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CURIE - PARIS VI
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conductrices. Merci au professeur Budhani de l’université de Kanpur ainsi que Gervasi Herranz
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années de thèse sur fond de discussions politiques passionnées. Merci à Sophie et Marie-Claude
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Introduction

Interfaces in semiconducting heterostructures are at the heart of some of the major deve-

lopments of the last fifty years, both in fundamental science and applied technology. Benefiting

from the fruitful interaction between experimentalists and theoreticians, this field of research has

lead to the discovery of new electronic states of matter such as integer and fractional quantum

Hall effects, and the emergence of revolutionary technologies including MOSFET transistors

and laser diodes for instance. In this context, the realization of similar heterostructures invol-

ving materials hosting more complex orders, has attracted a great deal of attention. This is the

case of oxides heterostructures since this familly of materials displays a wide variaty of quantum

orders such as high-Tc superconductivity, ferro and antiferro-magnetism, ferroelectricity, Mott

orders etc.

In 2004, the discovery of a two-dimensional electron gas at the interface between two insu-

lating oxides (Strontium Titanate and Lantanum Aluminate) paved the way for a new area of

research. Among its most interesting physical properties, this interface hosts together supercon-

ductivity, magnetism, and a strong spin-orbit coupling. Such unique combination of properties

makes the LaAlO3/SrTiO3 interface one of the most exotic electronic system in condensed mat-

ter physics. In addition, the possibility to tune superconductivity and spin-orbit coupling by

electric-field effect offers an unprecedented level of control on the system. Applications in the

field of spintronics are foreseen since the interface also appears as an ideal platform for spin

propagation and spin manipulation.

From the theoretical point of view, this interface has raised a lot of questions that need

to be addressed. In the superconducting phase, the exact nature of the pairing mechanism, as

well as the non-monotonic variation of the critical temperature with carrier density, are hotly

debated. In addition, the role of spatial inhomogeneities must also be clarified. The observation

of localized magnetic moments and their possible coexistence with superconductivity also de-

serve attention. As far as the spin-orbit coupling is concerned, it is expected that the symmetry

breaking at the interface should lead to a Rashba type interaction. However, the experimental

signatures of such interaction are scarce. In addition, its interplay with superconductivy raises

some exciting questions related to the possible existence of topological states. To address these

questions, theoretical predictions push forward the realization of nanodevices that would enable

to probe this system at the characteristic length scales (mean free path, superconducting cohe-

rence length, spin diffusion length...). It is therefore desirable to fabricate nanodevices both for

xi
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fundamental and applied perspectives.

The main goal of this thesis is to explore the transport properties of LAlO3/SrTiO3 interfaces

both at DC and finite frequency, and to realize mesoscopic field-effect devices. The first chapter

is dedicated to an introduction on LAlO3/SrTiO3 interfaces, starting from the properties of the

bulk materials, to the electronic properties of the two-dimensional electron gas. In this chapter,

we also present a numerical simulation of the band structure inside the interfacial quantum well,

which was developed during this thesis. It contains key ideas that will be useful to analyze the

results reported in experimental chapters. The second chapter describes the fabrication processes

of the samples, from epitaxial growth performed by our collaborators to the realization of micro

and nano-scale devices. It also introduces the different experimental setups, both for standard

DC transport measurements and microwave AC conductance measurements.

In chapter 3, we first report an experiment where we use the disorder generated by Cr substi-

tution of Al atoms in LaAlO3 as a tool to explore the nature of superconductivity and spin-orbit

coupling in these interfaces. In particular, we analyze the evolution of the spin-orbit coupling

strength with carrier density and we address the important question of the spin relaxation me-

chanism. In the second part, we describe the realization of a field-effect LaAlO3/SrTiO3 device,

whose physical properties, including superconductivity and spin-orbit coupling, can be tuned

over a wide range by a top-gate voltage.

Chapter 4 presents an introduction to dynamical conductivity in two-dimensional super-

conductors based on Mathis-Bardeen theory. The second part of this chapter is devoted to the

dynamical response of vortices in the framework of Berezinsky-Kosterlitz-Thouless (BKT) phase

transition theory. The specific case of a Josephson junctions array, which is of particular relevance

in our system, is discussed. In chapter 5, we report on the AC conductivity of the LAO/STO

interface measured by a resonant technique. We extract the superfluid stiffness of the 2DEG, i.e.

the energy scale which determines the cost of a phase twist in the superconducting condensate,

as a function of electrostatic gating and temperature. The results are compared with predictions

from the Bardeen-Cooper-Schrieffer theory and from the BKT phase transition one.

Finally, in chapter 6, we describe the realization of a quantum point contact (QPC) in a split

gate geometry whose conductance displays quantized steps. The number of conducting channels

can be tuned either by changing the shape of the confinement potential with the split gates or

by changing the Fermi energy of the 2DEG with the back-gate. The effect of a perpendicular

magnetic field is investigated and a comparison with standard GaAs QPC is made.
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Chapter 1

The LaAlO3/SrTiO3 Interface

”God made the bulk; surfaces were invented by the devil. ”

Wolfgang Pauli

as cited in Growth, Dissolution, and

Pattern Formation in Geosystems (1999)
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The conducting LaAlO3/SrTiO3 interface is a complex and rich system which attracts much

attention in the scientific community. Since the discovery of a high-mobility electron gas at the

interface by Ohtomo and Hwang in 2004 [1], many interesting features have been studied. In

2007, the group of J-M Triscone at University of Geneva and the group of Mannhart at the Uni-

versity of Augsburg reported the existence of 2D superconductivity below 300mK [2]. One year

later, field effect tuning of the electronic properties, including superconductivity was demon-

strated [3]. Finally tunable spin-orbit coupling interaction was evidenced by magneto-transport

measurements [4], and signs of magnetism were reported to coexist with superconductivity [5].

The combination of all these properties in the same 2D electronic system is unique. Their tun-

ability by electric field effect opens new perspectives for the study of fundamental properties of

2D superconducting systems and paves the way for a new generation of electronic devices.

1
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In this chapter, we give an overview of this promising new field of research. Starting from

SrTiO3 (STO) structural and electronic properties and the polar characteristics of LaAlO3

(LAO), we introduce the key factors that are at play at the interface. We focus mainly on

STO, because the electronic properties of the two-dimensional electron gas (2DEG) are gov-

erned by this exotic dielectric material. Section 1.2 briefly presents the different scenarii that

explain the presence of a conducting 2DEG at the interface and detail its band structure. Special

attention is devoted to spin-orbit coupling. The last section gives an overview on the properties

of this 2D superconductor and highlights the role of disorder. Some of the results are still under

debate and are questioned throughout this thesis.

1.1 Perovskites

The first Perovskite (CaTiO3) was discovered in the Ural mountains in 1839 by a German

mineralogist, Gustave Rose. The name comes from the Russian mineralogist Lev Alexëıevitch

Perovski. Their crystalline ABO3 structure is cubic at 300K. At the centre of the unit cell, the

B atom is surrounded by an octahedral cage of oxygen while the A atoms are placed at the

corners as represented in figure 1.1.

OAA B

Figure 1.1 – Perovskite crystalline structure ABO3 unit cell. Oxygen atoms are represented in

red. They form a cage around the B atom, while A atoms are placed on the corners of this cubic

lattice.

At lower temperatures, the cubic structure is often unstable and perovskites display less

symmetric crystallographic structures. Perovskite’s electronic properties are greatly affected

by the different temperature driven structural transitions. Ferroelectricity in BaTiO3, ferro-

magnetism in YTiO3 or antiferromagnetism in LaTiO3 [6, 7, 8] arise from the successive sym-

metry breakings that occur upon cooling. Nowadays, Perovskite thin films are widely used in

advanced technologies to fabricate ferroelectric memories, optical or piezoelectric devices. Re-

cently, perovskites have proven to have a good conversion efficiency in solar cell technologies

[9]. Up-coming applications in microwave devices based on the electric-field tunable dielectric

constant of BaMgxNb1−xO3 and BaxSr1−xTiO3 also offer a promising future to this large family

of materials [10].
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1.1.1 Strontium Titanate

Strontium titanate is at the centre of our study, because in the LaAlO3/SrTiO3 interface, the

2DEG extends in the STO side [11]. Hence most of LAO/STO 2DEG properties are inherited

from one of the most exotic materials in the Perovskite family. STO has been continuously

studied for more than sixty years but it remains a subject of controversy. As detailed below, after

undergoing a tetragonal transition when the temperature is lowered, STO avoids a ferroelectric

transition by entering in a so-called quantum paraelectric phase. Understanding these transitions

is crucial in order to characterize the transport properties of this material both in the normal

and the superconducting states.

1.1.1.1 Tetragonal transition

At 300K, the lattice parameter of STO (aSrT iO3 = 3.905 Å) matches the value observed

in many other perovskites, such as YBa2Cu3O7 or LaAlO3, allowing the growth of various

heterostructures. At 105K, a cubic to tetragonal transition occurs. It can occur in any one of

the three directions of space with equal probabilities, leading to the coexistence of domains with

different orientations as shown in figure 1.2 [12]. After each cooling the domains may align in

a different way, leading to a different macroscopic dielectric constant. However, the domains

can be oriented along a specific direction by repeated electric field [13] or thermal cycling [14].

This transition is accompanied by an antiferro-distortion of the oxygen octahedra [15] (see figure

1.3), which affects the phonon’s spectrum and the electronic properties as we will see in the next

section.

Figure 1.2 – Below 105K, the cubic cell acquires a tetragonal form. The c-axis along which the

cell elongates can be oriented in either the x, y or z direction. In SrTiO3 tetragonal domains are

thus formed in three directions of space as represented with three different colours (green along

x, purple along y and red along z). Figure from [13]



4 Chapter 1 The LaAlO3/SrTiO3 Interface

2-
Ti Sr O

4+ 2+

T=300 K - Cubic 

T=105 K - Tetragonal

T= 23 K - Ferroelectric

Figure 1.3 – STO structural transitions : The first symmetry breaking occurs at 105K with

lengthening along the c-axis and a rotation of the oxygen octahedra. At T=23K, the Ti atom

shifts from its position at the centre of the cage, leading to a quantum paraelectric transition.

E

001010 kΓd
d
d

xy
xz
yz

(a) (b)
heavy effective mass

(c) TO phonons

light effective mass

Figure 1.4 – STO electronic structure : (a) The overlap of dxy orbitals is higher in the plane

than out of the plane. (b) STO band structure at high temperature without spin-orbit coupling.

(c) Transverse optical phonon (TO) at the ferroelectric transition.
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1.1.1.2 Quantum paraelectricity

Below 23K, the position of titanium atoms shifts from the centre of the cell (see fig.1.3),

creating two equilibrium positions for oxygen atoms [16]. These atoms are light enough to avoid

the ferroelectric transition by quantum tunnelling in symmetric positions across the titanium

atom. In 1979, Müller et al. demonstrated the quantum paraelectric nature of STO [14]. Instead

of diverging upon cooling, the dielectric constant saturates below ∼10 K at a very high value

εSTO ' 23000. This very fragile state of matter can be broken in different ways :

• Isotope doping : Doping STO with oxygen 18 by annealing also favours a ferroelectric

state [17]. This effect is due to the fact that 180 are too heavy to spread their wavefunction

in the two minima of the electric potential formed below 23K.

• Calcium doping : Another way to induce a ferroelectric transition in STO is to replace

a few strontium atoms by calcium [18]. The precise origin of the induced ferroelectricity

in this case is still under debate.

• Stress : When stress is applied along both (001) and (110) directions, the system

recovers a ferroelectric transition [19].

• Electric field : Neville et al. have reported [20] that the dielectric constant decreases

with the absolute value of the electric field F = |E|, according to the relation

εSTO(F ) = ε(F =∞) +
1

A+BF
(1.1)

where A and B are two temperature dependent parameters. This can be understood as

a perturbation equivalent to applying stress given the piezoelectric properties of STO at

low temperature [21]. This electric field dependence is a key ingredient to understand

the shape of the potential well that confines the 2DEG at the LAO/STO interface.

1.1.1.3 Band structure of STO and electronic mass

STO is a band insulator with a gap of 3.2 eV. The conduction band is mainly built on the t2g

orbitals (dxy,dxz and dyz) of the titanium atom, while the valence band is mostly formed by the

2p orbitals of the surrounding oxygens [22]. The t2g orbital anisotropy leads to an anisotropic

dispersion relation (fig. 1.4(a)). On the one hand, the strong overlap of the dxy orbitals in the

plane gives rise to a light in-plane mass mxy
t = ml = 0.7 ×me. In the z direction, the mass of

the dxy band is heavy mxy
z = mh = 14 × me. On the other hand, the dxz/yz bands are light

in the z direction m
xz/yz
z = ml and the in-plane masses are anisotropic (mxz

x = myz
y = ml and

mxz
y = myz

x = mh) (fig. 1.4(b)).

Near the Γ point, the cubic symmetry implies that the three bands are degenerated (fig.

1.4 (b)). The tetragonal transition at 105 K lifts this degeneracy together with atomic spin-

orbit coupling [23]. The tetragonal transition is accompanied by a softening of the transverse

optical (TO)and longitudinal optical (LO) phonons. The oxygen octahedron is indeed moving

relatively to the titanium at its centre, inducing a polarity (fig. 1.4(c)). The strong interaction

of electrons with these polar phonons results in the formation of a polaronic liquid in the normal
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state. The electrons coupled to the TO4 phonons 1 are described by a Frölich Hamiltonian

[24]. Measurements of the optical conductivity show that in polar crystal, the effective mass of

electrons is increased [22, 25]. The light mass obtained by ARPES measurements on a cleaved

surface is around 0.6 me [26], while quantum oscillation in doped bulk STO gives values of 1.12

to 1.56 me [27].

1.1.1.4 Superconductivity in doped bulk STO

Doping strontium titanate with electrons (n-doping) can be achieved by replacing titanium

atoms Ti4+ by Niobium Nb5+ or strontium atoms Sr2+ by Lanthanum La3+, or by creating

oxygen vacancies. Once the conduction band is filled, doped STO becomes a good conductor

with mobilities of up to 10 000 cm2V−1s−1 at low temperature, depending on the doping and

type of impurities introduced [28]. STO undergoes a superconducting transition with a max-

imum critical temperature Tc ∼ 0.3K. The carriers density at which this superconductivity is

observed (down to 5.5 1017 cm−3) makes it the most dilute superconductor ever measured [29].

Contrary to most superconductors where the Fermi energy EF is much higher than the Debye

frequency ωD, at low doping STO is within the anti-adiabatic limit EF ' 1meV << h̄ωD. The

critical temperature dependence on doping was first measured by Koonce et al. (see fig. 1.5)

and revisited recently by X. Lin et al. [30, 29]. The superconducting critical temperature,Tc,

follows a dome shape that extends over more than two orders of magnitude in doping.

The first mechanisms proposed to explain the attractive interaction between electrons re-

sponsible for superconductivity in this compound, was based on a multi-valley scenario; it has

now been proven that this scenario is wrong [31, 30]. Appel was the first to propose that soft

phonon modes would be responsible for pairing [32]. Along similar lines, a mechanism involving

the exchange of two optical phonons was later proposed [33]. None of these theories was able

to predict the critical temperature from first principles, and they could not explain the effect

of applied stress on Tc either [34]. In the 80s, Takada was able to reproduce the dome of Tc

by introducing a dynamical dielectric constant based on the polar phonon and plasmon mech-

anisms [35]. However, J. Ruhman and P. Lee recently suggested that in Takada’s calculation,

the anti-adiabatic limit was uncontrolled [36].

Recently, the interest in the origin of superconductivity in STO was renewed after the dis-

covery of 2D superconductivity in the LAO/STO interface. In 2015, Edge et al. proposed a

scenario based on DFT calculations, where quantum ferroelectric fluctuations are responsible

for the pairing. In the overdoped regime, they are suppressed by antiferro-distortive fluctuations

[37]. As the elementary excitations associated with ferroelectric fluctuations are q = 0 optical

phonon modes, they give rise to a conventional s-wave superconducting gap. The following year,

a measurement of the isotope effect demonstrated an increase of the critical temperature in 18O

doped STO, supporting this scenario [38]. More recently new mechanisms involving plasmons

[36] and longitudinal optical phonons [39] have been proposed to account the presence of super-

1. One of the polar phonon mode created by the vibration of Ti atoms and oxygen octahedra as represented

on figure 1.4(c)
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Figure 1.5 – STO critical temperature as a function of doping, taken from [30]

conductivity in the underdoped region. The origin of superconductivity in STO is still hotly

debated. Nevertheless, we would like to emphasize here that the exotic dielectric behaviour of

STO is at the heart of most of the proposals.

1.1.2 Lanthanum Aluminate

Before discussing the origin of the 2DEG, we summarize here the main properties of Lan-

thanum aluminate. LAO is also a band insulator perovskite with a band gap of 5.6 eV and a

lattice parameter aLaAlO3 = 3.79 Å[40]. Below 800 K, it undergoes a structural transition and

becomes rhombohedric [41]. It is a polar material with alternating La3+O2− planes having a

+1 total charge, and Al3+O4−
2 planes with -1 total charge. This polarity may be one of the key

ingredients to building a conducting two-dimensional electron gas at the interface between LAO

and STO [42].

The value of the static dielectric constant found in the literature for the crystalline form

is εLAO = 24 [43]. Since the 2DEG lies in the STO side in LAO/STO heterostructures, LAO

appears as an insulator on top of it. It is therefore tempting to use it to make a capacitor and

apply an electric field to the 2DEG through the LAO barrier. However, producing an effective

field effect from the LAO side has remained a challenge for many years. When a layer of this

oxide with a thickness of few unit cells is used to create a capacitance, any pinholes or other

defects in the atomic structure quickly lead to leakage currents. This question will be addressed

in chapter 2 section 2.1.3.
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1.2 Electronic Properties of the LAO/STO Interface

Using the pulsed laser deposition (PLD) technique, LAO can be grown on a TiO2 terminated

STO substrate as described at the beginning of chapter 2. Depositing a few unit cell of a band

insulator onto an other insulator would, in principle, give rise to a trivial insulating heterostruc-

ture. However, the polar nature of LAO and the exotic properties of the quantum paraelectric

STO create a metallic interface which is still challenging to fully understand. Moreover, this

conducting region happens to behave like a two-dimensional system. If the system is cooled

down to very low temperatures (below 300mK), superconducting transition takes place. In the

next two sections we present the theoretical and experimental state-of-the-art on this interface.

1.2.1 Origin of the 2DEG

It has been shown experimentally that the conducting 2D gas is formed only when the

thickness of the LAO exceeds a critical value of 4 u.c. [44]. Different theoretical scenarii that

can explain this experimental result are still debated in the community : we review them in the

following pages.

1.2.1.1 Polar catastrophe scenario

Two different cases have to be considered depending on the ions at the interface. In the first

case, STO is TiO2 terminated, the first LAO atomic plane is La3+O4−
2 with a +1 effective charge

and the second atomic plane is Al2+O4−
2 with a -1 effective charge. As sketched on Figure 1.6

(a), this alternate charge density in the growth direction gives rise to an increasing and diverging

potential V. Above a critical threshold of 4 unit cells, the electric potential at the surface of

LAO is so high (fig. 1.6 (a)) that transfering half an electron per unit cell down to the TiO2

plane lowers the total electrostatic energy (fig. 1.6 (c)). In the second case LaAlO3 is deposited

on a SrO terminated STO. In this case, the boundary conditions are exactly opposite because

the first atomic plane of lanthanum aluminate is negatively charged. Instead of transferring half

an electron per unit cell, LAO will take out half an electron from the interface and bring it to

the top. This second situation is described on figure 1.6 (b) and (d).

In the case of a TiO2 termination (n-type), above a critical thickness of LAO, the STO

substrate is thus forced to accept electrons, which corresponds to experimental observations

[44]. The polar catastrophe scenario predicts that it is energetically favourable to transfer half

an electron per unit cell of LAO at the interface. In this case, the expected 2D electron density

is n2D = 3.3× 1014e−cm−2. However, the carrier densities measured experimentally usually fall

short of this value by an order of magnitude. In addition, the polar catastrophe also does not

explain why p-type interfaces are insulating.

1.2.1.2 Alternative doping mechanisms

The polar catastrophe scenario is not fully convincing because it does not take into account

other possible sources of doping. For instance, the pressure of oxygen in the chamber has a
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Figure 1.6 – Polar catastrophe scenario schematics. (a) and (b) correspond to the n-type and

p-type situations respectively below the 4 u.c. limit. We see the diverging potential due to the

polarity of LAO. (c) and (d) show the transfer of electrons above 4 u.c. Taken from [42]

strong effect on the stoichiometry of each compound. Residual oxygen vacancies in both LAO

and STO could also be responsible for the presence of the 2DEG [45, 46]. In this section, after

presenting in detail the fundamental role of oxygen vacancies, we will introduce the polarity

induced defect mechanism.

Oxygen vacancies, cation vacancies and cation intermixing

During the growth of LAO/STO heterostructures, the low partial pressure of oxygen in the

chamber of the PLD and the high deposition temperature induce oxygen vacancies. A system-

atic study of the role of the oxygen partial pressure during the deposition of LAO was done

by Brinkman et al. [47]. For oxygen pressure PO2 > 10−4mbar, the resistance of the het-

erostructures displays signs of weak-localisation at low temperature (upturn below 20K) which

is a clear indication of the 2D nature of the conducting gas. However, some oxygen vacancies

are inevitably created during the growth. For lower oxygen pressure (PO2 = 10−5 mbar) many

vacancies are generated and the resistance displays a more 3D behavior with a lower value and

no signs of weak localization (fig. 1.7 (a)).

Even when relatively high oxygen pressure (PO2 = 10−4 mbar) is used during the growth, it

is necessary to perform a post-annealing treatment with a high pressure (typically 200mbar) of

oxygen to suppress as many oxygen vacancies as possible. Basletic et al. [48] compared the re-

sistivity measured by a conductive tip AFM on the sample side with and without annealing (fig.

1.7 (b) and (c)). With a post-annealing, a clear 2D gas extending typically on 10 nm is clearly

seen at the interface between the 2 insulating materials (region in red in fig. 1.7 (c)). With-
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(a) (b)

(c)

LAO

LAO

STO

STO

2DEG

z

z

Figure 1.7 – (a) Resistance as a function of temperature for different partial pressures of oxygen.

Figure taken from [47] (b) LAO/STO 001 as grown sample measured with Conductive Tip AFM

(PO2=10−5mbar) without annealing; (c) Same with annealing at 200 mbar of O2 ((b) and (c)

were adapted from [48]

out post-annealing, the STO substrate is doped by oxygen vacancies and the 2D confinement

is lost. The lack of oxygen in the structure leads to electron doping, whereas symmetrically,

cation vacancies can result in doping with holes. Another possible issue raised in [42] is the

exchange of cations at the interface. Typically, Ti-Al exchange can occur but it does not cancel

out the divergence of the potential [49]. Moreover, oxygen vacancies and cation intermixing

do not explain the observation of a critical thickness of LAO. A recent proposal involves both

the electrostatic effect and the creation of oxygen vacancies [45] : we describe it in the next

paragraph.

Polarity-induced defect mechanism

A polarity-induced mechanism was recently proposed to try to reconcile the various experi-

mental observations. Yu and Zunger calculated the energy cost of every possible defect both at

the interface and at the surface of LAO using DFT calculations [45]. By comparing the electric

potential developed in LAO with the energy needed to create oxygen vacancies at the surface of

LAO ∆H0, they proposed a scenario combining the polar catastrophe and the doping by oxygen

vacancies. Oxygen vacancies are created in LAO when the electrostatic energy developed in this

polar material is higher than ∆H0.
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Figure 1.8 – Polarity induced defect mechanism schematics (a) represents an n-type situation

below the 4 u.c. critical thickness where no 2DEG is formed. In (b), 2DEG is formed due to

oxygen vacancies created in LAO (c-d) show the situation in the p-type case. Figures taken

from [45]

∆H0 happens to be of the same order of magnitude as the critical energy predicted by the

polar catastrophe scenario. Below 4 u.c. of LAO, the conduction band of STO is empty (fig.

1.8 (a)). Above the 4 u.c. critical thickness, it becomes favorable to create oxygen vacancies

on top of LAO. Electrons compensate the rising electric field, either by localizing on defects,

or by contributing to the free electron gas formed at the interface as plotted on fig. 1.8 (b).

This alternative scenario also explains why the p-type interface is insulating. (figures 1.8 (c)

and (d)). According to this theory, the creation of oxygen vacancies due to the polar nature of

LAO could participate to the formation of a quasi two dimensional electron gas between two

insulating perovskites.
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1.2.2 Band Structure

The purpose of this section is to provide a framework for the understanding of the band

structure in a self-consistently defined confining potential. At the LAO/STO interface, free

carriers move in STO [50, 51, 48]. After building a Hamiltonian on the d states of the Ti

electrons, we show how to account for the STO non-linear dielectric properties in a semi-classical

model.

1.2.2.1 Nearly free electron in a 2D system

As the system is confined in the z direction, each band of bulk STO is split in multiple

quantized 2D subbands. In the plane, electrons behave as nearly free electrons with a kinetic

energy h̄2k2
x/2mx + h̄2k2

y/2my. The bottom of each band Ei is inversely proportional to the

effective mass along the confinement direction mi
z.

We start from the 3D bulk STO conduction band built on the t2g orbitals presented in section

1.1.1.3. Near the Γ point, tranport at the interface can be modeled using a nearly free electrons

gas in the basis Ψk = t(cxyk,↑, c
xy
k,↓, c

xz
k,↑, c

xz
k,↓, c

yz
k,↑, c

yz
k,↓). The Hamiltonian reads H =

∑
k Ψ†kH0Ψk

with

H0 =


h̄2k2

x
2ml

+
h̄2k2

y

2ml
0 0

0 h̄2k2
x

2ml
+

h̄2k2
y

2mh
+ ∆I 0

0 0 h̄2k2
x

2mh
+

h̄2k2
y

2ml
+ ∆I

⊗ σ0 (1.2)

where σ0 is the identity matrix in spin space and ∆I = Exz/yz −Exy is the energy difference

between the dxy band and the dxz/yz bands. The dxy electrons presented on figure 1.9 (a) have

a light in-plane mass mz
xy ∼ 0.7 × me. Their out-of-plane effective mass is much higher than

the effective mass of dxz/yz electrons. Consequently, the dxy bands are lower in energy than the

anisotropic dxz/yz band represented on figure 1.9 (b). This energy difference ∆I depends on the

confinement potential which can be calculated self-consistently using the Schrödinger-Poisson

method adapted from semi-conductor models.

1.2.2.2 Quantum confinement

If a quantum well is described by a potential φ(z), any electron of mass m at energy E is

described by a wavefunction which is a solution of the simple one dimensional Schrödinger equa-

tion. In the free electron approximation, the eigenvectors of the HamiltonianH = H0⊗Hz where

Hz is the Hamiltonian in the z direction, can be written Ψ(x, y, z) = ψ(z)eiθ(kx,ky)ei(kxx+kyy)

with ψ solution of
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(a) (b)

ΔI

kk yx
kk yx

EE

Figure 1.9 – (a) Schematic representation of the free electron dispersion of the dxy band (b)

Anisotropic bands dxz and dyz shifted from the last dxy band by an energy ∆I

d2ψxy
dz2

+
2mxy

z

h̄2 [Exy + eφ(z)]ψxy(z) = 0 (1.3)

d2ψxz/yz

dz2
+

2m
xz/yz
z

h̄2

[
Exz/yz + eφ(z)

]
ψxz/yz(z) = 0 (1.4)

where Exy are the energies of the dxy electrons, and Exz/yz is the energy of the dxz/yz.

The equations are coupled with a classical equation of the electrostatic potential. The dielectric

constant of STO is described in equation (1.1). Knowing the density of charge ntot3D(z), the shape

of the electric potential φ can be deducted by means of the Poisson equation :

∇(ε0εr(F (z))∇(φ(z))) = −ntot3D(z) (1.5)

εr(F ) = εr(F =∞) +
1

A+B|F |
(1.6)

with the electric field F = −∇φ. The value of εR(F =∞) is unknown. It has to be between

1 and 300 which is the lowest value ever measured in STO [52]. Charge density ntot3D(z) =

Ntrap(z)+n3D(z) includes all possible charges present at the interface, including trapped charges

(Ntrap) in order to account for the existence of the 2DEG (see appendix B). The contribution

of each band to the carrier density depends on their respective filling. Each band has a density

of state N i
2D = mi

t/πh̄
2 where mi

t is the in-plane mass of the ith band. The 3D electron density

in one subband is given at T = 0 by

n3D(z) =
∑
i

mi
t

πh̄2 × (EF − Ei)× |ψi(z)|2 (1.7)

where Ei is the energy of the bottom of the ith subband.
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By solving self-consistently equations (1.5) and (1.3), the filling and the confinement of each

subband are determined. In figure 1.10, is plotted an example of a numerical resolution of the

problem for two different situations : one corresponding to low carrier density resulting from

the application of a back gate voltage of -100V (depletion of carriers), and one corresponding

to high carrier density resulting from the application of a back gate voltage of +100V (addition

of carriers). In both cases, the total carrier density of around n = 1013 e−/cm2 corresponds to

typical values measured experimentaly in these situations.

In the first situation, the negative back gate localized the electrons close to the interface and

only two dxy subbands are populated. In the second situation, a dxz/yz band is also filled and

the Fermi energy is located close to the top of the well. Electrons of the dxz/yz band having a

much lighter mass in the z direction, they are more extended in the STO substrate (around 10

nm). Therefore they recover properties closer to the bulk ones. In particular, they experience a

dielectric constant whose value is much higher than the one close to the interface. The Lifschitz

transition between the situation one where electrons are strongly confined and fill only dxy

bands, and situation two where electrons fill a more delocalized dxz/yz band, will be important

for our analysis of the 2DEG properties. More details of the Schrödinger-Poisson simulations

are given in appendix B.

1.2.3 Spin-Orbit Interaction

Based on DFT calculations, a tight binding model was proposed recently to describe the

effect of atomic spin-orbit (ASO) and Rashba spin-orbit coupling (RSOC) in the LAO/STO

interface [53]. The ASO couples the spin of the electron to its own momentum via the electric

field created by the ionic network. In the basis of t2g bands (as in equation (1.2)), it appears as

follows in the Hamiltonian [54]

HASO = ∆ASO

 0 iσz −iσy
−iσz 0 iσx

iσy −iσx 0

 (1.8)

where σi are the Pauli matrices and ∆ASO is the atomic spin orbit energy. Such interaction

does not break inversion symmetry (E(k) = E(−k)) but mixes the states where the different

bands cross each other (fig. 1.11)

On the contrary, the electric field created by the accumulation of electrons at the interface

breaks the inversion symmetry. The electric field tends to polarize the Ti orbitals, giving rise

to asymmetric dxy − px − dxz hopping in the y direction. On top of this, the tilt of the oxygen

octahedra also plays a role as explained in [55]. This intrinsic breaking of inversion symmetry

is modeled by :

HRSO = α(F )

 0 0 2ikx

0 0 2iky

−2ikx −2ikx 0

⊗ σ0 (1.9)
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Figure 1.10 – Simulation of the potential well calculated self-consistently with both xy and

xz/yz bands using Schrödinger-Poisson simulations. On the graph, EF is the Fermi level, the

3D density and energy levels of the xy band are plotted in red, and the energy level of the

xz/yz is plotted in blue. For VBG = −100 V (upper panel), two dxy bands are populated. The

extension of the gas is 2.5 nm. The calculated dielectric constant εr is low in the quantum well,

much lower than the bulk value. For VBG = 100 V (lower panel), three dxy bands and one dxy/yz

band are populated. The gas extends to 12 nm, thanks to the dxz/yz bands as shown by the

dashed blue line. εr recovers a bulk value in a region where the 2DEG density is non zero.
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Figure 1.11 – In red and blue the dotted curves represent the free dxy and dxz/yz bands re-

spectively. Dispersion relation with atomic spin-orbit ∆ASO = 10 meV and in-plane mass

ml = 0.7×me and mh = 14×me are presented in black. Here we have considered only one dxy

subband.

where α, the Rashba spin-orbit coupling constant, is directly proportional to the electric

field. This last term in the Hamiltonian lifts the spin degeneracy and thus the spin is no longer

a good quantum number (fig. 1.12 left). Near k = 0, the effective interaction in the orbital basis

is Rashba-like [54] :

〈
k, dxy, σ

′∣∣HRSO |k, dxy, σ〉 = α1(k× σ).z where α1 '
∆ASO ×∆RSOC

∆I
a (1.10)

where a is the lattice constant, α1 is the effective spin-orbit coupling constant, ∆RSOC =

2αkF is the spin-splitting energy and ∆I the distance between the bottom of dxy and dxz/yz

bands. This relation between band structure and effective Rashba spin-orbit coupling constant

will be crucial for the understanding of our results. The density of states in the presence of both

atomic spin-orbit and Rashba spin-orbit coupling is presented on figure 1.12. The presence of

these interactions tends to smooth the Lifschitz transition by mixing the dxy and dxz/yz bands.

In this sweet spot, the spin splitting energy is up to 20 meV for α = 4× 10−12 eV.m (indicated

in grey on fig. 1.12 right) and an anisotropic spin texture is formed.

Experimentally, the presence of Rahba spin-orbit coupling was first identified by Cavilgia et

al. and Ben Shalom et al. by measuring the magneto-conductance of the 2DEG [56, 4]. However,

more experiments are needed to fully confirm the exact nature ot the spin-orbit interaction from

magneto-transport experiment. This question will be addressed in chapter 3. More recently,

E. Lesne et al. demonstrated an efficient spin to charge conversion in LAO/STO thanks to the

Rashba spin-orbit coupling [57].
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Figure 1.12 – (Left) Dispersion relation in the presence of both atomic spin-orbit and Rashba

spin-orbit coupling as described by equation (1.8) and (1.9) for ∆ASO = 10 meV, α = 4.10−12

eV.m, ml = 0.7 ×me and mh = 14 ×me (Right) The density of state (DOS) corresponding to

the dispersion on the left.

1.2.4 Typical Energy and Length Scales

When cooling a LAO/STO heterostructure, the resistance shows a Fermi liquid behaviour

from 100K to 10K followed by a weak localization at lower temperature (chapter 3). The resis-

tivity of as grown samples (ie non-gated sample) at 500mK is typically 300 Ω/�. Here is a list

of the characteristic transport properties of the LaAlO3/SrTiO3 interface :

• Mobility is in the range of 100-1000 cm2/(V.s) for the samples studied in this thesis,

depending on the intrinsic disorder and the band filling. It can be up to µ ' 104 cm2/(Vs)

for non superconducting samples under different growth conditions [1].

• Fermi energy is around EF ∼ 100 meV as previously mentioned. This value is small

compared to the typical value for a metallic thin film like Pb (around 500 meV [58]).

Assuming an in-plane effective mass of 0.7 ×me, the Fermi wavelength is around λF '
10nm.

• Scattering length : the mean free path is short compared to those in clean semicon-

ductors. By estimating it within a one band model the elastic scattering length is le < 50

nm. Below 10K the resistance starts to increase slowly due to weak localization (see

chapter 3 for more details).

• Electron-Phonon interaction : there is a strong lattice-electron coupling with TO

phonons [59, 24]

• Coherence length : the 2DEG is superconducting with a maximum critical temper-

ature Tc of 300 mK. The coherence length, ξ ' 70 nm extracted from critical fields
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measurements, is larger than the thickness of the superconducting layer d < 10 nm [2].

We are dealing with a 2D superconductor.

Magnetism The presence of magnetism was measured by torque magnetometry in the group

of Mannhart from 300mK up to 40K [5]. Bert et al. reported clear localized magnetic dipoles

oriented in the plane using scanning SQUID magnetometry (fig. 1.13) [60]. However, it is hard

to discriminate between magnetism that may be due to impurities far from the interface and

magnetism related to the 2DEG.

Figure 1.13 – Localized magnetic dipoles measured with SQUID. The dipoles are mostly oriented

in-plane. Figure is taken from [60]

The presence of magnetism at the LAO/STO interface was also demonstrated by transport

measurement, by showing hysteretic behaviour of the critical temperature and sheet resistance

upon magnetic field sweeping at the lowest temperature [61]. This is surprising because neither

STO nor LAO have magnetic properties. However, these results remain controversial as this

hysteretic behavior is not seen by many groups (includind our group). Different scenarios could

explain the existence of ferromagnetism at the interface. The first one is that localized dxy

states of titanium close to the interface create magnetic moments [62]. The second is that

such magnetic moments are due to oxygen vacancies created during the growth or due to polar

catastrophe. In all cases, the possible coexistence between superconductivity and magnetism is

quite surprising and hotly debated.
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1.3 2D Superconductivity

1.3.1 Superconducting properties

As the 2DEG is standing on the STO side of the interface [48], it is expected that the

LAO/STO superconductivity mechanism originates from it. Close to the interface the electric

field breaks inversion symmetry and affects the dielectric constant. A few nanometers deeper,

the dielectric constant recovers bulk values as seen in our numerial simulation of the interfa-

cial band structure (see fig. 1.10). Assuming that ferroelectric soft modes are responsible for

attractive pairing [37], the superconducting gap of LAO/STO would have a s-wave symmetry.

With a critical temperature comparable to the critical temperature of bulk STO (Tc ∼ 0.3K),

and within BCS theory, the gap of LAO/STO is around ∆ = 1.76kBTc ∼ 40 µeV.

Figure 1.14 – Resistance as a function

of temperature for different perpendicular

magnetic fields [2]

Superconductivity was first measured by Reyren

et al. in 2007 [2]. By applying a perpendicu-

lar magnetic field, they estimated the supercon-

ducting coherence length ξ(T = 0) ' 70 nm

using the Ginzburg-Landau critical magnetic field

Bc⊥(T ) = φ0/2πξ
2(T ) (figure 1.14). Together

with the in-plane critical magnetic field Bc‖ =
√

3φ0

πξ‖d
, it gives an upper bound for the 2DEG

thickness of d < 10 nm < ξ [2, 4]. This

upper bound shows that LAO/STO 2DEG is a

two dimensional superconductor, where Beresinsky-

Kosterlitz-Thouless (BKT) physics is expected to

take place [63]. This is developed in chapters 4 and

5.

Surprisingly Bc‖ can be up to four times higher

than the Chandrasekhar limit corresponding to the

energy needed to break a Cooper pair in a singlet

state ∆ ∼ gµBBc‖, where g is the Lande factor (usu-

ally g ∼ 2), µB is the Bohr magneton and Bc‖ the

critical in-plane magnetic field. This result has remained unexplained up to now.

1.3.2 Dome shape of Tc with doping by electric field effect

Using field effect through a back gate, Caviglia et al. [3] were able to tune the density of

carriers at the LAO/STO interface. Figure 1.15 (a) shows R(T) curves as a function of the gate

voltage. By applying a negative gate voltage and therefore removing electrons, they were able to

completely suppress superconductivity. Figure 1.15(b) represents the typical phase diagram of

LAO/STO. The transition at T=0 from a metal to an insulator by tuning an internal parameter
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of the Hamiltonian is called a Quantum Phase Transition (QPT). When increasing the gate

voltage and consequently the electron density, the critical temperature reaches a maximum

before decreasing. The maximum Tc is obtained for an optimal doping which allows to define an

underdoped region (gate lower than the optimal doping) and an overdoped region (gate higher

than the optimal doping). This dome shape behavior is similar to superconductivity in STO but

takes place on a much smaller doping range. Indeed, for a 10 nm thick 2DEG, the 3D carrier

density range where superconductivity is observed is ∼ 1020 e−/cm3, as compared to a few 1021

in bulk STO.

(a) (b)

Figure 1.15 – (a) Resistance as a function of temperature for different back gate voltages. At

negative gate voltage superconductivity slowly decreases until the system reaches a weakly lo-

calizing metal state. The effect of applying a positive gate voltage is to add electrons to the

system, lowering the resistance and changing the critical temperature. (b) Phase diagram with

temperature and back gate voltage extracted from R(T) curves; the quantum critical point is

indicated in orange. The figures were adapted from [3]

Several scenarii were proposed to explain this dome behaviour at the LAO/STO interface.

Gariglio et al. proposed to explain it by a sudden extension of the 2DEG for high doping levels

leading to a decrease in 3D carrier density [64]. Maniv et al. proposed a scenario where electronic

correlations leads to a non monotonic filling of the dxz/yz band [65]. Mohanta and Taraphder

included spin-orbit interaction and magnetism in a tight binding numerical calculation to account

for the dome shape in Tc [66]. Finally, Klimin et al., following recent theoretical predictions of

the possible origin of superconductivity in bulk STO, proposed a mechanism based on optical

phonons at the LAO/STO interface [67, 68]. As of today there is still no consensus about the

origin of the decrease of Tc in the overdoped region.
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1.3.3 Inhomogeneous superconductivity in LAO/STO

In addition to the superconducting microscopic properties developed above, an ingredient

has to be included for a full understanding of the LAO/STO interface electronic properties.

For instance, tunneling [69, 70], atomic force microscopy [71] and SQUID magnetometry [72]

experiments provide clear evidence for the existence of spatial inhomogeneities at mesoscopic

scales. The origin of such inhomogeneities could be related to materials properties (ferroelectric

domains for instance) but could also be the result from an intrinsic mechanism. N. Scopigno et

al. proposed a phase separation mechanism based on the negative compressibility of the 2DEG

[73]. Spin-orbit coupling could also favour such a phase separation mechanism where small

regions with higher densities are embedded in a more diluted phase [74].

1.3.3.1 R(T) with tails

When the superconducting transition is plotted using a linear scale, one can not ignore

the tails in the resistance as a function of temperature that occurs. Above Tc, the downward

rounding of the transition can be attributed to Aslamasov-Larkin fluctuations of the amplitude

of the superconducting order parameter. However, the tail of the R(T) curves is too broad to be

be fitted using a standard BKT approach for an homogeneous superconductor [75]. Moreover, in

the underdoped region, signs of superconductivity are present but the resistance often saturates

at a finite value. This implies that superconductivity can not percolate through the sample and

that some regions of the sample are not superconducting. In order to explain such result, S.

Caprara et al. proposed a Random Resistor Network (RRN) model [76]. Within a mean field

theory, the RRN is called Effective Medium Theory (EMT) and has an analytical expression.

Figure 1.16 – (a) Fit of R(T) curves as a function of doping with EMT model (b) and with RRN

model (c) and (d) are the superconducting fraction w and the width of the gaussian distribution

of Tc γ as a function of the gate voltage. Inset : scheme of the filamentary structure (see text).

Figure taken from [76]
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In these models, puddles of different sizes and different critical temperatures are randomly

organized on a 2D array. When the temperature is lowered, they progressively switch to zero

resistance. It is interesting to note that in both models shown on figure 1.16), the width of the

Gaussian distribution of the Tc of the puddles suddenly increases when the 2DEG is depleted

with a negative gate voltage. In addition, it has been found that a filamentary structure of

the network has to be taken into account to get the best fits, reminiscent of the calculation by

Ioffe-Mezard [77] and Castellani et al. [78].

1.3.3.2 Superconductor-Insulator Transition driven by a magnetic field

Superconductor-to-insulator transition (SIT) driven by magnetic field was studied in our

group by Biscaras et al. in 2013 [79]. They demonstrated the existence of multiple critical fields

which were interpreted as reflecting the non homogeneous nature of the system. They considered

the situation of superconducting puddles (islands) coupled by Josephson effect through a metallic

2DEG.

Figure 1.17 – Two critical magnetic field Bx and Bc obtained from finite scale analysis performed

in two different ranges of temperature are plotted as a function of back gate voltage. At low

doping, they coincide with the Tc versus VG curve, but at high doping, Bx saturates whereas Bc

keeps following Tc. Figure taken from [79]

Using finite-size scaling analysis, they showed that above a certain temperature, the dynam-

ics corresponds to clean superconductivity inside individual puddles, while at low temperature,

the dynamics reveals superconducting fluctuations of the whole arrays of puddles (see fig. 1.17).

The size of these puddles can be estimated from the value of the critical field Bx in the over-

doped region. Assuming this field corresponds to a dephasing magnetic field Bd ∼ φ0/L
2
d, they

estimated the size of the puddles to be around Ld ' 100 nm.
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1.3.3.3 Josephson-like behaviour

More recently, measurements performed on Hall bars reported unusual I(V) curves [46].

While a non-hysteretic behaviour is usually expected for a homogeneous superconductor, the

current-voltage I(V) characteristics shows a strong hysteresis most commonly encountered in

Josephson junctions.

Figure 1.18 – I(V) curve of a LAO/STO Hall bar obtained by ramping the current up and down.

When the current is increased, at I = Isw, the system suddenly switches into a resistive state.

When the current decreases, the Hall bar recovers a superconducting state at a lower intensity

called the return current IR. The inset presents the dynamic of the phase of a single Josephson

junction in the underdamped regime.

Figure 1.18 shows a typical I(V) curve for a Hall bar device in LAO/STO measured by S.

Hurand [80]. When the current is progressively increased, starting from the superconducting

state, a sudden switching to the normal state occurs at Isw. When the current decreases starting

at I > Isw, the 2DEG recovers a superconducting state at a current IR significantly smaller than

Isw. Hurand et al. did a systematic study of the switching current distribution as a function

of doping and temperature and showed that the dynamics was consistant with the behaviour

of an array of Josephson junctions in the underdamped regime. Prawiroatmodjo et al. showed

that the critical current depends on the magnetic field in a way which is similar to a Josephson

junction [46] : Jc(B) ∝ 1/(1 + B/B0)β, where β ' 1. They estimated the typical size of the

mesoscopic Josephson junction in the array as ∼ 100− 200 nm.
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Chapter 2

Devices Fabrication and

Experimental Setup

”Ce n’est qu’en essayant continuellement que l’on finit par réussir.

Autrement dit : plus ça rate, plus on a de chance que ça marche.”

Devise Shadok
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The aim of this chapter is to introduce the technical details of devices fabrication and mea-

surement setups. In section 1, we explain how the different devices were manufactured, from

the pulsed laser deposition of LAO on a STO substrate to the realization of field-effect devices.

In section 2, we describe the different experimental setups which have been used for DC and

high-frequency transport measurements.

2.1 Devices Fabrication

The recent progress in the fabrication of epitaxial interfaces with complex oxide materials has

opened new possibilities to engineer artificial heterostructures where new phenomena take place.

The first LAO/STO heterostructures presenting a two-dimensional electron gas were made in

25
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the group of H. Hwang at Bell Labs by using Pulsed Laser Deposition [81]. This powerful

technique allows to build atomically flat structures with a lot of different materials (cuprates,

manganites, transition metal oxides...). In the case of the LAO/STO interface the growth is

sensitive to many parameters such as oxygen partial pressure, temperature, the orientation and

the terminated surface of the substrate, or the fluence of the laser. For this reason, it is difficult

to fabricate reproducible samples with good electronic properties. In this section we describe

the fabrication procedure employed by our different collaborators.

2.1.1 Sample growth

Samples studied in this thesis were grown by E. Lesne, at the Thales-CNRS lab, in the

group of M. Bibes and A. Barthélémy and by P. Kumar at NPL New Delhi in R. Budhani

group. Although each group has its own receipe, the overall fabrication process is rather similar.

We report here the one used in the Thales-CNRS lab. First a commercially available 0.5 mm

thick STO monocrystal is TiO2-terminated by HF 1 treatment. The horizontal miscut creates

atomically flat terraces with a typical width of 300 nm (see fig. 2.1(a)). The substrate is

pasted at the center of a vacuum chamber with silver epoxy and heated to a high temperature

(T=650-800◦C) with an infrared laser.

(a) (b)

Figure 2.1 – (a) AFM image of a LAO/STO sample with terraces. This image was measured by

E. Lesne (UMR CNRS-Thalès) (b) HAADF-STEM images of a (001) oriented LaAlO3/SrTiO3

interface. Zooms in 100 and 1-10 directions are presented on the left and on the right. Adapted

from [82]

A target of LAO is then ablated at a laser fluence of 1 J.cm−2 and a repetition rate of 1Hz

under a partial oxygen pressure of P02 = 2 × 10−4 mbar. The power of the laser is sufficient

to expel a stoichiometric quantity from this LAO target. The atoms meet the surface of the

STO sample and organize themselves epitaxially. This is possible only because the STO and

LAO lattice parameters are close to each other (aLAO = 3.79 Å and aSTO = 3.905 Å). If the

fluence is well calibrated, one layer of LAO crystal is created at each step. During the process,

the number of unit cells deposited is monitored by high energy electronic diffraction (RHEED).

After the deposition, the sample is cooled down to 500◦C with a 10−1 mbar oxygen pressure.

In order to avoid the creation of oxygen vacancies, the sample is finally annealed for 30 minutes

under a pressure of oxygen of 400 mbar and then slowly brought back to room temperature.

1. Hydrofluoric acid
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2.1.2 Patterning the LAO/STO interface

In this thesis, we tested two different methods to pattern the 2DEG at the LAO/STO

interface. The first which was developed in the group of J-M Triscone at Geneva University,

uses an amorphous LAO layer as a template. The second was developped in our group over the

past years and requires an irradiation with high-energy oxygen ions : it is called the irradiation

technique. The results obtained with this second technique are not presented in this manuscript

[83]. All the processes used for devices fabrication can be found in appendix D.

STO

Amorphous
LAO

crystalline
LAO

(a) (b)

(d)(c)

Figure 2.2 – Amorphous LAO technique (a) A resist with Hall bar shape is deposited on top

of a TiO2 terminated STO. (b) Amorphous LAO template after lift-off (c) Deposition of a

few crystalline LAO layers (d) Deposition of a top gate separated by a dielectric with optical

lithography and liftoff technique

Amorphous LAO technique : The main idea of the amorphous LAO technique is to

deposit a thick amorphous LAO template on a TiO2 terminated STO substrate. First, a 2.1 µm

thick negative resist (AZ2021) with a Hall bar shape is deposited on the STO substrate using

optical lithography technique (fig. 2.2 (a)). Second, a 50 nm thick amorphous LAO layer is

deposited at room temperature, followed by a lift-off to obtain the amorphous LAO template as

shown on figure 2.2 (b). Under the right condition of oxygen pressure, this step does not modify

the properties of the STO substrate which remains insulating. Third, a 4 to 12 u.c. thick LAO

layer is then deposited at high temperature such that a crystalline epitaxial growth is realized

on the uncovered area of the STO substrate (fig.2.2 (c)). Growth on amorphous layer is not

epitaxial, and the top layer is insulating. Therefore, the 2DEG takes place in the uncovered

part in a shape of a Hall bar. Detailed recipes are given in appendix D. A picture of this Hall

bar is shown on figure 2.3 (a).

2.1.3 Top Gate and Back Gate fabrication

The final step represented on figure 2.2 (d) consists in depositing an insulating Si3N4 dielec-

tric layer and a gold top gate by lift-off to control electrostatically the number of electrons in

the system. One of the main difficulties is to avoid current leakage between the gate and the

2DEG when applying a voltage.
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(a) 2DEG

Top Gate

(b)

500 µm 30 µm

Figure 2.3 – (a) Optical picture of the Hall bar defined by amorphous LAO technique on the

sample studied in chapter 6 before the deposition of QPC top gates shown on fig 6.3. (b) Dark

field optical microscope picture of the center of the Hall bar, on the top of which the global top

gate studied in chapter 3 is deposited.

In order to avoid leakage, we had to find a dielectric material with good insulating properties.

In addition, we needed a dielectric that did not affect the polar catastrophe which occurs in the

LAO layer. Si3N4 and HfO2 were both tested. They both preserve the LAO/STO properties.

Our global top gate is separated from LaAlO3/SrTiO3 by a 500 nm thick Si3N4 layer. The

Si3N4 was deposited at relatively low temperature (< 80◦C) using a RF magnetron sputtering

technique at minimum power (200 W) for five hours. A maximal partial pressure (67.5% of Ar,

32,5% of N2) of P=1.10−2 mbar was chosen to avoid the formation of cracks which could weaken

the insulating properties of Si3N4. This top gate could hold a 100 V voltage without current

leakage, despite its large area (∼ 1000 µm2). Figure 2.3 (a) shows an enlarged view on the Hall

bar before the deposition of top gates.

A back gate was also deposited on the back side of the STO substrate by e-beam evaporation.

Unlike the top gate, this gate is far from the interface as the thickness of the substrate is 0.5 mm.

However, the high-value of the dielectric constant in STO (24000) enables the production of an

efficient electric field effect despites the thickness of the STO. Back gating is now commonly used

in the community. Irreversible effects occurs when the gas is extremely overdoped. This was

studied in details by Biscaras et al. [84]. In order to perform reversible measurements, a first

polarization with a positive back gate voltage is done at 4K before each measurement presented

in this manuscript.

2.1.4 Quantum Point Contact Fabrication

With optical lithography, it is possible to design structures down to the micrometer scale

but not much below. Reaching scales orders of magnitude smaller is achievable by electron

beam lithography. In this last paragraph, we give the details of the fabrication of a quantum

point contact with split gates. These structures were fabricated at Center for Nanoscience and

Nanotechnology in collaboration with Christian Ulysse (C2N-Marcoussis).
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It was recently shown that the electronic lithography technique can be used to fabricate

sub-micrometer devices in LAO/STO without altering their properties [85]. In order to design

the quantum point contact experiment, one needs to reach an appropriate scale of the order of

λF ' 10nm. Our gates were realized with an electronic masking device RAITH-VISTEC EBPG

5000 plus.

1 mm

10 μm

300 nm

a-LAO

Au

V
TG

Figure 2.4 – Schematic of the QPC with the two split gates deposited on a the Hall bar designed

by amorphous LAO technique shown on fig. 2.3 (a). A top gate voltage VTG is applied simulta-

neously on each split gate. The arms of each gate are large (300 nm) to ensure that the current

is only flowing in the region of interest.

Figure 2.5 – SEM image of the split

gates with a gap of 26 nm. The re-

sults obtained on this device are given

in chapter 6.

Figure 2.4 shows a SEM image of one of the de-

vices measured in this thesis (chapter 6). It consists

of a 10 micron wide Hall bar as (described above) cov-

ered at the center by two split gates. Unlike the global

top-gate described previously, this top gate is not sep-

arated from the sample by a thin dielectric layer. For

this experiment, we needed the gates to be as close as

possible to the 2DEG in order to produce a sharp con-

fining potential in the transverse direction. A thicker

LAO layer (5 nm) was deposited during the PLD pro-

cess and the gold layer is thus deposited directly on

the top of the Hall bar. In the sample shown on figure

2.5, the distance between the two split gates is approx-

imately 26 nm. Despite the weak thickness of the LAO

layer, no leakage current was measured on this sample

between -3 V and 3 V, showing the good quality of the

crystalline LAO layer.
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2.2 Measurement Setups

In this section, we explain briefly how transport measurements were done both at low and

high frequency. All the measurements were performed at very low temperatures in a dilution

refrigerator manufactured by Cryoconcept, a french company. The goal of this section is to

present the different experimental techniques used during this thesis. First, in sub-section 2.2.1

we explain how the sample is cooled down to low temperature, then, in 2.2.2, we discuss the

different types of wiring that enable measurements in different frequency ranges. The final part

of the section 2.2.2 is dedicated to the microwave reflection measurement setup used in chapter

5.

2.2.1 3He/4He Dilution refrigerator

This dilution refrigerator showed in figure 2.6 is a closed-cycle cryostat which does not re-

quire the use of liquid 4He to reach 4 K, as opposed to the previous generation of ’wet’ fridge.

Instead the 3He/4He mixture cooled down to 3 K by a two stages pulse tube (PT415 Cryomech

model), using Joule-Thomson cycles. The first stage (PT1) has a 40 W cooling power, while

the second one (PT2) has a cooling power of 1.5 W at 4.2 K (see schematic on fig. 2.6). The

fridge is equipped with a system which protects the lower plates from mechanical vibrations

while ensuring the heat transfer.

The last step is to enter into the dilution regime. At 2 K, 4He and 3He are in the liquid

state. In the mixing chamber, below 800 mK, the mixture separates into two phases. The lower

one is the heavier with a majority of 4He in the superfluid state. It is called the dilute phase.

The upper one is the concentrated phase, it is made of almost pure 3He. 3He is pushed towards

the mixing chamber via the condenser. On the other side of the circuit, a pump extracts 3He

gas out of the mixture. The 4He superfluid phase is represented in grey on figure 2.6. Finally,

a heat flow transfer represented by an arrow occurs between the downgoing, and the upgoing

pipes. By forcing the 3He to go into the dilute phase, the entropy of the system is lowered.

For the sake of energy conservation, the mixing chamber absorbs heat energy. Pumping on the

dilute phase cools down the base plate attached to the mixing chamber.

The schematic on the right of figure 2.6 shows how 3He circulates. The cooling power of our

DR is 250 µW at 100 mK and its base temperature can reach 15-20 mK, depending on the exact

experimental configurations (DC or RF, B field...). The cryostat is also equipped with a 7 T su-

perconducting magnet (in red on fig 2.6). For more details on dilution refrigerators, see ref. [86].

2.2.2 Electronic transport

Measurements at low temperature require some precautions. First one needs to make sure

that no electromagnetic noise from outside reaches the sample. Second, electrons must be well

thermalized to the fridge’s temperature.



2.2 Measurement Setups 31

Mixing
chamber 
(20 mK)

Still 
(600mK)

100 mK 

PT1 50 K

© Cryoconcept

>90% He

Dilute phase (6.6%   He max)
Concentrated phase 

Heat
flow

to pump
from
Condenser

Vapor   He 3

3

PT2 3 K

Figure 2.6 – Dilution Refrigerator schematic. A sectional view of the DR is represented on the

left. The 7 T coil is shown in red. A detailed schematic of the last step of the cooling where
3He is forced to enter the dilute phase is shown on the right.
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(b)(a)

Figure 2.7 – (a) Homemade copper powder filter in series with a low pass filter. The region in

brown in the center is a mix of copper powder and Stycast. The box is closed by a cap of copper

tightly screwed with a thin wire of Indium to protect from external noise. (b) Picture of the

sample holder with a RF connector and DC coaxial lines. On top of this sample, a cap made of

copper protects it from electromagnetic noise.

2.2.2.1 Low pass filters for low noise measurements

The sample has to be protected from noise of the environment such as radio frequency and

Wi-Fi signals for instance. Depending on the sensitivity of the measurement, two different setups

were used. The first one consists of 24 manganite wires in twisted pairs which are thermalized

through 3 cm long gold lines on Kapton at each stage, and filtered at the top of the fridge by

low pass filters (Pi filters) with a 1.9 MHz cut-off frequency. The second set of cable for DC

transport is comprised of 7 coaxial cables in stainless steel, thermalized at every stage (except

the 100 mK) by a feed-through connector. These cables are filtered at 300 K and 20 mK by Pi

filters with a cut-off frequency of 1.9 MHz. Finally, the copper powder filter presented on fig.

2.7(a) was added to suppress microwave frequency noise.

In order to fabricate the handmade filter, copper powder was mixed with Stycast 1266 and

poured around a 10 m long DC wire. The small metallic spheres act like scatterers for the

RF signals on a frequency range from 1 GHz to hundreds of gigahertz, leading to a strong

attenuation. Figure 2.8 shows a comparison of the transmission of the line with and without

the copper powder filter demonstrating a clear attenuation on the whole spectrum. This last

filtering step also guarantees a good thermalization at the lowest temperature, because the filter

is anchored on the 20 mK plate. Finally, the sample holder (see fig. 2.7 (b)) is mounted with a

metallic cap in order to protect the last unshielded part of the circuit from the high-frequency

noise in the fridge. The coaxial cables and the copper powder filter setup were mounted on the

fridge for the QPC experiment reported in chapter 6. The measurements described in chapter

3 were made on the first set of cables. The second set was used in chapter 6.

2.2.2.2 Four-point measurement

Most of the DC measurements were performed on Hall bar shaped devices in LAO/STO

samples, as described in section 2.1.2. Figure 2.9 schematically represents the measurement. A
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Figure 2.8 – Transmission through the whole setup from top to bottom with and without the

copper powder filter.

Yokogawa 7565 voltage source is used to generate a DC bias current through a large resistance

RPolar = 10 MΩ, which is much higher than the sample’s resistance. This current is measured

in a resistance RI = 100 kΩ by means of a voltmeter (Keithley 2000 or Lock-In amplifier). Each

signal is amplified and filtered using Stanford SR 560 low noise amplifier. In order to compensate

the gradient of temperature created by parasitic offset voltages due to thermoelectric effect, the

resistance was measured both for positive (+I) and negative current (-I) and averaged.

RPolar R I

VPolar

VTG

Low pass filter
Shield

VBG
Amplifier

Keithley I

Keithley V

Lock-In Ior

Lock-In V

Cryostat

Figure 2.9 – Four points measurement schematic. The cryostat is represented by a shield at 20

mK. A polar resistance RPolar is placed in a box at 300 K in series with a small resistance RI

(typically 100 kΩ).



34 Chapter 2 Devices Fabrication and Experimental Setup

2.2.2.3 Conductance measurement

A precise measurement of the dynamical conductance as a function of the voltage is funda-

mental in order to study the transport properties through a quantum point contact. This can

be obtained by adding an low frequency AC signal Vac on top of the DC voltage Vdc.

Let us consider a total current consisting of a large DC current Idc and a small AC signal

Iac

I = Idc + Iac = Idc + i cos(ωt) (2.1)

For i << Idc a first order expansion of the current gives

V (I) = V (Idc) +
dV

dI

∣∣∣∣
I=Idc︸ ︷︷ ︸

Rac

i cos(ωt) (2.2)

Two Lock-In amplifiers measure the small AC signals at the frequency fac = ω/2π. The first,

reads the bias current Iac, while the second detects the resulting voltage Vac between source and

drain. One can calculate the dynamical conductance with the ratio of these two quantities.

Gac = 1/Rac = Iac/Vac (2.3)

The setup illustrated on figure 2.10 (a) allows the simultaneously measurement of the DC

and AC conductances. An Agilent oscillator generates (via a transformer) a periodic signal at

frequency fac = 13.29573 Hz. The DC conductance is measured with a Keithley 2000.

2.2.2.4 Capacitance measurement

In order to know the carrier density added by gating, a measurement of the capacitance

between the back gate and the 2DEG as a function of gate voltage is needed (chapters 3 and 5).

This capacitance can be measured by a complex impedance method. A transformer is used to

add a small AC voltage on a fixed voltage VG applied to the back gate. The complex impedance

is given by :

Zac =
vac
iac

=
1

jωCSTO
(2.4)

The Lock-In amplifier detects the AC voltage vac between the 2DEG and the back gate in

quadrature with the input current iac, as shown on fig. 2.10 (b).

This setup allows the measurement of the capacitance as a function of the back gate voltage

once the parasitic capacitance of the cable has been extracted. Figure 2.11 shows a typical

measurement of the capacitance as a function of the back gate. As the STO dielectric constant

is electric field dependent, the capacitance varies symetrically around VBG = 0 V.
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Figure 2.10 – (a) G(V) measurement setup (b) Capacitance measurement setup
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Figure 2.11 – Capacitance of the sample as a function of back gate voltage measured on the

sample of chapter 3.
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2.2.3 RF measurements

An RF setup was built to measure the complex conductance G(ω) of a resonant RLC circuit

at around 300 MHz. The results obtained for the LAO/STO interface are analyzed in chapter 5.

The complex impedance at low temperature is obtained by measuring the reflexion coefficient

Γ(ω) with an input line and a return line as shown on figure 2.12 (respectively port 1 and port

2). A directional coupler is used to decouple the incoming wave from the outgoing one. In the

following we describe the different parts of the RF setup. All the measurements were performed

using a vector network analyzer (VNA) from the Rohde and Schwarz company.

2.2.3.1 Input Line

The coaxial lines are made of Cu-Ni which has a low thermal conductivity so that each stage

of the refrigerator stays thermally decoupled from the other one. Their attenuation is 8 dB/m

at 10 GHz. Cables at the lowest stage are made of copper which has much higher conductivity

and less attenuation. Attenuators are placed along the input line at the different temperature

stages in order to prevent 300 K noise to reach the sample and to thermalized the cables. The

total attenuation of the input line is around 60 dB at 1 GHz.

50K

300K

3K

0.5K

20mK

Z

port 1 port 2

Idc

-10dB

-10dB

-10dB

-10dB

  
40dB

-30dB

bias-tee

directional
coupler

HEMT
Amp.

R1

V0

V0

heat

α

(a)

(b) (c)

R1

R2

Figure 2.12 – (a) Schematic of a coaxial cable with an electromagnetic wave propagating (b)

Schematic of a -10 dB attenuator. They are placed at each stage to allow thermalization of the

cables. (c) RF lines in the cryostat. Each grey rectangle corresponds to an attenuator.

The external part of the coaxial cables is easy to thermalize, but the central pin is isolated
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by a dielectric layer which poorly conducts heat as indicated in green on figure 2.12 (a). Cooling

progressively the whole cable is allowed by putting an attenuator on each plate of the dilution

fridge. Indeed, an attenuator works like a voltage divider, represented on figure 2.12 (b). Two

different resistances R1 and R2 are tuned to match the characteristic impedance Z0 and reduce

the incident power by a certain factor α = 10−Loss/20. The presence of the resistance R2 allows

the thermalization of the central pin.

2.2.3.2 Directional coupler

A directional coupler is used to separate the incoming wave from the reflected one in blue in

figure 2.12 (c). This device has 4 ports. One of them is terminated with an impedance matched

with the characteristic impedance Z0 = 50 Ω, such that no reflectivity is expected. A small

fraction (-30 dB) of the incoming signal on the input port is transmitted to the coupled port

while the rest of the signal is fully transmitted to the output.

P

P

coupled port

input porttransmitted port

IN
P

50

OUT

Ω
Cpl -30dB

Figure 2.13 – Directional coupler schematic

The directionnal coupler used in this thesis has a bandwith 0.3-8GHz and is characterized

by the following parameters

C = −10 log
PCpl
PIN

' −30 dB (2.5)

I = −10 log
POUT
PIN

' 1 dB (2.6)

D = −10 log
PCpl
PIN

' −50 dB (2.7)

Sending a strong power (typically in the range of [-20 dBm,-10 dBm]) through the input

line allows us to induce a small free of noise signal in the direction of the sample. The signal

reflected by the sample is mainly transmitted to the output port (see transmitted port on figure

2.13).

2.2.3.3 Cryogenic HEMT amplifier

A High Electron Mobility Transistor (HEMT) placed on the 3 K stage is used to amplify the

signal on the return line. It operates on the 0.1-12 GHz band with a 4 K noise (fig. 2.12). It is

a heterojunction made of multiple layers such as GaAlAs, GaAs or GaInAs. In order to allow a

broad band amplification, the setup has to be optimized by impedance matching and fine tuning

of all the parameters. Schematic 2.14 shows the basic principle of a low noise amplifier matched
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in impedance thanks to two inductances LS and LG. More details are given in chapter 12 of [87].

R
L

L

G

D

S

HEMT

Figure 2.14 – Schematic of low noise amplifier. RD is the load resistance.

Usually an isolator is placed in the chain to minimize the back action of the amplifier on

the sample. However, these microwave elements offer only a limited bandwidth (one octave)

which was not sufficient for our experiment. In addition, the back-action noise was negligible

compared to the signal used to probe the system.

2.2.3.4 Bias tee

Finally, in order to perform DC measurements without disturbing the high frequency signal,

we placed a bias tee between the directional coupler and our sample as indicated on figure 2.12(c)

in orange. It is a three ports device. The DC current is sent through an inductance L such that

XL = ωL >> Z0. The RF signal cannot flow through such a high impedance. The second port

is filtered by a capacitance C, chosen so that XC = 1/ωC << Z0. The RF signal can easily flow

through this low capacitance but the DC signal is stopped. Thanks to the bias tee we are able

to perform simultaneously DC and RF measurements, which was crucial for the setup calibration.

2.3 Summary of Studied Samples

A list of the samples studied in this thesis is shown below. Samples C0, C1 and C2 are un-

patterned samples that were used in chapter 3 for DC measurements. Sample A was patterned

into 10 µm wide and 30 µm long Hall bar, shaped using the amorphous LAO technique (chapter

3). Sample B is an un-patterned sample that was used in chapter 5 for complex conductance

measurement of the 2DEG. Finally, sample D was patterned with split gates in quantum point

contact geometry (chapter 6).

Name Institution u.c. Specifics Top gate Back Gate

A CNRS-Thalès 8 Hall bar with a-LAO Top gate + Si3N4 yes

B Kampur 8 3× 3 mm2 No yes

C0,C1,C2 Kampur 10 3× 1 mm2 (Cr doped) No yes

D CNRS-Thalès 14 Hall bar with a-LAO QPC yes



Chapter 3

DC Transport

”In our endeavor to understand reality we are somewhat like a man trying to

understand the mechanism of a closed watch. He sees the face and the moving hands,

even hears its ticking, but he has no way of opening the case.”

Albert Einstein

The Evolution of Physics (1938)
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This chapter is dedicated to the study of the DC transport and magneto-transport proper-

ties of the LAO/STO interfaces both in the normal and superconducting states. By measuring

longitudinal and transverse conductivities, we extract intrinsic parameters such as the mobility

µ, density n, elastic τe and inelastic τφ scattering times and the spin diffusion time τso, as a

function of electrostatic doping. However, it is sometimes difficult to disentangle the respective

contributions of doping, disorder and carrier density changes to the electronic properties of the

interface. For this reason, in addition to the gate voltage, we use microscopic disorder induced

by Cr doping as a tuning parameter to probe the 2DEG properties.

In the first section, we show that substituting Cr for Al atoms in the LAO layer, affects

essentially the elastic scattering time of the 2DEG without changing the carrier density nor the

39
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confinement conditions. By comparing the transport properties of three samples having different

level of Cr doping, we are able to study microscopic mechanisms such as superconductivity and

Rashba spin-orbit coupling (SOC), and to clarify the specific role of disorder.

Most of the results that appear in the literature published to date have been obtained by

using a back-gate to tune the carrier density of the interface. In the perspective of making local

changes to electron doping and studying mesoscopic samples, we developed a technique to make

top gates. In the second part of this chapter, we discuss the realization of top-gated devices

where the superconductivity and the SOC can be tuned over a wide range.

3.1 Effect of Controlled Disorder on Superconductivity and Rashba

Spin-Orbit Coupling

The influence of atomic disorder on electronic transport properties in two dimensions has

been described by the weak localization theory, including electron-electron interactions effects

[88]. Corrections to Drude conductivity and magneto-conductivity have been calculated. A

comparison between experimental data and the theory gives access to various scattering times

and diffusion lengths in the system. Increased scattering and its correlated enhancement of

electron-electron interactions lower the critical temperature Tc in disordered superconductors,

as proposed by Finkelstein for example [89]. It is therefore interesting to chemically dope oxide

interfaces to further explore their electronic properties. Doping the STO substrate with Mn

quenches electron density and mobility [90, 91, 92]. It was also recently observed that 2% dop-

ing with rare earth ions Tm and Lu at the La site of LaAlO3 does not significantly affect the

electronic transport [93]. An increase of SOC in δ doped LaTiO3/LaCrO3/SrTiO3 interfaces

was demonstrated by Das et al. [94]. However, all those results are not sufficient to disentangle

the respective roles of doping, disorder and carrier density on the fundamental properties of

interfaces such as Rashba SOC and superconductivity.

We first study the effect of Cr doping on the elastic scattering time for different gate

voltages. We then present superconducting properties as a function of disorder. Finally,

magneto-conductance measurements give an insight on the spin-orbit coupling mechanism at

the LAO/STO interface.

3.1.1 Effect of Cr doping on the resistance

For this study three 10 u.c. LaAl1−xCrxO3 films were grown on 3× 1 mm2 TiO2 terminated

substrates, with doping parameters of x=0 (sample C0), x=0.1 (sample C1) and x=0.2 (sample

C2). Details on growth conditions are given in ref. [95]. We deposited back gates on the back

side of the 500 µm thick STO substrate as explained in chapter 2, section 2.1.3.
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Figure 3.1 – Sheet resistance measured from 300K to 3K on sample C0. The current applied is

1µA at a frequency f=17.37Hz. The fit of equation (3.1) is indicated in red. (inset) Upturn of

the R(T) curve below 20K, corresponding to weak localization effect.

3.1.1.1 R(T) curve as grown

The samples were anchored to the mixing chamber of the dilution refrigerator. We first

measured the resistance in a four-probes geometry from 300 K to 3 K, using lock-in amplifiers.

For the undoped sample (C0), the resistance is of the order of 5 kΩ at room temperature, and

decreases by a factor roughly ten at 3 K (fig. 3.1). Above 100 K, electron-phonon scattering

dominates transport properties, while a typical Fermi liquid behaviour is observed at lower

temperatures. Indeed, R(T) varies according to the square of temperature :

R(T ) = R0 +AT 2 (3.1)

Assuming a thickness of 10nm for the 2DEG we find A = 5.3 × 10−8 Ω.cm/K2, which is

comparable to the value found in bulk doped STO for similar doping. For instance, this can

be compared with the value observed in STO doped with Lanthanum where A = 2.6 × 10−8

Ω.cm/K2 [96]. This is in agreement with the idea that electrons are located in the STO side

of the interface. Van Der Marel et al. have proposed that this T 2 behaviour can be explained

by a nearly non-retarded polaron-polaron interaction [25]. Below 20K the resistivity exhibits

an upturn (∂R/∂T < 0, inset of figure 3.1). This behaviour is expected as it reflects the weak

localization theory for two-dimensional disordered metals. We will come back to this point later.

3.1.1.2 Doping with a Back Gate

After cooling the sample to 3K, the back-gate voltage was first swept to its maximum value

(+200V) while keeping the 2DEG at the electrical ground, to ensure that no hysteresis would

take place upon further gating. During this operation, electrons are added in the quantum well,

increasing the Fermi energy to its maximum value (i.e., close to the top of the well) [84].
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When the gate voltage is decreased, electrons are removed from the confinement well and

the sheet resistance of the three samples increases (Fig 3.2 (a)). The main effect of Cr doping

is to increase the resistance. In a Drude model, the conductivity σ is proportional to the elastic

scattering time τe and to the density of carriers n.

σ = ne2τe/m
∗ (3.2)

Cr doping has either created more elastic scattering (leading to a decrease of the elastic

scattering time τe), or modified the density of electrons in the system.

To determine the carrier density, we performed Hall effect measurements for different back

gate voltages. In the depleted regime (VBG < 0) the Hall resistance increases linearly with the

magnetic field (inset fig. 3.2 (b) for sample C0). On the contrary, a non-linear dependence is

observed in the doped region : this is a sign of a multiband system. J. Biscaras et al. identifed

two populations of carriers at the interface : a majority of low-mobily ones (LMC) that are

always present in the quantum wells and a minority of high-mobility ones (HMC) which only

appear for strong electrostatic doping 1 (VBG > 0) [97]. In the limit of weak magnetic field

(B → 0), the extracted carrier density nH = IB/eVH (I is the bias current) gives the correct

carrier density for VBG < 0 (single band) but decreases in the overdoped region (two bands)

which is unphysical. In order to obtain the correct carrier density directly from Hall effect for

VBG > 0, one must performed a two-band analysis as described in appendix A and ref. [97].

However, such analysis is difficult here as the non-linearity of Hall effect is weak due to relatively

low magnetic field (7 T). Alternatively, the total carrier density can be determined by combining

gate capacitance and Hall effect measurements (fig. 3.2 (b)). We obtain

ntot(VBG) = n(VBG = −200V ) +
1

eS

∫ VBG

−200V
dV (CBGmeas(V )) (3.3)

where S is the surface of the plane capacitance formed between the 2DEG and the back

gate and CBGmeas is the measured capacitance. To recover the absolute variation of the carrier

density with gate voltage, we match the value of ntot at VBG = −200V to the one measured

by Hall effect since in the underdoped region, only one type of carrier is present (fig. 3.2(b)).

One can see that Cr doping does not change significantly the total number of electrons in the

2DEG for the whole range of doping. The main effect of Cr doping is thus to reduce the elastic

scattering time τe. One therefore expects the ratio R(x)/R(x = 0) = τe(x = 0)/τe(x) to be

constant as a function of gate voltage and to increase with Cr doping. This behaviour is indeed

observed experimentally as can be seen in figure 3.2 (c).

A first simple conclusion is that Cr doping increases the atomic disorder in the system, and,

at first order, only modifies the elastic scattering time τe. The carrier density is the same for the

three samples within experimental marging errors. This remarkable property will allow us to

study for the first time the effect of a controlled homogeneous disorder on LAO/STO properties.

1. In chapter 5, we will propose to relate the LMC and HMC to the populations of the different t2g bands.
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Figure 3.2 – (a) Sheet resistance Rs at T=3K as a function of VBG for three

LaAl1−xCrxO3/SrTiO3 samples corresponding to doping levels x=0, x=0.1 and x=0.2 (b) Car-

rier density extracted at T=3K by matching capacitance measurements (full lines) with low-

magnetic field Hall effect measurements for VBG < 0(filled symbols, same color code). Inset :

Hall voltages VH as a function of the magnetic field B measured for different VBG in sample

C0. The Hall voltage is linear with B for negative gate voltages (single band) and non-linear

for positive gate voltages (two bands). (c) Sheet resistance of the x=0.1 and x=0.2 samples

normalized by the sheet resistance of the x=0 sample. The straight lines are guides for the eye.
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3.1.2 Effect of Cr doping on superconductivity

3.1.2.1 Gate voltage dependence of Tc

The undoped sample C0 presents a complete superconducting transition whose Tc follows a

dome shape as a function of gate voltage with a maximum value around 170 mK (Fig. 3.3 (a) and

(d)). The same measurement was performed on C1 (x=0.1) and C2 (x=0.2). A superconducting

transition can be seen on figure 3.3 (b) for the C1 sample for positive VBG although the R(T)

curve saturates to a finite value of resistance at 20 mK. At the highest disorder level (C3 sample),

superconductivity is completely suppressed (Fig. 3.3 (c)). One can plot a phase diagram by

extracting the critical temperatures (50% of the resistance at T=350mK criterion) as a function

of gate voltage for all the samples (Fig 3.3 (d)). The intermediate doping sample (x=0.1) follows

the same dome like trend as the undoped one.
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Figure 3.3 – (a),(b) and (c) R(T) curves for different back gate voltage in sample C0, C1 and C2

respectively (d) Critical temperature (50% of the normal resistance at T=350mK) as a function

of back gate voltage for the three samples

3.1.2.2 Optimally doped superconducting transition

We now focus on the optimally doped region. Figure 3.4 shows the sheet resistance as a

function of temperature at optimal doping (VBG = 80V ). The 2DEG undergoes a supercon-
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Figure 3.4 – R(T) curve of C0 at optimal doping VBG = 80 V. The measurement was done with

a Lock-in amplifier at frequency f=17.31Hz and current I = 20 nA

ducting transition with a critical temperature of around 150 mK.

The transition is rather broad, indicating the presence of spatial inhomogeneities. In order

to explain the relatively broad transition in the optimally doped region, M. Grilli et al. proposed

an inhomogeneous repartition of critical temperature with a Gaussian probability distribution

(see chapter 1 paragraph 1.3.3)[76]. The larger is the width of the transition, the higher are the

fluctuations of Tc around a mean value T̄c. Such systems would behave as a disordered array of

superconducting puddles coupled through a metallic 2-DEG by proximity effect [98, 76, 79, 73].

In the underdoped region, the number of superconducting puddles is not sufficient to enable even

one percolating path. Tunneling spectroscopy [69] reveal that in the optimally doped region,

the zero temperature gap energy is in agreement with BCS predictions (∆ ' 1.76kBTc). This

indicates that at optimal doping : (i) the puddles are well connected despite a broad transition,

and (ii) the Tc is controlled by pairing interaction and not phase fluctuations.

3.1.2.3 Role of homogeneous disorder on superconductivity

Increasing homogeneous disorder by Cr doping leads to a decrease of the elastic time τe,

which has two distinguishable effects. Firstly, it explains why the superconducting transitions

are broader in the C1 sample than in C0. The coupling of superconducting islands is con-

trolled by the normal coherence length ξn =
√

h̄D
kBT

where the electronic diffusion constant D

is proportional to τe. If ξn becomes shorter, the number of connected superconducting paths

for a given temperature is reduced, and the resistance higher. This is why the transition ap-

pears broader. The second effect concerns the strengh of superconductivity inside each puddle.

Superconductivity is made possible by an attractive electron-electron interaction. As disorder

increases, screening is less and less efficient, and the Coulomb interaction starts to compete with

the attractive interaction. Moreover in dirty systems, the density of states at the Fermi level
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is reduced. Following the work of Anderson, Maekawa and Fukuyama [99] proposed to include

electron-electron interaction in the BCS calculation. In this case, the loss of superconducting

properties is caused by a progressive and homogeneous destruction of Cooper pairs. For even

higher disorder levels, Finkelstein’s theory predicted [89] a universal law where Tc depends on

the sheet resistance R and on the parameter γ = ln 1
Tc0τe

Tc = Tc0exp

[
γ +

1√
2r

ln
[
(1/γ + r/4−

√
r/2)/(1/γ + r/4 +

√
r/2)

]]
(3.4)

where r = Re2/(πh) and Tc0 is the value of Tc in absence of disorder. Such high disorder can

be found in granular systems as well as homogeneous systems. The effect of atomic disorder is

to homogeneously reduce the gap energy to zero. The system is no longer made of Cooper pairs

: it is simply a dirty metal. In our case, the decrease in elastic time leads to the weakening of

superconductivity inside each island.

Fig. 3.5 shows the fitting of Tc at optimal doping (VBG = 80V) as a function of Rs with the

Finkelstein’s function (equation (3.4)). A quantitative agreement is obtained, with a limit Tc0
of 350 mK for null disorder, close to the Tc of doped bulk STO. The fitting parameter γ = 10.5

is consistent with its theoretical expression. This shows that the enhanced disorder through Cr

doping can explain the suppression of superconductivity in doped samples. This is valid both for

as grown disorder (x=0) and built-in disorder (x=0.1 and x=0.2) and could explain the spread

in Tc observed in the literature for sample grown in various institutions. Note that we considered

here only the Tc at optimal doping since in the underdoped region, phase fluctuations which are

not described by Finkelstein theory, play an important role in the suppression of Tc.
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Figure 3.5 – Finkelstein fit (equation (3.4)) for the critical temperature at optimal doping.
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3.1.3 Effect of disorder on spin-orbit coupling and inelastic scattering length

When electrons are confined in two dimensions, their quantum wavelike behaviour is unveiled.

In the 80s, the diagrammatic technique was applied to the calculation of macroscopic observables

in condensed matter systems : this is the so-called weak localization theory [100]. Maekawa

and Fukayama calculated the probability for an electron to cross a 2D region with randomly

distributed defects as a function of the magnetic field in presence of spin-orbit coupling [101].

After summarizing the different phenomena which characterize the transport in 2D interfaces,

we study them through magneto-conductance measurements.

3.1.3.1 Weak localization

In order to compute the amplitude probability for an electron to be transmitted or reflected

on randomly distributed scatterers, the quantum mechanics description adds all the amplitudes

Ai of each of the paths between point M and point N. The probability for the particle to go

from M to N is then :

PM→N =

∣∣∣∣∣∑
i

Ai

∣∣∣∣∣
2

(3.5)

In a quasi two-dimensional electron gas, the thickness d is usually smaller than the in-plane

mean free path. This is the case for the LAO/STO interfaces where d ' 10 nm and le ' 20

nm. Elastic processes create loops as shown on figure 3.6. The probability for an electron to

return to point M by following either one direction on the loop (A1) or the other (A2) is then

PM→M = |A1 +A2|2= 4A2, which is twice the classical probability. Those closed paths interfere

constructively and increase the probability of back scattering, thus decreasing the longitudinal

conductance of the sample. This phenomenon is called weak localization [102]. It is illustrated

on figure 3.6.

M le

DτΦ

Weak localization 

l  =(A1)

(A2)

Inelastic 
scattering 
event

P
M M

Φ

Figure 3.6 – Weak localization schematic. Closed path due to elastic scattering are presented

(in blue) on the left; Scatterers are separated by a typical distance le. On the right, an inelastic

event occurs (in red).
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On the contrary, inelastic scattering events destroy the interference. Indeed an inelastic

scattering event does not preserve the phase of the particle wave function. When summing the

amplitude probabilities they average to zero and quantum interferences are destroyed. All the

loops with a diameter larger than lφ =
√
Dτφ do not participate in weak localization. In the

inelastic length lφ, τφ is the typical time between two inelastic collisions (τφ >> τe). Up to

now, we have considered spin-less particles. However, spin-orbit interaction, which generates

spin relaxation, should also be included in our analysis.

3.1.3.2 Spin-orbit coupling time

When electrons scatter close to a high electric field E, they experience an effective magnetic

field Bsoc = E × v/c2, where v is the velocity of electrons. Spin-orbit interaction defines a

typical time called the spin diffusion time. Physically it represents the time it takes for a spin

to flip while the electron is experiencing the effective spin orbit magnetic field Bsoc.

There are mainly two kinds of spin-orbit interaction encountered in metallic or semicon-

ducting systems. The first one is called atomic spin-orbit coupling. This interaction is due to

the presence of a strong electric field close to the nucleus as represented schematically in figure

3.7 (a). Each time electrons approach a nucleus they have a finite probability of undergoing a

spin flip. Atomic spin-orbit (ASO) leads to an Elliot-Yafet type of mechanism [102]. The more

scattering occurs, the shorter is the time needed to flip the spin. Hence, the characteristic spin

relaxation time is proportional to the elastic scattering time τso ∝ τe.

v

E
BRsoc

v BRsoc

(a) (b)

E

v

B
ASO

Figure 3.7 – (a) ASO mechanism. (b) RSOC mechanism. Between two scattering events repre-

sented by blue points, the spin of the electron tends to align in the direction of Bso

The second kind of spin-orbit coupling we consider here is called Rashba spin-orbit coupling

(RSOC) which is relevant in the case of LAO/STO as already discuss in chapter 1. It leads to a

D’Yakonov-Perel spin relaxation mechanism and occurs when inversion symmetry is broken [102].

The electrons experience an electric field during their ballistic trajectory between two scattering

events. The longer is the time between to elastic collisions, the higher is the probability to

flip the spin with RSOC. The characteristic spin relaxation time in this case is expected to be

inversely proportional to τe. We can therefore write

τso ∝ 1/τe (3.6)

As shown in figure 3.7 (b) Rashba spin-orbit interaction does not destroy time reversal



3.1 Effect of Controlled Disorder on Superconductivity and Rashba Spin-Orbit Coupling 49

symmetry since the direction of BRSOC changes with the sign of v. However, the constructive

interference between loops (A1) and (A2) (shown on figure 3.6) are partially suppressed by

spin-orbit interaction. This effect is called weak antilocalization.

Δσ(B)/G0

Bϕ

B

Bso

Bϕ Bso+

AK

0

1

-1

Köhler term
dominates only 
in the overdoped region

Figure 3.8 – Magneto-conductance in a 2D metallic system in the weak localization framework

: Each curve represents the contribution of a specific scattering event.

3.1.3.3 Magneto-conductance : Maekawa-Fukuyama Formalism

The Maekawa-Fukuyama (MF) formula describes the evolution of the conductance of a 2D

system as a function of the magnetic field in the presence of weak localization and including a

spin-orbit term. It is valid only for negligible Zeeman splitting [101, 103]

∆σ(B)

G̃0

= −Ψ

(
1

2
+
Btr
B

)
+

3

2
Ψ

(
1

2
+
Bφ +Bso

B

)
− 1

2
Ψ

(
1

2
+
Bφ
B

)
−
[
ln

(
Bφ +Bso
Btr

)
+

1

2
ln

(
Bφ +Bso

Bφ

)]
−AK

σ0

G̃0

B2 (3.7)

Here Ψ is the digamma function, G̃0 = e2/πh the quantum of conductance and Btr, Bφ

and Bso are the elastic, inelastic and spin-orbit effective magnetic fields respectively. They are

related to the elastic scattering time τe, the inelastic scattering time τφ and the spin-orbit re-

laxation time τso by the expression Btr = h̄/2el2e , Bφ = φ0/2πDτφ and Bso = φ0/2πDτso where

D = vF le/2 is the electronic diffusion constant in two dimension (vF is the Fermi velocity). The

term AKB
2 is the regular orbital magneto-resistance in a metal (Köhler law’s [104]).

On figure 3.8 is represented the effect of spin-orbit coupling on the variation of the magneto-

conductance. Applying a magnetic field perpendicular to the 2DEG induces a dephasing between

the two opposite trajectories of a given loop δφ = 2πBS/φ0, where φ0 = h/2e is the flux

quantum. The probability of backscattering becomes

PM→M = 2A2

[
1 + cos

(
2πBS

φ0

)]
(3.8)
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As already mentioned, lφ =
√
Dτφ is the maximum diameter over which constructive in-

terference leading to enhanced backscattering takes place, and Dτφ the corresponding surface.

The dephasing effect of the magnetic field is effective when it occurs on a surface S smaller than

Dτφ. We call Bφ = φ0/2πDτφ the corresponding magnetic field. When the magnetic field reach

Btr = h̄/2el2e the electrons are dephased on the smallest loop possible and no weak localiza-

tion can occur anymore. The presence of spin-orbit interaction tends to suppress constructive

interference which favours back scattering. Therefore, when spin-orbit coupling dominates the

electronic transport, the conductance at zero magnetic field is increased due to weak antilocal-

ization effect. When a magnetic field is applied, weak antilocalization effects disappear. Hence,

a sign inversion in ∆σ(B) is a signature of spin-orbit coupling.

The last term of equation 3.7 proportional to B2 at low field accounts for the classical

orbital magneto-conductance where AK is the Köhler coefficient. This classical effect scales like

the square of the mobility for small magnetic field [104]. It starts to dominate the transport

in the highly doped region where mobility is high and makes difficult the correct determination

of τso. When the Köler term Ak is relatively low, one can extract reliably the characteristic

scattering times τso and τφ.

3.1.3.4 Magneto-conductance : Measurements

We performed magneto-conductance measurements up to 6T at T=3K. Fits of ∆σ with the

Maekawa-Fukuyama equation 3.7 are presented in figure 3.9 for samples C0, C1 and C2 for

different back gate voltages. A very good agreement is obtained between the experimental data

and the theory over the whole electrostatic gating range. For large negative VBG, a positive

magneto-conductance is observed in agreement with weak localization in the presence of a weak

SOC. When VBG is increased, the magneto-conductance becomes negative because of enhanced

SOC. For VBG = 200 V, the classical magneto-conductance dominates the transport. As far as

the longitudinal conductance is close to G̃0, weak localization and antilocalization theory are at

play. The elastic scattering time is too small in our case to contribute. Therefore we fit only

Bφ, Bso and AK parameters.

Inelastic scattering Figure 3.9 (b) shows the inelastic magnetic field obtained from MF fits.

Inelastic scattering processes are extracted via the parameter defined in the previous section

Bφ =
h̄

4eDτφ
=

h̄

2ev2
F τeτφ

(3.9)

Hence Bφ is inversely proportional to τe × τφ as stated in equation 3.9. Assuming that τφ is

not affected by Cr doping, the ratio Bφ(x)/Bφ(x = 0) should only depend on the ratio of elastic

scattering times τe(x = 0)/τe(x) = R(x)/R(x = 0). For x=0.1 and x=0.2 this is qualitatively

verified experimentally (Figure 3.10), which confirms that the main effect of Cr doping is to

reduce the elastic scattering time τe. It shows the consistency between zero magnetic field

resistivity measurement and the MF analysis of magneto-conductance.
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Spin-orbit coupling Figure 3.11 (a) and (b) shows the spin-orbit magnetic field Bso and the

Köler term AK obtained from the MF fit. In the depleted region the conductance increases with

the magnetic field, which is consistent with a low spin-orbit interaction. In this case the trans-

port is dominated by weak localization. When the back voltage is increased, a sign inversion

of ∆σ(B)/G̃0 indicates the presence of spin-orbit interaction. Above VBG = 150V , the 2DEG

acquires a high-mobility (due to HMC) that reinforces the classical contribution σ ∝ −µ2B2

as represented by the Köler coefficient on figure 3.11(b). The shadow region corresponds to a

region of gate voltage where the determination of Bφ and Bso becomes less and less accurate.

According to the D’yakonov-Perel mechanism, the spin relaxation time τso is expected to be

inversely proportional to the elastic scattering time τe. The product D × τSO is therefore inde-

pendent of τe, and we expect the spin-orbit field not to be affected by a reduction of τe due to

Cr doping. This is indeed what is extracted from the fitting as shown on figure 3.11(a) where

Bso is the same for the three samples over the whole phase diagram.

The elastic scattering time τe can be calculated in the Drude model with a single band

approximation assuming m∗ ' 0.7×me. Figure 3.12 (left) shows the spin-orbit relaxation time

τso extracted from Bso, as a function of τ−1
e . A clear linear dependence is observed for all the gate

voltages validating the DP spin-relaxation mechanism. We have demonstrated that Cr doping

was only decreasing the elastic scattering time without changing other intrinsic parameters. On

the contrary, back gating modifies the carrier density, the confinement potential and the band

occupancy. This behaviour of spin-orbit coupling relaxation time is a strong indication that a

Rashba mechanism is at play in the LAO/STO interface.

Gate dependence of the spin-orbit coupling In the following, we propose to explain the

increase of the spin-orbit strength with the gate voltage. The Hamiltonian representing the

Rashba spin-orbit coupling in LAO/STO interface has been introduced in chapter 1 section

1.2.3. It takes the general forms :

HRSOC = α(k× σ)z (3.10)

where k is the electron wave vector, σ are the Pauli matrices and α is the coupling constant.

This latter characterizes the strength of the spin-orbit interaction and is expected to be directly

proportional to the electric field F . Through Maxwell-Gauss equation, F at z = 0 can be directly

related to the carrier density of the 2DEG

F =
e

ε0εr(F =∞)
(n+Ntrap) (3.11)

where Ntrap is the density of trapped charges and εr is the dielectric constant at the interface.

Considering a 2D system with Rashba spin-orbit coupling in the diffusive limit, ie when a =

∆SOτ/h̄ < 1 one can express spin-orbit time as [105]

1

τso
=

1

2τ

a2

1 + a2
'

2α2k2
F τ

h̄2 (3.12)
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Spin-orbit coupling constant α as a function of carrier density.

From this expression we obtain an expression of the spin-orbit coupling constant as a function

of BSO

α =

√
eh̄3BSO (3.13)

Figure 3.12 (right) shows the gate dependence of α determined from the experimental values

of Bso. For the three samples, the coupling constant increases linearly with n, and correspond-

ingly with F (z = 0), in agreement with a Rashba spin-orbit interaction.
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for samples C0, C1 and C2. (Right) Resistance as function of temperature under a perpendicular

magnetic field in sample C0.

3.1.3.5 Inelastic scattering lengths versus superconducting length

One can finally compute the inelastic lengths lφ within the one band approximation (fig.

3.13 (a)). They only weakly depend on the gate voltage indicating that the variation of v2
F × τφ

compensates approximately the one of τe (fig. 3.13 (left)). C0 has an inelastic length lφ ∼ 50

nm. At higher disorder (C2 sample), lφ ∼ 25 nm is approximately twice shorter. This inelas-

tic scattering length represents the length over which the phase is lost. Superconductivity is

suppressed if the coherence length ξ (size of a Cooper pair) is larger than the inelastic length

[106]. Measuring the out-of-plane critical field, it is possible to estimate the coherence length ξ

within the Ginzburg-Landau theory B⊥c = φ0

2πξ2 . Figure 3.13 (right) shows the R(T) curves in

the C0 sample as a function of the out-of-plane magnetic field. The critical field is Bc ' 200

mT corresponding to a Ginzburg-Landau coherence length ξ ' 40 nm. In sample C2, where

superconductivity has completely disappeared, the inelastic coherence length lφ becomes com-

parable or shorter than ξ. This is another way to explain how superconductivity is suppressed

by inelastic disorder.

This first study gave us the typical microscopic lengths over which electrons interact with

their environment. Replacing Cr by Al modifies the typical elastic scattering length without

changing the total number of carriers, which is consistent with the extracted inelastic scattering

length. The systematic study of the magneto-conductance as a function of back gate voltage

provided important informations about the spin-orbit coupling. Its evolution with gate voltage

and Cr doping evidences a D’Yakonov-Perel mechanism of spin relaxation in the presence of a

Rashba-type spin-orbit interaction. (τso ∝ τ−1
e ). Finally, we compared the critical temperature

in the optimally doped region to the values obtained with the Finkelstein model and we observe

a quantitative agreement.
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3.2 Top-Gating Control of Superconductivity and Spin-Orbit

Coupling

The back-gating technique on LAO/STO has now become a standard tuning parameter.

Unfortunately, the STO substrate is too thick (0.5mm) to address characteristic mesoscopic

scales such as the superconducting coherence length ξ, the Fermi wave length λF or the spin

diffusion length. On the other hand, in the LAO/STO structure, the 2DEG is buried a few

nanometers under the insulating crystalline LAO layer; this is a natural geometry for top-

gating. However, the realization of top-gating devices has proven to be more challenging than

expected in the community. The first reason is that any defect or pinholes in the heterostructure

will inevitably lead to leakage currents. The second reason is that the 2DEG is sensitive to any

material deposited on it, because of the polar catastrophe. For sake of charge conservation, any

electron at the interface must have a positive counterpart on top of LAO. Depositing a material

(residues of resist for example) will therefore modify the potential and sometimes annihilate the

2DEG. The first top-gated devices were fabricated in 2011 to measure the effect of negative

compressibility of the 2DEG on the gate capacitance [107]. This was followed two years later

by the first demonstration of top-gate control of Tc in a superconducting sample, but only for a

limited range of gate voltage due to leakage current [108]. Instead of depositing metallic gates,

the ionic liquid technique was also adapted to realize top gates [109, 110]. Here we propose a

study of the effect of top gating on superconductivity and spin-orbit coupling. In particular, we

demonstrate for the first time the continuous control of the superconductor-insulator transition

with a top-gate.

3.2.1 Sample’s structure

The following study was done on sample A (see chapter 2 section 2.3). The Hall bar was

patterned with the amorphous LAO technique and a 8 u.c. crystalline LAO layer was deposited.

The top gate shown on schematic 3.14 covers the three squares of the Hall bar and is separated

from the 2DEG by a 500nm thick layer of Si3N4 in order to avoid leakage as indicated on figure

3.14.

top-gate

Si3N4

back-gate

amorph. 
LaAlO3

crystall. 
LaAlO3

2DEG

Figure 3.14 – Schematic of sample A with back gate deposited on the back of the STO substrate.

A 500nm Si3N4 layer is deposited on top of the LAO layer to avoid gate leakage. VBG and VTG

are the voltages applied respectively on the back gate and the top gate respectively.
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The results presented in the following section were obtained together with S. Hurand and

were published in 2015 [111]. Similar results were obtained on an ion-implanted sample having

same growth parameters and identical dimensions [83], but they will not be reported here for

the sake of clarity.

3.2.2 Carrier doping with a top-gate

By applying a voltage δV between a metallic gate of surface S and the 2DEG separated by a

distance d, charges ±δq appear on the top gate and the grounded 2DEG respectively according

to the following relation

δQ = CδV (3.14)

where C = ε0εr
S
d is the capacitance (assuming a plane capacitance geometry) of the dielectric

in between the metallic parts. Contrary to back gating through STO whose dielectric constant

depends on the applied electric field, carrier doping with a top gate should depend linearly

on VTG since both LAO and Si3N4 are regular dielectric materials. A sketch of the electrical

configuration that we used to perform these experiments is displayed in Figure 3.15

Si  N 

STO

LAO

V Au

V

TG

BG

3 4
2DEG

Au

d = 500nm

Figure 3.15 – LAO/STO schematic top gate and back gate

The sample is cooled to 3 K where a first polarization to a maximum back gate voltage

(+20V) is done in order to avoid any hysteretic behaviour due to electrons escaping from the

potential well. A second forming step of the 2DEG with the top gate voltage VTG = 110V at

VBG = 20V is performed for the very same reasons [84]. At 3K, we perform Hall measurements

as a function of the top gate voltage. At VBG = 0V , similarly to what we measured in sample C0,

the presence of two types of carriers (LMC and HMC) leads to a non-linear Hall voltage similarly

to what we measured in sample C0. The carrier density nH extracted from Hall measurements

nH = −IB/eVh suddenly decreases when the top-gate voltage is increased as indicated by the

open blue squares on figure 3.16. In order to test the linear relation between the top gate voltage

and the carrier density, we drive the system in the depleted region with a back gate where only

low mobility carriers (LMC) are present and where Hall effect is linear (VBG = −15V ). On figure

3.16, the open red circles show the carrier density variation with top-gating in this region. The

relation is linear as expected. A similar dependence was reproduced by COMSOL numerical
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simulation (fig. 3.16) assuming a dielectric constant of 5 for the Si3N4 which is close to the

value reported in the literature for a similar layer. We obtain the following linear relationship

between top gate voltage and carrier density

n(VTG, VBG) = n(VTG = 0, VBG) +
dn

dVTG
VTG (3.15)

where dn
dVTG

= 5.0×1010 e−/cm2 and n(VTG = 0, VBG) = 1.69×1013 e−/cm2. In this device,

the carrier density can be modulated by a factor two with a top gate without leakage current.
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_

Figure 3.16 – Figure 2. Hall effect and carrier density. Carrier density (n) extracted from the

slope of the Hall voltage (VH) at 4 T as a function of VTG for two different back-gate voltages

(VBG). The curve at VBG= 15 V is offset to match the curve at VBG = 0 V at negative top-

gate voltages. The dashed line was obtained from numerical simulations of the carrier density,

assuming a dielectric constant of εSi3N4 = 5 for the Si3N4 layer. Inset: example of a numerical

simulation of the charge carrier distribution in the device for VBG = 0 V and VTG= 10 V.

3.2.3 Gate dependence of Tc and phase diagram

Figure 3.17 shows the resistance of the sample measured in dc in a four contacts geometry (see

chap 2 section 2.2.2.2). The resistance in the normal state is around Rs(T = 350mK) = 700Ω/�.

When cooling the as grown 2 sample down to 20mK, the resistance increases slowly due to weak

localization. Signs of paraconductivity start to appear at around 400 mK due to Aslamasov-

Larkin fluctuations. A full superconducting transition takes place at 200mK indicating that the

fabrication process has not degraded significantly the 2DEG properties. The current-voltage

(I(V)) characteristic shown on the inset in figure 3.17 displays a strong hysteresis. The critical

current around Ic = 460 nA is indeed much higher than the return current Ir ' 100 nA. This

2. ie before the first positive polarization is applied.
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shape of I(V) was analyzed in detail by S. Hurand et al. [80] and its dynamics was compared

to the dynamics of underdamped Josephson junctions 3.
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Figure 3.17 – As grown resistance as a function of temperature in sample A (inset) As grown

I(V) curve with switching behaviour (Ic = 460 nA) and overdamped regime (Ir ' 100 nA)

Figure 3.18 (a) displays a systematic measurement of resistance as a function of temperature

when the carrier density is tuned with a top gate. When carriers are removed from the potential

well, the normal resistance increases by two orders of magnitude while Tc is changed significa-

tively. Figure 3.18 (b) represents a phase diagram otained by plotting the normalized resistance

R/R(T=350mK) as a function of temperature and top gate voltage. The corresponding carrier

density is indicated on the top axis.

When electrons are removed from the potential well, superconductivity is suppressed smoothly

showing sharp transitions in the optimally doped region, and much broader ones saturating at

a finite resistance in the underdoped one. The broad transitions in the underdoped regime sug-

gest the presence of inhomogeneities as mentioned in chapter 1. A superconductor to insulator

transition (SIT) takes place around VTG = −90V with a critical sheet resistance Rs ' 8 kΩ

which is close to the universal conductance value in the bosonic scenario RQ = h/4e2 ' 6.5 kΩ

[112]. Surprisingly, once every trace of paraconductivity has disappeared, the resistance does

not increase sharply at low temperatures which is unusual for an insulator. Rather than a true

superconductor-insulator transition, we have here a transition between a superconductor and a

weakly localizing metal. As for back-gating, the critical temperature presents a dome behaviour

upon top-gating with a decrease of Tc on the overdoped region. In figure 3.18 (b), three different

criteria for Tc are shown. Explaining the dome shape in back-gating or top-gating has remained

a challenge from a theoretical point of view.

3. Appendix E give some general properties on Josephson junction in the RCSJ model
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Figure 3.18 – (a) Sheet resistance of sample A as a function of temperature for different top gate

voltage. (b) Color plot of the sheet resistance normalized with respect to its value at T=350mK

as a function of temperature (left axis) and top gate voltage. The associated carrier densities are

plotted on the top axis. The sheet resistance at T=350mK is represented in black on the right

axis. Three different criteria for Tc are proposed : 10%, 50% and 90% of the normal resistance

at 350mK
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different top gate voltages (b) Bφ, Bso and AK parameters extracted at T=3K in sample A
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Figure 3.20 – (left) Bφ parameter extracted from the longitudinal magneto-conductance as a

function of top-gate voltage for different temperatures. (Right) Bφ as a function of temperature

for VTG = 50 V.

3.2.4 Magneto-conductance measurements

We now present magneto-transport measurements and analysis to extract the spin-orbit

interaction strength as a function of top-gating. Magneto-resistance measurements were per-

formed as a function of temperature and top gate voltage. The parameters obtained with the

fit of Maekawa-Fukuyama formula (equation 3.7) are presented in figure 3.19 (a) in the whole

range of top gate voltage. As explained in the previous section, we obtain three parameters Bφ

and Bso and AK . The Köler term dominates in the overdoped region as in the case of Cr doped

samples (fig. 3.19 (b)).

In the framework of the weak localization, the inelastic inelastic scattering time follows a

power law as a function of temperature

τφ ∝ T−p (3.16)

where p depends on the dominant mechanism of inelastic scattering (p=3 for electron-phonon

interaction and p=1 for electron-electron interaction [113, 88]). Figure 3.20 shows that Bφ is a

linear function of temperature. Bφ = φ0/2πDτφ being inversely proportional to τφ, we imme-

diately find p=1 which demonstrates that electron-electron interaction dominate the inelastic

process. This is consistent with the logarithmic temperature dependence of the conductivity in

LAO/STO interfaces [97].

The spin-orbit magnetic field obtained from the fits is represented in open red circles on figure

3.19 (b). [4]. It continuously increases with gate voltage and correspondingly with carrier density

as already observed with back-gating. As opposed to Bφ, BSO is temperature independent since
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the confinement conditions are not modified (for T < 10 K) (Inset fig.3.21). If we assume that

the spin relaxation is dominated by the D’Yakonov-Perel mechanism, based on a Rashba spin-

orbit interaction we obtain a linear variation of α with carrier density (Figure 3.21). As already

discussed for the Cr doped sample, this linear variation is in agreement with the linear variation

of α with the interfacial electric field as expected for Rashba spin-orbit coupling. Assuming a

Fermi energy EF = 100 meV, and neglecting the variation of kF on this small range of doping,

we can also calculate the spin splitting energy ∆so = 2αkF ' 10 meV. The order of magnitude

is a few meV, which is much larger than in most semiconductors.
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Figure 3.21 – Spin-orbit coupling constant (left axis) and spin splitting energy (right axis) as a

function of the top gate voltage obtained from spin-orbit magnetic field. The spin splitting energy

is calculated by assuming a Fermi energy EF = 100 meV with the expression ∆SO = 2αkF . The

corresponding total carrier density is plotted on the top axis. (inset) ∆so as a function of

temperature

3.2.5 Conclusion

In the first section of this chapter we have investigated the effect of the substitution of Al

by Cr on superconductivity and spin-orbit coupling in LaAl1−xCrx O3 /SrTiO3 interfaces. The

main effect of Cr doping is to induce disorder in the interfacial quantum well which leads to a

decrease of the electronic elastic scattering time of the 2DEG, without significant modification

of the carrier density. A suppression of superconductivity was observed by increasing the Cr

doping consistent with a Finkelstein’s reduction of Tc induced by disorder and electron-electron

interactions. By analyzing the magneto-conductance of the 2DEG as a function of magnetic
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field, we showed that the spin relaxation occurs according to a D’Yakonov-Perel mechanism. In

addition, we found that the spin-orbit coupling constant α increases linearly with the interfacial

electric which is controlled by the gate voltage, as expected for a Rashba spin-orbit interaction.

In the second section, we studied a LAO/STO top-gated field effect devices fabricated using the

amorphous LaAlO3 template method. The superconductivity was electrostatically modulated

over a wide range by a top-gate voltage, without any leakage, and a superconductor-to-insulator

quantum phase transition was induced when the quantum well is strongly depleted. By analyzing

the magneto-transport measurements, the presence of strong spin-orbit coupling that could be

controlled with the top-gate voltage was demonstrated. The spin-spliting energy of the order

of a few meV was also found to increase linearly with the interfacial electric field as for the

experiments described in the first section. These results represent an important step toward the

realisation of new mesoscopic devices such as the ones that will be discussed in chapter 6.
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Chapter 4

2D Superconductors

Electrodynamics

”It must be borne in mind that mean field approximations are notoriously bad

in predicting the form of the singularities in specific heats etc,

since such a theory ignores fluctuations in the internal field.”

J M Kosterlitz and D J Thouless

Ordering, metastability and phase transitions in two-dimensional systems (1973)
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The superfluid stiffness, which is the energy cost to twist the phase of a superconductor, and

the superconducting gap are two intrinsic energy scales that can be probed at high frequency.

In the previous chapter, we demonstrated the possibility to tune spin-orbit coupling and super-

conductivity in LaAlO3/SrTiO3 by field effect either with a top gate or a back gate. Transport

at finite frequency reveals other properties of electronic systems. Measuring the complex con-

ductivity with AC radio frequency techniques as a function of temperature and gate voltage

provides a complementary description of superconductivity at this interface. The role of this

chapter is to introduce both basic concepts on disordered 2D superconducting and the standard

65
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Mattis-Berdeen theory of electrodynamics of dirty superconductors.

First we present theoretical predictions of the response of a superconductor to an electromag-

netic excitation at high frequency. Starting from London equations and the two-fluid model, we

establish the response of a BCS superconductor in the presence of homogeneous disorder. Then

we describe how the strength of superconductivity can be controlled by phase fluctuations in case

of a high disorder or in the presence of inhomogeneities. In the specific case of inhomogeneities

at a mesoscopic scale, we propose a description based on the Josephson effect in coupled super-

conducting islands, which is relevant to understand the properties of LaAlO3/SrTiO3 interfaces.

Most of the concepts developed here play a fundamental role in the explanation of the behaviour

of superfluid stiffness upon field effect doping as developed in chapter 5.

4.1 Superconductivity : the basics

In 1935, Heinz and Fritz London proposed an empirical description of the electrodynamics

of a superconductor by a perfect diamagnetic current js. In this seminal paper, they introduced

for the first time a concept that will later be called the gap energy : ”But now suppose the

electrons to be coupled by some form of interaction. Then the lowest state of the electrons may

be separated by a finite distance from the excited one and the disturbing influence of the field

on the eigenfunctions can only be appreciable if it is of the same order of magnitude as the

coupling forces.” [114]. The estimated value of the superconducting gap of LaAlO3/SrTiO3 is

∆ = 50 µeV = 10 GHz, which is much higher than the typical frequency used in the experiments

made in this thesis f ' 300 MHz. Within this limit, the RF photons do not have enough energy

to break Cooper pairs. At low temperature, the system can therefore be modelled by two

conducting channels in parallel, namely the two-fluid model. One channel accounts for the

superfluid electrons, while the other one describes all thermally activated quasiparticles.

4.1.1 Drude Model

First, let us consider a system of electrons with a density n having a mass m and a char-

acteristic relaxation time τ . The Drude model gives a probability per unit time p = 1/τ for

one electron to be scattered. The electron mean velocity under an applied electric field E is

governed by Newton’s second law :

m
dv

dt
= eE−mv

τ
(4.1)

The Drude response to a time-dependent field in the complex notation Eejωt follows from

equation (4.1). The complex conductance defined such that j = σE where j is the current reads

σ = σ1 − jσ2 =
ne2τ/m

1 + jωτ
=

ne2τ/m

1 + ω2τ2
− j ne

2/m× ωτ2

1 + ω2τ2
(4.2)

For normal electrons, the relaxation time is τ = τe ' 10−13 s. In the limit ω << 1/τe,

equation (4.2) becomes jn = σnE with
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σn =
nne

2τe
m

(4.3)

This very simple formula was used in the previous chapter to calculate the elastic scattering

time from the normal state conductivity.

4.1.2 London equations and the superfluid stiffness

Using this classical description, the London brothers proposed the following empirical de-

scription of the superfluid state. Cooper pairs are not sensitive to scattering, which corresponds

to an infinite relaxation time. By taking τ →∞ in (4.1), the scattering term disappears in equa-

tion 4.1 which becomes the first London equation [115] djs/dt = (nse
2/m)E where js = ensv

(v is the velocity of electrons and ns the density of superconducting electrons). Accordingly

equation (4.2) becomes

σs(ω) =
πnse

2

m
δ(ω)− j nse

2

mω
(4.4)

In the two-fluid model we have to consider two channels in parallel. In the limit ω << 1/τe,

the total conductance is simply the sum of the conductances in the normal and superconducting

states

σ = σn + σs =
1

Rn
+

π

Lk
δ(ω) +

1

jωLk
(4.5)

where Lk = m
e2ns

is called the kinetic inductance of the superconducting gas and Rn = 1/σn is

the resistance of the quasiparticle channel. The superconducting state can be seen as a coherent

state of electrons forming Cooper pairs. Each Cooper pair has a mass 2m, a charge 2e and an

energy Ek =
√

∆2 + ξ2
k where ξk = ε(k) − µ is the kinetic energy of the electrons with respect

to the chemical potential µ. The pairs have a common phase φ which means they respond

as one unique state when the system is probed with an energy smaller than the gap ∆. A

superconductor is then fully described by a wave function Ψ = |Ψ|eiφ, where |Ψ|2= ns is the

superfluid density. The kinetic inductance can thus be seen as a retarded response due to the

inertia of a coherent macroscopic quantum state. The London brothers had already grasped the

physics underneath this macroscopic behaviour. Their empirical theory can be summarized by

the following relations (London equations)

js = −nse
2

m
A = − 1

Lk
A = − 1

µ0λ2
L

A (4.6)

where λL, the London penetration depth, is the typical size over which a magnetic field can

penetrate the superconductor (A is the vector potential).

4.1.3 Characteristic lengthscales

A superconductor is characterized by two typical lengths ξ the superconducting coherence

length and λ the penetration length. The coherence length ξ = h̄vF /π∆ is the length over

which the wave function ψ can be bent without killing superconductivity. It is related to the
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pairing energy ∆. In some sense it is the minimal size of a Cooper pair. It has to be compared

with the elastic scattering length le. If le >> ξ the superconductor is in the so called clean limit.

In the case where le << ξ the superconductor is in the dirty limit. In case lφ << ξ, that is

∆/h >> 1/τφ, the phase coherence of the superconductor is decreased, and so is the superfluid

density as calculated by Ambegaokar and Smith [106], The LAO/STO interface has a rather

low pairing potential and is in the limit 1/τφ < ∆/h where the Mattis-Bardeen approximation

that we derive in section 4.2 is still valid.

The penetration length λ: In a 2D sample of thickness d < λ, one has to make the difference

between magnetic field applied parallel or perpendicular to the layer. In the first case, the field

penetrates the superconductor. In the second one, screening currents are confined within a

thickness d, and the corresponding penetration depth λ⊥ reads :

λ⊥ = λ2/d (4.7)

The radius of a vortex formed in a quasi-two-dimensional system is fixed by the Pearl’s

length λ⊥ [116]. In the last section of this chapter, we’ll see how these vortices can contribute

to the dynamical response of a quasi-2D system even in the absence of a magnetic field.

In general, the superfluid density, the kinetic inductance and the London penetration length

are not simply related as in equation (4.6). In a 2D superconductor, phase fluctuations dominate

the superconducting state. A Beresinsky-Kosterlitz-Thouless transition (BKT) is predicted to

occur in quasi-2D superfluid system. The London model we discussed is not sufficient to capture

the physics anymore. We can still consider it as a toy model which gives an intuitive under-

standing of the electrodynamical response of a superconductor. In the next sections we develop

more accurate models where temperature and frequency dependence of complex conductivity

are calculated within the BCS theory. We then discuss the effects of disorder and topological

phase transitions in 2D superconducting systems.

4.2 Mattis-Bardeen theory

After a brief introduction on the main properties of the complex conductivity of a many-body

quantum system in the linear approximation, we detail the Mattis-Bardeen theory of a s-wave

BCS superconductor in the dirty limit.

4.2.1 Kubo formalism

The Kubo formalism allows us to derive the conductivity of a system described by a BCS

Hamiltonian at any frequency. The most general Hamiltonian is given by H = H0+Hint+Hext(t)

where H0 is the Hamiltonian of free electrons relative to the chemical potential µ and Hext =

−e
∫
drj(r)Aext(r, t) describes the time dependent coupling to an electromagnetic excitation. In

our case Hint = HBCS corresponds to the attractive interaction responsible for superconductiv-

ity as defined in appendix E. For small excitations, the Kubo formula relates the current-current

correlation function to the conductivity.
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One can first express the current created by the electromagnetic field within the gauge

φ = 0 and E = −∂tA. The Noether theorem 1 applied to our Hamiltonian using minimal

coupling (p → p − eA) leads to the following expression for the current in the direction α

jα(r) = jpα(r) + jdα(r) with paramagnetic and diamagnetic contributions for the current

jpα(r) =
ih̄

2m

∑
σ

(∂rαc
†
rσ)crσ − c†rσ(∂rαcrσ) (4.8)

jdα(r) = − e

m

∑
σ

Aα(r)c†rσcrσ (4.9)

where c†rσ and crσ are the creation and annihilation operators of electron at position r with

spin σ. The paramagnetic current is the result of the strain applied by the electromagnetic

excitation on the wave function [117]. The diamagnetic current screens the external magnetic

field, and is responsible for the Meissner effect when the system is superconducting.

Starting from a ground state |φ0〉, and using the linear response formula χR
jpαj

p
β
(r−r′, t−t′) =

−iθ(t− t′) 〈φ0| [jpα(r, t), jpβ(r′, t′)] |φ0〉 =def Παβ(r− r′, t− t′) we find the following expression for

the current

Jα(r, ω) = e〈jα(r, ω)〉 (4.10)

= e〈jpα(r, ω)〉+ e〈jdα(r, ω)〉 (4.11)

= −e2

∫
dr′
∑
β

Παβ(r, r′, ω)Aβ(r′, ω)− e2

m
〈n(r)〉Aα(r, ω) (4.12)

=

∫
dr′
∑
β

− e
2

iω

(
δαβδ(r− r′)

n(r)

m
+ Παβ(r, r′, ω)

)
︸ ︷︷ ︸

σαβ(r,r′,ω)

Eβ(r′, ω) (4.13)

In a translation invariant system, we Fourier transform this expression of conductivity

σαβ(q, ω) =
ie2

ω

( n
m
δαβ + Παβ(q, ω)

)
(4.14)

where the first term corresponds to the diamagnetic response of Cooper pairs and Παβ

accounts for paramagnetic currents. The Kubo formula tells us that the dynamical conductivity

gives a measure of correlations inside the material. In the case of a metal in the limit q = 0

and ω → 0 equation (4.14) leads to the Drude formula (4.3). A general relation, independent of

temperature and of the interaction, is derived from Kramers Kronig relations [118]. It is named

the sum rule : ∫ ∞
0

Reσαβ(ω)dω =
π

2

ne2

m
δαβ (4.15)

In a superconductor, this rule says that the spectral weight below the gap should condense

in a delta function at zero frequency, with a weight of πnse
2/2m [119].

1. The Noether theorem relates symetries and conservation laws. Charge conservation in this context gives a

current jα(r) = −1/e δH
δAα
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Figure 4.1 – (a) Mattis Bardeen formula real part of the conductance σ normalized by the

conductivity in the normal state σn as a function of frequency. (b) The imaginary part of the

conductance σ normalized by the conductance in the normal state. Each curve is calculated for

different temperatures between 0 and Tc. Figures come from [121]

4.2.2 Mattis Bardeen

At T=0, for a clean BCS superconductor Παα(ω = 0,q → 0) = 0 as a result of the phase

rigidity of the superconducting wavefunction [120]. Using equation (4.14), we obtain a purely

imaginary conductivity as in equation (4.4). In a more general case, for arbitrary values of T < Tc

and h̄ω, Mattis and Bardeen calculated the electrodynamical response of a BCS superconductor

in the dirty limit ∆ << Γ = h̄/τe. The real and imaginary parts of the complex conductance

σs(ω, T ) are given by the following formulas [122]

σ1s

σn
(ω, T ) =

πns
mσn

δ(ω) +
2

h̄ω

∫ ∞
∆

dE(fD(E)− fD(h̄ω + E))g(E)

+
Θ(ω − 2∆)

h̄ω

∫ −∆

∆−h̄ω
dE(1− 2fD(h̄ω + E))g(E)

(4.16)

σ2s

σn
(h̄ω, T ) =

1

h̄ω

∫ ∆

max(−∆,∆−h̄ω)
dE(1− 2fD(h̄ω + E))g(E)

E(E + h̄ω) + ∆2

√
∆2 − E2

√
(E + h̄ω)2 −∆2

(4.17)

with

g(E) =
E(E + h̄ω) + ∆2

√
E2 −∆2

√
(E + h̄ω)2 −∆2

(4.18)

and fD is the Fermi-Dirac distribution.

The real part σ1 accounts for dissipative processes. The first integral in (4.16) comes from

thermally activated quasiparticles while the second term represents the photon-excited quasi-

particles. At T = 0 no quasiparticle is created, and thus the dissipative part σ1 is zero for

h̄ω < 2∆ as shown on figure 4.1(a). In figure 4.1(b) the imaginary part recovers its inductive
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Figure 4.2 – (a) Mattis Bardeen formula real part of the conductance σ normalized by the

conductivity in the normal state σn as a function of temperature. (b) Corresponding imaginary

part of the conductance σ normalized by the conductance in the normal state. Each curve is

calculated for frequencies varying between 0.005× 2∆ and 0.7× 2∆. Figures come from [121]

evolution in 1/ω at a frequency much lower than the gap. Figure 4.2 shows the evolution of

the real and imaginary parts as a function of temperature. At low frequency h̄ω << 2∆ a peak

is visible on σ1 just below Tc (fig. 4.2(a)). This coherence peak corresponds to the excitation

of quasiparticles populating the levels above the gap where the density of state is maximum.

Their probability to be scattered is given by the coherence factor as calculated in the BCS theory.

The expression (4.17) which describes the contribution of the Cooper pairs is plotted on

figure 4.2(b). In the limit h̄ω << 2∆ this non-dissipative response simplifies as follows [115] (for

a demonstration see appendix C.2)

σ2(ω → 0, T )

σn
' π∆

h̄ω
tanh(β∆/2) (4.19)

where β = 1/kBT . Using the Drude expression for conductivity (4.3)

σ2(ω → 0, T → 0)ω =
nse

2

m
=
π∆σn
h̄

=
ne2τ

m

π∆

h̄
=
ne2

m

l

ξ
(4.20)

where ξ = h̄vF /π∆ is the coherence length and l = vF τe is the mean free path. In the

London picture at T = 0, ns = n, which means that all electrons condense in Cooper pairs, and

the penetration depth λ is
√
m/nse2. In the dirty limit, only the spectral weight below ∆/h of

the Drude peak condense in the superconducting state.

The London superfluid stiffness Js = h̄2×ns/4m is now related to the normal state conduc-

tance σn and the superconducting gap ∆ through equation (4.20). It comes

Js =
R0

Rn

∆

4
(4.21)

where Rn = 1/σn the normal state resistance and R0 the quantum of resistance h/e2. In

two dimensions, Rn is just replaced by the square resistance R�.
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Figure 4.3 – Temperature dependence of real and imaginary parts of Al thin films conductance

from [123]

The Mattis-Bardeen theory has been very successful in describing electrodynamics properties

of superconductors in the dirty limit as shown in the following example. Disordered 50 nm thick

Al thin films have been measured as illustrated on figure 4.3. A good agreement has been found

with the Mattis Bardeen theory for a large range of frequencies and temperature, for both the

real and imaginary parts of the conductivity. Most of the time however, 2D systems depart from

this theory. Now that we have described the general theory in any dimension, let us address the

specific case of a 2D superconductor.

4.3 Dissipation and transport in disordered 2D systems

We now describe the specific signatures of the dynamical response of a 2D superconductor

in the presence of disorder. In 1959, Anderson predicted that s-wave superconductivity should

not be affected by the presence of disorder [124]. In fact, he demonstrated that in the dirty

limit, usual BCS pairing is protected by time reversal symmetry. In other words, the critical

temperature is not affected by increasing elastic disorder. Nevertheless, in lower dimension the

electrons are much more sensitive to any kind of disorder. A 2D superconductor is always in

the dirty limit as ξ >> d ' le, because the thickness d sets the mean free path. The Mattis-

Bardeen theory is therefore appropriate to describe 2D superconductors. But when disorder

increases, superconducting properties can be more affected, Anderson theorem falls down and

a superconductor to insulator transition (SIT) is observed. Depending on the interactions, on

the nature of superconductivity (symmetry of the gap, number of bands, etc.), and taking into

account different degrees of disorder (strong disorder, spatial inhomogeneities, quantum phase

fluctuations etc.), different scenarii are proposed to explain it.
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As we have seen, superconductivity can be suppressed by enhanced Coulomb interactions in

the presence of strong disorder. Finkelstein’s theory that is based on the competition between

pairing and electron-electron interactions, describes quantitatively this phenomena, and explains

our data on Cr-doped samples (see chapter 3 section 3.1.2) [89]. Another way to destroy super-

conductivity is related to the phase of the order parameter. After presenting phase fluctuations

in 2D superconductors, we will describe vortex excitations using BKT theory.

4.3.1 Phase fluctuations

In 2D superconducting films, disorder can be so strong that the Anderson theorem falls down.

In a seminal paper Ma and Lee explained how the validity range of the Anderson theorem is

given by the following condition [125] :

N∆0L
d >> 1 (4.22)

where N is the density of state (DOS) averaged over ±∆0 (the bulk value for the gap), L is

the localization length and d the dimension of the system. On the contrary, if Cooper pairs are

localized on scale such that N∆0L
d ∼ 1, superconductivity has to be described in a different way.

Under these extreme disorder conditions, pairs are localized, until they form a bosonic insulator.

A phase diagram (figure 4.4) was established by Fisher [112] after exploring the disorder-driven

superconducting to insulator transition in the case where phase fluctuations dominate.

(a) (b)

Figure 4.4 – (a) Phase diagram of disordered two-dimensional superconductor [112]. Here ∆

quantifies the disorder. (b) Spatial fluctuations of the superconducting gap ∆ in a titanium

nitride thin film. Adapted from [126]

In order to simulate low energy excitations when Cooper pairs are localized, one can map

the Hubbard Hamiltonian to a quantum spin on a lattice one calls the Ma-Lee model. It

was recently proven that the strong disorder can induce spatial inhomogeneities in the sample

[127, 77]. Such inhomogeneities lead to a lowering of the superfluid stiffness and to the transfer of

some spectral weight below 2∆ [128, 129]. In this case, the superfluid stiffness is lower than the

gap energy and drives the SIT [130]. Tunneling measurements were performed on homogeneously

disordered superconducting titanium nitride thin films [126]. Clear spatial inhomogeneities of

the superconducting gap are visible on figure 4.4 (b).
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4.3.2 BKT transition

In 2016, Thouless and Kosterlitz received the Nobel prize together with D. Haldane for their

major contribution in the field of topological physics. They studied topological excitations in

a 2D spin lattice model with U(1) symmetry called the XY model. The Hamiltonian of such a

system is given by

HXY = −J
∑
〈ij〉

cos(φi − φj) (4.23)

where classical spins Si = Sie
iφi are coupled to their neighbours via an Heisenberg interaction

JSi.Sj .

4.3.2.1 Free vortices

This description of a two-dimensional superconductor allows a mapping to the XY model

where J in equation (4.23) corresponds to the superfluid stiffness and the phase φ is mapped to

the angle of the spins. Superconductivity in two dimensions is believed to be controlled by phase

fluctuations. For small excitations, the XY model can be simplified HXY ' J/2
∫
d2r[(∇θ)2].

Within this model, vortices and antivortices naturally arise as low energy excitations. A vortex

winds the phase by ±2π, depending on its vorticity εi = ±1 so that any closed path around its

centre gives ∮
∇φdl = 2πεin with n ∈ N (4.24)

A vortex configuration φ̄ satisfies the equation

∇2φ̄(r) = 2πδ(r− r0) (4.25)

For a vorticity of εi = +1, a solution in the xy plane is given by

φ̄(x, y) = arctan(
y − y0

x− x0
) (4.26)

The energy associated with this topological excitation is

E =
J

2

∫
dr(∇φ(r))2 =

J

2

∫ L

a
dr2πr

1

r2
= πJ ln(

L

a
) (4.27)

with a being the lattice parameter and L the size of the 2D superconductor. The entropy is

calculated by counting the number of possible vortices in the system.

S = kB ln(
L2

a2
) (4.28)

Finally, the free energy of vortices in a 2D superconductor is given by

F = E − TS = (πJ − 2kBT ) ln(
L

a
) (4.29)

Above TKT = πJ/2kB vortices start to proliferate and destroy the long-range order of the

superconducting state. Using the renormalization group (RG) method, Kosterlitz and Thouless
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Figure 4.5 – Jump of the superfluid stiffness in BKT theory. From [132]

demonstrated [131] that when the interactions between vortices, which we neglected so far, are

taken into account, the critical temperature TKT = πJ/2kB still holds. The RG also takes into

account the cost of creating a vortex, which is described by the vortex core energy µ. In this

new frame, vortices and anti-vortices are paired below TKT and bound (fig. 4.6(a)). Above TKT ,

it becomes favourable for vortex-antivortex pairs (figure 4.6(b)) to unbind leading to a sudden

drop in the superfluid stiffness (see fig. 4.5).

4.3.2.2 BKT contribution to transport

Zero frequency Below TKT , the vortices pairs do not dissipate; the system is thus fully

superconducting. The vortex coherence length ξ+(T ) which gives the distance above which

interaction between vortices is infinite at TKT and decreases exponentially :

ξ+(T ) =
ξ0

A
exp

{
b
TC − TKT
T − TKT

}
(4.30)

In this equation A and b are two parameters close to 1. This length can also be seen as the

typical distance between two vortices. The vortex density nf is thus

nf =
1

2πξ2
+

(4.31)

The physics of vortices can be mapped onto a Coulomb gas model, where the vorticity εi

corresponds to the charge. Vortices and anti-vortices attract each other, while vortices of the

same sign repel each other. If these pairs are broken (above TKT ), applying a current creates a

transverse force similar to the Lorentz force called the Magnus force (figure 4.6 (c)) :

F = εijs × zφ0 (4.32)

Vortices acquire a drift velocity vL = µV F where µV = D/kBT is the vortex mobility and

D the diffusion constant. Once they reach the edge of the system, they disappear. Each vortex

crossing the edge induces a 2π variation of the phase. During a time ∆t, the number of vortices
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Figure 4.6 – (a) 2D superfluid below TKT where vortex-antivortex pairs are bound (b) Zoom

on a vortex-antivortex pair. (c) Magnus force : red dots correspond to vortices with vorticity

εi = +1 and blue ones to vorticity εi = −1.

crossing the edge is thus nfvL∆t where nf is the vortex density and vL their drift velocity in

the transverse direction. The total phase variation during a time ∆t is

∆φ = 2πnfvLL∆t (4.33)

The variation of ∆φ with time corresponds via the Josephson equation 2 to a voltage ∆V =

(φ0/2π)∆φ/∆t. The resulting electric field and resistivity of a system of size L are

Ex =
∆V

L
= φ0nfvL (4.34)

ρ =
Ex
js

= φ2
0nfµV (4.35)

Usually they are related to the normal resistivity, but their value can also be affected by the

presence of inhomogeneities.

BKT physics changes current-voltage characteristic I-V below TKT in a non-trivial way.

Indeed, it can be expected that before the critical current is reached, vortices will be generated,

giving rise to a non-linear I-V characteristics

V ∝ Ia(T ) with a(T ) =
πJs(T )

T
+ 1 (4.36)

A sudden jump of a from 3 to 1 is expected at TKT . In a recent experiment on LAO/STO,

I-V curves were analyzed within this model [133] but the expected jump in the critical exponent

a is not present, which can be explained by the presence of inhomogeneities. This interface could

still be a good candidate to show the features of a 2D superconductor in the BKT regime, as we

will see next, when we consider that inhomogeneities form a Josephson Junction array (JJA).

2. A derivation of Josephson equation is given in appendix E.
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Finite frequency At finite frequency two typical length scales are important : the penetration

length λ and the equivalent of the skin depth of a Coulomb gas δ. The first is related to the

imaginary part of the conductivity σ2

λ−2 = µ0ωσ2 (4.37)

The second instrinsic length is associated with the real part of the conductivity and is a

measure of the dissipation due to vortex fluctuations

δ−2 = µ0ωσ1 (4.38)

This length has to be compared with the typical length rω over which vortices are displaced

when an AC current is applied at a frequency ω

rω =

√
14D

ω
(4.39)

where D is the diffusion constant introduced in equation (4.50).

We now want to derivate the electromagnetic response of a superfluid film. Originally,

Ambegaokar et al. [134] calculated the electromagnetic response of a superfluid helium thin film

which is also described by BKT physics. Then, Halperin and Nelson applied this approach to

a charged superconductor [135]. We have outlined in the previous section the analogy between

the BKT physics and a Coulomb gas. An additional step in this analogy, is to take into account

a frequency dependent dielectric function ε(ω). The complex conductivity in a BKT model is

given by

σ(ω) = − d

iωLkε(ω)
(4.40)

In this equation Lk = m/nse
2 = 1/J and d is the thickness of the system. The vortex

dielectric function ε(ω) can be computed using the RG method and depends on two parameters.

The first one is related to the superfluid stiffness K = πJs/T , and the second to the fugacity

g = 2πe−βµ. The latter accounts for the Vortex core energy µ. Contrary to the calculation

presented in section 4.3.2.1, RG allows the computing of the physics of interacting vortices.

From equation (4.40), the two typical scales can be expressed as

λ−2 =
Js
dα

Re
1

ε
=
Js
dα

ε
′

ε′
2

+ ε′′
2 (4.41)

δ−2 = − Js
dα

Im
1

ε
=
Js
dα

ε
′′

ε′
2

+ ε′′
2 (4.42)

with α = h̄2/4e2µ0 and where ε
′

and ε
′′

are the real and imaginary parts of the dielectric

constant respectively. Only vortices smaller than rω will contribute to the imaginary part of

the vortex dielectric constant ε
′′
. It was demonstrated that it can be computed from the static

dielectric constant of vortices [135]
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ε
′′
(ω) = ε(rω) '

Dnf
ω

(4.43)

As for the real part of the dielectric constant, rω also sets a length at which the RG flow

should be stopped. Instead of sending l → ∞, it is stopped at lω = ln(rω/ξ) where ξ is the

superconducting coherence length.

ε
′
(ω) ' Js(0)

Js(lω)
(4.44)

4.3.3 Network of Josephson junctions

It was demonstrated in our team [80], that the LAO/STO interface behaves as a network

of Josephson junctions. By measuring IV curves as a function of back voltage, we were able

to extract typical values of Josephson energy EJ = φ0Ic/2π, charging energy Ec = e2/2C and

dissipation energy V 2/R. The charging energy is very small compared to the Josephson energy.

(b)(a)

Figure 4.7 – (a) Electron micrograph of a square JJA made from Nb crosses (dark region) with

a center to center spacing of 10 µm and 1.5 µm large crossarms. (b) Schematic of a square JJA

where each square represents a superconducting island and each arrow a phase φi. Both figures

come from [136]

During the 70s, technological progress allowed the realization of macroscopic devices made

of millions of Josephson junctions as shown on figure 4.7 (a) [137] creating Josephson Junc-

tions Arrays (JJA). Such arrays of Josephson junctions described with a RCSJ model 3 are well

characterized below Tc by the following Hamiltonian

HJ = −
∑
〈ij〉

EJ cos(φi − φj) (4.45)

In this equation EJ = h̄Ic/2e is the Josephson energy, Ic the critical current of each Joseph-

son junction, and φi the phase of each superconducting island. If the charging energy is negligible

3. Notes on RCSJ model are available in appendix E



4.3 Dissipation and transport in disordered 2D systems 79

compared to the Josephson energy, the Hamiltonian looks exactly the same as for a 2D super-

conductor with EJ ' J . The low energy excitations of this system are called Josephson vortices.

Figure 4.7 (b) represents schematically a Josephson vortex. As we will see, Josephson-vortex

dynamics is much slower than usual Abrikosov vortices.

Transport properties : As well demonstrated in a review by Newrock et al. [136], the phase

dynamics of a Josephson junction can be mapped onto the one of Josephson vortices in a 2D

network. In the ground state, a Josephson vortex has its centre in the middle of a cell. When the

current is zero, and the temperature sufficiently low, vortices are trapped in a 2D Peierls-Nabarro

potential UNP (kBT << UNP ). This potential has an egg box’s shape. The energy needed for

a vortex to jump across a junction is approximately UNP ∼ γEJ [138], where γ depends on the

precise geometry of the network ( γ = 0.2 for a square array). By applying a current in the x

direction, Josephson vortices are subject to a Magnus force described in equation (4.32). The

total potential energy seen by the vortex is given by

U(y) = −1

2
γEJ(T ) cos(2πy/a2)− φ0Iy/a

2 (4.46)

Where I is the source-drain current. The first term represents the cost for a Josephson

vortex to overcome the Navarro potential and the second represents the Lorentz force described

in equation (4.32).

ϕi,j i,j+1
(b)(a)

a

ϕ

ϕi

ϕj

Figure 4.8 – (a) Squared Josephson-junction array (JJA) with a lattice parameter a. Each

cross represents the Josephson coupling between each island (black dot), φi is the phase of

the ith puddle (b) Scheme of a 2D Josephson-junction network due to phase separation at the

LAO/STO interface.

The presence of a resistanceR in parallel to the Josephson junction dissipates power, resulting

in a damping force −ηvV with vV the vortex velocity. Any vortex crossing a junction will create
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a π−shift of the phase. Using the Josephson relation ∂φ
∂t = 2e

h̄ V , we find that the voltage drop is

Vij =
φ0

2a
〈vV 〉 (4.47)

The dissipated energy is the sum of all the dissipation across all the junctions

ηv2
v =

∑
〈ij〉

V 2
ij

R
(4.48)

In a square array, the effective resistance is R/2, giving rise to a viscosity

η =

(
φ0

a

)2 1

2R
(4.49)

The vortex diffusion constant D = kBT/η is thus

D =
2Ra2kBT

φ2
0

(4.50)

In the presence of a non-negligible capacitance between superconducting islands (RCSJ model

provided in appendix E), energy is also stored in the junctions. The movement of a vortex in

the 2D array in the y direction when a current I is applied in the x direction, is summarized by

the following formula [136]

I = IcV sin

(
2πy

a

)
︸ ︷︷ ︸

PN potential

+
Φ0

4πR

d(2πy)/a

dt︸ ︷︷ ︸
Dissipation due to R

+
Φ0C

4π

d2(2πy/a)

dt2︸ ︷︷ ︸
Energy stored in C

(4.51)

According to equation (4.50), the diffusion of Josephson vortices is limited by the resistance

of the array. The lower the resistance, the more they will dissipate. In the next chapter, we will

compare this model to our experimental results. If homogeneous 2D superconductors and JJA

are both related to BKT physics, the dissipation in both cases are different. In the first case,

it is related to the movement of regular vortices ; in the second one to the jump of Josephson

vortices accross barriers. We are now ready to study the AC transport at LAO/STO interface.

Dynamical measurements of this disordered 2D array of Josephson junctions will provide crucial

information on the superconducting properties of this system.
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AC Transport

”When we have to explain in a word what superconductivity means,

the answer might be that the quantum mechanical phase of the electron system

becomes ”solid” as if it were a rigid body, and gains rigidity.”

Naoto Nagaosa, Quantum Field Theory in Strongly Correlated Systems (1995)
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Since the discovery of a high-mobility electron gas at the LAO/STO interface in 2004, the

transport properties of this interface have been intensively studied at zero (or quasi-zero) fre-

quency. Such measurements are nowadays relatively simple to implement at dilution refrigerator

temperatures but they only give access to a limited number of static parameters such as the

superconducting Tc or the critical magnetic fields Bc for instance. In this chapter, we present

an AC transport experiment that consists in sending a microwave signal to a LAO/STO sample

embedded into a resonant circuit and measuring the reflected signal. After a proper calibration,

the measured reflection coefficient allows extracting the complex conductance of the interface

at a frequency of around 0.5 GHz, as a function of temperature and back-gate doping. This

gives us access to two important energy scales that control the superconducting phase diagram

: the superfluid stiffness Js, and, indirectly, the energy gap ∆ through the BCS theory. Js can

be converted into a superfluid density ns, which has to be discussed within the context of the

peculiar LaAlO3/SrTiO3 band structure.

81
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In the first part of this chapter, we describe the propagation of an electromagnetic plane

wave in a general lossy medium. We also examine the specific case of the propagation of such

wave in a coplanar waveguide terminated by a complex impedance ZL which corresponds to the

experimental situation. Then, we introduce the calibration method that has been developed

for this specific experiment. Finally, we present, analyze and discuss the results obtained on

the complex conductance of the LAO/STO interface in the framework of the different theories

developed in previous chapters.

5.1 Electromagnetic wave propagation

In this section we first describe the propagation of a monochromatic transverse electromag-

netic (TEM) plane wave in a lossy medium. The second part of this section is devoted to the

lossless terminated transmission line.

5.1.1 Lossy medium

Let us consider a medium with a conductivity σ, a dielectric permittivity ε and a magnetic

susceptibility µ. In the complexe notation 1 (E(x, y, z, t) = Re{E(x, y, z)ejωt}), Maxwell equation

are given by :

∇×E = −jωµH (5.1)

∇×H = jωεE + σE (5.2)

which leads to the following wave equation

∇2E + ω2µε(1− j σ
ωε

)E = 0 (5.3)

If we consider a simple one dimensional problem with propagation in the z direction, the

equation becomes

∂2Ex
∂z2

− γ2Ex = 0 where γ = ±jω√µε
√

1− j σ
ωε

(5.4)

where Ex = E.ex. The solution of this second order differential equation is well known

: Ex(z) = E+e−γz + E−eγz. The real part of γ describes the exponential attenuation of the

electromagnetic waves due to the losses, and its imaginary part is the wave number. Losses due

to the medium can be included in the definition of a complex dielectric permittivity ε = ε′− jε′′

where the imaginary part describes the dissipative part. With this notation (5.4) becomes

γ = jω
√
µε′(1− j tan δ) where tan δ =

ωε′′ + σ

ωε′
=
ε′′ + σ/ω

ε′
(5.5)

In order to send microwave signals to the sample, we need to guide the propagation of the

electromagnetic wave. This is achieved by using coaxial cables in the refrigerator, which are

connected at the base temperature to a 2D waveguide made in a printed circuit board that

hosts the sample.

1. E is the time dependent electric field.
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5.1.2 Terminated lossless transmission line

The transport of a TEM electromagnetic wave through coaxial lines is described by the

telegrapher equation which is presented in Appendix C. In this geometry, the system can be

modeled by a 1D line (see fig. 5.1). Along the z direction, the voltage between the two conductors

and the current can be written as the sums of the incident and reflected waves

V (z) = V +
0 e−jβz + V −0 ejβz (5.6)

I(z) = I+
0 e
−jβz − I−0 e

jβz (5.7)

We introduce a characteristic impedance Z0 = V +
0 /I+

0 . In the case of a coaxial line, this

characteristic impedance reads

Z0 =
V +

0

I+
0

=
Eρ ln(b/a)

2πHφ
=

√
µ

ε

ln(b/a)

2π
(5.8)

where a and b are the radius of the external and internal conductors respectively as indicated

on figure 5.1(a).
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V(z)u
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r

Figure 5.1 – (a) Coaxial cable geometry with an inner radius a and outer radius b. The two

conducting cylinders are separated by a material with a dielectric constant εr and a permeability

µ. (b) Schematic of a terminated lossless transmission line in a 1D model. A voltage V (z) and

a current I(z) can be locally defined.

We now consider the case of a transmission line terminated by a load of impedance ZL at

z = 0 (see fig. 5.1(b)). The wave is partially reflected since the effective medium suddenly

changes. At z=0, the ratio between the voltage and current is imposed by ZL

ZL =
V (0)

I(0)
=
V +

0 + V −0
V +

0 − V
−

0

Z0 (5.9)

The reflection coefficient ΓL = V −0 /V +
0 can be easily calculated from (5.9)

ΓL =
ZL − Z0

ZL + Z0
(5.10)

This is a complex quantity whose real and imaginary parts, or alternatively amplitude and

phase, can be directly measured with a Vector Network Analyzer (VNA). When |ΓL| = 1, cor-

responding to ZL=0 (short) or ZL = ∞ (open), the wave is entirely reflected. For a matched
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impedance (ZL = Z0) all the power is absorbed into the load. With a perfect knowledge of the

line impedance, it is possible to measure the frequency dependence of ZL from the reflection

coefficient ΓL. Unfortunately, parasitic capacitances and impedance mismatches between the

different components of a circuit (amplifier, directional coupler, bias Tee...) make this deter-

mination difficult. Between each component of a RF circuit, waves can be partially reflected

creating complicated interference patterns. Losses through the transmission line also contribute

to a frequency dependent decrease of the power along the lines. The problem is usually circum-

vented by doing a calibration of the lines using three different loads.

5.2 Resonant sample circuit for complex conductance measure-

ment

The microwave set-up designed for this experiment is shown on figure 2.12 and has been

introduced in details in chapter 2 section 2.2.3.1. A directional coupler allows sending the

microwave signal from port 1 to the sample circuit through a bias-tee, and separating the

reflected signal which is amplified by a low-noise cryogenic HEMT amplifier before reaching

port 2. In the first part of this section, we describe the resonant sample circuit which involves

the LAO/STO heterostructures and Surface Mounted Devices (SMD). In the second part we

introduce the calibration method and apply it to the normal state data.

5.2.1 Sample circuit

The sample is placed at the end of a CPW line (coplanar wave guide) whose characteristic

impedance was chosen to be 50 Ω to match the impedance of the cable (fig. 5.2). This geometry

is convenient as it allows connecting SMD (surface mounted device) components and bringing

the RF signal to the sample in a controlled way. One can easily solder them since the ground is

available all along the central line. Such planar wave guide provide a quasi-TEM transport [87].

Hence, the theory developed in the previous section is applicable to our setup. The dimensions

of the central line were chosen to be close to the sample size (S=3mm). Given the dielectric

constant of the PCB εr = 10.7 and the characteristic impedance Z0 = 50Ω, there is only one

set of parameters that satisfies all the conditions (see fig. 5.2). The wide central line and the

large gap between the central line and the ground guarantee that the intrinsic capacitance and

inductance of the CPW line are negligible compared to those of the SMD and the sample.

r W

s
ε

εr

E

B

Figure 5.2 – (Left) CPW line : εr = 11, S=3 mm and W=1 mm. (Right) quasi-TEM mode.
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2L1=20 nH

2R1=140 Ω 

Cp=2 μF 

(b)(a)

LaAlO

SrTiO
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3
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Cr

Au

BGV

Figure 5.3 – (a) Schematic of the LAO/STO sample embeded in a RLC circuit with SMD

components. (b) Cross section of the LAO/STO sample.

Figure 5.3 (a) shows how the CPW line is terminated. The LAO/STO heterostructure is

inserted between the central line and the ground of the CPW. One thin strip of gold is deposited

on each side of the sample through which many wirebonds connect electrically the 2DEG to the

rest of the circuit. The combination of the gold strips (capacitive coupling) and the bondings

(resistive coupling) ensures that the contacts impedance is much lower than 1 Ω in the range

of frequency considered here (from DC to 0.6 GHz). After the growth, a weakly conducting

metallic back gate of resistance 100 kΩ (to avoid a microwave shortcut of the 2DEG) was de-

posited on the backside of the 100 µm thick SrTiO3 substrate. The sample is glued on a MgO

substrate with an electrically insulating varnish (GE varnish) that ensures a good thermalization

of the sample. Cooling also occurs through the ground of the CPW which is strongly thermalized.

The high dielectric constant of the SrTiO3 substrate at low temperature (i.e. εSTO ' 23000)

generates a sizable capacitance CSTO in parallel with the 2DEG (fig.5.3 (b)). At the frequencies

considered here (0.3-0.6 GHz), the corresponding impedance can be of the same order of mag-

nitude or even lower that the impedance of the 2DEG (including in the superconducting state).

This leads to a paradoxical situation where for frequencies higher than 1 GHz, the AC current

circulates mainly in the insulating STO and not in the superconducting 2DEG. In addition,

as the dielectric constant of STO depends on the electric field, the value of the capacitance

depends on the applied gate voltage 2. This capacitance must therefore be correctly measured

and subtracted in order to extract correctly the dynamic transport properties of the 2DEG.

This problem can be overcome by embedding the LaAlO3/SrTiO3 heterostructure in an

RLC resonating circuit which inductor L1 = 10 nH and resistor R1 = 70 Ω are Surface Mounted

microwave Devices (SMD), and which capacitor CSTO is the STO substrate in parallel with the

2DEG (fig. 5.3 (b)). In order to balance the circuit in the CPW geometry, we chose to use

one inductor and one resistor on each side of the central line. We also placed large protective

2. As seen in figure 5.3 (b), the RF electric field is mostly parallel to the interface (100), whereas the static

electric field created by the gate is perpendicular (001). Despite this unusual orientation, the in-plane dielectric

constant is still slightly gate-dependent [23].
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capacitors Cp that prevent DC current from flowing through L1 and R1 without influencing the

microwave response of the circuit. Figure 5.4 shows the equivalent electrical circuit where the

SMD part is separated from the sample part. GSTO represents the losses of the STO substrates

that are discussed in appendix C.2. Given that the circuit is much smaller than the wavelength

λ = c/f of TEM waves, circuit theory is sufficient to model it. In the normal state, the 2DEG

can be described by a simple resistor (in the limit f << 1/τe) in parallel with the capacitance of

STO and the SMD. This defines a RLC circuit whose resonant frequency is given by f0 = 1
2π
√
LC

.

In practice, f0 is in the frequency range 0.3-0.6 GHz, depending on the temperature and the

gate voltage.

Z   0

C Cp p

R1 L1

Csto

2D
EG

Z

Gsto

 SMD Sample

Figure 5.4 – Equivalent circuit of the resonant sample circuit. R1 = 70 Ω and L1 = 10 nH

are obtained by two balanced SMD resistors and SMD inductors. Cp = 2 µF are protective

SMD capacitors. CSTO and GSTO represent the capacitance and the losses of STO substrate in

parallele with the impedance of the 2DEG (Z2DEG).

SMD were first tested in different circuits to ensure that their properties were not affected

at low temperature. The total complex conductance GL = 1/ZL of the circuit in the normal

state is

GL =
1

jωL1
+ jωCSTO +

1

R1
+

1

Rs
+GSTO︸ ︷︷ ︸

Gtot

(5.11)

Much below f0, the system is dominated by the inductance ZL = jωL1. Well above the

resonance frequency the current circulates mainly in the STO substrate with an impedance

ZC = 1/jωCSTO. At the resonance frequency, the RLC circuit behaves as a pure resistor

because the inductive and capacitive contributions compensate each other. From the expression

of the reflection coefficient in equation (5.10), we can calculate the electrodynamical response

of our system of impedance ZL = 1/GL. Figure 5.5 shows the theoretical reflection coefficient

for a RLC circuit corresponding to our experimental situation. The resistance R1 of 70 Ω was

chosen in order to ensure that the total resistance of the circuit 1/Gtot (including GSTO and Rs)

remained always close to 50 Ω. At f ' f0, the circuit load is therefore almost matched to Z0

and the energy is absorbed in the sample circuit. As a result, an absorption dip is observed in

the amplitude of ΓL. The resonance is also associated to a 2π phase shift. We see that f0 can

be clearly evidenced both in the modulus and phase of the reflection coefficient. This will allow

us to determine unambiguously the value of CSTO as a function of gate voltage.
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Figure 5.5 – Amplitude and phase of ΓL for L1 = 10 nH, CSTO = 36 nF, R1 = 70 Ω and

Rs = 449 Ω (STO losses are neglected here).

5.2.2 Calibration of the microwave setup

So far, we have only considered the reflection coefficient ΓL at the discontinuity between the

CPW line and the sample circuit. However, this quantity is not directly accessible experimentally

since the signals are sent and measured from outside the cryostat. We therefore need to relate

the transmission coefficient Γin between port 1 and 2 measured with the VNA to the reflection

coefficient ΓL. This is done through a calibration procedure.

5.2.2.1 Scattering matrix

Any N-ports network can be completely defined by its scattering matrix S, whose coefficients

Sij relate the incoming wave at port i to the outgoing wave at port j, when the other ports are

terminated by a matched load. This matrix S is defined by

Sij =
V −i
V +
j

∣∣∣∣
V +
k =0 for k 6=j

(5.12)

A reciprocal network is described by a symmetric scattering matrix S = St [87]. A lossless

network will have a unitary matrix S.S∗t = 1. Rather than voltage or current, RF signals are

usually described by the ingoing and outgoing power waves that are respectively defined as :

ai =
V +
i√
Z0

(5.13)

bi =
V −i√
Z0

(5.14)

with these definitions, the power delivered to the load is Re{V I∗} = 1/2(|a|2 − |b|2). With

these notations, the reflection coefficient Γi at port i is given by

Γi =
bi
ai

(5.15)
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5.2.2.2 Calibration method

A simplified version of the RF set-up introduced in chapter 2 is shown in figure 5.6 (a). It

can be described within the scattering matrix formalism as represented in figure 5.6 (b). The

vector network analyzer measures the reflection coefficient Γin = b3/a1. α, β, γ et δ represent

the complex transmission and reflection coefficients in the circuit. They satify the following

relations 3:

a3 = δb3 + αa1 (5.16)

b2 = γa1 + βb3 (5.17)

Solving these two equations, we obtain the relation between ΓL = b3/a3 and Γin = b3/a1

Γin = γ +

α̃︷︸︸︷
αβ ΓL

1− δΓL
(5.18)

We see that ΓL is related to the Γin coefficient measured with the VNA through three coef-

ficients (α̃ = αβ, δ and γ). Therefore, a calibration procedure requires measurements at three

known impedances of ZiL (and therefore known values of ΓiL) to obtain these three coefficients.

In a standard microwave experiment, an open, a short and a match standard are usually

employed for the calibration. In practice, changing loads at low temperature is far from easy.

Indeed, it is nearly impossible to reproduce the exact same experimental configuration from one

run to another. High frequency waves are sensitive to tiny details, such as the tightening of RF

connectors, or the presence of wire bondings. A calibration at 300K is not possible, since the

properties of the RF set-up varies with the temperature (losses of lines and RF components,

gain of the amplifier....)

Instead of using different loads, we took advantage of the temperature and gate dependence

of the LAO/STO properties. The microwave set-up was calibrated by using the impedances of

the sample circuit at three different gate voltage or alternatively at three different temperature

values. The first method is used to fully calibrate the setup at 500 mK and obtain the capacitance

of STO as a function of gate voltage. The second method is used to extract the temperature

dependence of the 2DEG conductance in the superconducting state.

3. A generalization of this result in any RF system is given by the signal flow graph theory [87].
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Figure 5.6 – (a) Schematic of the experimental setup. (b) Schematic representing the complex

wave amplitudes at different locations in the set-up. α, β, γ, δ represent the various reflection

and transmission coefficients.
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5.2.2.3 Calibration in the normal state

We first record the complex coefficient Γin(ω) as a function of frequency for three different

gate values corresponding to three well separated resonance frequencies. The absorption dip in

the amplitude can be identifed clearly from the raw data (see fig. 5.7). As the value of the

inductance L1 is known, the resonance frequency gives directly the value of CSTO. In addition,

as the 2DEG resistance Rs is obtained from dc transport measurements, the only missing quan-

tity in equation (5.11) is GSTO that accounts for the losses in the substrate. However, it can

be determined for each gate value from the amplitude of the absorption dip at the resonance

frequency 4. Once the value of ZL is known for three different data points, we obtain the error

coefficients (α̃, δ and γ) from expression (5.18). The relation is then inverted to obtain ΓL as a

function of the measured Γin coefficient for any gate value

ΓL =
γ − Γin

δ(γ − Γin)− α̃
(5.19)

where α̃ = αβ. Such a calibration procedure is only valid in the range of frequency covered

by the three calibrating points. Figure 5.7 shows the comparison between the raw data (Γin)

and the calibrated data (ΓL) for the same gate value (VBG = 50 V) in the normal state.
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Figure 5.7 – Comparison at VBG = 50 V and T = 500 mK, between the amplitude (in dB) of

the measured reffection coefficient Γin (black, left axis) and the coefficient ΓL (red, right axis)

imposed in the calibration.

The calibration procedure was applied to obtain all the data measured in the normal state

at T = 500 mK after a first positive polarization at a maximum gate value of 50 V. Note that,

as the STO substrate is thinner in this experiment (nominally 100 µm) than in a standard

back-gating experiment (500 µm), we used a reduced gate range [-34V,50V] to obtain a similar

4. In practice, it is deduced from the fit of the amplitude and phase of the Γin coefficient by the theoretical

reflection coefficient of a RLC circuit.
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carrier density modulation. Figure 5.8 (a) shows on a color scale the evolution of the amplitude

of ΓL (after calibration) as a function of frequency and gate voltage while figure 5.8 (b) shows

the amplitude and phase of the resonance at VBG = +24 V. CSTO extracted from the resonance

frequency f0, decreases with gate voltage, with a symmetry around zero (fig. 5.8 (c)).
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Figure 5.8 – Field effect tuning of capacitance : (a) color plot representing the reflection co-

efficient ΓL in dB as a function of frequency and gate voltages at 500mK. On figure (b) the

amplitude and phase at VBG = 24 V. (c) Capacitance and 2DEG resistance as a function of gate

voltage.
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5.3 LaAlO3/SrTiO3 complex conductance

After having applied the calibration method to the normal state data, we now present the

measurement of the complex impedance of the 2DEG in the superconducting state. In the first

part of this section, we determine the superfluid stiffness of the 2DEG as a function of gate

voltage and compare it with the BCS theory prediction. In the second part, we convert the

superfluid stiffness into a superfluid density and discuss it within the interfacial band structure.

Finally, we analyze the temperature dependence of both the real and imaginary parts of the

complex conductance.

5.3.1 Superfluid Stiffness

5.3.1.1 Resonance shift

In the superconducting state the total conductance of the circuit is given by :

GL =
1

jωL1
+ jωCSTO +

1

R1
+ σ(ω, T ) +GSTO (5.20)

=
1

jωL1
+ jωCSTO − jσ2(ω, T ) +

1

R1
+ σ1(ω, T ) +GSTO (5.21)

where σ1 and σ2 = 1/ωLk are the real and imaginary part of the 2DEG complex conduc-

tance, and Lk is its kinetic inductance (cf equation (4.5)).

We measured the frequency-dependent reflection coefficient ΓL as a function of gate voltage

and temperature. The VNA imput power was set to -14bBm corresponding to approximately

0.04 mW. Taking into account the attenuation of all the cables, the coupling factor of the di-

rectionnal coupler and the various impedances of the sample circuit, the typical current flowing

into the 2DEG is in the range 1-5 nA which is much lower than the superconducting critical

current (Ic = 5 µA).

When the sample is cooled below Tc, a shift in the resonance frequency is expected because

of the inductive behavior of the superconductor :

Ltot(T ) =
L1Lk(T )

L1 + Lk(T )
(5.22)

This decrease of the total inductance Ltot leads to a shift of the resonance frequency f0 =

1/
√
LtotCSTO toward higher values. The same calibration procedure described in the previous

section for the normal state can be applied to the data. However, as in the superconducting state,

the resonance frequencies span a range which is wider that in the normal state, the calibration

may be inaccurate for some gate values. Instead, we used here the impedance of the circuit at

three different temperatures for the calibration at each gate voltage. The value of CSTO is known

from the normal state calibration and the total inductance of the circuit is determined from the

resonance frequency. The dissipative part Gtot is inferred from the absorption dip like for the

normal state calibration. However, while in the normal state the resistance of the 2DEG could be

determined from DC measurement, in the superconducting state σ1 is unknown. Nevertheless,
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Figure 5.9 – (Upper panel) DC resistance as a function of temperature in the overdoped region

VBG = 50 V. (Lower panel) The corresponding modulus of the reflection coefficient |ΓL| as a

function of temperature and frequency after calibration.

we will see in the last section of this chapter that σ1 can still be qualitatively determined by

making reasonable assumptions on the frequency dependence of STO losses (GSTO). Figure

5.9 shows simultaneously the DC and the calibrated RF measurement of the superconducting

transition as a function of temperature for VBG = 50 V. A clear shift of the resonance frequency

is observed which allows the determination of Lk or equivalently, σ2. On the contrary, in the

absence of superconductivity (for VBG < 0) no shift is observed.

From the inductive part of the complex impedance σ2(ω) = 1/ωLk, we can deduce an

experimental value of the superfluid stiffness (chapter 4 section 4.2.2) :

Jexps =
h̄2

4e2Lk
(5.23)

In the previous chapter, we derived the superfluid response of a BCS superconductor as a

function of temperature (equation (C.30)). For a single band BCS superconductor in the dirty

limit (2∆ < h̄/τe)

Js(T ' 0) =
R0

Rn

∆(T ' 0)

4
(5.24)

where Rn = R(T ≥ Tc) is the normal state resistance and R0 = h/e2 = 25.813 kΩ. At the

lowest temperature (T ' 20 mK) we can compare the theoretical stiffness given by equation

(5.24) and the values obtained by our resonant technique.

5.3.1.2 Gate dependence

The figure 5.10 upper panel shows the superfluid stiffness and critical temperature measured

as a function of the back gate voltage. Tc is defined by the temperature where the DC resistance
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prediction JBCS expressed in Kelvin units. (Lower panel) Gap energy ∆ex converted from Jexps

(eq. (5.24)) compared with the BCS gap energy ∆ = 1.76kBTc where Tc corresponds to Rs = 0.

Rs reaches zero. In the overdoped region (above the optimal doping gate voltage VBG = 27 V)

the experimental data (Jexps ) coincide with the dirty BCS estimate (JBCS) assuming a simple

BCS gap energy ∆(T ' 0) = ∆BCS = 1.76kBTc in equation (5.24). In this region, the superfluid

stiffness is much higher than the gap energy as expected for a homogeneous superconductor in

the BCS limit. On the underdoped side, the superfuid stiffness Jexps drops significantly while

Tc and JBCS evolve smoothly before vanishing only when closely approaching the quantum

critical point where Tc =0 (VBG = 4V). This indicates that the global phase coherence of

the superconducting condensate is partially lost in the 2DEG. Such behavior is likely due to

strong phase fluctuations in presence of spatial inhomogeneities. As discussed in chapter 1, the

2DEG behaves like a disordered array of superconducting islands coupled by Josephson effect

[79, 46]. Starting from a well connected 2D array of Josephson junctions in the overdoped region

(homogeneous-like), the depletion of the 2DEG progressively decouples the superconducting

islands. On the one hand, a Tc can be measured in DC transport as far as a percolating path

allows the superconducting current to flow between the two sides of the samples. On the other

hand, the superfluid stiffness obtained through RF measurement gives a macroscopic response

of a less and less rigid network of superconducting puddles.

Using equation (5.24) we can convert the stiffness into a characteristic gap energy ∆exp

which we compare with the BCS gap ∆ = 1.76kBTc obtained from the critical temperature.

Interestingly, the gap is following the Tc dome while the superfluid stiffness in monotonic when
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the number of carriers increases. In the overdoped region, the agreement with the BCS theory

implies that Tc is controlled by the pairing energy, while in the underdoped region, Tc seems

to be dominated by phase fluctuations enhanced by the disappearance of the superconducting

islands. In the optimally doped region, the gap energy is ∆exp = 23 µeV. By using tunneling

spectroscopy on planar Au/LaAlO3/SrTiO3 junctions, Richter et al. have reported an energy

gap in the density of states of 40 µeV for optimally doped LaAlO3/SrTiO3 interfaces [69],

which, taking into account their Tc, corresponds to ∆ ' 1.76kBTc in agreement with our results.

However, the tunneling gap was found to increase in the UD regime, which is different from

the behaviour we reported here. This apparent contradiction with our results can be reconciled

by the fact that contrary to superfluid stiffness that probes the global phase coherence of the

superconducting state, tunneling experiments measure a one-particle density of state which is

not sensitive to phase coherence.

5.3.2 Superfluid density and band structure

One of the main challenges that need to be addressed in order to elucidate superconductivity

in the LAO/STO interface is to understand the role of the occupancy of the different bands.

Figure 5.11 shows a schematic of the band structure in the confinement well. At low carrier den-

sities, we expect several dxy sub-bands to be populated, whereas at higher densities (VBG > 0 V),

the Fermi energy should enter into the dxz/yz bands. The emergence of superconductivity at an

intermediate carrier density (VBG ' 0 V) naturally suggests that it could be intrinsically related

to the filling of the dxz/yz bands. In addition, Biscaras et al. [97] noticed that the appearance of

high-mobility carriers leading to a multiband Hall effect was concomitant with the emergence of

superconductivity. The presence of high-mobility carriers was recently confirmed by quantum

oscillations at high magnetic field. The in-plane mass was found to be mt = 1.9×me which is

close to the in-plane mass of the dxz/yz bands. It is therefore crucial to compare the superfluid

density extracted from RF experimental data and the carrier density measured by Hall effect.

dyz

dxz

kx 

dxy

z 

E E dxz/yz

dxy

SrTiO3
ΔΙ

Figure 5.11 – The energy levels due to the confinement in the z direction are represented on the

left. On the right, the corresponding in plane dispersion relation of xy bands and xz/yz bands

are represented in red and blue respectively.

We measured the Hall effect for different gate voltages. Whereas the Hall voltage is linear in
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magnetic field in the underdoped regime, corresponding to one-band transport, this is not the

case in the overdoped regime because of the contribution of high-mobility carriers (fig. 5.12 (a)).

Such behaviour has already been discussed in chapter 3 for the Cr doped samples. The Hall

carrier density measured in the limit B → 0 shows a sudden decrease when high-mobility carriers

are injected by gating. We performed a two-band analysis of the Hall effect data combined with

gate capacitance measurements to determine the contribution of the two populations of carriers

to the total density ntot
5 (fig. 5.12 (b)). A majority of low mobility carriers (LMC) is always

present whatever the gate voltage (green open symbols on fig. 5.12(b)). HMC density nHM ,

presented on figure 5.12 (c), appears at the same time as superconductivity for VBG > 0. HMC

represent only 2% of the total carrier density at maximum gating. In consistency with quantum

oscillation measurements, we identify LMC and HMC as coming from the dxy and dxz/yz sub-

bands respectively.

The simultaneous appearance of HMC and superconductivity suggests a scenario where,

doping with a back gate would progressively fill a new band more prone to host superconductivity.

In order to outline the link between HMC and superconductivity, we extract the superfluid

density ns from Jexps assuming a mass mt,xz/yz =
√
mlmh = 3.13×me for the electrons.

ns =
4mJs

h̄2 (5.25)

The result is compared with the HMC density on figure 5.12 (c). ns increases continuously

to reach n2D
s ' 2 × 1012 e−.cm−2 at VBG = 50 V. This is comparable to the density observed

by scanning SQUID experiments [139]. The superfluid density and HMC density have the same

trend, occur at the same time and almost coincide numerically, suggesting that the emergence

of the superconducting phase is indeed related to the filling of dxz/yz bands. This is consistent

with the observation of a gate-independent superconductivity in (110) oriented LaAlO3/SrTiO3

interfaces for which the dxz/yz bands have a lower energy than the dxy subbands and are therefore

always filled [82].

From the point of view of superconductivity, the dxz/yz band has three favorable properties.

First, their 2D density of state is almost five times larger than the density of dxy. Second,

at the top of the potential well the dxz/yz electrons are less confined due to their lower mass

in the z-direction (see numerical simulations figure 1.10 in chapter 1). Therefore, they extend

deeper in STO where scattering is reduced. Finally, STO slowly recovers its bulk properties

far from the interfaces, in particular a high dielectric constant, which, according to most of the

scenarii is favorable to superconducting pairing (see chapter 1). A high density of state and a

high dielectric constant also tend to enhance superconductivity in a BCS picture. Indeed, the

gap energy is enhanced when the DOS at Fermi energy increases as illustrated by the following

equation

∆ ∝ ωDe
− 1
N(EF )V (5.26)

where ωD is the Debye frequency, V the attractive interaction and N(EF ) the density of

state at the Fermi level 6. Increasing the gate voltage progressively fills the superconducting

5. For more detail about the fitting procedure, see appendix A

6. See appendix E for more details on BCS theory
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Figure 5.12 – (a) Hall resistance as a function of perpendicular magnetic field for different back

gate values measured at T = 3K. (b) Hall density of carrier is plotted in red. The sudden fall

off is due to apparition of high mobility carriers. The total carrier density ntot is obtained by

combining Hall effect and capacitance measurement (see appendix A). The LMC represents the

majority of the carriers. (c) Comparison between the density of HMC extracted from the two-

carrier analysis and the superfluid density ns calculated from Js assuming a mass corresponding

to dxz/yz electrons.

band leading to a system with a higher and higher superfluid density. The superconducting

state is well defined when the number of electrons in the ground state is large.

To complete this section, we would like to mention that the fact that ns = nHM is rather

intriguing as the dirty limit that we used in Eq. (5.24) implies that ns should correspond

to a fraction of the total normal carrier density (approximately 2∆ ∗ τe/h, where τe is the

scattering time) and not to nHM . To understand such an apparent discrepancy, we need to go

beyond single-band superconductor models that cannot account correctly for the unusual t2g-

based interfacial band structure of the LaAlO3/SrTiO3 interfaces. Our theoretician collaborators

at La Sapienza university (L. Benfatto, M. Grilli and S. Caprara) are actively working to provide

an appropriate framework to address this question.
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5.3.3 Temperature dependence of the complex conductance

The study of the superconducting transition in temperature should give us information on the

nature of superconductivity. A simple BCS model, or equivalently a Mattis-Bardeen model, is

not suitable to describe correctly the superconducting transition. Indeed, in 2D superconductors

the transition is expected to belong to the Berezinsky-Kosterlitz-Thouless (BKT) type of phase

transitions driven by the dissociation of vortex-antivortex pairs. First, we study qualitatively

the DC resistance as a function of temperature. Second, the superfluid stiffness is compared

with BCS and BKT predictions and the role of disorder is analyzed. Finally, we describe the

temperature dependence of σ1, in particular the high dissipation peak that occurs near the jump

in the superfluid stiffness.

5.3.3.1 R(T) measurement

After a first polarization up to VBG = 50 V in the normal state (as described in section

5.2.2.3), a systematic measurement of the complex conductance as a function of back-gate volt-

age and temperature was performed. Figure 5.13 displays the DC resistance and the amplitude

of the reflection coefficient ΓL as a function of temperature for a selection of gate voltages span-

ing the whole phase diagram. In the superconducting state the 2DEG conductance leads to

a shift of the resonance frequency as described in section 5.3.1.1 (see fig. 5.13 (c,d,e and f)).

However, the shift occurs only when a complete transition is observed, indicating that at least

one superconducting path percolates. When the DC resistance shows only a partial transition

(fig 5.13 (b)), the phase is not rigid over the whole sample and the macroscopic stiffness is zero.

A similar behaviour has been observed in granular aluminum films [140]. In the insulating state

(fig 5.13 (a)), the resonance frequency is not shifted as expected.

The broad transition observed in the DC resistance at VBG = 10 V (fig. 5.13 (c)) indicates

the presence of strong inhomogeneities. This is consistent with the measurement of a reduced

stiffness at T = 0 (section 5.3.1.2). Indeed, this gate voltage corresponds to the underdoped

region of the phase diagram where Js(0) is lower than the BCS estimate because of the presence

of non-superconducting regions. As a consequence, the shift of the resonance is very weak,

while the critical temperature remains higher than 100mK. On the contrary, at optimal doping

corresponding to VBG = 24 V (fig. 5.13 (e)), the transition is sharper and a clear shift of the

resonance occurs. However, it seems that this shift takes place at temperatures lower than Tc.

There must therefore be a mechanism that delays the establishment of the macroscopic phase

coherence. At the end of the previous chapter, we discussed the effect of Josephson vortices

in an array of Josephson junctions. The existence of such a type of excitation could explain

this behaviour by setting a second critical temperature TKT above which vortices would start

to dissipate. In our case, the nature and the dynamics of the vortices could be explained by

the intrinsically inhomogeneous nature of superconductivity. In the following section, we will

analyze in details the imaginary part and the real part of the conductance as a function of

temperature.
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Figure 5.13 – Temperature dependence of the DC resistance and of ΓL (dB in color scale) as a

function of frequency for selected gate voltages.
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5.3.3.2 Temperature dependence of Js

We now compare the temperature dependence of the superfluid stiffness of the LAO/STO

interface with the BCS prediction. Js(T ) is determined from the kinetic inductance Lk(T ) =

1/(σ2ω) (eq. (5.24)) which is extracted from the resonance frequency. Figure 5.14 shows the

normalized stiffness obtained after calibration, at frequency f = 500 MHz and for a gate voltage

VBG = 50 V. It is fitted by the BCS expression [115]

Js(T )

Js(0)
=

∆(T )

∆(0)
tanh

(
∆(T )

2kBT

)
with ∆(T ) ' ∆(0)tanh

(
1.74

√
Tc
T
− 1

)
(5.27)

A good agreement between experimental data and equation (5.27) is obtained for the low

temperature part of the curve. At T = TKT ' 110 mK, a clear jump of Js occurs whereas

the BCS fit indicates a mean field Tc of ' 150 mK. Such a jump is usually the hallmark of

a Kosterlitz-Thouless transition. This type of transition is expected to take place at the tem-

perature of vortex-antivortex dissociation which is given by Js = 2kBTKT /π (i.e. the point of

intersection between Js(T ) and a straight line with a slope of 2kBT/π) as shown in the previ-

ous chapter (eq. (4.29)). As indicated in figure 5.14 TKT defined by the intersection with the

slope 2kBT/π is close to the temperature where the DC resistance reaches zero but is, however,

significantly higher than TKT defined by the jump.

The presence of inhomogeneities could explain such a discrepancy. When the temperature is

decreased, puddles switches to the superconducting state at different temperatures. At T = 130

mK, the connectivity between puddles allows the supercurrent to percolate in the sample and

zero resistance is observed in DC transport. However, this simple path is not sufficient to confer

a finite superfluid stiffness to the 2DEG. When the temperature is further reduced, the number

of superconducting puddles increases connectivity, leading to a sudden jump in Js. As seen in

the previous section, at T = 0, the 2DEG recovers the stiffness predicted by the BCS theory

(for the overdoped regime only).

5.3.3.3 Temperature dependence of σ1

In the previous chapter, we described the peculiar dynamics of Josephson vortices. As

opposed to regular BKT vortices, Josephson vortices are considerably slower. We therefore

expect their contribution to the dissipation (i.e. to σ1) to be significant in LAO/STO interfaces.

The temperature dependence of σ1 can be directly extracted from the real part of the total

conductance GL (eq. (5.21)) entering into the expression of Γ. The main difficulty here consists

in subtracting the contribution of STO losses GSTO.

STO losses : The losses of STO (GSTO) can be extracted in the normal state at the resonance

frequency since the other dissipative contributions entering into GL are R1 = 70 Ω and Rs which

is measured by DC transport. In practice, for the calibration of the RF set-up, we assumed that
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Figure 5.14 – Temperature dependence of Js(T ) at VBG = 50 V and f=500MHz.

GSTO is frequency independent around f0 for any given gate value. When the temperature is

lowered, this assumption is acceptable as long as the resonance frequency is not shifted (note

that, in this temperature range, the properties of STO are temperature independent). However,

this is no longer the case when the 2DEG is superconducting as a large shift of f0 occurs. We

therefore need to estimate the frequency dependence of GSTO in the range corresponding to

f0(T = 0K) − f0(T = 500mK). In appendix C, we derived the losses in STO due to the quasi-

Debye mechanism which we assumed to be the only relevant frequency dependent contribution

here. We obtained (eq (C.17)) :

GSTO = A

∆C
C︷ ︸︸ ︷

CSTO(0)− CSTO(VBG)

CSTO(0)
CSTO(VBG)

ω2
0︷ ︸︸ ︷

1

LtotCSTO(VBG)
(5.28)

= A× ∆C

C

(
1

L1
+

1

Lk(T )

)
(5.29)

= GSTO(T = 500mK) +A× ∆C

C

1

Lk(T )
(5.30)

The value of A can be determined in the normal state for each gate value (see appendix C).

We obtain A = 100× 10−12 Hz−1. The values of CSTO are shown on figure 5.8. At VBG = 50 V

∆C/C = (44pF− 30pF)/44pF = 0.32 (5.31)

σ1 is therefore obtained from equation (5.21) after substracting the temperature dependent

contribution of GSTO.
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Figure 5.15 – Schematic of the pud-

dles in the overdoped region. ā is
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dles. The rounded arrows represents
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resent Josephson junctions within the

RCSJ model. Each puddle has a well

defined phase φi.

Analysis of σ1 : Figure 5.16 presents the real and imaginary part of the conductance as a

function of temperature. A T = 0, σ1 is close to σn which is not surprising as we have seen

that 98% of the electrons do not condense. It also displays a large peak which maximum value

coincides with the jump of the superfluid stiffness at TKT . To explain this behaviour we consider

the theory developed in the previous chapter, section 4.3.3. The 2DEG is described by a disorder

array of superconducting puddles tightly connected by Josephson effect (see fig. 5.15). In this

situation, Josephson vortices take place between puddles and can move from one cell to another.

According to equations (4.42), σ1(ω, T ) is maximum when ε′ = ε′′. In this case, we get :

δ−2
max =

J

2dα

1

ε′′
(5.32)

where d is the thickness of the 2DEG and α = h̄2/4e2µ0. As stated in previous chapter,

the dissipation is set by the number of free vortices nf (eq. (4.42)) and by the vortex diffusion

constant D, which in the case of Josephson vortices is fixed by equation (4.50). We thus have

δ−2
max =

J

2dα

ω

Dnf
(5.33)

where Dv = 2Rā2kBT/φ
2
0 and ā is the average distance between puddles. Taking ā = 10−7m,

T = 20mK and R = 1kΩ, we find Dv = 1.310−6m2/s. This is much smaller than the electronic

diffusion constant De ' 10−4m2/s. As indicated in the previous chapter, by definition we have

δ−2 = µ0ωσ1. Using equation (5.33) and the experimental value σmax
1 = 0.02 S, we find a density

of free vortices nf = 6×1014 m−2, which is consistent with the typical size of the puddles (∼ 100

nm). Assuming a thickness of d = 10 nm for the 2DEG, one can compute δ corresponding to

σmax
1 . We find δ = 1√

µ0ωσ1/d
' 14.529 µm which can be compared to rω, the distance over which

the Josephson vortex move at the probing frequency rω =
√

14D
ω = 97.959 nm. This value is

comparable with the typical distance between puddles which indicate that the RF excitation

drives vortices between to neighbouring cells corresponding to energy minima of a disorder egg’s

box potential. At higher frequency, the vortices would probably dissipate less since they would

not even cross one Josephson junction.
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Figure 5.16 – Real and imaginary part of the conductance at VBG = 50 V and at f = 500 MHz

5.3.3.4 Discussion

Numerical model : In order to get more information on the system, a renormalization group

simulation could allow us to fit σ1(T ) 7. An alternative description can be obtained by solving

numerically the electrodynamics response of a 2D array of Josephson junctions [141]. Figure 5.17

shows the result of such a simulation performed on a 32×32 JJA. At a frequency approximately

ten times lower than the gap energy (upper curve labelled ω = 0), a clear peak is generated in σ1

at the TKT temperature. This behaviour is similar to the one that we observe in the overdoped

region of the LAO/STO interfaces (fig. 5.16). σ1(T ) seems to follow two different power laws

below and above TKT . This confirms the relevance of the JJA approach to describe this system.

Figure 5.17 – Real part of the conductance of a JJA

whose size is 32× 32. Temperature is normalized by

TBKT and frequency is in unit of ω0 = 2eRIc/h̄ which

corresponds to the gap energy. The low frequency

conductivity σ1 (labelled ω = 0) is in fact averaged

on frequencies lower than 0.08× ω0. From [141]

7. Such analysis is being made at the moment by our collaborator L. Benfatto.
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Figure 5.18 – Height of the σ1 peak as a function of gate voltage. In the underdoped region, a

strong decrease of the peak is observed. The superconducting Tc dome is shown in background.

Numerical methods are also powerful to describe the role of inhomogeneities in the superfluid

stiffness [142]. According to Josephson junction array scenario, the number of superconducting

puddles decreases in the underdoped region. The coupling Jij of the JJA Hamiltonian starts

to vary strongly from puddle to puddle depending on their respective size and mutual distance

between them. At some point, the connectivity between puddles is strongly reduced and the

geometry of the array evolves towards a more filamentary structure corresponding to long per-

colating paths [76]. Experimentally, we observe a suppression of the dissipation peak in σ1

(fig. 5.18), which could indicate that in this geometry the vortices can no longer move in the

transverse direction or even exist. In collaboration with S. Caprara and M. Grilli, we are now

developing a random resistor network model with a complex impedance on each site. By solving

numerically this system for different kind of inhomogeneities, we hope to obtain information on

the precise evolution of the system in the underdoped region.

Slowing down of vortex motion : Recently Ganguly et al. measured the complex con-

ductance using optical measurement of NbN films at frequencies both in the GHz and the kHz

ranges [143]. They found an unusually high peak in σ1 (fig. 5.19 (a)) which was explained by

the effect of inhomogeneities. In order to obtain the right order of magnitude for the dissipation

around TKT , the authors assumed a cutoff length ξV which affects the vortex mobility µV . It

corresponds to the typical size of inhomogeneities in NbN films.

5.3.4 Conclusion

In this chapter, we reported on the measurement of the complex conductance of the LAO/STO

interface at a fixed frequency. By analyzing σ2 = 1
ωLk

at T = 0, we showed that the competi-

tion between the superfluid stiffness and the gap energy controls the superconducting Tc in the

phase diagram. Whereas a good agreement with the Bardeen-Cooper-Schrieffer (BCS) theory

is observed at high carrier doping, our data suggest that the suppression of Tc at low doping is

controlled by the loss of macroscopic phase coherence due to strong spatial inhomogeneities. By
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Figure 5.19 – (a),(b) Real and imaginary part of conductivity as a function of temperature for

different frequency in a NbN thin films. Figure from [143]

converting Js into a superfluid density we showed that only a very small fraction of the electrons

condense into the superconducting state. We proposed that the emergence of the superconduct-

ing phase at low doping could correspond to the weak filling of high-energy dxz/yz bands, which

are more prone to host superconductivity as they have a higher density of state and extend

deeper into the STO. Finally, we analyzed the temperature dependence of σ2 and σ1 by assum-

ing that the 2DEG behaves as a disordered Josephson array. Within this theoretical framework,

we qualitatively explained the superfluid jump and the large dissipation peak occurring at TKT .
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Chapter 6

Quantum Point Contact

”Si c’était facile, ça aurait déjà été fait il y a longtemps,

à l’époque où c’était difficile”

attributed to Louis Dumoulin
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After describing the effect of top-gating on a large scale, and probing the system with high fre-

quency measurements, we propose to probe it on a short scale by lateral field-effect confinement.

Reaching mesoscopic scales has remained a challenge until recently and requires reproducible

growth processes and advanced nanofabrication techniques. Here, we report on the fabrica-

tion of a Quantum Point Contact (QPC) using split gates to locally deplete the 2DEG and

form a quasi-1D conducting channel between two reservoirs. Similar local gating technique has

been used in the group of A. Caviglia at Delft university [85] to create Josephson junctions and

SQUIDs but at a larger scale. An alternative method to realized 1D structures at the LAO/STO

interface using a biased C-AFM tip was proposed in the group of J. Levy at Pitsburg university

[144].

In this chapter, we first introduce the main transport properties of a quantum point con-

tact and derive it in the Landauer-Büttiker formalism. In the second part, we present the

measurements of quantized conductance as a function of back-gate and top-gate voltages.

107
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6.1 The Landauer-Büttiker Formalism

6.1.1 Conductance in the quantum limit

The conductance G of a homogeneous system is set by its conductivity σ, by its width W

and length L

G = σ
W

L
(6.1)

In a Drude picture, σ = ne2τe/m
∗ is determined by the elastic scattering time τe which is

an intrinsic property of each material. As long as the size L of the system is much larger than

mesoscopic lengths as defined in chapter 3, this relation is true. But what happens when the

width of the system is so small that it becomes comparable to the intrinsic length of the problem ?

In a simple picture, conduction electrons can be described as plane waves of wavelength λF ,

called the Fermi wavelength. When the size of the system is comparable to λF , an analogy

with electromagnetic waves in a cavity can be made. Therefore, we can guess the existence

of discrete levels due to the confinement like the transverse modes of electromagnetic TEM

waves in a rectangular cavity. For a confinement of size L, the energy spacing δE between the

discrete levels can be estimated by δE = h̄vF /L. In a quasi 1D geometry, the density of states

is N1D = 2
2πh̄

√
2m/(E − En) and vn(E) = ∂En/∂px =

√
(E − En)/2m is the electron’s velocity

along x. En is the energy of the bottom of each subband. When a finite bias Vsd is applied

between the two reservoirs which are connected to the 1D chanel, electrons between EF and

EF + eVsd contribute to the transport. The number of electrons available in this energy window

is given by

N1D(E)× δE = N1D(E)× (eVsd) (6.2)

By definition, the total current in one channel reads

In = n1D × v = 2e×N1D(E)× δE × vn(E) =
2e2

h
Vsd (6.3)

where the factor 2 reflects the spin degeneracy. The total conductance is therefore quantized

by steps of the quantum of conductance for normal electrons G0 = 2e2/h

Gtot =
Itot
Vsd

=
2e2

h
×N (6.4)

where N is the number of 1D subbands filled in the quasi 1D region. At the end of the

80s, the semi-conductor technology produced 2DEG with a high mobility and a low carrier

density, where the Fermi wavelength was approximately λF ' 40nm. By confining electrons

on a length smaller than λF with split gates (field effect depletion with local top gates), Wees

et al. measured for the first time discrete values of the conductance [145]. Figure 6.1 shows

clearly plateaux every 2e2/h when the gate voltage is decreased. They correspond to additionnal

channels opening when the confinement potential becomes wider. Such devices are usualy called

Quantum Point Contact (QPC).
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Figure 6.1 – Quantization of conductance in a Quantum Point Contact made in high-mobility

GaAs/Al0.33Ga0.67As heterojunction. From [145]

6.1.2 Landauer Formula

We now consider a confined region Ω (see fig. 6.2), connected to the Left and Right reservoirs

through balistic 1D leads refered by the index α = L or R. For sake of simplicity, we shall limit

ourselves to a single band system, with isotropic dispersion, but this can be easily generalized

to multibands systems. In the region of Ω the Hamiltonian can be written

Hα =
1

2m
p2
x +

1

2m
p2
y with x, y ∈ Ω (6.5)

The eigenstates φ±αnE(x, y) of this Hamiltonian can be written as nearly free electrons in the

x direction.

φ±αnE(x, r⊥) =
1√
L
χn(y)e±ik

n
x (E)x with knx(E) =

√
2m(E − En) (6.6)

and the transverse mode should match the following boundary conditions

χn(y) = 0 for y /∈ Ω (6.7)

Here ± represents the electrons moving to the right and to the left. The discrete levels

En are due to the confinement in the y direction. Let us describe the transport through the

confined Ω region by a scattering matrix S which contains all information about the system.

We do not need to know the exact shape of the potential in the middle of the QPC; we only

need to describe the incoming and outcoming states. These states are linear combinations of

the eigenstates φ±αnE .

φLnE(x) = Aφ+
LnE(x) +Bφ−LnE(x) for x ∈ L (6.8)

φRnE(x) = B′φ+
RnE(x) +A′φ−RnE(x) for x ∈ R (6.9)
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Figure 6.2 – Mesoscopic system

If the leads host only one channel, the scattering matrix S relates the incoming and the

outcoming wavefunctions (see fig. 6.2):(
B

B′

)
=

(
r t′

t r′

)(
A

A′

)
=def S

(
A

A′

)
(6.10)

The scattering matrix is unitary (S†S = 1) as long as charge conservation is imposed. In

presence of time reversal symmetry, S is also symmetric (S† = S). The coefficient r, r′, t and

t′ are the amplitude probability to be either reflected or transmitted. This definition is easily

generalized to a 2N × 2N scattering matrix with four blocks of N × N matrices : r = rnn′ ,

t = tnn′ , r′ = r′nn′ and t′ = t′nn′

S =

(
r(E) t′(E)

t(E) r′(E)

)
(6.11)

where N is the number of channels that are populated. The transmission and reflection

probability associated to each channel is defined as Tn(E) = |tnn|2 and Rn(E) = |rnn|2 .

Let us derive the Landauer formula in a heuristic way. For this, we use a basis of scattering

states, which implies that the reservoirs do not reflect outgoing electrons (they perfectly absorb

the electrons coming from the device). An incoming state from the left φ+
LnE having a probability

Tn(E) to reach the right side of the system will create a current probability 1 ILnk = h̄k
mLTn(E).

Correspondingly, a scattering state coming from the right creates a current probability IRnk =

− h̄k
mLTn(E) where L is the size of the leads. Each scattering state is coming from one of the

reservoirs at temperature T, with a given distribution function 2 fD(E−µα) where µα = µ−eVα
is the chemical potential in each reservoir and Vα the applied source and drain voltage. Summing

over all the states, we can compute the total current accross the system

I = −2e
∑
nαk

IαnkfD(E(k)− µα) (6.12)

1. By definition the current probability is given by I = h̄
j2m

(Ψ∗.∇Ψ−∇Ψ∗.Ψ)

2. fD is the Fermi-Dirac distribution.
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Replacing the sum over k by an integral over the energy E, we obtain

I =
2e

πh̄

∑
n

∫ ∞
0

dE [Tn(E)fD(E − µL)− Tn(E)fD(E − µR)] (6.13)

=
2e

h

∑
n

∫ ∞
0

Tn(E)[fD(E − µ+ eVL)− fD(E − µ+ eVR)] (6.14)

(6.15)

At low voltage, we can make a first order Taylor expansion around µ and get

I(VL, VR) =
2e2

h

∑
n

∫ ∞
0

dE Tn(E)

'δ(E−µ)︷ ︸︸ ︷(
−∂fD
∂E

)
(VL − VR) (6.16)

=
2e2

h

∑
n

Tn(µ)︸ ︷︷ ︸
G(µ,T=0)

(VL − VR)︸ ︷︷ ︸
Vsd

(6.17)

The conductance is given by the sum over the transmission probabilities in units of G0 =

2e2/h. Here we have assumed that no interaction takes place between electrons. This hypothesis

is not always verified as we will see in the following.

6.1.3 Quantum point contact

6.1.3.1 Saddle point

A QPC can be defined using a split gate geometry. Two metallic gates separated by a

distance d are deposited above the 2DEG and insulated from it. When a negative voltage is

applied, the 2DEG is locally depleted under the gates and the conducting electrons are confined

in a region defined by d (see fig. 6.3 (a)).

Assuming a smooth potential along the x direction, one can write the wave function as a

product ψ(x, y) =
∑

n φn(x)χnx(y) [146]. The transverse modes χnx(y) are indexed by n and are

solutions of the confinement in the y direction. The potential in the centre can be approximated

by an harmonic potential Vconf , and the Hamiltonian in the QPC is :

HQPC =
1

2m
p2
x +

1

2m
p2
y + Vconf (x, y) (6.18)

with

Vconf (x, y) =
1

2
mω2

yy
2 − 1

2
mω2

xx
2 + V0 (6.19)

Vconf has a saddle point shape around V0 which is tuned by the voltage VTG applied to the

split gates. In this particular case, Büttiker calculated the transmission probability which is

expressed by [147]
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Figure 6.3 – (a) Split gates separated by a distance d seen from the top. The yellow region

corresponds to the one where the current flows, the blue region is depleted by the voltage

VTG < 0 applied between the 2DEG and the gates. (b) Schematic of the confining potential

Vconf (x, y) near the centre of the QPC (in red). The transverse modes χnx(y) are separated

by an energy h̄ωy. Along the direction of propagation (x direction) the potential reaches its

maximum V0. (c) Corresponding conductance G at Vsd = 0 V as a function of the top gate

voltage VTG.

Tn(E) =
1

1 + exp[−πεn]
with εn = 2[E − h̄ωy(n+ 1/2)− V0]/h̄ωx (6.20)

Figure 6.3 (b) shows this saddle-point potential in a split gate geometry. The distance

between energy levels is h̄ωy. According to equation (6.20), the confinement in the y direction

should be sharper than the potential along the direction of propagation. Therefore, the steps

in conductance are clearly visible if ωy > ωx (see fig. 6.3 (c)). By changing the gate voltage,

the spacing between the levels changes, and the number of accessible channels changes the

conductance by steps of 2e2/h.

6.1.3.2 Non-linear transport

When a source-drain voltage Vsd = VL − VR is applied, the electrons coming from the left

reservoir acquire an energy eVsd. If the bias voltage is small compared to the spliting energy

of the 1D levels, the theory derived above is valid (linear transport). If this energy is close

to the spacing between the levels, electrons have enough energy to reach the next level : this

is the non-linear transport regime. Figure 6.4 shows G(Vsd) traces for different gate voltages.

Clear plateaux appears at N × G0/2 when eVsd = h̄ωy. As a first approximation, one can add

the shift in energy due to the bias voltage Vsd in equation (6.20) and compute the differential

conductance at zero temperature [148]

G(µ, Vsd) =
2e2

h

∑
n

1

1 + exp(−2π[µ− eVsd − h̄ωy(n+ 1/2)− V0]/h̄ωx)
(6.21)

By applying a finite bias on a QPC, one can directly read the energy distance between the

confined levels. To make this determination easier, one can plot dG/dVG as a function of both

VG and Vsd in a colorplot.
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Figure 6.4 – G(Vsd) traces as a function of gate voltage in a split gate experiment. Schemes

represent the 1D dispersion relation of the QPC for three different applied bias voltages Vsd. At

zero bias, the chemical potentials on the left and right reservoirs are the same µL = µR = EF .

A plateau at half the conductance quantum appears when the bias voltage is sufficiently high

to allow one electron from the left reservoir to populate the next level which is separated by

∆E = h̄ωy. From [149].

6.1.4 Effect of magnetic field and manybody interactions

In the presence of a magnetic field perpendicular to the xy plane B = ∇ × A (with A =

−Byux) , the confining potential becomes a magneto-electric potential. The transverse modes

are solutions of the following equation (in the limit ωcτe > 1)[150]

(
V0 +

p2
y

2m
+

1

2
m
ω2
yω

2
c

ω2
c0

y2
k +

1

2
mω2

c0

[
y +

ω2
c

ω2
c0

yk

]2
)
χ(y) = Eχ(y) (6.22)

where yk = h̄l/eB, ωc = |e|B/m is the cyclotron frequency, and ω2
c0 = ω2

c +ω2
y . This equation

is a one-dimensional Schrödinger equation which solution is very similar to the one for electric

confinement. The first effect of a magnetic field, is to increase the confinement and therefore to

further split apart the 1D levels of the QPC.

Figure 6.5 – Effect of magnetic field

on backscattering.

The magnetic field progressively suppresses back scat-

tering. As shown on figure 6.5 a classical explanation is

that the cyclotron orbit forces the electrons to bounce on

the potential and move forward without being able to back

scatter. Finally, it reduces interferences that may occur

because of multiple elastic scattering in the vicinity of the

QPC, thanks to the dephasing introduced by the poten-
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tial vector along the electron trajectories. If the magnetic field is sufficiently hight, the Zeeman

energy lifts the spin degenaracy of the levels and gives rise to quantization of the conductance

in G0 = e2/h.

In general, electron-electron interactions cannot be neglected. Therefore, the regularly

spaced steps presented in figure 6.1 are not a universal property of QPC. In particular, the

”0.7 anomaly”, which appears as a shoulder on the first plateau of conductance is usually as-

signed to strong electron-electron interactions. The first systematic measurement was done in

1996 [151]. Figure 6.6 shows the evolution of the 0.7 step as a function of in-plane magnetic

field which is shifted to 0.5×G0. Surprisingly, when the temperature is increased, this anomaly

is even more pronounced. This behavior shares some similarities with the Kondo effect in quan-

tum dots which take into account interactions between a localized spin and conduction electrons.

Recently, it was proposed that in a QPC, a spontaneous charge localization would occur [152].

These questions are still under debate.

Figure 6.6 – First plateau of conductance in a QPC experiment showing the ”0.7 anomaly” and

its evolution to 0.5×G0 in a strong magnetic field. [151]

6.2 Split Gate Experiment

We now report on the experiment performed on sample D described in chapter 2. The split

gates were deposited directly on a 14 u.c. thick cristalline LAO Hall bar fabricated by the

amorphous template method. The distance between the gates is approximately d = 26 nm as

shown on figure 2.5 of the SEM image of this device.

6.2.1 Typical scales in LAO/STO

Let us recall the typical lengths at LAO/STO interface. The confinement in the transverse

direction is expected to be around ∼ 10 nm. In order to be in the quasi-1D limit, we need

this confinement to be of the order of the Fermi wavelength λF = 2π
kF

, where kF is the Fermi
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Figure 6.7 – Confining potential Vconf(x, y) of the device obtained via COMSOL simulations.

momentum. In 2D systems, h̄kF =
√

2m(EF − Ei). The energy difference ∆E = EF − Ei

can be estimated from the Schrödinger-Poisson simulations. It is typically 100meV, which gives

λF ∼ 10nm. As the elastic scattering length can be estimated within the same approximation

le = vF τe ∼ 20 nm, the system is therefore expected to be in the quasi-ballistic limit.

The length of the system can be defined as the length L over which the density is smoothly

evolving along the longitudinal direction. A necessary condition to observe quantum interfer-

ences is that the size of the system L should be smaller than the inelastic scattering length lφ

(L < lφ). The inelastic scattering length lφ =
√
Dτφ was obtained in chapter 3 when measuring

the localization corrections to transport in a magnetic field. From the Bφ parameter that we

extracted, we can estimate lφ ∼ 50 nm. This is the maximum length over which the phase of the

electrons is conserved, much bigger than the size of the QPC. It is therefore possible to observe

interferences effects in the vicinity of the QPC, as we will see.

6.2.2 Simulations of the device

The goal of this section is to give an order of magnitude for the splitting of the levels created

by our split gates. We first compute the electron density n(x, y) created by a negative voltage

applied on two split gates using a COMSOL simulation where the 2DEG is described by a

metallic plane (perfect screening). The dielectric constant of LAO is εr = 24 and its thickness

is 5.12 nm. In a metal in the absence of bias voltage, the chemical potential should be constant

µ(x, y) + eδVconf (x, y) = µres (6.23)

where µres(T = 0) = EF is the chemical potential in the reservoir, µ(x, y) and δVconf (x, y)

are the local chemical potential and potential change in the top gate region respectively. As

a first approximation, we estimate δVconf from the change in carrier density locally induced

by the gate voltage on the gates. The variation of the confinement potential is given by

δVconf = −1/e × ∂µ/∂n × δn(x, y), where δn = n(x, y) − nres is the variation with respect



116 Chapter 6 Quantum Point Contact

to the carrier density in the reservoirs nres. ∂µ/∂n is estimated from our Schrödinger-Poisson

calculations of the quantum well that we presented in chapter 1 : ∂µ/∂n ' 30 meV/(1013cm−2).

Figure 6.7 shows the variation of the potential in the center of the QPC. Fitting with an harmonic

potential in the y direction we find 1
2mω

2
y = 2.7 × 1012 eV.m−2. For a mass of m = 0.7 ×me,

this gives a distance between levels of h̄ωy ' 0.7 meV.

From the plane capacitance formula, we can estimate the voltage needed to fully deplete the

2DEG under the gates. From Hall effect measurements, we know that the 2D carrier density is

n2D ' 2× 1013 e−/cm2. The critical voltage Vc is given by

Vc =
−en2Dd

εrε0
(6.24)

where d is the thickness of the insulating LAO layer and εr its dielectric constant. For

a thickness of 5 nm and a dielectric constant εr = 24 we find Vc ' −0.7 V. This numerical

application give us an estimated voltage below which the current should stop flowing under the

gates, and therefore the QPC behavior be observed.

6.2.3 Preliminary measurements

The sample is cooled down to cryogenic temperatures with both top and back gates at the

ground. The resistance shows signs of weak localization but no superconducting transition oc-

curs to the lowest temperature. All the measurement are performed at T = 100 mK. A first

polarization with a positive back gate (VBG = 15 V) is done to avoid any hysteretic behaviour

[84]. During this first operation, the top gate was still at VTG = 0V . A DC measurement of the

sheet resistance was performed as a function of back gate voltage after this first polarization in

order to characterize the system without confinement in the centre of the Hall bar (fig. 6.8).
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Figure 6.8 – Sheet resistance Rs as a function of back-gate voltage after the first back-gate

polarization and before the one with top-gate.
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We then go back at maximum back voltage (VBG = 15 V) and we do a first polarization

with the top gate by applying a positive top-gate voltage (VTG = 500 mV), to avoid any further

hysteresis, as in the case of back-gating.

6.2.4 Changing the confinement potential

According to the simulations presented in chapter 1, changing the back-gate voltage not only

changes the Fermi energy by doping the system, but also it also directly affects the shape of the

potential well. We therefore first set the initial carrier density in the 2DEG with a back-gate

voltage VBG = 8.1 V, in the low doping region (see Figure 6.8). We then vary the top-gate

voltage VTG to change the confinement potential, and study the QPC. The negative top-gate

voltage will make the confinement stronger and split further appart the levels of the sub-bands.

6.2.4.1 Quantization of the conductance

In this low doping region, we hope, based on the COMSOL simulation, that we can totally

deplete the 2DEG below the top gates. By applying a top gate voltage on only one of the split

gates, no measurable change of the resistance Rs occurs, as expected since the size of the gate

(80 nm) is small as compared to the length of the Hall bar (30 µm). On the contrary, when the

voltage is applied on both gates symmetrically, a measurable effect is observed on Rs.

The top-gate voltage VTG is swept down to −200 mV and the conductance G(VTG) in the

linear regime (Vsd = 0) is measured at fixed back-gate voltage. The resistance of the reservoirs,

that we measure when VTG = 0, is subtracted to extract the conductance of the QPC. Figure 6.9

(Left) shows the evolution of G(VTG) which clearly exhibits conductance steps of G0 = 2e2/h.
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Figure 6.9 – (Left) Gac at VBG = 8.1 V and B=0 T. (Right) Isd(Vsd) for different top-gate

voltages.

Few oscillations around plateaux are seen, which are related to interference effects in the

QPC [153]. Above 3 × G0, the conductance suddenly increases and the quantization of the

conductance disappears. Assuming a Fermi wavelength of around λF = 10 nm, the number of
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steps gives us an estimation of the width of the QPC. Indeed, from a classical argument, the

conductance of a Sharvin point contact of width W is [145]

Gs =
2e2

h

kFW

π
=

2e2

h

2W

λF
(6.25)

Therefore, the width is approximately W ' 3× λF /2 = 15 nm, which is consistent with the

distance between our split gates.

6.2.4.2 Non-linear transport

If we now increase the source-drain voltage Vsd, a kink appears in the Isd(Vsd) plot, espe-

cially for very negative top-gate voltage (Figure 6.9 (Right)). We enter the non-linear regime

presented above. When a bias voltage Vsd is applied, the chemical potentials on the left and

right side are shifted by eVsd. Hence, electrons coming from the left reservoir are slightly higher

in energy than electrons coming from the right. When eVsd = h̄ωy, the left movers have enough

energy to populate the next unoccupied sub-band. At this point the conductance is half a

quantum of conductance G0/2 higher. This can be seen by plotting the conductance G as a

function of Vsd for different top-gate voltages VTG, as in figure 6.10. For Vsd = 0 V, we observe

an accumulation of curves corresponding to the plateaux at multiples of G0. At finite Vsd, other

accumulations of curves can be seen corresponding to GO/2 and 3×G0/2. This is the signature

of level alignements as described above.

A color plot of the transductance dG/dVTG (fig. 6.11) as a function of source-drain voltage

and top-gate voltage allows to unveils a clear pattern. Regularly spaced maxima (in yellow)

indicate a maximum in the derivative of the conductance. In between, the values of conductance

correspond to integer or half-integer values of the conductance quantum G0. The analysis of this

color plot allows us to determine the spacing h̄ωy between the levels. We find Vsd = ±0.7 mV

(indicated by a black arrow on fig. 6.11), which is precisely the value expected for a dxy band

splitting for a confinement derived from our simulation. On top of this structure, an interference

pattern is clearly visible. It gives information on the specific shape of the confinement potential.

Further analysis should be made in order to determine the shape of the confinement potential

and compare it with the one simulated in section 6.2.2.

6.2.5 Changing the Fermi energy at fixed top gate voltage

Another way of populating the quasi-1D channels formed by the local top gates is to smoothly

increase the Fermi energy by changing the back-gate voltage VBG.

6.2.5.1 Linear transport as a function of the back-gate voltage

In the depleted region, the back voltage does not affect strongly the shape of the confining

potential in the z direction. Let us assume that increasing VBG simply adds electrons to the

2DEG and therefore shifts the Fermi energy upwards. We now set the top-gate voltage at

VTG = −200 mV. The shape of the potential will not change from now on and we can compare the
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Figure 6.10 – Conductance G(Vsd) as a function of top gate voltage at VBG = 8.1 V.

VTG (V)

V sd
 (m

V
)

 

 

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 −1

−0.5

0

0.5

1

1.5

2
x 10−3

2

3
2

1
2

G G G0

0

0 03

G G0
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evolution of the chemical potential with respect to V0 the bottom of the confinement potential.

In the insulating region (below VBG = 8V ), the Fermi energy EF is lower than V0 : no electron

can jump across the strongly depleted region and G = 0. Progressively, the electrons get enough

energy to populate the quasi-1D channels. But simultaneously, the conductance of the reservoirs

increases. In order to analyze the data, we must substract the conductance of the reservoirs (i.e.

the Hall bar) that we measured before the first polarization with the top gate. As the reservoirs

and the quantum point contact are in series, we subtract the sheet resistance Rs(VBG) from the

total dynamical resistance Rac = 1/Gac.

GQPC(VBG) =
1

1/Gac −Rs(VBG)
(6.26)

Data on figure 6.12 (a) present the dynamical conductance GQPC as a function of the back-

gate voltage, which presents plateaux at multiple values of G0. This first plateau is flat, while

the second one exhibits an oscillation around 2×G0. As observed when sweeping the top-gate

voltage, the Isd(Vsd) characteristics is linear at low Vsd, while a kink is observed at Vsd = 0.7

meV for small back-gate voltage. As observed when sweeping the top-gate voltage, the Isd(Vsd)

characteristics is linear at low Vsd, while a kink is observed for Vsd = 0.7 meV for small back-gate

voltages.

8.1 8.4 8.7 9.0 9.3
0

1

2

3

4

5

G
 (2

e2 /h
)

VBG (V)

−2 −1 0 1 2
−80

−40

0

40

80

V    (mV)sd

I  
   

(n
A

)
sd

Figure 6.12 – (a) Gac at VTG = −200 mV. (b) Isd(Vsd) characteristics for different back-gate

voltages.

6.2.5.2 Non-linear transport

We will now extract the splitting of the levels by the same method based on G(Vsd) traces.

Figure 6.13 shows a set of such traces when the back-gate voltage is increased. The results at

first sight are similar to the traces obtained by sweeping the top-gate voltage. Nevertheless, the

quantization seems to disappear faster than in the previous experiment.

By analyzing the transductance dG/dVBG in the color plot figure 6.14, the structure presents

a well-defined maximum at a value of source-drain voltage which is smaller than in the top-gate
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Figure 6.13 – Conductance G(Vsd) as a function of back-gate voltage at VTG = −200 mV and

B=0T.
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Figure 6.14 – Transductance dG/dVBG as a function of back-gate voltage at VTG = −200 mV.
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Figure 6.15 – Transductance dG/dVBG as a function of Vsd and the back-gate voltage VBG at

B=6T.

sweep. This structure occurs at VBG = 8.7 V which is higher than the one used in fixed top-gate

experiments (VTG = 8.1 V). There are more electrons and the chemical potential is higher. We

know from the Schrödinger-Poisson resolution of the quantum well, that ∂µ/∂n is a sub-linear

function of the density (see for example Scopigno et al. [73]). That means that ∂µ/∂n is smaller

than in the first experiment, and so is δVconf . We therefore expect a smaller level spacing in

that case, as observed experimentally. It is difficult to analyze in more detail the data in figure

6.14, because of the interference patterns which are well pronounced and somewhat dominate

the color plot. In order to reduce the interference we apply a perpendicular magnetic field.

Figure 6.15 shows a color plot of the transductance dGac/dVBG as a function of back-gate

voltage and bias voltage. The structure is much more simple, since most of the interferences

effects have been washed out by the magnetic field which induces dephasing along the electron

trajectories. Maxima corresponding to level crossings are clearly visible. As VBG is increased,

the Vsd of the maxima slightly decreases. This is compatible with the change in ∂µ/∂n that we

mentioned earlier.

Studying the transport properties of this QPC gives access to spectroscopic features of the

LAO/STO interface. A more rigourous modeling of the confinement potential, and addition-

nal data at different magnetic fields should pave the way of a more precise description of the

electronic structure in these heterostructures.
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6.2.6 Conclusion

The results presented in this thesis show that standard mesoscopic physics phenomena can

be reproduced at oxide interfaces. By pushing the system through higher negative top-gate

voltages, we may further increase the confinement and favor the electron-electron interactions.

At higher doping with a back gate, the spin-orbit coupling could be much stronger than the

splitting energy, which might create exotic 1D electronic states. We are currently analyzing

data at VTG = −450 mV where unusual behaviour is seen and possible Kondo physics occurs.
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Conclusion and perspectives

This thesis was devoted to the study of static and dynamical transport properties of the su-

perconducting two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Under strong 2D

confinement, the degeneracy of the t2g bands of SrTiO3 is lifted, generating a rich and complex

band structure. Starting from a free electron model, we derived numerically a self-consistent cal-

culation of the potential well and the band structure (chapter 1). These simulations highlighted

the presence of two types of bands (dxy and dxz/yz) with very different transport properties, and

have guided our analysis all along the way.

First, we investigated the effect of microscopic disorder introduced by Cr doping, on the su-

perconductivity and spin-orbit coupling over a wide range of back-gate doping. The main effect

of Cr doping is to induce a stronger scattering potential, leading to the reduction of the elastic

scattering time. As a result, superconductivity is suppressed in agreement with the Finkelstein’s

theory. In addition, by analizing the contribution of spin-orbit coupling to the magnetoconduc-

tance, we showed that the spin relaxation occurs according to a D’Yakonov-Perel mechanism.

Besides, we demonstrated that the spin-orbit coupling constant increases linearly with the gate

tunable interfacial electric field, as expected for a Rashba-type interaction.

We also described the first implementation of a field-effect device where the superconductor-

insulator transition could be continuously tuned with a top-gate without any current leakage.

The presence of a strong spin-orbit coupling that could be controlled with the top-gate voltage

was also demonstrated by analyzing the magneto-transport measurements. The gate dependence

of the spin-splitting energy, of the order of a few meV, was found to be consistent with Rashba

spin-orbit coupling. Going one step further in nanofabrication, we presented the first realization

of a quantum point contact in LAO/STO using split gates. By changing both top and back

voltages we were able to tune the number of conducting channels in the normal state and measure

the quantization of conductance. Several intringuing features were observed (non-integer steps,

splitting of the first quantized step, zero bias anomaly on the forth step...) that are still under

investigation at this time. The work on this device will continue in the next months with new

experiments. The effect of an in-plane magnetic field will be studied in order to lift the spin

degeneracy and unveil the presence of spin-orbit coupling. This investigation could also benefit

from the measurement of shot noise associated with the different features.

The possibility to access mesoscopic length scales in LaAlO3/SrTiO3 devices represents an

important step toward the realization of nanostructures where the interaction between supercon-
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ductivity and the Rasba Spin-Orbit coupling could give rise to non-conventional electronic states.

In particular, it has been shown that a s-wave superconductor in presence of spin-orbit coupling

in a quasi-1D channel would realize a topological superconducting phase. Such geometry could

be adapted from the QPC device discussed in this thesis, in the presence of superconducting

reservoirs.

To go further in the understanding of the LaAlO3/SrTiO3 interface, we set up a high fre-

quency measurements to assess the dynamical properties of the superconducting gas. The het-

erostructure was embedded into a resonant circuit formed with SMD components, and placed

at the end of a transmission line (chapter 5). We developed an original calibration method

that takes advantage of the tunability of the sample impedance offered by electrostatic gating

and temperature. This way, we were able to measure the complex conductance σ(ω) of the

interface in the range [0.3-0.6 GHz] as a function of gating and temperature. In particular, the

imaginary part of σ at T ' 0 gave us access to the superfluid stiffness and to the gap energy via

the BCS theory. We showed that the competition between these two energy scales controls the

superconducting Tc in the phase diagram. By analyzing the superfluid density derived from the

stiffness, we proposed that the emergence of the superconducting phase at a given doping could

correspond to the filling of high-energy dxz/yz bands, which have a higher density of state and

extend deeper into the SrTiO3.

We also analyzed the temperature dependence of both the real part and imaginary part of

σ, and compared the results with the standard BCS/Mattis-Bardeen theory on one hand, and

with the BKT theory on the other hand. We proposed to model the LaAlO3/SrTiO3 interface

by a disordered Josephson junctions array whose properties (coupling, connectivity, strength of

superconducting puddles...) can be tuned with the gate. Using this approach, we showed that

superconductivity is suppressed by phase fluctuations in the underdoped region. The presence

of an unusually large dissipation peak in the real part of sigma was also qualitatively explained

by Josephson vortices dynamics.

This method could also be applied to [110] oriented LaAlO3/SrTiO3 interfaces, for which

the ordering of the t2g subbands is reversed from that of the [001] orientation, in order to

get more insight on the mechanisms behind superconductivity in those interfaces. However,

the resonant technique that was used in this thesis only allows measuring the conductance in

a limited frequency range around the resonance. In order to perform a direct spectroscopy

of the superconducting state, we need to develop a broadband measurement technique in a

frequency range spanning above and below the gap frequency (∼ 5GHz). This requires to

reduce significantly the thickness of the SrTiO3 substrate in order to minimize both its capacitive

contribution and its losses in the total impedance of the sample.



Appendix A

Two-carrier analysis

Elastic and inelastic scattering : In a normal metal or semiconductor, interaction with

impurities or with the environment sets a typical length over which electrons can freely propagate

before they scatter. Some scattering events preserve the phase while others don’t. Elastic

processes simply conserve the momentum and phase of the electron’s wave function. The mean

free path le is the typical distance between two elastic scatterings

le = vF τe (A.1)

where τe is the mean time between two elastic processes and vF the Fermi velocity. In the

Drude model the conductivity is given by

σ =
ne2τe
m∗

(A.2)

The mobility is defined by

µ =
eτ

m
(A.3)

Hall measurements in a multiband system : It was shown that in LAO/STO interfaces

the Hall voltage is not linear in magnetic field for a large density of carriers (VBG > 0) [154].

Biscaras et al. proposed to explain this effect by the presence of two different populations of

carriers in the confinement well. They demonstrated that at low doping, the carriers have a low

mobility µ1 and a density n1. We call them Low Mobility Carriers (LMC). When the carrier

density is increased by gate voltage, a second population of carriers (n2,µ2) appears with a

mobility that continuously increases with gate voltage. We call them High Mobility Carriers

(HMC). When measurements are performed at sufficiently high-magnetic field, the densities n1

and n2, and the mobilities µ1 and µ2 can be extracted by a fit of Rh. [104]

Rh =
B

e

n1µ2
1

1+µ2
1B

2 +
n2µ2

2

1+µ2
2B

2[
n1µ1

1+µ2
1B

2 + n2µ2

1+µ2
2B

2

]2
+
[
n1µ2

1B

1+µ2
1B

2 +
n2µ2

2B

1+µ2
2B

2

]2 (A.4)

In addition, it is possible to constrain the fit with the two additionnal equations :
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n1 + n2 = ntot (from capacitance measurement) (A.5)

n1µ1 + n2µ2 =
1

RS
(from DC resistance measurement) (A.6)

where Rs is the sheet resistance and ntot the total carrier density that can be measured by

capacitance measurements.



Appendix B

Schrödinger-Poisson simulations

We describe here the numerical resolution of Schrödinger-Poisson semi-classical model in-

cluding both light dxy bands and heavier dxz/yz bands.

B.1 Schrödinger-Poisson equations

A pure quantum description of the interfacial band structure can be obtained using density

functional theory (DFT) calculations [50]. However, as it can only be solved on few unit cells,

this approach can not reproduce the system without possible finite size effects. It is also possible

to use a tight-binding model with a self-consistent Hartree and random phase approximation as

in [51]. One way to tackle this problem numerically on large scales is to adapt simpler strategies

initially developped for semiconductors [155].

B.1.1 Numerical solution

As we explained in the first chapter, one way to solve the quantum confinement is to use

a semi-classical description. A two-dimensional electron gas confined in the z direction by a

potential eφ(z), can be described by the following set of Schrödinger equations :

d2ψxy
dz2

+
2mxy

z

h̄2 [Exy + eφ(z)]ψxy(z) = 0 (B.1)

d2ψxz/yz

dz2
+

2m
xz/yz
z

h̄2

[
Exz/yz + eφ(z)

]
ψxz/yz(z) = 0 (B.2)

where ψxy(z) and ψxz/yz(z) are the envelope wave functions for the xy bands and xz/yz

bands respectively with mxy
z = 14×me and m

xz/yz
z = 0.7×me. Simultaneously the associated

charge density ntot3D(z) and electric field F (z) inside STO have to fulfill the classical Poisson

equation :

∇(ε0εr(F (z))∇(φ(z))) = −ntot3D(z) (B.3)

εr(F ) = εr(F =∞) +
1

A+B|F |
(B.4)
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where εr is the electric field dependent dielectric constant of STO with A = 4.907×10−5 and

B = 4.097 × 10−10 m.V−1. A typical electric field can be calculated Fc = A/B ' 105 V.m−1.

Above this value, the dielectric constant is close to the value εr(F =∞). In absence of electric

field the dielectric constant reaches the value of bulk STO εr(F = 0) ' 1
A ' 23000.

We now describe the procedure used to solve these two equations self-consistently.

— Starting from an initial potential φ(z) = φin(z) for z ∈ [0, L] where L is larger than

the typical thickness of the potential well, we find the solution ψxy(z) and ψxz/yz(z) of

Shrödinger equation for the two different masses ml and mh numerically by using the

Noumerov method (similar to Euler). The different energies Exyi and E
xz/yz
i are found

by dichotomy assuming the boundary conditions ψxy(0) = ψxz/yz(0) = 0 (infinite energy

barrier on LAO side).

— The Fermi level is found by dichotomy until the two-dimensional density of carriers

n =
∫ Ef

0 dEN2D(E) = n2D where n2D is the carrier density measured experimentally.

Here we choose a density of state at T=0 for a 2D free electron gas N(E) = mt/πh̄
2

with mt = 0.7×me for dxy bands and mt =
√
mlmh = 3.13×me for dxz/yz bands which

corresponds to the average density of state for these bands.

— We finally solve (B.3) by including a trapped charges density Ntrap(z) and the dependence

of the dielectric constant of STO. We need first to calculate the electric field at the

interface by integrating (B.4) between 0 and L once

εSTO(0)φ′(0) = −e(ns +Ntrap)

ε0
+ εSTO(L)φ′(L) (B.5)

where φ′(L) = −VBG/dSTO, is imposed by the back-gate voltage and the thickness of the

STO substrate dSTO = 500µm. A fourth order Runge-Kutta method allows to compute

the solution φnout(z) starting from the value φ′(0) obtained in equation B.5.

— The resulting potential φnout is used to restart from step 1 with a new potential φn+1
in =

(1− f)φnin + fφnout, with f < 1. The procedure is repeated until the quadratic difference

between φout and φin is lower than 10−6 eV.

B.1.2 Characteristic parameters of the model

Two-band model : The use of two different bands in the numerical simulations was motivated

by experimental and theoretical results [154, 156, 50, 51]. Indeed, it has been proposed that due

to the lighter mass m
xz/yz
z , the dxz/yz band would always be higher in the potential well but

also more delocalized. In our simulation, the dxz/yz band start to be filled when a positive back

gate voltage is applied. Of course, the precise electronic repartition of the subbands depends on

the few free parameters which we describe now.
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Figure B.1 – The dxy electrons in red are at the bottom of the well and spread on a few

nanometres, while the heavier dxz/yz in blue are more delocalized at the top of the potential

well. The density of state (DOS), plotted in arbitrary units, is much higher for the latter.

Trapped charges : The presence of trapped charges is crucial to maintain the confinement

of the 2DEG, in particular when a positive back-gate voltage is applied. Indeed, in the absence

of such charges, the solution of the Schrödinger-Poisson equation would generate an unstable

solution where the electrons spread to z = ∞ (corresponding to a Fermi energy at the exact

top of the quantum well). Although it is now commonly accepted in the community that some

trapped charges are located around the QW, their precise number and exact spatial distribution

is unknown. In our simulations, an exponentially decreasing distribution Ntrap(z) ∝ e−z/ZN

with a typical length ZN ∼ 10 nm was chosen. ZN should be higher than the typical thickness

of the 2DEG d ∼ 5 nm. We checked that our results were not strongly affected by the choice of

Ntrap.

The density of trapped charges Ntrap was fixed by the bath tube experiments [84]. When

the system is doped by applying a positive gate voltage, the Fermi energy rises until the elec-

trons can thermally escape from the quantum well. After a first positive polarization in gate,

we assume that at maximum voltage the Fermi energy lies just below the top of the quantum

well (within kB). Ntrap is therefore chosen such that the numerical simulations reproduce this

situation.

STO dielectric constant : A second important unknown quantity that should be chosen

carefully is the dielectric constant of STO under a high electric field ε∞. In previous work

[73, 79], this value was set to ε∞ = 300. Such a high value allows the 2DEG to extend far into

STO, but hinders the influence of the non-linearity of the STO dielectric constant. The precise

value of εr(F = ∞) is unknown but it must be carefully chosen. Park and Millis have chosen

εr(F =∞) = 70 [51]. We choose this value by default.
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B.1.3 Discussion of the results

Fermi Energy and filling of the bands : The carrier densities used for the simulations

shown in chapter 1 are those measured in sample A. The Fermi energy obtained varies with the

parameters of the system : its typical value is around EF ∼ 100 meV. When a negative back

gate voltage is applied, only the dxy bands are filled and the electrons are confined close to the

interface. When a positive back gate voltage is applied, the system starts to fill dxz/yz bands. As

the electrons of these bands have a lower mass in the z direction m
xz/yz
z = 0.7m0, they spread

more inside bulk STO. At some point these electrons spread into a region where εSTO(z) is close

to the bulk value ∼ 23000. Figure B.1 schematically represent the system in the overdoped

region. The square modulus of the wavefunctions are in blue and red for the dxy and dxz/yz

bands respectively. Thanks to its high density of state (DOS), the dxz/yz band can accommodate

a lot of electrons. The dxy bands have a lower DOS, and their level spacing is smaller. The

2DEG extension is typically 10 to 20 nm in the overdoped region when the dxz/yz bands are filled.

Doping with a top gate or a back gate : In the underdoped region the 2DEG has only a

few dxy bands that are filled and a low Fermi energy. Figure B.2 (a) shows the square modulus

of the electron wave function in red, trapped in a narrow potential well whose slope deep into

STO is fixed by the back gate voltage. In figure B.2 (b), the system is maximally doped with a

positive back gate voltage. The wave function is much more delocalized and the Fermi energy

is close to the top of the potential well.

In the case of top gate doping, the potential well is not directly affected. The hard wall

boundary condition chosen at z = 0 is justified by the large energy mismatch between the bands

of LAO and STO at the interface. Therefore, adding electrons with a top gate corresponds to

increasing the number of electrons in the system without changing the boundary conditions.

Figure B.2 (c) and (d) show that when more electrons are added to the 2DEG, the electric field

at the interface increases

F =
e

ε0εr
(ns +Ntrap) (B.6)

This enhancement of the electric field pushes the wave function toward the interface.
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Figure B.2 – (a) Schematic of the 2DEG underdoped with a negative back gate voltage. The

Fermi energy is low, the wave function is confined toward the interface. (b) In the overdoped

region driven by a positive back gate, the 2DEG is delocalized and the Fermi energy is close to

the top of the dome (c,d) The two schematics represent the effect of doping with a top gate.

The wave function is more localized at VTG = 50V despite a higher Fermi energy.
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Appendix C

Radio Frequency measurements

C.1 Telegrapher equation

The following derivation of the equations in a coaxial cable is taken from [87]. It assumes

that the cylinders are perfect conductors. In the cylindrical coordinates, Maxwell equations

(5.1) and (5.2) become

−
∂Eφ
∂z

uρ +
∂Eρ
∂z

uφ +
1

ρ

∂

∂ρ
(ρEφ)uz = −jωµ(Hρuρ +Hφuφ) (C.1)

−
∂Hφ

∂z
uρ +

∂Hρ

∂z
uφ +

1

ρ

∂

∂ρ
(ρHφ)uz = jωε(Eρuρ + φuφ) (C.2)

x

y

a

b

ε , μ
r

u

Z

u
ɸ

u

For a TEM wave between two conducting cylinders of radius a

and b, the z components must be zero which means

Eφ =
f(z)

ρ
(C.3)

Hφ =
g(z)

ρ
(C.4)

The electric field must be zero in the conducting regions, which set the boundary condition

Eφ = 0 at ρ = a, b. Using (C.3) and (C.2) we deduce that Eφ = 0 and Hρ = 0 everywhere. The

remaining terms of the maxwell equation are then

∂Eρ
∂z

= −jωµHφ (C.5)

∂Hφ

∂z
= −jωεEρ (C.6)

From Hφ in (C.4) and (C.6), Eρ must be of the form

Eρ =
h(z)

ρ
(C.7)

Equation (C.5) and (C.6) can then be written as
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∂h(z)

∂z
= −jωµg(z) (C.8)

∂g(z)

∂z
= −jωεh(z) (C.9)

The voltage drop between the two cylinders is easily computed by integrating the electric

field

V (z) =

∫ b

ρ=a
Eρ(ρ, z)dρ = h(z)

∫ b

ρ=a

dρ

ρ
= h(z) ln

b

a
(C.10)

and the total current at ρ = a can be calculated from (C.4)

I(z) =

∫ 2π

φ=0
Hφ(a, z)adφ = 2πg(z) (C.11)

We finally get the telegrapher equations by using(C.10) and (C.11) in (C.8) and (C.9)

∂V (z)

∂z
= −jωLI(z) where L =

µ

2π
ln
b

a
(C.12)

∂I(z)

∂z
= −(G+ jωC)V (z) where C =

2πε′

ln(b/a)
and G =

2πωε′′

ln(b/a)
(C.13)

The telegrapher equations lead to the same wave equation as (5.4), except that now the

propagation is described along the coaxial cable in terms of voltage and current.
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C.2 STO losses

The RF measurement reported in chapter 5 are performed in the frequency range 0.3-0.6GHz

where in principle phonons excitations are expected to contribute to losses. However, the lit-

erature on STO shows that under the application of an external electric field (gating , the

transverse optical phonon modes can generate dissipation at frequency much below the typical

phonon frequency [157].

Definition Losses are defined as the ratio tan(δ) = ε′′/ε′, where we recognize the real

and imaginary part of the dielectric constant of (5.5). For a plan capacitor, losses due to RF

frequency are well described by a conductance GSTO in parallel. When a dielectric with a

complex dielectric constant ε is placed between the two plates of a capacitor its capacitance is

generalized as follow C = εC0
ε0

[158], where C0 is the capacitance with the same geometry in the

presence of vacuum. Figure C.1 gives a physical meaning to the angle δ between the charging

current and the loss current.

Figure C.1 – Complex impedance of a capacitance with losses : (a) is the equivalent circuit (b)

plots the angle δ between the charging current Ic and the loss current Il (figure taken from [158])

Let us determine the expression of GSTO as a function of tan(δ)

I = jωCU = jω(ε′ − jε′′)C0

ε0
U = jωε′(1− j tan(δ))

C0

ε0
U = (jωCSTO + tan(δ)ωCSTO︸ ︷︷ ︸

=GSTO

)U

The conductance that describes the losses is

GSTO = tan(δ)ωCSTO (C.14)

When there is no loss, GSTO is equal to zero. In general losses are due to multiple mechanisms

and the total loss tangent is the sum of all contributions [159]

tan(δ) =
∑
i

tan(δi) (C.15)
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Since 1962, it is known experimentally that bulk STO undergoes dielectric losses due to the

presence of soft phonon modes [160]. The first measurement in the literature for the dependence

of the losses with electric field at RF frequency was done by Vendik et al. using YBa2Cu3O7

to create a resonant cavity [161]. Very recently, Davidovikj et al. [162] have measured losses

as a function of frequency and gate voltage using a resonator deposited on top of a bulk STO

sample. They could measure values up to tan(δ) = 10−2 for high electric field (E = 3000V/mm).

Astaview et al. proposed to explain theses losses with the quasi-Debye dissipation mechanism

[163]. For low electric field (< 5000V/mm) losses are proportional to ω and to the tunability

n(E) = (ε(0)− ε(E))/ε(0) via a coefficient A which is independent of the electric field.

tan(δ) = A× ω × n(E) (C.16)

Figure C.2 – Losses as a function of

electric field taken from ref. [164]

We see that no loss is expected when no electric field

is applied because n(0) = 0. Dissipation occurs when

the electric field starts to break inversion symmetry. At

low temperature, optical phonons become softer [165]

creating acoustic wave at RF frequency. This phonons

involve titanium atoms which locally create a dipole

with the oxygen octahedra. This dipole interacts with

the incident electromagnetic field via the electrostric-

tion and inverse piezoelectric effect. This mechanism

was validated experimentally by Gevorgian et al. in

2009 [164]. It is responsible for non negligible losses as

the external electric field and frequency increase. At

higher electric field, losses start to decrease as we can

see on figure C.2. This effect is due to the hardening

of the polar phonon mode under a bias voltage.

Using (C.14) and (C.16) it is finally possible to write the contribution of the losses via the

parallel conductance GSTO as follow

GSTO(ω,E) = A× n(E)× CSTO(E)× ω2 (C.17)

This formula is used in chapter 5 to extract the normal part of the 2DEG conductance. Note

that formally, it has been demonstrated for a plate capacitor geometry where the AC current

flows in the direction of the external electric field (gate). In our geometry, we consider an AC

current flowing in a direction perpendicular to the external electric field as the gate voltage is

applied between the gate and the 2DEG.
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C.3 Mattis Bardeen calculations

C.3.1 Sum rule derivation

C.3.1.1 Kramers Kronig

As any analytical function, the conductance σ verifies the Kramers Kronig equation, which

will be useful to demonstrate the sum rule.

Reσ(ω) =
1

π
P
∫
dω′

Imσ(ω′)

ω′ − ω
(C.18)

Imσ(ω) = − 1

π
P
∫
dω′

Reσ(ω′)

ω′ − ω
(C.19)

C.3.1.2 Sum rule

In the presence of disorder one has [118] ReΠαβ(q = 0, ω → 0) = n
mδαβ which leads to

Reσαβ =
e2

ω
ImΠαβ(q = 0, ω) (C.20)

Using the Kramers Kronig relation and the relation (C.20), one finds∫ ∞
−∞

Reσαβ(ω)dω = e2

∫ ∞
−∞

ImΠαβ(q = 0, ω)

ω
dω = πe2ReΠαβ(q = 0, ω) (C.21)

C.3.2 Low frequency limit

Let us start from the mattis bardeen formula

σ1s

σ1n
(ω, T ) =

πns
mσn

δ(ω) +
2

ω

∫ ∞
∆

dE(f(E)− f(ω + E))g(E)

+
Θ(ω − 2∆)

ω

∫ −∆

∆−ω
dE(1− 2f(ω + E))g(E) (C.22)

σ2s

σ1n
(ω, T ) =

1

ω

∫ ∆

max(−∆,∆−ω)
dE(1− 2f(ω + E))g(E)

E(E + ω) + ∆2

√
∆2 − E2

√
(E + ω)2 −∆2

(C.23)

with

g(E) =
E(E + h̄ω) + ∆2

√
E2 −∆2

√
(E + h̄ω)2 −∆2

(C.24)

As ω → 0 the integral in 4.17 can be evaluated as

∫ ∆

∆−ω
[f(−E − ω)− f(E + ω)]

E(E + ω) + ∆2

√
∆2 − E2

√
(E + ω)2 −∆2

(C.25)

' tanh
β∆

2
2∆2

∫ ∆

∆−ω
dE

1√
∆2 − E2

√
(E + ω)2 −∆2

(C.26)

Indeed (f(−E − ω)− f(E + ω))/2→ tanh(β∆/2)δ(E −∆) and we can prove that the rest

of the integral is independent of ω. If we write y = ∆− E in the last part of the integral
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−
∫ 0

ω
dy

1√
y(2∆− y)

1√
(ω − y)(ω + 2∆− y)

'
∫ ω

0
dy

1

2∆

1
√
y

1√
ω − y

(C.27)

=
1

2∆
2 arctan

√
y

√
ω − y

∣∣∣∣ω
0

=
π

2∆
(C.28)

Finally, we find

σ2(ω → 0, T )

σn
=
π∆

ω
tanh

β∆(T )

2
(C.29)

C.3.3 Superfluid stiffness in 2D disordered systems

We can express the superfluid stiffness in the dirty limit by using the Mattis Bardeen theory.

Equation (4.20) gives

Js =
h̄2n2D

s

4m
=
R0

Rn

∆

4
(C.30)

Where R0 = h
e2

= 25.813kΩ/�. The higher the disorder described by Rn the lower the

stiffness will be. In other words, the higher the disorder, the lower the number of electron pairs

created below Tc will be. More generally, in a 2D geometry, the superfluid stiffness is defined

for transverse conductivity in the limit q → 0. For a current in the x direction Jx = −e2JsAx

with

Js =
n

m
+ ReΠxx(qx = 0, qy → 0, ω = 0) (C.31)

The real part of the conductivity becomes [129] :

σ1(ω) = e2πJsδ(ω)− e2 ImΠxx(0, ω)

ω︸ ︷︷ ︸
σreg(ω)

(C.32)

The disorder should contribute to the dissipative part of σ at non-zero frequencies. Hence

using the sum rule, it is possible to relate the superconducting stiffness to the spectral weight

of σ1. ∫ ∞
0

dωσ1(ω) =
πe2

2
Js +

∫ ∞
0+

σreg(ω) =
πe2

2

n

m
(C.33)

The contribution from the imaginary part of the current-current correlation σreg can come

from collective modes. As we have seen above, 2D superconductors are dominated by phase

fluctuations. Dissipation can therefore occur at finite frequency even below the gap due to

phase modes. In order to get insight in the physics of phase fluctuations in 2D, we must let

aside the mean field theory and the first order perturbation and use the renormalization group

theory.
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Fabrication recipes

D.1 General procedure for the amorphous LAO template method

Step 1 : TiO2 termination

— Cleaning with de-ionised water during 15 minutes in ultra sound bath at 50-60 ◦C

— Etching with buffered hydrofluoric acid (BHF, ref: BE 7-1 NC1) for 40s

— Annealing in oven for 3 hours at 1000 ◦C under oxygen pressure PO2= 1 bar

— Cleaning with de-ionised water for 30 min in ultra sound bath at 50-60 ◦C

— Drying with nitrogen

Step 2 : amorphous LAO The second step is the deposition of amorphous LAO template.

— Design of a Hall bar by optical lithography using AZ2021 negative resist (2.1µm thick)

— Deposition of amorphous LAO by PLD at room temperature under PO2 = 2.10−4 mbar

— Lift-off in hot acetone

Step 3 : crystalline LAO Up to this stage, no conducting interface is formed because of the

amorphous nature of the LAO template. In the third step, the sample is placed in the PLD in

order to deposit the crystalline layer

— Heating at 25 C.min−1

— LaAlO3 deposition by PLD at T=650◦C under PO2 = 2.10−4 mbar

— Cooling at 25◦ C.min−1 under PO2 = 10−1 mbar

— Annealing at T=500◦C during 30min under PO2 = 400 mbar

— Cooling at 25 ◦ C.min−1 down to room temperature

— waiting 30 min with PO2 = 400 mbar before breaking the vacuum

Step 4 : Si3N4

— optical lithography with thick AZ2021 negative resist (2.1 µm)

— Si3N4 is deposited at LPN-Marcoussis by magnetron sputtering on a target of pure sili-

cium under P = 1 × 10−2mbar of a mixture Ar (67.5%) - N2 (32.5%), with a radio

frequency power of 200W during 5 hours. The temperature was monitored to stay below

80◦C.
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Step 5 : Top Gate Deposition

— optical lithography with a negative resist (2.1 µm thick) AZ 2021

— evaporation Ti 10nm and Au 200nm on Plassys casing at Paris 7 by e-beam

QPC Fabrication Here is the receipe optimized on this sample :

— A4 PMMA spin coating 4500/4000/30

— Bake 4 min at 100◦C

— Deposition of Al layer (20nm) in order to evacuate the electrons easily

— Exposition to e-beam. Dose 1600µC/cm2 with a current of 500 pA, a resolution 1nm and

a step of 1nm

— 2’ in a NaOH bath in order to take out Al layer

— Evaporation in plassys casing Ti (3nm)/Au (100nm)

— Lift off with hot trichloroethylene

D.2 Sample fabrication

Sample A : SURF0340 Growth Temperature: 650 ◦C

P(O2) during growth: 2x10-4 mbar

Fluence: ∼ 0.6 J/cm2

Laser repetition rate: 1 Hz

Thickness: 8 u.c. (grown at 30.9 pulses/u.c.)

Target-substrate distance: 64 mm

Post-annealing: 30 min at 500 Celsius, in about 250-400 mbar of oxygen.

Cool-down in about 400 mbar of oxygen at 20 Celsius/min

Sample B and C Details are given in ref. [95]. The growth parameters are the same for all

the samples (B, C0, C1 and C2).

Sample D : SURF0737 Growth Temperature: 650 Celsius

P(O2) during growth: 2x10-4 mbar

Fluence: 0.7-0.8 J/cm2

Laser repetition rate: 1 Hz

Thickness: 14 u.c. (grown at 23.1 pulses/u.c.)

Target-substrate distance: 64 mm

Post-annealing: 60 min et non 30min at 500 Celsius, in about 250-400mbar of oxygen

Cool-down in about 400 mbar of oxygen at 20 Celsius/min

Sample E : SURF0612 Growth Temperature: 650 Celsius

P(O2) during growth: 2× 10−4 mbar
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Fluence: ∼ 1 J/cm2

Laser repetition rate: 1 Hz

Thickness: 5 u.c. (grown at 26.2 pulses/u.c.)

Target-substrate distance: 64 mm

Post-annealing: 30 min at 500 Celsius, in about 250-400 mbar of oxygen.

Cool-down in about 400 mbar of oxygen at 20 Celsius/min.
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Appendix E

BCS and Josephson effect

E.1 BCS in a nutshell

BCS theory assumes the existence of an attractive potential V between electrons. No matter

how small is this energy or what is the underlying pairing mechanism, such interaction cre-

ates a complete reorganization of the electronic structure. The simple s-wave singlet pairing

hamiltonian in a mean field approximation is :

Hint =
∑
k

∆kc
†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑ (E.1)

where ∆k = −
∑

l Vkl〈cl↓cl↑〉.
In the particle-hole space, one can rewrite the total hamiltonian as follow :

H = H0 +Hint =
∑
k

Ψ†k

(
ξk ∆k

∆∗k −ξk

)
Ψk where Ψk =

(
ck↑

c†−k↓

)
(E.2)

It gives rise to an exotic ground state |φ0〉 = Πk(ak + bkc
†
n↑c
†
n↓) |0〉 where electrons come in

pair of opposite momentum and spin. Bardeen Cooper and Schriffer demonstrated that such

pairing minimize the total energy. Any excitation requires a minimal energy Ek =
√

∆2 + ξ2
k

and can be described by a linear combination of particle and hole operators :

γ†k↑ = u∗kc
†
k↑ − v

∗
kck↓ (E.3)

γ†k↓ = u∗kc
†
−k↓ + v∗kck↑ (E.4)

where uk and vk are found by solving bogolubov equations [166] (see figure E.1(a)). Below

the critical temperature Tc, the pairs are formed and behave like bosons. Even in the presence

of impurities, such state remain superfluid.

Within this new basis, gap equation becomes

∆k = −
∑
l

Vklu
∗
l vl〈1− γ∗l↑γl↑ − γ∗l↓γl↓〉 (E.5)
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∆
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Figure E.1 – (a) uk and vk near Fermi level (b) Superfluid density of states in BCS theory

with 2u∗l vl = ∆l/El. Bardeen, Cooper and Schriffer finally assumed that Vkl is constant and

equal to −V when |ξl|< h̄ωc and 0 elsewhere. At T = 0, the gap is given by

∆ =
h̄ωc

sinh[1/N(0)V ]
' 2h̄ωce

−1/N(0)V (E.6)

where N(0) is the density of states at the Fermi energy EF . The gap energy is related to the

critical temperature [115]

∆(T = 0) = 1.76kBTc (E.7)

We see in equation E.6 that the density of states at Fermi energy N(0) and the strength of the

attractive electron-electron potential interaction V set a mininimal gap energy ∆. The dynamics

of any excited state is non a non trivial combination of particles and holes on top of a completely

reorganized ground state with gaped density of states around the Fermi level as plotted in figure

E.1(b).

E.2 Josephson effect

Josephson effect is a mechanism that describes the phase coeherent coupling of two supercon-

ducting condensates separated by a thin non-superconducting barrier (insulator, normal metal,

constriction...). In this section, we first introduce electron tunneling between two metals and

then discuss the case where the metals are replaced by superconductors.

E.2.1 Electron tunneling

We consider the situation described by figure E.3 where an electrun tunnel from left to right.

The probability PL→R to tunnel from left to right

PL→R =
2π

h̄
|〈L|HT |R〉 |2NR(E)(1− f(E)) (E.8)

where HT is the tunneling Hamiltonian. The current from left to right is given by
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V

Figure E.2 – (a) Tunnel junction for particle coming from the left with a probability PL→R to

go from state |L〉 to |R〉 (b) Electronic tunneling between two metals depending on the density

of states of each material and the applied voltage V (c) Tunneling between two superconductors

with gap ∆

JL→R = e

∫
PL→RNL(E − eV )f(E − eV )dE (E.9)

= e

∫
2π

h̄
|〈L|HT |R〉 |2NL(E − eV )f(E − eV )NR(E)(1− f(E))dE (E.10)

where V is the voltage between both superconductors. The current accross a section of area

A is thus the sum of JL→R and JR→L

I =
2πeA

h̄
|T |2

∫ +∞

−∞
NL(E − eV )NR(E)[f(E − eV )f(E)]dE (E.11)

Here the current depends on the tunneling amplitude T and on the respective density of

states of each metal. We will see now that the situation is much different if we replace the two

metals by two superconductors.

E.2.2 Josephson effect simple derivation

A simple derivation of Josephson effect was demonstrated in Feynman’s lecture [167]. Let us

consider two superconductors seperated by a thin insulating region. If the insulating region is

thin enough, there is a finite amplitude t for a cooper pair to tunnel from one side to the other.

ih̄
∂ψ1

∂t
= E1ψ1 + tψ2 (E.12)

ih̄
∂ψ2

∂t
= E2ψ2 + tψ1 (E.13)

In a superconductor, the energy of the ground state is given by E = 2µ where µ is the

chemical potential. By applying a voltage V between the two superconductors, the difference of

energy E1 − E2 = 2eV . We thus get

ih̄
∂ψ1

∂t
= −eV ψ1 + tψ2 (E.14)

ih̄
∂ψ2

∂t
= +eV ψ2 + tψ1 (E.15)
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Ψ ϕe=
i 1√ ns Ψ ϕe=

i 2√ ns1 21 2

Figure E.3 – Schematic of a Josephson junction from left superconductor with phase φ1 and

right superconductor with phase φ2. The barrier can be an insulator or a metal.

By taking real and imaginary part and replacing ψ1 and ψ2 by the Ginzburg Landau expres-

sion

ψ1 =
√
nS1e

iφ1 ψ2 =
√
nS2e

iφ2 (E.16)

We finally get a set a four equations from (E.14) and (E.15)

∂nS1

∂t
=

2

h̄
tnS1nS2 sin(φ) (E.17)

∂nS2

∂t
= −2

h̄
tnS2nS1 sin(φ) (E.18)

∂φ1

∂t
=
t

h̄

√
nS1

nS2

cos(φ) +
eV

h̄
(E.19)

∂φ2

∂t
=
t

h̄

√
nS2

nS1

cos(φ)− eV

h̄
(E.20)

The current density J =
∂nS1
∂t = −∂nS2

∂t can be integrated on the area of the barrier to obtain

the first Josephson equation

I = Ic sin(φ) (E.21)

where Ic is the critical current above which the junction switches in the normal state. This

effect is also called the DC Josephson effect.

We can also deduce the second equation which relates φ as a function of the applied voltage

∂φ

∂t
=

2e

h̄
V (E.22)

This relation is called AC Josephson effect. It means that at a fixed voltage V across the

junction, an ac current oscillating at pulsation ωJ = 2eV/h̄ will be generated. Ambegaokar and

Baratoff derived the expression of the critical current as a function of the gap energy ∆ and the

temperature in the case of a tunnel barrier

IcRn =
π∆

2e
tanh(∆/2kBT ) (E.23)
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This simple derivation of the Josephson effect do not take into account some effect which

can have a non negligible impact on the dynamical properties of the junction. We will therefore

present rapidly the RCSJ model.

E.2.3 RCSJ model

When the barrier between the two superconductors is a metal, the junction should be de-

scribed by a perfect Josephson element in parallel with a resistor. The junction should be

described with a resistance R in parallel. In addition, a capacitor should also be added to

account for the possible charging effects on the superconducting electrodes. The total current

circulating in the junction is the sum of the three branches of the circuit. Figure E.4 shows

the equivalent electrical circuit corresponding to this more realistic description of a Josephson

junction. Equation E.21 then becomes

I = Ic sin(φ) +
V

R
+ C

dV

dt
(E.24)

CR IC

Figure E.4 – RCSJ model equivalent circuit

Using equation E.22 and a normalized current i = I/Ic, a normalized time τ = ωpt with

ωp =
√

2πIc/φ0C, it becomes

i =
d2φ

dτ2
+

1

RCωp

dφ

dτ
+ sin(φ) (E.25)

This equation can be mapped to mecanical problem of a mass m in a washboard potential

U = − cos(φ)− iφ with a damping force −ηφ̇.

mφ̈+ ηφ̇+
∂U

∂φ
= 0 (E.26)

with m = (φ0/2π)2C and η = (φ0/2π)2/R. When a current is applied, the washboard

potential represented on figure E.5 is tilted. When there is no current in the junction, the phase

is trapped in one of the minima. According to the second Josephson equation, no voltage is

developped because V ∝ φ̇ = 0. When the curent reach a critical value Is, the phase starts to

move along the potential. This is called a switching event.

The precise motion of the phase then depends on the mc Cumber parameter

βc =
ic(T )CR2

0

h̄/2e
(E.27)
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U(ϕ)

ϕ

Figure E.5 – Switching event

If βc << 1 the capacitance is sufficiently small to be negligible. In this case, the mass in

the washboard potential has a small inertia. When the potential is brought back to horizontal

(I=0), the phase stops immediately and the return current is equal to the switching current.

This situation is called the overdamped situation. On the contrary if βc >> 1 the effective mass

of the phase is higher and the rettrapping current Ir is lower than Is.
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Sujet : Transport DC et AC à l’interface

LaAlO3/SrTiO3 contrôlée par effet de champ

Résumé : Cette thèse est consacrée à l’étude des propriétés de transport statique et dynamique du gaz

d’électrons bidimensionnel supraconducteur à l’interface LaAlO3/SrTiO3. Le confinement des électrons

dans un puit quantique lève la dégénérescence des bandes t2g du SrTiO3, ce qui génère une structure

de bande riche et complexe. A partir d’un modèle d’électrons libres, nous calculons numériquement la

structure de bande et le potentiel de confinement de manière auto-cohérente (chapitre 1). Ces simula-

tions mettent en évidence la présence de deux types de bandes, dxy et dxz/yz, ayant des propriétés de

transport très différentes. Dans un premier temps, nous étudions l’effet du désordre microscopique induit

par le dopage d’atomes de Chrome, sur la supraconductivité et le couplage spin-orbite en fonction de

la densité électronique contrôlée par effet de champ (chapitre 3). Nous décrivons également la première

réalisation d’un dispositif à effet de champ dans lequel la transition supraconducteur-isolant est obtenue à

l’aide d’une grille métallique située au-dessus du gaz. La présence d’un fort couplage spin-orbite (quelques

meV) contrôlé par la tension de grille a également été démontrée en analysant les mesures de magnéto-

transport. Nous présentons la première réalisation d’un point contact quantique dans LaAlO3/SrTiO3

par effet de champ (chapitre 6). Pour aller plus loin dans la compréhension de l’interface LaAlO3/SrTiO3,

nous présentons des mesures haute fréquence de la conductivité σ (chapitre 5). Cette mesure nous donne

accès à la rigidité de phase et à l’énergie du gap supraconducteur par la théorie BCS. Nous montrons que la

compétition entre ces deux échelles d’énergie contrôle la température critique dans le diagramme de phase.

Mot-clefs : Supraconductivité, Couplage Spin-Orbit, Point Contact, Rigidité de Phase

Subject : DC and AC transport in field-effect

controlled LaAlO3/SrTiO3 interface

Abstract : This thesis is devoted to the study of static and dynamical transport properties of the

superconducting two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Under strong 2D confine-

ment, the degeneracy of the t2g bands of SrTiO3 is lifted at the interface, generating a rich and complex

band structure. Starting from a free electron model, we derive numerically a self-consistent calculation

of the potential well and the band structure (chapter 1). These simulations highlight the presence of two

types of bands dxy and dxz/yz with very different transport properties. We investigate first the effect of

microscopic disorder introduced by Cr doping, on superconductivity and spin-orbit coupling over a wide

range of back-gate doping (chapter 3). We also describe the first implementation of a field-effect device

where the superconductor-insulator transition could be continuously tuned with a top-gate. The presence

of a strong spin-orbit coupling that could be controlled with the top-gate voltage is also demonstrated by

analyzing the magneto-transport measurements. The gate dependence of the spin-splitting energy, of the

order of a few meV, is found to be consistent with Rashba spin-orbit coupling. Going one step further in

nanofabrication, we report on the first realization of a quantum point contact in LaAlO3/SrTiO3 using

split gates (chapter 6). To go further in the understanding of the LaAlO3/SrTiO3 interface, we present

high frequency measurements of the conductivity σ (chapter 5). This measurement gives us access to the

superfluid stiffness and to the gap energy via the BCS theory. We show that the competition between

these two energy scales controls the superconducting Tc in the phase diagram.

Keywords : Superconductivity, Spin-Orbit Coupling, Quantum Point Contact, Superfluid Stiffness


