M Marc

Baboulin Professeur

Professeur Cyril Fonlupt

Peter A N Bosman

M Tobias

Professor Glasmachers Junior

Nikolaus Hansen

Stochastic Black-Box Optimization and Benchmarking in Large Dimensions

problèmes. Cette variante montre des performances compétitives comparée aux autres algorithmes d'optimisation continue en grandes dimensions.

L'Extension de COCO aux Grandes Dimensions

Enfin, le Chapitre 5 introduit une approche générique pour construire des matrices de rotation (orthogonales) creuses (sparse) qui conservent certaines des propriétés des matrices de rotations complètes, notamment introduire une non-séparabilité qui ne soit pas facilement exploitable. Le fait que la matrice soit creuse permet un coût de calcul de la fonction objectif qui reste linéaire en la dimension de l'espace de recherche, une propriété importante quand il s'agit de problèmes de grandes dimensions permettant le benchmarking d'algorithmes dans des temps raisonnables.

Les matrices de rotation proposées sont ensuite utilisées pour construire une version grandes dimensions de la plateforme de comparaison d'algorithmes d'optimisation continue COmparing Continuous Optimisers (COCO). Les fonctions d'origine ont subi quelques modification afin de les rendre compatibles avec un scénario grandes dimensions.

En utilisant cette transformation, on a défini un nouveau benchmark sur lequel un nombre d'algorithmes d'optimisation continue en grandes dimensions (des variantes de CMA-ES) ont été testés. Les performances observées suggèrent que les algorithmes n'arrivent pas à exploiter la forme particulière de la matrice de rotation utilisée. Le fait que ce benchmark fasse partie de la plateforme COCO a permis d'exploiter directement les fonctionnalités de cette dernière, notamment celles concernant le traitement des données générées et leurs visualisation; en plus d'o↵rir une interface multi-plateformes et multi-langages.

Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud

Résumé

Cette thèse s'intéresse à l'optimisation stochastique de problèmes de grandes dimensions qui se présentent sous forme de boîtes noires. On s'intéressera surtout aux problèmes dont les variables sont continues (contrairement aux problèmes qu'on appelle discrets ou combinatoires).

L'aspect boite noire de ces problèmes limite le choix des algorithmes à utiliser pour les résoudre. En e↵et, dans un problème en boîtes noires, un algorithme n'a accès, comme information, qu'à l'image de chaque solution qu'il requête. Celle image (valeur qu'on obtient en appliquant la fonction objectif) reflète la qualité d'une solution, le but étant de trouver la solution optimale; dans notre cas, celle qui minimise la fonction objectif.

On va essayer de répondre, dans cette thèse, à trois questions principales:

1. comment concevoir un mécanisme d'adaptation du pas, peu couteux et e cace, pour les stratégies d'évolution ?

2. comment construire des problèmes à dimension e↵ective réduite et généraliser cette notion en la rendant moins restrictive ?

3. comment étendre, avec un cout raisonnable sans pour autant être triviales à résoudre, un ensemble de fonctions de test (benchmark) de dimensions basses/moyennes à une configuration grandes dimensions; et ceci, tout en conservant les propriétés originelles de ces fonctions ?

Après l'introduction générale du Chapitre 1, le Chapitre 2 présentera une étude de l'état de l'art autour du sujet de l'optimisation continue, et plus spécifiquement, l'optimisation continue en grandes dimensions. En suite, les trois questions présentées ci-dessus seront adressées dans les trois chapitres suivants. On synthétise et conclue dans le Chapitre 6 tout en présentant quelques perspectives.

Les contributions principales de cette thèse se présentent comme suit:

Le Mécanisme d'Adaptation du Pas : La Median Success Rule (MSR)

Dans le Chapitre 3, on conçoit une nouvelle méthode d'adaptation du pas pour les stratégies d'évolution en général et CMA-ES (Covariance Matrix Adaptation Evolution Strategy) en particulier.

1 MSR est une méthode de succès, ce qui veut dire que le pas de l'algorithme évolue suivant une mesure de succès de la population actuelle à un temps t comparée à la population de l'itération précédente (t 1). Pour le cas de MSR, c'est le succès, ou non, de la médiane à l'itération t quand comparée au j eme individu de l'itération t 1 qui détermine si le pas doit être augmenté ou diminué, j étant un paramètre de MSR.

Le but principal de MSR est de pouvoir être utilisée dans un contexte de grandes dimensions, et donc d'avoir un coût de calcul raisonnable. Ceci est garanti par le fait que MSR est une règle de succès dont la complexité de calcul ne dépend que de la taille de la population, et non pas de la dimension du problème. Ce qui fait de MSR une alternative à CSA, la méthode d'adaptation du pas par défaut de la Covariance Matrix Adaptation Evolution Strategy (CMA-ES) pour résoudre des problèmes de grandes dimensions.

MSR est une généralisation de la règle du 1/5 eme [Rechenberg, 1994]. Cette dernière étant conçue pour le cas des stratégies d'évolution à un seul parent quand MSR s'utilise au cas non-élitiste multi-parent Un autre avantage de MSR est qu'elle fait moins de suppositions sur la nature de la fonction objectif localement et sur les autres composantes de l'algorithme auxquelles elle s'intègre (typiquement, CMA-ES), ce qui fait d'elle, comme les tests empiriques l'ont montré, une alternative viable à CSA même quand le problème à traiter n'est pas de grande dimension. Ces tests ont été conduits après avoir ajusté les paramètres de MSR, dans un premier temps sur un modèle théorique, puis, empiriquement.

Dimensions E↵ectives Réduites et Dimensions epsilon-E↵ectives

Le Chapitre 4 examine une classe de problèmes de grandes dimensions qu'on rencontre souvent dans le monde réel, à savoir les problèmes à dimensions e↵ectives réduites. Dans ces problèmes, un sous-ensemble relativement petit de variables (à une transformation linéaire près) définit totalement l'image d'une solution par la fonction objectif. Ce qui veut dire que n'optimiser que ce sous-ensemble su t pour trouver la solution optimale du problème. Cependant, ce sous-ensemble est inconnu pour l'algorithme étant dans un contexte boîte-noire.

On généralise ce concept de dimension e↵ective réduite en permettant à une portion de l'image d'une solution de parvenir de variables qui ne sont pas dans le sous-ensemble des variables e↵ectives. On fait en sorte que les problèmes à dimension epsilon-e↵ective réduite obligent les algorithmes à ne pas se contenter d'explorer les variables e↵ectives pour trouver la solution optimale (ou l'approcher en pratique). De plus, les deux fonctions qu'on utilise pour construire la fonction à dimension epsilon-e↵ective réduite ne sont pas alignées sur le même système de coordonnées, ni aucune d'elles sur un système de coordonnées canonique; empêchant les algorithmes d'exploiter une telle propriété.

On benchmark un certain nombre d'algorithmes d'optimisation continue en grandes dimensions sur ces nouveaux problèmes. On propose aussi une variante de CMA-ES (inspirée par le travail fait dans [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF]) conçue pour traiter ce genre de Chapter 1

General Introduction

Large-scale optimization is one topic that is getting an increasing amount of attention these last few years. With the increasingly powerful machines, CPU and memory wise, both scientists and engineers conceive and model problems of larger sizes and higher complexities. It is now fairly common to solve a classification problem using deep neural networks with up to millions of weights to be optimized.

When dealing with large and complex problems, we generally do not have much knowledge of the problem at hand, or when we do, incorporating this knowledge in the problem-solving process can end up being a tedious task, too complex to implement. This is where black-box optimization algorithms become handy. A block-box algorithm only needs, as information, the fitness or quality of each solution it queries, which makes it applicable on a large array of problems.

A number of questions are raised when dealing with continuous optimization problems and large-scale problems in particular. We are first interested in the di culties these problems generally pose, in order to better design algorithms to solve them. Then, in a large scale setting, one must take into account the additional constraints brought by the large-scale property of the problem. The amount of data that can be stored for each decision variable becomes more limited (generally constant or logarithmic in the dimension of the problem). For example, it is not feasible to keep a full matrix of all parameter interactions because of the quadratic cost it would produce. Memory constraints are not the only ones that become increasingly important as the dimension of the problem increases. The time complexity of the algorithm is also a critical matter, even when the data is stored/used e ciently or a limited amount of it is needed. An algorithm that scales badly (a high scaling) in the problem dimension with regards to the number of operations it conducts per iteration or the expected number of iterations it needs to deliver good enough solutions become highly unpractical.

Because of the generally high computational costs that come with large-scale problems, more so on real world problems, the use of benchmarks is a common practice in algorithm design, algorithm tuning or algorithm choice/evaluation. The question is then the forms in which these real-world problems come. Answering this question is generally hard due to the variety of these problems and the tediousness of describing each of them. Instead, one can investigate the commonly encountered di culties when solving contin-11 uous optimization problems. Once the di culties identified, one can construct relevant benchmark functions that reproduce these di culties and allow to assess the ability of algorithms to solve them. The impact of the presence of a di culty on the performance varies from one algorithm to another and might also depend on which other di culties or properties are present. We generally say that an algorithm succeeds in addressing a di culty when it becomes insensitive to its presence or, at least, when the impact of this di culty on its performance is reasonable (for example, does not prevent the algorithm from solving the problem or makes it able to solve it only with an exceedingly high cost).

In the case of large-scale benchmarking, it would be natural and convenient to build on the work that was already done on smaller dimensions, and be able to extend it to larger ones. When doing so, we must take into account the added constraints that come with a large-scale scenario such as the ones described above. We need to be able to reproduce, as much as possible, the e↵ects and properties of any part of the benchmark that needs to be replaced or adapted for large-scales (in our case, orthogonal transformation matrices). This is done in order for the new benchmarks to remain relevant. Only simplifying or reducing the size/cost of these tools might introduce new properties to the problem that algorithms can exploit or remove other relevant properties or reduce their e↵ects. For example, one must be cautious when replacing full matrices with sparse ones, using block-diagonal matrices introduces a block-diagonal property which is exploitable; a diagonal matrix generally reduces the complexity of the problem by a high amount and a highly random choice (high variance) of the non-zero elements of a sparse matrix can reduce its rank and thus impact the e↵ective dimension of the problem and/or result in a lack of control on the di culty of the resulting problem.... It is common to classify the problems, and thus the benchmarks, according to the di culties they present and properties they possess. It is true that in a black-box scenario, such information (di culties, properties...) is supposed unknown to the algorithm. However, in a benchmarking setting, this classification becomes important and allows to better identify and understand the shortcomings of a method, and thus make it easier to improve it or alternatively to switch to a more e cient one (one needs to make sure the algorithms are exploiting this knowledge when solving the problems). Thus the importance of identifying the di culties and properties of the problems of a benchmarking suite and, in our case, preserving them.

One other question that rises particularly when dealing with large-scale problems is the relevance of the decision variables. In a small dimension problem, it is common to have all variable contribute a fair amount to the fitness value of the solution or, at least, to be in a scenario where all variables need to be optimized in order to reach high quality solutions. This is however not always the case in large-scales; with the increasing number of variables, some of them become redundant or groups of variables can be replaced with smaller groups since it is then increasingly di cult to find a minimalistic representation of a problem. This minimalistic representation is sometimes not even desired, for example when it makes the resulting problem more complex and the trade-o↵ with the increase in number of variables is not favorable, or larger numbers of variables and di↵erent representations of the same features within a same problem allow a better exploration. This encourages the design of both algorithms and benchmarks for this class of problems, especially if such algorithms can take advantage of the low e↵ective dimensionality of the problems, or, in a complete black-box scenario, cost little to test for it (low e↵ective dimension) and optimize assuming a small e↵ective dimension.

In this thesis, we address three questions that generally arise in stochastic continuous black-box optimization and benchmarking in high dimensions:

1. How to design cheap and yet e cient step-size adaptation mechanism for evolution strategies?

2. How to construct and generalize low e↵ective dimension problems?

3. How to extend a low/medium dimension benchmark to large-dimensions while remaining computationally reasonable, non-trivial and preserve the properties of the original problem?

We start by presenting the general context of this thesis and a study of the state of the art in Chapter 2. We then address these questions in three contribution-focused chapters that we will briefly describe below. We finally conclude in Chapter 6 by summarizing the contributions and answers this thesis brought and the open questions that it opens for future work.

Main Contributions

Cheap

Step-Size Adaptation: The Median Success Rule

In Chapter 3, we develop a new success-based step-size adaptation mechanism for the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and evolution strategies in general that has a low computational cost and thus is applicable in a large-scale setting. The use of a success-based rule allows to have a complexity that depends on the number of o↵spring involved, not the dimension of the problem. The proposed strategy is meant as a generalization of the simpler one-fifth success rule [Rechenberg, 1994], designed for single parent evolution strategies, to the case of multi-parent non-elitist evolution strategies. It also provides a strategy with less assumptions than the Cumulative Step-size Adaptation (CSA) that it is meant to replace on the other components of the algorithm (sampling the solutions).

Relevance of Variables/Dimensions: Low E↵ective Dimensions and Their Generalization

In Chapter 4, we investigate a class of large-scale problems that often appear in real world applications: the class of low e↵ective dimension problems, where a few variables/dimensions or linear combinations of them define the problem. This is translated by the fitness function being flat (non-changing) in a large proportion of directions/dimensions. We also generalize this concept to one where a small proportion of the fitness is still defined by all the variables while the rest is similar to the low e↵ective dimension part. This results in inherently ill conditioned problems, with a high condition number which is a class of problems that is present in most of the relevant benchmarks.

We define the problems such that we encourage optimizing the e↵ective space while making sure the non-e↵ective space is not neglected; otherwise, this becomes a low e↵ective dimension problem. However, we only ask for the fitness in the non-e↵ective space to not degrade in comparison to the initial solution, and make sure that the coordinate systems on which the two functions are defined are not aligned to prevent exploitability. We look into the performance of state of the art large-scale continuous optimization algorithms on these problems and also propose a variant of CMA-ES, inspired by [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF], specifically designed to solve these problems in an e cient manner by taking into account their low e↵ective dimensionality.

1.1.3 Extension of a Benchmark to Large-Scales: from COCO to Large-Scale COCO

Chapter 5 proposes a generic way of constructing sparse orthogonal (rotation) matrices for large-scale optimization problems while retaining many of the properties a full rotation matrix provides, most importantly, introduce reasonable amounts of non-separability. The proposed transformation is then applied to the widely used COmparing Continuous Optimisers (COCO) bencmarking platform in order to extend its single-objective noiseless test-bed [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF], while also introducing a number of tweaks on the functions in order to make them more large-scale compatible. This allows to define a full test-bed of large-scale problems on which we benchmark a number of large-scale CMA-ES variants. The proposed suite o↵ers an alternative to the only other prominent large-scale test-bed, the one used in the CEC competition and special sessions on largescale optimization [START_REF] Tang | Benchmark functions for the cec'2008 special session and competition on large scale global optimization[END_REF], Tang et al., 2009, Li et al., 2013], and addresses some of its shortcomings such as the performance assessment. In addition, extending the COCO benchmarks allows to use the already well-developed experiment-running and data post-processing tools proposed by the platform.

Chapter 2

Background Study

In this chapter, we start by presenting the general context of this thesis. We will also introduce some notions and notations that will be encountered all along this thesis in addition to defining the conventions that we will be using.

We describe the Covariance Matrix Evolution Strategy (CMA-ES) since it is highly relevant in the context of this thesis and will often be used and referenced. We review the state of the art on large-scale continuous optimization and the di↵erent approaches used to tackle high dimensionalities.

Continuous Black-Box Optimization

In this thesis, we focus on the topic of black-box continuous optimization. That is problems that consist in optimizing (finding the optimum/optima of) a function f defined in a search space which is a subspace of R d , d being the problem dimension and R the set of real numbers. We are interested in finding the solution(s) x opt that minimizes the function f that we call a fitness function:

x opt = arg min x2S f (x) , (2.1)
where S ✓ R d is the search space, we will note the optimal fitness f opt , f opt = f (x opt). When the search-space is not explicitly specified, we assume it to be R d . We will use bold symbols such as x and C to denote vectors and matrices, regular (non-bold) symbols will generally represent scalar values, so x and x t are vectors while x i is a scalar (here a coordinate of x).

We restrict ourselves to minimization problems without loss of generality since maximizing a function f is the same as minimizing its negative f :

arg max x2S✓R d (f (x)) = arg min x2S✓R d (f (x)) .
(2.2)

In a black-box scenario (also called derivative-free scenario in the context of continuous optimization), an algorithm is provided with no information other than the fitness of 15 solutions that it chooses to query. In many cases, the cost of an optimization process is expressed in number of function queries or evaluations that were carried. In fact, the call to the objective function is the main, if not the only, interface between the algorithm and the problem. This allows to have a measure for the cost of an optimization that is independent of the optimization algorithm and, contrarily to CPU-time based measures, independent of the machine and implementation of the algorithm. Optimizing the CPU time, memory usage and parallelizing an already established algorithm are independent problems that we do not focus on in this thesis. However, in real-world applications, the actual overall time needed by an algorithm to solve a given problem is the most prominent performance measure. Thus, providing, on top of the cost in number of function evaluations, an estimation of the CPU time needed per function evaluation, in addition to details such as the programming language and the machine on which the algorithm is run, gives a better appreciation of the speed of an algorithm and allows a more comprehensive assessment of its performance. Here, what we mean by CPU time per function evaluation is the average CPU time allocated to the internal e↵ort of the algorithm each time a function evaluations is conducted. Algorithms are, thus, confronted with the double, contradicting, objectives of finding the best solutions using the least function evaluations.

In this thesis, we consider single-objective noiseless problems, and especially focus on large-scale problems. This means that in (2.1), the function f : S ✓ R d ! R is deterministic, so querying a same solution x always returns the same fitness (the value f (x) is deterministic). The large-scale component is translated into the fact that d is relatively high, or high enough that the scaling of the computational cost (internal complexity) of the algorithm in the problem dimension becomes a critical factor. Values of d that are at least in the hundreds seem a reasonable choice to be considered large-scale problems in practice. However, we take into account the scaling of the algorithms to even larger magnitudes of d and thus consider e cient and usable in practice only algorithms whose computational complexities (both in CPU time and in memory usage) are linear or at most in the order of log(d) ⇥ d. Quadratic scalings and larger are generally not acceptable in large-scale settings.

The Challenges of Large-Scale Continuous Optimization

A number of di culties arise when dealing with continuous black-box optimization problems in general and large-scale cases in particular.

Dimension of the Problem

The first di culty has to do with the number of parameters, also known as the dimension of the problem, d in (2.1). As the dimension increases, so does the size of the searchspace and thus also the e↵ort needed to explore it and find optimal solutions. The exponential increase of the size of the search space in d is often referred to as the curse of dimensionality [Richard, 1957]. This exponential cost reduces the usefulness on larger dimensions of basic search methods such as random search which generates solutions randomly without adapting the distribution or exhaustive/brute-force search, more commonly used in discrete optimization with finite search-space and generally adapted to continuous optimization in the form of grid-searches. Thus, more sophisticated search methods are required to solve black-box problems on higher dimensions (brute force methods are already not reasonable choices in continuous optimization for dimensions as small as 5); these methods can, however, include a sub-component (generally local/in a neighborhood) which relies on these simpler search strategies.

Non-Separability

We say that a problem is non-separable when its variables interact with each other and thus one can not solve the problem by simply solving the sub-problems defined by each of its variables (can not separate the problem into d independent sub-problems and expect to solve it). The term epistasis is sometimes used as an analogy to the interactions between genes; when the e↵ect of a gene di↵ers depending on the identity of the other genes that are present.

On a separable problem, the behavior of the fitness function when varying a variable x i only depends on the values of this same variable x i , not the other variables. Thus, the optimal solution of the problem is the aggregation of the optimal solutions when considering d sub-problems each defined on a single variable. When a function is separable, we have: where (x j i) i,j2{1,...,d},i6 =j constant, arbitrary, values within the search-space and T will designate the transpose of a vector or of a matrix.

arg min x2R d f (x) = arg min x 1 2R f (x 1 ,
We see in (2.3) that separable problems can be e ciently solved via d line-searches on each of the sub-problems (a line search is a search method where a single direction is followed with potentially di↵erent step-lengths). With the cost of performing these onedimensional line-searches independent of the dimension (constant in d since the dimension of the problem at hand is 1), the overall cost of solving (2.1) is generally linear in d (in the order of c ⇥ d where c is independent of d); which is considered a low cost in the context of continuous optimization and the problem is considered easy as a result of that.

Non-separable problems are detrimental to the performance of coordinate-system aligned line-search methods. Proper and improper rotation matrices (orthogonal matrices) are commonly used to introduce arbitrary linear dependencies between the variables and coordinate system-independence. [Salomon, 1996] showed that some Genetic Algorithms (GA), the Breeder Genetic Algorithm (BGA) [START_REF] Schlierkamp-Voosen | Predictive models for the breeder genetic algorithm[END_REF]] is used as an example, with small mutation rates see a drop in performance when a rotation matrix is applied to the search-spaces; and suggests to use invariant methods such as Evolution Strategies (ES see Section 2.1.3) to tackle such problems. This deterioration in performance is also noted on the widely used Particle Swarm Optimization algorithm in [START_REF] Hansen | Impacts of invariance in search: When cma-es and pso face ill-conditioned and non-separable problems[END_REF].

Multi-Modality

A multi-modal problem is a problem with one or more local optima in addition to the global optimum. Even though the gradient information is unavailable in a black-box setting, seeking the optimum by following the direction of improvement of the function remains an intuitive and widely used method, especially in local search algorithms. This makes multi-modality a relevant property to take into consideration.

When a problem is multi-modal, finding a solution which is locally optimal does not guarantee its global optimality, and thus solving the problem. This is why restart strategies, in which it is important to define the stopping criteria well in order to allow for early detection of stagnation in local optima, are often used to tackle multi-modality. Well set stopping criteria prevent the algorithms, among other things, from wasting its budget in non-beneficial exploitation around local optima and instead allow it to use the budget in a more promising way. Restarts allow the algorithm to increase the chances of being caught in the basin of attraction of the global optimum (area of the search-space that leads the algorithm to a given attractor, in our case an optimum) or increase the chances of finding the global optimum by adapting the parameters of the algorithm (larger number of solutions sampled in each iteration or a more global search with larger steps). Some commonly used restart methods in Evolution Strategies (ES) will be presented in Section 2.1.4.

Other approaches include techniques to escape from the local optima such as epsilongreediness and starting with a global search (exploration phase) then doing a more local search (exploitation). An epsilon-greedy (✏-greedy) algorithm chooses, with a probability ✏ 2 [0, 1], an action which is considered non-greedy; that is an action which does not aim at immediately improving the fitness (this action is generally chosen to be a random action). The simulated annealing algorithm, first formalized in [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], relies on the use of a temperature parameter that dictates the behavior of the search. The higher the temperature, the more the particles move and thus the larger the steps and more global the search. As the iterations go by, the temperature is reduced and the search becomes more focused and local until it converges, ideally, to the global optimum.

Ill-Conditioning

The conditioning of a problem is, roughly speaking, the di↵erence in sensitivity of the fitness function when varying di↵erent variables. We generally consider directions instead of variables which means that the bases on which the conditioning is computed does not need to be canonical and coordinate-system aligned. The conditioning of a convexquadratic function is well defined as the condition number of its Hessian matrix; that is the ratio between the largest and smallest eigenvalues of the Hessian matrix.

Ill-conditioned problems are most problematic to algorithms with isotropic sampling or that assume an isotropic landscape (do not learn or adapt the relative importance of each direction and consider all dimensions to be equal). It is particularly tricky when the conditioning of the problem changes depending on the position in the searchspace. Another particularly di cult case is when the ill-conditioned problem is also non-separable (see Section 2.1.1.2) since in such a case, the algorithm can not simply check and learn the sensitivity of each variable apart. Instead, and for such an approach, it needs to first transform the search-space into one where the function is separable. The rotated Ellipsoid function (see f 10 in Table 5.3 for a variant of this function) is an example of an ill-conditioned non-separable problem that has proven to be particularly di cult for algorithms that lack invariance (robustness or non-sensitiveness) to certain search-space transformations (in this case, orthogonal transformations of the search-space).

In a generic ill-conditioned black-box setting, one can assume that a minimum of d parameters need to be learned in order to account for the di↵erences of importance between the d variables or directions and thus to be able to e ciently solve the problem. This is an example of how the dimension of the problems a↵ects a number of its aspects and thus can increase its di culty in more than the one direct way of resulting in larger search-spaces.

Other Di culties

Other di culties that might be encountered when dealing with continuous black-box problems are the absence of a global structure of the landscape and lack of patterns that can be taken advantage of and might dispense an algorithm from learning each local area independently from scratch. Skewness, which is represented by non-symmetric high slops in the fitness landscape, is also another property that generally adds to the di culty of the problem.

Particular classes of continuous black-box optimization problems, other than largescale problems, come with their own di culties.

Noisy Optimization

The noise, on noisy functions, generally requires the use of algorithms that are substantially di↵erent from those used on noiseless cases. Often, the di↵erence with the noiseless case is more pronounced as the algorithm approaches the optimal solution in which case correctly guessing which of a set of solutions is the actual best becomes a tedious task. Several evaluations are generally needed in order to estimate the real fitness of a solution, and algorithm resort to assuming a model for the noise that needs to be learned/adjusted.

Another type of deterministic noise can come from a highly rugged search-space or one that lacks continuity where solutions that are close in the search-space find themselves distant in the objective space (when comparing their fitnesses). One quality that most ES and evolutionary algorithms in general share is robustness when dealing with these kinds of functions and capacity to solve them.

Expensive Optimization

In expensive optimization, the function evaluations are highly costly and the algorithm can a↵ord to perform only a few of them (for example, this is often the case when a single function evaluation requires a full simulation). These problems are generally solved using model-based approaches (some of which, CMA-ES based, will be presented in Section 2.1.4) where the algorithm assumes, locally, that the fitness function follows a certain model (quadratic, Gaussian,...) and adjusts the parameters of this model by taking into account the few solutions that it evaluates on the real (expensive) fitness function. This is done in the hope of making the model as resemblant as possible to the actual fitness function without making the model too complex, too complicated or too costly.

Constrained Optimization

Constrained optimization is another class where solutions, in addition to having a fitness, are either feasible or not. The goal is then to find the best feasible solution. The simplest case of constrained optimization is when the search-space is not R d but a strictly smaller sub-set S of it. In this case, solutions outside of S are not accepted and thus are considered unfeasible. In other cases, the most common when describing constrained problems, the constraints are defined using expressions whose truth values define the feasibility of a solution. Constraints that simply limit the interval in which each variable takes its values (for example [5, 5] d) are generally called box constraints. There are two main approaches to solving constrained-problems: (i) resampling, where the algorithm discards unfeasible solutions and tries to resample feasible ones and (ii) penalization, which requires the constraint to return more than just a binary value of whether the solution is feasible or not, then a penalty measure is added to the unfeasible solutions to favor feasible ones but still take them into account.

Evolutionary Algorithms for Continuous Black-Box Optimization

When dealing with black-box problems, algorithms do not have a direct access to any information other than the fitness of each solution they query. An overview of the methods that are used to solve these problems, also called derivative-free optimization, can be found in [START_REF] Rios | Derivative-free optimization: a review of algorithms and comparison of software implementations[END_REF]. Among these methods, population based algorithms perform generally well when dealing with such problems and the di culties they bring along such as the ones presented in Section 2.1.1. They do not require additional information such as the gradients (that might need to be estimated) and generally do not suppose particular properties of the problem (continuity, di↵erentiability...) which makes them particularly suited for black-box optimization. These algorithms are commonly known as Evolutionary Algorithms (EA). The core principle in evolutionary algorithms is inspired from the process of natural evolution based on mutation and natural selection. A population of individuals is evolved by means of mutation and cross-over and a selection pressure is applied through the fitness functions: the better the fitness of an individual the more likely it is to survive in the population and propagate its genome. In principle, the fitness of the solutions in the population improves over time, which translates into the algorithm finding better solutions and, ideally, ending up with a population where one or many of the solution are of the desired fitness.

Notable population based methods that are often used to solve continuous optimization problems include Particle Swap Optimization (PSO) [START_REF] James | Particle swarm optimization[END_REF], Di↵erential Evolution (DE) [START_REF] Storn | Di↵erential evolution-a simple and e cient heuristic for global optimization over continuous spaces[END_REF] (first appeared in [START_REF] Storn | Di↵erential evolution-a simple and e cient adaptive scheme for global optimization over continuous spaces[END_REF], Estimation of Distribution Algorithms (EDA) [START_REF] Larranaga | Estimation of distribution algorithms: A new tool for evolutionary computation[END_REF] and Evolutionary Strategies (ES) that will be the focus of the next section and that are the most relevant to this thesis.

Di↵erential Evolution

In the basic version of Di↵erential Evolution introduced in [START_REF] Storn | Di↵erential evolution-a simple and e cient heuristic for global optimization over continuous spaces[END_REF], each individual x i t and at each iteration t takes part in a crossover operation with a mutated individual xi t in order to construct the candidate individual xi t that will potentially replace it. The mutated individual xi t is a linear combination of three distinct individuals x p,i t , x q,i t , x r,i t , which are also di↵erent from x i t , and that are chosen randomly (so a population size of at least four is required):

xi t = x p,i t + F (x q,i t x r,i t) , (2.4)
where F 2 [0, 2] is the di↵erential weight (adds the weighted di↵erence between x q,i t and x r,i t to x p,i t). The candidate individual xi t is defined coordinate-wise:

[x i t] j = ([x i t] j if j = k or rand()  CR [x i t] j otherwise , (2.5)
where [x] j the j th coordinate of a vector x, k is a randomly chosen coordinate for each individual at each iteration that insures that at least one coordinate comes from the mutated individual xi t , rand() is a realization of a random uniform distribution in [0, 1] and CR 2 [0, 1] the crossover rate that determines the expected proportion of coordinates that will be taken from the mutated individual. The candidate individual xi t replaces x i t when it improves on its fitness (or has equal fitness for exploration-promoting purposes):

x i t+1 = (xi t if f (x i t)  f (x i t) x i t otherwise . (2.6)
A number of variants of DE were developed, among which: Di↵erential Evolution with Neighborhood Search NSDE [START_REF] Liu | Di↵erential evolution with neighborhood search[END_REF], Adaptive Di↵erential Evolution with Optional External Archive [START_REF] Zhang | Jade: adaptive differential evolution with optional external archive[END_REF]] and a Self adaptive Di↵erential Evolution [START_REF] Qin | Di↵erential evolution algorithm with strategy adaptation for global numerical optimization[END_REF].

Particle Swarm Optimization

PSO is one of the most widely used EA in continuous optimization. In the basic version, no selection mechanism is used so the algorithm consists in evolving a population of particles. Each particle x i t , at time t, is assigned a speed or velocity v i t that will serve to help define its next position:

x i t+1 = x i t + v i t .
(2.7)

The velocity of each particle is updated by taking into account its best seen position p i best (fitness-wise) and the best seen position of the swarm g best . The idea is to make the particle move, at time t + 1, towards these two solutions which have a high fitness. This is done by updating the particle's velocity using a linear combination of the the directions that point to these two solutions:

v i t+1 = v i t + 1 R 1 (p i best x i t) + 2 R 2 (g best x i t) , (2.8)
where 1 , 2 2 R are parameters of the algorithm that determine the relative attraction powers of p best and g best and R 1 , R 2 2 R d⇥d are diagonal matrices (all non-diagonal elements are zeros) whose diagonal elements are generated randomly at each iteration and for each individual. It was empirically shown in [START_REF] Hansen | Impacts of invariance in search: When cma-es and pso face ill-conditioned and non-separable problems[END_REF] that PSO su↵ers from rotated search spaces (the functions become, in most cases, not aligned with the coordinate-system). This makes PSO not rotation invariant. The performance of a rotationally invariant algorithm on a function would, roughly speaking, be the same regardless of the rotation that is applied to the search space (an identity transformation is obtained when the rotation matrix is an identity matrix). The impact on the performance of PSO observed in the paper is positively correlated with the condition number of the function. Since the matrices R 1 and R 2 are diagonal and not adapted, their random entries are independent only in an axis-parallel coordinate system.

One of the first improvements on PSO consists in decreasing its tendency to fall into local optima by defining g i best for each particle as the best seen position in a neighborhood or a sub-swarm. Thus one particle finding a local optimum, which generally dominates most of the solutions in the search space, would only a↵ect the behavior of a portion of the population instead of it (the local optimum) becoming an attractor of all individuals.

The variants of PSO that are found in the literature act on its di↵erent aspects. [START_REF] Shi | A modified particle swarm optimizer[END_REF]] introduced an inertia weight, w, to the update of the speed in (2.8) in the form of

v i t+1 = wv i t + 1 R 1 (p i best x i t) + 2 R 2 (g best x i t) ,
(2.9) that controls the speed at which the velocities change, both in direction and module, thus allowing a better control over the local versus global search behavior of the algorithm.

In [Montes de Oca and Stützle, 2008], an incremental population size is considered while the neighborhoods that define the g best are dynamically updated in several variants of the algorithm [START_REF] Hu | Multiobjective optimization using dynamic neighborhood particle swarm optimization[END_REF], Akat and Gazi, 2008, Liu et al., 2009].

Estimation of Distribution Algorithms

The purpose of Estimation of Distribution Algorithms is to learn a distribution that maximizes the likelihood of sampling optimal solutions. The basic steps in the core of an EDA are as follows:

1. Sample a population of solutions using the current distribution.

2. Evaluate the newly sampled solutions on the fitness function.

3. Select a portion of the population, generally the best fit solutions.

4. Update the current distribution using the information that was gathered from the selected solutions (their distribution) and prepare for the next iteration.

5. Repeat from step 1. until a stopping criterion is met.

The distribution of the solutions (the sampling distribution) is adapted explicitly using only the selected, most fit, individuals. Thus the likelihood of generating similar, and thus generally well-fit, o↵spring is increased. Ideally, the algorithm converges to a distribution of selected solutions close enough to the optimal solution. Contrarily to many EAs, EDAs do not use mutation and cross-over in order to evolve the population. Instead, the state of the algorithm, at a given point in time, is determined by the values of the parameters of its parameterized sampling distribution. So, a population is generated at each iteration but it is the distribution that is evolved. In a way, many Evolution Strategies (see Section 2.1.3), particularly those who adapt a fully parameterized multi-variate normal distribution such as CMA-ES (see Section 2.1.4), can be considered as estimation of distribution algorithms. In fact, in CMA-ES, the sampling distribution is adapted given, among other things, the information about the selected o↵spring. More details about the inner working of CMA-ES will be given in Section 2.1.4.

Multi-variate normal distributions are widely used as distribution models in EDAs. In order to increase the exploratory capabilities of the algorithm and reduce the impact on the performance of falling into local optimal, generally, multiple Multi-variate normal distributions are used and evolved in parallel.

One of the earlier implementations of EDAs can be traced back to [START_REF] Baluja | Removing the genetics from the standard genetic algorithm[END_REF] on binary problems and in [START_REF] Mühlenbein | From recombination of genes to the estimation of distributions i. binary parameters[END_REF] and [Mühlenbein et al., 1996] where the Breeder Genetic Algorithm (BGA) [START_REF] Schlierkamp-Voosen | Predictive models for the breeder genetic algorithm[END_REF] is investigated. In the latter, two variants are proposed, the Uniform Distribution Breeder Genetic Algorithm and the Univariate Marginal Distribution Breeder Genetic Algorithm. In both variants, the solutions (o↵spring) of an iteration are sampled following the distribution of the selected points of the preceeding iteration instead of being the result of crossover (as it is done in the original BGA). The paper ends up suggesting the use of the distributi [START_REF] Larranaga | Estimation of distribution algorithms: A new tool for evolutionary computation[END_REF] lays the basis for using EDAs in discrete and continuous optimization.

Evolution Strategies

Evolution Strategies (ES) are a sub-category of evolutionary algorithms that rely on the use of multi-variate normal distributions to sample the population and that are generally specialized in continuous search-space optimization. It is important for an evolution strategy to include an adaptation mechanism that allows it to adapt some of the parameters of its (multi-variate normal) distribution online (within the optimization process) since otherwise, it would be a simple variant of a random search algorithm. [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF] The beginnings of evolution strategies can be traced back to [Rechenberg, 1973] and [Schwefel, 1965]. Even though in the earlier implementations of multi-parent evolution strategies (also called multimembered ES) such as [Schwefel, 1977], each individual of the population was associated to a normal distribution, in this thesis, we are interested in the study of the relatively recent variants of evolution strategies in which all the o↵spring at a given time-step, that we call iteration, are generated from the same distribution. Thus, the sampling distribution at iteration t is defined by its parameters, the mean solution x

t and the covariance matrix C t , and noted N(x t , C t). More recent examples of evolution strategies that sample their populations from multiple normal distributions and adapt the parameters of these distributions include the Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES) [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF], a variant of CMA-ES designed for multi-objective optimization. A good overview of the origins and development of evolution strategies can be found in [START_REF] Beyer | Evolution strategies-a comprehensive introduction[END_REF].

In most evolution strategy studies, the covariance matrix is decomposed into a positive scaling factor t that is called the step-size and a symmetric positive-definite matrix that is referred to, by abuse of language, as the covariance matrix C t . Roughly speaking, the step-size determines the spread of the sampled solutions, that we call o↵spring, around the mean x t while the covariance matrix shapes this spread. For example, a highly conditioned covariance matrix results in the solutions being more spread (far from the mean of the distribution) in some directions than in others while the larger the step-size, the further away the generated solutions are, in expectation, from the mean solution.

We generally distinguish between elitist approaches, also called plus (+) strategies, where solutions from the previous iteration are added to the selection pool of the current iteration (and thus compete with the current o↵spring for selection) and non-elitist strategies, also called comma (,) strategies, where the selection is restricted to the set of solutions that were generated in the current iteration. We note the number of parents or number of selected solutions µ and the population size . We use the notation (µ/µ w ,)-ES to designate weighted-recombination based strategies, that is strategies where the selected µ parents are recombined in order to form a new mean solution x t+1 ; an alternative being to simply choose the best solution as the mean of the next iteration. The weighted recombination process in evolution strategies is the preferred cross-over mechanism, especially since these strategies often deal with continuous domain problems.

In a (µ/µ w ,)-ES, at each iteration t, o↵spring x 1 t , . . . , x t are sampled from the current distribution:

x i t ⇠ N(x t , 2 t C t) , (2.10)
where x t is the current mean solution, t is the current step-size and C t is the covariance matrix.

Then, the o↵spring are ordered, after evaluation, depending on their fitness values such that:

f (x 1: t)  • • •  f (x : t) , (2.11)
where, thus, x i: t designates the i th best individual of iteration t (among the individuals that were sampled).

Finally, the mean solution is updated to be the weighted recombination of the best (selected) µ individuals:

x t+1 = µ X i=1 w i x i: t , (2.12)
where w 1

• • • w µ are the recombination weights. Evolution strategies often consider all weights to be positive (w µ 0), and thus use only the information gathered from the successful (selected) o↵spring. An alternative approach, called active update (and the resulting algorithm active CMA-ES) was proposed in [START_REF] Jastrebski | Improving evolution strategies through active covariance matrix adaptation[END_REF] where the unsuccessful solutions are given negative weights after [Rudolph, 1997] showed that negative weights can improve the performance of recombination based strategies on some functions. The active update was later implemented into (µ/µ w ,)-ES in [START_REF] Hansen | Benchmarking a weighted negative covariance matrix update on the bbob-2010 noiseless testbed[END_REF]. In addition, the optimal weights derived for the sphere function in [Arnold, 2005] include positive weights for half the population and negative weights for the other half (µ =).

The other parameters of the distribution (other than the mean solution x t), the stepsize t and covariance matrix C t , can also be updated taking into account the information gathered thus far. Naturally, the adaptation of t is called step-size adaptation and that of the covariance matrix covariance matrix adaptation.

We notice that the above description of a (µ/µ w ,)-ES makes it invariant to strictly increasing transformations of the fitness function. This means that a (µ/µ w ,)-ES is expected to perform the same on a problem f (x) as on any problem (g f)(x) = g(f (x)) with g : R ! R a strictly increasing function (y 1 > y 2 =) g(y 1) > g(y 2)). In order to preserve this property, the distribution parameters need to be updated by using, as information, only the ranking of the solutions (2.11), not their actual function values. Invariances are a well desired concept when designing algorithms since they allow to generalize results found on one problem to a class of problems sharing the properties to which the algorithm is invariant. This is particularly sought-after in evolution strategies whose use of standard normal distributions allows a number of theoretical studies of performance and converge rates to the optimal. We will see some examples of such important theoretical results in Chapter 3.

The Covariance Matrix Adaptation Evolution Strategies

The Covariance Matrix Adaptation Evolution Strategy is the reference evolution strategy for solving black-box continuous optimization problems. As such, it is mainly concerned in the adaptation of the parameters of the multi-variate normal distribution, the mean solution x t , the step-size t and the covariance matrix C t , used to sample the solutions. It relies on a number of concepts that were introduced through the years to result in the algorithm described in [START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)[END_REF].

The first concept that was introduced is that of de-randomization in [Ostermeier et al., 1994a]. In a de-randomized algorithm, the source of randomness used on the solution parameters (to generate the o↵spring) is the same one that, after transformation, is used to adapt the parameters of the strategy [START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation[END_REF]. In other words, the mutation of the internal parameters of the algorithms depends deterministically on the realizations of the random variables used to generate the solutions (a single source of randomness is used).

The second concept is that of covriance matrix adaptation [START_REF] Hansen | Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation[END_REF]. Correct covariance matrix adaptation allows the algorithm to be invariant to any rotation of the coordinate system, resulting in a coordinate system independent algorithm. In addition, by learning the correct scalings of the axes within the covariance matrix, there is no need for a step-size for each dimension but a single, global, step-size t su ces to represent, coupled with C t and x t , any multi-variate normal distribution. An alternative covariance matrix adaptation method was introduced earlier in [Schwefel, 1981]. This methods relies on learning the individual step-sizes of each dimension (d variances) and the d(d 1)/2 rotation angles (number of degrees of liberty of a rotation in R d) that compose the covariance matrix. However, [START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation[END_REF] showed experimentally that, because of the canonical base rotations that are used, this approach is coordinate-system dependent.

One of the most important concepts that are used in CMA-ES is the concept of cumulation that was introduced in [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF]. In cumulation, the update does not rely only on the information gathered form the current iteration but also on that of previous iterations. The steps/direction that were performed in the previous iterations, when updating the di↵erent parameters of the strategy (in this case, the step size t and the covariance matrix C t), are taken into account when updating these same parameters in the current iteration.

Later, the CMA-ES was enhanced and its performance improved, especially when relatively larger population sizes are at play, by the addition of what is called a rank-µ update of the covariance matrix in [START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)[END_REF]. Contrarily the the rank one update that only uses the information from the step performed by the mean solution, a rank µ update takes into account a weighted sum of the steps, in isotropic space, of the µ selected o↵spring. The use of the rank-µ update significantly improves the speed at which the covariance matrix is learned, especially when the population size is high.

The (µ/µ

w ,)-CMA-ES In order to describe the (µ/µ w ,)-CMA-ES algorithm with rank-µ update [START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)[END_REF], we show the update equations of the step-size and the covariance matrix; the rest of the algorithm uses the standard (µ/µ w ,)-ES update equations seen in Section 2.1.3.The o↵spring generation and mean solution update are carried out the same way as in a default (µ/µ w ,)-ES (see equations (2.10), (2.11) and (2.12)). Note that (2.10) can also be written:

x i t ⇠ x t + t C 1/2 t N(0, I d) , (2.13)
where I d is the identity (eye) matrix in dimension d (all entries are zeros but the diagonal entries who are ones) and C 1/2 t refers to the unique positive-definite symmetric square root matrix of C t , that is C

1/2 t C 1/2 t = C t and C 1/2 t
has positive eigenvalues. Cumulation is applied to both the step-size and covariance matrix using two respective evolution paths, p t and p c t ; both initially 0 d , the vector of zeros of size d (similarly, we note 1 d the vector of ones of size d). The step-size evolution path is updated as follows

p t+1 = (1 c)p t + p c (2 c) p µ e↵ C 1/2 t x t+1 x t t ,
(2.14)

where c 2 [0, 1] a discount factor that determines the cumulation time for p t (⇡ 1/c),

µ e↵ = 1/ P µ i=1 w 2 i the variance e↵ective selection mass and C 1/2 t is defined similar to C 1/2 t but with regards to C 1 t , the inverse of C t , instead (C 1 t C t = I d).
Thus, p t is updated by taking into consideration the displacement of x t in the isotropic space. On the other hand, the path of the covariance matrix is updated in a similar fashion but not in the isotropic space (no multiplication by C

1/2 t) p c t+1 = (1 c c)p c t + p c c (2 c c) p µ e↵ x t+1 x t t , (2.15)
where c c 2 [0, 1] another discount factor that determines the cumulation time for p c t (which is ⇡ 1/c c). These two paths are then used to update the parameters of the distribution. The new step-size is computed as follows

t+1 = t ⇥ exp ✓ c d ✓ kp t+1 k EkN(0, I d)k 1 ◆◆ , (2.16)
where d is the damping parameter that controls the amount of change of the step-size in one iteration, and EkN(0, I d)k is the expected length of the path under random selection (the o↵spring are ordered randomly). Thus, the step-size adaptation mechanism, Cumulative Step-size Adaptation (CSA), compares the length of the cumulation path p t+1 to the length that would be obtained under random selection and increases or decreases the step-size accordingly. Note that as a result of the update, log t follows an unbiased random walk under random selection.

For the covariance matrix:

C t+1 = (1 c 1 c µ)C t + c 1 p c t (p c t) T + c µ µ X i=1 w i x i: t x t t ✓ x i: t x t t ◆ T , (2.17)
where c 1 , c µ 2 [0, 1] are the learning rates for, respectively, the rank-one update (p c t (p c t) T) and the rank-µ update (P

µ i=1 w i x i: t x t t ✓ x i: t x t t ◆ T).
The internal complexity of the (µ/µ w ,)-CMA-ES as presented above is in O(d 3) per iteration. This complexity comes from the singular value decomposition of C t needed both for sampling the solutions (2.13) and updating the isotropic path (2.14). In order to reduce this complexity, [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] suggests to perform the decomposition only once every a linear number of iterations in the dimension of the problem (d/10) since the covariance matrix is not expected to change significantly in the course of a few iterations. This amount of change depends, not only on the landscape of the function, but also on the di↵erent learning rates of the covariance matrix (c 1 for the rank one update and c µ for the rank µ update) and on the discount factor for the covariance matrix cumulation path c c . The resulting complexity is in O(d 2) which is acceptable in a small to medium dimension setting; it is also the complexity of computing a vectormatrix multiplication. However, further complexity reductions will be needed for the algorithm to be usable in a large-scale setting as we will see in Section 2.2.1.3.

CMA-ES variants

Given its good performance on a variety of problems, several variants of CMA-ES were developed through the years, either to further improve its performance both in general and on specific function classes or to be applied in di↵erent optimization contexts such as multi-objective, expensive, constrained and large-scale optimizations.

Restarted CMA-ES

After [START_REF] Hansen | Evaluating the cma evolution strategy on multimodal test functions[END_REF] established that larger population sizes improve the performance of CMA-ES on a number of multi-modal problems, [START_REF] Auger | A restart CMA evolution strategy with increasing population size[END_REF] proposed an increasing POPulation size CMA-ES (I-POP-CMA-ES). In I-POP-CMA-ES after each restart triggered by a met stopping criterion (the stopping criteria of CMA-ES are documents in [Hansen, 2009]), the population size is multiplied by 2. BI-POP-CMA-ES [Hansen, 2009] relies on two regimes when changing the population size. The first regime doubles the population size the same as I-POP while in the second regime, the population size is decreased to a value in the interval [def , l], with def the initial, default, population size and l the last value of the population size (largest) obtained at the end of the first regime. Both variants are further tweaked in [Loshchilov, 2013] with a decreasing initial step-size upon each restart for I-POP in NIPOP and an adapted budget for the two regimes depending on their performance in NBIPOP. The regime with the better best-found solution is given double the budget of the other regime. These changes resulted in some improved performance especially on multi-modal functions.

Online Parameter Adaptation

An online adaptation scheme for other parameters of CMA-ES (other than the population size) is proposed in self-CMA-ES [START_REF] Loshchilov | Maximum likelihood-based online adaptation of hyper-parameters in CMA-ES[END_REF]. The main idea of the algorithm is to choose a parameter setting that maximizes the likelihood of generating the best fit individuals (similarly to what is done in EDAs). In order to find these parameter values, a second CMA-ES algorithm, called auxiliary CMA-ES, is run on the parameters of the algorithm while the primary CMA-ES operates in the search-space of the problem. The proposed algorithm improved the performance of CMA-ES when considering population sizes that are larger than the default ones.

Meta-Model Based Variants

Several meta-model based methods were developed for CMA-ES. These methods are generally suited for expensive optimization where the cost of performing a function evaluation is high and thus only a small budget can be a↵orded. They try to approximate the original fitness function with a given model that they optimize instead of the original fitness, thus avoiding to deplete the budget. The best solutions found on the meta-model are then evaluated on the original function and injected to the model so it can be updated.

(1,)-LS-CMA-ES [START_REF] Auger | LS-CMA-ES: A second-order algorithm for covariance matrix adaptation[END_REF]] uses a quadratic model to approximate the fitness functions. The model is constructed by minimizing the square error observed on the quadratic model on the d 2 most recently evaluated points on the original function. Two modes are used, a local search mode (LS) and a CMA mode. The LS mode is used whenever the precision of the approximated model exceeds a given threshold, otherwise, the CMA mode is used. The model is re-computed once every n upd = 100 iterations. In lmm-CMA-ES [START_REF] Kern | Local metamodels for optimization using evolution strategies[END_REF] a locally weighted quadratic regression (locally weighted regression [START_REF] Atkinson | Locally weighted learning[END_REF] with a full quadratic model) is used to build a model that gives importance to the points (in the form of the weights associated) depending on their distances to a current central solution. The covariance matrix learned by CMA-ES is used to defined the metric needed for this weighting. The paper also investigates the performance loss of CMA-ES given the number of perturbations of the o↵spring rankings and finds out that the performance loss has a minor dependency on the fitness function. [START_REF] Bouzarkouna | Investigating the local-meta-model cma-es for large population sizes[END_REF] investigates the shortcomings of lmm-CMA-ES when larger population sizes and numbers of parents are considered and proposes an alternative to the too restrictive condition for acceptance of a meta-model. The original condition which was to preserve the ranking of all the µ best solution is replace by a less restrictive condition of having the same µ best solution, regardless of their order except the best individual which needs to remain the same between the model and the original fitness function. After /4 evaluations on the original function, only the criterion on the best individual is verified. The proposed method, nlmm-CMA-ES, outperforms lmm-CMA-ES especially with larger than default population sizes thanks to its less restrictive conditions on the meta-model precision. nlmm-CMA-ES is applied to the real-world problem of well placement in [START_REF] Bouzarkouna | Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models[END_REF] showing better performance than a Genetic Algorithm but improved little over the default CMA-ES. In [Auger et al., 2013], lmm-CMA-ES is benchmarked using another relaxed acceptance criterion for the meta-model which now requires a threshold precision. In addition, the meta-model construction phase is started earlier. The resulting algorithm shows results on par with those of saACM [Loshchilov et al., 2012a] and improves on the original lmm-CMA-ES on most functions. [START_REF] Loshchilov | Comparison-based optimizers need comparison-based surrogates[END_REF] proposes to use rank-based meta-models (in this case a rank-based Support Vector Machine) as the meta-model of the algorithm. By doing so, the surrogate algorithm preserves the important invariance property of the CMA-ES to monotoneous transformations of the fitness function. This approach was improved in [START_REF] Loshchilov | Selfadaptive surrogate-assisted covariance matrix adaptation evolution strategy[END_REF] by self-adapting the hyper parameters of the model using an internal CMA-ES algorithm and setting its lifespan (number of iterations before it is retrained) depending on the ranking error made by the surrogate on the new set of points. A more intense exploitation of the meta-model by using larger population sizes when optimizing it (the model) while keeping the default population-size on the original function is proposed in [START_REF] Loshchilov | Intensive surrogate model exploitation in self-adaptive surrogate-assisted cma-es (saacm-es)[END_REF] in order to improve the performance, especially on uni-modal functions. The algorithm is further augmented by adding a linesearch method for better performance on separable function and using the NEWUOA [Powell, 2006] algorithm in the first 10 ⇥ d evaluations given its rapid convergence on a number of simple functions. The resulting algorithm is called Hybrid CMA (HCMA) [Loshchilov et al., 2013a] and shows the best performance on the Black-Box Optimization Benchmarking workshops on a number of functions.

Multiplicative Covariance-Matrix Update and Multi-Objective CMA-ES A di↵erent approach to covariance matrix adaptation that uses a multiplicative update instead of the additive update in (2.17) is proposed in [START_REF] Krause | A cma-es with multiplicative covariance matrix updates[END_REF]. This approach was first applied to the Natural Evolution Strategy (NES) [START_REF] Wierstra | Natural evolution strategies[END_REF] in xNES [START_REF] Glasmachers | Exponential natural evolution strategies[END_REF] and proposes to update the covariance matrix through matrix exponentiation that can be carried out with a complexity that is similar to that of the additive update.

In [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF], a Multi-Objective CMA-ES algorithm (MO-CMA-ES) is introduced that uses a number of (1 +)-CMA-ES algorithms to search for a Pareto front (in multi-objective optimization, we are generally more interested in finding a set of nondominated solutions, the Pareto front, than in finding a single best solution. In fact, due to the multiple objectives, a pair of solutions can end up being non-comparable, generally leaving the choice of which of them is better in the hands of experts on the problem).

A number of large-scale variants of CMA-ES were also developed especially in the last few years. These variants will be discussed in Section 2.2.1.

Large-Scale Continuous Optimization

The ever increasing computational power at the disposal of engineers and scientists is naturally accompanied with a desire to solve larger and more complex problems. This leads to more complex and more accurate models that are generally described by larger numbers of parameters; which in turn increases the appeal of large scale optimization. This can, for example, be seen on neural networks, and more specifically, deep neural networks [Claudiu Ciresan et al., 2010, Coates et al., 2011, Dean et al., 2012, Krizhevsky et al., 2012, Ngiam et al., 2011, Silver et al., 2016, Bottou et al., 2016]. These problems end up having large numbers of parameters, namely the weights of the network that need to be optimized. This is generally done using gradient descent on a fitness function that is a least square error. Some other less recent examples include meteorology [START_REF] Wang | The adjoint newton algorithm for large-scale unconstrained optimization in meteorology applications[END_REF]] and shape optimization: turbine blades [START_REF] Sonoda | Advanced high turning compressor airfoils for low reynolds number condition: Part 1-design and optimization[END_REF], aircraft wings [START_REF] Vicini | Airfoil and wing design through hybrid optimization strategies[END_REF], heat exchangers [START_REF] Foli | Optimization of micro heat exchanger: Cfd, analytical approach and multi-objective evolutionary algorithms[END_REF].

The large number of parameters involved in these so called large-scale problems makes solving them using regular optimization methods unpractical. This is mainly due to their complexities or computational costs with regards to the problem dimensions. For example, CMA-ES (see Section 2.1.4) by adapting a full covariance matrix needs, in order to store this covariance matrix, an amount of memory which scales quadratically with the number of variables. The sampling of o↵spring is also at least quadratic (we have seen in the last paragraph of Section 2.1.4.1 that it is originally cubic when a full covariance matrix is adapted) in time as it requires a matrix vector multiplication. These quadratic complexities are generally considered un-a↵ordable in a large scale setting since they only allow to tackle, within reasonable time and space costs, low to medium dimensions. Thus large-scale optimization requires specifically designed algorithms with additional constraints on the cost.

We can divide the methods and algorithms used to solve large-scale optimization problems into two main categories: direct approaches and divide and conquer approaches.

Direct Approaches

Direct approaches solve the problems as it is, as a whole. The algorithms in question are generally variants of standard algorithms that perform well on smaller dimensions. These variants are conceived while taking into account the large-scale specific constraints, mainly constraints of space and time costs in addition to potential properties that largescale problems might present (low e↵ective dimensionality that will be seen in Chapter 4, limited variable interactions....).

Descent-Based Approaches

Gradient Descent and Newton Method Some of the earliest large-scale optimization algorithms were designed around the gradient descent and Newton approaches. Gradient descent follows the negative of the gradient of the function (when available) in order to improve the fitness and, eventually, find a local optimum. In optimization, the Newton method is used in order to find the zeros of the gradient of the function, and thus potential local optima. Note that in a black-box setting, the information about the gradient or the Hessian is not available, and thus can only be estimated by the algorithm.

The Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) that was developed independently in [Broyden, 1970], [Fletcher, 1970], [Goldfarb, 1970] and [START_REF] Shanno | Optimal conditioning of quasi-newton methods[END_REF] is a quasi-Newton method that relies on the estimation of the inverse of the local Hessian matrix of the problem using rank one updates. Quasi-Newton methods are generally used when the Hessian matrix is unavailable (for example in black-box optimization) or too expensive to compute (high dimension). Instead, an estimation of this matrix is computed and used in order to find the extrema of the function.The large-scale version of the algorithm, called limited memory BFGS, first introduced in [Nocedal, 1980] and then formalized for large-scale optimization via L-BFGS in [START_REF] Liu | On the limited memory bfgs method for large scale optimization[END_REF], is a variant that, instead of estimating a full, dense, inverse of the Hessian matrix, stores a certain, limited, number of vectors that were previously generated. The matrix is then simulated using these same vectors and never stored explicitly as a full matrix. In the same context, [Steihaug, 1983] used a trust region mechanism (a local, generally quadratic, approximation model of the fitness function whose size changes depending on its accuracy) coupled with a conjugate gradient to solve the local approximation.

More recently, [START_REF] Liao | A gradient-based continuous method for large-scale optimization problems[END_REF] proposes a gradient-based method that relies on solving an ordinary di↵erential equation that approximates the optimization problems while [START_REF] Fasano | A nonmonotone truncated newton-krylov method exploiting negative curvature directions, for large scale unconstrained optimization[END_REF]] introduces an adaptive line-search approach that uses two directions: an approximation of a Newton step and a negative curvature direction. A di↵erent approach, on a particular class of problems, is introduced in [Nesterov, 2014]. In this paper, problems with sparse sub-gradients (generalization of gradient for non-di↵erentiable functions) are considered and this sparsity is taken advantage of when computing matrix vector products. Because of this sparsity, only a few entries are expected to change from one iteration to an other; this allows an e cient update of the results of these matrixvector products and coupled with simple sub-gradient methods, results in algorithms that can handle large-dimension problems. A summary of the performance of several gradient-based methods on large-scale problems can be found in [Yuan, 2010].

Coordinate Descent

Coordinate-descent algorithms consider sub-problems where one coordinate (or block of coordinates) is optimized at a time. The problems are solved by iterating over these sub-problems until a satisfactory solution is found (multiple passes are generally needed on non-separable problems). Coordinate-descent algorithms are generally used to solve convex problems with certain known properties such as having the expression of the gradient or being partially separable. They are not often applied in the context of complete black-box optimization, and do not perform well on fully non-separable problems. However, they remain an important class of algorithms for large-scale continuous-domain optimization thanks to their reduced complexity. In addition, in the recent years, and with the rise of big data, these methods, along with other convex descent-based optimization approaches, saw an increasing interest. This is especially the case when dealing with what is commonly referred to as huge-scale problems (problems with millions of variables where, in extreme cases, even linear complexities are considered prohibitive). They are, in fact, some of the few methods that can be applied in such scenarios. In addition, one does not expect huge-scale problems to have a fully dependent structure (all variables depend on all the other variables) but rather to have groups of dependent variables and a generally sparse dependence matrix. [Nesterov, 2012] treats the case of (non black-box, convex) huge-scale optimization problems. In order to limit the amount of expensive operations that are needed (even vector additions are considered expensive in this scenario), the proposed approach, Random Coordinate Descent Method (RCDM), applies partial updates on randomly chosen variables at each iteration. The sampling of the random coordinates, which generally has a complexity of O(d), is done in logarithmic time to accommodate the huge-scale scenario. The results obtained in [Nesterov, 2012] are extended in [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] to composite problems using randomized block-coordinate descent. In block-coordinate descent, at each phase, the optimization process is focused on a single block of variables that it optimizes; thus reducing the per-iteration complexity of the algorithm which no longer depends on the total number of variable d but only on the size of the current block (which is generally significantly smaller). This is similar to the block-diagonal structure which will be in the core of the dependency-introducing transformation proposed in Chapter 5.

In [START_REF] Richtárik | E cient serial and parallel coordinate descent methods for huge-scale truss topology design[END_REF], random and greedy choices of the descent coordinates are considered on huge-scale (dimensions up to more than 3 ⇥ 10 6) instances of the Truss Topology Design problem (real-world optimization problems encountered when designing mechanical structures such as bridges).

A parallelized coordinate-descent method, similar to the Cooperative Coevolution approach described in Section 2.2.2, is proposed in [START_REF] Richtárik | Distributed coordinate descent method for learning with big data[END_REF]. The variables of the problem are partitioned and assigned to di↵erent nodes. Each node then performs, at each iteration and in parallel, a standard coordinate descent on the set of variables it was assigned. The resulting algorithm, named Hydra for HYbriD cooRdinAte descent method, is applied to loss minimization in big-data problems.

Convex partially-separable functions with a block structure are considered in [START_REF] Richtárik | Parallel coordinate descent methods for big data optimization[END_REF] 1 . The idea is to take advantage of the block-separable structure of the function in order to speed-up the optimization process via the parallelization of independent sub-components (a perfect scenario would be a speed up equal to the number of separable sub-components). The proposed approach serves also as a more general framework that includes [START_REF] Richtárik | Distributed coordinate descent method for learning with big data[END_REF] as a special case (with regards to the sampling of the blocks).

Smooth but non-convex problems with a predefined structure are studied in [START_REF] Patrascu | E cient random coordinate descent algorithms for large-scale structured nonconvex optimization[END_REF] (and also in [START_REF] Lu | Randomized block coordinate nonmonotone gradient method for a class of nonlinear programming[END_REF]) proposing random coordinate descent approaches for solving them. In [START_REF] Patrascu | E cient random coordinate descent algorithms for large-scale structured nonconvex optimization[END_REF], the problems are formed as the sum of a black-box smooth non-convex term and a convex term with known structure. The proposed method, called 1-Random Coordinate Descent method (1-RCD), approaches the problem one variable (or block of variables) at a time and solves a quadratic approximation of the problem (which is accurate as long as the smooth nonconvex function satisfies some gradient continuity conditions). Once a variable (or block) is chosen, the solution is updated by following a direction that minimizes the quadratic approximation.

Large-Scale Optimization on Classification Problems

A number of coordinate descent (as seen above), gradient descent and Newton methods are used in solving large-scale classification problems. These methods do, generally, not consider a black-box setting since the fitness function is known and given in a closed form that the solver can exploit. It is even up to the user to choose the fitness function for a given classification problem that generally includes a penalization term (for the wrongly classified examples) and a regularization term (to keep control on the parameters such as preventing them from becoming too large or having too complex models). For example, in Support Vector Machine (SVM) models, two main approaches are used to penalizing: L 1 -SVM for a linear penalization and L 2 -SVM for a quadratic one. Examples of notable large-scale algorithms applied to linear classification include stochastic gradient descent (the gradient descent is applied on only one example per iteration) in [Zhang, 2004] that was later extended upon and coupled with sub-gradient projections in PEGASOS [START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for svm[END_REF]; a coordinate descent algorithm on the dual problem in Dual-CD [Hsieh et al., 2008a]; a trust region based newton method TRON [START_REF] Lin | Newton's method for large bound-constrained optimization problems[END_REF] that was applied in [START_REF] Lin | Trust region newton method for logistic regression[END_REF] to logistic regression on large-scale classification problems and also on non-linear SVMs and SVM perf [Joachims, 2006] which uses a cutting planes methods (starts with an empty set of constraints that is, at each step, augmented with the, new, most violated constraint) on an alternative formulation of the SVM optimization problem. A good overview of large-scale optimization algorithms applied to linear classification, mainly SVMs, can be found in [START_REF] Yuan | Recent advances of large-scale linear classification[END_REF].

One thing to note about most of the methods presented in this section is that they consider the problem of converging to a state where the gradient tends to zero. They are, by default, not suitable for multi-modal optimization and may perform sub-optimally on non-smooth functions. They are also mostly concerned about solving the convex problems that generally appear when dealing with machine-learning problems such as classification problems.

PSO, DE and EDA Variants

The recent years saw an increase in the use of population-based algorithms to solve continuous optimization problems. More specifically, Evolutionary Algorithms (EA) based, for the most part, on Particle Swarm Optimization (PSO), Di↵erential Evolution (DE) and Evolution Strategies (ES).

PSO

In the variants of PSO (see Section 2.1.2.2 for a brief description), Rotated Particle Swarm [START_REF] Korenaga | Performance improvement of particle swarm optimization for high-dimensional function optimization[END_REF] applies a rotation to the coordinate system to address the degeneracy in particle speeds observed on large-scale problems. The rotation is applied on a limited number of pairs of axes such that the algorithm remains computationally reasonable is high dimensions. Dynamic Multi-Swarm (DMS-PSO) [START_REF] Zhao | Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization[END_REF] uses a large number of sub-swarms of reduced sizes. After each sub-swarm is done with its search, a proportion of the best solutions is refined using a quasi-Newton local search. The particles are then shu✏ed to form new sub-swarms and the process is reiterated. After a certain number of iterations, the overall best found solution is refined with another local search. In Dynamic Neighborhood Topology PSO (PSO-DNT) [START_REF] Han | Particle swarm optimization using dynamic neighborhood topology for large scale optimization[END_REF], the particles are, here also, clustered into sub-swarms. A neighbourhood diversity measure is used in order to detect when a sub-swarm reaches a local optimum, thus hopefully allowing to dynamically renew the neighborhood connections when needed.

Incremental PSO with Local Search (IPSOLS) [Montes de Oca et al., 2008] uses an increasing population size based on the framework first proposed in [Montes de Oca and Stützle, 2008]. A local search procedure is also used to try and improve the best solution found by each particle. It was redesigned in [Montes de Oca and Stützle, 2011] to handle large-scale problems via an automatic algorithm configuration using Iterated F-Race2 [START_REF] Birattari | F-race and iterated f-race: An overview[END_REF] on problems of smaller dimensions than the original problem. An other approach to population size adaptation for large-scale PSO is the E cient Population Utilization Strategy for PSO (EPUS-PSO) [START_REF] Hsieh | Solving large scale global optimization using improved particle swarm optimizer[END_REF]. In EPUS-PSO, if the global best solution found does not improve after a given number iterations k, the population size in incremented as long as it does not exceed a fixed threshold, in which case it is decremented instead to allow room for a new particle. This increase in the population size is done in order to promote exploration. On the other hand, if the global best solution is improved in successive iterations, exploration is encouraged by decrementing the population size This is done in hope of increasing the speed and e ciency of exploitation and of reducing the redundancy of solutions.

DE

In the area of DE (see Section 2.1.2.1 for a brief description), jDEdynNP-F [START_REF] Brest | High-dimensional real-parameter optimization using self-adaptive di↵erential evolution algorithm with population size reduction[END_REF] is a self adaptive di↵erential evolution algorithm that incorporates a population reduction method. The population size is halved with a frequency that grants each population size value an equal number of function evaluations (thus the larger, more costly, population sizes are given less iterations). In the DE/current-to-pbest mutation strategy, instead of selecting the best individual for mutation, one is selected randomly from the the p ⇥ 100% best individuals.

EDA

EDAs, and more specifically Gaussian-Distribution based EDAs generally do not scale well in the problem dimension since they need to estimate the covariance matrix (matrices) of the distribution which, by default, contain quadratic numbers of elements; thus are not directly applicable in large-scale. Similarly to what we will see in Section 2.2.1.3 for Evolution Strategies, large-scale approaches for Gaussian Distribution based EDA rely mostly on using a restricted model of the covariance matrix to limit both the learning and the sampling complexities.

The earlier implementations of EDAs in [START_REF] Mühlenbein | From recombination of genes to the estimation of distributions i. binary parameters[END_REF] and [Mühlenbein et al., 1996] consider what is called a univariate EDA. In a univariate EDA, only the means and variances of the variables are learned, which results in a linear complexity and makes the approach applicable for high dimensions. It can also be seen as restricting the learning of the covariance matrix to only the diagonal elements (the rest are set to zeros), similarly to separable CMA-ES [Ros and Hansen, 2008]. As noted in [START_REF] Bosman | Benchmarking parameter-free amalgam on functions with and without noise[END_REF], considering a diagonal covariance matrix reduces the number of problems solved by an EDA. However, the computational time needed with the diagonal approach is considerably lower than when estimating a full-covariance matrix; which makes it a reasonable alternative and compromise when dealing with large-scale problems. In [START_REF] Wang | Estimation of distribution and di↵erential evolution cooperation for large scale economic load dispatch optimization of power systems[END_REF], a univariate EDA, MUEDA [START_REF] Wang | A self-adaptive mixed distribution based uni-variate estimation of distribution algorithm for large scale global optimization[END_REF] that uses a mixed Cauchy-Gaussian distribution, is run in the first phase of optimization. Then, once a predefined stopping criterion is triggered (small improvement of the best fitness over a number of iterations), a di↵erential evolution algorithm is used in order to better improve the results on the region of interest identified by the univariate EDA. The resulting serial cooperation based algorithm, named ED-DE, is applied to a representation of a multi-model real-world problem (Economic Load Dispatch), and produced improved best-known solutions on a number of instances of this problem. It also compares well, performance-wise, to a number of classical DE and PSO variants on standard benchmark functions that are generally used in continuous optimization (although only on dimension d = 30).

[[START_REF] Dong | Scaling up estimation of distribution algorithms for continuous optimization[END_REF] uses two steps in the large-scale EDA it proposes. First independent variables are identified using a method called Weakly Dependent variable Identification (WI) which computes the correlation, in the set of selected solutions, between the di↵erent variables of the problem and assumes independent (with regards to all the other variables) each variable whose correlations are all smaller than a given threshold. The independent variables form a class W and the rest of the, assumingly dependent, variables another class S. A full model is to be learned for the variables in S while a diagonal, univariate, one is used for the variables in W (since they are supposed independent, so have null correlations). Often, the size of the subset S remains too large, especially in a large-scale settings, both for the computational cost that one can a↵ord and also given the relatively reduced number of selected o↵spring (in comparison to the dimension of S) which a↵ects the precision of the model. Thus S is randomly partitioned into a number of c subsets (of variables) and a multi-variate model is learned on each subset by projecting the selected o↵spring into the subspace spanned by this subset. So, the same set of selected solutions is taken advantage of multiple-times by projecting it into the di↵erent subspaces spanned by these subsets. This approach can be seen as learning a restricted block-diagonal covariance matrix with the variables in W all belonging to blocks of size 1 (part diagonal part block-diagonal matrix).

In [START_REF] Kabán | Toward large-scale continuous eda: A random matrix theory perspective[END_REF], a number of sub-spaces of smaller dimensions than that of the problem are defined using random projection matrices. The selected solutions are, here also, projected into these sub-spaces and a covariance matrix is learned for each sub-space. By learning the covariance matrix in the sub-spaces, this approach reduces the computation cost of the algorithm (in comparison to learning in the original searchspace). Once the covariance matrices are learned, new solutions are sampled in each subspace and combined, using scaled averages (to accommodate the loss in vector lengths and variance due to the orthogonal sub-space projections), in order to create the new population in the original search-space.

CMA-ES Variants

One of the earliest alternatives to CMA-ES for large-scale optimization was proposed in [START_REF] Poland | Main vector adaptation: A CMA variant with linear time and space complexity[END_REF] with the Main Vector Adaptation (MVA) approach. The idea in MVA is to find the most desired mutation direction and follow it instead of adapting a full covariance matrix, making the algorithm less costly. In L-CMA-ES [START_REF] Knight | Reducing the spacetime complexity of the cma-es[END_REF], the most prominent m eigenvectors (those associated with the largest eigenvalues) are learned instead of all the d vectors (assuming full rank) that form the full covariance matrix. In order to avoid searching in a sub-space of dimension m < d and thus potentially be unable to solve simple functions (because of the optimum not being in the targeted subspace), an additional isotropic normal distribution on all dimensions is considered with a variance equal to the square of the smallest computed eigenvalue. Later, the separable CMA-ES algorithm (sep-CMA-ES) [Ros and Hansen, 2008] was developed with a restricted diagonal covariance matrix. With its linear number of free parameters, sep-CMA-ES is well suited for large-scale cases. However, and as experiments show, the diagonal covariance matrix allows to e ciently solve only problems that are separable or block-separable with a relatively low block-condition number (see Chapter 5).

VD-CMA-ES

VD-CMA-ES [START_REF] Akimoto | Comparisonbased natural gradient optimization in high dimension[END_REF] proposes to use a covariance matrix that covers a larger set of problems by considering, in addition to the diagonal elements as in sep-CMA-ES, an additional vector as follows: (2.18) where I d is the identity matrix in dimension d, D 2 R d⇥d is the diagonal matrix and v 2 R d . In this version of CMA-ES, the step-size is adapted using a variant of CSA where in (2.14) C 1/2 t is replaced by (I d +vv T) 1/2 D 1 in order to achieve linear complexity (the inverse of I d + vv T can be computed in linear time using the Sherman-Morrison formula since I d is diagonal). VD-CMA-ES was generalized into VkD-CMA-ES in [START_REF] Akimoto | Projection-based restricted covariance matrix adaptation for high dimension[END_REF] where instead of considering one additional vector v, k vectors are considered:

C = D(I d + vv T)D ,
C = D(I d + VV T)D , (2.19)
where V 2 R d⇥k is no longer a vector but a matrix comprised of k 2 [0, d 1] vectors v 1 , . . . , v k that need to be learned. The step-size is adapted using Two Point Adaptation [START_REF] Hansen | How to assess stepsize adaptation mechanisms in randomised search[END_REF]. VkD-CMA-ES has the advantage of generalizing both sep-CMA-ES (k = 0) and the default full covariance matrix adapting CMA-ES (k = d 1). One important parameter to set in VkD-CMA-ES is the number of vectors k since it impacts not only the performance of the algorithm (the larger the values of k the more likely the problem can be well approximated using the corresponding restricted covariance matrix) but also the complexity of the algorithm which is in O(k ⇥ d). The parameter k is automatically adapted online in [Akimoto and Hansen, 2016a]. The authors start by describing the e↵ects that one expects to see when the covariance matrix is richer than needed or not rich enough given a convex-quadratic problem. The e↵ect of dropping each of the current axes is estimated by the change of condition number in the resulting matrix (after dropping said vector). If this results in an increase of the condition number that is not larger than a given threshold, dec , the vector is dropped (the algorithm also makes sure that it is not in a covariance-matrix adaptation phase that can lead to a larger decrease in the condition number if said vector is dropped). The number of vectors k is increased when the restricted covariance matrix does not change significantly and the step-size converges slowly. This is reflected in all the condition number increases being larger than a given threshold inc . The empirical results showed that the model learned by the proposed algorithms, and the number of vectors k, are nearly the optimal ones on many functions. It does, however, result in a slowdown of the performance on fully non-separable problems because of the time needed to adapt k = d 1.

LM-CMA-ES

Another variant of CMA-ES, Limited Memory CMA-ES (LM-CMA-ES) [Loshchilov, 2014] was inspired from the limited memory BFGS [Nocedal, 1980] algorithm. It retains the same idea of not conserving the full covariance matrix but a set of the m last directions generated by the algorithm. These directions are then used to sample the new solutions without ever needing to reconstruct the full convariance matrix. LM-CMA-ES uses a new step-sized adaptation mechanism, the Population Success Rule (PSR) introduced in [Loshchilov, 2014] and inspired by the Median Success Rule (MSR) [Ait Elhara et al., 2013] which will be the main topic of Chapter 3. Similarly to MSR, PSR is a success-based rule whose complexity is not directly dependent on the problem dimension (can still depend on it through) which makes it usable in a large-scale scenario. A later version of LM-CMA-ES [Loshchilov, 2015] improves its performance by considering a number of vectors m in the square root of d instead of taking m = whose default value is logarithmic in d. In order to remain in a reasonable complexity setting (m = p d means the overall complexity would be in O(d 3/2)), a smaller number m ⇤ of vectors is used in order to generate each individual. Another significant change that was done in [Loshchilov, 2015] was to consider a Rademacher distribution (returns 1 or 1 equiprobably) instead of the normal distribution that is commonly used in evolution strategies. The sampling of Rademacher distributed variables is cheaper and PSR, the same as MSR, does not assume a particular distribution of the o↵spring which allows such an approach.

Other Methods

We can find, in the literature, a number of large-scale optimization algorithms that are not based on the algorithms described above. For example, Multi-Agent Genetic Algorithm (MAGA) [START_REF] Zhong | A multiagent genetic algorithm for global numerical optimization[END_REF] combines a multi-agent system with a genetic algorithm while MA-SW-Chains [START_REF] Molina | MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization[END_REF] is a memetic algorithm that mixes a Steady State Genetic Algorithm (SSGA) [Whitley et al., 1989] with the Solis and Wets' algorithm [START_REF] Solis | Minimization by random search techniques[END_REF], chaining di↵erent local searches by passing on the parameters from one to another. Memetic algorithms is a term that is generally used to describe hybrids of evolutionary algorithms and local search methods. Many of the examples cited above rely on this approach to improve the performance of the evolutionary algorithms on large-scale problems. The idea is to rely on the EA mostly for the exploration part while the local search is used as an exploitation mechanism that tries to improve the best individuals found by the EA.

Divide & Conquer Approaches

The second category of approaches to solve large-scale problems relies on the divide and conquer paradigm (D&C), which, in large-scale continuous optimization, is mainly represented by the Cooperative Co-evolution (CC) approach, first proposed in [Potter and De Jong, 1994]. Unlike the direct methods that tackle the whole problem at once, the D&C methods divide the it into smaller, more a↵ordable and easier to solve sub-problems that are, each, solved with an e cient optimization method.

In CC, the partial solutions are generally called species. Each species is evolved via an evolutionary algorithm, and its fitness is defined by that of the complete solution it forms with the current best representatives of the other species. Generally, the sub-problems are defined over subsets of variables that do not overlap, and when a sub-problems is optimized, the variable from the other sub-problems are kept constant. A solution to the global problem is, then, the aggregation of the partial solutions on each sub-problem (a cross over between the solutions of the sub-problems).

The grouping phase of the CC process is a crucial one, more so on non-separable problems where dependent variables need to be grouped and optimized together for the optimization to be e cient. Many of the CC based works focus specifically on finding e cient and well-performing ways of choosing these species. The original framework, which puts each variable in a group of its own, turned out to be ine cient whenever the problems it faces are non-separable. [START_REF] Shi | Cooperative co-evolutionary differential evolution for function optimization[END_REF] proposed a dividing in half strategy (variables are put in two groups of equal size). This strategy performed significantly better on non-separable problems but has a major shortcoming in its scaling in d since it reduces the complexity of the sub-problems tackled by the underlying evolutionary algorithms by only a constant factor and applies the EA that same factor of times (dividing in half leads to 2 runs of the EA each on half the global dimension...). Most strategies divide the d variables into an intermediate number of groups n G such as in [Van den Bergh and Engelbrecht, 2004] with an ideally upper-bounded largest sub-component size (in order to have a reasonable scaling in d).

In [START_REF] Liu | Scaling up fast evolutionary programming with cooperative coevolution[END_REF], the original CC approach is applied to Fast Evolutionary Programming [START_REF] Yao | Evolutionary programming made faster[END_REF] in order to speed-up its convergence rates on large-scale optimization problems. The results are promising, showing linear scaling of the performance in the problem dimension d. However, all the problems that were considered are separable problems, which does not tell much about the results that one expects to see on non-separable problems where the grouping process becomes more relevant.

Random Groups

DECC-I and DECC-II [START_REF] Yang | Di↵erential evolution for high-dimensional function optimization[END_REF] use the Self-adaptive DE with Neighborhood Search (SaNSDE, described in details in [START_REF]Self-adaptive di↵erential evolution with neighborhood search[END_REF]) a variant of DE to solve the sub-problems. DECC-I randomly, and uniformly, groups the variables into m subcomponents. Each group is then optimized and given a weight, the weights of the best, the worst and a random group are evolved after each iteration. DECC-II overcomes the static grouping of variables in DECC-I by randomly selecting, at each iteration, a set of variables that will be optimized; the other variables are kept constant. Overall, DECC-I ended up better performing than DECC-II.

In [Yang et al., 2008a], the concepts of random grouping and adaptive weighting are introduced. The first generates new random groups at each iteration, and by doing so, increases the chances of evolving interacting/dependent variables together (see Section 3 of [Yang et al., 2008a] for the proof). The latter (adaptive weighting) attributes a weight to each of the m groups, these weights are then evolved (m dimensional evolution instead of the d dimensional one when considering the variables) in order to improve the overall solution quality. The process is iterated in what is called cycles and the whole algorithm is denoted EACC-G.

Co-Operative Micro Di↵erential Evolution (COMDE) [START_REF] Parsopoulos | Cooperative micro-di↵erential evolution for high-dimensional problems[END_REF] applies cooperation to the micro DE which uses very small population sizes (a population size of 6 in [START_REF] Parsopoulos | Cooperative micro-di↵erential evolution for high-dimensional problems[END_REF]), regardless of the problem dimension d. The reduced population size allows for a fast converge which, however, prevents good exploration. This lack of exploration is addressed through the use of the cooperative scheme.

The Multi-Level CC (MLCC) [START_REF]Multilevel cooperative coevolution for large scale optimization[END_REF] tries to find the group sizes that fit the best to the considered problem. Small group sizes are expected to work better on separable problems while larger ones are generally necessary for a good performance on non-separable problems thanks to a larger chance of optimizing interacting variables together. At each cycle, each group size is given a probability of being selected that is based on its past performances. [Omidvar et al., 2010a] proposes DECC-ML, an improved version of MLCC. The paper starts by showing that a frequent variable grouping (once a cycle) improves significantly the chances to evolve interacting variables together, generalizing the result of [Yang et al., 2008a] to more than two variables. In addition to this, the selection of the group sizes is made uniform instead of weighted, and only carried out when the quality of the solution does not improve in two successive cycles. It also gets rid of the adaptive weighting that, the paper shows, generally fails to improve the fitness of the solution.

In variants of PSO for large-scale optimization, we can find Cooperative PSO (CPSO) [Van den Bergh and Engelbrecht, 2004]. CPSO is improved upon in CCPSO [START_REF] Li | Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms[END_REF] by injecting random grouping and adaptive weighting. CCPSO is further improved in CCPSO2 [START_REF] Li | Cooperatively coevolving particle swarms for large scale optimization[END_REF] by mixing (using a probability p) between a Cauchy distribution and a Gaussian distribution for the sampling of new points in the PSO process. This is done to grant better search capabilities to the algorithm, a crucial aspect in large scale optimization. It also, like in [Omidvar et al., 2010a], removes the adaptive weighting in favor of a more frequent random grouping.

Variable-Interaction Based Groups

The concept of Delta Grouping is introduced in [START_REF] Omidvar | Cooperative coevolution with delta grouping for large scale non-separable function optimization[END_REF] with the DECC-D/DML algorithm. Delta Grouping aims at finding the interacting variables in order to group them together for improved performances on non-separable problems. The core idea of the concept is that interacting variables have generally narrow improvement intervals (intervals in which the fitness can be improved while keeping the other variables constant) [Salomon, 1996]. Thus, at each cycle, the average amount of change in each variable is calculated, and variables are sorted according to this amount; then, the grouping takes place by successively filling the groups with the sorted variables, increasing the chances of grouping interacting variables together. DECC-DML self-adapts the group sizes using simple random uniform sizes the same way as in [Omidvar et al., 2010a].

In Cooperative Coevolution with Variable Interaction Learning (CCVIL) [START_REF] Chen | Large-scale global optimization using cooperative coevolution with variable interaction learning[END_REF], a di↵erent approach, first proposed in [START_REF] Weicker | On the improvement of coevolutionary optimizers by learning variable interdependencies[END_REF], is used to learn variable interactions. Two variables x i and x j are assumed dependent if there exist values x 1 i , x 2 i for x i and x 1 j , x 2 j for x j and values (x k)

1kd,k / 2{i,j} for the remaining variables such that:

f (x 1 , . . . , x 1 i , . . . , x 1 j , . . . , x d) < f(x 1 , . . . , x 2 i , . . . , x 1 j , . . . , x d) (2 . 2 0) and f (x 1 , . . . , x 1 i , . . . , x 2 j , . . . , x d) > f(x 1 , . . . , x 2 i , . . . , x 2 j , . . . , x d) . (2.21)
This means that the result of the comparison of the fitness for a pair of values of x i , f (. . . , x 1 i , . . .) VS f (. . . , x 2 i , . . .), depends on the value of x j for these same values of x i (x 1 i and x 2 i).The algorithm starts by considering all the variables independent and merges the dependent variables whenever equations (2.20) and (2.21) are both satisfied. At each step, equations (2.20) and (2.21) are verified using two individuals that are based on the current best individual and whose coordinates i and j (the variables whose dependence is investigated) are replaced with values from the current individual and a randomly chosen one. It does not consider a round robin tournament to detect all possible interactions (quadratic number of possible interactions), the dependency of the current variable/group is only checked with the previous one, with a random arrangement of variables generated at each cycle. The simulations show a good performance with regards to finding the correct number of groups of a problems; however, the cost of learning these groups in numbers of additional function evaluations (that are not exploited elsewhere) remains a major drawback of the algorithm. A similar approach, called Di↵erential Grouping, was proposed in [START_REF] Omidvar | Cooperative co-evolution with di↵erential grouping for large scale optimization[END_REF] where instead of a simple binary comparison of the fitness as in equations (2.20) and (2.21), the fitness di↵erence is tracked by defining:

1 = f (x 1 , . . . , x 1 i , . . . , x 1 j , . . . , x d) f (x 1 , . . . , x 2 i , . . . , x 1 j , . . . , x d) (2.22) and 2 = f (x 1 , . . . , x 1 i , . . . , x 2 j , . . . , x d) f (x 1 , . . . , x 2 i , . . . , x 2 j , . . . , x d) . (2.23) Then if | 1 2
| is larger than a certain predefined threshold ✏, the variables i and j are marked as dependent. [START_REF] Sun | Extended di↵erential grouping for large scale global optimization with direct and indirect variable interactions[END_REF] first notes the fact that di↵erential grouping captures only direct interactions between variables. Then, it proposes the Extended di↵erential grouping that also identifies indirect interactions and groups indirectly interacting variables together. Di↵erential grouping is further improved in [START_REF] Mei | A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization[END_REF] in what is called Global Di↵erential Grouping by keeping track of the variable-interaction matrix (the value of | 1 2 | for each pair of variables). It is also one of the few algorithms that take advantage of the good performance of CMA-ES on small to moderate dimension problems and use it as the EA to optimize the sub-components. The resulting algorithm, CC-GDG-CMAES, outperformed its state of the art counterparts in The CEC 2010 Large Scale Global Optimization Special Session.

A good survey of large-scale optimization methods and especially of Cooperative Coevolution based ones can be found in [START_REF] Mahdavi | Metaheuristics in large-scale global continues optimization: a survey[END_REF]. Overall these methods give promising results on several problems. However, their performance remains limited when dealing with fully non-separable problems since the approach consists in optimizing subsets of variables, of reasonably small sizes, together to bypass the use of an optimization algorithm on a high dimension problem.

Benchmarking

Benchmarking is an important task in algorithm design. It allows to test and assess the performance of algorithms before they deployment in a real-world setting. This is especially practical when resources in the real-world scenario are limited or when the runs take a long time to resolve so one can not a↵ord a large number of runs. Benchmarking generally consists in, first, running the algorithm(s) in question on a set of predefined functions/problems. Then, the data produced by the experiments, ideally quantifying the performance, is processed and interpreted. A good benchmarking platform typically provides, in addition to the resources needed to run the experiments, additional tools to post-process the generated data and visualize it in a simple and easily interpretable way. The possibility of comparing the performance of several algorithms is in the core of the benchmarking procedure and should be provided in a simple way since it in the core of the benchmarking process. An example of a benchmarking platform that provides the features described above is COmparing Continuous Optimisers (COCO) that we will describe in the following section.

Given the purpose of benchmarking, and in order for them to be meaningful, the functions on which the algorithms are tested should relate to real-world problems. This is required in order for the performance of the algorithm on a real-world scenario to not di↵er from that on the benchmark, thus making the decisions taken on the benchmark as relevant as possible in the real world scenario (reduce the di↵erence to the outcome observed on the benchmark). This results in a lesser tinkering e↵ort needed on the, generally more expensive, real world problems.

One way to design benchmark functions that are similar to real-world problems is to identify the di culties these real-world problems when confronting optimization algorithms. Then, one can represent these problems via functions that possess properties that translate into these same di culties such as (see Section 2.1.1 for a more detailed but not exhaustive list of the di culties encountered in continuous black-box optimization): dimensionality, non-separability, multi-modality, ill-conditioning...

The BBOB-2009 test-bed

One widely used benchmarking platform in continuous black-box optimization is COmparing Continuous Optimisers, COCO (https://github.com/numbbo/coco). As previously mentioned, it provides both the tools needed to run the simulations (experiment code) in di↵erent programming languages (C, C++, Java, Python, Matlab and Octave for now) and a Python code that allows to post-process the data. Using the post-processing code of COCO produces several practical and useful plots such as the scaling plots (e.g., Figure 5.8) and the Cumulative Distribution plots (e.g., Figure 5.9). It also provides a set of tables and a data structure that allows the user to have access to and visualize individual data-sets and personalized data-set lists.

The BBOB-2009 test-bed, and more specifically the noiseless test-bed, is the core of the benchmarking procedure in COCO. It contains a set of 24 di↵erent problems whose definitions can be found later in Table 5.3 andTable 5.4 and that are based on raw functions that can be found in Table 5.1 andTable 5.2. Di↵erent transformations are applied on these raw functions in order to generate the 24 problems. These transformations will be detailed in Section 5.1.1. For each set of values of the parameters of these transformations, an instance of the problem is generated; which allows, in theory, an infinite number of instances for problem. The problems can also be defined on any dimension d 2.

These problems are organized in five categories, each category containing a set of problems that share some property/di culty:

Separable Functions (f 1 -f 5): these functions are considered to be easy since they can be solved by a line search on each dimension. The Rastrigin functions (f 3 and f 4) present the additional di culty of being highly multi-modal; which makes them harder for most algorithms that do not explicitly exploit the separable nature of these problems. These five functions are the only separable ones in the testbed.

Low/Moderately Conditioned Functions (f 6 -f 9): these functions have a condition number of about 100. The two first functions are uni-modal (single optimum) while the Rosenbrock functions (f 8 and f 9) have a second, local, optimum in dimensions higher than 2. The non-rotated Rosenbrock function (f 8) is partially separable, with a band like dependency structure (each variables interacts directly only with its immediate neighbors).

Unimodal Highly Conditioned Functions (f 10 -f 14): these functions have a single optimum. A descent method should, in theory (depending on the di↵erentiability of the function, the presence of plateaus and how they are handled), be able to find the optimum. They have a relatively high condition number (10 6 for f 10 , f 11 and f 12) in comparison to the functions of the previous category.

Multi-Modal Functions with Adequate Global Strucure (f 15 -f 19): these functions are highly multi-modal, with a number of local optima that depends on the dimension (e.g., exponential in the dimension for f 15). However, the adequate structure that might be exploited by algorithms means the local optima are generally similarly shaped and distributed in a regular way. Thus, seen on a global scale, the landscape of the function contains repetitive, symmetric, patterns.

Multi-Modal Functions with Weak Global Strucure (f 20 -f 24): similar to the previous category in multi-modality but the landscapes of the function has less structure and symmetries are broken. Most algorithms find these problems to be the hardest.

In addition to its noisy test-bed and the possibility of having an expensive setting when visualizing the date, the COCO platform has recently extended its list of problem suites to include that of bi-objective problems [START_REF] Tusar | Coco: The bi-objective black box optimization benchmarking (bbob-biobj) test suite[END_REF], Brockho↵ et al., 2016]. The expensive setting introduces the notion of runlength-based target values. Instead of fixing constant target precisions (as it is done in the classical approach approach), the target precisions are, instead, generated depending on the performance of another algorithm (in the present version, an artificial portfolio algorithm of the best results collected in the 2009 BBOB workshop [START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009[END_REF]) by choosing the targets that were just not reached at given run-lengths (numbers of functions evaluations). Furthermore, a constrained test-suite and a large-scale test-suite are in development to extend the platform even more. Chapter 5 of this thesis deals with the large-scale extension.

The CEC Benchmarks for Large-Scale Global Optimization

The most prominent large-scale continuous optimization benchmarks are the ones used in the CEC Special Sessions and Competitions on Large-Scale Global Optimization. The first iteration of this test-suite, proposed in [START_REF] Tang | Benchmark functions for the cec'2008 special session and competition on large scale global optimization[END_REF] consisted in 20 problems organized in four classes depending on their levels of separability:

• separable functions,

• partially separable functions with a single group of dependent variables,

• partially separable functions with several independent groups each group comprised of dependent variables,

• fully non-separable functions.

The problems are constructed in a similar fashion to [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] by applying transformations on a number of basic/raw functions. The CEC benchmarks are based on a subset of the raw functions used in COCO: the sphere function, the ellipsoid function, the Rastrigin function and the Rosenbrock function (see Table 5.1 andTable 5.2 without the normalization factor (d)) in addition to the Ackley function and a di↵erent variant of the Schwefel function, Schwefel 1.2. The Ackley function, in its raw form, is defined as follows

f Ackley raw (x) = 20 exp 0 @ 0.2 v u u t 1 d d X i=1 x 2 i 1 A exp 1 d d X i=1 cos (2⇡x i) ! + 20 + e , (2.24)
where x i designates the i th coordinate of the vector x. The variant Schwefel 1.2 on the other hand:

f Schwefel1.2 raw (x) = d X i=1 i X j=1 x i ! 2 .
(2.25)

The partially separable problems are obtained by first dividing the variables into groups and then applying a full rotation matrix to each group. The complexity of evaluating the problems is limited thanks to constant group-sizes (set to 50 in the test-suite) that make the cost of applying the rotations (the bottleneck of the computation) reasonable despite the large-scale setting (since this group size is independent of the problem dimension).

The main shortcoming of this test-bed is possible exploitation of its flat group structure (non-overlapping groups of the same size). This was noted in [START_REF] Omidvar | Designing benchmark problems for large-scale continuous optimization[END_REF], in addition to showing that the di↵erential grouping approach [START_REF] Omidvar | Cooperative co-evolution with di↵erential grouping for large scale optimization[END_REF] manages to learn the exact group structure on most problems of the benchmark. [START_REF] Omidvar | Designing benchmark problems for large-scale continuous optimization[END_REF] also proposes a number of features that a large-scale benchmark needs to satisfy to reproduce real-world problem:

• non-uniform group sizes,

• non-uniform contributions of the groups,

• overlapping groups.

These features, in addition to a number of transformations borrowed from [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF], are integrated in order to construct the CEC 2013 Large-Scale Benchmark Functions [START_REF] Li | Benchmark functions for the cec 2013 special session and competition on large-scale global optimization[END_REF].

The problems are classified di↵erently in the new test-suite [START_REF] Li | Benchmark functions for the cec 2013 special session and competition on large-scale global optimization[END_REF]]:

• fully-separable problems,

• partially, additively, separable problems (contains problems with a group of separable variables and problems without a group of separable variables)

• overlapping problems (the groups share a number of variables, sub-problems formed by these groups may or may not have the same optimal values on the shared variables)

• fully non-separable problem (the Schwefel Problem).

We note that the Rosenbrock problem, and because if its band-like structure (all variables interact directly with the variables that are adjacent to them), is no-longer considered a fully non-separable problem but an overlapping one (here, groups of 2 to 3 interacting variables that overlap). One major shortcoming in the CEC benchmarks is the performance evaluation procedure. In COCO, the performance is measured in terms of the expected average number of function evaluations needed to reach a given target precision. In the CEC benchmarks, a fixed budget of function evaluations is given and the performance is measured in terms of the best fitness observed once the budget is exhausted. In most cases, the best fitness is a measure that can not be interpreted in a quantitative way. For example, one does not know, a priori, and on di↵erent problems, the significance of the quantitative di↵erence between a precision of 10 4 and a precision of 10 8 . The e↵ort needed to improve from the first to the second depends on the problem, and can vary drastically form one problem to the other. In addition, applying an increasing transformation to the fitness function (such as a scaling with a positive factor) leads to di↵erence performance results even for comparison-based algorithm (such as CMA-ES) that are inherently invariant to such transformations (this measure does not allow to see this invariance directly). On the other hand, using the number of function evaluations needed to reach a target precision allows to quantitatively compare algorithms and their speeds. An algorithm can be twice faster than an other in reaching a target f , can witness a speedup of 10 when a certain parameter is self-adapted... Results and interpretations that are easier to understand and apply.

Chapter 3 The Median Success Rule

This chapter aims at designing a new success based step-size adaptation mechanism for evolution strategies, and more specifically, for CMA-ES and its variants. The proposed mechanism has a complexity that does not directly depend on the problem dimension d, which makes it large-scale friendly. In addition, it relies on the presence of fewer properties of the sampling distribution than the step-size adaptation mechanism that it replaces (Cumulative Step-size Adaptation) and can thus, in theory, be applied and easily adapted to a large variety of population-based evolutionary algorithms. It can be seen as a generalization of the one-fifth success rule to multi-parent non-elitist evolution strategies.

Introduction

The default step-size adaptation mechanism in CMA-ES, the Cumulative Step-size Adaptation (CSA, see Section 2.1.4.1), and despite it being an e cient method with state of the art performance, has some shortcomings that make it unpractical to use in our large-scale context. CSA relies on having normally distributed o↵spring, limiting its use to algorithms that sample normally distributed o↵spring. It also performs better when it is coupled with a covariance-matrix adaptation-mechanism such as CMA-ES that presents it with an isotropic search space (after transformation via the covariance matrix, thanks to C 1/2 t in (2.14)). The complexity of learning this covariance matrix is, at best, quadratic when done in a standard way (learning the full covariance matrix). Such levels of complexity are generally not allowed in large-scale settings. In addition, CSA needs the inverse of the covariance matrix in its update to end up in the isotropic space (see (2.14)), so a strategy that adapts the covariance matrix in an e cient (linear) way, such as VD-CMA-ES [START_REF] Akimoto | Comparisonbased natural gradient optimization in high dimension[END_REF], needs to provide, in a no less e cient way, the inverse of the restricted covariance matrix it learns (as seen in Section 2.2.1.3, VD-CMA-ES does provide such a cheaply computed inverse by taking advantage of the particular covariance matrix it adapts). This leads to additional e↵orts needed if one wants to apply CSA in a large-scale setting. Other methods, such as LM-CMA-ES and the VkD-CMA-ES [START_REF] Akimoto | Projection-based restricted covariance matrix adaptation for high dimension[END_REF] (generalized VD-CMA-ES), follow a similar approach to that of this chapter and use di↵erent, cheaper, step-size adaptation mechanisms for large-scale optimization (Population Success Rule [Loshchilov, 2014] in LM-CMA-ES and Two-Point [START_REF] Hansen | How to assess stepsize adaptation mechanisms in randomised search[END_REF] Adaptation in VkD-CMA-ES). One other shortcoming of CSA is found in Chapter 4 in the form of its slow convergence rate on the simplest looking functions when these functions have low e↵ective dimension. This is due to the fact that the step-size adaptation signal of CSA is derived from a comparison with the case of random selection, in which the steps are normally distributed. The expected length of these steps depends on the problem dimension but the algorithm uses a deceptive overall problem dimension d instead of the e↵ective dimension of the problem d e↵ . So, the algorithm mis-estimates the true expected value of the length of the cumulation-path under random selection.

We propose the Median Success Rule (MSR) as an alternative for CSA that can be used in large-scale optimization but also more generally as a step-size adaptation mechanism that can be integrated to evolution strategies, and eventually to a larger array of population-based algorithms when adapted properly. The proposed method and its complexities do not depend directly on the problem dimension so it can be used in a largescale setting. Thus, MSR can be used with e cient covariance matrix approximation algorithms tackling large-scale problems. It is applied to an embedding-based version of CMA-ES in Chapter 4 which produced competitive results, surpassing CSA and being on par with other large-scale algorithms (it does not su↵er from the problem encountered by CSA on low e↵ective dimension problems). MSR can also constitute, coupled with the core of (µ/µ w ,)-ES (equations (2.10), (2.11) and (2.12)), a cheap stand-alone evolution strategy with no covaraince matrix adaptation.

In Section 3.2, we explain the notion of Linear Convergence and how it relates to the design of step-size adaptation methods. We introduce the Median Success Rule in Section 3.3 where we also present the details of its implementation. The parameters of MSR are investigated and tuned in Section 3.4 and the step-size adaptation mechanism is benchmarked against CSA in Section 3.5. We conclude in Section 3.6.

Step-size Adaptation and Linear Convergence

In continuous optimization problems, we are generally interested in the speed at which an algorithm finds or converges the optimal solution. It was already established that the step-size, and more specifically, the way it is adapted, impacts the speed at which evolution strategies converge to the optimal solution on a wide class of problems. In fact, and with a well adapted step-size, one can achieve what we call linear convergence, on a certain class of functions [Auger and Hansen, 2011]. Achieving a linear converge speed is generally the desired theoretical goal when conceiving evolution strategies in general and step-size adaptation mechanisms in particular. Thus, several methods of adapting t can be found in the literate of the domaine such as the one-fifth success rule [Rechenberg, 1994], Self-Adaptation (SA) [Schwefel, 1995], Two-Point Adaptation (TPA) [Hansen, 2008] and Cumulative Step-size Adaptation (CSA) [Ostermeier et al., 1994b].

In the context of evolution strategies, an ES converges linearly, in expectation, when there exists a positive constant CR that satisfies:

lim t!1 1 E  ln kx t+1 x opt k kx t x opt k = CR , (3.1)
where x opt is the optimal solution that is assumed to be unique and CR is called the convergence rate of the algorithm. In evolution strategies, x t designates the mean solution at iteration t and is generally considered to be the solution suggested by the algorithm as the currently best solution. We obtain almost sure convergence and say that an algorithm converges, almost surely, linearly when the following equality is satisfied almost surely:

lim t!1 1 1 t  ln kx t x opt k kx 0 x opt k = CR , (3.2)
where x 0 represents the initial solution of the algorithm at iteration 0. This linear convergence can be empirically investigated and is observed for certain step-size adaptation schemes (we remain in the context of evolution strategies) on several functions. However, formal proofs of such convergence remain relatively scarce and exist only for some particular step-size adaptation algorithms on some function classes. For example, su cient conditions to obtain linear convergence on scale-invariant functions were established, using Markov Chain analysis, in [Auger and Hansen, 2013a] for a large class of evolution strategies. These conditions were verified for the (1+1)-ES with one-fifth success rule on positively homogeneous functions (a subclass of scale-invariant functions satisfying 9k 2 N, 8↵ > 0, f(↵x) = ↵ k f (x)) in [START_REF] Auger | Linear convergence on positively homogeneous functions of a comparison based step-size adaptive randomized search: the (1+1)-ES with generalized one-fifth success rule[END_REF].

One important step-size adaptation scheme is one that produces a step-size proportional to the distance to the optimum of the current mean solution,

t = ⇤ ⇥ kx t x opt k d , (3.3)
where ⇤ is constant. The resulting artificial algorithm achieves linear convergence on spherical functions, whiche are functions of the form f (x) = g(f sphere (x x opt)) with g strictly increasing, for finite dimensions when used with single parent strategies ((1+1)-ES and (1,)-ES) [Auger and Hansen, 2011]. The sphere function is defined as follows:

f sphere (x) = d X i=1 ([x] i) 2 = kxk 2 , (3.4)
where [x] i designates the i th coordinate of x and kxk the euclidean norm of x. We use the notation [x] i (instead of x i) in this chapter for convenience. This algorithm is an artificial one since the distance to the optimum is supposed unknown to the algorithm in a black-box setting.

Furthermore, linear convergence is the best convergence speed a single parent ES can achieve on any function (Theorem 10.17 of [Auger and Hansen, 2011]). The resulting convergence rate (CR in (3.1)) using distance to the optimum proportional step-size (3.3) is optimal (maximal) on the spherical functions (Theorem 10.20 of [Auger and Hansen, 2011]), for some value of ⇤ . This sets an upper bound on the convergence rate of any step-size adaptation method.

Regarding the multi-parent non-elitist recombination based evolution strategies ((µ/ µ w ,)-ES), a step-size which is proportional to the distance to the optimum (3.3) achieves, also, linear convergence on finite dimension spherical functions [Auger et al., 2011]. In addition, and due to its scale-invariance, (3.1) is satisfied not only for the limit on t but for any t, i.e.,

1

E  ln kx t+1 x opt k kx t x opt k = CR for all t 2 N . (3.5)
Optimality of this convergence rate is still to be proven but we assume it to be true. We develop the Left-hand Side (LHS) of (3.5) and expend the expression of x t+1 (2.12) knowing that the o↵spring are sampled from our parameterized normal distribution (2.10) with C t = I d , while assuming, without loss of generality (WLOG), that the optimum is at zero (x opt = 0 d), and obtain:

CR = 1 E  ln kx t+1 k kx t k = 1 E  ln k P µ i=1 w i x i: t k kx t k = 1 E  ln kx t + t P µ i=1 w i N i: k kx t k = 1 E " ln k x t kx t k + t kx t k µ X i=1 w i N i: k # , (3.6)
where (N i:) 1i are the standard independent and identically distributed multivariate normal vectors used to generate the o↵spring (the realizations of the standard multivariate normal distribution in (2.13)):

x i t = x t + t N i , (3.7)
and ranked such that

kx t + t N 1: k  kx t + t N 2: k  • • •  kx t + t N : k . (3.8)
In other words, N i: , with 1  i  corresponds to the realization of the multi-normal distribution used for x i: t that satisfies (2.11), x i: t = x t + t N i: with the sphere function as the fitness function.

We have

t kx t k = ⇤ d (3.3) and we set x t kx t k = e 1
, where e 1 is the first canonical basis vector (1, 0, . . . , 0), without loss of generality due to the isotropy of both the spherical functions and the multi-variate normal distribution used to generate the o↵spring. Then we have:

CR = 1 E " ln ke 1 + ⇤ d µ X i=1 w i N i: k # .
(3.9)

Taking the limit case of spherical functions with dimension tending to infinity (d ! 1), the asymptotic convergence rate satisfies [Arnold, 2006]:

lim d!1 d ⇥ CR = ⇤ µ X i=1 w i E[N i:] + 1 2 ⇤ µ X i=1 w 2 i ! , (3.10)
where N i: , 1  i  is the i th order statistic (smallest individual) in a population or standard-normal distributed samples. Equation (3.10) is important as it allows us to identify the parameter values that maximize the convergence rate in the asymptotic case.

For starters, we can derive with respect to ⇤ and find the optimal value of this parameter:

⇤ opt = P µ i=1 w i E[N i:] P µ i=1 w 2 i = µ e↵ µ X i=1 w i E[N i:] , (3.11)
where µ e↵ = (

P µ i=1 w 2 i) 1
is the variance e↵ective selection mass. We refer to the corresponding step-size, ⇤ opt , as the optimal step-size. We extend this appellation to the case of finite dimension and refer to the step-size that maximizes the convergence rate as optimal step-size.

Then, the optimal weights are obtained by plugging, in (3.10), the value of ⇤ opt from (3.11) and deriving with respect to the weights w i . The resulting optimal weights are the negatives of the order statistics of a standard normal distribution [Arnold, 2005] with individuals: E[N i:], i = 1, . . . , µ. Dividing the weights by a constant factor ↵ leads to an ↵ times larger optimal step-size, but the resulting weights retain their optimal status [Ait Elhara et al., 2013]. Thus, we can normalize the optimal weights to have them summing to 1:

w opt i = E ⇥ N i: ⇤ P µ k=1 E [N k:] , i = 1, . . . , µ .
(3.12)

When µ 6 = /2, we choose to set the weights to the values that would be obtained, given µ, if = 2µ, i.e., given µ, we use:

w opt i:2µ = E [N i:2µ] P µ k=1 E [N k:2µ] , i = 1, . . . , µ . (3.13)
This guarantees that all weights remain positive and are normalized to sum to 1. We retain these weights as the default weights in this chapter (unless otherwise stated) and simply refer to them, to lighten the notation, by w i (2µ will be deduced from the context). Note that in Chapter 4, we use the default weights of CMA-ES (see Table 4.3).

The Median Success Rule Working-Principle

Motivations

The Median Success Rule (MSR) described in this chapter was mainly aimed to be an alternative to the Cumulative Step-size Adaptation (CSA) for multi-parent non-elitist evolution strategies in large dimensions and/or for large values of µ. In fact, the reliance of CSA on the adaptation of the covariance matrix, in order to adapt the isotropic evolution path, leads to, at best, quadratic time and space complexities.

Success-based methods are, computationally (and comparatively) cheap, with a complexity that is generally independent of the search-space dimension, or has a scaling in it that is shadowed by other complexities (algorithms are generally not expected to have less than linear complexities). For example, and as we will see, the complexity of MSR depends on the population size , which in turn is set by default to depend on the problem dimension d. However, since the population size is chosen to be logarithmic in the dimension, MSR does not change the overall complexity of the algorithm. In addition, success-based methods rely on less restrictive properties; the main assumption being the ability to use the success probability, or a measure of it, as a reliable signal for step-size adaptation.

Preliminaries

In a (1+1)-ES, we do not have much of a choice on how to define success, at least not over a single iteration: the iteration is successful if, and only if, the o↵spring has an equal or better fitness than the parent, i.e., f (x

1:1 t)  f (x t)
, where the equality is considered a success in order to prevent stagnation on plateaus. As a result, and since we have single parent single o↵spring elitist selection, a successful iteration means the next parent is no worse than the current one (f (x t+1)  f (x t), although one does not necessarily need to have the same success definition for the update of the mean x t as for the update of the step-size).Once the notion of success is defined, we investigate the success probability that is observed when desirable/optimal conditions (usually, convergence rate or progress rate of the algorithm) are met on some usual functions such as the sphere function. This procedure resulted in an optimal success probability p opt ⇡ 1/5 for the (1+1)-ES [Rechenberg, 1994].

In order to apply the same approach for (µ/µ w ,)-ES, a clear notion of success (and thus of success probability) needs to be defined. On a (µ/µ w ,)-ES, we can think of several success definitions over two successive iterations. We consider two iterations since we are in a non-elitist configuration where only the o↵spring generated at time t will be used to defined the next mean solution x t+1 . For example, we can consider the improvement of the mean solution x t (f (x t+1)  f (x t)) as a straightforward generalization of the 1/5 th success rule; the improvement of the i th best individual (f (x i: t+1)  f (x i: t)), with i a parameter to set; comparison of the i th best individual at iteration t + 1 with the mean at t (f (x i: t+1)  f (x t))... Each definition might produce a di↵erent optimal success probability p opt anywhere between 0 and 1. However, and in order to have the most accurate estimation of the success probability, p opt must be close to 1/2 since the algorithm will be estimating the parameter of a Bernoulli distribution. Comparing the same individual (x t+1 versus x t , x 1: t+1 versus x 1: t ...) at successive iterations gives p opt closer to 0 and 1 than to 1/2 for large enough µ since with an optimal step-size, the overall quality of the population is Figure 3.1: Left: Estimated target success probability when considering the improvement of the mean solution (f (x t+1) vs f (x t)) for di↵erent values of µ on the asymptotic sphere function (d ! 1). A (µ/µ w ,)-ES is considered with optimal weights (see (3.13)), x t = e 1 and the step-size is set to its optimal value for each configuration (3.11). The simulated derived formula is shown in (3.14). A total of 10 4 samples is used to estimated each probability and all possible values of µ are considered (1  µ ). Right: Empirical Cumulative Distribution of o↵spring fitness at two successive iterations (t and t + 1) on a sphere function of dimension 20 with a population size of = 10. A total of 10 5 pairs of populations at successive iterations are used for each value of the step-size. The mean solution of the first iteration x t is set to e 1 so f (x t) = 1. We see the objective function values on the x-axis with their corresponding empirical cumulative distribution values considering all the o↵spring, over the di↵erent trials, at iterations t and t + 1. The "}"s show to which percentile of the population at t the median at t + 1 (designated by " "s) must be compared in order to have a success probability of 1/2 (aligned in the x-axis). The graphs are shown for three multiples of the optimal step-size, opt /2, opt and 2 opt .

expected to improve over the iterations in order for it to converge to the optimum. For example, in the left plot of Figure 3.1, we show the target success probabilities of a (µ/µ w ,)-ES operating on the asymptotic sphere function (d ! 1) when defining success as being f (x t+1)  f (x t). We define the target success probability to be the success probability that is observed when the step-size is optimal (maximal possible convergence rate). We use the optimal step-size as defined in (3.11) and derive the formula of the success probability when optimal weights (3.13) are used:

Pr f (x t+1)  f (x t) = Pr 2 µ X i=1 w i N i:  µ X i=1 w i E[N i:] ! , (3.14)
where (N i: t) 1i the order statistics of a normal standard distribution with a pool of samples.

We see that most of the target success probabilities in the asymptotic case are closer to 1 than to 1/2. As to be expected from (3.14), the target success probability is positively correlated with the population size .

The Definition of Median Success

We are interested in finding a definition of success that would result in optimal success probabilities close to 1/2. To do so, we consider the populations at two successive iterations (x i: t) 1i and (x i: t+1) 1i and define a notion of success that is parametized by an index j . Then we investigate the values of j that produce the desired target success probabilities on the asymptotic spherical functions where the notion of optimal step-size is well defined.

Given j , an iteration is successful if and only if the median o↵spring at t + 1 is at least as good as the j th best individual at t. Then, we need to find j that satisfies:

Pr ⇣ f (x m: t+1)  f (x j : t) ⌘ ⇡ 1/2 , (3.15)
where m : , and when there is no ambiguity just m, designates, the index of the median o↵spring (function-value wise). Note that x m: t+1 is well defined only when is odd but we will see in the implementation section (Section 3.3.4) how we deal with even values of . We call the probability in the left hand side of (3.15) the Median Success Probability.

We want our comparison index j , to allow a rapid convergence to the optimal stepsize (when it is defined), so we choose it to be the value that, when optimal conditions are met, satisfies (3.15). As seen in Section 3.2, the optimal conditions on the sphere function when d ! 1 are well known (see for example (3.11)). Then, we can set j to the value that, on the asymptotic sphere function and when the step-size is optimal, the median success probability is 1/2. We will see later in this chapter (Section 3.4.2) how we can chose the value of j when the dimension is finite and on functions other than the sphere.

The success probability introduced in (3.15) is usually di↵erent from 1/2 for all possible integer values of j , thus we allow j to be real valued. To determine j given the ranked o↵spring of two successive iterations (x i: t) 1i and (x i: t+1) 1i , we identify the index, j with a median success probability, p s , closest to 1/2 but smaller than 1/2. We set, j + = j + 1 with its corresponding median success probability p + s . Then, j + has the closest median success probability to 1/2 that is larger than 1/2.

In order to estimate the value of j , we linearly interpolate it to the value that would give a 1/2 median success probability. The line passing by the points (j , p s) and (j + , p + s) has as equation

p = (p + s p s)j + p s (p + s p s)j . (3.16)
To get the interpolated value of j , we set p = 1/2 in (3.16) and obtain

j = j + 1/2 p s p + s p s .
(3.17)

This amounts to giving the indexes j + and j a weight proportional to the distance of the success probability obtained using the other index (p s and p + s respectively) to 1/2:

j = 1 p + s p s ⇥ p + s 1/2 j + 1/2 p s j + ⇤ , (3.18)
where 1/(p + s p s) is a normalization allowing the weights to sum up to 1. Assuming for the moment that we have identified a real number j (the process of identifying j will be explained later), we need, to be able to implement the algorithm, to give a meaning to the random vector x j : t that is coming into play in (3.15). Since we allow j to be non-integer, x j : t is not necessarily part of the population. To do so, we introduce a random variable j that takes its values in {j , j + }. The probabilities of j taking each value are chosen such that E[j] = j :

j = j u1 {j } + j + u{j } , (3.19)
were {j } designates the fractional part of j (j bj c), the indicator function and u a random variable uniformly distributed in [0, 1]. These notations will remain relevant in the few following equations.

We can now define a generalized version of x j : t for a real valued index j given the o↵spring at iteration t, (x i: t) 1i , as the random variable x j : t . Hence, x j : t satisfies

x j : t = x j : t u1 {j } + x j + : t u{j } .
(3.20)

Using this definition of x j : t (3.20), the median success probability reads:

Pr ⇣ f (x m: t+1)  f (x j : t) ⌘ =(1 {j }) ⇥ Pr ⇣ f (x m: t+1)  f (x j : t) ⌘ + {j } ⇥ Pr ⇣ f (x m: t+1)  f (x j + : t) ⌘ .
(3.21)

In practice, we are interested in the estimation of the success probability in (3.21) over a single iteration given o↵spring (x i: t) 1i and (x i: t+1) 1i where the comparisons yield binary results. The empirical estimation of the probability in (3.21), that we note Pr MSR t (m, j) and call empirical success probability, is defined as follows:

Pr MSR t (m, j) := (1 {j }) ⇥ f (x m: t+1)f (x j : t) + {j } ⇥ f (x m: t+1)f (x j + : t) . (3.22)
Note that an approach similar to what is done in equations (3.19) and (3.20) can also be applied to x m: t+1 when is even (m is not an integer). However, the implementation of the MSR (see Section 3.3.4) does not use the median o↵spring directly. Thus, we do not explicitly need to compute or estimate x m: t+1 when it is not part of the o↵spring. Looking into the asymptotic sphere function, we find that the median success probability is negatively correlated with the step-size (see (3.57) in Section 3.4.2.2). This correlation makes it possible to use the median success probability as a signal that guides the step-size towards its optimal value for a well set value of j . The optimal step-size here refers to the step-size that results in the largest possible convergence rate. The way we defined j , a well set /optimal value is one that results in a targeted median success probability of 1/2 when the step-size is optimal.

The right plot of Figure 3.1 shows an example on how the ideal comparison index (or comparison percentile) j depends on the step-size on a finite dimension (d = 20) sphere function. It shows the empirical cumulative distribution of the fitness of the o↵spring at two successive iterations for di↵erent values of the step-size. The o↵spring are obtained from a couple of iterations of a (µ/µ w ,)-ES. The negative correlation between step-size and median success probability means that the bigger the step-size, the larger the comparison index producing a median success probability of 1/2. In the example of Figure 3.1, one would set the comparison index to the 33%-tile (/3) as this corresponds to an empirical median success probability (3.22) of 1/2 on the estimated optimal step-size.

Implementation of the Median Success Rule

Limiting the estimation of success to only that of the median would result, similarly to the single parent single o↵spring scenario, in a binary signal. However, being in a configuration where the population size is larger than 2, we are expected to have a better suited mechanism where more of the information at one's disposal is used to estimate the drift from the optimal step-size at iteration t.

In order to have a more accurate estimation of the success probability (more precisely, of the distance to 1/2 which is our optimal success probability), we count the number of successful o↵spring at t + 1 when compared to the j th best individual at t. By doing so, and roughly speaking, a successful median would mean that at least half the o↵spring are successful (and an unsuccessful one otherwise). We, first, generalize (3.22) to define the empirical success probability of an individual x i: t+1 (or an index i) given the o↵spring at iteration t and the comparison index j :

Pr MSR t (i, j) := (1 {j }) ⇥ f (x i: t+1)f (x j : t) + {j } ⇥ f (x i: t+1)f (x j + : t) . (3.23)
To count the number of successes we have, we sum these empirical success probabilities over all the o↵spring of iteration t + 1:

K succ t = X i=1 Pr MSR t (i, j) .
(3.24)

We see that in (3.24), we do not need to estimate x m: t+1 when is even. In fact, we sum over all integer indexes of iteration t + 1, and if is even, the median is, simply, not taken into consideration in the computation of K succ t as it is not part of the o↵spring. We see in the left plot of Figure 3.2 an example where the estimated empirical success probabilities, Pr MSR t (i, j) (3.23), are shown under each point. In the lower plot, K succ t is an integer (K succ t = 2) since all individuals at t + 1 are either better than x j : t or worse than x j + : t . However, in the upper plot, we have x 4: t+1 whose fitness lies between those of these two individuals (x j : t and x j + : t

). Then for this case, and following (3.23) and (3.24), we have et al., 2013] for which we take d ! 1 for each weighting scheme while the solid lines are for j = 0.27 . Blue is for intermediate (equal) weights; Orange is for optimal weight (3.13) and Green is for the single parent case µ = 1, w i = i=1 .

K succ t = 3 + {j }.
We then normalize K succ t such that we obtain a signal at iteration t, z t , that is positive whenever the median is successful (roughly half the o↵spring are successful):

z t = h ✓ 2 ✓ K succ t 2 ◆◆ , (3.25)
where h is a monotonous function. We set h to the identity function in this chapter; using a sign function (as explained in the beginning of this section) gave inferior results. This normalization makes z t 2 [+1 , 1] with a successful median pushing towards (since we use a learning rate, c , the change in the step-size does not necessarily follow the sign of z t) an increase to the step-size with z t 0 and an unsuccessful one to a decrease. The success or not of the median, then, marks the frontier between a successful iteration and and unsuccessful one. In our context, we say that an o↵spring x i: t+1 is successful when Pr

MSR t (i, j) = 1.
When is odd, it is straightforward: the median o↵spring is x

(+1)/2: t+1 , K succ t +1 2 if Pr MSR t
(m, j) = 1; i.e., the median is successful. The lower-left plot of Figure 3.2 is an example of an unsuccessful median.

When is even, the median is not part of the o↵spring since +1 2 / 2 N. We look into x d(+1)/2e: t+1 and find that:

⇣ Pr MSR t (d(+ 1)/2e, j) = 1 ⌘ =) ✓ K succ t 2 ◆ , ⇣ Pr MSR t (d(+ 1)/2e, j) = 0 ⌘ =) ✓ K succ t < 2 ◆ .
(

K succ t = P i=1 Pr MSR t (i, j) (see (3.23)) 2: z t = h(2 (K succ t +1 2)) 3: s t+1 = (1 c)s t + c z t 4: t+1 = t exp(s t+1 d)

Parameter Setting

Looking at Algorithm 1, we identify three main parameters for the Median Success Rule: (i) the learning rate c , (ii) the comparison index j and (iii) the damping parameter d .

The next subsections will deal with setting the values of these three parameters. We set the monotonous function h to be the identity function through this chapter.

Learning Rate

The learning rate c 2]0, 1] allows to smooth, to some extent, the step-size adaptation coe cient, s t , over time. It also allows to limit the maximal amplitude of change in this coe cient from an iteration to the next one. When c < 1, s t is not a 100% reliant on the information gathered from a single iteration, granting the strategy a certain level of robustness against extreme single occurrences, the information in question being z t . Old values of s t contribute to the current value, with a contribution that fades geometrically, with reason (1 c), over time (see (3.27)). We choose to set the learning rate to the smallest value allowing two iterations to be enough for the coe cient s and the signal z to match signs when the signal is constant and its amplitude (absolute value) maximal, i.e.,

z t = z t+1 = ±1 1/ =) s t+2 ⇥ z t 0 . (3
s t+2 = (1 c) 2 s t + (2 c)c z t = s t 2c s t + c 2 s t + 2c z t c 2 z t = (z t s t)c 2 + 2(z t s t)c + s t .
(3.33)

On the other hand, we have:

z min  s 0  z max =) z min  s t  z max , 8t 2 N . (3.34)
This can easily be proved using mathematical induction.

Let us take the first worst case scenario (extreme unfavorable case for (3.30)). That is z t = z t+1 = z max and s t = z min . This is the worst case scenario since we have the largest distance possible between the signal and the coe cient, z t s t = 2, and more importantly the largest distance for them to match signs. By replacing in (3.33) we obtain:

s t+2 = 2c 2 + 4c + s t . (3.35)
This is a second degree equation with a positive discriminant. For s t+2 to be positive and match signs with z t , and thus for (3.30) to be satisfied, we need: p (2 + z min) covers both cases. In practice, we choose to relax the values of z min and z max and set them to 1 and 1 respectively, ignoring the 1/ . Then, the bound on c becomes: c 1 p 2 2 ' 0.293. We take the rounded value with a single significant digit: c = 0.3.

1 p 2 2 p (2 + z min)  c  1 + p 2 2 p (2 + z min) , (3

Comparison Index

In this section, we are interested in setting the second parameter of MSR, namely the comparison index j which is in the core of the proposed step-size adaptation strategy.

In order to asses the behavior of the Median Success Rule with di↵erent values of the comparison index, and then to choose the values of this index in practice, we start by considering three function settings, each setting having a di↵erent desired behavior of the step-size:

Linear Function: Increasing step-size; increasing the step-size ad infinitum.

Sphere Function: Decreasing step-size; distance to the optimum proportional step-size, see Section 3.2

Ridge Function: Constant step-size; when in the stationary state, the optimal step-size is constant.

A more systematic approach for designing and assessing step-size adaptation mechanisms can be found in [START_REF] Hansen | How to assess stepsize adaptation mechanisms in randomised search[END_REF]. In [START_REF] Hansen | How to assess stepsize adaptation mechanisms in randomised search[END_REF], five scenarios are suggested in order to assess step-size adaptation mechanisms. In addition to the (i) linear and (ii)

sphere functions that we consider here, the ridge function is replaced with a (iii) stationary sphere function that simulates a constant optimal step-size in a spherical scenario. The paper also assesses the step-size adaptation methods on (iv) random and flat functions, to see whether a given strategy is biased towards a particular behavior (for example, Self Adaptive step-size [Schwefel, 1995] has a step-size biased towards increase on random functions) and (v) an ill-conditioned function, typically the ellipsoid function.

Since on the linear and ridge functions the optimal solution is infinite, using convergence rates as a measure of performance is unpractical (the algorithm is supposed to diverge solution-wise). This is why we use, instead, the notion of progress that quantifies the evolution of the fitness of the mean solution in the desired direction (see, for example, (3.61)).

The Linear Function

The linear function is defined as follows:

f linear (x) = d X i=1 [x] i , (3.38)
where x 2 R d , d (positive) is the search-space dimension and [x] i the i th coordinate of x. For the sake of simplicity, and with no loss of generality, we define the function on 1 st coordinate only; i.e.,

f linear (x) = [x] 1 , (3.39)
making the function dimension-independent. We use (3.39) as the definition of the linear function through this chapter.

Then, the Median Success Probability on the linear function (left-hand side of (3.15)) reads:

Pr linear := Pr ⇣ f linear x m: t+1  f linear ⇣ x j : t ⌘⌘ = Pr ⇣ ⇥ x m: t+1 ⇤ 1  h x j : t i 1 ⌘ = Pr ⇣ ⇥ x t+1 + t+1 N m: t+1 ⇤ 1  h x t + t N j : t i 1 ⌘ , (3.40)
where (N i: t) 1i are multi-variate standard-normal vectors ordered such that:

f linear (x t + t N 1: t)  f linear (x t + t N 2: t)  • • •  f linear (x t + t N : t) , (3.41) which derives, for t > 0, into: ⇥ N 1: t ⇤ 1  ⇥ N 2: t ⇤ 1  • • •  ⇥ N : t ⇤ 1 .
(3.42)

Since N 1 t ⇠ N(0, I) (the non-ordered o↵spring) and the linear function is only defined on the first coordinate (3.39), this order is the same as that of the one-dimensional standard

normal variables ([N 1 t] 1 , [N 2 t] 1 ,. . . , [N t]
1) that compose the first coordinate of each vector. Thus:

Pr linear = Pr ⇣ ⇥ x t+1 ⇤ 1 + t+1 N m: t+1  [x t] 1 + t N j : t ⌘ = Pr " x t + t µ X i=1 w i N i: t # 1 + t+1 N m: t+1  [x t] 1 + t N j : t ! = Pr t µ X i=1 w i N i: t + t+1 N m: t+1  t N j : t ! , (3.43)
where N i: t is defined the same as in (3.10), and di↵erent time subscripts designate independent samples. If we consider a constant step-size over two iterations (t = t+1), the resulting Median Success Probability on the linear function would be:

Pr linear = Pr N m: t+1  N j : t µ X i=1 w i N i: t ! . (3.44)
We can see that this success probability is independent, not only of the search space dimension d, but also of the the step-size t . On the linear function, the desired behavior of a good step-size adaptation mechanism is to increase the step-size indefinitely since the optimum in at infinity. Thus, the linear success probability in (3.44) needs to be larger than 1/2 for a correct behavior of the algorithm since success probabilities larger than 1/2 push towards increasing the step-size (see Section 3.3.4).

We assess the performances of an algorithm over one iteration on the linear function using its progress rate. The progress rate is defined as the one iteration improvement of the fitness of the mean solution:

' t := f (x t 1) f (x t), 8t > 0 , (3.45)
and reads in the case of the linear function:

' linear = ⇥ x t 1 ⇤ 1 [x t] 1 = t 1 X i=1 w i N i: . (3.46)
The larger the value of the progress rate, the better the algorithm is. Assuming w 1 • • • w µ and µ < (both these conditions are generally satisfied), we see in (3.46) that the expected progress rate on the linear function for a (µ/µ w ,)-ES is positively correlated to the step-size. In the extreme case of equal weights (called intermediate weights) and µ = , we obtain null expected progress regardless of the step-size:

E(' linear) = t 1 1 E X i=1 N i: ! = t 1 1 E X i=1 N i ! (no need for ordering since µ =) = 0 .
(3.47)

Adding any selection mechanism, either by decreasing the number of parents µ, making the weights not all equal or both can only result in a better expected progress rate (since this leads to favoring better solutions). Thus, the generalization of the positive correlation between step-size and progress only requires that the weights are non-increasing. As expected in (3.44), we see a straightforward correlation between the success probability and the value of the index to which the median is compared (the comparison index j). In fact, j 1 j 2 , Pr j 1 linear Pr j 2 linear as the higher the value of this index j , the worse its objective value is in expectation; and thus, the better chances the median of the next iteration has to be successful.

Regarding the weights, what can be considered as a worst case scenario, when linear success probability is considered, is the case of intermediate weights. Here, the notion of worst case scenario is taken in the sense that, all other things being equal, this scenario gives the smallest linear success probability (3.44). An example of this can be seen in Figure 3.2 as the blue graph (corresponding to intermediate weighted recombination with µ = b /2c) is clearly above the orange graph which has the same µ but with optimal, strictly decreasing, weights (3.13) instead.

The right plot of Figure 3.2 depicts the smallest choices of the comparison index (or comparison percentile) allowing Pr linear 1/2 (increasing step-size) for di↵erent weighting schemes and di↵erent values of µ. We see that the formula for the comparison index (3.62), first suggested in [Ait Elhara et al., 2013] (the dashed lines), and for which a lower bound is used by taking d ! 1, lies within the "good behavior" region for the considered weights and µ. For example, the configuration (optimal weights, µ = b /2c) results in a Median Success Probability over 1/2 as long as j 0.11 while the value used in the algorithm is around 0.27 ⇥ for most values of . Thus, we can proceed in our investigation to other objective functions as the behavior on the linear function is shown to be correct.

The Sphere Function

The sphere function is widely studied when investigating convergence rates of evolution strategies. One reason for this is the presence of a solid theoretical model around the spherical functions (see Section 3.2) that provides the optimal behavior of an evolution strategy on them (maximal convergence rate, optimal step-size, optimal weights). Furthermore, the use of Coavariance Matrix Adaptation, with which MSR will be eventually coupled, is expected to result, locally and when possible, in a sphere-like/isotropic transformed problem (if the function is convex-quadratic, the inverse of the Hessian would be estimated). Thus, one purpose of the step-size adaptation rule would be to solve the remaining sphere function e ciently. We investigate the convergence rate of the algorithm on the sphere function (3.4) in order to find the comparison percentile/index allowing this convergence rate to be maximal on a spherical function. This will help set this parameter's default value.

We now derive the Median Success Probability (3.15) of a (µ/µ w ,)-ES on the sphere function [Ait Elhara et al., 2013]:

Pr sphere := Pr ⇣ f sphere x m: t+1  f sphere ⇣ x j : t ⌘⌘ . (3.48)
Similarly to Section 3.4.2.1, we consider that the step-size is constant in the two successive iterations (

t+1 = t =): Pr sphere = Pr ⇣ kx m: t+1 k 2  kx j : t k 2 ⌘ = Pr ⇣ kx t+1 + N m: t+1 k 2  kx t + N j : t k 2 ⌘ , (3.49)
where the (N i: t) 1i (and similarly (N i: t+1) 1i) are ordered, each independently, following the fitness of their corresponding o↵spring; that is:

f sphere (x t + N 1: t)  • • •  f sphere (x t + N : t) , (3.50)
and

f sphere (x t+1 + N 1: t+1)  • • •  f sphere (x t+1 + N : t+1) . (3.51)
Then,

Pr sphere = Pr kx t + µ X i=1 w i N i: t + N m: t+1 k 2  kx t + N j : t k 2 ! . (3.52) We set = kx t k ⇤ d
, which leads to a decomposition that suggests a distance to the optimum proportional step-size (see Section 3.2) and algorithms trying to find the optimal multiplying constant ⇤ opt (a change of variable that is transparent to the algorithm). In addition, and thanks to the isotropy of the standard multivariate normal distribution and of the sphere function, we can replace the mean solution x t with a vector of the same length without changing the success probability; in our case we choose to set, without loss of generality, x

t kx t k = e 1 .
Replacing then simplifying by kx t k:

Pr sphere = Pr kx t + kx t k ⇤ d µ X i=1 w i N i: t + kx t k ⇤ d N m: t+1 k 2  kx t + kx t k ⇤ d N j : t k 2 ! . (3.53) Finally, Pr sphere = Pr ke 1 + ⇤ d µ X i=1 w i N i: t + ⇤ d N m: t+1 k 2  ke 1 + ⇤ d N j : t k 2 ! .
(3.54)

Asymptotic case

We now consider the asymptotic case of d ! 1:

lim d!1 Pr sphere = lim d!1 Pr ke 1 + ⇤ d µ X i=1 w i N i: t + ⇤ d N m: t+1 k 2  ke 1 + ⇤ d N j : t k 2 ! . (3.55)
By developing the squares and simplifying we find:

lim d!1 Pr 2 " µ X i=1 w i N i: t + N m: t+1 # 1 + ⇤ d k µ X i=1 w i N i: t + N m: t+1 k 2  2 h N j : t i 1 + ⇤ d kN j : t k 2 ◆ .
(3.56)

The asymptotic median success probability on the sphere function is derived in Proposition 5 of [Ait Elhara et al., 2013]:

lim d!1 Pr sphere = Pr N m: t+1  N j : t µ X i=1 w i N i: t 1 2 ⇤ µ X i=1 w 2 i ! , (3.57)
where N i: t (and similarly N i: t+1) is the i th order statistic of a standard normal distribution with samples. The proof can be found in the Appendix of [Ait Elhara et al., 2013] where the authors assume that 2

" µ X i=1 w i N i: t + N m: t+1 # 1 + ⇤ d k µ X i=1 w i N i: t + N m: t+1 k 2 converges almost surely when d ! 1 to 2 µ X i=1 w i N i: t + N m: t+1 ! + ⇤ µ X i=1 w 2 i + 1 ! .
Since the optimal step-size for this model (asymptotic sphere) is theoretically known (3.11), we can replace its value in (3.57) to obtain the expression of the asymptotic median success probability on optimal conditions:

lim d!1 Pr ⇤ = ⇤ opt sphere = Pr N m: t+1  N j : t µ X i=1 w i (N i: t 1 2 E[N i: t]) ! . (3.58)
Then, we can define the optimal value of j , j opt , on the asymptotic sphere function, as the value that, when replaced in (3.58), results in a success probability of 1/2. Figure 3.3 shows the results of simulating (3.58) with di↵erent values of and j . We are mostly interested in the (relative) comparison indexes that result in a success probability close to or equal to 1/2.

We see that for all but the bottom leftmost plot (µ = 1), these points of interest lie, for most values of , within an interval of the normalized rank between 0.20 and 0.30 . The case µ = 1 results in more spread points of interest on the x-axis. This suggests a linear correlation between the optimal comparison index j opt and the population size .

To check this linearity, Figure 3.4 shows, from the data used in Figure 3.3, the evolution of the two integer indexes j and j + with the closest success probabilities to 1/2 and respectively smaller and larger. It also shows the estimation of j opt as described in (3.17) for the di↵erent configurations.

First, we see a step curve that is to be expected from Figure 3.3 since the indexes j and j + are both integer valued. However, this is not translated into the interpolated average which has a fairy linear scaling in in all but the case of µ = 1. This is due to the way j opt is computed in (3.17), even though successive values of might have the same j and j + , their corresponding success probabilities, p s and p + s are generally di↵erent; thus the flexibility of the interpolated line.

For information, the estimated value of j opt for the asymptotic sphere with optimal weights and µ = b /2c reads: j opt (, 1) = 0.27 + 0.83 .

(3.59)

Finite dimension

We now look into the more practical cases of finite dimensions.

In the case where the dimension does not tend to infinity, we do not have a theoretically derived expression for the optimal step-size of a (µ/µ w ,)-ES on the sphere function. However, we can still apply the definition of convergence rate in (3.9) and simulate it. Then, we consider the empirically observed best convergence rate as being optimal, and note the corresponding step-size multiplier ⇤ opt accordingly. We can now, similarly to the asymptotic case, look into the success probabilities for this optimal step-size (and for other values of the step-size), following (3.54).

Figure 3.5 shows the evolution of the convergence rates ((3.9) and (3.10)) and success probabilities ((3.54) and (3.57)) for di↵erent values of the distance to the optimal proportional step-size multiplier ⇤ on the sphere function for a (µ/µ w ,)-ES with optimal weights (3.13). This figure allows us to see the success probabilities of the di↵erent indexes around optimal step-size conditions. It also gives estimates of the cost of drifting from the optimal step-size in convergence-rate loss.

The convergence rate plots on finite and infinite dimensions seem to have similar shapes. Left of the optimal step-size (⇤ < ⇤ opt), the convergence rates decrease with decreasing step-size, with lim !0 CR = 0. However, on the right of opt (⇤ > ⇤ opt), the convergence rate decreases much quicker and the algorithm diverges (negative CR), in the best of cases, as soon as the step-size reaches three times the optimal step-size. This divergence is due to the generated o↵spring over-shooting the optimal solution, resulting in fitness values of the o↵spring worse than those of the mean solution x t of the distribution from which they were generated.

We also notice fairly similar success-probability graphs for the relatively small values of j . With larger j and on the larger dimensions, the median success probabilities decrease faster with the increasing step-size. For example in the case = 10, the success probability is around 0.3 when comparing the current median to the previous median (purple dashed line) with 10 times the optimal step-size and d = 20 whereas it is close to zero when d = 160 and goes to zero much faster (at about 3 times the optimal step-size) for the asymptotic case of d ! 1.

µ = b /2c
Figure 3.5: Median success probabilities for all integer values of the comparison index (j = 1, . . . ,) and normalized progress rates versus step-size on the sphere function. The problem dimension and the population size are indicated on top of each plot (, n) (here the dimension is noted n), with the rightmost column plots dedicated for the asymptotic case (denoted by d ! 1). The rainbow-colored solid lines represent the median success probabilities (equation (3.54) for finite dimension and (3.57) for d ! 1). The comparison index increases as the color goes from blue j = 1 to red j = . The first quartile and the median are indicated by pink and purple dashed lines respectively. Corresponding success-probability values are shown on the left-side y-axes. The gray "+"s correspond to the normalized convergence rates; their values are shown on the right-side y-axis and are either simulated from (3.9) for the finite dimension case or directly computed from the limit in (3.10) for the asymptotic case. The solid vertical black line indicates the optimal step-size for the given configuration (step-size that coincides with the maximum of the gray "+" graph). Empirical simulations were done for a total of 10 5 realizations per data point.

Note that the limits of the asymptotic medians success probabilities when ⇤ ! 0 correspond to the success probabilities on the linear function as we can see by comparing (3.57) with ⇤ ! 0 to (3.44). These success probabilities can be seen on the leftmost part of the plots, as the success probabilities seem to converge to stationary values with decreasing ⇤ .

In each plot, we are most interested in two points in particular: (i) The first point is the crossing of the two perpendicular black lines, success probability = 1/2 (horizontal) and ⇤ = ⇤ opt (vertical). This point gives an estimation of the optimal comparison index for the given configuration since it corresponds to the j whose resulting median success probability with optimal step-size is 1/2. It does not necessarily need to be on one of the median success probability plots since we already explained in Section 3.3.3 how we allow and manage non integer comparison indexes. For example, for a population size of = 20, we see the evolution of j opt : d = 20 =) j opt ' 7, d = 160 =) j opt ' 6.3 and d ! 1 =) j opt ' 6.1. (ii) The second point of interest is, once a comparison index j is chosen, the intersection of the success-probability plot for the given j (or its interpolated one if j / 2 N) and the 1/2 success probability line. This shows the expected convergence rate of the algorithm with this value of j (on the sphere function in this case). In fact, the abscissa of said intersection is the target step-size of the algorithm. This is due to the fact that the algorithm tries to achieve a Median Success Probability of 1/2, and by doing so, makes its step-size converge to the corresponding step-size that we can call the half mediansuccess step-size, that we note ˆ 1/2 (j). The expected convergence rate of the algorithm can, thus, be deducted by looking into the convergence rate corresponding to ˆ 1/2 (j) in Figure 3.5. If we look back at our example, (n = 20, = 20), and set j = 4, ˆ 1/2 (j) would be about 1/3 rd of the optimal step-size and the normalized convergence rate would be around 0.10 instead of more than 0.15 (a bit over 30% loss).

The later point leads to our next set of plots: Figure 3.6; where we look into the convergence rates that correspond to the di↵erent choices of j on each configuration.

In this figure, and in contrast to Figure 3.5 where the drift from the optimal step-size is investigated, we are interested in the e↵ects and amount of performance loss resulting from a sub-optimal choice of j . That is values of j whose median success probabilities are di↵erent from 1/2, or conversely, values of j whose corresponding target step-sizes at median success probability 1/2 are di↵erent from the optimal step-size. The performance is measured in convergence rate multiplied by dimension (as a normalization). The plots of Figure 3.6 are obtained, for each value of j , by taking the convergence rate observed on its corresponding ˆ 1/2 (j). The results are shown for di↵erent values of d and with optimal normalized weights and µ = b /2c.

The plots seem quite similar for most cases, being more and more curved as the dimension increases. The optimum j opt (that corresponds to maximal convergence rate) shifts to the left with growing dimension until reaching its limit, when d ! 1, of around the 27%-tile (see (3.59)).

As expected, progress becomes null or negative for values of j larger or equal to /2 (in our case µ = b /2c) as the corresponding ˆ 1/2 (j) is too large. This can Figure 3.6: Convergence rates multiplied by problems dimension at ˆ 1/2 (j) versus fitness comparison quantile (either (j 1/2)/ or (j 1)/(1)), for di↵erent values of and the problem dimension (noted D) on the sphere function. also be seen from Figure 3.5 by looking, for example, into the progress for ˆ 1/2 (j) with j = 0.5⇥ (purple dashed lines); this progress seems to be close to zero for all considered configurations. Similarly, too small values of j (10%-tile or smaller) give too small a ˆ 1/2 (j) to see significant progress. In fact, and for the smallest values of j (again looking back at Figure 3.5) we see that the corresponding median success probabilities actually never cross the 0.5 line (e.g., j = 2 in (d = 20, = 20)); which means that ˆ 1/2 (j) would tend to 0. Since the median success probability is always smaller than 1/2, the step-size would keep decreasing, eventually leading to a quasi-null progress.

On the other hand, we see the robustness of the Median Success Rule with regards to the choice of the comparison percentile, as long as it remains within reasonable bounds (see above for the extreme cases). For the considered configurations, any choice of j between the 20%-tile and 40%-tile results in no worse than half the optimal convergence rate. The convergence rate graphs become less and less flat as the dimension d increases, with the optimal comparison percentile decreasing and going to its limit value for d ! 1 of around the 27%-tile (see (3.59)).

The results on the sphere show a good behavior of the algorithm (convergence rate) and robustness with regards to the choice of the comparison percentile while also allowing to define its bounds ([0.2 , 0.4]).

The Ridge Function

The third and final function we consider is the ridge function: where ↵ determines whether the ridge is sharp (↵ = 1), parabolic (↵ = 2) or has another shape. We consider the case of ↵ = 4 as it insures a finite optimal step-size (the condition for this being ↵ > 2 [START_REF] Arnold | Step length adaptation on ridge functions[END_REF]); = 1 in this chapter. The ridge function (3.60) consists of two -wise (the step-size) opposite parts: the quadratic part,

f ridge (x) = [x] 1 + d X i=2 ([x] i) 2 ! ↵/2 , (3
⇣ P d i=2 ([x] i) 2 ⌘ ↵/2
and the linear part, [x] 1 . The first part, similar to a sphere function treated above, has a finite optimal solution and requires a step-size that converges to zero. The second part, however, is similar to the linear function and has no finite optimum. It requires a non zero step-size. A stationary state, when reached (see [Ait Elhara et al., 2013] and [START_REF] Arnold | Step length adaptation on ridge functions[END_REF] for details), maintains a distance to the ridge which is constant in expectation (constant value of the quadratic part) whilst progress is achieved towards the direction of [x] 1 . This stationary state is achieved with a constant step-size that the algorithms need to find.

Figure 3.7 is similar to Figure 3.5 with the di↵erences being: (i) first, the objective function is the ridge function (3.60) instead of the sphere function (3.4). (ii) Second, the step-size is no longer normalized by the distance to the optimum since such distance can not be finite, so we do not plot using ⇤ on the x-axis but simply against the actual step-size of the algorithm . (iii) Finally, the performance measure which is the progress rate instead of the convergence rate. Since the ridge function has no finite optimum, algorithms are not expected to converge to any particular finite solution. In addition, the desired behavior on the ridge function is to be in the stationary state (with the quadratic term being constant in expectation) and make progress parallel to the ridge (the first linear term) as expressed in the following equation:

' t = 1 t t 0 ([x t] 1 [x t 0] 1) , (3.61)
where t 0 is the iteration count when the stationary state is first assumed to be met. In the experiments of Figure 3.7, we set t 0 (the burn-in time) to half the chosen budget of t, with t = 4 ⇥ 10 4 iterations. In addition, and in order to increase to likelihood of being in the stationary state at time t 0 , the initial solution of the algorithm x 0 is set close to the stationary state. Its first coordinate [x 0] 0 = 0 and its quadratic term k[x 0] 2...d k = R, with R defined in Equation (12) of [Arnold and MacLeod, 2008] and [x] i...j , i  j the vector ([x] i , [x] i+1 , . . . , [x] j 1 , [x] j) that we note so for simplicity and convenience. The first thing we notice that is strikingly di↵erent from the sphere function (Figure 3.5) is that the success probabilities are weakly, if at all, dependent on dimension; and this, for the di↵erent population sizes that are considered. These success probabilities seem to only depend on the population size with similar success probabilities for relative indexes (j /) especially for larger values of j . This can easily be seen by comparing the success probabilities of the same highlighted dashed lines (purple and pink for median and first quartile respectively) or of the same shades of blue/red across di↵erent configurations. Smaller comparison indexes seem to attract to lower success probabilities as increases and the median success probability graphs are generally steeper around the crossing point (, 0.5) with increasing population size. We also notice that as the step-size increases, the success probability for j = /2 seems to converge to 1/2 on all considered dimensions and population sizes, which means that successive medians are, in average, on the same fitness level-set for large enough values of the step-size. However, we notice that these step-size values lead to a null progress on the first coordinate (progress values are depicted in the right y-axis). This suggests that the linear part of the function plays a major role in defining the relative fitness of a solution within an o↵spring. We remind that we saw a similar dimension-independent behavior on the linear function (3.38) which we brought down to a single variable function (3.39) without loss of generality. In fact, assuming we are in the stationary state, the function can be seen as being, ultimately, a two variable function, the first variable represents the linear term [x] 1 and the second represents the quadratic term k[x] 2...d k. Progress is only measured in the first variable while selection and success probability is computed on both. We also notice that contrarily to the sphere function, we see hardly any divergence, even with the largest step-size values. In fact, the progress rate plots seem symmetric when taking the step-size in a log-scale.

The median success probabilities of our j 's of interest seem to be similar to the ones observed on the sphere function. We confirm this by looking into the progress rate VS In Figure 3.8 and similarly to Figure 3.6, the progress corresponding to each ˆ 1/2 (j) is looked into for the di↵erent values of , d and j that are considered. We are interested in the values of j that we might consider reasonable in the sens that they result in the algorithm seeking a step-size that leads to good progress rates.

The clear out-layers in this figure are the results for d = 2 (dark blue), f ridge ((x 1 , x 2)) = x 1 +x 4 2 , as we notice an almost constant progress rate for any choice of j between the 10%tile and 90%-tile. For other values of d, we see a behavior similar to what was observed on the sphere function with no progress when j is larger than the index of the median or smaller that 0.10 . The optimal values of j are clearly within the [0.20 , 0.40] interval. However, the graphs seem much flatter than on the sphere (but still un-flattening as dimension increases). This means the algorithm is less sensitive to the choice of j with less relative progress-loss when deviating from the optimal choice.

Comparison Index Formula

We saw that, for the three functions that were considered, the choice of the comparison percentile is not highly critical; an acceptable behavior is observed for a wide enough interval.

Putting aside the µ = 1 case, setting the lower bound of the comparison percentile to the 20%-tile seems a reasonable choice. As we have seen, the optimal j is generally negatively correlated with the search-space dimension. This can be seen by comparing the optimal values of j in Figure 3.6 for increasing dimensions. Also, the linearity in is well established for several weighting scheme and number of parent choices; see for example Figure 3.4.

Figure 3.9 investigate further dependencies of the optimal j , or equivalently the opti-Figure 3.9: Optimal comparison quantile evolution with problem dimension and population size. This index is set to the value whose corresponding target step-size (ˆ 1/2 (j)) maximizes the performance measure on the given function (convergence rate (3.5) on the sphere function and progress rate (3.61) on the ridge function). Left: Asymptotic sphere function. Two weighting schemes are considered, "•"s for optimal weights (3.13) and "⇧"s for intermediate weights. Di↵erent values of µ are considered in order to obtain the di↵erent values of µ e↵ / . For example, in the intermediate case, µ e↵ / = µ/ since µ e↵ = µ (its maximal value). The optimal comparison index is plotted against µ e↵ / . Middle and Right: Finite dimension (the dimension is noted n in these plots) sphere (middle) and ridge (right) functions. Optimal weights with µ = b /2c. The plots show the scaling with dimension of the comparison quantile. The dashed horizontal line shows the limit on the asymptotic sphere function estimated using (3.59). mal comparison quantile (j 1/2)/ on the problem dimension (middle and right plots) and on the weighting scheme, and more specifically on the variance e↵ective selection mass µ e↵ (left plot). The leftmost plot shows a positive linear correlation with µ e↵ / of the optimal choice of j with values approaching 0.5 as µ e↵ / increases. The smaller values of µ e↵ / are obtained when µ is relatively small and the intermediate weights (w i = 1/µ, 8i) produce the largest possible µ e↵ = µ (values for optimal weights stop at around µ e↵ / = 0.7 while they reach 0.9 for intermediate weights). We see in the other two plots that the correlation with the dimension is negative, and we have already seen that the limit, when the dimension goes to infinity, of the optimal comparison index percentile is larger than one (see for example Figure 3.3 and (3.59)) on the sphere function. We see a similar behavior on the ridge function (rightmost plot) with the stationary values being reached relatively earlier. We also note that the actual values of the comparison percentile are similar on the two functions. This suggests a scaling which is roughly inversely proportional to the dimension.

Taking all this into consideration we set the value of j that will be used to benchmark the algorithm (Section 3.5), as follows:

j = (1 + µ e↵ / + 1/d) ⇥ 20%-tile . (3.62)
The formula in (3.62) allows to have the value of j well within the interval [20%, 40%]-tile that was emphasized in Figure 3.6 and Figure 3.8 since we suppose d 2 and µ  .

Damping parameter

The last remaining parameter to tune for the Median Success Rule (Algorithm 1) is the damping parameter d . This parameter allows to limit the amount of change on the step-size over a single iteration and intervenes in (3.28) by dividing the step-size update coe cient s t+1 . Since at any time-step t, 0  s t  1, the ratio between successive step-sizes satisfies:

t+1 / t 2 [exp(1/d) 1 , exp(1/d)]
. In Figure 3.10, the average number of function evaluations needed to reach a target value of 10 8 of MSR-ES is plotted against di↵erent values of the damping parameter for di↵erent values of the population size and the problem dimension (see caption for details).

We see non-symmetric (in a log-scaled d) uni-modal graphs. The optimal damping values, that is values with the lowest average number of function evaluations, seem to depend monotonously on the problem dimension. Larger dimensions require a larger damping value. On the other hand, the population size dictates the flatness of the graph, with smaller values resulting in flatter graphs.

Similarly to the reasoning used in [START_REF] Brockho↵ | Mirrored sampling and sequential selection for evolution strategies[END_REF], we want to have damping values that are far enough from the unstable region (region where divergence is observed). Decreasing the damping quickly results in diverging behavior of the algorithm which can be seen from the lack of data points plotted (any value of the damping that results in at least one failure is omitted in the plot). Conversely, larger than optimal damping values see decreasing performance (larger numbers of function evaluations) but the algorithm still manages to converge to the optimal solution. This behavior of the damping is similar and highly tied to that of the step-size on the sphere function. While smaller step-sizes result in slower convergence rates that tend to 0 as the step-size tends to 0, larger ones quickly lead to a diverging behavior. This can be seen in the convergence rate graphs in Figure 3.5.

We set the default value of the damping as follows:

d = 2 2/d . (3.63)
In (3.63), the value of the damping does increase with dimension but remains upper bounded by 2. Thus, on a single iteration, the largest step-size (increase) factor is p e ' 1.649 while the smallest (decrease) factor is 1/ p e '= 0.606 where e designates the base of the natural logarithm.

Benchmarking

In this section, we benchmark the MSR-CMA-ES algorithm on the COCO noiseless testbed [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] (see Tables 5.1, 5.2, 5.3 and 5.4 without the normalization term (d) for the definitions of the functions and Section 2.3.1 for a brief description of the problem classes). We call MSR-CMA-ES the evolution strategy we obtain when using the Median Success Rule described in Algorithm 1 to adapt the step-size instead of the Cumulative Step-size Adaptation (CSA) in the Covariance Matrix Adaptation Evolution Strategy (CMA-ES, see Section 2.1.4.1) [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF]. Similarly, CSA-CMA-ES will denote the original CMA-ES algorithm with CSA. Note that MSR-CMA-ES was also later benchmarked against CSA-CMA-ES and TPA-CMA-ES in [Atamna, 2015].

Parameter Configuration

The damping parameter of MSR-CMA-ES was set to d = 2; CSA-CMA-ES uses its default damping value

d = 1 + 2 max 0, r µ e↵ 1 d 1 1 ! + p µ e↵ 2 ⇣ p d + p µ e↵ ⌘ . (3.64)
The value of d in (3.64) is generally close to 1. The initial step-size on both algorithms was set to 0 = 2. This is about a 1/4 th of the width of the region of interest since the optimal solutions of the problems in COCO are in [4,4] d . A smaller value of the initial step-size (0 = 0.5) was tested for both algorithms and resulted in an overall worse performance. The algorithms were allowed up to 7 restarts (within the allocated budget) with a doubling population size upon each restart (similar to [START_REF] Auger | A restart CMA evolution strategy with increasing population size[END_REF]).

The comparison index of MSR is chosen following (3.62). The population size , the number of parents µ and the weights are chosen the same as in Table 4.3. The rest of the parameters are taken with their default values that can be found in the CMA-ES Python implementation CMA-ES (https://pypi.python.org/pypi/cma). The artificial best algorithm (brown lines in Figure 3.11) is an aggregation of the best results observed on each function, for each dimension and on each target value in the BBOB-2009-2009workshop [Hansen et al., 2010b]. It amounts to a portfolio algorithm (an algorithm which solves a problem by choosing one of the algorithms that compose it) that uses all the algorithms proposed in the aforementioned workshop, and on each (function,dimension,target value) triplets, chooses the best algorithm to solve it.

Result Discussion

Statistically significant di↵erences of performance are signaled by a black star in the marker of the better-performing algorithm; e.g., CSA-CMA-ES is significantly better than MSR-CMA-ES on the sphere function with dimension 2 (Figure 3.11).

We first see an overall similar performance of the two algorithms. On several functions (f

4 , f 5 , f 7 , f 15 , f 18 , f 21 , f 22
), we see no significantly di↵erent performance from one of the algorithms on any dimension. On others (f 8 , f 12 , f 17), the significant di↵erences are only observed on the largest dimension, d = 40. However, a number of notable statistically significant di↵erences in performance are observed.

On the Sphere (f 1) Discus (f 11) and Sharp Ridge (f 13) functions, CSA-CMA-ES has a better performance on smaller dimensions but MSR-CMA-ES seems to scale better, outperforming CSA-CMA-ES on the larger dimensions. MSR-CMA-ES shows what seems to be a sub-linear scaling in d on the sphere function. The di↵erence in performance is, however, relatively small despite it being significantly di↵erent.

As expected, both algorithms perform in a similar fashion on the rotated (f 10) and axes-aligned non-rotated (f

2) ellipsoid functions thanks to the covariance matrix adaptation. Some statistically significant ERT values are observed but the factor is at most 1.5. A similar behavior is seen on the Rosenbrock functions (f 8 and f 9). However, the plots suggest that the covariance matrix adaptation does not have the same e↵ect on the non convex-quadratic Rastrigin functions (f 3 , f 15). The two methods perform similarly on the rotated version (f 15) while MSR-CMA-ES has a clearly better performance for d 10 on the non-rotated version f 3 . This function being highly multi-modal (around 10 d local optima [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]), it requires a number of restarts to be solved by CMA-ES and its variants. MSR-CMA-ES seems to allow more restarts, with the increasing population size allowing the algorithm more chances of finding a solution within the target value. We also see a fairly similar performance of the two algorithms on functions f 12 and f 17 with CSA-CMA-ES doing better mainly on dimension 40, but with a speedup which is still small. On f 16 , f 19 and f 20 , CSA-CMA-ES performs significantly better, with a scaling of the ERT in the problem dimension clearly lower than that of MSR-CMA-ES. On the other hand, on the attractive sector (f 6), MSR-CMA-ES performs similarly to CSA-CMA-ES on dimensions up to 5, then scales much higher in the dimension as the latter becomes larger. In f 6 , the volume of the subspace with better fitness values decreases exponentially in the dimension; which a↵ects the performance of success-based strategies. The Sum of et al., 2009]. Shown are the scaling figures obtained using the post-processing tools of COCO (https://github.com/numbbo/coco). The x-axes show the problem dimensions, while the y-axes show the corresponding Expected Running Time ERT of each algorithm. The brown solid lines show the performances of the artificial best algorithm. Thin " "'s and "5"'s indicate maximal numbers of function evaluations conducted by the respective algorithms while the thicker ones are for the actual ERTs. Horizontal dashed lines depict a linear scaling while slanted ones are for quadratic scaling.

Di↵erent Powers function (f 14) is similar to the Ellipsoid without being convex-quadratic. On this function, the performance of CSA-CMA-ES and MSR-CMA-ES is similar, with no algorithm dominating the other and fairly close ERT values.

Finally, on the other highly multi-modal (more than 10 d local optima) functions f 23 and f 24 , MSR-CMA-ES seems to give a dominating performance in comparison to CSA-CMA-ES. On f 23 , MSR-CMA-ES scales better in d and manages to improve on the best BBOB-2009 performance on dimensions 5 and 10. The ratio between the ERTs of the two algorithms increases with the dimension, reaching a value larger than 10 on dimension 20. On the other hand, f 24 seems to be an overall harder problem with the best BBOB-2009 algorithm managing to reach the final target value with high ERTs on dimensions larger than 3. Both methods see a number of failed runs (the plotted ERTs are above the budget used) but MSR-CMA-ES seems to manage some successful runs on dimensions up to 10 with what seem to be statistically meaningful results on dimensions 3 and 10. Note that the budget used in these experiments was lower than that needed in the best BBOB-2009 for d 3.

To sum up, we see that MSR-CMA-ES performs well overall in comparison to CSA-CMA-ES. CSA-CMA-ES uses directly the covariance matrix adapted by CMA-ES in assuming an isotropic search space which MSR-CMA-ES does not. The generally smaller step-sizes and faster decrease of the step-size allows MSR-CMA-ES to reach stagnation points and restart quicker than CSA-CMA-ES. This leads to a better performance on some multi-modal functions, especially with the increasing population size.

Overall, MSR-CMA-ES seems a viable option as a step-size adaptation mechanism, showing reasonable performance on a wide range of functions and having no clear dysfunctionalities when coupled with the covariance matrix adaptation evolution strategy. As we will see in Chapter 4, by not assuming a particular shape of the search space or a fully adapted covariance matrix, and having less dependence on the assumed problem dimension d, the Median Success Rule solves some of the shortcomings of CSA on certain classes of problems, in addition to scaling better and thus being more appropriate for large-scale use.

Conclusion

In this chapter, we introduced a new success-based step-size adaptation mechanism for evolution strategies. At an iteration t, the Median Success Rule relies on comparing the o↵spring generate at this iteration to the j th best individual of the previous iteration (t 1). The step-size is then adapted depending on the number of successes resulting from this comparison, where the success of an individual is defined as it having a better fitness than that of the j th best individual at t 1. The case of non-integer j is handled using a weighted aggregation over the closest integer indexes. The success or not of the median at t determines whether the step-size will be increased (success) or decreased (failure), thus the name Median Success Rule. This correlation between median success and step-size change is obtained by having a target success rate of 1/2 and computing the success rate as the proportion of successful o↵spring at t. Theoretical derivations and empirical simulations allowed to establish the optimal and acceptable values of the main parameter of this strategy, namely the comparison index j , on three functions that require di↵erent step-size adaptation regimes to be solved e ciently: (i) the linear function requires an ever increasing step-size, (ii) the sphere function a decreasing one proportionally to the distance of the mean solution to the optimum and finally (iii) the ridge function that requires the algorithm, once a stationary state is reached, to keep a constant steps-size. Interestingly, even though the optimal comparison index di↵ers from one function to another, a wide range of values resulted in the algorithm not loosing too much of its e ciency in comparison to the optimal case (see Figure 3.6 and Figure 3.8 for example). In addition, these good performance intervals are similar across the functions. This allowed the establishment of a formula of the comparison percentile (comparison index normalized by the population size) that depend on the problem dimension and the weighting scheme used for the recombination (3.62). We also tuned the other parameters of the strategy in order to have, in the end, a fully functional step-size adaptation mechanism.

We, then, used MSR as the step-size adaptation mechanism of a (µ/µ w ,)-CMA-ES and compared the performance of the resulting algorithm, MSR-CMA-ES, to that of the default Cumulative Step-size Adaptation based CMA-ES (that we note CSA-CMA-ES to di↵erentiate) on the noiseless COCO test-bed. MSR-CMA-ES showed comparatively good performance and only fell short on performance on a few functions. It also performed better than CSA-CMA-ES on some functions mainly because of its quicker step-size decrease and thus quicker restart on multi-modal functions.

After establishing the feasibility of MSR we see that it is a viable replacement for CSA that, in addition, comes with less restrictions. In fact, it does not directly rely on a particular class of sample distributions so it can, a priori, be used on any population based algorithm without necessarily normal distributed o↵spring (for example, in a resampling constraint handling algorithm). In addition, contrarily to CSA, it does not need an isotropic search space to operate on, which is practical especially when facing large scale problems and expensive problems on which algorithms can generally not a↵ord to learn full-models but only approximated ones. We will also see in Chapter 4 that MSR performs significantly better than CSA on certain classes of functions (low e↵ective dimension functions and low epsilon-e↵ective dimension functions) thanks to it having no assumptions on the e↵ective dimension of a problem, that is on the number of dimensions that actually contribute (significantly) in defining the fitness.

However, MSR being a success-based rule, it requires a negative correlation between the success measure and the desired direction of change of the step-size (whether one wants to increase or decrease the step-size). In addition, the chosen comparison index needs to have limit success probabilities, for ! 0 and ! 1 respectively larger and smaller than 1/2 since otherwise, the method will endlessly increase or decrease the step-size.

Finally, we note that MSR preserves all the invariance properties originally present in the Covariance Matrix Adaptation mechanism of CMA-ES. This includes invariance to monotonic transformations of the fitness function (since its a rank-based mechanism) and invariance to a ne transformations of the search-space. In addition, it does not require any additional cost in function evaluations and its internal computational cost per iteration only depends linearly on the population size (no direct dependence on the problem dimension).

Chapter 4 E↵ective and "-E↵ective Dimensions

This chapter deals with a particular class of problems that are often encountered in large-scale optimization: low e↵ective dimension problems. These problems have a large number of parameters but can be solved e ciently by considering an appropriate subspace of lower dimension. In fact, a relatively small number of dimensions (not necessarily aligned with the coordinate system) define the whole fitness of each solution; this number of dimensions is what we call the e↵ective dimension of the problem. We also propose a natural generalization to the notion of low e↵ective dimension by allowing a small proportion of the fitness, determined by a multiplier ", to come from all the variables. We call this generalized notion the epsilon-e↵ective dimension, and thus we consider low epsilon-e↵ective dimension problems. In addition, we construct low e↵ective dimension and low epsilon-e↵ective dimension problems from functions that are commonly used to test continuous optimization algorithms and benchmark large-scale optimization algorithms on them.

Introduction

One interesting question when dealing with large-scale problems is the form in which these problems appear in real-world scenarios. Answering this question would help us design realistic benchmarks to model these problems.

One kind of large scale problems that are encountered in the literature is that of problems having an e↵ective dimension d e↵ smaller than that of their domains of definition d. This means that optimizing the problems in a smaller, generally linear, subspace of its original search space might su ce to find satisfactory solutions. This property was observed in the domain of integral estimation [START_REF] Moskowitz | Smoothness and dimension reduction in quasi-monte carlo methods[END_REF], Wang and Fang, 2003, Wang and Sloan, 2005] [Hutter, 2009, Bergstra and Bengio, 2012, Berthier and Teytaud, 2015]. Low e↵ective dimensionality and similar properties can be encountered in a number of other domains. In Genetic Programming, this property is called bloat and consists in parts of a program being unused (and variables related to these parts having no impact on fitness) [START_REF] Banzhaf | Some considerations on the reason for bloat[END_REF], Luke and Panait, 2006, Silva and Costa, 2004, Ekárt and Németh, 2002, De Jong et al., 2001, Bleuler et al., 2001].

Bloat is even shown to be useful and removing it can hinder the performance [Langdon andPoli, 1998, Soule, 2002]. We also find similar notions in reinforcement learning [Sutton, 1996, Ratitch and Precup, 2004, Kearns et al., 2002], evolution of trees [START_REF] Zhang | Evolutionary induction of sparse neural trees[END_REF], Nash equilibria [START_REF] St-Pierre | Online sparse bandit for card games[END_REF]] and SVM's [Girosi, 1998].

However, it remains a topic which is relatively under-studied and under-represented in the context of continuous optimization, especially in black-box settings. There are a number of problems that exhibit this low e↵ective dimensionality. For example, automatic configuration of the hyper parameters of state-of-the-art algorithms for solving SAT (Boolean Satisfiability) problems and Mixed Integer Programs [Hutter, 2009] showed the presence of a number of inconsequential parameters, especially when the parameter configuration space is high-dimensional. In [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF], it was shown that hyper-parameter optimization for neural networks and deep belief networks is, on most data sets, a low e↵ective dimension problem. However, which dimensions are e↵ective may vary from one data set to the other. The paper also shows a superior performance, on the hyper-parameter optimization problem, of random search over grid search because of this low e↵ective dimensionality. [START_REF] Berthier | On the codimension of the set of optima: large scale optimisation with few relevant variables[END_REF] studies the robustness of comparison-based algorithms when dealing with low e↵ective dimension (called codimension in the paper) problems. The low e↵ective dimension problems used in this paper are obtained by adding useless variables to problems from the BBOB-2009 test suite.

And yet, in addition to the theoretical interest that the study of this class of problems in a continuous black-box setting and design of appropriate algorithms o↵er, such a study will open a number of possibilities for broader real-world applications. In fact, algorithms designed for low e↵ective dimensionality might turn out to be a good alternative to the classical (classical in the sense that full e↵ective dimensionality is assumed) largescale optimization algorithms in a number of scenarios. For example, this can be the case when the dimension of the problem is exceedingly large and sub-space optimization seems inevitable. Another scenario is when the quality of a solution is highly tied to the time needed to find it (optimality is, then, not a predominant criterion). In such a case, exploring the most e↵ective subspaces (ones where the fitness varies the most) is a good approach to allow a rapid improvement over the initial solution. One can, for example, sample a number of directions with a given step-size and construct a sub-space of those directions where the fitness varies the most. The embedding approach to solving low e↵ective dimension problems, allows, as it was the case in [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF] with Bayesian Optimization and is the case in this chapter with CMA-ES, to take advantage of highly e cient algorithms that are otherwise unsuited for large-scale optimization (due to their complexity or to the poor scaling of their performance with the dimension of the search-space in which they operate).

Our intuition is that many large-scale problems could actually be of low e↵ective dimensionality. This can, for example, be due to an over-parametrization in the modelling of a problem. It is then important to construct low e↵ective dimension benchmarks for large-scale optimization in order to assess large-scale optimization algorithms on this particular class of problems. Chapter 5 will deal with the design of a benchmarking test suite for large-scale continuous optimization. However, it will solely, in its current version, rely on full e↵ective dimension problems. The proposed test suite extends on a pre-existing benchmark designed for smaller dimensions while trying to preserve as much of the properties of this benchmark (including full e↵ective dimensionality) as possible. The introduction of low ("-)e↵ective dimension suites or problem classes is left for future work.

A natural generalization of low e↵ective dimension functions is functions where not all, but a large portion of the fitness is determined by a few variables/linear combinations of variables. One main contribution of this chapter is to formally define such a class of problems with what we call low epsilon-e↵ective dimension. In addition, we propose a rigorous way of building low epsilon-e↵ective dimension test functions from functions that are widely used in continuous black-box optimization, extending from the construction method we use for low e↵ective dimension problems.

A low e↵ective dimension problems can be solved by optimizing in the subspace (of dimension d e↵) in which the fitness is determined that we will refer to as the e↵ective subspace. However, being in a black-box scenario, this e↵ective subspace and even its dimension/size are a priori unknown to the algorithm. The latter has only access to the overall search space in R d . Ideally, an algorithm would embed the search space into an optimization sub-space (of dimension d ss) that coincides with the e↵ective sub-space (d ss = d e↵), thus reducing its complexity by searching instead of the whole search-space, in a sub-space of reduced dimension d e↵ = d ss < d. This approach of embedding into a lower-dimensioned sub-space was already proposed and implemented in the Random EMbedding Bayesian Optimization (REMBO) algorithm [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF].

The embedding based approach allows to tackle large-scale problems as long as their e↵ective dimension is low. In fact, the complexity of the algorithm is defined in terms of the dimension of the optimization sub-space, d ss , instead of the dimension of the whole search space d. The optimization sub-space dimension needs to be at least as large as the e↵ective dimension in order to insure full exploration of the fitness space.

As previously mentioned, once the embedded space defined, one can use well established low to medium dimension optimization algorithms, such as CMA-ES (see Section 2.1.4), to optimize in this low dimensional sub-space.

In Section 4.2, we define the notions of low e↵ective dimension and low epsilon-e↵ective dimension. We also prove two results allowing to rigorously construct low e↵ective and low epsilon-e↵ective dimension problems. In Section 4.3, the embedding based CMA-ES variant (SS-CMA-ES) is introduced in two versions, RSS-CMA-ES and OSS-CMA-ES and the di↵erence between the two is investigated. We empirically compare the performance of SS-CMA-ES to LM-CMA-ES, VD-CMA-ES and CMA-ES for which di↵erent step-size adaptation mechanisms are considered on low e↵ective and low epsilon-e↵ective dimension problems in Section 4.4. We conclude in Section 4.5.

Function-Class Definition

Definition 1 (E↵ective Dimension, [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF]). A function f Low , f Low : R d ! R has e↵ective dimension d e↵ when there exists a linear subspace T ✓ R d of dimension d e↵ such that for any x > 2 T and for any x ? 2 T ? , where T ? is the orthogonal complement of T , we have:

f Low (x) = f Low (x > + x ?) = f Low (x >).
In Definition 1, the e↵ective dimension does not need to be defined by a subset of the variables of the problem, but only by a linear subspace of the search-space. The case where a few variables define the fitness is a special case where the basis of the subspace is canonical.

Let f : R d e↵ ! R be a function, and let us construct f Low , a function defined on R d ! R with an e↵ective dimension d e↵  d. One straightforward way of doing this construction is to define the function f Low as a call to the function f on variables z 2 R d e↵ that will be defined for each solution x in the domain of definition of f Low :

f Low (x) = f (z) , (4.1)
where z = B T x and B 2 R d⇥d e↵ is a full-rank matrix that allows to map points from R d to a subspace of dimension d e↵ spanned by its columns. We introduce, in Lemma 2, a way of constructing low e↵ective dimension functions from convex-quadratic ones without changing the eigenvalues of the convex-quadratic function's Hessian matrix1 : "

Lemma 2. Let f : z 2 R d e↵ 7 ! z T Hz, be a convex-quadratic function 2 with H 2 R d e↵ ⇥d e↵ its symmetric positive-definite Hessian matrix. Let B 2 R d⇥d e↵ be a full column-rank matrix whose column vectors are orthonormal (orthogonal with vectors normalized to 1).

The Hessian matrix of the low e↵ective dimension function

f Low : x 2 R d 7 ! f (B T x) 2 R (4.2)
constructed from f using B (similarly to (4.1)) has the same non-zero eigenvalues as H.

Proof. We investigate the eigenvalues of BHB T . Let 1 , 2 , . . . , d e↵ be the ordered eigenvalues of H. Since H is positive semi-definite, there exists an orthogonal matrix P 2 R d e↵ ⇥d e↵ and a diagonal matrix ⇤ 2 R d e↵ ⇥d e↵ such that H = P⇤P T . Let p i be the i th column vector of P that is an eigenvector of H associated to the eigenvalue i . Let us define u i = Bp i . Then, and because B T B = I d e↵ (the identity matrix in dimension d e↵), we have

B T u i = p i . Thus BHB T u i = BP⇤P T B T u i = BP⇤P T p i = BP⇤e i = i BPe i = i Bp i = i u i , (4.
3) where e i the i th canonical-base vector in R d e↵ . Then, u i is an eigenvector of BHB T with eigenvalue i and we have thus proven that H and BHB T have similar non-zero eigenvalues. "

Another definition of e↵ective dimension can be found in the literature (e.g., [START_REF] Caflisch | Valuation of mortgage backed securities using Brownian bridges to reduce e↵ective dimension[END_REF], Owen, 2002, Surkov, 2004, Tezuka, 2005, Wang and Sloan, 2005, Asotsky et al., 2006]) where, in Definition 1, the fitness of x > needs only to be approximately that of x > + x ? not equal to it. Instead, in this chapter, we generalize the notion from Definition 1 to that of epsilon-e↵ective dimension which will be, in some point, similar to this relaxed definition.

We remind that the oscillation ! f (S) of a function f on a set S is defined as:

! f (S) = sup x2S (f (x)) inf x2S (f (x)) . (4
f "L (x) = f Low (x) + " ⇥ g(x) , (4.5)
and for any

(x ⇤ ,) 2 R d ⇥ R ⇤ (R ⇤ the set of real numbers excluding zero) with x opt 2 Ball d (x ⇤ ,): ! g (Ball d (x ⇤ ,))  ! f Low (Ball d (x ⇤ ,)) , (4.6)
where x opt = arg min f "L (x). In (4.6), we insure that on any ball that contains the optimum, the oscillation in the non-e↵ective part of the function f "L (represented by " ⇥ g in (4.5)) is upper bounded by the oscillation in the e↵ective part (represented by f Low). Thus, when " < 1, the fitness varies more, on this ball, because of f Low than because of g.

As previously mentioned when " = 0, Definition 2 coincides with Definition 1 so the function becomes a low e↵ective dimension function. since said function can be written as (4.5) with " = 0 (g can be replaced by any function, a constant function for example and then (4.6) remains satisfied).

In a similar fashion to Lemma 2, the following proposition3 provides a way of constructing low epsilon-e↵ective dimension functions from a low-e↵ective dimension function. "

Proposition 1. Let g be a normalized sphere function in dimension d: Proof. Since in Definition 2, the oscillation is investigated on a ball that contains the minimum, the infimum of our functions on the ball is zero (value at the minimum) such that the oscillation equals to the supremum of f on the ball. We have to control the oscillation of g given that of f Low (x) = 1 d e↵ x T BHB T x. We can assume without loss of generality that BHB T is diagonal (because we can consider the coordinate system where the matrix BHB T is diagonal otherwise using the isotropy of the sphere function and of the oscillation conditions on balls for the euclidean norm). Let us consider the worst case scenario for (4.6), that is find x ⇤ that realizes the smallest oscillation in f Low and the largest oscillation in g. This worst case scenario is achieved when x ⇤ has zero coordinates in the e↵ective space and maximal (within the ball [Ball(x ⇤ ,)) coordinates in the non-e↵ective space as this maximizes the oscillation in g and minimizes it in f Low . Then

g : x 2 R d 7 ! 1 d d X i=1 x 2 i , (4.7) and f Low : x 2 R d 7 ! f Low (x) = f (B T x) be a d e↵ -e↵ective dimension function with f : x 2 R d e↵ 7 ! 1 d e↵ x T Hx
! g ([Ball(x ⇤ ,)) = 4 2 d , (4.9)
as x ⇤ is at distance from the optimum x opt while the supremum is 2 away from the optimum (x ⇤ is the symmetry point between x opt and the supremum). Since f Low (x) =

1 d e↵ P i i x 2
i where i are the eigenvalues of H by assuming, without loss of generality, that the first d e↵ coordinates correspond to the e↵ective coordinates, otherwise the writing of f Low as a sum is more cumbersome (this can be obtained by a permutation which is, itself, an orthogonal transformation that preserves eigenvalues). We have

! f Low ([Ball(x ⇤ ,)) = max (H) 2 /

"

We use this proposition in Section 4.4.1 to construct epsilon-low e↵ective dimension functions.

SS-CMA-ES

We now propose the Sub-Space Covariance Matrix Adaptation Evolution Strategy (SS-CMA-ES) that relies on an approach similar to [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF] to solve low e↵ective dimension and low epsilon-e↵ective dimension problems by taking advantage of the low e↵ective dimension property. SS-CMA-ES relies on the following theorem from [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF]:

Theorem 1. Given a function f Low : R d ! R with e↵ective dimension d e↵ and a matrix A 2 R d⇥dss whose entries are independent standard-normally distributed, with d ss d

e↵ ; we have with probability 1:

8x 2 R d , 9y 2 R dss : f Low (x) = f Low (Ay) .
(4.11)

We call d ss the optimization-subspace dimension while d e↵ and d are, respectively, the e↵ective dimension and the problem/global dimension.

Theorem 1 ensures that for low e↵ective dimension functions, an optimal solution x opt can be found by performing the search in the subspace spanned by the column vectors of the matrix A as there exists z opt 2 R dss satisfying f (x opt) = f (Az opt) , with x opt the optimal solution of f Low .

We expect embedding based approaches to still remain e↵ective when the definition of a low e↵ective dimension problem is relaxed and extended to allow for a relatively small change in the fitness to come from the non e↵ective dimensions as in (4.5) when " > 0, namely the low epsilon-e↵ective dimension problems (Definition 2).

The simple idea behind SS-CMA-ES is to use CMA-ES [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] (see Section 2.1.4) to search in the embedded subspace spanned by the columns of A. CMA-ES replaces the Bayesian Optimization algorithm used in REMBO [START_REF] Wang | Bayesian optimization in a billion dimensions via random embeddings[END_REF] and has the advantage of not requiring the search-space to be bounded. It is also a well developed algorithm with state of the art performance on several continuous optimization benchmarks (see for example [START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009[END_REF]).

RSS-CMA-ES and OSS-CMA-ES

We consider two variants of SS-CMA-ES depending on the nature of its embedding matrix. In the first variant RSS-CMA-ES, for Random matrix Sub-Space Covariance Matrix Adaptation, the matrix A 2 R d⇥dss , has its entries independently distributed following a normal distribution with mean 0 and variance 1/d. The length of the vectors are normalized to have similar expected lengths across dimensions (these expected lengths are in the interval [[START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]). On the other hand in OSS-CMA-ES, for Orthonormal matrix Sub-Space Covariance Matrix Adaptation, additionally, the column vectors of A are ortho-normalized, using the Gram-Schmidt process. In this case, all vectors have length one and are mutually orthogonal.

p d p d+1 , 1] [
We will empirically investigate the e↵ect from orthogonalizing the vectors of the embedding matrix A.

The pseudo-code of SS-CMA-ES is shown in Algorithm 2. The core of the embedding based approach is that the algorithm searches only in a d ss -dimensional subspace instead of the original, d dimensioned one. So all the original-algorithm complexities are expressed in d ss instead of d. for 1  i  do 10:

x i Ay i + x start 11:

f i f (x i) 12:
end for

13:

Sort y 1 , . . . , y according to f 1 , . . . , f 14:

Adapt y, and C given y 1 , . . . y and f 1 , . . . , f 15: end while Algorithm 2 optimizes over the coordinates of y 2 R dss and evaluates the fitness of each y depending on the solution x in R d that corresponds to it in the original search space since the problem f is defined in R d . Thus the sampled solutions (Line 8) are generated in the optimization subspace. The embedding matrix A is then used to compute x from y by taking into account the initial solution x start (Line 10). The only di↵erence between RSS-CMA-ES and OSS-CMA-ES is in Line 2, and whether the sampled embedding matrix A is orthogonalized or not.

Complexities

We will now investigate the complexity of Algorithm 2 in terms of cost per function evaluation, number of function evaluations needed given certain scalings in the searchspace dimension and in terms of computational (CPU) time.

In Number of Function Evaluations

When comparing to a standard CMA-ES (operating on a same dimension d ss), SS-CMA-ES has an added cost, per functions evaluation or per o↵spring, that comes from Line 10 in Algorithm 2.

For each o↵spring y i , computing its corresponding x i costs d ⇥ d ss multiplications (multiplication of a d⇥d ss matrix with a vector of size d ss). This cost is to be added to the innate internal complexity of CMA-ES.)) by applying the covariance matrix update only once every a linear number of generations [Hansen andOstermeier, 2001, Ros andHansen, 2008]. In Algorithm 2, this is controlled by setting the parameter doUpdateBD in Line 4 making it trigger in the desired iterations. Since d ss  d, the overall complexity per function evaluation is in O(d ⇥ d ss). Note that in our case, the O 8 , O 9 and Ô definitions of asymptotic behavior when multiple variables are involved (in our case, d and d ss) from [Howell, 2008] These complexities are summarized in Table 4.1 where we suppose that, in a searchspace of dimension n, the algorithms need either linear (O(n)) or quadratic (O(n 2)) times in terms of number of function evaluations to find (within a given numeric precision) the optimum.

One important thing to note in Table 4.1 is that these complexities (in search space dimension) are expected to be relevant on low e↵ective dimension problems thanks to Theorem 1 which states that searching in the d ss dimensioned sub-space is su cient to find the optimum. For full e↵ective dimension problems, one can not expect embedding based algorithms to have these same linear or quadratic complexities in their optimization subspace dimension since, in theory, the full search space is to be explored.

CPU Time

Regarding the CPU timing of SS-CMA-ES, the left plot of Figure 4.1 shows, for a given problem dimension d and e↵ective dimension d e↵ , the evolution of the average CPU times As expected from the complexity study, we see a near linear scaling (compare with the gray "+"s) of the average CPU time per function evaluation with d ss . We also see similar CPU times for the di↵erent values of the problem dimension d. This allows the use of SS-CMA-ES for problems with large dimension as long as the value of d ss is small enough. Since d ss needs only to be as large as the e↵ective dimension d e↵ (Theorem 1), SS-CMA-ES is reasonable, in practice, as a method of solving low e↵ective dimension problems, even when the problem dimension d is large.

algorithm RSS-CMA-ES OSS-CMA-ES CMA-ES initialization O(d ⇥ d ss) O(d ⇥ d 2 ss) O(d) cost per O(d ⇥ d ss) O(d ⇥ d ss) O(d 2) f -evaluation scaling in O(d ss)|O(d 2 ss) O(d ss)|O(d 2 ss) O(d)|O(d 2) # f -evaluations overall cost O(d ⇥ d 2 ss)|O(d ⇥ d 3 ss) O(d ⇥ d 2 ss)|O(d ⇥ d 3 ss) O(d 3)|O(d 4) (linear|quadratic)

Conditioning of the Embedding Matrix A

One di↵erence between RSS-CMA-ES and OSS-CMA-ES is the conditioning of the problem that is passed to the optimization algorithm (in our case, CMA-ES). A priori, the use of an orthonormal matrix should better preserve the eigenvalues, and thus the conditioning, of the original problem. That is the original problem defined in R d in contrast to the subspace problem defined in R dss that the optimization algorithm sees.

In this section, we quantify the change in conditioning observed on a low e↵ective dimension problem when applying a random matrix or an orthonormal matrix A, which represent, respectively, the RSS-CMA-ES and OSS-CMA-ES variants of SS-CMA-ES. We define the conditioning  of a symmetric, positive semi-definite matrix M 2 R n⇥n as the ratio between its largest and smallest strictly positive eigenvalues:

(M) = | 1 (M)| | m (M)| , (4.12)
where i is the i th largest, strictly positive, eigenvalues of M, and m satisfying

1 , • • • m > 0;
and when m < n, m+1 , . . . , n = 0. Now, if we consider that M = AA T and c M = A T A with A 2 R n⇥m and m < n, then both matrices, M and c M, have the same m strictly positive eigenvalues with m = rank(A). Consequently, and given the definition of conditioning in (4.12), (M) = (c M). When considering RSS-CMA-ES, the matrix A T A is the same as the one defined in [Edelman, 1989] as W(d ss , d). For this matrix, the limits of the largest eigenvalue 1 and the smallest strictly positive eigenvalue m=dss , when both d and d ss tend to infinity with d ss /d ! r 2 [0, 1], are given in Propositions 6.1 and 5.1 of [Edelman, 1989]:

1 d 1 a.s. ! (1 + p r) 2 , (4.13) 1 d dss a.s. ! (1 p r) 2 . (4.14)
Thus, the conditioning, for the same limits, satisfies: The results are obtained using 19 data points and show the median (red line), the upper and lower quartiles (box limits), the lowest and highest data points still within 1.5 ⇥ IQD (the Inter-Quartile Distance) of the lower quartiles and higher quartile respectively (whiskers) and eventual outliers outside of the whiskers (+). For the asymptotic case, when d = d ss , the conditioning tends to infinity as the smallest eigenvalue tends, almost surely, to 0 (see (4.14)), thus the absence of extension on the green line for the rightmost data point of the left plot.

(M) a.s. ! (1 + p r) 2 (1 p r) 2 . (4
The left plot shows that the asymptotic values remain accurate for relatively small values of d and d

ss . In the special case d = d ss , the limit when d ! 1 of the conditioning is infinite (replace r with 1 in (4.15)) while it is high but remains finite for d = 2048. The observed conditionings are significantly larger than 1, increasing steadily as r increases. However, if we look into the values we are interested in (d ss = 4b3 log 2 d 10c) on the right plot, this conditioning decreases as d increases. If we look into (4.15), this is justified by the fact that d ss , as defined in (4.16), increases slower than d (we set d ss in the logarithm of d), meaning that r, in this case, decreases as d increases:

r = 4b3 log 2 d 10c d .
(4.17)

The reason we see a pic of the conditioning, for both asymptotic and empiric values, on the right plot is because in (4.17), r is not monotonous for smaller values of d, it is smaller for d = 16 than for d = 32, and is strictly decreasing after d = 32. Its limit when d ! 1 is 0.

Let us consider SS-CMA-ES (Algorithm 2) on a low e↵ective dimension problem generated using B 2 R d⇥d e↵ on a sphere function (f in (4.1) is a sphere function): Since in SS-CMA-ES x = Ay + x start (Line 10 of Algorithm 2), z = B T (Ay + x start), thus the function that the CMA-ES algorithm sees and optimizes is:

f LowSphere (x) = f (z) , (4
f SS : R dss ! R f SS (y) = (Ay + x start) T BB T (Ay + x start) = kB T (Ay + x start)k 2 = kB T Ay + B T x start k 2 = y T A T BB T Ay + 2x T start BB T Ay + x T start BB T x start . (4.19)
Then, one should look at the conditioning of A T BB T A for both cases: A random and A orthonormal, since the solution the algorithm varies and optimizes is y not x. Looking into the right plots that show the results for the values of d ss and d e↵ that will be used by default, we only see some significant di↵erences on relatively small values of d. For larger values, the conditioning values seem to stabilize around the same value (around 7 for d = 2048).

Even though individually (not considering the low e↵ective dimension function), OSS-CMA-ES generates smaller conditioning values (equal to 1 since the vectors of A are orthonormal while larger for RSS-CMA-ES, see Figure 4.2), the application of B in order to have a low e↵ective dimension problem results in there being no relevant di↵erence, between the two variants, in the conditionings of the problems that the internal CMA-ES algorithm tackles (defined in y). This suggests similar performance for RSS-CMA-ES and OSS-CMA-ES on the low e↵ective dimension problems. Note that this result does not apply directly to the case of full e↵ective dimension but low epsilon-e↵ective dimension (Definition 2). This will be further investigated in the following sections.

Performance Assessment

We compare the performances of RSS-CMA-ES and OSS-CMA-ES to those of two standard (not designed for low e↵ective dimension optimization) large scale optimization algorithms that, too, are based on CMA-ES: the Limited Memory CMA-ES (LM-CMA-ES) [Loshchilov, 2014] and VD-CMA-ES [START_REF] Akimoto | Comparisonbased natural gradient optimization in high dimension[END_REF]. Details of these algorithms can be found in Section 2.2.1.3. In addition, we also compare to the default CMA-ES algorithm [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] for which we consider di↵erent step-size adaptation mechanisms: (i) Cumulative Step-size Adaptation (CSA, see Section 2.1.4.1), (ii) Two Point Adaptation (TPA) [START_REF] Hansen | How to assess stepsize adaptation mechanisms in randomised search[END_REF] and (iii) Median Success Rule (MSR, see Chapter 3) [Ait Elhara et al., 2013]. These three step-size adaptation mechanisms will also be used in SS-CMA-ES (in the internal CMA-ES optimizer) and a variant of VD-CMA-ES with TPA step-size adaptation is also considered.

TPA generates two points in the line between the actual mean solution and its predecessor. These two points are then ranked in the current population. The ranking provides the signal that will be used to adapt the step-size.

The performance comparison is carried on low epsilon-e↵ective dimension problems including the special case of " = 0 which translates into low e↵ective dimension problems.

Test Functions

In this section, we provide the expressions of the di↵erent test functions used in this chapter. In what follows, x 2 R d is a solution in the original space, z 2 R d e↵ with z = B T x is its counterpart in the e↵ective subspace. As in Proposition 1, the function g is chosen to be the normalized sphere function (4.7).

The functions in Table 4.2 are meant to replace the function f in Proposition 1 used to build the f Low part of (4.5) via f Low (x) = f (B T x) (as in (4.1)) and the resulting function will be named accordingly. For example, f "LSphere is the low epsilon-e↵ective dimension sphere function where, in (4.5), we replace f Low by f LowSphere , f LowSphere being the function constructed similarly to (4.1) where f is a normalized sphere function (taken form Table 4.2).

Since the tested algorithms are invariant to translations of the search space (that would change x opt), we keep all the problems centered at zero. Thus, on the Rosenbrock function which, originally, has its optimum in the vector of 1's (1 d), a translation is

f LowCigar (x) = 1 d e↵ ⇣ z 2 1 + 10 6 P d e↵ i=2 z 2 i ⌘ f LowCigtab (x) = 1 d e↵ ⇣ z 2 1 + 10 4 P d e↵ 1 i=2 z 2 i + 10 8 z 2 d e↵ ⌘ f LowDi↵pow (x) = r 1 d e↵ P d e↵ i=1 |z i | ⇣ 2+4⇥ i 1 d e↵ 1 ⌘ f LowElli (x) = 1 d e↵ P d e↵ i=1 10 ⇣ 6 i 1 d e↵ 1 ⌘ z 2 i f LowRosen (x) = 1 d e↵ 1 P d e↵ 1 i=1 ⇣ 100 (ẑ 2 i ẑi+1) 2 + (1 ẑ2 i) ⌘ f LowSphere (x) = 1 d e↵ P d e↵ i=1 z 2 i f LowTablet (x) = 1 d e↵ ⇣ 10 6 z 2 1 + P d e↵ i=2 z 2 i ⌘ f LowTwoaxes (x) = 1 d e↵ ⇣ 10 6 P bd e↵ /2c i=1 z 2 i + P d e↵ i=bd e↵ /2c+1 z 2 i ⌘ Table 4.2:

Parameter and Experimental Settings

Regarding the parameters used by the di↵erent algorithms, we start by describing the parameters common to all of them in Table 4.3. The population size is noted and the number of parents µ. The weights in the recombination procedure are noted w i , i 2 [1, µ]. In addition, the initial step-size is set to 0 = 2 and the starting point, in the R d search space, is set to x start = 1 d . Thus all algorithms start from the same point which is at a Euclidean distance p d from the optimum. Then, we show the parameters that are not set to the same values for the di↵erent algorithms or step-size adaption mechanisms in Table 4.4. The embedding based algorithm uses the same parameter configuration as CMA-ES. Replacing d by d ss . In fact, these parameters are defined in the search space dimension, and SS-CMA-ES searches in a d ss -dimensioned subspace.

In addition to the parameters in Tables 4.3 and 4.4, we have the comparison index of MSR [Ait Elhara et al., 2013] set to j = 0.3 , the target success rate of PSR (Population Success Rule), that is used to adapt the step-size in LM-CMA-ES [Loshchilov, 2014]), set to z ⇤ = 0.25 and the number of vector that are stored to represent the covariance matrix equals the population size (m = = 4 + b3 log dc). Finally, on SS-CMA-ES, we set:

d ss = 4 ⇥ d e↵ = 4 ⇥ b3 log 2 d 10c . (4.21)

Performance Measure

The measure we use to assess the the performance of these stochastic algorithms and how they scale with the problem dimension d is a variation of the estimated Expected Running Time (ERT) [Auger and Hansen, 2005a]:

Ê RT = AVG success p s , (4.22)
where AVG success is the average number of function evaluations of the successful runs and p s the success rate (number of successful runs divided by total number of runs). A successful run is a run in which the algorithm evaluates at least one solution which has a fitness better than a given target fitness.

The original expression that can be found in [Auger and Hansen, 2005a] takes into account the average number of function evaluations of the unsuccessful runs too. However, since we lack a solid control on the stopping criteria of the di↵erent algorithms, we opted for the formulation in (4.22).

If all runs are unsuccessful, the measure in (4.22) is not defined in which case the ERT is set to infinity (no data point is shown). This might happen for example if the chosen budget or the number of runs are too small or simply because the algorithm does not converge to the defined target value within a reasonable number of function evaluations.

The target values were set to correspond to a certain fitness (f e↵ target) in the e↵ective part of the function that we are most interested in and a fitness on the non-e↵ective part (obtained on g) no worse than that of the initial point4 :

f target = f e↵ target + " ⇥ g(x start) , (4.23)
where, in our case, f e↵ target = 10 8 will be used for all the ERT based experiments. The idea is to encourage optimization in the e↵ective space without completely disregarding the non-e↵ective part when " > 0. The case " = 0 allows to test algorithms on problems where only the e↵ective part matters (low e↵ective dimension problems). Even though in a completely black-box setting the e↵ective dimension is an unknown parameter, we chose to set its values, and more specifically those of d ss , such that the probability of having the optimum in the optimization subspace is at least 0.5. When " = 0 in (4.5) and d ss d

e↵ , Theorem 1 insures that this is satisfied. However, for " > 0, this result is no longer guaranteed since the theorem does not address the case of low epsilon-e↵ective dimension. Thus we choose to set the value of d e↵ as in (4.20) and choose " and d ss accordingly. Figure 4.4 shows the success probabilities of SS-CSA-CMA-ES on f "LSphere for di↵erent values of d ss and ". We see a clear, and expected, monotony in d ss .

Regarding ", we see on the right plots a change of phase for half of the tested values of d ss around " = 10 7.5 with success probabilities going from 1 to 0. We end up setting d ss = 4d e↵ . For ", in addition to the case " = 0 and low e↵ective dimension, we choose the values " = 10 8 and " = 10 7.5 . The target values are, then, respectively, 10 8 , 2 ⇥ 10 8 and approximately 4 ⇥ 10 8 . Note that we make the assumption here that given an optimization subspace, the algorithm manages to find its optimal solution. In other words, we assume that if a target solution is in the optimization subspace, SS-CSA-CMA-ES finds it.

Stopping Criteria on SS-CMA-ES

Using the default stopping criteria of CMA-ES when running RSS-CMA-ES and OSS-CMA-ES resulted, on some occasions, in the algorithms stopping prematurely. This can be seen in Figure 4.5 where the best fitness of the current iteration is plotted against the number of function evaluations of SS-CMA-ES on f "LSphere and f "LElli with " = 10 8 .

We see on both functions that when using the default stopping criteria (⇥), and in some cases, the algorithm stops sooner than when using the relaxed stopping criteria one (+). Furthermore, the final fitness values reached by the relaxed version are, in the cases where we see an improvement, significantly better than those of the default version. In our cases, the relaxation even allows the algorithm to be successful on all runs for both f "LSphere f "LElli problems when the default version managed to do so only once on f "LSphere (successes is achieved when the fitness passes below the gray dashed line that shows the target value as defined in (4.23)). The default stopping criteria seem to sometimes prevent the algorithm from finding the optimal value in its optimization subspace. So relaxing the stopping criteria seems to be a better, and more e cient, solution than simply restarting the algorithm. Especially if the restarts are done from scratch, thus disregarding the information gathered form the previous runs.

Here, the disabled stopping criteria in question are (range designated the di↵erence between the smallest and largest values within a set):

• the smallest range of the function values within a same generation (tolfun),

• the maximal number of iterations with no improvement (tolstagnation),

• the minimal range of the best fitnesses over a certain number of iterations (tolfunhist).

These disabled stopping criteria are neither used by LM-CMA-ES nor by VD-CMA-ES. Both only stop when reaching the provided target value, exhausting their budget or generating extremely small step-size (10 40).

The original source codes that were used can be found: at PyPI cma 1.1.06 (https:

//pypi.python.org/pypi/cma/1.1.06) for CMA-ES, lmcma (https://sites.google. com/site/lmcmaeses/) for LM-CMA-ES and vdcma (https://sites.google.com/site/ youheiakimotospage/pdf/vdcma.m) for VD-CMA-ES. Note also that the code of CMA-ES was modified to make it able to handle covariance matrices with larger condition numbers than the original code as several runs on the low epsilon-e↵ective dimension functions stopped because of numerical problems. This is especially the case for low epsilon-e↵ective dimension problems as these have a condition number that is, at least, equal to " 1 . A standard version of f "LSphere (no normalization by the dimensions) has a condition number " 1 and for f "LElli this value is multiplied by the inherent condition number of the ellipsoid (10 6 in our case)5 .

Single Runs

In order to compare the di↵erent algorithms, we start by looking into single runs on some low e↵ective and low epsilon-e↵ective dimension problems.

We are first interested in the behaviors of OSS-CMA-ES and RSS-CMA-ES and whether these two algorithms, as suggested by the results in Section 4.3.3 (solving problems with similar conditioning values), have the same performance, and thus need to be merged into a single algorithm SS-CMA-ES.

We look into the evolution of the best fitness on a current iteration with the number of function evaluations. The right plot of Figure 4.1 compares OSS-CMA-ES to RSS-CMA-ES on f "LSphere .

We see no substantial di↵erence in behavior between the two algorithms. The orthonormalization of the A matrix does not seem to have an e↵ect on the behavior of SS-CMA-ES. Note that we also observe (but not show) this similar behavior on other functions and for other values of ". This extends the results of Section 4.3.3, where we have seen that both variants deal with similar conditioning values on f LowSphere to low epsilon-e↵ective dimension problems.

From this point on, we only consider RSS-CMA-ES (computationally cheaper since no orthogonalization is needed), and simply refer to it by SS-CMA-ES. When no step-size adaptation mechanism is mentioned, CSA is used by default.

In Figure 4.6, we see a typical run of SS-CMA-ES on the low epsilon-e↵ective dimension sphere function f "LSphere .

We see, in parallel on the four plots, two phases in which the optimization process happens. In the first one (up to a little more than 4000 function evaluations), the fitness and the step-size decrease up to a certain point (around f (x) = 2.5 ⇥ 10 8 and = 3 ⇥ 10 4 , see top-left plot) at which point the fitness stagnates while the step-size keeps decreasing. The behavior up to the stagnation point is similar to what is observed in a typical convex-quadratic optimization with a well adapted covariance matrix.

We identify the start point of the second phase as the point where the step-size starts increasing. At this point, the fitness value remains at the same level while the stepsize and the scaling of one of the axis of the non-e↵ective dimensions increase. We also notice, in the bottom-left plot, that the d e↵ e↵ective axes are optimized during the first phase, decreasing as the algorithm converges to the stagnation point. These are the axes that have their scaling values decrease continuously over the course of the optimization. Because of the search space transformations that both of the matrices A and B apply (no axis parallel coordinate system), the increase on one of the axis translates into a simultaneous change on all the variables, in coordinate values and in standard deviations In this second phase, the fitness improvements coincide with pic values of the step-size and of the currently explored axis. The algorithm seems to optimize the non-e↵ective space one dimension at a time by increasing the length of its corresponding axis up to a certain value (around 7 ⇥ 10 1 for the first non-e↵ective axis). Once a non-e↵ective axis is optimized (reached its scaling pic value), it follows a similar behavior to that of the e↵ective dimensions and a new non-e↵ective axis is addressed. The pic values of the following axes seem to decrease with each additional addressed non-e↵ective axis. These pic values are upper bounded by those of the previously optimized non-e↵ective axes. The algorithm seems faced with an increasingly di cult task of optimizing in a dimension while not deteriorating the fitness obtained from the optimization of the other dimensions, instead of the standard approach of optimizing variables all at once. A process similar to a line search which dependencies between optimization variables make tedious. This can be seen from the di↵erent stagnation values of the optimization subspace coordinates (top-right plot).

The increasing axis ratio (red line in upper left plot), even in the first phase, is due to the lengths of the non-e↵ective axes being very little changed in the first phase while those of the e↵ective dimension decrease with the decrease in step-size and fitness value.

In the second phase, the e↵ective axis keep decreasing and the axis ratio is dictated by the first optimized non-e↵ective axis (which eventually decreases at the same rate, leading to a stationary value of the axis ratio). Basically, the search-space is comprised of d e↵ e↵ective dimensions and d ss d e↵ non-e↵ective ones. We now come to the comparison between the di↵erent algorithms. Figure 4.7 shows the evolution of the best fitness of an iteration on problems of dimension d = 512 and e↵ective/epsilon-e↵ective dimension d e↵ = 17 for " = 0 and " = 10 8 . As previously stated, in addition to comparing with VD-CMA-ES and LM-CMA-ES, we also consider di↵erent step-size adaptation mechanisms for CMA-ES and SS-CMA-ES, namely CSA, MSR and TPA. TPA is also applied to VD-CMA-ES and we note the resulting algorithm VD-TPA-CMA-ES. In the default VD-CMA-ES implementation, a modified, more computationally e cient, version of CSA is used (see Section 2.2.1.3).

First, we see that LM-CMA-ES and SS-CMA-ES seem to perform the best overall, with an advantage for LM-CMA-ES on both sphere functions that SS-CMA-ES manages to make up for with the use of TPA or MSR instead of CSA as step-size adaptation mechanisms. Another observation is the greatly improved performance of CMA-ES with the use of TPA (TPA-CMA-ES) and MSR (MSR-CMA-ES) in comparison to CSA (CSA-CMA-ES). The largest such improvement is observed on the two sphere functions (first row). An improvement is also observed for SS-CMA-ES but to a smaller extent. Using TPA in VD-CMA-ES (VD-TPA-CMA-ES), and in comparison to standard VD-CMA-ES, also results in an improvement of the performance on f "LSphere , where it actually produces the best results among the algorithms in this study for " = 0, and on f "LRosen but not on f "LElli . In the latter case (f "LElli), VD-TPA-CMA-ES stagnates at a relatively high function value (around 1) despite its quicker early stage optimization. Overall, on the low e↵ective dimension functions (" = 0), the algorithms, with the exception of VD-TPA-CMA-ES, show a converging behavior on the three functions.

The better results observed on CMA, and to a lesser extent on SS-CMA-ES, when using TPA and MSR instead of CSA to adapt the step-size are due to the search-spacedimension dependent comparison that is carried in CSA. In order to adapt the stepsize, CSA compares the length of a d (and in the case of SS-CMA-ES, d ss) dimensional vector to the expected length of the same vector had the selection been random. For low e↵ective dimensions problems, only d e↵ < d dimensions (the e↵ective dimensions or e↵ective subspace) are relevant while the rest (the non-e↵ective dimensions or non-e↵ective subspace) provide nothing but noise. This results in a slower than desired step-size decrease. The smaller performance gap between CSA and TPA/MSR on SS-CMA-ES, in comparison to CMA-ES, is due to smaller di↵erences between the searchspace dimensions (in our case d ss = 4⇥d e↵ < d) and the e↵ective dimension d e↵ , reducing the relative e↵ect of the noise from the non-e↵ective space. This e↵ect is not observed on LM-CMA-ES since it uses the Population Success Rule [Loshchilov, 2014] step-size adaptation mechanism which is similar to MSR. TPA, on the other hand, decreases the step-size faster which is generally the desired behavior. However, when used in VD-TPA-CMA-ES, this results in the algorithm witnessing premature convergence on the ellipsoid functions with the step-size decreasing too rapidly in comparison to the fitness (see Figure 4.8).

f "LSphere f "LElli f "LRosen " = 0 " = 10 8
When " = 10 8 , two phases are generally observed. A first one where the plots are similar to those of " = 0 and the second where the fitness improves by jumps followed by what look like plateaus resulting in an overall slow improvement. The second phase seems to start relatively close to the target value (4.23) for most algorithms (compare with the horizontal, gray, dashed lines). The exceptions being the two algorithms that use CSA (VD-CMA-ES and CSA-CMA-ES) for which the slowdown happens at earlier stages. CSA-CMA-ES still manages to reach the designated target values on f "LSphere and f "LRosen within the allocated budget, but at a significantly slower pace.

One important thing to notice is that the target value, as defined in (4.23), is, in all the observed cases, lower, fitness-wise, than the starting point of the second phase. In addition, with small enough step-sizes, and the e↵ective parts being optimized to a certain extent, the variations in the non-e↵ective space become relevant in defining the fitness. We see that LM-CMA-ES, TPA-CMA-ES, MSR-CMA-ES (except for a run on f "LRosen which was stuck on a local optimum) and the di↵erent versions of SS-CMA-ES manage to reach the desired target values (4.23). VD-CMA-ES and VD-TPA-CMA-ES, on the other hand, can not solve the problems with " = 10 8 . For f "LElli , VD-CMA-ES uses all the budget before reaching the target value, however, on the other functions and for VD-TPA-CMA-ES, the graphs seem to stagnate on higher fitness values. VD-TPA-CMA-ES reaches better stagnation points than VD-CMA-ES on f "LSphere and f "LRosen .

In this case of low epsilon-e↵ective dimension (" = 10 8), the target values (4.23) are only reached after doing some optimization on the non e↵ective subspace. In the second phase, and in order to improve the overall fitness, the non-e↵ective fitness needs to be improved. This must be done without penalizing (too much, " defining the weight of each part) the already optimized e↵ective space, which results in the slower improvement observed in this phase. The larger step-size values generated by CSA (for both CSA-CMA-ES and VD-CMA-ES) result in seeing the non e↵ective part earlier. The random steps in the non e↵ective space that are done in the first phase are of larger magnitude, resulting in the second phase starting at higher non-e↵ective fitness.

We see that LM-CMA-ES and the di↵erent versions of SS-CMA-ES manage to reach the target values on the low epsilon-e↵ective dimension problems, even though the latter only operate on a sub-spaces of the search space, and the problems have full e↵ective dimension. On the other hand, VD-CMA-ES, in its two versions, seems unable to learn an appropriate representation of the Hessian matrix that would allow it to optimize the non e↵ective space.

Scaling with the Optimization Sub-Space Dimension d ss

In this section, we look into the scaling of the performance (ERT) of SS-CMA-ES with the optimization subspace dimension d ss . As seen in Section 4.4.2.2, the success probability (probability of reaching a given target values) is monotonous in d ss on f "LSphere . However, and because of the internal complexity of SS-CMA-ES (see Figure 4.1, left plot), the CPU times per function evaluation scale linearly with d ss which means d ss needs to be controlled and ideally minimized. e↵ . This can be seen by comparing with the constant scaling lines (negative slope slanted lines). The speeds at which this growth is witnessed di↵er depending, not only on the function, but also on the step-size adaptation mechanism used.

SS-CSA-CMA-ES shows a scaling in d ss which is larger than linear in all plots (compare with the horizontal lines). It even shows quadratic scaling on f "LSphere when " = 10 8 . In the low e↵ective dimension configurations (" = 0), SS-TPA-CMA-ES and SS-MSR-CMA-ES show less than linear scalings on f LowSphere and f LowRosen and a linear scaling on f LowElli . The scaling is even close to being constant for SS-MSR-CMA-ES on f LowSphere . Overall, SS-MSR-CMA-ES and SS-TPA-CMA-ES have a similar scaling in d ss on the tested functions; with a slight advantage for SS-MSR-CMA-ES that is most noticeable on f LowSphere . The three algorithms su↵er some failed runs on f LowRosen , with a failure rate decreasing as the optimization subspace dimension d ss increases (no failure among the 3 ⇥ 19 runs with d ss = d). We note that, when d ss = d e↵ , the three algorithms show identical ERTs, the di↵erences reported above are only seen when the value of d ss becomes larger than d e↵ . When " = 10 8 , the di↵erence in scaling between SS-CSA-CMA-ES and the other two methods becomes smaller as the former seems to preserve a similar scaling to when " = 0 while the latter end up with larger scalings that are, at best, linear (SS-MSR-CMA-ES on f "LSphere). We also see that, and contrarily to the case " = 0, none of the methods manages to achieve a success when d ss = d e↵ . The increase in ERTs with d ss means that larger values of d ss , and ultimately d ss = d (which translate into a default CMA-ES plus an orthogonal transformation of the searchspace applied by A), are not optimal, not only with regards to the CPU times as seen in From top to bottom: f "LSphere , f "LElli and f "LRosen all with d = 512 and d e↵ = 17. Left: " = 0; Right: " = 10 8 . The budget is fixed to 10 4 ⇥ d, the target values were set following (4.23) and 19 runs are done for each data point. The numbers on the plots, coded by the algorithm colors, show the success rates when lower than 1. The slanted grid lines are for constant and quadratic scalings (with d ss) while linear scaling is represented by the horizontal grid lines.

" = 0 " = 10 8 f "LSphere f "LElli f "LRosen
Figure 4.1 but also in costs in numbers of functions evaluations. This follows from the fact that the larger the search-space of the algorithm (in our case, R dss), the more evaluations needed to explore it. Knowing that budgets are generally defined with regards to the problems not the particular algorithms in play (so one would typically define a budget depending on the problem dimension d or even d e↵ not the optimization space dimension d ss), this further justifies the use of SS-CMA-ES to solve low e↵ective and low epsilon-e↵ective dimensions problems. However, the success rates of the algorithm increase with d ss (except when failures are due to exhausted budgets and a larger than linear scaling and a linear budget). In fact, the failure, when " = 10 8 , that are not budget related are because of the absence of solutions with good enough fitness (considering the target values) in the optimization search space. The probability of this happening, given a fixed ", decreases as the optimization search space dimension d ss increases (see Figure 4.4). Failures on f LowRosen are due to the algorithms being trapped in local optima and the absence of a restart strategy. Here again, the failure rates decrease with increasing d ss . The di↵erence in performance between SS-CSA-CMA-ES and SS-MSR-CMA-ES and SS-TPA-CMA-ES is seen again on the scaling plots. As explained in Section 4.4.4, the larger the di↵erence between the optimization space dimension d ss and the e↵ective dimension d e↵ of the problem, the larger the e↵ect of the non e↵ective space. We even see that no di↵erence of performance is observed when d ss = d e↵ and " = 0 as the optimization subspace dimension coincides with the e↵ective dimension of the problem. The slower performance of CSA is also present when " = 10 8 because of the slower early stages of the optimization (see Figure 4.7) when the algorithms focus on the e↵ective dimensions. The di↵erence when compared to MSR and TPA is, however, smaller in this case since the non e↵ective space eventually plays a role in the optimization process, and in the second phase of the optimization, the algorithms try to improve the fitness on a full e↵ective-dimension problem.

When " = 10 8 , the functions no longer have low e↵ective dimension. Their e↵ective dimensions become d but with a low epsilon-e↵ective dimension. No algorithm solves the problems for d ss = d e↵ since, as explained above, some optimization in the non e↵ective space (in the second phase) seems needed to reach the target values. The e↵ective space is of dimension d ss so in order to optimize any part of the non-e↵ective space, the algorithms need to have d ss > d e↵ . The general picture shows that smaller d ss leads to smaller ERT (in addition to the smaller CPU times). However, the failure rates goes the other way as smaller values of d ss are the most prone to failure (if one excludes insu cient-budget caused failures). We saw this e↵ect more clearly when " > 0 since the lower bound on d ss for the algorithm to be successful is larger. However, in a complete black-box setting (no information about the e↵ective or epsilon-e↵ective dimension of the problem is provided), the problem is the same regardless of " since even for " = 0, d ss < d e↵ is bound to result in failed runs. One straightforward strategy in such a setting (unknown d e↵) is then to start with small values of d ss , since such value cost little in terms of function evaluations and CPU time Then, if the configuration fails, increase d ss , say by multiplying it by a constant factor (similar to what is done for the population size in [START_REF] Auger | A restart CMA evolution strategy with increasing population size[END_REF]) upon each restart.

Scaling with the Problem Dimension d

In order to see how well the large-scale optimization algorithms considered in this chapter scale with the problem dimension, their performance was assessed for di↵erent values of d on low e↵ective dimension functions (" = 0) and low epsilon-e↵ective dimension functions (with " = 10 8 and " = 10 7.5). Since we saw similar results for SS-MSR-CMA-ES and SS-TPA-CMA-ES (except on the sphere functions) in the previous sections, we only consider the latter for both CMA-ES and SS-CMA-ES. We also do not consider CSA-CMA-ES since its performance is dominated by TPA-CMA-ES.

The evolution of the ERT's (normalized by d) versus d is shown in Figures 4.10 and 4.11. First, note that (d = 16, d e↵ = 2) translates into the functions f LowElli , f LowTablet , f LowCigar and f LowTwoaxes having the same expression (f Low (z) = (z 2 1 + 10 6 z 2 2)/d e↵) and f LowCigtab being similar with a larger condition number (10 8 instead of 10 6). This explains the similarity of the results on the leftmost data points for all algorithms on these functions.

We see that VD-CMA-ES and VD-TPA-CMA-ES do not solve any of the problems with " > 0 and VD-CMA-ES is dominated, when " = 0, by the other algorithms. Among the low e↵ective dimensions problems, VD-CMA-ES manages to solve, in addition to f LowSphere , f LowCigar , f LowCigtab and f LowRosen with what appears to be a linear scaling in d. However, this scaling gets worse on f LowElli and the ERTs are relatively large on f LowTablet . We see no success on dimensions larger that 16 on f LowTwoaxes .

VD-TPA-CMA-ES improves on the performance of VD-CMA-ES f LowSphere and f LowRosen . Its scaling on f LowSphere is less than linear, showing, with SS-TPA-CMA-ES, the best overall performance on this function. A significant improvement is also observed for relatively larger dimensions on f LowCigar and f LowCigtab , with the less than linear scaling appearing again. However, on f LowElli and f LowTablet , VD-CMA-ES shows better results as we have already observed on f LowElli in Figure 4.7.

The reason behind the failure of both VD version on low epsilon-e↵ective dimension problems is that its restricted covariance matrix, C = D(I + vv T)D, is unable to learn a good enough approximation of the Hessian matrices of the functions when the non e↵ective part becomes involved. This can be seen for example on f "LSphere where the Hessian is of the form 2(BB T + "I d) with BB T 6 = I d that can not be modeled in the VD representation.

The same reason is behind the poor performance of VD-CMA-ES on f LowElli and f LowTablet . In fact, the application of B (a sort of rotation) results in the Hessian being non-representable in the VD framework. However, taking B = I d makes VD-CMA-ES solve both problems in an e cient manner. This inability to solve the rotated ellipsoid and tablet functions was already observed in the original VD-CMA-ES paper [START_REF] Akimoto | Comparisonbased natural gradient optimization in high dimension[END_REF]. On the ellipsoid function, the defect of CSA on low e↵ective dimension problems seems to actually have a positive e↵ect on VD-CMA-ES, in comparison to VD-TPA-CMA-ES, by adapting larger step-sizes. This can be seen in Figure 4.8 where the evolution, on a single run, of both the fitness and the step-size on f LowElli is compared for VD-CMA-ES and VD-TPA-CMA-ES. We see that VD-TPA-CMA-ES adapts smaller step-sizes, and seems to be subject to a positive feedback e↵ect making the step-size converge to zero prematurely. Note that the experiments were stopped whenever the step-size reached a value smaller than 10 40 .

We see that TPA-CMA-ES, even though not a large-scale specific algorithm, shows reasonably good performance ERT-wise. It manages to solve most of the problems for " = 0 " = 10 8 " = 10 7.5 f "LSphere on low e↵ective and low epsilon-e↵ective dimension problems on quadratic f Low functions (when replacing in (4.5)). From left to right: " = 0, " = 10 8 and " = 10 7.5 . From top to bottom: f "LSphere , f "LElli , f "LCigar , f "LCigtab , f "LTablet and f "LTwoaxes . The budget is 10 4 ⇥ d and the target values are chosen following (4.23). A total of 19 runs are used to compute each ERT. The numerical values seen on the plots, coded by the algorithm colors, show the success rates when lower than 1. No runs where done for TPA-CMA-ES on dimension 2048. the three values of " that are considered and shows less than linear scaling on f LowSphere but not on any other function. However, it remains dominated by SS-TPA-CMA-ES and even SS-CSA-CMA-ES, and this, despite the CSA defect on low e↵ective dimension problems from which the latter su↵ers. It also seems to struggle in its scaling, when " > 0, on functions with a high number of short axes. This is particularly the case on f "LCigar where the scaling becomes worse for " = 10 8 and " = 10 7.5 as soon as d 256. Its main drawback remains the high internal complexity and CPU time which make it unusable for large scale problems. In our case, d = 2048 took too long running times to be included in the results.

f "LElli f "LCigar f "LCigtab f "LTablet f "LTwoaxes
" = 0 " = 10 8 " = 10 7.5 f "LRosen f "LDi↵pow
Comparing the remaining algorithms, we see that SS-TPA-CMA-ES dominates (although sometimes weakly, in the sens that the di↵erences may be non significant) SS-CSA-CMA-ES on all the functions.

On the low e↵ective dimension functions (" = 0), LM-CMA-ES and SS-CMA-ES do not show a clear dominance relationship. SS-CMA-ES has better performance on f LowCigtab and f LowDi↵pow while LM-CMA-ES performs better on f LowCigar and f LowTwoaxes . Both algorithms show less than linear scaling with the problems dimension d on all the functions. These results suggest both methods take into account the low e↵ective dimensions of the problems, and scale accordingly. On SS-CMA-ES, this is to be expected since the algorithm actually operates on a lower dimension d ss which is of the same order than d e↵ (see (4.21)). LM-CMA-ES on the other hand seems to take advantage of the low e↵ective dimension of the problem in an indirect way. Remember that it does not su↵er from the CSA e↵ect explained above thanks to the use of a success based step-size adaptation mechanism. Also, it uses a number of vectors, m, which is in our case in the same order (logarithmic in d) but always larger than d e↵ to estimate the covariance matrix.

We see that overall, SS-CMA-ES, and in comparison with LM-CMA-ES, seems to better preserve the scaling that it has for low e↵ective dimensions problems into low epsilon-e↵ective dimensions. This is with the exception of f "LCigar where it becomes linear for " = 10 7.5 . It is also the case for f "LDi↵pow as the less than linear scaling is lost and SS-CSA-CMA-ES sees a large increase in ERT for the case " = 10 8 . The most visible example of the better scaling preservation of SS-CMA-ES (if we, again, disregard problems with no successful run) is f "LElli on which LM-CMA-ES sees an increase in the scaling that becomes larger than linear, with a more pronounced e↵ect for larger values of d. On some functions, the di culty of the problem for LM-CMA-ES seems to increase around d ss = 512 with larger ERTs (f "LElli) or sudden failures to solve the problems (f "LCigar and f "LTowaxes) due to premature convergence of the step-size (the smallest accepted value is set to 10 40).

This decrease in performance of LM-CMA-ES might be due, as for VD-CMA-ES, to the algorithm being unable to have its restricted covariance matrix representation match enough the Hessian of the problems on the second phases (improvement of the fitness by optimizing in the non-e↵ective space) when " > 0 to actually solve these problems. LM-CMA-ES has overall good results (except on f "LDi↵pow) and seems dominated by SS-TPA-CMA-ES on functions with a relatively high number of important variables for " = 0. Here, we mean by important variables the variables in f Low (4.5) with relatively, and in comparison to the other variables in f Low , high associated eigenvalues, not the e↵ective variables of the global function f "L . One reason for this is it being unable to learn enough important directions because of the limited number of vectors it uses to estimate the covariance matrix.

For " > 0, the algorithms require more function evaluations to reach the target values. Even when the target values are larger/easier for larger values of " (4.23), we have seen in Figure 4.7 that optimization in the non-e↵ective space is needed in order to reach these target values. In addition, this non-e↵ective space optimizations are slower, not only because of the larger number of variables that come into play (all dimensions are e↵ective) in comparison to a low e↵ective function (first phase of the optimization where the non e↵ective spaces are quasi-invisible to the algorithm) and the added conditioning (because of " and the normalizations by d e↵ and d), but also because of the time needed to re-adapt the representation of the problem since the algorithms see what is basically a new function. We also see larger failure rates of both versions of SS-CMA-ES because of fit enough solutions (given the target value) being absent from the optimization subspace. In fact, we have already seen in Figure 4.4 that the success probabilities decrease with increasing ". Some peculiar results are observed when f Low is the non convex-quadratic Sum of Di↵erent Powers function (bottom plots of Figure 4.11). In fact, only SS-TPA-CMA-ES solves f "LDi↵pow with " = 10 8 within the allocated budget. In addition, the case " = 10 7.5 seems less di cult than the case " = 10 8 for both SS-CSA-CMA-ES and TPA-CMA-ES; the most prominent e↵ect is seen on the former which shows a clearly better scaling of performance when " = 10 7.5 than when " = 10 8 . This seems to be a result of the way the target value is chosen (4.23). A higher value of " means a larger target value (the target value of the case " = 10 7.5 is more than double that of the case " = 10 8). When this increase in the target value is not o↵set by a similar or larger increase in di culty, the problem with the higher value of " ends up being easier. We suspect this to be the case on the larger dimensions of f "LDi↵pow (smaller ratios between d e↵ and d). The closer one gets to the optimum, the higher the di↵erences in sensitivity between the variables of this function become (similar to an increase in the condition number if the function were convex-quadratic); thus limiting the impact of a higher value of " (which also impacts these sensitivities). To backup our assumption that this is a result of the way the target values are chosen, we did some single runs, on this function, of SS-CSA-CMA-ES in dimension 256 with " = 10 8 and with " = 10 7.5 . The single runs, indeed, show that the algorithm manages to reach lower fitness values (f (x best) ' 2.683 ⇥ 10 8) in the case " = 10 8 than in the case " = 10 7.5 (f (x best) ' 4.157 ⇥ 10 8) within the same budget. However, these fitness values reach the target value of the latter scenario (f target ' 4.162 ⇥ 10 8) but not that of the former scenario (f target ' 2 ⇥ 10 8).

Discussion

In this chapter, we start by introducing the notions of e↵ective and of epsilon-e↵ective dimensions and showing a way of constructing low e↵ective dimension and low epsilon-e↵ective dimension problems from widely used benchmark functions. The notion of epsilon-e↵ective dimensionality appears as a natural extension of the notion of e↵ective dimensionality. However, to the best of our knowledge, this is the first time this notion is formally expressed for large-scale continuous optimization and used to construct a test set of low epsilon-e↵ective dimension functions. Even though the formalism might seem non-trivial, this appears to be a reasonable way to define functions of low epsilon-e↵ective dimension, confirmed by empirical results. This paves the way for the design of low ("-)e↵ective dimension problems for benchmarking large-scale continuous optimization algorithms, particularly those algorithms that are designed to handle this class of problems. The following chapter of this thesis will present a di↵erent approach to large-scale benchmarking that consists in extending an already existing benchmark for lower dimensions to larger ones. There, the main purpose is to circumvent the large-scale constraints that make the problems of the original benchmark unpractical for use in a large-scale setting while preserving most of the properties of these original problems, including their e↵ective dimensionalities (in our case, full e↵ective dimensionalities). We, then, introduce SS-CMA-ES, an embedding based algorithm built around the CMA-ES algorithm to optimize low e↵ective dimension problems. Two variants were proposed depending on whether the search subspace spanning matrix is orthogonalized or not. However, the study on the conditioning of the problems and the empirical comparison of the perforamnce of the two variants strongly suggest that orthonormalization does not improve the performance on this specific set of functions.

We also saw that standard large scale optimization algorithms deal with these newly introduced problems di↵erently. LM-CMA-ES shows very good performance in compar-ison to VD-CMA-ES and even to SS-CMA-ES, even though the latter was specifically designed to deal with this kind of problems. However, SS-CMA-ES shows a better robustness with regards to the extension to full e↵ective dimensions and low epsilon-e↵ective dimensions. Another important result observed in this chapter is the e↵ect of non-e↵ective dimensions on the Cumulative Step-size Adaptation (CSA) step-size adaptation mechanism. The non-e↵ective dimensions provide noise that makes CSA adapt the step-size more slowly, expecting to deal with a full e↵ective dimension problem. This, however, is not the case for other step-size adaptation techniques such as Two Point Adaptation (TPA) and the Median Success Rule (MSR) which do not depend directly on the problem dimension.

In most of this chapter, d ss was set to four times the e↵ective dimension of the problem d e↵ , and we have seen that this value of d ss su ces to see good performance on most of the problems, even when " = 10 8 . However, in a black-box setting, one is not expected to have, beforehand, information on the e↵ective dimension of a problem. In addition, the choice of d ss in this chapter was specifically done to guarantee a certain success-rate of the algorithm in order to assess the performances of SS-CMA-ES. For SS-CMA-ES to be competitive in real world applications, a self-adapting d ss must be introduced. A straightforward solution would be to start with relatively low values of d ss and then increase it, for example by, multiplying d ss by a certain constant factor on each restart. The advantage of this approach is that, as we have seen in Section 4.4.5, low values of d ss result in small running times and higher failure rates, meaning that the budget wasted on failed runs because of too small d ss might, in many cases, be smaller than the budget used by standard CMA-ES to solve a low e↵ective dimension problem.

Chapter 5

The COCO Large Scale Suite

In this chapter, we are interested in the extension of a low/medium dimension benchmarking suite to a large-scale one while preserving as much of the properties of this suite and its problems as possible. The suite in question is the BBOB-2009 test suite. The resulting benchmark problems will have, contrarily to the ones presented in the previous chapter, full e↵ective dimensionality. The design of a low ("-)e↵ective dimension test suite will be left for future work. We propose a sparse and well-scaling orthogonal transformation that can be used as a replacement of full orthogonal (rotation) matrices that are generally used in benchamrking as a generic tool to introduce non-separability and coordinate system-independence. This proposed transformation can be computed in linear time in the problem dimension d and relies on the use of two permutation matrices on either side of an orthogonal block-diagonal matrix. The resulting matrix retains most of the properties of a full orthogonal matrix and allows us to define a practically usable large-scale test-bed based on the BBOB-2009 noiseless test-bed. After including the sparse transformation in the COCO framework, we benchmark three large scale algorithms and analyze their performance.

The BBOB-2009 Testbed

The 24 problems defined in BBOB-2009 rely on the use of raw (base) functions to which transformations are applied. The notion of raw function designates, generally, functions that are defined on the simplest of bases (the canonical base).

Let us consider the Ellipsoid function which is a convex-quadratic function with a diagonal Hessian matrix and eigenvalues uniformly distributed on the log-scale in the interval [1, 10 6]. The raw version of the function, on a canonical base, reads:

f Elli (x) = d X i=1 10 6 i 1 d 1 x 2 i , (5.1)
where we retain d as the problem dimension. On the other hand, one can consider a di↵erent coordinate system that is defined, for example, as a rotation of the canonical 117 base using a matrix R. Then the corresponding transformed (as contrast to a raw function) Ellipsoid function would be:

f Elli (x) = d X i=1 10 6 i 1 d 1 z 2 i , (5.2)
where z = Rx and R an orthonormal matrix.

The raw functions used in benchamrking present, generally, a number of properties that algorithms might be able to exploit. Looking at (5.2), we see that the raw ellipsoid function is separable while its transformed counterpart (5.1) is not (assuming R is not diagonal). In addition, the function is an even function on the vector level (f (x) = f (x), 8x 2 R d) and on the coordinate level (f (x) = f (x), where x is the same as x on all but one coordinate i where x i = xi). Furthermore, the optimal solution to (5.1) is x opt = 0 d and its corresponding fitness is f opt = 0. One of the purposes of the transformations used in BBOB-2009 is to hide such properties. In addition, parameterized transformations allow to generate multiple instances of a same problem by changing the values of the transformation parameters. The latter is done by setting as seed of the Random Number Generator (RNG) a value that is directly dependent on the instance number. In BBOB-2009, and on most functions, the initial seed is:

f i + 10000 ⇥ i i , where f i is the function index (1  f i  24
) and i i the instance index (in theory, unbounded). Di↵erent seeds are sometimes used for the di↵erent transformations within a same problem, but these seeds remain deterministically tied to the initial seed.

Ideally, instances of a same problem possess the same properties and similar levels of di culty, assuming the notion of di culty is properly defined. For example, taking di↵erent orthonormal matrices R in (5.2) results in as many di↵erent instances of the same, rotated ellipsoid, problem. The instances of (5.2) have the same condition number (since R is an orthonormal matrix, see Lemma 2), so the di culty related to the condition number is the same across all instances of this problem. However, the level of nonseparability of the resulting problem depends on the structure of R (full matrix, sparse matrix, band matrix, block-diagonal matrix...).

The BBOB-2009 Transformations

As previously mentioned, the 24 problems of BBOB-2009 are obtained by applying series of transformations on a number of raw functions with relatively simple closed formulae. We now present these transformations and, for each, briefly describe its purpose. We note f new : R d ! R d the transformed version of a function f .

Shift of Parameter and Fitness Spaces

Looking into the functions defined in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] and found in Table 5.1 and Table 5.2, we see that most of them have optimal values x opt = 0 d and f opt = 0. Such a property can be exploited by algorithms and is artificial in that it does not reflect what one expects to see in a real-world problem. For example, and on the spherical functions, knowing the distance to the optimum of each solution allows to optimally set the stepsize of single parent evolution strategies ((1+1)-ES and (1,)-ES) [Auger and Hansen, 2011]. In addition, modeling a real world problem such that its optimal parameter and fitness values are centered in zero suggests these values are known beforehand, reducing the need to resort to the use of black-box optimization algorithms and removing the black-box property of the problem itself.

The optimal solution x opt and its fitness f opt are generated randomly and are used such that they become the optimal values of the transformed function:

f new (x) = f (z) + f opt , (5.3)
where z = x x opt . When an algorithm queries a solution x, this solution is first transformed into z = x x opt , then applied to f . Thus, the optimal solution the algorithm needs to find is x opt (since arg min

x2R d f (x) = 0 d).
On the other hand, f and f new have the same optimum x opt and only di↵er in the fitness associated to this optimal solution: 0 for the former and f opt for the latter. A penalization function, f pen is added to the fitness on a number of functions to insure that the optimum is within the domain of interest [5,5] d by penalizing solutions outside of it:

f pen (x) = d X i=1 max (0, |x i | 5) 2 .
(5.4)

Linear Transformations

Linear transformations of the form

f new (x) = f (Mx) , (5.5)
where depending on the composition and shape (sparsity) of M 2 R d⇥d , the transformation is used in order to either introduce non-separability and coordinate system independence or control the condition number of a problem. Diagonal matrices M are used to control the condition number of problems, and are noted ⇤ ↵ , where the i th diagonal element equals ↵ 1 2 i 1 d 1 . On the other hand, the nonseparability is introduced using full orthogonal matrices M in (5.5), noted R and Q (some problems require two di↵erent orthogonal matrices) in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]] generated using the Gram-Schmidt process on matrices with standard normally distributed entries.

Non-Linear Transformations

Two non-linear transformations are defined in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] and used in order to reduce the regularity and symmetry of the problems.

1. Cost: In a large scale setting, both the memory needed to store the matrix and the time complexity needed to apply it to each solution need to scale well with the dimension of the problem. Generally, large-scale algorithms are identified as such thanks to a cost that scales well in the problem dimension. So, to remain usable in practice, the function evaluation of the test-bed should not be a bottleneck costwise. Ideally, the cost of applying the transformation should be linear or close to linear (d 1+" with " ⌧ 1), or at most in d log(d).

2. Non-separability: The main purpose of using the orthogonal matrices is to introduce a generic way of generating non-separable problems from separable ones. This is particularly practical since many of the raw functions are separable (see Tables 5.1 and 5.2). Even though we can not reproduce the same level of nonseparability as a full matrix with a sparse one, we still want the transformed problem to remain non solvable by algorithms that exploits separability, partial separability or particular shapes of the Hessian matrix (when it exists); or, at least, make it costly for algorithms to do so. Ideally, we want to have a parameter/set of parameters that allows to control the level of non-separability of the transformed problem in comparison to the original, non-transformed, problem.

3. Orthogonality: Since the matrices R and Q are orthogonal, they preserve the eigenvalues and condition number (when they exist) of the original problem (see Lemma 2). Thus, these matrices are not used to change these features of the function, the latter is done via another diagonal matrix ⇤ ↵ that can be directly applicable in large-scale because of its linear complexity.

The replacement transformations in our case are permuted orthogonal block-diagonal matrices whose costs, in time and space, scale linearly in the problem dimension d and that comply with the above defined criteria.

The Core Transformation Matrix

Before settling on using orthogonal block-diagonal matrices as the core transformation matrix, other sparse matrices were considered. First, we know from the criteria that we defined that diagonal matrices can not work. Not only do they not introduce nonseparability, they are simply a special case of the conditioning matrix ⇤ ↵ with ↵ = 1. Such a matrix being the identity matrix in d (I d) it has a neutral e↵ect on the problem. One idea of orthogonal sparse matrices is the one used in Chapter 4 in order to define low e↵ective dimension problems. The idea consists in using rank-deficient matrices with a majority of the columns being 0 d vectors. However, in the context of this chapter, we wish to retain as much of the original properties of the noiseless BBOB-2009 test-bed as possible, including the full e↵ective dimensionality. Thus, the suite we define in this chapter will consist of full e↵ective dimension problems.

Another idea was to consider band matrices which are matrices that have all their non-zero elements constrained in a fixed number of the diagonals of the matrix. Let B be a matrix of size d ⇥ d. We say that B is a band matrix with a lower bandwidth of k 1 and an upper bandwidth of k 2 when for any i, j, (5.10) where b i,j designates the element at the i th row and j th column of B. A tri-diagonal matrix has all its entries at 0 that are not on the main diagonal or the two diagonals adjacent to the main diagonal.

1  i, j  d: i j > k 1 or j i > k 2 =) b i,j = 0 ,
However, band matrices can not be orthogonal unless the band width is 0, and thus are diagonal matrices (contradicts Property 2). To see this, we take the simple example of a 3 ⇥ 3 tri-band matrix:

B = 0 @ b 1,1 b 1,2 0 b 2,1 b 2,2 b 2,3 0 b 3,2 b 3,3 1 A .
(5.11)

For B to be orthogonal, the following system of equations needs to hold:

8 > < > : b 1,1 b 1,2 + b 2,1 b 2,2 = 0 b 2,2 b 2,3 + b 3,2 b 3,3 = 0 b 2,1 b 2,3 = 0 .
(5.12)

By setting (because of the third equality) either b 2,1 = 0 or b 2,3 = 0, we can propagate the zeros to b 1,2 or b 3,2 respectively and end up with b i,j = 0, 8i 6 = j since the band matrix is expected to be full that is all the elements within the band are di↵erent from 0 (or replace the =) in (5.10) by an ()).

This proof can be generalized to any d ⇥ d, d 3 tri-diagonal matrix. In fact, setting b 2,1 = 0 means that b i+1,i = 0, 8i, 1  i  d 1 in order for the band matrix to remain full. For the same reason, having b 1,2 = 0 means that b i,i+1 = 0, 8i, 1  i  d 1. As with the 3 ⇥ 3 matrix, we obtain the same result with a similar reasoning by setting b 2,3 = 0 instead b 1,2 = 0 (we have a symmetry around the diagonal). For a generalized band matrix with k 1 lower bandwidth and k 2 upper bandwidth, when k 1 + k 2 + 1  d, the same propagation principle can be used to show that for the matrix to be full-band and orthogonal, we necessarily need k 1 = k 2 = 0 (diagonal matrix). Since k 1 + k 2 + 1  d, we have, in our system of equations resulting from the orthogonality of the matrix (similar to (5.12)) at least one equation with only one product in the left-hand size: b k 1 +1,1 b k 1 +1,j = 0 , (5.13) with j  d. This equations allows to eliminate either the diagonal b i+k 1 ,i or the diagonal b i,i+j k 1 . Once this is done, another diagonal can be eliminated which is involved in, respectively, either of the following equations: (5.15) where b k 1 +1,j = 0. The process can, then, be carried on until only the diagonal is left. A special case of (non-full) band matrices that can be non-diagonal and still orthogonal are block-diagonal matrices. A block-diagonal matrix B is a matrix of the form: i=1 s i = d. The 0 designate matrices whose entries are all 0's and that are of the appropriate size in (5.16) (depending on the s i 's). Property 1 relies upon the number of non-zero entries of B:

b k 1 ,1 b k 1 ,j 1 + b k 1 +1,1 b k 1 +1,j 1 = 0 , (5.14) where b k 1 +1,1 = 0, or b k 1 +2,2 b k 1 +2,j + b k 1 +1,2 b k 1 +1,j = 0 ,
B = 0 B B B @ B 1 0 • • • 0 0 B 2 • • • 0 0 0 . . . 0 0 0 • • • B n b 1 C C C A , (
d X i=1 d X j=1 b i,j 6 =0 = n b X i=1 s 2 i ,
(5.17) where b i,j 6 =0 is the indicator function that equals 1 when b i,j 6 = 0 and 0 otherwise. If we simplify and consider blocks of equal sizes s, bar possibly the last block (in case s does not divide d evenly), then n b = dd/se. We end up with at most d ⇥ s non-zero entries. Then, in order to satisfy Property 1 with a number of non-zero elements linear in d, s needs to be independent of d. In the case of di↵erent block-sizes, the same reasoning can be applied to the largest block-size instead of s. That is we require max 1in b (s i) to be independent of d.

Concerning Property 2, we only need the matrices B i in (5.16) to be non-diagonal in order for the functions that are originally separable to become non-separable since non zero o↵-diagonal elements introduce correlations between the variables.

For Property 3, given the shape of B (block-diagonal), it is necessary and su cient to have orthogonal blocks B i for B to be orthogonal. We generate the matrices B i the same way the matrices R and Q are generated in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]. Thus, we end up with each matrix B i uniformly distributed in the set of orthogonal matrices of the same size (the orthogonal group O(s i)). As in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] and in Section 5.1.1, we first generate square matrices with entries i.i.d. standard normally distributed. Then we apply the Gram-Schmidt process to orthogonalize these matrices. The resulting B i , and thus B, are orthogonal and satisfy Property 3.

The orthogonal block-diagonal matrice B is the core of the orthogonal transformation matrix of our large scale test-suite that is to replace full orthogonal matrices. The description above allows us to identify its two parameters:

• d, defines the size of the matrix which coincides with the problem dimension,

• {s 1 , . . . , s n b }, the list of block sizes corresponding to, respectively, {B 1 , . . . , B n b }, where n b is the number of blocks. Since the problem dimension is defined by the problem, only the block-sizes remain as a free parameter that needs to bet set.

The Permutations

The block-diagonal matrices defined in Section 5.2.1 introduce dependencies between the variables of each block. However, originally independent variables that do not fall into the same block remain independent. In addition, given the way these blocks are structured, they apply exclusively to adjacent variables. So, if we only use a block-diagonal matrix B, the indexes of the variables would have a direct impact with regards to the application of B.

Such a property can be exploited by algorithms. One way of doing so would, then, be to learn a restricted block-diagonal matrix where the major learning e↵ort would be on the free parameter of the transformation, namely, the block-sizes (s i) 1in b . In fact, and as we will see further in this chapter, even algorithms that learn an exclusively diagonal matrix such as sep-CMA-ES [Ros and Hansen, 2008] can manage to solve block-diagonal dependencies under some block condition-number conditions.

Ideally, to have a realistic representation of a black-box scenario, the problems we define should not have properties that can be easily exploited by algorithm designers even when these properties are known.

We apply two permutation matrices on both sides of B and the result completes the transformation matrix as follows:

R = P left BP right , (5.18)
where B 2 R d⇥d is an orthogonal block-diagonal matrix and P right , P left 2 {0, 1} d⇥d are the two permutation matrices; that is, matrices that have one and only one non-zero element (equal to 1) on each row and each column. A permutation matrix can also be seen as an identity matrix I d whose rows/columns were permuted. The purpose behind applying these two permutations is to hide the block-diagonal structure of B and make it even harder to exploit while retaining the properties granted by the block-diagonal matrix. The additional cost of applying a permutation matrix is linear in the size of this matrix. As we will see in Section 5.6.3, we can simply substitute the permutation matrices by vectors and use these vectors for indexing the variables. The non-separability dictated by Property 2 is satisfied since the number of non-zero entries in B and in R is the same, meaning that R can not be diagonal, thus it necessarily introduces dependencies between the variables. Finally, Property 3 remains satisfied as permutation matrices are orthogonal, and the product of orthogonal matrices is an orthogonal matrix. So R in (5.18) is an orthogonal matrix that preserves the eigenvalues and condition number of the functions it is applied on (when existent).

The e↵ect of a permutation matrix on another matrix depends on the order of the matrices in the product. In (5.18), P left shu✏es the rows of B while P right shu✏es its columns. In order to better understand the e↵ect of P left and P right on a function, we suppose a separable quadratic function f and transform it using R = P left BP right into f R , that is define [Ait Elhara et al., 2016] (5.19) where D is a diagonal matrix and z = P left BP right x. By replacing z in (5.19), we obtain (5.20) where x = P right x, D = P T left DP left and z = Bx. Thus, if we look into the equivalent problem that was transformed by only B (without the permutations): x T B T DBx, we see that the permutations simply replace x by x = P right x and D by D = P T left DP left . Thus, the permutation P right shu✏es the variables that the optimization algorithm sees and queries. The performance of a good optimization algorithms is expected to be invariant to this permutation, since the order in which the variables are presented should not be relevant. On the other hand, P left , by applying to D, shu✏es the variables in which the raw function is defined, that is the variables of the function before applying R. As a result, and coupled with B, this permutation determines which coe cients are used within the blocks defined by B and, consequently, the block condition numbers and the di culty of the problem (see the Section 5.4).

: f R (x) = f (z) = z T Dz ,
f R (x) = (P left BP right x) T DP left BP right x = x T P T right B T P T left DP left BP right x = xT B T DBx = zT Dz = f (z) ,

Generating the Random Permutations

In what follows, we call a swap the exchange of positions of two variables. A swap involves two variables, a first swap variable, i, and a second swap variable, j, that will (the second swap variable j) generally depend, in some way, on the choice of the first swap variable. Thus, a permutation is the order obtained after applying a given number of swaps, that we will note n s . Ideally the parameterization of the permutations should allow to have a certain level of control over the di culty of the resulting problem. Since we define a permutation as a succession of swaps, the first parameter of the permutation would be the number of swaps n s . Then, it will also has any parameter that intervenes in the swap strategy.

A first simple idea would be to apply a random uniformly chosen permutation of the variables, which is equivalent to swapping each of the d 1 first variables once with a random uniformly chosen second swap variable j ⇠ U ({1, . . . , d}), where U (S) designates the uniform distribution in the set S. The number of random uniform swaps one applies to obtain the final permutation is a parameter that we can vary. However, the problem with this approach is that the distance each variable travels is subject to a high amount of variance for a low number of swaps (variance is maximized on a uniform distribution). In fact, in the context of applying B too, and depending on which variables are swapped, the resulting problem can di↵er substantially. Swapping variables which belong to the same block has a significantly smaller e↵ect on a separable problem than swapping variables that do not (belong to the same blocks).

In order to reduce this variance, we considered other strategies where, instead of having j ⇠ U ({1, . . . , d}), we make j follow a Zipf-like distribution. That is a discrete power law where the probability of each element is inversely proportional to its rank. In our case, we define the rank of a value j by its distance to i and generalize the distribution with a parameter ↵ giving the distribution of j:

Pr j = j|i = ĩ = 8 > < > : 1 | ĩ j| ↵ ⇥ 1 P d k=1,k|6 = ĩ | ĩ k| ↵ if j 2 {1, .
. . , d} and j 6 = ĩ 0 o t h e r w i s e , (5.21) where the parameter ↵ sets the penalization of the distance to the first swap variable. This approach was also tried in a variant where we first sample the blocks of the variables to be swapped similarly to (5.21) and then chose the variables within them uniformly at random.

The main problem with the Zipf-like distribution based approach was the relatively high number of swaps needed to obtain problems that are, separability-wise, significantly di↵erent from the raw problems transformed by B.

In order to introduce more change in the shape of the block-matrix while keeping control of this amount of change, we want each variable to be moved, in average, a fixed distance. That is, in the produced permutation (after the n s swaps are done), we want to have variables in positions which are, in average, a fixed distance away from their starting positions. In order to reduce the number of swaps needed to obtain a significant change in the shape of the block-matrix, we go back and use uniform distributions of the second swap variables. However, and in order to retain control over these travel distances, we introduce a parameter to the uniform distribution, the swap range r s that delimits the support of the uniform distribution. We call this truncated uniform swaps.

For a given number of variables (problem dimension) d and a swap range r s and given i, the first swap variable, j follows the distribution:

j ⇠ U ({l b (i), . . . , u b (i)} r {i}) , (5.22)
where l

b (i) = max(1, i r s) and u b (i) = min(d, i + r s).
In all what follows, real valued swap ranges are rounded down to the closest integer (the fractional part is ignored).

Roughly speaking (if we consider an infinite number of variables), each variable should travel, in average, around r s /2 from its initial position. More precisely, we need to take into account the borders imposed by the finite number of variables and the absence of a circular placement of the variables (the first and last variables are not considered neighbors and have a distance of d 1 between them). Let us note the average distance traveled by a variable i avg dist (i). If we suppose r s  (d 1)/2, and consider the case i 1 < d i, that is the first swap variable is closer to the first variable (or is this first swap-variable) than to the last variable (we can obtain the other case by symmetry) and that i < r s + 1 (the value is otherwise straightforward to compute):

avg dist (i) = 1 r s + i 1 i+rs X k=1,k6 =i |i k| = 1 r s + i 1 ⇣ rs X k=1 k + i 1 X k=1 k ⌘ = 1 2 (r s + i 1) ⇣ r s (r s + 1) + i (i 1) ⌘ = 1 2 (r s + i 1) ⇣ i 2 i + r 2 s + r s ⌘ .
(5.23)

Then, we investigate the values of i that minimizes this average distance by deriving with regards to i:

@ avg dist @i = 1 2(r s + i 1) 2 ⇣ (2i 1)(r s + i 1) (i 2 i + r 2 s + r s) ⌘ = 1 2(r s + i 1) 2 ⇣ i 2 + 2(r s 1)i (r 2 s + 2r s 1)
⌘ .

(5.24)

The discriminant of the numerator = 8r 2 s =) p = 2 p 2r s . Thus the solutions: i 1 = 1 (p 2 + 1)r s < 0 that we discard and i 2 = 1 + (p 2 1)r s that we retain and which is the index that minimizes the average distance since the derivative is negative for values smaller than i 2 and positive for values larger than i 2 . We replace in the expression of avg dist (i) in (5.23) and find the minimal value:

min(avg dist (i)) = (p 2 1)r s + 1 2 .
(5.25)

Given the behavior of the derivative, the maximal value is reached in the extremes of the interval (i = 1 or i = d) or when i is at least r s away from the extremes and reads (replacing in (5.23):

max(avg dist (i)) = 1 2 r s + 1 2 .
(5.26)

This leaves us with average distances in the interval [(

p 2 1)r s + 1 2 , 1 2 r s + 1 2
] which has a size smaller than 10% of r s . Algorithm 3 describes the process of generating a permutation vector p using a series of the truncated uniform swaps described in (5.22).

The parameters used in Algorithm 3 are:

• d, the number of variables, which does not need to be set since it is defined by the problem

• n s , the number of swaps. We choose values proportional to d to make the last parameter the only free one, swap p i and p j 10: end for 11: return p

• r s , the swap range and eventually the only free parameter. The swap range can be equivalently defined in the form r s = br r dc, with r r 2 [0, 1] (r s = 0 is interpreted as no swaps). Given r s , the average distance traveled by a variable in a single swap is delimited by (5.25) and (5.26).

In Algorithm 3, we use the random permutation ⇡ to take the indexes of the variables in a random order and avoid any bias with regards to which variables are selected as first swap variables when less than d swaps are carried. We start with p initially the identity permutation, then we apply the swaps defined in (5.22) taking p ⇡(1) , p ⇡(2) , . . . , p ⇡(ns) , successively, as first swap variable (that replace i in (5.22)). This way, as long as n s d, each variable is guaranteed to be swapped at least once. Values of n s larger than d can be dealt with by cycling with a new random order of the variables ⇡. The resulting vector p is returned as the desired permutation.

A di↵erent implementation was considered where Line 9 in Algorithm 3 swaps, instead, p 1 i with p 1 j , where p 1 is the, dynamically updated, inverse permutation of p. However, this variant has shown, empirically, no significant di↵erences to the version implemented in Algorithm 3, so we only consider the latter.

Transformation-Parameter Impact

Now that we have decided upon the transformation matrix that we want to apply to the raw functions, namely a permuted orthogonal block-diagonal matrix (5.18), and identified its free parameters, (s i) 1in b , n s and r s , we are interested in how these parameters, in addition to the imposed problem dimension d, a↵ect the transformation matrix and more generally, the transformed problem.

Impact of the Number of Swaps on the Proportion of Moved Variables

Looking into Algorithm 3, we see a possibility for the final permutation to contain variables that remain in their positions (p i = i) or end up further than r s away from their original position (|p i i| > r s). This is due to the fact that variables can be involved in swaps more than once (or, more precisely, more than dn s /de times) by being second swap variables. Ideally, we want to guarantee than most of the variables move from their original positions.

In the left plot of Figure 5.1, we look into the proportion of variables that are a↵ected by the swap strategy and end up in positions di↵erent from their initial ones.

We see that as the problem dimension d increases, the ratio of moved variables (p i 6 = i) approaches what seem to be stationary values at 100% and 70% for respectively n s = d and n s = d/2 swaps. These stationary values are independent of the relative swap range r r (we remind that r s = br r dc), except for relatively small dimensions. This is particularly the case when n s = d. This probability is also a↵ected by the actual value of the swap range r s : the larger the swap range, the smaller the probability of a variable being swapped back to its original position. This is due to the fact that the probability of swapping a variable back to its original position increases as the swap range decreases since the support of the truncated uniform distribution is smaller. Thus, for large enough dimensions (which are the values we are most interested in in our context), only few variables are left unmoved. We decide to fix the number of swaps to n s = d, leaving only r s as a free parameter when generating the permutation matrices P left and P right .

Impact of the Parameters on the Structure of the Transformation Matrix

In this part, we are interested in the e↵ect of (s i) 1in b , r s and d on the shape of the sparse orthogonal matrix defined in (5.18). To this end, we define a measure: sum of distances to the diagonal of the non-zero elements and investigate its evolution with the aforementioned parameters. This measure, (d ToD) is defined as follows: (5.27) where r (i,j) is element (i, j) of R and r (i,j) 6 =0 is the indicator function on the condition r (i,j) 6 = 0.

d ToD (R) = d X i=1 d X j=1 r (i,j) 6 =0 |i j| ,
Our reasoning is that this measure allows us to estimate how di↵erent from a diagonal matrix the transformed matrix is, which gives us an idea of the non-separability of the resulting problem (since a diagonal transformation matrix introduces no non-separability).

In (5.30) where ↵ = (↵ 0 , . . . , ↵ 8) are the free parameters of the fit to be optimized. A simpler model with ↵ 8 = 0 was considered but resulted in no good fit. We, then, use CMA-ES to find an optimal fit on ↵ of the empirical data by minimizing

(↵, d, s, r r) = ↵ 0 (d + ↵ 1) ↵ 2 ⇥ (s + ↵ 3) ↵ 4 ⇥ (r r + ↵ 5) ↵ 6 ⇥ (s r r d + ↵ 7) ↵ 8 ,
↵ opt = arg min ↵ #data X i=1 ⇣ log ⇣ dToD (↵, d i , s i , r i r) ⌘ log d ToD (R i) ⌘ 2 , (5
0 = 0.1, ↵ 7 = 4, ↵ 8 = 1.3: d ToD (P left B) ⇡ 0.1 ⇥ d 2 ⇥ s ⇥ r r ⇥ ✓ s r r d + 4 ◆ 1.3 . (5.35)
We see a quadratic dependency on the problem dimension d and a linear one on the block-size s. In addition, the last term tends to be constant when s = O(d) which means the scaling of d

ToD is d ⇥ s 2 . This is the same scaling as that of the non-permuted matrix (P left = I d and/or r s = 0) (5.29), and thus also becomes a scaling in d 3 for a single-block matrix (s = d) (5.28). The e↵ect of the permutation can be estimated by the di↵erence between the value in (5.35) and the value using the expression for the non permuted block-matrix (5.29).

Measure of Di culty

In order to better quantify the e↵ect of the transformation matrix defined in (5.18), we estimate the di culty associated with a problem by the Expected Running Time (ERT) of sep-CMA-ES on this problem, that is the expected number of function evaluations needed (by the restarted algorithm) to reach a target value for the first time [Hansen et al., 2010a]. The reason for this choice is that because of its restricted, diagonal, covariance matrix model, sep-CMA-ES only manages to solve problems with either no dependencies between the parameters or limited ones. It performs well when solving separable and block-separable functions as long as the condition numbers of the blocks are relatively small. Also, it is invariant to the coordinate permutation P right which allows us to restrict our study to P left and B. Thus, by comparing a performance to that on the original, non transformed and separable problem, we get an idea of how non-separable the problem becomes; helping us decide on the parameter choice. Ultimately, we aim for parameter values that make the problem unsolvable by sep-CMA-ES in reasonable time, since otherwise, the properties of the problems can be exploited.

Impact of the Block Condition Number

In this section, we are interested in the e↵ect of the block-diagonal matrix B on the di culty of a problem as defined in Section 5.3.3. This di culty is tightly related to the condition numbers in the Hessian matrix of the transformed problem, within the blocks defined by B. That is, the maximal ratio between the eigenvalues in the blocks that are delimited by B.

To do so, we define a specific, ellipsoid-like, convex-quadratic function that suits exactly the block structure of our matrix B: (5.36) where D 2 R d⇥d is a diagonal matrix and B an orthogonal block-diagonal matrix with blocks of the same size s. In order to have control over both the overall condition number that we note c o and the block condition number c b of the Hessian matrix of (5.36), we define the diagonal entries of D: 5.37) where % designates the modulo operator, that is the rest of euclidean division, and c ib a constant that ensures the overall condition number is kept under control by setting

f B,D (x) = x T B T DBx ,
D i,i = c (i%s s 1) b ⇥ c bi/sc ib , (
c o = c b ⇥ c (n b 1) ib , (5.38)
where n b is the number of blocks in B. In D, the eigenvalues are distributed uniformly in the logarithmic scale in what corresponds to the blocks of B. Since B is orthogonal, D preserves its eigenvalues and thus condition numbers (block and overall).

In the right plot of Figure 5.1, we show the ERT of sep-CMA-ES while varying the block size s and the block condition number c b of the function defined in (5.36). The overall condition number c o remains, however, constant to allow comparison between problems of seemingly similar di culty (we expect the standard CMA-ES to perform similarly on these problems). The graph for s = 1 serves as a baseline comparison to the case where no transformation matrix is applied (entries of the then diagonal B are 1 and 1). Note that in such a case (s = 1), the value of the parameter c b is irrelevant since each blocks contains a single element and thus has an internal condition number of 1 (the element in question is di↵erent from 0).

We see a linear scaling between the ERT and the block condition number (compare with the dashed gray line). In addition, when keeping the same overall condition number c o , we see a reverse in the e↵ect of the block-size on the di culty of the problems depending on the block condition-number c b . For smaller values (c b < 10 2), smaller block-sizes result in easier problems (although the di↵erence in ERT is relatively small) while larger values (c b 10 2) show a negative correlation of the ERT with the block-size. For c b > 10 4 , the algorithm does not manage to solve the problem regardless of the block size (s = 1 excluded). We also see little di↵erence in the di culty of the problem on di↵erent low values of c b ( 10 2), except when s 2 {2, 4}. The block condition number has a direct e↵ect on the di culty of the problem as we define it. In fact, even without the permutations, a high enough block condition-number results in a di cult problem for sep-CMA-ES. This, despite the fact that sep-CMA-ES manages to solve the non-transformed version of the problem with the same overall condition number c o (horizontal dark blue for s = 1) and the fact that the transformation matrix is orthogonal.

Parameter Choice for the Benchmarks

In this section, we set the remaining two parameters of our transformation P left BP right , namely the block-size s and swap range r s or its multiplier r r . Out of the properties we needed our transformation to satisfy that were defined in Section 5.2, only the orthogonality property (Property 3) is independent of the parameter setting of R = P left BP right . Thus, both the cost of applying R (Property 1) and the level of non-separability introduced (Property 2) should be taken into consideration when deciding on the parameter setting to adapt. We have seen in Section 5.4 that only introducing non-separability might not be enough for the problem to be non-trivial and hard to solve for algorithms such as sep-CMA-ES.

Initial Guess

The cost of applying R depends solely on B and (s i) 1in b since P left and P right have a predetermined cost of d (used as indexes) and thus would not increase any linear complexity. If we assume that all blocks have the same size s (when block-sizes are di↵erent, we can simply apply the same reasoning about complexity on the largest block), B would contain, in theory, s ⇥ d non-zero elements than need to be stored. The application of B also scales in s ⇥ d as we will see in detail in Section 5.6.3. Thus, for cost of s (memory and number of operations) linear in d, we need s to be in O(1) of d. This implies a value that does not scale with d, complexity-wise; the smaller the better. However, we still need the blocks to be large enough to impact the di culty of the problem, which results in contrasting objectives. The largest considered orthogonal matrix in BBOB-2009 is of size 40, so a parameter choice s = min(d, 40) seems reasonable, limiting the scaling of the cost beyond dimension 40.

Then we set the swap range r s . We are interested in the di culty of the resulting problem in order to satisfy Property 2. Clearly, the swap range should not be too small in comparison to the block-size, since otherwise, the block structure of B would not change significantly enough when applying P left and P right . Complexity-wise however, the permutations have a constant cost of d regardless of r s ; so r s can be set dependent of d. Let us consider an ellipsoid function with a fixed overall condition number. Since we consider bounded block-sizes, when the problem dimension tends to infinity, the block conditionnumbers (similarly to the ones defined in Section 5.4) tends to 1. Having a constant swap range will maintain this small block condition-number, since the eigenvalues associated with the swapped variables would tend, as d ! 1, to be similar and the distance between swapped variables is determined by r s which defines the largest distance in a single swap. On a function like the ellipsoid where the eigenvalues are ordered and uniformly distributed in the logarithmic scale, in order to obtain a constant expected ratio between the eigenvalues of the swapped variables that does not tend to 1 as d ! 1, we need r r = r s /d to be constant. Thus the expected relative distance between the swapped variables remains invariant with the dimension. A relative swap range r r of a third of the dimension seems reasonable. Smaller values would result in the problem keeping most of its block-structure; an exploitable feature. Larger values have the reverse e↵ect, risking to lose too much of the original block-structure and fall in a case similar to that of the non-truncated uniform swaps (all other variables are equally likely potential second swap variables) distribution where we lack control over the resulting matrix and di culty of the resulting problem.

Empirical Validation on sep-CMA-ES

In order to confirm the parameter choice suggested above, we investigate the evolution of the di culty of the problem, as we define it in Section 5.3.3, with di↵erent values of these parameters. In fact, we expect the transformed problems to remain non-solvable by separable algorithms such as sep-CMA-ES despite the restricted model of the transformation matrix (no longer a full rotation matrix as is the case in BBOB-2009).

First, we look into the performance of sep-CMA-ES on a transformed Ellipsoid function since we based our reasoning about the choice of r s on it. In this case, we consider the following problem The numbers that are shown on the plots, coded by color for the corresponding block-size, are for success rates when smaller than 1. normalizing term (d) is used to obtain, given a target precision, a similar di culty level across the dimensions. It also allows, in principle, to not increase the distance in the objective space between the initial solution and the target solution by increasing the dimension. We use the minimum in order to be backward compatible with BBOB-2009 where the largest dimension is 40.

In Figure 5.3, the ERT of sep-CMA-ES on (5.39) is plotted against di↵erent values of r s , s and d.

We see that both s and r s increase the ERT as their values increase. sep-CMA-ES manages to solve all non-permuted problems (r s = 0), even on the larger block-sizes. The overall condition number is 10 8 which means the block condition-numbers are relatively low for all block-sizes, c b ⇡ 10 6/n b ; and do not exceed 10 3 . For small swap-ranges, the ERTs do not seem to change, however, we notice a change in phase in the ERT between r s = bd/33c and r s = bd/10c where the ERTs start increasing. For r s = bd/3c, sep-CMA-ES solves only problems with up to s = 4 across the tested dimensions.

The permutation P left changes the ratios between the eigenvalues associated to each set of dependent variables, where the dependencies are defined by the block-diagonal matrix B. That is variables are dependent if they belong to the same block,/their indexes coincide with indexes in B that are contained in the same block. This change in ratios a↵ects the condition number within each block of dependent variables, an e↵ect similar to that witnessed when manually varying the block condition numbers of non-permuted block-diagonal matrices in Section 5.4. As seen in Section 5.4, this increases the di culty of the problem for sep-CMA-ES.

In Figure 5.4, we do the same experiments as in Figure 5.3 on transformed versions of the Cigar, Tablet (also known as the Discus function), Sum of Di↵erent Powers and Rosenbrock functions (see the raw functions in Table 5.1 with z = P left BP right x). On the Sum of Di↵erent Powers function, the results are quite similar to what was observed on the transformed Ellipsoid function while the generalized Cigar and Tablet functions seem to be di cult enough with the block-matrix transformation alone. The only successes we see on these last two functions (for s > 1) are for s = 2 with the smaller swap ranges.

On the other hand, the Rosenbrock function is not convex quadratic and is multimodal. It is also non-separable in its raw form, partially separable with a tri-band structure where each variable interact directly only with the two variables that are adjacent to it. We see failed runs of sep-CMA-ES even on the raw function (s = 1, r s = 0). However, we still observe an e↵ect of s and r s on the ERT to a lesser extent because of the noise provided by the failed runs. We also notice the changes in phase between the same two values of the swap range r s = bd/33c and r s = bd/10c, but only for relatively higher block-sizes. For r s = bd/3c, successes are observed only for block-sizes as high as s = 8.

On the generalized Tablet and Cigar functions, and for d = 128, 4 eigenvalues are di↵erent from the rest (larger and smaller respectively). In the raw function, these eigenvalues are adjacent in the first 4 positions (see Table 5.1). Thus, the largest block condition number is equal to the overall condition number, except for the case s 2 {1, 2, 4} and n s = 0 where it is equal to 1. This is why the only all-successful runs are observed on these configurations. Further confirmation of this observation on Cigar and Tablet functions with smaller overall condition numbers can be found in Figure 5.6 and Figure 5.5 respectively. This is also a good illustration of the e↵ect and importance of P left on the structure and di culty of the problems since we know that sep-CMA-ES is invariant to the e↵ect of P right . All unsuccessful runs in Figures 5.3,5.4, 5.6 and 5.5 terminate with the stop flag tolupsigma. This indicates (taken from the documentation of the CMA-ES algorithm (https: //pypi.python.org/pypi/cma): "creeping behavior with usually minor improvements". We interpret this as the model of sep-CMA-ES being unable to fit these problems. Thus, we consider that sep-CMA-ES fails to solve the problem in this scenario, which is the 5.1. The experimental setup is the same as in Figure 5.3 except on the transformed Rosenbrock functions where the ERT is computed from 19 runs (because of higher variance). desired result in our case.

Following these experiments, we see that a parameter setting r s = bd/3c and s = 16 is su cient to make the problems hard enough that sep-CMA-ES can not exploit the blockdiagonal structure. This parameter setting is also in accordance with the considerations taken in the beginning of this section so we can safely choose r s = bd/3c, s = min(d, 40) .

(5.40) 5.6 The Large Scale Benchmark

Changes to the Raw Functions

Before applying the new transformation matrix (5.18) in place of full orthogonal matrices, we make two modifications to the raw functions in BBOB-2009. Table 5.1 describes all rounding) constant ratio between short axes and long axes. The backward compatibility with BBOB-2009 is preserved by setting this ratio to 1/40 (non-integer values are rounded to the closest larger integer).

The Test-Suite Problem Definitions

For each function, we consider the same transformations that are used in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] except the full orthogonal matrices that we replace by R = P left BP right . Section 5.1.1 describes these transformations that are, except for the orthogonal transformations, the same than those found in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]. The full list of the 24 large scale problems of the benchmark is shown in Tables 5.3 and 5.4 where we can see the list of transformations applied for each problem. The definitions of the raw functions used in these problems are presented in Tables 5.1 and 5.2.

We keep the functions in their respective categories (as defined in [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]) since the introduced transformation satisfies Property 2 and Property 3.

Implementation Details and Cost of Applying the Transformation

We now present some of the implementation details (mostly technical) that allow to store and compute the transformation matrix R = P left BP right in an e cient way. In order to apply the transformation on a solution x and obtain its transformed counterpart z, we naturally need to compute for each i 2 {1, . . . , d}: (5.42) where [x] i designate the i th coordinate of x, P left and P right are permutation matrices and B is a block-diagonal matrix (orthogonality is not important here) with block-sizes (s i) 1in b . We store B (5.16) in a list of vectors B = (b1 , b2 , . . . , bd) that are the rows of the matrices B 1 , . . . , B n b that compose B (5.16). We denote bi,j the coordinate j of bi and b k the k th row of B.

z i = [Rx] i = [P left BP right x] i ,
Since P left and P right are permutation matrices, they can, completely, be described using permutation vectors such as the ones generated by Algorithm 3. Thus, we store P left and P right as two index vectors p left and p right respectively. They are index vector in the sens that they are used to index the coordinates to be permuted: z new i = z p i . We also keep two lists of d elements, s row and j first . These lists are defined for each k 2 {1, 2, . . . , d} as follows [Ait Elhara et al., 2016]:

• s row k is the size of the vector bk , which allows to only access as many entries per vector as there are, in theory, non-zero ones (no extra accessing or checking for entries that are, given the block-diagonal nature of B, set to 0)

• j first k is the number of leading zeros, excluding the eventual zeros in bk , of b k . It allows to know the original position of each element bk,j in b k and is needed in order to multiply bk,j by the corresponding coordinate of x as we will see in (5.45).

f Weierstrass raw (z) = 10 1 d d X i=1 11 X k=0 1 2 k cos(2⇡3 k (z i + 1/2)) f 0 ! 3 , with f 0 = P 11 k=0 1 2 k cos(⇡3 k) f Scha↵ersF7 raw (z) = 1 d 1 d 1 X i=1 ⇣ q s f 17 i + q s f 17 i sin 2 50(s f 17 i) 1/5 ⌘ ! 2 , with s f 17 i = p z 2 i + z 2 i+1 f GR raw (z) = 10 d 1 d 1 X i=1 ⇣ s f 19 i 4000 cos s f 19 i ⌘ + 10 , with s f 19 i = 100(z 2 i z i+1) 2 + (z i 1) 2 f Schwefel raw (z) = 1 d P d i=1 z i sin ⇣ p |z i | ⌘ + s f 20 , with s f 20 = 4.189828872724339 f Gallagher raw (z) = 10 n peaks max i=1 w i exp 1 2d (z y i) T (z y i) ! 2 , with n peaks > 2 , w i = 8 < : 1.1 + 8 ⇥ i 2 n peaks 2 if 2  i  k 10 otherwise
, y i are the local optima (to be set) and 5.4: Follow up to Table 5.3. On the Gallagher functions, ⇡ 1 2 N d and ⇡ 2 2 N n peaks 2 are two random uniform permutations of the vectors (1, . . . , d) T and (1, . . . , n peaks 2) respectively. The i th element of a permutation is designated by ⇡(i).

x opt = y 1 f Katsuura raw (z) = (d) ⇥ 10 d 2 d Y i=1 ⇣ 1 + i 32 X j=1 |2 j z i [2 j z i]| 2 j ⌘ 10/d 1.2 1 ! f LR raw (z) = (d) ⇥ ⇣ min d X i=1 (x i µ 0) 2 , s d X i=1 (x i µ 1) 2 + 10 d d X i=1 cos(2⇡z i) ⌘ with x = 2 sign(x opt) ⌦ x , x opt = µ 0 1 d (+) , ⌦ the element-wise multiplication, 1 d (+) 2 { 1, 1}
15 (x) = f Rastrigin raw (z) + f opt z = R⇤ 10 QT asy 0.2 (T osz (R (x x opt))) f 16 (x) = f Weierstrass raw (z) z = R⇤ 1/100 QT osz (R(x x opt)) + 10 d f pen (x) + f opt f 17 (x) = f Scha↵ersF7 raw (z) z = ⇤ 10 QT asy 0.5 (R(x x opt)) +10f pen (x) + f opt f 18 (x) = f Scha↵ersF7 raw (z) z = ⇤ 1000 QT asy 0.5 (R(x x opt)) +10f pen (x) + f opt f 19 (x) = f GriewankRosenbrock raw (z) + f opt z = max 1, p d 8 ! Rx + 1 2 1 d , z opt = 1 d f 20 (x) = f Schwefel raw (z) x = 2 ⇥ 1 d (+) ⌦ x , +100f pen (z/100) + f opt ẑ1 = x1 , ẑi+1 = xi+1 + 0.25(x i x opt i) z = 100(⇤ 10 (ẑ x opt) + x opt) , x opt = 4.2096874633/21 d (+) f 21 (x) = f Gallagher raw (z) + f pen (x) + f opt n peaks = 101 , z = C 1/2 i R(x y i) + y i , C i = ⇤↵ i /↵ 1/4 i , [⇤↵ i] j = [⇤ ↵ i] ⇡ 1 (j) , 1  j  d , ↵ 1 = 1000 2 , for i 2, ↵ i = 1000 2 ⇡ 2 (i) 2 n peaks 2 f 22 (x) = f Gallagher raw (z) + f pen (x) + f opt same as f 21 with n peaks = 21 , f 23 (x) = f Katsuura raw (z) + f pen (x) + f opt z = Q⇤ 100 R(x x opt) f 24 (x) = f Lunacekbi Rastrigin raw (z) z = Q⇤ 100 R(x µ 0 1 d) +10 4 f pen (x) + f opt Table
where start(i) = j first i and stop(i) = start(i) + s row i allow to loop through the elements of the row in question. The computational cost of the transformation is then at worse in O(d ⇥ max i (s i)).

CPU Timing

We now look into the actual cost of computing the introduced transformation in practice in terms of CPU time. Since we are in a large scale setting, we are particularly interested in its scaling with the problem dimension d. For this part, we use the C version of the COCO code (https://github.com/numbbo/coco). Figure 5.7 shows the scaling of the CPU time per function evaluation spent in the transformation defined in (5.42) on all coordinates and implemented as explained in Figure 5.7: Average (over 10 4 samples) time needed to apply the transformation matrix (5.18) to a solution in micro-seconds, µs, divided by dimension for di↵erent values of the dimension d and of the block-size s. The solid black line shows the average cost of computing the raw ellipsoid function (see Table 5.1) in each dimension.

Section 5.6.3. We want to estimate the additional cost coming from the application of the permuted orthogonal block-diagonal transformation for di↵erent values of the parameters defining this transformation. The cost of applying the permutations depends only on d, so the parameters we consider are d and s (we assume blocks of equal sizes). The initialization cost is not taken into account here (which also depends on n s) since the initialization is done only once per run.

We compute the averages of the time spent within the transformation R = P left BP right , that is the time between the start and the end of the code block responsible for the transformation. The transformations are sequentially applied in COCO (no overlapping) and the code is run sequentially (no parallelization) so the result is, in theory, independent of which other transformations are in play. We also show, for comparison, the average CPU time spent computing the raw Ellipsoid function (f Elli raw) on the same machine (solid black graph). These experiments were run on a MacBook Pro with a 2.3GHz quad-core Intel Core i7 processor and 8 GB of RAM.

As expected from (5.45), the needed CPU time scales linearly with d when the block size is kept constant and linearly with the block-size s for each given dimension. The linear scaling in s can be deducted from the similar distances, in a log-scale, between the graphs for di↵erent block-sizes since we considered block-sizes that increase by a constant factor 2. Given that we choose s to be constant for d 40 (see Section 5.5), the overall CPU usage of the transformation is linear in d, which satisfies the cost related Property 1.

A linear scaling can still be unusable in practice because of a large constant multiplier. In Figure 5.7, the transformation with the largest considered block-size s = 160 takes around 40 times longer than computing the raw function value. We see a factor of around a function; these targets are uniformly spaced on the log-scale between 10 8 and 10 2 . The plots are shown for each function separately and aggregated over the di↵erent instances of a same function. One can also generate plots aggregated over di↵erent functions of a same group (separable, low condition number...) or simply over all the functions to have a global overview of the performance. However, we avoid aggregating results on di↵erent dimensions and rely on plots such as the ones in Figure 5.8 to study the scaling of an algorithm with the problem dimension (the same figure can be plotted for di↵erent target values which is actually done when not comparing algorithms). First, in Figure 5.9, we compare the results on rotated and non-rotated version of the Ellipsoid and Rosenbrock functions. We see that LM-CMA-ES is the least a↵ected by the orthogonal transformation, managing to have similar performance on both functions. sep-CMA-ES, however, su↵ers greatly from the rotation (actually, the matrices are orthogonal not necessarily proper rotation matrices so rotation matrices here include both proper rotation with a determinant of 1 and improper rotations with a determinant of 1) of the search-space managing to e ciently solve the non-rotated versions and barely solving a small proportion of problems on f 9 and none on f 10 . VD-CMA-ES seems to take a longer time to adapt its covariance matrix on f 10 and su↵ers greatly from the dimension but manages to still solve f 9 except for d = 640. On other rotated functions shown in Figure 5.10, other than what was already said on Figure 5.8, that is LM-CMA-ES handles well the transformation matrix, VD-CMA-ES to a lower extent and su↵ering significantly from increasing d and sep-CMA-ES being unable to solve the rotated problems; we mainly notice that f 6 is surprisingly hard for LM-CMA-ES when VD-CMA-ES and especially sep-CMA-ES perform well on it.

As to be expected, sep-CMA-ES only manages to solve non-rotated problems except on the Attractive Sector where it solves the problem with a quasi linear scaling (see Figure 5.8). In addition, the rotated problems seem to be so hard, separability wise, that sep-CMA-ES reaches only a few of the targets. The good performance on f 6 is mainly due to the relatively low overall condition number of the function, and thus even lower block-condition numbers (see right plot of Figure 5.1).

Note that, because of the parameter setting chosen, the permuted block-separability only appears for d > 40 so the results on dimensions 20 and 40 are the same as the ones we would see in BBOB-2009. LM-CMA-ES retains its quite good performance on some of the functions by managing to learn enough short axes to reach the target values. However, it still su↵ers on functions such as the Attractive Sector and Sharp Ridge despite its good performance on the Bent Cigar function which requires a similar approach.

VD-CMA-ES seems to overall su↵er more from the increasing dimensionality. This is probably due to the constant number of vectors it adapts in its covariance matrix contrarily to LM-CMA-ES where this number of vectors is dependent on the problem dimension. We expect the recently introduced generalized version of VD-CMA-ES, VkD-CMA-ES [START_REF] Akimoto | Projection-based restricted covariance matrix adaptation for high dimension[END_REF], to perform better on this test-suite, especially with the even more recent proposed k (number of vectors) online adaptation scheme [Akimoto and Hansen, 2016a]. The rest of the plots on the remaining functions can be found on the Appendix of this Thesis.

Conclusion

This chapter allowed the extension of the COCO framework, and more particularly the BBOB-2009 testbed, to a larger scale in a practical and cost-wise reasonable way. The proposed benchmark acts as a natural expansion to the already present low to medium dimension test-beds and allows, given the parameter setting, backward compatibility.

Being computationally e cient is not enough for a test-suite to be relevant, the proposed problems need to be representative enough of the problems one is expected to encounter in real life, and more specifically, representative of the di culties and challenges these problems o↵er. We ensure this by using orthogonal transformation that, while being sparse, manage to preserve a number of properties a full rotation matrix o↵ers. In addition to conserving the eigenvalues when present, the proposed transformation allows to introduce non-separability in a similar way to full rotations. Also, the parameterization of the proposed transformation is such that the level of non-separability introduced can be controlled by two parameters: the block-size and the swap-range.

We deem the CPU e↵ort of applying this transformation reasonable given the blocksize choice. The space complexity of the transformation is similar, being only linear in the problem dimension but depending also on the block-sizes. In practice, these costs are reasonable in the sense that they do not introduce a bottleneck where an algorithm spends most of its time evaluating the function, especially when said algorithm is largescale based and thus has a reduced complexity in the problem dimension to accommodate large-scale settings. This would be the case have we used, instead, the original full orthogonal matrices to introduce non-separability and coordinate system independence.

We also generalized the Discus, Cigar and Sharp Ridge functions in a way that makes these functions more naturally interpretable and more importantly, more relevant in a large-scale setting. Having a constant, and in this case small, number of axes with a di↵erent length means that as the problem dimension increases, these function tend to resemble a sphere function as the relative contribution of the di↵erently sized axes diminishes. This e↵ect is witnessed more on the Cigar function since the di↵erently sized axes are long ones. The new formulation allows to have a constant ratio of these di↵erently sized axes. It can be seen as a generalization of the Two-Axes function in which half the axes are short and half the axes long (with the same lengths of the short axes and the same lengths of the long axes).

We normalize the raw functions (that are not already normalized) by the problem dimension in order to have a similar level of di culty across the dimensions; another property which becomes more relevant in a large-scale setting.

The orthogonal transformation in our case uses a core block-diagonal matrix that is permuted on both sizes in order to hide its block-diagonal structure. We have seen the e↵ectiveness of these permutations by testing on a number of functions sep-CMA-ES which solves, when the block-condition numbers are low enough, non-permuted versions but not permuted ones.

One property that the proposed transformation does not conserve completely, when compared to the original full matrix, is coordinate-system independence. This is both because the core block-diagonal matrix is not coordinate system independent, and because the introduced permutations are not uniformly chosen from the set of all possible permutations. A choice we make in order to allow control over the di culty of the resulting problem and the underlying variance in this di culty and that (this choice) does not allow complete unbiasedness with regards to the starting positions of the variables, given a reasonable parameter choice (having s = d puts us back in the full orthogonal matrix case, regardless of the permutations).

Overall, the proposed approach to large-scale benchmarking by extending on already established benchmarks produced the desired results. The resulting test-suite has the advantage of being quite similar to the original one, retaining most of its properties which makes interpreting the results easier. This means that it also reproduces these properties that we expect to see in real-world problems, while introducing the large-scale component. It also represents a good class of problems separability-wise, since most of the time, we do not expect all the variables of a large-scale problem to be directly dependent, but rather form groups that are not necessarily aligned with the order of the variables neither as presented to the algorithm nor inside the problem. The benchmarking of three large-scale evolution strategies did not result in any anomalies. None of the algorithms managed to perform well on all problems and many properties we observed in smaller dimension problems persist. There is, also, no problem with regards to the interaction with other transformations or the raw function definitions since the transformations are applied in an independent fashion. It would definitely be interesting to extend the large-scale benchmarks even more since larger dimensions allows for properties to appear that are generally not seen or, at best, ignored or neglected (because of their small e↵ect) in small to medium dimensions. One such property is the e↵ective and epsilon-e↵ective dimensionalities of a problem (see Chapter 4). After the design of a large-scale test suite which is closely similar to its lower-dimension counterpart, the next step would be to add, amongst others, test suites or at least classes of problems whose e↵ective and/or "-e↵ective dimensionalities are low.

Chapter 6 Final Conclusion

This thesis brings three main contributions to continuous black-box optimization in general and to the large-scale scenario in particular.

First, a new success-based step-size adaptation mechanism for evolution strategies, the Median Success Rule, is proposed in Chapter 3. This method showed comparative results to the widely used Cumulative Step-size Adaptation, notably on the COCO noiseless testbed. In addition, studying the impact of choosing a non-optimal comparison index (the main parameter of the strategy) showed that the method is robust, and still converges for a wide range of values on a number of typical functions.

Being a success-based method, MSR, and in comparison to CSA, relies on less restrictive properties of the distribution of solutions. It does not require the solutions to be normally distributed neither does it need access to the steps in the isotropic space. It does, however, rely on a correlation between the defined success probability and the desired change in the step-size (ideally, toward an optimal step-size).

One other important feature of MSR is its low computational cost. It scales linearly with the population size, a parameter that is set by the user unlike the dimension which is inherent to the problem. It is true that the population size is generally set depending on the problem dimension; but generally with values not exceeding a linear scaling in it. In addition, the user can always set it according to the complexity constraints at hand. This makes MSR ideal for large-scale algorithms where the scaling of the computational cost in the dimension of the problem is critical. Not only that, but MSR is also expected to remain e↵ective when the population size and the number of parents in recombinationbased strategies is high.

In Chapter 4, we formalize a method of constructing low e↵ective dimension problems from commonly used continuous benchmarking functions. We also extend the notion of low e↵ective dimension to become low epsilon-e↵ective dimension which allows for all the variables to contribute to a relatively low proportion of the fitness defined by a parameter ".

A sub-space CMA-ES variant, SS-CMA-ES, is proposed to tackle specifically these newly introduced problems. It relies on optimizing in an embedded sub-space of dimension lower than that of the problem. When comparing the performance of SS-CMA-ES to default CMA-ES and other, large-scale, algorithms, a number of observations were made. 153 First, an important result was that using CSA as a step-size adaptation method instead of MSR or the Two Point Adaptation, which are success-based rules, resulted in worse performance of the algorithm and slower convergence rates to the optimum. This is due to CSA comparing the steps realized by the algorithms with the random steps. However, these random steps are assumed to happen in the full dimension of the problem when the problem has a lower e↵ective dimension. This prevents the algorithm from taking advantage on the lower e↵ective dimension of the problem, and thus, in comparison to other methods that do, makes it slower. On the other hand, SS-CMA-ES, using MSR and TPA, and Limited Memory CMA-ES (LM-CMA-ES) performed remarkably well on several low e↵ective and low epsilon-e↵ective dimension test problems. While this was expected of SS-CMA-ES on low e↵ective dimension problems since the algorithm was designed for this class of problems specifically, it also managed to solve low epsilon-e↵ective dimension problems even though its search is carried out in a search space of lower dimension while the problem has full e↵ective dimension. In fact, with target values that require the fitness not to deteriorate (in comparison to that of the initial solution) on the non-e↵ective part, algorithms are encouraged to optimize the e↵ective space first, then fine tune in the later stages of optimization the deterioration of the non-e↵ective fitness that might have happened when optimizing the e↵ective part.

Chapter 5 focused on extending the COCO noiseless test-suite, to large scales. All the problems of the suite are defined for any dimension. However, in a large-scale setting, quadratic complexities that come from the use of full orthogonal matrices in order to introduce non-separability need to be reduced. This is done, while keeping the main e↵ects of the rotation matrices, by replacing full orthogonal matrices by permuted orthogonal block-diagonal matrices.

We tested three large-scale optimization algorithms on this newly introduced test-bed. These algorithms that rely on a restricted model of the covariance matrixare: sep-CMA-ES, LM-CMA-ES and VD-CMA-ES. In general, we observed that the new transformation introduces su ciently challenging-enough problems whose structure can not be exploited by these algorithms. The permutations, more specifically the permutation that is applied to the rows of the block diagonal matrix, allow to hide the block structure of the underlying matrix, and thus make it harder to exploit in comparison to other approaches in the literature that only rely on permuting the columns of the matrix. The e↵ect of this permutation is seen on the performance of sep-CMA-ES which manages to solve functions with non-permuted block-diagonal transformation matrices up to certain block condition-numbers but fails when the permutation of the rows is introduced. The other permutation (on the columns) that simply changes the order of the variables as they are presented to the algorithm has no e↵ect on the performance of sep-CMA-ES and most evolution strategies.

The performance assessment of the above mentioned algorithms shows a smooth transition between dimensions 20 and 40 that reproduce the problems of the original small to medium COCO test-bed and the higher dimensions that include the actual permuted block-diagonal transformation. This means that the proposed method is a natural extension of the test-bed that does not break its properties.

In addition to the contributions described above, this thesis paves the way to a number of future works in its area. The Median Success Rule can further be improved with better tuned damping parameters and learning rates. In the context of low e↵ective dimensions, a completely black-box adaptive SS-CMA-ES can be a competitive method for e ciently tackling low e↵ective and low epsilon-e↵ective dimension problems. It can even be considered for more general classes of problems when the intended point is not to find the optimal solution but just to produce a relatively high quality solution within a limited budget and tight complexity constraints. A basic approach of starting with small optimization sub-space dimensions and then increase after each failure was already suggested in this thesis. However, one can also consider more sophisticated approaches that allow the estimation of the e↵ective dimension of a problem online similarly to what is done in [Akimoto and Hansen, 2016a] for the number of vectors. The large-scale testbed can definitely be enriched with a number of extensions. Allowing di↵erently sized and/or overlapping blocks in the block-diagonal transformation-matrix proposed in this thesis is a first extension that should not be complicated to implement and test.

Further down the line, it would be interesting to have di↵erent test-suites for largescale optimization that include other classes of problems such as the low e↵ective dimension and low epsilon-e↵ective dimension problems introduced in this thesis. Even though it seems natural to make the large-scale test suite of Chapter 5 a low ("-)e↵ective dimension one given the results of Chapter 4, we opted, as the first large-scale extension of the bbob-2009 testbed, for a more natural generalization that does not deviate much from the original test suite. This, however, does not diminish the importance of including such a class of problems in the future variants and extensions of the large-scale test suite. This is becoming especially relevant in the recent years since large-scale optimization is increasingly used in machine-learning applications that deal with big-data problems. These problems have, generally, sparse, low e↵ective dimension and block-structured dependency functions to optimize (generally using gradient-based/inspired approaches).

Figure 3

 3 Figure 3.2: Left: Two examples showing how K succ t is computed. On the x-axes are shown the fitness of an o↵spring on a fictive objective function, f . The "•"s represent the o↵spring at iteration t + 1 while "⌥"s show the position, on the same axis, of the two o↵spring of ranks j and j + that are used to compute K succ t (3.24). The numbers under each data point show the empirical success probabilities Pr MSR t (i, j) (3.23) for each corresponding point. Right: Smallest value of the comparison percentile yielding a Median Success Probability larger that 1/2 on the linear function (3.39). The success probabilities, (3.44), are empirically estimated over 10 3 realizations. The dotted lines illustrate a lower bound on the default values of j (3.62) established in [Ait Elharaet al., 2013] for which we take d ! 1 for each weighting scheme while the solid lines are for j = 0.27 . Blue is for intermediate (equal) weights; Orange is for optimal weight (3.13) and Green is for the single parent case µ = 1, w i = i=1 .

 Figure 3.7: Median success probabilities for all j = 1, . . . , and normalized progress rates (3.61) versus step-size on the ridge function; see caption of Figure 3.5 for additional details.

Figure 3 . 8 :

 38 Figure3.8: Normalized progress rates at ˆ 1/2 (j) versus fitness comparison quantile ((j 1/2)/ or (j 1)/(1)), for di↵erent values of and d on the ridge function (3.60). The half median-success step-size ˆ 1/2 (j) is the same as in Figure3.6 replacing the sphere function by the ridge function.

Figure 3 .

 3 Figure3.10: Average number of function evaluations (y-axis) of the MSR-ES (no covariance matrix adaptation) algorithm to reach a target value of 10 8 on the sphere function for di↵erent values of the damping parameter d (x-axis, see Algorithm 1), dimension (noted n) and population size. The number of parents µ is set to b /2c and optimal weights are used (3.13). The initial step-size is 0 = 2 and the starting point e 1 with an optimum at 0 n . The data for values of d that do not produce 100% success are not plotted. The maximal number of function evaluations is 10 4 ⇥ n and each data point is the average of 3 + b200/nc runs.

Figure 3 .

 3 Figure3.11 compares the scaling of the two algorithms, CSA-CMA-ES in blue and MSR-CMA-ES in red, with the problem dimension on each of the 24 objective functions of COCO.The artificial best algorithm (brown lines in Figure3.11) is an aggregation of the best results observed on each function, for each dimension and on each target value in theBBOB-2009-2009 workshop [Hansen et al., 2010b]. It amounts to a portfolio algorithm (an algorithm which solves a problem by choosing one of the algorithms that compose it) that uses all the algorithms proposed in the aforementioned workshop, and on each (function,dimension,target value) triplets, chooses the best algorithm to solve it.Statistically significant di↵erences of performance are signaled by a black star in the marker of the better-performing algorithm; e.g., CSA-CMA-ES is significantly better than MSR-CMA-ES on the sphere function with dimension 2 (Figure3.11).We first see an overall similar performance of the two algorithms. On several functions (f4 , f 5 , f 7 , f 15 , f 18 , f 21 , f22), we see no significantly di↵erent performance from one of the algorithms on any dimension. On others (f 8 , f 12 , f 17), the significant di↵erences are only observed on the largest dimension, d = 40. However, a number of notable statistically significant di↵erences in performance are observed.On the Sphere (f 1) Discus (f 11) and Sharp Ridge (f 13) functions, CSA-CMA-ES has a better performance on smaller dimensions but MSR-CMA-ES seems to scale better, outperforming CSA-CMA-ES on the larger dimensions. MSR-CMA-ES shows what seems to be a sub-linear scaling in d on the sphere function. The di↵erence in performance is, however, relatively small despite it being significantly di↵erent.As expected, both algorithms perform in a similar fashion on the rotated (f 10) and axes-aligned non-rotated (f 2) ellipsoid functions thanks to the covariance matrix adaptation. Some statistically significant ERT values are observed but the factor is at most 1.5. A similar behavior is seen on the Rosenbrock functions (f 8 and f 9). However, the plots suggest that the covariance matrix adaptation does not have the same e↵ect on the non convex-quadratic Rastrigin functions (f 3 , f 15). The two methods perform similarly on the rotated version (f 15) while MSR-CMA-ES has a clearly better performance for d 10 on the non-rotated version f 3 . This function being highly multi-modal (around 10 d local optima[START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]), it requires a number of restarts to be solved by CMA-ES and its variants. MSR-CMA-ES seems to allow more restarts, with the increasing population size allowing the algorithm more chances of finding a solution within the target value. We also see a fairly similar performance of the two algorithms on functions f 12 and f 17 with CSA-CMA-ES doing better mainly on dimension 40, but with a speedup which is still small. On f 16 , f 19 and f 20 , CSA-CMA-ES performs significantly better, with a scaling of the ERT in the problem dimension clearly lower than that of MSR-CMA-ES. On the other hand, on the attractive sector (f 6), MSR-CMA-ES performs similarly to CSA-CMA-ES on dimensions up to 5, then scales much higher in the dimension as the latter becomes larger. In f 6 , the volume of the subspace with better fitness values decreases exponentially in the dimension; which a↵ects the performance of success-based strategies. The Sum of

Figure 3

 3 Figure 3.11: Expected running time divided by dimension versus dimension of CSA-CMA-ES and MSR-CMA-ES on the 24 functions of the COCO noiseless test-bed[START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]. Shown are the scaling figures obtained using the post-processing tools of COCO (https://github.com/numbbo/coco). The x-axes show the problem dimensions, while the y-axes show the corresponding Expected Running Time ERT of each algorithm. The brown solid lines show the performances of the artificial best algorithm. Thin " "'s and "5"'s indicate maximal numbers of function evaluations conducted by the respective algorithms while the thicker ones are for the actual ERTs. Horizontal dashed lines depict a linear scaling while slanted ones are for quadratic scaling.

 Ball d (x,) the closed ball of radius centered on x 2 R d (in dimension d). Definition 2 (Epsilon-E↵ective Dimension). A function f "L : R d ! R has epsilon-e↵ective dimension d e↵ when there exist: (i) a d e↵ -e↵ective dimensional function f Low : R d ! R, (ii) a function g : R d ! R and (iii) a constant " 0 such that for any x 2 R d :

 all apply. Let us consider that the algorithm needs a linear (respectively quadratic), in the search space dimension d ss , number of function evaluations in order to reach a given target value. Then, SS-CMA-ES would use in the order of O(d ⇥ d 2 ss) (respectively O(d ⇥ d 3 ss)) function evaluations to reach this target. In comparison, a CMA-ES operating on the original R d search space would need in the order of O(d 3) (respectively O(d 4)) operations, assuming the same scalings in numbers of function evaluations.

 Table 4.1: Estimated internal complexities of RSS-CMA-ES and OSS-CMA-ES in comparison to CMA-ES on low e↵ective-dimension problems. Shown are (from top to bottom): cost of initialization, cost per function evaluation, linear and quadratic scalings in numbers of function evaluations and expected overall cost when considering these two scalings.

Figure 4 . 1 :

 41 Figure 4.1: Left: Average CPU time per function evolution versus optimizationsubspace dimension d ss on the f "LRosen function (see Section 4.4.1). Three values of the problem dimension d are considered with d e↵ = 16. The CPUs are averaged over 100 ⇥ D function evaluations each. Right: Evolution of the best fitness on the current iteration for RSS-CMA-ES and OSS-CMA-ES on f "LSphere . The problems dimension is d = 100, the e↵ective dimension d e↵ = 9, the optimization subspace dimension d ss = 36 and two values of " are considered: " = 0 (solid lines) and " = 10 8 (dashed lines).

 .15) Numerical simulations shown in Figure 4.2 show consistent results with (4.15). In Figure 4.2, we show (A T A) with fixed d and varying d ss (left plot) and when both are varied while satisfying: d ss = 4b3 log 2 d 10c , (4.16)(right plot) which will be the default formula for the optimization-subspace dimension through this chapter (see Section 4.4.2.2). The results are only shown for A random since it is not di cult to show that for orthonormal A, the conditioning of A equals to 1 since in this case, A T A = I dss (the column vectors of orthonormal A have norm 1 and are mutually orthogonal).

Figure 4 . 2 :

 42 Figure 4.2: Conditioning of A T A with A 2 R d⇥dss a random matrix for di↵erent values of d and d ss . The solid green lines show the corresponding (with the same value of r = d ss /d) asymptotic value when both d and d ss tend to infinity (4.15). Left: d = 2048. Right: d ss = 4b3 log 2 d 10c.The results are obtained using 19 data points and show the median (red line), the upper and lower quartiles (box limits), the lowest and highest data points still within 1.5 ⇥ IQD (the Inter-Quartile Distance) of the lower quartiles and higher quartile respectively (whiskers) and eventual outliers outside of the whiskers (+). For the asymptotic case, when d = d ss , the conditioning tends to infinity as the smallest eigenvalue tends, almost surely, to 0 (see (4.14)), thus the absence of extension on the green line for the rightmost data point of the left plot.

 .18) with z = B T x and f (z) = z T z.

Figure 4 . 3 :

 43 Figure 4.3: Overall conditioning on f LowSphere , i.e., conditioning of A T BB T A given the algorithm embedding matrix A 2 R d,dss and e↵ective-dimension lowering matrix B 2 R d,d e↵ . See caption of Figure 4.2 for the description of the box plots. The gray boxes are for A random while the blue ones are for A orthonormal. The solid green lines show the asymptotic values as defined in (4.15). Left: d = 2048, d e↵ = b3 log 2 d 10c = 23 and d ss varying on the x-axis. Middle: d = 2048, d e↵ varying on the x-axis and d ss = 4b3 log 2 d 10c = 92. Right: d, d e↵ = b3 log 2 d 10c and d ss = 4d e↵ = 4b3 log 2 d 10c. The expressions for d ss and d e↵ will be the default ones used for A and B respectively.

Figure 4 .

 4 3 shows estimates of (A T BB T A) from 19 independent pairs of the two matrices A and B considering random and orthonormal A matrices. The matrices B are orthonormal. We see that both types of A matrices (and thus RSS-CMA-ES and OSS-CMA-ES) result in similar conditionings on the low e↵ective dimension sphere function. The left and middle plots show rather similar conditioning values between RSS-CMA-ES and OSS-CMA-ES for small values of d ss and d e↵ with a di↵erence appearing as these two values increase (larger conditioning values for RSS-CMA-ES). The final values settle, when d ss = d or d e↵ = d, at 1 for OSS-CMA-ES while staying at a larger value for RSS-CMA-ES.

 of the leftmost columns are to be su xed by CMA-ES (TPA-CMA-ES, VD-CSA-CMA-ES...etc.). The parameter values for SS-CMA-ES are the same as for default CMA-ES (first three rows) replacing d by d ss (the dimension of the algorithm's search-space).

Figure 4 . 4 :

 44 Figure 4.4: Success probability of SS-CSA-CMA-ES on f "LSphere versus di↵erent values of " and d ss . Left: d = 105, d e↵ = 10; Right: d = 1050, d e↵ = 20. The target values are chosen following (4.23) with f e↵ target = 10 8 . A total of 19 runs is used for each data point. The leftmost data points, labeled 10 inf , are for " = 0.

Figure 4 . 5 :

 45 Figure 4.5: Single runs of SS-CMA-ES on f "LSphere and f "LElli with d = 100 and " = 10 8 . ⇥: default stopping criteria of CMA-ES; + relaxed stopping criteria as described in Section 4.4.3. The gray dashed line corresponds to the target fitness value that would be obtained using (4.23).

Figure 4 . 6 :

 46 Figure 4.6: Single run of SS-CMA-ES on f "LSphere with " = 10 8 , d = 50, d e↵ = 5 and d ss = 15 showing the number of function evaluations in the x-axis. Top-Left: evolution of the fitness, the step-size and the largest axes ratio; Top-Right: coordinate values in the optimization subspace; Bottom-Left: scaling of the main axes of the covariance matrix; Bottom-Right: standard deviation in the optimization subspace coordinates normalized by the current step-size.

Figure 4 . 7 :

 47 Figure 4.7: Single Runs (two for each) on (from top to bottom) f "LSphere , f "LElli and f "LRosen . Left: " = 0; Right: " = 10 8 . Evolution of the intra-iteration best fitness on the y-axis for di↵erent evolution strategies. The dimension of the problems is d = 512, and the e↵ective/epislon-e↵ective dimension d e↵ = 17. For SS-CMA-ES, the optimization subspace dimension is d ss = 4 ⇥ d e↵ = 68. The horizontal dashed gray lines in the right plots show the target value as defined in (4.23).

Figure 4 . 8 :

 48 Figure 4.8: Single runs of: Left VD-CMA-ES; Right VD-TPA-CMA-ES on f "LElli with " = 10 8 , d = 100 and d e↵ = 9.

 Figure 4.9 shows the ERTs (normalized by d and d ss) versus d ss on low e↵ective dimension and low epsilon-e↵ective dimension functions given a fixed problem dimension d = 512 and e↵ective/epsilon-e↵ective dimension d e↵ = 17. First, we notice that the non-normalized ERTs grow with d ss for values of d ss larger than d

Figure 4 . 9 :

 49 Figure 4.9: Scaling of ERT/(d ss ⇥ d) with d ss for SS-CMA-ES with di↵erent step-size adaptation mechanisms. From top to bottom: f "LSphere , f "LElli and f "LRosen all with d = 512 and d e↵ = 17. Left: " = 0; Right: " = 10 8 . The budget is fixed to 10 4 ⇥ d, the target values were set following (4.23) and 19 runs are done for each data point. The numbers on the plots, coded by the algorithm colors, show the success rates when lower than 1. The slanted grid lines are for constant and quadratic scalings (with d ss) while linear scaling is represented by the horizontal grid lines.

Figure 4 .

 4 Figure 4.10: Expected Running Time (ERT) divided by problem dimension d versus d on low e↵ective and low epsilon-e↵ective dimension problems on quadratic f Low functions (when replacing in (4.5)). From left to right: " = 0, " = 10 8 and " = 10 7.5 . From top to bottom: f "LSphere , f "LElli , f "LCigar , f "LCigtab , f "LTablet and f "LTwoaxes . The budget is 10 4 ⇥ d and the target values are chosen following (4.23). A total of 19 runs are used to compute each ERT. The numerical values seen on the plots, coded by the algorithm colors, show the success rates when lower than 1. No runs where done for TPA-CMA-ES on dimension 2048.

Figure 4 .

 4 Figure 4.11: Follow up to Figure 4.10 on the non convex-quadratic f Low functions. Top: f LowRosen ; Bottom: f LowDi↵Pow . For details, see the caption of Figure 4.10.

 number of blocks and B i , 1  i  n b are square matrices of sizes s

Figure 5 . 1 :

 51 Figure 5.1: Left: Proportion of variables that are moved from their original position in p (p i 6 = i) when applying Algorithm 3 versus problem dimension d. Each graph corresponds to a di↵erent swap range r s indicated in the legend. Solid lines: n s = d; Dashed lines: n s = d/2. The case r s = 0 means no swap is performed (p = (1, . . . , d)). The averages of 51 repetitions per data point are shown. Standard deviations (not shown) are at most 10% of the mean. Right: ERT of sep-CMA-ES divided by dimension on the function defined in (5.36) versus block condition number c b for di↵erent values of the block size s shown in the legend. The overall condition number of the problem is set to c o = 10 8 , the problem dimension to d = 1024 and the target value for computing the ERT is 10 8 . Three runs are done per data point, each with a budget of 10 5 ⇥ d function evaluations. The numbers with the color codes represent the success rates of the corresponding configurations in s (same color) when these are lower than 1. The dashed gray lines show a linear scaling.

 Figure 5.2, we show a normalized d ToD of a simplified matrix R = P left B with blocks of equal sizes. This normalized distance is plotted against the values of d, for di↵erent values of s and r s . For a full square matrix of size d, we compute the corresponding d ToD by replacing in (5.27) and find: , we deduce the value of d ToD for a block-diagonal matrix B with blocks of equal sizes sc = d s ⇥ bd/sc accounts for a potential last block of size c < s.For a better normalization of d ToD , we consider the following model: dToD

 Figure 5.3: ERT of sep-CMA-ES divided by problem dimension d on the transformed ellipsoid function (5.39) versus the swap range r s for di↵erent values of the problem dimension d and the block-size s. A budget of 10 5 ⇥ d is used with 3 runs on each configuration. and a target value set to 10 8 . The setting r s = 0 means no swap is applied (P left = P right = I d).The numbers that are shown on the plots, coded by color for the corresponding block-size, are for success rates when smaller than 1.

Figure 5

 5 Figure 5.4: ERT of sep-CMA-ES divided by d on transformed functions in dimension 128. From left to right, top to bottom: Cigar, Tablet (or Discus), Rosenbrock and Sum of Di↵erent Powers functions. The problems are defined as f (x) = f raw (z), with z = P left BP right x and taking the corresponding f raw from Table5.1. The experimental setup is the same as in Figure5.3 except on the transformed Rosenbrock functions where the ERT is computed from 19 runs (because of higher variance).

Figure 5 . 5 :

 55 Figure 5.5: Similar to Figure 5.2 but only considering the Tablet (Discus) functions with di↵erent overall condition numbers and di↵erent dimensions.

 f

Figure 5 . 8 :

 58 Figure 5.8: Expected running time divided by dimension versus dimension of sep-CMA-ES, LM-CMA-ES and VD-CMA-ES on the 24 functions of the COCO large-scale test-bed introduced in this chapter. The first 5 instances of each problem are used with a budget of 10 4 ⇥ d (shown by the smaller markers). The rest is the same as Figure 3.11 with a di↵erent set of dimension values and without the artificial algorithm (no data yet).

 Figure 5.9: Evolution of the proportion of solved problems with number of function evaluations divided by the problem dimension.

 Figure 5.10: Follow up to Figure 5.9 on other functions.

 Figure A.2

 The step-size adaptation mechanism of MSR is described by equations (3.24) to (3.28), bar (3.26), and summed up in Algorithm 1.

						3.26)
	For intermediate values (0 < Pr depends mainly on {j }. In the upper-left plot of Figure 3.2, z MSR t (d +1 2 e, j) < 1), the sign of z t (same sign as K succ t t 0 if, and only if, 2) {j } 1/2. The signal, z t , is smoothed to take into consideration previous values by introducing
	a learning rate c :			
			s	t+1 = (1 c)s	t + c z	t ,	(3.27)
	where c 2]0, 1] and s Finally, s	0 = 0.		
					s d t+1) ,	(3.28)
	Algorithm 1 The Median Success Rule (MSR)
	j : the comparison index; default value: see equation (3.62)
	t : step-size at previous iteration,	
	d : damping parameter, d > 0; default value: d = 2 2/d
	c : learning rate of the signal, 0 < c < 1; default value: c = 0.3
	h: monotonous function; default choice: identity function,
	f : objective function,		
	(x i: t)	1i : o↵spring at previous iteration, ordered by fitness values,
	(x i: t+1)			

t+1 is used to update the value of the step-size:

t+1 = t exp(

where d is the damping parameter that dictates the maximal amount of change on the step-size in a single iteration (since s t is bounded). 1i : o↵spring at current iteration, ordered by fitness values, s t : last value of the step-size update coe cient.

1:

 a convex-quadratic function normalized by d e↵ . Let B 2 R d⇥d e↵ be a full column-rank matrix whose column vectors are orthonormal. The function

	f "L :R d ! R, x 7 ! f Low (x) + " ⇥ g(x) ,	(4.8)
	has epsilon-e↵ective dimension d largest eigenvalue of H.	e↵ if and only if	max (H) 4d e↵ d , where	max (H) is the

Table 4 .

 4 Table of the low e↵ective dimension functions that are used to compare the large-scale optimization algorithms. The solution z 2 R d e↵ in the e↵ective space is obtained via z = B T x, with x 2 R d and B 2 R d⇥d e↵ an orthonormal matrix. For the Rosenbrock function, using ẑ = 1 d e↵ z allows to have the optimum of f LowRosen at z = 0 d e↵ , thus coinciding with that of g (the optimum of g is 0 d and its image in the e↵ective space is 0 d e↵). Hz used to build f Low need to have eigenvalues that satisfy max (H) 4d e↵ /d in order for the corresponding f "L functions to have d e↵ epsilon-e↵ective dimension. Among the convex-quadratic functions in Table4.2 (the Rosenbrock and the Sum of Di↵erent Powers functions are not convex quadratic), the sphere function has, originally (meaning prior to the normalization by d In this chapter, we consider the problem dimensions d 2 2 i , i 2 {4 • • • 11} and set the corresponding e↵ective dimensions to: ⇥ d while it is linear for the original (without the e↵ective dimension reduction via B) functions. The highest order of complexity comes from the matrix-vector multiplication in z = B T x and is directly a↵ected by the e↵ective dimension d 3: Default parameter values common to all the considered evolution strategies. In the columns: is the population size, µ the number of parents, w i the weight associated to the i th best individual and µ e↵ the variance e↵ective selection mass.

	d	z, such that the

applied to the search space, by defining the function on ẑ = 1 e↵), the smallest largest eigenvalue max = 1. Hence the condition on max (Proposition 1) is satisfied whenever d e↵  d/4. e↵ e↵ , and how it scales with the problem dimension d. In our case, the choice of d e↵ in (4.20) leads to a complexity in O(d log d).

Table 4

 4

.4: Default parameter values, follow up to Table 4.3. In d s , ⇣(d, µ e↵) = max

 Algorithm 3 Truncated Uniform Permutations[Ait Elhara et al., 2016] Inputs: problem dimension d, number of swaps n s  d, swap range r s . Output: a vector p 2 N d , defining a permutation.

	1: p			(1, . . . , d)
	2: generate a uniformly random permutation ⇡
	s do ⇡(k), x 3: for 1  k  n 4: i ⇡(k) as first swap variable
	5:	l	b	max(1, i r	s)
	6:	u	b	min(d, i + r	s)
	7: 8:	S Sample j uniformly in S {l b , . . . , u b } r {i}
	9:				

 = d and equal block-sizes versus problem dimension d. Di↵erent block-sizes s and swapranges r s are considered and shown in the legend. Each plotted symbol is the average of 19 repetitions. The same data is shown in the two plots with di↵erent normalizations. Left: normalization by d ⇥ s; Right: normalization by d ⇥ s ⇥ r s .where R i is the i th sampled matrix and d i , s i , r i r are its corresponding parameter values. We use the logarithm in order to avoid biasing in favor of larger values of d (which result in larger d ToD). The first fit obtained by optimizing over all the variables ↵

	Figure 5.2: Normalized sum of distances d	ToD (B) (see (5.27)) of a full block-diagonal
	matrix after applying a truncated uniform permutation (Algorithm 3), P	left B, with n
							r	0.00) 1.01 ⇥ (r	s r d	+ 2.85) 1.25 .	(5.32)
	Then, we fix the values of some ↵'s: ↵	1 = 0 (since dimensions are expected to be signifi-
	cantly larger than 2), ↵	3 = 0 and ↵	5 = 0 and exclude them from the next optimization
	to end up with:					
	0.15 ⇥ d 2.04 ⇥ s 0.94 ⇥ r 1.03 r	⇥ (r	s r ⇥ d	+ 2.83) 1.24 .	(5.33)
	With the next round of rounding values and fixing them: ↵	2 = 2, ↵	4 = 1, ↵	6 = 1 resulting
	in:	0.11 ⇥ d 2 ⇥ s ⇥ r	r ⇥ (s r r d	+ 3.91) 1.27 .	(5.34)
	And finally: ↵					
							.31)

s 0 , . . . , ↵ 8 reads 0.15 ⇥ (d 2.25) 2.03 ⇥ (s + 0.07) 0.95 ⇥ (r

Table 5 .

 5 2: Follow up to Table5.1. The abbreviations GR for composite Griewank-Rosenbrock and LR for Lunacek bi-Rastrigin are used. The functions that are inherently normalized by d are not additionally multiplied by (d).

	and s = 1	2	d , entries chosen uniformly at random, 1 p d + 20 8.2 , µ 0 = 2.5, µ r µ 2 0 1 1 = s

[Richtárik and Takáč,

2016] and[START_REF] Richtárik | Distributed coordinate descent method for learning with big data[END_REF] were written and submitted around the same time period.

In F-Race, configurations are run in parallel with the worst configurations being gradually discarded. The iterated version does so on several iterations; the candidate configurations are sampled from distributions that are updated, upon each iterations, by taking into account the best configurations of the previous iteration.

This Lemma and its proof are taken from a draft-version of a paper co-authored with Anne Auger and Nikolaus Hansen

This Proposition and its proof are also taken from the draft-version of the paper co-authored with Anne Auger and Nikolaus Hansen

Actually, since the d e↵ e↵ective dimensions that are optimized are also involved in computing g, the target value should be lower. However, the resulting target being, at most, a factor of 2 lower, we choose to retain this simpler formulation.

These values are given for the sake of illustration, for the actual values concerning the functions used in this chapter, these condition numbers are also multiplied by d/d e↵ because of the normalizations by search-space dimension of f Low and g.

Acknowledgments

I would like to thank my advisors Anne AUGER and Nikolaus HANSEN for giving me this chance of doing a PhD thesis under their supervision. This thesis would simply not have been possible without their continuous support, supervision and high level advise. I also would like to thank Cyril FONLUPT and and Peter A.N. BOSMAN for reviewing my thesis in great detail and Marc BABOULIN and Tobias GLASMACHERS for accepting to be part of my jury and giving me invaluable feedback on my work. This thesis was prepared in the TAO team that I deeply thank for provinding me with an ideal working environement and surrounding me with amazing people. I am grateful to my family and to my friends who were and still are always there for me.

Finally, and most importantly, I thank my parents for their everlasting support and faith, thank you Yemma & Vava.

Shown are the lower optimal comparison indexes j "•", the upper optimal comparison indexes j + "•" and the estimated interpolated optimal comparison index j opt (3.17) "•". The same data as for Figure 3.3 is used.

The raw functions are defined as relatively simple functions of x, or linear transformations of x. The function T osz (5.6) is used to prevent such linearity and regularity in x by applying a non-linear oscillation:

T osz (x) = sign(x) exp(x + 0.049(sin(c 1 x) + sin(c 2 x))) , (5.6)

where:

x = (log(|x|) if x 6 = 0 0 o t h e r w i s e , (c 1 , c 2 , sign(x)) = 8 > < > :

(10, 7.9, 1) if x > 0 (5.5, 3.1, 0) if x = 0 (5.5, 3.1, 1) otherwise

(5.7)

On the other hand, T asy introduces a non-symmetry between the positive and negative values of its parameters:

(5.8)

In COCO, T asy is used both on solutions x 2 R d and on fitness values that are in R.

When used on a solution x 2 R d , it is applied on each coordinate of that solution, so T asy (x) = x new 2 R d , where x new i = T asy (x i), 81  i  d. The Rastrigin problem of COCO (f 15) is a good example of a problem where all the transformations defined in this section appear. The definition of the raw Rastrigin function, that we note f Rastrigin raw , can be found in Table 5.1. The transformed Rastrigin function that defines problem f 15 is: (5.9) where z = R⇤ 10 QT asy 0.2 (T osz (R (x x opt))) and R and Q two d ⇥ d orthogonal matrices.

The Large-Scale Extension

In this chapter, we want to design a computationally reasonable COCO large scale suite based on the BBOB-2009 test-bed [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]. Among the transformations presented in Section 5.1.1, only the application of an orthogonal matrix R or Q does not scale well in dimension. The rest scale linearly in d. Thus, iand n order to define the large scale test-bed, we need to replace the full orthogonal matrices with more e cient transformations.

We want the introduced transformation matrix to retain some of the properties of a full-orthogonal matrix without having the shortcoming of quadratic time and space complexities. Thus we define three main criteria that it needs to satisfy in order to be both a reasonable replacement and be applicable in a large-scale setting: (i) a cost criterion, (ii) a non-separability criterion and (iii) an orthogonality criterion. the raw functions used in the large-scale testbed. This testbed is derived from the BBOB-2009 functions [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] with two major changes. Note that these changes are set such that the problem definitions remain backward compatible with the problems in BBOB-2009. What we mean by backward compatible here is that the problems expressed in this chapter are the same as the ones defined in BBOB-2009 when d  40 .

The first change, and as previously described, is that we normalize the raw functions such that the di cultly associated to a same target values is similar across the dimensions. The backward compatibility is insured by making sure that (d) = 1 when d  40. In our case, we choose:

(d) = min(1, 40/d) .

(5.41)

Table 5.1: Definitions of the raw functions used in the large-scale test-bed. These raw functions are obtained from BBOB-2009 [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF] by assuming all transformations are identity transformations (orthogonal matrices are I d , f opt = 0,...). The problem dimension is d and we suppose all problems have, as input, a solution x opt that will become the optimal solution of the generated problem (needed in order to properly define s f 5 i and s f 6 i). In addition, a normalizing-by-dimension factor , (d), is applied and the Cigar, Discuss, and Sharp Ridge functions are generalized. All the functions of this table are multiplied by (d) = min(1, 40/d) such that a constant target value (e.g., 10 8) represents the same level of di culty across all dimensions d 40. That is no additional di culty because of the larger number of variables and the fact that the functions defined here are sums of d values. We use the variable z instead of x since these functions are meant to be applied to the transformed variables.

Thus, in total we need to store B, p right , p left , j first and s row which result in a memory cost in the order of 4d +

where avg(s 2 i) the average value of s 2 i . If we consider equal block-sizes s i = s, we obtain:

if z i > 0 and i odd 10 5.3: Transformed functions used in the large-scale test-bed as an extension to [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions[END_REF]. The functions T osz and T asy are defined in Section 5.1.1 (respectively (5.6) and (5.8)) and R is an orthogonal (rotation) matrix. The raw definitions of the functions can be found in Table 5.1. and the number of entries scales linearly in d only if avg(s i) = O(1) (as previously stated in Section 5.5.1).

Thanks to the associativity of the matrix product, we can make the vector p left permute the rows of B (and also B) but the vector p right permute the coordinates of x, instead of the columns of B, thus z i would satisfy:

(5.45) 10 for the chosen maximal block-size in (5.40), s = 40 which we deem reasonable.

Benchmarking Large-Scale Algorithms

In this section, we benchmark three stochastic large-scale continuous optimization algorithms sep-CMA-ES, LM-CMA-ES and VD-CMA-ES (see Section 2.2.1.3) on the newly introduced large scale coco test-bed (see Section 5.6).

Regarding the choice of problem dimensions, we choose to start by the largest mandatory dimension in BBOB-2009, which is d = 20 and then increase the dimension by doubling it. This allows backward compatibility with BBOB-2009 and makes the large-scale suite complement the standard dimension one. In Fact, the chosen parameter setting of s and (d) in the large scale test-bed makes it so that for d  40, the problems are the same than the ones in BBOB-2009; more so since the same methods are used to generate the orthogonal matrices in BBOB-2009 and the blocks of the block diagonal matrix in large scale (in dimensions 20 and 40, a single block is used and (d) = 1).

Figure 5.8 shows the scaling plots of the three algorithms in problem dimension. These plots show the Expected Running Time (ERT) to reach a target precision of 10 8 divided by dimension.

We note that functions f 1 to f 5 are separable functions that do not use the transformation matrix P left BP right . However, on dimensions larger than 40 the scaling factor (d) is applied and the Discus and Cigar functions no-longer have a single short, respectively long, axis.

On uni-modal separable functions (f 1 , f 2 and f 5), we see the regular behavior of the three algorithms as they scale linearly in the problem dimension (compare with the horizontal dashed gray lines) except for a slight less-than-linear scaling of LM-CMA-ES on the sphere function and a more pronounced one for VD-CMA-ES on f 5 . The remaining two functions are multi-modal with a number of local optima exponential in the problem dimension which makes the problem hard for the considered algorithms even without the rotations.

All but two (the original Rosenbrock function f 8 and the Schwefel function f 20) of the remaining problems (non-separable f 6 , . . . , f 24) use between one and two instances of the transformation matrix introduced in this chapter. We see that the algorithms manage to solve only a few of these problems. Mainly sep-CMA-ES and VD-CMA-ES (up to d = 160) on f 6 , all three algorithms on f 8 , VD-CMA-ES and LM-CMA-ES on f 9 and LM-CMA-ES on f 11 and f 12 . In addition, sep-CMA-ES manages to produce some successful runs on f 17 (not all runs thought since the ERT is larger than the budget). In Figure 5.9 and Figure 5.10, we look into another set of interesting plots generated using the COCO post-processing code. These figures, generally referred to as cumulative distribution figures, show the evolution of the proportion of problems solved by the algorithm on the y-axis versus the number of function evaluations divided by dimension shown in the x-axis [START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009[END_REF]. In this context, a problem is defined by a target precision on a function (more precisely, a given instance of a function). In COCO, a total of 50 target precisions (di↵erence to the optimal f -value) are chosen per instance of Abstract: Because of the generally high computational costs that come with large-scale problems, more so on real world problems, the use of benchmarks is a common practice in algorithm design, algorithm tuning or algorithm choice/evaluation. The question is then the forms in which these real-world problems come. Answering this question is generally hard due to the variety of these problems and the tediousness of describing each of them. Instead, one can investigate the commonly encountered difficulties when solving continuous optimization problems. Once the difficulties identified, one can construct relevant benchmark functions that reproduce these difficulties and allow assessing the ability of algorithms to solve them. In the case of large-scale benchmarking, it would be natural and convenient to build on the work that was already done on smaller dimensions, and be able to extend it to larger ones. When doing so, we must take into account the added constraints that come with a large-scale scenario. We need to be able to reproduce, as much as possible, the effects and properties of any part of the benchmark that needs to be replaced or adapted for largescales. This is done in order for the new benchmarks to remain relevant. It is common to classify the problems, and thus the benchmarks, according to the difficulties they present and properties they possess. It is true that in a black-box scenario, such information (difficulties, properties...) is supposed unknown to the algorithm. However, in a benchmarking setting, this classification becomes important and allows to better identify and understand the shortcomings of a method, and thus make it easier to improve it or alternatively to switch to a more efficient one (one needs to make sure the algorithms are exploiting this knowledge when solving the problems). Thus the importance of identifying the difficulties and properties of the problems of a benchmarking suite and, in our case, preserving them.

One other question that rises particularly when dealing with large-scale problems is the relevance of the decision variables. In a small dimension problem, it is common to have all variable contribute a fair amount to the fitness value of the solution or, at least, to be in a scenario where all variables need to be optimized in order to reach high quality solutions. This is however not always the case in large-scales; with the increasing number of variables, some of them become redundant or groups of variables can be replaced with smaller groups since it is then increasingly difficult to find a minimalistic representation of a problem. This minimalistic representation is sometimes not even desired, for example when it makes the resulting problem more complex and the trade-off with the increase in number of variables is not favorable, or larger numbers of variables and different representations of the same features within a same problem allow a better exploration. This encourages the design of both algorithms and benchmarks for this class of problems, especially if such algorithms can take advantage of the low effective dimensionality of the problems, or, in a complete black-box scenario, cost little to test for it (low effective dimension) and optimize assuming a small effective dimension. In this thesis, we address three questions that generally arise in stochastic continuous blackbox optimization and benchmarking in high dimensions: 1. How to design cheap and yet efficient stepsize adaptation mechanism for evolution strategies? 2. How to construct and generalize low effective dimension problems? 3. How to extend a low/medium dimension benchmark to large dimensions while remaining computationally reasonable, nontrivial and preserving the properties of the original problem?