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“Imagine a captain of a ship the moment a shift of direction must be made; then he may be
able to say: I can do either this or that. But if he is not a mediocre captain he will also be
aware that during all this the ship is ploughing ahead with its ordinary velocity, and thus
there is but a single moment when it is inconsequential whether he does this or does that. So
also with a person - if he forgets to take into account the velocity - there eventually comes a
moment where it is no longer a matter of an Either/Or, not because he has chosen, but because
he has refrained from it, which also can be expressed by saying: Because others have chosen
for him-or because he has lost himself. ”

Søren Aabye Kierkegaard

“Non è che la vita vada come tu te la immagini. Fa la sua strada. E tu la tua. E non sono la
stessa strada. Io non è che volevo essere felice, questo no. Volevo. . . salvarmi, ecco: salvarmi.
Ma ho capito tardi da che parte bisognava andare: dalla parte dei desideri. Uno si aspetta che
siano altre cose a salvare la gente: il dovere, l’onestà, essere buoni, essere giusti. No. Sono i
desideri che salvano. Sono l’unica cosa vera. Tu stai con loro, e ti salverai.”

Alessandro Baricco
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Abstract

Vehicles as a Mobile Cloud: Modelling, Optimization and Performance Analysis

The large diffusion of handheld devices is leading to an exponential growth of the
mobile traffic demand which is already overloading the core network. To deal with
such a problem, several works suggest to store content (files or videos) in small cells
or user equipments. In this thesis, we push the idea of caching at the edge a step fur-
ther, and we propose to use public or private transportation as mobile small cells and
caches. In fact, vehicles are widespread in modern cities, and the majority of them
could be readily equipped with network connectivity and storage. The adoption of
such a mobile cloud, which does not suffer from energy constraints (compared to
user equipments), reduces installation and maintenance costs (compared to small
cells). In our work, a user can opportunistically download chunks of a requested
content from nearby vehicles, and be redirected to the cellular network after a dead-
line (imposed by the operator) or when her playout buffer empties. The main goal
of the work is to suggest to an operator how to optimally replicate content to min-
imize the load on the core network. The main contributions are: (i) Modelling. We
model the above scenario considering heterogeneous content size, generic mobility
and a number of other system parameters. (ii) Optimization. We formulate some
optimization problems to calculate allocation policies under different models and
constraints. (iii) Performance analysis. We build a MATLAB simulator to validate the
theoretical findings through real trace-based simulations. We show that, even with
low technology penetration, the proposed caching policies are able to offload more
than 50 percent of the mobile traffic demand.
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Résumé

Les Véhicules comme un Mobile Cloud: Modélisation, Optimisation et Analyse
des Performances

La proliferation des appareils portables mene à une croissance du trafic mobile qui
provoque une surcharge du coeur du réseau cellulaire. Pour faire face à un tel prob-
lème, plusieurs travaux conseillent de stocker les contenus (fichiers et vidéos) dans
les small cells. Dans cette thèse, nous proposons d’utiliser les véhicules comme
des small cells mobiles et de cacher les contenus à bord, motivés par le fait que
la plupart des véhicules pourra facilement être équipée avec de la connectivité et du
stockage. L’adoption d’un tel cloud mobile réduit les coûts d’installation et de main-
tenance et présente des contraintes énergétiques moins strictes que pour les small
cells fixes. Dans notre modèle, un utilisateur demande des morceaux d’un contenu
aux véhicules voisins et est redirigé vers le réseau cellulaire après une deadline ou
lorsque son playout buffer est vide. L’objectif du travail est de suggérer à un opéra-
teur comment répliquer de manière optimale les contenus afin de minimiser le trafic
mobile dans le coeur du réseau. Les principales contributions sont: (i) Modélisation.
Nous modélisons le scénario ci-dessus en tenant compte de la taille des contenus, de
la mobilité et d’un certain nombre d’autres paramètres. (ii) Optimisation. Nous for-
mulons des problèmes d’optimisation pour calculer les politiques d’allocation sous
différents modèles et contraintes. (iii) Analyse des performances. Nous développons
un simulateur MATLAB pour valider les résultats théoriques. Nous montrons que
les politiques de mise en cache proposées dans cette thèse sont capables de reduire
de plus que 50% la charge sur le coeur du réseau cellulaire.
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Chapter 1

Introduction

1.1 Context

The last decade has seen an exponential growth in the mobile traffic demand. In par-
ticular, global mobile data traffic grew 63 percent in 2016 [Cisco, 2016-2021]. The ever
changing mix and growth of wireless devices that are accessing mobile networks
worldwide is one of the primary contributors to global mobile traffic growth [Anal-
ysis Mason, 2014]. By 2021, Cisco, 2016-2021 estimates 8,3 billion of handheld or per-
sonal mobile-ready devices and 3,3 billion of machine-to-machine connections (e.g.,
GPS systems in cars, asset tracking systems in shipping and manufacturing sectors).
Figure 1.1 shows that mobile devices and connections are not only getting smarter
in their computing capabilities but are also evolving from lower-generation network
connectivity (2G) to higher-generation network connectivity (3G, 4G or LTE).

To sum up, mobile data traffic is expected to grow to 49 exabytes1 per month by 2021, a
sevenfold increase over 2016 (Figure 1.2). Such a demand (that will increase in the
next years) is already overloading the cellular infrastructure.

In wired environments, content delivery networks (CDNs) have been successfully
used for years (e.g., Akamai, Amazon CloudFront, Cloudflare) to decrease the load
on the backbone [Borst, Gupta, and Walid, 2010]. A CDN consists of a large network
of distributed local caches deployed in multiple data centers. The main goals are to
improve network performance reducing the access content delay, and avoid congest-
ing the central (back end) servers. Although CDNs are widely implemented in wired
environments, wireless networks cannot take advantage of the same technology due
to two main reasons: first, a single CDN data center corresponds to hundreds or
thousands of small cells that require much higher deployment costs; second, wire-
less transmission is considerably more challenging than wired transmission, due to
interference, but also offers opportunities due to its broadcast nature [Maddah-Ali
and Niesen, 2015].

An attempt to reduce the load on the cellular infrastructure is given by the next gen-
eration of mobile technology 5G2. This standard should, at least, fulfill the follow-
ing requirements compared to LTE: improved aggregated data rate (and peak rate),

1One exabyte corresponds to 1018 bytes.
25G is expected to be rolled out by 2020 [Alliance, 2015].
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FIGURE 1.1: Global number of mobile de-
vices and connections by 2G, 3G, 4G+ by

2021 [Cisco, 2016-2021].

FIGURE 1.2: Cellular and offloaded traffic
forecast by 2021 [Cisco, 2016-2021].

larger number of simultaneous connections for wireless sensors, enhanced spectral
efficiency, reduced latency. Researchers are considering a number of new communi-
cation technologies to deal with such requirements [Andrews et al., 2014]:

• Massive MIMO. Multiple-antenna technology (i.e., MIMO) has already been
incorporated into LTE and Wi-Fi. Advances in MIMO are required to use a
very large number of service antennas to focus the transmission and reception
of signal energy into smaller regions [Liu and Lau, 2014; Liu and Lau, 2015].
Hence, the main goal of massive MIMO is to increase spectral efficiency. Other
benefits include the extensive use of inexpensive low-power components, re-
duced latency, and robustness to interference.

• Millimetre-wave frequencies. Millimetre wave spectrum is the band of spectrum
between 30 GHz and 300 GHz. This higher frequency spectrum leads to a
bandwidth increase that can be used for high-speed communications in order
to accommodate the large traffic demand [Rappaport et al., 2013]. Today, these
wave frequencies are mainly used indoor due to high propagation losses in
outdoor environments.

• Cognitive radio technology. This allows different radio technologies to share the
same spectrum efficiently. This is done by adaptively finding unused wireless
channels and adapting the transmission scheme.

• Small cell densification. Cell sizes have been progressively shrinking in urban ar-
eas. Densification through small cells promises improved spectral efficiency at
a smaller capital and operational expenditures (CAPEX and OPEX) [Andrews
et al., 2014]. However, introducing a large number of small cells requires sig-
nificant upgrades to the backhaul network which is predicted to become the
new bottleneck [Forum, 2013; Sapountzis et al., 2016].

While 5G might offer good performance reducing the congestion, such upgrades are
quite expensive. Due to the skewed nature of the Internet content popularity, several
works have proposed mobile data offloading through caching in order to decrease the
load on the cellular infrastructure without overloading the backhaul network [Han
et al., 2012; Golrezaei et al., 2012; Wang et al., 2014a; Bastug, Bennis, and Debbah,
2014]. Caching content at the edge of the communication network (i.e., at a base sta-
tion, small cell or mobile device) leads to a number of benefits for the performance of
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the network, namely reducing latency and saving bandwidth. Nevertheless, some
have speculated that Wi-Fi offload will become less relevant for 4G networks be-
cause of the faster speeds and the more abundant bandwidth. However, 4G net-
works have attracted high-usage devices such as advanced smartphones and tablets,
and now their plans are subject to data caps similar to 3G plans. For these reasons,
Wi-Fi offloading is higher on 4G than on lower-speed networks, and the trend is ex-
pected to be similar for next generation networks [Cisco, 2016-2021]. What is more,
while caching popular content deep inside the operator’s core network promises
good hit rates [Wang et al., 2014a; Erman et al., 2011; Woo et al., 2013], recent stud-
ies [Han, Liu, and Lau, 2016] show that caching at the base station is worthwhile due
to its spectrum efficiency gain.

1.2 Problem Statement

Mobile edge caching can reduce the load on the cellular infrastructure, but also
brings some main drawbacks. For instance, concerning content caching in small
cells there are two main issues: (i) extensive small cell coverage is necessary to en-
sure enough traffic is offloaded from the macrocells [Robson, 2012], but initial ex-
perience with small cells suggests a bigger CAPEX/OPEX investment per site than
initially predicted [Alliance, 2015]; (ii) clear benefits by edge caching are yet to be
demonstrated, and initial studies based on real data are pessimistic [Paschos, Gitze-
nis, and Tassiulas, 2012]. This is due to smaller cache sizes and a much smaller
overlap among user requests at a given cell, compared to an aggregation point deep
inside the network. On the other hand, caching content at user equipments and us-
ing local device-to-device communications [Bao et al., 2013; Han et al., 2012] is a
low cost solution. While more affordable for an operator, device-based caching faces
significant technology adoption concerns as user equipments have limited storage
capacity and strict battery constraints.

As we have already explained, the current cellular network is overloaded by the
large mobile traffic demand. Hence, the main goal of the thesis is to suggest to an
operator how to reduce the load on the cellular infrastructure through mobile edge caching.
The proposed solution must satisfy three fundamental requirements:

• Limiting CAPEX/OPEX. Mobile network operators (MNOs) would incur signif-
icantly higher CAPEX and OPEX for 5G as they need to deploy thousands of
small cells linked up with high bandwidth connections. Thus, limiting equip-
ment costs, delaying hardware investments and reducing power consumption
are necessary to adopt new generation technologies.

• Storage capacity. Due to the vastness of the Internet catalogue, large storage
capacity is needed to ensure a large number of cache hits, and, thus, a higher
percentage of traffic offloaded.

• User Quality of Experience (QoE). In the context of telecommunications, the QoE
is defined as the degree of delight or annoyance of the user of an application or
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service [Brunnström et al., 2013]. A new network technology must necessarily
take into account the impact that such a solution would have on the users.

While there are a number of technical challenges to consider (concerning implemen-
tation and protocols), this work is mainly focused on analytical study, modelling, and
optimization. Architectural details will be discussed in Appendix A.

1.3 Contributions of the Thesis

In order to deal with the aforementioned requirements, we propose to use private
(e.g., cars) and/or public (e.g., taxis, buses) transportation acting as mobile small
cells where to store popular content. The whole set of vehicles participating in the
offloading mechanism forms a vehicular cloud. In the proposed infrastructure, an
MNO pushes popular content in the vehicular cloud to offload part of the traffic. Dif-
ferently from small cell deployments, the vehicular cloud brings three fundamental
advantages:

• Vehicle mobility virtually extends the size of accessible local storage. With fixed
caches, the amount of data offloaded depends (almost exclusively) on the femto
or picocells coverage, since most of users exhibit a nomadic behavior, staying
in the same location for long periods. On the other hand, a user will encounter
several vehicles during the content download, especially in a dense urban en-
vironment, thus virtually extending the size of the accessible local storage.
Simulations confirm that the vehicular cloud can reduce the load on the in-
frastructure, compared to the case of static small cell caches.

• Vehicular cloud reduces CAPEX/OPEX compared to caching in small cells. The cur-
rent cellular infrastructure can be easily turned into a working vehicular cloud.
The fundamental hardware components needed are the support for vehicle-to-
user equipment and vehicle-to-infrastructure communications (e.g., 802.11p,
LTE-A) and storage capacity, usually available at low cost. Sensors (e.g., GPS)
can be considered as a plus to gather additional information. Basic computa-
tional capacities are required, such as an authentication system, and a connec-
tion manager for heterogeneous networks.

• Vehicular cloud opens the market to new MNOs. The simplicity to turn modern
cities in a vehicular cloud may encourage new mobile virtual network opera-
tors to enter into the market without the need of large investments. This can
be useful, e.g., in developing countries, where the data demand increases at
the same rate as in the developed countries: thanks to the proposed infrastruc-
ture, new operators can boost the current cellular infrastructure at low cost,
and, thus, improve the user QoE.

While the number of cars with some sort of networking ability today is small, it is es-
timated that around 90 percent of all manufacturers’ new models are likely to have
Internet connectivity by 2020 [Green, 2014]. For instance, BMW, that has already
been embedding SIM cards for mobile connectivity in all its new cars [Smartphone on
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Wheels], has recently unveiled the Vehicular CrowdCell project where a mobile fem-
tocell optimizes the mobile radio reception inside vehicles and is also capable to en-
hance the capacity and coverage of mobile radio networks [BMW Vehicular Crowd-
Cell]. This project is in collaboration with Vodafone. Specifically, cellular operators
see the connected car as another device to be hooked up to their networks, and
they have started to propose data plan dedicated to vehicles (e.g., AT&T in United
States). Cellular operators might offer economic incentives (e.g., subscription re-
duction) to users that decide to join the vehicular cloud with their private vehicles.
This should lead to a double benefit, thus increasing their market share by offload-
ing part of the mobile traffic. What is more, modern cities might decide to install
these cheap devices into buses or trams to provide additional services. An interest-
ing example is given by Portugal where the company Veniam has recently built the
largest vehicular network in the world. Specifically, they can offer Wi-Fi features
in public transportation, increasing number of passengers, reducing emissions and
generating additional revenue. Furthermore, vehicular networks can produce real-
time city-scale data from cheap sensors which can be used to increase safety and
efficiency of municipal operations (e.g., traffic, waste collection).

We consider the vehicular cloud as an additional feature to boost cellular data plans.
When a user browses the Internet, the MNO might decide to redirect the requests to
the vehicles for popular content (as it happens in the CDN context), if the user has
subscribed for the vehicular cloud additional feature. While the architectural details
of such a hybrid system are beyond the scope of the thesis and will be discussed in
Appendix A, we sketch here two possible implementations in near future wireless
systems:

• Device-to-device connection. In the simplest case, vehicles could act as end users
(i.e., user equipments) in an LTE system. In other words, the “backhaul” link
of our hybrid system is just a regular downlink between an eNodeB (the stan-
dard LTE base station) and a vehicle, over which content is pushed during
off-peaks3. The “fronthaul” link could then be operated as a device-to-device
link. Bychkovsky et al., 2006 have confirmed the feasibility of opportunistic
connections between vehicles and user equipments. IEEE 802.11p, which has
been developed for the specific context of vehicular networks, is the de facto
standard offering simplicity (uncoordinated access mechanism, no authentica-
tion) and low delay (few hundreds milliseconds in crowded areas).

• Full LTE integration. As an alternative, a higher integration with cellular infras-
tructure could also be envisioned, where the vehicles are operated as (mobile)
LTE relays [Sesia, Toufik, and Baker, 2009] with local caches, and end users de-
vices as regular user equipments that can communicate with both macrocells
and relays.

For simplicity, in our discussion we implicitly assume the former type of setup in
order to avoid to deal with cross-interference issues between backhaul and fronthaul

3Note that, unlike static small cells, content cannot usually be pushed at night to our mobile
helpers, except for taxis or night buses. Nevertheless, we believe that, within the window of 24 hours,
there are enough traffic troughs to be able to update the helper caches from day to day without con-
gesting the network.
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links. However, futuristic tightly integrated architectures like the latter could offer
the MNO better option to coordinate interference.

In this work, we exploit such a vehicular cloud to store popular content in order to
maximize the offloaded mobile demand. We build a model where a user can opportunis-
tically download content or part of it (i.e., chunks) from vehicles in her communi-
cation range. Mobile caches introduce interesting content mixing properties leading
to larger hit rates than fixed small cells as we will explain in detail in the rest of
the thesis. What is more, vehicles intrinsically satisfy two out of three requirements
listed in the previous section as they are inexpensive and can be easily equipped
with large storage capacity. To deal with the user experience, we provide different
allocation policies depending on an increasing level of perceived user QoE along
with a finer-grained granularity of the content download model. We list here the
main contributions of the work:

• Modelling. We model the aforementioned vehicular cloud and the related com-
munication with end users. Such an interaction is challenging due to the in-
trinsic mobility of the nodes, and the consequent intermittent availability of the
download source. We do not make additional assumptions on the vehicle mo-
bility patterns in order to consider any inter-contact time model. We use two
models to deal with the content download: first, we introduce coarse-grained
granularity where a content is entirely downloaded (with some probability)
during a single contact; while this can be considered reasonable for small con-
tent, large content requires finer-grained granularity, and we introduce an en-
hanced model to consider downloads at chunk level.

• Optimization. According to different content download models and content
types, we analytically formulate optimization problems to calculate the num-
ber of content items to allocate in the vehicular cloud so as to maximize the
amount of data offloaded. We show the complexity of such problems, and we
propose heuristics, continuous relaxations or approximations of the objective
function in order to solve them efficiently.

• Performance analysis. We build a MATLAB tool to perform simulations based on
real traces for vehicle mobility and content popularity in order to support our
theoretical results. In the simulator, we consider a number of parameters such
as user mobility, realistic cache sizes, rate adaptation and association setup
mechanism during the content download. Furthermore, we provide some ev-
idence that the vehicular cloud reduces CAPEX and OPEX comparing our ar-
chitecture to close competitors.

1.4 Outline

The rest of the paper is structured as follows: in Chapter 2, we compare this thesis
with some relevant related works; then we present our novel caching policies which
are summarized in Table 1.1:
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TABLE 1.1: Summary of the policies presented in the thesis (SC+ is
not listed since it coincides with SC with an improved content down-

load model).

Policy Vehicle mobility Download model Content type User QoE

SC Any Content-level Small content Fixed deadlines

qSC Any Content-level Small content Variable deadlines

qGC Any Chunk-level Any Variable deadlines

VC Sparse vehicles Chunk-level Video streaming No deadlines

VC+ Any Chunk-level Video streaming No deadlines

Chapter 3 - Content Caching through a Vehicular Cloud

We perform a preliminary study of the vehicular cloud based on two main ideas: (i)
vehicles as mobile caches are more widespread and require lower costs compared
to small cells; (ii) combining the mobility of vehicles with delayed content access, it is
possible to increase the number of cache hits, and consequently to reduce the load
on the infrastructure. Differently from fixed small cells, when caches are on vehicles,
a static or slowly moving user will see a much larger number of caches within the
same amount of time, thus virtually extending the size of the accessible local storage.
Thus, in our system maximum delays are guaranteed to be kept to a few minutes.
Beyond this deadline, the content is fetched from the infrastructure. We propose an
analytical framework to compute the optimal number of content replicas that one
should cache to minimize the infrastructure load. We assume that a content can be
entirely downloaded during a single contact, and we present two caching policies
(SC and SC+). Numerical simulations suggest that the vehicular cloud considerably
reduces the infrastructure load in urban settings assuming modest penetration rates
and tolerable content access delays.

The work related to this chapter is published in:

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Storage on wheels:
Offloading popular contents through a vehicular cloud”. In: 2016 IEEE 17th
International Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM). 2016, pp. 1–9. DOI: 10.1109/WoWMoM.2016.7523506

Chapter 4 - Quality of Experience-Aware Content Caching

In most delayed offloading settings, the worst-case delay deadline guarantee offered
to the user is usually fixed for all content requests. Conversely, we propose to the
operator to set different deadlines for different contents. Tuning the waiting time
per content ensures maximum offloading with little QoE degradation that we eval-
uate according to the experienced slowdown which relates the waiting delay with
the “net” download time. We model analytically such a scenario, and we formulate
an optimization problem to maximize the traffic offloaded while ensuring user ex-
perience guarantees. We propose two variable deadline policies with file download

http://dx.doi.org/10.1109/WoWMoM.2016.7523506
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at content-level (qSC) or chunk-level (qGC). Finally, we perform realistic trace-based
simulations, and we show that, even with low technology penetration rate, more
than 60 percent of the total traffic can be offloaded which is around 20 percent larger
compared to existing allocation policies.

The works related to this chapter are published in:

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Quality of Experience-
Aware Mobile Edge Caching through a Vehicular Cloud”. In: MSWiM (2017),
under review

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Quality of Experience-
Aware Mobile Edge Caching through a Vehicular Cloud”. In: IEEE Transactions
on Mobile Computing (2017), under review

Chapter 5 - Content Caching for Video Streaming

The vast majority of the traffic concerns videos, and new streaming services have
been recently introduced in the market (e.g., Netflix, Amazon Prime). In this chap-
ter we argue that mobile caches can be used for low cost video streaming without the
need to impose any delay on the user. Users can prefetch video chunks into their play-
out buffers from encountered vehicle caches (at low cost), or stream from the cellular
infrastructure (at higher cost) when their playout buffers empty, while watching the
content. We model the buffer dynamics as a queueing system, and analyse the char-
acteristics of its idle periods (during which access to the cellular infrastructure is
required). Based on this model, we formulate the problem of optimal allocation of
content in vehicles to minimize the total load on the cellular infrastructure. We solve
such an optimization problem for low or generic vehicle densities (VC and VC+).
We perform trace-based simulations to support our findings, showing that up to 50
percent of the original traffic could be offloaded from the main infrastructure.

The works related to this chapter are published in:

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Streaming Content
from a Vehicular Cloud”. In: Proceedings of the Eleventh ACM Workshop on Chal-
lenged Networks. CHANTS ’16. New York City, New York: ACM, 2016, pp. 39–
44. ISBN: 978-1-4503-4256-8. DOI: 10.1145/2979683.2979684. URL: http:
//doi.acm.org/10.1145/2979683.2979684

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Low Cost Video
Streaming through Mobile Edge Caching: Modeling and Optimization”. In:
IEEE Transactions on Mobile Computing (2017), under review

Finally, we conclude our thesis in Chapter 6 with a summary and future work.

http://dx.doi.org/10.1145/2979683.2979684
http://doi.acm.org/10.1145/2979683.2979684
http://doi.acm.org/10.1145/2979683.2979684
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Chapter 2

Literature Review

The exponential growth of the mobile traffic is pushing academic research and com-
panies to study new solutions to decrease the load on the cellular network: specifi-
cally, on the one hand, the networking research community is more interested in the
theoretical problems of, e.g., content allocation, modelling, mobility pattern analy-
sis; on the other hand, companies and MNOs see such a problem as an opportunity
to fill the market gap with new products. In this chapter, we present a list of the most
relevant and recent work in mobile edge caching: specifically, in Section 2.1, we dis-
cuss extensively about caching in small cell base stations which has been proposed
as one of most interesting solutions for current and near future cellular networks.
Then, we present two more futuristic approaches, such as caching on mobile de-
vices (in Section 2.2) and caching on vehicular networks (in Section 2.3). Finally, we
conclude the chapter in Section 2.4 with a review of two interesting theoretical works
on the performance of caching systems. However, the analysis of the literature is not
limited to this chapter, and additional references can be found throughout the thesis.

2.1 Caching at Small Cell Base Stations

Small cells constitute a promising solution to deal with the mobile data growth that
is overloading the cellular network. Local caching of popular content items at the
small cell base stations has been proposed to decrease the costly transmissions from
the macrocell base stations without requiring high capacity backhaul links for con-
necting the small cells with the core network. In this context, traditional solutions
concern adding storage capacity to small cell base stations [Golrezaei, Dimakis, and
Molisch, 2012; Ao and Psounis, 2015] and/or to WiFi access points [Zhang et al.,
2015] with a potential introduction of delay tolerance [Balasubramanian, Mahajan,
and Venkataramani, 2010; Lee et al., 2013; Mehmeti and Spyropoulos, 2014] to fur-
ther increase the number of cache hits. Due to the increasing diffusion of multimedia
content, a number of works is also dealing with video caching recently [Poularakis
et al., 2014; Dandapat et al., 2013]
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2.1.1 Femtocaching

The femtocaching idea is proposed as a solution to compensate for the weak back-
haul capacity, by deploying coverage-limited nodes with high storage capacity called
femtocaches. The basic idea of caching in small cells has first been presented in Gol-
rezaei et al., 2012; Shanmugam et al., 2013. Their main challenge is to analyse the
optimum way of assigning content to the small cell base stations (called helpers) to
minimize the expected download time or the number of cache hits. Such a generic
formulation has later been improved and extended by several researchers consider-
ing different assumptions and models. For instance, Zhang et al., 2015 propose to
cache content in wireless access points based on popularity. Also, the authors pro-
pose to separately add a prefetch buffer to capture short-term content access patterns
using aggregated network-level statistics. Guan et al., 2014 exploit the mobility pat-
terns of users assuming that these patterns are known a priori, and propose a heuris-
tic to cache content. Blasco and Gündüz, 2014 assume that the content popularity is
unknown and propose to refresh caches at regular intervals to learn the popularity
profile.

Beyond femtocaching, researchers are also studying other techniques to improve
the bandwidth capacity. Coordinated Multi-Point (CoMP) introduces a new ap-
proach where multiple available communications resources are being utilized to
correspondingly transmit a signal by utilizing multiple base stations to transmit a
signal to a user. Ao and Psounis, 2015 combine CoMP technologies with caching
in small cells. The goal is to maximize the throughput of the system (i.e., higher
content delivery speed and backhaul cost reduction) considering limited cache size,
network topology and content popularity. An important aspect of the framework is
the joint optimization of the cache allocation in the application layer and the cooper-
ative transmission techniques (maximum radio transmission or zero-forcing beam-
forming).

However, other work does not aim to reduce the backhaul cost or to maximize the
number of cache hits. For instance, the goal in Baştuğ, Guénégo, and Debbah, 2013
is to maximize a QoE metric, defined as the percentage of satisfied requests, subject
to storage and backhaul capacity constraint. A request is satisfied when the average
delivery rate is superior to a bandwidth requirement for such a request. The prob-
lem is solved through a simple greedy algorithm. Ostovari, Wu, and Khreishah, 2016
study the problem of collaborative caching in cellular network. The objective is to
minimize the aggregated caching and download cost. The model considers unlim-
ited cache space. Baştuğ, Bennis, and Debbah, 2014 model and characterize outage
probability and average delivery rate as a function of the signal-to-interference-ratio,
base station intensity, file bitrate, storage size and content popularity, but the work
does not suggest content allocation. Finally, a survey on current techniques related
to caching in current (and future 5G) mobile networks is presented in Wang et al.,
2014a along with a novel edge caching scheme based on the concept of content cen-
tric networking.

While such distributed caching schemes for small cells provide very interesting theo-
retical insights and algorithms, they face some key shortcomings. A large number of
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small cells is required for an extensive enough coverage by small cells, which comes
at a high cost [Alliance, 2015]. E.g., in a macro-cell of a radius of a few kilometers, it is
envisioned to place from three to five small cells, of range a few hundred meters. By
contrast, in an urban environment, the same area will probably contain thousands of
vehicles. Furthermore, the smaller size of edge caches and smaller number of users
per cell raises the question whether enough overlap in user demand would be gener-
ated locally to have a high enough hit ratio, when real traffic is considered. Delayed
content access is supposed to overcome such a limitation as explained next. Another
key difference is that base stations are static and user locations are supposed to be
known. In our approach, we actually allow more generic mobility patterns (e.g., no
assumptions about user locations) and also introduce delay access which “mixes”
base stations and users.

2.1.2 Delayed Content Access

To alleviate the aforementioned problem of request overlap at a low cost, a number
of works introduce delayed access. This can be seen as an enforced delay until a
WiFi access point is encountered to offload the cellular connection to a less loaded
radio access technology [Balasubramanian, Mahajan, and Venkataramani, 2010; Lee
et al., 2013; Mehmeti and Spyropoulos, 2014] or until to reach peer nodes in a peer-
to-peer infrastructure [Cai, Koprulu, and Shroff, 2013; Sermpezis and Spyropoulos,
2014]. For example, Balasubramanian, Mahajan, and Venkataramani, 2010 develop a
system to augment mobile 3G capacity with WiFi, using two key ideas: delay toler-
ance and fast switching. This enforced delay virtually extends the coverage by WiFi
access points, allowing a larger ratio of connections to be offloaded than the mere
physical coverage of WiFi access points allows. Li et al., 2011 propose a framework
similar to our basic model that will be described in Chapter 3. Specifically, this work
defines a system offloading utility function subject to individual linear constraints
for storage capacity. Whitbeck et al., 2012 examine strategies to determine how many
copies of the content should be injected, when, and to whom. This is achieved through
a control loop that collects user-sent acknowledgements to determine if new copies
need to be re-injected in the network. It is a generic delay-tolerant framework that
can be applied to several scenarios (e.g., software and system updates, floating data).
In other works [Cai, Koprulu, and Shroff, 2013; Gao et al., 2016], different dead-
lines are assigned to different contents. However, these deadlines are problem input
parameters and cannot be used to improve performance (e.g., the amount of data
offloaded, QoE), as we do in our work (see Chapter 4).

Nevertheless, as explained earlier, these approaches require the user to move in order
to encounter new base stations and new caches. User mobility is often nomadic and
slow, requiring the respective algorithms to enforce very large content access delays
(often in the order of hours) before any performance improvement is perceivable by
the operator. Instead, having the small cells and caches move, naturally happening
when placed on vehicles, allows the operator to offload more traffic with minimum
(or no) QoE impact.
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2.1.3 Video Caching

A number of works have recently focused their interest in caching of video content
since multimedia files have become popular. For instance, Poularakis et al., 2014
optimize the service cost and the delivery delay. In their work, pre-stored video
files can be encoded with two different schemes in various qualities. Differently,
Dandapat et al., 2013 study just in time video streaming. The authors propose to
exploit WiFi access points in cities to build a large distributed video caching sys-
tem for smooth streaming. Since a user is not able to download an entire video
from the same hotspot, the authors promote replication of video chunks across ac-
cess points while aiming at minimizing this replication (efficient content storage).
Such a problem is solved numerically and no insights concerning the optimal allo-
cation are given. Furthermore, Ahlehagh and Dey, 2014 improve video capacity and
user experience of mobile networks. The authors propose video-aware backhaul
and wireless channel scheduling techniques to maximize the number of concurrent
video sessions by satisfying QoE requirements. They consider video QoE as consist-
ing of initial buffering delay and number of stalls during the video session. Finally,
in the context of QoE, Tasiopoulos, Psaras, and Pavlou, 2014 model the intermittent
availability of WiFi access point as a function of undisrupted video playback.

In Chapter 5, we introduce a model to deal specifically with multimedia content.
This model is based on queueing theory and handles a number of system parameters
such as heterogeneous content size, vehicle mobility and limited content capacity.
According to such a model that exploits the intrinsic delay tolerance of later chunks,
we are able to formulate an optimization problem, and solve it efficiently. The main
novelties are: (i) the framework has a wide applicability: its generic formulation can
be easily adapted to similar offloading scenarios such as femtocaching or caching on
mobile devices; (ii) we combine the ideas of video cache at the edge and vehicular
networks to improve the percentage of traffic offloaded; (iii) we provide insights on
the solution of the optimization problem for different types of vehicle densities.

2.2 Caching on Mobile Devices

Apart from small cells, researchers have also been proposing to use mobile devices
to offload content through opportunistic communications. Bao et al., 2013 exploit
the possibility of serving user requests from other mobile devices located geograph-
ically close to the user. The goal of the work is to explore a practical way of offloading
cellular traffic via device-to-device communications, exploiting the observation that
cellular networks are strained when many people located in a small area request for
content (e.g., concerts, sport stadiums, train stations). In Han et al., 2012, mobile
devices store content and propagate the information opportunistically. Specifically,
content delivery is delayed, and the challenge is to find a set of users where to of-
fload the information. In addition, Cai, Koprulu, and Shroff, 2013 also take into
account the time-varying channel conditions and the users’ random mobility. Wang
et al., 2014b analyze and model a framework where a set of mobile users receive
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content based on their content spreading impacts and their mobility patterns. Users
share content via opportunistic connectivity with each other. Finally, the basic fem-
tocaching framework [Golrezaei et al., 2012] has been extended to include caching at
user equipments and device-to-device collaboration [Golrezaei et al., 2013; Golrezaei
et al., 2014]. An extensive comparison of content caching on wireless devices tech-
niques using the device-to-device approach with other alternative approaches (e.g.,
unicasting, harmonic broadcasting, coded multicasting) is provided in Ji, Caire, and
Molisch, 2016.

Nevertheless, having mobile devices in tethering mode, storing even a small sub-
set of the total content catalogue and having them to serve constantly incoming re-
quests from other users seem to put an unrealistically high toll on the already limited
battery, storage and processing resources of handheld devices. On the other hand,
placing a large hard disk and a simple access point (even with MIMO capabilities)
somewhere inside the vehicle seems to pose much fewer challenges for modern cars.
To sum up, compared to user equipments acting as relays and caches, the vehicular
cloud offers considerably more storage and processing power, thus lowering the
adoption barrier significantly. Finally, it is important to note that, while we present
our approach based on a vehicular cloud (due to the reasons extensively explained),
the same model also applies to device-based offloading.

2.3 Vehicular Networks

Recent technology advances allow car manufacturers to build vehicles smarter and
more sophisticated. New vehicles are able to communicate each other to exchange
information about security and traffic, and provide infotainment systems to passen-
gers. While large setup delays might be an obstacle, recent protocols (e.g., DSRC)
have been considerably boosting vehicular networks over the last ten years. For this
reason, MNOs see vehicles as (i) new potential clients or as (ii) nodes to boost the
current cellular infrastructure:

• Vehicles as clients. Cellular operators see vehicles as potential devices to con-
nect to their network, and dedicated data plans have been proposed. What
is more, WiFi offloading for moving vehicles poses unique challenges due to
high mobility, and researchers have been interested to model and analyze such
an environment [Cheng et al., 2014]. For instance, Mahmood et al., 2016 in-
troduce a probabilistic model to cache content at the edge nodes in order to
serve content requests from vehicles (or moving users). The model is based on
vehicle mobility patterns and trajectories.

• Vehicles as small cell base stations. As an alternative, vehicles can be used as
small cell base stations where to store popular content. The guidelines for the
creation of such a mobile cloud formed by vehicles acting as a mobile multihop
network can be found in Mamun, Anam, and Alam, 2012. First work in this
direction has appeared in the late 2000s [Zhang, Zhao, and Cao, 2009; Zhao
and Cao, 2008]. Zhang, Zhao, and Cao, 2009 propose a peer-to-peer scheme to
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improve the performance of content sharing in intermittently connected vehic-
ular networks. Zhao and Cao, 2008 adopt the idea of carry and forward content
where a moving vehicle carries information until a new vehicle moves into its
vicinity: the authors make use of the predictable vehicle mobility to reduce the
content delivery delay. The state of the art of vehicle-to-x communications is
extensively reviewed in Lu et al., 2014; Zheng et al., 2015.

The hype around vehicular networks as part of the cellular infrastructure has been
confirmed by the interest of car manufacturers (e.g., BMW Vehicular CrowdCell) and
by the launch of new companies (e.g., Veniam).

2.4 Performance of Caching Systems

Performance of caching systems is one of the most widely investigated topic in com-
puter science. Nevertheless, probably due to its important role in Internet content
delivery, caching has recently received a renewed interest by the networking re-
search community. While the literature on caching is boundless, in this section we
choose to review a few of recent relevant works which tackle such a problem from
a generic and theoretical point of view. For instance, Dehghan et al., 2016 propose a
utility-driven caching where a utility function is associate to each content. They for-
mulate an optimization problem to maximize the aggregate content utility subject to
capacity constraints. Interestingly, existing caching policies (e.g., LRU, FIFO) can be
modelled within this framework.

In another approach, Garetto, Leonardi, and Traverso, 2015 introduce a way to an-
alyze various caching strategies (e.g., LRU, q-LRU) when content popularity varies
over time. The work considers separately single and interconnected caches, and is
based on the “Shot Noise Model” [Traverso et al., 2013] to capture the dynamics
of content popularity. In our work, the content popularity is considered “stable”
during a time window defined by the operator. While this assumption might seem
approximate, content popularity indeed varies slowly for some categories of con-
tent (e.g., videos, software updates). We discuss content popularity more in detail
in Appendix B. What is more, although our focus is on the initial “one-shot” opti-
mal allocation, we also provide a dynamic heuristic to update caches according to
varying content popularity (see Appendix C).
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Chapter 3

Content Caching through a
Vehicular Cloud

3.1 Introduction

In this chapter, we build a model where a user requesting a content queries nearby
vehicles and, if the content is not found, is redirected to the main cellular infrastruc-
ture. However, since caches will be quite small compared to the daily catalogue of
content, the user might not be within range of any cache storing the requested con-
tent at that time. To alleviate this, we propose that each request can be delayed for a
small amount of time, if there is a local cache miss. Delayed offloading to small cells
(with and without local storage) has already been considered (e.g., via WiFi access
points) [Balasubramanian, Mahajan, and Venkataramani, 2010; Cai, Koprulu, and
Shroff, 2013; Mehmeti and Spyropoulos, 2014; Han et al., 2012]. However, most of
these works require the user to move in order to encounter new base stations and see
new caches. This is problematic as most users exhibit a nomadic behavior, staying in
the same location for long periods. As a result, it has been consistently reported that
such delayed offloading architectures require time to live (TTL) in the order of half to
a couple of hours to demonstrate performance benefits [Balasubramanian, Mahajan,
and Venkataramani, 2010; Lee et al., 2013; Mehmeti and Spyropoulos, 2014].

Instead, when caches are on vehicles, especially in a dense urban environment, a
static or slowly moving user will see a much larger number of caches within the
same amount of time, thus virtually extending the size of the accessible local storage. This
leads to better hit rates with considerably smaller deadlines (in the order of a few
minutes, see Section 3.4). In our system maximum delays are guaranteed, and kept to
a few minutes: beyond a deadline agreed between the MNO and the user, the content
is fetched from the infrastructure. Such additional waiting delays could be easily
amortized for large content transmissions (e.g., videos, software downloads), or be
acceptable based on user subscription level (e.g., some users might be willing to pay
cheaper plans and live with the occasional longer delays [Ha et al., 2012]) and context
(e.g., roaming users might be more willing to wait for a low cost access).

While there are a number of additional architectural and incentive-related questions
to consider, the main goal of the work is to study how to optimally allocate content
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in order to minimize the load on the cellular infrastructure. The contributions of this
chapter can be summarized as follows:

• We study analytically the problem of optimal content allocation, and derive
the optimal number of copies of each content to be allocated in the vehicular
cloud, assuming a stable catalogue and average content popularity.

• We extend our analysis to more practical settings where connectivity can be
lost while retrieving the content (due to, e.g., mobility or interferences).

• We use real traces of content popularity and mobility to study the feasibility of
our system, and show that considerable offloading gains can be achieved even
with modest technology penetration (less than one percent of vehicles partici-
pating in the cloud) and reasonable maximum delays (one to five minutes).

Summarizing, this chapter is structured as follows: in Section 3.2, we present the
content access protocol with the main assumptions of the model; next, in Section 3.3,
we formulate an offloading optimization problem, and we provide closed-form ex-
pressions for the optimal allocation; then, we validate our results through simula-
tions in Section 3.4; finally, we conclude with a summary in Section 3.5.

3.2 System Model

In this section, we introduce the system model with the related assumptions that
will be used to formulate an optimization problem maximizing the traffic offloaded
through the vehicular cloud.

3.2.1 Content Access Protocol

We consider a network with three types of nodes:

• Infrastructure nodes (I). Base stations or macro-cells. Their role is to seed con-
tent into vehicles and to serve user requests when the deadline expires.

• Helper nodes (H). Vehicles such as cars, buses, taxis, trucks, etc., where |H| = h.
These are used to store popular content and to serve user requests at low cost
through a direct vehicle-to-mobile node link.

• End user nodes (U). Mobile devices such as smartphones, tablets or netbooks.
These nodes request content toH and I nodes (the last ones are only contacted
when the deadline expires and the content is still not downloaded).

The basic protocol is made up of three phases (Figure 3.1):

• (I → H). I nodes place content in H nodes according to the chosen allocation
policy. These allocation policies are the main outcome of this paper (specific
policies will be discussed later). We refer to this phase as seeding. The seeding
phase is repeated at the beginning of operator selected time windows to adjust
to varying content access patterns. If seeding is performed during off-peak
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FIGURE 3.1: The basic communication protocol is defined by six
steps: (1) the MNO pushes popular content in vehicles; (2) a user
requests a content to nearby vehicle: (3) if the content is found, the
user can immediately download it; (4) otherwise he waits for new ve-
hicles. (5) When the deadline expires and the content has not been

found, the user downloads it directly from the infrastructure.

periods, the seeding cost can be considered equal to 0. In our work, without
loss of generality, we will focus on this scenario1.

• (H → U). An end user node can request content to the vehicles that are inside
her communication range2. If content i is found, then the U node can imme-
diately download it from the vehicle (with a certain probability, see following
assumptions). Otherwise, she waits for new vehicles for a time equal to y0.
The related local access cost is assumed to be 0.

• (I → U). In case of a content not successfully downloaded within y0, the U
node’s request will be served by the cellular infrastructure. The cost to get
content i from I is equal to the number of bytes downloaded from the cellular
infrastructure (i.e., the content size).

3.2.2 Main Assumptions

A.1 - Catalogue. Let K be the set of all possible contents that users might request
(also defined as “catalogue”), where |K| = k. Let further c be the size of the cache
in each vehicle. We make the natural assumption that c � k. A content i ∈ K is
of size si (in MB), and is characterized by a popularity value φi measured as the re-
quest rate within a seeding time window from all users and all cells. Similar to a
number of works on edge caching [Golrezaei et al., 2013; Poularakis et al., 2014], we
assume this time window to be a system parameter chosen by the MNO. Every time
window, the MNO refreshes its caches installed in vehicles according to the new
estimated popularity. However, while it is reasonable to assume the content size is

1The generic case (i.e., non-null seeding cost) is a straightforward extension when seeding time
windows are large enough to amortize content seeding, and will be evaluated in the simulation section.
A more detailed theoretical study is provided in Appendix C.1.

2The communication range size depends on the physical layer technology used between U andH
nodes.
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known, predicting the popularity of a content is more challenging. Nevertheless,
several studies have confirmed that simple statistical models (e.g., ARMA models)
along with content type characteristics can help to have good estimation of the re-
quest rate, at least in the immediate future [Szabo and Huberman, 2010; Lee, Moon,
and Salamatian, 2010]. Without loss of generality, we assume content is sorted by
decreasing popularity as φ1 ≥ φ2 ≥ · · · ≥ φk.

A.2 - Mobility model. We assume that the inter-meeting times Tij between a user
requesting content i ∈ K and a vehicle j ∈ H are independent and identically dis-
tributed (IID) random variables characterized by a known cumulative distribution
function (CDF) FT (t) = P[Tij ≤ t] with mean rate λ. Let further Ti be the inter-
meeting times between a user requesting content i ∈ K and any vehicle storing such
a content. This model does not make any assumption on the individual user and
vehicle mobility patterns and can capture a number of inter-contact time models
proposed in related literature such as exponential, Pareto, or mixed models [Kara-
giannis, Boudec, and Vojnovic, 2010].

A.3 - Cache model. Let xij ∈ {0, 1}, i ∈ K, j ∈ H be an indicator variable denoting if
helper node j stores content i. Hence, we assume H nodes to store the whole content,
i.e., fractional storage is not allowed. Let further xi denote the number of H nodes
storing content i:

xi =
∑
j∈H

xij .

The vector x will be the control variable for our optimal cache allocation problem.
Note that given the assumption of IID mobility, it suffices to optimize the total num-
ber of copies xi without considering the per vehicle variables xij any more.

A.4 - Content download. Opportunistic meetings between U and H are described
by the well-known “protocol model” [Golrezaei et al., 2014; Gupta and Kumar, 2000]
that uses a simplified description of the physical layer: specifically, two nodes can
communicate if their physical distance is smaller than some collaborative distance
determined by the power level for each transmission. We refer to such meetings
as contacts. What is more, we assume that a download may fail during a contact.
This can be due to several reasons, e.g., low signal-to-interference-plus-noise-ratio
between the vehicle and the user, limited contact duration between the two, inter-
ference. In our framework, we assume that the download of the content will restart
from the beginning when a U node loses the connection with a vehicle (e.g., TCP
session expires) and meets a new one. Hence, we assume that each contact with a
vehicle storing content i is successful with some mean probability pi ≤ 1. We define
this contact download model as follows:

Definition 3.1 (Single Contact Model). Let a content be entirely downloaded during a
contact with probability pi. Assume also that the download restarts if content is not success-
fully downloaded. We refer to this scenario as “Single Contact Model”.

In the next chapter, we consider the possibility to resume the download for subse-
quent meetings. The notation used in the chapter is summarized in Table 3.1.
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TABLE 3.1: Notation used in the chapter.

CONTROL VARIABLE

xi Number of replicas stored for content i

X Feasible region for x

CONTENT

k Number of contents in the catalogue

φi Request rate for content i

si Size of content i

pi Probability to successfully download content i during a contact

c Buffer size per vehicle

MOBILITY

Tij Inter-meeting time between U andH nodes

Ti Inter-meeting time between U and anyH nodes storing content i

λ Mean inter-meeting rate between U andH nodes

h Number of vehicles

y0 Maximum deadline

Mi Number of contacts with vehicles storing content i within y0

SETS

I Infrastructure nodes

H Helper nodes

U End user nodes

K Content catalogue
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3.3 Optimal Content Allocation with Single Contact Model

Based on the aforementioned content access protocol and on the previous assump-
tions, in Section 3.3.1 we formulate an optimization problem to reduce the load on
the cellular infrastructure. Then, we propose specific policies to optimally cache
popular content in the vehicular cloud when the failure download probability is
equal to one (Section 3.3.2) or smaller (Section 3.3.3).

3.3.1 Offloading Optimization Problem

We formulate an optimization problem based on the following ideas: an ideal con-
tent allocation should replicate content with higher popularity in many different
vehicles in order to increase the probability to find it from a requesting user. Triv-
ially, more replicas lead to smaller waiting times. However, if the marginal gain from
extra replicas is nonlinear, it might be better to also have some less popular contents
at the edge. As the storage capacity of each vehicle is limited, our objective is thus
to find the optimal replication factor per content to minimize the total load on the
cellular infrastructure.

Problem 1. Consider the Single Contact Model. The solution to the following optimization
problem maximizes the bytes offloaded through the vehicular cloud3:

maximize
x∈Xk

Φ(x) =
k∑
i=1

φi · si ·

1−
+∞∑
j=0

P[Mi(y0) = j] · (1− pi)j
 , (1)

subject to st · x ≤ c · h,

where X , {a ∈ N | 0 ≤ a ≤ h} is the feasible region for the control variable x, and Mi(t)
is a point process counting the contacts with vehicles storing content i within t.

The objective function counts the number of bytes offloaded through the vehicular
cloud in a seeding time window for the entire catalogue. For each content, this is
equivalent to the content size si times its request rate φi multiplied by the probability
to successfully find it within y0: this is equal to one minus the probability that j
downloads all fail to find, for any j > 0, where j counts the number of contacts
within y0. The objective function is subject to the constraints:

• The number of replicas of content i cannot be negative:

xi ≥ 0, ∀i ∈ K.

3Note that maximize the number of bytes offloaded through the vehicular cloud is equivalent to
minimize the bytes downloaded from the cellular infrastructure when the seeding cost is null.
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• The number of replicas of content i cannot be higher than the number of vehi-
cles participating in the cloud:

xi ≤ h, ∀i ∈ K.

• Each vehicle has a storage constraint and cannot store more than c contents.
However, instead of considering h individual storage constraints (i.e.,

∑k
i=1 si ·

xij ≤ c, ∀j ∈ H), we only consider the global cache capacity of the vehicular
cloud that corresponds to

st · x ≤ c · h

to improve the tractability of the problem. Although the global capacity con-
straint introduces an error in the problem formulation, such an error is ex-
pected to be low when caches are large compared to the mean content size as
we will explain at the end of Section 3.3.2 (see randomized rounding).

Especially in urban environments, we note that the number of vehicles participating
in the cloud is expected to be large, and the inter-meeting rate per vehicle is low. The
following lemma describes the distribution of Ti under the above assumptions.

Lemma 3.2. Assume the number of vehicles participating in the vehicular cloud to be large,
and the mean inter-meeting rate with such vehicles small. Thus, Ti approaches an exponen-
tial distribution with rate λ · xi.

Proof. Let Γij(t) be a point process with rate λ. Each point of this process is the
time of a contact between a user and a vehicle j ∈ H storing content i ∈ K. The
inter-arrival time between two points is captured by the random variable Tij (see
Assumption A.2). To clarify, assume T (1)

ij to be a random variable that corresponds
to the time of the first jump. Then, the event {Γij(t) = 0} is equivalent to the event
{T (1)

ij > t}, meaning that the first jump will occur after epoch t, i.e.,

P[T
(1)
ij > t] = P[Γij(t) = 0].

Since content i has xi replicas, there are xi identical processes Γij(t). We equivalently
redefine Γij(t) as follows: {Γij(t), t > 0, j ∈ H | xij = 1} are xi identical and inde-
pendent renewal processes with holding times Tij corresponding to the inter-arrival
times between users and vehicles storing content i. Let further {Γi(t), t > 0} be the
superposition of these processes. According to the Palm-Khintchine theorem [Karlin
and Taylor, 2012], {Γi(t), t > 0} approaches a Poisson process with rate λ · xi if xi
large and λ small. Note that Ti corresponds to the inter-arrival times of the process
{Γi(t), t > 0} (assumption A.2). Thus, Ti approaches an exponential distribution
with mean rate λ · xi.

While this assumption (i.e., xi large) might not always be true, exponential inter-
meeting times have been largely used in literature and considered as a good approx-
imation, especially in the tail of the distribution [Conan, Leguay, and Friedman,
2007; Karagiannis, Le Boudec, and Vojnović, 2007]. In an urban environment, the
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above lemma approximates Ti accurately as we will verify through real trace-based
simulations.

3.3.2 Content Caching with Single Contact Model (SC)

In this section, we assume that a content (of small size) can be entirely downloaded
from the vehicular cloud during a single contact. This scenario can be considered
reasonable when (i) content size is small (for instance, in the case of short videos,
news or even advertisements) or (ii) the contact duration is large due to future envi-
sioned improvements in vehicle-to-device communications. Therefore, we initially
set pi equal to one. This scenario will be considered as a baseline scenario.

Lemma 3.3. Consider the Single Contact Model when pi = 1 for any i ∈ K. The objective
function of Problem (1) becomes

Φsc(x) =

k∑
i=1

φi · si · (1− e−λ·xi·y0). (2)

Proof. When pi = 1, Eq. (1) becomes

Φ(x) ≡
k∑
i=1

φi · si · (1−P[Mi(y0) = 0]) .

P[Mi(y0) = 0] is the probability not to have a meeting with a vehicles storing content
i within y0, and it is clearly equivalent to P[Ti > y0]. What is more, Ti is exponen-
tially distributed with rate λ · xi (see Lemma 3.2). Under these considerations, the
objective function of Problem (1) becomes

Φsc(x) =

k∑
i=1

φi · si · (1−P[Ti > y0])

=
k∑
i=1

φi · si ·
(

1− e−λ·xi·y0
)
,

which is the objective function of the lemma.

Hence, Problem (1) can be rewritten as follows:

Problem 2. Consider the Single Contact Model when pi = 1 for any i ∈ K. The solution
to the following optimization problem maximizes the bytes offloaded through the vehicular
cloud:

maximize
x∈Xk

k∑
i=1

φi · si · (1− e−λ·xi·y0),

subject to st · x ≤ c · h.
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Proposition 3.4. Problem (2) is an NP-hard combinatorial problem.

Proof. The problem is a bounded knapsack problem (BKP) with a nonlinear objective
function. Such a problem is NP-hard since it is a generalization of the knapsack
problem which is known to be NP-hard [Martello and Toth, 1990].

Similarly to a number of works, we consider the continuous relaxation of the problem
to obtain a closed-form real-valued solution. This relaxation brings two fundamen-
tal advantages: first, it is possible to evaluate the quality of a feasible set of solutions;
second, it is much faster to optimize than the original integer problem. The follow-
ing theorem holds:

Theorem 3.5. The solution of Problem (2) is given by

x∗i =


0, if φi < L,

1
λ·y0 · ln

(
λ·y0·φi
ρ

)
, if L ≤ φi ≤ U,

h, if φi > U,

where x∗ , arg maxx∈Xk Φsc(x), L , ρ
λ·y0 , U , ρ·eh·λ·y0

λ·y0 , and ρ is an appropriate Lagrange
multiplier.

Proof. Problem (2) is a convex optimization problem since its objective function is
convex (because it is the sum of convex functions), the constraint is linear and the
set of feasible solutions is convex. We solve it by Karush-Kuhn-Tucker (KKT) con-
ditions. For such a convex problem, this method provides necessary and sufficient
conditions for the stationary points to be optimal solutions. The KKT conditions for
Problem (2) are 

li · xi = 0

mi · (h− xi) = 0

ρ ·
(
c · h−

∑k
i=1 si · xi

)
= 0

where li and mi are appropriate Lagrange multipliers related to the bounds of x.
The related Lagrangian function L(x) is

L(x) =
k∑
i=1

[
φi · si · (1− e−λ·xi·y0) + li · xi +mi · (h− xi)

]
+ ρ ·

(
c · h−

k∑
i=1

si · xi

)
.

We compute the stationary points by computing the derivative of the Lagrangian
function for each content i. Since the problem is convex, these points are also global
solutions.

dL(x)

dxi
= λ · y0 · φi · si · e−λ·xi·y0 + li −mi − ρ · si = 0.

Making explicit x, we obtain:

xi =
1

λ · y0
· ln
(
λ · y0 · si · φi
si · ρ− li +mi

)
.
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Then, the system constraints create three regimes depending on the content popu-
larity:

• Low popularity. The optimal allocation x must be greater or equal to 0. Ac-
cording to the KKT conditions, we have two cases that satisfy the constraint:
(i) xi > 0, li = 0; (ii) xi = 0, li > 0. The threshold between case (i) and (ii)
depends on the content popularity: specifically, a content will get more than
0 copies when its popularity is higher than L which can be easily computed
when xi > 0:

1

λ · y0
ln

(
λ · y0 · φi

ρ

)
> 0 ⇔ φi >

ρ

λ · y0
, L.

• High popularity. The content allocation is upper bounded by the number ve-
hicles h participating in the cloud. Similarly to the previous scenario, due to
the KKT conditions, the constraint is satisfied when: (i) xi < h, mi = 0; (ii)
xi = h, mi > 0. Again, the threshold between case (i) and (ii) depends on the
content popularity: specifically, a content will get less than h copies when its
popularity is lower than U which can be easily computed when xi < h:

1

λ · y0
ln

(
λ · y0 · φi

ρ

)
< h ⇔ φi <

ρ · eh·λ·y0
λ · y0

, U.

• Medium popularity. In all the other cases (i.e., when U ≤ φi ≤ L), the optimal
allocation is proportional to the logarithm of the content popularity.

Corollary 3.6. The relative optimal content allocation for Problem (2) is independent of the
content size.

When deadlines are fixed, the number of copies to allocate only depends on the con-
tent popularity. However, the absolute allocation4 is still dependent on the content
size: intuitively, if content has larger size, for a given popularity the optimal num-
ber of copies to allocate is lower due to the capacity constraint. To be more precise,
the value of the Lagrange multiplier ρ permits to satisfy the capacity constraint (see
KKT conditions in the proof of Theorem 3.5) by scaling the total allocation down.
However, since ρ depends on the popularity of the entire catalogue, it is in gen-
eral difficult to determine a closed-form expression for it. The following proposition
helps to formulate a simple algorithm to find numerically its value.

Proposition 3.7. The value of the objective function of Problem (2) monotonically decreases
as ρ increases5.

Proof. Let x0 be the allocation computed when ρ = ρ∗ where ρ∗ > 0 is an arbitrary
positive number. Similarly, let x1 be the allocation computed when ρ = ρ∗+ ∆ρ. We

4With the term absolute allocation we refer to the actual number of replicas to cache in the vehicular
cloud.

5Note that the optimal content allocation x∗ is function of ρ.
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want to prove that
Φsc(x

0) ≥ Φsc(x
1),

for any ∆ρ > 0. From Lemma 3.3, we have

Φsc(x
0) =

k∑
i=1

φi · si ·
(

1− e−λ·x0i ·y0
)
,

Φsc(x
1) =

k∑
i=1

φi · si ·
(

1− e−λ·x1i ·y0
)
.

Then,

k∑
i=1

φi · si ·
(

1− e−λ·x0i ·y0
)
≥

k∑
i=1

φi · si ·
(

1− e−λ·x1i ·y0
)

k∑
i=1

φi · si · e−λ·x
0
i ·y0 ≤

k∑
i=1

φi · si · e−λ·x
1
i ·y0

k∑
i=1

(
e−λ·x

0
i ·y0 − e−λ·x1i ·y0

)
≤ 0.

It is easy to see that, for a given content i, x1i ≥ x2i, for any ∆ρ > 0. Thus,

e−λ·x
0
i ·y0 − e−λ·x1i ·y0 ≤ 0, ∀i ∈ K,

which proves the proposition.

Corollary 3.8. Problem (2) is maximized for the minimum value of ρ that satisfies the ca-
pacity constraint.

The above corollary can be directly derived from Proposition 3.7. Thus, we can write
the following minimum search algorithm (Algorithm 1) to compute the optimal al-
location:

1. Set ρ to an arbitrary low value ρ0.

2. Calculate the optimal allocation x according to Theorem 3.5.

3. If the total allocation st ·x is smaller than the total buffer capacity available c ·h,
then go to 4. Otherwise, increase ρ and repeat 2.

4. Introduce the auxiliary variables a and b, and set ρ to (a+ b)/2.

5. Calculate the optimal allocation x according to Theorem 3.5.

6. If the convergence criterion is satisfied (see below), then stop and return x.
Otherwise updates a, b and ρ, and go to 5.
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Algorithm 1 Caching algorithm for Single Contact Model

Ensure: x
1: function MAIN

2: ρ← ρ0 . Set an initial value of ρ
3: x← Compute_allocation(ρ) . See Theorem 3.5
4: while st· x > c· h do
5: ρ← ρ·2 . Increase ρ arbitrarily
6: x← Compute_allocation(ρ)
7: ε←0,001 . Buffer capacity unused less than 0,1%
8: a←ρ/2
9: b←ρ

10: while st· x < c· h·(1-ε) OR st· x > c· h do . Convergence criterion
11: ρ← (a+b)/2 . Binary search
12: x← Compute_allocation(ρ)
13: if st· x > c· h then
14: a←ρ
15: else
16: b←ρ
17: return x

Let ε > 0 be the percentage of storage capacity that can be left unused. Algorithm 1
stops when the convergence criterion is met, i.e., when

(1− ε) · c · h ≤ st · x ≤ c · h.

Finally, we use randomized rounding [Raghavan and Tompson, 1987] on the content
allocation which is a widely used approach for designing and analyzing such ap-
proximation algorithms. We expect the rounding error to be low since the number
of copies per content is usually large (then the decision whether rounding up or
down has only a marginal effect in the objective function). We refer to this policy as
Content Caching with Single Contact Model (SC).

Content Popularity from a Known Distribution

In some cases, if the content popularity φi follows a known distribution, then it is
possible to calculate ρ explicitly without the need for Algorithm 1. We provide an
example when the content popularity follows a Pareto distribution.

Proposition 3.9. Let fφ(t) be a probability density function (PDF) that follows a Pareto
distribution with shape α and scale xm, i.e.,

fφ(t) =

{ α·xαm
tα+1 , if t ≥ xm,
0, otherwise.
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Let further fφ(t) be the PDF of the content popularity. Hence, Theorem 3.5 optimally solves
Problem (2) when

ρ = λ ·y0 ·xm · α
√
k ·E[si]

c · h
·
[

1

α · λ · y0
· [1− (α · h · λ · y0 + 1) · e−α·h·λ·y0 ] + e−α·h·λ·y0

]
.

Proof. Theorem 3.5 splits content in three regimes according to their popularity. Thus,
we define the following disjoint sets:

A , {a ∈ K | φa < L},
B , {b ∈ K | L ≤ φb ≤ U},
C , {c ∈ K | φc > U}.

where A, B and C correspond respectively to the subset of contents having low,
medium and high popularity. According to Corollary 3.8, we want to calculate

ρ∗ = min{ρ ∈ R+ | st · x∗(ρ) ≤ c · h},

which is minimum when the constraint has the equality (see Proposition 3.7). Thus,
according to Theorem 3.5 and to the sets previously defined, we write the total allo-
cation as a function of ρ:∑

i∈A
si · 0 +

∑
i∈B

si
λ · y0

· ln
(
λ · y0 · φi

ρ

)
+
∑
i∈C

si · h = c · h,

Without loss of generality, the corresponding continuous form is

k ·
∫ U

L

si
λ · y0

· ln
(
λ · y0 · t

ρ

)
· fφ(t) dt+ k ·

∫ +∞

U
si · h · fφ(t) dt = c · h.

Since the content catalogue is large and the content size is independent of its popu-
larity, we can rewrite the above equation replacing si with its expected value E[si]:

1

λ · y0
·
∫ U

L
ln

(
λ · y0 · t

ρ

)
· fφ(t) dt+ h ·

∫ +∞

U
fφ(t) dt =

c · h
k ·E[si]

.

When fφ(t) follows a Pareto distribution, the first integral can be easily solved by
parts and is equal to(

λ · y0 · xm
ρ

)α
· 1

α · λ · y0
·
[
1− (α · h · λ · y0 + 1) · e−α·h·λ·y0

]
,

and the second integral is the complementary CDF of fφ(t) calculated in U , i.e.,(
xm · λ · y0

ρ · eh·λ·y0

)α
.

Then, solving for ρ gives the result of the proposition.
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3.3.3 Enhanced Content Caching with Single Contact Model (SC+)

When a U node is inside the communication range of an H node, the connectivity
might be lost due to many reasons. Specifically, a success or a failure in downloading
a content depends on the following key factors:

• Contact duration. This is the amount of time during which H and U nodes can
exchange data during a contact. Due to vehicles mobility, an H node could
leave the communication range before the content is entirely downloaded.

• Throughput. The download rate depends both on distance between the nodes
and on interferences and variability in the urban radio environment: WiFi pro-
tocols are defined to use dynamic rate scaling, and the throughput will auto-
matically decrease as the signal strength decreases, i.e., as the distance between
the nodes increases.

• Content size. The probability to successfully download a content decreases as
its size increases.

In order to deal with such a failure probability in the downloads, we will assume to
have knowledge of an average value pi of the probability to successfully download
content i during a contact. Similarly to the previous section, we infer the objective
function of the problem.

Lemma 3.10. Consider the Single Contact Model when pi < 1. The objective function of
Problem (1) becomes

Φsc+(x) =
k∑
i=1

φi · si · (1− e−pi·λ·xi·y0).

Proof. In the Single Contact Model, a content is downloaded when at least one of
the contacts is successful. When pi = 1 for any i ∈ K, {Γi(t), t > 0} approximates a
Poisson process with rate λ · xi (see Lemma 3.2). Now, we assume that each arrival,
independently of the the others, is one of two types: case 1 (success) with probability
pi, case 2 (fail) with probability 1 − pi. The new random process is referred to as
thinning the original Poisson process. Hence, the two cases form separate Poisson
processes with rates pi ·λ ·xi and (1−pi) ·λ ·xi respectively, and are independent.

Hence, Problem (1) can be rewritten as follows:

Problem 3. Consider the Single Contact Model when pi < 1. The solution to the following
optimization problem maximizes the bytes offloaded through the vehicular cloud:

maximize
x∈Xk

k∑
i=1

φi · si · (1− e−pi·λ·xi·y0),

subject to st · x ≤ c · h.
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Similarly to Problem (2), this problem is NP-hard, and we consider a continuous re-
laxation.

Theorem 3.11. The solution of Problem (3) is given by

x∗i =


0, if φi < L

1
pi·λ·y0 · ln

(
pi·λ·y0·φi

ρ

)
, if L ≤ φi ≤ U

h, if φi > U

where L , ρ
pi·λ·y0 , U , ρ·eh·pi·λ·y0

pi·λ·y0 .

Proof. The proof proceeds as in the proof of Theorem 3.5 when λ is replaced by pi ·
λ.

We refer to this policy as Enhanced Content Caching with Single Contact Model (SC+).

3.4 Performance Analysis

We build a tool in MATLAB where we simulate the load on the cellular infrastructure
in order to validate our model. We consider the proposed allocation policies SC and
SC+, and we study the impact of different parameters in the proposed cache system.

3.4.1 Simulation Setup

We consider a square area 5000 m x 5000 m in the center of San Francisco. We use
the Cabspotting6 trace to compute the average inter-meeting rate between users and
vehicles: we randomly place U nodes and, considering a communication range of
200 m, we calculate the meeting rate with eachH node. We find λ = 4 contacts/day.
According to the density of the city and to the number of vehicles per capita, we
estimate to 100.000 the number of vehicles in the area considered. However, in order
to be realistic about initial technology penetration, we assume that only one percent
of these vehicles is participating in the cloud.

Furthermore, in our analysis we consider the content popularity of YouTube videos
since a large percentage of mobile data traffic is represented by video files. We down-
load a database that collects statistics for 100.000 YouTube videos [Zeni, Miorandi,
and De Pellegrini, 2013]. The database includes static (e.g., title, description, au-
thor, duration, related videos) and dynamic information (e.g., daily and cumulative
views, shares, comments). In our simulations, we only take into account the number
of views related to one week. However, these values are equal to the total number
of views per day in the world, then we scale them linearly taking into account the
number YouTube users and the population of San Francisco. We have also created

6GPS coordinates from more than 500 taxis in San Francisco over approximately three weeks [Pi-
orkowski, Sarafijanovic-Djukic, and Grossglauser, 2009].
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synthetic traces based on the work in Crane and Sornette, 2008. Simulations based
on these synthetic traces confirm the observations made using the real traces. We
therefore focus on the former.

Finally, we assume that each car can store 100 contents (0, 1 percent of the catalogue),
and we set y0 to three minutes. Unless otherwise stated, we will use these parame-
ters summarized in Table 3.2.

DESCRIPTION PARAM VALUE

Number of vehicles h 1000 vehicles

Buffer size c 0,2%·k

Meeting rate λ 4 contacts/day

Deadline y0 3 minutes

Number of contents k 100.000 contents

Simulation area 5000 m×5000 m

Communication range 200 m

TABLE 3.2: Parameters used in the simulations.

We compare the following allocation policies:

• SC+. This policy allocates content on vehicles proportionally to the logarithm
of the popularity when the mean probability to download a content during a
meeting is equal to pi. The policy is described in Section 3.3.3.

• SC. This policy allocates content on vehicles proportionally to the logarithm
of the popularity when the mean probability to download a content during a
meeting is equal to one. The policy is described in Section 3.3.2.

• Square root. This policy behaves similarly to SC, but it replaces the logarithm
with the square root, after an appropriate normalization to satisfy the storage
constraint.

• Random. This policy allocates content randomly.

• No cache. No content is stored in the vehicles. The probability of miss is equal
to one, therefore the cost corresponds to the total demand: cost = st · φ.

3.4.2 Numerical Results

We perform numerical simulations comparing the effects of buffer size, deadlines
and other parameters on the final gain comparing different policies.

Figure 3.2 depicts the cost in terms of percentage of bytes downloaded from the
cellular infrastructure assuming pi = 1 for any i ∈ K. SC reduces the total cost by
around 65 percent, more than any other policy. What is more, it improves twice the
performance compared to the square root policy which is known to achieve optimal
results in conventional peer-to-peer networks [Cohen and Shenker, 2002]. The bar
chart also shows the seeding cost which is computed as the number of bytes pushed
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by the MNO during the seeding phase. If the seeding time window is large enough,
we notice that such a cost is negligible compared to the cache miss cost. We calculate
SC when the seeding cost is non-null in Appendix C.1, and we show that the optimal
allocation is equivalent to the policy described in Section 3.3.2 when the number of
requests is large.
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FIGURE 3.2: Percentage of traffic downloaded from the cellular in-
frastructure with different caching policies.

Figure 3.3 shows the cost according to the value of y0 for the different caching poli-
cies. It is very important to note that considerable gains can be achieved with very
small deadlines (in the order of a few minutes) and small number of vehicles partic-
ipating in the cloud (one percent). This provides some evidence on the advantages
of offloading based on a vehicular cloud compared to offloading using small cells
or WiFi, as for example in Balasubramanian, Mahajan, and Venkataramani, 2010 or
Lee et al., 2013: Balasubramanian, Mahajan, and Venkataramani, 2010 report minor
gains for similar small deadlines, while Lee et al., 2013 require a much longer TTL
(in the order of one-two hours) to achieve similar gains. In addition, increasing the
deadline further has diminishing returns. This implies that even users not willing
to wait too long could participate in such a system (benefiting themselves and the
operator).

An efficient cache system should store as many popular contents as possible. How-
ever, in reality the catalogue of online content is really large and only a small per-
centage of them can be stored. Figure 3.4 shows the cost according to the buffer size.
From the plot we can observe that storing 100 contents/car (only 0,1 percent of the
total catalogue) provides a gain of almost 60 percent. In a scenario with a larger cat-
alogue (e.g., 100 millions), it seems doable to store 0,1 percent of the contents (e.g.,
100.000 contents/car) needed to achieve good savings. What is more, due to the
intrinsic characteristics of the popularity distribution, the system might require an
even smaller number of storage in order to achieve similar gains.

In an urban environment, the great availability of vehicles leads to large gains for the
proposed infrastructure. However, an operator will probably keep using our frame-
work even if the number of vehicles available decreases: in Figure 3.5 we depict the
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FIGURE 3.3: Percentage of traffic downloaded from the cellular in-
frastructure according to different deadlines y0.
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FIGURE 3.4: Percentage of traffic downloaded from the cellular in-
frastructure according to different buffer capacity c.

cost savings according to the number of H nodes participating in the cloud and the
gain observed is not less than 50 percent when more than 250 vehicles are part of the
cloud.

While in these simulations we have assumed that the probability of downloading a
content during contact is equal to one, because of external factors, a user might not
be able to get the requested content during a meeting. According to the discussion
in Section 3.3.3, in Figure 3.6 we plot the percentage of savings for different values of
pi. We can note that, even when pi is equal to 0, 5 (i.e., a U node loses the connection
during half of the downloads7), SC+ provides a gain of almost 60 percent in terms
of total bytes downloaded from the core infrastructure. Clearly, this will be at the
expense of some larger delay compared to the case of no disconnections. Further-
more, we plot the gain provided by SC (calculated with pi equal to one) in a scenario

7We consider pi = p for any i ∈ K (where p ∈ [0, 1]) to provide an easier interpretation of the
results.



3.4. Performance Analysis 33

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Number of vehicles

C
o

s
t 

[%
]

 

 

No cache

Square root

SC

FIGURE 3.5: Percentage of traffic downloaded from the cellular in-
frastructure according to the number of vehicles h.

with losses: the plot shows that it is important trying to estimate the value of pi and
tune the allocation of SC+ accordingly, since this can bring up to the 20 percent of
additional savings.
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FIGURE 3.6: Percentage of traffic downloaded from the cellular in-
frastructure according to different values of pi.

Finally, it has been long observed in many contexts, including Internet content, that
popularity exhibits strong skewedness. To evaluate the effect of such popularity dif-
ferences, in Figure 3.7 we do not take into account the real YouTube dataset, rather
we consider bounded Pareto distributions (minimum value = 1 request/day, maxi-
mum value = 100.000 requests/day and ζ as shape parameter). We can observe that
when the variance increases (ζ low), the optimal allocation brings a considerable
gain up to the 70 percent. This is due to the fact that, if ζ is low, some contents have
very high popularity, and caching them leads to a large number of cache hits. On the
other hand, the gain goes to 0 when ζ increases, i.e., the differences in the content
popularity are negligible making it hard to create enough cache hits with any subset
of them that can fit in the cloud.
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FIGURE 3.7: Percentage of traffic downloaded from the cellular in-
frastructure with synthetic trace for content popularity.

3.5 Summary

In this chapter, we have introduced a network infrastructure made up of vehicles
storing replicas of popular content. This vehicular cloud can be used to boost the
traditional cellular network. Replicas can be accessed by nearby user equipments
to offload part of the mobile traffic demand. In our model, a user is willing to wait
until a maximum deadline expires in order to increase the probability to have a cache
hit. Such a delay is fixed and is decided by the mobile network operator. The goal
of the study was to define an allocation policy to minimize the bytes downloaded
from the cellular infrastructure. For this reason, we have formulated an optimization
problem, and proposed the two following policies:

• SC. We have introduced a model where a content can be entirely downloaded
during a single contact between a user and a vehicle. The related optimization
problem is NP-hard, and we solve through KKT conditions after a continuous
relaxation. The resulting allocation strategy allocates popular content propor-
tionally to the logarithm of the content popularity.

• SC+. Due to interference, limited contact duration or other technology limita-
tions, the download might fail during a meeting. We have proposed a specific
policy to deal with a mean failure probability. The problem is again NP-hard,
and we have shown that the related continuous relaxation is a special case of
the SC policy.

Finally, we have performed numerical simulation to compare SC and SC+ with other
caching strategies. Among the others, we have noticed two positive aspects: (i) the
traffic offloaded by the proposed allocation policies is significantly higher than any
other policy under the assumption of the single contact model; (ii) vehicle mobility
allows to have very small deadlines compared to similar works due to the fact that a
user will see a much larger number of caches in a smaller amount of time compared
to, e.g., femtocaching.



35

Chapter 4

Quality of Experience-Aware
Content Caching

4.1 Introduction

The model discussed in Chapter 3 suffers from two main drawbacks: first, a user
might be more willing to wait for a specific content than for another, and the allo-
cation policies of Chapter 3 assign equal deadlines to the content catalogue; second,
the Single Contact Model is appropriate when content is of small size, but we expect
to see a performance degradation (in terms of traffic offloaded) as the content size
increases (then pi is expected to be low). In order to deal with such limitations, in
this chapter we introduce three fundamental novelties:

Variable deadlines. The majority of edge caching related works are operator-centric,
aiming at policies that exclusively minimize the load on the cellular infrastructure.
In most delayed offloading settings, the worst-case delay TTL guarantee offered to
the user is usually fixed for all content requests and set to large values in order to of-
fload a considerable amount of traffic, as explained earlier. Conversely, in our work
we allow the operator to set different deadlines for different contents. This vari-
ability in the TTL brings two advantages: first, it allows to increase the percentage
of the traffic offloaded through the vehicular cloud; second, these deadlines can be
adapted according to the specific characteristics of the content (e.g., size) in order to
improve user Quality of Experience (QoE), as we explain below.

User QoE-Aware offloading. We choose to evaluate the user QoE according to the
experienced slowdown which has become popular in recent queuing theory litera-
ture [Harchol-Balter, 2013]. This metric relates the waiting delay with the “net”
download time. For example, a user requesting a web page of a few megabytes
(normally taking some seconds) will be quite frustrated if she has to wait an extra
one-two minutes to encounter a vehicle caching that web page. However, a user
downloading a large video or software file might not even notice an extra one-two
minutes delay. Specifically, in our framework an MNO can calibrate the user expe-
rience by setting a required slowdown which upper bounds the tail behavior of the
response time. Unlike similar related works that use large TTLs, tuning the waiting
time per content ensures maximum offloading with little QoE degradation.
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Partial downloads. Due to the limited contact duration and to the content size, down-
loading a content in one shot might be hard, leading to a small value of pi. Alter-
natively, if we consider large content such as videos, chunking is a popular way to
break down the file into smaller pieces. Hence, in practice, during a contact a node
could download one or more chunks. Moreover, new technologies allow easily to
stop and resume the download at any time (e.g., latest versions of browsers, on-
line music players). Later in the chapter, we introduce a model in which, when a
user loses the connection, the download will resume from the point of interruption
during the following cache hit.

The main focus of this chapter is on the modelling of the above scenario and on
the formulation of a corresponding (nontrivial) optimization problem. The contri-
butions of this chapter can be summarized as follows:

1. We model the problem of maximizing the percentage of traffic offloaded through
the vehicular cloud considering the user QoE (captured by the slowdown met-
ric) and a large range of realistic conditions (e.g., content of heterogeneous
size).

2. We solve the above problem presenting a variable deadline caching policy
based on the Single Contact Model. Then, we generalize such a model and
we propose a caching policy which takes into account partial downloads from
vehicles.

3. We validate our findings using simulations with real traces for vehicle mo-
bility and content popularity. We show that, in an urban scenario, our system
can achieve considerable offloading gains with modest technology penetration
(less than one percent of vehicles participating in the cloud) and low mean
slowdown (that leads to average deadlines of a few minutes).

4. We study the impact of different user QoE guarantees on operator- and user-
related performance, and compare our proposed variable deadline policies
with the ones introduced in Chapter 3.

Summarizing, this chapter is structured as follows: in Section 4.2, we present the
content access protocol and the main assumptions; next, in Section 4.3, we formulate
an optimization problem and we propose a variable deadline policy according to the
Single Contact Model; then, we generalize the model considering partial downloads,
we formulate a new optimization problem, and we propose a variable deadline pol-
icy for this generic scenario in Section 4.4; finally, we validate our findings against
real trace-based simulations in Section 4.5, and we conclude with a summary in Sec-
tion 4.6.
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4.2 System Model

The system model used in this chapter follows the model described in Section 3.2.
For this reason, to avoid redundancy, we summarize briefly the common points be-
tween the two models, and we highlight the differences introduced by the user QoE-
awareness.

4.2.1 Content Access Protocol

We consider the same network formed by I, H and U nodes. The basic protocol is
made up of three phases:

• (I → H). I nodes place content in H nodes according to the chosen allocation
policy (seeding phase).

• (H → U). An end user node can request content i to the vehicles that are inside
her communication range. If content i is found, then the U node can download
bytes from the vehicle during the contact. If the download is not terminated,
then the requesting mobile user will query nearby vehicles for a time equal to
yi. This deadline is decided for that content i by the allocation policy during
the seeding phase1. The related local access cost is assumed to be 0.

• (I → U). In case of a content not successfully downloaded within yi, the U
node’s request will be served (partially or entirely) by the cellular infrastruc-
ture. The cost to get content i from I is equal to the number of bytes down-
loaded from the cellular infrastructure.

4.2.2 Main Assumptions

For the sake of clarity, we summarize briefly the assumptions that have already been
used in Chapter 3.

A.1 - Catalogue. Let K be the set of all possible contents that users might request
where |K| = k. Let further c be the size of the cache in each vehicle. We make
the natural assumption that c � k. A content i ∈ K is of size si (in MB), and is
characterized by a popularity value φi measured as the expected request rate within
a seeding time window from all users and all cells. Content is sorted by decreasing
popularity as φ1 ≥ φ2 ≥ · · · ≥ φk.

A.2 - Mobility model. We assume that the inter-meeting times Tij between a user
requesting content i ∈ K and a vehicle j ∈ H are IID random variables characterized

1In reality, deadlines might be application-dependent. This can be easily included in our frame-
work by considering an individual maximum TTL per content (depending on the application). As
extreme case, preassigned TTLs have already been discussed in related work [Gao et al., 2016; Cai,
Koprulu, and Shroff, 2013]. TTLs could also be affected by different types of users (e.g., roaming users
might be willing to wait more to get a content at lower cost). In this work, we only consider an average
delay-tolerance (which can be tuned by the MNO through the slowdown metric) and we defer further
study in this direction to future work.
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by a known CDF FT (t) = P[Tij ≤ t] with mean rate λ. Let further Ti be the inter-
meeting times between a user requesting content i ∈ K and any vehicle storing such
a content.

A.3 - Cache model. Let xi denote the number ofH nodes storing content i. Fractional
storage is not allowed.

A.4 - Content download. We assume that a content can be entirely downloaded
during a contact with probability pi. For simplicity, we first consider pi = 1 for any
i ∈ K. However, it is trivial to extend the results of the chapter to the case pi < 1
due to Lemma 3.10. We also assume that the download restarts if content is not
successfully downloaded.

Later in the chapter, we generalize Assumption A.4 (Single Contact Model) by as-
suming that a content can be partially downloaded from the vehicular cloud. Then,
we introduce the following assumption to deal with the user QoE:

A.5 - QoE metric. First, we define ti , si/r as the net download time of content i
by a user, i.e., the amount of time it takes to download the content (excluding any
potential waiting time to encounter vehicles holding the content), where r is the
download rate from the cellular infrastructure. As for videos, ti can be thought of
as the video duration (and r as the playout rate). Then, we introduce the maximum
slowdown per content that ties content download time to its size as

ωi ,
yi + ti
ti

= 1 +
yi
si/r

,

where ωi represents the maximum slowdown imposed by our system when the con-
tent is fetched from the infrastructure. The larger ωi is, the worse the impact of the
allocation policy on user experience. This is in fact a worst case metric, because if the
content is downloaded before the deadline expires, say at some time di < yi (i.e.,
there is a cache hit), the real slowdown is lower and equal to 1 + di

ti
. Nevertheless,

we choose to use the maximum slowdown in our theoretical framework as a more
conservative approach for the user, and keep the analysis simpler. Furthermore,
since the operator’s goal is to consider the global QoE (and not only per request), we
consider a weighted average of the maximum slowdown according to the content
popularity defined as

Ω(y) =

k∑
i=1

φi · ωi.

For simplicity, we will refer to Ω(y) as mean slowdown. As we will see in Section 4.5.2,
an MNO can use this metric to calibrate the global user QoE of the system by setting
a parameter ωmax > 1 that upper bounds the mean slowdown. This value can be
seen as a sort of “budget” available to the MNO that can be reallocated between
contents. Moreover, the MNO can set a maximum tolerable deadline ymax to avoid
excessively large TTLs for specific content.

The main notation used in the chapter is summarized in Table 4.1.
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TABLE 4.1: Notation used in the chapter.

CONTROL VARIABLES

xi Number of replicas stored for content i

X Feasible region for x

yi Deadline for content i

Y Feasible region for y

CONTENT

k Number of content in the catalogue

φi Request rate for content i

si Size of content i

c Buffer size per vehicle

MOBILITY

Tij Inter-meeting time between U andH nodes

Ti Inter-meeting time between U and anyH nodes with content i

λ Mean inter-meeting rate between U andH nodes

Mi Number of contacts within yi

h Number of vehicles

CHUNK DOWNLOAD

wij Bytes downloaded per contact

µ Mean of wij

σ2 Variance of wij

Wi Total bytes downloaded for content i fromH nodes

fWi
Probability density function of Wi

FWi
Cumulative density function of Wi

QOE PARAMETERS

r Download rate from cellular infrastructure (or playout rate for videos)

Ω Mean slowdown

ymax Maximum deadline

ωmax Upper bound on the mean slowdown

SETS

I Infrastructure nodes

H Helper nodes

U End user nodes

K Content catalogue
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4.3 Optimal Content Allocation with Single Contact Model

Based on the aforementioned content access protocol and on the previous assump-
tions, in Section 4.3.1 we formulate an optimization problem to reduce the load
on the cellular infrastructure considering variable deadlines and a QoE constraint.
Then, in Section 4.3.2, we propose an algorithm to solve such a problem.

4.3.1 Offloading Optimization Problem

The operator’s goal is to define a policy to maximize the bytes offloaded through the
vehicular cloud while satisfying storage capacity and user QoE requirements. This
policy should infer the optimal content allocation x and the optimal deadlines y to
assign to the content catalogue.

Problem 4. Consider the Single Contact Model when deadlines are variable. The solution
to the following optimization problem maximizes the bytes offloaded through the vehicular
cloud:

maximize
x∈Xk,y∈Y k

k∑
i=1

Φqsc , φi · si · (1− e−λ·xi·yi), (3)

subject to st · x ≤ c · h,
Ω(y) ≤ ωmax. (4)

where X , {a ∈ N | 0 ≤ a ≤ h} and Y , {b ∈ R+ | 0 ≤ b ≤ ymax} are the feasible
regions for the control variables x and y.

4.3.2 QoE-Aware Content Caching with Single Contact Model (qSC)

Problem (4) is a mixed-integer nonlinear programming (MINLP) problem. MINLP
refers to optimization problems with continuous and discrete variables and nonlin-
ear functions in the objective function and/or the constraints, i.e., it includes both
nonlinear programming (NLP) and mixed-integer linear programming (MILP) as
subproblems.

Proposition 4.1. Problem (4) is an NP-hard combinatorial problem.

Proof. The problem is NP-hard since it includes MILP as a subproblem [Kannan and
Monma, 1978].

Similarly to the previous chapter, we consider a continuous relaxation of the prob-
lem. The following proposition holds:

Proposition 4.2. Problem (4) is a biconvex optimization problem with separable constraints.
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Proof. Eq. (3) is a twice-differentiable function on the variables x and y. In order to
analyze the convexity of the function, we need to examine its second partial deriva-
tives. We refer to the matrix of the second partial derivatives of the function as the
Hessian H(x,y). We can determine the concavity/convexity of a function by deter-
mining whether the determinant of the Hessian is negative or positive semidefinite:
specifically, the function is convex if and only if H(x,y) is positive semidefinite for
all pairs {x,y}. The Hessian is given by2:

H =

[
λ2 · x2

i · e−λ·xi·yi (λ · xi · yi − 1) · e−λ·xi·yi
(λ · xi · yi − 1) · e−λ·xi·yi λ2 · y2

i · e−λ·xi·yi .

]
Thus,

det|H| = (2 · λ · xi · yi − 1) · e−λ·xi·yi

which is greater than 0 when xi · yi > 1
2λ . Since we can found pairs which makes

the determinant of the Hessian negative, we have proved that the function is not
convex. Rather, we note that Φqsc is convex onXk for each y ∈ Y k and convex on Y k

for each x ∈ Xk. Thus, the objective function is biconvex. Since the constraints are all
linear and the feasible regions for the control variables are convex, the optimization
problem is biconvex.

Different from convex optimization, a biconvex problem is a non-convex problem
which may have a large number of local minimum points, and thus not easy to
solve. Theoretically, its convex substructure can be exploited to solve such a problem
as proposed by Floudas and Visweswaran, 1990. However, their global optimization
algorithm does not scale to our scenario since it requires to solve 2k nonlinear sub-
problems in each iteration to obtain a new lower bound to the problem. As an alter-
native, we propose the Multi-Start Alternate Convex Search algorithm (Algorithm 2)
that modifies the one described by Wendell and Hurter, 1976. In our algorithm, at
every step, only the variables of an active block are optimized while those of the
other block are fixed. Since the resulting subproblems are convex, convex minimiza-
tion methods can be used to solve them efficiently: specifically, we use Lagrangian
relaxation which is well suited to the solution of limited-resource allocation prob-
lems [Everett III, 1963]. Here the details of the Multi-Start Alternate Convex Search
algorithm:

1. Let y0 ∈ Y k denote an arbitrary initial feasible set of solutions for Problem (4).

2. Solve the following convex nonlinear problem:

x0 ←max
x∈Xk

k∑
i=1

φi · si · e−λ·xi·y
0
i ,

s. t. st · x ≤ c · h.

The constraint on the maximum slowdown is implicitly satisfied by y0. We
note that this corresponds to Problem (2). Then, the solution can be easily

2Without loss of generality, we remove the positive constants in order to facilitate the reading.



42 Chapter 4. Quality of Experience-Aware Content Caching

found through KKT conditions as provided by Theorem 3.5:

x0
i =


0, if φi < Lx,

1
λ·y0i
· ln
(
λ·y0i ·φi
ρx

)
, if Lx ≤ φi ≤ Ux,

h, if φi > Ux,

(5)

where Lx , ρx
λ·y0i

, Ux , ρx·eh·λ·y
0
i

λ·y0i
, and ρx is an appropriate Lagrange multiplier.

3. The set x0 is then used as input for the same convex nonlinear problem opti-
mized for y ∈ Y k.

y1 ←max
y∈Y k

k∑
i=1

φi · si · e−λ·x
0
i ·yi ,

s. t. Ω(y) ≤ ωmax.

The capacity constraint is satisfied by x0. Since Ω(y) ≤ ωmax is linear on y ∈
Y k, we can solve this problem through KKT conditions:

y1
i =


0, if si < Ly,

1
λ·x0i
· ln
(
λ·x0i ·s2i ·

∑
i φi

r·ρy

)
, if Ly ≤ si ≤ Uy,

ymax, if si > Uy,

(6)

where Ly ,
√

r·ρy
λ·x0i ·

∑
i φi

, Uy ,

√
r·ρy ·eymax·λ·x

0
i

λ·x0i ·
∑
i φi

, and ρy is an appropriate La-

grange multiplier. The proof follows the proof of Theorem 3.5 where the La-
grangian function is

L(y) =
k∑
i=1

φi · si · (1− e−λ·x
0
i ·yi) + ρy · [ωmax − Ω(y)] .

4. If the stopping criterion (see below) is satisfied, then stop and {x0,y1} is the
solution. Otherwise, set y0 ← y1, and go to 2.

There are several ways to define the stopping criterion in Step 4. For example, one
can consider the absolute value of the difference of the objective function comparing
the vectors of solutions {x0,y0} and {x0,y1}. Moreover, the order of Step 2 and
Step 3 can be permuted. Since every iteration of the algorithm produces a partial
optimum solution [Gorski, Pfeuffer, and Klamroth, 2007], we iterate the procedure
described above for different arbitrary initial feasible sets, and we select the vectors
{x,y} that maximize Eq. (3). The accuracy of the solution depends on the number
of iterations and on the parameter ε chosen to stop the search of the optimal vectors.
While there is still no theoretical guarantee about the convergence, this version of the
algorithm can reach the global optimum with large probability. Finally, the same
considerations about failure probability during a download (see Section 3.3.3) also
hold in this scenario, and Eqs. (5) and (6) can be recalculated accordingly. We refer
to this policy as QoE-Aware Content Caching with Single Contact Model (qSC).
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Algorithm 2 Multi-Start Convex Search Algorithm

Ensure: x, y
1: function MAIN

2: max_f← 0
3: output← {∅, ∅}
4: for i← 1 to max_iter do
5: y0← arbitrary feasible solution
6: x0← see Eq. (5).
7: y1← see Eq. (6).
8: while Φqsc(x0, y1) - Φqsc(x0, y0) > ε do
9: y0←y1

10: x0← see Eq. (5).
11: y1← see Eq. (6).
12: if Φqsc(x0, y1) > max_f then
13: output← {x0, y1}
14: max_f← Φqsc(x0, y1)

15: return output

Finally, we compare Algorithm 2 with another approach that considers KKT con-
ditions for non-convex problems. The results obtained by the two algorithms are
the same in all of the scenarios tested. We describe this alternative approach in the
following subsection.

KKT conditions applied to Problem (4)

The Lagrangian function associated to Problem (4) is

L(x,y) = −
k∑
i=1

φi · si · e−λ·xi·yi + ρx ·

(
c · h−

k∑
i=1

si · xi

)
+ ρy · (ωmax − Ω) , (7)

where ρx and ρy are appropriate Lagrangian multipliers (non-negative since the con-
straints are formulated as inequalities). For sake of clarity, without loss of generality,
we omit the conditions on the bounds of x and y. The corresponding KKT condi-
tions are {

ρx ·
(
c · h−

∑k
i=1 si · xi

)
= 0

ρy · (ωmax − Ω) = 0

We compute the stationary points by computing the derivative of Eq. (7) with respect
to xi and yi:

dL(x,y)

dxi
= λ · φi · si · yi · e−λ·xi·yi − ρx · si = 0,

dL(x,y)

dyi
= λ · φi · si · xi · e−λ·xi·yi − ρy ·

φi · r
si

= 0.
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that leads to {
λ · xi · yi = ln

(
λ·φi·si·yi

ρx

)
si · xi =

ρy
ρx
· φi·yi·rsi

.

Then, the relation between ρx and ρy can be inferred from the constraints:

k∑
i=1

si · xi =
ρy
ρx
·
k∑
i=1

φi · yi · r
si

⇒ ρy
ρx

=
c · h

ωmax − 1
.

si · xi =
c · h

ωmax − 1
· φi · yi · r

si
. (8)

Finally, we infer the value of yi from Eq. (8) and we replace in the other equation of
the system. We obtain:

λ · si
φi · r

· ωmax − 1

c · h
· x2

i = ln

(
λ · si
ρx · r

· ωmax − 1

c · h
· xi
)
. (9)

The solutions of the system of equations composed by Eqs. (8) and (9) plus the KKT
conditions provide the set of optimal {x,y, ρx, ρy} that solves Problem (4). Eq. (9)
is a transcendental equation that can be easily solved by known numerical meth-
ods. This equation provides two different solutions for each content due to the non-
convexity of the problem. However, although the problem is non-convex, and thus
there is no theoretically guarantee of optimality, we note that a larger value both
for x and for y maximizes Eq. (3). Hence, the result of this approach can be used
equivalently to Algorithm 2 to solve Problem (4).

4.4 Optimal Content Allocation with Generic Contact Model

In this section, we generalize the previous content download model. We assume that
the download resumes during a new contact as long as the deadline does not expire.
Thus, a user will download from the cellular infrastructure only the remaining bytes
(instead of the entire content as in the Single Contact Model). Hence, we modify
Assumption A.4 as follows:

A.4 bis - Content download. Let wij be the number of bytes downloaded from
content i by a U node during the jth meeting3. wij are positive IID continuous ran-
dom variables having equal mean µ and variance σ2. Let further Mi(yi) (for sake of
simplicity, we refer equivalently to Mi) be a point process counting the number of
contacts within yi. Then, we define

Wi ,
Mi∑
j=1

wij

3The variable wij counts the bytes per request. To simplify the notation, we do not add the addi-
tional index. The same is for Wi.
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as the number of bytes downloaded within yi for content i.

Definition 4.3 (Generic Contact Model). Consider the content download model described
by Assumption A.4 bis. We refer to this scenario as Generic Contact Model.

Based on this model, in Section 4.4.1 we formulate a new optimization problem to
reduce the load on the cellular infrastructure. We show that this problem is complex
as it requires the knowledge of Wi which depends on the control variables x and y.
Then, we propose a specific policy to optimally cache content in the vehicular cloud
when deadlines are variable (Section 4.4.2).

4.4.1 Offloading Optimization Problem

In the Generic Contact Model, the number of bytes offloaded through the vehicular
cloud per request is either equal to si, if the content is entirely downloaded from ve-
hicles, or to Wi, otherwise. For popular content, we can consider the expected value
of this quantity since the envisioned number of requests during a seeding time win-
dow is large. The following lemma captures these considerations in the objective
function Φgc(x,y) to be optimized:

Lemma 4.4. Given the previous assumptions, the amount of bytes offloaded through the
vehicular cloud during a seeding time window is given by:

Φgc(x,y) =
k∑
i=1

φi ·E [min{Wi, si}] .

Corollary 4.5. The objective function Φgc(x,y) is equivalent to

Φgc(x,y) ≡
k∑
i=1

φi ·
∫ si

0
(1− FWi(t)) dt, (10)

where FWi is the CDF of Wi.

Proof. The objective function can be written as follows:

Φgc(x,y) =

k∑
i=1

φ ·E [min{Wi, si}]

=

k∑
i=1

φi ·
(∫ si

0
t · fWi(t) dt+

∫ +∞

si

si · fWi(t) dt

)
,

where fWi is the PDF of Wi. The first integral becomes equal to

si · FWi(si)−
∫ si

0
FWi(t)dt
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by integration by parts, while the second integral is trivially equal to

si · (1− FWi(si)).

After simplifying the null terms, we obtain Eq. (10).

We formulate the following optimization problem:

Problem 5. Consider the Generic Contact Model when deadlines are variable. The solution
to the following optimization problem maximizes the bytes offloaded through the vehicular
cloud:

maximize
x∈Xk,y∈Y k

k∑
i=1

φi ·
∫ si

0
(1− FWi(t)) dt

subject to st · x ≤ c · h,
Ω(y) ≤ ωmax,

Solving Problem (5) requires the knowledge of FWi and, therefore, of Wi. We prove
the following lemma:

Lemma 4.6. Assume the number of vehicles participating in the vehicular cloud to be large,
and the mean inter-meeting rate with such vehicles small. It holds that:

1. Wi approaches a compound Poisson process.

2. The first two moments of Wi are given by

E[Wi] = µ · λ · xi · yi,

Var[Wi] = (µ2 + σ2) · λ · xi · yi.

3. The CDF of Wi is given by

FWi(si) = 1− L−1
{
e(w∗ij(s)−1)·λ·xi·yi/s

}
(si), (11)

where w∗ij(s) is the Laplace transform of wij .

Proof. 1) Similarly to the proof of Lemma 3.2, let {Γij(t), t > 0, j ∈ H | xij = 1} be
xi identical and independent renewal processes with holding times Tij corresponding
to the inter-arrival times between users and vehicles storing content i. Let further
{Γi(t), t > 0} be the superposition of these processes. The total number of contacts
within the deadline yi can be defined as

Mi(y0) = {Γi(yi), yi > 0}, ∀i ∈ K.

Remember that {Γi(t), t > 0} forms a Poisson process. A Poisson process can be
defined as a counting process that represents the total number of occurrences up to
time t. Thus, Mi(t) is again a Poisson process.
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From Assumption A.4 bis, Wi ,
∑Mi

j=1wij . Observe that the reward (bytes down-
loaded) in each contact is independent of the inter-contact times, i.e., Mi and wij are
independent, and wij are IID random variables with same distribution. Since Mi is
a Poisson process, then Wi is a compound Poisson process.

2) Using conditional expectation, the expected value of a compound Poisson process
corresponds to:

E[Wi] = E

[ Mi∑
j=1

wij

]
= E

[
E

[ Mi∑
j=1

wij |Mi

]]
=

= E

[ Mi∑
i=1

µ

]
= E[Mi · µ] = E[Mi] · µ,

where the expectation is calculated using the Wald’s equation. It is easy to see that
E[Mi] = λ · xi · yi. Similarly, it is possible to compute the moment of second order of
Wi, and then its variance using the total law of variance.

3) A random sum of identically distributed random variables has a Laplace transform
that is related to the transform of the summed random variables and of the number
of terms in the sum

W ∗i (s) = M∗i (w∗ij(s)),

where W ∗i (resp. w∗ij) is the Laplace transform of Wi (resp. wij) and M∗i is the Z-
transform of Mi. Since the number of meetings within yi is Poisson distributed (see
proof of Lemma 3.2), we can write W ∗i (s) as follows:

W ∗i (s) = e(w∗ij(s)−1)·λ·xi·yi .

Moreover, it is well known that the CDF of a continuous random variableX is given
by FX(x) = L−1

{
L{fX}
s

}
(si) where L−1{F (s)}(t) is the inverse Laplace transform

of F (s). Thus, FWi(si) corresponds to Eq. (11).

Lemma 4.7. The probability density function of Wi can be approximated by a normal dis-
tribution if E[Mi] large.

Proof. In principle, the distribution of Wi is hard to determine. However, since in
urban environments the number of contacts is expected to be considerably large, Wi

can be approximated by a normal distribution [Lecture Notes on Risk Theory]. Also, it
is possible to use other approximations, e.g., gamma translated, Edgeworth, normal
power.

All the quantities needed to solve the optimization problem are known from Lemma 4.6,
and can be plugged in Eq. (10). However, due to the large number of contents to con-
sider, the related maximization problem cannot be solved efficiently. For this reason,
further insights, approximations and specific scenarios will be discussed in the rest
of the chapter.
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4.4.2 QoE-Aware Content Caching with Generic Contact Model (qGC)

Problem (5) is again a MINLP and, thus, NP-hard. What is more, it is in general
non-convex. This means that the solution can be computed by global optimization
methods, but this is generally not an efficient solution as it does not scale to a large
number of contents. For this reason, we introduce a new objective function Φqgc(·)
that approximates Eq. (10) in order to convert the problem in a convex optimization
problem, hence improving tractability.

Lemma 4.8. The objective function of Eq. (10) can be approximated by

Φqgc(x,y) =

k∑
i=1

φi ·min{E[Wi], si}.

Corollary 4.9. Let e , Φqgc − Φgc be the error introduced by Lemma 4.8. The following
statements hold:

1. For a given E[Wi], as the content size si tends to 0 or becomes large, the approximation
becomes exact, i.e., e tends to 0:

lim
si→0

e = lim
si→+∞

e = 0.

2. The error e is equal to

e =
k∑
i=1

φi · [min{FWi(si), 1− FWi(si)} · |si −E[Wi]|+ σWi · fWi(si)] .

Proof. 1) The approximation of Lemma 4.8 can be considered exact when content
size is much larger or much lower than the expected amount of bytes downloaded
per content i:

lim
si→0

Φqgc = lim
si→0

Φgc =

k∑
i=1

φi · si

lim
si→+∞

Φqgc = lim
si→+∞

Φgc =

k∑
i=1

φi ·E[Wi].

2) It is easy to see that

E[min{Wi, si}] = FWi(si) ·E[Wi|Wi ≤ si] + si · (1− FWi(si)). (12)

E[Wi|Wi ≤ si] corresponds to the truncated mean of Wi upper bounded by si. If the
number of meetings within yi is large, Wi can be considered as a normal distribution
from Lemma 4.7. Thus, we can write its truncated mean as

E[Wi|Wi ≤ si] = E[Wi]− σWi ·
fWi(si)

FWi(si)
,



4.4. Optimal Content Allocation with Generic Contact Model 49

Content size

Φ
q

g
c
 −

 Φ
g

c

 

 

Upper bound on the error

0

F
W

(s
i
)⋅(s

i
−E[W

i
])

σ
W

⋅ f
W

(s
i
)

+∞E[W
i
]

FIGURE 4.1: Error introduced by Φqgc(x,y) in Lemma 4.8 for a fixed
value of E[Wi].

where σWi is the standard deviation of Wi, and can be inferred from Corollary 4.64.
If E[Wi] is larger than si, the error e introduced by Φqgc(x,y) can be evaluated as
follows:

e =
k∑
i=1

φi · |min{E[Wi], si} −E[min{Wi, si}]|

=
k∑
i=1

φi · |si −E[min{Wi, si}]|. (13)

Then, we compute the second term of Eq. (13) from Eq. (12), and, after some calcu-
lations, we obtain

e =

k∑
i=1

φi · [FWi(si) · |si −E[Wi]|+ σWi · fWi(si)].

Similarly, if E[Wi] is smaller than si, we have:

e =

k∑
i=1

φi · |E[Wi]−E[min{Wi, si}]|

=
k∑
i=1

φi · [(1− FWi(si)) · |E[Wi]− si|+ σWi · fWi(si)]

A qualitative analysis of e can be found in Fig. (4.1) where we can see that the error
is concentrated in the region where si ≈ E[Wi], and it tends to 0 otherwise. After a
continuous relaxation, using the above approximation, Problem (5) can be converted
in a convex optimization problem that can be solved extremely efficiently and reli-
ably:

4Note that σWi 6= σ that is the standard deviation for a single contact.
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Problem 6. Consider the approximation introduced by Lemma 4.8. Then, the solution to the
following convex optimization problem maximizes the bytes offloaded through the vehicular
cloud:

maximize
x̃∈X̃k,ỹ∈Ỹ k

log

(
k∑
i=1

φi · ex̃i+ỹi
)
,

subject to x̃i + ỹi ≤ log

(
si
µ · λ

)
, ∀i ∈ K,∑

i

si · ex̃i ≤ c · h,

Ω(ỹ) ≤ ωmax,

where x̃i , log xi, ỹi , log yi, X̃ , {a ∈ R | − ∞ ≤ a ≤ log h}, Ỹ , {b ∈ R | − ∞ ≤
b ≤ log ymax}.

Proof. We rewrite the objective function Φqgc(·) in an equivalent form that removes
the min function:

Φqgc(x,y) =
k∑
i=1

φi ·min{E[Wi], si}

=

k∑
i=1

φi ·E[Wi], s. t. E[Wi] ≤ si, ∀i ∈ K, (14)

where the equivalence is true since the related maximization problem will choose
the control variables x and y such that

0 ≤ E[Wi] ≤ si,

as any scenario where E[Wi] > si is suboptimal. Remember that

E[Wi] = µ · λ · xi · yi

from Lemma 4.6. According to Eq. (14), Problem (5) becomes:

maximize
x∈Xk,y∈Y k

k∑
i=1

φi · xi · yi,

subject to xi · yi ≤
si
µ · λ

, ∀i ∈ K,

st · x ≤ c · h,
Ω(y) ≤ ωmax.

The above optimization problem is a geometric program (GP). A GP is an optimiza-
tion problem where the objective is a posynomial function5 and the constraints are

5A posynomial function f(x) is a sum of monomials: f(x) =
∑K
k=1 ckx

a1k
1 x

a2k
2 · · ·xank

n , where
ck > 0.
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posynomial or monomial functions. The main trick to solve a GP efficiently is to
convert it to a nonlinear but convex optimization problem since efficient solution
methods for general convex optimization problem are well developed [Boyd and
Vandenberghe, 2004]. The conversion of a GP to a convex problem is based on a
logarithmic change of variables and on a logarithmic transformation of the objec-
tive and constraint functions. We apply the following transformations to the above
optimization problem:

x̃i , log xi ⇔ ex̃i , xi; ỹi , log yi ⇔ eỹi , yi.

We obtain a problem expressed in terms of the new variables x̃ and ỹ. By taking the
logarithm of the objective function and of the constraints, it can be proved that the
related problem is convex [Boyd and Vandenberghe, 2004].

While this problem seems more complicated in its formulation, NLP is far trickier
and always involves some compromise such as accepting a local instead of a global
solution. Conversely, a GP can actually be solved efficiently with any nonlinear
solver (e.g., MATLAB, SNOPT) or with common optimizers for GP (e.g., MOSEK,
GPPOSY). We refer to this policy as QoE-Aware Content Caching with Generic Contact
Model (qGC).

4.5 Performance Analysis

We validate our findings using simulations with real traces for vehicle mobility and
content popularity. We show that, in an urban scenario, our system can achieve
considerable offloading gains with modest technology penetration (less than one
percent of vehicles participating in the cloud) and low mean slowdown (that leads
to average deadlines of a few minutes). We study the impact of different user QoE
guarantees on operator- and user-related performance, and compare qSC and qGC
with some fixed deadline policies.

4.5.1 Simulation Setup

We build a trace-driven MATLAB simulator6 to evaluate the gain of our proposed
policies. Our tool simulates YouTube video requests in the centre of San Francisco
over a period of a few days. We use the following traces:

• Vehicle mobility. We use the Cabspotting trace [Piorkowski, Sarafijanovic-Djukic,
and Grossglauser, 2009] to simulate the vehicle behaviour; this trace records
the GPS coordinates for 531 taxis in San Francisco with granularity of one
minute. To improve the accuracy of our simulations, we increase the granu-
larity to 20 seconds by linear interpolation. We also use this trace to extract the

6While in Chapter 3 we have performed only numerical simulations, we want to highlight that in
this chapter we introduce a realistic trace-driven simulator.



52 Chapter 4. Quality of Experience-Aware Content Caching

necessary mobility statistics for our model (e.g., the mean inter-meeting rate
λ).

• User mobility. We use synthetic traces based on SLAW mobility model [Lee et
al., 2009]. Specifically, according to this model, users move in a limited and
defined area around popular places. The mobility is nomadic where users
alternate between pauses (heavy-tailed distributed) and travelling periods at
constant (but random) speed.

• Content. We infer the number of requests per day from a database with statis-
tics for 100.000 YouTube videos [Zeni, Miorandi, and De Pellegrini, 2013]. The
database includes static (e.g., title, author, duration) and dynamic informa-
tion (e.g., daily and cumulative views, shares, comments). In order to increase
the number of simulations and to provide sensitivity analysis for content size,
buffer capacity and cache density, we randomly select 10.000 contents from the
catalogue.

Inline with proposed protocols for vehicle communications (e.g., 802.11p, LTE ProSe),
we consider short (100 m) or long (200 m) communication ranges between U and H
nodes. As most wireless protocols implement some rate adaptation mechanism, our
simulator also varies the communication rate according to the distance between the
user and the vehicle she is downloading from, with a mean of 5 Mbps. We also set
r equal to 1 Mbps which approximates the streaming of a 720p video (remember
that r corresponds to the playout rate in the case of videos, see Assumption A.5).
We set the cache size per vehicle in the range 0, 1 − 1 percent of the total catalogue
which is an assumption that has also been used in other works [Golrezaei et al., 2013;
Poularakis et al., 2014] (we use 0, 2 percent as a default value). Content size is drawn
from either a gaussian or a Pareto distribution. Finally, we consider ωmax equal to
three which corresponds to an average deadline of only a few minutes (compared to
video durations that can go up to 1,5 hours).

Our simulator works as follows: first, it generates a set of content requests concen-
trated at day-time; inter-arrival times between successive requests are exponentially
distributed according to the IRM model [Coffman and Denning, 1973] which is the
de facto standard in the analysis of storage systems7. Next, the simulator associates
to each request the coordinates (and the mobility according to the SLAW model) of
the user requesting the content. Then, it allocates content in caches according to
different allocation policies. For each request, a user downloads chunks of video
when she is in the communication range of a vehicle storing the requested content.
When the deadline expires, the potential remaining bytes are downloaded from the
cellular infrastructure. Finally, content requests are generated over a period of five
days. Unless differently stated, we use the parameters aforementioned, summarized
in Table 4.2.

We consider and compare the following allocation policies:

• qGC. This policy solves the optimization problem with a reasonable approxi-
mation for content of generic size. This policy is described in Section 4.4.2.

7The accuracy of IRM model for YouTube videos is confirmed by Crane and Sornette, 2008.
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TABLE 4.2: Parameters used in the simulations.

PARAM VALUE PARAM VALUE

h 531 vehicles c 0, 2% · k

k 10.000 contents E[s] 50-200 MB

r 1 Mbps (720p) ωmax 3

y0 ∼9 minutes ymax 10 · y0

λsr 0,964 day−1 λlr 2,83 day−1

• qSC. This policy solves the optimization problem when a content can be down-
loaded with large probability in one contact. This policy is suitable for content
of small size, and is described in Section 4.3.2.

• SC. This policy solves the optimization problem when a content can be down-
loaded with large probability in one contact, and deadlines are fixed. This
policy is described in Section 3.3.2.

• MP. This policy stores the most popular contents in vehicle buffers until caches
are full while any other content gets 0 copies. Deadlines are fixed. This policy
is optimal for sparse scenarios where caches do not overlap.

• RAND. This policy allocates content randomly. Deadlines are fixed.

Maximum fixed deadline

Caching policies introduced in Chapter 3 will be used as a baseline scenario to eval-
uate the QoE-Aware caching policies of this chapter. In order to provide a fair com-
parison, we introduce the maximum fixed deadline y0 as follows:

Lemma 4.10. Let yi be equal to y0 for any i ∈ K. The maximum value that y0 can assume
such that the QoE constraint of Eq. (4) is satisfied is

y0 =
ωmax − 1∑k
i=1 φi · r/si

.

Proof. The value of y0 can be directly inferred by Eq. (4) solving for yi = y0:

Ω(y0) =
k∑
i=1

φi ·
(

1 +
y0

si/r

)
≤ ωmax

k∑
i=1

φi ·
y0

si/r
≤ ωmax − 1

y0 ≤
ωmax − 1∑k
i=1 φi · r/si

.
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4.5.2 Caching Policies Evaluation

In Figure 4.2 and Figure 4.3 we plot the amount of data offloaded for different al-
location policies according to the parameters listed in Table 4.2 when mean content
size is 200 MB and 50 MB. These plots also include the 95 percent confidence inter-
val. When content size is large (Figure 4.2), the fraction of traffic offloaded by qGC
is much larger (additional gains of around 20 percent) than any other policy in any
situation. For instance, when long range communications are considered, offloading
gains are in the order of 60 percent for qGC, and no more than 40 percent for qSC,
SC and MP. RAND perform poorly in any scenario. It is also interesting to note that,
while qSC is expected to benefit from the deadline variability, it performs similar to
fixed TTL policies since the assumption that a content can be downloaded in one
contact is unrealistic for content of 200 MB. On the other hand, when mean content
size decreases (Figure 4.3), qSC becomes the best policy in any scenario. However,
here qGC still performs better than fixed deadline policies confirming the fact that
this policy reasonably approximates the generic problem even for small content. Not
substantial differences have been observed for different content size distributions.
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FIGURE 4.2: Percentage of traffic offloaded through the vehicular
cloud when E[s] = 200 MB.

In Figure 4.4 we perform sensitivity analysis according to the number of vehicles h
in the cloud which varies from 100 to 500. When h is larger than 200, more than 40
percent of the traffic can be offloaded by qGC. While the number of envisioned con-
nected vehicles in the centre of San Francisco is expected to be much larger, the low
technology penetration rate analyzed still provides considerable amount of data of-
floaded. This result is important to promote the start up phase of the vehicular cloud.
However, it is interesting to note that in a sparse scenario (h = 100), qGC performs
poorly. This happens because the value of E[Wi] inferred from Lemma 4.6, that has
also been used to compute qGC, holds only if the number of vehicles participating in
the vehicular cloud is large (see Lemma 3.2). What is more, from Corollary 4.9, the
error of the approximation used by qGC is proportional to the standard deviation of
Wi which increases in a sparse environment.
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FIGURE 4.3: Percentage of traffic offloaded through the vehicular
cloud when E[s] = 50 MB.
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FIGURE 4.4: Percentage of traffic offloaded through the vehicular
cloud according to the number of vehicles h (c = 0, 2% · k).

Figure 4.5 compares different buffer capacities per vehicle. Buffer size goes from
0,1 to 1 percent of the catalogue (where h is equal to 531). Interestingly, considerable
performance gains can be achieved with very reasonable storage capacities. Here the
simulations are performed on a set of 10.000 contents, but in a scenario with a larger
realistic catalogue (e.g., 1000 times larger), it seems doable to store 0,1-0,5 percent of
the contents needed to achieve good savings. E.g., if one considers an entire Torrent
catalogue (∼3 PB) or the entire Netflix catalogue (∼3 PB), a mobile helper capacity of
about 3 TB (0,1 percent) already suffices to offload more than 40 percent of the total
traffic for long range communications (while around 30 percent for fixed deadline
policies). Furthermore, as the buffer capacity increases, qSC offloads much more
traffic than SC, while this is not true when the cache size per vehicle is lower than
the 0, 5 percent of the catalogue. Basically, as the cache size increases, offloading
gains are mainly provided by the deadline variability rather than the cache policy
chosen.
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FIGURE 4.5: Percentage of traffic offloaded through the vehicular
cloud according to the buffer capacity c (h = 531).
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FIGURE 4.6: Percentage of traffic offloaded through the vehicular
cloud according to the mean content size E[si].

In Figure 4.6 we analyze the effect of content size by varying the mean content size
from 30 MB to 200 MB. As expected, for small content (say for E[s] less than 80
MB), qSC offloads more traffic than any other policy. After this threshold, since the
assumption of entire download of a content during a contact becomes inaccurate,
this policy offloads less traffic. A similar behavior can be seen for SC that exploits the
same assumption. What is important to notice, however, is that the traffic offloaded
by qGC is quite stable for any content size with only a slight decrease when E[s] is
less than 50 MB.

Finally, we perform an analysis of the user QoE by allowing different values of ωmax.
In Figure 4.7, we show the upper bound on the mean slowdown ωmax that an MNO
should set in order to reach some specific offloading gains, from 30 to 60 percent.
We consider long range communications, and content size drawn from a gaussian
distribution with mean 200 MB, but similar results can be obtained for short range
communications or other content size distributions. The required mean slowdown
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FIGURE 4.7: Mean slowdown needed to reach specific offloading
gains for long range communications.

to offload more traffic increases slowly for variable deadline policies while we no-
tice an exponential growth for fixed deadlines. Basically, Figure 4.7 can be seen as a
description of the effect produced by additional gains on the QoE: for instance, an
MNO should double the value of ωmax (100 percent increase) with SC policy to of-
fload 10 percent more traffic, while the mean slowdown only increases in the range
of 15-40 percent for qGC and qSC to have the same improvement in the offloading
gains. This low impact on the slowdown highlights the advantages introduced by
our QoE-aware policies. Knowing the function that ties user experience and slow-
down (e.g., linear, logarithmic) can lead to a better interpretation of the plot. How-
ever, this behavioural analysis goes beyond the scope of the thesis.

As an MNO, the policy to choose mainly depends on the characteristics of the cata-
logue. In general, qGC performs well in the majority of the scenarios. However, in
sparse environments (few vehicles) the amount of bytes offloaded could drop due
to the limited number of contacts. In this scenario, and in a scenario where the cata-
logue is made up of small content, qSC provides the best performance. What is more,
we think that what highlighted in Figure 4.7 can be useful for an MNO to tune cor-
rectly the system parameters providing good QoE in a delay-tolerant environment
which is challenging. While further approximations can be used, we believe that
the QoE-aware policies proposed provide a good tradeoff between scalability and
efficiency. Finally, an MNO could exploit the advantages of each policy by splitting
content in two sets and use qGC for some, and qSC for others. This combined strat-
egy would probably increase the percentage of the traffic offloaded, but we defer its
theoretical study and evaluation to future work.

4.6 Summary

In this chapter, we have improved the model described in Chapter 3 by introducing
three main novelties:
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• Heterogeneous deadlines. We have let an MNO assign different deadlines to
different contents. Compared to fixed deadlines, this variant brings two im-
portant advantages: (i) the user QoE degradation introduced by the delay-
tolerance can be controlled by the MNO through the mean slowdown metric;
(ii) the mobile traffic offloaded by the vehicular cloud increases. Hence, we
have formulated a problem to jointly optimize the number of replicas to cache
in vehicles and the deadlines to assign to each content. Such a problem is a
biconvex optimization problem and we solve it with a Multi-Start Alternate
Convex Search algorithm.

• Partial downloads. While the Single Contact Model can be successfully used
when content is of small size, larger content requires a different model. For
this reason, we have introduced the Generic Contact Model that allows to stop
and resume the download of content chunks during different contacts. We
have formulated an optimization problem that considers chunk-level down-
loads and we have shown that this problem is nontrivial. Through an approx-
imation of the objective function, we were able to convert the problem in a
geometric program that can be solved efficiently.

• Trace-driven simulator. We have built a simulator in MATLAB based on real
traces for vehicle and user mobility and content popularity. The simulator con-
siders a various number of system parameters such as download rate adapta-
tion mechanisms and realistic cache sizes.

Finally, we have evaluated the proposed allocation policies and the impact on the
user QoE. We have shown that assigning different deadlines largely improve the
number of bytes offloaded through the vehicular cloud, and can also bound the QoE
degradation.
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Chapter 5

Content Caching for Video
Streaming

5.1 Introduction

In this chapter, we exploit the fact that streaming of stored video content offers some delay
tolerance “for free”. Video content is split into many chunks that are streamed into the
user’s playout buffer one by one, while consumed in parallel at the playout speed.
The user does not have to wait until the whole content is found in a local cache,
but she can start streaming right away, fetching chunks from the infrastructure or
local/mobile caches, depending on availability of the latter and buffer status. For
example, if a user is watching a one hour video, the chunks corresponding to the
xth minute of the video do not have to be downloaded until just before that time.
During that time, a mobile cache with that chunk might be encountered and these
bytes can be offloaded without any impact on user experience. If a node with that chunk
is encountered before the user reaches that part of the video, there will be a cache
hit for that chunk. This is in contrast with the content download model used in the
previous chapters where the whole content must be downloaded before the user
can consume it. Note that, while chunks are also “downloaded” in the streaming
case, the difference here is that no extra delay needs to be imposed on the user (and
thus deteriorate her QoE). Any chunk not available in the playout buffer when its
playout time arrives, can be retrieved from main infrastructure. In this context, two
interesting questions arise:

1. How many bytes of streamed video get offloaded through such a mobile edge
caching?

2. How can we optimize the edge cache allocation to maximize the amount of
bytes that get offloaded?

The goal of this chapter is to provide some initial answers to these questions assum-
ing (i) vehicular nodes acting as mobile small cells and local caches, and (ii) streamed
video-on-demand content as the main application1. Our main contributions are the
following:

1Note that this scenario does not include live content streaming which is not usually amenable to
caching, and is often optimized using multicast techniques.
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• We model the playout buffer dynamics of a user device in this setup as a queue-
ing system, and analyze the expected amount of offloaded traffic (correspond-
ing to the idle periods of this buffer) as a function of network characteristics
(e.g., vehicle density, file characteristics) and a given cache allocation.

• Based on this model, we formulate the problem of optimal allocation of con-
tent in vehicles that minimizes the total load on the cellular infrastructure. We
formulate the optimal allocation problem, show it is NP-hard, and propose ap-
propriate approximations for two interesting regimes of vehicular traffic den-
sities.

• We validate our theoretical results using real traces for content popularity and
vehicle mobility, and show that our system can offload up to 50 percent of
streamed data in realistic scenarios, even with modest technology penetration.

As a final remark, while we present our analysis within the context of vehicular
mobile relays, the main framework and a number of our results could be applied to
content streaming from fixed small cells or even user equipments (we discuss such
generalizations in Section 5.5).

Summarizing, this chapter is structured as follows: in Section 5.2, we present the
content access protocol and the main assumptions; next, in Section 5.3, we formulate
and solve an optimization problem for different vehicular traffic regimes; then, we
perform real trace-based simulations in Section 5.4, and we discuss about additional
applications in Section 5.5. Finally, we conclude with a summary in Section 5.6.

5.2 System Model

Streaming video content from vehicles requires to slightly modify the system model
(compared to the previous chapters). Again, to avoid redundancy, we summarize
briefly the common points, and we highlight the new assumptions introduced by
the streaming.

5.2.1 Video Streaming Model

We consider the same network formed by U nodes that request (non-live) video con-
tent for streaming to I orH nodes. Each video consists of a number of small chunks
that are downloaded into a U node’s playout buffer in order, and consumed for play-
out as follows:

• Helper download. When a U node is in range of (at least) an H node that stores
the requested content, the next immediate chunks not yet in the playout buffer
are downloaded at low cost and in order at mean rate rH . This mean rate can be
easily inferred from mobility statistics (distribution of number of caches during
a contact) and download rate distribution; it depends on the cell association
policy used. E.g., assume that a node is currently viewing chunk n, and its
playout buffer already contains chunks n+ 1, . . . , n+ k; then, chunks starting
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FIGURE 5.1: Sequence of contacts with three caches (above), and
amount of data in end user buffer over time (below, in green). The

red region indicates when data is downloaded from I nodes.

from chunk n + k + 1 will be downloaded until the connection with that H
node is lost. This opportunistic connection is represented by the green region
in Figure 5.1 (e.g., between t1 and t2 the node will download from cache 1).
What is more, we do not allow for simultaneous connections, i.e., a U node
can download from at most oneH node at a time (we defer considering multi-
connectivity to future work). For this reason, in Figure 5.1 the user will switch
to cache 3 only at t4, i.e., after it has finished downloading from cache 2.

• Infrastructure download. When a U node is not in range of anH node that stores
the requested content and its playout buffer is (almost) empty, new chunks are
downloaded from the infrastructure at a mean rate rI until another H node
storing the content is encountered. The communication between U and H
nodes has a high cost in terms of energy consumption [Sapountzis et al., 2014]
and bandwidth of the backhaul links [Forum, 2013]. For simplicity, during a
contact, our model does not allow simultaneous connections, i.e., a U node can
download from one and only one H node at a time. However, our model can
easily be extended to account for multiple simultaneous connections, which
should provide even better offloading gains. The download from the infras-
tructure corresponds to the red region of Figure 5.1. However, if the playout
buffer is not empty, no chunks are downloaded from I until the buffer empties.

• Playout. Chunks in the playout buffer are consumed at a mean viewing playout
rate rP .

5.2.2 Main Assumptions

We summarize briefly the assumptions that have already been used.

A.1 - Catalogue. Let K be the set of all possible contents that users might request
where |K| = k. Let further c be the size of the cache in each vehicle. We make
the natural assumption that c � k. A content i ∈ K is of size si (in MB), and is
characterized by a popularity value φi measured as the expected request rate within
a seeding time window from all users and all cells. Content is sorted by decreasing
popularity as φ1 ≥ φ2 ≥ · · · ≥ φk.
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A.2 - Mobility model. Pairwise inter-meeting times between H and U nodes are
independent, drawn from a generic distribution fC(t) with mean rate λ. Contact
durations are drawn from another generic distribution fD(t) with mean E[D]. We
assume both distributions have bounded first and second moments.

A.3 - Cache Model. Let xi denote the number of helper nodes storing content i.
Fractional storage is not allowed.

We introduce the following new assumptions:

A.4 - Content download rate. We assume rI = rP + ε (ε > 0 small) in order to limit
the access to the cellular infrastructure to the minimum required to ensure smooth
playout (for simplicity, we assume that ε = 0). We further assume rI and rH to be
larger than rP in order to guarantee uninterrupted streaming. This is a reasonable
assumption due to the reduced communication distance: scenarios where rI (and/or
rH ) are lower than the playout rate require initial buffering which is known to signif-
icantly degrade QoE [Hossfeld et al., 2012], and are orthogonal issues to the problem
addressed in this paper. Nevertheless, our framework could be easily extended to
include such initial buffering. Finally, we can consider only mean data rates since
our model performs stationary regime analysis.

A.5 - Data offloading. A request for content i downloads a certain number of bytes
from I nodes. This number is a random variableWi that depends on xi as well as the
sample path of the contact variable(s)2. We denote as E[Wi|xi] the expected value of
this quantity, where the expectation depends on distributions fC(t) and fD(t). Our
goal is to minimize it, since si−E[Wi|xi] is the traffic offloaded on average for requests
of content i. To keep notation simple, we will refer to this quantity as E[Wi].

The notation used in the chapter is summarized in Table 5.1.

5.3 Optimal Content Allocation for Video Streaming

Although the models previously described are generic and can also work for mul-
timedia content, we note that videos have peculiar characteristics. Specifically, dur-
ing the video playback, later chunks bring an “intrinsic” delay tolerance. We cap-
ture such a characteristic in a queueing theory-based model to compute the bytes
offloaded through the vehicular cloud. In this section, we first formulate an opti-
mization problem to minimize the number of bytes downloaded from the cellular
infrastructure. Then, we approximate analytically this quantity for two regimes of
mobile vehicle density, and we solve the related optimization problem to find the
optimal content allocation. Specifically, in Section 5.3.2 we consider first a low vehicle
density scenario which provides insights on how to solve the generic vehicle density
scenario of Section 5.3.3. Finally, in Section 5.3.4 we provide an analytical bound on
the approximation error introduced by the stationary regime analysis.

2Note that, differently from Chapter 4, Wi corresponds to the number of bytes downloaded from
I nodes, instead ofH nodes.
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TABLE 5.1: Notation used in the paper.

CONTROL VARIABLES

xi Number of replicas stored for content i

X Feasible region for x

CONTENT

k Number of content in the catalogue

φi Request rate for content i

si Size of content i

c Buffer size per vehicle

MOBILITY

λ Mean inter-meeting rate between U andH nodes

E[D] Mean contact duration

h Number of vehicles

CHUNK DOWNLOAD

Wi Total bytes downloaded for content i from I nodes

rP Mean viewing playout rate

rI Mean download rate from I (equal to rP )

rH Mean download rate fromH

E[Yi] Expected bulk size

QUEUEING PARAMETERS

B
(n)
i

Length of the nth busy period of the playout buffer

I
(n)
i

Length of the nth idle period of the playout buffer

ei Error introduced by the stationary assumption for content i

SETS

I Infrastructure nodes

H Helper nodes

U End user nodes

K Content catalogue
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5.3.1 Offloading Optimization Problem

Given the above assumptions, we can propose a policy where: (i) the user’s video
is never interrupted provided the infrastructure can guarantee at least the playout
rate (if that is not the case, then this is an issue of the infrastructure); (ii) while the
video plays out at the user, future parts of it are actually downloaded from locally
encountered caches (in principle pre-fetched) thus offloading some of it from the in-
frastructure. As long as the playout buffer remains non-empty, I nodes never need
to be accessed. And when they do, we ensure that the minimum necessary amount
of bytes is downloaded from the infrastructure (rI = rP + ε). The goal of the oper-
ator is to minimize the amount of bytes downloaded per content E[Wi], among all
content i ∈ K, by appropriately choosing the control variable x. This is captured in
the following:

Problem 7. Consider the aforementioned video streaming model. The solution to the fol-
lowing optimization problem minimizes the expected number of bytes downloaded from the
cellular infrastructure:

minimize
x∈Xk

k∑
i=1

φi ·E[Wi],

subject to st · x ≤ c · h,

where E[Wi] is the expected number of bytes downloaded from I for content i when xi helper
nodes store that content.

In the limit of many content requests during a time window, the expected value of
Wi becomes asymptotically exact for a specific instance of requests.

5.3.2 Video Caching with Low Density Model (VC)

First, let us assume that contacts with vehicles are sparse, i.e., the probability of over-
lapping contacts in time with different vehicles both storing the same content is small:

Definition 5.1 (Low Density Model). We refer to Low Density Model as a scenario where

λ · h ·E[D]� 1 and
rH
rP

<
1

λ · h ·E[D]
.

This is a reasonable assumption when the number of vehicles utilized in the cloud is
small, and/or for low/medium popularity content that do not have replicas in ev-
ery vehicle. In this scenario, we model the playout buffer as a bulk GY /D/1 queue,
where new bytes arrive in bulks when a helper node with the requested content is
encountered, and are consumed at a mean playout rate rP . This system is depicted
inside the small square of Figure 5.2 (the queue on the left can be ignored for now).
The following holds for the expected load on the infrastructure (see Assumption
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...

FIGURE 5.2: Proposed queuing model for the playout buffer. The
queue inside the small box corresponds to the low density regime
model (Section 5.3.2), while the large box (containing both queues) to

the generic density regime (Section 5.3.3).

A.5):

Lemma 5.2. Consider the Low Density Model. The following expression is asymptotically
tight as the content size si becomes large, that is

lim
si→+∞

[
E[Wi]− si ·

(
1− λ · xi ·E[D] · rH

rP

)]
= 0.

Proof. Consider a content i currently stored in xi caches. The GY /D/1 queue model
for the playout buffer has:

• Service Rate. Jobs (i.e., bytes) in the buffer are served (i.e., viewed by the user)
at the mean playout rate rP .

• Bulk Size. A contact between a device and a helper node storing video i cor-
responds to a new (bulk) arrival in the playout buffer of the device. A new
arrival brings a random amount of new bytes that depends on the contact
duration with that H node. We denote the expected bulk size in bytes as
E[Yi] , E[D] · rH .

• Arrival Rate. The total arrival rate into the playout queue is λPi , λ · xi since
there are xi caches storing content i.

By Little’s law, the long term utilization of the playout queue is

ρi = λPi ·
E[Y ]

rP
= λxi ·E[D] · rH

rP
. (15)

The necessary condition for this queue to be stable and ergodic is that ρi < 1, for any
i ∈ K. This condition is satisfied since λPi ≤ λ · xi and Definition 5.1 applies.
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Let B(n)
i (resp. I(n)

i ) be the length of the nth busy (resp. idle) period of the playout
buffer for content i. When the queue is stable, {(I(n)

i , B
(n)
i ), n ≥ 1} forms an alternat-

ing renewal process (as the queue regenerates at the end of each busy period). Let
further I(n)

i + B
(n)
i define a cycle, and PI(t) the probability that the playout buffer

is empty at time t. Since E[I
(n)
i + B

(n)
i ] < +∞ (by stability), and the distribution of

I
(n)
i +B

(n)
i is non-lattice, we can apply Theorem 3.4.4 of Ross, 1983 to show that

lim
t→+∞

PI(t) =
E[Ii]

E[Ii] + E[Bi]
= 1− ρi, (16)

where the second equality holds by ergodicity. Let further associate to each cycle a
reward equal to the bytes downloaded from the cellular infrastructure during that
cycle, i.e., the reward in cycle n is equal to I(n)

i · rP (we remind the reader that the
download rate from the infrastructure is assumed to be equal to the playout rate
rP , see Assumption A.4). Consider now a video of duration Ti and remember that
Wi is equal to the number of total bytes downloaded from the infrastructure (see
Assumption A.5). From the renewal-reward theorem (e.g., see Theorem 3.6.1 in Ross,
1983) we have that

lim
Ti→+∞

E[Wi]

Ti
=

E[Ii] · rP
E[Bi] + E[Ii]

.

Combining Eq. (15), Eq. (16) and the fact that the duration Ti = si
rP

for large si, we
get that

lim
si→+∞

[
E[Wi]− si ·

(
1− λ · xi ·E[D] · rH

rP

)]
= 0.

The above result states that as si becomes large, we can easily express E[Wi] in closed
form. We will use this result as an approximation for finite size content to introduce
the optimal cache allocation problem for the Low Density Model. Later, in Theo-
rem 5.10, we elaborate on the approximation error introduced for small content.

Problem 8. Consider the Low Density Model. The solution to the following optimization
problem minimizes the expected number of bytes downloaded from the cellular infrastructure:

maximize
x∈Xk

k∑
i=1

φi · si · xi, (17)

subject to st · x ≤ c · h.

Proof. Our objective is to minimize the total number of bytes downloaded from I
nodes. Based on Lemma 5.2, this is equal to

minimize
x∈Xk

k∑
i=1

φi · si ·
(

1− λ · xi ·E[D] · rH
rP

)
,
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which is equivalent to maximize the objective function of Eq. (17).

Proposition 5.3. Problem (8) is an NP-hard combinatorial problem.

Proof. The problem is a BKP with “profit” φi · si and “cost” si for element i. BKP is
NP-hard [Martello and Toth, 1990].

The above proposition states that the problem is hard due to the integer nature of
variables xi (by reduction to a BKP). We therefore propose the following modified
greedy algorithm (Algorithm 3):

1. We convert the problem into a 0-1 knapsack problem using a standard transfor-
mation. We remind the reader that content is ordered in decreasing popularity
(i.e., φ1 ≥ φ2 ≥ · · · ≥ φk). For each content i, we create h different “virtual”
contents with {profit, cost} equal to

{0, 0}, {φi · si, si}, {2 · φi · si, 2 · si}, . . . , {h · φi · si, h · si},

that gives a total of h · k total elements (instead of the original k).

2. We can then consider content ordered by

profit
cost

=
φi · si
si

= φi.

Note that all these elements have the same profit per bit (so, for content i we
can always pick the respective highest allocation {h · φi · si, h · si}, i.e., storing
that content in all helpers). This corresponds to the following allocation vector:

x0
i =

{
h, if i < γ
0, otherwise,

where γ is the maximum content index such that
∑γ

i=1 si ≤ c. This gives a
greedy allocation based on profit per bit which turns out to be the content
popularity φi in our case. However, it can be arbitrarily bad in some cases.

3. In order to improve the accuracy of the algorithm, we introduce the following
allocation vector that replicates in any vehicle only the content with the largest
profit:

x1
i =

{
h, if i = arg max

i∈K
{φi · si}

0, otherwise.

4. We either pick x0 or x1, if the latter leads to a better total profit.

Lemma 5.4. Algorithm 3 guarantees a 1
2 -approximation for the above optimization problem.

Proof. The proof of the approximation is easy and can be found in Dantzig, 1957.
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While Algorithm 3 is 1
2 -optimal, it provides much better performance in realistic

scenarios (as cache sizes are large and can fit several contents). Also, this algorithm
stores the most popular contents in every vehicle (except in some very corner sce-
narios which is why we refer to it as modified). This finding is interesting because,
even if contacts do not overlap, a node still sees multiple caches during the playout of a
content. One would expect that these caches should store different content to maxi-
mize diversity. E.g., in the femtocaching setup, storing the most popular content in
all caches is optimal only when caches are isolated, but it is suboptimal when a node
has access to multiple caches [Golrezaei et al., 2012]. We will see that this allocation
is no longer efficient when vehicle density increases.

Algorithm 3 Caching Algorithm for Low Density Model

Input: s, φ, c, h
1: x← ∅
2: j← 1
3: while

∑j
i=1 si ≤c do

4: xj ← h
5: j← j + 1

6: if
∑j−1

i=1 φi · si · xi ≤ φj · sj · xj then
7: x← ∅
8: xj ← h

9: return x

Beyond providing performance guarantees, this policy is in line with the standard
caching policies in single caches which store the most popular contents [Golrezaei
et al., 2012]. While there exist some more effective algorithms to solve BKPs (e.g.,
Balas-Zemel, Fayard-Plateau, Martello-Toth, dynamic programming, branch-and-
bound) [Martello and Toth, 1990], all of these approaches provide bad performance
when applied to a large number of contents. We refer to this policy as Video Caching
with Low Density Model (VC).

5.3.3 Video Caching with Generic Density Model (VC+)

We now consider a busy urban environment defined as follows:

Definition 5.5 (Generic Density Model). We refer to Generic Density Model as a scenario
where contacts with different vehicles (with the same content) might overlap, i.e., λ ·xi ·E[D]
is not small.

If a user is downloading video i from node A, and the connection is lost (e.g., user or
cache moves away), the user could just keep downloading from another node B stor-
ing i, also in range. Hence, as long as there is at least one cache with a copy within
range (we denote this time interval withBi), the user will keep downloading content
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i at rate rH3. We cannot apply the previous model directly, because when the user
above switches from cache A to cache B, the contact with cache B might be already
ongoing, and we are interested in the residual contact duration with B, which is gen-
erally different (unless contact durations are exponential). We can then model these
overlapping contacts with an extra G/G/∞ queue in front of the playout queue (as
shown in Figure 5.2). New vehicles arrive in the G/G/∞ queue with rate λ ·xi, each
staying for a random service time (corresponding to a contact duration with mean
E[D]) and independently of other cars. The number of jobs in the G/G/∞ queue is
the number of vehicles concurrently within range of the user.

Hence, it is easy to see that: (i) the beginnings of busy periods of the queue on the
left of Figure 5.2 correspond to new bulk arrivals in the playout buffer (queue on
the right), and (ii) the mean duration of such busy periods, multiplied by rH , corre-
sponds to the (new) mean bulk size per arrival.

Lemma 5.6. Consider the Generic Density Model. The bulk arrival statistics into the play-
out buffer are

λPi = λ · xi · e−λE[D]·xi , (18)

E[Yi] =
rH
λ · xi

·
(
eλ·E[D]·xi − 1

)
. (19)

Proof. According to Lemma 3.2, the process formed by the inter-meeting times be-
tween a user and any vehicle storing video i approaches a Poisson process with
rate λ · xi, if xi large and λ small (due to the Palm-Khintchine theorem). Thus, the
G/G/∞ queue capturing overlapping meetings (queue on the left of Figure 5.2) can
be approximated by an M/G/∞ queue with arrival rate λ ·xi and mean service time
E[D].

The probability that there are no jobs in the system (idle probability) is e−λ·E[D]·xi

(this result is well known for M/M/∞ queue, but it also holds for generic contact
durations by the insensitivity of the M/G/∞ queue [Harchol-Balter, 2013]). Fur-
thermore, by ergodicity, it holds that4

E[Ii]

E[Bi] + E[Ii]
= e−λ·E[D]·xi .

Since E[Ii] = 1
λ·xi , solving for E[Bi] gives us the expected busy period of the M/G/∞

queue and multiplying by rH gives as the expected bulk size E[Yi] of Eq. (19).

3We ignore for now interruptions from switching between nodes. Such delays can be very small
(e.g., in the order of few milliseconds if vehicles are operating as LTE relays [Sesia, Toufik, and Baker,
2009]). We consider switching and association delays in the simulations.

4We slightly abuse notation for these idle and busy periods of the queue on the left, while in the
proof of Lemma 5.2 we used them for the idle and busy period of the playout buffer (queue on the
right).
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Additionally, the beginnings of busy periods of the M/G/∞ queue correspond to
(bulk) arrivals into the playout queue. The mean time between such arrivals is sim-
ply E[Bi] + E[Ii]. Hence, the arrival rate of bulks into the playout buffer is

λPi ,
1

E[Bi] + E[Ii]
=

1
eλ·E[D]·xi−1

λ·xi + 1
λ·xi

= λ · xi · e−λ·E[D]·xi .

Lemma 5.7. Consider the Generic Density Model. The following expression is asymptoti-
cally tight as the content size si becomes large, when xi < 1

λ·E[D] · ln
(

rH
rH−rP

)
:

lim
si→∞

[
E[Wi]− si ·

[
1−

(
1− e−λ·E[D]·xi

)
· rH
rP

]]
= 0. (20)

Proof. E[Yi] corresponds now to the expected bulk size for an arrival in the playout
buffer (instead of E[D] · rH in the Low Density Model). Similarly to Lemma 5.2, we
multiply the input rate λPi of Eq. (18) with the bulk size E[Yi] of Eq. (19), and divide
by the playout rate rP , to obtain the utilization of the playout buffer in the generic
case:

ρi =
(

1− e−λE[D]·xi
)
· rH
rP
.

From this point on, we can follow the exact steps of the proof of Lemma 5.2, using
this new ρi, to get the desired Eq. (20). Note, however, that unlike the Low Density
Model, here the utilization of the playout buffer is lower than one when

xi ≥
1

λ ·E[D]
· ln
(

rH
rH − rP

)
, ĥ, (21)

where ĥ is an upper bound on the allocation. Otherwise the queue is not station-
ary. Physically, this essentially means that the delivery capacity of the helper sys-
tem is much higher than rP , and (for long enough content) the infrastructure is not
needed. In theory, this would make the playout queue non-stationary. In practice,
this implies that we have allocated too many copies for this content, at least in our
model. We will therefore use Eq. (21) as an additional constraint in the allocation
problem.

We can now formulate the optimal cache allocation problem for the generic density
scenario:

Problem 9. Consider the Generic Density Model. The solution to the following optimization
problem minimizes the expected number of bytes downloaded from the cellular infrastructure:

maximize
x∈X̂k

k∑
i=1

φi · si · e−λ·E[D]·xi , (22)

subject to st · x ≤ c · h.
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where X̂ , {a ∈ N | 0 ≤ a ≤ min{h, ĥ}} is the feasible region for the control variable x

Proof. Based on Lemma 5.7, the total number of bytes downloaded from I is equal
to

minimize
x∈Xk

k∑
i=1

φi · si ·
[
1−

(
1− e−λ·E[D]·xi

)
· rH
rP

]
,

which is equivalent to minimize the objective function of Eq. (22). However, we
upper bound the feasible region of the control variable x according to Eq. (21).

Proposition 5.8. Problem (9) is an NP-hard combinatorial problem.

Proof. The problem corresponds to the a nonlinear BKP which is NP-hard.

Branch-and-bound algorithms have been developed for such problems, but they are
not efficient when the size of the problem increases. Instead, we will consider here
the continuous relaxation of Problem (9). It is easy to see that the continuous prob-
lem is convex, and we can solve it using standard KKT conditions. In addition to
reduced complexity, this relaxation allows us to also derive the optimal allocation in
closed form thus offering additional insights (e.g., compared to discrete approxima-
tion algorithms).

Theorem 5.9. The solution of Problem (9) is given by

x∗i =


0, if φi < L,

1
λ·E[D] · ln

(
λ·E[D]·φi

mC

)
, if L ≤ φi ≤ U,

min{h, ĥ}, if φi > U,

where L , mC
λ·E[D] and U , mC

λ·E[D] · e
min{h,ĥ}
λ·E[D] , and mC is an appropriate Lagrangian multi-

plier.

Proof. The above problem is clearly convex since the objective function is a sum of
convex functions, the constraints are linear and the domain of the feasible solutions
is convex. We solve it by KKT conditions. For such a problem, this method provides
necessary and sufficient conditions for the stationary points to be optimal solutions.
The KKT conditions for Problem (2) are

li · xi = 0

mi · (h− xi) = 0

mC ·
(
c · h−

∑k
i=1 si · xi

)
= 0

where li and mi are appropriate Lagrange multipliers related to the bounds of x.
The Lagrangian function L(x) is

L(x) =

k∑
i=1

[
−φi · si · e−λ·E[D]·xi + li · xi +mi · (h− xi)

]
+mC ·

(
c · h−

k∑
i=1

si · xi

)
.
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TABLE 5.2: Estimated offloading gains of rounded allocation vs. con-
tinuous relaxation for different cache sizes (in percentage of the cata-

logue size).

Cache size 0, 02% 0, 05% 0, 10% 0, 20%

Rounded 33,148% 45,334% 54,959% 62,751%

Continuous 33,116% 45,323% 54,955% 62,750%

We compute the stationary points by computing the derivative of the Lagrangian
function for each content i. Since the problem is convex, these points are global
solutions.

dL(x)

dxi
= −λ ·E[D] · φi · si · e−λ·E[D]·xi +mi − li −mC · si = 0,

which gives the result of the Theorem after solving for xi and considering the con-
straints. Similarly to Theorem 3.5, bounds L and U can be calculated from the con-
straints. We also consider the tighter upper-bound on xi due to the stability condi-
tion for the playout buffer (according to the discussion in the proof of Lemma 5.7).

We use randomized rounding on the content allocation of Theorem 5.9 to go back to
an integer allocation. As argued earlier, the expected error is small when caches fit
several contents. To validate this, in Table 5.2 we compare the objective value from
our allocation to the one corresponding to the continuous solution of Theorem 5.9
(we report the percentage of traffic offloaded). As the latter is a lower bound on the
optimal solution of the discrete Problem (9), the actual performance gap is upper
bounded by the values shown in Table 5.2. We refer to this policy as Video Caching
with Generic Density Model (VC+).

5.3.4 Non-stationary Playout Buffer

In order to calculate the number of bytes downloaded from the infrastructure, we
have assumed that a video sees a stationary regime, regardless of its size (so that we
can apply the renewal-reward theorem). In practice, video files have finite sizes. In
the next theorem, we show that the predicted amount of such bytes calculated with
the stationary assumption is in fact a lower bound on the actual number of bytes,
which is only asymptotically tight. We also analytically derive the exact estimation
error as a function of content size and scenario parameters. This quantity could per-
haps be used to derive an even better estimate for the objective of our problem, and
further improve performance.

Proposition 5.10. The following statements are true:

1. The stationary estimate E[Wi] is a lower bound on the expected amount of bytes down-
loaded from I nodes for any content size si.
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2. The additional expected number of bytes downloaded as a function of x is

E[ei] =
rH ·E[Bi

2]

2 · (E[Bi] + E[Ii])
, (23)

where E[Bi] (resp. E[Ii]) is the mean busy (resp. idle) period of the playout buffer for
content i and E[B2

i ] is its second moment.

Proof. 1) The lower bound can be proved using a sample path argument. Consider
the stationary process S(t), counting the number of bytes in the playout buffer, at
time t, for a very long file that has started streaming at time −∞. Consider now a
finite size file request that starts streaming at some random time t0, and denote its
playout buffer size as S

′
(t). If the request arrives during an idle period of S(t), then

S
′
(t0) = S(t0) = 0 and the two sample paths are the same (coupled) from that point

on. However, if the request arrives during a busy period of playout buffer S(t),
then S

′
(t0) = 0 but S(t0) > 0, by definition of a busy period. Hence, the stationary

file will download fewer bytes from the infrastructure in the next idle period, as it
already has some to consume.

2) The error in the stationary estimate thus comes if the video request arrives during
a busy period of S(t). By renewal theory, this occurs with probability E[Bi]

E[Bi]+E[Ii]
.

Furthermore, conditional on this event, the expected amount of bytes in the station-
ary playout buffer (i.e., the expected value of S(t0)) is equal to the age of that busy
period multiplied by rH . From renewal theory and the inspection paradox, it holds
that the expected age is equal to the expected excess time E[Be], which is equal to
E[B2

i ]
2E[Bi]

, where E[Bi] and E[B2
i ] are the first and second moments of the busy periods

of the playout buffer GY /D/1. Putting everything together, the expected error can
be derived as

E[ei] =
rH ·E[Bi]

E[Bi] + E[Ii]
· E[B2

i ]

2E[Bi]
,

which gives us Eq. (23).

Corollary 5.11. Assume that bulk arrivals are exponentially distributed. Then, we have

E[B] = −B̃′(s)|s=0 = E[D]
1−ρi ,

E[B2] = B̃′′(s)|s=0 = E[D]2

(1−ρi)3 ,

where B̃(s) is the Laplace transform of the busy periods.

Proof. For low traffic (i.e., when the probability to have more than one job in the
queue at the same time is low), the busy periods of the M/G/∞ are trivially ex-
ponentially distributed. What is more, Hall, 1985 shows that under conditions of
heavy traffic, busy periods are very nearly exponentially distributed as well. With
this assumption, the playout queue GY /D/1 has arrival rate λB and mean bulk size
E[Yi] which are given by Lemma 5.6. Note that the busy periods of this queue are
statistically equivalent to those of an M/G/1 queue, with the same arrival rate and
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mean service requirement E[D] = E[Yi]
rP

. The utilization of this queue is

ρi =
(

1− e−λ·E[D]·xi
)
· rH
rP
.

We can thus calculate E[Bi] and E[B2
i ] from that M/G/1 queue instead. We can

derive the Laplace transform of the busy periods of an M/G/1 queue in recursive
form [Harchol-Balter, 2013] as

B̃(s) = S̃(s+ λB − λB · B̃(s)),

where S̃(s) is the Laplace transform of the service time of the M/G/1 queue. While
this recursion does not allow to invert B̃(s), we can use it to calculate the moments
as

E[B] = −B̃′(s)|s=0 = E[D]
1−ρi ,

E[B2] = −B̃′′(s)|s=0 = E[D]2

(1−ρi)3 .

5.4 Performance Analysis

In this section, we perform simulations based on real traces for vehicle mobility and
content popularity to confirm the advantages of the vehicular cloud and to validate
our theoretical results. While the simulator has already been described in Section 4.5,
some modifications are needed to deal with the video streaming.

5.4.1 Simulation Setup

We build a trace driven MATLAB simulator to evaluate the offloading gains of our
proposed policies. Our tool simulates YouTube video requests over a period of five
days. To simulate the vehicle behaviour, we use the Cabspotting trace [Piorkowski,
Sarafijanovic-Djukic, and Grossglauser, 2009] that records GPS coordinates for 531
taxis in San Francisco with granularity of one minute that we increase to 10 seconds
by linear interpolation to improve the accuracy of our simulations. We use synthetic
traces for user mobility based on SLAW model [Lee et al., 2009]. We infer the content
popularity from a database with 100.000 YouTube videos [Zeni, Miorandi, and De
Pellegrini, 2013]. We refer the interested reader to Section 4.5 for further information
about the traces used by the simulator.

The simulator works as follows: first, it generates a set of content requests concen-
trated at day-time; inter-arrival times between two requests are exponentially dis-
tributed according to the IRM model [Coffman and Denning, 1973] that is the de
facto standard in the analysis of storage systems. Next, the simulator associates to
each request the coordinates (and the mobility according to the SLAW model) of the
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TABLE 5.3: Parameters used in the simulations. The abbreviation sr
(resp. lr) refers to short range (resp. long range) communications.

PARAM VALUE PARAM VALUE

h 531 vehicles c 0, 1% · k

k 10.000 contents E[s] 250 MB

rP 1 Mbps (720p) rH 5 Mbps

λsr 0,964 day−1 λlr 2,83 day−1

E[D]sr 31,23 s E[D]lr 50,25 s

user requesting the content. Then, it allocates content in caches according to dif-
ferent allocation policies. For each request, the simulator reproduces the playout
of the video: the end user buffer will be opportunistically filled when at least one
cache storing the requested video is inside the communication range, depending on
the mobility traces. Unless differently stated, we use the parameters summarized
in Table 5.3. Because of the large number of requests in the period considered, the
confidence interval is too small to be distinguishable and hence is ignored in the
following plots.

We compare the following allocation policies:

• VC+. This policy allocates videos optimally with the Generic Density Model.
This policy is described in Section 5.3.3.

• VC. This policy allocates videos optimally with the Low Density Model. This
policy is described in Section 5.3.2.

• Least Recently Used (LRU). Starting from a random initial allocation, it discards
the least recently used item when there is a cache miss. Unlike the above two
policies, LRU keeps updating the cache, and thus could incur higher traffic on
the backhaul (from I toH nodes).

• Random. Content is randomly allocated inH nodes.

5.4.2 Caching Strategy Evaluation

In Figure 5.3 we vary the number of vehicles from 100 to 500. While the number of
envisioned connected vehicles in the centre of San Francisco is expected to be much
larger, it is really interesting to verify that a subset of them can still provide non-
negligible offloading gains (more than 30 percent) which is important to promote
the start up phase of the vehicular cloud. As proved in Section 5.3.2, the VC policy
provides good performance in scenarios with low vehicle density: e.g., for h equal to
100, the offloading gain is almost equal to VC+. Conversely, for a larger number of
vehicles (that introduce contact overlaps), the gap between the two policies becomes
higher than 10 percent. Finally, we observe that the LRU policy underperforms both
policies, in sparse scenarios, while it converges to the (worse) VC policy in dense
ones. This is reasonable, as an LRU approximates a Least Frequently Used (LFU),
i.e., storing the most popular contents when the popularity is stationary during the
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FIGURE 5.3: Percentage of traffic offloaded through the vehicular
cloud according to number of vehicles h (c = 0, 1% · k).
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FIGURE 5.4: Percentage of traffic offloaded through the vehicular
cloud according to buffer capacity c (h = 531).

considered window. While in some scenarios LRU is actually not far from the results
of our allocation strategy, it should be highlighted that we ignore the extra backhaul
cost due to the frequent cache updates for LRU (that VC+ and VC do not have).
In fact, simulations have shown that this “additional seeding” in LRU considerably
degrades performance.

In Figure 5.4 we vary the cache storage per vehicle between 0,02 and 0,5 percent of
the catalogue (where h is equal to 531 and mean video length is one hour). Inter-
estingly, the smallest storage capacity still achieves considerable performance gains.
E.g., if one considers an entire Torrent or Netflix catalogue (∼3 PB), a mobile helper
capacity of about 500 GB (0, 02 percent) already suffices to offload 30 percent of the
total traffic. Moreover, for small c (less than 0, 05 percent of the content catalogue),
VC almost doubles the gain (from 18 to 30 percent) compared to the other policies.
Finally, the random policy ignores the skewed Internet content popularity, and thus
performs very poorly in all scenarios.
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FIGURE 5.5: Percentage of traffic offloaded through the vehicular
cloud according to mean video length.

Stationary regime analysis can be considered as a good approximation when there
is a reasonable number of busy plus idle buffer playout periods, such that the transi-
tory phase becomes negligible. In order to increase the number of these periods, the
average content size needs to be large enough, given fixed mobility statistics. Fig-
ure 5.5 shows the fraction of data offloaded by the vehicular cloud for set of content
of the same length. As proved in Proposition 5.10, gains become larger according
to the average video length. However, this increase is only marginal in the majority
of the scenarios: in fact, even small content (15 minutes) provides a gain which is
comparable to the asymptotic gain, validating the stationary regime analysis.

5.4.3 Mobile vs. Static Helpers

In this section, we verify the pertinence of the vehicular cloud, that is based on mo-
bile helpers, against the femtocaching framework described in Golrezaei et al., 2012,
that is based on static small cells equipped with storage. In this second network,
small cell helpers are distributed in the considered area proportionally to the pop-
ularity density, i.e., areas with a higher number of requests have higher small cell
density (this is a common operator policy since small cells are deployed to alleviate
traffic “hotspots”). Users move according to the previously described SLAW trace,
and they can also download video chunks at low cost from a nearby small cell if
it stores the requested video. Content is allocated using the algorithm described
in Golrezaei et al., 2012. We consider two densities of small cells:

• Femtocaching (equal number of helpers). From the analysis of the Cabspotting
trace, the average number of vehicles simultaneously inside the area considered
is lower than 200. In order to have a fair comparison with the vehicular cloud,
we set the number of small cells to 200.

• Low cost femto (equal cost). The CAPEX of a small cell consists of base station
equipment, professional services (planning, installation and commissioning),
and backhaul transmission equipment. This cost may range from 1000 e for a
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FIGURE 5.6: Percentage of traffic offloaded through the vehicular
cloud and femtocaching framework.

femtocell to 20.000-30.000 e for a microcell [Senza Fili Consulting, 2013]. In the
proposed vehicular cloud, the equipment might be pre-installed, and a large
part of the OPEX could also be avoided as explained earlier. In fact, a first
implementation of a similar vehicular cloud, where vehicles act as proxies, has
shown a 10-fold cost reduction compared to small cell [Veniam]. We therefore
also consider a sparser deployment that equalizes the total cost where we set
to 50 the number of small cells5.

Figure 5.6 compares vehicular cloud and femtocaching in terms of data offloaded.
We also simulate a femtocaching scenario with the VC policy. As expected, gains
provided by the vehicular cloud are considerably higher than femtocaching for both
short and (mainly) long range communications. This result is even more interesting
considering the cost: in fact, storing content in vehicles permits almost 2,5 times
higher gains than femtocaching with equal cost.

5.5 Additional Use Cases

We believe one of the key strengths of our framework is its wider applicability. We
present here three additional use cases:

• Femtocaching. In the femtocaching setup, while some of the mobility assump-
tions made in Section 5.2 do not exactly hold when the helpers are static and
UEs are moving, our analytical formulas can still serve as a good approxima-
tion.

• Secondary low cost operator. Such a low cost operator could try to take up a
market share by offering less expensive access to their (static or mobile) small
cells to users with dual subscriptions. In this case, the optimization problem

5A more detailed analysis of CAPEX and OPEX can be found in Appendix A.3.
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is rather for the low cost operator that aims to maximize the amount of traffic
that it can serve from its own nodes.

• Device-based caching. More futuristic scenarios that use device-based caching
and device-to-device communication as the “secondary” inexpensive network
of helpers [Golrezaei et al., 2013; Han et al., 2012] could also be tackled with
our framework. For example, theH nodes could correspond to an initial set of
user equipments that the operator pushes content to. If these user equipments
can further distribute the content to other user equipments (which then also
become helpers) it becomes an interesting problem to transform the statistics
of the size of this non-constant helper set, into the playout buffer idle statistics.

5.6 Summary

In this chapter, we have focused our study on caching multimedia content such as
videos. Video streaming has become dominant in the current Internet traffic [Cisco,
2016-2021]. We have exploited the fact that later chunks introduce an intrinsic delay
tolerance on the content download. Using queueing theory notions, we were able
to model the intermittent contacts with the mobile caches. In this chapter, we have
provided the following main contributions:

• Modelling. We have modelled the playout buffer at the user device with a
bulk queue where arrivals correspond to the bytes opportunistically down-
loaded from vehicles, and the service rate corresponds to the playout video
rate. Moreover, we have added an additional queue to deal with overlap-
ping meetings, i.e., when several vehicles are inside the user’s communication
range at the same time.

• Optimization. We have calculated the number of bytes to download from the
vehicular cloud based on the above queueing model. Then, we have formu-
lated an optimization problem to infer the optimal content allocation. We have
argued that, in a low density scenario, the problem corresponds to a BKP, and
the optimal solution is to allocate the most popular contents in all vehicles. On
the other hand, when the vehicle density increases, an optimal policy replicates
content accordingly to the logarithm of the popularity.

Finally, we have improved the trace-driven simulator of Chapter 4 to validate the
theoretical findings. We have also compared the vehicular cloud with the femto-
caching framework [Golrezaei et al., 2012], and performed a CAPEX/OPEX analysis
that has highlighted the advantages of the vehicular cloud as a function of cost re-
duction.
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Chapter 6

Conclusion

6.1 Summary

Today’s world is rapidly changing and evolving in a fully-connected environment
where any electronic device is able to communicate and exchange information each
other. To deal with such technology advances, a solid and widespread network in-
frastructure is needed. This translates into an exponential increase of mobile data
demand which is predicted to double in the next five years leading to an overload
of the cellular network. Researchers and industry have been proposing different so-
lutions to deal with such a problem. Densification through small cells and caching
popular content at the edge is one of the most interesting solutions because it reduces
the distance between content and users and increases the spectral efficiency. In our
thesis, we have exploited a futuristic network built using vehicles such as private
cars, buses or taxis. The feasibility of such a vehicular network has been confirmed
by several recent attempts (e.g., Veniam; BMW Vehicular CrowdCell). While there
are a number of interesting technical and architectural details (which have also been
discussed throughout the thesis), our main focus was on the theoretical analysis and
on the modelling of such an architecture.

The main goal of the thesis was to suggest to an operator how to deal with the over-
load of the backhaul and the core network. Throughout the thesis, we have con-
sidered different subproblems such as the choice of the communication protocols, a
system feasibility analysis, and a deep modelling of the proposed approach. What is
more, we have focused our attention on the theoretical aspects of the caching strate-
gies, while the implementation of such system is left as a future direction. Specif-
ically, we have built a model to infer the optimal number of replicas of Internet
content to store in vehicles to minimize the load on the cellular infrastructure. The
optimal replication factor is the result of an optimization problem that is formu-
lated depending on content (or chunk) download policies and content type. The
thesis is written as an user satisfaction escalation as each chapter brings incremental
improvements in the QoE guarantees thanks to progressive tighter bounds on the
retrieval deadline of content. The main models have been discussed in the central
chapters of the thesis where the major contributions lie:
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• Content caching through a vehicular cloud. A user that requests a content agrees
to wait until a maximum deadline while querying nearby vehicles to down-
load content at low cost. We have formulated an optimization problem and
inferred an optimal allocation policy to store replicas of popular content in ve-
hicles. We have seen that such a model can be used to offload more traffic than
related work while keeping deadlines much shorter due to the intrinsic vehicle
mobility.

• Quality of Experience content caching. Starting from the idea that a user might be
more willing to wait for a content of larger size, we have introduced the slow-
down metric to evaluate the QoE. We have modified the previous optimization
problem by including an additional “QoE budget” constraint that can be redis-
tributed between contents. The solution of the problem was to calculate jointly
the optimal replication factor and the deadlines to assign to the content cata-
logue. We have argued that the variability in the deadlines brings two main
advantages compared to the fixed case: (i) the amount of traffic offloaded is
much larger given the same mean slowdown; (ii) an MNO can tune the QoE
constraint to have a tradeoff between traffic offloaded and user satisfaction.

• Content caching for video streaming. Finally, we have focused on video stream-
ing since the majority of the mobile traffic is made up of multimedia content.
We have exploited the characteristics of the video streaming to deliver content
without additional delay. We have introduced a model based on queuing the-
ory. Such a model is generic, and can be applied to any scenario with “low cost
but intermittent” and “expensive but always available” sources.

In this thesis, we have assumed that a user can download a content (or part of it)
while she is inside the communication range of a vehicle storing it. We have started
our dissertation with the Single Contact Model where we have assumed that a con-
tent can be entirely downloaded during a contact. Then, we have generalized such
a model to account for partial downloads, i.e., during a contact a user can download
part of a content depending on contact duration and download rate. While more
complicated from an analytical point of view, a finer-grained description of the con-
tent downloads describes better the interaction between vehicles and users. In order
to validate our theoretical findings, we have performed extensive simulations based
on real traces. In particular, we have argued that an optimal content allocation leads
to a decrease of more than half of the total traffic load under realistic conditions.

We believe that this thesis can be considered as a ground-breaking work because it re-
veals the potential of an additional low cost infrastructure made up of vehicles. Such
a new infrastructure will probably be available to everybody in the near future. Also
motivated by some first attempts to define standards and physical requirements, we
definitely believe that vehicles will be active part of the cellular infrastructure. Our
study can be considered relevant since it provides some evidence of the potentiality
of the vehicular cloud, and may speed up its adoption.
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6.2 Future Work

As a future work, we suggest the following main research directions to improve and
complete the work presented in the thesis:

• Model improvements. Increasing the number of model parameters as well as the
quality of the input variables of the problem will help to build a better model.
For instance, we have assumed that the popularity is uniform in a given region
(and constant over a seeding time window). However, this is not necessarily
true as some contents might be more popular in a certain area (e.g., football
videos are more likely to be downloaded near a stadium). To deal with this, it
would be useful to consider location based popularity using the recent studies
on floating contents (Thompson, Crepaldi, and Kravets, 2010; Hyytiä et al.,
2011). Another example where the model can be improved concerns Chapter 4:
while we have shown that qGC performs well in the majority of the scenarios,
it would be interesting to investigate a better approximation for the Generic
Contact Model, e.g., considering the content type along with the content size.
Also mixed policies to tie qGC to qSC can probably bring additional gains.

• Variable video quality caching. New adaptive streaming protocols allow to vary
the video quality per chunk in an opportunistic way according to the current
network conditions. However, in this work we have considered that each con-
tent has a fixed resolution. The model described in Chapter 5 can be adapted
easily to variable video qualities since the potential fluctuations of the play-
out rate are naturally absorbed by our queuing model that is based on average
statistics. Then, further optimization can be proposed by exploiting the char-
acteristics of such new protocols. For instance, it is possible to formulate an
optimization problem to select both optimal number of copies and resolutions
that minimize the load on the cellular infrastructure.

• Per chunk caching for video streaming. We have also assumed that the whole con-
tent is cached. However, within our video streaming framework (see Chap-
ter 5), early chunks have a smaller chance to be downloaded from a helper
node than later chunks, due to the larger inherent delay tolerance of the latter.
At the same time, common experience as well as recent measurements suggest
that most video content requested are partially watched. These two “forces”
call for a per chunk optimization policy: (a) the former suggests that it is per-
haps wasteful to cache too many of the early chunks, and give instead more
space to later ones that have a higher chance to be offloaded; (b) however, the
latter suggests that early chunks have different popularity than later chunks
and thus perhaps deserve more storage space. We believe these two opposing
forces would lead to interesting tradeoffs when one tries to apply our frame-
work to chunk caching rather than content caching. However, it also increases
the modelling complexity, as now not every vehicle will have every chunk a
user might need.

As a final remark, we think that it would also be worth trying to implement some of
the communication protocols proposed to directly verify the feasibility of the system.
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A real implementation of the caching strategies would definitely provide a great
added value to the work.
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Appendix A

Architectural details

In this section, we present some more details concerning the proposed vehicular
cloud to highlight the feasibility of the approach proposed. In particular, we provide
some insights about the communication protocol between mobile users and vehicles,
and describe the CAPEX and OPEX to be sustained.

A.1 Communication Protocol

Previous works, such as Bychkovsky et al., 2006 and Ott and Kutscher, 2004, have
confirmed the possibility to exploit opportunistic connections between vehicles and
user equipments for various purposes. Such high mobility environments, which cre-
ate networks with rapidly changing topologies, largely affect the choice of the com-
munication protocol. Hadaller et al., 2007 have revealed that the two major causes
for poor performance during connections (in terms of latency and bandwidth) are
due to setup delays and default client bit rate selection algorithm: specifically, in or-
der to build an architecture that guarantees good performance, the protocol should
reduce setup delays with medium-long communication ranges. However, while
longer ranges and high data rates improve the overall performance, battery life
might be significantly lowered, especially in mobile devices.

Direct device-to-device communications between handheld devices have not been
widespread until recently, with the adoption of the WiFi Direct standard. WiFi Direct
facilitates setup of device-to-device networks, but one device must serve as an access
point and all other devices must communicate through it, thus not supporting highly
mobile networks with rapidly changing topologies [Choi et al., 2014]. What is more,
WiFi Direct has been shown to be energy inefficient [Trifunovic et al., 2013].

The recent increasing interest in vehicular networks has led to the proliferation of
new standards and protocols for high mobility environments [Hameed Mir and Fi-
lali, 2014]. The IEEE 802.11p protocol, which has been developed for the specific
context of vehicular networks, is considered as the de facto standard. It includes
physical and MAC layer specification as well as upper-layer protocols. Specifically,
IEEE 802.11p is expected to be particularly suitable for medium range communica-
tions and delay-sensitive applications. According to the modulation used, through-
put can be from 2-3 Mbps (with BPSK up to 150 m) to 15-20 Mbps (with 64QAM up to
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25 m) [Lin et al., 2012]. While this protocol actually covers simplicity (uncoordinated
access mechanism, no authentication) and low delay (few hundreds milliseconds in
crowded areas), its decentralized nature imposes limitations on reliability, conges-
tion (due to higher beaconing frequency), and scalability. Concerning battery drain,
it has also been shown that it is possible to implement a low battery consumption
version in modern mobile devices without compromising performance [Choi et al.,
2014].

Given the diverse performance requirements from a wide spectrum of vehicular net-
working applications, recently several standardization bodies and research consor-
tium have shown increasing interest in adopting LTE Advanced to support device-
to-device communications and vehicular network applications. Specifically, 3GPP
Release 12 has introduced Proximity Services (ProSe) for LTE Advanced [3GPP, 2014].
The ProSe envisages two basic functionalities:

• ProSe discovery that identifies the ProSe-enabled devices in proximity.

• ProSe communication that enables establishment of communication paths via
PC5 interface between two or more ProSe-enabled devices that are in direct
communication range.

The need of privacy and security has led the research to an evolved packet core-
level discovery procedure, where a 3GPP network would act as a trusted intermedi-
ary and implement all of the necessary policies on behalf of users. In our scenario,
the MNO will redirect the user equipment to the vehicular cloud if a new vehicle
is discovered during (i): in this way, the user does not have to periodically probe
nearby vehicles, resulting in a more efficient battery utilization. Once that both
ProSe-enabled devices are in contact, the PC5 interface uses the sub-frames which
are reserved for uplink transmission (called “sidelink” in LTE terminology) in order
to minimize the hardware impact on the user equipment and especially on the power
amplifier. Differently from IEEE 802.11p, LTE Advanced improves overall through-
put and performance, spectrum utilization, reliability and power consumption at
the cost of higher latency. However, Kim et al., 2012 show that LTE-A is capable
of satisfying delay requirements for most of the vehicular applications. ProSe also
support Wi-Fi Direct for the sidelink, going beyond the intrinsic setup problems due
to the high mobility of vehicles.

A.2 Interference

Interference and handover issues can be solved using technological solutions such as
self organizing networks (SON) and CoMP, so as to reduce OPEX and ease the com-
missioning processes [Alliance, 2015]. Beyond self-healing and self-optimization
mechanisms, SON main feature is self-configuration: newly added base stations are
self-configured in line with a “plug-and-play” paradigm. This means both connec-
tivity establishment, and download of configuration parameters are software. Self-
configuration is typically supplied as part of the software delivery with each radio
cell by equipment vendors. When a new base station is introduced into the network
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and powered on, it gets immediately recognized and registered by the network.
The neighbouring base stations then automatically adjust their technical parameters
(e.g., emission power, antenna tilt) in order to provide the required coverage and
capacity, and, at the same time, avoid the interference. In CoMP, data and channel
state information is shared among neighbouring cellular base stations to coordinate
their transmissions. CoMP techniques can effectively turn otherwise harmful inter-
cell interference into useful signals, enabling significant power gain, channel rank
advantage, and/or diversity gains to be exploited. CoMP and SON have been in-
cluded in the LTE standard.

A.3 Capital and Operational Expenditures

Most operators mention costs as the main challenge for small cell deployments.
One key point of the infrastructure proposed is the simplicity to turn the current
infrastructure into a working vehicular cloud. The fundamental hardware compo-
nents needed are the support for 802.11p (vehicle-to-mobile device) and WiFi/LTE
(vehicle-to-infrastructure), and storage capacity, usually available at low cost. Sen-
sors (e.g., GPS) can be considered as a plus to gather additional information. Basic
computational capacity are required, such as an authentication system1, and a con-
nection manager for heterogeneous networks.

In heterogeneous networks, CAPEX consists of base station equipment, professional
services (planning, installation and commissioning), and backhaul transmission equip-
ment. Specifically, base station equipment must be low cost and fast to install, and
with high capacity, which is a complex tradeoff. While macro base station CAPEX
varies from 70.000 e to 150.000 e depending on number of carriers and technol-
ogy used [Senza Fili Consulting, 2013; Nikolikj and Janevski, 2014], for small cells
the cost goes from 1000 e for a femtocell to 30.000 e for a microcell. In the pro-
posed vehicular cloud, the equipment will be preinstalled in vehicles [Smartphone on
Wheels; Green, 2014] and user only need to make a subscription to join the cloud.
As many studies suggest, near future vehicles will already be equipped with storage
capacity and network connectivity, reducing CAPEX to only backhaul transmission
equipment.

Concerning OPEX, they include site rental, electric power, maintenance, spectrum
rental, and backhaul transmission lease. Furthermore, we expect wireless backhaul
to dominate in small cell sites, both for cost considerations (i.e., high installation
and recurring costs of fiber), and for operational considerations (i.e., difficulties in
bringing fiber to structures like lampposts, and lack of flexibility). Beyond CAPEX,
the vehicular cloud can also reduce OPEX since site rental and electric power are not
an issue. What is more, maintenance is usually managed by the car manufacturer
(e.g., periodic car inspections), limiting the costs to spectrum rental and backhaul
transmission lease.

1Authentication is only required when vehicle caches are filled by the MNO. Communication be-
tween mobile users and vehicles do not require authentication to reduce the latency.
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Key challenges of small cells are site acquisition (or rental), installation costs (pro-
fessional services) and backhaul, constituting today the majority of typical outdoor
small cell total cost of ownership. However, site rental and installation and mainte-
nance costs are basically negligible (because already part of the infrastructure) in the
vehicular cloud. According to Senza Fili Consulting, 2013, we estimate that our pro-
posed architecture can reduce the costs up to 60 percent per small cell, when CAPEX
and OPEX are considered. What is more, this cost estimation is a lower bound, since
it does not take into account the load reduction in the backhaul link given the higher
data offloading than a traditional cache in small cell.
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Appendix B

Network Traffic

B.1 Content popularity

With the arrival of Web 2.0, the notion of popularity for a content can assume mul-
tiple meanings, among which number of comments, ratings or feedback. In this
work, we have considered the popularity as the request rate per content, since our
goal is to minimize the accesses to the cellular infrastructure. However, caching is
optimized only if a fresh view of the system is maintained, but content popularity
prediction can be a challenging task because of its time-varying nature. In our work,
we have assumed content popularity to be stable in the time interval considered.
While this is not true in general, video streaming popularity (e.g., YouTube) shows
a quite stable behaviour, making this assumption a good approximation. What is
more, it has been shown that prediction techniques based on history1 are accurate
for video contents for short-medium terms (i.e., from days to few weeks) [Cha et al.,
2009]. MNOs periodically update their caches (e.g., every two days, once a week)
when cellular infrastructure is underloaded (i.e., at night time or off-peak hours),
with incremental changes, keeping the vehicular cloud up-to-date.

B.2 Video Streaming

Network traffic is wide and heterogeneous. Some Internet contents present unique
characteristics (e.g., gaming, voice calls or encrypted traffic), hence cannot be cached.
However, the vast majority of current data traffic is represented by cacheable content
(e.g., Netflix, TV series, movies, software updates). In Chapter 5, we have focused
on multimedia content (e.g., videos) which represents a large percentage of the to-
tal mobile data traffic [Cisco, 2016-2021]. While these applications traditionally use
HTTP, leaving HTTPS to provide end-to-end encryption for protecting sensitive in-
formation (e.g., online banking transactions, authentication), a number of new con-
tent (including video streaming) has been recently adopting HTTPS. Although this
might seem an insurmountable obstacle to caching, it is actually contributing to de-
velop new protocols to combine security and in-network operations [Naylor et al.,
2015].

1Note that MNOs know past content popularity without incurring in privacy violations.
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Video is delivered in two primary streaming mechanisms: progressive video, in which
sections of a single file are delivered in bursts; and adaptive video, in which chunks of
differing display quality are delivered based upon the network transport capabili-
ties. In the progressive method, a single large file is “burst-paced” into the network,
with no consideration for available bandwidth. In this scenario, the content is a
single video file stored on a server and HTTP “byte-ranges” are used for seeking
through the video. Each byte range may either come in the same TCP connection or
a new connection. For situations in which videos are available with different display
quality choices (each of which corresponds to a different bitrate), the video client (or
user) manually selects a particular resolution, which corresponds to a different file
on the server. The result is that two users watching the “same” video at different
resolutions are actually watching different files. Once chosen, this display quality is
constant (i.e., video is played at constant bitrate), regardless of the network ability
to transport sufficient data to avoid video interruptions. On the other hand, adap-
tive video modulates the display quality based on the network available transport
capacity (i.e., bandwidth). It achieves this effect by fetching “chunks” of the video:
the chunk chosen is of the maximum deliverable display quality. At the beginning,
the video client requests the first chunk, and starts playing it. If this chunk takes too
long to deliver, then the next chunk will be requested at lower display quality; if this
initial chunk delivered especially quickly, then the next chunk will be requested at a
higher display quality.

Content popularity, and video on demand in particular, is responsible for two fun-
damental shifts in consumer behavior:

• Higher peak bandwidth levels. Since video content is an on “demand” applica-
tion, it drives traffic when it is viewed; previously, video content was often
acquired in bulk via peer-to-peer networks and then consumed later.

• Higher subscriber sensitivity to quality. Video has rapidly changing sights and
sounds, so shifts in quality (e.g., stalls, pixelization, compression artefacts,
shifts up or down in resolution, changes in frame-rate) are instantly recognized
by the viewer.

From the MNO perspective, video on demand decreases network efficiency since it
translates into a large amount of available but unused capacity throughout the day.
During these high peaks, the network is more prone to congestion; from the viewers’
perspective, congestion can very visibly manifest as degradation in video streaming
quality. In this work we focus on progressive streaming, while adaptive is left as
future work.
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Appendix C

Extensions for SC policy

C.1 Non-null Seeding Cost

The SC policy (see Section 3.3.2) can be generalized for a scenario where the seeding
cost is non-null and equal to the total number of bytes pushed in the vehicles times
a positive real parameter γ less than one. A typical value for γ could be 1/

∑k
i=1 φi

to give equal weight to (I → H) and (I → U) communications.

Problem 10. Consider the Single Contact Model when pi = 1 for any i ∈ K and the
seeding cost is non-null. The solution to the following optimization problem minimizes the
bytes downloaded from the cellular infrastructure:

minimize
x∈Xk

Φseed(x) ,
k∑
i=1

[
φi · si · e−λ·xi·y0 + γ · si · xi

]
,

subject to st · x ≤ c · h.

Similarly to Theorem 3.5, we solve the continuous relaxation of Problem (10) that
gives:

Theorem 3.1. The solution of Problem (10) is given by

x∗i =


0, if φi < L,

1
λ·y0 · ln

(
λ·y0·φi
ρ+γ

)
, if L ≤ φi ≤ U,

h, if φi > U,

where x∗ , arg maxx∈Xk Φseed(x), L , ρ
λ·y0 , U , ρ·eh·λ·y0

λ·y0 , and ρ is an appropriate
Lagrange multiplier.

Proof. Problem (10) is a convex optimization problem since its objective function is
convex (because it is the sum of convex functions), the constraint is linear and the
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set of feasible solutions is convex. We solve it by KKT conditions which are
li · xi = 0

mi · (h− xi) = 0

ρ ·
(
c · h−

∑k
i=1 si · xi

)
= 0

where li and mi are appropriate Lagrange multipliers related to the bounds of x. We
convert Φseed(x) to the standard form (from minimization to maximization) and we
write the related Lagrangian function L(x):

L(x) = −
k∑
i=1

[
φi · si · e−λ·xi·y0 + γ · si · xi + li · xi +mi · (h− xi)

]
+ ρ ·

(
c · h−

k∑
i=1

si · xi

)
.

We compute the stationary points by computing the derivative of the Lagrangian
function for each content i. Since the problem is convex, these points are also global
solutions.

dL(x)

dxi
= λ · y0 · φi · si · e−λ·xi·y0 − γ · si + li −mi − ρ · si = 0.

Making explicit x, we obtain:

xi =
1

λ · y0
· ln
(

λ · y0 · si · φi
si · ρ+ γ · si − li +mi

)
.

The proof continues as in the proof of Theorem 3.5.

When the seeding cost is null, the optimal allocation always fills the caches because
any other allocation would be suboptimal. On the other hand, when the seeding
cost is non-null, we can identify two regimes:

• ρ = 0. In this regime caches are not fulfilled. This happens because γ is too
large or, equivalently, the number of requests during the seeding time window
is not large enough to amortize the seeding cost. However, this scenario is not
interesting because, in practice, the number of requests is expected to be large
compared to the storage capacity of the vehicular cloud.

• ρ > 0. In this regime all caches are fulfilled. It is easy to see that the resulting
allocation is equivalent to the one of Theorem 3.5. For this reason, assuming a
large enough seeding time window, we can say that the seeding cost does not
modify the optimal allocation according to the Single Contact Model.
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C.2 Dynamic Adaptation to Changing Popularity

In this section, we consider a more practical setup where caches are updated dy-
namically as new contents are introduced in the catalogue, and/or existing contents
exhibit a significant change in popularity. Adapting to changing content popularity
is not only important to introduce new contents and delete obsolete ones, but also to
increase the potential performance gains. We take into account the seeding cost to
make the appropriate cache updates.

Specifically, suppose that video A and video B have the same number of views per
day. Moreover, suppose that video A is very popular during the day, while video B is
more popular during the night. We would like to capture this behaviour by allocat-
ing more copies for A during the day and for B during the night. Since they have the
same average popularity over one day, if the seeding time window is too large (e.g.,
one day) the two videos will be allocated the same number of copies. On the other
hand, for a small seeding time window, the cache hits due to the additional copies
allocated during the interval are not large enough to amortize the cost of seeding
these new copies, being perhaps removed before a newer allocation is selected in
the next time window.

In such a system, seeding is incremental, taking into account the existing allocation,
and adjusting it where necessary, depending on the potential gains predicted for a
shorter time window (i.e., until the next update). We propose a simple algorithm
computing the number of copies to add or remove every seeding time window for
each content. This heuristic allows to have an easy implementation in practice.
Specifically, every time window, we make the decision if it is convenient adding
more copies for a given content. Basically, seeding one more copy provides a gain
equal to the number of cache misses saved by the additional copy. The gain is given
by:

gaini , φi · si · (1− e−λ·y0) · e−λ·y0·xi .

Then, we sort content according to the gain that can provide and, if this is higher
than the seeding cost, we add a copy (or more copies) in the cloud until the buffer is
full or there no other contents to seed. On the other hand, if all the caches are full,
storing new copies must follow the deletion of the less popular ones; removing one
copy leads to a loss equal to the additional cache misses:

lossi , φi · si · (eλ·y0 − 1) · e−λ·y0·xi .

Then, we select the content with the highest gain and the one with the lowest loss.
If max (gain) − min (loss) is greater than one, then the switching is advantageous.
We call switching the action taken by the I nodes to remove a content and replace
it with another one. We recompute the gain and the loss for the contents switched
and we iterate until the condition is satisfied, i.e., there is at least one advantageous
switching. We add/switch the contents every time window.

Finally, we analyse how refreshing the caches affects the performance of the vehicu-
lar cloud through numerical simulations. We use the MATLAB simulator described
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FIGURE C.1: Percentage of traffic offloaded through the vehicular
cloud when a replacement policy is used.

in Section 3.4.1. Moreover, here we increase the realism of the simulations by con-
sidering that the content popularity is not known in advance, but it requires to be
estimated [Dezsö et al., 2006; Gill et al., 2007]. In our simulator, we build a simple
predictor to estimate the future popularity according to the previous samples, by us-
ing an exponential weighted moving average based on the latest 10 time windows.
Building the best predictor goes beyond the scope of this thesis. Here, we just want
to show how an error in the prediction affects the system and if the considerations
done are still valid.

The content popularity provided by the database used has daily granularity; how-
ever, several studies have shown a clear sinusoidal behaviour on a daily basis [Abra-
hamsson and Nordmark, 2012; Gill et al., 2007]. We exploit these studies to estimate
the content popularity on a hourly basis. Figure C.1 shows the final cost when caches
are updated with a varying refresh time over a long time period to ensure capturing
the variations in the content popularity (in the simulator, we set this long time pe-
riod to one year). In this scenario, the vehicular cloud (line prediction in the plot) still
provides a considerable number of savings (from 50 to 70 percent depending on the
seeding time window). Moreover, we can have gains similar to the case with perfect
knowledge (line oracle) even by using a simple predictor.
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Appendix D

Les Véhicules comme un Mobile
Cloud

D.1 Introduction

D.1.1 Le contexte

La dernière décennie a connu une croissance exponentielle du trafic mobile qui a
augmenté de 63% en 2016. Le trafic de données mobiles devrait atteindre 49 exabytes
par mois d’ici 2021, soit une augmentation de sept fois par rapport à 2016. Une
telle demande provoque une surcharge du coeur du réseau cellulaire. Une tentative
de réduire cette surcharge est donnée par la prochaine génération de technologie
mobile 5G. Les chercheurs envisagent un certain nombre de nouvelles technologies
de communication pour répondre à de telles exigences:

• MIMO massif. La technologie à antenne multiple (c’est-à-dire, MIMO) a déjà
été incorporée dans LTE et Wi-Fi. Les avancées dans MIMO sont nécessaires
pour utiliser un très grand nombre d’antennes pour concentrer la transmission
et la réception de l’énergie du signal dans des régions plus petites.

• Extrêmement haute fréquence. La bande de radiofrqéuences s’étend entre 30 GHz
et 300 GHz. Ce spectre de fréquence plus élevé provoque une augmentation
de la bande passante qui peut être utilisée pour les communications à grande
vitesse. Aujourd’hui ces fréquences sont principalement utilisées en intérieur
en raison des plus faibles pertes de propagation.

• Radio cognitive. Cela permet à différentes technologies de partager efficacement
le même spectre. Cela se fait en adaptant les canaux sans fil non utilisés et en
adaptant le schéma de transmission.

• Petites cellules. La taille des cellules a progressivement diminué dans les zones
urbaines. La densification par petites cellules promet d’améliorer l’efficacité
spectrale à bon marché. Toutefois, l’introduction d’un grand nombre de petites
cellules nécessite d’importantes modifications du réseau de backhaul.
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Alors que le 5G pourrait offrir de bonnes performances réduisant la congestion, ces
mises à jour sont assez coûteuses. Plusieurs travaux ont proposé de stocker les con-
tenus (fichiers ou vidéos) dans les petites cellules afin de diminuer la charge sur
l’infrastructure cellulaire sans surcharger le réseau de backhaul. Stocker les contenus
dans les stations de base, dans les petites cellules ou dans les appareils mobiles porte
un certain nombre d’avantages pour la performance du réseau comme, par example,
la réduction de la latence.

D.1.2 Le problème

Le stockage des contenus peut réduire la charge sur l’infrastructure cellulaire, mais
comporte également des inconvénients majeurs. Par exemple, en ce qui concerne
le stockage dans les petites cellules, ils existent deux problèmes principaux: (i) une
couverture étendue des petites cellules est nécessaire pour assurer une décharge du
trafic des macrocellules; (ii) les évidents avantages du stockage sont encore à dé-
montrer et des études initiales sont pessimistes. D’autre part, le stockage des con-
tenus dans les téléphones mobiles et l’utilisation de communications locales entre
périphériques est une solution à faible coût, mais cette solution est concernée par
des problèmes importants comme la limitée capacité de stockage et contraintes énér-
getiques.

Comme nous l’avons déjà expliqué, le réseau cellulaire actuel est surchargé par la
grande demande de trafic mobile. Par conséquent, l’objectif principal de cette thèse
est de suggérer à un opérateur comment réduire la charge sur l’infrastructure cellu-
laire grâce au stockage des contenues populaires. La solution proposée doit répon-
dre à trois exigences fondamentales:

• Limitation de coûts. Les opérateurs de réseaux mobiles auraient des coûts signi-
ficativement plus élevés pour 5G car ils ont besoin de déployer des milliers de
petites cellules liées à des connexions à large bande passante. Ainsi, la réduc-
tion des coûts et de la consommation d’énergie sont nécessaires pour adopter
des technologies de nouvelle génération.

• Capacité de stockage. En raison de l’immensité du catalogue Internet, une grande
capacité de stockage est nécessaire pour assurer un grand nombre de cache hit.

• Qualité d’expérience de l’utilisateur. Dans le contexte des télécommunications,
la qualité d’expérience est définie comme le degré de plaisir ou d’agacement
de l’utilisateur d’une application ou d’un service. Une nouvelle technologie
de réseau doit nécessairement tenir compte de l’impact qu’une telle solution
aurait sur les utilisateurs.

Bien qu’il existe un certain nombre de défis techniques à considérer (concernant la
mise en œuvre et les protocoles), ce travail est principalement axé sur l’étude analy-
tique, la modélisation et l’optimisation.
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D.1.3 Mes contributions

Afin de traiter les exigences précitées, nous proposons d’utiliser des transports privés
(par exemple, des voitures) et/ou public (par exemple, des taxis, des autobus) agis-
sant comme petites cellules mobiles où stocker des contenus populaires. L’ensemble
des véhicules participant au mécanisme de déchargement forme un cloud de véhicules.
Dans l’infrastructure proposée, un operateur mobile garde les contenus dans le cloud
de véhicules pour décharger une partie du trafic. Contrairement aux déploiements
de petites cellules, le cloud de véhicules apporte trois avantages fondamentaux:

• La mobilité des véhicules étend la taille du stockage local accessible. Avec des caches
fixes, la quantité de données déchargées dépend (presque exclusivement) de la
couverture femto ou picocellulaire puisque la plupart des utilisateurs présen-
tent un comportement nomade, restant dans le même endroit pendant de longues
périodes. D’autre part, un utilisateur rencontrera plusieurs véhicules pendant
le téléchargement du contenu, en particulier dans un environnement urbain
dense, étendant ainsi pratiquement la taille du stockage local accessible.

• Le cloud de véhicules réduit les coûts. Le reseau cellulaire actuelle peut facilement
être transformée en un cloud de véhicules. Les véhicules ont la necessité de
garantir les communications avec l’infrastructure et la capacité de stockage qui
est généralement disponible à faible coût.

• Le cloud de véhicules ouvre le marché à nouveaux operateurs mobiles. La simplicité
de transformer les villes modernes en un cloud de véhicules peut inciter des
nouveaux opérateurs cellulaires virtuels à entrer sur le marché sans avoir be-
soin de gros investissements. Cela peut être utile, par exemple, dans les pays
en développement où la demande de données augmente au même rythme que
dans les pays développés.

Alors que le nombre de voitures avec une sorte de capacité de communication au-
jourd’hui est faible, on estime qu’environ 90% des nouveaux modèles devraient
avoir une connectivité Internet d’ici 2020. Les opérateurs mobiles voient la voiture
comme un autre appareil connectés à leurs réseaux et ils ont commencé à proposer
des plans de données dédiés aux véhicules. Nous considérons le cloud de véhicules
comme une fonctionnalité supplémentaire: lorsqu’un utilisateur navigue sur Inter-
net, l’operateur peut décider de rediriger les requêtes aux véhicules si l’utilisateur
est abonné à la fonctionnalité du cloud de véhicules. Dans ce travail, nous exploitons
un tel cloud de véhicules pour stocker les contenus afin de maximiser la demande
mobile déchargée. Nous construisons un modèle dans lequel un utilisateur peut
télécharger de manière opportuniste un contenu ou une partie de celui-ci (c’est-à-
dire des morceaux). Pour faire face à la qualité d’expérience, nous fournissons dif-
férentes stratégies d’allocation en fonction d’un niveau croissant d’expérience util-
isateur perçu et d’une granularité plus fine du modèle de téléchargement des con-
tenus. Nous énumérons ici les principales contributions du travail:

• La modélisation. Nous modélisons le cloud de véhicules et la communication
avec les utilisateurs finaux. Une telle interaction est difficile en raison de la
mobilité intrinsèque des noeuds et de leur disponibilité intermittente. Nous
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utilisons deux modèles pour traiter le téléchargement des contenus: d’abord,
nous introduisons une granularité à grain grossier où un contenu est entière-
ment téléchargé (avec une certaine probabilité) pendant un seul contact; bien
que cela puisse être considéré comme raisonnable pour des petits contenus,
grands contenus nécessite une granularité plus fine, et nous présentons un
modèle amélioré pour considérer les téléchargements au niveau du morceau.

• Optimisation. Selon différents modèles de téléchargement de contenu et types,
nous formulons analytiquement des problèmes d’optimisation pour calculer
le nombre d’éléments à allouer dans le cloud de véhicules afin de maximiser
la quantité de données déchargées. Nous montrons la complexité de ces prob-
lèmes et nous proposons des heuristiques, des relaxations ou des approxima-
tions de les résoudre efficacement.

• Analyse des performances. Nous développons un simulateur MATLAB basées
sur des traces réelles afin de soutenir nos résultats théoriques. Dans le simula-
teur nous considérons un certain nombre de paramètres tels que la mobilité des
utilisateurs, les tailles de cache et le mécanisme d’installation et d’association
pendant le téléchargement.

D.2 Résumé de la thèse

D.2.1 Stockage des contenus dans un cloud de véhicules

Nous effectuons une étude préliminaire du cloud de véhicules avec deux idées prin-
cipales: (i) les véhicules sont plus étandus et nécessitent des coûts inférieurs par rap-
port aux petites cellules; (ii) en combinant la mobilité des véhicules avec un accès au
contenu différé, il est possible d’augmenter le nombre de cache hit. Contrairement
aux petites cellules fixes, lorsque les caches sont sur les véhicules, un utilisateur sta-
tique ou qui se déplace lentement rencontrera un nombre beaucoup plus élevé de
caches dans le même délai. Ainsi, dans notre système, les retards maximaux sont
garantis jusqu’à quelques minutes. Au-delà de cette limite, le contenu est téléchargé
de l’infrastructure cellulaire. Nous proposons un model pour calculer le nombre op-
timal de contenus à stocker dans les véhicules pour minimiser la charge du coeur du
réseau cellulaire. Nous supposons qu’un contenu peut être entièrement téléchargé
pendant un seul contact, et nous présentons deux stratégies de mise en cache (SC et
SC+).

Les travail relatif à ce chapitre est publié dans:

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Storage on wheels:
Offloading popular contents through a vehicular cloud”. In: 2016 IEEE 17th
International Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM). 2016, pp. 1–9. DOI: 10.1109/WoWMoM.2016.7523506

http://dx.doi.org/10.1109/WoWMoM.2016.7523506
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D.2.2 Stockage des contenus avec qualité d’expérience

Nous proposons à l’opérateur de fixer des délais différents pour différents con-
tenus. L’optimisation du temps d’attente par contenu assure un déchargement max-
imal avec une faible détérioration de la qualité d’expérience que nous évaluons
en fonction du slowdown expérimenté qui rapporte le délai d’attente avec le temps
de téléchargement "net". Nous modélisons un tel scénario et nous formulons un
problème d’optimisation pour maximiser le trafic déchargé tout en garantissant des
garanties d’expérience. Nous proposons deux stratégies de délai variable avec télécharge-
ment de fichiers au niveau du contenu (qSC) ou au niveau du morceau (qGC).

Les travaux relatifs à ce chapitre sont publiés dans:

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Quality of Experience-
Aware Mobile Edge Caching through a Vehicular Cloud”. In: MSWiM (2017),
under review

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Quality of Experience-
Aware Mobile Edge Caching through a Vehicular Cloud”. In: IEEE Transactions
on Mobile Computing (2017), under review

D.2.3 Stockage des contenus pour la diffusion vidéo

La grande majorité du trafic Internet concerne les vidéos. Des nouveaux services
de diffusion ont été récemment introduits sur le marché (Netflix, Amazon Prime).
Nous soutenons que les véhicules peuvent être utilisées pour la diffusion de vidéos
à faible coût sans qu’il soit nécessaire d’imposer du retard à l’utilisateur. Les utilisa-
teurs peuvent télécharger des morceaux de vidéo à partir des véhicules rencontrés
(à faible coût) ou de l’infrastructure cellulaire (à coût élevé) lorsque leurs buffer sont
vides tout en regardant le contenu. Nous modélisons la dynamique du buffer en
tant que système de files d’attente et analysons les caractéristiques de ses périodes
idle (pendant lesquelles l’accès à l’infrastructure cellulaire est requis). Sur la base de
ce modèle, nous formulons le problème de l’allocation optimale de contenus pour
minimiser la charge totale sur l’infrastructure cellulaire. Nous résolvons un tel prob-
lème d’optimisation pour differents densités de véhicules (VC et VC+).

Les travaux relatifs à ce chapitre sont publiés dans:

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Streaming Content
from a Vehicular Cloud”. In: Proceedings of the Eleventh ACM Workshop on Chal-
lenged Networks. CHANTS ’16. New York City, New York: ACM, 2016, pp. 39–
44. ISBN: 978-1-4503-4256-8. DOI: 10.1145/2979683.2979684. URL: http:
//doi.acm.org/10.1145/2979683.2979684

Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Low Cost Video
Streaming through Mobile Edge Caching: Modeling and Optimization”. In:
IEEE Transactions on Mobile Computing (2017), under review

http://dx.doi.org/10.1145/2979683.2979684
http://doi.acm.org/10.1145/2979683.2979684
http://doi.acm.org/10.1145/2979683.2979684
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D.3 Conclusions

Le monde d’aujourd’hui change rapidement et évolue dans un environnement en-
tièrement connecté où tous les dispositifs électroniques sont capables de commu-
niquer et d’échanger des informations les uns des autres. Cela se traduit en une
augmentation exponentielle de la demande de données mobiles. Les chercheurs et
l’industrie proposent différentes solutions pour résoudre un tel problème. La densi-
fication à travers de petites cellules et le stockage des contenus populaires est l’une
des solutions les plus intéressantes car elle réduit la distance entre le contenu et les
utilisateurs et augmente l’efficacité spectrale. Dans notre thèse, nous avons exploité
un réseau futuriste construit en utilisant des véhicules comme des petites cellules.

L’objectif principal de la thèse était de suggérer à un opérateur comment faire face
à la surcharge du backhaul et du réseau de base. Tout au long de la thèse, nous
avons examiné différents sous-problèmes tels que le choix des protocoles de com-
munication, une analyse de faisabilité du système et une modélisation approfondie
de l’approche proposée. De plus, nous avons concentré notre attention sur les as-
pects théoriques des stratégies de mise en cache, alors que la mise en œuvre d’un tel
système est laissée comme une direction future. Plus précisément, nous avons con-
struit un modèle pour inférer le nombre optimal de répliques des contenus Internet à
stocker dans les véhicules afin de minimiser la charge sur l’infrastructure cellulaire.
Le facteur de réplication optimal est le résultat d’un problème d’optimisation qui est
formulé en fonction des règles de téléchargement des contenus (ou morceaux) et du
type des contenus.

Dans cette thèse, nous avons supposé qu’un utilisateur peut télécharger un con-
tenu (ou une partie de celui-ci) alors qu’il est proche d’un véhicule qui le stocke.
Au début de notre dissertation nous avons supposé qu’un contenu peut être en-
tièrement téléchargé lors d’un contact. Ensuite, nous avons généralisé un tel modèle
pour tenir compte des téléchargements partiels, c’est-à-dire lors d’un contact un util-
isateur peut télécharger une partie d’un contenu en fonction de la durée de contact.
Bien que plus complexe d’un point de vue analytique, une description plus fine des
téléchargements des contenus décrit mieux l’interaction entre les véhicules et les
utilisateurs. Afin de valider nos résultats théoriques, nous avons effectué de nom-
breuses simulations basées sur des traces réelles. En particulier, nous avons soutenu
qu’une répartition optimale du contenu entraîne une diminution de plus de la moitié
de la charge totale de trafic dans des conditions réalistes.

Nous croyons que cette thèse peut être considérée comme un travail novateur parce
qu’elle révèle le potentiel d’une infrastructure supplémentaire à bon marché. Une
telle nouvelle infrastructure sera probablement disponible pour tout le monde dans
un proche avenir. Également motivés par certaines premières tentatives de défini-
tion des normes, nous croyons certainement que les véhicules feront partie active
de l’infrastructure cellulaire dans un futur proche. Notre étude peut être consid-
érée comme pertinente car elle fournit des preuves de la potentialité du cloud de
véhicules et peut accélérer son adoption.



101

Bibliography

3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Ter-
restrial Radio Access (E-UTRAN); Overall description; Stage 2. TS 36.300. 3rd Gener-
ation Partnership Project (3GPP), 2014. URL: http://www.3gpp.org/ftp/
Specs/html-info/36300.htm.

Abrahamsson, Henrik and Mattias Nordmark. “Program Popularity and Viewer Be-
haviour in a Large TV-on-demand System”. In: Proceedings of the 2012 Internet Mea-
surement Conference. IMC ’12. Boston, Massachusetts, USA: ACM, 2012, pp. 199–
210. ISBN: 978-1-4503-1705-4. DOI: 10.1145/2398776.2398798. URL: http:
//doi.acm.org/10.1145/2398776.2398798.

Ahlehagh, H. and S. Dey. “Video-Aware Scheduling and Caching in the Radio Ac-
cess Network”. In: IEEE/ACM Transactions on Networking 22.5 (2014), pp. 1444–
1462. ISSN: 1063-6692. DOI: 10.1109/TNET.2013.2294111.

Alliance, NGMN. NGMN 5G White Paper. https://www.ngmn.org/uploads/
media/NGMN_5G_White_Paper_V1_0.pdf. 2015.

Analysis Mason. “M2M device connections and revenue: worldwide forecast 2014-
2024”. In: Analysis Mason Report, 2014.

Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C.
Zhang. “What Will 5G Be?” In: IEEE Journal on Selected Areas in Communications
32.6 (2014), pp. 1065–1082. ISSN: 0733-8716.

Ao, Weng Chon and Konstantinos Psounis. “Distributed Caching and Small Cell
Cooperation for Fast Content Delivery”. In: Proceedings of the 16th ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing. MobiHoc ’15.
Hangzhou, China: ACM, 2015, pp. 127–136. ISBN: 978-1-4503-3489-1. DOI: 10.
1145/2746285.2746300. URL: http://doi.acm.org/10.1145/2746285.
2746300.

Balasubramanian, Aruna, Ratul Mahajan, and Arun Venkataramani. “Augmenting
Mobile 3G Using WiFi”. In: Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services (MobiSys). San Francisco, California, USA: ACM,
2010, pp. 209–222. ISBN: 978-1-60558-985-5. DOI: 10.1145/1814433.1814456.
URL: http://doi.acm.org/10.1145/1814433.1814456.

http://www.3gpp.org/ftp/Specs/html-info/36300.htm
http://www.3gpp.org/ftp/Specs/html-info/36300.htm
http://dx.doi.org/10.1145/2398776.2398798
http://doi.acm.org/10.1145/2398776.2398798
http://doi.acm.org/10.1145/2398776.2398798
http://dx.doi.org/10.1109/TNET.2013.2294111
https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf
http://dx.doi.org/10.1145/2746285.2746300
http://dx.doi.org/10.1145/2746285.2746300
http://doi.acm.org/10.1145/2746285.2746300
http://doi.acm.org/10.1145/2746285.2746300
http://dx.doi.org/10.1145/1814433.1814456
http://doi.acm.org/10.1145/1814433.1814456


102 BIBLIOGRAPHY

Bao, X., Y. Lin, U. Lee, I. Rimac, and R. R. Choudhury. “DataSpotting: Exploiting
naturally clustered mobile devices to offload cellular traffic”. In: Proceedings IEEE
INFOCOM. 2013, pp. 420–424. DOI: 10.1109/INFCOM.2013.6566807.

Bastug, E., M. Bennis, and M. Debbah. “Living on the edge: The role of proactive
caching in 5G wireless networks”. In: IEEE Communications Magazine 52.8 (2014),
pp. 82–89. ISSN: 0163-6804. DOI: 10.1109/MCOM.2014.6871674.
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Exponential Decay of Inter Contact Times Between Mobile Devices”. In: Proceed-
ings of the 13th Annual ACM International Conference on Mobile Computing and Net-
working. MobiCom ’07. Montr&#233;al, Qu&#233;bec, Canada: ACM, 2007, pp. 183–
194. ISBN: 978-1-59593-681-3. DOI: 10.1145/1287853.1287875. URL: http:
//doi.acm.org/10.1145/1287853.1287875.

Karlin, S. and H.E. Taylor. A First Course in Stochastic Processes. Elsevier Science,
2012. ISBN: 9780080570419. URL: https://books.google.fr/books?id=
dSDxjX9nmmMC.

Kim, Ho-Yeon, Dong-Min Kang, Jun-Ho Lee, and Tai-Myoung Chung. “A Perfor-
mance Evaluation of Cellular Network Suitability for VANET”. In: International
Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering
6.4 (2012), pp. 448 –451. ISSN: PISSN:2010-376X, EISSN:2010-3778. URL: http:
//waset.org/Publications?p=64.

Lee, J. G., S. Moon, and K. Salamatian. “An Approach to Model and Predict the Pop-
ularity of Online Contents with Explanatory Factors”. In: IEEE/WIC/ACM Inter-
national Conference on Web Intelligence and Intelligent Agent Technology. Vol. 1. 2010,
pp. 623–630. DOI: 10.1109/WI-IAT.2010.209.

Lee, K., J. Lee, Y. Yi, I. Rhee, and S. Chong. “Mobile Data Offloading: How Much Can
WiFi Deliver?” In: IEEE/ACM Transactions on Networking 21.2 (2013), pp. 536–550.
ISSN: 1063-6692. DOI: 10.1109/TNET.2012.2218122.

Lee, K., S. Hong, S. J. Kim, I. Rhee, and S. Chong. “SLAW: A New Mobility Model for
Human Walks”. In: IEEE INFOCOM. 2009, pp. 855–863. DOI: 10.1109/INFCOM.
2009.5061995.

Li, Yong, Guolong Su, Pan Hui, Depeng Jin, Li Su, and Lieguang Zeng. “Multi-
ple Mobile Data Offloading Through Delay Tolerant Networks”. In: Proceedings
of the 6th ACM Workshop on Challenged Networks. CHANTS ’11. Las Vegas, Nevada,
USA: ACM, 2011, pp. 43–48. ISBN: 978-1-4503-0870-0. DOI: 10.1145/2030652.
2030665. URL: http://doi.acm.org/10.1145/2030652.2030665.

Lin, Wei-Yen, Mei-Wen Li, Kun-Chan Lan, and Chung-Hsien Hsu. “Quality, Relia-
bility, Security and Robustness in Heterogeneous Networks”. In: ed. by Xi Zhang
and Daji Qiao. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 559–570.
ISBN: 978-3-642-29222-4. DOI: 10.1007/978-3-642-29222-4_39. URL: http:
//dx.doi.org/10.1007/978-3-642-29222-4_39.

http://dx.doi.org/10.1109/TMC.2010.99
http://dx.doi.org/10.1109/TMC.2010.99
http://dx.doi.org/10.1145/1287853.1287875
http://doi.acm.org/10.1145/1287853.1287875
http://doi.acm.org/10.1145/1287853.1287875
https://books.google.fr/books?id=dSDxjX9nmmMC
https://books.google.fr/books?id=dSDxjX9nmmMC
http://waset.org/Publications?p=64
http://waset.org/Publications?p=64
http://dx.doi.org/10.1109/WI-IAT.2010.209
http://dx.doi.org/10.1109/TNET.2012.2218122
http://dx.doi.org/10.1109/INFCOM.2009.5061995
http://dx.doi.org/10.1109/INFCOM.2009.5061995
http://dx.doi.org/10.1145/2030652.2030665
http://dx.doi.org/10.1145/2030652.2030665
http://doi.acm.org/10.1145/2030652.2030665
http://dx.doi.org/10.1007/978-3-642-29222-4_39
http://dx.doi.org/10.1007/978-3-642-29222-4_39
http://dx.doi.org/10.1007/978-3-642-29222-4_39


108 BIBLIOGRAPHY

Liu, A. and V. K. N. Lau. “Cache-Enabled Opportunistic Cooperative MIMO for
Video Streaming in Wireless Systems”. In: IEEE Transactions on Signal Processing
62.2 (2014), pp. 390–402. ISSN: 1053-587X. DOI: 10.1109/TSP.2013.2291211.

– “Exploiting Base Station Caching in MIMO Cellular Networks: Opportunistic Co-
operation for Video Streaming”. In: IEEE Transactions on Signal Processing 63.1
(2015), pp. 57–69. ISSN: 1053-587X. DOI: 10.1109/TSP.2014.2367473.

Lu, N., N. Cheng, N. Zhang, X. Shen, and J. W. Mark. “Connected Vehicles: Solutions
and Challenges”. In: IEEE Internet of Things Journal 1.4 (2014), pp. 289–299. ISSN:
2327-4662. DOI: 10.1109/JIOT.2014.2327587.

Maddah-Ali, Mohammad Ali and Urs Niesen. “Decentralized Coded Caching At-
tains Order-optimal Memory-rate Tradeoff”. In: IEEE/ACM Trans. Netw. 23.4 (Aug.
2015), pp. 1029–1040. ISSN: 1063-6692. DOI: 10.1109/TNET.2014.2317316.
URL: http://dx.doi.org/10.1109/TNET.2014.2317316.

Mahmood, A., C. Casetti, C. F. Chiasserini, P. Giaccone, and J. Harri. “Mobility-aware
edge caching for connected cars”. In: 2016 12th Annual Conference on Wireless On-
demand Network Systems and Services (WONS). 2016, pp. 1–8.

Mamun, Md Ali Al, Khairul Anam, and Md Fakhrul Alam. “Deployment of Cloud
Computing into VANET to Create Ad Hoc Cloud Network Architecture”. In: 2012.

Martello, Silvano and Paolo Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. New York, NY, USA: John Wiley & Sons, Inc., 1990. ISBN: 0-471-92420-2.

Mehmeti, F. and T. Spyropoulos. “Is it worth to be patient? Analysis and optimiza-
tion of delayed mobile data offloading”. In: IEEE INFOCOM Conference on Com-
puter Communications. 2014, pp. 2364–2372. DOI: 10.1109/INFOCOM.2014.
6848181.

Naylor, David, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, et al. “Multi-Context
TLS (mcTLS): Enabling Secure In-Network Functionality in TLS”. In: Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication. SIG-
COMM ’15. London, United Kingdom: ACM, 2015, pp. 199–212. ISBN: 978-1-4503-
3542-3. DOI: 10.1145/2785956.2787482. URL: http://doi.acm.org/10.
1145/2785956.2787482.

Nikolikj, Vladimir and Toni Janevski. “A Cost Modeling of High-capacity LTE-advanced
and IEEE 802.11ac based Heterogeneous Networks, Deployed in the 700 MHz, 2.6
GHz and 5 GHz Bands”. In: Procedia Computer Science 40 (2014). Fourth Interna-
tional Conference on Selected Topics in Mobile & Wireless Networking (MoWNet’2014),
pp. 49 –56. ISSN: 1877-0509. DOI: http://dx.doi.org/10.1016/j.procs.
2014.10.030. URL: http://www.sciencedirect.com/science/article/
pii/S1877050914013970.

http://dx.doi.org/10.1109/TSP.2013.2291211
http://dx.doi.org/10.1109/TSP.2014.2367473
http://dx.doi.org/10.1109/JIOT.2014.2327587
http://dx.doi.org/10.1109/TNET.2014.2317316
http://dx.doi.org/10.1109/TNET.2014.2317316
http://dx.doi.org/10.1109/INFOCOM.2014.6848181
http://dx.doi.org/10.1109/INFOCOM.2014.6848181
http://dx.doi.org/10.1145/2785956.2787482
http://doi.acm.org/10.1145/2785956.2787482
http://doi.acm.org/10.1145/2785956.2787482
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2014.10.030
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2014.10.030
http://www.sciencedirect.com/science/article/pii/S1877050914013970
http://www.sciencedirect.com/science/article/pii/S1877050914013970


BIBLIOGRAPHY 109

Ostovari, P., J. Wu, and A. Khreishah. “Efficient Online Collaborative Caching in
Cellular Networks with Multiple Base Stations”. In: 2016 IEEE 13th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS). 2016, pp. 136–144. DOI:
10.1109/MASS.2016.027.

Ott, J. and D. Kutscher. “Drive-thru Internet: IEEE 802.11b for "automobile" users”.
In: IEEE INFOCOM 2004. Vol. 1. 2004, p. 373. DOI: 10.1109/INFCOM.2004.
1354509.

Paschos, G. S., S. Gitzenis, and L. Tassiulas. “The effect of caching in sustainabil-
ity of large wireless networks”. In: 10th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). 2012, pp. 355–360.

Piorkowski, M., N. Sarafijanovic-Djukic, and M. Grossglauser. DAD data set epfl/mobility
(v. 2009-02-24). http://crawdad.org/epfl/mobility/. 2009.

Poularakis, K., G. Iosifidis, A. Argyriou, and L. Tassiulas. “Video delivery over het-
erogeneous cellular networks: Optimizing cost and performance”. In: IEEE IN-
FOCOM Conference on Computer Communications. 2014, pp. 1078–1086. DOI: 10.
1109/INFOCOM.2014.6848038.

Raghavan, Prabhakar and Clark D. Tompson. “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs”. In: Combinatorica 7.4 (1987),
pp. 365–374. ISSN: 1439-6912. DOI: 10.1007/BF02579324. URL: http://dx.
doi.org/10.1007/BF02579324.

Rappaport, T. S. et al. “Millimeter Wave Mobile Communications for 5G Cellular: It
Will Work!” In: IEEE Access 1 (2013), pp. 335–349. ISSN: 2169-3536.

Robson, J. Small Cell Deployment Strategies and Best Practice Backhaul. 2012.

Ross, S.M. Stochastic Processes. Wiley series in mathematical statistics. Probability and
mathematical statistics. Wiley, 1983. ISBN: 9780471099420. URL: https://books.
google.fr/books?id=Hj7bAAAAMAAJ.

Sapountzis, N., S. Sarantidis, T. Spyropoulos, N. Nikaein, and U. Salim. “Reducing
the energy consumption of small cell networks subject to QoE constraints”. In:
2014 IEEE Global Communications Conference. 2014, pp. 2485–2491. DOI: 10.1109/
GLOCOM.2014.7037181.

Sapountzis, Nikolaos, Thrasyvoulos Spyropoulos, Navid Nikaein, and Umer Salim.
“Optimal downlink and uplink user association in Backhaul-limited HetNets”. In:
INFOCOM 2016, IEEE International Conference on Computer Communications, 10-15
April 2016, San Francisco, CA, USA. San Fransisco, UNITED STATES, Apr. 2016.
URL: http://www.eurecom.fr/publication/4814.

http://dx.doi.org/10.1109/MASS.2016.027
http://dx.doi.org/10.1109/INFCOM.2004.1354509
http://dx.doi.org/10.1109/INFCOM.2004.1354509
http://crawdad.org/epfl/mobility/
http://dx.doi.org/10.1109/INFOCOM.2014.6848038
http://dx.doi.org/10.1109/INFOCOM.2014.6848038
http://dx.doi.org/10.1007/BF02579324
http://dx.doi.org/10.1007/BF02579324
http://dx.doi.org/10.1007/BF02579324
https://books.google.fr/books?id=Hj7bAAAAMAAJ
https://books.google.fr/books?id=Hj7bAAAAMAAJ
http://dx.doi.org/10.1109/GLOCOM.2014.7037181
http://dx.doi.org/10.1109/GLOCOM.2014.7037181
http://www.eurecom.fr/publication/4814


110 BIBLIOGRAPHY

Schmidli, H. Lecture Notes on Risk Theory.

Senza Fili Consulting. “The economics of small cells and Wi-Fi offload”. In: (2013).

Sermpezis, Pavlos and Thrasyvoulos Spyropoulos. “Not All Content is Created Equal:
Effect of Popularity and Availability for Content-centric Opportunistic Network-
ing”. In: Proceedings of the 15th International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc). Philadelphia, Pennsylvania, USA: ACM, 2014, pp. 103–
112. ISBN: 978-1-4503-2620-9. DOI: 10.1145/2632951.2632976. URL: http:
//doi.acm.org/10.1145/2632951.2632976.

Sesia, Stefania, Issam Toufik, and Matthew Baker. LTE, The UMTS Long Term Evolu-
tion: From Theory to Practice. Wiley Publishing, 2009. ISBN: 0470697164, 9780470697160.

Shanmugam, K., N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire. “Femto-
Caching: Wireless Content Delivery Through Distributed Caching Helpers”. In:
IEEE Transactions on Information Theory 59.12 (2013), pp. 8402–8413. ISSN: 0018-
9448. DOI: 10.1109/TIT.2013.2281606.

Smartphone on Wheels. http://www.economist.com/news/technology-
quarterly/21615060- way- cars- are- made- bought- and- driven-
changing-mobile-communications.

Szabo, Gabor and Bernardo A. Huberman. “Predicting the Popularity of Online Con-
tent”. In: Communications of the ACM 53.8 (Aug. 2010), pp. 80–88. ISSN: 0001-0782.
DOI: 10.1145/1787234.1787254. URL: http://doi.acm.org/10.1145/
1787234.1787254.

Tasiopoulos, Argyrios G., Ioannis Psaras, and George Pavlou. “Mind the Gap: Mod-
elling Video Delivery Under Expected Periods of Disconnection”. In: Proceedings
of the 9th ACM MobiCom Workshop on Challenged Networks. CHANTS ’14. Maui,
Hawaii, USA: ACM, 2014, pp. 13–18. ISBN: 978-1-4503-3071-8. DOI: 10.1145/
2645672.2645680. URL: http://doi.acm.org/10.1145/2645672.
2645680.

Thompson, Nathanael, Riccardo Crepaldi, and Robin Kravets. “Locus: A Location-
based Data Overlay for Disruption-tolerant Networks”. In: Proceedings of the 5th
ACM Workshop on Challenged Networks. CHANTS ’10. Chicago, Illinois, USA: ACM,
2010, pp. 47–54. ISBN: 978-1-4503-0139-8. DOI: 10.1145/1859934.1859945.
URL: http://doi.acm.org/10.1145/1859934.1859945.

Traverso, Stefano, Mohamed Ahmed, Michele Garetto, Paolo Giaccone, Emilio Leonardi,
and Saverio Niccolini. “Temporal Locality in Today’s Content Caching: Why It
Matters and How to Model It”. In: SIGCOMM Comput. Commun. Rev. 43.5 (Nov.
2013), pp. 5–12. ISSN: 0146-4833. DOI: 10.1145/2541468.2541470. URL: http:
//doi.acm.org/10.1145/2541468.2541470.

http://dx.doi.org/10.1145/2632951.2632976
http://doi.acm.org/10.1145/2632951.2632976
http://doi.acm.org/10.1145/2632951.2632976
http://dx.doi.org/10.1109/TIT.2013.2281606
http://www.economist.com/news/technology-quarterly/21615060-way-cars-are-made-bought-and-driven-changing-mobile-communications
http://www.economist.com/news/technology-quarterly/21615060-way-cars-are-made-bought-and-driven-changing-mobile-communications
http://www.economist.com/news/technology-quarterly/21615060-way-cars-are-made-bought-and-driven-changing-mobile-communications
http://dx.doi.org/10.1145/1787234.1787254
http://doi.acm.org/10.1145/1787234.1787254
http://doi.acm.org/10.1145/1787234.1787254
http://dx.doi.org/10.1145/2645672.2645680
http://dx.doi.org/10.1145/2645672.2645680
http://doi.acm.org/10.1145/2645672.2645680
http://doi.acm.org/10.1145/2645672.2645680
http://dx.doi.org/10.1145/1859934.1859945
http://doi.acm.org/10.1145/1859934.1859945
http://dx.doi.org/10.1145/2541468.2541470
http://doi.acm.org/10.1145/2541468.2541470
http://doi.acm.org/10.1145/2541468.2541470


BIBLIOGRAPHY 111

Trifunovic, Sacha, Andreea Picu, Theus Hossmann, and Karin Anna Hummel. “Slic-
ing the Battery Pie: Fair and Efficient Energy Usage in Device-to-device Commu-
nication via Role Switching”. In: Proceedings of the 8th ACM MobiCom Workshop
on Challenged Networks. CHANTS ’13. Miami, Florida, USA: ACM, 2013, pp. 31–
36. ISBN: 978-1-4503-2363-5. DOI: 10.1145/2505494.2505496. URL: http:
//doi.acm.org/10.1145/2505494.2505496.

Veniam. https://veniam.com/.

Vigneri, Luigi, Thrasyvoulos Spyropoulos, and Chadi Barakat. “Low Cost Video
Streaming through Mobile Edge Caching: Modeling and Optimization”. In: IEEE
Transactions on Mobile Computing (2017).

– “Quality of Experience-Aware Mobile Edge Caching through a Vehicular Cloud”.
In: MSWiM (2017).

– “Quality of Experience-Aware Mobile Edge Caching through a Vehicular Cloud”.
In: IEEE Transactions on Mobile Computing (2017).

– “Storage on wheels: Offloading popular contents through a vehicular cloud”. In:
2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multime-
dia Networks (WoWMoM). 2016, pp. 1–9. DOI: 10.1109/WoWMoM.2016.7523506.

– “Streaming Content from a Vehicular Cloud”. In: Proceedings of the Eleventh ACM
Workshop on Challenged Networks. CHANTS ’16. New York City, New York: ACM,
2016, pp. 39–44. ISBN: 978-1-4503-4256-8. DOI: 10.1145/2979683.2979684.
URL: http://doi.acm.org/10.1145/2979683.2979684.

Wang, X., M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung. “Cache in the air: ex-
ploiting content caching and delivery techniques for 5G systems”. In: IEEE Com-
munications Magazine 52.2 (2014), pp. 131–139. ISSN: 0163-6804. DOI: 10.1109/
MCOM.2014.6736753.

Wang, X., M. Chen, Z. Han, D. O. Wu, and T. T. Kwon. “TOSS: Traffic offloading by
social network service-based opportunistic sharing in mobile social networks”.
In: IEEE INFOCOM 2014 - IEEE Conference on Computer Communications. 2014,
pp. 2346–2354. DOI: 10.1109/INFOCOM.2014.6848179.

Wendell, Richard E. and Arthur P. Hurter. “Minimization of a Non-Separable Ob-
jective Function Subject to Disjoint Constraints”. In: Operations Research 24.4 (Aug.
1976), pp. 643–657. ISSN: 0030-364X. DOI: 10.1287/opre.24.4.643. URL:
http://dx.doi.org/10.1287/opre.24.4.643.

Whitbeck, John, Yoann Lopez, JéRéMie Leguay, Vania Conan, and Marcelo Dias De
Amorim. “Fast Track Article: Push-and-track: Saving Infrastructure Bandwidth
Through Opportunistic Forwarding”. In: Pervasive Mob. Comput. 8.5 (Oct. 2012),

http://dx.doi.org/10.1145/2505494.2505496
http://doi.acm.org/10.1145/2505494.2505496
http://doi.acm.org/10.1145/2505494.2505496
https://veniam.com/
http://dx.doi.org/10.1109/WoWMoM.2016.7523506
http://dx.doi.org/10.1145/2979683.2979684
http://doi.acm.org/10.1145/2979683.2979684
http://dx.doi.org/10.1109/MCOM.2014.6736753
http://dx.doi.org/10.1109/MCOM.2014.6736753
http://dx.doi.org/10.1109/INFOCOM.2014.6848179
http://dx.doi.org/10.1287/opre.24.4.643
http://dx.doi.org/10.1287/opre.24.4.643


112 BIBLIOGRAPHY

pp. 682–697. ISSN: 1574-1192. DOI: 10.1016/j.pmcj.2012.02.001. URL:
http://dx.doi.org/10.1016/j.pmcj.2012.02.001.

Woo, Shinae, Eunyoung Jeong, Shinjo Park, Jongmin Lee, Sunghwan Ihm, and Ky-
oungSoo Park. “Comparison of Caching Strategies in Modern Cellular Backhaul
Networks”. In: ACM MobiSys. 2013.

Zeni, Mattia, Daniele Miorandi, and Francesco De Pellegrini. “YOUStatAnalyzer: a
Tool for Analysing the Dynamics of YouTube Content Popularity”. In: Proc. 7th In-
ternational Conference on Performance Evaluation Methodologies and Tools (Valuetools,
Torino, Italy, December 2013). Torino, Italy, 2013.

Zhang, F., Chenren Xu, Y. Zhang, K. K. Ramakrishnan, S. Mukherjee, R. Yates, and
Thu Nguyen. “EdgeBuffer: Caching and prefetching content at the edge in the
MobilityFirst future Internet architecture”. In: IEEE 16th International Symposium
on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). 2015, pp. 1–9.
DOI: 10.1109/WoWMoM.2015.7158137.

Zhang, Y., J. Zhao, and G. Cao. “Roadcast: A Popularity Aware Content Sharing
Scheme in VANETs”. In: 29th IEEE International Conference on Distributed Comput-
ing Systems. 2009, pp. 223–230. DOI: 10.1109/ICDCS.2009.19.

Zhao, J. and G. Cao. “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc
Networks”. In: IEEE Transactions on Vehicular Technology 57.3 (2008), pp. 1910–1922.
ISSN: 0018-9545. DOI: 10.1109/TVT.2007.901869.

Zheng, K., Q. Zheng, P. Chatzimisios, W. Xiang, and Y. Zhou. “Heterogeneous Vehic-
ular Networking: A Survey on Architecture, Challenges, and Solutions”. In: IEEE
Communications Surveys Tutorials 17.4 (2015), pp. 2377–2396. ISSN: 1553-877X. DOI:
10.1109/COMST.2015.2440103.

http://dx.doi.org/10.1016/j.pmcj.2012.02.001
http://dx.doi.org/10.1016/j.pmcj.2012.02.001
http://dx.doi.org/10.1109/WoWMoM.2015.7158137
http://dx.doi.org/10.1109/ICDCS.2009.19
http://dx.doi.org/10.1109/TVT.2007.901869
http://dx.doi.org/10.1109/COMST.2015.2440103

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Problem Statement
	Contributions of the Thesis
	Outline

	Literature Review
	Caching at Small Cell Base Stations
	Femtocaching
	Delayed Content Access
	Video Caching

	Caching on Mobile Devices
	Vehicular Networks
	Performance of Caching Systems

	Content Caching through a Vehicular Cloud
	Introduction
	System Model
	Content Access Protocol
	Main Assumptions

	Optimal Content Allocation with Single Contact Model
	Offloading Optimization Problem
	Content Caching with Single Contact Model (SC)
	Enhanced Content Caching with Single Contact Model (SC+)

	Performance Analysis
	Simulation Setup
	Numerical Results

	Summary

	Quality of Experience-Aware Content Caching
	Introduction
	System Model
	Content Access Protocol
	Main Assumptions

	Optimal Content Allocation with Single Contact Model
	Offloading Optimization Problem
	QoE-Aware Content Caching with Single Contact Model (qSC)

	Optimal Content Allocation with Generic Contact Model
	Offloading Optimization Problem
	QoE-Aware Content Caching with Generic Contact Model (qGC)

	Performance Analysis
	Simulation Setup
	Caching Policies Evaluation

	Summary

	Content Caching for Video Streaming
	Introduction
	System Model
	Video Streaming Model
	Main Assumptions

	Optimal Content Allocation for Video Streaming
	Offloading Optimization Problem
	Video Caching with Low Density Model (VC)
	Video Caching with Generic Density Model (VC+)
	Non-stationary Playout Buffer

	Performance Analysis
	Simulation Setup
	Caching Strategy Evaluation
	Mobile vs. Static Helpers

	Additional Use Cases
	Summary

	Conclusion
	Summary
	Future Work

	Architectural details
	Communication Protocol
	Interference
	Capital and Operational Expenditures

	Network Traffic
	Content popularity
	Video Streaming

	Extensions for SC policy
	Non-null Seeding Cost
	Dynamic Adaptation to Changing Popularity

	Les Véhicules comme un Mobile Cloud
	Introduction
	Le contexte
	Le problème
	Mes contributions

	Résumé de la thèse
	Stockage des contenus dans un cloud de véhicules
	Stockage des contenus avec qualité d'expérience
	Stockage des contenus pour la diffusion vidéo

	Conclusions

	Bibliography

