time-slot, where we recall

that L(t) denotes the number of scheduled pairs at time-slot t, i.e. L(t) = |L(t)|. For notational

convenience, we will use signal-to-interference-plus-noise ratio (SINR) as a general notation to denote

SNR for the perfect case and SINR for the imperfect case, unless stated otherwise.

We now explain some useful points that are adopted in the rate model. At a given time-slot, the

instantaneous rate R of stream m of pair k is transmitted successfully if the SINR γ
(m)
k of receiver k

is higher than or equal to a given threshold τ ; otherwise, the transmission is not successful and the

instantaneous bit rate is 0. Of course, the choice of τ depends on R and vice-versa. The relation

(mainly point-to-point relation) between the SINR threshold and the bit rate has been studied widely
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3.2. System Model

in the literature and therefore lies out of the scope of this chapter. In fact, our analysis is valid for any

point-to-point relation between τ and R. Our assumption is simply that a given rate R is transmitted

if the SINR is above a given threshold τ . Let us denote by R̃k(t) the assigned rate (in units of bits/slot)

for user k at time-slot t, thus R̃k(t) is the sum of the assigned rates for all the streams of user k at

time-slot t. In other words, we have

R̃k(t) =

dk∑
m=1

R1(
γ
(m)
k (t)≥ τ

), (3.9)

where 1(·) is the indicator function. For this model, channel acquisition cost is not negligible and

should be considered. As mentioned earlier, we consider a system under TDD mode where users send

training sequences in the uplink so that the transmitters can estimate their channels. This scheme

uses orthogonal sequences among the users, so their lengths are proportional to the number of active

users in the system. We assume that acquiring the CSI of one user takes fraction θ of the slot. Thus,

since we have L(t) active users, the actual rate for transmission to active user k at time-slot t is

(1− L(t)θ)R̃k(t). We denote this rate by Dk(t), i.e.

Dk(t) = (1− L(t)θ)R̃k(t)

= (1− L(t)θ)

dk∑
m=1

R1(
γ
(m)
k (t)≥ τ

). (3.10)

Note that Dk(t) is set to 0 if pair k is not active at slot t.

Under the above setting, the average rate for active user k can be written in function of the

transmission success probability (i.e. the probability that the corresponding SINR is greater than or

equal to a certain threshold) conditioned on the subset of active pairs as

E {Dk(t) | L(t)}=(1−L(t)θ)

dk∑
m=1

RP
{
γ

(m)
k (t) ≥ τ | L(t)

}
. (3.11)

It can be noticed that the feedback overhead (1−L(t)θ) scales with the number of active pairs, meaning

that when L(t) is large there will be little time left to transmit in the slot before the channels change

again. We point out that if L(t) = 1, then γ
(m)
k (t) is the SINR obtained using the SVD scheme, which

will be presented in Section 3.3.

3.2.4 Queue Dynamics, Stability and Scheduling Policy

For each user, we assume that the incoming data is stored in a respective queue (buffer) until

transmission, and we denote by q(t) = (q1(t), ..., qN (t)) the queue length vector. We designate by

A(t) = (A1(t), ..., AN (t)) the vector of number of bits arriving in the buffers in time-slot t, which is

an i.i.d. in time process, independent across users and with Ak(t) < Amax. The mean arrival rate

(in units of bits/slot) for user k is denoted by ak = E {Ak(t)}. We recall that, e.g., user k will get

Dk(t) served bits per slot if it gets scheduled and zero otherwise. Note that Dk(t) is finite because R

is finite, so we can define a finite positive constant Dmax such that Dk(t) < Dmax, for k = 1, . . . , N .
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3.2. System Model

At each time-slot, the CS selects the pairs to schedule based on the queue lengths and average

rates in the system. To this end, we suppose that:

• This scheduler has full knowledge of average rate values under different combinations of choosing

active pairs, which can be provided offline since an average rate is time-independent,

• At each time-slot, each transmitter sends its queue length to the CS so that it can obtain all

the queue dynamics of the system,

• The cost of providing such knowledge to the scheduler will not be taken into account.

After selecting the set of pairs to be scheduled (represented by L(t)), the CS broadcasts this informa-

tion so that the selected transmitter-receiver pairs activate themselves, and then the active receivers

send their pilots in the uplink so that the (active) transmitters can estimate the CSI. It is worth

noting that, as alluded previously, if we select a large number of pairs (L(t)) for transmission, many

pairs can communicate but a high CSI acquisition cost is needed (i.e. this will leave a small fraction

of time for transmission). On the other hand, a small L(t) requires a low acquisition cost, but, at

the same time, it allows a few number of simultaneous transmissions. The decision of selecting active

pairs is referred simply as the scheduling policy. At the t-th slot, this policy can be represented by an

indicator vector s(t) ∈ S := {0, 1}N , where the k-th component of s(t), denoted sk(t), is equal to 1 if

the k-th queue (pair) is scheduled or otherwise equal to 0. It can be seen that the cardinality of set S
is equal to |S| = 2N . Remark that, in terms of notation, s(t) and L(t) are used to represent the same

thing, that is the scheduled pairs at time-slot t, but they illustrate it differently. Specifically, using

s(t) the active pairs correspond to the non-zero coordinates (equal to 1), whereas L(t) contains the

indexes (i.e. positions) of these pairs. Let L be the set of all possible L(t).

Now, using the definition of Dk(t), which was provided earlier, the queueing dynamics (i.e. how

the queue lengths evolve over time) can be described by the following

qk(t+ 1) = max {qk(t)−Dk(t), 0}+Ak(t), ∀k ∈ {1, . . . , N},∀t ∈ {0, 1, . . .}, (3.12)

where we note that Dk(t) depends on the scheduling policy.

3.2.4.1 Max-Weight Scheduling Policy

If the arrival rates are known, the queue stability can be achieved by pre-defined time-sharing between

scheduling different subsets of queues [63]. However, in practice, the arrival rates are usually unknown.

For this case, the queues can be stabilized using a policy that considers the knowledge of average rates

and queue lengths. Such a policy is called Max-Weight [63, 103], i.e. it maximizes a weighted sum,

and is described below.

∆* : s(t) = arg max
s∈S

{r(s) · q(t)} , (3.13)

where “·” is the scalar (dot) product, and r(s) is constructed by replacing the non-zero coordinates

of s, which represent the selected pairs, with their corresponding average rate values. Recall that L
represents the positions (indexes) of the non-zero coordinates of s; for example, if s = (0, 0, 1, 1, 1, 0),

then L = {3, 4, 5}, meaning that pairs 3, 4 and 5 are active. Hence, vector r(s) contains E{Dk | L} at
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position k if the k-th coordinate of s is ’1’ and 0 if this coordinate is ’0’. The following lemma states

the optimality of the above policy, where Λ denotes the system stability region.

Lemma 1. Under the adopted system, the scheduling policy ∆* is throughput optimal, meaning that

it can stabilize the system for every mean arrival rate vector in Λ.

Proof. We show that policy ∆* stabilizes the system for all a ∈ Λ by proving that the Markov chain of

the corresponding system is positive recurrent. For this purpose, we use Foster’s theorem. The proof

is similar to the one provided in Section 2.3 in Chapter 2, we thus omit it for sake of brevity.

It is worth noting that, in the above lemma, the stability region Λ is the result of the adopted

system model. More in detail, this region depends mainly, but not only, on the following points:

• The use of IA, for L ≥ 2, and SVD, for L = 1, as interference management techniques.

• Accounting for the probing cost.

• The scheduling is done in a centralized manner, i.e. in each slot the CS schedules the set of

active pairs (before receiving any feedback) that must send their pilots.

• The quantization process over the backhaul (for the imperfect case).

3.2.4.2 Computational Complexity of Max-Weight Policy ∆*

For such an optimal policy, an important factor to investigate is the computational complexity (CC),

which we derive next. Because what ∆* looks for is the maximum over 2N possible values, due to 2N

combinations, thus it takes O(2N ) after computing all values r(s) · q(t) to find the maximum value.

Note that for two fixed vectors we can compute this product in time O(N). Thus we would have

O(N2N ) ignoring computing r(s), which can be done offline. We can notice that this computational

complexity increases considerably with the maximum number of pairs N .

3.3 Success Probabilities and Average Rates

In this section, we give the expression for the success probability and, subsequently, the expression for

the average transmission rate for each of the imperfect and perfect cases. Then, we present the SVD

scheme (used when L(t) = 1) and derive its average rate expression.

3.3.1 Average Rate Expression for IA

For the calculation of the average rate, we next provide a proposition in which we calculate the success

probabilities under the considered setting.
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Proposition 1. The probability that the received SINR corresponding to stream m of active user k

exceeds a threshold τ given that L(t) is the set of scheduled pairs (including pair k) can be given by

P
{
γ

(m)
k (t) ≥ τ | L(t)

}
=


e
− σ2ταkk MGF

RI
(m)
k

(
− τ

αkk

)
, imperfect case

e
− σ2ταkk , perfect case

(3.14)

in which

RI
(m)
k =

∑
i∈L(t),i6=k

αki

di∑
j=1

∣∣∣∣(û(m)
k

)H
Hkiv̂

(j)
i

∣∣∣∣2 (3.15)

is the residual interference, which appears in the denominator of γ
(m)
k in the imperfect case, and

MGF
RI

(m)
k

(·) stands for the moment-generating function (MGF) of RI
(m)
k .

Proof. Please refer to Appendix 3.9.1 for the proof.

In the above result, the success probability expression in the imperfect case is given in function of

the MGF of the leakage interference RI
(m)
k . It is noteworthy to mention that the explicit expression

of this MGF will be given afterwards during the average rate calculations. But first, let us focus on

the expression RI
(m)
k . Indeed, we have

RI
(m)
k =

∑
i∈L(t),i6=k

αki

di∑
j=1

∣∣∣∣(û(m)
k

)H
Hkiv̂

(j)
i

∣∣∣∣2

=
∑

i∈L(t),i6=k

αki

di∑
j=1

∣∣∣hHki T(m,j)
k,i

∣∣∣2

=
∑

i∈L(t),i6=k

αki ‖hki‖2
di∑
j=1

∣∣∣h̃Hki T(m,j)
k,i

∣∣∣2 , (3.16)

in which T
(m,j)
k,i = v̂

(j)
i ⊗ ((û

(m)
k )H)T (where ⊗ is the Kronecker product) and h̃ki is the normalized

vector of channel hki, i.e. h̃ki = hki
‖hki‖ . Note that ((û

(m)
k )H)T is nothing but the conjugate of û

(m)
k .

Following the model used in [104], the channel direction h̃ki can be written as follows

h̃ki =
√

1− eki ĥki +
√
eki wki, (3.17)

where ĥki is the channel quantization vector of hki and wki is a unit norm vector isotropically dis-

tributed in the null space of ĥki, with wki independent of eki. Since IA is performed based on the

quantized CSI ĥki, we get∣∣∣h̃Hki T(m,j)
k,i

∣∣∣2 =
∣∣∣√1− eki ĥHki T

(m,j)
k,i +

√
eki w

H
ki T

(m,j)
k,i

∣∣∣2
= eki

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 . (3.18)
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Therefore, RI
(m)
k can be rewritten as

RI
(m)
k =

∑
i∈L(t),i6=k

αki ‖hki‖2 eki
di∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 . (3.19)

Based on the above results, we now have all the required materials to derive the average rate

expressions for both the perfect and imperfect cases. We recall that if L(t) is the subset of scheduled

pairs, then the general formula of the average rate of active user k can be given as

E {Dk(t) | L(t)} = (1− L(t)θ)

dk∑
m=1

RP
{
γ

(m)
k (t) ≥ τ | L(t)

}
. (3.20)

The explicit rate expressions are provided in the following theorem.

Theorem 4. Given a subset of scheduled pairs, L(t), the average rate of user k (∈ L(t)) is:

• For the imperfect case:

(1− L(t)θ)dkRe
− σ2ταkk MGF

RI
(m)
k

(
− τ

αkk

)
, (3.21)

in which the MGF can be written as

MGF
RI

(m)
k

(
− τ

αkk

)
=

∏
i∈L(t),i6=k

(
αkiτdi

αkk2
B
Q

+ 1

)−Q
2F1(c2i, Q; c1i + c2i;

1

αkk2
B
Q

αkiτdi
+ 1

). (3.22)

In the above equation, 2F1 represents the Hypergeometric function, c1i = (Q + 1)Q−1di − Q−1 and

c2i = (Q− 1)c1i, with Q = NtNr − 1.

• For the perfect case:

(1− L(t)θ)dkRe
− σ2ταkk . (3.23)

Proof. Please refer to Appendix 3.9.2 for the proof.

3.3.2 SVD Scheme and its Average Rate Expression

3.3.2.1 SVD Scheme

In the case where L(t) = 1, there is only one active pair (which we denote by index k), and the system

is reduced to a point-to-point MIMO system. We recall that receiver k sends its pilot sequence, then

transmitter k estimates perfectly the channel matrix; clearly, here the probing cost is (1 − θ). With

one active pair, the only source of interference is the ISI caused by the transmitter itself. To manage
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this interference problem, we apply SVD technique. Specifically, by the singular value decomposition

theorem we have

Hkk = UkΣkV
H
k , (3.24)

where Uk and Vk are Nr×Nr and Nt×Nt unitary matrices, respectively. Σk is an Nr×Nt diagonal

matrix with the singular values of Hkk in diagonal. These singular values are denoted by

√
λ

(m)
k . Note

that here we consider the same assumptions and parameters that we have used for IA. We assume that

active transmitter has dk (≤ min(Nt, Nr)) data streams to transmit to its receiver. We also assume

that Hkk is full rank, meaning that its rank is given by min(Nt, Nr); dk should be less than or equal

to the rank of matrix Hkk, which is satisfied under our setting. Further, we assume that the power P

is equally allocated among the dk data streams.

We define xk to be the following Nt × 1 vector: xk = (x
(1)
k , . . . , x

(dk)
k , 0 . . . , 0)T , where we recall that

x
(m)
k represents stream m of pair k. Under SVD, the transmitter sends vector Vkxk instead of xk,

thus the received signal, which we denote by yk, can be written as

yk =

√
ζkkP

dk
HkkVkxk + zk, (3.25)

where we recall that Hkk denotes the Nr×Nt channel matrix with i.i.d. zero mean and unit variance

complex Gaussian entries, zk is the additive white complex Gaussian noise vector with zero mean and

covariance matrix σ2INr , and ζkk stands for the path loss coefficient. Then, at the receiver we multiply

the corresponding received signal by UH
k to detect the desired signal. Hence, after multiplying by UH

k ,

we eventually obtain

UH
k yk =

√
ζkkP

dk
UH
k UkΣkV

H
k Vkxk + UH

k zk

=

√
ζkkP

dk
Σkxk + UH

k zk. (3.26)

Recall that Uk and Vk are unitary matrices, so UH
k zk and Vkxk have the same distributions as zk

and xk, respectively. Based on the above, it can be noticed that the ISI is completely canceled.

3.3.2.2 Average Rate for SVD

The equivalent MIMO system can be seen as dk uncoupled parallel sub-channels. The SNR for stream

m can be written as the following

γ
(m)
k =

ζkkP

dk σ2
λ

(m)
k , 1 ≤ m ≤ dk. (3.27)

Let m1 = max(Nt, Nr) and m2 = min(Nt, Nr). It was shown in [94] that the distribution of any one

of the unordered eigenvalues, which we denote by λ, is given by

p(λ) =
1

m2

m2−1∑
n=0

n!

(n+m1 −m2)!
[Lm1−m2
n (λ)]2λm1−m2e−λ, λ ≥ 0, (3.28)
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where Lm1−m2
n (x) is the associated Laguerre polynomial of degree (order) n and is given by

Lm1−m2
n (λ) =

n∑
l=0

(−1)l
(n+m1 −m2)!

(n− l)! (m1 −m2 + l)!

λl

l!
. (3.29)

Adopting the same rate model as for IA, the average rate of the active user can be written as

(1− θ)dkRP
{
γ

(m)
k ≥ τ

}
. (3.30)

Based on the above, the average rate expression for SVD if pair k is the active pair, which we denote

by rsvd,k, is provided in the following statement.

Proposition 2. Under SVD technique, the average rate for the active pair is given by

rsvd,k = (1− θ)dkR
m2−1∑
n=0

Ωn

2n∑
j=0

κj Γ(j +m1 −m2 + 1,
dkσ

2τ

ζkkP
), (3.31)

where Γ(·, ·) stands for the upper incomplete Gamma function, and where

Ωn = n! (m2(n+m1 −m2)! )
−1
, (3.32)

κj =

j∑
i=0

ωi ωj−i, (3.33)

ωl = (−1)l (n+m1 −m2)! ((n− l)! (m1 −m2 + l)! l ! )
−1
, with ωl = 0 if l > n. (3.34)

Proof. Please refer to Appendix 3.9.3 for the proof.

3.4 Stability Analysis for the Symmetric Case

In this section, we consider a symmetric system in which the path loss coefficients have the same value,

namely ζ = ζki, ∀k, i, and all the pairs have equal number of data streams, namely d = dk, ∀k; note

that we still assume different average arrival rates. Under this system, the feasibility condition of IA,

given in [105], becomes Nt +Nr ≥ (L+ 1)d, which we assume is satisfied here. We recall that at each

time-slot, for the selected pairs, rate R can be supported if the corresponding SINR is greater than or

equal to a given threshold τ ; otherwise, the packets are not received correctly and the instantaneous

bit-rate is considered to be equal to 0. Let α = Pζ
d . For notational convenience, in the remainder of

the chapter we drop the notation for dependence of L and L on t.
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3.4.1 Average Rate Expressions and their Variation

In the following, we provide the average rate expressions and study their variations under the above

assumptions for the different cases in the system.

3.4.1.1 If the Number of Scheduled Pairs L ≥ 2

The IA technique is applied, and thus the SINR of stream m at user k can be given by

γ
(m)
k =



α

∣∣∣∣(û(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2
σ2 +

∑
i∈L,i6=k

α ‖hki‖2 eki
d∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 , imperfect case

α

∣∣∣∣(u
(m)
k

)H
Hkkv

(m)
k

∣∣∣∣2
σ2

, perfect case

(3.35)

where the sum in the denominator of the first expression results from equation (3.19). As explained

in the previous sections, if L is the subset of scheduled pairs, the average transmission rate per active

user is given by (1− Lθ)dRP
{
γ

(m)
k ≥ τ | L

}
. Relying on the average rate expressions in Theorem 4,

we get the following results.

a) Imperfect Case: The average transmission rate for an active user k ∈ L can be given by

(1− Lθ)dR e−σ
2τ
α

[(
dτ 2−

B
Q + 1

)−Q
2F1

(
c2, Q; c1 + c2; (2

B
Q (dτ)−1 + 1)−1

)]L−1

, (3.36)

where 2F1 is the Hypergeometric function, c1 = (Q + 1)Q−1d − Q−1 and c2 = (Q − 1)c1. It can be

noticed that this average rate is independent of the identity of active user k and the L−1 other active

pairs, yet depends on the cardinality L of subset L. By denoting this rate as r(L), the expression in

(3.36) can be re-written as

r(L) = (1− Lθ)dR e−σ
2τ
α FL−1, (3.37)

in which

F =
(
dτ 2−

B
Q + 1

)−Q
2F1

(
c2, Q; c1 + c2; (2

B
Q (dτ)−1 + 1)−1

)
. (3.38)

Consequently, the total average transmission rate of the system is given by

rT(L) = L(1− Lθ)dR e−σ
2τ
α FL−1. (3.39)

Studying the variation of these rate functions w.r.t. the number of active pairs L is essential for the

stability analysis and is thus described by the following lemma.

Lemma 2. Given a number of pairs to be scheduled, L, the average transmission rate is a decreasing

function with L, whereas the total average transmission rate is increasing from 0 to L0 and decreasing
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from L0 to 1
θ , meaning that rT reaches its maximum at L0, where L0 <

1
2θ and is given by

L0 =

1
θ −

2
logF −

√(
2

logF −
1
θ

)2

+ 4
θ logF

2
. (3.40)

Proof. The proof is provided in Appendix 3.9.4.

From (3.40) we can notice that L0 is in general a real value. But, since it represents a number of

users, we need to find the best and nearest integer to L0, i.e. best in terms of maximizing the total

average rate function. We denote this integer by LI and we assume without lost of generality that

2 ≤ LI ≤ N . The following simple procedure can be used to compute LI:

Let L01 = bL0c and L02 = dL0e , i.e. the largest previous and the smallest following integer of L0,

respectively. If rT(L02) ≥ rT(L11), put LI = L02; otherwise LI = L01.

b) Perfect Case: In this case no residual interference exists and the corresponding SINR expression

is given in (3.35). Using Theorem 4, the average and total average transmission rate expressions can

be given, respectively, by

µ(L) = (1− Lθ)dR e−σ
2τ
α , (3.41)

µT(L) = L(1− Lθ)dR e−σ
2τ
α . (3.42)

A similar observation to that given in the first case can be made here, that is, the rate functions

depend only on the cardinality L of L and not on the subset itself. Notice that µ(L) is a decreasing

function with L, while µT(L) is concave at 1
2θ . Since 1

2θ represents a number of pairs, we can use a

similar procedure to that proposed for the imperfect case to find the best and nearest integer to 1
2θ .

For the remainder of this chapter, we denote this integer by LP .

3.4.1.2 If the Number of Scheduled Pairs L = 1

The SVD technique is applied, and thus the SINR of stream m at user k becomes

γ
(m)
k =

ζP

d σ2
λ

(m)
k . (3.43)

Based on Proposition 2, the average rate (which is also the total average rate) can be written as

rsvd,k = (1− θ)dR
m2−1∑
n=0

Ωn

2n∑
j=0

κj Γ(j +m1 −m2 + 1,
dσ2τ

ζP
). (3.44)

Note that the above expression is independent of the identity of the active pair.

For the rest of the chapter, we use rsvd to denote this expression. Obviously, here the average rate is

independent of the case (i.e. perfect or imperfect) we adopt since anyway the backhaul is not used.
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3.4.2 Stability Regions and Scheduling Policies

After presenting results on the average rate functions, we now provide a precise characterization of

the stability region of the adopted system under both the imperfect and perfect cases.

3.4.2.1 Imperfect Case

We first define subset SL = {s ∈ S : ‖s‖1 = L}, where we recall that s ∈ ZN is the scheduling vector

whose coordinates take values 0 or 1 (see Section 3.2); note that SL is the subset of scheduling decision

vectors for which the number of active pairs is equal to L. Given a number L ≥ 2, the subset of average

rate vectors is defined as IL = {r(L)s : s ∈ SL}. For L = 1, the subset of average rate vectors is defined

as I1 = {rsvds : s ∈ S1}. We define set I = {0, I1, I2, ..., ILI
}, i.e. it contains the origin point 0 and

the set of average rate vectors when the number of active pairs L is between 1 and LI. We also define

set Ī = {ILI+1, ..., IN}, i.e. it contains the set of average rate vectors for which L is between LI + 1

and N . Note that in terms of cardinality we have |I|+ |Ī| = |S|. Using these definitions, we can state

the following lemma which will be useful to characterize the stability region of the system.

Lemma 3. Each point in the set Ī is inside the convex hull of I. Consequently, this hull will also

contain any point in the convex hull of Ī.

Proof. We provide the following lemma that will help us in the proof of Lemma 3.

Lemma 4. For any point si,L+1 ∈ SL+1, there exists a point on the convex hull of SL that is in

the same direction toward the origin as si,L+1. Furthermore, si,L+1 can be written as L+1
L × its

corresponding point on the convex hull of SL.

Please refer to Appendix 3.9.5 for the complete proof of Lemma 3, which includes the proof of

Lemma 4.

Lemma 3 means that by increasing the number of active pairs L beyond LI, the set of achievable

average rates will not increase. Based on the above, we are now able to characterize the stability

region of the considered system. We recall that this region is defined as the set of all mean arrival

rate vectors for which the system is stable. Here, this region is given by the following theorem.

Theorem 5. The stability region of the system in the symmetric case with limited backhaul can be

characterized as

ΛI = CH{I} = CH{0, I1, I2, ..., ILI
} , (3.45)

where CH represents the convex hull.

Proof. Please refer to Appendix 3.9.6 for the proof.

Unlike classical results in which the stability region is given by the convex hull over all possible

decisions, here the characterization is more precise and is defined by the decision subsets SL for all
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L ≤ LI. In addition, this theorem provides an exact specification of the corner points (i.e. vertices) of

the stability region, meaning that this region is characterized by the set I and not by the whole set

I ∪ Ī. An additional point to note is that ΛI is a convex polytope in the N -dimensional space RN+ .

In order to choose the active pairs at each time-slot, we use the Max-Weight scheduling policy

defined earlier (see (3.13)). Under the symmetric and imperfect case, this policy, which we denote as

∆*
I , selects decision vector s(t) that yields the following max

∆*
I : max

{
max

s∈SL, 2≤L≤N
{r(‖s‖1) s · q(t)} ,max

s∈S1

{rsvd s · q(t)}
}
, (3.46)

where ‖s‖1 gives the number of ’1’ coordinates in s (or equivalently, the number of active pairs L).

Recall that these non-zero coordinates indicate which pairs to schedule. The above policy chooses the

subset of pairs that should be active at time-slot t, which is represented by vector s(t). As mentioned

earlier, if only one pair is selected to be active, then we use SVD technique, otherwise we use IA

technique. For the proposed policy, the following proposition holds.

Proposition 3. The scheduling policy ∆*
I is throughput optimal. In other words, ∆*

I stabilizes the

system (under the imperfect case) for every arrival rate vector a ∈ ΛI.

Proof. The proof can be done in the same way as the proof of Lemma 1 and is thus omitted to avoid

repetition.

Based on the analysis done at the end of Section 3.2, it was shown that applying policy ∆*

will result in a computational complexity (CC) of O(N2N ). The same holds here for policy ∆*
I .

Consequently, a moderately large N will lead to considerably high CC. Recall that this analysis is

for the classical implementation of the Max-Weight algorithm, that is, finding the maximum over 2N

products of two vectors. However, in our case the implementation of this algorithm does not require

all this complexity. This is due to the fact that all the active users have the same average transmission

rate. This structural property allows us to propose an equivalent reduced CC implementation of ∆*
I ,

which we provide in Algorithm 1.

Algorithm 1 : A Reduced Computational Complexity Implementation of ∆*
I

1: Sort the queues in a descending order; break ties arbitrarily.
2: Initialize Ls = 1 and prod = 0.
3: Set r(1) = rsvd. For L ≥ 2, let l = L and r(l) = r(L).
4: for l = 1 : 1 : N do
5: Consider suml = sum of the lengths of the first l queues (i.e. sum of the l biggest queue

lengths).
6: if r(l) sum l > prod then
7: Put Ls = l and prod = r(Ls)sumLs

8: end if
9: end for

10: Schedule pairs corresponding to the first Ls queues.

The proposed implementation in Algorithm 1 depends essentially on two steps: the “sorting algo-

rithm” and the “for loop”. We assume that we use a sorting algorithm of complexity O(N2), such as
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the “bubble sort” algorithm. For the “for loop”, the (worst case) complexity is also O(N2) since this

loop is executed N times (i.e. iterations) and every iteration has another dependency to N . Therefore,

the computational complexity of the proposed implementation is O(N2 +N2), or equivalently O(N2),

which is very small compared to O(N2N ), especially for large N .

3.4.2.2 Perfect Case

A similar study to that done for the imperfect case can be adopted here. To begin with, for L ≥ 2 we

define PL = {µ(L)s : s ∈ SL}; i.e. PL is the subset of average rate vectors for which the number of

active pairs is L. Recall that SL = {s ∈ S : ‖s‖1 = L}. For L = 1 we define P1 = {rsvds : s ∈ S1}. As

seen earlier, the total average rate for IA given in (3.42) reaches its maximum at 1
2θ for which the best

and nearest integer is denoted by LP, where we assume without lost of generality that 2 ≤ LP ≤ N .

In addition, the average rate µ(L) decreases with L.

Under the above observations, the stability region can be characterized as follows.

Theorem 6. For the symmetric system with unlimited backhaul, the stability region can be defined as

the following

ΛP = CH{0, P1, P2, ..., PLP
} . (3.47)

Proof. The proof is very similar to that of Theorem 5, just consider the average rate functions µ(L)

and µT(L) instead of r(L) and rT(L); so we omit this proof to avoid redundancy.

To achieve the stability region that is characterized in the above, we use the Max-Weight policy,

which we denote here as ∆*
P. Specifically, this optimal policy (i.e. it can achieve ΛP) selects decision

vector s(t) that yields the following max

∆*
P : max

{
max

s∈SL, 2≤L≤N
{µ(‖s‖1) s · q(t)} ,max

s∈S1

{rsvd s · q(t)}
}
. (3.48)

As observed in the imperfect case, applying this policy using its classical implementation will result in

a CC of O(N2N ). Hence, to avoid a high complexity for large N , and since the structural properties

of this policy and those of policy ∆*
I are similar, the equivalent implementation proposed for the

imperfect case can be applied here but after replacing r(L) with µ(L). Consequently, we get a reduced

complexity of O(N2).

3.4.3 Conditions under which IA Provides a Gain in terms of

Queueing Stability

In this subsection, we investigate the conditions under which the use of IA can provide a queueing

stability gain. We provide this investigation under the imperfect case, while noting that a similar

analysis can be done under the perfect case.
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Based on Theorem 5, we can notice that in the characterization of the stability region the vertices

that correspond to IA are given by the subsets I2, I3, ..., ILI
. On the other hand, the vertices that

correspond to SVD can be found in I1. In order for IA to provide a queueing stability gain, at least

one of its vertices should be outside the part of the stability region that is yielded by SVD, where

this part is nothing but the convex hull CH{0, I1}. In the following we provide a simple example for

which we illustrate the different shapes of the stability region.

Example: Let N = 2. Here there is only one vertex of IA, given by point (r(2), r(2)). The vertices

of SVD are (rsvd, 0) and (0, rsvd). Hence, the part of the stability region resulting from SVD is

CH{0, I1} = CH{0, (rsvd, 0), (0, rsvd)}. Depending on whether vertex (r(2), r(2)) is inside this convex

hull, two stability region shapes are possible. These shapes are illustrated in Figure 3.3. We point

out that the illustrations in Figure 3.3 are not the results of a specific setting and are only provided

as general illustrations in order to help understanding the analysis.
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Figure 3.3: Stability region (in gray) for the symmetric system under the imperfect case, where N = 2.
(a) IA provides a queueing stability gain, and (b) IA does not provide a queueing stability gain.

Based on the above observations, we now provide the conditions under which IA yields a queueing

stability gain. These conditions are given (for the perfect and imperfect cases) as follows.

Proposition 4. For the symmetric system under the imperfect case, IA provides a queueing stability

gain if and only if there exists a number L such that Lr(L) > rsvd, with 2 ≤ L ≤ LI. For the same

system but under the perfect case, we get a similar result, that is to say, IA yields a queueing stability

gain if and only if there exists a number L such that Lµ(L) > rsvd , with 2 ≤ L ≤ LP .

Proof. The proof is provided in Appendix 3.9.7.

Based on the above, it can be noticed that if there exists an L that satisfies Lr(L) > rsvd and

2 ≤ L ≤ LI, the characterization of the stability region ΛI can be more precise since the points in

I2, . . . , IL−1 are inside the stability region part resulting from SVD, and the only vertices of IA that

are outside this part are given by the subsets IL, . . . , ILI
. In addition, if we cannot find an L that

satisfies the above conditions, then all the vertices of IA will be inside the region part corresponding

to SVD. These observations lead us to the following remark; recall that P1 = I1.
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Remark 1. For the imperfect case, if there exists an L such that Lr(L) > rsvd, with 2 ≤ L ≤ LI, a

more precise characterization of ΛI can be given as

ΛI = CH{0, I1, IL, ..., ILI
} . (3.49)

If such an L does not exist, then the characterization reduces to: ΛI = CH{0, I1}.
For the perfect case, if we can find an L such that Lµ(L) > rsvd, with 2 ≤ L ≤ LP, we get

ΛP = CH{0, P1, PL, ..., PLP
} . (3.50)

Otherwise, the characterization of ΛP reduces to ΛP = CH{0, P1}.

3.4.4 Comparison between the Imperfect and Perfect Cases

in terms of Queueing Stability

After having characterized the stability region for both the perfect and imperfect cases, we now

investigate the maximum gap between these two regions. Clearly, here the investigation is reserved

for the scenario where IA provides queueing stability gains in the perfect case; because otherwise IA

will also not provide queueing stability gains in the imperfect case, and thus the stability region for

the imperfect case will be the same as that for the perfect case, and can be given by CH{0, I1} =

CH{0, P1}, which is the stability region of SVD.

The gap here can be interpreted as the impact of having limited backhaul, and thus quantization,

on the stability region. It is straightforward to notice that the quantization process will result in

shrinking the stability region compared with that of the perfect case. To capture this shrinkage, we

find that the imperfect case achieves a (guaranteed) fraction of the stability region achieved in the

perfect case, which we refer to as minimum fraction in the sequel; i.e. the term “minimum fraction”

is justified by the fact that the stability region in the imperfect case achieves at least this fraction

of the stability region in the perfect case. To be more precise, if we denote this fraction by β (≤ 1),

then under the imperfect case the queues are stable for any mean arrival rate lying inside βΛP and it

may be possible to achieve stability for some mean arrival rates outside βΛP. We highlight that this

fraction represents the maximum gap between the two regions.

To begin with, we first draw the attention to the fact that, in addition to having µ(L) > r(L),

we have LP ≥ LI. In order to provide some insights into how we will derive the minimum achievable

fraction, in the following we give a simple example for which the stability region shapes are illustrated.

Example: Let N = 2. Depending on whether IA provides queueing stability gains under the

imperfect case, two scenarios are to consider. In Figure 3.4 we depict the general shapes of the two

(i.e. perfect and imperfect cases) stability regions under these two scenarios; note that these depicted

regions are not the result of a specific setting and are only given to help understanding the analysis.

From this figure, we can observe that we have different gaps over different directions. To find the

minimum fraction (i.e. maximum gap), we adopt the following approach. We take any point from

subset PLP
, and then we try to see how far is this point from the convex hull ΛI in the direction
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Figure 3.4: Stability regions of the perfect (dotted region) and imperfect (gray region) cases for the
symmetric system, where N = 2. (a) IA provides a queueing stability gain, and (b) IA does not
provide a queueing stability gain.

toward the origin. We adopt such an approach mainly for three reasons:

1. ILI
is a subset of the vertices that characterize the convex hull of the imperfect case (ΛI).

2. PLP is the subset that contains points (vertices) on the convex hull of the perfect case.

3. The points in PLP
are the farthest from ΛI.

Using the above approach, we can state the following theorem that characterizes the minimum achiev-

able fraction.

Theorem 7. For the symmetric system, in general the stability region in the imperfect case achieves

at least a fraction rT(LI)
µT(LP) = LIr(LI)

LPµ(LP) (< 1) of the stability region achieved in the perfect case. In other

words, the region ΛI can be bounded as

rT(LI)

µT(LP)
ΛP ⊆ ΛI ⊆ ΛP. (3.51)

In the special case where IA delivers no gain under the imperfect case, the above fraction becomes
rsvd

µT(LP) = rsvd
LPµ(LP) .

Proof. We provide the following result that will help us in the proof of this theorem.

Lemma 5. Each point in SL+1 can be written as L+1
L+1−n× some point on the convex hull of SL+1−n,

for 1 ≤ n ≤ L.

Please refer to Appendix 3.9.8 for the complete proof of Theorem 7, which includes the proof of

Lemma 5.

It should be noted that the fraction given in the above theorem represents the maximum impact

of limited backhaul on the stability region.
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3.4.5 Impact of the Number of Bits B on the Stability Region

Here the analysis is restricted for the imperfect case of IA, where the backhaul is of limited capacity.

We recall that under the adopted system the number of bits used for the quantization of each channel

matrix is B. Since the stability analysis depends essentially on this number, it is important to study the

impact of changing this parameter on the stability performance of the system. But before conducting

such a study, we note that an increasing from B′ to B can be seen as a decreasing from B to B′.

That is to say, it suffices to study one of these two ways of changing the number of bits. We next

investigate the impact of reducing B to B′. In this investigation, we consider the scenario where IA

always yields a queueing stability gain, as this is the most likely scenario.

To begin with, let ∆*
B and ∆*

B′ denote the same algorithm, that is the Max-Weight policy, but

the first one considers the case where the number of bits is equal to B and for the second one this

number is B′ (with B′ < B). Further, let LB and LB′ denote the subsets of pairs selected by ∆*
B

and ∆*
B′ , respectively. Also, we denote by ΛB and ΛB′ the stability regions achieved by ∆*

B and

∆*
B′ , respectively. In addition, we define r(L,B) as the average rate r(L) with a number of bits B.

Equivalently, r(L,B′) is the average rate function r(L) in which we replace B by B′.

Using the above definitions, the following theorem can be stated.

Theorem 8. For the same (symmetric) system, where the maximum number of pairs is N , if we

decrease the number of bits from B to B′, the stability region ΛB′ can be bounded as

r(N,B′)

r(N,B)
ΛB ⊆ ΛB′ ⊆ ΛB . (3.52)

Proof. Please refer to Appendix 3.9.9 for the proof.

The above result implies that the stability region of the system with B′ bits is at least a fraction
r(N,B′)
r(N,B) from the stability region of the system with B bits.

3.5 Algorithmic Design and Performance Analysis

for the General Case

We now consider a more general model where, unlike the symmetric case, the path loss coefficients are

not necessarily equal to each other. However, for the sake of simplicity, and without loss of generality,

we keep the same assumption on the number of streams, that is, all the pairs have equal number of

data streams, namely d. Also, as in the symmetric case, we suppose at each time-slot that rate R

can be supported if the corresponding SINR is greater than or equal to τ ; otherwise, the packets are

not received correctly and the instantaneous bit-rate is considered to be equal to 0. We recall that L
stands for the subset of active pairs, with |L| = L. We also recall that αki = Pζki

d and αkk = Pζkk
d .
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3.5.1 Average Rate Expressions

3.5.1.1 If the Number of Scheduled Pairs L ≥ 2

The IA technique is applied in this case, and thus the SINR of stream m at active user k can be

expressed as the following (see (3.8))

γ
(m)
k =



αkk

∣∣∣∣(û(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2
σ2 +

∑
i∈L,i6=k

αki ‖hki‖2 eki
d∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 , imperfect case

αkk

∣∣∣∣(u
(m)
k

)H
Hkkv

(m)
k

∣∣∣∣2
σ2

, perfect case

(3.53)

Based on the above equation, we next derive the average transmission rate expression for each of the

perfect and imperfect cases.

a) Imperfect Case: Using Theorem 4 and the fact that αki
αkk

= ζki
ζkk

, the average transmission rate

of user k (∈ L) can be written as

rk = (1− Lθ)dR e−
σ2τ
αkk

∏
i∈L,i6=k

(
ζkiτd (ζkk2

B
Q )−1 + 1

)−Q
2F1(c2, Q; c1 + c2; (ζkk2

B
Q (ζkiτd )−1 + 1)−1),

(3.54)

where we recall that c1 = (Q+ 1)Q−1d−Q−1 and c2 = (Q− 1)c1.

b) Perfect Case: Based on Theorem 4, the average transmission rate of active user k can be

expressed as follows

µk = (1− Lθ)dR e−
σ2τ
αkk . (3.55)

3.5.1.2 If the Number of Scheduled Pairs L = 1

The SVD technique is applied in this case, and the SINR of stream m of the active user, which is

denoted by index k, can be given by (see (3.27))

γ
(m)
k =

ζkkP

dσ2
λ

(m)
k . (3.56)

Using (3.31), the average rate for the active user (i.e. user k) is

rsvd,k = (1− θ)dR
m2−1∑
n=0

Ωn

2n∑
j=0

κj Γ(j +m1 −m2 + 1,
dσ2τ

ζkkP
). (3.57)
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3.5.2 Stability Regions and Scheduling Policies

We here provide a characterization of the system stability region for each of the perfect and imperfect

cases. Further, we present scheduling policies that can achieve these regions.

3.5.2.1 Imperfect case

Let r be a vector that contains at position k the average rate of user k if pair k is active and 0

otherwise; for ex, let N = 2: if only pair 1 is active then r = (rsvd,1, 0), whereas if both of pairs 1 and

2 are active, then r = (r1, r2). As mentioned earlier (see Section 3.2, for instance), s and L are two

different representations for the (same) set of active pairs, so we will use r(s) to represent the fact

that r results from decision vector s. Notice that, in contrast to the symmetric case, here the average

rate expression depends on the identity of the active pairs; consider the same example as before: if

s = (1, 1), meaning that pairs 1 and 2 are scheduled for transmission, then r(s) = (r1, r2) where r1 is

different from r2 (in general).

This lack of symmetry will make us incapable of finding the exact set of vertices of the corresponding

stability region. However, we can still provide a characterization of this stability region, denoted ΛGI,

by considering all the possible decisions of scheduling the pairs, as follows

ΛGI = CH{0,GI 1,GI 2, ...,GIN} , (3.58)

where GIL = {r(s) : s ∈ SL}, i.e. GIL is the set of average rate vectors when the number of active

pairs is L. To achieve this stability region we can apply the Max-Weight rule, which is an optimal

scheduling policy, denoted by ∆*
GI, such as

∆*
GI : s(t) = arg max

s∈S
{r(s) · q(t)} . (3.59)

where we recall that S is the set of all possible decision vectors s.

3.5.2.2 Perfect Case

For this case, we denote by µ the average rate vector that contains at position k the average rate

of pair k if this pair is scheduled and 0 otherwise. Also, let µ(s) be the rate vector under decision

vector s; as a simple example, let N = 2: if s = (0, 1), then µ(s) = (0, rsvd,2), whereas if s = (1, 1),

then µ(s) = (µ1, µ2). Let ΛGP be the system stability region under this case. This region can be

represented as the following

ΛGP = CH{0,GP1,GP2, ...,GPN} , (3.60)

where GPL = {µ(s) : s ∈ SL}. The (optimal) policy that schedules the pairs and achieves this above

region is denoted by ∆*
GP and can be given by

∆*
GP : s(t) = arg max

s∈S
{µ(s) · q(t)} . (3.61)
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3.5.3 βA-Approximate Scheduling Policy

As detailed earlier, the classical implementation of the Max-Weight policy, in both the perfect and

imperfect cases, has a computational complexity of O(N2N ). Whereas for the symmetric case some

structural properties allowed us to find a low computational complexity implementation of this policy,

here (in the general case) no such properties exist.

To deal with this problem, we propose an alternative policy that has a reduced computational com-

plexity, so that we can apply it instead of the optimal policy, and that achieves an important fraction

of the system stability region. Specifically, here we are interested in finding this alternative policy

under the imperfect case, which can be considered as the hardest case to analyze since the average

rate expressions are very complicated compared with those under the perfect case. The alternative

policy in this case is denoted by ∆A and termed as βA-approximate policy, where this latter expression

is justified by the fact that this policy approximates ∆*
GI to a fraction of βA (with βA ≤ 1). More

specifically, for every queue length vector q, the following holds ([99])

(r · q)(∆A) ≥ βA(r · q)(∆*
GI), (3.62)

where we recall that q is the queue lengths vector, and where (r · q)(∆A) (resp., (r · q)(∆*
GI)) implies

that r results from the scheduling decisions of policy ∆A (resp., ∆*
GI).

For the rest of the chapter, for notational conciseness, we will use the term “approximate policy”

instead of “βA-approximate policy” unless stated otherwise. A key step in the investigation is to de-

termine a specific approximation of the average rate expression rk, more specifically an approximation

that possesses a set of structural features that let us define the approximate policy. Indeed, we will

derive such an approximation and prove that it is very accurate if the fractions ζkk2
B
Q (ζkiτd)

−1
(or

equivalently, αkk2
B
Q (αkiτd)

−1
) are sufficiently high (i.e. ≥ 10), for i 6= k. For fixed τ and d, these

conditions correspond to a scenario where the number of quantization bits is high and/or the cross

channels have small path loss coefficients in comparison with the direct channels (i.e. low interference

scenario). It should be noted that here the approximation is only provided for the average rates rk,

meaning that rate rsvd,k is not approximated; recall that if L ≥ 2, rk stands for the average rate for

active user k, whereas if L = 1, i.e. one active pair, rsvd,k is the corresponding average rate.

Under the aforementioned assumptions/conditions, the approximation of average rate rk is given

by the following result.

Rate Approximation 1. Under the general system and the imperfect case, and given a subset of

active pairs, L, with cardinality L ≥ 2, if we have a relatively low interference scenario, the average

rate of active user k (∈ L) can be accurately approximated as

rk ≈ (1− Lθ) dR e−
σ2τ
αkk

∏
i∈L, i 6=k

(1− gki), (3.63)

where gki =
(
αkk2

B
Q (αkiτd )−1 + 1

)−1

=
(
ζkk2

B
Q (ζkiτd )−1 + 1

)−1

.

Proof. The derivation is provided in Appendix 3.9.10.
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It can be noted that the low-interference condition, i.e. ζkk2
B
Q (ζkiτd)−1 is sufficiently high, implies

that all the gki, ∀i 6= k, are sufficiently small. To proceed further with the analysis, let ḡk be the

average value of all the gki, ∀i 6= k, for the same number of active pairs L. More specifically, for a

fixed cardinality L we take all the possible subsets (i.e. scheduling decisions) in which user k is active.

For each of these subsets, there are L − 1 values of gki. Hence, ḡk is the average of these gki values

over all the considered decisions. Using the average value ḡk and the approximate expression of rk

(given in (3.63)), we define function φk(L) as the following

φk(L) =

 (1− Lθ)dR e−
σ2τ
αkk (1− ḡk)L−1, if L ≥ 2

rsvd,k, if L = 1
(3.64)

where the expression of rsvd,k is given in (3.57).

Let φ be the vector containing φk(L) at position k if pair k is scheduled (with L− 1 other pairs);

otherwise, we put 0 at this position. Under this setting, we define the approximate policy ∆A as

∆A : s(t) = arg max
s∈S

{φ(s) · q(t)} ,

where φ(s) results from decision vector s; as a simple example, set N = 2: if s = (1, 0), then

φ(s) = (rsvd,1, 0), whereas if s = (1, 1), then φ(s) = (φ1(2), φ2(2)). It is noteworthy to mention that,

for L ≥ 2, although we use φk(L) to make the scheduling decision under ∆A, the actual average rate

of user k is still rk. Also, remark that ∆A follows the Max-Weight rule, thus, as was shown earlier,

implementing ∆A as a classical maximization problem over all the possible decisions s needs a CC

of O(N2N ). However, in contrast to ∆*
GI, policy ∆A has a structural property that will allow us to

propose an equivalent reduced CC implementation instead of the classical one. This property results

from to the fact that φk(L) is independent of the L− 1 other active users, and only depends on pair

k and the cardinality L. The proposed implementation of policy ∆A is given by Algorithm 2.

Algorithm 2 : A Reduced Computational Complexity Implementation of ∆A

1: Initialize Lg = 0 and wsLg = 0.
2: for l = 1 : 1 : N do
3: Sort the pairs in a descending order with respect to the product prok = φk(l) qk; break ties

arbitrarily.
4: Let ws l = sum of the first l biggest prok values.
5: Save sq l as the subset of l pairs that yields ws l.
6: if ws l > wsLg then
7: Put wsLg = ws l and Lg = l.
8: end if
9: end for

10: Schedule the pairs given by sqLg
.

Computational Complexity of the proposed implementation of ∆A: To compare with the classical

implementation, we now focus on the computational complexity of the proposed implementation,

which depends essentially on a “for loop” of N iterations, each of which contains: (i) a “bubble sorting

algorithm”, which needs O(N2), (ii) a sum of l terms in iteration l, and (iii) other steps of small CC
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compared with those mentioned before. Thus, by neglecting the CC of the steps in (iii) and noticing

that the summing steps (in (ii)) over all the iterations need O(N(N+1)
2 ) = O(N2), the CC of the

proposed implementation is roughly O(N2N + N2) = O(N3), which is very small compared with

O(N2N ) for large N .

In general, an approximate policy comes with the disadvantage of reducing the achievable stability

region compared with the optimal policy. Indeed, we will show that policy ∆A guarantees to achieve

only a fraction of the stability region achieved by policy ∆*
GI. Let us now provide some remarks

an definitions that will be useful for the analysis. We recall that gki =
(
ζkk2

B
Q (ζkiτd )−1 + 1

)−1

. In

addition, we define LA as the subset of pairs chosen by ∆A, and we let the cardinality of this subset be

LA. As for ∆*
GI we keep the original notation, i.e. L is the scheduled subset, with L = |L|. Recall that

L stands for the set of all possible decision subsets, so LA and L are elements of L. In the following

we provide a result that is essential for the characterization of the fraction that ∆A can achieve.

Rate Approximation 2. If the values of gki, ∀i 6= k, are relatively close to ḡk, the approximation

of rk in (3.63) can in its turn be accurately approximated as

rk ≈ (1− Lθ) dR e−
σ2τ
αkk

∏
i∈L, i 6=k

(1− gki)

≈ (1− Lθ) dR e−
σ2τ
αkk

[
(1− ḡk)L−1 − (1− ḡk)L−2

∑
i∈L, i 6=k

(gki − ḡk)

]
. (3.65)

Proof. The derivation is provided in Appendix 3.9.11.

Let us define ΛGI as the stability region of the general system under the imperfect case, which

can be achieved by ∆*
GI. We also define ΛA to be the stability region that the approximate policy ∆A

can achieve. Concerning the fraction that policy ∆A can achieve w.r.t. the stability region ΛGI, and

under all the above-mentioned conditions, we have the following important result.

Theorem 9. The approximate policy ∆A achieves at least a fraction βA (≤ 1) of the stability region

achieved by the optimal policy ∆*
GI , meaning that ΛA can be bounded as

βAΛGI ⊆ ΛA ⊆ ΛGI, (3.66)

where βA is given as follows

βA =

1 + min
LA∈L

{
min
k∈LA

{
−(1− ḡk)−1

∑
i∈LA,i6=k

(gki − ḡk)

}}
1 + max

L∈L

{
max
k∈L

{
−(1− ḡk)−1

∑
i∈L,i6=k

(gki − ḡk)

}} . (3.67)

Proof. Please refer to Appendix 3.9.12 for the proof.
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We point out that in the above theorem we suppose, without lost of generality, that the min term

in the numerator takes values in the interval ]−1, 0[, whereas the max term in the denominator is

greater than 0. More details about these assumptions can be found in the proof of the theorem.

3.5.4 Compare the Imperfect and Perfect Cases in terms of

Queueing Stability

At the very beginning of this section, we showed that policy ∆*
GP achieves the (general) system stability

region under the perfect case. Let us denote by LP the subset of scheduled pairs using ∆*
GP and by

LP the cardinality of this subset. Also, we define ΛGP to be the stability region of the perfect case.

On the other hand, for the imperfect case we adopt the same notation as before, i.e. the subset of

scheduled users and its cardinality are represented by L and L, respectively, and the stability region is

denoted by ΛGI. Under our system, an essential parameter to investigate is the fraction the stability

region the imperfect case achieves compared with the stability region of the perfect case. This fraction

is captured in the following theorem.

Theorem 10. The stability region of the imperfect case reaches at least a fraction βP of the stability

region achieved in the perfect case, meaning that ΛGI can be bounded as

βPΛGP ⊆ ΛGI ⊆ ΛGP, (3.68)

in which βP is given as

βP = min
LP∈L

{
min
k∈LP

{ ∏
i∈LP,i6=k

(1− gki)

}}
, (3.69)

where gki =
(
ζkk2

B
Q (ζkiτd )−1 + 1

)−1

.

Proof. Please refer to Appendix 3.9.13 for the proof.

We draw the attention to the fact that the proof of the above result relies on the (first) ap-

proximation of rk given in Rate Approximation 1, meaning that the above theorem holds under the

low-interference condition (i.e. all the gki, with i 6= k, are sufficiently small).

3.5.4.1 Relation between βP and B

An important factor on which fraction βP depends is the number of quantization bits B, so it is

essential to compute the number of bits that can guarantee this fraction. Finding the explicit relation

that gives the number of bits in function of βP is a difficult task, however we can obtain the required

result numerically. In detail, using the expression of βP given in the above theorem, we start from a

small value of B for which we calculate the corresponding fraction, then we keep increasing B until

the desired value of βP is obtained.
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Although computing a closed form relation of B in function of βP is hard to achieve, we can still

find a relation that gives a rough idea of the required number of bits. Specifically, we know that

1 − gki = (1 + 2−
B
Q cki)

−1, where cki = ζkiτd ζ
−1
kk , then, after selecting the subset LP (of cardinality

LP) and k (∈ LP) that yield βP, we find a parameter c such that

c = min
i∈LP,i6=k

cki. (3.70)

We thus obtain the following relation

βP ≤
(

1 + 2−
B
Q c
)−(LP−1)

, (3.71)

or equivalently we get

B ≥ Q log2

(
c

β
−(LP−1)−1

P − 1

)
. (3.72)

Therefore, it suffices to use a number of quantization bits equals to the lower bound in the above

inequality to guarantee the fraction βP. Note that the exact number of bits, given by the numerical

method, is less than the calculated lower bound.

3.6 Stability Analysis with Multiple Rate Levels

In this section, we consider the case of multiple modulations (instead of one), meaning that we have

multiple achievable rate levels. Under this case, we provide a stability analysis for the symmetric

system, while noting that such an analysis under the general system is not provided since it is of

considerable complexity. We first give the average rate expressions and we study their behaviors.

After that, we provide the stability analysis for the IA technique. Finally, after presenting some

results for SVD technique, we investigate the conditions under which IA yields a stability gain.

We consider a setting where the set of possible rates is given by {R1, R2, . . . , RM}, in which rate

Rj is per slot and is assigned for stream m of active user k if the corresponding SINR (i.e. γ
(m)
k ) is

higher than or equal to threshold τj . Without loss of generality, we assume that τ1 < τ2 < ... < τM ,

which implies R1 < R2 < .... < RM ; note that all these rates are finite, i.e. RM <∞. Further, under

the symmetry assumption, all the pairs have the same number of streams, namely d, and the path

loss coefficients are all equal to the same value, which is denoted by ζ. Under the above setting and

the fact that the set of active pairs is represented by L of cardinality L, the average rate expression

for active user k can be written in function of the transmission success probability conditioned on the

subset of active pairs as

(1− Lθ)
d∑

m=1

[
RM P

{
γ

(m)
k ≥ τM | L(t)

}
+

M−1∑
j=1

Rj P
{
τj ≤ γ(m)

k < τj+1 | L(t)
}]
. (3.73)
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Using the following equality

P
{
τj ≤ γ(m)

k < τj+1 | L(t)
}

= P
{
γ

(m)
k ≥ τj | L(t)

}
− P

{
γ

(m)
k ≥ τj+1 | L(t)

}
, (3.74)

we can rewrite the expression in (3.73) as

(1− Lθ)
d∑

m=1

[
RM P

{
γ

(m)
k ≥ τM | L

}
+

M−1∑
j=1

Rj

(
P
{
γ

(m)
k ≥ τj | L(t)

}
− P

{
γ

(m)
k ≥ τj+1 | L

})]
.

(3.75)

Rearranging its terms, the above equation can be re-expressed as

(1− Lθ)
d∑

m=1

[
R1 P

{
γ

(m)
k ≥ τ1 | L

}
+

M−1∑
j=1

(Rj+1 −Rj)P
{
γ

(m)
k ≥ τj+1 | L

}]
. (3.76)

We point out that here the SINR expressions for the cases L ≥ 2 and L = 1 are exactly the same as

for the single rate level scenario and are provided in (3.35) and (3.43), respectively.

We next provide a more explicit expression of the average rate functions for both the perfect and

imperfect cases, and we study the behavior (w.r.t. L) of each of these functions.

3.6.1 Average Rate Expressions and their Variation

3.6.1.1 If the Number of Scheduled Pairs L ≥ 2

a) Imperfect Case: Recalling that P
{
γ

(m)
k ≥ τ | L

}
= e−

σ2τ
α (F (τ))

L−1
(see the single rate level

scenario) and denoting the average rate for active user k (∈ L) as rkM in this case, we get

rkM = (1− Lθ)d

[
R1 e

−σ
2τ1
α (F (τ1))

L−1
+

M−1∑
j=1

(Rj+1 −Rj) e−
σ2τj+1

α (F (τj+1))
L−1

]
, (3.77)

where F (τj) stands for function F , for which the expression can be found in the single rate case,

calculated by replacing τ with τj . We can observe that this rate function depends only on the

cardinality L of the subset of active pairs and not on the identity of these pairs, hence all the active

users have the same average rate; we define this latter one as rM(L) = rkM, for all k ∈ L. Consequently,

the total average rate, which we denote by rMT(L), is given by

rMT(L) = L(1− Lθ)d

[
R1 e

−σ
2τ1
α (F (τ1))

L−1
+

M−1∑
j=1

(Rj+1 −Rj) e−
σ2τj+1

α (F (τj+1))
L−1

]
. (3.78)

For the variation of functions rM(L) and rMT(L), we state the following lemma.

Lemma 6. The average rate function rM(L) decreases w.r.t. the number of pairs L. On the other

hand, the total average rate function rMT(L) has the following behavior over the interval
[
0, 1

θ

]
: For

L = 0 or L = 1
θ , rMT(L) = 0 and between 0 and 1

θ , the function is positive and might have several
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maxima, one of which is a global maximum.

Proof. Please refer to Appendix 3.9.14 for the proof.

One final thing to mention here is that providing an explicit expression for the number at which

rMT(L) reaches its global maximum is a difficult task, however we can easily find this point numer-

ically. In general, the resulting value is not an integer, so we can adopt the procedure used for the

single rate level case to determine the best and nearest integer to this value. For the remainder of the

manuscript, we denote this integer by LMI.

b) Perfect Case: For this case, we know that P
{
γ

(m)
k ≥ τ | L

}
= e−

σ2τ
α , which is independent of

the set of active pairs. In a similar way as for the imperfect case, we can notice that the average rate

will be the same for all active users. Letting this rate and the total one in this case be µM(L) and

µMT(L), respectively, we can write

µM(L) = (1− Lθ)d

[
R1 e

−σ
2τ1
α +

M−1∑
j=1

(Rj+1 −Rj) e−
σ2τj+1

α

]
, (3.79)

µMT(L) = L(1− Lθ)d

[
R1 e

−σ
2τ1
α +

M−1∑
j=1

(Rj+1 −Rj) e−
σ2τj+1

α

]
. (3.80)

It is obvious that µM(L) is a decreasing function whereas µMT(L) is concave at 1
2θ . We define LMP as

the best and nearest integer to 1
2θ , which can be computed in a similar way as for the single rate case.

3.6.1.2 If the Number of Scheduled Pairs L = 1

The SVD technique is applied in this case, and the SINR is the same as for the case with single rate

level. Let us define MF (τ) as

MF (τ) =

m2−1∑
n=0

Ωn

2n∑
j=0

κj Γ(j +m1 −m2 + 1,
dσ2τ

ζP
). (3.81)

Hence, the average rate in this case, which we denoted by rMsvd, can be expressed as

rMsvd = (1− θ)d

[
R1 P

{
γ

(m)
k ≥ τ1

}
+

M−1∑
j=1

(Rj+1 −Rj)P
{
γ

(m)
k ≥ τj+1

}]

= (1− θ)d

[
R1MF (τ1) +

M−1∑
j=1

(Rj+1 −Rj)MF (τj+1)

]
. (3.82)

It can be seen that the above average rate is independent of whether we are under the perfect case or

imperfect case since the backhaul is not used when there is only one active pair. We also note that

the average rate here is independent of the identity of the scheduled pair.
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3.6.2 Stability Regions and Scheduling Policies

3.6.2.1 Imperfect Case

We define the subset of average rate vectors if L ≥ 2 pairs are active as MIL = {rM(L)s : s ∈ SL}.
If L = 1, we have MI 1 = {rMsvds : s ∈ S1}. Similarly to the condition on LI for the single rate level

scenario, we assume without lost of generality that 2 ≤ LMI ≤ N . Based on the above, we can state

the following result on the characterization of the stability region.

Theorem 11. For the symmetric system with multiple rate levels, the stability region in the imperfect

case can be characterized as

ΛMI = CH{0,MI 1,MI 2, ...,MILMI} . (3.83)

Proof. The proof of this theorem can be done in the same way as the proof of Theorem 5, we thus

omit it to avoid repetition.

In order to select the active pairs at each time-slot, we use the Max-Weight rule, which we denote

by ∆*
MI. Specifically, this rule selects the decision vector s(t) that yields the following max

∆*
MI : max

{
max

s∈SL, 2≤L≤N
{rM(‖s‖1) s · q(t)} ,max

s∈S1

{rMsvd s · q(t)}
}
. (3.84)

It is noteworthy to mention that the above policy is throughput optimal, meaning that it can achieve

the entire stability region ΛMI. We also point out that the classical implementation of this policy has

the same computational complexity as that of ∆*
I , namely O(N2N ). To reduce this complexity to

O(N2), we can use the equivalent implementation proposed in Algorithm 1 but after replacing r(L)

and rsvd with rM(L) and rMsvd, respectively.

3.6.2.2 Perfect Case

We define the subset of average rate vectors if L ≥ 2 pairs are active as MPL = {µM(L)s : s ∈ SL}.
For L = 1, we define MP1 = {rMsvds : s ∈ S1}. We suppose that LMP ≤ N . Hence, the stability

region under the perfect case is given by the following theorem.

Theorem 12. For the symmetric system with multiple modulations, the stability region in the perfect

case can be represented as

ΛMP = CH{0,MP1,MP2, ...,MPLMP} . (3.85)

Proof. The proof of the theorem is along the lines of the other proofs in this chapter and is thus

omitted to avoid redundancy.
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To decide which pairs to schedule at each time-slot, we use the following optimal scheduling policy,

denoted by ∆*
MP, which selects the decision vector s(t) that yields the following max

∆*
MP : max

{
max

s∈SL, 2≤L≤N
{µM(‖s‖1) s · q(t)} ,max

s∈S1

{rMsvd s · q(t)}
}
. (3.86)

Note that the same remark about the computational complexity of ∆*
MI can be made for ∆*

MP, that

is, the classical implementation of this latter policy results in a complexity of O(N2N ), which can be

reduced using Algorithm 1 but after considering µM(L) and rMsvd instead of r(L) and rsvd, respectively.

3.6.3 Conditions under which IA Provides a Gain in terms of

Queueing Stability

In this subsection, and based on a similar investigation as that done in the single rate level case, we

provide the conditions under which the use of IA can yield a queueing stability gain. These conditions

are given for the perfect and imperfect cases as follows.

Proposition 5. For the symmetric system with multiple rate levels, under the imperfect case IA

yields a queueing stability gain if and only if there exists a number L such that LrM(L) > rMsvd, with

2 ≤ L ≤ LMI. For the same system but under the perfect case, we get a similar result, that is, IA yields

a queueing stability gain iff there exists a number L such that LµM(L) > rMsvd , with 2 ≤ L ≤ LMP .

Proof. The proof can be done in the same way as the proof of Proposition 4 and is thus omitted to

avoid repetition.

Based on similar observations as in the single rate level case, the following remark can be made.

Remark 2. For the imperfect case with multiple rate levels, if we can find an L such that LrM(L) >

rMsvd, with 2 ≤ L ≤ LMI, a more precise characterization of ΛMI is as follows

ΛMI = CH{0,MI 1,MIL, ...,MILMI} . (3.87)

If such an L does not exist, then the region characterization becomes ΛMI = CH{0,MI 1}.
For the perfect case with multiple rate levels, if there exists an L such that LµM(L) > rMsvd is satisfied,

with 2 ≤ L ≤ LMP, we obtain

ΛMP = CH{0,MP1,MPL, ...,MPLMP
} . (3.88)

Otherwise, the characterization of ΛMP reduces to ΛMP = CH{0,MP1}.
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3.6.4 Compare the Imperfect and Perfect Cases in terms of

Queueing Stability

We now want to examine the gap between the stability regions resulting from the perfect and imperfect

cases. To this end, we compute the (minimum) fraction that the stability region in the imperfect case

achieves from the stability region in the perfect case. Similarly to the approach used in the single

rate scenario, this fraction corresponds to that between a point in PLMP
and its corresponding point

(i.e. in the same direction toward the origin) on the convex hull of the imperfect case (given by ΛMI).

Under this approach, the following result holds.

Theorem 13. For the symmetric system with multiple rate levels, the stability region in the imperfect

case achieves at least a fraction rMT(LMI)
µMT(LMP) = LMI rM(LMI)

LMP µM(LMP) of the stability region achieved in the perfect

case. In other words, the region ΛMI can be bounded as the following

rMT(LMI)

µMT(LMP)
ΛMP ⊆ ΛMI ⊆ ΛMP. (3.89)

In the special case where IA yields no gain under the imperfect case, the above fraction reduces to

rMsvd

µMT(LMP)
=

rMsvd

LMPµ(LMP)
. (3.90)

Proof. The proof of this theorem is essentially the same as the proof of Theorem 7, we thus omit it

to avoid repetition.

3.7 Validation of the Proposed Model

In this section we present the numerical results. We consider a system where the number of antennas

Nt = Nr = 7, P = 10, σ = 1, d = 2, θ = 0.01. We take N = 6, which satisfies the condition

Nt +Nr ≥ (N + 1)d. In addition, we assume that all the users have Poisson incoming traffic with the

same average arrival rates as ak = a. Also, we assume a scheme with a rate of log2(1 + τ) bits per

channel use if the SINR of a scheduled user exceeds τ . We set the slot duration to be Ts = 1000 channel

uses. Even though in practice all the path loss coefficients are different, we consider in this section

a very special case that simplifies the simulations and can still provide insights on the comparison

between IA and time-division multiple access (TDMA)-SVD. In detail, we assume that all the direct

links have a path loss coefficient of 1 and all the cross links have a path loss coefficient of ζc (with

ζc ≤ 1). This setting allows us to examine, with respect to parameter ζc, the impact of the cross

channels (or equivalently, the impact of interference) on the system stability performance and it let

us detect when IA technique can provide a queueing stability gain.

To show the stability performance of the system, we plot the total average queue length given by

1

Ms

Ms−1∑
t=0

N∑
k=1

qk(t) (3.91)
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3.7. Validation of the Proposed Model

Table 3.1: List of simulation parameters.

Parameter Description Value

N Maximum number of pairs 6
Nt Number of antennas at each transmitter 7
Nr Number of antennas at each receiver 7
dk Number of data streams for pair k 2
P Total power at each transmitter 10
σ2 Noise variance 1
θ Fraction of slot duration to probe one user 0.01
Ts Slot duration (in number of channel uses) 103

Ms Number of slots per simulation 104

for different values of a, where each simulation lasts Ms time-slots. We set Ms = 104. We point out

that the point where the total average queue length function increases very steeply is the point at

which the system becomes unstable.
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Figure 3.5: Total average queue length vs. mean arrival rate a. Here, ζc = 0.2 and τ = 1.
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Figure 3.6: Total average queue length vs. mean arrival rate a. Here, ζc = 0.4 and τ = 1.
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3.7. Validation of the Proposed Model

Figures 3.5 and 3.6 depicts the variations of the total average queue length with respect to the

mean arrival rate a for two systems: (i) our adopted system, i.e. IA and SVD are used, where we

consider several values of the number of quantization bits B, and (ii) a TDMA-SVD system, i.e.

there is always only one active pair and where SVD is applied. In Figure 3.5, where a relatively low-

interference scenario (ζc = 0.2) is considered, we can see that IA can provide a queueing stability gain

and this gain increases with the number of quantization bits. This is due to the fact that the more the

quantization is precise, the more we achieve higher rates which implies better stability performance.

On the other side, from Figure 3.6, where a relatively high-interference scenario (ζc = 0.4) is considered,

we can notice that for small B (e.g. B = 15 bits) IA does not provide any additional stability gain to

that of SVD. However, when we increase the number of bits (e.g. B = 30 and 40 bits), IA becomes

capable of yielding a stability gain. This results from the fact that in high interference scenarios, IA

needs better CSI knowledge in order to maintain a good alignment of interference, and this can be

provided by using a sufficiently large number of bits in the quantization process. It is worth noting

that, although we considered the impact of B and ζc, there exist other parameters that may affect the

system performance, such as the number of antennas, the threshold τ , the number of data streams,

etc. Furthermore, we point out that for low values of a the average queue lengths appear to be 0

in Figure 3.5 and 3.6, however these length values are not 0 but just very small compared to the

maximum length value (of order 105).
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Figure 3.7: Achievable fraction r(N,B′)
r(N,B) vs. number of bits B′. Here, ζc = 1 and B = 40.

Figure 3.7 depicts the variation of the fraction r(N,B′)
r(N,B) with the number of bits B′, for different

values of τ and for a fixed reference number of bits B = 40 bits; here, we set ζc = 1 since r(N,B′)
r(N,B) is

defined for the symmetric system. It is clear from this figure that increasing the number of quantization

bits or decreasing the threshold τ result in higher achievable fractions. Also, one can notice that

changing the number of quantization bits has a higher impact on the achievable fraction for greater

values of τ , meaning that the more the threshold is high, the more the fraction r(N,B′)
r(N,B) is sensitive to

the variation of the number of bits.

In Figure 3.8 we illustrate the variation of fraction βP with the number of bits B, for different

values of τ and ζc. The plots in this figure confirm the expectation that the stability region in the

imperfect case gets bigger, i.e. the fraction this stability region achieves with respect to the stability
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Figure 3.8: Achievable fraction βP vs. number of bits B.

region in the perfect case is bigger, for greater B and/or lower ζc.

3.8 Closing Remarks

In this chapter, we have considered a MIMO interference network under TDD mode with limited back-

haul capacity and taking into account the probing cost, and where we adopt a centralized scheduling

scheme to select the active pairs in each time-slot. For the case where only one pair is active we

apply the SVD technique, whereas if this number is greater than or equal to two we apply the IA

technique. Under this setting, we have characterized the stability region and proposed a scheduling

policy to achieve this region for the perfect case (i.e. unlimited backhaul) as well as for the imperfect

case. Then, we have captured the maximum gap between these two resulting stability regions. These

stability regions, scheduling rules and maximum gaps are provided for the symmetric system (i.e.

equal path loss coefficients) as well as for the general system. In addition, for the symmetric system

we have provided the conditions under which IA can deliver a queueing stability gain compared to

SVD. Moreover, under the general system, since the scheduling policy is of a high computational

complexity, we have proposed an approximate policy that has a reduced complexity but that achieves

only a fraction of the system stability region. Also, a characterization of this achievable fraction is

provided. Finally, in the same vein as the symmetric case with single rate level, we have presented a

stability analysis for the symmetric system under a multiple rate levels scheme.
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3.9 Appendix

3.9.1 Proof of Proposition 1

It was shown in [90, Appendix A] that both

∣∣∣∣(û(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2 and

∣∣∣∣(u
(m)
k

)H
Hkkv

(m)
k

∣∣∣∣2 have an

exponential distribution with parameter 1, thus the proof for the prefect case follows directly. However,

for the imperfect case, the proof is not straightforward and needs some investigations.

By defining Num =

∣∣∣∣(û(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2, we can write

P
{
γ

(m)
k ≥ τ | L(t)

}
= P

{
Num

RI
(m)
k + σ2

≥ τ

αkk

}

= P

{
Num ≥

RI
(m)
k τ

αkk
+
σ2τ

αkk

}

=

∫ ∞
0

CCDFNum

(
RI

(m)
k τ

αkk
+
σ2τ

αkk

)
PDF

(
RI

(m)
k

)
dRI

(m)
k

=

∫ ∞
0

e
−

RI
(m)
k

τ

αkk
− σ2ταkk PDF

(
RI

(m)
k

)
dRI

(m)
k , (3.92)

where the last equality holds since Num is exponentially distributed with parameter 1 and thus its

complementary cumulative distribution function can be given by CCDFNum(x) = e−x. Note that

PDF
(

RI
(m)
k

)
is the probability distribution function (PDF) of RI

(m)
k . Hence, we get

P
{
γ

(m)
k ≥ τ | L(t)

}
=

∫ ∞
0

e
− σ2ταkk e

−
RI

(m)
k

τ

αkk PDF
(

RI
(m)
k

)
dRI

(m)
k

= e
− σ2ταkk MGF

RI
(m)
k

(
− τ

αkk

)
, (3.93)

in which MGF
RI

(m)
k

(·) is the MGF of RI
(m)
k . This concludes the proof.

3.9.2 Proof of Theorem 4

For the perfect case, the statement follows directly from Proposition 1. Using this proposition, it can

be seen that we need to calculate MGF
RI

(m)
k

(
− τ
αkk

)
in order to prove the statement for the imperfect

case. To this end, we first recall that, using (3.19), we can write

RI
(m)
k =

∑
i∈L(t),i6=k

αki ‖hki‖2 eki
di∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 . (3.94)

Since wki and T
(m,j)
k,i are independent and identically distributed (i.i.d.) isotropic vectors in the null

space of ĥki,
∣∣∣wH

ki T
(m,j)
k,i

∣∣∣2 is i.i.d. Beta(1, Q − 1) distributed for all i, where Q = NtNr − 1. Hence,
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∑di
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 is the sum of di i.i.d. Beta variables, which can be approximated to another Beta

distribution [106]. Specifically, we have

di∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 ∼ di Beta(c1i, c2i), (3.95)

where c1i = (Q+1)di
Q − 1

Q and c2i = (Q− 1)c1i.

According to [107], eki ‖hki‖2 is Gamma(Q, 2
B
Q ) distributed, where Q and 2

B
Q are the shape and rate

parameters, respectively. Let us define δ such as δ = 2
B
Q . It follows that

RI
(m)
k =

∑
i∈L(t),i6=k

ρkiXiYi, (3.96)

with ρki = αkidi, Xi ∼ Gamma(Q, δ) and Yi ∼ Beta(c1i, c2i). It is clear that XiYi is nothing but the

product of a Gamma and Beta random variables, thus the PDF of Pi = XiYi can be given as follows

(refer to [108] for more details)

fPi(pi) =
δQ Γ(c2i)

Γ(Q) Bet(c1i, c2i)
pQ−1
i e−δpi Ψ(c2i, 1 +Q− c1i; δpi), (3.97)

where Ψ is the Kummer function defined as

Ψ(a, b;x) =
1

Γ(a)

∫ ∞
0

e−xtta−1(1 + t)b−a−1dt, (3.98)

and where Γ(·) is the Gamma function and Bet(·, ·) is the Beta function.

Therefore, the MGF of random variable Pi can be written as

MGFPi(−t) =

+∞∫
−∞

e−tpifPi(pi) dpi

= κ

+∞∫
0

pQ−1
i e−tpi−δpiΨ(c2i, 1 +Q− c1i; δpi) dpi

(a)
= κ

Γ(Q) Γ(c1i)

δQ Γ(c1i + c2i)

(
t

δ
+ 1

)−Q
2F1(c2i, Q; c1i + c2i;

1

1 + δ
t

)

(b)
=

(
t

δ
+ 1

)−Q
2F1(c2i, Q; c1i + c2i;

1

1 + δ
t

), (3.99)

where κ is defined as follows

κ =
δQΓ(c2i)

Γ(Q)B(c1i, c2i)
. (3.100)
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Equality (a) is obtained using [109], whereas equality (b) holds due to the definition of the Beta

function

Bet(c1, c2) =
Γ(c1)Γ(c2)

Γ(c1 + c2)
. (3.101)

It is clear that we can write RI
(m)
k =

∑
i∈L(t),i6=k

ρkiPi, which is the sum of weighed (independent)

random variables (Pi) with ρki as weights. The MGF of RI
(m)
k at −t is then given by

MGF
RI

(m)
k

(−t) =
∏

i∈L(t),i6=k

MGFPi(−tρki)

=
∏

i∈L(t),i6=k

(
αkidit

δ
+ 1

)−Q
2F1(c2i, Q; c1i + c2i;

1
δ

αkidit
+ 1

). (3.102)

This results from the fact that the moment-generating function of a sum of independent random

variables is the product of the moment-generating functions of these variables. Hence, by taking

t = − τ
αkk

and recalling that δ = 2
B
Q , we eventually get

MGF
RI

(m)
k

(
− τ

αkk

)
=

∏
i∈L(t),i6=k

(
αkiτdi

αkk2
B
Q

+ 1

)−Q
2F1(c2i, Q; c1i + c2i;

1

αkk2
B
Q

αkiτdi
+ 1

). (3.103)

Notice that the above MGF expression is independent of the identity of the data stream, so we have

dk∑
m=1

MGF
RI

(m)
k

(
− τ

αkk

)
= dk MGF

RI
(m)
k

(
− τ

αkk

)
. (3.104)

Hence, the desired result follows.

3.9.3 Proof of Proposition 2

To begin with, we define two variables wl and Ωn as the following

ωl = (−1)l (n+m1 −m2)! ((n− l)! (m1 −m2 + l)! l! )
−1
, (3.105)

Ωn = n! (m2(n+m1 −m2)!)
−1
. (3.106)

Based on these definitions, we can write

Lm1−m2
n (λ) =

n∑
l=0

ωlλ
l
m, (3.107)
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p(λm) =

m2−1∑
n=0

Ωn[Lm1−m2
n (λm)]2λm1−m2

m e−λm . (3.108)

For the Laguerre polynomial, we have

[Lm1−m2
n (λm)]2 =

2n∑
j=0

κjλ
j
m, (3.109)

where κj =
∑j
i=0 ωiωj−i, with ωs = 0 if s > n. Since γ

(m)
k = ζP

d σ2λm, the probability that the

corresponding SINR exceeds a certain threshold τ can be written as

P
{
γ

(m)
k ≥ τ

}
= P

{
λm ≥

d σ2τ

ζP

}
=

m2−1∑
n=0

Ωn

2n∑
j=0

κj

∫ ∞
d σ2τ
ζP

λj+m1−m2
m e−λmdλm

=

m2−1∑
n=0

Ωn

2n∑
j=0

κjΓ(j +m1 −m2 + 1,
d σ2τ

ζP
), (3.110)

where Γ(·, ·) stands for the upper incomplete Gamma function. Hence, the desired result follows.

3.9.4 Proof of Lemma 2

We start the proof by first showing that r(L) decreases with L. The first derivative of this rate function

is given by

dr

dL
= dRe−

σ2τ
α (−θ + (1− Lθ) logF )FL−1. (3.111)

Since we have L < 1
θ and logF < 0, the first derivative is negative and so r decreases with L.

To study the variation of rT(L) (w.r.t. L) we need to first compute its first derivative, which will

help us determine the optimal number of pairs. The first derivative can be written as

drT

dL
= dRe−

σ2τ
α

(
−L2θ logF + L(−2θ + logF ) + 1

)
FL−1. (3.112)

To study the sign of this derivative w.r.t. L, we first calculate its zeros and investigate if they are

feasible (i.e. they satisfy Lθ < 1). Setting drT
dL = 0 yields

−L2θ logF + L(−2θ + logF ) + 1 = 0, (3.113)

or equivalently

L2 + L

(
2

logF
− 1

θ

)
− 1

θ logF
= 0. (3.114)
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We can easily show that the only zeros of drT
dL are at

L0 =

1
θ −

2
logF −

√(
2

logF −
1
θ

)2

+ 4
θ logF

2
, (3.115)

L1 =

1
θ −

2
logF +

√(
2

logF −
1
θ

)2

+ 4
θ logF

2
. (3.116)

Note that logF < 0 and
(

2
logF −

1
θ

)2

+ 4
θ logF = 1

θ2 + 4
(logF )2 . Let us now examine the feasibility of

L0 and L1. Indeed, under our setting a number L is feasible if it satisfies 0 < L < 1
θ , since Lθ should

be < 1. For L0 we have

L0 =

1
θ −

2
logF −

√
1
θ2 + 4

(logF )2

2
<

1
θ −

2
logF −

2
|logF |

2
=

1

2θ
, (3.117)

where the inequality results from the fact that 2
|logF | <

√
1
θ2 + 4

(logF )2 . We can also observe that

L0 =

1
θ −

2
logF −

√
1
θ2 + 4

(logF )2

2
>

1
θ −

2
logF −

1
θ −

2
|logF |

2
= 0. (3.118)

Thus, L0 is a feasible solution since 0 < L0 <
1
θ . On the other hand, for L1 we can notice that

L1 =

1
θ −

2
logF +

√
1
θ2 + 4

(logF )2

2
>

1
θ +

√
1
θ2

2
=

1

θ
. (3.119)

Hence, L1 is not a feasible solution because L1 >
1
θ . To complete the proof it suffices to show that

rT(L) reaches its maximum at L0. To this end, we note that rT(0) = 0, rT( 1
θ ) = 0 and drT

dL |L= 1
2θ
< 0,

and we recall that 0 < L0 <
1
2θ <

1
θ . In addition, one can easily notice that rT and its first derivative

(drTdL ) are continuous over
[
0, 1

θ

]
. Based on these observations, the variation of rT over

[
0, 1

θ

]
can be

described as follows: rT is increasing from 0 to L0 and decreasing from L0 to 1
θ .

3.9.5 Proof of Lemma 3

We first provide the proof of Lemma 4 that will help us in the proof of Lemma 3.

• Step 1 (Proof of Lemma 4):

Proof. We start the proof by first defining Ei,L as the set containing the points (vectors) that only

have L ’1’ (the other coordinate values are ’0’) and where the positions (indexes) of these ’1’ are the

same as those of L ’1’ coordinates of si,L+1. Note that the points in Ei,L are all different from each

other. The cardinality of Ei,L, which is denoted by |Ei,L|, is nothing but the result of the combination
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of L+ 1 elements taken L at a time without repetition, and it can be computed as the following

|Ei,L| =
(
L+ 1

L

)
=

(L+ 1)!

L!(L+ 1− L)!
= L+ 1. (3.120)

Thus, we have L+ 1 elements from SL that if we take them in a specific convex combination, we get

a point on the same line (from the origin) as that of si,L+1. This can be represented by∑
j∈Ei,L

δjsj,L ≡ si,L+1, (3.121)

where ≡ is a notation used to represent the fact that these two points are on the same line from the

origin, and where
∑
j∈Ei,L δj = 1 and δj ≥ 0. Let us suppose that all the coefficients δj = 1

L+1 . This

assumption satisfies the above constraints, namely
∑
j∈Ei,L δj = 1 and δj ≥ 0. By replacing these

coefficients in the term at the left-hand-side of (3.121), we get

∑
j∈Ei,L

δjsj,L =
1

L+ 1

∑
j∈Ei,L

sj,L =
L

L+ 1
si,L+1, (3.122)

where the second equality holds since we have L + 1 elements to sum (due to the fact that |Ei,L| =

L + 1), each of which contains L ’1’ at the same positions as L ’1’ coordinates of si,L+1, and (these

elements) differ from each other in the position of one ’1’ (and consequently of one ’0’); for instance,

suppose that N = 5, L = 2 and si,L+1 = (1, 1, 1, 0, 0), then the points sj,L are given by the subset

Ei,L = {(1, 1, 0, 0, 0); (1, 0, 1, 0, 0); (0, 1, 1, 0, 0)}. The sum corresponding to each coordinate is then

equal to L. To complete the proof, it remains to show that 1
L+1

∑
j∈Ei,L sj,L is on the convex hull of

SL. To this end, note that all the points in SL are on the same hyperplane (in RN+ ), which is described

by the equation
∑N
k=1 νk − L = 0; νk represents the k-th coordinate. Hence, a point on the convex

hull of SL is also on this hyperplane. If we compute
∑N
i=k νk for point 1

L+1

∑
j∈Ei,L sj,L, it yields

(L+1)L
L+1 = L due to the definition of Ei,L, thus this point is on the defined hyperplane and consequently

on the convex hull of SL.

Example: In order to better understand the result of this lemma, we provide a simple example for

which the geometric illustration is in Figure 3.9. In this example, we take N = 2, S1 = {(1, 0); (0, 1)}
and S2 = {(1, 1)}. In addition, we define points P2 = (1, 1) and P1 = ( 1

2 ,
1
2 ). Note that P2 ∈ S2 and

P1 is on the convex hull of S1. We can express P2 as P2 = 2
1 [ 1

2 (1, 0) + 1
2 (0, 1)] = 2(1

2 ,
1
2 ) = 2

1P1. Thus,

P2 equals 2
1× its corresponding point (P1) on the convex hull of S1.

This completes the proof of Lemma 4.

• Step 2: Now, using the above lemma, a point si,L+1 in SL+1 can be expressed in function of L+ 1

specific points in SL as si,L+1 = L+1
L

∑
j∈Ei,L δjsj,L, which implies that

r(L+ 1)si,L+1 = r(L+ 1)
L+ 1

L

∑
j∈Ei,L

δjsj,L, (3.123)

where the definition of Ei,L can be found in the proof of Lemma 4. By Lemma 2, we have

(L+ 1)r(L+ 1) < Lr(L), for L ≥ LI. (3.124)
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Figure 3.9: Example that illustrates the result of Lemma 4.

We thus get

r(L+ 1)
L+ 1

L

∑
j∈Ei,L

δjsj,L ≺ r(L)
L

L

∑
j∈Ei,L

δjsj,L = r(L)
∑
j∈Ei,L

δjsj,L. (3.125)

Note that the inequality operator ≺ in (3.125) is component-wise. Therefore, each point in IL+1 is in

the convex hull of IL, for L ≥ LI, since r(L+ 1)si,L+1 ∈ IL+1 and r(L)
∑
j∈Ei,L δjsj,L is in the convex

hull of IL. Consequently, all the points in IL+1 for L ≥ LI (i.e. these points form Ī) are in the convex

hull of ILI
, which is a subset of I. Therefore, the desired result holds.

3.9.6 Proof of Theorem 5

The proof consists of two steps. First we will prove that the region in the statement of the Theorem

is indeed achievable. We then have to prove the converse, that is, if there exists a centralized policy

that stabilizes the system for a mean arrival rate vector a, then a ∈ ΛI.

• Step 1: Using the fact that a queue is stable if the arrival rate is strictly lower than the departure

rate, it is sufficient to show that for each point in the stability region there exists a scheduling policy

that achieves this point. Indeed, a point rI in ΛI can be written as the convex combination of the

points in I as rI =
∑|I|
i=1 piri, where ri represents a point in I, pi ≥ 0 and

∑|I|
i=1 pi = 1. Note that

each point ri represents a different scheduled subset of pairs and that the probability of choosing point

0 is equal to 0. To achieve rI it suffices to use a randomized policy that at the beginning of each

time-slot selects (decision) ri with probability pi. Since rI is an arbitrary point in ΛI, we can claim

that this region is achievable.

• Step 2: Assume the system is stable for a mean arrival rate vector a. As explained earlier, the

scheduling decision (i.e. subset L) under the centralized policy depends on the queues only, so we show

this dependency by L(q). Let us denote by rs the mean service rate vector. In addition, we denote

by r(L(q)) the average rate vector if the queues state is q and the selected subset of pairs is L(q).

It is obvious that the set of all possible values of r(L(q)) is nothing but I ∪ Ī. Under the adopted

model, the system can be described as a discrete time Markov chain on a countable state space with

a single communicating class (i.e. irreducible) [27]. Since we assume strong stability, then we have
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that this chain is positive recurrent and the mean service rates greater than the mean arrival rates

[27]. In addition, we can deduce that the Markov chain has a unique stationary distribution (because

the chain is irreducible and positive recurrent), which we denote by π(q). Thus, the following holds

for the mean service rate vector

rs =
∑
q∈ZN+

π(q)r(L(q)) =
∑
L∈L

r(L)
∑

q∈ZN+ :L(q)=L

π(q) � a, (3.126)

where the operator � is component-wise. By setting p(L) =
∑

q∈ZN+ :L(q)=L
π(q) and noticing that the

set of all possible values of r(L) is the same as r(L(q)), that is, I ∪ Ī , the mean service rate can be

re-written as the following

rs =

|I∪Ī|∑
j=1

pjrj , (3.127)

in which j is used to denote decision L, meaning that pj = p(L), and rj represents a point in set I ∪Ī,

and where
∣∣I ∪ Ī∣∣ represents the cardinality of this set. Hence, we can state that rs is in the convex

hull of I ∪ Ī. But, since we have demonstrated that Ī is in the convex hull of I (see Lemma 3), we

have rs ∈ ΛI and consequently a ∈ ΛI. This completes the proof.

3.9.7 Proof of Proposition 4

The proof consists of two steps. In the first step we prove that if there exists an L such that Lr(L) >

rsvd, then IA provides a queueing stability gain compared to SVD. In the second step, we show that

if for all the L we have Lr(L) ≤ rsvd, then IA does not provide any gain.

• Step 1: Here we assume that there exists an L such that Lr(L) > rsvd, with 2 ≤ L ≤ LI, where

we recall that r(L) is the average rate (per user) when L pairs are active. To prove that here IA can

provide a queueing stability gain, we show that IA combined with SVD is capable of achieving points

that are outside the stability region of SVD. This is proven as follows.

It is well known that any point in a stability region characterized by its vertices can be written as a

convex combination of these vertices. Let pd represent any point in the stability region resulting from

SVD, thus this point can be expressed as a convex combination of the vertices of this region, and we

can write

pd =δ1(rsvd, 0, . . . , 0) +δ2(0, rsvd, 0, . . . , 0) + . . .+δN (0, . . . , 0, rsvd)=(δ1rsvd, . . . , δNrsvd), (3.128)

where δi ≥ 0 and
∑
i δi = 1. Let us define a specific scheduling policy that at each time-slot schedules

a subset of l pairs and where pair i is selected with a probability π
(l)
i . Here we assume that l can

be 1 or L. Clearly, for l = 1 we use SVD, whereas for l = L we use IA. For l = 1 we choose

π
(1)
i such that π

(1)
i ≤ δi, ∀i, while for l = L we set π

(L)
i = (δi − π

(1)
i )L; it can be noticed that∑

i π
(1)
i + L−1

∑
i π

(L)
i =

∑
i δi = 1. Then, the points in the stability region achieved by combining
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IA and SVD can be written as

pad = (π
(1)
1 rsvd + π

(L)
1 r(L), . . . , π

(1)
N rsvd + π

(L)
N r(L))

= (π
(1)
1 rsvd + (δ1 − π(1)

1 )Lr(L), . . . , π
(1)
N rsvd + (δN − π(1)

N )Lr(L)). (3.129)

Since here we have Lr(L) > rsvd, then it can be deduced that

pad = (π
(1)
1 rsvd + (δ1 − π(1)

1 )Lr(L), . . . , π
(1)
N rsvd + (δN − π(1)

N )Lr(L))

�(π
(1)
1 rsvd + (δ1 − π(1)

1 )rsvd, . . . , π
(1)
N rsvd + (δN − π(1)

N )rsvd = (δ1rsvd, . . . , δNrsvd)=pd, (3.130)

where the operator � is component-wise. Hence, we can claim that the proposed policy achieves

points that are outside the stability region of SVD.

• Step 2: In this step, we assume that the condition Lr(L) ≤ rsvd holds true for any L such that

2 ≤ L ≤ LI. To prove that here IA cannot yield a queueing stability gain, we show that SVD is

capable of achieving any point in the stability region of IA combined with SVD. This is detailed as

follows. Any point in the stability region resulting from combining IA and SVD can be achieved by

a scheduling policy that at each time-slot schedules a subset of pairs where pair i is selected with a

probability π
(L)
i , such that

∑
i

∑
L L
−1π

(L)
i = 1. So this point, denoted by pad, can be written as the

following

pad = (π
(1)
1 rsvd +

∑
L:L≥2

π
(L)
1 r(L), . . . , π

(1)
N rsvd +

∑
L:L≥2

π
(L)
N r(L)). (3.131)

Let us define a scheduling policy under SVD (i.e. one pair is active) that at each time-slot selects pair

i with a probability δi =
∑
L L
−1π

(L)
i , where it is clear that

∑
i δi =

∑
i

∑
L L
−1π

(L)
i = 1. Hence, this

policy can achieve a point, denoted by pd, such as

pd = (δ1rsvd, . . . , δNrsvd) = (
∑
L

L−1π
(L)
1 rsvd, . . . ,

∑
L

L−1π
(L)
N rsvd). (3.132)

The condition Lr(L) ≤ rsvd yields

pd = (
∑
L

L−1π
(L)
1 rsvd, . . . ,

∑
L

L−1π
(L)
N rsvd)

= (π
(1)
1 rsvd +

∑
L:L≥2

L−1π
(L)
1 rsvd, . . . , π

(1)
N rsvd +

∑
L:L≥2

L−1π
(L)
N rsvd)

� (π
(1)
1 rsvd +

∑
L:L≥2

L−1π
(L)
1 Lr(L), . . . , π

(1)
N rsvd +

∑
L:L≥2

L−1π
(L)
N Lr(L)) = pad, (3.133)

where the equality is achieved for some judicious choice of the π
(L)
i . This shows that the policy using

SVD can achieve any point in the stability region of IA combined with SVD.

A similar proof can be done for the perfect case by replacing r(L) by µ(L), we thus omit this

proof to avoid repetition. Therefore, the desired result holds.
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3.9.8 Proof of Theorem 7

We first provide the proof of Lemma 5 that will help us in the proof of the theorem.

• Step 1 (Proof of Lemma 5):

Proof. From Lemma 4, a point in SL+1 can be expressed in function of some subset of points, rep-

resented by Ei,L, in SL as si,L+1 = L+1
L

∑
i1∈Ei,L δi1,Lsi1,L. More specifically, we found that the

coefficients δi1,L are all equal to 1
L+1 , and thus si,L+1 = L+1

L

∑
i1∈Ei,L

1
L+1si1,L = 1

L

∑
i1∈Ei,L si1,L.

Similarly, each point si1,L (∈ SL) can be written in function of some specific subset of points, denoted

Ei1,L−1, in SL−1 as si1,L = 1
L−1

∑
i2∈Ei1,L−1

si2,L−1. Following this reasoning until index L− (n− 1),

we can express si,L+1 as

si,L+1 =
1

L(L− 1) . . . (L− (n− 1))

∑
i1∈Ei,L

∑
i2∈Ei1,L−1

. . .
∑

in∈Ein−1,L−(n−1)

sin,L−(n−1). (3.134)

We denote by En−1,L−(n−1) the subset containing the points (vectors) that only have L − n ’1’ (the

other coordinate values are ’0’) and where the positions (indexes) of these ’1’ coordinates are the same

as the positions of L − n ’1’ coordinates of si,L+1. It is important to point out that the elements in

En−1,L−(n−1) are all different from each other. It can be easily noticed that each Ein−1,L−(n−1) (in

(3.134)) is a subset of En−1,L−(n−1). The cardinality of this latter set is the result of the combination

of L+ 1 elements taken L− (n− 1) at a time without repetition, thus we get the following

∣∣En−1,L−(n−1)

∣∣ =

(
L+ 1

L− (n− 1)

)
=

(L+ 1)!

(L− (n− 1))!n!
. (3.135)

Let us now examine the nested summation in the expression in (3.134). We can remark that the

summands are the elements of En−1,L−(n−1). Hence, the result of this nested summation is nothing

but a simple sum of the vectors in En−1,L−(n−1), each of which multiplied by the number of times it

appears in the summation. For each vector, this number is the result of the number of possible orders

in which we can remove (L+ 1− (L− (n− 1))) particular ’1’ coordinates from si,L+1. It follows that

the required numbers are all equal to each other and given by (L+ 1− (L− (n− 1)))! = n!. From the

above and the fact that (L(L− 1) . . . (L− (n− 1)))−1 = (L− n)!(L!)−1, the expression in (3.134) can

be rewritten as

si,L+1 =
(L− n)!

L!

∑
j∈En−1,L−(n−1)

n! sj,L−(n−1)

=
(L− n)!n!

L!

(L+ 1)!

(L− (n− 1))!n!

∑
j∈En−1,L−(n−1)

(L− (n− 1))!n!

(L+ 1)!
sj,L−(n−1), (3.136)

where the second equality is due to multiplying and dividing by
∣∣En−1,L−(n−1)

∣∣. By noticing that the

factor that multiplies the summation is equal to L+1
L−(n−1) , (3.136) can be re-expressed as

si,L+1 =
L+ 1

L− (n− 1)

∑
j∈En−1,L−(n−1)

(L− (n− 1))!n!

(L+ 1)!
sj,L−(n−1). (3.137)
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(1,1,1,1)
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(0,0,1,1)(0,1,0,1)(0,1,1,0)
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(0,0,1,1)(1,0,0,1)(1,0,1,0)

(1,1,0,1)
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(0,1,1,0)(1,0,1,0)(1,1,0,0)

Figure 3.10: A tree that shows the vectors in S2 that yield si,4 = (1, 1, 1, 1). Here, N = 4 and n = 2.

From the proof of Lemma 4, we can claim that the point formed by the convex combination∑
j∈En−1,L−(n−1)

∣∣En−1,L−(n−1)

∣∣−1
sj,L−(n−1) (3.138)

is on the convex hull of SL−(n−1) and in the same direction from the origin as si,L+1; this combination

is convex since we have
∣∣En−1,L−(n−1)

∣∣−1
> 0 and

∑
j∈En−1,L−(n−1)

∣∣En−1,L−(n−1)

∣∣−1
= 1, meaning

that the coefficients of this combination are non-negative and sum to 1.

Example: In order to clarify the result of this lemma, we provide a simple example in which we

set N = 4 and L + 1 = 4. Under this example, we know that S4 will contain one point, namely

si,4 = (1, 1, 1, 1). For this point, we want to find its corresponding point on the convex hull of S2; this

implies that n = 2. From the tree in Figure 3.10, it can be seen that

si,4 =
1

3
((1, 1, 1, 0) + (1, 1, 0, 1) + (1, 0, 1, 1) + (0, 1, 1, 1))

=
1

3
((1, 1, 0, 0) + (1, 0, 1, 0) + (0, 1, 1, 0) + (1, 0, 0, 1) + (0, 1, 0, 1) + (0, 0, 1, 1)). (3.139)

Remark that the 6 different vectors in the second equality form the set En−1,L−(n−1) = E1,2, thus

|E1,2| = 6. Using E1,2, the point that corresponds to si,4 and that lies on the convex hull of S2 is given

by the following

1

6
(1, 1, 0, 0) +

1

6
(1, 0, 1, 0) +

1

6
(0, 1, 1, 0) +

1

6
(1, 0, 0, 1) +

1

6
(0, 1, 0, 1) +

1

6
(0, 0, 1, 1). (3.140)

We can obtain si,4 by just multiplying this convex combination by a factor of 2, which verifies the

general formula provided in (3.137).

This completes the proof of Lemma 5.

• Step 2: To find the minimum achievable fraction between the stability region of the imperfect case

(ΛI) and the stability region of the perfect case (ΛP), we examine the gap between each vertex that

contributes in the characterization of ΛP, where the set of these vertices is given by {P1, . . . , PLP
},

and the convex hull of ΛI. To begin with, using the above lemma, we recall that a point in SLP
can

be written in function of some point that lies on the convex hull of SLI , where these two points are in

the same direction toward the origin. Furthermore, the gap between these two points can be captured

using the fraction LI

LP
. Since any point in PLP

can be written as µ(LP) times its corresponding point

in SLP and a point on the convex hull of ILI is r(LI) times its corresponding point on the convex hull

of SLI
, we can claim that the fraction between any point in PLP

and its corresponding point on the
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convex hull of ILI
, and thus on the convex hull of ΛI, can be given by the following

LIr(LI)

LPµ(LP)
=

rT(LI)

µT(LP)
. (3.141)

More generally, using the above approach, we can show that the fraction between any point (vertex)

in PL, for LI ≤ L ≤ LP, and the convex hull of ΛI is equal to LIr(LI)
Lµ(L) = rT(LI)

µT(L) . For these fractions,

since µT(L) increases for L ≤ LP, the following holds

rT(LI)

µT(LP)
<

rT(LI)

µT(LP − 1)
< . . . <

rT(LI)

µT(LI)
. (3.142)

On the other side, the fraction between any vertex in PL, for 2 ≤ L ≤ LI, and its corresponding point

on the convex hull of ΛI is given by Lr(L)
Lµ(L) = rT(L)

µT(L) . This is due to the fact that the point on the

convex hull of ΛI and that corresponds to a specific vertex in PL, for 2 ≤ L ≤ LI, is nothing but a

vertex in IL. For the fractions in this case, it is obvious that

rT(LI)

µT(LI)
<
rT(LI − 1)

µT(LI − 1)
< . . . <

rT(2)

µT(2)
. (3.143)

Hence, using the inequalities in (3.142) and (3.143), the minimum achievable fraction is given by
rT(LI)
µT(LP) . Therefore, the desired result holds.

3.9.9 Proof of Theorem 8

The proof consists of three steps. We first show that (r · q)(∆*
B′ ) ≥ r(LB ,B

′)
r(LB ,B) (r · q)(∆*

B). We then find

the minimum fraction r(LB ,B
′)

r(LB ,B) under the condition that the number of active pairs, LB , can be less

than or equal to N ; we get r(N,B′)
r(N,B) as a minimum fraction. Finally, we show that the stability region

ΛB′ achieves at least a fraction r(N,B′)
r(N,B) of the stability region ΛB and we conclude that ΛB′ can be

bounded as given in (3.52).

• Step 1: Recall that under the symmetric case all the active pairs have the same average rate, which

we denote here by r(LB , B). Thus, we can write

(r · q)(∆*
B) = r(LB , B)

∑
k∈LB

qk, (3.144)

where LB = |LB | . Similarly, we get

(r · q)(∆*
B′ ) = r(LB′ , B

′)
∑
k∈LB′

qk, (3.145)

with LB′ = |LB′ |. Note that r(LB , B
′) ≤ r(LB , B), or equivalently r(LB ,B

′)
r(LB ,B) ≤ 1, if B′ ≤ B.

Depending on the subset of scheduled pairs under each of ∆*
B′ and ∆*

B , four cases are to consider:

1 ) If the Number of Scheduled Pairs is 1 under both of ∆*
B′ and ∆*

B: Let us denote the active pair

by i. It is clear that in this case the average rate expression is independent of the number of bits and
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thus we have r(1, B) = r(1, B′) = rsvd. Based on this, it can be seen that

(r · q)(∆*
B) = (r · q)(∆*

B′ ) = rsvd qi. (3.146)

Hence, for any positive fraction β ≤ 1, we have (r · q)(∆*
B′ ) ≥ β(r · q)(∆*

B). We can therefore write

(r · q)(∆*
B′ ) ≥ r(LB , B

′)

r(LB , B)
(r · q)(∆*

B). (3.147)

2 ) If the Number of Scheduled Pairs is 1 under ∆*
B and strictly greater than 1 under ∆*

B′ : It

can be observed that this case cannot take place. We prove this claim using the concept of proof by

contradiction. Let i denote the index of the scheduled pair under ∆*
B . Here we have (r·q)(∆*

B) = rsvd qi

and (r · q)(∆*
B′ ) = r(LB′ , B

′)
∑
k∈LB′

qk. Since ∆*
B′ maximizes the product (r · q) for the case where

B′ is the number of bits, we get

r(LB′ , B
′)
∑
k∈LB′

qk ≥ rsvd qi. (3.148)

On the other side, based on the definition of ∆*
B and the fact that r(LB , B

′) < r(LB , B), we get

rsvd qi ≥ r(LB , B)
∑
k∈LB

qk > r(LB , B
′)
∑
k∈LB

qk. (3.149)

The above inequality holds for any LB and in particular for LB = LB′ , we thus have

rsvd qi ≥ r(LB , B)
∑
k∈LB

qk > r(LB′ , B
′)
∑
k∈LB′

qk. (3.150)

Based on equations (3.149) and (3.150), we obtain rsvd qi > rsvd qi, which is incorrect.

3 ) If the Number of Scheduled Pairs is 1 under ∆*
B′ and strictly greater than 1 under ∆*

B: If we

denote by i the index of the scheduled pair under ∆*
B′ , we can write (r ·q)(∆*

B′ ) = rsvd qi. In addition,

we have (r ·q)(∆*
B) = r(LB , B)

∑
k∈LB qk. Since ∆*

B′ maximizes the product (r ·q) for the case where

the number of bits is B′, the following holds

r(LB , B
′)
∑
k∈LB

qk ≤ rsvd qi. (3.151)

In addition, using the definition of ∆*
B and the fact that r(LB , B

′) ≤ r(LB , B), we can write

r(LB , B
′)
∑
k∈LB

qk ≤ r(LB , B)
∑
k∈LB

qk. (3.152)

In order to obtain

r(LB , B
′)
∑
k∈LB

qk ≥ β r(LB , B)
∑
k∈LB

qk, (3.153)
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for some β ≤ 1, it suffices to take β ≤ r(LB ,B
′)

r(LB ,B) . Setting β = r(LB ,B
′)

r(LB ,B) , we get

r(LB , B
′)
∑
k∈LB

qk = β r(LB , B)
∑
k∈LB

qk. (3.154)

Combining this equality with the inequality in (3.151) yields

rsvd qi ≥
r(LB , B

′)

r(LB , B)
r(LB , B)

∑
k∈LB

qk. (3.155)

Hence, we can deduce that (r · q)(∆*
B′ ) ≥ β(r · q)(∆*

B), i.e.

(r · q)(∆*
B′ ) ≥ r(LB , B

′)

r(LB , B)
(r · q)(∆*

B). (3.156)

4 ) If the Number of Scheduled Pairs is strictly greater than 1 under both of ∆*
B′ and ∆*

B: Here, the

analysis is similar to the third case. In detail, since ∆*
B′ maximizes the product (r · q) for the case

where the number of bits is B′, it follows that

r(LB , B
′)
∑
k∈LB

qk ≤ r(LB′ , B′)
∑
k∈LB′

qk. (3.157)

Also, using the definition of ∆*
B and the fact that r(LB , B

′) ≤ r(LB , B), we can write

r(LB , B
′)
∑
k∈LB

qk ≤ r(LB , B)
∑
k∈LB

qk. (3.158)

In order to get

r(LB , B
′)
∑
k∈LB

qk ≥ β r(LB , B)
∑
k∈LB

qk, (3.159)

for some β ≤ 1, it suffices to take β ≤ r(LB ,B
′)

r(LB ,B) . Setting β = r(LB ,B
′)

r(LB ,B) , we get

r(LB , B
′)
∑
k∈LB

qk = β r(LB , B)
∑
k∈LB

qk. (3.160)

Combining this equality with the inequality in (3.157) yields

r(LB′ , B
′)
∑
k∈LB′

qk ≥
r(LB , B

′)

r(LB , B)
r(LB , B)

∑
k∈LB

qk. (3.161)

Therefore, we can deduce that (r · q)(∆*
B′ ) ≥ r(LB ,B

′)
r(LB ,B) (r · q)(∆*

B).

• Step 2: In Step 1 we have proven that, in the four considered cases, the following holds:

(r · q)(∆*
B′ ) ≥ β(r · q)(∆*

B), with β = r(LB ,B
′)

r(LB ,B) .
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We now want to find the minimum fraction r(LB ,B
′)

r(LB ,B) w.r.t. LB , such as

minimize
LB

r(LB , B
′)

r(LB , B)
(3.162)

subject to LB ≤ N (3.163)

To solve this problem, we show that the objective function to minimize in (3.162) is a decreasing

function w.r.t. LB . Indeed, using (3.37), we have

r(LB , B
′)

r(LB , B)
=

(1− LBθ)dRe−
σ2τ
α (F (B′))

LB−1

(1− LBθ)dRe−
σ2τ
α (F (B))

LB−1

=

(
F (B′)

F (B)

)LB−1

, (3.164)

in which function F was already defined for equation (3.37). It is clear that F (B′) < F (B) because

B′ < B, which implies that

(
F(B′)
F (B)

)LB−1

decreases with LB . Since LB ≤ N , the optimization prob-

lem reaches its minimum at LB = N . Based on the above, the minimum fraction can be given by
r(N,B′)
r(N,B) . For the rest of the proof, we define βm = r(N,B′)

r(N,B) .

• Step 3: Using the minimum fraction derived before, we now want to examine the stability region

achieved by ∆*
B′ . To this end, we define the quadratic Lyapunov function as

Ly(q(t)) ,
1

2
(q(t) · q(t)) =

1

2

N∑
k=1

qk(t)2. (3.165)

From the evolution equation for the queue lengths (see (3.12)) we have

Ly(q(t+ 1))− Ly(q(t)) =
1

2

N∑
k=1

[
qk(t+ 1)2 − qk(t)2

]
=

1

2

N∑
k=1

[
(max {qk(t)−Dk(t), 0}+Ak(t))2 − qk(t)2

]
≤

N∑
k=1

[
Ak(t)2 +Dk(t)2

]
2

+

N∑
k=1

qk(t) [Ak(t)−Dk(t)] , (3.166)

where in the final inequality we have used the fact that for any q ≥ 0, A ≥ 0, D ≥ 0, we have

(max {q −D, 0}+A)2 ≤ q2 +A2 +D2 + 2q(A−D).

Now define Dr(q(t)) as the conditional Lyapunov drift for time-slot t

Dr(q(t)) , E {Ly(q(t+ 1))− Ly(q(t)) | q(t)} . (3.167)
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From (3.166), we have that Dr(q(t)) for a general scheduling policy satisfies

Dr(q(t))≤E

{
N∑
k=1

Ak(t)2 +Dk(t)2

2
| q(t)

}
+

N∑
k=1

qk(t)ak −E

{
N∑
k=1

qk(t)Dk(t) | q(t)

}
, (3.168)

where we have used the fact that arrivals are i.i.d. over slots and hence independent of current queue

backlogs, so that E {Ak(t) | q(t)} = E {Ak(t)} = ak. Now define E as a finite positive constant that

bounds the first term on the right-hand-side of the above drift inequality, so that for all t, all possible

qk(t), and all possible control decisions that can be taken, we have

E

{
N∑
k=1

Ak(t)2 +Dk(t)2

2
| q(t)

}
≤ E. (3.169)

Note that E exists since Ak(t) < Amax and Dk(t) < Dmax. Using the expression in (3.168) yields

Dr(q(t)) ≤ E +

N∑
k=1

qk(t)ak − E

{
N∑
k=1

qk(t)Dk(t) | q(t)

}
. (3.170)

The conditional expectation at the right-hand-side of the above inequality is with respect to the

randomly observed channel states. Thus, the drift under ∆*
B′ can be expressed as

Dr(∆*
B′ )(q(t)) ≤ E −

N∑
k=1

qk(t)

[
E
{
D

(∆*
B′ )

k (t) | q(t)

}
− ak

]
, (3.171)

Note that here we have E
{
D

(∆*
B′ )

k (t) | q(t)

}
= r(LB′ , B

′), where the expectation at the left-hand-side

of this latter equality is over the randomly observed channel state. Similarly, we have

E
{
D

(∆*
B)

k (t) | q(t)
}

= r(LB , B). (3.172)

Hence, using (3.161) and the fact that the minimum fraction is βm = r(N,B′)
r(N,B) , we can write

N∑
k=1

qk(t)E
{
D

(∆*
B′ )

k (t) | q(t)

}
≥

N∑
k=1

qk(t)βm E
{
D

(∆*
B)

k (t) | q(t)
}
. (3.173)

Plugging this directly into (3.171) yields

Dr(∆*
B′ )(q(t)) ≤ E −

N∑
k=1

qk(t)
[
βm E

{
D

(∆*
B)

k (t) | q(t)
}
− ak

]
. (3.174)

The above expression can be re-expressed as

Dr(∆*
B′ )(q(t)) ≤ E − βm

N∑
k=1

qk(t)
[
E
{
D

(∆*
B)

k (t) | q(t)
}
− β−1

m ak

]
. (3.175)

Because ∆*
B maximizes the weighted sum

∑N
k=1 qk(t)E {Dk(t) | q(t)} over all alternative decisions,
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the following holds

N∑
k=1

qk(t)E
{
D

(∆*
B)

k (t) | q(t)
}
≥

N∑
k=1

qk(t)E
{
D

(∆)
k (t) | q(t)

}
. (3.176)

where ∆ represents any alternative (possibly randomized) scheduling decision that can stabilize the

system. Plugging the above directly into (3.175) yields

Dr(∆*
B′ )(q(t)) ≤ E − βm

N∑
k=1

qk(t)
[
E
{
D

(∆)
k (t) | q(t)

}
− β−1

m ak

]
. (3.177)

Let us suppose that the mean arrival rate vector a is interior to fraction βm of the stability region ΛB .

Thus, there exists an εmax such that

(a1 + εmax, . . . , aN εmax) ∈ βmΛB , (3.178)

or equivalently we have

(β−1
m a1 + β−1

m εmax, . . . , β
−1
m aN + β−1

m εmax) ∈ ΛB . (3.179)

Based on the above and considering a particular policy ∆ that depends only on the states of the

channels, we can write

E
{
D

(∆)
k (t) | q(t)

}
= E

{
D

(∆)
k (t)

}
≥ β−1

m ak + β−1
m εmax, ∀k ∈ {1, . . . , N} . (3.180)

Plugging the above in (3.177) yields

Dr(∆*
B′ )(q(t)) ≤ E − εmax

N∑
k=1

qk(t). (3.181)

Taking an expectation of Dr(∆*
B′ ) over the randomness of the queue lengths and summing over t ∈

{0, 1, . . . , T − 1} for some integer T > 0 we get

E {Ly(q(T ))} − E {Ly(q(0))} ≤ ET − εmax

T−1∑
t=0

N∑
k=1

E {qk(t)} . (3.182)

Rearranging terms, dividing by εmaxT , and taking a lim sup we eventually obtain

lim sup
T→∞

1

T

T−1∑
t=0

N∑
k=1

E {qk(t)} ≤ E

εmax
. (3.183)

Based on the above inequality and the definition of strong stability (see Chapter 2), it follows that

∆*
B′ stabilizes the system for any arrivals such that the mean arrival rate vector is interior to fraction

βm of the stability region of ∆*
B , meaning that ∆*

B′ achieves up to ΛB′ = r(N,B′)
r(N,B) ΛB . Note that this

achievable region corresponds to the worst case, that is, when the fraction is r(N,B′)
r(N,B) . Hence, since the

77



3.9. Appendix

fraction is greater than or equal to r(N,B′)
r(N,B) , we get

r(N,B′)

r(N,B)
ΛB ⊆ ΛB′ ⊆ ΛB , (3.184)

meaning that ΛB′ achieves at least a fraction r(N,B′)
r(N,B) of ΛB . This completes the proof.

3.9.10 Derivation of Rate Approximation 1

To begin with, we note that the expression of rk given in (3.54) can be re-expressed as

rk = (1− Lθ)dRe−
σ2τ
αkk

∏
i∈L,i6=k

(1− gki)Q 2F1(c2, Q; c1 + c2; gki), (3.185)

which follows since 1 − gki =
(
ζkiτd (ζkk2

B
Q )−1 + 1

)−1

. We recall that we work under the assump-

tion/condition that the gki are sufficiently small.

We focus on the term (1 − gki)Q 2F1(c2, Q; c1 + c2; gki). Using linear transformations (of variable)

properties for the Hypergeometric function, we have the relation [110, Page 559]

(1− gki)Q 2F1(c2, Q; c1 + c2; gki) = 2F1(c1, Q; c1 + c2;
gki

gki − 1
). (3.186)

For sufficiently small gki values, we have the approximation: gki
gki−1 ≈ −gki. We can (numerically)

verify that for gki < 0.1 the following accurate approximation holds

2F1(c1, Q; c1 + c2;
gki

gki − 1
) ≈ 2F1(c1, Q; c1 + c2;−gki). (3.187)

We recall that c1 = (Q+ 1)Q−1d−Q−1, c2 = (Q− 1)c1 and Q = NtNr − 1. For sufficiently large Q,

and since d ≤ min(Nt, Nr) (this implies that Q is sufficiently larger than d), we can easily see that

c1 ≈ d, c2 ≈ Qd − d and c1 + c2 ≈ Qd. Now, using the Maclaurin expansion to the second order we

can write

2F1(c1,Q; c1+c2;−gki)≈1− c1Q

c1 + c2
gki+

1

2

c1Q

c1 + c2

(c1 + 1)(Q+ 1)

c1 + c2 + 1
g2
ki+O(g2

ki)≈1−gki. (3.188)

In this approximation we have used the facts that 1
2g

2
ki � gki,

c1Q
c1+c2

= dQ
Qd = 1, d is sufficiently high,

and (c1+1)(Q+1)
c1+c2+1 = (d+1)(Q+1)

Qd+1 ≈ 1. In addition, O(g2
ki) can be removed since it is negligible compared

with 1− gki. This latter property follows from the fact that the Maclaurin expansion to higher orders

(greater than two) will add terms in g3
ki, g

4
ki, . . . , which are, as g2

ki, very small with respect to 1 and

to the term in gki; this is due to the condition that gki is sufficiently small (i.e. gki < 0.1). Hence, by

replacing the above approximation in the expression of rk given in (3.185), we obtain the following

rk ≈ (1− Lθ)dRe−
σ2τ
αkk

∏
i∈L,i6=k

(1− gki). (3.189)
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3.9.11 Derivation of Rate Approximation 2

Let us first recall that here we suppose that all the gki (with i 6= k) are relatively close to ḡk. We

focus on the product
∏
i∈L,i6=k(1− gki). Our goal here is to show that this product can be accurately

approximated by the following expression

(1− ḡk)L−1 − (1− ḡk)L−2
∑

i∈L,i6=k

(gki − ḡk) . (3.190)

To prove this latter result, we start by a simple example and then we provide the general result. We

consider a simple example where the product function is

f(gk1, gk2) = (1− gk1)(1− gk2), (3.191)

i.e. it can be seen as an example where L = 3 and k = 3. For this function, the Taylor expansion of

order 2 around the point (ḡk, ḡk) can be given as the following

f(gk1, gk2) = f(ḡk, ḡk) + (gk1 − ḡk)
∂f

∂gk1
|(ḡk,ḡk) + (gk2 − ḡk)

∂f

∂gk2
|(ḡk,ḡk)

+
1

2
(gk1 − ḡk)2 ∂

2f

∂g2
k1

|(ḡk,ḡk) +
1

2
(gk2 − ḡk)2 ∂

2f

∂g2
k2

|(ḡk,ḡk)

+ (gk1 − ḡk)(gk2 − ḡk)
∂f

∂gk1
|(ḡk,ḡk)

∂f

∂gk2
|(ḡk,ḡk)

= (1− ḡk)(1− ḡk)− (gk1 − ḡk)(1− ḡk)− (gk2 − ḡk)(1− ḡk) + (gk1 − ḡk)(gk2 − ḡk)

= (1− ḡk)3−1 − (1− ḡk)3−2(gk1 − ḡk + gk2 − ḡk) + (gk1 − ḡk)(gk2 − ḡk). (3.192)

Note that in the first line of the above equation we use operator = (and not ≈) since, as it can be

easily noticed, we have all the expansions of f for order ≥ 3 are equal to the one for order 2. This

latter statement results from the fact that ∂αf
∂gαki

= 0, ∀α ≥ 2. Since we work under the condition that

all the gki are close to ḡk, we can claim that the term (gk1 − ḡk)(gk2 − ḡk) (in (3.192)) is sufficiently

small compared with the other terms. Hence, we get

f(gk1, gk2) ≈ (1− ḡk)3−1 − (1− ḡk)3−2(gk1 − ḡk + gk2 − ḡk). (3.193)

The obtained result can be easily generalized, and thus we can write∏
i∈L,i6=k

(1− gki) ≈ (1− ḡk)L−1 − (1− ḡk)L−2
∑

i∈L,i6=k

(gki − ḡk). (3.194)

By recalling that the approximated average rate expression is (1−Lθ)dRe−
σ2τ
αkk

∏
i∈L,i6=k(1− gki) and

replacing
∏
i∈L,i6=k(1− gki) with its approximation given in (3.194), we eventually obtain

rk ≈ (1− Lθ) dRe−
σ2τ
αkk

[
(1− ḡk)L−1 − (1− ḡk)L−2

∑
i∈L,i6=k

(gki − ḡk)

]
. (3.195)
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3.9.12 Proof of Theorem 9

The proof consists of two parts. The first part provides the explicit expression of fraction βA. Then,

in the second part we show that the approximate policy ∆A achieves at least a fraction βA of the

stability region achieved by ∆*
GI.

• Step 1: As in the first part of the proof of Theorem 8, depending on the number of scheduled pairs

under each policy, we consider (the same) four cases.

1 ) If the Number of Scheduled Pairs is 1 under both of ∆A and ∆*
GI: We recall that in this case the

scheduled pair is denoted by j and its average rate is given by rsvd,j , independently of whether we

consider the perfect or imperfect case. Thus, the dot product r · q can be written as rsvd,j qj under

∆A as well as under ∆*
GI. Hence, we have (r · q)(∆A) = (r · q)(∆*

GI), and for any positive constant

βA ≤ 1 we can deduce that the following inequality holds

(r · q)(∆A) ≥ βA(r · q)(∆*
GI). (3.196)

2 ) If the Number of Scheduled Pairs is strictly greater than 1 under both of ∆A and ∆*
GI Using Rate

Approximation 2, under policy ∆A the dot product r · q can be expressed as

(1− LAθ)dR

[ ∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−1qk −

∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−2qk

∑
i∈LA,i6=k

(gki − ḡk)

]
, (3.197)

whereas under ∆*
GI this dot product is given by

(1− Lθ)dR

[∑
k∈L

e
− σ2ταkk (1− ḡk)L−1qk −

∑
k∈L

e
− σ2ταkk (1− ḡk)L−2qk

∑
i∈L,i6=k

(gki − ḡk)

]
. (3.198)

Since the approximate policy ∆A schedules the subset LA that maximizes φ · q, and recalling that

φk(l) = (1− lθ)dRe−
σ2τ
αkk (1− ḡk)l−1, (3.199)

it can be easily seen that

(1− LAθ)dR
∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−1qk ≥ (1− Lθ)dR

∑
k∈L

e
− σ2ταkk (1− ḡk)L−1qk. (3.200)

Similarly, using the definition of the optimal policy ∆*
GI under which the dot product r·q is maximized,

the following inequality holds

(1− Lθ)dR

[∑
k∈L

e
− σ2ταkk (1− ḡk)L−1qk −

∑
k∈L

e
− σ2ταkk (1− ḡk)L−2qk

∑
i∈L,i6=k

(gki − ḡk)

]
≥

(1− LAθ)dR

[ ∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−1qk −

∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−2qk

∑
i∈LA,i6=k

(gki − ḡk)

]
. (3.201)
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These last two inequalities, in (3.200) and (3.201), lead us to the simple observation

− (1− Lθ)dR

[∑
k∈L

e
− σ2ταkk (1− ḡk)L−2qk

∑
i∈L,i6=k

(gki − ḡk)

]
≥

− (1− LAθ)dR

[ ∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−2qk

∑
i∈LA,i6=k

(gki − ḡk)

]
. (3.202)

For the rest of this proof, we define o1, o2, p1, p2 as

o1 = (1− LAθ)dR
∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−1qk, o2 = (1− Lθ)dR

∑
k∈L

e
− σ2ταkk (1− ḡk)L−1qk,

p1 = −(1− LAθ)dR

[ ∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−2qk

∑
i∈LA,i6=k

(gki − ḡk)

]
,

p2 = −(1− Lθ)dR

[∑
k∈L

e
− σ2ταkk (1− ḡk)L−2qk

∑
i∈L,i6=k

(gki − ḡk)

]
.

We can easily notice that p1 and p2 can be rewritten, respectively, as

p1 = −(1− LAθ)dR

[ ∑
k∈LA

e
− σ2ταkk (1− ḡk)−1(1− ḡk)LA−1qk

∑
i∈LA,i6=k

(gki − ḡk)

]
, (3.203)

p2 = −(1− Lθ)dR

[∑
k∈L

e
− σ2ταkk (1− ḡk)−1(1− ḡk)L−1qk

∑
i∈L,i6=k

(gki − ḡk)

]
. (3.204)

We next point out two simple but important remarks that will help us complete the proof.

� For any policy ∆2 that approximates any policy ∆1 to a fraction β (≤ 1), we have

(r · q)(∆2) ≥ β(r · q)(∆1). (3.205)

If w.r.t. the approximate policy (∆2) there exists a scheduling policy ∆22 such that

(r · q)(∆22) ≤ (r · q)(∆2), (3.206)

then we can derive a fraction based on (r ·q)(∆22) instead of (r ·q)(∆2). We can easily notice that

this fraction is lower than or equal to β, therefore, w.r.t. the stability region achieved by ∆1, ∆2

reaches a fraction larger than that achieved by ∆22.

� If w.r.t. the approximated policy (∆1) there exists a scheduling policy ∆11 such that

(r · q)(∆1) ≤ (r · q)(∆11),
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then we can derive an achievable fraction based on (r · q)(∆11), and this fraction will be lower

than or equal to β. The key idea here is that sometimes it is easier to find the fraction using ∆22

(resp., ∆11) instead of ∆2 (resp., ∆1), but this will be to the detriment of finding an achievable

fraction that is, in general, lower than the exact solution.

To proceed further, we consider the extreme cases of p1 and p2 which correspond to define

p1e = min
LA∈L

{
min
k∈LA

{
−(1− ḡk)−1

∑
i∈LA,i6=k

(gki − ḡk)

}}
(1− LAθ)dR

∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−1qk,

p2e = max
L∈L

{
max
k∈L

{
−(1− ḡk)−1

∑
i∈L,i6=k

(gki − ḡk)

}}
(1− Lθ)dR

∑
k∈L

e
− σ2ταkk (1− ḡk)L−1qk.

It is obvious that p1 ≥ p1e and p2 ≤ p2e. Let us define m̃3 and m̃4 as

m̃3 = min
LA∈L

{
min
k∈LA

{
−(1− ḡk)−1

∑
i∈LA,i6=k

(gki − ḡk)

}}
,

m̃4 = max
L∈L

{
max
k∈L

{
−(1− ḡk)−1

∑
i∈L,i6=k

(gki − ḡk)

}}
.

Then, it is easy to see that p1e = m̃3o1 and p2e = m̃4o2. This yields the following

(r · q )(∆A) = o1 + p1 ≥ o1 + p1e = o1 + m̃3o1, (3.207)

(r · q )(∆*
GI) = o2 + p2 ≤ o2 + p2e = o2 + m̃4o2. (3.208)

As mentioned earlier, ∆A approximates ∆*
GI to a fraction β if the following inequality holds

(r · q )(∆A) ≥ β (r · q )(∆*
GI). (3.209)

In our case, it is difficult to derive β, however we can compute a fraction βA ≤ β. In detail, based on

the two properties about the achievable fraction given in the above paragraph, and combining (3.207)

with (3.208), the problem turns out to find βA such that

o1(1 + m̃3) ≥ βA o2(1 + m̃4). (3.210)

Using the fact that o2 ≤ o1, which was shown at the beginning of this proof, it suffices to have

βA ≤ 1+m̃3

1+m̃4
, to satisfy the inequality in (3.210). Let us consider the upper bound βA = 1+m̃3

1+m̃4
.

Therefore, we can deduce that (r · q )(∆A) ≥ βA(r · q )(∆*
GI).

3 ) If the Number of Scheduled Pairs is 1 under ∆A and strictly greater than 1 under ∆*
GI Denoting

by j the index of the scheduled pair under ∆A, we can write (r ·q)(∆A) = rsvd,j qj . On the other side,
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as in the second case, (r · q)(∆*
GI) can be expressed as

(1− Lθ)dR

[∑
k∈L

e
− σ2ταkk (1− ḡk)L−1qk −

∑
k∈L

e
− σ2ταkk (1− ḡk)L−2qk

∑
i∈L,i6=k

(gki − ḡk)

]
. (3.211)

Using the expression of m̃4 that was given in the second case, it can be shown that

(r · q)(∆A) ≥ 1

1 + m̃4
(r · q)(∆*

GI). (3.212)

The proof is similar to the proof of the second case and thus is omitted for the sake of brevity.

4 ) If the Number of Scheduled Pairs is 1 under ∆*
GI and strictly greater than 1 under ∆A Denoting

by j the index of the scheduled pair under ∆*
GI, we have (r · q)(∆*

GI) = rsvd,j qj . On the other hand,

as in the second case, (r · q)(∆A) can be expressed as

(1− LAθ)dR

[ ∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−1qk−

∑
k∈LA

e
− σ2ταkk (1− ḡk)LA−2qk

∑
i∈LA,i6=k

(gki − ḡk)

]
. (3.213)

Using the expression of m̃3 that was provided in the second case, it can be shown that

(r · q)(∆A) ≥ (1 + m̃3)(r · q)(∆*
GI). (3.214)

The proof here is also similar to the proof of the second case and thus is omitted.

• Step 2: We first recall the assumptions −1 < m̃3 < 0 and m̃4 > 0. Thus, it can be easily seen that

we have 1+m̃3

1+m̃4
< 1 + m̃3 and 1+m̃3

1+m̃4
< 1

1+m̃4
. Hence, based on these inequalities and on Step 1, and

recalling that βA = 1+m̃3

1+m̃4
, under the four cases we can write

(r · q )(∆A) ≥ βA(r · q )(∆*
GI). (3.215)

Now, to complete the proof, we use a similar approach to that used in Step 3 of the proof for Theorem

8. Specifically, the drift under ∆A can be expressed as

Dr(∆A)(q(t)) ≤ E −
N∑
k=1

qk(t)
[
E
{
D

(∆A)
k (t) | q(t)

}
− ak

]
, (3.216)

for some finite constant E. Using equation (3.215), we can write

N∑
k=1

qk(t)E
{
D

(∆A)
k (t) | q(t)

}
≥

N∑
k=1

qk(t)βA E
{
D

(∆*
GI)

k (t) | q(t)
}
. (3.217)

Plugging this directly into (3.216) yields

Dr(∆A)(q(t)) ≤ E − βA

N∑
k=1

qk(t)
[
E
{
D

(∆*
GI)

k (t) | q(t)
}
− a′k

]
, (3.218)

in which ak = βAa
′
k. After some manipulations, which are very similar to those used in the proof of
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Theorem 8, we eventually obtain

lim sup
T→∞

1

T

T−1∑
t=0

N∑
k=1

E {qk(t)} ≤ E

εmax(a′)
, (3.219)

for some εmax(a′) and T . It follows that ∆A stabilizes any arrival rate vector a = βAa′. Hence, since

a′ can be any point in the stability region of ∆*
GI, we can state that ∆A stabilizes any arrival rate

vector interior to fraction βA of the stability region of ∆*
GI. A last point to note is that the term “at

least” in the theorem is justified by the fact that βA is lower than or equal to the exact solution (β).

Therefore, the desired statement follows.

3.9.13 Proof of Theorem 10

As in the first part of the proof of Theorem 8, depending on the number of scheduled pairs under each

policy, we distinguish (the same) four cases.

1 ) If the Number of Scheduled Pairs is equal to 1 under both of ∆*
GI and ∆*

GP: We recall that in

this case the scheduled pair is denoted by j and its average rate is given by rsvd,j , independently of

whether we consider the perfect case or the imperfect case. Hence, the dot product r ·q can be written

as rsvd,j qj under ∆*
GP as well as under ∆*

GI. Hence, we have (µ · q)(∆*
GP) = (r · q)(∆*

GI), and for any

(positive constant) βP ≤ 1 the following inequality holds

(r · q)(∆*
GI) ≥ βP (µ · q)

(∆*
GP)

. (3.220)

2 ) If the Number of Scheduled Pairs is strictly greater than 1 under both of ∆*
GI and ∆*

GP: Under

policy ∆*
GI and using the approximate expression of rk given in (3.63), the product (r · q)∆*

GI can be

written as the following

(1− Lθ)

[∑
k∈L

dRe
− σ2ταkk qk

∏
i∈L,i6=k

(1− gki)

]
. (3.221)

On the other hand, using the definition of ∆*
GP, the product (µ · q)(∆*

GP) can be expressed as

(1− LPθ)
∑
k∈LP

dRe
− σ2ταkk qk. (3.222)

One can easily remark that this latter expression has the following equivalent representation, which

results from multiplying and dividing by the same term
∏

i∈LP,i6=k
(1− gki),

(1− LPθ)
∑
k∈LP

dRe
− σ2ταkk qk

[ ∏
i∈LP,i6=k

(1− gki)

][ ∏
i∈LP,i6=k

(1− gki)

]−1

. (3.223)
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The extreme case of (µ · q)(∆*
GP) corresponds to

m̃5(1− LPθ)

[ ∑
k∈LP

dRe
− σ2ταkk qk

∏
i∈LP,i6=k

(1− gki)

]
, (3.224)

where m̃5 is defined as follows

m̃−1
5 = min

LP∈L

{
min
k∈LP

{ ∏
i∈LP,i6=k

(1− gki)

}}
. (3.225)

Since, by definition, policy ∆*
GI produces the subset L and maximizes the product (r · q), it yields

(1− Lθ)

[∑
k∈L

dRe
− σ2ταkk qk

∏
i∈L,i6=k

(1− gki)

]
≥ (1− LPθ)

[ ∑
k∈LP

dRe
− σ2ταkk qk

∏
i∈LP,i6=k

(1− gki)

]
.

(3.226)

As explained earlier, the stability region achieved by ∆*
GI approximates the one achieved by ∆*

GP to

a fraction β if the following holds

(r · q)(∆*
GI) ≥ β (µ · q)(∆*

GP). (3.227)

It is hard to find β based on the product (µ · q)(∆*
GP), however, using a similar observation to that

provided at the end of the proof of Theorem 9, we can compute a fraction βP ≤ β based on an upper

bound on this product. In detail, using (3.224), which represents this upper bound, our problem turns

out to find βP such that

m̃5(1− LPθ)

[ ∑
k∈LP

dRe
− σ2ταkk qk

∏
i∈LP,i6=k

(1− gki)

]
≤ β−1

P (1− Lθ)

[∑
k∈L

dRe
− σ2ταkk qk

∏
i∈L,i6=k

(1− gki)

]
.

(3.228)

It suffices to take β−1
P ≥ m̃5, or equivalently βP ≤ m̃−1

5 , to satisfy the above inequality. By considering

βP = m̃−1
5 , the inequality in (3.228) becomes an equality.

Combining the above with equation (3.226), we get

(r · q)(∆*
GI) ≥ βP(µ · q)(∆*

GP). (3.229)

3 ) If the Number of Scheduled Pairs is 1 under ∆*
GI and strictly greater than 1 under ∆*

GP: Denoting

by j the index of the scheduled pair under ∆*
GI, we can write

(r · q)(∆*
GI) = rsvd,j qj . (3.230)

On the other hand, as in the second case, (µ · q)(∆*
GP) can be expressed as

(1− LPθ)
∑
k∈LP

dRe
− σ2ταkk qk. (3.231)
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Using the expression of m̃5 that was given in the second case, it can be shown that

(r · q)(∆*
GI) ≥ m̃−1

5 (µ · q)(∆*
GP). (3.232)

The proof is similar to the proof of the second case and thus is omitted for the sake of brevity.

4 ) If the Number of Scheduled Pairs is 1 under ∆*
GP and strictly greater than 1 under ∆*

GI: It can be

seen that such a case cannot arise. This can be shown using the concept of proof by contradiction.

The proof is simple and will not be provided for the sake of brevity.

Based on the different cases given above, we can deduce that the following inequality holds

(r · q)(∆*
GI) ≥ βP (µ · q)(∆*

GP), (3.233)

where βP = m̃−1
5 . Finally, we note that the rest of the proof can be done in a similar way as in the

proofs of Theorem 8 and Theorem 9, so we omit this part to avoid repetition.

This completes the proof.

3.9.14 Proof of Lemma 6

Using Lemma 2, we can claim that (1−Lθ) (F (τj))
L−1

decreases with L. Thus, rM(L) is a decreasing

function since it is the sum of M decreasing functions. On the other hand, it can be seen that rMT(L)

is nothing but the weighted sum (with positive coefficients) of M functions that have similar behavior

as rT(L), where we recall that this latter function increases from point rT(0) = 0, reaches its maximum

and then decreases to point rT( 1
θ ) = 0. We can then observe that for L = 0 or L = 1

θ , rMT(L) = 0.

Also, the resulting function is positive since the M functions and their corresponding coefficients are

positive. Moreover, since each one of these M functions reaches one maximum, we can claim that

rT(L) might have several maxima, and consequently one of these maxima will be a global maximum.

Therefore, the desired result follows.
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Chapter 4

Opportunistic Feedback Reporting

and Scheduling Scheme for

Multichannel Wireless Networks

4.1 Overview

In this chapter, we address the problem of joint feedback reporting and scheduling for multiuser down-

link wireless networks employing multiple parallel channels, i.e. multi-carrier techniques, to serve the

users. Such a setting corresponds for example to a single cell OFDMA scheme, which is implemented

in the long term evolution (LTE) standards [9] and was shown to deliver a substantial increase in the

system’s performance. To exploit multiuser diversity in multichannel downlink networks, the BS needs

to acquire CSI from users. These CSIs are usually unknown at the BS, especially in FDD systems

which lack of channel reciprocity. A common method to acquire the downlink CSI is to allocate a

part of the uplink resources to the users to report their CSIs. However, the more CSIs are decided to

be reported, the more resources are needed, thus resulting in a bigger overhead in the system. In this

regard, in [111–116] different approaches are proposed to reduce the feedback load while still achieving

the benefits of multiuser diversity. However, these works do not take into account the incoming traffic

processes of the users. In this chapter, an important factor that is considered is the traffic pattern for

each user, which is stored in a respective queue at the BS. So the system stability (i.e. when all the

queue lengths are finite) is an important property the scheduling mechanism should take into account.

The feedback allocation algorithm directly impacts the scheduling mechanism and thus the system

stability since, in general, a user cannot be scheduled unless its CSI is reported to the scheduler. In

realistic scenarios, complete feedback knowledge is not readily available at the scheduler. Different

limitations result in such incomplete information, such as estimation error, delay and limited feedback

resources, so it is important to analyze the impact of such imperfections on the system stability. In

this regard, in [99], where a TDD mode of feedback is used, the authors have explored the resulting
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trade-off between acquiring CSI (which consumes a fraction of the time-slot) and exploiting channel

diversity to the various receivers; in this work, optimal stopping theory is used and it is assumed that

the distributions of the channel gains are known to the BS. For a similar model, the authors in [42,117]

have proposed a feedback scheme for a single channel system. This scheme sets as threshold the rate

of the user with the maximum queue length and requires no knowledge of channel and traffic statistic.

In addition, distributed scheduling approach is considered in [75] where the authors propose a Greedy

Maximal Scheduling, for which the achievable stability performance depends on the network topology.

Some other distributed schemes that approach the system stability region are provided in [76,77], but

are very complex to implement. Moreover, the work in [41] derives the optimal feedback scheme for a

single-channel downlink system under partial channel state information. In [118], the authors study

centralized scheduling with rate adaptation under imperfect channel-estimator joint statistics.

Under a multichannel downlink system where an FDD mode is adopted, obtaining complete feedback

would require a prohibitive portion of the overall uplink capacity, especially for a large number of

users. Under such a system, the authors in [44] study the impact of limited feedback resources on the

achievable stability region. However, note that in this work the delay in the feedback process is not

accounted for; the delay and the amount of feedback resources are normally coupled, i.e. more feedback

resources incur more delay in the feedback process. Also in the context of multichannel wireless

downlink networks, the authors in [46] propose a set of low computational complexity scheduling

algorithms with a large number of users and proportionally large bandwidth. Furthermore, in [56] the

problem of routing/scheduling in a wireless network with delayed network (channel and queue) state

information (NSI) is studied. Specifically, two cases are considered: the centralized routing/scheduling,

where a central controller obtains heterogeneously delayed information from each of the nodes, and

the decentralized routing/scheduling, where each node makes a decision based on its current channel

and queue states along with homogeneous delayed NSI from other nodes. The authors in [58] analyze

the effect that delayed CSI has on the throughput performance of scheduling in wireless networks.

Specifically, by accounting for the delays in CSI as they relate to the network topology, the authors

revisit the comparison between centralized and distributed scheduling, which is analyzed as a trade-off

between using delayed CSI and making imperfect scheduling decisions.

Another interesting case study is the system with cooperative relaying, or more generally the

multi-hop wireless system. In fact, one of the main challenges facing the networking community is

the provision of high throughput for users at the cell edge. Such users often suffer from bad channel

conditions. The use of cooperative relaying is a very promising solution to tackle this problem as

it provides throughput gains as well as coverage extension [11]. Combining multi-carrier techniques

(e.g. orthogonal frequency division multiplexing (OFDM)) and cooperative relaying ensures high

throughput requirements, particularly for users at the cell edge. Moreover, relaying is considered as a

cost effective throughput enhancement in IEEE 802.16j and LTE-A standards. To greatly exploit the

benefits of relaying, efficient resource allocation is crucial in multiuser environment. Investigating the

performance of systems with cooperative relaying has been the subject of extensive research [119–125].

However, relatively speaking, the works that consider a system with cooperative relaying, and more

generally a multi-hop system, and where the traffic processes of the users are taken into account

are not that many, because of the difficulty of studying such systems; usually, for such works, no

imperfections are considered in the model since otherwise another dimension of complexity will be
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added to the analysis. An example of these works is [74] where, in the context of multichannel relay

networks, the authors study an iterative Max-Weight algorithm for routing and scheduling and show

that this algorithm can stabilize the system in several large-scale settings. Also, it was shown that this

algorithm outperforms the Back-Pressure algorithm from a queue-length/packet-delay perspective. In

[70], optimal algorithms for minimizing the end-to-end buffer usage in a multi-flow multi-hop wireless

network are proposed. From a network stability viewpoint for Max-Weight, in [71] the authors show

that the network is stable if the routes are fixed.

In this chapter, we consider a multichannel multiuser wireless downlink network where both limited

feedback resources and delayed feedback information are accounted for. To the best of our knowledge,

this is the first work to account for these two imperfections at the same time for a multichannel

system where the incoming traffic processes of the users are taken into consideration. Two scenarios

are considered and examined, namely (i) the system without relaying, and (ii) the system with relaying.

For the latter scenario, an additional imperfection is accounted for: the users do not have complete

knowledge of the fading coefficients of the links between the BS and the relay; the only information a

user know about any one of these fading coefficients is whether its corresponding SNR is greater than

or equal to a certain threshold. Under the two considered scenarios, the incoming data for each user

is stored in a respective buffer at the BS. Let L be the total number of channels in the system.

Note that in this chapter the term ”channel” denotes a certain frequency band, whereas the term ”link”

refers to the wireless connection between a user and the BS over a specific frequency band. Regarding

the feedback resources, we adopt a setting where the feedback capacity per slot is limited. Specifically,

only F̄ link states (i.e. CSI) can be reported to the BS per slot. However, the system can decide to

report an amount of feedback F > F̄ , thus the feedback process will require more than one slot in order

to be accomplished. Hence, the amount of feedback resources and the delay in the feedback process

are coupled. One can notice the importance of the trade-off between having more F , which leads to a

greater number of reported link states but which are more outdated, and having less F , which means

a lower number of reported links but which are more accurate (i.e. less outdated). Since the feedback

process directly impacts the scheduling mechanism, we design efficient joint feedback reporting and

scheduling algorithms. It is worth mentioning that the performances of such algorithms are measured

w.r.t. the performance of the ideal system (where all the link states are fully and perfectly known at

the BS at no cost).

Contributions

The main contributions and the organization of this chapter are summarized as follows.

• In Section 4.2 we present the system model for the scenarios with and without relaying, the limited

and delayed CSI scheme, and the queueing model.

• In Section 4.3 we present the stability analysis for the system without relaying taking into account

the delay in the feedback process. Specifically, for this system:

? We provide an algorithm that uses exactly L feedback resources, where the feedback and schedul-

ing decisions are done at the users side; such an approach is considered to take advantage of

the local CSI knowledge of these users in order to achieve better gains. This algorithm works
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under the assumption of continuous time for contention. Further, we investigate the stability

performance of this algorithm and show that it can guarantee a certain fraction from the stability

region of the ideal system.

? We propose a second algorithm that does not make the continuous contention time assumption,

i.e. it is adapted to a discrete-time contention scheme, and that imitates the first algorithm to a

great extent. The proposed algorithm here is based on a threshold-based concept and consists in

having F (> L) feedback resources and in letting the users decide whether they should send their

CSIs or not, and then the BS performs scheduling over each channel. An efficient approach to

update the threshold value is also provided. We point out that in the numerical results we find

the best trade-off in terms of feedback resources (i.e. best F ) under various system setups.

• In Section 4.4, the stability analysis for the system with relaying is presented. Specifically:

? We first consider the imperfect knowledge of the fading coefficients between the BS and the relay

at the users without accounting for the delay in the feedback process. Under this setting, we

provide a joint feedback and scheduling algorithm, and we analyze the stability performance of

this algorithm. In the special case of a single rate level, we characterize the minimum fraction

this algorithm can achieve w.r.t. the stability region of the ideal system; note that the fraction

for the multiple rate levels case is extremely hard to characterize.

? We then add the impact of the delay in the feedback process and propose two feedback reporting

and scheduling algorithms which are simple variations of the two algorithms that are proposed

under the system without relaying.

• Numerical results and relevant discussions for the systems with and without relaying are carried

out in Section 4.5.

• We finally conclude the chapter in Section 4.6.

4.2 System Model

Channel j-1Flow i-1 

Flow i

Flow i+1 

Channel j

Channel j+1

Link (ij)

Figure 4.1: Multi-channel multi-user queueing system.
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We consider an FDD cellular wireless network, with one single-antenna BS, one relay, N single-

antenna mobile users and L channels; e.g. LTE-OFDMA system. Data packets to be transmitted to the

users are stored in N separate queues at the BS. Time is slotted with the slots of all users synchronized.

Let qi(t) denote the length of queue i at the beginning of time-slot t, and let q(t) = (q1(t), . . . , qN (t)).

This system can be seen as a multi-queue, multi-server, discrete-time queueing system. It can be

noticed that since we work under an OFDMA-like system, at a given slot a channel can be allocated

to one and at most one user. Under the adopted network, and for clarity of exposition and analysis,

we consider two different scenarios:

1. System without relaying : the relay is not considered under this scenario.

2. System with relaying : the relay is used under this scenario.

We next present the system model under each of the two scenarios given above.

4.2.1 System without Relaying

Figure 4.2: System model without relaying.

We denote by hij(t) the fading of the link connecting the BS and user i using channel j. The

received signal for the ith user if it gets scheduled on the jth channel at time-slot t can be given by

the following expression

√
Phij(t)xij(t) + zij(t), (4.1)

where xij(t) is the corresponding complex-valued data stream, with E{|xij |2} = 1, P denotes the

transmission power on each channel, and zij(t) is the additive white Gaussian noise with zero mean

and variance σ2
z,ij , i.e. zij(t) ∼ CN (0, σ2

z,ij). We assume that at time-slot t user i has perfect knowledge

of the hij(t), ∀j. The corresponding SNR is denoted and given as

γij(t) = ρij |hij(t)|2, with ρij =
P

σ2
z,ij

. (4.2)
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In any time-slot, the link state of a user on a channel represents the number of packets that can be

successfully transmitted without outage to that user, on that channel. Transmission at a rate above

the link state always fails, whereas transmission at a rate below or equal to the link state always

succeeds. We use Cij(t) to represent the state of link (ij) at time-slot t. We assume that each link

state can take K possible values {R1, R2, . . . , RK}, where rate Rk represents state k and corresponds

to the case where τk ≤ γij(t) < τk+1, for some non-negative thresholds τk. This setting is very used in

practice where usually K modulation and coding schemes are used (i.e. the instantaneous transmitted

rate can take only K possible values). For ease of exposition, we suppose that the Rk are sorted in a

descending order such that Rk < Rm if k > m.

Finally, the fading process, which is represented by the coefficients hij(t), is assumed to be channel

convergent [28]. For channel convergent processes, it is known that the time average fraction of time

in each state converges to the steady state distribution, and the expected time average is arbitrarily

close to this distribution if sampled over a suitably large interval (of time). Note that in the special

case of i.i.d. fading process, the steady state averages are achieved every time-slot.

4.2.2 System with Relaying

Figure 4.3: System model with relaying.

Under this scenario, we add a relay that can help the BS transmit the information to the users.

The users can hear both the BS and the relay transmissions and apply the maximum ratio combining

(MRC) of the available information. We assume that the relay operates in half-duplex mode, i.e.

the relay cannot receive and transmit simultaneously over the same channel (i.e. frequency band).

Moreover, if for a specific channel the relay was selected to help the BS, the overall system is assumed

to be orthogonal in time, i.e. the transmission slot is divided in two mini-slots: the corresponding

wireless channel is allocated for the BS transmission during the first mini-slot and for the relay

transmission during the second mini-slot. Obviously, this orthogonality constraint induces the need

for full synchronization among the nodes in the system, which is assumed here.

We now describe the two main relaying strategies (i.e. protocols) normally used in the literature:

Decode-and-Forward (DF) and Amplify-and-Forward (AF).
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• For DF strategy, the BS transmits to both the receiver and the relay in the first mini-slot. The

relay decodes the signal in the first mini-slot. If decoding is successful, the relay re-encodes the

decoded data and sends it out in the second mini-slot.

• For AF strategy, the BS transmits to both the receiver and the relay in the first mini-slot. The

relay amplifies the received signal in the first mini-slot and sends it out in the second mini-slot.

Under both DF and AF strategies, since the transmission takes place in two mini-slots, the achievable

rate should be halved. In the literature, there is a lot of interest in AF because of its simplicity in

terms of analysis and its low complexity compared to other relaying strategies. For these reasons, we

adopt the AF strategy in our work here.

If at time-slot t and over channel j user i was selected to be served and the relay gets selected

to help the BS, the signal corresponding to the BS transmission received at the relay is denoted and

given as the following

y
(sr)
ij (t) =

√
P (s) h

(sr)
j (t)xij(t) + z

(r)
j (t), (4.3)

and the signal corresponding to the BS transmission received at user i is denoted and given by

y
(su)
ij =

√
P (s) h

(su)
ij (t)xij(t) + z

(u)
ij (t). (4.4)

In the above equations, xij(t) denotes the complex-valued data stream, with E{|xij(t)|2} = 1, P (s)

is the BS power per channel, h
(sr)
j (t) and h

(su)
ij (t) represent the fading coefficients corresponding to

the BS-relay and BS-user i links on channel j at time-slot t; note that these coefficients can capture,

in addition to fading, the effects of path-loss. In addition, z
(r)
j (t) and z

(u)
ij (t) stand for the noises at

the relay and user i (over channel j), respectively, which are assumed to be additive white Gaussian

processes, with zero mean and variances (σ
(r)
z,j)

2 and (σ
(u)
z,ij)

2, respectively. As alluded earlier, under

the AF strategy the relay amplifies (without any further processing) the signal received from the BS

such that it fulfills the relay’s power constraint per channel, which is represented by P (r), and then

retransmits the signals towards the user. We assume that at time-slot t the relay has perfect knowledge

of h
(sr)
j (t), ∀j. The signal received at user i (over channel j) corresponding to the relay transmission,

which we denote by y
(ru)
ij , can be expressed as [126]

y
(ru)
ij (t) =

√√√√ P (r)

E
{
|y(sr)
ij (t)|2

} h(ru)
ij (t) y

(sr)
ij (t) + z

(u)
ij (t)

=

√√√√ P (r)

P (s)|h(sr)
j |2 + (σ

(r)
z,j)

2
h

(ru)
ij (t)

(√
P (s) h

(sr)
j (t)xij(t) + z

(r)
j (t)

)
+ z

(u)
ij (t)

=

√√√√ P (r)P (s)

P (s)|h(sr)
j (t)|2 + (σ

(r)
z,j)

2
h

(ru)
ij (t)h

(sr)
j (t)xij(t)+

√√√√ P (r)

P (s)|h(sr)
j (t)|2 + (σ

(r)
z,j)

2
h

(ru)
ij (t) z

(r)
j (t) + z

(u)
ij (t). (4.5)
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Note that in the above equation h
(ru)
ij (t) represents the fading coefficient corresponding to the relay-

user i link on channel j at time-slot t. We assume that at time-slot t user i has perfect knowledge of

coefficients h
(su)
ij (t) and h

(ru)
ij (t), ∀j. As in the system without relaying, the fading processes here are

also assumed to be channel convergent [28].

Depending on whether the use of the relay can provide a gain to the system compared to the case

where only the BS is used for transmission, for each user we have two possible schemes:

1. The BS serves the user without using the relay . In other words, the BS transmits over

the direct link during all the slot period. For this scheme, the SNR at user i and corresponding

to channel j and time-slot t is defined as follows (see equation (4.4))

γ
(d)
ij (t) = ρ

(su)
ij |h

(su)
ij (t)|2, with ρ

(su)
ij =

P (s)

(σ
(u)
z,ij)

2
. (4.6)

Let C
(d)
ij (t) be the amount of data that the BS can transmit to user i over channel j without

using the relay at time-slot t. As in the system without relay, we suppose that C
(d)
ij (t) can take

K possible values {R1, R2, . . . , RK}, where we recall that rate Rk represents state k and results

from the case where τk ≤ γ(d)
ij (t) < τk+1, for some non-negative thresholds τk.

2. The relay helps the BS serving the user . Specifically, the BS transmits during the first

half of the slot (i.e. first mini-slot) and in the second half (i.e. second mini-slot) the relay

transmits. The SNR at user i that results from the first mini-slot of time-slot t and that

corresponds to channel j is denoted by γ
(su)
ij (t). It can be easily noticed that we have

γ
(su)
ij (t) = γ

(d)
ij (t). (4.7)

From equation (4.5), the term√√√√ P (r)

P (s)|h(sr)
j (t)|2 + (σ

(r)
z,j)

2
h

(ru)
ij (t) z

(r)
j (t) + z

(u)
ij (t) (4.8)

is considered as the total noise at user i.

The SNR at user i that results from the second mini-slot can be defined as

γ
(sru)
ij (t) =

P (r)P (s) |h(ru)
ij (t)|2 |h(sr)

j (t)|2

P (s)|h(sr)
j (t)|2 + (σ

(r)
z,j)

2

(
P (r)|h(ru)

ij (t)|2 (σ
(r)
z,j)

2

P (s)|h(sr)
j (t)|2 + (σ

(r)
z,j)

2
+ (σ

(u)
z,ij)

2

)−1

=
P (r)P (s) |h(ru)

ij (t)|2 |h(sr)
j (t)|2

P (r) |h(ru)
ij (t)|2 (σ

(r)
z,j)

2 + P (s) |h(sr)
j (t)|2 (σ

(u)
z,ij)

2 + (σ
(r)
z,j)

2 (σ
(u)
z,ij)

2

=
γ

(ru)
ij (t) γ

(sr)
j (t)

γ
(ru)
ij (t) + γ

(sr)
j (t) + 1

, (4.9)
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in which γ
(ru)
ij (t) and γ

(sr)
j (t) are defined as follows

γ
(ru)
ij (t) = ρ

(ru)
ij |h

(ru)
ij (t)|2, with ρ

(ru)
ij =

P (r)

(σ
(u)
z,ij)

2
, (4.10)

γ
(sr)
j (t) = ρ

(sr)
j |h

(sr)
j (t)|2, with ρ

(sr)
j =

P (s)

(σ
(r)
z,j)

2
. (4.11)

Hence, we can define the SNR at user i and corresponding to channel j and time-slot t as

γ
(r)
ij (t) = γ

(su)
ij (t) + γ

(sru)
ij (t). (4.12)

Let C
(r)
ij (t) be the amount of data that the BS and the relay can transmit to user i over channel j

at time-slot t. As mentioned earlier, in this case the achievable rate should be halved, so C
(r)
ij (t)

can take K possible values { 1
2R1,

1
2R2, . . . ,

1
2RK}, where we note that rate 1

2Rk represents state

k and results from the case where τk ≤ γ(r)
ij (t) < τk+1.

We use Cij(t) to represent the state of link (ij) at time-slot t, i.e. the (maximum) amount of

data that can be transmitted without outage to user i on channel j. Since there are two possible

transmission schemes, we choose Cij(t) to be the maximum amount of data that can be delivered

under these schemes, meaning that we have

Cij(t) = max{C(d)
ij (t), C

(r)
ij (t)}. (4.13)

It is worth recalling that a transmission at a rate above the link state always fails, whereas transmission

at a rate below or equal to the link state always succeeds.

4.2.3 Limited and Delayed CSI Knowledge Scheme

Before presenting the limited and delayed CSI scheme, we first provide the conditions under which

the systems with and without relaying are called ideal (in terms of CSI knowledge):

• System without relaying . This system is called ideal when at each time-slot the BS has

perfect and full knowledge of all the link states at no cost. In other words, at time-slot t the BS

knows (perfectly) Cij(t), ∀i, j. Note that the term ’perfect’ means that each Cij(t) is known

perfectly, whereas the term ’full’ refers to the fact that all these link states are known. Under

the system without relaying, we recall that at time-slot t user i knows perfectly hij(t), ∀j,
which implies that this user has perfect knowledge of Cij(t), ∀j. Hence, for the system to be

called ideal we should assume that: (a) all the users send their perfect knowledge of their link

states to the BS, (b) if the users send these states at time-slot t, they arrive to the BS also at

time-slot t, and (c) there is no cost for this feedback (i.e. CSI acquisition) process.

• System with relaying . This system is called ideal if at each time-slot the BS receives perfect

and full knowledge of all the link states at no cost, i.e. at time-slot t the BS knows all the
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Cij(t) perfectly. Under the system with relaying, we recall that at time-slot t user i has perfect

knowledge of h
(su)
ij (t) and h

(ru)
ij (t), ∀j. Using equations (4.12) and (4.13), it can be noticed that

Cij(t) depends on h
(su)
ij (t), h

(ru)
ij (t), and h

(sr)
j (t); recall that we suppose the relay knows h

(sr)
j (t),

∀j. Hence, for the system with relaying to be called ideal we should assume that: (a) user i

knows (in addition to h
(su)
ij (t) and h

(ru)
ij (t)) h

(sr)
j (t) perfectly, which implies that this user can

compute Cij(t), ∀j, (b) all the users send their perfect knowledge of their link states to the BS,

(c) if the users send these states at time-slot t, they arrive to the BS also at time-slot t, and

(d) there is no cost for this feedback process.

It is worth mentioning that if the users have imperfect knowledge of h
(sr)
j (t), then this will lead

user i (for e.g.) to possibly mis-estimate its exact corresponding link state (given by Cij(t)),

and thus the users will (possibly) send an imperfect version of their link states to the BS.

Limited and Delayed CSI

We now present the limited and delayed CSI scheme. To this end, we define d to be the delay in

number of slots. We consider a realistic context where the feedback capacity per slot is limited. We

assume that at most F̄ link rates can be reported per slot. Therefore, if the system decides to report

F > F̄ link rates, a delay of d slots is required, where d = dF (F̄ )−1e. Hence, the amount of feedback

resources we allocate and the delay are coupled: the more we allocate feedback resources (i.e. more

F ), the more time is needed to finish the feedback process, which implies more delay in the system.

For the system without relaying, we use ĥij(t) to denote hij(t − d), which is the fading of link (ij)

at time-slot t − d. We recall that in each slot each user has a perfect estimation of the hij , ∀j, at

this slot. For example, in time-slot t− d user i knows perfectly ĥij(t) (i.e. hij(t− d)), ∀j. The SNR

corresponding to ĥij(t) is denoted and given by γ̂ij(t) = ρij |ĥij(t)|2. We use Ĉij(t) to denote the

state of link (ij) at time-slot t − d, i.e. Ĉij(t) = Cij(t − d). Hence, Ĉij(t) depends on the value of

γ̂ij(t), e.g. Ĉij(t) = Rk if τk ≤ γ̂ij(t) < τk+1. For the system with relaying, let ĥ
(su)
ij (t) = h

(su)
ij (t− d),

ĥ
(ru)
ij (t) = h

(ru)
ij (t − d), and ĥ

(sr)
j (t) = h

(sr)
j (t − d). In addition, let γ̂

(·)
ij (t) = γ

(·)
ij (t − d), where the

notation (·) is used to represent the different SNRs (at the users), and Ĉij(t) = Cij(t− d).

It is worth recalling that at a given time-slot user i has a perfect estimation of h
(su)
ij and h

(ru)
ij , ∀j,

of this slot. However, we stress out that, until this stage, no specific assumption is made on the

knowledge of h
(sr)
j (t) at the users; note that such an assumption will be made later.

4.2.4 Queueing Model

We here present the queueing model (i.e. queue dynamics) for the ideal system as well as for the

system with limited and delayed feedback. To this end, we consider that each of the N users has an

incoming traffic process Ai(t), which is an integer-valued process, measured in bits, i.i.d. (independent

and identically distributed) in time and independent across users, with Ai(t) < Amax, for some finite

constant Amax. The mean rate of this process is ai = E{Ai(t)}. We assume that packets arrive at the

BS at the beginning of the time-slot and are served at the end of the time-slot.

We also assume that a transmission over link (ij) can only be fulfilled if the corresponding link state

(i.e. Cij(t) in the ideal case for ex) is reported to the BS.
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4.2.4.1 Queue Dynamics under the Ideal System

We first note that the model that will be provided here can be used under the system without relaying

as well as the system with relaying. To begin with, we define Sij(t) to be the scheduling decision

associated with link (ij) at time-slot t. So, we have

Sij(t) =

1, if user i gets scheduled on channel j

0, otherwise.
(4.14)

As mentioned earlier, in one time-slot and on a given channel one and at most one user can be

scheduled. As a result, for all t and all j, any valid service policy must obey
∑N
i=1 Sij(t) ≤ 1. It

should be pointed out that under the ideal system there is no need to define a feedback decision since

all the link states are reported (without delay and at no cost).

Based on the above, the queues in the system evolve according to the following equation

qi(t+ 1) = max{qi(t) +Ai(t)−
L∑
j=1

Cij(t)Sij(t), 0}, for 1 ≤ i ≤ N, (4.15)

where
∑L
j=1 Cij(t)Sij(t) represents the service rate allocated for user i at time-slot t.

4.2.4.2 Queue Dynamics under the System with Delayed and Limited CSI

Also here the model can be used under the system with or without relaying. Let us define Sij(t) to

be the scheduling decision associated with link (ij) at time-slot t. In addition, we define Yij(t) as the

feedback decision associated with link (ij) at time-slot t.

We draw the attention to the fact that the delay d is the required period to report the CSI for the

users selected for the feedback. Then, the period between the feedback decision and the scheduling

mechanism will not be always equal to d slots. Specifically, the scheduling decisions of, for ex, time-

slots t1, t1 + 1, . . . , t1 + d− 1 will be based on the feedback decision of time-slot t1 − d, where we note

that this feedback arrives at the BS at time-slot t1. To simplify the notation and the presentation of

the analysis, we denote by t the slots at which the scheduling is done and by t − d the slot at which

the feedback decision is done. That is to say, a fixed delay value is considered between the feedback

decision and the scheduling time. This delay value could correspond to the worst case delay, average

delay or best case delay. It is worth noting that the theoretical analysis conducted in this paper still

holds for all of those cases.

Let Ŷij(t) = Yij(t − d) denote the feedback decision associated with link (ij) at time-slot t − d. So,

we can write

Ŷij(t) =

1, if Ĉij(t) gets reported to the scheduler

0, otherwise,
(4.16)
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where we recall that Ĉij(t) = Cij(t−d). On the other side, for Sij(t), which represents the scheduling

decision at time-slot t, we have

Sij(t) =

1, if user i gets scheduled on channel j

0, otherwise.
(4.17)

The queueing dynamics are then given as follows

qi(t+ 1) = max{qi(t) +Ai(t)−
L∑
j=1

Ĉij(t)Ŷij(t)Sij(t)1(Cij(t)≥Ĉij(t)), 0}, for 1 ≤ i ≤ N, (4.18)

where 1(·) is the indicator function and the expression

L∑
j=1

Ĉij(t)Ŷij(t)Sij(t)1(Cij(t)≥Ĉij(t)) (4.19)

is nothing but the service rate allocated for user i at time-slot t. Note that the use of indicator

function 1(Cij(t)≥Ĉij(t)) is necessary due to a possible mismatch between the reported rate, Ĉij(t),

and the actual link state, Cij(t), meaning that it is possible that the reported rate is greater than the

actual link rate, thus leading to outage.

4.3 Proposed Algorithms and Stability Analysis for

the System without Relaying

In this section, we provide a stability analysis for the system without relaying. Specifically, we propose

a joint feedback allocation and scheduling algorithm, named FSA, under which the allocations are

done at the users side. We derive the fraction that this algorithm reaches of the stability region of

the ideal system. Although it provides good stability performance, this algorithm is adapted only for

continuous-time contention schemes. For this reason, we propose a second algorithm, termed as FMA,

that is adapted for discrete-time contention schemes and that provides a good imitation of FSA. For

FMA, an amount of F feedback resources will be available, i.e. at most F links can report their CSI to

the BS. Note that since we consider a bursty traffic, the metric we use to evaluate the performance is

the stability of the queues. It is worth mentioning that the scheduling mechanisms under the different

schemes are mainly based on the Max-Weight policy, which was defined in Chapter 2, where we can

also find the definitions of stability region and optimal scheduling policy.

Before proceeding in the presentation, in the following we discuss the importance of finding a good

trade-off between the amount of feedback resources and the delay. If more link states are reported

to the BS, the Max-Weight has more CSIs that can be used in the decision, which improves the

performance of the scheduling. On the other hand, a delay occurs between the estimation time of

the CSIs and the scheduling decision time, and this delay increases with the number of reported link

states, which results in performance reduction. The trade-off between the number of reported CSIs
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and the delay is a challenging problem that is considered in the numerical results.

In order for the BS to perform scheduling, it needs to receive the rates of the links that were

selected for the feedback. The feedback allocation process is thus of great importance since it directly

impacts the scheduling mechanism. Hence, a necessary step to conduct the stability analysis is to

specify/develop a joint feedback allocation and scheduling algorithm and to characterize its perfor-

mance w.r.t. the ideal system where full and perfect CSI is available at no cost. As alluded earlier, the

second algorithm we propose, FMA, is designed in such a way as to greatly imitate another algorithm

we develop, FSA, that provides good stability performance but that is challenging to implement.

Obviously, under the ideal system there is no need for a feedback allocation algorithm since it is

supposed that all the link states are instantaneously reported to the BS (at not cost).

We now provide the motivation behind the reasoning regarding the feedback decision used in

algorithms FSA and FMA (which will be presented afterwards).

Motivation . We first note that a Max-Weight-like rule is adopted for the scheduling mechanism,

under which the decisions are affected by the reported CSIs as well as the queue lengths; i.e. the

feedback allocation algorithm directly impacts the scheduling mechanism. One could consider that

the BS must decide of the feedback allocation. However, letting the users make this decision provides

a gain due the following: if the BS decides which user should feed back its CSI, this decision will be

based on the channel statistics. In other words, the BS can ask a user with bad CSI to report its

feedback, since the BS cannot know beforehand if the current CSI is good or bad. However, the users

estimate their CSI at each time-slot and therefore have perfect knowledge of their current CSIs, so

including them in the feedback process would enhance the system performance. On the other hand,

the users lack the queue lengths information, which should be taken into consideration by the feedback

allocation since the scheduling mechanism is directly impacted by the feedback decisions. In general,

the stability of the system is more sensitive to the channels variation than to the queues variation, so

we can provide the users with the queue lengths knowledge every period of time and not every slot.

This is done by the BS which broadcasts the queue lengths information every Tb slots, where Tb is

typically high so that the (signalization) cost of such a broadcast stays negligible.

4.3.1 Algorithm FSA and its Stability Performance

Let ’mdl’ represent the system where over each channel only one user reports its feedback (and then

uses this feedback to transmit after d slots) and where this user is selected using algorithm FSA. We

use ’pf’ to denote the ideal system, i.e. perfect and full CSI is available at the BS, where Max-Weight

policy is used to schedule users for transmission. LetMpf(t) andMmdl(t) be the subsets of scheduled

links at time-slot t under ’pf’ and ’mdl’, respectively. Note that here the delay d = dL(F̄ )−1e since

FSA uses an amount of feedback resources equal to the number of channels, L.

Before presenting algorithm FSA, and to better understand the reasoning that is used in this

algorithm, we next provide the Max-Weight scheduling used under the ideal system. First, recall that

under this system the BS has full and perfect knowledge (at no cost) of all the link states. That is to

say, at time-slot t the BS knows Cij(t), ∀i, j. Thus, at time-slot t the Max-Weight policy schedules
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over channel j the user that results from the following operation

arg max
i
{qi(t)Cij(t)}. (4.20)

For the ideal system, we define gpf to be the expected weighted throughput, which is given as follows

gpf(q(t)) = E


L∑
j=1

N∑
i=1

qi(t)Cij(t)Sij(t) | q(t)

 , (4.21)

where here Sij(t) represents the scheduling decision of link (ij) at time-slot t (under the ideal system),

which must obey
∑N
i=1 Sij(t) ≤ 1. An alternative way to write gpf is

gpf(q(t)) = E

 ∑
(ij)∈Mpf(t)

qi(t)Cij(t) | q(t)

 . (4.22)

Algorithm FSA: For system ’mdl’ the feedback and scheduling decisions are based on the following

procedure.

1. Queue lengths broadcast every Tb slots:

Every Tb time-slots, that is to say, at time 0, Tb, 2Tb, . . . , nTb, . . . , the BS broadcasts the queue

lengths of all users, where Tb is typically high. So each user has outdated knowledge of the

state of its queue (and all other queues). Let q̃i(t) be the (outdated) queue length the users

know at time t, i.e. q̃i(t) = qi(nTb) for t ∈ [nTb, (n+ 1)Tb[.

2. Feedback and scheduling decisions at time-slot t− d:

To simplify the notation, we denote q̃i(t− d) as ˆ̃qi(t).

For each channel j ∈ {1, . . . , L}, only one user sends its CSI to the BS. This user is the result

of the Max-Weight rule [19], [56] and can be given by

arg max
i

{
ˆ̃qi(t)Ĉij(t)P

{
Cij(t) ≥ Ĉij(t) | ĥij(t)

}}
. (4.23)

To detect this user, we use an approach that consists in letting the users contend among each

other for a certain period of time. Let Tc be the contention period for each channel. Assuming

that contention can be done in continuous time [68], meaning that there is no collision between

users, for each channel j ∈ {1, . . . , L} the contention is performed as the following:

User i, ∀i ∈ {1, . . . , N}, waits until time

Tc

(
ˆ̃qi(t)Ĉij(t)P

{
Cij(t) ≥ Ĉij(t) | ĥij(t)

})−1

, (4.24)

then broadcasts a signal (of negligible duration). It is obvious that the user that broadcasts

its signal first will be the result of (4.23) since this user will wait the smallest period of time.

After the broadcast of the first signal, the contention procedure (of channel j) terminates and

the corresponding user reports its CSI.
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Once this procedure finishes, the contention of another channel gets started; clearly, two chan-

nels cannot have their contentions over the same period of time.

3. Transmission at time-slot t:

After getting the CSI (of time-slot t−d) of each channel, the BS uses these CSIs for transmission

at time-slot t. It is obvious that the user that is selected to report its feedback (at time-slot

t− d) of channel j will also be the user transmitting over this channel (at time-slot t).

The main idea behind algorithm FSA is to approach the scheduling in the ideal system, while

noting that the feedback decision is done by the users; the motivation behind letting the users be

implicated in the decision was provided earlier. For each channel, this algorithm lets the users contend

among each other in order to determine the user that will report its state, and this user will also be

scheduled for transmission on the corresponding channel. As indicated in the algorithm, for channel j

the user that is selected for feedback (and consequently for transmission on channel j), which results

from the contention procedure, is the one that maximizes the expression

ˆ̃qi(t)Ĉij(t)P
{
Cij(t) ≥ Ĉij(t) | ĥij(t)

}
. (4.25)

The choice to maximize the above quantity can be explained as follows. First, recall that under

the ideal system on channel j the user that is scheduled for transmission is the one that maximizes

qi(t)Cij(t) (using the Max-Weight concept). Under system ’mdl’, and accounting for delay d, the

feedback decisions corresponding to the transmission of time-slot t are made at time-slot t − d. The

available information at user i at time-slot t− d includes all the queue lenghts and in particular ˆ̃qi(t),

where we recall that ˆ̃qi(t) = q̃(t−d), and Ĉij(t) (which results from ĥij(t)), ∀j, with Ĉij(t) = Cij(t−d).

Based on the above and taking into account the outage possibility, which occurs when Ĉij(t) > Cij(t),

it can be noticed that the best way to approximate the ideal scheduling on channel j is by selecting

the user that maximizes the quantity given in (4.25).

Stability Performance Analysis for FSA

As mentioned earlier, here delay d = dL(F̄ )−1e since FSA uses L feedback resources. However, for

FMA we have d = dF (F̄ )−1e because under this algorithm an amount of F feedback resources is used.

The same notation of delay, d, is used in both algorithms for the sake of notational simplicity.

As a result of algorithm FSA, the expected weighted throughput, termed as gmdl, at time-slot t is

defined as follows

gmdl(ˆ̃q(t)) = E

{
L∑
j=1

N∑
i=1

ˆ̃qi(t)Ĉij(t)Ŷij(t)Sij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
, (4.26)

in which Sij(t) represents the scheduling decision of link (ij) at time-slot t, so here Sij(t) = Ŷij(t) and

is equal to 1 if user i is selected (at time t− d) by algorithm FSA to report its CSI (and consequently
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to transmit at time-slot t) and 0 otherwise. Recall that over each channel one and at most one channel

is scheduled for transmission, i.e.

N∑
i=1

Sij(t) ≤ 1. (4.27)

We stress out that the indicator function 1(Cij(t)≥Ĉij(t)) is used because of a possible mismatch between

the reported link state Ĉij(t) and the actual link state Cij(t), i.e. it is possible that Ĉij(t) > Cij(t)

which leads to an outage since a transmission at a rate strictly greater than the actual link state

always fails.

An alternative way to express gmdl is by using the definition of Mmdl(t) as

gmdl(ˆ̃q(t)) = E

{ ∑
(ij)∈Mmdl(t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
. (4.28)

Next, we want to investigate the stability performance of system ’mdl’ by characterizing the

minimum fraction that the stability region of algorithm FSA can achieve w.r.t. the stability region of

the ideal system (i.e. ’pf’); clearly, this fraction is lower than 1. To this end, we define η as

η = max
t,(ij)

{
Cij(t)

Ĉij(t)

}
. (4.29)

We here assume that all the possible values of Cij(t) (and thus of Ĉij(t)), given by R1, . . . , RK , are

different than zero. In practice, it is very rare not to be able to transmit at a non-zero rate. Moreover,

we define pmin
c as follows

pmin
c = min

(ij)
pmin

cij , (4.30)

in which pmin
cij is given by

pmin
cij = min

t,ĥij(t)

{
P{Cij(t) ≥ Ĉij(t) | ĥij(t)}

}
, (4.31)

where obviously the value of Ĉij(t) depends on ĥij(t). It is worth recalling that under system ’mdl’

the scheduling decision at time-slot t is based on the feedback decision made at time t−d. Also, recall

that the BS broadcasts the queue lengths to the users each Tb slots.

Based on the above, we now provide the stability region that system ’mdl’ can achieve compared

with the stability region of the ideal system.

Theorem 14. Algorithm FSA can achieve at least a fraction β of the stability region achieved by the

ideal system (with perfect and full feedback), where

β = (1− 1

Tb
)
pmin

c

η
. (4.32)
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Proof. We first provide an important result that will be useful for the rest of the proof. For this

purpose, we define ’pf1’ to be the system where the BS has perfect and full knowledge of the link

states and then applies the Max-Weight rule for scheduling at time-slot t using ˆ̃q(t). Recall that

ˆ̃qi(t) = q̃i(t− d), where q̃i(t) = qi(nTb) for t ∈ [nTb, (n+ 1)Tb[, (4.33)

and that here d = dL(F̄ )−1e. We stress out that the only difference between ’pf1’ and ’pf’ (i.e. ideal

system) is the fact that at time-slot t the scheduling process (at the BS) under ’pf1’ will be done based

on the queue lengths information ˆ̃q(t), whereas under ’pf’ the scheduling is based on q(t). Let Λpf

and Λpf1 be the stability regions achieved under systems ’pf’ and ’pf1’, respectively.

Based on the above, the following result can be stated.

Lemma 7. As long as Tb is finite, system ’pf1’ is strongly stable if and only if system ’pf’ is strongly

stable. That is to say, the following stability region result holds

Λpf1 = Λpf. (4.34)

From the above statement, it can be deduced that even if the scheduling is done based on an

infrequent (i.e. outdated) queue lengths information, the stability of the system can still be achieved

as long as the difference between the estimate (i.e. outdated value) and the exact value is bounded

by a constant. It can be seen that this latter condition is satisfied for system ’pf1’ since Tb is finite

and the maximum per-time-slot length change in any queue is bounded (because the maximum arrival

and service rates are bounded).

Please refer to Appendix 4.7.1 for the complete proof of the theorem, which also contains the

proof of Lemma 7.

If we denote Λpf and Λmdl as the stability regions of systems ’pf’ and ’mdl’, respectively, the above

theorem implies that Λmdl can be bounded as

βΛpf ⊆ Λmdl ⊆ Λpf. (4.35)

That is to say, fraction β just represents a lower bound on the performance guarantee of FSA, meaning

that this algorithm may deliver better stability performance than that guaranteed by the lower bound.

Based on this observation and depending on the setting under consideration, we can state that FSA

generally provides good stability performance. However, implementing this algorithm is a complicated

task due to the assumption that the contention can be done in continuous time. This assumption is not

realistic since in practice the contention is done in discrete time, leading to a possible collision between

the users, and this problem is not handled in FSA. Thus, we next propose another algorithm that

adopts a different approach and that provides a good imitation of FSA, and therefore good stability

performance.
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4.3.2 Algorithm FMA and its Stability Performance

Let ’dl’ represent the system with delayed and limited feedback, and where the feedback and scheduling

decisions are determined by algorithm FMA. Under FMA, the feedback allocation is done at the users

side, and an amount of F feedback resources is available. Specifically, under this algorithm, at time-

slot t− d the users decide to report at most F link states; typically, F should be greater than L. Let

us denote the set of these links by F̂(t), where the cardinality |F̂(t)| ≤ F . Then, due to the delay of

d slots, the BS receives the totality of this feedback at time-slot t. We recall that here d = dF (F̄ )−1e.
Let us define Fi(t − d) to be the number of link states user i decides at time t − d to report under

FMA, so we have
∑N
i=1 Fi(t − d) ≤ F . Also, we define α(t) to be some threshold that the system

updates with the time; the update process will be provided later. To simplify the notation, we let

F̂i(t) and α̂(t) represent Fi(t− d) and αi(t− d), respectively. Algorithm FMA is based on the idea of

combining the Max-Weight and threshold-based concepts [56], [127]. It is worth mentioning that the

steps in FMA are different from what is proposed in these latter works.

Algorithm FMA: For system ’dl’, the feedback and scheduling decisions are based on the following

procedure.

1. Queue lengths broadcast every Tb slots:

Every Tb time-slots, that is to say, at time 0, Tb, 2Tb, . . . , nTb, . . . , the BS broadcasts the queue

lengths of all users, where Tb is typically high. So each user has outdated knowledge of the

state of its queue (and all other queues). Let q̃i(t) be the (outdated) queue length the users

know at time t, i.e. q̃i(t) = qi(nTb) for t ∈ [nTb, (n+ 1)Tb[.

2. Queue lengths sorting at each user:

Each user knows then the queues of all other users and sorts all the queue lengths (including

its queue) in a descending order. Let im be the index of the user at the mth position; e.g. i1

is the index of the user with the largest queue length. A tie is broken by picking the user with

the smallest index. We define k(imj) as the state of link (imj), so Ĉimj(t) = Rk(imj), where

k(imj) ∈ {1, . . . ,K}.

3. Feedback decisions at time-slot t− d:

To simplify the notation, we denote q̃i(t− d) as ˆ̃qi(t). Set F̂im(t) = 0, ∀im ∈ {1, . . . , N}.
For m = 1, which yields index i1 and thus corresponds to the user with the largest queue length,

the allocation process starts as the following:

(a) For all j ∈ {1, . . . , L}:

• If there are enough feedback resources, i.e. if
∑N
im=1 F̂im(t) < F :

∗ If channel j satisfies the following inequality

ˆ̃qim(t)Ĉimj(t)P
{
Cimj(t) ≥ Ĉimj(t) | ĥimj(t)

}
≥ α̂(t), (4.36)

then Ĉimj(t) will be reported to the BS and F̂im(t) = F̂im(t) + 1.
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∗ Else, Ĉimj(t) will not be reported.

• Otherwise, the allocation process stops since no feedback resources are available.

(b) At this step user im has just finished its part of the algorithm, so he broadcasts a special

symbol to inform the BS that he finished the feedback allocation. Now, if the condition∑N
im=1 F̂im(t) < F is still satisfied and m < N , increment m by 1, and go to Step (a).

Otherwise, the allocation process stops.

4. Scheduling decisions and transmission at time-slot t:

At time-slot t, the BS receives the link states that were selected at time-slot t − d. Then, for

each channel, the BS applies the Max-Weight rule for scheduling. Specifically, over channel j

the BS schedules the user that results from the following

arg max
i:(ij)∈F̂(t)

{qi(t)Ĉij(t)}, (4.37)

where we recall that F̂(t) is the set of reported link states and that if for some channel no

feedback is reported, then no transmission can take place over this channel.

Roughly speaking, the idea behind the feedback decision approach in the proposed algorithm

here is to allocate the feedback resources to the links which are more likely to be scheduled under

the Max-Weight policy if all the link states are available at the BS. Hence, when the BS applies the

Max-Weight rule for a given channel based on the subset of reported links states (resulting from the

feedback decision under FMA), it will be very unlikely not to schedule the right user (which is the

result of scheduling under a full CSI knowledge scenario).

Stability Performance Analysis for FMA

We now investigate the stability performance of algorithm FMA. As mentioned earlier, this algorithm is

proposed to imitate FSA which in its turn approaches the decisions of the ideal system. To analytically

illustrate the good stability performance that FMA yields, we show that this algorithm imitates FSA

to a great extent. For this purpose, we first discuss the conditions that an algorithm should guarantee

in order to provide a good imitation of FSA.

In order to design an algorithm that greatly imitates FSA, two essential points should be accounted

for. The first point is to ensure that over channel j the user that will be scheduled is the result of

arg max
i

{
ˆ̃qi(t)Ĉij(t)P

{
Cij(t) ≥ Ĉij(t) | ĥij(t)

}}
. (4.38)

The second point is to make sure that a transmission occurs over each channel, which can be ensured

by having at least one reported link state for each channel. This is necessary since FSA guarantees a

reported link state for each channel, leading to a transmission over all the channels. Based on these

two conditions, the following remark can be made.
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Remark 3. Algorithm FMA can imitate algorithm FSA to a great extent. Hence, FMA, as FSA,

generally provides good stability performance.

The motivation behind the statement in Remark 3 is provided as follows. By allocating a sufficient

amount of feedback resources, F , with F sufficiently large, and using condition (4.36) which ensures

the selection (for the feedback) of links with large value of

ˆ̃qi(t)Ĉij(t)P
{
Cij(t) ≥ Ĉij(t) | ĥij(t)

}
, (4.39)

we can claim that algorithm FMA guarantees the first point (to ensure a good imitation of FSA) with

high probability. On the other side, by a judicious choice of threshold α̂(t) (or α(t)), the second point

(for a good imitation of FSA) can be guaranteed, that is to say, this threshold can be updated (with

time) in such a way as to ensure that the probability of any one of the channels to have zero feedback

is very low. We next provide how the threshold value can be updated.

Threshold Update

We consider an approach under which the BS updates the threshold each Tu slots (e.g. at slots

Tu, 2Tu, 3Tu, . . .) and then broadcasts it to the users, where the choice of Tu depends on the system

under consideration. For notational convenience, suppose that tu − d is the time-slot at which the

BS has to calculate the threshold, i.e. tu − d = nTu for some non-negative integer n. Hence, at

time-slot tu − d the BS calculates threshold α̂(tu), where we recall that α̂(tu) = α(tu − d). Note that

at this slot the BS has complete knowledge of the queue lengths of this slot but knows nothing about

the link states of this slot; recall that these lengths and states are denoted by q̂ij(tu) and Ĉij(tu),

respectively. Further, a reasonable assumption that can be made here is that the BS knows the

probabilities P{Cij(tu) ≥ Ĉij(tu) | Ĉij(tu) = Rk}. As indicated earlier, the threshold should ensure

that it is very likely that every channel gets at least one feedback, or equivalently, that it is very

unlikely that a channel gets zero feedback.

Before proceeding further, we here explain a simple but important property about necessary conditions,

which will be useful for the analysis. Let V be an event defined as the intersection of two other events,

namely V1 and V2. Event V1 can be seen as a necessary condition for event V to happen; the same

remark can be made for V2. It is plain to see that P{V} ≤ P{V1}. Hence, if event V1 is unlikely to

happen, then this implies that V is also unlikely to happen.

Under algorithm FMA, a necessary condition for link (ij) to get selected for the feedback at time-slot

tu − d is to have (see (4.36))

ˆ̃qi(tu)Ĉij(tu)P
{
Cij(tu) ≥ Ĉij(tu) | ĥij(tu)

}
≥ α̂(tu). (4.40)

Based on this observation and the available information at the BS, the necessary condition for channel

j to get at least one feedback can be approximated by the BS as∑
i

∑
k: q̂i(tu)RkP{Cij(tu)≥Ĉij(tu)|Ĉij(tu)=Rk}≥α̂(tu)

pijk ≥ 1, (4.41)
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where pijk is the probability that link (ij) is at state k, which is supposed to be known by the BS.

Define Ωijk and ωj as

Ωijk = q̂i(tu)RkP{Cij(tu) ≥ Ĉij(tu) | Ĉij(tu) = Rk}, (4.42)

ωj =
∑
i

∑
k: Ωijk≥α̂(tu)

pijk. (4.43)

Hence, a necessary condition for every channel to get at least one feedback can be stated as

ωj ≥ 1,∀j. (4.44)

The following constraint should be added when calculating α̂(tu)∑
j

ωj ≤ F and as close as possible to F. (4.45)

The conditions in (4.45) ensure that the average number of links that are eligible to report their states

(see (4.40)), which is given by
∑
j ωj , is pushed as close as possible to F . This is important due to

the following reasons: (a) at most F (with F > L) link states can be reported, due to an amount of

feedback resources equal to F , (b) the more the number of links that are eligible for the feedback is

greater than F , the more likely it is that algorithm FMA does not report the best links in terms of

maximizing the product ˆ̃qi(tu)Ĉij(tu)P
{
Cij(tu) ≥ Ĉij(tu) | ĥij(tu)

}
, and (c) the more the number of

links that are eligible for the feedback is lower than F , the less the feedback resources are exploited

efficiently, which may lead to one or multiple channels with zero feedback. Note that the lower the

threshold is, the greater wj and
∑
j wj will be.

Based on all the above, the following simple procedure can be adopted to compute α̂(tu):

1. The BS chooses any threshold value such that, using this threshold, the condition ωj ≥ 1 is not

satisfied for all j. Denote this value by α̂0(tu).

2. Then, starting from α̂0(tu), it decreases the threshold value until the condition ωj ≥ 1 is

satisfied for all j. Denote the threshold at this stage by α̂1(tu).

3. If using α̂1(tu) we have
∑
j ωj < F , then the BS decreases the threshold value (starting from

α̂1(tu)) until having
∑
j ωj as close as possible to F and such that

∑
j ωj ≤ F .

Finally, we point out that if the BS knows

Eĥij(tu)

{
P{Cij(tu) ≥ Ĉij(tu) | Ĉij(tu) = Rk, ĥij(tu)}

}
, (4.46)

where we recall that ĥij(tu) = hij(tu − d), then, clearly, it is better to define Ωijk as

Ωijk = q̂i(tu)RkEĥij(tu)

{
P{Cij(tu) ≥ Ĉij(tu) | Ĉij(tu) = Rk, ĥij(tu)}

}
. (4.47)

Taking this new definition into account, the same procedure as before can be used to find α̂(tu).
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4.4 Proposed Algorithms and Stability Analysis for

the System with Relaying

In this section, the stability analysis for the system with relaying is provided; the detailed model of

this system can be found in Section 4.2. We consider a scheme that assumes the users have imperfect

knowledge of h
(sr)
j (t) (which represents the fading coefficient between the BS and the relay under

channel j), ∀j; recall that h
(su)
ij (t) and h

(ru)
ij (t), ∀j, are perfectly known at user i at time-slot t. For

clarity of exposition, we first analyze the case without delay in the feedback process, then we present

the analysis for the case where the delay is accounted for.

CSI Imperfection

The imperfection concerning the knowledge of h
(sr)
j (t) at the users is detailed as follows. At time-slot

t we assume that the only information the users know about h
(sr)
j (t) is if γ

(sr)
j (t) ≥ δ or γ

(sr)
j (t) < δ,

for some threshold δ > 0, where we recall that

γ
(sr)
j (t) = ρ

(sr)
j |h

(sr)
j (t)|2, with ρ

(sr)
j =

P (s)

(σ
(r)
z,j)

2
. (4.48)

Obviously, it is the relay who broadcasts the information to the users once it estimates h
(sr)
j (t), where

we note that this estimation is assumed to be perfect. It is worth noting that the cost of broadcasting

such information is negligible.

4.4.1 Case without Delay

Here, we assume that there is no delay in the feedback process. As explained earlier, the feedback

and scheduling decisions are coupled, and it is of great importance to design an efficient algorithm

to make these decisions. Such an algorithm will be provided here, and is termed RW, for which we

study the stability performance by characterizing the minimum fraction this algorithm can achieve

w.r.t. the stability region of the ideal system. In this latter system, in addition to the facts that there

is no delay and that h
(su)
ij (t) and h

(ru)
ij (t), ∀j, are perfectly known at user i at time-slot t, the users

have perfect knowledge of the fading coefficients of the links between the BS and the relay, i.e. at

time-slot t user i knows h
(sr)
j (t), ∀j. Thus, under the ideal system, each user can calculate C

(r)
ij (t) and

consequently Cij(t); i.e. Cij(t) = max{C(d)
ij (t), C

(r)
ij (t)}.

Unlike the ideal system, under the adopted scheme, at time-slot t and for channel j user i may

have an imperfect estimation of C
(r)
ij (t) since the only information user i receives about h

(su)
ij (t) is if

γ
(sr)
j (t) ≥ δ or γ

(sr)
j (t) < δ. Let us denote this imperfect knowledge of the link state as C̆

(sr)
ij (t). It can

be noticed that, however, C
(d)
ij (t) is perfectly estimated at user i. Define C̆ij(t) as

C̆ij(t) = max{C(d)
ij (t), C̆

(r)
ij (t)}. (4.49)
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It is worth recalling that γ
(d)
ij (t) = γ

(su)
ij (t) and γ

(r)
ij (t) = γ

(su)
ij (t) + γ

(sru)
ij (t), where

γ
(sru)
ij (t) =

γ
(ru)
ij (t) γ

(sr)
j (t)

γ
(ru)
ij (t) + γ

(sr)
j (t) + 1

. (4.50)

Before presenting algorithm RW, we first explain some important points that are used in this

algorithm. If γ
(sr)
j (t) ≥ δ, then to calculate C̆

(r)
ij user i replaces γ

(sr)
j (t) by δ. In detail, user i

calculates γ
(su)
ij (t), γ̆

(sru)
ij (t) and γ̆

(r)
ij (t), where

γ̆
(sru)
ij (t) =

γ
(ru)
ij (t) δ

γ
(ru)
ij (t) + δ + 1

and γ̆
(r)
ij (t) = γ

(su)
ij (t) + γ̆

(sru)
ij (t), (4.51)

based on which C
(d)
ij (t) and C̆

(r)
ij (t) can be determined; i.e. if τk ≤ γ(d)

ij (t) < τk+1, then C
(d)
ij (t) = Rk,

and if τk ≤ γ̆(r)
ij (t) < τk+1, then C̆

(r)
ij (t) = 1

2Rk, where k ∈ {1, . . . ,K}. This user can then find C̆ij(t).

On the other hand, if γ
(sr)
j (t) < δ, user i sets C̆

(r)
ij (t) = 0, that is to say, the choice of using the relay

to transmit to user i on channel j is not possible at time-slot t.

Algorithm RW: For the adopted system here, the decisions for feedback and scheduling are based

on the following procedure.

1. Queue lengths broadcast every Tb slots:

Every Tb time-slots, that is to say, at time 0, Tb, 2Tb, . . . , nTb, . . . , the BS broadcasts the queue

lengths of all users, where Tb is typically high. So each user has outdated knowledge of the

state of its queue (and all other queues). Let q̃i(t) (∀i) represent the (outdated) queue length

the users know at time t, i.e. q̃i(t) = qi(nTb) for t ∈ [nTb, (n+ 1)Tb[.

2. Feedback and scheduling decisions at time-slot t:

Define φij(t) = 0.

After the relay broadcasts the information (i.e. if γ
(sr)
j (t) ≥ δ or γ

(sr)
j (t) < δ, for all j), user i

calculates C̆ij(t) = max{C(d)
ij (t), C̆

(r)
ij (t)}.

If C̆ij(t) = C
(d)
ij (t), then user i sets φij(t) = C̆ij(t).

Otherwise (i.e. if C̆ij(t) = C̆
(r)
ij (t)), user i sets φij(t) as

φij(t) = C̆ij(t)P
{
Cij(t) ≥ C̆ij(t) | γ(sr)

j (t) ≥ δ, h(su)
ij (t), h

(ru)
ij (t)

}
. (4.52)

For each channel j ∈ {1, . . . , L}, only one user sends its CSI to the BS. This user is the result

of the Max-Weight rule and can be given by

arg max
i
{q̃i(t)φij(t)} . (4.53)

To detect this user, we use an approach that consists in letting the users contend among each

other for a certain period of time. Let Tc be the contention period for each channel. Assuming

that contention can be done in continuous time, i.e. there is no collision between users, for each
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channel j ∈ {1, . . . , L} the contention is performed as the following:

User i, ∀i ∈ {1, . . . , N}, waits until time

Tc (q̃i(t)φij(t))
−1
, (4.54)

then broadcasts a signal (of negligible duration). It is obvious that the user that broadcasts

its signal first will be the result of (4.53) since this user will wait the smallest period of time.

After the broadcast of the first signal, the contention procedure (of channel j) terminates and

the corresponding user reports its CSI. Also, this user sends to the BS the decision about using

or not the relay for transmission, depending on whether C̆
(r)
ij (t) > C

(d)
ij (t) or C̆

(r)
ij (t) < C

(d)
ij (t).

Once this procedure finishes, the contention of another channel gets started.

3. Transmission at time-slot t:

The BS receives the CSI of each channel and uses these CSIs for transmission at time-slot t. It

is obvious that the user that is selected to report its feedback of channel j will also be the user

transmitting over this channel.

In the above algorithm, each user compares the achievable rates and decides whether the trans-

mission with or without relaying is better. Then, for the feedback decision where for each channel

(at most) one user reports its feedback, the users contend among each other in such a way as to

ensure that the user with the greatest product q̃i(t)φij(t) reports its CSI of channel j; note that a

similar approach was used in algorithm FSA. Obviously, this user will be scheduled for transmission

over channel j, where we note that this same user sends its decision about using or not the relay for

transmission so that the BS knows what scenario to adopt. Recall that if at a given slot the decision

is not to use the relay, then the BS transmits during all the slot period, whereas the decision of using

the relay implies that the BS transmits during the first half of the slot and then the relay amplifies the

received signal and forwards it to the user in the second half. We finally point out that in equation

(4.52) C̆ij(t) is multiplied by the probability

P
{
Cij(t) ≥ C̆ij(t) | γ(sr)

j (t) ≥ δ, h(su)
ij (t), h

(ru)
ij (t)

}
(4.55)

due to a possible mismatch between Cij(t) and C̆ij(t) in the corresponding case; recall that a trans-

mission at a rate strictly greater than Cij(t) always fails.

Stability Performance Analysis for RW

Let us denote the system here and the ideal system by ’re’ and ’rp’, respectively. Also, letMrp(t) and

Mre be the subsets of scheduled links under systems ’re’ and ’rp’, respectively. For the ideal system

(i.e. ’rp’), define grp to be the expected weighted throughput, which can be written as

grp(q(t)) = E

{ ∑
(ij)∈Mrp(t)

qi(t)Cij(t) | q(t)

}
. (4.56)
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In addition, the expected weighted throughput for system ’re’, denoted by gre, can be expressed as

gre(q̃(t)) = E

{ ∑
(ij)∈Mre(t)

q̃i(t)C̆ij(t)1(Cij(t)≥C̆ij(t)) | q̃(t)

}
. (4.57)

Now, we characterize the minimum fraction that algorithm RW guarantees to achieve w.r.t. the

stability region of the ideal system. Because the characterization of this fraction for the multiple rate

levels case is very complex, here we constrain ourself to the single rate level case (i.e. one modulation).

Denote this rate as R and let τ be its corresponding threshold. Thus, if γ
(d)
ij (t) ≥ τ , then C

(d)
ij (t) = R,

whereas if γ
(d)
ij (t) < τ and γ

(r)
ij (t) ≥ τ , then C

(r)
ij (t) = 1

2R; also, if γ
(d)
ij (t) < τ , γ

(sr)
j (t) ≥ δ and

γ̆
(r)
ij (t) ≥ τ , then C̆

(r)
ij (t) = 1

2R. Under the above scheme, the following result can be stated.

Theorem 15. For the imperfect system with relaying and under a single rate level scheme, algorithm

RW can achieve at least a fraction βr of the stability region of the ideal system, where

βr = (1− 1

Tb
) min
j∈{1,...,L}

{
min

i∈{1,...,N}

{
P
{
C̆ij(t) > 0

}}}
. (4.58)

Proof. We first provide a result that will be useful for the rest of the proof. To this end, define ’rp1’ to

be the system in which the BS has perfect knowledge of all the link states and then applies the Max-

Weight rule for scheduling at time-slot t using q̃(t). Recall that q̃i(t) = qi(nTb) for t ∈ [nTb, (n+1)Tb[.

The only difference between ’rp1’ and ’rp’ (i.e. ideal system) is that at time-slot t the scheduling process

under ’rp1’ is done based on q̃(t), while under ’rp’ the scheduling is based on q(t). Let Λrp and Λrp1

represent the stability regions achieved under systems ’rp’ and ’rp1’, respectively. Using the above

definitions, the following result can be given.

Lemma 8. System ’rp1’ is strongly stable if and only if system ’rp’ is strongly stable. In other words,

in terms of stability regions, we have Λrp = Λrp1
.

The complete proof of the theorem can be found in Appendix 4.7.2, where a remark about the

proof of Lemma 8 is given.

Note that for the above theorem no specific assumptions are made regarding the channel statistics

and the fading model. By assuming that the fading coefficients are modeled as complex Gaussian

processes and that their distributions, as well as the noises distributions, are the same independently

of the channels (i.e. frequency bands), the following result can be given.

Corollary 1. Recalling that z
(r)
j (t) and z

(u)
ij (t) are the noises corresponding to channel j at the relay

and at user i, which are assumed to be additive white Gaussian processes with zero mean and variances

(σ
(r)
z,j)

2 and (σ
(u)
z,ij)

2, respectively, and assuming that

• σ
(r)
z,j and σ

(u)
z,ij are independent of j (which represents the channel index) and are thus denoted

by σ
(r)
z and σ

(u)
z,i , respectively,

• The fading coefficients h
(su)
ij (t), h

(ru)
ij (t) and h

(sr)
j (t), for all j, are i.i.d. in time and follow

complex Gaussian distributions with zero mean and variances (σ
(su)
i )2, (σ

(ru)
i )2 and (σ(sr))2,

respectively, i.e. the distribution of each one of these coefficients is the same for all the channels,
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the fraction βr reduces to

βr = (1− 1

Tb
) min
i∈{1,...,N}

{
P
{
C̆ij(t) > 0

}}
, (4.59)

where for δ < τ the probability P
{
C̆ij(t) > 0

}
is given as

P
{
C̆ij(t) > 0

}
=

exp

(
− τ

ρ(su)(σ(su))2

)
+[∫ τ

τ−δ
exp

(
− (τ − γ)(δ + 1)

ρ
(ru)
i (σ

(ru)
i )2(δ − (τ − γ))

)
1

ρ
(su)
i (σ

(su)
i )2

exp

(
− γ

ρ(su)(σ(su))2

)
dγ

]
exp

(
− δ

ρ(sr)(σ(sr))2

)
,

(4.60)

whereas for δ ≥ τ we have

P
{
C̆ij(t) > 0

}
=

exp

(
− τ

ρ(su)(σ(su))2

)
+[∫ τ

0

exp

(
− (τ − γ)(δ + 1)

ρ
(ru)
i (σ

(ru)
i )2(δ − (τ − γ))

)
1

ρ
(su)
i (σ

(su)
i )2

exp

(
− γ

ρ(su)(σ(su))2

)
dγ

]
exp

(
− δ

ρ(sr)(σ(sr))2

)
,

(4.61)

with ρ
(su)
i , ρ

(ru)
i , and ρ(sr) defined as

ρ
(su)
i =

P (s)

(σ
(u)
z,i )2

, ρ
(ru)
i =

P (r)

(σ
(u)
z,i )2

, ρ(sr) =
P (s)

(σ
(r)
z )2

. (4.62)

Proof. The proof can be found in Appendix 4.7.3.

Regarding the above corollary, some remarks are in order. First, the integrals in equations (4.60)

and (4.61) do not have closed form solutions, however these integrals can be simply evaluated using

numerical integration. In addition, if ρ
(su)
i and ρ

(ru)
i are both independent of the user index i, then βr

reduces to the following expression

βr = (1− 1

Tb
)P
{
C̆ij(t) > 0

}
, (4.63)

since in this case P{C̆ij(t) > 0} is independent of the user’s identity. Moreover, to decide what value

of δ should be used, one approach is to choose this threshold in such a way as to maximize βr, since

a greater βr implies better guaranteed stability performance.

Another possible and even more generalized approach (i.e. it holds independently of the assump-

tions in Corollary 1) regarding the selection of δ is to let the BS update its value each period of

time and then broadcast it to the users and the relay, where the update process is done as follows.
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Supposing that an update should be done at time-slot t and that the expressions of P{C̆(d)
ij (t) > 0}

and P{C̆(r)
ij (t) > 0} are known by the BS, δ is determined according to

δ = arg max
δ

{
max
(ij)

{
qi(t) max

{
RP{C̆(d)

ij (t) > 0}, 1

2
RP{C̆(r)

ij (t) > 0}
}}}

, (4.64)

where we note that P{C̆(r)
ij (t) > 0} depends on δ whereas P{C̆(d)

ij (t) > 0} is independent of δ. Usually,

the choice of δ is from a set of possible values, in which case the solution of the optimization problem

given before can be easily found numerically.

4.4.2 Case with Delay

Unlike the previous section, here the delay is accounted for. Recall that the amount of feedback

resources and the delay are coupled, that is to say, the more amount of feedback resources are allocated,

the more delay is incurred in the feedback process. In a similar fashion to the case without relaying,

in this subsection we provide two algorithms, termed as RFSA and RFMA, for making feedback and

scheduling decisions, where we note that these algorithms are simple variations of FSA and FMA.

Recall that at time-slot t the only information the users have about h
(sr)
ij (t), ∀j, is if γ

(sr)
j (t) ≥ δ or

not. As in the previous subsection, in order for the users to calculate C̆
(r)
ij (t), the following approach

is adopted: (a) if γ
(sr)
j (t) ≥ δ, then user i replaces γ

(sr)
j (t) by δ, and calculates C̆

(r)
ij (t), whereas (b) if

γ
(sr)
j (t) < δ, then user i sets C̆

(r)
ij (t) = 0. After finding C̆

(r)
ij (t) and C

(d)
ij (t), user i can compute C̆ij(t),

where we have C̆ij(t) = max{C(d)
ij (t), C̆

(r)
ij (t)}. Recall that if τk ≤ γ

(d)
ij (t) < τk+1, then C

(d)
ij (t) = Rk,

and if τk ≤ γ̆(r)
ij (t) < τk+1 (and γ

(sr)
j (t) ≥ δ), then C̆

(r)
ij (t) = 1

2Rk, where k ∈ {1, . . . ,K}. Furthermore,

we use
ˆ̆
Cij(t) to represent C̆ij(t− d), i.e.

ˆ̆
Cij(t) = C̆ij(t− d).

In a similar way to algorithm FSA, RFSA uses L feedback resources, each of which is reserved for

one of the L channels; hence, the delay d = dF (F̄ )−1e. Due to the high similarity between these two

algorithms, we only present the outline for RFSA to avoid repetition.

Algorithm RFSA: Under this algorithm, the feedback and scheduling decisions are done based

on the following procedure.

1. Queue lengths broadcast every Tb slots:

This step is the same as in FSA.

2. Feedback and scheduling decisions at time-slot t− d (made at the users side):

This step is similar to the second step in FSA, except that Ĉij(t) should be replaced with
ˆ̆
Cij(t).

Obviously, the fading coefficients used here are those of time-slot t− d.

3. Transmission at time-slot t:

This step is the same as in FSA.

Note that algorithm RFSA assumes a continuous contention time scheme, that is to say, there

is no collision between the users when they contend to find, on each channel, which user should be

selected. Alternatively, we propose algorithm RFMA that is adapted for a discrete contention time

scheme and that tries to greatly imitate RFSA. As FMA, under RFMA an amount of F feedback
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resources is used, i.e. at most F link states can be reported; here, it can be seen that d = dF (F̄ )−1e.

Algorithm RFMA: Under this algorithm, the feedback and scheduling decisions are done based

on the following procedure.

1. Queue lengths broadcast every Tb slots:

This step is identical to that in FMA.

2. Queue lengths sorting at each user:

This step is identical to that in FMA.

3. Feedback decisions at time-slot t− d (made at the users side):

This step is similar to that in FMA, except that Ĉij(t) should be replaced with
ˆ̆
Cij(t).

4. Scheduling decisions (made at the BS) and transmissions at time-slot t:

This step is similar to that in FMA. Clearly, the BS relies on the subset of reported
ˆ̆
Cij(t) in

order to make the scheduling decisions.

4.5 Validation of the Proposed Model

System without Relaying

Table 4.1: List of simulation parameters for the system without relaying

Parameter Description Value

N Number of users 30
L Number of channels 30
P Power per channel 10 dB
BW Bandwidth per channel 180 KHz
fc Carrier frequency 2.1 GHz
c Speed of light 3× 108 m/sec
Ts Slot duration 1 msec
Ms Number of slots per simulation 104

Here, the numerical results for the system without relaying are presented.

We set N = L = 30, P = 10 log10(10 ) = 10 dB. We consider an LTE-like system with a bandwidth

BW = 180 KHz per channel and a carrier frequency fc = 2.1 GHz. Let Ts represent the slot period,

which is set to 1 msec. Assume that the σz,ij are all equal to 1, i.e. σz,ij = 1, ∀i, j. To model the

impact of delay, we consider the Gauss-Markov block fading process [128]. Based on this model, hij(t)

can be expressed as follows

hij(t) = σĥij(t) + eij(t), (4.65)

where hij(t) is a complex normal random variable with zero mean and unit variance, i.e. hij(t) ∼
CN (0, 1), and where eij(t) ∼ CN (0, σ2

e ) is the error due to delay. Notice that ĥij(t) ∼ CN (0, 1) and
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Table 4.2: Possible rates used for the simulations.

Rate (bits/slot) 505.32 570.58 622.69 666.08 703.24
Rate (bits/slot) 735.74 764.62 790.61 891.75 964.36

σ2
e = 1− σ2. The correlation coefficient is given by

σ = J0(2πfdsTsd), (4.66)

with Doppler spread fds, where Ts is the slot duration, d is the delay in number of time-slots, and J0(·)
is the zero-th order Bessel function of the first kind. The Doppler spread can be given by fds = fcv

c ,

where v is the user velocity and c = 3× 108 m/sec is the speed of light; we assume that all the users

have the same velocity v. Hence, the correlation coefficient σ = J0(2πfdsTsd) = J0(2πfcv c
−1Tsd).

The fading coefficients are assumed to be i.i.d. across users and frequencies. The set of possible rates

{R1, . . . , RK} is given in Table 4.2. We suppose that all the users have Poisson incoming traffic with

the same mean arrival rate a, i.e. ai = a, ∀ i ∈ {1, . . . , N}.
To show the stability performance of the system, we plot the total average queue length, defined as

1

Ms

Ms−1∑
t=0

N∑
k=1

qk(t) (4.67)

for different values of mean arrival rate a, where Ms represents the number of time-slots each simulation

lasts (i.e. per mean arrival rate). We set Ms = 104. It is worth noting that the point where the total

average queue length begins to increase very steeply is the point where the system becomes unstable.

We provide four figures where in each one we consider a different value of the velocity, v. Specif-

ically, in Figures 4.4 to 4.7 we set v = 1, 5, 10, and 50 km/hr, respectively. Each figure depicts the

variation of total average queue length for different values of mean arrival rate under various system

settings. The first setting is ideal system ’pf’, i.e. the system with perfect and full feedback. The

three remaining settings consider system ’dl’, i.e. the system with delayed and limited feedback where

algorithm FMA is used for feedback and scheduling decisions, for three different amounts of feedback

resources F = 50, 100, and 150. Recall that delay d depends on the value of F . Here we assume that

F = 50, 100, and 150 result in d = 1, 2, and 3 slots, respectively.

The simulations show that for relatively small values of the velocity (Figure 4.4 and Figure 4.5),

increasing the feedback resources F to some limit can provide better stability performance. This is due

to the fact that for small values of v, the variance of the error given by σ2
e = 1−σ2 is sufficiently small,

so the gain coming from having more feedback information overcomes the loss due to delay. Evidently,

the limit until which if we increase F we get better performance depends on σe and consequently on v.

It can be noticed that for v = 1 km/hr, the best F we can choose is 150. However, for v = 5 km/hr,

the best F is 100. If we keep increasing v, there will be no gain from taking F > 50. This can be

seen in Figure 4.6 and more clearly in Figure 4.7. Specifically, for v = 10 km/hr, setting F = 50 (or

F = 100) yields better stability performance than the case where F = 150. Also, for v = 50 km/hr,

F = 50 yields better performance than both of F = 100 and F = 150 cases. This is due to the fact

that for relatively high velocities the variance of the (delay) error, i.e. σ2
e , is sufficiently high, so the
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loss due to delay is bigger than the gain coming from having more feedback information.
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Figure 4.4: Total average queue length vs. mean
arrival rate a. Here, the velocity v = 1 km/hr.
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Figure 4.5: Total average queue length vs. mean
arrival rate a. Here, the velocity v = 5 km/hr.
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Figure 4.6: Total average queue length vs. mean
arrival rate a. Here, the velocity v = 10 km/hr.
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Figure 4.7: Total average queue length vs. mean
arrival rate a. Here, the velocity v = 50 km/hr.

System with Relaying

The numerical results for the system with relaying are presented here. Specifically, we focus on the

case without delay since the numerical results and the discussions for the case with delay are basically

similar to those provided before for the system without relaying. We note that the scheme that is

adopted here is essentially the one under which Corollary 1 holds.

We set N = L = 3, P (s) = P (r) = 10 dB. The bandwidth per channel is equal to 180 KHz. The

slot duration is set to 1 msec. Assume that (σ
(r)
z,ij)

2 = (σ
(u)
z,ij)

2 = 1, ∀i, j. We also assume that the

coefficients h
(su)
ij (t), h

(sr)
ij (t), and h

(ru)
ij (t) are i.i.d. across users, time, and frequencies and they follow
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Table 4.3: List of simulation parameters for the system with relaying

Parameter Description Value

N Number of users 3
L Number of channels 3
P Power per channel 10 dB
BW Bandwidth per channel 180 KHz
fc Carrier frequency 2.1 GHz
Ts Slot duration 1 msec
Ms Number of slots per simulation 104

complex Gaussian distributions with zero mean and variances σ(su), σ(sr), and σ(ru), respectively. As

mentioned in the system model, these coefficients capture the effects of path-loss and fading. Typically,

between the BS and the users the effect of the path-loss is higher than that between the relay and the

users or that between the BS and the relay. This results from the fact that the distance between the

BS and the users is greater than that between the BS and the relay or that between the relay and

the users. Based on these observations, we set (σ(sr))2 = (σ(ru))2 = 1 and (σ(su))2 = 0.3. Regarding

the number of modulations, we assume that there is only a single rate level, denoted as R, that

corresponds to threshold τ ; clearly, under the adopted setting we have R = 180 log2(1 + τ) bits/slot.

Such a scheme is used to be able to provide some numerical results on the variation of the minimum

fraction βr w.r.t. δ because the explicit expression of βr was found only under the single rate level

assumption. We suppose that all the users have Poisson incoming traffic with the same mean arrival

rate a. To show stability performance, one way is to adopt a similar approach as that used for the

system without relaying, i.e. we plot the total average queue length for different values of a; we set

Ms = 104. Finally, the broadcast period Tb = 20 slots, which is sufficiently high, i.e. 1− 1
Tb
≈ 1.
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Figure 4.8: Minimum achievable fraction βr vs. threshold δ.

Let us recall and note a couple of things that will be useful for the description of the numerical

results. First, recall that βr represents the performance that algorithm RW guarantees w.r.t. the ideal

system, that is to say, RW can achieve a fraction that is greater than or equal to βr. One way to

choose the value of δ is to use the βr expression, i.e. choose δ that maximizes βr. This value of δ

ensures the best guaranteed performance for algorithm RW, however this does not necessarily mean
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Figure 4.9: Total average queue length vs. mean arrival rate a. Here τ = 5.

that this value yields the best (effective) performance for RW. Moreover, recall that γ
(d)
ij (t) = γ

(su)
ij (t),

γ̆
(r)
ij (t) = γ

(su)
ij (t) + γ̆

(sru)
ij (t) and that under algorithm RW if γ

(sr)
j (t) ≥ δ then to calculate C̆

(r)
ij user i

replaces γ
(sr)
j (t) by δ, i.e. user i calculates γ

(su)
ij (t), γ̆

(sru)
ij (t) and γ̆

(r)
ij (t), where

γ̆
(sru)
ij (t) =

γ
(ru)
ij (t) δ

γ
(ru)
ij (t) + δ + 1

and γ̆
(r)
ij (t) = γ

(su)
ij (t) + γ̆

(sru)
ij (t). (4.68)

On the other hand, if γ
(sr)
j (t) < δ then user i sets C̆

(r)
ij (t) = 0, meaning that at time-slot t the choice

of using the relay to transmit to user i on channel j is not possible. Under the adopted setting here,

it can be noticed that if γ
(d)
ij (t) ≥ τ then C

(d)
ij (t) = R and if γ̆

(r)
ij (t) ≥ τ (with γ

(sr)
j (t) ≥ δ) then

C̆
(r)
ij (t) = 1

2R. A final point to note here is that under the ideal system all the Cij(t) are known at

the BS, which depend on γ
(d)
ij (t) and γ

(r)
ij (t).

Figure 4.8 depicts the variation of the minimum achievable fraction βr (see Corollary 1) w.r.t.

threshold δ for different values of threshold τ . From this figure, for a fixed δ it is obvious that βr

increases when τ decreases. This results from the fact that the lesser τ , the more likely it is to get

γ
(d)
ij (t) ≥ τ , ∀i, j, and thus to select the transmission without relay, which implies that in most of the

time RW makes the same scheduling decisions as those of the ideal system. On the other hand, it can

be noticed that for a fixed τ the fraction βr reaches its maximum at one value of δ and this fraction

decreases as we move away from this value. Although, as indicated previously, choosing the values of

δ that maximize βr is not sure to yield the best performance, one can still use this approach to find a

judicious choice of δ that guarantees RW to deliver good performance.

In Figure 4.9 we plot the variation of the total average queue length w.r.t. the mean arrival rate

a for three different values of δ; here τ = 5. It can be seen that a judicious choice of δ, for e.g. δ = 5

or δ = 7, permits algorithm RW to achieve very good stability performance w.r.t. the ideal system,

whereas an injudicious choice of δ leads to less good performance. The results in the figure show

that the approach that consists in choosing the values of δ that maximize βr is actually an efficient

approach. Specifically, by recalling that τ = 5 in Figure 4.9 and looking at the case τ = 5 in Figure
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4.8, it can be seen that choosing δ = 7, which maximizes βr, delivers the best stability performance.

Note that choosing any value in the interval [5, 10] can be considered as a judicious choice of δ since,

as it can be noticed from Figure 4.8, over this interval βr does not change much.

4.6 Closing Remarks

In this chapter, we addressed the problems of feedback allocation and scheduling for a multiuser

multichannel downlink cellular network under limited and delayed feedback. Two scenarios were in-

vestigated: (i) system without relaying, and (ii) system with relaying. For the system with relaying, we

account for an additional imperfection: the users have incomplete knowledge of the fading coefficients

between the BS and the relay. For each system, we proposed an efficient joint feedback allocation

and scheduling algorithm, in which the decisions are made at the users side. This algorithm is shown

to achieve good stability performance with respect to the ideal system, however it is suitable for a

continuous-time contention scheme. In case the contention is only possible in discrete time, we pro-

posed a second algorithm, which uses a threshold-based concept, that imitates the first one to a great

extent and thus guarantees good stability performance. For this algorithm, the feedback decision is

done at the users side, and then the BS uses this feedback to perform users scheduling. Regarding

the choice of the amount of feedback resources for this algorithm, we provided numerical results that

find the best trade-off (i.e. best F ) between having more feedback resources (thus, more knowledge at

the scheduler) but longer delay (hence, less accurate CSI) and having less feedback resources but low

delay; these results are given for various system setups, i.e. different values of users velocity. For the

system with relaying, we investigated the special case where the delay in the feedback process is not

accounted for. Specifically, under this scheme, we proposed a joint feedback and scheduling algorithm,

we analyzed its stability performance and we derived the fraction this algorithm guarantees w.r.t. the

stability region of the ideal system. Finally, using some numerical results, we validated that each of

the proposed algorithms provides good stability performance.
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4.7 Appendix

4.7.1 Proof of Theorem 14

The proof consists of three main steps. We first provide the proof of Lemma 7. Then, we show that

gmdl(ˆ̃q(t)) ≥ pmin
c

η gpf1(ˆ̃q(t)), where gpf1 is defined later in the proof. After that, using this inequality,

we demonstrate that the stability region achieved under ’mdl’ (using FSA) reaches at least a fraction

β of the stability region achieved under ’pf1’. Finally, based on the last two steps and using the result

in Lemma 7, we deduce the statement given in the theorem.

• Step 1 (Proof of Lemma 7):

Proof. We first point out that the process ˆ̃q(t), as q(t) and q̃(t), can be seen as a discrete time Markov

chain evolving on a countable state space. Recall that ˆ̃qi(t) = q̃i(t − d), where q̃i(t) = qi(nTb) for

t ∈ [nTb, (n+ 1)Tb[. We also recall that a system is called strongly stable if every queue in the system

is strongly stable. Define ’pf2’ to be a similar system to ’pf1’ except that under ’pf2’ the scheduling

is done based on q̃(t). It can be noticed that the proof of the theorem is similar to the proof of

the following statement: q̃(t) is strongly stable if and only if q(t); we term this statement as ”latter

statement” and the one in the theorem as ”former statement”. This results from the fact that in

the two systems ’pf1’ and ’pf2’ the scheduling is done based on outdated queue lenghts information.

Because the proof using ˆ̃q(t) is more complicated to present as compared to the one using q̃(t), we

will only provide the proof of the latter statement, while noting that the proof of the former statement

can be done in a similar way.

Let us first assume that q(t) is strongly stable. One can notice that

1

T

T−1∑
t=0

E {q̃i(t)} ≤
Tb

TbT

Tb(T−1)∑
t=0

E {qi(t)} . (4.69)

Thus, the following holds

lim
T→+∞

sup
1

T

T−1∑
t=0

E {q̃i(t)} ≤ Tb lim
T→+∞

sup
1

TbT

Tb(T−1)∑
t=0

E {qi(t)} < +∞, (4.70)

where the second inequality follows from the assumption that q(t) is strongly stable. Hence, we can

deduce that q̃(t) is strongly stable.

We now proceed to show the converse, that is, if q̃(t) is strongly stable then q(t) is also strongly

stable. For all i ∈ {1, . . . , N}, we can write

lim
T1→+∞

sup
1

T1

T1−1∑
t=0

E {qi(t)} = lim
T→+∞

sup
1

TbT

TbT−1∑
t=0

E {qi(t)}

= lim
T→+∞

sup
1

TbT

[
T−1∑
n=0

E {qi(nTb)}+
T−1∑
n=0

Tb−1∑
t′=1

E {qi(nTb + t′)}

]
.

(4.71)
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Based on the facts that q̃(t) is strongly stable and q̃i(t) = qi(nTb) (for t ∈ [nTb, (n + 1)Tb[), there

exits a finite positive constant Eb such that, ∀i ∈ {1, . . . , N}, the following holds

lim
T→+∞

1

TbT

T−1∑
n=0

E {qi(nTb)} ≤ Eb

Tb
. (4.72)

Also, note that qi(nTb + t′) ≤ qi(nTb) + t′Amax, ∀t′ ∈ {1, . . . , Tb − 1}. This implies that

Tb−1∑
t′=1

E {qi(nTb + t′)} ≤ E {qi(nTb)}+
Tb(Tb − 1)

2
Amax. (4.73)

Plugging the above into (4.71) yields

lim
T1→+∞

sup
1

T1

T1−1∑
t=0

E {qi(t)} ≤ lim
T→+∞

sup
1

TbT

[
2

T−1∑
n=0

E {qi(nTb)}+ TbT
Tb(Tb − 1)

2
Amax

]

≤ 2
Eb

Tb
+

(Tb − 1)2

2
Amax < +∞. (4.74)

Therefore, q(t) is strongly stable.

• Step 2: Here we want to prove that the following relation holds.

gmdl(ˆ̃q(t)) ≥ pmin
c

η
gpf1(ˆ̃q(t)). (4.75)

To this end, we define ’mpf1’ to be the system with full but delayed CSI (i.e. delay of d slots) at the

BS, and where at time-slot t the Max-Weigh policy is used for scheduling based on ˆ̃q(t). Under this

system, the expected weighted throughput, which we denote by gmpf1 , can be expressed as

gmpf1(ˆ̃q(t)) = E

{
L∑
j=1

N∑
i=1

ˆ̃qi(t)Ĉij(t)Sij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
. (4.76)

We first show that gmpf1(ˆ̃q(t)) ≥ pmin
c

η gpf1(ˆ̃q(t)). It can be easily seen that under ’pf1’ the expected

weighted throughput, termed as gpf1 , can be given by

gpf1(ˆ̃q(t)) = E

{
L∑
j=1

N∑
i=1

ˆ̃qi(t)Cij(t)Sij(t) | ˆ̃q(t)

}
. (4.77)

Expected weighted throughputs gpf1(ˆ̃q(t)) and gmpf1(ˆ̃q(t)) can be re-expressed as the following

gpf1(ˆ̃q(t)) = E

{ ∑
(ij)∈Mpf1 (t)

ˆ̃qi(t)Cij(t) | ˆ̃q(t)

}
, (4.78)
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gmpf1(ˆ̃q(t)) = E

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
, (4.79)

where Mpf1(t) and Mmpf1(t) stand for the subsets of scheduled users under ’pf1’ and ’mpf1’, respec-

tively, at time-slot t. Let h be a vector that represents the fading of all the links at time-slot t. We

also define ĥ to be the fading of these links at time-slot t− d. Then, we can write

gmpf1(ˆ̃q(t)) = Eĥ

{
Eh|ĥ

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}}

= Eĥ

{ ∑
(ij)∈Mmpf1(t)

ˆ̃qi(t)Ĉij(t)P{Cij(t) ≥ Ĉij(t) | ĥij(t)} | ˆ̃q(t)

}
. (4.80)

Let us define pmin
c as follows

pmin
c = min

(ij)
pmin

cij , (4.81)

in which pmin
cij is given by

pmin
cij = min

t,ĥij(t)

{
P{Cij(t) ≥ Ĉij(t) | ĥij(t)}

}
, (4.82)

where we recall that the value of Ĉij(t) depends on ĥij(t). Based on the expression of gmpf1(ˆ̃q(t)) and

the definition of pmin
c , we get

E

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t) | ˆ̃q(t)

}
≤
gmpf1(ˆ̃q(t))

pmin
c

. (4.83)

By defining η as

η = max
t,(ij)

{
Cij(t)

Ĉij(t)

}
, (4.84)

we obtain the following inequality

E

{ ∑
(ij)∈Mpf1 (t)

ˆ̃qi(t)Cij(t) | ˆ̃q(t)

}
≤ η E

{ ∑
(ij)∈Mmpf1 (t)

ˆ̃qi(t)Ĉij(t) | ˆ̃q(t)

}
. (4.85)

This inequality can be proved as follows. Let i1 and i2 be the scheduled users over channel j under

systems ’pf1’ and ’mpf1’, respectively. These users are selected according to the following

i1 = arg max
i
{ˆ̃qi(t)Cij(t)}, i2 = arg max

i
{ˆ̃qi(t) Ĉij(t)}. (4.86)

Based on the above and the definition of η, we get

ˆ̃qi1(t)Ci1j(t) ≤ ˆ̃qi1(t)Ĉi1j(t) η ≤ ˆ̃qi2(t)Ĉi2j(t) η. (4.87)
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Hence, the inequality in (4.85) follows by summing over all the channels j ∈ {1, . . . , L}. Combining

(4.83) and (4.85) yields

gmpf1(ˆ̃q(t)) ≥ pmin
c

η
gpf1(ˆ̃q(t)). (4.88)

Now, we show that gmdl(ˆ̃q(t)) ≥ gmpf1(ˆ̃q(t)). By denoting Mmdl(t) as the subset of users scheduled

for transmission under ’mdl’ at time-slot t, we can rewrite gmdl(ˆ̃q(t)) as

gmdl(ˆ̃q(t)) = E

{ ∑
(ij)∈Mmdl(t)

ˆ̃qi(t)Ĉij(t)1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}
. (4.89)

We define gmdl,j(ˆ̃q(t)) and gmpf1,j(
ˆ̃q(t)) as the following

gmdl,j(q(t)) = E
{

ˆ̃qil(t)Ĉilj(t)1(Cilj(t)≥Ĉilj(t))
| ˆ̃q(t)

}
, (4.90)

gmpf1,j(
ˆ̃q(t)) = E

{
ˆ̃qif(t)Ĉifj(t)1(Cifj(t)≥Ĉifj(t))

| ˆ̃q(t)
}
, (4.91)

where il and if denote the scheduled users over channel j under ’mdl’ and ’mpf1’, respectively. These

users can be determined according to the following

il = arg max
i

{
ˆ̃qi(t)Ĉij(t)P{Cij(t) ≥ Ĉij(t) | ĥij(t)}

}
, (4.92)

if = arg max
i

{
ˆ̃qi(t)Ĉij(t)

}
. (4.93)

Based on the above, it can be seen that

ˆ̃qil(t)Ĉilj(t)P{Cilj(t) ≥ Ĉilj(t) | ĥilj(t)} ≥ ˆ̃qif(t)Ĉifj(t)P{Cifj(t) ≥ Ĉifj(t) | ĥifj(t)}. (4.94)

Hence, we get

gmpf1,j(
ˆ̃q(t)) = Eĥ

{
Eh|ĥ

{
max
i

{
ˆ̃qi(t)Ĉij(t)

}
1(Cij(t)≥Ĉij(t)) | ˆ̃q(t)

}}
= Eĥ

{
Eh|ĥ

{
ˆ̃qif(t)Ĉifj(t)1(Cifj(t)≥Ĉifj(t))

| ˆ̃q(t)
}}

= Eĥ

{
ˆ̃qif(t)Ĉifj(t)P{Cifj(t)≥ Ĉifj(t)|ĥifj(t)} | ˆ̃q(t)

}
(a)

≤ Eĥ

{
ˆ̃qil(t)Ĉilj(t)P{Cilj(t) ≥ Ĉilj(t) | ĥilj(t)} | ˆ̃q(t)

}
= Eĥ

{
Eh|ĥ

{
ˆ̃qil(t)Ĉilj(t)1(Cilj(t)≥Ĉilj(t))

| ˆ̃q(t)
}}

= gmdl,j(ˆ̃q(t)), (4.95)

where inequality (a) results from the relation in (4.94). By taking the sum over all the channels, we

can deduce that gmdl(ˆ̃q(t)) ≥ gmpf1(ˆ̃q(t)).
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• Step 3: We now want to show that system ’mdl’ achieves a fraction (1 − 1
Tb

)
pmin
c

η of the stability

region of system ’pf1’. Let us first define Di(t) as the service rate allocated for user i at time-slot t.

In addition, we define the quadratic Lyapunov function as the following

Ly(x) ,
1

2
(x · x) =

1

2

N∑
i=1

x2
i . (4.96)

The evolution equation for queue qi, for all i ∈ {1, . . . , N}, can be given as the following

qi((n+ 1)Tb + d) = max

{
qi(nTb + d) +

Tb−1∑
t1=0

Ai(nTb + d+ t1)−
Tb−1∑
t1=1

Di(nTb + d+ t1), 0

}
, (4.97)

where we note that the sum over the Di starts from 1 because every Tb slots the BS uses the first slot,

i.e. slot nTb, to broadcast the queue lengths, meaning that no transmission occurs during this slot.

For notational convenience we sometimes will replace nTb + d by t2, i.e. t2 = nTb + d.

From (4.97) we have

q2
i (t2 + Tb) ≤ q2

i (t2) +

[
Tb−1∑
t1=0

Ai(t2 + t1)

]2

+

[
Tb−1∑
t1=1

Di(t2 + t1)

]2

+ 2qi(t2)

[
Tb−1∑
t1=0

Ai(t2 + t1)−
Tb−1∑
t1=1

Di(t2 + t1)

]

≤ q2
i (t2) + T 2

bA
2
max + (Tb − 1)2R2

1 + 2qi(t2)

[
Tb−1∑
t1=0

Ai(t2 + t1)−
Tb−1∑
t1=1

Di(t2 + t1)

]
,

(4.98)

where the first inequality results from the following fact: for any q ≥ 0, A ≥ 0, D ≥ 0, we have

(max {q +A−D, 0})2 ≤ q2 +A2 +D2 + 2q(A−D).

The second inequality holds since we have Ai(t) ≤ Amax and Di(t) ≤ R1, ∀t; we recall that R1 stands

for the highest rate. From the above, setting E = 1
2NT

2
bA

2
max + 1

2N(Tb − 1)2R2
1, it follows that

Ly(q((n+ 1)Tb + d))− Ly(q(nTb + d)) = Ly(q(t2 + Tb))− Ly(q(t2))

=
1

2

N∑
i=1

[
q2
i (t2 + Tb)− q2

i (t2)
]

≤ E + qi(t2)

[
Tb−1∑
t1=0

Ai(t2 + t1)−
Tb−1∑
t1=1

Di(t2 + t1)

]
. (4.99)

Let us define Dr(q(nTb)) as the conditional Lyapunov drift for time instance nTb:

Dr(q(nTb)) , E {Ly(q(t2 + Tb))− Ly(q(t2)) | q(nTb)}. (4.100)
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Using (4.99), we have that Dr(q(nTb)) for a general scheduling policy satisfies

Dr(q(nTb)) ≤ E +

N∑
i=1

qi(t2)

Tb−1∑
t1=0

E {Ai(t2 + t1) | q(nTb)} −
N∑
i=1

qi(t2)

Tb−1∑
t1=1

E {Di(t2 + t1) | q(nTb)}

= E + Tb

N∑
i=1

qi(t2)ai −
N∑
i=1

qi(t2)

Tb−1∑
t1=1

E {Di(t2 + t1) | q(nTb)} , (4.101)

where we have used the fact that arrivals are i.i.d. over time-slots and thus independent of current

queue lengths, meaning that E {Ai(t2 + t1) | q(nTb)} = E {Ai(t2 + t1)} = ai. Note that the condi-

tional expectation at the right-hand-side of (4.101) is w.r.t. the randomly observed channel states.

Let ∆mdl denote the scheduling policy under system ’mdl’. Also, we use ∆pf and ∆pf1 to denote the

scheduling policies under ’pf’ and ’pf1’, respectively. For the drift under ∆mdl we have

Dr(∆mdl)(q(nTb)) ≤ E + Tb

N∑
i=1

qi(t2)ai −
N∑
i=1

qi(t2)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}
, (4.102)

where D
(∆mdl)
i (t) is the service rate allocated for user i at time-slot t under system ’mdl’ and its

expression can be given as

D
(∆mdl)
i (t) =

L∑
j=1

Ĉij(t)Sij(t)Ŷij(t)1(Cij(t)≥Ĉij(t)). (4.103)

Based on the evolution equation of the queue lengths and the facts that Ai(t) ≤ Amax and Di(t) ≤ R1,

it can be seen that

−(s2 − s1)R1 ≤ qi(s2)− qi(s1) ≤ (s2 − s1)Amax. (4.104)

Thus, the following holds −dR1 ≤ qi(t2)− qi(nTb) ≤ dAmax, or equivalently

qi(nTb)− dR1 ≤ qi(t2) ≤ qi(nTb) + dAmax, (4.105)

where we recall that t2 = nTb + d. Plugging the above into (4.102), we get

Dr(∆mdl)(q(nTb)) ≤ E + Tb

N∑
i=1

(qi(nTb) + dAmax)ai

−
N∑
i=1

(qi(nTb)− dR1)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}

≤ E + TbNdA
2
max + (Tb − 1)NdR2

1 + Tb

N∑
i=1

qi(nTb)ai

−
N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}
. (4.106)
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Recall that

gmdl(ˆ̃q(t)) =

N∑
i=1

ˆ̃qi(t)E
{
D

(∆mdl)
i (t) | ˆ̃q(t)

}
. (4.107)

By setting t = t2 + t1, we have ˆ̃q(t) = q(nTb), ∀ t1 such that 1 ≤ t1 ≤ Tb − 1. This can be explained

as follows. For time-slot t, under ’mdl’ (using FSA) the feedback decision at time-slot t − d is done

based on ˆ̃q(t); we recall that ˆ̃q(t) = q̃(t − d), where q̃(t − d) = q(nTb), for t − d ∈ [nTb, (n + 1)Tb[.

For each channel, only one link will report its feedback to the BS at time-slot t− d, so evidently this

link will be transmitting over this channel at time-slot t. Here t = t2 + t1 = nTb + d + t1, thus at

time-slot t − d = nTb + t1 the feedback decision is based on ˆ̃q(t) = q̃(t − d) = q̃(nTb + t1). But

q̃(nTb + t1) = q(nTb), ∀ t1 such that 1 ≤ t1 ≤ Tb − 1, since the BS broadcasts the queue lengths at

time-slots 0, Tb, . . . , nTb, . . .. Hence, the following holds

gmdl(ˆ̃q(t)) = gmdl(q(nTb))

=

N∑
i=1

qi(nTb)E
{
D

(∆mdl)
i (t) | q(nTb)

}
. (4.108)

On the other hand, we have

gpf1(ˆ̃q(t)) =

N∑
i=1

ˆ̃qi(t)E
{
D

(∆pf1
)

i (t) | ˆ̃q(t)
}
, (4.109)

where D
(∆pf1

)

i (t) =
∑L
j=1 Cij(t)Sij(t).

In a similar manner to ’mdl’, it can be shown that

gpf1(ˆ̃q(t)) = gpf1(q(nTb))

=

N∑
i=1

qi(nTb)E
{
D

(∆pf1
)

i (t) | q(nTb)
}
. (4.110)

Using the relation gmdl(ˆ̃q(t)) ≥ pmin
c

η gpf1(ˆ̃q(t)), which was shown earlier, we get

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆mdl)
i (t2 + t1) | q(nTb)

}
≥ pmin

c

η

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆pf1
)

i (t2 + t1) | q(nTb)
}
.

(4.111)

Plugging the above directly into (4.106) yields

Dr(∆mdl)(q(nTb)) ≤ E1 + Tb

N∑
i=1

qi(nTb)ai −
pmin

c

η

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆pf1
)

i (t2 + t1) | q(nTb)
}
,

(4.112)
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in which

E1 = E + TbNdA
2
max + (Tb − 1)NdR2

1. (4.113)

Since, by definition, policy ∆pf1 maximizes the weighted sum
∑N
i=1 qi(nTb)Di(t2 + t1) over all alter-

native decisions, we can write

N∑
i=1

qi(nTb)D
(∆pf1

)

i (t2 + t1) ≥
N∑
i=1

qi(nTb)D
(∆)
i (t2 + t1), (4.114)

in which ∆ represents any alternative (possibly randomized) scheduling decision that can stabilize

system ’pf1’. Taking a conditional expectation of the above inequality (given q(nTb)) yields

N∑
i=1

qi(nTb)E
{
D

(∆pf1
)

i (t2 + t1) | q(nTb)
}
≥

N∑
i=1

qi(nTb)E
{
D

(∆)
i (t2 + t1) | q(nTb)

}
, (4.115)

where we recall that t2 = nTb + d. Plugging the above into (4.112) yields

Dr(∆mdl)(q(nTb)) ≤ E1 + Tb

N∑
i=1

qi(nTb)ai −
pmin

c

η

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆)
i (t2 + t1) | q(nTb)

}

= E1 + Tb

N∑
i=1

qi(nTb)ai −
pmin

c

η

N∑
i=1

qi(nTb)E

{
Tb−1∑
t1=1

D
(∆)
i (t2 + t1) | q(nTb)

}
.

(4.116)

We now consider a particular policy ∆ that depends only on the channels states. It is worth recalling

that here each channel process is not i.i.d. in time. We point out that the process D
(∆)
i (t), defined

over the channel convergent (fading) process, is rate convergent [28]. Using the definition of rate

convergence for D
(∆)
i (t) with rate r

(∆)
i , we have (refer to [28] for more details)

1

Trc

Trc−1∑
t=0

D
(∆)
i (t)→ r

(∆)
i , with probability 1 as Trc →∞, (4.117)

and for any εi > 0 there exists an interval Trc such that, for all initial times t0, and regardless of past

history, the following holds ∣∣∣∣∣r(∆)
i − E

{
1

Trc

t0+Trc−1∑
t=t0

D
(∆)
i (t)

}∣∣∣∣∣ ≤ εi. (4.118)

By choosing Trc = Tb − 1 and t0 = 1, we can deduce that

E

{
1

Tb − 1

Tb−1∑
t1=1

D
(∆)
i (t1 + t2) | q(nTb)

}
≥ r(∆)

i − εi. (4.119)

Note that Tb needs to be sufficiently large in order to get the εi sufficiently small. Plugging the above
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into (4.116) yields

Dr(∆mdl)(q(nTb)) ≤ E1 + Tb

N∑
i=1

qi(nTb)ai −
pmin

c

η
(Tb − 1)

N∑
i=1

qi(nTb)
[
r

(∆)
i − εi

]
≤ E1 − (Tb − 1)

pmin
c

η

N∑
i=1

qi(nTb)
[
r

(∆)
i − β−1ai + ε

]
, (4.120)

where β =
(

1− 1
Tb

)
pmin
c

η and ε = maxi εi.

Recall that Λpf1 represents the stability region achieved under system ’pf1’. Let us suppose that the

mean arrival rate vector a is interior to fraction β of region Λpf1 , meaning that there exists an εmax,

which clearly depends on a, such that

(a1 + εmax, . . . , aN + εmax) ∈ βΛpf1 . (4.121)

The above can be equivalently re-expressed as

(β−1a1 + β−1εmax, . . . , β
−1aN + β−1εmax) ∈ Λpf1 . (4.122)

Thus, the following holds

r
(∆)
i ≥ β−1ai + β−1εmax, ∀i ∈ {1, . . . , N} . (4.123)

Plugging the above inequality into (4.120) yields

Dr(∆mdl)(q(nTb)) ≤ E1 − Tb(εmax + βε)

N∑
i=1

qi(nTb). (4.124)

Let ε̆max = Tb(εmax+βε). Taking an expectation of Dr(∆mdl) over the randomness of the queue lengths

and summing over n ∈ {0, 1, . . . , T − 1} for some integer T > 0, we get

E {Ly(q(TTb + d))} − E {Ly(q(d))} ≤ E1T − ε̆max

T−1∑
n=0

N∑
i=1

E {qi(nTb)} . (4.125)

Rearranging terms, dividing by ε̆maxT , and using the fact that Ly(q(TTb + d)) ≥ 0 yields

1

T

T−1∑
n=0

N∑
i=1

E {qi(nTb)} ≤ E1

ε̆max
+

E {Ly(q(d))}
ε̆maxT

. (4.126)

Assuming that E {Ly(q(d))} <∞ and taking a lim sup, we eventually obtain

lim sup
T→∞

1

T

T−1∑
n=0

N∑
i=1

E {qi(nTb)} ≤ E1

ε̆max
. (4.127)

Based on the above inequality and the definition of strong stability, we can claim that ∆mdl stabilizes

any mean arrival rate vector interior to fraction β of the stability region achieved under policy ∆pf1 ,
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meaning that ∆mdl stabilizes the system for any arrivals such that a ∈ βΛpf1 .

Based on Lemma 7, we know that ’pf1’ and ’pf’ have the same stability region. Hence, we can

deduce that ∆mdl stabilizes any arrival rate vector interior to fraction β of the stability region achieved

under ∆pf. This completes the proof.

4.7.2 Proof of Theorem 15

The proof of this theorem is in the same spirit as the proof of Theorem 14.

The proof consists of three steps. We first recall the statement of Lemma 8 and give a remark

about its proof. Then, we show that gre(q̃(t)) ≥ ηr grp1
(q̃(t)), where grp1

is defined later in the proof.

After that, we show that the stability region achieved under ’re’ (using RW) reaches at least a fraction

ηr of the stability region achieved under ’rp1’. Finally, based on the last two steps and using the result

in Lemma 8, the statement given in the theorem can be deduced.

• Step 1 (Proof of Lemma 8): Recall that this lemma states that system ’rp1’ is strongly stable

if and only if system ’rp’ is strongly stable. The proof of this statement is very similar to the proof of

Lemma 7 (which can be found in Appendix 4.7.1) and is thus omitted to avoid repetition.

• Step 2: We here want to prove that gre(q̃(t)) ≥ ηr grp1
(q̃(t)). Recall that q̃i(t) = qi(nTb) for

t ∈ [nTb, (n + 1)Tb[ and q̃(t) = (q̃1(t), . . . , q̃N (t)). It can be seen that under ’rp1’ the expected

weighted throughput, termed as grp1
, can be given as follows

grp1
(q̃(t)) = E

{ ∑
(ij)∈Mrp1 (t)

q̃i(t)Cij(t) | q̃(t)

}
, (4.128)

where Mrp1(t) stands for the subset of scheduled users under ’rp1’ at time-slot t. Recall that the

weighted throughput gre(q̃(t)) is

gre(q̃(t)) = E

{ ∑
(ij)∈Mre(t)

q̃i(t)C̆ij(t)1(Cij(t)≥C̆ij(t)) | q̃(t)

}
. (4.129)

Let ip1
and ie be the scheduled users at time-slot t and over channel j under systems ’rp1’ and ’re’,

respectively. Define grp1,j(q̃(t)) and gre,j(q̃(t)) as

grp1,j(q̃(t)) = E
{
q̃ip1

(t)Cip1
j(t) | q̃(t)

}
, (4.130)

gre,j(q̃(t)) = E
{
q̃ie(t)C̆iej(t)1(Ciej(t)≥C̆iej(t))

| q̃(t)
}
. (4.131)

Let Ej represent the event that occurs if on channel j systems ’rp1’ and ’re’ have the same scheduling

decision, i.e. ip1
= ie. Also, let Ēj be the complementary event of Ej , i.e. Ēj occurs when ip1

6= ie.

We denote the probability of event Ej to happen as P{Ej}.
To make this part of the proof easier to understand, we first consider that there are only two users in

129



4.7. Appendix

the system, denoted by indexes 1 and 2, we then present the desired result and finally we generalize

this result to the N users case. Let E1j be the event that occurs if both ’rp1’ and ’re’ schedule user 1

on channel j for transmission at time-slot t. Similarly, define E2j to be the event that occurs if both

’rp1’ and ’re’ schedule user 2 on channel j. It can be noticed that Ej is nothing but the union of E1j
and E2j , i.e. Ej = E2j ∪ E1j . Hence, gre,j(q̃(t)) can be rewritten as

gre,j(q̃(t)) = E
{
q̃1(t)C̆1j(t)1(C1j(t)≥C̆1j(t))

| q̃(t), E1j
}
P{E1j}+

E
{
q̃2(t)C̆2j(t)1(C2j(t)≥C̆2j(t))

| q̃(t), E2j
}
P{E2j}+

E
{
q̃ie(t)C̆iej(t)1(Ciej(t)≥C̆iej(t))

| q̃(t), Ēj
}
P{Ēj}, (4.132)

where we note that here ie, as ip1
, can be 1 or 2. Note that in the above expression all the terms are

non-negative. We also note that in the first term we have the same scheduling decision for both ’rp1’

and ’re’, thus C1j(t) = C̆1j(t) since we work under the single rate level assumption, which implies that

the indicator function 1(C1j(t)≥C̆1j(t))
= 1. In a similar way, we can show that 1(C2j(t)≥C̆2j(t))

= 1.

Based on the above observations, we get

gre,j(q̃(t)) ≥ E
{
q̃1(t)C̆1j(t) | q̃(t), E1j

}
P{E1j}+ E

{
q̃2(t)C̆2j(t) | q̃(t), E2j

}
P{E2j}

= E {q̃1(t)C1j(t) | q̃(t), E1j}P{E1j}+ E {q̃2(t)C2j(t) | q̃(t), E2j}P{E2j}. (4.133)

Under system ’rp1’, user 1 is scheduled for transmission if q̃1(t)C1j(t) ≥ q̃2(t)C2j(t). This same user

is scheduled under ’re’ if q̃1(t)C̆1j(t) ≥ q̃2(t)C̆2j(t). Thus, P{E1j} can be expressed as

P{E1j} = P
{
q̃1(t)C1j(t) ≥ q̃2(t)C2j(t), q̃1(t)C̆1j(t) ≥ q̃2(t)C̆2j(t) | q̃(t)

}
. (4.134)

Similarly, we have

P{E2j} = P
{
q̃2(t)C2j(t) ≥ q̃1(t)C1j(t), q̃2(t)C̆2j(t) ≥ q̃1(t)C̆1j(t) | q̃(t)

}
. (4.135)

For notational convenience, we will omit the condition (that vector q̃(t) is known) from the expressions

of P{E1j} and P{E2j}. Using Bayes’ theorem yields

P{E1j} = P
{
q̃1(t)C̆1j(t) ≥ q̃2(t)C̆2j(t) | q̃1(t)C1j(t) ≥ q̃2(t)C2j(t)

}
P {q̃1(t)C1j(t) ≥ q̃2(t)C2j(t)} ,

P{E2j} = P
{
q̃2(t)C̆2j(t) ≥ q̃1(t)C̆1j(t) | q̃2(t)C2j(t) ≥ q̃1(t)C1j(t)

}
P {q̃2(t)C2j(t) ≥ q̃1(t)C1j(t)} .

(4.136)

Given that q̃1(t)C1j(t) ≥ q̃2(t)C2j(t), in order to have q̃1(t)C̆1j(t) ≥ q̃2(t)C̆2j(t) it suffices that C̆1j(t) >

0. This can be explained as follows:

� Under system ’rp1’, if user 1 (for example) is scheduled for transmission and the decision is to

transmit without relaying, i.e. γ
(d)
1j (t) ≥ τ and thus C1j(t) = C

(d)
1j (t), then it is straightforward

to see that this same user will also be scheduled under system ’re’; recall that in this proof we

assume that there is only one rate level, so here C̆1j(t) = C
(d)
1j (t) = R > 0.

� If user 1 is scheduled for transmission under system ’rp1’ and the decision is to transmit with
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relaying, i.e. γ
(d)
1j (t) < τ , γ

(r)
1j (t) ≥ τ , and thus C1j(t) = C

(r)
1j (t), then the sufficient conditions

for user 1 to be scheduled under system ’re’ is to have γ̆
(r)
1j (t) ≥ τ and γ

(sr)
j (t) ≥ δ, which

means that C̆1j(t) > 0; since there is only one single rate level, it is clear that here we have

C̆1j(t) = C̆
(r)
1j (t) = C

(r)
1j (t) = 1

2R.

Based on the above, we obtain

P
{
q̃1(t)C̆1j(t) ≥ q̃2(t)C̆2j(t) | q̃1(t)C1j(t) ≥ q̃2(t)C2j(t)

}
= P

{
C̆1j(t) > 0

}
. (4.137)

In a similar way, we can show that

P
{
q̃2(t)C̆2j(t) ≥ q̃1(t)C̆1j(t) | q̃2(t)C2j(t) ≥ q̃1(t)C1j(t)

}
= P

{
C̆2j(t) > 0

}
. (4.138)

Plugging the above into (4.136) and using (4.133) yields

gre,j(q̃(t)) ≥ E {q̃1(t)C1j(t) | q̃(t)}P {q̃1(t)C1j(t) ≥ q̃2(t)C2j(t)}P
{
C̆1j(t) > 0

}
+

E {q̃2(t)C2j(t) | q̃(t)}P {q̃2(t)C2j(t) ≥ q̃1(t)C1j(t)}P
{
C̆2j(t) > 0

}
≥ E {q̃1(t)C1j(t) | q̃(t)}P {q̃1(t)C1j(t) ≥ q̃2(t)C2j(t)} min

i∈{1,2}

{
P
{
C̆ij(t) > 0

}}
+

E {q̃2(t)C2j(t) | q̃(t)}P {q̃2(t)C2j(t) ≥ q̃1(t)C1j(t)} min
i∈{1,2}

{
P
{
C̆ij(t) > 0

}}
. (4.139)

On the other side, considering the possible scheduling decisions, grp1,j(q̃(t)) can be re-expressed as

grp1,j(q̃(t)) = E {q̃1(t)C1j(t) | q̃(t)}P {q̃1(t)C1j(t) ≥ q̃2(t)C2j(t)}+

E {q̃2(t)C2j(t) | q̃(t)}P {q̃2(t)C2j(t) ≥ q̃1(t)C1j(t)} . (4.140)

From the above equations, we can deduce that

gre,j(q̃(t)) ≥ min
i∈{1,2}

{
P
{
C̆ij(t) > 0

}}
grp1,j(q̃(t)). (4.141)

The above result can be easily generalized to the N users case, and we get

gre,j(q̃(t)) ≥ min
i∈{1,...,N}

{
P
{
C̆ij(t) > 0

}}
grp1,j(q̃(t)). (4.142)

Note that the above result is for (any) channel j and that

gre(q̃(t)) =

L∑
j=1

gre,j(q̃(t)) and grp1
(q̃(t)) =

L∑
j=1

grp1,j(q̃(t)) (4.143)

Therefore, the following result holds

gre(q̃(t)) ≥ min
j∈{1,...,L}

{
min

i∈{1,...,N}

{
P
{
C̆ij(t) > 0

}}}
grp1

(q̃(t)). (4.144)
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By defining ηr as

ηr = min
j∈{1,...,L}

{
min

i∈{1,...,N}

{
P
{
C̆ij(t) > 0

}}}
, (4.145)

the desired result follows, i.e. gre(q̃(t)) ≥ ηr grp1
(q̃(t)).

• Step 3: We now want to show that the stability region of ’re’ is at least a fraction βr = (1− 1
Tb

)ηr

of the stability region of system ’rp1’. It is worth noting that this part of the proof is along the lines

of Step 3 in the proof of Theorem 14.

Define the quadratic Lyapunov function as

Ly(x) ,
1

2
(x · x) =

1

2

N∑
i=1

x2
i . (4.146)

Let Di(t) be the service rate allocated for user i at time-slot t. The evolution equation for queue qi,

for all i ∈ {1, . . . , N}, can be given as

qi((n+ 1)Tb) = max

{
qi(nTb + d) +

Tb−1∑
t1=0

Ai(nTb + t1)−
Tb−1∑
t1=1

Di(nTb + t1), 0

}
, (4.147)

where we note that the sum over the Di starts from 1 because every Tb slots the BS uses the first slot,

i.e. slot nTb, to broadcast the queue lengths, i.e. no transmission occurs during this slot.

From the evolution equation we have

q2
i ((n+ 1)Tb) ≤ q2

i (nTb) +

[
Tb−1∑
t1=0

Ai(nTb + t1)

]2

+

[
Tb−1∑
t1=1

Di(nTb + t1)

]2

+ 2qi(nTb)

[
Tb−1∑
t1=0

Ai(nTb + t1)−
Tb−1∑
t1=1

Di(nTb + t1)

]

≤ q2
i (nTb) + T 2

bA
2
max + (Tb − 1)2R2 + 2qi(nTb)

[
Tb−1∑
t1=0

Ai(nTb + t1)−
Tb−1∑
t1=1

Di(nTb + t1)

]
,

(4.148)

in which the first inequality follows since: for any q ≥ 0, A ≥ 0, D ≥ 0, we have

(max {q +A−D, 0})2 ≤ q2 +A2 +D2 + 2q(A−D).

The second inequality holds since we have Ai(t) ≤ Amax and Di(t) ≤ R, ∀t.
Setting E = 1

2NT
2
bA

2
max + 1

2N(Tb − 1)2R2, it follows that

Ly(q((n+ 1)Tb))− Ly(q(nTb)) =
1

2

N∑
i=1

[
q2
i (nTb + Tb)− q2

i (nTb)
]

≤ E + qi(nTb)

[
Tb−1∑
t1=0

Ai(nTb + t1)−
Tb−1∑
t1=1

Di(nTb + t1)

]
. (4.149)
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Define Dr(q(nTb)) to be the conditional Lyapunov drift for time instance nTb:

Dr(q(nTb)) , E {Ly(q(nTb + Tb))− Ly(q(nTb)) | q(nTb)}. (4.150)

Based on (4.149), for a general scheduling policy Dr(q(nTb)) satisfies

Dr(q(nTb)) ≤ E + Tb

N∑
i=1

qi(nTb)ai −
N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E {Di(nTb + t1) | q(nTb)} , (4.151)

where we have used the fact that arrivals are i.i.d. over time-slots and thus independent of current

queue lengths, i.e. E {Ai(nTb + t1) | q(nTb)} = ai. Let ∆re denote the scheduling policy under system

’re’. We also use ∆rp and ∆rp1
to denote the scheduling policies under ’rp’ and ’rp1’, respectively. For

the drift under policy ∆re we have

Dr(∆re)(q(nTb)) ≤ E + Tb

N∑
i=1

qi(nTb)ai −
N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆re)
i (nTb + t1) | q(nTb)

}
, (4.152)

in which D
(∆re)
i (t) is nothing but the service rate allocated for user i at time-slot t under system ’re’

(using algorithm RW). It is easy to see that gre(q̃(t)) can be rewritten as

gre(q̃(t)) =

N∑
i=1

q̃i(t)E
{
D

(∆re)
i (t) | q̃(t)

}
. (4.153)

Similarly, we can rewrite grp1
(q̃(t)) as

grp1
(q̃(t)) =

N∑
i=1

q̃i(t)E
{
D

(∆rp1
)

i (t) | q̃(t)
}
, (4.154)

where D
(∆rp1

)
i (t) is the service rate allocated for user i at time-slot t under system ’rp1’. Recall that

q̃i(t) = qi(nTb) for t ∈ [nTb, (n+ 1)Tb[. Using the relation gre(q̃(t)) ≥ ηr grp1
(q̃(t)), which was shown

earlier in this proof, the following holds

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆re)
i (nTb + t1) | q(nTb)

}
≥ ηr

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆rp1 )
i (nTb + t1) | q(nTb)

}
.

(4.155)

Plugging the above into (4.152) yields

Dr(∆re)(q(nTb)) ≤ E + Tb

N∑
i=1

qi(nTb)ai − ηr

N∑
i=1

qi(nTb)

Tb−1∑
t1=1

E
{
D

(∆rp1
)

i (nTb + t1) | q(nTb)
}
.

(4.156)

Furthermore, we can claim that E
{
D

(∆rp1
)

i (nTb + t1) | q(nTb)
}

is independent of the time index.

This statement results from the fact that D
(∆rp1

)
i (nTb + t1) has the same distribution for every slot t1
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such that nTb + 1 ≤ t1 ≤ nTb +Tb− 1, because the rate D
(∆rp1 )
i (nTb + t1) in the slot depends only on

the queue length vector q(nTb) and the realization of the channels. Hence, the inequality in (4.156)

can be re-expressed as

Dr(∆re)(q(nTb)) ≤ E + Tb

N∑
i=1

qi(nTb)ai − (Tb − 1)ηr

N∑
i=1

qi(nTb)E
{
D

(∆rp1
)

i (t2 + t1) | q(nTb)
}
.

(4.157)

Define r
(∆rp1

)
i (nTb) = E

{
D

(∆rp1
)

i (nTb + t1) | q(nTb)
}

. By definition, policy ∆rp1
maximizes the

weighted sum
∑N
i=1 qi(nTb)Di(nTb + t1) over all alternative decisions, we thus can write

N∑
i=1

qi(nTb)D
(∆rp1 )
i (nTb + t1) ≥

N∑
i=1

qi(nTb)D
(∆)
i (nTb + t1), (4.158)

where ∆ represents any alternative (possibly randomized) scheduling policy that can stabilize system

’rp1’. Fixing a particular alternative decision ∆ for comparison and taking a conditional expectation

of the above inequality (given q(nTb)) yields

N∑
i=1

qi(nTb) r
(∆rp1

)
i (nTb) ≥

N∑
i=1

qi(nTb) r
(∆)
i (nTb), (4.159)

in which r
(∆)
i (nTb) = E{D(∆)

i (nTb + t1) | q(nTb)}. Plugging the above into (4.157) yields

Dr(∆re)(q(nTb)) ≤ E − (Tb − 1)ηr

N∑
i=1

qi(nTb)
[
r

(∆)
i (nTb)− β−1

r ai

]
, (4.160)

in which βr =
(

1− 1
Tb

)
ηr. Let Λrp1

and Λre represent the stability regions achieved under systems

’rp1’ and ’re’, respectively. Suppose that the mean arrival rate vector a is interior to fraction βr of

region Λrp1
, i.e. there exists an εmax, which depends on a, such that

(a1 + εmax, . . . , aN + εmax) ∈ βrΛrp1
. (4.161)

The above can be re-expressed as

(β−1
r a1 + β−1

r εmax, . . . , β
−1
r aN + β−1

r εmax) ∈ Λrp1
. (4.162)

By considering a particular policy ∆ that depends only on the channels states, it results that

r
(∆)
i (nTb) = E{D(∆)

i (nTb + t1)} ≥ β−1
r ai + β−1

r εmax, ∀i ∈ {1, . . . , N} . (4.163)

Plugging the above inequality into (4.160) yields

Dr(∆re)(q(nTb)) ≤ E − εmaxTb

N∑
i=1

qi(nTb). (4.164)
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Let ε̆max = εmaxTb. Taking an expectation of Dr(∆re) over the randomness of the queue lengths and

summing over n ∈ {0, 1, . . . , T − 1} for some integer T > 0, we get

E {Ly(q(TTb))} − E {Ly(q(0))} ≤ ET − ε̆max

T−1∑
n=0

N∑
i=1

E {qi(nTb)} . (4.165)

Rearranging terms, dividing by ε̆maxT , using the facts that Ly(q(TTb)) ≥ 0 and E {Ly(q(0))} < ∞,

and taking a lim sup, we eventually obtain

lim sup
T→∞

1

T

T−1∑
n=0

N∑
i=1

E {qi(nTb)} ≤ E

ε̆max
. (4.166)

Using the definition of strong stability and based on the above result, it can be stated that ∆re

stabilizes any mean arrival rate vector interior to fraction βr of the stability region achieved under

policy ∆rp1
, i.e. ∆re stabilizes the system for any arrivals such that a ∈ βrΛrp1

.

In Lemma 8, it was shown that systems ’rp1’ and ’rp’ have the same stability region. Therefore,

we can deduce that ∆re stabilizes any arrival rate vector interior to fraction βr of the stability region

achieved under ∆rp. This completes the proof.

4.7.3 Proof of Corollary 1

Regarding the derivation of P{C̆ij(t) > 0}, the following observation can be made. Rate C̆ij(t) is

different than zero, i.e. C̆ij(t) > 0, if (a) γ
(d)
ij (t) ≥ τ or (b) γ

(d)
ij (t) < τ , γ̆

(r)
ij (t) ≥ τ and γ

(sr)
j (t) ≥ δ.

Define the event G1 such that this event occurs if γ
(d)
ij (t) ≥ τ . Also, define G2 to be the event that

occurs if γ
(d)
ij (t) < τ , γ̆

(r)
ij (t) ≥ τ and γ

(sr)
j (t) ≥ δ. Events G1 and G2 are disjoint (i.e. mutually

exclusive) since they cannot occur at the same time, i.e. in the first one we have γ
(d)
ij (t) ≥ τ whereas

in the second one γ
(d)
ij (t) < τ , which implies that P {G1 ∩ G2} = 0. Thus, we can write

P
{
C̆ij(t) > 0

}
= P {G1 ∪ G2}

= P {G1}+ P {G2} . (4.167)

Recalling that γ
(d)
ij (t) is defined as

γ
(d)
ij (t) = ρ

(su)
ij |h

(su)
ij (t)|2, where ρ

(su)
ij =

P (s)

(σ
(u)
z,ij)

2
(4.168)

and that σ
(u)
z,i = σ

(u)
z,ij , we can re-express γ

(d)
ij (t) as

γ
(d)
ij (t) = ρ

(su)
i |h(su)

ij (t)|2, where ρ
(su)
i =

P (s)

(σ
(u)
z,i )2

. (4.169)
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Based on the assumption that h
(su)
ij (t) follows a (complex) Gaussian distribution with zero mean and

variance (σ
(su)
i )2, we can derive P {G1} as follows

P {G1} = P
{
γ

(d)
ij (t) ≥ τ

}
= P

{
ρ

(su)
j |h(su)

ij (t)|2 ≥ τ
}

= exp

(
− τ

ρ(su)(σ(su))2

)
. (4.170)

On the other side, for the derivation of P {G2}, recall that

γ̆
(r)
ij (t) = γ

(su)
ij (t) + γ̆

(sru)
ij (t), (4.171)

where γ
(su)
ij (t) = γ

(d)
ij (t) and where γ̆

(sru)
ij (t) is given as the following

γ̆
(sru)
ij (t) =

γ
(ru)
ij (t) δ

γ
(ru)
ij (t) + δ + 1

. (4.172)

Recalling that γ
(ru)
ij (t) and γ

(sr)
j (t) are defined as follows

γ
(ru)
ij (t) = ρ

(ru)
ij |h

(ru)
ij (t)|2, with ρ

(ru)
ij =

P (r)

(σ
(u)
z,ij)

2
, (4.173)

γ
(sr)
j (t) = ρ

(sr)
j |h

(sr)
j (t)|2, with ρ

(sr)
j =

P (s)

(σ
(r)
z,j)

2
, (4.174)

and that σ
(r)
z = σ

(r)
z,j and σ

(u)
z,i = σ

(u)
z,ij , we can rewrite γ

(ru)
ij (t) and γ

(sr)
j (t) as

γ
(ru)
ij (t) = ρ

(ru)
i |h(ru)

ij (t)|2, with ρ
(ru)
i =

P (r)

(σ
(u)
z,i )2

, (4.175)

γ
(sr)
j (t) = ρ(sr)|h(sr)

j (t)|2, with ρ(sr) =
P (s)

(σ
(r)
z )2

. (4.176)

Using the fact that γ
(sr)
j (t) is independent of both γ

(d)
ij (t) and γ̆

(r)
ij (t), we have

P {G2} = P
{
γ

(d)
ij (t) < τ, γ̆

(r)
ij (t) ≥ τ, γ(sr)

j (t) ≥ δ
}

= P
{
γ

(d)
ij (t) < τ, γ̆

(r)
ij (t) ≥ τ

}
P
{
γ

(sr)
j (t) ≥ δ

}
. (4.177)
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By noticing that γ̆
(r)
ij (t) ≥ τ can be rewritten as γ̆

(sru)
ij (t) ≥ τ − γ(su)

ij (t) and since γ
(d)
ij (t) = γ

(su)
ij (t),

the following holds

P
{
γ

(d)
ij (t) < τ, γ̆

(r)
ij (t) ≥ τ

}
= P

{
γ

(d)
ij (t) < τ, γ̆

(sru)
ij (t) ≥ τ − γ(d)

ij (t)
}

= P

{
γ

(d)
ij (t) < τ,

γ
(ru)
ij (t) δ

γ
(ru)
ij (t) + δ + 1

≥ τ − γ(d)
ij (t)

}
. (4.178)

Depending on the value of δ, two cases are to consider here: the first case is when δ < τ and in the

second case we have δ ≥ τ .

• For δ < τ : In this case, if γ
(d)
ij (t) < τ − δ, or equivalently δ − (τ − γ(d)

ij (t)) < 0, we get

P

{
γ

(d)
ij (t) < τ,

γ
(ru)
ij (t) δ

γ
(ru)
ij (t) + δ + 1

≥ τ − γ(d)
ij (t)

}
=

P
{
γ

(d)
ij (t) < τ, γ

(ru)
ij (t)(δ − τ + γ

(d)
ij (t)) ≥ (δ + 1)(τ − γ(d)

ij (t))
}

=

P

{
γ

(d)
ij (t) < τ, γ

(ru)
ij (t) ≤

(δ + 1)(τ − γ(d)
ij (t))

δ − (τ − γ(d)
ij (t))

}
= 0, (4.179)

where the last equality holds since we know that γ
(ru)
ij (t) ≥ 0, while here we have the probability of

getting γ
(ru)
ij (t) < 0 because

(δ + 1)(τ − γ(d)
ij (t))

δ − (τ − γ(d)
ij (t))

< 0. (4.180)

On the other hand, if γ
(d)
ij (t) ≥ τ − δ, or equivalently δ − (τ − γ(d)

ij (t)) ≥ 0, it yields

P

{
γ

(d)
ij (t) < τ,

γ
(ru)
ij (t) δ

γ
(ru)
ij (t) + δ + 1

≥ τ − γ(d)
ij (t)

}
= P

{
γ

(d)
ij (t) < τ, γ

(ru)
ij (t) ≥

(τ − γ(d)
ij (t))(δ + 1)

δ − (τ − γ(d)
ij (t))

}
.

Based on the above and on equation (4.178), we can write

P
{
γ

(d)
ij (t) < τ, γ̆

(r)
ij (t) ≥ τ

}
=

∫ τ

τ−δ
P
{
γ

(ru)
ij (t) ≥ (τ − γ)(δ + 1)

δ − (τ − γ)

}
f
γ
(d)
ij (t)

(γ) dγ, (4.181)

where f
γ
(d)
ij (t)

(γ) represents the PDF of variable γ
(d)
ij (t). Since h

(ru)
ij (t) is assumed to follow a (complex)

Gaussian distribution with zero mean and variance (σ
(ru)
i )2, it follows that

P
{
γ

(ru)
ij (t) ≥ (τ − γ)(δ + 1)

δ − (τ − γ)

}
= exp

(
− (τ − γ)(δ + 1)

ρ
(ru)
i (σ

(ru)
i )2(δ − (τ − γ))

)
. (4.182)

In addition, we have

f
γ
(d)
ij (t)

(γ) =
1

ρ
(su)
i (σ

(su)
i )2

exp

(
− γ

ρ(su)(σ(su))2

)
dγ. (4.183)
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We thus obtain∫ τ

τ−δ
P
{
γ

(ru)
ij (t) ≥ (τ − γ)(δ + 1)

δ − (τ − γ)

}
f
γ
(d)
ij (t)

(γ) dγ =∫ τ

τ−δ
exp

(
− (τ − γ)(δ + 1)

ρ
(ru)
i (σ

(ru)
i )2(δ − (τ − γ))

)
1

ρ
(su)
i (σ

(su)
i )2

exp

(
− γ

ρ(su)(σ(su))2

)
dγ. (4.184)

It is worth noting that the above integral does not have a closed-form solution. Using the assumption

that h
(sr)
j (t) follows a complex Gaussian distribution with zero mean and variance (σ(sr))2 yields

P
{
γ

(sr)
j (t) ≥ δ

}
= exp

(
− δ

ρ(sr)(σ(sr))2

)
. (4.185)

Combining equations (4.177), (4.181), (4.184), and (4.185) yields

P {G2} =[∫ τ

τ−δ
exp

(
− (τ − γ)(δ + 1)

ρ
(ru)
i (σ

(ru)
i )2(δ − (τ − γ))

)
1

ρ
(su)
i (σ

(su)
i )2

exp

(
− γ

ρ(su)(σ(su))2

)
dγ

]
exp

(
− δ

ρ(sr)(σ(sr))2

)
.

(4.186)

Recalling that P {G} = P {G1}+ P {G2}, we eventually get

P {G} =

exp

(
− τ

ρ(su)(σ(su))2

)
+[∫ τ

τ−δ
exp

(
− (τ − γ)(δ + 1)

ρ
(ru)
i (σ

(ru)
i )2(δ − (τ − γ))

)
1

ρ
(su)
i (σ

(su)
i )2

exp

(
− γ

ρ(su)(σ(su))2

)
dγ

]
exp

(
− δ

ρ(sr)(σ(sr))2

)
.

(4.187)

Since P{C̆ij(t) > 0} = P {G}, the first desired result regarding P{C̆ij(t) > 0} follows.

• For δ ≥ τ : The derivations in this case are similar to those given before, thus only the outline will

be provided here. Using equations (4.178) and (4.181), we can write

P
{
γ

(d)
ij (t) < τ, γ̆

(r)
ij (t) ≥ τ

}
= P

{
γ

(d)
ij (t) < τ, γ̆

(sru)
ij (t) ≥ τ − γ(d)

ij (t)
}

= P

{
γ

(d)
ij (t) < τ,

γ
(ru)
ij (t) δ

γ
(ru)
ij (t) + δ + 1

≥ τ − γ(d)
ij (t)

}

= P

{
γ

(d)
ij (t) < τ, γ

(ru)
ij (t) ≥

(τ − γ(d)
ij (t))(δ + 1)

δ − (τ − γ(d)
ij (t))

}

=

∫ τ

0

P
{
γ

(ru)
ij (t) ≥ (τ − γ)(δ + 1)

δ − (τ − γ)

}
f
γ
(d)
ij (t)

(γ) dγ, (4.188)

where in the above equalities we use the fact that here δ − (τ − γ(d)
ij (t)) ≥ 0 for 0 ≤ γ(d)

ij (t) ≤ τ .
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Hence, P {G} can be expressed as

P {G} =

exp

(
− τ

ρ(su)(σ(su))2

)
+[∫ τ

0

exp

(
− (τ − γ)(δ + 1)

ρ
(ru)
i (σ

(ru)
i )2(δ − (τ − γ))

)
1

ρ
(su)
i (σ

(su)
i )2

exp

(
− γ

ρ(su)(σ(su))2

)
dγ

]
exp

(
− δ

ρ(sr)(σ(sr))2

)
.

(4.189)

Since P{C̆ij(t) > 0} = P {G}, the second desired result concerning P{C̆ij(t) > 0} follows.

From the above expressions of P{C̆ij(t) > 0}, it is plain to see that this probability is the same

independently of channel index j, meaning that for any two channels j1 and j2 the following holds

P
{
C̆ij1(t) > 0

}
= P

{
C̆ij2(t) > 0

}
. (4.190)

Therefore, the expression of βr given in Theorem 15 reduces to

βr = (1− 1

Tb
) min
i∈{1,...,N}

{
P
{
C̆ij(t) > 0

}}
. (4.191)

This completes the proof.
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Chapter 5

Conclusions and Perspectives

5.1 Conclusions

In this thesis, we have addressed problems of feedback allocation and user scheduling in wireless

systems, taking into consideration the dynamic traffic arrivals for the users and accounting for realistic

limitations regarding the feedback process. The main performance measure we adopt is the queueing

stability, which is mainly captured by the stability region the proposed algorithm is capable to achieve.

In Chapter 3, we have considered a multi-point to multi-point MIMO system under limited back-

haul capacity and where the probing cost is taken into account. For this system, SVD technique is

used if only one pair is active, whereas IA technique is applied if more than one pair are active. Two

systems are considered, namely the symmetric system, where all the path loss coefficients are equal

to each other, and the general system. One of the important questions that this chapter answers is:

Given the limited backhaul conditions and the probing cost, does scheduling more than one pair (and

thus using IA) is better than scheduling only one pair (and thus using SVD)? We have answered this

question by (i) proposing throughput-optimal centralized scheduling policies that each time-slot select

the subset of pairs that should be active, and (ii) characterizing the conditions under which the IA

technique can deliver queueing stability gains w.r.t. the SVD technique. For the general system, we

have also provided a low-complexity scheduling policy since the throughput-optimal one is of a high

computational complexity under this system, where clearly the stability region of the former policy is

a subset of that of the latter one.

The main conclusion that can be drawn from Chapter 4 is that the users must be more involved in

the feedback and scheduling decisions in future wireless networks, particularly in cooperative relaying

systems. Specifically, in this chapter two multichannel multiuser systems are considered, namely one

without relaying and the other with relaying, where both limited and delayed feedback is accounted

for. Note that for the system with relaying the users have imperfect knowledge of the states of the

links between the relay and the BS. By exploiting the fact that the users can know their instantaneous

CSIs (even if this knowledge is sometimes imperfect), and assuming idealized contention procedure,

for each system we have developed a decentralized joint feedback and scheduling algorithm where the
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users contend among each other to make the decisions. In addition, by leveraging the same fact, we

have proposed a second algorithm that greatly imitates the former one and that does not use the

idealized contention assumption. In this algorithm, the users make the feedback decisions using a

threshold-based scheme and then the BS performs user scheduling based on the subset of reported

feedback. The trade-off between the amount of feedback resources and the delay in the feedback

process was also exploited via this algorithm. Furthermore, for the system with relaying, in addition

to the two algorithms mentioned before, a third joint feedback and scheduling algorithm is developed

in the special case where the delay is not accounted for. All these algorithms and their good stability

performances have led us to the statement given at the beginning of this paragraph.

In this thesis, we highlight the value of network state information, particularly CSI, for scheduling

in wireless systems. A central idea punctuating the entire work is that the information structure

available for the scheduling mechanism influences the system performance. With its investigations

and results, this thesis serves as a step forward towards a more comprehensive theory that tackles

scheduling problems under various kinds of incomplete information. As wireless systems experience

steep growth in performance demands, with no signs of slowing down, we believe that such a general

framework to investigate wireless system scheduling with incomplete knowledge of system state will

prove to be an invaluable asset in designing high-performance systems.

5.2 Perspectives

In Chapter 3, a centralized policy was adopted to select the subset of active pairs at each time-slot,

based on the queue lengths and the statistics of the channels. Important extensions of this work can be

addressing the stability analysis when we adopt decentralized or even mixed (i.e. combining centralized

and decentralized schemes) policies for feedback and scheduling. These schemes can overcome the

shortcomings of the centralized one by exploiting the fact that each receiver can know its actual

channel realization, however they may require very cumbersome calculations. Another interesting but

challenging extension would be to propose and analyze a joint scheduling and power control scheme,

which may help enlarging the achievable stability region. One approach to tackle this problem would

be to consider time average power expenditure constraints, in which case the concept of virtual queues

can be used to transform these constraints into queue stability problems [16]. The idea here is that

scheduling and power control should be performed in such a way as to ensure the stability of both

data and virtual queues.

In Chapter 4, one of the two systems we studied is the multiuser multichannel system with

cooperative relaying, where we recall that delayed and limited feedback is accounted for, and where

we assume that each user has a respective queue at the BS. This study can be extended to consider

that each user has a queue also at the relay. In such a system, it can be noticed that the departure

process of the BS queues is the arrival process of the relay queues. From a stability performance

point of view, the obvious candidate for scheduling in this scenario is the Back-Pressure algorithm

[19], which routes and schedules packets based on differential backlogs (i.e. queue length differences

between the BS and the relay). In this regard, it would be interesting to investigate the impact of the

different imperfections and limitations in the system on the performance of such an algorithm.
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The systems we have considered in this work adopt advanced and complicated transmission tech-

niques, such as IA and cooperative relaying, which have made the stability analysis particularly

challenging. Other advanced transmission techniques exist, such as coordinated multi-point (CoMP)

and network coding. CoMP is essentially a range of different techniques that enable the dynamic co-

ordination of transmission and reception over a variety of different BSs. Network coding allows mixing

of messages from different nodes before sending this mixture on shared links, instead of separate links

for every messages. It would be intriguing to address scheduling problems for systems applying such

techniques and where dynamic traffic arrivals are taken into consideration. Clearly, the more realistic

limitations are considered for these systems, the more challenging the stability analysis will be.

In this thesis, stability of the queues is the main performance metric we adopted to analyze and

evaluate the scheduling policies. While stability is an important metric, in most practical systems

quality-of-service (QoS) is more important. A key parameter in the QoS requirements is the queueing

delay a packet experiences as it waits to be transmitted. Proper scheduling mechanism is vital for

guaranteeing delay-sensitive applications to run smoothly. Note that the scheduling policies proposed

in this thesis ensure finite delays in the system since, using Little’s Theorem, we know that the average

delay is proportional to the average queue length. However, this is not the same as providing an exact

analysis where hard packet-delay constraints need to be respected. Therefore, under such constraints,

it would be interesting to design delay-based scheduling policies and to analyze their performances;

such an analysis can be done using, for example, large deviations techniques [129].

Finally, another interesting extension of the work in this thesis would be to consider a scenario

with flow-level dynamics, meaning that the collection of active queues (or equivalently, the set of

users) in the system is not fixed. Indeed, in most practical systems the collection of active queues

dynamically varies, as sessions eventually end while new sessions occasionally start. Under such a

scenario, developing efficient scheduling algorithms is of particular interest, especially since Max-

Weight policies were shown to no longer be optimal [130].
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Ordonnancement et feedback dans les réseaux sans

fil avec prise en compte du trafic

Résumé

La demande des systèmes de communication sans fil pour des débits élevés continue d’augmenter, et

il n’y a pas de signes que cette tendance va se ralentir. Trois des techniques les plus importantes

qui ont émergé pour répondre à de telles demandes sont l’OFDMA, le relais coopératif et le MIMO.

Afin d’utiliser pleinement les capacités des systèmes appliquant de telles techniques, il est essentiel de

développer des algorithmes efficaces d’ordonnancement et, plus généralement, des algorithmes efficaces

d’allocation de ressources. Les études classiques sur ce sujet examinent des systèmes où les demandes

de données des utilisateurs ne sont pas prises en considération et/ou un CSI parfait et complet est

supposé être disponible pour le mécanisme d’ordonnancement. Cependant, dans la pratique, différentes

limitations peuvent entrâıner l’absence d’une connaissance parfaite et/ou complète du CSI, telles que

les ressources limitées pour le feedback, le coût de sondage et le retard dans le processus de feedback.

Par conséquent, dans cette thèse nous examinons les problèmes d’ordonnancement et de feedback

sous des considérations réalistes concernant la connaissance du CSI. L’analyse est effectuée au niveau

des paquets et considère la dynamique des files d’attente avec des processus d’arrivée arbitraires, et où

la mesure de performance principale que nous adoptons est la stabilité des files d’attente. La première

partie de la thèse considère un système MIMO multipoint à multipoint utilisant le mode TDD, tout

en supposant un backhaul à capacité limitée et en tenant compte du coût du feedback. En ce qui

concerne la technique de gestion de l’interférence, nous appliquons l’alignement d’interférence (IA) si

plus d’une paire sont actives et SVD si une seule paire est active. La deuxième partie de la thèse

considère un système OFDMA avec plusieurs utilisateurs et canaux, où un feedback retardé et limité

est pris en compte. Deux scénarios sont étudiés, à savoir le système sans relais et le système avec relais.

Pour ce dernier, nous considérons une imperfection supplémentaire supposant que les utilisateurs ont

une connaissance incomplète des coefficients du fading entre la station de base et le relais.

Nous supposons que les données destinées à chaque utilisateur sont stockées dans une file d’attente

respective qui se trouve au niveau du contrôleur (par exemple, station de base). La dynamique de ces

files d’attente est considérée dans l’analyse du système. En effet, il est démontré que l’information sur

la longueur de la file d’attente est très importante dans la conception de politiques d’ordonnancement

robustes et plus généralement des algorithmes d’allocation de ressources robustes; telles politiques

assurent des débits de données élevés et des faibles retards de transmission des paquets en présence de

canaux qui varient dans le temps et pour diverses demandes de données par les utilisateurs. L’objectif

principal du mécanisme d’ordonnancement dans cette thèse est de stabiliser le système et d’atteindre

ainsi un débit maximal et de maintenir un faible retard de paquets.

Cette thèse met en valeur l’information concernant l’état du réseau, en particulier l’état des

canaux, pour l’ordonnancement des utilisateurs dans les réseaux sans fil. Une idée centrale ponctuant

l’ensemble du travail est que la structure d’information disponible pour le mécanisme d’ordonnancement

influence la performance du système. Avec ses résultats, cette thèse constitue un pas en avant vers une
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théorie plus complète abordant les problèmes d’ordonnancement et d’allocation de ressources sous dif-

férents types d’informations incomplètes. Comme les systèmes de communication sans fil connaissent

une forte augmentation dans les demandes de performance, sans aucun signe de ralentissement, nous

estimons qu’un tel cadre général pour enquêter sur l’ordonnancement dans un système sans fil avec

une connaissance incomplète de l’état du système se révélera un atout inestimable dans la conception

de systèmes performants.
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Titre: Ordonnancement et feedback dans les réseaux sans fil avec prise en compte du trafic

Mots clés: stabilité des files d’attente, ordonnancement, allocation de feedback, réseaux sans fil, 5G

Résumé: La demande des systèmes de communication

sans fil pour des débits élevés continue d’augmenter, et

il n’y a pas de signes que cette tendance va se ralen-

tir. Trois des techniques les plus importantes qui ont

émergé pour répondre à de telles demandes sont l’OFDMA,

le relais coopératif et le MIMO. Afin d’utiliser pleine-

ment les capacités des systèmes appliquant de telles tech-

niques, il est essentiel de développer des algorithmes ef-

ficaces d’ordonnancement et, plus généralement, des al-

gorithmes efficaces d’allocation de ressources. Les études

classiques sur ce sujet examinent des systèmes où les de-

mandes de données des utilisateurs ne sont pas prises en

considération et/ou un CSI parfait et complet est sup-

posé être disponible pour le mécanisme d’ordonnancement.

Cependant, dans la pratique, différentes limitations peu-

vent entrâıner l’absence d’une connaissance parfaite et/ou

complète du CSI, telles que les ressources limitées pour le

feedback, le coût de sondage et le retard dans le processus

de feedback.

Par conséquent, dans cette thèse nous examinons les prob-

lèmes d’ordonnancement et de feedback sous des con-

sidérations réalistes concernant la connaissance du CSI.

L’analyse est effectuée au niveau des paquets et considère la

dynamique des files d’attente avec des processus d’arrivée

arbitraires, et où la mesure de performance principale que

nous adoptons est la stabilité des files d’attente. La pre-

mière partie de la thèse considère un système MIMO mul-

tipoint à multipoint utilisant le mode TDD, tout en sup-

posant un backhaul à capacité limitée et en tenant compte

du coût du feedback. En ce qui concerne la technique

de gestion de l’interférence, nous appliquons l’alignement

d’interférence (IA) si plus d’une paire sont actives et SVD

si une seule paire est active. La deuxième partie de la thèse

considère un système OFDMA avec plusieurs utilisateurs et

canaux, où un feedback retardé et limité est pris en compte.

Deux scénarios sont étudiés, à savoir le système sans relais

et le système avec relais. Pour ce dernier, nous considérons

une imperfection supplémentaire supposant que les utilisa-

teurs ont une connaissance incomplète des coefficients du

fading entre la station de base et le relais.

Title: Traffic-aware scheduling and feedback reporting in wireless networks

Keywords: Queueing stability, scheduling, feedback allocation, wireless networks, 5G

Abstract: Demand of wireless communication systems

for high throughputs continues to increase, and there are

no signs this trend is slowing down. Three of the most

prominent techniques that have emerged to meet such de-

mands are OFDMA, cooperative relaying and MIMO. To

fully utilize the capabilities of systems applying such tech-

niques, it is essential to develop efficient scheduling algo-

rithms and, more generally, efficient resource allocation al-

gorithms. Classical studies on this subject investigate in

much detail settings where the data requests of the users

are not taken into consideration or where the perfect and

full CSI is assumed to be available for the scheduling mech-

anism. In practice, however, different limitations may re-

sult in not having perfect or full CSI knowledge, such as

limited feedback resources, probing cost and delay in the

feedback process.

Accordingly, in this thesis we examine the problems of

scheduling and feedback allocations under realistic con-

siderations concerning the CSI knowledge. Analysis is

performed at the packet level and considers the queueing

dynamics in the systems with arbitrary arrival processes,

where the main performance metric we adopt is the stabil-

ity of the queues. The first part of the thesis considers a

multi-point to multi-point MIMO system with TDD mode

under limited backhaul capacity and taking into account

the feedback probing cost. Regarding the interference man-

agement technique, we apply interference alignment (IA) if

more than one pair are active and SVD if only one pair is

active. The second part of the thesis considers a multiuser

multichannel OFDMA-like system where delayed and lim-

ited feedback is accounted for. Two scenarios are investi-

gated, namely the system without relaying and the system

with relaying. For the latter one, an additional imperfec-

tion we account for is that the users have incomplete knowl-

edge of the fading coefficients between the base-station and

the relay.
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