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Characerisation des propriétés transcriptionelles des 

mutants hid1Δ et hid3Δ chez S. pombe 

 

RÉCAPITULATIF EN FRANÇAIS 

 

Schizosaccharomyces pombe devient de plus en plus un système modèle pour étudier la 

régulation de l'expression des gènes et des protéines dans les processus impliqués dans le 

développement de cancers et de maladies génétiques. Ces travaux peuvent servir à étudier les 

propriétés putatives de la protéine humaine HID1 à empêcher des tumeurs de se former. J'ai 

utilisé la technique RNAseq pour révéler les changements d'expression des gènes sur les cellules 

de S. pombe dont sont absentes trois gènes orthologues du gène humain HID1: hid1+, hid2+ et 

hid3+. Des mutants ont été créés par remplacement de gènes et testés pour découvrir leurs 

propriétés de croissance. La croissance du mutant hid2Δ semblait meilleure tandis que celle de 

hid3Δ semblait plus lente que les contrôles. La morphologie cellulaire de chaque mutant était 

normale. La microscopie à transmission électronique a révélé que l'appareil de Golgi était 

fortement modifié dans hid3Δ. RNAseq a montré que plus de 500 gènes étaient exprimés 

différentiellement dans hid3Δ. Les changements d'expression indiquaient des cellules sous 

tension. Par ailleurs, un jeu défini de facteurs de transcription et un groupe de gènes encodant des 

protéines situées et sécrétées ont été introduits, ce qui suggère que la perturbation de la fonction 

protéique au niveau de la membrane plasmique a un effet feedback sur la régulation de 

l'expression des gènes. J'émets l'hypothèse que la croissance lente de hid3Δ s'explique par un état 

cellulaire de quiescence partielle. Aussi, S. pombe ont été séquencées et révèlent l'expression de 

petits ARN non codants spécifiques, dont des introns complets et d'autres ARN non codants non 

annotés. 

 

MOTS CLÉS: Formation Dauer, Transcriptomique, Quiescence cellulaire 
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ENGLISH SUMMARY 

 

Schizosacchormyces pombe has become increasingly a model system to study the regulation of 

gene expression, stress signalling and metabolic and protein changes for processes implicated in 

the development of cancer and genetic diseases. This work was started to determine if S. pombe 

could be used to study the putative anti-tumour forming properties of the human HID1 protein. I 

employed the NGS technology RNAseq to reveal gene expression changes to the cells of S. 

pombe lacking three orthologues of the human HID1 gene, hid1
+
, hid2

+
 and hid3

+
. Mutants 

lacking these genes were created by gene replacement and tested for growth properties. The 

mutant hid2Δ appeared to grow better and hid3Δ grew more slowly than WT controls. The cell 

morphology of each mutant was normal and lengths and widths were unchanged. Transmission 

electron microscopy revealed that the Golgi apparatus was greatly modified in hid3Δ but not in 

other genotypes. RNAseq showed that under standard growth conditions more than 500 genes 

were differentially expressed in hid3Δ. Expression changes were indicative of cells under stress. 

Also, a defined set of transcription factors and a group of genes encoding proteins located in the 

plasma membrane and secreted were induced, suggesting that disruption of protein function at 

the plasma membrane feeds back to regulate gene expression. I hypothesize that slow growth of 

hid3Δ is due to a partial quiescent cell state. To start investigating mechanisms regulating gene 

expression, small RNA libraries of the size of S. pombe introns were sequenced and revealed the 

expression of specific small non-coding RNAs, including full introns and other un-annotated 

non-coding RNAs. 

 

KEY WORDS: Dauer formtion, transcriptomics; cellular quiescence 
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RÉCAPITULATIF DU PROJET EN FRANÇAIS 

INTRODUCTION 

Les biologistes moléculaires s'intéressent depuis longtemps à l'expression des gènes parce qu'ils dictent 

les protéines qu'une cellule produit et en dernier lieu la fonction d'une cellule. De plus, l'expression des 

gènes change dans les cellules à mesure qu'elles sont affectées par des tensions ou touchées par des 

maladies (Barry et al., 2005). Le transcriptome est une image globale qui se produit de l'expression 

génique et il est décrit comme le jeu complet de transcrits d'une cellule. Il s'est donc avéré et demeure très 

intéressant de déterminer le transcriptome afin de comprendre les éléments fonctionnels du génome, mais 

aussi comment ils évoluent en cas de maladie (Berretta et Moscato, 2010).  

 

La régulation de l'expression des gènes est importante pour les cellules eucaryotes, parce qu'elle sert à 

créer différents types de cellules (Chen et al., 2013) tout en menant à la différenciation des cellules 

(Thorrez et al., 2011). La régulation de l'expression des gènes se base sur le concept que les gènes 

peuvent être divisés en gènes exprimés de façon ubiquitaire et en gènes qui modifient l'expression selon 

l'ajout d'un signal (Ramsköld et al., 2009 ; Zhu et al., 2008). Depuis plus de dix ans, le profilage de 

l'expression génique sert à essayer de comprendre du point de vue génétique ce qui fait qu'une cellule 

cancéreuse se comporte différemment d'une cellule normale (Rapin et al., 2014). Il existe un grand 

nombre d'études de l'expression de gènes de différents types de cancers. Ces études ont démontré que 

l'expression des gènes peut servir à différencier entre les tissus normaux et cancéreux et à distinguer les 

sous-types de cancers, ce qui pourrait mener à des traitements spécialisés. L'expression des gènes sert 

également fréquemment à essayer d'identifier des marqueurs de tissus cancéreux. Par exemple, il existe 

des marqueurs génétiques pour plusieurs types de cancer, comme les marqueurs BRCA1 et BRCA2 pour 

le cancer du sein et CDH1 pour le cancer de l'estomac (Xu et al., 2010). Il est clair que le commencement 

d'un cancer et sa prolifération ont des effets graves sur l'expression des gènes. Pour bon nombre des 

changements observés dans l'expression génique, des schémas sont en commun avec d'autres maladies, 

comme celles d'inflammation chronique ou du métabolisme (Hirsch et al., 2010). Cela suggère qu'il existe 

des mécanismes fondamentaux par lesquels des cellules modifient leurs programmes transcriptionnels. 

Ces mécanismes de base sont liés à la réponse au mécanisme de signalement au moyen duquel les 

facteurs de transcription s'associent ou se dissocient des régions de transcription. Ces processus sont 

gouvernés par un jeu complexe de modifications protéiques qui se produisent dès le début du signalement 

jusqu'à la régulation de la transcription. Je vais me concentrer sur l'ubiquitination, un type de modification 

protéique, parce qu'elle est impliquée dans la fonction de HID1 chez les humains.  
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Objectifs des travaux et de la stratégie de cette présentation de thèse 

La première question survenant de la description de la fonction de HID-1 ci-dessus est de savoir si sa 

fonction comme protéine de l'appareil de Golgi la rend compatible comme protéine de suppression de 

tumeur. J'ai présenté des rapports indiquant que la fonction de l'appareil de Golgi est liée aux processus 

nucléaires en relation à l'expression génique, mais cette preuve semble aller dans le sens que le maintien 

des processus de l'appareil de Golgi est nécessaire pour que le cancer progresse. Ces travaux visent à 

obtenir la preuve moléculaire en utilisant pombe comme système modèle pour déterminer si la perte de 

HID1 pourrait promouvoir une oncogénèse, une prolifération ou l'empêcher. Cette thèse comporte trois 

chapitres principaux de données et un chapitre final présentant le contexte biologique et les orientations 

futures des travaux. Chaque partie est résumée brièvement ci-dessous. 

 

Chapitre 3: Production de mutants hidΔ de S. pombe 

Il a été démontré que le gène HsHID1 comporte une lacune ou que son expression est régulée 

négativement dans un certain nombre de types différents de cancer. De ce fait, il a été décrit comme un 

gène de suppression de tumeur de classe II appelé Down-regulated in Multiple Cancers-1 (DMC1, Harada 

et al., 2001). Afin d'établir le rôle biologique de HID1/DMC1, nous utilisons S. Pombe comme organisme 

modèle. Ce chapitre décrit la création d'un mutant dont le gène orthologue Ftp105 du HID1 est absent, 

appelé Hid3 par le groupe. Ceci s'explique par le fait que pombe a deux autres gènes orthologues de 

HID1 : SPAC27G11.12 et SPBP19A11.07c. Des souches de mutants ont été créées pour lesquelles un 

gène particulier avait été remplacé par un marqueur sélectif (figures 3.1, 3.2). La majorité des travaux 

comprenait la vérification des bonnes suppressions et la confirmation que l'expression des autres gènes 

orthologues n'étaient pas affectée dans les souches individuelles du mutant (figures 3.3-3.7). Des mutants 

simples où un gène hid+ a été remplacé ont été obtenus pour chacun des gènes (tableau 3.1). Plusieurs 

souches doubles de mutants ont aussi été créés, mais la création d'un mutant triple n'a pas été possible. 

L'analyse RT-PCR de l'expression génique a montré que l'expression des deux autres gènes hid
+
 n'était 

pas affectée dans les mutants simples. Chacun des mutants simples et certains des mutants doubles ont été 

testés pour connaître les caractéristiques de croissance et les modifications morphologiques des cellules. 

Tous les mutants hidΔ avaient une morphologie cellulaire normale (figure 3.8) et des dimensions de type 

sauvage (figure 3.9). Il est apparu que la croissance de la souche hid3Δ était plus lente que celle d'autres 

mutants et des contrôles (figure 3.10), mais celle de hid2Δ semblait plus rapide (figure 3.11). Des études 

ultrastructurelles par microscopie à transmission électronique de cellules mutantes ont révélé que seul 

hid3Δ a des restes de l'appareil de Golgi (figure 3.12). Il est donc probable que la croissance plus lente de 

hid3Δ soit due à la perturbation du tri des protéines en raison d'un appareil de Golgi mal formé. 
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Chapitre 4: Propriétés transcriptionnelles des mutants hid1Δ et hid3Δ de S. pombe 

Tout d'abord, le niveau relatif d'expression de chacun des gènes hid
+
 a été mesuré par RT-qPCR dans la 

souche de type sauvage. Les niveaux des transcrits de hid1
+
 et de hid3

+
 étaient 10 à 20 fois moins 

abondants que ceux du gène de contrôle act2
+
 et ceux pour hid2

+
 étaient presque 500 fois inférieurs à 

ceux de act2
+
 (figure 4.1). Une analyse par corrélation a permis de faire une investigation des gènes dont 

l'expression dépendait de la présence de chacune des protéines Hid. Pour chaque gène, deux groupes ont 

été identifiés à partir des données d'expression génique de Chen et al. (2013) : les gènes pour lesquels la 

corrélation était très positive et ceux pour lesquels elle était très négative à travers tous leurs traitements et 

échantillons (tableau 4.1). Des paires d'amorces ont été conçues pour des gènes choisis et l'expression a 

été mesurée par RT-qPCR dans le mutant approprié. Ce n'est que pour hid3Δ qu'il y avait une indication 

que l'expression des gènes correspondants était modifiée comme le montre une régulation négative 

générale des gènes à corrélation positive (figure 4.2). Un examen détaillé des évolutions de l'expression 

génique dans les mutants hid1Δ et hid3Δ a été réalisée par transcriptomique. Les travaux de 

transcriptomique ont été réalisés à l'aide de la technique RNAseq de séquençage de seconde génération 

sur des échantillons en parallèle issus de WT, des souches de contrôle exprimant le gène marqueur 

noursethricin-N-acetylase (Nat
R
), les souches hid1Δ et hid3Δ. Les souches de mutants ont été regroupées 

pour tenir compte de la variation biologique et elles ont donné en tout 12 échantillons recouvrant les 

quatre génotypes (figure 4.3). L'ARN total a été isolé des échantillons en laboratoire, puis envoyé à la 

structure de séquençage de GCFB où un analyseur d'ARN en a déterminé la qualité (figure 4.4). Un 

séquençage a été réalisé sur la fraction des poly A+ ribosomiques sans ARN et son résultat a été analysé 

par l'intermédiaire du flux de travail Tophat/Cufflinks (tableau 4.2, Trapnell et al., 2012). Les données de 

séquençage ont montré que le gène hid+ approprié manquait dans chacun des mutants et que le 

remplacement des gènes était un processus très précis (figure 4.5). Une comparaison globale des données 

d'expression génique par l'analyse en composantes principales a indiqué que les évolutions de l'expression 

génique étaient plus importantes dans hid3Δ (figure 4.6). Les données RNAseq ont confirmé la relation 

dans l'expression génique chez les trois gènes hid qui ont été déterminés auparavant par RT-qPCR , hid1
+
 

et hid3
+
 étant plus fortement exprimés que hid2

+
 (Figure 4.7). Les gènes dans hid1Δ avec des niveaux 

modifiés de transcrits étaient d'un nombre relativement faible comparé au contrôle négatif VCN, mais par 

contraste, plus de 500 gènes ont montré une évolution dans les niveaux de transcrits de hid3Δ qui est 

significative d'un point de vue statistique (Figure 4.8). L'évolution de l'expression génique a été 

déterminée par RT-qPCR pour un groupe de gènes de l'ensemble des données de hid3Δ (Table 4.3). Bien 

que l'amplitude de l'évolution d'expression ne soit pas la même dans les deux techniques, le sens de 

l'évolution dans les niveaux de transcrits était la même (Figure 4.9), ce qui est 
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 courant avec les deux techniques quantitatives différentes. Les données d'expression des gènes issus des 

mutants ont été analysées à l'aide de Gene Ontology afin d'assigner des fonctions biologiques aux jeux de 

gènes en évolution (figure 4.10). Dans hid1Δ, la seule évolution apparente était une régulation négative 

des processus métaboliques. Dans le cas de hid3Δ, les groupes de gènes induisaient et réprimaient des 

cellules suggérées sous tension chronique (Figure 4.9). L'inspection des gènes individuels qui avaient 

évolué (Table 4.5) a montré une induction d'un grand nombre nécessaire pour que les cellules puissent 

entrer et rester dans un état quiescent nutritionnellement dépendant au niveau de la croissance (Sajiki et 

al., 2009). D'une façon intéressante, les gènes les plus fortement induits étaient ceux encodant la 

membrane plasmique ou les protéines sécrétées que trierait l'appareil de Golgi. Ceci suggère qu'il y a un 

processus qui se produit au niveau de la membrane plasmique qui est perturbé dans les mutants hid3Δ, qui 

est probablement une dépravation nutritionnelle menant à une régulation génique positive en feedback. 

L'ensemble induit de facteurs de transcription peut être responsable de cette régulation positive générale 

de l'expression des gènes (tableau 4.4).  

 

Chapitre 5: Analyse des caractéristiques structurelles des introns et leur expression dans la levure à 

fission sur la base de la famille des gènes pcs3
+
. 

Ce chapitre est volontairement présenté dans la mauvaise séquence. Les travaux de ma thèse ont 

commencé par une étude de l'expression possible d'introns ou de séquences d'introns avec un rôle 

fonctionnel possible. La rétention inhabituelle de l'intron terminal du gène psc3+ de pombe est à l'origine 

de mes travaux. L'objectif principal de ce chapitre était de donner l'expérience bioinformatique qui me 

permettrait d'extraire, aligner et manipuler des séquences acides nucléiques pour former des hypothèses 

fonctionnelles en déterminant la structure. Ces travaux ont été combinés à des expériences pour 

déterminer s'il est possible que cet intron soit exprimé dans pombe par RT-PCR. Ce chapitre a été mis à la 

fin parce qu'il présente un mécanisme de régulation de l'expression génique par des ARN non codants. 

Ceci pourrait constituer une prochaine étape d'investigation de la régulation de l'expression des gènes 

dans les mutants. Suite à l'étude RT-PCR non concluante, il a été tenté d'examiner l'expression globale 

d'introns avec de petites RNA libraries de wild-type et de hid3Δ. Il existait des lectures de base pour 

presque tous les introns de psc3+ et son paralogue rec11
+
, mais des introns de certains gènes ont été 

exprimés. La principale conclusion était que les petits ARN étaient de bons outils pour identifier des 

snoRNA dont environ 36 non annotés ont été découverts. 
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Chapitre 6: Discussion générale et perspective 

Dans cette partie, je réalise une analyse critique de l'hypothèse de Harada et al. (2001) que le HID1 

humain peut fonctionner comme suppresseur de tumeur et que la mutation ou régulation négative de 

l'expression du gène pourrait mener à la prolifération de la tumeur. La découverte du besoin par la 

protéine HID-1 du nématode  C. elegans pour une croissance normale est un argument clair contre cette 

hypothèse.  Il s'agit d'une protéine de tri de neuropeptides et son absence engendre en fait une inhibition 

de croissance cellulaire. Toutefois, la régulation négative des niveaux de protéines est une façon possible 

d'engendrer la prolifération de cellules si HID1 fonctionne par la déubiquitinase USP7. Les preuves 

suggèrent que HID1 séquestre l'USP7 à l'écart du noyau en le maintenant au niveau de l'appareil de Golgi. 

Quand les niveaux de HID1 baissent, l'USP7 est relâchée et peut migrer vers le noyau pour arrêter 

l'activation des voies inhibitives de tumeurs. Je fournis un exemple de ceci par le facteur humain de 

transcription FOXO4, qui est nécessaire pour engendrer des vois apoptotiques (figure 6.1). La régulation 

négative de HID1 peut également empêcher les gènes de suppression de tumeur p53 et pTEN de 

fonctionner normalement. Mes travaux avec le gène orthologue pombe de HID1 (SpHid3/Ftp105) 

suggèrent que le manque de HID1 empêcherait la prolifération cellulaire au lieu de l'augmenter. Les 

mutants de S. pombe qui manquent de Hid3 ont une croissance plus lente, connaissent des tensions plus 

fortes et présentent des évolutions d'expression génique associées à un état quiescent partiel. L'induction 

de gènes encodant des transporteurs de la membrane plasmique suggère que les cellules qui manquent de 

Hid3 sont à court de nutriments. Avec la perturbation probable de l'appareil de Golgi, il n'est pas apparent 

comment des protéines nouvellement synthétisés par plus de transcrits atteindraient la membrane 

plasmique. Il existe un certain nombre de voies intéressantes dans lesquelles ces travaux pourraient 

progresser à l'avenir, en particulier pour comprendre la relation entre l'évolution des facteurs de 

transcription et pour déterminer si les cellules hid3Δ sont dans un état quiescent (figure 6.2). De plus, les 

fonctions des gènes orthologues hid1
+
 et hid2

+
 doivent encore être découvertes. 
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Chapter 1 

 

General Introduction 

 

1.1. Nucleic acids and general transcription 

All cellular organisms contain genetic information arranged in distinct macromolecular structures known 

as chromosomes. Chromosomes consist of two paired helical chains of nucleotides called Deoxyribose 

Nucleic Acid (DNA), where each nucleotide consists of a deoxyribose sugar, a phosphate group, and a 

nitrogenous base. The sugars and phosphate groups form the backbone of the DNA to link individual 

nucleotides in to the continuous strand and the two strands are held together by hydrogen bonds that form 

between the nitrogenous bases. In DNA there are four bases the two pyrimidines cytosine (C) and 

thymine (T) and the purines adenine (A), guanine (G). In DNA, A pairs with T and G pairs with C by two 

and three hydrogen bonds, respectively. Although DNA had been known well before the time of Watson 

and Crick, their publication in 1953 (Watson and Crick, 1953) describing the structure of double-stranded 

DNA as a helix provided the major insight into how DNA can be replicated (Alberts et al., 2002a).  

 

Scientists at that time were interested in the role of ribonucleic acid (RNA) in the cell. Soon after the 

publication by Watson and Crick, is was found that other types of nucleic acids can form structures and 

through base pairing within the molecule can build complex structures (Felsenfeld et al., 1957). RNA is 

different from DNA, in that RNA contains a ribose sugar instead of deoxyribose sugar (differentiated by a 

hydroxyl group instead of hydrogen at the 3
rd

 carbon), and uracil (U) instead of thymine. In general, RNA 

is usually single-stranded and is best known as the molecule that transmits the information within DNA 

for construction of the cell (Alberts et al., 2002b). There are number of classes of RNA that are produced 

from ribosomal RNAs to non-coding RNAs, but the vast majority of work has concentrated on the 

functions of messenger RNA (mRNA), which encode proteins that catalyse cellular reactions. In 

eukaryotes, the production of mRNA occurs primarily through the action of RNA polymerase making an 

RNA “copy” of a sequence of DNA known as transcription. Transcription of RNA starts and ends at 

particular sites in DNA to produce the pre-spliced RNA, which is then processed by capping, splicing to 

remove introns and then polyadenylation. The mRNAs are then exported from the nucleus into the cytosol 

where they are translated either by cytosolic ribosomes or sent to the rough endoplasmic reticulum for 

translation of secreted proteins. In 1961, Sydney Brenner (Brenner et al., 1961) called mRNAs the most  
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important part of the genome, specifically because they encode the proteins that makes cells function and 

cause them to be different. Scientists have long looked at the types of mRNAs present in the cell to see 

which proteins can be made. Certainly, it is not as simple now with continual revelations as to how RNAs 

can regulate cellular processes and protein quantity can be affected by post-transcriptional processes. The 

key point remains in that if an mRNA is not present in the cell, then the protein cannot be made. 

 

1.2 Gene expression and its regulation 

1.2.1 The transcriptional machinery 

Gene expression dictates the proteins that are made in a cell and ultimately the function of a cell. 

Furthermore, gene expression changes in cells as they are affected by stresses or are afflicted by diseases 

(Barry et al., 2005). The transcriptome is described by the complete set of transcripts in a cell. Therefore, 

it has been of great interest, and still is, to determine the transcriptome in order to be understand the 

functional elements of the genome as well as to understand how these change in the event of disease 

(Berretta and Moscato, 2010).  

 

In the nucleus of eukaryotic organisms, the transcription process starts from the transcription start site 

(TSS) in a gene. This site is preceded by promoter sequence which can attract an RNA polymerase (Pol). 

There are three types of RNA polymerases I, II and III and each type transcribes a specific class of RNA. 

RNA Pol I transcribes ribosomal RNAs (rRNAs), which are exported from the nucleus and form 

structural components of ribosomes. RNA Pol II transcribes genes responsible for producing the mRNA 

and non-coding RNAs. RNA Pol III transcribes genes encoding transfer RNA (tRNA), which carry amino 

acids to synthesising proteins, 5S rRNA and some small RNA (Ishiguro et al., 2002). Due to the fact that 

RNA Pol II is responsible for producing the variety of mRNAs that comprise the transcriptome of a cell, a 

lot of work has been placed in to determining its function and identifying those components that 

determine its specificity (Nikolov and Burley, 1997).  

 

The specificity of RNA polymerase relies on a group of proteins called transcription factors (TFs) to start 

the transcription and controls the types of genes expressed. A TF binds to a cis-regulatory sequence 

(element) on the DNA that, often in combination with other TFs, directs RNA Pol II to bind and 

transcribe the gene. There are other sequences that can fine tune the amount by which RNA Pol II 

complexes are recruited to transcribe the gene. These sequences are called enhancers or silencers that can 

be present within the promoter, transcribed region including introns, or they can be found thousands of 

nucleotides from the promoter. Because TFs provide the mechanism by which gene expression can be 

regulated, they have been the focus of intense study in all cellular organisms from bacterial 
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 (Seshasayee et al., 2011) to multicellular eukaryotes (Franco-Zorrilla et al., 2014; Vaquerizas et al., 

2009). Transcription factors have generally been considered to possess DNA binding properties, but it 

must be recognized that many other processes contribute ultimately to the expression of a set of genes 

including cell signalling, RNA modification, RNA splicing, and chromatin structure. Simply the fact that 

enhancers and silencers can act from thousands of bases away indicates that chromosome higher order 

structure is an essential part of gene expression. 

 

1.2.2 Chromatin structure 

The regions of chromosomes with transcription activity are associated in general with a particular type of 

open DNA structure call euchromatin as opposed to the tightly packed DNA structure call 

heterochromatin. The open structure of euchromatin is important to permit the binding of multisubunit TF 

complexes and ultimately RNA Polymerase to the promoters of genes destined for transcription. In 

addition, an open structure to facilitate communication among distantly positioned transcriptional 

enhancer or repressors sites. Chromatin is in a highly dynamic structural state where sections of a 

chromosome are opened and closed for gene expression to be induced or repressed. Modifications of 

chromatin structure, for example, through histone modification by acetylation, methylation, 

phosphorylation and ubiquitination, etc., are universal mechanism for eukaryotes to alter levels of gene 

transcription (Bannister and Kouzarides, 2011; Berger, 2002). Large changes to chromatin structure can 

come through chromatin remodeling complexes, such as the ATP-dependent and histone-modifying 

complexes (Narlikar et al., 2002). It is clear that chromatin structure and its modifications contribute to 

the initiation of cell differentiation and its maintenance in multicellular organisms. Furthermore, it plays 

an important role in how cells continue to function across cell division, for example, in maintaining gene 

transcription patterns, which has implication in proliferative cellular diseases, such as cancer (Jones and 

Laird, 1999).  

 

1.3. The basic biology of cancer 

Cancer is the most common cause of deaths all over the world. In 2012, there were about 14.1 million 

new cases and this accounted for about 8.2 million deaths (Ferlay et al., 2014). By the year 2025, it is 

expected that there will be around 20 million new cancer cases each year. The most common cancers 

were in the order of lung, breast, and colorectal cancer with the majority of death coming from lung, liver 

and stomach cancers. The major reason for the large number of deaths is environmental with the use of 

tobacco and alcohol, poor diet, and lack of physical activity. It has been estimated that more than 30 

percent of deaths caused by cancer can be prevented, but lack of awareness and lifestyle factors contribute 

to the rapid death rate because of the said disease. Cancer is an abnormal cellular state. Our body is 
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 composed of billions of cells each with a specialized function, such as to form skin and its protective 

layer collogen, filter impurities from the blood by renal cells or transport oxygen throughout the body by 

blood cells. Each cell has a life cycle with thousands of cell dying every day in a programmed way and 

which are replaced by new cells. New cells come about by cellular division. Cancer is a genetic disease 

because the changes occur in particular genes, however, in most of the cases, cancer is not because of 

inheritance, like a genetic disease. Mutations occur in the genes and can build up in somatic cells 

throughout the lifespan of the affected person. Once enough mutations occur in the genes responsible for 

controling cell growth and division, repairing DNA damage or initiate signalling, there starts an 

uncontrollable increase in cells. This results in the formation of malignant tumours. Further growth leads 

to invasion of healthy tissues called metastasis (Lobo et al., 2007).  

 

Tumour initiation generally starts with chemical or physical induced breaks in DNA, epigenetic silencing 

of tumour-suppressor genes, or activation of dominant oncogenes. (Weston and Harris, 2003). The 

inhibition of gene function by itself is not sufficient to start tumour formation in a somatic cell, but a 

genetic background of a number of mutations in key genes could allow tumours to form if a critical gene 

is then mutated. As mentioned above, the process of tumour formation requires subsequent rounds of cell 

division, most notably at a rate faster than normal somatic cells of the surrounding tissue or normal 

processes of initiating cell death are inhibited. Malignancy occurs when cell growth becomes uncontrolled 

and begins to exert affects on the surrounding tissues causing a malignant phenotype. Malignancy is also 

the state where cell acquire a state of independancy and can migrate to other tissues. Malignancy then 

turns into tumour progression with the secretion of proteases that allow release from the area of formation 

and to expand to nearby or even far away tissues.  

 

1.3.1 Genes involved in carcinogenesis: Oncogenes and tumour-suppressor genes 

An oncogene is a gene that is activated in cancer and has a dominant effect. These genes have regular 

functions within a normal cellular context, but become deregulated in cancer cells. Examples of oncogens 

are ErbB2 (the target of herceptin), PI3KCA, MYC and the cyclin D1 CCND1. Examples of well-known 

tumour suppressor genes are TP53, PTEN, BRCA1 and BRCA2 (Lee and Muller, 2010). The common 

nature of these genes is that they are part of normal cellular signal pathways that initiate responses to 

changes in cell or extracellular environmental states. When they become deregulated, entire down-stream 

pathways can become deregulated causing altered cell processes. The PI3K signaling pathway in breast 

cancer is a good example, because it responds to extracellular growth factors and can initate cell division 

or changes in cell metabolism. It works through other signalling pathways, such as the AKT serine kinase 

family of proteins, therefore activation of fundamental growth pathways has multiple consequences on 
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 cell processes. The suppressor of the PI3K signalling pathway is PTEN. Thus a common mechanism of 

breast cancer development is constitutive activation of PI3K signalling with a mutation inactivating 

PTEN. The ultimate tumour-suppressor is p53 where it responds to a number of cellular stress signals. 

p53 proteins is kept low in normal cells, but it is activated by cellular stress through post-translational 

modification (Brown et al., 2009). Interestingly, part of the post-translational modification is through 

deubiquitylation, which keeps in present in the nucleus where is can induce transcription (Li et al., 2002). 

Activation of p53 leads to induction of a number of anti-growth processes, such the induction of cell cycle 

checkpoint, apoptosis and autophagy. The activation of p53 can directly induce the expression of 

hundreds of different genes (Menendez et al., 2009). Therefore, it is clear that inactivation of p53 function 

will greatly disrupt a cell’s ability to control proliferation and tumour development. 

 

There are many types of tumour suppressors in cells in addition to the major ones discussed above. In 

general, any gene that exhibits no or reduced expression in cancer development, or is induced in response 

to apoptotic signals can be considered as being involved in the tumour suppression response. The protein 

HID1, which is the basis of my work, has been shown to have reduced expression in a large proportion of 

certain cancer types, such as liver and lung cancer (Harada et al., 2001). This work seeks to obtain 

molecular evidence using S. pombe mutants lacking the ortholog of HID1 that this protein may be able to 

act as tumour suppressor gene. 

 

1.4 Gene expression in cancer 

Regulation of gene expression is important for eukaryotic cells, because it is used to create different types 

of cells (Chen et al., 2013) as well as lead to cell differentiation (Thorrez et al., 2011). The regulation of 

gene expression is based on the concept that genes can be divided into ubiquitously expressed genes and 

genes that alter expression depending on a signal input (Ramsköld et al., 2009; Zhu et al., 2008). The 

major discrepancy between normal and cancer cells in terms of genes is in the up-regulation or down-

regulation of particular genes (oncogenes and proto-oncogenes) that leads to cancer development and 

metastasis. For more than a decade, gene expression profiling has been used to try to understand on a 

genetic basis what makes a cancer cell behave differently from a normal cell (Rapin et al., 2014). There 

are a many studies of gene expression from different types of cancer. These studies have demonstrated 

that gene expression can be used to differentiate between cancerous and normal tissues and that gene 

expression can be used to distinguish cancer subtypes, which may lead to specialized treatments. Gene 

expression has also been extensively used to try to identify markers of cancerous tissues. For example, 

there are genetic markers for several types of cancer, such as BRCA1 and BRCA2 for breast cancer and 

CDH1 for gastric cancer (Xu et al., 2010). It is clear that the onset and proliferation of cancer has severe 
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 effects on gene expression. Many of the observed changes in gene expression share common patterns 

with other diseases, such as chronic inflammatory and metabolic diseases (Hirsch et al., 2010). This 

suggests that there are fundamental mechanisms by which cells change their transcriptional programs. 

These basic mechanisms relate to the response to signalling mechanism whereby TFs associate to or 

disassociate from regions of transcription. These processes are governed by a complex set of protein 

modifications that occur from the initiation of signalling down to the regulation of transcription. I will be 

focusing on one type of protein modification, which is ubiquitination. This is because it has been 

implicated in the function of HID1 in humans. 

 

1.4.1 Regulation of transcription by Ubiquitin 

Ubiquitin (Ub) is a 76-amino acid protein and it found in all eukaryotic organisms (Zhang, 2003). A 

primary function of ubiquitin is as a tag to mark proteins for degradation by the 26S proteasome 

(Kornitzer and Ciechanover, 2000). Proteins can be modified by attachment of one ubiquitin on a single 

site (monoubiquitination), multiple sites (multiple monoubiquitination) or to substrate-linked ubiquitin to 

form a polyubiquitin chain (polyubiquitination) (Ikeda and Dikic, 2008). The modifications of the 

proteins by ubiquitin are controlled by a three‐step process, activation of ubiquitin by E1 ligases, 

conjugation of ubiquitin to E3 ligases by E2 ligases, and E3 ligase enzymes for modification of target 

proteins. In eukaryotic cells E3 ligases are present in large families to facilitate the modification of a wide 

variety of protein targets (Zhang, 2003). The action of ubiquitin ligases is balanced by the activity of 

deubiqutinating enzymes, which remove the ubiquitin chain or monomers. These enzymes also exist in 

large families (Komander, 2010). The balance of ubiquitination/deubiquitination plays a role in the 

regulation of numerous cellular functions, including protein degradation, DNA repair, gene transcription, 

chromatin dynamics and cell cycle progression (Hochstrasser, 2004; Schnell and Hicke, 2003). Their 

capacities to be used for a range of diverse modifications gives them in many respects functional 

properties similar to kinase/phosphatase pairs for their ability to modify proteins and regulate their 

function (Yao and Ndoja, 2012). The deubiqutinases of S. pombe have been the subject of an 

experimental survey into the functions of the various family members (Kouranti et al., 2010). What 

follows below is a discussion about the role of ubiquitination in the regulation of transcriptional 

processes. 

 

The organization of DNA in eukaryotic cells as chromatin requires it to be reorganised depending on the 

transcriptional state required, either active or inactive. Opening up chromatin allows for the transcription 

machinery to access to target DNA sequences to facilitate transcription (Ouni et al., 2011). The precise 

mechanisms by which chromatin reorganization is initiated is not well known, but it clear that  
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posttranslational modifications of histones, leading to the recruitment of chromatin-remodeling factors is 

necessary (Li et al., 2007; Smith and Shilatifard, 2010) and ubiquitination appears to be involved in 

modification of chromatin structure. The first ubiquitinated protein described was histone H2A (Muratani 

and Tansey, 2003). H2A is monoubiquitylated, which appears to have a repressive role in chromatin 

restructuration (Wang et al., 2004; Zhou et al., 2008). In contrast, H2B, which interacts with H2A, is also 

monoubiquitylated and it appears to help maintain chromatin in an open state (Naresh et al., 2003). It also 

appears to activate the methylation of histone H3 to stimulating RNA polymerase II (Ouni et al., 2011). 

There are reports that histone ubiquitination may be one of the first markers by which transcriptional 

complexes can recognize chromatin in a transcriptionally active state (Muratani and Tansey, 2003).  

 

The target for any transcriptional process is to control the activity and recruitment of RNA polymerase II. 

RNA Pol II is a target for regulation by ubiquitination and thus ubiquitination has a general role in 

transcriptional control (Muratani and Tansey, 2003). Ubiquitylation of RNA Pol II was first observed in 

response to UV-related DNA damage (Ratner et al., 1998). Transcriptional arrest or DNA damage 

induces ubiquitination and degradation of the largest subunit of RNA Pol II, Rpb1 (Svejstrup, 2007). The 

function of Rbp1 ubiquitination is really a last-result mechanism to resolve the situation of stalled RNA 

Pol II during transcription whereby it is tagged and degraded (Somesh et al., 2005). However, elongation 

pausing, Ub-tagging and degradation may also be independent of DNA damage (Daulny and Tansey, 

2009).  

 

1.4.2 Ubiquitination and Transcription Factor activity 

Evidence from the work of many laboratories has shown that the ubiquitin system functions in the 

regulation of transcription either by limiting TF abundance or by facilitating transcriptional activator 

interactions. For example, the ubiquitin-proteasome pathway is one of the ways that are used to control 

the amount of certain transcription factors in the cell. Another is the turnover of activators that is coupled 

to an increase the transcriptional activity. This occurs to beta-catenin in the Wnt signalling pathway. In 

the resting state, beta-catenin is phosphorylated and subsequently targeted for degradation by 

ubiquitination. Activation by binding of Wnt to its receptor inactivates glycogen synthase-3 thereby 

preventing degradation due to the lack of phosphorylation and subsequent ubiquitination. This allow beta-

catenin to activate transcription of its target genes. This system maintains a basal level of beta-catenin that 

can increase in response to Wnt signalling (Muratani and Tansey, 2003). It appears that p53 and the 

human HIF-1alpha (hypoxia induced factor 1-alpha) are also regulated in a similar manner. There are also 

a number of examples of a similar system in yeast, such as for the regulation of the transcription factors 

Gcn4 and Gal4 (Lipford et al., 2005; Muratani et al., 2005). When the F-box protein Dsg1 is deleted in  
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yeast, the mutant cannot use galactose as carbon source, because target genes cannot be transcribed. 

Evidence suggests that Dsg1p participates in the ubiquitination and degradation of the pool of Gal4 that is 

required to insure that transcription initiation complexes turn into completely active elongation complexes 

that produce mRNAs that can be properly processed (Muratani et al., 2005). These examples demonstrate 

that ubiquitination processes are directly, and intricately, involved in transcriptional regulation. 

 

1.5 Introduction to the Golgi apparatus 

The focus of the Golgi apparatus in this work relates to the known subcellular location of the HID1 

proteins of humans, worms and fungi. As a prelude to the study, it was necessary to determine if 

processes occurring in the Golgi apparatus could affect gene expression or vice versa. Certainly, if a 

genetic mutation alters Golgi function directly then this might have knock-on effects on gene expression. 

The purpose of the next few sections is to show that the Golgi apparatus contains signaling systems that 

directly feed-back to transcriptional regulation in the nucleus. I first give a brief introduction and then 

describe in more detail about two signaling systems present in the Golgi involving GOLPH3 and SREBP, 

respectively. These are only examples as there are other Golgi located signaling systems.  

 

The Golgi apparatus is part of the cell endomembrane system. In electron micrographs of cells, it looks 

like a set of flattened discs, but the size, shape and number of discs is dependent on the organism. The 

Golgi is divided in sections called the cis-, medial- and trans-cisternae and the trans-Golgi network. The 

primary role of the Golgi apparatus is the processing and trafficking of lipid molecules and glycosylated 

proteins (Scott and Chin, 2010). The cis-Golgi receives cargo from the endoplasmic reticulum via coated 

vesicles. The proteins are processes as they traverse the Golgi and are ultimately packaged into vesicle for 

sorting at the trans-face of the Golgi. The Golgi apparatus processes secretory cargoes and directs their 

delivery to various places both inside and outside of the cell. The Golgi apparatus also serves as a focal 

point for microtubule association and a store of calcium (Wilson et al., 2011). However, what is 

particularly intriguing and an essential foundation to this work are the potential signaling properties 

inherent to Golgi function. There is evidence to suggest that there are many signaling factors localated at 

the Golgi, which have function to sense and transmit stress signals (Hicks and Machamer, 2005). It 

appears that aberrant expression of vesicular trafficking components is involved in tumorigenesis 

(Mosesson et al., 2008; Polo et al., 2004). The expression of some of the Rab GTPases and their effectors, 

which work to regulate intracellular transport, are frequently deregulated in human cancers (Agarwal et 

al., 2009; Ho et al., 2012).  
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Figure 1.1. Diagram of the Golgi apparatus and ERES in P. pastoris and S. cerevisiae. In P. pastoris Golgi 

cisternae are organized into stacks and it has 2-5 discrete spot of ERES. However, in S. cerevisiae lost stacked Golgi 

and has numerous small spots of ERES (Papanikou and Glick, 2009). 

  

 

  



 

1.5.1 Golgi apparatus in yeast 

In eukaryotic cells, proteins destined for the plasma membrane or to be secreted to the extra-cellular space 

are synthesize within the endoplasmic reticulum (ER) and transported to the Golgi apparatus. These 

secretory cargos are modified and processed by Golgi enzymes in an ordered manner and then those 

proteins are sorted into carriers for transport to their ultimate destination at the trans-Golgi network 

(Papanikou and Glick, 2009; Suda and Nakano, 2012). Research suggests that, in general, unicellular 

fungi have stacked Golgi cisternae (Mowbrey and Dacks, 2009), however, some yeasts, such as S. 

cerevisiae have developed a dispersed, unstacked Golgi (Figure 1.4). Even in S. pombe the stacking is 

comparatively weak (Papanikou and Glick, 2009; Suda and Nakano, 2012). In addition, S. pombe appears 

to have multiple Golgi organelles with motile properties similar to higher eukaryotes, particularly plants. 

Proteins destined for transport are exported from ER in the COPII-coated vesicles that form in specialized 

domains called ER Exit Sites (ERES) or transitional-ER (tER). There is a view that the ERES are a site of 

Golgi generation mediated by COPII formation of the pre-Golgi complex (Suda and Nakano, 2012).  

There are studies using Pichia pastoris suggesting that Golgi structure depends on the organization of 

ERES  (Connerly et al., 2005). However; the ERES organization is different among yeast species. For 

example, the organization of ERES in S. cerevisiae looks like numerous small spots, whereas in P. 

pastoris ERES comprises only 2-5 discrete spots (Rossanese et al., 1999). The ERES in S. pombe has not 

seen by electron microscopy, but it has been seen by fluorescence microscopy and it seems more like that 

in S. cerevisiae than in P. pastoris (Papanikou and Glick, 2009). The Golgi apparatus in budding yeasts 

has some similarity to the Golgi in mammals and plants, such the system of Golgi cisternae that are 

fenestrated and have tubular extensions (Papanikou and Glick, 2009). The Golgi reassembly stacking 

proteins factors of mammalian Golgi that play an important role in the formation of Golgi stacks have 

been found as well in the fission and budding yeasts, but they do not appear to be conserved in plants, and 

which also have clear stacks of Golgi cisternae (Suda and Nakano, 2012). Although there are differences 

in the organization of the Golgi apparatus among the yeast species and between unicellular and 

multicellular eukaryotes, the mechanisms of protein trafficking are quite similar (Papanikou and Glick, 

2009; Suda and Nakano, 2012). Therefore, the yeast can serve as a good model for studying Golgi 

function in mammalian systems. 
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Figure 1.2. The scheme of the SREBP signalling pathway in mammals. SREBP is located in the ER. Upon 

stimulation, the protein is transported to the Golgi where ubiquitin-mediated cleavage occurs to release the TF so 

that it can bind to the SRE element in lipid/sterol biosynthesis genes. Image taken from Bien and Espenshade 

(2010).  

 

  



 

1.5.2 Signaling through the Sterol receptor element binding protein (SREBP) pathway 

The SREBP pathway is one of the best characterised systems by which processes occurring at the Golgi 

apparatus directly influence gene expression. In the eukaryotic organisms, the sterol lipids like cholesterol 

are important for maintenance of the membrane structure of the cell (Bien and Espenshade, 2010). For 

long periods of time, scientists had been trying to understand the mechanisms that kept an appropriate 

level of cholesterol in cells, because high cholesterol levels have been associated with metabolic diseases. 

High cholesterol levels can form solid crystals within cells being lethal and in the blood it is deposited in 

arteries leading to their blockage (Brown and Goldstein, 1997). 

 

The SREBP pathway plays important role in the regulating of lipid homeostasis by controlling the 

synthesis of fatty acids, triglycerides and cholesterol (Steinberg, 2002). Sterol biosynthesis is controlled 

primarily at the level of transcription through the classic mechanism of supply and demand (Espenshade 

and Hughes, 2007). When sterol supply is not sufficient the induction of genes leads to the production of 

proteins for the synthesis of cholesterol and when it is sufficient transcription is arrested. The up-

regulation of cholesterol biosynthesis genes is controlled by the SREBPs of which there are two genes 

SREBP1 and SREBP2 in humans. The two genes encode three SREBP isoforms which are SREBP-1a, 

SREBP-1c/ADD1 and SREBP-2 (Brown and Goldstein, 1997; Tontonoz et al., 1993). SREBP-1a can 

affect the expression of all SREPB-responsive genes, whereas SREBP-1c/ADD1 and SREBP-2 regulate 

genes involved in Fatty acid synthesis and cholesterol synthesis/homeostasis, respectively (Horton et al., 

2002). In the ER membrane of mammalian cells, SREBP binds to the Scap protein, which mediates 

sterol-dependent regulation of SREBP activity (Hua et al., 1996; Rawson et al., 1999). If the membrane 

has enough cholesterol, the Scap binds to cholesterol leading to a conformational change (Horton et al., 

2002; Radhakrishnan et al., 2004) which allows it to bind with SREBP to the ER-resident protein INSIG 

(Peng et al., 1997). The SREBP-Scap-INSIG complex remains on the ER membrane in an inactive mode 

(Espenshade, 2006; Rawson, 2003).  

 

If cellular cholesterol levels drop, the binding of SREBP-Scap-INSIG complex is disrupted and the 

SREBP-Scap is transported to the Golgi by COPII vesicle-mediated transport. In the Golgi, there are two 

proteases required to process SREBP. The proteases Site-1 and Site-2 cleave SREBP in a sequential 

manner to release the N-terminal portion of the transcription factor from the membrane, and the SREBP 

can be transported to the nucleus to activate gene expression of cholesterol biosynthetic genes (Figure 

1.1). Scap is then recycled from the Golgi back to the ER (Gong et al., 2015; Shao and Espenshade, 

2014).   
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Figure 1.3. The Sre1 signalling pathway of fission yeast. Like in mammalians systems Sre1-Scp1 are transported 

to the Golgi when ergosterol levels are low. The TF Sre1 is cleaved and then migrates to the nucleus where is can 

bind to SRE sites to induce fatty acid synthesis genes. The nuclear form is also responsive to oxidative stress. Image 

taken from Bien and Espenshade (2010)  

 

 

  



 

The first S. pombe orthologue of SREBP was identified in 2005 and it was called Sre1 (Hughes et al., 

2005). In S. pombe, not only does Sre1 regulate the proteins involved in sterol synthesis, it is also the 

major regulator of hypoxia related gene expression (Todd et al., 2006). Sre1 and Scp1 are present in the 

ER, and under low ergosterol or oxygen levels, Sre1 binds to Scp1 and is transported to the Golgi, where 

Sre1 is proteolytically cleaved to release the transcriptionally active Sre1N domain. Until recently, the 

proteolytic mechanisms for Sre1 cleavage remained unknown, because the S. pombe orthologues of Site-1 

and Site-2 proteases where not apparent. Through a study to identify mutants that could not produce the 

Sre1N fragment, Stewart et al. (2011) identified four members of the Dsc E3 ubiquitin ligase complex. 

The Dsc E3 ligase complex is also required for the cleavage of S. pombe Sre2 (Stewart et al., 2011). 

Therefore, the Sre signaling system is conserved between humans and S. pombe with the key difference 

being the proteolytic cleavage of the TF domain (Figure 1.2). The Dsc E3 ligases form a stable structure 

and appear to be involved in proper targeting of proteins through the vacuole as part of the ESCRT 

pathway in S. pombe (Stewart et al., 2011; Takegawa et al., 2003).  

 

As mentioned earlier, Sre1 is a key regulator of gene expression under hypoxic conditions. Under 

conditions of reoxygenation, its activity must be inhibited. This inhibition comes through the protein 

Ofd1, which is a prolyl 4-hydroxylase-like 2-OG–Fe(II) dioxygenase. The N-terminal domain of Ofd1 is 

an oxygen sensor and the C-terminus binds to Sre1 to target it for degradation (Hughes and Espenshade, 

2008). It is known that Sre1N is degraded by the proteasome, but it is not clear if ubiquitination of the 

protein is required. In contrast, Nro1 positively regulates Sre1N activity by inhibiting Ofd1. In the 

presence of oxygen, the binding of Nro1 and Ofd1 is disrupted which leads to degradation of Sre1N (Lee 

et al., 2009).  

 

1.5.3 GOLPH3 

Golgi Phosphoprotein 3 (GOLPH3), which is also referred as GPP34/GMx33/MIDA is a peripheral 

membrane protein located at the trans-Golgi network (TGN). GOLPH3 protein is conserved among 

eukaryotes (Bell et al., 2001; Wu et al., 2000). GOLPH3 protein is important for protein trafficking and 

maintaining Golgi structure. It appears mobilized by stress and potentially represents a new type of 

oncoprotein that is involve in vesicular trafficking and cell signal transduction (Li et al., 2014). In humans 

there is a paralogue called GOLPH3L, and the interplay between GOLPH3 and GOLPH3L is important 

for maintaining Golgi structure in certain tissues where GOLPH3L is expressed (Ng et al., 2013). There is 

only one GOLPH3 protein in single cell eukaryotes. There are a number of studies that indicate that 

GOLPH3 is an oncogene involved in several types of cancer, such as ovarian, breast, lung, pancreatic, 
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Figure 1.4. DNA damage leading to Golgi dispersal. UV radiation or other DNA damaging agents leads to 

double-stranded DNA breaks that activated DNA-PK. DNA-PK phosphorylates GOLPH3 which increases it affinity 

for MYO18A. It is thought that this increased affinity induced Golgi budding to the point that the Golgi apparatus 

disperses and shown by the fluorescent protein imaging of the Golgi in damaged cells. The image is taken from 

Buschman et al., (2015). 

 

 

 

 

 

  



 

 colon, prostate and melanomas. Topical over-expression of the gnen in cancer cell lines increased 

proliferation (Zeng et al., 2012). 

 

Phosphatidylinositol-4-phosphate is a lipid that is enriched in the trans-Golgi. GOLPH3 has been shown 

to interact tightly with PI4P, which dictates GOLPH3 localisation to this area (Dippold et al., 2009). 

Bound to PI4P, GOLPH3 recruits that complex MYO18A and F-actin to the trans-Golgi in order to 

facilitate vesicle budding and transport to the plasma membrane (Buschman et al., 2015). This appears to 

be the mechanism by which Golgi originating vesicle tie onto the actin network and disruption of any of 

these interaction stops vesicle budding. GOLPH3L also binds to PI4P but not to MYO18A and so for that 

reason there exists a competition between GOLPH3 and GOLPH3L and they have opposite effects on 

Golgi morphology. It is suggested that GOLPH3L serves to reduce secretory traffic, but this will occur 

only in cells where GOLPH3L is expressed.  

 

1.5.4 GOLPH3 function and cancer 

An interesting study by Farber-Katz and colleagues (Farber-Katz et al., 2014) revealed that DNA damage 

exerted by ionizing radiation affects the structure of the Golgi ribbon in mammals lead to the Golgi 

dispersal throughout the cytoplasm. Therefore, it appeared that processes affecting DNA in the nucleus 

could have an effect on the Golgi. The mechanism that has been proposed to explain this is that in 

response to DNA damage, GOLPH3 is phosphorylated by DNA Protein Kinase (DNA-PK). 

Phosphorylation of GOLPH3 increases its interaction with MYO18A thereby increasing vesiculation and 

Golgi rupture and impaired protein movement from the Golgi to the plasma membrane. This process 

could be reversed or increased by overexpression or repression, respectively, of GOL3PH. The schematic 

showing the relationship between DNA damage and GOLPH3 function is shown in Figure 1.3. DNA-PK 

is a protein kinase specific to multicellular eukaryotes. Upon double-stranded DNA breaks it is recruited 

by the Ku complex DNA-PK binds and initiates DNA repair sequences. Phosphorylation of the complex 

binding the double-stranded breaks appears to stablise the ends to keep them from improperly rejoining 

(Ciccia and Elledge, 2010). It is not quite clear how DNA-PK can phosphorylate GOLPH3. It has been 

suggested that GOLPH3 can cycle back and forth between the Golgi (Snyder et al., 2006), and so it could 

travel to the nucleus to be phosphorylated by DNA-PK. It is plausible that signaling mechanisms could 

increase the amount of PI4P in the trans-Golgi by relocation of the SAC1 phosphatase to the ER 

(Blagoveshchenskaya et al., 2008; Buschman et al., 2015). The increase in PI4P would then attract 

phosphorylated GOLPH3 back to the Golgi. 
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It is well known that disruption of Golgi processes can result in severe physiological problems in animals 

(Bexiga and Simpson, 2013). One example is the skeletal dysplasia that is the result of mutation in the 

DYMECLIN protein (Ghouzzi et al., 2003) to which HID1 has significant sequence similarity. Does 

disruption of Golgi function influence cell proliferative processes, such as tumorigenesis and cancer 

progression? It has been found in previous studies that many kinds of human cancers show 

overexpression of GOLPH3, and there is a good correlation between overexpression of GOLPH3 and 

poor prognosis for many cancers (Farber-Katz et al., 2014; Wang et al., 2014b). Furthermore, 

overexpression of GOLPH3 can prevent the apoptosis induced by DNA damaging therapeutic agents 

(Sechi et al., 2015). It has been shown that expression of GOLPH3 is a useful marker in the diagnosis and 

prognosis of certain cancers, such as mouth and breast cancer (Hua et al., 2012). It has also been 

suggested that GOLPH3 can be a useful marker to evaluate responsiveness to particular therapeutic 

treatments (Buschman et al., 2015).  

 

1.6 Human HID1 and its role in cancer development 

With GOLPH3, disruption of the Golgi occurs when the protein is phosphorylated and this can be 

reversed by topical expression of GOLPH3 allowing the cell to grow. Therefore, GOLPH3 represents a 

good example on how maintaining Golgi function may contribute to the development of cancer. It is well 

known that cancer development involves the creation of new blood vessels in order to provide nutrients to 

the expanding tumour (Nishida et al., 2006). Rapid tumour proliferation through cell replication then 

becomes a major sink for the consumption of nutrients and oxygen. Cells actively replicating within this 

environment would require synthesis and proper localisation to the plasma membrane of the proteins 

involved in the nutrient uptake. Cell progression in cancer requires an intact functional Golgi, perhaps 

even a hyperactive Golgi that will enable it to interact with its surrounding environment. It follows that a 

decrease in Golgi function may inhibit tumour proliferation. 

The loss of heterozygosity in the 17q21 region of the long arm of Chromosome 17 has been 

implicated in the development of a number of cancers. This region holds the BRCA1 gene involved in 

breast cancer development (King, 2014). Another locus near to BRCA1 is the 17q25 region, which had 

been associated with the onset of esophageal and ovarian cancers (Kalikin et al., 1997; Risk et al., 1999). 

Harada et al, (2001) identified and cloned a previously on reportedgene from this region 17q25.1 that they 

called Down-regulated in multiple cancers (DMC1). They went on to show that the expression of this 

gene is repressed or missing in a large proportion of different types of cancers, such as gastric, uterine, 

lung and liver. They concluded that DMC1 represented a tumour suppressor gene, that when missing 

promoted cancer proliferation.  
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In 2003, DMC1 was found to be orthologous to the Caenorhabditis. elegans HID-1 protein which when 

mutated leads to dauer formation in worms under conditions favourable for growth (Ailion and Thomas, 

2003). In C. elegans, this protein is required for normal proliferative growth. Within recent years, 

evidence has accumulated that HID-1 of C. elegans is involved in neuropeptide secretion in neuronal 

cells, where it is mainly expressed (Mesa et al., 2011; Yu et al., 2011). HID-1 is a peripheral membrane 

protein of the medial- and trans-Golgi apparatus (Wang et al., 2011) and it has been found in the trans-

Golgi network, in dense core vesicles and synaptic regions of nerve cells in C. elegans (Mesa et al., 

2011). The orthologue of HID-1 in S. pombe is Ftp105, which has been shown to be Golgi localised and 

responsible for the localisation of the deubiquitinase Ubp5 to the Golgi (Kouranti et al., 2010). Kouranti 

et al, hypothesize that Ftp105 is removing Ubp5 away from the nucleus where it cannot function in the 

activation of stress-response pathways. 

 

1.7 Introduction to non-coding RNAs 

RNAs are split into two distinct classes based on their potential to encode proteins (Barciszewski, 2009). 

One category is messenger RNAs (mRNAs), which can be translated into proteins, and the other is non-

protein coding RNAs (ncRNA) that do not encode for complete functional proteins (Eddy, 2001; Mattick, 

2009). Since the discovery of mRNA and its initial characterization (Brenner et al., 1961), it has been the 

focus of most study, because mRNAs have long been thought to represent the active part of the genome. 

They encode the proteins that catalyse the reactions and that are the structural and signaling elements in 

the cell. However, 97–98% of the human genome is comprised of ncRNA (Griffiths-Jones, 2007). 

Although ncRNAs do not code for proteins, they are divided into numerous classes each of which has 

important and unique functions. In recent years, the number of ncRNAs known to be expressed in cells 

has grown enormously, particularly through high-throughput sequencing technologies that are not biased 

for one particular RNA type, such as poly A+ mRNA.  

 

1.7.1 Classes of ncRNA 

1.7.1.1 Ribosomal and transfer RNAs 

The most abundant ncRNAs (at least in terms of mass) are the transfer RNAs (tRNA) and ribosomal 

RNAs (rRNA). Both tRNA and rRNA are essential in the translation of mRNA to proteins where rRNAs 

are structural components of ribsosomes and tRNAs deliver amino acids to the growing protein chain 

during translation. The RNA component of ribosome called Ribosomal ribonucleic acid (rRNA). The 

ribosome is a large macromolecular assembly of RNA and protein in all cellular organisms (Pruesse et al., 

2007). rRNA genes are easy to study and manipulate them in biological importance therefore these genes   

14 



 

 



 

 were among the first genes that have been studied in detail (Sollner-Webb and Mougey, 1991). Because 

rRNAs are ubiquitous to cellular organisms, they are one of the most heavily-used models that scientists 

have used for studying molecular evolution of organisms. Ribosomes in both prokaryotes and eukaryotes 

consist of two subunits a small and a large. The small subunit is the site of codon-anticodon interaction 

between the mRNA and tRNA and the large subunit catalyzes the peptide bond formation (Barciszewska 

et al., 2001). In prokaryotes, the complete 70S ribosome consists of a 30S subunit that contains the 16S 

rRNA and 21 different ribosomal proteins. The large 50S subunit contains the 5S and 23S rRNAs and 34 

different proteins. The 80S ribosome of eukaryotes also has two unequal subunits with four rRNA species 

and more than 70 proteins. The small 40S ribosome subunit contains the 18S rRNA and the large 60S 

ribosome subunit contains the 28S, the 5.8S and the 5S rRNAs (Torres-Machorro et al., 2010). Through 

the ribosome, the ribosomal RNAs provide the structure to allow association of the growing peptide chain 

with the tRNA and provide the peptidyl transferase activity. S. pombe as a eukaryotic organism has the 

80S ribosome and corresponding rRNAs. 

 

The tRNAs bring to the ribosome the necessary amino acids corresponding to the appropriate mRNA 

codon. The processes of transcribing, modifying, exporting and recruiting tRNAs to ribosomes is huge. 

There are more than 500 tRNA genes in the human genome and the number of tRNAs transcribed in the 

life-time of a cell is about 50-times more than all the mRNAs. In S. pombe, it appears that there are more 

than 180 potential tRNA genes including two pseudo genes (Chan and Lowe, 2009; Wood et al., 2002). 

tRNAs represent the largest class of known functional genes (Aziz et al., 2010). The processing of tRNAs 

have a number of steps including RNA splicing, cleavage of the 5′ and 3′ ends and many possible internal 

modifications (Phizicky and Hopper, 2010). Some tRNAs contain introns which are split out in order to 

form the functional tRNA molecule (Tocchini-Valentini et al., 2009). For example, in eukaryotes and 

archaea they removed by the tRNA splicing endonuclease, but in the bacteria these self-splice. In 

eukaryotes, a special enzyme RNase P removes the 5' sequence (Frank and Pace, 1998) whereas tRNase Z 

enzyme removes the 3' end (Ceballos and Vioque, 2007). In some organisms, 5’ end-splicing does not 

occur and transcription starts at the site of the mature tRNA (Randau et al., 2008). As mentioned above, 

Pols I and III transcribe rRNA and tRNA genes, respectively. The transcription coming from both 

polymerases and the subsequent processing of RNAs must be tightly regulated in order avoid an 

imbalance in the components of protein synthesis (Phizicky and Hopper, 2010). 

 

1.7.1.2 Regulatory ncRNAs 

ncRNAs have become a hot topic within the past decade as a mechanism to explain the regulation of gene 

expression. This interest was increased, in general, by transcriptomic experiment showing that large parts  
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of the non-protein coding genome is expressed in cellular organisms (Barrandon et al., 2008). It was 

about 20 years after the discovery of mRNA that large RNA molecules were discovered that were 5’ 

capped, but not polyadenylated, and they were not translated. These modified heteronuclear RNAs were 

almost 3-times more abundant than polyadenylated mRNAs (Salditt-Georgieff et al., 1981). In 

prokaryotes, ncRNAs are of interest, because they have specialised housekeeping functions and they 

participate in the response to different stress situations, and they may contribute to microorganism 

pathogenicity (Herbig and Nieselt, 2011). In eukaryotic cells, which are of main interest in this project, 

there are a number of classes of potentially regulatory RNAs. One type is an RNA regulatory element, 

which affects gene expression in both prokaryotes and eukaryotes, called riboswitches. This type was 

recently discovered in 2002 (Winkler et al., 2002). Riboswitches are parts of the mRNAs themselves that 

bind to and sense a specific small molecule and regulate the expression of certain genes. They are wide-

spread in prokaryotes, but have been found in some plants and fungi (Sudarsan et al., 2003). 

The various classes of regulatory ncRNAs participate in essential cellular processes especially in the 

regulation of gene expression (Barrandon et al., 2008; Eddy, 2001). They can exert their effects through a 

combination of complementary base pairing, forming complexes with proteins, and through their own 

enzymatic activities. For example, in 1982 it was discovered that RNA molecules can have enzymatic 

activities (Kruger et al., 1982) and that these activities may be regulated by other RNA molecules 

(Guerrier-Takada et al., 1983). Regulatory ncRNAs have been divided into two classes based on length. 

RNAs greater than 200 bp are known as long ncRNAs (MFE) and those less than 200 bp are considered 

as small ncRNAs (sncRNA) (Brosnan and Voinnet, 2009). 

 

1.7.1.2.1 LncRNAs 

The size of lncRNAs ranges from 200 nucleotides to over 100 kilobases. Like mRNA, IncRNA are 

transcribed by RNA polymerase II, and lncRNA make up a large portion of the mammalian transcriptome 

(Mercer et al., 2009). LncRNAs frequently contain introns that are properly spliced out, but they can also 

generally avoid the subsequent standard mRNA processing steps. This enables them to remain in the 

nucleus close to sites of transcription (Motamedi et al., 2004). There is a kind of ncRNA that was 

discovered recently that are called ultraconserved genes (UCGs), which are transcribed from regions of 

the human genome called ultraconserved regions (Bejerano et al., 2004). The expression of these UCGs 

has a distinct tissue-specific pattern (Calin et al., 2007). It is thought that UCRs tie together the evolution 

of vertebrates, especially mammals, because UCRs are more conserved than protein-coding genes 

(Barrandon et al., 2008; Bejerano et al., 2004). Alignments of UCRs have shown that they are extremely 

similar among humans, rats, and mice despite 300 million years of negative selection (Bejerano et al., 

2004; Mercer et al., 2009). UCRs are important because they contain evolutionarily retained microRNAs 
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(Berezikov et al., 2005). The function of the majority of IncRNA is unclear so far, but there is strong 

evidence indicating role in the regulation of the expression of the protein coding genes (Guttman and 

Rinn, 2012). The examples that have been uncovered have shown a diverse range of biological function, 

such as regulating gene transcription, RNA processing, chromatin modification and post-transcriptional 

gene regulation such as transportation, translation, splicing, editing, and degradation (Mercer et al., 2009). 

 

There are a number of good examples of functional lncRNAs that have been well-characterised (Mattick, 

2009). XIST is a lncRNA that is involved in the silencing of the X chromosome. It functions by 

remaining within the nucleus near the site of action (Guttman and Rinn, 2012). XIST interacts with the 

polycomb protein complex to condense chromatin structure thereby silencing the X chromosome, called 

chromosomal imprinting (Plath et al., 2002). The inactivation of a chromosomal region by XIST is 

accompanied by a large number of chromatin modifications, such as methylation of histones that 

distinguishes the inactive X from the active X chromosome. However, not all genes are silenced on the 

inactive X chromosome and these appear to have different histone modifications than XIST inactive sites. 

For example, it appears that histones in these sites are more acetylated than inactive sites (Plath et al., 

2002). Disruption of polycomb group proteins that affect the association of the group with histone 

deacetylates appears to disrupt XIST-mediated inactivation, due to retention of acetylated histones (van 

der Vlag and Otte, 1999). Like XIST, HOX antisense intergenic RNA (HOTAIR) is a long intergenic 

ncRNAs that can silence certain chromosomal regions. HOTAIR is important in defining certain aspects 

of body differentiation in drosophila (Mattick, 2009). Where XIST regulates loci that are closely placed to 

it, HOTAIR silences the HOXD locus, which is spatially distantly removed from HOTAIR. In humans, 

ncRNA expression from the various HOX loci appear to have silencing properties that range to other 

chromosomes, and it too appears to work through interaction and recruitment of Polycomb group proteins 

to the silenced site (Rinn et al., 2007). How altering the function of these ncRNAs plays a role in disease 

is discussed below.  

 

1.7.1.2.2 sncRNAs 

1.7.1.2.2.1 miRNAs, siRNAs and piRNAs 

MicroRNAs are probably the most intensely studied class of small RNAs in eukaryotes (Amaral and 

Mattick, 2008). The recent years has seen the identification of hundreds of miRNAs in animals and 

plants, with at least thousand having been found in humans. These small sequences play a central role in 

controlling gene expression (Stefani and Slack, 2008). The lengths of miRNAs are from 19 to 26 

nucleotides and they were initially characterized in C. elegans relating to the regulation of gene 

expression in the timing of developmental events (He and Hannon, 2004). Since the time of their 
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discovery, miRNAs have been found in most a range of eukaryotic organisms including the viridiplantae, 

chromoalveolata, mycetozoa and even viruses, as well as the metazoa, which include the animals. 

According to the latest release of miRBase, there are 2588 mature miRNAs from 1881 precursor 

sequences. miRNAs have been shown regulate the expression o genes by affecting the translation of the 

mRNA. Base pairing between the miRNA and a target mRNA prevents movement of the ribosome, where 

it then dissociates from the mRNA. Thus, miRNAs generally act to decrease gene expression under 

conditions where the host sequence is expressed (Gottesman, 2002). miRNAs are synthesised by a 

particular complex called DICER that recognises (with the help of other components) a short a hairpin 

structure in an ncRNA retained within the cell. Once the RNA molecule is processed, it is release and can 

pair with its target mRNA (Aalto and Pasquinelli, 2012). Altered function of miRNAs has been 

implicated in a number of disease situations including cancer and this is discussed below. 

 

Short interfering RNAs (siRNAs) are about 20-25 nucleotides and act much like miRNAs. siRNAs are 

derived from double-stranded RNA precursors that, like miRNAs, are cleaved by Dicer into short double-

stranded RNA fragments (Farazi et al., 2008). They have a strong affinity with their target RNAs due to 

precise base pairing, unlike miRNAs which can have a range of target substrates due to certain 

mismatches being tolerated between miRNA and target mRNA. These associations are strong such that 

siRNA-modified transcript targets are usually degraded. The first description of this phenomenon was in 

plants, and the original idea was thought that it was specialized protection against RNA viruses (Hamilton 

and Baulcombe, 1999). It was also discovered that a large number of endogenous regulatory siRNAs are 

produced in animal and plant cells. siRNAs also can act as transcriptional repressors by modifying 

chromatin structure. In fact, S. pombe has an siRNA silencing mechanism and it has the genes Dicer and 

Argonaute. It has been most extensively studied in relation to heterochromatin silencing at centromere 

regions where siRNA molecules attract the silencing complexes starting with RITS. The addition of the 

complex containing RNA-directed RNA polymerase permits a feedback loop to form where more siRNA 

is generated from transcripts produced at the centromere (Djupedal et al., 2009). 

 

A brief discussion of piRNAs is made, because they are the most abundant small RNAs in animals. 

piRNAs are a system that has evolved to fight against the negative properties caused by transposable 

elements (TE) jumping within the genome. The movement of transposable elements can lead to 

inactivation of important genes or even activation in some cases (Feschotte, 2008). It is estimated that 

almost 50 % of the human genome is made of TEs (Belancio et al., 2009), but S. pombe has only about 

200 TEs only 13 of which are full-length (Bowen et al., 2003). It appears that in S. pombe that TE 

replication has come more through homologous recombination than trough transposition. piRNAs are  
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slightly longer than miRNAs being 24-31 nucleotides in length. There are nearly 20 million potential 

piRNAs in the human genome coming from about 6000 genomic locations. piRNAs are active in testes 

and bind to the Piwi class of Argonaute proteins for chromatin silencing of TE regions (Ha et al., 2014). 

Interestingly, in Drosophila, piRNA synthesis depends on a protein called Qin which has a terminal E3 

ubiquitin ligase, but the function of this domain is unknown (Zhang et al., 2011). 

 

1.7.1.2.3 snoRNAs 

SnoRNAs are larger than miRNAs being from 60 to 300 nucleotides. More than a thousand different 

snoRNAs have been described in various organisms (Xie et al., 2007), including many hundreds in 

humans (Lestrade and Weber, 2006). There are generally two types of snoRNAs, those that are called 

C/D box snoRNAs and those called H/ACA box snoRNAs (Tollervey and Kiss, 1997). Most snoRNAs 

are processed from introns of precursor transcripts (Bachellerie et al., 2002). They guide chemical 

modification of and are involved in the processing of rRNAs, tRNAs and snRNAs and help in their 

correct folding (Fayet-Lebaron et al., 2009; Samarsky et al., 1999). Some snoRNAs appear to be 

involved in alternative transcript splicing (Kishore and Stamm, 2006) and altered snoRNA function can 

have negative effects on development as has been shown by removal of the Snord116 in mice (Ding et al., 

2008). Moreover, snoRNAs were discovered who altered functions are associated with particular disease 

states, such as Prader-Willi syndrome (Sahoo et al., 2008). There have been web tools developed that can 

help to identify snoRNAs in genomic sequences, such as RNAsnoop (Tafer et al., 2010) and snoSeeker 

(Yang et al., 2006). S. pombe has snoRNAs also and 20 have been found of which 13 were characterised 

and shown to guide modifications of the 18S and 25S RNAs (Li et al., 2005). Even though snoRNAs are 

highly expressed, it is not easy to identify the potential targets of action (Aspegren et al., 2004). 

 

1.7.2 General features of ncRNA function 

In order for mRNAs to silence gene expression, the microRNA binds to its target mRNA sequence and 

attracts the RNA-induced silencing complex RISC to bind to the mRNA. Usually miRNAs bind to the 3’ 

UTRs of mRNAs, but can also bind to exon regions (Bartel, 2009). Because of the imprecise nature of the 

pairing between the miRNA and mRNA target, it is difficult to know exactly which nucleotides are being 

bound by the mRNA. As discussed briefly above, it was first believed that miRNAs simply prevented the 

complete translation of an mRNA by stopping the ribosome. This would appear to be a wasteful process 

if the miRNA was binding to the 3’ UTR. However, it could also serve as a way to cause a positive 

feedback loop of inhibition if miRNAs were made from stalled messages through their degradation as 

explained for siRNAs. It is now believed that mRNA degradation following association with silencing 

complexes is a common mechanism of miRNA function and that is probably works in combination with 
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translational silencing (Huntzinger and Izaurralde, 2011). It is likely that the predominant mechanism of 

silencing depends on the cell type and developmental state (Aalto and Pasquinelli, 2012).  

 

The majority of ncRNAs display some type of differential expression depending on cell and tissue type, 

and this differential expression may be involved in physiological or developmental processes in vivo. 

Over the past decade, the analysis of transcriptomic data has shown that expression of numerous intronic 

and intergenic ncRNAs is cell- or tissue-specific (Nakaya et al., 2007) and it can respond to 

environmental signals (Louro et al., 2007). It has been found that the individual expression of ncRNA 

respond to specific signaling pathways, and also many of them in adult cells are imprinted and 

differentially expressed during development (Kohtz and Fishell, 2004). There are common features 

between specific subcellular localization and ncRNAs (Amaral and Mattick, 2008). All of these signs lead 

to the conclusion that ncRNAs have biological functions. A good example is the expression of ncRNAs in 

embryonic stem cells. Many of them are involved in the organization of embryoid body differentiation 

and they are work to induce change in the structure of chromatin (Efroni et al., 2008) that are associated 

with specific differentiation events (Dinger et al., 2008). In general, expression levels of the ncRNA are 

lower than mRNA. In the yeast S. cerevisiae, many of ncRNAs are transcribed and they are detectable by 

conventional expression methods, such as RT-PCR or transcriptome profiling, but it is difficult to assign 

function, because they are rapidly degraded (Wyers et al., 2005). However, low abundance or rapid 

turnover of an miRNA would be required for it to act in a signaling role (Amaral and Mattick, 2008). 

 

1.7.3 ncRNAs and cancer 

Many studies indicate that miRNAs not only regulate various developmental and physiologic processes, 

but they also play significant roles in cancer and other diseases (Barbarotto et al., 2008). For example, 

approximately 50% of annotated human miRNAs are mapped to fragile regions of chromosomes. Those 

fragile loci have been linked with different types of human cancers (Calin et al., 2004). Fragile regions 

lead to genetic instability that can disrupt miRNA-target gene interactions and this regulation has been 

associated with an expanding number of cancer types (Selcuklu et al., 2009). Inhibition of miRNA 

function can lead tumorigenicity and cell transformation (Kumar et al., 2007). Moreover, miRNA have 

been shown to act as tumor suppressors by blocking the expression of malignant genes, but they also have 

the potential to be oncogenes if their function is altered and they are no longer able to repress the 

expression of genes promoting cell growth or division (Hanahan and Weinberg, 2000; Negrini et al., 

2009). The miRNA mir-84 is a good example (Johnson et al., 2005). When the expression of mir-84 is 

reduced, RAS expression increases leading to cell proliferation and reduced mir-84 expression is an 

indicator of poor prognosis for lung cancers. In general, miRNAs are good markers for the early  
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discovery, diagnosis, and prognosis for cancer development and response to treatments, because they play 

a big role oncogenesis. For instance, miRNA-21 was the first miRNA shown to be plentiful enough in the 

sera of diffuse large B-cell lymphoma patients to be used as a marker for relapse after surgery (Lawrie et 

al., 2008). The expression of miR-21 was evaluated in serum and in solid tumours of this cancer type. In 

When the miR-21 is highly expressed it appears that cells will exhibit an increased response to the anti-

cancer drug 5-fluorouracil, but while it is inhibited cell sensitivity to gemcitabine-based treatment will be 

increased (Rossi et al., 2007). In recent years, more and more studies have shown miRNA expression to 

be useful in the diagnosis of cancer, for example the use of miR-29a and miR-92a to diagnosis colorectal 

tumors (Huang et al., 2010). In addition, miR-92 also can be distinguished among inflammatory bowel 

disease, gastric cancer, colorectal cancer, inflammatory bowel disease, and healthy colons (Ng et al., 

2009). The benefit of using miRNAs for diagnosis is that they can be detected by simple analysis of the 

blood, which is less invasive than tumour biopsy (Lee and Calin, 2011). There are two ways to treat 

cancer based on gene therapy by RNA. The first way is by using RNA as a remedy against the mRNA of 

the genes responsible for causing cancer. The second way is by targeting ncRNA that are directly 

involved in the disease. It is possible that manipulation of miRNA levels in tumour cells can be used to 

treat cancer. However, until now there are not any published of the toxicological or clinical studies 

regarding the treatment by using miRNA, but some are in clinical trials (Herbig and Nieselt, 2011; Lee 

and Calin, 2011). Since S. pombe does not have a classic miRNA system for regulating gene expression, 

it is not appropriate to go into large detail on the potential application of miRNA research for treating 

cancer with respect to this work. What may be more relevant to S. pombe as a model in studying gene 

regulation in respect to cancer, is the increasing evidence that deregulation of snoRNA function may be 

involved in some cancers. For example, C/D box snoRNAs have shown to be up-regulated in human 

breast and prostate cancers and snoRNA production can alter p53 function (Su et al., 2014a). It is likely 

that altered snoRNA function will become an increasingly important topic in cancer research. 

 

1.7.4 Modeling small RNA structures and determining expression 

NcRNAs do not have the same features as protein coding RNA that are capped and polyadenylated, 

therefore it is not obvious that a ncRNA may be functional in a cell. Some types of RNAs have well-

defined structures that make it clear as to their function, such as tRNAs (Chan and Lowe, 2009) or rRNAs 

(Barciszewska et al., 2001). Because ncRNAs, particularly sncRNAs, have a short life-time in a cell and it 

is often difficult to find an RNA target for them, it is useful to have other means to identifying if an 

expressed RNA may be functional in vivo. The different classes of sncRNAs have been found to have 

particular secondary structures that can be recognized by processing enzymes, such as Argonaute and 

Dicer mentioned above. Therefore, it is possible to suggest that a particular sncRNA may be functional if 
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it has a secondary structure that may allow it to be retained in the cell. It is possible now to use de novo 

computational tools to determine if a short sequence of RNA has sufficient base-pairing capabilities for it 

to have a structure need to fulfill a function (Gorodkin et al., 2010). If an ncRNA has a function in vivo, it 

is likely that this function has been conserved in closely related species. Therefore, computational tools 

generally determine a structure for a potential ncRNA from a consensus sequence made from orthologous 

sequences from more than one species. However, this is not necessary easy to identify orthologous 

sncRNA sequences, because the sequences may have diverged but the structure has been conserved 

(Menzel et al., 2009). However, it is possible to identify orthologous sequences, such as introns in the 

same genes from closely related species. Currently available programs for RNA structure prediction are 

QRNA, EvoFold, CMfindertools, FOLDALIGN, Dynalign, RNAz and RNAalifold (Gorodkin et al., 

2010). Once an RNA sequence has been shown to have a potential structure, it is necessary to confirm 

that sequence is expressed in vivo (Kavanaugh and Dietrich, 2009). There are many ways to show the 

expression of a predicted ncRNA, such as Northern blotting or RT-PCR (Kavanaugh and Dietrich, 2009). 

RT-PCR does have it limits in that primers are designed for specific sequences and sncRNA are 

frequently further processed, such that the predicted sequence may not be intact in vivo. However, the 

full-length RNA sequence can be determined by techniques, such as Rapid Amplification of ncDNA Ends 

(RACE) (Kavanaugh and Dietrich, 2009). DNA tiling microarrays can be effective in detecting sncRNAs, 

since the entire genome is usually covered on a chip (Hüttenhofer and Vogel, 2006). Now, NGS has 

become the primary technique for confirming the expression of short RNA sequences in vivo. The ability 

of RNA-seq to find expressed ncRNAs has already been demonstrated for both animals (Ruby et al., 

2006) and plants (Kasschau et al., 2007). It is clear that transcriptomic techniques can only give 

hypotheses about the potential function of a ncRNA and further experiments are always needed to 

confirm both expression and function.  

 

1.8 RNAseq as a gene expression tool  

Gene expression is the process of converting the information stored within a cell’s genome into the 

nucleic acid and protein components that conduct the biochemical activity of the cell. Gene expression 

can be considered to be two levels, the level to produce RNA from the gene, called gene expression, and 

the subsequent production of proteins, called protein expression. Protein expression also requires the 

complex process of converting the information in RNA to proteins. As discussed at the beginning of this 

introduction, molecular biology has greatly evolved from determining the expression of one or a few 

genes using Northern blotting techniques to studying the expression of all genes in one experiment using 

a transcriptomic technique. The desire is to now understand how genes come together to create a cell with 

a particular function, and how the processes of gene expression are regulated (Mutz et al., 2013). Taking  
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over from microarrays, RNAseq using Next Generation Sequencing technologies has become the standard 

for conducting transcriptomic studies. Microarrays or what is called reverse Northern blotting, was 

limited in the types of analyses that could be done, because of the limits of elements that can be placed on 

the solid support. In contrast, RNA-sequencing (RNA-Seq) can be used to address a number of biological 

questions, as well as measure transcripts, in one or a few experiments. It can be used to discover a novel  

fusion genes in cancer (Berger et al., 2010; Maher et al., 2009) and to quantify levels of alternative 

splicing in tissues (Wang et al., 2008) and disease (Garber et al., 2011). Moreover, it can be used to 

discover new genes and to measure their transcripts in single assay (Cloonan et al., 2008; Mortazavi et al., 

2008) and it can measure allele-specific expression (Montgomery et al., 2010).  

 

However, RNAseq is still a relatively new technique and there are still problems to overcome, mainly 

regarding the bioinformatic tools needed to explore the data. One of the most important challenges facing 

the researchers in the study of RNA-Seq experiments is the complexity of the analysis of RNA-Seq data, 

mainly because it lacks user-friendly software tools (Tjaden, 2015). An RNA-Seq experiment is subject to 

three main computational processes, alignment of reads onto a genome, combination of reads into 

transcripts, and finally quantification of the reads in each transcriptional unit. Each step gives information 

that is used in each subsequent step. The objective of a transcriptomic experiment is to measure those 

genes that change in a biological sample relative to a control sample, usually with replicates of each for 

statistical calculations. Therefore, computer programs that have been developed allow for simultaneous 

quantification of reads through files of common transcripts (Garber et al., 2011). There are a number of 

programs that have been developed to map reads to reference genomes, such as AceView, Novoalign, 

BWA, Tophat and Bowtie (Tophat uses Bowtie as its initial source of aligment), and several programs for 

calculating differential gene expression, such as EdgeR, DeSeq
2
, and Limma (Wang et al., 2014a). Two 

particular tools have become very popular as a pipeline for analyzing RNA-seq data, the mapping 

program Tophat (Trapnell et al., 2009) and the read quantification program Cufflinks (Trapnell et al., 

2010).  

 

NGS sequencers, such as Illumina, Ion torrents (Life Technologies) or SOLiD (Applied Biosystems) 

output their sequences in the form of ‘fastq’ files that contain the sequence with a numerical identifier. 

Each fastq file can contain millions of RNAseq reads. The program Tophat take the reads from the fastq 

file for each sequencing run and independently aligns the reads to a reference genome. The number of 

reads mapped depends on a number of factors, such as the presence of multiple alignment sites and the 

number of mismatches tolerated for a sequence to be aligned. The output from Tophat is an alignment file 

for each sample run, such at this time each replicate has remained independent. A program, such as the 
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Integrative Genomics Viewer (Robinson et al., 2011), can be used to directly look at the reads that have 

been mapped to a locus. At this point there is no information as to what reads make a transcriptional unit, 

such as a gene or exon. Cufflinks is the first in a series of modules that groups the reads into genes and 

then quantifies them. Cufflinks uses the read file from Tophat and a genome annotation file to assign 

reads to loci and ultimately genes creating a transcriptome file for each sample. Because expression can 

only be quantified between the same genes in different samples, it is necessary to make a transcript file 

that has the common elements among the various individual transcriptome files. The Cuffmerge program 

does this to create one transcript file. The next step in the pipeline is the quantification of each gene based 

on the number of reads, which is the total sum of reads for a gene. Since longer genes will have more 

reads, a common way to express a value is based on the number of total Reads Per Kilobase (of sequence) 

Mapped, RPKM. This really isn’t necessary for relative quantification between samples because the gene 

sizes will be the same, so some quantification programs do not normalize. The Tophat/Cufflinks pipeline 

uses two quantification methods Cuffnorm and Cuffdiff. Each of these requires assignment of read values 

to each individual gene by Cuffquant. Cuffquant calculates RPKM values for each gene for each sample 

alone using the file of common transcripts from Cuffmerge. Cuffnorm takes the quantified genes for each 

individual sample and does a sample-wise normalization of the gene data, similar to what Affymetrix 

does in order to compare different hybridization experiments. The data from Cuffnorm can be used for 

multivariate statistical analysis to compare sample properties. Cuffnorm does not combine the replicates. 

Cuffdiff is the program that determines DE expression. Using the RPKM data from Cuffquant, it 

calculates those genes that are statistically significantly different between biological samples. It combines 

replicates and outputs a pair-wise comparison between each two biological samples. From this, the 

experimenter has a list of total genes and those that are changing between samples. Cuffdiff has been 

shown to be a rigorous tool for performing comparisons in many high-resolution transcriptome studies 

(Graveley et al., 2011; Lister et al., 2011; Mizuno et al., 2010; Twine et al., 2011). 

 

1.9 S. pombe as a model organism 

The fission yeast, S. pombe, more commonly known as fission yeast, is unicellular eukaryote that was 

discovered in 1890 and began to be used as a model organism in the 1940s (Forsburg, 2005). The genome 

of S. pombe has been sequenced and annotated in 2002. It has 3 chromosomes with a total size of 12.6 

Mbp making it a eukaryote with one of the smallest genomes known. The current statistics for the S. 

pombe is that it has 5048 known and predicted genes. In addition, it has 57 predicted snoRNAs, 1535 

non-coding RNAs (ncRNA) and 5 small nucleolar RNAs (snRNA), suggesting that it has some of the  
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same epigenetic regulatory mechanisms as other eukaryotes (wwwpombase.org). However, it does not 

have the typical microRNA processing and regulatory system seen in mammalian systems.  

S. pombe is a popular model system that has been used to for studies of cell growth and division, 

biochemistry and molecular genetics, because it is easy and inexpensive to grow in the laboratory and is 

genetically modifiable (Yanagida, 2002). Also, S. pombe is a good model for human chromosome studies, 

because it share many feature of human chromosome such as heterochromatin, replication origins, small 

non-coding RNA regulation and complex centromeres, which are missing or different in budding yeast 

and other unicellular organisms (Wood et al., 2002b). In addition, some of cell signalling pathways in S. 

pombe are similar to human such as MAPK signalling pathways and many human genes implicated in 

cancer in humans have homologues in S. pombe (Bailis and Forsburg, 2007). 

1.9.1 The cell cycle in S. pombe 

In all eukaryotes, the cell cycle is a central process that regulates growth and division (KV Venkatesh, 

2013). Cell division consists of four main phases, which are genome duplication (S-phase), nuclear 

division (mitosis or M-phase) that are separated by two gap phases G1 and G2 that come between M-

phase and S phase and between S-phase and M-phase, respectively (Bähler, 2005). S. pombe has become 

one of the most popular organisms to study cell cycle and the division and it has long history of research 

in this respect (Nurse et al., 1976). Cell division in S. pombe is characterised by the formation of a septum 

across the center of the cell cylinder that eventually allows the two daughter cells to separate into cells of 

equal size. The generation time of S.pombe that includes growth and cell division is between 2-4 hours 

depending on culture conditions (Guthrie and Fink, 2004).  

In the cell cycle of S. pombe, the main control point for cell size is the G2 phase, whereas in many other 

organisms, such as S. cerevisiae, the main control point regulating when a cell divides is the G1-phase 

(Oliva et al., 2005). When the cell encounters the proper conditions in G2 with DNA fully replicated and 

cells matured to the proper size, the cell moves into M-phase that sees formation of the nuclear spindle 

and eventually separation of the sister chromatids. The septum begins to form and cell division is 

completed with the cytokinesis and cell separation (Figure 1.5). Each of the daughter cells is in G1-phase 

and can enter into S-phase to synthesise DNA if the conditions are favourable. Once the complement of 

DNA is synthesised, the cell can enter into the G2-phase to grow. When culture conditions become poor, 

cryptic size control appears in G1 that leads to G1-phase becoming longer and cell division slows down. 

Cell division in S. pombe is regulated by the interaction of a number of cyclins, the master regulator being 

the cell cycle-dependent kinase Cdc2 and its interactions with three B-type cyclins Cdc13, Cig1, and Cig2 

(Caspari and Hilditch, 2015; KV Venkatesh, 2013). The interaction of Cdc2 with Cdc13 is absolutely  
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Figure 1.5: The cell cycle of a eukaryotic cell. In this figure show that the cell cycle phase ensured by regulation of 

by cyclin-dependent kinase (Cdc2/Cig2 and Cdc2/Cdc13). Cdc2/Cdc13 complex is activated by Cdc25 and in 

contrast it is negatively regulated by Slp1, Ste9, Rum1 and Wee1 (Sveiczer et al., 2004). 

  



 

essential to initiate mitosis. Cig1-dependent kinase peaks at M-phase, whereas Cig2-dependent kinase 

peaks at G1/S transition (Sveiczer et al., 2004). The activity of Cig2 with Cdc13-dependent kinase is 

responsible for S-phase initiation. The action of Cdc2 and its interaction with these cyclins is governed by 

a number of other factors that check the cell cycle in phase transitions. Cdc2/Cdc13 is negatively 

regulated by four proteins Slp1, Ste9, Rum1 and Wee1 and is activated by Cdc25 (Figure 1.5). For 

example, when cells reach a critical size in G2, Cdc25 removes the inhibitory phosphate from tyrosine 15 

of Cdc2 that then allows the transition into mitosis.  

 

1.10 Objectives of the work and strategy of the thesis 

The main question arising from the description of the function of HID-1 above is if its function as a Golgi 

protein is compatible with it being a tumour suppressor gene. I have presented reports that Golgi function 

is tied to nuclear processes relating to gene expression, but this evidence seems to go to the opinion that 

maintaining Golgi processes is necessary for cancer progression. The aim of the work is to obtain 

molecular evidence, using S. pombe as a model system, to determine if the loss of HID1 could promote 

tumourigenesis or proliferation or prevent it.  

 

Chapter 3 presents the creation of the mutant lacking the HID1 orthologue ftp105, which the group has 

come to call Hid3. This is because S. pombe has two other orthologues of HID1 SPAC27G11.12 and 

SPBP19A11.07c. Accordingly, this study has become broader than originally planned to try to integrate 

these other genes. Mutant strains were created where a particular gene had been replaced by a selective 

marker. The bulk of the work entailed verifying the proper deletions and determining that the expression 

of the other orthologues was not affected in the individual mutant strains. The mutants were then tested 

for growth properties and cell morphological changes. The hid3Δ mutant was found to grow more slowly 

than the other mutants and controls. It had normal morphology, but a highly disrupted Golgi.  

 

Chapter 4 presents the bulk of the molecular analysis. Transcriptional profiling was conducted using the 

Next Generation Sequencing technology RNAseq on replicate samples from wild-type, control strains 

expressing the marker gene noursethricin-N-acetylase (Nat
R
), hid1Δ and hid3Δ strains. Gene expression 

was highly changed in the hid3Δ mutant compared to the other genotypes with the types of genes induced 

and repressed suggesting cells under stress. Interestingly, the most highly induced genes were those 

encoding plasma membrane or secreted proteins that would be sorted by the Golgi apparatus. This suggest 

that there is some process occurring at the plasma membrane that is being disrupted in hid3Δ mutants, 

which is likely nutrient deprivation leading to feedback up-regulation of the genes.  
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Chapter 5 has been presented out of order on purpose. My thesis work began with a study of possible 

expression of introns or sequences within introns with a potentially functional role. This was started 

because of the unusual retention of the terminal intron of the psc3+ gene of S. pombe. The major 

objective of this chapter was to give bioinformatic experience for me to be able to retrieve, align and 

manipulate nucleic acid sequences to form functional hypotheses through structure determination. This 

was combined with practical experimental work to determine it is possible that this intron was expressed 

in pombe using RT-PCR. The reason why this chapter has been moved the end is because it presents a 

mechanism for regulating gene expression regulation by non-coding RNAs. This could represent a next 

step in investigate the regulation of gene expression in the mutants. As a follow up to the inconclusive 

RT-PCR study, an attempt was made to look at global intron expression using small RNA libraries of 

wild-type and hid3Δ. There were background reads to nearly all introns of psc3
+ 

and its paralogue rec11
+
, 

but introns from some genes were expressed. The main finding was that the small RNAs were a good tool 

to identify snoRNAs of which there were around 36 unannotated ones found. 
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Chapter 2 

Materials and Methods 

 

2.1 Bioinformatic analysis and expression of psc3 intronic sequences 

2.1.1 Prediction of structural features within psc3 introns 

The overall strategy of predicting structures within the introns of the psc3 gene was to first identify 

orthologues of the encoded protein in diverse fungal species, retrieve the cDNA for multiple alignments 

in order to identify and confirm introns within Psc3, and then conduct structure prediction analyses on 

intron consensus sequences. 

 

2.1.1.1 Identification of orthologous proteins in fungi 

The first step in the identification and construction of the S. pombe psc3 introns was to create a subset of 

all homologous proteins within fungi through searches of publicly accessible protein sequence databases. 

Searches were conducted using BLASTP as part of the  BLAST (Lopez, 2003) toolkit available from the 

European Bioinformatics Institute (www.ebi.ac.uk). BLAST searches employed default settings (matrix 

BLOSUM62, topcombo 1, normal sensitivity, 1xE
10

) and the Psc3 protein as query template. The 

corresponding cDNA and genomic DNA sequence for each Psc3 orthologue was also retrieved for 

sequence alignment purposes. In cases where an organism contained multiple Psc3 paralogues, only the 

paralogue with the highest score was used. 

 

2.1.1.2 Identification of orthologous introns in fungal cohesins 

In this study, an orthologous intron was defined as a DNA sequence that was found between two 

corresponding exons of the orthologous psc3 gene, as long as this sequence was present in the majority of 

fungal species retrieved in the BLASTP search. Orthologous introns in the psc3 genes from the various 

fungal species were identified by BLASTN using the intronic sequences of S. pombe psc3. Orthologous 

intronic sequences were confirmed by mapping them to the corresponding positions within the primary 

sequences. Alignment of putative intron sequences with the reverse-translated cDNA sequences was 

conducted using the multiple alignment tool of MEGA (Tamura et al., 2011). In cases where the psc3 

orthologous gene did not contain any introns or did not possess the corresponding intron, these sequences 

were excluded from subsequent analyses. All of non-excluded genes were divided into five groups based 

on the phylogenetic distance. 
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Table 2.1. List of strains used in experimentation. This does not represent all the mutant strains created 

as part of the study. All mutant strains created are given in Table 3.1. In the VC strains, the marker has 

been inserted, but the locus is unknown. 
 

Strain     Genotype                 Source 
 

WT      h- ade6-M26 ura4-D18 leu1-32        McFarlane, BP90 

hid1Δ iso1  h- hid1Δ::natMX6 ade6-M26 ura4-D18 leu1-32  this study 

hid1Δ iso3  h- hid1Δ::natMX6 ade6-M26 ura4-D18 leu1-32  this study 

hid2Δ iso1  h- hid2Δ::ura4+ ade6-M26 ura4-D18 leu1-32  this study 

hid2Δ iso2  h- hid3Δ::kanMX6 ade6-M26 ura4-D18 leu1-32  this study 

hid2Δ iso3  h- hid3Δ::kanMX6 ade6-M26 ura4-D18 leu1-32  this study 

hid3Δ iso1  h- hid3Δ::natMX6 ade6-M26 ura4-D18 leu1-32  this study 

hid3Δ iso2  h- hid3Δ::natMX6 ade6-M26 ura4-D18 leu1-32  this study 

VCU1     h- ade6-M26 ura4-D18 leu1-32 ura4+     this study 

VCN1     h- ade6-M26 ura4-D18 leu1-32 natMX6+     this study 

VCN2     h- ade6-M26 ura4-D18 leu1-32 natMX6+     this study 
 

 

 

 

 

 

 

 

 

 

 

  



 

2.1.1.3 Prediction of structure within introns of psc3  

The realignment of intron sequences for the purposes of structure prediction was done for each of the five 

groups individually using ClustalOmega (Sievers et al., 2011). To predict the most stable RNA structure 

for each intron, sequence alignments were uploaded to RNAalifold program via the web server 

http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi. The predictions were performed using RIBOSUM 

scoring and minimum free energy with partition function (Bernhart et al., 2008). 

 

2.1.2 Detection of ncRNA transcripts from psc3 intronic sequences by PCR  

2.1.2.1 Strains and culture and storage conditions of S. pombe 

The list of strains used in this study is given in Table 2.1. Long-term storage of all S. pombe strains was 

by freezing in YES media containing 25% v/v glycerol. The wild-type strain used in this work was 

genotype h
-
ade6-M26 ura4-D18 leu1-32 (BP90, McFarlane Collection). Routine growth of S. pombe 

strains, unless specified otherwise, was done using a rich yeast extract-based medium (YES), which 

contained 5 g/l of yeast extract, 28 g/l of Glucose and 250 mg/l of each supplement Adenine, Uracil, 

Leucine, Histidine and lysine. Solid YES for cell growth on petri dishes was made with the addition of 

agar at 14 g/l. and incubated it at 30
o
C for 3 days. 

 

2.1.2.2. Isolation of total RNA 

Wild-type cells were grown in 25 ml of YES at 30
o
C with shaking at 200 r.p.m until they had reached on 

O.D.600 = 0.2. Cells were harvested by centrifugation for 2 minutes at 2,000 r.p.m in a bench-top 

centrifuge capable of holding 50 ml conical centrifuge tubes. The supernatant was decanted and the cells 

frozen in liquid N2. Total RNA was extracted by the hot phenol/chloroform method according to (Lyne et 

al., 2003) and described in more detail here. Frozen cells (~50 mg) were thawed on ice for 5 minutes, 

resuspended in 1 ml of pre-chilled DEPC-treated water (0.1% w/v DEPC) and transferred to 2 ml 

microfuge tubes. The cells were pelleted by centrifugation for 10 second at 5,000 r.p.m and washed once 

in DEPC water and collected by centrifugation. A volume of 750 µl of TES (10 mM Tris pH 7.5; 10 mM 

EDTA pH 8; 0.5% SDS) was added to the tube and the cells were gently resuspended with a pipette, and 

then 750 µl of pre-chilled acidic phenol-chloroform (Sigma P-1944) was added and the cells mixed by 

vortex, and incubated at 65°C for 1 hour in a water bath or heating block.  

The sample was placed on ice for 1 minute, vortexed for 20 seconds, and then centrifuged at 14,000 r.p.m 

at 4°C for 15 minutes. A volume of 700 µl of the supernatant was transferred to a 2 ml, yellow phase-lock 

tube, which held 700 µl of acidic phenol-chloroform. The solution was mixed by inverting the tube and 

then centrifuged at 14,000 r.p.m at 4°C for 5 minutes. An aliquot of 700 µl of the top phase of the tube 

was transferred to a 2 ml, yellow phase-lock tube containing 700 µl of chloroform:isoamyl alcohol (24:1)  
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(Sigma C-0549). The solution was mixed by inverting the tube and the phases separated by centrifugation 

at 14,000 r.p.m at 4°C for 5 minutes. A volume of 500 µl of the supernatant was transferred to a 2 ml 

Eppendorf tubes containing 1.5 ml of 100% EtOH (-20°C) and 50 µl of 3 M NaAc, pH 5.2, vortexed for 

10 seconds, and the RNA precipitated by incubating the tube at -20°C overnight. The following morning 

the RNA was collected by centrifugation at 14,000 r.p.m at room temperature for 10 minutes. The 

supernatant was removed, the RNA pellet washed with 500 µl of pre-chilled 70% EtOH (made with 

DEPC water) and then centrifuged at 14,000 r.p.m at room temperature for 1 minute to collect the RNA. 

The RNA sample was dried for 10-15 minutes by inverting the tube on a clean tissue. A volume of 100 µl 

of DEPC-treated water was added to the tube and it was kept at room temperature for 10 minutes and then 

resuspended by pipette.  

 

2.1.2.3 Quality and quantity of RNA 

The quality and quantity of RNA was determined by the absorbance measurements at 260 nm and 280 

nm. The absorbance at 260 nm was used to quantify the amount of RNA according to 1 O.D. 

corresponding to a concentration of 40 µg/ml. The ratio of O.D.260/O.D.280 provided the measure of the 

purity of RNA with a good quality preparation having a ratio between 1.6 and 2.0 (Sambrook et al., 

1989). The quality of RNA was also visualized by agarose formaldehyde gel electrophoresis using 

standard protocols.  

 

2.1.2.4 Reverse Transcription  

Potentially contaminating DNA was removed from total RNA samples by adding 1 μl DNAse (1 U/μl) to 

1 μg of total RNA in a total volume of 10 μl. Samples were incubated at 37°C for 30 minutes followed by 

the addition of 1µl of Stop solution and a further incubation of 10 minutes incubation at 65°C to 

inactivate the DNase. First-strand cDNA was produced by random-priming from 1 μg of total RNA using 

the QuantiTect
TM

 Reverse Transcription kit according to manufacturer’s instructions (QIAGEN Ltd.). 

Each reaction mix consisted of 2 µl of 1x gDNA Wipeout Buffer, 1 μg of DNAse-treated total RNA, 

which was brought to a final volume of 14 μl using RNase-free water. The sample was incubated for 2 

minutes at 42°C and then it was transferred immediately to ice. A volume of 1 μl of Quantiscript
TM

 

(Qiagen Ltd.) reverse transcriptase, 4 μl of 5x Quantiscript
TM

 RT Buffer and 1 μl of RT Primer Mix were 

combined and added to the 14 μl of RNA template, mixed and incubated at 42°C for 15 minutes. The 

sample was incubated at 95°C for 3 minutes to inactivate the reverse transcriptase and the sample was 

diluted to an estimated concentration of 10 ng/µl for use in PCR reactions. The remainder of the total 

RNA sample was stored at -20°C until needed.  
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Table 2.2. Primers for amplifying sequences in psc3. Sections of primers given in italics represent intron 

sequences.  

 

Gene 

Name        Description       Sense Primer (5′-3′)    Antisense Primer (5′-3′) 
 

psc3 Spanning primer for Intron 1  GGATCCTCAAGAAGAAATTTTTAAC  TCAACTTTTTGGTCAAGCAGA 

  Spanning primer for Intron 2  TGCCCTTGCAAATCTTATTAAC   ACGATTGCAACCACAGCA 

  Spanning primer for Intron 3  TCTCAAATTCAACTTTCTGTAGAGC  TGAATTTAAAGGATAATCACGAGTAGA 

  Spanning primer for Intron 4  TGGTGAAATAGTCAAGCAACAA   CGATATCGATGGACGAAGAC 

  Spanning primer for Intron 5  AGCTCTAAAATTTTGCAACTTCA   TCACTGTTTCCAGAAAAGTTCG 

  Junction primer for Intron 1  AACTTATTTGGTAATGATAAACTCC  AGCAGAAAAGCTTTTCAGTGT  

  Junction primer for Intron 2  TATTTTAAAGGTAGAGTCATTCTT  AACCACAGCACTAAAATATTTAG 

  Junction primer for Intron 3  TGTAGAGCGTGTAAGTGCT    AGTAGAAGTCTTAAAGTTGTTAATA 

  Junction primer for Intron 4  ACTTTGATAGGTAAAGATCCC   GACGAAGACACTAATATAAA 

  Junction primer for Intron 5  TGCAACTTCAGGTATACAAAATC   TTCGGGCTGCCTGGTC 

  Internal primer for Intron 1  GTAATGATAAAGTCCTTC    CTTTTCAGTTAGTAG 

  Internal primer for Intron 2  GTAGAGTCATTCTTTTC     CTAAAATATTTAGTAAAG 

  Internal primer for Intron 3  GTAAGTGCTTTTGCGA     CTTAAAGTTGTTAATATACA 

  Internal primer for Intron 4  GTAAAGATCCCTCAAA     CTAATATAAAGGTTAGTATAA 

  Internal primer for Intron 5  GTATACAAAATCAACTTA    CTGGTCAAGTTAGTTTC 

 

 

 

Table 2.3. Primers for amplifying sequences of ncRNA genes. 

 

Primer Name       Sense Primer (5′-3′)     Antisense Primer (5′-3′) 
 

SPNCRNA.184 (1)  CGGGCGTATCCCTATATTCA     TCTGAATGCTAACCCTCAGTTG 

SPNCRNA.184 (2)  ACAAGAAAGCTCTAGTGAACCTATG   CCCGAGCACGGTAGTTTTT 

SPNCRNA.185 (1)  TCAAAACTATAAATCAGATTGGTGA   TTGAAGAATGCCTGCTCAAT 

SPNCRNA.185 (2)  TTGAGCAGGCATTCTTCAAT     TCTCAATCAGATATGCAGTTCCA 

SPNCRNA.186 (1)  ACGAGCGTTTCGCTATCATT     TGGTGAGGTGCGATTTGTAA 

SPNCRNA.186 (2)  CCCTCTCCCTGTAATCGAAA     CTGAAACGAGGGTACGGAAA 

SPNCRNA.487 (1)  CGCAAATTGGAAAAGTGGTT     TCTTCATTGTGAAGGGAAGTGA 

SPNCRNA.487 (2)  TCGCAATTTATCACCAAATGA    ACTCAAATGCGGACGAAAGT 

 

 

  



 

2.1.2.5 Design of primers for PCR 

Three different types of primer pairs were designed to determine the expression of intronic sequences of 

the psc3 gene, an exon pair with the forward and reverse primers spanning the intron, a junction pair 

covering the exon/intron boundaries of each intron, and only intron primers. Primers for ncRNA genes 

were made as a control to test for expression of unrelated ncRNAs. Primers were designed using the 

OligoPerfect™ primer design tool from Invitrogen (tools.lifetechnologies.com) using genomic DNA 

sequences from Pombase (www. Pombase.org) with the constraint that all would have an annealing 

temperature of approximately 57
o
C. All PCR primers were obtained from eurofins Genomics 

(http://www.eurofinsgenomics.eu). The primers used in this study are given in Tables 2.2 and 2.3. 

 

2.1.2.6 Polymerase Chain Reaction 

All primers were tested by PCR on appropriate DNA or cDNA templates to ensure that the primers 

generated the expected size of fragments. The PCR reactions were prepared in a volume of 10 μl 

comprised of 1x GoTaq Flexi Buffer, 3 mM magnesium chloride, 0.2 mM of each dNTP, 0.05 µM of 

forward and reverse primers, 0.25 U of GoTaq DNA Polymerase, 10 ng of cDNA or DNA, and brought to 

the final volume with DEPC-treated water. PCR was conducted on a MJ Research thermocycler with the 

following cycling parameters: an initial denaturation step of one cycle of 1 minutes at 94°C, 34 cycles of 

15 seconds at 94
o
C, 15 seconds at 55

o
C, and 15 seconds at 72°C, followed by an extension period of 72ºC 

for 5 minutes.  

 

2.1.2.7 Visualisation of PCR products by UREA-PAGE 

Polyacrylamide gels were used in preference to agarose gels for determining the amplification success of 

fragments less than 100 bp. amplicons. All PAGE was run using the Miniprotean
TM

 gel electrophoresis 

system from BioRad. Gels were poured at a thickness of 1.5 mm with a final composition of 1x TBE 

buffer (1 M Tris, pH 7.5, 0.9 M boric acid, 0.01 M EDTA ), 15% bis-acrylamide and 8 M urea, 0.06 % 

v/v ammonium persulfate, and 0.05% TEMED. The gel was pre-run for 15-30 minutes at 200 V using 1x 

TBE. PCR samples were prepared in 1x Nucleic Acid Sample Loading Buffer (BioRad, #161-0767), 

loaded into the wells and the gel run at 200 V until just before the blue exited the gel.  

 

2.2 Generation of mutant strains of S. pombe 

2.2.1 Biological Material 

Three different strains of E. coli were used in this project. These strains had the pFA6a-KanMX6, pFA6a-

NatMX6 and pAW1 plasmids used to amplify the marker genes used for gene replacement mutagenesis 

of S. pombe. For long-term storage, bacterial cultures containing 25% glycerol were kept at -80
o
C.  
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Bacteria were growth on LB-agar plates consisting of 10 g/l (w/v) of tryptone, 5 g/l (w/v) of NaCl and 15 

g/l (w/v) of agar or in liquid LB media without agar for isolation of nucleic acids. Agar plates and liquid 

cultures were incubated at 37
o
C with liquid cultures being agitated at 160 r.p.m in a rotary shaker. All 

powdered media was dissolve in MilliQ
TM

 H2O and sterilized by autoclaving. For screening cells by 

antibiotic resistance, media were allowed to cool to 55°C before addition of the appropriate antibiotic 

(100 µg/ml of Ampicillin, 50 µg/ml kanamycin or 100 µg/ml nourseothricin). The background genotype 

of S. pombe for mutagenesis and how it was grown is provided in Section 2.1.2.1. 

 

2.2.2 Isolation of plasmid DNA from E. coli 

Strains of E. coli were grown in LB broth containing the appropriate antibiotic at 37
o
C with 

rotation at 150 r.p.m until an O.D.600 = 0.5 was reached. Plasmid DNA was extract from a total of 3 ml of 

the culture using the alkaline lysis method according to (Sambrook et al., 1989). The bacterial pellet was 

resuspended in 100 µl of ice-cold Solution I (25 mM Tris-HCl, pH8.0, 50 mM glucose, 10 mM of EDTA) 

and allowed to sit for 5 minutes at room temperature. To the tube was added 200 µl of fresh Solution II 

(0.2 N NaOH, 1% w/v SDS) and the sample was mixed by gentle agitation of the tube for 10 seconds. 

The tube was incubated on ice for 5 minutes and then 150 µl of ice-cold Solution III (3 M KAc, pH 4.8), 

was added to the tube and the sample gently mixed by vortex for 10 seconds with the tube inverted. The 

sample was centrifuged in an Eppendorf centrifuge at 4°C for 5 minutes at 14,000 r.p.m. The supernatant 

was transfer to 2.0 ml PhaseLock
TM

 microfuge tube (5 Prime GmbH, Hamburg, Germany) and an equal 

volume of phenol / chloroform was added to the tube. The sample was mixed by vortex and then 

centrifuged for 2 minutes at 14,000 r.p.m in a microcentrifuge. The supernatant was transfer to fresh tube 

and two volumes of 100% ethanol (-20°C) was added. The sample was mixed by vortex and allowed to 

incubate at room temperature for 2 minutes. The tube was centrifuged for 10 minutes at room temperature 

to pellet the DNA and the supernatant was removed by pipette and discarded. A volume of 500 µl of 70% 

(v/v) ethanol in H2O (kept at -20°C) was added to the pellet, the sample gently mixed by inverting the 

tube several times, and the DNA pelleted by centrifugation for 5 minutes at room temperature. The 

supernatant was decanted and the sample was dried by standing the tube in an inverted position on a paper 

tissue. The DNA was resuspended in 50 µl of TE buffer, pH 8.0. To each sample was added 1 µl of 10 

mg/ml RNase A (Novagen., UK), and the tube was incubated at 37
o
C for 15 minutes. The concentration 

and quality of DNA was estimated by absorbance measurements at 260 nm and 280 nm using a 

spectrophotometer, and an aliquot of the DNA was routinely visualised for quality by agarose gel 

electrophoresis and stained with SafeView
TM

 (NBS Biologicals, Cambridgeshire, UK).  
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Table 2.4. PCR primers used to amplify transformation cassettes for gene replacement. 
 

 

Primer                Sequence 
 

hid1 with marker gene (forward)  5`-TCTTTACAAATTTCGCAATCATAGATTTTTCATCGTTTTTTTTTTCAGT 

TCACTCTCTGTGTCACTTTGATTGTATGCATACTTTTCACCTTCACATTCG-

CGGATCCCCGGGTTAATTAA-3` 

hid1 with marker gene (reverse)  5`-TCTTTGAACATACAAAACTTAGGATAGTTCAAATTTCTCCATTTCAATT 

     CTTAAAACGGAGATATGCCGCTCAAGCATAATCCTCAAGGAGATTTCAAGT- 

     GAATTCGAGCTCGTTTAAAC-3` 

hid2 with marker gene (forward)  5`-TTGCAGAAGTTGATTGCTCTTATTTCTAAAGGCGTGTTGTGAATTAAAG 

CATTTCCTTTCTCAAATCTAAACTTTCATATTTAGCATTATATTGTAATCA- 

CGGATCCCCGGGTTAATTAA-3` 

hid2 with marker gene (reverse)  5`-ATAATTATTTTAATGAGATATATTAATTTATAAAAATTGCTGCACTTGT 

     AATGCTTATGTACTTTTTTTGCGGTGTGAAAATTCATCAGTATTAAAAACG- 

     GAATTCGAGCTCGTTTAAAC-3` 

hid3 with marker gene (forward)  5`-AAGTATACACATGGACGGGTCTACTAGTACCTAACGATTATCGATGAAG 

CTGCAGCGTTTGTCAAGAGCACTTTACGGTTTTCGCATCTAATTAGAGAAT- 

CGGATCCCCGGGTTAATTAA-3` 

hid3 with marker gene (reverse)  5`-ATAAATTTTCAAAGTAAGATACCATAACATGCATGCAGGGTTTTCTTCA 

     AATATTTTTTAGGACAAAAGTATACTTTAATTTACGCATTGAATTTAAGAA- 

     GAATTCGAGCTCGTTTAAAC-3` 

 

 

 

  



 

2.2.3 Design of primers for amplification of transformation templates 

The primer sequences used to generate the fragments for gene replacement by homologous recombination 

of hid1
+
, hid2

+
 and hid3

+
 were obtained using the primer design strategy specified in (1998) and which is 

publically available as a design tool at http://128.40.79.33/cgi-bin/PPPP/pppp_deletion.pl. Each primer 

was 120 bases in length and contained a 20 base segment corresponding to the cassette sequence flanking 

the marker genes linked to 100 bases of a gene specific sequence (Table 2.4). The marker genes used in 

this project were the auxotrophic gene ura4
+
, the aminoglycoside phosphotranspherase (Kan

R
), and the 

nourseothricin acetyltransferase (Nat
R
) gene. The plasmid templates from which the marker genes were 

amplified were pAW1 containing the ura4 gene (Watson et al., 2008) , the pFA6A-KanMX and pFA6A-

NatMX (Hentges et al., 2005).  

 

2.2.4 Amplification and preparation of templates for gene replacement by homologous 

recombination. 

Isolated plasmid containing the appropriate marker gene was linearized with an appropriate restriction 

enzyme to improve the PCR efficiency. pAW1, pFA6a-kanMX6 and pFA6a-natMX6 were cut with Hind 

III, NdeI and EcoRI, respectively. Each restriction digest consisted of 5 µg of DNA, 1x restriction buffer, 

and 3 Units/µg of DNA restriction enzyme in a total volume of 40 µl. Digests were conducted at 37°C for 

1-2 hours and the efficiency of cutting was determined by agarose gel electrophoresis. 

 

The PCR reactions to amplify the transformation sequences were prepared in following manner for a 

reaction mix of 400 μl: 50 μl of each primer (Stock 5 μM), 200 μl of MyTaq
TM

 HS Red Mix (BIOLINE), 

and 50 μl of plasmid DNA (10 ng/µl) mixed with 100 μl MilliQ
TM

 purified water. This was mixed was 

divided into 8 PCR tubes and the reactions performed using an MJ Research thermocycler with the 

following cycling conditions: an initial heating of one cycle at 95°C for 1 minutes, 34 cycles of 15 

seconds at 95ºC, 15 seconds at 52.2°C the appropriate annealing temperature  and 45 seconds at 72°C. 

The PCR reaction was terminated with elongation at 72ºC for 5 minutes. The PCR products were purified 

according to the method of (1998). An equal volume of phenol/chloroform was added to a phase lock tube 

containing the pooled PCR reaction mix. The sample was mix gently by inverting the tube repeatedly and 

the sample centrifuged at 14,000 r.p.m at room temperature for 5 minutes. The aqueous layer was 

transferred to clean microfuge tube and 0.1 volumes of 0.1 M NaCl and then three volumes of 100% 

ethanol (-20°C) were added to the tube. The tubes were placed at -80°C for two hours in order to facilitate 

the precipitation of DNA. The sample was placed at room temperature for 5 minutes and the DNA 

collected by centrifugation at 14,000 r.p.m at 2°C for 15 minutes. The supernatant was removed and the  
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DNA pellet wash with 500 µl of 70% EtOH (kept at -20°C), mixed gently to minimize perturbation of the 

pellet and then centrifuged at 14,000 r.p.m at 2°C for 5 minutes. The supernatant was removed and the 

sample was allowed to dry for 5 minutes by inversion on a clean tissue. A volume of 13 µl of 1 x TE 

buffer was added to the sample and the DNA was used directly for transformation of S. pombe cells. 

 

2.2.5 Transformation of S. pombe cells 

S. pombe cells were transformed with the PCR fragments using the standard LiAc/TE transformation 

protocol according to (Bähler et al., 1998; Keeney and Boeke, 1994). Cells transformed with fragments 

carrying the Nat
R
 marker were plated onto two YES plates containing 100 μg/ml clonNAT

TM
 (Werner 

BioAgents, Jena Germany) and the plates were incubate at 30°C for 3 days. The colonies were re-streaked 

onto fresh YES plates containing clonNAT, allowed to grow for 3 days. Cells transformed with fragments 

carrying the Kan
R
 marker were plated onto two YES plates and incubated at 30°C for 18 hours. When the 

lawn of cells was visible the plates were replicated onto fresh YES plates containing 100 μg/ml G418  

Sigma-Aldritch Ltd) and incubated at 30°C for 2-3 day. The largest colonies were re-streaked onto fresh 

YES plates containing G418. Cells transformed with fragments carrying the ura4
+
 marker were plated 

onto two EMM plates without uracil and incubated at 30°C for 3 days. The colonies were re-streaked onto 

fresh EMM plates without uracil.  

 

2.2.6 Verification of gene replacements 

The success of mutant strain creation by gene replacement was verified both by genotyping the mutant 

strains and demonstrating the lack of corresponding transcript.  

 

2.2.6.1 Isolation of genomic DNA from S. pombe 

All strains were grown in liquid cultures of 5 ml of YES to late log-phase, and 3 ml of cells were 

harvested by consecutive centrifugation in a microcentrifuge spun at 6,000 r.p.m for 5 minutes. The 

supernatant was removed and the pellet was washed in 1 ml of sterile distilled H2O containing 0.1% (w/v) 

Sodium azide. DNA was isolated from cell using the Wizard
TM

 Genomic DNA isolation kit according to 

manufacturer’s instructions (Promega). In brief, the solution was centrifuged at 6,000 r.p.m for 2 minutes 

to pellet the cells and the supernatant was removed. The cells were resuspended thoroughly in 300 μl of a 

buffer containing 50 mM Na2HPO4, 11.5 g/l  citric acid, 40 mM EDTA, 1 M sorbitol, and  0.1 mg/ml 

Zymolyase
®
 20T (Amsbio) and the tubes incubated at 37°C for 30 minutes to digest the cell wall.  After 

cooling the tubes to room temperature (~ 2 minutes), the cells were again pelleted by centrifugation in 

microfuge at 13,000 r.p.m for 2 minutes, and the supernatant discarded. Next, 300 μl of Nuclei Lysis 

Solution was added to the tubes, the pellets were resuspended by gentle mixing and 100 μl of Protein  
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Table 2.5. Primer pairs for verification of hid+ replacement with marker gene. 
 

 

Primer Name          Sense Primer (5′-3′)   Antisense Primer (5′-3′)  
 

Internal cDNA primers 
hid1         TTTAGGAACGCGGTTTTACG   TAACGCGCATTTTGTAGTGG 

hid2         AAAGCCAACAAAACGCAAGT      TAACGCGCATTTTGTAGTGG 

hid3         CGCATTTGCCTTTTTATCGT   TTATTCTATTATTCGCCTCCAGCAAGTT 

 

External hid gene primers   
hid1         CCTATGCTGCATCTTTGCTT   GCGAAGCATTATTTGTTTGG 

hid2         ATCAATAACCGCTTTTGCCA   AATGCTCACCGCAAGAAACT 

hid3         TTTTCCTTACCCTGCCTCCT   AAGCTAGTGACAAGGTTGGAGC 

 

Marker gene primers 
pAW1 (Ura4

+
)       CAGCTAGAGCTGAGGGGATG    AACATCCAAGCCGATACCAG 

pFA6a-kanMX6      TTATGCCTCTTCCGACCATC    ATTCCGACTCGTCCAACATC 

pFA6a-NatMx6      ACTGGATGGGTCCTTCACC    CAGGGCATGCTCATGTAGAG 

 

 

 

  



 

Precipitation Solution was added. The tubes were vortexed vigorously for 20 seconds and the tubes 

incubated on ice for 5 minutes. After centrifugation for 2 minutes and the supernatant containing the 

DNA was transferred to a clean 1.5 ml microcentrifuge tube containing 300 μl of isopropanol at ambient 

temperature and gently mixed by inverting the tubes until the DNA precipitate became visible. The DNA 

was collected by centrifugation, the supernatant was removed, and the pellet was washed with 300 μl of 

room temperature 70% ethanol by inverting the tubes several times. The DNA pellet was recollected by 

centrifugation for 2 minutes, the ethanol was discarded, and the pellet was allowed to dry by leaving the 

tube inverted on clean absorbent paper for at least 10 minutes. The DNA was dissolved in 50 μl of DNA 

Rehydration Solution to which was added 1.5 μl of a 1 mg/ml RNase Solution and the tubes incubated at 

37°C for 15 minutes. Finally, the DNA was left to rehydrate overnight at 4°C. 

 

2.2.6.2 Mutant genotyping and expression analysis by PCR 

Four sets of primers were created to verify replacement of the endogenous hid gene by the selectable 

marker gene: a primer pair flanking the complete insertion site, two pairs of primers consisting of 

genome-specific and marker specific oligonucleotide to amplify the junction regions at both ends, internal 

cDNA primers to demonstrate removal of the hid gene, and a primer pair for marker gene insertion. All 

primers were designed online using the Primer3 program 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi) and the S. pombe gene sequences from 

Pombase as templates. The list of primers is given in Table 2.5. PCR was conducted using 10 ng of 

genomic DNA as described in Section 2.1.2.6. Total mRNA isolation and RT-PCR were conducted as 

described in Sections 2.1.2.2 to 2.1.2.4. The success of PCR reactions was determined visually by agarose 

gel electrophoresis.  

 

2.2.6.3 Transmission electron microscopy 

 The protocol for fixation by Bordeaux Imaging Center in brief the cells for all strains were grown 

overnight in 5 ml liquid cultures under standard conditions. The next day the cells were diluted to 5x10
5
 

cells/ml in fresh YES media and grown to a cell density of 5x10
7
 under standard conditions at which point 

they were harvested. 1 ml of culture was centrifuged at top speed in a microcentrifuge to collect cells. The 

supernatant was removed to leave a paste of cells at the bottom. The cells were prepared for TEM using a 

standard protocol developed for budding yeast. The cells were subjected to freeze substitution with on a 

Leica AFS2 leica with 1% OsO4 in acetone. The substituted cell mixture was washed 4 times with acetone 

kept at ambient temperature. The cells were impregnated with increasing proportions of EPON resin as 

follows: 30 % EPON in acetone for 12 hours, 66 % EPON in acetone for 8 hours, 100 % EPON for 12 

hours, and 100 % EPON for 10 hours. The cells in resin were   
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Table 2.6. Primer pairs use to determine expression of genes correlated to the hid genes. 
 

 

Primer Name         Sense Primer (5′-3′)     Antisense Primer (5′-3′)  
 

hid1, positively correlated 
SPAC27E2.09      ACCAAACTTGTCGAGCCCTCTC    ACAACTGCTTGATCGACCTTCC 

SPAC13C5.06c     TGGCCGGTGTAGTCAATTATGC   AACAGGTTTCTGCCCTTGACAG 

SPAC30D11.08c     ACGGCACGAGAACTAAATCTGTC   TGTCAACCAGTTGGGAGATCGG 

SPAC29E6.01      TGTTTCAGGCGGTTACGATGGC   TACACAGTGTTGCTCGCCAGTG 

SPAC29B12.07     CCCAAACCAAATTTGCCGGAGAC   TGGGAGCCTCAACTTCCAAAGG 

 

hid1, negatively correlated 
SPAC27E2.09      CGTCGTCGTGTCTTCGTTTGTG   AATGAGACCACCGACAGTAGCG 

SPAC9G1.11c      GCATGCCATTCGCGATTGTTGG   AACGACCCTACCATCAGGAGTACG 

SPCC338.07c      ACGATTGGAACGTGCTGAGAAGC   ACTTTACCGGCATACCGTCCTC 

SPBC776.04      GCAGTCATTCCAATTGCTGCTATG  ACGCAGATCGACATGACAATAAGG 

 

hid2, positively correlated 
SPAC19B12.08     TGCTCGATTAAGTGATCAGAACCC  TCCATTCCTGGCAACATAAACGTG 

SPBC29A3.08      CCCTTGGACGTTCTTCTTCTAACC  ACGTAGGGCGAGAGATTGATGG 

SPCC1235.08c     ACATTCAGGGTCCGCTTATCATGC  TCAGAAAGAAGCATTCGCTTGACC 

SPBC6B1.05c      AGTGGCAAGGAATTTGCTGTCG   TGCCTTTGGCAACTTTCGTTTGC 

SPAC4D7.11      CAAGACCCTACAGTTCTCTTGCTG  AGCGGTAGAGCGTTTAACTGAGAG 

 

hid2, negatively correlated 
SPAC17H9.11      TACTGGAGACCAAGTGCTACCC   CTTTGTGCACCTGCGACACATC 

SPBC1347.02      TGGAATGCAAGAAGGCGGTGAG   AATGCTCTGGTTGCCGTAAGCC 

SPAC3H1.07      TGTTGACGCTTGCGATCCCATC   TGCCTCACGGAAAGTCAAACCG 

SPBC19C2.03      TGCGGAGCGCGTAATACAATCC   TAACACGATGCCCACACTCTCG 

SPCC285.12      AGGAACAGCTTCGCAATCCTGAG   TGTTCCACGAACGACTACAAGACC 

SPAC23A1.10      GTGATGCTTGCATTGCTAAGATGG  CAGTGAAAGCTTCAACACACATGG 

 

hid3, positively correlated 
SPAC17C9.07      TCGTGGGAGCTGTCACTCTATG   GCTTTCTCATGTACGTGCCAACC 

SPAC23D3.13c     ATTCGTCCCATTCTGCAAAGCC   TCCGCTCACTGACTTATCTGCTAC 

SPBC1604.21c     TTCCGGAAACACTTGGTGCTTG   CTTCAACGTCTTCACCGTTGGC 

SPAC1002.03c     GTAGAGCCGCTGAACTTACACG   TCCAGAAGCGTTCTTGCCAATC 

SPAC21E11.08     TCCTGCCTGTCCTTTGTTGACC   TGTCGGCTTTATTGTGACTAGCG 

SPAC22F8.08      GTGATCCACAATTGCGCTCATGG   AGCTGGGAGAGTTCTCACTACG 

SPAC23G3.08c     ACCCGAGAGACGATGGCTTTAC   AACCTCGTCCCAGGATGATTCG 

SPACUNK4.07c     TGTAGATTACGCGGCTTGTTGG   CTTCGGCTTGTTGTCACGGAAG 

SPCC1322.12c     GCCAATGACGGAGGAGTTAAGC   AACCCGAACCTCCAGTGGAATG 

SPCC962.03c      ACATTCCGCAGTTGTCACTCTTC   TTTCGACACGCACACTCAGGAC 

SPCC188.08c.1     AGATTTCATGGTCACGGGTGAAAC  GTAAAGCGCGTCGCAATTCCTC 

SPCC188.08c.2     ACGGTACATTGGCTTTGGATCGTG  GCACGGTCGAGTATATTCGGCTTC 

 

hid3, negatively correlated  
SPAC57A10.14.1     CCTGCTTCTCTTGCCGGTATTTC   AGCATTCTTGTGGACTGTTTGGG 

SPAC31A2.13c.1     CGAATTGATCGGGCTACTGAAAGC  CCTACGATTGCCAGCACCATTG 

SPBC887.05c.1     TTCGACAGTCCTTGCCGTTGAC   AGCAACGTGATCAACACGAACC 

  

 

  



 

polymerised in 200 μm flat molds at 60°C for 24 hours. The blocks were cut using a Leica UC7 

microtome and the slices incubated in a mixture of lead citrate/uranylacetate in order to increase contrast. 

Cells were visualised on a Tecnaï Spirit 2 FEI operating at 120 kV. 

 

2.3 Characterisation of gene expression 

2.3.1 Preparation of material and isolation of mRNA 

The strategy for combining the various mutant genotypes to yield 3 biological replicates for wild-type, 

negative control and hid1Δ and hid3Δ strains is given in Chapter 4. In brief, cells for each strain were 

grown in 50 ml volumes of YES at 30
o
C until each culture had reached a final cell count of 5 x 10

7
 

cells/ml. The hid3Δ mutants required nearly 2 hours more growth time than other genotypes to reach this 

cell number. Cells were harvested by centrifugation for 5 minutes at 6,000 r.p.m at 4
o
C and immediately 

frozen in liquid N2. Frozen cell samples were combined at the step of homogenization to yield three 

independent biological replicates each containing a mixture of two mutant or control genotypes. Three 

independent cultures were combined to give each biological replicate of wild-type. Total RNA was 

isolated from ~50 mg of powdered cells as described in Section 2.1.2.2 and quantified and the quality 

determined preliminarily by OD as specified in Section 2.1.2.3. The quality of the total RNA preparations 

was determined using an Agilent 2100 Bioanalyzer located at the CGFB sequencing facility. All samples 

exhibited RIN values greater than 0.9 and so were used for RNAseq and RT-qPCR quantification.   

 

2.3.2 Calculation of gene correlations 

Relative transcript amounts were obtained from the gene expression resource of the Bähler laboratory 

(http://128.40.79.33/meta-analysis/meta-analysis.htm, (Pancaldi et al., 2010). Using Excel, Pearson 

correlation coefficients were calculated pairwise between each hid genes and all other genes over all the 

conditions included within the dataset. The correlation coefficients were ranked in order to reveal those 

genes most strongly correlated in both positively and negatively with each hid gene.  

 

2.3.3 Primer design for quantitative PCR of genes correlated to the Hids  

All primers for quantitative PCR were designed using the QuantPrime program (Arvidsson et al., 2008) 

accessible from (http://www.quantprime.de/). Primer were designed to be suitable for a SYBR® Green 

detection system with a primer length between 20-24 bases, an amplicon size between 60 and 150 bp, a 

primer melting temperature between 61°C and 67°C, and a G/C content between 45% and 55% (Table 

2.6). 
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2.3.4 Gene expression by RT-qPCR 

A quantity of 1 µg of total RNA was reverse transcribed by random priming using the QuantiTect
TM

 

Reverse Transcription kit as described in Section 2.1.2.4. RT reactions were diluted to 10 ng/µl on the 

assumption that the RT reaction was 100% efficient. PCRs were run in 20 µl volumes containing 1 x iQ 

SYBR Green Supermix (BioRad Ltd.), 10 µM of each sense and antisense primer, and 10 ng of cDNA. 

Reaction mixes were loaded into hard-shell, 96-well PCR plates (BioRad) and sealed with Microseal® 

optically clear sealing film (BioRad Ltd). PCR was performed on a CFX96™ Real-Time PCR Detection 

System (BioRad Ltd). The PCR cycle protocol consisted of an initial denaturation step at 95°C for 3 

minutes, followed by a 40-cycle amplification sequence of 94°C for 15 seconds, 60°C for 10 seconds and 

72°C for 30 seconds. After a final denaturation step at 95°C for 10 seconds, the melting curve was done 

between 65°C and 95°C in steps of 0.5°C. 

 

2.3.4.1 Analysis of RT-qPCR data 

The comparative threshold (Ct) method was used to determine differential gene expression between 

mutant and wild-type (Schmittgen and Livak, 2008). The reference gene used was act1. The mean value 

for 3 biological replicates was used to calculate 2
ΔCt

 for a biological sample as long as the Ct values for all 

three replicates were within 1 Ct value of the mean. Reactions were not included within the data analysis 

of the melting curve properties were abnormal. All data was subjected to quantification by LinRegPCR 

(Ramakers et al., 2003), a quantification method based on extrapolating the initial fluorescence of the 

reaction from the fluorescent amplification profile. Only samples reaching the plateau phase of 

amplification and having at least four points with which to calculate the slope of the extrapolation line 

were included in the analysis.  

 

2.3.5 RNAseq and differential expression analysis 

Total RNA as specified in Section 2.3.1 was depleted of ribosomal RNAs prior to creation of the RNAseq 

libraries. RNAseq of hid1Δ::natMX6 and hid3Δ::natMX6 and corresponding vector controls (VCN) was 

performed at the CGFB on an Illumina MySEQ
TM

. RNAseq of hid2Δ::ura4
+
 and associated vector 

controls (VCU), and of wild-type and hid3Δ::natMX6 (intron expression analysis) were conducted by 

GeT-Biopuces (Toulouse, France) on an ion torrent™ system (life technologies). Reads were aligned to 

the S. pombe genome obtained from Pombase (www.pombase.org) using TopHat v 2.0.11 (Trapnell et al., 

2009) and differential gene expression between samples was performed using Cufflinks v 2.2.1 (Trapnell 

et al., 2012). Reads aligning to specific regions of the genome were visualized with IGV Viewer using the 

BAM file outputs of reads yielded by TopHat. Comparative analysis of biological samples by Principal 

Component Analysis was done using the entire gene output from CuffNorm. Cuffdiff was employed to  
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obtain differential gene expression ratios with loci referenced to the common S. pombe transcriptome file 

yielded by Cuffmerge to provide gene identification. The software packages for conducting the 

differential expression were located on the server of CBiB at the University of Bordeaux’s Centre for 

Functional Genomics.  

For GO analysis of transcriptomic data, a file was used which had the sum of all transcripts identified by 

the CuffDiff software (6877 genes). The DE genes for samples hid1 and hid3 were placed into a file 

containing 2 columns - one with the gene identifier and another with designation if the gene was UR or 

DR. Data for both genotypes were submitted together to GoMiner web server 

(http://discover.nci.nih.gov/gominer/GoCommandWebInterface.jsp). The settings used were data course 

Pombase.org, organism S. pombe, 100 randomisations, 5-500 being the size of the category. Analyses for 

Biological Process, Cellular Component and Molecular Function were done separately. 

 

2.3.6 Small size selected RNAseq and novel ncRNA transcript detection 

Total RNA was extracted as specified in Section 2.3.1 from wild-type and hid3 mutants and depleted of 

ribosomal RNAs. Size selected libraries with mean RNA fragment sizes ~80 nt were created by GeT-

Biopuces (Toulouse, France) and sequenced on an Ion Torrent™ system (Life Technologies). Reads were 

mapped to the S. pombe genome version ASM294v2.27 using Tophat with the library type chosen as 

strand specific, maximum intron size of 800 bp and no transcriptome annotation. The Cufflinks pipeline 

was used to find novel transcripts using the same genome build, but without the gtf annotation file and a 

maximum intron size of 800 bp. Transcript.gtf files from wild-type and mutant were merged with 

bedtools to obtain one file covering all regions containing any evidence for transcription. The mean 

FPKM count for merged features, strandedness and the initial names of transcripts were preserved. 

Transcripts longer than 45 nt (the size of the smallest snoring annotated for S. pombe) and FPKM higher 

than 120 were manually inspected in IGV, and only transcripts with consistent signals for the start and 

end of transcription were considered as real. This process resulted in 36 novel ncRNAs. 

 

2.3.7 snoRNA prediction from novel ncRNA transcripts 

The list of 36 novel ncRNA transcripts identified as expressed in small RNAseq library was used for 

prediction of CD box snoRNAs with the snoscan 0.9b (Lowe and Eddy, 1999). Methylation sites were 

predicted by snoscan using all rRNAs annotated in Pombase. Remaining ncRNAs were used as queries to 

search for orthologs in all Schizosaccharomyces species: japonicus, octosporus and cryophilus employing 

WU-BLASTN with following settings: –hspsepsmax 200, -E 0.01. For those ncRNAs found in all four 

Schizosaccharomyces sp., alignments were build using mafft v7.215 with default settings (Katoh and 

Standley, 2013), folded with RNAalifold and inspected in RALEE (Griffiths-Jones, 2005) for H/ACA  
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box signatures – two hairpins interspaced with H box and terminal ACA box. The rRNA target sites for 

H/ACA snoRNAs were predicted using RNAsnoop (Tafer et al., 2010). RNA structures were drawn using 

VARNA applet v3.93 (Darty et al., 2009). 

 

2.4 General Data Analysis.  

Principal Component Analysis and other statistical analyses were performed in R using various work 

packages (Lê et al., 2008). Specific aspects of data analysis and how they were performed are described in 

the appropriate chapters. 
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Chapter 3 

Production of hid mutants of S. pombe 

 

3.1 INTRODUCTION 

A core aim of this project is to determine the function of the S. pombe orthologues of the HID1 gene from 

humans. The biological function of the HID1 gene remains unknown, although it has been implicated as a 

neuropeptide transport in C. elegans  (Yu et al., 2011). It is known that HID1 in humans and other 

animals is present in the membrane of the Golgi apparatus in the medial- and trans-face, so it could be 

implicated in peptide excretion. Interestingly, the HsHID1 gene has been shown to be lacking or its 

expression is down-regulated in a number of different cancer types, and, thus, it has been described as a 

class II tumour-suppressor gene called Down-regulated in Multiple Cancers-1 (DMC1) ((Harada et al., 

2001). In order to establish the biological role of HID1/DMC1, we are using S. pombe a model organism. 

S. pombe is particularly attractive for use as a model organism for studying Hid function. S. pombe only 

possess Hid and not Dym, thus Hid function can be studied without the potential complication of 

functional complementation. In addition, it is unique in that it has three paralogues of HID1, that we have 

termed hid1 (SPAP27G11.12), hid2 (SPBP19A11.07c), and hid3 (SPAC17A5.16). It is possible that 

some aspects of function may be partitioned amongst the paralogues. I am involved in a multidisciplinary 

approach based on holistic profiling technologies in order to find the processes in which the Hid proteins 

function. A critical aspect of this work is to create the mutant strains, in which the proteins are missing to 

alterations in biological processes from growth responses to gene expression to be monitored.  

This chapter describes production of the mutants, whereby each of the hid genes has been eliminated 

using one-step gene disruption methods based on homologous recombination (Baudin et al., 1993; 

Grallert et al., 1993; Grimm and Kohli, 1988; Rothstein, 1983; 1998). All three hid genes were deleted 

individually as well as certain combinations of double mutants. Replacement of the target hid gene with a 

selectable marker was determined by both PCR-based genotyping and RT-PCR. Initial characterization of 

the growth properties of the mutants revealed differences to the growth of wild-type for strains lacking 

hid2 and hid3, but not hid1. There appeared to be no phenotypic difference in the mutants regarding cell 

size or shape, but the Golgi apparatus of the strains lacking hid3 appeared to be dramatically modified in 

structure. 
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Figure 3.1: Diagram illustrating the process of mutant creation through gene replacement. The plasmids 

pAW1, pFA6a-KanMX6, and pFA6a-NatMX6 were used as templates for amplication by PCR of DNA fragment 

containing the appropriate selectable marker to be used for transformation. DNA fragments were produced in mass 

using 8 x 50 μl reactions, and the reactions pooled and the PCR products gel-purified prior to transformation. 

Transformation was carried out as described in Bähler et al. (1998).  

 

 

 

 

Figure 3.2. Location of primers for confirmation of gene replacement by PCR. Conceptual model  showing the 

location of primers relative to the integration site of the selectable marker gene within the genomic DNA. The 

external primer pair F1/R1 produces a fragment proportional to the size of the selectable marker gene, whereas 

primer pair F2/R2 confirms the presence of the selectable marker gene or absense of the target gene. Combinations 

of primers were used to confirm the presence of appropriate junctions.  



 

3.2 RESULTS  

3.2.1 Creation of mutants by gene replacement 

Gene deletion strains of S. pombe were produced by homologous recombination according to (Bähler et 

al., 1998). PCR fragments for transformation were generated using 120-mer oligonucleotides that 

contained 100 bp of sequence homologous to the flanking regions of the target hid gene and 20 bp 

corresponding to the flanking region of one of the selectable marker cassettes in the plasmids pAW1 

(ura4
+
), pFA6a-KanMX6 or pFA6a-NatMX6. Replacement of a gene by ura4

+
 would allow growth in the 

absence of uracil on minimal medium, since the wild-type strain carried the ura4-D18 mutation. The 

other two selectable markers confer resistance to antibiotics, thus selection was possible on standard YES 

media. The PCR products used for transformation were of sizes ~2.0 kb for the Ura4
+ 

gene, ~1.6 kb for 

the aminoglycoside 3′-phosphotransferase (Kan
R
) gene, and 1.4 kb for the noursethricin acetyl 

transferase (Nat
R
) gene. Production of the proper PCR fragments was first verified by agarose gel 

electrophoresis prior to continuing with product purification and transformation (data not shown). The 

process of mutant creation through gene replacement is outlined in Figure 3.1.  

 

3.2.2 Verification of gene deletion and replacement by PCR-genotyping and RT-PCR 

The success of mutant strain creation by gene replacement was verified both by genotyping the mutant 

strains and demonstrating the lack of expression of the corresponding transcript.  

 

Genotyping by PCR was conducted on DNA isolated from 1 ml of a standard overnight culture grown in 

YES medium. Replacement of the target gene by the appropriate selectable marker was confirmed by 

both detection of the marker gene and loss of the target gene. This was accomplished through a set of 5 

primers constructed for each of the target hid loci (Figure 3.2). An external primer pair F1/R1 was 

genomic sequence and it was used to estimate the size of the modified locus containing with the 

selectable marker gene. Two different pairs of internal PCR primers F2/R2 were used to detect the lack or 

presence of the marker gene or the endogenous hid gene, respectively. The external primer pairs F1/R2 

and F2/R1 were used to detect the presence and determine the correct amplicon size of the junction 

between the marker gene and genomic DNA. 

 

The gene-specific internal primers were also suitable for use to detect transcript by RT-PCR of isolated 

RNA. Routinely, total RNA was isolated from aliquots of the same cultures used for DNA isolation as 

described in Chapter 2.  
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Figure 3.3: Molecular characterization of hid1Δ::natMX6 strains. All replacement mutant strains were given 

number designations (iso1, iso2 iso3) according to the order they were selected from plates for subsequent 

genotyping. (A) Agarose gel showing amplification of sequences at the hid1 locus. The primer designations are 

given in Figure 3.2. (B) Agarose gel showing the lack of amplification of hid1 by RT-PCR. The primers pair used 

were F2/R2 specific for each gene. The size of all amplified fragments were determined using the Hyperladder™ 

1kb (Bioline, BIO-33053) size markers, but the ladders were not included in the images shown. (C) Agarose gel 

showing the amplification of the individual hid
+
 genes from wild-type DNA. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Molecular characterization of hid2Δ::kanMX6 mutant strains. The details for the figure are the 

same as described in the legend to Figure 3.3, except that they apply to the hid2Δ mutant loci. (A) Agarose gel 

showing amplification of sequences at the hid2+ locus. (B) Agarose gel showing lack of transcript in hid2Δ mutant 

strains. 
  



 

3.2.3 Construction of single mutants 

3.2.3.1 Confirmation of strains lacking Hid1 

The hid1Δ knockout strains were created using the NatMX6 cassette of pFA6a-NatMX6. PCR screening 

for the presence of the Nat
R
 gene suggested three positive strains that were taken on for further molecular 

analysis. Each strain showed the presence of bands with primers specific for the Nat
R
 gene (Figure 3.3). 

The primer pairs F2/R2, F1/R2, F2/R1 and F1/R1 would yield fragments of 495, 1378, 1106 and 1989 bp, 

respectively. Amplification of the hid1 gene was negative on the same DNA samples, thus showing lack 

of the hid1 gene (Figure 3.5A). 

 

The lack of amplification of mRNA by RT-PCR supported the conclusion that gene replacement was 

successful. hid2 and hid3 continued to be expressed in the hid1Δ strains indicating that these loci were 

unaffected. The expected fragment size in the cDNA for hid1
+
 was 295 bp and those for hid2

+
 and hid3

+
 

were 448 and 435 bp, respectively. However; the expected fragment size in DNA for hid1
+
 was 460 bp 

and those for hid2
+
 and hid3

+
 were 531 and 487 bp, respectively (Figure 3.5B). 

 

3.2.3.2 Confirmation of strains lacking hid2 

The hid2Δ knockout strains were created using the heterotrophic marker ura4
+
 amplified from the plasmid 

pAW1 (Watson et al., 2008). PCR screening for the presence of ura4 gave five potential mutant strains 

that were then analysed. Although each strain no longer required uracil for growth, only one strain 

showed amplification of sequences for replacement of the gene by ura4
+
 and this was hid2Δ::ura4

+
 

(Figure 3.4A). The negative strains are discussed below. For hid2Δ::ura4
+
, the primer pairs F2/R2, 

F1/R2, F2/R1 and F1/R1 were expected to yield PCR fragments of 587, 1777, 1494 and 2684 bp, 

respectively. Construction of hid2Δ strains was also done using the KanMX6 cassette for PCR 

amplification of transformation product. Three out of seven colonies selected were positive for insertion 

of the Kan
R
 gene at the hid2 locus (Figure 3.4A). For hid2Δ::kanMX6 strains, the primer pairs F2/R2, 

F1/R2, F2/R1 and F1/R1 were expected to yield PCR fragments of 433, 1651, 1075 and 2293 bp, 

respectively. Amplification of the hid2 gene was negative for hid2Δ::ura4
+ 

and the hid2Δ::kanMX6 

strains showing lack of the hid2 gene.  
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Figure 3.5. Molecular characterization of hid3Δ strains. The details for the figure are the same as described in 

the legend to Figure 3.3, except that they apply to the hid3 mutant loci. (A) Agarose gel showing amplification of 

sequences at the hid3+ locus. (B) Agarose gel showing lack of transcript in hid3Δ mutant strains. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Molecular characterization of Vector Control strains. Strains were treated as described in the legend 

to Figure 3.3. Abbreviations: VC, vector control; N, K and U stand for Nat
R
, Kan

R
 and Ura4

+
, respectively. The 

number represents the order by which the colony was selected. (A) Images of agarose gels showing amplification (or 

lack of) at mutant loci. Only characterization of the hid1
+
 locus is shown for hid3::kanMX6 

+
 natMX6. In the lane 

hid, the fragment shown corresponds to the gene unsuccessfully replaced. (B) Agarose gels showing RT-PCR test 

for expression of all three hid genes in VC strains. 

 

  



 

RT-PCR showed that hid2 transcript was missing in hid2Δ mutant strains, but that hid1 and hid3 were still 

expressed (Figure 3.4B). 

 

3.2.3.3. Confirmation of strains lacking hid3 

With ura4 replacement initially unsuccessful, hid3Δ mutant strains were created using both the natMX6 

and kanMX6 cassettes (Figure 3.5A).  It should be noted that late on in the project, it was possible to get 

hid3Δ::ura4
+
 strains, but these were very slow growing and the colonies selected were very small even 

after 5 days of growth. These mutants have been included in Table 3.1. 

 

For hid3Δ::natMX6 strains, the primer pairs F2/R2, F1/R2, F2/R1 and F1/R1 were expected to yield PCR 

fragments of 495, 1293, 1046 and 1844 bp, respectively. For hid3Δ::kanMX6 strains, the primer pairs 

F2/R2, F1/R2, F2/R1 and F1/R1 were expected to yield PCR fragments of 433, 1383, 1128 and 2078 bp, 

respectively. Amplification of the hid3 gene was negative for all hid3Δ::natMX6 and hid3Δ::kanMX6 

strains showing that it had been deleted successfully using both types of selectable markers. Again, RT-

PCR showed that transcript, this time in hid3Δ mutant strains, was missing, but that hid1 and hid2 were 

still being expressed (Figure 3.5B). 

 

3.2.4 Identification of Vector Control strains  

 

Often during the molecular characterization of potential replacement mutants, strains would be observed 

with the properties of the selectable trait, such as growth without uracil upon transformation with the ura4 

marker or the appropriate antibiotic resistance. Upon analysis by PCR, these lines showed inverse 

properties to expected mutants. These lines showed PCR fragments using F1/R1 primer pairs 

corresponding to sizes containing the endogenous gene and that gene-specific primer pairs F2/R2 showed 

that endogenous genes were still present. However, these lines provided correct size fragments for the 

marker-specific F2/R2 primer pairs, indicating that the marker gene was present, but fragments 

corresponding to the junction primer pairs F1/R2 and F2/R1 were not obtained. I obtained VC strains for 

each of the selectable markers used in the study (Figure 3.6). There were a few instances whereby the 

transformation to create a second replacement mutation within an already mutant genotype resulted in a 

mutant expressing a second marker, such as is shown for the hid3Δ::kanMX6 + natMX6 strain (Figure 

3.6). In the case shown, I attempted to replace hid1 with NatR (see creation of double mutants below). 

 

Each of the VC strains was tested by RT-PCR to check if expression at any of the three hid loci was 

affected during the transformation (Figure 3.6B). Each vector control for the single markers, that is   
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Figure 3.7. Molecular characterization of double mutant strains. Strains were grown as described in Figure 3.3 

and DNA and total RNA isolated from the same cultures. Panels A, C and E show PCR characterization of locus of 

the second replacement. The primer combination F1/R1 was not done for the series hid3kanMX6 iso1 

hid2::natMX6 mutants. The lane ‘Hid’ shows the presence or absence of the endogenous gene at the second mutant 

locus. Panels B, D and F show the RT-PCR expression analysis of all three hid genes in the double mutants. The 

fragment sizes are the same as for the single gene-replacement mutants. 
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Figure 3.8. Visible phenotype of cells. Mutant strains were grown in duplicate in liquid YES for ~ 16 hours at 30
o
C 

with shaking at 200 r.p.m to an approximate cell count of 5 x 10
7
 cells/ml. Images were taken of cells using a Lieca 

light microscope with a 100x oil-emersion lens. Five images were taken of each strain and one image of ten selected 

at random. The largest group of cells was selected to show. The scale bar in wild-type image is represents 10 m. 

 

 

 

 

 

 

 

 

  

Figure 3.9 Size properties of mutant strains. The mean length (A) and the mean diameter (B) were determined at 

40x resolution using a 10 mm ruler at the same magnification. The mean number of pixels for 10 mm was 

determined from 10 independent images of the ruler. This value was used to set a scale from which the dimensions 

of cells were determined. All values were determined using ImageJ (Schneider et al., 2012). The solid bars represent 

the pairs of samples for which statistical analysis were conducted by Student’s t-Test (n=30). No still statistical 

significance is shown.  

  



 

VCU1, VCN1, VCK1 and so on showed transcript for each of the hid genes. As expected, VC strains 

from double mutant construction showed expression of hid genes, except for that corresponding to the 

mutant background used for the transformation. 

 

3.2.5 Construction of double mutants 

The strategy to create double and triple mutants was simply to replace a second hid gene by homologous 

recombination in an already existing mutant background, but using a different selectable marker. This 

strategy has been shown to work well with S. pombe to create multiple mutations (Hentges et al., 2005). 

Thus, for example, the mutant hid2Δ::ura4
+
 was transformed with a PCR product derived from the 

natMX6 cassette using primers with hid1 homologous adapters as for the creation of hid1 replacement 

mutants. Using antibiotic resistance for selection of the second mutant locus, I successfully isolated 

multiple strains for each combination of double replacement (Figure 3.7). The each double replacement 

strain displayed the correct amplification of products at the second locus as observed for the respective 

single mutant. Gene expression analysis by RT-PCR demonstrated that expression of hid came only from 

the remaining intact locus. Use of ura4 replacement to create the hid1Δ hid2Δ hid3Δ in various double 

mutant backgrounds was unsuccessful.  

 

3.2.6 Initial physiological studies of gene-replacement mutants 

 

3.2.6.1 Morphology of single mutants 

Light microscope images were taken of the mutant strains to see if there were any visible morphological 

differences. Two hid1, two hid3 and one hid2 mutants were compared to wild-type and 

corresponding vector controls at 100x magnification. Nothing regarding cell shape or internal 

compartmentation was obviously different among any of the strains visualised (Figure 3.8). 

 

It was expected that for cultures in log phase where cells are rapidly dividing, there would be some size 

differences due to the stage of development, such as newly divided daughter cells or elongated cells just 

entering mitosis. Therefore, the average cell length and diameter for each strain was determined from the 

images (Figure 3.9). For the cell size measurements, a second vector control for ura4
+
 was included. The 

mean cell length varied between 9.5 and 17 m (Figure 3.9A) and the mean cell diameter varied between 

4 and 5.5 m (Figure 3.9B).  
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Figure 3.10. Growth curved for hid1::natMX6 and hid3::natMX6 strains. Cells were grown in liquid culture 

with a starting cell density of 5x10
5
 cells/ml. Aliquots were taken every 2 hours and the cells counted using a 

hemocytometer under a microscope. (A) The hid1::natMX6 strains. (B) The hid3::natMX6 strains. (C) 

Representation of average growth curves calculated from the data shown in (A) and (B) with the vector control 

strains added. In (A) and (B) the error bars represent the variation from duplicate cultures for each strain. In (C), the 

hid1 profile was produced from those of hid1iso1 and hid1iso3 shown in A with error bars representing the sd of 

n=4. Error bars for VCN represent high and low values obtained from two independent vector control strains. 

 

 

 

 

 

 

 

Figure 3.11. Growth profiles of hid2 mutant strains. Cells were grown as described in Figure 3.10. Cells were 

counted automatically using a Cellometer mini™ (Nexcelon Inc.). (A) hid2::ura4
+
 strain and VC containing ura4

+
 

(VCU). (B) hid2::kanMX6 strains and VC containing kanMX6. Each strain was done in duplicate (C) Showing the 

average (line) ± sd (error bars) of n=4 of hid2 iso2 and hid2 iso3 strains. The data for wild-type and VCK1 strains 

is the same as that shown in (B). 

 

  



 

Although there appear to be substantial differences between strains (see Figure 3.9A hid1::natMX6 iso1 

vs. wild-type or hid3::natMX6 iso1 vs. wild-type), these can only be considered as trends, since there 

were no significant differences between mutant and corresponding vector control strains. In addition, the 

differences were not consistent for the similar mutants. For example, hid1::natMX6 iso3 or 

hid1::natMX6 iso1 showed no statistical difference to wild-type or corresponding vector control strain. 

The lack of difference in diameter among strains was more apparent than for length (Figure 3.9B).  

 

3.2.6.2 Characterisation of proliferate properties. 

All mutants isolated were studied for alterations in proliferation rate. Strains were grown under standard 

conditions of YES medium at 30
o
C with shaking at 200 r.p.m. proliferation was routinely measured as the 

number of cells per unit volume at selected times. Cell counts were initially done using a hemocytometer, 

but then progressed to automated counting in order to increase reproducibility of counts. The growth 

curves for hid1natMX6 and hid3::natMX6 mutants compared to unmodified wild-type and the vector 

control strains are shown in Figure 3.10.  

 

The hid1::natMX6 strains showed similar growth profiles to the unmodified wild-type (Figure 3.10A) or 

the VCN (Figure 3.10N). Although hid1::natMX6 iso2 appeared to exhibit a growth rate greater to wild-

type, this was not seen for either hid1natMX6 iso1 or hid1::natMX6 iso3. In contrast, the 

hid3::natMX6 mutants exhibited consistent delays in growth compared to wild-type (Figure 3.10B) and 

vector control strains (Figure 3.10C), although the overall shape of the profiles were similar to both 

controls. The growth curves for the hid2 mutants are shown in Figure 3.11.  

 

Each hid2 strains appeared to proliferate faster than the corresponding wild-type and corresponding 

vector only control strain. The hid2::kanMX6 also seemed to attain an overall greater cell density after 

24 hours, when the growth curves had leveled off (Figure 3.11B), but this was not seen for the 

hid2::ura4
+
 mutant (Figure 3.11A). It should be noted that the cell densities of the stationary phases for 

the two the cultures shown in Figure 3.10 and Figure 3.11 were approximately 1.6x10
8
 and 1.0x10

8
 

cells/ml, respectively. This difference can be given to use of the two different means of counting the cells. 

With visual counting of cells newly divided cells or two cells in a v-shape could be counted as separate 

cells. Typically, these types of cells were counted as single cells using the automated system, thus the 

total cell counts were usually less. The positive aspect was that the automated system was superior in 

reproducibility of counts. 
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Figure 3.12. Transmission electron microscopy of thin layer sections of S. pombe cells. Strains were cultured 

under standard conditions to a cell count of 5x10
7
 cells/ml. The cells were freeze substituted with 1% OsO4 in 

acetone. The cells were impregnated with EPON resin were cut using a Leica UC7 microtome. Slices 

were treated with lead citrate/uranylacetate for contrast and were visualised on a Tecnaï Spirit 2 FEI 

operating at 120kV. 

  



 

The proliferate properties of the double mutants were also determined, but exhibited a phenotype of one 

of the single mutants. The hid2::ura4
+
 hid1::natMX6 iso1 was like hid2::ura4

+
 and the 

hid3::kanMX6 iso2 hid1::natMX6 was like the hid3::kanMX6 iso2 and hid3::natMX6 single 

mutants. Interestingly, the hid2 hid3 reciprocal mutants were like the hid3::kanMX6 iso2 and 

hid3::natMX6single mutants too. 

 

3.2.6.3 Preliminary ultrastructural characterisation of the mutants 

Wild-type, VCN, hid1Δ, and hid3Δ were investigated for any cellular abnormalities, particularly to the 

Golgi structure. Wild-type, VCN and hid1Δ appeared to have a normal subcellular physiological 

appearance when compared to other TEM studies on S. pombe (Osumi, 2012). As expected, the shape of 

the Golgi differed from image to image due to the orientation of the cell in the matrix during the freeze 

substitution and at where through the cell the slice was made. Nevertheless, the Golgi was clearly visible 

in a number of cells and was ribbon shaped with multiple cisternae for wild-type, VCN and hid1Δ (Figure 

3.12). The Golgi appeared to be closely related to clear round bodies that are likely to be vacuoles. A 

similar Golgi structure was not visible in cells of hid3Δ. The main structure I could find that resembled a 

Golgi was one elongated ribbon with what appeared to be associated vesicles. Even if this was not the 

Golgi, then the Golgi had been completely disrupted in hid3Δ. 

 

3.3 DISCUSSION 

Conducting a study on the biological function of the Hids from S. pombe rewire the creation of different 

mutant strains . Screening for cellular and biochemical function using post-genomic technologies of 

mutants has potential problems. Expression of heterologous marker proteins may itself have effects on 

metabolism and protein and RNA levels. Thus, in order to compare the effects of missing each Hid, the 

marker selection used would have to be the same. In addition, it would be necessary to have independent 

strains for each locus and selectable marker in order to confirm that any biochemical phenotype would be 

due to the missing protein. However, in order to produce the double and even triple mutants, each hid 

would need to be replaced by a different selectable marker. To compare mutants to wild-type would 

require insertion of the marker at a locus that would not have an effect on phenotype. Therefore, my 

initial intention was to create individual mutants for each hid using each of the three selectable markers, 

and if necessary to create strains where markers were inserted at independent loci. 

It was largely unsuccessful to obtain mutant strains using replacement with the heterotrophic marker ura4. 

It was simply fortunate that I was able to obtain the hid2::ura4
+
 strain. Repetition of the transformation 
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Table 3.1. Mutant strains created during the course of the study, the selectable 

marker and the number of independent isolates. All strains were created from the 

parental genotype h
-
 ade6-M26 ura4-D18 leu1-32 (BP90, McFarlane Collection). 

 

Genotype             Selection   number of isolates 
 

hid1Δ::natMX6         Nat
R 
     3 

hid2Δ::ura4
+
          Ura4

+
      1 

hid2Δ::kanMX6         Kan
R 
     3 

hid3Δ::natMX6         Nat
R      

2 

hid3Δ::kanMX6         Kan
R 
     2 

hid3Δ::ura4
+
          Ura4

+    
 2 

hid2Δ::ura4
+ 
hid1Δ::natMX6   Ura4

+
/Nat

R
   2 

hid3Δ::kanMX6 hid1Δ::natMX6  Kan
R
/Nat

R  
 2 

hid3Δ::kanMX6 hid2Δ::natMX6  Kan
R
/Nat

R   
4 

hid2Δ::kanMX6 hid3Δ::natMX6  Kan
R
/Nat

R   
4 

ura4
+
             Ura4

+ 
    2 

natMX6            Nat
R 
     3 

kanMX6            Kan
R      

1 

hid3Δ::kanMX6 + natMX6    Kan
R
/Nat

R   
1 

 

 

 

 

 

  



 

 protocol several times with ura4 did not give positive mutants. It is clear now why it was difficult to get 

the hid mutants and, particularly the hid3 mutant strains using ura4. Selection on for ura4 integration 

required growth on minimal medium without uracil. It has been shown that hid3Δ strains do not grow on 

minimal medium (Alasmari, 2015), thus isolation of these mutants would not be possible. It is possible 

that the lack of Hid1 or Hid2 may also have metabolic effects that would make isolation of these mutants 

difficult using heterotrophic selection. Selection using resistance to the antibiotics G418 and noursethricin 

was more efficient and yielded mutants for each of the three lines. Although we did experience problems 

with consistent use of the pFA6a-KanMX plasmid to successfully amplify a fragment for transformation 

for the creation of double mutants. Using the gene replacement protocol, I was able to obtain a sufficient 

variety and number of single and double mutant strains to conduct basic physiological and biochemical 

analyses on Hid function. The sensitivity of hid3Δ strains It was also fortunate than in a number of cases, 

I obtained strains where the marker gene had been inserted, but not at the desired locus. These strains 

would be necessary for determining the effects of marker expression on biochemical processes, and could 

be used to indirectly compare mutant strains with untransformed wild-type. A summary of the mutant 

strains produced in this study is given in Table 3.1. 

 

An important addition to the molecular characterization of the mutants was to determine gene expression 

from each locus in the mutant strains. This was less necessary for showing lack of mRNA production for 

a replaced gene, but it was very important to show that expression at the other two loci was not greatly 

affected. Therefore, the conclusions we can make on a mutant pertain to that missing protein and not to 

indirect effects of modified expression at one of the other loci. Even though I did not include hid2Δ 

strains in the post-genomic studies, it was necessary to exclude altered expression at this locus in the other 

mutants. It is interesting to note that there seems to be a trend in the relative levels of transcripts for the 

three hid genes. Transcript amount appears to increase in the order hid1, hid2 and hid3, which is usually 

the most abundant. Although this was not quantitative, the presence of transcript for each gene was 

determined exactly the same way, at the same time and on the same total RNA sample, either wild-type , 

VC or mutants. We cannot exclude the possibility that differences in primer affinity, etc. could be 

responsible for the differences, but these can be verified using RT-PCR and the RNAseq data (see 

Chapter 4). 

 

An initial characterization of the mutants showed viable cell populations with no evidence for 

morphological differences from wild-type or VC strains. These observations were consistent with those 

previously reported from global phenotypic screens (Hayles et al., 2013). Furthermore, Kouranti et al. 

(2010) did not report any growth defect for strains lacking Hid3 (Ftp105).  
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Although the mutant strains were viable, the hid2 and hid3 mutants showed differences in growth to 

both wild-type and VC strains, whereas hid1 mutants did not. It is likely that the lack of Hid3 affects the 

function of the Golgi Apparatus in a way that negatively affects cell division, but not cell growth. Cell 

growth may be delayed, but the cells reach normal size and have a normal morphology. In contrast, the 

TEM shows a dramatic change in the Golgi structure. The hid3 orthologue HID1 of both humans and C. 

elegans has been localized to the medial- and trans-face of the Golgi apparatus and trans-Golgi vesicular 

network (Wang et al., 2011). Therefore, it seems reasonable to conjecture that structure observed is the 

remaining cis-Golgi and that the medial- and trans-Golgi have been disrupted. Interestingly, this is 

similar to the effect of adding the anterograde protein translocation inhibitor brefeldin A (Pantazopoulou 

and Peñalva, 2009)(Ritzenthaler et al., 2002). It is clear that the effects of lacking Hid3 on the Golgi 

structure need further characterization, but I can conclude that such disruption of the Golgi apparatus 

would have profound effects on protein transport and secretion and protein localization. It is known that 

the lack of Hid3 causes mis-localisation of the deubiquitinase Ubp5 from the Golgi apparatus to the 

cytosol (Kouranti et al., 2010), but it is likely that the transport or localization of other proteins besides 

Ubp5 is affected. The positive effect of loss of hid2 was unexpected and the cause of this remains unclear. 

 

In conclusion, I show that normal cell function is altered with removing either hid2 or hid3, but the 

mechanisms by which these proteins maintain normal cell function remain unknown. The collection of 

mutants reported in this chapter will be used to conduct functional genomic studies on gene and protein 

expression in order to determine their cellular functions. 
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Chapter 4 

 

Transcriptional properties of the hid1 and hid3

 mutants of S. pombe 

 

4.1. INTRODUCTION 

This chapter describes part of a multidisciplinary approach to understand the function of the Hid proteins 

making use of the genetic mutants described in Chapter 3. The underlying concept of studying gene 

expression is that either gene expression changes resulting from mutation of an important gene cause an 

altered phenotype or growth patterns, or that mutations affecting growth or phenotype will indirectly and 

subsequently alter gene expression patterns. The benefit of a transcriptomics approach is that 

differentiating between these two possibilities might be possible whereas studying the expression of 

single or a few genes does not give enough information. In addition, it might be possible to uncover 

specific aspects of biological function if specific groups or types of related genes change in similar ways. 

For this study, gene expression was done by the measurement of transcript levels of as many genes as 

possible using the powerful NGS technology of quantitative transcriptomics called RNAseq.  

 

In the past two decades, there have arisen two primary techniques to determine and identify and quantify 

the global transcriptome of cells, tissues and organisms, Serial Analysis of Gene Expression (SAGE) and 

microarrays (Ye et al., 2002). Recently, as a development from high-throughput DNA sequencing using 

NGS technologies, such as pyrophosphate (454) or sequencing by DNA synthesis (Illumina), these 

technologies were applied to the sequencing of cDNA libraries in a quantitative manner call RNAseq 

(Wang et al., 2009). In brief, the process of RNAseq entails converting isolated mRNA into short strands 

of cDNA in libraries that can be sequenced using linked adaptors with specific primers and a means of 

detecting the addition of bases to a growing nucleic acid chain in a sequencing reaction. In all RNA-seq 

technologies, the outputs are millions of short sequences that are quantitatively related to the amount of 

transcript present in the sample. These amounts of “reads” can be compared between samples to quantify 

differential expression of genes similar to the way SAGE was done.  

 

There are now a lot of bioinformatic tools and pipelines used to analyse RNA-Seq data, but the common 

ones are DESeq (Anders and Huber, 2010), DESeq
2 

(Love et al., 2014), Limma (Smyth, 2004), edgeR 

(Robinson et al., 2010)  and Cufflinks (Trapnell et al., 2012). The most commonly used bioinformatic tool  
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to analyse RNASeq data is the Cufflinks pipeline, which was used to analyse the RNASeq data presented 

in this chapter. There are three computational processes that RNAseq data must go through to provide 

data on differential gene expression (DE), alignment of the reads to a reference genome if there is one, 

assembly of reads into a transcriptome comprised of individual genes, and calculation of DE. All 

of these can be analyzed through two tools were development, which are TopHat (Trapnell et al., 

2009) and Cufflinks (Trapnell et al., 2010). These tools are essentially a sequential series of programmes 

designed to accomplish the three tasks mentioned above. TopHat aligns the reads for each individual 

RNASeq sample to the reference genome called mapping. In Cufflinks, the aligned reads for a single 

sample are merged into transcriptome file. In order to compare gene expression, a set of common 

transcripts must be identified and this comes through the programme Cuffmerge. The programme 

Cuffquant then takes the number of reads for each sample and quantifies them according to the common 

transcripts. At this point, the quantified transcripts for each sample can be statistically normalized for 

multivariate statistics, such as PCA, or it can be fed into Cuffdiff to determine DE genes between each set 

replicate samples. The Cufflinks pipeline has been used to report many high-resolution transcriptome 

studies (Graveley et al., 2011; Lister et al., 2011; Mizuno et al., 2010; Twine et al., 2011). Once the group 

of DE genes is obtained, they can be studied for biological function like other transcriptomic tecnologies, 

such as through individual inspection of genes or through groups of gene using Gene Ontologies (Harris 

et al., 2004).  

 

The work of Chapter 3 showed that strains of S. pombe lacking hid3 grow more slowly and look like they 

have a structurally disrupted Golgi apparatus. The effects of missing Hid3 would start once the daughter 

cells divide, if not before, and remain for the duration of cell life. This would represent a prolonged 

alteration over the entire population, and so the effects would likely show up in a change in gene 

expression to counter the situation. I employed the transcriptomics approach to determine how hid3Δ cells 

cope with this situation by changing their gene expression. By being able to compare gene expression 

with both negative controls expressing the marker gene and with hid1Δ, which does not show growth 

defects, I was able to determine that hid3Δ cells appear chronically stressed. This results in the induction 

of transcription factors (TFs) and plasma membrane protein genes to try to alleviate or cope with the 

stress. The alteration in gene expression indicates that slow growth may be due to a partial quiescent cell 

state brought on by stress. 
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Figure 4.1. Relative transcript levels of hid genes in wild-type (□) and VCN (■). Transcript levels were 

determined by RT-qPCR on a Bio-rad CFX™ real-time PCR machine using Sybr green as the detection dye. The 

baseline gene was act1. For each hid gene in each individual sample the differential expression (Fold DE) was 

calculated relative to act1. i.e. 2
(Ct(hid)-Ct(act1))

. The values shown are the means ± sds (n=3) determined across the 

biological replicates. For any of the three genes, there was no significant difference between wild-type  and VCN as 

analysed by Students t-test.   

 

 

  



 

4.2 RESULTS 

4.2.1 Evaluation of HsHID1 as a Tumour Suppressor gene 

HsHID1 is certainly not a driver of tumour formation as it has a very low mutation frequency in known 

cancers (www.intogen.org; (Gundem et al., 2010). However, this would not be expected for a Tumour 

suppressor, which only shows a decrease in expression in cancers. The data base Oncomine Gene 

Browser from Life Sciences Technologies (www.oncomine.org) was searched for the relative expression 

of HID1 in cancer vs. normal tissues for under expression in cancer samples. The mRNA search 

encompassed 83 datasets with 11323 samples using a P-value cutoff of 1x10
-4

. In the corresponding tissue 

types from which the cell lines were derived from the Harada et al (2001) study, there is very little 

indication of down-regulation in tumours compared to the normal tissue, except for some gastric cancers. 

Even for liver cancers there was no indication of under-expression. In contrast, there was significant over-

expression of HID1 across the range of cancerous tissues, except for the gastric cancers, and, notably, 

brain and nervous system cancers. For testis and uterine cancers, where there was no indication of over-

expression, there was evidence of some specific-tissues under-expression of HID1. Interestingly, cell 

lines showed higher degrees of under-expression of HID1 than corresponding tissue samples, a good 

example of which was the melanomas. 

 

4.2.2 Comparative expression of hid genes using RT-qPCR 

The wild-type and VCN RNA samples to be used for quantitative gene expression by RNAseq were first 

evaluated for the relative expression of the hid genes themselves using RT-qPCR. The primers for RT-

qPCR were designed specifically using the programme QuantPrime (Arvidsson et al., 2008), which 

allowed an annealing temperature of 60°C to be used in order to increase the quality of the PCR 

amplification. Since the expression of the hid genes was being compared within the same biological 

samples, the expression is given relative to the baseline gene act1. Since act1 was always present in 

greater quantity than any of the hid genes, the values were expressed as Fold-DE decreasing (Figure 4.1).   

 

The RT-qPCR showed that hid1 and hid3 were expressed at approximately the same level while hid2 was 

much less expressed. At first, this appeared to contradict the expectation from the mutant analysis. 

However, on inspection of the fluorescence profiles from the qPCR, it was clear that although hid1 and 

hid3 crossed the fluorescence threshold at approximately the same Ct value, the total amount of 

fluorescence by the end of cycling was much greater for hid3 and hid2 than for hid1. It is unlikely that 

differences in primer concentration were the cause, since mutant RT-PCR and RT-qPCR were conducted 

with different sets of primers. It may be possible that hid1 is simply less efficient in than the others and  
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Table 4.1. Genes correlated in expression to each of the hid genes. The coefficients corresponding to the 10 most 

highly positive and highly negative correlated genes are shown as determined by Pancaldi et al. (2010). The 

coefficients have been ranked in order of highest to lowest value for both positively and negatively correlated genes. 

The designations given correspond to the hid gene, the number assigned to the primer assigned and the direction of 

correlation, either P (positive) or N (negative). 
 

Gene name    Description                  r    qPCR 
 

hid1, positively correlated 
mug105    Meiotically up-regulated gene 105 protein       0.75 

mak2     Peroxide stress-activated histidine kinase mak2     0.73   h1_1P 

mim1     Mitochondrial import protein 1          0.73 

rfp1     SUMO-targeted ubiquitin-protein ligase subunit     0.71 

pof11     F-box/WD repeat-containing protein pof11       0.71   h1_4P 

SPAC343.06c   Phospholipid scramblase family protein C343.06c     0.70  

phf2     SWM histone demethylase complex subunit phf2      0.70   h1_3P 

SPCP20C8.01C  UPF0612 protein               0.69 

SPCC569.01C   UPF0612 protein               0.69 

SPAC977.03   Uncharacterized methyltransferase         0.69 

sec16     COPII coat assembly protein           0.69   h1_5P 

mug121    Meiotically up-regulated gene 121 protein       0.68   h1_2P 

 

hid1, negatively correlated 
plp1     Thioredoxin domain-containing protein plp1      0.69  

nat1     N-terminal acetyltransferase A complex subunit nat1   0.57   h1_3N 

SPAC1F8.07C   Probable pyruvate decarboxylase C1F8.07c       0.56  

pfk1     6-phosphofructokinase             0.54   h1_1N 

SPAPB15E9.01C  Putative GPI-anchored protein PB15E9.01c       0.54  

pma1     Plasma membrane ATPase 1            0.53  

cct5     T-complex protein 1 subunit epsilon         0.53  

rim1     Single-stranded DNA-binding protein rim1       0.53  

spn4     Septin homolog spn4              0.52 

met9     Methylenetetrahydrofolate reductase 1        0.52  

sec232    Protein transport sec23-2            0.51   h1_2N 

 

hid2, positively correlated 
plp1     Thioredoxin domain-containing protein plp1      0.83  

wtf13     Uncharacterized protein wtf13           0.67  

alg2     Alpha-1.3/1.6-mannosyltransferase complex subunit    0.65  

mmm1      Maintenance of mitochondrial morphology protein 1"    0.64  

dsc4     DSC E3 ubiquitin ligase complex subunit 4       0.64   h2_5P 

str2     Siderophore iron transporter 2          0.63  

wtf18     Uncharacterized protein             0.63  

SPAC57A10.08C  Abhydrolase domain-containing protein         0.62  

atg7     Ubiquitin-like modifier-activating enzyme       0.62   h2_4P 

SPBC543.05C  Putative transporter               0.62  

pdh1      DUF1751 family protein             0.62   h2_3P 

pof4     elongin-A, F-box protein Pof4 (predicted)       0.60   h2_2P 

atg4     Probable cysteine protease            0.60   h2_1P 

 

hid2, negatively correlated 
SPBP19A11.07C  Uncharacterized methyltransferase         0.58  

gmf1     Actin-depolymerizing factor gmf1          0.46   h2_1N 

rpl25b    60S ribosomal protein L25-B           0.40  

rpc10     DNA-directed RNA polymerases I, II and III subunit    0.40   h2_4N 

rps24a    40S ribosomal protein S24-A           0.40  

tef1b     Elongation factor 1-alpha-B           0.40   h2_6N 

lsm7     U6 snRNA-associated Sm-like protein LSm7       0.36   h2_5N 

mrpl19    54S ribosomal protein L19. mitochondrial       0.36  

esf1     Pre-rRNA-processing protein esf1          0.35  

gua1     Inosine-5'-monophosphate dehydrogenase        0.35  

aru1     Arginase                  0.33   h2_3N 

fkbp39    FKBP-type peptidyl-prolyl cis-trans isomerase     0.32   h2_2N 

 

hid3, positively correlated 
alg8     Dolichyl pyrophosphate Glc1Man9GlcNAc2 

alpha-1,3-glucosyltransferase                 0.71    h3_1P 



 

lcb2     Serine palmitoyltransferase 2           0.69    h3_5P 

bub1     Checkpoint serine/threonine-protein kinase      0.66    h3_9P 

ubp7     Probable ubiquitin carboxyl-terminal hydrolase 7    0.66    h3_7P 

mon2     Protein MON2 homolog              0.66    h3_2P 

hhp1     Casein kinase I homolog hhp1           0.65  

ppk29     Serine/threonine-protein kinase ppk29        0.64  

ptr3     Ubiquitin-activating enzyme E1 1          0.64    h3_3P 

pdf1      Palmitoyl-protein thioesterase-dolichyl pyrophosphate 

       phosphatase fusion 1              0.64  

SPBPJ4664.04  Putative coatomer subunit alpha          0.64  

gls2     Glucosidase 2 subunit alpha           0.63    h3_4P 

sec24     Protein transport protein            0.63    h3_6P 

cta4     Cation-transporting ATPase 4           0.63    h3_8P 

cut15     Importin subunit alpha-1            0.62   h3_10P 

ubp5     Ubiquitin carboxyl-terminal hydrolase        0.53   h3_11P 

ubp5                             h3_12P 

 

hid3, negatively correlated 
sgf11     SAGA-associated factor 11            0.53    h3_1N 

cwf29     U2 snRNP component ist3             0.52    h3_2N 

SPBC713.09   Uncharacterized protein             0.50  

cox13     Cytochrome c oxidase subunit 6A. mitochondrial     0.50  

SPAC1805.02C  Probable electron transfer flavoprotein subunit     0.50  

atp7     ATP synthase subunit d. mitochondrial        0.49  

SPBC8D2.12C   Probable transcriptional regulatory protein      0.49  

hnt3     Aprataxin-like protein             0.47  

qcr10     Cytochrome b-c1 complex subunit 10         0.47  

SPBC1773.01   Uncharacterized WD repeat-containing protein      0.46  

sft1     Protein transport protein            0.43    h3-2N 
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Figure 4.2. Differential expression of genes highly-correlated to the hid genes. The Fold DE of a gene in a 

mutant genotype is given relative to the appropriate VC marker genotype: VCN for the hid1::matMX6 mutant (A), 

VCU for the hid2ura4
+
 mutant (B) and VCN for the hid3:matMX6 (C). The Fold DE was calculated using the 

2Ct method (Livak and Schmittgen, 2001). Each primer was tested 4 times in each of the three biological 

replicate strains of a mutant genotype. The mean Ct value for a biological replicate was used to calculate the mean 

and standard deviation of among the biological replicates. The gene act1 was used as reference control to calculate 

Ct and the Ct was calculated between mutant and VC genotypes. The black squares represent the mean of the 

2Ct and the lines the range based on the standard deviations. 

  



 

becomes increasing less efficient as primer concentration decreases. We can conclude that hid1 and hid3 

are expressed relatively equally and greater than hid2. 

 

4.2.3 Evaluating the potential regulation of co-expressed genes by RT-PCR 

The microarray correlation table as described in (Pancaldi et al., 2010) was downloaded from the Bähler 

Resources website (www.bahlerlab.info/resources). The data corresponds to the normalized expression 

values for 5250 elements including mRNAs, ribosomal RNAs, and non-coding RNAs from 1162 

hybridisation experiments. The table gives the linear correlation coefficients determined between each 

pair of genes, which then can be ranked for any given gene. Lists of ranked genes from highly positively 

correlated to highly negatively correlated were made for each hid gene (Table 4.1). 

The genes chosen for analysis, generally, were based on the most highly correlated for a correlation 

group, but also function was taken into account. Signalling genes, like the F-box protein gene pof11 and 

the stress-activated histidine kinase gene mak2 that were positively correlated to hid1 and the Checkpoint 

serine/threonine-protein kinase gene bub1, were preferentially selected. I also selected those genes that 

were involved in ubiquitination processes, like the ubiquitin carboxyl-terminal hydrolase 7 gene ubp7, 

and the Ubiquitin-activating enzyme E1 gene ptr3 that were highly correlated with hid3. More positive-

correlated genes were selected for hid3 in order to test the large number of interesting genes with 

potentially interesting associations and test a greater range of coefficient values. With certain exceptions, 

for all three hid genes, the negatively correlated genes were less clear in terms of associated function and 

genes were selected based on correlation coefficient. It was interesting that the most highly negatively 

correlated gene for hid1, the thioredoxin domain-containing protein gene plp1 was the most highly 

positively correlated to hid2. This indicated that hid1 and hid2 were inversely expressed.  

 

The RT-qPCR primers were designed using QuantPrime and the analysis conducted on the same samples 

to be used for the RNAseq. It was expected that genes whose expression depended on, or was repressed 

by, the presence of a Hid protein, then the amount of transcript for that gene would change in the 

corresponding mutant. Figure 4.2 shows the fold-change in expression of the selected genes in each 

mutant sample. Those genes where the variation crosses the x-axis were not considered to be DE, which 

was the case for all genes tested for hid1, except h1_1N, the gene encoding phosphofructokinase (Figure 

4.2A). However for h1_1N, DE was down for this gene and DE was only between 2-5 fold. For genes 

tested with hid2, there was a general trend in DR, but the amount of change was small and negatively 

correlated genes were also DR (Figure 4.2B). Only for genes tested in hid3 was there evidence for DR 

of positively correlated genes, 2 of the 3 negatively correlated showed some indication of UR, and the 

degree of change for a number of genes was more than those for hid1 and hid2 (Figure 4.2C).  
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Figure 4.3. Scheme of preparation of samples for post-genomic studies. Cell cultures were growth to a density of 

5x10
7
 cells/ml. The cells were collected by centrifugation, immediately frozen in liquid N2, and ground to fine 

powder using a Cryomill. The genotypes were combined at this step, where equal masses of powder were combined 

for the two genotypes specified. The procedure yielded from 1.2 to 1.5 g of powdered cells. The circles represent the 

genotypes and the sample numbers that were combined. Wild-type was grown in triplicate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Quality determination of total RNA preparations. The quality of total RNA was performed at the 

Centre for Functional Genomics at Bordeaux using an Agilent 2100 Bioanalyzer™. The image shown corresponds 

to sample hid3a and which had a RIN value of 8.1. The large peaks correspond to the ribosomal RNAs 26s and 28s.  

 

  



 

The greatest decrease in expression for a positively correlated gene was observed for ubp5 (primer 

h3_11P), which was nearly 60-fold in some reactions. However, the decrease in expression of ubp5 was 

tested with a second primer pair (h3_12P) and the overall decrease was more like the expression of the 

other positively correlated genes. 

 

4.2.4 Gobal analysis of gene expression changes in hid1 and hid3 by RNAseq 

4.2.4.1 Strategy of sample selection and evaluation of RNA quality 

From the growth data presented in Chapter 3, it was clear that because of proliferation profile differences 

among the various strains that proper selection of mutants and the time of selection of samples would be 

important. For example, in order to obtain an “average” sample for hid3::natMX6, it was necessary to 

let cultures stay under growth conditions for approximately 2 hours longer than for the other strains. 

Therefore, cells for post-genomic studies were taken based on cell count and not culture time. Cells were 

cultured in 50 ml YES as described in Chapter 2 with an initial density of approximately 5x10
5
 cells/ml. 

Cells were harvested at a density of 5x10
7
 cells/ml. This cell density was chosen as it was at the transition 

between lag- and log-phase growth, and it would clearly present the differences among strains (Figure 

3.10). Cells were grown in large cultures to ensure there was sufficient material in order to conduct all 

aspects of the post-genomic study, transcriptomics, proteomics and metabolomics, on the same samples. 

In order to include biological variation within the study, each sample was made of two different 

genotypes according to the scheme shown in Figure 4.3. This approach gave 12 samples from which total 

RNA was isolated for RNAseq and RT-PCR analyses of transcript levels.  

 

Total RNA corresponding to the 12 samples was isolated from frozen powdered material as described in 

Chapter 2 and the quality verified by an Agilent 2100 Bioanalyzer™ 2100. The phenol-based extraction 

procedure gave high quality RNA that typically showed RIN values > 8. Figure 4.4 shows the worst-case 

output from all 12 samples. A good sample will show large, clearly defined ribosomal RNA peaks with a 

smaller broad peak corresponding to the mRNA. 

 

4.2.4.2 RNAseq reveals greatest differences in gene expression for hid3 

 For each sample, the reads from the Illumina MySEQ™ DNA sequencer came in two fastq files 

corresponding to forward and reverse adapters for paired-end reading. For each sample, the reads 

contained within the two files were mapped together to the S. pombe genome Ensembl build EF2 using 

Tophat v. 2.0.9. The statistics for the number of reads obtained for each sample and the percentage of  
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Table 4.2. Statistics for read mapping. This is a summary of the percentage of reads mapped for each sample 

using Tophat v 2.0.9. The input # reads represents the total number of reads for that sample for which both left and 

right priming was initiated. Under Mapped Reads are given the number of reads mapped for each paired-end primer 

and the percentages of reads mapped and the percentage of those mapped to more than one sequence. 

 

      Input                                       Mapped Reads           

Sample  # reads        Left
a
            Right

a
 

 

WT 1   2116612     1974817 (93.3, 11.1)      1942198 (91.8, 11.0) 

WT 2   2664071     2501691 (93.3, 11.7)      2455439 (92.2, 11.6) 

VCNa   2035967     1893322 (93.0, 11.1)      1864488 (91.6, 11.1) 

VCNb   2235052     2101346 (94.0, 13.8)      2066680 (92.5, 13.8) 

VCNc   2540626     2394197 (94.2, 17.2)      2332817 (91.8, 17.1) 

hid1a  2387953     2249338 (94.2, 16.7)      2223351 (93.1, 16.7) 

hid1b  2296483     2162705 (94.2, 16.7)      2128662 (92.7, 16.6) 

hid1c   940907      886581 (94.2, 15.0)       872427 (92.7, 14.9) 

hid3a  1480614     1393083 (94.1, 16.7)      1372959 (92.7, 16.7) 

hid3b  2005502     1822468 (90.9, 10.4)      1786277 (89.1, 10.3) 

hid3c  1890765     1741271 (92.1, 22.0)      1724848 (91.2, 22.0) 

 

a The number in parentheses represents the percentage of reads mapped and the percentage of reads with 

multiple alignments, respectively. 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Visualisation of mapped reads at hid loci. The images shown are representative of the triplicate 

mutant samples. The locus shown is given above the image and the precise location of the hid gene shown below. 

The reads were mapped using Tophat v2.0.11 and the images were created from the ‘.bed’ files using the Integrated 

Genomics viewer (Robinson et al., 2011b). The location of the genes is from the EF2 version of the pombe genome 

downloaded from iGenomes (www.broadinstitute.org). The windows have been expanded to the same scale to 

provide an estimate of relative expression level.  
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Figure 4.6 PCA of combined gene expression data from RNAseq. PCA was conducted in R using the 

FactoMineR package, which exploits the resident ‘princomp’ tool resident in R. All rows with missing data had to 

be removed as ‘princomp’ does not recognise NaN. The number of data feature after missing data was removed was 

5272. (A) Plot of variance for the first 8 PCs. (B) Pairwise relationships between the first four PCs. Only four PCs 

were analysed since the plot of PC4 vs PC3 clusters samples around 0. The N in the legend for sample names 

represents replacement of the gene by the Nat
R
 gene. PoV stands for Percentage of Variance. 

  



 

reads mapped is given in Table 4.2. One of the wild-type samples did not work at the level of library 

creation for unknown reasons.  

 

With the exceptions of hid1c and hid3a around 2 million total reads were obtained with more than 

90% of them being able to be mapped to the genome. Two essential data files were created, one was the 

‘.bed’ file that was used visualise the mapped reads directly and the second was the ‘.bam’ file used for 

quantifying the mapped reads. The reads around the mutant loci were visualised as a straightforward test 

to check the accuracy of the mapping as it would be expected that no reads would be mapped to genes 

replaced in the respective mutant, but that reads would be present at the other gene loci (see Chapter 3). 

For the hid1 and hid3 mutants, no reads were mapped to the altered loci, but were mapped to the two 

unaltered loci showing that those genes were expressed (Figure 4.5). From the visualization, qualitatively 

I could assess that expression of non-mutant hid loci within any particular mutant was unaffected 

compared to wild-type, which is consistent with the RT-PCR results of the mutants presented in Chapter 

3. Also, expression immediately at the flanks of the mutant loci also appeared unaffected, indicating 

precise insertion of the marker gene. 

 

The next step in the analysis was to quantify the reads that had been mapped. This was done using the 

Cufflinks workflow described above. The individual annotation files ‘.gtf’ were fed into Cuffcompare in 

order to generate a ‘combined.gtf’ file for normalisation of data across samples using Cuffnorm. 

Cuffnorm gave 6007 features in the genes_fpkm_table file that were common amongst the 11 biological 

samples. The Cuffnorm output was exported as a text file and imported into the program R for 

multivariate statistical analysis. After removal of features without data, 5252 features were left. The PCA 

analysis provided an overall picture as to differences among the samples. First, the contribution of PCs to 

the total variance among samples was determined. The first four eigenvectors accounted for 69.2% of 

total variance with PC1 accounting for about 40% of that (Figure 4.6). A broad spread of variance in 

subsequent PCs 2-11 is not unusual noting the large amount of data included and the variation that data 

was likely to have.  

 

The plot of PC2 vs. PC1 shows that the hid3 samples differed substantially from the other genotypes 

(Figure 4.6B). However, hid3a was comparable to the other genotypes in the first dimension and only 

differed in the second. There is very little separation of non-hid3 genotypes. In any dimension except for 

hid1c. where its separation may be due to a lower number of reads being present. It was expected that 

the differences observed for hid3 would also show up in the differential gene expression analysis.  
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Figure 4.7. Relative expression of hid genes based on read counts. The reads were taken from either the 

gene.fpkm_tracking file from the Cuffdiff output (A) or from the counts.txt output file from featureCounts v1.4.6 

(B). The data in Cuffdiff is represented as mean ± the high and low values, whereas for featureCounts the data is 

represented as mean ± range (WT, n=2) or sd (VCN, n=3). Counts for hid2 in VCN samples are statistically 

significantly different (P < 0.05) from those for hid1 and hid3 based on Students t-tests. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Number of genes differentially expressed in the mutants. The number of DE genes is based on the 

statistical calculation within Cuffdiff and doesn’t necessarily reflect a strict fold-cutoff value. Each genotype has 

been compared to the VCN samples. UR is up-regulated expression and DR is down-regulated expression. 
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Table 4.3. DE genes selected for qRT-PCR for hid3. UR and DR 

stand for up- and down-regulated respectively. The fold-expression is the 

ratio of average counts as calculated by Cuffdiff for hid3 over VCN. 
 

     Systematic ID UR/DR   Fold-expression 
 

SPBC4F6.09      UR     3.3 

SPCC1742.01     UR     2.8 

SPAC1F7.07c     UR     2.8 

SPAC1F8.06      UR     2.2 

SPAC1F7.08      UR     2.2 

SPAC186.06      DR     4.3 

SPNCRNA.942     DR     3.7 

SPAC977.18      DR     2.8 

SPBC685.02      DR     2.5 

SPNCRNA.863     DR     2.5 

SPCPB16A4.07     DR     2.3 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.9. Comparison of relative transcript quantification by RNAseq and RT-qPCR. One g of the total 

RNA from each sample was converted to cDNA and the equivalent of 20 ng used for qPCR. The values are 

presented as the log2 of the ratio of the amount of transcript in hid3 to that in VCN. The values shown for the RT-

qPCR are the means of the independent RNA samples as shown in Figure 4.1 (n=3). The names are the Systematic 

IDs of the genes selected.  

  



 

Cuffmerge was used to create the global ‘merged.gtf’ from the Cufflinks output that was subsequently 

used to quantify transcripts by Cuffquant and calculate differential gene expression by Cuffdiff. Cuffdiff 

compared genotypes pairwise and by taking into account replicates determined statistically significant DE 

genes. The output from Cuffdiff includes a ‘tracking’ file that provides the number of counts at each 

annotated locus for each sample. From this file, the number of normalized counts for the three hid genes 

was extracted in order to compare relative expression levels with the RT-qPCR results presented in 

(Figure 4.7A). A second means of measuring gene expression was directly through exon hit counting 

using featureCounts (Liao et al., 2014). The levels of mRNA for hid1 and hid3 are approximately equal 

and that for hid2 is nearly 3-fold lower than the other two. The counting also confirmed the greatly 

reduced expression of hid1 and hid3 in the corresponding mutant strains. However, there was residual 

expression of hid3 in the hid3 strain, because the knock-out procedure to remove the coding sequence 

left the end of the last exon. 

 

The number of DE genes was determined for each genotype expressed relative to the VCN samples 

(Figure 4.8). In order to understand the effect of the marker gene, the UR and DR genes for wild-type 

must be inversed. Therefore, expression of the marker gene at heterologous loci resulted in 58 and 20 

genes being UR and DR, respectively, compared to wild-type. The total number of genes changing 

expression in hid1 was no different to that of wild-type, but hid3 showed substantial amounts of 

altered gene expression with 258 and 245 genes being UR and DR, respectively. The amount of changing 

gene expression was not great with highest UR gene for hid1and hid3 being 3.1- and 9.8-fold 

respectively. The greatest DR genes for hid1and hid3 were 10.8- and 20.2-fold, respectively.  

 

4.2.4.3. Validation of RNAseq data by qRT-PCR 

Primers for qRT-PCR were produced for the top five UR and DR genes for hid3 compared to VCN 

(Table 4.3). Quantitative RT-PCR was conducted using the same total RNA samples as used for the 

RNAseq analysis. act2 was used in order to normalise expression for each primer pair. For all UR and DR 

genes taken from the RNAseq quantification, the RT-qPCR either showed a corresponding directional 

change in expression although the degree of change was consistently less (Figure 4.9). 

 

4.2.4.4. Analysis of correspondence with genetic interaction data provided in PomBase. 

The sets of DE genes were searched with the gene identifiers for those genes for which a genetic 

interaction has been proposed and has been listed in PomBase. For the 6 interactions listed for hid1, none 

were DE. STRING database lists three other genes, which have been linked to hid1 through co-

expression: SPCC18.03, a shuttle craft like TF; SPAC6B12.07c.1, an ubiquitin-protein ligase E3; and  
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Figure 4.10. Gene Ontology analysis of DE genes. GoMiner was given the sets of DE genes for hid1 and hid3 

and the set of all genes for which there were reads to use as the baseline. GoMiner determined the classes of DE 

genes that were overrepresented for both UR and DR genes. The GO terms have been pruned by REVIGO 

(revigo.irb.hr, (Supek et al., 2011) to reduce the number of displayed GO term and ease the visualisation. The 

numbers in parentheses represent the number of classed condensed to give the final go term. The degree of colour is 

indicative of the statistical significance.  



 

Pof11, an F-box protein. None of these were DE. Of the 101 genes with potential genetic interactions with 

hid3, seven genes were in the list of DE. Six of the seven genes were UR and none by more than 2-fold. 

The one gene with a negative interaction that was DR was the phosphatidyl-N-dimethylethanolamine N-

methyltransferase cho1, which is involved in lipid metabolic processes of the ER. The low-confidence, 

co-expressed genes listed in the STRING database were also not represented in the set of DE genes. 

 

4.2.4.5. Finding biological function through gene ontologies 

The DE genes were run through GoMiner (http://discover.nci.nih.gov/gominer/index.jsp, (Zeeberg et al., 

2003) in order to determine if the changing genes were associated with any biological or molecular 

function. The queries were made using the systematic IDs so no identification of particular genes was 

made at this time. GoMiner yielded those GO classes that are observed to have more genes altered in 

expression compared to their representation in the background data set of all genes.  

 

The output entailed the three major GO categories, Cellular Component, Biological Function and 

Molecular Function. Seeing that hid3 had 503 DE genes compared to 78 for hid1, it was expected and 

shown that hid3 had more GO classes changing than hid1 (Figure 4.10). For hid1, the number of DR 

genes was greatly more than UR genes and this is represented in the GO analysis with there being no 

particular class of genes being up-regulated in each of the three categories. The DR genes in hid1 for 

both biological and molecular function related to metabolism processes. The Cellular Component 

category for hid3 was primarily represented by DR genes encoding proteins related to ribosome function 

GO:0022626 and mitochondrial ATP synthesis GO:0045259. The Biological Processes appear to be 

represented by a wide variety of classifications, but they centre around particular themes. Amino acid 

metabolism is represented by seven different GO classifications including for glutamine (GO:0006541), 

aspartate (GO:0009067), serine (GO:0009070) and the two sulfur amino acids cysteine and methionine 

(GO:00019344, GO:0006555, GO:00044272). Stress response genes (GO:0006979, GO:0010035, 

GO:0042221), membrane transport (GO:0035435, GO:0006826), RNA and nucleotide metabolism, 

mainly catabolism (GO:0009207, GO:0051252) and cell communication and maintenance (GO:0007155, 

GO:0061245, GO:0006350, GO:0010646) were also represented. The Molecular Functions were 

represented by the themes transcriptional activity (GO:0008270, GO:0000978, GO:0003704) and 

membrane transport (GO:0005215, GO:0046915, GO:0005315, GO:0005275). The Molecular Function 

classes DR involved metabolic (GO:0016491, GO:0046961) and ribosomal protein (GO:0003735) genes. 
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Table 4.4. Transcription Factor genes induced in hid3 Gene corresponding to GO:0000978 as determined 

by GoMiner using the list of DE genes from Cuffdiff. The fold-change corresponds to the log2 value of the 

ratio of normalized reads of hid3 to VCN. TF stands for transcription factor. 
 

Name       Description              Fold change 
 

sfp1     TF sfp1 (predicted)              1.11 

SPAC2H10.01   TF zf-fungal binuclear cluster type (predicted)   1.08 

gsf1     TF zf-fungal binuclear cluster type Gsf1     1.00 

SPBC530.11c   TF, zf-fungal binuclear cluster type (predicted)  0.97 

esc1     TF esc1 (predicted)             0.91 

loz1     TF zf-C2H2 type (predicted)          0.91 

scr1     TF scr1                  0.86 

atf1     TF Atf-CREB family atf1            0.85 

SPBC56F2.05c  TF (predicted)               0.80 

pho7     TF pho7                  0.80 

gaf1     TF gaf1                  0.76 

rst2     TF rst2                  0.66 

SPCC1393.08   TF, zf-GATA type (predicted)          0.56 

hsr1     TF hsr1                  0.55 

SPAC1327.01c  TF, zf-fungal binuclear cluster type (predicted)  0.48 

 

 

 

 

 

  



 

The ontological category GO:0000978 represents those genes assigned the function of ‘RNA polymerase 

II core promoter proximal region sequence-specific DNA binding’. The molecular functional category 

contains 90 TFs of which 15 are significantly induced in hid3 (Table 4.4).  

 

One of the induced TFs was atf1, which is a CREB/ATF family TF. This transcription factor is integral to 

the induction of stress-related genes. (Chen et al., 2003) investigated the global expression responses of S. 

pombe in relation to various stresses. A comparison of the 258 hid3 UR genes with the 456 UR genes 

from their study showed that 68 (> 25% of hid3 UR genes) were in common between the two data sets. 

In addition, they determined which genes the induced was dependent on either of the two integral 

signaling genes atf1 or sty1, which encodes a MAPK that activates the TF Atf1. Of the 68 overlapping 

genes, 45 were known to be affected by Atf1 independently or in addition to the presence of Sty1. The 

expression of sty1 in our data was unchanged amongst all genotypes, which corresponded with the 

findings of Chen et al. (2003). The protein Pcr1 is known to physically interact with Atf1 to modify 

transcription of the cgs2 by binding to its promoter (Davidson et al., 2004). The gene pcr1 was not 

significantly UR in hid3, but cgs2 was induced approximately 1.8-fold, but it was not flagged as 

statistically significantly UR due to variation in its expression. The stress expression data from Chen et al. 

(2003) was checked for common patterns of expression for the other TFs. Although most were induced in 

response to one or more stresses, there did not seem to be any clear pattern of expression as either CESR 

or SESR genes (Chen et al., 2003), and four UR in my study were initially DR in their data set. 

 

4.2.4.6. Changes in expression of specific genes 

Of the 258 and 245 genes UR and DR, respectively, 35 were increased and 72 decreased by at least 2-

fold. Therefore, although there were more genes statistically determined to be UR than DR, down-

regulation was apparently more pronounced in effect (Table 4.5). There were no genes that were 

dramatically altered in expression with the largest change observed being the 4.3-fold decrease in 

expression of an ER unfolded-response protein gene SPAC186.06. The UR genes primarily encoded 

plasma membrane transporters, cell surface proteins, signaling/nucleic acid binding genes and some 

stress-related and ubiquitination-related genes. Interesting genes that were UR, but less than 2-fold, were 

DNA helicase mot1, the transcription factor TFIIIC complex subunit gene sfc4, and the protein kinase 

gene wis1. The set of DR genes was more varied in composition and contained more metabolic genes 

including internal metabolite transporter-related genes. The largest class of DR genes encoded ribosomal 

proteins, and of the 245 total DR genes, 37 encoded 40S or 60S ribosomal proteins.  
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Table 4.5. DE genes in hid3. The genes shown have been calculated by Cuffdiff as significantly UR or DR by at 

least 2-fold.  
 

 

Gene       log2 

Name      (hid3/VCN)   Gene Description 

 

Up-regulated 
 

str1       3.3   siderophore-iron transporter Str1  

gsf2       2.8   galactose-specific flocculin Gsf2  

fip1       2.8   iron permease Fip1  

SPCC663.08c    2.5   short chain dehydrogenase  

fta5       2.2   cell surface glycoprotein  

fio1       2.2   iron transport multicopper oxidase Fio1  

osr1       2.1   short chain dehydrogenase (predicted)  

SPCC18B5.02c    2.1   pseudogene 

set10       2.1   ribosomal lysine methyltransferase Set10  

SPAC27D7.09c    1.9   But2 family protein  

pfl3       1.8   cell surface glycoprotein (predicted). DIPSY family  

pfl9       1.8   cell surface glycoprotein (predicted). DIPSY family  

caf5       1.8   spermine family transmembrane transporter Caf5  

SPBPB10D8.01    1.8   cysteine transporter (predicted)  

SPNCRNA.1153    1.7   antisense RNA (predicted)  

gst2       1.6   glutathione S-transferase Gst2  

SPNCRNA.1424    1.3   intergenic RNA (predicted)  

SPAPJ691.02    1.3   yippee-like protein  

fet4       1.2   iron/zinc ion transporter (predicted)  

bit61       1.2   TORC2 subunit Bit61  

cys2       1.2   homoserine O-acetyltransferase (predicted)  

SPNCRNA.1355    1.2   intergenic RNA (predicted). possible alternative UTR  

SPBC409.08     1.2   spermine family transporter (predicted)  

bfr1       1.1   brefeldin A efflux transporter Bfr1  

SPCC1739.06c    1.1   uroporphyrin methyltransferase (predicted)  

21S_rRNA     1.1   21S rRNA mitochondrial 

sfp1       1.1   transcription factor Sfp1 (predicted)  

SPAC11D3.11c    1.1   zinc finger protein. truncated  

ubp16       1.1   ubiquitin C-terminal hydrolase Ubp16  

SPAC2H10.01    1.1   TF zf-fungal binuclear cluster type (predicted)  

SPBP8B7.15c    1.1   ubiquitin-protein ligase E3 RBBP6 family (predicted)  

dfr1       1.0   dihydrofolate reductase protein Dfr1  

sap1       1.0   switch-activating protein Sap1  

SPCC1672.14    1.0   sequence orphan  

adh8       1.0   alcohol dehydrogenase (predicted) 

 

Down-regulated 
 

SPAC186.06     4.3   ER unfolded protein response protein (predicted)  

SPNCRNA.942    3.7   intergenic RNA (predicted)  

SPAC23H3.15c    3.0   sequence orphan  

SPAC977.18     2.8   conserved fungal protein  

exo5       2.5   mitochondrial single stranded DNA specific 5'3'  

           exodeoxyribonuclease Exo5 (predicted)  

SPNCRNA.863    2.5   intergenic RNA (predicted)  

SPBC23G7.13c    2.4   urea transporter (predicted)  

SPCPB16A4.07    2.3   sequence orphan  

mug96       2.3   sequence orphan  

SPBC1271.07c    2.3   N-acetyltransferase (predicted)  

SPBC1271.08c    2.3   sequence orphan  

SPBTRNAGLN.04    2.3   tRNA Glutamine  

SPAC1399.04c    2.3   uracil phosphoribosyltransferase (predicted)  

SPAC186.04c    2.2   N-terminal of transmembrane channel truncated  



 

aca1       2.2   Lazetidine-2-carboxylic acid acetyltransferase Aca1  

urg2       2.0   uracil phosphoribosyltransferase (predicted)  

urg1       2.0   GTP cyclohydrolase II Urg1 (predicted)  

SPBC660.05     1.7   WW domain containing conserved fungal protein  

SPAC521.03     1.7   short chain dehydrogenase (predicted)  

SPCC70.03c     1.6   proline dehydrogenase (predicted)  

SPCC70.04c     1.6   sequence orphan  

SPAPJ695.02    1.6   sequence orphan  

hem13       1.4   co-proporphyrinogen III oxidase Hem13 (predicted)  

urg3       1.4   DUF1688 family protein  

SPAC29B12.13    1.4   S-(hydroxymethyl)-glutathione synthase activity  

dap1       1.4   cytochrome P450 regulator Dap1  

SPAC823.02     1.4   sequence orphan  

tam13       1.4   sequence orphan  

vma10       1.4   V-type ATPase V1 domain subunit G (predicted)  

gto2       1.4   alpha-glucosidase (predicted)  

SPAC1039.02    1.4   phosphoprotein phosphatase (predicted)  

lsm6       1.3   U6 snRNP-associated protein Lsm6 (predicted)  

SPNCRNA.1483    1.3   intergenic RNA (predicted)  

SPBC26H8.16    1.3   mitochondrial protein. DUF1674 family  

SPAC1039.01    1.3   amino acid permease (predicted)  

SPBPB21E7.08    1.3   pseudogene  

SPBC12C2.09c    1.3   Haemolysin III family protein (predicted)  

rpl4102      1.3   60S ribosomal protein L41 (predicted)  

SPCC757.05c    1.2   peptidase family M20 protein  

rpl3602      1.2   60S ribosomal protein L36  

rbx1       1.2   RING-box protein 1. SCF-complex ubiquitin ligase 

             subunit  

mug8       1.2   conserved fungal protein  

SPBC29A10.12    1.2   DUF1014 family protein. HMG-box clan member  

aes1       1.2   enhancer of RNAmediated gene silencing  

rpp202      1.2   60S acidic ribosomal protein A4  

srp14       1.2   signal recognition particle subunit Srp14  

pmc6       1.2   mediator complex subunit Pmc6  

tim8       1.1   TIM22 inner membrane protein import complex subunit 

             Tim8 (predicted)  

rps2801      1.1   40S ribosomal protein S28 (predicted)  

SPCC16C4.20c    1.1   HMG box protein (predicted)  

ght5       1.1   hexose transporter Ght5  

SPAC589.10c    1.1   ribosomal-ubiquitin fusion protein Ubi5 (predicted)  

SPNCRNA.1626    1.1   antisense RNA (predicted)  

SPAC6F12.04    1.1   COPI-coated vesicle associated protein (predicted)  

sss1       1.1   translocon gamma subunit Sss1 (predicted)  

SPBC800.11     1.1   inosineuridine preferring nucleoside hydrolase 

SPNCRNA.1333    1.1   intergenic RNA (predicted)  

cyp4       1.1   cyclophilin family peptidylprolyl cis-trans isomerase 

SPNCRNA.1292    1.1   antisense RNA (predicted)  

rps21       1.1   40S ribosomal protein S21  

gut2       1.1   glycerol-3-phosphate dehydrogenase Gut2 (predicted)  

mrp21       1.1   mitochondrial ribosomal protein subunit Mrp21 

cox13       1.1   cytochrome c oxidase subunit VIa (predicted)  

zym1       1.0   metallothionein Zym1  

rps2401      1.0   40S ribosomal protein S24 (predicted)  

lsd90       1.0   Lsd90 protein  

rpl22       1.0   60S ribosomal protein L22 (predicted)  

srb7       1.0   mediator complex subunit Srb7  

rpl4101      1.0   60S ribosomal protein L41  

SPAC11E3.10    1.0   VanZ-like family protein  

SPBC29A10.16c    1.0   cytochrome b5 (predicted)  

SPAPJ691.03    1.0   mitochondrial inner membrane organizing system protein 
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Within the DR group of genes, there were two genes, srb7 and pmc6, that encode TF components of the 

RNA polymerase II complex, and would, therefore, appear to be acting opposite to the RNA polymerase 

II-related TFs in Table 4.4. A closer look showed that nearly all genes encoding subunits of the 

Polymerase II mediator complex were either unchanged or DR. Two mediator complex genes were UR, 

pmc1 and srb8, but both were not under the cut-off value for statistical significance. Within the set of DR 

genes were also two RNA polymerase I TFs, rrn7 and rrn9 and one RNA polymerase III subunit rpc11.  

 

4.3 DISCUSSION 

With user-friendly databases currently available to search for cancer-related gene expression, it was easy 

to search for HID1 for patterns of gene expression in tumour and normal tissues in order to validate the 

hypothesis that down-regulation of HID1 may promote cancer formation Harada et al (2001). The 

observation that HID1 is more often UR than DR in cancers indicates that it is not involved in tumour 

suppression. It is possible that HID1 is induced by stresses that cause cancer, such as DNA damaging 

agents and that HID1 is part of a stress sensing and signaling process as it functions in the formation of 

Dauer larva in C. elegans under conditions of stress (Ailion and Thomas, 2003).  

 

In order to postulate on human HID1 function, this discussion will primarily focus on the results obtained 

relating to the pombe hid3 mutant. It is unlikely that Hid3 is a component of the stress signaling process, 

because the expression of hid3 is not affected by stress (Chen et al., 2003). In contrast, hid1 is induced by 

various stresses including oxidative, heat and DNA damage, but at this time the reason for this induction 

is unclear. If we start with the assumption that disruption of Golgi function in hid3 (Alasmari 2015) 

induces a chronic stress imposed immediately upon the daughter cells after division, then the effects of 

this stress would be reflected in altered gene expression profiles serving to compensate for this stress. 

There are potential pleiotropic effects on gene expression that must be considered. The mislocalisation of 

Ubp5 from the Golgi to the cytosol (Kouranti et al., 2010) may have indirect effects on gene expression.  

Genes found to be positively correlated to hid3 expression involved ubiquitination processes, such as 

ubp7, ubp5 and ptr3, as well as potential signaling genes, such as bub1, hhp1 and ppk29. Therefore, it 

was logical to determine if the expression of any of these genes was affected in the mutant. Although 

there was some indication that transcript levels of some of the correlated genes may be affected (and in 

the expected direction) in hid3, the effect was not strong. This was certainly the case for genes 

correlated with hid1 and hid2 when compared with those correlated with hid3. Therefore, it is possible to 

conclude that gene co-expression of other genes is not greatly dependent on the presence or level of Hid3. 

It is also possible that overall transcriptional responses in the hid mutants are not very dramatic.  
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Global transcriptomic analyses of the hid1 and hid3 mutants were done using RNAseq. Unfortunately, 

the delay in obtaining the hid2 mutants did not allow me to collect the RNAseq data until very recently. 

This data has not gone through the GO analysis and the effect on individual genes has not been 

investigated in detail. It appears that the number of genes altered in expression in hid2 were few like that 

seen for hid1. The RNAseq mapping through Tophat correctly demonstrated the lack of expression of 

the hid genes in the respective mutants, but also supported the relative quantification of the transcript 

levels of the three hid genes that had been determined by RT-qPCR. If RT-qPCR is considered to be the 

best method for determining the transcript levels of specific genes (Marioni et al., 2008), then inversely, 

the hid gene RT-qPCR helps to validate the RNAseq data. The RT-qPCR validation of the RNAseq data 

using the greatest UR and DR genes for the hid3 data was not as clear, except that the direction of 

expression change was correct for nearly every gene tested. According to the RT-qPCR only 1 gene, 

SPCC1742.01, would be considered to be DE if a strict cut-off of log2 = 2 was used. I attribute this 

difference to the fact that the primers and the reaction conditions for the other UR and DR genes were not 

as well optimized as those for the hid genes. Optimization was not done, because 1) of the corresponding 

hid RT-qPCR validation and 2) it was not worth the effort to optimise all reactions, since this would not 

change the way the RNAseq data was analysed. In addition, RNAseq data tends toward false-negative 

results, whereby genes that are DE are not identified as such (Liu et al., 2011), thus we can have 

reasonable confidence on the biological conclusions made from the set of DE genes that have been 

determined. 

 

The PCA conducted on the combined normalised data clearly revealed that the gene expression changes 

were greater in hid3 compared to hid1. This is not surprising with the obvious effect of hid3 deletion 

on reducing growth and there is no effect of deleting hid1. There were modest gene expression changes 

between wild-type and VCN, but these changes were not apparent in the PCA scores plot, where VCN 

samples clustered with wild-type and hid1 samples. Therefore, I can conclude that there was no apparent 

effect of the presence of the marker protein on global gene expression. This is in contrast to protein and 

metabolite levels that exhibit a noticeable change in their respective PCA scores plots in the PC2 

dimension (Alasmari 2015). 

 

The greater change in transcriptional activity in hid3 was confirmed by the finding through the Cuffdiff 

DE analysis that more than 6-times more genes were significantly DE in hid3 than hid1 when 

compared to VCN. No genes postulated to have a genetic interaction with hid3 or hid1 (Roguev et al., 

2008; Ryan et al., 2012) were shown to be DE, which is consistent with the RT-qPCR result of correlated 
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 genes. This suggests that any genetic interaction does not come from a change in gene expression, but 

that any interaction must be a physical interaction between proteins that is perturbed by the lack of the 

corresponding Hid protein. The levels by which genes were DE were not extreme with only 9.8-fold and 

19.7-fold being the greatest changes observed for a UR and DR gene, respectively. This might be 

expected noting that the cells were being grown under non-stress conditions prior to sampling and the 

only effect would be due to the mutation. However, the differences in gene expression provide evidence 

that hid3 cells are stressed. A large number of DR genes without clear functional categorization suggests 

a broad repression of gene expression, which is indicative of cellular stress (Gasch, 2007). There were 

also many ribosomal genes DR (not shown in Table 4.5), which is also a symptom of cells under stress. 

The surprising outcome from the expression data was the induction of specific classes of genes. The 

induction of the set of transcription factors that are part of the RNA polymerase II complex may explain 

the broad changes in gene expression for hid3 and those that are related to stress signaling in particular. 

The gene atf1 encodes a TF that is part of the the MAPK stress-signaling pathway. Atf1 interacts with 

Pcr1 to induce the expression of cgs2
+
 to affect cAMP-dependent signaling (Davidson et al., 2004). We 

do not observe induction of pcr1+, but cgs2+ is induced 1.8-fold although it was not flagged as being 

significantly UR. atf1
+
 is activated upon phosphorylation by Sty1 as part of the MAPK stress-signalling 

pathway, but we did not observe induction of sty1. Sty1 has other targets for phosphorylation, like Bfr1, 

Pap1 and Ntp1. Bfr1 is a plasma membrane ABC-type transporter responsible for resistance to drugs like 

tributyltin (Akiyama et al., 2011a, 2011b) and the gene encoding this protein was induced more than 2-

fold. The genes for the TF Pap1 and the alpha-trehalase Ntp1 were also induced, 1.6-fold and 1.2-fold, 

respectively, but not flagged as being statistically significant. It is known that the genes for these two 

proteins are also induced in response to stress. The gene for the MAP kinase kinase protein active in 

stress signaling was significantly induced at 1.9-fold and the gene for the stress response regulator kinase 

Mcs4 was induced 1.3-fold, but it was not significantly different. The genes sty1
+
 and wis1

+
 have been 

identified as encoding proteins involved in maintaining cells in a quiescent state (Sajiki et al., 2009). 

From a screen for cell shape and/or survival, they identified a total 38 proteins that appear to be necessary 

for maintenance of cellular quiescence in S. pombe. In our study 10 of these genes were induced (4 

significantly) and the vast majority of others were unchanged in expression. A few were slightly 

repressed, but only ypt1, which is a GTPase involved in vesicular transport from ER to Golgi, was 

significantly repressed at 1.8-fold. The onset of cellular quiescence in S.pombe is triggered by stress, in 

particular by nutrient limitation such as the lack of nitrogen. I observed that a specific set of TFs was 

significantly induced and this included the stress response gene atf1. I can speculate that the function of 

the other induced TFs is to induce the expression of the UR set of genes. For example, general stress-

related genes were also induced, such as those encoding the short-chain dehydrogenases SPCC663.08c  
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and Osr1 and the glutathione reductase Gst2. In contrast, the set of gene encoding proteins involved in the 

RNA polymerase II mediator complex were DR suggesting that the set of genes affected by this complex 

could be actively repressed and the mechanism remains to be identified.  

 

The other types of gene induced in my study were those encoding proteins that are plasma membrane 

resident or pass through the secretory pathway, such as transporter proteins and glycosylated proteins. 

The iron permease Fip1 and the iron transport multicopper oxidase Fio1 are known to physically interact 

(Askwith and Kaplan, 1997) and both of these genes are two of the highest UR genes. Therefore, there are 

examples within the data of genes with similar functions being co-induced. From the gene expression data 

I can speculate that disruption of Golgi function leads to diminished protein transport to the plasma 

membrane. The effects are to decrease transport processes leading to starvation and responses including 

the induction of genes to alleviate these process and in the meantime induce a quiescent cellular state. 

These hypotheses are presented in more detail in the overall discussion of the topic presented in Chapter 

6. 
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Chapter 5 

 

Analysis of structural features of introns and their expression in 

fission yeast based on the pcs3
+
 gene family 

 

5.1. INTRODUCTION 

The regulation of gene expression has mainly been investigated from the aspect of the production of 

mRNA. So traditionally, transcription factors that bind to RNA polymerases and either activate or prevent 

production of mRNA have been intensely researched. For the expression of protein-coding genes, the 

end-point is not really the production of mRNA, but the making of the protein. In this sense, gene 

expression includes all the processes from gene to protein, including transcription, mRNA modification 

and degradation, translation, post-translational modification and even protein turnover. For mammalian 

systems, estimates place around 40% as the upper limit for the number of proteins that whose levels are 

strictly controlled by mRNA levels (Tian et al., 2004). Therefore, many factors must be considered to 

understand how gene expression leads to protein levels (Mata et al., 2005). 

 

The regulation of gene expression by non-coding RNAs has become a very intense topic of research 

within the last few years (Griffiths-Jones, 2007). Non-coding RNAs (ncRNAs) are transcribed, but do not 

code for proteins. It is well known that ribosomal RNAs (rRNAs) help form the peptide bond during 

protein translation (Gutell et al., 2000). Small nuclear RNAs (snRNAs) are critical components of the 

large spliceosome complexes that remove introns from heteronuclear pre-mRNAs (Will and Lührmann, 

2011). snoRNAs are involved in the processing of rRNAs, tRNAs and snRNAs and help in their correct 

folding (Fayet-Lebaron et al., 2009b; Samarsky et al., 1999b). In higher eukaryotes, micro RNAs 

(miRNAs) negatively control gene expression post-transcriptionally by adjusting mRNA levels through 

their degradation or by affecting protein translation (Lee et al., 1993). In eukaryotes, it was demonstrated 

that exogenously supplied small, double-stranded RNA can affect protein amounts when it is transferred 

into cells (Fire et al., 1998). In mammals it has been reported that snoRNAs can also control the 

alternative splicing of mRNA (Kishore and Stamm, 2006b). Introns can be considered non-coding RNAs 

and they often they have a function, e.g., they encode small RNAs. This means that after the intron is 

expressed as part of the pre-mRNA it is removed by splicing and it remained within the cell and 

processed further to the size of small ncRNA. The range of size for introns in S. pombe  
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is between 30 and 700 bp, with the average being around 80 bp (Wood et al., 2002a) and around 50% of 

genes contain multiple introns (Prabhala et al., 1992). The consensus sequence for splicing in S. pombe is 

similar to mammalian splice sequences and introns in mammal mRNAs have been shown to be correctly 

spliced out in S. pombe (Käufer et al., 1985). 

 

It has been proposed that the last common ancestor of fungi was an intron-rich organism (Stajich et al., 

2007). Many studies pointed out multiple intron loss events but there is very little evidence for intron 

gains (Rogozin et al., 2012). Taken together those observations raise the question, since introns are 

becoming extinct in fungal genomes, what is the significance of the intron currently remaining? Introns 

might be either evolutionary remnants and they will be eventually lost or they are kept because they have 

some function. Introns can function in multiple ways, such as through their sequence as a binding region 

for proteins, their secondary structure as a splicing regulating structure or as a separate ncRNA, or the 

process of splicing itself can affect the gene expression by affecting the timing of mRNA processing. 

Here, I will consider the possible functions fulfilled by introns after splicing via RNA secondary 

structure. Normally intron lariats are quickly degraded (Conklin et al., 2005), but secondary structures can 

protect intron lariats from degradation after splicing. Since RNA secondary structures are based on base-

pairing rules, it is possible, although not trivial, to computationally predict what structures an intron 

sequence might adopt. 

 

As a side part of my thesis project, and to obtain training in computational biology, I investigated the 

possibility that introns within the S. pombe psc3
+
 gene may produce functional small RNAs that may 

have regulatory function. This project stems from a previously published genetic characterization of the 

psc3+ gene of S. pombe (Ilyushik et al., 2005). The gene psc3
+
 encodes a subunit of the cohesion 

complex that holds sister chromatids together during metaphase of cell division. Psc3 works during 

mitotic cell division and it has a paralog Rec11 that functions in meiosis. Determination of the gene 

structure of the psc3
+
 gene showed some interesting intron features. One of the 5′ psc3 introns is located 

towards the 3′ end of the gene with a large gap separating it from 3 5′ introns. This is unusual because 

normally we observed more introns retained at the 5′ of mRNAs according to the reverse-transcription 

mediated intron loss, 3′ introns are most likely to be lost first (Mourier and Jeffares, 2003). It appears that 

in psc3
+
, the middle introns have been lost but the distant 3′ one was retained. Does the retention of the 3′ 

intron of psc3
+
 signify a possible function for the 3′ psc3

+
 intron? In this chapter, I present the results of 

computer-based experimentation to investigate possible stable structures in introns of psc3
+
 and it paralog 

rec11
+
. I describe the required bioinformatics steps to obtain and align orthologous intron sequences from  
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Figure 5.1: Phylogenetic tree of cohesion gene orthologues in fungi. The psc3 and rec11 proteins sequences were 

combined into one set and the phylogenetic tree determined using MEGA5 (Tamura et al., 2011). Group 1 contains 

the two rec11 sequences and Group 2-5 contain psc3 sequences. 
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Figure 5.2: Testing for intron orthology using Group 1 as per Figure 5.1 (A) Assignment of intron orthologs 

based on the gene structure. (B) The alignment of proteins in Group 1 confirms the placement of intron 2 and 3. (C) 

Sites of intron 2 and 3 confirmed by mRNA and DNA alignment.  

  



 

resources. After the RT-PCR screen for remaining intron transcripts of these genes proved negative, I 

adopted a new approach of using RNAseq of small RNA libraries to see if any full introns were expressed 

in S. pombe. Only a few were, but I did observe the expression of a number of new features, mainly 

snoRNAs, that had not been previously annotated in the S. pombe genome. 

 

5.2. RESULTS 

5.2.1. Identifying orthologous introns in fungal cohesins 

The first step in the analysis was to find fungal orthologs of the protein Psc3. The general taxon ‘fungi’ 

(taxid:4751) was searched with Psc3 as query using BLASTP (Altschul et al., 1990). Most returns only 

specified cohensin, so the top 50 hits were selected and found to contain mainly Psc3 homologues, but 

also the Rec11 paralogs of both S. pombe and S. japonicas. This was fortuitous, because the rec11
+
 gene 

with 8 introns would serve to develop the sequence of bioinformatic steps for analysing the psc3
+
 introns. 

The gene sequences of these proteins were retrieved and 18 rejected, because their genes either did not 

contain introns or the sequences were duplicates. Using the tools in NCBI, the sequence relationship 

among the remaining genes was performed as a group. In order to facilitate identifying orthologous 

introns and afterwards their secondary structure, we divided the structural analysis according to each of 

the five groups identified (Figure 5.1). 

 

Using the two rec11
+
 genes of Group 1 as an example, the process of finding orthologous introns within 

each group was as follows. Group 1 contained the two rec11
+
 genes from S. pombe and S. japonicus. 

Frequently, inspection of the gene structure is sufficient to establish the intron orthologs. The two genes 

had six orthologous introns that appeared to align and there were two introns in the S. pombe gene that 

were not present in S. japonicas gene (Figure 5.2A). The correspondence of introns was confirmed by 

aligning the introns to the protein sequences as ortholgous introns would map to the same places in the 

protein sequences (Figure 5.2B). The final way to ensure that the orthologous introns had been correctly 

defined was to align DNA and mRNAs for all the genes in selected group (Figure 5.2C). The same 

procedure of finding orthologous introns was employed to all the psc3
+
 groups (2-5). 

 

5.2.2. Alignment of orthologous introns and secondary structure prediction 

As shown in Figure 5.2, Group 1 has two genes for rec11
+
 which have six orthologous introns. Since this 

project was performed, other genome sequences of the species Schizosaccharomyces have been 

sequenced, namely: S. cryophilus and S. octosporus. Therefore, I compared rec11
+
 in those four species 

using the annotation provided by Ensembl Fungi. First, ClustalOmega was used to align each orthologous  
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Figure 5.3: Secondary structures for the orthologous introns. Each figure A-C shows the gene alignment with 

the orthologous intron designated by an arrow. Introns are numbered from left to right. Alignments were done using 

either ClustalW or ClustalOmega and structures were determined using RNAalifold. The structure of each intron for 

a group is provided as well as the MFE of folding. (A) Group 1 rec11 genes of Schizosaccharomyces sp. (B) The 

psc3 gene of Group 2 as shown in Figure 5.1. (C) Group 5 psc3 genes for Schizosaccharomyces sp.  



 

intron sequences and then the secondary structure for each alignment was predicted by RNAalifold web 

server (Figure 5.3). The intron positions among the four species were well conserved but not their 

sequences. This results in predicating RNA structures with a relatively high MFE values. The lowest was 

only -6.8 kcal/mol for intron 7 (Figure 5.3A). Group 2 contained the psc3
+
 genes from three different 

organisms, which were Coprinopsis cinerea (CCpsc3), Cryptococcus gattii (CGpsc3) and Laccaria 

bicolor (LApsc3). This group of genes from these species had three orthologous introns (Figure 5.3B, 

panel a). Different introns have been lost in each of the species, but in L. bicolor we see an increased 

intron loss at the 3’ end of the gene, which is consistent with the proposed cDNA reverse-transcriptase 

intron-loss model (Fink, 1987). The relatively small number of orthologous introns packed into the 5’ end 

of the gene and coupled with the low sequence and structure conservation pointed to the conclusion that 

the introns in this group are probably not functional. This was supported by the MFE scores for the three 

introns with Intron 1 having the lowest MFE of -9.8 kcal/mol (Figure 5.3B). Group 3 had nine genes from 

different organisms, but these only shared two orthologous introns. Group 4 consisted of one orthologous 

intron among the 15 genes in the various organisms in this group. The low number of orthologous introns 

and their placement near the 5’ end of the gene strongly suggested that this intron would not have a 

function. The structures for the orthologous introns for Groups 3 and 4 were determined and the average 

MFE scores for the introns of these two groups were on average 0.00 kcal/mol. The sequences of Group 5 

were expected to be more similar than groups 2-4, since the four species come from the same genus. For 

reference, the systematic ID of the psc3
+
 gene for each of the Schizosaccharomyces species is given in 

Figure 5.3. However, of the five introns of S. pombe Psc3
+
 only introns 3 and 4 were conserved in all four 

species. Introns 1 and 2 are missing in S. japonicus and intron 5 is only present in S. pombe and S. 

japonicas (Figure 5.3C). Structure predictions were made for each of the introns according to the 

orthologous pairing. It was interesting that only for the 5’ intron of psc3
+
 of S. pombe and S. japonicus 

was a structure returned where the MFE value at nearly -18 kcal/mol was low enough for it to be 

considered a stable enough structure to remain in the cell.  

 

5.2.3. Investigation of intron expression by RT-PCR 

The structural prediction of the stability of intron 5 was certainly a good basis by which to proceed with 

the experiments to determine if it was expressed. The logical approach was to see if it could be amplified 

by RT-PCR. The three different sets of primers were designed to determine the expression of intronic 

sequences of the psc3 gene and to distinguish them from unspliced and spliced transcripts. For example, 

amplifying just the intron may yield a product from a small number of pre-mRNAs that had not yet been 

spliced or even contamination from DNA. One pair of primers was designed so that the oligos sat in the 

exons on either side of the intron, which I called the exon primers. Another set was designed only to  
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Figure 5.4. Gel-based verification of product amplification by RT-PCR. (A) Fragments from reactions 

conducted on cDNA using primers spanning the each of the introns from the S. pombe psc3+ gene. The 

approximated fragment sizes are given in the text. (B) Fragments from reactions on cDNA made from DNase-

treated RNA. (C) Junction primers for S. pombe gene psc3
+
 tested by normal PCR on genomic DNA. The 

fragment sizes are given in the text. For panels A-C, the lane numbers 1-5 correspond to the intron number as 

specified in Figure 5.3C. The bands were resolved on 15% polyacrylamide gels. (D) RT-PCR of known ncRNAs 

in cDNA samples used in panel B. Lanes 1 & 2 are the primer pairs for SPNCRNA.184 with fragment sizes of 45 

and 96 bp, respectively. Lanes 3 & 4 are the primer pairs for SPNCRNA.185 with fragment sizes of 55 and 92 

(expected) bp, respectively. Lanes 5 & 6 are the primer pairs for SPNCRNA.186 with fragment sizes of 47 

(expected) and 106 bp, respectively. Lanes 7 & 8 are the primer pairs for SPNCRNA.487 with fragment sizes of 

49 and 103 bp, respectively. Bands were separated using a 2% TAE-agarose gel. 

  



 

amplify the intron sequences of each of the five psc3
+
 introns. A third set was designed where the forward 

and reverse primers spanned the intron/exon junctions 3′ and 5′ on each side of the intron. This set of 

primers would only amplify unspliced pre-mRNA transcripts. A group of primer pairs was made to 

amplify a number of ncRNAs that are postulated to be expressed from loci near to psc3+. These primers 

were designed to give product sizes approximating those of the psc3
+
 introns sizes.  

 

The exon primer pairs, when used against cDNA made from total RNA from wild-type cells as template, 

were expected to give fragment sizes of 60 bp, 52 bp, 57 bp, 81 bp and 52 bp for introns 1-5, respectively, 

for mature mRNAs. Bands of these fragment sizes were observed, but I also observed bands for fragments 

of larger size (Figure 5.4A). As mentioned above, bands of larger fragment size would be present if either 

DNA had contaminated the RNA samples or there was unspliced transcript present. Either way, the larger 

bands would give fragments of sizes of 105 bp, 90 bp, 105 bp, 131 bp and 100 bp for introns 1 to 5, 

respectively, and these corresponded to the sizes of the upper bands visible in each lane. It was found that 

DNA had contaminated the RNA preparations, because DNA treatement of the RNA samples prior to 

cDNA synthesis removed the upper bands (Figure 5.4B). The presence of only one band of the predicted 

size for the cDNA indicated that unspliced transcript was not present and the mature cDNAs resulted 

from perfect splicing. The junction primers, when tested on genomic DNA, gave the predicted fragment 

sizes of 65 bp, 58 bp, 67 bp, 70 bp and 68 bp for introns 1 to 5, respectively (Figure 5.4C), but the cDNA 

samples from DNase-treated RNA gave no bands. This confirmed that unspliced pre-mRNA for psc3
+
 

was not present in the samples. Finally, and most importantly, the intron primers did not give 

amplification products and so no data was shown. As a final control, I investigated if the RT-PCR would 

amplify ncRNAs that had been annotated in the S. pombe genome. I selected and designed primer pairs 

for three ncRNAs that were located on Chromosome 1 in the vicinity of psc3
+
, SPNCRNA.184, 

SPNCRNA.185 and SPNCRNA.186, and one ncRNA located on Chromosome 3, SPNCRNA.487. For each 

ncRNA, two primer pairs were made, and they were designed to give products of approximately the size 

that would be expected of an average intron, around 80 bp (Wood et al., 2002a). Six of the eight primers 

pairs appeared to work for the ncRNAs, except for primer pair 2 of SPNCRNA.185 and primer pair 1 for 

SPNCRNA.186. This indicates that in our wild-type cells, ncRNAs are generally expressed and in 

sufficient quantities to amplify using standard RT-PCR (Figure 5.4D). 

 

5.2.4. Investigating the potential for intron expression by RNAseq 

Since the RT-PCRs did not confirm the expression of psc3
+
 introns, I decided to take a global approach 

and employ RNAseq to assess the expression of S. pombe introns. For that I requested from the 

sequencing facility at GeT-Biopuce in Toulouse, France to create a size-fractionated ‘Small’ libraries.  
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Figure 5.5. Intron expression in RNAseq performed on small RNA library. (A) The only read mapping to the 

psc3 intron. (B) (C) Reads mapping to rec11 introns. (D) Example of a highly expressed intron of swp1. Dark blue 

boxes represent exons of genes with thin blue line connecting them representing the introns. Grey histograms show 

the expression of the full gene swp1 in WT and hid3Δ RNAseq done on polyA selected RNA, whereas the green 

histogram shows the expression in the size-selected small RNA library. 
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Two libraries were made, one from wild-type and one from hid3Δ, with a mean RNA molecule size of 80 

and 100 nt, respectively, which were then sequenced using an IonTorrent system (Life Science 

Technologies). In the wild-type library, I found only one read mapping to the intron 5 of psc3 (figure 

5.5A). No reads for other psc3 introns were observed. For rec11 I found two reads one for intron 1 and 

one for intron 7 (figure 5.5B-C). This observation supports the results from the RT-PCR that the introns 

of both psc3 and rec11 are most quickly degraded after splicing. In fact, I observed only a few introns 

where there were sufficient reads to consider that they were expressed (Figure 5.5D). The best example 

was that for the gene encoding Swp1 (SPCC553.06) a predicted oligosaccharyltransferase delta subunit. 

The second intron of this gene had transcript remaining whereas no transcript was detected for the first 

intron. This was observed in both wild-type and hid3Δ samples and the reads for the intron were around 

half of those observed for the gene in the wild-type and hid3Δ samples shown in Chapter 4 determined by 

classic poly A+ RNAseq for quantification of mRNA. The reads for the intron were not observed in the 

classic analysis. Interestingly, the high expression of this intron was only observed for wild-type and not 

the hid3Δ. 

 

Through visual inspection of the mapped reads on each chromosome using IGV viewer, I noticed high 

levels of expression for distinct small regions (Figure 5.6A-B). These distinct regions likely represented 

snoRNAs. Additionally, there were 36 novel expressed regions with a very clear start and end sites 

suggesting of a consistent production of novel ncRNAs. Like for swp1, the vast majority of the novel 

identified transcripts were either not expressed in RNAseq performed on polyA+ RNA or it was difficult 

to recognise them as separate transcripts, because of the presence of other expressed genes. However, the 

comparison with the expression of polyA library allowed us to find out which of the transcript might 

reside in the introns of either protein coding genes or other ncRNAs. I found that 16 transcripts came 

from the introns of other genes, which was expected for snoRNAs, however, some exonic snoRNAs were 

also observed. Some snoRNAs came from predicted intergenic regions (Figure 5.6 A-B).  

 

To investigate the function of the novel ncRNAs found in the RNAseq, I used two common programs to 

investigate the structure of the snoRNAs. One called snoscan (Lowe and Eddy, 1999) predicts C/D-box 

snoRNAs and of the 36 novel transcripts, 16 of them were predicted to have this motif C/D box 

snoRNAs. The novel C/D box snoRNA that I call novel08 was found near the actin-like protein gene 

arp6 (Figure 5.6A, top panel). It has the classic loop structure to interact with rRNAs such as the 5S and 

28S rRNAs (Figure 5.6A, bottom panel). Then, I used BLAST to search for the orthologs of the 

remaining 20 novel transcripts and found that five of them were conserved in all four 

Schizosaccharomyces species. Among these five well-conserved and expressed ncRNA transcripts, there  

74 



 

  



 

were two ambiguous and one very probable H/ACA box snoRNA according to the program RNAsnoop 

(Tafer et al., 2010). The S. pombe ortholog of this H/ACA box snoRNA was found down-stream of the 

psu2 gene that encodes a putative beta-glucosidase (Figure 5.6B, top panel). The predicted structure of 

this snoRNA has the classic two-hairpin secondary RNA structure and H and ACA boxes for 5S rRNA 

binding (Figure 5.6B, bottom panel).  

 

5.3 DISCUSSION 

Secondary structural predictions and assessment of expression of introns of the psc3
+
 and rec11

+
 genes of 

S. pombe were started based on the interesting gene structure of the psc3+ gene where the terminal 5’ 

intron has been retained. The structural prediction only gives an idea if an RNA sequence can adopt a 

structure stable enough to avoid degradation. It does not say anything about predicting potential function 

as a regulatory ncRNA. Therefore, there are certain conditions by which RNA structures are usually 

determined in order to increase confidence that a predicted structure is biologically real. The search for 

conserved intron orthologs is essential because an RNA that is regulatory is likely to be conserved, at 

least within closely related species. The more distantly related the organisms are for which orthologs for 

an ncRNA can be found give greater confidence for a biological role. Therefore, most efforts in the 

structural prediction of intron structure for S. pombe psc3 introns were spent identifying the orthologous 

introns in other species. Once the orthologs are found, structures for the individual ncRNA sequences can 

be compared to a structure for the consensus sequence. If they match, then it is likely that this structure 

has been evolutionarily conserved for a regulatory function (Griffiths-Jones, 2007; Hooks and Griffiths-

Jones, 2011). 

 

It was interesting that for all 13 introns comprising the psc3
+
 and rec11

+
 genes, the only intron with a 

potentially stable structure was the unique 3’ intron of psc3
+
. Assignment of a stable structure to this 

intron has to be taken with caution. First, the structure was determined using RANalifold, because it was 

the only one that will output structures and scores for short RNA sequences. In general, RNA structures 

should be measured using a combination of prediction programs to ensure that the predicted structure is 

real. Second, there were only the two intron sequences for S. pombe and S. japonicas used for the 

consensus sequence. Because they were similar, individual structures would compare well against the 

consensus and give a lower MFE score. Third, the question still remains as to how significant a predicted 

structure is from a biological point of view if it is present in only one or closely related organisms. 

However, the loss of 5’ introns in the S. japonicus psc3 gene compared to psc3
+
 of S. pombe suggests that 

the close evolutionary relationship between the two organisms is not a reason for common retention  
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 of the unique 3′ intron. Based on the latter two points, it was necessary to determine if transcript for this 

unique intron was present in S. pombe. Although the test by RT-PCR was negative, it did not mean that 

the intron is not expressed. The gene psc3
+
 is generally weakly expressed during the cell cycle, so it is 

likely the intron would also be in low quantities if retained (Ilyushik et al., 2005). Also, it was not 

possible to test expression in a range of conditions where the psc3
+
 gene may be expressed, such as under 

stresses. The final possibility that could have been tried was to attach adaptors to the RNA and to try to 

amplify the introns using specific primers overlapping the junction between intron end and the adaptor. 

However, this would not work if the introns were processes in any way. Intron processing could explain 

why the intron primers themselves didn’t work. 

 

Therefore, it was decided to take a more global approach using RNAseq to investigate if introns in 

general, including those for psc3
+
, were present. Since pombe introns are on average quite small at 80 bp, 

it was decided to increase the possibility of detecting short RNA fragments by analysing libraries made 

from small RNA with insert sizes around 80 bp. Although the sequencing did give reads corresponding to 

the intron sequences of the psc3
+
 and rec11

+
 genes, they were very low. Thinking positively, it still 

remains to be determined if the 3′ intron of psc3
+
 is expressed at some point. An interesting finding from 

the RNAseq was finding more than 30 non-annotated potential snoRNAs. Some of these clearly had the 

feature of C/D and H/ACA boxes. C/D box snoRNAs are involved in rRNA processing through 

methylation, which can stablise rRNA structures by strengthening individual hydrogen-bonded base pairs 

and H/ACA boxes process rRNAs through modification of uridine bases, which is thought to stablise the 

overall structure of the rRNA (Helm, 2006). In fact it is not clear what affect the majority of rRNA 

modifications are doing, so it is difficult to discuss potential roles for the novel snoRNAs here. Further 

characterisation would require deleting them and observing effects on cell physiology and protein and 

gene expression. 
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Chapter 6 
 

General Discussion and Outlook 
 

My work on investigating the function of the hid genes started from the idea that the down-regulated 

expression of the HsHID1 gene could promote the development of cancer as proposed by Harada et al. 

(2001). The human gene has been referred to by the systematic designation of a gene of unknown 

function c17orf28 that had persisted in databases, including Genbank, until about 2011 when there 

appeared a number of publications that proposed a function of the C. elegans orthologue HID-1. At the 

time of the Harada publication, the orthologue in C. elegans had not yet been identified, and a study by 

Ailion and Thomas (2003), identified the hid-1 gene through a screen to identify mutants of C. elegans 

that formed dauer larva under the conditions of slightly elevated temperature that would not normally 

cause the nematode to take a dauer form. It was surprising that this gene had not been characterized 

previously, since even under normal conditions the mutant exhibited pleiotropic phenotypes, such as 

delayed defecation, uncoordinated movement,  and mutants affecting these processes had been screened 

for extensively (Hart, 2006).  

 

From what is currently understood about HID-1 function in C. elegans, it should be possible to consider if 

HsHID could function as a tumour suppressor gene. Due to other types of mutants isolated as part of the 

screen, they proposed that HID-1 functions in the insulin-like signalling pathway in C. elegans. There is 

more and more evidence showing the involvement of insulin signalling in tumourogenesis  (Gallagher 

and LeRoith, 2011). The down-regulation of expression of the forkhead TF FOXO4 has recently been 

shown to contribute to gastric cancer cell line growth and an increase in metastasis (Su et al., 2014b). The 

C. elegans orthologue of FOXO4 is the forkhead TF DAF-16, which is a positive regulator of dauer 

formation. It has been identified in screens to identify mutant defective in dauer formation (Gottlieb and 

Ruvkun, 1994). The down-regulation or mutation of daf-16 to promote growth is consistent with a 

potential role of FOXO4 as a tumour suppressor gene. In C. elegans, the daf-16 mutation suppresses the 

hid-1 constitutive Dauer-formation phenotype. This means that they would appear to work in opposite 

directions with HID-1 expression required for normal cellular growth, which would contradict an implied 

function as a tumour suppressor.  

 

There is a regulatory step between HID-1 and FOXO4 that must be considered in order to completely 

address the question of contradictory modes of action. SpHid3, known in Pombase as Ftp105, retains the 

deubiquitinase Ubp5 to the Golgi apparatus (Kouranti et al., 2010). The human orthologues of SpUbp5 is  
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Figure 6.1. The regulation between HID1 and FOXO4. When HID1 levels go down, USP7 is released and can 

migrate to the nucleus to stop activation of tumour inhibiting pathways. For example of this through the human 

transcription factor FOXO4, which is necessary for inducing cell apoptotic pathways. 

  



 

USP7, a deubiquitinase that interacts with FOXO4. FOXO4 is regulated by a system of 

monoubiquitylation/deubiquitylation in which FOXO4 is both ubiquitinated and deubiquitylated in 

response to oxidative stress (van der Horst et al., 2006). FOXO4 is ubiquitinated by an unknown E3 

ligase within a few minutes after exposure to oxidative stress. Ubiquitination of FOXO4 leads to its 

recruitment by USP7 deubiquitinase in order to deactivate its transcriptional up-regulating properties. An 

imbalance of USP7 would ensure that FOXO4 is in an inactivated state and decreasing aspects of gene 

expression (Figure 6.1). This would potentially lead to the up-regulation of growth and metastasis. By this 

model lower HsHID1 expression would favour tumorigenesis or proliferation.  

 

A potential complicating factor to this model is that it does not seem clear that there is a specific 

functional homologue of FOXO4 in S. pombe. There are a number of forkhead-like TFs in S. pombe, such 

as the forkhead TFs Fhl1 and Fhk2, and analogues of the Akt/PI3K signalling pathway of insulin 

signalling in humans are present in S. pombe, such as Sck1 and Sck2, for the regulation of glucose 

metabolism. No forkhead-like TFs were altered on the gene expression level (or protein expression level) 

whereas there were clear increases in expression of certain groups of TFs (Chapter 4) in the hid3Δ 

mutants.  

 

Another potential complicating factor is the ultrastructural modifications to the Golgi apparatus in cells 

lacking HID1 like those that I observed in pombe lacking Hid3 (Chapter 3). Modifying the structure and 

thus function of the Golgi would expect to alter the localization of other proteins besides UPS7. There is 

evidence that FOXO4 may interact directly with the STEROL RECEPTOR BINDING PROTEIN 2 

(SREBP2) in order to stimulate cholesterol synthesis (Zhu et al., 2014). In the Introduction to my thesis I 

presented the relationship between SREBP signaling from the Golgi and effects on gene expression. In 

brief, SREBP2 is an ER localized protein that when cholesterol levels are low is transported to the Golgi 

and proteolytically cleaved, and which can then enter the nucleus to up-regulate genes in cholesterol 

biosynthesis. Proteolytic cleavage of SREBP2 in the Golgi is regulated by ubiquitylation/deubiquitylation 

processes (Stewart et al., 2011). The implication is that signaling processes, such as through SREBP, 

would likely be altered with dramatic Golgi structural changes. This would also be the case for the 

phosphatidylinositol-4-kinase effector protein GOL3PH (Buschman et al., 2015). GOLPH3 is present in 

the trans-Golgi and help to promote vesicle formation through microtubule association (Dippold et al., 

2009). DNA damage alters Golgi structure, which can be alleviated by over-expression of GOLPH3, 

therefore it is frequent in cancers that GOLPH3 is induced to prevent DNA damage induced apoptosis 

(Farber-Katz et al., 2014). The S. pombe orthologue is Vps74, but it does not change on either the mRNA 

or protein level in hid3Δ, but it would be interesting to see if Vsp74 reverses the effect of Hid3 removal.  
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It is clear that there are dramatic changes at the mRNA level in hid3Δ strains. Although it was not 

presented in Chapter 4, a survey of genes related to ubiquitin-mediated processes revealed that 15 genes 

are significantly DE (8 UR and 7 DR). Of the eight genes that were significantly up-regulated 5 were E3 

ubiquitin ligases or deubiquitinases. Two E3 ligases were DR, SPAC2F3.08 and uch1 as well as the E2 

ubiquitin ligase RAD6 homologue. Lower levels of Rad6 would increase transcription at the mating-type 

locus. This is another potential example of the link between Golgi function and chromatin remodeling. 

 

It is plausible that in humans and C. elegans there are other proteins holding together the Golgi apparatus 

and so the loss of HID1 would not be so dramatic. As well as HID1, animals have DYM, which is a 

peripheral membrane protein associated with the cis- and trans-Golgi stacks (Dimitrov et al., 2009; Wang 

et al., 2011). Patients mutant in DYM have severe morphological deformity of Golgi structure, which can 

be reversed by the expression of DYM (Denais et al., 2011). This would suggest that in animals the 

presence of DYM is critical and a structural role of HID1 is less important. However, a structural role for 

HID1 cannot be excluded, since the Golgi can form discrete subsets of forms, for example on treatment 

with BFA (Nizak et al., 2003). DYM was found to localize with a dispersed form of mini-stack and not 

with the remaining core Golgi upon treatment of cells with nocodazole, a treatment that disrupts Golgi 

structure (Dimitrov et al., 2009). Loss of DYM leads to severe growth defects and can lead to mental 

retardation depending on the nature of the mutation. A role for HID1 in Golgi structure can be presented 

from a different point of view. One question is why is the lack of DYM not lethal? It is interesting to 

speculate that HID1 may complement to some degree the function of DYM in maintaining Golgi structure 

and in doing so allowing the flow of proteins through a modified Golgi structure. To my knowledge, in 

animal cells there has not been a report where both DYM and HID1 have been eliminated and the effects 

on cell survivability tested. Using S. pombe, a next step would be to express the human and C. elegans 

DYMs in hid3Δ in order to see if they can reverse the apparent Golgi structural deformities within the 

mutant. This may show if there is any functional overlap between the DYM and HIDs. 

 

From my results on S. pombe, is it possible to address the question of the putative tumour-suppressive 

properties of HsHID1? The major physical attributes of the hid3Δ mutant are its slow growth and altered 

Structure, but normal cellular morphology (Chapter 3). I measured cell growth through cell counts, thus 

slow growth could simply be a result of cells dying prematurely. Denais et al. (2011) reported that the 

apoptotic index was greater in cells lacking DYM. Apoptosis was not spontaneous, but was induced by 

over-growing cell cultures. Since apoptosis was not seen in normal cells, but only in over-grown cell 

cultures, they concluded that cells without DYM were already stressed and so more susceptible to  
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apoptosis under unfavourable growth conditions. If Hid3 has a similar function in S. pombe as DYM does 

in animals regarding Golgi structure, then I cannot remove the possibility that lower cell counts in hid3Δ 

cultures were not due to a certain amount of cell death due to stress. This remains to be tested with 

viability assays. As I will discuss in more detail below, there is evidence that under normal growth 

conditions, there is expression of genes that are markers of stress, such as atf1, and that this stress would 

be present over the lifespan of the cell.  

 

Another possibility is that the cells have entered into a type of quiescent growth state. Stress signaling in 

S. pombe appears to be an inherent part of the entry of cells into quiescence and maintaining this state 

(Sajiki et al., 2009). Besides delayed growth and induction of stress markers, cells lacking Hid3 show 

distinct molecular signs of a quiescent state. There has been a lot of interest recently into studying cell 

quiescence as a mechanism for prolonging life. There have been screens looking for mutants with 

increased lifespan in the situation of low glucose in stationary phase (Roux et al., 2010). Although hid3+ 

was not identified directly as contributing to increased lifespan, their gene expression analysis showed the 

DR and UR of git3
+
 and cka1

+
, respectively, which could contribute to increased lifespan. In hid3Δ cells 

grown under normal conditions, both genes were expressed less than the 2-fold cutoff to be included in 

the tables of differentially expressed genes, but they were significantly altered. Git3 is a glucose-

responsive G-protein coupled receptor that when lost leads to increased lifespan (Roux et al., 2009). Git3 

expression is discussed more below. Cka1 is a serine/threonine protein kinase that extends lifespan of 

normal, non-quiescent cells when over-expressed (Roux et al., 2010). In addition, it has been reported that 

the lack of Hid3 may increase the lifespan of S. pombe in response to nitrogen starvation (Sideri et al., 

2014). Protein synthesis is also decreased in quiescent cells and the GO analysis of DE genes in Chapter 4 

showed substantial DR of ribosomal protein genes. Also the transcriptional profiling shown in Chapter 4, 

there were a number of TFs that were induced specifically in hid3Δ. One of these atf1
+
 was mentioned 

previously as a marker of stress.atf1
+
 transcription is up-regulated by the MAPK stress-signaling 

pathway. The gene wis1+ that encodes the MAPKK in the pathway is also significantly induced in hid3Δ 

by nearly 2-fold. The gene wis1+ was shown to be necessary for both entry and maintenance of cellular 

quiescent state (Sajiki et al., 2009). Two other interesting TFs that were induced in hid3Δ are gaf1+ and 

hsr1+. In S. cerevisiae, the TORC1 signalling pathway promotes cell growth over quiescence in part by 

repressing the transcription of GAT1. The S. pombe orthologue of GAT1 is gaf1
+
. The induction of gaf1

+
 

in hid3Δ would suggest derepression due to inactive Torc1-mediated signalling. The TF gene hsr1
+
 is the 

S. pombe orthologue of the budding yeast TFs MSN2 and MSN4. In budding yeast, Msn4p and Msn2p are 

repressed by both the PKA and TORC1 signalling pathways to promote cell growth (Gray et al., 2004) 

and there is evidence that the PKA pathway represses the expression of MSN2 (Lenssen et al., 2002).  
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Figure 6.2. Transcription signalling pathways potentially affected in hid3Δ. Very restricted types of gene 

changed: transporters, stress, stress signalling. How does this relate to the variety of signalling pathways present?



 

If this system was working similarly in S. pombe then induction of hsr1
+
 is consistent with low activity of 

PKA-mediated cAMP signalling. The usual mechanisms by which human cells enter quiescence are the 

limitation of growth factors through withdrawal or serum depletion through prolonged growth, separation 

from other cells, or inhibition of cell contact signals (Coller et al., 2006; Parr, 2012). For unicellular 

microorganisms it is nutrient starvation (Gray et al., 2004). Where, it was previously thought that entry 

into quiescence was cell cycle arrest at G1, it is now apparent that entry into quiescence can take place at 

any part of the cell cycle and that this is an active process (Laporte et al., 2011). Nutrient starvation 

usually generates intracellular signals to try to access more of the missing nutrients. For example, iron 

starvation induces genes for iron transport proteins that would help to scavenge iron from the surrounding 

medium. This is true for a wide range of nutrients (Conrad et al., 2014). What was very striking from the 

gene expression analysis was the induction in hid3Δ of genes encoding a variety of transport proteins, 

including for iron, phosphate, and amino acids. Also common among the genes UR were proteins secreted 

or destined for transport to the plasma membrane. This indicates that disruption of the Golgi through lack 

of Hid3 causes disruption of processes at the plasma membrane and that this feeds back to increase gene 

expression in an attempt to produce more protein. There are a number of ways that S. pombe can signal 

changes occurring at the plasma membrane, including MAPK signaling, Ras/cAMP signaling, the Cell 

Integrity Pathway (CIP) pathway acting through Rho GTPases (Levin, 2011; Sánchez-Mir et al., 2014), 

and the Pmk1 MAPK signaling pathway through Protein Kinase C (Figure 6.2) (Zaitsevskaya-Carter and 

Cooper, 1997). In S. cerevisiae, nitrogen signaling is mediated through the nitrogen catabolite repression 

pathway requiring the action of the TF Gat1p (Conrad et al., 2014) and I observed the induction of the 

pombe orthologue gaf1
+
 in hid3Δ strains. It is interesting to speculate that the other induced TFs may 

have roles in the induction of starvation responses or other processes located at the PM. This is not an 

unreasonable idea. One point that demonstrates the specificity of induction of these set of TFs is that other 

TFs involved in transcription remained unchanged, for example the Mediator and the Swi/Snf complexes 

do not have any components that change in expression. However, the core mediator complex is quite 

stable, but fluctuates in component composition and activates transcription in relation to other TFs that 

interact with it (Malik and Roeder, 2010). The genes encoding cell surface proteins that are most highly 

UR in hid3Δ, gsf2
+
, fta5

+
, plf6

+
 and pfl9

+
, are regulated by the Mediator complex. The logical conclusion 

is that some of the induced TFs are working to regulate transcription of cell surface protein genes through 

the Mediator complex. 

 

Although entry of hid3Δ into a quiescent cell state appears attractive, there are observations that have to 

be reconciled to equate slow cell growth with a quiescence state. In quiescent cells of S. cerevisiae,  
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cyclic-AMP (cAMP) levels remain low and signaling through the Protein Kinase A pathway is 

inactivated (Gray et al., 2004; Jiang et al., 1998). In addition, mutants of S. cerevisiae that cannot induce 

Protein kinase A-mediated signalling in response to cAMP exhibit a delayed growth phenotype (Jiang et 

al., 1998). However, I observed the significant induction of cgs1
+
, which encodes the regulatory subunit 

of PKA. This finding is difficult to interpret. Although it suggests increased cAMP-dependent signaling, 

it also contradicts cAMP signalling to serve as a negative feedback loop to repress the expression cAMP 

signalling genes in the presence of high glucose (Hoffman, 2005). In addition, Alasmari (2015) observed 

a large increase in Ras1 in hid3Δ and Ras1 activates the cAMP signalling pathway through PKA. 

However, Ras-mediated signalling of various pathways depends on its subcellular location as discussed 

below. Interestingly, mutant strains of S. cerevisiae in which active Ras2 is mis-localised from the plasma 

membrane to the cytosol also show a delayed growth phenotype 

 

Related to Ras-signalling is the interesting question as to why hid3Δ cells are not affected 

morphologically when growth rate is? The answer for this comes from the observation by Alasmari 

(2015) that Ras1 protein levels are more than 3-fold greater in hid3Δ than other genotypes (Tamanoi, 

2011). Ras1 activates two different pathways, the Byr1 pathway that is responsive to pheromones and 

controls mating and the Scd1/Ral1 pathway responsible for spindle formation and cytokinesis. The 

Scd1/Ral1 pathway is also important in determining cell shape. Cells lacking Ras1 are generally round as 

well as sterile. Although Alasmari (2015) did not see any obvious induction of the proteins in this 

pathway, no decrease was observed either. As long as protein levels are maintained, the pathways could 

be activated. One result suggesting preferential activation of the Scd1/Ral1 pathway is my observation 

that erg25
+
 is significantly induced (1.7-fold), but ste6+ remains unchanged, in hid3Δ. Both Erg25 and 

Ste6 are GEF proteins that activate Ras1, but they activate the spindle formation/cytokinesis and 

pheromone signalling pathways, respectively. If it follows that increased expression of erg25
+
 leads to 

more protein, then Ras activity would favour induction of the pathway giving normal morphology. In S. 

cerevisiae, Ras has other potential actions, such as activating influencing lifespan, the cell cycle and stress 

response pathways. The regulation of signalling pathways by Ras is dependent on its subcellular location 

(Onken et al., 2006). Ras1 located at the plasma membrane activates the Byr1 pathway and Ras1 located 

in the endomembrane system preferentially activates the Scd1/Ral1 pathway. It is possible that in hid3Δ 

transport properties are sufficiently disrupted to retain Ras within the endomembrane system. It is critical 

to determine the subcellular location of Ras in the hidΔ mutants, particularly in hid3Δ. Furthermore, mis-

localisation of Ras and induction of its protein levels due to disruption of Golgi structure would coincide 

with the idea that the localisation of proteins other than Ubp5 could be affected in hid3Δ. 
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Figure 6.3. Analysis of tumour suppressor properties of HID1. 

  



 

In conclusion, under the model by which I began the project, HID1 may be functioning as a tumour 

suppressor whose decrease in expression and lower level of protein contributes to increased growth and 

proliferation. This would imply the reverse in that increased expression of HID1 would aid, or at least not 

prevent, apoptosis. My observation from a survey of publicly available data on gene expression in cancers 

was that HID1 appears to be UR in more cancers than DR. This suggests that HID1 contributes to 

maintaining cell growth and it is consistent with the function determined for HID-1 in C. elegans and its 

requirement for normal growth in S. pombe. Based on the results here I can make a mechanistic argument 

that down-regulation of HID1 in humans would be beneficial by contributing to a quiescent cellular state 

that would impede cell proliferation (Figure 6.3). In fact, cellular quiescence has been observed as a 

protective mechanism from tumorigenesis and proliferation (White et al., 2014). However, it is not yet 

clear what effect complete removal of HID1 from human cells would have and certainly in combination 

with other mutations affecting Golgi function, protein transport or cell/stress signaling.  

 

Outlook and Future Work 

It is apparent that there are many experiments that could be conducted in order to provide more detailed 

information on the ideas presented here. This is the nature of omics work to raise questions and 

hypotheses for direct testing. I will only some of them here. Some of these I am raising to point out 

potential limitations in the work also. 

 

I feel that there is a need to create mutants without the marker genes present. Although the effects of the 

expression of the Nat
R
 gene did not show up in the PCA of the transcript data, it did show up in other data 

(Alsamari 2015). It was greatly unexpected to find glucose levels in the wild-type much greater than in 

any of the strains expressing the selectable marker Nat
R
. This difference would have substantial apparent 

effects on signalling processes, particularly involving metabolic signalling. For example, the gene git3
+
 

that encodes the G-protein receptor kinase involved in high glucose signalling is significantly DR in 

hid3Δ compared with VCN. Interestingly, git3
+
 expression is significantly induced in all marker-

containing genotypes compared to wild-type, which is consistent with the levels of glucose being lower in 

these genotypes. The observation that git3
+
 expression is reduced in hid3Δ compared to VCN is 

consistent with the differences in the amount of glucose measured between these genotypes (Alasmari 

2015). Therefore, it appears that there is some glucose regulation of gene expression occurring in the 

mutant genotypes, and it is not possible to exclude some contribution from the cAMP signalling pathway. 

It is possible to create mutant strains without the marker gene using the CreLox system or CRISPR/Cas9 

system of genome editing (Sauer, 1998). This would allow direct comparison of mutant and wild-type 

strains. 
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The main continuation of the project would be to study the relationship between Golgi function and the 

various signalling pathways, gene expression and the potential entry into quiescence. For example, the 

relationship with the MAPK signalling pathway can be investigated the determining the phosphorylation 

state of the various components in the hid3 mutants. Since Wis1 is induced on both the mRNA and 

protein levels and atf1
+
 is also induced, it would be particularly interesting to see if phosphorylation of 

Sty1 is increased in the hid3Δ mutants, and if this is altered in the hid3Δ wis1Δ double mutant. It would 

also be interesting to determine if the expression of atf+ remains induced in the hid3Δ sty1Δ double 

mutant indicating induction by a Sty1-independent mechanism. Also, it is essential to determine the 

activity state of the cAMP-dependent kinase signalling pathway. 

 

It will be interesting to determine if the various induced TFs in hid3Δ contribute to the induction of 

expression of plasma membrane and secreted proteins, which can also be done by using combinations 

hid3Δ::tf double mutants and mutants of the Mediator co-activator complex. It will be possible to test if 

the reduced growth of hid3Δ is indicative of cells entering quiescence through induction of Wis1 or Cdc2 

by analysing the transition into quiescence of the hid3Δ wis1Δ and hid3Δ cdc2Δ double mutants. Non-

complementation of the slow growth phenotype in the double mutants would suggest that the slow growth 

is due to something else other than a nutrient starvation-induced transition into quiescence, such as a 

direct effect on Golgi function.  

 

Due to the rich results obtained from doing the transcriptional profiling of the hid3Δ mutants and the 

questions it has raised, there remains much to be investigated. In addition, I have not discussed the 

consequences of the non-coding RNA work outside of the discussion of that Chapter. Since it was a side 

project and has produced preliminary, but interesting results, I feel it is outside the scope of this 

discussion to comment on it. However, non-coding RNAs present an interesting avenue toward 

understanding the regulation of gene expression in S. pombe. 
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