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ABSTRACT 

 

Microsporidia are fungi-related intracellular pathogens that infect a great variety of 

animals, including the nematode Caenorhabditis elegans. The first microsporidia 

isolated from wild C. elegans was named Nematocida parisii in 2008. C. elegans and 

N. parisii have been used as a powerful model for the study of host-pathogen 

interactions. However, it was unclear how widespread and diverse microsporidia 

infections are in C. elegans or other related nematodes in the wild. 

 

By sampling rhabditid nematodes worldwide, we established a collection of 47 

nematodes that displayed putative microsporidia infections. We characterized 

molecularly these infections and determined that N. parisii (or N. ironsii) is the most 

common microsporidia infecting C. elegans in the wild. We further described and 

named six new Nematocida species. In addition, we defined two new genera of 

nematode-infecting microsporidia, named Enteropsectra and Pancytospora, which are 

genetically distinct from Nematocida. Further investigations showed that these 

microsporidia are diverse in terms of spore size and shape, host tissue tropism, host 

cell intracellular localization, cellular exit route, host specificity pattern, etc. Overall, 

these findings illustrate the widespread and diverse microsporidia infections in C. 

elegans and related nematodes in the wild. 

 

We further assayed the natural variation of C. elegans in sensitivity to N. ausubeli 

infection, by comparing 10 C. elegans strains using food consumption tests. Two C. 

elegans strains, JU1249 and JU2825, displayed the largest sensitivity differences, 

which were suggested to be a result of the different tolerance between the two strains. 

These two strains are proven to be good candidates for future studies on the genetic 

loci associated with C. elegans sensitivity variation to microsporidian infections. 

Furthermore, I observed an exciting effect of host-pathogen interaction. Microsporidia 

infection is able to suppress the progressive decline in fertility in some C. elegans 

with the mortal germline phenotype (Mrt).  

 

 

KEYWORDS: Microsporidia, C. elegans, diversity, host-pathogen interaction, host 

specificity, sensitivity, natural variation 
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RESUME 
 

Les microsporidies sont des pathogènes intracellulaires obligatoires apparentés aux 

champignons. Elles infectent de nombreux animaux, dont le nématode 

Caenorhabditis elegans. La première microsporidie isolée d’une souche de C. elegans 

sauvage a été nommée Nematocida parisii. L’interaction entre N. parisii et C. elegans 

est devenue un puisant modèle pour l'étude des interactions hôte-pathogène. 

Cependant, ce modèle a été récemment découvert et de nombreux détails sur son 

écologie et sa biologie restaient inconnus. Notamment, nous ignorions l’incidence et 

la diversité des infections microsporidiennes chez C. elegans et autres nématodes dans 

la nature. 

 

A partir d’une collection de nématodes, de la famille des Rhabditidae, échantillonnés 

dans le monde entier, j’ai recensé un panel de 47 nématodes présentant des 

symptômes d’infection par des microsporidies. J’ai caractérisé moléculairement la 

diversité de ce parasite infectant ces nématodes et déterminé que N. parisii est la 

microsporidie la plus souvent responsable des infections chez C. elegans dans la 

nature. J’ai également décrit et nommé six nouvelles espèces de Nematocida. Au 

cours de mes travaux, j’ai aussi défini deux nouveaux genres de microsporidies 

génétiquement distincts de Nematocida, appelés Enteropsectra et Pancytospora. Mes 

travaux ont de plus détaillé la diversité qui existe chez les microsporidies parasites de 

nématodes. Ces microsporidies présentent des différences en terme de taille et forme 

de leurs spores, de leur tropismes tissulaire et intracellulaire chez l’hôte, de leur voie 

de sortie des cellules hôtes mais aussi de spectre d’hôtes. Mes résultats ont démontré 

que, dans la nature, les infections de C. elegans et autres nématodes par les 

microsporidies sont répandues et diverses. 

 

De plus, j’ai estimé la variation naturelle pour la sensibilité de C. elegans à l'infection 

par N. ausubeli. J’ai notamment comparé 10 souches naturelles de C. elegans en 

utilisant des tests de consommation alimentaire. Deux souches de C. elegans, JU1249 

et JU2825, présentaient des niveaux contrastés de sensibilité, ce que j’ai interprété 

comme étant une différence de niveau de tolérance aux infections. Ces deux souches 

se sont révélées être de bons candidats pour une future caractérisation des loci 

génétiques associés à la variation de sensibilité de C. elegans aux infections 

microsporidiennes. Enfin, j’ai observé un effet surprenant de l'infection de C. elegans 

par les microsporidies. En effet, la présence du pathogène est capable de supprimer le 
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déclin progressif de la fécondité à haute température chez certaines lignées de C. 

elegans. 

 

 

MOTS CLES: Microsporidies, C. elegans, diversité, interactions hôte-pathogène, 

spectre d’hôtes, sensibilité, variation naturell 
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Organisms are driven to evolve continuously by selective pressures from the ever-

changing environment (Darwin, 1859). The natural environment includes abiotic and 

biotic factors. Abiotic factors refer to physical and chemical parameters, such as light, 

water, temperature. Biotic factors describe all the intraspecific and interspecific 

interactions between organisms, including those interacting preys and predators, hosts 

and pathogens, competitors, mutualists. (Woolhouse et al. 2002; Morgan and 

Koskella, 2011). Though both abiotic and biotic factors could provide selective 

pressures on species, the latter were highlighted as a fundamental driver of the 

perpetual evolutionary change (Van Valen, 1973; Brockhurst et al. 2014). The 

interacting species in biotic interactions may keep adapting to each other and 

coevolve antagonistically. Among the diverse biotic interactions, host-pathogen 

interactions probably provide the best case to study counter-adaptations and 

antagonistic coevolution. 

 

Several host model organisms, such as mice, zebrafish, Arabidopsis thaliana, 

Caenorhabditis elegans, Drosophila melanogaster have been used to study the 

evolutionary consequences, the mechanisms and the molecular basis of host-pathogen 

interactions. Among these model organisms, the nematode C. elegans has its unique 

advantages to facilitate studies on hosts and pathogens. Major attributes of C. elegans 

include the small size, the simple growth conditions, the rapid generation time, the 

genetic tractability and the availability of a great number of genetic mutants (Sulston 

et al., 1983; Kamath et al., 2003; Stiernagle, 2006). In the last 50 years, C. elegans has 

proven to be a powerful tool for studies on basic biological processes, as well as for 

investigations on host-pathogen interactions (Kurz and Ewbank, 2000; Zhang and 

Hou, 2013; Cohen and Troemel, 2015).  

 

C. elegans has been found susceptible to a wide variety of pathogens, including 

several human pathogens. The first identified natural intracellular pathogen of C. 

elegans is Nematocida parisii, which defined a new genus and species of 

microsporidia (Troemel et al. 2008). The Microsporidia are obligate pathogens with 
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over 1,400 described species that can infect about half of the metazoan phyla (Vavra 

and Lukeš, 2013). Microsporidian infections were found quite prevalent in wild 

Caenorhabditis and related nematodes (Troemel et al. 2008; Félix and Duveau, 2012). 

Together, C. elegans and microsporidia provide an ideal model for the study of host-

pathogen interactions and coevolution. 

 

In the Introduction, first, I shall briefly present the origin, morphology and life cycle 

of microsporidia; In the second part, I will present the natural history of C. elegans 

and related nematodes, and the interactions of C. elegans with diverse microbes in the 

natural habitat; third, I will describe the previous and recent studies on the interactions 

between C. elegans and Nematocida parisii; in the last part, I will present the 

background of my PhD project. 
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I. What are Microsporidia? 

 

The Microsporidia are obligate intracellular parasites that are related to fungi. As a 

large group of strictly intracellular pathogens, microsporidia species have evolved to 

be highly adapted to the parasitic life style. They are highly reduced in morphology, 

metabolism and genome (Vavra and Ronny Larsson, 2014). Within the host 

cytoplasm (or the nuclear), microsporidia proliferate rapidly and generate large 

numbers of infectious spores. Spores are the life stage that survives outside hosts, 

even in harsh conditions. Microsporidia are typically transmitted horizontally, while 

other transmission modes also exist (Cali and Takvorian, 2014). Microsporidia use the 

polar tube, a unique highly specialized invasion structure inside the spore, to inject 

their sporoplasms (the cytoplasmic content and the nucleus of the spore) into the 

intracellular milieu of their hosts (Vavra and Ronny Larsson, 2014). Microsporidia 

are found to be pathogens to a vast variety of hosts, ranging across about half of 

metazoan phyla (Vavra and Lukeš, 2013). Microsporidia infections can cause serious 

damages in veterinary and agricultural settings, as well as in immunocompromised 

humans. Furthermore, as one of the most frequently observed pathogens of animals, 

microsporidia might play significant roles in evolutionary processes (Altizer et al., 

2003; Vijendravarma et al., 2009).  

 

 

I.1. Microsporidia are diverse and important 

parasites 

 

The study of microsporidia began in the 19
th

 century, when an epidemic disease 

destroyed the silkworm industry across Europe (Franzen, 2008). Pasteur observed 

microsporidian spores in the affected silkworms and helped to save the silkworm 

industry (Franzen, 2008). Today, over 200 genera and over 1,400 species in the 
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microsporidia phylum have been described, and new species are being identified each 

year (Becnel et al., 2014; Szumowski and Troemel, 2015). Microsporidia are 

ubiquitous pathogens infecting a large variety of hosts, including all vertebrate orders, 

most invertebrates and protists (Keeling and Fast, 2002).   

 

Many microsporidia are of economic importance. Microsporidia infections in some 

beneficial insects such as honey bees and silkworms cause significant economic 

losses (Fries, 2014). Fish is another type of microsporidia host with economic 

importance: to date, 120 microsporidia species have been isolated from fish (Kent et 

al., 2014). Livestock such as cattle, pigs and goats, pets such as dogs, cats and birds 

have all been reported to carry microsporidia infections (Fayer and Santin Duran, 

2014). More importantly, microsporidia are also opportunistic pathogens to human. 

To date, 17 microsporidia species are known to infect humans (Fayer and Santin 

Duran, 2014). The most clinically significant microsporidia species is Enterocytozoon 

bieneusi, which infects the epithelium of the gastrointestinal tract and causes chronic 

diarrhea and wasting in HIV patients (Akiyoshi et al., 2009). Human microsporidiosis 

cases were also known to cause ocular infection, nervous system infection, 

musculoskeletal infection, etc. (Weiss, 2014). Taken together, microsporidia are 

pathogens with considerable economic and clinical importance. 

 

 

I.2. Origin of microsporidia 

 

It has long been challenging to place microsporidia in the tree of eukaryotes: 

microsporidia are highly reduced at many levels compared to other eukaryotes, but 

they possess a unique complex polar tube as the infection apparatus (Keeling, 2014). 

The debate about the phylogenetic placement of microsporidia has been going on for 

decades. Firstly, microsporidia have been proposed to be members of Cnidosporidia, 

based on their similarities of infection machineries with Helicosporidia and 
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Myxosporidia. However, the similarities previously known as “homologous” features 

were later found to be the result from convergent evolution. Secondly, based on their 

lack of some fundamental eukaryotic characters (including mitochondria, 9 + 2 

microtubule structures) and the phylogeny of eukaryotic microbes using small subunit 

ribosomal DNA (SSU rDNA), microsporidia were suggested to be very ancient 

eukaryotes, a lineage of Archezoa. However, several mitochondrial-derived genes and 

mitochondrial remnant “mitosomes” were later found in microsporidia, suggesting 

that mitochondria went through reduction in the microsporidia lineage (Germot et al. 

1996; Katinka et al. 2001; Keeling, 2014; Corradi, 2015). In addition, new 

phylogenetic analysis based on several protein-coding genes revealed that 

microsporidia are linked to fungi, which was later supported by phylogenomic 

analysis (Keeling and Doolittle, 1996; Fast et al., 1999; Capella-Gutiérrez et al., 

2012). Now, it is generally accepted that microsporidia are related to fungi (Keeling, 

2014). 

 

However, the problem about the phylogenetic placement of microsporidia has not 

been solved completely: what is the exact nature of the relationship between fungi and 

microsporidia? Are microsporidia a subclade of fungi or a sister clade to fungi? 

Within the fungal phylogeny, Rozella, a monospecific fungal genus, was placed 

together with microsporidia as a group in a deep-branching position (Jones et al., 

2012; James et al., 2013). This Rozella-Microsporidia group might be considered 

“sister” to other fungi species. Currently, microsporidia are suggested to be members 

of Cryptomycota, a hyperdiverse phylum encompassing Rozella, Aphelids and 

probably a large number of poorly described species (Figure 1) (James et al., 2013; 

Corsaro et al., 2014; Keeling, 2014).   
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Figure 1. Schematic phylogenetic tree showing the position of microsporidia.  

The phylogeny is based on the analysis of multiple protein-coding genes. Adapted 

from Keeling (2014). 

 

 

I.3. Structure and life cycles of microsporidia  

 

I.3.1. Spore structure 

Spore characters formed the basis of microsporidia species recognition and 

classification. Most microsporidia spores are only a few micrometers long, and can be 

oval, pyriform, rodlike or spherical in shape (Vavra and Ronny Larsson, 2014). The 

spore has a thick resistant wall with two layers, called exospore and endospore 

(Figure 2A, B). Besides the cytoplasmic content and an individual nucleus (or two 

apposed nuclei) of the spore, the other important part within a spore is the infection 

apparatus, which is unique to microsporidia and has no obvious homolog in other 
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organisms (Keeling, 2014). The infection apparatus system consists in a polar tube, a 

polaroplast and a posterior vacuole (Weiss et al., 2014). The polar tube is threadlike 

and usually much longer than the length of the spore (Figure 2C). One end of the 

polar tube is connected to a mushroom-shaped anchoring disk (AD) at the anterior 

end of the spore. The rest of the polar tube coils around the polaroplast. The number 

of spore coils has been an important character in species description (Figure 2A) 

(Weiss et al., 2014). With this unique apparatus, microsporidia are able to inoculate 

their hosts efficiently in only a few seconds (Frixione et al., 1992).  
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Figure 2. Morphology and structure of microsporidian spores. 

A. Diagram of a microsporidian spore. The spore coat consists of an electron-dense 

exospore (Ex), an electron-lucent endospore (En), and a plasma membrane (Pm). The 

sporoplasm (Sp) contains a single nucleus (Nu), the posterior vacuole (PV), and 

ribosomes. The polar tube (PT) is attached to the anterior end of the spore by an 

anchoring disk (AD) and is divided into two regions: the manubroid or straight 

portion (M) and the posterior region forming five coils around the sporoplasm. The 

insert depicts a cross section of the polar tube coils (five coils in this spore). B. 

Ultrastructure of the mature spore. (a) Longitudinally sectioned spore exhibiting the 

characteristic organelles (arrowhead indicates vacuolar membrane) (Episeptum 

inversum); (b) polyribosomes attached to membranes (Napamichum dispersus); (c) 

circularly arranged polyribosomes (Hamiltosporidium magnivora). Scale bars = 0.5 

µm (a); 100 nm (b, c). Abbreviations are the same as in A., with, in addition: f, polar 

tube; Pa, anterior polaroplast region; Pp, posterior polaroplast region; Ps, polar sac; R, 

polyribosomes. C. Scanning electron micrograph of extruded polar tube of a spore of 

Encephalitozoon intestinalis piercing and infecting Vero E6 green monkey kidney 
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cells in tissue culture. Adapted from Vavra and Ronny Larsson (2014); Weiss et al. 

(2014).  

 

 

I.3.2. Life cycles 

The life cycle of microsporidia includes extracellular and intracellular phases. In the 

extracellular phase, microsporidia spores are typically transmitted horizontally 

through host ingestion and normally infect the hosts through the gut (Vavra and 

Ronny Larsson, 2014). With chemical and/or physical stimulations, spores germinate. 

The polaroplast is activated to initiate the evagination of the polar tube. The polar 

tube forms a channel by extruding from the spore and penetrating into the host cell 

membrane. At the same time, typically, the posterior vacuole expands to push the 

infective sporoplasm through the polar tube, into the host cytoplasm (Franzen, 2004; 

Cali and Takvorian, 2014; Vavra and Ronny Larsson, 2014). Then microsporidia start 

the intracellular phase of their life cycle.  

 

The intracellular microsporidia develop through the meront stage and the sporont 

stage, until the formation of mature spores (Figure 3). The sporoplasm injected into 

the host cell first develops into a meront. Meronts may go through nuclear division 

and immediate cell division by binary fission. Without immediate cytokinesis, 

multinucleate meronts will form by multiple rounds of nuclear division in one cell, 

and eventually divide by plasmotomy, to cells containing one nucleus or double 

paired nuclei (called diplokaryon). Once meronts have secreted electron-dense 

material on the external face of the plasma membrane, they enter the sporont stage. 

The electron-dense material keeps accumulating on the outer face of the sporont, and 

forms a thickened wall. Depending on the microsporidia species, sporonts may divide 

once or many times. Multinucleate cells may also form and divide by plasmotomy at 

this stage. The final division product of the sporont is called sporoblast. The 

sporoblast continues to grow and becomes a mature spore (Cali and Takvorian, 2014; 

Vavra and Ronny Larsson, 2014). 
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Figure 3. Diagram of a typical microsporidia life cycle.  

The life cycle of microsporidia includes extracellular and intracellular phases. Spores 

are the only life stage that survives outside hosts. The intracellular phase contains the 

meront stage and the sporont stage. Adapted from Cali and Takvorian (2014). 

 

 

I.4. The five clades in microsporidia 

 

With a phylogeny based on SSU rDNA, five major clades within microsporidia have 

been proposed (Figure 4) (Vossbrinck et al., 2014). Though exceptions exist, the 

groupings of species in different clades largely correspond to their hosts and habitats 

(Figure 4) (Vossbrinck et al., 2014). Clade I and Clade III mainly contain 

microsporidia with hosts from freshwater; Clade II and Clade IV microsporidia have 

terrestrial animals as their hosts; Clade V microsporidia were primarily isolated from 
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organisms living in marine and freshwater habitats (Figure 4) (Vossbrinck et al., 

2014).  
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Figure 4. Phylogeny of 71 microsporidia species.  

The phylogeny is based on SSU rDNA. Font color indicates the host’s habitat: blue 

for freshwater, brown for terrestrial, green for marine and blue green for hosts that 

spend part of their life cycle in both marine and freshwater habitats. Nematocida 

parisii, the natural pathogen of C. elegans, is marked by a red frame. Adapted from 

Vossbrinck et al. (2014).  
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II. Caenorhabditis elegans and other related 

nematodes 

 

The nematode Caenorhabditis elegans is a small, free-living nematode that lives 

across many of the humid temperate areas of the world (Kiontke et al., 2011; 

Andersen et al., 2012; Frézal and Félix, 2015). In the 1960s, Sydney Brenner first 

adopted C. elegans as a model organism for investigation of a great variety of 

biological phenomena (Brenner, 1974). Brenner took the Bristol strain N2 as the 

standard C. elegans reference strain and cultured it on agar plates seeded with 

Escherichia coli in the lab (Brenner, 1974; Ankeny, 2001). Ever since then, C. 

elegans has proven to be a powerful tool to study basic biological processes such as 

apoptosis and gene silencing, as well as biomedical issues such as Alzheimer’s 

disease (Drake et al., 2003; Kaletta and Hengartner, 2006; Seth et al., 2013; Yee et al., 

2014; Frézal and Félix, 2015).  

 

The natural ecology of C. elegans has also become an emerging research area (Félix 

and Braendle, 2010; Frézal and Félix, 2015; Petersen et al., 2015). In the natural 

habitat of C. elegans and other related nematodes, biotic factors, in particular the 

pathogens, may significantly shape the evolutionary process of the nematodes. In this 

part, I will first present the natural history of C. elegans and other related nematodes; 

then I will describe the interactions of C. elegans with its natural pathogens.  

 

II.1. Natural history of C. elegans 

 

II.1.1. Natural habitat  

The natural history of C. elegans was a mystery for a long time. During the first 

phase, from the 20
th

 century to the beginning of the 21
st
 century, C. elegans had been 

regarded and presented as “a soil nematode”. In fact, only a few C. elegans isolates 





 

 

24 

 

Probably due to the fact that the food is ephemeral and patchily distributed in space, 

the C. elegans populations have a boom-and-bust life style in the wild (Félix and 

Duveau, 2012; Frézal and Félix, 2015). With a successful migration to a food source, 

a single hermaphrodite dauer may bloom into a huge population.  

 

 

II.1.2. Sex and reproduction 

C. elegans has two sexes: the self-fertilizing hermaphrodites (XX) and the facultative 

males (XO) (Figure 6). Adult males are slender and slightly shorter than adult 

hermaphrodites (Figure 6A, C). A selfing hermaphrodite can produce about 300 

progenies, of which in average about 0.1% are males and all the other are 

hermaphrodites. Through mating, a hermaphrodite and a male can produce more than 

1000 offsprings, with half male progeny and half hermaphrodite progeny (Zarkower 

2006). Selfing of hermaphrodites allows the maintenance of homozygous C. elegans 

through generations, whereas mating of the two sexes facilitates genetic variation by 

recombination. Homozygosity can resume after some rounds of selfing. 
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capable of laying eggs, or becoming an adult male capable of fertilizing 

hermaphrodite adults (Figure 7). 

 

 

 

 

Figure 7. Life cycle of C. elegans at 22°C.  

0 min is the fertilization. Numbers in blue along the arrows indicate the length of time 

the animal spends at a certain stage. First cleavage occurs at about 40-minutes post-

fertilization. Eggs are laid outside at about 150-minutes post-fertilization. The length 

of the animal at each stage is marked next to the stage name in micrometers (µm). 

From Hall and Altun (2009). 

 

 

II.1.3.1. Embryonic stage 

Embryogenesis in C. elegans mainly includes cell proliferation and organogenesis. At 

22° C, the first cell cleavage occurs 40 minutes after fertilization in the uterus. Eggs 

with 30 cells are laid at about 150 minutes. At the end of proliferation, the embryo 
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continues its cell divisions for 350 minutes to generate about 550 essentially 

undifferentiated cells, with three germ layers: ectoderm, mesoderm and endoderm. 

Then the organogenesis and morphogenesis stage will last for 6 to 8 hours, after 

which the embryo develops into an animal with fully differentiated tissues and organs. 

Here, the new animal is able to move and pump inside the eggshell. At about 800 

minutes, the embryo hatches (Hall and Altun, 2009).  

 

II.1.3.2. Post-embryonic stage 

Food is vital for all the processes in all the stages in the post-embryonic development 

of C. elegans. In the presence of enough food, the cell division resumes in 3 hours 

post-hatching (Ambros, 2000; Hall and Altun, 2009). The animal passes four larval 

stages (L1-L4) and reaches the adult stage in 40-50 hours at 20-25°C (Hall and Altun, 

2009). During the larval stages, additional cell divisions of blast cells occur and 

different systems develop. The larva molts at the end of each stage, with a stage-

specific cuticle being shed and resynthesized.  

 

Without food, newly hatched larvae can survive for 6-10 days, but their development 

is arrested. After food becomes available, these arrested L1 larvae can return to 

normal development. The dauer larva stage, the other arrested state and an alternative 

L3 developmental stage of C. elegans, occurs if the environmental conditions are not 

favorable (Figure 7) (Cassada and Russell, 1975; Hu 2007). Limited food source and 

high population density are the two most significant factors to induce dauers. The 

dauer larva is very thin and has a thick cuticle that resists to harsh environments. 

Dauers are capable of surviving for several months without food (Cassada and 

Russell, 1975). The active nictating behavior of dauers facilitates their migration to 

new food sources. When the environment becomes favorable for further growth, 

dauers first undergo the L3 development events, then molt to L4 and continue to 

develop into reproductive adults. If starvation happens in the L4 stage, some C. 

elegans may enter the adult reproductive diapause (ARD) state. In the reproductive 
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period in adulthood, if food is absent, the adult hermaphrodites stop laying eggs and 

may undergo a “bagging” process, in which the embryos hatch inside the uterus and 

the newly hatched larvae consume the hermaphrodite parent (Angelo and Van Gilst, 

2009; Seidel and Kimble, 2011).  

 

II.1.4. Basic anatomy of C. elegans 

C. elegans is a tiny roundworm, only 1 mm as an adult. It has an unsegmented, 

cylindrical transparent body that tapers at both ends. There are several tissues inside 

the body of C. elegans, including the epidermis, the muscles, the nervous system, the 

alimentary system, the reproductive system (Figures 6, 8) (Altun and Hall, 2009; 

Corsi et al., 2015). Among the different tissues of C. elegans, the epidermis and the 

intestine are normally used by pathogens as invading routes and tropisms (details in 

II.3.2.). Here, I will describe the anatomy of the alimentary system in more detail.  
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Figure 8. Posterior region of Nematode body.  

Diagram of the cross section of the posterior region of nematode body. Adapted from 

Hall and Altun (2009). 

 

 

II.1.4.1. The alimentary system 

The alimentary tract of C. elegans consists of the pharynx, the intestine, the rectum 

and the anus (Figure 6B). C. elegans is a filter-feeder. It pumps food such as bacteria 

into the pharyngeal lumen. Then the posterior bulb of the pharynx grinds bacteria and 

transports them into the intestinal lumen (Figure 9A). This grinding behavior may 

protect the C. elegans from some pathogens, as defective grinder mutant C. elegans 

seemed more susceptible to pathogen-induced death (Aballay and Ausubel, 2002).  

 

The intestine is a long tube with a lumen inside, which are formed by nine intestinal 

rings (int I-IX) of twenty large epithelial cells (Figure 9B, C). The anteriormost ring I 

is comprised of four cells while each of the remaining eight rings consists of two cells 
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(Figure 9B). The intestinal cells are polarized with two plasma membrane domains: 

the apical domain and the basolateral domain (McGhee 2007; Sato et al., 2014). 

Similar to the morphological characteristics of mammalian intestinal cells, many 

microvilli extend into the lumen from the apical side of C. elegans intestinal cells 

(Figure 9D, E). This brush border of microvilli is anchored in a conserved structure 

called the terminal web of actin (with ACT-5 protein) and intermediate filaments 

(with IFB-2 protein) (MacQueen et al., 2005; McGhee 2007).  

 

The primary function of the intestine is food digestion and nutrient absorption. 

Nutrients are transferred into intestinal cells through the apical membranes, by 

endocytosis or special transporters (McGhee, 2007). Numerous granules in intestinal 

cells store nutrients such as lipids, proteins and carbohydrates. As the intestine is a 

major route for pathogens to invade into the body of C. elegans, the intestinal cells 

can also act in the defense against pathogens by shedding microvilli and activating the 

innate immunity pathways (Schulenburg et al., 2004; McGhee, 2007). The rectum and 

the anus are at the end of the digestive tract, where the final intestinal content wastes 

are expelled to the outside (Figure 6). 
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Figure 9. The anatomy of pharynx and intestine in C. elegans.  

A. Graphic rendition of the pharynx. The posterior bulb, also called the terminal bulb, 

is connected to the intestine through the pharyngeal-intestinal valve. B. Intestinal 

rings in adult. The intestine has a left-handed twist of 180° around the longitudinal 

body axis. Cells in the nine rings are indicated depending on positions in the body 

plan: Left (L), Right (R), Dorsal (D), Ventral (V). C. Epifluorescent image of an adult 

transgenic animal expressing the reporter gene emr-1::GFP, where the emr-1 gene 

encodes a homolog of the human integral nuclear membrane protein emerin (Howe et 

al., 2015). D. Ultrastructure of the third intestinal cell ring. A complex junction 

(arrow) next to an adherens junction (arrowhead) seals the two intestinal cells to each 

other (inset). E. Diagram of a cross section through an intestinal cell. Adapted from 

Altun and Hall (2009a, 2009b). 

 

II.1.5. A model organism in the wild 

Researchers have made fruitful discoveries with the C. elegans reference strain N2 or 

mutants in the N2 genetic background. However, as N2 has been maintained under 

similar laboratory conditions for several decades, this strain has evolved and become 

distinct from its wild progenitor (Sterken et al., 2015). For instance, in the standard 

culture plates, wild C. elegans display a clumping behavior: wild isolates tend to 

aggregate with each other, especially on the border of the E. coli lawn (Figure 10, 

right) (Gray et al., 2004; Barrière and Félix, 2005a). Wild C. elegans clump together, 

because they prefer a 7-14% oxygen concentration in the microenvironment. By 

clumping at the border of the bacterial lawn, they can reduce the local O2 

concentration (Cheung et al., 2005; Rogers et al., 2006). However, N2 does not show 

this clumping behavior (Figure 10, left). This phenotypic polymorphism was further 

attributed to a single nucleotide polymorphism on the npr-1 (gene npr-1 encodes a 

neuropeptide Y-like G-protein-coupled receptor) (de Bono and Bargmann, 1998; 

Barrière and Félix, 2005a; McGrath et al., 2009).  

 

To have a more comprehensive understanding of the C. elegans species, other wild C. 

elegans strains have been used. The most widely studied natural C. elegans strain is 
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CB4856, which was collected from Hawaii. This strain is genetically distant to the N2 

strain. CB4856 also shows a great variety of polymorphisms compared to other strains 

(Koch et al., 2000; Andersen et al., 2012; Vergara et al., 2014). By comparing 

different strains, the genetic basis of several traits has been found. For instance, after 

mating, males of CB4856 and some other natural C. elegans isolates deposit a 

copulatory plug that covers the hermaphrodite vulva, which is known as the plugging 

phenotype. The plug can decrease the mating success of subsequent males. However, 

some other wild C. elegans strains and N2 display the non-plugging phenotype. 

Mapping approaches between CB4856 and N2 revealed that the plugging phenotype 

variation results from the polymorphism of the gene plg-1 (Hodgkin and Doniach 

1997; Palopoli et al., 2008). 

 

 

 

 

Figure 10. Phenotypic polymorphisms between N2 and wild C. elegans strains. 

N2 (left) and CB4857 (right) display distinct clumping (Clp) behavior. Adapted from 

Barrière and Félix (2005a). 
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II.2. Other nematodes 

 

C. elegans is the best-known nematode species, but the phylum Nematoda is an 

extremely diverse group of animals (Figure 11). About 30,000 species have been 

described in Nematoda, the total number of which is estimated up to a million 

(Kiontke and Fitch, 2013). Nematodes are probably the most highly ecologically and 

physiologically adaptable metazoans, since they were found everywhere, including 

desert soil, polar ice, tropical rainforest and deep sea (Félix et al., 2013; Kiontke and 

Fitch, 2013). Nematodes are not just free-living species like C. elegans. Pathogenic 

nematodes can infect almost all other multicellular organisms, including most plants, 

arthropods and vertebrates (Blaxter, 2011; Kiontke and Fitch, 2013). I will further 

describe some free living nematodes that are closely related to C. elegans. 
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Figure 11. Phylogeny of Nematoda. 

The position of nematodes in the animal tree is indicated in the inset. The main panel 

is the phylogeny of Nematoda, which contain three large monophyletic groups: 

Enoplia, Dorylaimia and Chromadoria. C. elegans belongs to the infraorder 

Rhabditomorpha (suborder Rhabditina, order Rhabditida, family Rhabditidae), which 
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is indicated by an arrow. The phylogeny of Nematoda is based on SSU rDNA. 

Adapted from Kiontke and Fitch (2013). 

 

 

II.2.1. Free-living rhabditid nematodes 

C. elegans and its close relatives are in the family Rhabditidae (Figures 11, 12). Most 

rhabditids are bacteriophagous nematodes, but this group also includes a group of 

vertebrate parasites such as the human hook worm Necator americanus (Kiontke and 

Fitch, 2005; Blaxter, 2011). In addition to C. elegans, this group also includes several 

“satellite models”, such as various other Caenorhabditis species, Oscheius tipulae and 

Pristionchus pacificus, which facilitate comparative biological studies (Kiontke and 

Fitch, 2005; De Ley, 2006). There are two major clades in rhabditids: “Pleiorhabditis” 

and “Eurhabditis”, and the latter clade contains Caenorhabditis and Oscheius (Figure 

12) (Kiontke and Fitch, 2005).  
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Figure 12. Phylogeny of rhabditid nematodes. 

There are two major clades in rhabditids: Pleiorhabditis and Eurhabditis. The latter 

clade includes the Oscheius genus and the Caenorhabditis genus. The phylogeny is 

based on SSU rDNA and large subunit ribosomal DNA (LSU rDNA). From Kiontke 

and Fitch (2005). 
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II.2.2. The Caenorhabditis genus 

Due to the improved knowledge on the wild micro-habitats of Caenorhabditis and 

intensive worldwide sampling, many new C. elegans isolates and new Caenorhabditis 

species have been discovered. To date, 27 Caenorhabditis species have been isolated 

from different areas around the world (Figure 13) (Kiontke et al., 2011; Félix et al., 

2014; Cutter, 2015; Frézal and Félix, 2015). Some Caenorhabditis are cosmopolitan: 

Caenorhabditis briggsae is the most widespread, found abundantly in both tropical 

and temperate areas; most C. elegans and all Caenorhabditis remanei have been 

found in temperate regions (Figure 13). Caenorhabditis brenneri and Caenorhabditis 

tropicalis have been found exclusively in tropical areas (Kiontke et al., 2011; Cutter, 

2015). Among these 27 species, some species have been found in the same location, 

for instance, C. elegans and C. briggsae have been found coexisting, even in the same 

apple in Orsay, France (Félix and Duveau, 2012); C. elegans and C. remanei have 

been found coexisting in North Germany (Petersen et al., 2014).   

 

The species in the genus Caenorhabditis can be divided into three groups: Elegans 

group, Drosophilae group and Japonica group (Figure 13). Most collected strains 

belong to the Elegans group. C. elegans and C. briggsae are the two most highly 

sampled species (Figure 13) (Cutter, 2015). These two species are quite similar in 

morphology, life style, behavior and genome (about 104Mb) (Stein et al., 2003; Baird, 

2006; Gupta et al., 2007). Nevertheless, there are many species-specific behaviors and 

genes between C. elegans and C. briggsae. For instance, similar to N2, C. briggsae 

has a non-clumping behavior on standard culture plates (Barrière and Félix, 2014). 

Relatively, C. briggsae prefers higher temperature, while C. elegans prefers lower 

temperature (Félix and Duveau, 2012). This temperature preference of C. briggsae 

may due to a recent expansion of C. briggsae from tropical to temperate areas, which 

provides a good example to study species distribution, gene flow and genome 

evolution (Baird, 2006; Cutter et al., 2006, 2010a, 2010b).  
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Figure 13. Phylogeny of Caenorhabditis.  

The main panel shows the phylogeny of the major Caenorhabditis groups with 27 

species (former numerical identifiers in parentheses). The three species with selfing 

mode of reproduction are in red, while the remaining known Caenorhabditis species 

are male and female. Geographic sampling locations and number of isolated strains 

are shown on the right of the phylogeny. Adapted from Cutter (2015); Frézal and 

Félix (2015). 
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II.2.3. Oscheius tipulae 

Oscheius tipulae is another model organism. Morphologically, the animals have a 

darker color, smaller size and longer rectum, compared to C. elegans (Félix, 2006; 

Barrière and Félix, 2014). O. tipulae shares many similarities with C. elegans, such as 

the reproduction mode of self-fertilizing hermaphrodites and facultative males, and 

the culture condition in the laboratory. It has been used in comparative studies with C. 

elegans, especially on vulva development (Félix et al., 2000; Dichtel-Danjoy and 

Félix, 2004).  

 

Except for very dry or very cold areas, O. tipulae is widely distributed at different 

spatial scales all over the world. Dauer stage O. tipulae was found abundant in soil, 

composts and invertebrates (Baïlle et al., 2008); O. tipulae in proliferative stages was 

also found in rotting fruits and stems (Félix and Duveau, 2012). O. tipulae has two 

morphologically indistinguishable close relatives: Oscheius sp. 2 and Oscheius sp. 3 

(Figure 14) (Félix et al., 2001). However, these two Oscheius species were only found 

in limited locations (Félix et al., 2001; Baïlle et al., 2008). Interestingly, a study on 

the natural populations of O. tipulae showed a relatively high genetic diversity, which 

may be better suited for further studies on molecular evolution (Baïlle et al., 2008). 
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Figure 14. Phylogenetic relationships in the Oscheius genus.  

From Félix (2006). 

 

 

II.3. Interactions of C. elegans with diverse 

microorganisms 

 

In the wild, C. elegans has a great variety of interactions with several other rhabditid 

nematodes (such as C. briggsae, C. remanei and O. tipulae), diverse animals 

(arthropods in particular) and many microorganisms (such as bacteria, fungi). For 

instance, since the food sources are transient, intraspecific competition for food 

among bacterivore nematodes may be substantial (Félix and Braendle, 2010). 

Diplogastrid nematodes, such as Pristionchus species, may be predators of C. elegans 

and other bacterivore nematodes (Félix and Duveau, 2012; Barrière and Félix, 2014). 

Some mollusks and arthropods may serve as dispersal vectors for C. elegans and 

related nematodes, while other arthropods such as mites may act as vector as well as 

predator (Félix and Braendle, 2010; Félix and Duveau, 2012; Cutter, 2015; Frézal and 
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Félix, 2015). The most notable interactions that C. elegans has are with 

microorganisms. The various microbes may act as food, commensal microorganisms, 

pathogens or predators, to C. elegans and other nematodes (Petersen et al., 2015). In 

the following parts, I will describe the interactions of C. elegans with the non-

pathogenic and pathogenic microbes. 

 

 

II.3.1. The interaction of C. elegans with non-pathogenic 

microbes 

In the laboratory, N2 is usually fed with E. coli strain OP50. N2 may not carry any 

live microbes in its gut due to E. coli being disrupted by the animal’s grinder. In the 

gut of wild C. elegans, however, a live bacterial flora could often be observed (Félix 

and Braendle, 2010; Félix and Duveau, 2012). This is not a surprise, as wild C. 

elegans live in the environments that are full of decaying organic material, which are 

food resources for microbes. However, this also means that some microbes may be 

able to pass the grinder of C. elegans. Using high-power light microscope, 

assemblages of bacteria and fungi can be seen colonizing the rotting fruits and stems 

(Félix and Duveau, 2012). Wild C. elegans may encounter a great variety of microbes 

through its whole life history. 

 

A very recent study revealed that the most abundant bacteria in the natural 

environment of C. elegans belong to phyla Proteobacteria, Bacteroidetes, Firmicutes 

and Actinobacteria (Samuel et al., 2016). Several studies also characterized the 

microbial community that is directly associated with C. elegans, which was 

dominated by Proteobacteria such as unclassified Enterobacteriaceae and members 

of Pseudomonas, Stenotrophomonas, Ochrobactrum, Sphingomonas and 

Xanthomonadaceae (Montalvo-Katz et al., 2013; Berg et al., 2016; Dirksen et al., 

2016).  
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C. elegans displays different responses to different microbial communities: C. elegans 

populations proliferate better in an alpha-Proteobacteria rich environment, but 

generate more dauers in a detrimental Bacteroidetes rich community (Samuel et al., 

2016). Some associated microbes may also be able to increase the defensive ability of 

C. elegans in the presence of pathogens. For example, Bacillus megaterium and 

Pseudomonas mendocina can enhance the resistance of C. elegans to the pathogen 

Pseudomonas aeruginosa (Montalvo-Katz et al., 2013; Dirksen et al., 2016).  

 

More importantly, C. elegans uses some bacteria and yeast in its natural habitat as 

food resources (Félix and Duveau, 2012; Frézal and Félix, 2015). The exact food 

source of bacteria or yeast species of C. elegans in the wild is unclear, but different 

diets can affect C. elegans life history traits such as longevity and growth rate 

(Macneil and Walhout, 2013). Some microbes may decrease the growth rate or 

longevity of C. elegans, while other microbes may show directly pathogenic effects. It 

may be difficult to disentangle pathogenic effects from bad dietary effects, but it is 

clear that overlaps exist between dietary, commensal and pathogenic microbes 

(Macneil and Walhout, 2013; Clark and Hodgkin, 2014). The non-pathogenic 

microbes colonizing the gut may improve the resistance of C. elegans to its true 

pathogens. 

 

II.3.2. The interaction of C. elegans with its pathogens  

Diverse pathogens are able to infect C. elegans. In the wild environment, several 

microbes have been characterized as natural pathogens to C. elegans and other 

nematodes (Figure 15). These pathogens infect C. elegans mainly via two different 

routes: the external surfaces or the oral route. For instance, the fungus Drechmeria 

coniosporia and the bacterium Leucobacter species adhere to the cuticle (Félix and 

Duveau, 2012; Hodgkin et al., 2013; Frézal and Félix, 2015). The fungus 
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Harposporium sp., the bacteria Serratia marcescens and Microbacterium 

nematophilum, the Orsay virus and the microsporidia Nematocida parisii infect C. 

elegans via the oral route (Hodgkin, 2000; Troemel et al., 2008; Félix et al., 2011; 

Félix and Duveau, 2012; Parsons and Cipollo, 2014). The latter two pathogens further 

induce intracellular infections in intestinal cells. In addition to its natural pathogens, 

C. elegans has been found susceptible to a large number of “universal” pathogens, 

including some human pathogens (Kurz and Ewbank, 2000; Sifri et al., 2005). Gram-

negative bacterial pathogens such as Pseudomonas aeruginosa, Salmonella enterica 

and Salmonella typhimurium, Gram-positive bacterial pathogens Enterococcus 

faecalis, Straphylococcus aureus and Bacillus thuringiensis could all cause intestinal 

infections and kill C. elegans (Figure 15) (Aballay and Ausubel, 2002; Darby, 2005).  

 

 

 

 

Figure 15. Pathogens of C. elegans and their infection routes and tropisms.  

Adapted from Engelmann and Pujol (2010). 
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C. elegans with its pathogens, especially its natural pathogens in contact with which 

its immune system evolved, makes a powerful model for host-pathogen studies. In the 

following part of this chapter, I will first present briefly the different defensive 

responses of C. elegans. Then I will describe in more detail the interactions of C. 

elegans with its natural pathogens: the newly found Leucobacter species and the 

newly discovered intracellular viral infections in Caenorhabditis. The studies on the 

interaction between microsporidia and C. elegans will be presented in detail in 

Chapter III. 

 

II.3.2.1. Defense of C. elegans against pathogens 

To defend itself, C. elegans mainly uses three strategies: the avoidance behavior 

response, physical barriers and the innate immunity (Schulenburg et al., 2004; 

Engelmann and Pujol, 2010). 

A. Behavioral avoidance 

C. elegans is a bacterivore with a foraging behavior. In a natural microbe-rich habitat, 

it is vital for C. elegans to recognize non-pathogenic food from harmful pathogens. C. 

elegans has 60 ciliated sensory neurons, functioning in chemosensation and 

mechanosensation, which may enable the recognition of C. elegans to different 

microbes (Allen et al., 2015). For instance, while some S. marcescens attract C. 

elegans, the cyclic pentapeptide biosurfactant serrawettin W2 expressed by S. 

marcescens strain Db10 leads to an avoidance behavior of C. elegans (Pujol et al., 

2001; Pradel et al., 2007). This innate avoidance of C. elegans was also observed in 

the presence of M. nematophilum (Yook and Hodgkin, 2007). Despite these innate 

repulsive responses, C. elegans also showed aversive learning avoidance to P. 

aeruginosa and S. marcescens. Though initially C. elegans was attracted to the odors 

produced by P. aeruginosa and S. marcescens, it could modify its olfactory 

preference and learn to avoid the pathogenic lawns (Zhang et al., 2005; Beale et al., 

2006). The avoidance behavior of C. elegans to P. aeruginosa was also reported to be 
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affected by the mechanosensation of C. elegans (Chang et al., 2011). The sensory 

system mediates both the food seeking and pathogen avoidance behaviors (Meisel, 

2014). 

B. Physical barriers 

C. elegans has a strong collagenous cuticle, which protects itself from environmental 

threats, especially from the invasion of some pathogens. In addition, the pharyngeal 

grinder could destroy live pathogens before infection occurs. However, some 

pathogens could break the physical barrier of C. elegans. For instance, spores of the 

fungal pathogen D. coniospora mainly adhere to the cuticle in the head or around the 

vulva of C. elegans, and then penetrate the cuticle. S. marcescens can disrupt the 

grinder, enter and colonize the intestine of C. elegans; spores of microsporidia and 

some other pathogens resist to the pharyngeal grinding (Darby, 2005; Engelmann and 

Pujol, 2010; Taffoni and Pujol, 2015).  

C. Innate immunity 

C. elegans monitors physiological perturbations such as epidermal injury, DNA 

damage, inhibition of transcription or translation, mitochondrial dysfunction. The 

surveillance on homeostasis could act as a trigger for the initiation of immune defense 

(Taffoni and Pujol, 2015; Ewbank and Pujol, 2016; Pukkila-Worley, 2016).  

 

Several signaling pathways have been shown to be involved in innate immunity in C. 

elegans, such as the mitogen-activated protein kinase (MAPK) pathways, the DAF-

2/DAF-16 insulin-like signaling pathway, the transforming growth factor ß (TGF-ß) 

pathway. (Ewbank 2006; Engelmann and Pujol, 2010; Kim and Ewbank, 2015). The 

diverse signaling pathways control the expression of many immune effectors, 

including the antimicrobial peptides (AMP), the caenacins (CNC), lysozymes, lectins. 

(Engelmann and Pujol, 2010; Kim and Ewbank, 2015).  
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II.3.2.2. Leucobacter species 

Leucobacter are Gram-positive, non-motile bacteria that have been isolated from 

diverse environments, including chromium-rich soil and water, foodstuffs, nematodes 

(Morais et al., 2006; Muir and Tan 2007; Shin et al., 2011; Ge et al., 2013). Recently, 

a new subspecies of Leucobacter celer and a new species named Leucobacter 

musarum with its two subspecies were isolated from wild Caenorhabditis (Hodgkin et 

al., 2013). The Leucobacter celer subsp. astrifaciens CBX151 and the Leucobacter 

musarum subsp. musarum CBX152 were isolated co-infecting a C. tropicalis strain 

(JU1635) from Cape Verde. This infected C. tropicalis strain showed a swollen tail 

response that referred to as the Dar (Deformed Anal Region) phenotype, and bacterial 

coating over the cuticle (Figure 16A). The Leucobacter musarum subsp. japonicus 

was isolated from a wild C. elegans strain (JU1088) in Kakegawa, Japan. This 

infected C. elegans strain exhibited the Dar phenotype (Hodgkin et al., 2013; Clark 

and Hodgkin, 2015).  

 

The Leucobacter species displayed diverse interactions with C. elegans. On the 

surface of an agar plate, the L. celer astrifaciens CBX151 infection can inhibit the 

movement and growth of C. elegans, but is not lethal. In liquid culture, L. celer 

astrifaciens CBX151 infection induces formation of “worm-stars”, where C. elegans 

individuals aggregate by their tails, and then leads to death of most trapped animals 

(Figure 16B). However, within the first hour after the star formation, some trapped C. 

elegans individuals are able to escape the worm-stars, albeit with broken tail spikes. 

These wounded C. elegans will be healed later and be able to survive. Additionally, a 

small proportion (5-10%) of L4 stage C. elegans individuals could escape the star 

even later (24 hours after star formation) through a form of autotomy. By autotomy, 

an anterior “half-worm” could escape and remain viable for several days, with the 

possibility to have a few selfing progenies (Hodgkin et al., 2013, 2014). On the other 

hand, L. musarum musarum CBX152 is lethal to C. elegans on the agar plate only at 
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higher temperature. At 25° C, L. musarum musarum CBX152 infection causes large 

vacuoles that distort the internal organs and distend the whole body of C. elegans, 

resulting in death of most animals within 24-48 h (Figure 16C). At lower temperature, 

L. musarum musarum CBX152 causes the Dar phenotype in C. elegans (Figure 16D). 

 

The Dar phenotype was also observed in C. elegans infected with Microbacterium 

nematophilum, a Gram-positive bacterium that specifically infects C. elegans and 

some other nematodes (Hodgkin, 2000). Previously, through chemical and transposon 

mutagenesis, several C. elegans mutants that are resistant to M. nematophilum were 

selected (Gravato-Nobre et al., 2005; Yook and Hodgkin 2007). Most of these 

mutants were also found to resist to L. musarum musarum CBX152 (Hodgkin et al., 

2013). Mutants such as bus-2, bus-4 were shown to have an altered surface 

glycosylation, which may affect the adhesion of L. musarum musarum CBX152 to the 

cuticle of C. elegans (Gravato-Nobre et al., 2011).  

 

However, on the agar surface, L. celer astrifaciens CBX151 can efficiently kill the C. 

elegans mutants that resist to L. musarum musarum CBX152. Furthermore, C. 

elegans isolates primarily infected with L. celer astrifaciens CBX151 seemed more 

resistant to L. musarum musarum CBX152 infection. Altogether, these observations 

revealed the complementary virulence between the two Leucobacter pathogens, which 

may generate opposing selective forces on C. elegans (Hodgkin et al., 2013, 2014).  
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Figure 16. Leucobacter infections in Caenorhabditis.  

A. The swollen tail of a C. tropicalis JU1635 individual, with bacterial coating on the 

surface. The arrow indicates the swollen tail. B. L. celer subsp. astrifaciens CBX151 

induced a “worms-star” of a quartet of C. elegans individuals held together by their 

tails. C. Dying C. elegans after 20-hour exposure to L. musarum subsp. musarum 

CBX152. The anterior gut (arrow) is compressed by swollen vacuoles (asterisks) in 

the body cavity. D. The swollen tail of C. elegans infected with L. musarum subsp. 

musarum CBX152. Long arrow indicates the swollen tail; short arrow indicates the 

bacteria adhered around the anus. Arrowhead indicates the anal opening in A. and D. 

Adapted from Hodgkin et al. (2013).  

 

 

II.3.2.3. Orsay virus 

In 2011, the Orsay virus and the Santeuil virus were identified as the first known 

viruses that naturally infect C. elegans and C. briggsae, respectively (Félix et al., 

2011). One year later, a third Caenorhabditis virus, Le Blanc virus, was characterized, 

also infecting C. briggsae, like the Santeuil virus (Franz et al., 2012). All of these 

three novel viruses are positive strand RNA viruses that are distantly but most closely 

related to Nodaviruses (Félix et al., 2011; Franz et al., 2012; Jiang et al., 2014). 
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Fluorescent in situ hybridization (FISH) and immunofluorescence assays (IFA) both 

determined that all the three viruses have the worm’s intestinal cells as their primary 

tropism (Félix et al., 2011; Franz et al., 2014). C. elegans and C. briggsae with these 

viral infections display abnormal morphologies in their intestinal cells: the intestinal 

granules and nuclei may disappear; the intestinal cytoplasm may become fluid; 

intestinal cells may fuse (Figure 17).  

 

 

 

 

Figure 17. Viral infections in intestinal cells of wild Caenorhabditis isolates.  

(A-B) C. elegans JU1580. A. An adult hermaphrodite infected with the Orsay virus 

displays an abnormally large intestinal cell that is probably due to cell fusion. B. An 

uninfected JU1580 adult. Antero-posterior boundaries between intestinal cells were 

indicated by arrowheads. (C-E) C. briggsae JU1264 infected with the Santeuil virus 

show diverse infection symptoms: convoluted apical intestinal border (C), 

degeneration of intestinal cell structures (D), presence of multi-membrane bodies (E). 

F. An uninfected JU1264 adult. Scale bars are 10µm. Adapted from Félix et al. 

(2011). 

 

 

In the original study on the Orsay virus and C. elegans, comparisons between 

sequenced small RNA libraries of C. elegans populations with or without the 

infection of Orsay virus suggested that C. elegans produces small RNAs in response 
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to the viral infection. The antiviral role of RNA interference (RNAi) in the immunity 

of C. elegans was further revealed: compared to N2, the RNAi-deficient mutants 

showed increased levels of viral RNA abundance (Félix et al., 2011). A more recent 

study determined the roles of the gene drh-1 in the recognition of the RNA virus and 

in the sensitivity variation of C. elegans to the viral infection (Ashe et al., 2013). The 

drh-1 gene encodes a RIG-I-like helicase, which is a homologue of the mammalian 

viral recognition protein RIG-I. Using a genome-wide association mapping in 97 wild 

C. elegans isolates of the viral loads upon Orsay virus infection, a 159 base-pair 

deletion in the drh-1 gene of C. elegans JU1580 was identified as a major determinant 

of the viral sensitivity in C. elegans. This deletion was further found to impair the 

fitness of JU1580 and drh-1 mutants in the presence of viral infection: upon the 

infection of Orsay virus, JU1580 and drh-1 mutants displayed delayed and decreased 

total progeny compared to uninfected isolates. However, the detrimental deletion of 

drh-1 was found in many wild isolates of C. elegans, which may result from the low 

prevalence of Orsay virus in the wild, or a linkage between the drh-1 deletion and a 

beneficial mutation, or a conditional deleterious effect of carrying the intact drh-1 

gene. Further experiments with double mutants determined that DRH-1 is an upstream 

factor of the antiviral siRNA pathway. DRH-1 might use a similar mechanism to RIG-

I to recognize the RNA of the Orsay virus (Ashe et al., 2013).  
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III. Microsporidia infections in C. elegans and 

related nematodes 

 

Historically, nematode-infecting microsporidia were primarily reported in the 

parasitic nematodes. Protospirura muris, a parasitic nematode of mouse, was reported 

to carry an infection by Thelohania reniformis (Kudo and Hetherington, 1922). 

Nosema mesnili and Plistophora schubergi are able to infect an entomopathogenic 

nematode, Neoaplectana carpocapsae, as well as insect hosts (Veremtchuk and Issi, 

1970; Poinar and Hess, 1988; Bakowski et al., 2014a). The first restricted nematode-

infecting microsporidia was called “Microsporidium” rhabdophilum (undefined 

genus), which was isolated from a nonparasitic nematode Oscheius (Rhabditis) 

myriophila (Poinar and Hess, 1986; Bakowski et al., 2014a).  

 

In 2008, three wild-caught C. elegans strains from France and one wild C. briggsae 

strain from India were reported to carry microsporidia infections (Troemel et al., 

2008). A new microsporidian genus, Nematocida, was established with two species: 

Nematocida parisii and the undescribed Nematocida sp. 1. The genus Nematocida 

was placed in the Clade II of the microsporidia phylum phylogeny (Figure 4). In the 

phylogenetic analysis, the closest genus to Nematocida is Ovavesicula, with the type 

species Ovavesicula popilliae (Figure 4) (Vossbrinck and Andreadis, 2007; Troemel 

et al., 2008). O. popilliae infects the Japanese beetle, Popillia japonica, and forms 

oval-shaped spores (Andreadis and Hanula, 1987). Nematocida, on the other hand, 

literally means nematode killer (Troemel et al., 2008). Both N. parisii and N. sp. 1 are 

transmitted horizontally and infect the intestinal cells of C. elegans or C. briggsae, 

with rod-shaped spores of two distinct sizes (Troemel et al., 2008). Further sampling 

revealed that microsporidian infections are quite prevalent among wild 

Caenorhabditis and related nematodes (Félix and Duveau, 2012). These Nematocida 
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pathogens are lethal threats to C. elegans individuals and other related nematode 

species.  

 

In addition to Caenorhabditis, a free-living marine nematode, Odontophora 

rectangular was found infected with a novel microsporidia species, named 

Sporanauta perivermis (Ardila-Garcia and Fast, 2012). Later, a deep sea nematode 

Desmodora marci was found infected with a microsporidium, which was named 

Nematocenator marisprofundi (Sapir et al., 2014). Neither of these two nematode-

infecting microsporidia are closely related to Nematocida species. S. perivermis was 

placed in the Clade IV of the microsporidia, while N. marisprofundi was in none of 

the described clade, but in the basal position of the microsporidia phylum. S. 

perivermis infects host’s muscle and hypodermis, and a vertical transmission mode 

was suggested (Ardila-Garcia and Fast, 2012). N. marisprofundi was shown to cause 

infection in the host’s body wall muscles. N. marisprofundi does not seem to be 

transmitted through the fecal-oral route or the vertical transmission mode, as their 

spores have never been observed in the nematode intestines or nematode eggs. 

However, N. marisprofundi spores were observed in the reproductive organs of D. 

marci males and females, which suggested that the transmission is through the mating 

behavior (Sapir et al., 2014). 

 

In the following parts, I will further present the interactions of C. elegans with 

Nematocida species. 

 

III.1. Nematocida parisii 

 

The very original N. parisii strain ERTm1 was isolated from the wild C. elegans 

strain CPA24 near Paris, France (Troemel et al., 2008). Wild C. elegans strains 

JU1247 and JU1395, C. briggsae strain JU2055 were also naturally infected with N. 
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parisii (N. parisii strains named ERTm3, ERTm4, ERTm5 respectively) (Troemel et 

al., 2008; Balla et al., 2015). In both host species, N. parisii is transmitted horizontally 

through the fecal-oral route, with meronts and two distinct sizes of spores appearing 

in the host intestinal cells (Figure 18). The small spore is 2.18 ± 0.15 µm long and 0.8 

± 0.08 µm wide, with one observed polar tube coil; while the large spore is 3.17 ± 

0.22 µm long and 1.31 ± 0.15 µm wide, with up to five visible polar tube coils (Figure 

19 F, G). Transmission electron microscopy (TEM) suggests that N. parisii is 

monokaryotic, as only one nucleus or multiple unpaired nuclei have been observed in 

its meront. Molecular identification and phylogenetic analysis using small subunit 

rDNA characterized N. parisii and placed it in the Clade II of the microsporidia 

phylum (Figure 4) (Troemel et al., 2008).  
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Figure 18. N. parisii infection symptoms in C. elegans. 

A. The intestine of an uninfected C. elegans. B. Host intestinal granules are displaced 

by N. parisii meronts, which appear as “grooves” (arrow) in the host intestinal cells. 

The intestinal lumen is indicated by arrowheads in A and B. C. Large and small rod-

shaped spores are indicated by larger and smaller arrow, respectively. D. Vesicles 

containing spores are indicated by an arrow. Scale bar is 10µm. Adapted from 

Troemel et al. (2008). 
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Figure 19. Ultrastructure of N. parisii infection in the C. elegans intestine. 

A. An irregular shaped multinucleate meront indicated with an arrow. A host vesicle 

is marked with an asterisk. Scale bar is 1µm. B. A later stage meront with two nuclei 

and more regularly shaped plasma membrane. C. and D. are sporonts with electron-

dense membranes. E. Developing N. parisii spores. F. A small sized spore. G. A 

larger sized spore. Arrowheads indicate cross-sections of polar tube coils in F and G. 

H. Vesicles of spores. B-H, scale bar is 500 nm. PP refers to the polaroplast 

membrane; PV refers to the posterior vacuole. Adapted from Troemel et al. (2008). 

 

 

III.1.1. Life cycles of N. parisii and symptoms in the host  

Ingestion of N. parisii spores by C. elegans begins the infection (Figure 20). N. parisii 

spores can survive the pharyngeal grinding and reach the intestinal lumen of C. 

elegans. Though the injecting process has not been observed directly yet, N. parisii 

spore, like other microsporidia species, probably uses the polar tube to inject its 

sporoplasm into the host intestinal cells.  

 

Before becoming newly mature spores, two different developmental stages of N. 

parisii could be observed under transmission electron microscopy: the meront stage 

and the sporont stage. At 25 °C, within the first day after inoculation, the injected N. 

parisii sporoplasm replicates and develops into a meront, which causes displacement 

of gut granules and “grooves” in the C. elegans intestinal cells (Figure 18B). Early 

stage meronts are irregularly shaped and later stage meronts are more regularly 

shaped. Both may contain one or several nuclei (Figure 19A, B). The multinucleate 

meronts of N. parisii may divide by plasmotomy to cells containing one nucleus 

(Figure 20). Meronts develop into sporonts, which possess electron-dense membranes 

(Figure 19C, D). Multinucleate sporonts may also form and eventually divide by 

plasmotomy. Small spores appear around 40 hours after inoculation (Figure 19E, F). 

Large spores are observed later than small spores (Figure 18C, 19G); discrete vesicles 

filled with spores appear at the end (Figures 18D, 19H) (Troemel et al., 2008).  
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Newly formed mature spores of N. parisii exit from the host cell into the intestinal 

lumen soon after their formation. The spores will be released to the outside 

environment presumably through the defecation process of C. elegans (Figure 20) 

(Troemel et al., 2008; Estes et al., 2011).  

 

 

 

 

Figure 20. Diagram of life cycle of N. parisii infection in C. elegans.  

N. parisii infects C. elegans intestinal cells (yellow), where it grows intracellularly 

through the meront and sporont stages. Newly formed spores exit apically into the 

lumen and then are defecated by the animal. The actin-rich microvilli are anchored 

into a terminal web (actin is labeled orange). Adapted from Szumowski et al. (2014). 

 

 

N. parisii proliferates rapidly in C. elegans, with a doubling time about 2.9h to 3.3h 

during the meront stage (Cuomo et al., 2012). A single infected C. elegans can shed 

thousands of spores per hour to the environment (Estes et al., 2011). N. parisii can be 

rapidly transmitted across an entire C. elegans population. Infected C. elegans 

individuals with only small sized spores can infect other individuals, forming spores 

of both sizes in recipient C. elegans (Troemel et al., 2008). Infected C. elegans with 
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only a small number of spores inside its intestinal cells is able to infect other 

uninfected C. elegans, whereas infected C. elegans with only meronts is not infectious 

(Troemel et al., 2008).  

 

On the host side, compared to healthy C. elegans, infected C. elegans has a paler 

color appearance, a thinner and smaller body size. N. parisii infection could also lead 

to a high rate of early death, but infected C. elegans could show grossly normal 

behaviors even when their intestinal cells are fully filled with N. parisii spores, 

reflecting the tolerance of C. elegans to N. parisii infection (Troemel et al., 2008). A 

recent study showed that in the presence of very high doses of N. parisii spores, C. 

elegans N2 in the L1 stage may enter a larval developmental arrest stage (Luallen et 

al., 2015).  

 

III.1.2. Exit mechanism from C. elegans intestinal cells  

N. parisii employs a specific non-lytic mechanism to exit from C. elegans intestinal 

cells to the lumenal space, while minimizing damages to the host (Estes et al., 2011; 

Troemel, 2016). The N. parisii spore exit strategy can be divided into two successive 

phases: 

 

1) N. parisii infections restructure the terminal web of the host intestinal cell, by first 

altering the localization of apically-restricted actin. ACT-5, a specialized actin 

isoform that is localized to the microvilli and the terminal web in uninfected C. 

elegans, is localized on the basolateral side of intestinal cells of infected C. elegans 

(Figure 20, 21A), while the levels of the apical actin often appeared to decrease. The 

rearrangement of the actin may serve as a trigger to induce IFB-2, a component of the 

intermediate filament in the terminal web, to reorganize and cause gaps in the 

terminal web (Figure 21) (Troemel et al., 2008; Estes et al., 2011). The actin 

rearrangement and the formation of terminal web gaps were determined to be a 
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discrete, highly regulated and necessary event, likely facilitating spore exiting by 

removing a barrier (Estes et al., 2011).  

 

 

 

 

Figure 21. Phase I of N. parisii exit from C. elegans intestinal cells.  

A. Diagram of Phase I of N. parisii exit. Green is ACT-5 and orange is IFB-2. 

Pathogen cells are depicted in red and nuclei depicted in black. B. Transmission 

electron microscopy shows the intact terminal web (TW) in uninfected C. elegans 

intestine. C. Gaps (arrows) in the terminal web of C. elegans infected with N. parisii. 

Double arrows indicate microvilli (MV). Lu indicates lumen. In B and C, scale bar is 

1 µm. Adapted from Troemel et al. (2008); Szumowski et al. (2012). 
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2) N. parisii spores exit from C. elegans intestinal cells through a RAB-11-mediated 

directional exocytosis mechanism: in the meront stage, N. parisii is in direct contact 

with the host intestinal cytoplasm, but transmission electron microscopy showed that 

a newly formed N. parisii spore is surrounded by an additional membrane (AM), 

defining a spore-containing compartment (SCC) (Figure 22B) (Szumowski et al., 

2014). The localization of the host small GTPase protein RAB-11 to this compartment 

is required for SCCs to traffic to the apical side of the host cell and then fuse to the 

host membrane (Figure 22A). Other host GTPase proteins such as RAB-5 and RAB-

10 are also important to the fusion process (Szumowski et al., 2014). After the SCCs 

fuse with the apical membrane (Figure 22C, D), spores gain access to the intestinal 

lumen, and acquire an apical membrane transporter protein PGP-1 marker 

(Szumowski et al., 2014). Then the spores are able to exit from the host cell into the 

lumen (Figure 22A). The newly shed spores in the lumen do not possess the 

additional membrane (Estes et al., 2011).  
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Figure 22. Phase II of N. parisii exit from C. elegans intestinal cells.  

A. Diagram of Phase II of N. parisii exit. See text for details. B. Transmission 

electron microscopy of an immature N. parisii spore. The spore membrane (SM) is 

surrounded by an additional membrane (AM). C. A mature spore (asterisk) spanning 

the luminal membrane. D. Magnification of box from C. Arrows indicate the 

continuous host apical membrane (HM) that surrounds the spore. (B–E) AJ, apical 

junction; EN, endospore; EX, exospore; MV, microvilli; PT, polar tube; TW, terminal 

web. Scale bars: B and D, 500 nm; C, 1 µm. Adapted from Szumowski et al. (2014). 

 

 

In summary, N. parisii reorganizes the C. elegans intestinal cytoskeleton, then fuses 

to the host apical membrane in a GTPase-dependent mode, and finally exits host cells 

without causing cell lysis or any other lethal damages to the host.  
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III.1.3. Defensive response of C. elegans to N. parisii 

All postembryonic stages of C. elegans are susceptible to N. parisii infection, except 

for the non-feeding dauer stage, at which the animals still can be a carrier of N. parisii 

(Troemel et al., 2008). However, neither the PMK-1 p38 MAPK immune pathway nor 

the DAF-2/DAF-16 insulin-like immune pathway of C. elegans showed any 

substantial roles in defense against N. parisii infection. In C. elegans, many genes 

upregulated upon P. aeruginosa and D. coniospora infections do not present clear 

expression changes when C. elegans is infected with N. parisii (Troemel et al., 2008). 

RNA-seq analysis showed that the transcriptional response of C. elegans to N. parisii 

infection is similar to that upon intracellular infection by the Orsay virus, but very 

different from some extracellular infections such as P. aeruginosa and D. coniospora 

(Bakowski et al., 2014b). Taken together, C. elegans may have a distinct defensive 

response to N. parisii infection compared to its immune responses to other fungal or 

bacterial pathogens. 

 

C. elegans appears to be able to monitor the functioning and homeostasis of core 

cellular processes, and then trigger the expression of defensive genes upon any 

perturbation or disruption of these processes. Core process surveillance pathways 

could help C. elegans to recognize pathogen invasion. For instance, the C. elegans 

ubiquitin-proteasome system (UPS) can trigger defensive responses, such as the 

ubiquitin-mediated responses, upon N. parisii and Orsay virus infections. 

Upregulation of Skp1–Cull–F-box protein (SCF) ligase components could help to 

restrict microsporidia growth. However, this ubiquitin-mediated defense is only able 

to target a small percentage of N. parisii cells in their early developmental stage, 

which may partially be due to the fact that N. parisii is able to suppress the host UPS 

defensive machinery. The proteasome and autophagy pathways also promote host 

defense against N. parisii (Bakowski et al., 2014b).  
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A recent study showed that natural variation exists among six C. elegans wild isolates 

in their sensitivity upon N. parisii infection, as the different mortality rates among 

these strains are positively correlated with the pathogen loads (Figure 23A, B). This 

result indicates variation in host resistance rather than tolerance (Balla et al., 2015). 

Fecundity was further compared between N2 and CB4856. The fecundity of infected 

C. elegans seemed to depend on the developmental stage of the C. elegans individuals 

when they were inoculated. Indeed, when the inoculation of N. parisii occurred at the 

L4 stage, neither N2 nor CB4856 showed significant fecundity reduction, compared 

to uninfected individuals. However, when the inoculation was initiated at the L1 

stage, the fecundity of N2 could drop drastically compared to CB4856. The L1 stage 

animals of CB4856 showed an enhanced defensive ability to control and clear N. 

parisii infection. This clearing ability of CB4856 L1 larvae helps to maintain a 

relatively normal brood size and gain a reduced mortality rate (Balla et al., 2015) 

(Figure 23C, D). Though this increased immune ability of the strain CB4856 is 

restricted to the L1 stage, it provides a selective advantage over N2 (Balla et al., 

2015). The npr-1 gene, though known to be responsible for several phenotypic 

variations in growth, physiology and response to some other pathogens between 

CB4856 and N2, does not appear to have a role here for the L1-stage specific 

enhanced resistance in CB4856 (Andersen et al., 2014; Balla et al., 2015; Nakad et al., 

2016). Again, this indicated that C. elegans may employ a distinct immune response 

to defend itself against N. parisii. 
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Figure 23. Natural variation among different C. elegans strains in the response to N. 

parisii infection. 

A. Survival curves of six C. elegans strains upon infection by N. parisii. B. Normalized 

pathogen load of each strain from (A) at 30 hpi, measured by qRT-PCR targeting an N. parisii 

SSU rRNA. C. Survival curves of uninfected animals, and infected animals inoculated at the 

L1 or L4 stage. D. Lifetime fecundity of uninfected animals, and infected animals inoculated 

at the L1 or L4 stage. Adapted from Balla et al. (2015). 

 

 

III.2. Nematocida sp. 1 
 

Nematocida sp. 1 was reported in the initial article on N. parisii (Troemel et al., 2008). Its 

SSU rDNA sequence is approximately 95% identical to the same region of N. parisii. N. sp. 1 

and N. parisii were placed together as sister species in the phylogeny of microsporidia 

(Troemel et al., 2008). The first N. sp. 1 strain (ERTm2) was found from a wild C. briggsae 

strain JU1348 collected in Kerala, India (Troemel et al., 2008). The second N. sp. 1 strain 

ERTm6 was isolated from another wild-caught C. briggsae strain JU1638 in Cape Verde 

Islands. Though both N. sp. 1 strains were found in C. briggsae, N. sp. 1 is also capable of 

infecting C. elegans (Bakowski et al., 2014c). N. sp. 1 has a similar life cycle and 

developmental stages to N. parisii (Troemel et al., 2008).   

 

III.3. Nematocida genomics 
 

Similar to other microsporidia, genomes of Nematocida species are quite small and compact. 

The N. parisii strains ERTm1 and ERTm3 share 99.8% identical genomes, that have 4.1 Mb 

in size. The N. sp. 1 strain ERTm2 has a larger genome of 4.6 Mb, with only 68.3% average 

identity to the N. parisii ERTm1 genome (Cuomo et al., 2012). The other N. sp.1 strain 

ERTm6, however, possesses a genome of about 4.28 Mb (Bakowski et al., 2014c). The 

genomes of both species are compact, with 72.8% of ERTm1 and 67.48% of ERTm6 genome 

sequences predicted to be coding, and a mean distance between coding sequences of 418 and 

579 bp, respectively (Cuomo et al., 2012; Bakowski et al., 2014c). In the N. parisii ERTm1 

genome, no introns and no untranslated regions (UTRs) were predicted in protein-coding 

genes, or unusually short UTRs (Cuomo et al., 2012).  

 

Genome sequence analyses further indicated that Nematocida may have experienced a rare or 

recent recombination event: all four Nematocida strains of N. parisii and N. sp. 1 were found 
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likely diploid and heterozygous, but in the N. sp. 1 ERTm2 genome, loss of heterozygosity 

(LOH) regions were also found (Cuomo et al., 2012; Bakowski et al., 2014c; Troemel, 2016). 

N. sp. 1 has a higher rate of heterozygosity and polymorphism than N. parisii. N. sp. 1 

ERTm2 has an average of one single nucleotide polymorphism (SNP) every 82 bases. 

However, a single large homozygous region in each of the scaffolds 1, 2 and 4 was found in 

the genome of ERTm2, which suggested that LOH has occurred in the three scaffolds. Further 

experiments showed that the LOH event did not occur in ERTm2 in the lab, as the ERTm2 

isolate serially passaged for 14 weeks showed a nearly identical pattern of polymorphism to 

the original isolate. These findings together suggested that Nematocida may have a rare 

sexual cycle or mitotic recombination events during its life history in the wild. 

 

Phylogenomic analysis with fungi showed that all microsporidia shared 882 highly conserved 

core genes, 137 of which were identified to be microsporidia-specific genes (Cuomo et al., 

2012). Nematocida are found to be quite divergent from other microsporidian species, with a 

very large Nematocida-specific gene family in both N. parisii (ERTm1 and ERTm3) and N. 

sp. 1 (ERTm2). In the genome of N. parisii ERTm1, a total of 2,661 genes were predicted, 

while the predicted number is 2,443 for N. sp. 1 ERTm6 (Cuomo et al., 2012; Bakowski et al., 

2014c). Pfam protein domain analysis showed that, similar to other microsporidia, the 

Nematocida genome encodes the nucleoside phosphate transporter (Npt) proteins and the 

nucleoside H
+
 symporter, but lost the retinoblastoma (RB) tumor suppressor gene. Two Npt 

transporters were suggested to be encoded in the Nematocida genome. The Npt transporters 

may help import host nucleotides into the pathogen. Nematocida hexokinase genes were also 

found to have a predicted secretion signal to the host cell cytoplasm, which may boost host 

synthesis of building blocks that later promote the rapid growth of Nematocida (Cuomo et al., 

2012). 
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IV. The background of my PhD thesis 
 

Hosts and parasites are tightly coupled during their life time and may coevolve 

antagonistically. Hosts evolve better remote detection and avoidance ability, while parasites 

evolve better seeking skills; hosts evolve resistance to control or clear infection, while 

parasites evolve higher virulence to proliferate on/in the host. These reciprocal interactions 

could exert strong selection pressures on both partners and thus drive antagonistic 

coevolution. Host-parasite coevolution contributes to the diversity in both hosts and parasites 

(Schulte et al. 2013; Bever et al. 2015). Meanwhile, host-parasite co-evolution and adaptation 

may also lead to specific interactions between hosts and parasites (Barrett et al. 2009; 

Antonovics et al. 2013). Patterns of specificity may be found at either the interspecific or the 

intraspecific level for either the host or the parasite. To study the specificity and the molecular 

mechanisms underlying host-parasite interaction and coevolution is crucial to understand the 

defense and infection mechanisms themselves as well as their evolutionary dynamics. 

 

C. elegans and its natural intracellular parasite Nematocida parisii provide an excellent model 

system to study host-parasite interactions and coevolution (Troemel et al., 2008; Hodgkin and 

Partridge 2008; Balla and Troemel 2013). Studies with C. elegans and N. parisii have already 

made many progresses. However, it is still unclear how widespread and diverse microsporidia 

infections are in C. elegans or other related nematodes in the wild. The discovery of the 

rotting substrates as the natural habitats of C. elegans and other related nematodes provided 

the opportunities to address more ecological questions in the wild nematode populations 

(Félix and Braendle, 2010; Kiontke et al., 2011). Among the samples of wild nematode 

isolates, the prevalence of microsporidia infection was further observed (Félix and Duveau, 

2012). 

 

When I began my PhD studies in October 2013 in the Felix Lab, there were dozens of wild 

nematode strains, including several species, that displayed the putative microsporidia 

infection. Furthermore, natural variation in the sensitivity of different wild C. elegans strains 

to the microsporidian infection was also observed preliminarily.  

 

During the process of my PhD project, I first characterized these microsporidia by their 

molecular and morphological features. Then, at the interspecific level, I studied the host-

parasite specificity between different nematodes and microsporidia; at the intraspecific level, I 
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investigated the variation in sensitivity of different wild C. elegans to the same microsporidia 

infection, with the further goal of determining the loci involved in C. elegans host sensitivity 

variation. Overall, my PhD project focused on the host-pathogen interactions of C. elegans 

and other nematodes with microsporidia. 
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I. A large collection of novel nematode-infecting 

microsporidia and their diverse interactions with 

Caenorhabditis elegans and other related nematodes 
 

 

In the Felix Lab collection of wild nematodes, 47 strains of ten species, mainly including 

Caenorhabditis and Oscheius species, were noted to display putative microsporidia infections. 

In preliminary observations using Nomarski microscopy, spores and meronts were all found 

in the intestinal cells of these putative infected nematode strains, except for one C. brenneri 

strain where spores were mainly located in the epidermis. We studied these natural infections 

in the wild nematode isolates. Here, we describe our discoveries of novel microsporidia 

species and genera infecting wild nematode isolates. In all cases, infections were found to be 

horizontally transmitted. We also determined their host specificities. I summarize below the 

main findings, followed by the article that was recently published in PLOS Pathogens. 

 

To characterize these putative microsporidian infections in the nematodes, we first amplified 

and sequenced two genes (SSU rDNA and β-tubulin genes). Phylogenetic trees were 

constructed using these sequences and published sequences from species belonging to the 

microsporidia phylum. In addition to Nematocida parisii and Nematocida ausubeli (formerly 

called N. sp. 1), we have found six new Nematocida species. Furthermore, we have 

discovered two new genera, named Enteropsectra and Pancytospora. 

 

The morphology (spore sizes, spore shapes, spore distribution in the host cells) of all the new 

microsporidia species were examined by Nomarski microscopy. The similarities and 

differences in the morphological features matched their groupings according to the 

phylogenetic analysis. Using transmission electron microscopy (TEM), we discovered that N. 

ausubeli and E. longa use different mechanisms for the exit of the spores out of their host 

intestinal cells.  

 

Since each microsporidia species was isolated from a limited number of host species, we 

further investigated the host specificity of different microsporidia. Cross-inoculation tests 

were performed using eight microsporidia species and four nematode species. The host range 

differs depending on the microsporidia species. For example, Nematocida homosporus could 



 72 

infect the two Caenorhabditis species and the two Oscheius species. However, Enteropsectra 

longa only infected Oscheius sp. 3. The host specificity of different microsporidia further 

revealed the diverse interactions between microsporidia and nematodes. Inter- and 

intraspecific host specificity exists among different nematode-infecting microsporidia. 

 

Among the different nematode species, C. elegans has been the best studied. 19 C. elegans 

wild strains were naturally infected with N. parisii or N. ausubeli. C. elegans was also found 

susceptible to N. major, N. homosporus and P. epiphaga in the infection tests. We further 

used two C. elegans strains carrying transgenic reporter genes upregulated upon N. parisii 

infection, to compare the host response to the infections by five microsporidia species. 

Interestingly, the results suggested that C. elegans may have a different transcriptional 

response to the infection by N. ausubeli than to the infections by the other tested Nematocida 

species.  

 

Overall, our study considerably enriched the knowledge on nematode-infecting microsporidia 

and their diverse interactions. We found novel microsporidia species and genera in wild 

nematode isolates. These nematode-infecting microsporidia display different host 

specificities. As C. elegans has proven to be a successful model organism, and microsporidia 

are obligate intracellular pathogens of C. elegans and other nematodes, different 

microsporidia and nematodes provide an ideal system to study host-pathogen interactions. 

Our study enlarged the available resources and provided a wide variety of natural nematode-

microsporidia host-pathogen pairs. 

 

 

 

My contributions in this study: 

I contributed the majority of assays in this study, except the TEM part (Figure 5, 8; 

Supplemental Figure 1, 6), for which we collaborated with Martin Sachse
 
and Marie-Christine 

Prevost from Pasteur Institute in Paris, and I contributed to the fixations and observations. 

The assays with transgenic C. elegans strains (Figure 9) were performed with Robert J. 

Luallen and Emily R. Troemel from University of California at San Diego. 
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Abstract

Microsporidia are fungi-related intracellular pathogens that may infect virtually all animals,

but are poorly understood. The nematode Caenorhabditis elegans has recently become a

model host for studying microsporidia through the identification of its natural microsporidian

pathogen Nematocida parisii. However, it was unclear how widespread and diverse micro-

sporidia infections are in C. elegans or other related nematodes in the wild. Here we

describe the isolation and culture of 47 nematodes with microsporidian infections. N. parisii

is found to be the most common microsporidia infecting C. elegans in the wild. In addition,

we further describe and name six new species in the Nematocida genus. Our sampling

and phylogenetic analysis further identify two subclades that are genetically distinct from

Nematocida, and we name them Enteropsectra and Pancytospora. Interestingly, unlike

Nematocida, these two genera belong to the main clade of microsporidia that includes

human pathogens. All of these microsporidia are horizontally transmitted and most specifi-

cally infect intestinal cells, except Pancytospora epiphaga that replicates mostly in the epi-

dermis of its Caenorhabditis host. At the subcellular level in the infected host cell, spores of

the novel genus Enteropsectra show a characteristic apical distribution and exit via budding

off of the plasma membrane, instead of exiting via exocytosis as spores of Nematocida.

Host specificity is broad for somemicrosporidia, narrow for others: indeed, somemicrospori-

dia can infectOscheius tipulae but not its sister speciesOscheius sp. 3, and conversely

some microsporidia found infectingOscheius sp. 3 do not infectO. tipulae. We also show

that N. ausubeli fails to strongly induce in C. elegans the transcription of genes that are

induced by other Nematocida species, suggesting it has evolved mechanisms to prevent

induction of this host response. Altogether, these newly isolated species illustrate the diver-

sity and ubiquity of microsporidian infections in nematodes, and provide a rich resource to

investigate host-parasite coevolution in tractable nematode hosts.
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Author Summary

Microsporidia are microbial parasites that live inside their host cells and can cause disease

in humans and many other animals. The small nematode worm Caenorhabditis elegans

has recently become a convenient model host for studying microsporidian infections. In

this work, we sample Caenorhabditis and other small nematodes and 47 associated micro-

sporidian strains from the wild. We characterize the parasites for their position in the evo-

lutionary tree of microsporidia and for their lifecycle and morphology. We find several

new species and genera, especially some that are distantly related to the previously known

Nematocida parisii and instead closely related to human pathogens. We find that some of

these species have a narrow host range. We studied two species in detail using electron

microscopy and uncover a new likely mode of exit from the host cell, by budding off the

host cell plasma membrane rather than by fusion of a vesicle to the plasma membrane as

in N. parisii. We also find a new species that infects the epidermis and muscles of Caenor-

habditis rather than the host intestinal cells and is closely related to human pathogens.

Finally, we find that one Nematocida species fails to elicit the same host response that

other Nematocida species do. These new microsporidia open up many windows into

microsporidia biology and opportunities to investigate host-parasite coevolution in the C.

elegans system.

Introduction

Microsporidia are fungi-related obligate intracellular pathogens, with over 1400 described spe-

cies [1,2]. Interest in these organisms started 150 years ago when researchers, especially Louis

Pasteur, studied silkworm disease that was caused by a microsporidian species later named

Nosema bombycis [3]. In the past decades, microsporidia have attracted more attention when

they were revealed to be a cause of diarrhea in immunocompromised patients and were further

demonstrated to have a high prevalence in some areas in immunocompetent patients and

healthy individuals [4–6].

Microsporidia are transmitted between hosts through a spore stage. Inside the micro-

sporidian spore is found a characteristic structure called the polar tube, which at the time of

infection can pierce through host cell membranes and introduce the sporoplasm (the spore

cytoplasm and nucleus) into host cells [1,7]. These obligate intracellular pathogens are known

to infect a wide range of hosts among protists and animals, especially insects, fish and mam-

mals [1]. Even though nematodes constitute a huge phylum with over 25,000 described species,

very few studies on microsporidian infections in nematodes have been reported so far [1].

The free-living nematode Caenorhabditis elegans has been used as a major biological model

species over the last 50 years [8]. However, until the past decade, little was known about its

biology and ecology in its natural environment and no natural pathogens were isolated until C.

elegans could be readily isolated from natural environments. C. elegans is now known to be

found in compost heaps, rotting fruits (apples, figs, etc.) and herbaceous stems, as well as with

diverse carrier invertebrates (snails, isopods, etc.) [9–11]. C. elegans coexists with a variety of

prokaryotic and eukaryotic microbes, including both its food and pathogens, which likely have

a large impact on its physiology and evolution [12–15].

With an improved understanding of the natural history of Caenorhabditis [16,17], dramati-

cally increased number of various wild rhabditid nematode strains and species have been iso-

lated and identified. C. elegans’ close relatives such as Caenorhabditis briggsae or Caenorhabditis
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remanei are isolated from similar environments [18]. Oscheius tipulae, a very common bacterio-

vorous nematode species, also in family Rhabditidae, can be readily isolated from soil and rot-

ting vegetal matter [10,19,20], as well as its closest known relative Oscheius sp. 3, with which it

cannot interbreed [21]. Interest in these rhabditid nematodes concerns not only the evolution

of genomic and phenotypic characters, but also their inter- and intraspecific interactions and

co-evolution with other organisms, especially with various microbes in their natural habitats.

While nematodes feed on bacteria and small eukaryotes, some microbes take nematodes as

their food source [13,14,16]. Among them, microsporidia are obligate intracellular parasites

and thus are in particularly tight association with their hosts.

The microsporidian Nematocida parisii was the first found natural intracellular pathogen of

C. elegans, which we isolated from a wild C. elegans sampled near Paris, France [22]. Nemato-

cida sp. 1 (described here as Nematocida ausubeli) was further isolated from a wild Caenorhab-

ditis briggsae strain in India [22]. A microsporidian species isolated in C. elegans was found to

infect the epidermis and muscles and was named Nematocida displodere [23]. Two microspori-

dia infecting marine nematodes have also been described, namely Sporanauta perivermis [24]

and Nematocenator marisprofundi [25,26]. However, the extent and diversity of microsporidia

infections in nematodes remained sparsely described.

Here we describe a collection of 47 terrestrial nematode strains that we isolated from the

wild with a microsporidian infection. The microsporidia can be grown in the laboratory in

their host using C. elegans culture conditions and stored frozen with their nematode host.

They are all transmitted horizontally. In this set, we found that N. parisii and N. ausubeli (for-

merly called N. sp. 1) are in association with further host species and display a wider geograph-

ical distribution than so far reported [22]. N. parisii is the most common C. elegans-infecting

species we found in the wild. We further discovered new nematode-infecting microsporidian

species. From our phylogenetic analysis using small subunit (SSU) ribosomal DNA and β-
tubulin sequences, five new microsporidia species were placed in the Nematocida genus, while

the others defined two new genera in the microsporidian clade often designated as Clade IV,

which includes human pathogenic microsporidia such as Enterocytozoon bieneusi and Vitta-

forma corneae. The similarities and differences in the morphological features of these micro-

sporidia matched their groupings by sequence similarity. We therefore describe two new

microsporidian genera, Enteropsectra and Pancytospora. and nine new species in these two

genera and Nematocida. We further examined Nematocida ausubeli and Enteropsectra longa by

electron microscopy, which allowed us to observe different mechanisms for their exit from

host intestinal cells, through a vesicular pathway for N. ausubeli (as described for N. parisii;

[27]), but surprisingly through membrane budding for E. longa. Concerning specificity of

infection, we find cases of tight specificity between host and pathogen. We also find that N.

ausubeli fails to strongly induce the transcription of genes that are induced in C. elegans by N.

parisii infection. Overall, our study points to strong and diverse interactions between wild

rhabditid nematodes and microsporidia, and provides a platform for further study of these

infections.

Results

A large collection of microsporidian-infected nematode cultures

Our worldwide sampling of bacteriovorous nematodes was primarily aimed at isolating Cae-

norhabditis species and, to a lesser degree, Oscheius species. From this sampling, we identified

a subset of strains with a pale body color (Fig 1A), some of which, upon morphological exami-

nation using Nomarski microscopy [22], appeared infected with microsporidia. In total, we

collected 47 nematode strains (S1 Table) displaying putative microsporidian infections,
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comprising 10 nematode species from different parts of the world (Tables 1 and 2; Fig 1B).

The microsporidia strain JUm2807 was isolated during these sampling efforts and described

elsewhere as Nematocida displodere, and is not considered here [23].

The unidentified microsporidian strains were characterized by sequencing of PCR frag-

ments of the SSU rDNA and β-tubulin genes. We were able to amplify 45 SSU rDNA

sequences (most 1390 bp long) and 32 β-tubulin sequences (most 1210 bp long) (S1 Table).

Fig 1. Isolation of nematode-infectingmicrosporidia. A. Morphological screen for infected worms (hereC. elegans JU2816). Compared
to uninfected worms, infected adult worms have a paler body color. Note that the pale body color may result frommany environmental
conditions, and thus these animals were further screened by Nomarski optics for microsporidian infections. Scale bar: 0.2 mm. B.
Geographic distribution of our collection of nematode-infecting microsporidia. Sampling locations are represented by differently colored
symbols based on microsporidian species. Black symbols were used when different microsporidian species were found in the same
location. The world map is cited from http://www.d-maps.com/carte.php?num_car=3267&lang=en. The Francemap is cited from http://
www.d-maps.com/carte.php?num_car=2813&lang=en.

doi:10.1371/journal.ppat.1006093.g001
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We first blasted the sequences in GenBank for initial grouping, then built phylogenetic trees

and calculated interspecific genetic distances, based on our sequences and the sequences of

related species from GenBank. We present below the grouping and phylogenetic distribution

of new microsporidia strains, starting with those closest to N. parisii.

N. parisii andN. ausubeli are commonly found in Caenorhabditis
nematodes

Molecular sequences of microsporidia in ten wild C. elegans strains and four C. briggsae strains

showed! 99% SSU rDNA and! 97% β-tubulin sequence identities to N. parisii sequences in

Table 1. Collection of wild nematode-infectingmicrosporidia strains

A. Nematocida parisii infection

Host Strain Country / Year Sample composition Spore feature

Caenorhabditis elegans ERTm1a France / 2004 compost 2S c

ERTm3 a France / 2007 rotting apple 2S c

JUm1248 a b France / 2007 rotting apple n. d.

JUm1249 b France / 2007 rotting apple 2S

JUm1253 b France / 2007 rotting apple n. d.

ERTm4 a France / 2008 compost 2Sc

JUm1762 b France / 2009 rotting stem 2S

JUm1893 b France / 2009 rotting apple 2S

JUm2106 France / 2011 compost 2S

JUm2131 France / 2011 rotting stem 2S

JUm2132 France / 2011 rotting stem 2S

JUm2287 France / 2013 compost 2S

JUm2816 France / 2014 compost n. d.

Caenorhabditis briggsae JUm1254 France / 2007 rotting apple 2S

ERTm5 a,d Hawaii / 2011 rotting fruit 2S

JUm2590 France / 2013 rotting apple 2S

JUm2793 France / 2014 compost n. d.

B. Nematocida ausubeli (N. sp. 1) infection

Host Strain Country / Year Sample composition Spore feature

Caenorhabditis elegans JUm2009 France / 2010 rotting apples 2S

JUm2520 Portugal / 2013 rotting fruit 2S

JUm2526 Portugal / 2013 rotting fruit 2S

JUm2586 France / 2013 rotting pear 2S

JUm2671 France / 2011 rotting apple 2S

JUm2825 France / 2014 rotting stem 2S

Caenorhabditis briggsae ERTm2 a India / 2007 rotting mix 2S c

ERTm6 a Cape Verde / 2009 soil 2S

JUm2799 Germany / 2014 rotting fruits 2S

Caenorhabditis remanei JUm2796 Germany / 2014 rotting stems n. d.

The reference strain of each newly found species is in bold. 2S: two distinct sizes of spores; n. d.: not determined.

a Strains and names published previously

b 18S sequences courtesy of Aurore Dubuffet and Hinrich Schulenburg

c Morphological feature described in [22]

d Note that a recent article describes a new species for this strain based on genome divergence [28].

doi:10.1371/journal.ppat.1006093.t001
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GenBank. In the global phylogenetic analysis of microsporidia, these 14 sequences form a group

with previously reported sequences ofN. parisii strains ERTm1, ERTm3 and ERTm5 [26] (Fig

2). TheN. parisii isolates were all found in Europe (note however that the sampling is highly

biased towards Europe, especially France), with the exception of the previously reported ERTm5

(JUm2055), isolated from a C. briggsae strain sampled in Hawaii (Fig 1B; Table 1A) [29]. Note

that a recent article assigns this strain to a new species based on genome divergence [28].

Eight other microsporidian strains showed! 99% SSU rDNA and! 95% β-tubulin
sequence identities to the corresponding genes of the unnamed Nematocida sp. 1 in GenBank

(Table 1B), previously reported in C. briggsae [22,30]. This N. sp. 1 group is most closely

related to N. parisii in the microsporidian phylogeny and the sequences of both SSU and β-
tubulin genes gave the same grouping (Figs 2 and 3; S2 Fig; Table 3). Because of these new

samples of N. sp. 1 and their phylogenetic difference and genetic distance to the N. parisii

group, here we describe N. sp. 1 as Nematocida ausubeli n. sp. (see Taxonomy section after the

Discussion). Whereas N. ausubeli was so far only reported from C. briggsae (India, Cape Verde

[30]), we also found it in C. elegans and C. remanei, in France, Portugal and Germany

(Table 1B; Fig 1B), thus broadening its geographic and host range to several species of the Ele-

gans group of Caenorhabditis from Europe.

The remaining 20 microsporidia strains that we identified are distributed among several

other species, including some species in another clade (see below). Thus the dominant

Table 2. Collection of other microsporidia species infecting wild nematodes

Microsporidia Nematode host Strain Country / Year Sample composition Spore feature

Nematocida C. briggsae JUm2507 Thailand / 2013 rotting fruit 2S

major n. sp. C. briggsae JUm2747 Guadeloupe / 2014 rotting fruit 2S

C. tropicalis JUm2751 Guadeloupe / 2014 rotting fruit n. d.

Nematocida Oscheius tipulae JUm1510 Czech Republic / 2008 rotting apple 2S

minor n. sp. O. tipulae JUm2772 Armenia / 2014 rotting fruit n. d.

Nematocida O. tipulae JUm1504 France / 2008 rotting stem 1S

homosporus n. sp. Rhabditella typhae NICm516 Portugal / 2013 rotting apple 1S

Nematocida Procephalobus sp. JUm2895 Spain / 2015 rotting fruit 1S

ciargi n. sp.

Nematocida C. sp. 42 NICm1041 French Guiana / 2014 flower n. d.

sp. 7

Enteropsectra Oscheius sp. 3 JUm408 Iceland / 2002 compost 1S, LT, AP

longa n. sp.

Enteropsectra O. tipulae JUm2551 France / 2013 rotting apple 1S, SR, AP

breve n. sp. O. tipulae JUm1483 France / 2008 rotting plum 1S, SR,AP

O. tipulae JUm1456 France / 2008 rotting fruit n. d.

Pancytospora O. tipulae JUm1505 France / 2008 rotting apple LT

philotis n. sp. O. tipulae JUm1460 France / 2008 rotting snail LT

O. tipulae JUm1670 France / 2009 rotting apple LT

O. tipulae JUm2552 France / 2013 rotting stem LT

Pancytospora C. brenneri JUm1396 Colombia / 2008 rotting fruit LT

epiphaga n. sp.

The reference strain of each newly found species is in bold. 2S: two distinct sizes of spores; 1S: one size of spores

LT: long, thin rod; SR: small rod (see dimensions in Table 3); AP: form spores first along the apical side of the

intestinal cells. n. d.: not determined

doi:10.1371/journal.ppat.1006093.t002
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microsporidia species in our collection of Caenorhabditis and other nematodes areNematocida

parisii and Nematocida ausubeli n. sp., with 17 and 10 strains, respectively. They were found in

several species of the Elegans group of Caenorhabditis nematodes.

Diversity of Nematocida species

Of the remaining 19 microsporidian strains, nine had a Nematocida species as their top blast

hit in GenBank, with similarity between 81% ~ 86% of SSU rDNA and 74% ~ 84% of β-tubulin
genes. In terms of host and geographical ranges, these microsporidia were found in two C.

briggsae strains (Thailand and Guadeloupe), one C. tropicalis strain (Guadeloupe), one C.

sp. 42 strain (NIC1041 from French Guiana), three Oscheius tipulae strains (France, Czech

Republic, and Armenia), one Rhabditella typhae strain (Portugal) and one Procephalobus sp.

strain (JU2895 from Spain). In the phylogenetic analysis of SSU rDNA, the corresponding

sequences formed a single clade with N. parisii and N. ausubeli, with Ovavesicula popilliae as

sister group within Clade II of the microsporidian phylum (see Fig 2) [34]. In addition, the

JUm2807 strain that has been recently described as Nematocida displodere [23] is distinct from

all of them.

From phylogenetic analysis and genetic distance of SSU rDNA genes, these Nematocida

strains form four groups. These putative new Nematocida species have a mean genetic distance

among them of at least 0.06 (Table 3), while their intra-specific genetic distances are all 0.00

(when several strains were isolated). This inter-group distance is also greater than the distance

between N. parisii and N. ausubeli. Hence we describe them below as four new species: Nema-

tocida minor, Nematocida major, Nematocida homosporus and Nematocida ciargi n. spp. (see

Taxonomy section).

In terms of the phylogenetic relationships within the Nematocida genus in the SSU rDNA

tree, the first outgroup clade to N. parisii + N. ausubeli was formed by JUm2751, JUm2747 and

JUm2751, corresponding to N.major (Fig 2). The second branch out was formed by JUm1510

and JUm2772, described here as N.minor. N. ciargi JUm2895 was placed in a basal position to

the clade formed by N. parisii, N. ausubeli, N.major and N.minor (Fig 2). At the base of the

Nematocida genus, the most externally branching sequences appeared to be those of N. displo-

dere JUm2807, and of N. homosporus JUm1504 and NICm516. All topologies were highly sup-

ported, except for the node defining the latter clade of N. homosporus and N. displodere (Fig 2).

In the phylogenetic tree based on both genes (SSU rDNA and β-tubulin), N. ciargi was placed
at the base of Nematocida genus, while N. displodere and N. homosporus still formed one clade

(Fig 3). The phylogenetic tree only based on β-tubulin sequences supported the grouping

of strains and overall their relative positions (S2 Fig), except that the relative placement of

N. displodere and N. ciargi was exchanged. The β-tubulin phylogeny has one more branch

formed by NICm1041, numbered provisionally N. sp. 7, for which we failed to amplify the

SSU rDNA fragment. Whole-genome analysis could be performed in the future to refine these

placements.

The Nematocida consensus phylogeny is shown in Fig 3 next to the phylogenetic relation-

ships of the nematode hosts in which they were naturally found (see below for further specific-

ity tests). Although the numbers of samples and species are too low for rigorous testing, the

Fig 2. Bayesian inference SSU rDNA phylogeny of microsporidia species. SSU rDNA sequences from 45 nematode-infecting
microsporidia species and 60 other microsporidia species in the databases were used. The tree was generated using MrBayes v3.2.2
and refined by FigTree v1.4.2. Model Kimura 2-Parameter (K2P) was applied. Branch colors show the posterior probability, with the
corresponding color code shown on the left. The light green boxes designate microsporidia infecting terrestrial nematodes and light-
blue rectangles designate those infecting marine nematodes. Scale bar indicates expected changes per site. Branches of species with
more than one strain were compressed.

doi:10.1371/journal.ppat.1006093.g002
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Fig 3. Bayesian inference phylogeny of concatenated SSU rDNA and β–tubulin sequences of 22 microsporidia species, and
comparisonwith the nematode host phylogeny. Bayesian inference phylogeny (left) based on 49 sequences concatenated from SSU
rDNA and β–tubulin genes of 22 microsporidia species. Model General time reversible (GTR) was applied. The branches were colored and
annotated as in Fig 2. On the right is a diagram (generated based on phylogenies from [18,21,31–33]) showing the relative position of
nematode species found with microsporidia infections. Nematode-infecting microsporidia pathogens and their hosts were colored based
on host genus. Correspondent positions of nematode-infecting microsporidia and nematodes on their phylogenies indicate a possible
coevolution of nematodes and their natural pathogenic microsporidia.

doi:10.1371/journal.ppat.1006093.g003
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Table 3. Molecular distances of microsporidia SSU rDNA.

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 Nematocida
parisii (17)a

0.000 0.007 0.024 0.026 0.029 0.025 0.025 0.044 0.058 0.055 0.056 0.052 0.051 0.061 0.053 0.059 0.053 0.053 0.050 0.066 0.068

2 N. ausubeli n.
sp. (10)a

0.017 0.000 0.026 0.026 0.029 0.026 0.027 0.042 0.057 0.054 0.055 0.052 0.050 0.060 0.053 0.059 0.052 0.052 0.049 0.064 0.067

3 N.major n. sp.
(3)a

0.138 0.154 0.000 0.022 0.026 0.025 0.023 0.044 0.061 0.064 0.062 0.057 0.058 0.068 0.055 0.060 0.049 0.055 0.049 0.063 0.057

4 N.minor n. sp.
(2)a

0.163 0.169 0.121 0.000 0.022 0.017 0.018 0.038 0.062 0.060 0.060 0.053 0.058 0.062 0.055 0.060 0.051 0.048 0.047 0.059 0.059

5 N. homosporus
n. sp. (2)a

0.182 0.188 0.154 0.122 0.000 0.011 0.014 0.034 0.057 0.055 0.055 0.054 0.052 0.061 0.049 0.056 0.051 0.049 0.041 0.055 0.058

6 N. displodere
(1)a

0.151 0.165 0.142 0.082 0.043 / 0.010 0.033 0.057 0.055 0.055 0.054 0.052 0.062 0.049 0.053 0.048 0.046 0.040 0.051 0.053

7 N. ciargi n. sp.
(1)a

0.151 0.165 0.130 0.096 0.062 0.034 / 0.031 0.052 0.051 0.051 0.050 0.048 0.059 0.046 0.052 0.045 0.041 0.038 0.048 0.049

8 CLADE_II (5)c 0.345 0.335 0.326 0.289 0.249 0.236 0.222 0.122 0.040 0.039 0.039 0.039 0.035 0.045 0.035 0.040 0.038 0.039 0.031 0.037 0.065

9 Enteropsectra
longa n. sp. (1)a

0.435 0.436 0.447 0.455 0.413 0.417 0.384 0.318 / 0.004 0.002 0.017 0.020 0.023 0.021 0.036 0.045 0.049 0.049 0.054 0.076

10 Enteropsectra
breve n. sp. (1)a

0.420 0.421 0.463 0.439 0.398 0.403 0.370 0.311 0.005 / 0.002 0.016 0.019 0.022 0.021 0.037 0.046 0.048 0.049 0.056 0.077

11 Enteropsectra
species (2)

0.424 0.424 0.451 0.443 0.402 0.406 0.374 0.312 0.004 0.004 0.008 0.017 0.019 0.023 0.021 0.036 0.045 0.048 0.049 0.054 0.076

12 Orthosomella
operophterae
(1)a

0.392 0.393 0.423 0.395 0.389 0.394 0.362 0.307 0.091 0.084 0.089 / 0.017 0.022 0.023 0.035 0.047 0.046 0.048 0.058 0.084

13 Pancytospora
philotis n. sp.
(4)a

0.384 0.378 0.418 0.427 0.374 0.378 0.346 0.269 0.115 0.108 0.113 0.091 0.005 0.021 0.020 0.048 0.052 0.048 0.054 0.070 0.098

14 Pancytospora
epiphaga n. sp.
(1)a

0.460 0.452 0.490 0.451 0.450 0.455 0.429 0.352 0.141 0.133 0.139 0.124 0.112 / 0.023 0.049 0.056 0.056 0.061 0.068 0.110

15 Liebermannia
spp. (3)b

0.405 0.406 0.404 0.406 0.351 0.353 0.329 0.284 0.118 0.118 0.120 0.133 0.123 0.152 0.011 0.037 0.042 0.047 0.051 0.056 0.080

16 CLADE_IV (19)c 0.510 0.512 0.511 0.512 0.480 0.464 0.455 0.383 0.330 0.331 0.329 0.324 0.405 0.423 0.332 0.280 0.039 0.049 0.038 0.039 0.060

17 CLADE_III (12)c 0.443 0.443 0.413 0.428 0.428 0.409 0.387 0.355 0.384 0.395 0.389 0.398 0.430 0.465 0.371 0.409 0.223 0.038 0.037 0.040 0.061

18 CLADE_I (14)c 0.462 0.456 0.459 0.420 0.417 0.396 0.353 0.347 0.404 0.396 0.400 0.389 0.400 0.462 0.404 0.474 0.371 0.169 0.039 0.043 0.068

19 CLADE_? (3)c 0.417 0.411 0.400 0.394 0.352 0.337 0.319 0.272 0.414 0.420 0.416 0.402 0.446 0.483 0.432 0.392 0.371 0.358 0.255 0.028 0.053

20 CLADE_V (3)c 0.477 0.471 0.449 0.447 0.403 0.380 0.361 0.310 0.419 0.434 0.423 0.441 0.502 0.513 0.433 0.380 0.373 0.385 0.260 0.127 0.039

21 Rozella spp. (2)b 0.482 0.478 0.408 0.417 0.410 0.362 0.346 0.473 0.543 0.548 0.541 0.598 0.658 0.712 0.587 0.525 0.528 0.561 0.433 0.322 0.042

The lower left part shows the mean genetic distances between groups and the upper right part is the standard error (SE), with Kimura 2-Parameter model+G, 1000 bootstraps. Mean

intra-species, intra-genus or intra-clade divergences are shown in the diagonal if available, with the number of sequences indicated in the parentheses after the name of each group

(a: species; b: genus; c: larger clade). For a detailed table with all strains, see S3 Table.

doi:10.1371/journal.ppat.1006093.t003
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data are at least consistent with the intestinal microsporidia species branching through contin-

uous co-evolution with their nematode host. For example, all intestinal Nematocida species

found in Caenorhabditis species form one clade, with a first outgroup including Oscheius and

Rhabditella pathogens and a distant outgroup infecting the distant outgroup Procephalobus

(Fig 3). The exception is N. displodere that was found a single time, in C. elegans, and corre-

sponds to a change in tissue tropism.

Lifecycle of new Nematocida species

As with previously isolated Nematocida, the newly identified microsporidia appeared to be

transmitted horizontally, because a bleaching treatment [35] of infected gravid adults elimi-

nated the infection in the culture and reinfection could be obtained by exposure to spores in

the environment. All Nematocida microsporidia stages described here were found exclusively

in the intestinal cells and were not detected in the germ line.

As previously described for N. parisii [22], two main stages could be distinguished by

Nomarski optics. First, the meront stage appeared as areas of infected intestinal cells devoid of

storage granules. These areas were first small circular regions, then extending to longer

grooves. Second, rod-shaped sporoblasts and spores appeared in the intestinal cell cytoplasm.

In host cells that were heavily infected with N. parisii and some other species, groups of spores

inside vesicles could be seen [22], possibly derived from spore re-endocytosis [36]. In this

study, as described before [22], all N. parisii and N. ausubeli infections displayed two distinct

classes of spore size (Table 1; Fig 4A and 4B; S3A Fig).

N.major and N.minor also displayed two spore size classes. N.major formed slightly longer

but thinner spores than N. parisii. N.minor showed however much smaller spores, for each

class taken separately (Tables 2 and 4; Fig 4C and 4D). In contrast, N. homosporus and N. ciargi

only have a single class of spore size, with N. homosporus spores having an intermediate

size (2.00 ± 0.22 μm long, 0.72 ± 0.12 μmwide) and N. ciargi spores having a smaller size

(1.39 ± 0.20 μm long, 0.59 ± 0.13 μmwide). Spore vesicles were observed more frequently with

N. homosporus or N. ciargi infections than with other Nematocida infections (Fig 4E and 4F).

N. ausubeli being the most commonly found parasite of C. elegans besides N. parisii, we fur-

ther chose to study its lifecycle by electron microscopy. The ultrastructure by electron micros-

copy and the deduced lifecycle of N. ausubeli overall resembled those of N. parisii, with

possible differences outlined below. High-pressure freezing/freezesubstitution allowed better

to visualize lipid membranes compared to room temperature preparation methods. We

observed meronts, which are separated from the host cell by a single membrane bilayer, likely

pathogen-derived (Fig 5A and 5B; S1A and S1B Fig). Their cytoplasm appeared packed with

ribosomes. Some meronts displayed an elongated shape and contained several nuclei (Fig 5B

and 5L). The membrane enclosing the meronts appeared to darken progressively and intracel-

lular membrane compartments developed, likely corresponding to the progressive transition

to a sporont stage (Fig 5C). We further observed sporogony, whereby individual sporoblasts

with a single nucleus are formed, each surrounded by a membrane (Fig 5D and 5E; S1A and

S1D Fig). We did not observe any nuclear division at this stage (unlike in Enteropsectra longa,

where they were easily found; see below). We observed progressive stages of sporogenesis,

including formation of the anchoring disk, polaroplast membranes, polar tube, posterior vacu-

ole and spore coat (Fig 5E–5G; S1C, S1D, S1F and S1G Fig).

In the final stages of sporogenesis and in mature spores that corresponded to the small size

class observed in light microscopy, two polar tube coil cross-sections could usually be observed

(Fig 5H and 5J; S1L Fig). A single large spore could be found, which displayed three polar tube

coil sections on either side of the spore (six sections in total; Fig 5K). Thus, the tube coiled
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several times in large spores, instead of once in the small spores. In N. parisii, five polar tube

sections were reported on one side of the large spores [22]; it is thus possible that large spores

of N. ausubeli harbor fewer polar tube coils than those of N. parisii (because a single large

spore was found in each species, it is however difficult to conclude). The anchoring disk

defines the anterior pole of the spore. Below the anchoring disk, the polar tube is lined on

either side by polaroplast membranes (visible in Fig 5F and 5G). A polar tube cross-section

with several layers could be seen in Fig 5J and the posterior turn of the polar tube in S1I Fig.

Fig 4. Sporemorphology of the differentNematocida species by Nomarski optics. A.WildCaenorhabditis
elegans strain JU1249, withNematocida parisii infection.B.WildC. elegans strain JU2520, withNematocida ausubeli
infection.C.WildC. briggsae stain JU2747, with N.major infection.D.WildOscheius tipulae strain JU1510, withN.
minor infection.A ~D, large and small spore classes are indicated by larger and smaller arrows, respectively. Spores
in each class are smaller than those in A-C in the corresponding class. E.WildRhabditella typhae strain NIC516, with
N. homosporus infection. A single class of spore size is observed, often clustered inside vesicles as indicated with
arrows. F.Wild Procephalobus sp. strain JU2895, withN. ciargi infection. A single class of spore size is observed, often
clustered inside vesicles as indicated with arrows. Scale bar: 10 μm.

doi:10.1371/journal.ppat.1006093.g004

Table 4. Spore sizes of each nematode-infectingmicrosporidia species, as determined by Nomarski
optics.

Nematode-infecting Spore sizes (μm)

Microsporidia Length Width

Nematocida parisiia 3.17 ± 0.22 1.31 ± 0.15
2.18 ± 0.15 0.80 ± 0.08

Nematocida displodereb 2.38 ± 0.26 1.03 ± 0.18
Nematocida ausubeli JUm2009d 2.80 ± 0.29 (2.21 ~ 3.26)c 0.96 ± 0.14 (0.72 ~ 1.30)

2.04 ± 0.32 (1.36 ~ 2.92) 0.53 ± 0.10 (0.28 ~ 0.80)

Nematocida major JUm2507 3.44 ± 0.23 (3.04 ~ 3.79) 1.20 ± 0.21 (0.90 ~ 1.53)

2.35 ± 0.23 (2.02 ~ 2.66) 0.57 ± 0.14 (0.41 ~ 0.77)

Nematocida major JUm2747 3.29 ± 0.25 (2.87 ~ 3.69) 1.20 ± 0.23 (0.79 ~ 1.60)

2.21 ± 0.26 (1.85 ~ 2.60) 0.53 ± 0.06 (0.44 ~ 0.63)

Nematocida minor JUm1510 1.93 ± 0.18 (1.54 ~ 2.23) 0.83 ± 0.13 (0.51 ~ 1.09)

1.31 ± 0.17 (1.09 ~ 1.73) 0.55 ± 0.12 (0.35 ~ 0.73)

Nematocida homosporus JUm1504 2.07 ± 0.30 (1.69 ~ 2.50) 0.77 ± 0.12 (0.56 ~ 0.94)

Nematocida homosporus NICm516 1.95 ± 0.14 (1.67 ~ 2.16) 0.69 ± 0.11 (0.56 ~ 0.91)

Nematocida ciargi JUm2895 1.39 ± 0.20 (1.54 ~ 2.24) 0.59 ± 0.13 (0.41 ~ 0.84)

Enteropsectra longa JUm408 3.76 ± 0.38 (3.15 ~ 4.99) 0.49 ± 0.06 (0.35 ~ 0.68)

Enteropsectra breve JUm2551 1.81 ± 0.22 (1.34 ~ 2.14) 0.66 ± 0.12 (0.42 ~ 0.90)

Pancytospora philotis JUm1505 3.46 ± 0.48 (2.42 ~ 4.65) 0.42 ± 0.06 (0.25 ~ 0.52)

Pancytospora epiphaga JUm1396 3.71 ± 0.31 (2.99 ~ 4.22) 0.80 ± 0.09 (0.56 ~ 0.92)

a [22]
b [23]
c Values of length and width of each microsporidia spore are given with the average ± SD, followed with

range of values in the parentheses.
d Note some overlap in the measurements between the two classes of spore size for this species. The two

classes of spore size are spatially segregated in all of the Nematocida species displaying two classes (see

Fig 4A–4D, S3A Fig). When measuring spore size, we first assigned each to a group of large or small

spores. In N. ausubeli, the measurements overlap between spores of the two classes, reflecting either our

misassignment of the spore to a class, measurement error (spores in an oblique position, which we tried to

avoid) or true overlap.

doi:10.1371/journal.ppat.1006093.t004

Diversity and Specificity of Nematode-Infecting Microsporidia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006093 December 12, 2016 13 / 41



Fig 5. Ultrastructural observations ofNematocida ausubeli. Transmission electron micrographs ofN. ausubeli strain JUm2009 after
high-pressure freezing/freeze substitution.A. N. ausubelimeront with two nuclei.B. Amultinucleated meront.C. Late stage meront.D.
Formation of sporoblasts by polysporous sporogony. E.Cluster of sporonts after sporogony; the arrowheads indicate the nascent polar tube
and the arrow indicates the dense membrane structure. F. Sporoblast with a maturing anchoring disk and the densemembrane structure on
the future posterior side of the spore (large arrow). Four nascent polar tube coil cross-sections (arrows) are visible, suggesting that this
sporoblast may form a spore of large size.G. Late stage sporoblast. The arrow indicates the polar tube.H. Mature spore with surrounding
additional membrane (arrows). The internal side of this membrane is coated. I.Mature spore with polar tube indicated by arrow. The
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The mature spore was seen to contain a posterior vacuole on the side opposite to the anchoring

disk (Fig 5K; S1H–S1J Fig). This vacuole seemed to develop from a dense membrane compart-

ment of the sporoblast (S1C and S1D Fig). The spores displayed an external coat with several

layers (Figs 5H, 5J, 5K and 6A; S1I–S1L Fig).

The spores in the host cytoplasm appeared either isolated, or clustered within a large vesicle.

Some isolated spores were surrounded by an additional membrane outside the spore coat and

the inner face of this membrane appeared coated (Fig 5H). Unlike in N. parisii [27], we could

not see the additional membrane around all spores. Fig 6A shows a spore apparently exiting

the host cell through exocytosis (although we cannot rule out that such images correspond to

endocytotic events). Spores in the lumen were not surrounded by any additional membrane

(Figs 5K, 5L and 6A).

When spores were clustered in a vesicle, two membranes could be observed around them

(Fig 5J, and other instances).

Nematode-infecting microsporidia in Clade IV

Whereas the Nematocida genus is in Clade II of the microsporidia [22,34], the remaining nine

microsporidia strains in our collection were placed in Clade IV, which, unlike Clade II, con-

tains several human-infecting microsporidia (Fig 2). This clade assignment was based on SSU

rDNA sequences, which had closest (88–89%) identities to the insect parasite Orthosomella

operophterae (host: moth Operophtera brumata) (Table 2). Only four β-tubulin sequences

could be obtained, and these were closest (75% ~ 76% identity) to Vittaforma corneae, a

human-infecting microsporidia species and a close relative of Orthosomella operophterae

(whose β-tubulin sequence is not available), consistent with rDNA analysis. We thus isolated

nematode-infecting microsporidia that are in a distinct evolutionary branch compared to

Nematocida and are closer relatives of the human-infecting microsporidia.

Eight out of the nine strains in this group have Oscheius species as their nematode host and

infect their gut: seven of them from different locations in France were found in O. tipulae,

while JUm408 was found in Oscheius sp. 3 [21] from Iceland. The ninth strain, JUm1396, was

isolated from a C. brenneri strain and is the only one in this set to infect non-intestinal tissues.

In the phylogenetic analysis, these nine strains separated into two groups, corresponding to

the two new genera described below, Enteropsectra and Pancytospora (see section on Taxon-

omy) (Fig 2; S4 Fig). The first group included four strains, JUm408, JUm1456, JUm2551

and JUm1483, which were phylogenetically placed as a sister group to Liebermannia species

(with hosts such as grasshoppers) (Fig 2). In the β-tubulin phylogeny, Enteropsectra strains

also showed a sister relationship with the group of V. corneae and Enterocytozoon bieneusi, a

human intestinal parasite (S2 Fig). However, with β-tubulin, JUm408 and JUm1483 formed a

branch, JUm1456 and JUm2551 another branch, which was different from their SSU rDNA

phylogenetic position. Based on molecular sequences, spore morphology and host specificity

(below), we describe two species in the Enteropsectra genus, E. longa (type strain JUm408) and

E. breve (type strain JUm2551), and do not assign the two other strains to a species. E. longa

anchoring disk and the membranes of the polaroplast are visible on the anterior side, chromatin and ribosomes on the posterior side. J.
Cross-section of a spore vesicle containing four spores, each showing two polar tube sections (arrowheads). The upper inset shows two
membranes around the vesicle (indicated by arrows). The lower inset shows an enlargedmultilayered polar tube.K. A large size spore, with
two insets showing the posterior vacuole and at least three polar tube coils (three cross-sections on either side of the spore, arrowheads). L.
Lower magnification view of severalN. ausubeli infection stages in host intestinal cells. Large arrow and small arrow indicate large spore
and small spore, respectively. The large spore is that shown in panel K in another plane of section. Arrowheads indicate sporonts. Two
multinucleate meronts are indicated. Scale bar is 500 nm, unless indicated otherwise. A, anchoring disk; Chr, chromatin; M, meront; Nu,
nucleus; Pa, anterior polaroplast; Pp, posterior polaroplast; Pt, polar tube; Pv, posterior vacuole.

doi:10.1371/journal.ppat.1006093.g005
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and E. breve strains have a small mean SSU genetic distance of 0.005 (Table 3) but differ in

spore size and host specificity (see below). While E. longa and E. breve form a sister group to

Liebermannia species on the SSU rDNA phylogeny, they have a smaller mean genetic distance

to O. operophterae (0.08) than to Liebermannia (0.11).

The second new clade of nematode-infecting microsporidia includes the five remaining

strains and showed strong support as sister lineage to the clade formed by Enteropsectra and

Fig 6. Cell exit modes ofNematocida ausubeli and Enteropsectra longa. A.Nematocida ausubeli. The top panel is an electron microscopy
image of aNematocida ausubeli spore (large arrow) exiting from the intestinal cell into the lumen. Arrows indicate the apical membrane of the
host intestinal cell. The hypothetical diagram below illustrates the exit ofN. ausubeli spores from intestinal cells by exocytosis. As inN. parisii
[27,36], spores appear surrounded by a membrane that fuses with the apical membrane of the host intestinal cell, resulting in the release of
spores. We also observed apparently mature spores without an additional membrane and do not know whether they will later acquire a
membrane or exit in another manner. Earlier stages were omitted here for simplicity.B. Enteropsectra longa. The top panel is an electron
micrograph of Enteropsectra longa spores exiting from the intestinal cell into the lumen, with the host intestinal cell membrane folding out
around the E. longa spores (arrow). The diagram below illustrates the exit of E. longa spore from the intestinal cell. The host intestinal cell
membrane folds out around the spore until the whole spore exits the cell, after which the host membrane around the spore seems to disappear.
Meronts and sporoblasts are not represented in either panel. Scale bars: 500 nm.

doi:10.1371/journal.ppat.1006093.g006
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Liebermannia species, withO. operophterae as outgroup (Fig 2). Based on molecular sequences,

host and tissue specificity, we describe two new species: Pancytospora philotis (JUm1505 as

type strain, JUm1505, JUm1670, JUm2552), found in the Oscheius gut, and P. epiphaga

(JUm1396) from a C. brenneri strain from Colombia that caused an epidermis and muscle

infection (Fig 7; S5 Fig).

Tissue tropism and lifecycle of nematode-infecting Clade IV
microsporidia species

As with Nematocida, all of the infections by Clade IV microsporidian strains mentioned above

appeared to be transmitted horizontally, as bleaching of the nematode culture eliminated the

infection. The Enteropsectra strains and P. philotis were only observed to infect the intestine of

Oscheius nematodes. By contrast, P. epiphaga (JUm1396) was found to infect epidermis and

muscles of C. brenneri (Fig 7D; S5D, S5E and S5F Fig), thus sharing its tissue tropism with N.

displodere, although on a different evolutionary branch. P. epiphaga could also infect C. elegans

(N2 reference background) (S7F Fig) and C. briggsae (AF16).

A striking feature of Enteropsectra strains is their cellular localization within the nematode

intestinal cells: Enteropsectra were all observed to form their spores on the apical side of the

epithelial cell at first, while meront stages could be seen in a more basal position (Figs 7A, 7B,

7E; 8L). This polarization within the host intestinal cell was not observed in infections of P.

philotis nor of any Nematocida species (Table 2; Figs 4 and 7).

The Enteropsectra and Pancytospora species displayed quite different sizes and shapes of

spores from those of Nematocida species and we did not see any spore-containing vesicles in

these microsporidian infections. They all show a single class of spore size. Though apart in the

phylogenetic analysis, E. longa (JUm408) and P. philotis share similar dimensions of spores,

which are particularly long and thin: E. longa (JUm408) spores measure 3.76 ± 0.38 μm by

0.49 ± 0.06 μm, while P. philotis spores measure 3.46 ± 0.48 μm long by 0.42 ± 0.06 μm. These

spores are even longer than the largest spores and thinner than the smallest spores in Nemato-

cida. In stark contrast, E. breve (JUm2551) form small rod-shaped and crescent-shaped spores

(Fig 7B; Table 4).

Because of the striking difference in spore distribution, we further analyzed by electron

microscopy the type species of the Enteropsectra genus, Enteropsectra longa (JUm408) in

Oscheius sp. 3 JU408. The meront stage appeared overall similar to that of Nematocida species:

the early stages displayed a cytoplasm packed with ribosomes and very few membranes (Fig

8A); elongated multinucleated meronts could also be observed (Fig 8B). The parasite mem-

brane then progressively darkened, indicating the transition to the sporont stage (Fig 8C–8F).

Figures of intranuclear mitosis could be seen at this stage, with intranuclear microtubules and

spindle plaques at the nuclear membrane (Fig 8E; S6A Fig). Signs of sporogenesis then devel-

oped, with a nascent polar tube (Fig 8F–8H; S6B Fig). The spore membrane and nascent wall

appeared wrinkled (Fig 8G) before becoming smooth in mature spores (Fig 8H–8J). The spore

wall with its endospore and exospore layers could be clearly observed (Fig 8J). An anchoring

disk formed (Fig 8I and 8K), but the polaroplast membranes were less developed than in

Nematocida species. In most spores, the polar tube presented a single section (Fig 8G, 8H and

8J; S6D Fig). The polar tube however could be seen to turn on the posterior side of the spore

(S6C Fig) and occasionally two polar tube sections could be counted in the same spore section

(S6E and S6F Fig). The polar tube thus likely folds back anteriorly on the posterior side of the

spore on a short part of its length.

By electron microscopy, we observed a potential key difference in the exit mode of the

spores between Enteropsectra longa (JUm408) on one hand, and N. parisii and N. ausubeli on
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the other hand. First, the sporoblasts and mature spores of E. longa were never seen to be sur-

rounded by an additional membrane outside the spore wall, precluding exocytosis as an exit

route. Second, the spores were seen to protrude on the apical side of the host cell, pushing out

the host cell membrane like a finger in a glove (Fig 6B; S6G–S6I Fig). We further focused on

spore sections in the intestinal lumen and saw both spores with a surrounding membrane (S6I

Fig) and spores without any membrane (Fig 8K).

On the host side, rough endoplasmic reticulum was often seen to wrap around sporoblasts,

yet never encircling them fully (Fig 8G). The host cell nuclei presented a characteristic nucleo-

lar structure, which became organized in long tubules (often appearing circular in cross-sec-

tions;. S6J and S6K Fig). On one occasion, microsporidian spores were observed within the

host intestinal cell nucleus, whose nucleolus had apparently further degenerated (S6L Fig).

Host specificity: natural associations and laboratory infection tests

The pattern of natural association revealed an apparent specificity of a given microsporidian

species for a nematode genus, mostly Caenorhabditis versus Oscheius in our collection. Strik-

ingly, N. parisii, N. ausubeli and N.major infections were found in Caenorhabditis species,

while N.minor, N. homosporus and Clade IV microsporidia species infections were all found

in Oscheius species and not in Caenorhabditis (or, for N. homosporus, in Rhabditella, a closer

relative of Oscheius compared to Caenorhabditis; Fig 3). The notable exception in Clade IV was

the epidermal P. epiphaga JUm1396, found in C. brenneri. These results suggested a pattern of

host-pathogen specificity between nematode and nematode-infecting microsporidia.

We further complemented these natural associations with infections performed in the labo-

ratory. To test for the capacity of a given microsporidia strain to infect a given host, uninfected

nematode cultures (cleaned by bleaching) were exposed to microsporidian spores. We used

clean spore preparations from seven microsporidian species (see Materials and Methods),

namely N. parisii, N. ausubeli, N.major, N. homosporus, E. longa, E. breve and P. philotis. On

the host side, we focused on four nematode species of two genera: C. elegans, C. briggsae,O.

tipulae andO. sp. 3, all of which reproduce through self-fertilizing hermaphrodites and faculta-

tive males [19,20]. We favored wild strains that had been found naturally infected with micro-

sporidia and were thus not generally resistant to microsporidian infections (Table 5).

N. parisii (JUm2816) infected more than 50% of C. elegans (N2, JU2009) and C. briggsae

(JU2747, JU2793) individual animals at 72 hpi. However, no microsporidian infection symp-

tom was observed in O. tipulae (JU1483, JU170) nor O. sp. 3 (JU408, JU75) at 72 and 120 hpi

(Table 5). O. tipulae strains JU1504, JU1510 and JU2552 were also exposed to N. parisii spores,

and none of them became infected either. These infection results indicated that N. parisii was

unable to infect O. tipulae nor O. sp. 3 (Table 5).

Specificity of N. ausubeli (JUm2009) slightly differed from that of N. parisii. By 72 hpi, half

of all Caenorhabditis animals and about 30% of O. sp. 3 showed signs of infection. None of O.

tipulae worms were infected even at 120 hpi (Table 5). However, when we made a new N.

Fig 7. Sporemorphology of Enterospectra and Pancytospora species by Nomarski optics. A. WildOscheius
sp. 3 strain JU408, with Enteropsectra longa infection. Gut lumen was indicated. Arrow indicates spores, here long
and thin spores that are aligned along the apical side of intestinal cells.B.WildO. tipulae strain JU2551, with
Enteropsectra breve infection. Arrow indicates spores, here small spores along the apical side of intestinal cells.C.
WildO. tipulae strain JU1505, with Pancytospora philotis infection. Spores are found throughout the intestinal cell.D.
WildCaenorhabditis brenneri strain JU1396, with Pancytospora epiphaga infection. Spores are seen in the epidermal
cells in the tail that does not contain any gut tissue (posterior to the rectum). Anterior is to the right. The "fur" on the
outside of the cuticle is formed by unidentified bacteria (see [37] for another example). Scale bar: 10 μm in A-D. E.
Two-dimensional diagram ofOscheius sp. 3 intestine infected with Enteropsectra longa. The intestine is formed of
polarized epithelial cells. Enteropsectra longa starts to form spores along the apical side of the intestinal cells.

doi:10.1371/journal.ppat.1006093.g007
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Fig 8. Ultrastructural observations of Enteropsectra longa. Transmission electron micrographs of E. longa strain JUm408 after high-
pressure freezing/freeze substitution.A. E. longameront. A nucleus is visible in the cytoplasm full of ribosomes.B. Lower magnification with
a multinucleated meront. Twomeronts are indicated, one with a single nucleus in the plane of section (left) and one with several nuclei
(right). Two host nuclei are visible on the right, with a dark nucleolus. Intestinal cells contain two nuclei.C. Early sporonts with an electron-
dense coat indicated by arrowhead.D. Sporont undergoing a cell division (big arrow); small arrow indicates junction of host intestinal cells;
the arrowhead indicates a host Golgi apparatus. E.Mitotic spindle (arrows designate microtubules) in a sporont; the spindle plaque is
indicated by an arrowhead. F. Nascent polar tube (arrow) in a sporoblast.G.Wrinkled sporoblasts (*). Arrows indicate the host rough
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ausubeli (JUm2009) spore preparation and used it directly for infection tests, O. tipulae strains

JU1510 and JU2552 could be infected, but the preparation lost its ability to infect O. tipulae

over storage at -80˚C (see Materials and Methods). We conclude that O. tipulae was far less

susceptible to infection than C. elegans, C. briggsae and O. sp. 3 to N. ausubeli infection.

The host spectrum of N.major (JUm2747) was quite similar to that of N. parisii: it infected

C. elegans (N2, JU2009) and C. briggsae (JU2507, JU2793), but not O. tipulae (JU1483, JU170)

nor O. sp. 3 (JU408, JU75) (Table 5). N. homosporus, however, could infect both Caenorhabdi-

tis and both Oscheius species and thus appeared as the most generalist (Table 5). Yet O. tipulae

seemed relatively less sensitive than C. elegans, C. briggsae and O. sp. 3 to N. homosporus

infection.

Enteropsectra spp. and Pancytospora philotis showed different and even opposite specifici-

ties compared to the four tested Nematocida species. Indeed, none could successfully infect

any tested Caenorhabditis strains at 120 hpi. Within the two Oscheius species, specific interac-

tions were further observed. Enteropsectra longa (JUm408) only infected O. sp. 3 strains

(JU408, JU75), but not O. tipulae (JU1483, JU2551), while E. breve (JUm2551) infected all four

O. tipulae and O. sp. 3 strains (Table 5). Pancytospora philotis (JUm1505) only infected O. tipu-

lae (JU1483, JU1505), but not O. sp. 3 strains (JU408, JU75). Since O. sp. 3 is the closest known

species to Oscheius tipulae, E. longa and P. philotis are examples of narrow specialization in the

host-parasite interaction. We also found that C. elegans N2 could be infected with P. epiphaga

(JUm1396), showing epidermal and muscle infection (Table 5; S7F Fig).

The spore morphology of a given microsporidian species was maintained in different nem-

atode species, indicating that host genotype does not affect this pathogen phenotype. For

instance, O. tipulae (JU1510) infected with N. ausubeli (JUm2526) displayed two sizes of spores

in its intestinal cells as upon Caenorhabditis infection by N. ausubeli (S7A Fig). Oscheius sp. 3

(JU408) infected with Enteropsectra breve (JUm2551) formed small rod-shaped or crescent-

shaped spores along the apical side of the worms’ intestinal cells, as upon O. tipulae infections

(S7D Fig). C. elegans N2 infected with P. epiphaga (JUm1396) formed long and thin spores in

the epidermis and muscles, as upon C. brenneri infection (S7F Fig).

N. ausubeli elicits a less robust host transcriptional response than other
Nematocida species, despite establishing a robust infection

Given the capacity of all Nematocida species to infect C. elegans, we next sought to compare

the C. elegans response to infection among our newly isolated microsporidia species. N. parisii

infection in C. elegans has been shown to induce a broad transcriptional response [38]. Among

genes that were highly upregulated at all infection timepoints were C17H1.6 and F26F2.1, two

genes of unknown function. Two transgenic C. elegans strains, ERT54 and ERT72, were gener-

ated as transcriptional reporters for these two genes and have been previously shown to be

strongly induced in early N. parisii and N. displodere infection [38]. We tested these reporter

strains with our new microsporidia species by placing them onto plates with a culture of

infected worms and microsporidian spores, then monitoring GFP expression at different

endoplastic reticulum folding around the microsporidia.H. Late stage sporoblast in the center, mature spore on the top left; arrows indicate
polar tubes. I.Mature spore with the anterior part of the polar tube, including the anchoring disk. J.Cross-section of mature spores. The
exospore and endospore layers are shown in the inset. Arrowheads indicate polar tubes.K. Two mature spores in the intestinal lumen that
do not show an additional membrane around them. Lowmagnification inset shows the positions of the two spores in the lumen and
arrowhead indicates host microvilli. L. Lowmagnification view of cross-section of host, with the intestinal lumen in the center. E. longa
spores (arrowheads) concentrate around the apical membrane of intestinal cell, while meronts and early sporonts are on the basal side.
Scale bar is 500 nm, unless indicated otherwise. A, anchoring disk; Chr: chromatin; Ex, exospore; En, endospore; Lu, lumen; M, meront; Mi:
host mitochondrion; Mv, host microvilli; Nu, nucleus; HNu host nucleus; Pt, polar tube; RER, rough endoplastic reticulum; St: sporont.

doi:10.1371/journal.ppat.1006093.g008
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timepoints in the reporter strains, as well as monitoring microsporidian meront and spore for-

mation. As expected, N. parisii, N. ausubeli, N.major and N. homosporus could all infect these

reporter strains, forming meronts and spores, and induce reporter GFP expression. By con-

trast, E. longa and Enteropsectra JUm1483 failed to show evidence of proliferative infection

and did not robustly induce reporter expression (Fig 9A and 9B; S2 Table). Most interestingly,

while N. parisii, N.major or N. homosporus consistently induced the GFP reporters, different

strains of N. ausubeli (JUm2009, ERTm2, ERTm6; Fig 9; S2 Table) did not, although this spe-

cies did robustly infect and proliferate within the C. elegans intestine.

To verify that this differential induction of the GFP reporters matched the transcripts of the

endogenous genes, we conducted qRT-PCR after controlled N. parisii (ERTm1) and N. ausu-

beli (ERTm2) infections of N2 using purified spore preparations that were normalized for an

Table 5. Nematode-infectingmicrosporidia specificity.

N. parisii N. ausubeli N.major N. homosporus E. longa E. breve P. philotis P. epiphaga

(JUm2816) (JUm2009) (JUm2747) (NICm516) (JUm408) (JUm2551) (JUm1505) (JUm1396)

infected/ infected/ infected/ infected/ infected/ infected/ infected/ infected/

Species strain Replicate total total total total total total total total

C. elegans 1 14/20 8/20 11/19 4/12 0/20 \ 0/20 10/18a

N2 2 17/20 8/17 10/19 8/18 0/20 \ 0/20 15/19b

C. elegans 1 10/19 10/20 14/20 2/20 0/20 0/20 0/20 \

JU2009 2 11/19 5/19 5/20 5/15 0/20 \ 0/20 \

C. briggsae 1 10/17 6/13 \ \ 0/20 0/20 0/20 \

JU2747 2 14/19 7/17 \ \ 0/20 \ 0/20 \

C. briggsae 1 \ \ 13/20 4/15 \ \ \ \

JU2507 2 \ \ 12/20 9/15 \ \ \ \

C. briggsae 1 11/17 11/20 12/20 9/21 0/20 \ 0/20 \

JU2793 2 12/20 13/20 14/19 10/18 0/20 \ 0/20 \

O. tipulae 1 \ \ \ 13/16 \ \ \ \

JU1504 2 \ \ \ 13/17 \ \ \ \

O. tipulae 1 \ \ \ \ \ 6/14 11/20 \

JU1505 2 \ \ \ \ \ \ 7/20 \

O. tipulae 1 0/20 0/20 0/20 0/17 0/20 4/17 3/20 \

JU1483 2 0/20 0/20 0/20 1/14 0/20 5/15 8/17 \

O. tipulae 1 0/20 0/20 0/20 1/14 \ \ \ \

JU170 2 0/20 0/20 0/20 4/20 \ \ \ \

O. tipulae 1 \ \ \ \ 0/20 9/19 \ \

JU2551 2 \ \ \ \ 0/20 7/15 \ \

O. sp. 3 1 0/20 8/17 0/20 9/20 11/17 3/18 0/20 \

JU408 2 0/20 3/17 0/20 9/17 16/16 5/18 0/20 \

O. sp. 3 1 0/20 8/18 0/20 11/17 12/16 3/18 0/20 \

JU75 2 0/20 4/15 0/20 11/19 12/15 3/13 0/20 \

R. typhae 1 \ \ \ 5/12 \ \ \ \

NIC516 2 \ \ \ 3/13 \ \ \ \

Experiments in the same column are in parallel. The same batch of spores was used on the four nematode species, each with two different strains and two

replicates each. At 72 hours post inoculation (hpi) or 120 hpi at 23˚C, nematodes found with meronts and/or spores in their intestinal cells were considered

infected; otherwise, they were considered uninfected.
a Infection were checked at 72 hpi, out of 18 worms, 10 were found infected with meronts, but not spores.
b Infection were checked at 96 hpi, out of 19 worms, 15 were found infected with meronts and spores.

doi:10.1371/journal.ppat.1006093.t005
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equivalent level of invasion (see Materials and Methods). Indeed, we saw that both C17H1.6

and F26F2.1 transcripts, along with another gene highly induced by N. parisii infection

W04B5.5 [39], were induced approximately 6-7-fold lower upon N. ausubeli infection com-

pared to N. parisii infection (Fig 9C), while the levels of pathogen rRNA (indicative of patho-

gen load) remained similar. Thus, N. ausubeli infection caused a much reduced host response

compared to other Nematocida species (Fig 9; S2 Table), despite causing an equivalent, or even

more robust infection [40]. Considering the phylogenetic relationships of the Nematocida

Fig 9. Responses ofC. elegans strains with transcriptional reportersC17H1.6p::GFP and F26F2.1p::GFP to exposure by different
microsporidia. Strains ERT54 carryingC17H1.6p::GFP (A) and ERT72 carrying F26F2.1p::GFP (B) were analyzed for GFP induction at different
time points after infection with different microsporidia and the proportion of animals with GFP induction is shown. GFP was reproducibly induced in
ERT54 and ERT72 upon infection withN. parisii,N.major andN. homosporus, while GFP signal was rarely observed in ERT54 and ERT72
inoculated withN. ausubeli or E. longa or the negative control.N. ausubeli did infect theC. elegans reporter strains, as monitored by DIC as in
Table 5.C. Transcript levels for three genes were measured after 4 hours of infection of N2 C. elegans byN. parisii (ERTm1) andN. ausubeli
(ERTm2). The fold increase in transcript level was measured relative to uninfected N2 levels. Infection dose was normalized betweenNematocida
by successful invasion events counted as intracellular sporoplasms at 4 hpi. To independently compare the microsporidian doses in parallel to the
transcript quantification, we also measure the levels ofNematocida SSU rRNA after 4 hours of infection ofC. elegans in the same experiment: we
found that the rRNA level measured after infection with ERTm2 was 1.25-fold higher than that with ERTm1.

doi:10.1371/journal.ppat.1006093.g009
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species (Figs 2 and 3; S2 Fig), this evolutionary change can be polarized: N. ausubeli seems to

have lost the capacity to activate these transcriptional reporters as strongly as its closest rela-

tives, or has acquired the capacity to inhibit their activation. Thus, although morphologically

quite similar and both are able to infect C. elegans, N. parisii and N. ausubeli elicit distinct host

responses.

Discussion

Independent evolutionary branches of nematode parasitism by
microsporidia

Microsporidia are ubiquitous obligate intracellular pathogens that have agricultural and medi-

cal significance, but have been difficult to study in the laboratory. Our study provides a collec-

tion of microsporidia that can infect bacteriovorous nematodes and can easily be studied in

the laboratory in their natural hosts and in related species. These rhabditid nematode-infecting

microsporidia seem to have more than one origin within the Microsporidia phylum: at least

one origin within Clade II and one or two within Clade IV. We thus here enlarge considerably

the spectrum of microsporidia that can be cultured in nematodes, including some that are

genetically close to human pathogens in Clade IV.

Environmental SSU rDNAmicrosporidian sequences have been reported from soil, sand

and compost samples from North America [41]. (The corresponding species have not been

named.) Some of them branch in the SSU phylogeny in the vicinity of the nematode-infecting

microsporidia that we isolated (S4 Fig). Specifically, some branch close to Nematocida homo-

sporus and some may be outgroups to Nematocida or further species of the genus. In Clade IV,

one is closely related to the Pancytospora epiphaga JUm1396 sequence.

The clades of nematode-infecting microsporidia that we describe have close relatives that

infect arthropods, especially insects. This relationship may be due to deep co-evolution

(arthropods and nematodes being close relatives on the animal phylogeny), or to the fact that

nematodes share their habitats and interact with insects by using them as hosts or carriers

[16], which may have facilitated a host shift or a complex lifecycle with several hosts. The

microsporidia described here can be cultured continuously in their nematode hosts, but we

cannot rule out the possibility that some of them may use non-nematode hosts as well, includ-

ing insects. Of note, all of them use a horizontal mode of transmission, despite the fact that

many instances of vertical transmission of microsporidia in arthropods, molluscs and fish are

known [42,43]. In addition, Nematocida species are diploid with evidence of recombination

and thus possibly a sexual cycle [30,39], which might occur in another host.

N. parisii, N. ausubeli and N.major are relatively common pathogens of
Caenorhabditis but not ofOscheius

Our results suggest that infections by N. parisii and N. ausubeli are quite common in wild Cae-

norhabditis strains, especially in C. elegans and C. briggsae. In our collection, N. parisii, N. ausu-

beli and N.major infections were found in 30 strains of four Caenorhabditis species. Though

we have a sampling bias towards France, N. ausubeli was found in Asia, Europe and Africa,

while N. parisii was found mostly in France and once (ERTm5) from Hawaii. N.major was

only found from three Caenorhabditis strains of C. briggsae and C. tropicalis, all of which were

sampled in tropical areas, despite the fact that that we have sampled many hundreds of C. ele-

gans isolates and that N.major can easily infect C. elegans in our specificity infection tests

(Table 5). A possibility is that N.majormay be preferentially distributed in the tropics rather

than temperate zones, where C. elegans are mostly found (Table 2, Fig 1B) [16].
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In addition to C. elegans and C. briggsae strains, we also have a relatively large collection of

microsporidia-infected Oscheius strains (10 O. tipulae strains and one O. sp. 3 strain). How-

ever, none of these strains was found with Nematocida or N.major infections. In line with

their natural associations, N. parisii and Nematocida major were not able to infect any Oscheius

strains in the laboratory. These specializations may be due to long-term coevolution and adap-

tation processes [44].

In addition, one new microsporidian species infecting Caenorhabditis was found in clade

IV, Pancytospora epiphaga. As this Clade IV microsporidian species can infect C. elegans, it

would be interesting to develop its study as a model system for Clade IV species infection.

Diverse microsporidia infectOscheius species

Microsporidian species that naturally infect Oscheius species are diverse (Fig 10, green entries).

N.minor, found from two O. tipulae strains, forms two distinct sizes of spores, similar to N.

parisii, N. ausubeli and N.major. N. homosporus was found from one O. tipulae strain and one

R. typhae and is the only species tested here that is able to infect species of three genera Caenor-

habditis, Oscheius and Rhabditella, suggesting that N. homosporusmay be a relatively less spe-

cific pathogen for rhabditid nematodes.

The Clade IVOscheius-infecting microsporidia are separated into two groups: Enteropsectra

species, and Pancytospora philotis. None of those could infect Caenorhabditis and their host

specificity is even narrower, distinguishing between Oscheius tipulae and its sister species

Oscheius sp. 3. The SSU rDNA genetic distances between E. longa and E. breve are quite small

and two other closely related Enteropsectra strains are also available (Tables 2 and 3). Overall,

Enteropsectra and the Tipulae group of Oscheius species [19,21] provide an interesting case to

study the evolution of a narrow host specificity.

Evolutionary changes in tissue tropism

Although microsporidia are known to be able to adopt either a horizontal or a vertical trans-

mission [42,45], we here only observed infection in somatic tissues and transmission was

horizontal. Most of the infections occurred in host intestinal cells, while two independent

instances showed infections elsewhere. As reported previously, Nematocida displodere can

infect many tissues and cells in C. elegans, including the epidermis, muscle, coelomocytes and

neurons, although it appears to invade all cells by firing its polar tube from the intestinal

lumen [23]. The second independent case is Pancytospora epiphaga can be seen in the epider-

mis, coelomocytes and muscles. Whether it also enters the nematode’s cells through the gut

remains to be studied.

Cellular exit strategies

The most striking variation we observed concerns the cellular exit strategies of the spores (Fig

6). Nematocida parisii spores acquire an additional membrane around the spore wall and thus

exit through a vesicular pathway, using the host exocytosis machinery [27]; in addition, clus-

ters of spores with two additional membranes were observed. If the process is similar in N.

ausubeli to that in N. parisii, the spore clusters may correspond to re-endocytosis of spores

from the lumen [36] or perhaps to autophagy of internal spores using the apical plasma mem-

brane. Of note, the host rough endoplasmic reticulum could often be seen to form concentric

patterns in the intestinal cell cytoplasm (S1B and S1E Fig), sometimes wrapping around the

sporoblasts (Fig 5E). Whether the reticulum may be a precursor for the additional membranes

through an autophagic pathway [46,47], is an alternative possibility.

Diversity and Specificity of Nematode-Infecting Microsporidia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006093 December 12, 2016 25 / 41



By contrast, in Enteropsectra longa, the sporoblasts and mature spores were never seen sur-

rounded by an additional membrane, which rules out exocytosis as an exit route. Instead, the

Fig 10. Summary of the interactions between rhabditid nematodes andmicrosporidia in the wild and in laboratory. Amosaic green color
means that the corresponding natural infection was found. Plain green means that the infection worked in the laboratory and red means that the
infection did not work in the laboratory. White: not determined.

doi:10.1371/journal.ppat.1006093.g010
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spores pushed out and deformed the apical plasma membrane of the host intestinal cell (Fig 6;

S6 Fig). Whether the final release step was by pinching of the plasma membrane at the base or

by rupturing it is unclear, although the former is more probable, given that the intestinal cells

were not seen to leak out. We observed spore sections in the lumen, far from any intestinal

cells in the corresponding section, with either an additional membrane around them or none.

A possible scenario is that the spores are first released with a membrane, and that the mem-

brane then disintegrates (Fig 6B). Yet because we did not follow by serial sectioning the length

of the spores, we cannot know for sure that those with a membrane were not still attached to

the epithelial cell. We thus cannot rule out an alternative mechanism whereby the spores are

released through a hole in the plasma membrane—although given spore size, this latter exit

mechanism would likely lead to host cell rupture and death, an event that was never observed.

Of note, another exit mode was noted in the human gastrointestinal microsporidia Enterocyto-

zoon bieneusi (in Clade IV like E. longa), whereby the infected cell itself is extruded in the

lumen [48–50]. Presumably, the cell then rapidly dies and the spores are released by disintegra-

tion of the enterocyte plasma membrane. In the present case of Enterospectra longa, the epithe-

lial intestinal cell remains overall intact and only the spore exits, possibly with the surrounding

enterocyte plasma membrane that then disintegrates.

A diverse collection of natural host/microsporidia pairs in C. elegans and
related wild-caught nematodes

Beyond access to a diversity of microsporidia, our collection of host-parasite combinations

also provides a resource for defining the genetic basis of host resistance. Most current work on

C. elegans and N. parisii is performed using the C. elegans reference strain N2 and the N. parisii

ERTm1 isolate, yet this strain combination has been shown to lead to a very strong infection

where the host does not mount an effective defense response (e.g. in comparison with C. ele-

gans CB4856; [29]), thus making it a difficult system in which to identify immune defense

pathways. The present collection offers many further possibilities of genetic screens using

induced mutations or natural genetic variation for resistance pathways.

Conclusion

Overall, we here considerably enlarged the resources and knowledge on the microsporidia

infecting bacteriovorous terrestrial nematodes. These microsporidia are diverse in terms of phy-

logenetic relationships, spore size and shape, the presence of vesicles containing spores, host

specificity pattern, host tissue tropism, host cell intracellular localization and cellular exit route.

Materials and Methods

Nematode sampling, isolation and microsporidia strains

Hundreds of samples, mostly from rotting fruits, rotting stems and compost, were collected

worldwide over several years, and nematodes were isolated as described [11]. The nematode

species was identified as described [11,33], using a combination of morphological examina-

tion (dissecting microscope and Nomarski optics), molecular identification (18S, 28S or ITS

rDNA) and mating tests by crossing with close relatives. Isogenic nematode strains were estab-

lished by selfing of hermaphrodites or for obligate male-female species from a single mated

female. Individuals of strains showing a paler intestinal coloration (Fig 1A) were examined by

Nomarski optics. Strains with meronts and spores in the intestinal cells or elsewhere were

labeled as suspected to harbor a microsporidian infection. Each nematode strain was then fro-

zen and stored at -80˚C.
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For this study, these frozen nematodes were thawed and maintained on nematode growth

media (NGM) seeded with E. coli OP50 at 23˚C. The microsporidian strain was identified after

the strain identifier of its host nematode strain (itself identified according to C. elegans com-

munity rules; http://www.wormbase.org/about/userguide/nomenclature), with an additional

"m" between the letters and the numbers for the microsporidia. For instance, a microsporidian

strain from the nematode strain JU1762 was named JUm1762. Previously published nema-

tode-infecting microsporidian strains keep their names: ERTm1 (from strain CPA24), ERTm2

(from JU1348), ERTm3 (from JU1247), ERTm4 (from JU1395), ERTm5 (from JU2055) and

ERTm6 (from JU1638) [26,29,30,39,51] (Tables 1 and 2). ERTm4 was previously reported to

correspond to N. parisii infection [29], but as no sequence data was available in GenBank, we

also sequenced the SSU rDNA and β-tubulin genes for this study.

SSU rDNA and β-tubulin gene sequencing

We sought to amplify by PCR and sequence fragments of two microsporidian genes (SSU

rDNA and β-tubulin genes) from all potentially infected rhabditid isolates. Ten infected

worms were placed in a PCR tube with 10 μl single worm lysis buffer (1X PCR buffer (Dream-

Taq Buffer 10X, Theromo Fisher), 1 mMMgCl2, 0.45% Tween 20 and 170 ng/μl proteinase K),

which was then treated at 60˚C for 60 min, followed by 95˚C for 15 min. This DNA extract

was then used as DNA template. To amplify microsporidian SSU rDNA, primers v1f (5’-CA

CCAGGTTGATTCTGCCTGAC-3’) and 1492r (5’-GGTTACCTTGTTACGACTT -3’) [52]

were used to amplify strains JUm408, JUm1254, JUm1483, JUm1504, JUm2009, JUm2106,

JUm2131, JUm2132, JUm2287, JUm2520, JUm2526, JUm2551, JUm2586, JUm2590, JUm2671

and NICm516. We used v1f and 18SR1492 (5’-GGAAACCTTGTTACGACTT-3’) to amplify

sequences of JUm1456, JUm1460, JUm1505, JUm1510, JUm1670, JUm2552, JUm2793,

JUm2796, JUm2799, JUm2816, JUm2825 and JUm2895. We designed a new pair of primers

SPF (5’-GATACGAGGAATTGGGGTTTG-3’) and SPR (5’-GGGTACTGGAAATTCCGT

GTT-3’) for JUm2507, JUm2747, JUm2751 and JUm2772. We failed to amplify SSU rDNA for

JUm1501 and NICm1041.

To amplify the microsporidian β-tubulin gene, newly designed forward primer βn1F (5’-A
CAAACAGGNCARTGYGGNAAYCA-3’) and reverse primer βn1R (5’-TGCTTCAGTRAA

YTCCATYTCRTCCAT-3’) were used. To obtain the β-tubulin gene sequence of JUm2551

and JUm1456, nested PCR was performed using first primers βn1F and βn1R then βnOF (5’-C
CGGACAATATCGTCTTTGG-3’) and βnOR (5’-CAGCTCCTGAATGCTTGTTG-3’) (S1

Table). PCR products showing a positive signal by gel electrophoresis were sequenced on both

strands on ABI 3730XL sequencing machines (MWG). SSU rDNA of five additional N. parisii

strains (JUm1248, JUm1249, JUm1253, JUm1762, JUm1893) were provided by Aurore Dubuf-

fet and Hinrich Schulenburg. The results were analyzed using Geneious v7.1.7 [53] and com-

pared by BLAST with the NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Note that

some PCR products could not be amplified (S1 Table). Especially, we failed to amplify the

β-tubulin gene in several Oscheius infections. Both genes fail to amplify for the putative micro-

sporidian infection of theO. tipulae strain JU1501 and this infection could not be characterized.

SSU rDNA and β-tubulin gene sequences have been submitted to GenBank under accession

numbers KX352724-KX352733, KX360130-KX360167 and KX378155-KX378171 (S1 Table).

Phylogenetic analysis

SSU rDNA and β-tubulin gene sequences of microsporidia from this study were analyzed with

those of other published microsporidian species and fungi (Rozella spp. for SSU rDNA, Basi-

diobolus ranarum and Conidobolus coronatus for β-tubulin and concatenated sequences of
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both genes) as outgroups (Figs 2 and 3; S2 Fig) [34]. For phylogenetic analysis of SSU rDNA

genes, 28 out of 33 sequences obtained from this study were compared with 11 sequenced

Nematocida isolates (ERTm1, ERTm2, ERTm3, ERTm5, ERTm6, JUm1248, JUm1249,

JUm1253, JUm1762, JUm1893, and JUm2807), JUm1396, 60 other microsporidian species

chosen from all five major clades of microsporidia [34] and two Rozella species [54]. For analy-

sis of β-tubulin genes, only sequences from the six Nematocida species (ERTm1, ERTm2,

ERTm3, ERTm5, ERTm6 and JUm2807) and 18 other published microsporidian species were

available to be compared with our 32 sequences (S1 Table). To phylogenetically analyze both

genes together, we concatenated the two genes of stains ERTm1~6, JUm2807, our 30 strains,

10 other microsporidia species and two outgroups (B. ranarum and C. coronatus). Sequences

were aligned using Geneious v7.1.7 with default parameters and further aligned manually and

concatenated if available. The alignments were imported to MEGA 6 [55] to estimate the best

DNA evolution models and compute mean genetic distances (1000 bootstrap replicates).

Bayesian inference phylogenies were constructed using Mesquite v3.04 [56] and MrBayes

v3.2.2 [57], with the same DNAmodels as above [58] and refined by FigTree v1.4.2 (http://

tree.bio.ed.ac.uk/software/figtree/).

High-pressure freezing and transmission electron microscopy

Worms were frozen in M9 buffer [35] supplemented with 20% BSA (Type V) in the 100 μm

cavity of an aluminium planchette, Type A (Wohlwend Engineering, Switzerland) with a

HPM 010 (BalTec, now Abra Fluid AG, Switzerland). Freeze substitution was performed

according to [59] in anhydrous acetone containing 2% OSO4 + 2% H2O in a FS 8500 freeze

substitution device (RMC, USA). Afterwards samples were embedded stepwise in Epon. To

achieve a good infiltration of spores, the infiltration times in pure resin were prolonged for 48

h compared to the published protocol. After heat polymerization thin sections of a nominal

thickness of 70 nm were cut with a UC7 microtome (Leica, Austria). Sections were collected

on 100 mesh formvar coated cupper grids and poststained with aqueous 4% uranylacetate and

Reynold’s lead citrate. Images were taken with a Tecnai G2 (FEI, The Netherlands) at 120 kV

and equipped with a US4000 camera (Gatan, USA).

Spore size measurements

Spore size was measured as described [22]. Briefly, infected nematodes were photographed by

Nomarski optics and spores were measured using the Image J software [60]. We only took into

account spores with a clear outline within the focal plane. In species with two spore size classes,

large spores are less numerous than small ones and they are found in groups. When measur-

ing, the spores were first assigned to a size class, in part based on the spatial clustering of large

spores. 20 spores were measured for each spore type; except N. ausubeli, for which 42 small

ones and 40 large ones were measures.

Microsporidia spore preparation

For the microsporidian spore preparation, we first tried the methods previously established for

N. parisii and N. ausubeli [22,51]. Because wild nematodes naturally live in habitats with vari-

ous microbes [16,17], the microsporidia-infected nematode cultures generally originally con-

tained other microbes, such as bacteria, fungi, or even viruses. In order to obtain a relatively

pure microsporidian spore preparation, we treated the nematode cultures repeatedly with anti-

biotics (100 ug/ml gentamycin, 50 ug/ml Ampicillin, 50 ug/ml Kanamycin, 20 ug/ml Tetracy-

cline, and 50 ug/ml streptomycin), monitoring the presence of non-E. coli bacteria and fungi

on the plate. Nematode strains do not lose the microsporidian infection after antibiotic
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treatment. After antibiotic treatment, if the appearance of a plate with infected worms looks

like those with bleached worms, we considered the plate to be clean and the infected worms

were used to extract clean spores. Even though inconspicuous microbes may still be carried

over, as we know so far, none of them could prevent the worms from getting infected with

microsporidia nor induce similar symptoms as microsporidia.

Antibiotic-cleaned worms without other detectable microbes were harvested in 2-ml micro-

fuge tube and autoclaved silicon carbide beads (1.0 mm, BioSpec Products, Inc.) were added.

The tube was then vortexed for 5 min at 2,500 rpm and the lysate of worms filtered through a

5 μm filter (Millipore) to remove large worm debris. Spore concentration was quantified by

staining with chitin-staining dye direct yellow 96 (DY96).

This method worked well on N.major and N. homosporus, but spores of Clade IV species

extracted this way could not infect any worms. To prepare infectious spores of these species,

we used instead a plastic pestle to crush worms manually, and stored these spore preparations

at 4˚C.

Nematocida species spore preparations could generally be stored at -80˚C for later infection

tests. However, storage at -80˚C could affect the infection efficiency of these spore prepara-

tions. Indeed, when we made a fresh N. ausubeli (JUm2009) spore preparation and used it

directly for infection tests, it could infect O. tipulae strains JU1510 and JU2552, with meronts

and spores found in their intestinal cells at 120hpi. One month later, we used the same batch

that had been stored at -80˚C to infect C. elegans (N2), O. tipulae (JU1483, JU170, JU1510 and

JU2552). At 120 hpi, 100% of N2 adult worms were infected, while none of the O. tipulae

strains became infected. These results suggested that this spore preparation became less infec-

tious after being frozen and stored at -80˚C for one month, which did not compromise infec-

tion in C. elegans but did compromise infection of O. tipulae. For further specificity tests, spore

preparations of N.major, N. homosporus and Clade IV species were then used within two

hours after extraction, without freezing.

Infection assays

20 uninfected L4 or young adults (i.e. prior to first egg formation) were transferred to a 6 cm

NGM plate seeded with E. coli OP50. 5 million microsporidian spores in 100 μl distilled water

were placed on the E. coli lawn. The cultures were then incubated at 23˚C. The infection symp-

toms of 20 adults were checked by Nomarski optics at 72 hours after inoculation. If no infec-

tion symptoms were found at this timepoint, they were scored a second time at 120 hours

post-inoculation.

Assays with reporter strains

Two transgenic C. elegans strains, ERT54 jyIs8[C17H1.6p::gfp; myo-2p::mCherry] and ERT72

jyIs15[F26F2.1p::gfp;myo-2::mCherry]were used in infection assays to test infection specificity

and transcriptional response of C. elegans to different microsporidian infections. These two

lines express a constitutive fluorescent Cherry marker in the pharyngeal muscles and induce

GFP upon infection with N. parisii [38]. In the first qualitative assay (23˚C), we focused on the

ERT54 strain. First, 10 L4 stage animals from seven naturally infected strains (C. elegans

JU1762 with N. parisii infection, C. elegans JU1348 with N. ausubeli, C. briggsae JU2507 with

N.major, O. tipulae JU1504 with N. homosporus, R. typhaeNIC516 with N. homosporus, O.

tipulae JU1483 with Enteropsectra, Oscheius sp. 3 JU408 with E. longa) were transferred to new

plates and cultured for two days, in order to release microsporidian spores onto the plates.

Then 10 L4 stage worms of the ERT54 strain were added onto these plates and onto a clean

plate as control. Two days post-inoculation (dpi), a chunk was transferred to new plate to
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prevent starvation. One day later (3 days dpi), GFP expression of ERT54 animals (visualized

using the Cherry reporter in the pharynx) and infection symptoms were scored. 20 worms

showing GFP expression (if any, else the Cherry marker was used) were picked and transferred

to a new clean plate. GFP expression was monitored on 8 dpi and 14 dpi. In the second quanti-

tative assay (23˚C), first, 10 L4 stage animals from five naturally infected strains (C. briggsae

JU2055 with N. parisii infection, C. elegans JU2009 with N. ausubeli, C. briggsae JU2507 with

N.major infection, R. typhaeNIC516 with N. homosporus infection, Oscheius sp. 3 JU408 with

E. longa infection) and uninfected C. elegans reference strain N2 (as negative control) were

transferred to new plates and cultured for three days. Then 200 L4 stage worms of ERT54 or

ERT72 were added. GFP expression of 50 worms (if possible) of reporter strains was moni-

tored at five different timepoints (2 hours post inoculation (hpi), 4 hpi, 8 hpi, 28 hpi, 48 hpi)

and infection symptoms were scored at 48 hpi.

qRT-PCR of reporter transcripts

For measurements of transcripts levels by quantitative RT-PCR (qRT-PCR) (primers used see

S2 Table), 3000 synchronized N2 C. elegans L1 larvae were infected for 4 hours at 25˚C with

5.0 x 105 ERTm1 (N. parisii) spores and 1.5 x 106 ERTm2 (N. ausubeli) spores. Prior analysis of

serial spore dilutions determined that these ERTm1 and ERTm2 spore doses resulted in an

average of 1 sporoplasm per L1 larva at 4 hpi at 25˚C as measured by FISH to Nematocida

rRNA. At 24 hpi, animals were harvested and RNA was isolated by extraction with Tri-Reagent

and bromochloropropane (BCP) (Molecular Research Center). cDNA was synthesized from

175 ng of RNA with the RETROscript kit (Ambion) and quantified with iQ SYBR Green

Supermix (Bio-Rad) on a CFX Connect Real-time PCR Detection System (Bio-Rad). Tran-

script levels were first normalized to the C. elegans snb-1 gene within each condition. Then

transcript levels between conditions were normalized to uninfected N2 for C. elegans tran-

scripts or normalized to ERTm1 rRNA for Nematocida rRNA.

Taxonomic section

Rationale for the description of new microsporidia taxa. We describe here two new

genera and nine new species of microsporidia based on rDNA and β-tubulin sequences and

phenotypic analyses.

The rDNA (and β-tubulin, when we could amplify it) sequences could be readily grouped

in three distinct clades, one including Nematocida parisii and many of our strains in micro-

sporidia clade II, and the two other clades in microsporidia clade IV (Figs 2 and 3; S2 Fig).

All described microsporidian species infecting nematodes are reviewed in [26]. Previously

described species with associated SSU rDNA sequences are Nematocida parisii [22], Nemato-

cida displodere [23], Sporanauta perivermis [24] and Nematocenator marisprofundi [25], the

two latter infecting marine nematodes. Compared to the species studied here, S. perivermis is

found in another group of clade IV, while N.marisprofundi appears as a distant outgroup [25]

(Fig 2). Our strains are thus all distinct from the two latter species. In addition, two species

were reported without any associated molecular sequence [26]. The first one, Thelohania

reniformis, infected the intestine of a parasitic nematode with a single class of spores of a size

exceeding in length and/or width any of those we describe [26]. The second species, of an

undefined genus ("Microsporidium" rhabdophilum), infected the pharyngeal glands, hypoder-

mis and reproductive system of Oscheius myriophila [61], and does not match in tissue tropism

and spore morphology any of the present species.

The biological species concept cannot be used in describing these microsporidia as their

sexual cycle is unknown and thus we cannot test their crossing ability. Microsporidia species
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have been classically delimited through their morphology and their association with a host. In

recent years, DNA sequences have further helped to assess phylogenetic relationships among

microsporidia, and to assign strains to a species when morphology was not sufficient [62].

Among our strains, as a first example, two close groups of strains in the Nematocida clade cor-

respond to N. parisii and N. sp. 1 in [22], respectively. These groups are consistently distinct

from each other by molecular analysis of rDNA and β-tubulin genes (Table 3; S3 Table) but do

not appear very different from spore size and general morphology ([22], this work). Their

molecular distance (0.017) is consistent with molecular distances between microsporidian spe-

cies and even greater than other examples of interspecific distance for this gene [63]. Their

whole genome sequence [39] further shows that the two species are wide apart, with only 62%

amino-acid identity between protein orthologs, while strains of the same species are much

closer, such as 0.2% difference at the nucleotide level between N. parisii ERTm1 and ERTm3

and 1 SNP every 989 bp for N. sp. 1 ERTm2 and ERTm6 [30,39] We therefore formally

describe here N. sp. 1 as a new species and call it N. ausubeli n. sp.

Concerning the other strains in the Nematocida clade, given their greater molecular dis-

tance to each other, we define four other Nematocida species that are also distinct from N. dis-

plodere [23]. In this case, each of them further shows a distinct spore morphology (Table 4; Fig

4). No other described microsporidian species to our knowledge has a similar sequence nor

host distribution. We thus describe them below as four new species of Nematocida, namely N.

major n. sp. (two sizes of spores, each slightly larger than the respective class in N. parisii and

N. ausubeli), N.minor n. sp. (two sizes of spores, each smaller than the respective class in N.

parisii and N. ausubeli), N. homosporus n. sp. (a single class of spores) andN. ciargi n. sp. (a sin-

gle class of spores, particularly small), each with their reference strain. The two latter species

were not found in Caenorhabditis nematodes but in other bacteriovorous terrestrial nema-

todes. We could not amplify the SSU gene of Nematocida "sp. 7" NICm1041 and therefore

refrain from formally describing this putative new species.

The remaining strains of microsporidia in our sampling do not belong to clade II but

to clade IV. By blast of the rDNA sequence, they are closest to Orthosomella operophterae,

an insect pathogen, and by phylogenetic analysis they form two clades. One clade includes

JUm408, JUm1456, JUm1483 and JUm2551, and is sister to Liebermannia species (also arthro-

pod parasites)—but not particularly close in molecular distance (Orthosomella is closer). The

other clade includes five strains (JUm1505, JUm1460, JUm1670, JUm2552 and JUm1396) and

appears as an outgroup to the four strains + Liebermannia spp. Based on the host phylum, the

molecular distances and the monophyletic clade groupings, we describe here two new genera

named Enteropsectra n. gen. for the first group of four strains (type JUm408), and Pancytos-

pora n. gen. for the second independent clade (type JUm1505).

In Enteropsectra n. gen., we isolated four strains. Based on genetic distance (Table 3; S3

Table), spore morphology (Figs 7 and 8; S6 Fig; Table 4), and host specificity (Table 5) of

JUm408 and JUm2551, we define two species: E. longa JUm408 with large spores (type species

of the genus) and E. breve JUm2551 with small spores. We do not assign a species name to the

two other strains (JUm1456 and JUm1483) as their molecular relationship depends on the

gene (SSU rDNA versus β-tubulin). For example, JUm1483 show small spores, was found

infecting Oscheius tipulae and groups with JUm2551 by SSU rDNA, but its β-tubulin sequence

is closer to JUm408. We thus prefer to abstain assigning a species name to this strain.

In Pancytospora n. gen., we isolated five strains. Based on genetic distance (Table 3; S3

Table), host specificity and tissue tropism (Fig 7; S5 Fig; Table 5), we define two species:

Pancytospora philotis n. sp. (type species of the genus) infects Oscheius tipulae intestine,

while Pancytospora epiphaga n. sp. was found to infect Caenorhabditis brenneri epidermis

and muscles.
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Nomenclatural acts. The electronic edition of this article conforms to the requirements

of the amended International Code of Zoological Nomenclature, and hence the new names

contained herein are available under that Code from the electronic edition of this article. This

published work and the nomenclatural acts it contains have been registered in ZooBank, the

online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any standard web browser by append-

ing the LSID to the prefix ‘‘http://zoobank.org/” The LSID for this publication is: urn:lsid:zoo-

bank.org:pub:0C31D734-FE13-49F9-8318-ADC6714F316E. The electronic edition of this

work was published in a journal with an ISSN.

Taxonomic descriptions. PhylumMicrosporidia Balbiani 1882

Nematocida ausubeli n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:6-

D7E3D0D-3348-4885-BF64-DF1EE1B7EEBA

The type strain is ERTm2. Two strains ERTm2 and ERTm6 have been submitted to the

American Type Culture Collection (ATCC, https://www.atcc.org) as PRA-371 and PRA-372,

respectively. The type host is Caenorhabditis briggsae [64,65], strain JU1348, which was isolated

from a mixed sample of decaying vegetal matter (rotting fruits, leaf litter, soil, bark, flowers).

The type locality is Periyar Natural Preserve, Kerala, India. The species was also found in C.

briggsae in Germany and Cape Verde, and Caenorhabditis elegans and Caenorhabditis remanei

in Europe. The ribosomal DNA sequence, deposited to Genbank under Accession JH604648.

The genome of the reference strain has been sequenced [39] (accession AERB01000000). The

spores are ovoid and measure 2.80 x 0.96 μm (ranges 2.21–3.26 x 0.72–1.30) for the large class

and 2.04 x 0.53 μm (ranges 1.36–2.92 x 0.28–0.80) for the small class. Infection is localized to

the host intestinal cells. Transmission is horizontal, via the oral-fecal route. The species is

named to honor Dr. Frederick Ausubel and his work on innate immunity of C. elegans.

Nematocida major n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:4D7C3F14-

187A-4AD1-A62F-DA79BED716E0

The type strain is JUm2507. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://www.

justbio.com/worms/index.php). The type host is Caenorhabditis briggsae [64,65], strain JU2507,

isolated from rotting figs. The type locality is Khao Sok National Park, Thailand. The species was

also found in Guadeloupe in C. briggsae and Caenorhabditis tropicalis. The ribosomal DNA

sequence, deposited to Genbank under Accession KX360148. The spores are ovoid and measure

3.4 x 1.2 μm (ranges 2.9–3.8 x 0.8–1.6) for the large class and 2.3 x 0.54 μm (ranges 1.8–2.7 x 0.41–

0.77) for the small class. Infection is localized to the host intestinal cells. Transmission is horizon-

tal, presumably via the oral-fecal route. The species is named after the large size of its spores.

Nematocida minor n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:646590B-

C-E5A8-4FD5-9026-96B276A4D159

The type strain is JUm1510. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://

www.justbio.com/worms/index.php). The type host is Oscheius tipulae [66], strain JU1510,

isolated from compost. The type locality is Hluboka nad Vlatavou near Budweis, Czech

Republic. The species was also found in O. tipulae in Armenia. The ribosomal DNA se-

quence, deposited to Genbank under Accession KX360147. The spores are ovoid and mea-

sure 1.9 x 0.83 μm (ranges 1.5–2.2 x 0.5–1.1) for the large class and 1.3 x 0.55 μm (ranges

1.1–1.7 x 0.35–0.73) for the small class. Infection is localized to the host intestinal cells.

Transmission is horizontal, presumably via the oral-fecal route. The species is named after

the small size of its spores.

Nematocida homosporusn. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:

C959C7AD-DC01-4391-8B18-1B5D02F7349B
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The type strain is JUm1504. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://www.

justbio.com/worms/index.php). The type host is Oscheius tipulae [66], strain JU1504, isolated

from a rotting Arum stem. The type locality is Le Blanc (Indre), France. The species was also

found in the nematode Rhabditella typhae in Portugal. The ribosomal DNA sequence, depos-

ited to Genbank under Accession KX360153. The spores are ovoid and measure 2.0 x 0.72 μm

(ranges 1.7–2.7 x 0.56–0.94). Infection is localized to the host intestinal cells. Transmission is

horizontal, presumably via the oral-fecal route. The species is named after the single class of

spore size that can be observed in the host.

Nematocida ciargi n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:77EF241F-

463D-443A-819D-C32B1BC49332

The type strain is JUm2895. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://www.

justbio.com/worms/index.php). The type host is Procephalobus sp. strain JU2895 (Cephalo-

bina), isolated from rotting citrus fruits. The type locality is Barcelona, Spain. The ribosomal

DNA sequence, deposited to Genbank under Accession KX360152. The spores are ovoid and

1.4 x 0.59 μm (ranges 1.5–2.2 x 0.41–0.84). Infection is localized to the host intestinal cells.

Transmission is horizontal, presumably via the oral-fecal route. The species is named after its

type locality, close to the Centre de Regulació Genòmica in Barcelona, Spain.

Enteropsectra n. gen. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:33CE2667-

0109-44DA-9878-34FAD4A2F96B

This is a novel microsporidian lineage within microsporidian clade II (ref), with Ortho-

somella, Liebermannia as the closest relatives, based on SSU rDNA phylogenetic analyses. The

type species is Enteropsectra longa n. sp. Zhang & Félix 2016. The genus is named Enteropsectra

(feminine, from the Greek "psectra": brush) after the morphological aspect of the spores at the

apical side of the intestinal cells of the nematode host, resembling a bottle brush.

Enteropsectra longa n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:

FC304EDC-B2CA-4486-BF8F-095BE0B60E45

The type strain is JUm408. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://www.

justbio.com/worms/index.php). The type host is Oscheius sp. 3 [21], strain JU408, isolated

from a soil sample. The type locality is the Botanical garden of Reykjavik, Iceland. The ribo-

somal DNA sequence, deposited to Genbank under Accession KX360142. The spores have the

shape of a long and thin rod, measuring 3.8 x 0.49 μm (ranges 3.1–5.0 x 0.35–0.68). The polar

tube makes one turn at the posterior part of the spore; one or two polar tube sections can be

seen in transmission electron microscopy when the spore is cut transversally. Infection is

observed in the host epidermis and does not affect the intestinal cells. The spores do not seem

to be enclosed as groups of spores in a vesicle. Transmission is horizontal, presumably via the

oral-fecal route. The species is named after the long size of its spores.

Enteropsectra breve n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:236607CA-

8C44-414D-916C-802C7C67600D

The type strain is JUm2551. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://www.

justbio.com/worms/index.php). The type host is Oscheius tipulae [66], strain JU2551, isolated

from a rotting apple. The type locality is an apple orchard in Orsay (Essonne), France. The

ribosomal DNA sequence, deposited to Genbank under Accession KX360145. The spores are

ovoid and measure 1.8 x 0.66 μm (ranges 1.3–2.1 x 0.42–0.90). Infection is observed in the host

intestine and does not affect the intestinal cells. Transmission is horizontal, presumably via the

oral-fecal route. The species is named after the short size of the spores.
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Pancytospora n. gen. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:act:1ADAC856-

ED00-49C9-9906-634BAF38B355

This is a novel microsporidian lineage within microsporidian clade IV, with Orthosomella,

Liebermannia and Enteropsectra n. gen. as the closest relatives, based on SSU rDNA phyloge-

netic analyses. The type species is Pancytospora philotis n. sp. Zhang & Félix 2016. The genus is

named Pancytospora (feminine) after the distribution of the spores throughout the cells.

Pancytospora philotis n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:

act:5EA01A65-F5F4-4EE6-A1B6-2726F9CE8579

The type strain is JUm1505. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://www.

justbio.com/worms/index.php). The type host isOscheius tipulae [66], strain JU1505, isolated

from a rotting peach. The type locality is Le Blanc (Indre), France. The species was also found in

O. tipulae in other locations in France. The ribosomal DNA sequence is deposited to Genbank

under Accession KX360131. The spores have the shape of a long and thin rod, measuring 3.5 x

0.42 μm (ranges 2.4–4.7 x 0.25–0.52). Infection is localized to the host intestinal cells. Transmis-

sion is horizontal. The species is named after its specificity toOscheius tipulae (abbreviation Oti).

Pancytospora epiphaga n. sp. Zhang & Félix 2016. LSID urn:lsid:zoobank.org:

act:41573063-B494-41C3-B0A8-2417DFEB3DCC

The type strain is JUm1396. The type material is deposited as a live frozen culture of the

infected host at ATCC and in the collection of the corresponding author (MAF; http://www.

justbio.com/worms/index.php). The type host is Caenorhabditis brenneri. The type locality is a

private garden in the vicinity of Medellin, Colombia. The ribosomal DNA sequence, deposited

to Genbank under Accession KX424959. The spores are ovoid and measure 3.71 x 0.80 μm

(ranges 2.99–4.22 x 0.56–0.92). Infection is observed in the host epidermis and does not affect

the intestinal cells. Transmission is horizontal. The species is named after the site of infection

in the nematode, mostly the epidermis.

Supporting Information

S1 Fig. Ultrastructural observations of Nematocida ausubeli. Transmission electron micro-

graphs of N. ausubeli strain JUm2009. A. Lower magnification view of several N. ausubeli

infection stages in host intestinal cells (same animal as in Fig 5D). The large arrow indicates

sporonts. The small arrow indicates spores. Two multinucleate meronts are indicated. B. A

multinucleate meront and a multilayered figure of host rough endoplastic reticulum (arrow).

C. Sporont, with a nascent posterior vacuole (arrow) next to the dense membrane apparatus.

Arrowheads indicate the nascent polar tube.D. Formation of sporonts in a polysporous sporo-

gon. The small arrow indicates the nascent posterior vacuole and the large arrow indicates the

dense membrane apparatus that appears to act as a primordium of the posterior vacuole. E.

Rings of host rough endoplastic reticulum. F.Different N. ausubeli infection stages in host

intestinal cells. The large arrow indicates sporoblasts. The small arrow indicates spores. One

meront with a single nucleus is indicated. Microvilli of host intestinal cell are indicated with

arrowhead. G. Six clustered sporonts. The intestinal cell appears reduced in width. The large

arrows indicate microvilli; the small arrows indicate nascent anterior and posterior polaro-

plasts.H.Mature spore with posterior vacuole shown in inset. I. Posterior vacuole in a mature

spore. J. Detail of the posterior side of a spore, with the posterior vacuole. K.Mature spore in

the lumen, arrowhead indicates microvilli. L. Cross-section of two spores in the intestinal

lumen. Scale bar is 500 nm, unless indicated otherwise. B, bacterium; Lu, intestinal lumen; M,

meront; Nu, nucleus; Pt, polar tube; Pv, posterior vacuole; RER, rough endoplastic reticulum.

(TIF)
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S2 Fig. Bayesian inference phylogeny of β-tubulin gene sequences. β -tubulin gene

sequences from 38 nematode-infecting microsporidia species and 18 other microsporidia spe-

cies were used. Model General time reversible (GTR) was applied. The branches were colored

and annotated as above. This tree shows the position of Nematocida sp. 7.

(TIF)

S3 Fig. Meront morphology of the different Nematocida species by Nomarski optics. A.

Wild Caenorhabditis elegans strain JU1249, withNematocida parisii infection. B.Wild C. elegans

strain JU2520, with Nematocida ausubeli infection. C.Wild C. briggsae stain JU2747, with N.

major infection.D.Wild Oscheius tipulae strain JU1510, with N.minor infection. E.Wild Rhab-

ditella typhae strain NIC516, with N. homosporus infection. F.Wild Procephalobus sp. strain

JU2895, with N. ciargi infection. Meronts are indicated by arrows in all images. Scale bar: 10 μm

(TIF)

S4 Fig. Bayesian inference phylogeny of SSU rDNA including the sequences of unidentified

microsporidia species from environmental samples. SSU rDNA Bayesian inference phylog-

eny with the sequences of Fig 2 and nine microsporidian sequences (S1 Table) found in envi-

ronmental samples in soil, sand and compost samples [41]. Model Kimura 2-Parameter (K2P)

was applied. The branches were colored and annotated as Figs 4 & 5.

(TIF)

S5 Fig. Meront morphology of Enterospectra and Pancytospora species and tissue tropism

of Pancytospora epiphaga by Nomarski optics. A. WildOscheius sp. 3 strain JU408, with Enter-

opsectra longa infection. B.WildO. tipulae strain JU2551, with Enteropsectra breve infection. C.

WildO. tipulae strain JU1505, with Pancytospora philotis infection. One intestinal cell (below) was

filled with spores, but only meronts seen in the other cell (up) close to it.D. Wild Caenorhabditis

brenneri strain JU1396, with Pancytospora epiphaga infection, in the epidermis. Meronts are indi-

cated by arrows in all images. E. Wild Caenorhabditis brenneri strain JU1396, with Pancytospora

epiphaga infection in the pharyngeal region. Spores are indicated by arrows. F. Wild Caenorhabdi-

tis brenneri strain JU1396, with Pancytospora epiphaga infection. The large arrow indicates spores

in the coelomocyte, while the small arrow indicates spores in the epidermis. Arrowheads indicate

uninfected intestinal cells that are filled with gut granules. Scale bar: 10 μm

(TIF)

S6 Fig. Ultrastructural observations of Enteropsectra longa. Transmission electron micro-

graphs of E. longa strain JUm408. A, B.Organization of various microsporidian stages in a host

cell; the large and small arrows indicate apical and basal membranes of the host intestinal cells,

respectively. The spores are on the apical side of the cell (and are not well infiltrated in these sec-

tions). In panel A, on the lower right is seen a nuclear division of a sporont. The mitotic spindle

is indicated by an arrowhead. In panel B, the longitudinal section of the polar tube of a spore is

indicated by an arrowhead. The white halo that can be seen between the mature spore wall and

the cytoplasm is not due to the presence of a membrane but to incomplete infiltration during

the preparation of the samples for electron microscopy. Such light-appearing areas are also seen

occasionally on the internal side of the spore wall in both observed species. C.Mature spore

with inset indicating the turn of the polar tube on the posterior end of the spore. Anchoring disk

is indicated by arrow.D-F. Cross-section of E. longa spores with arrowheads indicating polar

tubes. Most cross-sections show a single section of the polar tube. In E,F are shown the two

cases where the polar tube was cut twice, likely close to the posterior end of the spore.G. Exit of

spore.G, H. Exit of spores from the intestinal cell apical side into the lumen. The host cell apical

membrane (black arrows) folds around E. longa spores. Microvilli are indicated by arrowheads.

The posterior vacuole is indicated by a white arrow in panel G. I. Twomature spores are each
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surrounded by an additional membrane (arrowheads), while the third one (right) does not.

Inset at low resolution shows the positions of the two spores in the lumen in the corresponding

section. J, K.Host intestinal cell nucleolus. The tubular substructures were not observed in the

control uninfected animals. These structures have a width of approximately 250 nm and appear

to be formed by ribosomal precursors. L. A nucleus filled with spores with a piece of degener-

ated nucleolus (arrow). The arrowhead indicates the nuclear membrane. Invasion of the host

nucleus by the microsporidia was observed only once and the host nucleus is not the only place

for sporogenesis in this species. Scale bar is 500 nm, unless indicated otherwise. A, anchoring

disk; Ex, exospore; En, endospore; HNu host nucleus; HNl host nucleolus; Lu, lumen; M, mer-

ont; Mv, microvilli; Nu, microsporidian nucleus; Pt, polar tube; S: spore; St: sporont.

(TIF)

S7 Fig. Spore morphology of microsporidia infection in different hosts by Nomarski

optics. A. Oscheius tipulae strain JU1510, with Nematocida ausubeli JUm2526 infection. Refer

to Fig 4B for morphology in the infection of a natural host species. Large and small spore clas-

ses are indicated by larger and smaller arrows, respectively. B. Oscheius sp. 3 strain JU75, with

N. homosporus NICm516 infection. Refer to Fig 4E for morphology in a natural host species.

Spore vesicles are indicated by arrows. C. Oscheius sp. 3 strain JU75, with Enteropsectra longa

JUm408 infection. Refer to Fig 7A for morphology in a natural host species. Long thin spores

along the apical membrane of host intestinal cells are indicated by arrows.D. Oscheius sp. 3

strain JU408, with Enteropsectra breve JUm2551 infection. Refer to Fig 7B for morphology in a

natural host species. Small rod spores along the apical membrane of host intestinal cells are

indicated by arrows. E.Oscheius tipulae strain JU170, with Pancytospora philotis JUm1505

infection. Refer to Fig 7C for morphology in a natural host species. Long thin spores concen-

trated in intestinal cells is indicated by arrow. F. C. elegans N2, with Pancytospora epiphaga

JUm1396 infection. The arrowhead indicates intestinal granules. Refer to Fig 7D for morphol-

ogy in a natural host species. Scale bar: 10 μm.

(TIF)

S1 Table. Accession numbers for SSU rDNA and β-tubulin sequences.

(XLSX)

S2 Table. ERT54 and ERT72 transcriptional reporter induction by various microsporidia.

(XLSX)

S3 Table. SSU rDNA pairwise distances of all the sequences used for phylogenetic analysis

in Fig 2 and genetic distances in Table 3.

(XLSX)

S1 Datafile. Alignment with 116 SSU rDNA sequences used for Figs 2 and 3; S6 Fig;

Table 3; S3 Table.

(NEX)

S2 Datafile. Alignment with 58 ß-tubulin sequences used for Fig 3; S2 Fig. Sequences were

aligned using Geneious v7.1.7 with default parameters and further aligned manually and

concatenated if available.

(NEX)
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Table 2. Collection of other microsporidia species infecting wild nematodes

Microsporidia Nematode host Strain Country / Year Sample composition Spore feature

Nematocida
major n. sp.

C. briggsae JUm2507 Thailand / 2013 rotting fruit 2S

C. briggsae JUm2747 Guadeloupe / 2014 rotting fruit 2S

C. tropicalis JUm2751 Guadeloupe / 2014 rotting fruit n. d.

Nematocida
minor n. sp.

Oscheius tipulae JUm1510 Czech Republic / 2008 rotting apple 2S

O. tipulae JUm2772 Armenia / 2014 rotting fruit n. d.

Nematocida
homosporus n. sp.

O. tipulae JUm1504 France / 2008 rotting stem 1S

Rhabditella typhae NICm516 Portugal / 2013 rotting apple 1S

Nematocida
ciargi n. sp.

Procephalobus sp. JUm2895 Spain / 2015 rotting fruit 1S

Nematocida
sp. 7

C. sp. 42 NICm1041 French Guiana / 2014 flower n. d.

Enteropsectra
longa n. sp.

Oscheius sp. 3 JUm408 Iceland / 2002 compost 1S, LT, AP

Enteropsectra
breve n. sp.

O. tipulae JUm2551 France / 2013 rotting apple 1S, SR, AP

O. tipulae JUm1483 France / 2008 rotting plum 1S, SR,AP

O. tipulae JUm1456 France / 2008 rotting fruit n. d.

Pancytospora
philotis n. sp.

O. tipulae JUm1505 France / 2008 rotting apple LT

O. tipulae JUm1460 France / 2008 rotting snail LT

O. tipulae JUm1670 France / 2009 rotting apple LT

O. tipulae JUm2552 France / 2013 rotting stem LT

Pancytospora
epiphaga n. sp.

C. brenneri JUm1396 Colombia / 2008 rotting fruit LT

The reference strain of each newly found species is in bold. 2S: two distinct sizes of spores; 1S: one size of spores

LT: long, thin rod; SR: small rod (see dimensions in Table 3); AP: form spores first along the apical side of the intestinal cells. n. d.: not determined

doi:10.1371/journal.ppat.1006204.t001
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II. 

Natural variation of Caenorhabditis elegans in 

sensitivity to microsporidian infection 
 

 

While studying the diverse microsporidian infections found in the wild nematodes, we also 

observed natural phenotypic variation in sensitivity of different wild C. elegans strains to the 

same microsporidian infection. In this chapter, I will focus on the comparison of the 

sensitivity of ten C. elegans strains upon the same N. ausubeli infection. We chose to focus on 

the N. ausubeli instead of N. parisii infection in C. elegans with two reasons. First, our 

previous results showed that C. elegans may have a different transcriptional response to the 

infection by N. ausubeli than to the infections by three other Nematocida species, including N. 

parisii, N. major and N. homosporus (see the former chapter). Second, the sensitivity of six C. 

elegans strains to N. parisii infection has been studied by Balla et al. (2015). It will be of 

interest to compare N. ausubeli with N. parisii in their interactions with C. elegans. 

 

Variation in C. elegans sensitivity to N. ausubeli infection was determined by food 

consumption tests in the presence or absence of microsporidia. Two C. elegans strains, 

JU1249 and JU2825, displayed the largest sensitivity difference to N. ausubeli infection. 

JU1249 was found to be the most resistant strain, whereas JU2825 was the most sensitive one. 

Quantitative fluorescence in situ hybridization (FISH) analysis on microsporidian infection in 

the two strains suggested that the JU1249 and JU2825 strains differ in their tolerance. 

Competition assays further supported that JU1249 and JU2825 are good candidates for studies 

on the genetic loci associated with C. elegans sensitivity variation to microsporidian 

infections.  

 

A surprising effect of microsporidia infection on C. elegans was also found in this study, 

which will be described in detail in the next chapter. 

 

 

My contributions in this study: 

I performed all the assays and analyses in this part.  
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Clément Dubois did his M2 internship in our lab. His work was closely related to this part of 

my Ph. D. project. I will talk about his results in the Discussion. 
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II.1. Background 
 

Specificity of infection of Caenorhabditis and Oscheius species by eight microsporidia 

species was described in the former chapter. Meanwhile, intraspecific variation of C. elegans 

sensitivity to N. parisii and N. ausubeli was also observed during the maintenance of wild 

infected strains. Some infected C. elegans strains displayed higher mobility, higher fecundity 

and greater longevity than other C. elegans infected with the same microsporidia. This host 

phenotypic variation can be host-based or pathogen-based, or dependent on their interaction. 

Host C. elegans strains may have different genetic bases underpinning their microsporidia-

defense traits. On the other hand, intraspecific variation for pathogenicity may also exist in 

microsporidia. Here, we focus on the host C. elegans. We were particularly interested in the 

genetic basis of C. elegans sensitivity variation to microsporidia infection, which can be 

further studied by Quantitative trait locus (QTL) analysis. 

 

Previously, the sensitivity of six C. elegans strains to N. parisii infection was investigated by 

Balla et al. (2015). They notably found that one C. elegans strain, from Hawaii (HW), has 

enhanced immunity at the young larval stage (L1), which gives to this strain the ability to 

clear the N. parisii infections. This phenomenon was not observed in the other five strains 

tested, including N2. The genetic basis of this early-life immunity variation between HW and 

N2 was further investigated. The results suggested that the special immune ability of the 

Hawaiian strain was a complex multigenic trait (Balla et al. 2015). Among the six C. elegans 

strains compared in this study, only one strain ERT002 (derived from CPA24) was naturally 

found infected with N. parisii (ERTm1). The other five strains may have never encountered 

any microsporidia in their natural habitats. To study the evolutionary consequences of 

microsporidia infection pressures on C. elegans, it is relevant to compare C. elegans strains 

that have been exposed to microsporidia in the wild. 

 

The work described in this chapter is the first description of variation among naturally 

infected C. elegans strains in sensitivity to microsporidia infection. While comparing the 

sensitivity of ten wild C. elegans strains to N. ausubeli infection, we proved the natural 

variation for this trait in C. elegans species. Interestingly, we found contrasted levels of C. 

elegans tolerance to N. ausubeli infections. Indeed, the two C. elegans strains, JU1249 and 

JU2825, showed similar levels of infection but highly contrasted levels of sensitivity (indirect 
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fitness assay). These two C. elegans strains will be further used to identify genetic locus/loci 

involved in C. elegans tolerance to N. ausubeli microsporidia. 

 

 

II.2. Materials and Methods 
 

II.2.1. C. elegans and Microsporidia strains 
In RESULTS I, 19 C. elegans strains had been isolated with N. parisii or N. ausubeli 

infection. Among these C. elegans isolates, the strains JU1249, JU1762, JU2009, JU2132, 

JU2287, JU2526, JU2586, JU2816, JU2825 and the lab reference strain N2 were used. The 

nine naturally infected strains were subsequently bleached to remove microsporidia infection 

and any other microbes, and maintained in the lab as described in RESULTS I. 

 

The N. ausubeli strain used in the first infection assay on all the ten C. elegans strains was 

JUm2009, a N. ausubeli strain isolated from the C. elegans strain JU2009. Another N. 

ausubeli strain JUm2526, two N. parisii strains JUm1249 and JUm2816 were isolated from 

the C. elegans strains JU2526, JU1249 and JU2816, respectively. JUm2009, JUm2526 and 

JUm1249 were used on the further infection assays on JU1249 and JU2825, to compare their 

sensitivity variation upon different microsporidia infections. Finally, N. ausubeli JUm2009 

and N. parisii JUm2816 were used to infect the mixed population of JU1249 and JU2825 in 

the competition assay. Spores were prepared and quantified as described in RESULTS I. 

  

 

II.2.2. Food consumption assays  

A. Infection and maintenance 

20 uninfected young adults (i.e. prior to first egg formation) were transferred onto a 55mm-

diameter NGM plate seeded with E. coli OP50. 2 million of microsporidian spores suspended 

in 100 µl of distilled water were dispensed onto the E. coli lawn. The cultures were then 

incubated at 23 °C. The infection symptoms were monitored by Nomarski optics at 48 hours 

after inoculation. In order to avoid the possible bias caused by the high or low concentration 

of spores used in the initial inoculation, and to have a stable infected C. elegans population, 

20 young adults were transferred to a new plate every two days. Uninfected C. elegans 

populations were also maintained and transferred for a few generations. Three replicates were 

conducted in parallel for each experiment. Infected and uninfected C. elegans populations 

were maintained for ten days after inoculations. Then the C. elegans isolates were used in 

food consumption assays (the protocols of the food consumption assay and the intensity 

normalization method were from by Matthew Rockman and Victoria Cattani). 

 

B. Plate seeding, C. elegans transfer and fluorescence scan 

To study the population growth of different C. elegans strains under different conditions, food 

depletion by each strain was measured in the presence or absence of microsporidia infection. 
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First, 100 µL of OP50-GFP (a E. coli OP50 strain carrying a GFP marker) were carefully 

seeded in the center of 6 cm NGM plates. Control 6 cm NGM plates were seeded with 100 µL 

of regular OP50, which were required for the normalization of OP50-GFP fluorescence 

intensity. Seeded plates were incubated at room temperature for 24 hours in the dark. Signal 

intensity of the seeded plates was then scanned and measured using a Typhoon FLA 9000 

laser scanner (GE Healthcare Life Sciences). The fluorescence intensity in this first scan was 

used as the data at timepoint 1. C. elegans individuals from prepared populations were 

transferred to plates seeded with OP50-GFP soon after the first scan. 

 

From the C. elegans populations maintained for ten days, 10 L4s were transferred to a plate 

seeded with OP50-GFP, with three replicates per experiment. The fluorescence decay in 

plates was scanned every 24 hours until the depletion of OP50-GFP. Two types of control 

were also scanned at each timepoint: three plates seeded with OP50-GFP but without C. 

elegans (a control for bacterial growth), and three plates seeded with regular OP50 but 

without C. elegans (a negative control for non-specific fluorescence).  

 

A few plates got contaminated by fungi or other bacteria after several times of scan. These 

contaminated plates were discarded then. 

 

C. Fluorescence intensity normalization 

The mean fluorescence intensity of each plate was corrected by the formula below to obtain 

the corrected fluorescence intensity (Fc). 

 

 
 

Fi= Mean fluorescence intensity of the plate at timepoint i; 

Fbacki= Mean fluorescence intensity of the plate with regular OP50 without C. elegans at 

timepoint i; 

Fnowormi = Mean fluorescence intensity of the plate with OP50-GFP without C. elegans at 

timepoint i. 

 

The food fluorescence intensity on each plate at different timepoints was then analyzed and 

compared. As the bacteria OP50 could grow in the plate during the experiment, the GFP 

intensity could initially rise when the bacteria growth rate was higher than the consumption 

rate of C. elegans.  

 

In the food consumption assays focusing on JU1249 and JU2825, infected C. elegans 

populations were harvested after the last scan, and stored in acetone at -20 °C for 

microsporidia infection measurements by FISH. 
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II.2.3. Measurements of microsporidia infection by FISH 

 

A. FISH measurements 

The infection rate, the pathogen load and the average infected area of C. elegans were 

measured by FISH staining. We used the FISH probe MicroB conjugated to a Cyanine5 (Cy5) 

dye to stain the small subunit rRNA of N. parisii and N. ausubeli (Troemel et al. 2008). FISH 

was performed as previously described (Troemel et al. 2008). Briefly, 5ng/µL of MicroB was 

used in the hybridization at 46 °C. After overnight hybridization, C. elegans populations were 

washed and incubated at 48 °C for 30 minutes.  

 

Stained C. elegans isolates were mounted on glass slides and imaged using the fluorescence 

microscope under the Cy5 filter with a 10X objective and the Metamorph software. Images 

were analyzed semi-manually using ImageJ software. The body area, the infected area and the 

intensity of the infected area in 30 adult C. elegans were measured for each replicate. The 

infection rate, and the average pathogen load were computed and analyzed. 

 

B. Statistical analysis on FISH data 

Rstudio (v 0.99.903) and two packages (ggplot2, plyr) were used for the statistical analysis 

and the Figure 28. The pathogen load was analyzed by a linear model to explain the logarithm 

of fluorescence intensity (pre-normalized) by the C. elegans genotypes. To test whether the 

pathogen loads of the two C. elegans strains significantly differed upon each microsporidia 

infection, we performed a t-test. To test whether the infection rates of the two C. elegans 

strains significantly differed upon each microsporidia infection, we used a Wilcoxon Rank 

Sum test. 

 

 

II.2.4. Competition assays  

 

A. Infection and competition 

The C. elegans strains JU1249 and JU2825 were competed with or without microsporidia 

infection. Ten uninfected JU1249 L4 larvae and ten uninfected JU2825 L4 larvae were 

transferred to a 10 cm NGM plate seeded with E. coli OP50. These 20 L4s founded the initial 

mixed population in the competition assays, with five replicates per experiment. 5 million 

microsporidian spores in 150 µL distilled water were placed on the E. coli lawn. The cultures 

were then incubated at 23 °C. The infection symptoms were checked by Nomarski optics at 

48 hours after inoculation. To avoid starvation, each plate was visually checked twice a day 

for the amount of OP50 left in the plate; if starvation may occur before the next visual check, 

a small fraction of the population (about 200 to 400 animals) was transferred to a fresh culture 

plate. As microsporidia infection delays the growth of C. elegans populations, infected 

populations were transferred fewer times than uninfected populations in the experiment. After 
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each transfer, animals from old plates were harvested in M9 solution and stored at -80 °C for 

quantification of the respective proportions of JU1249 and JU2825.  

 

B. Allele quantification 

The whole genomes of JU1249 and JU2825 were sequenced using Illumina Hiseq4000 with 

20X coverage and paired end 150 bp. For each genome, the raw data were aligned to the 

reference genome (C. elegans WS243) using a combination of softwares - bwa, samtools, 

Picard and Genome Analysis Toolkit (GATK) (Li and Durbin, 2009; Li et al., 2009; 

McKenna et al., 2010). From the output files, homozygous single-nucleotide polymorphisms 

(SNPs) versus the reference genome were called (A pipeline on the genome data analysis was 

developed in the lab by Fabrice Besnard). A few SNPs between JU1249 and JU2825 were 

selected manually.  

 

Based on one of the single-nucleotide polymorphisms (SNPs) between JU1249 and JU2825 

on chromosome III, pyrosequencing primers III_663310_Forward (5'-

GTGACGTACTAGCAACGAGTCGATTTTGGGGATGGA-3'), III_663310_Reverse (5'-

CACTAGGCAGGTAGGCATTTTT-3') and III_663310_Sequencing (5'-

CCAAACTTTTATAGAGATCA-3') were designed. Allele quantification was performed 

using pyrosequencing as previously described (Félix and Duveau, 2012). In brief, harvested 

C. elegans isolates were centrifuged at 3,000 rpm for 2 minutes to generate a nematode pellet. 

Lysates of 2 µL of the pellet were used as PCR templates, with the primers 

III_663310_Forward and III_663310_Reverse. The allele frequency of the PCR product was 

quantified with the pyrosequencer (PyroMark Q96 ID instrument; Biotage), using primer 

III_663310_Sequencing and a universal biotinylated primer (5'- 

[Btn]TAGCAGGATACGACTATC-3'). 

 

The accuracy of this quantification method was estimated by measuring the allele frequencies 

of PCR products that were amplified using C. elegans lysates of known proportions of 

mixtures of JU1249 and JU2825 individual L4s. On average, 2% of discrepancy existed 

between expected and observed allele frequencies. 

 

The experiment was continued until all replicates in one treatment reached fixation of either 

JU1249 or JU2825. 

 

 

II.3. Results 
 

II.3.1. Natural variation of C. elegans population growth, in the 

presence or absence of N. ausubeli infection 
 

In the Felix laboratory collection of wild nematode isolates, 19 C. elegans strains were 

naturally infected with microsporidia (Figure 24). The N. parisii infection has been shown to 
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The strong assumption of our food consumption assay is that a faster worm population growth 

causes faster food depletion, i.e. there is a good correlation between fitness and food 

depletion. Note that a faster food depletion rate is not necessarily fully correlated to the 

nematode population growth rate. For example, it might also be correlated to the food 

consumption rate per worm. A small population with a high food consumption rate per worm 

may consume food faster than a relatively larger population with a lower food consumption 

rate per worm. However, when considering a single C. elegans strain, the impact of 

microsporidian infection on the host fitness will be reflected by the decay in food 

consumption caused by the infection. C. elegans food consumption rates might be 

differentially influenced by microsporidian infections, which could indicate variations in the 

sensitivity of C. elegans to microsporidia infection. Although the food consumption assay is a 

rough proxy, it is a practical and convenient method to quantify C. elegans sensitivity to 

microsporidian infection. 

 

First, we investigated variation in sensitivity among ten C. elegans strains, nine of which were 

naturally found infected with N. parisii or N. ausubeli, and N2 as a control (Figure 24, marked 

by “*”). We bleached each strain and infected it with the N. ausubeli strain JUm2009. Then 

these infected populations were maintained for 10 days (about four generations) to a relatively 

stable state, in which infected C. elegans individuals infect other uninfected individuals and 

C. elegans populations continue the infection over generations. From the stable infected 

population, individual L4s were transferred to plates seeded with E. coli OP50-GFP, the 

fluorescence intensity of which was monitored at different timepoints. Uninfected C. elegans 

isolates were also maintained and tested in parallel.  

 

As expected, we find that for nine C. elegans strains (JU2526 will be described in the next 

chapter), the infected populations consumed food slower than the uninfected populations 

(Figure 25). This demonstrated that N. ausubeli infection negatively affects C. elegans food 

consumption rates. Moreover, this negative impact of N. ausubeli infections varies between 

strains (Figure 25 and Figure 26). For example, with or without infection, JU2287 is the 

slowest food consumer among the nine strains. However, JU2825, the fastest food consumer 

when uninfected, only had a medium food consumption rate among the nine strains when they 

were infected (Figure 26). This demonstrates that the food consumption rates of different C. 

elegans strains were affected differently when they were infected with N. ausubeli, which 

suggested that the natural variation in C. elegans response to the N. ausubeli infection. 
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To further understand the genetic basis of C. elegans sensitivity variation to microsporidia 

infection using a quantitative trait locus (QTL) approach, at least two strains showing 

contrasted phenotypes are required. Among the C. elegans strains we tested, JU1249 and 

JU2825 were chosen as candidates. In the absence of microsporidia infection, JU2825 

consumed food faster than JU1249. In contrast, with N. ausubeli JUm2009 infection, JU1249 

consumed food faster than JU2825 (Figure 25, Figure 26). Thus, N. ausubeli JUm2009 

infection has a larger negative influence on JU2825 than on JU1249. JU1249 is more resistant 

to N. ausubeli JUm2009 than JU2825. We further investigated whether the host sensitivity 

variation between JU1249 and JU2825 is specific to N. ausubeli JUm2009.
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Figure 25. Variation in sensitivity against N. ausubeli infection among nine C. elegans 

wild isolates. 

E. coli OP50-GFP intensity over time for nine C. elegans strains with or without N. ausubeli 

JUm2009 infection. The Y-axis is the normalized intensity of the fluorescence of OP50-GFP. 

The X-axis is the scanning time point. Each plate was scanned every 24 hours until full 

depletion of bacteria on the plate. Data are mean values of three replicates (data marked with 

“*” are mean values of two replicates), with bars represent standard errors. As the bacteria 

OP50-GFP could grow on the plate, the intensity increased in the beginning. 

 

 

 

 

 

 

 

 

 

Figure 26. OP50-GFP intensity of nine C. elegans strains at two timepoints. 

The OP50-GFP intensity of the plates with uninfected C. elegans (at 72h) and infected C. 

elegans (at 120h) is shown. Data are mean values of three replicates (data marked with “*” 

are mean values of two replicates), with bars represent standard errors. The nine strains on the 

X axis were ordered from left to right by their normalized OP50-GFP intensity at 72 hours. 

JU2825 and JU1249, which displayed contrasted phenotype, were highlighted with green 

frames. 
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II.3.2. Host response of JU1249 and JU2825 to infection by 

different microsporidia 
 

N. ausubeli JUm2009 has a greater negative impact on JU2825 than on JU1249. We then 

investigated the impacts of another N. ausubeli strain JUm2526 and a N. parisii strain 

JUm1249 on the food consumption rates of JU1249 and JU2825. Populations with JUm2009 

infection and uninfected populations were also tested in parallel.  As in the previous 

experiment, without infection, JU1249 consumed food in a similar or a slightly slower rate, 

compared to that of JU2825. In all the infected populations, JU1249 was faster than JU2825 

in the food consumption rate (Figure 27). These results confirmed that JU2825 is more 

sensitive than JU1249 to microsporidia infection.  
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Figure 27. JU2825 is more sensitive than JU1249 to microsporidia infection. 

Food consumption of C. elegans strains JU1249 and JU2825 was monitored over time in the 

presence and absence of microsporidia. Two N. ausubeli strains (JUm2009 and JUm2526) 

and one N. parisii strain (JU1249) were used in the infection. Data are mean values of three 

replicates, with bars represent standard errors. 

 

 

To further understand why JU1249 consumed food faster than JU2825 with different 

microsporidia infections, we examined the infection rates and the pathogen loads, using a 

FISH probe targeting N. parisii and N. ausubeli. We performed this quantitative FISH on the 

populations used in the Food consumption test after the last scan at 168 hours. When infected 

with the N. parisii JUm1249, JU1249 displayed a significantly higher pathogen load than 

JU2825 (p-value is 4e-05). With either of the two N. ausubeli infections, no significant 

difference in the pathogen load was observed between JU1249 and JU2825. When they were 
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infected with any of the three microsporidia, no significant difference in the infection rate was 

detected between JU1249 and JU2825. These results suggest that JU1249 and JU2825 have 

different tolerance abilities. Indeed, JU1249 shows a higher food consumption rate than 

JU2825 with N. ausubeli infection, yet it did not show a lower infection rate or a lower 

pathogen load. Together, FISH tests indicate that a different tolerance of JU1249 and JU2825 

affected their performances in the food consumption test. 

 

 

 

 

 

Figure 28. FISH analysis of the pathogen load and the infection rate of JU1249 and 

JU2825 upon three different microsporidia infections. 

C. elegans strains JU1249 and JU2825 were infected with N. parisii JUm1249, N. ausubeli 

JUm2009 and N. ausubeli JUm2526, respectively. Data are mean values of three replicates, 

with the standard errors indicated as the error bars. In each replicate, 30 adult C. elegans were 

measured. A. Pathogen loads of JU1249 and JU2825 upon different microsporidia infections. 

A t-test was performed to test whether the pathogen loads of the two C. elegans strains 

significantly differed upon each microsporidia infection. Only upon N. parisii JUm1249 

infection, JU1249 displayed a significantly higher pathogen load than JU2825 (p-value is 4e-

05, indicated by “**”). No other significant difference between JU1249 and JU2825 was 

found. B. Infection rate of JU1249 and JU2825 upon different microsporidia infections. A 

Wilcoxon Rank Sum test was performed to test whether the infection rates of the two C. 

elegans strains significantly differed upon each microsporidia infection. No significant 

difference between JU1249 and JU2825 was found. 
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II.3.3. JU1249 outcompeted JU2825 when they were infected with 

microsporidia in laboratory competition assays 
 

Competition assays examine the relative fitness between different co-occurring strains. We 

performed competition assays between JU1249 and JU2825 populations in the presence and 

absence of microsporidia infection, to compare their sensitivity to microsporidia infection, 

and to examine the possible evolutionary consequences of this trait in C. elegans and for QTL 

mapping eventually. In the assay, we bleached and synchronized JU1249 and JU2825, then 

we mixed the two strains in equal number of individual L4s to seed the populations. C. 

elegans populations with N. ausubeli infection, N. parisii infection and no infection were 

assessed, each with five replicate cultures. The populations were maintained by being 

transferred to fresh plates before starvation. After each transfer, the proportions of JU1249 

and JU2825 in the old plates were measured using quantitative pyrosequencing.  

 

Starting from 50% for both strains, in the presence of either microsporidia infection, the 

resistant strain JU1249 outcompeted the sensitive strain JU2825 (Figure 29). N. ausubeli 

JUm2009 infection had a stronger selective effect on C. elegans population than N. parisii 

JUm2816 infection did. Populations infected with JUm2009 reached to fixation of JU1249 at 

the sixth transfer, while the populations infected with JUm2816 reached to fixation of JU1249 

at the eighth transfer. On the other hand, JU2825 outcompeted JU1249 in the uninfected 

condition. These results confirm that the C. elegans strain JU2825 is more sensitive to 

microsporidia infection than JU1249. The sensitivity variation among different C. elegans 

strains to microsporidia infection may alter the outcomes of intraspecific competition in the 

wild.  

 

 



 89 

 

 

Figure 29. Influence of microsporidian infection in the experimental competition 

between C. elegans JU1249 and JU2825. 

The proportion of JU2825 and JU1249 is inferred from the proportion by pyrosequencing of 

their respective private SNP. The mean proportions of five replicates of each treatment at 

each transfer were indicated. Error bars are standard errors over replicates. The experiment 

was continued until all replicates in one treatment reached fixation of either JU1249 or 

JU2825. In the infected populations, JU1249 outcompeted JU2825, whereas in the absence of 

microsporidia, JU2825 outcompeted JU1249. 

 

 

 

II.4. Conclusion 
 

Overall, we find natural diversity for C. elegans sensitivity to N. ausubeli or N. parisii 

infections. The C. elegans strains JU1249 and JU2825 can be further used to start a QTL 

analysis on the genetic bases of C. elegans sensitivity variation to microsporidian infection. 
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III. 

The effect of microsporidia infection on 

Caenorhabditis elegans with the Mortal germline 

phenotype 
 

 

Among the ten C. elegans strains used in the food consumption assay, JU2526 showed an 

intriguing result: the infected JU2526 population consumed food faster than the uninfected 

JU2526 population. We examined JU2526 and found that it displays a mortal germline 

phenotype (Mrt). Further studies indicated that microsporidia infection could suppress the Mrt 

phenotype of some C. elegans strains, i.e. extend the number of generations before reaching 

complete sterility.  

 

Here, I describe my preliminary studies on this serendipitous observation. 
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III.1. Background 
 

The germ line is an immortal cell lineage, which is passed down indefinitely from generation 

to generation. In C. elegans, the germ line can be passed over generations by self-fertilization. 

The mortal germline phenotype (Mrt) corresponds to a progressive decline in fertility of the 

hermaphrodite from one generation to the next, until full sterility. Several C. elegans mutants 

(N2 genetic background), such as mrt-2, hrde-1and prg-1, have been described as Mrt, some 

of them showing a temperature-dependent phenotype (Ahmed and Hodgkin, 2000; Buckley et 

al. 2012; Simon et al. 2014). In our lab, we also noticed that several wild C. elegans strains 

exhibited the temperature-sensitive progressive sterility. At 23 °C or 25 °C, some strains with 

a strong Mrt phenotype become sterile after three to four generations. The molecular 

mechanism of the progressive sterility among wild C. elegans strains remains unknown and is 

being investigated by Lise Frézal in the lab. 

 

When we investigated the sensitivity variation of different C. elegans strains to microsporidia 

infection, we first compared the food consumption rates of different C. elegans strains in the 

presence and absence of microsporidia infection. All infected strains consumed food slower 

than when they were uninfected, except JU2526 (Figure 30). Surprisingly, in this food 

consumption experiment, the uninfected JU2526 populations were only composed of few 

individuals, whereas the infected JU2526 had a much larger population size than the 

uninfected JU2526 population. Further tests showed that JU2526 has a Mrt phenotype at 

23 °C, the temperature at which we did our food consumption test. As all JU2526 individuals 

tested in food consumption tests were from the same original population, the larger size of the 

infected population suggested that microsporidia infection may be able to prevent or attenuate 

the progressive decrease of population growth in JU2526 when cultured at 23°C. 
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Figure 30. Food consumption of JU2526 with or without microsporidia infection. 

This experiment was performed in parallel to those in Figure 25. 

 

 

We further investigated the microsporidia effect on four C. elegans strains with the Mrt 

phenotype. These strains were tested for the number of generations before becoming 

completely sterile, in the presence and absence of microsporidia infection. The results 

demonstrate that both N. parisii and N. ausubeli infections could increase the number of 

generations of JU2526 and JU775 at high temperature.  

 

 

III.2. Materials and Methods 
 

III.2.1. C. elegans and Microsporidia strains 
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The C. elegans strains JU2526, MY10, QX1211 and JU775 were used in this study. All of 

these four strains have been shown to display the Mrt phenotype. As the Mrt phenotype is 

temperature sensitive, these four strains were bleached and maintained at 15 °C. The N. 

parisii strain JUm2816 and the N. ausubeli strain JUm2009 were used in this study. Spores 

were prepared and quantified as described in RESULTS I. 

 

 

III.2.2. Mortal germline assay 
 

20 uninfected young adults (i.e. prior to first egg formation) were transferred to a 6 cm NGM 

plate seeded with E. coli OP50. 5 million microsporidian spores in 100 µl distilled water were 

placed onto the E. coli lawn. The cultures were then incubated at 15 °C. The infection 

symptoms were checked by Nomarski optics at 72 hours after inoculation. 

 

10 L4 larvae from the infected population were transferred to a fresh plate and moved to 

23 °C. Uninfected individual L4s were also tested in parallel. The generation moved from 

15 °C to 23 °C was called the first generation. Ten L4 animals were transferred onto fresh 

plates at each generation (2-3 days). The transfer was continued until the sterile generation. 

i.e. when 10 L4 progenies were not available on the plate. The number of generations before 

becoming sterile was scored.  

 

Three experiments were performed, each with three treatments: N. parisii JUm2816 infection, 

N. ausubeli JUm2009 infection and uninfected control. In the first experiment, we tested C. 

elegans strains JU2526 and MY10, both with three replicates; in the second experiment, we 

tested JU2526 again with five replicates; in the third experiment, we tested C. elegans strains 

JU775 and QX1211, both with five replicates.  

 

The statistical analysis and the figures in Figure 25 were obtained using Rstudio, as described 

in Results II. To test whether the number of generations before becoming sterile of each 

strain with different treatments significantly differed, we used a Wilcoxon Rank Sum test on 

the generation numbers of different treatments within each strain. 

 

 

III.3. Results 
 

We tested four C. elegans strains JU2526, MY10, QX1211 and JU775. MY10, JU775 and 

QX1211 have been shown to have an extremely strong Mrt phenotype at 25 °C (Marie-Anne 

Félix’s data, not shown). In the experimental framework used in my study, at 23 °C, MY10 

and QX1211 become sterile in 3 to 4 generations. JU775 and JU2526 exhibit a milder Mrt 
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phenotype. In average, JU775 becomes sterile in about 7 generations, and JU2526 in about 9 

generations (Figure 31).  

 

With either N. parisii JUm2816 infection or N. ausubeli JUm2009 infection, JU2526 had a 

significant increase (p-value is 0.01 for both) in the number of generations before the sterility 

(Figure 31B). Compared to those with N. parisii JUm2816 infection, JU2526 with N. ausubeli 

JUm2009 infection also showed a significant increase (p-value is 0.04) in the generation 

number. With either microsporidia infection, JU775 had a significant increase (p-value is 0.01 

for both) in the number of generations before the sterility (Figure 31C). Microsporidia 

infections did not seem to rescue the progressive loss of fertility of MY10 or QX1211. These 

results indicated that microsporidia infections are able to rescue fertility in C. elegans strains 

with a moderate Mrt phenotype.  
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Figure 31. The rescue effect of microsporidian infection on the Mrt phenotype in C. 

elegans. 

Data are mean values and standard errors. In each treatment, A. Three replicates for JU2526 

and for MY10; B. Five replicates for JU2526; C. Five replicates for JU775 and QX1211. A 

Wilcoxon Rank Sum test was performed to test whether the number of generations before 

becoming sterile of each strain with different treatments significantly differed. All the 

statistical differences were shown, with * for p-value < 0.05. In A, the differences in 

generations of JU2526 with or without infection are not significant, which may be due to the 

limited number of replicates.  
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Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 97 

As we have already discussed the results in the paper of RESULT I, here I will include again 

the key points in the discussion of the paper and make further comments on our other results, 

related studies and some recently reported discoveries.  

 

 

I. Diverse interactions between rhabditids and 

microsporidia  
 

I.1. The diversity of microsporidia infections in rhabditids 
 

A great diversity of interactions between microsporidia and rhabditid nematodes have been 

discovered. In addition to N. parisii and N. ausubeli, we found five new Nematocida species, 

two Enteropsectra species and two Pancytospora species; another two new Nematocida 

species, Nematocida displodere and Nematocida ironsii, were proposed very recently 

(Troemel et al., 2008, Luallen et al., 2016; Reinke et al., 2017). These 13 microsporidia were 

isolated from 48 rhabditid nematode strains of six Caenorhabditis species, two Oscheius 

species, Rhabditella typhae and Procephalobus sp. (Troemel et al., 2008, Luallen et al., 2016; 

Reinke et al., 2017). In addition, two undefined microsporidia species in the genus 

Enteropsectra and some environmental SSU rDNA microsporidia sequences may represent 

further species in the genera Nematocida and Pancytospora (paper Figure S2, S4) (Ardila-

Garcia et al., 2013). Altogether, these discoveries demonstrate the great diversity of 

microsporidia infections in wild rhabditid nematodes. 

 

 

I.2. How were these microsporidia species described? 
 

As it is difficult to do mating test among microsporidia, these nematode-infecting 

microsporidia species were mainly defined by molecular methods. N. parisii was defined to 

be a new species in a new genus of microsporidia because its SSU rDNA sequence was found 

to be fairly divergent but most closely related to the SSU rDNA of microsporidia Ovavesicula 

popilliae. N. ausubeli was defined to be an independent Nematocida species because its SSU 

rDNA is approximately 95% identical to that of N. parisii, which is its most closely related 

species in the phylogenetic analysis (Troemel et al., 2008).  
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In our study, the new species N. major, N. minor, N. homosporus and N. ciargi were 

characterized by SSU rDNA and ß-tubulin. These four Nematocida species all had N. parisii 

or N. ausubeli as their top blast hit in GenBank, with similarity between 81%-86% of SSU 

rDNA and 74%-84% of ß-tubulin genes. They formed a single clade with N. parisii and N. 

ausubeli, with O. popilliae as sister group within Clade II of the microsporidia SSU rDNA 

phylogeny. The inter-specific genetic distance of SSU rDNA among them is at least 0.06, 

which is greater than the distance between N. parisii and N. ausubeli. But their intra-specific 

distances are all 0.00. Therefore, these four Nematocida were defined as new Nematocida 

species. N. sp. 7 was defined as a new species based on comparison and the phylogeny of ß-

tubulin genes with other species. 

 

E. longa, E. breve, P. philotis and P. epiphaga were described as new species because their 

SSU rDNA were closest (88-89% identity) to that of Orthosomella operophterae, which is in 

the Clade IV of the microsporidia phylogeny. The ß-tubulin sequences of the Enteropsectra 

species were closest (75-76% identity) to Vittaforma corneae, which is a close relative to O. 

operophterae. E. longa, E. breve, P. philotis and P. epiphaga were placed in two close 

groups, with O. operophterae as outgroup in the Clade IV of the microsporidia SSU rDNA 

phylogeny. Among the four strains in the Enteropsectra group, we defined E. longa 

(JUm408) and E. breve (JUm2551) as two species, with further considerations on their spore 

morphology and host specificity. We did not define Enteropsectra JUm1456 and 

Enteropsectra JUm1483 to a species due to their different placements in the SSU rDNA 

phylogeny and the ß-tubulin phylogeny. The other group, the Pancytospora group contains 

five strains, which were defined as two species based on SSU rDNA, host and tissue 

specificity. 

 

N. displodere and N. ironsii were defined as new Nematocida species based on whole genome 

sequencing and phylogenomic comparison. N. displodere was found to be a sister group to N. 

parisii and N. ausubeli in their phylogenomic tree. However, N. parisii and N. ausubeli 

proteins showed an average amino acid identity of 66% compared to each other, and 48.6% 

and 48.3% compared to N. displodere proteins, respectively. Thus, N. displodere was defined 

as a new Nematocida species (Luallen et al., 2016). 
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N. ironsii was recently separated from N. parisii and proposed as an independent species. The 

type strain of N. ironsii is ERTm5, which was previously identified to be a N. parisii strain 

based on rRNA sequence (Balla et al., 2015; Reinke et al., 2017). The genome of ERTm5 was 

sequenced recently and compared with N. parisii ERTm1 and ERTm3. The average genome 

nucleotide identity between N. parisii ERTm1 and ERTm5 is 92.3%, whereas the ERTm1 and 

ERTm3 strains share 99.8% identical genomes (Cuomo et al., 2012; Reinke et al., 2017). 

Based on a 95% average genome nucleotide identity standard, ERTm5 was considered as an 

independent species, named Nematocida ironsii (Konstantinidis et al., 2006; Reinke et al., 

2017). In genomic phylogeny, N. ironsii ERTm5 is the closest species to the clade of N. 

parisii ERTm1 and ERTm3 (Figure 32). Compared to molecular analysis with a few gene 

regions, genomic comparisons among strains and species may provide a better and more 

accurate method to distinguish species and study the relationships among species. However, 

note that the thresholds are artificially set in both cases. 

 

 

 

 

 

Figure 32. Phylogenomic tree of 21 microsporidia species.  
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The phylogenomic tree includes six strains of four Nematocida species and 17 other 

microsporidia species. N. displodere is in the basal position of the Nematocida genus. N. 

ironsii is the closet species to N. parisii. Adapted from Reinke et al. (2017).  

 

Interestingly, our phylogenetic analysis based on the ß-tubulin gene also showed the same 

groupings of ERTm1, ERTm3 versus ERTm5, as their genomic phylogeny displayed (Figures 

32, 33B). In the ß-tubulin phylogeny, the N. parisii clade includes two subclades: one 

subclade includes ERTm1, ERTm3 and six other strains, while the other subclade includes 

ERTm5 and five other strains (Figure 33B). Thus, the other strains in the same subclade as 

ERTm5 may also belong to N. ironsii. It will be necessary to further perform genomic and 

phylogenomic analyses on more strains to understand better the relationships and diversity 

among different “N. parisii” strains, as well as among N. ausubeli and other nematode-

infecting microsporidia.  

 

 

 

 

Figure 33. Phylogenies of different N. parisii, N. ausubeli and N. ironsii strains. 

A. SSU rDNA phylogeny. B. ß-tubulin phylogeny. The phylogeny with the ß-tubulin gene 

shows further relationships among different N. parisii strains, as well as among different N. 
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ausubeli strains. However, the phylogeny of SSU rDNA does not show any of the “parisii” 

subclades in B. Note that the ß-tubulin gene is more divergent than SSU rDNA, which may 

explain the better resolution of subclades in B. Branch colors show the posterior probability, 

with the corresponding color code shown on the left. Scale bar indicates expected changes per 

site. 

 

 

I.3. Various tissue tropisms of rhabditid-infecting 

microsporidia 
 

Only horizontal transmission has been observed in the known rhabditid-infecting 

microsporidia infections, likely via the oral route. Different nematode tissues are infected by 

the various microsporidia. In the 13 known rhabditid-infecting microsporidia, 11 of them 

infect the intestinal cells of their nematode hosts, whereas the other two, N. displodere and P. 

epiphaga, showed infections in other tissues. N. displodere infection has been found in the 

epidermis, muscles, coelomocytes and neurons of C. elegans. P. epiphaga infection has been 

found in the epidermis, muscles and coelomocytes of C. brenneri and at least the epidermis of 

C. elegans. The various infection niches show that rhabditid-infecting microsporidia have 

evolved to use different host tissues to maximize their growth. 

 

N. displodere seemed to have some other special features that are related with its diverse 

tissue tropisms. For example, with a longer polar tube than that of N. parisii (three-fold longer 

than similar sized spores of the two species), N. displodere was suggested to be able to inject 

the sporoplasms directly into host epidermis and muscles from the intestinal lumen. Unlike 

the spores of N. parisii that are continuously shed through the host defecation process, N. 

displodere spores were observed to accumulate inside the host, mainly in epidermis and 

muscles, until they are released into the environment through bursting of the host vulva 

(Luallen et al., 2016). The entry and release mechanisms of P. epiphaga remain unknown yet. 

It would be interesting to further study the infection mechanisms of N. displodere and P. 

epiphaga, and compare them with each other, as well as with the intestine-infecting 

microsporidia. 

 

 

I.4. Spread of microsporidia within the infected tissue  
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A cell-to-cell spread mechanism of Nematocida was reported recently (Balla et al., 2016). 

Previously, it was showed that only infected C. elegans with N. parisii spores inside their 

intestinal cells are infectious, whereas those with only meronts are not infectious to other C. 

elegans individuals (Troemel et al., 2008). However, within one worm, a single inoculated 

intestinal cell that only contains N. parisii meronts is found to be contagious to its 

neighboring intestinal cells (Balla et al., 2016). This cell-to-cell transmission of N. parisii 

could proceed throughout up to half of all the intestinal cells without any differentiation of 

spores, and lead to deformation of cell boundaries and syncytia formation in the worm’s 

intestine. Similar to N. parisii, N. ausubeli is able to spread across several intestinal cells 

before forming spores. N. displodere could spread across different host muscle and 

hypodermal cells, and even from the main hypodermal syncytium into the anterior epidermal 

cells. This cell-to-cell spread mechanism was thus suggested to be a conserved mechanism in 

the genus Nematocida (Balla et al., 2016).  

 

To better determine whether this cell-to-cell spread mechanism is conserved in the genus 

Nematocida, it is necessary to further examine some or all of the five new Nematocida species 

we have found. It would be also interesting to examine if similar mechanisms exist in 

Enteropsectra and Pancytospora species, using the single cell inoculation method in Balla et 

al. (2016).  

 

 

I.5. Microsporidia exit mechanism from host intestinal 

cells 
 

To exit from the intestinal cells of C. elegans, N. parisii first rearranges the host actin (ACT-

5) to induce gaps in the terminal web of the host intestinal cells (mentioned in the 

Introduction III.1.2.) (Troemel et al., 2008; Estes et al., 2011). Then the spore-containing 

compartment (SCC) will be marked with RAB-11, and then traffic to and fuse with the apical 

membrane of the intestinal cells. After the fusion, spores gain access to the intestinal lumen 

and are marked by PGP-1 (Figure 22A, Figure 34, left panel (a)) (Szumowski et al., 2014). A 

very recent study showed an alternative mechanism that spores may have ACT-5 coats in 

addition to the PGP-1 marker, when they gain the access to the lumen (Figure 34, left panel 

(b)) (Szumowski et al., 2016). The ACT-5 coat is not necessary for spore exit, but it may 

promote spore exocytosis. Moreover, later during infection, spore-filled vesicles coated with 
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CHC-1 (clathrin heavy chain), PGP-1 and ACT-5 were noticed, which was suggested to act as 

a compensatory endocytosis mechanism for the host cell, due to the massive efflux of 

intracellular membrane material (Figure 34, right panel) (Szumowski et al., 2016).  

 

 

 

 

Figure 34. Diagram of N. parisii exiting strategy from C. elegans intestinal cells. 

The model for actin regulation of N. parisii spore exocytosis and compensatory endocytosis in 

C. elegans intestinal cells. Left panel: At 43 hpi, the RAB-11 labeled SCCs transfer to and 

fuse with the apical membrane of the intestinal cells, and acquire (a) a PGP-1 membrane 

marker or (b) both PGP-1 and ACT-5 markers. Formation of ACT-5 coats is dependent on the 

Rho GTPases ced-10 and cdc-42, as well as rab-5 and rab-11. Right panel: At 48 hpi, spores 

has overtaken the host cell, with a lot of exited spores. Endocytic spore-filled vesicles were 

coated with CHC-1 (clathrin heavy chain), PGP-1 and ACT-5. Actin in the microvilli and the 

terminal web is represented in bright red; the apical plasma membrane with PGP-1 is in green. 

Adapted from Szumowski et al. (2016). 

 

 

In our study, transmission electronic microscopy indicated different exit mechanisms between 

Nematocida and Enteropsectra species. N. ausubeli probably has a similar exit mode as N. 

parisii: some isolated N. ausubeli spores possessed an additional membrane, which likely 

formed the SCC, and exited from host cells through exocytosis; no additional membranes 

have been observed around N. ausubeli spores in the intestinal lumen (paper Figures 5H, K, 

L, 6A). However, E. longa showed a distinct cellular exit mode: no SCCs have been observed 
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in the E. longa infection, precluding exocytosis as an exit mode; E. longa spores were seen to 

protrude on the apical side of the host cell and push out the host cell membrane; some E. 

longa spores appeared to be surrounded with an additional membrane in the intestinal lumen. 

The exit mode of E. longa spores is likely associated to the fact that E. longa tends to form its 

spores first along the apical side of host epithelial cells (paper Figures 7A, E, 8L). This 

polarization may facilitate the exit of E. longa, as E. longa spores do not need to traffic from 

other places in the cell to the apical membrane of the intestinal cells, which is probably 

required for most N. parisii and N. ausubeli spores. Furthermore, it is likely that because E. 

longa does not exit in the form of SCCs through exocytosis, the host cells will not lose much 

intracellular membrane material. Thus no compensatory endocytosis mechanism that occurs 

in N. parisii infection is needed for hosts with E. longa infection, one proof of which is that 

no spore-containing vesicles have been observed in the E. longa infection. It would be 

interesting to study the molecular mechanism of the spore exit in Enteropsectra species, as 

well as other new rhabditid-infecting microsporidia.  

 

 

I.6. The host specificity of various microsporidia 
 

The different microsporidia displayed a range of host specificity. In the genus Nematocida, N. 

parisii and N. major are relatively specialists as they infect Caenorhabditis, but not Oscheius. 

N. ausubeli, naturally found in C. elegans and C. briggsae, is also able to infect Oscheius sp. 

3. However, N. ausubeli does not infect O. tipulae, unless at very high dose of spores, which 

indicates that O. tipulae is far less susceptible than Oscheius sp. 3 and the two Caenorhabditis 

to N. ausubeli infection. N. homosporus is a generalist that infects R. typhae, two 

Caenorhabditis and two Oscheius.  

 

Among the four nematode-infecting microsporidia in Clade IV, except for P. epiphaga, the 

other three were all isolated from Oscheius species. E. breve is able to infect two Oscheius 

species but not Caenorhabditis. E. longa and P. philotis display an even narrower host 

specificity: E. longa only infects Oscheius sp. 3 while P. philotis only infects O. tipulae.  

 

In the future, it would be interesting to study the specificity of N. minor, N. ciargi and the two 

microsporidia with broader tropisms. In the genus Nematocida, N. minor (both strains) and N. 

homosporus (one of the two strains) were naturally found in O. tipulae. Different from N. 
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homosporus, N. minor has two sizes of spores, which is a feature shared by N. parisii, N. 

ausubeli and N. major. Our infection studies showed that when O. tipulae or O. sp. 3 were 

infected with N. ausubeli, which was not known as their natural pathogen, two sizes of spores 

were observed. It would be interesting to examine the appearance of N. minor spores in a 

Caenorhabditis host, if the infection can be established.  

 

N. ciargi, which was placed on the basal position in the phylogeny (based on SSU rDNA and 

ß-tubulin, paper Figure 3) of Nematocida, was isolated from a Procephalobus strain. 

Procephalobus sp. is an outgroup nematode, compared to the other nematode host species 

described here. The study on host specificity of N. ciargi may provide insights on how the 

host specificity of different Nematocida species evolves. 

 

The two nematode-infecting microsporidia with a non-intestinal tropism, N. displodere and P. 

epiphaga, were isolated from C. elegans and C. brenneri, respectively. P. epiphaga could also 

infect C. elegans and C. briggsae. It is of interest to study the specificity of the two species, 

for example, to see whether the microsporidia with broader tropisms also have broader host 

spectra.  

 

On the other hand, many other rhabditid nematode species have not been found with 

microsporidia infection in the wild or tested for their susceptibility to the known 

microsporidia in the laboratory. For example, in Caenorhabditis, only five species of the 

Elegans group and C. sp. 42 of the Drosophilae group were involved here. It would be 

interesting to test microsporidia infection in other Caenorhabditis species. Furthermore, it 

would be also interesting to test the susceptibility of non-rhabditid nematodes to 

microsporidia infections. For example, the diplogastrids Pristionchus spp., potential predators 

of C. elegans and other rhabditids, may also be susceptible to some of the known rhabditid-

infecting microsporidia. 

 

 

I.7. Diversification of the nematode-infecting 

microsporidia 
 

Diversification of rhabditid-infecting microsporidia may take place in three routes. Firstly, 

diversification and speciation of hosts and pathogens may occur in parallel. The 
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correspondent positions of Nematocida and host nematodes (Caenorhabditis and Oscheius) 

on their phylogenies indicates that microsporidia may coevolve with nematodes, and 

speciation of microsporidia may occur after the divergence of rhabditid species (paper Figure 

3). The genetically close Enteropsectra species and their narrow specificities to Oscheius 

hosts may be also due to the fact that speciation of microsporidia occurred after the 

divergence of O. tipulae and Oscheius sp. 3.  

 

Secondly, as rhabditid nematodes share their natural habitats and interact with diverse 

animals, such as arthropods, mollusks and other nematodes, it is possible that host switch take 

place among them. For example, the millipede Diploiulus londinensis caeruleocinctus has 

been found to be infected with Nosema juli, the genus of which is in the Clade IV of the 

microsporidia phylum (Wilson 1971). Snails have been found to be infected with 

microsporidia, some of which are in the Clade IV of the microsporidia phylum (Cunningham 

and Daszak, 1998; McClumont et al., 2005). It is possible that microsporidia can switch hosts 

from millipedes or snails to rhabditids. Another possibility is that microsporidia may shift 

host among different rhabditids, as pathogens might have a higher chance to establish 

infection in a new host that is closely related to the original host. After the host shifts, 

pathogen speciation and host specificity may or may not take place to form new microsporidia 

with narrow ranges of hosts, or with broad ranges of hosts.  

 

Thirdly, both the first and the second diversification routes may have taken place 

simutaneously to form the diversity of rhabditid-infecting microsporidia.  

 

The diverse natural nematode-microsporidia pairs, especially those with C. elegans, provide 

many opportunities for studies on the evolution of host shifts and host specificity of 

pathogens. 

 

 

I.8. An excellent system to study host-pathogen 

interactions and coevolution 
 

N. parisii was the first known natural intracellular pathogen of C. elegans. C. elegans is a 

successful model organism, with several special features and numerous developed tools. 

Since the discovery of N. parisii, exciting progresses using N. parisii and C. elegans have 
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been made on many aspects of host-microsporidia interactions. The simple and transparent C. 

elegans provides a whole-animal host to study microsporidia pathogenesis and transmission 

in vivo, such as how N. parisii reconstructs the host intestinal cytoskeleton and takes use of 

the host cell trafficking pathways to exit the host cells; how N. parisii maximizes its growth in 

the host with the cell-to-cell transmission strategy. On the other hand, host responses and 

immunity of C. elegans have also been further revealed, such as the special clearance ability 

of L1 larvae of CB4856 to the N. ironsii ERTm5 infection.  

 

Our studies further determined that microsporidia are common pathogens to wild rhabditid 

nematodes, especially C. elegans, C. briggsae and O. tipulae, which indicated that nematodes 

may have coevolved with microsporidia. It would be interesting to study the counter-

adaptation and coevolution between nematodes and microsporidia. Furthermore, as some 

rhabditids, such as C. elegans, C. briggsae and O. tipulae, are potential competitors in their 

natural habitats, it would be interesting to study how microsporidia shape the competitions 

among them. For example, in our collection, the C. elegans strains JU1247-9, JU1253 the C. 

briggsae strain JU1254 were isolated from the same apple collected in Santeuil, France. All 

these five strains were naturally infected with N. parisii. The sensitivity of these different C. 

elegans and C. briggsae strains to N. parisii infection may significantly affect their 

competitions for food and the expansion of their populations.  

 

The sequenced microsporidia genomes could highly facilitate studies on host-pathogen 

coevolution. To date, the genome of six Nematocida strains has been sequenced: the N. parisii 

ERTm1 and ERTm3, the N. ausubeli ERTm2 and ERTm6, the N. displodere JUm2807 and 

the N. ironsii ERTm5 (Cuomo et al., 2012; Bakowski et al., 2014c; Luallen et al., 2016; 

Reinke et al., 2017). Based on the analysis of these genomes, seven Nematocida large gene 

families (NemLGF1-7) were defined. From these Nematocida large gene families, 82 host-

exposed proteins were identified, which may function in manipulations of host metabolism 

and defenses. These host-exposed proteins were further found to evolve rapidly, which 

suggested a common strategy for microsporidia to interact and adapt to the nematode hosts 

(Reinke et al., 2017). For further studies, it would be necessary to sequence the genomes of all 

the new rhabditid-infecting microsporidia species, especially Enteropsectra and Pancytospora 

species. 
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II. Natural variation of Caenorhabditis elegans in 

sensitivity to microsporidian infection 
 

II.1. Intraspecific variation of C. elegans sensitivity to 

microsporidia infection 
 

The natural sensitivity variation of C. elegans to microsporidia infections has been studied in 

different sets of C. elegans strains to different microsporidia: 1), the sensitivity of six C. 

elegans strains (geographically diverse) to N. ironsii ERTm5 infection was investigated by 

Balla et al. (2015), with the comparison of host survival and pathogen loads; 2), in our study, 

nine C. elegans strains were compared for their sensitivity variations to a same N. ausubeli 

infection (RESULT II). All these nine tested strains were naturally found with N. parisii or 

N. ausubeli infection (Figure 24); 3), in a related study to RESULT II, Clément Dubois 

further compared nine C. elegans strains: JU1249 and JU2825 that were tested in RESULT 

II, the Hawaii strain CB4856 with an enhanced immunity in its L1 larvae (Balla et al. 2015), 

the other six strains representing genetic and/or geographic diversity. The sensitivity of these 

nine strains to the infections N. ausubeli JUm2009 and N. parisii JUm2816 were compared. 

The studies 2) and 3) used the OP50-GFP food consumption tests to compare the host 

sensitivity upon microsporidia infection. All the three studies found variation in C. elegans 

sensitivity to microsporidia infection (Figure 23A and B, 25, 35).  

 

 

 

 

Figure 35. Variation in sensitivity against N. parisii and N. ausubeli among nine C. 

elegans wild isolates. 

The Y-axis is the normalized intensity of the fluorescence of OP50-GFP. The X-axis is the 

scanning time point. Each plate was scanned every day until full depletion of bacteria on the 

plate. Data are mean values of three replicates, with bars represent standard errors. The 

analysis and the figure were performed by Clément Dubois. 
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II.2. Interesting pairs of C. elegans strains for further 

studies  
 

The enhanced immune ability to control and clear N. parisii infection in L1 larvae of CB4856 

has been studied with the reference strain N2, which lacks this special immunity (Balla et al. 

2015). In our studies, we found that the strains JU1249 and JU2825 showed different 

sensitivity against both N. parisii and N. ausubeli infections (Figure 27). C. elegans JU1249 is 

more resistant than JU2825 to N. ausubeli JUm2009, JUm2526 and N. parisii JUm1249 

infections. The different sensitivity of JU1249 and JU2825 was reconfirmed in the study by 

Dubois (Figure 35). Among the nine strains compared by Dubois, JU1249 is the most 

resistant strain, as the populations of JU1249 consumed the food the fastest upon either of the 

two microsporidia infections. JU2825, JU2914 and JU751 consumed the food slower 

compared to other C. elegans strains. These results demonstrated that JU1249 and JU2825 

have contrasted phenotypes in the sensitivity to microsporidia. These two C. elegans can be 

further used in the quantitative trait locus (QTL) approach for detecting the genetic basis of 

this phenotype variation. 

 

In the study by Dubois, another pair of C. elegans strains, CB4856 and ED3077, showed 

contrasted variation patterns in sensitivity to different microsporidia infection. With N. parisii 

JUm2816 infection, ED3077 consumed food faster than CB4856, whereas the variation 

pattern is reversed when the two strains were with N. ausubeli JUm2009 infection (Figure 35, 

36). ED3077 seems to be more resistant to N. parisii JUm2816 than to N. ausubeli JUm2009, 

whereas CB4856 appears to be the opposite. These two C. elegans strains provide a good pair 

to study the interactions between C. elegans and microsporidia.  
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Figure 36. Contrasted sensitivity variation of ED3077 and CB4856 upon different 

infections. 

Food consumption test (a repeated test compared to Figure 35) of ED3077 and CB4856 upon 

N. parisii JUm2816 and N. ausubeli JUm2009. Data are mean values of three replicates, with 

bars represent standard errors. The figure was performed by Clément Dubois. 

 

 

II.3. The different tolerance of JU1249 and JU2825 to 

microsporidia infection 
 

Using FISH analyses, we found that though JU1249 consumed food faster than JU2825, 

populations of JU1249 did not have a lower infection rate nor a lower pathogen load on 

average than JU2825 populations (Figure 28). In fact, upon N. parisii JUm1249 infection, 

JU1249 had a significantly higher pathogen load than JU2825. These results indicate a 

different tolerance of JU1249 and JU2825 to microsporidia infection. By contrast, in the study 

by Balla et al. (2015), the different mortality rates of the six C. elegans strains are positively 

correlated with the differences in pathogen loads. This result indicates variation in host 

resistance rather than tolerance, which was consistent with their further findings that L1 

larvae of C. elegans CB4856 displayed a special clearing ability to microsporidia infection. 

Several reasons may lead to the different results from the two experiments. Firstly, different 

infection protocols were used in the two experiments, as we measured the fitness of C. 

elegans from a population with stable microsporidia infection (ten days post-inoculation), 

whereas Balla et al. (2015) measured the mortality rates of infected C. elegans immediately 

(two days post-inoculation). Secondly, we used food consumption tests to compare the 

sensitivity of different strains. The correlation of the performance of C. elegans in the food 
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consumption test and its mortality is not clear yet. Thirdly, different C. elegans strains were 

compared in the two experiments. Different C. elegans strains may display different defensive 

strategies. Finally, Balla et al., 2015 used N. ironsii ERTm5 to apply the inoculation, whereas 

we used N. parisii and N. ausubeli. The responses of C. elegans to different microsporidia 

infections may be different.  

 

Further studies on brood size of JU1249 and JU2825 with or without microsporidia infection 

were performed by Dubois (Figure 37). Three N. parisii strains and three N. ausubeli strains 

were used separately to infect JU1249 and JU2825 in this study. First, the infections of the six 

strains of two Nematocida species greatly reduced the brood size of both JU1249 and JU2825, 

which indicates that neither of the two C. elegans strains can clear microsporidia infection 

like CB4856. Second, the brood sizes of JU1249 and JU2825 were similar when the two 

strains were uninfected, or infected with any of the three N. parisii or N. ausubeli JUm2799. 

With N. ausubeli JUm2526, JU1249 had a larger brood size than JU2825 (p-value is 0.004). 

Together, these results demonstrated that upon N. ausubeli JUm2526 infection, C. elegans 

JU1249 has a higher tolerance in the brood size compared to JU2825. This higher tolerance of 

JU1249 in the brood size may be one factor that leads to the better performances of JU1249 in 

the food consumption tests and the final winning in the competition assays with JU2825.  

 

 

 

 

Figure 37. The brood size of C. elegans JU1249 and JU2825 with or without 

microsporidia infection. 

In each treatment, 5 L4 stage hermaphrodite C. elegans from a stable population (ten days 

post infection) were transferred to a fresh plate and the number of their progenies were 

counted. The total number of progenies per hermaphrodite is showed in the figure. Data are 

mean values of three replicates, with bars represent standard errors. In the pairwise 

comparisons, JU1249 and JU2825 showed a significant (p-value is 0.004, marked with “**”) 

brood size difference only upon the infection of N. ausubeli JUm2526. The analysis and the 

figure were performed by Clément Dubois. 
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II.4. Future studies on the genetic basis of C. elegans 

sensitivity variation to microsporidia infection 
 

With the C. elegans strains JU1249 and JU2825 that show contrasted phenotypes in the 

sensitivity to microsporidia infection, we plan to further study the genetic basis of this natural 

variation. As proved possible by the competition tests performed between JU1249 and 

JU2825 in the presence and absence of microsporidia infection, we plan to use Extreme QTL 

mapping (X-QTL) to detect the underlying genetic loci. X-QTL mapping is a developed bulk 

segregation technique that employs selection-based phenotyping to large groups of crossed 

progeny for the trait of interest (Ehrenreich et al., 2010; Chevalier et al., 2014). X-QTL has 

been used on yeast, schistosome and Arabidopsis, and proven to be a simple and cost-

effectively mapping method for traits that are selectable (Ehrenreich et al., 2010; Chevalier et 

al., 2014; Yuan et al., 2016). It allows a much larger sample size that facilitates detection of 

multiple loci with small effects. 

 

To assess the genetic basis of C. elegans sensitivity variation to microsporidia infection using 

X-QTL methods, mainly four steps have to be performed. The first step is to cross JU1249 

and JU2825 and then generate bulked segregating populations. In the second step 

(phenotyping), the bulked segregating populations will be treated with or without 

microsporidia infection and then maintained for several generations. During the maintenance, 

individuals with microsporidia-resistant (or tolerant) traits are assumed to be selected and 

accumulated in the population. As indicated by the competition assays between JU1249 and 

JU2825, the maintenance should be continued at least for 30 days (about 10 to 12 

generations). The third step (genotyping) is to sequence each population as a pool. The final 

step is to analyze the sequenced data of each pool. The frequencies of genetic markers (i.e. 

SNPs) of each pool will be analyzed and compared. The assumption is that the genome 

regions containing the microsporidia-resistant (or tolerant) loci will show different 

frequencies between infected populations and uninfected populations, while other genome 

regions have equal frequencies between populations with different treatments.  

 

 

II.5. Other future directions  
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II.5.1. Screening of other C. elegans strains 
 

Together, 22 C. elegans strains were compared for their sensitivity to Nematocida infection in 

three experiments. Though no C. elegans strain was found to be fully resistant to the tested N. 

parisii or N. ausubeli, the natural variation was determined and three interesting pairs of C. 

elegans (CB4856 versus N2, JU1249 versus JU2825, CB4856 versus ED3077) were found. It 

would be interesting to compare the sensitivity among more C. elegans strains, which may 

provide many windows to study host-pathogen interactions and coevolution. 

 

 

II.5.2. Natural variation of C. briggsae in sensitivity to 

microsporidian infection 
 

In addition to C. elegans, natural sensitivity variation can also be studied in C. briggsae. C. 

briggsae is one of the most common nematode hosts to microsporidia infections in our 

collection. Nine C. briggsae strains were naturally found infected with four Nematocida 

species. C. briggsae was further found susceptible to N. homosporus. It will be interesting to 

study the natural sensitivity variation among C. briggsae wild isolates.  

 

 

II.5.3. Natural variation of Nematocida virulence to C. elegans 
 

The virulence difference between N. ausubeli and N. parisii was investigated by single-cell 

inoculation (Balla et al., 2016). The developmental kinetics and symptom severity to the host 

of N. ausubeli infection are different from those after N. parisii infection. On average, single 

N. ausubeli infection spreads faster across host intestinal cells, and forms spores earlier than 

N. parisii (Figure 38A). Meanwhile, compared to N. parisii, N. ausubeli infection leads to a 

much stronger negative effect on host growth and fecundity (Figure 38B, C) (Balla et al., 

2016). Thus, N. ausubeli seemed more virulent than N. parisii in C. elegans. 
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Figure 38. Growth and virulence variations of N. parisii and N. ausubeli (N. sp. 1). 

Infections were initiated by single-cell inoculation in N2. The N. parisii strain ERTm1 and the 

N. ausubeli strain ERTm2 were used here. A. Growth kinetics showed by copy number (solid 

lines) and spore formation (dashed lines). B. Sizes of animals over time with different 

infections and no infection. C. Eggs laid by worms with different infections or no infection, at 

60 hpi. Adapted from Balla et al. (2016). 

 

 

Nevertheless, to compare the virulence between N. parisii and N. ausubeli, it is necessary to 

test other strains of both species. In the study of Balla et al. (2016), N. ausubeli ERTm2 was 

proven to be more virulent than N. parisii ERTm1 to C. elegans. However, RESULT II.3.2 

indicated that N. parisii JUm1249 is more virulent than N. ausubeli JUm2009 and N. ausubeli 

JUm2526 to C. elegans, as N. parisii JUm1249 induced higher pathogen loads in both C. 

elegans strains than either N. ausubeli infection did (Figure 28A). Furthermore, the study 
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(DISCUSSION II.3, Figure 37) on brood size of JU1249 and JU2825 with three N. parisii 

strains and three N. ausubeli strains indicated the variation in virulence of different 

microsporidia, at both inter- and intraspecific levels. It would be interesting to compare 

virulence of different microsporidia species and strains using the single cell inoculation 

method. 

 

In addition, we found that N. ausubeli induced a less robust host transcriptional response than 

N. parisii and some other Nematocida species in C. elegans, by using transgenic C. elegans 

strains with GFP reporter genes that are highly upregulated upon N. parisii infection (paper 

Figure 9). Further studies by Troemel et al. showed that N. ausubeli inhibited the induction of 

host reporter genes by N. parisii in co-infection experiments. These results suggested that N. 

ausubeli and N. parisii are different in their virulence. It would be interesting to compare 

virulence of different microsporidia species and strains using transgenic C. elegans strains, 

and further study the competition of N. ausubeli and N. parisii in the same host. 
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III. The suppression effect of microsporidia infection 

on the progressive sterility in C. elegans  
 

Our preliminary tests demonstrated that N. parisii and N. ausubeli infections are able to 

attenuate the progressive decrease in fertility in C. elegans with the mortal germline 

phenotype (Mrt). In the four C. elegans strains we tested, two strains (JU775 and JU2526) 

with a moderate Mrt phenotype had an increased number of fertile generations upon 

microsporidia infection. This rescue effect represents an exciting type of host-pathogen 

interaction and is certainly worth further investigations.  

 

Various negative effects of microsporidia infection on C. elegans have been observed and 

determined. This rescue effect may be a beneficial effect of microsporidia infection on C. 

elegans, which may have great evolutionary and ecological significance. Many interesting 

questions can be further addressed. For example, is this suppression on C. elegans with Mrt 

phenotype a specific effect of microsporidia infection? Or are other micro-organisms, such as 

the Orsay virus, bacteria and fungi, also able to display the suppression? Another direction is 

to identify the molecular mechanisms of this suppression effect, for which reverse, forward 

and quantitative evolutionary genetic approaches can be further performed.  
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Conclusion 
Our studies revealed the diverse interactions of microsporidia with C. elegans and related 

nematodes. We found that N. parisii and N. ausubeli are relatively common pathogens of C. 

elegans and C. briggsae in the wild. We better described N. ausubeli and further found five 

new Nematocida species. We also defined two new genera of nematode-infecting 

microsporidia, named Enteropsectra and Pancytospora, which are genetically distinct from 

Nematocida. These microsporidia are diverse in terms of phylogenetic relationships, spore 

size and shape, host tissue tropism, host cell intracellular localization, cellular exit route, host 

specificity pattern, virulence and negative effects on hosts, etc. These findings considerably 

enlarged our knowledge on nematode-infecting microsporidia and on the ecology of C. 

elegans and related nematodes. 

 

To date, 48 strains of 10 nematode species have been found naturally infected with 

microsporidia. These nematode species displayed interspecific susceptibility and intraspecific 

sensitivity variations to different microsporidia infections. Here we further determined the 

intraspecific variation of C. elegans in sensitivity to N. ausubeli infection. Two C. elegans 

strains, JU1249 and JU2825, displayed the largest sensitivity difference, which may be due to 

their different tolerance. These two strains are proven to be good candidates for future studies 

on the genetic loci associated with C. elegans sensitivity variation to microsporidian 

infections. Furthermore, an exciting type of host-pathogen interaction was observed. 

Microsporidia infection is able to suppress the progressive decrease in fertility in C. elegans 

with the mortal germline phenotype (Mrt). Overall, the diverse interactions of microsporidia 

with Caenorhabditis elegans and related nematodes provide great opportunities to study host-

pathogen coevolution.   
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